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CHAPTER 1
INTRODUCTION

by Ted Belytschko
Northwestern University
Copyright 1996

1.1  NONLINEAR FINITE ELEMENTS  IN DESIGN

Nonlinear finite element analysis is an essential component of computer-
aided design.  Testing of prototypes is increasingly being replaced by simulation
with nonlinear finite element  methods because this provides a more rapid and less
expensive way to evaluate design concepts and design details.  For example, in
the field of automotive design, simulation of crashes is replacing full scale tests,
both for the evaluation of early design concepts and details of the final design,
such as accelerometer placement for airbag deployment, padding of the interior,
and selection of materials and component cross-sections for meeting
crashworthiness criteria.  In many fields of manufacturing, simulation is speeding
the design process by allowing simulation of processes such as sheet-metal
forming, extrusion of parts, and casting.  In the electronics industries, simulation
is replacing drop-tests for the evaluation of product durability.

 For both users and developers of nonlinear finite element programs, an
understanding of the fundamental concepts of nonlinear finite element analysis is
essential.  Without an understanding of the fundamentals, a user must treat the
finite element program as a black box that provides simulations.  However, even
more so than linear finite element analysis, nonlinear finite element analysis
confronts the user with many choices and pitfalls.  Without an understanding of
the implication and meaning of these choices and difficulties, a user is at a severe
disadvantage.

The purpose of this book is to describe the methods of nonlinear finite
element analysis for solid mechanics.  Our intent is to provide an integrated
treatment so that the reader can gain an understanding of the fundamental
methods, a feeling for the comparative usefulness of different approaches and an
appreciation of the difficulties which lurk in the nonlinear world.  At the same
time, enough detail about the implementation of various techniques is given so
that they can be programmed.

Nonlinear analysis consists of the following steps:

1. development of a model;

2. formulation of the governing equations;

3. discretization of the equations;

4. solution of the equations;
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5. interpretation of the results.

Modeling is a term that tends to be used for two distinct tasks in
engineering.  The older definition emphasizes the extraction of the essential
elements of mechanical behavior.  The objective in this approach is to identify the
simplest model which can replicate the behavior of interest.  In this approach,
model development is the process of identifying the ingredients of the model
which can provide the qualitative and quantitative predictions.

A second approach to modeling, which is becoming more common in
industry, is to develop a detailed, single model of a design and to use it to
examine all of the engineering criteria which are of interest.  The impetus for this
approach to modeling is that it costs far more to make a model or mesh for an
engineering product than can be saved through reduction of the model by
specializing it for each application.  For example, the same finite element model
of a laptop computer can be used for a drop-test simulation, a linear static analysis
and a thermal analysis.  By using the same model for all of these analyses, a
significant amount of engineering time can be saved.  While this approach is not
recommended in all situations, it is becoming commonplace in industry.  In the
near future the finite element model may serve as a prototype that can be used for
checking many aspects of a design’s performance.  The decreasing cost of
computer time and the increasing speed of computers make this approach highly
cost-effective.  However the user of finite element software must still able to
evaluate the suitability of a model for a particular analysis and understand its
limitations.

 The formulation of the governing equations and their discretization is
largely in the hands of the software developers today.  However, a user who does
not understand the fundamentals of the software faces many perils, for some
approaches and software may be unsuitable.  Furthermore, to convert
experimental data to input, the user must be aware of the stress and strain
measures used in the program and by the experimentalist who provided material
data.  The user must understand the sensitivity of response to the data and how to
asses it.  An effective user must be aware of the likely sources of error, how to
check for these errors and estimate their magnitudes, and the limitations and
strengths of various algorithms.

The solution of the discrete equations also presents a user with many
choices.  An inappropriate choice will result in very long run-times which can
prevent him from obtaining the results within the time schedule.  An
understanding of the advantages and disadvantages and the approximate computer
time required for various solution procedures are invaluable in the selection of a
good strategy for developing a reasonable model and selecting the solution
procedure.

The user’s role is most crucial in the interpretation of results.  In addition
to the approximations inherent even in linear finite element models, nonlinear
analyses are often sensitive to many factors that can make a single simulation
quite misleading.  Nonlinear solids can undergo instabilities, their response can be
sensitive to imperfections, and the results can depend dramatically on material
parameters.   Unless the user is aware of these phenomena, the possibility of a
misinterpretation of simulation results is quite possible.
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In spite of these many pitfalls, our views on the usefulness  and potential
of nonlinear finite element analyses are very sanguine.  In many industries,
nonlinear finite element analysis have shortened design cycles and dramatically
reduced the need for prototype tests.  Simulations, because of the wide variety of
output they produce and the ease of doing what-ifs, can lead to tremendous
improvements of the engineer's understanding of the basic physics of a product's
behavior under various environments.  While tests give the gross but important
result of whether the product withstands a certain environment, they usually
provide little of the detail of the behavior of the product on which a redesign can
be based if the product does not meet a test.  Computer simulations, on the other
hand, give detailed histories of stress and strain and other state variables, which in
the hands of a good engineer give valuable insight into how to redesign the
product .

Like many finite element books, this book presents a large variety of
methods and recipes for the solution of engineering and scientific problems by the
finite element method.  However, in order to preserve a pedagogic character, we
have interwoven several themes into the book which we feel are of central
importance in nonlinear analysis.  These include the following:

1. the selection of appropriate methods for the problem at hand;

2. the selection of a suitable mesh description and kinematic and kinetic
descriptions for a given problem;

3.  the examination of stability of the solution and the solution procedure;

4. an awareness of the smoothness of the response of the model and its
implication on the quality and cost of the solution;

5.  the role of major assumptions and the likely sources of error.

The selection of an appropriate mesh description, i.e. whether a
Lagrangian, Eulerian or arbitrary Lagrangian Eulerian mesh is used, is very
important for many of the large deformation problems encountered in process
simulation and failure analysis.  The effects of mesh distortion need to be
understood, and the advantages of different types of mesh descriptions should be
borne in mind in the selection.  There are many situations where a continuous
remeshing or arbitrary Lagrangian Eulerian description is most suitable.

The issue of the stability of solution is central in the simulation of
nonlinear processes.  In numerical simulation, it is possible to obtain solutions
which are not physically stable and therefore quite meaningless.  Many solutions
are sensitive to imperfections or material and load parameters; in some cases,
there is even sensitivity to the mesh employed in the solution.  A knowledgeable
user of nonlinear finite element software must be aware of these characteristics
and the associated pitfalls.  Otherwise the results obtained by elaborate computer
simulations can be quite misleading and lead to incorrect design decisions.

The issue of smoothness is also ubiquitous in nonlinear finite element
analysis.  Lack of smoothness degrades the robustness of most algorithms and can
introduce undesirable noise into the solution.  Techniques have been developed
which improve the smoothness of the response; these are generally called
regularization procedures.  However, regularization procedures are often not
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based on physical phenomena and in many cases the constants associated with the
regularization are difficult to determine.  Therefore, an analyst is often confronted
with the dilemma of whether to choose a method which leads to smoother
solutions or to deal with a discontinuous response.  An understanding of the
effects of regularization parameters, the presence of hidden regularizations, such
as penalty methods in contact-impact, and an appreciation of the benefits of these
methods is highly desirable.

The accuracy and stability of solutions is a difficult consideration in
nonlinear analysis.   These issues manifest themselves in many ways.  For
example, in the selection of an element, the analyst must be aware of stability and
locking characteristics of various elements.  A judicious selection of an element
for a problem involves  factors such as the stability of the element for the problem
at hand, the expected smoothness of the solution and the magnitude of
deformations expected.  In addition, the analyst must be aware of the complexity
of nonlinear solutions: the appearance of bifurcation points and limit points, the
stability and instability of equilibrium branches.  The possibility of both physical
and numerical instabilities must be kept in mind and checked in a solution.

Thus the informed use of nonlinear software in both industry and research
requires considerable understanding of nonlinear finite element methods.  It is the
objective of this book to provide this understanding and to make the reader aware
of the many interesting challenges and opportunities in nonlinear finite element
analysis.

1.2. RELATED BOOKS AND HISTORY OF NONLINEAR
FINITE ELEMENTS

Several excellent texts and monographs devoted either entirely or partially
to nonlinear finite element analysis have already been published.  Books dealing
only with nonlinear finite element analysis include Oden(1972), Crisfield(1991),
Kleiber(1989), and Zhong(1993).  Oden’s work is particularly noteworthy since it
pioneered the field of nonlinear finite element analysis of solids and structures.
Some of the books which are partially devoted to nonlinear analysis are
Belytschko and Hughes(1983), Zienkiewicz and Taylor(1991), Bathe(1995) and
Cook, Plesha and Malkus(1989).  These books provide useful introductions to
nonlinear finite element analysis.  As a companion book, a treatment of linear
finite element analysis is also useful.  The most comprehensive are Hughes (1987)
and Zienkiewicz and Taylor(1991).

Nonlinear finite element methods have many roots.  Not long after the
linear finite element method appeared through the work of the Boeing group and
the famous paper of Cough, Topp, and Martin (??), engineers in several venues
began extensions of the method to nonlinear, small displacement static problems,
Incidentally, it is hard to convey the excitement of the finite element community
and the disdain of classical researchers for the method.  For example, for many
years the Journal of Applied Mechanics banned papers, either tacitly, because it
was considered of no scientific substance [sentence does not finish].  The
excitement in the method was fueled by Ed Wilson's liberal distribution of his first
programs.  In many laboratories throughout the world, engineers developed new
applications by modifying and extending these early codes.
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This account form those in many other books in that the focus is not on the
published works, buut on the software.  In nonlinear finite element analysis, as in
many endeavors in this information-computer age, te software represents a more
meaningful indication of the state-of-the-art than the literature since it represents
what can be applied in practice.

Among the first papers on nonlinear finite element methods were Marcal
and King (??) and Gallagher (??).  Pedro Marcal taught at Brown in those early
years of nonlinear FEM, but he soon set up a firm to market the first nonlinear
finite element program in 196?; the program was called MARC and is still a
major player in the commercial software scene.

At about the same time, John Swanson (??) was developing a nonlinear
finite element program at Westinghouse for nuclear applications.  He left
Westinghouse in 19?? to market the program ANSYS, which for the period 1980-
90 dominated the commercial nonlinear finite element scene.

Two other major players in the early commercial nonlinear finite element
scene were David Hibbitt and Klaus-Jürgen Bathe.  David worked with Pedro
Marcal until 1972, and then co-founded HKS, which markets ABAQUS.  Jürgen
launched his program, ADINA, shortly after obtaining his Ph.D. at Berkeley
under the tutelage of Ed Wilson while teaching at MIT.

All of these programs through the early 1990's focused on static solutions
and dynamic solutions by implicit methods.  There were terrific advances in these
methods in the 1970's, generated mainly by the Berkeley researchers and those
with Berkeley roots: Thomas J.R. Hughes, Michael Ortiz, Juan Simo, and Robert
Taylor (in order of age), were the most fertile contributors, but there are many
other who are referenced throughout this book.

Explicit finite element methods probably have many different origins,
depending on your viewpoint.  Most of us were strongly influenced by the work in
the DOE laboratories, such as the work of Wilkins (??) at Lawrence Livermore
and Harlow (??) at Los Alamos.

In ???, Costantino (??) developed what was probably the first explicit
finite element program.  It was limit to linear materials and small deformations,
and computed the internal nodal forces by multiplying a banded form of K  by the
nodal displacements.  It was used primarily on IBM 7040 series computers, which
cost millions of dollars and had a speed of far less than 1 megaflop and 32,000
words of RAM.  The stiffness matrix was stored on a tape and the progress of a
calculation could be gauged by watching the tape drive; after every step, the tape
drive would reverse to permit a read of the stiffness matrix.

In 1969, in order to sell a proposal to the Air Force, we conceived what
has come to be known as the element-by-element technique: the computation of
the nodal forces without use of a stiffness matrix.  The resulting program,
SAMSON, was a two-dimensional finite element program which was used for a
decade by weapons laboratories in the U.S.  In 1972, the program was extended to
fully nonlinear three-dimensional transient analysis of structures and was called
WRECKER.  This funding program was provided by the U.S. Department of
Transportation by a visionary program manager, Lee Ovenshire, who dreamt in
the early 1970's that crash testing of automobiles could be replaced by simulation.
However, it was not to be, for at that time a simulation of a 300-element nodal
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over ?? msec of simulation time took 30 hours of computer time, which cost the
equivalent of three years of salary of an Assistant Professor ($35,000).  The
program funded several other pioneering efforts, Hughes' work on contact-impact
(??) and Ted Shugar and Carly Ward's work on the modeling of the head at Port
Hueneme.  But the DOT decided around 1975 that simulation was too expensive
(such is the vision of some bureaucrats) and shifted all funds to testing, bringing
this far flung research effort to a screeching halt.  WRECKER remained barely
alive for the next decade at Ford.

Parallel work proceeded at the DOE national laboratories.  In 1975, Sam
Key completed PRONTO, which also featured the element-by-element explicit
method.  However, his program suffered from the restrictive dissemination
policies of Sandia.

The key work in the promulgation of explicit finite element codes was
John Hallquist's work at Lawrence Livermore Laboratories.  John drew on the
work which preceded his with discernment, he interacted closely with many
Berkeley researchers such as Bob Taylor, Tom Hughes, and Juan Simo.  Some of
the key elements of his success were the development of contact-impact interfaces
with Dave Benson, his awesome programming productivity and the wide
dissemination of the resulting codes, DYNA-2D and DYNA-3D.  In contrast to
Sandia, LLN seemed to place no impediments on the distribution of the program
and it was soon to be found in many government and academic laboratories and in
industry throughout the world.

Key factors in the success of the DYNA codes was the use of one-point
quadrature elements and the degree of vectorization which was achieved by john
Hallquist.  The latter issue has become somewhat irrelevant with the new
generation of computers, but this combination enabled the simulation with models
of suffiecient sizeto make full-scale simulation of problems such as car crash
meaningful.  The one-point quadrature elements with consistent hourglass control
discussed in Chapter 8 increased the speed of three-dimensional analysis by
almost an order of magnitude over fully integrated three-dimensional elements.

1.3  NOTATION

Nonlinear finite element analysis represents a nexus of three fields: (1)
linear finite element methods, which evolved out of matrix methods of structural
analysis; (2) nonlinear continuum mechanics; and (3) mathematics, including
numerical analysis, linear algebra and functional analysis, Hughes(1996).  In each
of these fields a standard notation has evolved.  Unfortunately, the notations are
quite different, and at times contradictory or overlapping.  We have tried to keep
the variety of notation to a minimum and both consistent within the book and with
the relevant literature.   To make a reasonable presentation possible, both the
notation of the finite element literature and continuum mechanics are used.

Three types of notation are used: 1. indicial notation, 2. tensor notation
and 3. matrix notation.  Equations in continuum mechanics are written in tensor
and indicial notation.  The equations pertaining to the finite element
implementation are given in indicial or matrix notation.

Indicial Notation.  In indicial notation, the components of tensors or matrices are
explicitly specified.  Thus a vector, which is a first order tensor, is denoted in
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indicial notation by xi , where the range of the index is the number of dimensions
nS.  Indices repeated twice in a term are summed, in conformance with the rules
of Einstein notation. For example in three dimensions, if xi  is the position vector
with magnitude r

r x x x x x x x x x y zi i
2

1 1 2 2 3 3
2 2 2= = + + = + + (1.3.1)

where the second equation indicates that   x1 = x, x2 = y, x3 = z ; we will always
write out the coordinates as x, y and z rather than using subscripts to avoid
confusion with nodal values.  For a vector such as the velocity vi  in three
dimensions, 

  
v1 = vx , v2 = vy , v3 = vz ; numerical subscripts are avoided in writing

out expressions to avoid confusing components with node numbers.  Indices
which refer to components of tensors are always lower case.

Nodal indices are always indicated by upper case Latin letters, e.g. viI  is
the velocity at node I. Upper case indices repeated twice are summed over their
range, which depends on the context.  When dealing with an element, the range is
over the nodes of the element, whereas when dealing with a mesh, the range is
over the nodes of the mesh.  Thus the velocity at a node I is written as  viI , where
viI  is the i-component at node I.

A second order tensor is indicated by two subscripts.  For example, for the
second order tensor Eij , the components are   E E E Exx yx11 21= =, , etc..   We will
usually use indicial notation for Cartesian components but in a few of the more
advanced sections we also use curvilinear components.

Indicial notation at times leads to spaghetti-like equations, and the
resulting equations are often only applicable to Cartesian coordinates.  For those
who dislike indicial notation, it should be pointed out that it is almost unavoidable
in the implementation of finite element methods, for in programming the finite
element equations the indices must be specified.

Tensor Notation.  Tensor notation is frequently used in continuum mechanics
because tensor expression are independent of the coordinate systems.  Thus while
Cartesian indicial equations only apply to Cartesian coordinates, expressions in
tensor notation can be converted to other coordinates such as cylindrical
coordinates, curvilinear coordinates, etc.  Furthermore, equations in tensor
notation are much easier to memorize.  A large part of the continuum mechanics
and finite element literature employs tensor notation, so a serious student should
become familiar with it.

In tensor notation, we indicate tensors of order one or greater in boldface.
Lower case bold-face letters are almost always used for first order tensors, while
upper case, bold-face letters are used for higher order tensors.  For example, a
velocity vector is indicated by v in tensor notation, while the second order tensor,
such as  E , is written in upper case.  The major exception to this are the physical
stress tensor   ss, which is a second order tensor, but is denoted by a lower case
symbol.   Equation(1.3.1) is  written in tensor notation as
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r2 = ⋅x x  (1.3.2)

where a dot denotes a contraction of the inner indices; in this case, the tensors on
the RHS have only one index so the contraction applies to those indices.

Tensor expressions are distinguished from matrix expressions by using dots and
colons between terms, as in a b⋅ , and A B⋅ . The symbol ":" denotes the
contraction of a pair of repeated indices which appear in the same order, so

A : B ≡ A Bij ij (1.3.3)

The symbol "⋅⋅" denotes the contraction of the outer repeated indices and the
inner repeated indices, as in

A B A : B⋅⋅ = =A Bij ji
T  (1.3.4)

If one of the tensors is symmetric, the expressions in Eqs. (1.3.3) and (1.3.4) are
equivalent.  This notation can also be used for contraction of higher order
matrices.  For example, the usual expression for a constitutive equation given
below on the left is written in tensor notation as shown on the right

σ εij ijkl klC=           σσ εε= C: (1.3.5)

The functional dependence of a variable will be indicated at the beginning
of a development in the standard manner by listing the independent variables.  For
example,   v x( , )t  indicates that the velocity v is a function of the space
coordinates x and the time t.  In subsequent appearances of v, the identity of the
independent variables in implied.  We will not hang symbols all around the
variable.  This notation, which has evolved in a some of the finite element
literature, violates esthetics, and is reminiscent of laundry hanging from the
balconies of tenements.  We will attach short words to some of the symbols.  This
is intended to help a reader who delves into the middle of the book.  It is not
intended that such complex symbols be used working through equations.
Mathematical symbols and equations should be kept as simple as possible.

Matrix Notation.  In implementation of finite element methods, we will often use
matrix notation. We will use the same notations for matrices as for tensors and but
will not use connective symbols.  Thus Eq. (2) in matrix notation is written as

r T2 = x x (1.3.6)

  All first order matrices will be denoted by lower case boldface letters, such as v,
and will be considered column matrices.  Examples of column matrices are

x =
x

y

z












          v =

v1

v2

v3












(1.3.7)
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Usually rectangular matrices, of which second tensors are a special case, will be
denoted by upper case boldface, such as A.  The transpose of a matrix is denoted
by a superscript “T” , and the first index always refers to a row number, the
second to a column number.  Thus a 2x2 matrix A  and a 2x3 matrix B are written
out as (the order of a matrix is also written with number of rows by number of
columns, with rows always first):

A =
A11 A12

A21 A22






         B =

B11 B12

B21 B22




B13

B23




(1.3.8)

In summary, we show the quadratic form associated with A  in three
notations 

x Ax x A xT = ⋅ ⋅ = x A xi ij j (1.3.9)

The above are all equivalent: the first is matrix notation, the second in tensor
notation, the third in indicial notation.

Second-order tensors are often converted to Voigt.  Voigt notation is
described in the Glossary.

1.4.  MESH DESCRIPTIONS

One of the themes of this book is partially the different descriptions that
are used in the formulation of the governing equations and the discretization of
the continuum mechanics.  We will classify the finite element model in three
parts, Belytschko (1977):

1.  the mesh description;

2.  the kinetic description, which is determined by the choice of the stress
     tensor and the form of the momentum equation;

3. the kinematic description, which is determined by the choice of the
     strain measure.

In this Section, we will introduce the types of mesh descriptions.  For this
purpose, it is useful to introduce some definitions and concepts which will be used
throughout this book.  The first are the definitions of material coordinates and
spatial coordinates.  Spatial coordinates are denoted by x; spatial coordinates are
also called Eulerian coordinates.  A spatial (or Eulerian coordinate) specifies the
location of a point in space.  The material coordinates, also called Lagrangian
coordinates, are denoted by X .  The material coordinate labels a material point:
each material point has a unique material coordinate, which is usually taken to be
its spatial coordinate in the initial configuration of the body, so at t=0, X =x.
Since in a deforming body, the positions of the material points change with time,
the spatial coordinates of material points will be functions of time.

The motion or deformation of a body can be described by a function

  φφ X, t( ), with the material coordinates X and the time t as the independent
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variables.  This function gives the spatial positions of the material points as a
function of time through:

  x X= ( )φφ , t (1.4.1)

This is also called a map between the initial and current configurations.  The
displacement of a material point is the difference between its current position and
its original position, so it is given by

  u X( , ) ,X t X t= ( ) −φφ (1.4.2)

To illustrate these definitions, consider the following motion in one
dimension:

  x X t X t Xt X= = − + +φφ( , ) ( )1 1
2

2 (1.4.3)

This motion is shown in Fig. 1.1;  the motion of several points are plotted in space
time to exhibit their trajectories; we obviously cannot plot the motion of all
material points since there are an infinite number.  The velocity of a material point
is the time derivative of the motion with the material coordinate fixed, i.e. the
velocity is given by

 
  
v X t

X t

t
X t( , )

( , )= = + −( )∂φ
∂

1 1 (1.4.4)

The mesh description is based on the choice of independent variables.  For
purposes of illustration, let us consider the velocity field.  We can describe the
velocity field as a function of the Lagrangian (material) coordinates, as in Eq.
(1.4.4) or we can describe the velocity as a function of the Eulerian (spatial)
coordinates

  v x v x( , ) , ,t t t= ( )( )−φφ 1 (1.4.5)

In the above we have placed a bar over the velocity symbol to indicate that the
velocity field when expressed in terms of the spatial coordinate x and the time t
will not be the same function as that given in Eq. (1.4.4), although in the
remainder of the book we will usually not distinguish different functions which
are used to represent the same field.   We have also used the concept of an inverse
map which to express the material coordinates in terms of the spatial coordinates

  X x t= ( )−ϕ 1 ,  (1.4.6)

Such inverse mappings can generally not be expressed in closed form for arbitrary
motions, but for the simple motion given in Eq. (1.4.3) it is given by

X
x t

t t
= −

− +1
2

2 1
(1.4.7)

Substituting the above into (3) gives
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v x t

x t t

t t

x xt t

t t
( , ) = + −( ) −( )

− +
=

− + −
− +

1
1

1

1

11
2

2

1
2

2

1
2

2 (1.4.8)

Equations (1.4.4) and (1.4.8) give the same physical velocity fields, but express
them in terms of different independent variables, so that they are different
functions.  Equation (1.4.4) is called a Lagrangian (material) description for it
expresses the dependent variable in terms of the Lagrangian (material) coordinate.
Equation (1.4.8) is called an Eulerian (spatial) description, for it expresses the
dependent variable as a function of the Eulerian (spatial) coordinates.  Henceforth
in this book, we will not use different symbols for these different functions, but
keep in mind that if the same field variable is expressed in terms of different
independent variables, then the functions must be different.  In other words, a
symbol for a dependent field variable is associated with the field, not the function.
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Material  Point

Node

t1

0

B(t = 0)

Lagranian Description
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B(t = 0)

t

B(t1)
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0

t1

x, X

B(t = 0)

t

Nodal 
Trajectory

Material Point 
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Fig. 1.1 Space time depiction of a one dimensional Lagrangian, Eulerian, and ALE (arbitrary
Lagrangian Eulerian) elements.
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The differences between Lagrangian and Eulerian meshes are most clearly
seen in terms of the behavior of the nodes.  If the mesh is Eulerian, the Eulerian
coordinates of nodes are fixed, i.e. the nodes are coincident with spatial points.  If
the mesh is Lagrangian, the Lagrangian (material) coordinates of nodes are time
invariant, i.e. the nodes are coincident with material points.   This is illustrated in
Fig. 1.1 for the mapping given by Eq. (1.4.3).  In the Eulerian mesh, the nodal
trajectories are vertical lines and material points pass across element interfaces.
In the Lagrangian mesh, nodal trajectories are coincident with material point
trajectories, and no material passes between elements.  Furthermore, element
quadrature points remain coincident with material points in Lagrangian meshes,
whereas in Eulerian meshes the material point at a given quadrature point changes
with time.  We will see later that this complicates the treatment of materials in
which the stress is history-dependent.

The comparative advantages of Eulerian and Lagrangian meshes can be
seen even in this simple one-dimensional example.  Since the nodes are coincident
with material points in the Lagrangian mesh, boundary nodes remain on the
boundary throughout the evolution of the problem.  This simplifies the imposition
of boundary conditions in Lagrangian meshes.  In Eulerian meshes, on the other
hand, boundary nodes do not remain coincident with the boundary.  Therefore,
boundary conditions must be imposed at points which are not nodes, and as we
shall see later, this engenders significant complications in multi-dimensional
problems.  Similarly, if a node is placed on an interface between two materials, it
remains on the interface in a Lagrangian mesh, but not in an Eulerian mesh.

In Lagrangian meshes, since the material points remain coincident with
mesh points, the elements deform with the material.  Therefore, elements in a
Lagrangian mesh can become severely distorted.  This effect is apparent in a one-
dimensional problem only in the element lengths: in Eulerian meshes, the element
length are constant in time, whereas in Lagrangian meshes, element lengths
change with time.  In multi-dimensional problems, these effects are far more
severe, and elements can get very distorted.  Since element accuracy degrades
with distortion, the magnitude of deformation that can be simulated with a
Lagrangian mesh is limited.  Eulerian elements, on the other hand, are unchanged
by the deformation of the material, so no degradation in accuracy occurs because
of material deformation.

To illustrate the differences between Eulerian and Lagrangian mesh
descriptions in two dimensions, a two dimensional example will be considered.

In two dimensions, the spatial coordinates are denoted by   x = [ ]x y T,  and the

material coordinates by   X = [X , Y]T .  The deformation mapping is given by

  x X= ( )φφ , t (1.4.9)

where   φφ X, t( ) is a vector function, i.e. it gives a vector for every pair of the
independent variables.  For every pair of material coordinates and time, this
function gives the pair of spatial coordinates corresponding to the current position
of the material particles.  Writing out the above expression gives

  

x X Y t

y X Y t

= ( )
= ( )

φ
φ

1

2

, ,

, ,
(1.4.10)
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As an example of a motion, consider pure shear in which the map is given by

x = X + tY

y = Y
(1.4.11)

original configuration deformed configuration

L

E

Fig. 1.2  Two dimensional shearing of a block showing Lagrangian (L) and Eulerian (E) elements.

In a Lagrangian mesh, the nodes are coincident with material (Lagrangian)
points, so the nodes remain coincident with material points, so

for  Lagrangian nodes, XI =constant in time

For an Eulerian mesh, the nodes are coincident with spatial (Eulerian) points, so
we can write

for Eulerian nodes, x I =constant in time

Points on the edges of elements behave similarly to the nodes: in Lagrangian
meshes, element edges remain coincident with material lines, whereas in Eulerian
meshes, the element edges remain fixed in space.

To illustrate this statement we show Lagrangian and Eulerian meshes for
the shear deformation given by Eq. (11) in Fig. 1.2.  As can be seen from the
figure, a Lagrangian mesh is like an etching on the material: as the material is
deformed, the etching deforms with it.  An Eulerian mesh is like an etching on a
sheet of glass held in front of the material: as the material deforms, the etching is
unchanged and the material passes across it.

The advantages and disadvantages of the two types of meshes are similar
to those in one dimension.  In a Lagrangian mesh, element edges and nodes which
are initially on the boundary remain on the boundary, whereas in Eulerian meshes
edges and nodes which are initially on the boundary do not remain on the
boundary.  Thus, in Lagrangian meshes, element edges (lines in two dimensions,
surfaces in three dimensions) remain coincident with boundaries and material
interfaces.  In Eulerian meshes, element sides do not remain coincident with
boundaries or material interfaces.  Hence tracking methods or approximate
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methods, such as volume of fluid approaches, have to be used for treating moving
boundaries treated by Eulerian meshes; such as volume of fluid methods
described in Section 5.?.  Furthermore, an Eulerian mesh must be large enough to
enclose the material in its deformed state.  On the other hand, since Lagrangian
meshes deform with the material, and they become distorted in the simulations of
severe deformations.  In Eulerian meshes, elements remain fixed in space, so their
shapes never change.

 A third type of mesh is an arbitrary Lagrangian Eulerian mesh, in which
the nodes are programmed to move so that the advantages of both Lagrangian and
Eulerian meshes can be exploited.  In this type of mesh, the nodes can be
programmed to move arbitrarily, as shown in Fig. 1.1.  Usually the nodes on the
boundaries are moved to remain on the boundaries, while the interior nodes are
moved to minimize mesh distortion.  This type of mesh is described and discussed
further in Chapter 7.
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GLOSSARY.  NOTATION

Voigt Notation.  In finite element implementations, Voigt notation is often
useful; in fact almost all linear finite element texts use Voigt notation.  In Voigt
notation, second order tensors such as the stress, are written as column matrices,
and fourth order tensors, such as the elastic coefficient matrix, are written as
square matrices.  Voigt notation is quite awkward for the formulation of the
equations of continuum mechanics. Therefore only those equations which are
related to finite element implementations will be given in Voigt notation.

Voigt notation usually refers to the procedure for writing a symmetric
tensor in column matrix form.  However, we will use the term for all conversions
of higher order tensor expressions to lower order matrices.

The Voigt conversion for symmetric tensors depends on whether a tensor
is a kinetic quantity, such as stress, or a kinematic quantity, such as strain.  We
first consider Voigt notation for stresses.  In Voigt notation for kinetic tensors, the
second order, symmetric tensor σσ is written as a column matrix:

tensor         → Voigt

in two dimensions:

σσ σσ≡ 





→











=












≡ { }

σ σ
σ σ

σ
σ
σ

σ
σ
σ

11 12

21 22

11

22

12

1

2

3

(A.1.1)

in three dimensions:

σσ σσ≡
















→





























=





























≡ { }
σ σ σ
σ σ σ
σ σ σ

σ
σ
σ
σ
σ
σ

σ
σ
σ
σ
σ
σ

11 12 13

21 22 23

31 32 33

11

22

33

23

13

12

1

2

3

4

5

6

(A.1.2)

We will call the correspondence between the square matrix form of the tensor and
the column matrix form the Voigt rule.  For stresses the Voigt rule resides in the
relationship between the indices of the second order tensor and the column matrix.
The order of the terms in the column matrix in the Voigt rule is given by the line
which first passes down the main diagonal of the tensor, then up the last column,
and back across the row (if there are any elements left).  As indicated in the
bottom row, the square matrix form of the tensor is indicated by boldface,
whereas  brackets are used to distinguish the Voigt form.  The correspondence is
also given in Table 1.
TABLE 1

Two-Dimensional Voigt Rule
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σ ij ¨     σ a

i j a
1 1 1
2 2 2
3 3 3

Three-Dimensional Voigt Rule
σ ij σ a

i j a
1 1 1
2 2 2
3 3 3
2 3 4
1 3 5
1 2 6

When the tensors are written in indicial notation, the difference between
the Voigt and tensor form of second order tensors is indicated by the number of
subscripts and the letter used.  We use subscripts beginning with letters i to q for
tensors, and subscripts a to g for Voigt matrix indices.  Thus

σ ij   is replaced by σ a

in going from tensor to Voigt notation.  The correspondence between the
subscripts (i,j) and the Voigt subscript a is given in Table 1 for two and three
dimensions.

For a second order, symmetric kinematic tensor such as the strain εij , the
rule is almost identical: the correspondence between the tensor indices and the
row numbers are identical, but the shear strains, i.e. those with indices that are not
equal, are multiplied by 2.  Thus the Voigt rule for the strains is

tensor         → Voigt

two dimensions

εε εε≡ 





→











=












≡ { }

ε ε
ε ε

ε
ε
ε

ε
ε
ε

11 12

21 22

11

22

12

1

2

32

(A.1.3)

in three dimensions
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εε εε≡
















→





























≡ { }
ε ε ε

ε ε
ε

ε
ε
ε
ε
ε
ε
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22

33
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(A.1.4)

The Voigt rule requires a factor of two in the shear strains, which can be
remembered by observing that the strains in Voigt notation are the engineering
shear strains.

The inclusion of the factor of 2 in the Voigt rule for strains and strain-like tensors
is motivated by the requirement that the expressions for the energy be equivalent
in matrix and indicial notation.  It is easy to verify that an increment in energy is
given by

  ρ ε σdw d d dij ij
Tint = = = { } { }εε σσ εε σσ: (A.1.5)

For these expressions to be equivalent, a factor of 2 is needed on the shear terms
in the Voigt form; the factor of 2 can be added to either the stresses or the strains
(or a coefficient of 2  on both the stresses and strains), but the preferred
convention is to use this factor on the strains because the shear strains are then
equivalent to the engineering strains.

The Voigt rule is particularly useful for converting fourth order tensors, which are
awkward to implement in a computer program, to second order matrices.  Thus
the general linear elastic law in indicial notation involves the fourth order tensor
Cijkl  :

σ εij ijkl klC=            or in tensor notation     σσ εε= C (A.1.6)

The Voigt or matrix form of this law is

σσ εε{ } = [ ]{ }C  (A.1.7)

or writing the matrix expression in indicial form:  σ εa ab bC= (A.1.8)

and as  indicated on the right, when writing the Voigt expression in matrix indicial
form, indices at the beginning of the alphabet are used. The Voigt matrix form of
the elastic constitutive matrix is

C[ ] =
















=
















C C C

C C C

C C C

C C C

C C C

C C C

11 12 13

21 22 23

31 32 33

1111 1122 1112

2211 2222 2212

1211 1222 1212

(A.1.9)
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The first matrix refers to the elastic coefficients in in tensor notation, the second
to Voigt notation; note that the number of subscripts specifies whether the matrix
is expressed in Voigt or tensor notation.  The above translation is completely
consistent.  For example, the expression for σ12 from (A.1.6) is

σ ε ε ε ε12 1211 11 1212 12 1221 21 1222 22= + + +C C C C (A.1.10)

The above translates to the following expression in terms of the Voigt notation

σ ε ε ε3 31 1 33 3 32 2= + +C C C (A.1.11)

which can be shown to be equivalent to (A.1.10) if we use  ε ε ε ε3 12 21 122= + =
and the minor symmetry of C: C C1212 1221= .

It is convenient to reduce the order of the matrices in the indicial expressions
when applying them in finite element methods.  We will denote nodal vectors by
double subscripts, such as uiI , where i  is the component index and I is the node
number index.  The component index is always lower case, the node number
index is always upper case; sometimes their order is interchanged.  The following
rule is used for converting matrices involving node numbers and components to
column matrices:

matrix uiI  is transformed to a column matrix d{ }  by (A.1.12a)

elements of d{ }  are ua  where a I n iSD= −( ) +1 (A.1.12b)

(The symbol for the column matrix associated with displacements is changed
because u is used for the components, i.e. u = u u ux y z,  ,  .)  This rule is combined
with the Voigt rule whenever a pair of indices on a term pertain to a second order
symmetric tensor.  For example in the higher order matrix BijKk  is often used to
related strains to nodal displacements by

εij ijKk kKB u= (A.1.13)

where

u N ui I iIx x( ) = ( ) , (A.1.14)

ε ∂
∂

∂
∂

∂
∂

δ ∂
∂

δij
i

j

j

i

I

j
ik

I

i
jk kI ijIk kI

u

x

u

x

N

x

N

x
u B u= +







= +







≡1

2
1
2 (A.1.15)

To translate this to a matrix expression in terms of column matrices for ε ij  and a

rectangular matrix for Bija, the kinematic Voigt rule  is used for ε ij  and the first

two indices of BijKk  and the nodal component rule is used for the second pair of

indices of BijKk  and the indices of ukK .  Thus
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elements of B[ ]  are Bab  where   i j a,( ) →  by the Voigt rule, (A.1.16a)

b K n kSD= −( ) +1 (A.1.16b)

The expression corresponding to (??) can then be written as

εa ab bB u=    or     εε{ } = [ ]B d (A.1.17)

The correspondence of the indices depends on the dimensionally of the problem.
In two dimensional problems, the matrix counterpart of BijKk  is then written as

BK

xK yK

xK yK

xK xK

B B

B B

B B

=
















11 11

22 22

12 122 2

(A.1.18)

The full matrix for a 3-node triangle is

B[ ] =
















B B B B B B

B B B B B B

B B B B B B

xx x xx y xx x xx y xx x xx y

yy x yy y yy x yy y yy x yy y

xy x xy y xy x xy y xy x xy y

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 32 2 2 2 2 2

(A.1.19)

where the the first two indices have been replaced by the corresponding letters.

The Voigt rule is particularly useful in the implementation of stiffness matrices.
In indicial notation, the stiffness matrix is written as

K B C B dIJrs ijIr ijkl klJs= ∫
Ω

Ω (A.1.20)

The above stiffness is a fourth order matrix and maultiplying it with a matrix of
nodal displacements is awkward.  The indices in the above matrices can be
converted by the Voigt rule, which gives

K B C B d dab ae ef fg
T

= → [ ] = [ ] [ ][ ]∫ ∫
Ω Ω

Ω ΩK B C B (A.1.21)

where the indices "Ir " and "Js" have been converted to "a" and "b" , respectively,
by the column matrix rule and the indices "ij " and "kl" have been converted to "e"
and "f"  respectively by the Voigt rule.  Another useful form of the stiffness matrix
is obtained by transforming only the indices "ij " and "kl", which  gives

K B C B[ ] = [ ] [ ][ ]∫IJ I
T

J d
Ω

Ω (A.1.22)

where B[ ]I  is given in Eq. (A.1.18).
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4.5.3.  Indicial to Voigt Notation. The above equations in Voigt notation
can also be derived from the indicial equations if we start with the following
expressions for the displacement and velocity fields

u N di ib b=             v N di ib b= ˙ (4.5.20)

The key difference in (4.5.20) as compared to (4.4.5) is that the component index
is ascribed to the shape function.  In this notation, different displacement and
velocity components can be approximated by different shape functions. This
added generality is seldom used because it generally destroys the capability of the
element to represent rigid body rotation.  The gradient of the velocity field in this
notation is obtained  by differentiating (4.5.20):
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where
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(4.5.22)

so the Bijb  extracts the symmetric part of the gradient of the shape functions.  The

rectangular B matrix is defined by

B Bab ijb=  where   i j a,( ) →  by the symmetric kinematic Voigt rule, see
Appendix B

and Eqs.(4.5.18) and (4.5.19) hold as before.  The conversion of the internal nodal
force expression to the Voigt form (4.5.19) is shown in the following

  
f

N

x
d B d db

ib

j
ji ijb ji

Tint int= = → = { }∫ ∫ ∫∂
∂

σ σΩ Ω Ω
Ω Ω Ω

f B σσ (4.5.23)
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CHAPTER  2
LAGRANGIAN AND EULERIAN FINITE

ELEMENTS IN ONE DIMENSION

by Ted Belytschko
Northwestern University
@ Copyright 1997

2.1 Introduction

In this chapter, the equations for one-dimensional models of nonlinear continua are
described and the corresponding finite element equations are developed.  The development
is restricted to one dimension to simplify the mathematics so that the salient features of
Lagrangian and Eulerian formulations can be demonstrated easily.  These developments are
applicable to nonlinear rods and one-dimensional phenomena in continua, including fluid
flow.  Both Lagrangian and Eulerian meshes will be considered.  Two commonly used
types of Lagrangian formulations will be described:  updated Lagrangian and total
Lagrangian.  In the former, the variables are expressed in the current (or updated)
configuration, whereas in the latter the variables are expressed in terms of the initial
configuration.  It will be seen that a variety of descriptions can be developed for large
deformation problems.  The appropriate description depends on the characteristics of the
problem to be solved.

In addition to describing the several types of finite element formulations for nonlinear
problems, this Chapter reviews some of the concepts of finite element discretization and
finite element procedures.  These include the weak and strong forms, the operations of
assembly, gather and scatter, and the imposition of essential boundary conditions and initial
conditions.  Mappings between different coordinate systems are discussed along with the
need for finite element mappings to be one-to-one and onto.  Continuity requirements of
solutions and finite element approximations are also considered.  While much of this
material is familiar to most who have studied linear finite elements, they are advised to at
least skim this Chapter to refresh their understanding.

In solid mechanics, Lagrangian meshes are most popular.  Their attractiveness stems
from the ease with which they handle complicated boundaries and their ability to follow
material points, so that history dependent materials can be treated accurately.  In the
development of Lagrangian finite elements, two approaches are commonly taken:

1. formulations in terms of the Lagrangian measures of stress and strain in which
derivatives and integrals are taken with respect to the Lagrangian (material)
coordinates X,  called total Lagrangian formulations

2. formulations expressed in terms of Eulerian measures of stress and strain in
which derivatives and integrals are taken with respect to the Eulerian (spatial)
coordinates  x, often called updated Lagrangian formulations.

Both formulations employ a Lagrangian mesh, which is reflected in the term Lagrangian  in
the names.

Although the total and updated Lagrangian formulations are superficially quite
different, it will be shown that the underlying mechanics of the two formulations is
identical; furthermore, expressions in the total Lagrangian formulation can be transformed
to updated Lagrangian expressions and vice versa.  The major difference between the two

2-1
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formulations  is in the point of view: the total Lagrangian formulation refers quantities to
the original configuration, the updated Lagrangian formulation to the current configuration,
often called the deformed configuration.  There are also differences in the stress and
deformation measures which are typically used in these two formulations.  For example,
the total Lagrangian formulation customarily uses a total measure of strain, whereas the
updated Lagrangian formulation often uses a rate measure of strain.  However these are not
inherent characteristics of the formulations, for it is possible to use total measures of strain
in updated Lagrangian formulations, and rate measures in total Lagrangian formulation.
These attributes of the two Lagrangian formulations are discussed further in Chapter 4.

Until recently, Eulerian meshes have not been used much in solid mechanics.  Eulerian
meshes are most appealing in problems with very large deformations.  Their advantage in
these problems is a consequence of the fact that Eulerian elements do not deform with the
material.  Therefore, regardless of the magnitudes of the deformation in a process, Eulerian
elements retain their original shape.  Eulerian elements are particularly useful in modeling
many manufacturing processes, where very large deformations are often encountered.

For each of the formulations, a weak form of the momentum equation, which is
known as the principle of virtual work (or virtual power) will be developed.  The weak
form is developed by taking the product of a test function with the governing partial
differential equation, the momentum equation.  The integration is performed over the
material coordinates for the total Lagrangian formulation, over the spatial coordinates for
the Eulerian and updated Lagrangian formulation.  It will also be shown how the traction
boundary conditions are treated so that the approximate (trial) solutions need not satisfy
these boundary conditions exactly.  This procedure is identical to that in linear finite
element analysis.  The major difference in geometrically nonlinear formulations is the need
to define the coordinates over which the integrals are evaluated and to specify the choice of
stress and strain measures.

The discrete equations for a finite element approximation will then be derived.  For
problems in which the accelerations are important (often called dynamic problems) or those
involving rate-dependent materials, the resulting discrete finite element equations are
ordinary differential equations (ODEs).  The process of discretizing in space is called a
semidiscretization since the finite element procedure only converts the spatial differential
operators to discrete form; the derivatives in time are not discretized.  For static problems
with rate-independent materials, the discrete equations are independent of time, so the finite
element discretization results in a set of nonlinear algebraic equations.

 Examples of the total and updated Lagrangian formulations are given for the 2-node,
linear displacement and 3-node, quadratic displacement elements.  Finally, to enable the
student to solve some nonlinear problems, a central difference explicit time-integration
procedures is described.

2.2 Governing Equations For Total Lagrangian Formulation

Nomenclature.  Consider the rod shown in Fig. 1.  The initial configuration, also
called the undeformed configuration of the rod, is shown in the top of the figure.  This
configuration plays an important role in the large deformation analysis of solids.  It is also
called the reference configuration, since all equations in the total Lagrangian formulation
are referred to this configuration.  The current or deformed configuration is shown at the
bottom of the figure.  The spatial (Eulerian) coordinate is denoted by x  and the coordinates
in the reference configuration, or material (Lagrangian) coordinates, by X .  The initial
cross-sectional area of the rod is denoted by A0 X( )  and its initial density by ρ0 X( );
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variables pertaining to the reference (initial, undeformed) configuration will always be
identified by a subscript or superscript nought. In this convention, we could indicate the
material coordinates by x0  since they correspond to the initial coordinates of the material
points, but this is not consistent with most of the continuum mechanics literature, so we
will always use X  for the material coordinates.

The cross-sectional area in the deformed state is denoted by   A X, t( ) ; as indicated, it is
a function of space and time.  The spatial dependence of this variable and all others is
expressed in terms of the material coordinates.  The density is denoted by   ρ X ,t( )  and the
displacement by   u X ,t( ) .  The boundary points in the reference configuration are Xa  and
Xb .

X
X

a
b

bXX

x

xa
b = (      , t )

A(X) = A(x)
_

A  (X)o

x , X

T

T

Fig. 1.1.  The undeformed (reference) configuration and deformed (current) configurations for a one-
dimensional rod loaded at the left end; this is the model problem for Sections 2.2 to 2.8.

Deformation and Strain Measure.  The variables which specify the deformation and
the stress in the body will first be described.  The motion of the body is described by a
function of the Lagrangian coordinates and time which specifies the position of each
material point as a function of time:

  x = φ X ,t( ) X ∈ Xa , Xb[ ] (2.2.1)

where   φ X, t( )  is called a deformation function.  This function is often called a map between
the initial and current domains.  The material coordinates are given by the deformation
function at time t = 0, so

  X =φ X , 0( ) (2.2.2)

As can be seen from the above, the deformation function at t = 0 is the identity map.

The displacement   u X , t( )  is given by the difference between the current position and
the original position of a material point, so

  u X , t( ) = φ X , t( ) − X or u = x − X (2.2.3)

The deformation gradient is defined by
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F =
∂φ
∂X

=
∂x

∂X
(2.2.4)

The second definitions in Eq. (2.2.3) and (2.2.4) can at times be ambiguous.  For
example, Eq. (2.2.4) appears to involve the partial derivative of an independent variable x
with respect to another independent variable X , which is meaningless.  Therefore, it
should be understood that whenever x  appears in a context that implies it is a function, the
definition   x = φ X ,t( ) is implied.

Let J be the Jacobian between the current and reference configurations.  The Jacobian
is usually defined by   J( x( X) ) = ∂x / ∂X  for one-dimensional mappings; however, to
maintain consistency with multi-dimensional formulations of continuum mechanics, we
will define the Jacobian as the ratio of an infinitesimal volume in the deformed body, A∆x ,
to the corresponding volume of the segment in the undeformed body A0∆X , so it is given
by

J = ∂x
∂X

A

A0

=
FA

A0

(2.2.5)

The deformation gradient F is an unusual measure of strain since its value is one when
the body is undeformed.  We will therefore define the measure of strain by

  
ε X, t( ) = F X, t( )–1≡ ∂x

∂X
–1= ∂u

∂X
(2.2.6)

so that it vanishes in the undeformed configuration.  There are many other measures of
strain, but this is the most convenient for this presentation.  This measure of strain
corresponds to what is known as the stretch tensor in multi-dimensional problems.  In one
dimension, it is equivalent to the engineering strain.

Stress Measure.  The stress measure which is used in total Lagrangian formulations
does not correspond to the well known physical stress.  To explain the measure of stress to
be used, we will first define the physical stress, which is also known as the Cauchy stress.
Let the total force across a given section be denoted by T and assume that the stress is
constant across the cross-section.  The Cauchy stress is given by

σ = T
A (2.2.7)

This measure of stress refers to the current area A.  In the total Lagrangian formulation, we
will use the nominal stress.  The nominal stress will be denoted by P and is given by

P = T
A0

(2.2.8)

It can be seen that it differs from the physical stress in that the net resultant force is divided
by the initial, or undeformed, area A0 .  This is equivalent to the definition of engineering
strain; however, in multi-dimensions, the nominal stress is not equivalent to the
engineering stress, this is discussed further in Chapter 3.
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Comparing Eqs. (2.2.7) and (2.2.8), it can be seen that the physical and nominal
stresses are related by

σ =
A0
A P  P = A

A0
σ (2.2.9)

Therefore, if one of the stresses is known, the other can always be computed if the current
and initial cross-sectional areas are known.

Governing Equations.  The nonlinear rod is governed by the following equations:

1. conservation of mass;
2. conservation of momentum;
3. conservation of energy;
4. a measure of deformation, often called a strain-displacement equation;
5. a constitutive equation, which describes material behavior and relates stress to a

measure of deformation;

In addition, we require the deformation to be continuous, which is often called a
compatibility requirement.  The governing equations and initial and boundary conditions
are summarized in Box 1.

Conservation of mass.  The equation for conservation of mass for a Lagrangian
formulation can be written as (see Appendix A for an engineering derivation):

ρJ = ρ0J0         or     ρ X ,t( )J X, t( ) = ρ0 X( )J0 X( ) (2.2.10)

where the second expression is given to emphasize that the variables are treated as
functions of the Lagrangian coordinates.  Conservation of matter is an algebraic equation
only when expressed in terms of material coordinates.  Otherwise, it is a partial differential
equation.  For the rod, we can use Eq. (2.2.4) to write Eq. (2.2.5) as

ρFA= ρ0A0 (2.2.11)

where we have used the fact that J0 = 1.

Conservation of momentum.  Conservation of momentum is written in terms of the
nominal stress and the Lagrangian coordinates as (a derivation is given in Appendix A):

  
A0P( ),X +ρ0 A0b = ρ0 A0˙ ̇ u (2.2.12)

where the superposed dots denote the material time derivative.  The material time derivative

of the velocity, the acceleration, is written as D2u Dt2 .  The subscript following a comma
denotes partial differentiation with respect to that variable, i.e.

  
P X, t( ),X ≡ ∂P( X, t)

∂X
(2.2.13)

Equation (2.2.12) is called the momentum equation, since it represents conservation
of momentum.  If the initial cross-sectional area is constant in space, the momentum
equation becomes
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  P, X +ρ0b = ρ0˙ ̇ u (2.2.14)

Equilibrium Equation.  When the inertial term   ρ0˙ ̇ u  vanishes, i.e. when the problem is
static, the momentum equation becomes the equilibrium equation

  
A0P( ) ,X + ρ0A0b = 0 (2.2.15)

Solutions of the equilibrium equations are called equilibrium solutions.  Some authors call
the momentum equation an equilibrium equation regardless of whether the inertial term is
negligible; since equilibrium usually connotes a body at rest or moving with constant
velocity, this nomenclature is avoided here.

Energy Conservation.  The energy conservation equation for a rod of constant area is
given by

ρ0
˙ w int = ˙ F P− qx,X + ρ0 s (2.2.16)

where qx is the heat flux, s is the heat source per unit mass and ˙ w int  is the rate of change of
internal energy per unit mass.  In the absence of heat conduction or heat sources, the
energy equation gives

  ρ0 ˙ w int = ˙ F P (2.2.17)

which shows that the internal work is given by the product of the rate of the deformation F
and the nominal stress P.  The energy conservation equation is not needed for the treatment
of isothermal, adiabatic processes.

Constitutive Equations.  The constitutive equations reflect the stresses which are
generated in the material as a response to deformation.  The constitutive equations relate the
stress to the measures of strain at a material point. The constitutive equation can be written
either in total form, which relates the current stress to the current deformation

P X,t( ) = SPF F X, t ( ),  ˙ F X, t ( ), etc., t ≤ t( ) (2.2.18)

or in rate form

˙ P X,t( ) = St
PF ˙ F X, t ( ),   F x,t ( ), P X, t ( ), etc., t ≤ t( ) (2.2.19)

Here SPF  and St
PF  are functions of the deformation which give the stress and stress rate,

respectively.  The superscripts are here appended to the constitutive functions to indicate
which measures of stress and strain they relate.

 As indicated in Eq. (2.2.18), the stress can depend on both F and   ̇ F  and on other state
variables, such as temperature, porosity; “etc.” refers to these additional variables which
can influence the stress.  The prior history of deformation can also affect the stress, as in an
elastic-plastic material; this is explicitly indicated in Eqs. (2.2.18-2.2.19) by letting the
constitutive functions depend on deformations for all time prior to t.  The constitutive
equation of a solid is expressed in material coordinates because the stress in a solid usually
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depends on the history of deformation at that material point.  For example, in an elastic
solid, the stress depends on strain at the  material point.  If there are any residual stresses,
these stresses are frozen into the material and move with the material point.  Therefore,
constitutive equations with history dependence should track material points and are written
in terms of the material coordinates.  When a constitutive equation for a history dependent
material is written in terms of Eulerian coordinates, the motion of the point must be
accounted for in the evaluation of the stresses, which will be discussed in Chapter 7.

The above functions should be continuos functions of the independent variables.
Preferably they should be continuously differentiable, for otherwise the stress is less
smooth than the displacements, which can cause difficulties.

Examples of constitutive equations are:

(a) linear elastic material:

total form:   P X, t( ) = EPFε( X ,t ) = EPF F X ,t( )–1( ) (2.2.20)

rate form:   
˙ P X ,t( ) = EPF ˙ ε ( X, t) = EPF ˙ F X ,t( ) (2.2.21)

(b)  linear viscoelastic

  
P X, t( ) = EPF F X ,t( )–1( ) +α ˙ F X ,t( )[ ]

or   P = E PF( ε + α˙ ε ) (2.2.22)

For small deformations the material parameter EPF  corresponds to Young’s modulus; the
constant  α determines the magnitude of damping.

Momentum equation in terms of displacements.  A single governing equation for
the rod can be obtained by substituting the relevant constitutive equation, i.e. (2.2.18) or
(2.2.19), into the momentum equation (2.2.12) and expressing the strain measure in terms
of the displacement by (2.2.6).  For the total form of the constitutive equation (2.2.18), the
resulting equation can be written as

  
A0P u,X , ˙ u , X ,. .( )( ),X

+ ρ0 A0b = ρ0A0˙ ̇ u (2.2.23)

which is a nonlinear partial differential equation (PDE) in the displacement u(X,t).  The
character of this partial differential equation is not readily apparent from the above and
depends on the details of the constitutive equation.  To illustrate one form of this PDE, we
consider a linear elastic material.  For a linear elastic material, Eq. (2.2.20), the constitutive
equation and (2.2.23) yield

  
A0EPFu, X( ),X

+ ρ0A0b = ρ0 A0˙ ̇ u (2.2.24)

It can be seen that in this PDE, the highest derivatives with respect to the material
coordinate X is second order, and the highest derivative with respect to time is also second
order, so the PDE is second order in X and time t.  If the stress in the constitutive equation
only depends on the first derivatives of the displacements with respect to X and t as
indicated in (2.2.18) and (2.2.19), then the momentum equation will similarly be a second
order PDE in space and time.
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For a rod of constant cross-section and modulus, if the body force vanishes, i.e. when
b = 0, the momentum equation for a linear material becomes the well known linear wave
equation

  
u,XX = 1

c2  ˙ ̇ u (2.2.25)

where c is the wave speed relative to the undeformed configuration and given by

c2 = EPF

ρ0
(2.2.26)

Boundary Conditions.  The independent variables of the momentum equation are the
coordinate X and the time t. It is an initial-boundary value problem (IBVP).  To complete
the description of the IBVP, the boundary conditions and initial conditions must be given.
The boundary in a one dimensional problem consists of the two points at the ends of the
domain, which in the model problem are the points Xa  and Xb .  From the linear form of
the momentum equations, Eq. (2.2.23), it can be seen that the partial differential equation is
second order in X.  Therefore, at each end, either u or u,X must be prescribed as a boundary

condition.  In solid mechanics, instead of u,X, the traction t x
0 = n0 P  is prescribed; n0 is the

unit normal to the body which is given by n0 = 1  at Xa, n0 = −1  at Xb.  Since the stress is a
function of the measure of strain, which in turn depends on the derivative of the

displacement by Eq. (2.2.6), prescribing tx
0 is equivalent to prescribing u,X; the superscript

"naught" on t indicates that the traction is defined over the undeformed area; the superscript

is always explicitly included on the traction tx
0  to distinguish it from the time t.  Therefore

either the traction or the displacement must be prescribed at each boundary.

A boundary is called a displacement boundary and denoted by Γu  if the displacement
is prescribed; it is called a traction boundary and denoted by Γt  if the traction is prescribed.
The prescribed values are designated by a superposed bar.  The boundary conditions are

u = u     on Γu (2.2.27)

n0P = tx
0

     on Γt (2.2.28)

As an example of the boundary conditions in solid mechanics, for the rod in Fig. 2.1, the
boundary conditions are

u(Xa,t) = 0     
  
n0 Xb( )P Xb , t( ) = P Xb , t( ) = T t( )

A0 Xb( ) (2.2.29)

The traction and displacement cannot be prescribed at the same point, but one of these
must be prescribed at each boundary point; this is indicated by

Γu ∩Γ t = 0 Γu ∪Γt = Γ (2.2.30)
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Thus in a one dimensional solid mechanics problem any boundary is either a traction
boundary or a displacement boundary, but no boundary is both a prescribed traction and
prescribed displacement boundary.

Initial Conditions.  Since the governing equation for the rod is second order in time,
two sets of initial conditions are needed.  We will express the initial conditions in terms of
the displacements and velocities:

u X, 0( ) = u0 X( )  for  X ∈ Xa,X b[ ] (2.2.31a)

˙ u X, 0( ) = v0 X( )  for  X ∈ Xa ,Xb[ ] (2.2.31b)

If the body is initially undeformed and at rest, the initial conditions can be written as

  u X, 0( ) = 0              ̇ u X , 0( ) = 0 (2.2.32)

Jump Conditions.  In order for the derivative in Eq.(2.2.12) to exist, the quantity A0P
must be continuous.  However, neither A0 nor P need be continuous in the entire interval.
Therefore momentum balance requires that

A0P = 0 (2.2.33)

where 〈f〉 designates the jump in f(X), i.e.

  f X( ) = f X + ε( )– f X – ε( )  ε → 0 (2.2.34)

In dynamics, it is possible to have jumps in the stress, known as shocks, which can either
be stationary or moving.  Moving discontinuities are governed by the Rankine-Hugoniot
relations, but these are not considered in this Chapter.

2.3 Weak Form for Total Lagrangian Formulation

The momentum equation cannot be discretized directly by the finite element method. In
order to discretize this equation, a weak form, often called a variational form, is needed.
The principle of virtual work, or weak form, which will be developed next, is equivalent to
the momentum equation and the traction boundary conditions (2.2.33).  Collectively, these
two equations are called the classical strong form.  The weak form can be used to
approximate the strong form by finite elements; solutions obtained by finite elements are
approximate solutions to the strong form.

Strong Form to Weak Form.  A weak form will now be developed for the momentum
equation (2.2.23) and the traction boundary conditions.  For this purpose we define trial
functions   u X ,t( )  which satisfy any displacement boundary conditions and are smooth
enough so that all derivatives in the momentum equation are well defined.  The test
functions δu X( ) are assumed to be smooth enough so that all of the following steps are
well defined and to vanish on the prescribed displacement boundary.  The weak form is
obtained by taking the product of the momentum equation expressed in terms of the trial
function with the test function.  This gives
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δu A0P( ), X + ρ0 A0b– ρ0A0

˙ ̇ u [ ]X a

Xb

∫ dX = 0 (2.3.1)

Using the derivative of the product in the first term in (2.3.1) gives

  
δu

Xa

Xb

∫ ( A0P) ,X dX = δuA0P( ),X – δu,X A0P[ ]
Xa

Xb∫ dX (2.3.2)

Applying the fundamental theorem of calculus to the above gives

  

δu A0P( ) , XX a

Xb∫ dX =– δu, X A0P( )
Xa

X b∫ dX + δuA0n
0P( )

Γ

= – δu, X A0P( )
Xa

X b∫ dX + δuA0t x
0( )

Γt

(2.3.3)

where we obtained the second line using the facts that the test function δu  vanishes on the
prescribed displacement boundary, the complementarity conditions on the boundaries
(2.2.30) and the traction boundary conditions.  Substituting (2.3.3) into the first term of
Eq. (2.3.1) gives (with a change of sign)

δu, XA0 P – δu ρ0 A0b – ρ0 A0
˙ ̇ u ( )[ ]

Xa

Xb

∫ dX – δuA0 t x
0( )

Γ t

= 0 (2.3.4)

The above is the weak form of the momentum equation and the traction boundary condition
for the total Lagrangian formulation.

Smoothness of Test and Trial functions; Kinematic Admissibility.  We shall
now investigate the smoothness required to go through the above steps more closely.  For
the momentum equation (2.2.12) to be well defined in a classical sense, the nominal stress
and the initial area must be continuously differentiable, i.e. C1; otherwise the first
derivative would have discontinuities.  If the stress is a smooth function of the derivative of
the displacement as in (2.2.18), then to obtain this continuity in the stresses requires that
the trial functions must be C2 .  For Eq. (2.3.2) to hold, the test function δu X( ) must be

C1 .

However, the weak form is well defined for test and trial functions which are far less
smooth, and indeed the test and trial functions to be used in finite element methods will be
rougher.  The weak form (2.3.4) involves only the first derivative of the test function and
the trial function appears directly or as a first derivative of the trial function through the
nominal stress.  Thus the integral in the weak form is integrable if both functions are C0 .

We will now define the conditions on the test and trial function more precisely.  The
weak form is well-defined if the trial functions u(X,t) are continuous functions with

piecewise continuous derivatives, which is stated symbolically by   u X ,t( ) ∈C0 X( ) , where

the X in the parenthesis following C0  indicates that it pertains to the continuity in X; note
that this definition permits discontinuities of the derivatives at discrete points.  This is the
same as the continuity of finite element approximations in linear finite element procedures:
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the displacement is continuous and continuously differentiable within elements, but the
derivative u,X is discontinuous across element boundaries.  In addition, the trial function
u(X,t) must satisfy all displacement boundary conditions.  These conditions on the trial
displacements are indicated symbolically by

    u X ,t( ) ∈U    where   
    
U = u X, t( ) u X ,t( ) ∈ C0 X( ),  u = u  on  Γu{ } (2.3.5)

Displacement fields which satisfy the above conditions, i.e. displacements which are in U,
are called kinematically admissible.

The test functions are denoted by δu(X); they are not functions of time.  The test
functions are required to be C0 in  X and to vanish on displacement boundaries, i.e.,

  δu X( ) ∈U0    where    
    
U0 = δu X( ) δ X( )u ∈C0 X( ),  δu = 0  on  Γu{ } (2.3.6)

We will use the prefix δ  for all variables which are test functions and for variables which
are related to test functions.  This convention originates in variational methods, where the
test function emerges naturally as the difference between admissible functions.  Although it
is not necessary to know variational methods to understand weak forms, it provides an
elegant framework for developing various aspects of the weak form.  For example, in
variational methods any test function is a variation and defined as the difference between

two trial functions, i.e. the variation δu(X) = ua(X) – ub(X), where ua X( )  and ub X( )  are
any two functions in U.  Since any function in U satisfies the displacement boundary
conditions, the requirement in (2.3.6) that δu(X) = 0 on Γu can be seen immediately.

Weak Form to Strong Form. We will now develop the equations implied by  the weak
form with the less smooth trial and test functions, (2.3.5) and (2.3.6), respectively; the
strong form implied with very smooth test and trial functions will also be discussed.  The
weak form is given by

  
δu,X A0P– δu ρ0A0b– ρ0 A0 ˙ ̇ u ( )[ ]

Xa

Xb∫ dX – δuA0t x
0( )

Γt
= 0 ∀δu X( ) ∈U0 (2.3.7)

The displacement fields are assumed to be kinematically admissible, i.e.     u X ,t( ) ∈U .  The
above weak form is expressed in terms of the nominal stress P, but it is assumed that this
stress can always be expressed in terms of the derivatives of the displacement field through
the strain measure and constitutive equation.  Since u(X,t) is C0 and the strain measure
involves derivatives of u(X,t) with respect to X, we expect P(X,t) to be C–1 in X if the
constitutive equation is continuous: P(X,t) will be discontinuous wherever the derivative of
u(X,t) is discontinuous.

To extract the strong form, we need to eliminate the derivative of δu X( ) from the
integrand.  This is accomplished by integration by parts and the fundamental theorem of
calculus.  Taking the derivative of the product δuA0P  we have

  
δuA0P( ), XX a

Xb

∫ dX = δu, X A0P
Xa

Xb

∫ dX + δu A0P( ), XXa

X b

∫ dX (2.3.8)
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The second term on the RHS can be converted to point values by using the fundamental
theorem of calculus.  Let the piecewise continuous function (A0P),X be continuous on

intervals 
  
X1

i, X2
i[ ] ,  e = 1 to n,  Then by the fundamental theorem of calculus

  
δuA0P( ), X dX

X 1
e

X2
e

∫ = δuA0P( )
X2

i – δuA0P( )
X1

i ≡ δuA0n0P( )
Γi

(2.3.9)

where n0 is the normal to the segments are n X1
i( )=–1, n X2

i( )  =+1, and Γi  denotes the two

boundary points of the segment i over which the function is continuously differentiable.

Let 
  
XA , XB[ ] = X1

i , X2
i[ ]

i
∑ ; then applying (2.3.2) over the entire domain gives

  

( δuA0P ),X dX =
Xa

Xb

∫ δuA0n0P( )
Γt

– δu A0P Γi
i
∑ (2.3.10)

where Γi are the interfaces between the segments in which the integrand is continuously
differentiable.  The contributions to the boundary points on the right-hand side in the above
only appear on the traction boundary Γt since δu = 0 on Γu and Γu = Γ – Γt (see Eqs.
(2.3.6) and (2.2.30)).  Combining Eqs. (2.3.10)  and (2.3.2) then gives

  
δu, X A0P( )

X a

Xb

∫ dX = − δu A0P( ), XXa

X b

∫ dX + δuA0n0P( )
Γt

– δu A0P Γi
i

∑ (2.3.11)

Substituting the above into Eq. (2.3.7) gives

  
δu A0 P( ), X

+ρ0 A0b– ρ0 A0˙ ̇ u [ ]
Xa

Xb

∫ dX

  
+δuA0 n0P– t x

0( )
Γt

+ δu
i
∑ A0 P Γi

= 0 ∀δu X( )∈U0 (2.3.12)

The conversion of the weak form to a form amenable to the use of Eq. (2.3.4-5) is now
complete.  We can therefore deduce from the arbitrariness of the virtual displacement
δu X( ) and Eqs. (2.3.4.-5) and (2.3.12) that (a more detailed derivation of this step is
given in Chapter 4)

  
A0P( ), X + ρ0 A0b– ρ0A0

˙ ̇ u = 0 for X ∈ Xa , Xb[ ] (2.3.13a)

  n
0P– tx

0 = 0 on Γt (2.3.13b)

A0P = 0 on Γi (2.3.13c)

These are, respectively, the momentum equation, the traction boundary conditions, and the
stress jump conditions.  Thus when we admit the less smooth test and trial functions, we
have an additional equation in the strong form, the jump condition (2.3.13c).
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If the test functions and trial functions satisfy the classical smoothness conditions, the
jump  conditions do not appear.  Thus for smooth test and trial functions, the weak form
implies only the momentum equation and the traction boundary conditions.

The less smooth test and trial functions are more pertinent to finite element
approximations, where these functions are only C0 .  They are also needed to deal with
discontinuities in the cross-sectional area and material properties.  At material interfaces, the
classical strong form is not applicable, since it assumes that the second derivative is
uniquely defined everywhere.  This is not true at  material interfaces because the strains,
and hence the derivatives of the displacement fields, are discontinuous.  With the rougher
test and trial functions, the conditions which hold at these interfaces. (2.3.13c) emerge
naturally.

In the weak form for the total Lagrangian formulation, all integrations are performed
over the material coordinates, i.e. the reference configuration, of the body, because total
Lagrangian formulations involve derivatives with respect to the material coordinates X, so
integration by parts is most conveniently performed over the domain expressed in terms of
the material coordinate X.  Sometimes this is referred to as integration over the
undeformed, or initial, domain.  The weak form is expressed in terms of the nominal
stress.

Physical Names of Virtual Work Terms.  For the purpose of obtaining a methodical
procedure for obtaining the finite element equations, the virtual energies will be defined
according to the type of work which they represent; the corresponding nodal forces will
subsequently carry identical names.

Each of the terms in the weak form represents a virtual work due to the virtual
displacement δu; this displacement δu(X) is called a often "virtual" displacement to indicate
that it is not the actual displacement; according to Webster’s dictionary, virtual means
"being in essence or effect, not in fact"; this is a rather hazy meaning and we prefer the
name test function.

The virtual work of the body forces b(X,t) and the prescribed tractions t x
0
, which

corresponds to the second and fourth terms in (2.3.4), is called the virtual external work
since it results from the external loads.  It is designated by the superscript “ext” and given
by

δW ext = δuρ0bA0 dX +
Xa

Xb

∫ δuA0 t x
0( )

Γ t

(2.3.16)

The first term in (2.3.4) is the called the virtual internal work, for it arises from the
stresses in the material.  It can be written in two equivalent forms:

  
δWin t = δu,X PA0dX

Xa

Xb∫ = δFPA0dX
Xa

Xb∫ (2.3.17)

where the last form follows from (2.2.1) as follows:

  
δu, X X( ) = δ φ X( )– X( ), X = δφ, X =

∂ δx( )
∂X

=δF (2.3.18)
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The variation δX = 0 because the  independent variable X does not change due to an
incremental displacement δu(X).

This definition of internal work in (2.3.17) is consistent with the internal work
expression in the energy conservation equation, Eq. (2.2.16-2.2.17): if we change the rates

in (2.2.11) to virtual increments, then ρ0   δwint = δFP .  The virtual internal work   δWin t is
defined over the entire domain, so we have

 δW int = δw int

Xa

Xb

∫ ρ0 A0dX = δFPA0Xa

Xb

∫ dX (2.3.19)

which is the same term that appears in the weak form in (2.2.18).

The term   ρ0 A0˙ ̇ u  can be considered a body force which acts in the direction opposite to
the acceleration, i.e. in a d'Alembert sense.  We will designate the corresponding virtual

work byδW inert  and call it the virtual inertial work, so

  
δW inert = δuρ0A0˙ ̇ u dX

Xa

Xb∫ (2.3.20)

This is the work by the inertial forces on the body.

Principle of Virtual Work.  The principle of virtual work is now stated using these
physically motivated names.  By using Eqs. (2.3.16-2.3.20), Eq. (2.3.4) can then be
written as

  δW δu, u( ) ≡δW int −δWext +δW inert = 0 ∀δu ∈U0 (2.3.21)

The above equation, with the definitions in Eqs. (2.3.16-2.3.20), is the weak form
corresponding to the strong form which consists of the momentum equation, the traction
boundary conditions and the stress jump conditions.  The weak form implies the strong
form and that the strong form implies the weak form.  Thus the weak form and the strong
form are equivalent.  This equivalence of the strong and weak forms for the momentum
equation is called the principle of virtual work.

All of the terms in the principle of virtual work δW  are energies or virtual work terms,
which is why it is called a virtual work principle.  That the terms are energies is
immediately apparent from δWext :  since ρ0b is a force per unit volume, its product with a
virtual displacement δu gives a virtual work per unit volume, and the integral over the
domain gives the total virtual work of the body force.  Since the other terms in the weak
form must be dimensionally consistent with the external work term, they must also be
virtual energies.  This view of the weak form as consisting of virtual work or energy terms
provides a unifying perspective which is quite useful for constructing weak forms for other
coordinate systems and other types of problems: it is only necessary to write an equation
for the virtual energies to obtain the weak form, so the procedure we have just gone
through can be avoided.  The virtual work schema is also useful in memorizing the weak
form.  However, from a mathematical viewpoint it is not necessary to think of the test
functions δu(X) as virtual displacements: they are simply test functions which satisfy
continuity conditions and vanish on the boundaries as specified by (2.3.6).  This second
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viewpoint becomes useful when a finite element discretization is applied to equations where
the product with a test function does not have a physical meaning.  The principle of virtual
work is summarized in Box 2.1.

Box 2.1. Principle of Virtual Work for
  One Dimensional Total Lagrangian Formulation

If the trial functions   u( X, t) ∈U , then

(Weak Form)   δW = 0     ∀ δu ∈ U0  (B2.1.1)

     is equivalent to

 (Strong Form)
the momentum equation (2.2.12): 

  
A0P( ),X +ρ0 A0b = ρ0 A0˙ ̇ u , (B2.1.2)

the traction boundary conditions (2.2.28): n0P = tx
0

     on Γt , (B2.1.3)
and the jump conditions (2.2.33): 〈A0P〉 = 0. (B2.1.4)

Weak form definitions:

δW ≡δW int −δWext +δW inert (B2.1.5)

  
δWint = δu,X PA0dX

Xa

Xb∫ = δFPA0dX
Xa

Xb∫ ,       
  
δW inert = δuρ0A0˙ ̇ u dX

Xa

Xb∫
(B2.1.6)

δW ext = δuρ0bA0 dX +
Xa

Xb

∫ δuA0 t x
0( )

Γ t

(B2.1.7)

2.4  Finite Element Discretization In Total Lagrangian Formulation

Finite Element Approximations. The discrete equations for a finite element model are
obtained from the principle of virtual work by using finite element interpolants for the test
and trial functions.  For the purpose of a finite element discretization, the interval  [Xa,Xb]
is subdivided into elements e=1 to ne with nN  nodes.  The nodes are denoted by XI, I = 1

to nN, and the nodes of a generic element by X I
e , I = 1 to m, where m is the number of

nodes per element.  The domain of each element is   X1
e , Xm

e[ ], which is denoted by Ωe .  For
simplicity, we consider a model problem in which node 1 is a prescribed displacement
boundary and node nN a prescribed traction boundary.  However, to derive the governing
equations we first treat the model as if there were no prescribed displacement boundaries
and impose the displacement boundary conditions in the last step.

The finite element trial function u(X,t) is written as
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u X , t( ) = N I X( )uI t( )

I =1

n N

∑ (2.4.1)

In the above, NI X( )  are C0 interpolants, they are often called shape functions in the finite
element literature;   uI t( ), I =1to nN , are the nodal displacements, which are functions of
time, and are to be determined in the solution of the equations.  The nodal displacements
are considered functions of time even in static, equilibrium problems, since in nonlinear
problems we must follow the evolution of the load; in many cases, t  may simply be a
monotonically increasing parameter.  The shape functions, like all interpolants, satisfy the
condition

NI XJ( ) = δ IJ (2.4.2)

where δ IJ  is the Kronecker delta or unit matrix: δ IJ =1 if I = J , δ IJ = 0 if I ≠ J .  We note

here that if we set   u1 t( ) = u 0, t( )  then the trial function   u X ,t( ) ∈U , i.e. it is kinematically
admissible since it has the requisite continuity and satisfies the essential boundary
conditions.  Equation (2.4.1) represents a separation of variables: the spatial dependence of
the solution is entirely represented by the shape functions, whereas the time dependence is
ascribed to the nodal variables.  This characteristic of the finite element approximation will
have important ramifications in finite element solutions of wave propagation problems.

The test functions (or virtual displacements) depend only on the material coordinates

δu X( ) = N I X( )δuI
I=1

nN

∑ (2.4.3)

where δuI  are the nodal values of the test function; they are not functions of time.

Nodal Forces.  To provide a systematic procedure for developing the finite element
equations, nodal forces are developed for each of the virtual work terms.  These nodal
forces are given names which correspond to the names of the virtual work terms.  Thus

  
δWin t = δuI fI

int

I=1

nN

∑ = δuT fin t (2.4.4a)

δWext = δuI fI
ext

I =1

nN

∑ =δuTf ext (2.4.4b)

δW inert = δu I fI
inert

I=1

nN

∑ = δuTf inert (2.4.4c)

  
δuT = δu1 δu2 . .. δunN[ ]         fT = f1 f2 ... fn N[ ] (2.4.4d)

where   f
int  are the internal nodal forces, f ext  are the external nodal forces, and f inert  are the

inertial, or d'Alembert, nodal forces.  These names give a physical meaning to the nodal
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forces : the internal nodal forces correspond to the stresses “in” the material, the external
nodal forces correspond to the externally applied loads, while the inertial nodal forces
correspond to the inertia term due to the accelerations.

Nodal forces are always defined so that they are conjugate to the nodal displacements
in the sense of work, i.e. so the scalar product of an increment of nodal displacements with
the nodal forces gives an increment of work.  This rule should be observed in the
construction of the discrete equations, for when it is violated many of the important
symmetries, such as that of the mass and stiffness matrices, are lost.

Next we develop expressions for the various nodal forces in terms of the continuous
variables in the partial differential equation by using (2.3.16-2.3.20).  In developing the
nodal force expressions, we continue to ignore the displacement boundary conditions and
consider δuI  arbitrary at all nodes.  The expressions for the nodal forces are then obtained
by combining Eqs. (2.3.16) to (2.3.20) with the definitions given in Eqs. (2.4.4) and the
finite element approximations for the trial and test functions.  Thus to define the internal
nodal forces in terms of the nominal stress, we use (2.4.4a) and Eq. (2.3.16), and use the
finite element approximation of the test function (2.4.3), giving

  

δWint ≡ δuI f I
int

I
∑ = δu,X PA0 dX

Xa

Xb

∫ = δu I

I
∑ N I ,X PA0 dX

Xa

Xb

∫ (2.4.5)

From the above definition it follows that

f I
int = NI,XXa

Xb

∫ PA0dX (2.4.6)

which gives the expression for the internal nodal forces.  It can be seen that the internal
nodal forces are a discrete representation of the stresses in the material.  Thus they can be
viewed as the nodal forces arising from the resistance of the solid to deformation.

The external and nodal forces are developed similarly.  The external nodal forces are
obtained by using (2.4.4b) and (2.3.17) in conjunction with the test function:

δW ext = δu I f I
ext = δuρ0bA0dX +

Xa

Xb

∫
I

N

∑ δuA0t x
0( )

Γ t

= δuI NIρ0bA0dX +
Xa

Xb

∫{
I

N

∑ N I A0 t x
0( )

Γ t

 
 
 

(2.4.7)

where in the last step (2.4.3) has been used.  The above give

f I
ext = ρ0 N IbA0 dX +

Xa

Xb

∫ NI A0 tx
0( )

Γ t

(2.4.8)

Since NI XJ( ) = δ IJ  the last term contributes only to those nodes which are on the
prescribed traction boundary.
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The inertial nodal forces are obtained from the inertial virtual work (2.4.4c) and
(2.3.20):

  
δW inert = δuI

I
∑ f I

inert = δuρ0Xa

Xb∫ u
..

A0dX (2.4.9)

Using the finite element approximation for the test functions, Eq. (2.4.3), and the trial
functions, Eq. (2.4.1) gives

  
δu I

I
∑ fI

inert = δu I
I

∑ ρ0NIXa

Xb∫ NJ
J

∑ A0dX  ˙ ̇ u J (2.4.10)

The inertial nodal force is usually expressed as a product of a mass matrix and the nodal
accelerations.  Therefore we define a mass matrix by

MIJ = ρ0
Xa

Xb

∫ NI NJ A0dX      or    M = ρ0
Xa

Xb∫ NTNA0dX  (2.4.11)

Letting   ˙ ̇ u I ≡ aI  the virtual inertial work is

  
δW inert = δuI

I
∑ fI

inert = δuI
J

∑
I

∑ M IJaJ = δuTMa, a = ˙ ̇ u (2.4.12)

The definition of the inertial nodal forces then gives the following expression

f I
inert = MIJ

J
∑ aJ or f inert = Ma (2.4.13)

Note that the mass matrix as given by Eq. (2.4.11) will not change with time, so it needs to
be computed only at the beginning of the calculation.  The mass matrix given by (2.4.11) is
called the consistent mass matrix.

Semidiscrete Equations.  We now develop the semidiscrete equations, i.e. the finite
element equations for the model.  At this point we will also consider the effect of the
displacement boundary conditions.  The displacement boundary conditions can be satisfied
by the trial and test functions function by letting

u1(t) = u 1(t)     and    δu1 = 0 (2.4.14)

The trial function then meets Eq. (2.3.5).  For the test function to meet the conditions of
Eq. (2.3.6), it is necessary that δu1 = 0 , so the nodal values of the test function are not
arbitrary at node 1.  Our development here, as noted in the beginning, specifies node 1 as
the prescribed displacement boundary; this is done only for convenience of notation, and in
a finite element model any node can be a prescribed displacement boundary node.

We will now derive the discrete equations.  It should be noted that Eqs. (2.4.4a-c) are
simply definitions that are made for convenience, and do not constitute the discrete
equations.  Substituting the definitions (2.4.4a-c) into Eq. (2.3.21) gives
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δuI fI

int − fI
ext + f I

inert( ) = 0
I=1

nN

∑ (2.4.15)

Since δuI  is arbitrary at all nodes except the displacement boundary node, node 1, it
follows that

  f I
in t − f I

ext + f I
inert = 0 , I = 2 to nN (2.4.16)

Substituting (2.4.13) into (2.4.16) gives the discrete equations, which are known as the
equations of motion:

  
MIJ

d2uJ

dt2
+ fI

int − fI
ext = 0, I = 2 to nN

J=1

nN

∑ (2.4.17)

The acceleration of node 1 is given in this model problem, since node 1 is a prescribed
displacement node.  The acceleration of the prescribed displacement node can be obtained
from the prescribed nodal displacement by differentiating twice in time.  Obviously, the
prescribed displacement must be sufficiently smooth so that the second derivative can be
taken; this requires it to be a C1  function of time.  If the mass matrix is not diagonal, then
the acceleration on the prescribed displacement node, node 1, will contribute to the Eq.
(2.4.17).  The finite element equations can  then be written as

  
MIJ

d2uJ

dt2
+ f I

int − fI
ext = M I1

d2u 1
dt2 , I = 2 to nN

J= 2

nN

∑ (2.4.18)

In matrix form the equations of motion can be written as

  

Ma = f ext – f int or

f = Ma, f = fext – f int
(2.4.19)

where the matrices have been truncated so that the equations correspond to Eq. (2.4.17),
i.e. M is a nN −1( ) × nN  matrix and the nodal forces are column matrices of order nN −1.
The effects of any nonzero nodal prescribed displacements are assumed to have been
incorporated in the external nodal forces by letting

f I
ext ← f I

ext + M I1
d2u 1
dt2

(2.4.20)

Thus, when the mass matrix is consistent, prescribed velocities make contributions to
nodes which are not on the boundary.  For a diagonal mass matrix, the accelerations of
prescribed displacement nodes have no effect on other nodes and the above modification of
the external forces can be omitted.

Equations (2.4.17) and (2.4.19) are two alternate forms of the semidiscrete
momentum equation, which is called the equation of motion.  These equations are called
semidiscrete because they are discrete in space but continuous in time.  Sometimes they are
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called discrete equations, but they are only discrete in space. The equations of motion are
systems of nN −1 second-order ordinary differential equations(ODE); the independent
variable is the time t.  These equations can easily be remembered by the second form in
(2.4.19), f = Ma ,  which is the well known Newton's second law of motion. The mass
matrix in finite element discretizations is often not diagonal, so the equations of motion
differ from Newton's second law in that a force at node I  can generate accelerations at node
J if MIJ ≠ 0 .  However, in many cases a diagonal approximation to the mass matrix is
used.  In that case, the discrete equations of motion are identical to the Newton's equations

for a system of particles interconnected by deformable elements.  The force   f I = f I
ext − fI

int

is the net force on particle I.  The negative sign appears on the internal nodal forces because
these nodal forces are defined as acting on the elements; by Newton's third law, the forces
on the nodes are equal and opposite, so a negative sign is needed.  Viewing the
semidiscrete equations of motion in terms of Newton’s second law provides an intuitive
feel for these equations and is useful in remembering these equations.

Initial Conditions.  Since the equations of motion are second order in time, initial
conditions on the displacements and velocities are needed.  The continuous form of the
initial conditions are given by Eqs. (2.2.22).  In many cases, the initial conditions can be
applied by simply setting the nodal values of the variables to the initial values, i.e. by
letting

uI 0( ) = u0 XI( )      ∀ I       and   ˙ u I 0( ) = v0 XI( )        ∀ I (2.4.21)

Thus the initial conditions on the nodal variables for a body which is initially at rest and
undeformed are

  uI ( 0) = 0 and  ˙ u I( 0) = 0 ∀ I  (2.4.22)

Least Square Fit to Initial Conditions.  For more complex initial conditions, the
initial values of the nodal displacements and nodal velocities can be obtained by a least-
square fit to the initial data.  The least square fit for the initial displacements results from
minimizing the square of the difference between the finite element interpolate

N I X( )uI 0( )∑  and the initial data   u( X) .  Let

  
M = 1

2 uI 0( )
I
∑ NI X( )–u0 X( ) 

 
 
 Xa

Xb∫
2

ρ0A0dX (2.4.23)

The density is not necessary in this expression but as will be seen, it leads to equations in
terms of the mass matrix, which is quite convenient.  To find the minimum set

  
0 = ∂ M

∂uK 0( ) = NK X( )
Xa

Xb∫ uI ( 0)
I
∑ N I X( )– u0 X( ) 

 
 
 
ρ0A0dX (2.4.24)

Using the definition of the mass matrix, (2.4.11), it can be seen that the above can be
written as

Mu 0( ) = g (2.4.25a)
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gK = NK X( )u0 X( )ρ0 A0 dX
Xa

Xb

∫ (2.4.25b)

The least square fit to the initial velocity data is obtained similarly.  This method of fitting
finite element approximations to functions is often called an   L2 projection.

Diagonal Mass Matrix.  The mass matrix which results from a consistent derivation
from the weak form is called a consistent mass matrix.  In many applications, it is
advantageous to use a diagonal mass matrix called a lumped mass matrix.  Procedures for
diagonalizing the mass matrix are often quite ad hoc, and there is little theory underlying
these procedures.  One of the most common procedures is the row-sum technique, in
which the diagonal elements of the mass matrix are obtained by

MII
D = M IJ

C

J
∑ (2.4.26)

where the sum is over the entire row of the matrix, MIJ
C  is the consistent mass matrix and

MIJ
D is the diagonal or lumped, mass matrix.

The diagonal mass matrix can also be evaluated by

MII
D = M IJ

C = ρ0
Xa

Xb

∫
J
∑ NI N j

j
∑

 

 
 

 

 
 A0dX = ρ0N IA0dX

X a

Xb

∫ (2.4.27)

where we have used the fact that the sum of the shape functions must equal one; this is a
reproducing condition discussed in Chapter 8.  This diagonalization procedure conserves
the total momentum of a body, i.e. the momentum of the system with the diagonal mass is
equivalent to that of the consistent mass, so

  
M IJ

CvJ =
I, J
∑ M II

DvI
I
∑ (2.4.28)

for any nodal velocities.

2.5  Relationships between Element and Global Matrices

In the previous section, we have developed the semidiscrete equations in terms of
global shape functions, which are defined over the entire domain, although they are usually
nonzero only in the elements adjacent to the node associated with the shape function.  The
use of global shape functions to derive the finite element equations provides little
understanding of how finite element programs are actually structured.  In finite element
programs, the nodal forces and the mass matrix are usually first computed on an element
level.  The element nodal forces are combined into the global matrix by an operation called
scatter or vector assembly.  The mass matrix and other square matrices are combined
from the element level to the global level by an operation called matrix assembly.  When
the nodal displacements are needed for computations, they are extracted from the global
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matrix by an operation called gather.  These operations are described in the following.  In
addition we will show that there is no need to distinguish element and global shape
functions and element and global equations for the nodal forces: the expressions are
identical and the element related expressions can always be obtained by limiting the
integration to the domain of the element.

The relations between  element  matrices and the corresponding global matrices will
obtained by the use of the connectivity matrices Le.  The nodal displacements and nodal
forces of element e are denoted by ue  and fe , respectively, and are column matrices of
order m, where m is the number of nodes per element.  Thus for a 2-node element, the

element nodal displacement matrix is 
  
ue

T = u1,u2[ ]e
.  The corresponding element nodal

force matrix is 
  
f e

T = f1, f 2[ ]e .  We will place the element  identifier “e” as either a

subscript or superscript, but will always use the letter “e” for the purpose of identifying
element-related quantities.

The element and global nodal forces must be defined so that their scalar products with
the corresponding nodal displacement increments gives an increment of work.  This was
used in defining the nodal forces in Section 2.4.  In most cases, meeting this requirement
entails little beyond being careful to arrange the nodal displacements and nodal forces in the
same order in the corresponding matrices.  This feature of the nodal force and displacement
matrices is crucial to the assembly procedure and symmetry of linear and linearized
equations.

The element nodal displacements are related to the global nodal displacements by

ue = Leu          δue = Leδu (2.5.1)

The matrix Le is a Boolean matrix, i.e. it consists of the integers 0 and 1.  An example of
the Le matrix for a specific mesh is given later in this Section.  The operation of extracting
ue from u is called a gather because in this operation the small element vectors are
gathered from the global vector.

The element nodal forces are defined analogously to (2.4.4) as those forces which give
the internal work:

  
δWe

int = δue
T fe

int = δu,X PA0dX
X1

e

Xm
e

∫ (2.5.2)

To obtain the relations between global and local nodal forces, we use the fact that the total
virtual internal energy is the sum of the element internal energies:

  

δWint = δWe
int

e
∑     or     

  

δuTf int = δue
Tf e

int

e
∑ (2.5.3)

Substituting (2.5.1) into the (2.5.3) yields

  

δuTf int = δuT Le
Tf e

int

e
∑ (2.5.4)
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Since the above must hold for arbitrary δu, it follows that

  

f int = Le
Tf e

int

e
∑ (2.5.5)

which is the relationship between element nodal forces and global nodal forces.  The above
operation is called a scatter, for the small element vector is scattered into the global array
according to the node numbers.  Similar expressions can be derived for the external nodal
forces and the inertial forces

f ext = Le
T fe

ext

e
∑ ,     f inert = Le

T fe
inert

e
∑ (2.5.6)

The gather and scatter operations are illustrated in Fig. 2 for a one dimensional mesh
of two-node elements.  The sequence of gather, compute and scatter is illustrated for two
elements in the mesh.  As can be seen, the displacements are gathered according to the node
numbers of the element.  Other nodal variables, such as nodal velocities and temperatures,
can be gathered similarly.  In the scatter, the nodal forces are then returned to the global
force matrix according to the node numbers.  The scatter operation is identical for the other
nodal forces.
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e

T

u f
Fig. 2.2.  Illustration of gather and scatter for a one-dimensional mesh of two-node elements, showing the
gather of two sets of element nodal displacements and the scatter of the computed nodal forces.

In order to describe the assembly of the global mass matrix from the element mass
matrices, the element inertial nodal forces are defined as a product of an element mass
matrix and the element acceleration, similarly to (2.4.13):

fe
inert = Meae (2.5.7)

By taking time derivatives of Eq. (2.5.1), we can relate the element and global accelerations
by ae = Lea,(the connectivity matrix does not change with time) and inserting this into the
above and using (2.5.6) yields

f inert = Le
T Me

e
∑ Lea (2.5.8)

Comparing (2.5.8) to (2.4.13), it can be seen that the global mass matrix is given in terms
of the element matrices by
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M = Le
T Me

e
∑ Le (2.5.9)

The above operation is the well known procedure of matrix assembly.  This is the same
operation which is used to assemble the stiffness matrix from element stiffnesses in linear
finite element methods.

1 2

1 2

3

N1

N1
e

N2
e

N2

Fig. 2.3.  Illustration of element N e(X)  and global shape functions N(X)  for a one dimensional mesh of
linear displacement, two-node elements.

Relations between element shape functions and global shape functions can also be
developed by using the connectivity matrices.  However, we shall shortly see that in most
cases there is no need to distinguish them.  The element shape functions are defined as the

interpolants Ne X( ) , which when multiplied by the element nodal displacements, give the
displacement field in the element, i.e. the displacement field in element e is given by

ue X( ) = Ne X( )ue = N I
e X( )u I

e

I=1

m

∑ (2.5.10)

The global displacement field is obtained by summing the displacement fields for all
elements, which gives

u X( ) = Ne X( )Leu
e=1

ne

∑ = N I
e X( )LIJ

e uJ
J=1

nN

∑
I =1

m

∑
e=1

ne

∑ (2.5.11)

where Eq. (2.5.1) has been used in the above.  Comparing the above with Eq. (2.4.1), we
see that

N X( ) = Ne X( )Le or
e=1

ne

∑ NJ X( ) = NI
e X( )LIJ

e

I=1

m

∑
e=1

ne

∑ (2.5.12)
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Thus the global shape functions are obtained from the element shape functions by
summing according to the node numbers of the elements.  This relationship is illustrated
graphically for a two-node linear displacement element in Fig. 2.3.

We will now show that the expressions for the element nodal forces are equivalent to
the global nodal forces, except that the integrals are restricted to the elements.  Using Eq.
(2.5.2) and the element form of the displacement field, we obtain

  
δWe

in t = δue
T fe

int = δue
T N ,X

e PA0dX
X1

e

Xm
e

∫ (2.5.13)

Invoking the arbitrariness of the virtual nodal displacements, we obtain

  
fe

int = N , XX1
e

Xm
e

∫ PA0dX or fI ,e
int = NI ,XX1

e

Xm
e

∫ PA0dX (2.5.14)

where the superscript e has been removed from the last expression since in element e,

Ne X( ) = N X( ) .

Comparing the above with (2.4.6), we can see that (2.5.14) is identical to the global
expression (2.4.6) except that integrals here are limited to an element.  Identical results can
be obtained for the mass matrix and the external force matrix.  Therefore, in subsequent
derivations we will usually not distinguish element and global forms of the matrices: the
element forms are identical to the global forms except that element matrices correspond to
integrals over the element domain, whereas global force matrices correspond to integrals
over the entire domain.

In finite element programs, global nodal forces are not computed directly but obtained
from element nodal forces by assembly, i.e. the scatter operation.  Furthermore, the
essential boundary conditions need not be considered until the final steps of the procedure.
Therefore we will usually concern ourselves only with obtaining the element equations.
The assembly of the element equations for the complete model and the imposition of
boundary conditions is a standard procedure.

We will often write the internal nodal force expressions for the total Lagrangian
formulation in terms of a B0  matrix, where B0  is in the one-dimensional case a row matrix
defined by

  B0 I = NI , X (2.5.15)

The nought is specifically included to indicate that the derivatives are with respect to the
initial, or material, coordinates. n The internal nodal forces (2.5.14) are then given

  

fe
i nt = B0

TPdΩ0
Ω 0

e
∫ or f I, e

int = B0 IPdΩ0
Ω 0

e
∫ (2.5.16)

where we have used dΩ0 = A0dX  and Ω0
e  is the initial domain of the element.  In this

notation the deformation gradient F and the one-dimensional strain are given by
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ε = B0u
e (2.5.17)

Box 2.2.  Discrete Equations in Total Lagrangian Formulation

     
  
u X ,t( ) = N X( )ue t( ) = Σ

I
N I X( )u I

e t( )

(B2.2.1)

     in each element

ε =
∂NI

∂X
uI

e = B0ue
I

∑                                                                     (B2.2.2)

evaluate the nominal stress P by constitutive equation

  

fe
i nt =

∂N
∂X

PdΩ0
Ω 0

e
∫ = B0

T PdΩ0
Ω 0

e
∫ or feI

int =
∂N I

∂X
PdΩ0

Ω 0
e
∫            (B2.2.3)

fe
ext = ρ0Ω 0

e∫ N TbdΩ0 +(NTA0tx
0
) Γ t

e                                                (B2.2.4)

         Me = ρ0Ω0
e∫ NTNdΩ0                                                                                    (B2.2.5)

          M˙ ̇ u + f int = f ext                                                                                              (B2.2.6)

Example 2.5.1.  Two-Node, Linear Displacement Element.  Consider a two-
node element shown in Fig. 3.  The element shown is initially of length   l0  and constant

cross-sectional area A0 . At any subsequent time t , the length is   l t( )  and the cross-
sectional area is A(t); the dependence   l  and A on time t will not be explicitly noted
henceforth.  The cross-sectional area of the element is taken to be constant, i.e. independent
of X.
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L

Lo

A

Ao

X , x1 2

u1

A , Ao = constant

u2

t

Fig. 2.3.  Two node element in one dimension for total Lagrangian formulation showing the initial,
undeformed (reference) configuration and the deformed (current) configuration.

Displacement field, strain, and B0 matrix.  The displacement field is given by the linear
Lagrange interpolant expressed in terms of the material coordinate

    
u X, t( ) =

1

l0
X2 − X , X − X1[ ] u1 t( )

u2 t( )
 
 
 

 
 
 

(2.5.18)

where     l0 = X2 – X1 .  The strain measure is evaluated in terms of the nodal displacements
by using Eq. (2.5.18) with (B2.2.2):

    
ε X, t( ) = u, X = 1

l0
–1      +1[ ]

u1 t( )
u2 t( )

 
 
 

 
 
 

(2.5.19)

The above defines the B0 matrix to be

    
B0 = 1

l0
–1     +1[ ] (2.5.20)

Nodal Internal Forces.  The internal nodal forces are then given by (2.5.16):

  
f e

int = B0
TPdΩXΩ0

e∫ = 1
l0X1

X2

∫
−1

+1

 
 
 

 
 
 
PA0 dX (2.5.21a)

If we assume that the cross-sectional area and the nominal stress P is constant, the
integrand in (2.5.21a) is then constant, so the integral can be evaluated by taking the
product of the integrand and the initial length of the element   l0 , which gives

  
f e

int =
f1

f 2

 
 
 

 
 
 e

int

= A0P
–1

+1
 
 
 

 
 
 

(2.5.21b)

From the above, we can see that the nodal internal forces are equal and opposite, so the
element internal nodal forces are in equilibrium, even in a dynamic problem.  This
characteristic of element nodal forces will apply to all elements for which translation results
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in no deformation; it does not apply to axisymmetric elements.  Since P = T/A0, (see
Eq. (2.1.1)) the nodal forces are equal to the load T carried by the element.

Nodal External Forces.  The external nodal forces arising from the body force are given
by (B2.2.3)

    
fe

ext = ρ0N
T bA0Ω0

e∫ dX =
ρ0

l0X1

X 2

∫
X2 – X

X – X1

 
 
 

 
 
 
bA0 dX (2.5.22a)

If we approximate the body forces b(X,t) by a linear Lagrange interpolant

  
b X,t( ) = b1 t( )  

X2 – X
l0

 
 

 
 + b2 t( )  

X – X1

l0

 
 

 
 (2.5.22b)

and taking A0 to be constant, the evaluation of the integral in (2.5.22a) gives

  
f e

ext =
ρ0A0l0

6
2b1 +b2

b1 + 2b2

 
 
 

 
 
 

(2.5.22c)

The evaluation of the external nodal forces is facilitated by expressing the integral in terms
of a parent element coordinate

    ξ = X – X1( ) / l0 ,   ξ =∈ 0,1[ ] (2.5.23)

Element Mass Matrix.  The element mass matrix is given by (B2.2.5):

    

Me = ρ0Ω0
e∫ NTNdΩ0 = ρ00

1

∫ NTNA0l0dξ

= ρ00

1

∫
1−ξ

ξ
 
 
 

 
 
 

1−ξ      ξ[ ]A0l0dξ = ρ 0A0l 0
6

2 1

1 2

 
  

 
  

(2.5.24a)

It can be seen from the above that the mass matrix is independent of time, since it depends
only on the initial density, cross-sectional area and length.

The diagonal mass matrix as obtained by the row-sum technique (2.4.26) is

  
Me =

ρ0A0l0
2

1 0

0 1

 
  

 
  =

ρ0 A0 l0
2 I (2.5.24b)

As can be seen from the above, in the diagonal mass matrix for this element, half of the
mass of the element is ascribed to each of the nodes.  For this reason, it is often called the
lumped mass matrix.

Example 2.5.2.  Example of Assembled Equations.  Consider a mesh of two
elements as shown in Fig. 4.  The body force b(x) is constant, b.  We will develop the
governing equations for this mesh; the equation for the center node is of particular interest
since it represents the typical equation for the interior node of any one-dimensional mesh.
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1 2 3
1 2

(1) (2)L L
Fig. 4

The connectivity matrices Le for this mesh are

L (1) =
1 0 0

0 1 0
 
  

 
  (2.5.25a)

L (2) =
0 1 0

0 0 1
 
  

 
  (2.5.25b)

The global internal force matrix by Eq. (2.5.5) is given in terms of the element internal
forces by

f int = L(1)
T f (1)

int + LT
(2 )f (2)

int =
f1

f 2

0

 
 
 

  

 
 
 

  
(1)

int

+
0

f1

f 2

 
 
 

  

 
 
 

  
(2)

int

(2.5.26)

which from (2.5.21b) gives

f int = A0
1( )P 1( )

–1

+1

0

 
 
 

  

 
 
 

  
+ A0

2( )P 2( )

0

–1

+1

 
 
 

  

 
 
 

  
(2.5.27)

Similarly

f ext = L(1)
T f (1)

ext + L(2) f (2)
ext =

f1

f 2

0

 
 
 

  

 
 
 

  
(1)

ext

+
0

f1

f 2

 
 
 

  

 
 
 

  
(2)

ext

(2.5.28)

and using (2.5.22c) with constant body force gives

  

f ext =
ρ0

(1)A0
(1)

0
(1)l

2

b

b

0

 
 
 

  

 
 
 

  
+

ρ0
(2) A0

(2)
0
(2)l

2

0

b

b

 
 
 

  

 
 
 

  
(2.5.29)

The global, assembled mass matrix is given by (2.5.9)

M = L(1)
T M(1)L(1) +L (2)

T M(2) L(2) (2.5.30)
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and by (2.5.24a)

    
M = L(1)

T ρ0
(1)A0

(1)l0
(1)

6  
2 1

1 2
 
  

 
  L(1) + L(2)

T ρ0
(2)A0

(2)l0
(2)

6  
2 1

1 2
 
  

 
  L(2) (2.5.31)

To simplify the form of the assembled equations, we now consider a uniform mesh with

constant initial properties, so     ρ0
(1) =ρ0

(2) = ρ0 ,  A0
(1) = A0

(2) = A0 ,  l0
(1) = l0

(2) = l0  and we

define     m1 = ρ0
(1)

A0
(1)l0

(1)( )/ 6 , 
    
m2 = ρ0

(2) A0
(2)l0

(2)( )/ 6  so the assembled mass matrix is

M =
2m1 m1 0

m1 2 m1 + m2( ) m2

0 m2 2m2

 

 

 
 

 

 

 
 

(2.5.32)

Writing out the second equation of motion for this system (which is obtained from the
second row of M, fext and f int) gives

    
1
6 ρ0

(1)A0
(1)l0

(1) ˙ ̇ u 1 + 1
3 ρ0

(1)A0
(1)l0

(1) +ρ0
(2) A0

(2)l0
(2)( ) ˙ ̇ u 2 + 1

6 ρ0
(2) A0

(2)l0
(2) ˙ ̇ u 3

  – A(1)P(1) + A(2) P(2) = b
2 ρ0

(1)A0
(1)l0

(1) + ρ0
(2) A0

(2)l0
(2)( ) (2.5.33)

Using uniform properties as before and dividing by   A0l0 , we obtain the following equation
of motion at node 2:

  
ρ0

1
6 ˙ ̇ u 1 + 2

3 ˙ ̇ u 2 + 1
6 ˙ ̇ u 3( ) + P(2) – P(1)

l0
=ρ 0b (2.5.34)

If the mass matrix is lumped, the corresponding expression is

  
ρ0

˙ ̇ u 2 + P(2) – P(1)

l0
=ρ 0b (2.5.35)

The above equation is equivalent to a finite difference expression for the momentum
equation (2.2.4) with A0 constant:  it is only necessary to use the central difference

expression   P, X X2( ) = P 2( ) – P 1( )( ) / l0  to reveal the identity.  Thus the finite element
procedure appears to be a circuitous way of obtaining what follows simply and directly
from a finite difference approximation.  The advantage of a finite element approach is that it
gives a consistent procedure for obtaining semidiscrete equations when the element lengths,
cross-sectional area, and density vary.  Furthermore, for linear problems, a finite element
solution can be shown to provide the best approximation in the sense that the error is
minimized in the energy norm (see Strang and Fix); finite difference approximations for
irregular grids and varying areas and densities, on the other hand, are difficult to construct.
The finite element method also gives the means of obtaining consistent mass matrices and
higher order elements, which are more accurate.  But the main advantage of finite element
methods, which undoubtedly has been the driving force behind its popularity, is the ease
with which it can model complex geometries.  This of course is masked in one dimensional
problems, but it will become apparent when we study multi-dimensional problems.
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Example 2.5.3. Three-node quadratic displacement element.  A 3-node element
of length L0  and cross-sectional area A0  is shown in Fig. 4.  Node 2 is placed between
nodes 1 and 3; although in this analysis we do not assume it to be midway between the
nodes, it is recommended that it be placed midway between the nodes in most models.  The
mapping between the material coordinates X and the referential coordinate ξ  is given by

  

X( ξ ) = N( ξ )Xe =
1

2
ξ ξ −1( )    1– ξ2   

1

2
ξ ξ +1( ) 

  
 
  

X1

X2

X3

 
 
 

  

 
 
 

  
(2.5.36)

where N ξ( )  is the matrix of Lagrange interpolants, or shape functions, and ξ is the element
coordinate.  The displacement field is given by the same interpolants

  

u ξ , t( ) = N ξ( )ue t( ) = 1
2 ξ ξ –1( )      1– ξ2      

1

2
ξ ξ +1( )[ ]

u1 t( )
u2 t( )
u3 t( )

 
 
 

  

 
 
 

  
(2.5.37)

By the chain rule

  
ε = F –1= u, X = u,ξξ, X  = u,ξ X ,ξ

−1 =
1

2 X ,ξ
2ξ –1    – 4ξ     2ξ + 1[ ] ue (2.5.38)

We have used the fact that in one dimension, ξ ,x = X,ξ
−1 .  We can write the above as

  
ε = B0ue where B0 =

1

2X ,ξ
2ξ–1     – 4ξ     2ξ + 1[ ] ue (2.5.39)

  The internal nodal forces are given by Eq. (20):

  

fe
i nt = B0

TPdΩ0
Ω 0

e
∫ = 1

2X ,ξ
−1

1

∫
2ξ– 1

–4ξ

2ξ +1

 
 
 

  

 
 
 

  
PA0 X ,ξ dξ = 1

2
−1

1

∫
2ξ −1

−4ξ

2ξ +1

 
 
 

  

 
 
 

  
PA0dξ (2.5.40)

The above integral is generally evaluated by numerical integration.  For the purpose of
examining this element further, let P(ξ) be linear in ξ :

P ξ( ) = P1

1– ξ 
 
 

 
 
 

2 + P3

1+ ξ 
 
 

 
 
 

2 (2.5.41)

where P1 and P3 are the values of P at nodes 1 and 3, respectively.  If   X,ξ  is constant, this
is an exact representation for the stress field in a material which is governed by a linear
stress-strain relation in these measures, Eq. (2.2.14), since F is linear in ξ by (2.5.40).
The internal forces are then given by
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fe
int =

f1
f2
f3

 
 
 

  

 
 
 

  
e

int

=
A0

6

−5P1 − P2

4P1 − 4P2

P1 + 5P2

 
 
 

  

 
 
 

  
   (2.5.42)

When P is constant, the nodal force at the center node vanishes and the nodal forces at the
end nodes are equal and opposite with magnitude A0P, as in the two node element.  In
addition, for any values of P1  and P2 , the sum of the nodal forces vanishes, which can be
seen by adding all the nodal forces.  Thus this element is also in equilibrium.

The external nodal forces are

  

fe
ext =

1

2
ξ ξ −1( )
1−ξ 2

1

2
ξ ξ +1( )

 
 
 

 
 
 −1

+1

∫ ρ0bA0 X,ξ dξ +

1

2
ξ ξ −1( )
1−ξ2

1

2
ξ ξ +1( )

 
 
 

 
 
 
A0 t x

0

Γt
e

(2.5.43)

where the shape functions in the last term are either one or zero at a traction boundary.

Using 
  
X, ξ =ξ X1 + X3 − 2X2( ) + 1

2
X3 − X1( ) , then

fe
ext = ρ0bA0

6

L 0 −2 X1 + X3 −2X2( )
4L0

L 0 +2 X 1 +X3 −2X2( )

 
 
 

  

 
 
 

  
+

1

2
ξ ξ −1( )
1−ξ 2

1

2
ξ ξ +1( )

 
 
 

  

 
 
 

  
A0 t x

0
Γt

e (2.5.44)

Element Mass Matrix.  The element mass matrix is

  

Me =
1

2
ξ ξ −1( )
1−ξ 2

1

2
ξ ξ +1( )

 
 
 

  

 
 
 

  
−1

+1

∫ 1
2
ξ ξ −1( ) 1−ξ 2 1

2
ξ ξ +1( )[ ]ρ0A0 X, ξdξ

      = ρ0A0

30

4L0 −6 X1 + X3 −2X2( ) 2L0 −4 X1 +X3 −2X2( ) −L0

16L0 2L0 +4 X1 +X3 −2X2( )
sym 4L0 −6 X1 +X3 −2X2( )

 

 
 
 

 

 
 
 

(2.5.45)

If the node 2 is at the midpoint of the element, i.e., X1 + X3 = 2 X2 , we have

Me = ρ0 A0L0

30

4 2 −1

2 16 2

−1 2 4

 

 

 
 
 

 

 

 
 
 

(2.5.46)

If the mass matrix is diagonalized by the row-sum technique, we obtain

Me = ρ0 A0L0

6

1 0 0

0 4 0

0 0 1

 

 

 
 
 

 

 

 
 
 

(2.5.47)

This results displays one of the shortcomings of diagonal masses for higher order elements:
most of the mass is lumped in the center node.  This results in rather strange behavior when
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high order modes are excited.  Therefore, high order elements are usually avoided when a
lumped mass matrix is necessary for efficiency.

2.6 Governing Equations for Updated Lagrangian Formulation

In the updated Lagrangian formulation, the discrete equations are formulated in the
current configuration.  The stress is measured by the Cauchy (physical) stress σ given by
Eq. (2.1.1).  In the updated Lagrangian formulation, variables need to be expressed in
terms of the spatial coordinates x and the material coordinates X in different equations.  The
dependent variables are chosen to be the stress σ(X,t)  and the velocity v(X,t).  This choice
differs from the total Lagrangian formulation, where we have used the displacement   u X , t( )
as the independent variable; this is only a formal difference since the displacement and
velocities are both computed in a numerical implementation.

In developing the updated Lagrangian formulation, we will need the dependent
variables to be expressed in terms of the Eulerian coordinates.  Conceptually this is a
simple matter, for we can invert (2.2.1) to obtain

X = φ−1 x,t( ) ≡ X x,t( ) (2.6.1)

Any variable can then be expressed in terms of the Eulerian coordinates; for example
σ (X,t)  can be expressed as   σ X x, t( ), t( ) .  While the inverse of a function can easily be
written in symbolic form, in practice the construction of an inverse function in closed form
is difficult, if not impossible.  Therefore the standard technique in finite elements is to
express variables in terms of element coordinates, which are sometimes called parent
coordinates or natural coordinates.  By using element coordinates, we can always express a
function, at least implicitly, in terms of either the Eulerian and Lagrangian coordinates.

In updated Lagrangian formulations, the strain measure is the rate-of-deformation
given by

Dx =
∂v

∂x
(2.6.2a)

This is also called the velocity-strain or stretching.  It is a rate measure of strain, as
indicated by two of the names.  It is shown in Chapter 3 that

  
Dx X ,t( )

0

t

∫ dt = ln F X, t( ) (2.6.2b)

in one dimension, so the time integral of the rate-of-deformation corresponds to the
"natural" or "logarithmic" strain in one dimension; as discussed in Chapter 3, this does not
hold for multi-dimensional states of strain.

The governing equations for the nonlinear dimensional continuum are:
1. conservation of mass (continuity equation)
ρJ = ρ0      or   ρFA = ρ0 A0 (2.6.3)

2. conservation of momentum

  
∂
∂x

Aσ( ) +ρAb = ρA˙ v  or    Aσ( ),x + ρAb =ρA˙ v (2.6.4)

2-34



T. Belytschko, Chapter 2, December 16, 1998

3. measure of deformation

  
Dx =

∂v

∂x
or Dx = v, x (2.6.5)

4. constitutive equation
in total form

  
σ X, t( ) = Sσ D Dx X ,t( )Dx X, t( ), ...( ), Dx X , t ( )

0

t

∫ dt ,σ X ,t( ), t ≤t , etc.) (2.6.6a)

in rate form

  σ ,t X, t( ) = St
σD Dx X ,t ( ),σ X, t ( ), etc., t ≤ t( ) (2.6.6b)

energy conservation

  ρ ˙ w in t =σDx −qx , x + ρs , qx = heatflux, s = heatsource (2.6.7)

The mass conservation equation in the updated Lagrangian formulation is the same as in the
total Lagrangian formulation.  The momentum equation in the updated formulation involves
derivatives with respect to the Eulerian coordinates, whereas in the total Lagrangian
formulation, derivatives were with respect to Lagrangian coordinates; in addition, the
nominal stress is replaced by the Cauchy stress, and that the current values of the cross-
sectional area A and density ρ are used.  The constitutive equation as written here relates
the rate-of-deformation   Dx X ,t( )  or its integral, the logarithmic strain, to the Cauchy stress
or its rate.  Note that the constitutive equation is written in terms of material coordinates.
The subscript "t" on (2.6.6b) indicates that the constitutive equation is a rate equation.  We
can also use a constitutive equation expressed in terms of the nominal stress and the stretch
ε .  It would then be necessary to transform the stress to the Cauchy stress before using the
momentum equation and use a different measure of strain.  Thus in the updated Lagrangian
formulation, some of the system equations are in terms of Eulerian coordinates, while
others (mass conservation and constitutive equations) are in terms of Lagrangian
coordinates.

The subscripts have been appended to the constitutive function to indicate which stress
and strain measures are related by the constitutive equation.  The constitutive equation
depends on the stress and strain measures which are involved.  For example, the
constitutive equation for a hypoelastic material in terms of the Cauchy stress and rate-of-
deformation is

  σ ,t X, t( ) = EσDDx X, t( ) (2.6.8)

where EPF ≠ EσD .  To see the relationship between the two moduli, we use the relation

  
Dx =

∂v

∂x
=

∂v

∂X

∂X

∂x
=

∂v

∂X
F −1 = ˙ F F−1 (2.6.9)

where the first equality is the definition (2.6.5), the second stems from the chain rule, and
the third from the definition of F, Eq. (2.2.4).  Then inserting Eqs. (2.2.9) and (2.6.9) in
(2.6.8) gives
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A0

d

dt

P

A
 
 
  

 
 = EσD ˙ F F−1 (2.6.10)

which after some manipulation yields

  

˙ P =
A

A0F
EσD ˙ F +

σ
A0

˙ A (2.6.11)

In general, constitutive equations are not easily converted from one stress-strain pair to
another.  For the above, the cross-sectional area must be known as a function of the
elongation to make the conversion.

The boundary conditions are

  v X, t( ) = v t( ) onΓv (2.6.12)

  nσ X, t( ) = t x t( ) on Γt (2.6.13)

where v t( )  and t x t( )  are the prescribed velocity and traction, respectively, and n is the
normal to the domain.  While the boundary condition is specified as applying to the
velocity, any velocity boundary condition is also a displacement boundary condition.  Note
that the traction always carries a subscript to distinguish it from the time t .  The relation
between the traction and velocity boundaries is the same as in (2.2.30):

Γv ∪ Γt = Γ       Γv ∩ Γt = 0 (2.6.14)

The boundary over which the velocity is prescribed is denoted by Γv; it is an essential
boundary condition and it plays the same role as Γu in the total Lagrangian formulation.
The tractions in (2.6.13) are physical tractions, force per current area.  They are related to
the tractions on the undeformed area by

t x A = t x
0A0 (2.6.15)

In addition we have the stress jump conditions, the counterpart of (2.2.33):

σA = 0 (2.6.16)

The initial conditions are

σ X,0( ) = σ0 X( ) (2.6.17)

v X,0( ) = v0 X( ) (2.6.18)

Since we have chosen the velocity and the stresses as the dependent variables, the initial
conditions are imposed on these variables.  In most practical problems, this choice of initial
conditions is more practical than conditions on velocities and displacements, as indicated in
Chapter 4.
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2.7 Weak Form for Updated Lagrangian Formulation

In this Section, the weak form or variational form for the momentum equation is
developed.  Recall that the dependent variables are the velocity   v X, t( )  and the stress

  σ X, t( ) .

The conditions on the trial functions v(X,t) and the test functions δv(X) are:

  v X, t( ) ∈U        
    
U = v X ,t( ) v ∈ C0 X( ),  v = v  on  Γv{ } (2.7.1)

    
δv X( ) ∈U0 U0 = δv X( ) δv ∈ C0 X( ),  δv = 0  on  Γv{ } (2.7.2)

These admissibility conditions are identical to those for the test and trial displacements in
the total Lagrangian formulation.  As in the total Lagrangian formulation, the stress σ(X,t)
is assumed to be a C–1 function in space.  The current domain is    xa t( ), xb t( )[ ] , where

  xa = φ Xa, t( ) ,   xb = φ Xb , t( ) .

The strong form consists of the momentum equation (2.6.4), the traction boundary
conditions and the jump conditions.  The weak form is developed by multiplying the
momentum equation (2.6.12) by the test function δv(X) and integrating over the current
domain.  The current domain of the body is appropriate, since the momentum equation
involves derivatives with respect to the spatial (Eulerian) coordinates.  This gives

  

δv Aσ( ), x + ρAb − ρA
Dv

Dt
 
  

 
  

x a

xb

∫ dx = 0 (2.7.3)

Integration by parts is performed as in Section 2.3 (see Eqs. (2.3.2) to (2.3.4)), which
gives

  

δv Aσ( ),x dx = δvAσ( ),x – δv,x Aσ[ ]
xa

xb

∫ dx
xa

xb

∫

                        

  

= δvAnσ( ) Γt
– δv Aσ Γi

i
∑ – δv,x Aσ

xa

xb

∫ dx (2.7.4)

where Γi are the points of discontinuity of Aσ; see Eq. (2.6.16).  We have used the
fundamental theorem of calculus to convert a line (domain) integral to a sum of point
(boundary and jump) values, with Γ  changed to Γt because δv(X) = 0 on Γv; see Eq.
(2.7.2).  Since the strong form holds, the traction boundary condition (2.6.13) gives
nσ = t x  and the jump condition nσ = 0 , which when substituted into the above give

  

δv,xAσ – δv ρAb– ρA
Dv

Dt
 
 
  

 
  

  
 
  

xa

xb

∫ dx– δvAtx( )
Γt

= 0 (2.7.5)

2-37



T. Belytschko, Chapter 2, December 16, 1998

This weak form is often called the principle of virtual power (or principle of virtual
velocities, see Malvern (1969), p. 241).  If the test function is considered a velocity, then
each term in the above corresponds to a variation of power, or rate of work; for example
ρAbdx is a force, and when multiplied by δv(X) gives a variation in power.  Therefore, the
terms in the above weak form will be distinguished form the principle of virtual work in
Section (2.3) by designating each term by P with the appropriate superscript.  However, it
should be stressed that this physical interpretation of the weak form is entirely a matter of
choice;  the test function δv(X)  need not be attributed any of the properties of a velocity; it
can be any function which satisfies  Eq. (2.7.2).

We define the virtual internal power by

    
δP int = δv,x

xa

xb

∫ σAdx = δD
xa

xb

∫ σAdx = δD
Ω
∫ σdΩ (2.7.6)

where the second equality is obtained by taking a variation of (2.6.5), i.e.,   δDx = δv, x ,
while the third equality results from the relation dΩ = Adx  which parallels (2.5.20).  The
integral in Eq. (2.7.6) corresponds to the internal energy rate in the energy conservation
equation (2.6.7) except that the rate-of-deformation D is replaced by δD, so designating
this term as a virtual internal power is consistent with the energy equation.

The virtual powers due to external and inertial forces are defined similarly:

  
δP ext = δv

xa

xb

∫ ρbAdx + δvAt x( )
Γ t

= δv
Ω
∫ ρbdΩ + δvAt x( ) Γt

(2.7.7)

  
δ P inert = δv

xa

x b

∫ ρ
Dv

Dt
Adx = δv

Ω
∫ ρ

Dv

Dt
dΩ (2.7.8)

Using Eqs. (2.7.6-2.7.8).  the weak form (2.7.5) can then be written as

  δ P =δ P int − δ Pext + δ P inert = 0 (2.7.9)

where the terms are defined above.  In summary, the principle of virtual power states that

if   v X, t( ) ∈U and δP= 0     ∀    δv X( ) ∈U0 (2.7.10)

then the momentum equation (2.6.4), the traction boundary conditions (2.6.13) and the
jump conditions are satisfied.  The validity of this principle can be established by simply
reversing the steps used to obtain Eq. (2.7.5).  All of the steps are reversible so we can
deduce the strong form from the weak form.

The key difference of this weak form, as compared to the weak form for the total
Lagrangian formulation, is that all integrals are over the current domain and are expressed
in terms of variables which have a spatial character.  However, the two weak forms are just
different forms of the same principle; it is left as an Exercise to show that the principle of
virtual work can be transformed to the principle of virtual power by using transformations
on the integrals and the variables.
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Exercise.  Replace the virtual displacement in the principle of virtual work by a
velocity and use the relations to show that it can be transformed into the principle of virtual
power.

2.8.  Element Equations for Updated Lagrangian Formulation

We will now develop the updated Lagrangian formulation.  As will become clear, the
updated Lagrangian formulation is simply a transformation of the total Lagrangian
formulation.  Numerically, the discrete equations are identical, and in fact, as we shall see,
we can use the total Lagrangian formulation for some of the nodal forces and the updated
for others in the same program.  Students often ask why both methods are presented when
they are basically identical.  We must confess that the major reason for presenting both
formulations today is that both are widely used, so to understand today's software and
literature, a familiarity with both formulations is essential.  However, in a first course, it is
often useful to skip one of these Lagrangian formulations.

The domain is subdivided into elements Ωe, so that Ω =∪Ω e.  The coordinates of the

nodes in the initial configuration are given by     X1 , X2 ,KXnN
  and the positions of the nodes

are given by     x1 t( ), x2 t( ),Kxm t( ) .  The m nodes of element e in the initial configuration be

denoted by    X1
e , X2

e ,KXm
e ,  and the positions of these nodes in the current configuration be

given by     x1
e t( ), x2

e t( ),Kxm
e t( ) .  The spatial coordinates of the nodes are given by the finite

element approximation to the motion

  x I t( ) = x XI ,t( ) (2.8.1)

Thus each node of the mesh remains coincident with a material point.

We will develop the equations on an element level and then obtain the global equations
by assembly using the scheme described in Section 2.5.  As before, the relationships
between the terms of the virtual power expression and the corresponding nodal forces
along with the physically motivated names will be employed to systematize  the procedure.

The dependent variables in this development will be the velocity and the stress.  The
constitutive equation, combined with the expression for the velocity-strain, and the mass
conservation equation are treated in strong form, the momentum equation in weak form.
The mass conservation equation can be used to easily compute the density at any point
since it is a simple algebraic equation.  We develop the equations as if there were no
essential boundary conditions and then impose these subsequently.

The velocity field in each element is approximated by

  
v X, t( ) = NI

I=1

m

∑ X( ) vI
e t( ) = N X( ) ve t( )

(2.8.2)
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Although the shape functions are functions of the material coordinates X, they can be
expressed in terms of spatial coordinates.  For this purpose, the mapping   x = φ X ,t( ) is

inverted to give   X =φ −1 x ,t( )  so the velocity field is

  
v x, t( ) = N φ −1 x , t( )( )ve t( ) (2.8.3)

Although developing the inverse mapping is often impossible, partial derivatives with
respect to the spatial coordinates can be obtained by implicit differentiation, so the inverse
mapping need never be calculated.

The acceleration field is given by taking the material time derivative of (2.8.2), which
gives

  ̇ v X ,t( ) = N X( )˙ v t( ) ≡ N X( )a t( ) (2.8.4)

It can be seen from this step that it is crucial that the shape functions be expressed as
functions of the material coordinates.  If the shape functions are expressed in terms of the
Eulerian coordinates by

  v( x, t) = N x( ) ve t( ) = N φ X, t( )( ) ve t( ) (2.8.5)

then material time derivative of the shape functions does not vanish and the accelerations
cannot be expressed as a product of the same shape functions and nodal accelerations.
Therefore, the shape functions  are considered to be functions of the material coordinates in
the updated Lagrangian method.  In fact, expressing the shape functions in terms of spatial
coordinates is incompatible with a Lagrangian mesh, since we need to approximate the
velocity in an element, which is a material subdomain.
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Current  configuration

Reference  configuration

Parent

t

x, X

X1 X2

ξ = 0 ξ = 1

ξ

X ξ( )

x ξ, t( )1 2

x1 t( ) x2 t( )

Fig. 2.5.  Role of parent configuration, showing mappings to the initial, undeformed configuration and the
current, deformed configuration in a Lagrangian mesh.

Element Coordinates.  Calculations in the updated Lagrangian formulation are usually
performed in the element coordinate system ξ  in the parent domain.  This is in fact simpler
than working in the spatial domain.  We have already used element coordinates to simplify
the evaluation of element nodal forces in the examples.  Element coordinates, such as
triangular coordinates and isoparametric coordinates, are particularly convenient for multi-
dimensional elements.

Consider Fig. 2.5, which shows a two-node element in the initial and current
configurations and the parent domain, which is the interval 0 ≤ξ ≤ 1.  The parent domain
can be mapped onto the initial and current configurations as shown.  For example, in the
two-node element, the mapping between the element coordinates and the Eulerian
coordinates is given by

  x ξ ,t( ) = x1 t( ) 1−ξ( )+ x2 t( )ξ (2.8.6)

or for a general one dimensional element as

  x ξ ,t( ) = N ξ( )xe t( ) (2.8.7)

Specializing the above to the initial time gives the map between the parent domain and the
initial configuration

X ξ( ) = NI
I=1

m

∑ ξ( )XI
e = N ξ( )Xe (2.8.8)
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which for the two-node element is

X ξ( ) = X1 1− ξ( ) + X2ξ (2.8.9)

The mapping between the Eulerian coordinates and the element coordinates, (2.8.6),
changes with time, while the map between the initial configuration and the element domain
is time invariant in a Lagrangian mesh.  Therefore shape functions expressed in terms of
the element coordinates by (2.8.8) will be independent of time.  If the initial map is such
that every point in the parent element ξ  maps onto a unique point of the initial
configuration, and for every point X  there exists a point ξ , then the parent element
coordinates can serve as material labels.  Such a map is called one-to-one and onto.  The
map between the parent domain and the current configuration must be one-to-one and onto
for all time; this is discussed further in Example 2.8.3 and Chapter 3.

As shown in Fig. 2.5, at any time the shape functions can be used to map between the
current and parent element configurations.  Thus the element coordinates provide a link
between the initial configuration and the current configuration of the element which can be
used in the evaluation of derivatives and integrals.

It follows from Eqs. (2.8.7) and (2.8.8) that the displacements can also be interpolated
by the same shape functions since

  
u ξ, t( ) = x ξ , t( ) − X ξ( ) = N ξ( ) xe t( ) − Xe( ) = N ξ( )ue t( ) (2.8.10)

The velocities and accelerations are also given by material derivatives of the displacement,
while the test function is given by the same shape functions, so

  v ξ ,t( ) = N ξ( )ve t( ) a ξ, t( ) = N ξ( )̇  ̇ u e t( ) δv ξ, t( ) = N ξ( )δve (2.8.11)

since the shape functions are independent of time.

Using Eqs. (2.8.2) and (2.6.5) and noting Eq.(2.8.3), the rate-of-deformation can be
expressed in terms of the shape functions by

  Dx x, t( ) = v, x x ,t( ) = N , x X x, t( )( )ve t( ) (2.8.12)

where we have indicated the implicit dependence of the shape functions on the Eulerian
coordinates.  The rate-of deformation will be expressed in terms of nodal velocities via a B
matrix by

  Dx = v, x = Bve = BI

I=1

m

∑ vI
e (2.8.13)

where

  B = N ,x     or        BI = NI ,x (2.8.14)
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This B  matrix differs from the B0 matrix used in the total Lagrangian formulation in that
the derivatives are taken with respect to the Eulerian coordinates..

To compute the spatial derivative of the shape function, we use the chain rule

  
N,ξ = N , xx,ξ so N ,x = N,ξ x,ξ

−1 (2.8.15)

From the above, it follows that

  Dx ξ, t( ) = x,ξ
−1N,ξ ξ( )ve t( ) = B ξ( )ve t( )        B ξ( ) = N,ξ x ,ξ

−1 (2.8.16)

Internal and External Nodal Forces.  We now use the procedure given in Sections
2.4 and 2.5 to determine nodal forces corresponding to each term of the weak form on an
element level.  The assembled equations and essential boundary conditions are developed
subsequently.  The internal nodal forces will be developed from the virtual internal power.
Defining the element internal nodal forces so that the scalar product with the virtual
velocities gives the internal virtual power, then from (2.7.6) and (2.8.13) we can write

  
δPe

int ≡ δve
Tfe

int = δv,x
TσAdx

x1
e t( )

x m
e t( )

∫ = δve
T N, x

Tσ Adx
x`

e t( )

x m
e t( )

∫ (2.8.17)

The transpose is taken of the first term in the integrand even though it is a scalar so that the
expression remains consistent when δv is replaced by a matrix product.  From the
arbitrariness of δve , it follows that

  

fe
i nt = N, x

T σAdx
x 1

e t( )

xm
e t( )

∫ ≡ BTσAdx
x1

e t( )

xm
e t( )

∫ or fe
in t = BT

Ω e t( )
∫ σ dΩ (2.8.18)

We have explicitly indicated the time dependence of the limits of integration of the integrals
to emphasize that the domain of integration varies with time.  The internal nodal forces can
then be evaluated in terms of element coordinates by transforming (2.8.18) to the parent
domain and using the above with   dx = x ,ξdξ , giving

  
fe

int = N ,x
TσAdx = N,ξ

T x,ξ
−1σAx,ξdξ =

ξ1

ξ m

∫
x1

e t( )

xm
e t( )

∫ N,ξ
T σAdξ

ξ1

ξ m

∫ (2.8.19)

The last form in the above is nice, but this simplification can be made only in one
dimension.

The external nodal forces are obtained from the expression for virtual external power
(2.7.7):

  

δPe
ext = δve

Tfe
ext = δvTρbdΩ +

Ω t
e
∫ δvT Atx( )

Γt

(2.8.20)
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Substituting (2.8.11) into the right hand side of the above and using the arbitrariness of
δve  gives

  

fe
ext = NTρbAdx +  

x1
e

xm
e

∫ NT At x( )
Γt

e = NTρbdΩ+  
Ω e t( )
∫ NT Atx( )

Γt
e (2.8.21)

where the second term contributes only when the boundary coincides with a node of the
element.

Mass Matrix.  The inertial nodal forces and mass matrix are obtained from the virtual
inertial power (2.7.8):

  

δP inert =δve
Tfe

inert = δvTρ
Dv

Dt
Adx

x1 t( )

xm t( )

∫ (2.8.22)

Substituting (2.8.11) into the above yields

  

fe
inert = ρNTNAdx

x1 t( )

xm t( )

∫ ˙ v e = Me˙ v e (2.8.23)

where the inertial force has been written as the product of a mass matrix M and the nodal
accelerations.  The mass matrix is given by

Me = ρNTNA dx
x1 t( )

x m t( )

∫ = ρNT N dΩ
Ω e t( )
∫ (2.8.24)

The above form is inconvenient because it suggests that the mass matrix is a function of
time, since the limits of integration and the cross-sectional area are functions of time.
However, if we use the mass conservation equation (2.2.10) in the form ρ0 A0dX =ρAdx ,
we can obtain a time invariant form.  Substituting the (2.2.10) into (2.8.24) gives

Me = ρ0NT NA0dX
X1

Xm

∫ (2.8.25)

This formula for the mass matrix is identical to the expression developed for the total
Lagrangian formulation, (2.4.11).  The advantage of this expression is that it clearly shows
that the mass matrix in the updated Lagrangian formulation does not change with time and
therefore need not be recomputed during the simulation, which is not clear from (2.8.24).
We will see shortly that any nodal force for a Lagrangian mesh can be computed by either
the total or updated Lagrangian formalism.  The one which is chosen is purely a matter of
convenience.  Since it is more convenient and illuminating to evaluate the mass matrix in
the total Lagrangian form, this has been done.

Equivalence of Updated and Total Lagrangian Formulations.  The internal and
external nodal forces in the updated and total Lagrangian formulations can be shown to be
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identical.  To show the identity for the nodal internal forces, we express the spatial
derivative of the shape function in terms of the material derivative by the chain rule:

  
N, x X( ) = N, X

∂X
∂x

= N, X F–1 = B0F–1 (2.8.26)

From the first equality we have   N, xdx = N,XdX , and substituting this into (2.8.18) gives

  

fe
int = N ,x

T σAdx =
x1 t( )

xm t( )

∫ N,X
T σAdX  

X1

Xm

∫ (2.8.27)

where the limits of integration in the third expression have been changed to the material
coordinates of the nodes since the integral has been changed to the initial configuration.  If
we now use the identity σA= PA0 , Eq.(2.2.9), we obtain from the above that

  

fe
int = N ,X

T PA0 dX  
X1

Xm

∫ (2.8.28)

This expression is identical to the expression for the internal nodal forces in the total
Lagrangian formulation, (2.5.14).  Thus the expressions for the internal nodal forces in the
updated and total Lagrangian formulations are simply two ways of expressing the same
thing.

The equivalence of the external nodal forces is shown by using the conservation of
mass equation, (2.2.10).  Starting with (2.8.21) and using the (2.2.10)  gives

  

fe
ext = NT ρbAdx +  

x1
e

xm
e

∫ NT At x( )
Γt

e
= NT ρ0b A0dX +

X1

Xm

∫ NT A0t x
0( )

Γt
e

(2.8.29)

where we have used the identity txA = tx
0 A0  in the last term.  The above is identical to

(2.4.8), the expression in the total Lagrangian formulation.

From this and the identity of the expression for the mass matrix, it can be seen that the
total and updated Lagrangian formulations simply provide alternative expressions for the
same nodal force vectors.  The formulation which is used is simply a matter of
convenience.  Moreover, it is permissible to use either of these formulations for different
nodal forces in the same calculation.  For example, the internal nodal forces can be
evaluated by an updated Lagrangian approach and the external nodal forces by a total
Lagrangian approach in the same calculation.  Thus the total and updated Lagrangian
formalisms simply reflect different ways of describing the stress and strain measures and
different ways of evaluating derivatives and integrals.  In this Chapter, we have also used
different dependent variables in the two formulations, the velocity and stress in the updated
formulations, the nominal stress and the displacement in the total formulation.  However,
this difference is not tied to the type of Lagrangian formulation, and we have done this only
to illustrate how different independent variables can be used in formulating the continuum
mechanics problem.  We could have used the displacements as the dependent variables in
the updated Lagrangian formulation just as well.
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Assembly, Boundary Conditions and Initial Conditions.  The assembly of
the element matrices to obtain the global equations is identical to the procedure described
for the total Lagrangian formulation in Section 2.5.  The operations of gather are used to
obtain the nodal velocities of each element, from which the strain measure, in this case the
rate-of-deformation, can be computed in each element.  The constitutive equation is then
used to evaluate the stresses, from which the nodal internal forces can be computed by
(2.8.19).  The internal and external nodal forces are assembled into the global arrays by the
scatter operation.  Similarly, the imposition of essential boundary conditions and initial
conditions is identical and described in Section 2.4.  The resulting global equations are
identical to (2.4.17) and (2.4.15).  Initial conditions are now needed on the velocities and
stresses.  For an unstressed body at rest, the initial conditions are given by

  vI = 0 , I = 1to nN             σ I = 0, I =1 to nQ (2.8.30)

That initial conditions in terms of the stresses and velocities is more appropriate for
engineering problems is discussed in Section 4.2.  Nonzero initial values can be fit by an
L2 projection described at the end of Section 2.4.
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Box 2.3    Updated Lagrangian Formulation

       u( X, t ) = N X ξ( )( )ue t( ) = N I X ξ( )( )u I
e t( )                                                                (B2.3.1)

 ....   v( X , t ) = N X ξ( )( )ve t( )= N I X ξ( )( )vI
e t( )                                                               (B2.3.2)

     note N,x = N,ξ x,ξ
−1

     in each element

Dx =
∂N I

∂x
vI

e

I=1

m

∑ = Bve                                                                     (B2.3.3)

evaluate s by constitutive equation

  
fe

i nt =
∂N
∂xΩ e

∫ σdΩ or fe
in t = BT

Ωe
∫ σdΩ                                         (B2.3.4)

fe
ext = ρ

Ω e
∫ NTbdΩ+ (NTAt x) Γ t

e                                                    (B2.3.5)

Me = ρ0Ωe
∫ NTNdΩ      same as total Lagrangian                          (B2.3.6)

                        M˙ ̇ u + f int = f ext                                                                               (B2.3.7)

Example 2.8.1.  Updated Lagrangian Form of Two-Node Linear
Displacement Element.  This element is the same as in Example 2.5.1, Fig. 3, except
the updated Lagrangian treatment is now used.  Recall that A0 and ρ0 are assumed to be
constant in each element.  The velocity field is the same as for the updated Lagrangian
element, (2.5.19):

    

v X, t( ) = 1
l0

X2– X , X – X1[ ]
N X( )

1 2 4 4 4 3 4 4 4 

v1 t( )
v2 t( )

 
 
 

 
 
 

(2.8.31)

In terms of element coordinates, the velocity field is

2-47



T. Belytschko, Chapter 2, December 16, 1998

    

v ξ , t( ) = 1– ξ , ξ[ ]
N ξ( )

1 2 4 3 4 

v1 t( )
v2 t( )

 
 
 

 
 
 

          
    
ξ =

X– X1
l0

(2.8.32)

The displacement is the time integrals of the velocity, and sinceξ  is independent of time

  u ξ , t( ) = N ξ( )ue t( ) (2.8.33)

Therefore, since x = X + u

  
x ξ ,t( ) = N ξ( ) xe t( ) = 1– ξ      ξ[ ] x1 t( )

x2 t( )
 
 
 

 
 
 

         x,ξ = x2 − x1 = l (2.8.34)

where   l  is the current length of the element.  For this element, we can express ξ  in terms
of the Eulerian coordinates by

    
ξ =

x– x1

x2 – x1
=

x – x1

l ,      l = x2 – x1 ,  
    
ξ, x =

1

l
(2.8.35)

So   ξ,x  can be obtained directly, instead of through the inverse of   x,ξ .  This is not the case
for higher order elements.

The B  matrix is obtained by the chain rule

    
B = N,x = N,ξ ξ,x = 1

l –1 ,    +1[ ] (2.8.36)

so the rate-of-deformation is given by

    
Dx = Bv e = 1

l v2– v1( ) (2.8.37)

Using (2.8.18) then gives

    
fe

int = BTσ Adx =
x1

x2

∫ 1
l

–1

+1

 
 
 

 
 
 
σ Adx

x1

x2

∫ (2.8.38)

If the integrand in (2.8.38) is constant, as if often is, then (2.8.38) yields

  
f e

int = Aσ
–1

+1
 
 
 

 
 
 

(2.8.39)

Thus the internal nodal forces for the element correspond to the forces resulting from the
stress σ.  Note that the internal nodal forces are in equilibrium.

The external nodal forces are evaluated using (2.8.21)
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fe
ext =

1– ξ
ξ

 
 
 

 
 
 

x1

x2

∫ ρbAdx +
1– ξ

ξ
 
 
 

 
 
 

Atx
 

 
 

 

 
 

Γ t
e

(2.8.40)

where the last term makes a contribution only if a node of the element is on the traction
boundary.  Since x is a linear function of ξ and t, Eq. (2.8.16), b(x,t) can always be
expressed as a function of ξ and t.  It is conventional to fit the data for b(x,t) by linear
interpolants for linear displacement elements (the information in higher order interpolations
will be beyond the resolution of the mesh).  So we let

  b ξ ,t( ) = b1 1−ξ( )+ b2ξ (2.8.41)

Substituting into (2.8.31) and integrating gives

  
f e

ext =
ρAl
6

2b1 + b2

b1 + 2b2

 
 
 

 
 
 

(2.8.42)

Comparison to Total Lagrangian.  We will now compare the nodal forces to those
obtained by the total Lagrangian formulation.  Replacing σ in (2.8.39) by the nominal
stress using Eq. (2.1.3a), we see that (2.8.39) and (2.5.27) are equivalent.  It can easily
be shown that (2.8.29) and (2.8.21) lead to the same expression as (2.8.31).

To compare the external nodal forces, we note that by the conservation of matter,   ρAl
=  ρ0 A0l0 .  Using this in Eq. (2.8.42) gives (2.5.26), the total Lagrangian form of the nodal
external forces.  In the updated Lagrangian formulation, the mass from the total Lagrangian
formulation is used, see Eq. (2.8.25), so the equivalence need not be considered.

Example 2.8.2.  Updated Lagrangian of Three Node Element, Quadratic
Displacement Element  The 3-node element is shown in Fig. 2.7.  Node 2 can be
placed anywhere between the end-nodes, but we shall see there are restrictions on the
placement of this node if the one-to-one condition is to be met.  We will also examine the
effects of mesh distortion.

t

X, x
X1 X2 X3

x1(t) x2(t) x3(t)

x1 x2 x3

Fig. 2.7.  Three node, quadratic displacement element in original and current configurations.

The displacement and velocity fields will be written in terms of the element coordinates

2-49



T. Belytschko, Chapter 2, December 16, 1998

  u ξ, t( ) = N ξ( ) ue t( ) ,     v ξ , t( ) = N ξ( ) ve t( ) ,     x ξ ,t( ) = N ξ( ) xe t( ) (2.8.43)

where

  
N ξ( ) = 1

2 ξ2 –ξ( )      1– ξ 2      1
2 ξ2 +ξ( )[ ] (2.8.44)

and

  ue
T = u1, u2 ,u3[ ]      ve

T = v1 , v2 ,v3[ ]      xe
T = x1 , x2 , x3[ ] (2.8.45)

The B  matrix is given by

  
B = N,x = x,ξ

−1N,ξ (2.8.46)

 = 1
2x,ξ

2ξ –1      – 4ξ      2ξ +1[ ] (2.8.47)

where

  
x,ξ = N,ξ xe = ξ– 1

2( ) x1– 2ξ x2 + ξ + 1
2( ) x3 (2.8.48)

The rate of deformation is given by

  
Dx = N,x ve = Bv e = 1

2x,ξ
2ξ–1     – 4ξ     2ξ + 1[ ] ve (2.8.49)

This rate-of-deformation varies linearly in the element if x ,ξ  is constant, which is the case
when node 2 is midway between the other two nodes.  However, when node 2 moves
away from the midpoint due to element distortion, x ,ξ   becomes linear and the rate-of-
deformation is a rational function.  Furthermore, as node 2 moves from the center, it
becomes possible for x ,ξ  to become negative or vanish.  In that case, the mapping between
the current spatial coordinates and the element coordinates is no longer one-to-one.

The internal forces are given by (2.8.18):

  

fe
i nt = BTσ Adx =

x1

x3

∫ 1
x,ξ

ξ – 1
2

–2ξ
ξ + 1

2

 
 
 

  

 
 
 

  
σ Ax ,ξ dξ

–1

+1

∫ = σ A

ξ– 1
2

–2ξ
ξ + 1

2

 
 
 

  

 
 
 

  
dξ

–1

+1

∫ (2.8.50)

where we have used   dx = x , ξ dξ .  Using (2.1.3), we can see that this expression is
identical to the internal force expression for the total Lagrangian formulation.

Mesh Distortion.  We will now examine the effects of mesh distortion on this element.
When x2 = 1

4 x3 + 3x1( ) , i.e. when node 2 of the element is one quarter of the element

length from node 1, then   x,ξ = 1
2 x3– x1( ) ξ +1( ) , so   x ,ξ = 0 at ξ =–1.  Examining the

Jacobian given by Eq. (2.2.3)
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J =

A

A0
x,X =

A

A0
x,ξX,ξ

−1 (2.8.51)

we see that it will also vanish.  By E. (2.2.4a) this implies that the current density becomes
infinite at that point.  As node 2 moves closer to node 1, the Jacobian becomes negative in
part of the element, which implies a negative density and a violation of the one-to-one
condition.  This corresponds to a violation of mass conservation and continuity of the
displacement field.  These situations are often masked by numerical quadrature, because the
condition must be more severe to appear at Gauss quadrature points.

The failure to meet the one-to-one condition can also affect the rate-of-deformation,
which is given by Dx = Bve . From (2.8.37) we can see the potential for difficulties when

the denominator x ,ξ  vanishes or becomes negative.  When x2 = 1
4 x3 + x1( ), and x ,ξ =0 at ξ

=–1, then the rate-of-deformation becomes infinite at node 1.  This property of quadratic
displacement elements has been exploited in fracture mechanics to develop elements with
singular cracktip stresses called quarter-point elements, but in large displacement analysis
this phenomenon can be troublesome.

In one-dimensional elements the effects of mesh distortion are not as severe as in
multi-dimensional problems.  In fact, the effects of mesh distortion can be alleviated
somewhat in this element by using F as a measure of deformation, see Eq. (2.5.40).  The
deformation gradient F never becomes singular in the 3-node element if the initial position
of X2 is at the midpoint.  However, any constitutive equation expressed in terms of F will
differ markedly from one expressed in terms of the rate-of-deformation Dx  when the
strains are large.

Example 2.8.3. Axisymmetric 2-Node Element.  As an example where the
concept of the principle of virtual power or work becomes quite useful, we consider the
analysis of an axisymmetric two dimensional disc of constant thickness, a, which is thin
compared to its dimensions so σ z = 0 .  The only nonzero velocity is vr r( ) , which as
shown, is only a function of the radial coordinate in an axisymmetric problem.  The
nonzero Cauchy stresses and rate-of-deformations are written in cylindrical coordinates
using Voigt notation

D{ } =
Dr

Dθ

 
 
 

 
 
 
               σ{ } =

σr

σθ

 
 
 

 
 
 

(2.8.52)

The rate-of-deformations are given by

  Dr = vr ,r           Dθ =
vr

r
(2.8.53)

and the momentum equation is

  

∂σ r

∂r
+

σ r −σθ

r
+ ρbr = ρ ˙ v r (2.8.54)

The boundary conditions are
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σ r a( ) = σa                σ r b( ) =σ b (2.8.55)

ra
rb

er
eθ

1 radian
segment

r

z

element

a

Fig. Schematic of axisymmetric disc
the shaded area is considered in work terms

It is not necessary to integrate the momentum equation to obtain its weak form.  By the
principle of virtual power the weak form is

    δ P = 0               ∀δvr ∈U0 (2.8.56)

The internal virtual power is obtained from the rate-of-deformation and stress

  

δPe
int = δDrσr + δDθσθ( )ardr

r1
e

r2
e

∫ = δD{ }T σ{ }dΩ
Ωe
∫ (2.8.57)

where dΩ = ardr  because a segment of one radian in the circumferential direction has been
chosen to avoid the factor 2π  in all terms.  The external virtual power is given by

δPe
ext = δvrρbrdΩ

Ω e
∫ + art r( )Γt

(2.8.58)

where ar in the last term is the area of a one radian segment.  The virtual inertial power is
given by

  
δPe

inert = δvr ρ˙ v rdΩ
Ωe

∫
(2.8.59)

Consider a two-node finite element with a linear velocity field written in terms of element
coordinates

  
v ξ ,t( ) = 1− ξ ξ[ ] v1 t( )

v2 t( )
 
 
 

 
 
 (2.8.60)

2-52



T. Belytschko, Chapter 2, December 16, 1998

The rate-of-deformation is evaluated by Eq.() using the above velocity field and
immediately put into matrix form

D =
Dr

Dθ

 
 
 

 
 
 

=
− 1

r21

1
r21

1− ξ
r

ξ
r

 

 

 
 

 

 

 
 

v1 t( )
v2 t( )

 
 
 

 
 
 

= Bve (2.8.61)

The internal nodal forces are given by an expression identical to () except that the stress is
replaced by the column matrix

  

fe
int = BT σ{ }dΩ

Ω e
∫ =

− 1
r21

1
r21

1−ξ
r

ξ
r

 

 

 
 
 

 

 

 
 
 

σr

σθ

 
 
 

 
 
 
ardr

r1

r2

∫ (2.8.62)

The external nodal forces are given by

fe
ext =

1−ξ
ξ

 
 
 

 
 
 r1

r2

∫ ρbrardr + art r( ) Γt
(2.8.63)

The element mass matrix is given by

Me =
1−ξ

ξ
 
 
 

 
 
 r1

r2

∫ 1− ξ ξ[ ]ρardr

      = ρar21

12

3r1 + r2 r1 + r2

r1 + r2 r1 +3r2

 
  

 
  

(2.8.64)

The lumped mass matrix can be computed by the row sum technique or by lumping half the
mass at each node, which gives, respectively

Me =
ρar21

6

2r1 + r2 0

0 r1 + 2r2

 
  

 
  

row-sum

     Me =
ρar21 r1 + r2( )

4

1 0

0 1
 
  

 
  

lump

(2.8.65)

As can be seen the two lumping procedures give slightly different results.

2.9.  Governing Equations for Eulerian Formulation

In an Eulerian formulation, the nodes are fixed in space and the independent variables
are functions of the Eulerian spatial coordinate x and the time t.  The stress measure is the
Cauchy (physical) stress   σ x , t( ) , the measure of deformation is the rate-of-deformation

  Dx x ,t( ) .  The motion will be described by the velocity   v x, t( ) .  In Eulerian formulations,
the deformation is not expressed as a function of the reference coordinates since an
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undeformed, initial configuration cannot be established, and no counterpart of (2.2.1) is
available.

Box.  2.4.  Governing Equations for Eulerian Formulation

continuity equation (mass conservation):
∂ρ
∂t

+
∂ ρv( )

∂x
= 0 (B2.4.1)

momentum equation

ρA
∂v

∂t
+ v

∂v

∂x

 
 
  

 
 =

∂ Aσ( )
∂x

+ ρAb            ρ
∂v

∂t
+ v

∂v

∂x

 
 
  

 
 = ∂σ

∂x
+ ρb (B2.4.2)

strain measure (rate-of-deformation):      Dx = v,x (B2.4.3)

constitutive equation in rate form:

  

Dσ
Dt

=σ ,t x ,t( )+σ , x x, t( )v x ,t( ) = St
σD Dx X , t ( ),σ X, t ( ),etc., t ≤ t( ) (B2.4.4)

energy conservation equation
same as before

The governing equations are summarized in Box 2.4.  In comparison with the updated
Lagrangian formulation we have just discussed, four points are noteworthy:

1.  The mass conservation equation is now written as a partial differential equation;
the form used with Lagrangian meshes is not applicable because it applies only
to material points.

2.  The material time derivative for the velocity in the momentum equation has been
written out in terms of the spatial time derivative and transport term.

3.  The constitutive equation is expressed in rate form; the total form cannot be used
since the stress and rate of deformation are functions of material coordinates in a
history-dependent material.

4.  The boundary conditions are now imposed on spatial points which do not move
with time.

The continuity equation has been written as a partial differential equation because it is
not possible to obtain an integral form such as Eq. (2.2.4) when the density is a function of
spatial coordinates.  Therefore, the continuity equation must be treated as a separate partial
differential equation, although there are approximations which enable the continuity
equation to be omitted when the density changes little, as for a liquid or solid; these are
discussed in Chapter 7.

The constitutive equation needs to be expressed in terms of material coordinates for
history-dependent materials,  so it is treated in rate form in this formulation.  It is thus a
separate partial differential equation.

In the general case, boundary conditions are required for the density, velocity and
stress.  As will be seen in Chapter 7, the boundary conditions for the density and stress in
an Eulerian mesh depend on whether the material is flowing in or out at the boundary.  In
this introductory exposition, we consider only boundaries where there is no flow.  The
boundary points are then Lagrangian, and the density and stress can be determined at these
points by the Lagrangian mass conservation equation, Eq. (2.2.10) and the constitutive

2-54



T. Belytschko, Chapter 2, December 16, 1998

equation, respectively.  Therefore, there is no need for boundary conditions for these
variables.

2.10   WEAK FORMS  FOR EULERIAN MESH EQUATIONS

In the Eulerian formulation, we have 3 unknowns or dependent variables: the density
ρ(x, t), the velocity v(x, t) and the stress σ(x, t).  The rate-of-deformation can easily be
eliminated from the momentum equations by substituting (B2.4.3) into the constitutive
equation (B2.4.4).  Therefore, we will need three sets of discrete equations.  A weak forms
of the momentum equation, the mass conservation equation and the constitutive equation
will be developed.  We will construct continuous solutions to the governing equations.
The equations given in Box 2.4 can in fact have discontinuous solutions, with
discontinuities in the density, stress and velocity, as when a shock occurs in the flow.
However, we will take the approach of smearing any discontinuities over several elements
with a continuous function; this approach is called shock fitting or shock smearing.  The
trial and test functions will therefore be continuous functions of space.

We consider first the weak form of the continuity equation.  The trial functions for the
density are denoted by   ρ x ,t( ) , the test functions by δρ x( )   The test functions and the trial
functions for the continuity equation must be piecewise continuously differentiable, so

  
ρ x ,t( ) ∈R, R = ρ x ,t( ) ρ x ,t( ) ∈C0 x( ), ρ x, t( ) = ρ on Γρ{ } (2.10.1)

  
δρ x( ) ∈R0 , R = δρ x( )δρ x( ) ∈C0 x( ), δρ xa( ) = 0, δρ xb( ) = 0{ } (2.10.2)

In this  Section, we do not consider problems with prescribed densities on the boundaries.

The weak form of the continuity equation is obtained by multiplying it by the test
function δρ x( )  and integrating over the domain.  This gives

  
δρ( ρ ,t + ( ρv ) , x ) dx = 0

x a

x b

∫           ∀δρ ∈R 0 (2.10.3)

Only first derivatives with respect to the spatial variable of the density and velocity appear
in the weak form, so there is no need for integration by parts.  The consequence of
integrating by parts are interesting and is examined in the Exercises.

The weak form of the constitutive equation is obtained the same way.  We express the
material derivative in terms of a spatial derivative and a transport term, giving

  σ ,t + σ , xv− S( v, x ,etc ) = 0 (2.10.4)

The test and trial functions,   δσ( x)  and   σ( x, t) , respectively, are subject to the same
continuity and end conditions as for the density in the continuity equation, i.e., we let
σ ∈ℜ , δσ ∈ℜ0 . The weak form of the constitutive equation is then obtained by
multiplying it by the test function and integrating over the domain:

  
δσ ( σ, t +σ ,xv −S( v, x ,etc )) dx = 0

xa

xb∫           ∀δσ ∈R 0 (2.10.5)
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As in the continuity equation, there is no benefit in integrating by parts.  Neither this weak
form nor the weak continuity equation have a clear physical meaning.  They will be referred
to as the weak continuity and constitutive equations.

The weak form of the momentum equation is obtained by integrating the test function

  δv( x)  over the spatial domain.  The procedure is identical to that in the updated Lagrangian
formulation in Section 2.7.  The test and trial functions are defined by Eqs (2.7.1) and
(2.7.2).  The resulting weak form is

  
δv,x Aσ −δv ρAb − ρA

Dv

Dt
 
 
  

 
  

  
 
  dx

x a

xb

∫ − δvAt x( )
Γ t

= 0 (2.10.6)

or using (??)

  
δv,x Aσ +δvρA

∂v

∂t
+v , xv − b

 
 
  

 
 

 
  

 
  dx

x a

xb

∫ − δvAt x( )
Γ t

= 0
(2.10.7)

Note that the limits of the integration are fixed in space.

The weak form is identical to the principle of virtual power for the updated Lagrangian
formulation except that the domain is fixed in space and the material time derivative is
expressed in its Eulerian form.  Thus the weak form of the momentum equation can be
written

  δ P =δ P int− δ Pext +δ P inert = 0 ∀δv ∈U0 (2.10.8)

where

  

δP int = δv,x
xa

xb

∫ σAdx = δDx
xa

xb

∫ σAdx = δDx
Ω
∫ σΩ (2.10.9)

  
δP ext = δv

xa

xb

∫ ρbAdx + δvAt x( )
Γ t

(2.10.10)

  

δ P inert = δv
xa

xb

∫ ρ
∂v

∂t
+ v,xv

 
 
  

 
 Adx

  
= δv

Ω
∫ ρ

∂v

∂t
+v, xv

 
 
  

 
 dΩ (2.10.11)

All of the terms are identical to the corresponding terms in the principle of virtual power for
the updated Lagrangian formulation, except that the limits of integration are fixed in space
and the material time derivative in the inertial virtual power has been expressed in terms of
the spatial time derivative and the transport term.  Similar expressions for the virtual
powers also hold on the element level.

2.11.  FINITE ELEMENT EQUATIONS
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In a general Eulerian finite element formulation, approximations are needed for the
pressure, stress and velocity.  For each independent variable, test and trial functions are
needed.  We will develop the equations for the entire mesh.  For simplicity, we consider
the case where the segment is 0 ≤ x ≤ L.  As mentioned before, we consider the case where
the end points are fixed in space and the velocities on these points vanish.  There are then
no boundary conditions on the density or stress and the boundary conditions on the
velocity are

  v 0,t( ) = 0, v L, t( ) = 0 (2.11.1)

  The mapping between spatial and element parent coordinates is given by

x = N I ξ( )x I (2.11.2)

In contrast to the Lagrangian formulations, this mapping is constant in time since the nodal
coordinates x I  are not functions of time.  The trial and test functions are given by

  
ρ x ,t( ) = NI

ρ x( )
I =1

n N

∑ ρ I t( )      δρ x( ) = NI
ρ x( )

I=1

nN

∑ δρ I (2.11.3)

  
σ x, t( ) = NI

σ x( )
I=1

nN

∑ σ I t( )    δσ x( ) = NI
σ x( )

I=1

nN

∑ δσ I (2.11.4)

  
v x, t( ) = NI x( )

I= 2

nN −1

∑ vI t( )                 δv x( ) = NI x( )
I=2

nN −1

∑ δvI (2.11.5)

The velocity trial functions have been constructed so the velocity boundary condition is
automatically satisfied.

Substituting the test and trial functions for the density into the weak continuity
equation gives

  
δρJ

J=1

nN

∑
I=1

nN

∑ NJ
ρNI

ρρI , t + NJ
ρ ρv( ),x( )0

L

∫ dx = 0 (2.11.6)

Since this holds for arbitrary δρJ  at interior nodes, we obtain

  
N I

ρNJ
ρdxρJ ,t0

L

∫ + NI
ρ ( ρv ) ,x0

L

∫ dx = 0          I =1 to nN (2.11.7)

We define the following matrices

  
MIJ

ρ = NI
ρN J

ρdx
0

L

∫ ,        Me
ρ = Nρ( )T

Nρdx
Ωe
∫    (2.11.8)

  
g I

ρ = NI
ρ ρv( ), x0

L

∫ dx , ge
ρ = Nρ( )T

ρv( ), x0

L

∫ dx (2.11.9)
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The discrete continuity equation can be then be written as

  
MIJ

ρ ˙ ρ J
J

∑ + gI
ρ = 0 for I = 1 to nN , or Mρ ˙ ρ +gρ = 0 (2.11.10)

The matrices Mρ can be assembled from element matrices just like the mass matrix in the
momentum equation.  The column matrix gρ  is obtained by a scatter, or vector assembly.

The matrix Mρ  is time invariant and closely resembles the mass matrix.  However, the
column matrix gρ  varies with time and must be computed in every time step.  In most
cases, the element matrices are integrated in the parent coordinate system.

The discrete form of the constitutive equation is obtained similarly.  The result is

  
MIJ

σ ˙ ρ J
J

∑ + gI
σ = hI

σ for I =1 to nN , or Mσ ˙ σ + gσ = h (2.11.11)

where

MIJ
σ = N I

σ NJ
σdx

0

L

∫       and      Me
σ = Nσ( )T

Nσ dΩ
Ωe
∫ (2.11.12)

  
g I

σ = NI
σ vσ ,xdx

0

L

∫       and      ge
σ = Nσ( )T

vσ ,xdΩ
Ω e
∫ (2.11.13)

where the matrix relations on the right have been extracted from the indicial forms and
immediately specialized to elements by the procedure in Section 2.8.

Current

Original

t

x
1 2

ξ
Parent

x ξ( )

x ξ( )

Fig. 2.8  Eulerian element in current and original configurations, which are the same, and the mapping to
the parent element.

Momentum Equation.  The weak form of the momentum equation is identical to the
weak form for the updated Lagrangian formulation except for the inertial term.  Therefore
the expressions for the internal and external nodal forces are identical.  The inertial nodal
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forces for the Eulerian formulation are obtained in the following on an element level.  We
define the inertial nodal forces by Eq. (2.7.8) which gives

  

δ Pe
iner = δve

Tfe
inert = δve

T ρN
Ωe

∫
T

N˙ v +v, xv( )Adx (2.11.14)

From the above, it follows that the inertial nodal forces are given by

  fe
iner = Me

˙ v e + fe
tran (2.11.15)

where

  

Me = ρN
Ω e

∫
T

NAdx, fe
tran = ρv, xvAdx

Ωe

∫ (2.11.16)

The transport nodal forces have not been written in matrix form; they are quadratic in the
nodal velocities.  This term is needed in the Eulerian formulation because the nodes are
fixed in space, so the time derivatives of the nodal velocities correspond to spatial
derivatives.  The mass matrix differs from the mass matrix in the Lagrangian meshes in that
it is a function of time: as the density in the element changes, the mass matrix will change
correspondingly.

Example.  Two-Node Eulerian Finite Element.  The finite element equations are
developed for a one-dimensional, two node element with linear velocity, density and stress
fields. The element, shown in Fig. 2.8, is of length   l = x2 − x1  and unit cross-sectional
area. As can be seen, the spatial configuration does not change with time since it is an
Eulerian element. The map between element and spatial coordinates is given by

x ξ( ) = 1− ξ ξ[ ] x1
x2

 
 
 

 
 
 e

≡ N ξ( )xe  (2.11.17)

The density, velocity and stress are also interpolated by the same linear shape functions

ρ ξ( ) = N ξ( )ρe v ξ( ) = N ξ( )ve σ ξ( ) = N ξ( )σe (2.11.18)

Superscripts are not appended to the shape functions because all variables are interpolated
by the same shape functions.

Density Equation. The element matrices for the discrete continuity equation are given by

  
Me

ρ = NT N
x1

x2

∫ dx =
1− ξ

ξ
 

 
 

 

 
 

0

1

∫ 1−ξ ξ[ ]ldξ =
l
6

2 1

1 2

 
  

 
  (2.11.19)

    
ge

ρ = NT ρv( ),x
x1

x2

∫ dx =
1− ξ

ξ
 

 
 

 

 
 

0

1

∫ ρv( ),x l dξ (2.11.20)
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The ge
ρ  vector is usually evaluated by numerical quadrature. For linear interpolants it is

given by

g e
ρ =

1

6
ρ2 − ρ1( ) 2v1 + v2

v1 + 2v2

 
 
 

 
 
 

+
1

6
v2 − v1( ) 2ρ1 + ρ2

ρ1 +2ρ2

 
 
 

 
 
 

(2.11.21)

The above matrix vanishes when the density and velocity are constant in the element.

Stress Equation. The element matrix for the stresses Me
σ = Me

ρ .  The vector g e
σ  is given

by

  

g e
σ = NT vσ , x dx

x1

x2

∫ =
1− ξ

ξ
 
  

 
  

0

1

∫ v1 1− ξ( ) +v2ξ( ) σ2 −σ1( ) dξ

= 1
6

σ 2 − σ1( ) 2v1 + v2

v1 +2v2

 
 
 

 
 
 

(2.11.22)

In summary, the finite element equations for the Eulerian formulation consists of three
sets of discrete equations: the continuity equation, the constitutive equation, and the
momentum equation, or equation of motion.  The momentum equation is similar to the
updated Lagrangian form, except that the inertial term includes a transport term and varies
with time.  All nodal forces are defined over fixed intervals in space.  The semidiscrete
forms of the continuity and constitutive equations are first order ordinary differential
equations.  We have only developed the discrete equations for the case where the endpoints
are fixed.

2.12 Solution Methods

We have seen so far that the momentum equation can be discretized with a Lagrangian
mesh in the form

M˙ ̇ u = fext – f int = f (2.12.1)

These are ordinary differential equations in time.

In order to enable some nonlinear problems to be solved at this point, we now describe
the simplest solution method, explicit time integration of the equations of motion for a
Lagrangian mesh.  The most widely used explicit method is based on the central difference
formulas.  Explicit integration can be simplified further by replacing M by a diagonal or
lumped mass matrix.

We start at time t=0 using time steps ∆t , so that at time step n, t = n∆t .  The value of

a function at n∆t  is denoted by a superscript n, i.e.,   u
n ≡ u n∆t( ) .  In the central difference

method, the velocities are approximated by

˙ u n = vn+1/2 = un+1/ 2 –un –1/ 2

∆ t = u(t +∆t/2)−u(t−∆t/ 2)
∆ t (2.12.2)
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where the second equality is included to clarify the notation.  Half time step values are used
for the velocities.  The accelerations are given by

  
˙ ̇ u n ≡ an = vn+1/2–vn–1/2

∆t (2.12.3)

In each case, the value of the derivative at the center of a time interval is obtained from
the difference of the function values at the ends of the interval, hence the name central
difference formulas.  The flow chart for an explicit program is then given by the following
Box.

Box 2.5  Flowchart for Explicit Time Integration of Lagrangian Mesh

1.  Initial conditions and initialization:   set v0 , σ0 ; n = 0 , t = 0; compute M

2.  get f n

3.  compute accelerations an = M−1f n

4.  update nodal velocities: 
  
vn+1

2 = vn+ 1
2

−α + α∆tan : α =
1
2 if n = 0

1 if n > 0

 
 
 

5.  enforce essential boundary conditions: if node I on   Γv : vI
n = v xI , tn( )

6.  update nodal displacements: un +1 = un +∆tvn+1
2

7.  update counter and time:   n ← n +1, t ← t +∆ t
8.  output, if simulation not complete, go to 2

Module: get f
1.  GATHER element nodal displacements ue

n  and velocities   ve
n+1/ 2

2. compute measure of deformation

3. compute stress by constitutive equation σe
n

4. compute internal nodal forces by equation in Box.

5. compute external nodal forces on element and   fe = fe
ext − fe

int

5. SCATTER element nodal displacements to global matrices

Updating for the displacements by Eq. (6) then does not require any solution of
algebraic equations.  Thus, in a sense, explicit integration is simpler than static linear stress
analysis.  As can be seen from the flowchart, most of the explicit program is a
straightforward interpretation of the governing equations and the time integration formulas.
The program begins with the enforcement of the initial conditions; procedures for fitting
different initial conditions have already been described.  The first time step is somewhat
different from the others because only a half-step is taken.  This enables the program to
correctly account for the initial conditions on the stresses and velocities.

Most of the programming and computation time is in computing the element nodal
forces, particularly the internal nodal forces.  The nodal forces are computed element-by-
element.  Prior to starting the element computations, the element nodal velocities and
displacements are gathered from the global arrays.  As can be seen from the flowchart, the
computation of the internal nodal forces involves the application of the equations which are
left in strong form, the strain equation and the constitutive equation, followed by the
evaluation of the internal nodal forces from the stress, which emanates from the weak form
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of the momentum equation.  When the computation of the element nodal forces is
completed, they are scattered to the global array according to their node numbers.

The essential boundary conditions are enforced quite easily as shown.  By setting the
nodal velocities equal to the prescribed nodal velocities at all nodes on prescribed velocity
boundaries, the correct displacements result, since the velocities are subsequently integrated
in time.  The placement of this step in the flowchart insures that the correct velocities are
available in the nodal force computation.  The initial velocities must be compatible with the
boundary conditions; this is not checked in this flowchart but would be checked in a
production program.  The reaction forces can be obtained by outputting the total nodal
forces at the prescribed velocity nodes.

It can be seen from the flowchart that the traction boundary conditions enter only
through the external nodal forces.  Therefore, for a traction-free boundary, nothing need be
done: the homogeneous traction boundary condition is enforced naturally in a weak sense
by the finite element solution.  However, the traction boundary condition is only satisfied
approximately.

Stability Criterion.  The disadvantage of explicit integration is that the time step must
be below a critical value or the solution "blows up" due to a numerical instability.  This is
described in detail in Chapter 6.  Here we limit ourselves to pointing out that the critical
time step for the 2-node elements described in this Chapter is given by

  
∆ tcrit = l

c (2.12.4)

where   l  is the current length of the element and c is the wave speed given by

c2 = Eση / ρ (2.12.5)

where Eση  is the modulus in the elastic relation between Cauchy stress and rate-of-

deformation.  For nonlinear materials, Eση  is replaced by the current tangent modulus

  
EσD

t = ˙ σ 
Dx

(2.12.6)

A computer program for the explicit integration of the one-dimensional updated and
total Lagrangian formulation is given in Appendix B.

Appendix A.  Derivation of Conservation Equations in 1D.

In this Appendix, simple derivations of the conservation equations in one dimension
will be given.  These are "engineering" derivations which develop these equations in
simplest terms, and they lack the mathematical rigor and generality associated with the
derivations found in texts on continuum mechanics.

We first derive the equation of conservation of mass, also called the continuity
equation.  Consider a segment of the rod shown in Fig. 2.7, which in the initial, or
undeformed, state is of length ∆X, cross-sectional area A0 and density ρ0.  In the deformed
state this Lagrangian segment has length ∆x, area A and density ρ.  The subdomain is a
material, or Lagrangian subdomain, in that all material points remain in the subdomain and
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the right and left end points are the same material points.  No flow of material occurs in or
out of the segment.  Therefore, by mass conservation, the mass in the undeformed segment
must equal the mass of the deformed segment:

ρA∆x = ρ0 A0∆X (A.1)

current
configuration

reference
configuration

∆x

∆xAρb

t

x, X

Ao P( ) X+∆XAo P( ) X

∆X

Aσ( ) x Aσ( ) x+ ∆x

∆XAo ρob

Fig. 2.9. A segment of a rod in the reference (initial, undeformed) and current configurations showing all
forces acting on the segment.

Dividing by ∆X  and taking the limit as ∆X → 0  gives

ρ0 A0 = ρA ∂x
∂X

= ρAF    or     ρ0 X( )A0 X( ) = ρ X ,t( )A X ,t( )F X ,t( ) (A.2)

The above is one form of the equation of mass conservation.  On the right hand side the
independent variables have been indicated to stress that this equation only holds when
expressed in terms of the material coordinates; the variables on the RHS are functions of
time, whereas the variables on the LHS are independent of time.

To obtain another form of this equation, we note that the volumes of the segment are
related by the Jacobian by dΩ = JdΩ0 . Since dΩ = Adx  and dΩ0 = A0dX , it follows that

J = A
A0

F (A.3)

Substituting the above into (A.1) gives the another form of the mass conservation equation
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  ρ0 X( ) = ρ X ,t( ) J X, t( ) (A.4)

The above equation also applies in multi-dimensional problems.

Momentum Equation.  The momentum equation is derived by considering the segment
of the rod shown in Fig. 2.9.  The forces on the deformed segment are shown in Fig. 2.9
and consist of the forces arising from the stress, which act on the right and left hand end of
the segment, and the body force; the body force is distributed over the entire segment and
its net resultant is placed at the center of the segment.  On the left hand end of the segment
the force is Aσ( )

x
, i.e. the product of the stress and the current area at the point x .  The

force due to the stress on the right hand end is given by Aσ( )
x+∆x

.  The resultant force due

to the body force is obtained by multiplying b x + ∆x
2( )  by the mass of the segment ρA∆x .

So if we write Newton's second law for the segment we have

  
–Aσ x + Aσ( )

x+∆x
+ ρAb( )

x+ ∆x
2

∆x = ρA˙ ̇ u ( )
x+ ∆x

2
∆x (A.5)

where the LHS is the sum of the resultant forces from the stress and the body force and the
RHS is the product of the mass of the segment and its acceleration.

The forces due to the stresses are now expanded by a Taylor's series about the
midpoint of the segment, with the product Aσ  treated as a single function, which gives

  
Aσ( )

x+∆x
= Aσ( )

x+∆x / 2 +
∂ Aσ( )

∂x x+∆x / 2

∆x

2
+O ∆x 2( ) (A.6a)

  
Aσ( ) x = Aσ( ) x+∆x / 2 − ∂ Aσ( )

∂x x+∆x / 2

∆x
2

+ O ∆x2( ) (A.6b)

The use of a Taylor series expansion of course presupposes that the function is smooth
enough so that the first derivative exists; this is not the case wherever the stress or the area
is discontinuous.  Substituting (A.6) into (A.5) and dividing by ∆x   gives

  Aσ( ),x + ρAb = ρA˙ ̇ u (A.7)

The above is the momentum equation for a one-dimensional continuum of varying cross-
section.

To derive the momentum equation in the reference configuration, we note that the
forces on the sides of the segment are given by multiplying the nominal stress by the initial
area, A0P .  The net force due to the body force is ρ0 A0b∆X  since ρ0b  is a force per unit
initial volume and the initial volume is A0∆X .  The mass of the segment is ρ0 A0∆X .
Writing Newton's second law for the segment gives

  
–A0P( )

X
+ A0P( )

X +∆X
+ ρ0 A0b( )

X+ ∆X
2

∆X = ρ0 A0b˙ ̇ u ( )
X+ ∆X

2
∆X (A.8)
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where the LHS is the sum of all forces acting on the segment and the RHS is the mass time
the acceleration.  Expressing the forces due to the nominal stresses by a Taylor series as in
(A.6), but in terms of the material coordinate X , substituting into (A.8) and dividing by
∆X  gives the momentum equation in Lagrangian form

  
A0P( ) ,X + ρ0A0b = ρ0A0̇  ̇  u (A.9)

The above can easily be transformed to the Eulerian form, Eq. (A.7).  By the stress
transformation (2.1.2), we have A0P = Aσ , so

  
A0P( ) ,x = Aσ( ),x = Aσ( ),x x,X = Aσ( ),x F (A.10)

where the chain rule has been used in the third step, followed by the definition of F in Eq.
(2.2.2).  Substituting the (A.10) into (A.9) gives

  0 = Aσ( ),x F + ρ0 A0b − ρ0A0˙ ̇ u = Aσ( ),x F + FρAb − FρA˙ ̇ u 

where the continuity equation (A.2) has been used in the last step.  Dividing by F  then
gives the momentum equation in Eulerian form.  Note that the body force in the Lagrangian
and Eulerian momentum equations is identical.  Some authors distinguish the body force in
the total form by a subscript naught, i.e., Malvern (1969, p. 224), but this is superfluous if
the body force is considered a force per unit mass so that ρb  is a force per unit volume.

SUMMARY

The finite element equations have been developed for one-dimensional continua of
varying cross-section.  Two mesh descriptions have been used:

1.  Lagrangian meshes, where the nodes and elements move with the material;
2.  Eulerian meshes, in which nodes and elements are fixed in space.

Two formulations have been developed for Lagrangian meshes:
1.  a total Lagrangian formulation, in which the strong form is expressed in spatial

coordinates, i.e. the Eulerian coordinates;
2.  an updated Lagrangian formulation, where the strong form is expressed in the

material, i.e. the Lagrangian coordinates.

In both cases, the element formulation is most conveniently executed in terms of the
element coordinates.  The mapping of the element coordinates  from current and original
configuration for a valid finite element discretization is one-to-one and onto.  Furthermore,
the mapping to the original configuration is time invariant, so the element coordinates can
serve as surrogate material coordinates.

It has also been shown that the updated and total Lagrangian formulations are two
representations of the same mechanical behavior, and each can be transformed to the other
at both the level of partial differential equations and the level of the discrete finite element
equations.  Thus the internal and external forces obtained by the total Lagrangian
formulations are identical to those obtained by the updated formulation, and the choice of
formulation is purely a matter of convenience.
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The equation of motion corresponds to the momentum equation and is obtained from
its weak form.  As has been illustrated in the case of explicit time integration, the other
equations, measure of deformation and constitutive, are used in the course of computing
the internal nodal forces to update the displacements.  The weak form and discrete
equations have been structured so that their relationship to the corresponding terms in the
partial differential equation of momentum conservation is readily apparent:  the internal
forces correspond to the stress terms, and the internal work (or power); the external forces
correspond to the body forces and external work (or power); the terms Ma correspond to
the inertial terms (d'Alembert) forces and the inertial work (or power).  This
correspondence is summarized in Fig. 8, which shows the steps which are used to convert
the partial differential equation of momentum balance to a set of ordinary differential
equations which are called the equations of motion.  This process is called a spatial
discretization or semidiscretization.

The discretization has been carried out for the general case when inertial forces are not
negligible.  If the inertial forces can be neglected, the term Ma is omitted from the discrete
equations.  The resulting equations are either nonlinear algebraic equations or ordinary
differential equations, depending on the character of the constitutive equation.

The governing equations have been developed for a one-dimensional rod of varying
cross-section and from these a weak form has been developed by integrating over the
domain.  When the equations are given in terms of partial derivatives with respect to the
material derivatives, it is natural to develop the weak form by integrating over the
undeformed domain.  This leads to the total Lagrangian formulation where all nodal
forces are obtained by integrating over the material coordinates.  When the partial
derivatives are with respect to the spatial coordinates, it is natural to integrate over the
current configuration, which leads to the updated Lagrangian formulation .

The process of discretization for multidimensional problems is very similar.
However, in multi-dimensional problems we will have to deal with the major consequence
of geometric nonlinearities, large rotations, which are completely absent in one-dimensional
problems.

Exercises

Exercise: Repeat Example 2.8.3 for spherical symmetry, where

  

h =
η r

ηθ

ηφ
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CHAPTER 3
CONTINUUM MECHANICS

by Ted Belytschko
Northwestern University
Copyright 1996

DRAFT

3.1 INTRODUCTION

Continuum mechanics is an essential building block of nonlinear finite
element analysis, and a mastery of continuum mechanics is essential for a good
understanding of nonlinear finite elements. This chapter summarizes the
fundamentals of nonlinear continuum mechanics which are needed for a
development of nonlinear finite element methods.  It is, however, insufficient for
thoroughly learning continuum mechanics.  Instead, it provides a review of the
topics that are particularly relevant to nonlinear finite element analysis.  The
content of this chapter is limited to topics that are needed for the remainder of the
book.

Readers who have little or no familiarity with continuum mechanics
should consult texts such as  Hodge (1970), Mase and Mase (1992), Fung (1994),
Malvern (1969), or Chandrasekharaiah and Debnath (1994).  The first three are
the most elementary.  Hodge (1970) is particularly useful for learning indicial
notation and the fundamental topics.  Mase and Mase (1992) gives a concise
introduction with notation almost identical to that used here.  Fung (1994) is an
interesting book with many discussions of how continuum mechanics is applied.
The text by Malvern (1969) has become a classic in this field for it provides a
very lucid and comprehensive description of the field.  Chandrasekharaiah and
Debnath (1994) gives a thorough introduction with an emphasis on tensor
notation.  The only topic treated here which is not presented in greater depth in all
of these texts is the topic of objective stress rates, which is only covered in
Malvern.  Monographs of a more advanced character are Marsden and Hughes
(1983), Ogden (1984) and Gurtin ().  Prager (1961), while an older book, still
provides a useful description of continuum mechanics for the reader with an
intermediate background.  The classic treatise on continuum mechanics is
Truesdell and Noll (1965) which discusses the fundamental issues from a very
general viewpoint.  The work of Eringen (1962) also provides a comprehensive
description of the topic.

This Chapter begins with a description of deformation and motion,
including some useful equations for characterizing deformation and the time
derivatives of variables.  Rigid body motion is described with an emphasis on
rigid body rotation.  Rigid body rotation plays a central role in nonlinear
continuum mechanics, and many of the more difficult and complicated aspects of
nonlinear continuum mechanics stem from rigid body rotation.  The material
concerning rigid body rotation should be carefully studied.

Next, the concepts of stress and strain in nonlinear continuum mechanics
are described.  Stress and strain can be defined in many ways in nonlinear
continuum mechanics.  We will confine our attention to the strain and stress
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measures which are most frequently employed in nonlinear finite element
programs.  We cover the following kinematic measures in detail: the Green strain
tensor and the rate-of-deformation.  The second is actually a measure of strain
rate, but these two are used in the majority of software.  The stress measures
treated are:  the physical (Cauchy) stress, the nominal stress and the second Piola-
Kirchhoff stress, which we call PK2 for brevity.  There are many others, but
frankly even these are too many for most beginning students.  The profusion of
stress and strain measures is one of the obstacles to understanding nonlinear
continuum mechanics.  Once one understands the field, one realizes that the large
variety of measures adds nothing fundamental, and is perhaps just a manifestation
of academic excess.  Nonlinear continuum mechanics could be taught with just
one measure of stress and strain, but additional ones need to be covered so that the
literature and software can be understood.

The conservation equations, which are often called the balance equations,
are derived next.  These equations are common to both solid and fluid mechanics.
They consist of the conservation of mass, momentum and energy.  The
equilibrium equation is a special case of the momentum equation which applies
when there are no accelerations in the body.  The conservation equations are
derived both in the spatial and the material domains.  In a first reading or
introductory course, the derivations can be skipped, but the equations should be
thoroughly known in at least one form.

The Chapter concludes with further study of the role of rotations in large
deformation continuum mechanics.  The polar decomposition theorem is derived
and explained.  Then objective rates, also called frame-invariant rates, of the
Cauchy stress tensor are examined.  It is shown why rate type constitutive
equations in large rotation problems require objective rates and several objective
rates frequently used in nonlinear finite elements are presented.  Differences
between objective rates are examined and some examples of the application of
objective rates are illustrated.

3.2  DEFORMATION AND MOTION

3.2.1 Definitions.  Continuum mechanics is concerned with models of solids
and fluids in which the properties and response can be characterized by smooth
functions of spatial variables, with at most a limited number of discontinuities.  It
ignores  inhomogeneities such as molecular, grain or crystal structures.  Features
such as crystal structure sometimes appear in continuum models through the
constitutive equations, and an example of this kind of model will be given in
Chapter 5, but in all cases the response and properties are assumed to be smooth
with a countable number of discontinuities.  The objective of continuum
mechanics is to provide a description to model the macroscopic behavior of fluids,
solids and structures.

Consider a body in an initial state at a time t=0 as shown in Fig. 3.1; the
domain of the body in the initial state is denoted by Ω0  and called the initial
configuration.  In describing the motion of the body and deformation, we also
need a configuration to which various equations are referred; this is called the
reference configuration.  Unless we specify otherwise, the initial configuration is
used as the reference configuration.  However, other configurations can also be
used as the reference configuration and we will do so in some derivations.  The
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significance of the reference configuration lies in the fact that motion is defined
with respect to this configuration.

x, X

y, Y

X

x

u Ω

Γ
Ω0

Γ0

φ ( X, t)

Fig. 3.1. Deformed (current) and undeformed (initial) configurations of a body.

In many cases, we will also need to specify a configuration which is
considered to be an undeformed configuration.  The notion of an "undeformed"
configuration should be viewed as an idealization, since undeformed objects
seldom exist in reality.  Most objects previously had a different configuration and
were changed by deformations: a metal pipe was once a steel ingot, a cellular
telephone housing was once a vat of liquid plastic, an airport runway was once a
truckload of concrete.   So the term undeformed configuration is only relative and
designates the configuration with respect to which we measure deformation.  In
this Chapter, the undeformed configuration is considered to be the initial
configuration unless we specifically say otherwise, so it is tacitly assumed that in
most cases the initial, reference,  and undeformed configurations are identical .

The current configuration of the body is denoted by Ω ; this will often also
be called the deformed configuration.  The domain currently occupied by the body
will also be denoted by Ω .  The domain can be one, two or three dimensional; Ω
then refers to a line, an area, or a volume, respectively.  The boundary of the
domain is denoted by Γ , and corresponds to the two end-points of a segment in
one dimension, a curve in two dimensions, and a surface in three dimensions.  The
developments which follow hold for a model of any dimension from one to three.
The dimension of a model is denoted by nSD , where “SD” denotes space
dimensions.

 For a Lagrangian finite element mesh, the initial mesh is a discrete model
of the initial, undeformed configuration, which is also the reference configuration.
The configurations of the solution meshes are the current, deformed
configurations.  In an Eulerian mesh, the correspondence is more difficult to
picture and is deferred until later.

3.2.2 Eulerian and Lagrangian Coordinates.  The position vector of a
material point in the reference configuration is given by X , where
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 X = Xiei ≡ Xiei
i=1

nSD

∑ (3.2.1)

where  Xi  are the components of the position vector in the reference configuration
and e i are the unit base vectors of a rectangular Cartesian coordinate system;
indicial notation as described in Section 1.3 has been used in the second
expression and will be used throughout this book.  Some authors, such as Malvern
(1969), also define material particles and carefully distinguish between material
points and particles in a continuum.  The notion of particles in a continuum is
somewhat confusing, for the concept of particles to most of us is discrete rather
than continuous.  Therefore we will refer only to material points of the continuum.

The vector variable X  for a given material point does not change with
time; the variables X are called material coordinates or Lagrangian coordinates
and provide labels for material points.  Thus if we want to track the function

  f X,t( )  at a given material point, we simply track that function at a constant value
of X.  The position of a point in the current configuration is given by

x = xiei ≡ xie i
i=1

nSD

∑ (3.2.2)

where xi  are the components of the position vector in the current configuration.

3.2.3 Motion.  The motion of the body  is described by

  x = φ X ,t( )          or            xi = φi X, t( ) (3.2.3)

where x = xiei  is the position at time t of the material point X .  The coordinates x
give the spatial position of a particle, and are called spatial, or Eulerian
coordinates.  The function   φ X,t( )  maps the reference configuration into the
current configuration at time t., and is often called a mapping or map.

When the reference configuration is identical to the initial configuration,
as assumed in this Chapter, the position vector x of any point at time t=0
coincides with the material coordinates, so

  X = x X,0( ) ≡ φ X, 0( )           or            Xi = xi X, 0( ) = φi X, 0( ) (3.2.4)

Thus the mapping   φ X,0( )  is the identity mapping.

Lines of constant Xi , when etched into the material, behave just like a
Lagrangian mesh; when viewed in the deformed configuration, these lines are no
longer Cartesian.  Viewed in this way, the material coordinates are often called
convected coordinates. In pure shear for example, they become skewed
coordinates, just like a Lagrangian mesh becomes skewed, see Fig. 1.2.  However,
when we view the material coordinates in the reference configuration, they are
invariant with time.  In the equations to be developed here, the material
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coordinates are viewed in the reference configuration, so they are treated as a
Cartesian coordinate system.  The spatial coordinates, on the other hand, do not
change with time regardless of how they are viewed.

3.2.4 Eulerian and Lagrangian Descriptions.  Two approaches are
used to describe the deformation and response of a continuum.  In the first
approach, the independent variables are the material coordinates X  and the time t,
as in Eq. (3.2.3); this description is called a material description or Lagrangian
description.  In the second approach, the independent variables are the spatial
coordinates x and the time t.  This is called a spatial or Eulerian description.  The
duality is similar to that in mesh descriptions, but as we have already seen in finite
element formulations, not all aspects of a single formulation are exclusively
Eulerian or Lagrangian; instead some finite element formulations combine
Eulerian and Lagrangian descriptions as needed.

In fluid mechanics, it is often impossible and unnecessary to describe the
motion with respect to a reference configuration.  For example, if we consider the
flow around an airfoil, a reference configuration is usually not needed for the
behavior of the fluid is independent of its history.  On the other hand, in solids,
the stresses generally depend on the history of deformation and an undeformed
configuration must be specified to define the strain.  Because of the history-
dependence of most solids, Lagrangian descriptions are prevalent in solid
mechanics.

In the mathematics and continuum mechanics literature, cf. Marsden and
Hughes (1983), different symbols are often used for the same field when it is
expressed in terms of different independent variables, i.e. when the description is
Eulerian or Lagrangian.  In this convention, the function which in an Eulerian
description is f(x,t) is denoted by F(X ,t) in a Lagrangian description.  The two
functions are related by

    F X, t( ) = f φ X, t( ), t( ), or F = f o φ (3.2.5)

This is called a composition of functions; the notation on the right is frequently
used in the mathematics literature; see for example Spivak(1965, p.11).  The
notation for the composition of functions will be used infrequently in this book
because it is unfamiliar to most engineers.

 The convention of referring to different functions by different symbols is
attractive and often adds clarity.  However in finite element methods, because of
the need to refer to three or more sets of independent variables, this convention
becomes quite awkward.  Therefore in this book, we associate a symbol with a
field, and the specific function is defined by specifying the independent variables.
Thus f(x,t) is the function which describes the field f for the independent variables
x and t, whereas f(X ,t) is a different function which describes the same field in
terms of the material coordinates.  The independent variables are always indicated
near the beginning of a section or chapter, and if a change of independent
variables is made, the new independent variables are noted.
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3.3.5  Displacement, Velocity and Acceleration.  The displacement of
a material point is given by the difference between its current position and its
original position (see Fig. 3.1), so

  u X ,t( ) = φ X, t( ) − φ X ,0( ) = φ X ,t( ) −X ,     
  
ui = φ i X j , t( ) − Xi (3.2.6)

where   u X ,t( ) = uiei  and we have used Eq. (3.2.4).  The displacement  is often
written as

u = x − X ,                 ui = xi − Xi (3.2.7)

where (3.2.1) has been used in (3.2.6) to replace 
  
φ X, t( )  by x  .  Equation (3.2.7) is

somewhat ambiguous since it expresses the displacement as the difference of two
variables, x and X , both of which are generally independent variables.  The reader
must keep in mind that in expressions such as (3.2.7) the variable x  represents the
motion   x X, t( ) ≡ φ X,t( ) .

The velocity 
  
v X, t( )  is the rate of change of the position vector for a

material point, i.e. the time derivative with X  held constant.  Time derivatives
with X  held constant are called material time derivatives; or sometimes material
derivatives.  Material time derivatives are also called total derivatives.   The
velocity can be written in the various forms shown below

  
v X, t( ) = ˙ u =

∂φ X, t( )
∂t

=
∂u X, t( )

∂t
(3.2.8)

In the above, the variable x  is replaced by the displacement u  in the fourth term
by using (3.2.7) and the fact that X  is independent of time.  The symbol D(  )/Dt
and the superposed dot always denotes a material time derivative in this book,
though the latter is often used for ordinary time derivatives when the variable is
only a function of time.

  The acceleration   a X, t( )  is the rate of change of velocity of a material
point, or in other words the material time derivative of the velocity, and can be
written in the forms

  
a X, t( ) =

Dv
Dt

≡ ˙ v =
∂v X,t( )

∂t
=

∂2u X ,t( )
∂t2 (3.2.9)

The above expression is called the material form of the acceleration.

When the velocity is expressed in terms of the spatial coordinates and the
time, i.e. in an Eulerian description as in v(x ,t), the material time derivative is
obtained as follows.  The spatial coordinates in v(x ,t) are first expressed as a
function of the material coordinates and time by using (3.2.3), giving   v φ X,t( ),t( ) .
The material time derivative is then obtained by the chain rule:
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Dvi

Dt
=

∂vi x ,t( )
∂t

+
∂vi x, t( )

∂x j

∂φ j X ,t( )
∂t

=
∂vi

∂t
+

∂vi

∂x j
v j (3.2.10)

where the second equality follows from (3.2.8).  The second term on the RHS of
(3.2.10) is the convective term, which is also called the transport term.  In
(3.2.10), the first partial derivative on the RHS is taken with the spatial coordinate
fixed.  This is called the spatial time derivative.  It is tacitly assumed throughout
this book that when neither the independent variables nor the fixed variable are
explicitly indicated in a partial derivative with respect to time, then the spatial
coordinate is fixed and we are referring to the spatial time derivative.  On the
other hand, when the independent variables are specified as in (3.2.8-9), a partial
derivative can specify a material time derivative.  Equation (3.2.10) is written in
tensor notation as

 
Dv
Dt

=
∂v
∂t

+ v ⋅∇ v =
∂v
∂t

+ v ⋅ grad v (3.2.11)

The material time derivative of any variable which is a function of the
spatial variables x  and time t can similarly be obtained by the chain rule.  Thus
for a scalar function   f x, t( ) and a tensor function   σ ij x,t( ) , the material time
derivatives are given by

   
Df

Dt
=

∂f

∂t
+ vi

∂f

∂xi
=

∂f

∂t
+ v ⋅∇ f =

∂f

∂t
+ v ⋅grad f (3.2.12)

Dσ ij

Dt
=

∂σ ij

∂t
+ vk

∂σ ij

∂x k

=
∂σ
∂t

+ v ⋅∇ σ =
∂σ
∂t

+ v ⋅grad σ (3.2.13a)

where the first term on the RHS of each equation is the spatial time derivative and
the second term is the convective term.

It should be remarked that the complete description of the motion is not
needed to develop the material time derivative in an Eulerian description.  In
Eulerian meshes, the motion cannot be defined realistically defined as a function
of the material positions in the initial configuration; see Chapter 7.  In that case,
variables such as the velocity can be developed by describing the motion with
respect to a reference configuration that coincides with the configuration at a fixed
time t.

For this purpose, let the configuration at time fixed time t = τ  be the

reference configuration and the position vector at that time, denoted by Xτ , be the
reference coordinates.  These reference coordinates are given by

Xτ = φ X, τ( ) (3.2.13b)

Observe we use an upper case X  since we wish to clearly identify it as an
independent variable, and we add the superscript τ  to indicate that these reference
coordinates are not the position vectors at the initial time.  The motion can be
described in terms of these reference coordinates by
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x = φτ Xτ ,  t( )     for t ≥τ (3.2.13c)

Now the arguments used to develop (3.2.10) can be repeated; noting that

v x, t( ) = v φτ X, t( ), t( )
Dvi

Dt
=

∂vi x, t( )
∂t

+
∂v x,  t( )

∂xi

∂φi
τ

∂t
(3.2.13d)

with t = τ .  Reference configurations coincident with a configuration other than
the initial configuration will also be employed in the development of finite
element equations.

3.2.6 Deformation Gradient.  The description of deformation and the
measure of strain are essential parts of nonlinear continuum mechanics.  An
important variable in the characterization of deformation is the deformation
gradient.  The deformation gradient is defined by

Fij =
∂φi

∂X j
≡

∂xi

∂X j
   or   F =

∂φ
∂X

≡
∂x
∂X

≡ ∇Xφ( )T
(3.2.14)

 Note in the above that the first index of Fij  refers to the component of the
deformation, the second to the partial derivative.  The order can be remembered
by noting that the indices appear in the same order in Fij  as in the expression for

the partial derivative if it is written horizontally as ∂φi ∂X j . The operator ∇X  is
the left gradient with respect to the material coordinates.  We will only use the
left gradient in this book, but to maintain consistency with the notation of others
such as Malvern, we follow his convention exactly.  Therefore,  the transpose of
∇Xφ  appears in the above because of the convention on subscripts: for the left
gradient, the first subscript is the pertains to the gradient, but in Fij  the gradient is
associated with the second index.  The distinction between left and right gradients
is not of importance in this book because we will always use the left gradient, but
we adhere to the convention so that our equations are consistent with the
continuum mechanics literature.  In the terminology of mathematics, the
deformation gradient is the Jacobian matrix of the vector function   φ X,t( ) .

If we consider an infinitesmal line segment dX  in the reference
configuration, then it follows from (3.2.14) that the corresponding line segment
dx  in the current configuration is given by

dx = F ⋅dX   or  dxi = FijdX j (3.2.15)

In the above expression, the dot could have been omitted between the F  and dX ,
since the expression is also valid as a matrix expression.  We have retained it to
conform to our conventionof always explicitly indicating contractions in tensor
expressions.
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In two dimensions, the deformation gradient in a rectangular coordinate
system is given by

F =

∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

 

 

 
 

 

 

 
 

=
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 

 
 
 

 

 
 
 

 (3.2.16)

As can be seen in the above, in writing a second-order tensor in matrix form, we
use the first index for the row number, the second index for the column number.

The determinant of F  is denoted by J and called the Jacobian determinant
or the determinant of the deformation gradient

J = det F( ) (3.2.17)

The Jacobian determinant can be used to relate integrals in the current and
reference configurations by

f d
Ω
∫ Ω= f J d

Ω0

∫ Ω0   or in 2D: 

  

f x, y( ) d
Ω
∫ xdy = f X ,Y( ) J d

Ω0

∫ XdY (3.2.18)

The material derivative of the Jacobian determinant  is given by

  

DJ

Dt
≡ ˙ J = Jdivv ≡ J

∂vi

∂xi
(3.2.19)

The derivation of this formula is left as an exercise.

3.2.6 Conditions on Motion.  The mapping   φ X,t( )  which describes the
motion and deformation of the body is assumed to satisfy the following
conditions:

1. the function   φ X,t( )  is continuous and continuously differentiable
except on a finite number of sets of measure zero;

2.  the function   φ X,t( )  is one-to-one and onto;
3.  the Jacobian determinant satisfies the condition J>0.

These conditions ensure that   φ X,t( )  is sufficiently smooth so that compatibility is
satisfied, i.e. so there are no gaps or overlaps in the deformed body.  The motion
and its derivatives can be discontinuous or posses dicontinuous derivatives on sets
of measure zero; see Section 1.5, so it is characterized as piecewise continuously
differentiable.  Sets of measure zero are points in one dimension, lines in two
dimensions and planes in three dimensions because a point has zero length, a line
has zero area, and a surface has zero volume.

The deformation gradient, i.e. the derivatives of the motion, is generally
discontinuous on interfaces between materials.  Discontinuities in the motion
itself characterize phenomena such as a growing crack.  We require the number of
discontinuities in a motion and its derivatives to be finite.  In fact, in some
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nonlinear problems, it has been found that the solutions posses an infinite number
of discontinuities, see for example James () and Belytschko, et al (1986).
However, these solutions are quite unusual and cannot be treated effectively by
finite element methods, so we will not concern ourselves with these types of
problems.

 The second condition in the above list requires that for each point in the
reference configuration Ω0 , there is a unique point in Ω  and vice versa.  This is a
sufficient and necessary condition for the regularity of F , i.e. that F be invertible.
When the deformation gradient F  is regular, the Jacobian determinant J must be
nonzero, since the inverse of F  exists if and only if its determinant J ≠ 0.  Thus
the second and third conditions are related.  We have stated a stronger condition
that J be positive rather than just nonzero, which will be seen in Section 3.5.4 to
follow from mass conservation.

3.2.7 Rigid Body Rotation and Coordinate Transformations.
Rigid body rotation plays a crucial role in the theory of nonlinear continuum
mechanics.  Many of the complexities which permeate the field arise from rigid
body rotation.  Furthermore, the decision as to whether linear or nonlinear
software is appropriate for a particular linear material problem hinges on the
magnitude of rigid body rotations.  When the rigid body rotations are large
enough to render a linear strain measure invalid, nonlinear software must be used.

A rigid body motion consisting of a translation xT t( ) and a rotation about
the origin is written as

  x X, t( ) = R t( )⋅X + xT t( )             xi X ,t( ) = Rij t( )X j + xTi t( ) (3.2.20)

where R t( )  is the rotation tensor, also called a rotation matrix.  Because rigid
body rotation preserves length, and noting that dxT = 0  in rigid body motion, we
have

     dx ⋅ dx = dX ⋅ RT ⋅R 
 
  

 
 ⋅ dX         dx idxi = RijdX j Rik dXk = dX j R ji

T Rik( )dXk

Since the length must stay unchanged in rigid body motion, it follows that

RT ⋅ R = I (3.2.20b)

and its inverse is given by its transpose:

R−1 = RT           Rij
−1 = Rij

T = Rji (3.2.21)

The rotation tensor R  is therefore said to be an  orthogonal matrix and any
transformation by this matrix, such as x = RX , is called an orthogonal
transformation.  Rotation is an example of an orthogoanl transformation.

A rigid body rotation of a Lagrangian mesh of rectangular elements is
shown in Fig. 3.2.  As can be seen, in the rigid body rotation, the element edges
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are rotated but the angles between the edges remain right angles.  The element
edges are lines of constant X and Y, so when viewed in the deformed
configuration, the material coordinates are rotated when the body is rotated as
shown in Fig. 3.2.

Specific expressions for the rotation matrix can be obtained in various
ways.  We obtain it here by relating the components of the vector in r  two
different coordinate systems with orthogonal base vectors e i  and   

ˆ e i ; a two
dimensional example is shown in Fig. 3.3. The components in the rotated
coordinate system are shown in Fig. 3.3.  Since the vector r  is independent of the
coordinate system

   r = rie i = ˆ r iˆ e i (3.2.22)

x, X

y, Y
X

ΩΩ0

φ ( X, t)

Y

Fig. 3.2.  A rigid body rotation of a Lagrangian mesh showing the material coordinates when
viewed in the reference (initial, undeformed) configuration and the current configuration.
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x

y

x̂

ŷe

ex

ye

r

e x̂

ŷ

θ

Fig. 3.3. Nomenclature for rotation transformation in two dimensions.

Taking the scalar product of the above with e j  gives

  rie i ⋅e j = ˆ r iˆ e i ⋅e j → riδij = ˆ r iˆ e i ⋅e j → rj = R ji
ˆ r i , R ji = e j ⋅ˆ e i (3.2.23)

The second equation follows from the orthogonality of the base vectors, (3.2.21).

  The above shows that the elements of the rotation matrix are given by the scalar
products of the corresponding base vectors; thus   R12 = e1 ⋅ˆ e 2 .  So the
transformation formulas for the components of a vector are

  
ri = Rij

ˆ r j ≡ R
î  j 

ˆ r j , ˆ r j = Rji
Tri = R

iˆ j ri (3.2.24)

where the equation on the right follows from (3.3.20b).  In the second term of the
indicial forms of the equations we have put the hat on the component associated
with the hatted coordinates, but later it is often omitted.  Note that the hatted index
is always the second index of the rotation matrix; this convention helps in
remembering the form of the transformation eqaution.  In matrix form the above
are written as

  r = Rˆ r , ˆ r = RTr

The above is a matrix expression, as indicated by the absence of dots between the
terms.  The column matrices of components  r  and   ̂ r  differ, but they pertain to
the same tensor.  In many works, this distinction is clarified by using different
symbols for matrices and tensors, but the notation we have chosen does not pemit
this distinction.
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Writing out the rotation transformation in two dimensions gives

     
  

rx

ry

 
 
 

 
 
 

=
Rxˆ x Rxˆ y 

Ryˆ x Ryˆ y 

 

 
 

 

 
 

ˆ r x
ˆ r y

 
 
 

 
 
 

=
ex ⋅ e ˆ x ex ⋅ e ˆ y 

ey ⋅e ˆ x ey ⋅ eˆ y 

 

 
 

 

 
 

ˆ r x
ˆ r y

 
 
 

 
 
 

=
cos θ -sin θ
sin θ cos θ

 
  

 
  

ˆ r x
ˆ r y

 
 
 

 
 
 

(3.2.25)

In the above, it can be seen that the subscripts of the rotation matrix correspond to
the vector components which are related by that term; for example, in the
expression for the x component in row 1, the 

  
Rxˆ y  is the coefficient of the   ̂ y 

component of r . The last form of the transformation in the above is obtained by
evaluating the scalar products from Fig. 3.3  by inspection.

The rotation of a vector is obtained by a similar relation.  If the vector w  is
obtained by a rotation of the vector v , the two are related by

   w = R ⋅v , wi = Rijv j (3.2.26)

The first of the above can be written as

  
w = R ⋅ v je j( ) = v j R ⋅e j( ) = v ĵ

 e j (3.2.27)

where we have used the fact that the base vectors transform exactly like the
components; this can easily be derived by using (3.2.23).  Taking the inner
product of the first and last expressions of the above with the rotated base vector

  
ˆ e i  gives

  
ˆ w i = ˆ e i ⋅w = v j

ˆ e i ⋅ˆ e j( ) = v jδij = vi (3.2.28)

This shows that the components of the rotated vector w  in the rotated coordinate
system are identical to the components of the vector v  in the unrotated coordinate
system.

The components of a second order tensor D  are transformed between
different coordinate systems bye

  D = Rˆ D RT             Dij = Rik
ˆ D klRlj

T (3.2.30a)

The inverse of the above is obtained by premultiplying by RT , postmultiplying by
R  and using the orthogonality of  R , (3.2.20b):

  ̂  D = RTDR            Dij = Rik
ˆ D klRlj

T (3.2.30b)

Note that the above are matrix expressions which relate the components of the
same tensor in two different coordinate systems.

The velocity for a rigid body motion can be obtained by taking the time
derivative of Eq. (3.2.20).  This gives
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  ̇ x X,t( ) = ˙ R t( )⋅X + ˙ x T t( )      or       
˙ x i X, t( ) = ˙ R ij t( )Xj + ˙ x Ti t( ) (3.2.31)

The structure of rigid body rotation can be clarified by expressing the material
coordinates in (3.2.31) in terms of the spatial coordinates via (3.2.20), giving

  v ≡ ˙ x = ˙ R ⋅RT ⋅ x − xT( ) + ˙ x T (3.2.32)

The tensor

   Ω = ˙ R ⋅RT (3.2.33)

is called the angular velocity tensor or angular velocity matrix, Dienes(1979, p
221).  It is a skew symmetric tensor, skew symmetric tensors are also called
antisymmetric tensors.  To demonstrate the skew symmetry of the angular
velocity tensor, we take the time derivative of (3.2.21) which gives

  
D
Dt R ⋅ RT( ) =

DI
Dt

= 0 → ˙ R ⋅RT + R ⋅ ˙ R T = 0 → Ω = −ΩT (3.2.34)

Any skew symmetric tensor can be expressed in terms of the components of a
vector, cakked the axial vector, and the corresponding action of that matrix on a
vector can be replicated by a cross product, so if ω  if the axial vector of Ω , then

Ωr = ω ×r           or          Ω ijrj = eijkω jrk (3.2.34b)

for any r  and

eijk =
1 foran even permutationof ijk

-1for an odd permutationof ijk

0 if anyindex is repeated

 
 
 

  
(3.2.36)

The tensor eijk  is called the alternator tensor or permutation symbol.

The relations between the skew symmetric tensor Ω  and its  axial vector
ω  are

  ωi = 1
2 eijkΩ jk , Ω ij = eijkωk (3.2.35)

which can be obtained by enforcing (3.2.34b) for all r .

In two dimensions, a skew symmetric tensor has a single independent
component and its axial vector is perpendicular to the two dimensional plane of
the model, so

Ω =
0 Ω12

−Ω12 0

 
  

 
  =

0 −ω3

ω3 0

 
  

 
  (3.2.37a)
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In three dimensions, a skew symmetric tensor has three independent components
and which  are related to the three components of its axial vector by (3.2.25)
giving

Ω =
0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

 

 

 
 
 

 

 

 
 
 

=
0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 

 

 
 
 

 

 

 
 
 

(3.2.37b).

When Eq. (3.3.32) is expressed in terms of the angular velocity vector, we
have

  

vi ≡ ˙ x i = Ωij x j − xTj( ) + vTi

= eijkω j xk − xTk( ) + vTi

   or    v ≡ ˙ x = ω× x − xT( )+ vT (3.2.38)

where we have exchanged k and j in the second line and used ekij = eijk .  The
second equation is the well known equation for rigid body motion as given in
dynamics texts.  The first term on the left hand side is velocity due to the rotation
about the point xT and the second term is the translational velocity of the point
xT .  Any rigid body velocity can be expressed by (3.2.28).

This concludes the formal discussion of rotation in this Chapter.
However, the topic of rotation will reappear in many other parts of this Chapter
and this book.  Rotation, especially when combined with deformation, is
fundamental to nonlinear continuum mechanics, and it should be thoroughly
understood by a student of this field.

Corotational Rate-of-Deformation.  As we shall see later, in many cases
it is convenient to rotate the coordinate at each point of the material with the
material.  The rate-of-deformation is then expressed in terms of its corotational

components   
ˆ D ij , which can be obtained from the global components by (3.2.30).

These components can be obtained directly from the velocity field by

  

ˆ D ij =
1

2

∂̂  v i
∂̂  x j

+
∂ˆ v j
∂ˆ x i

 

 
 

 

 
 ≡ sym

∂ˆ v i
∂ˆ x j

 

 
 

 

 
 ≡ v̂  i ,ˆ j (3.2.39)

where 
  
ˆ v i ≡ v̂  i  are the components of the velocity field in the corotational system.

the corotational system can be obtained from the polar decomposition theorem to
be described later or by other techniques; see section 4.6.

Example 3.1 Rotation and Stretch of Triangular Element.
Consider the 3-node triangular finite element shown in Fig. 3.4.  Let the motion of
the nodes be given by
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x1 t( ) =  y1 t( ) = 0

x2 t( ) = 2 1+ at( )cos
πt

2
,      y2 t( ) = 2 1+ at( )sin

πt

2

x3 t( ) =− 1+ bt( )sin
πt
2

,       y3 t( ) = 1+ bt( )cos
πt
2

(E3.1.1)

Find the deformation function and the Jacobian determinant as a function of time
and find the values of a(t) and b(t) such that the Jacobian determinant remains
constant.

 2

1

1

2

3

1 1+b 

2(1+a)

2

3

x

y,Y

x,X

y

ω = π
2

Fig. 3.4.  Motion descrived by Eq. (E3.1.1) with the initial configuration at the left and the
deformed configuration at t=1 shown at the right.

In terms of the triangular element coordinates ξI , the configuration of a
triangular 3-node, linear displacement element at any time can be written as (see
Appendix A if you are not familiar with triangular coordinates)

  

x ξ,t( ) = x I t( )ξI
I
∑ = x1 t( )ξ1 + x2 t( )ξ2 + x3 t( )ξ3

y ξ , t( ) = yI t( )ξ I
I

∑ = y1 t( )ξ1 + y2 t( )ξ2 + y3 t( )ξ3

(E3.1.2)

In the initial configuration, i.e. at t=0:

  

X = x ξ, 0( ) = X1ξ1 + X2ξ2 + X3ξ3

Y = y ξ , 0( ) = Y1ξ1 + Y2ξ2 + Y3ξ3

(E3.1.3)

Substituting the coordinates of the nodes in the undeformed configuration into the
above,   X1 = X3 = 0, X2 = 2, Y1 = Y2 = 0 , Y3 = 1 yields

  X = 2ξ2 , Y = ξ3 (E3.1.4)
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In this case, the relations between the triangular coordinates and the material
coordinates can be inverted by inspection to give

  
ξ2 = 1

2
X ,           ξ3 = Y (E3.1.5)

Substituting (E3.1.1) and (E3.1.5) into (E3.1.2) gives the following expression for
the motion

  

x X,t( ) = X 1+ at( )cos
πt

2
−Y 1+ bt( )sin

πt

2

y X,t( ) = X 1+ at( )sin
πt

2
+Y 1+ bt( )cos

π t

2

(E3.1.6)

The deformation gradient is given by Eq.(3.2.16):

  

F =
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 

 

 
 

 

 

 
 =

1+ at( )cos
πt
2

− 1+ bt( )sin
πt
2

1+ at( )sin
πt

2
1+bt( )cos

πt

2

 

 

 
 
 

 

 

 
 
 

(E3.1.7)

The deformation gradient is a function of time only and at any time constant in the
element because the displacement in this element is a linear function of the
material coordinates.  The determinant of the deformation gradient is given by

  
J =det F( ) = 1 +at( ) 1+ bt( ) cos2 πt

2
+sin2 πt

2
 
 
  

 
 (E3.1.8)

When a=b=0 the Jacobian determinant remains constant, J=1.  This is a rotation
without deformation.  As expected, the Jacobian determinant remains constant
since the volume (or area in two dimensions) of anypart of a body does not
change in a rigid body motion.  The second case in which the Jacobian
determinant J remains constant is when   b =− a / 1+ at( ), which corresponds to a
deformation in which the area of the element remains constant.  This is the type of
deformation is called an isochoric deformation; the deformation of incompressible
materials is isochoric.

Example 3.2  Consider an element which is rotating at a constant angular
velocity ω about the origin.  Obtain the accelerations using both the material and
spatial descriptions.  Fine the deformation gradient F and its rate.

The motion for a pure rotation about the origin is obtained from Eq.
(3.2.20) using the rotation matrix in two dimensions (3.2.25):

  
x t( ) = R t( )X ⇒

x

y
 
 
 

 
 
 

=
cosωt −sin ωt

sin ωt cos ωt
 
  

 
  

X

Y
 
 
 

 
 
 

(E3.2.1)

where we have used θ = ωt  to express the motion is a function of time; ω  is the
angular velocity of the body.  The velocity is obtained by taking the derivative of
this motion with respect to time, which gives
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vx

vy

 
 
 

 
 
 

=
˙ x 

˙ y 
 
 
 

 
 
 

= ω
−sin ωt − cosωt

cos ωt −sin ωt
 
  

 
  

X

Y
 
 
 

 
 
 

(E3.2.2)

The acceleration in the material description is obtained by taking time derivatives
of the velocities

  

ax

ay

 
 
 

 
 
 

=
˙ v x
˙ v y

 
 
 

 
 
 

= ω 2 −cos ωt sin ωt

− sin ωt −cos ωt
 
  

 
  

X

Y
 
 
 

 
 
 

(E3.2.3)

To obtain a spatial description for the velocity, the material coordinates X and Y in
(E3.2.2) are first expressed in terms of the spatial coordinates x and y by inverting
(E3.2.1):

  

v x

vy

 
 
 

 
 
 

=ω
−sin ωt −cosωt

cos ωt − sinωt

 
  

 
  

cos ωt sin ωt

− sin ωt cos ωt

 
  

 
  

x

y

 
 
 

 
 
 

        = ω
0 −1

1 0

 
  

 
  

x

y

 
 
 

 
 
 

= ω
−y

x

 
 
 

 
 
 

(E3.2.4)

The material time derivative the velocity field in the spatial description,
Eq.(E3.2.4), is obtained via Eq.(3.2.11):

Dv
Dt

=
∂v
∂t

+ v ⋅∇ v =
∂v x ∂t

∂v y ∂t

 
 
 

 
 
 

+
∂vx ∂x ∂vx ∂y

∂v y ∂x ∂vy ∂y

 

 
 

 

 
 

vx

vy

 
 
 

 
 
 

      = 0 +
0 −ω
ω 0

 
  

 
  

v x

vy

 
 
 

 
 
 

= ω
−v y

vx

 
 
 

 
 
 

(E3.2.5)

If we then express the velocity field in (E3.2.5) in terms of the spatial coordinates
x and y by Eq.(E3.2.4), we have

a x

a y

 
 
 

 
 
 

= ω
0 −1

1 0

 
  

 
  ω

0 −1

1 0

 
  

 
  

x

y

 
 
 

 
 
 

=ω 2
−1 0

0 −1

 
  

 
  

x

y

 
 
 

 
 
 

= −ω2
x

y

 
 
 

 
 
 

(E3.2.6)

This is the well known result for the centrifugal acceleration: the acceleration

vector points toward the center of rotation and its magnitude is ω2 x2 + y2( )
1
2 .

To compare the above with the material form of the acceleration (E3.2.3)
we use (E3.2.1) to express the spatial coordinates in (E3.2.6) in terms of the
material coordinates, which gives

  
  

˙ v x
˙ v y

 
 
 

 
 
 

= ω2 −1 0

0 −1
 
  

 
  

cosωt −sinωt

sin ωt cosωt
 
  

 
  

X

Y
 
 
 

 
 
 

= ω2 −cos ωt sin ωt

− sinωt −cosωt
 
  

 
  

X

Y
 
 
 

 
 
 

(E3.2.7)

which agrees with Eq. (E3.2.3).
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The deformation gradient in obtained from its defintion (3.2.14) and
(E3.2.1)

  
F =

∂x
∂X

= R =
cos ωt −sin ωt

sinωt cos ωt

 
  

 
  . F−1 =

cosωt sinωt

−sin ωt cos ωt

 
  

 
  (E3.2.8)

Example 3.3 Consider a square 4-node element, with 3 of the nodes fixed as
shown in Fig. 3.5.  Find the locus of positions of node 3 which results in a
vanishing Jacobian.

y

4 3

21 x

4

1 2

J>0

J<0
J=0

y

x
3

Figure 3.5.  Original configuration of a square element and the locus of points for which J = 0 ; a
deformed configuration with J < 0  is also shown.

The displacement field for the rectangular element with all nodes but node
3 fixed is given by the bilinear field

  ux X ,Y( ) = u3x XY ,           uy X , Y( ) = u3yXY (E3.3.1)

Since this element is a square, an isoparametric mapping is not needed.  This
displacement field vanishes along the two shaded edges.  The motion is given by

x = X + ux = X + u3x XY

y = Y + uy = Y +u3yXY
(E3.3.2)

The deformation gradient is obtained from the above and Eq. (3.2.14):

F =
1+ u3xY u3x X

u3yY 1+ u3yX
 

  
 

  
(E3.3.3)

The Jacobian determinant is then

J = det F( ) = 1+u3xY + u3y X (E3.3.4)

3-19



T. Belytschko, Continuum Mechanics, December 16, 1998 20

We now examine when the Jacobian determinant will vanish.  We need only
consider the Jacobian determinant for material particles in the undeformed
configuration of the element, i.e. the unit square   X ∈ 0 ,1[ ] ,   Y ∈ 0,1[ ] . From the Eq.
(E3.3.4), it is apparent that J is minimum when u3x < 0 and u3y < 0 .  Then the
minimum value of J occurs at X=Y=1, so

J ≥ 0 ⇒ 1+ u3xY + u3yX ≥ 0 ⇒ 1+u3x + u3y ≥ 0 (E3.3.5)

The locus of points along which J=0 is given by a linear function of the nodal
displacements shown in Fig. 3.5, which also shows one deformed configuration of
the element for which  J < 0 .  As can be seen, the Jacobian becomes negative
when node 3 crosses the diagonal of the undeformed element.

Example 3.4.  The displacement field around a growing crack is given by

  

ux = kf r( ) a + 2sin2 θ
2

 
 

 
 cos

θ
2

uy = kf r( ) b − 2cos2 θ
2

 
 

 
 sin

θ
2

(E3.4.1)

  r
2 = X −ct( )2 + Y2, θ =tan −1 Y X( ) (E3.4.2)

where   a ,b, c , and k  are parameters which would be determined by the solution of
the governing equations.  This displacement field corresponds to a crack opening
along the X-axis at a velocity c; the configuration of the body at two times is
shown in Fig. 3.6.

x

y

Ω(t1)

ct1

x

y

Ω(t2 )

ct2

  x,X

  y,Y
r

Ω0

θ

Figure 3.6.  The initial uncracked configuration and two subsequent configurations for a crack
growing along x-axis.

Find the discontinuity in the displacement along the line Y=0, X≤0.  Does
this displacement field conform with the requirements on the motion given in
Section 3.2.7?

The motion is   x = X + ux , y = Y +uy .  The discontinuity in the displacement

field is found by finding the difference in (E3.4.1) for θ = π −  and θ = π + , which
gives
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  θ = π − ⇒ ux = 0, uy = kf r( )b      (E3.4.3)

so the jumps, or discontinuities, in the displacement are

 
  
ux = 0 , uy = 2kf r( )b (E3.4.4)

Everywhere else the displacement field is continuous.

This deformation function meets the criteria given in Section 3.3.6
because the discontinuity occurs along only a line, which is a set of measure zero
in a two dimensional problem.  From Fig. 3.6 it can be seen that in this
deformation, the line behind the crack tip splits into two lines.  It is also possible
to devise deformations where the line does not separate but a discontinuity occurs
in the tangential displacement field.  Both types of deformations are now common
in nonlinear finite element analysis.

3.3  STRAIN MEASURES

In contrast to linear elasticity, many different measures of strain and strain
rate are used in nonlinear continuum mechanics.  Only two of these measures are
considered here:

1.  the Green (Green-Lagrange) strain E
2.  the rate-of-deformation tensor D , also known as the velocity strain or

rate-of-strain.
In the following, these measures are defined and some key properties are given.
Many other measures of strain and strain rate appear in the continuum mechanics
literature; however, the above are the most widely used in finite element methods.
It is sometimes advantageous to use other measures in describing constitutive
equations as discussed in Chapter 5, and these other strain measures will be
introduced as  needed.

A strain measure must vanish in any rigid body motion, and in particular
in rigid body rotation.  If a strain measure fails to meet this requirement, this
strain measure will predict the developnet of nonzero strains, and in turn nonzero
stresses, in an initially unstressed body due to rigid body rotation.  The key reason
why the usual linear strain displacement equations are abandoned in nonlinear
theory is that they fail this test.  This will be shown in Example 3.6.  It will be
shown in the following that E  and D  vanish in rigid body motion.  A strain
measure should satisfy other criteria, i.e. it should increase as the deformation
increases, etc. (Hill, ).  However, the ability to represent rigid body motion is
crucial and indicates when geometrically nonlinear theory must be used.

3.3.1 Green strain tensor.  The Green strain tensor E  is defined by

ds 2 − dS2 = 2dX ⋅ E ⋅ dX    or    dxidxi − dX idX i = 2dXiEijdX j (3.3.1)

so it gives the change in the square of the length of the material vector dX.
Recall the vector dX pertains to the undeformed configuration.  Therefore, the
Green strain measures the difference of the square of the length of an infinitesimal
segment in the current (deformed) configuration and the reference (undeformed)
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configuration.  To evaluate the Green strain tensor, we use (3.2.15) to rewrite the
LHS of (3.3.1) as

dx ⋅dx = dX ⋅F( ) ⋅ F ⋅dX( ) = dX ⋅ FT ⋅F( ) ⋅dX (3.3.2)

The above are clearer in indicial notation

dx ⋅dx = dxidxi = FijdX jFikdXk = dX jFji
T Fik dXk = dX ⋅ FT ⋅ F( ) ⋅dX

Using the above with (3.3.1) and dX ⋅ dX = dX ⋅I ⋅ dX  gives

dX ⋅ FT ⋅ F ⋅ dX− dX ⋅ I ⋅dX − dX ⋅ 2E ⋅ dX = 0 (3.3.3)

Factoring out the common terms then yields

dX ⋅ FT
⋅F − I − 2E( )⋅ dX = 0 (3.3.4)

Since the above must hold for all dX , it follows that

E =
1

2
FT ⋅F − I( )     or    Eij =

1

2
Fik

T Fkj − δ ij( ) (3.3.5)

The Green strain tensor can also be expressed in terms of displacement gradients
by

   E =
1

2
∇X u( )T +∇ Xu + ∇ Xu( )T ⋅∇ Xu( ) ,   Eij =

1

2

∂ui

∂X j
+

∂u j

∂Xi
+

∂uk

∂Xi

∂uk

∂X j

 

 
 

 

 
 (3.3.6)

This expression is derived as follows.  We first evaluate FT ⋅F  in terms of the
displacements using indicial notation.

Fik
TFkj = FkiFkj =

∂xk

∂X i

∂xk

∂Xj

   (definition of transpose and Eq. (3.2.14))

         =
∂uk

∂Xi

+
∂X k

∂X i

 

 
 

 

 
 

∂uk

∂X j

+
∂Xk

∂X j

 

 
 

 

 
    (by Eq. (3.2.7))

           =
∂uk

∂Xi

+δ ki

 

 
 

 

 
 

∂uk

∂X j

+δ kj

 

 
 

 

 
 

=
∂ui

∂Xj

+
∂u j

∂Xi

+
∂uk

∂X i

∂uk

∂X j

+δ ij

 

 
 

 

 
 

Substituting the above into (3.3.5) gives (3.3.6).
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To show that the Green strain vanishes in rigid body motion, we consider
the deformation function for a general rigid body motion described in Eq.
(3.2.20): x = R ⋅ X+ xT .  The deformation gradient F  according to Eq (3.2.14) is
then given by F = R .  Using the expression for the Green strain, Eq. (3.3.5). gives

E = 1
2 RT ⋅R − I( ) = 1

2 I − I( ) = 0

where the second equality follows from the orthogonality of the rotation tensor,
Eq.(3.2.21).  This demonstrates that the Green strain will vanish in any rigid body
motion, so it meets an important requirement of a strain measure.

3.3.2 Rate-of-deformation.  The second measure of strain to be considered
here is the rate-of-deformation D .  It is also called the velocity strain and the
stretching tensor.  In contrast to the Green strain tensor, it is a rate measure of
strain.

In order to develop an expression for the rate-of-deformation, we first
define the velocity gradient L  by

  

L =
∂v
∂x

= ∇v( )T = grad  v( )T     or    Lij =
∂vi

∂x j
,

dv = L ⋅ dx or dvi = Lijdx j

(3.3.7)

We have shown several tensor forms of the definition which are frequently seen,
but we will primarily use the first or the indicial form.  In the above, the symbol
∇  or the abbreviation “grad” preceding the function denotes the spatial gradient
of the function, i.e., the derivatives are taken with respect to the spatial
coordinates.  The symbol ∇  always specifies the spatial gradient unless a
different coordinate is appended as a subscript, as in ∇ X , which denotes the
material gradient.

The velocity gradient tensor can be decomposed into symmetric and skew
symmetric parts by

L =
1

2
L + LT( ) +

1

2
L −LT( )  or  Lij =

1

2
Lij + L ji( )+

1

2
Lij − L ji( ) (3.3.8)

This is a standard decomposition of a second order tensor or square matrix: any
second order tensor can be expressed as the sum of its symmetric and skew
symmetric parts in the above manner; skew symmetry is also known as
antisymmetry.

The rate-of-deformation D  is defined as the symmetric part of L , i.e. the
first term on the RHS of (3.3.8) and the spin W   is the skew symmetric part of L ,
i.e. the second term on the RHS of (3.3.8).  Using these definitions, we can write

  L = ∇v( )T = D + W             or       Lij = vi , j = Dij + Wij (3.3.9)
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D =
1

2
L +LT( )      or     Dij =

1

2

∂vi

∂x j
+

∂v j

∂xi

 

 
 

 

 
 (3.3.10)

W =
1

2
L − LT( )     or     Wij =

1

2

∂vi

∂x j
−

∂v j

∂xi

 

 
 

 

 
 (3.3.11)

The rate-of-deformation is a measure of the rate of change of the square of
the length of infinitesimal material line segments.  The definition is

∂
∂t

ds2( ) =
∂
∂t

dx ⋅ dx( ) = 2dx ⋅ D ⋅ dx ∀dx (3.3.12)

The equivalence of (3.3.10) and (3.3.12) is shown as follows.  The expression for
the rate-of-deformation is obtained from the above as follows:

  
2dx ⋅D ⋅ dx =

∂
∂t

dx X, t( )⋅dx X ,t( )( ) = 2dx ⋅dv   (using(3.2.8))

                  = 2dx ⋅
∂v
∂x

⋅dx    by chain rule

                 = 2dx ⋅ L ⋅dx       (using (3.3.7))

                  
= dx ⋅ L + LT +L − LT( )⋅dx

= dx ⋅ L + LT( )⋅dx
(3.3.13)

by antisymmetry of L − LT ; (3.3.10) follows from the last line in (3.3.13) due to
the arbitrariness of dx .

In the absence of deformation, the spin tensor and angular velocity tensor
are equal, W = Ω  .  This is shown as follows.  In rigid body motion D = 0 , so
L = W  and by integrating Eq. (3.3.7b) we have

v = W ⋅ x − xT( ) + vT (3.3.14)

where xT  and vT  are constants of integration.  Comparison with Eq. (3.2.32) then
shows that the spin and angular velocity tensors are identical in rigid body
rotation.  When the body undergoes deformation in addition to rotation, the spin
tensor generally differs from the angular velocity tensor.  This has important
implications on the character of objective stress rates, which are discussed in
Section 3.7.

3.3.3. Rate-of-deformation in terms of rate of Green strain.  The
rate-of-deformation can be related to the rate of the Green strain tensor.  To obtain
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this relation, we first obtain the material gradient of the velocity field, defined in
Eq. (3.3.7b), in terms of the spatial gradient by the chain rule:

L =
∂v
∂x

=
∂v
∂X

⋅
∂X
∂x

,     Lij =
∂vi

∂x j
=

∂vi

∂Xk

∂Xk

∂x j
(3.3.15)

The definition of the deformation gradient is now recalled, Eq. (3.3.10),
Fij = ∂xi ∂X j .  Taking the material time derivative of the deformation gradient
gives

  

˙ F =
∂v
∂X

, ˙ F ij =
∂vi

∂X j
(3.3.16)

By the chain rule

  

∂xi

∂Xk

∂Xk

∂xj
= δij → Fik

∂Xk

∂xj
=δij → Fkj

−1 =
∂Xk

∂xj
, F−1 =

∂X
∂x

(3.3.17)

Using the above two equations, (3.3.15) can be rewritten as

  L = ˙ F ⋅F−1, Lij = ˙ F ikFkj
−1 (3.3.18)

When the deformation gradient is known, this equation can be used to obtain the
rate-of-deformation and the Green strain rate.  To obtain a single expression
relating these two measures of strain rate, we note that from (3.3.10) and (3.3.18)
we have

  
D = 1

2 L +LT( ) = 1
2

˙ F ⋅F−1 + F−T ⋅ ˙ F T( ) (3.3.19)

Taking the time derivative of the expression for the Green strain, (3.3.5) gives

  
˙ Ε = 1

2
D

Dt
FT ⋅F− I( ) = 1

2 FT ⋅ ˙ F + ˙ F T ⋅ F( ) (3.3.20)

Premultiplying Eq. (3.3.19) by FT F  and postmultiplying by F  gives

  
FT ⋅D ⋅ F = 1

2 FT ⋅ ˙ F + ˙ F T ⋅F( ) → ˙ E = FT ⋅D ⋅F     or    ˙ E ij = Fik
TDklFlj (3.3.21)

where the last equality follows from Eq. (3.3.20).  The above can easily be
inverted to yield

  D = F−T ⋅ ˙ E ⋅F−1       or        Dij = Fik
−T ˙ E klFlj

−1 (3.3.22)

As we shall see in Chapter 5, (3.3.22) is an example of a push forward operation,
(3.3.21) of the pullback operation.  The two measures are two ways of viewing the
same tensor: the rate of Green strain is expresses in the reference configuration
what the rate-of-deformation expresses in the current configuration.  However, the
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properties of the two forms are somewhat different.  For instance, in Example 3.7
we shall see that the integral of the Green strain rate in time is path independent,
whereas the integral of the rate-of-deformation is not path independent.

These formulas could be obtained more easily by starting from the
definitions of the Green strain tensor and the rate-of-deformation, Eqs. (3.3.1) and
(3.3.9), respectively.  However, Eq. (3.3.18), which is very useful, would then be
skipped.  Therefore the other derivation is left as an exercise, Problem ?.

Example 3.5.  Strain Measures in Combined Stretch and
Rotation.  Consider the motion of a body given by

  x X,t( ) = 1+ at( )Xcos π
2 t − 1+ bt( )Y sin π

2 t (E3.5.1)

  y X,t( ) = 1+ at( )X sin π
2 t + 1+ bt( )Y cos π

2 t   (E3.5.2)

where a and b are positive constants. Evaluate the deformation gradient F , the
Green strain E  and rate-of-deformation tensor as functions of time and examine
for t = 0 and t = 1.

For convenience, we define

   A t( ) ≡ 1 +at( ), B t( )≡ 1 +bt( ) ,   c ≡cos π
2 t ,   s ≡ sin π

2 t (E3.5.3)

The deformation gradient F  is evaluated by Eq.(3.2.10) using (E3.5.1):

F =
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 

 
 
 

 

 
 
 

=
Ac −Bs

As Bc
 
  

 
  (E3.5.4)

The above deformation consists of the simultaneous stretching of the
material lines along the X and Y axes and the rotation of the element.  The
deformation gradient is constant in the element at any time, and the other
measures of strain will also be constant at any time.  The Green strain tensor is
obtained from (3.3.5), with F  given by (E3.5.4), which gives

E =
1

2
FT ⋅F − I( ) =

1

2

Ac As

−Bs Bc
 
  

 
  

Ac −Bs

As Bc
 
  

 
  −

1 0

0 1
 
  

 
  

 
 
  

 
 

= 1
2

A2 0

0 B2

 

  
 

  −
1 0

0 1
 
  

 
  

 

 
 

 

 
 = 1

2
2at + a2t2 0

0 2bt + b2t2

 

  
 

  (E3.5.5)

It can be seen that the values of the Green strain tensor correspond to what would
be expected from its definition: the line segments which are in the X  and Y
directions are extended by at and bt, respectively, so E11 and E22 are nonzero.
The strain E11 = EXX  is positive when a is positive because the line segment along
the X axis is lengthened.  The magnitudes of the components of the Green strain
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correspond to the engineering measures of strain if the quadratic terms in a and b
are negligible.  The constants are restricted so that at >−1and bt >−1, for
otherwise the Jacobian of the deformation becomes negative.  When t = 0, x = X
and E = 0 .

For the purpose of evaluating the rate-of-deformation, we first obtain the
velocity, which is the material time derivative of (E3.5.1):

vx = ac − π
2 As( )X − bs + π

2 Bc( )Y
vy = as+ π

2 Ac( )X + bc − π
2 Bs( )Y

(E3.5.6)

The velocity gradient is given by (3.3.7b),

L = ∇v( )T =
∂v x

∂x
∂vx

∂y
∂vy

∂x

∂vy

∂y

 

 
 
 

 

 
 
 

=
ac − ωAs −bs − ωBc

as +ωAc bc− ωBs

 
  

 
  (E3.5.7)

Since at t = 0,   x = X , y = Y , c=1, s=0, A = B =1, so the velocity gradient at  t = 0
is given by

  
L = ∇v( )T =

a − π
2

  π
2 b

 

 
 

 

 
 → D =

a 0

0 b

 
  

 
  , W = π

2

0 −1

1 0

 
  

 
  (E3.5.8)

To determine the time history of the rate-of-deformation, we first evaluate the
time derivative of the deformation tensor and the inverse of the deformation
tensor.  Recall that F is given in Eq. (E3.5.4)), from which we obtain

  

˙ F =
A,tc − π

2 As −B, ts − π
2 Bc

A,t s+ π
2 Ac B,tc − π

2 Bs

 

 
 

 

 
 ,      F−1 = 1

AB

Bc Bs

− As Ac

 
  

 
  (E3.5.9)

  
L = ˙ F ⋅F−1 = 1

AB
Bac2 + Abs2 cs Ba − Ab( )
cs Ba− Ab( ) Bas2 + Abc2

 

 
 

 

 
 + π

2

0 −1

1 0

 
  

 
  (E3.5.10)

The first term on the RHS is the rate-of-deformation since it is the ymmetric part
of the velocity gradient, while the second term is the spin, which is skew
symmetric.  The rate-of-deformation at  t = 1 is given by

D = 1
AB

Ab 0

0 Ba
 
  

 
  =

1
1+ a + b + ab

b + ab 0

0 a + ab
 
  

 
  (E3.5.11)

Thus, while in the intermediate stages, the shear velocity-strains are nonzero, in
the configuration at t = 1 only the elongational velocity-strains are nonzero.  For
comparison, the rate of the Green strain at  t = 1 is given by
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˙ E =
Aa 0

0 Bb
 
  

 
  =

a + a2 0

0 b + b2

 

  
 

  (E3.5.12)

Example 3.6  An element is rotated by an angleθ  about the origin.  Evaluate
the infinitesimal strain (often called the linear strain).

For a pure rotation, the motion is given by (3.2.20), x = R ⋅ X , where the
translation has been dropped and R  is given in Eq.(3.2.25), so

  

x

y
 
 
 

 
 
 

=
cosθ − sinθ
sin θ cosθ

 
  

 
  

X

Y
 
 
 

 
 
 

     
ux

uy

 
 
 

 
 
 

=
cos θ − 1 −sin θ

sinθ cos θ −1
 
  

 
  

X

Y
 
 
 

 
 
 

(E3.6.1)

In the definition of the linear strain tensor, the spatial coordinates with respect to
which the derivatives are taken are not specified.  We take them with respect to
the material coordinates (the result is the same if we choose the spatial
coordinates).  The infinitesimal strains are then given by

      
  
εx =

∂ux

∂X
= cos θ − 1,     

  
εy =

∂uy

∂Y
=cos θ − 1,     2ε xy =

∂ux

∂Y
+

∂uy

∂X
= 0 (E3.6.2)

Thus, if θ is large, the extensional strains do not vanish.  Therefore, the linear
strain tensor cannot be used for large deformation problems, i.e. in geometrically
nonlinear problems.

A question that often arises is how large the rotations can be before a
nonlinear analysis is required.  The previous example provides some guidance to
this choice.  The magnitude of the strains predicted in (E3.6.2) are an indication of
the error due to the small strain assumption.  To get a better handle on this error,
we expand   cos θ  in a Taylor’s series and substitute into (E3.6.2), which gives

  
εx = cosθ − 1=1 −

θ 2

2
+O θ4( ) −1≈ −

θ2

2
(3.3.23)

This shows that the error in the linear strain is second order in the rotation.  The
adequacy of a linear analysis then hinges on how large an error can be tolerated
and the magnitudes of the strains of interest.  If the strains of interest are of order
10−2 , and 1% error is acceptable (it almost always is) then the rotations can be of
order 10−2 , since the error due to the small strain assumption is of order 10−4 .  If
the strains of interest are smaller, the acceptable rotations are smaller: for strains
of order 10−4 , the rotations should be of order 10−3  for 1% error.  These
guidelines assume that the equilibrium solution is stable, i.e. that buckling is not
possible.  When buckling is possible, measures which can properly account for
large deformations should be used or a stability analysis as described in Chapter 6
should be performed.
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 1 

1

 a b

1 2 3 4 5

Fig. 3.7. An element which is sheared, followed by an extension in the y-direction and then
subjected to deformations so that it is returned to its initial configuration.

Example 3.7  An element is deformed through the stages shown in Fig. 3.7.
The deformations between these stages are linear functions of time.  Evaluate the
rate-of-deformation tensor D  in each of these stages and obtain the time integral
of the rate-of-deformation for the complete cycle of deformation ending in the
undeformed configuration.

Each stage of the deformation is assumed to occur over a unit time
interval, so for stage n, t = n −1 .  The time scaling is irrelevant to the results, and
we adopt this particular scaling to simplify the algebra.  The results would be
identical with any other scaling.  The deformation function that takes state 1 to
state 2 is

  x X,t( ) = X + atY , y X,t( ) = Y 0 ≤ t ≤1 (E3.7.1)

To determine the rate-of-deformation, we will use Eq. (3.3.18),   L = ˙ F ⋅F−1 so we

first have to determine   F , ˙ F  and F−1 .  These are

  
F =

1 at

0 1
 
  

 
  ,

˙ F =
0 a

0 0
 
  

 
  , F−1 =

1 −at

0 1
 
  

 
  (E3.7.2)

The velocity gradient and rate of deformation are then given by (3.3.10):

  
L = ˙ F ⋅F−1 =

0 a

0 0
 
  

 
  

1 −at

0 1
 
  

 
  =

0 a

0 0
 
  

 
  , D = 1

2 L +LT( ) = 1
2

0 a

a 0
 
  

 
  (E3.7.3)

Thus the rate-of-deformation is a pure shear, for both elongational components
vanish.  The Green strain is obtained by Eq. (3.3.5), its rate by taking the time
derivative

  
E = 1

2 FT ⋅F− I( ) = 1
2

0 at

at a2t2
 
  

 
  ,

˙ E = 1
2

0 a

a 2a2t
 
  

 
  (E3.7.4)

The Green strain and its rate include an elongational component, E22 which is
absent in the rate-of-deformation tensor.  This component is small when the
constant a, and hence the magnitude of the shear, is small.
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For the subsequent stages of deformation, we only give the motion, the
deformation gradient, its inverse and rate and the rate-of-deformation and Green
strain tensors.

configuration 2 to configuration 3

    x X,t( ) = X + aY , y X, t( ) = 1 +bt( )Y , 1≤ t ≤ 2 , t = t −1 (E3.7.5a)

  
F =

1 a

0 1+bt
 
  

 
  ,

˙ F =
0 0

0 b
 
  

 
  , F−1 = 1

1+bt

1+bt −a

0 1
 
  

 
  (E3.7.5b)

  
L = ˙ F ⋅F− 1 = 1

1+bt

0 0

0 b

 
  

 
  , D = 1

2 L +LT( ) = 1
1+bt

0 0

0 b

 
  

 
  (E3.7.5c)

  
E = 1

2 FT ⋅F− I( ) = 1
2

0 a

a a2 + bt bt + 2( )
 
  

 
  , ˙ E = 1

2

0 0

0 2b bt +1( )
 
  

 
  (E3.7.5d)

configuration 3 to configuration 4:

  x X,t( ) = X + a 1− t( )Y , y X, t( ) = 1+ b( )Y , 2 ≤ t ≤ 3, t = t −2 (E3.7.6a)

  
F =

1 a 1− t( )
0 1+ b

 
  

 
  , ˙ F =

0 −a

0 0

 
  

 
  , F−1 = 1

1+b

1+ b a t −1( )
0 1

 
  

 
  (E3.7.6b)

  
L = ˙ F ⋅F−1 = 1

1+ b

0 −a

0 0
 
  

 
  , D = 1

2 L + LT( ) = 1
2 1+b( )

0 −a

−a 0
 
  

 
  (E3.7.6c)

configuration 4 to configuration 5:

  x X,t( ) = X , y X ,t( ) = 1+ b − bt( )Y , 3 ≤ t ≤ 4, t = t −3 (E3.7.7a)

  
F =

1 0

0 1+b − bt
 
  

 
  ,

˙ F =
0 0

0 −b
 
  

 
  , F−1 = 1

1+b− bt

1+ b − bt 0

0 1
 
  

 
  (E3.7.7b)

  
L = ˙ F ⋅F−1 = 1

1+ b−bt

0 0

0 −b
 
  

 
  , D = L (E3.7.7c)

The Green strain in configuration 5 vanishes, since at t = 4 the deformation
gradient is the unit tensor, F = I .  The time integral of the rate-of-deformation is
given by

  
D

0

4

∫ t( )dt = 1
2

0 a

a 0

 
  

 
  +

0 0

0 ln 1 + b( )
 
  

 
  +

1
2 1+ b( )

0 −a

− a 0

 
  

 
  +

0 0

0 −ln 1+b( )
 
  

 
  

(E3.7.8a)
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= ab
2 1+b( )

0 1

1 0
 
  

 
  (E3.7.8b)

Thus the integral of the rate-of-deformation over a cycle ending in the
initial configuration does not vanish.  In other words, while the final configuration
in this problem is the undeformed configuration so that a measure of strain should
vanish, the integral of the rate-of-deformation is nonzero.  This has significant
repercussions on the range of applicability of hypoelastic formulations to be
described in Sections 5? and 5?.  It also means that the integral of the rate-of
deformation is not a good measure of total strain.  It should be noted the integral
over the cycle is close enough to zero for engineering purposes whenever a or b
are small.  The error in the strain is second order in the deformation, which means
it is negligible as long as the strains are of order 10-2.  The integral of the Green
strain rate, on the other hand, will vanish in this cycle, since it is the time
derivative of the Green strain E, which vanishes in the final undeformed state.

3 .4  STRESS MEASURES

3.4.1 Definitions of Stresses.  In nonlinear problems, various stress
measures can be defined.  We will consider three measures of stress:

1.  the Cauchy stress σ ,
2.  the nominal stress tensor P;
3.  the second Piola-Kirchhoff (PK2) stress tensor S .

The definitions of the first three stress tensors are given in Box 3.1.
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Box  3.1
Definition of Stress Measures

n

reference
configuration

current 
configuration

n

F -1

0

dΓο

dΓ

ΩΩο

df

df

df

Cauchy stress:  n ⋅σdΓ = df = tdΓ                                                                 (3.4.1)

Nominal stress:  n0 ⋅PdΓ0 = df = t0dΓ0                                                        (3.4.2)

2nd Piola-Kirchhoff stress:   n0 ⋅SdΓ0 = F−1 ⋅df = F−1 ⋅t0dΓ0                         (3.4.3)

df = tdΓ = t0dΓ 0                                                                                           (3.4.4)

The expression for the traction in terms of the Cauchy stress, Eq. (3.4.1),
is called Cauchy’s law or sometimes the Cauchy hypothesis.  It involves the
normal to the current surface and the traction (force/unit area) on the current
surface.  For this reason, the Cauchy stress is often called the physical stress or
true stress.  For example, the trace of the Cauchy stress, trace σ( ) = −pI , gives the
true pressure p commonly used in fluid mechanics.  The traces of the stress
measures P  and S  do not give the true pressure because they are referred to the
undeformed area.  We will use the convention that the normal components of the
Cauchy stress are positive in tension.  The Cauchy stress tensor is symmetric, i.e.

σT = σ , which we shall see follows from the conservation of angular momentum.

The definition of the nominal stress P  is similar to that of the Cauchy
stress except that it is expressed in terms of the area and normal of the reference
surface, i.e. the underformed surface.  It will be shown in Section 3.6.3 that the
nominal stress is not symmetric.  The transpose of the nominal stress is called the
first Piola-Kirchhoff stress.  (The nomenclature used by different authors for
nominal stress and first Piola-Kirchhoff stress is contradictory; Truesdell and Noll
(1965), Ogden (1984),  Marsden and Hughes (1983) use the definition given here,
Malvern (1969) calls P  the first Piola-Kirchhoff stress.)  Since P  is not
symmetric, it is important to note that in the definition given in Eq. (3.4.2), the
normal is to the left of the tensor P .
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The second Piola-Kirchhoff stress is defined by Eq. (3.4.3).  It differs from
P  in that the force is shifted by F−1 .  This shift has a definite purpose: it makes
the second Piola-Kirchhoff stress symmetric and as we shall see, conjugate to the
rate of the Green strain in the sense of power.  This stress measure is widely used
for path-independent materials such as rubber.  We will use the abbreviations PK1
and PK2 stress for the first and second Piola-Kirchhoff stress, respectively.

3.4.2 Transformation Between Stresses.  The different stress tensors are
interrelated by functions of the deformation.  The relations between the stresses
are given in Box 3.2.  These relations can be obtained by using Eqs. (1-3) along
with Nanson’s relation (p.169, Malvern(1969)) which relates the current normal to
the reference normal by

ndΓ = Jn0 ⋅ F−1dΓ0              nidΓ = Jn j
0 Fji

−1dΓ0 (3.4.5)

Note that the nought is placed wherever it is convenient: “0” and “e” have
invariant meaning in this book and can appear as subscripts or superscripts!

To illustrate how the transformations between different stress measures are
obtained, we will develop an expression for the nominal stress in terms of the
Cauchy stress.  To begin, we equate df  written in terms of the Cauchy stress and
the nominal stress, Eqs. (3.4.2) and (3.4.3), giving

df = n ⋅σdΓ= n0 ⋅PdΓ0 (3.4.6)

Substituting the expression for normal n  given by Nanson’s relation, (3.4.5) into
(3.4.6) gives

Jn0 ⋅ F−1 ⋅σdΓ0 = n0 ⋅PdΓ0 (3.4.7)

Since the above holds for all n0 , it follows that

P = JF−1 ⋅ σ   or   Pij = JFik
−1σkj   or   Pij = J

∂Xi

∂xk
σkj (3.4.8a)

Jσ = F ⋅P or  Jσ ij = FikPkj (3.4.8b)

It can be seen immediately from (3.4.8a) that P ≠ PT , i.e. the nominal stress
tensor is not symmetric.  The balance of angular momentum, which gives the

Cauchy stress tensor to be symmetric, σ = σT , is expressed as

F ⋅P = PT ⋅ FT (3.4.9)

The nominal stress can be related to the PK2 stress by multiplying Eq.
(3.4.3) by F  giving

df = F ⋅ n0 ⋅S( )dΓ0 = F ⋅ ST ⋅n0( )dΓ0 = F ⋅ST ⋅n0dΓ0 (3.4.10)
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The above is somewhat confusing in tensor notation, so it is rewritten below in
indicial notation

dfi = Fik n j
0S jk( )dΓ0 = FikSkj

T n j
0dΓ0 (3.4.11)

The force df in the above is now written in terms of the nominal stress using
(3.4.2):

df = n0 ⋅PdΓ0 = PT ⋅ n0dΓ0 = F⋅ST ⋅n0dΓ0 (3.4.12)

where the last equality is Eq. (3.4.10) repeated.  Since the above holds for all n0 ,
we have

P = S ⋅ FT        or       Pij = Sik Fkj
T = Sik Fjk (3.4.13)

Taking the inverse transformation of (3.4.8a) and substituting into (3.4.13) gives

σ = J −1F ⋅S ⋅ FT      or     σ ij = J−1Fik SklFlj
T (3.4.14a)

The above relation can be inverted to express the PK2 stress in terms of the
Cauchy stress:

S = JF−1 ⋅σ⋅F−T      or     Sij = JFik
−1σ klFlj

−T (3.4.14b)

The above relations between the PK2 stress and the Cauchy stress, like
(3.4.8), depend only on the deformation gradient F  and the Jacobian determinant
J = det(F) .  Thus, if the deformation is known, the state of stress can always be
expressed in terms of either the Cauchy stress σ , the nominal stress P  or the PK2
stress S .  It can be seen from (3.4.14b) that if the Cauchy stress is symmetric, then
S  is also symmetric: S = ST .  The inverse relationships to (3.4.8) and (3.4.14) are
easily obtained by matrix manipulations.

3.4.3. Corotational Stress and Rate-of-Deformation.  In some
elements, particularly structural elements such as beams and shells, it is
convenient to use the Cauchy stress and rate-of-deformation in corotational form,
in which all components are expressed in a coordinate system that rotates with the
material.  The corotational Cauchy stress, denoted by   ̂ σ , is also called the rotated-
stress tensor (Dill p. 245).  We will defer the details of how the rotation and the
rotation matrix R  is obtained until we consider specific elements in Chapters 4
and 9.  For the present, we assume that we can somehow find a coordinate system
that rotates with the material.

The corotational components of the Cauchy stress and the corotational
rate-of-deformation are obtained by the standard transformation rule for second
order tensors, Eq.(3.2.30):

  
ˆ σ = RT ⋅ σ⋅R   or   ˆ σ ij = Rik

Tσkl Rlj (3.4.15a)
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ˆ D = RT ⋅D ⋅R   or   ˆ D ij = Rik

T DklRlj (3.4.15b)

The corotational Cauchy stress tensor is the same tensor as the Cauchy stress, but
it is expressed in terms of components in a coordinate system that rotates with the
material.  Strictly speaking, from a theoretical viewpoint, a tensor is independent
of the coordinate system in which its components are expressed.  However, such a
fundamentasl view can get quite confusing in an introductory text, so we will
superpose hats on the tensor whenever we are referring to its corotational
components.  The corotational rate-of-deformation is similarly related to the rate-
of-deformation.

By expressing these tensors in a coordinate system that rotates with the
material, it is easier to deal with structural elements and anisotropic materials.
The corotational stress is sometimes called the unrotated stress, which seems like
a contradictory name: the difference arises as to whether you consider the hatted
coordinate system to be moving with the material (or element) or whether you
consider it to be a fixed independent entity.  Both viewpoints are valid and the
choice is just a matter of preference.  We prefer the corotational viewpoint
because it is easier to picture, see Example 4.?.

Box  3.2
Transformations of Stresses

Cauchy Stress
σ

Nominal Stress
P

2nd Piola-
Kirchhoff
Stress S

Corotational
Cauchy

Stress   ̂ σ 
σ J −1F ⋅P J −1F ⋅S⋅ FT

  R ⋅ ˆ σ ⋅RT

P JF−1 ⋅σ S ⋅FT
  JU−1 ⋅ˆ σ ⋅RT

S JF−1 ⋅σ ⋅F−T P ⋅F−T
  JU−1 ⋅ˆ σ ⋅U−1

  ̂ σ RT ⋅ σ⋅R J −1U ⋅P ⋅R J −1U ⋅S ⋅U
Note:  dx = F ⋅dX = R ⋅U ⋅dX  in deformation,
     U  is the strectch tensor, see Sec.5?

     dx = R ⋅ dX = R ⋅dˆ x  in rotation

Example 3.8  Consider the deformation given in Example 3.2, Eq. (E3.2.1).
Let the Cauchy stress in the initial state be given by

σ t = 0( ) =
σ x

0 0

0 σy
0

 

 
 

 

 
 (E3.8.1)

Consider the stress to be frozen into the material, so as the body rotates, the initial
stress rotates also, as shown in Fig. 3.8.
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x

y

Ω0

σ y
0

x

y

Ω

σ x
0

σ x
0

σ y
0σ y

0σ x
0

Figure 3.8.  Prestressed body rotated by 90˚.

This corresponds to the behavior of an initial state of stress in a rotating solid,
which will be explored further in Section 3.6  Evaluate the PK2 stress, the
nominal stress and the corotational stress in the initial configuration and the
configuration at t = π 2ω .

In the initial state, F = I , so

  
S = P = ˆ σ = σ =

σ x
0 0

0 σ y
0

 

 
 

 

 
 (E3.8.2)

In the deformed configuration at t =
π

2ω
, the deformation gradient is given by

  
F =

cosπ 2 −sinπ 2

sinπ 2 cosπ 2
 
  

 
  =

0 −1

1 0
 
  

 
  , J =det F( ) = 1 (E3.8.3)

Since the stress is considered frozen in the material, the stress state in the rotated
configuration is given by

σ =
σy

0 0

0 σ x
0

 

 
 

 

 
 (E3.8.4)

The nominal stress in the configuration is given by Box 3.2:

P = JF−1σ =
0 1

−1 0

 
  

 
  

σ y
0 0

0 σ x
0

 

 
 

 

 
 =

0 σ x
0

−σ y
0 0

 

 
 

 

 
 (E3.8.5)
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Note that the nominal stress is not symmetric.  The 2nd Piola-Kirchhoff stress can
be expressed in terms of the nominal stress P  by Box 3.2 as follows:

S = P ⋅F−T =
0 σx

0

−σ y
0 0

 

  
 

  
0 −1

1 0
 
  

 
  =

σ x
0 0

0 σ y
0

 

  
 

  (E3.8.6)

Since the mapping in this case is a pure rotation, R = F , so when t = π
2ω ,   

ˆ σ = S .

This example used the notion that an initial state of stress  can be
considered in a solid is frozen into the material and rotates with the solid.  It
showed that in a pure rotation, the PK2 stress is unchanged; thus the PK2 stress
behaves as if it were frozen into the material.  This can also be explained by
noting that the material coordinates rotate with the material and the components
of the PK2 stress are related to the orientation of the material coordiantes.  Thus
in the previous example, the component S11 , which is associated with X-
components, corresponds to theσ22  components of physical stress in the final
configuration and the components σ11 in the initial configuration. The
corotational components of the Cauchy stress   

ˆ σ  are also unchanged by the
rotation of the material, and in the absence of deformation equal the components
of the PK2 stress.  If the motion were not a pure rotation, the corotational Cauchy
stress components would differ from the components of the PK2 stress in the final
configuration.

The nominal stress at t = 1 is more difficult to interpret physically.  This
stress is kind of an expatriate, living partially in the current configuration and
partially in the reference configuration.  For this reason, it is often described as a
two-point tensor, with a leg in each configuration, the reference configuration and
the current configuration.  The left leg is associated with the normal in the
reference configuration, the right leg with a force on a surface element in the
current configuration, as seen from in its defintion, Eq. (3.4.2).  For this reason
and the lack of symmetry of the nominal stress P , it is seldom used in constitutive
equations.  Its attractiveness lies in the simplicity of the momentum and finite
element equations when expressed in terms of P .

Example 3.9  Uniaxial Stress.

  X,x

  Y,y  Z,z

a0

b0

  l0

Ω0
Ω

x

yz

b

a

  l
Figure 3.9.  Undeformed and current configurations of a body in a uniaxial state of stress.
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Consider a bar in a state of uniaxial stress as shown in Fig. 3.9.  Relate the
nominal stress and the PK2 stress to the uniaxial Cauchy stress.  The initial
dimensions (the dimensions of the bar in the reference configuration) are l0, a0 and
b0, and the current dimensions are l, a so

    
x =

l
l0

X ,  y =
a

a0
Y,  z =

b

b0
Z (E3.9.1)

Therefore

  

F =
∂x ∂X ∂x ∂Y ∂x ∂Z

∂y ∂X ∂y ∂Y ∂y ∂Z

∂z ∂X ∂z ∂Y ∂z ∂Z

 

 

 
 

 

 

 
 

=
l l0 0 0

0 a a0 0

0 0 b b0

 

 

 
 

 

 

 
 

(E3.9.2)

    
J =det F( ) =

abl
a0b0l0

(E3.9.3)

  

F−1 =
l0 l 0 0

0 a0 a 0

0 0 b0 b

 

 

 
 

 

 

 
 

(E3.9.4)

The state of stress is uniaxial with the x-component the only nonzero component,
so

σ =
σ x 0 0

0 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

(E3.9.5)

Evaluating P  as given by Box 3.2 using Eqs. (E3.9.3-E3.9.5) then gives

  

P =
abl

a0b0l0

l0 l 0 0

0 a0 a 0

0 0 b0 b

 

 

 
 

 

 

 
 

σ x 0 0

0 0 0

0 0 0

 

 

 
 

 

 

 
 

=

abσ x

a0b0

0 0

0 0 0

0 0 0

 

 

 
 
 

 

 

 
 
 

(E3.9.6)

Thus the only nonzero component of the nominal stress is

P11 =
ab

a0b0

σx =
Aσ x

A0

(E3.9.7)

where the last equality is based on the formulas for the cross-sectional area, A=ab
and A0 = a0b0 ; Eq. (E3.9.7) agrees with Eq. (2.2.7).  Thus, in a state of uniaxial
stress, P11corresponds to the engineering stress.
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The relationship between the PK2 stress and Cauchy stress for a uniaxial
state of stress is obtained by using Eqs. (E3.9.3-E3.9.5) with Eq. (3.4.14), which
gives

  
S11 =

l0

l
Aσx

Ao

 

 
 

 

 
 (E3.9.8)

where the quantity in the parenthesis can be recognized as the nominal stress.  It
can be seen from the above that it is difficult to ascribe a physical meaning to the
PK2 stress.  This, as will be seen in Chapter 5, influences the selection of stress
measures for plasticity theories, since yield functions must be described in terms
of physical stresses.  Because of the nonphysical nature of the nominal and PK2
stresses, it is awkward to formulate plasticity in terms of these stresses.

3.5  CONSERVATION EQUATIONS

3.5.1 Conservation Laws. One group of the fundamental equations of
continuum mechanics arises from the conservation laws.  These equations must
always be satisfied by physical systems.  Four conservation laws relevant to
thermomechanical systems are considered here:

1.  conservation of mass
2. conservation of linear momentum, often called conservation of

momentum
3.  conservation of energy
4.  conservation of angular momentum

The conservation laws are also known as balance laws, e.g. the conservation of
energy is often called the balance of energy.

The conservation laws are usually expressed as partial differential
equations (PDEs).  These PDEs are derived by applying the conservation laws to
a domain of the body, which leads to an integral equation.  The following
relationship is used to extract the PDEs from the integral equation:

if   f ( x,t )  is C−1 and 

  
f x,t( )dΩ= 0

Ω
∫  for any subdomain Ω of Ω 

and time   t ∈ 0 , t [ ] , then

  f ( x,t ) = 0  in Ω  for   t ∈ 0 , t [ ] (3.5.1)

In the following, Ω  is an arbitrary subdomain of the body under consideration.
Prior to deriving the balance equations, several theorems useful for this purpose
are derived.

3.5.2 Gauss’s Theorem.  In the derivation of the governing equations,
Gauss's theorem is frequently used.  This theorem relates integrals of different
dimensions: it can be used to relate a contour integral to an area integral or a
surface integral to a volume integral.    The one dimensional form of Gauss’s
theorem is the fundamental theorem of calculus, which we used in Chapter 2.
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Gauss’s theorem states that when f(x) is a piecewise continuously
diffrentiable, i.e. C1 function, then

∂f x( )
∂xiΩ

∫ dΩ= f x( )nidΓ
Γ
∫       or        ∇f x( )dΩ= f x( )n

Γ
∫

Ω
∫ dΓ (3.5.2a)

∂f X( )
∂XiΩ0

∫ dΩ0 = f X( )ni
0dΓ0

Γ0

∫     or  ∇X f X( )dΩ0 = f X( )n0
Γ0

∫
Ω 0

∫ dΓ0 (3.5.2b)

As seen in the above, Gauss's theorem applies to integrals in both the current and
reference configurations.

The above theorem holds for a tensor of any order; for example if f(x) is
replaced by a tensor of first order, then

∂gi x( )
∂xiΩ

∫ dΩ= gi x( )nidΓ
Γ
∫        or       ∇⋅ g x( )dΩ = n ⋅g x( )

Γ
∫

Ω
∫ dΓ (3.5.3)

which is often known as the divergence theorem.  The theorem also holds for
gradients of the vector field:

∂gi x( )
∂xjΩ

∫ dΩ= gi x( )n j dΓ
Γ
∫     or       ∇g x( )dΩ = n⊗ g x( )

Γ
∫

Ω
∫ dΓ (3.5.3b)

and to tensors of arbitrary order.

If the function f x( )  is not continuously differentiable, i.e. if its derivatives
are discontinuous along a finite number of lines in two dimensions or on surfaces
in three dimensions, then Ω  must be subdivided into subdomains so that the
function is C1 within each subdomain.  Discontinuities in the derivatives of the
function will then occur only on the interfaces between the subdomains.  Gauss’s
theorem is applied to each of the subdomains,  and summing the results yields the
following counterparts of (3.5.2) and (3.5.3):

  

∂f

∂xiΩ
∫ dΩ = fnidΓ+

Γ
∫ fni dΓ

Γint

∫     

  

∂gi

∂xiΩ
∫ dΩ = ginidΓ +

Γ
∫ gini dΓ

Γint

∫ (3.5.4)

where   Γ int  is the set of all interfaces between these subdomains and f  and

n ⋅g  are the jumps defined by

f = f A − f B (3.5.5a)

n ⋅g = gini = gi
Ani

A + gi
Bni

B = gi
A − gi

B( )ni
A = gi

B − gi
A( )ni

B (3.5.5b)
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where A and B are a pair of subdomains which border on the interface   Γ int , nA

and nB are the outward normals for the two subdomains and fA and fB are the
function values at the points adjacent to the interface in subdomains A and B,
respectively.  All the forms in (3.5.5b) are equivalent and make use of the fact that
on the interface, nA =-nB.  The first of the formulas is the easiest to remember
because of its symmetry with respect to A and B.

3.5.3  Material Time Derivative of an Integral and Reynold’s
Transport Theorem.  The material time derivative of an integral is the rate of
change of an integral on a material domain.  A material domain moves with the
material, so that the material points on the boundary remain on the boundary and
no flux occurs across the boundaries.  A material domain is analogous to a
Lagrangian mesh; a Lagrangian element or group of Lagrangian elements is a nice
example of a material domain.  The various forms for material time derivatives of
integrals are called Reynold;s transport theorem, which is employed in the
development of conservation laws.

The material time derivative of an integral is defined by

  

D

Dt
f dΩ=

∆t →0
lim

Ω
∫ 1

∆ t( f x, τ + ∆t( )dΩx
Ωτ +∆t

∫ − f x, τ( )dΩx
Ωτ

∫ ) (3.5.6)

where Ωτ  is the spatial domain at time τ  and Ωτ +∆t  the spatial domain occupied
by the same material points at time τ +∆ t .  The notation on the left hand side is a
little confusing because it appears to refer to a single spatial domain.  However, in
this notation, which is standard, the material derivative on the integral implies that
the domain refers to a material domain.  We now transform both integrals on the
right hand side to the reference domain using (3.2.18) and change the independent
variables to the material coordinates, which gives

  

D

Dt
f dΩ=

∆t →0
lim

Ω
∫ 1

∆t
( f X ,τ +∆ t( )J X ,τ +∆t( )dΩ0 −

Ω 0

∫ f X,τ( )J X, τ( )dΩ0
Ω0

∫ ) (3.5.7)

The function is now     f φ X ,t( ),t( ) ≡ f o φ , but we adhere to our convention that the
symbol represents the field and leave the symbol unchanged.

Since the domain of integration is now independent of time, we can pull
the limit operation inside the integral and take the limit, which yields

  

D

Dt
f dΩ=

Ω
∫ ∂

∂t
f X,t( )J X,t( )( )dΩ0

Ω 0

∫ (3.5.9)

The partial derivative with respect to time in the integrand is a material time
derivative since the independent space variables are the material coordinates.  We
next use the product rule for derivatives on the above:

     

  

D

Dt
f dΩ=

Ω
∫

∂
∂t

f X,t( )J X,t( )( )dΩ0
Ω 0

∫ =
∂f

∂t
J + f

∂J

∂t

 
 
  

 
 dΩ0

Ω0

∫
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Bearing in mind that the partial time derivatives are material time derivatives
because the independent variables are the material coordinates and time, we can
use (3.2.19) to obtain

  

D

Dt
f dΩ

Ω
∫ =

∂f X,t( )
∂t

J + fJ
∂vi

∂xi

 

 
 

 

 
 dΩ0

Ω0

∫ (3.5.12)

We can now transform the RHS integral to the current domain using (3.2.18) and
change the independent variables to an Eulerian description, which gives

  

D

Dt
f x ,t( )dΩ

Ω
∫ =

Df x,t( )
Dt

+ f
∂vi

∂xi

 

 
 

 

 
 dΩ

Ω
∫ (3.5.11)

where the partial time derivative has been changed to a material time derivative
because of the change of independent variables; the material time derivative
symbol has been changed with the change of independent variables, since

  Df x ,t( ) Dt ≡∂ f X ,t( ) ∂t  as indicated in (3.2.8).

 An alternate form of Reynold’s transport theorem can be obtained by
using the definition of the material time derivative, Eq. (3.2.12) in (3.5.11).  This
gives

  

D

Dt
f dΩ =

Ω
∫ (

∂ f

∂t
+ vi

∂f

∂xi
+

∂vi

∂xi
f ) dΩ

Ω
∫ = (

∂ f

∂t
+

∂( vi f )
∂xi

) dΩ
Ω
∫ (3.5.13)

which can be written in tensor form as

  

D

Dt
f dΩ =

Ω
∫ (

∂ f

∂ t
+ div( vf ) ) dΩ

Ω
∫ (3.5.14)

Equation (3.5.14) can be put into another form by using Gauss’s theorem on the
second term of the RHS, which gives

    
D

Dt
f dΩ=

Ω
∫ ∂ f

∂ t
dΩ

Ω
∫ + fvini dΓ

Γ
∫    or   

D

Dt
f dΩ=

Ω
∫ ∂ f

∂ t
dΩ

Ω
∫ + fv ⋅ndΓ

Γ
∫ (3.5.15)

where the product fv is assumed to be C1 in Ω .  Reynold’s transport theorem,
which in the above has been given for a scalar, applies to a tensor of any order.
Thus to apply it to a first order tensor (vector) gk , replace f  by gk in Eq. (3.5.14),
which gives

D

Dt
gk dΩ =

Ω
∫

∂gk

∂t
+

∂ vi gk( )
∂xi

 

 
 

 

 
 dΩ

Ω
∫ (3.5.16)
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3.5.5  Mass Conservation.  The mass m Ω( )  of a material domain Ω  is given
by

  

m Ω( ) = ρ X, t( )
Ω
∫ dΩ (3.5.17)

where   ρ X ,t( ) is the density.  Mass conservation requires that the mass of a
material subdomain be constant, since no material flows through the boundaries
of a material subdomain and we are not considering mass to energy conversion.
Therefore, according to the principle of mass conservation, the material time
derivative of m Ω( )  vanishes, i.e.

Dm

Dt
=

D

Dt
ρdΩ = 0

Ω
∫ (3.5.18)

Applying Reynold’s theorem, Eq. (3.5.11), to the above yields

Dρ
Dt

+ ρ div v( ) 
 
  

 
 

Ω
∫ dΩ= 0 (3.5.19)

Since the above holds for any subdomain Ω , it follows  from Eq.(3.5.1) that

Dρ
Dt

+ρ div v( ) = 0   or   
  

Dρ
Dt

+ρvi ,i = 0    or     
˙ ρ + ρvi, i = 0 (3.5.20)

The above is the equation of mass conservation, often called the continuity
equation.  It is a first order partial differential equation.

Several special forms of the mass conservation equation are of interest.
When a material is incompressible, the material time derivative of the density
vanishes, and it can be seen from equation (3.5.20) that the mass conservation
equation becomes:

div v( ) = 0             vi, i = 0 (3.5.21)

In other words, mass conservation requires the divergence of the velocity field of
an incompressible material to vanish.

If the definition of a material time derivative, (3.2.12) is invoked in
(3.5.20), then the continuity equation can be written in the form

  
∂ρ
∂t +ρ,ivi +ρvi,i = ∂ρ

∂ t + ( ρvi ) ,i = 0 (3.5.22)

This is called the conservative form of the mass conservation equation.  It is often
preferred in computational fluid dynamics because discretizations of the above
form are thouught to more accurately enforce mass conservation.
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For Lagrangian descriptions, the rate form of the mass conservation
equation, Eq. (3.5.18), can be integrated in time to obtain an algebraic equation
for the density.  Integrating Eq. (3.5.18) in time gives

ρ
Ω
∫ dΩ= constant = ρ0

Ω0

∫ dΩ0  (3.5.23)

Transforming the left hand integral in the above to the reference domain by
(3.2.18) gives

ρJ − ρ0( )
Ω 0

∫  dΩο = 0 (3.5.24)

Then invoking the smoothness of the integrand and Eq. (3.5.1) gives the following
equation for mass conservation

  ρ X, t( )J X, t( ) = ρ0 X( )           or          ρJ = ρ0 (3.5.25)

We have explicitly indicated the independent variables on the left to emphasize
that this equation only holds for material points; the fact that the independent
variables must be the material coordinates in these equations follows from the fact
that the integrand and domain of integration in (3.5.24) must be expressed for a
material coordinate and material subdomain, respectively.

As a consequence of the integrability of the mass conservation equation in
Lagrangian descriptions, the algebraic equation (3.5.25) are used to enforce mass
conservation in Lagrangian meshes.  In Eulerian meshes, the algebraic form of
mass conservation, Eq. (3.5.25), cannot be used, and mass conservation is
imposed by the partial differential equation,  (3.5.20) or (3.5.22), i.e. the
continuity equation.

3.5.5 Conservation of Linear Momentum.  The equation emanating
from the principle of momentum conservation is a key equation in nonlinear finite
element procedures.  Momentum conservation is a statement of Newton’s second
law of motion, which relates the forces acting on a body to its acceleration.  We
consider an arbitrary subdomain of the body Ω  with boundary Γ .  The body is
subjected to body forces ρb  and to surface tractions t , where b  is a force per unit
mass and t  is a force per unit area.  The total force on the body is given by

  
f t( ) = ρ

Ω
∫ b x,t( )dΩ+ t x , t( )

Γ
∫ dΓ (3.5.26)

The linear momentum of the body is given by

  
p t( ) = ρv x ,t( )dΩ

Ω
∫ (3.5.27)

where ρv  is the linear momentum per unit volume.
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Newton’s second law of motion for a continuum states that the material
time derivative of the linear momentum equals the net force.  Using (3.5.26) and
(3.5.27), this gives

Dp
Dt

= f ⇒  
D

Dt
ρvdΩ= ρbdΩ

Ω
∫

Ω
∫ + tdΓ

Γ
∫ (3.5.28)

We now convert the first and third integrals in the above to obtain a single domain
integral so Eq. (3.5.1) can be applied.  Reynold’s Transport Theorem applied to
the first integral in the above gives

    D
Dt ρv

Ω
∫ dΩ= D

Dt ρv( )+ div v( )ρv( )
Ω
∫ dΩ = (ρ Dv

Dt
Ω
∫ + v( Dρ

Dt + ρdiv v( ))dΩ (3.5.29)

where the second equality is obtained by using the product rule of derivatives for
the first term of the integrand and rearranging terms.

The term multiplying the velocity in the RHS of the above can be
recognized as the continuity equation, which vanishes, giving

D
Dt

ρv
Ω
∫ dΩ = ρ Dv

Dt
Ω
∫ dΩ (3.5.30)

To convert the last term in Eq. (3.5.28) to a domain integral, we invoke Cauchy’s
relation and Gauss’s theorem in sequence, giving

t
Γ
∫ dΓ= n ⋅σ

Γ
∫ dΓ= ∇⋅ σ

Ω
∫ dΩ    or   t j

Γ
∫ dΓ = niσ ij

Γ
∫ dΓ =

∂σ ij

∂xi
Ω
∫ dΩ (3.5.31)

Note that since the normal is to the left on the boundary integral, the divergence is
to the left and contracts with the first index on the stress tensor.  When the
divergence operator acts on the first index of the stress tensor it is called the left
divergence operator and is  placed to the left of operand.  When it acts on the
second index, it is placed to the right and call the right divergence.  Since the
Cauchy stress is symmetric, the left and right divergence operators have the same
effect. However, in contrast to linear continuum mechanics, in nonlinear
continuum mechanics it is important to become accustomed to placing the
divergence operator where it belongs because some stress tensors, such as the
nominal stress, are not symmetric.  When the stress is not symmetric, the left and
right divergence operators lead to different results.  When Gauss’s theorem is
used, the divergence on the stress tensor is on the same side as the normal in
Cauchy’s relation.  In this book we will use the convention that the normal and
divergence are always placed on the left.

Substituting (3.5.30) and (3.5.31) into (3.5.28) gives

ρ Dv
Dt −ρb −∇⋅ σ( )

Ω
∫ dΩ= 0 (3.5.32)
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Therefore, if the integrand is C-1,  since (3.5.32) holds for an arbitrary domain,
applying (3.5.1) yields

ρ Dv
Dt = ∇⋅ σ + ρb ≡ divσ + ρb           or          ρ

Dvi
Dt =

∂σ ji

∂x j
+ ρbi (3.5.33)

This is called the momentum equation or the equation of motion; it is also called
the balance of linear momentum equation.  The LHS term represents the change
in momentum, since it is a product of the acceleration and the density; it is also
called the inertial term.  The first term on the RHS is the net resultant internal
force per unit volume due to divergence of the stress field.

This form of the momentum equation is applicable to both Lagrangian and
Eulerian descriptions.  In a Lagrangian description, the dependent variables are
assumed to be functions of the Lagrangian coordinates X and time t, so the
momentum equation is

  
ρ X ,t( ) ∂v X , t( )

∂t = divσ φ−1 x ,t( ),t( ) +ρ X,t( )b X ,t( ) (3.5.34)

Note that the stress must be expressed as a function of the Eulerian coordinates

through the motion   φ
−1 X ,t( ) so that the spatial divergence of the stress field can

be evaluated; the total derivative of the velocity with respect to time in (3.5.33)
becomes a partial derivative with respect to time when the independent variables
are changed from the Eulerian coordinates x  to the Lagrangian coordinates X .

In an Eulerian description, the material derivative of the velocity is written
out by (3.2.9) and all variables are considered functions of the Eulerian
coordinates.  Equation  (3.5.33) becomes

  
ρ x, t( ) ∂v x, t( )

∂t +(v x , t( )⋅grad )v x ,t( ) 
 
  

 
 = divσ x ,t( ) + ρ x, t( )b x ,t( ) (3.5.35)

        
or  

  
ρ

∂vi
∂t

+vi , jv j
 
 
  

 
 =

∂σ ji

∂x j
+ ρbi

As can be seen from the above, when the independent variables are all explicitly
written out the equations are quite awkward, so we will usually drop the
independent variables.  The independent variables are specified wherever the
dependent variables are first defined, when they first appear in a section or
chapter, or when they are changed.  So if the independent variables are not clear,
the reader should look back to where the independent variables were last
specified.

In computational fluid dynamics, the momentum equation is sometimes
used without the changes made by Eqs. (3.5.13-3.5.30).  The resulting equation is

D ρv( )
Dt ≡

∂ ρv( )
∂t +v ⋅grad ρv( ) = divσ + ρb (3.5.36)
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This is called the conservative form of the momentum equation with considered
ρv  as one of the unknowns.  Treating the equation in this form leads to better
observance of momentum conservation.

3.5.7  Equilibrium Equation.  In many problems, the loads are applied
slowly and the inertial forces are very small and can be neglected.  In that case,
the acceleration in the  momentum equation (3.5.35) can be dropped and we have

∇⋅ σ + ρb = 0   or  
∂σ ji

∂x j
+ ρbi = 0 (3.5.37)

The above equation is called the equilibrium equation.  Problems to which the
equilibrium equation is applicable are often called static problems. The
equilibrium equation should be carefully distinguished from the momentum
equation: equilibrium processes are static and do not include acceleration.  The
momentum and equilibrium equations are tensor equations, and the tensor forms
(3.5.33) and (3.5.37) represent nSD scalar equations.

3.5.8  Reynold's Theorem for a Density-Weighted Integrand.
Equation (3.5.30) is a special case of a general result: the material time derivative
of an integral in which the integrand is a product of the density and the function f
is given by

D

Dt
ρf d

Ω
∫ Ω= ρ Df

Dt
Ω
∫ dΩ (3.5.38)

This  holds  for a tensor of any order and is a consequence of Reynold's theorem
and mass conservation; thus, it can be called another form of Reynold's theorem.
It can be verified by repeating the steps in Eqs. (3.5.29) to (3.5.30) with a tensor
of any order.

3.5.9  Conservation of Angular Momentum.  The conservation of
angular momentum provides additional equations which govern the stress tensors.
The integral form of the conservation of angular momentum is obtained by taking
the cross-product of each term in the corresponding linear momentum principle
with the position vector x , giving

D

Dt
x ×ρvdΩ = x ×ρbdΩ

Ω
∫

Ω
∫ + x × tdΓ

Γ
∫ (3.5.39)

We will leave the derivation of the conditions which follow from (3.5.39) as an
exercise and only state them:

σ = σT       or      σ ij = σ ji (3.5.40)

In other words, conservation of angular momentum requires that the Cauchy
stress be a symmetric tensor.  Therefore, the Cauchy stress tensor represents 3
distinct dependent variables in two-dimensional problems, 6 in three-dimensional
problems.  The conservation of angular momentum does not result in any
additional partial differential equations when the Cauchy stress is used.
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3.5.10  Conservation of Energy.  We consider thermomechanical
processes where the only sources of energy are mechanical work and heat.  The
principle of conservation of energy, i.e. the energy balance principle, states that
the rate of change of total energy is equal to the work done by the body forces and
surface tractions plus the heat energy delivered to the body by the heat flux and
other sources of heat.  The internal energy per unit volume is denoted by

ρwint where w int is the internal energy per unit mass.  The heat flux per unit area
is denoted by a vector q , in units of power per area and the heat source per unit
volume is denoted by ρs .  The conservation of energy then requires that the rate
of change of the total energy in the body, which includes both internal energy and
kinetic energy, equal the power of the applied forces and the energy added to the
body by heat conduction and any heat sources.

The rate of change of the total energy in the body is given by

  
P tot = P int +P kin , P int = D

Dt ρwint

Ω
∫ dΩ, P kin = D

Dt
1
2 ρv ⋅v

Ω
∫ dΩ (3.5.41)

where   P
int denotes the rate of change of internal energy and   P

kin the rate of
change of the kinetic energy.  The rate of the work by the body forces in the
domain and the tractions on the surface is

  

P ext = v ⋅ρb
Ω
∫ dΩ+ v ⋅

Γ
∫ t dΓ= vi

Ω
∫ ρbidΩ+ vi

Γ
∫ t idΓ (3.5.42)

The power supplied by heat sources  s and the heat flux q  is

  

P heat = ρs
Ω
∫ dΩ− n ⋅q

Γ
∫ dΓ = ρsdΩ

Ω
∫ − niqidΓ

Γ
∫ (3.5.43)

where the sign of the heat flux term is negative since positive heat flow is out of
the body.

The statement of the conservation of energy is written

  P
tot = P ext + P heat (3.5.44)

i.e. the rate of change of the total energy in the body (consisting of the internal
and kinetic energies) is equal to the rate of work by the external forces and rate of
work provided by heat flux and energy sources.  This is known as the first law of
thermodynamics. The disposition of the internal work depends on the material.  In
an elastic material, it is stored as elastic internal energy and fully recoverable
upon unloading.  In an elastic-plastic material, some of it is converted to heat,
whereas some of the energy is irretrievably dissipated in changes of the internal
structure of the material.

Substituting Eqs. (3.5.41) to (3.5.43) into (3.5.44) gives the full statement
of the conservation of energy
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D
Dt ρw int + 1

2 ρv ⋅ v( )
Ω
∫ dΩ = v ⋅ ρb

Ω
∫ dΩ+ v ⋅

Γ
∫ tdΓ + ρs

Ω
∫ dΩ− n ⋅q

Γ
∫ dΓ (3.5.45)

We will now derive the equation which emerges from the above integral statement
using the same procedure as before: we use Reynolds’s theorem to bring the total
derivative inside the integral and convert all surface integrals to domain integrals.
Using Reynold’s Theorem, (3.5.38) on the first integral in Eq. (3.5.45)  gives

D
Dt ρwint + 1

2 ρv ⋅ v( )
Ω
∫ dΩ= ρ Dwint

Dt + 1
2 ρ D v ⋅v( )

Dt
 
 

 
 

Ω
∫ dΩ

= ρ Dw int

Dt + ρv ⋅ Dv
Dt( )

Ω
∫ dΩ

(3.5.46)

We will use commas in the following to denote spatial derivatives.  Applying
Cauchy’s law (3.4.1) and Gauss’s theorem (3.5.12) to the traction boundary
integrals on the RHS of (3.5.45) yields:

  
v ⋅

Γ
∫ tdΓ= n ⋅σ ⋅v

Γ
∫ dΓ = viσ ji( )

Ω
∫ , j dΩ= vi, jσ ji + viσ ji , j( )

Ω
∫ dΩ

  
= D jiσ ji +Wjiσ ji + viσ ji, j( )dΩ

Ω
∫    using (3.3.9)

  
= D jiσ ji +viσ ji , j( )dΩ

Ω
∫            

symmetry of σ and

skew symmetry of W

= D:σ + ∇⋅ σ( )⋅v( )
Ω
∫ dΩ (3.5.47)

Inserting these results into (3.5.44) or (3.5.45), application of Gauss’s theorem to
the heat flux integral and rearrangement of terms yields

ρ Dw int

Dt − D :σ +∇⋅ q − ρs + v ⋅ ρ Dv
Dt −∇⋅ σ − ρb( )( )dΩ

Ω
∫ = 0 (3.5.48)

The last term in the integral can be recognized as the momentum equation, Eq.
(3.5.33), so it vanishes.  Then invoking the arbitrariness of the domain gives:

ρ Dwint
Dt = D :σ −∇⋅ q + ρs (3.5.49)

When the heat flux and heat sources vanish, i.e. in a purely mechanical
process, the energy equation becomes

ρ Dwint
Dt = D :σ = σ: D = σ ij Dij (3.5.50)

3-49



T. Belytschko, Continuum Mechanics, December 16, 1998 50

The above  defines the rate of internal energy or internal power in terms of the
measures of stress and strain.  It shows that the internal power is given by the
contraction of the rate-of-deformation and the Cauchy stress.  We therefore say
that the rate-of-deformation and the Cauchy stress are conjugate in power.  As we
shall see, conjugacy in power is helpful in the development of weak forms:
measures of stress and strain rate which are conjugate in power can be used to
construct  principles of virtual work or power, which are the weak forms for finite
element approximations of the momentum equation.  Variables which are
conjugate in power are also said to be conjugate in work or energy, but we will
use the phrase conjugate in power because it is more accurate.

The rate of change of the internal energy of the system is obtained by
integrating (3.5.50) over the domain of the body, which gives

DW int

Dt = ρ Dwint

Dt dΩ
Ω
∫ = D:σ dΩ

Ω
∫ = Dijσ ijdΩ

Ω
∫ =

∂vi

∂x j
σ ijdΩ

Ω
∫ (3.5.51)

where the last expression follows from the symmetry of the Cauchy stress tensor.

The conservation equations are summarized in Box 3.3 in both tensor and
indicial form.  The equations are written without specifying the independent
variables; they can be expressed in terms of either the spatial coordinates or the
material coordinates, and as we shall see later, they can be written in terms of
other coordinate  systems which are neither fixed in space nor coincident with
material points.  The equations are not expressed in conservative form because
this does not seem to be as useful in solid mechanics as it is in fluid mechanics.
The reasons for this are not explored in the literature, but it appears to be related
to the mauch smaller changes in density which occur in solid mechanics
problems.

Box 3.3
Conservation Equations

Eulerian description
Mass

Dρ
Dt

+ρ div v( ) = 0   or   
  

Dρ
Dt

+ρvi ,i = 0    or     
˙ ρ + ρvi, i = 0 (B3.3.1)

Linear Motion

ρ Dv
Dt = ∇⋅ σ + ρb ≡ divσ + ρb           or          ρ

Dvi
Dt =

∂σ ji

∂x j
+ ρbi (B3.3.2)

Angular Momentum
σ = σT       or      σ ij = σ ji (B3.3.3)

Energy

ρ Dwint
Dt = D :σ −∇⋅ q + ρs (B3.3.4)

Lagrangian Description
Mass

  ρ X, t( )J X, t( ) = ρ0 X( )           or          ρJ = ρ0 (B3.3.5)
Linear Momentum
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ρ0

∂v X ,t( )
∂t =∇ X ⋅P + ρ0b           or        

  
ρ0

∂vi X, t( )
∂t =

∂Pji

∂X j
+ ρ0bi (B3.3.6)

Angular Momentum

F ⋅ P = PT ⋅ FT             FikPkj = Pik
T Fkj

T = FjkPki (B3.3.7)

S = ST (B3.3.8)
Energy

  
ρ0 ˙ w int = ρ0

∂wint X,t( )
∂t

= ˙ F T:P −∇ X ⋅˜ q + ρ0s (B3.3.9)

3.5.11 System Equations.  The number of dependent variables depends on
the number of space dimensions in the model.  If we denote the number of space
dimensions by nSD, then for a purely mechanical problem, the following
unknowns occur in the equations for a purely mechanical process (a process
without heat transfer, so the energy equation is not used):

ρ, the density  1 unknown

v , the velocity nSD unknowns

σ, the stresses nσ=nSD*(nSD+1)/2 unknowns

In counting the number of unknowns attributed to the stress tensor, we have
exploited its symmetry, which results from the conservation of angular
momentum.  The combination of the mass conservation (1 equation), and the
momentum conservation (nSD equations) gives a total of nSD+1 equations.  Thus
we are left with nσ extra unknowns.  These are provided by the constitutive
equations, which relate the stresses to a measure of deformation.  This equation
introduces nσ additional unknowns, the components of the symmetric rate-of-
deformation tensor.  However, these unknowns can immediately be expressed in
terms of the velocities by Eq. (3.3.10), so they need not be counted as additional
unknowns.

The displacements are not counted as unknowns.  The displacements are
considered secondary dependent variables since they can be obtained by
integrating the velocities in time using Eq. (3.2.8) at any material point.  The
displacements are considered secondary dependent variables, just like the position
vectors.  This choice of dependent variables is a matter of preference.  We could
just as easily have chosen the displacement as a primary dependent variable and
the velocity as a secondary dependent variable.

3.6.  LAGRANGIAN CONSERVATION EQUATIONS

3.6.1 Introduction and Definitions.  For solid mechanics applications, it
is instructive to directly develop the conservation equations in terms of the
Lagrangian measures of stress and strain in the reference configuration.  In the
continuum mechanics literature such formulations are called Lagrangian, whereas
in the finite element literature these formulations are called total Lagrangian
formulations.  For a total Lagrangian formulation, a Lagrangian mesh is always
used.  The conservation equations in a Lagrangian framework are fundamentally
identical to those which have just been developed, they are just expressed in terms
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of different variables.  In fact, as we shall show, they can be obtained by the
transformations in Box 3.2 and the chain rule.  This Section can be skipped in a
first reading.  It is included here because much of the finite element literature for
nonlinear mechanics employs total Lagrangian formulations, so it is essential for a
serious student of the field.

The independent variables in the total Lagrangian formulation are the
Lagrangian (material) coordinates X  and the time t.  The major dependent
variables are the initial density   ρ0 X, t( )  the displacement   u X ,t( ) and the

Lagrangian measures of stress and strain.  We will use the nominal stress   P X,t( )
as the measure of stress.  This leads to a momentum equation which is strikingly
similar to the momentum equation in the Eulerian description, Eq. (3.5.33), so it is
easy to remember.  The deformation will be described by the deformation gradient

  F X,t( ) .  The pair P  and F  is not especially useful for constructing constitutive
equations, since F does not vanish in rigid body motion and P  is not symmetric.
Therefore constitutive equations are usually formulated in terms of the of the PK2
stress S  and the Green strain E .  However, keep in mind that relations between S
and E  can easily be transformed to relations between P  and E or F by use of the
relations in Boxes 3.2.

The applied loads are defined on the reference configuration.  The traction
t0 is defined in Eq. (3.4.2); t 0 is in units of force per unit initial area.  As
mentioned in Chapter 1, we place the noughts, which indicate that the variables
pertain to the  reference configuration, either as subscripts or superscripts,
whichever is convenient.  The body force is denoted by b , which is in units of
force per unit mass; the body force per initial unit volume is given by ρ0b , which
is equivalent to the force per unit current volume ρb .  This equivalence is shown
in the following

df = ρbdΩ= ρbJdΩ0 = ρ0bdΩ0 (3.6.1)

where the second equality follows from the conservation of mass, Eq. (3.5.25).
Many authors, including Malvern(1969) use different symbols for the body forces
in the two formulations; but this is not necessary with our convention of
associating symbols with fields.

The conservation of mass has already been developed in a form that
applies to the total Lagrangian formulation, Eq.(3.5.25).  Therefore we develop
only the conservation of momentum and energy.

3.6.2  Conservation of Linear Momentum.  In a Lagrangian description,
the linear momentum of a body is given in terms of an integral over the reference
configuration by

  

p0 t( ) = ρ0v X, t( )
Ω0

∫ dΩ0  (3.6.2)

The total force on the body is given by integrating the body forces over the
reference domain and the traction over the reference boundaries:
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f0 t( ) = ρ0b X , t( )
Ω0

∫ dΩ0 + t0 X, t( )dΓ0

Γ0

∫ (3.6.3)

Newton’s second law then gives

dp0
dt = f0 (3.6.4)

Substituting (3.6.2) and (3.6.3) into the above gives

d
dt ρ0v

Ω0

∫ dΩ0 = ρ0b
Ω0

∫ dΩ0+ t0

Γ0

∫ dΓ0 (3.6.5)

On the LHS, the material derivative can be taken inside the integral because the
reference domain is constant in time, so

 

  

d
dt ρ0v

Ω0

∫ dΩ0 = ρ0
∂v X ,t( )

∂t
Ω0

∫ dΩ0 (3.6.6)

Using Cauchy’s law ( 3.4.2) and Gauss’ theorem in sequence gives

t0 dΓ0 = n 0 ⋅ PdΓ0 =
Γ0

∫
Γ0

∫ ∇X ⋅PdΩ0
Ω0

∫    or

t i
0 dΓ0 = n j

0Pji dΓ0 =
Γ0

∫
Γ0

∫
∂Pji

∂Xj
dΩ0

Ω0

∫ (3.6.7)

Note that in tensor notation, the left gradient appears in the domain integral
because the nominal stress is defined with the normal on the left side. The
definition of the material gradient, which is distinguished with the subscript X ,
should be clear from the indicial expression.  The index on the material coordinate
is the same as the first index on the nominal stress: the order is important because
the nominal stress is not symmetric.

Substituting (3.6.6) and (3.6.7) into (3.6.5) gives

  

ρ0
∂v X, t( )

∂t − ρ0b−∇X ⋅P
 
 
 

 
 
 

Ω0

∫ dΩ0 = 0 (3.6.8)

which, because of the arbitrariness of Ω0 gives

  
ρ0

∂v X ,t( )
∂t =∇ X ⋅P + ρ0b           or        

  
ρ0

∂vi X, t( )
∂t =

∂Pji

∂X j
+ ρ0bi (3.6.9)

Comparing the above with the momentum equation in the Eulerian description,
Eq.(3.5.33), we can see that they are quite similar: in the Lagrangian form of the
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momentum equation the Cauchy stress is replaced by the nominal stress and the
density is replaced by the density in the reference configuration.

The above form of the momentum equation can also be obtained directly
by transforming all of the terms in Eq.(3.5.33) using the chain rule and Box 3.2.
Actually, this is somewhat difficult, particularly for the gradient  term.  Using the
transformation from Box 3.2 and the chain rule gives

∂σ ji

∂x j
=

∂ J −1Fjk Pki
 
 

 
 

∂x j
= Pki

∂
∂x j

J−1Fjk( ) + J−1Fjk
∂Pki

∂x j
= J −1 ∂xj

∂Xk

∂Pki

∂x j
(3.6.10)

In the above we have used the definition of the deformation gradient F , Eq.

(3.2.14) and ∂(J−1Fjk) ∂xj = 0 ,(see Ogden(1984)).  Thus (3.5.33) becomes

ρ
∂vi

∂t
= J−1 ∂x j

∂Xk

∂Pki

∂x j
+ ρbi (3.6.11)

By the chain rule, the first term on the RHS is J −1∂Pki ∂Xk .  Multiplying the
equation by J and using mass conservation, ρJ = ρ0  then gives Eq. (3.6.9).

3.6.3  Conservation of Angular Momentum.  The balance equations for
angular momentum will not be rederived in the total Lagrangian framework.  We
will use the consequence of angular momentum balance in Eq. (3.5.40) in
conjunction with the stress transformations in Box 3.2 to derive the consequences
for the Lagrangian measures of stress.  Substituting the transformation expression
from Box 3.2 into (3.5.40) gives

J−1F ⋅P = J−1F ⋅P( )T
(3.6.12)

Multiplying both sides of the above by J and taking the transpose inside the
parenthesis then gives

F ⋅ P = PT ⋅ FT             FikPkj = Pik
T Fkj

T = FjkPki (3.6.13)

The above equations are nontrivial only when i ≠ j .  Thus the above gives one
nontrivial equation in two dimensions, three nontrivial equations in three
dimensions.  So, while the nominal stress is not symmetric, the number of
conditions imposed by angular momentum balance equals the number of
symmetry conditions on the Cauchy stress, Eq. (3.5.40).  In two dimensions, the
angular momentum equation is

F11P12 + F12P22 = F21P11 + F22P21  (3.6.14)

These conditions are usually imposed directly on the constitutive equation, as will
be seen in Chapter 5.
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For the PK2 stress, the conditions emanating from conservation of angular
momentum can be obtained by expressing P  in terms of S  in Eq. (3.6.13), (the
same equations are obtained if σ is replaced by S  in the symmetry conditions
(3.5.40)), which gives

F ⋅ S ⋅ FT = F ⋅ST ⋅ FT (3.6.15)

Since F  must be a regular (nonsingular) matrix, its inverse exists and we can

premultiply by F−1  and postmultiply by F−T ≡ F−1( )T
 the above to obtain

S = ST (3.6.16)

So the conservation of angular momentum requires the PK2 stress to be
symmetric.

3.6.4  Conservation of Energy in Lagrangian Description.  The
counterpart of Eq. (3.5.45) in the reference configuration can be written as

  

d
dt ( ρ0wint +

Ω0

∫ 1
2 ρ0v ⋅v )dΩ0 =

v ⋅ ρ0b
Ω0

∫ dΩ0 + v ⋅
Γ0

∫ t0dΓ0 + ρ0s
Ω0

∫ dΩ0 − n0 ⋅˜ q 
Γ0

∫ dΓ0

(3.6.17)

The heat flux in a total Lagrangian formulation is defined as energy per unit
reference area and therefore is denoted by   ̃  q  to distinguish it from the heat flux
per unit current area q , which are related by

    ̃  q = J−1FT ⋅q (3.6.17b)

The above follows from Nanson's law (3.4.5) and the equivalence

  

n ⋅qdΓ= n0 ⋅˜ q dΓ0
Γ0

∫
Γ
∫

Substituting (3.4.5) for n  into the above gives (3.6.17b).

The internal energy per unit initial volume in the above is related to the
internal energy per unit current volume in (3.5.45) as follows

  ρ0 wintdΩ0 = ρ0w
int J−1dΩ= ρw intdΩ (3.6.18)

where the last step follows from the mass conservation equation (3.5.9).  On the
LHS, the time derivative can be taken inside the integral since the domain is
fixed, giving
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d
dt ( ρ0 wint +

Ω0

∫ 1
2 ρ0v ⋅v )dΩ0 = ( ρ0

∂wint X, t( )
∂t

+
Ω 0

∫ ρ0v ⋅
∂v X, t( )

∂t
)dΩ0 (3.6.19)

The second term on the RHS can be modified as follows by using Eq. (3.4.2) and
Gauss’s theorem

v ⋅
Γ0

∫ t0dΓ0 = v jt j
0

Γ0

∫ dΓ0 = v jni
0Pij

Γ0

∫ dΓ0

= ∂
∂Xi

v jPij( )
Ω0

∫ dΩ0 =
∂v j

∂Xi
Pij + v j

∂Pij

∂Xi

 

 
 

 

 
 

Ω0

∫ dΩ0

(3.6.20)

                  =
∂Fji

∂t
Pij +

∂Pij

∂Xi
v j

 

 
 

 

 
 

Ω0

∫ dΩ0 = ∂FT

∂t
:P+ ∇X ⋅ P( )⋅ v

 
 
  

 
 

Ω0

∫ dΩ0

Gauss’s theorem on the fourth term of the LHS and some manipulation gives

  

ρ0
∂w int

∂t
−

∂FT

∂t
:P+∇ X ⋅˜ q − ρ0s + ρ0

∂v X,t( )
∂t

−∇ X ⋅P − ρ0b
 
 
  

 
 ⋅v

 

 
 

 

 
 

Ω 0

∫  dΩ0 = 0

(3.6.21)

The term inside the parenthesis of the integrand is the total Lagrangian form of
the momentum equation, (3.6.30), so it vanishes.  Then because of the
arbitrariness of the domain, the integrand vanishes, giving

  
ρ0 ˙ w int = ρ0

∂wint X,t( )
∂t

= ˙ F T:P −∇ X ⋅˜ q + ρ0s (3.6.22)

In the absence of heat conduction or heat sources, the above gives

  ρ0 ˙ w int = ˙ F jiPij = ˙ F T:P = P: ˙ F (3.6.23)

This is the Lagrangian counterpart of Eq. (3.5.50).  It shows that the nominal
stress is conjugate in power to the material time derivative of the deformation
gradient.

These energy conservation equations could also be obtained directly from
Eq. (3.5.50) by transformations.   This is most easily done in indicial notation.

ρDijσ ij = ρ ∂vi

∂x j
σij      by definition of D  and symmetry of stress  σ

  = ρ ∂v i

∂Xk

∂Xk

∂x j
σ ij      by chain rule
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= ρ ˙ F ik

∂Xk

∂xj
σ ij      by definition of F , Eq. (3.2.10) (3.6.24)

  = ρ ˙ F ik Pki J−1 = ρ0
˙ F ikPki     by Box 3.2 and mass conservation

3.6.5  Power in terms of PK2 stress.  The stress transformations in Box
3.2 can also be used to express the internal energy in terms of the PK2 stress.

  
˙ F T : P ≡ ˙ F ikPki = ˙ F ikSkrFri

T          by Box 3.2

  
= Fri

T ˙ F ikSrk = FT ⋅ ˙ F ( ) :S           by symmetry of S (3.6.25)

  
= 1

2 FT ⋅ ˙ F + ˙ F T ⋅F( ) + 1
2 FT ⋅ ˙ F − ˙ F T ⋅F( )( ):S           decomposing 

tensor into symmetric and antisymmetric parts

  =
1
2 ( FT ˙ F + ˙ F TF) :S     since contraction of symmetric and  

antisymmetric tensors vanishes

Then, using the time derivative of E  as defined in Eq.(3.3.20) gives

  ρ0 ˙ w int = ˙ E :S = S:˙ E = ˙ E ijSij (3.6.26)

This shows that the rate of the Green strain tensor is conjugate in power (or
energy) to the PK2 stress.

Thus we have identified three stress and strain rate measures which are
conjugate in the sense of power.  These conjugate measures are listed in Box 3.4
along with the corresponding expressions for the power.  Box 3.4 also includes a
fourth conjugate pair, the corotational Cauchy stress and corotational rate-of-
deformation.   Its equivalence to the power in terms of the unrotated Cauchy stress
and rate-of-deformation is easily demonstrated by (3.4.15) and thhe orthgonality
of the rotation matrix.

Conjugate stress and strain rate measures are useful in developing weak
forms of the momentum equation, i.e. the principles of virtual work and power.
The conjugate pairs presented here just scratch the surface: many other conjugate
pairs have been developed in continuum mechanics, {Ogden(1984), Hill()}.
However, those presented here are the most frequently used in nonlinear finite
element methods.

Box 3.4

Stress-deformation (strain) rate pairs conjugate in power

 Cauchy stress/rate-of deformation:    ρ
˙ w int = D:σ = σ:D = Dijσ ij
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 Nominal stress/rate of deformation gradient:    ρ0 ˙ w int = ˙ F :PT = P:˙ F T = ˙ F ijPji

 PK2 stress/rate of Green strain:    ρ0 ˙ w int = ˙ E :S = S:˙ E = ˙ E ijSij

 Corotational Cauchy stress/rate-of-deformation:   ρ
˙ w int = ˆ D :ˆ σ = ˆ σ : ˆ D = ˆ D ij ˆ σ ij

3.7  POLAR DECOMPOSITION AND FRAME-INVARIANCE

In this Section, the role of rigid body rotation is explored.  First, a theorem
known as the polar decomposition theorem is presented.  This theorem enables the
rigid body rotation to be obtained for any deformation.  Next, we consider the
effect of rigid body rotations on constitutive equations.  We show that for the
Cauchy stress, a modification of the time derivatives is needed to formulate rate
constitutive equations.  This is known as a frame-invariant or objective rate of
stress.  Three frame-invariant rates are presented: the Jaumann rate, the Truesdell
rate and the Green-Naghdi rate.  Some startling differences in hypoelastic
constitutive equations with these various rates are then demonstrated.

3.7.1 Polar Decomposition Theorem. A fundamental theorem which
elucidates the role of rotation in large deformation problems is the polar
decomposition theorem.  In continuum mechanics, this theorem states that any
deformation gradient tensor F can be multiplicatively decomposed into the
product of an orthogonal matrix R and a symmetric tensor U , called the right
stretch tensor (the adjective right is often omitted):

F = R ⋅ U          or          Fij =
∂xi

∂Xj
= RikUkj           where (3.7.1)

R−1 = RT and U = UT (3.7.2)

Rewriting the above with Eq. (3.2.15) gives

dx = R ⋅U ⋅ dX (3.7.3)

The above shows that any motion of a body consists of a deformation, which is
represented by the symmetric mapping U,  and a rigid body rotation R; R  can be
recognized as a rigid-body rotation because all proper orthogonal transformations
are rotations.  Rigid body translation does not appear in this equation because dx
and dX  are differential line segments in the current and reference configurations,
respectively, and the differential line segments are not affected by translation.  If
Eq. (3.7.3) were integrated to obtain the deformation function,   x = φ X ,t( ), then
the rigid body translation would appear as a constant of integration.  In a
translation, F = I , and dx=dX .

The polar decomposition theorem is proven in the following.  To simplify
the proof, we treat the tensors as matrices.  Premultiplying both sides of Eq.
(3.7.1) by its transpose gives
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FT ⋅F = RU( )T RU( ) = UTRTRU = UTU = UU (3.7.4)

where (3.7.2) is used to obtain the third and fourth equalities.  The last term is the
square of the U matrix.  It  follows that

U = FT ⋅F( )1
2

(3.7.5)

The fractional power of a matrix is defined in terms of its spectral
representation, see e.g. Chandrasekharaiah and Debnath (1994, p96).  It is
computed by first transforming the matrix to its principal coordinates, where the
matrix becomes a diagonal matrix with the eigenvalues on the diagonal.  The
fractional power is then applied to all of the diagonal terms, and the matrix is
transformed back.  This is illustrated in the following examples.  The matrix
FT ⋅F  is positive definite, so all of its eigenvalues are positive. Consequently the
matrix U is always real.

The rotation part of the deformation, R , can then be found by applying Eq.
(3.7.1), which gives

R = F ⋅ U−1 (3.7.6)

The existence of the inverse of U  follows from the fact that all of its eigenvalues
are always positive, since the right hand side of Eq. (3.7.5) is always a positive
matrix.

The matrix U  is closely related to an engineering definition of strain.  Its
principal values represent the elongations of line segments in the principal
directions of U .  Therefore, many researchers have found this tensor to be
appealing for developing constitutive equations.  The tensor U − I  is called the
Biot strain tensor.

A deformation can also be decomposed in terms of a left stretch tensor and
a rotation according to

F = V ⋅ R (3.7.7)

This form of the polar decomposition is used less frequently and we only note it in
passing here.  It will play a role in discussions of material symmetry for elastic
materials at finite strain.  The polar decomposition theorem, which is usually
applied to the deformation tensor, applies to any invertible square matrix: any
square matrix can be multiplicatively decomposed into a rotation matrix and a
symmetric matrix, see  Chandrasekharaiah and Debnath (1994, p97).

It is emphasized that the rotations of different line segments at the same
point depend on the orientation of the line segment.  In a three dimensional body,
only three line segments are rotated exactly by R(X ,t) at any point X .  These are
the line segments corresponding to the principal directions of the stretch tensor U .
It can be shown that these are also the principal directions of the Green strain
tensor.  The rotations of line segments which are oriented in directions other than
the principal directions of E  are not given by R .
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Example 3.10  Consider the motion of a triangular element in which the nodal
coordinates   xI( t )  and   yI ( t)  are given by

  

x1( t) = a +2at y1( t) = 2at

x2 ( t) = 2at y2 ( t ) = 2a −2at

x3( t) = 3at y3( t ) = 0

(E3.10.1)

Find the rigid body rotation and the stretch tensors by the polar decomposition
theorem at t=1.0 and at t=0.5.

The motion of a triangular domain can most easily be expressed by using
the shape functions for triangular elements, i.e. the area coordinates.  In terms of
the triangular coordinates, the motion is given by

  x ξ,t( ) = x1( t )ξ1 + x2( t )ξ2 + x3( t )ξ3 (E3.10.2)

  y ξ ,t( ) = y1( t )ξ1 + y2( t )ξ2 + y3 (t )ξ3 (E3.10.3)

where  ξ I  are the triangular, or area, coordinates; see Appendix A; the material
coordinates appear implicitly in the RHS of the above through the relationship
between the area coordinates and the coordinates at time t=0.  To extract those
relationships we write the above at time t=0, which gives

  x ξ,0( ) = X = X1ξ1 + X2ξ2 + X3ξ3 = aξ1 (E3.10.4)

  y ξ ,0( ) = Y = Y1ξ1 +Y2ξ2 +Y3ξ3 = 2aξ2 (E3.10.5)

In this case, the relations between the triangular coordinates are particularly
simple because most of the nodal coordinates vanish in the initial configuration,
so the relations developed above could be obtained by inspection.

Using Eq. (E3.10.5) to express the triangular coordinates in terms of the
material coordinates, Eq (E3.10.1) can be written

  

x X,1( ) = 3aξ1+ 2aξ2 + 3aξ3

= 3X + Y + 3a 1− X
a

− Y
2a

 
 
  

 
 = 3a − Y

2

(E3.10.6)

  

y( X,1) = 2aξ1 + 0ξ2 + 0ξ3

= 2 X
(E3.10.7)

The deformation gradient is then obtained by evaluating the derivatives of the
above motion  using Eq. (3.2.16)
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F =
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 

 
 

 

 
 =

0 −0.5

2 0
 
  

 
  (E3.10.8)

The stretch tensor U is then evaluated by Eq. (3.7.5):

  
U = ( FT F)1/ 2 =

4 0

0 0.25
 
  

 
  

1/ 2

=
2 0

0 0. 5
 
  

 
  (E3.10.9)

In this case the U  matrix is diagonal, so the principal values are simply the
diagonal terms.  The positive square roots are chosen in evaluating the square root
of the matrix because the principal stretches must be positive; otherwise the
Jacobian determinant would be negative since according to Eq. (3.7.1),

  J =det R( )det U( )  and   det R( ) = 1, so   det U( ) < 0  implies J < 0 .  The rotation
matrix R  is then given by Eq. (3.7.6):

  
R = FU−1 =

0 −0. 5

2 0
 
  

 
  

0. 5 0

0 2
 
  

 
  =

0 −1

1 0
 
  

 
  (E3.10.10)

Comparing the above rotation matrix R  and Eq. (3.2.25), it can be seen that the
rotation is a counterclockwise 90 degree rotation.  This is also readily apparent
from Fig. 3.9.  The deformation consists of an elongation of the line segment
between nodes 1 and 3, i.e. dX, by a factor of 2, (see U11 in Eq. (E3.10.9)) and a
contraction of the line segment between nodes 3 and 2, i.e. dY, by a factor of 0.5,
(see U22  in Eq. (E3.10.9)), followed by a translation of 3a in the x-direction and a
90 degree rotation.  Since the original line segments along the x and y directions
correspond to the principal directions, or eigenvectors, of U , the rotations of these
line segments correspond to the rotation of the body in the polar decomposition
theorem.

The configuration at t=0.5 is given by evaluating Eq. (E3.10.1) at that time,
giving:

  

x X,0.5( ) = 2aξ1 + aξ2 +1.5aξ3

= 2a
X
a

+ a
Y
2a

+1.5a 1− X
a

− Y
2a

 
 
  

 
 = 1.5a + 0.5X −0.25Y

(E3.10.11a)

  

y( X,0.5) = aξ1 + aξ2 +0ξ3

= a
X
a

+ a
Y
2a

= X + 0.5Y
(E3.10.11b)

The deformation gradient F  is then given by

  

F =
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

 

 
 

 

 
 =

0.5 −0. 25

1 0.5
 
  

 
  (E3.10.12)
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and the stretch tensor U  is given by Eq. (3.7.6):

  
U = ( FT F)1/ 2 =

1. 25 0.375

0.375 0.3125
 
  

 
  

1/ 2

=
1.0932 0.2343

0.2343 0.5076
 
  

 
  (E3.10.13)

The last matrix in the above is obtained by finding the eigenvalues λi  of FTF ,
taking their positive square roots, and placing them on a diagonal matrix called

  
H = diag λ1 , λ2( ) .  The matrix H  transformed back to the global components

by U = ATHA  where A  is the matrix whose columns are the eigenvectors of FTF .
These matrices are:

  
A =

−0.9436 0.3310

−0 .3310 −0.9436

 

 
 

 

 
 H =

1 .3815 0

0 0 .1810

 

 
 

 

 
 (E3.10.14)

The rotation matrix R  is then found by

  
R = FU−1 =

0. 5 −0.25

1 0. 5
 
  

 
  

1. 0932 0. 2343

0.2343 0. 5076
 
  

 
  

−1

=
0.6247 −0.7809

0. 7809 0.6247
 
  

 
  

(E3.10.15)

Example 3.11 Consider the deformation for which the deformation gradient is

  

F =
c − as ac− s

s + ac as +c
 
  

 
  

c =cos θ,      s = sin θ
(E3.11.1)

where a is a constant.  Find the stretch tensor and the rotation matrix when a=
1

2
,

θ = π
2

.

For the particular values given

  
F =

− 1
2

−1

1 1
2

 

 
 

 

 
      C = FT ⋅F =

1.25 1

1 1.25
 
  

 
  (E3.11.2)

The eigenvalues and corresponding eigenvectors of C  are

  
λ1 = 0.25        y1

T = 1

2
1 −1[ ]

  
λ2 = 2.25        y2

T = 1

2
1 1[ ] (E3.11.3)
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The diagonal form of C , diag(C), consists of these eigenvalues and the square
root of diag(C) is obtained by taking the positive square roots of these
eigenvalues

  
diag(C) =

1
4

0

0 9
4

 

 
 

 

 
 ⇒ diag(C1 / 2) =

1
2

0

0 3
2

 

 
 

 

 
 (E3.11.4)

The U  matrix is then obtained by transforming diag(C) back to the x-y coordinate
system

  
U = Y ⋅diag(C1/ 2 ) ⋅YT = 1

2

1 1

−1 1
 
  

 
  

1
2

0

0 3
2

 

 
 

 

 
 

1

2

1 −1

1 1
 
  

 
  =

1

2

2 1

1 2
 
  

 
  (E3.11.5)

The rotation matrix is obtained by Eq. (3.7.6):

R = FU−1 =
− 1

2
−1

1 1
2

 

 
 

 

 
 

2

3

2 −1

−1 2
 
  

 
  =

0 −1

1 0
 
  

 
  (E3.11.6)

3.7.2 Objective Rates in Constitutive Equations.  To explain why
objective rates are needed for the Cauchy stress tensor, we consider the rod shown
in Fig. 3.10.  Suppose the simplest example of a rate constitutive equation is used,
known as a hypoelastic law, where the stress rate is linearly related to the rate-of-
deformation:

Dσij

Dt
= CijklDkl           or         

Dσ
Dt

= C :D (3.7.8)

x xY

  X , yy

σ0

σ0

           σ x = σ0 ,σy = 0   σ x = 0,σ y = σ0
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Fig. 3.10.  Rotation of a bar under initial stress showing the change of Cauchy stress which occurs
without any deformation.

The question posed here is: are the above valid constitutive equations?

The answer is negative, and can be explained as follows.  Consider a solid,
such as the bar in Fig. 3.10, which is stressed in its initial configuration with
σ x = σ0 .  Now assume that the bar rotates as shown at constant length, so there is
no deformation, i.e. D=0.  Recall that in rigid body motion a state of initial stress
(or prestress) is frozen in the body in a solid, i.e. since the deformation does not
change in a rigid body rotation, the stress as viewed by an observer riding with the
body should not change.  Therefore the Cauchy stress expressed in a fixed
coordinate system will change during the rotation, so the material derivative of the
stress must be nonzero.  However, in a pure rigid body rotation, the right hand
side  of Eq. (3.7.8) will vanish throughout the motion, for we have already shown
that the rate-of-deformation vanishes in rigid body motion.  Therefore, something
must be missing in Eq. (3.7.8).

The situation explained in the previous paragraph is not just hypothetical;
it is representative of what happens in real situations and simulations.  A body
may be in a state of stress due to thermal stresses or prestressing; an example is
the stress in prestressed reinforcement bars.  Large rotations of an element may
occur due to actual rigid body motions of the body, as in a space vehicle or a
moving car, or large local large rotations, as in a buckling beam.  The rotation
need not be as large as 90 degrees for the same effect; we have chosen 90 degrees
to simplify the numbers.

The missing factor in Eq. (3.7.8) is that it does not account for the rotation
of the material.  The material rotation can be accounted for correctly be using an
objective rate of the stress tensor; it is also called a frame-invariant rate.  We will
consider three objective rates, the Jaumann rate, the Truesdell rate and the Green-
Nagdi rate.  All of these are used in current finite element software.  There are
many other objective rates, some of which will be discussed in Chapter 9.

3.7.3  Jaumann rate.  The Jaumann rate of the Cauchy stress is given by

σ∇J =
Dσ
Dt

− W ⋅ σ − σ⋅WT    or   σij
∇J =

Dσij

Dt
− Wikσkj − σikWkj

T (3.7.9)

where W  is the spin tensor given by Eq. (3.3.11).  The superscript   "
∇ "  here

designates an objective rate; the Jaumann rate is designated by the subsequent
superscript “J”.  One appropriate hypoelastic constitutive equation is given by

σ∇J = CJ :D or σ ij
∇J = Cijkl

J Dkl (3.7.10)

The material rate for the Cauchy stress tensor, i.e. the correct equation
corresponding to (3.7.8), is then

Dσ
Dt

= σ∇J + W ⋅ σ + σ⋅ WT = CJ :D+ W ⋅σ + σ ⋅WT (3.7.11)
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where the first equality is just a rearrangement of Eq. (3.7.9) and the second
equality follows from (3.7.10).  We see in the above that the objective rate is a
function of material response.  The material derivative of the Cauchy stress then
depends on two parts: the rate of change due to material response, which is
reflected in the objective rate, and the change of stress due to rotation, which
corresponds to the last two terms in Eq. (3.7.11).

Truesdell Rate.  The Truesdell rate and Green-Naghdi rates are given in Box
3.5.  The Green-Naghdi rate differs from the Jaunmann rate only in using a
different measure of the rotation of the material.  In the Green-Nagdi rate, the
angular velocity defined in Eq. (3.2.23b) is used.

Box 3.5  Objective Rates

Jaumann rate

σ∇J =
Dσ
Dt

− W ⋅ σ − σ⋅WT           σij
∇J =

Dσij

Dt
− Wikσkj − σikWkj

T

Truesdell rate  (3.2.23)

  
σ∇T =

Dσ
Dt

+ div v( )σ −L ⋅σ − σ⋅ LT

  
σij

∇T =
Dσij

Dt
+

∂vk

∂xk
σij −

∂vi

∂xk
σkj −σik

∂v j

∂xk
Green-Naghdi rate (3.2.24)

  
σ∇G =

Dσ
Dt

− Ω⋅σ −σ ⋅ΩT             
  
σ ij

∇G =
Dσ ij

Dt
−Ω ikσkj −σ ikΩkj

T

  Ω = ˙ R ⋅RT ,     L =
∂v
∂x

= D + W        Lij =
∂vi

∂x j
= Dij + Wij

The relationship between the Truesdell rate and the Jaumann rate can be examined
by replacing the velocity gradient in Eq. (3.7.23) by its symmetric and
antisymmetric parts, i.e. Eq. (3.3.9):

  
σ∇T =

Dσ
Dt

+ div(v)σ −(D + W) ⋅σ − σ ⋅(D + W)T (3.7.12)

A comparison of Eqs. (3.7.9) and (3.7.12) then shows that the Truesdell rate
includes the same spin-related terms as the Jaumann rate, but also includes
additional terms which depend on the rate of deformation.  To examine the
relationship further, we consider a rigid body rotation for the Truesdell rate and
find that

  
when D = 0, σ∇T =

Dσ
Dt

−W ⋅σ − σ⋅ WT (3.7.13)

Comparison of the above with Eq. (3.7.9) shows that the Truesdell rate is
equivalent to the Jaumann rate in the absence of deformation, i.e. in a rigid body
rotation.  However, when the Jaumann rate is used in a constitutive equation, it
will give a different material rate of stress unless the constitutive equation is
changed appropriately.  Thus if we write the constitutive equation in the form

3-65



T. Belytschko, Continuum Mechanics, December 16, 1998 66

  σ
∇T = CT :D (3.7.14)

then the material response tensor   C
T  will differ from the material response tensor

associated with the Jaumann rate form of the material law in Eq. (3.7.11).  For this
reason, whenever the material response matrix can refer to different rates, we will
often add the superscripts to specify which objective rate is used by the material
law.  The hypoelastic relations (3.7.11) and (3.7.14) represent the same material

response if the material response tensors   C
T  and CJ  are related as follows:

  
σ∇T = CJ :D = CT +Cσ( ) :D (3.7.15)

where from (3.7.12)

Cσ :D = divv( )σ − D ⋅σ− σ⋅DT = trD( )σ− D ⋅σ − σ⋅ DT (3.7.16)

The components of Cσ  are given by

Cijkl
σ =σ ijδkl −δ ikσ jl −σ ilδ jk (3.7.17)

With these relations, the hypoelastic relations can be modified for a Truesdell rate
to match the behavior of a constitutive eqaution expressed in terms of the
Jaumann rate.  The correspondence to the Green-Naghdi rate depends on the
difference between the angular velocity and the spin and is more difficult to adjust
for.

Example 3.12  Consider a body rotating in the x-y plane about the origin with
an angular velocity ω  ; the original configuration is prestressed as shown in Fig.
3.11.  The motion is rigid body rotation and the related tensors are given in
Example 3.2.  Evaluate the material time derivative of the Cauchy stress using the
Jaumann rate and integrate it to obtain the Cauchy stress as a function of time.

ωt

y

x

original
configuration

σ 0
x σ 0

x

y

x

current 
configuration

σ 0
x

σ 0
x

Figure 3.11.  Rotation of a prestressed element with no deformation.

From Example 3.2, Eq. (E3.2.8) we note that
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F = R =

c −s

s c

 
  

 
  , ˙ F = ω

−s −c

c −s

 
  

 
  , F−1 =

c s

−s c

 
  

 
  (E3.12.1a)

where   s = sinωt , c =cos ωt .  The spin is evaluated in terms of the velocity gradient
L , which is given for this case by Eq. (3.3.18) and then using (E3.12.1a) :

  
L = ˙ F ⋅F−1 = ω

− s −c

c −s

 
  

 
  

c s

−s c

 
  

 
  =ω

0 −1

1 0

 
  

 
  ⇒

W = 1
2 L − LT( ) = ω

0 −1

1 0

 
  

 
   (E3.12.1b)

The material time derivative based on the Jaumann rate is then given by
specializing (3.7.9) to the case when there is no deformation:

Dσ
Dt

= W ⋅σ +σ ⋅WT (E3.12.1.c)

(D=0, since there is no deformation; this is easily verified by noting that the
symmetric part of L  vanishes).  We now change the material time derivative to an
ordinary derivative since the stress is constant in space and write out the matrices
in (E3.12.1c):

dσ
dt

= ω
0 −1

1 0

 
  

 
  

σ x σ xy

σxy σ y

 

 
 

 

 
 +

σ x σxy

σ xy σ y

 

 
 

 

 
 ω

0 1

−1 0

 
  

 
  (E3.12.2)

dσ
dt

= ω
−2σxy σ x − σy

σ x − σy 2σ xy

 

 
 

 

 
 (E3.12.3)

It can be seen that the the material time derivative of the Cauchy stress  is
symmetric.  We now write out the three scalar ordinary differential equations in
three unknowns,   σ x ,σ y ,andσ xy corresponding to (E3.12.3)  (the fourth scalar
equation of the above tensor equation is omitted because of symmetry):

dσ x

dt
= −2ωσxy (E3.12.4a)

dσ y

dt
= 2ωσ xy (E3.12.4b)

dσ xy

dt
=ω σ x −σy( ) (E3.12.4c)

The initial conditions are
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  σ x 0( ) =σ x
0 , σ y 0( ) = 0, σ xy 0( ) = 0 (E3.12.5)

It can be shown that the solution to the above differential equations is

σ = σ x
0 c2 cs

cs s2

 

 
 

 

 
 (E3.12.6)

We only verify the solution for σ x t( ) :

  

dσ x

dt
= σ x

0 d cos2ωt( )
dt

=σ x
0ω −2cosωt sinωt( ) =−2ωσ xy (E3.12.7)

where the last step follows from the solution for σ xy t( )  as given in Eq. (E3.12.7);
comparing with (E3.14.4a) we see that the differential equation is satisfied.

Examining Eq. (E3.12.6) we can see that the solution corresponds to a
constant state of the corotational stress   ̂ σ , i.e. if we let the corotational stress be
given by

 
  

ˆ σ =
σ x

0 0

0 0

 

 
 

 

 
 

then the Cauchy stress components in the global coordinate system are given by

(e3.12.6) by   σ = R ⋅ ˆ σ ⋅RT  according to Box 3.2 with (E3.12.1a) gives the result
(E3.12.6).

We leave as an exercise to show that when all of the initial stresses are nonzero,
then the solution to Eqs. (E3.12.4) is

σ =
c −s

s c

 
  

 
  

σ x
0 σ xy

0

σxy
0 σ y

0

 

 
 

 

 
 

c s

−s c

 
  

 
  (E3.12.8)

Thus  in rigid body rotation, the Jaumann rate changes the Cauchy stress so that
the corotational stress is constant.  Therefore, the Jaumann rate is often called the
corotational rate of the Cauchy stress.  Since the Truesdell and Green-Naghdi
rates are identical to the Jaumann rate in rigid body rotation, they also correspond
to the corotational Cauchy stress in rigid body rotation.

Example 3.13  Consider an element in shear as shown in Fig. 3.12.  Find the
shear stress using the Jaumann, Truesdell and Green-Naghdi rates for a
hypoelastic, isotropic material.

3-68



T. Belytschko, Continuum Mechanics, December 16, 1998 69

Ω0 Ω

Figure 3.12.

The motion of the element is given by

x = X + tY

y = Y
(E3.13.1)

The deformation gradient is given by Eq. (3.2.16), so

  
F =

1 t

0 1
 
  

 
  ,      ˙ F =

0 1

0 0
 
  

 
  ,      F−1 =

1 −t

0 1
 
  

 
  (E3.13.2)

The velocity gradient is given by Eq. (E3.12.1), and the rate-of-deformation and
spin are its symmetric and skew symmetric parts so

  
L = ˙ F F−1 =

0 1

0 0
 
  

 
  ,      D = 1

2

0 1

1 0
 
  

 
  ,      W = 1

2

0 1

−1 0
 
  

 
  (E3.13.3)

The hypoelastic, isotropic constitutive equation in terms of the Jaumann rate is
given by

  
˙ σ = λJ traceD( )I +2µJ D + W ⋅σ + σ⋅WT (E3.13.4)

We have placed the superscripts on the material constants to distinguish the
material constants which are used with different objective rates. Writing out the
matrices in the above gives

  

˙ σ x ˙ σ xy

˙ σ xy
˙ σ y

 

 
 

 

 
 = µJ 0 1

1 0

 
  

 
  

+ 1

2

0 1

−1 0

 
  

 
  

σ x σxy

σ xy σ y

 

 
 

 

 
 +

1

2

σ x σ xy

σxy σ y

 

 
 

 

 
 

0 −1

1 0

 
  

 
  

(E3.13.5)

so

  
˙ σ x = σ xy ,       ˙ σ y = −σ xy ,       ˙ σ xy = µ J + 1

2
σy −σx( ) (E3.13.6)

The solution to the above differential equations is
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  σ x = −σy = µJ 1− cos t( ),      σ xy = µ J sin t (E3.13.7)

For the Truesdell rate, the constitutive equation is

  
˙ σ = λT trD + 2µT D+ L ⋅σ +σ ⋅LT − tr D( )σ (E3.13.8)

 This gives

  

˙ σ x ˙ σ xy

˙ σ xy
˙ σ y

 

 
 

 

 
 = µT 0 1

1 0

 
  

 
  

+
0 1

0 0

 
  

 
  

σx σ xy

σ xy σ y

 

 
 

 

 
 +

σ x σ xy

σ xy σy

 

 
 

 

 
 

0 0

1 0

 
  

 
  

(E3.13.9)

where we have used the results trace D = 0 , see Eq. (E3.13.3).  The differential
equations for the stresses are

  
˙ σ x = 2σ xy ,       ˙ σ y = 0,       ˙ σ xy = µT + σy (E3.13.10)

and the solution is

  σ x = µT t2 ,      σ y = 0,      σxy = µT t (E3.13.11)

To obtain the solution for the Cauchy stress by means of the Green-Nagdhi rate,
we need to find the rotation matrix R  by the polar decomposition theorem.  To
obtain the rotation, we diagonalize FTF

  
FTF =

1 t

t 1+ t2
 
  

 
  ,    eigenvalues   λ i =

2 + t2 ± t 4 + t2

2
(E3.13.12)

The closed form solution by hand is quite involved and we recommend a
computer solution.  A closed form solution has been given by Dienes (1979):

  
σ x = −σy = 4µG cos 2β ln cos β + β sin 2β − sin2 β( ),      (E3.13.13)

  
σ xy = 2µG cos 2β 2β −2tan 2β ln cos β −tan β( ),    tan β =

t

2
(E.13.14)

The results are shown in Fig. 3.13.
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Figure 3.13.  Comparison of Objective Stress Rates

Explanation of Objective Rates.  One underlying characteristic of
objective rates can be gleaned from the previous example: an objective rate of the
Cauchy stress instantaneously coincides with the rate of a stress field whose
material rate already accounts for rotation correctly.  Therefore, if we take a stress
measure which rotates with the material, such as the corotational stress or the PK2
stress, and add the additional terms in its rate, then we can obtain an objective
stress rate.  This is not the most general framework for developing objective rates.
A general framework is provided by using objectivity in the sense that the stress
rate should be invariant for observers who are rotating with respect to each other.
A derivation based on these principles may be found in Malvern (1969) and
Truesdell and Noll (????).
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To illustrate the first approach, we develop an objective rate from the
corotational Cauchy stress   ̂  σ .  Its material rate is given by

  

Dˆ σ 
Dt

=
D RTσR( )

Dt
=

DRT

Dt
σR + RT Dσ

Dt
R + RTσ

DR
Dt

(3.7.18)

where the first equality follows from the stress transformation in Box 3.2 and the
second equality is based on the derivative of a product.  If we now consider the
corotational coordinate system coincident with the reference coordinates but
rotating with a spin W  then

R = I
DR
Dt

= W = Ω (3.7.19)

Inserting the above into Eq. (3.7.18), it follows that at the instant that the
corotational coordinate system coincides with the global system, the rate of the
Cauchy stress in rigid body rotation is given by

  

Dˆ σ 
Dt

= WT ⋅σ+
Dσ
Dt

+σ ⋅W (3.7.20)

The RHS of this expression can be seen to be identical to the correction terms in
the expression for the Jaumann rate.  For this reason, the Jaumann rate is often
called the corotational rate of the Cauchy stress.

The Truesdell rate is derived similarly by considering the time derivative
of the PK2 stress when the reference coordinates instantaneously coincide with
the  spatial coordinates.  However, to simplify the derivation, we reverse the
expressions and extract the rate corresponding to the Truesdell rate.

Readers familiar with fluid mechanics may wonder why frame-invariant
rates are rarely discussed in introductory courses in fluids, since the Cauchy stress
is widely used in fluid mechanics.  The reason for this lies in the structure of
constitutive equations which are used in fluid mechanics and in introductory fluid
courses.  For a Newtonian fluid, for example,   σ = 2µD' − pI , where µ  is the
viscosity and   D'  is the deviatoric part of the rate-of-deformation tensor.  A major
difference between this constitutive equation for a Newtonian fluid and the
hypoelastic law (3.7.14) can be seen immediately: the hypoelastic law gives the
stress rate, whereas in the Newtonian consititutive equation gives the stress.  The
stress transforms in a rigid body rotation exactly like the tensors on the RHS of
the equation, so this constitutive equation behaves properly in a rigid body
rotation.  In other words, the Newtonian fluid is objective or frame-invariant.
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Exercise ??.  Consider the same rigid body rotation as in Example ??>.  Find the
Truesdell stress and the Green-Naghdi stress rates and compare to the Jaumann
stress rate.

Starting from Eqs. (3.3.4) and (3.3.12), show that

  2dx ⋅D ⋅ dx = 2dxF−T ˙ E ̇  F −1dx

and hence that Eq. (3.3.22) holds.

Using the transformation law for a second order tensor, show that   R = ˆ R .

Using the statement of the conservation of momentum in the Lagrangian
description in the initial configuration, show that it implies

PFT = FPT

Extend Example 3.3 by finding the conditions at which the Jacobian
becomes negative at the Gauss quadrature points for 2 × 2  quadrature when the
initial element is rectangular with dimension a ×b .  Repeat for one-point
quadrature, with the quadrature point at the center of the element.

Kinematic Jump Condition.  The kinematic jump conditions are derived from the
restriction that displacement remains continuous across a moving singular surface.
The surface is called singular because ???.  Consider a singular surface in one
dimension.

t

X

X2

X1

XS

Figure 3.?

Its material description is given by

X = XS t( )
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We consider a narrow band about the singular surface defined by
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CHAPTER 4
LAGRANGIAN MESHES

by Ted Belytschko
Departments of Civil and Mechanical Engineering
Northwestern University
Evanston, IL 60208
©Copyright 1996

4.1  INTRODUCTION

In Lagrangian meshes, the nodes and elements move with the material.  Boundaries and
interfaces remain coincident with element edges, so that their treatment is simplified.  Quadrature
points also move with the material, so constitutive equations are always evaluated at the same
material points, which is advantageous for history dependent materials.  For these reasons,
Lagrangian meshes are widely used for solid mechanics.

The formulations described in this Chapter apply to large deformations and nonlinear
materials, i.e. they consider both geometric and material nonlinearities.  They are only limited by
the element's capabilities to deal with large distortions.  The limited distortions most elements can
sustain without degradation in performance or failure is an important factor in nonlinear analysis
with Lagrangian meshes and is considered for several elements in the examples.

Finite element discretizations with Lagrangian meshes are commonly classified as updated
Lagrangian formulations and total Lagrangian formulations. Both formulations use Lagrangian
descriptions, i.e. the dependent variables are functions of the material (Lagrangian) coordinates and
time.  In the updated Lagrangian formulation, the derivatives are with respect to the spatial
(Eulerian) coordinates; the weak form involves integrals over the deformed (or current)
configuration.  In the total Lagrangian formulation, the weak form involves integrals over the initial
(reference ) configuration and derivatives are taken with respect to the material coordinates.

This Chapter begins with the development of the updated Lagrangian formulation.  The key
equation to be discretized is the momentum equation, which is expressed in terms of the Eulerian
(spatial) coordinates and the Cauchy (physical) stress.  A weak form for the momentum equation is
then developed, which is known as the principle of virtual power.  The momentum equation in the
updated Lagrangian formulation employs derivatives with respect to the spatial coordinates, so it is
natural that the weak form involves integrals taken with respect to the spatial coordinates, i.e. on
the current configuration.  It is common practice to use the rate-of-deformation as a measure of
strain rate, but other measures of strain or strain-rate can be used in an updated Lagrangian
formulation.  For many applications, the updated Lagrangian formulation provides the most
efficient formulation.

The total Lagrangian formulation is developed next.  In the total Lagrangian formulation,
we will use the nominal stress, although the second Piola-Kirchhoff stress is also used in the
formulations presented here.  As a measure of strain we will use the Green strain tensor in the total
Lagrangian formulation.  A weak form of the momentum equation is developed, which is known
as the principle of virtual work.  The development of the toal Lagrangian formulation closely
parallels the updated Lagrangian formulation, and it is stressed that the two are basically identical.
Any of the expressions in the updated Lagrangian formulation can be transformed to the total
Lagrangian formulation by transformations of tensors and mappings of configurations.  However,
the total Lagrangian formulation is often used in practice, so to understand the literature, an

4-1



T. Belytschko, Lagrangian Meshes, December 16, 1998

advanced student must be familiar with it.  In introductory courses one of the formulations can be
skipped.

Implementations of the updated and total Lagrangian formulations are given for several
elements.  In this Chapter, only the expressions for the nodal forces are developed.  It is stressed
that the nodal forces represent the discretization of the momentum equation.  The tangential
stiffness matrices, which are emphasized in many texts, are simply a means to solving the
equations for certain solution procedures.  They are not central to the finite element discretization.
Stiffness matrices are developed in Chapter 6.

For the total Lagrangian formulation, a variational principle is presented.  This principle is
only applicable to static problems with conservative loads and hyperelastic materials, i.e. materials
which are described by a path-independent, rate-independent elastic constitutive law.  The
variational principle is of value in interpreting and understanding numerical solutions and the
stability of nonlinear solutions.  It can also sometimes be used to develop numerical procedures.

4.2  GOVERNING EQUATIONS

We consider a body which occupies a domain Ω with a boundary Γ.  The governing
equations for the mechanical behavior of a continuous body are:

1.  conservation of mass (or matter)

2.  conservation of linear momentum and angular momentum

3.  conservation of energy, often called the first law of thermodynamics

4.  constitutive equations

5.  strain-displacement equations

Γ0

Γ int

Ω0

Ω Γ int

Γ

Φ(X, t)

Figure 4.0.  Deformed and undeformed body showing a set of admissible lines of interwoven discontinuities Γint  and
the notation.

We will first develop the updated Lagrangian formulation.  The conservation equations have been
developed in Chapter 3 and are given in both tensor form and indicial form in Box 4.1. As can be
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seen, the dependent variables in the conservation equations are written in terms of material
coordinates but are expressed in terms of what are classically Eulerian variables, such as the
Cauchy stress and the rate-of-deformation.

We next give a count of the number of equations and unknowns.  The conservation of
mass and conservation of energy equations are scalar equations.  The equation for the conservation
of linear momentum, or momentum equation for short, is a tensor equation which consists of nSD

partial differential equations, where nSD  is the number of space dimensions.  The constitutive
equation relates the stress to the strain or strain-rate measure.  Both the strain measure and the
stress are symmetric tensors, so this provides nσ  equations where

  nσ ≡ nSD nSD +1( )/ 2 (4.2.1)

In addition, we have the nσ  equations which express the rate-of-deformation D in terms of the
velocities or displacements.  Thus we have a total of 2nσ + nSD +1 equations and unknowns.  For
example, in two-dimensional problems (nSD = 2 ) without energy transfer, so we have nine partial
differential equations in nine unknowns: the two momentum equations, the three constitutive
equations, the three equations relating D to the velocity and the mass conservation equation.  The
unknowns are the three stress components (we assume symmetry of the stress), the three
components of D, the two velocity components, and the density ρ , for a total of 9 unknowns.
Additional unknown stresses (plane strain) and strains (plane stress) are evaluated using the plane
strain and plane stress conditions, respectively.  In three dimensions (nSD = 3, nσ = 6), we have
16 equations in 16 unknowns.

When a process is neither adiabatic nor isothermal, the energy equation must be appended
to the system.  This adds one equation and nSD  unknowns, the heat flux vector qi .  However, the
heat flux vector can be determined from a single scalar, the temperature, so only one unknown is
added; the heat flux is related to the temperature by a type of constitutive law which depends on the
material.  Usually a simple linear relation, Fourier's law, is used.  This then completes the system
of equations, although often a law is needed for conversion of some of the mechanical energy to
thermal energy; this is discussed in detail in Section 4.10.

The dependent variables are the velocity   v X, t( ) , the Cauchy stress   σ X,t( ) , the rate-of-
deformation   D X ,t( ) and the density   ρ X ,t( ).  As seen from the preceding a Lagrangian description
is used: the dependent variables are functions of the material (Lagrangian) coordinates. The
expression of all functions in terms of material coordinates is intrinsic in any treatment by a
Lagrangian mesh.  In principle,  the functions can be expressed in terms of the spatial coordinates
at any time t by using the inverse of the map   x = φ X ,t( ).  However, inverting this map is quite
difficult. In the formulation, we shall see that it is only necessary to obtain derivatives with respect
to the spatial coordinates.  This is accomplished by implicit differentiation, so the map
corresponding to the motion is never explicitly inverted.

In Lagrangian meshes, the mass conservation equation is used in its integrated form
(B4.1.1) rather than as a partial diffrential equation.  This eliminates the need to treat the continuity
equation, (3.5.20).  Although the continuity equation can be used to obtain the density in a
Lagrangian mesh, it is simpler and more accurate to use the integrated form (B4.1.1)

The constitutive equation (Eq. B4.1.5), when expressed in rate form in terms of a rate of
Cauchy stress, requires a frame invariant rate.  For this purpose, any of the frame-invariant rates,
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such as the Jaumann or the Truesdell rate, can be used as described in Chapter 3.  It is not
necessary for the constitutive equation in the updated Lagrangian formulation to be expressed in
terms of the Cauchy stress or its frame invariant rate.  It is also possible to use constitutive
equations expressed in terms of the PK2 stress and then to convert the PK2 stress to a Cauchy
stress using the transformations developed in Chapter 3 prior to computing the internal forces.

The rate-of-deformation is used as the measure of strain rate in Eq. (B4.1.5).  However,
other measures of strain or strain-rate can also be used in an updated Lagrangian formulation.  For
example, the Green strain can be used in updated Lagrangian formulations.  As indicated in
Chapter 3, simple hypoelastic laws in terms of the rate-of-deformation can cause difficulties in the
simulation of cyclic loading because its integral is not path independent.  However, for many
simulations, such as the single application of a large load, the errors due to the path-dependence of
the integral of the rate-of-deformation are insignificant compared to other sources of error, such as
inaccuracies and uncertainties in the material data and material model.  The appropriate selection of
stress and strain measures depends on the constitutive equation, i.e. whether the material response
is reversible or not, time dependence, and the load history under consideration.

The boundary conditions are summarized in Eq. (B4.1.7).  In two dimensional problems,
each component of the traction or velocity must be prescribed on the entire boundary; however the
same component of the traction and velocity cannot not be prescribed on any point of the boundary
as indicated by Eq. (B.4.1.8).  Traction and velocity components can also be specified in local
coordinate systems which differ from the global system.  An identical rule holds: the same
components of traction and velocity cannot be prescribed on any point of the boundary.  A velocity
boundary condition is equivalent to a displacement boundary condition: if a displacement is
specified as a function of time, then the prescribed velocity can be obtained by time differentiation;
if a velocity is specified, then the displacement can be obtained by time integration.  Thus a velocity
boundary condition will sometimes be called a displacement boundary condition, or vice versa.

The initial conditions can be applied either to the velocities and the stresses or to the
displacements and velocities.  The first set of initial conditions are more suitable for most
engineering problems, since it is usually difficult to determine the initial displacement of a body.
On the other hand, initial stresses, often known as residual stresses, can sometimes be measured or
estimated by equilibrium solutions.  For example, it is almost impossible to determine the
displacements of a steel part after it has been formed from an ingot.  On the other hand, good
estimates of the residual stress field in the engineering component can often be made.  Similarly, in
a buried tunnel, the notion of initial displacements of the soil or rock enclosing the tunnel is quite
meaningless, whereas the initial stress field can be estimated by equilibrium analysis.  Therefore,
initial conditions in terms of the stresses are more useful.

BOX 4.1
Governing Equations for Updated Lagrangian Formulation

conservation of mass
ρ X( )J X( ) = ρ0 X( )J0 X( ) = ρ0 X( ) (B4.1.1)

conservation of linear momentum

∇⋅ σ + ρb = ρ˙ v ≡ ρ
Dv
Dt

   or   
  

∂σ ji

∂x j
+ρbi = ρ˙ v i ≡ ρ

Dvi

Dt
(B4.1.2)

conservation of angular momentum:  σ = σT      or      σ ij =σ ji (B4.1.3)
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conservation of energy:

  ρ ˙ w int = D:σ −∇⋅ q + ρs    or   
  
ρ ˙ w int = Dijσ ji −

∂qi

∂xi
+ ρs (B4.1.4)

constitutive equation:    σ
∇ = S t

σD D , σ , etc.( ) (B4.1.5)

rate-of-deformation:  D = sym ∇v( )          Dij =
1

2

∂vi

∂x j
+

∂v j

∂xi

 

 
 

 

 
 (B4.1.6)

boundary conditions

  
njσ ji = t i    on   

  
Γti

          v i = v i    on   
  
Γvi

(B4.1.7)

  
Γti

∩ Γv i
= 0          

  
Γti

∪ Γv i
= Γ          i =1 to   nSD (B4.1.8)

initial conditions

  v x,0( ) = v0 x( )             σ x, 0( ) = σ0 x( ) (B4.1.9)
or

  v x,0( ) = v0 x( )             u x , 0( ) = u0 x( )  (B4.1.10)

interior continuity conditions (stationary)

on   Γint :  n ⋅σ = 0             or       ni σ ij ≡ ni
Aσij

A + ni
Bσ ij

B = 0 (B4.1.11)

We have also included the interior continuity conditions on the stresses in Box 4.1as Eq.
(B4.1.11).  In this equation, superscripts A and B  refer to the stresses and normal on two sides of
the discontinuity: see Section 3.5.10. These continuity conditions must be met by the tractions
wherever stationary discontinuites in certain stress and strain components are possible, such as at
material interfaces.  They must hold for bodies in equilibrium and in transient problems.  As
mentioned in Chapter 2, in transient problems, moving discontinuities are also possible; however,
moving discontinuities are treated in Lagrangian meshes by smearing them over several elements.
Thus the moving discontinuity conditions need not be explicitly stated.  Only the stationary
continuity conditions are imposed explicitly by a finite element approximation.

4.3 WEAK FORM: PRINCIPLE OF VIRTUAL POWER

In this section, the principle of virtual power, is developed for the updated Lagrangian
formulation.  The principle of virtual power is the weak form for the momentum equation, the
traction boundary conditions and the interior traction continuity conditions.  These three are
collectively called generalized momentum balance.  The relationship of the principle of virtual
power to the momentum equations will be described in two parts:

1. The principle of virtual power (weak form) will be developed from the generalized
momentum balance (strong form), i.e. strong form to weak form.

2. The principle of virtual power (weak form) will be shown to imply the generalized
momentum balance (strong form), i.e. weak form to strong form.

We first define the spaces for the test functions and trial functions.  We will consider the
minimum smoothness required for the functions to be defined in the sense of distributions, i.e. we
allow Dirac delta functions to be derivatives of functions.  Thus, the derivatives will not be defined
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according to classical definitions of derivatives; instead, we will admit derivatives of piecewise
continuous functions, where the derivatives include Dirac delta functions; this generalization was
discussed in Chapter 2.

The space of test functions is defined by:

    δvj( X) ∈U0           
    
U0 = δvi δvi ∈C0 X( ),δvi = 0  on  Γvi{ } (4.3.1)

This selection of the space for the test functions δv  is dictated by foresight from what will ensue in
the development of the weak form; with this construction, only prescribed tractions are left in the
final expression of the weak form.  The test functions δv  are sometimes called the virtual
velocities.

The velocity trial functions live in the space given by

    vi( X, t) ∈U             
  
U = vi vi ∈C0 X( ), vi = v i  on  Γvi{ } (4.3.2)

The space of displacements in   U  is often called kinematically admissible displacements or
compatible displacements; they satisfy the continuity conditions required for compatibility and the
velocity boundary conditions.  Note that the space of test functions is identical to the space of trial
functions except that the virtual velocities vanish wherever the trial velocities are prescribed.  We
have selected a specific class of test and trial spaces that are applicable to finite elements; the weak
form holds also for more general spaces, which is the space of functions with square integrable
derivatives, called a Hilbert space.

Since the displacement   ui X, t( ) is the time integral of the velocity, the displacement field
can also be considered to be the trial function.  We shall see that the constitutive equation can be
expressed in terms of the displacements or velocities.  Whether the displacements or velocities are
considered the trial functions is a matter of taste.

4.3.1  Strong Form to Weak Form.  As we have already noted, the strong form, or
generalized momentum balance, consists of the momentum equation, the traction boundary
conditions and the traction continuity conditions, which are respectively:

  

∂σ ji

∂x j
+ ρbi = ρ˙ v i    in  Ω (4.3.3a)

  
njσ ji = t i    on   

  
Γti

(4.3.3b)

njσ ji = 0    on   Γint (4.3.3c)

where   Γint  is the union of all surfaces (lines in two dimensions) on which the stresses are
discontinuous in the body.

Since the velocities are C0 X( ) , the displacements are similarly C0 X( ) ; the rate-of-

deformation and the rate of Green strain will then be C−1 X( )  since they are related to spatial
derivatives of the velocity.  The stress σ  is a function of the velocities via the constitutive equation
(B4.1.4relates the rate-of-deformation to the velocities) and Eq. (B4.1.5), which or the Green
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strain to the displacement.  It is assumed that the constitutive equation leads to a stress that is a
well-behaved function of the Green strain tensor,  so that the stresses will also be C−1 X( ) .
Note that the stress rate is often not a continuous function of the rate-of-deformation; for example,
it is discontinuous at the transition between plastic behavior and elastic unloading.

The first step in the development of the weak form, as in the one-dimensional case in
Chapter 2, consists of taking the product of a test function δvi  with the momentum equation and
integrating over the current configuration:

  
δvi

Ω
∫

∂σ ji

∂x j

+ ρbi − ρ˙ v i
 

 
 

 

 
 dΩ = 0 (4.3.4)

In the intergral, all variables must be implicitly transformed to be functions of the Eulerian
coordinates by (???).  However, this transformation is never needed in the implementation.  The
first term in (4.3.4) is next expanded by the product rule, which gives

δvi
Ω
∫

∂σ ji

∂x j
dΩ =

∂
∂x j

δviσ ji( ) −
∂ δvi( )

∂x j
σ ji

 

 
 

 

 
 

Ω
∫  dΩ (4.3.5)

Since the velocities are C0  and the stresses are C−1, the termδviσ ji  on the RHS of the above is

C−1.  We assume that the discontinuities occur over a finite set of surfaces Γ int , so Gauss's
theorem, Eq. (3.5.4) gives

  

∂
∂x jΩ

∫ δviσ ji( )dΩ = δvi n jσ ji
Γint

∫ dΓ+ δvi
Γ
∫ n jσ jidΓ (4.3.6)

From the strong form (4.3.3c), the first integral on the RHS vanishes.  For the second integral on
the RHS we can use another part of the strong form, the traction boundary conditions (4.3.3b) on
the prescribed traction boundaries.  Since the test function vanishes on the complement of the
traction boundaries, (4.3.6) gives

∂
∂x jΩ

∫ δviσ ji( )dΩ= δvi
Γti

∫ t idΓ
i=1

nSD

∑ (4.3.7)

The summation sign is included on the RHS to avoid any confusion arising from the presence of a
third index i in Γti

; if this index is ignored in the summation convention then there is no need for a
summation sign.

If (4.3.7) is substituted into (4.3.4) we obtain

δvi
Ω
∫

∂σ ji

∂x j
dΩ = δvi

Γti

∫ t idΓ
i=1

nSD

∑ −
∂ δvi( )

∂x j
σ ji

Ω
∫  dΩ (4.3.8)
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The process of obtaining the above is called integration by parts.  If Eq. (4.3.8) is then substituted
into (4.3.4), we obtain

  

∂ δvi( )
∂x jΩ

∫ σ jidΩ− δvi
Ω
∫ ρbidΩ− δ

Γti

∫
i=1

nSD

∑ vit idΓ + δvi
Ω
∫ ρ˙ v idΩ= 0 (4.3.9)

The above is the weak form for the momentum equation, the traction boundary conditions and the
interior continuity conditions.  It is known as the principle of virtual power, see Malvern (1969),
for each of the terms in the weak form is a virtual power; see Section 2.5.

4.3.2.  Weak Form to Strong Form.  It will now be shown that the weak form (4.3.9)
implies the strong form or generalized momentum balance: the momentum equation, the traction
boundary conditions and the interior continuity conditions, Eqs. (4.3.3).  To obtain the strong
form, the derivative of the test function must be eliminated from (4.3.9).  This is accomplished by
using the derivative product rule on the first term, which gives

∂ δvi( )
∂x j

σ ji
Ω
∫ dΩ =

∂ δviσ ji( )
∂x jΩ

∫ dΩ− δv i

∂σ ji

∂x jΩ
∫ dΩ (4.3.10)

We now apply Gauss’s theorem, see Section 3.5.2, to the first term on the RHS of the above

  

∂ δviσ ji( )
∂x jΩ

∫ dΩ= δvin jσ ji
Γ
∫ dΓ+ δvi n jσ ji

Γint

∫ dΓ=

δvi
Γt i

∫ n jσ jidΓ
i=1

nSD

∑ + δvi n jσ ji
Γint

∫ dΓ

(4.3.11)

where the second equality follows because δvi = 0 on Γvi
, (see Eq. (4.3.1) and Eq. (B4.1.7)).

Substituting Eq. (4.3.11) into Eq. (4.3.10) and in turn to (4.3.9), we obtain

  
δvi

Ω
∫

∂σ ji

∂x j
+ ρbi − ρ˙ v i

 

 
 

 

 
 dΩ− δviΓt i

∫
i=1

nSD

∑ n jσ ji − t i( )dΓ− δviΓint
∫ n jσ ji dΓ = 0 (4.3.12)

We will now prove that the coefficients of the test functions in the above integrals must
vanish.  For this purpose, we prove the following theorem

  

if  αi X( ), β i X( ),γ i X( ) ∈C−1  and δvi X( ) ∈U0

and δviα idΩ
Ω
∫ + δviβ idΓ

Γt i

∫ + δviγ idΓ
Γint

∫ = 0
i=1

nSD

∑ ∀δvi X( )

then αi X( ) = 0  in Ω , βi X( ) = 0  on Γt i
,γ i X( ) = 0  on Γint

(4.3.13)

where the integral is either transformed to the reference configuration or the variables are expressed
in terms of the Eulerian coordinates by the inverse map prior to evaluation of the integrals.
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In functional analysis, the statement in (4.3.13) is called the density theorem, Oden and
Reddy (1976, p.19).  It is also called the fundamental theorem of variational calculus;
sometimes we call it the function scalar product theorem since it is the counterpart of the scalar
product theorem given in Chapter 2.  We follow Hughes [1987, p.80] in proving (4.3.13).  As a
first step we show that αi X( ) = 0  in Ω .  For this purpose, we assume that

δvi X( ) =αi X( ) f X( ) (4.3.14)

where
1.  f X( ) > 0   on  Ω   but f X( ) = 0  on Γ int  and f X( ) = 0  on Γti

2.  f X( )  is C−1

Substituting the above expression for δvi  into (4.3.13) gives

αi X( )α i X( )
Ω
∫ f X( )dΩ = 0 (4.3.15)

The integrals over the boundary and interior surfaces of discontinuity vanish because the arbitrary
function f X( )  has been chosen to vanish on these surfaces.  Since f X( ) > 0 , and the functions
f X( )  and αi X( )  are sufficiently smooth, Equation (4.3.15) implies αi X( ) = 0  in Ω  for i =1 to
nSD

To show that the γ i X( ) = 0  , let

δvi X( ) =γ i X( ) f X( )  (4.3.16)

where
1.  f x( ) > 0  on   Γint ; f x( ) = 0 on Γti

;

2.  f x( )  is C−1

Substituting (4.3.16) into (4.3.13) gives

  
γ i x( )γ i x( ) f x( )dΓ

Γint

∫ = 0 (4.3.17)

which implies γ i x( ) = 0 on   Γint  (since f x( ) > 0 ).

The final step in the proof, showing that βi x( ) = 0  is accomplished by using a function

f x( ) > 0  on Γti
.  The steps are exactly as before.  Thus each of the αi x( ),  β i x( ), and γ i x( ) must

vanish on the relevant domain or surface.  Thus Eq. (4.3.12) implies the strong form: the
momentum equation, the traction boundary conditions, and the interior continuity conditions, Eqs.
(4.3.3).

Let us now recapitulate what has been accomplished so far in this Section.  We first
developed a weak form, called the principle of virtual power, from the strong form.  The strong
form consists of the momentum equation, the traction boundary conditions and jump conditions.
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The weak form was obtained by multiplying the momentum equation by a test function and
integrating over the current configuration.  A key step in obtaining the weak form is the
elimination of the derivatives of the stresses, Eq. (4.3.5-6).  This step is crucial since as a result,
the stresses can be C-1 functions.  As a consequence, if the constitutive equation is smooth, the
velocities need only be C0.

Equation (4.3.4) could also be used as the weak form.  However, since the derivatives of
the stresses would appear in this alternate weak form, the displacements and velocities would have
to be C1 functions (see Chapter 2); C1 functions are difficult to construct in more than one
dimension.  Furthermore, the trial functions would then have to be constructed so as to satisfy the
traction boundary conditions, which would be very difficult.  The removal of the derivative of the
stresses through integration by parts also leads to certain symmetries in the linearized equations, as
will be seen in Chapter 6.  Thus the integration by parts is a key step in the development of the
weak form.

Next we started with the weak form and showed that it implies the strong form.  This,
combined with the development of the weak form from the strong form, shows that the weak and
strong forms are equivalent.  Therefore, if the space of test functions is infinite dimensional,  a
solution to the weak form is a solution of the strong form.  However, the test functions used in
computational procedures must be finite dimensional.  Therefore, satisfying the weak form in a
computation only leads to an approximate solution of the strong form.  In linear finite element
analysis, it has been shown that the solution of the weak form is the best solution in the sense that
it minimizes the error in energy, Strang and Fix (1973).  In nonlinear problems, such optimality
results are not available in general.

4.3.3.  Physical Names of Virtual Power Terms.  We will next ascribe a physical name
to each of the terms in the virtual power equation.  This will be useful in systematizing the
development of finite element equations.  The nodal forces in the finite element discretization will
be identified according to the same physical names.

To identify the first integrand in (4.3.9), note that it can be written as

∂ δvi( )
∂x j

σ ji = δLijσ ji = δDij + δWij( )σ ji = δDijσ ji =δD:σ (4.3.18)

Here we have used the decomposition of the velocity gradient into its symmetric and skew
symmetric parts and that δWijσ ij = 0  since δWij  is skew symmetric while σ ij is symmetric.

Comparison with (B4.1.4) then indicates that we can interpret δDijσ ij  as the rate of virtual internal

work, or the virtual internal power, per unit volume.  Observe that ˙ w int  in (B4.1.4) is power per

unit mass, so   ρ ˙ w int = D: σ   is the power per unit volume.  The total virtual internal power   δ P int is
defined by the integral of δDijσ ij  over the domain, i.e.

  
δ P int = δDij

Ω
∫ σ ijdΩ=

∂ δvi( )
∂x j

σ ijdΩ≡
Ω
∫ δLijσ ijdΩ

Ω
∫ = δD :

Ω
∫ σdΩ (4.3.19)

where the third and fourth terms have been added to remind us that they are equivalent to the
second term because of the symmetry of the Cauchy stress tensor.

The second and third terms in (4.3.9) are the virtual external power:
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δ P ext = δvi

Ω
∫ ρbidΩ+ δv j

Γtj

∫
j=1

nSD

∑ t jdΓ= δv
Ω
∫ ⋅ρbdΩ + δvje j

Γt j

∫
j=1

nSD

∑ ⋅ t dΓ (4.3.20)

This name is selected because the virtual external power arises from the external body forces

  b x, t( )  and prescribed tractions   t x ,t( ).

The last term in (4.3.9) is the virtual inertial power

    

δ P inert = δvi

Ω
∫ ρ˙ v idΩ (4.3.21)

which is the power corresponding to the inertial force.  The inertial force can be considered a body
force in the d’Alembert sense.

Inserting Eqs. (4.3.19-4.3.21) into (4.3.9), we can write the principle of virtual power as

    δ P =δ P int− δ Pext + δ P inert = 0 ∀δvi ∈U0 (4.3.22)

which is the weak form for the momentum equation.  The physical meanings help in remembering
the weak form and in the derivation of the finite element equations.  The weak form is summarized
in Box 4.2.

BOX 4.2
Weak Form in Updated Lagrangian Formulation:

Principle of Virtual Power

Ifσ ij  is a smooth function of the displacements and velocities and      vi ∈U ,  then if

  δ P int − δ P ext + δ P inert = 0          ∀δvi ∈U0 (B4.2.1)

then

  

∂σ ji

∂x j
+ ρbi = ρ˙ v i   in  Ω (B4.2.2)

n jσ ji = t i    on     Γti (B4.2.3)

njσ ji = 0    on   Γ int (B4.2.4)

where

  
δ P int = δD:

Ω
∫ σdΩ = δDij

Ω
∫ σijdΩ =

∂ δvi( )
∂x j

σ ij
Ω
∫ dΩ (B4.2.5)
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δ P ext = δv ⋅
Ω
∫ ρbdΩ+ δv ⋅e j( )

Γt j

∫
j=1

nSD

∑ t ⋅e jdΓ = δvi
Ω
∫ ρbidΩ+ δv j

Γt j

∫
j=1

nSD

∑ t jdΓ (B4.2.6)

  
δ P inert = δ

Ω
∫ v ⋅ρ ˙ v dΩ= δ

Ω
∫ vi ρ˙ v idΩ (B4.2.7)

4.4  UPDATED LAGRANGIAN FINITE ELEMENT DISCRETIZATION

4.4 .1   Finite Element Approximation.  In this section, the finite element equations for the
updated Lagrangian formulation are developed by means of the principle of virtual power.  For this
purpose the current domain Ω  is subdivided into elements Ωe  so that the union of the elements

comprises the total domain, Ω =
e

∪Ωe .  The nodal coordinates in the current configuration are

denoted by   xiI , I = 1 to nN .  Lower case subscripts are used for components, upper case subscripts

for nodal values.  In two dimensions,    xiI = xI , yI[ ], in three dimensions   xiI = xI , yI , z I[ ] .  The
nodal coordinates in the undeformed configuration are XiI .

In the finite element method, the motion   x X, t( )  is approximated by

  xi X ,t( ) = N I X( )xiI t( )     or        x X, t( ) = NI X( )x I t( ) (4.4.1)

where NI X( )  are the interpolation (shape) functions and x I  is the position vector of node I .
Summation over repeated indices is implied; in the case of lower case indices, the sum is over the
number of space dimensions, while for upper case indices the sum is over the number of nodes.
The nodes in the sum depends on the entity considered: when the total domain is considered, the
sum is over all nodes in the domain, whereas when an element is considered, the sum is over the
nodes of the element.

  Writing (4.4.1) at a node with initial position XJ we have

  x XJ , t( ) = x I t( )N I XJ( ) = x I t( )δ IJ = xJ t( ) (4.4.3)

where we have used the interpolation property of the shape functions in the third term.  Interpreting
this equation, we see that node J  always corresponds to the same material point XJ : in a
Lagrangian mesh, nodes remain coincident with material points.

We define the nodal displacements by using Eq. (3.2.7) at the nodes

uiI t( ) = xiI t( ) − XiI                       or                   u I t( ) = x I t( ) −X I (4.4.4a)

The displacement field is

  ui X, t( ) = xi X ,t( ) − Xi = uiI t( )NI X( )        or       u X ,t( ) = uI t( )N I X( ) (4.4.4b)
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which follows from (4.4.1), (4.4.2)  and (4.4.3).

The velocities are obtained by taking the material time derivative of the displacements,
giving

  
vi X ,t( ) =

∂ui X,t( )
∂t

= ˙ u iI t( )N I X( ) = viI t( )NI X( )     or         v X, t( ) = ˙ u I t( )NI X( ) (4.4.5)

where we have written out the derivative of the displacement on the left hand side to stress that the
velocity is a material time derivative of the displacement, i.e., the partial derivative with respect to
time with the material coordinate fixed.  Note the velocities are given by the same shape function
since the shape functions are constant in time.  The superposed dot on the nodal displacements is
an ordinary derivative, since the nodal displacements are only functions of time.

The accelerations are similarly given by the material time derivative of the velocities

  
˙ ̇ u i X, t( ) = ˙ ̇ u iI t( )N I X( )             or              ˙ ̇ u X,t( ) = ˙ ̇ u I t( )N I X( ) (4.4.6)

It is emphasized that the shape functions are expressed in terms of the material coordinates in the
updated Lagrangian formulation even though we will use the weak form in the current
configuration.  As pointed out in Section 2.8, it is crucial to express the shape functions in terms of
material coordinates when a Lagrangian mesh is used because we want the time dependence in the
finite element approximation of the motion to reside entirely in the nodal variables.

The velocity gradient is obtained by substituting Eq. (4.4.5) into Eq. (3.3.7), which yields

  
Lij = vi , j = viI

∂N I

∂x j
= viI N I , j        or          L = v IN I , j (4.4.7)

and the rate-of-deformation is given by

  
Dij = 1

2 Lij + Lji( ) = 1
2 viIN I, j + v jIN I ,i( ) (4.4.7b)

In the construction of the finite element approximation to the motion, Eq. (4.4.1), we have
ignored the velocity boundary conditions, i.e. the velocities given by Eq. (4.4.5) are not in the
space defined by Eq. (4.3.2).  We will first develop the equations for an unconstrained body with
no velocity boundary conditions, and then modify the discrete equations to account for the velocity
boundary conditions.

In Eq. (4.4.1), all components of the motion are approximated by the same shape
functions.  This construction of the motion facilitates the representation of rigid body rotation,
which is an essential requirement for convergence.  This is discussed further in Chapter 8.

The test function, or variation, is not a function of time, so we approximate the test
function as

δvi X( ) =δviIN I X( )          or         δv X( ) = δv I NI X( ) (4.4.8)

where δviI  are the virtual nodal velocities.
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As a first step in the construction of the discrete finite element equations, the test function is
substituted into principle of virtual power giving

  
δviI

∂N I

∂x j
σ jidΩ− δviI N I

Ω
∫ ρbidΩ− δviI N It iΓti

∫ dΓ
i=1

nSD

∑
Ω
∫  + δviI N I

Ω
∫ ρ˙ v i dΩ= 0 (4.4.9a)

The stresses in (4.4.9a) are functions of the trial velocities and trial displacements.  From the
definition of the test space, (4.3.4), the virtual velocities must vanish wherever the velocities are
prescribed, i.e. δvi = 0 on Γvi

 and therefore only the virtual nodal velocities for nodes not on Γvi

are arbitrary, as indicated above.  Using the arbitrariness of the virtual nodal velocities everywhere
except on Γvi

, it then follows that the weak form of the momentum equation is

  

∂NI

∂x j

σ jidΩ− NI

Ω
∫ ρbidΩ− N It iΓt j

∫ dΓ
j =1

n SD

∑
Ω
∫  + NI

Ω
∫ ρ ˙ v idΩ = 0    ∀I ,i ∉Γvi

(4.4.9b)

However, the above form is difficult to remember.  For purposes of convenience and for a better
physical interpretation, it is worthwhile to ascribe physical names to each of the terms in the above
equation.

4.4.2. Internal and External Nodal Forces.  We define the nodal forces corresponding to
each term in the virtual power equation.  This helps in remembering the equation and also provides
a systematic procedure which is found in most finite element software.  The internal nodal forces
are defined by

  
δ P int = δviI f iI

int =
∂ δvi( )

∂x jΩ
∫ σ ji dΩ= δviI

∂NI

∂x j

σ ji

Ω
∫ dΩ (4.4.10)

where the third term is the definition of internal virtual power as given in Eqs. (B4.2.5) and
(4.4.8) has been used in the last term.  From the above it can be seen that the internal nodal forces
are given by

  
fiI

int =
∂NI

∂x j
σ ji

Ω
∫ dΩ  (4.4.11)

These nodal forces are called internal because they represent the stresses in the body.  These
expressions apply to both a complete mesh and to any element or group of elements, as has been
described in Chapter 2.  Note that this expression involves derivatives of the shape functions with
respect to spatial coordinates and integration over the current configuration.  Equation (4.4.11) is a
key equation in nonlinear finite element methods for updated Lagrangian meshes; it applies also to
Eulerian and ALE meshes.

The external nodal forces are defined similarly in terms of the virtual external power
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δ P ext = δviI fiI
ext = δvi

Ω
∫ ρbidΩ + δ

Γt i

∫
i =1

nSD

∑ vit idΓ

= δviI NI
Ω
∫ ρbidΩ+ δviI

i =1

nSD

∑ NI t i
Γti

∫ dΓ

(4.4.12)

so the external nodal forces are given by

fiI
ext = N I

Ω
∫ ρbidΩ+ NI

Γti

∫ t idΓ      or    f I
ext = NI

Ω
∫ ρbdΩ+ N I

Γti

∫ e i ⋅ t dΓ (4.4.13)

4.4.3. Mass Matrix and Inertial Forces.  The inertial nodal forces are defined by

  
δ P inert = δviI fiI

inert = δvi
Ω
∫ ρ ˙ v idΩ =δviI NI

Ω
∫ ρ ˙ v idΩ (4.4.14)

so

  
fiI

inert = ρN I

Ω
∫ ˙ v idΩ       or        

  
f I

inert = ρN I
Ω
∫ ˙ v dΩ (4.4.15)

Using the expression (4.4.6) for the accelerations in the above gives

  
fiI

inert = ρN I NJdΩ
Ω
∫ ˙ v iJ (4.4.16)

It is convenient to define these nodal forces as a product of a mass matrix and the nodal
accelerations.  Defining the mass matrix by

MijIJ = δij ρ
Ω
∫ N I NJ dΩ (4.4.17)

it follows from (4.4.16) and (4.4.17) that the inertial forces are given by

  fiI
inert = MijIJ

˙ v jJ      or       f I
inert = M IJ

˙ v J (4.4.18)

4.4.4. Discrete Equations.  With the definitions of the internal, external and inertial nodal
forces, Eqs. (4.4.10), (4.4.12) and (4.4.17), we can concisely write the discrete approximation to
the weak form (4.4.9a) as

  
δviI fiI

int − fiI
ext + MijIJ

˙ v jJ( ) = 0   for  ∀δviI ∉Γvi
(4.4.19)

Invoking the arbitrariness of the unconstrained, virtual nodal velocities gives

  MijIJ
˙ v jJ + f iI

int = fiI
ext      ∀I ,i ∉Γvi

     or       M IJ
˙ v J + fI

int = fI
ext (4.4.20)
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The above are the discrete momentum equations or the equations of motion; they are also called
the semidiscrete momentum equations since they have not been discretized in time.  The implicit
sums are over all components and all nodes of the mesh; any prescribed velocity component that
appears in the above is not an unknown.  The matrix form on the left depends on the interpretation
of the indices: this is discussed further in Section 4.5.

The semidiscrete momentum equations are a system of nDOF  ordinary differential equations
in the nodal velocities, where nDOF  is the number of nodal velocity components which are
unconstrained; nDOF  is often called the number of degrees of freedom.  To complete the system of
equations, we append the constitutive equations at the element quadrature points and the expression
for the rate-of-deformation in terms of the nodal velocities.  Let the nQ  quadrature points in the
mesh be denoted by

xQ t( ) = N I XQ( )x I t( )  (4.4.21)

Note that the quadrature points are coincident with material points.  Let nσ  be the number of
independent components of the stress tensor: in a two dimensional plane stress problem, nσ = 3 ,
since the stress tensor σ  is symmetric; in three-dimensional problems, nσ = 6 .

The semidiscrete equations for the finite element approximation then consist of the
following ordinary differential equations in time:

  MijIJ
˙ v jJ + f iI

int = fiI
ext    for   I,i( ) ∉Γvi

(4.4.22)

  
σ ij

∇ XQ( ) = Sij Dkl XQ( ),  etc( )    ∀XQ (4.4.23)

where Dij XQ( ) = 1
2 Lij + L ji( )     and   

  
Lij = N I , j XQ( )viI (4.4.24)

This is a standard initial value problem, consisting of first-order ordinary differential equations in

the velocities viI t( )  and the stresses 
  
σ ij XQ , t( ) .  If we substitute (4.4.24) into (4.4.23) to eliminate

the rate-of-deformation from the equations, the total number of unknowns is nDOF + nσnQ .  This
system of ordinary differential equations can be integrated in time by any of the methods for
integrating ordinary differential equations, such as Runge-Kutta methods or the central difference
method; this is discussed in Chapter 6.

The nodal velocities on prescribed velocity boundaries, viI ,  I,i( ) ∈Γvi
, are obtained from

the boundary conditions, Eq. (B4.1.7b).  The initial conditions (B4.1.9) are applied at the nodes
and quadrature points

viI 0( ) = viI
0 (4.4.25)

  
σ ij XQ , 0( ) =σ ij

0 XQ( ) (4.4.26)
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where viI
0  and σ ij

0  are initial data at the nodes and quadrature points.  If data for the initial
conditions are given at a different set of points, the values at the nodes and quadrature points can
be estimated by least square fits, as in Section 2.4.5.

For an equilibrium problem, the accelerations vanish and the governing equations are

  fiI
int = fiI

ext    for   I,i( ) ∉Γvi
             or               f

int = fext (4.4.27)

along with (4.4.23) and (4.4.24).  The above are called the discrete equilibrium equations.  If the
constitutive equations are rate-independent, then the discrete equilibrium equations are a set of
nonlinear algebraic equations in the stresses and nodal displacements.  For rate-dependent
materials, any rate terms must be discretized in time to obtain a set of nonlinear algebraic equations;
this is further discussed in Chapter 6.

4.4.5. Element Coordinates.  Finite elements are usually developed with shape functions
expressed in terms of parent element coordinates, which we will often call element coordinates for
brevity.  Examples of element coordinates are triangular coordinates and isoparametric coordinates.
We will next describe the use of shape functions expressed in terms of element coordinates.  As
part of this description, we will show that the element coordinates can be considered an alternative
set of material coordinates in a Lagrangian mesh.  Therefore, expressing the shape functions in
terms of element coordinates is intrinsically equivalent to expressing them in terms of material

coordinates.  We denote the parent element coordinates by ξi
e, or ξe  in tensor notation, and the

parent domain by ∆ ; the superscript e will only be carried in the beginning of this description.
The shape of the parent domain depends on the type of element and the dimension of the problem;
it may be a biunit square, a triangle, or a cube, for example.  Specific parent domains are given in
the examples which follow.

When a Lagrangian element is treated in terms of element coordinates, we are concerned
with three domains that correspond to an element:

1. the parent element domain ∆ ;

2. the current element domain Ωe = Ωe t( );

3. the initial (reference) element domain Ω0
e

The following maps are pertinent:

1. parent domain to current configuration: 
  
x = x ξe , t( )

2. parent domain to initial configuration: X = X ξe( )
3. initial configuration to the current configuration, i.e. the motion   x = x X ,t( ) ≡ φ X, t( )

The map X = X ξe( )  corresponds to 
  
x = x ξe , 0( ).  These maps are illustrated in Fig. 4.1 for a

triangular element where a space-time plot of a two-dimensional triangular element is shown.

The motion in each element is described by a composition of these maps

  
x = x X ,t( ) = x ξe X( ),t( )                    

x X, t( ) = x ξe , t( )oξe X( ) in Ωe (4.4.28)
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where ξe X( ) = X−1 ξe( ).  For the motion to be well defined and smooth, the inverse map X−1 ξe( )
must exist and the function 

  
x = x ξe , t( ) must be sufficiently smooth and meet certain conditions of

regularity so that 
  
x−1 ξe ,t( ) exists; these conditions are given in Section 4.4.8.  The inverse map

  
x−1 ξe ,t( ) is usually not constructed because in most cases it cannot be obtained explicitly, so

instead the derivatives with respect to the spatial coordinates are obtained in terms of the derivatives
with respect to the parent coordinates by implicit differentiation.

The motion is approximated by

  xi ξ, t( ) = xiI t( )N I ξ( )          or            x ξ,t( ) = x I t( )N I ξ( ) (4.4.29)

where we have dropped the supercript e on the element coordinates.  As can be seen in the above,
the shape functions NI ξ( )  are only functions of the parent element coordinates; the time
dependence of the motion resides entirely in the nodal coordinates.  The above represents a time
dependent mapping between the parent domain and the current configuration of the element.

Writing this map at time t = 0 we obtain

  Xi ξ( ) = xi ξ ,0( ) = xiI 0( )NI ξ( ) = X iI NI ξ( )     or     X ξ( ) = XI NI ξ( ) (4.4.30)

It can be seen from (4.4.30) that the map between the material coordinates and the element
coordinates is time invariant in a Lagrangian element.  If this map is one-to-one and onto, then the
element coordinates can in fact be considered surrogate material coordinates in a Lagrangian
mesh, since each material point in an element then has a unique element coordinate label.  To
establish a unique correspondence between element coordinates and the material coordinates in Ω0 ,
the element number must be part of the label.  This does not apply to meshes which are not
Lagrangian, as will be seen in Chapter 7.  The use of the initial coordinates X  as material
coordinates in fact originates mainly in analysis; in finite element methods, the use of element
coordinates as material labels is more natural.

As before, since the element coordinates are time invariant, we can express the
displacements, velocities and accelerations in terms of the same shape functions

  ui ξ ,t( ) = uiI t( )N I ξ( )   u ξ, t( ) = uI t( )NI ξ( ) (4.4.31)

  
˙ u i ξ , t( ) = vi ξ,t( ) = viI t( )NI ξ( )   u ξ, t( ) = v ξ,t( ) = v I t( )N I ξ( ) (4.4.32)

  
˙ v ξ, t( ) = ˙ v iI t( )N I ξ( )   

˙ v ξ,t( ) = ˙ v I t( )NI ξ( ) (4.4.33)

where we have obtained (4.4.32) by taking material time derivative of (4.4.31) and we have
obtained (4.4.33) by taking the material time derivative of (4.4.32).  The time dependence, as
before, resides entirely in the nodal variables, since the element coordinates are independent of
time.
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Fig. 4.1. Initial and current configurations of an element and their relationships to the parent element.

4.4.6. Derivatives of Functions.  The spatial derivatives of the velocity field are obtained by
implicit differentiation because the function     x ξ,t( )  is generally not explicitly invertible; i.e. it is not

possible to write closed-form expressions for ξ  in terms of x .  By the chain rule,

∂vi

∂ξ j
=

∂vi

∂xk

∂xk

∂ξ j
     or     

  
v ,ξ = v, x x,ξ (4.4.34)

The matrix ∂xk ∂ξ j  is the Jacobian of the map between the current configuration of the element

and the parent element configuration.  We will use two symbols for this matrix: x ,ξ  and Fξ , where

Fij
ξ = ∂xi ∂ξ j .  The second symbol is used to convey the notion that the Jacobian with respect to

the element coordinates can be viewed as a deformation gradient with respect to the parent element
configuration.  In two dimensions

  
x ,ξ ξ,t( ) ≡ Fξ ξ,t( ) =

x ,ξ1
x ,ξ 2

y ,ξ1
y,ξ2

 

  
 

  (4.4.35)

As indicated in (4.4.35), the Jacobian of the map between the current and parent configurations is a
function of time.

Inverting (4.4.34), we obtain
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    Lij =
∂vi

∂ξk
Fξkj

−1 =
∂vi

∂ξk

 

 
 

 

 
 

∂ξk

∂x j

 

 
 

 

 
    or      L = v, x = v,ξ x,ξ

−1 = v,ξ Fξ
−1 (4.4.36)

Thus computation the derivatives with respect to ξ  involves finding the inverse of the Jacobian
between the current and parent element coordinates; the matrix to be inverted in the two
dimensional case is given in (4.4.35).  Similarly for the shape functions NI , we have

     NI , x
T = N I, ξ

T x, ξ
−1 = NI , ξ

T Fξ
−1 (4.4.37)

where the transpose appears in the matrix expressions because we consider   NI , x  and 
  
NI , ξ to be

column matrices and the matrix on the RHS of the above must be a row matrix.  The determinant
of the element Jacobian Fξ ,

  
Jξ = det x,ξ( )  (4.4.38)

is called the element Jacobian determinant; we append the subscript to distinguish it from the
determinant of the deformation gradient, J.  Substituting (4.4.37) into (4.4.36) gives

Lij = viI
∂NI

∂ξk
Fξkj

−1     or       L = v I N I, ξ
T x ,ξ

−1 (4.4.39)

The rate-of-deformation is obtained from the velocity gradient by using (3.3.10).

4.4.7. Integration and Nodal Forces.   Integrals on the current configuration are related to
integrals over the reference domain and the parent domain by

g x( )
Ω e
∫ dΩ = g X( )

Ω 0
e
∫ JdΩ0 = g ξ( )Jξ

∆
∫ d∆    and   g X( )

Ω0
e
∫ dΩ0 = g ξ( )Jξ

0

∆
∫ d∆ (4.4.40)

where J  and Jξ  are the determinants of the Jacobians between the current configurations and the
reference and parent element configurations, respectively.  Part of equations is identical to
(3.2.18).  The other part is obtained in the same way by using the map between the current and
parent configurations.  The above is consitent with our convention

When the internal nodal forces are computed by integration over the parent domain,
(4.4.11) is tranformed to the parent element domain by (4.4.40), giving

  
fiI

int =
∂NI

∂x j

σ ji

Ω e
∫ dΩ =

∂N I

∂x j

σ ji

∆
∫ Jξ d∆ (4.4.41)

The external nodal forces and the mass matrix can similarly be integrated over the parent domain.

4.4.8. Conditions on Parent to Current Map.  The finite element approximation to the
motion   x ξ,t( ) , which maps the parent domain of an element onto the current domain of the
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element, is subject to the same conditions as   φ X,t( ) , as given in Section 3.3.6, except that no
discontinuities are allowed.  These conditions are:

1.   x ξ,t( )  must be one-to-one and onto;

2.   x ξ,t( )  must be at least C0  in space;

3. the element Jacobian determinant must be positive, i.e.

  
Jξ ≡ det x,ξ( ) > 0 . (4.4.43)

These conditions insure that   x ξ,t( )  is invertible.

We now explain why the condition det x,ξ( ) > 0 is necessary.  We first use the chain rule to

express   x ,ξ  in terms of F  and   X,ξ :

 
∂xi

∂ξ j

=
∂xi

∂Xk

∂Xk

∂ξ j

= Fik

∂Xk

∂ξ j

      or        x ,ξ = x,X X ,ξ = FX,ξ (4.4.44a)

We can also write the above as

Fξ = F ⋅Fξ
0 (4.4.44b)

which highlights the fact that the deformation gradient with respect to the parent element
coordinates is the product of the standard deformation gradient and the initial deformation gradient
with respect to the parent element coordinates.  The determinant of the product of two matrices is
equal to the product of the determinants, so

  
det x ,ξ( ) =det F( )det X ,ξ( ) ≡ JJξ

0 (4.4.45)

We assume that the elements in the initial mesh are properly constructed so that Jξ
0 = Jξ 0( ) > 0  for

all elements; otherwise the initial mapping would not be one-to-one.  If Jξ t( ) ≤ 0 at any time then

by (4.4.45), J ≤ 0 .  By the conservation of matter ρ = ρ0 J  so J ≤ 0  implies ρ ≤ 0 , which is

physically impossible.  Therefore it is necessary that Jξ t( ) > 0 for all time.  In some calculations,

excessive mesh distortion can result in severely deformed meshes in which Jξ ≤ 0.  This implies a
negative density, so such calculations violate the physical principle that mass is always positive.

4.4.9. Simplifications of Mass Matrix.  When the same shape functions are used for all
components, it is convenient to take advantage of the form of the mass matrix (4.4.20) by writing
it as

  MijIJ = δij
˜ M IJ (4.4.46)

where
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˜ M IJ = ρN INJ
Ω
∫ dΩ           

  

˜ M = ρNTN
Ω
∫ dΩ (4.4.47)

Then the equations of motion (4.4.22) become

  
˜ M IJ ˙ v iJ + fiI

int = fiI
ext (4.4.48)

This form is advantageous when the consistent mass matrix is used with explicit time integration,
since the order of the matrix which needs to be inverted is reduced by a factor of nSD .

We next show that the mass matrix for a Lagrangian mesh is constant in time.  If the shape
functions are expressed in terms of parent element coordinates, then

  
MijIJ =δ ij ρ

∆
∫ N INJ det x, ξ( )d∆ =δ ij ρ

Ω
∫ NI NJdΩ (4.4.49)

Since det x,ξ( )  and the density are time dependent, this mass matrix appears to be time dependent.

To show that the matrix is in fact time independent, we transform the above integral to the
undeformed configuration by (3.2.18), giving

MijIJ = δij ρ
Ω0

∫ N I NJJdΩ0 (4.4.50)

From mass conservation, (B4.1.1) it follows that ρJ = ρ0 .  Hence (4.4.50) becomes

MijIJ = δij ρ0

Ω 0

∫ NI N J  dΩ0   or    MijIJ = δ ij ρ0

∆
∫ N I NJ Jξ

0 d∆       (4.4.51)

The compact form of the mass matrix, (4.4.47) can similarly be written as

  

˜ M IJ = ρ0
Ω 0

∫ NI NJ  dΩ0     and    

  

M IJ = I ˜ M IJ = I ρ0
Ω0

∫ N INJ  dΩ0 (4.4.52)

In the above integrals, the integrand is independent of time, so the mass matrix is constant in time.
It needs to be evaluated only at the beginning of a computation.  The same result could be obtained
by computing the mass matrix by (4.4.49) at the initial time, i.e. in the intial configuration.  The
mass matrix in (4.4.52) can be called total Lagrangian since it is evaluated in the reference
(undeformed) configuration.  We take the view here and subsequently that the discrete equations
should be evaluated in whatever configuration is most convenient.

4.5. IMPLEMENTATION

In the implementation of the finite element equations developed in the previous Section,
two approaches are popular:

1.  the indicial expressions are directly treated as matrix equations;
2.  Voigt notation is used, as in linear finite element methods, so the square stress and

strain matrices are converted to column matrices.
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Box 4.3
Discrete Equations  and Internal Nodal Force Algorithm

 for the Updated Lagrangian Formulation

Equations of Motion (discrete momentum equation)

  MijIJ
˙ v jJ + f iI

int = fiI
ext    for   I,i( ) ∉Γvi

(B4.8.1)

Internal Nodal Forces

  
fiI

int = B Ij σ ji
Ω
∫ dΩ=

∂N I

∂x j
σ ji

Ω
∫ dΩ    or   

    
f I

in t( )T
= BI

Tσ
Ω
∫ dΩ (B4.8.2)

  
f I

int = BI
T σ{ }

Ω
∫ dΩ  in Voigt notation

External Nodal Forces

fiI
ext = N I

Ω
∫ ρbidΩ+ NI

Γti

∫ t idΓ      or    f I
ext = NI

Ω
∫ ρbdΩ+ N I

Γti

∫ e i ⋅ t dΓ (B4.8.3)

Mass Matrix (total Lagrangian)

MijIJ =δ ij ρ0
Ω0

∫ NI NJ dΩ0 = δij ρ0
∆
∫ N INJ Jξ

0d∆ (B4.8.4)

  

M IJ = I ˜ M IJ = I ρ0
Ω0

∫ N INJ  dΩ0 (B4.8.5)

Internal nodal force computation for element

1.  f int = 0

2.  for all quadrature points ξQ

i. compute 
  
B Ij[ ] = ∂N I ξQ( ) ∂x j[ ]  for all I

ii.  
    
L = Lij[ ]= viI B Ij[ ] = v IB I

T ;    Lij =
∂NI

∂x j
  viI

iii.  D = 1
2 LT + L( )

iv.  if needed compute F and E  by procedures in Box 4.7

v.  compute the Cauchy stress σ  or the PK2 stress S  or by constitutive 
      equation

vi. if  S  computed, compute σ by σ = J −1FSFT  

vii.  
    
f I

int ← fI
int +B I

TσJξw Q  for all I

end loop
w Q  are quadrature weights
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Each of these methods has advantages, so both methods will be described.  In Box 4.8 the discrete
eqautions are summarized in both forms.  The internal force computations is then given for the
matrix-indicial form.

4.5.1.  Indicial to Matrix Expressions.  The conversion of indicial expressions to matrix
frorm is somewhat arbitrary and depends on individual preferences.  In this book, we have tried to
interpret single-index variables as column matrices in most cases; the details are somewhat different
when there is a preference for row matrices.  To illustrate this procedure, consider the expression
for the velocity gradient, Eq. (3.3.7) and (4.4.5):

Lij =
∂vi

∂x j
= viI

∂NI

∂x j
(4.5.1)

The above expression can be put into the form of a matrix product if we associate the index I  with
a column number in v and a row number in ∂N I ∂x j .  To simplify the writing of a matrix
expression, we define a matrix   B  by

  
B jI =

∂NI

∂x j
     or     

    B = B jI[ ] = ∂NI ∂x j[ ]         (4.5.2)

where j is the row number in the matrix.  The velocity gradient can then be expressed in terms of
the nodal displacements by (4.5.1) and (4.5.2) by

  
Lij[ ] = viI[ ] B Ij[ ] = viI[ ] B jI[ ]T

         or           L = vB T (4.5.3)

so, because of the implicit sum on I , the indicial expression corresponds to a matrix product.

We can also often write the expression (4.5.1) without expressing the sum on I  in matrix
form.  The   B  matrix is then subdivided into   B I   matrices, each associated with node I :

    B = B1 ,B2 , B3 , ...,Bm[ ]     where  
    
BI

T = B j{ } I
= NI ,x (4.5.3b)

For each node I, the   B I  matrix is a column matrix.  Then the expression for the velocity gradient
can be written as a sum of tensor products, a product of a column matrix with a row matrix, as
shown below

    
L = v IBI

T =
vxI

vyI

 
 
 

 
 
 

NI , x N I , y[ ] =
vxI N I, x vxI NI , y

vyI N I, x vyI NI , y

 

 
 

 

 
 (4.5.4)

To put the internal force expression (4.4.11) in matrix form, we first rearrange the terms so
that adjacent terms correspond to matrix products.  This entails interchanging the row and column
number on the internal forces a shown below

  
fiI

int( )T
= fIi

int =
∂NI

∂x j

σ ji

Ω
∫ dΩ= B Ij

T σ ji

Ω
∫ dΩ (4.5.5)

The above can be put in the following matrix form
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fiI

int[ ]T
= f Ii

int[ ]= ∂N I ∂x j[ ] σ ji[ ]
Ω
∫ dΩ= B jI[ ]T

σ ji[ ]
Ω
∫ dΩ           

    
f I

in t( )T
= BI

Tσ
Ω
∫ dΩ (4.5.6)

For example, in two dimensions this gives

  
fxI fyI[ ]int

= NI ,x NI ,y[ ]
Ω
∫

σ xx σxy

σ xy σ yy

 

 
 

 

 
 dΩ  (4.5.7)

There are many other ways of converting indicial expressions to matrix form but the above is
convenient because it adheres to the convention of treating single index matrices as column
matrices, which is customary in the finite element literature.  The expression for all nodal forces
can be obtained by using the   B  matrix as defined in (4.5.3b), which gives

    
f int( )T

= BT σ
Ω
∫ dΩ

4.5.2.  Voigt notation.  An alternate implementation which is widely used in linear finite
element analysis is based on Voigt notation, see Appendix B.  Voigt notation is useful for
computing tangent stiffness matrices in Newton methods, See Chapter 6.  In Voigt notation the
stresses and rate-of-deformation are expressed in column vectors, so in two dimensions

D{ }T = Dx Dy 2Dxy[ ]            σ{ }T = σ x σ y σxy[ ] (4.5.11)

We define the B I  matrix so it relates the rate-of-deformation to the nodal velocities by

D{ } = B I vI            δD{ } = BIδv I (4.5.12)

where the summation convention as usual applies to repeated indices.  The elements of the B I
matrix are obtained so as to meet the definition (4.5.12); this is illustrated in the following
examples.  Note that a matrix is enclosed in brackets only when this is needed to distinguish a
matrix from its usual form as a square matrix; matrices and tensors of third order or higher which
become square matrices are written simply as boldface.

The expression for the internal force vector can be derived in this notation by using the
definition of the virtual internal power in terms of the nodal forces and nodal velocities and in terms

of the stresses and rate of deformation, Eq. (4.3.19).  Since D{ }T σ{ }  gives the internal power per
unit volume (the column matrices were designed with this in mind), it follows that

  
δ P int = δv I

Tf I
in t = δD{ }

Ω
∫

T
σ{ }dΩ (4.5.13)

Substituting (4.5.12) into the above and invoking the arbitrariness of δv{ }  gives

  
f I

in t = B I
T

Ω
∫ σ{ }dΩ (4.5.14)
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As will be shown in the examples, Eq. (4.5.14) gives the same expression for the internal nodal
forces as Eq. (4.5.6): Eq. (4.5.14) uses the symmetric part of the velocity gradient, whereas the
complete velocity gradient has been used in Eq. (4.5.6).  However, since the Cauchy stress is
symmetric, the two expression are equivalent; this is verified in the following examples.

It is sometimes convenient to place the displacement, velocities and nodal forces for an
element or a complete mesh in a single column matrix.  We will then use the symbol d  for the
column matrix of all nodal displacements,   ̇ d  for the column matrix of nodal velocities and f{ }  for
the column matrix of nodal forces, i.e.

  

d =

u1

u2

.

um

 

 
  

 
 
 

 

 
  

 
 
 

       

  

˙ d =

v1

v2

.

vm

 

 
  

 
 
 

 

 
  

 
 
 

         

  

f =

f1
f2

.

fm

 

 
  

 
 
 

 

 
  

 
 
 

         (4.5.15)

where m is the number of nodes.  The correspondence between the two matrices is given by

  da = uiI where a = I −1( )* nSD + i (4.5.16)

Note that we use a different symbol for the column matrix of all nodal displacements and nodal
velocities because the symbols u  and v  refer to the displacement and velocity vector fields in the
continuum mechanics description.

In this notation, we can write the counterpart of Eq. (4.5.12) as

  D{ } = B ˙ d      where   B = B1 , B2 ,..., Bm[ ] (4.5.18)

where the brackets around D  indicate that the tensor is stored in colum matrix form; we do not put
brackets around B  because this is always a rectangular matrix.  The nodal forces are given by the
counterpart of Eq. (4.5.14):

  
f{ }int = BT

Ω
∫ σ{ }dΩ (4.5.19)

Often we omit the brackets on the nodal force, since the presence of a single term in Voigt notation
always indicates that the entire equation is in Voigt notation.  The Voigt form can also be obtained
by rewriting (4.5.5) as

  
f Ir

int =
∂N I

∂xj
δriσ ji

Ω
∫ dΩ (4.5.20)

Then defining the B  matrix by

BijIr =
∂N I

∂x j
δri

(4.5.21)
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and converting the indices (i,j) by the kinematic Voigt rule to a and the indices (I.r) by the matrix-

column vector rule gives

  
fa

int = Bba
T σb

Ω
∫ dΩ or f int = BT σ{ }σ

Ω
∫ dΩ

(4.5.22)

More detail and techniques for translating indicial notation to Voigt notation can be found in
Appendix B.

4.5.4.  Numerical Quadrature.  The integrals for the nodal forces, mass matrix and other
element matrices can generally not be evaluated in closed form, and are instead integrated
numerically (often called numerical quadrature). The most widely used procedure for numerical
integration in finite elements is Gauss quadrature.  The Gauss quadrature formulas are, see for
example Dhatt and Touzot (1984, p.240), Hughes (1977, p. 137)

f ξ( )
−1

1

∫ dξ = wQ f ξQ( )
Q=1

nQ

∑ (4.5.24)

where the weights wQ  and coordinates ξQ  of the nQ  quadrature points are available in tables; a

short table is given in Appendix C.  Equation (4.5.24) integrates f ξ( ) exactly if it is a polynomial
of order m ≤ 2nQ −1. Equation (4.5.24) is tailored to quadrature over the parent element domains,
since it is over the interval [-1, 1].

  To integrate over a two dimensional element, the procedure is repeated over the second
direction, yielding the following

  
f ξ( )d∆

∆∫ = f ξ ,η( )dξdη
−1

1

∫
−1

1

∫ = wQ1
wQ2

f ξQ1
,ηQ2( )

Q2 =1

nQ2

∑
Q1=1

nQ1

∑ (4.5.25)

In three dimensions, the Gauss quadrature formula is

  
f ξ( )d∆

∆∫ = f ξ( )dξdηdζ
−1

1

∫
−1

1

∫
−1

1

∫ = wQ1
wQ2

wQ3
f ξQ1

,ηQ2
,ζQ3( )

Q3=1

nQ3

∑
Q2 =1

nQ2

∑
Q1 =1

nQ1

∑ (4.5.26)

For example, in integrating the expression for the internal nodal forces over the biunit square
parent element in two dimensions, we use

  

f int = BT σ{ }Jξ d∆
∆∫ = BT σ{ }Jξ dξdη

−1

1

∫
−1

1

∫

     = wQ1
wQ2

BT ξQ1
, ηQ2( ) σ ξQ1

, ηQ2( ){ }Jξ ξQ1
, ηQ2( )

Q2 =1

nQ2

∑
Q1=1

nQ1

∑
(4.5.27)

To simplify the notation for multi-dimensional quadrature, we often combine the weights into
a single weight and write the quadrature formula in any dimension as
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f ξ( )d∆
∆∫ = w Q f ξQ( )

Q
∑ (4.5.28)

where w Q  is a products of the weights for one-dimensional quadrature wQ .

The number of quadrature points used in nonlinear analysis is generally based on the same
rules as for linear analysis; the number of quadrature points is chosen to exactly integrate the nodal
internal forces for a regular element.  A regular form of an element is one that can be obtained by
only stretching but not shearing the parent element; for example, a rectangle for two-dimensional
isoparametric elements.  To choose the number of quadrature points for the internal nodal forces
for a 4-node quadrilateral, we use the following argument.  The rate-of-deformation and the B-
matrix are linear in this element since the velocities are bilinear.  If the stress is linearly related to
the rate-of-deformation, it will vary linearly within the quadrilateral element.  The integrand for the
internal nodal forces is approximately quadratic, since it is a product of the B-matrix and the
stresses.  By the above rule for Gauss quadrature, two quadrature points are then needed in each
direction for exact quadrature of a quadratic function, so 2x2 quadrature on a quadrilateral
integrates the internal nodal forces exactly on a regular element.  Quadrature formulas which
integrate the nodal internal forces almost exactly for a linear constitutive equation are called full
quadrature.

Gauss quadrature is very powerful for smooth functions which are polynomials or nearly
polynomials.  In linear finite element analysis, the integrand in the expression for the stiffness
matrix consists of polynomials for rectangular elements and is smooth and nearly a polynomial for
isoparametric elements.  In nonlinear analysis, the integrand is not always smooth.  For example,
for an elastic-plastic material, the stress may have a discontinuous derivative in space at the surface
separating elastic and plastic material.  Even if the stress-strain law is smooth for an elastic-plastic
material, the derivative of the stress with respect to the strain changes drastically when the response
changes from elastic to plastic, so the effect is the same.  Therefore, the errors in Gauss quadrature
of an element that contains an elastic-plastic interface are likely to be large.  However, higher order
quadrature is not recommended for circumventing these errors, since it often leads to stiff behavior
or locking of elements.

4.5.5.  Selective-Reduced Integration.  For incompressible or nearly incompressible
materials, full quadrature of the nodal internal forces may cause an element to lock, i.e. the
displacements are very small and do not converge or converge very slowly.  The easiest way to
circumvent this difficulty is to use selective-reduced integration.

In selective-reduced integration, the pressure is underintegrated, whereas the remainder of the
stress matrix is fully integrated.  For this purpose, the stress tensor is decomposed into the
hydrostatic component or pressure p, which is the trace of the stress tensor

σ ij
dil = pδ ij =

1

3
σ kkδ ij (4.5.29a)

and the deviatoric components:

σ ij
dev = σij − pδ ij (4.5.29b)

The rate-of-deformation is similarly split into dilatational and deviatoric components which are
defined by
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Dij
dev = Dij −

1

3
Dkkδ ij           Dij

dil =
1

3
Dkkδij (4.5.30)

It is noted that the dilatational and deviatoric components are orthogonal to each other so that the
total virtual internal power as defined in Eq. (4.3.19) becomes:

  
δ P int = δ

Ω
∫ Dijσ ijdΩ= 1

3 δDii pdΩ
Ω
∫ + δDij

devσ ij
devdΩ

Ω
∫ (4.5.31)

After expressing the rate-of-deformation in terms of the shape functions by (4.4.7b) and (4.5.30),
the dilatational and deviatoric integrands become:

  δDii p = δviINI , i p (4.5.32a)

and

  
δDij

devσ ij
dev =

1

2
NI , jδviI + N I ,iδv jI( )σ ij

dev −
1

3
N I ,kδvkIδ ijσij

dev (4.5.32b)

Using the symmetry of σ ij
dev  and the fact that the trace of σ ij

dev  vanishes, the deviatoric
integrand simplifies to:

  δDij
devσ ij

dev =δviI N I ,jσ ij
dev (4.5.33)

Selective-reduced integration consists of full integration on the deviatoric term and reduced
integration on the dilatational term on   δPint .  Thus, for a four-node quadrilateral, selective-reduced
integration gives:

  

δ P int = δviI
1

3
Jξ 0( )N I, i 0( )p 0( )+ w QJξ ξQ( )N I, j ξQ( )σ ji

dev ξQ( )
Q=1

4

∑
 

 
 
 

 

 
 
 

(4.3.34a)

Hence the selective-reduced integration internal force expression is:

  

fiI
int( )T

= f Ii
int =

1

3
Jξ 0( )NI , i 0( )p 0( )+ w QJξ ξQ( )NI , j ξQ( )σ ji

dev ξQ( )
Q=1

4

∑
 

 
 
 

 

 
 
 

(4.3.34b)

where, as indicated in the above, the single quadrature point for the reduced quadrature is the
centroid of the parent element.  The deviatoric part is integrated by full quadrature using two points
in each direction, for a total of four quadrature points; this is called 2x2 quadrature.  This scheme is
similar to the scheme used in linear analysis of incompressible materials.  Selective-reduced
schemes for other elements can be developed by similarly modifying selective-reduced integration
schemes given linear finite element texts; see Hughes(1979) for selective-reduced integration
procedures for linear problems.

4.5.6.  Element Force and Matrix Transformations.  Often element nodal forces and
element matrices must be expressed which in terms of alternate degrees of freedom, i.e. for a
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different set of nodal displacements.  In the following, transformations are developed for nodal
forces and element matrices.

Consider an element or assemblage of elements with nodal displacements   
ˆ d .  We wish to

express the nodal forces for the nodal displacements d which are related to   
ˆ d  by

  

dˆ d 
dt

= T
dd
dt

         or           δ̂  d = Tδd (4.5.35)

The nodal forces associated with d are then given by

  f = TTˆ f (4.5.36)

This transformation holds because the nodal foces and velocities are assumed to be conjugate in
power, see Section 2.4.2.  It is proven as follows.  An increment of work is given by

  δW =δdTf =δˆ d Tˆ f                     ∀δd (4.5.37)

Either set of nodal forces and virtual displacements must give an increment in work, since work is
a scalar independent of the coordinate system or choice of generalized displacements.  Substituting
(4.5.35) into (4.5.37) gives

  δdTf =δdTTTˆ f                     ∀δd (4.5.38)

Since (4.5.38) holds for all δd , Eq.(4.5.36) follows.

The mass matrix can be transformed similarly.  We first consider the case where T is
independent of time. then the mass matrix for the two set of degrees of freedom is related by

  M = TT ˆ M T (4.5.39)

This is shown as follows.  By Eq.(4.5.36)

  f
inert = TTˆ f inert (4.5.40)

and using (4.4.18) for the two sets of degrees of freedom, we have

  M˙ v = TT ˆ M ̂ ˙ v (4.5.41)

If T is independent of time, from (4.5.35),   ̂ 
˙ v = T˙ v , and substituting this into the above and using

the fact that this must hold for the arbitrary nodal accelerations, we obtain (4.5.39).  If the T matrix

is time dependent, then   ̂ 
˙ v = T˙ v + ˙ T v , so

  f
inert = TT ˆ M T˙ ̇ d + TT ˆ M ̇ T ̇ d (4.5.42)

The matrix   ̇ T  usually depends on the nodal velocities, so in this case terms which are not linear in
the velocities occur in the equations of motion.
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A transformation similar to (4.3.39) holds for the linear stiffness matrix and the tangent
stiffness discussed in Chapter 6:

  K = TT ˆ K T,           Ktan = TT ˆ K tanT (4.5.43)

These transformations enable us to evaluate element matrices in coordinate systems which simplify
the procedure as in example 4.6.  They are also useful for treating slave nodes, see example 4.5

Example 4.1.  Triangular 3-node element.  The triangular element will be developed using
triangular coordinates (also called area coordinates and barycentric coordinates).  The element is
shown in Figure 4.2.  It is a 3-node element with a linear displacement field; the thickness of the
element is a.  The nodes are numbered counterclockwise in the parent element, and they must be
numbered counterclockwise in the initial configuration, otherwise the determinant of the map
between the initial and parent domains will be negative.

1

2
3

2

1

3

x

Y

X

1

2

3

  0, 1( )

  1, 0( )

parent  element
(triangular coordinates)

y

ξ1

ξ2

X ξi
 
 

 
 

  
x ξi , t 

 
 
 

Fig. 4.2.  Triangular element showing node numbers and the mappings of the initial and current configurations to
the parent element.

The shape functions for the linear displacement triangle are the triangular coordinates, so
NI = ξI .  The spatial coordinates are expressed in terms of the triangular coordinates ξI  by
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x

y

1

 
 
 

  

 
 
 

  
=

x1 x2 x3

y1 y2 y3

1 1 1

 

 

 
 
 

 

 

 
 
 

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.1.2)

where we have appended the condition that the sum of the triangular element coordinates is one.
The inverse of Eq. (E4.1.2) is given by

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
=

1

2A

y23 x32 x2 y3 − x3y2

y31 x13 x3 y1 − x1y3

y12 x21 x1y2 − x2y1

 

 

 
 
 

 

 

 
 
 

x

y

1

 
 
 

  

 
 
 

  
(E4.1.4a)

where we have used the notation

xIJ = xI − xJ      yIJ = yI − yJ (E4.1.3)

and

2A = x32y12 − x12y32 (E4.1.4b)

where A is the current area of the element.  As can be seen from the above, in the triangular three-
node element, the parent to current map (E4.1.2) can be inverted explicitly.  This unusual
circumstance is due to the fact that the map for this element is linear.  However, the parent to
current map is nonlinear for most other elements, so for most elements it cannot be inverted.

The derivatives of the shape functions can be determined directly from (E4.1.4a) by inspection:

  

N I , j[ ] = ξI , j[ ] =
ξ1 ,x ξ1,y

ξ2 ,x ξ2,y

ξ3,x ξ3,y

 

 

 
 
 

 

 

 
 
 

=
1

2 A

y23 x32

y31 x13

y12 x21

 

 

 
 
 

 

 

 
 
 

(E4.1.5)

We can obtain the map between the parent element and the initial configuration by writing Eq.
(E4.1.2) at time t = 0, which gives

X

Y

1

 
 
 

  

 
 
 

  
=

X1 X2 X3

Y1 Y2 Y3

1 1 1

 

 

 
 
 

 

 

 
 
 

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.1.6)

The inverse of this relation is identical to (E4.1.4) except that it is in terms of the initial coordinates

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
=

1

2A0

Y23 X32 X2Y3 − X3Y2

Y31 X13 X3Y1 − X1Y3

Y12 X21 X1Y2 − X2Y1

 

 

 
 
 

 

 

 
 
 

x

y

1

 
 
 

  

 
 
 

  
(E4.1.7a)

2A0 = X32Y12 − X12Y32 (E4.1.7b)
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where A0 is the initial area of the element.

Voigt Notation.  We first develop the element equations in Voigt notation, which should be
familiar to those who have studied linear finite elements.  Those who like more condensed matrix
notation can skip directly to that form.  In Voigt notation, the displacement field is often written in
terms of triangular coordinates as

ux

uy

 
 
 

 
 
 

=
ξ1 0 ξ2 0 ξ3 0

0 ξ1 0 ξ2 0 ξ3

 

 
 

 

 
 d = Nd (E4.1.8)

where d is the column matrix of nodal displacements, which is given by

  
dT = ux1, uy1,ux2 ,uy2 ,ux3 ,uy3[ ] (E4.1.9)

We will generally not use this form, since it includes many zeroes and write the displacement in a
form similar to (E4.4.1).  The velocities are obtained by taking the material time derivatives of the
displacements, giving

  

vx

vy

 
 
 

 
 
 

=
ξ1 0 ξ2 0 ξ3 0

0 ξ1 0 ξ2 0 ξ3

 

 
 

 

 
 ̇ d (E4.1.10)

  
˙ d T = vx1 ,vy1 , vx2 ,vy2 , vx3 ,vy3[ ] (E4.1.11)

The nodal velocities and nodal forces of the element are shown in Fig. 4.3.

1

3

2

x

y

1

3

2

f1x

f2 x

f3 x

f3y

f2 y

f1y

f1

f 2

f 3 v 3

v 2

v1

v1x

v1y

v2y
v2x

v3x

v3y

Fig. 4.3. Triangular element showing the nodal force and velocity components.
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The rate-of-deformation and stress column matrices in Voigt form are

D{ } =
Dxx

Dyy

2Dxy

 

 
 

 
 

 

 
 

 
 

  

σ{ } =
σxx

σyy

σxy

 

 
 

 
 

 

 
 

 
 

(E4.1.12)

where the factor of 2 on the shear velocity strain is needed in Voigt notation; see the Appendix B.
Only the in-plane stresses are needed in either plane stress or plain strain, since σzz = 0  in plane
stress whereas Dzz = 0 in plane strain, so Dzzσzz  makes no contribution to the power in either
case.  The transverse shear stresses, σ xz  and σyz , and the corresponding components of the rate-

of-deformation, Dxz  and Dyz , vanish in both plane stress and plane strain problems.

By the definition of the rate-of-deformation, Equations (3.3.10) and the velocity
approximation, we have

Dxx = ∂vx

∂x
= ∂N I

∂x
vIx

Dyy =
∂vy

∂y
=

∂NI

∂y
v Iy

2Dxy =
∂vx

∂y
+

∂v y

∂x
=

∂N I

∂y
vIx +

∂N I

∂x
v Iy

(E4.1.13)

In Voigt notation, the B  matrix is developed so it relates the rate-of-deformation to the nodal
velocities by   D{ } = B ˙ d , so using (E4.1.13) and the formulas for the derivatives of the triangular
coordinates (E4.1.5), we have

   

  

B I =
NI ,x 0

0 NI ,y

NI ,y NI , x

 

 

 
 
 

 

 

 
 
 

      B[ ]= B1 B2 B3[ ] =
1

2A

y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 

 

 
 
 

 

 

 
 
 

(E4.1.14)

The internal nodal forces are then given by (4.5.14):

fx1

fy1

fx2

fy2

fx3

fy3

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

= BT σ{ }
Ω
∫ dΩ=

a

2A
Ω
∫

y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

σ xx

σ yy

σ xy

 

 
 

 
 

 

 
 

 
 
dA (E4.1.15)

where a is the thickness and we have used dΩ = adA ; if we assume that the stresses and thickness
a are constant in the element, we obtain

4-34



T. Belytschko, Lagrangian Meshes, December 16, 1998

  

fx1

fy1

fx2

fy2

fx3

fy3

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

int

=
a

2

y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

σxx

σ yy

σ xy

 

 
 

 
 

 

 
 

 
 

(E4.1.16)

In the 3-node triangle, the stresses are sometimes not constant within the element; for example,
when thermal stresses are included for a linear temperature field, the stresses are linear.  In this
case, or when the thickness a varies in the element, one-point quadrature is usually adequate. One-
point quadrature is equivalent to (E4.1.16)  with the stresses and thickness evaluated at the centroid
of the element.

Matrix Form based on Indicial Notation.  In the following, the expressions for the
element are developed using a direct translation of the indicial expression to matrix form.  The
equations are more compact but not in the form commonly seen in linear finite element analysis.

Rate-of-Deformation. The velocity gradient is given by a matrix form of (4.4.7)

  

L = Lij[ ]= viI[ ] N I , j[ ]=
vx1 vx2 vx3

vy1 vy2 vy3

 

 
 

 

 
 

1

2 A

y23 x32

y31 x13

y12 x21

 

 

 
 
 

 

 

 
 
 

=

         =
1

2 A

y23vx1 + y31vx2 + y12vx3 x32vx1 + x13vx2 + x21vx3

y23vy1 + y31vy2 + y12vy3 x32vy1+ x13vy2 + x21vy3

 

 
 

 

 
 (E4.1.19)

The rate-of-deformation is obtained from the above by (3.3.10):

D =
1

2
L +LT( ) (E4.1.20)

As can be seen from (E4.1.19) and (E4.1.20), the rate-of-deformation is constant in the element;
the terms xIJ  and yIJ  are differences in nodal coordinates, not functions of spatial coordinates.

Internal Nodal Forces.  The internal forces are given by (4.5.10) using (E4.1.5) for the
derivatives of the shape functions:

  

fint
T = f Ii[ ]int =

f1x f1y

f2x f2y

f3x f3y

 

 

 
 
 

 

 

 
 
 

int

= N I , j[ ]
Ω
∫ σ ji[ ]dΩ =

1

2A
A
∫

y23 x32

y31 x13

y12 x21

 

 

 
 
 

 

 

 
 
 

σxx σ xy

σ xy σ yy

 

 
 

 

 
 a dA(E4.1.21)

where a is the thickness.  If the stresses and thickness are constant within the element, the
integrand is constant and the integral can be evaluated by multiplying the integrand by the volume
aA, giving
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fint
T =

a

2

y23 x32

y31 x13

y12 x21

 

 

 
 
 

 

 

 
 
 

σ xx σ xy

σxy σyy

 

 
 

 

 
 =

a

2

y23σxx + x32σxy y23σ xy + x32σ yy

y31σ xx + x13σ xy y31σxy + x13σ yy

y12σ xx + x21σ xy y12σ xy + x21σ yy

 

 

 
 
 

 

 

 
 
 

(E4.1.22)

This expression gives the same result as Eq. (E4.1.16).  It is easy to show that the sums of each of
the components of the nodal forces vanish, i.e. the element is in equilibrium.  Comparing
(E4.1.21) with (E4.1.16), we see that the matrix form of the indicial expression involves fewer
multiplications.  In evaluating the Voigt form (E4.1.16) involves many multiplications with zero,
which slows computations, particularly in the three-dimensional counterparts of these equations.
However, the matrix indicial form is difficult to extend to the computation of stiffness matrices, so
as will be seen in Chapter 6, the Voigt form is indispensible when stiffness matrices are needed.

Mass Matrix.  The mass matrix is evaluated in the undeformed configuration by (4.4.52).  The
mass matrix is given by

  

˜ M IJ = ρ0
Ω0

∫ NINJdΩ0 = a0ρ0
∆
∫ ξIξJJξ

0d∆ (E4.1.23)

where we have used   dΩ0 = a0Jξ
0d∆ ; the quadrature in the far right expression is over the parent

element domain.  Putting this in matrix form gives

  

˜ M = a0ρ0

∆
∫

ξ1

ξ2

ξ3

 

 

 
 
 

 

 

 
 
 

ξ1 ξ2 ξ3[ ]Jξ
0d∆ (E4.1.24)

where the element Jacobian determinant for the initial configuration of the triangular element is
given by Jξ

0 = 2A0 , where A0  is the initial area.  Using the quadrature rule for triangular
coordinates, the consistent mass matrix is:

  

˜ M =
ρ0 A0a0

12

2 1 1

1 2 1

1 1 2

 

 

 
 

 

 

 
 

(E4.1.25)

The mass matrix can be expanded to full size by using Eq. (4.4.46),   MiIjJ = δ ij
˜ M IJ  and then using

the rule of Eq. (1.4.26), which gives

M =
ρ0 A0a0

12

2 0 1 0 1 0

0 2 0 1 0 1

1 0 2 0 1 0

0 1 0 2 0 1

1 0 1 0 2 0

0 1 0 1 0 2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

(E4.1.26)
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The diagonal or lumped mass matrix can be obtained by the row-sum technique, giving

  

˜ M = ρ0 A0a0

3

1 0 0

0 1 0

0 0 1

 

 

 
 
 

 

 

 
 
 

(E4.1.27)

This matrix could also be obtained by simply assigning one third of the mass of the element to each
of the nodes.

External Nodal Forces.  To evaluate the external forces, an interpolation of these forces is needed.
Let the body forces be approximated by linear interpolants expressed in terms of the triangular
coordinates as

bx

by

 
 
 

 
 
 

=
bx1 bx2 bx3

by1 by2 by3

 

 
 

 

 
 

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.1.28)

Interpretation of Equation (4.4.13) in matrix form then gives

fext
T =

fx1 fx2 fx3

fy1 fy2 fy3

 

 
 

 

 
 

ext

=
bx1 bx2 bx3

by1 by2 by3

 

 
 

 

 
 

ξ1

ξ2

ξ3

 

 

 
 
 

 

 

 
 
 Ω

∫ ξ1 ξ2 ξ3[ ]ρadA (E4.1.29)

Using the integration rule for triangular coordinates with the thickness and density considered
constant then gives

fext
T =

ρAa

12

bx1 bx2 bx3

by1 by2 by3

 

 
 

 

 
 

2 1 1

1 2 1

1 1 2

 

 

 
 
 

 

 

 
 
 

(E4.1.30)

To illustrate the formula for the computation of the external forces due to a prescribed traction,
consider component i of the traction to be prescribed between nodes 1 and 2.  If we approximate
the traction by a linear interpolation, then

t i = t i1ξ1 +t i2ξ2 (E4.1.31)

The external nodal forces are given by Eq. (4.4.13).  We develop a row of the matrix:

  
fi1 fi2 fi3[ ]ext = t iN I

Γ12

∫ dΓ = t i1ξ1 + t i2ξ2( ) ξ1 ξ2 ξ3[ ]
0

1

∫ al12dξ1 (E4.1.32)

where we have used   ds = l12dξ1 ;   l12  is the current length of the side connecting nodes 1 and 2.
Along this side, ξ 2 =1 − ξ1 , ξ3 = 0 and evaluation of the integral in  (E4.1.32)  gives
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fi1 fi2 fi3[ ]ext

=
al12

6
2t i1 + t i2 t i1 +2t i2 0[ ] (E4.1.33)

The nodal forces are nonzero only on the nodes of the side to which the traction is applied.  This
equation holds for an arbitrary local coordinate system.  For an applied pressure, the above would
be evaluated with a local coordinate system with one coordinate along the element edge.

Example 4.2.  Quadrilateral Element and other Isoparametric 2D Elements.
Develop the expressions for the deformation gradient, the rate-of-deformation, the nodal forces and
the mass matrix for two-dimensional isoparametric elements.  Detailed expressions are given for
the 4-node quadrilateral.  Expressions for the nodal internal forces are given in matrix form.

 

1 2

3

21

3

x

Y

X

1 2

3

y 4

4

4

parent
  element

  
x

Ω
0
e

Ω
0
e

(-1, 1) (1, 1)

(-1, -1) (1, -1)  
X ξ,η

 
 

 
 

  
x ξ , t

 
 

 
 

η

ξ

η,

 
 

 
 X, t

Fig. 4.4. Quadrilateral element in current and initial configurations and the parent domain.

Shape Functions and Nodal Variables.  The element shape functions are expressed in terms of the
element coordinates ξ , η( ) .  At any time t, the spatial coordinates can be expressed in terms of the
shape functions and nodal coordinates by

  

x ξ,t( )
y ξ,t( )

 
 
 

 
 
 

= NI ξ( ) x I t( )
yI t( )

 
 
 

 
 
 

, ξ =
ξ
η

 
 
 

 
 
 

     (E4.2.1)

For the quadrilateral, the isoparametric shape functions are
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NI ξ( ) =
1

4
1+ ξ Iξ( ) 1 + η Iη( ) (E4.2.2)

where ξ I ,η I( ) ,  I= 1 to 4,  are the nodal coordinates of the parent element shown in Fig. 4.4.
They are given by

ξiI[ ] =
ξI

η I

 

  
 

  =
−1 1 1 −1

−1 −1 1 1
 
  

 
  (E4.2.3)

Since (E4.2.1) also holds for t=0, we can write

X ξ( )
Y ξ( )

 
 
 

 
 
 

=
XI

YI

 
 
 

 
 
 

N I ξ( ) (E4.2.4)

where   X I ,YI  are the coordinates in the undeformed configuration.  The nodal velocities are given
by

  

vx ξ ,t( )
vy ξ ,t( )

 
 
 

 
 
 

=
vxI t( )
vyI t( )

 
 
 

 
 
 
N I ξ( ) (E4.2.5)

which is the material time derivative of the expression for the displacement.

Rate-of-Deformation and Internal Nodal Forces.  The map (E4.2.1) is not invertible for the
shape functions given by (E4.2.2).  Therefore it is impossible to write explicit expressions for the
element coordinates in terms of x and y, and the derivatives of the shape functions are evaluated by
using implicit differentiation.  Referring to (4.4.47) we have

  
NI ,x

T = NI ,x NI ,y[ ]= N I ,ξ
T x,ξ

−1 = NI ,ξ NI ,η[ ] ξ,x ξ,y

η,x η, y

 

 
 

 

 
  (E4.2.6)

The Jacobian of the current configuration with respect to the element coordinates is given by

  
x ,ξ =

x ,ξ x,η

y,ξ y,η

 

 
 

 

 
 = x iI[ ] ∂NI ∂ξ j[ ]=

x I

y I

 
 
 

 
 
 

N I ,ξ NI ,η[ ] =
x IN I ,ξ x I NI ,η

y IN I ,ξ yIN I ,η

 

 
 

 

 
 (E4.2.7a)

For the 4-node quadrilateral the above is

  
x ,ξ =

x I t( )ξI 1+ η Iη( ) x I t( )η I 1 +ξIξ( )
y I t( )ξI 1+η Iη( ) yI t( )η I 1+ ξIξ( )

 

 
 

 

 
 

I =1

4

∑ (E4.2.7b)

In the above, the summation has been indicated explicitly because the index I  appears three times.
As can be seen from the RHS, the Jacobian matrix is a function of time.  The inverse of Fξ  is
given by
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x ,ξ

−1 =
1

Jξ

y,η − x,η

−y,ξ x,ξ

 

 
 

 

 
 , Jξ = x,ξ y,η − x,ηy,ξ (E4.2.7c)

 The gradients of the shape functions for the 4-node quadrilateral with respect to the
element coordinates are given by

  

N,ξ
T = ∂NI ∂ξ i[ ] =

∂N1 ∂ξ ∂N1 ∂η
∂N2 ∂ξ ∂N2 ∂η
∂N3 ∂ξ ∂N3 ∂η
∂N4 ∂ξ ∂N4 ∂η

 

 

 
 
 
 

 

 

 
 
 
 

=
1

4

ξ1 1+η1η( ) η1 1+ ξ1ξ( )
ξ2 1+η2η( ) η2 1+ ξ2ξ( )
ξ3 1+ η3η( ) η3 1+ ξ3ξ( )
ξ4 1+η4η( ) η4 1+ ξ4ξ( )

 

 

 
 
 
 

 

 

 
 
 
 

The gradients of the shape functions with respect to the spatial coordinates can then be computed
by

    

B I = NI ,x
T = NI ,ξ

T x ,ξ
−1 =

ξ1 1+ η1η( ) η1 1+ ξ1ξ( )
ξ2 1+η2η( ) η2 1+ ξ2ξ( )
ξ3 1+η3η( ) η3 1+ ξ3ξ( )
ξ4 1+ η4η( ) η4 1+ ξ4ξ( )

 

 

 
 
 
 

 

 

 
 
 
 

1

Jξ

y,η −y,ξ

−x,η x,ξ

 

 
 

 

 
 (E4.2.8a)

and the velocity gradient is given by Eq. (4.5.3)

    L = v IB I
T = v I NI , x

T (E4.2.8b)

For a 4-node quadrilateral which is not rectangular, the velocity gradient, and hence the rate-of-

deformation, is a rational function because 
  
Jξ = det x,ξ( )  appears in the denominator of 

  
x ,ξ  and

hence in L.  The determinant Jξ  is a linear function in ξ , η( ) .

The nodal internal forces are obtained by (4.5.6), which gives

    
f I

int( )T
= fxI fyI[ ]int

= B I
TσdΩ

Ω
∫ =

Ω
∫ N I, x N I, y[ ] σ xx σ xy

σxy σ yy

 

 
 

 

 
 dΩ (E4.2.9)

The integration is performed over the parent domain.  For this purpose, we use

dΩ = Jξadξdη (E4.2.10)

where a is the thickness.  The internal forces are then given by (4.4.11), which when written out
for two dimensions gives:

  
f I

int( )T
= fxI fyI[ ]int

=
∆
∫ NI ,x NI ,y[ ] σ xx σ xy

σ xy σ yy

 

 
 

 

 
 aJξd∆ (E4.2.11)
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where NI ,i  is given in Eq. (E4.2.8a).  Equation (E4.2.14) applies to any isoparametric element in

two dimensions.  The integrand is a rational function of the element coordinates, since Jξ  appears
in the denominator (see Eq. (4.2.8a)), so analytic quadrature of the above is not feasible.
Therefore numerical quadrature is generally used.  For the 4-node quadrilateral, 2x2 Gauss
quadrature is full quadrature.  However, for full quadrature, as discussed in Chapter 8, the element
locks for incompressible and nearly incompressible materials in plane strain problems.  Therefore,
selective-reduced quadrature as described in Section 4.5.4, in which the volumetric stress is
underintegrated, must be used for the four-node quadrilateral for plane strain problems when the
material response is nearly incompressible, as in elastic-plastic materials.

The displacement for a 4-node quadrilateral is linear along each edge.  Therefore, the
external nodal forces are identical to those for the 3-node triangle, see Eqs. (E4.1.29-E4.1.33).

Mass Matrix.  The consistent mass matrix is obtained by using (4.4.52), which gives

  

˜ M =

N1

N2

N3

N4

 

 

 
 
 
 

 

 

 
 
 
 Ω0

∫ N1 N2 N3 N4[ ]ρ0dΩ0 (E4.2.12)

We use

  dΩ0 = Jξ
0 ξ ,η( )a0dξdη (E4.2.13)

where   Jξ
0 ξ ,η( )  is the determinant of the Jacobian of the transformation of the parent element to the

initial configuration a0  is the thickness of the undeformed element.  The expression for   ̃  M  when
evaluated in the parent domain is given by

  

˜ M =

N1
2 N1N2 N1N3 N1 N4

N2
2 N2 N3 N2 N4

symmetric N3
2 N3N4

N4
2

 

 

 
 
 

 

 

 
 
 

−1

+ 1

∫
−1

+1

∫  ρ0a0Jξ
0 ξ,η( ) dξdη (E4.2.14)

The matrix is evaluated by numerical quadrature.  This mass matrix can be expanded to an 8x8
matrix using the same procedure described for the triangle in the previous example.

A lumped, diagonal mass matrix can be obtained by using Lobatto quadrature with the
quadrature points coincident with the nodes.  If we denote the integrand of Eq. (E4.2.14) by

  m ξI ,η I( ) , then Lobatto quadrature gives

  
M = m

I=1

4

∑ ξI ,η I( ) (E4.2.15)
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Alternatively, the lumped mass matrix can be obtained by apportioning the total mass of the
element equally among the four nodes.  The total mass is ρ0 A0a0  when a0  is constant, so dividing
it among the four nodes gives

M =
1

4
ρ0 A0a0I 4 (E4.2.16)

where I 4  is the unit matrix of order 4.

Example 4.3.  Three Dimensional Isoparametric Element.  Develop the expressions for
the rate-of-deformation, the nodal forces and the mass matrix for three dimensional isoparametric
elements.  An example of this class of elements, the eight-node hexahedron, is shown in Fig. 4.5.

1
2

3
4

5
6

7
8

x

y

z

2

3

4

1

5

6 8

ζ

ξ η

7

  φ (x(ξ ,0), t)

Fig. 4.5.  Parent element and current configuration for an 8-node hexahedral element.

Motion and Strain Measures.  The motion of the element is given by

x

y

z

 
 
 

  

 
 
 

  
= N I ξ( )

x I t( )
y I t( )
zI t( )

 
 
 

  

 
 
 

  
              ξ = ξ ,  η,  ζ( ) (E4.3.1)

where the shape functions for particular elements are given in Appendix C.  Equation (E4.3.1) also
holds at time t=0, so
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X

Y

Z

 
 
 

  

 
 
 

  
= N I ξ( )

XI

YI

ZI

 
 
 

  

 
 
 

  
(E4.3.2)

The velocity field is given by

vx

vy

vz

 
 
 

  

 
 
 

  
= NI ξ( )

vxI

vyI

vzI

 
 
 

  

 
 
 

  
(E4.3.3)

The velocity gradient is obtained from Eq. (4.5.3), giving

    
BI

T = N I ,x NI ,y N I ,z[ ] (E4.3.4)

    

L = v IB I
T =

v xI

v yI

vzI

 
 
 

  

 
 
 

  
N I ,x NI ,y NI ,z[ ] (E4.3.5)

                

  

=
vxI NI ,x vxIN I ,y vxIN I ,z

vyI NI ,x vyIN I ,y vyIN I ,z

vzI N I ,x vzINI ,y vzIN I ,z

 

 

 
 
 

 

 

 
 
 

(E4.3.6)

The derivatives with respect to spatial coordinates are obtained in terms of derivatives with respect
to the element coordinates by Eq. (4.4.37).

  
NI ,x

T = N I ,ξ
T x ,ξ

−1 (E4.3.7)

  

x ,ξ ≡ Fξ x,ξ = x IN I ,ξ
T =

x I

yI

z I

 
 
 

  

 
 
 

  
N I ,ξ N I,η N I ,ζ[ ] (E4.3.8)

The deformation gradient can be computed by Eqs. (3.2.10), (E4.3.1) and (E4.3.7):

  
F =

∂x
∂X

= x I N I,X = x IN I ,ξ
T X ,ξ

−1 ≡ x I NI ,ξ
T Fξ

0( )−1
(E4.3.9)

where

  
X,ξ ≡ Fξ

0 = XI NI ,ξ
T (E4.3.10)

The Green strain is then computed by Eq. (3.3.5); a more accurate procedure is described in
Example 4.12.
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Internal Nodal Forces.  The internal nodal forces are obtained by Eq. (4.5.6):

    

fI
int( )T

= f xI , f yI ,  fzI[ ]int
= BI

TσdΩ
Ω
∫ = N I, x NI, y NI , z[ ]

∆
∫

σ xx σ xy σ xz

σ xy σ yy σ yz

σ xz σ yz σ zz

 

 

 
 

 

 

 
 
Jξ d∆ (E4.3.11)

The integral is evaluated by numerical quadrature, using the quadrature formula (4.5.26).

External Nodal Forces.  We consider first the nodal forces due to the body force.  By Eq.
(4.4.13), we have

fiI
ext = N IρbidΩ

Ω
∫ = N I ξ( )

∆
∫ ρ ξ( )bi ξ( )Jξd∆ (E4.3.12a)

fxI

fyI

fzI

 
 
 

  

 
 
 

  

ext

= N I
−1

1

∫
−1

1

∫
−1

1

∫ ξ( )ρ ξ( )
bx ξ( )
by ξ( )
bz ξ( )

 

 
 

  

 

 
 

  
Jξdξdηdζ (E4.3.12b)

where we have transformed the integral to the parent domain.  The integral over the parent domain
is evaluated by numerical quadrature.

To obtain the external nodal forces due to an applied pressure t =− pn , we consider a
surface of the element.  For example, consider the external surface corresponding with the parent
element surface ζ =− 1; see Fig. 4.6.  The nodal forces for any other surface are constructed
similarly.

On any surface, any dependent variable can be expressed as a function of two parent
coordinates, in this case they are ξ and η .  The vectors x,ξ  and x,η  are tangent to the surface.  The

vector x,ξ × x,η  is in the direction of the normal n and as shown in any advanced calculus text, its
magnitude is the surface Jacobian, so we can write

  
pndΓ = p x ,ξ × x,η( )dξdη (E4.3.13)

For a pressure load, only the normal component of the traction is nonzero.  The nodal external
forces are then given by

  
fiI

ext = ti
Γ
∫ NIdΓ = − pni

Γ
∫ N IdΓ= − p

−1

1

∫
−1

1

∫ eijk x j ,ξ xk ,ηN Idξdη (E4.3.14)

where we have used (E4.3.13) in indicial form in the last step.  In matrix form the above is

  
f I

ext =− p
Γ
∫ NIx ,ξ × x ,ηdΓ (E4.3.16)
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We have used the convention that the pressure is positive in compression.  We can expand the
above by using Eq. (4.4.1) to express the tangent vectors in terms of the shape functions and
writing the cross product in determinant form, giving

  

f I
ext = f xIe x + f yIe y + f zIe z =− pN Idet

−1

1

∫
e x e y ez

xJ NJ ,ξ y J NJ, ξ z JN J ,ξ

xK NK ,η yKNK, η zKNK ,η

 

 

 
 
 

 

 

 
 
 −1

1

∫ dξdη (E4.3.17)

This integral can readily be evaluated by numerical quadrature over the loaded surfaces of the
parent element.

Example 4.4. Axisymmetric Quadrilateral. The expressions for the rate-of-deformation
and the nodal forces for the axisymmetric quadrilateral element are developed.  The element is
shown in Fig. 4.7.  The domain of the element is the volume swept out by rotating  the
quadrilateral 2π  radians about the axis of symmetry, the z-axis.  The expressions in indicial
notation, Eqs. (4.5.3) and (4.5.6), are not directly applicable since they do not apply to curvilinear
coordinates.

2
1

3

4

Ω

z

y
x

θ
r

Fig. 4.7.  Current configuration of quadrilateral axisymmetric element; the element consists of the volume generated
by rotating the quadrilateral 2π  radians about the z-axis.

In this case, the isoparametric map relates the cylindrical coordinates   r,  z[ ]  to the parent

element coordinates   ξ ,  η[ ] :

  

r ξ ,η ,t( )
z ξ ,η,t( )

 
 
 

 
 
 
r =

rI t( )
z I t( )

 
 
 

 
 
 

NI ξ,η( ) (E4.4.1)
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where the shape functions NI  are given in (E4.2.20.  The expression for the rate-of-deformation is
based on standard expressions of the gradient in cylindrical coordinates (the expression are
identical to the expressions for the linear strain):

Dr

Dz

Dθ

2Drz

 

 
  

 
 
 

 

 
  

 
 
 

=

∂
∂r

0

0
∂
∂z

1

r
0

∂
∂z

∂
∂r

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

vr

vz

 
 
 

 
 
 

=

∂vr

∂r
∂vz

∂z
vr

r
∂vr

∂z
+ ∂vz

∂r

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

(E4.4.2)

The conjugate stress is

  σ{ }T = σ r ,σ z , σθ ,σ rz[ ] (E4.4.3)

The velocity field is given by

  

vr

vz

 
 
 

 
 
 

= NI ξ, η( ) vrI

vzI

 
 
 

 
 
 

=
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 
  

 
   ˙ d (E4.4.4)

  
˙ d T = vr1,vz1, vr 2, vz2 , vr3, vz3, vr4 , vz 4[ ] (E4.4.5)

The submatrices of the B  matrix are given from Eq. (E4.4.2) by

B[ ]I =

∂NI

∂r
0

0
∂N I

∂z
NI

r
0

∂NI

∂z

∂N I

∂r

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

(E4.4.6)

The derivatives in (E4.4.6) now have to be expressed in terms of derivates with respect to the
parent element coordinates.  Rather than obtaining these with a matrix product, we just write out
the expressions using (E4.2.7c) with x,y replaced by r,z, which gives

∂NI

∂r
=

1

Jξ

∂z

∂η
∂N I

∂ξ
−

∂r

∂η
∂NI

∂η
 
 
 

 
 
 (E4.4.7a)

∂NI

∂z
=

1

Jξ

∂r

∂ξ
∂N I

∂η
−

∂z

∂ξ
∂NI

∂ξ
 
 
 

 
 
 (E4.4.7b)

where
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∂z

∂η
= z I

∂NI

∂η
∂z

∂ξ
=z I

∂NI

∂ξ
(E4.4.8a)

∂r

∂η
=rI

∂NI

∂η
∂r

∂ξ
= rI

∂N I

∂ξ
(E4.4.8b)

The nodal forces are obtained from (4.5.14), which yields

  
f I

int = BI
T σ{ }

Ω
∫ dΩ= 2π BI

T

∆
∫ σ{ }Jξrd∆ (E4.4.9)

where B I  is given by (E4.4.6) and we have used dΩ = 2πrJξd∆  where r is given by Eq.

(E4.4.1).  The factor   2π  is often omitted from all nodal forces, i.e. the element is taken to be the
volume generated by sweeping the quadrilateral by one radian about the z-axis in Fig. 4.7.

Example 4.5.  Master-Slave Tieline.  A master slave tieline is shown in Figure 4.5.
Tielines are frequently used to connect parts of the mesh which use different element sizes, for they
are more convenient than connecting the elements of different sizes by triangles or tetrahedra.
Continuity of the motion across the tieline is enforced by constraining the motion of the slave
nodes to the linear field of the adjacent edge connecting the master nodes.  In the following, the
resulting nodal forces and mass matrix are developed by the transformation rules of Section 4.5.5.

1
2

3 4

master nodes

slave nodes

Fig. 4.8.  Exploded view of a tieline; when joined together, the velocites of nodes 3 and 5 equal the nodal velocities
of nodes 1 and 2 and the velocity of node 4 is given in terms of nodes 1 and 2 by a linear constraint.

The slave node velocities are given by the kinematic constraint that the velocities along the

two sides of the tieline must remain compatible, i.e. C0 .  This constraint can be expressed as a
linear relation in the nodal velocities,  so the relation corresponding to Eq. (4.5.35) can be written
as
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ˆ v M
ˆ v S

 
 
 

 
 
 

=
I

A
 
  

 
  vM{ }      so        T =

I

A
 
  

 
  (E4.5.1)

where the matrix A is obtained from the linear constraint and the superposed hats indicate the
velocities of the disjoint model before the two sides are tied together.  We denote the nodal forces

of the disjoint model at the slave nodes and master nodes by   
ˆ f S  and   

ˆ f M , respectively.  Thus,   
ˆ f S  is

the matrix of nodal forces assembled from the elements on the slave side of the tieline and   
ˆ f M  is the

matrix of nodal forces assembled from the elements on the master side of the tieline.  The nodal
forces for the joined model are then given by Eq. (4.5.36):

  
fM{ } = TT

ˆ f M
ˆ f S

 
 
 

 
 
 

= I AT[ ]
ˆ f M
ˆ f S

 
 
 

 
 
 

(E4.5.2)

where T  is given by (E4.5.1).  As can be seen from the above, the master nodal forces are the
sum of the master nodal forces for the disjoint model and the transformed slave node forces.
These formulas apply to both the external and internal nodal forces.

The consistent mass matrix is given by Eq. (4.5.39):

M = TT MT= I AT[ ] MM 0

0 Ms

 
  

 
  

I

A
 
  

 
  = MM + AT MsA (E4.5.3)

We illustrate these transformations in more detail for the 5 nodes which are numbered in Fig. 4.8.
The elements are 4-node quadrilaterals, so the velocity along any edge is linear.  Slave nodes 3 and
5 are coincident with master nodes 1 and 2, and slave node 4 is at a distance   ξl from node 1,

where   l = x2 −x1 .  Therefore,

  v3 = v1, v5 = v2 , v4 =ξv2 + 1− ξ( )v1 (E4.5.4)

and Eq. (E4.5.1) can be written as

v1

v2

v3

v4

v5

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

=

I 0

0 I

I 0

1− ξ( )I ξI

0 I

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

v1

v2

 
 
 

 
 
 
          T =

I 0

0 I

I 0

1−ξ( )I ξI

0 I

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

(E4.5.5)

The nodal forces are then given by
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f1
f2

 
  

 
  =

I 0 I 1 − ξ( )I 0

0 I 0 ξI I

 

 
 

 

 
 

ˆ f 1
ˆ f 2
ˆ f 3
ˆ f 4
ˆ f 5

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

(E4.5.6)

The force for master node 1 is

  f1 =ˆ f 1 +ˆ f 3 + 1 − ξ( )̂  f 5 (E4.5.7)

Both components of the nodal force transform identically; the transformation applies to both
internal and external nodal forces.  The mass matrix is transformed by Eq. (4.5.39) using T as
given in Eq. (E4.5.1).

If the two lines are only tied in the normal direction, a local coordinate system needs to be
set up at the nodes to write the linear constraint.  The normal components of the nodal forces are
then related by a relation similar to Eq. (4.5.7), whereas the tangential components remain
independent.

4.6  COROTATIONAL FORMULATIONS

In structural elements such as bars, beams and shells, it is awkward to deal with fixed
coordinate systems.  Consider for example a rotating rod such as shown in Fig. 3.6.  Initially, the
only nonzero stress is σx , whereas σy  vanishes.  Subsequently, as the rod rotates it is awkward
to express the state of uniaxial stress in a simple way in terms of the global components of the
stress tensor.

A natural approach to overcoming this difficulty is to embed a coordinate system in the bar
and rotate the embedded system with the rod.  Such coordinate systems are known as corotational
coordinates.  For example, consider a coordinate system, ˆ x = ˆ x , ˆ y [ ]  for a rod so that ˆ x  always
connects nodes 1 and 2, as shown in Fig. 4.9.  A uniaxial state of stress can then always be
described by the condition that   

ˆ σ y = ˆ σ xy = 0 and that   
ˆ σ x  is nonzero.  Similarly the rate-of-

deformation of the rod is described by the component   
ˆ D x .

There are two approaches to corotational finite element formulations:
1.  a coordinate system is embedded at each quadrature point and rotated with material
in some sense.
2.  a coordinate system is embedded in an element and rotated with the element.

The first procedure is valid for arbitrarily large strains and large rotations.  A major
consideration in corotational formulations lies in defining the rotation of the material.  The polar
decomposition theorem can be used to define a rotation which is independent of the coordinate
system.  However, when particular directions of the material have a large stiffness which must be
represented accurately, the rotation provided by a polar decomposition does not necessarily provide
the best rotation for a Cartesian coordinate system; this is illustrated in Chapter 5.

A remarkable aspect of corotational theories is that although the corotational coordinate is
defined only at discrete points and is Cartesian at these points, the resulting finite element
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formulation accurately reproduces the behavior of shells and other complex structures.  Thus, by
using a corotational formulation in conjunction with a “degenerated continuum” approximation, the
complexities of curvilinear coordinate formulations of shells can be avoided. This is further
discussed in Chapter 9, since  this is particularly attractive for the nonlinear analysis of shells.

For some elements, such as a rod or the constant strain triangle, the rigid body rotation is
the same throughout the element.  It is then sufficient to embed a single coordinate system in the
element.  For higher order elements, if the strains are small, the coordinate system can be
embedded so that it does not rotate exactly with the material as described later.  For example, the
corotational coordinate system can be defined to be coincident to one side of the element.  If the
rotations relative to the embedded coordinate system are of order θ , then the error in the strains is
of order θ 2 .  Therefore, as long as θ 2  is small compared to the strains, a single embedded
coordinate system is adequate.  These applications are often known as small-strain, large rotation
problems; see Wempner (1969) and Belytschko and Hsieh(1972).

The components of a vector v  in the corotational system are related to the global
components by

  
ˆ v i = R jivj       or        ̂ v = RTv      and     v = Rˆ v  (4.6.1)

where R is an orthogonal transformation matrix defined in Eqs. (3.2.24-25) and the superposed
“^” indicates the corotational components.

The corotational components of the finite element approximation to the velocity field can be
written as

  
ˆ v i ξ ,t( ) = NI ξ( )ˆ v iI t( ) (4.6.2)

This expression is identical to (4.4.32) except that it pertains to the corotational components.

Equation (4.6.2) can be obtained from (4.4.32) by multiplying both sides by RT .

The corotational components of the velocity gradient tensor are given by

  

ˆ L ij =
∂̂  v i
∂̂  x j

=
∂N I ξ( )

∂̂  x j
ˆ v iI t( ) = ˆ B jI ˆ v iI     or  

    
ˆ L = ˆ v I

∂N I

∂̂  x 
= ˆ v I NI

T
,ˆ x = ˆ v I

ˆ B I
T (4.6.3)

where

  

ˆ B jI =
∂NI

∂ˆ x j
(4.6.4)

The corotational rate-of-deformation tensor is then given by

  

ˆ D ij =
1

2
ˆ L ij + ˆ L ji( ) =

1

2

∂ˆ v i
∂ˆ x j

+
∂ˆ v j
∂ˆ x i

 

 
 

 

 
 (4.6.5)

The corotational formulation is used only for the evaluation of internal nodal forces.  The
external nodal forces and the mass matrix are sually evaluated in the global system as before.  The
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the semi-discrete equations of motion are treated in terms of global components.  We therefore
concern ourselves only with the evaluation of the internal nodal forces in the corotational
formulation.

The expression for   
ˆ f I

int  in terms of corotational components is developed as follows.  We
start with the standard expression for the nodal internal forces, Eq. (4.5.5):

  
fiI

int =
∂NI

∂x j
σ jidΩ

Ω
∫      or    

  

f I
int( )T

= NI ,x
T

Ω
∫ σdΩ (4.6.6)

By the chain rule and Eq. (4.6.1)

  

∂NI

∂x j
=

∂N I

∂ˆ x k

∂ˆ x k
∂x j

=
∂N I

∂ˆ x k
R jk      or       NI ,x = RN I ,ˆ x (4.6.7)

Substituting the transformation for the Cauchy stress into the corotational stress, Box 3.2, and Eq.
(4.6.7) into Eq. (4.6.6), we obtain

  

f I
int( )T

= NI , ˆ x 
T RT

Ω
∫ Rˆ σ RTdΩ (4.6.8)

and using the orthogonality of R, we have

  
f I

int( )T
= N I ,ˆ x 

T ˆ σ RT

Ω
∫ dΩ       or      

  
fiI

int[ ]T
= f Ii

int =
∂NI

∂ˆ x jΩ
∫ ˆ σ jk Rki

TdΩ (4.6.9)

Comparing the above to the standard expression for the nodal internal forces, (4.6.5), we can see
that the expressions are similar, but the stress is expressed in the corotational system and the
rotation matrix R now appears.  In the expression on the right, the indices on   f

int  have been
exchanged so that the expression can be converted to matrix form.

If we use the     ̂  B  matrix defined by Eq. (4.6.4) we can write

    

f I
int( )T

= ˆ B I
Tˆ σ RTdΩ

Ω
∫             

    
fint

T = BTˆ σ RT dΩ∫ (4.6.10)

 Corresponding relations for the internal nodal forces can be developed in Voigt notation:

  
f I

int = RT ˆ B I
T ˆ σ { }dΩ

Ω
∫       where      

  
ˆ D { } = ˆ B Iˆ v I (4.6.11)

and   
ˆ B I  is obtained from     

ˆ B I  by the Voigt rule.

The rate of the corotational Cauchy stress is objective (frame-invariant), so the constitutive
equation can be expressed directly as a relationship between the rate of the corotational Cauchy
stress and the corotational rate-of-deformation
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Dˆ σ 
Dt

= S
ˆ σ ̂  D ˆ D , ˆ σ ,  etc( ) (4.6.12)

In particular, for hypoelastic material,

  

Dˆ σ 
Dt

= ˆ C : ˆ D       or      
  

Dˆ σ ij
Dt

= ˆ C ijkl
ˆ D kl (4.6.13)

where the elastic response matrix is also expressed in terms of the corotational components.  An

attractive feature of the above relation is that the ˆ C  matrix for anisotropic materials need not be
changed to reflect rotations.  Since the coordinate system rotates with the material, material rotation

has no effect on ˆ C .  On the other hand, for an anisotropic material, the C  matrix changes as the
material rotates.

Example 4.6.  Rods in Two Dimensions.  A two-node element is shown in Fig. 4.9.  The
element uses linear displacement and velocity fields.  The corotational coordinate ˆ x   is chosen to
coincide with the axis of the element at all times as shown.  Obtain an expression for the
corotational rate-of-deformation and the internal nodal forces.  Then the methodology is extended
to a three-node rod.

x

y

  ̂  x 

  ̂
 y 

1

2Ω

θ

Ω
0

x

y

  ̂  x 
  ̂
 y 

1

2

Fig. 4.9.  Two-node rod element showing initial configuration and current configuration and the corotational
coordinate.

The displacement and velocity fields are linear in   ̂  x  and given by
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x1 x2

y1 y2
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ˆ v x
ˆ v y

 
 
 

 
 
 

=
ˆ v x1 ˆ v x2

ˆ v y1 ˆ v y2

 

 
 

 

 
 

1− ξ
ξ

 
 
 

 
 
 

ξ =
ˆ x 
l

(E4.6.1)

where   l  is the current length of the element.  The corotational velocities are related to the global
components by the vector transformation Eq. (E4.6.1):

    

vxI

vyI

 
 
 

 
 
 

= R
ˆ v xI

ˆ v yI

 
 
 

 
 
 

, R =
Rxˆ x Rxˆ y 

Ry ˆ x Ryˆ y 

 

 
 

 

 
 =

cos θ − sin θ
sinθ cosθ

 
  

 
  =

1

l
x21 −y21

y21 x21

 
  

 
  (E4.6.2)

A state of uniaxial stress is assumed; the only nonzero stress is ˆ σ x  which is the stress

along the axis of the bar element.  Since   ̂  x  rotates with the bar element, ˆ σ x  is the axial stress for

any orientation of the element.  Only the axial component of the rate-of-deformation tensor,   
ˆ D x ,

contributes to the internal power.  It is given the derivative of the velocity field (E4.6.1):

    

ˆ D x =
∂ˆ v x
∂ˆ x 

= NI , ˆ x [ ] ˆ v x1

ˆ v x2

 
 
 

 
 
 

=
1

l
−1 +1[ ]

ˆ v x1

ˆ v x2

 
 
 

 
 
 

= ˆ B ̂ v       
    
ˆ B = NI, ˆ x [ ] =

1

l
−1 +1[ ] (E4.6.3)

Nodal Internal Forces. The nodal internal forces are obtained from Eq. (4.6.8), which can be
rewritten as

  
fIi[ ]int =

∂N I

∂̂  x jΩ
∫ ˆ σ jk Rki

T dΩ=
∂NI

∂ˆ x 
Ω
∫ ˆ σ xx Rˆ x i

T dΩ = ˆ B T

Ω
∫ ˆ σ xxRˆ x i

T dΩ (E4.6.4)

where the second expression omits the many zeros which appear in the more general expression;
the subscripts on the internal nodal forces have been interchanged.  Substituting (E4.6.2) and
(E4.6.3) into the above gives

    
fIi[ ]int

=
1

l∫
−1

+1
 
  

 
  

ˆ σ x[ ] cos θ sin θ[ ]dΩ (E4.6.6)

If we assume the stress is constant in the element, we can evaluate the integral by multiplying the
integral by the volume of the element,   V = Al , which gives

  
fIi[ ]int =

f1x f1y

f2 x f2y

 

 
 

 

 
 = A ˆ σ x

−cos θ −sin θ
cosθ sin θ

 
  

 
  (E4.6.7)

The above result shows that the nodal forces are along the axis of the rod and equal and opposite at
the two nodes.
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The stress-strain law in this element is computed in the corotational system.  Thus, the rate
form of the hypoelastic law is

  

Dˆ σ x
Dt

= E ˆ D x (E4.6.8)

where E is a tangent modulus in uniaxial stress.  The rotation terms which appear in the objective
rates are not needed, since the coordinate system is corotational.

To evaluate the nodal forces, the current cross-sectional area A must be known.  The
change in area can then be expressed in terms of the transverse strains;  the exact formula depends
on the shape of the cross-section.  For a rectangular cross-section

  
˙ A = A ˆ D y + ˆ D Z( ) (E4.6.9a)

Computation of internal nodal forces from one-dimensional rod. The internal nodal forces can
also be obtained by computing the corotational components as in Example 2.8.1, Eq. (E2.2.8) and
then transforming by Eq. (4.5.40).  In the corotational system, the nodal forces are given by  Eq.
(E2.8.8), so we write this equation in the corotational system:

  

ˆ f int =
ˆ f x1
ˆ f x2

 
 
 

 
 
 

int

=
1

l
Ω
∫

−1

+1

 
  

 
  ̂  σ x Adx (E4.6.10)

Since the we are considering a slender rod with no stiffness normal to its axis, the transverse

snodal forces vanish, i.e.  
ˆ f y1 = ˆ f y2 = 0.

Voigt notation. In Voigt procedures, the element equations are usually developed by starting with
the equations in the local, corotational cooordinates.  The global components of the nodal forces
can then be obtained by the transformation equations, (4.5.40).  We first define T by relating the

local degrees-of-freedom (which are conjugate to   ̂ f int ) to the four degrees-of-freedom of the
element:

  

ˆ v x1

ˆ v x2

 
 
 

 
 
 

=
cosθ sin θ 0 0

0 0 cos θ sinθ
 
  

 
  

vx1

vy1

vx2

vy2

 

 
  

 
 
 

 

 
  

 
 
 

  so  
  
T =

cos θ sinθ 0 0

0 0 cosθ sin θ
 
  

 
  (E4.6.11)

which defines the T  matrix.  Using Eq. (4.5.36),   f = TTˆ f , and assuming the stress is constant in
the element then gives

  

f int =

fx1

fy1

fx2

fy2

 

 
  

 
 
 

 

 
  

 
 
 

int

= TTf int =

cos θ 0

sin θ 0

0 cos θ
0 sin θ

 

 

 
 
 
 

 

 

 
 
 
 

A ˆ σ x
−1

1

 
 
 

 
 
 

= A ˆ σ x

−cos θ
−sin θ
cos θ
sin θ

 

 
  

 
 
 

 

 
  

 
 
 

(E4.6.12)
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which is identical to (E4.6.7).

Three-Node Element.  We consider the three-node curved rod element shown in Fig. 4.10.  The
configurations, displacement, and velocity are given by quadratic fields.  The expression for the
nodal internal forces will be developed by the corotational approach.

Ω
0

x, X

y, Y

1

2

x

y

  

  1

2

Ω

3

ξX (  )

3

ξx (  , t)

ex

ye

ξ =-1

1 2 3

ξ =+1

parent element
Fig. 4.10.  Initial, current, and parent elements for a three-node rod; the corotational base vector   

ˆ e x  is tangent to the

current configuration.

The initial and current configurations are given by

  X ξ, t( ) = XI t( )NI ξ( )     x ξ ,t( ) = x I t( )N I ξ( ) (E4.6.13)

where

N I[ ] =
1

2
ξ ξ − 1( ) 1− ξ2 1

2
ξ ξ + 1( ) 

 
 
 

(E4.6.14)

The displacement and velocity are given by

  u ξ, t( ) = uI t( )NI ξ( )     v ξ ,t( ) = v I t( )NI ξ( ) (E4.6.15)

The corotational system is defined at each point of the rod (in practice it is needed only at the
quadrature points).  Let   

ˆ e x  be tangent to the rod, so
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ˆ e x =
x ,ξ

x ,ξ
 where x,ξ = x IN I ,ξ ξ( ) (E4.6.16)

The normal to the element is given by

  
ˆ e y = e z × ˆ e x where e z = 0, 0, 1[ ] (E4.6.17)

The rate of deformation is given by

  

ˆ D x =
∂ˆ v x
∂ˆ x 

=
∂ˆ v x
∂ξ

∂ξ
∂ˆ x 

=
1

x ,ξ

∂̂  v x
∂ξ

  must be explained-may be wrong(E4.6.18)

From Eq. (E4.6.15) and Eq. (E4.6.18)

  
ˆ v x = NI ξ( ) Rxˆ x vxI + Ryˆ x vyI( ) (E4.6.19)

the rate-of-deformation is given by

  

ˆ D x =
1

x ,ξ
NI ,ξ ξ( )

vxI

vyI

 
 
 

 
 
 

(E4.6.20)

The above shows the     
ˆ B I  matrix to be

    

ˆ B I =
1

x,ξ
N I ,ξ (E4.6.21)

The nodal internal forces are then given by

    
fI

int( )T
= f xI f yI[ ]int

= A
− 1

1

∫ ˆ B I ˆ σ x x ,ξ Rxˆ x Ryˆ x [ ]dξ (E4.6.22)

An interesting feature of the above development is that it avoids curvilinear tensors completely.
However, the rate-of-deformation as computed here is correct; Exercize ?? shows how Eq.
(E4.6.20) reproduces the correct result for a curved bar.

Example 4.7.  Triangular Element.  Develop the expression for the velocity strain and the
nodal internal forces for a three-node triangle using the corotational approach.
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0
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Fig. 4.11  Triangular three-node element treated by corotational coordinate system.

The element in its initial and current configurations is shown in Fig. 4.11.  The corotational
system is initially at an angle of θ0  with the global coordinate system; in the following, θ0  is often

chosen to vanish, but for an anistropic material it may be desirable to orient the initial   ̂  x -axis in a
direction of anisotropy, for example, in a composite material it may be useful to orient   ̂  x  in a fiber
direction.  The current angle of the corotational coordinate system is θ .  We discuss how to
compute this angle subsequently.

The motion can be expressed in terms of the triangular coordinates, as in Example 4.1.

x

y

 
 
 

 
 
 

=
x1 x2 x3

y1 y2 y3

 
  

 
  

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.7.1)

The displacement and velocity fields in the element are then given by

  

ˆ u x
ˆ u y

 
 
 

 
 
 

=
ˆ u x1 ˆ u x2 ˆ u x3

ˆ u y1 ˆ u y2 ˆ u y3

 

 
 

 

 
 

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.7.2)

  

ˆ v x
ˆ v y

 
 
 

 
 
 

=
ˆ v x1 ˆ v x2 ˆ v x3

ˆ v y1 ˆ v y2 ˆ v y3

 

 
 

 

 
 

ξ1

ξ2

ξ3

 
 
 

  

 
 
 

  
(E4.7.3)

The derivatives of the shape functions with respect to the corotational coordinate system are given
by the counterpart of (E4.1.5):

    

∂N I ∂̂  x j[ ] ≡ ∂ξ I ∂ˆ x j[ ] =
1

2A

ˆ y 23 ˆ x 32

ˆ y 31 ˆ x 13

ˆ y 12 ˆ x 21

 

 

 
 
 

 

 

 
 
 

≡ ˆ B (E4.7.4)
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The corotational components of the rate-of-deformation are given by

    
ˆ D = 1

2
ˆ B Iv I

T + v I
ˆ B I

T( ) (E4.7.5)

The nodal internal forces are given by Eq. (4.6.10):

  
fIi[ ]int = ˆ B Ij ˆ σ jk Rki

T

Ω
∫ dΩ=

∂ξ I

∂ˆ x j
ˆ σ jk Rki

T

Ω
∫ dΩ (E4.7.6)

Writing out the matrices using (E4.6.2) and (E4.7.4) gives

  

f1x f1y

f2 x f2y

f3x f3y

 

 

 
 
 

 

 

 
 
 

int

=
1

2 A
A
∫

ˆ y 23 ˆ x 32

ˆ y 31 ˆ x 13

ˆ y 12 ˆ x 21

 

 

 
 
 

 

 

 
 
 

ˆ σ x ˆ σ xy

ˆ σ xy
ˆ σ y

 

 
 

 

 
 

cosθ sinθ
− sinθ cos θ

 
  

 
  adA (E4.7.7)

The rotation of the coordinate system can be obtained in several ways:
1. by polar decomposition;
2. by rotating the corotational coordinate system with a material line in the element,

e.g. a preferred direction in a composite;
3. by rotating the corotational coordinate system with a side of the element (this is only

correct for small strain problems).
To use polar decomposition, the same approach as described in Section 3, Example ?? is used.

4.7.  TOTAL LAGRANGIAN FORMULATION

4.7.1. Governing Equations.  The physical principles which govern the total Lagrangian
formulation are the same as those for the updated Lagrangian formulation, which were given in
Section 4.2.  The form of the governing equations is different, but as has been seen in Chapter 3,
they express the same physical principles and can be obtained by transforming the associated
conservation equations from Eulerian to Lagrangian form.

Similarly, the finite element equations for the total Lagrangian formulation can be obtained by
transforming the equations for the updated Lagrangian formulation.  It is only necessary to
transform the integrals to the reference (undeformed) domain and transform the stress and strain
measures to the Lagrangian type.  This approach is used in Section 4.7.2, and for most readers
Section 4.7.2 and the following examples will suffice as an introduction to the total Lagrangian
formulation.  However, for readers who would like to see the entire structure of the total
Lagrangian formulation or prefer to learn it first, Section 4.8 gives a development of the weak form
in the total Lagrangian description, followed by the direct derivation of the finite element equations
from this weak form.

The governing equations are given in both tensor form and indicial form in Box 4.5.  We have
chosen to use the nominal stress P in the momentum equation, because the resulting momentum
equation and its weak form are simpler than for the PK2 stress.  However, the nominal stress is
awkward in constitutive equations because of its lack of symmetry, so we have used the PK2
stress for constitutive equations. Once the PK2 stress has been evaluated by the constitutive
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equations, the nominal stress stress can then easily be obtained by a transformation given in Box
3.2, Eq. (B4.5.5).  The constitutive equation can relate the Cauchy stress σ  to the rate-of-
deformation D.  The stress would then be converted to the nominal stress P prior to evaluation of
the nodal forces.  However, this entails additional transformations and hence additional
computational expense, so when the constitutive equations are expressed in terms of σ  it is
advantageous to use the updated Lagrangian formulation.

Box  4.5
Governing Equations For Total Lagrangian Formulation

conservation of mass

ρJ = ρ0 J0 = ρ0 (B4.5.1)

conservation of linear momentum

∇ X ⋅ P + ρ0b = ρ0
˙ ̇ u        or       

∂Pji

∂X j

+ ρ0bi = ρ0
˙ ̇ u i (B4.5.2)

conservation of angular momentum:

F ⋅P = PT ⋅ FT     or     FijPjk = FkjPji                                                        (B4.5.3)

conservation of energy

  

ρ0 ˙ w int = ˙ F T :P −∇ X ⋅ q + ρ0s

where q = JF−1q
     or     

  
ρ0

˙ w int = ˙ F ij Pji −
∂q i
∂Xi

+ρ0s (B4.5.4)

constitutive equation

  S = S E, ..etc( )                   P = S ⋅FT (B4.5.5)

measure of strain

E =
1

2
FT ⋅F − I( )        or       Eij =

1

2
FkiFkj − δ ij( ) (B4.5.6)

boundary conditions

n j
0Pji = t i

0    or   e i ⋅ n0 ⋅P = ei ⋅ t 0     on   Γti
0 ,   ui = u i    on   Γui

0 (B4.5.7)

Γti
0 ∪Γui

0 = Γ0     Γti
0 ∩Γui

0 = 0    for  i = 1 to ns (B4.5.8)
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initial conditions

P(X,0) = P0 (X)   in (B4.5.9)

u(X,0) = u0 (X) (B4.5.10)

internal continuity conditions

nj
0 Pji = 0   on   Γint

0 (B4.5.11)

The nominal stress is conjugate to the material time derivative of the deformation tensor, ˙ F ,
see Box 3.4.  Thus in (B4.5.4) the internal work is expressed in terms of these two tensors.  Note
that we have used the left divergence of P (see (B.5.1.2)), so n0 appears before P in the traction
expression; if the order is reversed the resulting matrix corresponds to the transpose of P, which is
the PK1 stress; see Section 3.4.1.  The PK1 stress is also frequently used, so it is important to
note the distinction between these two stress tensors.  The traction is obtained in terms of the
nominal stress by putting the initial normal to the left, and the left divergence operator is used in the
momentum equation.  For the PK1 stress, the normal appears to the right and the right divergence
is used in the momentum equation.

The deformation tensor F  is not suitable as a measure of strain in constitutive equations since
it does not vanish in rigid body rotation.  Therefore constitutive equations in total Lagrangian
formulations are usually formulated in terms of the Green strain tensor E, which can be obtained
from F.  In the continuum mechanics literature, one often sees constitutive equations expressed as
P = P F( ) , which gives the impression that the constitutive equation uses F as a measure of strain.

In fact, when writing P(F), it is implicit that the constitutive stress depends on FTF  (i.e., E + I ,
where the unit matrix I makes no difference) or some other measure of deformation which is
independent of rigid body rotation.  Similarly, the nominal stress P in constitutive equations is
incorporated so it satisfies conservation of angular momentum, Eq. (B4.5.3).

As in any mechanical system, the same component of traction and displacement cannot be
prescribed at any point of a boundary, but one of these must be prescribed; see Eqs. (B4.5.7-
B4.5.8).  In the Lagrangian formulation, tractions are prescribed in units of force per undeformed
area.

The total Lagrangian formulation can be obtained in two ways:
1. transforming the finite element equations for the updated Lagrangian fomulation to the

initial (reference) configuration and expressing it in terms of Lagrangian variables.
2. by developing the weak form in terms of the initial configuration and Lagrangian

variables and then using this weak form to obtain discrete equations.
We will begin with the first approach since it is quicker and more convenient.  The second
approach is only recommended for intensive courses or for those who prefer the total Lagrangian
formulation.

4.7.2. Total Lagrangian Finite Element Equations by Transformation.  To obtain the
discrete finite element equations for total Lagrangian formulation, we will transform each of the
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nodal force expressions in the updated Lagrangian formulation, beginning with the internal nodal
forces.  The mass conservation equation (B4.5.1), ρJ = ρ0 , and the relation

dΩ = JdΩ0 (4.7.1)

will also be used.  The internal nodal forces are given in the updated Lagrangian formulation by
Eq. (4.4.10)

  

fiI
int =

∂N I

∂x jΩ
∫ σ jidΩ (4.7.2)

Using the transformation from Box 3.2, Jσ ji = FjkPki =
∂x j

∂Xk
Pki , we convert (4.7.2) to:

  

fiI
int =

∂N I

∂x jΩ
∫

∂x j

∂Xk
PkiJ

−1dΩ (4.7.3)

Recognizing that the product of the first two terms is a chain rule expression of ∂NI ∂Xk  and
using Eq. (4.7.1), we get

  
fiI

int =
∂N I

∂X kΩ 0

∫ PkidΩ0 = B0 Ik

Ω 0

∫ PkidΩ0 (4.7.4)

where

  
B0kI =

∂NI

∂Xk

(4.7.5)

In matrix form, the above can be written as

    

f I
int( )T

= B0
T

Ω0

∫ PdΩ0 (4.7.6)

The expression has been written in the above form to stress the analogy to the updated Lagrangian
form: if   B  is replaced by   B0 , Ω  by Ω0 , and σ  by P, we obtain the updated Lagrangian form
from the above.

The external nodal forces are next obtained by transforming the updated Lagrangian
expression to the total Lagrangian form.  We start with Eq. (4.4.13)

fiI
ext = N I

Ω
∫ ρbidΩ+ NI

Γti

∫ t idΓ (4.7.7)

Substituting Eq. (3.6.1), ρbdΩ= ρ0bdΩ0 , and Eq. (3.4.4), t dΓ = t0dΓ0 ,  into Eq. (4.7.7) gives
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fiI
ext = N I

Ω 0

∫ ρ0bidΩ0 + N I

Γti
0
∫ t i

0dΓ0 (4.7.8)

which is the total Lagrangian form of the external nodal forces.  The two integrals are over the
intial (reference) domain and boundary; note that  ρ0b  is the body force per unit of the reference
volume, see (3.6.1).  This can be written in matrix form as:

f I
ext = NI

Ω0

∫ ρ0bdΩ0 + NI

Γ ti
0
∫ e i ⋅t 0dΓ (4.7.9)

The inertial nodal forces and the mass matrix were expressed in terms of the initial configuration in
the development of the updated Lagrangian form, Eq. (4.4.50).  Thus, all of the nodal forces can
be expressed in terms of Lagrangian variables on the initial (reference) configuration by the
transformations.  The equations of motion for the total Lagrangian discretization are identical to that
of the updated Lagrangian discretization, Eq. (4.4.48).

4.8  TOTAL LAGRANGIAN WEAK FORM

In this Section, we develop the weak form from the strong form in a total Lagrangian format.
Subsequently, we will show that the weak form implies the strong form.  The strong form consists
of the momentum equation, Eq. (B4.5.2), the traction boundary condition, Eq. (B4.5.7), and the
interior continuity conditions, Eq. (B4.5.11).  We define the spaces for the test and trial functions
as in Section 4.3:

  δu X( ) ∈U0 ,u X, t( )∈U (4.8.1)

where   U  is the space of kinematically admissible displacements and   U0 is the same space with the
additional requirement that the displacements vanish on displacement boundaries.

Strong Form to Weak Form.  To develop the weak form, we multiply the momentum
equation (B4.5.3) by the test function and integrate over the initial (reference) configuration:

  

δui

Ω0

∫
∂Pji

∂X j
+ ρ0bi − ρ 0̇  ̇  u i

 

 
 

 

 
 dΩ0 = 0 (4.8.2)

In the above, the nominal stress is a function of the trial displacements via the consitutive
equation and the strain-displacement equation.  This weak form is not useful because it requires the

trial displacements to be C1, since a derivative of the nominal stress appears in (4.8.2); see
Sections 4.3.1-2.

To eliminate the derivative of the nominal stress from Eq. (4.8.2), the derivative product
formula is used:

δui

∂Pji

∂X j
dΩ0

Ω0

∫ =
∂

∂X jΩ0

∫ δuiPji( )dΩ0 −
∂ δui( )
∂X jΩ0

∫ PjidΩ0 (4.8.3)
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The first term of the RHS of the above can be expressed as a boundary integral by Gauss's
theorem (3.5.6):

  

∂
∂X jΩ0

∫ δuiPji( )dΩ0 =− δui

Γ0

∫ n j
0 PjidΓ0 + δui

Γin t
0
∫ n j

0Pji dΓ0 (4.8.4)

From the strong form Eq. (B4.5.11), the last term vanishes.  The first term on the RHS can be

reduced to the traction boundary since δui = 0  on Γui

0  and Γti
0 = Γ0 −Γui

0 , so

∂
∂X j

δuiPji( )dΩ0

Ω 0

∫ = δuin j
0PjidΓ0

Γ0

∫ = δui

Γ ti
0
∫

i=1

nSD

∑ t i
0dΓ0 (4.8.5)

where the last equality follows from the strong form.  From Eq. (3.2.14)we note that

 δFij =δ
∂ui

∂X j

 

 
 

 

 
 (4.8.6)

Substituting Eq. (4.8.5) into (4.8.3) and the result into (4.8.2) gives, after a change of sign and
using (4.8.6):

 

  

δFijPji −δuiρ0bi + δuiρ0
˙ ̇ u i( )

Ω 0

∫ dΩ0 − δui

Γt i
0
∫

i=1

n SD

∑ t i
0dΓ0 = 0 (4.8.7)

or

  

δFT :P − ρ0δu ⋅b + ρ0δu⋅ ˙ ̇ u ( )
Ω 0

∫ dΩ0 − δu ⋅e i( )
Γt i

0
∫

i=1

n SD

∑ e i ⋅ t i
0( )dΓ0 = 0 (4.8.8)

The above is the weak form of the momentum equation, traction boundary conditions, and interior
continuity conditions.  It is called the principle of virtual work , since each of the terms in Eq.
(4.8.7) is a virtual work increment.  The weak form is summarized in Box 4.6, in which physical
names are ascribed to each of the terms.

This weak form can also be developed by replacing the test velocity by a test displacement in
Eq. (4.3.9) and transforming each term to the reference configuration.  The total Lagrangian weak
form, Eq. (4.8.8), is thus simply a transformation of the updated Lagrangian weak form.
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Box 4.6
Weak Form for Total Lagrangian Formulation:

Principle of Virtual Work
WEAK FORM:  if    u ∈U   and

  δW int δu, u( )− δ W ext δu,u( )+δ W inert δu,u( ) = 0       ∀δu∈U0 (B4.6.1)

then equilibrium, the traction boundary conditions and internal continuity conditions
are satisfied.
In the above

  

δW int = δFT :P
Ω0

∫ dΩ0 = δFij

Ω0

∫ PjidΩ0 (B4.6.2)

  

δW ext = ρ0δu ⋅b
Ω0

∫ dΩ0 + δu ⋅e i( )
Γti

0
∫

i=1

nSD

∑ e i ⋅ t i
0( )dΓ0 = 0

 = δuiρ0bi

Ω0

∫ dΩ0 + δui

Γt i
0
∫

i=1

nSD

∑ t i
0dΓ0 (B4.6.3)

  

δW inert = δu
Ω0

∫ ⋅ρ0˙ ̇ u dΩ0 = δui
Ω0

∫ ρ0˙ ̇ u idΩ0 (B4.6.4)

Weak Form to Strong Form.  Next we deduce the strong form from the weak form.  To avoid
writing summations, we shall assume that on any part of the boundary, all traction or displacement
components are prescribed; the reader can easily generalize the proof to mixed boundary conditions
where for each component, either the displacement or traction component is prescribed.
Substituting (B4.8.6) into the first term of (B4.8.7) and the derivative product rule gives

∂ δui( )
∂XjΩ0

∫ PjidΩ0 =
∂

∂Xj
δui Pji( ) − δui

∂Pji

∂X j

 

 
 

 

 
 

Ω0

∫  dΩ0 (4.8.9)

Gauss's theorem on the first term on the RHS then yields:

  

∂ δui( )
∂XjΩ0

∫ PjidΩ0 = δui
Γti

0
∫ n j

0 PjidΓ0
i=1

nSD

∑ + δui
Γint

0
∫ n j

0Pji dΓ0 − δui

∂Pji

∂X jΩ0

∫ dΩ0

where the surface integral is changed to the traction boundary because δui = 0  on Γui

0  and

Γti
0 = Γ0 −Γui

0 .

Substituting (4.8.9) into (4.8.7) and collecting terms gives
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0 = δui
Ω0

∫
∂Pji

∂X j
+ ρ0bi − ρ0˙ ̇ u i

 

 
 

 

 
 dΩ0 + δuiΓti

0∫ n j
0 Pji − t i

0( )dΓ0
i=1

nSD

∑ + δui
Γint

0
∫ nj

0Pji dΓ0 = 0 (4.8.10)

Since the above holds for all   δu∈U0 , it follows by the density theorem given in Section 4.3.2
that the momentum equation (B4.5.2) holds on Ω0 , the traction boundary conditions (B4.5.8)

hold on Γt
0 , and the interior continuity conditions (B4.5.11) hold on   Γint

0 .  Thus the weak form
implies the momentum equation, the traction boundary conditions, and the interior continuity
conditions.

4.9   FINITE ELEMENT SEMIDISCRETIZATION

4.9.1.  Discrete Equations.  We consider a Lagrangian mesh with the same properties as
described in Section 4.4.1.  The finite element approximation to the motion is given by

  xi X ,t( ) = xiI t( )N I X( ) (4.9.5)

where NI X( )  are the shape functions; as in the updated Lagrangian formulation, the shpae
functions are functions of the material (Lagrangian) coordinates. The trial displacement field is
given by

  ui X, t( ) = uiI t( )N I X( )        or        u X , t( ) = u I t( )NI X( ) (4.9.1)

The test functions, or variations, are not functions of time, so

δui X( ) = δuiI N I X( )           or         δu X( ) = δu I N I X( ) (4.9.2)

As before, we will use indicial notation where all repeated indices are summed; upper case indices
pertain to nodes and are summed over all relevant nodes and lower case indices pertain to
components and are summed over the number of dimensions.

Taking material time derivatives of (4.9.1) gives the velocity and acceleration

  
˙ u i X, t( ) = ˙ u iI t( )N I X( ) (4.9.3)

  
˙ ̇ u i X, t( ) = ˙ ̇ u iI t( )N I X( ) (4.9.4)

The deformation gradient is then given by

Fij =
∂x i

∂X j

=
∂NI

∂X j

xiI (4.9.6)

It is sometimes convenient to write the above as

  Fij = B jI
0 uiI    where   

  
B jI

0 =
∂NI

∂X j
   so     F = xB0

T (4.9.7)
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δFij =
∂NI

∂X j

δxiI =
∂N I

∂X j

δuiI     so     δF = δuB0
T (4.9.8)

where we have used δxiI = δ XiI + uiI( ) = δuiI .  Nodal forces will now be developed for each of the
virtual weak terms.

Internal nodal forces.  The internal nodal forces are defined in terms of the internal virtual work
using

  

δW int = δuiI fiI
int = δFij

Ω 0

∫ PjidΩ0 = δuiI
∂NI

∂X jΩ0

∫ PjidΩ0 (4.9.9)

where Eq. (4.9.7) has been used in the last step.  Then the arbitrariness of δuiI  yields

  

fiI
int =

∂N I

∂XjΩ0

∫ PjidΩ0      or     
  
fiI

int = BjI
0

Ω0

∫ PjidΩ0    or     
  
fiI

int = BjI
0

Ω0

∫ PjidΩ0 (4.9.10)

which is identical to (4.7.6), the expression developed by transformation.

External Nodal Forces.  The external nodal forces are defined by equating the virtual external
work (B4.6.3) to the virtual work of the external nodal forces:

     

  

δW ext =δuiI fiI
ext = δui

Ω0

∫ ρ0bidΩ0 + δui
Γt i

0
∫ t i

0dΓ0 = δuiI NI ρ0bidΩ0 + N I t i
0dΓ0

Γti
0
∫

Ω0

∫
 
 
 

  

 
 
 

  (4.9.12a)

This gives

fiI
ext = NI

Ω0

∫ ρ0bidΩ0 + NI

Γt
0
∫ t i

0dΓ0 (4.9.12b)

Mass Matrix:  Using the inertial force (B4.6.4) and defining an equivalent nodal force gives

  

δ M =δuiI fiI
inert = δuiρ0

Ω0

∫ ˙ ̇ u idΩ0 (4.9.13)

Substituting Eq. (4.9.2) and (4.9.4) in the right hand side of the above gives

  

δuiI fiI
inert = δuiI ρ0

Ω0

∫ NI NJdΩ0˙ ̇ u jJ = δuiI MijIJ
˙ ̇ u jJ (4.9.14)

Since the above holds for arbitrary δu  and   ˙ ̇ u , it follows that the mass matrix is given by
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MijIJ =δ ij ρ0
Ω0

∫ NI NJ dΩ0 (4.9.15)

Comparing this mass matrix M to that used for the updated Lagrangian formulation, Eq. (4.4.51),
we see that they are identical, which is expected since we transformed the mass to the reference
configuration to highlight its time invariance for a Lagrangian mesh.

Substituting the above expressions into the weak form, (B4.6.1), we have

  
δuiI fiI

int − fiI
ext + MijIJ

˙ ̇ u jJ( ) = 0           
  
∀I , i∉Γui

(4.9.16)

Since the above for arbitrary values of all nodal displacement components that are not constrained
by displacement boundary conditions, it follows that

  MijIJ
˙ ̇ u jJ + fiI

int = fiI
ext     ∀I ,i ∉Γu i

(4.9.17)

The above equations are identical to the governing equations for the updated Lagrangian
formulation, as given in Box 5.5.  The nodal forces in the updated and total Lagrangian
formulations are expressed in terms of different variables and integrated over different domains,
but from a fundamental viewpoint the updated Lagrangian formulation and the total Lagrangian
formulation are identical.  The numerical values for the nodal forces obtained by either formulation
are also identical.  Each of these formulations can be advantageous for certain constitutive
equations or loadings by reducing the number of transformations which are needed.

4.9.2.  Implementation.  The procedure for the computation of the internal nodal forces is
given in Box 4.7.  In the procedure shown, the nodal forces are evaluated by numerical
quadrature.
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Box 4.7
Discrete Equations and Internal Force Computation in

Total Lagrangian Formulation

Equations of Motion (discrete momentum equation)

  MijIJ
˙ v jJ + f iI

int = fiI
ext    for   I,i( ) ∉Γvi

(B4.8.1)

Internal Nodal Forces

  

fiI
int = B0 Ij Pji

Ω0

∫ dΩ0 =
∂N I

∂X j
Pji

Ω0

∫ dΩ0    or   

    

f I
int( )T

= B0 I
T P

Ω0

∫ dΩ0 (B4.8.2)

  

f I
int = B0 I

T S{ }
Ω0

∫ dΩ0   in Voigt notation

External Nodal Forces

  fiI
ext = N I

Ω0

∫ ρ0bidΩ0 + N I
Γt i

0
∫ t i

0dΓ0  or  f I
ext = N I

Ω0

∫ ρ0bdΩ0 + N I
Γt i

0
∫ ei ⋅ t 0 dΓ0 (B4.8.3)

Mass Matrix (total Lagrangian)

MijIJ =δ ij ρ0
Ω0

∫ NI NJ dΩ0 = δij ρ0
∆
∫ N INJ Jξ

0d∆ (B4.8.4)

  

M IJ = I ˜ M IJ = I ρ0
Ω0

∫ N INJ  dΩ0 (B4.8.5)

Internal nodal force computation for element
1.  f int = 0
2.  for all quadrature points ξQ

i. compute 
  
B Ij

0[ ] = ∂N I ξQ( ) ∂X j[ ]  for all I

ii.  
  
H = B0 I

I
∑ uI ;    Hij =

∂NI

∂X j
  uiI (B4.7.6)

iii.  F = I + H,    J = det F( )
iv.  E =

1

2
H + HT + HTH( ) (B4.7.7)

v.  if needed, compute 
  
˙ E =∆E ∆t ,   ˙ F =∆F ∆t ,    D = sym ˙ F F-1( )

vi.  compute the PK2 stress S  or Cauchy stress σ  by constitutive equation

vii.P = SFT     or  P = JF−1σ
viii.  

    
f I

int ← fI
int +BOI

T PJξ
0w Q  for all nodes I

end loop

w Q  are quadrature weights

 Usually the shape functions are expressed in terms of element coordinates ξ , such as the area
coordinates in triangular elements or reference coordinates in isoparametric elements.  The
derivatives with respect to the material coordinates are then found by
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N I ,X ≡ BI

0 = N ,ξ X,ξ
−1 = N ,ξ Fξ

0( )−1
 (4.9.18)

where Fξ
0  is the Jacobian between the material and intrinsic coordinates.  As shown in Box 4.7,

the Green strain tensor is usually not computed in terms of the deformation gradient F, because the
resulting computation is susceptible to round-off errors for small strains.  Therefore the  procedure
shown in Eqs. (B4.7.6-7) is used.  The total Lagrangian formulation can easily be adapted to
constitutive equations expressed in terms of the Cauchy stress: it is only necessary to introduce the
transormations shown in steps 2.vi-vii.

Voigt Form.  It is of little use to write the nodal forces in terms of P using Voigt notation since P is
not symmetric.  Therefore, we will write the Voigt form in terms of the PK2 stress S .  Using the
transformation P = S ⋅FT , the expression for the internal nodal forces becomes

  
f jI

int =
∂N I

∂XiΩ 0

∫ FjkSikdΩ0      or     
  
fI

int( )T
=

∂NI

∂XΩ 0

∫ SFTdΩ0 (4.9.19)

We define a B0  matrix by

BikIj
0 = sym i,k( )

∂N I

∂Xi
Fjk

 

 
 

 

 
 (4.9.20)

Note that the above specializes to the updated form (4.5.21) where the current configuration and
the reference configuration coincide, so that Fij →δ ij .  The Voigt form of this matrix (see
Appendix A) is

BikIj
0 → Bab

0         
i,  k( )→ a by the Voigt kinematic rule

I,  j( )→ b by the rectangular to column matrix rule
(4.9.21)

Similarly, Sik  is converted to Sb  by the kinetic Voigt rule.  Then

  
fa

int = Bab
0( )T

Ω0

∫ SbdΩ0    or   f = B0
T

Ω 0

∫ S{ }dΩ0    or   f I = B0 I
T

Ω 0

∫ S{ }dΩ0 (4.9.22)

The construction of the B0  matrix hinges on the correspondence between the index a and the
i and k  indices given in Table A.?.  Using this correspondence for a two-dimensional element, we
obtain:
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B0ikIj  →  B0aIj

             i = 1,  k = 1 → a =1  B0aj[ ]I
= ∂N I

∂X
Fj1 = ∂N I

∂X

∂x j

∂X

             i = 2,  k = 2 → a = 2  B0aj[ ]
I

=
∂N I

∂Y
Fj2 =

∂NI

∂Y

∂x j

∂Y

             i =1,  k = 2 → a = 3  B0aj[ ] I
= ∂N I

∂X
Fj2 + ∂N I

∂Y
Fj1 = ∂N I

∂X

∂x j

∂Y
+ ∂N I

∂Y

∂x j

∂X

(4.9.23)

The B0 I  matrix is then written out by letting j=1 and 2 correspond to columns 1 and 2 of the
matrix, respectively:

B0 I =

∂N I

∂X

∂x

∂X

∂N I

∂X

∂y

∂X
∂NI

∂Y

∂x

∂Y

∂NI

∂Y

∂y

∂Y
∂NI

∂X
∂x
∂Y

+ ∂NI

∂Y
∂x
∂X

∂NI

∂X
∂y
∂Y

+ ∂NI

∂Y
∂y
∂X

 

 

 
 
 
 

 

 

 
 
 
 

(4.9.24)

In three dimensions, a similar procedure yields

B0 I =

∂N I

∂X

∂x

∂X

∂N I

∂X

∂y

∂X

∂N I

∂X

∂z

∂X
∂NI

∂Y
∂x
∂Y

∂NI

∂Y
∂y
∂Y

∂NI

∂Y
∂z
∂Y

∂NI

∂Z
∂x
∂Z

∂NI

∂Z
∂y
∂Z

∂NI

∂Z
∂z
∂Z

∂N I

∂Y

∂x

∂Z
+

∂NI

∂Z

∂x

∂Y

∂N I

∂Y

∂y

∂Z
+

∂NI

∂Z

∂y

∂Y

∂N I

∂Y

∂z

∂Z
+

∂N I

∂Z

∂z

∂Y
∂NI

∂X

∂x

∂Z
+

∂NI

∂Z

∂x

∂X

∂NI

∂X

∂y

∂Z
+

∂NI

∂Z

∂y

∂X

∂N I

∂X

∂z

∂Z
+

∂NI

∂Z

∂z

∂X
∂NI

∂X
∂x
∂Y

+ ∂NI

∂Y
∂x
∂X

∂NI

∂X
∂y
∂Y

+ ∂NI

∂Y
∂y
∂X

∂NI

∂X
∂z
∂Y

+ ∂NI

∂Y
∂z
∂X

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

(4.9.25)

Many writers construct the B0 I  matrix through a sequence of multiplications by Boolean matrices.
The procedure shown here can easily be coded and is much faster.

It can be easily shown that B0  relates the rate of Green strain   ̇ E  to the node velocities by

  
˙ E { } = B0Iv I = B0

˙ d (4.9.27)

The reader should be cautioned about one characteristic of the B0  matrix: although it carries a
subscript nought, the matrix B0  is not time invariant.  This can easily be seen from Eqs. (4.9.20)
or (4.9.24-25), which show that the B0  matrix depends on F , which varies with time.
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The total Lagrangian equation for internal nodal forces, (4.9.22) can easily be reduced to the
updated Lagrangian form, Eq. (4.5.14) without any transformations.  This is accomplished by
letting the configuration at a fixed time t be the reference configuration.  We then use the total
Lagrangian formulation with this new reference configuration.  It is immediately clear that

 F = I        or      Fij =
∂xi

∂X j
= δij (4.9.28)

since the two coordinates systems are now coincident at time t.  There are several consequences of
this:

 B0 = B           S = σ           Ω0 = Ω           J=1         dΩ0 = dΩ (4.9.29)

to verify this, compare (4.9.20) and (??); from Box 3.2 it follows that since F = I  and S = σ .
Then Eq. (4.9.22) becomes

f I = B I
T

Ω
∫ σ{ }dΩ (4.9.30)

which agrees with Eq. (4.5.14).  This process of instantenously making the current configuration
the reference configuration is a helpful trick which we will again use later.

Example 4.8. Rod in Two Dimensions.  Develop the internal nodal forces for a two-node
rod element in two-dimensions.  The bar element is shown in Fig. 4.12.  It is in a uniaxial state of
stress with the only nonzero stress along the axis of the bar.

θ

Ω
0

x

y

1

2

X
Y

x

y

  

  

1

2Ω
X

Y

Fig. 4.12.  Rod element in rwo dimensions in total Lagrangian formulation

To simplify the formulation, we place the material coordinate system so that the X-axis
coincides with the axis of the rod, as shown in Fig. 4.12, with the origin of the material
coordinates at node 1.  The parent element coordinate is   ξ, ξ ∈ 0 ,1[ ] .  The material coordinates are
then related to the element coordinates by
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  X = X2ξ = l0ξ (E4.8.1)

where   l0  is the initial length of the element.  In this example, the coordinates X, Y are used in a

somewhat different sense than before: it is no longer true that x t = 0( ) = X.  However, the
definition used here corresponds to a rotation and translation of x t = 0( ) .  Since neither rotation
nor translation effects E or any strain measure, this choice of an X, Y coordinate system is
perfectly acceptable.  We could have used the element coordinates ξ  as material coordinates, but
this complicates the definition of physical strain components.

The spatial coordinates are given in terms of the element coordinates by

x = x1 1− ξ( )+ x2ξ

y = y1 1−ξ( ) + y2ξ
     or      

x

y

 
 
 

 
 
 

=
x1 x2

y1 y2

 
  

 
  

1− ξ
ξ

 
 
 

 
 
 

(E4.8.2)

or

  x ξ ,t( ) = x I t( )N I ξ( ) (E4.8.3)

where

  
NI ξ( ){ }T

= 1− ξ( ) ξ[ ] = 1−
X

l0

X

l0

 

 
 

 

 
 (E4.8.4)

The   B0  matrix as defined in (4.9.7) is given by

    
B0iI[ ] ≡ ∂N I ∂X i[ ]T =

∂N1

∂X

∂N2

∂X

 
  

 
  =

1

l0
−1 +1[ ] (E4.8.5)

where Eq. (4.8.1) has been used to give 
  

∂NI

∂X
=

1

l0

∂NI

∂ξ
.  The deformation gradient is given by

(4.9.7):

    
F = x I BI

0( )T
=

x1 x2

y1 y2

 
  

 
  

1

l0

−1

1

 
 
 

 
 
 

=
1

l0
x2 − x1 y2 − y1[ ] ≡

1

l0
x21 y21[ ] (E4.8.6)

The deformation gradient F  is not a square matrix for the rod since there are two space dimensions
but only one independent variable describes the motion, (E4.8.2).

The only nonzero stress is along the axis of the rod.  To take advantage of this, we use the
nodal force formula in terms of the PK2 stress, since S11  is the only nonzero component of this
stress.  For the nominal stress, P11 is not the only nonzero component.  The X axis as defined here
is corotational with the axis of the rod, so S11  is always the stress component along the axis of the
rod.  Substituting (E4.8.5) and (E4.8.6) into Eq. (4.9.19) then gives the following expression for
the internal nodal forces:
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fint

T = B0
T

Ω0

∫ SFTdΩ0 = N ,X
Ω0

∫ SFTdΩ0 =
1

l0Ω0

∫
−1

+1

 
  

 
  S11[ ] 1

l0
x21 y21[ ]dΩ0 (E4.8.7)

Since the deformation is constant in the element, we can assume the integrand is constant, so
multiplying the integrand by the volume   A0l0  we have

    

f1x f1y

f2 x f2y

 

 
 

 

 
 
int

=
A0S11

l0

−x21 − y21

x21 y21

 
  

 
  (E4.8.9)

This result can be transformed to the result for the corotational formulation if we use Eq. (E3.9.8)

and note that 
    
cos θ =

x21

l
 and sinθ =

y21

l
.

In Voigt notation, the nonzero entries of the B0  matrix are the first row of (4.9.24), so

  B0 I = x ,XNI , X y,X N I ,X[ ] = cosθ N I ,X sin θ N I ,X[ ]
Noting that     N1, X = −1 l0 , N2 ,X = 1 l0 , we have that

    
B0 = B1

0 B2
0[ ] =

1

l0
−cos θ − sinθ cos θ sinθ[ ]

The expression for the nodal forces, (4.5.19) then becomes

    

f int ≡

fx1

fy1

fx2

fy2

 

 
  

 
 
 

 

 
  

 
 
 

int

= B0
T S{ }dΩ0

Ω0

∫ =
1

l0

−cos θ
− sinθ
cos θ
sinθ

 

 
  

 
 
 

 

 
  

 
 
 

S11{ }dΩ0
Ω0

∫

Example 4.9.  Triangular Element.  Develop expressions for the deformation gradient,
nodal internal forces and nodal external forces for the 3-node, linear displacement triangle.  The
element was developed in the updated Lagrangian formulation in Example 4.1; the element is
shown in Fig. 4.2.

The motion of the element is given by the same linear map as in Example 4.1, Eq. (E4.1.2)
in terms of the triangular coordinates ξ I .  The   B0  matrix is given by  (4.9.7):
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B0 I = B jI
0[ ] = ∂N I ∂X j[ ], B0 = B01 B02 B03[ ]=

∂N1

∂X

∂N2

∂X

∂N3

∂X
∂N1

∂Y

∂N2

∂Y

∂N3

∂X

 

 

 
 
 

 

 

 
 
 

    =
1

2 A0

Y23 Y31 Y12

X32 X13 X21

 
  

 
  

A0 =
1

2
X32Y12 − X12Y32( )

(E4.9.1)

where A0  is the area of the undeformed element and XIJ = XI − XJ ,YIJ = Y I − YJ .  These equations
are identical to those given in the updated Lagrangian formulation except that the initial nodal
coordinates and initial area are used.  The internal forces are then given by (4.9.11b):

    

fint
T = fiI[ ] =

f1x f1y

f2x f2y

f3x f3y

 

 

 
 
 

 

 

 
 
 

int

= B0
T

Ω0

∫ PdΩ0

      = 1
2A0A0

∫
Y23 X32

Y31 X13

Y12 X21

 

 

 
 
 

 

 

 
 
 

P11 P12

P21 P22

 
  

 
  a0dA0 = a0

2

Y23 X32

Y31 X13

Y12 X21

 

 

 
 
 

 

 

 
 
 

P11 P12

P21 P22

 
  

 
  

(E4.9.2)

Voigt Notation. The expression for the internal nodal forces in Voigt notation requires the B0

matrix.  Using Eq. (4.9.24) and the derivatives of the shape functions in Eq. (E4.9.1) gives

  

B0 =
Y23x ,X Y23y,X Y31x ,X Y31y, X Y12 x,X Y12y,X

X32 x,Y X32 y,Y X13x,Y X13y,Y X21x ,Y X21y,Y
Y23x,Y +X32x ,X Y23y ,Y + X32y ,X Y31x ,Y + X13x , X Y31y,Y +X13y, X Y12x ,Y +X21x ,X Y12 y,Y + X21y ,X

 

 

 
 

 

 

 
 

(E4.9.3)

The terms of the F matrix,   x ,X ,  y, X , etc., are evaluated by Eq. (4.9.6); for example:

  
x ,X = NI , Xx I =

1

2A0

Y23x1 + Y31x2 + Y12 x3( ) (E4.9.4)

Note that the F matrix is constant in the element, and so is B0 .  The nodal forces are then given by
Eq. (4.9.22):
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f int = fa{ }=

f1x

f1y

f2x

f2y

f3x

f3y

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

int

= B0
T

Ω0

∫
S11

S22

S12

 
 
 

  

 
 
 

  
dΩ0

     

(E4.9.5)

Example 4.10.  Two-Dimensional Isoparametric Element.  Construct the discrete
equations for two- and three-dimensional isoparametric elements in indicial matrix notation and
Voigt notation.  The element is shown in Fig. 4.4; the same element in the updated Lagrangian
form was considered in Example 4.2.

The motion of the element is given in Eq. (E4.2.1), followed by the shape functions and
their derivatives with respect to the spatial coordinates.  The key difference in the formulation of
the isoparametric element in the total Lagrangian formulation is that the matrix of derivatives of the
shape functions with respect to the material coordinates must be found.  By implicit differentiation

  

NI ,X

N I ,Y

 
 
 

 
 
 

= X ,ξ
−1

NI ,ξ

NI, η

 
 
 

 
 
 

= Fξ
0( )−1 N I,ξ

NI ,η

 
 
 

 
 
 

(E4.10.1)

where

  
X,ξ = X IN I ,ξ     or      

∂Xi

∂ξ j
= XiI

∂N I

∂ξ j
(E4.10.2)

Writing out the above gives

  

X ,ξ X,η

Y ,ξ Y ,η

 

 
 

 

 
 =

X I

YI

 
 
 

 
 
 

NI ,ξ NI ,η[ ] (E4.10.3)

which can be evaluated from the shape functions and nodal coordinates; details are given for the 4-
node quadrilateral in Eqs. (E4.2.7-8) in terms of the updated coordinates and the formulas for the
material coordinates can be obtained by replacing    x I , y I( ) by    X I ,YI( ) .  The inverse of 

  
X,ξ  is then

given by

  
X,ξ

−1 =
X ,ξ X ,η

Y ,ξ Y ,η

 

 
 

 

 
 

−1

=
1

J0
ξ

Y,η − X ,η
−Y ,ξ X ,ξ

 

 
 

 

 
 

−1

=
ξ, X η, X

ξ,Y η,Y

 

 
 

 

 
 

where the determinant of the Jacobian between the parent and reference configurations is given by

  
J0

ξ = X ,ξ Y,η −Y ,ξ X,η

The   B0 I  matrices are given by
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B0 I

T = N I ,X NI ,Y[ ] = NI ,ξ NI ,η[ ]X,ξ
−1 = NI ,ξ N I ,η[ ] ξ,X η,X

ξ,Y η,Y

 

 
 

 

 
 (E4.10.4)

The gradient of the displacement field H is given by

    
H = u IB0 I

T =
u xI

u yI

 
 
 

 
 
 

NI , X NI ,Y[ ] (E4.10.5)

The deformation gradient is then given by

F=I+H (E4.10.6)

The Green strain E is obtained from (B4.7.4) and the the stress S is evaluated by the constitutive

equation; the nominal stress P can then be computed by P = SFT ; see Box 3.2.

The internal nodal forces are given by Eq. (4.9.11b):

    
fI

int( )T
= B0 I

T

Ω 0

∫ PdΩ0 = NI , X NI ,Y[ ]
−1

1

∫
−1

1

∫
P11 P12

P21 P22

 
  

 
  J0

ξ dξdη (E4.10.7)

where

  
J0

ξ =det X,ξ( ) = det Fξ
0( ) (E4.10.8)

If the Voigt form is used, the internal forces are computed by Eq. (4.9.22) in terms of S .
The external nodal forces, particularly those due to pressure, are usually best computed in the
updated form.  The mass matrix was computed in the total Lagrangian form in Example 4.2.

Example 4.12.  Three-Dimensional Element.  Develop the strain and nodal force equations
for a general three-dimensional element in the total Lagrangian format.  The element is shown in
Figure 4.5.  The parent element coordinates are   ξ = ξ1,  ξ2 , ξ3( ) ≡ ξ ,η,ζ( )  for an isoparametric

element, ξ = ξ1,  ξ2 , ξ3( )  for a tetrahedral element, where for the latter ξi  are the volume
(barycentric) coordinates.

Matrix Form.  The standard expressions for the motion, Eqs. (4.9.1-5) are used.  The
deformation gradient is given by Eq. (4.9.6).  The Jacobian matrix relating the reference
configuration to the parent is

X,ξ =
X ,ξ X,η X,ξ
Y,ξ Y ,η Y,ξ
Z,ξ Z,η Z,ξ

 

 

 
 
 

 

 

 
 
 

= X IB0 I
T = X I{ } ∂N I ∂ξ j[ ] =

X I

YI

Z I

 
 
 

  

 
 
 

  
NI , ξ NI , η NI , ξ[ ] (E4.12.1)

The deformation gradient is given by

4-76



T. Belytschko, Lagrangian Meshes, December 16, 1998

Fij[ ] = x iI[ ] ∂N I

∂XJ

 

 
 

 

 
 =

x1 , ..., xN

y1 , ..., yN

z1, ..., zN

 

 

 
 
 

 

 

 
 
 

N I, X

N I, Y

N I, Z

 

 
 

 
 

 

 
 

 
 

(E4.12.2)

where

∂N I

∂X j

 
 
 

 
 
 

=
NI , X

NI , Y

NI , Z

 

 
 

 
 

 

 
 

 
 

=
∂NI

∂ξk

 

 
 

 

 
 

∂ξk

∂Xj

 

 
 

 

 
 =

∂N I

∂ξk

 

 
 

 

 
 X ,ξ

-1 (E4.12.3)

where X,ξ
-1 is evaluated numerically from Eq. (E4.12.1).  The Green-strain tensor can be

computed directly from F, but to avoid round-off errors, it is better to compute

Hij[ ] = uiI[ ] ∂N I

∂X j

 
 
 

 
 
 

=
ux1, ..., uxn

uy1, ..., uyn

uz1, ..., uzn

 

 

 
 
 

 

 

 
 
 

∂N I, X

∂N I , Y

∂NI , Z

 

 
 

 
 

 

 
 

 
 

(E4.12.4)

The Green-strain tensor is then given by Eq. (???).

If the constitutive law relates the PK2 stress S  to E, the nominal stress is then computed by

P = SFT , using F from Eq. (??.2).  The nodal internal forces are then given by

  

fxI

fyI

fzI

 
 
 

  

 
 
 

  

int

=
N I, X

N I , Y

NI , Z

 

 
 

 
 

 

 
 

 
 ∆

∫ =
P11 P12 P13

P21 P22 P23

P31 P32 P33

 

 

 
 
 

 

 

 
 
 
Jξ

0d∆ (E4.12.5)

where 
  
Jξ

0 =det X,ξ( ).

Voigt Form.  All of the variables needed for the evaluation of the   B0  matrix given in Eq. (???)
can be obtained from Eq. (E???).  In Voigt form

E{ }T = E11,  E22 , E33 , 2 E23, 2 E13 , 2 E12[ ]
S{ }T = S11, S22 , S33 , S23,  S13,  S12[ ]

(E4.12.6)

The rate of Green-strain can be computed by Eq. (???):

  

˙ E { } = B0
˙ d 

˙ d = ux1, uy1 , uz1 , ... uxn,  uyn ,  uzn[ ]
(E4.12.7)

The Green strain is computed by the procedure in Eq. (???).  The nodal forces are given by
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f I

int = B0I
T

∆
∫ S{ }J0

ξ d∆ (E4.12.8)

4.9.3.  Variational Principle.  For static problems, weak forms for nonlinear analysis with
path-independent materials can be obtained from variational principles.  For many nonlinear
problems, variational principles can not be formulated.  However, when constitutive equations and
loads are path-independent and nondissipative, a variational priniciple can be written because the
stress and load can be obtained from potentials.  The materials for which stress is derivable from a
potential are called hyperelastic materials, see Section 5.4.  In a hyperelastic material, the nominal
stress is given in terms of a potential by Eq (5.4.113) which is rewritten here

  

PT =
∂w

∂F
, or Pji =

∂w

∂Fij
, where w = ρwint , W int = wdΩ0

Ω0

∫ (4.9.28)

Note the order of the subscripts on the stress, which follows from the definition.

For the existence of a variational principle, the loads must also be conservative, i.e. they
must be independent of the deformation path.  Such loads are also derivable from a potential,  i.e.
the loads must be related to  a potential so that

  

W ext u( ) = wb
ext u( )dΩ0 + wt

ext u( )dΓ0
Γt

∫
Ω0

∫

bi =
∂wb

ext

∂ui
t i

0 =
∂wt

ext

∂ui
     (4.9.29b)

Theoem of Stationary Potential Energy.  When the loads and constitutive equations posses
potentials, then the stationary points of

   W u( ) = W int u( )−W ext u( ), u X ,t( ) ∈U (4.9.30)

satisfies the strong form of the equilibrium equation (B4.5.2b).  The equilibrium equation which
emanates from this statienary principle is written in terms of the displacements by incorporating the
constitutive equation and strain-displacement equation.  This stationary principle applies only to
static problems.

The theorem is proven by showing the equivalence of the stationary principle to the weak
form for equilibrium, traction boundary conditions and the interior continuity conditions.  We first
write the stationary condition of (4.9.30), which gives

  

0 =δ W u( ) =
∂w

∂Fij
δFijdΩ−

∂wb
ext

∂ui
δui

 

 
 

 

 
 

Ω0

∫ dΩ0 −
∂wt

ext

∂ui
δuidΓ0

Γ0

∫ (4.9.31)

Substituting Eqs. (4.9.28) and (4.9.29) into the above gives

0 = PjiδFij − ρ0biδui( )
Ω0

∫ dΩ0 − ti
0δuidΓ0

Γ0

∫ (4.9.32)
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which is the weak form given in Eq. (4.8.7) for the case when the accelerations vanish.  The same
steps given in Section 4.8 can then be used to establish the equivalence of Eq. (4.8.7) to the strong
form of the equilibrium equation.

Stationary principles are thus in a sense more restrictive weak forms: they apply only to
conservative, static problems.  However they can improve our understanding of stability problems
and are used in the study of the existence and uniqueness of solutions.

The discrete equations are obtained from the stationary principle by using the usual finite
element approximation to motion with a Lagrangian mesh, Eqs. (4.12) to (4.9.5), which we write
in the form

  u X ,t( ) = N X( )d t( ) (4.9.33)

  The potential energy can then be expressed in terms of the nodal displacements, giving

  W d( ) = W int d( ) −W ext d( ) (4.9.34)

The solutions to the above correspond to the stationary points of this function, so the discrete
eqautions are

  
0 =

∂W d( )
∂d

=
∂W int d( )

∂d
−

∂Wext d( )
∂d

≡ fint − f ext (4.9.35)

It will be shown in Chapter 6, that when the equilibrium point is stable, the potential energy is a
minimum.

Example 4.11.  Rod Element by Stationary Principle.    Consider a structural model
consisting of two-node rod elements in three dimensions.  Let the internal potential energy be given
by

w =
1

2
CSEE11

2 (E4.11.1)

and let the only load on the structure be gravity, for which the external potential is

wext = −ρ0gz (E4.11.2)

where g is the acceleration of gravity.  Find expressions for the internal and external nodal forces
of an element.

From Eqs. (4.9.28) and (E4.11.1), the total internal potential is given by

  

wint = We
int

e
∑ ,  We

int =
1

2
CSE

Ω0
e

∫ E11
2 dΩ0 (E4.11.3)

For the two-node element, the displacement field is linear and the Green strain is constant, so Eq.
(E4.11.3) can be simplified by multiplying the integrand by the initial volume of the element   A0l0 :
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We

int =
1

2
A0l0CSEE11

2 (E4.11.4)

To develop the internal nodal forces, we will need the derivatives of the Green strain with
respect to the nodal displacements.  Since the strain is constant in the element, Eq. (3.3.1) (also see
Eq. (??)) gives:

  
E11 =

l2 − l0
2

2l0
2 =

x21 ⋅ x21 − X21 ⋅X21

2l0
2 (E4.11.5)

where x IJ ≡ x I − x J ,  XIJ ≡ X I − X J .  Noting that

x IJ ≡ X IJ +u IJ (E4.11.6)

where u IJ ≡ u I − u J  are the nodal displacements and substituting Eq. (E4.11.6) into Eq. (4.11.5)
gives, after some algebra,

  
E11 =

2X21 ⋅u21 + u21 ⋅ u21

2l0
2 (E4.11.7)

The derivatives of Ex
2  with respect to the nodal displacements are then given by

  

∂ Ex
2( )

∂u2
=

X21 + u21

l0
2 =

x21

l0
2 ,   

∂ Ex
2( )

∂u1
=−

X21 + u21

l0
2 = −

x21

l0
2 (E4.11.8)

Using the definition for internal nodal forces in conjunction with Eqs. (E4.11.4) and (E4.11.8)
gives

    
f2

int = −f1
int =

A0CSEExx21

l0
(E4.11.9)

By using the fact that Sx = CSE Ex , it follows that

    
f2

int( )T
= − f1

int( )T
=

A0Sx

l0

x21 y21 z21[ ] (E4.11.10)

This result, as expected, is identical to the result obtained for the bar by the principle of virtual
work, Eq. (E4.8.9).  The external potential for a gravity load is given by

  

W ext =− ρ0
Ω0

∫ gzdΩ0 (E4.11.11)

The external potential is independent of x or y, and 
  
W,z

ext = W,u z

ext .  If we make the finite element

approximation z = zI N I , where NI  are the shape functions given in Eq. (E4.8.4) then
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W ext =− ρ0
Ω0

∫ gz IN IdΩ0 (E4.11.12)

and

    
fzI

ext =
∂ W ext

∂uzI
=− ρ0gzI NI ξ( )l0A0dξ

0

1

∫ = −
1

2
A0l0ρ0g (E4.11.13)

so the external nodal force on each node is half the force on the rod element due to gravity.
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In the mathematical description of material behavior, the response of the material is
characterized by a constitutive equation which gives the stress as a function of the
deformation history of the body.  Different constitutive relations allow us to distinguish
between a viscous fluid and rubber or concrete, for example.  In one-dimensional
applications in solid mechanics, the constitutive relation is often referred to as the stress-
strain law for the material.  In this chapter, some of the most common constitutive models
used in solid mechanics applications are described. Constitutive equations for different
classes of materials are first presented for the one-dimensional case and are then generalized
to multiaxial stress states. Special emphasis is placed on the elastic-plastic constitutive
equations for both small and large strains. Some fundamental properties such as
reversibility, stability and smoothness are also dsicussed.  An extensive body of theory
exists on the thermodynamic foundations of constituive equations at finite strains and the
interested reader is referred to Noll (1973), Truesdell and Noll (1965) and Truesdell
(1969).  In the present discussion, emphasis is on the mechanical response, although
coupling to energy equations and thermal effects are considered.

The implementation of the constitutive relation in a finite element code requires a
procedure for the evaluation of the stress given the deformation (or an increment of
deformation from a previous state).  This may be a straightforward function evaluation as
in hyperelasticity or it may require the integration of the rate or incremental form of the
constitutive equations. The algorithm for the integration of the rate form of the constitutive
relation is called a stress update algorithm. Several stress update algorithms are presented
and discussed along with their numerical accuracy and stability. The concept of stress rates
arises naturally in the specification of the incremental or rate forms of constitutive equations
and this lays the framework for the discussion of linearization of the governing equations in
Chapter 6.

In the following Section, the tensile test is introduced and discussed and used to
motivate different classes of material behavior.  One-dimensional constitutive relations for
elastic materials are then discussed in detail in Section 5.2.  The special and practically
important case of linear elasticity is considered in Section 5.3. In this section, the
constitutive relation for general anisotropic linear elasticity is developed.  The case of linear
isotropic elasticity is obtained by taking account of material symmetry. It is also shown
how the isotropic linear elastic constitutive relation may be developed by a generalization of
the one-dimensional behavior observed in a tensile test.

Multixial constitutive equations for large deformation elasticity are given in Section
5.4. The special cases of hypoelasticity (which often plays an important role in large
deformation elastic-plastic constitutive relations) and hyperelasticity are considered.  Well-
known constitutive models  such as Neo-Hookean, Saint Venant Kirchhoff and Mooney-
Rivlin material models are given as examples of hyperleastic constitutive relations.



In Section 5.5, constitutive relations for elastic-plastic material behavior for
multiaxial stress states for both rate-independent and rate-dependent materials are presented
for the case of small deformations.  The commonly used von Mises J2 -flow theory
plasticity models (representative of the behavior of metals) for rate-independent and rate-
dependent plastic deformation and the Mohr-Coulomb relation (for the deformation of soils
and rock) are presented. The constitutive behavior of elastic-plastic materials undergoing
large deformations is presented in Section 5.6.

Well-established extensions of J2 -flow theory constituve equations to finite strain
resulting in hypoelastic-plastic constitutive relations are discussed in detail in Section 5.7.
The Gurson constitutive model which accounts for void-growth and coalescence is given as
an illustration of a constitutive relation for modeling material deformation together with
damage and failure.  The constitutive modeling of single crystals (metal) is presented as an
illustration of a set of micromechanically motivated constitutive equation which has proven
very successful in capturing the essential features of the mechanical response of metal
single crystals. Single crystal plasticity models have also provided a basis for large
deformation constitutive models for polycrstalline metals and for other classes of material
undergoing large deformation.  Hyperelastic-plastic constitutive equations are also
considered. In these models, the elastic response is modeled as hyperelastic (rather than
hypoelastic) as a means of circumventing some of the difficulties associated with rotations
in problems involving geometric nonlinearity.

Constitutive models for the viscoelastic response of polymeric materials are
described in section 5.8. Straightforward generalizations of one-dimensional viscoelastic
models to multixial stress states are presented for the cases of small and large deformations.

Stress update algorithms for the integration of constitutive relations are presented in
section 5.9. The radial return and associated so-called return-mappng algorithms for rate-
independent materials are presented first. Stress-update schemes for rate dependent material
are then presented and the concept of algorithmic tangent modulus is introduced.   Issues of
accuracy and stability of the various schemes are introduced  and discussed.

5.1.  The Stress-Strain Curve

The relationship between stress and deformation is represented by a constitutve
equation. In a displacement based finite element formulation, the constitutive relation is
used to represent stress or stress increments in terms of displacment or displacement
increments respectively.  Consequently, a constitutve equation for general states of stress
and stress and deformation histories is required for the material. The purpose of this
chapter is to present the theory and development of constitutive equations for the most
commonly observed classes of material behavior. To the product designer or analyst, the
choice of material model is very important and may not always be obvious. Often the only
information available is general knowledge and experience about the material behavior
along with perhaps a few stress strain curves. It is the analyst's task to choose the
appropriate constitutive model from available libraries in the finite  element code or to
develop a user supplied constitutive routine if no  suitable constitutive equation is available.
It is important for the engineer to understand what the key features of the constitutive model
for the material are, what assumptions have gone into the development of the model, how
suitable the model is for the material in question, how appropriate the model is for the
expected load and deformation regime and what numerical issues are involved in the
implentation of the model to assure accuracy and stability of the numerical procedure. As
will be seen below, the analyst needs to have a broad understanding of relevant areas of
mechanics of materials, continuum mechanics and numerical methods.



Many of the essential features of the stress-strain behavior of a material can be
obtained from a set of stress-strain curves for the material response in a state of one-
dimensional stress.  Both the physical and mathematical descriptions of the material
behavior are often easier to describe for one-dimensional stress states than for any other.
Also,  as mentioned above, often the only quantitative information the analyst has about the
material is a set of stress strain curves.  It is essential for the analyst to know how to
characterize the material behavior on the basis of such stress-strain curves and to know
what additional tests, if any, are required so that a judicious choice of  constitutive equation
can be made. For these reasons, we begin our treatment of constitutive models and their
implementation in finite element codes with a discussion of the tensile test.  As will be
seen, constitutive equations for multixial states are often based on simple generalizations of
the one-dimensional behavior observed in tensile tests.

5.1.1.  The Tensile Test

The stress strain behavior of a material in a state of uniaxial (one-dimensional)
stress can be obtained by performing a tensile test (Figure 5.1). In the tensile test, a
specimen is gripped at each end in a testing machine and elongated at a prescribe rate. The
elongation δ  of the gage section and the force T required to produce the elongation are
measured. A plot of load versus elongation (for a typical metal) is shown in Figure 5.1.
This plot represents the response of the specimen as a structure. In order to extract
meaningful information about the material behavior from this plot, the contributions of the
specimen geometry must be removed.  To do this, we plot load per unit area (or stress) of
the gage cross-section versus elongation per unit length (or strain). Even at this stage,
decisions need to be made: Do we use the the original area and length or the instantaneous
ones?  Another way of stating this question is what stress and strain measures should we
use? If the deformations are sufficently small that distinctions between original and current
geometries are negligible for the purposes of computing stress and strain, a small strain
theory is used and a small strain constitutive relation developed.  Otherwise, full nonlinear
kinematics are used and a large strain (or finite deformation) constitutive relation is
developed.  From Chapter 3 (Box 3.2), it can be seen that we can always transform from
one stress or strain measure to another but it is important to know precisely how the
original stress-strain relation is specified. A typical procedure is as follows:

Define the stretch λ = L L0  where L = L0 +δ  is the length of the gage section

associated with elongation δ . Note that λ = F11  where F is the deformation gradient. The
nominal (or engineering stress) is given by

P =
T

A0
(5.1.1)

where A0  is the original cross-sectional area. The engineering strain is given by

ε =
δ
L0

= λ −1 (5.1.2)

A plot of engineering stress versus engineering strain for a typical metal is given in Figure
5.2.

Alternatively,  the stress strain response may be given in terms of true stress.  The
Cauchy (or true) stress is given by



σ =
T

A
(5.1.3)

where A is the current (instantaneous) area of the cross-section. A measure of true strain is
derived by considering an increment of true strain as change in length per unit current

length, i.e., dε true = d L L . Integrating this relation from the initial length L0  to the current
length L gives

  
ε true =

dL

LL0

L

∫ = ln L L0( ) = ln λ (5.1.4)

Taking the material time derivative of this expression gives

  
ε true =

˙ λ 
λ

= D11 (5.1.5)

i.e., in the one-dimensional case, the time-derivative of the true strain is equal to the rate of
deformation given by Eq. (3.3.19).  This is not true in general unless the principal axes of
the deformation are fixed.

To plot true stress versus true strain, we need to know the cross-sectional area A as
a function of the deformation and this can be measured during the test. If the material is
incompressible, then the volume remains constant and we have A0L0 = AL  which can be
written as

A = A0 λ (5.1.6)

and therefore the Cauchy stress is given by

σ =
T

A
= λ

T

A0
= λP (5.1.7)

A plot of true stress versus true strain is given in Figure 5.3.

The nominal or engineering stress is written in tensorial form as P = P11e1 ⊗ e1

where P11 = P = T A0 .  From Box 3.2, the Cauchy (or true) stress is given by

σ = J −1FT ⋅P (5.1.8)

where   J = det F  and it follows that

σ = σ11e1 ⊗ e1 = J−1λP11e1 ⊗ e1 (5.1.9)

For the special case of an incompressible material J =1 and Eq. (5.1.9) is equivalent to Eq.
(5.1.7).



Prior to the development of instabilities (such as the well known phenomenon of
necking) the deformation in the gage section of the bar can be taken to be homogeneous.
The deformation gradient, Eq. (3.2.14),  is  written as

F = λ1e1⊗ e1 + λ2e2 ⊗e2 + λ3e3 ⊗ e13 (5.1.10)

where λ1 = λ  is the stretch in the axial direction (taken to be aligned with the x1-axis of a
rectangular Cartesian coordinate system) and λ2 = λ3  are the stretches in the lateral

directions. For an incompressible material   J = det F = λ1λ2λ3 =1 and thus λ2 = λ3 = λ−1 2 .

Now assume that we can represent the relationship between nominal stress and

engineering strain in the form of a function

P11 = s0 ε11( ) (5.1.11)

where ε11 = λ −1 is the engineering strain.  We can regard (5.1.11) as a stress-strain
equation for the material undergoing uniaxial stressing at a given rate of deformation. At
this stage we have not introduced unloading or made any assumptions about the material
response. From equation (5.1.9), the true stress (for an incompressible material) can be
written as

σ11 = λs0 ε11( ) = s λ( ) (5.1.12)

where the relation between the functions is s λ( ) = λs0 λ −1( ) .  This is an illustration of how
we obtain different functional representations of the constitutive relation for the same
material depending on what measures of stress and deformation are used. It is especially
important to keep this in mind when dealing with multiaxial constitutive relations at large
strains.

A material for which the stress-strain response is independent of the rate of deformation is
said to be rate-independent; otherwise it is rate-dependent. In Figures 5.4 a,b, the one-
dimensional response of a rate-independent and a rate-dependent material are shown
respectively for different nominal strain rates. The nominal strain rate is defined as

  
˙ ε = ˙ δ L0 .  Using the result   

˙ δ = ˙ L  and therefore   
˙ δ L0 = ˙ L L0 = ˙ λ  it follows that the

nominal strain rate is equivalent to the rate of stretching, i.e.,   ̇ ε = ˙ λ = ˙ F 11 . As can be seen,
the stress-strain curve for the rate-independent material is independent of the strain rate
while for the rate-dependent material the stress strain curve is elevated at higher rates. The
elevation of stress at the higher strain rate is the typical behavior observed in most materials
(such as metals and polymers). A material for which an increase in strain rate gives rise to a
decrease in the stress strain curve is said to exhibit anomolous rate-dependent behavior.

In the description of the tensile test given above no unloading was considered. In
Figure 5.5 unloading behaviors for different types of material are illustrated. For elastic
materials, the unloading stress strain curve simply retraces the loading one. Upon complete
unloading, the material returns to its inital unstretched state. For elastic-plastic materials,
however, the unloading curve is different from the loading curve. The slope of the
unloading curve is typically that of the elastic (initial) portion of the stress strain curve. This



results in permanent strains upon unloading as shown in Figure 5.5b. Other materials
exhibit behaviors between these two extremes. For example, the unloading behavior for a
brittle material which develops damage (in the form of microcracks) upon loading exhibits
the unloading behavior shown in Figure 5.5c. In this case the elastic strains are recovered
when the microcracks close upon removal of the load. The initial slope of the unloading
curve gives information about the extent of damage due to microcracking.

In the following section, constitutive relations for one-dimensional linear and
nonlinear elasticity are introduced. Multixial consitutive relations for elastic materials are
discussed in section 9.3 and for elastic-plastic and viscoelastic materials in the remaining
sections of the chapter.

5.2.  One-Dimensional Elasticity

A fundamental property of elasticity is that the stress depends only on the current
level of the strain. This implies that the loading and unloading stress strain curves are
identical and that the strains are recovered upon unloading. In this case the strains are said
to be reversible.  Furthermore, an elastic material is rate-independent (no dependence on
strain rate).  It follows that, for an elastic material, there is a one-to-one correspondence
between stress and strain.  (We do not consider  a class of nonlinearly elastic materials
which exhibit phase transformations and for which the stress strain curve is not one-to-one.
For a detailed discussion of the treatment of phase transformations within the framework of
nonlinear elasticity see (Knowles, ).)

We focus initially on elastic behavior in the small strain regime. When strains and
rotations are small, a small strain theory (kinematics, equations of motion and constitutive
equation) is often used. In this case we make no distinction between the various measures
of stress and  strain. We also confine our attention to a purely mechanical theory in which
thermodyanamics effects (such as heat conduction) are not considered.For a nonlinear
elastic material (small strains) the relation between stress and strain can be written as

σ x = s εx( ) (5.2.1)

where σ x  is the Cauchy stress and εx = δ L0  is the linear strain, often known as the

engineering strain.  Here s εx( )  is assumed to be a monotonically increasing function.  The

assumption that the function s εx( )  is monotonically increasing is crucial to the stability of

the material: if at any strain εx , the slope of the stress strain curve is negative, i.e.,

ds dεx < 0  then the material response is unstable. Such behavior can occur in constitutive
models for materials which exhibit phase transformations (Knowles).  Note that
reversibility and path-independence are implied by the structure of (5.2.1): the stress σ x

for any strain εx  is uniquely given by (5.2.1).  It does not matter how the strain reaches the

value εx . The generalization of (5.2.1) to multixial large strains is a formidable
mathematical problem which has been addressed by some of the keenest minds in the 20th
century and still enocmpasses open questions (see Ogden, 1984, and references therein).
The extension of (5.2.1) to large strain uniaxial behaior is presented later in this Section.
Some of the most common multiaxial generalizations to large strain are discussed in Section
5.3.



In a purely mechanical theory, reversibility and path-independence also imply the
absence of energy dissipation in deformation.  In other words, in an elastic material,
deformation is not accompanied by any dissipation of energy  and all energy expended in
deformation is stored in the body and can be recovered upon unloading.  This implies that

there exists a potential function   ρwint ε x( )  such that

  
σ x = s εx( ) =

ρdwint εx( )
dεx

(5.2.2)

where   ρwint ε x( )  is the strain energy density per unit volume.  From Eq. (5.2.2) it follows
that

  ρdwint ε x( ) = σxdεx (5.2.3)

which when integrated gives

  
ρwint = σ x0

ε x∫ dεx (5.2.4)

This can also be seen by noting that   σ xdε x =σ x
˙ ε xdt  is the one-dimensional form

of σ ijDijdt  for small strains.

One of the most obvious characteristics of a stress-strain curve is the degree of
nonlinearity it exhibits. For many materials, the stress strain curve consists of an initial
linear portion followed by a nonlinear regime. Also typical is that the material behaves
elastically in the initial linear portion. The material behvior in this regime is then said to be
linearly elastic. The regime of linear elastic behavior is typically confined to strains of no
more than a few percent and consequently, small strain theory is used to describe linear
elastic materials or other materials in the linear elastic regime.

For a linear elastic material, the stress strain curve is linear and can be written as

σ x = Eε x (5.2.5)

where the constant of proportionality is Young's modulus, E.  This relation is often
referred to as Hooke's law.  From Eq. (5.2.4) the strain energy density is therefore given
by

  
pw int =

1

2
Eεx

2 (5.2.6)

 which is a qudratic function of strains.   To avoid confusion of Young's modulus with the
Green strain, note that the Green (Lagrange) strain is always subscripted or in boldface.

Because energy is expended in deforming the body, the strain energy   w
int  is

assumed to be a convex function of strain, i.e., 
  
w int ε x

1( ) − w ∫ εx
2( )( ) ε x

1 − εx
2( ) ≥ 0 , equality



if εx
1 = εx

2 . If   w
int  is non-convex function, this implies that energy is released by the body

as it deforms, which can only occur if a source of energy other than mechanical is present
and is converted to mechanical energy. This is the case for materials which exhibit phase
transformations. Schematics of convex and non-convex energy functions along with the
corresponding stress strain curves given by (5.2.2) are shown in Figure 5.6.

In summary, the one-dimensional behavior of an elastic material is characterized by
three properties which are all interrelated

path− independence ⇔ reversible ⇔ nondissipative

These properties can be embodied in a material model by modeling the material response by
an elastic potential.

The extension of elasticity to large strains in one dimension is rather
straightforward: it is only necessary to choose a measure of strain and define an elastic
potential for the (work conjugate) stress.  Keep in mind that the existence of a potential
implies reversibility, path-independence and absence of dissipation in the deformation
process.  We can choose the Green strain as a measure of strain Ex  and write

SX =
dΨ

dEX
(5.2.7)

The fact that the corresponding stress is the second Piola-Kirchhoff stress follows from the
work (power) conjugacy of the second Piola-Kirchhoff stress and the Green strain, i.e.,
recalling Box 3.4 and, specializing to one dimension, the stress power per unit reference

volume is given by   
˙ Ψ =SX

˙ E X .

The potential Ψ  in (5.2.7) reduces to the potential (5.2.2) as the strains become
small.  Elastic stress-strain relationships in which the stress can be obtained from a
potential function of the strains are called hyperelastic.

The simplest hyperelastic relation (for large deformation problems in one
dimension) results from a potential which is quadratic in the Green strain:

Ψ =
1

2
EEX

2 (5.2.8)

Then,

SX = EEX (5.2.9)

by equation (5.2.7), so the relation between these stress and strain measures is linear. At
small strains, the relation reduces to Hooke's Law (5.2.5).

We could also express the elastic potential in terms of any other conjugate stress
and strain measures.  For example, it was pointed out in Chapter 3 that the quantity
U = U − I is a valid strain measure (called the Biot strain), and that in one-dimension the
conjugate stress is the nominal stress PX ,so



PX =
dΨ

dU X
=

dΨ
dUX

(5.2.10)

We can write the second form in (5.2.10) because the unit tensor I is constant and hence
dU X = dU X .  It is interesting to observe that linearity in the relationship between a certain
pair of stress and strain measures does not imply linearity in other conjugate pairs. For

example if SX = EEX  it follows that PX = E UX
2 + 2UX( ) 2 .

A material for which the rate of Cauchy stress is related to the rate of deformation is
said to be hypoelastic.  The relation is generally nonlinear and is given by

  
˙ σ = f σ x , Dx( ) (5.2.11)

where a superposed dot denotes the material time derivative and Dx  is the rate of
deformation. A particular linear hypoelastic relation is given by

  
˙ σ x = EDx = E

˙ λ x
λx

(5.2.12)

where E is Young's modulus and λx  is the stretch.  Integrating, this relation we obtain

  σ x = E ln λx (5.2.13)

or

  
σ x =

d

dλx
E

1

λ x∫ ln ξdξ (5.2.14)

which is a hyperelastic relation and thus path-independent. However, for multiaxial
problems, hypoelastic relations can not in general be transformed to hyperelastic.  Multixial
constitutive models for hypoelastic, elastic and hyperelastic materials are described in
Sections 5.3 and 5.4 below.

A hypoelastic material is, in general, strictly path-independent only in the one-
dimensional case. (•  check).  However, if the elastic strains are small, the behavior is close
enough to path-independent to model elastic behavior. Because of the simplicity of
hypoelastic laws, a muti-axial generalization of (5.2.11) is often used in finite element
software to model the elastic response of materials in large strain elastic-plastic problems
(see Section 5.7 below).

For the case of small strains, equation (9.2.12) above can be written as

  
˙ σ x = E˙ ε x (5.2.15)

which is the rate form (material time derivative) of Hooke's law (5.2.5).



For the general elastic relation (5.2.1) above, the function s εx( )  was assumed to be
monotonically increasing.  The corresponding strain energy is shown in Figure 5.6b and
can be seen to be a convex function of strain.   Materials for which s εx( )first increases and

then decreases exhibit strain-softening or unstable material response (i.e., ds dεx < 0 ).  A
special form of non-monotonic response is illustrated in Figure 5.7a.  Here, the function
s εx( )  increases monotonically again after the strain-softening stage.  The corresponding
energy is shown in Figure 5.7b.  This type of non-convex strain energy has been used in
nonlienar elastic models of phase transformations (Knowles). At a given stress σ  below
σM  the material may exist in either of the two strained states εa  or εb  as depicted in the
figure.  The reader is referred to (Knowles) for further details including such concepts as
the energetic force on a phase boundary (interface driving traction) and constitutive
relations for interface mobility.

5.3.  Multiaxial Linear Elasticity

In many engineering applications involving small strains and rotations, the response
of the material may be considered to be linearly elastic.  The most general way to represent
a {\em linear} relation between the stress and strain tensors is given by

  σ ij = Cijklεkl            σ = C:ε (5.3.1)

where Cijkl  are components of the 4th-order tensor of elastic moduli.  This represents the
generalization of (5.2.5) to multiaxial states of stress and strain and is often referred to as
the generalized Hooke's law which incorporates fully anisotropic material response.

The strain energy per unit volume, often called the elastic potential., as given by
(5.2.4) is generalized to multixial states by:

  
W = σ ij∫ dε ij =

1

2
Cijklε ijεkl =

1

2
ε:C:ε (5.3.2)

The stress is then given by

σ ij =
∂w

∂ε ij
,              σ =

∂w

∂ε
(5.3.3)

which is the tensor equivalent of (5.2.2).  The strain energy is assumed to be positive-
definite, i.e.,

  
W =

1

2
Cijklε ijεkl ≡

1

2
ε:C:ε ≥ 0 (5.3.4)

with equality if and only if ε ij = 0  which implies that   C  is a positive-definite fourth-order
tensor.  From the symmetries of the stress and strain tensors, the material coefficients  have
the so-called minor symmetries

Cijkl = C jikl = Cijlk (5.3.5)



and from the existence of a strain energy potential (5.3.2) it follows that

  
Cijkl =

∂2W

∂εij∂εkl
,           C =

∂2W

∂ε∂ε
(5.3.6)

If W is a smooth C1( ) function of ε , Eq. (5.3.6) implies a property called  major

symmetry:

Cijkl = Cklij (5.3.7)

since smoothness implies

∂2W

∂εijε kl
=

∂2W

∂εklε ij
(5.3.8)

The general fourth-order tensor Cijkl  has 34 = 81 independent constants.  These 81
constants may also be interpreted as arising from the necessity to relate 9 components of the
complete stress tensor to 9 components of the complete strain tensor, i.e., 81= 9× 9.  The
symmetries of the stress and strain tensors require only that 6 independent components of
stress be related to 6 independent components of strain.  The resulting minor symmetries of
the elastic moduli therefore reduce the number of independent constants to 6 ×6 = 36.
Major symmetry of the moduli, expressed through Eq. (5.3.7) reduces the number of
independent elastic constants to n n +1( ) 2 = 21 , for n = 6 , i.e., the number of independent

components of a 6 ×6  matrix.

 Considerations of material symmetry further reduce the number of independent
material constants.  This will be discussed below after the introduction of Voigt notation.
An isotropic material is one which has no preferred orientations or directions, so that the
stress-strain relation is identical when expressed in component form in any recatngular
Cartesion coordinate system. The most general constant isotropic fourth-order tensor can
be shown to be a linear combination of terms comprised of Kronecker deltas, i.e., for an
isotropic linearly elastic material

Cijkl = λδijδkl + µ δ ikδ jl + δilδ jk( ) + ′ µ δ ikδ jl + δ ilδ jk( ) (5.3.9)

Because of the symmetry of the strain and the associated minor symmetry Cijkl = Cijlk  it

follows that ′ µ = 0 . Thus Eq. (6.3.9) is written

  
Cijkl = λδijδkl + µ δ ikδ jl + δilδ jk( ),             C = λI ⊗I +2µI (5.3.10)

 and the two independent material constants λ  and µ  are called the  Lamé  constants.

 The stress strain relation for an isotropic linear elastic material may therefore be
written as



σ ij = λεkkδij + 2µε ij = Cijklεkl ,        σ = λtrace ε( )I +2µε (5.3.11)

Voigt Notation

Voigt notation employs the following mapping of indices to represent the
components of stress, strain and the elastic moduli in convenient matrix form:

11→1 22 → 2 33 → 3

23 → 4 13 → 5 12 → 6
(5.3.12)

Thus, stress can be written as a column matrix σ{ }  with

σ11 σ12 σ13

σ22 σ23

sym σ33

 

 

 
 
 

 

 

 
 
 

→

σ11

σ22

σ33

σ23

σ13

σ12

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

(5.3.13)

or

σ{ }T = σ1, σ2 , σ3, σ 4 , σ5 , σ 6[ ]
        = σ1 , σ22 , σ33 , σ 23, σ13 , σ12[ ]

(5.3.14)

Strain is

similarly written in matrix form with the exception that a factor of 2 is introduced on the
shear terms, i.e.,

ε{ }T = ε1 , ε2, ε3, ε4 , ε5 , ε6[ ]
        = ε1, ε22 , ε33, 2ε23, 2ε13 , 2ε12[ ]

(5.3.15)

 The factor of 2 is included in the shear strain terms to render the stress and strain column
matrices work conjugates, i.e.,

  
W =

1

2
σ Tε =

1

2
σ ijεij =

1

2
σ: ε (5.3.16)

The matrix of elastic constants is obtained from the tensor components by mapping
the first and second pairs of indices according to (5.3.12). For example, C11 = C1111 ,
C12 = C1122 , C14 = C1123C56 = C1312   etc. For example, the stress strain relation for σ11 is
given by



σ11 = C1111ε11 + C1112ε12 + C1113ε13

     + C1121ε21 + C1122ε22 + C1123ε23

     +C1131ε31 + C1132ε32 +C11331ε33

     = C11ε1 +
1

2
C16ε6 +

1

2
C15ε5 +

1

2
C16ε6

     +
1

2
C12ε2 +

1

2
C14ε4 +

1

2
C15ε5 +

1

2
C14ε4 +

1

2
C13ε3

     = C11ε1 +C12ε2 + C13ε3 + C14ε4 +C15ε5 + C16ε6

     = C1 jε j

(5.3.17)

and similarly for the remaining components of stress.  The constitutive relation may then be
written in matrix form as

σ = Cε ,         σ i = Cijε j (5.3.18)

 Major symmetry (5.3.7) implies that the matrix [C], of elastic constants  is symmetric with
21 independent entries, i.e.,

σ1

σ2

σ3

σ4

σ5

σ6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

=

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym C55 C56

C66

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

ε1

ε2

ε3

ε4

ε5

ε6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

(5.3.19)

The relation (5.3.19) holds for arbitrary anisotropic linearly elastic materials. The
number of independent material constants is further reduced by considerations of material
symmetry (see Nye (1985) for example).  For example, if the material has a plane of
symmetry, say the x1 -plane, the elastic moduli must remain unchanged when the
coordinate system is changed to one in which the x1-axis is reflected through the x1-plane.
Such a reflection introduces a factor of -1 for each term in the moduli Cijkl  in which the

index 1 appears. Because the x1 plane is a plane of symmetry, the moduli must remain
unchanged under this reflection and therefore any term in which the index 1 appears an odd
number of times must vanish. This occurs for the terms Cα5  and Cα6  for α =1,2,3.  For
an orthotropic material (e.g., wood or aligned fiber reinforced composites) for which there
are three mutually orthogonal planes of symmetry, this procedure can be repated for all
three planes to show that there are only 9 independent elastic constants and the constitutive
matrix is written as



σ1

σ2

σ3

σ4

σ5

σ6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

=

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

sym C55 0

C66

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

ε1

ε2

ε3

ε4

ε5

ε6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

(5.3.20)

An isotropic material is one for which there are no preferred orientations. Recall that an
isotropic tensor is one which has the same components in any (rectangular Cartesian)
coordinate system.  Many materials (such as metals and ceramics) can be modeled as
isotropic in the linear elastic range and the linear isotropic elastic constitutive relation is
perhaps the most widely used material model in solid mechanics. There are many excellent
treatises on the theroy of elasticity and the reader is referred to (Timoshenko and Goodier,
1975; Love,  and Green and Zerna, ) for more a more detailed description than that given
here.  As in equation (5.3.10) above the number of independent elastic constants for an
isotropic linearly elastic material reduces to 2.  The isotropic linear elastic law is written in
Voigt notation as

σ1

σ2

σ3

σ4

σ5

σ6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

=

λ +2µ λ λ 0 0 0

λ + 2µ λ 0 0 0

λ +2µ 0 0 0

µ 0 0

sym µ 0

µ

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

ε1
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ε3

ε4

ε5

ε6

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

(5.3.21)

where λ  and µ $ are the Lamé constants.

The isotropic linear elastic relation (5.3.21) has been derived from the general
anisotropic material model (5.3.19) by considering material symmetry.  It is instructive to
see also how the relation (5.3.21) may be generalized from the particular by starting with
the case of a linearly elastic isotropic bar under uniaxial stress. For small strains, the axial
strain in the bar is given by the elongation per unit original length, i.e., ε11 = δ L0  and
from Hooke's law (5.2.5)

ε11 =
σ11

E
(5.3.22)

 The lateral strain in the bar is given by ε22 =ε33 =∆D D0  where ∆D  is the change in the

original diameter D0 .  For an isotropic material, the lateral strain is related to the axial strain
by

ε22 =ε33 =− vε11 = −v
σ11

E
(5.3.23)



where v  is Poisson's ratio. To generalize these relations to multiaxial stress states, consider
the stress state shown in Figure 5.8 where the primed coordinate axes are aligned with the
directions of principal stress.  Because of the linearity of the material repsonse, the strains
due to the indiviudal stresses may be superposed to give

′ ε 11 = ′ σ 11

E
−v ′ σ 22 + ′ σ 33( )

′ ε 22 =
′ σ 22

E
−v ′ σ 11 + ′ σ 33( )

′ ε 33 =
′ σ 33

E
−v ′ σ 11 + ′ σ 22( )

(5.3.24)

Referring the stresses and strains to an arbitrary set of (rectangular Cartesian) axes by using
the relation (3.2.30) for transformation of tensor components gives

ε ij =
1+ v( )

E
σ ij −

v

E
σkkδij (5.3.25)

Exercise 5.1.  Derive Eq. (5.3.25) from (5.3.24) and (3.2.30).

The relation between shear stress and shear strain is given by (for example) σ12 = 2µε12
where the shear modulus (or modulus of rigidity) µ   is defined as

µ =
E

2 1+ v( ) (E5.1.1)

From Eq.(5.3.25) it follows that

εkk =
1− 2v( )

E
σ kk =

σ kk

3K
(E5.1.2)

where

K =
E

3 1−2v( ) = λ +
2µ
3

(E5.1.3)

is the bulk modulus.  Introducing the Lamé constant λ , given by

λ =
vE

1+ v( ) 1− 2v( ) (E5.1.4)

the bulk modulus is wrtten as

K = λ +
2µ
3

(E5.1.5)



From (5.3.29) and (5.3.26), the quantity we obtain the relation v E = λ 2µ . Using this
result and (5.3.26) in (5.3.25), the stress strain relation is given by

ε ij =
σ ij

2µ
−

λ
2µ 3λ + 2µ( )σ kkδij (E5.1.6)

Using (5.3.27) this expression may be inverted to give Eq.(5.3.11), the generalized
Hooke's law.

Writing the stress and strain tensors as the sum of deviatoric and hydrostatic or
volumetric parts, i.e.,

σ ij = sij +
1

3
σkkδ ij

ε ij = eij +
1

3
εkkδ ij

(E5.1.7)

then using (5.3.11) and (5.3.26-27) the constitutive relation for an isotropic linearly elastic
material can be written as

σ ij = 2µeij + Kεkkδ ij (E5.1.8)

The strain energy (5.3.16) for an isotropic material is given by

W = 1
2

σ ijεij

    =
1

2
sij +

1

3
σ kkδij

 
 
 

 
 
 eij +

1

3
εmmδij

 
 
 

 
 
 

    = µeijeij + 1

2
K εkk( )2

(E5.1.9)

Positive definiteness of the strain energy W ≥ 0 , equality iff ε =0  imposes
restrictions on the elastic moduli (see Malvern, for example).  For the case of isotropic
linear elasticity positive definitness of W requires

K > 0     and     µ > 0      or

E > 0     and     − 1< v <
1

2

(E5.1.10)

Exercise 5.2.  Derive these conditions by considering appropriate deformations. For
example, to derive the condition on the shear modulus, µ , consider a purely deviatoric
deformation and the positive definiteness requirement.

Incompressibility.

The particular case of v =1 2  K =∞( ) corresponds to an incompressible material. In an
incompressible material in small deformations, the trace of the strain tensor must vanish,



i.e., ∈kk = 0 .   Deformations for which this constraint is observed are called isochoric.
From (5.3.33) it can be seen that, for an incompressible material, the pressure can not be
determined from the constitutive relation.  Rather, it is determined from the momentum
equation. Thus, the constitutive relation for an incompressible, isotropic linear elastic
material is written as

σ ij =− pδ ij + 2µεij (5.3.26)

where the pressure p =− σkk 3 is unspecified and is determined as part of the solution.

Plane Strain

For plane problems, the stress-strain relation (5.3.21) can be even further simplified. In
plane strain, ε i3 = 0, i.e., ε3 = ε4 = ε5 = 0 .  In finite element coding, the standard Voigt
notation used above is often modified to accommodate a reduction in dimension of the
matrices. Letting 12 → 3, the stress-strain relation for plane strain is written as

σ11

σ22

σ12

 
 
 

  

 
 
 

  
=

λ + 2µ λ 0

λ λ +2µ 0

0 0 µ
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2ε12

 
 
 

  

 
 
 

  

         =
E 1− v( )

1 + v( ) 1− 2v( )
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1− v
0

v

1− v
1 0

0 0
1− 2v

2 1 − v( )
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ε22

2ε12
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and in addition

σ33 = λ ε11 + ε22( ) = v σ11 + σ 22( ) (5.3.28)

Plane Stress

For plane stress, σ i3 = 0.    The condition σ33 = 0  gives the relation

ε33 =−
λ

λ + 2µ
ε11 + ε22( ) =− v ε11 + ε22( ) (5.3.29)

Letting λ = 2µλ λ + 2µ( )  and using (5.3.21), the stress-strain relation for plane stress is
given by
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σ22
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=

λ + 2µ λ 0

λ λ + 2µ 0

0 0 µ
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=

E
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Axisymmetry

For problems with an axis of symmetry (using a cylindrical polar coordinate
system) the constitutive relation is given by
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where

εrr =
∂ur

∂r
,   εθθ =

ur

r
,   εzz =

∂uz

∂z
,   εrz =

∂ur

∂z
+

∂uz

∂r

 
 
 

 
 
 (5.3.32)

5.4.  Multiaxial Nonlinear Elasticity

In this section, the small strain linear elasticity constitutive relations presented above will be
extended to the case of finite strain.  As will be seen, the extension to finite strains can be
carried out in different ways andmany different constitutive relations can be developed for
multiaxial elasticity at large strains.  In addition, because of the many different stress and
deformation measures for finite strain, the same constitutive relation can be written in
several different ways.  It is important to distinguish between these two situations. The first
case gives different material models while in the second, the same material model is
represented by different mathematical expressions.  In the latter, it is always possible to
mathematically transform from one form of the constitutive relation to another.

The constitutive models for large strain elasticity are presented in order of increasing degree
of what is commonly thought of as elasticity, i.e., hypoleasticity is presented first,
followed by elasticity and finally hyperelasticity.

5.4.1  Hypoelasticity.  One of the simplest ways to represent elasticity at large strains,
is to write the increments in stress as a function of the incremental deformation.  As
discussed in Section 3.7.2, in order to satisify the principle of material fame indifference,



the stress increments (or stress rate) should be objective and should be related to an
objective measure of the increment in deformation. A more detailed treatment of material
frame indifference is given in the Appendix to this chapter and we will draw on that
material as needed in the remainder of the chapter.  Truesdell [ ] presented a general
hypoelastic relation of the form

σ
∇

= f σ, D( ) (5.4.1)

where σ
∇

 represents any objective rate of the Cauchy stress and D is the rate of deformation
tensor which is an objective tensor (see Equation (A.x)).

A large class of hypoelastic constitutive relations can be written in the form of a
linear relation between the objective measure of stress and the rate of deformation tensor,
i.e.,

    σ
∇

=C :D (5.4.2)

In general, the fourth order tensor   C  is a function of the stress state.  As noted by
Prager ( ), the relation (5.4.2) is rate-independent and incrementally linear and reversible.
This means that for small increments about a finitely deformed state, the increments in
stress and strain are linearly related and are recovered upon unloading.  However, for large
deformations, energy is not necessarily conserved and the work done in a closed
deformation path is not-necessarily zero.  It should be noted that the primary use of
hypoelastic constitutive relations is in the representation of the elastic response in
phenomenological elastic-plastic constitutive relations where the elastic deformations are
smaal. In this case, dissipative effects are usually small also.

Some commonly used forms of hypoelastic constitutive relations are

    σ
∇ J

=C J : D (5.4.3)

where σ
∇ J

 is the Jaumann rate of Cauchy stress given in equation (3.7.9) and

    Lv τ = JC T : D (5.4.4)

where   Lv τ  is the Lie-Derivative of the Kirchhoff stress.  Note that

  

Lv τ = ˙ τ − L ⋅τ − τ⋅LT

      = J ˙ σ − L ⋅σ − σ ⋅LT + trace L( )σ( )
      = J σ

∇T

(5.4.5)

where   J = det F  and σ
∇T

 is the Truesdell rate of Cauchy stress. Thus the Lie-derivative of
the Kirchoff stress is simply the weighted Truesdell rate of the Cauchy stress. A more
detailed discussion of Lie derivatives in the context of pull-back and push-forard operations



is given in the Appendix. We will use the concept of the Lie derivatives more extensively in
our treatment of hyperelasticity (Section 5.4.3) and hyperelastic-plastic constitutive
relations (Section 5.7.4).

Other forms of hypoelastic relations are  based on the Green-Nagdhi (also called the

Dienes) rate  which is denoted here by   σ
∇G

 and is given by

  

σ
∇G

= ˙ σ − ˙ Ω ⋅σ − σ⋅ ΩT

    = R ⋅ d
dt

RT ⋅σ ⋅R( )⋅RT
(5.4.6)

where

  Ω = ˙ R ⋅RT (5.4.7)

is the spin associated with the rotation tensor R.  The hypoelastic relation is given by

    σ
∇G

=C G :D (5.4.8)

Note that the Green-Naghdi rate is a form of Lie Derivative (Appendix A.x) in that
the Cauchy stress is pulled back by the rotation R to the unrotated configuration where the
material time derivative is taken with impunity and the result pushed forward by R again to
the current configuration.  The quantity

σ = RT ⋅ σ⋅R (5.4.9)

 is the co-rotational Cauchy stress (Equation 3.7.18) discussed in Chapter 3.

 In the consitutive equations (5.4.3), (5.4.4) and (5.4.11)  above, the fourth-order

tensors of elastic moduli   C J ,   C T  and     C G  are often taken to be constant and isotropic,
e.g.,

  Cijkl
J = λδijδkl + µ δ ikδ jl +δilδ jk( ),      C J = λI ⊗ I +2µI (5.4.10)

Given a constitutive equation

    σ
∇ J

=C J : D (5.4.11)

with constant moduli   C J  then, using the defintion of the Jaumann stress rate (3.7.9) and
the co-rotational rate (6.4.6), this relation can be written as

    σ
∇ R

=C J :D + Ω − W( )⋅σ + σ ⋅ Ω −W( )T (5.4.12)

which is a different constitutive equation to  (5.4.8) with constant moduli     C G .



5.4.2.  Cauchy Elastic Material.  As previously mentioned, an elastic material may
be characterized as one which has no dependence on the history of the motion.  The
constitutive relation for a Cauchy elastic material is given by a special form of  (A.y)
written as

  σ =G F( ) (5.4.13)

where   G  is called the material response function and the explicit dependence on position X
and time t has been suppressed for notational convenience. Applying the restriction (A.z)
due to material objectivity gives the form

  σ = R ⋅G U( )⋅RT (5.4.14)

Alternative forms of the same constitutive relation for other representations of stress and
strain follow from the stress transformation relations in Box (3.2), e.g., the first Piola-
Kirchhoff stress for a Cauchy elastic material is given by

  

P = J −1σ ⋅F−T

  = J −1R ⋅G U( )⋅RT ⋅R ⋅U −1

  = J −1R ⋅G U( )⋅U−1

(5.4.15)

while the relationship for the second Piola-Kirchhoff stress takes the form

    

S = J −1F−1 ⋅σ ⋅F−T

  = J −1U−1 ⋅RT ⋅R ⋅G U( )⋅RT ⋅R ⋅ U−1

  = J −1U−1 ⋅RT ⋅G U( )⋅ U−1 = h U( ) = ˜ h C( )
(5.4.16)

where C = FT ⋅F = U2  is the right Cauchy Green deformation tensor.  For a given the
motion, the deformation gradient is always known by its definition  F =∂x ∂X  (Equation
3.2.14).   The stresses can therefore be computed for a Cauchy elastic material  by (5.4.13)
or one of the specialized forms (5.4.14-5.4.16) independent of the history of the
deformation.  However, the work done may depend on the deformation history or load
path.  Thus, while the material is history independent, it is in a sensepath dependent. This
apparent anomaly arises from the complications of large strain theory (see Example 5.1)
below.  In material models for small deformations, the work done in history-independent
materials is always path-independent.

To account for material symmetry, we note that following Noll ( ) (see Appendix
for further discussions of material symmetry) the stress field remains unchanged if the
material is initially rotated by a rotation which belongs to the symmetry group of the
material, i.e., if the deformation gradient, F is replaced by F ⋅Q  where Q  is an element of
the symmetry group. Thus (5.4.13) is written as

  σ =G F⋅ Q( ) (5.4.17)



For an initially isotropic material, all rotations belong to the symmetry group (5.4.17) must

therefore hold for the special case Q = RT , i.e.,

  
σ =G F⋅ RT( ) =G V( ) (5.4.18)

 where the right polar decomposition (3.7.7) of the deformation gradient  has been used.

It can be shown (Malvern, ) that for an initially isotropic material, the Cauchy stress
for a Cauchy elastic material is given by

σ = α0I +α1V +α2V2 (5.4.19)

where α0,  α1, and α2  are functions of the scalar invariants of V. For further discussion of
the invariants of a second order tensor, see Box 5.x below.  The expression (5.4.19) is a
special case of the general relation for an isotropic material given in (5.4.18).

Example 5.1.  Consider a Cauchy Elastic material with consitutive relation given by

  σ = α V − I( ),   α =α 0J,   J = det V (E5.1.1)

Let the motion be given by

R = I,   F = V = λi
i =1

3

∑ ei ⊗ ei (E5.1.2)

with λ3 =1 and λ1 = λ1 t( ),  λ2 = λ2 t( ) .

The principle stretches for two deformation paths 0AB and 0B are shown in Figure
5.y below:



A

B

0

λ2

λ1
(1, 1) (   , 1)λ1

(    ,    )λ2λ1

Figure 5.y.  Deformation paths 0AB  and 0B.

Show thatthe work done in deforming the material along paths 0AB and 0B is different,
i.e., path-dependent.
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Here,

  

D = ˙ V V−1 =

˙ λ 1 λ1
˙ λ 2 λ2

0

 

 

 
 
 

 

 

 
 
 

(E5.1.4)

  J = det V = λ1λ2λ3 = λ1λ2 (E5.1.5)

The stress power is given by

  

˙ W = σ:D

    = α0λ1λ2 λ1 −1( )
˙ λ 1
λ1

+α 0λ1λ2 λ2 −1( )
˙ λ 2
λ2

    = α0λ2 λ1 −1( ) ˙ λ 1 +α0λ1 λ2 −1( ) ˙ λ 2

(E5.1.6)

Path 0AB:



dW =α 0λ2 λ1 −1( )dλ1 +α 0λ1 λ2 −1( )dλ2 (E5.1.7)

On 0A, λ2 =1, constant.  On AB λ1 = λ 1, constant.  Thus

W = α0λ 1λ 2
λ1

2
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 +α 0λ 1λ 

λ2

2
−1

 
 
  

 
 (E5.1.8)

Path 0AB:

λ2 = mλ1                 m = λ 2 λ 1 (E5.1.9)

dW =αmλ1 λ1 −1( )dλ1 +α 1
m

λ2 λ2 −1( )dλ2 (E5.1.10)
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(E5.1.11)

which differs from Eq. (E5.1.8), i.e., the work done is path-dependent.

Exercise 5.2.  Show that the consitutive relation σ = α0 V − I( )  gives a path-independent
result for the two paths considered in Example 5.1 above.

Rate (or incremental) forms of the constitutive relation are required in the treatment
of linearization (Chapter 6). A useful starting point for derivation of the rate form of the
constitutive relation is, where possible, to take the material time derivative of the expression
for the second Piola-Kirchhoff stress S .  Thus, for a Cauchy elastic material

  
˙ S =

∂̃  h C( )
∂C

: ˙ C (5.4.20)

The fourth order tensor     C
SC =∂˜ h C( ) ∂ C( )  is called the instantaneous tangent modulus.

From the symmetries of S  and C, the tangent modulus possesses the minor symmetries,

i.e,   C ijkl
SC = C jikl

SC = C ijlk
SC .

5.4.3.  Hyperelastic Materials

Elastic materials for which the work done on the material is independent of the load
path are said to be hyperelastic  (or Green elastic materials).   In this section, some general
features of hyperelastic materials are considered and then examples of hyperelastic
constitutive models which are widely used in practice are given.  Hyperelastic materials are
characterized by the existence of a stored (or strain) energy function which is a potential for
the stress.  Note that from Eq. (5.4.16) the second Piola-Kirchhoff stress for a Cauchy
elastic material can be written as



  
˙ S = ˜ h C( ) (5.4.21)

where C = FT ⋅F = U2  is the right Cauchy Green deformation tensor.  For the case of a

hyperelastic material, the second-order tensor   ̃  h  is derived from a potential, i.e.,

  
S = ˜ h C( ) = 2

∂Ψ C( )
∂C

(5.4.22)

where Ψ  is called the stored energy function.  Expressions for different stress measures
are obtained through the appropriate transformations (given in Box (3.2)), e.g.,

τ = Jσ = F⋅S ⋅FT = 2F⋅
∂Ψ C( )

∂C
⋅FT (5.4.23)

It can be shown (Marsden and Huges) that, given (5.4.22), the Kirchhoff stress is
also derivable from a potential, i.e.,

τ = 2
∂Ψ g( )

∂g
(5.4.24)

where g  is the spatial metric tensor (which is equivalent to the identity tensor for Euclidean
spaces).

A consequence of the existence of a stored energy function is that the work done on
a hyperelastic material is independent of the deformation path.  This behavior is
approximately observed in many rubber-like materials.  To illustrate the independence of
work on deformation path, consider the stored energy per unit reference volume in going
from deformation state C1  to  C2 .  Since the second Piola-Kirchhoff stress tensor S  and

the Green strain E =
C− I( )

2
 are work conjugates,

1

2
S

C1

C2

∫ :dC =Ψ C1( ) −Ψ C2( ) (5.4.25)

which depends only on the initial and final states of deformation and is therefore
independent of the deformation (or load) path.  (Contrast this with the behavior of the
Cauchy elastic material in Example 5.1 above.)

The rate forms of consitutive equations for hyperelastic materials and the
corresponding moduli can be obtained by taking the material time derivative of Eq. (5.4.22)
as follows:



    

˙ S = ∂̃  h C( )
∂C

: ˙ C 

  = 4
∂2Ψ C( )
∂C∂C

: ˙ C 

  =C SC:
˙ C 
2

(5.4.26)

where

  
C = 4

∂2Ψ C( )
∂C∂C

(5.4.27)

is the tangent modulus.  It follows that the tangent modulus for a hyperelastic material has

the major symmetry   C ijkl
SC =C klij

SC , in addition to the minor symmetries shown already for
the Cauchy elastic material.

It is often desirable (particularly in the linearization of the weak form of the
governing equations (Chapter 6) to express the stress rate in terms of an Eulerian stress
tensor such as the Kirchhoff stress.  To this end we recall the  Lie Derivative (also referred
to as the convected rate) of the Kirchhoff stress introduced earlier in this Chapter, i.e.,

  

Lv τ = F⋅
d

dt
F−1 ⋅τ ⋅ F−T( )⋅FT = F ⋅ ˙ S ⋅FT

       = ˙ τ −L ⋅τ −⋅τ ⋅LT

       = φx
d
dt

φ∗ τ( ) 
 
  

 
 

(5.4.28)

Note that the right Cauchy Green deformation tensor can be written as

C = FT ⋅F = FT ⋅g ⋅F  where g  is the spatial metric tensor. In Euclidean space, we have

g = I  the identity tensor.  Noting also that 
  
˙ C 

2 = FT ⋅ D ⋅F  it follows that the rate of
deformation tensor can be written as

  
D = F−T ⋅

d

dt
FT ⋅ g ⋅F( )⋅F−1 =

1

2
Lvg = φx

d

dt
φ∗ g

2
 
 
  

 
  

 
 

 
 
 (5.4.29)

 where   Lvg  is the Lie derivative of the spatial metric tensor.  Using Eqs. (5.4.29) and
(5.4.26) in (5.4.28) gives

  Lv τ =C τD:D (5.4.30)

 where

  C ijkl
τD = FimFjnFkpFlqCmnpq

SC



are referred to as the spatial tangent moduli.  It can be seen from the above that the Lie
derivative of the Kirchhoff stress arises naturally as a stress rate in finite strain elasticity.

• Issues of uniqueness and stability of solutions in finite strain elasticity are
mathematically complex. The reader is referred to [Ogden] and [Marsden and Hughes]
for a detailed description.

It can be shown that, using the representation theorem (Malvern, 1969), the stored
(strain) energy for a  hyperelastic material which is isotropic with respect to the initial,
unstressed configuration, can be written as a function of the principal invariants I1, I2 , I3( )
of the right Cauchy-Green deformation tensor, i.e., W = W C( ) .  The principal invariants of
a second order tensor and their derivatives figure prominently in elastic and elastic-plastic
constitutive relations.  For reference, Box 5.1 summarizes key relations involving princpal
invariants.

Box 5.1
Principal Invariants

The principal invariants of a second order tensor A are given by

  

I1 A( ) = Trace A

I2 A( ) =
1

2
Trace A( )2 −Trace A2{ }

I3 A( ) = det  A

(B5.1.1)

When the tensor in question is clear from the context, the argument A is omitted and the
principal invariants denoted simply as I1 , I2 , and I3 .

If A is symmetric, then A = AT  and a set of 3 real eigenvalues (or principal values) of A
may be formed and written as λ1, λ2 , λ3 .  Then

I1 = λ1 +λ2 +λ3

I2 = λ1λ2 +λ2λ3 + λ3λ1

I3 = λ1λ2λ3

(B5.1.2)

The derivatives of the principal invariants of a second order tensor with respect to the
tensor itself are often required in constitutive equations and in the linearization of the weak
form (Chapter 6).  For reference:

∂I1

∂A
= I ;                    

∂I1
∂Aij

= δij (B5.1.3)

∂I2

∂A
= I1I− AT  ;        

∂I2

∂Aij
= Akkδij −A ji (B5.1.4)

∂I3

∂A
= I3A−T ;            

∂I3

∂Aij
= I3A ji

−1 (B5.1.5)

The second Piola-Kirchhoff stress tensor is given by (  ).  Thus, for an isotropic material
we have

S = 2
∂w

∂C
= 2

∂w

∂I1
+ I1

∂w

∂I2

 

 
 

 

 
 I −2

∂w

∂I2
C +2I3

∂w

I3
C−1 (5.4.32)



   The Kirchhoff stress tensor is given by

τ = F⋅S ⋅FT = 2
∂w

∂I1
+ I1

∂w

∂I2

 

 
 

 

 
 B− 2

∂w

∂I2
B2 + 2I3

∂w

I3
I

where B = F⋅ FT  is the left Cauchy-Green deformation tensor. Note that S  is co-axial has
the same principal directions) with C while τ  is co-axial with B .  These results will be
used below in deriving expressions for the stress tensors for specific hyperelastic models.

In the remainder of this section, examples of hyperelastic materials which are
frequently used to model the behavior of rubber-like materials are presented.

Neo-Hookean Material.  The stored energy function for a compressible Neo-Hookean
material [Ref] (isotropic with respect to the initial, unstressed configuration) is written as

  
w C( ) =

1

2
λ0 log  J( )2 − µ0 log  J +

1

2
µ0 trace C− 3( ) (5.4.34)

From Eq. (5.4.32), the stresses are given by

  

S = λ0 log  JC−1 + µ0 I −C−1( )
τ = λ0 log  JI + µ0 B − I( )

(5.4.35)

Letting

λ = λ0 ,     µ = µ0 −λ log  J (5.4.36)

 and using Eqs. (5.4.27) and (5.4.31), the elasticity tensors (tangent moduli) are written in
component form on Ω0   as

Cijkl
SC = λCij

−1Ckl
−1 + µ Cik

−1Cjl
−1 + Cil

−1Ckj
−1( ) (5.4.37)

and on Ω  as

Cijkl
τD = λδijδkl + µ δ ikδ jl +δilδkj( ) (5.4.38)

The elasticity tensor in Eq. (5.4.38) has the same form as in Hooke's Law for small strain
elasticity, except for the dependence of the shear modulus $\mu$ on the deformation (see
Eq. 5.4.36).  Here λ0  and µ0  are the Lamé constants of the linearized theory.  Near
incompressible behavior is obtained for λ0 >> µ0 .

Saint Venant - Kirchhoff Model.  A wide class of engineering problems can be
studied by linear elastic material behavior. If the effects of large deformation are primarily
due to rotations (such as in the bending of a marine riser or a fishing rod, for example) a
straightforward generalization of Hooke's law to finite strains is often adequate.  The Saint
Venant-Kirchhoff model accomplishes this through the use of the Green strain measure E
as follows. Let



w C( ) = W E( ) =
1

2
E:CSE:E (5.4.39)

where

Cijkl
SE = λ0δ ijδkl + µ0 δ ikδ jl +δilδkj( ) (5.4.40)

and where λ0  and µ0  are Lamé constants.  Noting that

µ0

and that

\begin{equation}

{\bf S} = 2{\partial \Psi({\bf C})\over \partial {\bf C}} =

{\partial W({\bf E})\over\partial {\bf E}}

\end{equation}

the components $S_{ij}$ of the second Piola-Kirchhoff stress  are given by

\begin{equation}

S_{ij} = \lambda_0 E_{kk}\delta_{ij} +

2\mu_0 E_{ij}

\end{equation}

or

\begin{equation}

{\bf S}=\lambda_0\, {\rm trace}\,({\bf E}){\bf I}

+ 2\mu_0 {\bf E} = \mbox{\boldmath ${\cal D}$}:{\bf E}

\end{equation}

Because the Green strain tensor is symmetric, it follows that the

stress tensor ${\bf S}$ is also symmetric.  From Eq. () it is apparent that

the

fourth order material response tensor possesses major and minor

symmetries.  Because ${\bf E}$, ${\bf F}$



and ${\bf C}$ are related ( ), it can also be shown that the components of

the nominal stress tensor is  given by

\begin{equation}

{\bf P} = {\partial W\over \partial {\bf F}^T}, \qquad

P_{ij} = {\partial W\over \partial F_{ji}}

\end{equation}

As the deformation gradient tensor ${\bf F}$ is not necessarily symmetric,

the 9 components

of the nominal stress tensor ${\bf P}$ do not necessarily possess symmetry.

Employing Eq. ( ), the Cauchy stress tensor $\mbox{\boldmath ${\sigma}$}$

is related to W by:

\begin{equation}

\mbox{\boldmath ${\sigma}$} = {1\over J} {\bf F}\cdot{\partial W\over

 \partial {\bf F}^T} = {1\over J} {\bf F}\cdot {\partial W\over \partial

{\bf E}}\cdot {\bf

F}^T

\end{equation}

(Exercise: Show this.)

\noindent {\bf Modified Mooney-Rivlin Material}\par

In 1951, Rivlin and Saunders [ ] published their experimental results on the

large elastic deformations of vulcanized rubber - an incompressible

homogeneous isotropic elastic solid, in the Journal of Phil. Trans. A.,

Vol. 243, pp. 251-288.  This material model with a few refinements is

still the most commonly used model for rubber materials.  It is assumed



in the model that behavior of the material is initially isotropic and

path-independent, i.e., a stored energy function exists. The stored

energy function is written

\begin{equation}

\Psi = \Psi({\bf C}) = W(I_1, I_2, I_3)

\end{equation}

where $I_1$, $I_2$ and $I_3$ are the three scalar invariants of ${\bf C}$.

Rivlin and Saunders considered an initially isotropic nonlinear

elastic incompressible material ($I_3=1$) then

\begin{equation}

\Psi = \Psi(I_1,I_2) = \sum_{i=0}^\infty\sum_{j=0}^\infty

\bar{c}_{ij}(I_1-3)^i(I_2-3)^j,\qquad \bar{c}_{00}=0

\end{equation}

where $\bar{c}_{ij}$ are constants.

They performed a number of experiments on different

types of rubbers and discovered that Eq. ( ) may be reduced to

\begin{equation}

\Psi = c(I_1 - 3) + f(I_2 - 3)

\end{equation}

 where $c$ is a constant and

$f$ is a function of $I_2 - 3$.  For a Mooney-Rivlin material, $W$ can be

reduced

further to

\begin{equation}

\Psi = \Psi(I_1, I_2) = c_1 (I_1 - 3) + c_2 (I_2 - 3)

\end{equation}



An example of the set of $c_1$ and $c_2$ is:  $c_1 = 18.35 {\rm psi}$ and

$ c_2 = 1.468 {\rm psi}.$  Equation ( ) is also an example of a

Neo-Hookean material, and the components of the second Piola-Kirchhoff stress

 can be obtained by

differentiating Eq. ( ) with respect to the components of the  right

Cauchy Green deformation tensor

tensor; however, the deformation is constrained such that

\begin{equation}

{\bf S} = 2{\partial \Psi\over \partial {\bf C}}, \qquad{\rm with}\

I_3 =

{\rm det}\,{\bf C} = 1

\end{equation}

The condition $I_3 = 1$  simply implies that $J=1$ and there is no volume

change.  The condition can be written as

\begin{equation}

 {\rm ln}I_3 = 0

 \end{equation}

 which represents a constraint on the deformation.  One way in which the

 constraint ( ) can be enforced is through the use of a constrained

 potential, or stored energy,  function [Ref].  Alternatively, a penalty

 function formulation (Hughes, 1987) can be used.  In this case,

 the modified strain energy function

and the constitutive equation become:

\begin{eqnarray}

\bar{\Psi} &=& \Psi + p_0\,{\rm ln}I_3 + {1\over 2} \lambda({\rm ln}I_3)^2 \\

{\bf S} &=& 2{\partial \Psi\over \partial {\bf C}} + 2(p_0 + \lambda({\rm



ln}I_3)){\bf C}^{-1}

\end{eqnarray}

respectively.  The penalty parameter $\lambda$ must be large enough so that

the

compressibility error is negligible (i.e., $I_3$ is approximately equal

to $1$), yet not so large that numerical ill-conditioning occurs.

 Numerical experiments reveal that $\lambda = 10^3\times {\rm max}(C_1,

 C_2)$ to $\lambda = 10^7\times {\rm max}(C_1,

 C_2)$  is adequate for floating-point

word length of 64 bits.  The constant $p_o$ is chosen so that the components

of ${\bf S}$ are all zero in the initial configuration, i.e,

\begin{equation}

po = -(C_1 + 2 C_2)

\end{equation}

$\bullet$ Exercises

\setcounter{equation}{0}

\subsection {Plasticity in One Dimension}

Materials for which permanent strains are developed upon unloading are

called plastic materials. Many materials (such as metals) exhibit elastic

(often linear) behavior up tp a well defined stress levlel called the

yeild strength. Onec loaded beyond the initial yield strength, plastic

strains are developed.  Elastic plastic materials are further subdivided

into rate-independent materials, where the stress is independent of the

strain rate, i.e., the rate of loading has no effect on the stresses and

rate-dependent materials , in which the stress depends on the strain



rate; such materials are often called strain rate-sensitive.

The major ingredients of the theory of

plasticity are

\begin{enumerate}

\item A decomposition of each increment of strain into an elastic,

reversible component $d\varepsilon^e$ and an irreversible plastic part

$d\varepsilon^p$.

\item A yield function $f$ which governs the onset and continuance of

plastic deformation.

\item A flow rule which governs the plastic flow, i.e., determines the

plastic strain increments.

\item A hardening relation which governs the evolution of the yield function.

\end{enumerate}

There are two classes of elastic-plastic laws:

\begin{itemize}

\item Associative models, where the yield function and the potential

function are identical

\item Nonassociative models where the yield function and flow potential are

different.



\end{itemize}

Elastic-plastic laws are path-dependent and dissipative. A large part of

the work expended in deforming the solid is irreversibly converted to

other forms of energy, particularly heat, which can not be converted to

mechanical work. The stress depends on the entire history of the

deformation, and can not

be written as a single valued function of the strain as in ( ) and ( ).

The stress is path-dependent and dependes on the history of the

deformation. We cannot therefore write an explicit relation for the stress

in terms

of strain, but only as a relation between rates of stress and strain

The constitutive relations for rate-independent and rate-dependent

plasticity in one-dimension are given in the following sections.

\subsubsection{\bf Rate-Independent Plasticity in One-Dimension}

A typical stress-strain curve for a metal under uniaxial stress is shown

in Figure~\ref{fig:stress-strain}.   Upon initial loading, the material

behaves elastically (usually assumed linear) until the initial yield stress

is attained.  The elastic regime is followed by an elastic-plastic

 regime where permanent irreversible plastic strains are induced upon further

 loading.

Reversal of the stress is called unlaoding. In unloading, the

stress-strain response is typically

assumed to be governed by the elastic modulus and the strains

which remain after complete unloading are called



the plastic strains. The increments in strain are

assumed to be additively decomposed into elastic and plastic parts.  Thus

we write

\begin{equation}

d\varepsilon = d\varepsilon^e +d\varepsilon^p

\end{equation}

Dividing both sides of this equation by a differential time increment

$dt$ gives the rate form

\begin{equation}

\dot{\varepsilon} = \dot{\varepsilon}^e + \dot{\varepsilon}^p

\end{equation}

The stress increment (rate) is related to the increment (rate) of

elastic strain. Thus

\begin{equation}

d\sigma = Ed\varepsilon^e, \quad \dot\sigma = E\dot\varepsilon^e

\end{equation}

relates the increment in stress to the increment in elastic strain.

 In the nonlinear

elastic-plastic regime, the stress-strain relation is given by

( see Figure ( ))

\begin{equation}

d\sigma = Ed\varepsilon^e = E^{\rm tan} d\varepsilon

\end{equation}

where the elastic-plastic tangent modulus, $E^{\rm tan}$, is the slope of the



stress-strain curve. In rate form, the relation is written as

\begin{equation}

\dot{\sigma} = E\dot{\varepsilon^e} = E^{\rm tan}\dot{\varepsilon}

\end{equation}

The above relations are homogeneous in the rates of stress and strain which

means that if time

is scaled by an arbitrary factor, the constitutive relation remains

unchanged and therefore the material response is {\em rate-independent}

even though it is expressed in terms of a strain rate.  In the sequel,

the rate form of the constitutive relations will be used as the notation

because the incremental form can get cumbersome especially for large strain

formulations.

$\bullet$  kinematic hardening

The increase of stress after initial yield is called work or strain

hardening.  The hardening behavior of the material is generally a

function of the prior history of plastic deformation.

In metal plasticity, the history of plastic deformation is often

charcterized by a

single quantitiy $\bar{\varepsilon}$ called the accumulated plastic strain

which is given by

\begin{equation}

\bar{\varepsilon} = \int\dot{{\bar\varepsilon}}dt

\end{equation}

where

\begin{equation}



\dot{\bar{\varepsilon}} = \sqrt{\dot{\varepsilon}^p\dot{\varepsilon}^p}

\end{equation}

is the effective plastic strain rate.  The plastic strain rate is given by

\begin{equation}

\dot{\varepsilon}^p = \dot{\lambda}{\rm sgn}(\sigma)

\end{equation}

where

\begin{equation}

{\rm sign}(\sigma) = \left\{\begin{array}{cc} 1 & {\mbox{if $\sigma>0$}} \\

-1 & {\mbox{if $\sigma <0$}}

\end{array}

\right.

\end{equation}

>From ( ) it follows that

\begin{equation}

\dot{\lambda} = \dot{\bar{\varepsilon}}

\end{equation}

 The accumulated

plastic strain $\bar{\varepsilon}$, is

an example of an internal variable used to characterize the inelastic

response of the material. An alternative, internal variable used in the

representation of hardening is the plastic work which is given by (Hill,

1958)

\begin{equation}

W^P = \int \sigma\dot{\varepsilon}^p dt

\end{equation}



The hardening behavior is often expressed through the

dependence of the yield stress, $Y$, on the accumulated plastic strain, i.e.,

$Y = Y(\bar{\varepsilon})$. More general constitutive relations use

additional internal variables.

 A typical hardening curve is shown in Figure ( ).  The slope of this

curve is the plastic modulus, $H$, i.e.,

\begin{equation}

H = {dY(\bar{\varepsilon})\over d\bar{\varepsilon}}

\end{equation}

The effective stress is defined as

\begin{equation}

\bar{\sigma} = \sqrt{\sigma^2}\equiv |\sigma | = \sigma {\rm sgn}(\sigma)

\end{equation}

The yield condition is written as

\begin{equation}

f = \bar{\sigma} - Y(\bar{\varepsilon}) = 0

\end{equation}

which is regarded as the equation for the yield point (or surface when

multiaxial stress states are considered).  Note that the plastic strain

rate can be written as

  \begin{equation}

  \dot{\varepsilon}^p = \dot{\bar{\varepsilon}}{\rm sign}(\sigma) =

  \dot{\bar{\varepsilon}}{\partial f\over \partial \sigma}

  \end{equation}



where the result $\partial \bar{\sigma}/\partial \sigma = {\rm

sign}(\sigma)$ has been used. For plasticity in one-dimension

(uniaxial stress),

the distinction between associated and non-associated plasticity is nost

possible.  Also, the lateral strain which accompanies the axial

strain has both elastic and plastic parts.  This point will be addressed

further in Section X on multiaxial plasticity.

Plastic deformation occurs only when the yield condition is met.  Upon

plastic loading, the stress must remain at yield, which is called the

{\em consistency} condition, and is given by

\begin{equation}

\dot{f} = \dot{\bar{\sigma}} - \dot{Y}(\bar{\varepsilon}) = 0.

\end{equation}

>From ( ) it follows that, during plastic loading,

\begin{equation}

\dot{\bar{\sigma}} = {dY(\bar{\varepsilon})\over

d\bar{\varepsilon}}\dot{\bar{\varepsilon}} = H\dot{\bar{\varepsilon}}

\end{equation}

Using ( ), ( ) and ( ) in ( ) gives

\begin{equation}

{1\over E^{\rm tan}} = {1\over E} + {1\over H}

\end{equation}

or

\begin{equation}

E^{\rm tan} = {EH\over E + H} = E - {E^2\over E + H}

\end{equation}



The plastic switch parameter $\alpha$  is introduced with $\alpha=1$

corresponding to plastic

loading and $\alpha=0$  corresponding to purely elastic response (loading or

unlaoding).  Thus the tangent modulus is written

\begin{equation}

E^{\rm tan} = E - \alpha{E^2\over E + H}

\end{equation}

An alternative way of writing the laoding-unlaoding conditions without

using the switch parameter $\alpha$ is through the use of the Kuhn-Tucker

conditions, which play an important role in mathematical programming

theory [Ref?]

For plasticity, the conditions are:

\begin{equation}

\dot{\lambda}\dot{f}=0,\quad \dot{\lambda}\ge 0, \quad \dot{f}\le 0

\end{equation}

Thus for plastic loading, $\dot{\lambda}\ge 0$ and the consistency

condition $\dot{f}=0$ is satisfied. For purely elastic loading or

unloading, $\dot{f}\ne 0$ and it follows that $\dot{\lambda}=0$.

The constitutive relations for rate-independent plasticity in 1D are

summarized in Box 9.1.

\subsubsection{Rate-Dependent Plasticity in One Dimension}



 In rate dependent plasticity, the plastic response of the material

depends on the rate of loading.  The elastic response is given as before

(in rate form) as

\begin{equation}

\dot{\sigma} = E\dot{\varepsilon}^e

\end{equation}

which may be written using the elastic-plastic decomposition of the total

strain

 rate (Equation ) as

\begin{equation}

\dot{\sigma}=E(\dot{\varepsilon}-\dot{\varepsilon}^p).

\end{equation}

For plastic deformation to occur the yield condition must be met or

exceeded.  This differs from the rate-independent case in that in

rate-dependent plasticity the stress can exceed the yield stress.

The plastic strain rate is given by

\begin{equation}

\dot\varepsilon^p = \dot{\bar\varepsilon} {\rm sgn}\sigma

\end{equation}

For

many rate-dependent materials, the plastic response is characterized by an

overstress model of the form

\begin{equation}

\dot{\bar{\varepsilon}} = {\phi (\sigma, \bar{\varepsilon})\over \eta}

\end{equation}

where, $\phi$ is the overstress and $\eta$ is the viscosity.



For example, the overstress model introduced by Perzyna (19xx) is given by

\begin{equation}

\phi = Y\bigl({\bar{\sigma}\over Y}-1\bigr)^n

\end{equation}

where $n$ is called the rate-sensivity

exponent. Using ( ) and ( ) the expression for the stress rate is given by

\begin{equation}

\dot{\sigma}=E\biggl(\dot{\varepsilon} - {\phi(\sigma, \bar{\varepsilon})

\over \eta}{\rm sgn}(\sigma)\biggr).

\end{equation}

which is a differential equation for the evolution of the stress.

Comparing this expression to ( ), it can be seen that  ( ) is

inhomogeneous in the rates and therefore the material response is

{\em rate-dependent}. Models of this type are often used to model the

strain-rate dependence observed in materials. More elaborate models with

additional internal variables and perhaps different response in different

strain-rate regimes have been developed (see for examplethe unified creep

plasticity model [Ref]).  Nevertheless, the simple overstress model ( )

has been very successful in capturing the strain rate dependence of

metals over a large range of strain rates [Refs].

An alternative form of rate-dependent plasticity that has been used with

considerable success by Needleman ( ) and others is given by

\begin{equation}

\dot{\bar{\varepsilon}}^p = \dot{\varepsilon_0}\biggl({\bar{\sigma}\over

Y}\biggr)^{1/m}

\end{equation}



without any explicit yield surface.  For plastic straining at the rate

$\dot{\varepsilon_0}$,

the response $\bar{\sigma}=Y$  is obtained.  This response is called the

reference response and can be obtained by performing a unixial stress

test with a plastic strain rate $\dot{\varepsilon}_0$. In the case of

small elastic strain rates, the test can be run at total strain rate of

$\dot{\epsilon}_0$ without significant error (Check!).  For rates which exceed

$\dot{\varepsilon}_0$ the stress

is elevated above the reference stress  while for lower rates the stress

falls below this value.  A case of particular interest is the

near rate-independent limit when the rate-sensitivity exponent $m\to 0$.

It can be

seen from ( ) that, for $\bar{\sigma}<Y$,

the effective plastic strain rate is negligible while for a finite plastic

strain rate the effective stress is approximately equal to the reference

stress, $Y$.   In this way, the model exhibits an effective yield limit

together with near elastic unloading and rate-independent response.

The constitutive relations for rate-dependent plasticity in 1D are

summarized in Box 9.2



T. Belytschko & B. Moran, Solution Methods, December 16, 1998

CHAPTER 6
SOLUTION METHODS AND STABILITY

Very Rough Draft-use equations at your own peril

by Ted Belytschko and Brian Moran
Northwestern University
Copyright 1996

6.1  INTRODUCTION

This Chapter describes solution procedures for nonlinear finite element
discretizations.   In addition, methods for examining the physical stability of
solutions and the stability of solution procedures are described.

The first part of the chapter describes time integration, the procedures used
for integrating the discrete momemtum equation and other time dependent
equations in the system, such as the constitutive equation.  We begin with the
simplest of methods, the central difference method for explicit time integration.
Next the family of Newmark β -methods, which encompass both explicit and
implicit methods, are described.  Explicit and implicit methods are compared and
their relative advantages described.  As part of implicit methods, the solution of
equilibrium equations is also examined.

A critical step in the solution of implicit systems and equilibrium problems
is the linearization of the governing equations.  Linearization procedures for the
equations of motion, and as a special case, the equilibrium equations are
described.

6.2  EXPLICIT METHODS

In this  Section the major features of explicit and implicit time integration
methods for the discretized momentum equation and solution methods for the
discrete equilibrium equations are described. The methods are described in the
context of Lagrangian meshes,  but can be extended to Eulerian and ALE meshes
with some techniques described in Chapter 7.  The description of the solution
procedures of equilibrium problems is combined with the description of implicit
procedures for dynamic problems, because, as we show later, the methodologies
are almost identical; the solution of a static problem by an implicit method only
requires that the inertial term be dropped.

To illustrate the major features of explicit and implicit methods for time
integration, the solution of the equations of motion is first considered for rate-
independent materials.  In this class of equations, we can avoid some of the
complications that arise in the treatment of rate-dependent materials but still
illustrate the most important properties of explicit and implicit methods.   We will
first describe explicit and implicit methods using only a single time integration
formula: the central difference method for explicit time integration and the
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Newmark β-methods for implicit integration.  In Section X, other time integration
formulas are considered.

6.2.1.  Central Difference Method. The central difference method is
among the most popular of the explicit methods in computational mechanics and
physics.  It has already been discussed in Chapter 2, where it was chosen to
demonstrate some nonlinear solutions in one dimension.  The central difference
method is developed from central difference formulas for the  velocity and
acceleration.  We consider here its application to Lagrangian meshes with rate-
independent materials.  Geometric and material nonlinearites  are included, and in
fact have little effect on the time integration algorithm.

For the purpose of developing this and other time integrators we will use the
following notation.  Let the time of the simulation 0 ≤t ≤tE  be subdivided into

time intervals, or time steps, ∆tn , n =1 to nTS  where nTS  is the number of time

steps and tE  is the end-time of the simulation; ∆tn  is also called the nth time

increment.  The variables at any time step are indicated by a superscript; thus tn is

the time at time step n, t0 = 0 is the beginning of the simulation and dn ≡ d tn( )   is

the matrix of nodal displacements at time step n.  Time increment n is given by

∆tn = tn − t n−1        ∆tn+ 1
2 = 1

2 ∆tn +∆t n+1( ) (6.2.1)

where the second equation gives the midpoint time step.

The central difference formula for the velocity is

  

˙ d 
n + 1

2
≡ v

n+ 1
2 = 1

∆t
n+ 1

2

dn+1− dn( ) ,    dn+1 = dn +∆ tn+1
2 vn+1

2 (6.2.2)

where the second equation gives the corresponding integration equation which is
obtained by a rearrangement of the first.  The acceleration is given by

  
˙ ̇ d n ≡ an =

1

∆tn vn+ 1
2 − vn −1

2( )      
vn+1

2 = vn− 1
2 +∆ tnan (6.2.3a)

As  can be seen from the above, the velocities are defined at the midpoints of the
time intervals, or at half-steps.   By substituting (6.2.2a) and its counterpart for the
previous time step into (6.2.3), the acceleration can be expressed directly in terms
of the displacements

  

˙ ̇ d n ≡ an =
∆t

n− 1
2 dn+1 − dn( )− ∆t

n+1
2 dn − dn−1( )

∆tn∆t
n− 1

2 ∆t
n+ 1

2

(6.2.3b)

For the case of equal time steps the above reduces to
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˙ ̇ d n ≡ an =
dn+1 − 2dn + dn−1( )

∆tn( )2 (6.2.3c)

This is the well known central difference formula for the second derivative of a
function.

We now consider the time integration of the undamped equations of
motion for rate-independent materials, Eq. (4.x.x.), which at time step n are given
by

  
Man = f n = f ext dn , tn( )− f int dn , tn( )  (6.2.4a)

 subject to 
  
g I dn( ) = 0 , I =1to nc (6.2.4b)

where (6.2.4b) is a generalized representation of the nc  displacement boundary
conditions; constraints may also arise from other conditions on the model.  The
mass matrix in this expression is considered constant because as noted in Section
X, it is time independent for a Lagrangian mesh.  Methods for Eulerian meshes
are discussed in Chapter 7.  The internal and external nodal forces are functions of
the nodal displacements and the time.  The external loads are usually prescribed as
functions of time; they may also be functions of the nodal displacements because
they may depend on the configuration of the structure, as when pressures are
applied to the surfaces which undergo large deformations.  The dependence of the
internal nodal forces on displacements is quite obvious: the nodal displacements
determine the strains, which in turn determine the stresses and hence the nodal
internal forces by Eq. (4.4.11).  Internal nodal forces are generally not directly
dependent on time, but there are situations of engineering relevance when this is
the case; for example, when the temperature is prescribed as a function of time,
the stresses and hence the internal nodal forces depend directly on time.

The equations for updating the nodal velocities and displacements are
obtained as follows.  Substituting Eq. (6.2.4a) into (6.2.3b) gives

v
n+1

2 = ∆tnM−1f n + v
n−1

2 (6.2.5)

which provides an update for the nodal velocities; the displacements are then
updated by (6.2.2).

At any time step n, the displacements  dn  will be known.  The nodal

forces f n  can be determined by using in sequence the strain-displacement
equations, the constitutive equation and the relation for the nodal internal forces.

Thus the entire right hand side of (6.2.5) can be evaluated, which gives υn+1
2 ,

and the displacements dn+1  at time step n+1 can be determined by (6.2.2b).  The
entire update can be accomplished without solving any system equations provided
that the mass matrix M  is diagonal.  This is the salient characteristic of an explicit
method:
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in an explicit method, the time integration of the discrete momentum equations for
a finite element model does not require the solution of any equations.

In numerical analysis, integration methods are classified according to the
structure of the time difference equation.  The difference equations for first and
second derivatives are written in the general forms

  
αndnS−n −∆ tβn

˙ d n( )
n=0

nS

∑ = 0          
  

α ndnS−n −∆ t2β n˙ ̇ d n( )
n=0

nS

∑ = 0 (6.2.6)

where nS  is the number of steps in the difference equation. The difference

formula for the first or second derivatives is called explicit if β0 = 0 or β 0 = 0,

respectively.  From (6.2.3c) it can be seen that   β 0 = 0, β 1 = 1, β 2 = 0 , so the
formula is explicit.  Thus the difference formula is called explicit if the equation
for the function at time step n only involves the derivatives at previous time steps.
Difference equations which are explicit according to this classification generally
lead to solution schemes which require no solution of equations.  In most cases
there is no benefit in using explicit schemes which involve the solution of
equations, so the use of such explicit schemes is rare.  There are a few exceptions.
For example, if the consistent mass is used with the central difference method,
even though the difference equation is classified as explicit, system equations still
need to be solved in the update.

6.2.2.  Implementation.  A flow chart for explicit time integration of a finite
element model with rate-independent materials is shown in Box 6.1. This
flowchart generalizes the flowchart given in Chapter 2 by considering nonzero
initial conditions, a variable time step and including elements which require more
than one-point quadrature.  The primary dependent variables in this flowchart are
the velocities and the Cauchy stresses. Initial conditions must be given for the
velocitites, the Cauchy stresses, and all state variables of the materials in the
model.  The displacements are initially considered to vanish.

Flowchart inorrect, half missing on time steps, not n order
Box 6.1

Flowchart for Explicit Time Integration

1. Initial conditions and initialization:

   set v0 , σ0 , and other material state variables;

  d
0 = 0, n = 0 , t = 0 ; compute M

2.  getf 
  
f n , ∆tcrit( )

3.  compute accelerations an = M−1f n

4. compute kinetic energy and check energy balance, see Section ??

5.  update nodal velocities: vn+1
2 = vn + 1

2 ∆tnan
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6.  enforce velocity boundary conditions:

 if node I on Γvi
:
  
viI

n+1

2 = v i x I , tn+1

2

 
 
 

 
 
 

7.  update nodal displacements: dn+1 = dn +∆ t
n+1

2 v
n+1

2

8.  update counter and time:   n ← n +1, t ← t +∆ t

9. update nodal velocities: vn+1 = v
n+ 1

2 + 1

2
∆tnan

10.  output, if simulation not complete, go to 2

Subroutine getf 
  
f n , ∆tcrit( )

0. initialization:    f
n = 0, ∆tcrit = ∞

1.  compute  external nodal forces   f ext ,n  which are global

2.  loop over elements e

i.  GATHER element nodal displacements and velocities

ii.    fe
int,n = 0

iii. loop over quadrature points ξQ

1. if n=0, go to 8

2. compute measures of deformation: 
  
D

n− 1
2 ξQ( ), Fn ξQ( ),En ξQ( )

3. compute stress σn ξQ( ) by constitutive equation

4. 
    
fe
int,n ← fe

int,n +B Tσnw QJ
ξQ

END quadrature point loop

iv. compute external nodal forces on element,   fe
ext ,n

v.   fe
n = fe

ext ,n − fe
int,n

vi. compute   ∆tcrit
e , if ∆tcrit

e <∆ tcrit then ∆tcrit = ∆tcrit
e

vii. SCATTER fe
n  to global f n

3. END loop over elements

In this algorithm, the accelerations are first integrated to obtain the
velocities.  The integration of the velocities is broken into two half-steps so that
the velocities are available at an integer step in the computation of the energy
balance. The displacements are computed in each time step by integrating the
velocities.

The main part of the procedure is the calculation of the nodal forces from
the nodal displacements at a given time step, which is performed in getf.  In this
subroutine, the equations governing a continuum are used along with the
gather/scatter procedures:
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1.  the nodal displacements of the element are extracted from the global
matrix of nodal displacements by the “gather “ operation;

2.  the strain measures are computed at each quadrature point of the
element;

3. the stresses are computed by the constitutive equation at each
quadrature point;

4.  the internal nodal forces are computed by integrating the product of the
  B  matrix and the stresses over the domain of the element with the
Cauchy stress;

5.  the nodal forces of the element are scattered into the global array.

In the first time step, the strain measures and the stress are not computed.  Instead,
as shown in the flowchart, the initial stresses are used to obtain the internal nodal
forces.

The flowchart shows the algorithm with the matrix form of the internal
force computation, in which the stress tensor is stored as a square matrix and the
B matrix is used.  The change to the Voigt form only requires the use of a column
matrix for the stresses and the B  matrix, (4.5.14).  Similarly, the internal force
computation can be changed to the total Lagrangian format by replacing the
discrete values of the integrand in step 10 by the integrands  of (B4.8.2).

Most essential boundary conditions are easily handled in explicit methods.
For example, if the velocities or displacements are prescribed as functions of time
along any boundary, then the velocity/displacement boundary conditions can be
enforced by setting the nodal velocities according to the data:

  
viI

n = v i x I , tn( ) (6.2.7)

If the data is not available on the nodes, the least square procedure given in
Section 2.4.5 can be used to fit the nodal values.

 The velocity boundary conditions can also be enforced in local coordinate
systems as shown in the Box 6.1.  In that case, the equations of motion at these
nodes must be expressed in the local coordinate system, so the nodal force
components must be expressed in the local coordinate systems before assembly
and time integration. The boundary condition is also enforced in the local
coordinate system.  The orientation of the local coordinate system may vary with
time but the time integration formulas must then be modified to account for the
additional terms in the equations of motion.

When essential boundary conditions are given as linear or nonlinear
algebraic equations relating the displacements, the implementation is more
complicated.  One approach is to use a linearization of the constraint.  Consider
for example the nonlinear constraint

g d t( )( ) = 0 (6.2.8)

where g d t( )( )  is a linear or nonlinear algebraic function of the nodal
displacements.  If the constraint involves integral or differential relationships,
such as a dependence on the velocities, it can be put in the above form by using
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difference equations or a numerical approximation of the integral.  The above can
be linearized as follows:

  

∂G dn( )
∂da

+
∂G dn+1( )

∂da

 

 
 
 

 

 
 
 va

n+1/ 2 = 0 (6.2.9)

After a large number of time steps, linearizations such as the above combined
with a central difference update of the displacements may substantially violate the
constraint.  This drift in the enforcement of the constraint can be avoided by
correcting the linearized update so that the constraint is enforced exactly at the
next time step, n+1.  When accurate treatment of the constraints is important,
techniques for differential-algebraic equations should be used, Petzold (??).

As can be seen from the flowchart, an explicit method is easily
implemented.  Furthermore, explicit time integration is very robust, by which we
mean that the explicit procedure seldom aborts due to failure of the numerical
algorithm.  The salient disadvantage of explicit integration,  the price you pay for
the simplicity of the method and its avoidance of the solution of equations, is the
conditional stability of explicit methods.  If the time step exceeds a critical value
∆tcrit , the solution may grow unboundedly and will in any case be erroneous.

The critical time step is also called the stable time step.  The critical time
step for a model depends on the mesh and the material properties.  For low order
elements, we will show in Section X that the critical time step for linear response
is given by

  
∆tcrit = min

le

ce
(6.2.10)

where   le is a characteristic length of element e and ce  the wavespeed of element
e.  Thus the critical time step decreases with mesh refinement and increasing
stiffness of the material.  The cost of an explicit simulation is independent of the
frequency content which is of interest and depends only on the size of the model
and the time of the simulation relative to the critical time step given by (6.2.10).

The time step is calculated in the flowchart on an element basis.  For each
element, a critical time step is calculated, and if it is smaller than that calculated
for all previous elements in that time step, it is reset.  The theoretical justification
for setting the critical time step on an element basis and other approaches are
described in Section 6.??.

6.3  EQUILIBRIUM SOLUTIONS AND IMPLICIT TIME
INTEGRATION.

6.3.1.  Equilibrium and Transient Problems.  We will combine the
description of the solution of the equilibrium equations with time integration by
implicit methods because they share many common features. To begin, we write

6-7



T. Belytschko & B. Moran, Solution Methods, December 16, 1998

the discrete momentum equation at time step n+1 in a form applicable to both
equilibrium and dynamic problems:

  
0 = r dn +1 , tn+1( ) = sDM˙ ̇ d n+1 − f n+1 = sDMan+1 − fext dn+1,t n+1( )+ f int dn+1( ) (6.3.1)

where sD  is a switch which is set by:

 sD =
0

1

 
 
 

for a static(equilibrium)problem

for a dynamic(transient) problem
 (6.3.2)

The column matrix   r( dn +1 , tn+1)  is called a residual.  When sD = 0 , the above are
the equilibrium equations at the next step.  In addition, the displacement boundary
conditions must be met; these can be written as a set of nc  nonlinear algebaric
equations

  
G i dn+1( ) = gi , i = 1 to nc (6.3.2b)

Differential and integral constraints are put in discrete form by using
discretizations of the derivatives and integrals, respectively.  In most cases the
displacement boundary conditions are linear algebraic equations, but we have
written the general form (6.3.2b) because complex boundary conditions are often
needed in nonlinear problems.

When the accelerations vanish or are negligible, a system is in equilibrium
and the solution of the resulting equations is called an equilibrium solution.  The
equilibrium equations are given by (6.3.1) with sD = 0 :

  
0 = r dn +1 , tn+1( ) = fint dn+1, tn +1( )− fext dn+1 , tn+1( ) (6.3.3)

In equilibrium problems, the residuals correspond to the out-of-balance forces;
problems in which the accelerations can be neglected are called static problems.

The governing equations for both the implicit update of the equations of
motion and the equilibrium equations are a set of nonlinear algebraic equations in

the nodal displacements, dn+1 .  In equilibrium problems with rate-independent
materials, t need not be the real time.  Instead it can be any monotonically
increasing parameter which describes the changing load.  If the constitutive
equation is a differential or integral equation, it must also be discretized in time to
obtain a set of algebraic equations for the system.

6.3.2a.  Newmark β-equations.   We will now show that the discrete
equations obtained with an implicit time integrator are nonlinear algebraic

equations in the unknowns dn+1 .  For this purpose we consider a popular class of
time integrators called the Newmark β-method.  In this time integration formula,
the updated displacements and velocities are given by

  d
n+1 = ˜ d n + β∆t2an+1 (6.3.4)
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˜ d n = dn +∆ tvn + ∆t 2

2 1−2β( )an (6.3.5)

  v
n+1 = ˜ v n + γ∆tan+1

 (6.3.6)

  
˜ v n = vn + 1− γ( )∆tan (6.3.7)

Here β  and γ  are parameters whose useful values are summarized in Box 6.2.  In
writing the time integration formulas, we have segregated the historical values of

the nodal variables, i.e. those pertaining to time step n, in   ̃ v n  and   
˜ d n .  The

resulting formulas correspond to the predictor-corrector form given by Hughes
and Liu(  ).  This segregation of the historical terms is convenient for the algebraic
operations which follow and for the construction of explicit-implicit time
integration procedures.

Equation (6.3.4) can be solved for the updated accelerations for β > 0 ,
giving

  
an+1 = 1

β∆t2 dn +1 − ˜ d n+1( ) (6.3.8)

Substituting (6.3.8 ) into (6.3.1) gives

  
0 = r = sD

β∆t2 M( dn+1 − ˜ d n ) − fext dn+1, t n+1( ) + f int dn+1, tn +1( ) (6.3.9)

which is a set of nonlinear algebraic equations in the nodal displacements dn+1 .
Eq.(6.3.9) applies to both the static and dynamic problems.  Therefore, in both
cases we consider the discrete problem to be

find  dn+1  so that r dn+1( ) = 0  subject to g dn +1( ) = 0 (6.3.10)

where r dn+1( )  is given by Eq. (6.3.9).

6.3.3.  Newton’s Method.  The most widely used and most robust method
for the solution of the nonlinear algebraic equations (6.3.9) is Newton’s method.
The method is often called the Newton-Raphson method in computational
mechanics.  It  is identical to the Newton method taught in introductory calculus
courses.

We first illustrate the Newton method for one equation in one unknown
d without a displacement boundary condition.  It is then generalized to an
arbitrary number of unknowns.  For the case of one unknown, (6.3.9) reduces  to a
single nonlinear algebraic equation

  
r dn+1, tn+1( ) = sD

β∆t2 M dn+1 − ˙ d n( )− f dn+1 , tn+1( ) = 0 (6.3.11)
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The solution of (6.3.11) by Newton’s method is an iterative procedure.  The

iteration number is indicated by Greek subsript: dυ
n+1  is the vth iteration at time

step n+1; when there is no chance for confusion, the time step number will be
omitted.

To begin the iterative procedure, a starting value for the unknown must be

chosen; usually the value of the solution dn  from the last time step is used, so

d0
n +1 ≡ dn   Taking a Taylor expansion of the residual about the current value of

the nodal displacement, dv  and setting the resulting residual equal to zero:

  
0 = r dυ+1,tn +1( ) = r dυ ,tn+1( ) +

∂r dυ ,tn+1( )
∂d

∆d +O ∆d2( ) (6.3.12)

where

∆d = dυ+1 − dυ , (6.3.12b)

  
r dυ , tn +1( ) = Ma dυ( ) + f int dυ , tn+1( ) − fext dυ ,tn+1( ) (6.3.13)

If the terms which are higher order in ∆d  than linear are dropped, then (6.3.12)
gives a linear equation for ∆d :

  
0 = r dυ ,tn+1( ) +

∂r dυ , tn+1( )
∂d

∆d (6.3.14)

Note that in the Taylor expansion, the residual is written in terms of the time

tn+1 .  The time-dependence of the residual at constant nodal displacements is
usually known.  For example, if the tractions and body forces are given as
functions of time, then the time dependent part of the nodal forces is known at

time tn+1  at the beginning of the iterations.  Therefore the residual is always

computed at time tn+1 .  The above is called a linear model of the nonlinear
equations.    The linear model is the tangent to the nonlinear residual function; the
process of obtaining the linear model is called linearization.

Equation (6.3.14) is often called a linear model of the nonlinear equations,
Schnabel (?).  Solving this linear model for the incremental displacements gives

  
∆d =−

∂r( dυ )
∂d

 
 

 
 

−1

r( dυ ) (6.3.15)

In the Newton procedure, the solution to the nonlinear equation is obtained by
iteratively solving a sequence of linear models (6.3.15).  The new value for the
unknown in each step of the iteration is obtained by rewriting Eq. (6.3.12b) as

dυ +1 = dυ +∆d (6.3.16)
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The procedure is illustrated in Fig. 6.1.  The process is continued until the solution
is obtained with the desired level of accuracy.

linear model
(tangent)

r( d)

dυ dυ+1 dυ+2
d

r

solution

Fig. 6.1.  Linear models for a nonlinear equation r d( ) = 0 .

6.3.4.  Newton’s Method for n  Unknowns. The generalization of this
procedure to nDOF  unknowns is accomplished by replacing the above scalar
equations by matrix equations.  The counterpart of Eq. (6.3.12) becomes

   
  
r dυ( ) +

∂r dυ( )
∂d

∆d+O ∆d2( ) = 0

                or

ra dυ( ) +
∂ra dυ( )

∂db

∆db
b=1

nDOF

∑ + O ∆db
 
 
 

 
 
 

2

= 0 (6.3.17)

The matrix   ∂r / ∂d  is called the Jacobian matrix and will be denoted by A:

A =
∂r
∂d

,      or    Aab =
∂ra

∂db

(6.3.18)

Using (6.3.17) and dropping terms in higher order than linear, Eqs. (6.3.16) can be
rewritten as

 r +A∆d = 0 (6.3.19)
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which is the linear model of the nonlinear equations.  The linear model is difficult

to picture for problems with more than one unknown, since r d( )  maps ℜn  to ℜn ,
Figure 6.2 shows the first component of the residual for a function of two
unknowns.  The linear model is a plane tangent to the nonlinear function

  r1 d1, d2( ) .  The other residual component is another nonlinear function   r2 d1, d2( ) ,
which is not drawn.

r1

d1

d2

normal Aij

tangent Aijd j

Figure 6.2.  Depiction of a residual component r1  as a function of d1 and d2  and the tangent plane.

The increment in the nodal displacements in the Newton iterative procedure is
obtained by solving (6.3.18), which gives

  
∆d =− A−1r d υ ,tn+1( ) (6.3.20)

The increment in the nodal displacements is obtained from this system of linear
algebraic equations.  The solution of these equations is discussed in Section X.
Once the increments in nodal displacements have been obtained, the new values
of the nodal displacements are obtained by
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 dυ+1 = dυ + ∆d (6.3.21)

The new displacement is checked for convergence, see Section 6.3.7.  If the
convergence criterion is not met, a new linear model is constructed and used to
find another increment in the nodal displacements.  The procedure is repeated
until the convergence criterion is satisfied.

In computational mechanics, the Jacobian is called the effective tangent
stiffness matrix and the contributions of the inertial, internal and external nodal
forces are linearized separately.  From (6.3.9) we can write

  
A =

∂r
∂d

=
sD

β∆t 2 M +
∂f int

∂d
−

∂f ext

∂d
(6.3.22)

where we have used the fact that the mass matrix in a Lagrangian mesh is constant
in time and (6.3.4).  The Jacobian of the internal nodal forces is called the tangent

stiffness matrix and will be denoted by   K
int :

  
Kab

int =
∂ fa

int

∂db
            

  
KiIjJ

int =
∂f iI

int

∂u jJ
            

  
K int =

∂f int

∂d
(6.3.23)

The tangent stiffness matrix is shown above in three forms.  The Jacobian matrix
of the external nodal forces is called the load stiffness matrix and denoted by

Kab
ext =

∂ f a
ext

∂db
         KiIjJ

ext =
∂f iI

ext

∂u jJ
            Kext =

∂fext

∂d
(6.3.24)

The development of these matrices is the topic of linearization and is
treated in Sections 6.4 and 6.5.  Using these definitions, the Jacobian matrix
(6.3.22) can be written as

  
A =

sD

β∆t2 M + Kint − Kext (6.3.25)

This Jacobian matrix applies to both dynamic and equilibrium problems with the
dynamic switch sD  set by (6.3.2).

The Jacobians in (6.3.23-24) can be used to relate differentials of the nodal
forces to differentials of the nodal displacements by

  df int = Kint dd         df ext = Kextdd           dr = Add (6.3.26)

The matrices which relate finite increments of nodal displacements to increments
of nodal forces differ from the above.  We will use a

   ∆fint = K∆
int ∆d          ∆fext = K∆

ext∆d        ∆r = A∆ ∆d (6.3.27)
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The matrix   K∆
int  is called a secant stiffness and A∆ the secant Jacobian.  The

secant stiffnes and secant Jacobian depend on the magnitude and direction of  ∆d .
This can easily be seen in one dimension as illustrated in Fig. 6.3, which shows
secants for various stepsizes and two directions (there are only two in a function
of a single variable).  The tangent and secant Jacobians are identical only in the
limit as ∆d → 0; for finite increments, the secant stiffness in (6.3.27) differs from
the tangent stiffness in (6.3.23).

r d

A −∆d
 

 
  

 

 
  A 2∆d

 

 
  

 

 
  

A ∆ 

 
  

 

 
  

∆d
A (tangent)

(  )

Figure 6.3.  Secant Jacobians for various step sizes and directions.

Conservative Problems (Stationary Points).  It is useful at this point to examine
the discrete problem corresponding to the stationary principle described in Section
4.9.3.  This stationary principle only applies to conservative equilibrium
problems, but it is nevertheless provides insight into the character of nonlinear
problems.  An equilibrium solution is a stationary point of the potential, so by
enforcing the conditions that the derivative of the potential vanish and using
(4.9.29-30) and the definition of the residual (6.3.3) we have

   
  
0 = r = −

∂W

∂d
=

∂W int

∂d
−

∂Wext

∂d
= f int − f ext (6.3.28)

A solution is a stable equilibrium solution if it corresponds to a minimum of the
potential energy.  Thus stable equilibrium solutions can be found by minimizing
the potential W.  The situation is depicted in Fig. 6.3, which shows the local
behavior of a potential of two generalized displacements and the contours for this
potential.  The residual is the negative of the gradient of the potential (note the
sign in the above.)

The linear model for (6.3.28) is (see 6.3.17-18)
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 −rν =
∂r

∂d
∆d = −

∂2W

∂d∂d
∆d = A∆d  where Aab =

∂2W

∂da∂db
 or A =

∂2W

∂d∂d

  −raυ
=

∂ra

∂db
∆db = −

∂2W

∂da∂db
∆db = Aab∆db  where Aab =

∂2W

∂da∂db
(6.3.29)

The matrix A when it arises from the second derivatives of a potential is called a
Hessian matrix.  It is identical to the Jacobian, so

   A = Kint − Kext (6.3.30)

The linearized equations for a conservative system are

  
Kint − Kext( )∆d =− r

The above are identical to Eq. (6.3.19) except that the mass matrix is omitted,
since dynamic effects cannot be included in a conservative problem.  However,
when the problem is posed as a minimization problem, many techniques not
directly applicable to linear models, such as the method of steepest descent, can
be applied to the problem.  Thus, viewing the solution of the residual equations as
a minimization problem is helpful in many cases.

6.3.2b.  α -METHOD EQUATIONS

Theα -method, also known as Hilber-Hughes-Taylor (HHT) method [??],
was introduced to improve numerical dissipation for high frequencies in the
Newmark-β  method.  The Newmark-β  formulas, Eqs. (6.3.4) - (6.3.7), remain
the same, wheras the time-discrete equation of motion is modified as follows (cf
Eq. 6.3.1)

  
0 = r dn +1,  tn+1( ) = sDMan+1 − fext dn+α , tn +1( )+ f int dn+α( ) (6.6.1)

where

dn+α = 1+α( )d n+1αdn (6.6.2)

It is noted that in the case of a linear analysis, the internal force vector becomes:

  
f int dn+α( ) = Kdn+α = 1+α( )Kdn+1 −αKdn (6.6.3)

which is exactly the HHT method presented in [??].  Follow the α -method
stability analysis, unconditional stability is achieved by setting the following
parameters:

α ∈ −
1

3
, 0

 
  

 
  ;  γ =

1− 2α( )
2

; and β =
1− α( )2

4
(6.6.4)
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If α = 0 , the trapezoidal rule is obtained.

Remark:  Although there is no stability analysis in the literature for a nonlinear
setting (i.e., with Eq. (6.6.1)), a linearized stability analysis will yield the same
stability result as in Eq. (6.6.4).

Following the same procedure given in Section 6.3.2, the discrete problem
as stated in Eq. (6.3.10) is revised as:

find dn +1
 so that r dn+1( ) = 0 as shown in Eqs. (6.6.1) - (6.6.2), subject to

g dn +1( ) = 0 .

In order to define the Jacobian matrices and incremental nodal
displacements given in Eqs. (6.3.18) through (6.3.25), the following linearized
displacement equations are defined (cf. Eq. (6.3.21)):

  dv +1
n+ α =

def

1 +α( ) dv
n +1 + ∆d( )−αdn = dv

n+ α + ∆˜ d (6.6.5a)

where

dv +1
n+ α = 1 +α( )d v

n+1 −αdn (6.6.5b)

and

  ∆
˜ d = 1+ α( )∆d          

for υ = 0

a0
n+1 = 0,  d0

n+1 = d n + ∆tυn + ∆t2

2
1−2β( )a

(6.6.5c)

With the above definitions, the linearized Jacobian matrix equations becomes: (cf.
Eq. (6.3.17))

r dv
n+ α( )+

∂r d v
n+α( )

∂d
∆d +0 ∆d2( ) = 0 (6.6.6)

The Jacobian matrix or the effective tangent stiffness matrix (cf. Eq. (6.3.22)) can
be shown to be

  
A =

∂r d v
n+α( )

∂d
=

sD

β∆t2 M + 1+ α( )
∂fint dv

n+α( )
∂d

− 1+ α( )
∂fext dv

n +α( )
∂d

(6.6.8)

The rest of the formulation remains the same.

6.3.5.  Implementation of Newton Method.  Flowcharts for implicit
integration and equilibrium solutions are given in Boxes 6.3 and 6.4.  Both the
dynamic problem and the equilibrium problem are solved by time-stepping: the
external loads and other conditions are described as functions of time, which is
incremented over the range of interest.  In equilibrium problems, the time is often
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replaced by a monotonically increasing parameter. Solutions of equilibrium
processes obtained in this manner are called incremental solutions.

The flowchart shows a procedure often called a full Newton algorithm, where the
Jacobian matrix is inverted in every iteration of the procedure.  Many programs
use a modified Newton algorithm, in which the Jacobian is only triangulated at
the beginning of the iterations or intermittently during the iteration.  For, example,
in a modified Newton procedure the Jacobian may be triangulated only when the
ietrative procedure does not seem to be converging well.  These modified schemes
are faster but less robust.

The flowcharts begin with the imposition of the intial conditions.  The
initial conditions can be handled exactly as in explicit methods.  The initial
displacements are considered to be zero.  The initial accelerations are computed as
shown in steps 2 and 3.

The displacements dn+1  for each time step are obtained by the iterative
Newton procedure.  To begin the iterative procedure, a starting value of d  is
needed; usually the solution from the preceding step is used.  The residual is then
calculated for this starting value.  In an equilibrium solution, the residual depends
only on the internal and external nodal forces. and is obtained in the module getf.
This module, getf, is the same as in the explicit procedure, Box 6.1, except that
the calculation of the stable time step is omitted, so it is not repeated.  In transient
implicit solutions, the residuals also depend on the accelerations.

Box 6.3
Flowchart for Implicit Time Integration

1. Initial conditions & initialization of parameters:

  set v0, σ0 ; d0 = 0, n = 0,t = 0; compute M

2.  get 
  
f 0 = f d0 ,0( )

3.  compute initial accelerations an = M−1f n

4.  estimate next solution d :   d = dn

5.  Newton iterations for time step n +1

a. get f  computes 
  
f d, tn+1( )

b. 
  
an+1 = 1

β∆t2
d − ˜ d n( ), vn+1 = ˜ v n + γ∆tan+1 ,   see Eqs. (6.3.4 - 6.3.7)

c.  r = Man+1 − f
d. compute Jacobian A d( )
e. modify A d( ) for essential boundary conditions

f. solve linear equations  ∆d = A−1r
g. d ← d +∆d
h. check error criterion; if not met, go to step 5a

6.  update displacements, counter and time: dn+1 = d ,  n ← n +1, t ← t +∆ t
7. check energy balance
8.  output, if simulation not complete, go to 3
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Box 6.4
Flowchart for Equilibrium Solution

1.  Initial conditions and initialization:   set u0 = 0 ; σ0 ; n = 0;
2.  Newton iterations for load increment n +1

a. getf computes 
  
f d, tn+1( ) ;  

  
r = f d, tn+1( )

b. compute A d( )
c. modify A d( ) for essential boundary conditions

d. solve linear equations  ∆d = A−1r
e. d ← d +∆d
f. check error criterion; if not met, go to 2a

3.  update displacements, counter and time: dn+1 = d , n ← n +1, t ← t + ∆t
4.  output, if simulation not complete, go to 2

The Jacobian matrix in this algorithm is then calculated based on the latest
state of the body.   In some algorithms, the Jacobian for the last converged
solution is used for all the iterations or the Jacobian is only recomputed
intermittenly during the iterations; these are known as modified Newton methods.
Simple essential boundary conditions, such as homogeneous displacement
conditions, can be enforced by modifying the Jacobian matrix.  The equation
corresponding to the vanishing displacement component is either omitted or
replaced by a dummy equation that the component vanishes by zeroing the
cooresponding row and column and putting a one on the diagonal of the Jacobian.
For more complex algebraic constraints, Lagrange multipliers methods or penalty
methods are used: these are described in Section 6.?.

6.3.6.  Equilibrium Solutions Based on Stationary Potential
Energy.   In Chapter 4 we saw that when the system is conservative, i.e. when
the stresses and external loads are derivable from a potential, then the equilibrium
problem can be posed as the determination of the stationary points of the energy.
Such problems are called conservative.  Stable equilibrium solutions correspond
to local minima of the potential energy.

Consequently, stable solutions for conservative problems can be found by
minimization techniques.  The discrete problem is then: for any time t (the time
parametrizes the external load):

min   W d, t( )  subject to g I d( ) = 0 I =1 to nc (6.3.31)

where g I d( ) = 0  are nc  discrete constraints on the system.  These must be linear
algebraic constraints.  If they involve differentials or integrals, they must be
converted to algebraic from by time discretization.  Displacement boundary
conditions are often imposed as auxiliary consraints of this type.  Often the
essential boundary conditions can be met by simply eliminating nodal
displacements from the unknowns.  If both linear stable and linear unstable
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solutions are desired, then the the stationary points of   W d ,t( ) must be found.  The
discrete problem is then

find d  so that 
∂W d( )

∂d
=− f = r = 0   subject to g I d( ) = 0 I =1 to nc (6.3.32)

Solutions to these equations for loads which vary as a function of the parameter t ,
which could be time but need not be, appear as branches (lines) in the space of the
nodal displacement components.  Some examples are given in Section 6.??.

In the above we have indicated that the derivatives of the potential with respect to
the nodal displacements is the negative of the nodal forces, which are in turn
equal to the residuals.  Viewing an equilibrium solution as the determination of
the stationary points of a potential provides substantial insight, particularly when
the stability of a solution is of interest.  This is pursued further in Section ??.  As
can be seen from a comparison of Eqs. (6.3.1) and (6.3.27) , the equations for a
stationary point are identical to the discrete equations derived previously.  These
methods are not applicable to dynamic problems.

6.3.8  Convergence Criteria.  The termination of the iterative procedure in
implicit and equilibrium solutions by the Newton method is determined by
convergence criteria.  These criteria pertain to the convergence of the discrete

solution to the equations 
  
r dn ,tn( ) = 0 , not the convergence of the discrete

solution to the solution of the partial differential equations.  Three types of
convergence criteria are used to control the iterations:

1.  criteria based on the magnitude of the residual r ;
2.  criteria based on the magnitude of the displacement increments ∆d ;
3.  energy error criteria.

Usually an   l2  norm of the vectors  is used for the first two criteria.  The criteria
then are:

residual error criterion:

 

    
r l2

= ra
2

a=1

nDOF

∑
 

 
 

 

 
 

1
2

≤ ε max fext

l2
, fint

l2
, Ma l2

 
 

 
 (6.3.28)

displacement increment error criterion:

 

  
∆d l2

= ∆da
2

a=1

nDOF

∑
 

 
 

 

 
 

1
2

≤ ε d l2
(6.3.29)

 The   l2  norm, which has been indicated in the above, is the probably most
suitable when the mean error over all degrees of freedom is to be controlled, but a
maximum norm can also be used.  A maximum norm would limit the maximum
error at any node.  The terms on the right-hand side of Eqs. (6.3.28) and (6.3.29)
are scaling factors.  Without these, the criterion would depend on the parameters
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of the problem. The error toleranceε  determines the precision with which the
displacements are calculated before terminating the iterative procedure; when

ε =10−3 , the mean accuracy of the nodal displacements is in the third significant
digit when the   l2  norm is used.  The  convergence tolerance determines the speed
and accuracy of a calculation.  If the criterion is too coarse, the solution may be
quite inaccurate.  On the other hand, a criterion which is too tight results in
unnecessary computations.

The energy convergence criterion measures the energy flow to the system
resulting from the residual, which is like an error in energy.  It is given by

  
∆dTr =∆dara ≤ ε max Wext ,W int , Wkin( ) (6.3.30)

where the computation of the energies used for scaling the criterion is described in
Section 6.?.  The left hand side in the above represents an error in the energy,
since a nonzero residual is an error in the forces on the system.

6.3.7.  Convergence and Robustness of Newton Iteration. The rate
of the convergence of the iterations in the Newton method is quadratic when the
Jacobian matrix A satisfies certain conditions. These conditions may roughly be
described as follows:

1. the Jacobian A should be a sufficiently smooth function of d;

2.  the Jacobian A should be regular (invertable) and well-conditioned in the
entire domain in the displacement space that the iterative procedure traverses.

Quadratic convergence means that the   l2  norm of the difference between the
solution and the iterate dυ  decreases quadratically in each iteration:

dυ+1 −d ≤ c dυ − d
2

(6.3.31)

where c is a constant that depends on the nonlinearity of the problem and d  is the
solution to the nonlinear algebraic equations.  Thus the convergence of the
Newton algorithm is quite rapid when A  meets the above conditions.  The above
gives the requirements for convergence only in broad terms and convergence has
been proven for various conditions on A .  One set of conditions for quadratic
convergence are: the residual must be continuously differentiable and the inverse
of the Jacobian matrix must exist and be uniformly bounded in the neighborhood
of the solution, Dennis and Schnabel (1983, p 90).

These conditions are usually not satisfied by nonlinear finite element
problems.  For example, in an elastic-plastic material, the residual is not
continuously differentiable when a discrete point changes from elastic to plastic or
vice versa; therefore, the Jacobian is discontinuous.  In a two degree of freedom
problem, the discontinuities in the Jacobian appear as kinks in the contour plots
for the residual components.  This is illustrated in Example X.  In the solution of
contact-impact problems with Lagrange multiplier methods, the residual often
lacks smoothness, as illustrated by Chapter 10.  Thus the conditions for quadratic
convergence of the Newton method are often not satisfied in engineering
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problems. Yet, Newton’s method is remarkably effective in engineering problems,
although the rate of convergence often deteriorates.  At this time, more robust
methods are not available.  In many problems, the conditions for quadratic
convergence are satisfied; for example, the above conditions are satisfied in the
response of a model with a Mooney-Rivlin material when the load is small
enough so that the equilibirium solutions are stable.

Newton’s method fails particularly often when applied to equilibrium
problems.  Since Eq. (6.3.3) are nonlinear algebraic equations, they can have
multiple solutions and solutions in which are unstable.  When the equilibrium path
is unstable, the inverse of the Jacobian matrix is no longer regular at all points and
the proof of quadratic convergence does not apply.  The convergence of the
Newton method often fails in the vicinity of unstable states.  These types of
problems are considered in the next Section.

In summary, Newton’s method sometimes lacks robustness when applied
to engineering problems.  The robustness decreases as we increase the time step
and appears more often in equilibrium solutions, since in the latter we lose the
effect of the mass matrix.  The mass matrix improves the conditioning of the
Jacobian matrix because it is always positive definite, see Exercise X.  As the
time step increases, the beneficial effects of the mass matrix decrease since the
coefficient of the mass matrix is inversely proportional to the square of the time
step, as can be seen from Eq. (6.3.9).  For many problems, a straightforward
application of the Newton method will sometimes fail completely, and
enhancements of the Newton method such as the arc length method, line search,
and augmented Lagrangian, which are described in Section ?, are needed to solve
the nonlinear algebraic equations.

6.3.8.  Line Search.  An effective way to increase the robustness of Newton
methods when convergence is slow is to use the line search technique.  The
rationale behind line search is that  the direction ∆d  found by the Newton method
is often a good direction, but the step size is not optimal.  It is cheaper to find the
best point along this direction by several computations of the residual than to get a
new direction by using a new Jacobian.  Therefore, before proceeding to the next
direction, the residual is minimized along the line dold +ξ∆d  where dold  is the

last iterate and ξ > 0  is a parameter.  In other words, we find the parameter ξ  so
that dold +ξ∆d  minimizes some measure of the residual.  We can use as a
measure of the measure of the residual its   l2  norm, as defined in Eq. (6.3.28), the
maximum norm, i.e. the maximum absolute value of any component of the
residual, or some other measure.  Line search then involves the calculation of two
or more residuals along the line and an interpolation of a measure of the residual.
For example, if the   l2  norm is used, then

A measure for the residual which is frequently used in line search is based
on the existence of a potential for the problem, i.e. on the solution by the
stationary energy principle, Sections 4.9.3 and 6.3.6.  For a conservative problem,
the minimizer of the potential W d( ) , along the line ∆d  is the point where the
gradient of the function is orthogonal to the line.  The residual is given in terms of
a potential by
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∂W

∂d
=

∂W int

∂d
−

∂Wext

∂d
= f int − fext = r (6.3.32)

where the above follows from Eqs. (4.9.34) and (6.3.3).  When the residual is
orthogonal to the incremental displacement

∆dTr = 0 ⇒ ∆dT ∂W

∂d
= 0 (6.3.33)

the potential must be minimum (or be stationary) at that point.  This is illustrated
in Fig. 6.1, which shows the contours of the potential energy for a two degree-of-
freedom system and the residual of the nodal forces for several points along the
line dold +ξ∆d .  As can be seen, the potential is minimum when the residual, i.e.
the gradient of the potential, is normal to the line.  The line search can then be

conducted by minimizing ∆dTr .

 This criterion can also be used for systems that are not conservative, since

∆dTr  does not involve the potential.  Note that this measure of the residual is
equivalent to the criterion for error in energy, Eq. (6.3.30).

Equation (6.3.33a) can also be derived directly by using the chain rule to
expand the potential energy in the parameter ξ .  This gives

dW ξ( )
dξ

=
∂W

∂d
⋅
dd
dξ

= 0 ⇒ rT ∆d = 0 (6.3.34)

where we have set the derivative of the potential energy with respect to the
parameter ξ  equal to zero, since we are looking for the minimum of the potential
along the line ∆d  parametrized by ξ .  The second equation follows from (6.3.32)
and

dd
dξ

=
d dold + ξ∆d( )

dξ
=∆ d (6.3.35)

Once a measure of the residual has been chosen, the line search can be
made with any of the methods for minimizing a function of a single parameter.
The method of bisection or searches based on interpolation or combinations
thereof can be used.  Once the residual has been evaluated at two points, a
quadratic fit can be made to the residual measure, since its value at ξ = 0  is
known to vanish.  This quadratic fit can then be used to estimate the position of
the minimum.  The iteration along the  line  is terminated when the measure has
been minimized to a suitable precision.  Note that when the orthogonality
condition (6.3.29) is used, it should be normalized like the error energy criterion
is in Eq. (6.3.26).

6.3.9.  Secant Methods to be inserted
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6.3.10.  Stability of Implicit methods.  The advantage of an implicit
method over an explicit method is that for linear transient, problems, suitable
implicit integrators are unconditionally stable.  The unconditional stability of
implicit integrators has not been proven for all nonlinear systems, although results
which deal with specific situations indicate that unconditional stability holds at
least for certain nonlinear systems.  In any case, experience indicates that the time
steps which can be used with implicit integrators are much larger than those for
explicit integration in many problems.

The major restrictions on the size of time steps in implicit methods arise
from accuracy requirements and the decreasing robustness of the Newton
procedure as the time step increases.  The latter is particularly pronounced in
problems with very rough response, such as contact-impact.  With a large time
step, the starting iterate may be far from the solution, so the possibility of failure
of the Newton method to converge increases.  Therefore small time steps are often
used to improve the robustness of the Newton algorithm.

In return for their enhanced stability, implicit methods exact a significant
price: implicit methods require the solution of nonlinear algebraic equations in
each time step.  The construction of the linearized algebraic equations for the
Newton procedure is often quite involved.   Furthermore, the storage of these
equations requires significant amounts of memory.  The memory requirements
can be reduced substantially by iterative linear equation solvers (an iterative
method within an iterative Newton method).  In recent research, iterative solvers
have been improved dramatically, so implicit solutions are feasible in many
problems where they were prohibitive before, see Section ?.  The robustness and
speed of Newton methods has increased markedly over the past two decades, and
we are certain that further improvements are imminent.  Nevertheless, high cost
and lack of robustness are still plague many implicit and equilibrium solutions.

6.4  LINEARIZATION

There are several different ways to linearize the discrete equations. In
discussing the various linearization procedures, it is useful to keep in mind that
the order in which linearization and spatial discretization are carried out does not
matter (in mathematical terminology, the operations of linearization and spatial
discretization are said to commute).  This means that linearization of the semi-
discrete equations of motion (6.2.x) gives rise to the same finite element equations
as does the semi-discretization of a linearized weak form (we have not yet
developed such forms, but they appear frequently in the literature).  The choice
between these two approaches is a matter of style.  For completeness, we will
consider both approaches.

In the linearization procedure, there are several possibilities:
1. Linearization is carried out before the stress-update algorithm
(integration algorithm for the constitutive equation) is introduced; this
gives rise to the so-called continuum tangent moduli which will be
discussed below.
2. Linearization is carried out after the stress-update algorithm is
introduced; this gives rise to the so-called algorithmic moduli.

These two distinct approaches yield different tangent stiffness matrices.
The choice of which approach to use rests on practical considerations related to
ease of implementation and on convergence of the iterative scheme. The first
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approach, based on the continuum tangent modulus, is straightforward to
implement. However, it can run into convergence difficulties, especially for
elastic-plastic materials where the slope discontinuity at the yield point on the
stress-strain curve requires small steps to assure convergence and to preserve
accuracy.

The second approach, based on the algorithmic moduli, exhibits better
convergence because, through linearization of the stress-update algorithm, it
accounts for the change in slope associated with a finite increment of strain. One
drawback of the method is that it is not always possible to derive explicit forms
for the algorithmic moduli for complex constitutive relations.  Numerical
differentiation schemes are sometimes used to obtain the algorithmic moduli, and
they introduce additional inaccuracies.

We first consider linearization of the discrete equations based on the
continuum tangent moduli, which relate a stress rate to a strain rate. The resulting
material tangent stiffness matrix is called the continuum tangent stiffness matrix.

A somewhat more mathematical approach to linearization based on
directional derivatives is then presented and it is shown how the resulting
expressions are equivalent to those obtained by using the procedure based on the
material time derivative. This linearization procedure based on the directional
derivative is then used to develop the linearized equations for the second approach
discussed above, i.e, linearization of the weak form after introduction of the
stress-update algorithm.  Because the stress-update algorithm is introduced prior
to linearization, the expression for the stress increment that appears in the
linearization of the weak form is based on the linearized constitutive integration
scheme and not on the continuum rate form of the constitutive relation. As a
result, the material tangent stiffness differs from the continuum tangent stiffness
and is referred to as the algorithmic modulus (sometimes referred to as the
consistent tangent modulus because of the consistent linearization of the weak
form and the stress-update algorithm). Examples of the algorithmic modulus for
the 2-node bar element and the 3-node triangle are also given.

6.4.1  Linearization of the Discrete Equations

In the following, we derive expressions for the continuum tangent stiffness

matrix   K
int  . As will be seen, part of the expression can be derived independently

of the material response. These expressions are completed upon introduction of
the constitutive relation. The continuum rate form of the constitutive relation will
be used, i.e., linearization is carried out prior to introduction of the stress-update
algorithm.  Specific examples for the continuum tangent matrices for hyperelastic
materials and elastic-plastic materials are presented in Section 6.4.2.

For notational convenience, we will develop the tangential stiffness matrix

by relating rates of the internal nodal forces    ̇ f int  to the nodal velocities   ̇ d .  Thus

the stiffness matrices   K
int  can be derived by taking the material time-derivative of

the nodal internal forces. The procedure is identical to relating an infinitesmal

increment of nodal displacements   df int to an infinitesmal increment of nodal
displacements dd , and we will occasionally recast the equations in that form; the
dot notation is chosen for convenience.  The derivation is perfectly rigorous for
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any continuously differentiable residual; for rougher residuals, directional
derivatives are needed and are described later.

By (4.9.10-11), the internal nodal forces in the total Lagrangian form are
given by,

    
f int = B0

T

Ωο
∫ PdΩ0 ,      fIi

int =
∂NI

∂X j
Ωο
∫ PjidΩ0 (6.4.1)

where P  is the nominal stress tensor with components Pji , N I  are the nodal shape

functions and 
  
B0

T( )
jI

= ∂N I / ∂X j .  We have chosen the total Lagrangian form

because this leads to the simplest derivation.  In the total Lagrangian form,
(6.4.1), only the nominal stress is a function of time, i.e. it is the only variable
which varies with deformation.  In the updated Lagrangian form, (4.5.5) the
domain of the element (or body), the spatial derivatives    ∂NI / ∂x j  and the
Cauchy stress depend on the deformation, and hence on time.

Taking the material time-derivative of (6.4.7) gives

    

˙ f int = B0
T

Ωο
∫ ˙ P dΩ0,      ̇  f Ii

int =
∂NI

∂Xj
Ωο
∫ ˙ P jidΩ0 (6.4.2)

since   B0  and dΩ0  are independent of the deformation, which varies with time.

To obtain the stiffness matrix   K
int  it is now necessary to express the stress rate   ̇ P 

in terms of nodal velocities.  However, constitutive equations are not expressed in

terms of   ̇ P  because this stress rate is not objective.  So we work in terms of the
material time derivative of the PK2 stress, which we have seen is objective.

The material time derivative of the PK2 stress is then related to the

material time derivative of the nominal stress by Box 3.2, which gives P = S ⋅FT ,
so

  
˙ P = ˙ S ⋅FT +S ⋅ ˙ F T or ˙ P ij = ˙ S irFrj

T +Sir
˙ F rj

T (6.4.3)

Substituting (6.4.3) into (6.4.2) yields

  

˙ f iI
int =

∂N I

∂X j

˙ S jrFir + S jr
˙ F ir( )dΩ0

Ω 0

∫   or  dfiI =
∂N I

∂X j
dSirFir + SjrdFir( )dΩ0

Ω0

∫
(6.4.4)

The above shows that the rate (or increment) of the internal nodal forces
consists of two distinct parts:

1.  The first term involves the rate of stress (  ̇ S ) and thus depends on the
material response and leads to what is called the material tangent
stiffness matrix which we denote by Kmat .  Note that although this
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term reflects material response, it changes with deformation since   B0

depends on F .
2.  The second term involves the current state of stress, S  and accounts for

rotation of the stress with the motion.  This term is called the
geometric stiffness because it represents for geometric nonlinearities
associated with rotation of the stress. It is also called the initial stress
matrix to indicate the role of the existing state of stress. It is denoted
by Kgeo .

Therefore we write Eq. (6.4.4) as

       ̇
 f int = ˙ f mat + ˙ f geo    or    ̇  f iI

int = ˙ f iI
mat + ˙ f iI

geo (6.4.5)

where

  

     ̇  f iI
mat =

∂N I

∂XjΩ0

∫ Fir
˙ S jrdΩ0 ,      ̇  f iI

geo =
∂NI

∂XjΩ0

∫ S jr
˙ F irdΩ0 (6.4.6)

To simplify the remaining development, we put the above expression into
Voigt form.  Voigt form is convenient in developing the material stiffness
matrices because the tensor of material coefficients,   Cijkl , which which relates the
stress rate to the strain rate is a fourth order tensor; this tensor cannot be handled
by readily standard matrix operations.  Therefore, the stiffness matrix is
conventionally handled in Voigt notation; other ways of handling the fourth order
stiffness matrices are discussed later.

We consider the material and geometric effects on the nodal forces one at
a time.  Referring to Eq. (??), we can see that with the definition of (??), which is

  
BjrIi

0 = sym j ,r( )
∂N I

∂Xj
Fir

 

 
  

 

 
  (6.4.7)

we can rewrite the material increment in the nodal forces, Eq. (6.4.4), in Voigt
notation as

  

˙ f mat
int = B0

T

Ω 0

∫ ˙ S { }dΩ0 (6.4.8)

where S  is now a column matrix arranged according to the Voigt kinetic rule,
Appendix A.  It should be stressed that Eq. (6.4.6) is identical to Eq. (6.4.5).  We
now consider the consitutive equation in the following rate form

  
˙ S ij = Cijkl

S ˙ E kl   or   ˙ S { } = CS ˙ E { } (6.4.9)

Recall (4.9.27), which gives the following relation in Voigt notation

  
˙ E { } = B0

˙ d (6.4.10)
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Substituting Eqs. (6.4.9) and (6.4.10) into Eq. (6.4.8) gives

  

˙ f mat
int = B0

T

Ω0

∫ CSB0dΩ0
˙ d or dfmat

int = B0
T

Ω0

∫ CSB0dΩ0dd (6.4.11)

So the material tangent stiffness matrix is given by

Kmat = B0
T

Ω0

∫ CSB0dΩ0 or K IJ
mat = B0 I

T

Ω0

∫ CSB0JdΩ0 (6.4.12)

The material tangent stiffness relates the increment (or rate) in internal nodal
forces to the increment (or rate) of displacement due to material response, which
is reflected in the material response matrix CS .

The geometric effect on the nodal forces is obtained as follows.  From the

definition 
  
BiI

0 =
∂NI

∂Xi
 and Eq. (6.4.4), we can write

  

˙ f iI
geo = B jI

0( )
Ω0

∫
T

Sjr
˙ F irdΩ0 = B jI

0( )
Ω0

∫
T

S jr BrJ
0 dΩ0 ˙ u iJ (6.4.13)

  

      = B jI
0( )

Ω0

∫
T

S jr BrJ
0 dΩ0δ ij

˙ u jJ (6.4.14)

where in the second step we have used (4.9.7),  
˙ F ir = BrI

0 ˙ u iI , and in the third step

we have added a dummy unit matrix so that the component indices in   
˙ f iI

geo  and   
˙ u iJ

are not the same.  Writing the resulting expression for the geometric stiffness
gives

    
f I = K IJ

geo˙ u J   where  K IJ
geo = B0I

T

Ω0

∫ SB0J dΩ0I (6.4.15)

Note that the PK2 stress in the above is a square matrix.  Each submatrix of the
geometric stiffness matrix is a unit matrix; therefore, it follows that the geometric
stiffness matrix, like the unit matrix, is invariant with rotation, i.e.

  
ˆ K IJ

geo = KIJ
geo (6.4.16)

where   
ˆ K IJ

geo  relates nodal forces to nodal velocities expressed in any alternate set
of Cartesian coordinates.

To summarize

  df int = Kint dd   or   ̇  f int = K int ˙ d    where   K int = Kmat + Kgeo (6.4.17)
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where the material tangent stiffness and the geometric stiffness are given by Eqs.
(6.4.12) and 6.4.15), respectively.  The material tangent stiffness reflects the
effect on the nodal internal forces of the deformation of the material.  The
geometric stiffness reflects the effects of the rotation and deformation on the
current state of stress.

The above forms are easily converted to updated Lagrangian forms by
letting the current configuration be a reference configuration, as in Section 4.??.
From Eqs. (4.9.29), we recall that taking the current configuration as the reference
configuration gives

  B0 → B     B0 → B    S → σ    dΩ0 → dΩ (6.4.18)

Also, referring to Section 4.??, we note that when a fixed current configuration
becomes the reference configuration, then

F → I (6.4.19)

In Section (???), we have seen that the relationship rate of the PK2 stress to the
given strain is equivalent to that of the Truesdell rate of the Cauchy stress to the
rate-of-deformation in the current configuration, so

  C
S → Cσ T (6.4.20)

Thus, Eqs. (6.4.13) and (6.4.16) become

    

K IJ
mat = B I

TCσ T BJ dΩ Kmat = BTCσ T BdΩ
Ω
∫

Ω
∫          

K IJ
geo = I B I

TσBJdΩ
Ω
∫

(6.4.21)

These forms are generally easier to use than the total Lagrangian forms, since B  is
more easily constructed than   B0  and many material laws are developed in terms
of Cauchy stress.  It is not possible to write a convenient expression for the  entire
geometric stiffness matrix in this notation.  Note that either the material or
geometric stiffness can be used in total Lagrangian form with the other in updated
Lagrangian form.  The numerical values of the matrices in total and updated
lagrangian form are identical, and the choice is a matter of convenience.

The integrand in the geometric stiffness is a scalar for given values of I
and J, so Eq. (6.4.21) can be written as

  
K IJ

geo = IH IJ      where     H IJ = B I
TSBJ dΩ

Ω
∫ (6.4.22)

Alternate Derivations.  In this Section the tangent stiffness matrix is derived
in terms of the convected rate of the Kirchhoff stress.  Many of the relations in
nonlinear mechanics take on a particular elegance and simplicity when expressed
in terms of the Kirchhoff stress.  In addition, the following development relies
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more on indicial notation and the shift to Voigt notation is not made until the last
steps.

Noting that the Kirchhoff stress τ  is related to the nominal stress by (???),

P = F−1 ⋅ τ , the rate form of the relation between the nominal stress and the
Kirchhoff stress is obtained by taking the material time derivative

  ̇ P = F−1 ⋅ ˙ τ + ˙ F −1 ⋅τ (6.4.24)

Using the result 
D F−1 ⋅F( )

Dt
= 0 , it is straightforward to show that

  
F−1( ) = −F−1 ⋅ ˙ F ⋅ F−1( ) =− F−1 ⋅L (6.4.25)

where the second relation follows from (???).  Thus the expression (6.4.24) for the
nominal stress rate is written as

  
˙ P = F−1 ˙ τ − L ⋅τ( ) (6.4.26)

Using (5.  ????) to relate the material rate of theKirchhoff stress to its convected

rate,   τ
∇c = ˙ τ −L ⋅ τ − τ⋅LT , (6.4.26) is written as

  
˙ P = F−1 ˙ τ ∇ c + τ ⋅LT( ) (6.4.27)

Writing (6.4.27) in indicial notation, we obtain

  
˙ P ji = F−1 τ ki

∇ c +τ klLil( ) =
∂X j

∂xk
τ ki

∇ c +τ klLil( ) (6.4.28)

Substituitng the above into (6.4.2) gives

  

˙ f iI
int =

∂N I

∂X j

∂X j

∂xk
Ωο
∫ τ ki

∇c +τ kl Lil( )dΩ0

             =
∂N I

∂xk
Ωο
∫ τki

∇c +τ klLil( )dΩ0

             
  
= N I ,kΩο

∫ τki
∇c + τklLil( )dΩ0 (6.4.29)

where the second expression follows from the first by the chain rule; in the third
expression we have used the notation   NI ,k = ∂NI ∂xk .  This is the counterpart of
(6.4.4) in terms of the Kirchhoff stress.
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This result can easily be transformed to an updated Lagrangian form with
the integral over the current domain.  Using (3.2.18,  dΩ = JdΩ0  and the relation
(5.???) between the convected rate of Kirchhoff stress and the Truesdell rate of

Cauchy stress ( τ∇c = Jσ∇T ) the expression (6.4.29) yields

  
˙ f iI = NI ,kΩ∫ σ ki

∇T + σkl Lil( )dΩ (6.4.30)

which is the updated Lagrangian counterpart of Eq. (6.4.4); (6.4.30) could also be
obtained by making the current configuration the reference configuration
EXERCISE

An alternative derivation of (6.4.29) is given as follows.  Recall Eq.
(6.4.3):

  ̇ P = ˙ S ⋅FT +S ⋅FT (6.4.33)

Now note that this relation can be written as

  ̇ P = F−1 ⋅ F ⋅ ˙ S ⋅ FT + F−1 ⋅F ⋅S ⋅FT ⋅F−T ⋅ ˙ F T (6.3.34)

Using the push-forward relation (5???? ) for the convected rate of Kirchhoff stress

in terms of the rate of the PK2 stress,   τ
∇c = F ⋅ ˙ S ⋅ FT , and (3.3.18),   L

T = F−T ⋅ ˙ F T ,
(6.4.34) can be written as

  
˙ P = F−1 ⋅ τ∇c + τ⋅ LT( ) (6.4.35)

which is the same as (6.4.27).  The tangent stiffness expression (6.4.29) follows in
an identical fashion.

To complete the derivation of the material tangent stiffness matrix
(6.4.29), it is necessary to introduce the constitutive relation to relate the
convected stress rate to the nodal velocities.  We write the constitutive relation
(rate-independent material response) in the form

τ ij
∇c = Cijkl

τ Dkl (6.4.38)

where the superscript τ  on the tangent modulus Cijkl
τ  indicates that it relates the

Kirchoff stress rate to the rate-of-deformation.  This tangent modulus possesses
the minor symmetries, i.e., Cijkl

τ = C jikl
τ = Cijlk

τ . For some materials, this tangent

modulus tensor also has major symmetry, i.e, Cijkl
τ = Cklij

τ , i.e. for hyperelastic
materials and for associated rate-independent plasticity based on the Kirchhoff
stress; see Chapter 5.  This tangent modulus tensor for non-associated rate-
independent plasticity is not symmetric.  We will also show in the following that
the tangent modulus for associated plasticity based on the Jaumann rate of the
Cauchy stress also does not have major symmetry.
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An expression for the material tangent stiffness matrix is now derived
using the general form (6.4.38) of the constitutive relation for a rate-independent
material. Specific examples of this relation and the associated tangent moduli are
given at the end of this subsection.  In this derivation, instead of immediately
changing to Voigt notation, we will continue with indicial notation to the final
expression and then translate that to Voigt notation.

Substituting (6.4.38) into (6.4.32) gives

  
KIJij

mat ˙ d Jj =
∂NI

∂xk
Ωο
∫ Ckijl

τ D jldΩο (6.4.39)

Recall from  (4.4.7b),  that the rate of deformation tensor is the symmetric part of

the spatial velocity gradient,
    
Dkl = v k,l( ) = sym vkI NI , l( ). Substituting this and the

rate form of the constitutive equation (6.4.38) into (6.4.39) we obtain

  
KIJij

tan ˙ d Jj == N I ,kCkijl
τ v j, ldΩοΩο

∫

            
  
= N I ,kCkijl

τ NJ , l ˙ u jJdΩοΩο
∫

            
  
= NI ,kCkijl

τ NJ , ldΩο ˙ u jJΩο
∫ (6.4.41)

where in the second of the above we have used the result   Ckijl
τ Djl = Ckijl

τ vj ,l  which

follows the minor symmetry of the tangent modulus matrix, Ckijl
τ = Ckijl

τ . From
(6.4.41), the material tangent stiffness matrix is defined by

  
KIJij

mat = NI ,kCkijl
τ NJ , ldΩοΩο

∫ (6.4.42)

This expression can also be written as an integral over the current domain, i.e.,

  
KIJij

mat = NI ,k
1

J
Ckijl

τ NJ , ldΩ
Ωο

∫ = NI ,kCkijl
σT NJ ,ldΩ

Ω∫ (6.4.43)

where we have used (????) to write the second expression.

 We now convert the above to Voigt notation.  Equation (6.4.43) is now
written as

  
KIJrs

mat = NA,kδ riCkijl
σ T NB ,lδsjdΩ

Ω∫ (6.4.46)

Noting that Ckijl
τ = Cikjl

τ = Ckilj
τ , (6.4.46) and using (4.5.19b), the above can be

written as
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KIJrs
mat = BikAr

1

J
Ckijl

τ BjlBsdΩ
Ω∫ (6.4.47)

which is given in matrix form as

  
K IJ

mat = B I
TCσT BJdΩ=

Ω∫ J−1BI
TCτ BJdΩ

Ω∫ (6.4.49)\

This form is identical to the linear stiffness matrix except that the material

response matrix J −1Cτ  relates the convected rate of Kirchhoff stress to the rate-

of-deformation (or alternatively the response matrix   C
σ T  relates the Truesdell

rate of Cauchy stress to the rate-of-deformation).

Some examples of tangent moduli for different materials are given in the
following. Detailed derivations of the tangent material stiffness matrices for
specific finite elements are given in Section 6.4.2 below.

Tangent Modulus for Hyperelastic Material   The rate form of the
constitutive relation for a hyperelastic material is given by (5.x), i.e,

τ ∇c = CijklDkl     or       σ
∇T = Cijkl Dkl (6.4.50)

Thus from (6.4.50), the tangent modulus for a hyperelastic material is given by

  Cijkl
τ = JCijkl

σ T = FimFjnFkpFlqCmnpq
SE (6.4.51)

where from (5.y) C mnpq  is derived from the hyperelastic potential, i.e.,

Cmnpq
SE =

∂Smn

∂Epq
= 2

∂Smn

∂Cpq
= 2

∂2W C( )
∂Cmn∂Cpq

(6.4.52)

An interesting feature of the expression (6.4.51) is that for a hyperelastic
material the rate form of the material response is expressed naturally in terms of
the convected rate of Kirchhoff stress. The expression (6.4.51) contains no
geometric terms consisting of the product of the current stress the spatial velocity
gradient (or its symmetric or antisymmetric parts)??????MORAN???. In many
materials, (including the elastic-plastic material considered in the following) the
tangent moduli are functions of the initial stresses.

Tangent Modulus for Hypoelastic-Plastic Material   We will now
develop the tangent modulus for hypoelastic-plastic materials based on i) the
Kirchhoff stress and ii) the Cauchy stress. The elastic response is assumed to be
given by relating the Jaumann rate of stress to the elastic part of the rate of
deformation tensor.

i) Kirchhoff Stress Formulation   Recalling the relation ( ) which relates
the Jaumann rate of Kirchhoff stress to the rate of deformation tensor, we have

τ ij
∇c = Cijkl

τ Dkl (6.4.53)
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where Cijkl
τ  is the elastic-plastic tangent modulus given in (5.??)  Using the

relationship (5.???) between the convected rate and the Jaumann rate gives

  τ ij
∇c = τij

∇ J − Dikτkj −τ ik Dkj

       = Cijkl
ep Dkl − Dikτkj −τ ikDkj

       = Cijkl
ep − δilτ kj − τikδ jl( )Dkl (6.4.54)

The terms involving the stress tensor are a result of the use of the Jaumann rate in
the hypoelastic relation and the difference between the Jaumann rate and the
convected rate which appears in the expression for the tangent stiffness matrix.
These are traditionally interpreted as part of the material tangent stiffness matrix
although they can also be regarded as geometric terms due to the convection of
the stress.

Because of the symmetry of Dkl , the last expression can be written as

τ ij
∇c = Cijkl

τ −
1

2
δ ilτ kj + τikδ jl +δ ikτ lj +τ ilδ jk( ) 

 
  

 
 Dkl

         = Cijkl
tan Dkl (6.4.43)

where

  
Cijkl

tan = Cijkl
ep −

1

2
δilτ kj + τikδ jl +δ ikτ lj +τ ilδ jk( ) (6.4.55)

is the tangent modulus.  Note that this tangent modulus has major and minor
symmetries for an associated law, so the tangent stiffness is symmetric.

ii) Cauchy Stress Formulation   We will now develop the tangent stiffness
for a hypoelastic-plastic material based on the Cauchy stress and we will show
that the resulting stiffness is not symmetric. The constitutive relation  in elasto-
plasticity relates the Jaumann rate of the Cauchy stress to the rate-of-deformation:

  σ ij
∇J = Cijkl

σJ Dkl (6.4.56)

where   Cijkl
σ J  is the elastic-plastic tangent modulus.  The Jaumann rate is used

because the invariants of the Cauchy stress tensor remain constant when the
Jaumann rate vanishes, see section 5.??.  Using the relationship  (5.??) between
the Jaumann rates of Kirchhoff and Cauchy stresses, the convected rate is written
as

τ ij
∇c = τij

∇ J − Dikτ kj − τik Dkj
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       = Jσ ij
∇ + Dkkτ ij − Dikτkj − τ ikDkj (6.4.57)

Linearization with Directional Derivatives

Three difficulties arise in applying the traditional Newton-Raphson method to
solid mechanics problems:

1. the nodal forces are not continuously differentiable functions of the
nodal displacements for materials such as elastic-plastic materials;

2. for path-dependent materials, the classical Newton method pollutes the
constitutive models since the intermediate solutions to the linear
problem in the iterative procedure, dν , are not part of the actual load
path;

3. for large incremental rotations and deformation, the linearized
increments introduce a substantial error

In order to overcome these difficulties, the Newton-Raphson method is
often modified as follows:

1. directional derivatives, also called Frechet derivatives, are used to
develop the tangent stiffness;

2. a secant method is used instead of a tangent method and the last
converged solution is used as the iteration point.

3.  formulas depending on increment size are used to relate the increments
forces and displacements.

It should be pointed out that the third difficulty only arises when the secant
method is used to circumvent the second difficulty.  If a tangent Newton method
is used for a smooth material, there is no advantage to carrying higher order terms
in the geometric terms.

To illustrate the need for directional derivatives with elastic-plastic
materials, consider the following example.  The two-bar truss shown in Fig. 6.???
has been loaded so that the stresses in both bars are compressive and equal, and
both bars are at the compressive yield stress.  For simplicity, we consider only
material nonlinearities and neglect geometric nonlinearities.  If an arbitrary load
increment ∆f1

ext  is now applied to node 1, the tangent stiffness matrix will depend
on the incremental displacement ∆u1 because the derivatives of the internal nodal
displacements depend on the direction of the displacement increment.  The
residual is not a continuoiusly differentiable function of the incremental nodal
displacments at this point, because the change in nodal internal forces depends on
whether the response of the either rod is elastic or plastic.  In this case, there are
four lines of discontinuity for the derivatives, as shown in Figure ???.  These
result from the fact that if the displacment increment results in a tensile strain
increment, then the bar unloads elastically, so the tangent modulus changes from
the elastic modulus E to the plastic modulus Hp .

The internal nodal forces in the current configuration are
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fx1

fy1

 
 
 

 
 
 

int

= A
σ0 cosθ −σ0 cosθ
σ0 sinθ + σ0 sin θ

 
 
 

 
 
 

(6.4.58)

where σ0  is the current yield stress; the above is obtained by assembling the
internal nodal forces for rod elements as given by Eq. (E.4.6.7).  For each rod
element, there are two possibilities depending on the direction of the force: either
the rod continues to load witha plastic modulus, or it unloads with an elastic
modulus.  As a result, the tangent stiffness in this configuration can take on four
different values.

θ θ

σ = −σ Y
2 1σ = −σ y

2

1

3

line of discontinuity
for directional derivative

∆u
x2

E1 = E2 = E

θ θ

θ θ

E1 = Hp

E2 = E

E1 = E

E2 = Hp
∆u

x1

E1 = E2 = H p
Figure ??.  A two-bar truss in a state with both bars in compressive yield and the four quadrants of
directional derivatives.

The nodal force f1x  is shown as a function of the two components of the
nodal displacement increment in Figure ???, where the discontinuity in the
derivatives is clearly apparent.  Obviously, a standard derivative cannot be
evaluated since it has four different values.

These regimes of the four different responses are illustrated in Fig. 6.??,
which shows the four quadrants in the space of the components of the nodal
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displacement.  The tangent stiffness for dkisplacement increments in the four
quadrants is given by the following:

 in quadrant 1:

    
K int =

AE

l
2cos2 θ 0

0 2sin2 θ

 

 
 

 

 
 (6.4.59a)

in quadrant 2:

    
K int =

A

l
E + Hp( )cos2 θ E − Hp( )sinθ cosθ

E − Hp( )sin θcos θ E + Hp( )sin2 θ

 

 
 
 

 

 
 
 

(6.5.59b)

in quadrant 3:

    
K int =

AHp

l
2cos2 θ 0

0 2sin2 θ

 

 
 

 

 
 (6.5.59c)

in quadrant 4:

    
K int =

A

l
E + Hp( )cos2 θ Hp − E( )sinθ cosθ

Hp − E( )sin θcos θ E + Hp( )sin2 θ

 

 
 
 

 

 
 
 

(6.5.59d)
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solution

d
1
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2

Figure 6.4.  Schematic of potential energy, a stable equilibrium solution, and the contours for the
potential with their gradient -r .
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To deal with this type of behavior in a methodical manner, a Frechet
derivative, often called a directional derivative, must be used.  The Frechet
derivative is defined by

  

df d( )
dd ∆d[ ]

= lim
ε→0

d

dε
f d+ ε∆d( )

ε =0

(6.4.60)

The subcript on the lower term gives the direction in which the derivative is taken.
The notation Df d( )⋅ ∆d[ ]  is often used for the directional derivative in the finite
element literature..

The value of directional derivative depends on the direction of the
increment of the independent variable.  The tangent stiffnesses in (??) are based
on directional derivatives for the nodal forces have been given in (???).

In the computation of the tangent stiffness matrix, and in particular the
material tangent stiffness, directional derivatives are used for elastic-plastic
materials.  The direction is based on the last displacement increment in the
iterative procedure.  If the load increment suddenly reverses, the last increment is
not in the direction of the next solution increment, and the directional derivative
may be quite erroneous,.  However, after several iterations, the correct direction is
determined for the displacement increment and the directional derivative gives the
correct rate of change of the nodal forces.

Since the directional derivative to a specific value of the nodal
displacements, this approach cannot be used with the standard tangent Newton
described in Box ???.  Instead, a secant Newton method must be used.  The secant
Newton method is given in Box ???.

External Load Stiffness.  An important class of loads are follower loads,
which change with the configuration of the body.  Examples of follower forces are
shown in Figure ??.  Pressure loading is a common example of a follower load.
Since a pressure loading is always normal to the surface, as the surface moves, the
nodal external forces change even if the pressure is constant.  These effects are

accounted for in the Jacobian matrix Kext , which is also called the load stiffness.

The load stiffness Kext  is obtained by relatinng the time derivative (or
increment) of the external nodal forces to the time derivative (or increment) of
nodal displacements.  We first consider loading by pressure, p x, t( ).  The
external nodal forces on a surface of element e are given by letting t =− pn  in Eq.
(4.9.13):

f I
ext =− N I

Γ
∫ pndΓ (6.4.61)

Let the surface Γ  be described in terms of two variables ξ  and η .  For a
quadrilateral surface element, these independent variables are the parent element
coordinates on the biunit square.  As in Eq. (E4.3.1b), since ndΓ = x,ξ ×x,η dξdη
becomes
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f I
ext = p

−1

1

∫
−1

1

∫ NIx ,ξ ×x,η dξdη (6.4.62)

Taking the time derivative of the above gives

  

˙ f I
ext = NI

−1

1

∫
−1

1

∫ ˙ p x,ξ ×x,η +pv,ξ ×x,η +px,ξ ×v,η( )dξdη (6.4.63)

The first term is the rate of change of the external forces due to the rate of change
of the pressure.  In many problems the rate of change of pressure is prescribed as
part of the problem.  In some problems, such as in fluid-structure interaction
problems, the pressure may arise from changes of the geometry; these effects
must then be linearized and added to the load stiffness.  The second two terms
represent the changes in the external nodal forces due to the change in the
direction of the surface and the area of the surface.  These are the terms which are
reflected in the external load stiffness, so

K IK
extvK = p

−1

1

∫
−1

1

∫ NI v,ξ ×x,η +x,ξ ×v,η( )dξdη (6.4.64)

At this point, it is convenient to switch partially to indicial notation.
Taking the dot product of the above with the unit vector e i  gives

e i ⋅K IK
extvK ≡ KijIK

ext v jK

                  ≡ p
−1

1

∫
−1

1

∫ NI NJ , ξei ⋅ ek × x,η( ) + NJ , ηei ⋅ x ,ξ ×ek( )[ ]dξdη
(6.4.65)

where we have expanded the velocity field in terms of the shape functions
byv,ξ = vKNK, ξ .  We now define

  Hik
η ≡ eiklxl, η               Hik

ξ = eiklxl, ξ (6.4.66)

Using these definitions and Eq. (6.4.65), we obtain

KijIJ
ext = p

−1

1

∫ N I NJ, ξ Hij
η − NJ , ηHij

ξ( )
−1

1

∫ dξdη (6.4.67)

or

K IJ
ext = p

−1

1

∫ NI NJ , ξHη − NJ , ηHξ( )
−1

1

∫ dξdη

If we write out the matrices Hξ  and Hη  we have
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K IJ
ext = p

−1

1

∫ N I
−1

1

∫ NJ, ξ

0 z,η −y ,η
−z,η 0 x,η
y ,η −x,η 0

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

                       −NJ, η

0 z ,ξ − y,ξ
−z ,ξ 0 x ,ξ
y,ξ −x,ξ 0

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
dξdη

(6.4.68)

which is the load stiffness of any surface which is generated from a biunit square
in the parent element loaded by a pressure p.  The load surface for a surface
originating can be similarly expressed in terms of the area coordinates, although
the limits of integration need to be changed.  This load stiffness reflects the effect
of the change in geometry on the nodal forces: both alterations in the direction of
the loaded surfaces and size of the surface will changes in the nodal forces.  It is
immediately apparent from (6.4.68) that the submatrices of the load stiffness
matrix are not symmetric, so the complete matrix is not symmetric.  However, it
can be shown that for a closed structure in a constant pressure field, the assembled
external load stiffness is symmetric.

Example 6.1.  Three-Node Triangle Element.

We first consider the three-node triangle element in two dimensions as in
Example 4.1.  The tangent stiffness matrix is derived and explicit forms for
hyperelastic and rate-independent hypoelastic-plastic materials are given.  The
geometric tangent stiffness matrix, which is independent of material response, is
then derived.  Finally, the external load matrices are derived for a pressure load
along any edge.

Material Tangent Stiffness Matrix.  We consider the case of plane strain
deformation (using the x-y plane).  The only velocity components are v x  and v y

and derivatives with respect to z vanish.  The tangent stiffness matrix for a rate-
independent material given by Eq. (6.3.36):

  
Ktan = BT∫ C[ ]BdA

(E6.1.1)

where A is the current area of the element and we have assumed a unit thickness
(see Eq. (4.??)).

  

Cab
tan[ ] =

C1111
σ T C1122

σ T C1112
σT

C2211
σ T C2222

σ T C2212
σ T

C1211
σT C1222

σ T C1212
σ T

 

 

 
 
 

 

 

 
 
 

(E6.1.2)

The B  matrix is given by Eq. (E4.1.45):
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B =
1

2 A

y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 

 

 
 
 

 

 

 
 
 

(E6.1.3)

The material tangent stiffness matrix, Eq. (6.4.81), is rewritten, using Eqs.
(6.4.82 - 6.4.84) as

  

K tan =
1

2 A
 
 
  

 
 

A 0
∫

2

y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

C1111
σ T C1122

σT C1112
σ T

C2211
σ T C2222

σ T C2212
σ T

C1211
σ T C1222

σ T C1212
σT

 

 

 
 
 

 

 

 
 
 

                         

y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 

 

 
 
 

 

 

 
 
 
dA0

(E6.1.4)

Assuming the integrand to be constant, we obtain, by multiplying the
integrand by the element area A0  (note that, for plane strain, a unit thickness is

assumed and the element volume is given by V0 = A0 1( ) = A0 ).

  

KAB
tan =

A0

4A2

y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

C1111
σ T C1122

σ T C1112
σ T

C2211
σ T C2222

σ T C2212
σT

C1211
σ T C1222

σ T C1212
σ T

 

 

 
 
 

 

 

 
 
 

                         

y23 0 y31 0 y12 0

0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12

 

 

 
 
 

 

 

 
 
 

(E6.1.5)

Neo-Hookean Material.  For a Neo-Hookean material (see Section 5.??),

  
Cijkl

σ T = λδijδ kl + µ J( ) δ ikδ jl +δ ilδ jk( ) (E6.1.6)

where

  J =det F ,           µ J( ) = µ0 −λ log J , (E6.1.7)

and Eq. (6.4.88) is written in Voigt notation as
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Cab
tan[ ] =

λ + 2µ λ 0

λ λ + 2µ 0

0 0 µ

 

 

 
 
 

 

 

 
 
 

(E6.1.8)

Thus, for a Neo-Hookean material, the material tangent stiffness matrix
has the same form as the stiffness matrix for small strain linear elasticity except
for the dependence of the moduli on the deformation (through Eq. (6.4.90)) and
the geometry factor A0∆A .

Rate-Independent Elastoplasticity.  For a rate-independent elastic-plastic model in
terms of the Kirchoff stress, with associated plastic flow and a von-Mises yield
condition, the tangent modulus is given by Eq. (5.??)

  
Cijkl

tan = Cijkl
ep −

1

2
δ ilτ jk +τ ikδ jl + δ ikτ jl + τ ilδ jk( ) (E6.1.9)

The elastoplastic tangent modulus is given by

Cijkl
ep = Cijkl −

Cijmn pmnCklrs prs

h + pmnCmnrs prs

(E6.1.10)

where h is the plastic modulus, pij =
3 ′ τ ij
2σ 

 is the plastic flow direction, ′ τ ij  is the

deviatoric part of the Kirchoff stress and σ  is the effective stress defined by (??).
Assuming constant isotropic elastic moduli, Eq. (6.4.92) is written as

Cijkl
ep = λδijδ kl + µ δ ikδ jl + δ ilδ jk( ) −

4µ2

h + 3µ
pijpkl (E6.1.11)

Using Voigt notation and letting γ =
2µ

h +3µ( ) , p1 = p11 , p2 = p22 , p3 = p12  and

τ1 = τ11 , τ2 = τ22 , τ3 = τ12 , the tangent stiffness matrix is obtained as

  

Cab
tan[ ] = 0

λ + 2µ λ 0

λ λ + 2µ 0

0 µ

 

 

 
 
 

 

 

 
 
 

        −2µγ
p1

2 p1 p2 p1p3

p2 p1 p2
2 p2 p3

p3 p1 p3 p2 p3
2

 

 

 
 
 

 

 

 
 
 

− 1
2

4τ1 0 2τ3

0 4τ 2 2τ3

2τ 3 2τ 3 τ1 +τ 2

 

 

 
 
 

 

 

 
 
 

(E6.1.12)

Geometric Stiffness Matrix.  The geometric stiffness matrix is given by
Eq. (6.3.55), i.e.,
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K IJ

geo = I2×2 B I
TσBJ dA

A0
∫ = I2× 2HIJ (E6.1.13)

From Eq. (E4.1.18)

  
B =

1

2A

y23 y31 y12

x32 x13 x21

 

 
 
 

 

 
 
 

(E6.1.15)

Substituting Eq. (E6.1.15) into Eq. (E6.1.16) gives

H =
1

2A

y23 x32

y31 x13

y12 x21

 

 

 
 
 

 

 

 
 
 

σ xx σ xy

σ xy σ yy

 

 
 

 

 
 

1

2 A

y23 y31 y12

x32 x13 x21

 
  

 
  (E6.1.18)

Assuming the integrand to be constant, the geometric stiffness matrix is obtained
by multiplying the integrand in Eq. (E6.1.13) by A  to give

K IJ
geo =

1

4A
HIJI2×2

Kgeo = 1

4A

H11 0 H12 0 H13 0

0 H11 0 H12 0 H13

H21 0 H22 0 H23 0

0 H21 0 H22 0 H23

H31 0 H32 0 H33 0

0 H31 0 H32 0 H33

 

 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 

(E6.1.19)

The geometric stiffness matrix is independent of material response and as can be
seen from Eqs. (E6.1.18 - E6.1.19) depends only on the current stress rate and the
geometry of the element.  The load stiffness matrix is given by the same equation
as described for the rod.

Example 6.2.  Two-Node Rod Element.

We now consider the two-node rod element under a state of uniaxial
stress.  The rod is assumed to lie along the   ̂  x −axis .  The only non-zero Cauchy
stress component is   

ˆ σ 11 ≡ ˆ σ x .  The tangent stiffness and the external load matrices
are derived in the updated Lagrangian form, i.e. in the current configuration.  We
first reconsider the constitutive relation for the special case of uniaxial stress.  The
superscript hats are dropped in the following for convenience.

The Truesdell rate of the Cauchy stress is assumed to be given by Eq.
(6.3.??)

    σ ij
∇T = Cijkl

σ J Dkl (E6.2.1)
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For the case of uniaxial stress, the only non-zero components of the rate of
deformation tensor are D11 , D22 , and D33 .

The uniaxial stress rate is therefore given by

  σ11
∇J = C1111

σ J D11 + C1122
σ J D22 + C1133

σ J D33 (E6.2.2)

The traction-free condition on the surface of the rod can be stated as

  

σ22
∇c = C2211

σ J D11 + C2222
σ J D22 +C2233

σ J D33 = 0

σ33
∇c = C3311

σ J D11 + C3333
σ J D22 + C3333

σ J D33 = 0
(E6.2.3)

If the rod is initially transversely isotropic (with the axis of symmetry coincident
with the x1-axis) the tangent moduli are related by   C1133

σ J = C1122
σ J  and   C2222

σ J = C3333
σ J .

Furthermore, uniaxial stressing in the direction of the axis of isotropy preserves
the transverse isotropy and these relations hold throughout the deformation.
Solving Eq. (6.2.3), with these assumptions we obtain S

D22 = D33 ,       
  
D22 = −

C2211
σ J

C2222
σ J + C2233

σ J D11 (E6.2.4)

Using Eq. (6.2.4) for D22 and D23  in Eq. (E6.2.3) gives the uniaxial relation

  σ11
∇J = EσT D11      or     Cστ[ ] = Eστ[ ] (E6.2.5)

where   E
tan  is the tangent modulus associated with the state of uniaxial stress and

is given by

  
Eσ T = C1111

σ T −
2C2211

σ T C1122
σ T

C2233
σ T + C2222

σ T (E6.2.6)

Material Tangent Stiffness Matrix.  The tangent stiffness matrix for a
rate-independent material is given by Eq. (6.4.18) in the current configuration
which we write in the local coordinate system as

  

ˆ K mat = ˆ B T

Ω
∫ ˆ C σ T ˆ B dΩ (E6.2.7)

Using the B  matrix from Eq. (E4.6.3) and   C
σ J  as given by Eq. (E6.2.5), we

obtain

    

ˆ K mat =
1

l
0

1

∫

−1

0

1

0

 

 
  

 
 
 

 

 
  

 
 
 

Eσ T[ ]1

l
−1 0 +1 0[ ]Aldξ (E6.2.8)

6-44



T. Belytschko & B. Moran, Solution Methods, December 16, 1998

Here, the B  matrix has been expanded to a 4 ×1  matrix by adding zeros to reflect
that the   ̂  x -component of the rate-of-deformation is independent of the transverse
velocities.  If we assume   E

σ T  is constant in the element, then

    

ˆ K mat =
AEσ T

l

+1 0 −1 0

0 0 0 0

−1 0 +1 0

0 0 0 0

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.9)

This is identical to the linear stiffness matrix for a rod if   E
σ T  is replaced by

Young's modulus E. The global stiffness is given by Eq. (4.5.42):

  K
mat = TT ˆ K matT (E6.2.10a)

where T  is given by

  

T =

cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 cos θ sin θ
0 0 −sin θ cos θ

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(E6.2.10b)

so

    

Kmat =
AEσ T

l

cos 2 θ cosθ sinθ −cos 2θ −cos θsin θ
sin 2θ −cos θ sin θ −sin 2 θ

cos 2θ cos θ sin θ
symmetric sin 2θ

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.11)

where the material constant   E
σ T  relates the Truesdell rate of the Cauchy stress to

the rate-of-deformation in a uniaxial state of stress.

Geometric Stiffness Matrix.  The geometric stiffness is developed in a
coordinate system that at time t coincides with the axis of the bar but is fixed in
time.  Note that since the coordinate system is fixed in the orientation shown in
Fig. ??, it is not a true corotational coordinate system, so the rotation corrections
of an objective rate must be considered.  We will use the Truesdell rate.  We could
also consider the   ̂  x ,  ˆ y  coordinate system corotational and derive the geometric
stiffness by accounting for the channge of the transformation matrix T  in
(E4.6.11) .  Many such derivations are given in Crisfield.  The result should be
identical, since the same mechanical effect is represented, but the derivation is
generally more difficult.  The geometric stiffness matrix is given by Eq. (6.4.18):.

  
ˆ K IJ = ˆ H IJI             

    

ˆ H = ˆ B T

Ω
∫ σ ˆ B dΩ (E6.2.12)
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where the geometric stiffness has been expressed in the local coordinate system
for simplicity.  Using the   B  matrix from Eq. (4.6.3), it follows that

    
H =

1

lΩ
∫

−1

+1

 
  

 
  ˆ σ x[ ] 1

l
−1 +1[ ]dΩ (E6.2.13)

Assuming that the stress is constant gives

    
ˆ H =

ˆ σ x A

l
+1 −1

−1 +1

 
  

 
  (E6.2.14)

Expanding the above, we obtain the geometric stiffness as given by Eq. (E6.2.12)

    

ˆ K geo =
A ˆ σ x
l

+1 0 −1 0

0 +1 0 −1

−1 0 +1 0

0 −1 0 +1

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.15)

Use of the transformation formula, Eq. (4.5.42), shows that the geometric stiffness
is independent of the orientation of the beam.

  K
geo = TT ˆ K geoT = ˆ K geo (E6.2.16)

The total tangent stiffness is then given by the sum of the material and geometric
stiffnesses

  K
int = Kmat + Kgeo (E6.2.17)

The matrix is symmetric, which is  a consequence of choosing a constitutive
equation in terms of the Truesdell rate of the convected rate of the Kirchhoff
stress.  The matrix is positive definite as long as the initial stress is small
compared to the tangent modulus.  THE STIFFNESS FOR JAUMANN RATE
AND THE EIGENVALUES OF  K ARE LEFT AS EXERCIZES.

Load Stiffness.  The load stiffness for the rod is given by Eq. (??).  We write
only the nonzero terms noting N, iη = 0 and that x,η = y,η = 0 , since the shape

function is only a function of ξ .  For simplicity, we first evaluate it in the
corotational system, which gives

  

ˆ K IJ = p
0

1

∫ N I NJ , ξ
0 z,η

− z,η 0

 

 
 

 

 
 dξ (E6.2.18)

In the above, z,η  can be taken to the width of the element a.  Using (???) gives

    
ˆ K IJ = p

0

1

∫ NI N J , ξ l
0 1

−1 0

 
  

 
  adξ (E6.2.19)
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Let

  
HIJ = N I

0

1

∫ NJ , ξdξ =
1− ξ

ξ
 

 
 

 

 
 

0

1

∫
1

l
−1 +1[ ]dξ (E6.2.20)

  
      =

1

2l
−1 1

−1 1

 
  

 
  (E6.2.21)

Then

    
ˆ K IJ

ext = plaHIJ (E6.2.22)

Taking the shape functions (???) and substituting into the above gives

  

ˆ K ext =
pa

2

0 −1 0 1

1 0 −1 0

0 −1 0 1

1 0 −1 0

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.23)

The above matrix is also invariant with rotation, i.e.,

  K
ext = TT ˆ K extT = ˆ K ext (E6.2.24)

for forces and velocities expressed in any other Cartesian coordinate system.

Material Tangent Stiffness Matrix in Total Lagrangian Form.
The material tangent stiffness matrix for a rate-independent material is given by
Eq. (6.4.18) in the reference configuration

Kmat = BT

Ω0

∫ CSEBdΩ0 (E6.2.25)

Using the B  matrix from Eq. (E4.???) and CSE  as given by Eq. (E6.2.5), we
obtain

      

    

Kmat =
1

l00

1

∫

−cos θ
−sin θ
cosθ
sinθ

 

 
  

 
 
 

 

 
  

 
 
 

ESE[ ] 1

l0
−cos θ − sin θ cos θ sin θ[ ]A0l0dξ (E6.2.26)

If we assume ESE  is constant in the element, then
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Kmat =
A0 ESE

l0

cos2 θ cos θ sinθ −cos 2θ −cos θ sin θ
sin 2θ −cos θsin θ −sin2 θ

cos 2θ cosθ sinθ
symmetric sin2θ

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.27)

where the material constant ESE  relates the Truesdell rate of the Cauchy stress to
the rate-of-deformation in a uniaxial state of stress.  It can easily be shown via
(???) that the above is identical to (E6.2.12).

Geometric Stiffness Matrix in Total Lagrangian Form.   The
geometric stiffness is developed from (6.4.15):

K IJ = HIJI             

  
H = B0

T

Ω0

∫ SB0 dΩ0 (E6.2.28)

where the   B0  matrix is given in (4.6.3), so

  
H =

1

l0Ω0

∫
−1

+1

 
  

 
  S11[ ] 1

l0
−1 +1[ ]dΩ0 (E6.2.29)

Assuming that the stress is constant gives

    
ˆ H =

S11A0

l0

+1 −1

−1 +1

 
  

 
  (E6.2.30)

Expanding the above, we obtain the geometric stiffness

  

Kgeo =
A0S11

l0

+1 0 −1 0

0 +1 0 −1

−1 0 +1 0

0 −1 0 +1

 

 

 
 
 
 

 

 

 
 
 
 

(E6.2.31)

The total tangent stiffness is then given by the sum of the material and geometric
stiffnesses, (E6.2.17).

6.3.7.  Constraints.   Three types of methods are frequently used for treating
the constraint Eq. (6.3.10).  They are:

1.  penalty methods
2.  Lagrangian multiple methods
3.  augmented Lagrangian methods

These methods originate in constrained optimization theory.  As will be
seen, they can readily be adapted to the solution of the nonlinear algebraic
equations that correpond to the momentum or equilibrium equations, Eq. (6.3.10).
To motivate these methods, we begin with a description of how they are applied
to the nonlinear minimization problem, Eq. (6.3.27) (note that while Eq. (6.3.27)
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[...] the stationary prints are determined in the problem is often called a
minimization problem because often only the stable equilibrium solutions are of
interest).

The problem then is to solve:

r d( ) = 0   subject to gI d( ) = 0, I =1 to nc

where r ∈Rn, d ∈Rn .  The following notation is used

W ,a =
∂W

∂da

       GIa =
∂gI

∂da

= gI , a       G Ia =
∂gI

∂da

= gI, a

  
ra, b = Aab        or       

∂r
∂d

= A = M˙ ̇ d + f int −f ext

We will use the conventions 
  
GI = GI1 ,  GI2,  ...,  GInc[ ]  and H I ∈Rnc × Rnc , as

before.  Recall that

  W ,a = ra = fa
int − fa

ext (6.3.40d)

in a conservation problem and that W ,ab , the Jacobian

W ,ab = Aab (6.3.40e)

 matrix of the system.

We will also examine the less general problem of finding stationary the
points of

W d( ) = 0  subject to g I d( ) = 0 (6.3.41)

Lagrange Multiplier Method.  In the Lagrange method, the constraints are
appended to the objective function with the Lagrangian multipliers.  The
minimization Eq. (6.3.41) becomes equivalent to finding the stationary points of

W + λ IgI ≡ W + λTg (6.3.42)

Note that at a minimum of W, the augmented function given above has a saddle
point.

The stationary points are found by setting to zero the derivatives of the

above with respect to da  and λI :

W ,a +λ IgI, a ≡ ra +λ IgI, a = 0 (6.3.43a)
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                 gI = 0 (6.3.43b)

The above is the system of equations for the constrained problem.  The constraint

introduces extra forces λI gI, a , which are linear combinations of the Lagrange
multipliers.

The linear model of (6.3.43) is the first two terms of a Taylor expansion of
(6.3.43), giving

ra + λ IgI , a + ra, b ∆db + λ IgI, a + λ IgI , ab∆db = 0 (6.3.44a)

g I + gI , a∆da = 0 (6.3.44b)

Using matrix notation we can write the above as

A + λIH I GT

G 0

 

 
 

 

 
 

∆d

∆λ
 
 
 

 
 
 

=
−r − λTG

−g

 
 
 

 
 
 

(6.3.45)

So the linear model has nc  additional equations due to the constraint.  Even when
the A  is positive definite, the augmented system of equations will not be positive
definite because of the zeroes on the diagonal in the lower right hand corner of the
matrix.  For a linear statics problem with a linear constraints Gd= g , the above
becomes

K GT

G 0

 

 
 

 

 
 

d

λ
 
 
 

 
 
 

=
f ext

g

 
 
 

 
 
 

(6.3.46)

since
1.  A = K  for linear statics;

2.  H I = 0  for linear constraints, see Eq. (6.3.40c);
3.  the starting value is zero and ∆d = d , ∆λ = λ , and the constraint is

Gd = 0 .

For the general problem with nonconservative materials, dynamics, etc., the
Lagrangian multiplier method is formulated as follows.  The stationary condition
Eq. (6.3.43) can be written

δW + δ λIgI( ) = 0 (6.3.47)

From Eq. (B4.6.1) and Eq. (6.3.1)
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δW =δW ext −δW int + δW inert

     = δdT −fext + f int + sDM˙ ̇ d ( )
     = δdTr = δdara

(6.3.48)

Substituting Eq. (6.3.48) into Eq. (6.3.47) and writing out the differentials on the
second term gives

δdara +δλ I
TgI + λI

TgI , aδda = 0      ∀δdaδλ I (6.3.49)

Using the arbitrariness of the differentials in the above implies Eq. (4.3.44-45).
Thus the same structure is obtained for a nonconservative dynamic problem.  The
linearization procedure leads to the same equations, Eq. (6.3.45).  While the
development has been given for the virtual work δW , it applies identically to
virtual power.

Penalty Method.  Again, we first consider conservative problems where the
solution is determined by minimization.  In the penalty method, the constraint is
enforced by adding the square of the constraints to the poential, so we minimize
as modified potential

W d( ) = W d( ) +
1

2
βgI d( )gI d( ) (6.3.50)

where β  is a penalty parameter.  The penalty parameter is generally orders of
magnitude greater than other parameters of the problem.  The idea is that if β  is
large enough, the minimum of W d( )  cannot be attained without satisfying the
constraints.

The stationary (or minimum) conditions give

W ,a = W ,a + βgIgI, a = 0     or     r + βgTG = 0 (6.3.51)

The linear model is

ra, b + βgI , bgI , a +g IgI, ab( )db = 1 ra + βgIgIa( ) (6.3.52)

or in matrix form

A ∆d = A + βGTG + gIH I( )∆d b = −r + βgTG (6.3.53)

The size of this system is not increased over the unconstrained system.  For linear
constraints, if A > 0 , A > 0, i.e. the augmented system if positive definite if the
original Jacobian matrix is positive definite.  The major drawback of penalty
methods is that they impair the conditioning of the equations.
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The discrete equations for nonconservative systems are obtained by the
same procedure as for the Lagrange multipliers.  Write the stationary conditions in
differential form

0 =δW =δW +
1

2
βδ gI gI( ) (6.3.54)

Now apply Eq. (6.3.48) to replace δW  in the above.  The discrete equations and
linear model are then given by Eqs. (6.3.51) and (6.3.52), respectively.

6.5.  STABILITY: CONTINUATION AND ARCLENGTH
METHODS

Stability.  In nonlinear problems, stability of solutions is of considerable
interest.  There are many definitions of stability: stability is a concept that
depends on the beholder and his objectives.  However, some general definitions
are widely accepted.  We will here describe a theory of stability that originates
from Liapunov(??) and is widely used throughout mathematical analysis, see
Saybol(??) for a very lucid account of its computtional application to a variety of
problems.  We will focus on its application to finite element methods.

We will first give a definition of stability and explore its implications.
Consider a process that is governed by an evolution equation such as the equation
of motion or the heat conduction equations.  Let the solution for the initial

conditions dA 0( ) = d A
0 be denoted by dA t( ) .  Now consider additional solutions

for initial conditions dB 0( ) = dB
0 , where dB

0  are small perturbation of dA
0 .  This

means that dB
0  is close to dA

0  in some norm, i.e.

dA
0 − dB

0 ≤ ε (6.5.1)

A solution is  stable when for all initial conditions that satisfy (6.5.1), the solution
satisfies

dA t( ) − dB t( ) ≤ Cε ∀t > 0 (6.5.2)

To explain this definition, we specify the norm to be the   l2  norm.  Note that all

initial conditions which satisfy (6.5.1) lie in a neighborhood of dA
0 .  It is often

said that the initial conditions lie in a ball around dA
0 .  The definition then states

that for all initial conditions which lie in the ball around dA
0 , the solutions dB t( )

must lie in a ball around the solution dA t( )  for all time.  This definition is

illustrated for a system with two dependent variables in Fig. 6.7.  The right-hand
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side shows the behavior of a stable system.  Here we have only shown two
solutions resulting from perturbations of the initial data, since it is impossible to
show an infinite number of solutions.  The leftr hand side shows an unstable

system.  It suffices for a single solution starting in the ball about dA
0  to diverge to

indicate an unstable solution.

The applicability of this definition to processes we intuitively consider
stable and unstable can be seen by the following examples.  Consider a beam a
beam loaded axially by a vertical load as shown in Fig. 6.8.  We first consider the
numerical response when the beam is perfectly  straight.  The lateral response in

this case is the path is denoted by dA t( ) , and as can be seen, the lateral

displacement is zero even though the load eventually exceeds the buckling load.
If you don't believe this, try it.  The beam will usually not buckle in an
incremental solution or a dynamic solution with explicit or implicit integration.
Only if roundoff error introduces a "numerical imperfection" will the perfectly
straight beam buckle.  We then plot the lateral displacement of the beam as we
perturb the location of node 2, which can be considered an initial condition on the
displacement of that node.  The resulting paths are also shown in Fig. 6.8.  It can
be seen that when the load is below the buckling load, the paths for different

initial conditions  remain in a ball about the dA t( ) .  However, when the load

exceeds the buckling load, the solutions for different initial conditions in the
location of point A diverge drastically.  Therefore any process in which the load
exceeds the buckling load is unstable.  Note that the direction of the divergence
depends on the sign of the initial imperfection.

Another example is the flow of a liquid in a pipe.  When the flow velocity
is below a critical Reynold’s number, the flow is stable.  A perturbation of the
state leads to small changes in the evolution of the system.  On the other hand,
when the flow is above the critical Reynold’s number, a small perturbation leads
to large changes because the flow changes from laminar to turbulent.

Stability is usually ascribed to a state, rather than a process.  The definition
is then identical: a state is stable if a small perturbation of that state results in a
small differences for all time.  When perturbations lead to large differences in the
subsequent states of the system, the state is unstable.  This concept fits within the
framework of the definition of stability given by Eq. (6.5.1) with the state
considered as the initial condition.

A common example of stable and unstable states often given in
introductory dynamics  texts is shown in Fig. 6.9. It is clear that state A is stable,
since small perturbations of the positionn of the ball will not significantly change
the evolution of the  system.  State B is unstable, small perturbations will lead to
large changes: the ball can roll either to the right or to the left.  State C is often
called neutral stability in introductory texts.  According to the definition of Eq.
(6.5.1), state C is an unstable state, since small changes in the velocity will lead to
large changes in the position as large times.  Thus the definition of stability given
in introductory texts does not completely conform to the one given here.

Stability of Equilibrium Solutions.  To obtain a good understanding oof
the behavior of a system, its equilibrium paths, or branches, and their stability
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must be determined.  It is often argued among structural mechanicians that the
difficulties associated with unstable behavior can be circumvented by simply
obtaining a dynamic solution.  When a structure is loaded above its limit point or
a bifurcation point in a dynamic simulation, the structure passes dynamically to
the vicinity of the next stable branch and the instability is not apparent except for
the onset of a different mode of deformation, such as the lateral deformation in a
beam.  However, to understand the behavior of a structure or process thoroughly,
its static equilibrium behavior should be carefully examined.  Many vagaries of
structural behavior may be hidden by dynamic simulations.  For example, when
the  fundamental path bifurcates with an asymmetric branch as shown in Fig.
6.10, the structure becomes very sensitive to imperfections.  The theoretical
bifurcation point is not a realistic measure of the strength; an actual structure will
buckle at a much lower load than the theoretical value because imperfections are
unavoidable.  A single numerical simulation could miss this sennsitivity
completelly.  This sensitivity to imperfections for cylindrical shells was analyzed
by Koiter(??) and is a classical example of imperfection sensitivity.

As a first step in studying the equilibrium behavior of a system, the load
and any other parameters of interest, such as the temperature or an active control,
must be parametrized.  Up to now we have parametrized the load by the time t,
which is convenient in many practical problems.  However, a single parameter
does not always suffice in the study of equilibrium problems.  We will now

parametrize the load by nγ  parametersγ a , so the load is then given by γ aqa ,

where qa  represent a distributed loading such as a pressure or concentrated loads.
We use the convention that repeated indices are summed over the range, in this

case nγ .  For distributed loads, the parameter γ a  should not be applied directly to
the external nodal forces, since the external nodal forces will depend on the nodal

displacements.  The discrete loads can be parametrized by γ afa
ext , where fa

ext  are
column matrices of nodal external forces associated with a loading mode a.

Our intention is to trace the equilibrium behavior of the model as a

function of the parameters γα   The problem then is then is to find   d( γ a )  such
that

  
r d( γ a )( ) = 0 (6.5.2b)

For purposes of characterizing the nonlinear system, the solutions are usually
grouped into branches, which are continuous lines describing the response for one
change of one parameter.  Branches along which the solution is in equilibrium, i.e.
satisfies Eq(6.5.2b), are called equilibrium branches, regardless of whether they
are stable or unstable.

 Nonlinear systems exhibit three types of branching behavior:
1.  turning points, usually called limit points in structural analysis, in

which the slope of the branch changes sign;
2.  stationary bifurcations, often called simply bifurcations, in which two

equilibrium branches intersect.
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3.  Hopf bifurcations, in which an equilibrium branch intersects with a
branch on which there is periodic motion.

The behavior of the shallow truss exhibits a limit (or turning) point, as can
be seen from Fig. 6.11.  Subsequent to a turning point, a branch can be either
stable or stable.  In this case, as shown in the analysis of the problem in Example
6.4, the branch after the first limit point, point a, is unstable, while the branch
after thhe second limit point, point b, is stable.

The beam problem shown in Fig. 6.12 is a classical example of a
bifurcation.  The point b where the two branches intersect is the point of
bifurcation.  Subsequent to the bifurcation point, the continuation of the
fundamental branch ab, becomes unstable.  Point b, the bifurcation point,
corresponds to the classical buckling load of the Euler beam.  This  type of
branching is often called a pitchfork, (do you see the hay on the end?)

Hopf bifurcations are quite uncommon in passive structures.  They are
found in general nonlinear behavior and can be seen in structures under active
control.  In a Hopf bifurcation, stable equilibtrium solutions become impossible at
the end of a branch.  Instead, there are two branches with periodic solutions.  An
example of a Hopf bifurcation is given in Example ??.

Methods of continuation and arclength methods.   The tracing of
branches is called a continuation method.  The tracing of equilibrium branches is
often quite difficult and robust, automatic procedures for continuation are not
available.  In the following, we describe continuation methods base on
parametrization,  such as the arc length method.  In the arc length method, the arc
length along the equilibrium path replaces the load as the incremental parameter.
It enables branches to be followed around turning points, which is critical to the
succesful continuation of equilibrium branches..

We first consider continuation with the arc length method for the case of a single
load parameter.  In tracing the branches in a model with a single load parameter,
the load parameter is usually started at zero and incremented.  For each load

increment, an equilibrium solution is computed, i.e. we find dn+1 , a solution to

  
r dn+1, γ n+1 
 
  

 
 = 0 or f int dn+1 

 
  

 
 − γ n+1fext = 0 (6.5.3)

where n is the step number and f ext  is the load distribution chosen for tracing the

branch.  We assume that the loads are prescribed discretely so that the distribution
of nodal external forces does not change with the deformation of the model.  The
inertial term is not included in the above because continuation methods are
applicable only to equilibrium problems. One of the most widely used
continuation methods in structural mechanics is the arc length method. Instead of
incrementing the load parameter γ  to trace the branch, a measure of the arclength
is incremented.  This is accomplished by adding a parametrization equation to the
equilibrium equations
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p d , ∆d ,γ( ) = ∆s2 , ∆γ = γ n+1 − γ n , ∆d = dn +1 − dn (6.5.4)

The parametrization equations  may be written in terms of the displacements or
increments in the displacements or both.  For example, in the arclength method
the parametrizationn equations are written directly in terms of the displacement
increments

∆dT∆d +∆γ 2 = ∆s2 (6.5.4b)

Many other types of parametrization equations can be devised, and some are
described at the end of this section.  DEESCRIBED FISH PARAMETRIZATION
LATER WHEN SCALINNG IS DESCRIBED

The total system of equations then consists of the equilibrium equations
and the parametrization equation, so we have

  

r d, γ( )
p d ,∆d ,γ( )

 
 
 

  

 
 
 

  
=

0

∆s2

 
 
 

  

 
 
 

  
(6.5.5)

The load parameter γ  is now treated as an additional unknown of the system and
the arclength s  is now incremented instead of the parameter γ .

This procedure is most easily explained for a one degree-of-freedom problem
such as the shallow truss shown in Fig. 6.13.  The fundamental branch is shown in
Fig. 6.13 and we assume that a solution has been obtained at point n.   The

arclength equation when viewed in the   γ , dy  is the circle about point n; in the 3-

space 
  
γ , dx , dy( )  it would be a sphere about the point.  In solving the parametrized

equations, (6.5.5), we seek a solution which is the intersection of the equilibrium
branch with the circle about the last solution point, which gives the solution
shown as point n+1 in Fig. 6.13.  Thus, while incrementing the load parameter
would be fruitless at point n, the problem has been restated in terms of the
arclength along the branch so that a solution with a lower load can be found.

The parametrized equations for the truss with symmetry can then be posed as
follows: find a solution to

  
r1( d1, γ ) = − f1( d1 ,γ ) = 0 subject to γ s( ) − γ n 

 
  

 
 

2

+ d1 s( ) − d1
n 

 
  

 
 

2

= ∆s2 (6.5.6)

Alternatively, we can write the above in terms of increments in the displacements
and the load parameters as:  find a solution to

f1 = 0 subject to ∆γ 2 + ∆d1( )2 =∆s2 (6.5.7)
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Thus the problem with one unknown is augmented by a second equation, which
leads to two nonlinear algeraic equations in two unknowns.  The load need not
increase in the step, and may in fact decrease.  It is only necessary for the
arclength parameter to increase, which is a perfectly natural way of tracing the
branch.

To describe the method in a more general case, we consider the problem with nγ

load parameters γ a .  For each load parameter, a parametrization equation must be
added:

  
pa d ,γ b( ) = ∆sa

2    or    
  
p d ,γ( ) = ∆s (6.5.8)

 where

  
p = p1 ... pnγ[ ], ∆s = ∆s1

2 ... ∆s
nγ

2 
  

 
  , γ = γ 1 ... γ

nγ

 
  

 
  

The resulting augmented equations for the equilibrium path are then

  

f d, γ( )
p d ,γ( )

 
 
 

  

 
 
 

  
=

0

∆s

 
 
 

  

 
 
 

  
(6.5.9)

Thus for a system with nDOF  degrees of freedom, we obtain an augmented system

of  nDOF + nγ  equations in the same number of unknowns.

The resulting equations can be solved by the standard Newton methods we have
described.   The linearized equations for the Newton method are given by

∂f ∂d ∂f ∂γ

∂p ∂d ∂p ∂γ

 

 
 
 

 

 
 
 

∆d

∆γ

 
 
 

  

 
 
 

  
=

0

∆s

 
 
 

  

 
 
 

  

  

Kint − γ aKa
ext ∂p ∂γ

∂p ∂d ∂p ∂γ

 

 
 
 

 

 
 
 

∆d

∆γ

 
 
 

  

 
 
 

  
=

0

∆s

 
 
 

  

 
 
 

  
(6.5.10)

where the Jacobians of the nodal forces have been expressed in terms of the
internal tangent stiffness and the load stiffness on the LHS.  A subscript has been
added to the load stiffness because the Jacobian for each group of external loads
must be considered separately.  At times the internal tangent stiffness must also be
subdivided into terms associated with different parameters, as when the
temperature changes and causes buckling.
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The parametrization equations need not be arclength equations: any
parametrization which leads to a regular set of Newton equations is a candidate.

A major difficulty in all branch continuation techniques is setting the
increment size and in the scaling of the parametrization equations.  If the
increment size is too small, considerable effort is wasted in determining
unnecessary equilibrium points.  On the other hand, if the increment size is too
large, the convergence of the Newton procedure can fail or too many iterations are
needed.  The selection of an appropriate stepsize can be aided by an estimate of
the location of the next turning point or bifurcation point.  The step size can then
be set so that a reasonable fraction of that distance is covered in the next
increment.  It is stressed however that bifurcation paths can appear out of
nowhere, so if a good knowledge of the branches is essential, branch
continuations should be repeated with different stepsizes.

Scaling of Arclength Equation.  The arclength equation, when posed in
terms of force parameters and displacement increments is often poorly scaled.
We summarize in the following some of the scaling methods which have been
proposed that appear to be effective in structural mechanics problems.

The simplest method is to introduce a scaling factor between the
increments in load and the increments in displacements.  The parametrization then
is

  
p d, γ( ) =∆ γ 2 ∆f0

T∆f0( )+α∆dT ∆d =∆ s2 (6.5.11)

where α  is a scaling factor.  A candidate for a scaling factor is the square of the
average diagonal of the initial stiffness matrix.

Bifurcations.   We consider first equilibrium bifurcations, i.e. we ignore Hopf
bifurcations.  The bifurcation then consists of the intersection of two equilibrium
branches.  If we are tracing a given equilibrium branch, such as AB in Fig. ?, then
it is very easy to miss the intersecting branch and end up on an unstable branch.
The objective of this Section is to describe some methods for detecting the
crossing of a bifurcation point and anticipating when a bifurcation point will come
up along thhe branch.

The classical method for detecting bifurcations in structural mechanics is
an eigenvalue analysis.  In an eigenvalue approach, we exploit the fact that the
linearized equations for the increment, Eqs. () are singular at the bifurcation point.

Linear Stability.  In Example 1, we have employed a technique which is
frequently used to examine the stability of an equilibrium solution: a dynamic
solution to a perturbation of the equilibrium solution.  The dynamic equations are
linear because the perturbations are small, so this is called a linearized model.  If
the dynamic solution grows, then it is said that the equilibrium solution is linear
unstable.  Otherwise, it is linear stable.  In the following, we develop a general
procedure for examining the linear stability of an equilibrium solution by
examining the characteristics of the Jacobian matrix.
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We consider an equilibrium point deq  associated with a parametrized load, λfext

of a rate-independent system.  A Taylor series expansion of the residual about the
equilibrium solution gives

f deq + d ( ) = f deq( )+
∂f
∂d

deq( )d + higher order terms (6.5.12)

The first term on the RHS vanishes because deq  is an equilibrium solution.  From
Eq. () we can see that the second term can be linearized as follows:

  

∂f
∂d

deq( ) = Kext deq( ) − Kint deq( ) = −A deq( ) (6.5.13)

We now add the inertial forces to the system.  Since the mass matrix does not
change with displacements, we can then write the equations of motion for a small
perturbations about the equilibrium point as

M
d2d 
dt2 + A d = 0 (6.5.14)

Note, that in contrast to Section ??, we do not include the mass matrix in the
Jacobian matrix A .  The above is a set of linear ordinary differential equations in
d .  Since the solutions to such linear ordinary differential equations are
exponential, we take solutions of the form

d = yeµt            d i = yaeµt (6.5.15)

Substituting the above into Eq. (6.5.14) gives

A + µ2M( )yeµt = 0 (6.5.16)

The characteristic values µi  of this system can be obtained from the eigenvalue
problem

  Ayi = −λi Myi , λ i = µ i
2 (6.5.17)

where λi , i =1 to n are the n eigenvalues and yi  are the n eigenvectors.  The
linear stability of the system then revolves around the character and magnitudes of

the eigenvalues µi .  The eigenvalues will generally be complex.  If the real part of
the eigenvalue is positive the solution will grow, i.e. if

  
if for any i , Real µi( ) > 0 ,  the equilibrium point is linearly unstable(6.5.18)
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Here µ i  is the complex conjugate of µi .  On the other hand, if the real parts of all
eigenvalues are negative, then the linearized solutions about the equilibrium point
do not grow and we can say that

  
if for all i, Real µi( ) ≤ 0 ,  equilibrium point is linearly stable (6.5.19)

When the linearized equations are symmetric, then the eigenvalues must
be real.  We can then see that if the matrix A  is positive definite, then the
eigenvalues must be negative, and consequently the parameters µi  are strictly
complex.  Therefore, when µ  are complexthe perturbated solutions are harmonic
and of the same magnitude as the perturbation and the equilibrium points is linear
stable.

This result has important ramifications for many structural systems.  If the
system has a potential, i.e. if the system is conservative, then the matrix A  is
symmetric and corresponds to the Hessian of the potential energy, i.e.,

Aab = ∂2W ∂da∂db  by Eq. ???.  Recall that an equilibrium solution is a stationary

point of the potential.  Since A  is the matrix of second derivatives, the positive
definiteness of A  implies that the stationary point is a local minimum.  Thus an
equilibrium point is linear stable if and only if the potential at the equilibrium
point is a local minimum, which implies that the Jacobian and Hessian matrices
are positive definite.  In other words, if

  ∆da

∂2W deq 
 
  

 
 

∂da∂db

∆db = Aab deq 
 
  

 
 ∆da∆db = ∆dTA∆d > 0 ∀ ∆d (6.5.20)

then the equilibrium point deq  must be linear stable.  On the other hand, if there
exists a ∆d  for which the above inequality is violated, then the stationary point
must be a saddle point, and the equilibrium solution is not linear stable.

To summarize, an equilibrium solution for a conservative system is linear
stable if it corresponds to a local minimum of the potential energy, which requires
the positive definiteness of the Hessian or Jacobian matrices (they are the same in
that case).  If the equilibrium solution is a saddle point, then the equilibrium
solution is unstable.

For nonconservative systems,  an equilibrium solution is also linear stable
if the Jacobian matrix is symmetric and positive definite.  If the Jacobian is not
positive definite, it is not linear stable.  Any system is linear stable if all real parts
of the eigenvalues of the system (6.5.17) are negative.

The information provided by a linear stability analysis is not conclusive
from an engineering viewpoint.  Since linear stability analysis assumes the
linearity of the response in the vicinity of the equilibrium point, perturbations
must be small enough so that the response can be predicted by a linear model.
Linear stability of an equilibrium point does not preclude the possibility that a
physically realistic perturbation will grow.  If the system is highly nonlinear in the
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neighborhood of the equilibrium point, moderate perturbations of the system may
lead to unstable growth.  A linear  stability analysis only reveals how a system
with properties obtained by a linearization of the system about the equilibrium
point behaves.  Nevertheless, it gives information which is useful in engineering
and scientific analysis of systems.

Estimates of Bifurcation Points.  It is often desirable to determine the
location of bifurcation points as the equilibrium path is generated.  Both
bifurcation points which may have been passed or which are upcoming are of
interest.  Whether a bifuraction point has been passed can be determined by
checking when the determinant of the Jacobian changes sign.  A change of sign in
the determinant of the Jacobian is an indication of the change of sign of an
eigenvalue. The determinant of the Jacobian vanishes at a critical point and will
often change sign when the critical point is passed.  It would appear at first that
the sign of the Jacobiann determinant would always change when passing a
bifurcation but things are not that simple: sometimes, two eigenvalues change
sign at a bifurcation point and then the Jacobian determinant does not change
sign, so the determinant test is not conclusive.  Thus tracking the determinant
provides some guidance in finding bifurcation points, but it is not foolproof.

Bifurcation points can also be estimated by tracking the eigenvalues of the
system.  The estimation of eigenvalues is simplified in solid mechanics because
the stress appears linearly in the geometric stiffness and varies approximately in
proportion with the load.  As we have seen from Example 6.?, the stability of an
equilibrium path chamges when the lowest eigenvalue of the system changes sign.
Thus the critical points can be located by an eigenvalue problem.  There are
several ways to do this:

1.  interpolate the Jacobian matrix of the system by a linear relationship.
2.  assume that the geometric and load stiffness are linearly proportional to

the load parameter in the neighborhood under consideration;

Both methods can be applied with only a single load parameter. In the first
method, we assume that the Jacobian A, is a linear function of the load parameter
γ .  The Jacobian matrix in the vicinity of the state n can then be written in terms
of the states around n-1 and n  by

  A d ,γ( ) = 1−ξ( )A dn−1 ,γ n −1( )+ ξA dn ,γ n( ) ≡ 1− ξ( )A− + ξA0 (6.5.21)

γ = 1− ξ( )γ n−1 + ξγ n (6.5.21b)

where the last term in the above defines a more compact notation we will use in
the following.  At the critical point,  the determinant of the Jacobian matrix A
vanishes, so

 
  
det A d, γ crit( ) = 0 (6.5.22)

From (6.5.21) and the fact that a ystem with a zero determinant has a nontrivial
homogenrous soloution,  we deduce that there exists a ξ  such that
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1−ξ( )A−y +ξA0y = 0 (6.5.23)

This can be put in the standard form of the generalized eigenvalue problem by the
following rearrangement of terms:

A0y = ξ A 0 − A−( )y (6.5.24)

The solution of this eigenvalue problem then gives an estimate of the critical load
by (6.5.21b).

The lowest eigenvalues of (6.5.24) can be either positive or negative.  Negative
eigenvalues indicate critical points which have been passed and are known about,
or they may indicate critical values which have inadvertently been passed.  In the
latter case, state n may no longer be on a stable equilibrium path.

For many structural problems, the eigenvalue problem may be simplified by
taking advantage of the following:

1.  the material stiffness in a linear material will not change significantly if the
displacements prior to the critical point are small;

2. the geometric stiffness  depends linearly on the load parameter, since it depends
almost linearly on the stresses if the displacements are small (see the geometric
stiffness for the bending and axial response in Eqs. ());

3. the load is independent of the displacements, so the load stiffness vanishes.

Since the geometric stiffness varies linearly with the load, if the above three
conditions are met we can then write

 
  
A0 = Kmat + Kgeo λ0( ), A− = Kmat +K geo λ−( ) (6.5.25)

where Kgeo  is the geometric stiffness for a unit value of the load parameter.
Substituting into () then gives

Kmaty = ξ Kgeo λ0( )− Kgeo − λ−( )( )y (6.5.26)

The critical load is then given by

λcrit = ξ λ0 − λ−( ) (6.5.27)

The procedure of determining the location of a nearly critical point then consists
of storing the following and they geometric stiffness is saved from the last step,
and using the current  geometric and material stiffness, the eigenvalues are
obtained.  The eigenvalue which leads to the smallest critical load is the one of
interest.  When the parameter 0 ≤ξ ≤ 1, the critical point has been passed in the
last step.  When ξ >1, the critical point is estimated to be further ahead in the
branch.
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In analyzing structures, it is often desirable to estimate the first bifurcation
point along the fundamental equilibrium path after a single load increment λ1  has
been applied.  An initial estimate of the bifurcation point can be found in terms of
the geometric stiffness  computed after one load increment.  We assume that

Kgeo λ−( ) = 0 since the first step is stress-free.  Then Eq () gives

Kmaty = ξKgeo λ0( )y (6.5.28)

The critical value of the load parameter is then λcrit = ξλ0 , where λ0  is the load
parameter for the first load increment.  this is the formula commonly cited in
matrix structural texts for obtaining the buckling load of a structure.  Note that it
assumes that the geometry of the structure changes so little with increasing load
that the first estimate of the geometric stiffness suffices for extrapolating the
critical point.  It is effective primarily for bifurcation points. Prior to reaching a
limit point, the geometric stiffness changes significantly, so an estimate based on
() is quite erroneous.

The study of systems stability has in the past two decades become a rich
science known as dynamical systems theory.  It includes topics such as chaos,
fractals, attractors, repellors.  These topics are beyond the scope of this book;
some good references are Argyris and Melenk (), Moon () and Temam ().

Example 6.4.  A simple example of a problem with stable and unstable paths
connected by a turning point is the shallow truss shown in Fig. 6.11.  The initial
cross sectional areas of the elements are A0  and the initial lengths of the two

elements are   l0 , which is given by   l0
2 = a2 + b2 .  A vertical load f is applied as

shown, and since this is the only load we consider f to be the load parameter.  The
material is governed by a Kirchhoff law, (see Eq. ())

S = CEx (E6.1.1)

where C; as pointed out in Section ??, for a small strain, large-displacement
problem such as this, this constitutive equation is almost to a small-strain elastic,
linear law.  We will determine the equilibrium path as a function of the load and
determine which branches are stable.

The deformation of the truss in is described by the variable y, the current
vertical coordinate of the centerpoint, which leads to simpler equations than using
the displacement.  Since this material is path-independent, we can use the theorem
of minimum potential energy to develop the discrete equations.  The potential
energy, Eq.(), in this case is given by

  
W = Wint − Wext , W int = 1

2 Cˆ E xx
2 dΩ

Ω0
e∫

e=1

2

∑ , Wext = f b − y( ) (E6.1.2)

where the Green strain is uniaxial with a only component along the axes of the
bars contributing to the internal energy.  The Green strain in for both elements is
most easily evaluated by Eq.(), which gives
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ˆ E xx = 1

2 l2 − l0
2( ) = 1

2 a2 + y2 − a2 − b2( ) = 1
2 y2 − b2( ) (E6.1.3)

so the internal energy is given by

    
W int = k y2 − b2( )2

where k = 1
4 CA0l0 (E6.1.4)

Combining the above with the potential of the external forces gives the total
potential

W = k y2 − b2( )2
− f b − y( ) (E6.1.5)

The equilibrium equation is now obtained by applying the theorem of minimum
potential energy, which states that the equilibrium equation is given by the
stationary points of the potential W given above, so the equilibrium equation is

0 = dW
dy = 4k y2 − b2( )y + f (E6.1.6)

As can be seen from the above, the force is a cubic function of the vertical
position of the centerpoint, which is shown in Fig. ?.  The equilibrium path has
two turning points, usually called limit points in structural mechanics, and three
branches, denoted by AB, BC and CD in Fig.  ?.

We will now examine the stability of the branches of the equilibrium path.  The
dynamic response is examined at a position y0  subject to a perturbation.  A
solution to the linearized equations is considered, so

y = y0 + y where y = εeµt (E6.1.7)

where ε  is a small parameter.  The equations of motion for this problem are given
by

  
M

d2y

dt2 = f ext − f int = f0 −4k y2 − b2( )y (E6.1.8)

where M is the mass of the node.  Substituting () into () gives

f0 − 4k y0 + y ( )2 − b2( ) y0 + y ( ) = M
d2y 

dt2
(E6.1.9)

Expanding the above and dropping all terms which are higher order than linear in
y , gives (it is expressed in terms of

f0 − 4k y0 y0
2 − b2( ) + y 3y0

2 − b2( )[ ] = M
d2y 

dt2
(E6.1.10)

The load cancels the first term in the brackets, so the equations of motion become
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M
d2y 

dt2
+ 4ky 3y0

2 − b2( ) = 0 → α = ±i 3y0
2 − b2( )

1
2 (E6.1.11)

where the (b)follows from substituting () into (a). It can then be seen that the
perturbation solution () is real with one positive exponential whenever

3y0
2 −b2 < 0.  So the branch defined by

− b 3 < y0 < b 3 isunstable (E6.1.12)

 The results of the above stability analysis can be obtained directly be examining
the second derivative of the potential energy function, which from () is given by

  

d2W

dy2 = 4k 3y2 − b2( ), d2W

dy2 < 0 when − b < 3y < b ,
d2W

dy2 > 0 otherwise

(E6.1.13)

So in the unstable equilibrium branches of a conservative system, the second
derivative of the potential energy changes sign.  The results of () and () are in fact
identical: for a system which has no velocity dependent terms, the perturbation
analysis is identical to taking a derivative of the forces, and the stability of the
result of the perturbation analysis simply depends on the sign of the derivative of
the forces, which is the second derivative of the work potential.

The linearized test for stability used in Example 8.?.1 is not a foolproof test for
stability.  For example, if   y0 = −0.99b , the test indicates that the equilibrium point
is unstable.  However, a numerical dynamics solution when started at tat point,
will only oscillate with an amplitude of 0.002, which to most engineers would not
be an instability.  The test as posed in Example 1 checks whether any perturbation
will grow at all and conform to the criterion () based on a linearized analysis,
which need not conform to any physical notion of instability.  In contrast to the
exponential instabilities seen in stability analysis of numerical methods, the
instabilities in physical systems will not exhibit continuing growth.  What it is
does predict accurately is that when the dynamics is added to the system, the
system will not oscillate about the unstable equilibrium point in response to a
perturbation but move to oscillating about a nearby point on a stable equilibrium
path.

Example 6.5.  Consider a linear stability analysis of the beam element shown
in Fig. 6.5E.  Node 2 is clamped, node 1 is free to rotate and move in the x-
direction.  Find the equilibrium equation and the equilibrium branches of the
system.
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  l

A
B

C

P

solution 1

solution 2

u1 = 15 I
  lA

µ1

θ1

P

Figure 6.5E.  Beam model used for stability analysis and equilibrium paths.

The displacement boundary conditions imply that

ux1 = uy1 = θ1 = uy2 = 0 (E6.5.1)

Therefore, the only nonzero degrees-of-freedom are uy1 ≡ u1 and θ1 .  The
equations of equilibrium can be deduced from Example ??? to be

  
EA

l
u1 −

2EA

15
θ1

2 = F (E6.5.2)

  
−

2EA

15
θ1u1 +

4EI

l
−

2EA

15
u1 +

3EAP

35
 
 
  

 
 θ1 = 0 (E6.5.3)

The above system of two nonlinear algebraic equations in two unknowns
possesses two solutions:
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Solution 1:   
  
θ1 = 0, u1 =

Pl
EA

(E6.5.4)

Solution 2:   
  
u1 =

2l
15

θ1
2 +

Pl
EA

(E6.5.5)

                     
  
u1 =

Pl
28

θ1
2 +

15I

Al
(E6.5.6)

These two curves are plotted in Figure 6.  It can be seen a pitchfork bifurcation
occurs at

  
u1 =

15I

Al
(E6.5.7)

This is the critical point for this beam.  The corresponding load can be found by
substituting (???) and θ1 = 0  into Eq. (E6.5.2), which gives

  
Fcrit =

15EI

l2 (E6.5.8)

The linearized stability of any of the equilibrium paths can be examined by
considering the linearized equations of motion about a point on the path:

  
M∆̇  ̇ d + Kmat + Kgeo( )∆d = 0 (E6.5.9)

where ∆d  here is the displacement from the path.  The equations can be written
out by using the mass matrix given in Eq. (9.3.18) and the material and tangent
stiffnesses given in Eqs. (???) and (???).  The resulting equations are

    

ρ0l0A0

420

210 0

0 αl2
 
  

 
  

∆˙ ̇ u 1
∆˙ ̇ θ 1

 
 
 

 
 
 

+

AE
l

+
4EI

l

 

 

 
 
 

 

 

 
 
 

∆u1

∆θ1

 
 
 

 
 
 

= 0 (E6.5.10)

We will examine the stability of two of the paths for   u1 > 15I Al ; the path PA and
the path PC.

The problem parameters are Young’s modulus E, the moment of the cross-
section I, and the original length of the beam   lo .  The beam is modeled by a
single element  with a linear axial displacement field and a cubic transverse
displacement field.  This is a standard beam element described in Chapter 9.  The

unknowns are dT = ux uy θ[ ], where θ  is the rotation of the node; nodal
subscripts have been dropped because they all refer to node 1.

NUMERICAL STABILITY
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At this point it is worthwhile to comment on the differences between
physical stability and numerical stability.  Physical stability pertains to the
stability of an solution of a model, whereas numerical stability pertains to the
stability of the numerical solution.  Numerical instabilities arise from the
discretization of the model equations, whereas physical instabilities are
instabilities in the solutions of the model equations independent of the numerical
discretization.  Numerical stability is usually only examined for processes which
are physically stable.  Very little is known how a “stable” numerical procedures
behave in physically unstable processes.  This shortcoming has important
practical ramifications, because many computations today simulate physical
instabilities, and if we cannot guarantee that our methods track these instabilities
accurately, then these simulations may be suspect.

Numerical stability of a time integration procedure is defined in
analogously to stability of solutions, Eq. ( 6.5.1-2).  A numerical procedure is
stable if small perturbations of initial data result in small changes in the numerical
response.  More formally, the numerical procedure is stable if

uA
n − uB

n ≤ Cε ∀n > 0 (6.5.29)

when

uA
0 − uB

0 ≤ ε (6.5.30)

LATERIt is of interest to note that numerical stability of a process that is
physically unstable cannot be examined by this definition, i.e. we cannot say
anything about the stability of a numerical procedure when applied an equation
that exhibits unstable response.  The reason can be seen as follows.  If a system is
unstable, then the solution to the system will not satisfy ().  Therefore, even if the
numerical solution procedure is stable, it will not satisfy ().

General results for numerical stability of time integrators are largely based
on the analysis of linear systems.  These results are extrapolated to nonlinear
systems by applying them to the linearized equations.  Therefore, we will first
describe the stability theory which is used to obtain critical time steps for linear
systems.  Next we described the procedures for applying these results to nonlinear
systems.  In conclusion, we will describe some results on stability of time
integrators which apply directly to nonlinear systems.  However, we stress that at
the present time there is no stability theory which encompasses the nonlinear
problems which are routinely solved by nonlinear finite element methods, and
most of our insight into stability stems from the analysis of linear models.

Numerical Stability of Linear Systems.  Most of the theory of stability
of numerical methods is concerned with linear systems.  The idea is that if a
numerical method is unstable for linear systems, it will of course be unstable for
nonlinear systems also, since linear systems are a subset of nonlinear systems.
Luckily, the converse has also turned out to be true: numerical methods which are
stable for linear systems in almost all cases turn out to be stable for nonlinear
systems.  Therefore, the stability of numerical procedures for linear systems
provides a useful guide to their behavior in both linear and nonlinear systems.
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To begin our exploration of stability of numerical procedures, and in
particular the stability of time integrators, we first consider the equations of heat
conduction:

  M ˙ u + Ku= f (6.5.31)

where M is the capacitance matrix, K is the conductance matrix, f is the forcing
term and u is a matrix of nodal temperatures.  This system is chosen as a starting
point because it is a first order system of ordinary differential equations, while the
equations of motion are second order in time.

To apply the definition of stability, we consider two solutions for the same system
with the same discrete forcing function but slightly different initial data.  The two
solutions satisfy the same equation with the same  f , so

  M ˙ u A + KuA = f             M ˙ u B + KuB = f (6.5.32)

If we now take the difference of the two equations, we obtain

  M
˙ d + Kd= 0 d = u A − uB (6.5.33)

We now consider a two-step family of time integrators:

  dn+1 = dn + 1−α( )∆t˙ d n +α∆t ˙ d n+1 (6.5.34)

Since  (6.5.33) holds at time steps n and n +1, we can multiply them respectively

by 1 −α( )∆t  and α∆t , respectively

  1−α( )∆tM˙ d n + 1−α( )∆tKdn = 0, α∆tM˙ d n+1 +α∆tKdn+1 = 0 (6.5.35)

Adding the above two equations and using (6.5.34) to eliminate the derivatives,
we obtain

M +α∆tK( )dn+1 = M + 1− α( )∆t( )Kdn (6.5.36)

This equation is in general amplification matrix form: it gives the numerical
solution at times step n +1  in terms of the solution at time step n .  An
amplification matrix A  is a matrix which gives the solution at time step n +1 in of
the solution at time step n  by

dn+1 = Adn (6.5.37)

The generalized amplification matrix form is

Bdn+1 = Adn (6.5.38)

We shall now show that the time integrator is stable if the eigenvalues of the
generalized amplification matrix form lie within the unit circle in the complex
plane.
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For this purpose, we need to recall the eigenvalue problem associated with
(6.5.33):

Kyi = λiMyi (6.5.39)

where λi  are the eigenvalues and y i the eigenvectors of the system.  We recall that
the matrix M  is positive definite and symmetric, whereas the matrix K  is positive
semidefinite and symmetric.  Because of the symmetry of the matrices, the
eigenvectors of (6.5.39) are orthogonal with respect to M and K , which can be
written as

  y jMyi = δij , y jKyi = λiδ ij nosumon i( ) (6.5.40)

and from the positiveness of the matrices the eigenvalues are nonnegative.  The
generalized amplification equation is associated the generalized eigenvalue
problem

Azi =µiBzi (6.5.41)

The eigenvalues of the above system will be shown to control the stability of the
time integrator.  In general, these eigenvalues may be complex.  Stability then
requires that the moduli of all of the eigenvalues be less or equal to 1.  Otherwise

at least one component of the solution grows exponenetially like zn , so the
solution is unstable.   In other words,  if we consider the complex plane as shown
in Fig, X, then the eigenvalues must lie within or on the unit circle for the
numerical method to be stable.

The eigenvectors span the space Rn , so any vector d ∈RnD  can be written as a
linear combination of the eigenvalues, see XXX,.  The eigenvectors of (6.5.41)
and are identical to the eigenvectors of the (6.5.39) and the eigenvalues are related
by the following:

if A = a1M + a2K and B = b1M + b2K then µ =
a1 +a2λi

b1 +b2λi
(6.5.42)

This is shown as follows.  Since the eigenvectors y i  span the space, we can
expand the eigenvectors z i  in terms of y i  by

z i = ciyi (6.5.43)

Substituting the above into (6.5.41), premultiplying by y j  and using the
orthogonality relations (6.5.40) gives

a1 + a2λi = µi b1 +b2λi( ) (6.5.44)

from which the last equation in (6.5.42) follows immediately.
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We now ascertain the conditions under which the eigenvalues µi  fall within the
unit circle, which corresponds to a stable numerical integration.  Using again the
fact that the eigenvectors y i  span the space, expand the initial solution vector at
t = 0 in terms of the eigenvectors by

d0 = r0
i

i=1

nD

∑ y i (6.5.45)

where r0
i  is determined by the initial conditions.  Substituting the above into ()

and using the fact that y i  are also eigenvectors of () with eigenvalues µi , we
obtain that

d1 = µir0
i

i =1

nD

∑ yi ,     d2 = µi( )2
r0

i

i=1

nD

∑ y i ,     dn = µi( )n
r0

i

i=1

nD

∑ y i (6.5.46)

where the second equation follows by repeating the process and the last equation
can be obtained by induction.  We can see immediately from the above that if any
of the eigenvalues of the generalized amplification matrix µi  is greater than one,
the solution will grow exponentially.  Since we are examining the behavior of the
difference of two solutions, this indicates that the procedure is unstable.  Although
some readers will advance the counterargument that this unstable growth will
occur only if the initial data contains the eigenvector associated with µi , in fact,

due to roundoff error, the constant ri
0  will be initially be nonzero or become

nonzero later in the calculation.  No matter how small the constant, the
exponenetial growth will dominate ina very few time steps.

Using Eqs. (6.5.42) and (6.5.36) it follows that

µi =
1−α∆tλ i

1+α∆tλ i
(6.5.47)

Since this eigenvalue is always real, the stability condition can be written as
µi ≤1 .  We consider eigenvalues  µi =1 to lead to stable solutions at this point,
but this is not always the case.  From the preceding we deduce the conditions on
the time step necessary for numerical stability as follows:

µi ≤1 →
1− 1 −α( )∆tλi

1−α∆tλi
≤1 → always met (6.5.48)

µi ≥−1 →
1− 1−α( )∆tλ i

1−α∆tλ i
≥−1 → 1−2α( )∆tλi ≤ 2 (6.5.49)

There are two distinct consequences of Eq.().  If   1− 2α ≥ 0 , i.e. α ≥ 0.5, then the
condition of stability is met regardless of the size of the time step.  The method is
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then called unconditionally stable.  When   1− 2α <0 , i.e. α < 0.5, Eq (6.5.49)
yields the requirement that

∆t ≤
2

1−2α( )λi
∀i (6.5.50)

where we have indicated that the condition on the eigenvalue µi  must be met for
all i .  The maximum eigenvalue then sets the time step, so the critical time step is
given by

  
∆t ≤ max

i

2

1− 2α( )λ i
or ∆tcrit =

2

1− 2α( )λmax
(6.5.51)

A method which is stable only for time steps below a critical value is called
conditionally stable.  If we consider the explicit form of this generalized update
equation, i.e. α = 0 , then the above gives

  
∆tcrit =

2

λmax
(6.5.52)

Thus the stable time step is inversely proportional to the maximum eigenvalue of
the system.  The stiffer the system, the smaller the stable time step.  For the
trapezoidal rule,   α = 0.5 , and for any   0.5 < α ≤ 1 the method is unconditionally
stable.  For   0 ≤α < 0.5 , the integrator is implicit but conditionally stable, so these
values of α  are of little practical value.

To give the reader a appreciation of the explosive growth of an exponential
instability, Table ? shows the results for exponential growth for several values of
the eigenvalue µi .  Exponential growth is truly startling.  It is also the reason why
compound interest can make you very rich if you live long enough and start
saving early.

In summary, we have shown that the determination of the stability of an
integration formula for the semidiscrete initial value problem () can be reduced to
examining the eigenvalues of the generalized amplification matrix ().  If any
eigenvalue lies outside the unit circle in the complex plane, the perturbation grows
exponentially so the solution is numerically unstable.  Otherwise, the method is
stable.

Stability of thhe Central Difference Method.  We now use the same techniques to
examine the stability of the central difference method for the equations of motion.

MATERIAL STABILITY

An important issue in modern computational mechanics is the stability of the
material models.  The issue has already been discussed on several occasions in
Chapter 5, cf...In this Section, we examine the implications of material instability
on computational procedures and provide some remedies for the major
difficulties.
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As pointed out in Chapter 5, material instability results from the loss of positive
definiteness in the tangent modulus tensor relating the Truesdell rate of the
Cauchy stress to the rate of deformation.  The name material instability is a slight
misnomer because the occurrence of this phenomenon does not lead automatically
to the violation of stability definitions such as (6.5.1).  Instead, an unstable
material is characterized by the possibility of unbounded spectral growth for a
body in a homogeneous state of stress.  When a material fails to meet the stability
criteria for a subdomain of the problem, unbounded growth of the solution does
not necessarily occur.

Nevertheless, the consequences in a computation of the failure to meet material
stability criteria are dramatic: for rate-independent materials, loss of material
stability changes the PDE locally from hyperbolic to elliptic in dynamic problems
and vice versa in static problems.  Furthermore, in rate indenpendent materials
this is accompanied by a phenomenon called localization to a set of measure zero:
the domain in which material instability occurs in a three dimensional problem
will localize to a surface.  On that surface in the domain, the strains will be
infinite and the motion will be discontinuous.  Although this ostensibly looks like
a good way to model fracture and failure of materials, because of the localization
to a set of measure zero, the dissipation associated with this process vanishes, so
that the model is inappropriate for any realistic physical model of fracture or shear
banding.

The literature on material instability goes back at least as far as Hadamard (1906).
I haven't read the literature of that time, and even my knowledge of Hadamard is
second-hand,  so there could be earlier studies.  Hadamard examined the question
of what happens when the tangent modulus in a small deformation problem is
negative.  He concluded that according to the wave equation and the formula for
the wavespeed, (???), that the wavespeed is then imaginary (the square root of a
negative number), so such materials could not exist.

The next major milestone in the study of unstable materials is the work of Hill
(??), who examined the conditions under which materials are unstable.  His
methodology was to consider the momentum equation for a homogeneous state of
initial stress in terms of the displacements.  The momentum equation is then

  Cijklvk ,l = ρ˙ ̇ v i  wrong eqn unless v=displ

Using the technique of linear stability analysis, he examined the growth and decay
of solutions of the form

  ui = Aie
κ x−ct( )

The solution grows exponentially if any of the eigenvalues of the problem

 ui = Aie
κ x−ct( )

are negative.  He also showed that equivalently one could examine the material
instability through the possibility of acceleration waves.  This technique is now
classical and is used in finite elements to detect the possibility of material
instability>  It goes as follows:
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Hill() also examined material instabilities for large deformation problems and the
question of which rate is appropriate for ascertaining unstable behavior.  he
concluded that

Another milestone paper in this stream is the work of Rudnicki and Rice(??), who
showed that material instabilities can occur even in the presence of strain
hardening when the plasticity is nonassociative.  The argument has been given in
Section 5.?

Thus when computers came on the scene for nonlinear analysis in the 1970's there
were two known causes of material instability: a negative modulus (or a negative
eigenvalue of the tangent modulus matrix) and a nonassociative plasticity law.
Computational analysts soon began to include material models which included
either or  both of these and they discovered many difficulties.  In fact it was
argued by many, including Drucker and Sandler(), that material models that
violate the stability postulates should never be used in computational methods.
Their arguments proved fruitless since there is no way to replicate observed
phenomena such as shear banding without a model that exhibits strain softening,
although the models which were first used to examine shear bands, Clifton and
Milliner(), are viscoplastic and satisfy the stability postulates.

Zdenek Bazant and I started studying the problem in 197? and based on some
computational results of Hyun we surmised that the closed form solution for a
rate-independent material model must exhibit an infinite strain.  We were able to
construct a one-dimensional solution of this behavior, albeit quite inelegant in
retrospect, and learned that for these materials the unstable behavio must localize
to a set of measure zero and that the dissipation would then vanish.

This led to the search for a regularization of the governing equations, which we
called a localization limiter at the time.  We soon discovered that both gradient
models and nonlocal models regularize the solution, Bazant, Chang and
Belytschko and Lasry and Belytschko().  This solution of remedying the
difficulties associated with negative moduli had already occurred in another
context, the heat equation, where Kahn and Hilliard() circumvented the difficulty
by a gradient theory, which came to be known as the Kahn-Hilliard theory.
Hilliard was incidentally also at Northwestern but we were unaware of his work
until later.  Aifantis(??)  had proposed gradient regularization in solid mechaincs
before us.

Subsequently a plethora of work emerged in this area, with two goals: to obtain
physical ustifications for the regularization procedure and to simplify the
treatment of nonlocal and gradient models.  Schreyer et al (), introduced gradient
theories based on the gradient of the plasticity parameter lambda in Eq.(5.??),
Pijaudier-Cabot and Bazant(??) introduced the gradient on the damage parameter.
These are important because introducing nonlocality in the 6 strain components is
awkward indeed.  Mulhaus and Vardoulakis showed that a coupled stress theory
also regularizes the equations, and Needleman showed that viscoplasticity
regularizes the equations.  an important recent work is Triantifyllides and ?, who
proposed a technique for relating unit cell models to the parameters in a nonlocal
theory.  deBorst et al (??) further investigated the Schreyer et al approach and
showed that that consistency (5.??) requirement then intdroduces another partial
differential equation into the system; the boundary conditions for these partial
differential equations are still an enigma.  Hutchinson and Fleck() showed
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expreimentally that metal plasticity depends on scale and developed a gradient
plasticity theory motivated by dislocation movement.

Regularization Techniques.  There are thus four regularization techniques that are
under study for unstable materials:

1. gradient regularization, in which a gradient of a field variable is
introduced in the constitutive equation

2. integral, or nonlocal, regularization, in which the the constitutive
equation is a function of a nonlocal variable, such as nonlocal damage,
a nonlocal invariant of a strain, or a nonlocal strain.

3. coupled stress regularizaztion
4,  regularization by introducing time dependence into the material

All of these are except the last are still in an embryonic state of development.
Little is known about the material constants and the associated material length
scales which are required.

Regularization by introducing time dependence has progressed faster than the
others because viscoplastic material laws has achieved a stat e of maturity by the
time that localization became a hot area of research.  However, viscoplastic
regularization has some notable peculiarites: there is no constant length scale in
the viscoplastic maodel and the solution in the presence of matrial instability is
characterized by exponential growth.  Therefore, although a discontinuity does
not develop in te displacement as in the rate-independent strain-softening
material, the gradient in thhe displacement increases unboundedly with time.
Wright and Walter have shown that this anomaly can be rectified by coupling the
momentum equation to heat conduction via the energy conservation equation.  the
length scales then computed agree well with observed shear band widths in
metals.

The computational meodeling of localization still poses substantial difficulties.
for most materials, the length scales of shear bands are much smaller than those of
the body.  Therefore tremendous resolution is required to obtain a reasonably
accdurate solution to these problems, see Belytschko et al for some high
resolution computations.  Solutions converge very slowly with mesh refinement.
This behavior of numerical solutions is often called mesh sensitivity or lack of
objectivity, though it has nothing to do with objectivity or its absence: it is simply
a consequence of the inabiloity of coarse meshes to resolves high gradient in
viscopladtic materials or discontinuites in rate-independent solutions.

Several techniques have evolved to improve the coarse-mesh accuracy of finite
element models for unstable materials.  The first of these involve the embedment
of discontinuities in the element.  Ortiz ewt al were the first to do this:
theyembedded discontinuites in the strain field of the 4-node quadrilateral when
the acoustic trensor indicated a material instability in the element.  Belytschko,
Fish and Engleman attempted to embed a displacement discontinuity by enriching
the strain field with a narrow band where the unstable material behavior occurs.
In the band, the material behavior was considered homogeneous, which is
ridiculous since an unstable material cannot remain ina homogenous state of
stress: any perturbation will trigger a growth on the scale  of the perturbation.
Such is hindsight.  Nevertheless these models were able to capture the evolving
discontinuity in displacement more effectively.  Sime and ??? invoked the theory
oof distributions to justify such techniques.  They also categorized discontinuities
as strong (in the displacements) and weak (in the strains).  This categorization
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incidentally is at odds with the widely used categorization in shocks in fluid
dynamics, where discontinuites in occur in the velocity and the motion is
continuous, see Section ??.  These techniques have recently been further explored
by Armero et al () and Garipakti ad Hughes (??).

Shear bands are closely related to fracture: a shear band can be viewed as a
discontinuity in the tangential displacement,a fracture as a discopntinuity in all
components of the displacement, see Chapter 3, Example ??.  Just as shear bands
can be viewed as the outcome of a material instability in the shear component, the
development of a fracture can be viewed numerically as the outcome of a material
instability in the directions normal (and tangential in the case of mode 2
fracture)to the discontinuity.  The relationship of damage and fracture has long
been noted, see LeMaitre and Chab oche (??), where a fracture is assumed to
occur when the damage variable reaches 0.7.  the origin of the number 0,7 is quite
hazy in most works on damage mechanics, but it can be seen to arise from the
phase transition point based on percolation theory is 0.59275, Taylor and Francis
(1985).  The modeling of fracture by dmage poses some of the same difficulties
encountered in shear band modeling, since the material law becomesunstable
when the damage excdeeds a threshold value.  All of the phenomena found in
shear banding then occur: localization to a set of measure zero for rate-
independent models, exponential growth for simple rate-dependent models, zero
dissipation in failure  and absence of a length scale.

These difficulties were grasped and resolved in a novel way early in the evolution
of fintie elements by Hillerborg et al (??), Basant (??) and Willam(??) have also
contributed to this approach.  The idea is to match the energy of fracture to the
energy dissipated by the element in which the localization occurs.

[??] H.M. Hiller, T.J.R. Hughes, and R.L. Taylor, "Improved Numerical
Dissipation for Time Integration Algorithms in Structural Dynamics," Earthquake
Engineering and Structural Dyanmics, Vol. 5, 282-292, 1977.

 The tangent moduli are denoted by    C
SE  and a general constitutive equation can

be written as

    
˙ S =C SE : ˙ E or ˙ S ir = C irkl

SE ˙ E kl

  Pij = Cirkl
˙ E klFrj

T + Sir
˙ F rj

T

Now using (3.3.20) to express   ̇ E  in terms of   ̇ F  and noting the minor symmetry of
the tangent modulus marix (see Section 5.?) gives

  Pij = Cirkl Fkm
˙ F lmFrj

T +Sir
˙ F rj

T
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(6.4.3)

Norms.

Norms are used in this book primarily for simplifying the notation.  No proofs are
given that rely on  the properties of normed spaces so the student need only learn
the definitions of the norms as given below.  It is also worthwhile to learn an
interpretation of a norm as a distance.  This is easily grasped by first learning the

norms in the space   ln , which is a norm in the space of vectors of real numbers.
The extension to function spaces such as the Hilbert spaces and the space of

Lebesque integrable functions,   L2 , (often named el-two) is then straightforward.

The norms on    ln  are defined by the following.  We begin with the norm   l2 ,
which is simply Euclidan distance.  If we consider an n-dimensional vector a ,

often written as  a ∈ Rn , then the   l2  norm is given by

a
2

= ai
2

i=1

n

∑
 

 
  

 

 
  

1

2

In the above, the symbol ⋅  indicates a norm and the subscript 2 in combination

with the fact that the enclosed variable is a vector indicates that we are referring to

the   l2  norm.  For n = 2 or 3 , respectively, the    l2  norm is simply the length of
the enclosed vector.  The distance between two points, or the difference between
two vectors, is written as

a − b
2

= ai − bi( )2

i=1

n

∑
 

 
  

 

 
  

1

2

Fundamental properties of the    l2  norm are that:

1. it is positive,

2. it satisfies the triangle inequality

3. it is linear

The   lk  norms are generalizations for the above definition to arbitrary k >1as
follows:
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a
k

= ai

k

i=1

n

∑
 

 
  

 

 
  

1

k

Norms for k ≠ 2 are seldom used except for k = ∞ , which is called the infinity
norm.  The infinity norm gives the component of the vector with the maximum
absolute value, which can easily be figured out by thinking about (??) a little bit.
Thus we can write that

a
∞

= max

i

ai

One of the principal applications of these norms is to define the error in a vector.

Thus if we have a approximate solution to a set of discrete equations dapp  and the

exact solution is dexact , then a measure of the error is

error = dapp − dexact

2

If you are concerned with the maximum error in any component of the solution,
then you should select the infinity norm.  When the concern is with the error over
a selected number of components, then the norm can be restricted to those
components.  The idea is that you use norms to achieve what you need: they are
not immutable.  In using norms to asses errors in solutions, it is recommended that
the error be normalized, e.g.

error =
dapp − dexact

2

dapp

because absolute errors are very difficult to interprete and are meaningless unless
the approximate magnitude of the solution is reported.

Norms of functions are defined analogously to the above.  The relationship
between functions and vectors is that a function can be thought of as an infinte

dimensional vector.  Thus the norm in function space that corresponds to   l2  is
given by

  
a x( ) L2

= a2 xi( )∆x
i=1

n

∑
 

 
  

 

 
  

1

2

= a2 x( )dx
0

1
∫

 
 
 

 
 
 

1

2
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This norm is called the   L2 , and the space of functions for which this norm is

well-defined and bounded is called the   L2  space; usually just the number is
indicated   This space is  the set of all functions which are square integrable, and it
includes the space of all functions which are piecewise continuous.

The Dirac delta function δ x − y( )   is defined by

f x( ) = f y( )
−∞

+∞

∫ δ x − y( )dy

is not square integrable.  It can be thought of as a function which is infinite at x=y
but vanishes everywhere else.  The mathematical definition of this function is the
topic of the theory of Schwartz distributions, which is needed for a good
understanding of convergence theory but not for nonlinear finite element analysis.

The exact delineation of the space   L2  can get quite technical, since
mathematicians are concerned with questions such as whether the function

f x( ) = 1 when x is rational,  f x( ) = 0 otherwise, is square integrable (it is not).

But for engineers concerned with the finite element method, it is sufficient to
know that any function mentioned in this book except the Dirac delta function

posseses an   L2  norm.

The space of functions    L2  is a special case of a more general group of spaces

called Hilbert spaces.  The norm  in the Hilbert space   H 1  is defined by

  
a x( ) H1

= a2 x( ) + a,x
2 x( ) 

 
  

 
 dx

0

1
∫

 
 
 

 
 
 

1

2

Just as for vector norms, the major utility of these norms is in measuring errors in
functions.  Thus if the finite element solution for the displacement in a one

dimensional problem is denoted by   u
h( x )  and the exact solution is   u( x ) , then

the error in the displacement can be measured by

error=
  
uh( x ) −u( x )

L2

The error in the strain, i.e. the first derivative of the displacement, can be

measured by the   H 1  norm.  While this norm also includes the error in the
function itself, the error in the derivative almost always dominates.  On the other

hand, you could measure the error in the strain by the    L2  norm of  the first
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derivative.  This is not a valid norm in mathematics, because it can vanish for a
nonzero function (just take a constant), so it is called a seminorm.

These norms can be generalized to arbitrary domains in multi-dimensional space
and to vector and tensors by just changing the integrals and integrands.  Thus the

  L2  norm of the displacement on a domain is given by

  

  
u x( ) L2

= ui x( )ui x( )dΩ
Ω
∫

 

 
  

 

 
  

1

2

The definition of the   H 1  norm is somewhat more puzzling??? since as given in
mathematical tests it is not a true scalar (it is not invariant with rotation): 

  
u x( ) H 1

= ui x( )ui x( ) + ui, j x( )ui , j x( )dΩ
Ω
∫

 

 
  

 

 
  

1

2

In general, the precise space to which a norm pertains is not given.  Usually only a
number, or even nothing is given by the norm sign.  The norm must then be
inferred from the context.

In linear stress analysis, the energy norm is often used to measure error.  It is
given by

energy norm= εij x( )Cijklεkl x( )dΩ
Ω
∫

 

 
  

 

 
  

1

2

Its behavior  is similar to that of the   H 1  norm.
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 CHAPTER 7
Arbitrary Lagrangian Eulerian Formulations

by W.K.Liu
Northwestern University
@ Copyright 1997

7.1 Introduction

In Chapter 3, the classical Lagrangian and Eulerian approaches to the description of motion
in continuum mechanics were presented. In the Lagrangian approach, the independent
variables are taken to be the initial position, X , of a material point and time, t. Thus the
motion is given by

    x = f ( X ,t )` (7.1.1)

In this expression, the quantity x  is the position occupied at time t by the material point
which occupied the position X  at time t=0. The quantity   f  is a mapping which describes
the motion in terms of the independent variables X  and t,  and x  is the value of the
mapping for the values X  and t. Recall that, in the Lagrangian description, the distinction
between the value x  and the mapping   f  is often ignored and we write x = x(X,t).  A
scalar field F, for example, may be represented by

F = F(X,t) (7.1.2)

In the Eulerian description, the independent variables are spatial position x  and time t. A
scalar field in the Eulerian description may then be given by

f = f (x,t) (7.1.4)

The field can be represented in terms of either the Eulerian or Lagrangian coordinates as
follows

    f ( x,t ) = f ( f ( X,t ), t ) = F( X, t) (7.1.5)

but in fluid mechanics, the mapping   f  may not be known and this interpretation is not
particularly useful.

In Chapter 4, Lagrangian finite elements were discussed. In Lagrangian finite element
implementations, the finite element mesh convects with the material. The advantages of
Lagrangian finite elements include the ease of tracking material interfaces and boundaries as
well as the more straight-forward treatment of constitutive equations. Among the
disadvantages of a Lagrangian formultation include the severe distortions that the elements
may undergo as they deform with the material resulting in a deterioration of performance
due to ill-conditioning. Nevertheless, Lagrangian finite elements prove extremely useful in
large deformation problems in solid mechanics and are most widely used in solid
mechanics. Eulerian finite elements are most often used in fluid mechanics for the same
reasons that Eulerian representations of the equations of continuum mechanics are used,
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i.e., there is often no well-defined reference configuration and the motion from a reference
configuration is often not known explicitly. In Eulerian finite elements, the elements are
fixed in space and material convects through the elements. Eulerian finite elements thus
undergo no distortion due to material motion; however the treatment of constitutive
equations and updates is complicated due to the convection of material through the
elements. Eulerian elements may also lack resolution in the most highly deforming regions
of the body.

The aim of ALE finite element formulations is to capture the advantages of both Lagrangian
and Eulerian finite elements while minimizing the disadvantages. As the name suggests,
ALE formulations are based on a description of the equations of continuum mechanics
which is an arbitrary combination of the Lagrangian and Eulerian descriptions. The word
arbitrary here means that the description (or specific combination of Lagrangian and
Eulerian character) may be specified freely by the user. Of course, a judicious choice of the
ALE motion is required if severe  mesh distortions are to be eliminated. Suitable choices of
the ALE motion will be discussed. Before introducing the ALE finite element formulation,
it is useful to first consider some preliminary topics in continuum mechanics which were
not covered in Chapter 3 and which provide the basis for the subsequent finite element
implementation of the ALE methodology.

7.2 ALE Continuum Mechanics

7.2.1 Mesh Displacement, Mesh Velocity, and Mesh Acceleration

In figure (7.1), the motion     x = f ( X ,t )  is indicated as a mapping of the body from the
reference configuration Ω0  to the current or spatial configuration Ω . To introduce the ALE

formulation, we now consider an alternative reference region ˆ Ω  as shown. We note that
this region need not be an actual configuration of the body. Our objective is to show how
the governing equations and kinematics for the body may be referred to this reference
configuration and then how to use this description to formulate the ALE finite elements.

Points   c  in the reference region, ˆ Ω ,  are mapped to points x  in the spatial region, Ω  via
the mapping

    x = ˆ f ( c ,t ) (7.2.6)

This mapping     
ˆ f  will ultimately play an important role in the ALE finite element

formulation. At this point, it is regarded as an arbitrary mapping (although it will be

assumed to be invertible) of the region ˆ Ω  to the region Ω . The left hand side of (7.2.6)

gives the mapping     
ˆ f  as a function of   c  and t. By virtue of (7.2.6), and (7.1.1), we have

     x = ˆ f ( c ,t ) = f ( X ,t ) (7.2.7)

which states that x  in the Eulerian representation,   c  in the ALE representation, and X  in
the Lagrangian representation are mapped into x(spatial coordinates) at time t. It is noted

that even though the ALE mapping     
ˆ f  is different from the material mapping   f , the spatial

coordinates x  are the same.
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In particular, if   c  is chosen to be the Lagrangian coordinate X,     
ˆ f  becomes the material

mapping   f  so that Eq.(7.2.7) becomes Eq.(7.1.1). A natural question arises: what is the

ALE mapping     
ˆ f  if   c  is chosen to be the spatial coordinate x ? In this situation it is intuitive

to think that Eq.(7.2.6) becomes:

    x = ˆ f ( x,t ) (7.2.8)

Therefore,     
ˆ f  is an identity mapping and it is not a function of time. As a result, we may

define the material and mesh velocities in the spatial coordinate form:

    
v( x ,t ) =

∂f ( X, t )
∂t X

(7.2.9a)

and

    

v ( x,t ) =
∂̂  f ( c ,t )

∂t
c

(7.2.9b)

It is noted that the right hand sides of Eqs.(7.2.9) are simply the definitions of material and
mesh velocities, whereas the complete knowledge of the functions of the material and mesh
velocites are often the solutions to the ALE continuum conservation equations. It is also
understood that the mesh velocity, v (x ,t), is equal to zero for an Eulerian description. We
now assume that the two velocity equations are given so that with the definitions of the
material motion, Eq.(7.1.1), and the mesh motion, Eq.(7.2.6), a set of first order
boundary value equations are obtained:

    

∂f ( X, t)
∂t X

= v( f ( X,t ), t) (7.2.10a)

and

    

∂̂  f ( c , t)
∂t

χ

= v ( ˆ f ( c ,t ), t) (7.2.10b)

The objective of Eqs.(7.2.10) is: given the material velocity function v(x,t), and the mesh

velocity function v (x ,t), find the material mapping     f ( X, t)  and the ALE mapping     
ˆ f ( c , t)

such that Eqs.(7.2.10) are satisfied with the following initial conditions :

    f ( X, 0) = X0 (7.2.11a)

and

    
ˆ f ( c , 0) = X0 (7.2.11b)

With the stated initial boundary value problem, the above raised questions regarding the

ALE mapping     
ˆ f  when   c  is chosen to be x  can be answered by choosing   c = x  ( an

Eulerian description, implying   v ( x,t ) = 0 ), so that
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v ( ˆ f ( c ,t ), t) =

∂̂  f ( x, t )
∂t

x

=
∂I( x)

∂t x

= 0 (7.2.12)

Hence, Eq.(7.2.10b) becomes

    

∂̂  f ( c , t)
∂t

c

=
∂ˆ f ( x,t )

∂t
x

= 0 (7.2.13)

and therefore,

    
ˆ f ( χ ,t ) =constant,

 is determined from the initial conditions. By choosing x = X0 , Eq.(7.2.8) becomes the
identity mapping so that

    x = ˆ f ( x,t ) = I( x ) (7.2.14)

Thus     
ˆ f  is indeed an identity mapping when   c = x .

In the finite element implementation of the ALE formulation, a mesh is defined with respect

to the configuration ˆ Ω . The motion     
ˆ f ( c , t)  is used to describe the motion of the mesh

and, as mentioned earlier, is chosen so as to reduce the effects of mesh distortion. For this

reason, we also refer to     
ˆ f ( c , t)  as the mesh motion. In this sense, we introduce the mesh

displacement, ˆ u , for points in ˆ Ω  through

     x = ˆ f ( c ,t ) = c + ˆ u ( c , t ) (7.2.8)

Consistent with this terminology, we also introduce the mesh velocity and acceleration

fields for points in ˆ Ω  as follows

    

ˆ v =
∂̂  f ( c ,t )

∂t
[ c ]

=
∂ˆ u ( c , t )

∂t [ c ]

(7.2.9)

and

    

ˆ a =
∂̂  v ( c ,t )

∂t [ c ]

=
∂2ˆ u ( c ,t )

∂t 2
[ c ]

(7.2.10)

This expression for velocity could be written as

    

ˆ v =
∂x
∂t [ c ]

(7.2.11)

However, in the interest of clarity in the ALE formulation, we refrain from this notation as

it eliminates the distinction between the mapping or motion (in this case     
ˆ f )  and the value
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of the mapping,  x . For purely Eulerian or Lagrangian descriptions, however, this
distinction in notation can be dropped with little loss of clarity.

Referring to (7.2.7), it can be seen that points in the reference configuration can be
identified as

      c = y( X ,t ) = ˆ f −1 o f ( X, t ) (7.2.12)

although we will have little occasion to use this relation. Instead, we will make use of the
previously defined mappings and the chain rule where necessary. A schematic diagram
representing these descriptions is shown in Fig. 7.1 and a summary of the kinematics for a
general ALE formulation with Lagrangian and Eulerian formulations shown as special
cases is given in Table 7.1.

• x

•
X• χ

Reference Domain ˆ Ω 

Spatial Domain Ω

Material Domain Ω0

    
ˆ f ( c ,t )

    f ( X ,t )

    y( X ,t )

Fig 7.1 Mappings between Lagrangian, Eulerian, ALE descriptions

Description General ALE Lagrangian Eulerian
Material     x = f ( X ,t )     x = f ( X ,t )     x = f ( X ,t )

Motion Mesh
    x = ˆ f ( c ,t)     x = f ( X,t)

(    c = X, ˆ f = f )

x = I(x)

(    c = x, ˆ f = I )
Displacement Material u = x − X u = x − X u = x − X

Mesh
    ̂ u = x − c ˆ u = x − X = u ˆ u = x − x = 0

Velocity Material v = u,t[X ] v = u,t[X ] v = u,t[X ]

Mesh ˆ v = ˆ u ,t[χ] ˆ v = ˆ u ,t[X] = v ˆ v = ˆ u ,t[x] = 0
Acceleration Material a = v,t[X] a = v,t[X] a = v,t[X]
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Mesh ˆ a = ˆ v ,t[χ ] ˆ a = ˆ v ,t[X] = a ˆ a = ˆ v ,t[x] = 0
Table 7.1 Kinematics for a general ALE formulation with Lagrangian and Eulerian
formulations shown as special cases.

7.2.2  Time Derivatives

In the balance laws, the material time derivative of a function appears. For a given
scalar function, f = f (x,t) = F(X,t), the material time derivative, and the spatial
derivative or  spatial gradient of  f  which appears in continuum conservation laws are
defined as:

˙ f =
D

Dt
F(X,t) =

∂F(X,t )

∂t [X ]

= f (x(X,t ), t),t [X ] (7.2.14a)

and

∂f

∂xi

≡ f ,i    or   grad x f ≡ grad f (7.2.14b)

respectively. The subscript x denotes partial differentiation with respect to x.  These two
important shorthand notations will be used subsequently.

7.2.3  Convective Velocity

Although functions f(x , t) are usually given in terms of x  and t, it is convenient in
ALE mechanics to express the function f in terms of   c  in the finite element formulation
since the initial input coordinates  c  are fixed in the finite element mesh.

In general, by composition of mapping, f can be expressed as a function of X  and t,

denoted by F; a function of x  and t, denoted by f; or a function of   c  and t, denoted by ˆ f .
That is

    f = F( X,t ) = f ( x, t) = ˆ f ( c ,t ) (7.2.15)

These are different functions, which represent the same field. The material time derivative
can be expressed for the different descriptions as follow:

Df

Dt
= ˙ F  = material time derivative= F,t[X ](X,t) (X , t) (7.2.16a)

= f,t[x] +
∂ f

∂xi

∂xi

∂ t [X ]

= f,t[x] + f,i vi (x , t) (7.2.16b)
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= ˆ f ,t[χ ] +
∂ˆ f 

∂χi

∂χi

∂t
[X]

= ˆ f ,t[χ] +
∂ˆ f 

∂χi
wi (  c , t) (7.2.16c)

where wi  is the particle velocity in the referential coordinates and may be defined explicitely
as

  
wi =

∂χi

∂t [ X ] (7.2.16d)

.  In Eq. (7.2.16c), the variable   c  is not defined explicitly in terms of X  and t through the
components of x , but is given in terms of the material motion   f  and also of the mesh

motion     
ˆ f .  That is:

    x j = φ j ( X, t ) = ˆ φ j ( c ,t) (7.2.17)

Differentiating with respect to time while holding X  fixed gives:

x j,t[X] = v j =
∂ ˆ φ j
∂t

[χ]

+
∂ ˆ φ j
∂χi

∂χi

∂t
[X]

= ˆ v j +
∂x j

∂χi

∂χi

∂ t [X]

(7.2.18)

The second term on the right hand side can be rearranged to yield:

∂xj

∂χi

∂χi

∂ t [X]

=
∂x j

∂χi
wi = v j − ˆ v j ≡ cj (7.2.19)

where cj  are the components of the convective velocity c. Applying the chain rule to Eq.
(7.2.16c) and employing Eq. (7.2.19) yields:

Df

Dt
= ˙ F = ˆ f ,t[χ] +

∂f

∂xj

∂x j

∂χi

∂χi

∂ t [ X]

= ˆ f ,t[χ ] + f, jc j (7.2.20a)

or in vector notation:

Df

Dt
= ˆ f ,t[χ] + c ⋅ grad f = ˆ f ,t[χ ] + c ⋅∇ x f (7.2.20b)

It can be shown that Eq. (7.2.20a) reduces to Eqs. (7.2.16a) and (7.2.16b) when

    c = X( c = 0 )  and     c = x( c = v) , respectively.  The former is known as the Lagrangian
description, whereas the latter is the Eulerian description.  Equation (7.2.20) is the material
time derivative of f in a referential (i.e., ALE) description.
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Example

The comparison of the Lagrangian, Eulerian, and ALE descriptions is pictorially depicted
in Fig. 7.2 by a 4-node one dimensional finite element mesh. The finite element nodes and
the material points are denoted by circles( ) and solid dots( ), respectively. The
normalized coordinates are: X1 = 0, X2 = 1, X3 = 2 , and X4 = 3; and normalied time is
between 0 and 1. In Chapter 3, the Lagrangian and Eulerian descriptions were described as
shown in Figs. 7.2(a) and (c). To illustrate the ALE description, as shown in Fig. 7.2(b),
the motion of the material points is described by:

x = φ (X,t) = (1− X2 )t + X t2 + X (7.2.13a)

In order to regulate the mesh motion, the four mesh nodes are spaced uniformly based on
the end points of the material motion, that is, φ (X1,t)  and φ (X4 ,t). Therefore,  the mesh
motion can be described by a linear Lagrange polynomial:

x = ˆ φ (χ,t) =
χ − χ1

χ4 − χ1
φ (X1,t) +

χ − χ4

χ1 − χ4
φ (X4 ,t)

(7.2.13b)

Combining Eqs. (7.2.13a) and (b) yields :

  
x =

χ − χ1

χ4 − χ1

(1 − X1
2 ) t + X1( t2 +1)[ ] +

χ − χ4

χ1 − χ4

(1 − X4
2 ) t + X4 ( t2 +1)[ ]

Therefore, we have:

material displacement:

  u = x − X = (1− X 2 )t + Xt 2 + X − X = (1 + X − X 2 ) t

material velocity:

  
v =

∂u

∂t X

= ( 1 + X − X2 )

material acceleration:

a =
∂v

∂t X

= 0

mesh displacement:

  
ˆ u = x − χ =

χ − χ1

χ 4 − χ1

( 1− X1
2 )t + X1( t2 +1)[ ] +

χ − χ4

χ1 − χ4

(1 − X4
2 )t + X4 ( t2 + 1)[ ] − χ

mesh velocity:

  
ˆ v =

∂ˆ u 

∂t χ

=
χ − χ1

χ4 − χ1

(1 − X1
2 ) + 2X1t[ ] +

χ − χ4

χ1 − χ4

( 1− X4
2 ) + 2X4t[ ]

mesh acceleration:
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ˆ a =

∂ˆ v 

∂t χ

=
2X1(χ − χ1 )

χ4 − χ1

+
2X4(χ − χ 4 )

χ1 − χ4

The ALE mapping from the material domain to the reference domain is given by:

  
χ = ψ ( X , t) =

[(1 − X 2 )t + X( t2 +1)]( χ4 − χ1 ) + χ1φ( X1, t ) − χ4φ( X4 ,t )
φ( X1 ,t ) − φ( X4 ,t )

The particle velocity and acceleration in the referential coordinates may then be computed
using Eq. (7.2.16d) and its time deravitive, respectively.

Comparing the two motions above, even though both motions give the same range of x, the
two mappings are quite different as shown in Eqs. (7.2.13a,b) and Fig.7.2b.

(b)  ALE Description

x, X, χ

(a)   Lagrangian Description

x, X, χ

Nodes

Material Points

Nodal Trajectory

Material Point Trajectory

(c)  Eulerian Description

0

x, X, χ

t1

X1 X2 X3 X4

t

t

t1

X1 X2 X3 X4

0

t

t1

X1 X2 X3 X4

0

Fig 7.2 Comparison of Lagrangian, Eulerian, and ALE descriptions

7.4  Updated ALE Balance Laws in Referential Description

To derive the updated ALE balance laws analogous to those of the Lagrangian
description, it is convenient to first use the Lagrangian equations given in Chapter 3 and
then apply Eq. (7.2.20) to the material time derivatives to obtain the ALE conservation
laws. Consequently, the only difference between the updated Lagrangian and updated ALE
formulations is in the material time derivative terms. For completeness, the total ALE
formulations are given in Appendix 7.1.
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7.4.1  Conservation of Mass (Equation of Continuity) in ALE

The continuity equation is given by:

˙ ρ + ρv j,j = 0 (7.4.1)

Applying the material time derivative operator Eqs. (7.2.20) to Eq. (7.4.1), the continuity
equation becomes:

ρ,t[χ ] + ρ, jcj + ρvj, j = 0 (7.4.2a)

or in vector form:

ρ,t[χ ] + c ⋅ grad ρ + ρ∇⋅ v = 0 (7.4.2b)

where ∇⋅ v  is the divergence of v  in index free notation.

An alternate way of deriving the continuity equation is to employ the Reynolds transport
theorem (given in Chapter 3) and using the divergence theorem to give:

∂ρ
∂t x

+
∂(ρvi )

∂xi

 

  
 

  Ω∫ dΩ = 0 (7.7.14b)

Assuming there are no discontinuities in the linear momentum, an application of the  chain
rule yields

Ω∫
∂ρ
∂t x

+ vi
∂ρ
∂xi

+ ρ
∂vi

∂xi

 

  
 

  dΩ = 0 (7.7.14c)

Observing that the first two terms yield the material time derivative of ρ   and hence using
Eq. (7.2.20), Eq. (7.7.14c) becomes:

Ω∫
∂ρ
∂t χ

+ ci
∂ρ
∂xi

+ ρ
∂vi

∂xi

 

 
 

 

 
 dΩ = 0 (7.7.14d)

and since Ω  is arbitrarily chosen, it follows that:

∂ρ
∂t χ

+ ci
∂ρ
∂xi

+ρ
∂vi

∂xi
= 0 in Ω (7.7.15)

which is identical to Eq.(7.4.2). It is noted that if there is a discontinuity, we cannot apply
the chain rule to the linear momentum since there is a jump in ρvi  hence we have to employ
the conservative form, Eq.(7.7.14b) instead of the non-conservative form, Eq.(7.4.1)
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7.4.2  Conservation of Linear Momentum in ALE

The conservative form of the momentum equation is given as:

D

Dt
(ρ vi ) + (ρ vi )v j,j = σ ji, j +ρbi (7.4.6a)

It was shown in Chapter 3 that if there are no discontinuities, then the non-conservative
form of the momentum equation can be obtained by applying the chain rule to ρvi . With the
help of the continuity equation, Eq (7.4.1), we obtain

ρ ˙ v i = σ ji, j + ρbi

Similarly, after applying the material time derivative operator Eqs.(7.2.20) to Eq.(7.4.6a),
the momentum equation becomes:

ρ vi,t[χ] + cjvi, j{ } = σ ji , j + ρbi (7.4.8a)

or, in index free notation:

  
ρ v, t [ χ ] + c⋅ grad v{ } = div( σ) + ρb (7.4.8b)

It is a simple exercise that by applying the material time derivative operator to the energy
equation derived in Chapter 3, and show that the non-conservative form of the energy
equation is:

ρ ˙ E = (viσ ij ),j + bivi + (kijθ, j ),i +ρs

7.5 Formal Statement of the Updated ALE Governing Equations in Non-
Conservative Form (Strong Form) in Referential Description

In the equations given below, (7.6.2), kij  and vi  are the components of the thermal

conductivity matrix and convective heat transfer coefficients, respectively; θ0  is the
ambient temperature; bi  are the components of the body force; and s is the heat source. The
objective of the initial/boundary-value problem is to find the following functions:

u(X , t) material displacement (7.6.1a)

σ (x , t) Cauchy stress tensor (7.6.1b)

θ(x , t) thermodynamic temperature (7.6.1c)

    ̂ u ( c , t ) mesh displacement (7.6.1d)

and
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ρ(x , t) density (7.6.1e)

such that they satisfy the following field and state equations shown in Box 7.1:

Strong Form of Updated ALE Governing Equations in Referential
Description

Continuity Equation

˙ ρ + ρvk,k = 0                or              ρ,t[χ ] + ρ,ici +ρvk,k = 0 (7.6.2a)

Momentum Equations

ρ ˙ v i = σ ji ,j + ρbi          or              ρ (vi,t[χ ] + vi, jc j ) = σ ji , j + ρbi (7.6.2b)

Energy Equation

ρ ˙ E = (viσ ij ),j + bivi + (kijθ, j ),i +ρs                  or

ρ(E,t[χ ] + E,ici ) = (viσij ), j + bivi + (kijθ, j ),i + ρs (7.6.2c)

Equations of State

supplemented by the constitutive equations given in Chapter 6.

Natural Boundary Conditions

ti (x,t) = n j (x,t)σ ji(x,t) on ∂Γx
t (7.6.2g)

qi (x,t) = −kij (θ,x,t )θ , j (x,t) + vi (θ,t)(θ −θ0 ) on ∂Γx
tθ (7.6.2h)

Essential Boundary Conditions

ui(x,t) = u i (x,t) on ∂Γx
g (7.6.2i)

θ(x,t) = θ (x,t) on ∂Γx
gθ (7.6.2j)

Initial Conditions

    u( X ,0) = u0 , ˆ u ( c , 0 ) = ˆ u 0 (7.6.2k)

    v( X, 0 ) = v0 , ˆ v ( c , 0) = ˆ v 0 (7.6.2l)

Mesh Motion

    ̂ u ( c , t )  = a given representation except, perhaps, on part of the boundary.
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(7.6.2m)
Box 7.1 Strong Form of Updated ALE Governing Equations in Referential Description

Prior to developing the weak form and Petrov-Galerkin finite element discretization of the
ALE continuity and momentum equations outlined above, it is most instructive to digress
briefly and formally acquaint the reader with the general Petrov-Galerkin method.  In doing
so, it hoped that the necessity and power of such an approach will become apparent and
that an intuitive feeling for the physics involved will be brought to light.  The following
section is designed to fulfill this requirement after which our development of the ALE
equations will resume.

7.14 Introduction to the Petrov-Galerkin Method

In this section, streamline upwinding by a Petrov Galerkin method(SUPG) is
formulated. Prior to the development of this method, the need for an upwinding scheme
was motivated by an examination of the classical advection-diffusion equation. The
advection-diffusion equation is a useful model for studying the momentum since it
corresponds to a linearization of the transport equation. A closed form solution for the
discrete steady-state advection diffusion equation will be obtained. It will be shown that the
solution is oscillatory when a parameter of the mesh, known as the Peclet number, exceeds
a critical value. Next, a Petrov Galerkin method will be developed which eliminates these
oscillations.

Consider the linear advection-diffusion equation:

∂φ
∂t

+ u ⋅∇φ − υ ∇2φ = 0 (7.14.1)

where φ  is the dependent variable, υ  is the kinematic viscosity, and u is a given velocity

field.  For the steady state case, 
∂φ
∂t

= 0.  So, the steady state equation is:

u ⋅∇φ − υ ∇2φ = 0 (7.14.2)

For the study of special numerical instabilities, we restrict Eq. (7.14.2) to one dimension
so that:

u
dφ
dx

= υ
d2φ
dx 2 (7.14.3)

Equation (7.14.3) with boundary conditions:

φ (0) = 0 and φ (L) = 1 (7.14.4)

is a two-point boundary value problem on the domain 0 ≤ x ≤ L .

It is easy to verify that the exact solution to Eqs. (7.14.3) and (7.14.4) is:
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φ (x) =
1 − eux/ υ

1 − euL /υ (7.14.5)

7.14.1 The Galerkin Finite Element Approximation of the Advection-Diffusion Equation

Letting the test function be w(x), multiplying Eq. (7.14.3) by w, and integrating over
the domain gives

Ω∫ w u
dφ
dx

− υ
d2φ
dx2

 
 
  

 
 dx = 0 (7.14.6)

 Integrating by parts and making use of the divergence theorem, the weak form of the one
dimensional advection-diffusion equation, Eq. (7.14.3), is

Ω∫ wu
dφ
dx

dx +
Ω∫ υ w,xφ,x dx = 0 (7.14.7)

with   w ∈U 0 .  The domain (0, L) is then divided into equally sized linear finite elements,

Ωe , on which the finite element approximation is given by:

(
Ω e∫ uNa Nb,x dx)φb + (

Ω e∫ υ Na,xNb,x dx)φb = 0     a, b = 1, 2 (7.14.8)

where Na  and Nb  are the linear finite elements shape functions.  This can be written in
matrix component form as

Nab φb + Kab φb = 0 a, b = 1, 2 (7.14.9a)

where the convective matrix is given as:

Nab =
xe

x e+1

∫ uNa Nb,x dx (7.14.9b)

and the diffusion matrix is:

Kab =
xe

x e+1

∫ υ Na,x Nb,x dx (7.14.9c)

It is a simple exercise to show that, when using linear finite element shape functions,

N =
u

2

−1 1

−1 1
 
  

 
  K =

υ
∆x

1 −1

−1 1
 
  

 
  (7.14.10)

After assembly, the equation for the jth node is :
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u
φ j +1 − φ j −1

2∆x

 
 
  

 
− υ

φ j+1 − 2φ j + φ j −1

∆x2

 
 
  

 
= 0 (7.14.11a)

which is exactly the central difference approximation. It is convenient to normalize the
above equation, so that:

u∆x

2υ
φ j+1 − φ j−1( ) − φ j+1 − 2φ j + φ j −1( ) = 0 (7.14.11b)

The Peclet number, Pe , may then be defined as:

Pe =
u∆x

2υ
(7.14.12)

In terms of the Peclet number, Eq. (7.14.11b) then becomes:

Pe φ j +1 − φ j −1( ) − φ j+1 − 2φ j + φ j−1( ) = 0 (7.14.13a)

Pe −1( )φ j +1 + 2φ j − Pe +1( )φ j −1 = 0 (7.14.13b)

Ignoring the boundary conditions, Eq. (7.14.13) can be put into the standard matrix
notation by expanding the  jth term in Eq. (7.14.13):

  

Pe

−1 0 1

−1 0 1

−1 0 1

 

 

 
 
 
 

 

 

 
 
 
 

M
φ j −1

φ j

φ j +1

M

 

 

 
 
 
 

 

 

 
 
 
 

+
−1 2 −1

−1 2 −1

−1 2 −1

 

 

 
 
 
 

 

 

 
 
 
 

M
φ j−1

φ j

φ j+1

M

 

 

 
 
 
 

 

 

 
 
 
 

=

M
0

0

0

M

 

 

 
 
 
 

 

 

 
 
 
 

(7.14.14)

convective term diffusion term

The solution to the discrete finite difference Eq. (7.14.13) can be obtained by assuming:

φ (xj ) ≡ φ j = e
ax j = ea( j ∆x ) = e(a∆x ) j ≡ z j (7.14.15)

Where z = ea∆x  and a is an unknown coefficient to be determined.  By the definition in Eq.
(7.14.15), the j+1th and j-1th terms of φ  are:

φ j +1 = ea( j+1) ∆x = ea j∆xea∆x = z j +1 (7.14.16a)

φ j −1 = ea( j−1)∆x = ea j∆xe−a ∆x = z j−1 (7.14.16b)

Substituting Eqs. (7.14.16) into Eq. (7.14.13) yields:
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Pe −1( )z j +1 + 2z j − Pe +1( )z j −1 = 0 (7.14.17)

Assuming that z j−1 ≠ 0  and dividing the above equation by z j−1 , Eq. (7.14.17) becomes:

Pe −1( )z2 + 2z − Pe +1( ) = 0 (7.14.18)

The roots for Eq. (7.14.18) are:

z = 1 or z =
1 + Pe

1 − Pe
(7.14.19)

Recalling that φ j = z j , the solution to Eq. (7.14.13) takes the form:

φ j = c1 + c2
1 + Pe

1 − Pe

 
 
  

 
 

j

(7.14.20)

where c1 and c2  are coefficients to be determined from the boundary conditions.  Since the
exact solution to Eq. (7.14.3) is given by Eq. (7.14.5), the exact solution of φ , evaluated
at x = x j , has the form of:

φ (xj ) =
1

1− euL/ υ 1− e
ux j / υ[ ] = c1 + c2e

u

υ
j∆x

(7.14.21)

Comparing the finite difference solution Eq. (7.14.20) with the exact solution, Eq.
(7.14.21), it can be concluded that:

(i) If the Peclet number is less than one, i.e., Pe < 1, then the discrete solution will
have a solution similar to the exponential solution as given in the exact solution since

1 + Pe

1 − Pe

 
 
  

 
 

j

> 0.

(ii) If the Peclet number is greater than one, i.e., Pe > 1, then the discrete solution
becomes:

1 + Pe

1 − Pe

 
 
  

 
 

j

= (−m) j    with m > 0

Hence nodal oscillations occur because φ j  is positive or negative depending on whether j
is even or odd, respectively. To illustrate these nodal oscillations, we consider the one
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dimensional advection-diffusion equation as given in Eq.(7.14.3) with boundary
conditions (7.14.4). The plots below compare the exact solution with finite element
solutions for the cases of both no upwinding and full upwinding. In all cases, 80 elements
were used with an element Peclet number of 300.

7.14.2 Ramification of Nodal Oscillation by the Petrov-Galerkin Formulation

Recall the weak form of Eq. (7.14.3):

Ω∫ w (u
dφ
dx

− υ
d2 φ
dx2 )dx = 0 (7.14.27)

The Petrov-Galerkin formulation for Eq. (7.14.3) is obtained by replacing the test function
w  by ˜ w , where ˜ w  is defined as:

  

w → ˜ w ≡ w
Galerkintestfunction

{ + α
∆x

2

dw

dx
(signu)

discontinuoustestfunction
1 2 4 4 3 4 4 

(7.14.28)

Replacing w  by ˜ w , Eq. (7.14.27) becomes:

Ω∫ ˜ w (u
dφ
dx

− υ
d2 φ
dx2 )dx = 0 (7.14.29)

Note that   w ∈U0  and   ̃  w ∉U0 .  The parameter α  is to be determined so as to eliminate
oscillations for Pe > 1 and hopefully get accurate solutions; in one dimension, it is possible
to select α  so as to obtain exact values of the solution at the nodes.  Substituting the
definition of ˜ w , Eq. (7.14.28), into Eq. (7.14.29) yields:

  

0 =
Ω∫ ˜ w (u

dφ
dx

− υ
d2φ
dx2 )dx =

Ω∫ w(u
dφ
dx

− υ
d2φ
dx 2 )dx

GalerkinTerm
1 2 4 4 4 4 3 4 4 4 4 

  

+
e=1

Ne

∑ Ωe∫ α
∆x

2

dw

dx
(signu)(u

dφ
dx

− υ
d2φ
dx2 )dx

Upwind Petrov − Galerkin Term
1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 

(7.14.30)

After integrating by parts (and using w (0)=w (L)=0 be construction), Eq. (7.14.30)
becomes:

0 =
Ω∫ wu

dφ
dx

dx +
Ω∫ υ

dw

dx

dφ
dx

dx
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+
e=1

N e

∑
Ωe∫ u

α∆x

2
(sign u)

dw

dx

dφ
dx

dx −
e=1

Ne

∑
Ωe∫ υ

α∆x

2
(signu)

dw

dx

d2φ
dx2 dx

(7.14.31)
The above equation is known as upwinding Petrov-Galerkin formulation(Brooks &
Hughes, 1978). It is noted that in this formulation the second derivative of φ  is required.
Further, the free parameter α  is determined in the following section after the presentation
of an alternative formulation which only requires the first derivative of φ .

7.14.3 An Alternative Derivation of the Upwind/Petrov-Galerkin Formulation

This section outlines an alternative derivation of the upwind formulation.  Motivated by a
desire to necessitate low order continuity restrictions on the trial functions, we begin by
starting with the one dimensional advection-diffusion equation as before.  The equation is
then multiplied by a test function ˜ w  and integrated over the domain Ω   (following the
traditional weak form development) thereby yielding

  Ω∫ ˜ w ( u
dφ
dx

− υ
d2φ
dx2

)dx = 0

Examining the second term on the left hand side in more detail, our goal is to remove one
derivative from the trial function and place it on the test function, ˜ w , thereby relaxing trial
function continuity requirements.  To this end, we integrate by parts in the familiar manner
as follows:

  
I ≡ φ

Ω∫ ˜ w υ
d2φ
dx 2

dx =
Ω∫ ( ˜ w υ

dφ
dx

) , x dx −
Ω∫

d˜ w 

dx
υ

dφ
dx

dx

Applying the divergence theorem and the substituting in the definition of   ̃  w gives:

  

I = ˜ w υ
dφ
dx o

L

−
Ω∫

d˜ w 

dx
υ

dφ
dx

dx = w + α
∆x

2

dw

dx
(sign u )

 
 

 
 
υ

dφ
dx 0

L

−
Ω∫

d˜ w 

dx
υ

dφ
dx

dx

= α
∆x

2

dw

dx
(sign u )υ

dφ
dx 0

L

−
Ω∫

d˜ w 

dx
υ

dφ
dx

dx ( since w( o) = 0 and w( L ) = 0 )

Combining the above results with the advection term yields the following alternative weak
form:

  
˜ w u

dφ
dx

+
d˜ w 

dx
υ

dφ
dx

 
  

 
  Ω∫ dx −α

∆x

2

dw

dx
(sign u)υ

dφ
dx 0

L

= 0

Now it is apparent that removal of a trial function derivative gives rise to a boundary
integral term which was not present in the Petrov-Galerkin formulation presented earlier.
In the particular case when ˜ w   is defined as in Eq. (7.14.28), it is straightforward to show
that this alternative formulation yields the same results as the formulation presented in the
previous section.  To see this, substitute the explicit expression for ˜ w  into the equation
giving



W.K.Liu, Chapter 7 19

  

Ω∫ w + α
∆x

2

dw

dx
(sign u ) 

 
 
 
u

dφ
dx

dx +
Ω∫

dw

dx
+ α

∆x

2

d2w

dx2
(sign u)

 
  

 
  v

dφ
dx

dx

−α ∆x

2

dw

dx
(sign u )υ dφ

dx 0

L

= 0

Using integrating by parts on the fourth term gives

  
Ω∫ α

∆x

2

d2w

dx2
(sign u)

 
  

 
  v

dφ
dx

dx =α
∆x

2
(sign u )v

dw

dx

dφ
dx 0

L

− α
∆x

2
(sign u)v

Ω∫
dw

dx

d2φ
dx2

dx

which, upon rearrangement of the terms, yields the expression resulting from the
previously presented Petrov-Galerkin formulation:

  

Ω∫ wu
dφ
dx

dx +
Ω∫ v

dw

dx

dφ
dx

dx +
e =1

Ne

∑ Ω e∫ α
∆x

2
(sign u )u

dw

dx

dφ
dx

dx

−
e =1

Ne

∑ Ω e∫ α
∆x

2
(sign u )v

dw

dx

d 2φ
dx2

dx +α
∆x

2
(sign u) v

dw

dx

dφ
dx 0

L

−

α
∆x

2
(sign u )v

dw

dx

dφ
dx 0

L

= 0

Following the cancelation of the last two terms, this equation is identical to that of the
previous formulation, Eq.(7.14.31).  As a result, we may select either formulation
depending on which is more convenient computationally for the problem at hand.

Finally, it can be noted that when linear elements are used, 
d2φ
dx2 = 0 , so all terms involving

second derivatitves vanish.  Consequently, Eq. (7.14.31) may be written as:

0 =
e

∑ Ω e∫ wu
dφ
dx

+v∗ dw

dx

dφ
dx

 
 

 
 
dx

(7.14.32)

where,   υ
* ,which may be thought of as a sum of two viscosities will be defined below.

7.14.4 Parameter Determination and Further Analysis

To begin, we wish to shed additional light on the physical interpretation of Eq. (7.14.32).
As a result, we make the following definitions:

υ* = υ + υ  = total viscosity (7.14.33a)

and

υ = αu
∆x

2
sign(u), α ≥ 0 (7.14.33b)



W.K.Liu, Chapter 7 20

It then becomes clear that υ  may be thought of as an artificial viscosity which must be
added to the “normal” flow viscosity, υ , to ensure stability.  That is, without this
superficial damping which does not correspond to the physics of the problem, our
numerical solution oscillates wildly thereby leading to physically meaningless results.

To define these viscosities in terms of various Peclet numbers, consider the following
relationships:

υ ⇐ Pe =
u∆x

2υ
(7.14.34a)

υ ⇐ Pe =
u∆x

2υ 
(7.14.34b)

υ* ⇐ Pe
* =

u∆x

2υ* (7.14.34c)

The relationships between Eq. (7.14.34a-c) can be expressed as:

1

Pe
* =

2υ*

u∆x
=

2υ
u∆x

+
2υ 
u∆x

=
1

Pe
+

1

Pe
(7.14.35)

In Eq. (7.14.35), if Pe
* <1, then

2υ
u∆x

+
2υ 
u∆x

>1 or 
1

Pe
> 1−

1

Pe
 (7.14.36)

and the solution will not be oscillatory.  From Eq. (7.14.13), the discrete equation in terms
of Pe

*  can be written as:

(Pe
* −1)φ j+1 + 2φ j − (Pe

* +1)φ j−1 = 0 (7.14.37)

Recall  that the discrete solution is oscillatory when φ N = z N , the roots of Eq. (7.14.37)
are :

zN = c1, c2
1 + Pe

*

1 − Pe
*

 
 
  

 
 

N

(7.14.38)

From Eq. (7.14.21) and Eq. (7.14.38), we can solve Pe
* .  That is,

1 + Pe
*

1 − Pe
*

 
 
  

 
 

j

= e
(
u

υ
∆x) j

(7.14.39)
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The RHS of Eq. (7.14.39) can be expressed in terms of Pe .  That is:

1 + Pe
*

1 − Pe
* = e

u

υ
∆x

= e
2(

u∆x

2υ
)

= e2 Pe (7.14.40a)

or

1 − e2 Pe = −Pe
*(1+ e2 Pe ) (7.14.40b)

Therefore,

Pe
* =

e2Pe −1

e2Pe +1
=

ePe − e−Pe

ePe + e−Pe
(7.14.41a)

or

Pe
* = tanh(Pe) (7.14.41b)

Substituting Eq. (7.14.41b) into Eq. (7.14.35) yields:

1

tanh(Pe)
=

1

Pe
+

1

Pe
(7.14.42a)

or

1

Pe
= coth(Pe ) −

1

Pe
(7.14.42b)

Together, Eq. (7.14.34b) and Eq. (7.14.42b) may be combined to give:

P e =
u∆x

2υ 
= coth(Pe) −

1

Pe

 

  
 

  

−1

(7.14.43)

Using Eq. (7.14.43), we can also express υ  in terms of Pe :

υ =
1

2
u∆x coth(Pe ) −

1

Pe

 

  
 

  = α
u∆x

2
sign(u) (7.14.44a)

so therefore,
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υ =
1

2
u∆x coth(Pe ) −

1

Pe

 

  
 

  = α
u∆x

2
sign(u) (7.14.44b)

Finally, it becomes apparent that we may define the parameter α  as:

  
α = sign( u ) [coth( Pe ) −

1

Pe

]
(7.14.45)

Note that when α = 0 , Eq. (7.14.29) is simply like a central difference method and when
α =1, it is a full upwind Petrov-Galerkin formulation.

7.14.5 Streamline-Upwind/Petrov-Galerkin Formulation for Multiple Dimensions

The advection-diffusion equation in multiple dimension is:

u ⋅∇φ − v∇2φ = 0 in Ω (7.14.45a)

where the boundary conditions are:

φ = g on ∂Ωg (7.14.45b)

v ∇φ ⋅ n = 0 on ∂Ωt (7.14.45c)

The weak form of the advection-diffusion equation for a streamline-upwind/Petrov-
Galerkin formulation of Eq. (7.14.45a) is obtained by multiplying  Eq. (7.14.45a) by the
test function w  and integrating over the domain Ω

  
w(∫ u ⋅∇φ − v∇2φ ) = 0

Similar to the one-dimensional formulation presented above, let the Petrov-Galerkin test
functions be defined by

    

w → ˜ w ≡ w
Galerkintestfunction

{ + τu ⋅∇w
discontinuoustest function

1 2 3 
(7.14.45d)

thus giving

0 =
Ω∫ (w + τu ⋅∇w)(u ⋅∇φ − υ∇2φ)dΩ

(7.14.46a)

where the stabilization parameter is now given by
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τ = α
h

2 u
 and h ≡ ∆x (7.14.45b)

where α  is given by Eq.(7.14.33c). For a time dependent problem, the stabilization
parameter can be set by:

τ = α
∆t

2
(7.14.45c)

Note that   w ∈U 0  and     
˜ w ∉U0  as in the one dimensional case.  Applying integration by parts

and the divergence theorem, the weak form of Eq. (7.14.46a) can be shown to be:

  

0 =
Ω∫ wu ⋅∇φ dΩ+

Ω∫ υ∇w ⋅∇φdΩ

Galerkin terms
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

  

+
e=1

N e

∑ Ωe∫ τ (u ⋅∇w)(u ⋅∇φ) dΩ−
e=1

N e

∑ Ω e∫ τ (u ⋅∇w)υ∇2φdΩ

streamlineupwind stabilization terms
1 2 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 

(7.14.46)

As can be seen from the above equation, the Petrov-Galerkin terms are simply the sum of
the standard Galerkin terms plus the streamline upwind stabilization terms. Namely,

Petrov / Galerkin = Galerkin + Streamline Upwind Stabilization

The third term of Eq. (7.14.46) can be rewritten as:

Ω e∫ τ (u ⋅∇w)(u ⋅∇φ) dΩ

=
Ω e∫ τ w,1 w,2 w,3[ ]

u1

u2

u3

 

 

 
 

 

 

 
 

u1 u2 u3[ ]
φ,1

φ ,2

φ ,3

 

 

 
 

 

 

 
 
dΩ

=
Ω e∫ τ w,1 w,2 w,3[ ]

u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 

 

 
 

 

 

 
 

φ ,1

φ,2

φ,3

 

 

 
 

 

 

 
 
dΩ

=
Ω e∫ ∇w ⋅ (˜ υ ∇φ) dΩ (7.14.47a)

where



W.K.Liu, Chapter 7 24

˜ υ = τ
u1u1 u1u2 u1u3

u2u1 u2u2 u2u3

u3u1 u3u2 u3u3

 

 

 
 

 

 

 
 

(7.14.47b)

Substituting Eq. (7.14.47a) into Eq. (7.14.46) and ignoring the last second order term, Eq.
(7.14.46) becomes:

  

0 =
Ω∫ w u ⋅∇φ dΩ +

e =1

Ne

∑ Ωe∫ ∇w(υ1

Galerkin Term
1 2 4 4 4 4 4 3 4 4 4 4 4 

+ ˜ υ 
artifical viscosity}

)∇φ dΩ (7.14.48)

The artificial viscosity acts as a stabilization term which eliminates the oscillations resulting
from a standard  Galerkin formulation.

7.14.6 An Alternative Derivation of the Multiple Dimensional Streamline-Upwind/Petrov-
Galerkin Formulation

Paralleling section 7.14.3, this section outlines an alternative derivation of the
multidimensional streamline-upwind/Petrov-Galerkine formulation presented above.  To
this end,  we begin by starting with the multiple dimensional advection-diffusion equation
as before.  The equation is then multiplied by a test function ˜ w  and integrated over the
domain Ω   (following the traditional weak form development) thereby yielding

  ∫ ˜ w ( u ⋅∇φ − v∇2φ ) = 0

Examining the second term on the left hand side in more detail, our goal is to remove one
derivative from the trial function and place it on the test function, ˜ w , thereby relaxing trial
function continuity requirements.  To this end, we integrate by parts in the familiar manner
as follows:

  
I ≡

Ω∫ ˜ w v∇2φdΩ = ∇(
Ω∫ ˜ w v ∇φ) dΩ −

Ω∫ ∇˜ w v∇φdΩ

Applying the divergence theorem and the substituting in the definition of   ̃  w gives:

  

I = ˜ w v∇φ Γ −
Ω∫ ∇ ˜ w v∇φdΩ= w +τu ⋅∇w[ ]v∇φ Γ −

Ω∫ ∇ ˜ w v∇φdΩ

= τu ⋅∇ wv∇φ Γ −
Ω∫ ∇˜ w v∇φdΩ

where the last line has been obtained by using the fact that   w ∈U 0 .  Combining the
above results with the advection term yields the following alternative weak form:

  
˜ w u ⋅∇w +∇ ˜ w v∇φ[ ]

Ω∫ dΩ− τu ⋅∇wv∇φ Γ = 0

Now it is apparent that removal of a trial function derivative gives rise to a boundary
integral term which was not present in the streamline-upwind/Petrov-Galerkin formulation
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presented earlier.  In the particular case when ˜ w   is defined as in Eq. (7.14.28), it is
straightforward to show that this alternative formulation yields the same results as the
formulation presented in the previous section.

Example Petrov-Galerkin formulation of the ALE momentum equation for a 1D 2-node
linear displacement element may be done as follows.
The test function is chosen to be:

N I = N I + α
h

2

dN I

dx
sign(c)

where α  is the viscosity constant, c is the convective velocity, h is the element size, and
NI  is the shape function of the usual Galerkin form. If constant density is assumed, we
obtain the Petrov-Galerkin form of the mass matrix in the ALE formulation,  as:

M = ρh

1

3
−

α
2

(K2 − K1)
1

6
−

α
2

K1

1

6
+

α
2

(K2 − K1 )
1

3
+

α
2

K1

 

 

 
 

 

 

 
 

where

K1=

1

2
sign(c1) if (c1 = c2 )

1

2
sign(c1) − sign(c2 )[ ] c1

c1 − c2

 
 
  

 
 

2

+
1

2
sign(c2 ) if (c1 ≠ c2 )

 

 
 

 
 

K2=
sign(c1) if (c1 = c2 )

sign(c1) − sign(c2 )[ ] c1

c1 − c2

 
 
  

 
 + sign(c2 ) if (c1 ≠ c2 )

 
 
 

  

and c1 and c2  are the convective velocities at  the 2 nodes.
Similar to that for convective-advective equation, we can rewrite the mass matrix as:

  

M = ρh

1

3

1

6
1

6

1

3

 

 

 
 

 

 

 
 

Galerkinterms
1 2 4 3 4 

+ ρh
−α

2
(K2 − K1) − α

2
K1

+
α
2

(K2 − K1) +
α
2

K1

 

 

 
 

 

 

 
 

streamline upwind stabilizationterms
1 2 4 4 4 4 4 3 4 4 4 4 4 

namely, the Petrov-Galerkin terms can be split into the sum of Galerkin terms and the
streamline upwind stabilization terms.

7.3 Weak Form and Petrov-Galerkin Finite Element Discretization of the
ALE Continuity and Momentum Equations:

As can be seen from Box 7.1, the only difference between the updated Lagrangian
equations and the updated ALE equations is the interpretation of the material time
derivative. Hence the weak form, and subsequently the Galerkin finite element
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formulations, are identical to those derived in Chapter 4. However, note that the spatial
domain now depends on how the mesh motion is updated, which is one of the key
ingredients in the updated ALE formulation.

The variational equations corresponding to the conservation equations of Box 7.1 are
obtained by multiplying by the test functions, δρ  and δvi , integrating over the spatial
domain Ω  and employing the divergence theorem to embed the traction force vector t  on

the boundary Γ t . Following the same procedures as in Chapter 4, we can achieve the
following weak forms:

Continuity Equation:

δρ ˙ ρ d
Ω∫ Ω = δρρ ,t [χ]dΩ∫ Ω+ δρciρ,idΩ∫ Ω =− δρρvi,idΩ∫ Ω (7.16.2a)

Momentum Equation:

δviρ ˙ v idΩ∫ Ω

= δviρvi,t [χ ]dΩ∫ Ω + δv iρc jvi, jdΩ∫ Ω

= − δvi, jσ ijdΩ∫ Ω+ δviρbidΩ∫ Ωx + δvit idΓ
Γ t∫

(7.16.2b)

It is noted that because convective terms (ρ,ici  and vi, jcj ) appeared in the continuity and
momentum equations, a Galerkin finite element formulation will give rise to numerical
difficulties. Therefore, in this section, the Petrov-Galerkin formulation will be employed to
alleviate some of these difficulties. In a Petrov Galerkin finite element discretization, the
current domain Ω  is subdivided into elements. However, different sets of shape functions,

N  and Nρ  for the trial functions, and N  and N ρ  for the test functions, will be used to
interpolate the velocity and density, respectively. If N = N , the Galerkin ALE formulations

will be obtained. The choice of N  and N ρ   to eliminate numerical oscillations will be
described in section ????.

The finite element matrix equations corresponding to Eq.(7.16.2a,b) are :

Continuity equation:

Mρρ,t[χ ] + Lρρ+ Kρρ = 0 (7.16.3a)

where Mρ , Lρ , Kρ  are generalized mass, convective, and stiffness matrices,
respectively, for density under a reference description such that:

Mρ = [MIJ
ρ ] = N I

ρNJ
ρd

Ω∫ Ω (7.16.3b)

Lρ = [LIJ
ρ ] = N I

ρci NJ ,i
ρ d

Ω∫ Ω (7.16.3c)
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Kρ = [KIJ
ρ ] = N I

ρvi,i NJ
ρd

Ω∫ Ω (7.16.3d)

Momentum Equation:

Mv,t[χ ] + Lv + f int = fext (7.16.4a)

where M  and L  are generalized mass and convective matrices, respectively, for velocity

under a reference description; while f int and f ext  are the internal and external force vectors
respectively, such that:

M = [M IJ ] = ρN I NJd
Ω∫ Ω (7.16.4b)

L = [LIJ ] = ρN I ci NJ ,idΩ∫ Ω (7.16.4c)

f int = [ fiI
int] = N I , jσ ijdΩ∫ Ω (7.16.4d)

f ext = [ fiI
ext ] = ρN I bi d

Ω∫ Ω + N I t i d
Γ t∫ Γ (7.16.4e)

REMARK 7.16.1.4 The nonself-adjoint and nonlinear convective terms, Lρ  and L ,
which appear in Eqs.(7.16.3c) and (7.16.4c) and characterize the ALE method, will
inevitably pose difficulties.

REMARK 7.16.1.5 All the matrices and vectors defined in Eqs(7.16.3)-(7.16.6) are
integrated over the spatial domain Ω . Unlike the Lagrangian formulations, the spatial
domain changes continuously throughout the computation. The mesh update procedure will
be described in section ????.

In the subsequent development of this chapter, we shall divide the discussion of ALE
formulations into four parts:
1) Updated ALE formulations for continuum material models without memory, that is, the
evaluation of constitutive laws is independent of the strain history. A simple example of
this kind of materials is a slightly compressible Newtonian fluid which will be discussed in
section ???
2) Updated ALE formulations of continuum material models with memory, that is, the
evaluation of constitutive laws is strain history dependent. This will be described in section
???.
3) The Petrov-Galerkin finite element method, of which the discretization of the transport
term requires special treatment. For high velocities, if the mesh is not sufficiently refined,
the Galerkin method gives rise to oscillatory solutions. To overcome this difficulty, various
schemes, collectively known as upwinding, will be described in section ????.
4) The mesh update procedure, which is described in section ????.

The reason for the distinction between ALE formulations with and without memory is due
to the difference between ALE material update procedures. Recall that the material time
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derivative of a given function f can be related to the referential time derivative by
Eq.(7.2.20), that is

˙ f =
Df

Dt
= ˆ f ,t[χ ] + cj f, j

It is noted that f can represent density ρ , velocity v , energy E, Cauchy stress σ , etc., as
appearing in the governing equations Box 7.1.

The next section will illustrate the difference between Lagrangian and ALE material update
procedures.

7.3  ALE Material Updates

In the Lagrangian description, the updating of any material-related state variable is
simple.  Since the Lagrangian coordinate is always associated with the same material point,
a Taylor series expansion in time may be used.  Using first order accuracy gives:

  
F(X,t + dt) = F(X,t) + dt

∂F

∂ t
(X,t)

X

+ K (7.3.1)

However, in a referential description, updating of a material state variable introduces

complicates. To illustrate this, we expand a state variable ˆ f (χ,t) in a Taylor series:

    

ˆ f ( χ, t+ dt) = ˆ f ( χ, t ) + dt
∂̂  f 
∂t

( χ, t )
χ

+ K (7.3.2)

or, by referring everything to the particle X  at time t (see Eq. (7.2.10)), as:

  

ˆ f ψ (X,t + dt), t + dt[ ] = ˆ f ψ(X,t), t[ ] + dt
∂ˆ f 

∂ t
ψ (X,t ), t[ ]

χ=ψ (X,t )

+ K (7.3.3)

which is equivalent to

  
F(X ,t + dt) = F(X,t) + dt

∂F

∂t
(X,t)

X=ψ −1 (χ ,t)
+K (7.3.4a)

where

  X = ψ −1( χ, t + dt )    and     X = ψ −1( χ, t ) (7.3.4b)

Comparing Eq. (7.3.4a) with Eq. (7.3.1), even though the terms in the right hand side of
the equations are the same , shows that X  and X  are two different material particles, which
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at t and t + dt, respectively, have the same referential coordinates.  Therefore, in a
referential description, a simple updating technique, such as Eq. (7.3.2) cannot be used for
material point-related variables, such as state variables in path-dependent materials;
however, for homogeneous materials with no memory, such as the generalized Newtonian
fluids, Eq. (7.3.2) can be implemented with no further complications.  Further detail will
be given on this subject later.

7.16 ALE Finite Element Method for Path-Dependent Materials

The purpose of this section is to provide a general formulation and an explicit
computational procedure for nonlinear ALE finite element analyses. Emphasis is placed on
the stress update procedure for path-dependent materials. First, after the general
formulations for the ALE description are reviewed, according to strong form, weak form
and finite element form, the most important part of the ALE application for path-dependent
materials, the stress update procedure, is studied in detail. Formulations for regular
Galerkin method, Streamline-upwind/Petrov-Galerkin(SUPG) method and operator split
method are derived respectively. All the path-dependent state variables are updated with a
similar procedure. Further, the stress update procedures are specified in 1-D case. And the
matrices corresponding to these three methods are listed. Then, an explicit computational
method and a flowchart are presented. Finally, elastic and elastic-plastic wave propagation
examples are given.

7.16.1 Formulations for Updated ALE:

7.16.1.1 Strong Form Formulations for ALE:

In addition to continuity and momentum equations given in section ????, for the purpose of
introducing path-dependent material model, the Cauchy stress may be decomposed into the
deviatoric stress tensor sij  and the hydrostatic pressure  p  such that

σ ij = sij − pδij (7.16.1c)

and the components of the deviatoric stress term are given by the Jaumann rate constitutive
equation

sij,t[χ ] + cksij,k = CijklDkl + skjWik + skiW jk (7.16.1d)

Similarly the rate from of the equation of state is given by:

p,t[χ ] + ci p,i = p(ρ ) (7.16.1e)

In the above equations, Dij  and Wij  are of deformation tensor and the spin tensor,
respectively; such that

Dij =
1

2
(vi, j + vj,i ) (7.16.1f)
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Wij =
1

2
(vi, j − vj,i ) (7.16.1g)

and Cijkl is the material response tensor which relates any frame-invariant rate of the
Cauchy stress to the velocity strain. Both geometric and material nonlinearities are included
in the setting of Eqs. (7.16.1a-g).

REMARK 7.16.1.1 The right-hand sides of Eqs. (7.16.1a,b,d and e) remain the same for
all descriptions.
REMARK 7.16.1.2. Eqs. (7.16.1a,b,d and e) are referred to as the “quasi-Eulerian”
description (Belytschko and Kennedy, 1978) because these equations have a strong
resemblance to the Eulerian equations. In particular, the Eulerian equations can be readily
obtained by choosing c = v , i.e., χ = x .
REMARK 7.16.1.3. With the help of integration by part, Eq.(7.16.1d) is equivalent to the
following equations:

sij,t[χ ] + yijk,k − ck ,ksij = CijklDkl + skjWik + skiW jk (7.16.1h)

and

yijk = sijck (7.16.1i)

where yijk  is the stress-velocity product. In the following finite element computation, these
two equations will replace Eq.(7.16.1d) in the weak form.

7.16.1.2 Weak Form of the ALE Equations:

Similar to the case for continuity and momentum equations, we may obtain the weak form
of the constitutive equations:

δsijsij,t[χ ]dΩ∫ Ω + δsij yijk,kd
Ω∫ Ω− δsijck,ksijdΩ∫ Ω

= δsijCijklDkldΩ∫ Ω + δsij{skjWik + skiW jk}d
Ω∫ Ω

(7.16.2c)

and

δyijk yijkd
Ω∫ Ω = δyijksijckd

Ω∫ Ω (7.16.2d)

Equation of state

δppt,[χ ]dΩ∫ Ω + δpci p,idΩ∫ Ω = δpp(ρ)d
Ω∫ Ω (7.16.2e)

Eq.(7.16.2a) represents the control volume form of material conservation. Eq.(7.16.2b) is
a generalization of the principle of virtual work to the control volume form with the first
integral brought in as d’Alembert forces.

7.16.1.3 Finite Element Discretization:

Similar to the finite element discretization for continuity and momentum equations, we can

obtain the finite element form for constitutive equations by employing N s , N y  and N p  as
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sets of shape functions, and N s , N y  and N p  as corresponding sets of test functions to
interpolate the deviatoric stress, stress-velocity product, and hydrostatic pressure
respectively. Note that the test functions and the shape functions for deviatoric stresses are
used only in the constitutive equations.

Constitutive Equations:

Mss,t[χ ] + GT y − Ds = z (7.16.5a)

Myy = Lys (7.16.5b)

where the superscript T denotes matrix transpose, Ms  and D  are the generalized mass  and

diffusion matrices for deviatoric stress respectively; GTy  corresponds to the generalized

convective term; My  and Ly  are the generalized mass and convective matrices for stress-
velocity product respectively; and z  is the generalized deviatoric stress vector such that

Ms = [M IJ
s ] = N I

s NJ
sd

Ω∫ Ω (7.16.5c)

GT = [GIJ
T ] = N I

s NJ,x
y d

Ω∫ Ω (7.16.5d)

D = [DIJ ] = N I
sck ,k NJ

s d
Ω∫ Ω (7.16.5e)

z = [zijI] = N I
sCijklDkl dΩ∫ Ω+ N I

s{skjWik + skiW jk}d
Ω∫ Ω (7.16.5f)

My = [M IJ
y ] = N I

yNJ
yd

Ω∫ Ω (7.16.5g)

Ly = [LIJ
y ] = N I

scNJ
sd

Ω∫ Ω (7.16.5h)

Equation of State:

M pp,t[χ ] + Lpp = u (7.16.6a)

where M p  and Lp  are the generalized mass and convective matrices for pressure
respectively; and u  is the generalized pressure vector, such that

M p = [M IJ
p ] = N I

p NJ
pd

Ω∫ Ω (7.16.6b)

Lp = [LIJ
p ] = N I

pciNJ ,i
p d

Ω∫ Ω (7.16.6c)

u = [uI ] = N I
p p(ρ)d

Ω∫ Ω (7.16.6d)
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REMARK 7.16.1.6 The stress-velocity product y  is stored at each node as a vector with a
dimension of (number of space dimensions) ×  (number of stress components). The

diagonal form for My
 is considered by location the numerical integration points at nodes.

REMARK 7.16.1.7 The numerical integration of (7.16.3) and (7.16.4) has been discussed
by Liu & Belytschko(1983), Liu(1981) and Liu & Ma(1982). A procedure for the stress
update Eqs. (7.16.5a) and (7.16.5b) is presented in the next section to clarify the temporal
integration for path-dependent materials. All the path-dependent quantities are updated
analogous to Eqs(7.16.5a) and (7.16.5b). The Petrov-Galerkin formulation of the
continuity  and momentum equation derived in section 7.14 can be adopted here.

7.16.2 Stress Update Procedures:

7.16.2.1 Stress Update Procedure for Galerkin Method

The stress state in a path-dependent material depends on the stress history of the material
point. A stress history can be readily treated in Lagrangian description because elements
contain the same material points regardless of the deformation of the continuum; similarly,
quadrature points at which stresses are computed in Lagrangian elements coincide with
material points throughout the deformation. On the other hand, in an ALE description, a
mesh point does not coincide with a material point so that the stress history needs to be
convected by the relative velocity c, as indicated in Eq.(7.16.1d). Note that the spatial
derivatives of the deviatoric stress are involved in the convection term.

When C−1 functions are used to interpolate the element stresses, the ambiguity of the stress
derivatives at the element interface renders the calculation of the spatial derivatives of stress
a difficult task. As mentioned in Remark 7.16.1.3, this is remedied by replacing
Eq.(7.16.1d) by a set of coupled equations, Eqs.(7.16.1h) and (7.16.1i), and the
corresponding matrix equations have been given in Eqs.(7.16.5a) and (7.16.5b). The

stress-velocity product y  can be eliminated by inverting My   in Eq(7.16.5b) and
substituting into Eq(7.16.5a):

Mss,t[χ ] + GT (My)−1 Lys − Ds = z (7.16.7a)

where GT (My )−1Lys  can be identified as the convective term, and the upwind techniques

mentioned in Remark 7.16.1.4 should be applied to evaluate Lys . When c = 0 , i.e.,
χ = x , Eq.(7.16.7a) degenerates to the usual stress updating formula in the Lagrangian
description,

Mss,t[χ ] = z (7.16.7b)

REMARK 7.16.2.1. The conservation equations are listed here to show the similarity
among the equations:

Mρρ,t[χ ] + Lρρ+ Kρρ = 0 (7.16.7c)
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Mv,t[χ ] + Lv + f int = fext (7.16.7d)

Mss,t[χ ] + GT (My)−1 Lys − Ds = z (7.16.7e)

REMARK 7.16.2.2. In the above, Eq.(7.16.5b) is eliminated because it can be
incorporated in Eq.(7.16.7e). This procedure is analogous to that by Liu & Chang(1985)
where a fluid-structure interaction algorithm is described.

REMARK 7.16.2.3. All the path-dependent material properties, such as yield strains,
effective plastic strains, yield stresses, and back stresses, should be convected via
Eq.(7.16.7e) with s  replaced by these properties, respectively, and with z  appropriately
modified.

7.16.2.2 Stress Update Procedure for SUPG Method:

In a nonlinear displacement finite element formulation, when applied to elastic-plastic
materials with kinematic hardening, the velocities are stored at nodes while the stress
histories, back stresses, and yield radii are available only at quadrature points. In order to
establish the nodal values for the stress-velocity product, a weak formulation is a logical
necessity. In addition, based on the one-dimensional study(Liu et. al. 1986), in which the
upwind procedure is used to define this intermediate variable, the artificial viscosity
technique(streamline upwind) is considered here as a generalization of this upwind
procedure to multi-dimensional cases.
The relation for the stresses-velocity product of Eq.(7.16.1i), is modified to accommodate
the artificial viscosity tensor Aijkm  by

yijk = sijck − Aijkm,m (7.16.8a)

The ingredients of the artificial viscosity tensor consist of a tensorial coefficient multiplied
by the stress:

Aijkm = µkmsij (7.16.8b)

where the tensorial coefficient is constructed to act only in the flow direction (streamline
upwind effect)

µkm = µ ckcm cncn (7.16.8c)

and the scalar µ  is given by

µ = αicihi NSD
i=1

NSD

∑ (7.16.8d)

Here hi  is the element length in the i-direction; NSD designates the number of space
dimensions; and αi  is the artificial viscosity parameter given by

αi =
1

2
for ci > 0

− 1

2
for ci < 0

 
 
 

(7.16.8e)
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The weak form corresponding to Eq. (7.16.8a) can be obtained by multiplying by test
function for the stress-velocity product and integrating over the spatial domain Ω :

δyijk yijkd
Ω∫ Ω = δyijksijckd

Ω∫ Ω − δyijk Aijkm,m d
Ω∫ Ω (7.16.9a)

This equation may be written as

δyijk yijkd
Ω∫ Ω = δyijksijckd

Ω∫ Ω + δyijk,m Aijkmd
Ω∫ Ω (7.16.9b)

by applying the divergence theorem and by assuming no traction associated with the
artificial viscosity on the boundary. The expression for Aijkm , Eq. (7.16.8b and c), can be
substituted into this equation to yield

δyijk yijkd
Ω∫ Ω = (δyijk + δy ijk )sijckd

Ω∫ Ω (7.16.9c)

where

δy ijk = δyijk,mµ cm cncn (7.16.9d)

can be viewed as a modification of the Galerkin finite element method because of the
transport nature of the stress-velocity product.

The shape functions for the stress-velocity product can be chosen to be the standard C0

functions. The number and position of quadrature points for Eq.(7.16.9c and d) should be
selected to be the Gauss quadrature points, since the stress histories in Eq.(7.16.9c) are
only available at these points.

Following the procedures given above, the stress-velocity product can be defined at each
nodal point and it can be substituted into the constitutive equation of Eq.(7.16.5a) to
calculate the rate of change of stresses with the same procedure as that of without artificial
viscosity. Note that the interpolation functions for stresses are integrated over the spatial
element domain. The task of selecting the number of quadrature points for the displacement
finite element poses another important issue. For example, the locking phenomenon for
fully integrated elements arises when the material becomes incompressible(Liu, et.al.,
1985). While selective reduced integration can overcome this difficulty, it is just as costly
as full quadrature. To alleviate this computational hurdle, the use of one-point quadrature
combined with hourglass control is developed by Belytschko et.al. (1984). In addition, the
nonlinear two-quadrature point element (Liu et.al., 1988) appears to be another candidate
for large-scale computations because it exhibits nearly the same accuracy as the selective
reduced integration element while with only one-third of the cost. These two kind of
elements, as well as the other displacement elements, can be readily adopted in the ALE
computations.
Following the procedure described by Liu et.al(1986), the displacement element is divided
into M sub-domain, where M denotes the number of quadrature points. Each sub-domain
is designated by ΩI  (I=1,...,M), which contains the quadrature points x I , and no two

sub-domains overlap. Associated with ΩI , a stress interpolation function NI
s  is assigned

and its value is prescribed to be unity only at the quadrature point x = x I  such that

NI
s (x = x I ) = 1 (7.16.10a)
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The test function in ΩI  is chosen to be the Dirac delta function

N I
s = δ(x − x I ) (7.16.10b)

Substitution of these functions into the constitutive equation represents a mathematical
requirement that the residual of the weal from vanishes at each collocative quadrature point.
Because the collocation point is located right at the quadrature point, the algebraic equations
resulting from Eq.(7.16.5a) can be easily worked out without numerical integration and
given as below:
General mass matrix is

MIJ
s = N I

sNJ
sd

Ω∫ Ωx = I M×M (7.16.11a)

where the subscripts I  and J range from 1 to M , the number of stress quadrature points per
element. The transpose of the divergence operator matrix reads,

GIJ
T = N I

s NJ,x
y d

Ω∫ Ω

For 2D 4-node element, it will be:

  

GT =

N1,x(ξ1) N1,y(ξ1) N2, x(ξ1 ) N2,y (ξ1)

N1,x (ξ2 ) N1,y(ξ2 ) N2, x(ξ2 ) N2, y(ξ2 )

M M M M
N1,x (ξM ) N1,y(ξM ) N2, x (ξM ) N2, y(ξM )

 

 

 
 
 

N3, x(ξ1 ) N3,y(ξ1) N4,x (ξ1) N4, x (ξ1)

N3,x(ξ2 ) N3,y(ξ2 ) N4, x(ξ2 ) N4, y(ξ2 )

M M M M
N3,x (ξM ) N3,y(ξM ) N4, x(ξM ) N4, y(ξM )

 

 

 
 
 

M ×8

(7.16.11b)

The generalized diffusion matrix for stress is

DIJ = N I
sck,k NJ

sd
Ω∫ Ω

or

  

D =

ck,k(ξ1)

ck ,k (ξ2 )

O
ck ,k(ξM )

 

 

 
 
 

 

 

 
 
 

M ×M

(7.16.11c)

The generalized stress vector is

zijI = N I
s{CijklDkl + τkjWik + τkiW jk}dΩ

Ω∫
or
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z =

(CijklDkl + τkjWik + τkiW jk )ξ1

(CijklDkl + τkjWik + τkiW jk )ξ2

M
(CijklDkl + τkjWik + τkiW jk )ξM

 

 

 
 
 

 

 

 
 
 

M×1

(7.16.11d)

7.16.2.3. Stress Update Procedure for Operator Split Method:

In addition to the methods shown in the last section to solve the fully coupled equations,
another approach referred to as an operator split is an alternative way to apply FEM to
solve this problem numerically(Benson, 1989). Conceptually, the approach is simple.
“Splitting” stands for “decomposing” a set of PDE operators into several sets of simple
PDE operators which will be solved sequentially. An operator split decouples the various
physical phenomena in the governing equations to obtain simpler equations to be solved
more easily. In exchange of certain loss of accuracy, the operator split offers a generic
advantage: simpler equations leads to simpler and stable algorithms, specifically designed
for each decoupled equation according to the different physical characteristics.

To illustrate the operator split concept, we consider the transport equation of one
component of the Cauchy stress by:

  σ ,t[ X] = σ ,t [ χ] +ciσ ,i = q (7.16.12)

where the expression of q  will be determined by the constitutive law. An example of q is
the right hand of Eq.(7.16.1h).
The operator split technique is to split Eq.(7.16.12) into 2 phases. The first phase of the
operator split is to solve a Lagrangian step without considering the convective effect as
below:

σ ,t[χ] = q (7.16.13)

In this Lagrangian phase, it is integrated in time to update stresses from σ (t)  (stress at time

t) to σ (L)  (denotation of the Lagrangian updated stress), neglecting the convective terms
which is equivalent to assuming that mesh points χ  move with material particles X , that is
χ = X . Thus this Lagrangian phase can proceed in the same way as  the usual Updated
Lagrangian procedure. In addition, it is well known that the stresses are obtained at Gauss
points.
The second phase is to deal with the convective term that has not been taken into account
during the Lagrangian phase, where the governing PDE is :

σ ,t[χ] + ciσ ,i = 0 (7.16.14)

and during which phase, the stresses are updated from σ (L)  to σ (t+∆ t) .
According to the two phases strategy above, the constitutive equation is split into the
parabolic equation of the Lagrangian phase and the hyperbolic equation of the convection
phase.
Here, we follow [12] to apply explicit methods to integrate the convection equation. To
compute gradients of the stress fields on the surface of elements, two different approaches
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have been taken: i) use an explicit smoothing procedure (Lax-Wendroff update); or (ii) use
an algorithm that circumvents the computation of the stress gradient (Godunov-like
technique).

(1) Lax-Wendroff update:
The key point of the Lax-Wendroff method is to replace the time derivatives of depending
variables with spatial derivatives using the governing equations. For the partial differential
equations of  Eq.(7.16.14), we have:

σ ,t[χ]
(L) =−ci

(t +∆t /2) σ,i
(L ) (7.16.15a)

and

σ ,tt [χ ]
(L) = (σ,t[χ ]

(L ) ),t = −(ci
( t+∆ t/2)σ,i

(L )),t = −ci
(t +∆t /2) (σ ,t[χ]

(L) ),i

= −ci
(t+∆ t/2) (−c j

(t +∆t /2)σ , j
(L) ),i = ci

(t +∆t /2)c j
(t +∆t /2)σ ,ij

(L)
(7.16.15b)

After substituting the above two equations into the Taylor series expansion of σ (t+∆ t)  with
respect to the time:

σ (t+∆ t) = σ t + σ,t[χ ]
(L ) ∆t + 1

2
σ ,tt[χ ]

(L) ∆t 2 (7.16.16a)

 we obtain the update equation of the Lax-Wendroff method as:

σ (t+∆ t) = σ t − ci
( t+∆t /2) σi

(L )∆t + 1

2
ci

( t+∆ t/2)cj
( t+∆ t/2)σ ,ij

(L )∆t2 (7.16.16b)

where ci
(t +∆t /2)  is the convective velocity evaluated at the mid-step.

In Eq. (7.16.16b), both the stress gradient, which will be denoted by γ , and its spatial
derivatives are required. To obtain the gradient in Eq.(7.16.16b), a classical least-squares
project is employed to obtain a smoothed field of stress gradient. Via divergence theorem,
we have

Nγ γd
Ω∫ Ω = − σ∇N γd

Ω∫ Ω + Nγ σnd
Γ∫ Γ (7.16.17)

where n  is the outward unit normal in the current configuration. After the regular
assembling procedure, we obtain the linear set of equations:

Mγ γ = Φ (7.16.18)

where Mγ  is a consistent pseudo-mass matrix defined as:

Mγ = [M IJ
γ ] = NI

γ NJ
γ d

Ω∫ Ω (7.16.19a)

γ  is the vector of nodal smoothed values of the stress gradient, and the vector Φ  is defined
as:

Φ = [ΦI ] = − σ∇N I
γd

Ω∫ Ω + NI
γ σnd

Γ∫ Γ[ ]
e
∑ (7.16.19b)
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To make the algorithm explicit, the lumped mass matrix is preferred instead of consistent
one. After doing so, the solution of stress gradient of γ  can be achieved straightforward.
Then Eq.(7.16.16) can be solved. To obtain the stress value at Gauss points, the
collocation technique can be applied to handle the weak form of Eq.(7.16.16).

(2) Godunov-like update:
In this phase, the convection equation of :

σ ,t[χ] + ciσ ,i = 0 (7.16.20)

will be solved. With the help of the stress-velocity product Y = σc  , Eq.(7.16.20) can be
rewritten as:

σ ,t[χ] + Yi,i = σci,i (7.16.21)

To apply Godunov method, the weak form is presented

δσσ,t[χ ]dΩ∫ Ω = δσσ ci,idΩ∫ Ω − δσYinidΓ t∫ Γ (7.16.22)

where the test functions δσ  are constant within any single element. Since both σ  and δσ
are constants within an element e , Eq.(7.16.22) results in

σ ,t[χ] =− 1

2Ω
f s (σs

c−σ)[1−sign( fs )]
s=1

Ns

∑ (7.16.23)

with the upwind consideration, where the element e has volume Ω  and Ns  faces, σs
c  is the

stress component in the contiguous element across face s, and f s  is the flux of convective
velocity c across face s,

f s = cini ds
s∫ . (7.16.24)

To apply the Godunov update to the situation of multi-point quadrature, we can divide
every finite element into various subelements, each of them corresponding to the influence
domain of a Gauss point. In every subelement, σ  is assumed to be constant, and
represented by the Gauss-point value. Because of this , σ  is a piece wise constant filed
with respect to the mesh of subelements, and Eq.(7.16.24) can be integrated to update the
value of σ  for each subelement.

7.16.3 Stress Update Procedures in 1-D Case:

In this section, we will compare the performance of different update procedure. Below, we
will emphasize on the stress update. For illustrative purposes, we consider one-
dimensional(1-D) case. In a 1-D case, the shape functions and the corresponding test
functions for density, velocity, energy and stress-velocity product may be chosen to be the

piecewise linear C0  functions such that

N1 = 1

2
(1− ξ) (7.16.25a)

N2 = 1

2
(1+ ξ ) (7.16.25b)
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where ξ ∈[−1,1], while the functions for deviatoric stress and pressure can be C−1, or in
particular, constant in each element. The test and trial functions for all variables are
identical. The full upwind method can be applied for all the matrices involving convection
effects.
For a uniform mesh when the 1-D rod is divided into M segments of equal size of h, where
the elements and the nodes are numbered sequentially from 1 to M  and M+1 , respectively.
Let cm  designate the convective velocity at node m and sm  the stress in element m. For
simplicity, all the nodal convective velocities are considered to be positive.

7.16.3.1 Application of SUPG in 1-D Case:

The stress update is according to Eq.(7.16.7e). The matrices and vectors appeared in
Eq.(7.16.7e) are as the following.

The generalized mass matrix is:

  

Ms = h

1

O
1

O
1

 

 

 
 
 
 

 

 

 
 
 
 

M ×M

(7.16.26a)

The transpose of the divergence operator matrix is

  

GT =

−1 1

O O
−1 1

O O
−1 1

 

 

 
 
 
 

 

 

 
 
 
 

M× (M+1)

(7.16.26b)

The matrix My  is diagonal by locating the integration points at the nodes

  
diag(My ) = h{

1

2
,1,L,1,L1,

1

2
}(M+1)×1

T (7.16.26c)

The transport of stress vector is

  

Lys = 1
6

h{(2c1 + c2 )s1, L,(cm−1 + 2cm )sm −1 + (2cm + cm+1)sm ,L,

(cM + 2cM +1)sM}(M+1)×1
T

(7.16.26d)

if exact integration is used;
or

  
Lys = 1

2
h{0,L,(cm + cm+1)sm,L, (cM + cM+1 )sM}(M+1)×1

T (7.16.26e)

if full upwind is used, where 1 < m < M  hereafter.
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The generalized diffusion vector is

  Ds ={(−c1 + c2 )s1,L,(−cm + cm+1)sm ,L,(−cM + cM+1)sM}M×1
T (7.16.26f)

and the rate of change of stress due to material deformation ( the rotation of stress vanishes
in 1-D case) is

  z = h{˙ s 1,L, ˙ s m,L, ˙ s M}M×1
T (7.16.26g)

where ˙ s = C1111v(1,1)
By substituting Eqs.(7.16.12a-g) into Eq.(7.16.7e), the rate of change of stress in ALE
description can be shown to be:

  

st,[χ]=

s1,[χ]

M
sm,[χ]

M
sM,[χ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

M ×1

= 1

h

(−c1 + c2 )s1
M

(−cm + cm+1)sm

M
(−cM + cM +1)sM

 

 

  

 

 
 

 

 

  

 

 
 

− 1

6h

(−3c1)s1 + (2c2 + c3 )s2

M
−(cm−1 + 2cm )sm−1

−(cm − cm+1)sm

+(2cm+1 + cm+2 )sm +1
M

−(cM −1 + 2cM )sM −1

+3cM +1sM

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

+

s1,[x]

M
sm,[x]

M
sM,[x ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(7.16.27a)

if exact integration is used;
or

  

st,[χ]=

s1,[χ]

M
sm,[χ]

M
sM,[χ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

M ×1

= 1

h

(−c1 + c2 )s1
M

(−cm + cm+1)sm

M
(−cM + cM +1)sM

 

 

  

 

 
 

 

 

  

 

 
 

− 1

2h

(−c1 + c2 )s1
M

(−cm−1 + cm )sm −1

+(cm + cm +1)sm
M

−(cM−1 + cM )sM−1

+2(cM + cM+1)sM

 

 

 
 

 

 
 

 

 

 
 

 

 
 

+

s1,[x]

M
sm,[x]

M
sM,[x]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(7.16.27b)

if full upwind is used to evaluate Lys .
The second bracket on the right-hand side of Eq.(7.16.27a) shows the central differencing
(or simple averaging) effects for the transport of stresses, while Eq.(7.16.27b) exhibits the
donor-cell differencing. This can be further clarified by letting

  c1 =L= cm =L= cM +1 = c(constant) ,

then
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st,[χ]=

s1,[χ]

M
sm,[χ]

M
sM,[χ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

M ×1

= − c

2h

−s1 + s2

M
−sm−1 + sm+1

M
−sM −1 + sM

 

 

  

 

 
 

 

 

  

 

 
 

+
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(7.16.28a)

if exact integration is used; and

  

st,[χ]=

s1,[χ]

M
sm,[χ]

M
sM,[χ]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

M ×1

= − c

h

s1
M

−sm−1 + sm

M
−sM −1 + 2sM

 

 

  

 

 
 

 

 

  

 

 
 

+

s1,[x]

M
sm,[x]

M
sM,[x]

 

 

 
 

 

 
 

 

 

 
 

 

 
 

(7.16.28b)

if full upwind is used.
Eq.(7.16.28a) shows that the transport of the stresses at odd and even elements tends to be
decoupled, therefore physically unrealistic oscillations would be expected when the simple
averaging method is employed to evaluate the spatial derivatives of stresses.

7.16.3.2. Application of Operator Split in 1D Case:

Also, for illustrative purposes, a 1D rod is considered which is divided into M segments of
equal size of h and assume:

  c1 =L= cm =LcM+1 = c(constant) > 0 ,

(1) Lax-Wendroff update:

We can see that this procedure of update will not work for constant stress and linear shape
function since the RHS of Eq.(7.16.19) will be zero. In addition, we can see that for Lax-

Wendroff update, the shape function of s , N s , must be in the same order as N γ .
Assuming both of them are linear shape functions, we can obtain:

  
diag(My ) = h{

1

2
,1,L,1,L1,

1

2
}(M+1)×1

T (7.16.29a)

  
Φ =

1

2
[−s1 + s2 ,−s1 + s3,− s2 + s4,L, −sm−1 + sm+1,L− sM −1 + sM +1](M +1)×1

T

(7.16.29b)

(2) Godunov-like update:
For constant stress and linear shape function, it is easy to obtain the update equation for
element n
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sn
( t+∆t ) = sn

( t) −
c∆t

h
(sn

( t) − sn−1
(t) ) +∆ t ˙ s n

(t +∆t /2) (7.16.30)

7.16.4 Explicit Time Integration Algorithm:

For simplicity, the coupled equations (7.16.7c-e) will be integrated by an explicit scheme.
Lumped mass matrices are used to enhance the computational efficiency. Both predictor-
corrector method( Hughes & Liu, 1978) and standard central difference(Huerta & Casadei,
1994) method can be applied here for explicit time integration. Below,  ( )n and ( )n +1   will
denote the matrices at times tn = n∆t  and tn +1 = (n +1)∆t  respectively, where ∆t  is the
time increment.

(1) Predictor-corrector method
This kind of predictor-corrector method is similar to the Newmark algorithm. The major
difference is that the former algorithm is explicit, while the latter is implicit.

Mass equations:

ρ,t[χ ]n+1
=− (Mn

ρ )−1(Ln
ρ ˜ ρ n+1 + Kn

ρ ˜ ρ n +1 ) (7.16.31a)

˜ ρ n+1 = ρn + (1− α )∆tρ,t[χ ]n
(7.16.31b)

ρn+1 = ˜ ρ n+1 + α∆tρ,t[χ]n +1
(7.16.31c)

Momentum equations:

v,t[χ ]n+1
= (Mn )−1(fn+1

ext − fn
int − Ln ˜ v n+1) (7.16.32a)

˜ v n+1 = vn + (1− γ )∆tv,t[χ]n
(7.16.32b)

vn+1 = ˜ v n+1 + γ∆tv,t[χ]n +1
(7.16.32c)

Eq.(7.16.32a) needs to be used in conjunction with

˜ d n+1 = dn +∆ tvn + (
1

2
− β )∆t 2v,t[χ]n

(7.16.32d)

dn+1 = ˜ d n+1 + β∆t2v,t[χ]n +1
(7.16.32e)

to calculate the f n
int.

In the above equations, α , β  and γ  are the computational parameters. For explicit
calculations, the following constraints on the parameters are used:

α = 0 (7.16.33a)

β = 0 (7.16.33b)
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γ ≥ 1

2
(7.16.33c)

The flowchart of the computational procedure for the class of pressure-insensitive materials
is as follows:
Step 1. Initialization. Set n=0, input initial conditions.
Step 2. Time stepping loop, t ∈[0, tmax ].
Step 3. Integrate the mesh velocity to obtain the mesh displacement and spatial coordinates.
Step 4. Calculate incremental hydrostatic pressure by integration Eq.(7.16.7e) with s  and z
replaced by p  and u respectively:

(a) the rate of pressure due to convection,
(b) the rate of pressure due to deformation.

Step 5. Calculate incremental deviatoric stresses, yield stresses, and back stresses by
integration Eq.(7.16.7e) which stress update procedures have been discussed in detail in
last section:

(a) the rate of stresses due to convection,
(b) the rate of stresses due to rotation,
(c) the rate of stresses due to deformation.

Step 6. Compute the internal force vector.
Step 7. Compute the acceleration by the equations of motion, Eq.(7.16.32a).
Step 8. Compute the density by the equation of mass conservation, Eq.(7.16.31a).
Step.7. Integrate the acceleration to obtain the velocity.
Step 10. If (n +1)∆t > tmax , stop; otherwise, replace n by n+1 and go to Step 2

(2) Central difference method
The central difference can also be applied for the time integration. Same as the standard
central difference procedure, we can obtain displacement and acceleration vectors at each i

time step, while get velocity vector at each i + 1

2
 time step. The momentum equation will be

integrated as an example to illustrate this explicit scheme.

After obtaining the velocity vector at (n − 1

2
)∆t  and the displacement vector at n∆t , the

acceleration vector at n∆t  is :

v,t[χ ]n
= (Mn )−1(fn

ext − fn
int − L

n− 1

2

v
n− 1

2

)

With central difference scheme, the velocity and displacement of next time step are:

v
n+ 1

2

= v
n− 1

2

+∆ tv,t[χ]n

and

dn+1 = dn +∆ tv
n+ 1

2

For operator splitting update, the Lagrangian part for strains is calculated with a usual
central difference scheme as:
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ε(t∗) = εn +∆ tε,t[x]
n +

1

2

(L)

where

ε ,t[x]
n+

1

2

(L) = (v,x )
n+ 1

2

After considering the Godunov scheme for the convect part, the full upwind integration for
1D 2-node element can be written as:

εn+1 = ε( t∗ ) −
∆t

h
[c1

1 + sign(c1)

2
(εe − εe−1) + c2

1 − sign(c2)

2
(εe+1 − εe )]

For elastic-plastic problem, the radial return method can be used to determine the correct
states of stress and strain.

7.10 ALE Governing Equation

7.10.1 Slightly Compressible Viscous Flow with Moving Boundary Problem

In this section, we develop the governing equations for a slightly compressible
Newtonian fluid.  In a generalized Newtonian fluid, the stress is a function of the rate-of-
deformation.  Therefore, the stress is independent of the history of deformation.  The most
well known case is a linear Newtonian fluid, where the stress is a linear function of the
rate-of-deformation.

This class of materials simplifies the implementation since the constitutive equation is
independent of the strain history.  Therefore, the constitutive equation can be used in its
strong form.

The formulation is restricted to isothermal processes; therefore energy equation is not
needed.  The continuity equation (7.7.15), momentum equation (7.7.25) and the mesh
update equation (7.2.19) in ALE description are:

∂ρ
∂t χ

+ ci
∂ρ
∂xi

+ρ
∂vi

∂xi
= 0 (7.10.1a)

ρ
∂vi

∂t χ
+ ρcj

∂vi

∂x j
=

∂σ ij

∂xj
+ρbi (7.10.1b)

∂xi

∂χ j
w j = ci (7.10.1c)

In the constitutive equation, the hydrostatic stress is independent of deformation while the
shear stress, which depend on the rate of deformation.

σ ij = − pδij + 2µDij (7.10.1d)
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where

Dij =
1

2

∂vi

∂x j
+

∂vj

∂xi

 

 
 

 

 
  and µ = µ (Dij ) (7.10.1e)

where µ  is the dynamic viscosity which is shear rate dependent. The functions µ  for
generalized Newtonian models are presented in Table 7.2.
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Model 1-D Viscosity 3-D Generalization

Newtonian µ0 = constant s = 2µ0 D

Power Law µ = mDn −1
s = 2m 2tr(D)2[ ]n −1

D

Truncated
Power Law

if  D ≤ D0

        µ = µ0

if  D ≥ D0

       µ = µ0 (
D

D0
)n−1

if   2tr(D)2 ≤ D0 :
           s = 2µ0 D

if   2tr(D)2 ≥ D0 :

          s = 2µ0
2tr(D)2

˙ γ 0

 

 
 

 

 
 

n−1

D

Carreau µ − µ∞
µ0 − µ∞

= 1+ (λD)2[ ](n−1)/2
s = 2µ∞D

+2(µ0 − µ∞) 1 + 2λ2tr(D)2[ ](n−1)/2
D

Carreau-A µ∞ = 0 s = 2µ0 1 + 2λ2tr(D)2[ ](n−1)/2
D

Bingham
µ = ∞ τ ≤ τ0

µ = µp +
τ0

D
τ ≥ τ0

if   
1

2
tr(s)2 ≤ τ0

2

       s = 0

if  
1

2
tr(s)2 ≥ τ0

2

       s = 2µp 1 +
τ0

2tr(D)2

 

 
 

 

 
 D

where s  and D  are the deviatoric part of the stress and stretch tensors, respectively

Table 7.2
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We will first consider a viscous, barotropic fluid, so that the pressure depends only
on the density, p = p(ρ) .  The material time derivative of the pressure p gives:

˙ p =
∂p

∂ρ
˙ ρ (7.10.2a)

Now we can define the bulk modules B by:

B

ρ
=

∂p

∂ρ
(7.10.2b)

Using this definition in Eq. (7.10.2a) yields:

˙ p =
B

ρ
˙ ρ  or  

˙ ρ 
ρ

=
˙ p 

B
(7.10.2c)

Substituting Eq. (7.10.2c)  into Eq. (7.10.1a), the continuity equation may be rewritten as
(Liu and Ma, 1982):

1

B

Dp

Dt
+

∂vi

∂xi
= 0 (7.10.3a)

or, by introducing Eq. (7.2.20b) in (7.10.3a), as:

1

B

∂p

∂ t χ
+

1

B
ci

∂p

∂xi
+

∂vi

∂xi
= 0 (7.10.3b)

The objective here is to find the density, the material velocity and the mesh velocity
by solving Eqs. (7.10.1a-e).  Prior to presenting the strong from of the governing
equations and boundary conditions, the finite element mesh updating procedure will first be
discussed in the next section.

In each Eq (7.10.1) a convective term is present; thus, one of the drawbacks of an
Eulerian formulation is retained in the ALE methods.  The major advantage of an ALE
approach is that it simplifies the treatment moving boundaries and interfaces.

7.11 Mesh Update Equations

7.11.1 Introduction

The option of arbitrarily moving the mesh in the ALE description offers interesting
possibilities.  By means of ALE, moving boundaries (which are material surfaces) can be
tracked with the accuracy characteristic of Lagrangian methods and the interior mesh can be
moved so as to avoid excessive element distortion and entanglement.  However, this
requires that an effective algorithm for updating the mesh, i.e. the mesh velocities ˆ v , must
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be prescribed.  The mesh should be prescribed so that mesh distortion is avoided and so
that boundaries and interfaces remain at least partially Lagrangian.

In this section, we will describe several procedures for updating the mesh.  The
material and mesh velocities are related by Eq. (7.2.19); hence, once one of them is

determined, the other is automatically fixed.  It is important to note that, if ˆ v  is given, ˆ d 
and ˆ a  can be computed and there is no need to evaluate w.  On the other hand, if ˆ v  is
considered the unknown but w  is given, Eq. (7.2.19) must be solved to evaluate ˆ v  before
updating the mesh.  Finally, mixed reference velocities can be given (i.e. a component of ˆ v 
can be prescribed and w  in the other(s)). Finding the best choice for these velocities and an
algorithm for updating the mesh constitutes one of the major hurdles in developing an
effective implementation the ALE description.  Depending on which velocity ( ˆ v  or w or
mixed) is prescribed, three different cases may be studied.

7.11.2 Mesh Motion Prescribed a Priori

The case where the mesh motion ˆ v  is given corresponds to an analysis where the
domain boundaries are known at every instant.  When the boundaries of the fluid domain
have a known motion, the mesh movement along this boundary can be prescribed a priori.

7.11.3 Lagrange-Euler Matrix Method

The case where the relative velocity w is arbitrarily defined is a format for apropos by
Hughes et al (1981).  Let w be:

wi =
∂χi

∂t X
= δij − αij( )vj (7.11.1)

where δ ij  is the Kroneker delta and αij  is the Lagrange-Euler parameter matrix such that

αij = 0  if i ≠ j  and αii  is real (underlined indices meaning no sum on them).  In general,

the α' s can vary in space and be time-dependent; however αij  is usually taken as time-
independent.  According to Eq. (7.11.1) the relative velocity w  becomes a linear function
of the material velocity and it was chosen because, if αij = δ ij , w  = 0  and the Lagrangian

description is obtained, whereas, if αij = 0 , w  =  v  and the Eulerian formulation is used.
The Lagrange-Euler matrix needs to be given once and for all at each grid point.

Since w  is defined by Eq. (7.11.1), the other velocities are determined by Eq.
(7.2.19), which become, respectively.

ci =
∂xi

∂χ j
δ jk − α jk( ) vk (7.11.2a)

and

ˆ v i = vi − δ jk − α jk( )vk
∂xi

∂χ j
(7.11.2b)
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The latter equations must be satisfied in the referential domain along its boundaries.
Substituting Eq. (7.2.8a) into (7.11.2b) yields a basic equation for mesh rezoning:

∂xi

∂t χ
+ δ jk − α jk( )vk

∂xi

∂χ j
− vi = 0 (7.11.3)

The explicit form of Eq. (7.11.3) in 1D, 2D and 3D are listed:

1D Form

∂x

∂ t χ
+ 1 − α( )v

∂x

∂χ
− v = 0 (7.11.4)

2D Form

∂x1

∂ t χ
+ 1 − α11( )v1

∂x1

∂χ1
+ 1 −α 22( )v2

∂x1

∂χ2
− v1 = 0 (7.11.5a)

∂x2

∂t χ
+ 1− α11( )v1

∂x2

∂χ1
+ 1 − α22( )v2

∂x2

∂χ2
− v2 = 0 (7.11.5b)

3D Form

∂x1

∂ t χ
+ 1 − α11( )v1

∂x1

∂χ1
+ 1 −α 22( )v2

∂x1

∂χ2
+ 1 − α33( )v3

∂x1

∂χ3
− v1 = 0 (7.11.6a)

∂x2

∂t χ
+ 1− α11( )v1

∂x2

∂χ1
+ 1 − α22( )v2

∂x2

∂χ2
+ 1− α33( )v3

∂x2

∂χ3
− v2 = 0 (7.11.6b)

∂x3

∂t χ
+ 1 − α11( )v1

∂x3

∂χ1
+ 1− α 22( )v2

∂x3

∂χ2
+ 1 − α33( )v3

∂x3

∂χ3
− v3 = 0 (7.11.6c)

Remark 1:
Equation (7.11.3) differs only in its last term from the one proposed by Hughes et al

(1981).  This difference is not noticeable if the Lagrange-Euler parameters αij  are chosen

equal to zero or one.  Moreover, Eq. (7.11.3) includes the Jacobian matrix (i.e. ∂xi / ∂χ j )
that is missing in the Liu and Ma (1982) formulation.  Finally, Eq. (7.11.3) is a transport
equation without any diffusion so the classic numerical difficulties associated with transport
equations are expected.
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The ALE technique with a mesh update based on the Lagrange-Euler parameters is
very useful in surface wave problems.  We assume that the free surface is oriented relative
to the global coordinates so that it can be written as x3s = x3s (x1, x2 ,t).  An Eulerian
description used in the x1 and x2  directions (i.e. x1 = χ1 and x2 = χ2 ). The free surface is
defined by one spatial coordinate which is a continuous and differentiable function of the
other two spatial coordinates and time.  In this case the Lagrange Euler matrix has only one
non-zero term, α33  (usually equal to 1), and the only non-trivial equation in (7.11.3) is:

∂x3s

∂t χ
+ v1

∂x3s

∂χ1
+ v2

∂x3s

∂χ2
− v3 = α 33 −1( )v3

∂x3s

∂χ3
(7.11.7)

The above equation is easily recognized as the kinematics equation of the surface and may
be written as:

∂x3s

∂t χ
+ vini Ns = a(x1, x2 ,x3s ,t) (7.11.8)

where the components of n is the unit normal pointing out from the surface.  The
components of the normal vector are given by:

1

Ns

∂x3s

∂χ1
,
∂x3s

∂χ2
,−1

 
 
  

 
 (7.11.9a)

with Ns  given by:

Ns = 1 +
∂x3s

∂χ1

 
 
  

 
 

2

+
∂x3s

∂χ2

 
 
  

 
 

2 

 
 

 

 
 

1/2

= 1+
∂x3s

∂x1

 
 
  

 
 

2

+
∂x3s

∂x2

 
 
  

 
 

2 

 
 

 

 
 

1/2

(7.11.9b)

where a(x1, x2 ,x3s ,t) is the so-called accumulation rate function expressing the gain or loss
of mass under the free surface (Hutter and Vulliet, 1985).  It can be seen by comparing Eq.
(7.11.7) and Eq. (7.11.8) that the accumulation rate function is:

a(x1, x2 ,x3s ,t) = (α 33 −1)v3
∂x3s

∂χ3
= w3

∂x3s

∂χ2
(7.11.10)

The free surface is a material surface; along the free surface the accumulation rate must be
zero, and consequently α33  has to be taken equal to one.  This can also be deduced by
noticing that no particles can cross the free surface, so w3  must be zero.  Although Eq.
(7.11.3) can be applied to problems where x1 and/or x2  are not Eulerian by prescribing
non zero α 's in these directions, controlling the element shapes by adjusting the α 's is
very difficult.
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Control of the mesh by Eq. (7.11.1) has some disadvantages; for instance, while ˆ v 
has a clear physical interpretation (i.e. the mesh velocity), w  is much more difficult to
visualize (except in the direction perpendicular to material surfaces, where it is identically
zero) and therefore it is very difficult to maintain regular shaped elements inside the fluid
domain by just prescribing the α 's.  Because of this important drawback the mixed
formulation introduced by Huerta and Liu, called deformation gradient method, was
developed, it is discussed next.

7.11.4 Deformation Gradient Formulations

Noticing the restrictions of the α ' s  scheme, a mixed formulation is developed for the
resolution of Eq. (7.2.19).  One of the goals of the ALE method is the accurate tracking of
the moving boundaries which are usually material surfaces.  Hence, along these surfaces
we enforce w ⋅ n = 0  where n is the exterior normal.  The other goal of the ALE technique
is to avoid element entanglement and this is better achieved, once the boundaries are
known, by prescribing the mesh displacements independently (through the potential

equations, for instance) or velocities, because both ˆ d  and ˆ v  govern directly the element
shape.  Therefore, one can prescribe w ⋅ n = 0  along the domain boundaries while defining

the ˆ d ‘s or ˆ v ‘s in the interior.
The system of differential equations defined in Eq. (7.2.19) has to be solved along

the moving boundaries.  Notice first that solving for wi  in terms of (vi − ˆ v i ), Eq. (7.2.19)
can be rewritten as:

cj ≡ vj − ˆ v j = F ji
χwi (7.11.11)

Define the Jacobian matrix of the map between the spatial and ALE coordinates by

Fij
χ ≡

∂xi

∂χ j
(7.11.12)

Its inverse is:

Fχ( )−1
=

1
ˆ J 

ˆ J 11 − ˆ J 12
ˆ J 13

− ˆ J 21
ˆ J 22 − ˆ J 23

ˆ J 31 − ˆ J 32
ˆ J 33

 

 

 
 

 

 

 
 

≡
ˆ J ij
ˆ J 

(7.11.13a)

where ˆ J ij  are the cofactors  of Fij
χ , ˆ J  is the Jacobian already defined in Eq. (7.7.4b) and

ˆ J ij  are the minors of the Jacobian matrix Fij
χ .  Multiplying the inverse Jacobian matrix on

both sides of Eq. (7.11.11) and substituting Eq. (7.11.13) into Eq. (7.11.11), yields:

ˆ J ij
ˆ J 

vj − ˆ v j = wi  or ˆ J ji(v j − ˆ v j ) = ˆ J wi (7.11.14)
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Dividing ˆ J ii  on both sides of Eqs. (7.11.14), gives:

ˆ J ji

ˆ J ii
(v j − ˆ v j ) =

ˆ J 
ˆ J ii

wi =

∂xi

∂t χ
− vi i = j

j =1
j≠ i

nsd

∑ v j − ˆ v j
ˆ J ii

ˆ J j i i ≠ j

 

 

 
 

 

 
 

(7.11.15)

When the LHS of Eq. (7.11.15) has been simplified using by the definition of ˆ v j , Eq.
(7.2.8a).  Substituting Eq. (7.11.16) into Eq. (7.11.15) yields:

∂xi

∂t χ
− vi −

j =1
j ≠i

NSD

∑ v j − ˆ v j
ˆ J ii

ˆ J j i = −
ˆ J 
ˆ J ii

wi (7.11.17)

Notice that the cofactor ˆ J ii  appears in the denominator to account for the motion of the
mesh in the plane perpendicular to χi  because Eqs. (7.11.17) are verified in the reference

domain ˆ Ω , not in the actual deformed domain Ω .
Examples for Eq. (7.11.17) in 1D, 2D and 3D are:
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1D

∂x1

∂ t χ
− v1 = −

ˆ J 
ˆ J 11 w1 (7.11.18)

where ˆ J 11 = 1.

2D

∂x1

∂ t χ
− v1 −

v2 − ˆ v 2
ˆ J 11

ˆ J 21 = −
ˆ J 

ˆ J 11 w1 (7.11.19a)

∂x2

∂t χ
− v2 −

v1 − ˆ v 1
ˆ J 22

ˆ J 12 = −
ˆ J 

ˆ J 22 w2 (7.11.19b)

where ˆ J 11 =
∂x2

∂χ2
 and ˆ J 22 =

∂x1

∂χ1
.

3D

∂x1

∂ t χ
− v1 −

v2 − ˆ v 2
ˆ J 11

ˆ J 21 −
v3 − ˆ v 3

ˆ J 11
ˆ J 31 =−

ˆ J 
ˆ J 11 w1 (7.11.20a)

∂x2

∂t χ
− v2 −

v1 − ˆ v 1
ˆ J 22

ˆ J 12 −
v3 − ˆ v 3

ˆ J 22
ˆ J 32 = −

ˆ J 
ˆ J 22 w2 (7.11.20b)

∂x3

∂t χ
− v3 −

v1 − ˆ v 1
ˆ J 33

ˆ J 13 −
v2 − ˆ v 2

ˆ J 33
ˆ J 23 =−

ˆ J 
ˆ J 33 w3 (7.11.20c)

For purposes of simplification and without any loss of generality, assume that the
moving boundaries are perpendicular to one coordinate axis in the reference domain.  Let
the free surface be perpendicular to χ3 , the first two equations in Eq. (7.11.17) are trivial
because in the direction of χ1 and χ2  the mesh velocity is prescribed and therefore the
mesh motion is known, but the third one must be solved for ˆ v 3  given w3 , ˆ v 1, and ˆ v 2 , it
may be written explicitly as:

ˆ v 3 −
ˆ J 13

ˆ J 33 (v1 − ˆ v 1) −
ˆ J 23

ˆ J 33 (v2 − ˆ v 2 ) − v3 =−
ˆ J 

ˆ J 33 w3 (7.11.21a)
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or

∂x3s

∂t χ
−

v1 − ˆ v 1
ˆ J 33

ˆ J 13 ∂x3s

∂χ1
,
∂x3s

∂χ2

 
 
  

 
 −

v2 − ˆ v 2
ˆ J 33

ˆ J 23 ∂x3s

∂χ1
,
∂x3s

∂χ2

 
 
  

 
 − v3

= −
w3
ˆ J 33

ˆ J 
∂x3s

∂χ1
,
∂x3s

∂χ2

 
 
  

 
 (7.11.22b)

where ˆ v 3  has been substituted by 
∂x3s

∂t χ
, ˆ J 13 , ˆ J 23 , and the Jacobian ˆ J  are function of

∂x3s

∂χ1
 and 

∂x3s

∂χ2
: ˆ J 33  is not dependent on x3s : and x3s  is the free surface equation.  In Eq.

(7.11.22b) x3s  is the unknown function, while ˆ v 1, ˆ v 2  and w3  are known. If ˆ v 1 = ˆ v 2 = 0
(i.e. the Eulerian description is used in χ1 and χ2 ), the kinematic surface equation, Eq.
(7.11.8),  is again obtained.  However, with the mixed formulation ˆ v 1 and ˆ v 2  can be
prescribed (as a percentage of the wave celerity, for instance) and therefore better numerical
results are obtained than by defining in Eq. (7.11.7) α11  and α22 , whose physical
interpretation is much more obscure.

7.11.5 Automatic Mesh Generation

The Laplacian method for remeshing is based on mapping the new position of the
nodes by solutions of the Laplace equation space (I, J) into real space (x, y) through
solving the Laplace differential equation is the most commonly use one.

The determination of the nodes is posed as finding x(I , J) and y(I, J), such that they
satisfy the following equations

L2(x) =
∂2 x

∂I2 +
∂ 2x

∂J2 = 0; L2 (y) =
∂2 y

∂I2 +
∂2 y

∂J 2 = 0 in Ωx (7.11.23a)

The boundary conditions in two dimension are

x(I, J) = x (I, J); y(I ,J ) = y (I, J ) in Γ x (7.11.23b)

Here x(I) and y(J) are the coordinates of nodes I  and J when I  and J take on integer values.

Ω  and Γ  are the domain and boundary of the remesh region and L2  is the second-order
differential operator.

Another useful mesh generation scheme is by solving a fourth order differential
equation

L4(x) =
∂4 x

∂I2∂J2 ; L4 (y) =
∂ 4x

∂I2∂J 2 (7.11.24)
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Eqs. (7.11.23) and (7.11.24) can be solved by the finite difference method with a Gauss-
Seidel iteration scheme.  Meshes generated by the Laplace equation are distorted near the
boundary where a high curvature occurs.  However, the fourth-order equation gives a
better mesh shape, because a higher differentiation is employed.  An equipotential method
regards the mesh lines as two intersecting sets of equipotentials, with each set satisfying
Laplace’s equation in the interior with adequate boundary condition.

7.12 Strong Form, Governing Equations of Slightly Compressible Viscous
Flow with Moving Boundary Problem

The object here is to find the following functions:

v(x,t) = velocity, p(x,t) = pressure fields, ˆ x (x,t)  = mesh displacement (7.12.1c)

such that they satisfy the following state and field equations:
Continuity Equation [Eq. (7.10.3b)]

1

B

∂p

∂ t χ
+

1

B
ci

∂p

∂xi
+

∂vi

∂xi
= 0 (7.12.2a)

Momentum Equation [Eq. (7.10.1b)]

ρ
∂vi

∂t χ
+ ρcj

∂vi

∂x j
=

∂σ ij

∂xj
+ρgi (7.12.2b)

Free Surface Update Equation
We can employ either mesh rezoning equation [Eq. (7.11.3)]:

∂xi

∂t χ
+ δ jk − α jk( )vk

∂xi

∂χ j
− vi = 0 (7.12.2c)

or the mesh updating equation [Eq. (7.11.17)]:

∂xi

∂t χ
− vi −

j =1
j ≠1

NSD

∑ v j − ˆ v j
ˆ J ii

ˆ J j i = −
ˆ J 
ˆ J ii

wi (7.12.2d)

The boundary conditions are as follows.  It is required that:

vi = v i on Γ i
v (7.12.3)

σ ijn j = t i on Γ i
t (7.12.4)
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where b and h are the prescribed boundary velocities and tractions, respectively; n is the

outward normal to Γ i
v , and Γ i

v  is the piecewise smooth boundary of the spatial domain, Ω
and the decomposition of Γ  is given in Chapter 3.

Constitutive Equation

σ ij = − pδij + 2µDij (7.12.5a)

where

Dij =
1

2

∂vi

∂x j
+

∂vj

∂xi

 

 
 

 

 
    and µ = µ (Dij ) (7.12.5b)

µ  is the dynamic viscosity which is shear rate dependent.  In Table 7.2 several Generalized
Newtonian models (see e.g. Bird et al, 1977) are presented.  The finite element method
presented here is independent of the particular Generalized Newtonian model chosen.

7.13 Weak Form of Slightly Compressible Viscous Flow with Moving
Boundary Problem

We denote the spaces of the test function and trial functions by:

  δvi ∈U0
v    

  
U0

v = δvi |δvi ∈C0, δvi = 0on Γ i
v{ } (test function) (7.13.1a)

  vi ∈Uv      
  
Uv = vi |vi ∈C0 , vi = v i on Γ i

v{ } (trial function) (7.13.1b)

To establish the weak form of the momentum equation, Eq. (7.12.2b), we take the
inner product of the momentum equation, Eq. (7.12.2b), with a test function δvi  and
integrate over the spatial region, that is:

Ω∫ δvi ρ
∂vi

∂t χ
dΩ +

Ω∫ δviρcj
∂vi

∂x j
dΩ −

Ω∫ δvi

∂σ ij

∂x j
dΩ −

Ω∫ δviρgi dΩ = 0

(7.13.2)

It is noticed that the stresses in Eq. (7.13.2) are functions of the velocities.  Applying
integration by parts on the stress term yields:

Ω∫ δvi

∂σ ij

∂xj
dΩ =

Ω∫
∂

∂xj
(δviσ ij )dΩ −

Ω∫
∂ (δvi )

∂xj
σ ij dΩ (7.13.3)

By the Gauss divergence theorem, the first term in the RHS of Eq. (7.13.3) can be written
as a boundary integral, which is:
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Ω∫
∂

∂xj
(δviσ ij) dΩ =

Γ t∫ δvi (n jσ ij )dΓ (7.13.4)

Substituting the specified boundary condition defined in Eq. (7.12.3b) into Eq. (7.13.4)
gives:

Γ t∫ δvi (n jσ ij )dΓ =
Γ t∫ δvit j dΓ (7.13.5)

The second term in the RHS of Eq. (7.13.3) can be further expressed by using the
definition  of the constitutive equation, Eq. (7.12.5a).  That gives:

Ω∫
∂(δvi )

∂x j
σ ij dΩ =

Ω∫
∂(δvi )

∂x j
−pδ ij + 2µDij[ ]dΩ

= −
Ω∫

∂(δvi )

∂xi
pdΩ+

Ω∫
∂(δvi )

∂xi
2µDij dΩ (7.13.6)

We now may use the decomposition of the velocity gradient in Eq. (7.13.6) into symmetric
and antisymmetric parts:

∂(δvi )

∂xi
= δLij = δDij + δω ij (7.13.7a)

where

δDij =
1

2

∂(δvi )

∂x j
+

∂(δvj )

∂xi

 

 
 

 

 
  and δω ij =

1

2

∂(δvi )

∂x j
−

∂(δvj )

∂xi

 

 
 

 

 
 (7.13.7b)

Since ω ij  is antisymmetric and Dij  is symmetric, it leads to ω ijDij = 0 .  Therefore,
together with the constitutive equation, Eq. (7.12.5b), and Eq. (7.13.7a) , we can express
Eq. (7.13.6) as:

−
Ω∫

∂(δvi )

∂xi
PdΩ +

Ω∫
µ
2

∂ (δvi )

∂xj
+

∂(δv j )

∂xi

 

 
 

 

 
 

∂vi

∂xj
+

∂vj

∂xi

 

 
 

 

 
 dΩ (7.13.8)

Now, substitute Eqs. (7.13.5) and (7.13.8) into (7.13.2), the weak form for the
momentum equation and associated boundary condition is obtained:

Ω∫ δvi ρ
∂vi

∂t χ
dΩ +

Ω∫ δviρcj
∂vi

∂x j
dΩ
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−
Ω∫

∂(δvi )

∂xi
PdΩ +

Ω∫
µ
2

∂ (δvi )

∂xj
+

∂(δv j )

∂xi

 

 
 

 

 
 

∂vi

∂xj
+

∂vj

∂xi

 

 
 

 

 
 dΩ

−
Ω∫ δviρgidΩ −

Γ t∫ δvit j dΓ = 0 (7.13.9)

The weak forms for the continuity equation and the free surface update equation are
simply obtained by taking the inner product with δp  and δxi , respectively.

We may now state a suitable weak form for the momentum equation.
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Weak Form for Newtonian Fluid
Given density, ρ , bulk modules, B, and Cauchy stress function, σ , defined in Table 7.2,

respectively, find   v ∈U v , 
  
p ∈U p  and   x ∈U x  such that for every   δv ∈U0

v ,   δp ∈U0
p  and

  δx ∈U0
x :

Continuity Equation [Eq. (7.12.2a)]

         Ω∫ δp
1

B

∂p

∂t χ
dΩ+

Ω∫ δp
1

B
ci

∂p

∂xi
dΩ +

Ω∫ δp
∂vi

∂xi
dΩ = 0                   (7.13.10a)

Momentum Equation [Eq. (7.12.2b)]

Ω∫ δvi ρ
∂vi

∂t χ
dΩ +

Ω∫ δviρcj
∂vi

∂x j
dΩ −

Ω∫
∂(δvi )

∂xi
pdΩ

+
Ω∫

µ
2

∂(δvi )

∂xj
+

∂(δvj )

∂xi

 

 
 

 

 
 

∂vi

∂x j
+

∂vj

∂xi

 

 
 

 

 
 dΩ−

Ω∫ δviρgidΩ −
Γ t∫ δvit j dΓ = 0

(7.13.10b)

Free Surface Update Equation

         The mesh rezoning equation [Eq. (7.12.2c)]:

ˆ Ω ∫ δxi
∂xi

∂ t χ
d ˆ Ω + ˆ Ω ∫ δ jk − α jk( )vkδxi

∂xi

∂χ j
d ˆ Ω − ˆ Ω ∫ δxivid

ˆ Ω = 0 (7.13.10c)

         or the mesh updating equation [Eq. (7.12.2d)]:

      ˆ Ω ∫ δxi
∂xi

∂ t χ
d ˆ Ω − ˆ Ω ∫ δxi

j =1
j ≠1

NSD

∑
vj − ˆ v j

ˆ J ii
ˆ J jid ˆ Ω − ˆ Ω ∫ δxi vi −

ˆ J 
ˆ J ii

wi

 
 
  

 
 d ˆ Ω = 0  (7.13.10d)

Constitutive Equation

σ ij = − pδij + 2µDij (7.13.11e)

Table 7.3 Weak Form of Slightly Compressible Viscous Flow with Moving Boundary
                Problem
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7.13.1 Galerkin Approximation of Slightly Compressible Viscous Flow with Moving
Boundaries

To obtain the semidiscrete equations by the Galerkin approximation, Eq. (7.13.10a)

through (7.13.10d) is replaced by the finite functions ph , vh  and xh .  That is:

p → ph , x → xh  and v → vh (7.13.11)

In particular, we wish to separate these functions into two parts, the unknown parts wx
h ,

wp
h  and wv

h  and the prescribed boundary parts (essential boundary conditions) x h , p h  and

v h , so that:

ph = wp
h + p h (7.13.12a)

vh = wv
h + v h (7.13.12b)

xh = wx
h + x h (7.13.12c)

Given ρ , B, σ  as before, find vi
h = wvi

h + v i
h , ph = wp

h + p h  and xi
h = wxi

h + x i
h ,

where   wv
h ∈U0

v h

,   wp
h ∈U0

ph

 and   wx
h ∈U0

x h

, such that for every   δvh ∈U0
v h

,   δph ∈U0
ph

 and

  δxh ∈U0
x h

 :

Galerkin Form of Continuity Equation

Ω∫ δph 1

B

∂wp
h

∂t
χ

dΩ +
Ω∫ δph 1

B
ci

∂wp
h

∂xi
dΩ+

Ω∫ δph ∂vi

∂xi
dΩ

= −
Ω∫ δph 1

B

∂p h

∂ t
χ

dΩ −
Ω∫ δph 1

B
ci

∂p h

∂xi
dΩ (7.13.13a)

Galerkin Form of Momentum Equation

Ω∫ δvi
h ρ

∂wvi

h

∂ t
χ

dΩ +
Ω∫ δvi

hρcj

∂wvi

h

∂x j
dΩ −

Ω∫
∂(δvi

h )

∂xi
PdΩ
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+
Ω∫

µ
2

∂(δvi
h )

∂x j
+

∂(δv j
h )

∂xi

 

 
 

 

 
 

∂wvi

h

∂xj
+

∂wv j

h

∂xi

 

 
 

 

 
 dΩ−

Ω∫ δvi
hρgi dΩ

=
Γ∫ δvi

hh j dΓ −
Ω∫ δvi

h ρ
∂v i

h

∂t χ
dΩ−

Ω∫ δvi
hρcj

∂v i
h

∂x j
dΩ

−
Ω∫

µ
2

∂(δvi
h )

∂x j
+

∂(δv j
h )

∂xi

 

 
 

 

 
 

∂v i
h

∂xj
+

∂v j
h

∂xi

 

 
 

 

 
 dΩ (7.13.13b)

Galerkin Form of Free Surface Update Equation
The mesh rezoning equation:

ˆ Ω ∫ δxi
h ∂wx i

h

∂t
χ

d ˆ Ω + ˆ Ω ∫ δ jk − α jk( )vkδxi
h ∂wxi

h

∂χ j
d ˆ Ω − ˆ Ω ∫ δxi

hvid
ˆ Ω 

= ˆ Ω ∫ δxi
h ∂x i

h

∂t χ
d ˆ Ω + ˆ Ω ∫ δ jk −α jk( )vkδxi

h ∂x i
h

∂χ j
d ˆ Ω (7.13.13c)

or the mesh updating equation:

ˆ Ω ∫ δxi
h ∂wx i

h

∂t
χ

d ˆ Ω − ˆ Ω ∫ δxi
h

j =1
j ≠1

NSD

∑
vj − ˆ v j

ˆ J ii
ˆ J jid ˆ Ω − ˆ Ω ∫ δxi

h vi −
ˆ J 
ˆ J ii

wi

 
 
  

 
 d ˆ Ω 

= − ˆ Ω ∫ δxi
h ∂x i

h

∂t χ
d ˆ Ω (7.13.13d)

7.13.2 Element Matrices for Slightly Compressible Viscous Flow with Moving Boundaries

The discrete forms of the continuity, momentum and mesh updating equations are
presented next.  First, we define:

vh = wv
h + v h =

A=1

NEQv

∑ NA
v (x)vA(t) +

A= NEQv+1

NUMNPv

∑ NA
v (x)v A

h (t) (7.13.14a)
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ph = wp
h + p h =

A=1

NEQp

∑ NA
p(x) pA(t) +

A=NEQp+1

NUMNPp

∑ NA
p(x) p A

h (t) (7.13.14b)

ˆ v h = w ˆ v 
h + ˆ v h =

A=1

NEQ ˆ v 

∑ NA
ˆ v (x) ˆ v A( t) +

A=NEQ ˆ v +1

NUMNP ˆ v 

∑ NA
ˆ v (x) ˆ v A

h( t) (7.13.14c)

δ ˆ v h =
A=1

NEQ ˆ v 

∑ NA
ˆ v (X)cA

ˆ v (t) (7.13.14d)

δph =
A=1

NEQp

∑ NA
p (X)cA

p (t) (7.13.14e)

δvh =
A=1

NEQv

∑ NA
v (X)cA

v ( t) (7.13.14f)

where NA
p , NA

v  and NA
ˆ v  are the continuous element shape function for pressure, velocity

and mesh velocity, respectively.

(ii) Mixed Formulation:
Without any loss of generality, the free surface is assumed perpendicular to the χ3
direction.  The cofactors are

ˆ J 13 =
∂x2

∂χ1

∂x3

∂χ2
−

∂x2

∂χ2

∂x3

∂χ1
(7.13.20a)

ˆ J 23 =
∂x1

∂χ2

∂x3

∂χ1
−

∂x1

∂χ1

∂x3

∂χ2
(7.13.20b)

ˆ J 33 =
∂x1

∂χ2

∂x1

∂χ2
−

∂x1

∂χ2

∂x2

∂χ1
(7.13.20c)

It should be noted that x3  is the only unknown that defines the free surface which is
assumed material (i.e. w3  = 0).

(8d) Show that by substituting Eqs. (7.13.20) into Eq. (7.11.22b) yields:

∂x3

∂t χ
+

1
ˆ J 33 (v1 − ˆ v 1)

∂x2

∂χ2
− (v2 − ˆ v 2 )

∂x1

∂χ2

 

  
 

  
∂x3

∂χ1
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+
1
ˆ J 33 −(v1 − ˆ v 1 )

∂x2

∂χ1
+ (v2 − ˆ v 2 )

∂x1

∂χ1

 

  
 

  
∂x3

∂χ2
= 0 (7.13.21)

(8e) Show that the convective term is:

ˆ L A =
Ω χ

e∫ ˆ N A ˆ c m
∂xi

∂χm
dΩχ (7.13.22a)

by defining:

ˆ c 1 =
1
ˆ J 33 (v1 − ˆ v 1)

∂x2

∂χ2
− (v2 − ˆ v 2 )

∂x1

∂χ2

 

  
 

  (7.13.22b)

ˆ c 2 =
1
ˆ J 33 −(v1 − ˆ v 1 )

∂x2

∂χ1
+ (v2 − ˆ v 2 )

∂x1

∂χ1

 

  
 

  (7.13.22c)

ˆ c 3 = 0 (7.13.22d)

7.15. Numerical Example

7.15.1  Elastic-plastic wave propagation problem

An elastic-plastic wave propagation problem is used to assess the ALE approach in
conjunction with the regular fixed mesh method. The problem statement, given in Fig.1,
represents a 1-D infinitely long, elastic-plastic hardening rod. Constant density and
isothermal conditions are assumed to simplify the problem. Thus only the momentum
equation and constitutive equation are considered for this problem. It should be noted that
this elastic-plastic wave propagation problem does not require an ALE mesh and the
problem was selected because it provides a severe test of the stress update procedure and
because of the availability of an analytic solution. The problem is solved using 400
elements which are uniformly spaced with a mesh size of 0.1. The mesh is arranged so that
no reflected wave will occur during the time interval under consideration. Material
properties and computational parameters are also depicted in Fig.7.16.1. Four stages are
involved in this problem:
(1) t ∈[0, t1], the mesh is fixed, and a square wave is generated at the origin;
(2) t ∈[ t1, t2 ], the mesh is fixed and the wave travels along the bar;
(3) t ∈[ t2 , t3 ], two cases are studied:

case A: the mesh is moved uniformly to the left-hand side with a constant speed − ˆ v ∗ ;
case B: same as Case A except the mesh is moved to the right;
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(4) t = t3, the stress is reported as a function of spatial coordinates in Figs. 7.16.2 and
7.16.3 for Case A and Case B, respectively.

For both cases, the momentum and stress transport are taken into account by employing the
full upwind method for elastic and elastic-plastic materials. The results are compared to :
(1) Regular Galerkin method runs, in which all of the transport items are handled by the
exact integration;
(2) Fixed mesh runs, in which the finite element mesh is fixed in space and the results are
pretty close to the analytic solutions.

The results according to several time step size are reported in Table 7.16.1. The wave
arrival time for both methods, with or without upwinding technique,  agree well with the
fixed mesh runs. However, the scheme without upwinding technique causes severe
unrealistic spatial oscillations in Case A because of the significant transport effects. The
new method proposed here eliminates these oscillations completely. Base on these studies,
it is found that the transport of stresses as well as yield stress ( and back stresses if
kinematic hardening) plays an important role in ALE computations for path-dependent
materials, and the proposed update procedure is quite accurate and effective.
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1. t ∈[0, t1] mesh fixed, wavegenerated

2. t ∈[t1, t2] mesh fixed, wavetravelling

3B. t ∈[t2, t3 ] Case B: mesh moving with ˆ v = + ˆ v ∗

3 A. t ∈[t2, t3 ] Case A: mesh moving with ˆ v = − ˆ v ∗

4. t = t3 report stress vs. spatial coordinate

x = 0

χ = 0

x = 0

χ = 0

x = 0

χ = 0

x = 0

χ = 0

ρ = 1 E = 104 E / ET = 3 σy0 = 75 σ0 = −100

∆ x = ∆χ = 0.1 ˆ v ∗ = 0.25 E / ρ t1 = 45 t2 = 240 t3 = 320(×10−3 )

Fig 7.16.1 Problem statement and computational parameters for wave propagation

Table 7.16.1  Time step sizes and numbers of time steps for elliptic-plastic wave
propagation example:
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Time Step (∆t ) ∆t / Cra Number of time steps

0.040 ×10−2 0.5 400

0.056 ×10−2 0.7 286

0.072 ×10−2 0.9 222

aCr = ∆x / E / ρ +|c|

7.15.2  Breaking of a dam
This example is an attempt to model the breaking of a dam or more generally a  flow

with large free surface motion by the ALE formulations described in the previous sections.
This problem, which has an approximate solution for an inviscid fluid flowing over a
perfect frictionless bed, presents a formidable challenge when this solution is applied to
mine tailings embankments. A detailed description of this problem can be found in Huerta
& Liu(1988).

The problem is solved without the restraints imposed by shallow water theory and
only the case of flow over a still fluid (FSF) is considered. Study on another case of flow
over a dry bed (FDB) can be found in the paper of Huerta & Liu(1988). The accuracy of
the ALE finite element approach is checked by solving the inviscid case, which has an
analytical solution in shallow water theory; then, other viscous cases are studied and
discussed.

Figure 7.8 shows a schematic representation of the flow over a still fluid The
dimensionless problem is defined by employing the following characteristic dimensions:
the length scale is the height of the dam, H, over the surface of the downstream still fluid;
the characteristic velocity, gH ,is chosen to scale velocities; and ρgH  is the pressure
scale. The characteristic time is arbitrarily taken as the length scale over the velocity scale,
i.e. H / g . Consequently, if the fluid is Newtonian, the only dimensionless parameter

associated with the field equations is the Reynolds number, Re = H gH / ν , where ν  is
the kinematics viscosity. A complete parametric analysis may be found in Huerta (1987).
Since the problem is studied in its dimensionless form, H is always set equal to one.

Along the upstream and downstream boundaries a frictionless condition is
assumed, whereas on the bed perfect sliding is only imposed in the inviscid case (for
viscous flows the velocities are set equal to zero).  In the horizontal direction 41 elements
of unit length are usually employed, while in the vertical direction one, three, five, or seven
layers are taken. depending on the particular case (see Figure 7.9).  For the inviscid
analysis, ∆H = H =1, as in Lohner et al (1984).  In this problem both the Lagrange-Euler
matrix method and the mixed formulation are equivalent because an Eulerian description is
taken in the horizontal direction; in the vertical direction a Lagrangian description is used
along the free surface while an Eulerian description is employed everywhere else.

Figure 7.10 compares the shallow water solution with the numerical results
obtained by the one and three layers of elements meshes.  Notice how the full integration of
the Navier-Stokes equations smoothes the surface wave and slows down the initial motion
of the flooding wave (recall that the Saint Venant equations predict a constant wave celerity,

gH , from t = 0).  No important differences exists between the two discretizations (i.e.
one or three elements in depth); both present a smooth downstream surface and a clearly
separate peak at the tip of the wave.  It is believed that this peak is produced in large part by
the sudden change in the vertical component of the particle velocity between still conditions
and the arrival of the wave, instead of numerical oscillations only.  Figure 7.11 shows the
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difference between a Galerkin formulation of the rezoning equation, where numerical node
to node oscillations are clear, and a Petrov-Galerkin integration of the free surface equation
(i.e. the previous 4lx3 element solution).  The temporal criterion (Hughes and Tezduyar,
1984) is selected for the perturbation of the weighting functions, and, as expected (Hughes
and Tezduyar, 1984; Hughes and Mallet, 1986), better results are obtained if the Courant
number is equal to one.  In the inviscid dam-break problem over a still fluid, the second-
order accurate Newmark scheme (Hughes and Liu, 1978) is used (i.e. γ  = 0.5 and β  =
0.25), while in all of the following cases numerical damping is necessary (i.e. γ  > 0.5)
because of the small values of ∆H ; this numerical instability is discussed later

The computed free surfaces for different times and the previous Generalized
Newtonian fluids are shown in Figures 7.14 and 7.15.  It is important to point out that the
results obtained with the Carreau-A model and n = 0.2 are very similar to those of the

Newtonian case with Re = 300 , whereas for the Bingham material with µ p = 1×102 Pa • s

the free surface shapes resemble more closely those associated with Re  = 3000; this is

expected because the range of shear rate for this problem is from 0 up to 20-30 s −1 It
should also be noticed that both Bingham cases present larger oscillations at the free surface

and that even for the µ p = 1×103 Pa • s  case the flooding wave moves faster than that for
the Carreau models.  Two main reasons can explain such behavior; first, unless
uneconomical time-steps are chosen, oscillations appear in the areas where the fluid is at
rest because of the extremely high initial viscosity (1000 µ p  ); second, the larger shear
rates occur at the tip of the wave, and it is in this area that the viscosity suddenly drops at
least two orders of magnitude, creating numerical oscillations.

Exercise 7.1
Observe that if the Jacobian described in Eq. (7.4.3a) is:

J = det
∂x
∂X

 
 

 
 = εijk

∂xi

∂X1

∂x j

∂X2

∂xk

∂X3
(7.4.11a)

where εijk  is the permutation symbol, then ˙ J  becomes:

˙ J =
∂(v1, x2 ,x3)

∂(X1, X2, X3 )
+

∂(x1,v2, x3 )

∂(X1, X2 , X3)
+

∂(x1, x2 ,v3)

∂(X1, X2, X3 )
(7.4.11b)

where
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∂(a,b,c)

∂( X1, X2 , X3)
=

∂a
∂X1

∂a
∂X2

∂a
∂X3

∂b

∂X1

∂b

∂X2

∂b

∂X3
∂c

∂X1

∂c

∂X2

∂c

∂X3

(7.4.11c)

for arbitrary scalars a, b, and c, and vi = ˙ x i .

Using the chain rule on 
∂v1

∂Xj
, show that:

∂(v1, v2,v3 )

∂( X1, X2 , X3)
=

m =1

3

∑ ∂v1

∂xm

∂(xm, x2 ,v3 )

∂( X1, X2 , X3)
=

∂v1

∂x1
J (7.4.12a)

Similarly, show that:

˙ J = J vk ,k (7.4.12b)

Exercise 7.2  Updated ALE Conservation of Angular Momentum
The principle of conservation of angular momentum states that the time rate of change

of the angular momentum of a given mass with respect to a given point, say the origin of
the reference frame, is equal to the applied torque referred to the same point.  That is:

D

Dt Ω∫ x × ρ(x,t)v(x,t)dΩ =
Ω∫ x × b(x,t)dΩ +

Γ∫ x × t(x,t)dΓ (7.4.13a)

It should be noticed that the left hand side of Eq. (7.4.13a) is simply ˙ H .

(2a)  Show that:

˙ H =
Ω0

∫
D

Dt
(x) × (ρv)JdΩ0 +

Ω 0
∫ x ×

D

Dt
(ρ v J)dΩ0 (7.4.13b)

=
Ω∫ x ×

D

Dt
(ρv) + (ρv)div(v) 

 
 
 
dΩ

Hint, in deriving the above equation, the following pieces of information have been used of
(1) x ,t[X] = v   ;  (2) v  × (ρ v) = 0   and  (3) Eq. (7.3.6b).

Now, show that substituting Eqs. (7.4.13b) into Eq. (7.4.13a) yields:
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Ω∫ x ×

D

Dt
(ρ v) + (ρ v)div(v) 

 
 
 
dΩ (7.4.14)

    =
Ω∫ x × b(x,t)dΩ +

Γ∫ x × (n ⋅ σ)dΓ

(2b)  Show that by employing the divergence theorem and the momentum equations given
in Eq. (7.4.6), the component form of Eq. (7.4.14) is:

Ω∫ εijkσ jkdΩ = 0 (7.4.15)

(2c)  If the Cauchy stress tensor, σ , is smooth within Ω , then the conservation of angular
momentum leads to the symmetry condition of the Cauchy (true) stress via Eq. (7.4.15)
and is given as:

σ ij = σ ji (7.4.16)

Exercise 7.3  Updated ALE Conservation of Energy
Energy conservation is expressed as (see chapter 3):

D

Dt Ω∫ ρEdΩ =
Γ∫ σ jin j vi dΓ +

Ω∫ ρbivi dΩ −
Γ∫ qi ni dΓ +

Ω∫ ρsdΩ

(7.4.17)

where qi  is the heat flux leaving the boundary ∂Ωx .  Recall that E is the specific total
energy density and is related to the specific internal energy e, by:

E = e +
V2

2
(7.4.18a)

where e = e(θ ,ρ ) with θ being the thermodynamic temperature and ρs  is the specific heat

source, i.e. the heat source per unit spatial volume and V 2 = vivi .  The Fourier law of heat
conduction is:

qi = −kijθ , j (7.4.18b)

(3a)  Show that the energy equation is (hint, use integration by parts and the divergence
theorem):

(ρE),t[χ] + (ρEc j ),j + ρEˆ v j, j = (σ ijvi ), j + bjv j + (kijθ ,j ),i + ρs (7.4.19a)

(3b)  If there is sufficient smoothness, time differentiate Eq. (7.4.19a) via the chain rule
and make use of the continuity equation to show that Eq. (7.4.19a) reduces to:
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ρ E,t[χ ] + E, jcj{ } = (σ ijvi ),j + b jvj + (kijθ, j ),i +ρs (7.4.19b)

or, in index free notation:

ρ E,t[χ ] + c ⋅ grad E{ } = div(v ⋅ σ) + v ⋅ b + div(k ⋅ grad θ ) + ρs (7.4.19c)

(3c)  Show that the above equations can be specified in the Lagrangian description by
choosing:

χ = X; ˆ φ  = φ ; c = 0; J = det
∂x
∂X

 
 

 
 (7.4.20a)

and they are given by:

ρE,t[χ ] = (σ ijvi ),j + b jvj + (kijθ, j ),i +ρs (7.4.20b)

or, in index free notation:

ρE,t[χ ] = div(v ⋅ σ) + v ⋅ b + div(k ⋅grad θ) + ρs (7.4.20c)

(3d)  Similarly, show that the Eulerian energy equation is obtained by choosing:

χ = x; ˆ φ  = 1; c = v; ˆ v = 0; J = det
∂x
∂X

 
 

 
 =1 (7.4.21a)

and they are given by:

ρ E,t[χ ] + E, jv j{ } = (σ ijvi ),j + b jvj + (kijθ, j ),i + ρs (7.4.21b)

or

ρ E,t[χ ] + v ⋅ grad E{ } = div(v ⋅σ ) + v ⋅ b + div(k ⋅ grad θ ) + ρs (7.4.21c)

Exercise 7.4
Show Eqs (7.13.10a), (7.13.10c), and (7.13.10d).

Exercise 7.5 Galerkin Approximation
Show the following Galerkin approximation by substituting these approximation

functions, Eqs (7.13.12), into Eqs. (7.13.10).

Exercise 7.6  The Continuity Equation
(6a) Show that:

M p ˙ P + Lp(P) + GT v = f extp (7.13.15a)
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where M p  is the generalized mass matrices for pressure; Lp  is the generalized convective

terms for pressure; G is the divergence operator matrix; f extp  is the external load vector; P
and v  are the vectors of unknown nodal values for pressure and velocity, respectively; and
˙ P  is the time derivative of the pressure.

(6b) Show that:

MAB
P =

Ω e∫
1

B
NA

pNB
p dΩ (7.13.15b)

LA
P =

Ω e∫
1

B
NA

pck
∂p

∂xk
dΩ (7.13.15c)

GAB
P =

Ωe∫ NA
p ∂NB

∂xm
dΩ (7.13.15d)

Example 7.2  1D Advection-Diffusion Equation

2Pe φ,x − φ ,xx = 0

Pe  = 1.5 τ = 0.438 ∆x = 1

Exercise 7.7  The Momentum Equation
(7a) Show that:

Ma + L(v) + Kµv − GP = f extv (7.13.16a)

where M is the generalized mass matrices for velocity; L is the generalized convective

terms for velocity; G is the divergence operator matrix; f extv  is the external load vector
applied on the fluid; Kµ  is the fluid viscosity matrix; P and v  are the vectors of unknown

nodal values for pressure and velocity, respectively; and ˙ P  and a are the time derivative of
the pressure, and the material velocity, holding the reference fixed.

(7b) Show that:

MAB =
Ω e∫ ρNA NB dΩ (7.13.16b)

LA =
Ω e∫ ρNAcm

∂vi

∂xm
dΩ (7.13.16c)
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Kµ =
Ω e∫ BTDB dΩ (7.13.16d)

where

  B = B1 LBa LBNEN[ ] (7.13.17a)

Ba
T =

∂Na

∂x1

∂Na

∂x2
0 0 0

∂Na

∂x3

0
∂Na

∂x1

∂Na

∂x2
0

∂Na

∂x3
0

0 0 0
∂Na

∂x3

∂Na

∂x2

∂Na

∂x1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(7.13.17b)

D =

2µ 0 0 0 0 0

0 µ 0 0 0 0

0 0 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

 

 

 
 
 
 
 

 

 

 
 
 
 
 

(7.13.17c)

Exercise 7.8  The Mesh Updating Equation
(8a) Show that:

ˆ M ˆ v + ˆ L (x) − ˆ M v = f extx (7.13.18a)

where ˆ M  is the generalized mass matrices for mesh velocity; ˆ L  is the generalized

convective terms for mesh velocity; f extx  is the external load vector; and ˆ v  is the vectors of
unknown nodal values for mesh velocity.

(8b) Show that:

ˆ M AB = ˆ Ω e∫ ρ ˆ N A
ˆ N B d ˆ Ω (7.13.18b)

The convective term is defined as follows:
(i) Lagrangian-Eulerian Matrix Method:
Define:

ˆ c i = (δ ij − αij )vj (7.13.19a)

(8c) Show that the convective term is:
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ˆ L A = ˆ Ω e∫ ˆ N A ˆ c m
∂xi

∂χm
d ˆ Ω (7.13.19b)

Exercise 6

Replacing the test function δvi  by δvi + τρc j
δvi

δx j
, show that the streamline-

upwind/Petrov-Galerkin formulation for the momentum equation is:

0 =
Ω∫ δvi ρ

∂vi

∂t χ
dΩ +

Ω∫ δviρcj
∂vi

∂xj
dΩ−

Ω∫
∂(δvi )

∂xi
PdΩ−

Ω x
∫ δviρgidΩ

+
Ω∫

µ
2

∂(δvi )

∂xj
+

∂(δvj )

∂xi

 

 
 

 

 
 

∂vi

∂x j
+

∂vj

∂xi

 

 
 

 

 
 dΩ−

Γ∫ δvi hj dΓ ⇐ Galerkin

+
e=1

NUMEL

∑ Ωe∫ τ ρcj
δvi

δx j
ρ

∂vi

∂t χ
+ ρcj

∂vi

∂x j
−

∂σ ij

∂xj
−ρgi

 

 
 

 

 
 dΩ ⇐ StreamlineUpwind
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---------- Backup of the previous version  -------------

In section 7.1, a brief introduction of the ALE is given. In section 7.2, the kinematics in
ALE formulation is described. In section 7.3, the Lagrangian versus referential updates is
given. In section  7.4, the updated ALE balance laws in referential description is described.
In section 7.5, the strong form of updated ALE conservation laws in referenctial
description is derived. In section 7.6, an example of dam-break is used to show the
application of updated ALE. In section 7.7, the updated ALE is applied to the path-
dependent materials extensively where the strong form, the weak form and the finite
element decretization  are derived. In this section, emphasize is focused on the stress
update procedure. Formulations for regular Galerkin method, Streamline-upwind/Petrov-
Galerkin(SUPG) method and operator splitting method are derived respectively. All the
path-dependent state variables are updated with a similar procedure. In addition,  the stress
update procedures in 1D case are specified with the elastic and elastic-plastic wave
propagation examples to demonstrate the effectiveness of the ALE method. In section 7.8,
the total ALE method, the counterpart of updated ALE method, is studied.

7.1 Introduction

The theory of continuum mechanics (Malvern [1969], Oden [1972]) serves to establish
an idealization and a mathematical formulation for the physical responses of a material
body which is subjected to a variety of external conditions such as thermal and mechanical
loads.  Since a material body B defined as a continuum is a collection of material particles
p, the purpose of continuum mechanics is to provide governing equations which describe
the deformations and motions of a continuum in space and time under thermal and
mechanical disturbances.

The mathematical model is achieved by labelling the points in the material body B by
the real number planes Ω , where Ω  is the region (or domain) of the Euclidean space.
Henceforth, the material body B is replaced by an idealized mathematical body, namely, the
region Ω .  Instead of being interested in the atomistic view of the particles p, the
description of the behavior of the body B will only pertain  to the regions of Euclidean
space .

Equations describing the behavior of a continuum can generally be divided into four
major categories:  (1) kinematic, (2) kinetic (balance laws), (3) thermodynamic, and (4)
constitutive.  Detailed treatments of these subjects can be found in many standard texts.

The two classical descriptions of motion, are the Lagrangian and Eulerian descriptions.
Neither is adequate for many engineering problems involving finite deformation especially
when using finite element methods.  Typical examples of these are fluid-structure-solid
interaction problems, free-surface flow and moving boundary problems, metal forming
processes and penetration mechanics, among others.

Therefore, one of the important ingredients in the development of finite element
methods for nonlinear mechanics involves the choice of a suitable kinematic description for
each particular problem. In solid mechanics, the Lagrangian description is employed
extensively for finite deformation and finite rotation analyses.  In this description, the
calculations follow the motion of the material and the finite element mesh coincides with the
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same set of material points throughout the computation.  Consequently, there is no material
motion relative to the convected mesh.  This method has its popularity because
(1)  the governing equations are simple due to the absence of convective effects, and
(2)  the material properties, boundary conditions, stress and strain states can be accurately
defined since the material points coincide with finite element mesh and quadrature points
throughout the deformation.  However, when large distortions occur, there are
disadvantages such as:

(1) the meshes become entangled and the resulting shapes may yield negative volumes,
and

(2) the time step size is progressively reduced for explicit time-stepping calculations.
On the other hand, the Eulerian description is preferred when it is convenient to model

a fixed region in space for situations which may involve large flows, large distortions, and
mixing of materials.  However, convective effects arise because of the relative motion
between the flow of material and the fixed mesh, and these introduce numerical difficulties.
Furthermore, the material interfaces and boundaries may move through the mesh which
requires special attention.

In this chapter, a general theory of the Arbitrary Lagrangian-Eulerian (ALE)
description is derived. The theory can be used to develop an Eulerian description also. The
definitions of convective velocity and referential or mesh time derivatives are given.  The
balance laws, such as conservation of mass, balances of linear and angular momentum and
conservation of energy are derived within the mixed Lagrangian-Eulerian concept.  The
degenerations of the mixed description to the two classical descriptions, Lagrangian and
Eulerian, are emphasized.  The formal statement of the initial/boundary-value problem for
the ALE description is also discussed.

7.2  Kinematics in ALE formulation

7.2.1 Mesh Displacement, Mesh Velocity and Mesh Acceleration

In order to complete the referential description, it is necessary to define the referential
motion; this motion is called the mesh motion in the finite element formulation.

The motion of the body B, which occupies a reference region Ωχ , is given by

x = ˆ φ (χ,t)= χ + ˆ u (χ,t) = φ(X,t) (7.2.7)

 This ALE referential(mesh) region Ωχ  is specified throughout and its motion is defined by

the mapping function ˆ φ   such that the motion of χ ∈Ωχ  at time t is denoted by χ ∈Ωχ  and

ˆ u (χ, t)  is the mesh displacement in the finite element formulation. It is noted that even

thought in general the mesh function ˆ φ   is different from the material function φ , the two
motions are the same as given in Eq.(7.2.7). The corresponding velocity (mesh velocity)
and acceleration (mesh acceleration) are defined as :

ˆ v =
∂x
∂ t [χ]

= x ,t[χ] = ˆ u ,t[χ] mesh velocity (7.2.8a)
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and

ˆ a =
∂ ˆ v 
∂ t [χ]

= ˆ v ,t[χ ] mesh acceleration (7.2.8b)

The motion ˆ φ   is arbitrary and the usefulness of the referential descripation will depend on
how this motion is chosen.

Depending on the choice of χ , we can obtain the Lagranginan description by setting χ = X

and ˆ φ = φ , the Eulerian description by setting χ = x , and the ALE description by setting
ˆ φ ≠ φ . The general referential description is referred to as Arbitrary Lagrangian-Eulerian

(ALE) in the finite element formulation. In this description, the function ˆ φ   must be
specified such that the mapping between x  and χ  is one to one.  With this assumption and
by the composition of the mapping (denoted by a circle), a third mapping is defined such
that

  χ = ψ(X,t) = ˆ φ  −1 oφ (X,t) (7.2.10)

Similarly, for this motion displacement, velocity and acceleration variables can be
defined.

However, this is not necessary. These displacement, velocity and acceleration
variables can instead be defined with the aid of the chain rule and the appropriate mappings.

The schematic set up of these descriptions in one-dimension is shown in Fig. 1, and a
summary of the three descriptions is given in Table 7.1.

Fig.7.2 is shown to compare the three descriptions further, where the 1D motion of the
material is specified as:

x = (1− X2 )t + X t2 + X

Fig 7.2 Comparsion of Lagranian, Eulerian, ALE description
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CHAPTER  8
ELEMENT TECHNOLOGY

by Ted Belytschko
Northwestern University
@ Copyright 1997

8.1  Introduction

Element technology is concerned with obtaining elements with better performance,
particularly for large-scale calculations and for incompressible materials.  For large-scale
calculations, element technology has focused primarily on underintegration to achieve faster
elements.  For three dimensions, cost reductions on the order of 8 have been achieved
through underintegration.  However, underintegration requires the stabilization of the
element.  Although stabilization has not been too popular in the academic literature, it is
ubiquitous in large scale calculations in industry.  As shown in this chapter, it has a firm
theoretical basis and can be combined with multi-field weak forms to obtain elements which
are of high accuracy.

The second major thrust of element technology in continuum elements has been to
eliminate the difficulties associated with the treatment of incompressible materials.  Low-
order elements, when applied to incompressible materials, tend to exhibit volumetric
locking.  In volumetric locking, the displacements are underpredicted by large factors, 5 to
10 is not uncommon for otherwise reasonable meshes.  Although incompressible materials
are quite rare in linear stress analysis, in the nonlinear regime many materials behave in a
nearly incompressible manner.  For example, Mises elastic-plastic materials are
incompressible in their plastic behavior.  Though the elastic behavior may be compressible,
the overall behavior is nearly incompressible, and an element that locks volumetrically will
not perform well for Mises elastic-plastic materials.  Rubbers are also incompressible in
large deformations.  To be applicable to a large class of nonlinear materials, an element
must be able to treat incompressible materials effectively.  However, most elements have
shortcomings in their performance when applied to incompressible or nearly
incompressible materials.  An understanding of these shortcomings are crucial in the
selection of elements for nonlinear analysis.

To eliminate volumetric locking, two classes of techniques have evolved:
1. multi-field elements in which the pressures or complete stress and strain fields

are also considered as dependent variables;
2. reduced integration procedures in which certain terms of the weak form for the

internal forces are underintegrated.

Multi-field elements are based on multi-field weak forms or variational principles; these are
also known as mixed variational principles.  In multi-field elements, additional variables,
such as the stresses or strains, are considered as dependent, at least on the element level,
and interpolated independently of the displacements.  This enables the strain or stress fields
to be designed so as to avoid volumetric locking.  In many cases, the strain or stress fields
are also designed to achieve better accuracy for beam bending problems.  These methods
cannot improve the performance of an element in general when there are no constraints
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such as incompressibility.  In fact, for a 4-node quadrilateral, only a 3 parameter family of
elements is convergent and the rate of convergence can never exceed that of the 4-node
quadrilateral.  Thus the only goals that can be achieved by mixed elements is to avoid
locking and to improve behavior in a selected class of problems, such as beam bending.

The unfortunate byproduct of using multi-field variational principles is that in many
cases the resulting elements posses instabilities in the additonal fields.  Thus most 4-node
quadrilaterals based on multi-field weak forms are subject to a pressure instability.  This
requires another fix, so that the resulting element can be quite complex.  The developemnt
of truly robust elements is not easy, particularly for low order elements.  For this reason,
an understanding of element technology is useful to anyone engaged in finite element
analysis.

Elements developed by means of underintegration in its various forms are quite similar
from a fundamental and practical viewpoint to elements based on multi-field variational
principles, and the equivalence was proven by Malkus and Hughes() for certain classes of
elements.  Therefore, while underintegration is more easily understood than multi-field
approaches, the methods suffer from the same shortcomings as multi-field elements:
pressure instabilities.  Nevertheless, they provide a straightforward way to overcome
locking in certain classes of elements.

We will begin the chapter with an overview of element performance in Section 8.1.
This Section describes the characteristics of many of the most widely used elements for
continuum analysis.  The description is limited to elements which are based on polynomials
of quadratic order or lower, since elements of higher order are seldom used in nonlinear
analysis at this time.  This will set the stage for the material that follows.  Many readers
may want to skip the remainder of the Chapter or only read selected parts based on what
they have learned from this Section.

Although the techniques introduced in this Chapter are primarily useful for controlling
volumetric locking for incompressible and nearly incompressible materials, they apply
more generally to what can collectively be called constrained media problems.  Another
important class of such problems are structural problems, such as thin-walled shells and
beams.  The same techniques described in this Chapter will be used in Chapter 9 to develop
beam and shell elements.

Section 8.3 describes the patch tests.  These are important, useful tests for the
performance of an element.  Patch tests can be used to examine whether an element is
convergent, whether it avoids locking and whether it is stable.  Various forms of the patch
test are described which are applicable to both static programs and programs with explicit
time integration.  They test both the underlying soundness of the approximations used in
the elements and the correctness of the implementation.

Section 8.4 describes some of the major multi-field weak forms and their application to
element development.  Although the first major multi-field variational principle to be
discovered for elasticity was the Hellinger-Reissner variational principle, it is not
considered because it can not be readily used with strain-driven constitutive equations in
nonlinear analysis.  Therefore, we will confine ourselves to various forms of the Hu-
Washizu principles and some simplifications that are useful in the design of new elements.
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We will also describe some limitation principles and stability issues which pertain to mixed
elements.

To illustrate the application of element technology, we will focus on the 4-node
isoparametric quadrilateral element (QUAD4).  This element is convergent for compressible
material without any modifications, so none of the techniques described in this Chapter are
needed if this element is to be used for compressible materials.  On the other hand, for
incompressible or nearly incompressible materials, this element locks.  We will illustrate
two classes of techniques to eliminate volumetric locking: reduced integration and multi-
field elements.  We then show that reduced integration by one-point quadrature is rank
deficient, which leads to spurious singular modes.  To stabilize these modes, we first
consider perturbation hourglass stabilization of Flanagan and Belytschko (1981).  We then
derive mixed methods for stabilization of Belytschko and Bachrach (1986), and assumed
strain stabilization of Belytschko and Bindeman (1991).  We show that assumed strain
stabilization can be used with multiple-point quadrature to obtain better results when the
material response is nonlinear without great increases in cost.  The elements of Pian and
Sumihara() and Simo and Rifai() are also described and compared.  Numerical results are
also presented to demonstrate the performance of various implementations of this element.
Finally, the extension of these results to the 8-node hexhedron is sketched.

8.2. Overview of Element Performance

In this Section, we will provide an overview of characteristics of various widely-used
elements with the aim of giving the reader a general idea of how these elements perform,
their advantages and their major difficulties.  This will provide the reader with an
understanding of the consequences of the theoretical results and procedures which are
described later in this Chapter.  We will concentrate on elements in two dimensions, since
the properties of these elements parallel those in three dimensions; the corresponding
elements in three dimension will be specified and briefly discussed.  The overview is
limited to continuum elements; the properties of shell elements are described in Chapter 9.

In choosing elements, the ease of mesh generation for a particular element should be
borne in mind.  Triangles and tetrahedral elements are very attractive because the most
powerful mesh generators today are only applicable to these elements.  Mesh generators for
quadrilateral elements tend to be less robust and more time consuming.  Therefore,
triangular and tetrahedral elements are preferable when all other performance characteristics
are the same for general purpose analysis.

The most frequently used low-order elements are the three-node triangle and the four-
node quadrilateral.  The corresponding three dimensional elements are the 4-node
tetrahedron and the 8-node hexahedron.  The detailed displacement and strain fields are
given later, but as is well-known to anyone familiar with linear finite element theory, the
displacement fields of the triangle and tetrahedron are linear and the strains are constant.
The displacement fields of the quadrilateral and hexahedron are bilinear and trilinear,
respectively.  All of these elements can represent a linear displacement field and constant
strain field exactly.  Consequently they satisfy the standard patch test, which is described in
Section 8.3.  The satisfaction of the standard patch test insures that the elements converge



8

in linear analysis, and provide a good guarantee for convergent behavior in nonlinear
problems also, although there are no theoretical proofs of this statement.

We will first discuss the simplest elements, the three-node triangle in two dimensions,
the four-node tetrahedron in three dimensions.  These are also known as simplex elements
because a simplex is a set of n+1 points in n dimensions.  Neither simplex element
performs very well for incompressible materials.  Constant-strain triangular and tetrahedral
elements are characterized by severe volumetric locking in two-dimensional plane strain
problems and in three dimensions.  They also manifest stiff behavior in many other
cases, such as beam bending.  For arbitrary arrangements of these elements, volumetric
locking is very pronounced for materials such as Mises plasticity.  The proviso plane strain
is added here because volumetric locking will not occur in plane stress problems, for in
plane stress the thickness of the element can change to accommodate incompressible
materials.  The consequences of volumetric locking are almost a complete lack of
convergence.  In the presence of volumetric locking, displacements are underpredicted by
factors of 5 or more, so the results are completely worthless.

Volumetric locking does not preclude the use of simplex elements for incompressible
materials completely, for locking can be avoided by using special arrangements of the
elements.  For example, the cross-diagonal arrangement of triangles shown in Fig.??
eliminates locking, Naagtegal et al.   However, meshing in this arrangement is similar to
meshing quadrilaterals, so the benefits arising from triangular and tetrahedral meshing are
lost.  In addition, this arrangement results in pressure oscillations, such as those described
subsequently for quadrilaterals.

When fully integrated, i.e. 2x2 Gauss quadrature for the quadrilateral, both the 4-node
quadrilateral and the hexahedron lock for incompressible materials.  Volumetric locking can
be eliminated in these elements by using reduced integration, namely one-point quadrature,
or selective-reduced integration, which consists of one-point quadrature on the volumetric
terms and 2x2 quadrature on the deviatoric terms; this is described in detail later.  The
resulting quadrilateral will then exhibit good convergence properties in the displacements.
However, the element still is plagued by one flaw: it exhibits pressure oscillations due to
the failure of the quadrilateral with modified quadrature to satisfy the BB-condition, which
is described later.   As a consequence, the pressure field will often be oscillatory, with a
pattern of pressures as shown in fig, ??.  This oscillatory pattern in the pressures is often
known as checkerboarding.  Checkerboarding is sometimes harmless: for example, in
materials governed by the Mises law the response is independent of pressure, so pressure
oscillations are not very harmful, although they lead to errors in the elastic strains.
Checkerboarding can also be eliminated by filtering procedures.  Nevertheless it is
undesirable, and a user of finite elements should at least be aware of its possibility with
these elements.  Pressure oscillations also occur for the mixed elements based on multi-
field variational principles.  In fact mixed elements are in many cases identical or very
similar in performance to selective reduced integration elements, since theoretically they are
in many cases equivalent, Malkus and Hughes().  Some stabilization procedures for BB
oscillations have been developed; they are described and discussed in Section ??.

In large scale computations, the fastest form of the quadrilateral and hexahedron is the
one-point quadrature element: it is often 3 to 4 times as fast as the selective-reduced
quadrature quadrilateral element.  In three dimensions, the speedup is of the order of 6 to 8.
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The one-point quadrature element also suffers from pressure oscillations, and in addition
possess instabilities in the displacement field.  These instabilities are shown in Fig. ??, and
have various names:  hourglassing, keystoning, kinematic modes, spurious zero energy
modes and chickenwiring are some of the appellations for these modes.  The control of
these modes has been the topic of considerable research, and they can be controlled quite
effectively.  In fact, the rate of convergence is not decreased by a consistent control of these
modes, so for many large scale calculations, one-point quadrature with hourglass control
are very effective.  Hourglass control is described in Sections ???.

The next highest order elements are the 6-node triangle and the 8 and 9 node
quadrilaterals.  The counterparts in three dimensions are the 10 node tetrahedron and the 20
and 27 node quadrilaterals.  The 6-node triangle and 9-node quadrilateral have a complete
quadratic displacement field and complete linear strain field when the edges of the element
are straight.  Ciarlet and Raviart() in a landmark paper proved that the convergence of these
elements is quadratic when the displacement of the midside nodes is small compared to the
length of the elements;  whether the distortions introduced by a mesh in normal mesh
generation are small is often an open question.  These elements satisfy the quadratic and
linear patch tests when the element sides are straight, but only the linear patch test when the
element sides are curved.  In other words, these elements cannot reproduce a quadratic
displacement field exactly when the sides are not straight.  Of course, curved sides are an
intrinsic advantage of finite elements, for they enable boundary conditions to be met for
higher order elements, but curved sides should only be used for exterior surfaces, since
their presence decreases the accuracy of the element.  In nonlinear problems with large
deformations, the performance of these elements degrades when the midside nodes move
substantially; this had already been discussed in the one-dimensional context in Example
2.8.2.  Element distortion is a pervasive difficulty in the use of higher order elements for
large-deformation analysis: the convergence rate of higher order elements degrades
significantly as they are distorted, and in addition solution procedures often fail when
distortion becomes excessive.

The 6-node triangle does not lock for incompressible materials, but it fails the BB
pressure stability test for incompressible materials.  The 9-node quadrilateral when
developed appropriately by a mixed variational principle with a linear pressure field
satisfies the pressure stability test and does not lock.  It is the only element we have
discussed so far which has flawless behavior for incompressible materials.

In summary, element technology deals with two major quirks:
1.  volumetric locking, which prevents convergence for incompressible and nearly

incompressible materials;
2.  pressure oscillations which result from the failure to meet the BB condition.

For low-order elements, the presence of one of these flaws is nearly unavoidable.  The
quadrilateral with reduced integration and a pressure stabilization or pressure filter appears
to be the best of the low-order elements.  When speed of computation is a consideration, a
stabilized quadrilateral with one-point quadrature appears to be optimal.  Only the 9-node
quadrilateral and 27-node hexahedral are flawless elements for imcompressible materials,
and the fact that no flaws have been discovered so far does not preclude that none will ever
be discovered.  Almost all of these difficulties are driven by incompressibility, and persist
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for near-incompressiblity.  When the material is compressible, or when considering two
dimensional plane stress, standard element procedure can be used.

Error Norms.  In order to compare these elements further, it is worthwhile to study a
convergence theorem which has been proven for linear problems.  Although this theorem
has not been proven for the nonlinear regime, it provides insight into element accuracy.
For the purpose of studying this convergence theorem, we will first define some norms
frequently used in error analysis of finite elements.  These will also be used to evaluate
some of the element technology developed later in this Chapter.

Errors in finite element analysis are measured by norms.  A norm in functional
analysis is just a way of measuring the distance between two functions.  A norm of the
difference between a finite element solution and the exact solution to a problem is a measure
of the error in the solution.  The most common norms for the evaluating the error in a finite
element solution are the L2 norm and the error in energy.  The L2 norm of a vector function
fi x( )is defined by

fi x( ) 0 = fi x( ) fi x( )dΩ
Ω
∫
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2

(8.2.1)

where the subscript nought on the symbol for the norm designates the L2 norm.  It can be
seen that the L2 norm is always positive, and measures an average or mean value of the
function.  To use the L2 norm for a measure of error for a finite element solution, we

denote the finite element solution for the displacement by uh x( )  and the exact solution by
u x( ) .  The error in the finite element solution at any point can then be expressed by the

vector e x( ) = uh x( ) − u x( ) .  Since we seek a single number for the error, we will use the
magnitude of the vector e x( ) . which is e x( ) ⋅ e x( ) .  Thus we can define the error in the
displacements by the L2 norm as

e x( ) 0 = e x( )⋅ e x( )dΩ
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∫
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(8.2.2)

This error norm measures the average error in the displacements over the domain of the
problem.  There are many other error norms.  We have chosen to use this one because the
most powerful and most well known results are expressed in terms of this norm.
Furthermore, it gives a measure of error which is useful for engineering purposes.

The second norm we will consider are the norms in Hilbert space.  The H1 norm of a
vector function is defined by
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fi x( ) 1 = fi x( ) fi x( ) + fi, j x( ) fi, j x( )dΩ
Ω
∫
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(8.2.3)

This norm is a good measure of the error in the derivatives of a function.  It includes the
terms from the L2 norm given in Eq. (1), but when applied to real approximations, the
errors in the derivatives dwarf the errors in the function itself, so they play an insignificant
role.  If we take the H1 norm of the error in the displacements, i.e. by letting

fi x( ) = ui
h x( )− ui x( )  we otain a useful measure of the error in strains.  The errors in norm,

incidentally, are usually similar to the error in energy, Hughes(,p.273) which is defined by

  

a u, u( ) 1 = eij CijklekldΩ
Ω
∫
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eij = εij − εij
h

(8.2.4)

Note the similarity of this form to the strain energy defined in Eq. ().  In the above
expression, the error in strain replaces the strain in Eq.(), hence the name energy error in
strain.

We conclude with a few more facts on norms.  The Hr norm is generated in terms of
the rth derivatives of the function.  Thus the H0 norm is equivalent to the L2 norm, Eq (1),
whereas the H2 norm would involve the squares of the second derivatives.  These norms
exist, i.e. the integral corresponding to the norms Hr, is integrable, when the function is of
continuity Cr-1.  This can be seen quite easily for the H1 norm: if the function fi x( ) is not
C0, i.e. if it is discontinuious, then the derivatives will be Dirac delta functions at the points
of the discontinuity.  The square of a Dirac delta function cannot be integrated, so the norm
can not be evaluated.  The kinematic admissibility conditions () are often stated in terms of
Hilbert spaces, so in Eq () the requirement could be replaced by .  The latter is often found
in the literature, but we used the simpler concept since we were not concerned with
convergence proofs.  For more on norms, seminorms, and other good stuff of this type see
Hughes(), Oden and Reddy() or Strang().

Convergence Results for Linear Problems.  The fundamental convergence results for
linear finite elements is given in the following.  If the finite element solution is generated by
elements which can reproduce polynomials of order k, and if the solution u x( )  is
sufficiently smooth for the Hilbert norm Hr to exist, then

  
u − uh

m
≤ Chα u r , α =min k +1 −m ,r − m( ) (8.2.5)

where h is a measure of element size and C is an arbitrary constant which is independent of
h and varies from problem to problem.
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We will now examine the implications of this theorem for various elements.  The
parameter α   indicates the rate of convergence of the finite element solution: the greater the
value of α , the faster the finite element solution converges to the exact solution and
therefore the more accurate the element.  It is important to note that the rate of convergence
is limited by the smoothness of the solution in space.  An elastic solution is analytic, i.e.
infinitely smooth, if there are no acute corners or cracks, so in that case r tends toward
infinity.  Therefore, the second term in the definition for α , r − m , plays no role for
smooth solutions.  However, if the solution is not very smooth, i.e. if there are
discontinuities in the derivatives or higher order derivatives, then r is finite.  For example,
if there are discontinuities in the second derivatives, then r is at most 2, and the second term
plays a role.

We first examine what Eq. (5) means for smooth elastic solutions for various elements
for the error in displacements.  In that case, we consider the H0 norm, which is equivalent
to the L2 norm, so m = 0 .  The 3-node triangle, the 4-node quadrilateral, the 4-node
tetrahedron and the 8-node hexahedron all reproduce in linear polynomials exactly; this
result is proven for the isoparametric elements in Section 8.?;  therefore k = 1.  Therefore,
for the elements with linear completeness just listed we obtain that

  α = min k +1− m, r− m( ) =min 1 +1− 0 , ∞− 0( ) = 2

This result is illustrated in Fig. (), which shows a log-log plot of the error for the plate
with a hole; details of this problem are given in Section ??.  In a log-log plot, the graph of
error in displacements versus element size according to Eq. (5) is given by a straight line
with a slope α = 2 .  The solution in this case is said to converge quadratically.  The actual
numerical results compare with this theoretical result quite closely, although the slope
deviates 5% or so from the theoretical result.  Equation 5 is an aymptotic result which
should hold only as the element size goes to zero, but remarkably it agrees very well with
numerical experiments with realistic meshes.

We next consider the higher order elements, namely the 6-node triangle, the 9-node
quadrilateral, the tetrahedron and the 27-node hexahedron with straight edges.  In this case
k = 2 , and for an elastic solution the remaining constants are unchanged.  We find then that
α = 3, so the rate of convergence is cubic in the displacements.  This increase of one order
in convergence is quite significant, as illustrated in the results shown in Fig. ??.  In effect,
the choice of a higher order element here buys a tremendous amount of accuracy.

The results for the strains, i.e. the derivatives of the displacement field, are similar.  In
this case m = 1 since the error in strains is indicated by the H1-norm.  The rates of
convergence are then one order lower, α = 1 for elements with linear completeness, k = 1,
and α = 2  for elements with quadratic completeness, k = 2 .  the results are illustrated for a
plate with a hole in fig. ??.

Convergence in Nonlinear Problems.  The behavior of elements for nonlinear problems
according to this theorem, Eq (), will depend on the smoothness of the constitutive
equation. If the constitutive equation is very smooth, such as hyperelastic models for
rubber, then the rate of convergence are expected to be the same as for elastic, linear
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materials.  However, for constitutive equations which are not smooth, such as elastic-
plastic materials, the second term in the definition of α   governs the accuracy.  For
example in an elastic-plastic material, the relation between stress and strain is C0.
Therefore the displacements are at most C1, and r = 2 .  It can now be seen that the rate of
convergence of the displacements now is at most of order 2, i.e. α = 2 , regardless of
whether the completeness of the element is as indicated by k  is linear or quadratic.  Thus
there appears to be no benefit in going to a higher order element for these materials.
Similarly, the rate of convergence in the strains is at most of order α = 1.  Thus, if the
constitutive equation is not very smooth, the benefits of a higher order element can be lost.

In summary, for smooth constitutive equations, higher order elements are
advantageous because of their higher rate of convergence.  If the constitutive equation lacks
sufficient smoothness, then there is no advantage in going to higher order elements.  These
results also are relevant for dynamic problems: when the signals are very smooth, there is
some benefit in going to higher order elements, provided that a consistent mass matrix is
used.  For signals which lack smoothness, there is little advantage to higher order
elements.

These statements do not take cognizance of the deterioration of element performance
with large deformations.  When the deformations are so large that the elements are highly
distorted, then the accuracy of the higher order elements also decreases.  These provisos
pertain to both total and updated Lagrangian meshes, but not to Eulerian meshes.  Thus, the
amount of element distortion expected should also be considered in the choice of an element
for nonlinear analysis.

It could be argued that even elastic problems in practical situations have discontinuities
in derivatives due to different materials.  However, in linear problems, the element edges
are usually aligned with the material interfaces.  In that case, the full accuracy of higher
order elements can be retained since they can model discontinuities in derivatives effectively
along element edges.  In elastic-plastic problems, on the other hand, discontinuities float
through the model and as the problem evolves, they proliferate.  Thus their effects in
nonlinear problems are more devastating to accuracy.

It should be stressed that the convergence results (5) has only been proven for linear
problems.  However, the major impediment to obtaining such convergence results for
nonlinear problems is probably the lack of stability of nonlinear solutions.  It is likely that
the estimates given above, which are based on  interpolation error estimates, play a similar
role in nonlinear problems.  This conjecture appears to be verified by numerical
convergence studies which have verified that the estimates () apply in nonlinear problems
quite well.

8.3.  The Patch Tests

The patch tests are an extremely useful for examining the soundness of element
formulations, for examining their stability and convergence behavior, and checking the
proper implementation of an element in a compute program.  The patch test was first
conceived by Irons() to examine the soundness of a nonconforming plate element.  In this
original form, the patch test was primarily a test for polynomial completeness, i.e. the
ability to reproduce exactly a polynomial of order k.  It has been proposed by Strang() that
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the patch test is necessary and sufficient for convergence.  Subsequently, the patch test has
been generalized and modified so that it can test also for stability in pressures and
displacements, simo(), bathe().  Methods for implementing the patch test in explicit
programs have also been developed, Belytschko().  Special versions of the patch test to test
performance in large displacement analysis can also be constructed.  In the following we
describe these various forms of the patch test.

Before describing the patch test, it is worthwhile to define a few terms and point out a
few overlaps in terms which are at times confusing.  In functional analysis, the term
completeness refers to the ability of an approximation to approximate a function arbitrarily
closely. A sequence of functions φI x( )  is complete in Hr if for any function   f x( ) ∈H r ,

f x( )− a IφI x( )
I=1

n

∑
r

→ 0 as n →∞ (8.2.3)

Thus any set of functions is complete if it can approximate any function of a specified
continuity arbitrarily closely, when the error is measured by an appropriate norm.  The
appropriate norm is any norm which exists or a lower order norm.

In the preceding we have referred to polynomial completeness.  A better terms which
has emerged in wavelet thoery is the reproducing condition.  The reproducing condition is
defined by the ability of an approximation to reproduce a function exactly.  Thus for an
interpolant such as a finite element shape function, the reproducing conditions state that if
the nodal values of an element are given by pi x J( )  where pi x( )  is an arbitrary function,
then

NJ x( )
J =1

m

∑ pi xJ( ) = pi x( ) (8.3.4)

This equation is quite subtle and contains more than first meets the eye.  It states that when
the reproducing condition holds, the shape functions or interpolants are able to exactly
reproduce the given function pi x( ) .  For example, if the shape functions are able to
reproduce the constant and linear functions, then we have

  
NJ x( )

J =1

m

∑ = 1, NJ x( )
J=1

m

∑ x jJ = x j (8.3.5)

This is called linear completeness by Hughes(), but the term reproducing condition seems
more appropriate, since completeness refers to a more general condition described by (4).
Therefore, when using completeness in the sense of Hughes we will use the term
polynomial completeness.

Any approximation which satisfies the linear reproducing conditions can be shown to
be complete.  On the other hand, the converse does not hold.  Consider for example the
Fourier series: they are complete, but they cannot reproduce a linear polynomial.
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A third definition pertinent to convergence is the defintion of consistency.
Consistency is usually defined in the context of finite difference methods.  According to the
standard definitions of consiostency, a discretization in space   D u( )  is a consistent
approximation of a partial differential equation   L u( ) = 0  if the error is on the order of the
meshsize, i.e. if

  
L u( ) − D u( ) = o hn( ), n ≥1

The above states that the truncation error must tend to zero as the nodal spacing, i.e. the
element size tends to zero.  For time dependent problems, the disretization error will be a
function of the time step and the element size h, and the truncation error will depend on
both.  For a time-independent problem in one dimension

Standard Patch Test.  We first describe the standard patch test which checks for
polynomial completeness of the displacement field, i.e. the ability of the element to
reproduce polynomilas of a specified order.  In addition, the test can be used to check the
overall implementation of the element in the program; sometimes the shape functions are
correct, but the element in a program fails the patch test anyway because of faulty
programming.

In the standard patch test, a patch of elements such as shown in Fig.?? is used.  The
elements should be distorted as shown because the behavior of distorted elements is
important and can differ from that of regular elements.  No body forces should be applied,
and the material properties should be uniform and linear elastic in the patch.  The
displacements of the nodes on the periphery of the patch are then prescribed according to
the order of the patch test.  For a linear patch test in two dimensions, the displacement field
is given by

ux = a1x +a2 xx + a3x y

uy = a1y + a2yx + a3yy

where a Ii  are constants set by the user; they should all be nonzero to test the reproducing
condition completely.  This displacement field is used to set the prescribed displacements of
the nodes on the periphery of the patch, so the prescribed displacements are

uIx = a1x +a2 xx I + a3xy I

uIy = a1y + a2 yx I + a3yyI

  To satisfy the patch test, the finite element solution should be given by () throughout
the patch: the nodal displacements at the interior nodes should be given by () and the strains
should be constant and given by the application of the strain-displacement equations to the
displacement in ():

  

εx = ux ,x = a2x , ε y = uy,y = a3y

2εxy = ux ,y + uy ,x = a3x + a2y
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The stresses should similarly be constant and correspond to what would be obtained
by multiplying the above strains in the elastic, linear law used in the program.  All of these
conditions should be met to a high degree of precision, on the order of the precision in the
computer used.

That rationale for the standard patch test are the reproducing condition and the fact that
() corresponds to an exact solution to the governing equations for linear elasticity.  It can
easily be seen that () is an exact solution to the elastic problem.  Since the strains are
constant, and the material properties uniform, the stresses are constant.  Therefore, since
there are no body forces, the equilibrium equation () is satisfied exactly.  Since linear elastic
solutions are unique, Eq. () then represents a unique solution to the equations.  If the finite
element procedure is able to reproduce the linear field, it should be able to replicate this
solution exactly because the trial functions include this solution!

When the patch test fails, then the finite element is either not complete, i.e. it can not
reproduce the linear field exactly, or there is an error in the program in developing the
discrete equations or in the solution of the discrete equations.  Whether the reproducing
conditions are satisfied can be checked independently by setting the nodal displacements
according to () at all nodes and then checking the strains at all quadrature points.  This test
in fact suffices as a test of the reproducing conditions, and hence of convergence of the
element.  Going through the solution procedure is primarily a check on the program.

Patch Test in Explicit Programs.  The patch test as applied above is not readily
applicable to explicit programs because these program do not have a means for solving the
linear static equations.  However, the patch test can be modified for use in explicit
programs as described in elytschko and Chiang().  The basic idea is to prescribe the intial
velocities by a linear field identical to Eq.(), so

Here aij are arbitrary constant values, but they should be very small because in most
programs the geometric nonlinearities will be triggered otherwise.  The program is then
used to integrate the equations of motion one time step; no extrenal forces should be applied
and a linear, hypoelastic material model such as Eq. () should be used.  The rate-of-
deformation or the strains and the accelerations at the end of time step are then checked.
The rate-of-deformation should have the correct constant values in all of the elements and
the accelerations should vanish at all of the interior nodes.  The accelerations should vanish
because the stresses should aslo be constant and according to the momentum equation, in
the absence of body forces, the accelerations should vanish.

The test should be met to a high degree of precision if the constants aij are small
enough.  For example, when the constants aij are of order  , the accelerations should not be
larger than order    .

Patch Tests for Stability.  Simo, Taylor and Z have devised a modified patch test with
the aim of checking for stability, primarily in the stability of the displacement field rather
than the instability of the pressures.  It can also test whether the program treats traction
boundary conditions exactly.  The main difference from the standard patch test is that the
displacements are not prescribed at all nodes.  Instead, displacement boundary conditions
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are prescribed only for the minimal number of components needed to prevent rigid body
rotation.  An example of the test is shown in Fig. ??.

This test is not an infallible test for detecting instabilities.  Furthermore, it can only
detect displacement instabilities, not pressure instabilities.  To thoroughly check an element
for displacement instabilities, it is also worthwhile to to an eigenvalue analysis on a single
free element, i.e. a completely unconstrained element.  The number of zero eigenvalues
should be equal to the number of rigid body modes.  For example, in two dimensional
analysis, an element or a patch of elements should posess three zero eigenvalues, which are
arise forom two translations and on erotation, whereas in three dimensions, an element
should posses six zero eigenvalues, three translational and three rotational rigid body
modes.  If there are more zero eigenvalues, this indicates an element which may exhibit
displacement instabilities; this characteristic is also called rank deficiency of the stiffness
matrix, as discussed in Sectiopn 8.?.

8.6.  Isoparametric Element 4-Node Quadrilateral
In this Section, the isoparametric elements are developed in two dimensions, with an

emphasis on the 4-node quadrilateral.  The objective is to present a setting in which we can
explain some of the concepts described in the preceding Sections.  The displacement field
for QUAD4 is given by

ux ξ,η  = NI ξ,η  uxI∑
I=1

4

          uy ξ,η  = NI ξ,η  uyI∑
I=1

4

(8.2.1)

where NI is the isoparametric shape function for node I given by

NI ξ,η  = 1
4

 1 + ξIξ 1 + ηIη (1.2.2)

uxI and uyI are the displacements at node I, and ux(ξ,η) and uy(ξ,η) give the displacement
field within the element domain.  The displacement field is written in terms of a reference
coordinate system (ξ,η).   Within the reference system, the element domain is a bi-unit
square as shown in Fig. 8.6.1.

1

23

4
x

y ξ

η

(+1, -1)

(+1, +1)(-1, +1)

(-1, -1)

1 2

34

Figure 8.6.1.  Element domain in the physical and reference coordinate systems
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The transformation (or mapping) between the physical domain and element or parent
domain is given by

x ξ,η  = NI ξ,η  xI∑
I=1

4

(1.2.3a)

y ξ,η  = NI ξ,η  yI∑
I=1

4

(1.2.3b)

where xI and yI are the nodal coordinates.  Equations (3a) and (3b) can also be written in
the form

xi = NIxiI = Nx i∑
I=1

4

(1.2.3c)

where N  is a row matrix consisting of the 4 shape functions

N  = (N1, N2  , N3, N4)
and

x t
1 = x t = (x1, x2, x3, x4)

x t
2 = y t = (y1, y2, y3, y4)

Because the same shape functions are used for both the mapping and the displacement
interpolation, this element is called an isoparametric element.

The interpolants and mapping, Eq. (2), are bilinear in ξ,η ,   that is, they contain the
following monomials: 1, ξ, η, ξη ;  the last term is called the bilinear term.  Thus ux can
be written as

ux ξ,η  = α0x  + α1xξ + α2xη + α3xξη (1.2.4)
where αix  are constants.  It can easily be verified that the interpolants are linear along each
of the edges of the element as follows.  Along any of the edges, either ξ or η is constant,
so the monomial ξη  is linear along the edges.  Therefore, while the bilinear term is
nonlinear within the element, it is linear on the edges.  Therefore compatibility, or
continuity, of the displacement is assured when elements share two nodes along any edge.
QUAD4 can be mixed with linear displacement triangles without any discontinuities.

1.2.1  Strain Field.  The strain field is obtained by using Eq. (1).  Implicit differentiation is
used to evaluate the derivatives because the shape functions are functions of ξ and η and
the relation (3) can not be inverted explicitly to obtain ξ and η in terms of x and y.  Writing
the chain-rule for a shape function in matrix form gives:
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J

∂NI

∂x

∂NI

∂y

= 

∂NI

∂ξ

∂NI

∂η

(1.2.5a)

where J is the Jacobian matrix given by

J = 

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

(1.2.5b)

Its determinant is denoted by J, i.e.
J = det(J) (1.2.6)

If we invert (5b), and multiply both sides of (5a) by the inverse, we obtain

∂NI

∂x

∂NI

∂y

 = 1
J
 

∂y

∂η
 

-∂y

∂ξ

-∂x

∂η

∂x

∂ξ

 

∂NI

∂ξ

∂NI

∂η

(1.2.7a)

from which we see by the chain rule that

∂ξ

∂x

∂η

∂x

∂η

∂x

∂η

∂y

 = 1
J
 

∂y

∂η
 

-∂y

∂ξ

-∂x

∂η

∂x

∂ξ

(1.2.7b)

The derivatives of the spatial coordinates with respect to ξ and η  can be obtained
from (3) and (2).  First

∂x

∂ξ
 = 1

4
 xIξI 1 + ηIη∑
I=1

4

(1.2.8a)

∂x

∂η
 = 1

4
 xIηI 1 + ξIξ∑
I=1

4

(1.2.8b)
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∂y

∂ξ
 = 1

4
 yIξI (1 + ηIη∑
I=1

4

(1.2.8c)

∂y

∂η
 = 1

4
 yIηI 1 + ξIξ∑
I=1

4

(1.2.8d)

Using the definitions of J and J given in Eqs. (5) and (6), respectively, then gives

J = 
1
8[x24y31+x31y42  + (x21y34+x34y12)ξ + (x14y32+x32y41)η] (1.2.9a)

xIJ ≡ xI - xJ (1.2.9b)
yIJ ≡ yI - yJ (1.2.9c)

Note that the bilinear term is absent in J.
Using the definition of the linear strain gives the following

εx
εy

2εxy

 = 

∂NI

∂x
0

0
∂NI

∂y

∂NI

∂y

∂NI

∂x

∑
I=1

4

 
uxI
uyI

 = 

∂N

∂x
0

0
∂N

∂y

∂N

∂y

∂N

∂x

 
ux
uy

 ≡ Bd (1.2.10)

uxt  = ux1 , ux2 , ux3 , ux4

uyt  = uy1 , uy2 , uy3 , uy4

1.2.2  Linear Reproducing Conditions of Isoparametric Elements.  It will now be shown
that isoparametric elements of any order reproduce the complete linear velocity
(displacement) field.  This property is called linear completeness.  It guarantees that the
element will pass the linear patch test and is essential for the element to be convergent.

A general isoparametric element with nN
e  nodes is considered because it is easy to

demonstrate this property for any isoparametric element.  The number of spatial dimensions
denoted by nD

e .  The isoparametric transformation is

xi = NI x xiI∑
I=1

nN
e

(1.2.11)

where i = 1 to nD
e .  The dependent variable is denoted by u.  In the case of two or three

dimensional solids, u may refer to any displacement component.  For an isoparametric
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element, the displacement field is interpolated by the same shape functions used in the
mapping (12), so

u = NI x uI∑
I=1

nN
e

(1.2.12)

Consider the situation where the displacement field is linear

u = αo + αixi∑
i=1

nD
e

(1.2.13)

so the nodal displacements are given by

uI = αo + αixiI∑
i=1

nD
e

(1.2.14)

where αo and αi are constants.  This can also be written as

uI = αos I + αixiI∑
i=1

nD
e

(1.2.15a)

or

u = αos  + αix i∑
i=1

nD
e

(1.2.15b)

where u and x i are column vectors of the nodal unknowns and coordinates; s  is a column
vector of the same dimension consisting of all 1's.  Substituting (14) into (12) yields

u = αos I + αixiI∑
i=1

nD
e

NI x∑
I=1

nN
e

(1.2.16)

and rearranging the terms

u = αo s INI x  + αi xiINI x∑
I=1

nN
e

∑
i=1

nD
e

  ∑
I=1

nN
e

(1.2.17)

It is recognized from (11) that the coefficients of αi on the right hand side of Eq (17)
correspond to xi so

u = αo s INI x  + αixi∑
i=1

nD
e

∑
I=1

nN
e

(1.2.18)

We now make use of the fact that

s INI = NI x  = 1∑
I=1

nN
e

∑
I=1

nN
e

(1.2.19)
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The first equality is obvious since sI=1.  To obtain the second equality consider an element
whose nodes are coincident: xiI = xio for I = 1 to nN

e .   The mapping (11) must then yield

xio  = NI x  xio∑
I=1

nN
e

(1.2.20a)

= xio  NI x∑
I=1

nN
e

(1.2.20b)

Since the above must hold for arbitrary xio, the second equality in (19) follows.
Making use of (19) then reduces (18) to

u = αo + αixi∑
i=1

nD
e

(1.2.21)

which is precisely the linear field (13) from which the nodal values uI were defined in Eq.
(15).  Thus any isoparametric element contains the linear field and will exhibit constant
strain fields when the nodal displacements emanate from a linear field.  As a consequence,
it satisfies the linear patch test exactly.

Although this attribute of isoparametric elements appears at first somewhat trivial, its
subtlety can be appreciated by noting that the bilinear terms xy will not be represented
exactly in a 4-node isoparametric element.  Consider for example the case when the nodal
displacements are obtained from the bilinear field u(x,y)=xy:

u(x,y) = uINI ξ,η∑
I=1

4

 = xIyINI ξ,η∑
I=1

4

(1.2.22)

It is impossible to extricate xy from the right hand side of Eq. (22) unless x t = a(-1,
+1, +1, -1), y t = b(-1, -1, +1, +1) where a and b are constants, i.e. when the element is
rectangular.  Therefore, for an arbitrary quadrilateral, the displacement field is not bilinear
when the nodal values are determined from a bilinear field, i.e., when uI = xIyI,
u(x,y) ≠ xy.

Similarly, for higher order isoparametrics, such as the 9-node Lagrange element, the
distribution within the element is not quadratic when the nodal values of u are obtained
from a quadratic field unless the element is rectangular with equispaced nodes.  For curved
edges, the deviation of the field from quadratic is substantial, and the accuracy diminishes.
The convergence proofs of Ciarlet and Raviart (1972) show that the order of convergence
for the 9-node element is better than the 4-node quadrilateral only when the element
midpoint nodes are displaced from the midpoint of the side by a small amount.

The linear completeness of subparametric elements can be shown analogously.  In a
subparametric element, the mapping is of lower order than the interpolation of the
dependent variable.  For example, consider the element in Fig. 2 that has a 4-node bilinear
mapping with a 9-node interpolation for u(x,y).  This is written

u x,y  = uINI ξ,η∑
I=1

9

(1.2.23)
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x
y

 = 
xI
yI

 NI ξ,η∑
I=1

4

(1.2.24)
The 9-node Lagrange interpolant for the dependent variable u is distinguished from the 4-
node interpolant used for the element mapping by a superposed bar.  We now define a set
of 9 nodes xI, yI ,   I = 1 to 9, which are obtained by evaluating (x,y) at the 9-nodes used
for interpolating u(x,y) by Eq. (24).  Then the mapping can be expressed as

x
y

 = xI
yI

 NI ξ,η∑
I=1

9

(1.2.25)
Using (23) and (25), the arguments invoked in going from Eqs. (13) to (21) can be
repeated to establish the linear completeness of the subparametric element.

Superparametric elements, in which the mapping is of higher order than the
interpolation of the dependent variable, are not complete.  This can by shown by
considering the element in Fig. 2 with 9-node mapping and 4-node bilinear interpolation for
u(x,y).  In order to use the previous argument, we would have to use the 4 nodes used for
interpolation to do a bilinear mapping, but such a mapping would be unable to reproduce
the domain of the element unless it has straight edges with the nodes at the midpoints of the
nodes.

Nodes used for mapping

Nodes used for
interpolation of u(x,y)

Subparametric Superparametric
Figure 2.  Examples of subparametric and superparametric elements

In summary, it has been shown that isoparametric and subparametric elements are
linearly complete and consistent in that they represent linear fields exactly.  This implies
that when the nodal values are prescribed by a linear field, the interpolant is an identical
linear field and the derivative of the interpolant has the correct constant value throughout the
element.  Therefore, for these elements, the correct constant strain state is obtained for a
linear displacement field, and the patch test will be satisfied.  The element will also
represent rigid body translation and rotation exactly.  The 4-node quadrilateral considered
here is isoparametric, so it possesses these necessary features.  A superparametric element
does not have linear completeness, and will therefore fail the patch test.

1.2.3  Element Rank and Rank Deficiency.  In order to perform reliably, an element must
have the proper rank.  If its rank is too small, the global stiffness may be singular or near
singular; in the latter case, it will exhibit spurious singular modes.  If the rank of an element
is too large, it will strain in rigid body motion and either fail to converge or converge very
slowly.
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The proper rank of an element stiffness is given by

proper rank Ke  = dim Ke  - nRB (1.2.26a)
rank deficiency(Ke) = proper rank(Ke) -  rank(Ke) (1.2.26b)

where nRB is the number of rigid body modes.  Another way of expressing this is that if
the element is of proper rank, then

dim ker Ke  = nRB

where the kernel of Ke  is defined by

x  ∈ ker Ke   if  Kex  = 0 (1.2.27)

To determine the rank of an element stiffness which is evaluated by numerical
quadrature, consider the quadrature formula

  Ke = B tCB dΩ
Ωe

 =  
-1

+1

B tCB Jdξdη
-1

+1

= wα J ξα  B t∑
α=1

nQ

ξα  C ξα  B ξα (1.2.28)

where C is a constitutive matrix, Ωe is the element domain, wα are the quadrature weights,
and ξα  are the nQ quadrature points.  In Gauss quadrature, wα correspond to the products
of the one-dimensional weight factors and ξα are the quadrature points in the reference
coordinates.  The element domain in (28) and throughout this discussion is assumed to
have unit thickness.  The above form can be written as

Ke = B to
C
o

B
o

(1.2.29a)
where

B
o

 = 

B x1

B x2

B xnQ

(1.2.29b)
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C
o

= 









w1J(x1)C(x1) 0 0

0 w2J(x2)C(x2) 0
.
 .  .

0 0 wnQJ(xnQ)C(xnQ)

(1.2.29c)

A special form of the product-rank theorem is now used, which states that when C
o

  is
positive definite

rank Ke = rank B
o

(1.2.30)

Note that C
o

 is positive definite if and only if J and C are positive definite at all quadrature
points.  If a material loses ellipticity, as for example in strain softening or non-associative
plastic materials, Eq. (30) no longer holds.  Similarly, if the element is so distorted that J <
0, the above may not hold.

Assuming an element domain of unit thickness, the nodal forces are obtained directly
from stress field by

fe
int = 

fx
int

fy
int

 = B t

Ωe

s  dΩ =  
-1

+1

 B tsJ dξdη
-1

+1

(1.2.31a)

where the stress is written as

s  = 
σx
σy
σxy

and

fx
int t

 = fx1 , fx2 , fx2 , fx4
int

fy
int t

 = fy1 , fy2 , fy2 , fy4
int

Applying numerical quadrature, this becomes

fe
int = wα J xα  B t∑

α=1

nQ

xα s xα (1.2.31b)

= B to
s
o

(1.2.31c)
where
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 s to
 = w1J x1 s x1 ,   w2J x2 s x2 ,      wnQJ xnQ s xnQ (1.2.31d)

The rank of B
o

  can be estimated by the following

rank B
o

 ≤ min(rows in B
o

, dimDu) (1.2.32)
where D is the symmetric gradient operator given by

D  = 

 
∂

∂x
 0

0
∂

∂y

∂

∂y

∂

∂x

and the dimension of Du (or dimDu) is equal to the number of independent functions in
Du.  In most cases, the above is an equality, but it is possible, even with regular
quadrature schemes and undistorted elements, to lose the equality, i.e. to have linearly
dependent rows in the B  matrix.

The rank-sufficiency of QUAD4 will now be examined for various quadrature
schemes.  The element has 4 nodes with 2 degrees of freedom at each node, so dim (Ke) =
8.   The number of rigid body modes is 3: translation in the x and y directions and rotation
in the (x,y) plane.  By Eq. (26a), the proper rank of Ke = 5.

The most widely used quadrature scheme is 2x2 Gauss quadrature.  The number of
quadrature points nQ=4, the number of rows in each B(xα)=3, so the number of rows in

B
o

=12   This exceeds the proper rank.  However, based on the linear completeness of the
quadrilateral, it will be shown later that (see Section 1.4)

ux x,y  = αox  + α1xx + α2xy + α3xh (1.2.33a)

uy x,y  = αoy  + α1yx + α2yy + α3yh (1.2.33b)

h ≡ ξη
Then
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e
o
 = Du = 

α1x  + α3x
∂h

∂x

α2y  + α3y
∂h

∂y

α2x  + α1y  + α3x
∂h

∂y
 + α3y

∂h

∂x

 (1.2.34)

Examination of the above shows that the strain-rate field contains 5 linearly independent
functions: α1x , α2y , α3x∂h/∂x, α3y∂h/∂y, and α2x + α1y .   Note that the two constants in
the shear strain field must be considered as a single independent field and the function
α3x∂h/∂y + α3y∂h/∂x cannot be considered linearly independent because it is a combination
of the two functions that have already been included in the list.  Thus dim Du = 5 and since

rows in B
o

 = 12, it follows from (32) that

rank(B
o

)=5

It may be concluded that for any quadrature scheme the rank of B
o

  for QUAD4 cannot
exceed 5.

The rank of the element stiffness of QUAD4 for one-point quadrature can be

ascertained similarly.  In one-point quadrature, B
o

 consists of B  evaluated at a single point,
so its rank is 3.  Therefore rank Ke is 3 by Eq. (30), and Eq. (26b) indicates that the
element has a rank deficiency of 2.  This rank deficiency can cause serious difficulties
unless it is corrected.  Such corrective procedures are described later.

1 .2 .4 .   Nodal Forces and B-Matrix for One-Point Quadrature Element. Prior
to describing procedures for correcting the rank deficiency of QUAD4 with one point
quadrature, it is worthwhile to develop the one-point quadrature formulas in detail.  These
formulas will then provide the framework for the development of the rank correction
procedures, which in QUAD4 are often called hourglass control.

The internal nodal forces are given by (31b).  When one-point quadrature is used, the
quadrature point is selected to be the origin of the coordinate system in the reference plane:
ξ = η = 0.  Evaluating the Jacobian at this point yields (see Eq. (9)) gives

J(0 ) = 1
8

 x31  y42  + x24  y31  = A
4

(1.2.35)

where A is the area of the element.  The expression for the internal nodal forces now
becomes

f int = 4B t(0)s (0)J(0) = AB t(0)s (0) (1.2.36)
Evaluating the B  matrix from Eq. (10) at ξ = η = 0  is a simple algebraic process

which gives
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B(0) = 

 bx
t  0

0 by
t

by
t bx

t

(1.2.37)

where

bx
t  ≡ b1

t  = 1
2A

  y24 , y31 , y42 , y13

by
t  ≡ b2

t  = 1
2A

  x42 , x13 , x24 , x31

(1.2.38)

Since one-point quadrature is used, the nodal forces are simply the product of the area and
the integrand evaluated at ξ = η = 0,  which using (37) and (39) gives

f int = A






bx 0 by

0 by bx 





σx

σy
σxy

 = AB t(0)s (0) (1.2.39)

The element stiffness matrix for the underintegrated element can be obtained by using
the stress-strain law

s= Ce (1.2.40)
in conjunction with Eqs. (37), (39) and e=Bd.  This gives

f int = Ked (1.2.41)
where

Ke = AB t(0)CB(0) (1.2.42)
The element stiffness matrix could also be obtained from (28) by using one-point
quadrature and the values of B  and C at the quadrature point.

1.2.5  Spurious Singular Modes (Hourglass)  The presence and shape of the spurious
singular modes of the one-point quadrature QUAD4 element will now be demonstrated.
Any nodal displacement dH that is not a rigid body motion but results in no straining of the
element is a spurious singular mode.  From (43) it can be seen that such nodal
displacements will not generate any nodal forces, i.e. they will not be resisted by the
element, since in the absence of strains, the stresses will also vanish, so f int = 0.

Consider the nodal displacements

dHx = h
0

 dHy = 0
h

(1.2.43)

ht = +1, -1, +1, -1
It can easily be verified that

bx
t  h = 0                       by

t  h = 0 (1.2.44)
Therefore, it follows from Eqs. (37), (43) and (44) that
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B(0)dHx = 0 (1.2.45a)
B(0)dHy = 0 (1.2.45b)

Fig. 3 shows rectangular elements with the spurious singular modes of deformation dHx

and dHy, and also both modes simultaneously.  In the rectangle, it can be seen that the
hourglass modes are associated with the bilinear term in the displacement field.  The
deformed configuration of the mesh in the spurious singular modes is shown in Fig. 4.  A
vertical pair of elements in this x-mode looks like an hourglass, an ancient device for
measuring time by the flow of sand from the top element to the bottom.  For this reason,
this spurious singular mode is often called hourglassing or the hourglass mode.  Because
each element is in an hourglass mode, the entire mesh can deform as shown without any
resisting forces from the element.

d = dHx d = dHy d = h
h

Figure 3.  Hourglass modes of deformation

The problem of hourglassing first appeared in finite difference hydrodynamics
programs in which the derivatives were evaluated by transforming them to contour integrals
by means of the divergence theorem; see for example Wilkins and Blum (1975).  This
procedure tacitly assumed that the derivatives are constant in the domain enclosed by each
contour.  This assumption is equivalent to the constant strain (and stress) assumption
which is associated with one-point quadrature.  The equivalence of these contour-integral
finite difference methods was demonstrated by Belytschko et al. (1975); also see
Belytschko (1983).  Many ad hoc procedures for hourglass control were developed by
finite difference workers.  The procedures focused on controlling the relative rotations of
element sides; no consideration was given to maintaining consistency.

Figure 4.  Mesh in hourglass mode of deformation
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This phenomenon occurs in many other settings, so a variety of names have evolved.
For example, they occur frequently in mixed or hybrid elements, where they are called
zero-energy modes or spurious zero-energy modes.  Hourglass modes are zero-energy
modes, since they don't result in any strain at the points in the element which are sampled.
Therefore they do no work and (dHx) tfint = (dHy) tfint = 0

In structural analysis, spurious singular modes arise when there is insufficient
redundancy, i.e. the number of structural members is insufficient to preclude rigid body
motion of part of the structure.  Such modes often occur in  three dimensional truss
structures.  In structural analysis, they are called kinematic modes, and because of the close
relationship between the structural analysis and finite element communities, this name has
also been applied to spurious singular modes.  Other names which have been applied to this
phenomenon are: keystoning (Key et al. (1978)), chickenwiring, and mesh instability.

For finite element discretizations of partial differential equations, spurious singular
modes appears to be the most accurate term for this phenomenon, so we shall use that
name.  For example, the terms kinematic modes or zero-energy modes are not appropriate
for the Laplace equation.  In elements where the spurious singular mode has a distinctive
appearance, such as the hourglass pattern in QUAD4, we shall also use that name.  The
condition which leads to spurious singular modes is rank deficiency of the element stiffness
matrix.

When rank deficient elements are assembled, the system stiffness will often be
singular or nearly singular.  Therefore, in matrix methods, the presence of spurious
singular modes can be detected by the presence of zero or very small pivots in the total
stiffness.  If the pivots are zero, the stiffness will be singular and not invertible.  If the
pivots are very small, the total stiffness is near-singular, and the displacement solutions
will be oscillatory in space, i.e., they will exhibit the hourglass mode.

Because a system stiffness matrix is never assembled in explicit methods, the
singularity cannot be readily detected.  In iterative solvers, the presence of spurious
singular modes will often lead to divergence of the solution.  With explicit integrators,
singular modes are not readily detectable without plots of the deformed configuration.  This
is also true for matrix dynamic methods, since the mass matrix then renders the system
matrix nonsingular even when the stiffness matrix is singular.

The evolution of an hourglass mode in a transient problem is shown in Fig. 5.  In this
problem, the beam was supported at a single node to facilitate the appearance of the
hourglass mode.  If all nodes at the left-hand end of the beam were fixed to simulate a
clamped support condition, the hourglass mode would not appear.  Although rank-deficient
elements may sometimes appear to work, they should not be used without an appropriate
correction.
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Figure 5.  Four views of a simply supported beam showing the evolution of the hourglass
mode (due to symmetry, only half the beam was modeled)

1.3   Perturbation Hourglass Stabilization
The simplest way to control spurious singular modes without impairing convergence

is to augment the rank of the element stiffness without disturbing the linear completeness
(consistency) of the isoparametric element.  One approach to this task is to augment the
B(0) matrix of the one-point quadrature element by two rows which are linearly
independent of the other three.  These additional two rows consist of a g  vector that will be
derived subsequently.  Adding these two rows corresponds to adding 2 generalized strains.
The matrices for the one-point quadrature QUAD4 are then

B  = 

 bx
T 0

0 by
T

by
T bx

T

gT 0

0 gT

         C =  

C11 C12 C13 0 0

C11 C22 C23 0 0

C13 C23 C33 0 0

0 0 0 CQ 0

0 0 0 0 CQ

(1.3.1a)

sT = σx, σy, σxy , Qx, Qy (1.3.1b)

eT = εx, εy, 2εxy , qx, qy (1.3.1c)
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where C  is the constitutive matrix augmented by two rows and columns in terms of a
constant to be determined (CQ); s  and e are the stress and strain matrices augmented by the
generalized stresses and strains (Qx, Qy) and (qx, qy), respectively.

To maintain linear consistency for the element, these additional generalized strains
should vanish when the nodal displacements (or velocities) emanate from linear fields.
Consistency and stability (rank sufficiency) are essential requirements for a sound
numerical method.

The requirement that qx = qy = 0 for linear fields implies

gTuLin = gT α0s  + α1x  + α2y  = 0         ∀α i (1.3.2)
The above must be satisfied for both ux and uy so we have not specified the component;
uLin is taken from Eq. (1.2.15b).  The above can be interpreted as an orthogonality
condition: g   must be orthogonal to all linear fields.

1.3.1  The Gamma Vector.  We first define a set of four vectors, b*.

b* ≡ bx,  by,  s ,  h (1.3.3)

To obtain g , two properties of b* are used:
1.  the vectors bi are biorthogonal to x j

2.  the vectors bi
* are linearly independent.

The biorthogonality property, given by

bi
tx j  = δij      (i, j) = 1 to 2 (1.3.4)

is an identity which holds for all isoparametric elements:

 
∂N

∂xi

x j =  δij (1.3.5)

The demonstration of this identity is based on the isoparametric mapping, Eq.
(1.2.3c), which when combined with (5) gives

∂N
∂xi

 x j = 
∂xj

∂xi
 = δ ij

(1.3.6)
where the last equality expresses the fact that in two dimensions, for example,
∂x/∂x=∂y/∂y=1, ∂x/∂y=∂y/∂x=0.  Eq. (5) holds for the derivatives of the shape functions
at any point.  In particular, it also holds for the point ξ = η = 0  in QUAD4.  Additional
orthogonality conditions,

bi
ts  = 0      bi

th = 0      hts  = 0      i=1 to 2 (1.3.7)
can easily be verified by arithmetic using the definitions of these vectors.

The linear independence of the 4 bi
* vectors is demonstrated as follows.  Assume bi

*

are linearly dependent.  Then it follows that there exists αi ≠ 0 such that
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α1bx + α2by + α3s  + α4h = 0 (1.3.8)
Premultiplying the above by  s t, and using (7) yields α3 = 0.  Similarly premultiplying by
ht  yields α4 = 0.  Then premultiplying  x t  yields

α1 + α3x ts  + α4x th = 0 (1.3.9)
and since it has just been determined that α3 = α4 = 0, it follows that α1 = 0.  Similarly,
premultiplying by y t shows that α2 = 0.  Thus αi = 0, for i = 1 to 4, and it follows that the

vectors bi
* are linearly independent.

The preceding developments are now used as tools for the construction of g ,  via the

consistency requirement (2).  Since the vectors bi
* are linearly independent, they span R4.

It follows that  any vector in R4, including g  can be expressed as a linear combination of

bi
*:

g = β1bx + β2by + β3h + β4s (1.3.10)
where βi are constants to be determined by the linear consistency requirement (2).
Substituting (10) into (2) and collecting the coefficients of αi yields

αo β1bx
t s  + β2by

t s  + β3hts  + β4s ts

+ α1 β1bx
t x  + β2by

t x  + β3htx  + β4s tx (1.3.11)

+ α2 β1bx
t y  + β2by

t y  + β3hty  + β4s ty  = 0
Since the above must vanish for all αi, each coefficient of αi must vanish.  Taking the
coefficient of αo and simplifying by means of Eqs. (4) and (7) gives

β4s ts  = 4β4 = 0 (1.3.12)
Using (12) and (6) to simplify the coefficient of α1 in (11) gives

β1 + β3htx  = 0 (1.3.13)
and a similar procedure for the coefficient of α2 gives

β2 + β3hty  = 0 (1.3.14)
Using Eqs. (13) and (14) in (10) to express β1 and β2 in terms of β3 and using (12) yields

g = β3 h - htx bx - hty by (1.3.15)
The constant β3 remains undetermined, since for any value of β3 the vector g  is orthogonal
to all linear fields.  It will be convenient later to have g th=1, so we set  β3 = 1/4.  The
value of β3 = 1 was used in Flanagan and Belytschko (1981) because the reference element
was a unit square; this changes some of the subsequent constants but not the substance of
the development.  In this description we choose β3 = 1/4, which gives

g = 1
4

 h - htx bx - hty by (1.3.16a)

The above expression can be written in indicial notation as
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g = 1
4

 h - htx i bi (1.3.16b)

or
γ I = 1

4
 hI - hJxiJ biI (1.3.16c)

Using (4),  (7), and (16a) the following are easily verified by:

g tx  = g ty  = g ts  = 0       g th = 1 (1.3.17)

1.3.2  Stabilization Forces and Stiffness Matrix.  Replacing B(0) and s (0) in Eq. (1.2.39)
by the augmented matrices B  and s  gives the nodal forces

f int = A bx 0  by
0 by  bx

 
σx
σy
σxy

 + A
Qxg
Qyg (1.3.18)

= ABT(0)s (0) + fstab (1.3.19)
The first term in the internal force is obtained by one-point quadrature.  The generalized
stresses and are strains are obtained by the stress-strain law, s  = Ce, and the strain-
displacement equation e = Bd:

Qx =  CQqx Qy = CQqy
(1.3.20)

qx = g tux qy = g tuy
The stiffness matrix is obtained by substituting replacing B(0) and C in (1.2.42) by

the augmented matrices B  and C which gives

Ke = K1pt
e  + Kstab

e (1.3.21a)
where

K1pt
e  = AB t(0)CB(0) (1.3.21b)

Kstab
e  = ACQ







gg t 0

0 gg t (1.3.21c)

K1pt
e  is the stiffness matrix obtained from one-point quadrature.  Kstab

e  is obtained from the
additional generalized strains which were introduced to stabilize the element and is often
called a stabilization matrix.  The stabilization matrix is of rank 2.  Combined with the one-
point quadrature stiffness, it yields a matrix of rank 5, which is the correct rank for the
QUAD4.

This form of the linearly consistent generalized strains occurs in many stabilization
procedures for underintegrated elements, and will be designated as the g   vector.  Note that
the vector is not completely determined by linear consistency: an unspecified constant β3
remains.  This vector is orthogonal to the nodal displacements which emanate from a linear
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field for arbitrarily shaped quadrilaterals.  When the element is rectangular, htx  = hty = 0
and g  = β3h.

1.3.3  Scaling the Stabilization Forces.  Since the constants CQ in Eq. (1) are not true
material constants, it is important to provide formulas for these constants which provide
approximately the same degree of stabilization regardless of the geometry and material
properties of the element.  The basic objective is to obtain a scaling which perturbs the
element sufficiently to insure the correct rank but not to overwhelm the one-point
quadrature stiffness.

One procedure for selecting CQ is to scale the maximum eigenvalue of the stabilization
stiffness to the maximum eigenvalue of the underintegrated stiffness.  In fact, it would be
desirable to shift eigenvalues associated with hourglass modes out of the spectrum that is of
interest in the response.  The hourglass modes in a fully integrated element are smaller than
the 1-point quadrature element eigenvalues.  To avoid locking, the stabilization should be a
small fraction of the one point quadrature eigenvalue.

According to Flanagan and Belytschko (1981), the maximum eigenvalue for the 1-
point quadrature version of QUAD4 for an isotropic material is bounded by

 
1
2Ac2b ≤ λmax ≤ Ac2b (1.3.22a)

b = bi
Tbi∑

i=1

2

c2 = λ + 2µ (1.3.22b)

The eigenvalues of Ke are given by the eigenvalue problem

Kx=λx (1.3.23)
The eigenvalue associated with the stabilization can be estimated by letting x  = dHx in the
Rayleigh quotient, which with (20) and the orthogonality properties (4) and (7) gives

λ = x
tKx
x tx

 = 
ACQhtggth

hth
(1.3.24)

where the second equality follows because K1pt
e h = 0 .  Using Eq. (17), it can be seen that

λ = ACQ 4 (1.3.25)

Using Eqs. (22) and (25) it follows that the eigenvalue associated with the stabilization is
scaled to the lower bound on the maximum eigenvalue of the element if

CQ = 2αsc2b = 2αs(λ+2µ) bi
tbi∑

i=1

2

(1.3.26)

where αs is a scaling parameter.
In Flanagan and Belytschko (1981), the hourglass control parameter was scaled by

the dynamic eigenvalue, i.e., the frequency, of the element.  However, since the hourglass
control is strictly an element-stiffness related stress, this seems inconsistent and a pure
stiffness scaling is more appropriate.
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1.4  Mixed Method Hourglass Stabilization
The mixed variational principles are another vehicle for developing four-node

quadrilaterals which do not lock.  Furthermore, they can be used to develop rank-
compensation procedures for underintegrated elements (stabilization matrices) which do
not involve any arbitrary perturbation parameters and are based on the material properties
and geometry of the element.

1.4.1  Displacement Field of QUAD4 in Terms of Biorthogonal Basis.  Before developing
elements based on a mixed method, the displacement field in the element is expressed in a
form in which the parts which cause locking can easily be identified and corrected.
Furthermore, when this expression for the displacement field is used, the stiffness matrix
can be obtained in closed form without any numerical integration.  This is useful for
understanding its properties and for implementation in vector method programs.

The procedure described here is based on Belytschko and Bachrach (1986).  As a
preliminary to developing this expression (which will be called the Belytschko-Bachrach
form), the basis vectors b**  and x* are defined so they are biorthogonal in R4:

xβ
* bα

**
  
t  = δαβ        α,β  = 1 to 4 (1.4.1)

b** = bx, by, g, s *  (1.4.2a)

x* = x , y , h, s (1.4.2b)
where

s * = 1
4

 s  - s tx bx - s ty by (1.4.3)

The vector s* is obtained by orthogonalizing s  to x  and y .  The arbitrary constant which
emerges is chosen to be 1/4 so that s ts* = 1.  Most of the identities involved in (1) have
already been proven; see Eqs. (1.3.4-7); the remaining ones are easily verified using (3)
and (1.3.7).

To develop the Belytschko-Bachrach form, we start by expressing the displacement
field as

u x,y  = αo + α1x + α2y + α3ξη (1.4.4)
Only a single component is considered since the procedure for both components is
identical.  Evaluating the above at the 4 nodes gives

uI = u xI,yI  = αo + α1xI + α2yI + α3ξIηI (1.4.5)

It is easily shown that ξIηI = hI,   so writing the above in matrix form gives

u = αos  + α1x  + α2y  + α3h (1.4.6)
which is a linear combination of the linearly independent x* vectors.  Linear independence
of x* follows from the biorthogonality of x* and b** .
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We now exploit this biorthogonality to evaluate αi.  Premultiplying (6) by s *t and
invoking the orthogonality conditions, s *tx  = s *ty  = s *th = 0 yields

αo = s *tu (1.4.7)

Similarly premultiplying respectively by bt
x, bt

y and g t and using the biorthogonality
(4) yields

α1 = bt
xu (1.4.8a)

α2 = bt
yu (1.4.8b)

α3 = g tu (1.4.8c)

Substituting the above into (4) yields

u x,y  = s *t + xbx
t  + yby

t  + ξηgt u (1.4.9a)

The two components of the displacement field can be expressed in the same form

ux x,y  = s t + xbx
t  + yby

t  + hgt ux (1.4.9b)

uy x,y  = s t + xbx
t  + yby

t  + hgt uy (1.4.9c)

h=ξη (1.4.9d)
This is the same interpolation as the standard isoparametric form (1.2.1), however, this
expression will more clearly reveal what causes locking and how to eliminate it.

1.4.2  Volumetric Locking.  The four node quadrilateral locks in plane strain for
incompressible materials when it is fully integrated.  The cause of volumetric locking can
be explained by considering a mesh of elements in plane strain with fixed boundaries on
two sides as shown in Fig. 6.  Consider the element in the lower left-hand corner, element
1.  The nodal displacements of the element for an incompressible material must preserve
the total volume of the element (or to be specific, the area  in plane strain, since constant
volume implies that the area be constant).  If we consider small displacements, the only
displacements of node 3 which maintain constant area are

ux3 =  −αa
uy3 =  + αb (1.4.10)

where α is an arbitrary parameter;  all other nodal displacements of element 1 are zero due
to the boundary conditions.  Differentiating (9b) and (9c), we obtain the dilatation
throughout the element.

∆ = ux,x + uy,y = b t
xux + bt

yuy + 
∂h

∂x
g tux + 

∂h

∂y
g tuy (1.4.11a)

Substituting Eq. (10) into (11a), the constant part of the dilatation drops out leaving
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∆ = 
1
4α(b

∂h

∂y
 − a

∂h

∂x
) (1.4.11b)

which only vanishes everywhere except along a line that passes through the origin.
For rectangular elements as in Fig. 7, Eq. (11b) simplifies to

∆ = 
α
ab(bx−ay) (1.4.12)

where (x, y) is a local coordinate system.  The volumetric strain is non zero everywhere
except along the line y = (b/a)x;  therefore, for an incompressible material the volumetric
energy will be infinite if the strain energy is evaluated exactly as is the case in a fully
integrated element.  Thus node 3 will not be able to move; nodes 2 and 3 then provide a
rigid boundary for the left hand side of element 2, and it can similarly be shown that by
using these arguments for element 2 that node 6 cannot move.  This argument can then be
repeated for all nodes of the mesh to show that deformation of the mesh  is impossible.
This argument also applies to meshes of skewed elements as in Fig. 6.

a

3

2
1

4
b 1

Fixed boundary: 

ux = uy = 0

Figure 6.  Mesh of quadrilateral elements with fixed boundaries on two sides
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6

7 8 9
3 4

1 2

a

b

y

x

Figure 7.  Partial mesh of rectangular elements fixed on two sides

Another way to examine this behavior is consider an arbitrary element deformation as
expressed by Eq. (4).

ux = α0x  + α1xx + α2xy + α3xh
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(1.4.13)
uy = α0y  + α1yx + α2yy + α3yh

The dilatation can be evaluated by differentiating.

∆ = ux,x + uy,y = α1x  + α2y  + α3x
∂h

∂x
 + α3y

∂h

∂y
(1.4.14)

We can evaluate the change in area of the element by integrating the dilatation over the
element domain.

∫Ω e
∆dA = 

⌡

⌠

Ω e

(α1x  +  α2y  +  α3x
∂h

∂x
 +  α3y

∂h

∂y
)dA (1.4.15)

We can show algebraically using (1.2.7b) and (1.2.8a-d) an important property of h(ξ,η):

⌡

⌠

Ωe

∂h

∂x
dΩ = 

⌡

⌠

Ωe

∂h

∂y
dΩ = 0 (1.4.16)

Therefore (15) is trivial to integrate and the change in element area is

∫Ω e
∆dA = (α1x  + α2y)A (1.4.17)

which is zero only for α2y  = −α1x .  If we now consider volume preserving element
deformation, i.e. α2y  = −α1x , the dilatation is

∆ = α3x
∂h

∂x
 + α3y

∂h

∂y
(1.4.18)

This dilatation will be non zero everywhere within the element except along the curve

α3x∂h ∂x = -α3y∂h ∂y, even though the overall element deformation is volume
preserving.  Thus it becomes apparent that locking arises from the inability of the element
to represent the isochoric field associated with the hourglass mode, as reflected by α3x and
α3y in the above equations.  To eliminate locking, the strain field must be designed, or
projected, so that in the hourglass mode the dilatation in the projected strain field vanishes
throughout the element.  In more general terms this may be stated as follows:  to avoid
locking, the strain field must be isochoric throughout the element for any
displacement field which preserves the total volume of the element.  In particular, in
the quadrilateral, the dilatation must vanish in the entire element for the hourglass mode,
because this displacement mode is equivoluminal.

1.4.3  Variational principle  The weak form corresponding to the Hu-Washizu variational
principle is given for a single element domain by

0 = δπ(u,e,s ) = ∫Ω e
δetCedΩ +δ∫Ω e

s t(e- Du)dΩ - δWext
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= ∫Ω e
[δet(Ce-s )  -  δs t(e- Du)  +  δ( Du)ts ]dΩ - δdtfext (1.4.19)

where δ  denotes a variation, e is the interpolated strain, and s  the interpolated stress.  Du
is the symmetric displacement gradient which would be equivalent to the strain in a
displacement method.  In mixed elements that are derived from the Hu-Washizu variational
principle, the displacement gradient is projected on a smaller space to avoid locking.  The
term δWext

 designates the external work, fext the external nodal forces.  The domain
chosen for (19) is a single element, but an arbitrary domain can also be assumed if
connectivity is introduced into the subsequent development.

The isoparametric shape functions are used to interpolate the displacement field,
which when integrated, gives the symmetric displacement gradient as

Du = Bd (1.4.20)
We introduce additional interpolants for the strains and stresses.

e = Ee (1.4.21)
s  = Ss (1.4.22)

where the interpolation matrices, E and S , and the augmented strains and stresses, e and s
will be defined subsequently.  Substituting (20), (21), and (22) into (19), we obtain

0 = ∫Ω e
[δetEt(CEe-Ss )  -  δs tS t(Ee-Bd)  +  δdtB tSs ]dΩ - δdtfext (1.4.23)

By invoking the stationary condition on (19), we obtain

Ce = E
t
s (1.4.24a)

Ee  = Bd (1.4.24b)

B
t
s  = fext (1.4.24c)

where

C ≡ E tCE  dΩ
Ωe

 

(1.4.25a)

E  ≡ S t

Ωe

 

E  dΩ (1.4.25b)

B  ≡ S t

Ωe

 

B  dΩ (1.4.25c)

We obtain expressions for e, s , and the stiffness matrix from (24a-c).

e = E
-1

Bd (1.4.26a)

s  = E
-1t

Ce (1.4.26b)
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fext  = B
t
s = B

t
E

-1t
CE

-1
Bd ≡ Ked (1.4.26c)

1.4.4  Strain Interpolations to Avoid Locking.  The strain-field associated with the
displacement field (9) can be obtained by straightforward differentiation which gives:

Du = 

∂ux

∂x

∂uy

∂y

∂ux

∂y
 + 

∂uy

∂x

 = 

bx
t  + 

∂h

∂x
gt 0

0 by
t  + 

∂h

∂y
gt

by
t  + 

∂h

∂y
gt bx

t  + 
∂h

∂x
gt

 
ux
uy

  = Bd (1.4.27a)

= 

εx
o + qx

∂h

∂x

εy
o + qy

∂h

∂y

2εxy
o  + qx

∂h

∂y
 + qy

∂h

∂x

(1.4.27b)

where the naughts indicate the constant part of the strain field.
In Section 1.4.2, it was demonstrated that QUAD4 elements of incompressible

material can lock when the dilatational energy at any point other than the origin is included
in the stiffness matrix.  It was also shown that this is caused by the dilatational field
associated with the hourglass modes, dHx and dHy, which in a fully integrated element
always leads to non-vanishing dilatation.  From Eq. (27b), it  can be seen that the
hourglass modes generate the nonconstant part of the volumetric field.

In constructing a strain interpolant which will not lock volumetrically, we then have
two alternatives:

1. the nonconstant terms of the first two rows of Eq. (27b) can be dropped
2. the first two rows can be modified so that no volumetric strains occur in the

hourglass modes.

The first alternative leads to the strain field

e = 

εx
o

εy
o

2εxy
o  + qx∂h ∂y + qy∂h ∂x

(1.4.28a)
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This can be written in the form of Eq. (17) by letting

E  = 

1 0 0 0 0

0 1 0 0 0

0 0 1  ∂h ∂y ∂h ∂x

(1.4.28b)

e t = εx
o, εy

o, 2εxy
o , qx, qy (1.4.28c)

The second alternative is to define the strain field by

e = 

εx
o + qx∂h ∂x - qy∂h ∂y

εy
o + qy∂h ∂y - qx∂h ∂x

2εxy
o  + qx∂h ∂y + qy∂h ∂x

 (1.4.29)

In Eq. (29), the dilatation εx + εy still vanishes in the hourglass mode, since regardless of
the value of qx and qy, Eq. (29) yields

εx + εy = εx
o + εy

o (1.4.30)

The question then arises as to which of the two alternatives, (28) or (29), is
preferable.  The field in (29) is frame invariant whereas (28) is not.  However, the
computations associated with (28) are simpler.  However, neither of these are particularly
attractive for most problems from the viewpoints of accuracy and efficiency.

For elements which involve beam bending, the performance of the element can be
improved strikingly by omitting the nonconstant part of the shear field.  This shear strain
field cannot be combined with the extensional strains in (28) because the strain field would
then only contain three independent functions, and the element would be rank deficient.
Therefore this shear strain field is combined with the extensional strains in (29), which
gives

e = 

εx
o + qx∂h ∂x - qy∂h ∂y

εy
o + qy∂h ∂y - qx∂h ∂x

εxy
o

(1.4.31a)

For this element

E  = 

1 0 0 ∂h ∂x -∂h ∂y

0 1 0 -∂h ∂x ∂h ∂y

0 0 1 0 0

(1.4.31b)
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with e given in (28c).  The strain field (31) leads to the "Optimal Incompressible" or OI
element in Belytschko and Bachrach.  This element performs well in beam bending
problems when one set of element sides are parallel to the axis of the beam and the
elements are not too distorted.

The performance of QUAD4 in bending can be enhanced even further for isotropic,
elastic problems by using a strain field which depends on Poisson's ratio as follows:

e = 

εx
o + qx

∂h

∂x
 - νqy

∂h

∂y

εy
o + qy

∂h

∂y
 - νqx

∂h

∂x

2εxy
o

 (1.4.32)

where ν ≡ 


 ν for plane stress
ν/(1-ν) for plane strain

This is the field called "Quintessential Bending and Incompressible" or QBI in Belytschko
and Bachrach (1986), which has great accuracy in bending with linear elastic material.  For
a rectangle, as shown by  Fröier et al. (1974), this element corresponds to the incompatible
quadrilateral of Wilson et al. (1973).

1.4.5  Stiffness Matrix for OI Element.  In order to gain more insight into these mixed
elements and to see how they are used to construct stabilization (rank-compensating)
matrices which do not involve arbitrary parameters, the stiffness matrix for the OI element,
which is based on the strain field (31b) will be developed.

The stress field is chosen to be

s  = 

1 0 0 ∂h ∂x 0

0 1 0 0 ∂h ∂y

0 0 1 0 0

 s  ≡ S  s (1.4.33.a)

s t = σx
o, σy

o, σxy
o , Qx Qy (1.4.33b)

Using (16), and integrating (25b) and (25c), we obtain E  and B  as follows:

E  = 
AI3x3 03x2

02x3
Hxx -Hxy
-Hxy Hyy

(1.4.34)
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where A is the area of the element, and

Hij = ∂h ∂xi ∂h ∂xj dΩ
Ωe

 

(1.4.35)

The B   matrix is given by

B  = 

Abx
t 0

0 Aby
t

Aby
t Abx

t

Hxxgt 0

0 Hyygt

(1.4.36)

The inverse of E   is given by

E
-1

 = 

1
A

I3x3        03x2     

02x3
1
H

Hyy Hxy
Hxy Hxx

(1.4.37)

where
H = Hxx Hyy  - Hxy

2   (1.4.38)
Using (26a), (36) and (37), we can evaluate e to be

εx 
o = bx

t ux

εy 
o = by

t uy

2εy 
o = bx

t uy +by
t ux (1.4.39)

qx = 1
H

 HxxHyygtux + HxyHyygtuy 

qy = 1
H

 HxyHxxgtux + HxxHyygtuy 

From (39) we can see that in the mixed element, the constant parts of the strain field

corresponds exactly to the constant part which emanates from the displacement field Du
given in (27).  The nonconstant part depends strictly on the hourglass mode (any
component of ux or uy  which is not orthogonal to g).  The effect of the projection is to
modify this part of the strain field so that the volumetric strains vanish.
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To complete the evaluation of the element stiffness, we obtain C by integrating
(25a).

C = 
AC3x3 03x2

02x3
4µHxx -4µHxy
-4µHxy 4µHyy

(1.4.40a)

 For a linear isotropic material, C is given by

C = 





λ+2µ λ 0

λ λ+2µ 0
0 0 µ

(1.4.40b)

For plane strain, λ=λ=2µν/(1-2ν);  for plane stress λ=2µν/(1-ν).  Substituting (28c),
(37), and (40a) into (26b), we obtain

Qx
Qy

 = 4µ
qx
qy

(1.4.41)

It can be seen already that because of the way the assumed strain field was designed, the
nonconstant part depends only on the shear modulus µ  and is independent of the bulk
modulus.

Evaluating the stiffness by (26c),

Ke = B t 0  CB 0  + Ke
stab (1.4.42a)

Ke
stab = 

 c1ggt c2ggt

c2ggt c3ggt
(1.4.42b)

B(0) is given by (1.2.39).  Constants for OI stabilization as well as those for QBI are
given in Table 1.  QBI stabilization is derived in the same way as OI with E given by (32).

Table 1.  Constants for the mixed method stabilization matrix

Stabilization c1 c2 c3
OI 4µHxxH* 4µHxyH* 4µHyyH*

QBI 2µ(1+ν)HxxH** 2µν(1+ν)HxyH** 2µ(1+ν)HyyH**

Note. ν ≡ ν for plane stress and ν ≡ ν/(1-ν) for plane strain;

H* ≡ 
HxxHyy

HxxHyy  - Hxy
2

H**  ≡ 
HxxHyy

HxxHyy  - νHxy
2
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Explicit approximate expressions for Hij  can be obtained by integrating (28) in
closed form assuming the Jacobian to be constant within the element domain.

Hxx  = 
L 1

t
y

2
 + L 2

t
y

2

3A

Hyy  = 
L 1

t
x

2
 + L 2

t
x

2

3A (1.4.43)

Hxy  = 
- L 1

t
x L 1

t
y  - L 2

t
x L 2

t
y

3A
where

L 1
t  = -1, +1, +1, -1

(1.4.44)

L 2
t  = -1, -1, +1, +1.

The quantities used to evaluate Hij   can also be used to evaluate the element area by

A = 1
4

(L 1
t
x)(L 2

t
y) - (L 1

t
y)(L 2

t
x) (1.4.45)

The first part of the stiffness corresponds to the one-point quadrature stiffness.  The
second part is the stabilization or rank compensating stiffness, which is of rank 2 and thus
increases the rank of the total stiffness from 3 (rank of one-point quadrature stiffness) to 5.
This is the correct rank of QUAD4 according to Eq. (1.2.26a).

The form given in (35) can be considered a canonical form for the stiffness matrix of
QUAD4 if the constants ci are arbitrary.  For any ci, this element stiffness will satisfy the
patch test.  The constants ci can be varied to improve the performance of the element for
specific problem classes, but as shown by numerical studies in Belytschko and Bachrach
(1986), the rate of convergence will always be the same, provided the element does not

lock.  When the stabilization matrix is independent of the bulk modulus λ + 2
3µ , the

element will not lock volumetrically.
This development also provides guidance about the design of stabilization procedures

in nonlinear problems which are based on material properties.  If the current linearized

value of µ  can be estimated, then (34) provides a stress-strain relation between Qi and qi.

1.4.6  Frame Invariance.  The elimination of the nonconstant part of the shear strain as is
done with the OI and QBI elements improves their performance in bending problems.  The
cantilever test problems of the next section demonstrates the excellent coarse mesh bending
accuracy of QBI; however, elimination of the nonconstant shear strain also causes the
element to lose frame invariance.  For most problems, the effect is negligible, but for
coarse mesh bending, the effect can be significant.

Elements based on the OI or QBI assumed strain field can be made frame invariant by
evaluating the stabilization matrix using an orthogonal, local coordinate system that is
aligned with the element.  The local coordinate system, called the (x, y) system, is related
to the global coordinate system by a rotation matrix R.
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The nodal coordinates, x  and y , evaluated in the local (x, y) coordinate system, are
renamed x  and y .   They are obtained by







x

y
 = R







x

y
(1.4.46)

where R consists of the standard two dimensional rotation matrix arranged in an 8x8 matrix
to transform each pair of nodal coordinates, xI and yI.

R = 
cosθI4x4 sinθI4x4

-sinθI4x4 cosθI4x4

(1.4.47)

where I4x4 is a rank 4 identity matrix.
The angle  between the global and local coordinate system can be defined by

tanθ = L 1
t
y L 1

t
x (1.4.48)

This definition aligns the x axis with the referential ξ axis of the element as shown in Fig.
8.    This definition may not be appropriate for anisotropic material.  This point is discussed
further in the explicit formulation that follows.

x

y

x
y

1

2

3

4

ξη

θ

Figure 8.  Local (x, y) coordinate system aligned with ξ axis of an element

We evaluate bx, by, and g  by substituting x  and y  for x  and y in (1.2.40) and
(1.3.15).

bx
t
 = 1

2A
  y24 , y31 , y42 , y13 (1.4.49a)

by
t
 = 1

2A
  x42 , x13 , x24 , x31 (1.4.49b)

yIJ = yI-yJ xIJ = xI-xJ (1.4.49c)

g = 1
4

h+ htx bx+ hty by (1.4.50)
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Hats are added to terms to indicate that local coordinates are used in their evaluation.  Hxx ,

Hyy , and Hxy , are evaluated by Eq. (44) with x  and y  substituted for x  and y .  Likewise,

the constants in Table 1 are evaluated in terms of Hxx , Hyy , and Hxy  and are renamed c1,
c2, and c3.  The stabilization matrix is analogous to (42b) and is given by

Ke
stab

 = 
 c1ggt c2ggt

c2ggt
c3ggt

(1.4.51)

In order to add the element stabilization matrix to the global stiffness matrix, it must be
transformed back to the global coordinate system by

Kstab
e  = RtKstab

e R (1.4.52)

It is simple enough to evaluate Kstab
e  in closed form as

Ke
stab = 

 c1
*ggt c2

*ggt

c2
*ggt

c3
*ggt

(1.4.53)

where

c1
* = c1cos2θ + c3sin2θ - 2c2sinθcosθ

c2
* = c2 cos2θ - sin2θ  + c1 - c3 sinθcosθ (1.4.54)

c3
* = c3cos2θ + c1sin2θ + 2c2sinθcosθ

1.4.7  Hourglass Control Procedure.  We seek to evaluate internal forces directly by the
first equality in Eq. (26c) which in corotational coordinates is

f
int

 = B
t
s (1.4.55)

For the OI and QBI strain and stress fields, Eq. (55) can be shown to take the form of a
one-point element plus stabilization forces:

f
int

 = AB
t
0 s 0  + f

stab
(1.4.56)

A procedure for large deformation, nonlinear problems based on the previous analysis of
the mixed element is described.  The mixed field OI given in Section 1.4.5 will be used for
this purpose.  Implementations based on other assumed strain fields can be developed
similarly.

The development hinges on the fact that the linear theory developed in Section 1.4.5
is identical to the nonlinear theory if all variables are interpreted as rates.  Thus
components of the generalized hourglass strain rates can be obtained by Eq. (26a) written
in the form
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qx = 1

H
 HxxHyy  gt

vx + HxyHyygt
vy 

(1.4.57)

qy = 1

H
 HxyHxx  gt

vx + HxxHyygt
vy 

where the superposed carets indicate that the quantities are evaluated using a corotational
coordinate system.  This formulation results in a frame invariant element.  The corotational
coordinate system is equivalent to the local coordinate system presented in the previous
section, however it is embedded in the element and rotates with the element as the element
deforms.  The corotational coordinate system can be embedded by various techniques, and
for anisotropic materials, it is advantageous to embed the coordinate system so that it
coincides with axes of orthotropy or other directional features of the material.

The corotational coordinate system can also be used to evaluate the rate-of-
deformation and update the stress at the quadrature point.  An advantage of the corotational
system is that a frame invariant stress rate is not needed for large deformation problems.

The stress-strain law for the generalized hourglass strain rates and stress rates is
given by

Qi = 4µqi (1.4.58)

This relation involves the shear modulus µ  and assumes an isotropic material response.
The shear modulus, µ  is obtained by taking the ratio of the effective deviatoric stress rates
and strain rates.

2µ = 
s ijs ij

eijeij

1
2

(1.4.59a)

s ij = σij - 1
3

 pδij (1.4.59b)

eij = εij - 1
3

 εkkδij (1.4.59c)

In two-dimensional plane stress problems

s ijs ij = σx
2
 - σxσy + σx

2
 + 3σxy

2
 (1.4.60a)

eijeij = εx
2
 - εxεy + εx

2
 + 3εxy

2
 (1.4.60b)

The stabilization stresses are then updated by
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Qi
n+1

 = Qi
n
 + Qidt

tn

tn+1

(1.4.61a)

which for the central difference method gives

Qi
n+1

 = Qi
n
 + ∆t  Qi

n+1/2
(1.4.61b)

The stabilization internal forces, evaluated by (26b), are then given by

fstab
x  = (HxxQx-HxyQy)g (1.4.62a)

fstab
y  = (HyyQy-HxyQx)g (1.4.62b)

Not that the stress and strain which is used to evaluate the shear modulus is marked with
hats to indicate that these are corotational quantities.  This is not necessary since the shear
modulus is an invariant quantity for isotropic material.

The assumptions made in this development is that the material response is uniform
over the element and the deviatoric response is isotropic.  The second assumption can be
avoided by using a C  matrix based on a fully anisotropic C.   However, this entails
availability of C in the computational process, and in procedures such as radial return for
elastoplasticity, C is not available.  The first assumption is more troublesome; as the
elastic-plastic front passes across an element, one-point quadrature is not as effective in
resolving the behavior along the boundary.  This effect has been noted in Liu et al. (1988).
Usually, however, the substantially reduced cost of one-point quadrature elements allows
more elements to compensate for this effect.  Adaptive schemes with automatic mesh
refinement in zones of rapidly varying material behavior are also effective.  To avoid these
difficulties, assumed strain methods with 2 or more quadrature points as described in
Section 1.5.6 can be used.

1.5  Assumed Strain Hourglass Stabilization
In this section, the stabilization procedure for the quadrilateral will be developed by

means of the assumed strain methodology.  The arguments used in constructing the
assumed strain field for this procedure are identical to those used with the Hu-Washizu
principle.  However, the implementation is much simpler because many of the intermediate
matrices which are required in the Hu-Washizu approach can be bypassed.  Nevertheless,
the results obtained by the assumed strain procedure differ very little from the results
obtained by the corresponding Hu-Washizu elements.

The assumed strain approach can also be used in conjunction with quadrature
schemes which use more than one point.  This avoids the use of stabilization schemes, but
does require substantially more effort if the constitutive equations are complex.

In addition to describing the assumed strain method, the notion of projection of
strains is examined further in this section.  It is shown that the assumed strain fields which
eliminate volumetric locking and excessive stiffness in bending problems correspond to
projections of the higher order terms in the strain field.
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1.5.1  Variational principle  Assumed strain elements herein are based on a simplified form
of the Hu-Washizu variational principle as described by Simo and Hughes (1986) in which
the interpolated stress is assumed to be orthogonal to the difference between the symmetric
part of the velocity gradient and the interpolated rate-of-deformation.  Therefore, the
second term of (1.4.19) drops out leaving

0 = δπ(e) = ∫Ω e
δetCedΩ - δdtfext (1.5.1)

In this form, the interpolated stress does not need to be defined since it no longer appears
in the variational principle.

The discrete equations then require only the interpolation of the strain, which we
relate to the nodal displacements by B  which will be defined later.

e(x) ≡ B(x)d (1.5.2)
Substituting (2) into (1) gives

0 = δdt∫Ω e
B tCBdΩd - δdtfext (1.5.3)

so the arbitrariness of δd leads to
f int = fext (1.5.4)

where
f int = Ked (1.5.5)

and

 Ke =  ∫Ω e
B tCBdΩ (1.5.6)

The stiffness matrix of the fully integrated isoparametric element is found by (1.2.28).
The application of the assumed strain method to the development of a stabilization
procedure for an underintegrated element then involves the construction of an appropriate
form for the B  matrix which avoids locking.

1.5.2  Elimination of Volumetric Locking.  To eliminate volumetric locking, the strain field
must be projected so that the volumetric strain energy always vanishes in the hourglass
mode.  For this purpose, we consider a general form of the assumed strain

e = 







εo

x +  q xe1h,x +  q ye2h,y

εo
y +  q xe2h,x +  q ye1h,y

2εo
xy +  q xe3h,y +  q ye3h,x

 ≡ 







εo

x+εx

εo
y+εy

2εo
xy+2εxy

(1.5.7a)

qx = g tux qy = g tuy (1.5.7b)

where e1, e2, and e3 are arbitrary constants, and qx and qy are the magnitudes of the
hourglass modes, which vanish except when the element is in the hourglass mode.  In (7a)
and subsequent equations, commas denote derivatives with respect to the variables that
follow.  Substituting (1.4.39) and (7b) into (7a), the assumed strain field is put into B
form as follows:
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e = Bd

B  =   









bt
x+e1h,xg t e2h,yg t

e2h,xg t bT
y+e1h,yg t

bT
y+e3h,yg t bT

x+e3h,xg t

 (1.5.8)

For the purpose of illustrating the projections, the symmetric displacement gradient
(1.4.27b) is written as

Du =  







uo

x,x +  ux,x

uo
y,y +  uy,y

uo
x,y +  ux,y + uo

y,x +  uy,x

 =  









εo
x+qxh,x

εo
y+qyh,y

2εo
xy +  q xh,y +  q yh,x

(1.5.9)

The dilatation of the assumed strain field given by  Eq. (2a), which is denoted by ∆,
vanishes in the hourglass mode if e1 = −e2.  This is shown as follows.  Consider the nodal
displacements that correspond to the hourglass mode of deformation.

ux = α3xh uy = α3yh (1.5.10)
Evaluating the strain by (2), we obtain the dilatation as

∆= εx + εy = (e1+e2)(α3xh,x+α3yh,y) (1.5.11)

So for e1 = −e2, ∆ = 0.  Thus, with this projected strain, the dilatation vanishes throughout
the element in the hourglass mode.  Furthermore, it can easily be shown that for the meshes
in Figs. 6 and 7 with the nodal displacements given by (1.4.10), the dilatation ∆ vanishes
throughout the element.

For linear elastic material with a constitutive matrix given by (1.4.40b), and the nodal
displacements given in Eq. (10), the strain energy of the assumed strain element with
e2=-e1 is

U = 1
2∫Ωe

etCedΩ (1.5.12)

=µe2
1(α2

3xHxx+α3xα3yHxy+α2
3yHyy)+ 12µe2

3(α2
3yHxx+α3xα3yHxy+α2

3xHyy)
which is independent of the bulk modulus.  Thus the volumetric energy in this element is
always finite and the element will not be subject to volumetric locking.

The portion of the volumetric strain which has been eliminated by this projection is
often called "spurious" or "parasitic" volumetric strain.  Whatever the name, it is certainly
undesirable for the treatment of incompressible materials.  Since in the nonlinear range,
many materials are incompressible, its elimination from the element is crucial.

The character of this projection for various values of e1 (when e1=-e2) is shown in
Fig. 9.  The two axes represent the nonconstant terms in ux,x and uy,y, which are denoted
by ux,x and uy,y, and the corresponding terms in the assumed strain (compare Eqs. (8) and
(9)) εx and εy respectively.  The square represents an example of a point in (ux,x, uy,y)
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space, while the circles represent corresponding points in (εx, εy) space.  From the formula
relating these quantities, namely

εx = e1(ux,x - uy,y) (1.5.13a)
εy = e1(uy,y - ux,x) (1.5.13b)

it can be seen the e1=1
2 corresponds to a normal projection of the functions ux,x, uy,y onto

the line  εx + εy = 0, which is the line on which the higher order terms in the assumed
strain field posses no dilatation.  Other values of e1 shift the higher order terms of the
assumed strain along the same line.

e1 = 1

e1 = 1
2

 (normal projection)

ux,x, εx

uy,y, εy

εx = -εy

 is a point representing ux,x, uy,y
 are points representing εx, εy

Figure 9.  Depiction of projection of nonconstant part of displacement gradient ux,x, uy,y
onto isochoric assumed strain fields

1.5.3  Shear Locking and its Elimination.   Shear locking in the four-node quadrilateral
may be explained and eliminated by projection in a similar manner.  It should be
mentioned, and this will become clear from the results, that the effect of "spurious" shear is
somewhat different than that of "spurious" strains in volumetric locking.  In volumetric
locking, the results completely fail to converge;  with spurious shear, the solutions
converge but rather slowly.  Thus the term "excessive shear stiffness" is probably more
precise, but the term shear locking is also a useful description.

To understand shear locking and its elimination, consider a beam represented by a
single row of elements which is in pure bending as shown in Fig. 10.  In pure bending, the
moment field is constant and as is well known to structural engineers, the shear must
vanish, since the shear is the derivative of the moment with respect to x:  s=m,x.
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mm

x

x

y y

Figure 10.  A beam in pure bending showing that the deformation is primarily into the
hourglass mode

To eliminate shear locking, the portion of the shear field which is triggered by any
nodal displacements which are not orthogonal to g  must be eliminated.  Since only h is not
orthogonal to g , this is another way of saying that the shear associated with the hourglass
mode must be eliminated.  This can be accomplished by letting e3=0 in Eq. (8).  In pure
bending, the nodal displacements in the local coordinate system of the element defined as
shown in Fig. 10 are given by

ux=ch uy=0 (1.5.14)

where c is an arbitrary constant.  If the strain energy is computed using Eq. (8) for arbitrary
e3, we find that the shear strain energy

Ushear =  1
2
µe2

3c2Hyy  = 0 (1.5.15)

so it vanishes as expected when e3=0; parasitic shear in bending is thus eliminated. This
corresponds to the projection illustrated in Fig. 11.  The shear field emanating from the

displacement field can be written in terms of the 3 parameters εo
xy , qx, and qy.  The second

and third parameters are associated with the parts of the shear which are triggered only by
the hourglass mode of deformation.  The assumed shear strain field, εxy, is the projection
of the strain field emanating from the displacement field onto the line of constant shear
strain fields, as shown in Fig. 11.
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2εxy
o

2εxy
o  + qxh,y + qyh,x

qx

qy
Figure 11.  Projection of higher order shear terms in assumed strain elements

Table 2 lists the arbitrary constants for Eq. (8) for the assumed strain elements
considered in this paper.  Note that the fully integrated QUAD4 element can be obtained by
stabilization with one point quadrature for linear materials.   It can be shown that ASMD
stabilization is identical to the mean dilatation approach of Nagtegaal et al. (1974) for linear
materials.  ASQBI and ASOI are identical to the mixed method QBI and OI stabilization of
Belytschko and Bachrach (1986) for rectangular elements.

Table 2.  Constants to define the assumed strain field

Element e1 e2 e3
QUAD4 1 0 1
ASMD 1

2 −1
2

1

ASQBI 1 −ν 0
ASOI 1 −1 0
ADS 1

2 −1
2

0

1.5.4  Stiffness Matrices for Assumed Strain Elements.  The stiffness matrix for all of the
assumed strain elements can be obtained by (16).  If we take advantage of (1.4.16), then

Ke = K1  p t
e  + Kstab

e (1.5.16)

where K1 pt
e  is the stiffness obtained by one-point quadrature with the quadrature point

ξ=η=0, and Kstab
e  is the rank 2 stabilization stiffness, which is given by

Kstab
e  = 2µ







(c1Hxx+c2Hyy)γ γ t c3Hxyγ γ t

c3Hxyγ γ t (c1Hyy+c2Hxx)γ γ t (1.5.17)

where the constants c1, c2, and c3 are given by Table 3.  Constants are given not only for
the elements listed in Table 2, but also for the ASSRI stabilization which behaves like the
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SRI element of Hughes (1987) with elastic material.  SRI stabilization cannot be derived by
the assumed strain approach.  It is obvious that the plane strain QUAD4 element will lock
for nearly incompressible materials since c1 and c3 get very large.  The projection to
eliminate excessive shear stiffness corresponds to c2=0.  When both projections are made,
then c1=-c3.

Table 3.  Constants for assumed strain stabilization

Element c1 c2 c3
QUAD4 (plane strain) 1-ν

1-2ν
1 2 1

2(1-2ν)
QUAD4 (plane stress) 1

1-ν
1 2 1+ν

2(1-ν)
ASSRI 1 1 2 1 2
ASMD 1 2 1 2 0
ASQBI 1+ν 0 -ν(1+ν)
ASOI 2 0 -2
ADS 1 2 0 -1 2

1.5.5  Nonlinear Hourglass Control.  The nonlinear counterpart of the Simo-Hughes
(1986) principle has been given by Fish and Belytschko (1988) as the following weak
form:

0 = δΠ = ∫Ω eδe° ts (e° ,s ,...)dΩ + δ∫Ω e
tt(Dv  − e° )dΩ - δv tfext (1.5.18)

where e°  is the interpolated velocity strain (rate-of-deformation), s  the Cauchy stress which
is computed from the velocity strain and other state variables by the constitutive equation, t
the interpolated Cauchy stress, and Dv  is the symmetric part of the velocity gradient; the
latter would be equivalent to the rate-of-deformation in a standard displacement method, but
in mixed methods, the velocity gradient is projected on a smaller space to avoid locking.
Note that s  was the symbol for the interpolated stress in Section 1.4, but has a new

meaning here.  The superposed circle on the symbol for the rate of deformation, e°  does not
indicate a time derivative.
The velocity and strain-rate (rate-of-deformation) are interpolated by

v  = ∑
I=1

nN
e

N I(ξ,η)v I ≡ Nv (1.5.19)

e°  = ∑
I=1

nN
e

B I(ξ,η)v I ≡ Bv (1.5.20)

where nN
e  is the number of nodes per element.  In addition, we define the standard B  matrix

by
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Dv  = ∑
I=1

nN
e

D(N Iv I) ≡ Bv (1.5.21)

Substituting Eqs. (20) into (18) and using the orthogonality condition for t as before gives
0 = δΠ = δvT∫ΩBTsdΩ − δvTfext (1.5.22)

Exploiting the arbitrariness of δv we obtain the discrete equilibrium equations
f int - fext = 0 (1.5.23)

f int = ∫ΩB tsdΩ (1.5.24)
where the stress is given by some nonlinear constitutive equation

s  = (e° ,s ,...) = (Bv ,s ,...) (1.5.25)
The above formulation is applicable to problems with both material and geometric
nonlinearities.  In applying the assumed strain stabilization procedure, it is convenient to
use a corotational formulation as discussed in Section 1.4.7, where the Cauchy stresses
and velocity strains are expressed in terms of a coordinate system (x, y) which rotates with
the element.  As with mixed method stabilization of Section 1.4, a corotational coordinate
system also assure that the element is frame invariant.

The internal forces in a corotational formulation are given by

fint = ∫ΩB tsdΩ (1.5.26)

where the superposed tildes indicate quantities expressed in terms of the corotational
coordinates.  The counterpart of (20) is

e
°
 = Bv (1.5.27)

and the rate form of the constitutive equation can be written

s  = Ce
°

(1.5.28)

where C is a matrix which depends on the stress and other state variables; for an

incrementally isotropic hypoelastic material, C is given by (1.4.40b).
The above form of a stress-strain law is objective (frame-invariant).  The spin is then

given by

ω = 1
2

∂vy

∂x
 − 

∂vx

∂y
(1.5.29)

In developing the hourglass resistance based on physical parameters, two assumptions
must be made:

1.  the spin is constant within the element

2.  the material response tensor C is constant within the element.
The velocity for the 4 node quadrilateral is given by a form identical to (1.4.9b)

vi = (s t + xbt
x + ybt

y  + hgt)v i (1.5.30)
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 The spin (29) is then given by

ω = 12(bt
xvy − b

t
yvx + qyh,x − qxh,y)) (1.5.31)

qx = gt
vx qy = gt

vy (1.5.32)

Because of the orthogonality property (1.4.16), the average spin is given by

ωo = 
1
A∫Ω e

ωdΩ = 1
2
(bt

xvy − b
t
yvx) (1.5.33)

This corresponds to the spin at the center of the element.  It can be seen from (31) that the
stronger the hourglass mode, the more assumption 1 is violated.

To illustrate the remainder of the development, the special case, e2=-e1, e3=0 is
considered.  The corotational components of the velocity strain are then given by the
counterpart of (8).

εx
°

εy
°

2εxy
°

 = 

bx
t
+e1h,xgt

-e1h,ygt

-e1h,xgt
by

t
+e1h,ygt

by
t

bx
t

vx

vy

 = Bv (1.5.34)

For an anisotropic material, the stress rate is then given by

s  = so + s1 = Ceo°
 + e1







(C11-C12)(qxh,x-qyh,y)

(C22-C21)(qyh,y-qxh,x)
0

(1.5.35)

It can be seen that the corotational stress rate always has the same distribution within the
element, so the stress also has the same form; at any point in time, so is the constant part of
the element stress field evaluated at the quadrature point, and s1 is the nonconstant part.

Taking advantage of this form of the stress field, and inserting (34) and (35) into

(26), and taking advantage of the orthogonality properties of hx and hy (1.4.16) and the
fact that C is constant in the element, gives

fint  = AB
ot

so + fstab (1.5.36)

where fstab are the hourglass (stabilization) nodal forces, which are given by

fstab = 
Qxg

Qyg
(1.5.37)

where
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Qx

Qy

 = e1
2 C11-C12-C21+C22

Hxxqx - Hxyqy

Hyyqy - Hxyqx

(1.5.38)

and B
o
 is the constant part of B  which is given by

B
o
 = 







bt

x 0
0 bt

y

bt
y bt

x

(1.5.39a)

bt
x = 

1
2A[y24 , y31 , y42 , y13] bt

y = 
1

2A[x42 , x13 , x24 , x31] (1.5.39b)

The nodal force vector is arranged by components:

f t = [f t
x, f t

y] f t
x = [fx1 , fx2 , fx3 , fx4] f t

y = [fy1 , fy2 , fy3 , fy4] (1.5.40)

For an isotropic material, Qx and Qy can be written in terms of the constants given in
Table 3.

Qx

Qy

 = 2µ
c1Hxx+c2Hyy qx + c3Hxyqy

c1Hyy+c2Hxx qy + c3Hxyqx

(1.5.41)

As with mixed method stabilization, the shear modulus in a nonlinear isotropic process is
given by (1.4.9a).

Table 4 is a flowchart outlining the procedure to evaluate nodal forces in an explicit
program with time step ∆t.  Implementation in a static program simply requires the
replacement of the products of rates and ∆t by an increment in the corresponding integral;

for example, ∆s  replaces s∆t.

Table 4.  Element nodal force calculation

1. update corotational coordinate system
2. transform nodal velocities v and coordinates x  to corotational coordinate system

3. compute strain-rate at quadrature the point by  e=B
o
v   (Eq. (39) gives B

o
)

4. compute stress-rate by constitutive law and update stress (note:  s=∆s /∆t)
5. compute generalized hourglass strain rates by Eq. (32)
6. compute the generalized hourglass stresses rates by (38) and update the

generalized hourglass stresses

7. compute fint by Eqs. (36) and (37)

8. transform fint  to global system and assemble
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Remark 3.1  The stress rate in (36) corresponds to the Green-Naghdi rate if the corotational
coordinate system is rotated by ω∆t in each time step.
Remark 3.2  If the Jaumann rate is used in conjunction with a fixed coordinate system, the
stress field loses the form of (35) and other approximations are needed.
Remark 3.3  Because of the assumption of a constant spin and material response in the
element, deviations from this assumption are directly proportional to the strength of the
hourglass modes (see for example (31-33));  thus in h-adaptive methods, it is
advantageous to refine by fission those elements which exhibit substantial hourglass
energy, as advocated in Belytschko, Wong, and Plaskacz (1989).
Remark 3.4  If a Jaumann rate is used in a fixed coordinate system, the stress field does not
maintain the distribution (35)  This is one reason that the corotational form is preferred.

1.5.6  Assumed Strain with Multiple Integration Points.  In the development above,
stabilization forces are obtained for a reduced one-point integration element.  One-point
integration was chosen because it is usually advantageous to keep the number of stress
evaluations to a minimum; however, there is a correlation between the number of
integration points needed in a mesh and the nonlinearity of the stress field.  An example of
this is the dynamic cantilever beam of Section 1.6.3.  For elastic material, a very accurate
solution can be obtained with only one element through the depth of the beam, because the
axial stress varies linearly through the depth.  For elastic-plastic material, many elements
are need through the depth to obtain a reasonably accurate solution, because the axial stress
varies nonlinearly through the depth.  The number of integration points can be increased
by refining the mesh, or by increasing the number of integration points in each element.
The latter method has the advantage of being able to increase the number of quadrature
points without reducing the stable time step of an explicit method.

The assumed strain fields developed above can be used with any number of
integration points without encountering locking since the strain fields have zero dilatational
strain throughout the element domain for incompressible material.  The element force
vector for multi-point integration using an assumed strain field is analogous to (1.2.31b)
and is given by

fe
int

 = wα J xα  B
t

∑
α=1

nQ

xα s xα
(1.5.42)

where B xα  and s xα  are the corotational counterparts of (8) and (25) evaluated at a
quadrature point, xα. Stabilization forces, may or may not be necessary with (42)
depending on the location of the integration points.

The g  terms in (8) assure rank sufficiency, as long as h,x and h,y are not too small.
If we consider the rectangular element in Fig. 12 with a corotational coordinate system, the
referential axes are parallel to the corotational axes, so

ξ,x = 
1
a

η,y = 
1
b η,x = ξ,y = 0 (1.5.43a)

h,x = 
1
a η h,y = 

1
b ξ (1.5.43b)
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From (43b), it is apparent that h,x = 0 along the η axis and h,y = 0 along the ξ axis.
Therefore if the integration points are all located on one of the referential axes, stabilization
forces will be needed in either the x or y directions to maintain rank sufficiency.

2b

2a

x

y ξ
η

Figure 12.  A rectangular element in the corotational coordinate system

Full 2x2 integration using Eq. (42) is rank sufficient, but nearly the same results are
obtained with two integration points using a modified form of Eq. (42) given by

fe
int

 = 2J 0  B
t

∑
α=1

2
xα s xα

(1.5.44)

In Eq. (44), J(0) is the Jacobian evaluated at the origin of the referential coordinate
system, and the two integration points are either x1 = (-1 3, -1 3), x2 = (+1 3,
+1 3), or else x1 = (-1 3, +1 3), x2 = (+1 3, -1 3).  The choice of the pair of
integration points makes little difference in the solution.  This 2-point integration scheme is
similar to the IPS2 element reported in Liu et al. (1988).  The formulation here differs by
using an assumed strain field is used to improve accuracy.  Using, the QBI strain field, a
flexural-superconvergent 2-point element is obtained.

In Section 1.6.3, we observe that the ASQBI element with 1-point integration
provides an accurate coarse mesh solution with elastic material; however, with elastic-
plastic material, the coarse mesh solution is poor.  We can therefore attribute the error in
the elastic-plastic solution to an insufficient number of integration points.  This large error
is not surprising if we consider the nature of the solution.  The plastic deformation of a
beam in bending initiates at the top and bottom surfaces of a beam where the axial stress is
greatest.  With 1-point integration, the only stress evaluation is at the center of the element,
so while the stress state at the integration point remains within the yield surface, the stress
state may be outside the yield surface at other points in the element domain.  For coarse
mesh bending, the error is large, resulting in too little plastic deformation.

The 2-point integration scheme of Eq. (44), and 2x2 integration by Eq. (42) improve
on 1-point integration by placing integration points nearer the edge of the element.  In
Section 1.6.3, the effect of multiple stress evaluations is demonstrated by the solution of
an elastic-plastic cantilever beam.  Results for the 2 and 4-point integration schemes are
given in Tables 11a through 11d.  Both use the QBI strain field, so the 2 point scheme is
called ASQBI(2 pt), and 2x2 integration is called ASQBI(2x2).  Both of these elements
have flexural-superconvergence as does the 1-point element with ASQBI stabilization, so
the elastic part of the solution is solved very accurately.  Therefore, the difference in the
solutions of these three elements with elastic-plastic material can be attributed to the effect
of multiple stress evaluations on the nonlinear part of the solution.
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1.6  Numerical Results
The numerical examples reported here include linear and nonlinear problems.  The

linear problems were studied to examine the convergence rate of various forms of these and
competing elements.  Table 5 gives a complete listing of the names associated with the
elements tested in this section.  All use 1-point integration in the nonlinear problems except
for QUAD4, ASQBI(2pt), ASQBI(2x2).

Table 5.  Names and descriptions of elements tested in this section

Name Section Description

QUAD4 1.2 Standard isoparametric element with full 2x2 integration.

FB (0.1) 1.3 Perturbation hourglass stabilization with the hourglass control
factor, αs = 0.1.  (Flanagan and Belytschko (1981))

FB (0.3) 1.3 Same as FB (0.1), except with αs = 0.3

OI 1.4 Mixed method Optimal Incompressible stabilization (Belytschko and
Bachrach (1986)).

QBI 1.4 Mixed method Quintessential Bending and Incompressible
stabilization (Belytschko and Bachrach).

ASOI 1.5 Assumed strain stabilization using the OI strain field

ASQBI 1.5 Assumed strain stabilization using the QBI strain filed

ADS 1.5 Assumed deviatoric strain stabilization

ASMD 1.5 Assumed strain stabilization using the strain field associated with the
mean dilatation element (Nagtegaal et al.(1974)).

ASSRI 1.5 Assumed strain stabilization using the strain field associated with
selective reduced integration (Hughes(1980))

ASQBI(2 pt) 1.5.6 The QBI strain field is used with two stress evaluations per element

ASQBI(2x2) 1.5.6 The QBI strain filed is used with four stress evaluations per element

Pian-Sumihara The Pian-Sumihara (1984) hybrid element (the formulation does not
appear in this paper)
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1.6.1  Static Beam.  A linear, elastic cantilever with a load at its end is shown in Fig. 13.
M and P at the left end of the cantilever are reactions at the support.

P

D

L

PM

y

x

Figure 13.  Static cantilever beam

This problem is identical to that used by Belytschko and Bachrach (1986).  The analytical
solution from Timoshenko and Goodier (1970) is

ux(x,y)= 
−Py
6EI

[(6L− 3x)x + (2+ν)(y2 − 1
4
D2)] (1.5.44a)

uy(x,y)= 
P

6EI
[3νy2(L−x) + 1

4
(4+5ν)D2x + (3L−x)x2] (1.5.44b)

where I = 1
12D3

E = 


 E for plane stress

E/(1−ν2) for plane strain (1.5.45a)

ν = { ν for plane stress
ν/(1−ν) for plane strain (1.5.45b)

The displacements at the support end, x=0, −1
2D ≤ y ≤ 1

2D are nonzero except at the  top,
bottom, and midline (as shown in Fig. 14).  Reaction forces are applied at the support
based on the stresses corresponding to (1.5.46) at x=0, which are

σx = − 
Py
I (L−x) (1.5.46a)

σy = 0. (1.5.46b)

τxy = 
P
2I(

1
4
 D2 − y2) (1.5.46c)

The distribution of applied load to the nodes at x=L is also obtained from the closed-form
stress fields.  The coarsest mesh used is shown in Fig. 14.   This problem is symmetric, so
only half the cantilever is modeled.
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Figure 14.  Coarse mesh of rectangular elements

All meshes use elements with an aspect ratio of 2.  Only the top half of the cantilever
is modeled since the problem is antisymmetric.  The following isotropic elastic materials
were used:

1.  Plane stress, ν= 0.25
2.  Plane strain, ν= 0.4999

The displacement and energy error norms are plotted in Figs. 15 and 16.  for ν=0.25,
the rate of convergence of the displacement error norm is around 1.8 for all of the elements
except for QBI, ASQBI and Pian-Sumihara which converge at a rate of 2.  All have a rate
of convergence of the energy error norm of 1.  For ν=0.4999, the rate of convergence of
the displacement error norms is around 1.7 to 1.8 and the and rate of convergence of the
energy error norms is 1.0 for all elements except QUAD4 which locks as expected and
exhibits very slow convergence.  For incompressible material, QBI and ASQBI are almost
identical to OI and ASOI, whereas ASMD has less absolute accuracy.  For rectangular
elements and any linear material, OI and ASOI are identical.  Likewise, the Pian and
Sumihara (1984) element is identical to QBI and ASQBI.
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Figure 15.  Convergence of displacement and energy error norms; ν=0.25, plane stress
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Figure 16.  Convergence of displacement and energy error norms; ν=0.4999, plane strain

To assess the coarse mesh accuracy of the elements, the normalized end
displacements (point A if Fig. 14) for the 1x4 element mesh are shown in Table 6.  A
coarse 1x4 element mesh of skewed elements was also run and the normalized end
displacements (point A in Fig. 17) are shown in Table 7.  Pian-Sumihara is slightly better
than ASQBI for the skewed elements, but the difference is minor.

 
Pt. A

θ

y

x

L/4 = 12 (typ.)
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Figure 17.  Skewed coarse mesh with θ = 9.462°

Table 6.  dyFEM / dyAnalytical  at point A of mesh in Fig. 14  (rectangular elements)

Material QUAD4 ASMD QBI, ASQBI, and
Pian-Sumihara

OI and
ASOI

ADS

1 0.708 0.797 0.986 0.862 1.155
2 0.061 0.935 0.982 0.982 1.205

Table 7.  dyFEM / dyAnalytical  at point A of mesh in Fig. 17  (skewed elements)

Material QUAD4 ASMD ASQBI Pian-
Sumihara

ASOI ADS

1 0.689 0.776 0.948 0.955 0.834 1.112
2 0.061 0.915 0.957 0.960 0.957 1.170

1.6.2  Circular Hole in Plate.  This problem was considered to evaluate the performance of
these elements in a different setting.  A plate with a hole, solved by R. C. J. Howland
(1930) is shown in Fig. 18.  The solution is in the form of an infinite series and gives the
stress field around the circular hole in the center of an axially loaded plane stress plate of
finite width and of infinite length.  The series converges only within a circular region
around the hole.  The diameter of this circular area is equal to the plate width.  The
displacement field is not given so convergence of the displacement norm could not be
checked.
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Figure 18.  Plate of finite width with a circular hole

For the finite element meshes, the plate length was taken to be twice the plate width.
The nodes at which the load is applied are outside the region in which the analytical
solution converges, so the analytical solution could not be used to determine the load
distribution on the end of the plate.  The nodal forces were therefore calculated by
assuming the analytical stress field at infinity, which is uniaxial.  The error due to the finite
length was checked by running meshes with lengths of  2 and 5 times the plate width.  The
difference between these solutions was found to be negligible.  Four different meshes were
used which are summarized in Table 8.  Fig. 19 shows the dimensions and boundary
conditions of the finite element model, and Fig. 20 shows the discretization for mesh 3
with 320 elements.  The problem is symmetric, so only one fourth of the plate was
modeled.

Table 8.  Meshes used for Howland plate with hole problem

Number of elements
Mesh number Total in mesh In portion of mesh used to

calculate the energy norm
1 20 12
2 80 48
3 320 192
4 1280 768
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Figure 19.  Finite element model of plate with a circular hole

Figure 20.  Mesh 3 discretization

The circular hole is approximated by elements with straight edges, so the hole is
actually a polygon.  As the number of elements is increased, the shape and area of the hole
changes slightly.

Because the analytical solution only converges in a region around the hole, a subset
of the total number of elements in the mesh was used to calculate the energy norm.   This
area, shaded in Fig. 19, was held constant as the mesh was refined, except for the change
in the area of the hole.

Table 9 shows the calculated stress concentration factor at point A on Fig. 19
normalized by the analytical solution.  At point A, σx = 3.0361 according to the analytical
solution.  The stress concentration factor depends on both the constant and non-constant
part of the stress field.   None of the elements can represent exactly the nonlinear stress
field in the area near the hole;  however, some are better than others.  The  ASQBI element
was shown earlier to represent the pure bending mode of deformation better than the ASOI
elements.  This ability seems to help also in the calculation of the stress concentration factor
at point A.  For the ASMD and ADS elements (e1 = 1/2), the non-constant part of the strain
is only half the magnitude that of the ASOI element (e1 = 1), so the stress concentration
factor is lower.
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Table 9.  σxFEM /σxAnalytical  at point A in Fig. 19

Mesh QUAD4 ASMD ASQBI Pian-S ASOI ADS
1 0.888 0.721 0.885 0.778 0.772 0.733
2 0.973 0.838 0.961 0.914 0.874 0.831
3 0.994 0.900 0.988 0.971 0.926 0.902
4 1.000 0.946 0.997 0.993 0.963 0.947

Table 10 shows the normalized x-component of stress at the center of the element that
is nearest to the point of maximum stress (point A on Fig. 19).  This value is independent
of the nonconstant part of the stress field, so there is much less variation between the
elements.  The coordinates of the element center change as the mesh is refined, so the
analytical stress used to normalize the solutions is included in Table 10.

Table 10.  σxFEM /σxAnalytical at the center of the element nearest point A in Fig. 19

Mesh Analytical
stress

 QUAD4 ASMD ASQBI Pian-S ASOI ADS

1 1.671 1.000 1.031 1.009 1.056 .982 1.040
2 2.089 1.010 1.029 1.013 1.038 .995 1.031
3 2.462 1.005 1.015 1.006 1.016 .997 1.012
4 2.717 1.002 1.007 1.003 1.007 .999 1.008

Fig. 21 shows the convergence of the error in the energy norm.  All elements were
found to have convergence rates ranging from 0.92 to 0.98.  Theoretically, the
convergence rate of the energy norm should go to 1 as the element size H→0.  Note that
the differences in the errors for the various elements are much smaller than in the beam
problem.  This is expected, since the nonconstant mode of deformation in this problem is
much less significant than it is in bending.
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Figure 21.  Convergence of the error in the energy norm

1.6.3  Dynamic Cantilever  The rate form of stabilization was implemented in the two
dimensional version of WHAMS (Belytschko and Mullen (1978)).  An end loaded
cantilever was modeled with both elastic and elastic-plastic materials as shown in Fig. 22.
A similar problem is reported in Liu et al. (1988).  Two plane-strain isotropic materials
were used with ν=0.25, E=1x104, and the material density, ρ=1.

(1)  elastic
(2)  elastic-plastic with 1 plastic segment (σy = 300; Et=0.01E)

where σy is the yield stress, Et is the plastic hardening modulus; a Mises yield surface and
isotropic hardening were used.

L

D

y

x
hy

L = 25
D = 4
hy = 15 1-y2 4

d = 1 (out of plane thickness)

                      applied as a
step function at time T=0.

Figure 22.  Dynamic cantilever beam

Ten meshes were considered.  Six of them are composed of rectangular elements,
while the other four are skewed.  A coarse mesh called the 1x6 mesh has one element
through the beam depth and 6 along the length.  The aspect ratio of these elements is nearly
1.  Meshes of 2x12, 4x24, and 8x48 elements are generated from the 1x6 mesh by
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subsequent divisions of each element into 4 smaller elements.  Two meshes of elongated
elements, 2x6(E) and 4x12(E) were made of elements with aspect ratios of slightly more
than 2.  Finally four meshes are made up of skewed elements.  Two of them, 2x12(S) and
4x24(S), are formed by skewing 2x12 and 4x24; the other two, 2x6(ES) and 4x12(ES),
are formed by skewing 2x6(E) and 4x12(E).  Figures (23a-g) show  7 of the meshes.

y
Point A

x

Figure 23a.  1x6 mesh

y

x

Figure 23b.  4x24 mesh

x

y

Figure 23c.  4x12(E) mesh

Figure 23d.  2x12(S) mesh
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Figure 23e.  4x24(S) mesh

Figure 23f.  2x6(ES) mesh

Figure 23g.  4x12(ES) mesh

The problem involves very large displacement (of order one third the length of the
beam).  No analytical solutions is available, so the results are not normalized; however, a
more refined meshes of 32x192 elements were run using a 1-point element with ADS
stabilization in an attempt to find a converged solution.   The end displacements at point A
in Fig. 23(a) are listed in Tables 11a through 11d.  Fig. 24 is a typical deformed mesh
which shows the large strain and rotation that occurs.  Figs. (25a-e) are time plots of the y-
component of the displacement at the end of the cantilever.  The first three demonstrate the
convergence of the elastic-plastic solution with mesh refinement for ASQBI and ADS
stabilization, and for the ASQBI(2pt) element.  These plots also include the elastic solution
and the 32x192 element elastic-plastic solution using ADS stabilization for comparison.
The last two time plots each show a solution of a single mesh by ADS and ASQBI
stabilization, and the ASQBI (2pt) and  ASQBI (2x2) elements.  These plots also include
the elastic and 32x192 element solution for comparison.

Table 12 lists the percentage of the strain energy that is associated with the hourglass
mode of deformation at the time of maximum end displacement for some of the runs with
elastic-plastic material.  As expected, nearly all the strain energy is in the hourglass mode
for the coarse (1x6) mesh.  As the mesh is refined, the percentage of strain energy in the
hourglass mode decreases rapidly, so the importance of accurately calculating the hourglass
strains also decreases.
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Figure 24.  Deformed 4x24 mesh showing maximum end displacement (elastic-plastic
material)

With all of the elements, the onset of plastic deformation is significantly retarded
when the mesh is too coarse.  This is most evident in the QBI elements which are flexural-
superconvergent for elastic material.  The ADS or FB (0.1) elastic solutions are too
flexible, which tends to mask the error caused by too few integration points.  The only sure
way to reduce the error in solutions that involve elastic-plastic bending is to increase the
number of integration points.  This can be accomplished by mesh refinement or by using
multiple integration points in each element, as with the 2 point and 2x2 integration.  If the
mesh is refined, not only are the number of integration points increased, but the amount of
strain energy that is in the hourglass mode of deformation decreases (Table 12), so the
accuracy of the coarse mesh solution becomes less relevant.  When multiple integration
points are used, the energy in the nonconstant modes of deformation remains significant,
so an accurate strain field such as ASQBI is more important.

With two and four stress evaluations per element respectively, ASQBI(2 pt) and
ASQBI(2x2) give similar results to ADS stabilization when the mesh is refined to 8x48
elements.  These elements are also have flexural-superconvergence with elastic material.
The improvement over a 1-point element with ASQBI stabilization is similar to the
improvement obtained by one level of mesh refinement, and it is significantly less
computationally expensive.  Each level of mesh refinement slows the run by a factor of 8,
while additional integration points slow it by less than 2 for ASQBI (2 pt) and 4 for ASQBI
(2x2).  For this problem with a fairly simple constitutive relationship, the additional c.p.u
time needed for an a second stress evaluation is largely offset by the elimination of the need
for stabilization, so ASQBI(2 pt) solutions are less than 10% slower than the stabilized 1-
point element.
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Figure 25a.  End displacement of elastic-plastic cantilever; ASQBI stabilization
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Figure 25b.  End displacement of elastic-plastic cantilever; ASQBI (2 pt) element
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Figure 25c.  End displacement for elastic-plastic cantilever; ADS stabilization
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Figure 25d.  End displacement for 4x12(E) mesh (elastic-plastic)
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Table 11a.  Maximum end displacement of elastic cantilever

Element 1x6 2x12 4x24 8x48 2x6(E) 4x12(E)
QUAD4 (2x2) 4.69 6.14 6.68 6.84 4.92 6.25
FB (0.1) 15.9 8.12 7.17 6.97 7.22 6.97
FB (0.3) 7.68 7.04 6.93 6.91 5.35 6.432
OI 4.78 6.17 6.70 6.85 6.11 6.66
ASOI 4.78 6.17 6.70 6.85 6.11 6.66
QBI 6.89 6.86 6.88 6.90 6.79 6.86
ASQBI 6.89 6.86 6.88 6.90 6.79 6.86
ASQBI (2x2) 6.89 6.86 6.88 6.90 6.79 6.86
ASQBI (2 pt) 6.89 6.85 6.88 6.90 6.78 6.85
ADS 14.2 7.95 7.13 6.96 7.87 7.11
ASMD 8.49 7.20 6.97 6.92 5.59 6.51
ASSRI 6.05 6.63 6.82 6.88 5.23 6.38

Table 11b.  Maximum end displacement of elastic cantilever for the meshes of skewed
elements;  solutions are normalized by the solutions from Table 11a for the corresponding
meshes of rectangular elements

Element 2x12(S) 4x24(S) 2x6(ES) 4x12(ES)
QUAD4 (2X2) 0.99 0.99 0.97 0.98
FB (0.1) 1.01 1.00 0.99 0.99
FB (0.3) 0.99 1.00 0.99 0.99
OI 0.99 0.99 0.97 0.98
ASOI 1.00 1.00 0.98 0.99
QBI 0.99 0.99 0.97 0.98
ASQBI 0.99 0.99 0.97 0.98
ASQBI (2x2) 0.99 0.99 0.97 0.98
ASQBI (2 pt) 0.99 0.99 0.96 0.98
ADS 1.00 1.00 0.99 0.99
ASMD 1.00 1.00 0.99 0.99
ASSRI 0.99 1.00 0.99 0.99
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Table 11c.  Maximum end displacement and residual displacement (in parentheses) of
elastic-plastic cantilever; a solution by ADS stabilization with a 32x192 element mesh gives
a maximum displacement of 8.17, and a residual displacement of 5.24.

Element 1x6 2x12 4x24 8x48 2x6(E) 4x12(E)
QUAD4 (2x2) 4.69

(0.11)
6.30
(1.79)

7.31
(3.69)

7.85
(4.65)

4.94
(0.78)

6.61
(2.76)

FB (0.1)
15.9
(0.00)

8.39
(3.40)

8.18
(4.88)

8.14
(5.04)

7.22
(1.05)

7.67
(3.82)

FB (0.3)
7.68
(0.12)

7.05
(1.15)

7.59
(3.74)

7.92
(4.67)

5.35
(0.13)

6.69
(2.41)

OI
4.78
(0.05)

6.17
(0.20)

7.17
(3.13)

7.76
(4.41)

6.11
(0.16)

7.00
(2.63)

ASOI
4.78
(0.05)

6.17
(0.20)

7.17
(3.16)

7.76
(4.40)

6.11
(0.16)

7.00
(2.63)

QBI
6.89
(0.11)

6.86
(0.89)

7.53
(3.69)

7.90
(4.64)

6.79
(0.34)

7.34
(3.16)

ASQBI
6.89
(0.11)

6.86
(0.87)

7.54
(3.72)

7.90
(4.64)

6.79
(0.34)

7.34
(3.16)

ASQBI (2x2)
6.98
(1.79)

7.52
(3.62)

7.86
(4.53)

8.05
(4.99)

7.27
(3.10)

7.68
(4.17)

ASQBI (2 pt)
7.00
(1.75)

7.53
(3.54)

7.87
(4.57)

8.06
(5.01)

7.28
(3.14)

7.69
(4.21)

ADS
14.2
(0.00)

8.15
(3.03)

8.12
(4.77)

8.12
(5.01)

7.94
(1.89)

7.94
(4.19)

ASMD
8.49
(0.13)

7.21
(1.38)

7.73
(4.05)

7.97
(4.77)

5.59
(0.14)

6.83
(2.58)

ASSRI
6.05
(0.09)

6.63
(0.60)

7.42
(3.54)

7.86
(4.57)

5.23
(0.12)

6.60
(2.21)
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Table 11d.  Maximum end displacement and residual end displacement (in parentheses) of
elastic-plastic cantilever for the meshes of skewed elements; solutions are normalized by the
solutions from Table 11c for the corresponding meshes of rectangular elements

Element 2x12(S) 4x24(S) 2x6(ES) 4x12(ES)
QUAD4 (2x2) 1.08

(0.62)
0.98
(0.96)

0.98
(1.21)

0.98
(1.02)

FB (0.1)
1.04
(1.18)

0.99
(0.99)

1.02
(1.78)

0.99
(1.05)

FB (0.3)
1.00
(1.23)

0.99
(0.99)

0.99
(2.28)

0.99
(1.04)

OI
0.99
(2.40)

0.98
(0.98)

0.97
(3.61)

0.98
(0.97)

ASOI
1.00
(2.45)

0.99
(0.98)

0.98
(3.66)

0.98
(0.96)

QBI
0.99
(1.21)

0.98
(0.99)

0.98
(3.07)

0.98
(0.97)

ASQBI
0.99
(1.28)

0.98
(0.97)

0.98
(3.12)

0.98
(0.98)

ASQBI (2x2)
0.98
(0.96)

0.98
(0.97)

0.98
(1.03)

0.98
(0.98)

ASQBI (2 pt)
0.98
(1.03)

0.98
(0.97)

0.96
(0.96)

0.98
(0.97)

ADS
1.03
(1.17)

0.99
(0.99)

1.03
(1.48)

0.99
(1.02)

ASMD
1.00
(1.30)

0.98
(0.98)

0.99
(3.15)

0.99
(1.04)

ASSRI
0.99
(1.62)

0.98
(0.97)

0.99
(1.53)

0.99
(1.05)

Table 12.  Hourglass energy in the mesh when the end displacements maximum
(normalized by total strain energy)

Mesh FB (0.1) ASOI ASQBI ADS ASMD
1x6 0.982 0.975 0.981 0.988 0.984
2x12 0.108 0.327 0.247 0.124 0.207
4x24 0.033 0.110 0.079 0.036 0.065
8x48 0.011 0.035 0.026 0.012 0.021

REMARK 6.1  The QUAD4 element performs no better that the stabilized one-point
elements
REMARK 6.2  The value of αs has a significant effect on the solution of bending problems
using perturbation stabilization (FB) when the mesh is coarse
REMARK 6.3  Those elements that do not project out the nonconstant part of the strain
field, (QUAD4, ASMD, and ASSRI) stiffen significantly more than the others when the
elements are elongated as with 2x6(E) and 4x12(E) solutions.  Perturbation stabilization
(FB) is also sensitive since it is not responsive to the element aspect ratio.
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REMARK 6.4  Skewing the elements seems to have little effect on any of the elements.
This may be a little deceptive since this is a large deformation problem.  The elements of all
the meshes skew noticeably when deformed (Fig. 24) so the initially skewed meshes only
introduce additional skewing.  The elastic-plastic 2x6(ES) results are of dubious
significance, since the elastic-plastic 2x6(E) solutions are quite inaccurate.
REMARK 6.5  Another set of runs was made using an elastic-plastic material with a larger
plastic modulus (Et=0.1E).  The results were similar to those for (Et=0.01E) and are not
shown.

1.6.4  Cylindrical Stress Wave.  A two dimensional domain with a circular hole at its center
was modeled with 4876 quadrilateral elements as shown in Figs 26 and 27.  A compressive
load with the time history shown in Fig. 28 was applied to the hole and the dynamic
evolution was obtained until t=0.09.  The domain is large enough to prevent the wave from
reflecting from the outer boundary.  Elastic and elastic plastic materials were used.

To provide an estimate of the error in the 2D results, solutions were obtained for the
same domain and load history using 3600 axisymmetric, 1D elements.  The radial strain εrr
for the elastic and elastic-plastic solutions at t=0.09 is shown in Fig. 29.  The normalized
L2 norms of the error in displacements at time t=0.09 along the radial lines at θ=0 and
θ=π/4 are given in Tables 13a and 13b.  All of the elements have the same magnitude of
error.

r =10
°

100

100

θ

r

Elastic material:

Elastic-plastic material:

Yield stress, σy=1x104

Plastic modulus, Et = E 16

Young's modulus, E=1x106

Density, ρ=1.0

Young's modulus, E=1x106

Density, ρ=1.0

Figure 26.  4 node quad. mesh dimensions
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Figure 27.  Discretization of infinite domain with a hole
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Figure 28.  Load history
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Figure 29.  Radial strain at t=0.09

Table 13a.  Normalized L2 norms of error in displacements for material 1 (elastic)

θ QUAD4 FB (0.1) ASMD ASQBI ASOI ADS
0° .014 .014 .014 .014 .013 .014
45° .022 .022 .019 .019 .012 .021

Table 13b.  Normalized L2 norms of error in displacements for material 2 (elastic-plastic)

θ QUAD4 FB (0.1) ASMD ASQBI ASOI ADS
0° .0063 .0063 .0061 .0061 .0061 .0063
45° .0069 .0069 .0086 .0088 .0073 .0088

1.6.5  Static Cantilever.  The solutions to the test problems of Sections 1.6.1 and 1.6.2
were obtained using a local coordinate formulation of the stabilization matrix:  Likewise,
the solutions to the test problems of Sections 1.6.3 and 1.6.4 were obtained using a
corotational coordinate formulation.  The need for these local and corotational formulations
to obtain a frame invariant element is discussed in Section 1.4.6.  The following solutions
to a static cantilever demonstrate this need.

A cantilever with a shear load at its end was solved by two versions of the linear
static finite element code using QBI stabilization.  One version had a local coordinate
formulation, and the other did not.  These are called the "local" and "global" formulations
respectively.    A total of seven solutions were obtained with three meshes as shown in
Figs. (30a-c).  Each was solved with the longitudinal axis of the undeformed beam aligned
with the global x axis, and also with the beam initially rotated before applying the load.
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Figure 30a.  1x6 element mesh
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Figure 30b.  1x3 element mesh
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Figure 30c.  4x12 element mesh

Table 14 lists the end displacement in the direction of the load for the seven solutions
normalized by the solutions of the unrotated meshes.  Therefore, these numbers do not
demonstrate absolute accuracy, but the variation in the element stiffness that occurs with
rigid body rotation.  The results show that the global formulation is sensitive to rigid body
rotation when the elements are elongated and the mesh is coarse.  When the aspect ratio 1,
both formulations are frame invariant.  Also, when the mesh is refined, the lack of frame
invariance is less noticeable.  The local formulation is always frame invariant.
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Table 14.  End displacements in the direction of the applied load normalized by the 0°
solution

Mesh Initial
rotation
(degrees)

 Global Local

1x6
0
45

1.00
1.00

1.00
1.00

1x3
0
22.5
45

1.00
0.71
0.49

1.00
1.00
1.00

4x12
0
45

1.00
0.94

1.00
1.00

1.7   Discussion and Conclusions
The bilinear quadrilateral element is a good choice for solving two dimensional

continuum problems with explicit methods, because the mass matrix can be lumped with
little loss of accuracy.  There are two major benefits to 1-point integration with the
quadrilateral.  The first is the elimination of volumetric locking which plagues the fully
integrated element.  The second is a reduction in the computational effort for such elements.
A drawback of 1-point integration is that spurious modes will occur if they are not
stabilized.   We have examined some ways of stabilizing the spurious modes in this
chapter.

With all the methods considered, the stabilization forces are proportional to a g  vector
which is orthogonal to the constant strain modes of deformation, so the stabilization forces
do not contribute to the constant strain field.  Therefore, all have a quadratic rate of
convergence in the displacement error norm.  The major difference between the methods is
in the way the evaluation of the magnitude of the stabilization forces.

Flanagan and Belytschko (1981) were motivated by the desire to keep the stabilization
forces small so they would not interfere with the solution or cause locking.  This
stabilization has the drawback of requiring a user specified parameter.  A bending
dominated solution can depend significantly on the value of the parameter which is
undesirable.

Using mixed methods, Belytschko and Bachrach (1986) chose strain and stress fields
that more closely resemble the strength of materials solution of elastic deformation.   Thus,
they were able to use stabilization to improve to the accuracy of bending solutions.  They
obtain very accurate bending solutions with very few elements with elastic material.  Mixed
method stabilization is dependent only on material properties and element geometry; no user
specified parameter is needed.

The Simo-Hughes form of the assumed strain method has also been used to develop
stabilization.  The assumed strain fields are motivated in the same way as the mixed method
elements, and the resulting stabilization is nearly the same.  As with mixed method
stabilization, no user specified parameter is needed.  The most noticeable difference
between assumed strain and mixed-method stabilization is in the derivation.  Assumed
strain stabilization is much simpler.  As we will see in Chapter 2, a major benefit of this
simplification is the ability to derive stabilization for the three dimensional 8 node
hexahedral element.

The relative performance of these elements is problem dependent; thus QBI and
ASQBI are very accurate for elastic bending, but they do not perform as well for elastic-
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plastic problems.  Although it is not so accurate for elastic bending, ADS may be a good
choice since it is very simple to implement and does not require knowledge of the material's
Poisson's ratio.  It's performance should exceed that of the other 1-point elements for
elastic-plastic solutions.  If the Poisson's ratio of the material is known, the ASQBI strain
field with 2-point integration will provide both accurate elastic bending and reasonable
elastic-plastic performance at a slightly higher cost.
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CHAPTER 9
SHELLS AND STRUCTURES

DRAFT
by Ted Belytschko
Northwestern University
Copyright 1997

9.1 INTRODUCTION

Shell elements and other structural elements are invaluable in the modeling of
many engineered components and natural structures.  Thin shells appear in many
products, such as the sheet metal in an automobile, the fuselage, wings and rudder of an
airplane, the housings of products such as cell phones, washing machines, computers.
Modeling these items with continuum elements would require a huge number of elements
and lead to extremely expensive computations. As we have seen in Chapter 8, modeling a
beam with hexahedral continuum elements requires a minimum of about 5 elements
through the thickness.  Thus even a low order shell element can replace 5 or more
continuum elements, which improves computational efficiency immensely.  Furthermore,
modeling thin structures with continuum elements often leads to elements with high
aspect ratios, which degrades the conditioning of the equations and the accuracy of the
solution. In explicit methods, continuum element models of shells are restricited to very
small stable time steps.  Thus it can be seen that structural elements are very useful in
engineering analysis.

Structural elements are classified as:
1. beams, in which the motion is described as the function of a single independent

variable;
2. shells, where the motion is described as a function of two independent

variables;
3. plates, which are flat shells.

Plates are usually modeled by shell elements in computer software. Since they are just
flat shells, we will not consider plate elements separately.  Beams on the other hand,
require some additional theoretical considerations and provide simple models for learning
the fundamentals of structural elements, so we will devote a substantial part of this
chapter to beams.

There are two approaches to developing shell finite elements:
1. develop the formulation for shell elements by using classical strain-

displacement and momentum (or equilibrium) equations for shells to develop
a weak form of the momentum (or equilibrium) equations;

2. develop the element directly from a continuum element by imposing the
structural assumptions on the weak form or on the discrete equation; this is
called the continuum based (CB) approach.

The first approach is difficult, particularly for nonlinear shells, since the governing
equations for nonlinear shells are very complex and awkward to deal with; they are
usually formulated in terms of curvilinear components of tensors, and features such as
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variations in thickness, junctions and stiffeners are generally difficult to incorporate.
There is still disagreement as to what are the best nonlinear classical shell equations.  The
CB (continuum-based) approach, on the other hand, is straightforward, yields excellent
results, is applicable to arbitrarily llarge deformations and is widely used in commercial
software and research.  Therefore we will concentrate on the CB methodology.  It is also
called the degenerated continuum approach; we prefer the appellation continuum based,
coined by Stanley(1985),  since there is nothing degenerate about it.

The CB methodology is not only simpler, but intellectually a more appealing
appraoch than classical shell theories for developing shell elements.  In most plate and
shell theories, the equilibrium or momentum equations are developed by imposing the
structural assumptions on the motion and then using the principle of virtual work to
develop the partial differential equations for momentum balance or equilibrium.  The
development of a weak form for these shell momentum equations than entails going back
to the principle of virtual work.  In the CB approach, the kinematic assumptions are either

1. imposed on the motion in the weak form of the momentum equations  for
continua or

 2. imposed directly on the discrete equations for continua.

Thus the CB shell formulation is a more straightforward way of obtaining the discrete
equations for shells and structures.

We will begin with a description of beams in two dimensions.  This will provide a
setting for clearly and easily describing the assumptions of various structural theories and
comparing them with CB beam elements.  In contrast to the schema in previous Chapters,
we will begin with the implementation, for in the implementation the simplicity and key
features of the CB approach are most transparent.  We will then examine CB beam
elements more thoroughly from a theoretical viewpoint.

The CB approach is subsequently employed for the development of shell
elements.  Again, we begin with the implementation, illustrating how many of the
techniques developed for continuum elements in the previous chapters can be applied
directly to shells.  The CB shell theory developed here is a synthesis of various
approaches reported in the literature but also incorporates a new treatment of changes in
thickness due to large deformations and conservation of matter.  As part of this treatment,
the methodologies for describing large rotations in three dimensions are described.

Two of the pitfalls of CB shell elements are then examined: shear and membrane
locking.  These phenomena are examined in the context of beams but the insights gained
are applicable to shell elements.  Methods for circumventing these difficulties by means
of assumed strain fields are described and examples of elements which alleviate shear and
membrane locking are given.

We conclude with a description of 4-node quadrilateral shell elements that
evaluate the internal nodal forces with one stack of quadrature points, often called one-
point quadrature elements.   These elements are widely used in explicit methods and large
scale analysis.  Several elements of this genre are reviewed and compared and the
techniques for consistently controlling the hourglass modes which result from the
underintegration are described. 

9.2   TWO DIMENSIONAL BEAMS
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9.2.1. Governing Equations and Assumptions.  In this Section the CB theory
is developed for beams.  In addition, we develop a beam element based on classical beam
theory.

The governing equations for structures are identical to those for continua:
1. conservation of matter
2. conservation of linear and angular momentum
3. conservation of energy
4. constitutive equations
5. strain-displacement equations

The key feature which distinguishes structures from continua is that assumptions are
made about the motion and the state of stress in the element.  In other words, the motion
is constrained so that it satisfies certain hypothesis which are based on experimental
observations on the motion of thin structures and shells.  The assumptions on the motion
are called kinematic assumptions, the assumptions on the stress field are called kinetic
assumptions.

 The major kinematic assumption concerns the motion of the normals to the
midline (also called reference line) of the beam.   In linear structural theory, the midline is
usually chosen to be the loci of the centroids of the cross-sections of the beam.  However,
the selection of a reference line has no effect on the response of a CB element: any line
which corresponds approximately to the shape of the beam may be chosen as the
reference line.  The choice of reference line only effects the values of the resultant
moments; the stresses and the overall response are not affected.  We will use the terms
reference line and midline interchangeably, noting that even when the term midline is
used the precise location of this line relative to the cross-section of the beam is irrelevant
in a CB element.  The plane defined by the normals to the midline is called the normal
plane.  Fig. 9.2 shows the reference line and normal plane for a beam.

P

C

Euler Bernonlli assumption

P

C

Mindlin - Reissner 
assumption (exaggerated)

P

C x

y n
reference line

normal plane
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Figure 9.2.  Motion in an Euler-Bernoulli bean and a shear (Mindlin-Reissner) beam; in the Euler-Bernoulli
beam, the normal plane remains plane and normal, whereas in the shear beam the normal plane remains
plane but not normal.

Two types of beam theory are widely used: Euler-Bernoulli beam theory and
shear beam theory.   The kinematic assumptions of these theories are:

1. in Euler-Bernoulli beam theory the planes normal to the midline are
assumed to remain plane and normal; this is also called engineering beam
theory while the corresponding shell theory is called the Kirchhoff-Love
shell theory;

2. in shear beam theory the planes normal to the midline are assumed to
remain plane; this is also called Timoshenko beam theory, and the
corresponding shell theory is called the Mindlin-Reissner shell theory;

Euler-Bernoulli beams, as we shall see shortly, do not admit any transverse shear,
whereas beams governed by the second assumption do admit transverse shear.  The
motions of an Euler-Bernoulli beam are a subset of the motions encompassed by shear
beam theory.

For the purpose of describing the consequences of these kinematic assumptions,
we consider a straight beam along the x-axis in two dimensions as shown in Fig. 9.2.  Let
the x-axis coincide with the midline and the y-axis with the normal to the midline.  We
consider only the instant when the beam is in the configuration described, so the
following equations do not constitute a nonlinear theory.  We will first express the
kinematic assumptions mathematically and develop the rate-of-deformation tensor; the
rate-of-deformation will have the same properties as the linear strain since the equations
for the rate-of-deformation can be obtained by replacing velocities by displacements in
the linear strain equations.   The aim of the following is to illustrate the consequences of
the kinematic assumptions on the strain field, not to construct a theory which is worth
implementing.

9.9.2. Timoshenko (Shear Beam) Theory.  We first describe the shear beam
theory.  This beam thoery is usually called Timoshenko beam theory.  The major
assumption of this theory is that the normal planes are assumed to remain plane, i.e. flat.
Thus the planes normal to the midline rotate as rigid bodies.  Consider the motion of a
point P whose orthogonal projection on the midline is point C.  If the normal plane
rotates as a rigid body, the velocity of point P relative to the velocity of point C is given
by

vCP = ω × r (9.2.1a)

where ω  is the angular velocity of the plane and r  is the vector from C to P.  In two
dimensions, the only nonzero component of the angular velocity vector of the plane is the

z-component, so   ω = ˙ θ ez ≡ωez  .  Since r = yey , the relative velocity is

 vCP = ω × r =− yωex .  (9.2.1b)

The velocity of any point along the midline is only a function of x, so

vM x( ) = vx
M x( )ex + vy

M x( )ey (9.2.1c)
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The velocity of any point in the beam is then given by adding the relative velocity
(9.2.1b) to the midline velocity

v = vM x( ) +ω × r = vM x( )− yωex (9.2.1d)

The x-component of the total velocity is obtained form the above:

  vx x, y( ) = vx
M x( ) − yω x( ) (9.2.2)

where vx
M x( )  is the x-component of the velocity of the midline and   

˙ θ x( )  is the angular
velocity of the normal to the midline.  The y-component of the velocity is equivalent to
that of the midline through the depth of the beam, so

  vy x, y( ) = vy
M x( ) (9.2.3)

Applying the definition of the rate-of-deformation 
  
Dij = sym v i, j( ) , see Section 3.3.2,

shows that the rate-of-deformation for a Timoshenko beam is given by

  
Dxx = vx, x

M − yω ,x , Dyy = 0 , Dxy =
1

2
vy ,x

M − ω( ) (9.2.4a-c)

It can be seen that the only nonzero components of the rate-of-deformation are the axial
component, Dxx , and the shear component, Dxy , the latter is called the transverse shear.

It can be seen immediately from (9.2.2) and (9.2.3) that the dependent variables
vi

M x( )  and θ x( )  need only be C0  for the rate-of-deformation to be finite throughout the
beam.  Thus the standard isoparametric shape functions can be used in the construction of
shear beam finite elements.  Theories for which the interpolants need only be C0  are
often called C0  structural theories.

9.2.3. Euler-Bernoulli Theory.  In the Euler-Bernoulli or engineering beam
theories, the kinematic assumption is that the normal remains normal and straight.
Therefore the angular velocity of the normal is given by the rate of change of the slope of
the midline

  ω = vy ,x
M

By examining Eq. (9.2.4c) it can be seen that the above is equivalent to requiring the
shear rate-of-deformation Dxy  to vanish, which implies that the angle between the normal
and the midline does not change, i.e. the normal remains normal.  The axial displacement
is then given by

  vx x, y( ) = vx
M x( ) − yvy, x

M x( )

The rate-of-deformation in Euler-Bernoulli (or engineering) beam theory is given by
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  Dxx = vx, x
M − yvy ,xx

M , Dyy = 0 , Dxy = 0

Two features are noteworthy in the above:
1.  the transverse shear vanishes;
2.  the second derivative of the velocity appears in the expression for the rate-of-

deformation tensor, so the velocity field must be C1  for the rate-of-
deformation to be well-defined.

Whereas in the Timoshenko beam, two dependent variables are needed, only a single
dependent variable is needed for the Euler-Bernoulli beam.  Similar reductions in the
number of unknowns take place in the corresponding shell theories: a Kirchhoff-Love
shell theory only has three dependent variables, whereas a Mindlin-Reissner theory has
five dependent variables (six are often used in practice; this is discussed in Section 9.4.
This type of structural theory is often called a C1  theory because of the need for C1

approximations.  The requirement for C1 approximations is the biggest disadvantage of
Euler-Bernoulli and Kirchhoff-Love theories, since C1  approximations are difficult to
construct in more than one dimension.  For this reason,  C1  structural theories are seldom
used in software except for beams.  Beam elements are often based on Euler-Bernoulli
theory because C1  interpolants are easily constructed in one dimension.  Theories which
require C1  interpolants are often called C1  structural theories.

Transverse shear is of significance only in thick beams.  However Timoshenko
beams Mindlin-Reissner shells are frequently used even when transverse shear is not
physically important.  For thin beams, the transverse shears in Timoshenko beams also go
to zero in well-behaved elements.  Thuis the normality hypothesis, which implies that
transverse shear vanishes for thim beams, is a trend also observed in numerical solutions
and analytic solutions as the thickness decreases.

9.2.4. Discrete Kirchhoff and Mindlin-Reissner Theories.  A third
approach, which is only used in numerical method, are the discrete theories.  In the
discrete Kirchhoff theory, the Kirchhoff-Love assumption is only applied discretely, i.e.
at a finite number of points, usually the quadrature points.  Transverse shear then
develops at other points in the element but it is ignored.  Similarly, discrete Mindlin-
Reissner elements can be formulated by imposing these assumptions discretely.

9.3  DEGENERATED CONTINUUM BEAM .

In the following, the continuum based (CB) formulation for a beam in two
dimensions is developed.  In this development we will impose the kinematic assumptions
on the discrete equations, i.e. the continuum finite element will be modified so that it
behaves like a shell.  In the next Section, we will develop the CB beam by imposing the
kinematic assumption on the motion before writing the weak form.  These two sections
will introduce many of the concepts and techniques which are used in the development of
CB shell elements.  The  elements to be developed are applicable to nonlinear materials
and geometrical nonlinearities.  Either an updated Lagrangian or a total Lagrangian
approach can be used.  However,  Lagrangian elements are almost always used for shells
and structures because they consist of closely separated surfaces which are difficult to
treat with Eulerian elements.

We will not go through the steps followed in Chapters 2, 4, and 7 of developing a
weak form for the momentum equation and showing the equivalence to the strong form,
since we will use the discrete equations for continua.  The essence of the CB beam
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approach is to impose the kinematic assumption on the motion of continuum elements.
We will first describe how this is done directly on the discrete continuum equations.

ξ

η

parent element

master nodes

slave nodes

1+

2+

1−

2−

3+

3−

1

2

3

director

Figure 9.3.  A three-node CB beam element and the underlying 6-node continuum element; the two
notations for slave nodes of the underlying continuum element by two conventions are shown with the
initial and current configurations.

9.3.1. Definitions and Nomenclature. A finite element model of a CB beam is
shown in Figure 9.3; a 6-node quadrilateral is shown here as the underlying continuum
element, but any other contiuum element with nN  nodes on the top and bottom surfaces
can also be used.  The parent element for the continuum element is also shown.  As can
be seen  in Fig. 9.3, the continuum element only has nodes on the top and bottom surfaces
(the surfaces are lines in two dimensional elements), for as will become clear, the motion
must be linear in η .  The reference line may be placed anywhere, but we will place it on
the line η = 0 for convenience.

The lines of constant ξ  are called fibers  (they are also called pseudonormals), the
unit vector along each fiber is called a director, which is denoted by p .  The directors
play the same role in the CB theory as normals in the classical Mindlin-Reissner theory,
hence the alternate name pseudonormals.  Lines of constant η  are called lamina.

Master nodes are introduced at the intersections of the fibers connecting nodes of
the continuum element with the reference line.  The degrees-of-freedom of these nodes
describe the motion of the beam, and the equations of motion will be formulated in terms
of generalized forces and velocities at these nodes.  The original nodes of the continuum
element on the top and bottom surfaces are designated as slave nodes.  Each master node
is associated with a pair of slave nodes along a common fiber, see Fig. 9.3.  The slave
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nodes are indicated either by superposed bars or by superscript plus and minus signs on
the node numbers: thus node I+  and I−  are slave nodes associated with master node I and

lie on the top (+) and bottom (-) surfaces of the beam;   I
*  are alternate node numbers of

the continuum element.  Each triplet of nodes I− , I , and I+   is collinear and lie on the
same fiber.  The appellations "top" and "bottom" have no exact definition; either surface
of the beam can be designated as the "top" surface.

The two sets of node numbers for the continuum element are related by.

  

I* = I +   

I* = I− + nN

               
  

I+ = I* for  I* ≤ nN   

I− = I* - nN for I* > nN

(9.3.0)

For each point in the beam, a corotational coordinate system is defined with x
tangent to the lamina; y then corresponds to the normal direction.

9.3.2. Assumptions.   The following assumptions are made:
1. the fibers remain straight;
2. the element is in a state plane stress, so

  
ˆ σ yy = 0 (9.3.1)

3. the elongation of fibers is governed by conservation of matter
and/or the constitutive eqaution

The first assumption will be called the modified Mindlin-Reissner assumption in this
book.  It differs from what we call the classical Mindlin-Reissner assumption, which
requires the normal to remain straight; the fibers are not initially normal to the midline.
The resulting theory is similar to a single director Cosserat theory.  Although the shear
beam theory is called a Timoshenko beam theory, we will use the appellation modified
Mindlin-Reissner for this assumptions for both beams and shells.

For the CB beam element to satisfy the classical Mindlin-Reissner assumptions,  it
is necessary for the fibers be aligned as closely as possible with the normal to the midline.
This can be accomplished by placing the slave nodes so that the fibers are as close to
normal to the midline as possible in the initial configuration.  Otherwise the behavior of
the degenerated beam element may deviate substantially from classical Mindlin-Reissner
theory and may not agree with the physical behavior of beams.  From exercise, it can be
seen that it is impossible to align the fibers with the normal exactly along the entire

length of the element when the motion of the continuum element is  C0 .

Instead of the third assumption, many authors assume that the fibers are
insxtensible.  Inextensibility contradicts the plane stress assumption: the fibers are usually
close to the   ̂ y  direction and so if   

ˆ σ yy = 0 , the velocity strain in the   ̂ y  direction generally
can not vanish.  The contradiction is reconciled by not using the continuum displacement

field to compute   
ˆ D yy ; instead,   

ˆ D yy  is computed by the constitutive eqaution from the

requirement that   
ˆ σ yy = 0 . 

The assumption of constant fiber length is inconsistent with the conservation of
matter: if the beam element is stretched, it must become thinner to conserve matter.
Conservation of matter is usually imposed through the constitutive equation.  For
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example, in plasticity, conservation of matter is reflected in the isochoric character of the
plastic strains, see Chapter 5.  Therefore, if the thickness strain is calculated through the
constitutive equation via the  plane stress requirement, conservation of matter is enforced.
The important feature of the third assumption is that the extension of the fibers is not
governed by the equations of motion or equilibrium.  From the third assumption, it
follows automatically that the equations of motion or equilibrium associated with the
thickness modes are eliminated from the system.

The third assumption can be replaced by an inextensibility assumption if the

change is thickness is small.  In that case, the thickness velocity strain    
ˆ D yy  is still

computed by the constitutive equation, but the effect of the thickness strain on the
position of the slave nodes is neglected, so that the nodal internal forces do not reflect
changes in the thickness.  The theory is then applicable only to problems with moderate
strains (on the oder of 0.01).  This approach is taken in the following description of beam
motion.  In Section 9.5 we describe a methodlogy that completely accounts for thickness
strains.

We have not given the plane stress condition in terms of the PK2 stress or
nominal stress, for unless simplifying assumptions are made, they are more complex than
(9.3.1): the plane stress condition requires that the   ̂ y -component of the physical stress

vanish, which is not equivalent to requiring   
ˆ S 22  to vanish.  However, since the plane

stress requirement is only an assumption which is almost never satisfied exactly in

physical beams, the use of the slightly different condition   
ˆ S 22 = 0 is often acceptable,

particularly for thin beams where p  and   ̂ y  are collinear. This is examined further in
Exercise 9.?.

9.4.3. Motion. The motion of the beam is described by translations of the master
nodes, x I t( ) , yI t( )  and rotations of the nodal fibers, which are denoted by θ I t( ) .  To
develop this form of the motion, we begin with the motion of the element in terms of the
slave node (the nodes of the underlying continuum element) position vectors by

  
x ξ, t( ) = x

I+ t( )N
I+ ξ,η( )

I+ =1

nN

∑ + x
I− t( )N

I− ξ,η( )
I− =1

nN

∑ = x
I* t( )N

I*
ξ,η( )

I* =1

2nN

∑ (9.3.2)

In the above   x
T = x , y[ ] ,

  
N

I* ξ,η( )  are the standard shape functions for continua

(indicated by asterisks or superscripts "+" and "-" signs on nodal index) and nN  is the
number of nodes along the top or bottom surface.

The shape functions of the underlying continuum must be linear in η  for the
above motion to be consistent with the modified Mindlin-Reissner assumption.
Therefore the parent element can only have two nodes along the η  direction, i.e. there
can be only two slave nodes along a fiber.  The velocity field is obtained by taking the
material time derivative of the above, which gives

  
v ξ,  t( ) = v

I+ t( )N
I+ ξ,η( )

I+=1

nN

∑ + v
I− t( )N

I− ξ,η( )
I− =1

nN

∑ = v
I* t( )N

I* ξ,η( )
I* =1

2nN

∑ (9.3.2b)
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We now impose the inextensibility assumption and the modified Mindlin-Reissner
assumptions on the motion of the slave nodes

x
I + t( ) = x I t( ) + 1

2 hI
0pI t( )         x

I − t( ) = x I t( ) − 1
2 hI

0pI t( ) (9.3.3)

where pI t( )  is the director at master node I, and hI
0  is the initial thickness  of the beam at

node I (or more precisely a pseudo-thickness since it is the distance between the top to
bottom surfaces along a fiber, not along the normal).  The director at node I is a unit

vector along the fiber I− , I , I+( ) , so the current nodal directors are given by

  
p I t( ) =

1

hI
0 x

I+ t( ) − x
I− t( )( ) = ex cosθ I + ey sin θ I (9.3.4a)

where e x  and e y  are the global base vectors.  The above can also be derived by
subtracting (9.3.3b) from (9.3.3a).  The initial nodal directors are

  
p I

0 t( ) =
1

hI
0 X

I+ − X
I−( ) = e x cosθ I

0 + ey sin θ I
0

The initial thickness is given by

hI
0 = x I+ 0( ) − x I − 0( )          (9.3.4c)

From. (9.3.3) it can be shown that if hI = hI
0 , then the fiber through node I is inextensible,

i.e. x
I + − x

I−  is constant during the motion; it will be shown in Section 9.4 that all fibers
of the element remain constant in length when the nodal fibers remain constant in length.

The velocities of the slave nodes are obtained by taking the material time
derivative of (9.3.3), yielding

v I+ t( ) = v I t( )+ 1
2 hI

0ω I t( ) ×p I t( )          v I− t( ) = v I t( )− 1
2 hI

0ω I t( ) ×p I t( ) (9.3.5)

where we have used (9.2.1) to express the nodal velocities in terms of the angular

velocities, noting that the vectors from the master node to the slave nodes are 1
2 hI

0pI t( )
and − 1

2 hI
0pI t( ) for the top and bottom slave nodes, respectively.  Since the model is two-

dimensional,   ω = ωzez ≡ ˙ θ ez  and the slave node velocity can be written by using (9.3.4a),
(9.3.4b), and (9.3.5) as:

  
v

I+ = v I −ωz y
I+ − yI( )ex − x

I+ − xI( )ey( ) = v I − 1
2 ωzhI

0 ex sinθ −ey cosθ( ) (9.3.6a)

  
v

I− = v I −ωz y
I− − yI( )ex − x

I − − xI( )ey( ) = v I − 1
2 ωzhI

0 ex sinθ −ey cosθ( ) (9.3.6b)
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The motion of the master nodes is described by three degrees of freedom per node

d I t( ) = uxI
M uyI

M θ I[ ]T
          

  
˙ d I t( ) = vxI

M vyI
M ωI[ ]T

(9.3.6)

Equation (9.3.6)  can be written in matrix form as

  

v
I+

v
I−

 
 
 

 
 
 

slave

=

v
xI+

v
yI+

v
xI−

v
yI−

 

 
  

 
 
 

 

 
  

 
 
 

= TI
˙ d I  (9.3.7a)

Recall that we are not using the summation convention on nodal indices in this Chapter.
From a comparison of (9.3.7a) and (9.3.6) we can see that

  

TI =

1 0 y I − y
I+

0 1 x
I+ − xI

1 0 y I − y
I−

0 1 x
I− − x I

 

 

 
 
 
 

 

 

 
 
 
 

˙ d I =
vxI

vyI

ωI

 
 
 

  

 
 
 

  
(9.3.7b)

The velocities of the master nodes are the degrees of freedom of the discrete model.  We
can see from the above that the discrete variables characterizing the motion of the beam
are the two components of the velocity of the midline and the angular velocity of the
node.

9.2.4.3. Nodal Forces.  The procedure for calculating the internal nodal forces at the slave
nodes in the CB approach is almost identical to that of the continuum element.  The nodal
velocities of the underlying continuum element are obtained from the master nodal
velocities by (9.3.7).  The continuum element procedures as described in Chapter 4 are
then used to obtain the nodal internal forces at the slave nodes via the strain-displacement
and constitutive equations.

The master nodal internal forces are related to the slave nodal internal forces by
the transformation rule given in Section 4.5.6, Eq. (4.5.36).  Since the slave nodal
velocities are related to the master nodal velocities by (9.3.7), the nodal forces are related
by

f I
mast =

fxI

fyI

mI

 
 
 

  

 
 
 

  
= TI

T f I+

f I−

 
 
 

 
 
 

slave

=
1 0 1 0

0 1 0 1

y
I

− y
I + x

I+ − x
I

y
I

− y
I− x

I− − x
I

 

 

 
 
 

 

 

 
 
 

fxI +

fyI +

fxI −

fyI −

 

 
  

 
 
 

 

 
  

 
 
 

(9.3.8)

The external nodal forces at the master nodes can be obtained from the slave node
external forces by the same transformation.  The column matrix of nodal forces consists
of the two force components fxI   and fyI  and the moment mI .  It can readily be seen that
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they are conjugate in power to the velocities of the master nodes, i.e. the power of the
forces at node I is given by v I ⋅f I ; the superscripts "mast" have been dropped.

The major difference from the procedures in the standard continuum element is
that in the evaluation of the constitutive law for the CB beam, the plane stress assumption
(9.3.1) must be observed.  Therefore, it is convenient to transform components of the
stress and velocity strain tensors at each point of the beam to the corotational coordinate
systems    ̂  x ,ˆ y ,.   For this purpose, local base vectors   

ˆ e i  are constructed so that   
ˆ e x  is

tangent to the lamina and   
ˆ e y  is normal to the lamina, see Fig. 9.4.

ˆ e y
ˆ e x

ˆ e y ˆ e x

p(−1,0, t)

ˆ e y
ˆ e x

p(1,0, t)

midline

lamina
fiber

Figure 9.4 Schematic of DC beam showing lamina, the corotational unit vectors ˆ e x , ˆ e y  and the director

p(ξ ,t)  at the ends; note p  usually does not coincide with ˆ e y .

The base vectors at any point are given by

  

ˆ e x =
x ,ξ e x + y ,ξ e y

x ,ξ
2 +y ,ξ

2( )1/ 2 ,              

  

ˆ e y =
−y,ξ e x + x ,ξ ey

x ,ξ
2 + y,ξ

2( )1/ 2 (9.3.9)

  
x ,ξ = x

I* N
I* ,ξ ξ ,η( )

I 
∑ y,ξ = y

I* N
I* ,ξ ξ ,η( )

I 
∑

The rate-of-deformation is transformed to the corotational system by Box 3.2?????:

  ̂  D = RTDR     where  
  
R =

ex ⋅ˆ e x e x ⋅ˆ e y
ey ⋅ˆ e x e y ⋅ˆ e y

 

 
 

 

 
 (9.3.10)

In the evaluation of the stress, the plane stress constraint   
ˆ σ yy = 0  must be

observed.  If the constitutive equation is in rate form, the constraint is expressed in the
rate form   D

ˆ σ yy Dt = 0 .  For example, for an isotropic hyperelastic material, the stress
rate is given by  LIU, CORRECTION NEEDS TO BE PUT IN
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D

Dt
ˆ σ { } =

D

Dt

ˆ σ xx
ˆ σ yy
ˆ σ xy

 

 
 

 
 

 

 
 

 
 

=
D

Dt

ˆ σ xx

0
ˆ σ xy

 

 
 

 
 

 

 
 

 
 

=
Eσ G

1−υ2

1 υ 0

υ 1 0

0 0 1
2 1−υ( )

 

 

 
 
 

 

 

 
 
 

ˆ D xx
ˆ D yy

2 ˆ D xy

 

 
 

 
 

 

 
 

 
 

(9.3.11)

In the above, the rate form of the plane stress condition   D
ˆ σ yy Dt = 0  has been imposed

to give   
ˆ D yy =−ν ˆ D xx . Solving for the two other components gives

  

Dˆ σ xx

Dt
= EσG ˆ D xx ,          

  

Dˆ σ xy

Dt
=

Eσ G

2 1+υ( )
ˆ D xy (9.3.12)

As seen in the above, in an isotropic material, the rate of the axial stress is related to the

axial rate-of-deformation by the tangent modulus   E
σG  for the Green-Naghdi rate.

For more general materials (including laws which lack symmetry in the moduli,
such as nonassociated plasticity) the rate relation for the stress can be expressed as

  

D

Dt

ˆ σ xx

0
ˆ σ xy

 

 
 

 
 

 

 
 

 
 

=

ˆ C 11
ˆ C 12

ˆ C 13
ˆ C 21

ˆ C 22
ˆ C 23

ˆ C 31
ˆ C 32

ˆ C 33

 

 

 
 
 

 

 

 
 
 

σG ˆ D xx
ˆ D yy

2 ˆ D xy

 

 
 

 
 

 

 
 

 
 

(9.3.13)

where   
ˆ C  is matrix of instantaneous moduli for the Green-Naghdi rate of Cauchy stress, as

in plastic models given in Chapter 5, and the second equation enforces the plane stress
condition.

The stress   ̂ σ  can be considered corotational, since the base vectors 
  
ˆ e x ,ˆ e y( )  rotate

almost exactly with the material.  The rotation given through (9.3.9) differs somewhat
from that given by a polar decomposition, but is usually a better rotation for composite or
reinforced beams than that given by polar decomposition.  The fibers of a composite and
reinforcements tend to remain aligned with the lamina, and with this rotation, the tangent

modulus   
ˆ C 11  pertains to the lamina direction.  If the system 

  
ˆ e x ,ˆ e y( )  is not a good enough

approximation of the rotation, it can be set by the polar decomposition theorem.
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ˆ σ x

η

ˆ σ x

η

η = constant

reference

line

Figure 9.5.  A stack of quadrature points and examples of axial stress distributions for an elastic-plastic
material.

The slave internal nodal forces  are obtained by the mechanics of the continuum
element Example 4. and the integrals in (E4.2.11) are evaluated by numerical quadrature
over the element domain.  Neither full quadrature (4.5.27) nor the selective-reduced
quadrature given (4.3.34b) can be used in a CB beam.  Both quadrature schemes result in
shear locking, to be described in Section 9.5.  Shear locking can be avoided in this
element by using a single stack of quadrature points along the axis ξ = 0  as shown in Fig.
9.5.  The number of quadrature points required in the η  direction depends on the material
law and the accuracy desired.  For a nonlinear hyperelastic material law, 3 Gauss
quadrature points are often adequate. For an elastic-plastic law, a minimum of 5
quadrature points is needed.  Gauss quadrature is not optimal for elastic-plastic laws since
the lack of smoothness in the elastic-plastic constitutive response results in stress
distributions with discontinuous derivatives, such as shown in Fig. 9.5.  Therefore, the
trapezoidal rule is often used.

To illustrate the selective-reduced integration procedure which circumvents shear
locking, we consider a two-node beam element based on a 4-node quadrilateral
continuum element.  The nodal forces are obtained by integration with a single stack of
quadrature points at ξ = 0  to avoid shear locking.  The nodal forces at the slave nodes are
obtained by (see Section 4.5.4):

  

f
xI* , f

yI*[ ]int
= N

I* ,x   N
I* ,y[ ] σ xx σ xy

σ xy σyy

 

 
 

 

 
 w QaJξ

 

 
 

 

 
 

Q=1

nQ

∑
0,ηQ( )

(9.3.15)

where ηQ are the nQ  quadrature points through the thickness of the beam,  w Q  are the

quadrature weights, a  is the dimension of the beam in the z-direction and Jξ  is the
Jacobian determinant with respect to the parent element coordinates, (4.4.38).  Note that

the node numbers   I
*  can be related to the triplet number by Eq. (9.3.0) so the relationship

to Eq. (9.3.8) is easily established.  The stresses must be rotated back to the global system
prior to evaluating the nodal internal forces by (9.3.15).  The nodal internal forces can
also be evaluated in terms of the corotational system by
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fˆ x I* , fˆ y I*[ ]int
= NI , ˆ x   NI ,ˆ y [ ] ˆ σ xx

ˆ σ xy

ˆ σ xy 0

 

 
 

 

 
 

Rxx Ryx

Rxy Ryy

 

 
 

 

 
 w QaJξ

 

 
 

 

 
 

Q=1

nQ

∑
0,ηQ( )

(9.3.16)

The stress component   
ˆ σ yy  vanishes in (9.316) because of the plane stress condition.  The

corotational approach is of advantage because the plane stress condition is more easily
expressed in corotational components.  While the use of the corotational form of the
internal forces (9.3.16) eliminates the need to transform the stress components back to the
global system after the constitutive update, some of the computational advantage is lost
because the shape function derivatives must be evaluated in each corotational system.
This computational effort can be reduced by using only one or two corotational systems
per stack of quadrature points.

BOX?????

In summary, the procedure for computing the nodal forces in a CB beam element in a
corotational, updated Lagrangian approach is:

1. the positions and velocities of the slave nodes are computed by
(9.3.3) and (9.3.7) from the positions and velocities of the
master nodes;

2. the rate-of-deformation is transformed to the corotational
coordinate system at each quadrature point

3. the Cauchy stresses are computed at all quadrature points in the
corotational coordinates with the plane stress condition

  
ˆ σ yy = 0 enforced;

3.  the stresses are transformed back to the global coordinates;
3. the nodal internal forces are computed at the slave nodes by

standard method for continua, (E.4.2.11) as illustrated by
(9.3.15-16);

4.  the slave nodal forces are transformed to the master nodes by
(9.3.8).

9.2.4.4. Mass Matrix. The mass matrix of the CB beam element can be obtained by using

the transformation (4.5.39) using for   ̂  M  the mass matrix for the underlying continuum
element.

  M = TT ˆ M T (9.3.18a)

where

  

T =

T1 0 . 0

0 T2 . 0

. . . .

0 0 . TnN

 

 

 
 
 
 

 

 

 
 
 
 

(9.3.18b)

This mass matrix does not account for the time dependence of the T  matrix.  If we
account for the time dependence of T , the inertial force according to (4.5.42) is given by
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  f
inert = TT ˆ M T˙ v +TT ˆ M ̇ T v (9.3.17)

and   ̂  M  is given in Example 4.2 and TI  is given by (9.3.7).  The matrix   
˙ T I  is obtained by

taking a time derivative of (9.3.7b) and using the fact that for node I,
d

dt
ω I × rI( ) = ω I × ω I × rI( ) , which gives

  

˙ T I = ω

1 0 x I − x
I+

0 1 y I − y
I+

1 0 yI − y
I=

0 1 xI − x
I=

 

 

 
 
 
 

 

 

 
 
 
 

(9.3.19)

From (9.3.17) and (9.3.19), it can be seen that the acceleration of the CB element will
include a term proportional to the square of the angular velocity.  Consequently the
inertial term in the discrete ordinary differential equations are no longer linear in the
velocities and the time integration of the equations becomes more complex.  This second
term in (9.3.17) is usually neglected.

Either the consistent or lumped mass of the continuum element,   ̂  M ,  can be used
to generate the mass matrix for the CB beam element.  Equation (9.3.18a) does not yield
a diagonal matrix even when the diagonal mass matrix of the continuum element is used.

Two techniques are used to obtain diagonal matrices:
1. The consistent mass matrix of the quadrilateral is transformed by (4.5.39)
and the row sum technique is used.
2. The translational masses of the diagonal mass matrix are taken to be half
the mass of the element and the rotational mass is taken to be the rotational
inertia of half the beam about the node.

For a CB beam based on a rectangular 4-node continuum element, the second procedure
yields (this is left as an exercize)

  

M =
ρhI

0l0a0

420

210 0 0 0 0 0

0 210 0 0 0 0

0 0 αl0
2 0 0 0

0 0 0 210 0 0

0 0 0 0 210 0

0 0 0 0 0 αl0
2

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

(9.3.20)

whereα  is often treated as a scale factor for the rotational inertia.  This scale factor is
chosen in explicit codes so that the stable time step depends only on the translational
degrees of freedom, see Key and Beisinger (1971). LIU FILL IN

9.2.?. Equations of Motion.   The equations of motion at a node are given by

  M IJ
˙ v J + fI

int = fI
ext sum on J (9.3.21)
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where the nodalo forces and nodal displacements

f I =
fxI

fyI

mI

 
 
 

  

 
 
 

  
          

  

˙ d I =
vxI

vyI

ω I

 
 
 

  

 
 
 

  
(9.3.22)

which are the master degrees of freedom, i.e. The equations are identical in form to
(4.??).  For a diagonal mass matrix the equations can be when written out as

 

  

M11 0 0

0 M22 0

0 0 M33

 

 

 
 
 

 

 

 
 
 

II

˙ v xI

˙ v yI

˙ ω I

 
 
 

  

 
 
 

  
+

fxI

fyI

mI

 
 
 

  

 
 
 

  

ext

=
fxI

fyI

mI

 
 
 

  

 
 
 

  

int

(9.3.23)

where Mii , i =1 to 3 are the assembled diagonal masses at node I.  Although we have not
derived these equations explicitly, they follow from (4.??) since we have only made
transformation of variables. Showing this is left as an exercise.  For equilibrium
processes, the first term is dropped.

Tangent Stiffness. The tangential and load stiffnesses are obtained from the
corresponding matrices for the underlying continuum element by the transformation
(4.5.43).  However, the continuum stiffnesses must reflect the plane stress assumption.
This is illustrated in Example 9.1.  These matrices do not need to be rederived for CB
beams.

9.4.  ANALYSIS OF CB BEAM

In order to obtain a better understanding of the CB beam, it is worthwhile to examine its
motion from a viewpoint which more closely parallels classical beam theory.  The
analysis in this Section leads to discrete equations which are identical to those described
in the previous section.  It is more pleasing conceptually, but working in this framework
is more burdensome, since the many of the entities needed for a standard implementation,
such as the tangent stiffness and the mass matrix, have to be developed from scratch,
whereas in the previous approach they are inherited from a continuum element with small
modifications.

We start with the description of the motion.  Recall that in the underlying
continuum element, there are only two slave nodes along any fiber, i.e. in the thickness
direction of the beam, so that the motion is linear in η .   Consequently we can describe
the motion of the CB beam by

  x ξ ,η, t( ) = xM ξ, t( ) + η ξ,η( )p ξ, t( ) (9.4.1)

where

  
η ξ,η( ) = 1

2 ηh0 ξ( ) (9.4.2)

The independent variables ξ  and η  are curvilinear coordinates with η = 0 corresponding
to the reference line.  The top and bottom surfaces of the beam are given by η = 1 and
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η = −1, respectively.  Note that although we use the same nomenclature for the
curvilinear coordinates as for the parent element coordinates, (9.4.1) is independent of a
parent element and ξ  and η  are an arbitrary set of curvilinear coordinates.  The initial
configuration is given by writing (9.4.1) at the initial time:

  X ξ, η( ) = XM ξ( ) +η ξ,η( )p0 ξ( ) (9.4.3)

where p0 ξ( )  is the initial director and XM ξ( )  describes the initial reference line.

In this form of the motion, it is straightforward to show that all fibers are
inextensible if the nodal fibers are inextensible.  The length of a fiber is given by the
distance between the top and bottom surfaces along the fiber, i.e. the distance between the
points at  η = −1 and η = 1 for a constant value of ξ .  Using (9.4.3) it follows that the
length of any fiber in the deformed configuration is given by

  
x ξ,1, t( ) − x ξ, −1,t( ) = xM ξ,t( ) +

h0 ξ( )
2

p ξ, t( )
 

 
 

 

 
 − xM ξ ,t( )−

h0 ξ( )
2

p ξ , t( )
 

 
 

 

 
 

  
= h0 ξ( )p ξ, t( ) = h0 ξ( )

where the last step follows from the fact that the director p  is a unit vector.  Hence the

length of a fiber is always h0 ξ( ).

The displacement is  obtained by subtracting (9.4.3) from (9.4.1), which gives

  u ξ, η ,t( ) = uM ξ ,t( ) +η ξ,η( ) p ξ , t( ) − p0 ξ( )( ) (9.4.4)

Because the directors are unit vectors, the second term on the RHS of the above is a

function of a single variable, the angle 
  
θ ξ ,t( ) , which is measured counterclockwise from

the x-axis as shown in Fig. 9.4.  This can be clarified by expressing the second term of
(9.4.4) in terms of the global base vectors:

u = uM +η ex cosθ − cosθ0( ) + ey sinθ − sinθ0( ) 
 

 
 (9.4.5)

θ0 ξ( )  is the initial angle of the director at ξ .  The velocity is the material time derivative
of the displacement (9.4.5):

  v ξ ,η , t( ) = vM ξ , t( ) + η ξ,η( )˙ p ξ ,t( ) (9.4.6)

Using (9.2.1a), the above can be written

v = vM +η ω × p (9.4.7)
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where 
  
ω ξ , t( )  is the angular velocity of the director.  Noting as before that the only

nonzero component of this angular velocity is normal to the plane, the vectors are
expressed in terms of the base vectors as follows

ω = ωez           p = ˆ e xcos ˆ θ +ˆ e ysin ˆ θ        v
M = ˆ v x

Mˆ e x + ˆ v y
Mˆ e y (9.4.7.b)

where   
ˆ θ  is the angle between the tangent and the director, as shown in Fig. 9.6.

q

n

ˆ y 

ˆ x 

p

ˆ θ 
θ 

θ 

Figure 9.6 Nomenclature for CB beam in two dimensions showing director p and normal n .

  The velocity can then be written as

  
v = ˆ v x

Mˆ e x + ˆ v y
Mˆ e y +η ω −̂  e xsin ˆ θ +ˆ e ycos ˆ θ ( ) (9.4.8)

We define vector q  by

  q = ez × p =−ˆ e x sin ˆ θ + ˆ e y cos ˆ θ (9.4.10)

 Then,

  v = vM + ˆ y ωq (9.4.11)

Noting (9.4.2) and Fig. 9.6, it can be seen that

  
η =

ˆ y 

sin ˆ θ 
=

ˆ y 

cos θ 
(9.4.11b)

The corotational components of the velocity are then obtained by writing (9.4.6) in the
corotational basis with (9.4.11) used to eliminate the y coordinate:
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ˆ v x
ˆ v y

 
 
 

 
 
 

=
ˆ v x

M

ˆ v y
M

 
 
 

 
 
 

+ ωˆ y 
−1

tanθ 
 
 
 

 
 
 

(9.4.12)

It can be seen by comparing the above to (9.2.2-3) that when θ = 0 , the above
corresponds exactly to the velocity field of classical Mindlin-Reissner theory, and as long
as θ  is small, it is a good approximation.  However, analysts often let θ  take on large

values, like 
π
4

, by placing the slave nodes so that the director is not aligned with the

normal.   When the angle between the director and the normal is large, the velocity field
differs substantially from that of classical Mindlin-Reissner theory.

 The acceleration is given by the material time derivative of the velocity:

   
˙ v = ˙ v M +η ˙ ω × p+ ω × ω× p( )( ) (9.4.9)

so as indicated in (9.3.17), the accelration depends quadratically on the angular velocities.

The dependent variables for the beam are the two components of the midline

velocity,   v
M ξ ,t( ) and the angular velocity   ω ξ,t( ) ; alternatively one can let the midline

displacement   u
M ξ ,t( )  and the current angle of the director,  θ ξ ,t( ), be the dependent

variables.  Thus the constraints introduced by the assumptions of the CB beam theory
change the dependent variables from the two translational velocity components to two
translational components and a rotation.  However, the new dependent variables are
functions of a single space variable, ξ , whereas the independent variables of the
continuum are functions of two space variables.  This reduction in the dimensionality of
the problem is the major benefit of structural theories.

The development of expressions for the rate-of-deformation tensor is somewhat
involved.  The following is based on Belytschko, Wong and Stolarski(1989) specialized
to two dimensions.  We start with the implicit differentiation formula (4.4.36)

  
L = v,x = v,ξx ,ξ

−1

  

ˆ D = sym
∂̂  v i
∂̂  x j

 

 
 

 

 
 =

∂ˆ v x
M

∂̂  x 
− ˆ y 

∂ω
∂̂  x 

1

2

∂ˆ v y
M

∂ˆ x 
−ω +

∂ω
∂ˆ x 

tan θ 
 

 
  

 

 
  

sym ω tan θ 

 

 

 
 
 

 

 

 
 
 

(9.4.13)

The effects of deviations of the director from the normal can be seen by comparing the
above with  (9.2.4).  The axial velocity strain, which is predominant in bending response,
agrees exactly with the Mindlin-Reissner theory: it varies linearly through the thickness
of the beam, with the linear field entirely due to rotation of the cross-section.  However,

the above transverse shear    
ˆ D xy  and normal velocity strains   

ˆ D yy  differ substantially from

those of the classical Mindlin-Reissner theory (9.2.4) when the angle   
ˆ θ  between the

director and the normal to the lamina is large.  These differences  effect the plane stress
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assumption.   The motion associated with the modified Mindlin-Reissner theory can
generate a significant nonzero axial velocity strain through Poisson effects.

The above tortuous approach is seldom used for the calculation of the velocity
strrains in a CB beam.  It makes sense only when the nodal internal fores are computed
from resultant stresses.  Otherwise the standard continuum expressions given in Chapter 4
are utilized.  The objective of the above development was to show the characteristics of
the velocity strain of a CB beam element, particularly its distribution through the
thickness of the beam.  The predominantly linear variation of the velocity strains through
the thickness is the basis for developing resultant stresses.

Resultant Stresses.  In classical beam and shell theories, the stresses are treated in
terms of their integrals, known as resultant stresses.  In the following, we examine the
resultant stresses for CB beam theory, but to make the development more manageable,
we assume the director to be normal to the reference surface, i.e. that  θ = 0 .  We
consider a curved beam in two dimensions with the reference line parametrized by r ;
0 ≤ r ≤ L , where r  has physical dimensions of length, in contrast to the curvilinear
coordinate ξ , which is nondimensional.  To define the resultant stresses, we will express
the virtual internal power (4.6.12) in terms of corotational components of the Cauchy
stress.  We omit the power due to  

ˆ σ yy , which vanishes due to the plane stress assumption
(4.6.12), giving

  
δPint = δˆ D x ˆ σ x +2δˆ D xy

ˆ σ xy)dAdr(
A
∫

0

L

∫ (9.4.13b)

In the above, the three-dimensional domain integral has been changed to an area integral
and a line integral over the arc length of the reference line.  The above integral is exactly
equivalent to the integral over the volume if the directors at the endpoints are normal to
the reference line.  If the directors are not normal to the reference line at the endpoints,
then the volume in (9.4.14) differs from the volume of the continuum element as shown
in Fig. 9.7.  This is  usually not significant.

reference line

n p

volume gained

volume lost

Figure 9.7 Comparison of volume integral in CB beam theory with line integral

Substituting (9.4.13b) into (9.4.13) gives
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δPint =
∂ δˆ v x

M( )
∂ˆ x 

ˆ σ xx

 

 
 
 

A
∫0

L
∫ −

∂ δω( )
∂̂  x 

ˆ y ̂  σ xx

          + −δω +
∂ δˆ v y

M( )
∂ˆ x 

 

 
 
 

 

 
 
 

ˆ σ xy

 

 
 
 dAdr

(9.4.14)

reference line

p

ˆ y 

ˆ x n

S

m

Figure 9.8.  Resultant stresses in 2D beam.
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9.9.  An example of external loads on a CB beam.

The following area integrals are defined

  

membrane force     n = ˆ σ xx
A
∫ dA

moment                 m =− yˆ σ xx
A
∫ dA

shear                     sy = ˆ σ xy
A
∫ dA

(9.4.15)

The above are known as resultant stresses or generalized stresses; they are shown in Fig.
9.8 in their positive directions.  The resultant n is the normal force, also called the
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membrane force or axial force.  This is the net force tangent to the midline due to the
stresses in the beam.  The moment m is the first moment of the stresses above the
reference line.  The shear force s is the net resultant of the transverse shear stresses.
These definitions correspond with the customary definitions in texts on structures or
mechanics of materials.

With these definitions, the internal virtual power (9.4.14) becomes

    

δPint =
∂ δˆ v x

M( )
∂ˆ x 

n

axial
1 2 4 3 4 

+
∂ δω( )

∂ˆ x 
m

bending
1 2 4 3 4 

+ −δω +
∂ δˆ v y

M( )
∂̂  x 

 

 
 
 

 

 
 
 q

shear
1 2 4 4 4 3 4 4 4 

 

 

 
 
 
 

 

 

 
 
 
 

0

L
∫ dr (9.4.16)

The physical names of the various powers are indicated.  The axial or membrane power is
the power expended on stretching the beam, the bending power the energy expended on
bending the beam.  The transverse shear power arises also from bending of the beam (see
Eq. (???)); it  vanishes for thin beams where the Euler-Bernoulli assumption is applicable.

The external power is defined in terms of resultants of the tractions subdivided
into axial and bending power in a similar way.  We assume t z = 0  and that p  is coincident
with   ̂ y  at the ends of the beam and consider only the tractions for the specific example
shown in Fig. 9.9; the director is assumed collinear with the normal, so only the terms in
classical Mindlin-Reissner theory are developed.  The virtual external power is obtained
from (B4.2.5), which in terms of corotational components gives

  

δPext = δˆ v xˆ t x
∗ + δˆ v ŷ  t y

∗( )dΓ +
Γ1∪Γ2

∫ δˆ v x
ˆ b x + δˆ v y

ˆ b y( )dΩ
Ω
∫ (9.4.17)

Substituting Eq. (9.4.12) into the above yields

  

δPext = δˆ v x
M − δωˆ y ( )̂  t x

∗ + δˆ v y
M( )̂  t y

∗( )dΓ
Γ1∪Γ2

∫

+ δˆ v x
M −δωˆ y ( )ˆ b x + δˆ v y

M( )ˆ b y( )dΩ
Ω
∫

(9.4.18)

The applied forces are now subdivided into those applied to the ends of the beam and
those applied over the interior.  For this example, only the right hand end is subjected to
prescribed tractions, see Fig. 9.9.  The generalized external forces are now defined
similarly to the resulotant stresses by taking the zeroth and first moments of the tractions:

  

n* = ˆ t x
∗dA,

Γ1

∫ s* = ˆ t y
∗dA,

Γ1

∫ m* =− ˆ y ̂ t x
∗

Γ1

∫ dA= (9.4.19)

where the last equality follows from the fact that the director is assumed normal to the
midline at the boundaries.  The tractions between the end points and the body forces are
subsumed as generalized body forces
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ˆ f x = ˆ t x
∗dΓ + ˆ b xdΩ

Ω
∫ ,

Γ2

∫ ˆ f y = ˆ t y
∗dΓ+ ˆ b ydΩ

Ω
∫ ,

Γ2

∫ M =− ˆ y ̂ t x
∗

Γ2

∫ dΓ+ ˆ y ̂  b ydΩ
Ω
∫ (9.4.20)

Since the dependent variables have been changed from vi x,  y( )  to vi
M r( ) and ω r( )  by the

modified Mindlin-Reissner constraint, the definitions of boundaries are changed
accordingly: the boundaries become the end points of the beam.  Any loads applied
between the endpoints are treated like body forces.  The boundaries with prescribed
forces are denoted by Γn , Γm  andΓs  which are the end points at which the normal (axial)
force, moment, and shear force are prescribed, respectively.  The external virtual power
(9.4.17), in light of the definitions (9.4.19-20), becomes

  

δPext = δ̂  v x
ˆ f x +δˆ v y

ˆ f y +δωM( )dr +∫ δˆ v xn*

Γn
+δˆ v ys

*

Γs
+δωm*

Γm
(9.4.21)

9.3.?. Boundary Conditions.  The velocity (essential) boundary conditions for the
CB beam are usually expressed in terms of corotational coordinates so that they have a
clearer physical meaning.  The velocity boundary conditions are

  

ˆ v x
M = ˆ v x

M∗      on Γˆ v x

ˆ v y
M = ˆ v y

M∗     on Γˆ v y

ω   = ω∗           on Γω

(9.4.18)

where the subscript on Γ  indicates the boundary on which the particular displacement is
prescribed.  The angular velocity. of course, is independent of the orientation of the
coordinate system so we have not superposed hat on it.

The generalized traction  boundary conditions are:

  

n = n*       on Γn

s = s∗        on Γs

m = m∗     on Γm

(9.4.19)

Note that (9.4.18) and (9.4.19) are sequentially conditions on kinematic and kinetic

variables which are conjugate in power.  Each pair yields a power, i.e.,   n
ˆ v x

M  is the power

of the axial force on the boundary,   s
ˆ v y

M  is the power of the transverse force and mω  is
the power of the moment.  Since variables which are conjugatge in power can not be
prescribed on the same boundary, but one of the pair must be prescribed on any
boundary, it follows then that

Γn ∪Γv x
=Γ Γn ∩Γv x

= 0

Γs ∪Γv y
= Γ Γs ∩Γvy

= 0

Γm ∪Γvω
=Γ Γm ∩Γω = 0

(9.4.20)
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So on a boundary point either the moment or rotation, the normal force or the velocity

  
ˆ v x

M , the shear or the velocity   
ˆ v y

M  must be prescribed, but no pair can be described on the
smae boundary.  Even for CB beams, boundary conditions are prescribed in terms of
resultants.  The velocity boundary conditions can easily be imposed on the nodal degrees
of freedom given in (9.3.22), since the midline velocities correspond to the nodal
velociities.  The traction boundary conditions are

Weak Form.   The weak form for the momentum equation for a beam is given by

  
δ P inert +δ P int = δ P ext ∀ δvx , δvy , δω( ) ∈U0 (9.4.21)

where the virtual powers are defined in (9.4.16)and (9.4.21) and   U0  is the space of

piecewise differentiable functions, i.e.C0 functions, which vanish on the corresponding

prescribed displacement boundaries.  The functions need only be  C0  since only the first
derivatives of the dependent variables appear in the virtual power expressions.

Strong Form.  We will not derive the strong form equivalent to (9.4.21) for an
arbitrary geometry.  This can be done, see Simo and Fox(1989) for example, but it is
awkward without curvilinear tensors.  Instead, we will develop the strong form for a
straight beam of uniform cross-section which lies along the x-axis, with inertia and
applied moments neglected.  Equation (9.4.21) can then be simplified to

  

δvx ,xn +δω ,xm+ δvy,x −δω( )s − δvx fx −δvy fy( )
0

L

∫ dx

− δvxn*( )
Γn

− δωm*( )
Γm

− δvys*( )
Γs

= 0

(9.4.22)

The hats have been dropped since the local coordinate system coincides with the global
system at all points.  The procedure for finding the equivalent strong form then parallels
the procedure used in Section 4.3.  The idea is to remove all derivatives of test functions
which appear in the weak form, so that the above can be written as products of the test
functions with a function of the resultant forces and their derivatives.  This is
accomplished by using integration by parts, which is sketched below for each of the terms
in the weak form:

  
δvx ,xn

0

L

∫ dx = −δvxn,x
0

L

∫ dx + δvxn( )
Γn

+ δvxn (9.4.23)

  
δω , xm

0

L

∫ dx = −δωm,x
0

L

∫ dx + δωm( ) Γm
+ δωm (9.4.24)

  
δvy, xs

0

L

∫ dx = −δvys,x
0

L

∫ dx + δvys( )
Γ s

+ δvys (9.4.25)

In each of the above we have used the fundamental theorem of calculus as given in
Section 2.? for a piecewise continuously differentiable function and the fact that the test
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functions vanish on the prescribed displacement boundaries, so the boundary term only
applies to the complementary boundary points, which are given by (9.4.20).  Substituting
(9.4.23) to (9.4.25) into (9.4.22) gives

  

δvx n,x + fx( )+ δω m,x + s( ) + δvy s ,x + fy( )( )
0

L

∫ dx +δvx n +δvy s +

δω m +−δvx n* −n( )
Γn

+δω m* − m( )
Γm

+δvy s* − s( )
Γ s

= 0

(9.4.26)

Using the density theorem as given in Section 4.3 then gives the following strong form:

  

n,x + fx = 0, s,x + fy = 0, m,x + s = 0,

n = 0, s = 0 , m = 0

n = n* on Γn , s = s* on Γs , m=m* onΓm

(9.4.27)

which are respectively, the equations of equilibrium, the internal continuity conditions,
and the generalized traction (natural) boundary conditions.

The above equilibrium equations are well known in structural mechanics.  These
equilibrium equations are not equivalent to the continuum equilibrium equations,

  σ ij , j + bi = 0.  Instead, they are a weak form of the continuum equilibrium equations.
Their suitability for beams is primarily based on experimental evidence.  The error due to
the structural assumption can not be bounded rigorously for arbitrary materials.  Thus the
applicability of beam theory, and by extension the shell theories to be considered later,
rests primarily on experimental evidence.

Finite Element Approximation.  When the motion is treated in the form (9.4.1) as
a function of a single variable, the finite element approximation is constructed by means
of one-dimensional shape functions  NI ξ( ) :

  
x ξ ,η, t( ) = x I

M t( )+η IpI t( )( )
I=1

nN

∑ N I ξ( ) (9.4.24)

As is clear from in the above, the product of the thickness with the director is
interpolated.  If they are interpolated independently, the second term in the above is
quadratic in the shape functions and differs from (9.3.2a).  It follows immediately from
the above that the original configuration of the element is given by

  
X ξ, η( ) = XI

M +η IpI
0( )

I =1

nN

∑ N I ξ( ) (9.4.25)

The displacement is obtained by taking the difference of (9.4.24) and (9.4.25),
which gives

  
u ξ, η ,t( ) = uI

M t( ) +η I p I t( ) −p I
0( )( )

I=1

nN

∑ NI ξ( )
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Taking the material time derivative of the above gives the velocity

  
v ξ ,η , t( ) = v I

M t( ) +η I ωez × pI t( )( )( )
I=1

nN

∑ NI ξ( )

This velocity field is identical to the velocity field generated by substituting (9.3.6) into
(9.5.2b).  Thus the mechanics of any element generated by this approach will be identical
to that of an element implemented directly as a continuum element with the modified
Mindlin-Reissner constraints applied only at the nodes, i.e. with the modified Mindlin-
Reissner assumptions applied to the discrete equations.  Therefore we will not pursue this
approach further.

(1 ),1+

2 ( ),1−
(3 ),2−

(4 ),2+

1

2θ1
0

θ2
0

1+

1−

2−

2+

1

2

e 1

e 2
p1

p2

ξ

η

1 

2 3 

4 
master nodes

slave nodes

x = NI ( ξ)x I

initial config. current config.

parent element

Fig. 9.10  Two-node CB beam element based on 4-node quadrilateral continuum element.

Example 9.1 Two-node beam element. The CB beam theory is used to formulate
a 2-node CB beam element based on a 4-node, continuum quadrilateral. The element is
shown in Fig. 9.10. We place the reference line (midline) midway between the top and
bottom surfaces; the line coincides with ξ = 0  in the parent domain; although this
placement is not necessary it is convenient.  The master nodes are placed at the
intersections of the reference line with the edges of the element. The slave nodes are the
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corner nodes and are labeled by the two numbering schemes described previously in Fig.
9.10.

This motion of the 4-node continuum element

  
x = x I 

I=1

4

∑ t( )NI ξ,η( ) (E9.1.2)

where   NI 
ξ ,η( )  are the standard 4-node isoparametric shape functions

  
N

I 
ξ ,η( ) =

1

4
1+ξ

I 
ξ( ) 1+ η

I 
η( ) (E9.1.3)

The motion of the element when given in terms of one-dimensional shape functions by
(9.3.3) is:

  

x ξ ,η, t( ) = xM ξ, t( ) + η p ξ , t( )
= x1 t( ) 1−ξ( )+ x2 t( )ξ +η p1 t( ) 1− ξ( )+η p2 t( )ξ

(E9.1.1)

Eqs. (E9.1.1) and (E9.1.3) are equivalent if

x1 t( ) =
1

2
x

1 
+ x

2 ( ) =
1

2
x

1+ + x
1−( )        x2 t( ) =

1

2
x

3 
+ x

4 ( ) =
1

2
x

2+ + x
2−( ) (E9.1.4)

  

p1 t( ) =
x

2 
− x

1 ( )ex + y
2 

− y
1 ( )ey

x
2 

− x
1 ( )2

+ y
2 

− y
1 ( )2( )1/ 2      

  

p2 t( ) =
x

4 
− x

3 ( )e x + y
4 

− y
3 ( )ey

x
4 

− x
3 ( )2

+ y
4 

− y
3 ( )2( )1/ 2 (E9.1.5a)

Thus the motions given in Eqs. (E9.1.2) and (E9.1.3) are alternate descriptions of

the same motion. Eqs. (E9.1.4) define the location of the master nodes.  Eqs. (E9.1.5)
define the orientations of the directors.

The degrees of freedom of this CB beam element are

  
dT = ux1, uy1 ,θ1 ,ux 2 , uy 2 ,θ2[ ] (E9.1.6)

where θ I  are the angles between the directors and the x-axis measured positively in a
counterclockwise direction from the positive x-axis. The nodal velocities are

  
˙ d T = ˙ u x1 , ˙ u y1, ω1 , ˙ u x 2 , ˙ u y 2 ,ω2[ ] (E9.1.7)

The nodal forces are conjugate to the nodal velocities in the sense of power, so

  
f T = fx1 , f y1,m1 , fx 2 , fy 2 ,m2[ ] (E9.1.8)
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where mI  are nodal moments.

The nodal velocities of the slave nodes are next expressed in terms of the master
nodal velocities by (9.3.7).   The relations are written for each triplet of nodes: a master
node and the two associated slave nodes. For each triplet of nodes, the (9.3.7) specialized
to the geometry of this example is

v I
S = TIv I

M     (no sum on I) (E9.1.9)

where

v I
S =

v
xI −

v
yI −

v
xI +

v
yI+

 

 
  

 
 
 

 

 
  

 
 
 

 ,   TI =

1 0 h
2 px

0 1 − h
2 py

1 0 − h
2 px

0 1 h
2 py

 

 

 
 
 
 

 

 

 
 
 
 

=

1 0 1
2 y

1 2 

0 1 1
2 x

2 1 

1 0 1
2 y

3 4 

0 1 1
2 x

4 3 

 

 

 
 
 
 

 

 

 
 
 
 

,   v I
M =

v xI

v yI

θ I

 
 
 

  

 
 
 

  
(E9.1.10)

Once the slave node velocities are known, the rate-of-deformation can be computed at
any point in the element by Eq. (E4.2.c).

The rate-of-deformation is be computed at all quadrature points in the corotational
coordinate system of the quadrature point.  The two node element avoids shear locking if

a single stack of quadrature points 
  
ξ = 0, ηQ( ), Q = 1 to nQ .  The strain measures are

computed in the global coordinate system using the equation given in Example 4.2 and
4.10.

The constitutive equation is evaluated at the quadrature points of the element in a
corotational coordinate system given by Eq. (9.3.9) with

  

ˆ e x =
x ,ξ ex + y,ξey

x ,ξ( )2
+ y,ξ( )2 

 
  

 
 

1
2

            
ˆ e y =ˆ e z ×ˆ e x (E9.1.11)

where

  
x ,ξ = xI NI ,ξ

I =1

4

∑         
  
y,ξ = yI NI ,ξ

I =1

4

∑ (E9.1.13)

A hypoelastic law for isotropic and anisotropic laws is given by (9.3.11) or (9.3.13),
respectively.

The internal forces are then transformed to the master nodes for each triplet by
(4.5.36).   This gives
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f xI

f yI

m I

 
 
 

  

 
 
 

  
= TI

T

f
xI +

f
yI+

f
xI −

f
yI−

 

 
  

 
 
 

 

 
  

 
 
 

(E9.1.14)

Evaluating the first and third term of the above left hand matrix gives

f xI = f
xI + + f

xI −                                f yI = f
yI + + f

yI − (E.9.1.15a)

m1 =
1

2
y

1 2 
fx1 + x

2 1 
fy1( ) (E.9.1.15b)

So the transformation gives what is expected from equilibrium of the slave node with the
master node. The master node force is the sum of the slave node forces and the master
node moment is the moment of the slave node forces about the master node.

This element formulation can also be applied to constitutive equations in terms of
the PK2 stress and the Green strain.  The computation of the Green strain tensors requires
the knowledge of θ I  and x I . The director in the initial and current configurations is given
by

        pxI
0 =cosθ I

0 ,    pyI
0 = sin θI

0           pxI =cosθ I ,    pyI = sinθ I (E9.1.11)

The positions of the slave nodes can then be computed by specializing (9.4.1) to the
nodes, which gives

  

X1 = X1 + h
2 px1 ,      Y1 = Y1 + h

2 py1
0

X2 = X1 − h
2 px1

0 ,      Y2 = Y1 − h
2 py1

0

X3 = X2 − h
2 px2

0 ,     Y3 = Y2 − h
2 py2

0

X4 = X2 + h
2 px2

0 ,     Y4 = Y2 + h
2 py2

0

      

  

x
1 

= x1 + h
2 px1,      y

1 
= y1 + h

2 py1

x
2 

= x1 − h
2 px1,      y

2 
= y1 − h

2 py1

x
3 

= x2 − h
2 px 2 ,     y

3 
= y2 − h

2 py 2

x
4 

= x2 + h
2 px 2 ,     y

4 
= y2 + h

2 py2

(E9.1.12)

The displacement of the slave nodes is then obtained by taking the difference of the nodal
coordinates.  The displacement of any point can then be obtained by the continuum
displacement field

u = u I 
I=1

4

∑ N I 

The Green strain can then be computed by (3.3.6) and the PK2 stress by the constitutive
law.  After transforming the PK2 stress to the Cauchy stress by Box 3.2, the nodal forces
can be computed as before.

Velocity Strains for Rectangular Element.  When the underlying continuum element is
rectangular (because the directors are in the y direction), and the beam is along the x
direction, the velocity field (9.4.8) is

9-30



T. Belytschko, Chapter 9, Shells and Structures, December 16, 1998

v = vM − yωex

where we have specialized Eq. (9.4.8) to θ = π 2 .  Writing out the components of the
above and immediately substituting the one-dimensional two-node shape functions gives

vx = vx1
M 1− ξ( ) + vx2

Mξ − y ω 1− ξ( ) −ω2ξ( )

vy = vy1
M 1−ξ( ) + vy2

Mξ

The velocity strain is then given by Eq. (3.3.10):

  
Dxx =

∂vx

∂x
=

1

l
vx2

M − vx1
M( ) −

y

l
ω2 − ω1( )

  
2Dxy =

∂vy

∂x
+

∂vx

∂y
=

1

l
vy2

M − vy1
M( ) − ω1 1− ξ( ) +ω2ξ( )

Dyy = 0

The material tangent and goemetric stiffness of this elementis given by  LIU-give result
with some explanation

9.5  CONTINUUM BASED SHELL IMPLEMENTATION

In this Section, the degenerated continuum (CB) approach to shell finite elements is
developed.  This approach was pioneered by Ahmad(1970); a nonlinear version of this
theory was presented by Hughes and Liu(1981).  In the CB approach to shell theory, as
for CB beams, it is not necessary to develop the complete formulation, i.e. developing a
weak form, discretizing the problem by using finite elemeny interpolatns, etc.  Instead the
shell element is developed in this Section by imposing the constraints pf the shell theory
on a continuum element.  Subsequently, we will examine CB shells from a more
theoretical viewpoint by imposing the constraints on thhe test and trial functions prior to
construction of the weak form.

Assumptions in Classical Shell Theories. To describe the kinematic assumptions for
shells, we need to define a reference surface, often called a midsurface.  The reference
surface, as the second name implies, is generally placed midway between the top and
bottom surfaces of the shell.  As in nonlinear beams, the exact placement of the reference
surface in nonlinear shells is irrelevant.

Before developing the CB shell theory, we briefly review the kinematic
assumptions of classical shell theories.  Similar to beams, there are two types of
kinematic assumptions, those that admit transverse shear and those that don't.  The theory
which admit transverse shear are called Mindlin-Reissner theories, whereas the theory
which does not admit transverse shear is called Kirchhoff-Love theory.  The kinematic
assumptions in these shell theories are:

1. the normal to the midsurface remains straight (Mindlin-Reissner theory).
2. the normal to the midsurface remains straight and normal (Kirchhoff-Love

theory)
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Experimental results show that the Kirchhoff-Love assumptions are the most
accurate in predicting the behavior of thin shells.  For thicker shells, the Mindlin-Reissner
assumptions are more accurate because transverse shear effects become important.
Transverse shear effects are particularly important in composites.   Mindlin-Reissner
theory can also be used for thin shells: in that case the normal will remain approximately
normal and the transverse shears will almost vanish.

One point which needs to be made is that these theories were originally developed
for small deformation problems, and most of their experimental verification has been
made for small strain cases.  Once the strains are large, it is not clear whether it is better
to assume that the current normal remains straight or that the initial normal remains
straight.  Currently, in most theoretical work, the initial normal is assumed to remain
straight.  This choice is probably made because it leads to a cleaner theory.  We know of
no experiments that show an advantage of this assumption over the assumption that the
current normal remain instantaneously straight.

Degenerated Shell Methodology.  In the implementation and theory of CB shell elements,
the shell is modeled by a single layer of three dimensional elements, as shown in Fig.
9.11?.   The motion is then constrained to reflect the modified Mindlin-Reissner
assumptions.

We consider a shell element, such as the one shown in Fig. 9.11, which is associated with
a three dimensional continnjum element.  The parent element coordinates are ξi ,
i =1 to 3; we also use the notation  ξ1 ≡ ξ , ξ2 ≡ η , and ξ3 ≡ ζ .  In the shell, the
coordinates ξi  are curvilinear coordinates.  The midsurface is the surface given by ζ = 0 .
Each surface of constant ζ  is called a lamina.  The reference surface is parametrized by

the two curvilinear coordinates   ξ,η( )  or ξα  in indicial notation (Greek letters are used for
indices with a range of 2).  Lines along the ζ  axis are called fibers, and the unit vector
along a fiber is called a director.  These definitions are analogous to the corresponding
definitions for beams given previously.

In the CB shell theory, the major assumptions are the modified Mindlin-Reissner
kinematic assumption and the plane stress assumption:

1.  fibers  remain straight;
2.  the stress normal to the midsurface vanishes.

Often it is assumed that the fibers are inextensional but we omit this assumption.  These
assumptions differs from those of classical Mindlin-Reissner theory in that the rectilinear
constraint applies to fibers, not to the normals.  This modification is chosen because, as in
beams, the Mindlin-Reissner kinematic assumption cannot be imposed exactly in a CB

element with C0  interpolants.  In models based on the modified Mindlin-Reissner theory,
the nodes should be placed so that the fiber direction is as close as possible to normal to
the midsurface.

For thin shells, the behavior of CB shells will approximate the behavior of a
Kirchhoff-Love shell: normals to the midsurface will remain normal, so directors which
are originally normal to the midsurface will remain normal, and the transverse shears will
vanish.  The normality constraint is based on physical observations, and even when this
constraint is not imposed on a numerical model, the results will tend towards this
behavior for thin shells.
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We will consider shells where the deformations are large enough so that the
thickness may change substantially with deformation.  The thickness change arises from
the conservation of matter, but is usually imposed on the model through the constitutive
equations, which reflect the conservation of matter.  In order to model the thickness
change exactly, it is necessary to integrate the thickness strains along the entire fiber.
Here we present a simpler and computationally less demanding theory which only
accounts for a linear variation of the thickness strain through the depth of the shell.  This
is more accurate than theories which incorporate only the overall thickness change and is
usually very accurate,  since the major effect which needs to be modeled, in addition to
the thickness change due to elongational straining,  are the consequences of the linear
bending field.

The motion of the shell is given by

  x ξ ,η, ζ ,t( ) = xM ξ ,η, t( ) +ζ h−p ξ ,η,t( ) for ζ < 0 (9.5.1a)

  x ξ ,η, ζ ,t( ) = xM ξ ,η, t( ) +ζ h+p ξ ,η,t( ) for ζ > 0 (9.5.1b)

where h−   and h+  are the distances from the midsurface to the top and bottom surfaces
along the director, respectively.   The above will be written in the compact form

x = xM +ζ xB (9.5.2)

where 

xB = p (9.5.2b)

ζ =ζ h+ when ζ > 0,     ζ =ζ h− when ζ < 0 (9.5.3)

In the above, xB  characterizes the motion due to bending; although this decomposition of
the motio, it becomes more useful for other kinematic quantities.

  The coordinates of the shell in the original configuration are obtained by
evaluating (9.5.2) at the initial time

  X ξ, η ,ζ( ) = XM ξ ,η( ) +ζ p0 ξ,η( ) = XM +ζ XB (9.5.4)

where   p0 = p ξ,η ,0( ) .  The displacement field is obtained by taking the difference of
(9.5.2) and (9.5.4):

  u ξ, η ,ζ , t( ) = uM +ζ p − p0( ) = uM +ζ uB (9.5.5a)

where

uM = xM − XM          uB = p − p0 (9.5.5b)

As can be seen from the above, the bending displacement field uB  is the difference
between two unit vectors.  Therefore the bending field can be described by two dependent
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variables.  The motion is then described by 5 dependent variables: the three translations

of the midsurface,  
  
uM = ux

M ,uy
M ,uz

M[ ]  and the two dependent variables which describe

the bending displacement, uB , which remain to be defined.

The velocity field is obtained by taking the material time derivative of the
displacement or motion, using (9.2.1) to write the rate of the director:

  v ξ ,η ,ζ ,t( ) = vM ξ ,η ,t( ) +ζ ω ξ ,η ,t( ) × p + ˙ ζ p (9.5.6)

The last term in the above represents the change in thickness of the shell.  It will not be
retained in the equations of motion, since it represents an insignificant inertia.  But it will
be used in updating the geometry, so it will effect the internal nodal forces, which depend

on the current geometry.  The variable   
˙ ζ  will be obtained from the constitutive equation

or conservation of matter.   The velocity field can also be written as

  v ξ ,η ,ζ ,t( ) = vM +ζ vB + ˙ ζ p (9.5.7)

where

vB =ζ ω ×p (9.5.8)

As can be seen from the above, the velocity of any point in the shell consists of the sum
of the velocity of the reference plane, the bending velocity, and the velocity due to the
change in thickness.  The bending velocity is defined by the rotation of the director.  Only
the two components of the angular velocity in the plane tangent to the director p  are
relevant.  The component parallel to the p  vector is irrelevant since it causes no change in
the director p .  This component is called the  drilling component or the drill for short.

Local and Corotational Coordinates.   Three coordinate systems are defined:
1. the global Cartesian system,   x , y,z( )  with base vectors ei .

2. the corotational Cartesian coordinates   
ˆ x , ˆ y , ˆ z ( )  with base vectors   ̂ e i , which are

constructed so that the plane defined by   
ˆ e 1 ξ ,t( ) and   

ˆ e 2 ξ ,t( )  is tangent to the
lamina  As indicated, the corotational base vectors are functions of the
element coordinates and time.  In practice, these coordinate systems are
constructed only at the quadrature points of the element, but conceptually, the
corotational coordinate system is defined at every point of the shell.  Several
methods have been proposed for the construction of the corotational systems,
and they will be described later.

3.  nodal coordinate systems associated with the master nodes; they are denoted
by superposed bars e iI t( ) , where the subscript the node.  The nodal
coordinates system is defined by

e zI t( ) = p I t( ) (9.5.9)

The orientation of the two other base vectors is described later.
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Finite Element Approximation of Motion.  The underlying finite element for a
CB shell theory is a three-dimensional isoparametric element with 2nN  slave nodes.  In
order to meet the modified Mindlin-Reissner assumption, the continuum element may
have at most two slave nodes along any fiber.  As a consequence of this restriction, the
motion will be linear in ζ . The description is Lagrangian and either an updated or total
Lagrangian formulation can be employed.  We will emphasize the updated Lagrangian
formulation, but remind the reader that in the updated Lagrangian formulation the strain
can be described by the Green strain tensor and the PK2 stress when it is advantageous
for a particular constitutive law.  Moreover any updated Lagrangian formulation can
easily be changed to a Lagrangian formulation by a transformation of stresses and change
in the domain of integration.

The formulation may have either 5 or 6 degrees of freedom per master node.  We
will emphasize the  5 degree-of-freedom formulations and discuss the relative merits
later.  The degrees of freedom in the 5 degree-of-freedom formulation are

v I = vxI , vyI ,  vzI , ω xI ,  ω yI[ ]T
  (9.5.9b)

the ω zI  component, the drilling angular velocity component, has been omitted; see
(9.5.9) for the definition of the nodal coordinate system.  The nodal forces are conjugate
to the nodal velocities in the sense of power, so they are given by

f I = fxI ,  fyI , fzI ,  m xI ,  m yI[ ]T
(9.5.9c)

At the intersections of the slave nodal fibers with the reference surface, we define
master nodes as shown in Fig. 9.7.  The finite element approximation to the motion in
terms of the motion of the slave nodes is

    
  
x ξe , t( ) ≡ φh ξe ,t( ) = x I 

I =1

2nN

∑ t( )N I ξe( ) = x
I +

I + =1

nN

∑ t( )N
I+ ξ e( ) + x

I−
I− =1

nN

∑ t( )N
I − ξe( ) (9.5.10)

where NI ξe( )  are standard isoparametric, three dimensional shape functions and ξ e  are

the parent element coordinates.  Recall that in a Lagrangian element, the element
coordinates can be used as surrogate material coordinates. The above gives the motion for
a single element; the assembly of element motions to obtain the motion of the complete
body is standard.

 Two notations are used for the slave nodes: nodal indices with superposed bars,
which refer to the original node numbers of the underlying three dimensional element and
node numbers with plus and minus superscripts, which refer to the master node numbers.
Nodes I+

 and I−  are, respectively, the slave nodes on the top and bottom surfaces of the
fiber which passes through master node I.

The velocity field of the underlying continuum element is given by

  
v ξe , t( ) =

∂φh ξ e , t( )
∂t

= ˙ x 
I 

I =1

2n N

∑ t( )N
I 

ξe( ) (9.5.12)
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where   ̇ x I  is the velocity of slave node I.  To achieve a velocity field compatible with
(9.5.6), the velocity of the slave nodes is given in terms of the translational velocities of

the master nodes 
  
v I

M = vxI
M ,vyI

M ,vzI
M[ ]T

 and the angular velocities of the director

  
ω I = ω xI ,ω yI[ ]T  by

  
v

I+ = v I
M + h+ωI × p I − ˙ h I

+p I            
  
v

I− = v I
M + hI

−ωI × pI + ˙ h I
−p I (9.5.13)

h = h0Fζζ dζ
0

1

∫

where   
˙ h I

+  and   
˙ h I

−  are the velocities  of slave nodes I+  and I− in the direction of the
director, respectively.  These are obtained from integrating the through-the thickness
strains obtained from the constitutive equation because of the plane stress assumption, as
described later.  They are omitted in the formulation of the equations of motion, for
neither momentum balance nor equilibrium is enforced in the direction of p .

The relationship between the slave and master nodal velocities for each triplet of
nodes along a fiber can then be written  in matrix form as

v 
I+

v 
I−

 
 
 

 
 
 

= TI v I        no sum on I (9.5.14)

where the vector have been expressed in the nodal coordinate system of the master node
for convenience.  For a 5 degree of freedom per node formulation

v 
I+ = v xI , v 

yI+ , v 
zI+[ ]T

          v 
I− = v 

xI− ,  v 
yI− ,  v 

zI−[ ]T
(9.5.15)

v I = v xI , v yI ,  v zI , ω xI ,  ω yI[ ] (9.5.16)

ΤI =
I3×3 Λ+

I3×3 Λ−

 

 
 

 

 
 (9.5.17)

Λ+ = hI
+

0 1

−1 0

0 0

 

 

 
 
 

 

 

 
 
 

         Λ− = hI
−

0 1

−1 0

0 0

 

 

 
 
 

 

 

 
 
 

(9.5.18)

For a 6 degree-of-freedom per master node formulation it is more convenient to
write (9.5.14) in terms of global components:

v
I+

v
I−

 
 
 

 
 
 

= TIv I        no sum on I (9.5.19)
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 v
I+ = vxI , v

yI+ , v
zI+[ ]T

          v
I− = v

xI− ,  v
yI− ,  v

zI−[ ]T
(9.5.20)

v I = vxI , vyI ,  vzI , ω xI ,  ωyI ,ωzI[ ] (9.5.22)

Λ+ = hI
+

0 pz −py

− pz 0 px

py − px 0

 

 

 
 
 

 

 

 
 
 

=
0 zI+ − zI y I − y I+

zI − zI+ 0 x I+ − x I

yI+ − yI xI − xI + 0

 

 

 
 
 

 

 

 
 
 

(9.5.21)

Λ− =− hI
−

0 pz − py

− pz 0 px

py −px 0

 

 

 
 
 

 

 

 
 
 

=
0 z I− − zI y I − yI−

z I − zI− 0 x I− − xI

yI− − yI x I − xI − 0

 

 

 
 
 

 

 

 
 
 

(9.5.23)

Nodal Internal Forces.  The nodal forces at the slave nodes, i.e. the nodes of the
underlying continuum element, are obtained by the usual procedures for continuum
elements, see Chapter 4.  Of course, the plane stress assumption and computation of the
thickness change must be considered in the procedures at the continuum level.

 The nodal internal and external forces at the master nodes can be obtained from
the slave nodal forces by Eq. (4.3.36), which using (9.5.14) gives

f I = TI

f
I+

f
I−

 
 
 

 
 
 

            no sum on I (9.5.24)

where for a 6 degree-of-freedom formulation

f I = fxI , f yI , fzI , m xI , myI , mzI[ ] (9.5.25)

and TI  is given by (9.5.19-23).  In the above, miI  are the nodal moments at the master
nodes.

Tangent Stiffness.  The tangent stiffness matrix can be obtained from that of the
underlying continuum element by the standard transformation for stiffness matrices,
Section

K IJ = TI
TK IJTJ      no sum on I or J (9.5.26)

where K IJ  is the tangent stiffness matrix for the continuum element.

The rate-of-deformation is computed in the corotational coordinates system with base
vectors   

ˆ e i .  The equations for the rate-of-deformation in the corotational coordinates, ;
are
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ˆ D ij = 1
2

∂ˆ v i
∂̂  x j

+
∂̂  v j
∂ˆ x i

 

 
 

 

 
 

The rate-of-deformation   
ˆ D zz  is computed from the conservation of mass or the

condition that the normal stress   
ˆ σ zz  vanishes.  This is discussed in more detail in Section

??.

Applying these equations to the velocity field (9.5.6-7) gives

  
ˆ D xx =

∂ˆ v x
∂ˆ x 

=
∂ˆ v x

M

∂̂  x 
+ζ

∂ˆ v x
B

∂̂  x 
≈

  

ˆ D yy =
∂ˆ v y
∂ˆ y 

=
∂ˆ v y

M

∂ˆ y 
+ζ

∂ˆ v y
B

∂ˆ y 
≈

  

ˆ D xy = 1
2

∂ˆ v x
∂̂  y 

+
∂ˆ v y
∂ˆ x 

 
 
  

 
 = 1

2
∂̂  v x

M

∂̂  y 
+

∂ˆ v y
M

∂ˆ x 

 

 
 

 

 
 + 1

2 ζ
∂̂  v x

B

∂ˆ y 
+

∂̂  v y
B

∂ˆ x 

 

 
 

 

 
 ≈

  

ˆ D xz = 1
2

∂ˆ v x
∂̂  z 

+
∂ˆ v z
∂ˆ x 

 
 

 
 =

1
2

∂ˆ v y
M

∂̂  x 
+ζ

∂ˆ v y
B

∂ˆ x 

 

 
 

 

 
 ≈

In deriving the above, we have used the fact that the tangent plane to the lamina is
coincident with the   ̂  x ,ˆ y  plane, so functions of ξ  and η  are independent of   ̂ z .  The above
equations are very similar to the equations we derived for a plate, Exercise ??.  However,
it is implicit in Eqs.(??) that the   ̂  x ,ˆ y  plane is constructed so that it is tangent to the lamina
which passes through the point at which the rate-of-deformation is evaluated.  As a
consequence additional terms appear in the actual rate-of-deformation fields; these are
explored in Example ???.

The   
ˆ D xx ,   

ˆ D yy  and   
ˆ D xy  components of the rate-of-deformation consist of a membrane

part that is constant through the depth of the shell and a bending part which varies

linearly through the depth of the shell.  The transverse shears   
ˆ D xz  and   

ˆ D yz  are constant
through the thickness.  This characteristic of the transverse shears does not agree with
actual behavior of shells and is dealt with in many cases by a shear correction factor.

Discrete  momentum equation.  The discrete equations for the shell are obtained
via the principle of virtual power.  As mentioned before, the only difference in the way
the principle of virtual power is applied to a shell element is that the kinematic constraints
are taken into account.  We will use the same systematic procedure as before of
identifying the virtual power terms by the physical effects from which they arise and then
developing corresponding nodal forces.  The main difference we will see is that in the
shell theory nodal moments arise quite naturally, so we will treat the nodal moments
separately.  If the angular velocity and the director are expressed in terms of shape
functions, the product of shape functions will not be compatible with the reference
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continuum element and the result will not satisfy the reproducing conditions for linear
polynomials.

Inconsistencies and Idiosyncrasies of Structural Theories.  The
introduction of both the Mindlin-Reissner and Kirchhoff-Love assumptions introduces
several inconsistencies into the resulting theory.  In the Mindlin-Reissner theory, the
shear stresses   

ˆ σ xz  and    
ˆ σ yz  are constant through the depth of the shell.  However, unless

a shear traction is applied to the top or bottom surfaces, the transverse shear must vanish
at these surfaces because of the symmetry of the stress tensor.  Furthermore, a simple
analysis of the requirements of equilibrium in a beam shows that the transverse shear
stress are quadratic through the depth of a beam, vanishing at the top and bottom
surfaces. Therefore a constant shear stress distribution overestimates the shear energy .  A
correction factor, knownas a shear correction, is often used on the transverse shear to
reduce the energy associated with it, and accurate estimates of this factor can be made for
elastic beams and shells.  For nonlinear materials, however, it is difficult to estimate a
shear correction factor.

The inconsistency of Kirchhoff-Love theory is even more drastic, since the kinematic
assumption results in a vanishing transverse shear.  In a beam, it is well known in
structural theories that the shear must be nonzero if the moment is not constant.  Thus the
Kirchhoff-Love kinematic assumption is quite inconsistent with equilibrium.
Nevertheless, comparison with experiments shows that it is quite accurate, and for thin,
homogeneous shells it is more effective and just as accurate as the Mindlin-Reissner
theory.  Transverse shear simply does not play an important role in the deformation of
thin structures, so its inclusion has little effect, but Mindlin-Reissner theories are
nevertheless used in finite elements because of the simplicity of the CB shell approach.

The use of the modified Mindlin-Reisner CB models pose additional possibilities for
severe errors.  If the directors are not normal to the midsurface, the motion deviates
markedly from the motion which has been verified experimentally for thin and thick
beams and shells.  Bathe shows results for CB shells elements modeling a frame with a
right angle corner which are at least reasonable.  However, when a right angle is included
in the model, the assumption that the fiber direction be near to the normal to the
midsurface obviously no longer holds.  In view of this, it would be foolhardy to use CB
elements without modifying the construction of the director in the vicinity of sharp
corners.

The zero normal stress, i.e. the plane stress, assumption is also inconsistent when a
normal traction is applied to either surface of the shell.  Obviously, the normal stress must
equal the applied normal traction for equilibrium.  However, it is neglected in structural
theories because it is much smaller than the axial stresses, so the energy associated with it
is much smaller and it has little effect on the deformation.

Another effect of which the analyst should remain aware is boundary effects in shells.
Certain boundary conditions result in severe edge effects where the behavior changes
dramatically in a narrow boundary layer.  The standard boundary conditions also can
result in singularities at corners,  (MORE DETAIL)

An important reason for using the structural kinematic assumptions is that they improve
the conditioning of the discrete equations.  If a shells is modeled with three-dimensional
continuum elements, the degrees of freedom are the translations at all of the nodes.  The

mode associated with through-the-thickness velocity strains   
ˆ D zz  then has very large

eigenvalues, so the conditioning of the equations is very poor.  The conditioning of shell
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equations is also not as good as that of standard continuum models, but it is substantially
better than that of continuum models of thin shells.

rsin α

α

r1

r
ˆ e x

ˆ e y

e x

e y

e z

ˆ e y

ˆ e x

r

r1

Fig. 9.?? Rotation of a vector r viewed as a rotation about a fixed axes θ =θe according to Euler's
theorem; on the right a top view along the θ  axis is shown.

9.6. LARGE ROTATIONS

The treatment of large rotations in three dimensions for shells and beams is described in
the following.  This topic has been extensively explored in the literature on large
displacement finite element methods and multi-body dynamics, Shabana ().  Large
rotations are usually treated by Euler angles in classical dynamics texts.  However, Euler
angles are nonunique for certain orientations and lead to awkward equations of motion.
Therefore alternative techniques which lead to cleaner equations are usually employed.
In addition, in 5 degree-of-freedom shells formulations, the rotation should be treated as
two dependent variables.  These factors are discussed in the following.

Euler’s Theorem and Exponential Map.  The fundamental concept in the treatment  of
large rotations is the theorem of Euler.  This theorem states that in any rigid body rotation
there exists a line which remains fixed, and the body rotates about this line  This formula
enables the development of general formulas for the rotation matrix: some special cases
which will be described here are the Rodrigues formulas and the Hughes-Winget update.
other techniques are quaternion, Cardona and Geradin().
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The fundamental equation which evolves from Euler's theorem is the rotation formula
which relates the components of a vector    r' in a rigid body which is rotated about the
axis θ .  The vector after the rotation is denoted by   r'  as shown in Fig. 9.?.  The objective
then is to obtain a rotation matrix R  so that

  r' = Rr (9.6.1)

The nomenclature to be used is shown in Fig. ?, where the line segment about which the
body rotates is denoted by the unit vector e .  We will first derive the formula

  r' = r + sinθ e× r + 1−cos θ( )e × e × r( ) (9.6.2)

The schematic on the right of Fig. ? shows the body as viewed along the e axis.  It can be
seen from this schematic that

    r' = r + rPQ = r +α sin θe2 +α 1− cosθ( )e3 (9.6.3)

where   α = rsin φ .  From the definition of the cross product it follows that

  αe2 = rsin φe2 = e × r, αe3 = rsin φe3 = e × e ×r( ) (9.6.4)

Substituting the above into () yields Eq. ().

We now develop a matrix so that (??) can be written in the form of a matrix
multiplication.  For this purpose, weuse the same scheme as in (3.2.35) to define a skew-
symmetric tensor Ω θ( ) so that

Ω θ( )r= θ × r (9.6.5)

In other words, we define a matrix Ω θ( ) that has the same effect on r  as the cross product
with θ .  Recall from (3.2.35) that the skew-symmetric tensor equivalent to a cross
product with a vector can be obtained by defining Ω θ( ) by Ω ij θ( ) = eijkθk  where eijk  is

the alternator tensor.  From this definition of the Ω θ( ) matrix it follows that

  Ω e( )r = e× r, Ω2 e( )r = Ω e( )Ω e( )r = e× e × r( ) (9.6.6)

Comparing the above terms with (), it can be seen that (??) can be written as

  r' = r + sinθ Ω e( )r + 1 −cos θ( )Ω2 e( )r (9.6.7)

so that comparison with () shows that

  R = I+ sin θ Ω e( ) + 1−cos θ( )Ω2 e( ) (9.6.8)

In writing the rotation matrix, it is often useful to define a vector θ  along the axis of
rotation e with length θ , the angle of rotation.  The vector  θ  is sometimes called a
pseudovector because sequential rotations cannot be added as vectors to obtain the final
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rotation, i.e. if the pseudovector θ12  corresponds to the rotation θ1 followed by the
rotation θ2  then θ12 ≠ θ21 .  This property of rotations is often illustrated in introductory
physics texts by rotating an object such as a book 90 degrees about the x-axis followed by
a 90 degree rotation about the y-axis and comparing this with a 90 degree rotation about
the y-axis followed by a 90 degree rotation about the x-axis.

An important way to describe rotation is the exponential map, which gives the rotation
matrix R  by

  
R = exp Ω θ( )( ) =

Ωn θ( )
n!n

∑ = I +Ω θ( )+
Ω2 θ( )

2
+

Ω3 θ( )
6

+... (9.6.9)

This form of the rotation matrix can be used to obtain accurate approximation to the
rotation matrix for small rotations.  To develop the exponential map from (9.6.8) we note
that the matrix Ω θ( ) satisfies the following recurrence relation

Ωn+1 θ( ) = −θΩn θ( ) (9.6.10)

This relationship can be obtained easily by using the interpretation of Ω θ( ) as a matrix
which replicates the cross-product as given in Eq. (9.6.5 ) and that it scales with θ .  The
trigonometric functions   sinθ  and   cosθ  can be expanded in Taylor’s series

  
sinθ =θ −

θ3

3!
+

θ 5

5!
− ..., cosθ =1−

θ2

2!
+

θ 4

4!
− ... (9.6.11)

yielding (9.6.9).

9.7.  SHEAR AND MEMBRANE LOCKING

Among the most troublesome characteristics of shell elements are shear and
membrane locking.  Shear locking results from the spurious appearance of transverse
shear in deformation modes that should be free of transverse shear.  More precisely, it
emanates from the inability of many elements to represent deformation modes in which
the transverse shear should vanish.  Since the shear stiffness is often significantly greater
than the bending stiffness, the spurious shear absorbs a large part of the energy imparted
by the external forces and the predicted deflections and strains are much too small, hence
the name shear locking.

The observed behavior of thin beams and shells indicates that the normals to the
midline remain straight and normal, and that hence the transverse shears vanish.   This
behavior can be viewed as a constraint on the motion of the continuum.  While the
normality constraint is not exactly enforced in the shear-beam or CB shell theories, the
normality constant always appears as a penalty term in the energy.  The penalty factor
increases as the thickness decreases, see Example (??), so as the thickness decreases shear
locking becomes more prominent.  Shear locking does not appear in C1  elements,  since
the motion in C1  elements is such that the normals remain normal.  In C0  (and CB
structural) elements, the normal can rotate relative to the midline, so spurious transverse
shear and locking can appear.
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Membrane locking results from the inability of shell finite elements to represent
inextensional modes of deformation.  A shell can bend without stretching: take a piece of
paper and see how easily you can bend it.  However stretching a piece of paper is almost
impossible.  Shells behave similarly: their bending stiffness is small but their membrane
stiffness is large.  So when the element cannot bend without stretching, the energy is
incorrectly shifted to membrane energy, resulting in underprediction of displacements
and strains.  Membrane locking is particularly important in simulation of buckling since
many buckling modes are completely or nearly inextensible.

The situation for shear and membrane locking is similar to the volumetric locking
described in Chapter 8: a finite element approximation to motion cannot represent a
motion in a constrained medium that satisfies the constraint, where the constraint is much
stiffer than the stiffness experienced by the correct motion.  In the case of volumetric
locking, the constraint is incompressibility, while the in the case of shear and membrane
locking the strains are the normality constraint of Kirchhoff-Love behavior and the
inextensibility constraint.  This is summarized in Table 9.??.  It should be noted that the
Kirchhoff-Love behavior of thin shells, and the counterpart in Euler-Bernoulli beams, is
not an exact constraint.  For thicker shells and beams, some transverse shear is expected,
but just as elements that lock exhibit poor performance for nearly incompressible
materials, shell elements which lock in shear perform poorly for thick shells where
transverse shear is expected.

Table 9
Analogy of Locking Phenomena

Constraint Shortcoming of finite
element motion

Locking type

incompressibility
   isochoric motion
   J = constant,   vi, i = 0

volumetric strain appears in
element

volumetric locking

Kirchhoff-Love constraint

     
ˆ D xz = ˆ D yz = 0

transverse shear strain
appears in pure bending

shear locking

Inextensibility constraint membrane strain appears in
inextensional mode

membrane locking

Shear Locking.  This description of shear and membrane locking closely follows
Stolarski, Belytschko and Lee ( ).  To illustrate shear locking, we consider the two-node
beam element described in Example 9.1; for simplicity, consider the element being along
the x-axis.  Since shear and membrane locking occur in linear response of beams and
shells, our examination will be made in the context of linear theory.  The transverse shear
strain is given by

  
2ε xy =

1

l
ux 2

M −ux1
M( ) −θ1 1− ξ( ) −θ2ξ (9.7.1)

We now consider the element in a state of pure bending, where the moment m x( )  is
constant.  From the equilibrium equation, Eq. (??), the shear s x( )  should vanish when the

9-43



T. Belytschko, Chapter 9, Shells and Structures, December 16, 1998

moment is constant.  We now consider a specific deformation mode of the element where
the moment is constant:

 ux1 = ux 2 = 0, θ1 =−θ2 = α . (9.7.2)

It is easy to verify the bending moment is constant for this element, and anyway the
deformation can be seen to be a pure bending mode.  For these nodal displacements, Eq.
(9.7.1) gives

2ε xy =α 2ξ − 1( ) (9.7.3)

Thus the transverse shear strain, and hence the transverse shear stress, are nonzero is most
of the element, which contradicts the expected behavior that the transverse shear vanish
in when the moment is constant.

To explain why this parasitic transverse shear has such a large effect, the energies
associated with the various strains are examined for a linear, elastic beam of unit depth
with a rectangular cross-section.  The bending energy is the energy associated with the
linear portion of the axial strains, which is given by

    
Wbend =

E

2
y2θ ,x

2 dΩ
Ω
∫ =

Eh3

24
θ ,x

2

0

l

∫ dx =
Eh3

24l
θ2 − θ1( )2 =

Eh3α2

6l
(9.7.4a)

where the rotations associated with the bending mode (9.7.2) have been used in the last
expression.

The shear energy for the beam is given by

    
Wshear =

E

1+ ν( )
εxy

2 dΩ=
Ω
∫

Eh

1+ ν( )
θ − uz ,x( )2

dx =
Ehlα2

3 1+ν( )
0

l

∫ (9.7.4b)

The ratio of these two energies is given approximately by

  

Wshear

Wbend
≈

l
h

 
 
  

 
 

2

Thus for a thin element with the length   l  greater than the thickness h  the shear energy is
greater than the bending energy.  Since the shear energy should vanish in pure bending,
the effect of this parasitic shear energy is a significant underprediction of the total
displacement.  As the length of the element decreases due to mesh refinement, the ratio of
shear to bending energy in each element decreases, but the convergence tends to be very
slow.  However, in contrast the volumetric locking, where often no convergence is
observed with refinement, elements that lock in shear converge to the correct solution,
but very slowly.

Equation (9.7.3)  immediately suggests why underintegration can alleviate shear

locking in this element: note that the transverse shear vanishes at ξ =
1

2
, which
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corresponds to the quadrature point in one-point quadrature.  Thus, the spurious
transverse shear is eliminated by underintegration of the shear-related terms.

Membrane Locking.  In the following, we will use linear strain displacement
equations, which are only valid for small strains and rotations to explain shear and
membrane locking.  To illustrate membrane locking we will use the Marguerre shallow
beam equation.   The Marguerre equations are

  εx = ux ,x
M + w, x

0 uz,x − yθ ,x (9.7.5a)

  2ε xy = uz ,x −θ (9.7.5b)

It should be stressed that while these kinematic relations are different from the CB beam
equations, they in fact closely approximate the CB equations for shallow beams, i.e. when

w0 x( )  is small.  The mechanical behavior predicted by the various theories for a thin
beam is almost identical if the assumptions of the theories are met.  For shallow beams,
Marguerre theory gives very accurate results.

Consider a three-node beam element.  In an inextensional mode, the membrane

strain ε x  must vanish, so by integrating the expression for ux , x
M  in (9.7.5a) for y=0 it

follows that

    
ux3

M −ux1
M = −  

0

l

∫ w,x
0 w,xdx (9.7.6)

Consider a beam in a pure bending mode so θ1 = −θ3 = α .  In the absence of transverse
shear it follows from Eq. (9.4.5b) that

    
uz2 = θ

0

l / 2

∫ x( )dx =
αl2

4
(9.7.7)

Consider a beam in an initially symmetric configuration, so θ1
0 =θ3

0 = α0 , θ2
0 = 0 .  Then

Eq. (9.7.6) is satisfied if 
  
ux1 = −ux 3 =

α0αl
6

, u x2 = 0.  Evaluation of the membrane strain

via Eqs. (??) and (9.7.5a) then gives

ε x = αα0

1

3
−ξ2 

 
  

 
 (9.7.8)

Thus, in this particular inextensional mode of deformation, the extensional strain
does not vanish throughout the beam.  If an element is developed with a quadrature
scheme which includes quadrature points where the extensional strain does not vanish,
the element will exhibit membrane locking.

The possibility of membrane locking in the three-node curved beam can also be
determined by examining the orders of the displacement fields.  The variables
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ux ,  uy , and w0  are quadratic, and the quadratic fields are actuated in a pure bending

mode.  Since   ux ,x  is linear, the membrane strain Eq. (9.7.5a) cannot vanish uniformly

throughout the element in a pure bending mode if W0  is nonzero.  Thus membrane
locking can be said to originate from the inability of the finite element interpolant to
represent inextensional motions.  Shear locking can be explained similarly as the inability
of finite element interpolants to represent pure bending modes.

From the preceding, an obvious remedy to membrane and shear locking would be
to match the order of the interpolants of different components of the motion.  For
example, is a cubic field ux  would improve the representation of an inextensional mode
for quadratic uy .  However, it is difficult to accomplish this within the framework of CB
elements based on isoparametric elements without disturbing the element's capacity to
represent rigid body motion, which is crucial for convergence.

If the element is rectilinear, w0  vanishes and membrane locking will not occur
because bending will not generate membrane strains, see Eq. (9.7.5a).  Membrane locking
does not occur in flat shell elements or straight beam elements.  Thus, the two-node beam
never exhibits membrane locking and the four-node quadrilateral shell only manifests
membrane locking in warped configurations.

Shear locking in the three-node beam is less obvious than for the two-node beam.
The shear strain in this element is given by

    

2ε xy = uz ,θ −θ =
1

l
2ξ −1( )uz1 −4ξuz2 + 2ξ +1( )uz3[ ]

                        − 1
2 ξ2 − ξ( )θ1 − ξ2 −1( )θ2 − 1

2 ξ2 −ξ( )θ3

(9.7.9)

Consider a state of pure bending, 
  
θ1 = −θ3 = α,  θ2 = 0, uz1 = uz 3  and uz 2 =

αl
4

.  Using these

nodal displacements in Eq. (9.7.9) gives a vanishing transverse shear throughout the
element.  However, consider nodal displacements for another bending mode in which the

transverse shear should vanish, uz
M = αξ3, 

    
θ = uz, x =

6αξ 2

l
.  According to Eq. (9.7.9)

  
2ε xy =

α
l

1−3ξ2( ) (9.7.10)

so the finite element approximation gives nonzero shear.

Remarkably, the shear in Eq. (9.7.10) and the membrane strains in Eq. (9.7.8)
vanish at the points ξ =± 1 3 , which correspond to the Gauss quadrature points for two-
point quadrature.  These are often called the Barlow points because Barlow [53] first
pointed out that at these points of an eight-node isoparametric element, if the nodal
displacements are set by a cubic field, the stresses obtained via the strain-displacement
equations and stress-strain laws also correspond to those obtained from a cubic
displacement field.  He concluded that "if the element is used to represent a general cubic
displacement field, the stresses at the 2 × 2  Gauss points will have the same degree of
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accuracy as the nodal displacements."  While it is not clear whether the Barlow
hypothesis applies directly to elements such as the nine-node Lagrange shell element, the
serendipitous features of the Gauss quadrature points in quadratic elements are
undeniable.

Although this model for membrane locking is based on the shallow shell
equations, it correctly predicts the performance of elements developed by other shell
theories or degenerated continuum elements.  The mechanical behavior of elements is
almost independent of the underlying shell theory as long as the element is shallow.
Moreover, as meshes are refined, elements increasingly conform to the shallow shell
hypothesis.  However, the extension of these concepts and analyses to general shell
elements is quite difficult, particularly when the element is not rectangular.  For non-
rectangular elements, the development of reduced quadrature schemes or assumed strain
fields for shells which avoid both shear and membrane locking has been a challenging
task which is not fully resolved for elements of quadratic order or higher.

The fact that the shear strain vanishes at the Barlow points explains the success of
reduced integration as introduced by Zienkiewicz et al. [54].  When the shear strain is
only sampled at the Barlow points in integrating the shear stiffness, it will not sample the
spurious shear which occurs along the remainder of the beam.  Similarly, the shear strain
in the two-node element, (3.1.7) vanishes at ξ = 0 .  Therefore, if the shear is only
sampled at this point, shear locking is avoided (see [55]).

The alleviation or complete elimination of these two locking phenomena has been
a central thrust of plate and shell element research.  This has not proven an easy task,
particularly when combined with the goal of not permitting any spurious singular zero
energy modes in the element.

9.8  ASSUMED STRAIN ELEMENTS

To circumvent the difficulties of shear and membrane locking, it is necessary to
develop assumed shear and membrane strain fields which avoid spurious (or parasitic)
shear and membrane strains.  Shear and membrane locking can also be avoided by
selective-reduced integration, but selective-reduced integration is not as successful in
shells as in continua.  For example, in the quadrilateral four-node shell element described
in Hughes (?? p ?), the element with selective-reduced integration still possesses a
spurious singular mode, the w-hourglass mode, see Belytschko and Tsay (??).  Thus
while selective-reduced integration provides robust elements for continua, it is not as
successful for shells.

The assumed strain methods are based on mixed variational principles, such as the
Hu-Washizu and the Simo-Hughes B-bar simplification.  When the CB shell
methodology is employed, the mixed principles can be employed in the same form as
given for continua; for those who have not yet appreciated CB shell theory, one element
in their attractiveness is that it eliminates for reformulating the many ingredients of
continuous finite elements for shells.

The Hu-Washizu weak form is then given by

  
δπHW u,  σ , D ( ) = δD: σ −δσ V sv − D ( )[ ]

Ω
∫ dΩ −δW ext (9.8.1)
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where we note that   
ˆ σ zz = 0 because of the plane-stress assumption.

The essence of the assumed strain approach is then to design transverse shear
fields and membrane strain fields so that shear and membrane locking are mitigated.  This
is done by eliminating the strains which are parasitic: transverse shear strains in bending
and membrane strains in inextensional bending.  Furthermore, these strain fields must be
designed so that the correct rank of the stiffness matrix is retained to avoid spurious
singular modes.  In the following, we concentrate on the B-bar form of the mixed field
implementation, so once the strain fields have been designed, the internal nodal forces at
the slave nodes are given by

  
f{ }int = B T∫ σ{ } (9.8.2)

9.8.2.  Assumed Strain Four-Node Quadrilateral.  The shape functions and
motion of the four-node quadrilateral shell element based on the 8-node hexahedron were
given in Example ??.  The objective here is to construct the shear and membrane strain
fields so that locking is avoided.

The construction of the transverse shear field for the four-node quadrilateral is
motivated by Eq. (9.7.3), the transverse shear distribution for a beam in bending.  We
examine this first for a rectangular shell element.  A rectangular shell element behaves
similarly to a beam, so when a bending moment is applied as shown in Figure 9.?, the
transverse shear σ xz  should vanish.  When the material is isotropic, this can be met if

D xz  vanishes, and this can be effected by making it constant in the x-direction.  So the
assumed shear is taken to be

D xz = α1

a

z y

c

b

x

d
σxz

myy

mxx

σyz

mxx

Figure 9.?.  Rectangular element under pure bending showning the transverse shear which is activated, if
not suppressed, by assumed strain methods.
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However, a constant transverse shear leads to a rank deficiency in the element.  To
restore stability, a linear dependence on y is added: this extra field has no effect on the
behavior on bending due to the moment myy , so the unlocking is not disturbed.  So

D xz = α1 + α2y

In the application of the Hu-Washizu weak form, the parameters would be found
by the discrete compatibility equations.  However, this complicates the computation of
the element.  Instead, the above shear fields are interpolated directly from values of the
shear at selected points.  In this case, the midpoints of the edges are chosen as
interpolation points.  The shear field is given by

Dxz =
1

2
Dxz ξa,  t( ) + Dxz ξb , t( )( ) +

1

2
Dxz ξa , t( ) 1− η( )+

1

2
Dxz ξb , t( ) 1+ η( )

where

ξa =
1

2
, −1, 0

 
 
  

 
 ξb =

1

2
, 1, 0

 
 
  

 
 

ξc = −1, 
1

2
, 0

 
 
  

 
 ξd = 1, 

1

2
, 0

 
 
  

 
 

The points are shown in Figure 9.?.  We have used η  instead of y since y = 2bη  in this
element.  By similar arguments, see Figure 9.?, the transverse shear D yz  is interpolated by

D yz =
1

2
Dyz ξc , t( ) + Dyz ξd , t( )( ) +

1

2
Dyz ξc , t( ) 1−ξ( ) +

1

2
Dyz ξd , t( ) 1+ ξ( )

To extend this technique to quadrilaterals, it was noted that Dξz  vanishes when

the moment mηη  is constant, and Dηz  vanishes when mξξ  is constant.

The assumed strain field given here was first constructed on the basis of physical
arguments by MacNeal () an identical field was used by Hughes and Tezduyar (??); the
referential interpolation was given by Wempner and Talislides (??).  Dvorkin and Bathe
(??) constructed the field given in the previous references on the basis of interpolation.

The basic idea is to assume the transverse shears so that under a constant
movement about the η -axis , the resulting transverse shear, DZξ  is constant, with a

similar argument for DZη .  The resulting shear fields are

D zξ ξ,  η,ζ ,  t( ) =α1 + α2η (9.8.5a)

D zη ξ, η,  t( ) = β1+ β2ξ (9.8.5b)

where αi  and βi  are arbitrary parameter.  As can be seen from the above, the shear DZξ

has no variation in the ξ  direction, so when a moment is applied about the ξ  axis, the
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relevant shear is constant.  However, a η  dependence has been added to stabilize the
elment, i.e. to correct the rank.  Analogous reasoning is used for the construction of the
shear field D zη  .

  To avoid the Hu-Washizu weak form, the midpoints of the edges are chosen as
interpolation.  The shear fields are given by

  
D ̂ z ξ ξ,  η,ζ ,  t( ) =

1

2
Dˆ z ξ 0, − 1,0, t( ) 1− η( )+

1

2
Dˆ z ξ 0, 1,0, t( ) 1+η( )

  
D ̂ z η ξ, η,ζ , t( ) =

1

2
D̂  z η −1, 0,0, t( ) 1− ξ( )+

1

2
Dˆ z ξ 1, 0,0, t( ) 1+η( )

where Dzξ ξ,  ∆ ,  t( )  and Dzη ξa , ηa ,0, t( )  are the velocity strains computed at the
midpoints of the edges from the velocity field.

Assumed strain fields for the nine-node shell that avoid membrane and shear
locking have been given by Huang and Hinton (1986) and Bucalem and Bathe (1993).
We just briefly describe the latter.

In this scheme, the velocity strains Dξξ  and Dξξ  are interpolated by using the
corresponding velocity strains computed at the six points shown in Figure ?? and a linear-
quadratic isoparametric field, so

D ξξ = Dξξ ξ I , ηJ , 0, t( ) NIJ ξ, η( )

D ξζ = Dξζ ξI ,  ηJ , 0, t( ) N IJ ξ,  η( )

where NIJ ξ,  η( ) are shape functions formed by the product of Lagrange interpolants

linear in ξ  and quadratic in η  so that

NIJ ξK , ηL( ) = δ IKδ JL

Note that the curvilinear components are interpolated, including the replacement of DξZ

by Dξξ ; it is not clear whether the latter offers any advantage.  The interpolation of Dξξ  is
convenient because it relates the component interpolated to the parent element
coordinates, so that the stiffness of the element is independent of the orientation of the
element.  Although no motivation is given for the selection of the interpolation points in
Bathe (1998), the beam example in the previous Section sheds some light on it: at the

Gauss quadrature points ±3
−1

2 , the transverse shear vanishes in bending and the
membrane straine vanished in inextensional bending.  Thus the element should not
exhibit spurious transverse shears or membrane strains.  The higher order interpolation in
the η  direction provides stability.
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The velocity strains D ηη  and D ηζ  are interpolated with the rotated image of (??).

The shear component D ξη  is interpolated with another set of points shown in Figure 9.?.

9.9.  ONE-POINT QUADRATURE ELEMENTS.

In explicit software and large scale implicit software, the most widely used shell
elements are four-node quadrilaterals with one-point quadrature.  Here the one-point
quadrature refers to the number of quadrature points in the reference plane: actually,
anywhere from three to thirty or more quadrature are used through the thickness,
depending on the complexity of the nonlinear material response.  Therefore, we often
refer to one stack of quadrature points.  The number of quadrature points is actually one
only for resultant stress theories.  For CB elements the motion of the element is based on
eight-node hexahedron continuum element, although the description of the motion is
often simplified to the four-node quadrilateral shape functions on the reference surface.

These elements are the most commonly used in large-scale analysis because they
work well with diagonal mass matrices and are extremely robust.  Higher order elements,
such as those based on quadratic isoparametrics, converge more rapidly to smooth
solutions.  However, most large-scale analyses involve nonsmooth problems, with elasto-
plasticity, contact-impact, etc., so the greater approximation power of higher order
elements is not realizable in these problems.

Since only one stack of quadrature points are used, the element is, unless
hourglass control is added, rank-deficient and unstable.  Therefore, hourglass control is
required to stabilize the element.  In the following, the various forms of hourglass control
are also described.

We will first summarize the elements which have been most frequently used in
software.  We then describe two of these elements in more detail, drawing on the material
which precedes this to abbreviate the description.

The elements used most frequently are listed in Table X, along with some of the
most prominent features and drawbacks.  The earliest is the Belytschko-Tsay (BT)
element, which is based on Belytschko and Tsay (1983) and Belytschko, Liu, and Tsay
(1984).  It is constructed by combining a flat, four-node element with a plane
quadrilateral four-node membrane.  As indicated in Table X, it dos not respond correctly
when its configuration is warped (this shortcoming manifests itself primarily when one or
two lines of elements are used to model twisted beams, as described later).  However, the
element is very robust and fast.  Whereas most of the other elements often fail when
subjected to severe distortions, the BT element seldom aborts a computation.  This is
highly valued in industrial settings.

The Hughes-Liu (HL) element, partially described in Hughes and Liu (1981), is
CB shell element.  In explicit codes, it is used with a single stack of quadrature points, so
it also requires hourglass control and the techniques developed in Belytschko, Liu and
Tsay (1984) are used.  It is significantly slower than the BT element.

The BWC element corrects the twist, i.e., the warped configuration defect in the
BT element.  Otherwise, it is quite similar.  In the BL element, the so-called physical
hourglass control described in Chapter 8 is implemented.  This hourglass control is based
on a multifield variational principle, so it is theoretically possible to exactly reproduce the
behavior of a fully integrated element.  However, in practice this is possible only for
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elastic response, since the homogeneity of the strain and stress state are crucial in
obtaining closed form expressions for the physical hourglass control.  Nevertheless, this
form of hourglass control provides a substantial advantage; it can be increased to
moderately large values without inducing locking; whereas in the BT element high values
of the hourglass control parameters result in locking.

Both the BL element and the fully integrated element are afflicted with another
shortcoming.  In problems with large distortions, these elements fail suddenly and
dramatically, aborting the simulation.  So the advantage of single quadrature point
elements does not reside only in their superior speed, in addition, they tend to be more
robust.

The YASE element (yet another shell element) incorporates the Pian-Sumihara
(1984) membrane field for improved membrane response in beam bending, i.e., for
improved flexural performance, as described in Section 8.?.  Otherwise, it is identical to
the BT element.

The BT, BWC, and BL elements are based on a discrete Mindlin-Reissner theory
which is not continuum-based.  “Discrete” refers to the fact that the assumption is only
applied to the motion at the quadrature point.  The motion is constrained by requiring the
current normal to remain straight.  This can be viewed as another modification of the
Mindlin-Reissner assumption in its extension to large deformations; rather than requiring
the initial normal to remain straight, the current normal is required to remain straight.
The effectiveness of this assumption as compared to the assumption in Section 9.8 can be
judged only by comparison to experiment.  The velocity in the element is given by…  A
corotational coordinate system is used.  Although in the original papers the corotational
coordinate system was aligned with   

ˆ e x  along x,ξ , this can lead to difficulties, so the
technique descried in Section 8.?.  is used.

The current configuration of the element is shown in Figure 9.?.  As can be seen,

  ̂ e z  is always normal to the reference surface at the location of the quadrature point stack.
The velocity field is given by Eq. (9.8.7) with the thickness rate dropped:

  v ξ,  t( ) = vM ξ,  η, t( ) + ξ ω ξ,  η, t( ) × ˜ p ξ, η,  t( )( ) (9.9.1)

where a curlicue is superimposed on the nodal director   ̃  p I  to indicate that it may differs
from the director as defined in Section 9.8.  The finite element approximation to the
motion is

v ξ,  t( ) = vI t( )(
I=1

4

∑ +ζ ω I t( ) × pI )N I ξ,  η( ) (9.9.2)

Converting the cross-product to a scalar product, the above can be written

v ξ,  t( ) = vI t( )(
I=1

4

∑ +ζ ΩpI )N I ξ,  η( ) (9.9.2c)

where NI  are the four-node isoparametric shape functions.

The rate-of-deformation tensor in corotational form is
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D{ }T = Dˆ x ̂ x , Dˆ y ̂  y , 2 Dˆ ˆ x ̂ y 

, 2 Dˆ ˆ x ̂  z 
, 2 Dˆ y ̂  z 

 
  

 
  (9.9.2b)

where   D̂  z ̂  z  is omitted since it does not contribute to the power because of the plane stress
condition.   The components are evaluated by Eq. (3.2.39).

The rate-of-deformation is evaluated by using a linear expansion of the Jacobian J
in corotational coordinate system   

ˆ x , ˆ y [ ] .  It has been found that a linear expansion
captures the major effects, such as twist, for thin shells.  To make this expansion, the
shape functions are considered in three-dimensional form.  The linear expansion is of the
shape function derivatives is then

  

N I, ˆ x 

N I, ˆ y 

 
 
 

 
 
 

=
N I, ˆ x 

N I, ˆ y 

 
 
 

 
 
 

+ ξ 
bxI

c

byI
c

 
 
 

 
 
 

(9.9.3)

where

  

bxI
c

byI
c

 
 
 

 
 
 

=
1

J

pˆ y , η −pˆ y , ξ

−pˆ x , η pˆ x , ξ

 

 
 

 

 
 

N I, ξ
N I, η

 
 
 

 
 
 

(9.9.4)

The director p  is taken to be the normal in the current configuration (the director
changes with time and is not the tangent to a material fiber).  Setting p  to the normal to
the reference surface

  

p =
1

p*

−ˆ z , ˆ x 
M

−ˆ z , ̂  y 
M

1

 

 
 

 
 

 

 
 

 
 

= −
1

p*
ˆ z I

I=1

4

∑
bxI + ξη( ),ˆ x γ I

byI + ξη( ),ˆ y γ I

1

 

 
 

  

 

 
 

  
(9.9.5)

where

  
p* = 1+ ˆ z , ˆ x 

2 + ˆ z , ˆ y 
2( )1

2 (9.9.6)

and γ I  is the consistent hourglass operator given in Section 8.?.  At the origin

  
ξη( ), ˆ x 

= ξη( ), ˆ y 
= 0, because

  
ξη( ), ˆ x 

= ξη, ˆ x = ξ, ˆ x η = 0 (9.9.7)

The director p  is constructed normal to the   ̂  x −ˆ y  plane at the origin, so from and Eq.
(9.9.7), it follows that

  
bxI

ˆ z I
I=1

4

∑ = byI
ˆ z I

I=1

4

∑ = 0 (9.9.8)
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Therefore,   p* =1  at the origin of the reference plane, i.e. at the quadrature point.

Taking the derivatives of   pˆ x  and 
  
pˆ y  with respect to ξ  and η  (and neglecting the

terms related to p,ξ
∗  and p,η

∗ , which can be shown to be small) gives

  
pˆ x , ξ = −ˆ z , ˆ x ξ =− zγη, ˆ x (9.9.9)

  
pˆ x , η =− ˆ z , ˆ x η =− zγ ξ, ˆ x (9.9.10)

  
pˆ y , ξ =− ˆ z , ˆ y ξ =− zγ η, ˆ y (9.9.11)

  
pˆ y , η =− ˆ z , ˆ y η =− zγξ , ˆ y (9.9.12)

where

  
zγ = γ I

ˆ z I
I=1

4

∑ (9.9.13)

From Eq. (4.?.?)

  

ξ, ˆ x ξ, ˆ y 

η, ˆ x η, ˆ x 

 

 
 

 

 
 =

1

J

ˆ y , η −ˆ x , η

−ˆ y , ξ ˆ x , ξ

 

 
 

 

 
 =

1

4J

ˆ y η −ˆ x η
−ˆ y ξ ˆ x ξ

 

 
 

 

 
 (9.9.14)

where

    
ˆ y η = ηt ˆ y = ηI

ˆ y I
I=1

4

∑ (9.9.15)

It follows from Eqs. (9.9.3) and (9.9.10-14) that

  

bxI
c 0( )

byI
c 0( )

 
 
 

 
 
 

=
zγ

16J2

ξ Iˆ x , η + ηIˆ x , ξ 0( )
ξIˆ y , η + η Iˆ y , ξ 0( )

 
 
 

 
 
 

(9.9.16)

              
  
=

2zγ

A2

ˆ x 13 ˆ x 42 ˆ x 31 ˆ x 24

ˆ y 13 ˆ y 42 ˆ y 31 ˆ y 24

 

 
 

 

 
 (9.9.17)

Thus, the bc  column vector involves the same terms as the b  matrix given in (???).

REMARK.  Method   ̂ z  couples curvatures to translations only for warped elements, i.e.,
when the nodes are not coplanar, if which case zγ ≠ 0
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The corotational rate-of-deformation at the quadrature point ξ =η = 0  is then
given by

  
ˆ D αβ = ˆ D αβ

M +ξ καβ (9.9.18)

where the membrane components of the rate of deformation are

  
ˆ D x

M =
1

2A
ˆ y 24

ˆ υ x13 + ˆ y 13
ˆ υ x42( ) (9.9.19a)

  
ˆ D y

M =
1

2A
ˆ x 42

ˆ υ y13 + ˆ x 13
ˆ υ y24( ) (9.9.19b)

  
2 ˆ D xy

M =
1

2A
ˆ x 42

ˆ υ x13 + ˆ x 13
ˆ υ x24 + ˆ y 24

ˆ υ y13 + ˆ y 31
ˆ υ y24( ) (9.9.19c)

The curvatures are given by

  
κ x =

1

2A
ˆ y 24

ˆ ω y13 +ˆ y 31
ˆ ω y42( ) +

2zγ

A2
ˆ x 13

ˆ υ x13 + ˆ x 42
ˆ υ x24( ) (9.9.20a)

  
κ y = −

1

2A
ˆ x 42

ˆ ω x13 + ˆ x 13
ˆ ω x24( ) +

2zγ

A2
ˆ y 13

ˆ υ y13 + ˆ y 42
ˆ υ y24( ) (9.9.20b)

  

2κ xy =
1

2A
ˆ x 42

ˆ ω y13 + ˆ x 13
ˆ ω y24 − ˆ y 24

ˆ ω x13 + ˆ y 31
ˆ ω x24( )

          +
2zγ

A2 ˆ x 13ˆ υ y13 + ˆ x 42ˆ υ y24 + ˆ y 13ˆ υ x13 +ˆ y 42ˆ υ x24( )
(9.9.20c)

The last terms in the curvature expressions would not vanish in an arbitrary coordinate
system for a rigid body rotation.  However, for the coordinate system used here, the nodal
velocities   

ˆ υ x  and   
ˆ υ y  are proportional to zγ h  in rigid body rotation and it can be shown

that the curvatures vanish for rigid body rotation.

The hourglass strain rates are computed as in [2]; some modifications are needed
to exactly satisfy the patch test.  The transverse shear velocity strains are computed as

described in the previous section.  The stresses   ̂ σ and the hourglass stresses Q1
M , Q2

M ,

Q1
B , Q2

B , and Q3
B  are then computed by the constitutive equation.  The nodal force

expressions then emanate from the transpose of the kinematic relations.

If the corotational coordinate system   ̂  x 1,   ̂  x 2  is updated according to the spin as
described in [2], the rate of the stress corresponds to the Green-Naghdi rate.  The
formulation thus requires a constitutive law which relates the Green-Naghdi rate to the
corotational stretching tensor (13).  Under these conditions, the formulation is valid for
large membrane strains.
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Shear Projection.  To calculate the shear strains, a projection is made on the angular
velocities

    
ω n

a =
1

2
ωnI

a +ωnJ
a( )+

1

l IJ

ˆ υ zJ − ˆ υ zI( ) (9.9.21)

where the superscript a refers to side a and the subscript n refers to a component normal
to side I; see Figure 9.?.  This projection leads to a transverse shear field which is
identical to the MacNeal-Wempner-Bathe-Dvorkin field. The angular velocities ω iI  are

obtained from θ n
J  by

  
ω ̂ x I = en

I ⋅e ˆ x ( )ω n
a + en

K ⋅e ˆ x ( )ω n
b (9.9.24a)

  
ω ̂ y I = en

I ⋅e ˆ y ( )ω n
a + en

K ⋅e ˆ y ( )ω n
b (9.9.24b)

where e i  and en  are unit vectors defined in Figure 9.?.

  ̂  y 

K

J

  ̂  x 

    

r 
e ̂ x 

en
I

    

r 
e ̂ y 

I

en
K

LK

a J K

1 2 4

2

3

4

2

4

1

1

2

3

Numbering sequence
4 3

21

4

3

2

1

Node and side numbering

Figure 9.?.  Numbering scheme for shear projection.
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The transverse shears at the quadrature point then are given by

  
2 ˆ D xz = − N I

I =1

4

∑ ξ , η( )ω ̂ y I (9.9.22)

  
2 ˆ D yz = − N I

I =1

4

∑ ξ , η( )ω ̂ x I (9.9.23)

The transverse shears do not depend on   
ˆ υ z , because these velocities vanish at the

quadrature point.

Evaluating the resulting forms for the transverse shear at the quadrature point,
ξ =η = 0 , gives

  

Dxz

Dyz

 
 
 

 
 
 

= Bs[ ]
I=1

4

∑
ˆ υ zI
ˆ ω xI
ˆ ω yI

 

 
 

 
 

 

 
 

 
 

(9.9.25)

  
B I

s =
1

4

2 x JI − x IK( ) ˆ x JI y JI + ˆ x IK y IK( ) − ˆ x JI x JI + ˆ x IK x IK( )
2 y JI − y IK( ) ˆ y JI x JI + ˆ y IK x IK( ) − ˆ x JI y JI + ˆ x IK y IK( )

 

 
 

 

 
 (9.9.26)

  
x JI = ˆ x JI LJI( )2

,      y JI = ˆ y JI LJI( )2
,      LJI = ˆ x JI

2 +ˆ y JI
2 (9.9.27)

Table 9.2
4-Node Quadrilateral Shell Elements

Element Ref. Passes
Patch
Test

Correct
in Twist

Speed Robustness

Belytschko-Tsay (BT) [ ] No No High

Hughes-Liu (HL) [ ] No Yes High*

Belytschko-Wong-Chang
(BWC)

[ ] No Yes Moderate

Belytschko-Leviathan (BL) [ ] Yes Yes Moderate to
Low

YASE No No Moderate

Full Quadrature MacNeal-
Wempner (Bathe-Dvorkin)

Yes Yes Moderate to
Low

References
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Exercise 9.?.  Consider a flat plate in the x-y plane governed by the Mindlin-Reissner
theory.  The velocity fieldis given by

v = zω × n = z ω yex − ωxey( )

Show that the rate-of-deformation is computed is given by

  
ˆ D xx =

∂ˆ v x
M

∂ˆ x 
+ˆ z 

∂ ˆ ω y
∂ˆ x 

,     
  

ˆ D yy =
∂ˆ v y

M

∂ˆ y 
−ˆ z 

∂ ˆ ω x
∂ˆ y 

  

ˆ D xy = 1
2

∂ˆ v x
M

∂ˆ y 
+

∂̂  v x
M

∂ˆ x 

 
 
  

 
 +

ˆ z 

2

∂ ˆ ω y
∂ˆ y 

−
∂ ˆ ω x
∂ˆ x 

 

 
  

 
 

  

ˆ D xz = 1
2

ˆ ω y +
∂ˆ v z

M

∂ˆ x 

 
 
  

 
 ,          

  

ˆ D yz = 1
2 − ˆ ω x +

∂ˆ v z
M

∂̂  y 

 
 
  

 
 

  
Dxy = 1

2
∂vx

M

∂y
+

∂vy
M

∂x

 

 
 

 

 
 − ˆ z 

∂ 2vz

∂x∂y
,          Dxz = Dyz = 0

Discrete  momentum equation.  The discrete equations for the shell are obtained
via the principle of virtual power.  As mentioned before, the only difference in the way
the principle of virtual power is applied to a shell element is that the kinematic constraints
are taken into account.  We will use the same systematic procedure as before of
identifying the virtual power terms by the physical effects from which they arise and then
developing corresponding nodal forces.  The main difference we will see is that in the
shell theory nodal moments arise quite naturally, so we will treat the nodal moments
separately.  Boundary conditions in shells are often expressed in specialized forms, but
we will first

If the angular velocity and the director are expressed in terms of shape functions, the
product of shape functions will not be compatible with the reference continuum element
and the result will not satisfy the reproducing conditions for linear polynomials.
Therefore, the bending velocities   v

B ξ, η( )  are approximated directly.

EXAMPLE 9.?.  Consider the three-node element shown, which is an application of the
degenerated continuum concept to beams.  The shape functions are quadratic in ξ .
Develop the velocity field and the rate-of-deformation in the corotational coordinates.
Give an expression for the nodal forces.  If the nodes are placed at angles of 0˚, 5˚, and
10˚, what is the maximum angle between the pseudonormal p and the true normal to the
midline?
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Expand the rate-of-deformation in ξ  and retain only the linear terms for an
element with nodes placed along a circular arch.  Compare the result with the equation.

Consider the beam element with the master nodes along the x-axis as shown in
Figure 9.?.  Develop the expression for the rate-of-deformation and compare to the
Midlin-Reissner equations.

y

x

z

1

1

1
_

2 3

3

2

2

3+
+

+

_ _

ˆ e 3
ˆ e 1 v2x

v2z θ3

Figure 9.?.

EXERCISE.  Consider the lumped mass for a rectangle.

a

b

h

1 2
  

ˆ M =
1
8 mI2×2

Figure 9.?.
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m =
1

8
ρ0a0b0h0

where ρ0 , a0 , b0 , and h0  are the initial density and dimensions of the rectangular
continuum element underlying the beam element.  Using the transformation (???),
develop a mass matrix and diagonalize the result with the row-sum technique.

EXERCISE.  Starting with the consistent mass matrix for a rectangular continuuem
element (from Przemienicki)

  

ˆ M =

 

 

 
 
 
 

a.) develop a consistent mass using Eq. (9.3.17), i.e.   M = TT ˆ M T  for a beam element
lying along the x-axis as shown.

1 2

2+

2
_

1+

1
_

x

Figure 9.?

b.) develop the complete inertia term including the time-dependent term in Eq. (9.3.17).

The idea of using covariant components of velocity-strains (or strains) has already
been explored in Chapter 8.  It enables the assumed strain field to be tailored more
precisely to arbitrarily shaped elements, independent of node numbering.
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CHAPTER 10
CONTACT-IMPACT
by Ted Belytschko
Northwestern University
Copyright 1996

X.1 INTRODUCTION

This Chapter introduces the treatment of problems with contact and impact.
Many problems in the simulation of prototype tests and manufacturing processes involve
contact and impact.  For example, in the simulation of a drop test on a product, the
various parts must be separated by so-called sliding interfaces which can model contact,
sliding and separation.  In the simulation of manufacturing processes, sliding interfaces
are also important: the modeling of the surfaces between the die and workpiece in sheet
metal forming, the modeling of the tool-workpiece interface in machining, the modeling
of extrusion are some examples of where sliding interfaces are needed.  In
crashworthiness simulation of automobiles, many components, including the engine,
wheels, radiator, etc. can contact during the crash and their surfaces automatically must
be treated as sliding interfaces.  The treatment of impact always requires a subsequent
treatment of contact, since bodies which impact will stay in contact until rarefaction
waves result in release.

In this  Chapter, the governing equations and finite element procedures for
problems with contact-impact are introduced for Lagrangian meshes; the modeling of
contact with Eulerian meshes introduces difficulties which have not been resolved yet.
The governing equations for bodies in contact are identical to the equations introduced
previously, except that it is necessary to add the kinetic and kinematic conditions on the
contact interface.  The key condition is the condition of impenetrability: namely, the
condition that two bodies cannot interpenetrate.  The general condition of impenetrability
cannot be expressed as a useful equation, so several approaches to developing specialized
forms of these conditions have evolved.  We will consider two of these forms: a rate form
which is useful for explicit dynamics methods and a form based on closest point
projection; the latter is primarily useful for implicit methods.  Friction is treated by both
the classical Coulomb friction models and by interface constitutive models wherein the
tangential tractions are developed through constitutive laws in terms of relative normal
and tangential velocities of the interface.

Next, the weak forms of the governing equations are developed.  Four approaches
to treating the contact surface conditions are considered:

1. the Lagrange multiplier method;

2. the penalty method;

3. the augmented Lagrangian method;

4. the perturbed Lagrangian method.

The weak form for contact-impact for the Lagrange multiplier methods differs from the
weak form for single bodies in that they are inequalities; they are often called weak
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inequalities or variational inequalities.  In penalty methods, these inequalities are
incorporated by means of the Heaviside step function.  It will be shown that the weak
forms are equivalent to the strong forms.

The discretization of contact problems is similar to problems without contact
except that in Lagrange multiplier methods, the Lagrange multiplier fields must be
approximated.  The Lagrange multiplier fields are constrained fields which must observe
the inequality that they be nonnegative across the contact interface (the sign of the
inequality depends on the structure of the weak form; the Lagrange multipliers may also
be contrained to be nonpositive).  These constraints on the Lagrange multiplier ultimately
imply the constraint that the normal tractions be compressive.  In penalty methods, the
traction inequalities emerge from the  Heaviside step function which is embedded in the
penalty force.

Contact-impact problems are among the most difficult nonlinear problems
because the response in contact-impact problems is not smooth.  The velocities normal to
the contact interface are discontinuous in time when impact occurs.  When Coulomb
friction models are used, the tangential velocities along the interface are discontinuous
when stick-slip behavior is encountered.  These characteristics of contact-impact
problems introduce significant difficulties in the time integration of the governing
equations and impair the performance of numerical algorithms.  Therefore, the
appropriate choice of methodologies and  algorithms is crucial in the successful treatment
of these problems.  Techniques such as  regularization are highly useful in obtaining
robust solution procedures, but the analyst must understand their effect so that important
aspects of the response are not eliminated.

The implementation of contact-impact for general models is quite difficult.  In our
discussion of implementation, we will begin with the simplest examples, one dimensional
problems, which illustrate how the contact inequalities are imposed.  We will then sketch
some of the difficulties that arise in large-scale multidimensional problems, but we will
not dwell on these since many of the approaches are based more on heuristics and
computer science than computational mechanics.

X.2  CONTACT INTERFACE EQUATIONS

X.2.1. Notation and Preliminaries.  Contact-impact algorithms in general
purpose software can treat the interaction of many bodies, but for purposes of simplicity,
we limit ourselves to two bodies as illustrated in Fig. 1.  The treatment of multi-body
contact is identical: the interaction of any pair of bodies is exactly like the two body

problem.  We have denoted the configurations of the two bodies by ΩA  and ΩB  and
denote the union of the two bodies by Ω .  The boundaries of the bodies are denoted by

Γ A  and Γ B . Although the two bodies are interchangeable with respect to their
mechanics, it is sometimes useful to express the equations in term of one of the bodies,
which is called the master; body A is designated as the master, body B as the slave.
When we wish to distinguish field variables that are associated with a particular body, we
append a superscript A or B; when neither of these superscripts appears, the field variable
applies to the union of the two bodies.  Thus  the velocity field v(X ,t) refers to the

velocity field in both bodies, whereas    v
A( X, t )  refers to the velocity in body A.

The contact  interface consists of the intersection of the surfaces of the two bodies

and is denoted by Γc .
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Γc =Γ A ∩Γ B (X.2.1)

This contact interface consists of the two physical surfaces of the two bodies which are in

contact, but since they are theoretically coincident we refer to a single interface Γc .  In

numerical solutions, the two surfaces will usually not be coincident.  In those cases, Γc

refers to the master surface.  Moreover, although the two bodies may be in contact on

several disjoint interfaces, we designate their union by a single symbol Γc .  The contact
interface is a function of time, and its determination is an important part of the solution of
the contact-impact problem.

n B

n A

ΩB

Γ C

AΩ

S

Q

P

Figure
1.  Model problem for contact-impact showing notation.

In constructing the equations, it is convenient to express vectors in terms of local
components of the contact surface.   A local coordinate system is set up at each point of
the master contact surface as shown in Fig. 2.  At each point, we can construct unit

vectors tangent to the surface of the master body   
ˆ e 1

A ≡ ˆ e x
A  and   

ˆ e 2
A ≡ ˆ e y

A .  The procedure for
obtaining these unit vectors is identical to that used in shell elements, see Chapter 8.  The
normal for body A is given by

  n
A=ˆ e 1

A ×ˆ e 2
A (X.2.2)
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On the contact surface

nA = −nB
(X.2.3)

that is, the normals of the two bodies are in opposite directions.

B

Ω

A

Ω

 An
ê y

ê x
ê x

Γ
C

 An

Figure 2.  Contact interface showing local unit vectors referred to master surface A.

The velocity fields can be expressed in the local coordinates of the contact surface
by

   v
A =vN

An A + ˆ v α
Aˆ e α

A = vN
A nA +vT

A (X.2.4a)

  v
B =vN

Bn A + ˆ v α
Bˆ e α

A = vN
An B + vT

A (X.2.4b)

where the range of Greek subscripts is 2 in three dimensional problems.  When the
problem is two dimensional, the contact surface becomes a line, so we have a single unit
vector   

ˆ e 1 ≡ ˆ e x  tangent to this line; the range of the Greek subscripts in (4) is then one and
the tangential component is a scalar. As can be seen in the above, the components are
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expressed in terms of the local coordinate system of the master surface.  The normal
velocities are given by

vN
A = vA ⋅n A vN

B = vB ⋅ nA (X.2.5)

which can easily be seen by taking the dot product of the expressions in (4) with n A  and

using the fact that the normal is orthogonal to the unit vectors tangent to the plane   
ˆ e i

A .

The bodies are governed by the standard field equations given in Boxes 4.1 and
5.1: conservation of mass, momentum and energy, a strain measure, and the constitutive
equations.  Contact adds the following conditions: the bodies can not interpenetrate and
the tractions must satisfy momentum conservation on the interface.  Furthermore, the
normal traction across the contact interface cannot be tensile.  We classify the
requirements on the displacements and velocities as kinematic conditions and the
requirements on the tractions as kinetic conditions.

X.2.2.  Impenetrability Condition.  In a multi-body problem, the bodies must
observe the impenetrability condition.  The impenetrability condition for a pair of bodies
can be stated as

ΩA ∩Ω B = 0 (X.2.6)

that is, the intersection of the two bodies is the null set.  In other words, the two bodies
are not allowed to overlap, which can also be viewed as a compatibility condition.  The
impenetrability condition is highly nonlinear for large displacement problems, and in
general cannot be expressed as an algebraic or differential equation in terms of the
displacements.  The difficulty arises because in an arbitrary motion it is impossible to
anticipate which points of the two bodies will contact.  For example, in Fig. 1, if the
bodies are spinning, it is possible for point P to contact point Q, whereas a different
relative motion can result in contact of point P with point S.  Consequently, an equation
which expresses the fact that point P does not penetrate body A cannot be written except
in general terms such as (6).

Because it is not feasible to express Eq. (6) in terms  of the displacements, it is
convenient to express the impenetrability equations in rate form or incremental form in
each stage of the process.  The rate form of the impenetrability condition is applied to
those portions of bodies A and B which are already in contact , i.e. to those points which

are on the contact surface Γc .  It can be written as

  γ N = ( vA − vB ) ⋅n A ≡ vN
A − vN

B ≤ 0 onΓc (X.2.7)

where vN
A  and vN

B  are defined in Eq. (5).  Here   γ N ( X, t )  is the rate of interpenetration of
the two bodies; see Fig. 3.  The impenetrability condition (7) restricts the interpenetration
rate for any points on the contact surface to be negative, i.e.  Eq. (7) expresses the fact
that when the two bodies are in contact, then they must either remain in contact (γ N = 0 )
or they must separate (γ N < 0).  When (7) is met for all points which are in contact, the
impenetrability condition is met exactly.  However,  the equivalence between (7) and (6)
does not hold when (7) is only observed at discrete points in time as in most numerical
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methods, since interpenetration is then possible for points which are close but not on the
contact surface during the intervening time intervals.

n B n A  Bv

 Av

γ  Av-

Figure 3.  Nomenclature for velocities on contact surface;  the same nomenclature and
relations hold for incremental displacements ∆u  or variations δu or δv; the contacting
surfaces are shown separated for clarity.

Equation (7) can introduce discontinuities in the velocity time histories.  Prior to
contact, the normal velocities are not equal whereas subsequent to impact, the normal
velocity components must observe (7).  These discontinuities in time complicate the time
integration of the discrete equations.

Equation (7) is useful only for point-pairs that are in contact or separated by small
distances, since it defines the interpenetration rate exactly only when the two surfaces are
coincident. However, it gives the correct sign on the interpenetration and is representative
of the speed of relative surface motion when the gap between the two surfaces is small.
When the interpentration is moderately large or used as the basis of the contact traction
calculation, Eq. (7) is not recommended because the rate γ N  is not integrable and
therefore depends on the path of interpenetration.  Later in this Section, formulas are
discussed which are applicable for moderate amounts of interpenetration .

Many authors use the quantity −γ N  to characterize the interaction of the two
bodies and call it the gap rate.  The gap rate is the negative of the interpenetration rate;
we prefer to use the term interpenetration rate.  Some authors define an interpenetration
but call it a gap.  It may appear inconsistent to speak of an interpenetration rate when
impenetrability is a fundamental condition on the solution.  However, in many numerical
methods, a small amount of interpenetration is allowed, and inequality (7) will not be
observed exactly.

The relative tangential velocity is given by

  
γ T = ˆ γ Tx

ˆ e x − ˆ γ Ty
ˆ e y = vT

A − vT
B (X.2.8)

The middle term is included to illustrate that the relative tangential velocity in  three
dimensions is a two-component vector which can be expressed in terms of the local
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coordinates of each point on the contact surface.  As can be seen from (8), the expression
for the relative tangential velocity is similar to the expression for the normal relative
velocities, Eq. (2).

X.2.3.  Traction Conditions.  The tractions must observe the balance of
momemtum across the contact interface.  Since the interface has no mass, this requires
that the sum of the tractions on the two bodies vanish

tA + tB = 0 (X.2.9a)

The tractions on the surfaces of the two bodies are defined by Cauchy's law

tA = σ A ⋅ nA or ti
A = σ ij

An j
A  (X.2.9b)

tB = σ B ⋅n B or ti
B = σ ij

Bn j
B (X.2.9c)

The normal tractions are defined by

tN
A = t A ⋅n A or tN

A = t j
An j

A (X.2.9d)

tN
B = tB ⋅n A or tN

B = t j
Bn j

A (X.2.9e)

Note that the normal components, like all local components on the contact surface, refer
to the master body.  The momentum balance condition on the normal tractions can be

obtained by taking a dot product of Eq. (8a) with the normal vector n A , which gives

tN
A + tN

B = 0 (X.2.9f)

We do not consider any adhesion between the contact surfaces in the normal
direction, so the normal tractions cannot be tensile.  We will subsequently often use the
phrase that the normal tractions must be compressive, although the normal tractions can
also vanish. The condition that the normal tractions  cannot be tensile can be stated as

tN ≡ tN
A x,t( ) = −tN

B x,t( ) ≤ 0 (X.2.9g)

The condition that the normal tractions be compressive requires tN
B  to be positive since

tN
B  is the projection of the traction on body B onto the unit normal of A, which points into

body B.

The tangential tractions  are defined by

tT
A = tA − tN

A nA      tT
B = tB − tN

Bn A (X.2.10a)

10-7



T. Belytschko,  Contact-Impact, December 16, 1998 8

so the tangential tractions are the total tractions projected on the master contact surface.
Momentum balance requires that

tT
A + tT

B = 0 (X.2.10b)

The above equation can be obtained by substituting (10a) into (9a) and using (9f).

When a frictionless model of contact is used, the tangential tractions vanish:

tT
A = tT

B = 0 (X.2.10c)

We have used the phrase “frictionless model of contact” to emphasize that it is not
implied that friction is absent, but rather that friction is neglected in the model because it
is deemed unimportant.  Subsequently we shall just say frictionless contact, but it should
be understood that friction never vanishes in reality.

Although one of the bodies has been chosen as the master body in developing the
preceding contact interface equations, these equations are symmetrical with respect to the
bodies when the two contact surfaces are coincident and Eq. (3) is observed.  Thus it does
not matter which body is chosen as the master body.  However, when the two surfaces are
not coincident, as in most numerical solutions, then the choice of the master body
changes the equations somewhat.

X.2.4.  Unitary Contact Condition.  Conditions (7) and (9g) can be combined
into a single equation

tNγ N =0 (X.2.10d)

which is called the unitary contact condition.    This equation also expresses the fact that
the contact forces do no work.  That this condition must hold on the contact surface can
be seen as follows: when the bodies are in contact and remain in contact, γ N = 0, whereas
when contact ceases, γ N ≤ 0  but the normal traction must vanish, so the product always
vanishes.  It will also be seen that this is a Kuhn-Tucker condition when a Lagrange
multiplier approach is used, for the normal traction is then equivalent to a Lagrange
multiplier, and the unitary condition states that the product of the Lagrange multiplier and
the constraint on the velocities vanishes.

X.2.5.  Surface Description*.  In penalty treatments of the contact conditions and
for some interface constitutive equations, it is useful to allow a certain amount of
interpenetration on the contact interface and to compute it precisely.  To develop such
expressions for the interpenetration, a referential description of the contact surface is
used.  If the reference coordinates in a three dimensional problem are

  ξ ≡ ξ1,ξ2,ξ3( ), i.e. ξ ∈R3, then the contact surface can be described by a manifold

  ζ= ζ1,ζ2( ) i.e. ζ ∈R2 .  These referential coordinates will be usually element reference

coordinates in FE discretizations; an example is given later.  In two dimensions, ξ ∈R2

and ζ ∈R1 , so the contact surface is a curve.
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The contact surface can be described by the reference coordinates of either body,
but it is conventional to choose one body as the master and use the reference coordinates
of the master body for the contact interface.  Body A  is chosen to be the master and the

contact interface is described by   x
A( ζ, t) =φ A( ζ, t ) .  The covariant base vectors are given

by

  
aα =

∂φA

∂ζ α ≡φ ,α
A ≡ x ,α

A (X.2.11a)

In the above, the second through fourth term in (11) are different expressions for the same
equation.  The normal vector is given by

n = a1 × a2 a1 × a2 (X.2.11b)

The covariant base vectors aα are useful primarily in derivations; they are tangent
to the surface but not necessarily orthogonal nor of unit length.  The variable Cartesian
base vectors   

ˆ e α  are orthonormal and can be constructed from aα  by

e1 =a1 a1 , e2 =n × e1, where n  is given above;  a better choice of eα  is given in
Chapter (Shells).

X.2.6.  Interpenetration Measure.  In many implementations of contact, the
impenetrability condition is relaxed, i.e. a certain amount of interpenetration is permitted.
When the points of two contacting areas have interpenetrated, it is useful to write the

interpenetration   gN ( ζα , t)  in the form of an explicit equation.  We follow here the work
of Wriggers(1995) and Wriggers and Miehe(1992).  Consider a situation such as shown
in Fig. 4, where point P has penetrated body A.  The objective is to find the penetration,

which is denoted by   gN ( ζα , t)

P g
N (x  )

Ω
B

 < 0

 B

 1ζ

 1

 Aζ
 PΩA

Figure 4. Interpenetration of point P on body slaveB defined as orthonormal projection
from master body A..

The interpenetration is  defined as the minimum distance from point P on body B
to a point on body A.  The distance between P and any point on A is given by
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lAB = xB( ζ , t) − xA( ζ , t)

≡ ( x B − xA ) 2 + ( yB − yA ) 2 + ( z B − z A ) 2[ ]
1
2

The referential coordinates ζ  and ζ  pertain to bodies A and B, respectively.   The
interpenetration   gN ( ζ, t)  is then defined as the minimum distance of point P to the
surface of A  when point P has penetrated body A:

  

gN ( ζ, t) = min

ζ 
xB( ζ , t) − xA( ζ , t)

             
  
if xB( ζ , t) − xA( ζ , t )[ ]⋅nA ≤ 0 (X.2.12)

otherwise   gN ( ζ, t) = 0

According to this definition, gN (ζ,t)is positive when interpenetration occurs and vanishes
when the bodies have not interpenetrated.

To evaluate the gN (ζ,t), the referential coordinate ζ  which minimizes the

interpenetration must be found, i.e. we must find the location of the point   x
A( ζ , t)  on the

master body which corresponds to the stationary point of the distance, so we take the

derivative of lABwith respect to ζ  and set the result to zero.  This yields

∂lAB

∂ζ α
=

xB(ζ ,t) − xA (ζ ,t)
xB(ζ ,t) − xA (ζ ,t)

⋅
∂xA (ζ ,t)

∂ζ α
≡ e ⋅ aα = 0 (X.2.13)

where aα  is given by Eq.(11) and e = (x B − xA )/ xB − xA , so e  is a unit vector from

body A to body B.  The last term in the above shows that the distance is minimum, i.e. the
derivative vanishes, when e  is orthogonal to the two tangent vectors aα .  This implies

that e  is normal to the surface of A.  Thus 
  
x A ζ , t( )  is the orthogonal projection of the

point P with coordinates xB  onto the master surface.  This is a result that permeates
mathematics:  the shortest distance is always the orthogonal projection.  The result is
illustrated in Fig 4 in two dimensions.    Note that when the bodies have interpenetrated,

e  is opposite to the direction of the outward pointing normal, so e =−n A .  Therefore the
interpenetration   gN ( ζ, t)   is the distance from P to the surface A along the direction
opposite to the normal of A.  As a matter of fact, the result developed in this section is

obvious from the definition: since the point corresponding to ζ  is the minimizer of the
distance, it must be the orthogonal projection.
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The minimizer ζ  is determined by solving the nonlinear algebraic equations (13).
In three-dimensional problems, (13) involves two equation in two unknowns, in two

dimensions a single equation.  Once ζ  is determined, the interpenetration gN  can be
found by Eq. (12).

This approach to defining the interpenetration poses difficulties when the two
bodies are not smooth and locally convex.  For example, in the situation shown in Fig. 5

the minimizer of lAB  is not unique: there are two points which are orthogonal projections
of the point P.  In these situations, it is difficult to develop schemes which lead to a
uniquely defined measure of the interpenetration.  Furthermore, if the discontinuous
surface is the slave, the point of maximum interpenetration is not reflected in the
interpenetration measure   gN ( ζ, t)  because the point of maximum interpenetration is not
the orthogonal projection of any point on the master surface.

ΩA

Ω
B

P

S
RQ

Figure 5.  Penetration by a surface with a kink showing the resulting nonuniqueness of
the point of orthogonal projection.

X.2.7.  Path Independent Form of Interpentration Rate.  In this Section,
the rate of interpenetration will be developed from the interpenetration formula (12) and
compared to the rate formula developed previously, Eq. (7).  The rate of   gN ( ζ , t )
provides a path-independent measure of the interpentration rate so its derivative is
integrable, in contrast to γ N , which is not integrable.  The rate ˙ g N (ζ ,t)can be found by

taking the derivative of   gN ( ζ , t )  in Eq. (12):

˙ g N =
d

dt
(min lAB) =

xB (ζ ,t ) − xA (ζ ,t)
xB (ζ ,t ) − xA (ζ ,t)

⋅
∂xB(ζ ,t)

∂t
−

∂xA (ζ ,t)
∂t

 
 
  

 
 (X.2.14)

Based on the discussion following Eq. (13), we know that the minimimum is attained

when xB − xA / xB − xA  corresponds to the normal to body B. Using this fact and that

  v
B = ∂xB( ζ, t) / ∂ t  , the above can be rewritten as

  
˙ g N = nB ⋅ vB −

∂xA( ζ , t)
∂t

 
 
  

 
 (X.2.15)
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It is important to observe that ζ  is not a material coordinate, because in order to
remain the closest point projection, this point moves independently of the material. Thus
the second term in the parenthesis of the RHS of (15) is not a material velocity.  The
point can be considered an ALE point: it is neither fixed in space nor coincident with a
material point.  Using the concept of ALE derivatives from Section X, which is based on
the chain rule,  it follows that

  

∂xA( ζ α , t)
∂t

=vA −
∂xA

∂ζ α
dζ α

dt
≡ vA − x,α

A ζ ,t
α  (X.2.16)

Substituting (16) into (15), and using Eq. (2) it follows that

  
˙ g N = nB ⋅ vB −v A − x,α

A ζ , t
α( ) = n A ⋅ vA − n A ⋅ vB + nA ⋅x ,α

A ζ , t
α (X.2.17a)

Comparing Eqs. (7) and (17a), it can be seen that the normal interpenetration rate differs

from the normal projection of the relative velocities γ N  unless ζ ,t
α = 0 .  Whenever the

two surfaces of the contacting bodies are coincident   ζ ,t = 0 , so

  γ N = ˙ g N when gN <<1 (X.2.17b)

X.2.8.  Tangential Relative Velocity for Interpentrated Bodies.  If the
bodies have interpenetrated, Eq. (8) does not give the relative tangential velocities of two
points on the contact surfaces;  Eq. (8) is exact only when the two bodies are in contact
but have not interpenetrated.  To obtain a relation for the tangential velocities which
holds for interpenetrated bodies, we follow Wriggers(1995) and Wriggers.  In this
approach, the relative tangential velocity is defined in terms of the velocities of a point P
on body B and its closest point projection.  The relative velocity is then projected onto the
master surface.  So the relative tangential velocity is defined by

  
˙ g T = ζ , t

α aα  (X.2.17c)

which involves the rate ζ ,t
α  which appears in Eq. (16).  This rate ζ ,t

α  can be obtained from
Eq. (13) as follows.  Since Eq. (13) always holds for the point which is the closest point

projection, the derivative of the LHS must vanish, i.e. multiplying Eq.(13) by xB −x A

and using Eq. (11),  aα = ∂xA ∂ζα , we have

d

dt
xB (ζ,t ) − xA (ζ ,t)( ) ⋅aα[ ]=0 (X.2.18)

To expand the time derivative of the covariant base vector aα use (see Section X)

daα
dt

=
d

dt

∂xA

∂ζ α
 
 
  

 
 =

∂
∂ζα

dxA

dt
+

∂xA

∂ζ β
dζβ

dt
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=

∂
∂ζα

vA + x ,β
A ζ,t

β( )=v,α
A + x ,αβ

A ζ,t
β (X.2.19)

The remaining step are as follows (the independent variables are suppressed when
convenient):

(derivative of product in (18))

x ,t
B (ζ,t) − x ,t

A(ζ ,t)( )⋅ aα + (xB − x A) ⋅ aα ,t = 0 (X.2.20)

(using vBA ≡ vB − vA, xBA ≡ xB − xA, Eq. (19) for aα ,t )

  
( vBA − x,β

A ζ ,t
β ) ⋅aα + xBA ⋅( v,α

A + x ,αβ
A ζ ,t

β ) = 0 (X.2.21)

(using gNnA = xB − xA ≡ xBA, x ,β
A = aβ  Eq. (11) )

(aα ⋅ aβ − gNn A ⋅ x,αβ
A )ζ ,t

β = gNn A ⋅ v,α
A + vBA ⋅aα (X.2.22)

The above is a system of two linear algebraic equations in the two unknowns 
  
ζ ,t

β ;  all

terms on the right hand side are known.  Once the time derivatives 
  
ζ ,t

β  are known,   ̇ g T
can be determined from  (17c).  The first terms on the LHS and RHS of the above
equations are of fundamental importance in the theory of surfaces:  they are the first and
second fundamental forms of the surface.

When gN = 0  (or when gN  is sufficiently small), Eq. (22) can be simplified to

aα ⋅ aβζ ,t
β = (vB − vA ) ⋅ aα (X.2.23)

Taking the tensor product of the above with aα  we obtain

  
˙ g T = aβζ ,t

β = ( vB − vA )aα ⊗ aα = vT
B −vT

A (X.2.24)

where the second line follows from the fact that the projection of any vector on the
surface is the tangential component.  Since the RHS by Eq. (8) is −γ T , we can see that
when that when the surfaces are coincident, i.e. when gN = 0 , then

˙ g T = −γ T (X.2.25)

Thus the displacement-based definition of relative tangential velocity, Eqs. (17c) and
(22),  is consistent with the tangential velocity defined in Eq. (8) in the absence of
interpenetration (except for the sign, which is irrelevant)

The kinetic and kinematic contact interface equations are summarized in Box X.1.
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Example 5.2.1.  Consider the two surfaces shown in Fig. 6, which have partially
interpenetrated as shown.  The master body is a 9-node isoparametric element, so the 3
nodes of surface A are defined by a quadratic mapping:

  

x

y
 
 
 

 
 
 

A

= ( 1− r2 )
2

1
 
 
 

 
 
 

+ 1
2 r(1 + r )

3

3
 
 
 

 
 
 

             r ≡ζ A , −1≤ r ≤1

The surface of the slave body B is a horizontal line given by

  

x

y
 
 
 

 
 
 

B

=
4s

1.5
 
 
 

 
 
 

, s ≡ζ B , 0 ≤ s ≤1

The interpenetration in the example has been exaggerated.  Note that nB ≠− nA  along the
interface.

Part A.  For the point Pon slave surface B with coordinates (1,1.5), find the
interpenetration.

The first step is to find the orthogonal projection point Q which minimizes lPQ :

10-14



T. Belytschko,  Contact-Impact, December 16, 1998 15

BOX  X.1.  Contact Interface Conditions

kinetic conditions

      tA + tB = 0

      normal:    tN
A + tN

B = 0 , tN
A ≡ tA ⋅n A , tN

B ≡ tB ⋅nA , tN ≡ tN
A ≤ 0

      tangential:    tT
A + tT

B = 0, tT
A ≡ tA − tN

AnA , tT
B ≡ tB − tN

Bn A

kinematic conditions in velocity form

      γ ≡ γ N = v A − vB( )⋅n B ≡ vN
A − vN

B ≤ 0

      γ T = vT
A − vT

B = vA − vB − vA − vB( )⋅n A

unitary contact condition

      tNγ N = 0

kinematic conditions and definitions in displacement form

      
  
g ≡ gN = min

ζ 
xB( ζ , t) −x A( ζ , t) if xB( ζ , t) − xA( ζ , t)[ ]⋅ nA ≤ 0

      
  
˙ g N = nB ⋅ vB −v A − x,α

A ζ , t
α( ) = n A ⋅ vA − n A ⋅ vB + nA ⋅x ,α

A ζ , t
α

        
˙ g T = ζ ,t

αaα   where  
  
( aα ⋅aβ − gn Av,αβ )ζ , t

β = gn A ⋅ v,α
A + vB − vA( )⋅aα

  
lPQ = xB( ζ B ) − xA( ζ A ) = ( x B − xA ) 2 + ( yB − y A) 2( )1/ 2

       
  
= 1− 2( 1− r2 ) + 3

2 r( 1+ r )( )[ ]2
+ 3

2 − (1 − r2 ) + 3
2 r(1 + r )( )[ ]2 

 
 

 
 
 

1
2

The minimizer satisfies

  
0 =

dlPQ

dr
=

1

lPQ
( r3 +3r + 3

4 )
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The root is found numerically to be r= -0.2451, so   ( xQ ,yQ ) = ( 1.6023, 0.6624 ) .

X.3  FRICTION MODELS

X.3.1.  Classification.  The models used for the computation of the tangential
tractions are collectively called friction models.  There are basically three types of friction
models:

1.  Coulomb friction models, which are based on the classical theories of friction
commonly taught in undergraduate mechanics and physics courses;

2.  Interface constitutive equations, which approximate the behavior of the
tangential forces by equations similar to constitutive equations used for materials;

3.  Asperity-lubricant models, which model the behavior of the physical
characteristics of the interface, often on a microscale.

The demarcations between these classes are not sharp;  some models adopt
features of more than one of the above classes, but the above roughly describes the
current state of affairs.

X.3.2.  Coulomb Friction.  Coulomb friction models originate from classical
friction, which is used for the total frictional forces between rigid bodies.  In the
application of classical Coulomb friction models to continua, they are applied at each
point of the contact interface.  A direct translation of the Coulomb friction law to a
pointwise law gives

if A and B are in contact at x, then

  a ) if tT ( x, t ) <−µFtN ( x , t) , γT ( x , t) = 0 (X.3.1a)

  b ) if tT ( x, t) = −µFtN ( x , t) , γ T ( x , t) =−α( x, t) tT ( x, t ) , α ≥ 0  (X.3.1b)

where α  is a variable which is determined from the solution of the complete problem.
The condition that the two bodies are in contact at a point implies that the normal traction
tN ≤ 0, so the RHS of the two expressions, −µ FtN , is always positive.  Condition (a) is
known as the stick condition, for when the tangential traction at a point is less than the
critical value, no relative tangential motion is permitted according to this condition, i.e.
the two bodies stick. Condition (b) corresponds to frictional sliding, and the second part
of that equation expresses the fact that the tangential traction arising from friction must be
in the direction opposite to the direction of the relative tangential velocity.

The classical Coulomb friction law closely resembles a rigid-plastic constitutive
equation.  If the tangential velocity γ T  is interpreted as a strain and the tangential traction
components are interpreted as stresses, the first relation in Eq. (1a) can be interpreted as a
yield function.  According to (1), when the yield criterion is not met, the tangential
velocity vanishes. Once the yield function is satisfied, the tangential velocity is in the
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direction of the tangential traction but its magnitude is unspecified.  These attributes of
the response parallel the rigid plastic model desribed in Section 6.?.

There are several alternative ways of stating Coulomb’s law which are equivalent
to the above.  For example, Demkowicz and Oden(1981) state Coulomb’s law as (the
spatial dependence of the variables has been dropped for simplicity):

  

if Aand Bareincontact at x, then

tT ≤−µF tN and tT ⋅vT +µF tN γ T = 0
(X.3.2)

The stick condition of Coulomb friction is its most troublesome characteristic,
since it introduces  discontinuities in the time history of the relative tangential velocity.
When the motion of point changes from relative slipping to sticking, the relative
tangential velocity γ T  discontinuously jumps to zero.  Thus the tangential velocities at
that point are not smooth, but exhibit the same discontinous character as the normal
velocities at the time of impact.  Furthermore, the inequalities result in the Coulomb
friction law result in weak forms which involve inequalities.  Therefore, Coulomb friction
is difficult to handle in numerical solutions and we consider it only for some special
cases.

X.3.3.  Interface Constitutive Equations.  A different approach to defining
interface laws has been pioneered by Michalowski and Mroz (1978) and Curnier(1984).
This approach is motivated by the theory of plasticity and the analogy between Coulomb
friction and rigid-perfect plasticity we alluded to above. Interface constitutive equations
can model behavior similar to Coulomb friction by means of the Mohr-Coulomb criterion
(see Section XX).  Plastic models of interface behavior are motivated by the fact that
microscopic examination of even the smoothest surfaces reveals surface roughness due to
asperities, such as shown in Fig. X.3.1.  Even when the surfaces  appear smooth, friction
is generated by the interaction of these asperities during sliding.  Sliding initially causes
elastic deformations of these asperities, so a true stick condition cannot exist in actual
siding, i.e. the stick condition is an idealization of observed behavior.  The elastic
deformation of the asperities is followed by “grinding” down of the asperities as the
sliding proceeds.  The elastic deformations of the asperities are reversible, whereas the
grinding down is irreversible, so ascribing an elastic character to the initial sliding and a
plastic character to subsequent sliding  is natural.
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g N

=0g N

Figure X.3.1.  Asperities on contacting surface.

As an example of an interface constitutive law we describe an adaptation of
Curnier’s plasticity theory for friction.  This model contains all of the ingredients of a
plasticity theory for continua:  a decomposition of deformation into reversible and
irreversible components, a yield function and a flow law.  In this description of the model
Curnier(1984), we have replaced displacements by rates, which appears appropriate for
problems involving arbitrary time histories and large relative sliding.

In this theory, the rate of relative velocities γ  is subdivided into that ascribed to
adherence, which is the elastic deformation of the asperities, and that ascribed to slip, the
grinding down of the asperities:

γ = γ adh + γ slip ≡ γ a + γ s (X.3.3)

Here γ adh  is the reversible part, γ slip  is the irreversible part.  A wear function is defined
by

  

Dc = ( γ T
s ⋅

0

t

∫ γT
s )

1
2 dt (X.3.4)

which is reminiscent of the definition of effective plastic strain.

Two functions are defined to construct the plastic interface law:

1.  a yield function,    f ( t)

2.  a potential function for the flow law,    h( t )
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The yield function determines the onset of plastic response, the potential function the
relationship between the slip (plastic strain rate) and the tangential tractions.

 The theory is similar to the nonassociative plasticity theories given in Section ?.
Therefore, we will only sketch the steps so that the equations are available and to enable
us to point out the need for nonassociative plasticity in a model of frictional sliding.

The yield function for Coulomb type behavior is obtained from Eq. (1):

  f ( tN , tT ) = tT +µ FtN = 0 (X.3.5)

f

γγ  T t T, associated

− γ  N− t,

 Fµ
γ  T

Figure X.3.2.  Coulomb yield surface in two dimensions.

In two dimensions this yield function takes the form shown in Fig. X.3.2:    tT = tTˆ e x  in
that case, so the yield function consists of two lines with slopes ±µ F  as shown.  For the

three-dimensional case,   tT = ˆ t αˆ e α = ˆ t xˆ e x + ˆ t yˆ e y , we can write Eq. (5) as

  f ( tN , tT ) = ( ˆ t x
2 + ˆ t y

2 )
1

2 +µFtN = 0 (X.3.6)

so the yield function is a cone as shown in Fig. X.3.3.
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γ
NtN ,

γ
yty ,

γ
xtx ,

γ
S

Figure X.3.3.  Coulomb surface for contact in 3D.

In a nonassociative theory, the potential function for the slip differs from the yield
function.  One possible potential function for a nonassociative theory is

  h( tN , tT ) = tT − β = 0 (X.3.7)

where β  is a constant whose magnitude is irrelevant.  This potential function is also
shown in Fig. X.3.4.

f h

 nonassociated γ
γ  T t T,

− γ  N− t,

Figure X.3.4.  Non-associated flow law.

To write the complete relations for a plasticity theory of friction in two and three
dimensions, it is convenient to define

10-20



T. Belytschko,  Contact-Impact, December 16, 1998 21

    

g=
γ N

gT

 
 
 

 
 
 

in 2D, g=
γ N

gT

 
 
 

 
 
 

=
γ N
ˆ γ x
ˆ γ y

 

 
 

  

 

 
 

  
in 3D (X.3.10)

  

Q =
tN

tT

 
 
 

 
 
 

in 2D, Q =
tN

tT

 
 
 

 
 
 

=
tN
ˆ t x
ˆ t y

 

 
 

  

 

 
 

  
in 3D (X.3.11)

The adhesive strains are then related to the stresses by

    
˙ Q = CF gadh or ˙ Q i = Cij

Fγ j
adh (X.3.12)

which is the counterpart of the linear elastic law for continua.  Usually CF  is diagonal
since little experimental information is available on coupling between different
components of the frictional traction and the relative motion.

The adhesive slip rates are given by the nonassociative flow law.  Perfectly-plastic
sliding, in which there is no increase in the tractions with the accumulation of slip,
closely resembles Coulomb friction and is given by

  
gslip = α

∂h

∂Q
or γ i

slip =α
∂h

∂Qi
(X.3.13)

We define

f Q =
∂f

∂Q
hQ =

∂h

∂Q
(X.3.14)

The steps for developing the constitutive equation for the frictional surface are then:

  f Q
T ˙ Q = 0 consistency           (X.3.15)

    
˙ Q = C g− gslip( ) (12) and (3)           (X.3.16)

  fQ
TC g−αhQ( ) = 0 (13) and (15) into (16)           (X.3.17)

  
α =

fQ
TCg

fQ
TChQ

solve (17) for α           (X.3.18)

    

˙ Q = C g−
fQ

TCg

fQ
TChQ

hQ

 

 
 

 

 
 (18) and (??) into (16)           (X.3.19)
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Since the above is a traction rate, it is not objective (i.e. frame invariant) so a frame-
invariant rate must be used for integration.

  
Q∇( ζ , t ) =

∂Q( ζ , t )
∂ t

−Q ⋅W (X.3.20)

where Q∇  is a frame invariant rate and W is the projection of the spin given by Eq.
(3.X.X) onto the surface.  In the above, ∂Q ∂ t  is the rate of the tractions due to the slip
rates.  The update proccedures are analogous to that in elasto-plasticity and are discussed
in Section X.

The reason for choosing a nonassociative flow law can be clarified by considering
sliding in a two dimensional problem.  If we were to use an associated flow law, the

irreversible slips are given by γ N
slip = α

∂ f

∂ tN
=−αµ F  

  
γ T

slip = α
∂f

∂ tT
= −α sign( tT ) .  Since

α ≥ 0 , this implies that, γ N
slip < 0  so the bodies would separate after the onset of slip

(recall γ N  is positive in interpenetration).  If the slips are then given by the potential flow
laws using the nonassociated potential (7),  the slips in two dimensions can be written as

γ N
slip = α

∂h

∂tN
= 0 (X.3.21)

γ T
slip = α

∂h

∂tT
= α (X.3.22)

Thus the normal slip vanishes, i.e. that no irreversible normal interpenetration occurs
during to sliding.

Hardening can also be incorporated in a manner analogous to the procedure in
elasto-plasticity.  The constitutive equation for the interface is then developed as in
plasticity with hardening, see Section ?.  Under large pressures, the asperities are often
significantly ground down, and some degree of permanent change occurs in the normal
interpentration.  This can be modeled by a cap model such as described in Section ?.

X.4  WEAK FORMS

X.4.1.  Notation and Preliminaries.  The weak form of the momentum equation
and the contact interface conditions will be developed for a Lagrangian mesh.  This
development is also applicable to an ALE mesh when the contact surface is treated as
Lagrangian.  For simplicity, we start with frictionless contact and defer the treatment of
tangential tractions to the last part of this Section.  We restrict the following
developments to the case where all traction or velocity components are prescribed on a
traction or dispacement boundary, respectively.

The contact surface is neither a traction nor a displacement boundary.  Thus the
total boundary of body A is given by

Γ A = Γt
A ∪Γ u

A ∪Γ c (X.4.2a)
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Γt
A ∩Γu

A = 0 Γt
A ∩Γ c = 0 Γu

A ∩Γ c = 0 (X.4.2b)

Similar relations hold for body B.

The trial solutions are in the space of kinematically admissible  velocities, and as
in Chapter 4 we choose the velocities to be the cardinal dependent variable.  The trial
solution is   v( X, t ) ∈U  where the space of trial functions is defined by

  
U = v X, t( ) v ∈C0 ΩA( ),v ∈C0 ΩB( ), v = v on Γu{ } (X.4.3)

The space is similar to that for the single body problem, but the velocities are separately
approximated in the two bodies; the velocity fields in   U  are not required to be continuous

across the contact interface.  (*while the admissible velocity fields are here given as C0 ,

i.e. in   H
1 , for purposes of convergence analysis in linear elastostatics the displacements

for the contact problem are defined in the space   H
1/ 2 , see Kikuchi and Oden(1988).

This is the same space that is used in fracture mechanics problems to handle the singular
stresses at the crack tip. In contact problems, singularities occur at the edge of the contact
zone so the same space must be used in convergence analysis.  However, unlike in
fracture mechanics, these singularities do not appear to be of any engineering
significance, since the roughness of surfaces appears to eliminate the appearance of even
near singular behavior in the stresses.)

The space of test functions is defined by

  
U0 = U∩ δv( X) δv = 0on Γu{ } (X.4.4)

which parallels the definition in Section 4.3:  The test functions are identical to the trial
functions except that they vanish on prescribed displacement boundaries.

X.4.2.  Lagrange Multiplier Weak Form.  A common approach to imposing the
contact constraints is by means of Lagrange multipliers.  We will follow the description
given by Belytschko and Neal(1991).  Let the Lagrange multiplier trial functions

  
λ ζ α , t( )  and the corresponding test functions be in the following spaces

  
λ ζ α , t( )∈J + , J + = λ ζα , t( ) λ ∈C−1,λ ≥ 0 onΓc{ } (X.4.5)

  
δλ( ζ α ) ∈J − , J− = δλ( ζ α ) δλ ∈C−1, δλ ≤ 0 onΓc{ } (X.4.6)

The weak form is:

if   δ P L( v,δv,λ ,δλ ) ≡ δ P +δ GL ≥ 0 ∀δv ∈U0, ∀δλ ∈J − (X.4.7)
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δ GL = δ λγ N( )
Γc
∫ dΓ (X.4.8)

where   δ P  is defined in Table B4.2 and   v ∈U, λ ∈J + .  This weak form is equivalent to
the momentum equation, the traction boundary conditions and the following contact
interface conditions: impenetrability (2.7), momentum balance on normal tractions  (2.9f)
and the frictionless condition (2.10c).  The restriction of the normal interface traction to
be compressive will result from the constraints on the trial set of Lagrange multipliers.
Note that the above weak form is an inequality.

The above is a standard way of appending a constraint to a weak form by means
of a Lagrange multipliers: compare to the Hu-Washizu variational principle.  The only
difference from the Hu-Washizu form is that the constraint is an inequality.

The equivalence of the weak form to the momentum equation, the traction
boundary conditions and the contact conditions is shown by a procedure that parallels that
given in Section 4.2.  Recall that    δ P  is given in  Box 4.1 as

  

δ P = δvi , jσ ji −δvi ( ρbi − ρ˙ v i )[ ]dΩ
Ω
∫ − δvit i

Γ t

∫ dΓ (X.4.9)

where  we have used commas to denote derivatives with respect to the spatial variables
and a superposed dot to denote the material time derivative. All integrals in the above

apply to the union of both bodies, i.e. Ω =Ω A ∪Ω B, Γt =Γ t
A ∪Γ t

B .  The first step is to
integrate the internal virtual power by parts and apply Gauss’s theorem:

  

δviσ ji( ), j
dΩ

Ω∫ = δviσ jin jdΓ
Γt

∫ + ( δvi
Ati

A +δvi
Bti

B ) dΓ
Γ c
∫ (X.4.12)

We have used the fact that the integral over the displacement boundary Γu vanishes
because δvi = 0  on Γu  and Cauchy's law (9b-c) has been applied to obtain the
expressions in the last integral.  The first integral on the right hand side of the above
applies to both bodies, as can be seen from the definition (2c).  The contact surface
integral appears for each body when Gauss’s theorem is applied, so to express the result
as a single integral, the field variables associated with the two bodies have been
specifically indicated the superscripts A and B.

The integrand of the second integral on the RHS of the above is now broken up
into components normal and tangential to the contact surface.  In indicial notation this
gives

  δvi
Ati

A = δvN
AtN

A +δˆ v α
Aˆ t α

A
(X.4.13)

where, as usual in this book, the range of alpha is 1 for two dimesional problems and 2
for three dimensional problems.  A similar relationship can be written for body B.  The
above is clearer to some people in vector notation, where using (2.10a) we can write
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δvA ⋅t A = ( δvN
AnA + δvT

A ) ⋅( tN
AnA + tT

A )

= δvN
AtN

A + δvT
A ⋅tT

A
(X.4.14)

The simplification to the second line is obtained by noting that n  is normal to the tangent
vectors tN  and vN .  The second term in (14) is an alternative expression for   

ˆ t α ˆ v α .

Substituting Eqs. (12) and (13) into (9) gives

  

δ P = δvi( ρvi − bi −σ ij , j ) dΩ
Γ C
∫ + δvi( σ jin j − t i ) dΓ

Γ t

∫

+ ( δvN
AtN

A +δvN
BtN

B + δˆ v α
Aˆ t α

A +δˆ v α
Bˆ t α

B ) dΓ
Γc
∫

(X.4.16)

Now consider Eq. (8):

  

δ GL = δ ( λγ N )
ΓC
∫ dΓ = ( δλγ N + δγ Nλ )

ΓC
∫ dΓ (X.4.17)

Substituting Eq.(2.2) into the above gives

  

δ GL = ( δλγ N

Γc
∫ +λ ( δvN

A −δvN
B ) ) dΓ (X.4.18)

Combining Eqs. (16) and (18) yields

  

  

0 ≤δ P L = δvi σ ji , j −ρbi −ρ ˙ v i( )dΩ
Ω∫ + δvi( σ jin j − t i ) dΓ

Γ t

∫

+ [δvN
A( tN

A +λ ) +δvN
B( tN

B − λ ) +( δˆ v α
Aˆ t α

A + δˆ v α
B̂  t α

B ) + δλγ N ]dΓ
Γc
∫

 (X.4.19)

Extracting the strong form from the weak inequality is similar to the procedure
described in Section 4.2.  Whenever the test function is unconstrained, there is then no
restriction on the sign of the term which multiplies the test function and the term must
vanish by the density theorem.  Thus it follows from the first two integrals of the above
that

  
σ ji , j −ρbi = ρ˙ v i inΩ X.4.20)

σ ji n j = t i onΓt (X.4.21)

i.e. that the momentum equation and the natural boundary conditions are satisfied in
bodies A and B.  In all terms of the integrand on the contact surface except the last, the
test function is also unconstrained, and we obtain the equalities
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ˆ t α

A = 0 and ˆ t α
B = 0 onΓc , or tT

A = tT
A = 0 on Γc (X.4.22)

λ =− tN
A and λ = tN

B on Γc (X.4.23)

By eliminating λ from (23) we obtain the momentum balance condition on the normal
tractions

tN
A + tN

B = 0 on Γc (X.4.25a)

Since the space of trial functions for λ is constrained to be positive, see Eq. (5), it follows
from (23) that the normal traction on the contact interface is  compressive.  Thus we can
write

tN
A + tN

B = 0 on Γc
(X.4.25b)

In the last term of the integrand of Eq.(18), the variation δλ  is constrained to be
negative.  Therefore, it cannot be deduced that its coefficient γ N  vanishes.  However it
can be deduced that the coefficient must be nonpositive, i.e. that the weak inequality is
equivalent to

γ N ≤ 0 on Γc (X.4.26)

which is the interpenetration inequality (2.2).

Equations (20-22) and (25-26) constitute the strong form corresponding to the
weak form given in Eq. (7).  This set of equations includes  the momentum equation and
the traction (natural) boundary conditions on both bodies.  On the contact surface, the
strong form enforces the momentum balance of the normal tractions and the inequality on
the interpenetration rate.  The compressive character of the normal tractions follows from
the restriction on the Lagrange multiplier field (5).

X.4.3.  Contribution of Virtual Power to Contact Surface.  At this point,
for the purpose of simplifying subsequent proofs, we observe that the only contribution of
  δ P  to the conditions on the contact interface is the term in Eq. (12).  We call this term

  δ P1  and from (12) it can be seen that it is given by

  

δ P1( Γc ) = ( δvi
Ati

A +δvi
Bti

B ) dΓ
Γc
∫

= ( δvN
AtN

A + δvN
BtN

B +δvT
A ⋅ tT

A + δvT
B ⋅tT

B ) dΓ
Γc
∫

(X.4.27)

The remaining terms in   δ P  are equivalent to the momentum equation and traction
boundary conditions, so by replacing   δ P  by   δ P1  the momentum equation and traction
boundary conditions are observed.

If the contact surface is frictionless, then the last two terms in the integrand of
(27a) vanish, so the contribution of   δ P  to the contact interace is
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δ P2( Γc ) ≡ ( δvN
AtN

A + δvN
BtN

B ) dΓ
Γ c
∫ (X.4.28)

Replacing   δ P  by   δ P2  implies the momentum equation, the traction boundary
conditions, and the frictionless condition (10c).  These results will be used in the proofs
which follow.

X.4.4.  Penalty Method with Rate-dependent Penalty.  In the penalty
method, the impenetrabilty constraint is imposed as a penalty normal traction along the
contact surface.  In contrast to the Lagrange multiplier method, the penalty method allows
some interpenetration.  However, it is easier to implement and is quite widely used.  We
consider two forms of the penalty method:

1. a penalty which is proportional to the square of the normal interpentration rate γ N ;

2. a penalty which can be an arbitrary function of the interpenetration and its rate.

The second is more useful for applications in nonlinear problems, because a strictly
velocity-dependent penalty allows too much interpenetration.  However, the
interpenetration-rate dependent penalty leads to a form which is of interest in the
elastostatic problem when we replace velocities by displacements, so it is included.

In the penalty methods, we use the same test and trial functions for the velocities
as in the Lagrange multiplier method, Eqs. (3) and (4), respectively.  The equivalence of
the weak form to the strong form for the penalty method can be stated as follows:

if  v ∈U   and   δ P p( v,δv) =δ P +δ G p =0 ∀δv ∈U0 (X.4.29a)

where 

  

δ Gp =
β
2

ΓC
∫ δ( γ N

2 ) H( γ N ) dΓ (X.4.29b)

then the momentum equation and natural boundary conditions are satisfied 

in the two bodies and the normal tractions on Γc satisfy momentum 
balance and are compressive, and vice versa

In the above    H ( γ N )  is the Heaviside step function,

  
H ( γ N ) =

1 if γ N ≥ 0

0 if γ N = 0
 
 
 

(X.4.30)

The functional   δ P  is defined in Eq. (9) and β  is an arbitrary parameter known as the
penalty parameter.  The penalty parameter can be a function of the spatial coordinates.
The weak form associated with the penalty method is not an inequality;  the
discontinuous nature of the contact-impact problem is introduced by the Heaviside step
function in Eq. (29b).  This weak form does not include the impenetrability condition,
which is satisfied only approximately in the penalty method.
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To show that the weak form implies the strong form, we begin by taking the
variation of   δ GP , which gives

  

δ GP = βγ N δγ N H ( γ N ) dΓ
ΓC
∫ (X.4.31)

Using Eq. (2.3) in the above gives

  
δ GP = βγ N

+ ( δvN
A − δvN

B ) dΓ
ΓC
∫ X.4.32)

where

  γ N
+ = γ N H ( γ N ) (X.4.34)

We then combine the above term with the contact term,   δP2( ΓC )  in Eq. (28), i.e. with
what remains from   δ P  after extracting the momentum equation and natural boundary
conditions (which means that these strong forms are already implied).  This  yields

  

δ P P = δvN
A( tN

A +βγ N
+ ) +δvN

B( tN
B −βγ N

+ )[ ]
ΓC
∫ dΓ =0 (X.4.33)

The arbitrariness of δvN
A  and δvN

B  on Γc  then yields

tN
A +βγ N

+ = 0 onΓc (X.4.35)

tN
B −βγ N

+ = 0 onΓc (X.4.36)

Combining the two above equations gives

tN
A =− tN

B =− βγ N
+ ≤0 (X.4.37)

where the inequality follows from Eq. (34).  Thus the weak form implies that the normal
tractions satisfy momentum balance and are compressive.  The weak form, unlike the
Lagrange multiplier technique, does not enforce the continuity of the velocities of the two
bodies across the contact interface;  in fact, the velocities will be discontinuous across the
interface.  The magnitude of the discontinuity can be obtained from (37), which gives

  γ N
+ = vN

A − vN
B = tN

A / β

Thus the discontinuity in the relative normal velocity component is inversely proportional
to the penalty parameter β ; as β  is increased, the diccontinuity will decrease.

X.4.5.  Interpenetration-dependent Penalty.  The above form of the penalty
method often performs quite poorly since it may allow excessive interpenetration.  The
normal traction is applied only when the relative velocities lead to continued
interpenetration.  As soon as the relative velocities of contiguous  points of the two
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surfaces become equal or negative, the normal traction vanishes.  Substantial
interpenetration may consequently persist in the solution.  Therefore, in penalty methods,
it is recommended that the normal traction also be a function of the interpenetration as
defined in (2.12).  For this purpose, we define the following relation for the normal
traction :

  p = p( gN , γ N ) H( gN ) (X.4.38)

where gN  is defined in Eq. (2.12).  The weak form is then given by Eq. (28) with

  

δ Gp = δγ N p dΓ
ΓC
∫ (X.4.39)

The same procedure as before then gives

tN
A + p = 0 on Γc (X.4.40)

tN
B − p = 0 on Γc (X.4.41)

Combining the two above equations gives

  tN
A =− tN

B = −p( gN , γ N ) H( gN ) (X.4.42)

Thus the tractions are always compressive and satisfy momentum balance. The tractions
are functions of the interpenetration and rate of interpenetration.  An example of a
suitable penalty function is

  p = ( β1gN + β2γ N )H ( β1gN + β2γ N ) (X.4.43a)

where   β1, β2  are penalty parameters whose selection is discussed in Section ?. The step
function in this expression avoids tensile normal tractions across the interface.

X.4.6.  Perturbed Lagrangian Weak Form.  The perturbed Lagrangian method
is primarily of interest in small displacement elastostatics.  In the perturbed Lagrangian
method, the weak form is

      if   v ∈U, λ ∈C−1  and   δ P PL =δ P +δ GPL ≥ 0        ∀ δv ∈U0 ,δλ ∈C−1 (X.4.44)

In the above

  
δ GPL = δ λγ N

+ − 1

2β
λ2 

 
 
 

Γ C
∫ dΓ (X.4.45)

where γ N
+  is defined by Eqs. (34) and (2.3) and β  is a large constant, analogous to a

penalty parameter.  It can be seen that the second term in the above integrand is a
perturbation of the Lagrangian multiplier, Eq. (8);  the quadratic perturbation term is
small since β  is large.
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In this weak form, the test and trial functions for the Lagrange multiplier are
unconstrained.  This weak form is equivalent to the momentum equation, the traction
boundary condition and the momentum balance and traction inequalities (2.9g ) on the
contact interface.   It will be shown that as in the penalty method, the impenetrability
condition (2.7) is only met approximately.

The equivalence to the strong form is shown as follows.  From (45),

  
δ GPL = ( δλγ N

+ +λδγ N − 1

β
λδλ )

Γ C
∫ dΓ (X.4.46)

Combining   δ GPL  with the terms that emerge from   δ P  once the momentum equation,

traction boundary conditions and frictionless interface conditions are met,   δ P2( Γc )  in
Eq. (27), yields

  

0 = δG PL +δ P2 = δλ γ N
+ − λ

β
 
 

 
 

Γc
∫ dΓ

+ δvN
A tN

A + λ( ) +δvN
B tN

B −λ( )
Γc
∫ dΓ

(X.4.47)

Since the test functions  δvN
A  and δvN

B  are arbitrary, it follows that

tN
A =− λ on Γc (X.4.48a)

tN
B =λ onΓc (X.4.48b)

The test function δλ  is constrained to be negative, so the variational inequality yields

λ = βγ N
+ onΓc (X.4.48c)

Combining the above yields

  tN
A =− tN

B =− βγ N
+ =− β( vN

A − vN
B )H ( γ N ) on Γc (X.4.49)

So the tractions satisfy  momentum balance and are compressive on the contact interface.

The above strong form of the contact surface conditions are almost identical to
those which emanate from the penalty method.  This similarity is also found in the
discrete equations, so the perturbed Lagrangian is a penalty method in disguise.

X.4.7.  Augmented Lagrangian.  The augmented Lagrangian formulation has been
developed to exploit improved methods for solving the Lagrange multiplier problem, c.f.
Bertsekas (1984).  The weak form is given by

  δPAL( v ,δv ,λ , δλ ) =δP + δGAL ≥ 0 ∀ δv ∈U0 , δλ ∈J − X.4.51)
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δGAL = δ λγ N( v ) +
α
2

γ N
2( v) 

 
 
 

ΓC
∫ dΓ  (X.4.52)

where   v ∈U, λ ∈J +( ΓC ); γ N ( v)  is defined by Eq. (2.3) and α  is a positive parameter
determined as part of the solution process.

The equivalence of this weak form to the strong form is shown in the following.
Expanding the integrand in (52) gives

  

δGAL = δλγ N +λ ( δvN
A + δvN

B ) +αγ N( δvN
A − δvN

B )[ ]
ΓC
∫ dΓ (X.4.53)

where Eq. (2.3) has been used for δγ .  Combining the above with the terms associated
with   δ GPL  from Eq. (28) gives

  

δλγ +δvN
A( λ + αγ + tN

A ) + δvN
B( λ +αγ − tN

B )[ ]
Γ C
∫ dΓ≥ 0 (X.4.54)

Since all of the variations are arbitrary, we obtain that on Γc

  δλ: γ N =vN
A − vN

B ≤0 (X.4.55)

  δvN
A: λ =− αγ − tN

A (X.4.56)

  δvN
B: λ =− αγ + tN

B (X.4.57)

Eqs. (56) and (57) can be combined to yield

tA
N =− tB

N =− λ −αγ ≤0 (X.4.58)

where the inequality follows because λ ≥ 0 and γ ≥ 0 when interpenetration occurs.
Thus the normal interface traction is compressive and satisfies momentum balance.

X.4.8.   Tangential Tractions by Lagrange Multipliers.  All of the above
formulations can be modified to handle interface friction laws by adding a term to the
weak form which enforces continuity of the tangential tractions.  We simply let

  δ PC = δ P + δG N + δ GT (X.4.59)

where

  δ PC ≥ 0 if δG N = δG L orδ G AL X.4.60a)

and

  δ PC = 0 if δ GN = δ GP orδ GPL (X.4.60b)
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The tangential weak form is given by

  

δ GT = δγT ⋅tT dΓ
ΓC

∫ ≡ δˆ γ αˆ t α dΓ
ΓC

∫ (X.4.61)

where tT  is a traction which is computed by a friction model.  We have put hats on the
expressions which are expressed in indicial notation to indicate that these components are
in the local coordinates of the tangent plane of the contact interface.

To obtain the equations, we take what remains from   δ P  after extracting the
momentum equation and traction boundary conditions, Eq. (27a) .  The normal kinetic
and possibly kinematic conditions are then extracted as indicated in the preceding
sections.  What remains is combined with δGT , giving

  

0 = δ P1( ΓC ) +δ G +δ GT = ( δvα
Atα

A +δvα
Btα

B +δˆ γ αˆ t α ) dΓ
Γc
∫ (X.4.62)

  

≡ ( δvT
A ⋅tT

A +
Γc
∫ δvT

B ⋅tT
B + δγ T ⋅tT ) dΓ

Note that tT  differs from tT
A  and tT

B ; tT  is the prescribed traction, which can be

computed by an interface constitutive equation, whereas tT
A  and tT

B ; are the tractions on
the interface which result from the interior stresses by Eqs. (2.9b-c).  Using the definition

of γ T , Eq. (2.8) we can write δγT = δvT
A − δvT

B .  Substituting into the above we have,
after rearranging the terms

  

0 = δ P1( ΓC ) +δ GT = δvT
A ⋅( tT

A + tT ) +δvT
B ⋅ ( tT

B − tT )[ ]dΓ
Γc
∫ (X.4.63)

From this we can extract

tT
A = −tT           tT

B = tT (X.4.64)

Eliminating tT  from the above we have

tT
A + tT

B = 0      or       
ˆ t α

A + ˆ t α
B = 0 (X.4.65)

Thus the additional term   δ GT  in the weak form corresponds to the momentum balance of
the tangential tractions on the contact interface.  Without this term in the weak form, the
tangential tractions vanish, i.e. the interface is frictionless.

This approach can be viewed as considering the   ̂  x  and   ̂ y  components of the
contact surfaces to be prescribed traction surfaces.  The traction term in the external
power would then be equivalent (61).
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When the stick condition applies to a part of the contact interface, it is possible to
use a Lagrange multiplier to impose the constraint of no tangential slip.  The form of the
term is similar to that which imposes the interpenetration condition, (8).  It is given by

  

δ GT = δ( γ T ⋅tT ) dΓ
ΓC

∫ ≡ δ( ˆ γ αˆ t α ) dΓ
ΓC

∫ (X.4.66)

This tangential weak form is associated with an equality, so if the original weak form to
which it is appended is an equality, then the weak form remains an equality, whereas if
the original weak is an inequality it remains an inequality.  The strong forms
corresponding to (66) are (65) and γ T = 0.

BOX  X.2    Weak  Forms

  δ PC = δ P +δ G +δ GT           note γ ≡ γ N

Tangential tractions: 
  
δ G = δγ T ⋅λT dΓ

Γc
∫ ≡ δˆ γ α

ˆ λ α dΓ
Γc
∫

Lagrangian:    
  
δ G = δ GL = δ ( λγ ) dΓ

Γ c
∫ , δPC ≥ 0

Penalty:    
  
δ G = δ GP = 1

2 βδ( γ 2 ) dΓ
Γc
∫ , δPC = 0

Augmented Lagrangian:    
  
δ G = δ GAL = δ( λγ + α

2 γ 2 ) dΓ
Γc
∫ , δPC ≥ 0

Perturbed Lagrangian:    

  

δ GN = δ GPL = δ ( λγ − 1
2β λ2 ) dΓ

Γ c
∫ , δ P C = 0

X.5 FINITE ELEMENT DISCRETIZATION

X.5.1  Overview.  In the following, the finite element equations for the various
treatments of contact-impact are developed.  The weak statements for all of the
approaches to the contact-impact problem, (penalty, Lagrange multiplier, etc.) involve a
sum of the standard virtual power and a contribution from the contact interface.  The
standard virtual power is discretized exactly as in the absence of contact, so we will use
the results developed in Chapter 4.  This Section concentrates on the discretization of the
various contact interface weak forms.
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The developments that follow here are applicable to both updated and total
Lagrangian formulations.  However in total Lagrangian formulations, the contact
interface conditions must be imposed in terms of the tractions on the deformed surface
areas.  The following discretizations are also applicable to ALE formulations as long as
the nodes on the contact surface are Lagrangian.  They are not directly applicable to
Eulerian formulations since we assume that we have at our disposal a referential
coordinate that describes the contact surface.  Such a coordinate system cannot easily be
defined in an Eulerian mesh.  In a Lagrangian mesh, the contact surface corresponds to a
subset of the boundary of the mesh.

We will first develop the FEM discretization for the Lagrangian multiplier method
in indicial notation.  Indicial notation enables us to go through some subtle steps which
will subsequently be glossed over in the matrix derivations; anyone who wishes to
replicate these steps for other formulations can rederive these in indicial notation.

X.5.2  Lagrange Multiplier Method.  For the purpose of developing a finite
element discretization, the velocities  and the Lagrange multipliers must be approximated

as functions of space and time.  The velocity   v( X, t )  is approximated by C0  interpolants
in each body as in the single body problem;  as can be seen from (4.3), continuity of
velocities between two bodies  across the contact interface is  not built into the
approximation, so the interpenetration condition will emanate from the discretization of
the weak form.  The velocity field can also be expressed in terms of the reference
coordinates ζ  on the contact surface when needed.  As in Chapter 4, we note that the
approximation of the velocity field directly defines the approximation of the displacement
field.

The finite element approximation for the velocity field is expressed in terms of the
material coordinates since we are dealing with a Lagrangian mesh.  It can alternatively be
written in terms of the element reference coordinates, since as pointed out in Chapter 4
the two sets of coordinates are equivalent.  To clarify certain issues, we will initially
discard the summation convention on repeated nodal indices and indicate sums explicitly.
The velocity field is

  
vi

A X, t( ) = NI X( )vIi
A( t)

I∈ΩA
∑  (X.5.1a)

  
vi

B X, t( ) = N I X( )vIi
B( t)

I∈ΩB
∑ (X.5.1b)

If the node numbers of bodies A and B are treated as distinct, then the two velocity fields
can be written as a single expression

  
vi X, t( ) = N I X( )vIi( t) ≡

I∈ΩA ∪Ω B
∑ N I X( )vIi( t) (X.5.1c)

where the last expression uses the implicit summation convention on node numbers
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The Lagrange multiplier field   λ ( ζ , t ) , as can be seen from (4.5) and (4.6), is

approximated by a C−1  field on the contact surface.  The Lagrange multiplier field need
only be piecewise continuous because its derivatives do not appear in any of the weak
forms.  We will use the element coordinates of the master body, ζ , as the independent
variables in approximating the Lagrange multiplier field.

  

λ ζ , t( ) = ΛI ζ( )λ I ( t )
I∈Γλ

c
∑ ≡ ΛI ζ( )λ I ( t) λ ζ , t( ) ≥ 0 (X.5.2)

The shape functions for the Lagrange multiplier field often differ from those used for the
velocities, so different symbols have been used for the two approximations.  Moreover,
when the nodes of bodies A and B are not coincident, the mesh structure differs from that

for the velocity field and a subscript λ  has been added to Γc  to indicate this fact.  The
need for a different nodal structure for the Lagrange multipliers is discussed in more
detail later.

The test functions are given by

δvi X( ) = NI X( )δvIi (X.5.3)

δλ ζ( ) =Λ I ζ( )δλ I δλ ζ( ) ≤ 0 (X.5.4)

where the implicit sums are defined in Eqs. (1) and (2).

To develop the semidiscrete equations, the above approximations for the velocity
and Lagrange multiplier fields and the test functions are substituted into the weak form,
Eq. (BX.2.3), which is repeated below:

  

δ P + δ( λγ N ) dΓ ≥ 0
Γc
∫ (X.5.5)

The terms emerging from   δ P  are identical to the nodal forces developed in Chapter 4, so
they will not be rederived; the results are given in Table B4.1.  From Eq. (B4.1.?) it
follows that

  δ P = δvIi( f Ii
int − f Ii

ext + MIJij
˙ v Jj ) ≡δdT ( f int − fext + M˙ ̇ d ) ≡ δdTf res (X.5.6)

The interpenetration rate can be expressed in terms of the nodal velocities by using (2.7)
and (8):

γ N = N IvIi
Ani

A

I∈Γc ∩Γ A
∑ + N IvIi

Bni
B

I∈Γc ∩Γ B
∑ (X.5.7)

where the first sum, as indicated, is over the nodes of body A which are on the contact
interface, and the second sum is over the nodes of body B which are on the contact
interface.  If we assign these nodes distinct node numbers, we can eliminate the
distinction between nodes of body A and B and express the above as
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γ N = NIvIn (X.5.8)

(lower case n is used to indicate some of the normal components in this equation and the
following).  The range of the sum on the repeated index I  is  implied and defined in (7).
The normal components are defined as in (2.5) by

  vIn = vIi
Ani

A if Iin A, vIn = vIi
Bni

A if Iin B (X.5.9)

Then using the approximations (1-4) it follows that

  
δ ( λγ N ) dΓ =

Γ c
∫ δvIn

ˆ G IJ
T λ J +δλ I

ˆ G IJvJn (X.5.10)

where

  

ˆ G IJ = Λ INJdΓ
Γc
∫ (X.5.11)

A superposed hat has been placed on   
ˆ G IJ  to indicate that it pertains to the velocities in

the local coordinate system of the contact interface.  Combining Eqs. (5), (6), and (10) we
can write the weak form as

  

δvIi f Ii
res

I∈Ω
∑ + δvIn

ˆ G IJ
T λ J

I∈Γλ
c

∑ + δλ I
ˆ G IJvJn

I∈Γλ
c

∑ ≥ 0 (X.5.12)

where the implicit sum on the index J holds, but the sums on the index I are explicitly
stated to indicate the relevant nodes.

The governing equations must be extracted carefully because of the inequalities
and the different roles different velocity components play in this equation.  The equations
for nodes which are not on the contact interface can be directly extracted from the first
sum since the nodal velocities are arbitrary, which yields the standard nodal equations of
motion at the nodes which are not on the contact interface

  f Ii
res = 0 or MIJ

˙ v Jj = f Ii
ext − fIi

int forI ∈Ω − Γ c (X.5.13)

To obtain the equations on the contact interface, what remains of the first sum after
extracting Eq. (13) is rewritten in the local coordinate systems of the contact interface and
combined with the second sum, giving

  

( δvIn f In
res +δˆ v Iα

ˆ f Iα
res + δvIn

ˆ G IJ
T λ J )

I∈Γc
∑ + δλ I

ˆ G IJvJn
I∈Γλ

c
∑ ≥ 0 (X.5.14)

Since the tangential nodal velocities are unconstrained, the weak inequality yields an
equality for the coefficients of the nodal velocities.  First we set the coefficient of   δˆ v Iα  to
zero, which gives
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ˆ f Iα

res = 0 or M IJ
ˆ ˙ v Jα = ˆ f Iα

ext − ˆ f Iα
int for I ∈Γ c (X.5.15)

The equation for the normal component at the contact interface nodes involves the first
and third terms of the first sum in (13) and gives

  f In
res + ˆ G IJ

T λ J = 0 or MIJ
˙ v Jn + f In

ext − f In
int + ˆ G IJ

T λ J = 0 forI ∈Γ c (X.5.16)

To extract the equations  associated with the Lagrange multipliers, we note that
the variations of the nodal Lagrange multipliers must be negative.  Therefore the
inequality (5) implies

  
ˆ G IJvJn ≤ 0 (X.5.17)

In addition, we have from Eq. (4.6) the requirement that the test function for the Lagrange
multiplier field must be positive

  λ ( ζ , t ) ≥ 0  (X.5.18)

The above inequality is difficult to enforce.  For elements with piecewise linear
displacements along the edges, this condition is often enforced only at the nodes by
λ I ≥ 0 .  This simplification is only appropriate with piecewise linear approximations
since the local minima of the Lagrange multipliers then occur at the nodes.

The above equations, in conjunction with the strain-displacement equations and
the constitutive equation, comprise the complete system of equations for the semidiscrete
model.  The semidiscrete equations consist of the equations of motion and the contact
interface conditions.  The equations of motion  for nodes not on the contact interface are
unchanged from the unconstrained case.  On the contact interface, additional forces

  
ˆ G IJλ J  which represent the normal contact tractions appear.  In addition, the
impenetrability constraint in weak form (17) must be imposed.  Like the equations
without contact, the semidiscrete equations are ordinary differential equations, but the
variables are subject to algebraic inequality constraints on the velocities and the Lagrange
multipliers.  These inequality constraints substantially complicate the time integration,
since the smoothness which is implicitly assumed by most time integration procedures is
lost.

For purposes of implementation, it is convenient to write the above equations in
matrix form in global components.  Let the interpenetration rate be defined in terms of the
nodal velocities by

  γ =Φ Ii( X)vIi( t ) (X.5.19)

where

  
ΦIi( X) =

NIni
A if IonA

NIni
B if IonB

 
 
 

(X.5.20)

The contact weak term is then given by
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δGL = δ( λI

Γ c
∫ ΛIΦJjvJj ) dΓ = λTGv (X.5.21a)

where

GJjI = ΛIΦJjdΓ
Γ c
∫      G = ΛΤΦdΓ

Γ c
∫ (X.5.21b)

The equations of motion can be written in matrix form by combining this form
with matrix forms of the internal, external and inertial power, which gives

  
δvT f int − fext + M˙ ̇ d ( ) +δ vTGTλ( ) = 0 ∀δv ∈Uh ∀δλ ∈J h− (X.5.22)

We will skip the steps represented by Eqs. (7-17) and invoke the arbitrariness of δv  and
δλ .  The matrix forms of the equations of motion and the interpenetration condition are

  M˙ ̇ d + f int − fext + GTλ = 0 (X.5.23a)

Gv ≤ 0 (X.5.23b)

The construction of the interpolation, and hence the nodal arrangement, for the
Lagrange multipliers poses some difficulties.  In general, the nodes of the two contacting
bodies are not coincident, as shown in Fig. 5.1.  Therefore it is necessary to develop a
scheme to deal with noncontiguous nodes.  One possibility is indicated in Fig. 5.1, where
the nodes for the Lagrange multiplier field are chosen to be the nodes of the master body
which are in contact.  This is a simple
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Ω
B

ΩA

Ω
B

ΩA

λ

λ

Figure. X.5.1.  Nodal arrangements for two contacting bodies with noncontiguous nodes
showing (a) a Lagrange multiplier mesh based on the master body and (b) an independent
Lagrange multiplier mesh.

scheme, but when the nodes of body B are much more finely spaced a coarse nodal
structure for the Lagrange multipliers will lead to interpenetration.  An alternative is to
place Lagrange multiplier nodes wherever a node appears in either body A or B, as shown
in Fig. 5.1b.  The disadvantage of that scheme is that when nodes of A and B are closely
spaced, the Lagrange multiplier element is then very small.  This can lead to ill-
conditioning of the equations.

X.5.3.  Assembly of Interface Matrix.  The G  matrix can be assembled from
“element”  matrices like any other global finite element matrix.  To illustrate the
assembly procedure, let the nodal velocities and Lagrange multipliers of element e  be
expressed in terms of the global matrices by

ve = Lev λe = Le
λλ (X.5.24a)

with identical relations for the test functions

δve = Lev δλ e = Le
λ δλ

Substituting into (18) gives
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λTGv = λγdΓ
Γc
∫ = λγdΓ

Γe
c
∫ =

e
∑ λT Le

λ( )T
ΦT Λ

Γe
c
∫ dΓ Lev

Since (18) must hold for arbitrary   ̇ d  and λ  it can be seen by comparing the first and last
term of the above that

  

G = Le
λ( )T

GeLe ,
e
∑ Ge =

Γe
c
∫ ΛTφdΓ (X.5.25)

Thus the assembly of G  from Ge  is identical to assembly of global matrices such as the
stiffness matrix.

X.5.4.  Lagrange Multipliers for Small-Displacement Elastostatics.  We
will call the analysis of small-displacement problems with linear, elastic materials small-
displacement elastostatics.  We have used the nomenclature of small-displacement,
elastostatics rather than linear elasticity because these problems are not linear due to the
inequality constraint on the displacements which arises from the contact condition.  For
small-displacement elastostatics, the governing relations for the impenetrability constraint
can be obtained from the preceding by replacing the velocities by the displacements.
Thus Eq. (2.7) and (19) are replaced by

gN = u A − uB( )⋅n A ≤ 0 onΓc      gN =Φd (X.5.26)

The discretization procedure is then identical to the above except for substituting
velocities by displacements and omitting the inertia, giving

  δdT f int − f ext( ) + δ dTGλ( ) = 0 ∀δd ∈U ∀δλ ∈J− (X.5.27)

Since the internal nodal forces are not effected by contact, for the small displacement
elastostatic problem they can be expressed in terms of the stiffness matrix by

f int = Kd (X.5.26a)

Taking the variation of the second term and using the arbitrariness of δd  and the
arbitrary but negative character of δλ  gives

K GT

G 0

 

  
 

  
d

λ
 
 
 

 
 
 

=
≤

f ext

0

 
 
 

 
 
 

(X.5.27)

This is the standard form for Lagrange multiplier problems except that an equality has
been replaced by an inequality in the second matrix equation.

If we recall other Lagrange multiplier problems, two  properties of this system
come to mind:

1.  the system of linear algebraic equations is no longer positive definite;
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2.  the equations as given above are not banded and it is difficult to find an 
arrangement of unknowns so that they are banded;

3.  the number of unknowns is increased as compared to the system 
without the contact constraints.

In addition, for the contact problem, the solution of the equations is complicated
by the presence of the inequalities.  These are very difficult to deal with and often the
small-displacement, elastostatic problem is posed as a quadratic programming problem,
see Section ?.  These difficulties also arise in the nonlinear implicit solution of contact
problems.

A major disadvantage of the Lagrange multiplier method is the need to set up a
nodal and element topology for the Lagrange multipliers.  As we have seen in the simple
two dimensional example, this can introduce complications even in two dimensions.  In
three dimensions, this task is far more complicated.  In penalty methods we see there is
no need to set up an additional mesh.

In comparison to the penalty method, the advantage of the Lagrange multiplier
method is that there are no user-set parameters and the contact constraint can be met
almost exactly when the nodes are contiguous.  When the nodes are not contiguous,
impenetrability can be violated slightly, but not as much as in penalty methods.
However, for high velocity impact, Lagrange multipliers often result in very noisy
solutions.  Therefore, Lagrange multiplier methods are most suited for static and low
velocity problems.

X.5.5.  Penalty Method for Nonlinear Frictionless Contact.  The nonlinear
discretization is developed only for the second form of the penalty method, (X.4.47).  In
the penalty method only the velocity field needs to be approximated.  Again, the velocity

field is C0  within each body, but no stipulation of continuity between bodies need be
made.  Continuity between bodies on the contact interface is enforced by the penalty
method.  We only develop the weak penalty term

  

δ Gp = δγp( g, γ ) dΓ
Γ c
∫ (X.5.28)

since the other weak terms are unchanged from the unconstrained problem.  Substituting

  
δ GP = δvT φT pdΓ

Γc
∫ ≡ δvTfc (X.5.29)

where φ the second equality defines f c  by

f c = φT pdΓ
Γc
∫ (X.5.30)

Note the similarity of this formula to that for the internal forces;  they express the same
thing, the relation between discrete forces and continuous tractions.  Using (29) and (6) in

the weak form (4.28) with (4.39) the above definition of f c  gives
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  δ P = δvTf res +δvTf c (X.5.31)

So using the arbitrariness of δv  and (5.6) gives

  f
int − fext + Ma + f c = 0 (X.5.32)

Thus in the penalty method the number of equations is unchanged from the unconstrained
problem.  The inequalities (B1.3) do not appear explicitly among the discrete equations
but are enforced by appearance of the step function in the calculation of the contact
penalty forces by (30) and (4.38 ).

X.5.6. Penalty for Small-Displacement Elastostatics.  For small-
displacement elastostatics, we replace velocities by displacements as previously.
Equation (4.43a) with β2 = 0  and (26b) give

p = β1gN = β1φd (X.5.33)

Substituting the above into (30) gives

  
f c = φT p( gN )H ( γ ) dΓ

Γc
∫ = β1

Γ
∫ φTφH ( γ ) dΓ d

or

  
f c = Pcd, Pc = β1

Γ
∫ φTφ H( γ ) dΓ (X.5.34)

Substituting (34) and (26a) into (32) after dropping the inertial term, gives,

  ( K + Pc ) d = fext (X.5.35)

This is a system of algebraic equations of the same order as the problem without contact
impact.  The contact interface constraints appear strictly through the penalty forces  Pcd .
The algebraic equations are not linear because as can be seen from (34), the matrix Pc
involves the Heaviside step function of the gap, which depends on the displacements.

In contrast to the Lagrange multiplier methods it can be seen that:

1.  the number of unknowns does not increase due to the enforcement of
     the contact constraints.

2.  the system equations remain positive definite since K  is positive
     definite and G  is positive definite.

The disadvantage of the penalty approach is that the enforcement of the impenetrability
condition is only approximate and its effectiveness depends on the appropriateness of the
penalty parameters.  If the penalty parameters is too small, excessive interpenetration
occurs causing errors in the solution.  In impact problems, small penalty parameters
reduce the maximum computed stresses.  We have seen some shenanigans in calculations
where analysts met stress criteria by reducing the penalty parameters.  Picking the correct
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penalty parameter is a challenging problem.  Some guidelines are given in Section ?,
where we discuss implementation of various solution procedures with penalty methods.

X.5.7. Augmented Lagrangian.  In the augmented Lagrangian method, the weak
contact term is

  

δ GAL = δ ( λγ +
α
2

γ 2 ) dΓ
Γ c
∫ (X.5.36)

Using the approximation for the velocity     v ( X, t )  and the Lagrange multiplier   λ ( ξ, t)
gives

  

δ GAL = δ( λTΛTφv +
α
2ΓC

∫ vTφTφv ) dΓ

Taking the variations gives (X.5.37)

  δ GAL = δλTGv + δvTGT λ +δvTPc( α )v (X.5.38)

where   Pc( α )  is defined by (34).  Writing out the weak form   δ P AL = δ P +δ G AL ≥ 0
using Eqs. (36-38) then gives

  f
int − fext + Ma +GTλ +Pc v = 0 (X.5.40a)

Gv ≤ 0 (X.5.40b)

Comparing Eqs. (40) with (23) and (35), we can see that the augmented
Lagrangian method gives contact forces which are a sum of those in the Lagrangian
method and the penalty method.  The impenetrability constraint (40b), is the same as in
the Lagrange multiplier method.

For small-displacement elastostatics, we use the same procedure as before. We
change the dependent variables to displacements so we replace the nodal velocities by
nodal displacements, and using( ??) and (27a), the counterpart of Eqs. (39) and (40)

K +Pc GT

G O

 

  
 

  
d

λ
 
 
 

 
 
 

=
≤

f ext

O

 
 
 

 
 
 

(X.5.41)

which further illustrates that the augmented Lagrangian method is a synthesis of penalty
and Lagrange multiplier methods , Eqs. (27) and (35).

X.5.8.  Perturbed Lagrangian.  The semidiscretization of the perturbed
Lagrangian formulation is obtained by using (4.45) with velocity and Lagrange multiplier
approximations are given by Eqs. (1) and (2), respectively.  We won’t go through the
steps, since they are identical to the previous discretizations.  The discrete equations are

  f
int − fext + Ma +GTλ = O (X.5.42)
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Gv − Hλ = O (X.5.43)

Equation (42) corresponds to the momentum equation, Eq. (43) to the impenetrability
condition.  The matrix G   is defined by Eq. (21b) and

H = 1

β
ΛTΛ

Γ c
∫ dΓ (X.5.44)

The constraint equations (43) can be eliminated to yield a single system of equations.
Solving Eq.(43) for λ  and substituting into (42) gives

  f
int − fext + Ma +GTH−1G = 0 (X.5.45)

The above is similar to the discrete penalty equation (35) with the penalty parameter β
appearing through H  in (44).  The last term in the above equations represents the contact
forces.

The semidiscrete equations for small-displacement elastostatics for the perturbed
Lagrangian methods are

K GT

G −H

 

  
 

  
d

λ
 
 
 

 
 
 

=
fext

O

 
 
 

 
 
 

(X.5.46)

Comparing the above to the Lagrangian method, Eq. (27), we can see that it differs only
in the lower left submatrix, which is 0  in the Lagrangian method but consists of the
matrix H in the perturbed Lagrangian method.
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BOX  X.3    Semidiscrete  Equations for Nonlinear Contact

  f = fext − f int

Lagrange Multiplier

      Ma − f + GTλ = 0 , Gv ≤ 0 , λ( x) ≥ 0

Penalty

    
  
Ma − f + f c = 0 , fc = ΦT p( gN )

Γc
∫ H ( gN )dΓ

Augmented Lagrangian

      Ma − f + GTλ +Pcv = 0 , Gv ≤ 0

Perturbed Lagrangian

      Ma − f + GTλ = 0 , Gv − Hλ = 0

    G = ΛTφ dΓ
Γ c
∫ H = ΛTΛ dΓ Pc =

Γc
∫ αφTφ dΓ

Γc
∫

1
1   2

2
3

 An

 Bn

ΩA ΩB

Figure X.5.1.  One dimensional example of contact;  example 1.
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Example X.5.1.  Finite Element Equations for One Dimensional
Contact-Impact.   Consider the two rods shown in Fig. X.5.1.   We consider a rod of
unit cross-sectional area.  The contact interface consists of the nodes at the ends of the
rods, which are numbered 1 and 2.  The unit normals, as shown in Fig. X.5.1, are

  nx
A =1, nx

B =−1.  The contact interface in one-dimensional problems is rather odd since it
consists of a single point. The velocity fields in the two elements which border the
contact interface are given by

  
v( ξ , t) = N( ξ , t ) ˙ d = ξ A , 1− ξ B, ξ B[ ] ˙ d (X.5.47)

where the column matrix of nodal velocities is

  
˙ d T = v1 v2 v3[ ] (X.5.48)

The G  matrix is given by Eqs. (20) and (21); in a one-dimensional problem, the integral
is replaced by a single function value, with the function evaluated at the contact point:

  
GT = ξ A ⋅nA , (1− ξ B )nB , ξ B[ ]

ξ A=1, ξ B=0

      = ( 1)( +1) , 1( −1) , 0[ ] (X.5.49)

      = 1, −1, 0[ ]
The impenetrability condition in rate form, (23b), is given by

  G
T ˙ d ≤ 0 or 1 −1 0[ ]˙ d = v1 − v2 ≤ 0 (X.5.50)

The last equation can easily be obtained by inspection: when the two nodes are in contact,
the velocity of node 1 must be less or equal than the velocity of node 2 to preclude
overlap.  If they are equal, they remain in contact, whereas when the inequality holds,
they release.  These conditions are not sufficient to check for initial contact, which should
be checked in terms of the nodal displacements: x1 − x2 ≥ 0  indicates contact has
occurred during the previous time step.

Since there is only one point of contact, only a single Lagrange multiplier appears
in the equations of motion.  The equations of motion, Eqs. (BX.3.2) are then

  

M11 M12 M13

M21 M22 M23

M31 M32 M33

 

 

 
 

 

 

 
 

˙ ̇ d 1
˙ ̇ d 2
˙ ̇ d 3

 

 
 

  

 

 
 

  
−

f1

f2

f 3

 
 
 

  

 
 
 

  
+

1

−1

0

 
 
 

  

 
 
 

  
λ1 = 0 (X.5.51)

and

λ1 ≥ 0 (X.5.52)
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The last terms in (51) are the nodal forces resulting from contact between nodes 1 and 2.
The forces on the nodes are equal and opposite and vanish when the Lagrange multiplier
vanishes.  The equations of motion are identical to the equations for an unconstrained
finite element mesh except at the nodes which are in contact.  The equations for a
diagonal mass matrix with unit area can be written as

M1a1 − f1 +λ1 = 0

M2a2 − f2 −λ1 = 0 (X.5.53)

M3a3 − f3 = 0

where   a I = ˙ ̇ d I .

The equations for small-displacement elastostatics, Eq. (27) can be written by
combining the G  matrix, Eq. (49), with the assembled stiffness as in (27c) giving

k1 0 0 1

0 k2 −k2 −1

0 −k2 k2 0

1 −1 0 0

 

 

 
 
 

 

 

 
 
 

d1

d2

d3

λ1

 

 
 

 
 

 

 
 

 
 

=

≥

f1
f2

f 3

0

 

 
 

 
 

 

 
 

 
 

ext

(X.5.54)

where kI  is the stiffness of element I.  The assembled stiffness matrix in the absence of
contact, i.e. the upper left hand 3x3 matrix, is singular, but with the addition of the
contact interface conditions, the complete 4x4 matrix becomes regular.

Penalty Method.  To write the equation for the penalty method, we will use the
penalty law   p = βg = β ( x1 − x2 ) H( g) = β ( X1 − X2 + u1− u2 ) H( g)  .  Then evaluating Eq.
(30) gives

f c = φT p dΓ
Γ c
∫ =

1

−1

0

 

 

 
 

 

 

 
 
βg (X.5.55)

The above integral consists of the integrand evaluated at the interface point since Γc  is a
point.  Equations (32) for a diagonal mass are then

M1a1 − f1 +βg = 0

M2a2 − f2 −βg = 0 (X.5.56)

M3a3 − f3 = 0

The equations are identical to that for the Lagrange multiplier method, (53) except that
the Lagrange multiplier is replaced by the penalty force.
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To construct the small displacement, elastostatic equations for the penalty
method, we first evaluate P c by Eq. (34):

  

Pc = β1φ
Tφ H( g) dΓ

Γc
∫ = β1 H ( γ )

+1

−1

0

 

 

 
 

 

 

 
 

+1 −1 0[ ]

  

= β1 H( g)

+1 −1 0

−1 +1 0

0 0 0

 

 

 
 

 

 

 
 

(X.5.57)

If we define   β = β1 H ( g) , and add P c to the linear stifness, then the resulting equations
are

k1 +β −β 
−β k2 +β −k2

−k2 k2

 

 

 
 

 

 

 
 

d1

d2

d3

 
 
 

  

 
 
 

  
=

f1

f2

f3

 
 
 

  

 
 
 

  

ext

(X.5.58)

It can be seen from the above equation that the penalty method simply adds a spring with
a spring constant β  between nodes 1 and 2.  The above equation is nonlinear since β  is a
nonlinear function of g = u1 −u2 .
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y

x

1 2

3 4

l

ΩA

ΩB

n A

n B

 Γ C

Figure X.5.2

Example X2.  Two Dimensional Example.  Figure 2 shows two dimensional
bodies modeled by 4-node quadrilaterals which are in contact along a line parallel to the
x-axis.  The approximations along the contact surface are written in terms of the element
coordinates of one of the master body A., which in this case is the identical to that of
body B.  The velocity field along the contact interface is given by

  

vx ( ξ , t)

vy( ξ , t)

 
 
 

 
 
 

=
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

 

  
 

  v (X.5.59)

where

vT = v1x v1y v2 x v2y v3x v3y v4x v4 y[ ]T
(X.5.60)
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  N1 = N3 =1− ξ , N2 = N4 = ξ ,ξ = x / l (X.5.61)

The unit normals are  given by nA = 0 −1[ ]T ,nB = 0 1[ ]T  so the Φ matrix is given by
Eq. (20):

Φ = N1n1
A N1n2

A N2n1
A N2n2

A N3n1
B N3n2

B N4n1
B N4n2

B[ ]
= −N1 0 −N2 0 N3 0 N4 0[ ] (X.5.62)

The Lagrange multiplier field is approximated by the same linear field (we will discuss
appropriate fields  later)

  
λ ( ξ , t) =Λλ = N1 N2[ ] λ1

λ 2

 
 
 

 
 
 

(X.5.63)

where the same shape functions as in (61) are used.  The G  matrix is given by

G = ΛTΦdΓ =
l

6

0 −2 0 −1 0 2 0 1

0 −1 0 −2 0 1 0 2
 
  

 
  

Γc
∫ (X.5.64)

The terms of the rows resemble the terms of the consistent mass for a rod, and the
behavior for this Lagrange multiplier field is similar: a contact at node 1 results in forces
at node 2, and vice versa.  Nodal forces due to contact are strictly in the y direction; all x-
components of forces from contact in this example will vanish since the odd rows of the
G  matrix vanish.  This is consistent with what is expected physically, since the contact
surface is along the x-direction and the contact interface is frictionless.

MISCELLANEOUS TOPICS

Regularization.   The penalty approach may be thought of as a regularization of the
interface conditions;  the exact solution of the impact of two rods leads to solutions
discontinuous in time, cf. Fig.  .  A regularization procedure in mathematics is a
procedure which by an artifact replaces a problem whose solutions are difficult to deal
with because of warts such as discontinuities or singularities by one with smoother, more
regular solutions.  The classic example of regularization is von Neumann’s addition of
artificial viscosity to the Euler fluid equations to smooth shocks.  Without this artificial
viscosity, solutions of the Euler equations in the vicinity of shocks by the central
difference method are so oscillatory that they look like lash.  Von Neumann showed that
his regularization conserves momentum, so only part of the system is modified by
regularization.

The penalty method plays the same role as artificial viscosity in impact.  With the
Lagrange multiplier method, the velocities are discontinuous in time at the point of
impact, and these discontinuities propagate through the body as waves and result in
considerable noise.  The penalty regularization preserves momentum conservation, and
the other conservation equations are also observed exactly.  It only relaxes one condition,
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the impenetrability condition, by allowing some overlap of the two bodies.  It is a small
price to pay for smoother solutions if the interpenetration is small.

The Curnier-Mroz plasticity models of friction can also be considered
regularization, in this case, of the discontinuous character of the friction laws.  The
discontinuous nature of Coulomb friction can be gleamed from a simple illustration.
Consider an element on a rigid surface with interface tractions modeled by Coulomb
friction.  A vertical force is applied to the top nodes, a horizontal force on the two left-
hand nodes as shown, and we neglect the deformability of the element.  If the vertical
force is kept constant while the horizontal force has the time history shown, the velocity
will have the time history shown in Fig. Xd.  The discontinuity in time arises because the
inequalities in the Coulomb friction law embody Heaviside step functions exactly as they
embodied in the interpenetration inequalities.

The Curnier-Mroz friction model eliminates the discontinuity as shown in Fig. X.
Regularization of Coulomb friction differs from regularization of interpenetration in that,
superficially at least, it smoothes the response by introducing additional mechanics to the
model, namely the asperities, whereas the relaxation of the interpenetrability condition
appears to be quite ad hoc and not motivated by physical arguments.  In fact, one can also
attribute some interpenetration of the idealized bodies which comprise the models in
contact-impact problems to compression of asperities.  Usually, however, the penalty
parameters are not chosen by such physical characteristics, but instead by the desirability
of eliminating frequencies above a certain threshold.
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ERRATA

1.  p.38 should read

GJjI = ΛIΦJjdΓ
Γ c
∫      G = ΛΤΦdΓ

Γ c
∫ (X.5.21b)

2.  in Box X.3 last equation should read

G = ΛTφ dΓ
Γ c
∫

3.   equation before (X.5.55) should read 

  p = βg = β ( x1 − x2 ) H( g) = β ( X1 − X2 + u1− u2 ) H( g)

X.6. EXPLICIT METHODS OF TIME INTEGRATION

In this  Section we describe the procedures for treating contact impact with
explicit time integration.  Explicit time integration is well suited to contact-impact
problems because the small time steps imposed by numerical stability can treat the
discontinuities in contact-impact.  The large time steps made possible by unconditionally
stable implicit methods are not effective for discontinous response.  Furthermore, contact-
impact also introduces discontinuities in the Jacobian, which impedes the convergence of
Newton methods.

Another advantage of explicit algorithms is that the bodies can first be integrated
completely independently, as if they were not in contact.  This uncoupled solution
correctly indicates which parts of the body are in contact.  The contact conditions are
imposed after the two bodies have been updated in an uncoupled manner; no iterations
are needed to establish the contact interface.  An explicit algorithm with contact-impact is
almost identical to the algorithm described in Chapter X except that the bodies are
checked for interpenetration. In each time step, the displacements and velocities of those
nodes which have penetrated into another body are modified to reflect momentum
balance and impenetrability on the interface.

We will here describe several implementations of contact-impact algorithms in
explicit methods.  Only the Lagrange multiplier and the penalty methods will be
considered.  the issues to be discussed include: 1. the approximations for the Lagrange
multiplier fields; 2. structure of the algorithm; 3. effects of contact-impact methods on
numerical stability.  We will also describe certain characteristics of explicit solutions
which arise from the physics and numerical characteristics of the contact-impact problem.
In order to illustrate the characteristics of contact-impact in a simple setting, we first
consider a one dimensional problem.

Example of Contact in One Dimension. The one-dimensional example is shown
in Fig. ??.  We first consider the premise that uncoupled updates of bodies A and B
followed by modifications of the interpenetrating nodes for contact-impact lead to
consistent solutions.  For the two points R and S, which correspond to nodes 1 and 2,
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respectively, of bodies A and B, there are four possibilities  during a contact-impact
problem

1.  R and S are not in contact and do not contact during the time step;

2.  R and S are not in contact but impact during the  time step;

3.  R and S are in contact and remain in contact;

4.  R and S are in contact and separate  during a time step, often known as release.

For case 3, the statement “remain in contact” does not imply that if two points must
remain contiguous, because relative tangential motion, or sliding, which separates
contiguous points is always possible.  When two bodies remain in contact, they are
assumed not to separate.

All of these possibilities can be correctly accounted for by integrating the two
bodies independently as if they were not in contact and subsequently adjusting the
velocities and the displacements.  The possibilities which need to be explained are cases
2, 3 and 4.

The governing equations for the nodes 1 and 2 have been given in Example Eq.
(53); although the problem shown in Fig. ?? is somewhat different, the equations for the
contact nodes are unchanged.  We will show that when the velocities from the uncoupled
update predict initial or continuing contact, then the Lagrange multiplier λ ≥ 0.  The
accelerations of nodes 1 and 2 when the two bodies are updated as uncoupled are

M1a 1 − f1 = 0  ,  M2a 2 − f2 = 0

where bars have been superposed on the accelerations to indicate that these are trial
accelerations computed with the uncoupled bodies, as can be seen from the absence of the
Lagrange multipliers.  The central difference form of the update of Eqs. (53)

M1v1
+ − M1v1

− −∆ tf1 +∆ tλ = 0

M1v2
+ − M1v2

− −∆ tf2 −∆ tλ = 0

When the bodies contact during the time step, these equations must be solved with the

subsidiary condition v1
+ = v2

+ .  Eliminating λ   from the above equations by  adding them

and using the equality v1
+ = v2

+ gives

v1
+ = v2

+ =
M2v1

− + M2v1
− +∆ t f1 + f 2( )

M1 + M2

where all unmarked variables are a time step n.  By means of the above equations, the
updated velocities can be updated whenever impact occurs or the nodes were in contact in
the previous time step.  The above equations can be recognized to be the well known
equations of conservation of mass for plastic impact of rigid bodies; more will be said on
this later.
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We will now show that whenever the updated velocities of any nodes which
interpenetrate are computed by ( ), then the Lagrange multiplier will be positive, i.e. the
interface force will be compressive.  In other words, if the two nodes are updated as if the
bodies were uncoupled and if the velocities are subsequently modified by (), then the
Lagrange multipliers will have the correct sign,  This amounts to showing that

ifv 1
+ ≥ v 2

+ , then λ ≥ 0 .

Multiplying Eq top by M2 and Eq. bot by M1 and subtract bot form top; this gives

M1M2 v1
− − v2

−( )+∆ t M2 f1 − M1 f2( ) = λ∆t M1 + M2( )

Substituting the expressions for f1 and f2 from () into the above and rearranging gives

∆t M1 + M2( )
M1M2

λ = v1
− −v2

−( ) +∆ t a 1 − a 2( ) = v 1
+ −v 2

+

where the last equality is obtained by using the central difference formulas for the

uncoupled integration of the two bodies:  v I
+ = v I

− +∆ta I .  The coefficient of λ  is
positive, so the sign of the RHS gives the sign of λ .  Thus Eq () has been demonstrated.

To examine this finding in more detail, we now consider the three of the cases
listed above (case 1 is trivial since it requires no modification of the nodal velocities since
there is no contact):

     case 2 (not in contact /contacts during ∆t ): then   v 1
+ f v 2

+  and λ ≥ 0 by Eq ()

     case 3 (in contact/remains in contact): then   v 1
+ f v 2

+  and λ ≥ 0 by Eq ()

     case 4 (in contact/release during ∆t ): then   v 1
+ p v 2

+  and   λ p 0  by Eq ()

Thus the velocities obtained by uncoupled integration correctly predict the sign of the
Lagrange multiplier λ .

Two other interesting properties of explicit integration that can be learned from
this example are:

1.  initial contact, i.e. impact cannot occur in the same time step as release;

2.  energy is dissipated during impact;

The first statement rests on the fact that the Lagrange multiplier at time step n is
computed so that the velocities at time step n+1/2 match.  Hence there is no mechanism
in an explicit method for forcing release during the time step in which impact occurs.
This property is consistent with the mechanics of wave propagation.  In the mechanics of
impacting bodies, release is caused by rarefaction waves which are generated when the
compressive waves due to impact reflect from a free surface and reach the point of
contact.  When the magnitude of these rarefaction is sufficient to cause tension across the
contact interface, release occurs.  Therefore the minimum time required for release

10-55



T. Belytschko,  Contact-Impact, December 16, 1998 56

subsequent to impact is two traversals of the distance to the nearest free surface.  The
stable time step, you may recall,  allows the any wave generated by impact to move at
most to the node nearest to the contact nodes.  Therefore, in explicit time integration,
there is insufficient time in a stable time step for the waves to traverse twice the distance
to the nearest free surface.

The second statement can be explained by Eq. () which shows that the post-
impact velocities are obtained by the plastic impact conditions,for rigid bodies, which
always dissipate energy.  The energy dissipated when two rods as shown in Fig.() are at
constant but equal velocities is given by

As can be seen from the above, the amount of dissipation decreases with the refinement
of the mesh.   In the continuos impact problem, no energy is dissipated because the
condition of equal velocities after impact is limited to the impact surfaces.  A surface is a
set of measure zero in three dimensions, so a change of energy over the surface has no
effect on the total energy.  (For one-dimensional problems the impact surface is a point,
which is also a set of measure zero.) In a discrete model, the impacting nodes represent
the material layer of thickness h/2 adjacent to the contact surface.  Therefore, the
dissipation in a discrete model is always finite.  The correspondence between the
continuous model and the discrete model also substantiates the correctness of the plastic
impact condition.  Since release cannot occur until the rarefaction waves reach the contact
interface, the velocities of the two contacting bodies must be equal until that time.  Thus
it is inappropriate to use impact conditions other than perfectly plastic impact for discrete
models of continuous systems.  It should be stressed that such arguments do not apply to
strictly multi-body models, where each node represents a body whose stiffness is not
modeled, or to structural models, where the thickness direction has no deformability.  The
release and impact conditions are then more complex.

Penalty Method.  The discrete equation at the impacting nodes for the two body problem
can be taken directly from those given in Eq. ():

M1a1 − f1 + f1
c = 0

M2a2 − f2 − f2
c = 0

where the contact forces f I
c  replace the Lagrange multiplier replace the Lagrange

multiplier in ().  When the nodes are initially almost coincident, then X1 = X2  and the
interface normal traction can be written as

  
f c = p = β1g + β1g = β1( u1 − u2 ) H(g ) + β2( v1 − v2 ) H( ˙ g )

The unitary condition is now approximately enforced by the step functions in the normal
contact force; it is violated since the normal traction is positive while the interpenetration
rate is positive, so its product no longer vanishes.  The post-impact velocities are now
given by
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The velocities of the two nodes are not equal since the penalty method only enforces the
impenetrability constraint approximately.  As the penalty parameter is increased, the
condition of impenetrability is observed more closely.  However, as indicated in the next
paragraph, in dynamics the penalty parameter cannot be made arbitrarily large.

The condition that release not occur in the same time step as impact, which has been
described to be a natural consequence of the physics of contact and numerical stability
conditions of explicit intergrators, is not automatically satisifed by the penalty method.  If
the penalty force is very large, it is possible for the relative nodal velocity to reverse, so
that decreasing gap rate is is followed in the same time step by an increasing gap rate.  In
view of the behavior of the continuous model described previously, which does not
permit release until rarefaction waves reflected from the free surfaces reach the contact
interface, this possibility in penalty methods does not appear physically correct.  This
anomaly can be eliminated by placing an upper bound on the penalty force, so that the
impact is at most perfectly plastic.  In other words, the penalty force should be bounded
so that the velocities at the end of the impact time step are given by ().  This yields the
following upper bound on the contact force:

This bopund can be very useful since it provides a

In contrast to the Lagrange multiplier method, the penalty method usually
decreases the stable time step.  An estimate of the stable time step can be made by using
the linear stiffness for the penalty method given in Eq. () in conjunction with the
eigenvalue element inequality.  In using the element eigenvalue inequlitu, a group of
elements consisting of the penalty spring and the two surrounding elements should be
used, since the penalty element has no mass by itself and therefore has an infinite
frequency.  This analysis shows that the stable time step for an interpenetration dependent
penalty is given by

whereα  is given by

The decrease in the time step depends on the stiffness of the penalty spring.  As the
interpenetration stifness b is increased, the stable time step decreases.  As in the case of
the Lagrange multiplier method, this estimate of the stable time step is not a conservative
estimate, even though it is based on the element eigenvalue inequaality.  The analysis
presumes linear behavior, whereas contact-impact is a very non-linear process.

EXPLICIT ALGORITHM

A flowchart for explicit time integration with contact-impact is shown in Box ??.  As can
be seen from the flowchart, the contact impact conditions are enforced immediately after
the boundary conditions.  Prior to the contact-impact step, all nodes in the model have
been updated as if they were not in contact, including the nodes which were in contact in
the previous time step.  The nodes which are in contact are not treated differently in the
rest of the algorithm.  Some difficulties may occur dus to making the contact-impact
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modifications after the boundary condition enforcement.  For example, for a pair of
contacting nodes on a plane of symmetry, it is possible for the contact-impact
modifications to result in violation of the condition that the velocities normal to the plane
of symmetry vanish.  This can occur when the normal of the element adjacent to the plane
of symmetry does not lie in that plane.  Therefore, boundary conditions sometimes have
to be imposed at contact nodes after the modifications.

The CONTACT module is limited to low-order elements in which the maximum
interpenetration always occurs of the nodes of the master or slave body.  It is then only
necessary to check all nodes for interpenetration into elements of another body.  The
second statement in the CONTACT nevertheless conceals many challenging tasks.  In a
large model, on the order of 105 nodes may have to be checked against penetration into a
similar number of elements.  Obviously a brute force approach to this task is not going to
work.  Some of the strategies for dealing with this task are described in Section ?.

The

Box X.?
Flowchart for Explicit Integration with Contact-Impact

Main Program

1.  initial conditions and setup:   t = 0, n = 0, set v0 , σ0

2.  get nodal forces 
  
f t = f ext − f int( )t

3.  velocity update: if   n f 0 ,    v
∆t / 2 = v0 + M−1f0 ;

          otherwise   v
t+∆ t / 2 =vt −∆t / 2 + M−1f t

4. displacement update:   d
t +∆t =d t + ∆tvt+∆ t / 2

5. modify  velocities and displacements for velocity boundary conditions
6. go to CONTACT

7. get  
  
f t+∆t = fext − f int( )t+∆ t

8. accelerations: a t = M−1f t

9. if    if t p END , go to 3

CONTACT

1.  find node-element pairs which are in contact;
2.

Lagrange multiplier method.  The discrete equations for the system are obtained by
combining the semidiscrete equations with an explicit integration formula.  For
simplicity, we consider here only the central difference method.  Substituting an
expression for the accelerations at time step n, Eq.(), we obtain from () that

 M vn+1 2 − vn−12( )− f n + GTλn = 0

Referring to the flowchart in Box X, it can be seen that when the contact conditions are
enforced, the nodal forces at time step n are already known.  However the Lagrange

10-58



T. Belytschko,  Contact-Impact, December 16, 1998 59

multiplier are unknown.  If we combine the above with the velocity constraint, Eq. () in
Box ?, we obtain

M ∆tGT

G 0

 

 
 

 

 
 

vn+1 2

λn

 
 
 

 
 
 

=
≤

∆tf n + Mvn−12

0

 
 
 

 
 
 

If a consistent mass matrix is used, solving for these variables appears to involve a
system of equations which is larger than the unconstrained system,  since the Lagrange
multipliers have been added.  In fact, for most systems, the size of the matrix can be

reduced substantially, since trial values of vn+12  are already known and only the
velocities of nodes on the contact interface are modified by contact .

In the above, everything on the right hand side is known at time step n when the

modifications for the contact are made.  The unknowns are λn  and vn+12 , although trial
values for the nodal velocities have already been obtained by the uncoupled update.  The
solution for the Lagrange multipliers is obtained by first solving the top of the above

equation for vn+12  and then solving for λn , which gives

GM−1GTλn ≤ − M−1fn + 1
∆t vn+12( ) ≡ rw

When the mass matrix is diagonal, the solution for the Lagrange multipliers can
be streamlined by taking advantage of the fact that the inverse of the mass matrix consists
of the reciprocals of the diagonal terms.   To preserve the symmetric structure of the
equations we take the square root of the mass matrix and multiply G , and define the
resulting matrix as G :

G = M−12G G ab = Mad
−12 Gdb

Equations () can then be written as

G G Tλn = r

An interesting characteristic of these equations is that they are already in the form of a
triangulation.  It is only necessary to eliminate all terms of the G  matrix to obtain a
matrix from which the solution can easily be found.  Moreover, the above equations
involve only the nodes on the contact interfaces.  Thus the system of equations to be
solved is usually much smaller than the complete model.  Nevertheless, for large-scale
explicit solutions, the burden of solving these equations is too great, so simplifications are
usually made to avoid solving these equations; these are discussed later.

Lagrange multiplier interpolation.  In order to develop explicit forms of Eq.(), the
interpolation for the Lagrange multipliers must be defined.  We have already mentioned
in Section X.5.2 that the construction of these interpolants can be complicated when the
nodes of the bodies are noncontiguous.  As indicated there, two possibilities are: 1. the
master body mesh is chosen to be the l mesh; 2. construct a new mesh.  Examples of the
G matrix for noncontiguous nodes have already been described in Example XX.  We now
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explore the consequences of various l approx imations and their effects on computational
efficency.

The implementation of implicit time integration and statics will be combined
because the procedure are almost identical.  The reader is urged to consult Sections X,
where these topics are discussed for problems without contact.  As in the aforementioned,
both classes of problems are treated by the Newton method.

In the Newton method, the solution to the discrete equations is found by using a
local linear model for the nonlinear equations.  The linear model is based on a
linearization of the governing discrete equations.  We will consider the Lagrange
multiplier methods and the penalty methods.  In both cases, as before, we write the
nonlinear equations in the form

  f ( d, ˙ d ,λ ) = 0

where   d, ˙ d , and λ  are, respectively, the nodal displacements, nodal velocities, and
discrete Lagrange multipliers at time t +∆ t ;  λ  appears only in the Lagrange multiplier
method.  The internal force is only a function of d , i.e. the material is rate-independent.
The extension to rate dependent materials involves a combination of the techniques
described here and in Section X, but they obscure the effects of contact-impact, so are
omitted in this exposition.

In the Lagrange multiplier method the governing equations are

  0 = f ( d, ˙ d ,λ , t) = M˙ ̇ d ( t ) + f int( d) − f ext ( d, t) −G( d) λ( t )

where the independent variables are indicated in the above.  All of the above terms are
functions of time since d = d t .  The development is restricted to rate-independent
materials, so the internal nodal forces are only functions of the nodal displacements, see
Section X.

We now expand the nodal forces by the chain rule, giving
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Figure 4.  Illustration of nomenclature in a two dimensional contact problem.

An interesting simplification of the above example is shown in Fig.    .  The
equations for this system can be obtained by just eliminating rows 1 and 3 and columns 1
and 3, giving

k2 −1

−1 0
 
  

 
  

d1

λ1

 
 
 

 
 
 

=
f1
0

 
 
 

 
 
 

The potential energy   Π( d, λ ) = 1
2 k2d2 − f1d  is plotted for f1 =  in Fig.  as a function of d

and λ ;  to obtain the plot, Eqs. ( ) have been solved.
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Figure 9.

Example X3.  Figure 9 shows the two two-dimensional bodies of unit thickness which are
in contact along a line; a total of 5 nodes are in contact, 3 nodes from body A, 2 nodes
from body B..  The nodes on the endpoints are coincident, but the center node of body A
is not coincident with a node on body B.  This example introduces some of the difficulties
arising from noncoincident nodes.  We will restrict our attention to the nodes which are in
contact, since the equation at the other nodes are unchanged.  The nodal velocities of the

contact nodes are denoted by dc  where   
˙ d c

T = v1 v2 v3 v4 v5[ ] .  The elements in the
two bodies are bilinear 4-node quadrilaterals, so the displacement and velocity fields
along the contact lines are linear, and will be represented by

  
v( ξ , t) = NI( ξ )vI( t )

I=1

5

∑

where   ξ = ( s− sI ) / lI  along each of the segments.
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There are many choices for the approximation of the Lagrange multiplier field,
but a  good choice is usually a field of the same order as that of the field being
constrained. In this case  the tractions are constrained and the tractions are piecewise
constant, so we let

  
λ ( x, t) = λ1( t) for 0 ≤ s ≤ l

2

  λ ( s, t ) = λ2( t) for l / 2 ≤ s ≤ l

where s parametrizes the contact line.

The G matrix here will be assembled from the segment, or element, matrices.  The
T  matrix is constant along the line joining nodes 1 and 3 and given by

  
T =

s −c

0 0
 
  

 
  , c = cos θ , s = sin θ

The element G matrices are then given by

  

Ge=1 = Ge=2 =

s( 1−ξ )

−c( 1−ξ )

sξ
−cξ

 

 

 
 
 

 

 

 
 
 0

1

∫ 1[ ]ldξ =
l

2

s

−c

s

−c

 

 

 
 
 

 

 

 
 
 

  

Ge=3 =

−s( 1− ξ )

c(1 −ξ )

−sξ
cξ

 

 

 
 
 

 

 

 
 
 0

1/ 2

∫ 1 0[ ]2ldξ +

−s( 1− ξ )

c( 1−ξ )

−sξ
cξ

 

 

 
 
 

 

 

 
 
 1/ 2

1

∫ 0 1[ ]2ldξ =
l

4

−3s −s

3c c

− s −3s

c 3c

 

 

 
 
 

 

 

 
 
 

Assembling the three matrices gives

GT = l
4

2s −2c 2s −2c 0 0 −3s 3c −s c

0 0 2s −2c 2s −2c −s c −3s −3c
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