

درس کر	مستمعام	Table 3.2 Lattice Parameter Relationships and Figures Showing Unit Cell Geometries for the Seven Crystal Systems			
3		Axial			
تالوگرافی	كريستالي	Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
تهيه و		Hexagonal	$a = b \neq c$	$\alpha=\beta=90^\circ, \gamma=120^\circ$	
گردأورى:		Tetragonal	$a = b \neq c$	$\alpha=\beta=\gamma=90^\circ$	c g g
سعيد کاو		Rhombohedral	a = b = c	$\alpha=\beta=\gamma\neq90^\circ$	o pa
ويانى		Orthorhombic	a≠b≠c	$\alpha=\beta=\gamma=90^\circ$	
		Monoclinic	a≠b≠c	$\alpha=\gamma=90^\circ\neq\beta$	e stat
١٢		Triclinic	a≠b≠c	$\alpha\neq\beta\neq\gamma\neq90^\circ$	- Contraction

درس كريستالو گرافي _بكەھ_اي فضایی براوه اگر این طبقهبندی در تهيه و گردأورى: سعيد كاويانى ۷ سیستم کریستالی مطالعه گردد با حذف thorhombic $y = 90^{\circ}(a \neq$ مشترکات در مجموع ۱۴ شبکه کریستالی باقی میماند که به $\alpha = \beta = 90^\circ; \gamma = 120^\circ; \alpha = b (\neq c)$ $\begin{array}{c} \alpha = \beta = \gamma \neq \\ a = b = c \end{array}$ آنها شبکههای ۱۴ گانهٔ براوه گویند. ۱۷

درس كريستالوگرافي فرضیات برای بررسی ساختار کریستالے اتمها یا یونها مانند کرههایی صلب در نظر تهيه و گردآوري: سعيد كاوياني گرفته می شوند. اتمها یا یونها دارای قطر مشخص و معین هستند. اتمها یا یونهایی که همسایه هستند (nearest-neighbor) با همدیگر در تماسند. 24

14

25

82

مفحاتی که متعلق به یک منطقه هستند:
مفحاتی که متعلق به یک منطقه هستند:
• دترمینان ماتریس ساخته شده از اندیسهای میلر آن ها باید صفر
•
$$|h_1k_1l_1|$$

• $|h_2k_2l_2|$
• $|h_3k_3l_3|$
• $h_1k_2l_3+k_1l_2h_3+l_1h_2k_3-l_1k_2h_3-k_1h_2l_3-h_1l_2k_3=0$

جهاتی که در یک صفحه قرار می گیرند:
جهاتی که در یک صفحه قرار می گیرند.
• دترمینان ماتریس ساخته شده از اندیسهای میلر آنها باید برابر با صفر
•
$$| u1v1w1 |$$

• $| u2v2w2 |$
• $| u2v2w2 |$
• $| u2v2w2 |$
• $| u3v3w3 |$
• $| u3v3w3 |$
• $| u_1v_2w_3+v_1w_2u_3+w_1u_2v_3-w_1v_2u_3-v_1u_2w_3-u_1w_2v_3=0$

دربير	$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$
کر ب	
ستالو	$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$
	h ² k ² / ²
روابط مربوط	$\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$
به محاسبة 👔	$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2 \alpha + 2(hk + kl + hl)(\cos^2 \alpha - \cos \alpha)}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)} (تریکونا ل)$
فاصلة صفحات	
	$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2} $ (تريكونا ل)
مید کاویانی ۱۱۷۱)	$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$
L	$\frac{1}{d^2} = \frac{1}{V^2} \left(S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{13}hl \right)$ $V = abc\sqrt{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma}$
	$S = dx^2 (\cos \theta \cos \theta - \cos y)$
	$S_{11} = b c \sin^2 \alpha, \qquad S_{11} = b c \cos \beta = \cos \beta, \\ S_{22} = a^2 c^2 \sin^2 \beta, \qquad S_{23} = a^2 b c (\cos \beta \cos \gamma - \cos \alpha),$
74	$S_{33} = a^2 h^2 \sin^2 \gamma, \qquad \qquad S_{13} = a h^2 c (\cos \gamma \cos \alpha - \cos \beta).$

درس کریستالوگراف	، حجم سلول واحد ل گوناگون	عاسبة لهاي	به مع ریستا	ربوط در ک	روابط ه
	V=a ³	~			مكعبى
نمبه م	V=a ² c				تتراگونا ل
گر دا ه	V=abc				ا رتورمبیک
، کارت ساهد	$V=a^3 \sqrt{1-3\cos^2\alpha + 2\cos^3\alpha}$	_			رمبهدرا ل
د کامنانی	$V = \frac{\sqrt{3}}{2} a^2 c$				<mark>هگزا گونا</mark> ل
	V=abc Sin β	5 Talahar (1997) - San	· · ·		منوکلینیک
		2		··· · · ·	
1	$V = abc V = 1 - \cos^2 \alpha - \cos^2 \beta - \frac{1}{2}$	Cos ² Y	+2Cosα	Cos 🛛 Cos	تريكلينيكY :

درس کر	$\cos \phi = \frac{h_1 h_2 + k_1 k_2 + l_1 l_2}{\sqrt{(h_1^2 + k_1^2 + l_1^2)(h_2^2 + k_2^2 + l_2^2)}}$	
ريستالوكرافي	$\cos \phi = \frac{\frac{h_1 h_2 + k_1 k_2}{a^2} + \frac{l_1 l_2}{c^2}}{\sqrt{\left(\frac{h_1^2 + k_1^2}{a^2} + \frac{l_1^2}{c^2}\right)\left(\frac{h_2^2 + k_2^2}{a^2} + \frac{l_2^2}{c^2}\right)}}$	
روابط مربوط به محاسبة ﴿	$\cos\phi = \frac{\frac{h_1h_2}{a^2} + \frac{k_1k_2}{b^2} + \frac{l_1l_2}{c^2}}{\sqrt{\left(\frac{h_1^2}{a^2} + \frac{k_1^2}{b^2} + \frac{l_1^2}{c^2}\right)\left(\frac{h_2^2}{a^2} + \frac{k_2^2}{b^2} + \frac{l_2^2}{c^2}\right)}}$	
زاوية بين دو صفحة متقاطعة	$\begin{aligned} \cos\phi &= \frac{a^{k}d_{1}d_{2}}{\nu^{2}} \left[\sin^{2}\alpha(h_{1}h_{2} + k_{1}k_{2} + l_{1}l_{2}) & (\int [\pi_{2}\omega^{2}\alpha(h_{1}h_{2} + k_{1}k_{2} + l_{1}l_{2}) + (\cos^{2}\alpha - \cos\alpha)(k_{1}l_{2} + k_{2}l_{1} + l_{1}h_{2} + l_{2}h_{1} + h_{1}k_{2} + h_{2}k_{1}) \right] \end{aligned}$	
بنی کاویانی میں	$\cos \phi = \frac{h_1 h_2 + k_1 k_2 + \frac{1}{2} (h_1 k_2 + h_2 k_1) + \frac{3a^2}{4c^2} l_1 l_2}{\sqrt{\left(h_1^2 + k_1^2 + h_1 k_1 + \frac{3a^2}{4c^2} l_1^2\right) \left(h_2^2 + k_2^2 + h_2 k_2 + \frac{3a^2}{4c^2} l_2^2\right)}}$	
	$\cos \phi = \frac{d_1 d_2}{\sin^2 \beta} \left[\frac{h_1 h_2}{a^2} + \frac{k_1 k_2 \sin^2 \beta}{b^2} + \frac{l_1 l_2}{c^2} - \frac{(l_1 h_2 + l_2 h_1) \cos \beta}{ac} \right]$	•••
٨۴	$\cos \phi = \frac{d_1 d_2}{\nu^2} \left[S_{11} h_1 h_2 + S_{22} k_1 k_2 + S_{33} l_1 l_2 + S_{23} (k_1 l_2 + k_2 l_1) + S_{13} (l_1 h_2 + l_2 h_1) + S_{12} (h_1 k_2 + h_2 k_1) + S_{13} (l_1 h_2 + l_2 h_1) + S_{13} (l_1 h_2 + l_2 h_2) + S_{13} (l_1 h_2 + l_2 h_2$; .)]

فسيتعاد	ل ۵ــ عددهمآهنگی برای یونهای با اقطا رمختل ا
عددهمآ هنگی	مداقل نسبت اندازهشعا عهای یونی
٣	·/166
۴	۰/۲۲۵
8	0/414
A	۰/۳۲
11	1/0

\$7

76

درس كريستالو	چگونگی نشان دادن تقارنها با استفاده از علائم		
گر ا ف ا	Symmetry Operation	Symmetry Symbol Herma	nn-Mauguin Symbol
ی تهیه و	Mirror	m	m
گردآوری: سعید کاو	Rotation Axis	A ₁ ,A ₂ ,A ₃ ,A ₄ ,A ₆	1,2,3,4,6
يانى			
	Rotoinversion Axis	$\bar{A}_1 = i, \bar{A}_2, \bar{A}_3, \bar{A}_4, \bar{A}_6$	1,2,3,4,6
101	N		

92

