رسانه جامع مهندسین عمران آموزش ، پژوهش، اجرا [Www.Sabzsaze.Com]

برای شرکت در دوره های آموزشی حضوری و آنلاین ، تهیه فیلم ها و جزوات برتر عمرانی به وبسایت گروه مهندسی سبزسازه مراجعه نمایید و از بهترین ها لذت ببرید.

«به نام خدا»

بروژه درس بهسازی لرزه ای «

استاد مربوطه : دکتر عبادی

گردآورنده : حسین نیکومرام

سازه مورد بررسی فولادی است و بر اساس نقشه های اجرایی المان های تیر و ستون دارای مشخصات فولاد *ST*37 با $F_{\rm v} = 2400 \ kg/cm^2$ K = 1.0207Soil = Type II $\rightarrow T_0 = 0.1$, $T_s = 0.5$, S = 1.5A = 0.25روش استاتیکی خطی بر اساس نشریه 360: $V = C_1 C_2 C_3 C_M S_a W$ C_{1} : زمين نوع 2 $\rightarrow T_{\rm s} = 0.5$ $T = \alpha H^{3/4} = 0.08 \times (12.8)^{3/4} = 0.5414$ $C_1 = 1 + \frac{0.5 - 0.5414}{2 \times 0.5 - 0.2} = 0.94825$ $C_2 = 1$ $\theta < 1 \rightarrow C_3 = 1$ $C_{M} = 0.9$ S_a : 3 منطقه A = 0.25 $T > T_s \rightarrow B_1 = (S+1)(\frac{T_s}{T}) = (1.5+1)(\frac{0.5}{0.5414}) = 2.31$ $B = B_1 \times N$ $T < T_s < 4sec \rightarrow N = \frac{0.7}{4 - T_s}(T - T_s) + 1 = \frac{0.7}{3.5}(0.5414 - 0.5) + 1 = 1.00828$ $\rightarrow B = 2.329$

 $S_a = 2.329 \times 0.25 = 0.5823$

W = 93862.1 kg $V = 0.94825 \times 1 \times 1 \times 0.9 \times 0.5823 \times 93862.1 = 46644.71 kg$

تحلیل پوش آور: ایجاد و ساخت مدل خطی سازه برنامه sap2000 را باز می کنیم. از پایین سمت راست واحد را kgf, m, C انتخاب می کنیم.

روی New model کلیک کرده و از فرم زیر 2D Frames را انتخاب می کنیم و همانند شکل کامل می کنیم.

2D Frame Type	Portal Frame Dimensions			
Foliai	Number of Storie	s 4	Story Height	3.2
	Number of Bay	s 3	Bay Width	7
	Use Custom Grid Spacin Section Properties	ig and Locate	Edit Grid	
	Beams	efault	▼ +	
	Columns [efault	▼ +	

در اينجا قاب C از مدل استاتيک خطي را انتخاب کرده و تحليل پوش آور را روي آن انجام مي دهيم.

روي ok کليک کرده و داريم :

نقطه ی اتصال ستون ها را با دستور ... Assign > Joint > Restraints انتخاب کرده تا فرم Joint Restraints ظاهر شود که تیک همه ی گزینه ها را می زنیم.

Restr	aints in Jo	int Loo	cal Dir	ections	
1	Translati	on 1	1	Rotation	about
1	Translati	on 2	V	Rotation	about
1	Translati	on 3	V	Rotation	about
[:] ast	Restraints	<u>, </u>		<u>\$</u>	•
	ОК		1	Cancel	

معرفي مشخصات مصالح

روی دستور ... Define > Materials کلیک کرده تا فرم Define Materials ظاهر شود سپس روی Add New Materials نمایش داده شود که آن را همانند فرم زیر با نام Steel و با مشخصات فولاد ST37 پر می کنیم.

Material Name and Display	Color	Steel		
Material Type	[Steel		
Material Notes	ĺ	Modit	fy/Show Notes	
Weight and Mass			Units	
Weight per Unit Volume	7849.0476	() 	Kgf, m, C 👻	
Mass per Unit Volume	800.3801			
Isotropic Property Data				
Modulus of Elasticity, E			2.100E+10	
Poisson	isson			
Coefficient of Thermal Exp	ansion, A		1.170E-05	
hear Modulus, G			8.077E+09	
Other Properties for Steel M	aterials			
Minimum Yield Stress, Fy			24000000	
Minimum Tensile Stress, Fu	i i		37000000	
Effective Yield Stress, Fye			26400000	
Effective Tensile Stress	ue .		40700000	

معرفي مشخصات مقاطع اعضا

روی دستور ... Define > Frame Sections کلیک کرده تا فرم Frame Propertis ظاهر شود. روی I (I) کلیک می کنیم و فایل EURO.PRO را I کلیک می کنیم و فایل EURO.PRO را انتخاب می کنیم و تمام مقاطع IPE و HE – B که منطبق بر IPB جدول اشتال است را اضافه می کنیم.

Frame Section Proper	ty Type	Steel	•]
Click to Add a Steel Sec	tion		
I / Wide Flange	Channel	Tee	Angle
 Double Angle	Double Channel	Pipe	Tube
Auto Select List	Steel Joist		

بار دیگر Import New Property را انتخاب می کنیم و این بار Double Channel را انتخاب می کنیم و مقاطع آن را اضافه می کنیم.

حال همه ی تیر های سازه را انتخاب می کنیم و روی دستور Assign > Frame > Frame Section کلیک می کنیم تا Frame Propertis باز شود که در این قسمت مقطع IPE270 را انتخاب می کنیم. سپس در مرحله ی بعدی ستون ها را انتخاب کرده و مطابق شکل وارد می کنیم.

از نوار ابزار کناری گزینه ی all را انتخاب می کنیم، سپس از مسیر< Assign > Frame Mterial Property Owerwrite ظاهر ... Material Property Overwrite جلو می رویم تا منوی Frame Mterial Property Owerwrite ظاهر شود و آن را مانند شکل زیر تکمیل می کنیم.

Frame Object Material Property			
O Use Material Property Designated in	the Frame Section Property D	efinition	
Overwrite Material Property	Steel	•	

معرفي مشخصات بارهاي اعمالي

در سازه ی مورد بررسی بار مرده برابر 1600k/cm و بار زنده برابر 500kg/m در نظر گرفته می شود. بر اساس 365 – FEMA بارهای مرده و زنده در حال اثر کردن است که بار زنده برابر 25% بار زنده ی کاهش نیافته در نظر گرفته می شود.

روی دستور Define > Load Cases کلیک کنید تا پنجره Define Load Patterns باز شود و آن را همانند شکل وارد می کنیم.

oad Patterns				Click To:
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern	Add New Load Pattern
LIVE	LIVE	• 0	•	Modify Load Pattern
DEAD	DEAD	1		Modifiel ateral Load Pattern
LIVE	LIVE	0		moury cateral coau Pattern
				Delete Load Pattern
				Show Load Pattern Notes
				ОК

حال تمامی تیرهای سازه را انتخاب می کنیم. روی دستور ... Assign > Frame Loads > Distributed کلیک می کنیم تا فرم Frame Distributed Loads نمایش داده شود. برای اختصاص بارها همانند شکل بارها را وارد می کنیم.

Load Pattern Na	ame D	•	Units	f, m, C 👻
Load Type and	Direction		Options	
Forces	Moments		Add to I	Existing Loads
Direction	GLOBAL	• •	 Replace Delete E 	e Existing Loads Existing Loads
Trapezoidal Loa	ads			
Distance	0.	0.25	0.75	4.
Load	0.	0.	0.	0.
Relative [Distance from E	ind-l 🔘 .	Absolute Distanc	ce from End-I
Uniform Load				
Load	1600.		OK	Cancel

حال با دکمه ی ps تیرهای سازه را انتخاب کرده و بار زنده را طبق شکل های زیر اختصاص می دهبم :

Load Pattern Na	ame	•	Units Kg	f, m, C 👻
Load Type and Forces	Direction		Options	Existing Loads
Coord Sys Direction	GLOBAL	- -	 Replace Delete I 	e Existing Loads Existing Loads
Trapezoidal Loa	ads 1.	2.	3.	4.
Distance	0.	0.25	0.75	1.
Load	0.	0.	0.	0.
Relative [Distance from E	nd-l 🔘	Absolute Distan	ce from End-I
Uniform Load				
beal	500		OK	Canaal

و داريم :

و داريم :

معرفي و اختصاص مشخصات ديافراگم صلب به طبقات

در سازه مورد نظر عملکرد سقف دیافراگم طبقات به صورت صلب می باشد. پس تمام گره های طبقات را انتخاب می کنیم ، روی دستور ... Assign/Define Constraints کلیک کرده و در فرم Assign/Define Constraints در قسمت Choose Constraint Type to Add از لیست کشویی گزینه ی Diaphragm را انتخاب می کنیم.

Constraints	Choose Constraint Type to Add
NULL	Diaphragm 👻
	Click to:
	Add New Constraint
	Modify/Show Constraint
	Delete Constraint

سپس روی Add New Constraint کلیک می کنیم. مشخصات را مانند شکل زیر انتخاب می کنیم. فعال کردن ...Assign a Different باعث می شود به هر تراز Z یک دیافراگم تخصیص داده شود.

Constraint Name	DIAPH1
Coordinate System	GLOBAL 🔻
Constraint Axis	
🔘 X Axis	Auto
🔘 Y Axis	
Z Axis	
Assign a different	nt diaphragm constraint

معرفی وزن موثر ساختمان در هنگام زلزله

بر اساس آیین نامه ی 2800 وزن موثر ساختمان برابر بار مرده بعلاوه ی 20٪ بار زنده ، که برای تعریف آن روی دستور < Define که به Mass Source کلیک می کنیم تا فرم Mass Source ظاهر شود و گزینه ی Mass Source که به صورت زیر پر می کنیم.

indee oour oo name	MSSSRCI	
Mass Source		
Element Self Mass	and Additional Mass	
Specified Load Pa	uenis	
Mass Multipliers for Loa	d Patterns	
Load Pattern	Muttiplier	
LIVE	▼ 0.2	
DEAD	1	Add
LIVE	0.2	Modify
		mouny
		Delete

آنالیز مدل خطی سازہ

روی دستور ... Analysis Options کلیک می کنیم تا فرم Analysis Options نمایش داده شود و مانند شکل زیر پر می کنیم.

Available DOFs] UY 🔽 UZ	RX V	RY 🔲 RZ	
Fast DOFs Space Frame	Plane Frame	Plane Grid	Space Truss	OK Cancel Solver Options
Database 1	ables Named Se	t.	Group	•

تعریف مشخصات مفاصل پلاستیک در تیرها

مفاصل در نظر گرفته شده به صورت خودکار برای تیرها در نرم افزار SAP بدون در نظر گرفتن اثرات لاغری در بال و جان مقطع و در جهت اطمینان اعمال می شود.

تعريف مفاصل پلاستيک

تمامی تیرها را انتخاب می کنیم سپس از مسیر ... Assign > Frame > Hinges به فرم Frame Hinges Assingment می رسیم، حال در قسمت Relative Distance عدد 0.05 را وارد می کنیم.

Hinge Pr	operty	Relative Distance	
Auto	•	0.05	
			Add
			Modify
			Delete
Auto Hinge Assig	nment Data		
	lodify/Show A	uto Hinge Assignmen	t Data

حال روی گزینه ی Add می زنیم و در فرم جدید Auto Hinge Assingment مشخصات را مانند شکل زیر وارد می کنیم.

Erom Tables in EEM	A 250	
From lables in FEM	A 350	
elect a FEMA356 Tal	ple	
Table 5-6 (Steel Bea	ams - Flexure)	
Component Type	Degree of Freedom	Deformation Controlled Hinge Load Carrying Capacity
Primary	© M2	Orops Load After Point E
Secondary		Is Extrapolated After Point E

همین مراحل را با *Relative Distance ،* 0.95 تکرار می کنیم و در آخر داریم:

		ce
Auto	▼ 0.95	
Auto M3	0.05	bbb
Auto M3	0.95	
		Modify
		Delete
	ent Data	
uto Hinge Assignm	oncourd	
uto Hinge Assignm Type: From Tables	In FEMA 356	
uto Hinge Assignm Type: From Tables Table: Table 5-6 (S	In FEMA 356 teel Beams - Flexure)	
uto Hinge Assignm Type: From Tables Table: Table 5-6 (S DOF: M3	In FEMA 356 iteel Beams - Flexure)	
uto Hinge Assignm Type: From Tables Table: Table 5-6 (S DOF: M3	In FEMA 356 teel Beams - Flexure)	
uto Hinge Assignm Type: From Tables Table: Table 5-6 (S DOF: M3	In FEMA 356 Steel Beams - Flexure) Sify/Show Auto Hinge Assign	ment Data

همه ی این مراحل را برای ستون ها در 0.95 Relative Distance و 0.95 وارد می کنیم ولی در منوی Auto Hinge Assingment مشخصات را مانند شکل زیر وارد می کنیم:

Table 5-6 (Steel Col	umns - Flexure)		*
Component Type	Degree of Freedom		Deformation Controlled Hinge Load Carrying Capacity
Primary	© M2 ©	P-M2	Orops Load After Point E
Secondary	© M3 @ © M2-M3 ©	P-M3 P-M2-M3	Is Extrapolated After Point E
Force Controlled Hinge	e Load Carrying Capacity I When Max Force Is Read	ched	

در آخر داریم :

: برای معرفی بار جانبی باید ضریب برش پایه را بدست بیاوریم و برای محاسبه ی ضریب برش پایه از آیین نامه ی 2800 استفاده می کنیم $T = \alpha H^{3/4} = 0.08 \times (12.8)^{3/4} = 0.5414$ $T > T_s \rightarrow B = (S+1) \left(\frac{T_s}{T}\right)^{2/3} = (1.5+1) \left(\frac{0.5}{0.5414}\right)^{2/3} = 2.371$ $C = \frac{ABI}{R} = \frac{0.25 \times 2.371 \times 1}{5} = 0.11855$ $k = 0.5T + 0.75 \quad , \quad 0.5 < T < 2.5$

 $0.5 < T < 2.5 \rightarrow k = 0.5 \times 0.5414 + 0.75 = 1.0207$

روی دستور Define > Load Pattern کلیک می کنیم و بار EQ را با مشخصات زیر تعریف می کنیم.

.oad Patterns Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern			Click To: Add New Load Pattern
EQ	QUAKE	▼ 0	User Coefficient	•		Modify Load Pattern
DEAD LIVE	DEAD LIVE	1			_	Modify Lateral Load Pattern
EQ	QUAKE	0	User Coefficient			Delete Load Pattern
					•	Show Load Pattern Notes

روی گزینه ی ... Modif y Lateral Load Pattern کلیک می کنیم، کادر باز شده را مانند شکل زیر پر می کنیم.

حال روی دستور ... Define > Load Cases کلیک می کنیم تا فرم زیر ظاهر شود.

Load Cases	Land Case Ture	Click to:
LUAU Case Na	Linear Static	Add New Load Case
MODAL	Modal	Add Copy of Load Case
EQ.	Linear Static	Modify/Show Load Case
		Delete Load Case
		Display Load Cases
		Show Load Case Tree

برای معرفی بار ثقلی سازه روی ... Add New Load Case نشان داده شود ،در این فرم طبق FEMA – 365 ترکیب بار (1.1(DL + LL معرفی می شود و گزینه ی nonlinear را فعال کرده و این فرم را مانند شکل زیر کامل می نماییم.

.oad Case Name		Notes	Load Case Type	
1.1(DL+LL)	Set Def Name	Modify/Show	Static	
nitial Conditions Cero Initial Conditio Continue from State Important Note: L th	ns - Start from Unstress at End of Nonlinear Ca bads from this previous e current case	sed State se version sea version sea	Analysis Type Linear Nonlinear Nonlinear Staged Construction	
Iodal Load Case All Modal Loads Applie	d Use Modes from Cas	e MODAL 🔻	Geometric Nonlinearity Parameters None None 	
.oads Applied Load Type Lo	ad Name Scale Fa	ictor	 P-Delta P-Delta plus Large Displacements 	
Load Pattern - LIVE	▼ 1.1		Mass Source	
Load Pattern DEA Load Pattern LIVE	D 1.1	Add Modify Delete	Previous	
Other Parameters Load Application Results Saved	Full Load Final State Only	Modify/Show	OK	

قسمت Other Parameters نیازی به تغییر ندارد. پس OK را می زنیم.

برای معرفی مشخصات آنالیز تحت اثر الگوی بار جانبی ... Add New Load Case را کلیک کرده و ترکیب بار EQ را طبق شکل زیر وارد می کنیم.

Load Case Name		Notes	Load Case Type
EQ	Set Def Name	Modify/Show	Static
Initial Conditions Zero Initial Condition Continue from State a Important Note: Lo	s - Start from Unstresse at End of Nonlinear Case ads from this previous c	d State 1.1(DL+LL) ▼ ase are included in	Analysis Type C Linear Nonlinear Nonlinear Staged Construction
Modal Load Case All Modal Loads Applied Use Modes from Case MODAL ▼ Loads Applied Load Type Load Name Scale Factor Load Pattern EQ 1 Add		Geometric Nonlinearity Parameters None P-Delta P-Delta plus Large Displacements Mass Source Previous	
Other Parameters Load Application	Displ Control Multiple States	Modify/Show Modify/Show	OK Cancel

در قسمت Other Parameters در سطر Load Application دکمه ی ... Modify/Show را می زنیم و کادر جدید را مانند شکل زیر پر می کنیم.

Loa	d Application Control
Ø	Full Load
۲	Displacement Control
Con	trol Displacement
۲	Use Conjugate Displacement
6	A STATE AND A S
0	Use Monitored Displacement
Lo	use Monitored Displacement ad to a Monitored Displacement Magnitude of 0.512 itored Displacement
Lo Mor	Use Monitored Displacement ad to a Monitored Displacement Magnitude of 0.512 itored Displacement DOF U1 at Joint 5
Lo Mor	ad to a Monitored Displacement ad to a Monitored Displacement Magnitude of 0.512 intored Displacement DOF U1

استفاده از گزینه ی Displacement Control باعث می شود تا بار اعمالی به سازه آنقدر افزایش بیابد که سازه ناپایدار شود. استفاده از گزینه ی Use Conjugate Displacement باعث بوجود آمدن یک میان گیری وزنی از تمام تغییر مکان های سازه می شود.

در قسمت Load to a Monitored Displacement Magnitude of مقدار تغییر مکان هدف محاسبه شده توسط نرم افزار را در نظر می گیریم که مقدار آن برابر با Hان در نظر می گیریم که مقدار آن برابر با Hان در نظر می گیریم که مقدار آن برابر با Hان در نظر می گیریم که مقدار آن برابر با Hان در نظر می گیریم که مقدار آن برابر با Hان در نظر می گیریم که مقدار آن برابر با

قسمت Monitored Displacement نیازی به تغییر ندارد.

به Other Parameters بر می گردیم و روبروی Results Saved دکمه ی ... Modify/Show را کلیک می کنیم و طبق شکل زیر ویرایش می کنیم.

Results Saved		
Final State Only	Multiple States	
For Each Stage		
Minimum Number of Saved State	es 10	
Maximum Number of Saved Stat	tes 100	
Save positive Displacement	Increments Only	

به Other Parameters بر می گردیم. قسمت nonlinear Parametrs نیازی به تغییر ندارد.

به فرم Define Load Cases بر می گردیم، روی گزینه ی EQ رفته و Add Copy of Load Cases را می زنیم و طبق شکل زیر تغییرات را اعمال می کنیم.

Load Case Name		Notes	Load Case Type
Uniform	Set Def Name	Modify/Show	Static
Initial Conditions Zero Initial Conditions Continue from State a Important Note: Loa the Modal Load Case	- Start from Unstressed t End of Nonlinear Case ids from this previous ca current case	d State 1.1(DL+LL) ase are included in	Analysis Type C Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters
An modal Loads Applied Loads Applied Accel VIX Accel UX	d Name Scale Facto	Add Modify Delete	 None P-Delta P-Delta plus Large Displacements Mass Source Previous Yerevious Yerevious
Other Parameters Load Application Results Saved	Displ Control Multiple States	Modify/Show	OK Cancel

دوباره به فرم Define Load Cases بر می گردیم، روی گزینه ی EQ رفته و Add Copy of Load Cases را می زنیم و طبق شکل زیر تغییرات را اعمال می کنیم.

Load Case Name		Notes	Load Case Type
Mode1	Set Def Name	Modify/Show	Static
Initial Conditions Zero Initial Conditions Continue from State a Important Note: Loa the Modal Load Case All Modal Loads Applied Loads Applied	- Start from Unstresse t End of Nonlinear Case ds from this previous o current case Use Modes from Case	ed State = 1.1(DL+LL) case are included in MODAL	Analysis Type Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Delta Dente stage Lease Displacements
Load Type Load	d Name Scale Fact	tor	Vera Source
Mode 1	Mode 1 1 Mode 1 1 Add Modify 1 1 1		Previous -
Other Parameters	Displ Control	Delete Modify/Show	ОК
Results Saved	Multiple States	Modify/Show	Cancel

تعيين مشخصات طيف پاسخ براي سطح خطر مورد نياز

ابتدا طیف پاسخ برای سطح خطر 1 معرفی می شود. برای این کار در Excel مقدار ضریب بازتاب B و پریود T را به ترتیب از زمان 0 تا 5.9 ثانیه با فرمول های زیر وارد می کنیم :

$$\begin{pmatrix} 0 \le T_e \le T_0 \\ T_0 \le T_e \le T_s \\ T_e > T_s \end{pmatrix} \rightarrow \begin{pmatrix} B = 1 + S(\frac{T_e}{T_0}) \\ B = 1 + S \\ B = 1 + S(\frac{T_s}{T_e})^{2/3} \end{pmatrix}$$

پس داريم :

1	т	В	32	3	0.7571
2	0	1	33	3.1	0.7408
3	0.1	2.5	34	3.2	0.7252
4	0.2	2.5	35	3.3	0.7105
5	0.3	2.5	36	3.4	0.6965
6	0.4	2.5	37	3.5	0.6832
7	0.5	2.5	38	3.6	0.6705
8	0.6	2.2139	39	3.7	0.6583
9	0.7	1.9977	40	3.8	0.6467
10	0.8	1.8275	41	3.9	0.6356
11	0.9	1.6895	42	4	0.625
12	1	1.5749	43	4.1	0.6148
13	1.1	1.4779	44	4.2	0.605
14	1.2	1.3947	45	4.3	0.5956
15	1.3	1.3222	46	4.4	0.5865
16	1.4	1.2584	47	4.5	0.5778
17	1.5	1.2019	48	4.6	0.5694
18	1.6	1.1513	49	4.7	0.5613
19	1.7	1.1057	50	4.8	0.5535
20	1.8	1.0643	51	4.9	0.5459
21	1.9	1.0266	52	5	0.5386
22	2	0.9921	53	5.1	0.5315
23	2.1	0.9604	54	5.2	0.5247
24	2.2	0.931	55	5.3	0.5181
25	2.3	0.9039	56	5.4	0.5117
26	2.4	0.8786	57	5.5	0.5055
27	2.5	0.855	58	5.6	0.4994
28	2.6	0.8329	59	5.7	0.4936
29	2.7	0.8122	60	5.8	0.4879
30	2.8	0.7928	61	5.9	0.4823
31	2.9	0.7744			

سپس از Excel خروجی Text(Tab delmited)(*.txt) می گیریم .

Define > Functions > Response Spectrum ... کادر حال از به مسير Define Response Spectrum Functions می رسیم.

در قسمت Choose Function Type to Add را انتخاب کرده و Add New Function را انتخاب کرده و Add New Function را کلیک مي کنيم.

در کادر جدید در قسمت Period vs Value ، Values are را انتخاب می کنیم و در قسمت Browse ،Function File را می زنیم و فایل txt ذخیره شده را انتخاب می کنیم که گراف مورد نظر را در پایین کادر می بینیم.

			Function Damping	Ratio
Function Name	2800	Ţ.	0.05	
Function File File Name c:\users\vaio\desktop\pushover	Browse	Values are: Frequency vs Period vs Valu	Value	
Header Lines to Skip	0			
Convert to User Defined	View File			

روی دکمه OK کلیک کرده تا به صفحه ی اصلی برنامه بازگردیم.

اختصاص پارامترهای تعیین "تغییر مکان هدف بر اساس 356 – FEMA" و "نقطه عملکرد بر اساس ATC - 40"

روی دستور Define > Pushover Parameter Sets > FEMA – 356 Coefficient Method کلیک می کنیم.

Pushover Parameters	Click to:			
	Add New Parameters			
	Add Copy of Parameters			
	Modify/Show Parameters			
	Delete Parameters			

روی Add New Parameter کلیک کرده مشخصات آن را مانند شکل زیر به آن تخصیص می دهیم.

Pushover Paran	neters Name		Units
Name	F356P01		Kgf, m, C
Demand Spectri	um Definition		
Effective Vis	cous Damping (0 < Dam	p < 1)	0.05
Oefined Full	Inction	2800	
Scale Factor			2.45
Characteristic Period of Resp Spec, Ts		ec, Ts	0.5
FEMA 356	General Response Spec	trum	
Mapped	Spectral Accel at Short	Period, Ss	
Mapped	Spectral Accel at 1 Sec	Period, S1	
Site Clas	SS		
Selected Coeffi	cients		
Viser Value	e for C2		1.1
User Value	e for C3		
User Value	e for Cm		
ltems Visible On	Plot		
Show Cap	acity Curve		Color
Show Idea	alized Bilinear Force-Disp	l Curve	Color
	Reset Defi	ault Colors	
Upd	ate Plot	Set Axis La	abels and Range
		Canact	1

به صفحه ی اصلی باز می گردیم.

روی دستور Define > Pushover Parameter Sets > ATC - 40 Capacity Spectrum روی دستور

در پنجره ی باز شده، روی Add New Parameter کلیک کرده و فرم باز شده را مانند شکل زیر پر می کنیم.

Pushover Parameters Name		Units
Name A40P01		Kgf, m, C 🛛 👻
Plot Axes	Axis La	bels and Range
🖲 Sa-Sd 🔘 Sa-T 🔘 Sd-T	S	et Axis Data
Demand Spectrum Definition		
Function 2800	▼ SF	2.45
O User Coeffs Ca	Cv	
Damping Parameters Definition		
Inherent + Additional Damping		0.05
Structural Behavior Type		
© A ⊚ B @ C ©	User	Modify/Show
tems Visible On Plot		
Show Capacity Curve		Color
Show Family of Demand Spectra		Color
Damping Ratios		
0.05 0.1 0.	15	0.2
Show Single Demand Spectrum (ADR	S)	Color
(Variable Damping)		Color
(Variable Damping)		
(Variable Damping) Show Constant Period Lines at 0.5 1.	5	2.
(Variable Damping) Image: Show Constant Period Lines at 0.5 1. Image: Reset Default	5 Colors	2.
(Variable Damping) Show Constant Period Lines at 0.5 1. Reset Default	5 Colors	2.

SF را از رابطه مقابل بدست می آوریم:

 $SF = A \times g = 0.25 \times 9.81 = 2.45 \ m/_{S^2}$

آنالیز مدل غیرخطی اولیه ی سازه

حال برای آنالیز مدل غیرخطی اولیه ی سازه روی دکمه ی Run کلیک می کنیم. در پنجره ی Set Load Cases to Run روی گزینه ی Show Load Cases Tree نمایش داده شود، در منوی جدید روی گزینه ی Expand All کلیک کرده تا تمامی حالت های آنالیز نمایش داده شود.

Casa	Tune	Statue	Action	Click to:
DEAD	Linear Static	Not Pun	Run	Run/Do Not Run Case
MODAL	Modal	Not Run	Run	Show Case
LIVE	Linear Static	Not Run	Run	Delete Results for Case
EQ 1.1(DI+LL)	Linear Static Nonlinear Static	Not Run	Run	
EQ Pattern	Nonlinear Static	Not Run	Run	Pun/Do Not Pun All
Uniform	Nonlinear Static	Not Run	Run	
Model	Nonlinear Static	NOT RUN	Run	Delete All Results
				Show Load Case Tree
	3	10		
alysis Monitor Options				Model-Alive
Always Show				Run Now
Never Show				
Show After 4	seconds			OK Cancel

به فرم Set Load Cases to Run باز می گردیم و روی گزینه ی Run Now کلیک می کنیم.

روی دستور ... Disply > Show Static Pushover Curve کلیک می کنیم تا فرم Pushover Curve نمایش داده شود.

در این فرم از منوی کشویی Static Nonlinear Cases نام الگوی بارگذاری انتخاب می شود. از منوی کشویی Plot Type نوع نمودار نمایش داده شده مشخص می شود.

> Pushover Curve File Plot Type EQ Pattern Resultant Base Shear vs Monitored Displacement Kgf, cm, C 💌 --Displaceme Current Plot Parameters x10³ 20.0⁻ VDP01 Add New Parameters... 18.0 Add Copy of Parameters. 16.0 Modify/Show Parameters... 14.0 12.0 10.0 Base 8.0 6.0 4.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 Mouse Pointer Location Horiz Vert OK Cancel

حال در منوی Pushover Curve روی File در بالا کلیک کرده و Display Tables را انتخاب می کنیم و روی Step های مختلف مقادیر را مشاهده کنیم.

	LoadCase Text	Step Unitless)isplacement	BaseForce Kgf	AtoB Unitless	BtolO Unitless		IOtoLS Unitless	LStoCP Unitless	CPtoC Unitless	CtoD Unitless	DtoE Unitless
×	EQ Pattern	0	3.022E-15	0	56		0	0	0	0	0	
	EQ Pattern	1	5.12	5505.51	56		0	0	0	0	0	
	EQ Pattern	2	6.925481	7446.94	55		1	0	0	0	0	
	EQ Pattern	3	12.231605	12187.4	48		5	0	1	1	1	
	EQ Pattern	4	16.003181	14054.81	39		6	4	1	2	4	
	EQ Pattern	5	22.226963	14920.24	36		2	3	3	2	10	
	EQ Pattern	6	27.444008	15465.71	35		1	3	1	1	15	
	EQ Pattern	7	30.974879	15813.44	33		3	2	1	1	16	

اگر از قسمت Plot Type گزینه ی Resultant Base Shear vs Monitored Displacement و از قسمت Static Nonlinear Cases بار EQ Pattern را انتخاب می کنیم تا منحنی نمایش داده شود. مشاهده ی نمودار پوش <u>آور</u> "تغییر مکان هدف بر اساس 356 - FEMA"

منحنی بعدی منحنی تغییر مکان هدف بر اساس 356 – FEMA می باشد که برای مشاهده ی آن از قسمت Plot Type گزینه ی Fema 356 Confficient Method انتخاب می شود تا نمودار آن نمایش داده شود.

در قسمت Target Displacement ، مقدار جابجایی و برش در تغییر مکان هدف آورده شده است.

Static Nonlinear Case	Plot Type				Units
EQ Pattern 👻	FEMA 356 Coeffic	ient Method			▼ Kgf, m, C
×10 3	Displacement			с	urrent Plot Parameters
20.0	المستر سنين سمين				F356PO1
18.0					Add New Parameters
					Add Copy of Parameters
16.0					Modify/Show Parameters
14.0					<u>.</u>
12 0				5 1	arget Displacement (V, D)
12.0				eact	(14599. <mark>4</mark> 78,0.352)
10.0				e Ro	
8.0				Bas	
	8. S. S. S.				
0.0					
4.0					
2.0					
60. 120. 180	. 240. 300. 360.	420. 480.	540. 600.	x10 ⁻³	
Mouse Pointer Locatio	n Horiz	Vert			Show Calculated Values

مشاهده ی نمودار پوش آور "نقطه عملکرد بر اساس ATC - 40"

برای مشاهده ی نقطه عملکرد بر اساس ATC – 40 Capacity Spectrum گزینه ی Plot Type گزینه ی ATC – 40 Capacity Spectrum انتخاب می شود تا نمودار آن نمایش داده شود.

در فرم بالا کادر Performance Point(V,D) نشان دهنده کادر افقى جابجايي برش پايه، ى نشان *Performance Point(Sa,Sd)* طيفي شتاب طيفي جابجايي ى دهنده 9 9 Performance Point(Teff, Beff) نشان دهنده ی میرایی و زمان تناوب موثر سازه در نقطه ی عملکرد می باشد.

همینطور در منوی Pushover Curve روی File در بالا کلیک کرده و Display Tables را انتخاب می کنیم که در Step های مختلف می توانیم این شش ویژگی نام برده را در جدول مشاهده نماییم.

با کلیک روی گزینه ی Modify/Show Parameters پارامترهای تعریف شده بر اساس نقطه عملکرد نشان داده می شوند که می توان تغییرات دلخواه را اعمال کرد.

. بطور مثال با انتخاب Sd-T در $Plot\ Axes$ شکل زیر که منحنی جابجایی طیفی – دوره تناوب را به ما می دهد

. و یا با انتخاب Sa-T در $Plot\ Axes$ شکل زیر را به ما می دهد Sa – T و یا با انتخاب

ارزیابی وضعیت و معیارهای پذیرش مفاصل سازه تحت بار جانبی روی دکمه ی 🎦 کلیک کرده و تا شکل زیر ظاهر شود.

Case/Combo			
Case/Combo Name	EQ Pattern		•
Multivalued Options			
Envelope (Max or Mir	n)		_
Step		0	E
Scaling			
Auto			
Scale Factor			
Options		_	
Wire Shadow			ОК
V Cubic Curve			ancel

همانطور که می بینیم در قسمت EQ Pattern ، Case/Combo Name را انتخاب می کنیم و مراحل تشکیل مفصل را Step به Step بررسی می کنیم.

Step 3

Step 5

Step 9

مشاهده ی رفتار مفاصل در آنالیز استاتیکی خطی

روی ... Display > Show Hinge Results کلیک می کنیم تا فرم Hinge Results باز شود.

روی Plot Control Parameters با فعال کردن همه ی پارامترها نمایش مناسب تری خواهیم داشت.

ایجاد و ساخت مدل غیر خطی نهایی و ارزیابی نهایی سازه

در این مرحله بار زنده را دو برابر می کنیم و در جهت بهسازی آن مشخصات مفاصل را اصلاح و یک سری بادبند برای افزایش سختی سازه اضافه می کنیم.

پس تيرها را انتخاب كرده و بار زنده را كه برابر 1000kg/m مي شود را اعمال مي كنيم.

Load Pattern Na	ame		Units	
+ LIVE		•	Kg	f, m, C 👻
Load Type and	Direction		Options	
Forces	Moments		Add to	Existing Loads
Coord Sys	GLOBAL	•	Replace	e Existing Loads
Direction	Gravity	•	Delete	Existing Loads
Trapezoidal Loa	ads 1	2	2	
Distance	0.	0.25	0.75	4.
Load	0.	0.	0.	0.
Relative [Distance from E	nd-I 🔘	Absolute Distan	ce from End-I
Uniform Load				
Land	1000			
LUAU	1000.		OK	Cancel
C	C)	C	
c	C 2)	C 3	
)		
	+ + toop, bo 			
			1000.00 4 4000.0	

همانطور که در شکل زیر می بینیم منحنی نیاز منحنی ظرفیت همدیگر را قطع نمی کنند.

X Pushover Curve File Static Nonlinear Case Units Plot Type ATC-40 Capacity Spectrum EQ Pattern Kgf, m, C • -• **Current Plot Parameters** Period - sec x10 -250.] A40P01 -Add New Parameters. 225.-Add Copy of Parameters .. 200. Modify/Show Parameters. Spectral Acceleration - g 175. Performance Point (V, D) 150. N.A. 125. Performance Point (Sa, Sd) 100.3 N.A. 75. Performance Point (Teff, Beff) N.A. 50.-25.-2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 Mouse Pointer Location Horiz Vert OK Cancel

EQ Pattern

Uniform

Mode1

با توجه به این افزایش بار می خواهیم سختی را افزایش دهیم، پس از روی نوار ابزار کناری دکمه ی 🕅 را زده و بعد از انتخاب مقطع مورد نظر مهاربند ها را رسم می کنیم.

اختصاص مفاصل بادبندها :

تمامی بادبند ها را انتخاب می کنیم سپس از مسیر ... Assign > Frame > Hinges به فرم Frame Hinges Assingment می رسیم، حال در قسمت Relative Distance عدد 0.5 را وارد می کنیم.

	<u>, , , , , , , , , , , , , , , , , , , </u>	e
Auto	• 0.5	
Auto P	0.5	Add
		Modify
		Delete
uta Uinaa Anaiaa	mant Data	
Type: From Table	es In FEMA 356	
	(Steel Braces - Axial)	
Table: Table 5-6		
Table: Table 5-6 DOF: P		
Table: Table 5-6 DOF: P	odify/Show Auto Hinge Assign	ment Data
Table: Table 5-6 DOF: P	odify/Show Auto Hinge Assignn	nent Data

حال روی گزینه ی Add می زنیم و در فرم جدید Auto Hinge Assingment مشخصات را مانند شکل زیر وارد می کنیم.

Auto Hinge Type	
From Tables In FEMA 356	•
elect a FEMA356 Table	
Table 5-6 (Steel Braces - Axial)	•
omponent Type	Deformation Controlled Hinge Load Carrying Capacity
Primary	Orops Load After Point E
Secondary	Is Extrapolated After Point E

و در آخر داریم :

اصلاح مشخصات مفاصل پلاستیک در تیرها

در نرم افزار SAP2000 معیارهای پذیرش و پارامترها را بدون در نظر گرفتن محدودیت های لاغری بال و جان در نظر گرفته است و مقادیر مشخصات مفاصل را از ردیف *B FEMA* – 356 برداشت کرده که این مقادیر دارای ارقام محافظه کارانه تری نسبت به ردیف *a* دارد.

با محاسبه ی محدودیت های لاغری در میابیم که از ردیف a استفاده کنیم.

$$\frac{b_f}{2t_f} = \frac{12}{2 \times 0.98} = 6.122 \le \frac{52}{\sqrt{F_{ye}}} = \frac{52}{\sqrt{37.5496}} = 8.486$$

$$\frac{h}{t_w} = \frac{24}{0.62} = 38.71 \le \frac{418}{\sqrt{F_{ye}}} = \frac{418}{\sqrt{37.5496}} = 68.214$$

Table 5-6	Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel
	Components

	Mode	eling Paran	neters		Acceptance Criteria					
	Plastic I	Plastic Rotation		Plastic Rotation Angle, Radians						
	Rad	gle, ians	Strength Ratio		Primary		Seco	ndary		
Component/Action	a	b	c	10	LS	CP	LS	CP		
Beams—flexure		0								
a. $\frac{bf}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_w} \le \frac{418}{\sqrt{F_{ye}}}$	90 _y	11θ _у	0.6	1θ _y	6θ _y	8θ _y	90 _y	110 _y		
b. $\frac{bf}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$ or $\frac{h}{t_w} \ge \frac{640}{\sqrt{F_{ye}}}$	40 _y	6θ _y	0.2	0.25θ _у	2θy	3θ _y	3θ _y	4θ _y		
c. Other	Linear inter web slend	polation bet erness (sec	ween the valu cond term) sha	es on lines a all be perform	and b for boned, and the	oth flange sle lowest result	nderness (fir ing value sha	st term) and all be used		

-حال با در نظر گرفتن مقادیر ردیف a مشخصات مفاصل را اصلاح می کنیم.

برای این کار تمام مفاصل را پاک کرده و از مسیر Define > Section Propertis > Hinge Propertis مشخصات مفصل جدید تیرها را وارد می کنیم. برای این کار مفصل M3 را تعریف می کنیم.

Hinge	Property Name
MЗ	
Hinge	Туре
() F	orce Controlled (Brittle)
• 0	Deformation Controlled (Ductile)
Mon	nent M3 👻
	Modify/Show Hinge Property

: برای مقطع IPE240 مقدار $heta_y$ را حساب می کنیم

 $\theta_y = \frac{ZF_{ye}I_b}{6EI_b} = \frac{367 \times 2640 \times 400}{6 \times 2.1 \times 10^6 \times 3892} = 0.007903$

شيب سختی کششی = $1 + 0.03 \times (elastic\ slope) \times a = 1 + 0.03 \times (1/\theta_y) \times 9\theta_y = 1.27$

در قسمت Acceptance Criteria مقادیر ضریب های ردیف a را از جدول بالا روبروی هر سطح خطر وارد می کنیم.پس مشخصات را به صورت شکل زیر وارد می کنیم:

	14	D / // /DC		1	- 1990	
Point	Moment/SF	Rotation/SF			Moment -	Rotation
E-	-0.6	-8		1	Moment -	Curvature
0-	-0.6	-6		•	Hinge I	.ength
6	-1.27	-0		Ŷ		lative Length
D-	-1	0	•••			narro congen
R	1	0	6	-	Hysteresis Typ	e And Parameters
С	1.27	6.				
D	0.6	6.	V Sym	netric	Hysteresis Iy	isotropic -
E	0.6	8	1000		No Dars	ameters Are Required For This
oad Carry Drops Is Extr Scaling for	ing Capacity Beyond To Zero 'apolated Moment and Rotation	t Point E	itive	Negative	Hyster	esis Type
oad Carry Drops Is Extr Scaling for Use Y Use Y	ing Capacity Beyond To Zero apolated Moment and Rotation ield Moment Mor ield Rotation Rota	t Point E n Pos ment SF ation SF	itive	Negative	Hyster	sis Type
oad Carry ● Drops ● Is Extr Scaling for ▼ Use Y (Stee	ing Capacity Beyond To Zero "apolated Moment and Rotation "ield Moment Mor ield Rotation Rota I Objects Only)	I Point E	itive	Negative	Hyster	esis Type
oad Carry ● Drops ● Is Extr Scaling for ▼ Use Y (Stee Acceptance	ing Capacity Beyond To Zero apolated Moment and Rotation field Moment Mor field Rotation Rota I Objects Only) Criteria (Plastic Rot	I Point E n Pos nent SF ation SF tation/SF) Pos	itive	Negative	Hyster	anico a rogano a roga
.oad Carry Coad Carry Coaling for Coaling for Use Y Use Y (Stee Acceptance	ing Capacity Beyond To Zero Tapolated Moment and Rotation Tield Moment Mor Tield Rotation Rota I Objects Only) Criteria (Plastic Rol ediate Occupancy	I Point E n Pos nent SF ation SF tation/SF) Pos 1	itive	Negative	Hyster	anico a rogano a roga
oad Carry Control Contro Control Control Control Control Control Control Co	ing Capacity Beyond To Zero rapolated Moment and Rotation field Moment Mor field Rotation Rota I Objects Only) a Criteria (Plastic Rot ediate Occupancy Safety	t Point E Pos ment SF ation SF tation/SF) Pos 1 6	itive	Negative	Hyster	sis Type
oad Carry Coal Carry Coaling for Use Y Coaling Coali	ing Capacity Beyond To Zero rapolated Moment and Rotation field Moment Mor field Rotation Rota I Objects Only) e Criteria (Plastic Rot ediate Occupancy Safety	t Point E Pos ment SF ation SF tation/SF) Pos	itive	Negative	Hyster	K Cancel

اصلاح مشخصات مفاصل پلاستیک در ستون ها

For <i>P/P_{CL}</i> < 0.20		3 3					20	2
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_w} \le \frac{300}{\sqrt{F_{ye}}}$	90y	110 _y	0.6	10 _y	6θ _y	8θ _y	90 _y	110 _y
b. $d \frac{bf}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$ or $\frac{h}{t_w} \ge \frac{460}{\sqrt{F_{ye}}}$	4θ _y	6θ _y	0.2	0.25θ _y	2θ _y	3θ _y	3θ _y	4θ _y
c. Other	Linear inter web slend	polation betw lerness (seco	veen the valu and term) sh	Lues on lines a all be perforn	and b for bo ned, and the l	th flange sle lowest result	nderness (fir ing value sh	st term) and all be used

(H160-B). با محاسبه ی محدودیت های لاغری در میابیم که باید از ردیف a استفاده کنیم.

$$\frac{b_f}{2t_f} = \frac{16}{2 \times 1.3} = 6.154 \le \frac{52}{\sqrt{F_{ye}}} = \frac{52}{\sqrt{37.5496}} = 8.486$$
$$\frac{h}{t_w} = \frac{16}{0.8} = 20.00 \le \frac{418}{\sqrt{F_{ye}}} = \frac{418}{\sqrt{37.5496}} = 68.214$$

Columns—flexure 2,7

پس برای تعریف مشخصات از مسیر ... Define > Section Propertis > Hinge Propertis مشخصات مفصل جدید تیرها را وارد می کنیم. برای این کار مفصل (H160)P - M3 را تعریف می کنیم.

و مشخصات أن را وارد مي كنيم.

Frame Hinge Property Data
Hinge Property Name
P-M3(H160)
Hinge Type
Force Controlled (Brittle)
Deformation Controlled (Ductile)
Interacting P-M3
Modify/Show Hinge Property
OK Cancel

با کلیک روی ... Modify مشخصات قسمت های آن را مانند شکل های زیر وارد می کنیم.

Hinge Specification Type	Scale Factor for I	Rotation (SF)					
Moment - Rotation	SF is Yield F (Steel Object	SF is Yield Rotation per FEMA 356 Eqn. 5-2 (Steel Objects Only)					
Moment - Curvature Hinge Length	User SF	9.524E-03					
Relative Length	Load Carrying Ca	apacity Beyond Point E					
Symmetry Condition							
Moment Rotation Dependence	is Symmetric	M3 \ 90°					
Requirements for Specified Sy 1 Specify curves at angles of 9	mmetry Condition 0° and 270°.	270*					
Requirements for Specified Sy 1 Specify curves at angles of 9 Axial Forces for Moment Rotation Cu	mmetry Condition 0° and 270°. urves Curve Angles for	Moment Rotation Curves					
Requirements for Specified Sy 1 Specify curves at angles of 9 Axial Forces for Moment Rotation Ct Number of Axial Forces 3	rmmetry Condition 0° and 270°. urves Curve Angles for Number of Angle	Moment Rotation Curves es 2					
Requirements for Specified Sy 1 Specify curves at angles of 9 Axial Forces for Moment Rotation Cu Number of Axial Forces 3 Modify/Show Axial Force Value	es Modified	Moment Rotation Curves es 2 ty/Show Angles					
Requirements for Specified Sy 1 Specify curves at angles of 9 Axial Forces for Moment Rotation Cu Number of Axial Forces 3 Modify/Show Axial Force Value Mod Mod	rmmetry Condition 0° and 270°. urves Curve Angles for Number of Angle es Modif dify/Show Moment Rotation Curve Data ify/Show P-M3 Interaction Surface Data	Moment Rotation Curves as 2 ty/Show Angles					

	This Number	of Axial Force Values I	s Specified	-
	Numb	er of Axial Forces	3	
	Axial Force D)ata		
	1	Axial Force -51352.1	Kgf, m, C 🛛 🔻	
	3	-20540.84		
			Order Rows	
			Cancel	
L				
oment Rotation Data fo	r P-M3(H160) - Inte	racting P-M3		_
t				
Select Curve				
	Acres	00		

×

						-		Units	
Axial F	orce -51352.1	 Angle 	90.	•	Curve #			Kgf, m, C	
Ioment	Rotation Data for Selected	I Curve							
Point	Moment/Yield Mom	Rotation/	SF					14.12	
A	0.	0.		BC				M	
8	1.	0.		1			_	TIT	
С	1.03	0.6418					-		
D	0.2	0.6418							
E	0.2	0.9627		DE	23				
				A			-R3		→R3
<u></u>	nu Cursus Data	Danka Curria D	ata 1						
		Faste Cuive L	Jala	Current	Curve - Cur	ve #1	Full In	nteraction Curv	•
				Force	#1; Angle	#1	Axial	Force = -51352	.1
Accep	ptance Criteria (Plastic Det	formation / SF)		3D View					
	Immediate Occupancy	0.1604		Plan	0		Axial Force	-51352.1	-
	Immediate Occupancy	0.1604		Plan	0		Axial Force	-51352.1	
	Immediate Occupancy Life Safety	0.1604 0.3209		Plan Elevation	0		Axial Force	-51352.1 ckbone Lines	-
	Immediate Occupancy Life Safety Collapse Prevention	0.1604 0.3209 5134.		Plan Elevation Aperture	0 0 0		Axial Force Hide Bac Show A	-51352.1 ckbone Lines cceptance Crite	eria
	Immediate Occupancy Life Safety Collapse Prevention	0.1604 0.3209 5134.		Plan Elevation Aperture	0		Axial Force Hide Bac Show Ac Show Ti	-51352.1 ckbone Lines cceptance Crite hickened Lines	ria
	Immediate Occupancy Life Safety Collapse Prevention how Acceptance Points o	0.1604 0.3209 5134.	e	Plan Elevation Aperture 3D RF	0 0 0 t MR3		Axial Force Hide Bac Show A Show T Highlight	-51352.1 ckbone Lines cceptance Crite hickened Lines current Curve	ria
S loment	Immediate Occupancy Life Safety Collapse Prevention Now Acceptance Points o	0.1604 0.3209 5134.	e	Plan Elevation Aperture 3D RF	0 0 0 t MR3	A A V MR2	Axial Force Hide Bac Show Ar Show Ti Highlight	-51352.1 okbone Lines cceptance Crite hickened Lines current Curve	eria
Ioment Symme	Immediate Occupancy Life Safety Collapse Prevention thow Acceptance Points o Rotation Information	0.1604 0.3209 5134.	e	Plan Elevation Aperture 3D RF Angle Is Mo	0 0 0 1 MR3 ment About = Abo	MR2	Axial Force Hide Bac Show Ar Show TI Highlight	-51352.1 okbone Lines cceptance Crite hickened Lines current Curve	ria
Symme Number	Immediate Occupancy Life Safety Collapse Prevention thow Acceptance Points o Rotation Information try Condition	0.1604 0.3209 5134. In Current Curve	e	Plan Elevation Aperture 3D RF Angle Is Mo 0 degrees 90 degrees	0 0 0 t MR3 ment About = Abo	MR2	Axial Force Hide Bac Show Ai Show Ai Show Ti Highlight We M2 Axis ye M3 Axis	-51352.1 ckbone Lines cceptance Crite hickened Lines c Current Curve	ria K
Ioment Symme Number	Immediate Occupancy Life Safety Collapse Prevention thow Acceptance Points o Rotation Information try Condition r of Axial Force Values r of Axial Force Values	0.1604 0.3209 5134. In Current Curve Not 3	e	Plan Elevation Aperture 3D RF Angle Is Mo 0 degrees 90 degrees	0 0 t MR3 ment About = Abo s = Abo	MR2	Axial Force Hide Bac Show Ai Show Ai Show Ti Highlight We M2 Axis tive M3 Axis tive M2 Axis	-51352.1 ckbone Lines cceptance Crite hickened Lines c Current Curve	ria
Ioment Symme Number	Immediate Occupancy Life Safety Collapse Prevention thow Acceptance Points o Rotation Information try Condition r of Axial Force Values r of Angles	0.1604 0.3209 5134. in Current Curve 3 2	e	Plan Elevation Aperture 3D RF Angle Is Mo 0 degrees 90 degree 180 degre	0 0 1 MR3 ment About = Abo s = Abo s = Abo	MR2 MR2	Axial Force Hide Bac Show Ar Show TI Highlight We M2 Axis Ve M3 Axis tive M2 Axis	-51352.1 ckbone Lines cceptance Crite hickened Lines c Current Curve	ria K

Inter	action Surface Options
Ø	Default from Material Property of Associated Line Object
0	Steel, AISC-LRFD Equations H1-1a and H1-1b with phi = 1
Ø	Steel, FEMA 356 Equation 5-4
0	Concrete, ACI 318-02 with phi =1
۲	User Definition
	Define/Show User Interaction Surface
Axia	I Load - Displacement Relationship
0	Proportional to Moment - Rotation
۲	Elastic - Perfectly Plastic

Jser Interaction Curv	e Option	s		Interactio	n Curve Data	1	
Interaction Curv	e Is Symn	netric		Cur	rent Curve 1	- •	
Number of Curves			2	Point	Р	M3	
Number of Brisks on Frick Curve		11	1	-0.7164	0.		
Number of Points of	Lachici	Jive		2	-0.5732	1.	
Scale Factors (Same	for All C	urves)		3	-0.4299	1.	P - M3
could i detere (could		P	МЗ	4	-0.2866	1.	
Kaf m C 👻		143352.	9345.6	5	-0.1433	1.	
				6	0.	1.	
First and Last Deists	(Came fo			7	0.2	0.944	
I St and Last Points	Point	D All Curves)	M3	8	0.4	0.708	Charle Full
	1	-0.7164	0	9	0.6	0.472	Curve
	11			10	0.8	0.236	
. Two P-M3 curve . P (tension positi . Each curve mus	s are spe ve) increa t be conv	ecified. ases monotonica rex (no dimples i	Illy. n surface).			Ighlight C M3 →	urrent Curve
						P M3	-13884.89
			ОК	Cancel			

همین مراحل را برای H140 تکرار می کنیم.

حال مفاصل تعريف شده را با 0.05 Relative Distance و 0.95 به تيرها و ستون های مربوطه اختصاص می دهيم.

در اینجا الگوی بار مهاربندها را اضافه می کنیم.

برای این کار ابتدا تمام تیرها و ستون ها را انتخاب کرده و از منوی ... Assign > Assign to Group روی Add New Group کلیک کرده و در قسمت COL + BEAM ، Group Name را وارد می کنیم. سپس بادبندها را انتخاب کرده و همین مراحل را تکرار می کنیم و اسم آن را ADD BRACE می گذاریم.

روی دستور ... Define > Load Cases کلیک کرده و روی ... Add New Load Case کلیک می کنیم و مشخصات را مانند شکل زیر وارد می کنیم.

Load (Case Name	-		Notes		Load Case	Гуре	
COL+	BEAM		Set Def Name	e Modi	fy/Show	Static		▼ Design
initial C Z C Impo	Conditions Cero Initial (ontinue fro ortant Note	Conditions m State at : Load the d	- Start from Uns End of Nonlinea ds from this pre- current case	tressed State	*) ncluded in	Analysis Ty C Linear Nonline	pe ear ear Staged Cor	struction
Stage Stag No. 1	Definition Duration (Days) 0. 0.	Provide Output No -	Output Label	User Comments	Add Copy Modify Insert	Geometric N None P-Detta P-Detta Mass Source Previous 	lonlinearity Par plus Large Dis e	ameters placements
Ex	pand Stag	e Definition	۱ ۱		Delete	Show	w Stages In Tre	ee View
	Operat	ion	Object Type	Object Name	Age At Add	Туре	Name	Scale Factor
Add Add	Structure		Group -	COLL+BEA -	0.			
Dther Resu	Expand Sta Parameter Its Saved	ge Data s	Stage:	< < 1	>> of 1 Modify/Show	Add	Modify	и Delete
Monli	near Paran	neters	Defa	ult	Modify/Show	N	Car	rcel

در فرم *Define Load Cases* حالت آنالیز (1.1(*DL* + *LL* را انتخاب کرده و *Modify* را می زنیم و مانند شکل زیر پر می کنیم.

Load Case Name			Notes	Load Case Type		
1.1(DL+LL)	Set Def	Name	Modify/Show	Static		
Initial Conditions Zero Initial Condition Continue from State	ns - Start from	Analysis Type C Linear Nonlinear				
Important Note: L	oads from thi ie current cas	s previous ca se	se are included in	Nonlinear Staged Construction		
Modal Load Case All Modal Loads Applied Loads Applied Load Type Lo Load Pattern ▼ DEA Load Pattern DEA Load Pattern LIVE	ed Use Modes ad Name D -	s from Case Scale Factor 1.1 1.1	MODAL	Geometric Nonlinearity Parameters None P-Delta P-Delta plus Large Displacements Mass Source Previous		
Other Parameters Load Application	Full	Load	Modify/Show	ОК		
Results Saved	Final St	ate Only	Modify/Show	Cancel		

oad Case Name	Set Def Name	Notes Modif	fy/Show	Load Case T	Гуре	▼ Design
nitial Conditions Zero Initial Conditions Continue from State a Important Note: Loa the	- Start from Unst End of Nonlinear ds from this previ current case	ressed State Case 1.1(D ious case are in	DL+LL) ▼ Included in	Analysis Typ Linear Nonline Nonline	pe ear ear Staged Con	struction
Stage Definition Stag Duration Provide No. (Days) Output 1 0. No • 1 0. No	Output Label	User Comments	Add Copy Modify Insert Delete	Geometric N None P-Detta P-Detta Mass Sourc Previous Show Stage Show	Ionlinearity Par plus Large Dis e s v Stages In Tre	ameters placements • • View
Data For Stage 1 (0. days Operation Add Structure	;) Object Type Group Group	Object Name BRACE	Age At Add 0.	Туре	Name	Scale Factor
Expand Stage Data	Stage:	: < 1	>> of 1	Add	Modify	/ Delete
Results Saved	End of Final S Defau	tage Only	Modify/Shov	N		

به صفحه ی قبلی برگشته و روی ... Add New Load Case کلیک می کنیم و مطابق شکل زیر کامل می کنیم.

.oad Case Name		Notes	Load Case Type		
EQ Pattern	m Set Def Name		Static	▼ Design	
Initial Conditions Zero Initial Conditions Continue from State a Important Note: Loa the Modal Load Case All Modal Loads Applied Loads Applied Load Type Loa Load Pattern reg EQ	a - Start from Unstres at End of Nonlinear Ca ads from this previous current case Use Modes from Cas d Name Scale Fa	Analysis Type Linear Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Detta P-Detta P-Detta plus Large Displacements Mass Source			
Load Pattern EQ Other Parameters Load Application Results Saved	Displ Control Multiple States	Add Modify Delete Modify/Show	OK Cancel	•	

حال بار EQ Pattern را کلیک کرده و گزینه ی Modify را می زنیم و طبق شکل ها تغییرات را اعمال می کنیم.

در قسمت Nonlinear Parameters روی Modify می زنیم و در قسمت Nonlinear Parameters گزینه ی Load Application را علامت دار می کنیم. به صفحه ی قبلی برگشته و در قسمت Restart Using Secant Stiffness روی Modify می زنیم و در قسمت Load to a Monitored Displacement مقدار 0.2 را وارد می کنیم، یعنی جابجایی افقی را به 20cm محدود می کنیم. همین مراحل را برای حالت بارهای Uniform و Mode1 انجام می دهیم.

به صفحه ی اصلی نرم افزار بر می گردیم .

سپس از نرم افزار Run می گیریم و نمودارها را مشاهده می کنیم.

FEMA - 356

ATC - 40

