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11. lim
x!�2C

x2
� 4

x2
C 4x C 4

12. lim
x!4

2 �
p

x

x � 4

13. lim
x!3

x2
� 9

p

x �
p

3
14. lim

h!0

h
p

x C 3h �
p

x

15. lim
x!0C

p

x � x2 16. lim
x!0

p

x � x2

17. lim
x!1

p

x � x2 18. lim
x!1�

p

x � x2

19. lim
x!1

1 � x
2

3x2
� x � 1

20. lim
x!�1

2x C 100

x2
C 3

21. lim
x!�1

x3
� 1

x2
C 4

22. lim
x!1

x4

x2
� 4

23. lim
x!0C

1
p

x � x2
24. lim

x!1=2

1
p

x � x2

25. lim
x!1

sinx 26. lim
x!1

cosx

x

27. lim
x!0

x sin
1

x
28. lim

x!0
sin

1

x2

29. lim
x!�1

Œx C

p

x2
� 4x C 1�

30. lim
x!1

Œx C

p

x2
� 4x C 1�

At what, if any, points in its domain is the function f in Exercises

31–38 discontinuous? Is f left or right continuous at these points?

In Exercises 35 and 36,H refers to the Heaviside function: H.x/ D

1 if x � 0 and H.x/ D 0 if x < 0.

31. f .x/ D x3
� 4x

2
C 1 32. f .x/ D

x

x C 1

33. f .x/ D

�

x2 if x > 2

x if x � 2
34. f .x/ D

�

x2 if x > 1

x if x � 1

35. f .x/ D H.x � 1/ 36. f .x/ D H.9 � x2
/

37. f .x/ D jxj C jx C 1j

38. f .x/ D
n

jxj=jx C 1j if x ¤ �1

1 if x D �1

Challenging Problems

1. Show that the average rate of change of the function x3 over the

interval Œa; b�, where 0 < a < b, is equal to the instantaneous

rate of change of x3 at x D
p

.a2
C ab C b2/=3. Is this point

to the left or to the right of the midpoint .a C b/=2 of the

interval Œa; b�?

2. Evaluate lim
x!0

x

jx � 1j � jx C 1j
.

3. Evaluate lim
x!3

j5 � 2xj � jx � 2j

jx � 5j � j3x � 7j
.

4. Evaluate lim
x!64

x1=3
� 4

x1=2
� 8

.

5. Evaluate lim
x!1

p

3C x � 2

3
p

7C x � 2
.

6. The equation ax2
C2x�1 D 0, where a is a constant, has two

roots if a > �1 and a ¤ 0:

rC.a/ D
�1C

p

1C a

a
and r�.a/ D

�1 �
p

1C a

a
:

(a) What happens to the root r�.a/ when a! 0 ?

(b) Investigate numerically what happens to the root

rC.a/ when a! 0 by trying the values a D 1, ˙0:1,

˙0:01, : : : : For values such as a D 10�8, the limited pre-

cision of your calculator may produce some interesting re-

sults. What happens, and why?

(c) Evaluate lima!0 rC.a/ mathematically by using the iden-

tity

p

A �
p

B D
A � B
p

AC
p

B
:

7.A TRUE or FALSE? If TRUE, give reasons; if FALSE, give a

counterexample.

(a) If limx!a f .x/ exists but limx!a g.x/ does not exist,

then limx!a .f .x/C g.x// does not exist.

(b) If neither limx!a f .x/ nor limx!a g.x/ exists, then

limx!a .f .x/C g.x// does not exist.

(c) If f is continuous at a, then so is jf j.

(d) If jf j is continuous at a, then so is f .

(e) If f .x/ < g.x/ for all x in an interval around a, and if

limx!a f .x/ and limx!a g.x/ both exist, then

limx!a f .x/ < limx!a g.x/.

8.A (a) If f is a continuous function defined on a closed interval

Œa; b�, show that R.f / is a closed interval.

(b) What are the possibilities for R.f / if D.f / is an open

interval .a; b/?

9. Consider the function f .x/ D
x2
� 1

jx2
� 1j

. Find all points where

f is not continuous. Does f have one-sided limits at those

points, and if so, what are they?

10.A Find the minimum value of f .x/ D 1=.x�x2/ on the interval

.0; 1/. Explain how you know such a minimum value must

exist.

11.I (a) Suppose f is a continuous function on the interval Œ0; 1�,

and f .0/ D f .1/. Show that f .a/ D f

�

aC
1

2

�

for

some a 2

�

0;
1

2

�

.

Hint: Let g.x/ D f

�

x C
1

2

�

� f .x/, and use the

Intermediate-Value Theorem.

(b) If n is an integer larger than 2, show that

f .a/ D f

�

aC
1

n

�

for some a 2

�

0; 1 �
1

n

�

.
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C H A P T E R 2

Differentiation

“
‘All right,’ said Deep Thought. ‘The Answer to the Great Question : : : ’

‘Yes : : : !’

‘Of Life, the Universe and Everything : : : ’ said Deep Thought.

‘Yes : : : !’

‘Is : : : ’ said Deep Thought, and paused.

‘Yes : : : ! : : : ?’

‘Forty-two,’ said Deep Thought, with infinite majesty and calm.

: : :

‘Forty-two!’ yelled Loonquawl. ‘Is that all you’ve got to show for seven

and a half million years’ work?’

‘I checked it very thoroughly,’ said the computer, ‘and that quite

definitely is the answer. I think the problem, to be quite honest with

you, is that you’ve never actually known what the question is.’

”Douglas Adams 1952–2001

from The Hitchhiker’s Guide to the Galaxy

Introduction Two fundamental problems are considered in calculus.

The problem of slopes is concerned with finding the slope

of (the tangent line to) a given curve at a given point on the curve. The problem of

areas is concerned with finding the area of a plane region bounded by curves and

straight lines. The solution of the problem of slopes is the subject of differential cal-

culus. As we will see, it has many applications in mathematics and other disciplines.

The problem of areas is the subject of integral calculus, which we begin in Chapter 5.

2.1 Tangent Lines and Their Slopes
This section deals with the problem of finding a straight line L that is tangent to a

curve C at a point P . As is often the case in mathematics, the most important step in

the solution of such a fundamental problem is making a suitable definition.

For simplicity, and to avoid certain problems best postponed until later, we will

not deal with the most general kinds of curves now, but only with those that are the

graphs of continuous functions. Let C be the graph of y D f .x/ and let P be the

point .x0; y0/ on C , so that y0 D f .x0/. We assume that P is not an endpoint of C .

Therefore, C extends some distance on both sides of P . (See Figure 2.1.)

What do we mean when we say that the line L is tangent to C at P ? Past experi-

ence with tangent lines to circles does not help us to define tangency for more general

curves. A tangent line to a circle at P has the following properties (see Figure 2.2):

(i) It meets the circle at only the one point P .

(ii) The circle lies on only one side of the line.

y

x

P.x0; y0/

L

C

y D f .x/

Figure 2.1 L is tangent to C at P
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(iii) The tangent is perpendicular to the line joining the centre of the circle to P:

L
P

C

Figure 2.2 L is tangent to C at P

Most curves do not have obvious centres, so (iii) is useless for characterizing tangents

to them. The curves in Figure 2.3 show that (i) and (ii) cannot be used to define tan-

gency either. In particular, the curve in Figure 2.3(d) is not “smooth” at P; so that

curve should not have any tangent line there. A tangent line should have the “same

direction” as the curve does at the point of tangency.

Figure 2.3

(a) L meets C only at P but is not

tangent to C

(b) L meets C at several points but is

tangent to C at P

(c) L is tangent to C at P but crosses C

at P

(d) Many lines meet C only at P but

none of them is tangent to C at P

y

x

y

x

y

x

y

x

C

L

C

L

C

C

P

L

P

P
P

(a) (b)

(c) (d)

A reasonable definition of tangency can be stated in terms of limits. IfQ is a point

on C different from P , then the line through P and Q is called a secant line to the

curve. This line rotates around P as Q moves along the curve. If L is a line through

P whose slope is the limit of the slopes of these secant lines PQ as Q approaches P

along C (Figure 2.4), then we will say that L is tangent to C at P .

Figure 2.4 Secant lines PQ approach

tangent line L as Q approaches P along

the curve C

y

x

P

y D f .x/

C

x0 x0 C h

Q

L

Since C is the graph of the function y D f .x/, then vertical lines can meet C only

once. Since P D .x0; f .x0//, a different point Q on the graph must have a different

x-coordinate, say x0Ch, where h ¤ 0. ThusQ D .x0Ch; f .x0Ch//, and the slope

of the line PQ is
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f .x0 C h/ � f .x0/

h
:

This expression is called the Newton quotient or difference quotient for f at x0.

Note that h can be positive or negative, depending on whether Q is to the right or left

of P .

D E F I N I T I O N

1

Nonvertical tangent lines

Suppose that the function f is continuous at x D x0 and that

lim
h!0

f .x0 C h/ � f .x0/

h
D m

exists. Then the straight line having slope m and passing through the point

P D .x0; f .x0// is called the tangent line (or simply the tangent) to the

graph of y D f .x/ at P . An equation of this tangent is

y D m.x � x0/C y0:

E X A M P L E 1
Find an equation of the tangent line to the curve y D x2 at the

point .1; 1/.

Solution Here f .x/ D x2, x0 D 1, and y0 D f .1/ D 1. The slope of the required

tangent is

m D lim
h!0

f .1C h/ � f .1/

h
D lim

h!0

.1C h/2 � 1

h

D lim
h!0

1C 2hC h
2
� 1

h

D lim
h!0

2hC h2

h
D lim

h!0
.2C h/ D 2:

Accordingly, the equation of the tangent line at .1; 1/ is y D 2.x�1/C1, or y D 2x�1.

See Figure 2.5.

y

x

y D x
2

.1; 1/

y D 2x � 1

Figure 2.5 The tangent to y D x2 at

.1; 1/

Definition 1 deals only with tangents that have finite slopes and are, therefore, not

vertical. It is also possible for the graph of a continuous function to have a vertical

tangent line.

E X A M P L E 2
Consider the graph of the function f .x/ D 3

p

x D x1=3, which

is shown in Figure 2.6. The graph is a smooth curve, and it seems

evident that the y-axis is tangent to this curve at the origin. Let us try to calculate the

limit of the Newton quotient for f at x D 0:

y

x

y D x1=3

Figure 2.6 The y-axis is tangent to

y D x1=3 at the origin

lim
h!0

f .0C h/ � f .0/

h
D lim

h!0

h1=3

h
D lim

h!0

1

h2=3
D1:

Although the limit does not exist, the slope of the secant line joining the origin to

another point Q on the curve approaches infinity as Q approaches the origin from

either side.
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(iii) The tangent is perpendicular to the line joining the centre of the circle to P:

L
P

C

Figure 2.2 L is tangent to C at P

Most curves do not have obvious centres, so (iii) is useless for characterizing tangents

to them. The curves in Figure 2.3 show that (i) and (ii) cannot be used to define tan-

gency either. In particular, the curve in Figure 2.3(d) is not “smooth” at P; so that

curve should not have any tangent line there. A tangent line should have the “same

direction” as the curve does at the point of tangency.

Figure 2.3

(a) L meets C only at P but is not

tangent to C

(b) L meets C at several points but is

tangent to C at P

(c) L is tangent to C at P but crosses C

at P

(d) Many lines meet C only at P but

none of them is tangent to C at P

y

x

y

x

y

x

y

x

C

L

C

L

C

C

P

L

P

P
P

(a) (b)

(c) (d)

A reasonable definition of tangency can be stated in terms of limits. IfQ is a point

on C different from P , then the line through P and Q is called a secant line to the

curve. This line rotates around P as Q moves along the curve. If L is a line through

P whose slope is the limit of the slopes of these secant lines PQ as Q approaches P

along C (Figure 2.4), then we will say that L is tangent to C at P .

Figure 2.4 Secant lines PQ approach

tangent line L as Q approaches P along

the curve C

y

x

P

y D f .x/

C

x0 x0 C h

Q

L

Since C is the graph of the function y D f .x/, then vertical lines can meet C only

once. Since P D .x0; f .x0//, a different point Q on the graph must have a different

x-coordinate, say x0Ch, where h ¤ 0. ThusQ D .x0Ch; f .x0Ch//, and the slope

of the line PQ is
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f .x0 C h/ � f .x0/

h
:

This expression is called the Newton quotient or difference quotient for f at x0.

Note that h can be positive or negative, depending on whether Q is to the right or left

of P .

D E F I N I T I O N

1

Nonvertical tangent lines

Suppose that the function f is continuous at x D x0 and that

lim
h!0

f .x0 C h/ � f .x0/

h
D m

exists. Then the straight line having slope m and passing through the point

P D .x0; f .x0// is called the tangent line (or simply the tangent) to the

graph of y D f .x/ at P . An equation of this tangent is

y D m.x � x0/C y0:

E X A M P L E 1
Find an equation of the tangent line to the curve y D x2 at the

point .1; 1/.

Solution Here f .x/ D x2, x0 D 1, and y0 D f .1/ D 1. The slope of the required

tangent is

m D lim
h!0

f .1C h/ � f .1/

h
D lim

h!0

.1C h/2 � 1

h

D lim
h!0

1C 2hC h
2
� 1

h

D lim
h!0

2hC h2

h
D lim

h!0
.2C h/ D 2:

Accordingly, the equation of the tangent line at .1; 1/ is y D 2.x�1/C1, or y D 2x�1.

See Figure 2.5.

y

x

y D x
2

.1; 1/

y D 2x � 1

Figure 2.5 The tangent to y D x2 at

.1; 1/

Definition 1 deals only with tangents that have finite slopes and are, therefore, not

vertical. It is also possible for the graph of a continuous function to have a vertical

tangent line.

E X A M P L E 2
Consider the graph of the function f .x/ D 3

p

x D x1=3, which

is shown in Figure 2.6. The graph is a smooth curve, and it seems

evident that the y-axis is tangent to this curve at the origin. Let us try to calculate the

limit of the Newton quotient for f at x D 0:

y

x

y D x1=3

Figure 2.6 The y-axis is tangent to

y D x1=3 at the origin

lim
h!0

f .0C h/ � f .0/

h
D lim

h!0

h1=3

h
D lim

h!0

1

h2=3
D1:

Although the limit does not exist, the slope of the secant line joining the origin to

another point Q on the curve approaches infinity as Q approaches the origin from

either side.
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E X A M P L E 3
On the other hand, the function f .x/ D x2=3, whose graph is

shown in Figure 2.7, does not have a tangent line at the origin be-

cause it is not “smooth” there. In this case the Newton quotient is

f .0C h/ � f .0/

h
D

h2=3

h
D

1

h1=3
;

which has no limit as h approaches zero. (The right limit is1; the left limit is �1.)

y

x

y D x2=3

Figure 2.7 This graph has no tangent at

the origin

We say this curve has a cusp at the origin. A cusp is an infinitely sharp point; if you

were travelling along the curve, you would have to stop and turn 180ı at the origin.

In the light of the two preceding examples, we extend the definition of tangent line to

allow for vertical tangents as follows:

D E F I N I T I O N

2

Vertical tangents

If f is continuous at P D .x0; y0/, where y0 D f .x0/, and if either

lim
h!0

f .x0 C h/ � f .x0/

h
D1 or lim

h!0

f .x0 C h/ � f .x0/

h
D �1;

then the vertical line x D x0 is tangent to the graph y D f .x/ at P . If the

limit of the Newton quotient fails to exist in any other way than by being1

or �1, the graph y D f .x/ has no tangent line at P .

E X A M P L E 4
Does the graph of y D jxj have a tangent line at x D 0?

Solution The Newton quotient here is

j0C hj � j0j

h
D

jhj

h
D sgn h D

�

1; if h > 0

�1; if h < 0:

Since sgnh has different right and left limits at 0 (namely, 1 and �1), the Newton quo-

tient has no limit as h! 0, so y D jxj has no tangent line at .0; 0/. (See Figure 2.8.)

The graph does not have a cusp at the origin, but it is kinked at that point; it suddenly

changes direction and is not smooth. Curves have tangents only at points where they

are smooth. The graphs of y D x2=3 and y D jxj have tangent lines everywhere except

at the origin, where they are not smooth.

y

x

y D jxj

Figure 2.8 y D jxj has no tangent at the

origin

D E F I N I T I O N

3

The slope of a curve

The slope of a curve C at a point P is the slope of the tangent line to C at P

if such a tangent line exists. In particular, the slope of the graph of y D f .x/

at the point x0 is

lim
h!0

f .x0 C h/ � f .x0/

h
:
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E X A M P L E 5
Find the slope of the curve y D x=.3x C 2/ at the point x D �2:

Solution If x D �2, then y D 1=2, so the required slope is

m D lim
h!0

�2C h

3.�2C h/C 2
�

1

2

h

D lim
h!0

�4C 2h � .�6C 3hC 2/

2.�6C 3hC 2/h

D lim
h!0

�h

2h.�4C 3h/
D lim

h!0

�1

2.�4C 3h/
D

1

8
:

Normals
If a curve C has a tangent line L at point P , then the straight line N through P

perpendicular to L is called the normal to C at P . If L is horizontal, then N is

vertical; if L is vertical, then N is horizontal. If L is neither horizontal nor vertical,

then, as shown in Section P.2, the slope of N is the negative reciprocal of the slope of

L; that is,

slope of the normal D
�1

slope of the tangent
:

E X A M P L E 6 Find an equation of the normal to y D x2 at .1; 1/.

Solution By Example 1, the tangent to y D x2 at .1; 1/ has slope 2. Hence, the

normal has slope �1=2, and its equation is

y D �
1

2
.x � 1/C 1 or y D �

x

2
C

3

2
:

E X A M P L E 7
Find equations of the straight lines that are tangent and normal to

the curve y D
p

x at the point .4; 2/.

Solution The slope of the tangent at .4; 2/ (Figure 2.9) is

m D lim
h!0

p

4C h � 2

h
D lim

h!0

.
p

4C h � 2/.
p

4C hC 2/

h.
p

4C hC 2/

D lim
h!0

4C h � 4

h.
p

4C hC 2/

D lim
h!0

1
p

4C hC 2
D

1

4
:

The tangent line has equation

y

x

y D
p

x

normal

tangent

y D 1C
x

4

y D 18 � 4x

.4; 2/

Figure 2.9 The tangent (blue) and normal

(green) to y D
p

x at .4; 2/

y D
1

4
.x � 4/C 2 or x � 4y C 4 D 0;

and the normal has slope �4 and, therefore, equation

y D �4.x � 4/C 2 or y D �4x C 18:
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E X A M P L E 3
On the other hand, the function f .x/ D x2=3, whose graph is

shown in Figure 2.7, does not have a tangent line at the origin be-

cause it is not “smooth” there. In this case the Newton quotient is

f .0C h/ � f .0/

h
D

h2=3

h
D

1

h1=3
;

which has no limit as h approaches zero. (The right limit is1; the left limit is �1.)

y

x

y D x2=3

Figure 2.7 This graph has no tangent at

the origin

We say this curve has a cusp at the origin. A cusp is an infinitely sharp point; if you

were travelling along the curve, you would have to stop and turn 180ı at the origin.

In the light of the two preceding examples, we extend the definition of tangent line to

allow for vertical tangents as follows:

D E F I N I T I O N

2

Vertical tangents

If f is continuous at P D .x0; y0/, where y0 D f .x0/, and if either

lim
h!0

f .x0 C h/ � f .x0/

h
D1 or lim

h!0

f .x0 C h/ � f .x0/

h
D �1;

then the vertical line x D x0 is tangent to the graph y D f .x/ at P . If the

limit of the Newton quotient fails to exist in any other way than by being1

or �1, the graph y D f .x/ has no tangent line at P .

E X A M P L E 4
Does the graph of y D jxj have a tangent line at x D 0?

Solution The Newton quotient here is

j0C hj � j0j

h
D

jhj

h
D sgn h D

�

1; if h > 0

�1; if h < 0:

Since sgnh has different right and left limits at 0 (namely, 1 and �1), the Newton quo-

tient has no limit as h! 0, so y D jxj has no tangent line at .0; 0/. (See Figure 2.8.)

The graph does not have a cusp at the origin, but it is kinked at that point; it suddenly

changes direction and is not smooth. Curves have tangents only at points where they

are smooth. The graphs of y D x2=3 and y D jxj have tangent lines everywhere except

at the origin, where they are not smooth.

y

x

y D jxj

Figure 2.8 y D jxj has no tangent at the

origin

D E F I N I T I O N

3

The slope of a curve

The slope of a curve C at a point P is the slope of the tangent line to C at P

if such a tangent line exists. In particular, the slope of the graph of y D f .x/

at the point x0 is

lim
h!0

f .x0 C h/ � f .x0/

h
:
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E X A M P L E 5
Find the slope of the curve y D x=.3x C 2/ at the point x D �2:

Solution If x D �2, then y D 1=2, so the required slope is

m D lim
h!0

�2C h

3.�2C h/C 2
�

1

2

h

D lim
h!0

�4C 2h � .�6C 3hC 2/

2.�6C 3hC 2/h

D lim
h!0

�h

2h.�4C 3h/
D lim

h!0

�1

2.�4C 3h/
D

1

8
:

Normals
If a curve C has a tangent line L at point P , then the straight line N through P

perpendicular to L is called the normal to C at P . If L is horizontal, then N is

vertical; if L is vertical, then N is horizontal. If L is neither horizontal nor vertical,

then, as shown in Section P.2, the slope of N is the negative reciprocal of the slope of

L; that is,

slope of the normal D
�1

slope of the tangent
:

E X A M P L E 6 Find an equation of the normal to y D x2 at .1; 1/.

Solution By Example 1, the tangent to y D x2 at .1; 1/ has slope 2. Hence, the

normal has slope �1=2, and its equation is

y D �
1

2
.x � 1/C 1 or y D �

x

2
C

3

2
:

E X A M P L E 7
Find equations of the straight lines that are tangent and normal to

the curve y D
p

x at the point .4; 2/.

Solution The slope of the tangent at .4; 2/ (Figure 2.9) is

m D lim
h!0

p

4C h � 2

h
D lim

h!0

.
p

4C h � 2/.
p

4C hC 2/

h.
p

4C hC 2/

D lim
h!0

4C h � 4

h.
p

4C hC 2/

D lim
h!0

1
p

4C hC 2
D

1

4
:

The tangent line has equation

y

x

y D
p

x

normal

tangent

y D 1C
x

4

y D 18 � 4x

.4; 2/

Figure 2.9 The tangent (blue) and normal

(green) to y D
p

x at .4; 2/

y D
1

4
.x � 4/C 2 or x � 4y C 4 D 0;

and the normal has slope �4 and, therefore, equation

y D �4.x � 4/C 2 or y D �4x C 18:
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E X E R C I S E S 2.1

In Exercises 1–12, find an equation of the straight line tangent to

the given curve at the point indicated.

1. y D 3x � 1 at .1; 2/ 2. y D x=2 at .a; a=2/

3. y D 2x2
� 5 at .2; 3/ 4. y D 6 � x � x2 at x D �2

5. y D x3
C 8 at x D �2 6. y D

1

x2
C 1

at .0; 1/

7. y D
p

x C 1 at x D 3 8. y D
1
p

x
at x D 9

9. y D
2x

x C 2
at x D 2 10. y D

p

5� x2 at x D 1

11. y D x2 at x D x0 12. y D
1

x
at

�

a;
1

a

�

Do the graphs of the functions f in Exercises 13–17 have tangent

lines at the given points? If yes, what is the tangent line?

13. f .x/ D
p

jxj at x D 0 14. f .x/ D .x � 1/4=3 at x D 1

15. f .x/ D .x C 2/3=5 at x D �2

16. f .x/ D jx2
� 1j at x D 1

17. f .x/ D

�p

x if x � 0

�

p

�x if x < 0
at x D 0

18. Find the slope of the curve y D x2
� 1 at the point x D x0.

What is the equation of the tangent line to y D x2
� 1 that has

slope �3?

19. (a) Find the slope of y D x3 at the point x D a.

(b) Find the equations of the straight lines having slope 3 that

are tangent to y D x3.

20. Find all points on the curve y D x3
� 3x where the tangent

line is parallel to the x-axis.

21. Find all points on the curve y D x3
� xC 1 where the tangent

line is parallel to the line y D 2x C 5.

22. Find all points on the curve y D 1=x where the tangent line is

perpendicular to the line y D 4x � 3.

23. For what value of the constant k is the line x C y D k normal

to the curve y D x2?

24. For what value of the constant k do the curves y D kx2 and

y D k.x � 2/2 intersect at right angles? Hint: Where do the

curves intersect? What are their slopes there?

Use a graphics utility to plot the following curves. Where does the

curve have a horizontal tangent? Does the curve fail to have a

tangent line anywhere?

G 25. y D x3
.5 � x/

2 G 26. y D 2x3
� 3x

2
� 12x C 1

G 27. y D jx2
� 1j � x G 28. y D jx C 1j � jx � 1j

G 29. y D .x2
� 1/

1=3 G 30. y D ..x2
� 1/

2
/
1=3

31.A If line L is tangent to curve C at point P , then the smaller

angle between L and the secant line PQ joining P to another

point Q on C approaches 0 as Q approaches P along C . Is

the converse true: if the angle between PQ and line L (which

passes through P ) approaches 0, must L be tangent to C ?

32.I Let P.x/ be a polynomial. If a is a real number, then P.x/

can be expressed in the form

P.x/ D a0 C a1.x � a/C a2.x � a/
2
C � � � C an.x � a/

n

for some n � 0. If `.x/ D m.x � a/C b, show that the

straight line y D `.x/ is tangent to the graph of y D P.x/ at

x D a provided P.x/� `.x/ D .x � a/2Q.x/, where Q.x/ is

a polynomial.

2.2 The Derivative
A straight line has the property that its slope is the same at all points. For any other

graph, however, the slope may vary from point to point. Thus, the slope of the graph

of y D f .x/ at the point x is itself a function of x. At any point x where the graph

has a finite slope, we say that f is differentiable, and we call the slope the derivative

of f: The derivative is therefore the limit of the Newton quotient.

D E F I N I T I O N

4

The derivative of a function f is another function f 0 defined by

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

at all points x for which the limit exists (i.e., is a finite real number). If f 0.x/

exists, we say that f is differentiable at x.

The domain of the derivative f 0 (read “f prime”) is the set of numbers x in the domain

of f where the graph of f has a nonvertical tangent line, and the value f 0.x0/ of f 0

at such a point x0 is the slope of the tangent line to y D f .x/ there. Thus, the equation

of the tangent line to y D f .x/ at .x0; f .x0// is
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y D f .x0/C f
0
.x0/.x � x0/:

The domain D.f 0/ of f 0 may be smaller than the domain D.f / of f because it

contains only those points in D.f / at which f is differentiable. Values of x in D.f /

where f is not differentiable and that are not endpoints of D.f / are singular points

of f:

Remark The value of the derivative of f at a particular point x0 can be expressed as

a limit in either of two ways:

f
0
.x0/ D lim

h!0

f .x0 C h/ � f .x0/

h
D lim

x!x0

f .x/� f .x0/

x � x0

:

In the second limit x0Ch is replaced by x, so that h D x�x0 and h! 0 is equivalent

to x ! x0.

The process of calculating the derivative f 0 of a given function f is called differ-

entiation. The graph of f 0 can often be sketched directly from that of f by visualizing

slopes, a procedure called graphical differentiation. In Figure 2.10 the graphs of f 0

and g0 were obtained by measuring the slopes at the corresponding points in the graphs

of f and g lying above them. The height of the graph y D f 0.x/ at x is the slope of

the graph of y D f .x/ at x. Note that �1 and 1 are singular points of f: Although

f .�1/ and f .1/ are defined, f 0.�1/ and f 0.1/ are not defined; the graph of f has no

tangent at �1 or at 1.

Figure 2.10 Graphical differentiation

y

x

y

x

y

x

y

x

.1; 1/

.1; 1/

y D g.x/

y D f .x/

y D g0.x/

y D f
0
.x/

.�1;�1/

.1;�1/

.�1; 1/

.�1;�1/

slope m

height m

A function is differentiable on a set S if it is differentiable at every point x in S .

Typically, the functions we encounter are defined on intervals or unions of intervals. If

f is defined on a closed interval Œa; b�, Definition 4 does not allow for the existence

of a derivative at the endpoints x D a or x D b. (Why?) As we did for continuity in

Section 1.4, we extend the definition to allow for a right derivative at x D a and a left

derivative at x D b:

f
0

C.a/ D lim
h!0C

f .aC h/ � f .a/

h
; f

0
�.b/ D lim

h!0�

f .b C h/ � f .b/

h
:

We now say that f is differentiable on Œa; b� if f 0.x/ exists for all x in .a; b/ and

f 0
C.a/ and f 0

�.b/ both exist.
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E X E R C I S E S 2.1

In Exercises 1–12, find an equation of the straight line tangent to

the given curve at the point indicated.

1. y D 3x � 1 at .1; 2/ 2. y D x=2 at .a; a=2/

3. y D 2x2
� 5 at .2; 3/ 4. y D 6 � x � x2 at x D �2

5. y D x3
C 8 at x D �2 6. y D

1

x2
C 1

at .0; 1/

7. y D
p

x C 1 at x D 3 8. y D
1
p

x
at x D 9

9. y D
2x

x C 2
at x D 2 10. y D

p

5� x2 at x D 1

11. y D x2 at x D x0 12. y D
1

x
at

�

a;
1

a

�

Do the graphs of the functions f in Exercises 13–17 have tangent

lines at the given points? If yes, what is the tangent line?

13. f .x/ D
p

jxj at x D 0 14. f .x/ D .x � 1/4=3 at x D 1

15. f .x/ D .x C 2/3=5 at x D �2

16. f .x/ D jx2
� 1j at x D 1

17. f .x/ D

�p

x if x � 0

�

p

�x if x < 0
at x D 0

18. Find the slope of the curve y D x2
� 1 at the point x D x0.

What is the equation of the tangent line to y D x2
� 1 that has

slope �3?

19. (a) Find the slope of y D x3 at the point x D a.

(b) Find the equations of the straight lines having slope 3 that

are tangent to y D x3.

20. Find all points on the curve y D x3
� 3x where the tangent

line is parallel to the x-axis.

21. Find all points on the curve y D x3
� xC 1 where the tangent

line is parallel to the line y D 2x C 5.

22. Find all points on the curve y D 1=x where the tangent line is

perpendicular to the line y D 4x � 3.

23. For what value of the constant k is the line x C y D k normal

to the curve y D x2?

24. For what value of the constant k do the curves y D kx2 and

y D k.x � 2/2 intersect at right angles? Hint: Where do the

curves intersect? What are their slopes there?

Use a graphics utility to plot the following curves. Where does the

curve have a horizontal tangent? Does the curve fail to have a

tangent line anywhere?

G 25. y D x3
.5 � x/

2 G 26. y D 2x3
� 3x

2
� 12x C 1

G 27. y D jx2
� 1j � x G 28. y D jx C 1j � jx � 1j

G 29. y D .x2
� 1/

1=3 G 30. y D ..x2
� 1/

2
/
1=3

31.A If line L is tangent to curve C at point P , then the smaller

angle between L and the secant line PQ joining P to another

point Q on C approaches 0 as Q approaches P along C . Is

the converse true: if the angle between PQ and line L (which

passes through P ) approaches 0, must L be tangent to C ?

32.I Let P.x/ be a polynomial. If a is a real number, then P.x/

can be expressed in the form

P.x/ D a0 C a1.x � a/C a2.x � a/
2
C � � � C an.x � a/

n

for some n � 0. If `.x/ D m.x � a/C b, show that the

straight line y D `.x/ is tangent to the graph of y D P.x/ at

x D a provided P.x/� `.x/ D .x � a/2Q.x/, where Q.x/ is

a polynomial.

2.2 The Derivative
A straight line has the property that its slope is the same at all points. For any other

graph, however, the slope may vary from point to point. Thus, the slope of the graph

of y D f .x/ at the point x is itself a function of x. At any point x where the graph

has a finite slope, we say that f is differentiable, and we call the slope the derivative

of f: The derivative is therefore the limit of the Newton quotient.

D E F I N I T I O N

4

The derivative of a function f is another function f 0 defined by

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

at all points x for which the limit exists (i.e., is a finite real number). If f 0.x/

exists, we say that f is differentiable at x.

The domain of the derivative f 0 (read “f prime”) is the set of numbers x in the domain

of f where the graph of f has a nonvertical tangent line, and the value f 0.x0/ of f 0

at such a point x0 is the slope of the tangent line to y D f .x/ there. Thus, the equation

of the tangent line to y D f .x/ at .x0; f .x0// is
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y D f .x0/C f
0
.x0/.x � x0/:

The domain D.f 0/ of f 0 may be smaller than the domain D.f / of f because it

contains only those points in D.f / at which f is differentiable. Values of x in D.f /

where f is not differentiable and that are not endpoints of D.f / are singular points

of f:

Remark The value of the derivative of f at a particular point x0 can be expressed as

a limit in either of two ways:

f
0
.x0/ D lim

h!0

f .x0 C h/ � f .x0/

h
D lim

x!x0

f .x/� f .x0/

x � x0

:

In the second limit x0Ch is replaced by x, so that h D x�x0 and h! 0 is equivalent

to x ! x0.

The process of calculating the derivative f 0 of a given function f is called differ-

entiation. The graph of f 0 can often be sketched directly from that of f by visualizing

slopes, a procedure called graphical differentiation. In Figure 2.10 the graphs of f 0

and g0 were obtained by measuring the slopes at the corresponding points in the graphs

of f and g lying above them. The height of the graph y D f 0.x/ at x is the slope of

the graph of y D f .x/ at x. Note that �1 and 1 are singular points of f: Although

f .�1/ and f .1/ are defined, f 0.�1/ and f 0.1/ are not defined; the graph of f has no

tangent at �1 or at 1.

Figure 2.10 Graphical differentiation

y

x

y

x

y

x

y

x

.1; 1/

.1; 1/

y D g.x/

y D f .x/

y D g0.x/

y D f
0
.x/

.�1;�1/

.1;�1/

.�1; 1/

.�1;�1/

slope m

height m

A function is differentiable on a set S if it is differentiable at every point x in S .

Typically, the functions we encounter are defined on intervals or unions of intervals. If

f is defined on a closed interval Œa; b�, Definition 4 does not allow for the existence

of a derivative at the endpoints x D a or x D b. (Why?) As we did for continuity in

Section 1.4, we extend the definition to allow for a right derivative at x D a and a left

derivative at x D b:

f
0

C.a/ D lim
h!0C

f .aC h/ � f .a/

h
; f

0
�.b/ D lim

h!0�

f .b C h/ � f .b/

h
:

We now say that f is differentiable on Œa; b� if f 0.x/ exists for all x in .a; b/ and

f 0
C.a/ and f 0

�.b/ both exist.
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Some Important Derivatives
We now give several examples of the calculation of derivatives algebraically from the

definition of derivative. Some of these are the basic building blocks from which more

complicated derivatives can be calculated later. They are collected in Table 1 later in

this section and should be memorized.

E X A M P L E 1
(The derivative of a linear function) Show that if f .x/ D axC

b, then f 0.x/ D a.

Solution The result is apparent from the graph of f (Figure 2.11), but we will do the

calculation using the definition:

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

a.x C h/C b � .ax C b/

h

D lim
h!0

ah

h
D a:

y

x

y

x

y D f .x/ D ax C b

y D f 0.x/ D a

Figure 2.11 The derivative of the linear

function f .x/ D ax C b is the constant

function f 0.x/ D a

An important special case of Example 1 says that the derivative of a constant function

is the zero function:

If g.x/ D c (constant), then g0.x/ D 0.

E X A M P L E 2
Use the definition of the derivative to calculate the derivatives of

the functions

(a) f .x/ D x2, (b) g.x/ D
1

x
, and (c) k.x/ D

p

x.

Solution Figures 2.12–2.14 show the graphs of these functions and their derivatives.

y

x

y

x

y D f 0.x/ D 2x

y D f .x/ D x
2

Figure 2.12 The derivative of

f .x/ D x2 is f 0.x/ D 2x

y

x

y

x

y D g0.x/ D �
1

x2

y D g.x/ D
1

x

Figure 2.13 The derivative of

g.x/ D 1=x is g0.x/ D �1=x2

y

x
y

x

y D k0.x/ D
1

2
p

x

y D k.x/ D
p

x

Figure 2.14 The derivative of

k.x/ D
p

x is k 0.x/ D 1=.2
p

x/
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(a) f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

.x C h/2 � x2

h

D lim
h!0

2hx C h2

h
D lim

h!0
.2x C h/ D 2x:

(b) g
0
.x/ D lim

h!0

g.x C h/ � g.x/

h

D lim
h!0

1

x C h
�

1

x

h

D lim
h!0

x � .x C h/

h.x C h/x
D lim

h!0
�

1

.x C h/x
D �

1

x2
:

(c) k
0
.x/ D lim

h!0

k.x C h/ � k.x/

h

D lim
h!0

p

x C h �
p

x

h

D lim
h!0

p

x C h �
p

x

h
�

p

x C hC
p

x
p

x C hC
p

x

D lim
h!0

x C h � x

h.
p

x C hC
p

x/
D lim

h!0

1
p

x C hC
p

x
D

1

2
p

x
:

Note that k is not differentiable at the endpoint x D 0.

The three derivative formulas calculated in Example 2 are special cases of the following

General Power Rule:

If f .x/ D xr , then f 0.x/ D r xr�1.

This formula, which we will verify in Section 3.3, is valid for all values of r and x for

which xr�1 makes sense as a real number.

E X A M P L E 3
(Differentiating powers)

If f .x/ D x5=3, then f 0.x/ D
5

3
x

.5=3/�1
D

5

3
x

2=3 for all real x.

If g.t/ D
1
p

t
D t

�1=2, then g0
.t/ D �

1

2
t
�.1=2/�1

D �

1

2
t
�3=2 for t > 0.

Eventually, we will prove all appropriate cases of the General Power Rule. For the time

being, here is a proof of the case r D n, a positive integer, based on the factoring of a

difference of nth powers:

a
n
� b

n
D .a � b/.a

n�1
C a

n�2
b C a

n�3
b

2
C � � � C ab

n�2
C b

n�1
/:

(Check that this formula is correct by multiplying the two factors on the right-hand

side.) If f .x/ D xn, a D x C h, and b D x, then a � b D h and

f
0
.x/ D lim

h!0

.x C h/n � xn

h

D lim
h!0

h

n terms
‚ ‡ ƒ

Œ.x C h/
n�1
C .x C h/

n�2
x C .x C h/

n�3
x

2
C � � � C x

n�1
�

h

D nx
n�1

:
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Some Important Derivatives
We now give several examples of the calculation of derivatives algebraically from the

definition of derivative. Some of these are the basic building blocks from which more

complicated derivatives can be calculated later. They are collected in Table 1 later in

this section and should be memorized.

E X A M P L E 1
(The derivative of a linear function) Show that if f .x/ D axC

b, then f 0.x/ D a.

Solution The result is apparent from the graph of f (Figure 2.11), but we will do the

calculation using the definition:

f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

a.x C h/C b � .ax C b/

h

D lim
h!0

ah

h
D a:

y

x

y

x

y D f .x/ D ax C b

y D f 0.x/ D a

Figure 2.11 The derivative of the linear

function f .x/ D ax C b is the constant

function f 0.x/ D a

An important special case of Example 1 says that the derivative of a constant function

is the zero function:

If g.x/ D c (constant), then g0.x/ D 0.

E X A M P L E 2
Use the definition of the derivative to calculate the derivatives of

the functions

(a) f .x/ D x2, (b) g.x/ D
1

x
, and (c) k.x/ D

p

x.

Solution Figures 2.12–2.14 show the graphs of these functions and their derivatives.

y

x

y

x

y D f 0.x/ D 2x

y D f .x/ D x
2

Figure 2.12 The derivative of

f .x/ D x2 is f 0.x/ D 2x

y

x

y

x

y D g0.x/ D �
1

x2

y D g.x/ D
1

x

Figure 2.13 The derivative of

g.x/ D 1=x is g0.x/ D �1=x2

y

x
y

x

y D k0.x/ D
1

2
p

x

y D k.x/ D
p

x

Figure 2.14 The derivative of

k.x/ D
p

x is k 0.x/ D 1=.2
p

x/
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(a) f
0
.x/ D lim

h!0

f .x C h/ � f .x/

h

D lim
h!0

.x C h/2 � x2

h

D lim
h!0

2hx C h2

h
D lim

h!0
.2x C h/ D 2x:

(b) g
0
.x/ D lim

h!0

g.x C h/ � g.x/

h

D lim
h!0

1

x C h
�

1

x

h

D lim
h!0

x � .x C h/

h.x C h/x
D lim

h!0
�

1

.x C h/x
D �

1

x2
:

(c) k
0
.x/ D lim

h!0

k.x C h/ � k.x/

h

D lim
h!0

p

x C h �
p

x

h

D lim
h!0

p

x C h �
p

x

h
�

p

x C hC
p

x
p

x C hC
p

x

D lim
h!0

x C h � x

h.
p

x C hC
p

x/
D lim

h!0

1
p

x C hC
p

x
D

1

2
p

x
:

Note that k is not differentiable at the endpoint x D 0.

The three derivative formulas calculated in Example 2 are special cases of the following

General Power Rule:

If f .x/ D xr , then f 0.x/ D r xr�1.

This formula, which we will verify in Section 3.3, is valid for all values of r and x for

which xr�1 makes sense as a real number.

E X A M P L E 3
(Differentiating powers)

If f .x/ D x5=3, then f 0.x/ D
5

3
x

.5=3/�1
D

5

3
x

2=3 for all real x.

If g.t/ D
1
p

t
D t

�1=2, then g0
.t/ D �

1

2
t
�.1=2/�1

D �

1

2
t
�3=2 for t > 0.

Eventually, we will prove all appropriate cases of the General Power Rule. For the time

being, here is a proof of the case r D n, a positive integer, based on the factoring of a

difference of nth powers:

a
n
� b

n
D .a � b/.a

n�1
C a

n�2
b C a

n�3
b

2
C � � � C ab

n�2
C b

n�1
/:

(Check that this formula is correct by multiplying the two factors on the right-hand

side.) If f .x/ D xn, a D x C h, and b D x, then a � b D h and

f
0
.x/ D lim

h!0

.x C h/n � xn

h

D lim
h!0

h

n terms
‚ ‡ ƒ

Œ.x C h/
n�1
C .x C h/

n�2
x C .x C h/

n�3
x

2
C � � � C x

n�1
�

h

D nx
n�1

:
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An alternative proof based on the product rule and mathematical induction will be

given in Section 2.3. The factorization method used above can also be used to demon-

strate the General Power Rule for negative integers, r D �n, and reciprocals of inte-

gers, r D 1=n. (See Exercises 52 and 54 at the end of this section.)

E X A M P L E 4
(Differentiating the absolute value function) Verify that:

If f .x/ D jxj, then f
0
.x/ D

x

jxj
D sgn x.

Solution We have

f .x/ D

�

x; if x � 0

�x; if x < 0
:

Thus, from Example 1 above, f 0.x/ D 1 if x > 0 and f 0.x/ D �1 if x < 0. Also,

Example 4 of Section 2.1 shows that f is not differentiable at x D 0, which is a

singular point of f . Therefore (see Figure 2.15),

f
0
.x/ D

�

1; if x > 0

�1; if x < 0
D

x

jxj
D sgn x:

Table 1 lists the elementary derivatives calculated above. Beginning in Section 2.3

we will develop general rules for calculating the derivatives of functions obtained by

combining simpler functions. Thereafter, we will seldom have to revert to the definition

of the derivative and to the calculation of limits to evaluate derivatives. It is important,

therefore, to remember the derivatives of some elementary functions. Memorize those

in Table 1.

y

x

y

x

y D f .x/ D jxj

y D f 0.x/ D sgn x

�1

1

Figure 2.15 The derivative of jxj is

sgnx D x=jxj

Table 1. Some elementary functions and their derivatives

f .x/ f 0.x/

c (constant) 0

x 1

x2 2x

1

x
�

1

x2
.x ¤ 0/

p

x
1

2
p

x
.x > 0/

xr r xr�1 .xr�1 real/

jxj
x

jxj
D sgn x

Leibniz Notation
Because functions can be written in different ways, it is useful to have more than one

notation for derivatives. If y D f .x/, we can use the dependent variable y to represent

the function, and we can denote the derivative of the function with respect to x in any

of the following ways:

Dxy D y
0
D

dy

dx
D

d

dx
f .x/ D f

0
.x/ D Dxf .x/ D Df .x/:
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(In the forms using “Dx ,” we can omit the subscript x if the variable of differentiation

is obvious.) Often the most convenient way of referring to the derivative of a function

given explicitly as an expression in the variable x is to write d
dx

in front of that expres-

sion. The symbol d
dx

is a differential operator and should be read “the derivative with

respect to x of : : : ” For example,

d

dx
x

2
D 2x (the derivative with respect to x of x2 is 2x)

d

dx

p

x D
1

2
p

x

d

dt
t
100
D 100 t

99

if y D u3
; then

dy

du
D 3u

2
:

The value of the derivative of a function at a particular number x0 in its domain

Do not confuse the expressions

d

dx
f .x/ and

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

ˇ

xDx0

:

The first expression represents a

function, f 0.x/. The second

represents a number, f 0.x0/.

can also be expressed in several ways:

Dxy

ˇ

ˇ

ˇ

ˇ

xDx0

D y
0
ˇ

ˇ

ˇ

ˇ

xDx0

D

dy

dx

ˇ

ˇ

ˇ

ˇ

xDx0

D

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

xDx0

D f
0
.x0/ D Dxf .x0/:

The symbol

ˇ

ˇ

ˇ

ˇ

xDx0

is called an evaluation symbol. It signifies that the expression

preceding it should be evaluated at x D x0. Thus,

d

dx
x

4

ˇ

ˇ

ˇ

ˇ

xD�1

D 4x
3

ˇ

ˇ

ˇ

ˇ

xD�1

D 4.�1/
3
D �4:

Here is another example in which a derivative is computed from the definition, this

time for a somewhat more complicated function.

E X A M P L E 5 Use the definition of derivative to calculate
d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

.

Solution We could calculate
d

dx

�

x

x2
C 1

�

and then substitute x D 2, but it is

easier to put x D 2 in the expression for the Newton quotient before taking the limit:

d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

D lim
h!0

2C h

.2C h/2 C 1
�

2

22
C 1

h

D lim
h!0

2C h

5C 4hC h2
�

2

5

h

D lim
h!0

5.2C h/ � 2.5C 4hC h2/

5.5C 4hC h2/h

D lim
h!0

�3h � 2h2

5.5C 4hC h2/h

D lim
h!0

�3 � 2h

5.5C 4hC h2/
D �

3

25
:

The notations dy=dx and d
dx
f .x/ are called Leibniz notations for the derivative, after

Gottfried Wilhelm Leibniz (1646–1716), one of the creators of calculus, who used such

notations. The main ideas of calculus were developed independently by Leibniz and

Isaac Newton (1642–1727); Newton used notations similar to the prime .y 0/ notations

we use here.
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An alternative proof based on the product rule and mathematical induction will be

given in Section 2.3. The factorization method used above can also be used to demon-

strate the General Power Rule for negative integers, r D �n, and reciprocals of inte-

gers, r D 1=n. (See Exercises 52 and 54 at the end of this section.)

E X A M P L E 4
(Differentiating the absolute value function) Verify that:

If f .x/ D jxj, then f
0
.x/ D

x

jxj
D sgn x.

Solution We have

f .x/ D

�

x; if x � 0

�x; if x < 0
:

Thus, from Example 1 above, f 0.x/ D 1 if x > 0 and f 0.x/ D �1 if x < 0. Also,

Example 4 of Section 2.1 shows that f is not differentiable at x D 0, which is a

singular point of f . Therefore (see Figure 2.15),

f
0
.x/ D

�

1; if x > 0

�1; if x < 0
D

x

jxj
D sgn x:

Table 1 lists the elementary derivatives calculated above. Beginning in Section 2.3

we will develop general rules for calculating the derivatives of functions obtained by

combining simpler functions. Thereafter, we will seldom have to revert to the definition

of the derivative and to the calculation of limits to evaluate derivatives. It is important,

therefore, to remember the derivatives of some elementary functions. Memorize those

in Table 1.

y

x

y

x

y D f .x/ D jxj

y D f 0.x/ D sgn x

�1

1

Figure 2.15 The derivative of jxj is

sgnx D x=jxj

Table 1. Some elementary functions and their derivatives

f .x/ f 0.x/

c (constant) 0

x 1

x2 2x

1

x
�

1

x2
.x ¤ 0/

p

x
1

2
p

x
.x > 0/

xr r xr�1 .xr�1 real/

jxj
x

jxj
D sgn x

Leibniz Notation
Because functions can be written in different ways, it is useful to have more than one

notation for derivatives. If y D f .x/, we can use the dependent variable y to represent

the function, and we can denote the derivative of the function with respect to x in any

of the following ways:

Dxy D y
0
D

dy

dx
D

d

dx
f .x/ D f

0
.x/ D Dxf .x/ D Df .x/:
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(In the forms using “Dx ,” we can omit the subscript x if the variable of differentiation

is obvious.) Often the most convenient way of referring to the derivative of a function

given explicitly as an expression in the variable x is to write d
dx

in front of that expres-

sion. The symbol d
dx

is a differential operator and should be read “the derivative with

respect to x of : : : ” For example,

d

dx
x

2
D 2x (the derivative with respect to x of x2 is 2x)

d

dx

p

x D
1

2
p

x

d

dt
t
100
D 100 t

99

if y D u3
; then

dy

du
D 3u

2
:

The value of the derivative of a function at a particular number x0 in its domain

Do not confuse the expressions

d

dx
f .x/ and

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

ˇ

xDx0

:

The first expression represents a

function, f 0.x/. The second

represents a number, f 0.x0/.

can also be expressed in several ways:

Dxy

ˇ

ˇ

ˇ

ˇ

xDx0

D y
0
ˇ

ˇ

ˇ

ˇ

xDx0

D

dy

dx

ˇ

ˇ

ˇ

ˇ

xDx0

D

d

dx
f .x/

ˇ

ˇ

ˇ

ˇ

xDx0

D f
0
.x0/ D Dxf .x0/:

The symbol

ˇ

ˇ

ˇ

ˇ

xDx0

is called an evaluation symbol. It signifies that the expression

preceding it should be evaluated at x D x0. Thus,

d

dx
x

4

ˇ

ˇ

ˇ

ˇ

xD�1

D 4x
3

ˇ

ˇ

ˇ

ˇ

xD�1

D 4.�1/
3
D �4:

Here is another example in which a derivative is computed from the definition, this

time for a somewhat more complicated function.

E X A M P L E 5 Use the definition of derivative to calculate
d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

.

Solution We could calculate
d

dx

�

x

x2
C 1

�

and then substitute x D 2, but it is

easier to put x D 2 in the expression for the Newton quotient before taking the limit:

d

dx

�

x

x2
C 1

�
ˇ

ˇ

ˇ

ˇ

xD2

D lim
h!0

2C h

.2C h/2 C 1
�

2

22
C 1

h

D lim
h!0

2C h

5C 4hC h2
�

2

5

h

D lim
h!0

5.2C h/ � 2.5C 4hC h2/

5.5C 4hC h2/h

D lim
h!0

�3h � 2h2

5.5C 4hC h2/h

D lim
h!0

�3 � 2h

5.5C 4hC h2/
D �

3

25
:

The notations dy=dx and d
dx
f .x/ are called Leibniz notations for the derivative, after

Gottfried Wilhelm Leibniz (1646–1716), one of the creators of calculus, who used such

notations. The main ideas of calculus were developed independently by Leibniz and

Isaac Newton (1642–1727); Newton used notations similar to the prime .y 0/ notations

we use here.
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The Leibniz notation is suggested by the definition of derivative. The Newton

quotient Œf .x C h/ � f .x/�=h, whose limit we take to find the derivative dy=dx, can

be written in the form �y=�x, where �y D f .x C h/ � f .x/ is the increment in y,

and �x D .x C h/ � x D h is the corresponding increment in x as we pass from the

point .x; f .x// to the point .x C h; f .x C h// on the graph of f: (See Figure 2.16.)

� is the uppercase Greek letter Delta. Using symbols:

dy

dx
D lim

�x!0

�y

�x
:

Figure 2.16
dy

dx
D lim

�x!0

�y

�x

y

xx x C h

�x D h

slope
dy

dx

slope
�y

�x

y D f .x/

�y

Differentials
The Newton quotient �y=�x is actually the quotient of two quantities, �y and �x.

It is not at all clear, however, that the derivative dy=dx, the limit of �y=�x as �x

approaches zero, can be regarded as a quotient. If y is a continuous function of x, then

�y approaches zero when �x approaches zero, so dy=dx appears to be the meaning-

less quantity 0=0. Nevertheless, it is sometimes useful to be able to refer to quantities

dy and dx in such a way that their quotient is the derivative dy=dx. We can justify

this by regarding dx as a new independent variable (called the differential of x) and

defining a new dependent variable dy (the differential of y) as a function of x and

dx by

dy D
dy

dx
dx D f

0
.x/ dx:

For example, if y D x2, we can write dy D 2x dx to mean the same thing as

dy=dx D 2x. Similarly, if f .x/ D 1=x, we can write df .x/ D �.1=x2
/ dx as

the equivalent differential form of the assertion that .d=dx/f .x/ D f 0.x/ D �1=x2.

This differential notation is useful in applications (see Sections 2.7 and 12.6), and

especially for the interpretation and manipulation of integrals beginning in Chapter 5.

Note that, defined as above, differentials are merely variables that may or may not

be small in absolute value. The differentials dy and dx were originally regarded (by

Leibniz and his successors) as “infinitesimals” (infinitely small but nonzero) quantities

whose quotient dy=dx gave the slope of the tangent line (a secant line meeting the

graph of y D f .x/ at two points infinitely close together). It can be shown that such

“infinitesimal” quantities cannot exist (as real numbers). It is possible to extend the

number system to contain infinitesimals and use these to develop calculus, but we will

not consider this approach here.
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Derivatives Have the Intermediate-Value Property
Is a function f defined on an interval I necessarily the derivative of some other func-

tion defined on I ? The answer is no; some functions are derivatives and some are not.

Although a derivative need not be a continuous function (see Exercise 28 in Section

2.8), it must, like a continuous function, have the intermediate-value property: on an

interval Œa; b�, a derivative f 0.x/ takes on every value between f 0.a/ and f 0.b/. (See

Exercise 29 in Section 2.8 for a proof of this fact.) An everywhere-defined step func-

tion such as the Heaviside function H.x/ considered in Example 1 in Section 1.4 (see

Figure 2.17) does not have this property on, say, the interval Œ�1; 1�, so cannot be the

derivative of a function on that interval. This argument does not apply to the signum

y

x

1

y D 1

y D 0

y D H.x/

Figure 2.17 This function is not a

derivative on Œ�1; 1�; it does not have the

intermediate-value property.

function, which is the derivative of the absolute value function on any interval where

it is defined. (See Example 4.) Such an interval cannot contain the origin, as sgn .x/ is

not defined at x D 0.

If g.x/ is continuous on an interval I , then g.x/ D f 0.x/ for some function f

that is differentiable on I . We will discuss this fact further in Chapter 5 and prove it in

Appendix IV.

E X E R C I S E S 2.2

Make rough sketches of the graphs of the derivatives of the

functions in Exercises 1–4.

1. The function f graphed in Figure 2.18(a).

2. The function g graphed in Figure 2.18(b).

3. The function h graphed in Figure 2.18(c).

4. The function k graphed in Figure 2.18(d).

5. Where is the function f graphed in Figure 2.18(a)

differentiable?

6. Where is the function g graphed in Figure 2.18(b)

differentiable?

y

x

y

x

y

x

y

x

(a) (b)

(d)(c)

y D g.x/

y D k.x/y D h.x/

y D f .x/

Figure 2.18

Use a graphics utility with differentiation capabilities to plot the

graphs of the following functions and their derivatives. Observe

the relationships between the graph of y and that of y 0 in each

case. What features of the graph of y can you infer from the graph

of y 0?

G 7. y D 3x � x2
� 1 G 8. y D x3

� 3x
2
C 2x C 1

G 9. y D jx3
� xj G 10. y D jx2

� 1j � jx
2
� 4j

In Exercises 11–24, (a) calculate the derivative of the given

function directly from the definition of derivative, and (b) express

the result of (a) using differentials.

11. y D x2
� 3x 12. f .x/ D 1C 4x � 5x2

13. f .x/ D x3 14. s D
1

3C 4t

15. g.x/ D
2 � x

2C x
16. y D

1

3
x

3
� x

17. F.t/ D
p

2t C 1 18. f .x/ D
3

4

p

2 � x

19. y D x C
1

x
20. z D

s

1C s

21. F.x/ D
1

p

1C x2
22. y D

1

x2

23. y D
1

p

1C x
24. f .t/ D

t2 � 3

t2 C 3

25. How should the function f .x/ D x sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

26. How should the function g.x/ D x2sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

27. Where does h.x/ D jx2
C 3x C 2j fail to be differentiable?

C 28. Using a calculator, find the slope of the secant line to

y D x3
� 2x passing through the points corresponding to

x D 1 and x D 1C�x, for several values of �x of

decreasing size, say �x D ˙0:1, ˙0:01,˙0:001, ˙0:0001.

(Make a table.) Also, calculate
d

dx

�

x
3
� 2x

�

ˇ

ˇ

ˇ

ˇ

xD1

using the

definition of derivative.

C 29. Repeat Exercise 28 for the function f .x/ D
1

x
and the points

x D 2 and x D 2C�x:

Using the definition of derivative, find equations for the tangent

lines to the curves in Exercises 30–33 at the points indicated.
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The Leibniz notation is suggested by the definition of derivative. The Newton

quotient Œf .x C h/ � f .x/�=h, whose limit we take to find the derivative dy=dx, can

be written in the form �y=�x, where �y D f .x C h/ � f .x/ is the increment in y,

and �x D .x C h/ � x D h is the corresponding increment in x as we pass from the

point .x; f .x// to the point .x C h; f .x C h// on the graph of f: (See Figure 2.16.)

� is the uppercase Greek letter Delta. Using symbols:

dy

dx
D lim

�x!0

�y

�x
:

Figure 2.16
dy

dx
D lim

�x!0

�y

�x

y

xx x C h

�x D h

slope
dy

dx

slope
�y

�x

y D f .x/

�y

Differentials
The Newton quotient �y=�x is actually the quotient of two quantities, �y and �x.

It is not at all clear, however, that the derivative dy=dx, the limit of �y=�x as �x

approaches zero, can be regarded as a quotient. If y is a continuous function of x, then

�y approaches zero when �x approaches zero, so dy=dx appears to be the meaning-

less quantity 0=0. Nevertheless, it is sometimes useful to be able to refer to quantities

dy and dx in such a way that their quotient is the derivative dy=dx. We can justify

this by regarding dx as a new independent variable (called the differential of x) and

defining a new dependent variable dy (the differential of y) as a function of x and

dx by

dy D
dy

dx
dx D f

0
.x/ dx:

For example, if y D x2, we can write dy D 2x dx to mean the same thing as

dy=dx D 2x. Similarly, if f .x/ D 1=x, we can write df .x/ D �.1=x2
/ dx as

the equivalent differential form of the assertion that .d=dx/f .x/ D f 0.x/ D �1=x2.

This differential notation is useful in applications (see Sections 2.7 and 12.6), and

especially for the interpretation and manipulation of integrals beginning in Chapter 5.

Note that, defined as above, differentials are merely variables that may or may not

be small in absolute value. The differentials dy and dx were originally regarded (by

Leibniz and his successors) as “infinitesimals” (infinitely small but nonzero) quantities

whose quotient dy=dx gave the slope of the tangent line (a secant line meeting the

graph of y D f .x/ at two points infinitely close together). It can be shown that such

“infinitesimal” quantities cannot exist (as real numbers). It is possible to extend the

number system to contain infinitesimals and use these to develop calculus, but we will

not consider this approach here.
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Derivatives Have the Intermediate-Value Property
Is a function f defined on an interval I necessarily the derivative of some other func-

tion defined on I ? The answer is no; some functions are derivatives and some are not.

Although a derivative need not be a continuous function (see Exercise 28 in Section

2.8), it must, like a continuous function, have the intermediate-value property: on an

interval Œa; b�, a derivative f 0.x/ takes on every value between f 0.a/ and f 0.b/. (See

Exercise 29 in Section 2.8 for a proof of this fact.) An everywhere-defined step func-

tion such as the Heaviside function H.x/ considered in Example 1 in Section 1.4 (see

Figure 2.17) does not have this property on, say, the interval Œ�1; 1�, so cannot be the

derivative of a function on that interval. This argument does not apply to the signum

y

x

1

y D 1

y D 0

y D H.x/

Figure 2.17 This function is not a

derivative on Œ�1; 1�; it does not have the

intermediate-value property.

function, which is the derivative of the absolute value function on any interval where

it is defined. (See Example 4.) Such an interval cannot contain the origin, as sgn .x/ is

not defined at x D 0.

If g.x/ is continuous on an interval I , then g.x/ D f 0.x/ for some function f

that is differentiable on I . We will discuss this fact further in Chapter 5 and prove it in

Appendix IV.

E X E R C I S E S 2.2

Make rough sketches of the graphs of the derivatives of the

functions in Exercises 1–4.

1. The function f graphed in Figure 2.18(a).

2. The function g graphed in Figure 2.18(b).

3. The function h graphed in Figure 2.18(c).

4. The function k graphed in Figure 2.18(d).

5. Where is the function f graphed in Figure 2.18(a)

differentiable?

6. Where is the function g graphed in Figure 2.18(b)

differentiable?

y

x

y

x

y

x

y

x

(a) (b)

(d)(c)

y D g.x/

y D k.x/y D h.x/

y D f .x/

Figure 2.18

Use a graphics utility with differentiation capabilities to plot the

graphs of the following functions and their derivatives. Observe

the relationships between the graph of y and that of y 0 in each

case. What features of the graph of y can you infer from the graph

of y 0?

G 7. y D 3x � x2
� 1 G 8. y D x3

� 3x
2
C 2x C 1

G 9. y D jx3
� xj G 10. y D jx2

� 1j � jx
2
� 4j

In Exercises 11–24, (a) calculate the derivative of the given

function directly from the definition of derivative, and (b) express

the result of (a) using differentials.

11. y D x2
� 3x 12. f .x/ D 1C 4x � 5x2

13. f .x/ D x3 14. s D
1

3C 4t

15. g.x/ D
2 � x

2C x
16. y D

1

3
x

3
� x

17. F.t/ D
p

2t C 1 18. f .x/ D
3

4

p

2 � x

19. y D x C
1

x
20. z D

s

1C s

21. F.x/ D
1

p

1C x2
22. y D

1

x2

23. y D
1

p

1C x
24. f .t/ D

t2 � 3

t2 C 3

25. How should the function f .x/ D x sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

26. How should the function g.x/ D x2sgnx be defined at x D 0

so that it is continuous there? Is it then differentiable there?

27. Where does h.x/ D jx2
C 3x C 2j fail to be differentiable?

C 28. Using a calculator, find the slope of the secant line to

y D x3
� 2x passing through the points corresponding to

x D 1 and x D 1C�x, for several values of �x of

decreasing size, say �x D ˙0:1, ˙0:01,˙0:001, ˙0:0001.

(Make a table.) Also, calculate
d

dx

�

x
3
� 2x

�

ˇ

ˇ

ˇ

ˇ

xD1

using the

definition of derivative.

C 29. Repeat Exercise 28 for the function f .x/ D
1

x
and the points

x D 2 and x D 2C�x:

Using the definition of derivative, find equations for the tangent

lines to the curves in Exercises 30–33 at the points indicated.
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30. y D 5C 4x � x2 at the point where x D 2

31. y D
p

x C 6 at the point .3; 3/

32. y D
t

t2 � 2
at the point where t D �2

33. y D
2

t2 C t
at the point where t D a

Calculate the derivatives of the functions in Exercises 34–39 using

the General Power Rule. Where is each derivative valid?

34. f .x/ D x�17 35. g.t/ D t22

36. y D x1=3 37. y D x�1=3

38. t�2:25 39. s119=4

In Exercises 40–50, you may use the formulas for derivatives

established in this section.

40. Calculate
d

ds

p

s

ˇ

ˇ

ˇ

ˇ

sD9

: 41. Find F 0
.

1
4
/ if F.x/ D

1

x
:

42. Find f 0.8/ if f .x/ D x�2=3.

43. Find dy=dt

ˇ

ˇ

ˇ

ˇ

tD4

if y D t1=4.

44. Find an equation of the straight line tangent to the curve

y D
p

x at x D x0.

45. Find an equation of the straight line normal to the curve

y D 1=x at the point where x D a.

46. Show that the curve y D x2 and the straight line x C 4y D 18

intersect at right angles at one of their two intersection points.

Hint: Find the product of their slopes at their intersection

points.

47. There are two distinct straight lines that pass through the point

.1;�3/ and are tangent to the curve y D x2. Find their

equations. Hint: Draw a sketch. The points of tangency are

not given; let them be denoted .a; a2/.

48. Find equations of two straight lines that have slope �2 and are

tangent to the graph of y D 1=x.

49. Find the slope of a straight line that passes through the point

.�2; 0/ and is tangent to the curve y D
p

x.

50.A Show that there are two distinct tangent lines to the curve

y D x2 passing through the point .a; b/ provided b < a2.

How many tangent lines to y D x2 pass through .a; b/ if

b D a2? if b > a2?

51.A Show that the derivative of an odd differentiable function is

even and that the derivative of an even differentiable function

is odd.

52.I Prove the case r D �n (n is a positive integer) of the General

Power Rule; that is, prove that

d

dx
x

�n
D �n x

�n�1
:

Use the factorization of a difference of nth powers given in

this section.

53.I Use the factoring of a difference of cubes:

a
3
� b

3
D .a � b/.a

2
C ab C b

2
/;

to help you calculate the derivative of f .x/ D x1=3 directly

from the definition of derivative.

54.I Prove the General Power Rule for d
dx
xr , where r D 1=n, n

being a positive integer. (Hint:

d

dx
x

1=n
D lim

h!0

.x C h/1=n
� x1=n

h

D lim
h!0

.x C h/1=n
� x1=n

..x C h/1=n/n � .x1=n/n
:

Apply the factorization of the difference of nth powers to the

denominator of the latter quotient.)

55. Give a proof of the power rule d
dx
xn
D nxn�1 for positive

integers n using the Binomial Theorem:

.x C h/
n
D x

n
C

n

1
x

n�1
hC

n.n � 1/

1 � 2
x

n�2
h

2

C

n.n � 1/.n � 2/

1 � 2 � 3
x

n�3
h

3
C � � � C h

n
:

56.I Use right and left derivatives, f 0
C.a/ and f 0

�.a/, to define the

concept of a half-line starting at .a; f .a// being a right or left

tangent to the graph of f at x D a. Show that the graph has a

tangent line at x D a if and only if it has right and left

tangents that are opposite halves of the same straight line.

What are the left and right tangents to the graphs of y D x1=3,

y D x2=3, and y D jxj at x D 0?

2.3 Differentiation Rules
If every derivative had to be calculated directly from the definition of derivative as in

the examples of Section 2.2, calculus would indeed be a painful subject. Fortunately,

there is an easier way. We will develop several general differentiation rules that en-

able us to calculate the derivatives of complicated combinations of functions easily

if we already know the derivatives of the elementary functions from which they are

constructed. For instance, we will be able to find the derivative of
x2

p

x2
C 1

if we

know the derivatives of x2 and
p

x. The rules we develop in this section tell us how

to differentiate sums, constant multiples, products, and quotients of functions whose

derivatives we already know. In Section 2.4 we will learn how to differentiate compos-

ite functions.
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Before developing these differentiation rules we need to establish one obvious

but very important theorem which states, roughly, that the graph of a function cannot

possibly have a break at a point where it is smooth.

T H E O R E M

1

Differentiability implies continuity

If f is differentiable at x, then f is continuous at x.

PROOF Since f is differentiable at x, we know that

lim
h!0

f .x C h/ � f .x/

h
D f

0
.x/

exists. Using the limit rules (Theorem 2 of Section 1.2), we have

lim
h!0

�

f .x C h/ � f .x/
�

D lim
h!0

�

f .x C h/ � f .x/

h

�

.h/ D
�

f
0
.x/
�

.0/ D 0:

This is equivalent to limh!0 f .x C h/ D f .x/, which says that f is continuous at x.

Sums and Constant Multiples
The derivative of a sum (or difference) of functions is the sum (or difference) of the

derivatives of those functions. The derivative of a constant multiple of a function is

the same constant multiple of the derivative of the function.

T H E O R E M

2

Differentiation rules for sums, differences, and constant multiples

If functions f and g are differentiable at x, and if C is a constant, then the functions

f C g, f � g, and Cf are all differentiable at x and

.f C g/
0
.x/ D f

0
.x/C g

0
.x/;

.f � g/
0
.x/ D f

0
.x/� g

0
.x/;

.Cf /
0
.x/ D Cf

0
.x/:

PROOF The proofs of all three assertions are straightforward, using the correspond-

ing limit rules from Theorem 2 of Section 1.2. For the sum, we have

.f C g/
0
.x/ D lim

h!0

.f C g/.x C h/ � .f C g/.x/

h

D lim
h!0

.f .x C h/C g.x C h// � .f .x/C g.x//

h

D lim
h!0

�

f .x C h/ � f .x/

h
C

g.x C h/ � g.x/

h

�

D f
0
.x/C g

0
.x/;

because the limit of a sum is the sum of the limits. The proof for the difference f � g

is similar. For the constant multiple, we have

.Cf /
0
.x/ D lim

h!0

Cf .x C h/ � Cf .x/

h

D C lim
h!0

f .x C h/ � f .x/

h
D Cf

0
.x/:
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30. y D 5C 4x � x2 at the point where x D 2

31. y D
p

x C 6 at the point .3; 3/

32. y D
t

t2 � 2
at the point where t D �2

33. y D
2

t2 C t
at the point where t D a

Calculate the derivatives of the functions in Exercises 34–39 using

the General Power Rule. Where is each derivative valid?

34. f .x/ D x�17 35. g.t/ D t22

36. y D x1=3 37. y D x�1=3

38. t�2:25 39. s119=4

In Exercises 40–50, you may use the formulas for derivatives

established in this section.

40. Calculate
d

ds

p

s

ˇ

ˇ

ˇ

ˇ

sD9

: 41. Find F 0
.

1
4
/ if F.x/ D

1

x
:

42. Find f 0.8/ if f .x/ D x�2=3.

43. Find dy=dt

ˇ

ˇ

ˇ

ˇ

tD4

if y D t1=4.

44. Find an equation of the straight line tangent to the curve

y D
p

x at x D x0.

45. Find an equation of the straight line normal to the curve

y D 1=x at the point where x D a.

46. Show that the curve y D x2 and the straight line x C 4y D 18

intersect at right angles at one of their two intersection points.

Hint: Find the product of their slopes at their intersection

points.

47. There are two distinct straight lines that pass through the point

.1;�3/ and are tangent to the curve y D x2. Find their

equations. Hint: Draw a sketch. The points of tangency are

not given; let them be denoted .a; a2/.

48. Find equations of two straight lines that have slope �2 and are

tangent to the graph of y D 1=x.

49. Find the slope of a straight line that passes through the point

.�2; 0/ and is tangent to the curve y D
p

x.

50.A Show that there are two distinct tangent lines to the curve

y D x2 passing through the point .a; b/ provided b < a2.

How many tangent lines to y D x2 pass through .a; b/ if

b D a2? if b > a2?

51.A Show that the derivative of an odd differentiable function is

even and that the derivative of an even differentiable function

is odd.

52.I Prove the case r D �n (n is a positive integer) of the General

Power Rule; that is, prove that

d

dx
x

�n
D �n x

�n�1
:

Use the factorization of a difference of nth powers given in

this section.

53.I Use the factoring of a difference of cubes:

a
3
� b

3
D .a � b/.a

2
C ab C b

2
/;

to help you calculate the derivative of f .x/ D x1=3 directly

from the definition of derivative.

54.I Prove the General Power Rule for d
dx
xr , where r D 1=n, n

being a positive integer. (Hint:

d

dx
x

1=n
D lim

h!0

.x C h/1=n
� x1=n

h

D lim
h!0

.x C h/1=n
� x1=n

..x C h/1=n/n � .x1=n/n
:

Apply the factorization of the difference of nth powers to the

denominator of the latter quotient.)

55. Give a proof of the power rule d
dx
xn
D nxn�1 for positive

integers n using the Binomial Theorem:

.x C h/
n
D x

n
C

n

1
x

n�1
hC

n.n � 1/

1 � 2
x

n�2
h

2

C

n.n � 1/.n � 2/

1 � 2 � 3
x

n�3
h

3
C � � � C h

n
:

56.I Use right and left derivatives, f 0
C.a/ and f 0

�.a/, to define the

concept of a half-line starting at .a; f .a// being a right or left

tangent to the graph of f at x D a. Show that the graph has a

tangent line at x D a if and only if it has right and left

tangents that are opposite halves of the same straight line.

What are the left and right tangents to the graphs of y D x1=3,

y D x2=3, and y D jxj at x D 0?

2.3 Differentiation Rules
If every derivative had to be calculated directly from the definition of derivative as in

the examples of Section 2.2, calculus would indeed be a painful subject. Fortunately,

there is an easier way. We will develop several general differentiation rules that en-

able us to calculate the derivatives of complicated combinations of functions easily

if we already know the derivatives of the elementary functions from which they are

constructed. For instance, we will be able to find the derivative of
x2

p

x2
C 1

if we

know the derivatives of x2 and
p

x. The rules we develop in this section tell us how

to differentiate sums, constant multiples, products, and quotients of functions whose

derivatives we already know. In Section 2.4 we will learn how to differentiate compos-

ite functions.
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Before developing these differentiation rules we need to establish one obvious

but very important theorem which states, roughly, that the graph of a function cannot

possibly have a break at a point where it is smooth.

T H E O R E M

1

Differentiability implies continuity

If f is differentiable at x, then f is continuous at x.

PROOF Since f is differentiable at x, we know that

lim
h!0

f .x C h/ � f .x/

h
D f

0
.x/

exists. Using the limit rules (Theorem 2 of Section 1.2), we have

lim
h!0

�

f .x C h/ � f .x/
�

D lim
h!0

�

f .x C h/ � f .x/

h

�

.h/ D
�

f
0
.x/
�

.0/ D 0:

This is equivalent to limh!0 f .x C h/ D f .x/, which says that f is continuous at x.

Sums and Constant Multiples
The derivative of a sum (or difference) of functions is the sum (or difference) of the

derivatives of those functions. The derivative of a constant multiple of a function is

the same constant multiple of the derivative of the function.

T H E O R E M

2

Differentiation rules for sums, differences, and constant multiples

If functions f and g are differentiable at x, and if C is a constant, then the functions

f C g, f � g, and Cf are all differentiable at x and

.f C g/
0
.x/ D f

0
.x/C g

0
.x/;

.f � g/
0
.x/ D f

0
.x/� g

0
.x/;

.Cf /
0
.x/ D Cf

0
.x/:

PROOF The proofs of all three assertions are straightforward, using the correspond-

ing limit rules from Theorem 2 of Section 1.2. For the sum, we have

.f C g/
0
.x/ D lim

h!0

.f C g/.x C h/ � .f C g/.x/

h

D lim
h!0

.f .x C h/C g.x C h// � .f .x/C g.x//

h

D lim
h!0

�

f .x C h/ � f .x/

h
C

g.x C h/ � g.x/

h

�

D f
0
.x/C g

0
.x/;

because the limit of a sum is the sum of the limits. The proof for the difference f � g

is similar. For the constant multiple, we have

.Cf /
0
.x/ D lim

h!0

Cf .x C h/ � Cf .x/

h

D C lim
h!0

f .x C h/ � f .x/

h
D Cf

0
.x/:

9780134154367_Calculus   129 05/12/16   3:10 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 110 October 15, 2016

110 CHAPTER 2 Differentiation

The rule for differentiating sums extends to sums of any finite number of terms

.f1 C f2 C � � � C fn/
0
D f

0
1 C f

0
2 C � � � C f

0
n: .�/

To see this we can use a technique called mathematical induction. (See the note in

the margin.) Theorem 2 shows that the case n D 2 is true; this is STEP 1. For STEP 2,

we must show that if the formula .�/ holds for some integer n D k � 2, then it must

also hold for n D k C 1. Therefore, assume that

.f1 C f2 C � � � C fk/
0
D f

0
1 C f

0
2 C � � � C f

0
k :

Then we have
Mathematical Induction

Mathematical induction is a

technique for proving that a

statement about an integer n is

true for every integer n greater

than or equal to some starting

integer n0. The proof requires us

to carry out two steps:

STEP 1. Prove that the statement

is true for n D n0.

STEP 2. Prove that if the

statement is true for some integer

n D k, where k � n0, then it is

also true for the next larger

integer, n D k C 1.

Step 2 prevents there from being

a smallest integer greater than n0

for which the statement is false.

Being true for n0, the statement

must therefore be true for all

larger integers.

.f1 C f2 C � � � C fk C fkC1/
0

D

�

.f1 C f2 C � � � C fk/
„ † …

Let this function be f

CfkC1

�0

D .f C fkC1/
0 (Now use the known case n D 2.)

D f
0
C f

0
kC1

D f
0

1 C f
0

2 C � � � C f
0

k C f
0

kC1:

With both steps verified, we can claim that .�/ holds for any n � 2 by induction. In

particular, therefore, the derivative of any polynomial is the sum of the derivatives of

its terms.

E X A M P L E 1
Calculate the derivatives of the functions

(a) 2x
3
� 5x2

C 4x C 7, (b) f .x/ D 5
p

x C
3

x
� 18, (c) y D

1

7
t
4
� 3t

7=3.

Solution Each of these functions is a sum of constant multiples of functions that we

already know how to differentiate.

(a)
d

dx
.2x

3
� 5x

2
C 4x C 7/ D 2.3x

2
/� 5.2x/C 4.1/C 0 D 6x

2
� 10x C 4.

(b) f 0
.x/ D 5

�

1

2
p

x

�

C 3

�

�

1

x2

�

� 0 D
5

2
p

x
�

3

x2
.

(c)
dy

dt
D

1

7
.4t

3
/ � 3

�

7

3
t
4=3

�

D

4

7
t
3
� 7t

4=3.

E X A M P L E 2 Find an equation of the tangent to the curve y D
3x3
� 4

x
at the

point on the curve where x D �2.

Solution If x D �2, then y D 14. The slope of the curve at .�2; 14/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD�2

D

d

dx

�

3x
2
�

4

x

�
ˇ

ˇ

ˇ

ˇ

xD�2

D

�

6x C
4

x2

�
ˇ

ˇ

ˇ

ˇ

xD�2

D �11:

An equation of the tangent line is y D 14 � 11.x C 2/, or y D �11x � 8.

The Product Rule
The rule for differentiating a product of functions is a little more complicated than that

for sums. It is not true that the derivative of a product is the product of the derivatives.
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T H E O R E M

3

The Product Rule

If functions f and g are differentiable at x, then their product fg is also differentiable

at x, and

.fg/
0
.x/ D f

0
.x/g.x/C f .x/g

0
.x/:

PROOF We set up the Newton quotient for fg and then add 0 to the numerator in a

way that enables us to involve the Newton quotients for f and g separately:

.fg/
0
.x/ D lim

h!0

f .x C h/g.x C h/ � f .x/g.x/

h

D lim
h!0

f .x C h/g.x C h/ � f .x/g.x C h/C f .x/g.x C h/ � f .x/g.x/

h

D lim
h!0

�

f .x C h/ � f .x/

h
g.x C h/C f .x/

g.x C h/ � g.x/

h

�

D f
0
.x/g.x/C f .x/g

0
.x/:

To get the last line, we have used the fact that f and g are differentiable and the fact

that g is therefore continuous (Theorem 1), as well as limit rules from Theorem 2 of

Section 1.2. A graphical proof of the Product Rule is suggested by Figure 2.19.
u�v �u�v

u �u

v�uv

�v

uv

Figure 2.19

A graphical proof of the Product Rule

Here u D f .x/ and v D g.x/, so that the

rectangular area uv represents f .x/g.x/.

If x changes by an amount �x, the

corresponding increments in u and v are

�u and �v. The change in the area of the

rectangle is

�.uv/

D .uC�u/.v C�v/ � uv

D .�u/v C u.�v/C .�u/.�v/;

the sum of the three shaded areas. Dividing

by �x and taking the limit as �x ! 0, we

get

d

dx
.uv/ D

�

du

dx

�

v C u

�

dv

dx

�

;

since

lim
�x!0

�u

�x
�v D

du

dx
� 0 D 0:

E X A M P L E 3
Find the derivative of .x2

C 1/.x3
C 4/ using and without using

the Product Rule.

Solution Using the Product Rule with f .x/ D x
2
C 1 and g.x/ D x

3
C 4, we

calculate

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D 2x.x
3
C 4/C .x

2
C 1/.3x

2
/ D 5x

4
C 3x

2
C 8x:

On the other hand, we can calculate the derivative by first multiplying the two binomi-

als and then differentiating the resulting polynomial:

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D

d

dx
.x

5
C x

3
C 4x

2
C 4/ D 5x

4
C 3x

2
C 8x:

E X A M P L E 4 Find
dy

dx
if y D

�

2
p

x C
3

x

��

3
p

x �
2

x

�

.

Solution Applying the Product Rule with f and g being the two functions enclosed

in the large parentheses, we obtain

dy

dx
D

�

1
p

x
�

3

x2

��

3
p

x �
2

x

�

C

�

2
p

x C
3

x

��

3

2
p

x
C

2

x2

�

D 6 �
5

2x3=2
C

12

x3
:

E X A M P L E 5
Let y D uv be the product of the functions u and v. Find y 0.2/ if

u.2/ D 2, u0.2/ D �5, v.2/ D 1, and v0.2/ D 3:
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The rule for differentiating sums extends to sums of any finite number of terms

.f1 C f2 C � � � C fn/
0
D f

0
1 C f

0
2 C � � � C f

0
n: .�/

To see this we can use a technique called mathematical induction. (See the note in

the margin.) Theorem 2 shows that the case n D 2 is true; this is STEP 1. For STEP 2,

we must show that if the formula .�/ holds for some integer n D k � 2, then it must

also hold for n D k C 1. Therefore, assume that

.f1 C f2 C � � � C fk/
0
D f

0
1 C f

0
2 C � � � C f

0
k :

Then we have
Mathematical Induction

Mathematical induction is a

technique for proving that a

statement about an integer n is

true for every integer n greater

than or equal to some starting

integer n0. The proof requires us

to carry out two steps:

STEP 1. Prove that the statement

is true for n D n0.

STEP 2. Prove that if the

statement is true for some integer

n D k, where k � n0, then it is

also true for the next larger

integer, n D k C 1.

Step 2 prevents there from being

a smallest integer greater than n0

for which the statement is false.

Being true for n0, the statement

must therefore be true for all

larger integers.

.f1 C f2 C � � � C fk C fkC1/
0

D

�

.f1 C f2 C � � � C fk/
„ † …

Let this function be f

CfkC1

�0

D .f C fkC1/
0 (Now use the known case n D 2.)

D f
0
C f

0
kC1

D f
0

1 C f
0

2 C � � � C f
0

k C f
0

kC1:

With both steps verified, we can claim that .�/ holds for any n � 2 by induction. In

particular, therefore, the derivative of any polynomial is the sum of the derivatives of

its terms.

E X A M P L E 1
Calculate the derivatives of the functions

(a) 2x
3
� 5x2

C 4x C 7, (b) f .x/ D 5
p

x C
3

x
� 18, (c) y D

1

7
t
4
� 3t

7=3.

Solution Each of these functions is a sum of constant multiples of functions that we

already know how to differentiate.

(a)
d

dx
.2x

3
� 5x

2
C 4x C 7/ D 2.3x

2
/� 5.2x/C 4.1/C 0 D 6x

2
� 10x C 4.

(b) f 0
.x/ D 5

�

1

2
p

x

�

C 3

�

�

1

x2

�

� 0 D
5

2
p

x
�

3

x2
.

(c)
dy

dt
D

1

7
.4t

3
/ � 3

�

7

3
t
4=3

�

D

4

7
t
3
� 7t

4=3.

E X A M P L E 2 Find an equation of the tangent to the curve y D
3x3
� 4

x
at the

point on the curve where x D �2.

Solution If x D �2, then y D 14. The slope of the curve at .�2; 14/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD�2

D

d

dx

�

3x
2
�

4

x

�
ˇ

ˇ

ˇ

ˇ

xD�2

D

�

6x C
4

x2

�
ˇ

ˇ

ˇ

ˇ

xD�2

D �11:

An equation of the tangent line is y D 14 � 11.x C 2/, or y D �11x � 8.

The Product Rule
The rule for differentiating a product of functions is a little more complicated than that

for sums. It is not true that the derivative of a product is the product of the derivatives.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 111 October 15, 2016

SECTION 2.3: Differentiation Rules 111

T H E O R E M

3

The Product Rule

If functions f and g are differentiable at x, then their product fg is also differentiable

at x, and

.fg/
0
.x/ D f

0
.x/g.x/C f .x/g

0
.x/:

PROOF We set up the Newton quotient for fg and then add 0 to the numerator in a

way that enables us to involve the Newton quotients for f and g separately:

.fg/
0
.x/ D lim

h!0

f .x C h/g.x C h/ � f .x/g.x/

h

D lim
h!0

f .x C h/g.x C h/ � f .x/g.x C h/C f .x/g.x C h/ � f .x/g.x/

h

D lim
h!0

�

f .x C h/ � f .x/

h
g.x C h/C f .x/

g.x C h/ � g.x/

h

�

D f
0
.x/g.x/C f .x/g

0
.x/:

To get the last line, we have used the fact that f and g are differentiable and the fact

that g is therefore continuous (Theorem 1), as well as limit rules from Theorem 2 of

Section 1.2. A graphical proof of the Product Rule is suggested by Figure 2.19.
u�v �u�v

u �u

v�uv

�v

uv

Figure 2.19

A graphical proof of the Product Rule

Here u D f .x/ and v D g.x/, so that the

rectangular area uv represents f .x/g.x/.

If x changes by an amount �x, the

corresponding increments in u and v are

�u and �v. The change in the area of the

rectangle is

�.uv/

D .uC�u/.v C�v/ � uv

D .�u/v C u.�v/C .�u/.�v/;

the sum of the three shaded areas. Dividing

by �x and taking the limit as �x ! 0, we

get

d

dx
.uv/ D

�

du

dx

�

v C u

�

dv

dx

�

;

since

lim
�x!0

�u

�x
�v D

du

dx
� 0 D 0:

E X A M P L E 3
Find the derivative of .x2

C 1/.x3
C 4/ using and without using

the Product Rule.

Solution Using the Product Rule with f .x/ D x
2
C 1 and g.x/ D x

3
C 4, we

calculate

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D 2x.x
3
C 4/C .x

2
C 1/.3x

2
/ D 5x

4
C 3x

2
C 8x:

On the other hand, we can calculate the derivative by first multiplying the two binomi-

als and then differentiating the resulting polynomial:

d

dx

�

.x
2
C 1/.x

3
C 4/

�

D

d

dx
.x

5
C x

3
C 4x

2
C 4/ D 5x

4
C 3x

2
C 8x:

E X A M P L E 4 Find
dy

dx
if y D

�

2
p

x C
3

x

��

3
p

x �
2

x

�

.

Solution Applying the Product Rule with f and g being the two functions enclosed

in the large parentheses, we obtain

dy

dx
D

�

1
p

x
�

3

x2

��

3
p

x �
2

x

�

C

�

2
p

x C
3

x

��

3

2
p

x
C

2

x2

�

D 6 �
5

2x3=2
C

12

x3
:

E X A M P L E 5
Let y D uv be the product of the functions u and v. Find y 0.2/ if

u.2/ D 2, u0.2/ D �5, v.2/ D 1, and v0.2/ D 3:
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Solution From the Product Rule we have

y
0
D .uv/

0
D u

0
v C uv

0
:

Therefore,

y
0
.2/ D u

0
.2/v.2/C u.2/v

0
.2/ D .�5/.1/C .2/.3/ D �5C 6 D 1:

E X A M P L E 6 Use mathematical induction to verify the formula
d

dx
x

n
D nx

n�1

for all positive integers n.

Solution For n D 1 the formula says that d
dx
x1
D 1 D 1x0, so the formula is true in

this case. We must show that if the formula is true for n D k � 1, then it is also true

for n D k C 1. Therefore, assume that

d

dx
x

k
D kx

k�1
:

Using the Product Rule we calculate

d

dx
x

kC1
D

d

dx

�

x
k
x
�

D .kx
k�1

/.x/C.x
k
/.1/ D .kC1/x

k
D .kC1/x

.kC1/�1
:

Thus, the formula is true for n D kC 1 also. The formula is true for all integers n � 1

by induction.

The Product Rule can be extended to products of any number of factors; for instance,

.fgh/
0
.x/ D f

0
.x/.gh/.x/C f .x/.gh/

0
.x/

D f
0
.x/g.x/h.x/C f .x/g

0
.x/h.x/C f .x/g.x/h

0
.x/:

In general, the derivative of a product of n functions will have n terms; each term will

be the same product but with one of the factors replaced by its derivative:

.f1f2f3 � � � fn/
0
D f

0
1f2f3 � � � fn C f1f

0
2f3 � � � fn C � � � C f1f2f3 � � � f

0
n:

This can be proved by mathematical induction. See Exercise 54 at the end of this

section.

The Reciprocal Rule

T H E O R E M

4

The Reciprocal Rule

If f is differentiable at x and f .x/ ¤ 0, then 1=f is differentiable at x, and

�

1

f

�0

.x/ D
�f 0.x/

.f .x//
2
:

PROOF Using the definition of the derivative, we calculate

d

dx

1

f .x/
D lim

h!0

1

f .x C h/
�

1

f .x/

h

D lim
h!0

f .x/� f .x C h/

hf .x C h/f .x/

D lim
h!0

�

�1

f .x C h/f .x/

�

f .x C h/ � f .x/

h

D

�1

.f .x//2
f

0
.x/:
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Again we have to use the continuity of f (from Theorem 1) and the limit rules

from Section 1.2.

E X A M P L E 7
Differentiate the functions

(a)
1

x2
C 1

and (b) f .t/ D
1

t C
1

t

.

Solution Using the Reciprocal Rule:

(a)
d

dx

�

1

x2
C 1

�

D

�2x

.x2
C 1/2

.

(b) f 0.t/ D
�1

�

t C
1

t

�2

�

1 �
1

t2

�

D

�t
2

.t2 C 1/2

t
2
� 1

t2
D

1 � t
2

.t2 C 1/2
.

We can use the Reciprocal Rule to confirm the General Power Rule for negative inte-

gers:

d

dx
x

�n
D �nx

�n�1
;

since we have already proved the rule for positive integers. We have

d

dx
x

�n
D

d

dx

1

xn
D

�nxn�1

.xn/2
D �nx

�n�1
:

E X A M P L E 8
(Differentiating sums of reciprocals)

d

dx

�

x2
C x C 1

x3

�

D

d

dx

�

1

x
C

1

x2
C

1

x3

�

D

d

dx
.x

�1
C x

�2
C x

�3
/

D �x
�2
� 2x

�3
� 3x

�4
D �

1

x2
�

2

x3
�

3

x4
:

The Quotient Rule
The Product Rule and the Reciprocal Rule can be combined to provide a rule for dif-

ferentiating a quotient of two functions. Observe that

d

dx

�

f .x/

g.x/

�

D

d

dx

�

f .x/
1

g.x/

�

D f
0
.x/

1

g.x/
C f .x/

�

�

g0.x/

.g.x//2

�

D

g.x/f 0.x/� f .x/g0.x/

.g.x//2
:

Thus, we have proved the following Quotient Rule.

9780134154367_Calculus   132 05/12/16   3:10 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 112 October 15, 2016

112 CHAPTER 2 Differentiation

Solution From the Product Rule we have

y
0
D .uv/

0
D u

0
v C uv

0
:

Therefore,

y
0
.2/ D u

0
.2/v.2/C u.2/v

0
.2/ D .�5/.1/C .2/.3/ D �5C 6 D 1:

E X A M P L E 6 Use mathematical induction to verify the formula
d

dx
x

n
D nx

n�1

for all positive integers n.

Solution For n D 1 the formula says that d
dx
x1
D 1 D 1x0, so the formula is true in

this case. We must show that if the formula is true for n D k � 1, then it is also true

for n D k C 1. Therefore, assume that

d

dx
x

k
D kx

k�1
:

Using the Product Rule we calculate

d

dx
x

kC1
D

d

dx

�

x
k
x
�

D .kx
k�1

/.x/C.x
k
/.1/ D .kC1/x

k
D .kC1/x

.kC1/�1
:

Thus, the formula is true for n D kC 1 also. The formula is true for all integers n � 1

by induction.

The Product Rule can be extended to products of any number of factors; for instance,

.fgh/
0
.x/ D f

0
.x/.gh/.x/C f .x/.gh/

0
.x/

D f
0
.x/g.x/h.x/C f .x/g

0
.x/h.x/C f .x/g.x/h

0
.x/:

In general, the derivative of a product of n functions will have n terms; each term will

be the same product but with one of the factors replaced by its derivative:

.f1f2f3 � � � fn/
0
D f

0
1f2f3 � � � fn C f1f

0
2f3 � � � fn C � � � C f1f2f3 � � � f

0
n:

This can be proved by mathematical induction. See Exercise 54 at the end of this

section.

The Reciprocal Rule

T H E O R E M

4

The Reciprocal Rule

If f is differentiable at x and f .x/ ¤ 0, then 1=f is differentiable at x, and

�

1

f

�0

.x/ D
�f 0.x/

.f .x//
2
:

PROOF Using the definition of the derivative, we calculate

d

dx

1

f .x/
D lim

h!0

1

f .x C h/
�

1

f .x/

h

D lim
h!0

f .x/� f .x C h/

hf .x C h/f .x/

D lim
h!0

�

�1

f .x C h/f .x/

�

f .x C h/ � f .x/

h

D

�1

.f .x//2
f

0
.x/:
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Again we have to use the continuity of f (from Theorem 1) and the limit rules

from Section 1.2.

E X A M P L E 7
Differentiate the functions

(a)
1

x2
C 1

and (b) f .t/ D
1

t C
1

t

.

Solution Using the Reciprocal Rule:

(a)
d

dx

�

1

x2
C 1

�

D

�2x

.x2
C 1/2

.

(b) f 0.t/ D
�1

�

t C
1

t

�2

�

1 �
1

t2

�

D

�t
2

.t2 C 1/2

t
2
� 1

t2
D

1 � t
2

.t2 C 1/2
.

We can use the Reciprocal Rule to confirm the General Power Rule for negative inte-

gers:

d

dx
x

�n
D �nx

�n�1
;

since we have already proved the rule for positive integers. We have

d

dx
x

�n
D

d

dx

1

xn
D

�nxn�1

.xn/2
D �nx

�n�1
:

E X A M P L E 8
(Differentiating sums of reciprocals)

d

dx

�

x2
C x C 1

x3

�

D

d

dx

�

1

x
C

1

x2
C

1

x3

�

D

d

dx
.x

�1
C x

�2
C x

�3
/

D �x
�2
� 2x

�3
� 3x

�4
D �

1

x2
�

2

x3
�

3

x4
:

The Quotient Rule
The Product Rule and the Reciprocal Rule can be combined to provide a rule for dif-

ferentiating a quotient of two functions. Observe that

d

dx

�

f .x/

g.x/

�

D

d

dx

�

f .x/
1

g.x/

�

D f
0
.x/

1

g.x/
C f .x/

�

�

g0.x/

.g.x//2

�

D

g.x/f 0.x/� f .x/g0.x/

.g.x//2
:

Thus, we have proved the following Quotient Rule.
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T H E O R E M

5

The Quotient Rule

If f and g are differentiable at x, and if g.x/ ¤ 0, then the quotient f=g is differen-

tiable at x and

�

f

g

�0

.x/ D
g.x/f

0
.x/� f .x/g

0
.x/

.g.x//
2

:

Sometimes students have trouble remembering this rule. (Getting the order of the

terms in the numerator wrong will reverse the sign.) Try to remember (and use) the

Quotient Rule in the following form:

.quotient/0

D

.denominator/ � .numerator/0 � .numerator/ � .denominator/0

.denominator/2

E X A M P L E 9
Find the derivatives of

(a) y D
1 � x2

1C x2
, (b)

p

t

3 � 5t
, and (c) f .�/ D

aC b�

mC n�
.

Solution We use the Quotient Rule in each case.

(a)
dy

dx
D

.1C x
2
/.�2x/ � .1 � x

2
/.2x/

.1C x2/2
D �

4x

.1C x2/2
.

(b)
d

dt

 p

t

3 � 5t

!

D

.3 � 5t/
1

2
p

t
�

p

t.�5/

.3 � 5t/2
D

3C 5t

2
p

t.3 � 5t/2
.

(c) f 0.�/ D
.mC n�/.b/ � .aC b�/.n/

.mC n�/2
D

mb � na

.mC n�/2
.

In all three parts of Example 9, the Quotient Rule yielded fractions with numerators

that were complicated but could be simplified algebraically. It is advisable to attempt

such simplifications when calculating derivatives; the usefulness of derivatives in ap-

plications of calculus often depends on such simplifications.

E X A M P L E 10
Find equations of any lines that pass through the point .�1; 0/ and

are tangent to the curve y D .x � 1/=.x C 1/.

Solution The point .�1; 0/ does not lie on the curve, so it is not the point of tangency.

Suppose a line is tangent to the curve at x D a, so the point of tangency is .a; .a �

1/=.aC 1//. Note that a cannot be �1. The slope of the line must be

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D

.x C 1/.1/ � .x � 1/.1/

.x C 1/2

ˇ

ˇ

ˇ

ˇ

xDa

D

2

.aC 1/2
:

If the line also passes through .�1; 0/, its slope must also be given by

a � 1

aC 1
� 0

a � .�1/
D

a � 1

.aC 1/2
:

Equating these two expressions for the slope, we get an equation to solve for a:

a � 1

.aC 1/2
D

2

.aC 1/2
÷ a � 1 D 2:
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Thus, a D 3, and the slope of the line is 2=42
D 1=8. There is only one line through

.�1; 0/ tangent to the given curve, and its equation is

y D 0C
1

8
.x C 1/ or x � 8y C 1 D 0:

Remark Derivatives of quotients of functions where the denominator is a monomial,

such as in Example 8, are usually easier to do by breaking the quotient into a sum of

several fractions (as was done in that example) rather than by using the Quotient Rule.

E X E R C I S E S 2.3

In Exercises 1–32, calculate the derivatives of the given functions.

Simplify your answers whenever possible.

1. y D 3x2
� 5x � 7 2. y D 4x1=2

�

5

x

3. f .x/ D Ax2
C Bx C C 4. f .x/ D

6

x3
C

2

x2
� 2

5. z D
s

5
� s

3

15
6. y D x45

� x
�45

7. g.t/ D t1=3
C 2t

1=4
C 3t

1=5

8. y D 3
3
p

t2 �
2
p

t3
9. u D

3

5
x

5=3
�

5

3
x

�3=5

10. F.x/ D .3x � 2/.1 � 5x/

11. y D
p

x

�

5� x �
x2

3

�

12. g.t/ D
1

2t � 3

13. y D
1

x2
C 5x

14. y D
4

3 � x

15. f .t/ D
�

2 � �t
16. g.y/ D

2

1 � y2

17. f .x/ D
1 � 4x

2

x3
18. g.u/ D

u
p

u � 3

u2

19. y D
2C t C t2

p

t
20. z D

x � 1

x2=3

21. f .x/ D
3 � 4x

3C 4x
22. z D

t2 C 2t

t2 � 1

23. s D
1C
p

t

1�
p

t
24. f .x/ D

x3
� 4

x C 1

25. f .x/ D
ax C b

cx C d
26. F.t/ D

t2 C 7t � 8

t2 � t C 1

27. f .x/ D .1C x/.1C 2x/.1C 3x/.1C 4x/

28. f .r/ D .r�2
C r

�3
� 4/.r

2
C r

3
C 1/

29. y D .x2
C 4/.

p

x C 1/.5x
2=3
� 2/

30. y D
.x

2
C 1/.x

3
C 2/

.x2
C 2/.x3

C 1/

31.I y D
x

2x C
1

3x C 1

32.I f .x/ D
.
p

x � 1/.2 � x/.1 � x2/
p

x.3C 2x/

Calculate the derivatives in Exercises 33–36, given that f .2/ D 2

and f 0.2/ D 3.

33.
d

dx

�

x2

f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

34.
d

dx

�

f .x/

x2

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

35.
d

dx

�

x
2
f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

36.
d

dx

�

f .x/

x2
C f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

37. Find
d

dx

�

x2
� 4

x2
C 4

�
ˇ

ˇ

ˇ

ˇ

xD�2

. 38. Find

d

dt

 

t .1C
p

t /

5 � t

!

ˇ

ˇ

ˇ

ˇ

tD4

.

39. If f .x/ D

p

x

x C 1
, find f 0.2/.

40. Find
d

dt

�

.1C t /.1C 2t/.1C 3t/.1C 4t/

�
ˇ

ˇ

ˇ

ˇ

tD0

.

41. Find an equation of the tangent line to y D
2

3 � 4
p

x
at the

point .1;�2/.

42. Find equations of the tangent and normal to y D
x C 1

x � 1
at

x D 2.

43. Find the points on the curve y D x C 1=x where the tangent

line is horizontal.

44. Find the equations of all horizontal lines that are tangent to the

curve y D x2.4 � x2/.

45. Find the coordinates of all points where the curve

y D
1

x2
C x C 1

has a horizontal tangent line.

46. Find the coordinates of points on the curve y D
x C 1

x C 2
where

the tangent line is parallel to the line y D 4x.

47. Find the equation of the straight line that passes through the

point .0; b/ and is tangent to the curve y D 1=x. Assume

b ¤ 0.

48.I Show that the curve y D x2 intersects the curve y D 1=
p

x at

right angles.

49. Find two straight lines that are tangent to y D x3 and pass

through the point .2; 8/.

50. Find two straight lines that are tangent to y D x2=.x � 1/ and

pass through the point .2; 0/.
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T H E O R E M

5

The Quotient Rule

If f and g are differentiable at x, and if g.x/ ¤ 0, then the quotient f=g is differen-

tiable at x and

�

f

g

�0

.x/ D
g.x/f

0
.x/� f .x/g

0
.x/

.g.x//
2

:

Sometimes students have trouble remembering this rule. (Getting the order of the

terms in the numerator wrong will reverse the sign.) Try to remember (and use) the

Quotient Rule in the following form:

.quotient/0

D

.denominator/ � .numerator/0 � .numerator/ � .denominator/0

.denominator/2

E X A M P L E 9
Find the derivatives of

(a) y D
1 � x2

1C x2
, (b)

p

t

3 � 5t
, and (c) f .�/ D

aC b�

mC n�
.

Solution We use the Quotient Rule in each case.

(a)
dy

dx
D

.1C x
2
/.�2x/ � .1 � x

2
/.2x/

.1C x2/2
D �

4x

.1C x2/2
.

(b)
d

dt

 p

t

3 � 5t

!

D

.3 � 5t/
1

2
p

t
�

p

t.�5/

.3 � 5t/2
D

3C 5t

2
p

t.3 � 5t/2
.

(c) f 0.�/ D
.mC n�/.b/ � .aC b�/.n/

.mC n�/2
D

mb � na

.mC n�/2
.

In all three parts of Example 9, the Quotient Rule yielded fractions with numerators

that were complicated but could be simplified algebraically. It is advisable to attempt

such simplifications when calculating derivatives; the usefulness of derivatives in ap-

plications of calculus often depends on such simplifications.

E X A M P L E 10
Find equations of any lines that pass through the point .�1; 0/ and

are tangent to the curve y D .x � 1/=.x C 1/.

Solution The point .�1; 0/ does not lie on the curve, so it is not the point of tangency.

Suppose a line is tangent to the curve at x D a, so the point of tangency is .a; .a �

1/=.aC 1//. Note that a cannot be �1. The slope of the line must be

dy

dx

ˇ

ˇ

ˇ

ˇ

xDa

D

.x C 1/.1/ � .x � 1/.1/

.x C 1/2

ˇ

ˇ

ˇ

ˇ

xDa

D

2

.aC 1/2
:

If the line also passes through .�1; 0/, its slope must also be given by

a � 1

aC 1
� 0

a � .�1/
D

a � 1

.aC 1/2
:

Equating these two expressions for the slope, we get an equation to solve for a:

a � 1

.aC 1/2
D

2

.aC 1/2
÷ a � 1 D 2:
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Thus, a D 3, and the slope of the line is 2=42
D 1=8. There is only one line through

.�1; 0/ tangent to the given curve, and its equation is

y D 0C
1

8
.x C 1/ or x � 8y C 1 D 0:

Remark Derivatives of quotients of functions where the denominator is a monomial,

such as in Example 8, are usually easier to do by breaking the quotient into a sum of

several fractions (as was done in that example) rather than by using the Quotient Rule.

E X E R C I S E S 2.3

In Exercises 1–32, calculate the derivatives of the given functions.

Simplify your answers whenever possible.

1. y D 3x2
� 5x � 7 2. y D 4x1=2

�

5

x

3. f .x/ D Ax2
C Bx C C 4. f .x/ D

6

x3
C

2

x2
� 2

5. z D
s

5
� s

3

15
6. y D x45

� x
�45

7. g.t/ D t1=3
C 2t

1=4
C 3t

1=5

8. y D 3
3
p

t2 �
2
p

t3
9. u D

3

5
x

5=3
�

5

3
x

�3=5

10. F.x/ D .3x � 2/.1 � 5x/

11. y D
p

x

�

5� x �
x2

3

�

12. g.t/ D
1

2t � 3

13. y D
1

x2
C 5x

14. y D
4

3 � x

15. f .t/ D
�

2 � �t
16. g.y/ D

2

1 � y2

17. f .x/ D
1 � 4x

2

x3
18. g.u/ D

u
p

u � 3

u2

19. y D
2C t C t2

p

t
20. z D

x � 1

x2=3

21. f .x/ D
3 � 4x

3C 4x
22. z D

t2 C 2t

t2 � 1

23. s D
1C
p

t

1�
p

t
24. f .x/ D

x3
� 4

x C 1

25. f .x/ D
ax C b

cx C d
26. F.t/ D

t2 C 7t � 8

t2 � t C 1

27. f .x/ D .1C x/.1C 2x/.1C 3x/.1C 4x/

28. f .r/ D .r�2
C r

�3
� 4/.r

2
C r

3
C 1/

29. y D .x2
C 4/.

p

x C 1/.5x
2=3
� 2/

30. y D
.x

2
C 1/.x

3
C 2/

.x2
C 2/.x3

C 1/

31.I y D
x

2x C
1

3x C 1

32.I f .x/ D
.
p

x � 1/.2 � x/.1 � x2/
p

x.3C 2x/

Calculate the derivatives in Exercises 33–36, given that f .2/ D 2

and f 0.2/ D 3.

33.
d

dx

�

x2

f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

34.
d

dx

�

f .x/

x2

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

35.
d

dx

�

x
2
f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

36.
d

dx

�

f .x/

x2
C f .x/

�

ˇ

ˇ

ˇ

ˇ

ˇ

xD2

37. Find
d

dx

�

x2
� 4

x2
C 4

�
ˇ

ˇ

ˇ

ˇ

xD�2

. 38. Find

d

dt

 

t .1C
p

t /

5 � t

!

ˇ

ˇ

ˇ

ˇ

tD4

.

39. If f .x/ D

p

x

x C 1
, find f 0.2/.

40. Find
d

dt

�

.1C t /.1C 2t/.1C 3t/.1C 4t/

�
ˇ

ˇ

ˇ

ˇ

tD0

.

41. Find an equation of the tangent line to y D
2

3 � 4
p

x
at the

point .1;�2/.

42. Find equations of the tangent and normal to y D
x C 1

x � 1
at

x D 2.

43. Find the points on the curve y D x C 1=x where the tangent

line is horizontal.

44. Find the equations of all horizontal lines that are tangent to the

curve y D x2.4 � x2/.

45. Find the coordinates of all points where the curve

y D
1

x2
C x C 1

has a horizontal tangent line.

46. Find the coordinates of points on the curve y D
x C 1

x C 2
where

the tangent line is parallel to the line y D 4x.

47. Find the equation of the straight line that passes through the

point .0; b/ and is tangent to the curve y D 1=x. Assume

b ¤ 0.

48.I Show that the curve y D x2 intersects the curve y D 1=
p

x at

right angles.

49. Find two straight lines that are tangent to y D x3 and pass

through the point .2; 8/.

50. Find two straight lines that are tangent to y D x2=.x � 1/ and

pass through the point .2; 0/.
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51.A (A Square Root Rule) Show that if f is differentiable at x

and f .x/ > 0, then

d

dx

p

f .x/ D
f 0.x/

2
p

f .x/
:

Use this Square Root Rule to find the derivative of
p

x2
C 1.

52.A Show that f .x/ D jx3
j is differentiable at every real number

x, and find its derivative.

Mathematical Induction

53.A Use mathematical induction to prove that
d

dx
x

n=2
D

n

2
x

.n=2/�1 for every positive integer n. Then use

the Reciprocal Rule to get the same result for every negative

integer n.

54.A Use mathematical induction to prove the formula for the

derivative of a product of n functions given earlier in this

section.

2.4 The Chain Rule
Although we can differentiate

p

x and x2
C 1, we cannot yet differentiate

p

x2
C 1.

To do this, we need a rule that tells us how to differentiate composites of functions

whose derivatives we already know. This rule is known as the Chain Rule and is the

most often used of all the differentiation rules.

E X A M P L E 1 The function
1

x2
� 4

is the composite f .g.x// of f .u/ D
1

u
and

g.x/ D x2
� 4, which have derivatives

f
0
.u/ D

�1

u2
and g

0
.x/ D 2x:

According to the Reciprocal Rule (which is a special case of the Chain Rule),

d

dx
f .g.x// D

d

dx

�

1

x2
� 4

�

D

�2x

.x2
� 4/2

D

�1

.x2
� 4/2

.2x/

D f
0
.g.x//g

0
.x/:

This example suggests that the derivative of a composite function f .g.x// is the

derivative of f evaluated at g.x/ multiplied by the derivative of g evaluated at x.

This is the Chain Rule:

d

dx
f .g.x// D f

0
.g.x// g

0
.x/:

T H E O R E M

6

The Chain Rule

If f .u/ is differentiable at u D g.x/, and g.x/ is differentiable at x, then the compos-

ite function f ı g.x/ D f .g.x// is differentiable at x, and

.f ı g/
0
.x/ D f

0
.g.x//g

0
.x/:

In terms of Leibniz notation, if y D f .u/ where u D g.x/, then y D f .g.x// and:

at u, y is changing
dy

du
times as fast as u is changing;

at x, u is changing
du

dx
times as fast as x is changing.

Therefore, at x, y D f .u/ D f .g.x// is changing
dy

du
�

du

dx
times as fast as x is

changing. That is,
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dy

dx
D

dy

du

du

dx
; where

dy

du
is evaluated at u D g.x/.

It appears as though the symbol du cancels from the numerator and denominator, but

this is not meaningful because dy=duwas not defined as the quotient of two quantities,

but rather as a single quantity, the derivative of y with respect to u.

We would like to prove Theorem 6 by writing

�y

�x
D

�y

�u

�u

�x

and taking the limit as �x ! 0. Such a proof is valid for most composite functions

but not all. (See Exercise 46 at the end of this section.) A correct proof will be given

later in this section, but first we do more examples to get a better idea of how the Chain

Rule works.

E X A M P L E 2
Find the derivative of y D

p

x2
C 1.

Solution Here y D f .g.x//, where f .u/ D
p

u and g.x/ D x2
C 1. Since the

derivatives of f and g are

f
0
.u/ D

1

2
p

u
and g

0
.x/ D 2x;

the Chain Rule gives

dy

dx
D

d

dx
f .g.x// D f

0
.g.x// � g

0
.x/

D

1

2
p

g.x/
� g

0
.x/ D

1

2
p

x2
C 1
� .2x/ D

x
p

x2
C 1

:

Outside and Inside Functions

In the composite f .g.x//, the

function f is “outside,” and the

function g is “inside.” The Chain

Rule says that the derivative of

the composite is the derivative

f 0 of the outside function

evaluated at the inside function

g.x/, multiplied by the

derivative g0.x/ of the inside

function:
d

dx
f .g.x// D f

0
.g.x//�g

0
.x/.

Usually, when applying the Chain Rule, we do not introduce symbols to represent

the functions being composed, but rather just proceed to calculate the derivative of the

“outside” function and then multiply by the derivative of whatever is “inside.” You can

say to yourself: “the derivative of f of something is f 0 of that thing, multiplied by the

derivative of that thing.”

E X A M P L E 3
Find derivatives of the following functions:

(a) .7x � 3/10, (b) f .t/ D jt2 � 1j, and (c)

�

3x C
1

.2x C 1/3

�1=4

.

Solution

(a) Here, the outside function is the 10th power; it must be differentiated first and the

result multiplied by the derivative of the expression 7x � 3:

d

dx
.7x � 3/

10
D 10.7x � 3/

9
.7/ D 70.7x � 3/

9
:

(b) Here, we are differentiating the absolute value of something. The derivative is

signum of that thing, multiplied by the derivative of that thing:

f
0
.t/ D

�

sgn .t2�1/
�

.2t/ D
2t.t

2
� 1/

jt2 � 1j
D

(

2t if t < �1 or t > 1

�2t if �1 < t < 1

undefined if t D ˙1.

9780134154367_Calculus   136 05/12/16   3:11 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 116 October 15, 2016

116 CHAPTER 2 Differentiation

51.A (A Square Root Rule) Show that if f is differentiable at x

and f .x/ > 0, then

d

dx

p

f .x/ D
f 0.x/

2
p

f .x/
:

Use this Square Root Rule to find the derivative of
p

x2
C 1.

52.A Show that f .x/ D jx3
j is differentiable at every real number

x, and find its derivative.

Mathematical Induction

53.A Use mathematical induction to prove that
d

dx
x

n=2
D

n

2
x

.n=2/�1 for every positive integer n. Then use

the Reciprocal Rule to get the same result for every negative

integer n.

54.A Use mathematical induction to prove the formula for the

derivative of a product of n functions given earlier in this

section.

2.4 The Chain Rule
Although we can differentiate

p

x and x2
C 1, we cannot yet differentiate

p

x2
C 1.

To do this, we need a rule that tells us how to differentiate composites of functions

whose derivatives we already know. This rule is known as the Chain Rule and is the

most often used of all the differentiation rules.

E X A M P L E 1 The function
1

x2
� 4

is the composite f .g.x// of f .u/ D
1

u
and

g.x/ D x2
� 4, which have derivatives

f
0
.u/ D

�1

u2
and g

0
.x/ D 2x:

According to the Reciprocal Rule (which is a special case of the Chain Rule),

d

dx
f .g.x// D

d

dx

�

1

x2
� 4

�

D

�2x

.x2
� 4/2

D

�1

.x2
� 4/2

.2x/

D f
0
.g.x//g

0
.x/:

This example suggests that the derivative of a composite function f .g.x// is the

derivative of f evaluated at g.x/ multiplied by the derivative of g evaluated at x.

This is the Chain Rule:

d

dx
f .g.x// D f

0
.g.x// g

0
.x/:

T H E O R E M

6

The Chain Rule

If f .u/ is differentiable at u D g.x/, and g.x/ is differentiable at x, then the compos-

ite function f ı g.x/ D f .g.x// is differentiable at x, and

.f ı g/
0
.x/ D f

0
.g.x//g

0
.x/:

In terms of Leibniz notation, if y D f .u/ where u D g.x/, then y D f .g.x// and:

at u, y is changing
dy

du
times as fast as u is changing;

at x, u is changing
du

dx
times as fast as x is changing.

Therefore, at x, y D f .u/ D f .g.x// is changing
dy

du
�

du

dx
times as fast as x is

changing. That is,
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dy

dx
D

dy

du

du

dx
; where

dy

du
is evaluated at u D g.x/.

It appears as though the symbol du cancels from the numerator and denominator, but

this is not meaningful because dy=duwas not defined as the quotient of two quantities,

but rather as a single quantity, the derivative of y with respect to u.

We would like to prove Theorem 6 by writing

�y

�x
D

�y

�u

�u

�x

and taking the limit as �x ! 0. Such a proof is valid for most composite functions

but not all. (See Exercise 46 at the end of this section.) A correct proof will be given

later in this section, but first we do more examples to get a better idea of how the Chain

Rule works.

E X A M P L E 2
Find the derivative of y D

p

x2
C 1.

Solution Here y D f .g.x//, where f .u/ D
p

u and g.x/ D x2
C 1. Since the

derivatives of f and g are

f
0
.u/ D

1

2
p

u
and g

0
.x/ D 2x;

the Chain Rule gives

dy

dx
D

d

dx
f .g.x// D f

0
.g.x// � g

0
.x/

D

1

2
p

g.x/
� g

0
.x/ D

1

2
p

x2
C 1
� .2x/ D

x
p

x2
C 1

:

Outside and Inside Functions

In the composite f .g.x//, the

function f is “outside,” and the

function g is “inside.” The Chain

Rule says that the derivative of

the composite is the derivative

f 0 of the outside function

evaluated at the inside function

g.x/, multiplied by the

derivative g0.x/ of the inside

function:
d

dx
f .g.x// D f

0
.g.x//�g

0
.x/.

Usually, when applying the Chain Rule, we do not introduce symbols to represent

the functions being composed, but rather just proceed to calculate the derivative of the

“outside” function and then multiply by the derivative of whatever is “inside.” You can

say to yourself: “the derivative of f of something is f 0 of that thing, multiplied by the

derivative of that thing.”

E X A M P L E 3
Find derivatives of the following functions:

(a) .7x � 3/10, (b) f .t/ D jt2 � 1j, and (c)

�

3x C
1

.2x C 1/3

�1=4

.

Solution

(a) Here, the outside function is the 10th power; it must be differentiated first and the

result multiplied by the derivative of the expression 7x � 3:

d

dx
.7x � 3/

10
D 10.7x � 3/

9
.7/ D 70.7x � 3/

9
:

(b) Here, we are differentiating the absolute value of something. The derivative is

signum of that thing, multiplied by the derivative of that thing:

f
0
.t/ D

�

sgn .t2�1/
�

.2t/ D
2t.t

2
� 1/

jt2 � 1j
D

(

2t if t < �1 or t > 1

�2t if �1 < t < 1

undefined if t D ˙1.
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(c) Here, we will need to use the Chain Rule twice. We begin by differentiating the

1=4 power of something, but the something involves the �3rd power of 2x C 1,

and the derivative of that will also require the Chain Rule:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4
d

dx

�

3x C
1

.2x C 1/3

�

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4

d

dx
.2x C 1/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

When you start to feel comfortable with the Chain Rule, you may want to save a

line or two by carrying out the whole differentiation in one step:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4
.2/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

Use of the Chain Rule produces products of factors that do not usually come out in the

order you would naturally write them. Often you will want to rewrite the result with the

factors in a different order. This is obvious in parts (a) and (c) of the example above. In

monomials (expressions that are products of factors), it is common to write the factors

in order of increasing complexity from left to right, with numerical factors coming

first. One time when you would not waste time doing this, or trying to make any other

simplification, is when you are going to evaluate the derivative at a particular number.

In this case, substitute the number as soon as you have calculated the derivative, before

doing any simplification:

d

dx
.x

2
� 3/

10
ˇ

ˇ

ˇ

xD2
D 10.x

2
� 3/

9
.2x/

ˇ

ˇ

ˇ

xD2
D .10/.1

9
/.4/ D 40:

E X A M P L E 4
Suppose that f is a differentiable function on the real line. In

terms of the derivative f 0 of f , express the derivatives of:

(a) f .3x/, (b) f .x2/, (c) f .�f .x//, and (d) Œf .3 � 2f .x//�4.

Solution

(a)
d

dx
f .3x/ D

�

f
0
.3x/

�

.3/ D 3f
0
.3x/:

(b)
d

dx
f .x

2
/ D

�

f
0
.x

2
/
�

.2x/ D 2xf
0
.x

2
/:

(c)
d

dx
f .�f .x// D

�

f
0
.�f .x//

�

.�f
0
.x// D �f

0
.x/f

0
.�f .x//:

(d)
d

dx

�

f
�

3 � 2f .x/
��4
D 4

�

f
�

3 � 2f .x/
��3
f

0�
3 � 2f .x/

��

�2f
0
.x/
�

D �8f
0
.x/f

0�
3� 2f .x/

��

f
�

3 � 2f .x/
��3
:

As a final example, we illustrate combinations of the Chain Rule with the Product and

Quotient Rules.

E X A M P L E 5
Find and simplify the following derivatives:

(a) f 0.t/ if f .t/ D
t2 C 1
p

t2 C 2
, and (b) g0.�1/ if g.x/ D

�

x2
C3xC4

�5p

3 � 2x.
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Solution

(a) f
0
.t/ D

p

t2 C 2.2t/ � .t
2
C 1/

2t

2
p

t2 C 2

t2 C 2

D

2t
p

t2 C 2
�

t3 C t

�

t2 C 2
�3=2
D

t3 C 3t

�

t2 C 2
�3=2

:

(b) g
0
.x/ D 5

�

x
2
C 3x C 4

�4
.2x C 3/

p

3 � 2x C
�

x
2
C 3x C 4

�5 �2

2
p

3 � 2x

g
0
.�1/ D .5/.2

4
/.1/.
p

5/ �
25

p

5
D 80

p

5 �
32

5

p

5 D
368
p

5

5
:

Finding Derivatives with Maple
M Computer algebra systems know the derivatives of elementary functions and can cal-

culate the derivatives of combinations of these functions symbolically, using differen-

tiation rules. Maple’s D operator can be used to find the derivative function D(f) of a

function f of one variable. Alternatively, you can use diff to differentiate an expres-

sion with respect to a variable and then use the substitution routine subs to evaluate

the result at a particular number.

> f := x -> sqrt(1+2*x^2);

f WD x !
p

1C 2x2

> fprime := D(f);

fprime WD x ! 2
x

p

1C 2x2

> fprime(2);

4

3

> diff(t^2*sin(3*t),t);

2 t sin.3 t/C 3 t2 cos.3 t/

> simplify(subs(t=Pi/12, %));

1

12
�
p

2C
1

96
�

2
p

2

Building the Chain Rule into Differentiation Formulas
If u is a differentiable function of x and y D un, then the Chain Rule gives

d

dx
u

n
D

dy

dx
D

dy

du

du

dx
D nu

n�1 du

dx
:

The formula

d

dx
u

n
D nu

n�1 du

dx

is just the formula d
dx
xn
D nxn�1 with an application of the Chain Rule built in, so

that it applies to functions of x rather than just to x. Some other differentiation rules

with built-in Chain Rule applications are:
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(c) Here, we will need to use the Chain Rule twice. We begin by differentiating the

1=4 power of something, but the something involves the �3rd power of 2x C 1,

and the derivative of that will also require the Chain Rule:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4
d

dx

�

3x C
1

.2x C 1/3

�

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4

d

dx
.2x C 1/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

When you start to feel comfortable with the Chain Rule, you may want to save a

line or two by carrying out the whole differentiation in one step:

d

dx

�

3x C
1

.2x C 1/3

�1=4

D

1

4

�

3x C
1

.2x C 1/3

��3=4 �

3 �
3

.2x C 1/4
.2/

�

D

3

4

�

1 �
2

.2x C 1/4

��

3x C
1

.2x C 1/3

��3=4

:

Use of the Chain Rule produces products of factors that do not usually come out in the

order you would naturally write them. Often you will want to rewrite the result with the

factors in a different order. This is obvious in parts (a) and (c) of the example above. In

monomials (expressions that are products of factors), it is common to write the factors

in order of increasing complexity from left to right, with numerical factors coming

first. One time when you would not waste time doing this, or trying to make any other

simplification, is when you are going to evaluate the derivative at a particular number.

In this case, substitute the number as soon as you have calculated the derivative, before

doing any simplification:

d

dx
.x

2
� 3/

10
ˇ

ˇ

ˇ

xD2
D 10.x

2
� 3/

9
.2x/

ˇ

ˇ

ˇ

xD2
D .10/.1

9
/.4/ D 40:

E X A M P L E 4
Suppose that f is a differentiable function on the real line. In

terms of the derivative f 0 of f , express the derivatives of:

(a) f .3x/, (b) f .x2/, (c) f .�f .x//, and (d) Œf .3 � 2f .x//�4.

Solution

(a)
d

dx
f .3x/ D

�

f
0
.3x/

�

.3/ D 3f
0
.3x/:

(b)
d

dx
f .x

2
/ D

�

f
0
.x

2
/
�

.2x/ D 2xf
0
.x

2
/:

(c)
d

dx
f .�f .x// D

�

f
0
.�f .x//

�

.�f
0
.x// D �f

0
.x/f

0
.�f .x//:

(d)
d

dx

�

f
�

3 � 2f .x/
��4
D 4

�

f
�

3 � 2f .x/
��3
f

0�
3 � 2f .x/

��

�2f
0
.x/
�

D �8f
0
.x/f

0�
3� 2f .x/

��

f
�

3 � 2f .x/
��3
:

As a final example, we illustrate combinations of the Chain Rule with the Product and

Quotient Rules.

E X A M P L E 5
Find and simplify the following derivatives:

(a) f 0.t/ if f .t/ D
t2 C 1
p

t2 C 2
, and (b) g0.�1/ if g.x/ D

�

x2
C3xC4

�5p

3 � 2x.
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Solution

(a) f
0
.t/ D

p

t2 C 2.2t/ � .t
2
C 1/

2t

2
p

t2 C 2

t2 C 2

D

2t
p

t2 C 2
�

t3 C t

�

t2 C 2
�3=2
D

t3 C 3t

�

t2 C 2
�3=2

:

(b) g
0
.x/ D 5

�

x
2
C 3x C 4

�4
.2x C 3/

p

3 � 2x C
�

x
2
C 3x C 4

�5 �2

2
p

3 � 2x

g
0
.�1/ D .5/.2

4
/.1/.
p

5/ �
25

p

5
D 80

p

5 �
32

5

p

5 D
368
p

5

5
:

Finding Derivatives with Maple
M Computer algebra systems know the derivatives of elementary functions and can cal-

culate the derivatives of combinations of these functions symbolically, using differen-

tiation rules. Maple’s D operator can be used to find the derivative function D(f) of a

function f of one variable. Alternatively, you can use diff to differentiate an expres-

sion with respect to a variable and then use the substitution routine subs to evaluate

the result at a particular number.

> f := x -> sqrt(1+2*x^2);

f WD x !
p

1C 2x2

> fprime := D(f);

fprime WD x ! 2
x

p

1C 2x2

> fprime(2);

4

3

> diff(t^2*sin(3*t),t);

2 t sin.3 t/C 3 t2 cos.3 t/

> simplify(subs(t=Pi/12, %));

1

12
�
p

2C
1

96
�

2
p

2

Building the Chain Rule into Differentiation Formulas
If u is a differentiable function of x and y D un, then the Chain Rule gives

d

dx
u

n
D

dy

dx
D

dy

du

du

dx
D nu

n�1 du

dx
:

The formula

d

dx
u

n
D nu

n�1 du

dx

is just the formula d
dx
xn
D nxn�1 with an application of the Chain Rule built in, so

that it applies to functions of x rather than just to x. Some other differentiation rules

with built-in Chain Rule applications are:
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d

dx

�

1

u

�

D

�1

u2

du

dx
(the Reciprocal Rule)

d

dx

p

u D
1

2
p

u

du

dx
(the Square Root Rule)

d

dx
u

r
D r ur�1

du

dx
(the General Power Rule)

d

dx
juj D sgnu

du

dx
D

u

juj

du

dx
(the Absolute Value Rule)

Proof of the Chain Rule (Theorem 6)
Suppose that f is differentiable at the point u D g.x/ and that g is differentiable at x.

Let the function E.k/ be defined by

E.0/ D 0;

E.k/ D
f .uC k/� f .u/

k
� f

0
.u/; if k ¤ 0:

By the definition of derivative, limk!0E.k/ D f
0.u/ � f 0.u/ D 0 D E.0/, so E.k/

is continuous at k D 0. Also, whether k D 0 or not, we have

f .uC k/� f .u/ D
�

f
0
.u/CE.k/

�

k:

Now put u D g.x/ and k D g.x C h/ � g.x/, so that uC k D g.x C h/, and obtain

f .g.x C h// � f .g.x// D
�

f
0
.g.x//C E.k/

�

.g.x C h/ � g.x//:

Since g is differentiable at x, limh!0Œg.x C h/ � g.x/�=h D g0.x/. Also, g is

continuous at x by Theorem 1, so limh!0 k D limh!0.g.x C h/ � g.x// D 0. Since

E is continuous at 0, limh!0E.k/ D limk!0E.k/ D E.0/ D 0: Hence,

d

dx
f .g.x// D lim

h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

�

f
0
.g.x//CE.k/

� g.x C h/ � g.x/

h

D

�

f
0
.g.x//C 0

�

g
0
.x/ D f

0
.g.x//g

0
.x/;

which was to be proved.

E X E R C I S E S 2.4

Find the derivatives of the functions in Exercises 1–16.

1. y D .2x C 3/6 2. y D
�

1 �
x

3

�99

3. f .x/ D .4 � x2
/
10 4. y D

p

1� 3x2

5. F.t/ D

�

2C
3

t

��10

6. .1C x2=3
/
3=2

7.
3

5 � 4x
8. .1 � 2t2/�3=2

9.A y D j1 � x
2
j 10.A f .t/ D j2C t

3
j

11. y D 4x C j4x � 1j 12. y D .2C jxj3/1=3

13. y D
1

2C
p

3x C 4
14. f .x/ D

 

1C

r

x � 2

3

!4

15. z D

�

uC
1

u � 1

��5=3

16. y D
x5
p

3C x6

.4C x2/3

17. Sketch the graph of the function in Exercise 10.

18. Sketch the graph of the function in Exercise 11.

Verify that the General Power Rule holds for the functions in

Exercises 19–21.
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19. x1=4
D

q

p

x 20. x3=4
D

q

x
p

x

21. x3=2
D

p

.x3/

In Exercises 22–29, express the derivative of the given function in

terms of the derivative f 0 of the differentiable function f:

22. f .2t C 3/ 23. f .5x � x2
/

24.

�

f

�

2

x

��3

25.
p

3C 2f .x/

26. f
�

p

3C 2t

�

27. f
�

3C 2
p

x
�

28. f
�

2f .3f .x//

�

29. f
�

2 � 3f .4 � 5t/

�

30. Find
d

dx

 p

x2
� 1

x2
C 1

!

ˇ

ˇ

ˇ

ˇ

xD�2

:

31. Find
d

dt

p

3t � 7

ˇ

ˇ

ˇ

ˇ

tD3

:

32. If f .x/ D
1

p

2x C 1
, find f 0.4/:

33. If y D .x3
C 9/17=2, find y 0

ˇ

ˇ

ˇ

ˇ

xD�2

.

34. Find F 0.0/ if F.x/ D .1C x/.2C x/2.3C x/3.4C x/4.

35.I Calculate y 0 if y D .x C ..3x/5 � 2/�1=2/�6. Try to do it all

in one step.

In Exercises 36–39, find an equation of the tangent line to the

given curve at the given point.

36. y D
p

1C 2x2 at x D 2

37. y D .1C x2=3/3=2 at x D �1

38. y D .ax C b/8 at x D b=a

39. y D 1=.x2
� x C 3/

3=2 at x D �2

40. Show that the derivative of f .x/ D .x � a/m.x � b/n

vanishes at some point between a and b if m and n are

positive integers.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 41–44.

M 41. y D
p

x2
C 1C

1

.x2
C 1/3=2

M 42. y D
.x2
� 1/.x2

� 4/.x2
� 9/

x6

M 43.
dy

dt

ˇ

ˇ

ˇ

ˇ

ˇ

tD2

if y D .t C 1/.t
2
C 2/.t

3
C 3/.t

4
C 4/.t

5
C 5/

M 44. f 0
.1/ if f .x/ D

.x2
C 3/1=2.x3

C 7/1=3

.x4
C 15/1=4

45.A Does the Chain Rule enable you to calculate the derivatives of

jxj2 and jx2
j at x D 0? Do these functions have derivatives at

x D 0? Why?

46.I What is wrong with the following “proof” of the Chain Rule?

Let k D g.x C h/ � g.x/. Then limh!0 k D 0: Thus,

lim
h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

f .g.x C h// � f .g.x//

g.x C h/ � g.x/

g.x C h/ � g.x/

h

D lim
h!0

f .g.x/C k/ � f .g.x//

k

g.x C h/ � g.x/

h

D f
0
.g.x// g

0
.x/:

2.5 Derivatives of Trigonometric Functions

The trigonometric functions, especially sine and cosine, play a very important role in

the mathematical modelling of real-world phenomena. In particular, they arise when-

ever quantities fluctuate in a periodic way. Elastic motions, vibrations, and waves of all

kinds naturally involve the trigonometric functions, and many physical and mechanical

laws are formulated as differential equations having these functions as solutions.

In this section we will calculate the derivatives of the six trigonometric functions.

We only have to work hard for one of them, sine; the others then follow from known

identities and the differentiation rules of Section 2.3.

Some Special Limits
First, we have to establish some trigonometric limits that we will need to calculate the

derivative of sine. It is assumed throughout that the arguments of the trigonometric

functions are measured in radians.

T H E O R E M

7

The functions sin � and cos � are continuous at every value of � . In particular, at � D 0

we have:

lim
�!0

sin � D sin 0 D 0 and lim
�!0

cos � D cos 0 D 1:
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d

dx

�

1

u

�

D

�1

u2

du

dx
(the Reciprocal Rule)

d

dx

p

u D
1

2
p

u

du

dx
(the Square Root Rule)

d

dx
u

r
D r ur�1

du

dx
(the General Power Rule)

d

dx
juj D sgnu

du

dx
D

u

juj

du

dx
(the Absolute Value Rule)

Proof of the Chain Rule (Theorem 6)
Suppose that f is differentiable at the point u D g.x/ and that g is differentiable at x.

Let the function E.k/ be defined by

E.0/ D 0;

E.k/ D
f .uC k/� f .u/

k
� f

0
.u/; if k ¤ 0:

By the definition of derivative, limk!0E.k/ D f
0.u/ � f 0.u/ D 0 D E.0/, so E.k/

is continuous at k D 0. Also, whether k D 0 or not, we have

f .uC k/� f .u/ D
�

f
0
.u/CE.k/

�

k:

Now put u D g.x/ and k D g.x C h/ � g.x/, so that uC k D g.x C h/, and obtain

f .g.x C h// � f .g.x// D
�

f
0
.g.x//C E.k/

�

.g.x C h/ � g.x//:

Since g is differentiable at x, limh!0Œg.x C h/ � g.x/�=h D g0.x/. Also, g is

continuous at x by Theorem 1, so limh!0 k D limh!0.g.x C h/ � g.x// D 0. Since

E is continuous at 0, limh!0E.k/ D limk!0E.k/ D E.0/ D 0: Hence,

d

dx
f .g.x// D lim

h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

�

f
0
.g.x//CE.k/

� g.x C h/ � g.x/

h

D

�

f
0
.g.x//C 0

�

g
0
.x/ D f

0
.g.x//g

0
.x/;

which was to be proved.

E X E R C I S E S 2.4

Find the derivatives of the functions in Exercises 1–16.

1. y D .2x C 3/6 2. y D
�

1 �
x

3

�99

3. f .x/ D .4 � x2
/
10 4. y D

p

1� 3x2

5. F.t/ D

�

2C
3

t

��10

6. .1C x2=3
/
3=2

7.
3

5 � 4x
8. .1 � 2t2/�3=2

9.A y D j1 � x
2
j 10.A f .t/ D j2C t

3
j

11. y D 4x C j4x � 1j 12. y D .2C jxj3/1=3

13. y D
1

2C
p

3x C 4
14. f .x/ D

 

1C

r

x � 2

3

!4

15. z D

�

uC
1

u � 1

��5=3

16. y D
x5
p

3C x6

.4C x2/3

17. Sketch the graph of the function in Exercise 10.

18. Sketch the graph of the function in Exercise 11.

Verify that the General Power Rule holds for the functions in

Exercises 19–21.
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19. x1=4
D

q

p

x 20. x3=4
D

q

x
p

x

21. x3=2
D

p

.x3/

In Exercises 22–29, express the derivative of the given function in

terms of the derivative f 0 of the differentiable function f:

22. f .2t C 3/ 23. f .5x � x2
/

24.

�

f

�

2

x

��3

25.
p

3C 2f .x/

26. f
�

p

3C 2t

�

27. f
�

3C 2
p

x
�

28. f
�

2f .3f .x//

�

29. f
�

2 � 3f .4 � 5t/

�

30. Find
d

dx

 p

x2
� 1

x2
C 1

!

ˇ

ˇ

ˇ

ˇ

xD�2

:

31. Find
d

dt

p

3t � 7

ˇ

ˇ

ˇ

ˇ

tD3

:

32. If f .x/ D
1

p

2x C 1
, find f 0.4/:

33. If y D .x3
C 9/17=2, find y 0

ˇ

ˇ

ˇ

ˇ

xD�2

.

34. Find F 0.0/ if F.x/ D .1C x/.2C x/2.3C x/3.4C x/4.

35.I Calculate y 0 if y D .x C ..3x/5 � 2/�1=2/�6. Try to do it all

in one step.

In Exercises 36–39, find an equation of the tangent line to the

given curve at the given point.

36. y D
p

1C 2x2 at x D 2

37. y D .1C x2=3/3=2 at x D �1

38. y D .ax C b/8 at x D b=a

39. y D 1=.x2
� x C 3/

3=2 at x D �2

40. Show that the derivative of f .x/ D .x � a/m.x � b/n

vanishes at some point between a and b if m and n are

positive integers.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 41–44.

M 41. y D
p

x2
C 1C

1

.x2
C 1/3=2

M 42. y D
.x2
� 1/.x2

� 4/.x2
� 9/

x6

M 43.
dy

dt

ˇ

ˇ

ˇ

ˇ

ˇ

tD2

if y D .t C 1/.t
2
C 2/.t

3
C 3/.t

4
C 4/.t

5
C 5/

M 44. f 0
.1/ if f .x/ D

.x2
C 3/1=2.x3

C 7/1=3

.x4
C 15/1=4

45.A Does the Chain Rule enable you to calculate the derivatives of

jxj2 and jx2
j at x D 0? Do these functions have derivatives at

x D 0? Why?

46.I What is wrong with the following “proof” of the Chain Rule?

Let k D g.x C h/ � g.x/. Then limh!0 k D 0: Thus,

lim
h!0

f .g.x C h// � f .g.x//

h

D lim
h!0

f .g.x C h// � f .g.x//

g.x C h/ � g.x/

g.x C h/ � g.x/

h

D lim
h!0

f .g.x/C k/ � f .g.x//

k

g.x C h/ � g.x/

h

D f
0
.g.x// g

0
.x/:

2.5 Derivatives of Trigonometric Functions

The trigonometric functions, especially sine and cosine, play a very important role in

the mathematical modelling of real-world phenomena. In particular, they arise when-

ever quantities fluctuate in a periodic way. Elastic motions, vibrations, and waves of all

kinds naturally involve the trigonometric functions, and many physical and mechanical

laws are formulated as differential equations having these functions as solutions.

In this section we will calculate the derivatives of the six trigonometric functions.

We only have to work hard for one of them, sine; the others then follow from known

identities and the differentiation rules of Section 2.3.

Some Special Limits
First, we have to establish some trigonometric limits that we will need to calculate the

derivative of sine. It is assumed throughout that the arguments of the trigonometric

functions are measured in radians.

T H E O R E M

7

The functions sin � and cos � are continuous at every value of � . In particular, at � D 0

we have:

lim
�!0

sin � D sin 0 D 0 and lim
�!0

cos � D cos 0 D 1:
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This result is obvious from the graphs of sine and cosine, so we will not prove it here. A

proof can be based on the Squeeze Theorem (Theorem 4 of Section 1.2). The method

is suggested in Exercise 62 at the end of this section.

The graph of the function y D .sin �/=� is shown in Figure 2.20. Although it is

not defined at � D 0, this function appears to have limit 1 as � approaches 0.

y

�
�
2

� �
2

��� 0:5

1 y D
sin �

�

Figure 2.20 It appears that

lim
�!0

.sin �/=� D 1

T H E O R E M

8

An important trigonometric limit

lim
�!0

sin �

�
D 1 (where � is in radians).

PROOF Let 0 < � < �=2, and represent � as shown in Figure 2.21. Points A.1; 0/

and P.cos �; sin �/ lie on the unit circle x2
C y2

D 1. The area of the circular sector

OAP lies between the areas of triangles OAP and OAT :

Area 4OAP < Area sector OAP < Area 4OAT:

As shown in Section P.7, the area of a circular sector having central angle � (radians)

y

x

AD.1;0/

T D.1;tan �/

P D.cos �;sin �/

1

O �

�

Figure 2.21 Area 4OAP

< Area sector OAP

< Area 4OAT

and radius 1 is �=2. The area of a triangle is .1=2/ � base � height, so

Area 4OAP D
1

2
.1/ .sin �/ D

sin �

2
;

Area 4OAT D
1

2
.1/ .tan �/ D

sin �

2 cos �
:

Thus,

sin �

2
<
�

2
<

sin �

2 cos �
;

or, upon multiplication by the positive number 2= sin � ,

1 <
�

sin �
<

1

cos �
:

Now take reciprocals, thereby reversing the inequalities:

1 >
sin �

�
> cos �:

Since lim�!0C cos � D 1 by Theorem 7, the Squeeze Theorem gives

lim
�!0C

sin �

�
D 1:

Finally, note that sin � and � are odd functions. Therefore, f .�/ D .sin �/=� is an

even function: f .��/ D f .�/, as shown in Figure 2.20. This symmetry implies that

the left limit at 0 must have the same value as the right limit:

lim
�!0�

sin �

�
D 1 D lim

�!0C

sin �

�
;

so lim�!0.sin �/=� D 1 by Theorem 1 of Section 1.2.

Theorem 8 can be combined with limit rules and known trigonometric identities to

yield other trigonometric limits.
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E X A M P L E 1 Show that lim
h!0

cos h � 1

h
D 0.

Solution Using the half-angle formula cos h D 1 � 2 sin2
.h=2/, we calculate

lim
h!0

cos h � 1

h
D lim

h!0
�

2 sin2
.h=2/

h
Let � D h=2.

D � lim
�!0

sin �

�
sin � D �.1/.0/ D 0:

The Derivatives of Sine and Cosine
To calculate the derivative of sin x, we need the addition formula for sine (see Section

P.7):

sin.x C h/ D sin x cos hC cos x sinh:

T H E O R E M

9

The derivative of the sine function is the cosine function.
d

dx
sin x D cos x:

PROOF We use the definition of derivative, the addition formula for sine, the rules

for combining limits, Theorem 8, and the result of Example 1:

d

dx
sin x D lim

h!0

sin.x C h/ � sin x

h

D lim
h!0

sin x cos hC cos x sinh � sin x

h

D lim
h!0

sin x.cosh � 1/C cos x sinh

h

D lim
h!0

sinx � lim
h!0

cos h � 1

h
C lim

h!0
cos x � lim

h!0

sinh

h

D .sin x/ � .0/C .cos x/ � .1/ D cos x:

T H E O R E M

10

The derivative of the cosine function is the negative of the sine function.

d

dx
cos x D � sin x:

PROOF We could mimic the proof for sine above, using the addition rule for cosine,

cos.x C h/ D cos x cos h � sin x sin h. An easier way is to make use of the comple-

mentary angle identities, sin..�=2/�x/ D cos x and cos..�=2/�x/ D sin x, and the

Chain Rule from Section 2.4:

d

dx
cos x D

d

dx
sin
�

�

2
� x

�

D .�1/ cos
�

�

2
� x

�

D � sin x:

Notice the minus sign in the derivative of cosine. The derivative of the sine is the

cosine, but the derivative of the cosine is minus the sine. This is shown graphically in

Figure 2.22.
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This result is obvious from the graphs of sine and cosine, so we will not prove it here. A

proof can be based on the Squeeze Theorem (Theorem 4 of Section 1.2). The method

is suggested in Exercise 62 at the end of this section.

The graph of the function y D .sin �/=� is shown in Figure 2.20. Although it is

not defined at � D 0, this function appears to have limit 1 as � approaches 0.

y

�
�
2

� �
2

��� 0:5

1 y D
sin �

�

Figure 2.20 It appears that

lim
�!0

.sin �/=� D 1

T H E O R E M

8

An important trigonometric limit

lim
�!0

sin �

�
D 1 (where � is in radians).

PROOF Let 0 < � < �=2, and represent � as shown in Figure 2.21. Points A.1; 0/

and P.cos �; sin �/ lie on the unit circle x2
C y2

D 1. The area of the circular sector

OAP lies between the areas of triangles OAP and OAT :

Area 4OAP < Area sector OAP < Area 4OAT:

As shown in Section P.7, the area of a circular sector having central angle � (radians)

y

x

AD.1;0/

T D.1;tan �/

P D.cos �;sin �/

1

O �

�

Figure 2.21 Area 4OAP

< Area sector OAP

< Area 4OAT

and radius 1 is �=2. The area of a triangle is .1=2/ � base � height, so

Area 4OAP D
1

2
.1/ .sin �/ D

sin �

2
;

Area 4OAT D
1

2
.1/ .tan �/ D

sin �

2 cos �
:

Thus,

sin �

2
<
�

2
<

sin �

2 cos �
;

or, upon multiplication by the positive number 2= sin � ,

1 <
�

sin �
<

1

cos �
:

Now take reciprocals, thereby reversing the inequalities:

1 >
sin �

�
> cos �:

Since lim�!0C cos � D 1 by Theorem 7, the Squeeze Theorem gives

lim
�!0C

sin �

�
D 1:

Finally, note that sin � and � are odd functions. Therefore, f .�/ D .sin �/=� is an

even function: f .��/ D f .�/, as shown in Figure 2.20. This symmetry implies that

the left limit at 0 must have the same value as the right limit:

lim
�!0�

sin �

�
D 1 D lim

�!0C

sin �

�
;

so lim�!0.sin �/=� D 1 by Theorem 1 of Section 1.2.

Theorem 8 can be combined with limit rules and known trigonometric identities to

yield other trigonometric limits.
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E X A M P L E 1 Show that lim
h!0

cos h � 1

h
D 0.

Solution Using the half-angle formula cos h D 1 � 2 sin2
.h=2/, we calculate

lim
h!0

cos h � 1

h
D lim

h!0
�

2 sin2
.h=2/

h
Let � D h=2.

D � lim
�!0

sin �

�
sin � D �.1/.0/ D 0:

The Derivatives of Sine and Cosine
To calculate the derivative of sin x, we need the addition formula for sine (see Section

P.7):

sin.x C h/ D sin x cos hC cos x sinh:

T H E O R E M

9

The derivative of the sine function is the cosine function.
d

dx
sin x D cos x:

PROOF We use the definition of derivative, the addition formula for sine, the rules

for combining limits, Theorem 8, and the result of Example 1:

d

dx
sin x D lim

h!0

sin.x C h/ � sin x

h

D lim
h!0

sin x cos hC cos x sinh � sin x

h

D lim
h!0

sin x.cosh � 1/C cos x sinh

h

D lim
h!0

sinx � lim
h!0

cos h � 1

h
C lim

h!0
cos x � lim

h!0

sinh

h

D .sin x/ � .0/C .cos x/ � .1/ D cos x:

T H E O R E M

10

The derivative of the cosine function is the negative of the sine function.

d

dx
cos x D � sin x:

PROOF We could mimic the proof for sine above, using the addition rule for cosine,

cos.x C h/ D cos x cos h � sin x sin h. An easier way is to make use of the comple-

mentary angle identities, sin..�=2/�x/ D cos x and cos..�=2/�x/ D sin x, and the

Chain Rule from Section 2.4:

d

dx
cos x D

d

dx
sin
�

�

2
� x

�

D .�1/ cos
�

�

2
� x

�

D � sin x:

Notice the minus sign in the derivative of cosine. The derivative of the sine is the

cosine, but the derivative of the cosine is minus the sine. This is shown graphically in

Figure 2.22.
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Figure 2.22 The sine (red) and cosine

(blue) plotted together. The slope of the

sine curve at x is cosx; the slope of the

cosine curve at x is � sinx

y

x

y D sin x

y D cos x

0:5
�

E X A M P L E 2
Evaluate the derivatives of the following functions:

(a) sin.�x/C cos.3x/, (b) x2 sin
p

x, and (c)
cos x

1 � sin x
.

Solution

(a) By the Sum Rule and the Chain Rule:

d

dx
.sin.�x/C cos.3x// D cos.�x/.�/ � sin.3x/.3/

D � cos.�x/� 3 sin.3x/:

(b) By the Product and Chain Rules:

d

dx
.x

2 sin
p

x/ D 2x sin
p

x C x
2
�

cos
p

x
� 1

2
p

x

D 2x sin
p

x C
1

2
x

3=2 cos
p

x:

(c) By the Quotient Rule:

d

dx

� cos x

1 � sinx

�

D

.1 � sin x/.� sin x/� .cos x/.0� cos x/

.1 � sinx/2

D

� sin x C sin2
x C cos2 x

.1 � sin x/2

D

1 � sinx

.1 � sin x/2
D

1

1 � sin x
:

We used the identity sin2
x C cos2 x D 1 to simplify the middle line.

Using trigonometric identities can sometimes change the way a derivative is calculated.

Carrying out a differentiation in different ways can lead to different-looking answers,

but they should be equal if no errors have been made.

E X A M P L E 3
Use two different methods to find the derivative of the function

f .t/ D sin t cos t .
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Solution By the Product Rule:

f
0
.t/ D .cos t/.cos t/C .sin t/.� sin t/ D cos2

t � sin2
t:

On the other hand, since sin.2t/ D 2 sin t cos t , we have

f
0
.t/ D

d

dt

�

1

2
sin.2t/

�

D

�

1

2

�

.2/ cos.2t/ D cos.2t/:

The two answers are really the same, since cos.2t/ D cos2 t � sin2
t .

It is very important to remember that the formulas for the derivatives of sinx and cos x

were obtained under the assumption that x is measured in radians. Since we know that

180ı
D � radians, xı

D �x=180 radians. By the Chain Rule,

d

dx
sin.xı/ D

d

dx
sin
�

�x

180

�

D

�

180
cos

�

�x

180

�

D

�

180
cos.xı/:

(See Figure 2.23.) Similarly, the derivative of cos.xı
/ is �.�=180/ sin.xı

/.

Figure 2.23 sin.xı/ (blue) oscillates

much more slowly than sinx (red). Its

maximum slope is �=180

y

x

y D sin.xı/ D sin.�x=180/

y D sin x 180

1

Continuity

The six trigonometric functions

are differentiable and, therefore,

continuous (by Theorem 1)

everywhere on their domains.

This means that we can calculate

the limits of most trigonometric

functions as x ! a by

evaluating them at x D a.

The Derivatives of the Other Trigonometric Functions

Because sin x and cos x are differentiable everywhere, the functions

tan x D
sinx

cos x
sec x D

1

cos x

cot x D
cos x

sinx
csc x D

1

sin x

are differentiable at every value of x at which they are defined (i.e., where their de-

nominators are not zero). Their derivatives can be calculated by the Quotient and

Reciprocal Rules and are as follows:

The three “co-” functions

(cosine, cotangent, and cosecant)

have explicit minus signs in their

derivatives.

d

dx
tan x D sec2

x

d

dx
cot x D � csc2

x

d

dx
sec x D sec x tanx

d

dx
csc x D � csc x cot x:
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Figure 2.22 The sine (red) and cosine

(blue) plotted together. The slope of the

sine curve at x is cosx; the slope of the

cosine curve at x is � sinx

y

x

y D sin x

y D cos x

0:5
�

E X A M P L E 2
Evaluate the derivatives of the following functions:

(a) sin.�x/C cos.3x/, (b) x2 sin
p

x, and (c)
cos x

1 � sin x
.

Solution

(a) By the Sum Rule and the Chain Rule:

d

dx
.sin.�x/C cos.3x// D cos.�x/.�/ � sin.3x/.3/

D � cos.�x/� 3 sin.3x/:

(b) By the Product and Chain Rules:

d

dx
.x

2 sin
p

x/ D 2x sin
p

x C x
2
�

cos
p

x
� 1

2
p

x

D 2x sin
p

x C
1

2
x

3=2 cos
p

x:

(c) By the Quotient Rule:

d

dx

� cos x

1 � sinx

�

D

.1 � sin x/.� sin x/� .cos x/.0� cos x/

.1 � sinx/2

D

� sin x C sin2
x C cos2 x

.1 � sin x/2

D

1 � sinx

.1 � sin x/2
D

1

1 � sin x
:

We used the identity sin2
x C cos2 x D 1 to simplify the middle line.

Using trigonometric identities can sometimes change the way a derivative is calculated.

Carrying out a differentiation in different ways can lead to different-looking answers,

but they should be equal if no errors have been made.

E X A M P L E 3
Use two different methods to find the derivative of the function

f .t/ D sin t cos t .
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Solution By the Product Rule:

f
0
.t/ D .cos t/.cos t/C .sin t/.� sin t/ D cos2

t � sin2
t:

On the other hand, since sin.2t/ D 2 sin t cos t , we have

f
0
.t/ D

d

dt

�

1

2
sin.2t/

�

D

�

1

2

�

.2/ cos.2t/ D cos.2t/:

The two answers are really the same, since cos.2t/ D cos2 t � sin2
t .

It is very important to remember that the formulas for the derivatives of sinx and cos x

were obtained under the assumption that x is measured in radians. Since we know that

180ı
D � radians, xı

D �x=180 radians. By the Chain Rule,

d

dx
sin.xı/ D

d

dx
sin
�

�x

180

�

D

�

180
cos

�

�x

180

�

D

�

180
cos.xı/:

(See Figure 2.23.) Similarly, the derivative of cos.xı
/ is �.�=180/ sin.xı

/.

Figure 2.23 sin.xı/ (blue) oscillates

much more slowly than sinx (red). Its

maximum slope is �=180

y

x

y D sin.xı/ D sin.�x=180/

y D sin x 180

1

Continuity

The six trigonometric functions

are differentiable and, therefore,

continuous (by Theorem 1)

everywhere on their domains.

This means that we can calculate

the limits of most trigonometric

functions as x ! a by

evaluating them at x D a.

The Derivatives of the Other Trigonometric Functions

Because sin x and cos x are differentiable everywhere, the functions

tan x D
sinx

cos x
sec x D

1

cos x

cot x D
cos x

sinx
csc x D

1

sin x

are differentiable at every value of x at which they are defined (i.e., where their de-

nominators are not zero). Their derivatives can be calculated by the Quotient and

Reciprocal Rules and are as follows:

The three “co-” functions

(cosine, cotangent, and cosecant)

have explicit minus signs in their

derivatives.

d

dx
tan x D sec2

x

d

dx
cot x D � csc2

x

d

dx
sec x D sec x tanx

d

dx
csc x D � csc x cot x:
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E X A M P L E 4
Verify the derivative formulas for tan x and secx.

Solution We use the Quotient Rule for tangent and the Reciprocal Rule for secant:

d

dx
tanx D

d

dx

�

sin x

cos x

�

D

cos x
d

dx
.sin x/� sin x

d

dx
.cos x/

cos2 x

D

cos x cos x � sinx.� sin x/

cos2 x
D

cos2 x C sin2
x

cos2 x

D

1

cos2 x
D sec2

x:

d

dx
secx D

d

dx

�

1

cos x

�

D

�1

cos2 x

d

dx
.cos x/

D

�1

cos2 x
.� sin x/ D

1

cos x
�

sinx

cos x
D sec x tan x:

E X A M P L E 5 (a)
d

dx

h

3x C cot
�

x

2

�i

D 3C

h

� csc2
�

x

2

�i

1

2
D 3 �

1

2
csc2

�

x

2

�

(b)
d

dx

�

3

sin.2x/

�

D

d

dx
.3 csc.2x//

D 3.� csc.2x/ cot.2x//.2/ D �6 csc.2x/ cot.2x/:

E X A M P L E 6
Find the tangent and normal lines to the curve y D tan.�x=4/ at

the point .1; 1/.

Solution The slope of the tangent to y D tan.�x=4/ at .1; 1/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

.�x=4/

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

�

�

4

�

D

�

4

�p

2

�2

D

�

2
:

The tangent is the line

y D 1C
�

2
.x � 1/ ; or y D

�x

2
�

�

2
C 1:

The normal has slope m D �2=� , so its point-slope equation is

y D 1 �
2

�
.x � 1/ ; or y D �

2x

�
C

2

�
C 1:

E X E R C I S E S 2.5

1. Verify the formula for the derivative of csc x D 1=.sinx/.

2. Verify the formula for the derivative of

cot x D .cosx/=.sin x/.

Find the derivatives of the functions in Exercises 3–36. Simplify

your answers whenever possible. Also be on the lookout for ways

you might simplify the given expression before differentiating it.

3. y D cos 3x 4. y D sin
x

5

5. y D tan�x 6. y D secax

7. y D cot.4 � 3x/ 8. y D sin..� � x/=3/

9. f .x/ D cos.s � rx/ 10. y D sin.Ax C B/

11. sin.�x2
/ 12. cos.

p

x/

13. y D
p

1C cosx 14. sin.2 cos x/

15. f .x/ D cos.x C sinx/ 16. g.�/ D tan.� sin �/

17. u D sin3
.�x=2/ 18. y D sec.1=x/
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19. F.t/ D sin at cos at 20. G.�/ D
sin a�

cos b�

21. sin.2x/ � cos.2x/ 22. cos2
x � sin2

x

23. tanx C cot x 24. sec x � csc x

25. tanx � x 26. tan.3x/ cot.3x/

27. t cos t � sin t 28. t sin t C cos t

29.
sinx

1C cosx
30.

cos x

1C sinx

31. x2 cos.3x/ 32. g.t/ D
p

.sin t /=t

33. v D sec.x2
/ tan.x2

/ 34. z D
sin
p

x

1C cos
p

x

35. sin.cos.tan t //

36. f .s/ D cos.s C cos.s C cos s//

37. Given that sin 2x D 2 sinx cosx, deduce that

cos 2x D cos2 x � sin2
x:

38. Given that cos 2x D cos2 x � sin2
x, deduce that

sin 2x D 2 sinx cos x:

In Exercises 39–42, find equations for the lines that are tangent and

normal to the curve y D f .x/ at the given point.

39. y D sinx; .�; 0/ 40. y D tan.2x/; .0; 0/

41. y D
p

2 cos.x=4/; .�; 1/ 42. y D cos2
x;

�

�

3
;
1

4

�

43. Find an equation of the line tangent to the curve y D sin.xı/

at the point where x D 45.

44. Find an equation of the straight line normal to y D sec.xı/ at

the point where x D 60.

45. Find the points on the curve y D tanx, ��=2 < x < �=2,

where the tangent is parallel to the line y D 2x.

46. Find the points on the curve y D tan.2x/, ��=4 < x < �=4,

where the normal is parallel to the line y D �x=8.

47. Show that the graphs of y D sinx, y D cosx, y D sec x, and

y D csc x have horizontal tangents.

48. Show that the graphs of y D tanx and y D cot x never have

horizontal tangents.

Do the graphs of the functions in Exercises 49–52 have any

horizontal tangents in the interval 0 � x � 2�? If so, where? If

not, why not?

49. y D x C sinx 50. y D 2x C sinx

51. y D x C 2 sinx 52. y D x C 2 cosx

Find the limits in Exercises 53–56.

53. lim
x!0

tan.2x/

x
54. lim

x!�
sec.1C cos x/

55. lim
x!0

.x
2 csc x cotx/ 56. lim

x!0
cos

�

� � � cos2 x

x2

�

57. Use the method of Example 1 to evaluate lim
h!0

1 � cos h

h2
.

58. Find values of a and b that make

f .x/ D

�

ax C b; x < 0

2 sinx C 3 cosx; x � 0

differentiable at x D 0.

C 59. How many straight lines that pass through the origin are

tangent to y D cosx? Find (to 6 decimal places) the slopes of

the two such lines that have the largest positive slopes.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 60–61.

M 60.
d

dx

x cos.x sinx/

x C cos.x cosx/

ˇ

ˇ

ˇ

ˇ

ˇ

xD0

M 61.
d

dx

 

p

2x2
C 3 sin.x2

/ �
.2x2

C 3/3=2 cos.x2/

x

!
ˇ

ˇ

ˇ

ˇ

ˇ

xD
p

�

62.A (The continuity of sine and cosine)

(a) Prove that

lim
�!0

sin � D 0 and lim
�!0

cos � D 1

as follows: Use the fact that the length of chord AP is

less than the length of arc AP in Figure 2.24 to show that

sin2
� C .1 � cos �/2 < �2

:

Then deduce that 0 � j sin � j < j� j and

0 � j1 � cos � j < j� j. Then use the Squeeze Theorem

from Section 1.2.

(b) Part (a) says that sin � and cos � are continuous at � D 0.

Use the addition formulas to prove that they are therefore

continuous at every � .
y

x

�

P D.cos �;sin �/

�

AD.1;0/

Q

1

Figure 2.24

2.6 Higher-Order Derivatives

If the derivative y 0
D f

0
.x/ of a function y D f .x/ is itself differentiable at x, we

can calculate its derivative, which we call the second derivative of f and denote by

y 00
D f 00.x/. As is the case for first derivatives, second derivatives can be denoted by

various notations depending on the context. Some of the more common ones are
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E X A M P L E 4
Verify the derivative formulas for tan x and secx.

Solution We use the Quotient Rule for tangent and the Reciprocal Rule for secant:

d

dx
tanx D

d

dx

�

sin x

cos x

�

D

cos x
d

dx
.sin x/� sin x

d

dx
.cos x/

cos2 x

D

cos x cos x � sinx.� sin x/

cos2 x
D

cos2 x C sin2
x

cos2 x

D

1

cos2 x
D sec2

x:

d

dx
secx D

d

dx

�

1

cos x

�

D

�1

cos2 x

d

dx
.cos x/

D

�1

cos2 x
.� sin x/ D

1

cos x
�

sinx

cos x
D sec x tan x:

E X A M P L E 5 (a)
d

dx

h

3x C cot
�

x

2

�i

D 3C

h

� csc2
�

x

2

�i

1

2
D 3 �

1

2
csc2

�

x

2

�

(b)
d

dx

�

3

sin.2x/

�

D

d

dx
.3 csc.2x//

D 3.� csc.2x/ cot.2x//.2/ D �6 csc.2x/ cot.2x/:

E X A M P L E 6
Find the tangent and normal lines to the curve y D tan.�x=4/ at

the point .1; 1/.

Solution The slope of the tangent to y D tan.�x=4/ at .1; 1/ is

dy

dx

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

.�x=4/

ˇ

ˇ

ˇ

ˇ

xD1

D

�

4
sec2

�

�

4

�

D

�

4

�p

2

�2

D

�

2
:

The tangent is the line

y D 1C
�

2
.x � 1/ ; or y D

�x

2
�

�

2
C 1:

The normal has slope m D �2=� , so its point-slope equation is

y D 1 �
2

�
.x � 1/ ; or y D �

2x

�
C

2

�
C 1:

E X E R C I S E S 2.5

1. Verify the formula for the derivative of csc x D 1=.sinx/.

2. Verify the formula for the derivative of

cot x D .cosx/=.sin x/.

Find the derivatives of the functions in Exercises 3–36. Simplify

your answers whenever possible. Also be on the lookout for ways

you might simplify the given expression before differentiating it.

3. y D cos 3x 4. y D sin
x

5

5. y D tan�x 6. y D secax

7. y D cot.4 � 3x/ 8. y D sin..� � x/=3/

9. f .x/ D cos.s � rx/ 10. y D sin.Ax C B/

11. sin.�x2
/ 12. cos.

p

x/

13. y D
p

1C cosx 14. sin.2 cos x/

15. f .x/ D cos.x C sinx/ 16. g.�/ D tan.� sin �/

17. u D sin3
.�x=2/ 18. y D sec.1=x/
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19. F.t/ D sin at cos at 20. G.�/ D
sin a�

cos b�

21. sin.2x/ � cos.2x/ 22. cos2
x � sin2

x

23. tanx C cot x 24. sec x � csc x

25. tanx � x 26. tan.3x/ cot.3x/

27. t cos t � sin t 28. t sin t C cos t

29.
sinx

1C cosx
30.

cos x

1C sinx

31. x2 cos.3x/ 32. g.t/ D
p

.sin t /=t

33. v D sec.x2
/ tan.x2

/ 34. z D
sin
p

x

1C cos
p

x

35. sin.cos.tan t //

36. f .s/ D cos.s C cos.s C cos s//

37. Given that sin 2x D 2 sinx cosx, deduce that

cos 2x D cos2 x � sin2
x:

38. Given that cos 2x D cos2 x � sin2
x, deduce that

sin 2x D 2 sinx cos x:

In Exercises 39–42, find equations for the lines that are tangent and

normal to the curve y D f .x/ at the given point.

39. y D sinx; .�; 0/ 40. y D tan.2x/; .0; 0/

41. y D
p

2 cos.x=4/; .�; 1/ 42. y D cos2
x;

�

�

3
;
1

4

�

43. Find an equation of the line tangent to the curve y D sin.xı/

at the point where x D 45.

44. Find an equation of the straight line normal to y D sec.xı/ at

the point where x D 60.

45. Find the points on the curve y D tanx, ��=2 < x < �=2,

where the tangent is parallel to the line y D 2x.

46. Find the points on the curve y D tan.2x/, ��=4 < x < �=4,

where the normal is parallel to the line y D �x=8.

47. Show that the graphs of y D sinx, y D cosx, y D sec x, and

y D csc x have horizontal tangents.

48. Show that the graphs of y D tanx and y D cot x never have

horizontal tangents.

Do the graphs of the functions in Exercises 49–52 have any

horizontal tangents in the interval 0 � x � 2�? If so, where? If

not, why not?

49. y D x C sinx 50. y D 2x C sinx

51. y D x C 2 sinx 52. y D x C 2 cosx

Find the limits in Exercises 53–56.

53. lim
x!0

tan.2x/

x
54. lim

x!�
sec.1C cos x/

55. lim
x!0

.x
2 csc x cotx/ 56. lim

x!0
cos

�

� � � cos2 x

x2

�

57. Use the method of Example 1 to evaluate lim
h!0

1 � cos h

h2
.

58. Find values of a and b that make

f .x/ D

�

ax C b; x < 0

2 sinx C 3 cosx; x � 0

differentiable at x D 0.

C 59. How many straight lines that pass through the origin are

tangent to y D cosx? Find (to 6 decimal places) the slopes of

the two such lines that have the largest positive slopes.

Use Maple or another computer algebra system to evaluate and

simplify the derivatives of the functions in Exercises 60–61.

M 60.
d

dx

x cos.x sinx/

x C cos.x cosx/

ˇ

ˇ

ˇ

ˇ

ˇ

xD0

M 61.
d

dx

 

p

2x2
C 3 sin.x2

/ �
.2x2

C 3/3=2 cos.x2/

x

!
ˇ

ˇ

ˇ

ˇ

ˇ

xD
p

�

62.A (The continuity of sine and cosine)

(a) Prove that

lim
�!0

sin � D 0 and lim
�!0

cos � D 1

as follows: Use the fact that the length of chord AP is

less than the length of arc AP in Figure 2.24 to show that

sin2
� C .1 � cos �/2 < �2

:

Then deduce that 0 � j sin � j < j� j and

0 � j1 � cos � j < j� j. Then use the Squeeze Theorem

from Section 1.2.

(b) Part (a) says that sin � and cos � are continuous at � D 0.

Use the addition formulas to prove that they are therefore

continuous at every � .
y

x

�

P D.cos �;sin �/

�

AD.1;0/

Q

1

Figure 2.24

2.6 Higher-Order Derivatives

If the derivative y 0
D f

0
.x/ of a function y D f .x/ is itself differentiable at x, we

can calculate its derivative, which we call the second derivative of f and denote by

y 00
D f 00.x/. As is the case for first derivatives, second derivatives can be denoted by

various notations depending on the context. Some of the more common ones are
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y
00
D f

00
.x/ D

d2y

dx2
D

d

dx

d

dx
f .x/ D

d2

dx2
f .x/ D D

2
xy D D

2
xf .x/:

Similarly, you can consider third-, fourth-, and in general nth-order derivatives. The

prime notation is inconvenient for derivatives of high order, so we denote the order by

a superscript in parentheses (to distinguish it from an exponent): the nth derivative of

y D f .x/ is

y
.n/
D f

.n/
.x/ D

dny

dxn
D

dn

dxn
f .x/ D D

n
xy D D

n
xf .x/;

and it is defined to be the derivative of the .n � 1/st derivative. For n D 1; 2; and 3,

primes are still normally used: f .2/.x/ D f 00.x/; f .3/.x/ D f 000.x/. It is sometimes

convenient to denote f .0/
.x/ D f .x/, that is, to regard a function as its own zeroth-

order derivative.

E X A M P L E 1
The velocity of a moving object is the (instantaneous) rate of change

of the position of the object with respect to time; if the object

moves along the x-axis and is at position x D f .t/ at time t , then its velocity at that

time is

v D
dx

dt
D f

0
.t/:

Similarly, the acceleration of the object is the rate of change of the velocity. Thus, the

acceleration is the second derivative of the position:

a D
dv

dt
D

d2x

dt2
D f

00
.t/:

We will investigate the relationships between position, velocity, and acceleration fur-

ther in Section 2.11.

E X A M P L E 2
If y D x3, then y 0

D 3x2, y 00
D 6x, y 000

D 6, y.4/
D 0, and all

higher derivatives are zero.

In general, if f .x/ D xn (where n is a positive integer), then

f
.k/
.x/ D n.n � 1/.n � 2/ � � � .n � .k � 1// x

n�k

D

8

<

:

nŠ

.n � k/Š
x

n�k if 0 � k � n

0 if k > n,

where nŠ (called n factorial) is defined by:

0Š D 1

1Š D 0Š � 1 D 1 � 1 D 1

2Š D 1Š � 2 D 1 � 2 D 2

3Š D 2Š � 3 D 1 � 2 � 3 D 6

4Š D 3Š � 4 D 1 � 2 � 3 � 4 D 24

:
:
:

nŠ D .n � 1/Š � n D 1 � 2 � 3 � � � � � .n � 1/ � n:
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It follows that if P is a polynomial of degree n,

P.x/ D anx
n
C an�1x

n�1
C � � � C a1x C a0;

where an; an�1; : : : ; a1; a0 are constants, then P .k/.x/ D 0 for k > n. For k � n,

P
.k/ is a polynomial of degree n � k; in particular, P .n/

.x/ D nŠ an, a constant

function.

E X A M P L E 3
Show that if A, B , and k are constants, then the function

y D A cos.kt/ C B sin.kt/ is a solution of the second-order

differential equation of simple harmonic motion (see Section 3.7):

d2y

dt2
C k

2
y D 0:

Solution To be a solution, the function y.t/ must satisfy the differential equation

identically; that is,

d2

dt2
y.t/C k

2
y.t/ D 0

must hold for every real number t . We verify this by calculating the first two derivatives

of the given function y.t/ D A cos.kt/ C B sin.kt/ and observing that the second

derivative plus k2y.t/ is, in fact, zero everywhere:

dy

dt
D �Ak sin.kt/C Bk cos.kt/

d2y

dt2
D �Ak

2 cos.kt/ � Bk2 sin.kt/ D �k2
y.t/;

d2y

dt2
C k

2
y.t/ D 0:

E X A M P L E 4 Find the nth derivative, y.n/, of y D
1

1C x
D .1C x/

�1.

Solution Begin by calculating the first few derivatives:

y
0
D �.1C x/

�2

y
00
D �.�2/.1C x/

�3
D 2.1C x/

�3

y
000
D 2.�3/.1C x/

�4
D �3Š.1C x/

�4

y
.4/
D �3Š.�4/.1C x/

�5
D 4Š.1C x/

�5

The pattern here is becoming obvious. It seems that

y
.n/
D .�1/

n
nŠ.1C x/

�n�1
:

We have not yet actually proved that the above formula is correct for every n, although

Note the use of .�1/n to denote

a positive sign if n is even and a

negative sign if n is odd.

it is clearly correct for n D 1; 2; 3; and 4. To complete the proof we use mathematical

induction (Section 2.3). Suppose that the formula is valid for n D k, where k is some

positive integer. Consider y.kC1/:

y
.kC1/

D

d

dx
y

.k/
D

d

dx

�

.�1/
k
kŠ.1C x/

�k�1
�

D .�1/
k
kŠ.�k � 1/.1C x/

�k�2
D .�1/

kC1
.k C 1/Š.1C x/

�.kC1/�1
:

This is what the formula predicts for the .kC 1/st derivative. Therefore, if the formula

for y.n/ is correct for n D k, then it is also correct for n D k C 1. Since the formula

is known to be true for n D 1, it must therefore be true for every integer n � 1 by

induction.
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y
00
D f

00
.x/ D

d2y

dx2
D

d

dx

d

dx
f .x/ D

d2

dx2
f .x/ D D

2
xy D D

2
xf .x/:

Similarly, you can consider third-, fourth-, and in general nth-order derivatives. The

prime notation is inconvenient for derivatives of high order, so we denote the order by

a superscript in parentheses (to distinguish it from an exponent): the nth derivative of

y D f .x/ is

y
.n/
D f

.n/
.x/ D

dny

dxn
D

dn

dxn
f .x/ D D

n
xy D D

n
xf .x/;

and it is defined to be the derivative of the .n � 1/st derivative. For n D 1; 2; and 3,

primes are still normally used: f .2/.x/ D f 00.x/; f .3/.x/ D f 000.x/. It is sometimes

convenient to denote f .0/
.x/ D f .x/, that is, to regard a function as its own zeroth-

order derivative.

E X A M P L E 1
The velocity of a moving object is the (instantaneous) rate of change

of the position of the object with respect to time; if the object

moves along the x-axis and is at position x D f .t/ at time t , then its velocity at that

time is

v D
dx

dt
D f

0
.t/:

Similarly, the acceleration of the object is the rate of change of the velocity. Thus, the

acceleration is the second derivative of the position:

a D
dv

dt
D

d2x

dt2
D f

00
.t/:

We will investigate the relationships between position, velocity, and acceleration fur-

ther in Section 2.11.

E X A M P L E 2
If y D x3, then y 0

D 3x2, y 00
D 6x, y 000

D 6, y.4/
D 0, and all

higher derivatives are zero.

In general, if f .x/ D xn (where n is a positive integer), then

f
.k/
.x/ D n.n � 1/.n � 2/ � � � .n � .k � 1// x

n�k

D

8

<

:

nŠ

.n � k/Š
x

n�k if 0 � k � n

0 if k > n,

where nŠ (called n factorial) is defined by:

0Š D 1

1Š D 0Š � 1 D 1 � 1 D 1

2Š D 1Š � 2 D 1 � 2 D 2

3Š D 2Š � 3 D 1 � 2 � 3 D 6

4Š D 3Š � 4 D 1 � 2 � 3 � 4 D 24

:
:
:

nŠ D .n � 1/Š � n D 1 � 2 � 3 � � � � � .n � 1/ � n:
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It follows that if P is a polynomial of degree n,

P.x/ D anx
n
C an�1x

n�1
C � � � C a1x C a0;

where an; an�1; : : : ; a1; a0 are constants, then P .k/.x/ D 0 for k > n. For k � n,

P
.k/ is a polynomial of degree n � k; in particular, P .n/

.x/ D nŠ an, a constant

function.

E X A M P L E 3
Show that if A, B , and k are constants, then the function

y D A cos.kt/ C B sin.kt/ is a solution of the second-order

differential equation of simple harmonic motion (see Section 3.7):

d2y

dt2
C k

2
y D 0:

Solution To be a solution, the function y.t/ must satisfy the differential equation

identically; that is,

d2

dt2
y.t/C k

2
y.t/ D 0

must hold for every real number t . We verify this by calculating the first two derivatives

of the given function y.t/ D A cos.kt/ C B sin.kt/ and observing that the second

derivative plus k2y.t/ is, in fact, zero everywhere:

dy

dt
D �Ak sin.kt/C Bk cos.kt/

d2y

dt2
D �Ak

2 cos.kt/ � Bk2 sin.kt/ D �k2
y.t/;

d2y

dt2
C k

2
y.t/ D 0:

E X A M P L E 4 Find the nth derivative, y.n/, of y D
1

1C x
D .1C x/

�1.

Solution Begin by calculating the first few derivatives:

y
0
D �.1C x/

�2

y
00
D �.�2/.1C x/

�3
D 2.1C x/

�3

y
000
D 2.�3/.1C x/

�4
D �3Š.1C x/

�4

y
.4/
D �3Š.�4/.1C x/

�5
D 4Š.1C x/

�5

The pattern here is becoming obvious. It seems that

y
.n/
D .�1/

n
nŠ.1C x/

�n�1
:

We have not yet actually proved that the above formula is correct for every n, although

Note the use of .�1/n to denote

a positive sign if n is even and a

negative sign if n is odd.

it is clearly correct for n D 1; 2; 3; and 4. To complete the proof we use mathematical

induction (Section 2.3). Suppose that the formula is valid for n D k, where k is some

positive integer. Consider y.kC1/:

y
.kC1/

D

d

dx
y

.k/
D

d

dx

�

.�1/
k
kŠ.1C x/

�k�1
�

D .�1/
k
kŠ.�k � 1/.1C x/

�k�2
D .�1/

kC1
.k C 1/Š.1C x/

�.kC1/�1
:

This is what the formula predicts for the .kC 1/st derivative. Therefore, if the formula

for y.n/ is correct for n D k, then it is also correct for n D k C 1. Since the formula

is known to be true for n D 1, it must therefore be true for every integer n � 1 by

induction.
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E X A M P L E 5
Find a formula for f .n/.x/, given that f .x/ D sin.ax C b/.

Solution Begin by calculating several derivatives:

f
0
.x/ D a cos.ax C b/

f
00
.x/ D �a

2 sin.ax C b/ D �a2
f .x/

f
000
.x/ D �a

3 cos.ax C b/ D �a2
f

0
.x/

f
.4/
.x/ D a

4 sin.ax C b/ D a4
f .x/

f
.5/
.x/ D a

5 cos.ax C b/ D a4
f

0
.x/

:
:
:

The pattern is pretty obvious here. Each new derivative is �a2 times the second previ-

ous one. A formula that gives all the derivatives is

f
.n/
.x/ D

�

.�1/k an sin.ax C b/ if n D 2k

.�1/k an cos.ax C b/ if n D 2k C 1
.k D 0; 1; 2; : : :/;

which can also be verified by induction on k.

Our final example shows that it is not always easy to obtain a formula for the nth

derivative of a function.

E X A M P L E 6
Calculate f 0, f 00, and f 000 for f .x/ D

p

x2
C 1. Can you see

enough of a pattern to predict f .4/?

Solution Since f .x/ D .x2
C 1/1=2, we have

f
0
.x/ D

1
2
.x

2
C 1/

�1=2
.2x/ D x.x

2
C 1/

�1=2
;

f
00
.x/ D .x

2
C 1/

�1=2
C x

�

�
1
2

�

.x
2
C 1/

�3=2
.2x/

D .x
2
C 1/

�3=2
.x

2
C 1 � x

2
/ D .x

2
C 1/

�3=2
;

f
000
.x/ D �

3
2
.x

2
C 1/

�5=2
.2x/ D �3x.x

2
C 1/

�5=2
:

Although the expression obtained from each differentiation simplified somewhat, the

pattern of these derivatives is not (yet) obvious enough to enable us to predict the

formula for f .4/.x/ without having to calculate it. In fact,

f
.4/
.x/ D 3.4x

2
� 1/.x

2
C 1/

�7=2
;

so the pattern (if there is one) doesn’t become any clearer at this stage.

M Remark Computing higher-order derivatives may be useful in applications involv-

ing Taylor polynomials (see Section 4.10). As taking derivatives can be automated

with a known algorithm, it makes sense to use a computer to calculate higher-order

ones. However, depending on the function, the amount of memory and processor time

needed may severely restrict the order of derivatives calculated in this way. Higher-

order derivatives can be indicated in Maple by repeating the variable of differentiation

or indicating the order by using the $ operator:

> diff(x^5,x,x) + diff(sin(2*x),x$3);

20 x3
� 8 cos.2x/
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The D operator can also be used for higher-order derivatives of a function (as

distinct from an expression) by composing it explicitly or using the @@ operator:

> f := x -> x^5; fpp := D(D(f)); (D@@3)(f)(a);

f WD x ! x5

fpp WD x ! 20 x3

60 a2

E X E R C I S E S 2.6

Find y 0; y 00; and y 000 for the functions in Exercises 1–12.

1. y D .3 � 2x/7 2. y D x2
�

1

x

3. y D
6

.x � 1/2
4. y D

p

ax C b

5. y D x1=3
� x

�1=3 6. y D x10
C 2x

8

7. y D .x2
C 3/
p

x 8. y D
x � 1

x C 1

9. y D tan x 10. y D secx

11. y D cos.x2
/ 12. y D

sinx

x

In Exercises 13–23, calculate enough derivatives of the given

function to enable you to guess the general formula for f .n/.x/.

Then verify your guess using mathematical induction.

13. f .x/ D
1

x
14. f .x/ D

1

x2

15. f .x/ D
1

2 � x
16. f .x/ D

p

x

17. f .x/ D
1

aC bx
18. f .x/ D x2=3

19. f .x/ D cos.ax/ 20. f .x/ D x cos x

21. f .x/ D x sin.ax/

22.I f .x/ D
1

jxj
23.I f .x/ D

p

1 � 3x

24. If y D tan kx, show that y 00
D 2k2y.1C y2/.

25. If y D sec kx, show that y 00
D k2y.2y2

� 1/.

26.A Use mathematical induction to prove that the nth derivative of

y D sin.ax C b/ is given by the formula asserted at the end of

Example 5.

27.A Use mathematical induction to prove that the nth derivative of

y D tan x is of the form PnC1.tanx/, where PnC1 is a

polynomial of degree nC 1.

28.A If f and g are twice-differentiable functions, show that

.fg/00 D f 00g C 2f 0g0
C fg00.

29.I State and prove the results analogous to that of Exercise 28 but

for .fg/.3/ and .fg/.4/. Can you guess the formula for

.fg/.n/?

2.7 Using Differentials and Derivatives

In this section we will look at some examples of ways in which derivatives are used

to represent and interpret changes and rates of change in the world around us. It is

natural to think of change in terms of dependence on time, such as the velocity of

a moving object, but there is no need to be so restrictive. Change with respect to

variables other than time can be treated in the same way. For example, a physician

may want to know how small changes in dosage can affect the body’s response to a

drug. An economist may want to study how foreign investment changes with respect to

variations in a country’s interest rates. These questions can all be formulated in terms

of rate of change of a function with respect to a variable.

Approximating Small Changes
If one quantity, say y, is a function of another quantity x, that is,

y D f .x/;

we sometimes want to know how a change in the value of x by an amount �x will

affect the value of y. The exact change �y in y is given by

�y D f .x C�x/� f .x/;
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E X A M P L E 5
Find a formula for f .n/.x/, given that f .x/ D sin.ax C b/.

Solution Begin by calculating several derivatives:

f
0
.x/ D a cos.ax C b/

f
00
.x/ D �a

2 sin.ax C b/ D �a2
f .x/

f
000
.x/ D �a

3 cos.ax C b/ D �a2
f

0
.x/

f
.4/
.x/ D a

4 sin.ax C b/ D a4
f .x/

f
.5/
.x/ D a

5 cos.ax C b/ D a4
f

0
.x/

:
:
:

The pattern is pretty obvious here. Each new derivative is �a2 times the second previ-

ous one. A formula that gives all the derivatives is

f
.n/
.x/ D

�

.�1/k an sin.ax C b/ if n D 2k

.�1/k an cos.ax C b/ if n D 2k C 1
.k D 0; 1; 2; : : :/;

which can also be verified by induction on k.

Our final example shows that it is not always easy to obtain a formula for the nth

derivative of a function.

E X A M P L E 6
Calculate f 0, f 00, and f 000 for f .x/ D

p

x2
C 1. Can you see

enough of a pattern to predict f .4/?

Solution Since f .x/ D .x2
C 1/1=2, we have

f
0
.x/ D

1
2
.x

2
C 1/

�1=2
.2x/ D x.x

2
C 1/

�1=2
;

f
00
.x/ D .x

2
C 1/

�1=2
C x

�

�
1
2

�

.x
2
C 1/

�3=2
.2x/

D .x
2
C 1/

�3=2
.x

2
C 1 � x

2
/ D .x

2
C 1/

�3=2
;

f
000
.x/ D �

3
2
.x

2
C 1/

�5=2
.2x/ D �3x.x

2
C 1/

�5=2
:

Although the expression obtained from each differentiation simplified somewhat, the

pattern of these derivatives is not (yet) obvious enough to enable us to predict the

formula for f .4/.x/ without having to calculate it. In fact,

f
.4/
.x/ D 3.4x

2
� 1/.x

2
C 1/

�7=2
;

so the pattern (if there is one) doesn’t become any clearer at this stage.

M Remark Computing higher-order derivatives may be useful in applications involv-

ing Taylor polynomials (see Section 4.10). As taking derivatives can be automated

with a known algorithm, it makes sense to use a computer to calculate higher-order

ones. However, depending on the function, the amount of memory and processor time

needed may severely restrict the order of derivatives calculated in this way. Higher-

order derivatives can be indicated in Maple by repeating the variable of differentiation

or indicating the order by using the $ operator:

> diff(x^5,x,x) + diff(sin(2*x),x$3);

20 x3
� 8 cos.2x/
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The D operator can also be used for higher-order derivatives of a function (as

distinct from an expression) by composing it explicitly or using the @@ operator:

> f := x -> x^5; fpp := D(D(f)); (D@@3)(f)(a);

f WD x ! x5

fpp WD x ! 20 x3

60 a2

E X E R C I S E S 2.6

Find y 0; y 00; and y 000 for the functions in Exercises 1–12.

1. y D .3 � 2x/7 2. y D x2
�

1

x

3. y D
6

.x � 1/2
4. y D

p

ax C b

5. y D x1=3
� x

�1=3 6. y D x10
C 2x

8

7. y D .x2
C 3/
p

x 8. y D
x � 1

x C 1

9. y D tan x 10. y D secx

11. y D cos.x2
/ 12. y D

sinx

x

In Exercises 13–23, calculate enough derivatives of the given

function to enable you to guess the general formula for f .n/.x/.

Then verify your guess using mathematical induction.

13. f .x/ D
1

x
14. f .x/ D

1

x2

15. f .x/ D
1

2 � x
16. f .x/ D

p

x

17. f .x/ D
1

aC bx
18. f .x/ D x2=3

19. f .x/ D cos.ax/ 20. f .x/ D x cos x

21. f .x/ D x sin.ax/

22.I f .x/ D
1

jxj
23.I f .x/ D

p

1 � 3x

24. If y D tan kx, show that y 00
D 2k2y.1C y2/.

25. If y D sec kx, show that y 00
D k2y.2y2

� 1/.

26.A Use mathematical induction to prove that the nth derivative of

y D sin.ax C b/ is given by the formula asserted at the end of

Example 5.

27.A Use mathematical induction to prove that the nth derivative of

y D tan x is of the form PnC1.tanx/, where PnC1 is a

polynomial of degree nC 1.

28.A If f and g are twice-differentiable functions, show that

.fg/00 D f 00g C 2f 0g0
C fg00.

29.I State and prove the results analogous to that of Exercise 28 but

for .fg/.3/ and .fg/.4/. Can you guess the formula for

.fg/.n/?

2.7 Using Differentials and Derivatives

In this section we will look at some examples of ways in which derivatives are used

to represent and interpret changes and rates of change in the world around us. It is

natural to think of change in terms of dependence on time, such as the velocity of

a moving object, but there is no need to be so restrictive. Change with respect to

variables other than time can be treated in the same way. For example, a physician

may want to know how small changes in dosage can affect the body’s response to a

drug. An economist may want to study how foreign investment changes with respect to

variations in a country’s interest rates. These questions can all be formulated in terms

of rate of change of a function with respect to a variable.

Approximating Small Changes
If one quantity, say y, is a function of another quantity x, that is,

y D f .x/;

we sometimes want to know how a change in the value of x by an amount �x will

affect the value of y. The exact change �y in y is given by

�y D f .x C�x/� f .x/;
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but if the change �x is small, then we can get a good approximation to �y by using

the fact that �y=�x is approximately the derivative dy=dx. Thus,

�y D
�y

�x
�x �

dy

dx
�x D f

0
.x/�x:

It is often convenient to represent this approximation in terms of differentials; if we

denote the change in x by dx instead of �x, then the change �y in y is approximated

by the differential dy, that is (see Figure 2.25),

�y � dy D f
0
.x/ dx:

Figure 2.25 dy, the change in height to

the tangent line, approximates �y, the

change in height to the graph of f

y

x

dy
�y

dx D �x

x C dxx

y D f .x/

graph of f

E X A M P L E 1
Without using a scientific calculator, determine by approximately

how much the value of sinx increases as x increases from �=3 to

.�=3/C 0:006. To 3 decimal places, what is the value of sin
�

.�=3/C 0:006
�

?

Solution If y D sin x, x D �=3 � 1:0472, and dx D 0:006, then

dy D cos.x/ dx D cos
�

�

3

�

dx D
1

2
.0:006/ D 0:003:

Thus, the change in the value of sinx is approximately 0:003, and

sin
�

�

3
C 0:006

�

� sin
�

3
C 0:003 D

p

3

2
C 0:003 D 0:869

rounded to 3 decimal places.

Whenever one makes an approximation it is wise to try and estimate how big the error

might be. We will have more to say about such approximations and their error estimates

in Section 4.9.

Sometimes changes in a quantity are measured with respect to the size of the

quantity. The relative change in x is the ratio dx=x if x changes by amount dx. The

percentage change in x is the relative change expressed as a percentage:

relative change in x =
dx

x

percentage change in x = 100
dx

x
:
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E X A M P L E 2
By approximately what percentage does the area of a circle in-

crease if the radius increases by 2%?

Solution The area A of a circle is given in terms of the radius r by A D �r2. Thus,

�A � dA D
dA

dr
dr D 2�r dr:

We divide this approximation by A D �r2 to get an approximation that links the

relative changes in A and r :

�A

A
�

dA

A
D

2�r dr

�r2
D 2

dr

r
:

If r increases by 2%, then dr D 2
100

r , so

�A

A
� 2 �

2

100
D

4

100
:

Thus, A increases by approximately 4%.

Average and Instantaneous Rates of Change
Recall the concept of average rate of change of a function over an interval, introduced

in Section 1.1. The derivative of the function is the limit of this average rate as the

length of the interval goes to zero, and so represents the rate of change of the function

at a given value of its variable.

D E F I N I T I O N

5

The average rate of change of a function f .x/ with respect to x over the

interval from a to aC h is

f .aC h/ � f .a/

h
:

The (instantaneous) rate of change of f with respect to x at x D a is the

derivative

f
0
.a/ D lim

h!0

f .aC h/ � f .a/

h
;

provided the limit exists.

It is conventional to use the word instantaneous even when x does not represent time,

although the word is frequently omitted. When we say rate of change, we mean instan-

taneous rate of change.

E X A M P L E 3
How fast is area A of a circle increasing with respect to its radius

when the radius is 5 m?

Solution The rate of change of the area with respect to the radius is

dA

dr
D

d

dr
.�r

2
/ D 2� r:

When r D 5 m, the area is changing at the rate 2� � 5 D 10� m2/m. This means that

a small change �r m in the radius when the radius is 5 m would result in a change of

about 10��r m2 in the area of the circle.
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but if the change �x is small, then we can get a good approximation to �y by using

the fact that �y=�x is approximately the derivative dy=dx. Thus,

�y D
�y

�x
�x �

dy

dx
�x D f

0
.x/�x:

It is often convenient to represent this approximation in terms of differentials; if we

denote the change in x by dx instead of �x, then the change �y in y is approximated

by the differential dy, that is (see Figure 2.25),

�y � dy D f
0
.x/ dx:

Figure 2.25 dy, the change in height to

the tangent line, approximates �y, the

change in height to the graph of f

y

x

dy
�y

dx D �x

x C dxx

y D f .x/

graph of f

E X A M P L E 1
Without using a scientific calculator, determine by approximately

how much the value of sinx increases as x increases from �=3 to

.�=3/C 0:006. To 3 decimal places, what is the value of sin
�

.�=3/C 0:006
�

?

Solution If y D sin x, x D �=3 � 1:0472, and dx D 0:006, then

dy D cos.x/ dx D cos
�

�

3

�

dx D
1

2
.0:006/ D 0:003:

Thus, the change in the value of sinx is approximately 0:003, and

sin
�

�

3
C 0:006

�

� sin
�

3
C 0:003 D

p

3

2
C 0:003 D 0:869

rounded to 3 decimal places.

Whenever one makes an approximation it is wise to try and estimate how big the error

might be. We will have more to say about such approximations and their error estimates

in Section 4.9.

Sometimes changes in a quantity are measured with respect to the size of the

quantity. The relative change in x is the ratio dx=x if x changes by amount dx. The

percentage change in x is the relative change expressed as a percentage:

relative change in x =
dx

x

percentage change in x = 100
dx

x
:
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E X A M P L E 2
By approximately what percentage does the area of a circle in-

crease if the radius increases by 2%?

Solution The area A of a circle is given in terms of the radius r by A D �r2. Thus,

�A � dA D
dA

dr
dr D 2�r dr:

We divide this approximation by A D �r2 to get an approximation that links the

relative changes in A and r :

�A

A
�

dA

A
D

2�r dr

�r2
D 2

dr

r
:

If r increases by 2%, then dr D 2
100

r , so

�A

A
� 2 �

2

100
D

4

100
:

Thus, A increases by approximately 4%.

Average and Instantaneous Rates of Change
Recall the concept of average rate of change of a function over an interval, introduced

in Section 1.1. The derivative of the function is the limit of this average rate as the

length of the interval goes to zero, and so represents the rate of change of the function

at a given value of its variable.

D E F I N I T I O N

5

The average rate of change of a function f .x/ with respect to x over the

interval from a to aC h is

f .aC h/ � f .a/

h
:

The (instantaneous) rate of change of f with respect to x at x D a is the

derivative

f
0
.a/ D lim

h!0

f .aC h/ � f .a/

h
;

provided the limit exists.

It is conventional to use the word instantaneous even when x does not represent time,

although the word is frequently omitted. When we say rate of change, we mean instan-

taneous rate of change.

E X A M P L E 3
How fast is area A of a circle increasing with respect to its radius

when the radius is 5 m?

Solution The rate of change of the area with respect to the radius is

dA

dr
D

d

dr
.�r

2
/ D 2� r:

When r D 5 m, the area is changing at the rate 2� � 5 D 10� m2/m. This means that

a small change �r m in the radius when the radius is 5 m would result in a change of

about 10��r m2 in the area of the circle.
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The above example suggests that the appropriate units for the rate of change of a quan-

tity y with respect to another quantity x are units of y per unit of x.

If f 0
.x0/ D 0, we say that f is stationary at x0 and call x0 a critical point of f:

The corresponding point .x0; f .x0// on the graph of f is also called a critical point

of the graph. The graph has a horizontal tangent at a critical point, and f may or may

not have a maximum or minimum value there. (See Figure 2.26.) It is still possible for

f to be increasing or decreasing on an open interval containing a critical point. (See

point a in Figure 2.26.) We will revisit these ideas in the next section.

Figure 2.26 Critical points of f

y

x

y D f .x/

a b c

E X A M P L E 4
Suppose the temperature at a certain location t hours after noon

on a certain day is T ıC (T degrees Celsius), where

T D
1

3
t
3
� 3t

2
C 8t C 10 .for 0 � t � 5/:

How fast is the temperature rising or falling at 1:00 p.m.? At 3:00 p.m.? At what

instants is the temperature stationary?

Solution The rate of change of the temperature is given by

dT

dt
D t

2
� 6t C 8 D .t � 2/.t � 4/:

If t D 1, then
dT

dt
D 3, so the temperature is rising at rate 3 ıC/h at 1:00 p.m.

If t D 3, then
dT

dt
D �1, so the temperature is falling at a rate of 1 ıC/h at 3:00 p.m.

The temperature is stationary when
dT

dt
D 0, that is, at 2:00 p.m. and 4:00 p.m.

Sensitivity to Change
When a small change in x produces a large change in the value of a function f .x/,

we say that the function is very sensitive to changes in x. The derivative f 0.x/ is a

measure of the sensitivity of the dependence of f on x.

E X A M P L E 5
(Dosage of a medicine) A pharmacologist studying a drug that

has been developed to lower blood pressure determines experimen-

tally that the average reduction R in blood pressure resulting from a daily dosage of

x mg of the drug is

R D 24:2

�

1C
x � 13

p

x2
� 26x C 529

�

mm Hg:

(The units are millimetres of mercury (Hg).) Determine the sensitivity of R to dosage

x at dosage levels of 5 mg, 15 mg, and 35 mg. At which of these dosage levels would

an increase in the dosage have the greatest effect?
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Solution The sensitivity of R to x is dR=dx. We have

dR

dx
D 24:2

0

B

B

@

p

x2
� 26x C 529.1/ � .x � 13/

x � 13
p

x2
� 26x C 529

x2
� 26x C 529

1

C

C

A

D 24:2

�

x2
� 26x C 529 � .x2

� 26x C 169/

.x2
� 26x C 529/3=2

�

D

8;712

.x2
� 26x C 529/3=2

:

At dosages x D 5 mg, 15 mg, and 35 mg, we have sensitivities of

dR

dx

ˇ

ˇ

ˇ

ˇ

xD5

D 0:998 mm Hg/mg;
dR

dx

ˇ

ˇ

ˇ

ˇ

xD15

D 1:254 mm Hg/mg;

dR

dx

ˇ

ˇ

ˇ

ˇ

xD35

D 0:355 mm Hg/mg:

Among these three levels, the greatest sensitivity is at 15 mg. Increasing the dosage

from 15 to 16 mg/day could be expected to further reduce average blood pressure by

about 1.25 mm Hg.

Derivatives in Economics
Just as physicists use terms such as velocity and acceleration to refer to derivatives of

certain quantities, economists also have their own specialized vocabulary for deriva-

tives. They call them marginals. In economics the term marginal denotes the rate of

change of a quantity with respect to a variable on which it depends. For example, the

cost of production C.x/ in a manufacturing operation is a function of x, the number

of units of product produced. The marginal cost of production is the rate of change

of C with respect to x, so it is dC=dx. Sometimes the marginal cost of production is

loosely defined to be the extra cost of producing one more unit; that is,

�C D C.x C 1/ � C.x/:

To see why this is approximately correct, observe from Figure 2.27 that if the slope of

C D C.x/ does not change quickly near x, then the difference quotient �C=�x will

be close to its limit, the derivative dC=dx, even if �x D 1.

C

x

�C
dC
dx

x xC1

�xD1

�C D �C
�x

� dC
dx

C DC.x/

Figure 2.27 The marginal cost dC=dx is

approximately the extra cost�C of

producing �x D 1 more unit

E X A M P L E 6
(Marginal tax rates) If your marginal income tax rate is 35%

and your income increases by $1,000, you can expect to have to

pay an extra $350 in income taxes. This does not mean that you pay 35% of your entire

income in taxes. It just means that at your current income level I , the rate of increase

of taxes T with respect to income is dT=dI D 0:35. You will pay $0.35 out of every

extra dollar you earn in taxes. Of course, if your income increases greatly, you may

land in a higher tax bracket and your marginal rate will increase.

E X A M P L E 7
(Marginal cost of production) The cost of producing x tonnes

of coal per day in a mine is $C.x/, where

C.x/ D 4;200C 5:40x � 0:001x
2
C 0:000 002x

3
:

(a) What is the average cost of producing each tonne if the daily production level is

1,000 tonnes? 2,000 tonnes?

(b) Find the marginal cost of production if the daily production level is 1,000 tonnes.

2,000 tonnes.

(c) If the production level increases slightly from 1,000 tonnes or from 2,000 tonnes,

what will happen to the average cost per tonne?
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The above example suggests that the appropriate units for the rate of change of a quan-

tity y with respect to another quantity x are units of y per unit of x.

If f 0
.x0/ D 0, we say that f is stationary at x0 and call x0 a critical point of f:

The corresponding point .x0; f .x0// on the graph of f is also called a critical point

of the graph. The graph has a horizontal tangent at a critical point, and f may or may

not have a maximum or minimum value there. (See Figure 2.26.) It is still possible for

f to be increasing or decreasing on an open interval containing a critical point. (See

point a in Figure 2.26.) We will revisit these ideas in the next section.

Figure 2.26 Critical points of f

y

x

y D f .x/

a b c

E X A M P L E 4
Suppose the temperature at a certain location t hours after noon

on a certain day is T ıC (T degrees Celsius), where

T D
1

3
t
3
� 3t

2
C 8t C 10 .for 0 � t � 5/:

How fast is the temperature rising or falling at 1:00 p.m.? At 3:00 p.m.? At what

instants is the temperature stationary?

Solution The rate of change of the temperature is given by

dT

dt
D t

2
� 6t C 8 D .t � 2/.t � 4/:

If t D 1, then
dT

dt
D 3, so the temperature is rising at rate 3 ıC/h at 1:00 p.m.

If t D 3, then
dT

dt
D �1, so the temperature is falling at a rate of 1 ıC/h at 3:00 p.m.

The temperature is stationary when
dT

dt
D 0, that is, at 2:00 p.m. and 4:00 p.m.

Sensitivity to Change
When a small change in x produces a large change in the value of a function f .x/,

we say that the function is very sensitive to changes in x. The derivative f 0.x/ is a

measure of the sensitivity of the dependence of f on x.

E X A M P L E 5
(Dosage of a medicine) A pharmacologist studying a drug that

has been developed to lower blood pressure determines experimen-

tally that the average reduction R in blood pressure resulting from a daily dosage of

x mg of the drug is

R D 24:2

�

1C
x � 13

p

x2
� 26x C 529

�

mm Hg:

(The units are millimetres of mercury (Hg).) Determine the sensitivity of R to dosage

x at dosage levels of 5 mg, 15 mg, and 35 mg. At which of these dosage levels would

an increase in the dosage have the greatest effect?
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Solution The sensitivity of R to x is dR=dx. We have

dR

dx
D 24:2

0

B

B

@

p

x2
� 26x C 529.1/ � .x � 13/

x � 13
p

x2
� 26x C 529

x2
� 26x C 529

1

C

C

A

D 24:2

�

x2
� 26x C 529 � .x2

� 26x C 169/

.x2
� 26x C 529/3=2

�

D

8;712

.x2
� 26x C 529/3=2

:

At dosages x D 5 mg, 15 mg, and 35 mg, we have sensitivities of

dR

dx

ˇ

ˇ

ˇ

ˇ

xD5

D 0:998 mm Hg/mg;
dR

dx

ˇ

ˇ

ˇ

ˇ

xD15

D 1:254 mm Hg/mg;

dR

dx

ˇ

ˇ

ˇ

ˇ

xD35

D 0:355 mm Hg/mg:

Among these three levels, the greatest sensitivity is at 15 mg. Increasing the dosage

from 15 to 16 mg/day could be expected to further reduce average blood pressure by

about 1.25 mm Hg.

Derivatives in Economics
Just as physicists use terms such as velocity and acceleration to refer to derivatives of

certain quantities, economists also have their own specialized vocabulary for deriva-

tives. They call them marginals. In economics the term marginal denotes the rate of

change of a quantity with respect to a variable on which it depends. For example, the

cost of production C.x/ in a manufacturing operation is a function of x, the number

of units of product produced. The marginal cost of production is the rate of change

of C with respect to x, so it is dC=dx. Sometimes the marginal cost of production is

loosely defined to be the extra cost of producing one more unit; that is,

�C D C.x C 1/ � C.x/:

To see why this is approximately correct, observe from Figure 2.27 that if the slope of

C D C.x/ does not change quickly near x, then the difference quotient �C=�x will

be close to its limit, the derivative dC=dx, even if �x D 1.

C

x

�C
dC
dx

x xC1

�xD1

�C D �C
�x

� dC
dx

C DC.x/

Figure 2.27 The marginal cost dC=dx is

approximately the extra cost�C of

producing �x D 1 more unit

E X A M P L E 6
(Marginal tax rates) If your marginal income tax rate is 35%

and your income increases by $1,000, you can expect to have to

pay an extra $350 in income taxes. This does not mean that you pay 35% of your entire

income in taxes. It just means that at your current income level I , the rate of increase

of taxes T with respect to income is dT=dI D 0:35. You will pay $0.35 out of every

extra dollar you earn in taxes. Of course, if your income increases greatly, you may

land in a higher tax bracket and your marginal rate will increase.

E X A M P L E 7
(Marginal cost of production) The cost of producing x tonnes

of coal per day in a mine is $C.x/, where

C.x/ D 4;200C 5:40x � 0:001x
2
C 0:000 002x

3
:

(a) What is the average cost of producing each tonne if the daily production level is

1,000 tonnes? 2,000 tonnes?

(b) Find the marginal cost of production if the daily production level is 1,000 tonnes.

2,000 tonnes.

(c) If the production level increases slightly from 1,000 tonnes or from 2,000 tonnes,

what will happen to the average cost per tonne?
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Solution

(a) The average cost per tonne of coal is

C.x/

x
D

4; 200

x
C 5:40 � 0:001x C 0:000 002x

2
:

If x D 1;000, the average cost per tonne is C.1;000/=1;000 D $10:60/tonne. If

x D 2;000, the average cost per tonne is C.2;000/=2;000 D $13:50/tonne.

(b) The marginal cost of production is

C
0
.x/ D 5:40 � 0:002x C 0:000 006x

2
:

If x D 1;000, the marginal cost is C 0
.1;000/ D $9:40/tonne. If x D 2;000, the

marginal cost is C 0.2;000/ D $25:40/tonne.

(c) If the production level x is increased slightly from x D 1;000, then the average

cost per tonne will drop because the cost is increasing at a rate lower than the

average cost. At x D 2;000 the opposite is true; an increase in production will

increase the average cost per tonne.

Economists sometimes prefer to measure relative rates of change that do not depend

on the units used to measure the quantities involved. They use the term elasticity for

such relative rates.

E X A M P L E 8
(Elasticity of demand) The demand y for a certain product (i.e.,

the amount that can be sold) typically depends on the price p

charged for the product: y D f .p/. The marginal demand dy=dp D f 0.p/ (which is

typically negative) depends on the units used to measure y and p. The elasticity of the

demand is the quantity

�

p

y

dy

dp
(the “�” sign ensures elasticity is positive),

which is independent of units and provides a good measure of the sensitivity of demand

to changes in price. To see this, suppose that new units of demand and price are

introduced, which are multiples of the old units. In terms of the new units the demand

and price are now Y and P , where

Y D k1y and P D k2p:

Thus, Y D k1f .P=k2/ and dY=dP D .k1=k2/f
0.P=k2/ D .k1=k2/f

0.p/ by the

Chain Rule. It follows that the elasticity has the same value:

�

P

Y

dY

dP
D �

k2p

k1y

k1

k2

f
0
.p/ D �

p

y

dy

dp
:
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E X E R C I S E S 2.7

In Exercises 1–4, use differentials to determine the approximate

change in the value of the given function as its argument changes

from the given value by the given amount. What is the

approximate value of the function after the change?

1. y D 1=x, as x increases from 2 to 2.01.

2. f .x/ D
p

3x C 1, as x increases from 1 to 1.08.

3. h.t/ D cos.�t=4/, as t increases from 2 to 2C .1=10�/.

4. u D tan.s=4/ as s decreases from � to � � 0:04.

In Exercises 5–10, find the approximate percentage changes in the

given function y D f .x/ that will result from an increase of 2% in

the value of x.

5. y D x2 6. y D 1=x

7. y D 1=x2 8. y D x3

9. y D
p

x 10. y D x�2=3

11. By approximately what percentage will the volume

(V D 4
3
�r

3) of a ball of radius r increase if the radius

increases by 2%?

12. By about what percentage will the edge length of an ice cube

decrease if the cube loses 6% of its volume by melting?

13. Find the rate of change of the area of a square with respect to

the length of its side when the side is 4 ft.

14. Find the rate of change of the side of a square with respect to

the area of the square when the area is 16 m2.

15. Find the rate of change of the diameter of a circle with respect

to its area.

16. Find the rate of change of the area of a circle with respect to

its diameter.

17. Find the rate of change of the volume of a sphere (given by

V D
4
3
�r3) with respect to its radius r when the radius is

2 m.

18. What is the rate of change of the area A of a square with

respect to the length L of the diagonal of the square?

19. What is the rate of change of the circumference C of a circle

with respect to the area A of the circle?

20. Find the rate of change of the side s of a cube with respect to

the volume V of the cube.

21. The volume of water in a tank t min after it starts draining is

V.t/ D 350.20� t /
2 L:

(a) How fast is the water draining out after 5 min? after 15

min?

(b) What is the average rate at which water is draining out

during the time interval from 5 to 15 min?

22. (Poiseuille’s Law) The flow rate F (in litres per minute) of a

liquid through a pipe is proportional to the fourth power of the

radius of the pipe:

F D kr
4
:

Approximately what percentage increase is needed in the

radius of the pipe to increase the flow rate by 10%?

23. (Gravitational force) The gravitational force F with which

the earth attracts an object in space is given by F D k=r2,

where k is a constant and r is the distance from the object to

the centre of the earth. If F decreases with respect to r at rate

1 pound/mile when r D 4;000 mi, how fast does F change

with respect to r when r D 8;000 mi?

24. (Sensitivity of revenue to price) The sales revenue $R from a

software product depends on the price $p charged by the

distributor according to the formula

R D 4;000p � 10p
2
:

(a) How sensitive is R to p when p D $100? p D $200?

p D $300?

(b) Which of these three is the most reasonable price for the

distributor to charge? Why?

25. (Marginal cost) The cost of manufacturing x refrigerators is

$C.x/, where

C.x/ D 8;000C 400x � 0:5x
2
:

(a) Find the marginal cost if 100 refrigerators are

manufactured.

(b) Show that the marginal cost is approximately the

difference in cost of manufacturing 101 refrigerators

instead of 100.

26. (Marginal profit) If a plywood factory produces x sheets of

plywood per day, its profit per day will be $P.x/, where

P.x/ D 8x � 0:005x
2
� 1;000:

(a) Find the marginal profit. For what values of x is the

marginal profit positive? negative?

(b) How many sheets should be produced each day to

generate maximum profits?

27. The cost C (in dollars) of producing n widgets per month in a

widget factory is given by

C D
80;000

n
C 4nC

n2

100
:

Find the marginal cost of production if the number of widgets

manufactured each month is (a) 100 and (b) 300.

28.I In a mining operation the cost C (in dollars) of extracting each

tonne of ore is given by

C D 10C
20

x
C

x

1;000
;

where x is the number of tonnes extracted each day. (For

small x, C decreases as x increases because of economies of

scale, but for large x, C increases with x because of

overloaded equipment and labour overtime.) If each tonne of

ore can be sold for $13, how many tonnes should be extracted

each day to maximize the daily profit of the mine?

29.I (Average cost and marginal cost) If it costs a manufacturer

C.x/ dollars to produce x items, then his average cost of

production is C.x/=x dollars per item. Typically the average

cost is a decreasing function of x for small x and an

increasing function of x for large x. (Why?)

Show that the value of x that minimizes the average cost

makes the average cost equal to the marginal cost.
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Solution

(a) The average cost per tonne of coal is

C.x/

x
D

4; 200

x
C 5:40 � 0:001x C 0:000 002x

2
:

If x D 1;000, the average cost per tonne is C.1;000/=1;000 D $10:60/tonne. If

x D 2;000, the average cost per tonne is C.2;000/=2;000 D $13:50/tonne.

(b) The marginal cost of production is

C
0
.x/ D 5:40 � 0:002x C 0:000 006x

2
:

If x D 1;000, the marginal cost is C 0
.1;000/ D $9:40/tonne. If x D 2;000, the

marginal cost is C 0.2;000/ D $25:40/tonne.

(c) If the production level x is increased slightly from x D 1;000, then the average

cost per tonne will drop because the cost is increasing at a rate lower than the

average cost. At x D 2;000 the opposite is true; an increase in production will

increase the average cost per tonne.

Economists sometimes prefer to measure relative rates of change that do not depend

on the units used to measure the quantities involved. They use the term elasticity for

such relative rates.

E X A M P L E 8
(Elasticity of demand) The demand y for a certain product (i.e.,

the amount that can be sold) typically depends on the price p

charged for the product: y D f .p/. The marginal demand dy=dp D f 0.p/ (which is

typically negative) depends on the units used to measure y and p. The elasticity of the

demand is the quantity

�

p

y

dy

dp
(the “�” sign ensures elasticity is positive),

which is independent of units and provides a good measure of the sensitivity of demand

to changes in price. To see this, suppose that new units of demand and price are

introduced, which are multiples of the old units. In terms of the new units the demand

and price are now Y and P , where

Y D k1y and P D k2p:

Thus, Y D k1f .P=k2/ and dY=dP D .k1=k2/f
0.P=k2/ D .k1=k2/f

0.p/ by the

Chain Rule. It follows that the elasticity has the same value:

�

P

Y

dY

dP
D �

k2p

k1y

k1

k2

f
0
.p/ D �

p

y

dy

dp
:
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E X E R C I S E S 2.7

In Exercises 1–4, use differentials to determine the approximate

change in the value of the given function as its argument changes

from the given value by the given amount. What is the

approximate value of the function after the change?

1. y D 1=x, as x increases from 2 to 2.01.

2. f .x/ D
p

3x C 1, as x increases from 1 to 1.08.

3. h.t/ D cos.�t=4/, as t increases from 2 to 2C .1=10�/.

4. u D tan.s=4/ as s decreases from � to � � 0:04.

In Exercises 5–10, find the approximate percentage changes in the

given function y D f .x/ that will result from an increase of 2% in

the value of x.

5. y D x2 6. y D 1=x

7. y D 1=x2 8. y D x3

9. y D
p

x 10. y D x�2=3

11. By approximately what percentage will the volume

(V D 4
3
�r

3) of a ball of radius r increase if the radius

increases by 2%?

12. By about what percentage will the edge length of an ice cube

decrease if the cube loses 6% of its volume by melting?

13. Find the rate of change of the area of a square with respect to

the length of its side when the side is 4 ft.

14. Find the rate of change of the side of a square with respect to

the area of the square when the area is 16 m2.

15. Find the rate of change of the diameter of a circle with respect

to its area.

16. Find the rate of change of the area of a circle with respect to

its diameter.

17. Find the rate of change of the volume of a sphere (given by

V D
4
3
�r3) with respect to its radius r when the radius is

2 m.

18. What is the rate of change of the area A of a square with

respect to the length L of the diagonal of the square?

19. What is the rate of change of the circumference C of a circle

with respect to the area A of the circle?

20. Find the rate of change of the side s of a cube with respect to

the volume V of the cube.

21. The volume of water in a tank t min after it starts draining is

V.t/ D 350.20� t /
2 L:

(a) How fast is the water draining out after 5 min? after 15

min?

(b) What is the average rate at which water is draining out

during the time interval from 5 to 15 min?

22. (Poiseuille’s Law) The flow rate F (in litres per minute) of a

liquid through a pipe is proportional to the fourth power of the

radius of the pipe:

F D kr
4
:

Approximately what percentage increase is needed in the

radius of the pipe to increase the flow rate by 10%?

23. (Gravitational force) The gravitational force F with which

the earth attracts an object in space is given by F D k=r2,

where k is a constant and r is the distance from the object to

the centre of the earth. If F decreases with respect to r at rate

1 pound/mile when r D 4;000 mi, how fast does F change

with respect to r when r D 8;000 mi?

24. (Sensitivity of revenue to price) The sales revenue $R from a

software product depends on the price $p charged by the

distributor according to the formula

R D 4;000p � 10p
2
:

(a) How sensitive is R to p when p D $100? p D $200?

p D $300?

(b) Which of these three is the most reasonable price for the

distributor to charge? Why?

25. (Marginal cost) The cost of manufacturing x refrigerators is

$C.x/, where

C.x/ D 8;000C 400x � 0:5x
2
:

(a) Find the marginal cost if 100 refrigerators are

manufactured.

(b) Show that the marginal cost is approximately the

difference in cost of manufacturing 101 refrigerators

instead of 100.

26. (Marginal profit) If a plywood factory produces x sheets of

plywood per day, its profit per day will be $P.x/, where

P.x/ D 8x � 0:005x
2
� 1;000:

(a) Find the marginal profit. For what values of x is the

marginal profit positive? negative?

(b) How many sheets should be produced each day to

generate maximum profits?

27. The cost C (in dollars) of producing n widgets per month in a

widget factory is given by

C D
80;000

n
C 4nC

n2

100
:

Find the marginal cost of production if the number of widgets

manufactured each month is (a) 100 and (b) 300.

28.I In a mining operation the cost C (in dollars) of extracting each

tonne of ore is given by

C D 10C
20

x
C

x

1;000
;

where x is the number of tonnes extracted each day. (For

small x, C decreases as x increases because of economies of

scale, but for large x, C increases with x because of

overloaded equipment and labour overtime.) If each tonne of

ore can be sold for $13, how many tonnes should be extracted

each day to maximize the daily profit of the mine?

29.I (Average cost and marginal cost) If it costs a manufacturer

C.x/ dollars to produce x items, then his average cost of

production is C.x/=x dollars per item. Typically the average

cost is a decreasing function of x for small x and an

increasing function of x for large x. (Why?)

Show that the value of x that minimizes the average cost

makes the average cost equal to the marginal cost.
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30. (Constant elasticity) Show that if demand y is related to

price p by the equation y D Cp�r , where C and r are

positive constants, then the elasticity of demand (see

Example 8) is the constant r .

2.8 The Mean-Value Theorem
If you set out in a car at 1:00 p.m. and arrive in a town 150 km away from your

starting point at 3:00 p.m., then you have travelled at an average speed of 150=2 D

75 km/h. Although you may not have travelled at constant speed, you must have

been going 75 km/h at at least one instant during your journey, for if your speed

was always less than 75 km/h you would have gone less than 150 km in 2 h, and

if your speed was always more than 75 km/h, you would have gone more than 150

km in 2 h. In order to get from a value less than 75 km/h to a value greater than

75 km/h, your speed, which is a continuous function of time, must pass through the

value 75 km/h at some intermediate time.

The conclusion that the average speed over a time interval must be equal to the

instantaneous speed at some time in that interval is an instance of an important math-

ematical principle. In geometric terms it says that if A and B are two points on a

smooth curve, then there is at least one point C on the curve between A and B where

the tangent line is parallel to the chord line AB . See Figure 2.28.

Figure 2.28 There is a point C on the

curve where the tangent (green) is parallel

to the chord AB (blue)

y

x

y D f .x/

B

.b; f .b//

.a; f .a//A

C

a c b

This principle is stated more precisely in the following theorem.

T H E O R E M

11

The Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. Then there exists a point c in the open

interval .a; b/ such that

f .b/� f .a/

b � a
D f

0
.c/:

This says that the slope of the chord line joining the points .a; f .a// and .b; f .b// is

equal to the slope of the tangent line to the curve y D f .x/ at the point .c; f .c//, so

the two lines are parallel.

We will prove the Mean-Value Theorem later in this section. For now we make several

observations:

1. The hypotheses of the Mean-Value Theorem are all necessary for the conclusion;

if f fails to be continuous at even one point of Œa; b� or fails to be differentiable
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at even one point of .a; b/, then there may be no point where the tangent line is

parallel to the secant line AB . (See Figure 2.29.)

2. The Mean-Value Theorem gives no indication of how many points C there may

be on the curve between A and B where the tangent is parallel to AB . If the curve

is itself the straight line AB , then every point on the line between A and B has the

required property. In general, there may be more than one point (see Figure 2.30);

the Mean-Value Theorem asserts only that there must be at least one.

Figure 2.29 Functions that fail to satisfy

the hypotheses of the Mean-Value Theorem

and for which the conclusion is false:

(a) f is discontinuous at endpoint b

(b) f is discontinuous at p

(c) f is not differentiable at p

y

x

y

x

y

xa b a p b a p b

y D f .x/ y D f .x/

y D f .x/

(a) (b) (c)

Figure 2.30 For this curve there are three

points C where the tangent (green) is

parallel to the chord AB (blue)

y

xa c1 c2 c3 b

B

C3

C2

C1

A

y D f .x/

3. The Mean-Value Theorem gives us no information on how to find the point c,

which it says must exist. For some simple functions it is possible to calculate c

(see the following example), but doing so is usually of no practical value. As we

shall see, the importance of the Mean-Value Theorem lies in its use as a theoret-

ical tool. It belongs to a class of theorems called existence theorems, as do the

Max-Min Theorem and the Intermediate-Value Theorem (Theorems 8 and 9 of

Section 1.4).

E X A M P L E 1
Verify the conclusion of the Mean-Value Theorem for f .x/ D

p

x

on the interval Œa; b�, where 0 � a < b.

Solution The theorem says that there must be a number c in the interval .a; b/ such

that

f
0
.c/ D

f .b/� f .a/

b � a

1

2
p

c
D

p

b �
p

a

b � a
D

p

b �
p

a

.
p

b �
p

a/.
p

b C
p

a/
D

1
p

b C
p

a
:

Thus, 2
p

c D
p

aC
p

b and c D

 p

b C
p

a

2

!2

. Since a < b, we have

a D

�p

aC
p

a

2

�2

< c <

 p

b C
p

b

2

!2

D b;

so c lies in the interval .a; b/.

The following two examples are more representative of how the Mean-Value Theorem

is actually used.
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30. (Constant elasticity) Show that if demand y is related to

price p by the equation y D Cp�r , where C and r are

positive constants, then the elasticity of demand (see

Example 8) is the constant r .

2.8 The Mean-Value Theorem
If you set out in a car at 1:00 p.m. and arrive in a town 150 km away from your

starting point at 3:00 p.m., then you have travelled at an average speed of 150=2 D

75 km/h. Although you may not have travelled at constant speed, you must have

been going 75 km/h at at least one instant during your journey, for if your speed

was always less than 75 km/h you would have gone less than 150 km in 2 h, and

if your speed was always more than 75 km/h, you would have gone more than 150

km in 2 h. In order to get from a value less than 75 km/h to a value greater than

75 km/h, your speed, which is a continuous function of time, must pass through the

value 75 km/h at some intermediate time.

The conclusion that the average speed over a time interval must be equal to the

instantaneous speed at some time in that interval is an instance of an important math-

ematical principle. In geometric terms it says that if A and B are two points on a

smooth curve, then there is at least one point C on the curve between A and B where

the tangent line is parallel to the chord line AB . See Figure 2.28.

Figure 2.28 There is a point C on the

curve where the tangent (green) is parallel

to the chord AB (blue)

y

x

y D f .x/

B

.b; f .b//

.a; f .a//A

C

a c b

This principle is stated more precisely in the following theorem.

T H E O R E M

11

The Mean-Value Theorem

Suppose that the function f is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. Then there exists a point c in the open

interval .a; b/ such that

f .b/� f .a/

b � a
D f

0
.c/:

This says that the slope of the chord line joining the points .a; f .a// and .b; f .b// is

equal to the slope of the tangent line to the curve y D f .x/ at the point .c; f .c//, so

the two lines are parallel.

We will prove the Mean-Value Theorem later in this section. For now we make several

observations:

1. The hypotheses of the Mean-Value Theorem are all necessary for the conclusion;

if f fails to be continuous at even one point of Œa; b� or fails to be differentiable
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at even one point of .a; b/, then there may be no point where the tangent line is

parallel to the secant line AB . (See Figure 2.29.)

2. The Mean-Value Theorem gives no indication of how many points C there may

be on the curve between A and B where the tangent is parallel to AB . If the curve

is itself the straight line AB , then every point on the line between A and B has the

required property. In general, there may be more than one point (see Figure 2.30);

the Mean-Value Theorem asserts only that there must be at least one.

Figure 2.29 Functions that fail to satisfy

the hypotheses of the Mean-Value Theorem

and for which the conclusion is false:

(a) f is discontinuous at endpoint b

(b) f is discontinuous at p

(c) f is not differentiable at p

y

x

y

x

y

xa b a p b a p b

y D f .x/ y D f .x/

y D f .x/

(a) (b) (c)

Figure 2.30 For this curve there are three

points C where the tangent (green) is

parallel to the chord AB (blue)

y

xa c1 c2 c3 b

B

C3

C2

C1

A

y D f .x/

3. The Mean-Value Theorem gives us no information on how to find the point c,

which it says must exist. For some simple functions it is possible to calculate c

(see the following example), but doing so is usually of no practical value. As we

shall see, the importance of the Mean-Value Theorem lies in its use as a theoret-

ical tool. It belongs to a class of theorems called existence theorems, as do the

Max-Min Theorem and the Intermediate-Value Theorem (Theorems 8 and 9 of

Section 1.4).

E X A M P L E 1
Verify the conclusion of the Mean-Value Theorem for f .x/ D

p

x

on the interval Œa; b�, where 0 � a < b.

Solution The theorem says that there must be a number c in the interval .a; b/ such

that

f
0
.c/ D

f .b/� f .a/

b � a

1

2
p

c
D

p

b �
p

a

b � a
D

p

b �
p

a

.
p

b �
p

a/.
p

b C
p

a/
D

1
p

b C
p

a
:

Thus, 2
p

c D
p

aC
p

b and c D

 p

b C
p

a

2

!2

. Since a < b, we have

a D

�p

aC
p

a

2

�2

< c <

 p

b C
p

b

2

!2

D b;

so c lies in the interval .a; b/.

The following two examples are more representative of how the Mean-Value Theorem

is actually used.
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E X A M P L E 2
Show that sin x < x for all x > 0.

Solution If x > 2� , then sinx � 1 < 2� < x. If 0 < x � 2� , then, by the

Mean-Value Theorem, there exists c in the open interval .0; 2�/ such that

sin x

x
D

sinx � sin 0

x � 0
D

d

dx
sinx

ˇ

ˇ

ˇ

ˇ

xDc

D cos c < 1:

Thus, sin x < x in this case too.

E X A M P L E 3 Show that
p

1C x < 1C
x

2
for x > 0 and for �1 � x < 0.

Solution If x > 0, apply the Mean-Value Theorem to f .x/ D
p

1C x on the inter-

val Œ0; x�. There exists c in .0; x/ such that

p

1C x � 1

x
D

f .x/� f .0/

x � 0
D f

0
.c/ D

1

2
p

1C c
<
1

2
:

The last inequality holds because c > 0. Multiplying by the positive number x and

transposing the �1 gives
p

1C x < 1C
x

2
.

If �1 � x < 0, we apply the Mean-Value Theorem to f .x/ D
p

1C x on the

interval Œx; 0�. There exists c in .x; 0/ such that

p

1C x � 1

x
D

1�
p

1C x

�x
D

f .0/ � f .x/

0 � x
D f

0
.c/ D

1

2
p

1C c
>
1

2

(because 0 < 1 C c < 1). Now we must multiply by the negative number x, which

reverses the inequality,
p

1C x � 1 <
x

2
, and the required inequality again follows by

transposing the �1.

Increasing and Decreasing Functions
Intervals on which the graph of a function f has positive or negative slope provide

useful information about the behaviour of f . The Mean-Value Theorem enables us to

determine such intervals by considering the sign of the derivative f 0.

D E F I N I T I O N

6

Increasing and decreasing functions

Suppose that the function f is defined on an interval I and that x1 and x2 are

two points of I .

(a) If f .x2/ > f .x1/ whenever x2 > x1, we say f is increasing on I:

(b) If f .x2/ < f .x1/ whenever x2 > x1, we say f is decreasing on I:

(c) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nondecreasing on I:

(d) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nonincreasing on I:

Figure 2.31 illustrates these terms. Note the distinction between increasing and non-

decreasing. If a function is increasing (or decreasing) on an interval, it must take differ-

ent values at different points. (Such a function is called one-to-one.) A nondecreasing

function (or a nonincreasing function) may be constant on a subinterval of its domain,

and may therefore not be one-to-one. An increasing function is nondecreasing, but a

nondecreasing function is not necessarily increasing.
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Figure 2.31

(a) Function f is increasing

(b) Function g is decreasing

(c) Function h is nondecreasing

(d) Function k is nonincreasing

y

x

y

x

y

x

y

x

(a)

(c) (d)

(b)

y D f .x/

y D g.x/

y D k.x/

y D h.x/

T H E O R E M

12

Let J be an open interval, and let I be an interval consisting of all the points in J and

possibly one or both of the endpoints of J: Suppose that f is continuous on I and

differentiable on J:

(a) If f 0
.x/ > 0 for all x in J; then f is increasing on I:

(b) If f 0
.x/ < 0 for all x in J; then f is decreasing on I:

(c) If f 0.x/ � 0 for all x in J; then f is nondecreasing on I:

(d) If f 0.x/ � 0 for all x in J; then f is nonincreasing on I:

PROOF Let x1 and x2 be points in I with x2 > x1. By the Mean-Value Theorem

there exists a point c in .x1; x2/ (and therefore in J ) such that

f .x2/ � f .x1/

x2 � x1

D f
0
.c/I

hence, f .x2/� f .x1/ D .x2 � x1/ f
0.c/. Since x2 � x1 > 0, the difference f .x2/�

f .x1/ has the same sign as f 0.c/ and may be zero if f 0.c/ is zero. Thus, all four

conclusions follow from the corresponding parts of Definition 6.

Remark Despite Theorem 12, f 0.x0/ > 0 at a single point x0 does not imply that f

is increasing on any interval containing x0. See Exercise 30 at the end of this section

for a counterexample.

E X A M P L E 4
On what intervals is the function f .x/ D x3

�12xC1 increasing?

On what intervals is it decreasing?

Solution We have f 0.x/ D 3x2
� 12 D 3.x � 2/.x C 2/. Observe that f 0.x/ > 0

if x < �2 or x > 2 and f 0.x/ < 0 if �2 < x < 2. Therefore, f is increasing

on the intervals .�1;�2/ and .2;1/ and is decreasing on the interval .�2; 2/. See

Figure 2.32.

A function f whose derivative satisfies f 0.x/ � 0 on an interval can still be increasing

there, rather than just nondecreasing as assured by Theorem 12(c). This will happen if

f 0.x/ D 0 only at isolated points, so that f is assured to be increasing on intervals to

the left and right of these points.

y

x

.�2; 17/

.2;�15/

y D x3
� 12x C 1

Figure 2.32

E X A M P L E 5
Show that f .x/ D x3 is increasing on any interval.
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E X A M P L E 2
Show that sin x < x for all x > 0.

Solution If x > 2� , then sinx � 1 < 2� < x. If 0 < x � 2� , then, by the

Mean-Value Theorem, there exists c in the open interval .0; 2�/ such that

sin x

x
D

sinx � sin 0

x � 0
D

d

dx
sinx

ˇ

ˇ

ˇ

ˇ

xDc

D cos c < 1:

Thus, sin x < x in this case too.

E X A M P L E 3 Show that
p

1C x < 1C
x

2
for x > 0 and for �1 � x < 0.

Solution If x > 0, apply the Mean-Value Theorem to f .x/ D
p

1C x on the inter-

val Œ0; x�. There exists c in .0; x/ such that

p

1C x � 1

x
D

f .x/� f .0/

x � 0
D f

0
.c/ D

1

2
p

1C c
<
1

2
:

The last inequality holds because c > 0. Multiplying by the positive number x and

transposing the �1 gives
p

1C x < 1C
x

2
.

If �1 � x < 0, we apply the Mean-Value Theorem to f .x/ D
p

1C x on the

interval Œx; 0�. There exists c in .x; 0/ such that

p

1C x � 1

x
D

1�
p

1C x

�x
D

f .0/ � f .x/

0 � x
D f

0
.c/ D

1

2
p

1C c
>
1

2

(because 0 < 1 C c < 1). Now we must multiply by the negative number x, which

reverses the inequality,
p

1C x � 1 <
x

2
, and the required inequality again follows by

transposing the �1.

Increasing and Decreasing Functions
Intervals on which the graph of a function f has positive or negative slope provide

useful information about the behaviour of f . The Mean-Value Theorem enables us to

determine such intervals by considering the sign of the derivative f 0.

D E F I N I T I O N

6

Increasing and decreasing functions

Suppose that the function f is defined on an interval I and that x1 and x2 are

two points of I .

(a) If f .x2/ > f .x1/ whenever x2 > x1, we say f is increasing on I:

(b) If f .x2/ < f .x1/ whenever x2 > x1, we say f is decreasing on I:

(c) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nondecreasing on I:

(d) If f .x2/ � f .x1/ whenever x2 > x1, we say f is nonincreasing on I:

Figure 2.31 illustrates these terms. Note the distinction between increasing and non-

decreasing. If a function is increasing (or decreasing) on an interval, it must take differ-

ent values at different points. (Such a function is called one-to-one.) A nondecreasing

function (or a nonincreasing function) may be constant on a subinterval of its domain,

and may therefore not be one-to-one. An increasing function is nondecreasing, but a

nondecreasing function is not necessarily increasing.

ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 141 October 15, 2016

SECTION 2.8: The Mean-Value Theorem 141

Figure 2.31

(a) Function f is increasing

(b) Function g is decreasing

(c) Function h is nondecreasing

(d) Function k is nonincreasing

y

x

y

x

y

x

y

x

(a)

(c) (d)

(b)

y D f .x/

y D g.x/

y D k.x/

y D h.x/

T H E O R E M

12

Let J be an open interval, and let I be an interval consisting of all the points in J and

possibly one or both of the endpoints of J: Suppose that f is continuous on I and

differentiable on J:

(a) If f 0
.x/ > 0 for all x in J; then f is increasing on I:

(b) If f 0
.x/ < 0 for all x in J; then f is decreasing on I:

(c) If f 0.x/ � 0 for all x in J; then f is nondecreasing on I:

(d) If f 0.x/ � 0 for all x in J; then f is nonincreasing on I:

PROOF Let x1 and x2 be points in I with x2 > x1. By the Mean-Value Theorem

there exists a point c in .x1; x2/ (and therefore in J ) such that

f .x2/ � f .x1/

x2 � x1

D f
0
.c/I

hence, f .x2/� f .x1/ D .x2 � x1/ f
0.c/. Since x2 � x1 > 0, the difference f .x2/�

f .x1/ has the same sign as f 0.c/ and may be zero if f 0.c/ is zero. Thus, all four

conclusions follow from the corresponding parts of Definition 6.

Remark Despite Theorem 12, f 0.x0/ > 0 at a single point x0 does not imply that f

is increasing on any interval containing x0. See Exercise 30 at the end of this section

for a counterexample.

E X A M P L E 4
On what intervals is the function f .x/ D x3

�12xC1 increasing?

On what intervals is it decreasing?

Solution We have f 0.x/ D 3x2
� 12 D 3.x � 2/.x C 2/. Observe that f 0.x/ > 0

if x < �2 or x > 2 and f 0.x/ < 0 if �2 < x < 2. Therefore, f is increasing

on the intervals .�1;�2/ and .2;1/ and is decreasing on the interval .�2; 2/. See

Figure 2.32.

A function f whose derivative satisfies f 0.x/ � 0 on an interval can still be increasing

there, rather than just nondecreasing as assured by Theorem 12(c). This will happen if

f 0.x/ D 0 only at isolated points, so that f is assured to be increasing on intervals to

the left and right of these points.

y

x

.�2; 17/

.2;�15/

y D x3
� 12x C 1

Figure 2.32

E X A M P L E 5
Show that f .x/ D x3 is increasing on any interval.
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Solution Let x1 and x2 be any two real numbers satsifying x1 < x2. Since f 0.x/ D

3x
2
> 0 except at x D 0, Theorem 12(a) tells us that f .x1/ < f .x2/ if either x1 <

x2 � 0 or 0 � x1 < x2. If x1 < 0 < x2, then f .x1/ < 0 < f .x2/. Thus, f is

increasing on every interval.

If a function is constant on an interval, then its derivative is zero on that interval.

The Mean-Value Theorem provides a converse of this fact.

T H E O R E M

13

If f is continuous on an interval I; and f 0.x/ D 0 at every interior point of I (i.e., at

every point of I that is not an endpoint of I ), then f .x/ D C , a constant, on I:

PROOF Pick a point x0 in I and let C D f .x0/. If x is any other point of I , then the

Mean-Value Theorem says that there exists a point c between x0 and x such that

f .x/� f .x0/

x � x0

D f
0
.c/:

The point c must belong to I because an interval contains all points between any two of

its points, and c cannot be an endpoint of I since c ¤ x0 and c ¤ x. Since f 0
.c/ D 0

for all such points c, we have f .x/�f .x0/ D 0 for all x in I , and f .x/ D f .x0/ D C

as claimed.

We will see how Theorem 13 can be used to establish identities for new functions en-

countered in later chapters. We will also use it when finding antiderivatives in Section

2.10.

Proof of the Mean-Value Theorem
The Mean-Value Theorem is one of those deep results that is based on the completeness

of the real number system via the fact that a continuous function on a closed, finite

interval takes on a maximum and minimum value (Theorem 8 of Section 1.4). Before

giving the proof, we establish two preliminary results.

T H E O R E M

14

If f is defined on an open interval .a; b/ and achieves a maximum (or minimum)

value at the point c in .a; b/, and if f 0.c/ exists, then f 0.c/ D 0. (Values of x where

f 0.x/ D 0 are called critical points of the function f .)

PROOF Suppose that f has a maximum value at c. Then f .x/�f .c/ � 0 whenever

x is in .a; b/. If c < x < b, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!cC

f .x/� f .c/

x � c
� 0:

Similarly, if a < x < c, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!c�

f .x/� f .c/

x � c
� 0:

Thus f 0.c/ D 0. The proof for a minimum value at c is similar.

T H E O R E M

15

Rolle’s Theorem

Suppose that the function g is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. If g.a/ D g.b/, then there exists a point

c in the open interval .a; b/ such that g0.c/ D 0.
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PROOF If g.x/ D g.a/ for every x in Œa; b�, then g is a constant function, so g0.c/ D

0 for every c in .a; b/. Therefore, suppose there exists x in .a; b/ such that g.x/ ¤

g.a/. Let us assume that g.x/ > g.a/. (If g.x/ < g.a/, the proof is similar.) By

the Max-Min Theorem (Theorem 8 of Section 1.4), being continuous on Œa; b�, g must

have a maximum value at some point c in Œa; b�. Since g.c/ � g.x/ > g.a/ D g.b/, c

cannot be either a or b. Therefore, c is in the open interval .a; b/, so g is differentiable

at c. By Theorem 14, c must be a critical point of g: g0.c/ D 0.

Remark Rolle’s Theorem is a special case of the Mean-Value Theorem in which the

chord line has slope 0, so the corresponding parallel tangent line must also have slope

0. We can deduce the Mean-Value Theorem from this special case.

PROOF of the Mean-Value Theorem Suppose f satisfies the conditions of the

Mean-Value Theorem. Let

g.x/ D f .x/�

�

f .a/C
f .b/� f .a/

b � a
.x � a/

�

:

(For a � x � b, g.x/ is the vertical displacement between the curve y D f .x/ and

the chord line

y D f .a/C
f .b/� f .a/

b � a
.x � a/

joining .a; f .a// and .b; f .b//. See Figure 2.33.)

Figure 2.33 g.x/ is the vertical distance

between the graph of f and the chord line

y

x

g.x/

y D f .x/

y D f .a/C
f .b/ � f .a/

b � a
.x � a/

a x b

.b; f .b//

.a; f .a//

The function g is also continuous on Œa; b� and differentiable on .a; b/ because f has

these properties. In addition, g.a/ D g.b/ D 0. By Rolle’s Theorem, there is some

point c in .a; b/ such that g0.c/ D 0. Since

g
0
.x/ D f

0
.x/�

f .b/ � f .a/

b � a
;

it follows that

f
0
.c/ D

f .b/� f .a/

b � a
:

Many of the applications we will make of the Mean-Value Theorem in later chap-

ters will actually use the following generalized version of it.
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Solution Let x1 and x2 be any two real numbers satsifying x1 < x2. Since f 0.x/ D

3x
2
> 0 except at x D 0, Theorem 12(a) tells us that f .x1/ < f .x2/ if either x1 <

x2 � 0 or 0 � x1 < x2. If x1 < 0 < x2, then f .x1/ < 0 < f .x2/. Thus, f is

increasing on every interval.

If a function is constant on an interval, then its derivative is zero on that interval.

The Mean-Value Theorem provides a converse of this fact.

T H E O R E M

13

If f is continuous on an interval I; and f 0.x/ D 0 at every interior point of I (i.e., at

every point of I that is not an endpoint of I ), then f .x/ D C , a constant, on I:

PROOF Pick a point x0 in I and let C D f .x0/. If x is any other point of I , then the

Mean-Value Theorem says that there exists a point c between x0 and x such that

f .x/� f .x0/

x � x0

D f
0
.c/:

The point c must belong to I because an interval contains all points between any two of

its points, and c cannot be an endpoint of I since c ¤ x0 and c ¤ x. Since f 0
.c/ D 0

for all such points c, we have f .x/�f .x0/ D 0 for all x in I , and f .x/ D f .x0/ D C

as claimed.

We will see how Theorem 13 can be used to establish identities for new functions en-

countered in later chapters. We will also use it when finding antiderivatives in Section

2.10.

Proof of the Mean-Value Theorem
The Mean-Value Theorem is one of those deep results that is based on the completeness

of the real number system via the fact that a continuous function on a closed, finite

interval takes on a maximum and minimum value (Theorem 8 of Section 1.4). Before

giving the proof, we establish two preliminary results.

T H E O R E M

14

If f is defined on an open interval .a; b/ and achieves a maximum (or minimum)

value at the point c in .a; b/, and if f 0.c/ exists, then f 0.c/ D 0. (Values of x where

f 0.x/ D 0 are called critical points of the function f .)

PROOF Suppose that f has a maximum value at c. Then f .x/�f .c/ � 0 whenever

x is in .a; b/. If c < x < b, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!cC

f .x/� f .c/

x � c
� 0:

Similarly, if a < x < c, then

f .x/� f .c/

x � c
� 0; so f

0
.c/ D lim

x!c�

f .x/� f .c/

x � c
� 0:

Thus f 0.c/ D 0. The proof for a minimum value at c is similar.

T H E O R E M

15

Rolle’s Theorem

Suppose that the function g is continuous on the closed, finite interval Œa; b� and that

it is differentiable on the open interval .a; b/. If g.a/ D g.b/, then there exists a point

c in the open interval .a; b/ such that g0.c/ D 0.
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PROOF If g.x/ D g.a/ for every x in Œa; b�, then g is a constant function, so g0.c/ D

0 for every c in .a; b/. Therefore, suppose there exists x in .a; b/ such that g.x/ ¤

g.a/. Let us assume that g.x/ > g.a/. (If g.x/ < g.a/, the proof is similar.) By

the Max-Min Theorem (Theorem 8 of Section 1.4), being continuous on Œa; b�, g must

have a maximum value at some point c in Œa; b�. Since g.c/ � g.x/ > g.a/ D g.b/, c

cannot be either a or b. Therefore, c is in the open interval .a; b/, so g is differentiable

at c. By Theorem 14, c must be a critical point of g: g0.c/ D 0.

Remark Rolle’s Theorem is a special case of the Mean-Value Theorem in which the

chord line has slope 0, so the corresponding parallel tangent line must also have slope

0. We can deduce the Mean-Value Theorem from this special case.

PROOF of the Mean-Value Theorem Suppose f satisfies the conditions of the

Mean-Value Theorem. Let

g.x/ D f .x/�

�

f .a/C
f .b/� f .a/

b � a
.x � a/

�

:

(For a � x � b, g.x/ is the vertical displacement between the curve y D f .x/ and

the chord line

y D f .a/C
f .b/� f .a/

b � a
.x � a/

joining .a; f .a// and .b; f .b//. See Figure 2.33.)

Figure 2.33 g.x/ is the vertical distance

between the graph of f and the chord line

y

x

g.x/

y D f .x/

y D f .a/C
f .b/ � f .a/

b � a
.x � a/

a x b

.b; f .b//

.a; f .a//

The function g is also continuous on Œa; b� and differentiable on .a; b/ because f has

these properties. In addition, g.a/ D g.b/ D 0. By Rolle’s Theorem, there is some

point c in .a; b/ such that g0.c/ D 0. Since

g
0
.x/ D f

0
.x/�

f .b/ � f .a/

b � a
;

it follows that

f
0
.c/ D

f .b/� f .a/

b � a
:

Many of the applications we will make of the Mean-Value Theorem in later chap-

ters will actually use the following generalized version of it.
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16

The Generalized Mean-Value Theorem

If functions f and g are both continuous on Œa; b� and differentiable on .a; b/, and if

g0.x/ ¤ 0 for every x in .a; b/, then there exists a number c in .a; b/ such that

f .b/� f .a/

g.b/ � g.a/
D

f
0
.c/

g0.c/
:

PROOF Note that g.b/ ¤ g.a/; otherwise, there would be some number in .a; b/

where g0
D 0. Hence, neither denominator above can be zero. Apply the Mean-Value

Theorem to

h.x/ D
�

f .b/� f .a/
��

g.x/� g.a/
�

�

�

g.b/� g.a/
��

f .x/� f .a/
�

:

Since h.a/ D h.b/ D 0, there exists c in .a; b/ such that h0.c/ D 0. Thus,

�

f .b/� f .a/
�

g
0
.c/ �

�

g.b/ � g.a/
�

f
0
.c/ D 0;

and the result follows on division by the g factors.

E X E R C I S E S 2.8

In Exercises 1–3, illustrate the Mean-Value Theorem by finding

any points in the open interval .a; b/ where the tangent line to

y D f .x/ is parallel to the chord line joining .a; f .a// and

.b; f .b//.

1. f .x/ D x2 on Œa; b� 2. f .x/ D
1

x
on Œ1; 2�

3. f .x/ D x3
� 3x C 1 on Œ�2; 2�

4.I By applying the Mean-Value Theorem to f .x/ D cos x C
x2

2
on the interval Œ0; x�, and using the result of Example 2, show

that

cosx > 1 �
x2

2

for x > 0. This inequality is also true for x < 0. Why?

5. Show that tanx > x for 0 < x < �=2.

6. Let r > 1. If x > 0 or �1 � x < 0, show that

.1C x/r > 1C rx.

7. Let 0 < r < 1. If x > 0 or �1 � x < 0, show that

.1C x/r < 1C rx.

Find the intervals of increase and decrease of the functions in

Exercises 8–19.

8. f .x/ D x3
� 12x C 1 9. f .x/ D x2

� 4

10. y D 1 � x � x5 11. y D x3
C 6x

2

12. f .x/ D x2
C 2x C 2 13. f .x/ D x3

� 4x C 1

14. f .x/ D x3
C 4x C 1 15. f .x/ D .x2

� 4/
2

16. f .x/ D
1

x2
C 1

17. f .x/ D x3
.5 � x/

2

18. f .x/ D x � 2 sinx 19. f .x/ D x C sinx

20. On what intervals is f .x/ D x C 2 sinx increasing?

21. Show that f .x/ D x3 is increasing on the whole real line even

though f 0.x/ is not positive at every point.

22.A What is wrong with the following “proof” of the Generalized

Mean-Value Theorem? By the Mean-Value Theorem,

f .b/� f .a/ D .b � a/f
0
.c/ for some c between a and b and,

similarly, g.b/�g.a/ D .b�a/g0.c/ for some such c. Hence,

.f .b/ � f .a//=.g.b/ � g.a// D f 0.c/=g0.c/, as required.

Use a graphing utility or a computer algebra system to find the

critical points of the functions in Exercises 23–26 correct to

6 decimal places.

G 23. f .x/ D
x

2
� x

x2
� 4

G 24. f .x/ D
2x C 1

x2
C x C 1

G 25. f .x/ D x � sin

�

x

x2
C x C 1

�

G 26. f .x/ D

p

1 � x2

cos.x C 0:1/

27.A If f .x/ is differentiable on an interval I and vanishes at n � 2

distinct points of I; prove that f 0.x/ must vanish at at least

n � 1 points in I:

28.A Let f .x/ D x2 sin.1=x/ if x ¤ 0 and f .0/ D 0. Show that

f 0.x/ exists at every x but f 0 is not continuous at x D 0.

This proves the assertion (made at the end of Section 2.2) that

a derivative, defined on an interval, need not be continuous

there.
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29.I Prove the assertion (made at the end of Section 2.2) that a

derivative, defined on an interval, must have the intermediate-

value property. (Hint: Assume that f 0 exists on Œa; b� and

f 0.a/ ¤ f 0.b/. If k lies between f 0.a/ and f 0.b/, show that

the function g defined by g.x/ D f .x/ � kx must have either

a maximum value or a minimum value on Œa; b� occurring at

an interior point c in .a; b/. Deduce that f 0.c/ D k.)

30.I Let f .x/ D

�

x C 2x2 sin.1=x/ if x ¤ 0,

0 if x D 0.

(a) Show that f 0.0/ D 1. (Hint: Use the definition of

derivative.)

(b) Show that any interval containing x D 0 also contains

points where f 0.x/ < 0, so f cannot be increasing on

such an interval.

31.A If f 00.x/ exists on an interval I and if f vanishes at at least

three distinct points of I; prove that f 00 must vanish at some

point in I:

32.A Generalize Exercise 31 to a function for which f .n/ exists on

I and for which f vanishes at at least nC 1 distinct points

in I:

33.I Suppose f is twice differentiable on an interval I (i.e., f 00

exists on I ). Suppose that the points 0 and 2 belong to I and

that f .0/ D f .1/ D 0 and f .2/ D 1. Prove that

(a) f 0.a/ D
1

2
for some point a in I:

(b) f 00.b/ >
1

2
for some point b in I:

(c) f 0.c/ D
1

7
for some point c in I:

2.9 Implicit Differentiation

We know how to find the slope of a curve that is the graph of a function y D f .x/ by

calculating the derivative of f: But not all curves are the graphs of such functions. To

be the graph of a function f .x/, the curve must not intersect any vertical lines at more

than one point.

Curves are generally the graphs of equations in two variables. Such equations can

be written in the form

F.x; y/ D 0;

where F.x; y/ denotes an expression involving the two variables x and y. For example,

a circle with centre at the origin and radius 5 has equation

x
2
C y

2
� 25 D 0;

so F.x; y/ D x2
C y2

� 25 for that circle.

Sometimes we can solve an equation F.x; y/ D 0 for y and so find explicit formu-

las for one or more functions y D f .x/ defined by the equation. Usually, however, we

are not able to solve the equation. However, we can still regard it as defining y as one

or more functions of x implicitly, even it we cannot solve for these functions explicitly.

Moreover, we still find the derivative dy=dx of these implicit solutions by a technique

called implicit differentiation. The idea is to differentiate the given equation with

respect to x, regarding y as a function of x having derivative dy=dx, or y 0.

E X A M P L E 1
Find dy=dx if y2

D x.

Solution The equation y2
D x defines two differentiable functions of x; in this case

we know them explicitly. They are y1 D
p

x and y2 D �
p

x (see Figure 2.34), having

derivatives defined for x > 0 by

y

x

y2 D �
p

x

y1 D
p

x

P.x;
p

x/

Q.x;�
p

x/

Slope D
1

2y1
D

1

2
p

x

Slope D
1

2y2
D �

1

2
p

x

Figure 2.34 The equation y2
D x defines

two differentiable functions of x on the

interval x � 0

dy1

dx
D

1

2
p

x
and

dy2

dx
D �

1

2
p

x
:

However, we can find the slope of the curve y2
D x at any point .x; y/ satisfying that

equation without first solving the equation for y. To find dy=dx, we simply differenti-

ate both sides of the equation y2
D x with respect to x, treating y as a differentiable
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16

The Generalized Mean-Value Theorem

If functions f and g are both continuous on Œa; b� and differentiable on .a; b/, and if

g0.x/ ¤ 0 for every x in .a; b/, then there exists a number c in .a; b/ such that

f .b/� f .a/

g.b/ � g.a/
D

f
0
.c/

g0.c/
:

PROOF Note that g.b/ ¤ g.a/; otherwise, there would be some number in .a; b/

where g0
D 0. Hence, neither denominator above can be zero. Apply the Mean-Value

Theorem to

h.x/ D
�

f .b/� f .a/
��

g.x/� g.a/
�

�

�

g.b/� g.a/
��

f .x/� f .a/
�

:

Since h.a/ D h.b/ D 0, there exists c in .a; b/ such that h0.c/ D 0. Thus,

�

f .b/� f .a/
�

g
0
.c/ �

�

g.b/ � g.a/
�

f
0
.c/ D 0;

and the result follows on division by the g factors.

E X E R C I S E S 2.8

In Exercises 1–3, illustrate the Mean-Value Theorem by finding

any points in the open interval .a; b/ where the tangent line to

y D f .x/ is parallel to the chord line joining .a; f .a// and

.b; f .b//.

1. f .x/ D x2 on Œa; b� 2. f .x/ D
1

x
on Œ1; 2�

3. f .x/ D x3
� 3x C 1 on Œ�2; 2�

4.I By applying the Mean-Value Theorem to f .x/ D cos x C
x2

2
on the interval Œ0; x�, and using the result of Example 2, show

that

cosx > 1 �
x2

2

for x > 0. This inequality is also true for x < 0. Why?

5. Show that tanx > x for 0 < x < �=2.

6. Let r > 1. If x > 0 or �1 � x < 0, show that

.1C x/r > 1C rx.

7. Let 0 < r < 1. If x > 0 or �1 � x < 0, show that

.1C x/r < 1C rx.

Find the intervals of increase and decrease of the functions in

Exercises 8–19.

8. f .x/ D x3
� 12x C 1 9. f .x/ D x2

� 4

10. y D 1 � x � x5 11. y D x3
C 6x

2

12. f .x/ D x2
C 2x C 2 13. f .x/ D x3

� 4x C 1

14. f .x/ D x3
C 4x C 1 15. f .x/ D .x2

� 4/
2

16. f .x/ D
1

x2
C 1

17. f .x/ D x3
.5 � x/

2

18. f .x/ D x � 2 sinx 19. f .x/ D x C sinx

20. On what intervals is f .x/ D x C 2 sinx increasing?

21. Show that f .x/ D x3 is increasing on the whole real line even

though f 0.x/ is not positive at every point.

22.A What is wrong with the following “proof” of the Generalized

Mean-Value Theorem? By the Mean-Value Theorem,

f .b/� f .a/ D .b � a/f
0
.c/ for some c between a and b and,

similarly, g.b/�g.a/ D .b�a/g0.c/ for some such c. Hence,

.f .b/ � f .a//=.g.b/ � g.a// D f 0.c/=g0.c/, as required.

Use a graphing utility or a computer algebra system to find the

critical points of the functions in Exercises 23–26 correct to

6 decimal places.

G 23. f .x/ D
x

2
� x

x2
� 4

G 24. f .x/ D
2x C 1

x2
C x C 1

G 25. f .x/ D x � sin

�

x

x2
C x C 1

�

G 26. f .x/ D

p

1 � x2

cos.x C 0:1/

27.A If f .x/ is differentiable on an interval I and vanishes at n � 2

distinct points of I; prove that f 0.x/ must vanish at at least

n � 1 points in I:

28.A Let f .x/ D x2 sin.1=x/ if x ¤ 0 and f .0/ D 0. Show that

f 0.x/ exists at every x but f 0 is not continuous at x D 0.

This proves the assertion (made at the end of Section 2.2) that

a derivative, defined on an interval, need not be continuous

there.
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29.I Prove the assertion (made at the end of Section 2.2) that a

derivative, defined on an interval, must have the intermediate-

value property. (Hint: Assume that f 0 exists on Œa; b� and

f 0.a/ ¤ f 0.b/. If k lies between f 0.a/ and f 0.b/, show that

the function g defined by g.x/ D f .x/ � kx must have either

a maximum value or a minimum value on Œa; b� occurring at

an interior point c in .a; b/. Deduce that f 0.c/ D k.)

30.I Let f .x/ D

�

x C 2x2 sin.1=x/ if x ¤ 0,

0 if x D 0.

(a) Show that f 0.0/ D 1. (Hint: Use the definition of

derivative.)

(b) Show that any interval containing x D 0 also contains

points where f 0.x/ < 0, so f cannot be increasing on

such an interval.

31.A If f 00.x/ exists on an interval I and if f vanishes at at least

three distinct points of I; prove that f 00 must vanish at some

point in I:

32.A Generalize Exercise 31 to a function for which f .n/ exists on

I and for which f vanishes at at least nC 1 distinct points

in I:

33.I Suppose f is twice differentiable on an interval I (i.e., f 00

exists on I ). Suppose that the points 0 and 2 belong to I and

that f .0/ D f .1/ D 0 and f .2/ D 1. Prove that

(a) f 0.a/ D
1

2
for some point a in I:

(b) f 00.b/ >
1

2
for some point b in I:

(c) f 0.c/ D
1

7
for some point c in I:

2.9 Implicit Differentiation

We know how to find the slope of a curve that is the graph of a function y D f .x/ by

calculating the derivative of f: But not all curves are the graphs of such functions. To

be the graph of a function f .x/, the curve must not intersect any vertical lines at more

than one point.

Curves are generally the graphs of equations in two variables. Such equations can

be written in the form

F.x; y/ D 0;

where F.x; y/ denotes an expression involving the two variables x and y. For example,

a circle with centre at the origin and radius 5 has equation

x
2
C y

2
� 25 D 0;

so F.x; y/ D x2
C y2

� 25 for that circle.

Sometimes we can solve an equation F.x; y/ D 0 for y and so find explicit formu-

las for one or more functions y D f .x/ defined by the equation. Usually, however, we

are not able to solve the equation. However, we can still regard it as defining y as one

or more functions of x implicitly, even it we cannot solve for these functions explicitly.

Moreover, we still find the derivative dy=dx of these implicit solutions by a technique

called implicit differentiation. The idea is to differentiate the given equation with

respect to x, regarding y as a function of x having derivative dy=dx, or y 0.

E X A M P L E 1
Find dy=dx if y2

D x.

Solution The equation y2
D x defines two differentiable functions of x; in this case

we know them explicitly. They are y1 D
p

x and y2 D �
p

x (see Figure 2.34), having

derivatives defined for x > 0 by

y

x

y2 D �
p

x

y1 D
p

x

P.x;
p

x/

Q.x;�
p

x/

Slope D
1

2y1
D

1

2
p

x

Slope D
1

2y2
D �

1

2
p

x

Figure 2.34 The equation y2
D x defines

two differentiable functions of x on the

interval x � 0

dy1

dx
D

1

2
p

x
and

dy2

dx
D �

1

2
p

x
:

However, we can find the slope of the curve y2
D x at any point .x; y/ satisfying that

equation without first solving the equation for y. To find dy=dx, we simply differenti-

ate both sides of the equation y2
D x with respect to x, treating y as a differentiable
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function of x and using the Chain Rule to differentiate y2:

d

dx
.y

2
/ D

d

dx
.x/

�

The Chain Rule gives
d

dx
y

2
D 2y

dy

dx
:

�

2y
dy

dx
D 1

dy

dx
D

1

2y
:

Observe that this agrees with the derivatives we calculated above for both of the explicit

solutions y1 D
p

x and y2 D �
p

x:

dy1

dx
D

1

2y1

D

1

2
p

x
and

dy2

dx
D

1

2y2

D

1

2.�
p

x/
D �

1

2
p

x
:

E X A M P L E 2
Find the slope of circle x2

C y
2
D 25 at the point .3;�4/.

Solution The circle is not the graph of a single function of x. Again, it combines the

graphs of two functions, y1 D

p

25 � x2 and y2 D �

p

25 � x2 (Figure 2.35). The

point .3;�4/ lies on the graph of y2, so we can find the slope by calculating explicitly:

y

x

y1 D

p

25 � x2

y2 D �

p

25 � x2

.3;�4/

5�5

Slope = 3/4

Figure 2.35 The circle combines the

graphs of two functions. The graph of y2 is

the lower semicircle and passes through

.3;�4/

dy2

dx

ˇ

ˇ

ˇ

ˇ

xD3

D �

�2x

2
p

25 � x2

ˇ

ˇ

ˇ

ˇ

xD3

D �

�6

2
p

25 � 9
D

3

4
:

But we can also solve the problem more easily by differentiating the given equation of

the circle implicitly with respect to x:

d

dx
.x

2
/C

d

dx
.y

2
/ D

d

dx
.25/

2x C 2y
dy

dx
D 0

dy

dx
D �

x

y
:

The slope at .3;�4/ is �
x

y

ˇ

ˇ

ˇ

.3;�4/
D �

3

�4
D

3

4
:

E X A M P L E 3 Find
dy

dx
if y sin x D x3

C cos y.

To find dy=dx by implicit

differentiation:

1. Differentiate both sides of the

equation with respect to x,

regarding y as a function of x

and using the Chain Rule to

differentiate functions of y.

2. Collect terms with dy=dx on

one side of the equation and

solve for dy=dx by dividing

by its coefficient.

Solution This time we cannot solve the equation for y as an explicit function of x,

so we must use implicit differentiation:

d

dx
.y sin x/ D

d

dx
.x

3
/C

d

dx
.cos y/

�

Use the Product Rule

on the left side.

�

.sin x/
dy

dx
C y cos x D 3x2

� .sin y/
dy

dx

.sin x C siny/
dy

dx
D 3x

2
� y cos x

dy

dx
D

3x2
� y cos x

sin x C sin y
:
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In the examples above, the derivatives dy=dx calculated by implicit differentiation

depend on y, or on both y and x, rather than just on x. This is to be expected because

an equation in x and y can define more than one function of x, and the implicitly

calculated derivative must apply to each of the solutions. For example, in Example 2,

the derivative dy=dx D �x=y also gives the slope �3=4 at the point .3; 4/ on the

circle. When you use implicit differentiation to find the slope of a curve at a point, you

will usually have to know both coordinates of the point.

There are subtle dangers involved in calculating derivatives implicitly. When you

use the Chain Rule to differentiate an equation involving y with respect to x, you are

automatically assuming that the equation defines y as a differentiable function of x.

This need not be the case. To see what can happen, consider the problem of finding

y 0
D dy=dx from the equation

x
2
C y

2
D K; .�/

whereK is a constant. As in Example 2 (whereK D 25), implicit differentiation gives

2x C 2yy
0
D 0 or y

0
D �

x

y
:

This formula will give the slope of the curve .�/ at any point on the curve where

y ¤ 0. For K > 0, .�/ represents a circle centred at the origin and having radius
p

K. This circle has a finite slope, except at the two points where it crosses the x-axis

(where y D 0). If K D 0, the equation represents only a single point, the origin. The

concept of slope of a point is meaningless. For K < 0, there are no real points whose

coordinates satisfy equation .�/, so y 0 is meaningless here too. The point of this is

that being able to calculate y 0 from a given equation by implicit differentiation does

not guarantee that y 0 actually represents the slope of anything.

If .x0; y0/ is a point on the graph of the equation F.x; y/ D 0, there is a theorem

that can justify our use of implicit differentiation to find the slope of the graph there.

We cannot give a careful statement or proof of this implicit function theorem yet (see

Section 12.8), but roughly speaking, it says that part of the graph of F.x; y/ D 0

near .x0; y0/ is the graph of a function of x that is differentiable at x0, provided that

F.x; y/ is a “smooth” function, and that the derivative

d

dy
F.x0; y/

ˇ

ˇ

ˇ

ˇ

yDy0

¤ 0:

For the circle x2
C y2

� K D 0 (where K > 0) this condition says that 2y0 ¤ 0,

which is the condition that the derivative y 0
D �x=y should exist at .x0; y0/.

E X A M P L E 4
Find an equation of the tangent to x2

C xy C 2y
3
D 4 at .�2; 1/.

Solution Note that .�2; 1/ does lie on the given curve. To find the slope of the

tangent we differentiate the given equation implicitly with respect to x. Use the Product

A useful strategy

When you use implicit

differentiation to find the value

of a derivative at a particular

point, it is best to substitute the

coordinates of the point

immediately after you carry out

the differentiation and before you

solve for the derivative dy=dx. It

is easier to solve an equation

involving numbers than one with

algebraic expressions.

Rule to differentiate the xy term:

2x C y C xy
0
C 6y

2
y

0
D 0:

Substitute the coordinates x D �2, y D 1, and solve the resulting equation for y 0:

�4C 1 � 2y
0
C 6y

0
D 0 ) y

0
D

3

4
:

The slope of the tangent at .�2; 1/ is 3=4, and its equation is

y D
3

4
.x C 2/C 1 or 3x � 4y D �10:

9780134154367_Calculus   166 05/12/16   3:11 pm



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 2 – page 146 October 15, 2016

146 CHAPTER 2 Differentiation

function of x and using the Chain Rule to differentiate y2:

d

dx
.y

2
/ D

d

dx
.x/

�

The Chain Rule gives
d

dx
y

2
D 2y

dy

dx
:

�

2y
dy

dx
D 1

dy

dx
D

1

2y
:

Observe that this agrees with the derivatives we calculated above for both of the explicit

solutions y1 D
p

x and y2 D �
p

x:

dy1

dx
D

1

2y1

D

1

2
p

x
and

dy2

dx
D

1

2y2

D

1

2.�
p

x/
D �

1

2
p

x
:

E X A M P L E 2
Find the slope of circle x2

C y
2
D 25 at the point .3;�4/.

Solution The circle is not the graph of a single function of x. Again, it combines the

graphs of two functions, y1 D

p

25 � x2 and y2 D �

p

25 � x2 (Figure 2.35). The

point .3;�4/ lies on the graph of y2, so we can find the slope by calculating explicitly:

y

x

y1 D

p

25 � x2

y2 D �

p

25 � x2

.3;�4/

5�5

Slope = 3/4

Figure 2.35 The circle combines the

graphs of two functions. The graph of y2 is

the lower semicircle and passes through

.3;�4/

dy2

dx

ˇ

ˇ

ˇ

ˇ

xD3

D �

�2x

2
p

25 � x2

ˇ

ˇ

ˇ

ˇ

xD3

D �

�6

2
p

25 � 9
D

3

4
:

But we can also solve the problem more easily by differentiating the given equation of

the circle implicitly with respect to x:

d

dx
.x

2
/C

d

dx
.y

2
/ D

d

dx
.25/

2x C 2y
dy

dx
D 0

dy

dx
D �

x

y
:

The slope at .3;�4/ is �
x

y

ˇ

ˇ

ˇ

.3;�4/
D �

3

�4
D

3

4
:

E X A M P L E 3 Find
dy

dx
if y sin x D x3

C cos y.

To find dy=dx by implicit

differentiation:

1. Differentiate both sides of the

equation with respect to x,

regarding y as a function of x

and using the Chain Rule to

differentiate functions of y.

2. Collect terms with dy=dx on

one side of the equation and

solve for dy=dx by dividing

by its coefficient.

Solution This time we cannot solve the equation for y as an explicit function of x,

so we must use implicit differentiation:

d

dx
.y sin x/ D

d

dx
.x

3
/C

d

dx
.cos y/

�

Use the Product Rule

on the left side.

�

.sin x/
dy

dx
C y cos x D 3x2

� .sin y/
dy

dx

.sin x C siny/
dy

dx
D 3x

2
� y cos x

dy

dx
D

3x2
� y cos x

sin x C sin y
:
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In the examples above, the derivatives dy=dx calculated by implicit differentiation

depend on y, or on both y and x, rather than just on x. This is to be expected because

an equation in x and y can define more than one function of x, and the implicitly

calculated derivative must apply to each of the solutions. For example, in Example 2,

the derivative dy=dx D �x=y also gives the slope �3=4 at the point .3; 4/ on the

circle. When you use implicit differentiation to find the slope of a curve at a point, you

will usually have to know both coordinates of the point.

There are subtle dangers involved in calculating derivatives implicitly. When you

use the Chain Rule to differentiate an equation involving y with respect to x, you are

automatically assuming that the equation defines y as a differentiable function of x.

This need not be the case. To see what can happen, consider the problem of finding

y 0
D dy=dx from the equation

x
2
C y

2
D K; .�/

whereK is a constant. As in Example 2 (whereK D 25), implicit differentiation gives

2x C 2yy
0
D 0 or y

0
D �

x

y
:

This formula will give the slope of the curve .�/ at any point on the curve where

y ¤ 0. For K > 0, .�/ represents a circle centred at the origin and having radius
p

K. This circle has a finite slope, except at the two points where it crosses the x-axis

(where y D 0). If K D 0, the equation represents only a single point, the origin. The

concept of slope of a point is meaningless. For K < 0, there are no real points whose

coordinates satisfy equation .�/, so y 0 is meaningless here too. The point of this is

that being able to calculate y 0 from a given equation by implicit differentiation does

not guarantee that y 0 actually represents the slope of anything.

If .x0; y0/ is a point on the graph of the equation F.x; y/ D 0, there is a theorem

that can justify our use of implicit differentiation to find the slope of the graph there.

We cannot give a careful statement or proof of this implicit function theorem yet (see

Section 12.8), but roughly speaking, it says that part of the graph of F.x; y/ D 0

near .x0; y0/ is the graph of a function of x that is differentiable at x0, provided that

F.x; y/ is a “smooth” function, and that the derivative

d

dy
F.x0; y/

ˇ

ˇ

ˇ

ˇ

yDy0

¤ 0:

For the circle x2
C y2

� K D 0 (where K > 0) this condition says that 2y0 ¤ 0,

which is the condition that the derivative y 0
D �x=y should exist at .x0; y0/.

E X A M P L E 4
Find an equation of the tangent to x2

C xy C 2y
3
D 4 at .�2; 1/.

Solution Note that .�2; 1/ does lie on the given curve. To find the slope of the

tangent we differentiate the given equation implicitly with respect to x. Use the Product

A useful strategy

When you use implicit

differentiation to find the value

of a derivative at a particular

point, it is best to substitute the

coordinates of the point

immediately after you carry out

the differentiation and before you

solve for the derivative dy=dx. It

is easier to solve an equation

involving numbers than one with

algebraic expressions.

Rule to differentiate the xy term:

2x C y C xy
0
C 6y

2
y

0
D 0:

Substitute the coordinates x D �2, y D 1, and solve the resulting equation for y 0:

�4C 1 � 2y
0
C 6y

0
D 0 ) y

0
D

3

4
:

The slope of the tangent at .�2; 1/ is 3=4, and its equation is

y D
3

4
.x C 2/C 1 or 3x � 4y D �10:
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E X A M P L E 5
Show that for any constants a and b, the curves x2

� y2
D a and

xy D b intersect at right angles, that is, at any point where they

intersect their tangents are perpendicular.

Solution The slope at any point on x2
� y2

D a is given by 2x � 2yy 0
D 0, or

y 0
D x=y. The slope at any point on xy D b is given by yC xy 0

D 0, or y 0
D �y=x.

If the two curves (they are both hyperbolas if a ¤ 0 and b ¤ 0) intersect at .x0; y0/,

then their slopes at that point are x0=y0 and�y0=x0, respectively. Clearly, these slopes

are negative reciprocals, so the tangent line to one curve is the normal line to the other

y

x

Figure 2.36 Some hyperbolas in the

family x2
� y2

D a (red) intersecting

some hyperbolas in the family xy D b

(blue) at right angles

at that point. Hence, the curves intersect at right angles. (See Figure 2.36.)

Higher-Order Derivatives

E X A M P L E 6 Find y 00
D

d2y

dx2
if xy C y2

D 2x.

Solution Twice differentiate both sides of the given equation with respect to x:

y C xy
0
C 2yy

0
D 2

y
0
C y

0
C xy

00
C 2.y

0
/
2
C 2yy

00
D 0:

Now solve these equations for y 0 and y 00.

y
0
D

2 � y

x C 2y

y
00
D �

2y
0
C 2.y

0
/
2

x C 2y
D �2

2 � y

x C 2y

1C
2 � y

x C 2y

x C 2y

D �2
.2 � y/.x C y C 2/

.x C 2y/3

D �2
2x � xy C 2y � y2

C 4 � 2y

.x C 2y/3
D �

8

.x C 2y/3
:

(We used the given equation to simplify the numerator in the last line.)

M Remark We can use Maple to calculate derivatives implicitly provided we show ex-

Note that Maple uses the symbol

@ instead of d when expressing

the derivative in Leibniz form.

This is because the expression it

is differentiating can involve

more than one variable; .@=@x/y

denotes the derivative of y with

respect to the specific variable x

rather than any other variables

on which y may depend. It is

called a partial derivative. We

will study partial derivatives in

Chapter 12. For the time being,

just regard @ as a d .

plicitly which variable depends on which. For example, we can calculate the value of

y
00 for the curve xy C y3

D 3 at the point .2; 1/ as follows. First, we differentiate the

equation with respect to x, writing y.x/ for y to indicate to Maple that it depends on

x.

> deq := diff(x*y(x)+(y(x))^3=3, x);

deq WD y.x/C x

�

@

@x
y.x/

�

C 3y.x/2

�

@

@x
y.x/

�

D 0

Now we solve the resulting equation for y 0:

> yp := solve(deq, diff(y(x),x));

yp WD �
y.x/

x C 3y.x/2

We can now differentiate yp with respect to x to get y 00:

> ypp := diff(yp,x);
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ypp WD �

@

@x
y.x/

x C 3y.x/2
C

y.x/

�

1C 6y.x/

�

@

@x
y.x/

��

.x C 3y.x/2/2

To get an expression depending only on x and y, we need to substitute the expression

obtained for the first derivative into this result. Since the result of this substitution will

involve compound fractions, let us simplify the result as well.

> ypp := simplify(subs(diff(y(x),x)=yp, ypp);

ypp WD 2
x y.x/

.x C 3y.x/2/3

This is y 00 expressed as a function of x and y. Now we want to substitute the coor-

dinates x D 2, y.x/ D 1 to get the value of y 00 at .2; 1/. However, the order of the

substitutions is important. First we must replace y.x/ with 1 and then replace x with

2. (If we replace x first, we would have to then replace y.2/ rather than y.x/ with 1.)

Maple’s subs command makes the substitutions in the order they are written.

> subs(y(x)=1, x=2, ypp);

4

125

The General Power Rule

Until now, we have only proven the General Power Rule

d

dx
x

r
D r x

r�1

for integer exponents r and a few special rational exponents such as r D 1=2. Using

implicit differentiation, we can give the proof for any rational exponent r D m=n,

where m and n are integers, and n ¤ 0.

If y D xm=n, then yn
D xm. Differentiating implicitly with respect to x, we

obtain

ny
n�1 dy

dx
D mx

m�1
; so

dy

dx
D

m

n
x

m�1
y

1�n
D

m

n
x

m�1
x

.m=n/.1�n/
D

m

n
x

m�1C.m=n/�m
D

m

n
x

.m=n/�1
:

E X E R C I S E S 2.9

In Exercises 1–8, find dy=dx in terms of x and y.

1. xy � x C 2y D 1 2. x3
C y

3
D 1

3. x2
C xy D y

3 4. x3
y C xy

5
D 2

5. x2
y

3
D 2x � y 6. x2

C 4.y � 1/
2
D 4

7.
x � y

x C y
D

x2

y
C 1 8. x

p

x C y D 8� xy

In Exercises 9–16, find an equation of the tangent to the given

curve at the given point.

9. 2x2
C 3y2

D 5 at .1; 1/

10. x2y3
� x3y2

D 12 at .�1; 2/

11.
x

y
C

�

y

x

�3

D 2 at .�1;�1/

12. x C 2y C 1 D
y

2

x � 1
at .2;�1/

13. 2x C y �
p

2 sin.xy/ D �=2 at
�

�

4
; 1

�

14. tan.xy2
/ D

2xy

�
at

�

��;
1

2

�

15. x sin.xy � y2
/ D x

2
� 1 at .1; 1/

16. cos
�

�y

x

�

D

x
2

y
�

17

2
at .3; 1/

In Exercises 17–20, find y 00 in terms of x and y.
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E X A M P L E 5
Show that for any constants a and b, the curves x2

� y2
D a and

xy D b intersect at right angles, that is, at any point where they

intersect their tangents are perpendicular.

Solution The slope at any point on x2
� y2

D a is given by 2x � 2yy 0
D 0, or

y 0
D x=y. The slope at any point on xy D b is given by yC xy 0

D 0, or y 0
D �y=x.

If the two curves (they are both hyperbolas if a ¤ 0 and b ¤ 0) intersect at .x0; y0/,

then their slopes at that point are x0=y0 and�y0=x0, respectively. Clearly, these slopes

are negative reciprocals, so the tangent line to one curve is the normal line to the other

y

x

Figure 2.36 Some hyperbolas in the

family x2
� y2

D a (red) intersecting

some hyperbolas in the family xy D b

(blue) at right angles

at that point. Hence, the curves intersect at right angles. (See Figure 2.36.)

Higher-Order Derivatives

E X A M P L E 6 Find y 00
D

d2y

dx2
if xy C y2

D 2x.

Solution Twice differentiate both sides of the given equation with respect to x:

y C xy
0
C 2yy

0
D 2

y
0
C y

0
C xy

00
C 2.y

0
/
2
C 2yy

00
D 0:

Now solve these equations for y 0 and y 00.

y
0
D

2 � y

x C 2y

y
00
D �

2y
0
C 2.y

0
/
2

x C 2y
D �2

2 � y

x C 2y

1C
2 � y

x C 2y

x C 2y

D �2
.2 � y/.x C y C 2/

.x C 2y/3

D �2
2x � xy C 2y � y2

C 4 � 2y

.x C 2y/3
D �

8

.x C 2y/3
:

(We used the given equation to simplify the numerator in the last line.)

M Remark We can use Maple to calculate derivatives implicitly provided we show ex-

Note that Maple uses the symbol

@ instead of d when expressing

the derivative in Leibniz form.

This is because the expression it

is differentiating can involve

more than one variable; .@=@x/y

denotes the derivative of y with

respect to the specific variable x

rather than any other variables

on which y may depend. It is

called a partial derivative. We

will study partial derivatives in

Chapter 12. For the time being,

just regard @ as a d .

plicitly which variable depends on which. For example, we can calculate the value of

y
00 for the curve xy C y3

D 3 at the point .2; 1/ as follows. First, we differentiate the

equation with respect to x, writing y.x/ for y to indicate to Maple that it depends on

x.

> deq := diff(x*y(x)+(y(x))^3=3, x);

deq WD y.x/C x

�

@

@x
y.x/

�

C 3y.x/2

�

@

@x
y.x/

�

D 0

Now we solve the resulting equation for y 0:

> yp := solve(deq, diff(y(x),x));

yp WD �
y.x/

x C 3y.x/2

We can now differentiate yp with respect to x to get y 00:

> ypp := diff(yp,x);
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ypp WD �

@

@x
y.x/

x C 3y.x/2
C

y.x/

�

1C 6y.x/

�

@

@x
y.x/

��

.x C 3y.x/2/2

To get an expression depending only on x and y, we need to substitute the expression

obtained for the first derivative into this result. Since the result of this substitution will

involve compound fractions, let us simplify the result as well.

> ypp := simplify(subs(diff(y(x),x)=yp, ypp);

ypp WD 2
x y.x/

.x C 3y.x/2/3

This is y 00 expressed as a function of x and y. Now we want to substitute the coor-

dinates x D 2, y.x/ D 1 to get the value of y 00 at .2; 1/. However, the order of the

substitutions is important. First we must replace y.x/ with 1 and then replace x with

2. (If we replace x first, we would have to then replace y.2/ rather than y.x/ with 1.)

Maple’s subs command makes the substitutions in the order they are written.

> subs(y(x)=1, x=2, ypp);

4

125

The General Power Rule

Until now, we have only proven the General Power Rule

d

dx
x

r
D r x

r�1

for integer exponents r and a few special rational exponents such as r D 1=2. Using

implicit differentiation, we can give the proof for any rational exponent r D m=n,

where m and n are integers, and n ¤ 0.

If y D xm=n, then yn
D xm. Differentiating implicitly with respect to x, we

obtain

ny
n�1 dy

dx
D mx

m�1
; so

dy

dx
D

m

n
x

m�1
y

1�n
D

m

n
x

m�1
x

.m=n/.1�n/
D

m

n
x

m�1C.m=n/�m
D

m

n
x

.m=n/�1
:

E X E R C I S E S 2.9

In Exercises 1–8, find dy=dx in terms of x and y.

1. xy � x C 2y D 1 2. x3
C y

3
D 1

3. x2
C xy D y

3 4. x3
y C xy

5
D 2

5. x2
y

3
D 2x � y 6. x2

C 4.y � 1/
2
D 4

7.
x � y

x C y
D

x2

y
C 1 8. x

p

x C y D 8� xy

In Exercises 9–16, find an equation of the tangent to the given

curve at the given point.

9. 2x2
C 3y2

D 5 at .1; 1/

10. x2y3
� x3y2

D 12 at .�1; 2/

11.
x

y
C

�

y

x

�3

D 2 at .�1;�1/

12. x C 2y C 1 D
y

2

x � 1
at .2;�1/

13. 2x C y �
p

2 sin.xy/ D �=2 at
�

�

4
; 1

�

14. tan.xy2
/ D

2xy

�
at

�

��;
1

2

�

15. x sin.xy � y2
/ D x

2
� 1 at .1; 1/

16. cos
�

�y

x

�

D

x
2

y
�

17

2
at .3; 1/

In Exercises 17–20, find y 00 in terms of x and y.
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17. xy D x C y 18. x2
C 4y

2
D 4

19.I x
3
� y

2
C y

3
D x 20.I x

3
� 3xy C y

3
D 1

21. For x2
C y2

D a2 show that y 00
D �

a2

y3
.

22. For Ax2
C By2

D C show that y 00
D �

AC

B2y3
.

Use Maple or another computer algebra program to find the values

requested in Exercises 23–26.

M 23. Find the slope of x C y2
C y sinx D y3

C � at .�; 1/.

M 24. Find the slope of
x C
p

y

y C
p

x
D

3y � 9x

x C y
at the point .1; 4/.

M 25. If x C y5
C 1 D y C x

4
C xy

2, find d2
y=dx

2 at .1; 1/.

M 26. If x3
y C xy

3
D 11, find d3

y=dx
3 at .1; 2/.

27.I Show that the ellipse x2
C 2y2

D 2 and the hyperbola

2x2
� 2y2

D 1 intersect at right angles.

28.I Show that the ellipse x2=a2
C y2=b2

D 1 and the hyperbola

x2=A2
� y2=B2

D 1 intersect at right angles if A2
� a2 and

a2
� b2

D A2
C B2. (This says that the ellipse and the

hyperbola have the same foci.)

29.I If z D tan
x

2
, show that

dx

dz
D

2

1C z2
; sinx D

2z

1C z2
; and cos x D

1 � z2

1C z2
.

30.I Use implicit differentiation to find y 0 if y is defined by

.x � y/=.xC y/ D x=yC 1. Now show that there are, in fact,

no points on that curve, so the derivative you calculated is

meaningless. This is another example that demonstrates the

dangers of calculating something when you don’t know

whether or not it exists.

2.10 Antiderivatives and Initial-Value Problems
Throughout this chapter we have been concerned with the problem of finding the

derivative f 0 of a given function f . The reverse problem—given the derivative f 0,

find f —is also interesting and important. It is the problem studied in integral calculus

and is generally more difficult to solve than the problem of finding a derivative. We

will take a preliminary look at this problem in this section and will return to it in more

detail in Chapter 5.

Antiderivatives
We begin by defining an antiderivative of a function f to be a function F whose

derivative is f: It is appropriate to require that F 0
.x/ D f .x/ on an interval.

D E F I N I T I O N

7

An antiderivative of a function f on an interval I is another function F

satisfying

F
0
.x/ D f .x/ for x in I .

E X A M P L E 1

(a) F.x/ D x is an antiderivative of the function f .x/ D 1 on any interval because

F 0.x/ D 1 D f .x/ everywhere.

(b) G.x/ D 1
2
x2 is an antiderivative of the function g.x/ D x on any interval because

G 0.x/ D 1
2
.2x/ D x D g.x/ everywhere.

(c) R.x/ D �1
3

cos.3x/ is an antiderivative of r.x/ D sin.3x/ on any interval be-

cause R0.x/ D �1
3
.�3 sin.3x// D sin.3x/ D r.x/ everywhere.

(d) F.x/ D �1=x is an antiderivative of f .x/ D 1=x2 on any interval not containing

x D 0 because F 0
.x/ D 1=x

2
D f .x/ everywhere except at x D 0.

Antiderivatives are not unique; since a constant has derivative zero, you can always

add any constant to an antiderivative F of a function f on an interval and get another

antiderivative of f on that interval. More importantly, all antiderivatives of f on an

interval can be obtained by adding constants to any particular one. If F andG are both
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antiderivatives of f on an interval I; then

d

dx

�

G.x/� F.x/
�

D f .x/� f .x/ D 0

on I; so G.x/ � F.x/ D C (a constant) on I by Theorem 13 of Section 2.8. Thus,

G.x/ D F.x/C C on I:

Note that neither this conclusion nor Theorem 13 is valid over a set that is not an

interval. For example, the derivative of

sgn x D
n

�1 if x < 0

1 if x > 0

is 0 for all x ¤ 0, but sgn x is not constant for all x ¤ 0. sgn x has different constant

values on the two intervals .�1; 0/ and .0;1/ comprising its domain.

The Indefinite Integral
The general antiderivative of a function f .x/ on an interval I is F.x/ C C , where

F.x/ is any particular antiderivative of f .x/ on I and C is a constant. This general

antiderivative is called the indefinite integral of f .x/ on I and is denoted
R

f .x/ dx.

D E F I N I T I O N

8

The indefinite integral of f .x/ on interval I is

Z

f .x/ dx D F.x/C C on I;

provided F 0
.x/ D f .x/ for all x in I:

The symbol
R

is called an integral sign. It is shaped like an elongated “S” for reasons

that will only become apparent when we study the definite integral in Chapter 5. Just

as you regard dy=dx as a single symbol representing the derivative of y with respect

to x, so you should regard
R

f .x/ dx as a single symbol representing the indefinite

integral (general antiderivative) of f with respect to x. The constant C is called a

constant of integration.

E X A M P L E 2

(a)

Z

x dx D
1

2
x

2
C C on any interval.

(b)

Z

.x
3
� 5x

2
C 7/ dx D

1

4
x

4
�

5

3
x

3
C 7x C C on any interval.

(c)

Z �

1

x2
C

2
p

x

�

dx D �
1

x
C 4
p

x C C on any interval to the right of x D 0.

All three formulas above can be checked by differentiating the right-hand sides.

Finding antiderivatives is generally more difficult than finding derivatives; many func-

tions do not have antiderivatives that can be expressed as combinations of finitely many

elementary functions. However, every formula for a derivative can be rephrased as a

formula for an antiderivative. For instance,

d

dx
sin x D cos xI therefore,

Z

cos x dx D sinx C C:

We will develop several techniques for finding antiderivatives in later chapters. Until

then, we must content ourselves with being able to write a few simple antiderivatives

based on the known derivatives of elementary functions:
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17. xy D x C y 18. x2
C 4y

2
D 4

19.I x
3
� y

2
C y

3
D x 20.I x

3
� 3xy C y

3
D 1

21. For x2
C y2

D a2 show that y 00
D �

a2

y3
.

22. For Ax2
C By2

D C show that y 00
D �

AC

B2y3
.

Use Maple or another computer algebra program to find the values

requested in Exercises 23–26.

M 23. Find the slope of x C y2
C y sinx D y3

C � at .�; 1/.

M 24. Find the slope of
x C
p

y

y C
p

x
D

3y � 9x

x C y
at the point .1; 4/.

M 25. If x C y5
C 1 D y C x

4
C xy

2, find d2
y=dx

2 at .1; 1/.

M 26. If x3
y C xy

3
D 11, find d3

y=dx
3 at .1; 2/.

27.I Show that the ellipse x2
C 2y2

D 2 and the hyperbola

2x2
� 2y2

D 1 intersect at right angles.

28.I Show that the ellipse x2=a2
C y2=b2

D 1 and the hyperbola

x2=A2
� y2=B2

D 1 intersect at right angles if A2
� a2 and

a2
� b2

D A2
C B2. (This says that the ellipse and the

hyperbola have the same foci.)

29.I If z D tan
x

2
, show that

dx

dz
D

2

1C z2
; sinx D

2z

1C z2
; and cos x D

1 � z2

1C z2
.

30.I Use implicit differentiation to find y 0 if y is defined by

.x � y/=.xC y/ D x=yC 1. Now show that there are, in fact,

no points on that curve, so the derivative you calculated is

meaningless. This is another example that demonstrates the

dangers of calculating something when you don’t know

whether or not it exists.

2.10 Antiderivatives and Initial-Value Problems
Throughout this chapter we have been concerned with the problem of finding the

derivative f 0 of a given function f . The reverse problem—given the derivative f 0,

find f —is also interesting and important. It is the problem studied in integral calculus

and is generally more difficult to solve than the problem of finding a derivative. We

will take a preliminary look at this problem in this section and will return to it in more

detail in Chapter 5.

Antiderivatives
We begin by defining an antiderivative of a function f to be a function F whose

derivative is f: It is appropriate to require that F 0
.x/ D f .x/ on an interval.

D E F I N I T I O N

7

An antiderivative of a function f on an interval I is another function F

satisfying

F
0
.x/ D f .x/ for x in I .

E X A M P L E 1

(a) F.x/ D x is an antiderivative of the function f .x/ D 1 on any interval because

F 0.x/ D 1 D f .x/ everywhere.

(b) G.x/ D 1
2
x2 is an antiderivative of the function g.x/ D x on any interval because

G 0.x/ D 1
2
.2x/ D x D g.x/ everywhere.

(c) R.x/ D �1
3

cos.3x/ is an antiderivative of r.x/ D sin.3x/ on any interval be-

cause R0.x/ D �1
3
.�3 sin.3x// D sin.3x/ D r.x/ everywhere.

(d) F.x/ D �1=x is an antiderivative of f .x/ D 1=x2 on any interval not containing

x D 0 because F 0
.x/ D 1=x

2
D f .x/ everywhere except at x D 0.

Antiderivatives are not unique; since a constant has derivative zero, you can always

add any constant to an antiderivative F of a function f on an interval and get another

antiderivative of f on that interval. More importantly, all antiderivatives of f on an

interval can be obtained by adding constants to any particular one. If F andG are both
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antiderivatives of f on an interval I; then

d

dx

�

G.x/� F.x/
�

D f .x/� f .x/ D 0

on I; so G.x/ � F.x/ D C (a constant) on I by Theorem 13 of Section 2.8. Thus,

G.x/ D F.x/C C on I:

Note that neither this conclusion nor Theorem 13 is valid over a set that is not an

interval. For example, the derivative of

sgn x D
n

�1 if x < 0

1 if x > 0

is 0 for all x ¤ 0, but sgn x is not constant for all x ¤ 0. sgn x has different constant

values on the two intervals .�1; 0/ and .0;1/ comprising its domain.

The Indefinite Integral
The general antiderivative of a function f .x/ on an interval I is F.x/ C C , where

F.x/ is any particular antiderivative of f .x/ on I and C is a constant. This general

antiderivative is called the indefinite integral of f .x/ on I and is denoted
R

f .x/ dx.

D E F I N I T I O N

8

The indefinite integral of f .x/ on interval I is

Z

f .x/ dx D F.x/C C on I;

provided F 0
.x/ D f .x/ for all x in I:

The symbol
R

is called an integral sign. It is shaped like an elongated “S” for reasons

that will only become apparent when we study the definite integral in Chapter 5. Just

as you regard dy=dx as a single symbol representing the derivative of y with respect

to x, so you should regard
R

f .x/ dx as a single symbol representing the indefinite

integral (general antiderivative) of f with respect to x. The constant C is called a

constant of integration.

E X A M P L E 2

(a)

Z

x dx D
1

2
x

2
C C on any interval.

(b)

Z

.x
3
� 5x

2
C 7/ dx D

1

4
x

4
�

5

3
x

3
C 7x C C on any interval.

(c)

Z �

1

x2
C

2
p

x

�

dx D �
1

x
C 4
p

x C C on any interval to the right of x D 0.

All three formulas above can be checked by differentiating the right-hand sides.

Finding antiderivatives is generally more difficult than finding derivatives; many func-

tions do not have antiderivatives that can be expressed as combinations of finitely many

elementary functions. However, every formula for a derivative can be rephrased as a

formula for an antiderivative. For instance,

d

dx
sin x D cos xI therefore,

Z

cos x dx D sinx C C:

We will develop several techniques for finding antiderivatives in later chapters. Until

then, we must content ourselves with being able to write a few simple antiderivatives

based on the known derivatives of elementary functions:
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(a)

Z

dx D

Z

1 dx D x C C

(c)

Z

x
2
dx D

x3

3
C C

(e)

Z

1
p

x
dx D 2

p

x C C

(g)

Z

sin x dx D � cos x C C

(i)

Z

sec2
x dx D tan x C C

(k)

Z

sec x tan x dx D secx C C

(b)

Z

x dx D
x2

2
C C

(d)

Z

1

x2
dx D

Z

dx

x2
D �

1

x
C C

(f)

Z

x
r
dx D

xrC1

r C 1
C C .r ¤ �1/

(h)

Z

cos x dx D sin x C C

(j)

Z

csc2
x dx D � cot x C C

(l)

Z

csc x cot x dx D � csc x C C

Observe that formulas (a)–(e) are special cases of formula (f). For the moment, r must

be rational in (f), but this restriction will be removed later.

The rule for differentiating sums and constant multiples of functions translates

into a similar rule for antiderivatives, as reflected in parts (b) and (c) of Example 2

above.

The graphs of the different antiderivatives of the same function on the same in-

y

x

C D �3

C D �2

C D �1

C D 0

C D 1

C D 2

C D 3

Figure 2.37 Graphs of various

antiderivatives of the same function

terval are vertically displaced versions of the same curve, as shown in Figure 2.37. In

general, only one of these curves will pass through any given point, so we can obtain a

unique antiderivative of a given function on an interval by requiring the antiderivative

to take a prescribed value at a particular point x.

E X A M P L E 3
Find the function f .x/ whose derivative is f 0.x/ D 6x2

� 1 for

all real x and for which f .2/ D 10.

Solution Since f 0.x/ D 6x2
� 1, we have

f .x/ D

Z

.6x
2
� 1/ dx D 2x

3
� x C C

for some constant C . Since f .2/ D 10, we have

10 D f .2/ D 16 � 2C C:

Thus, C D �4 and f .x/ D 2x3
� x � 4. (By direct calculation we can verify that

f 0.x/ D 6x2
� 1 and f .2/ D 10.)

E X A M P L E 4 Find the function g.t/ whose derivative is
t C 5

t3=2
and whose graph

passes through the point .4; 1/.

Solution We have

g.t/ D

Z

t C 5

t3=2
dt

D

Z

.t
�1=2
C 5t

�3=2
/ dt

D 2t
1=2
� 10t

�1=2
C C

Since the graph of y D g.t/ must pass through .4; 1/, we require that

1 D g.4/ D 4 � 5C C:

Hence, C D 2 and

g.t/ D 2t
1=2
� 10t

�1=2
C 2 for t > 0:
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Differential Equations and Initial-Value Problems
A differential equation (DE) is an equation involving one or more derivatives of an

unknown function. Any function whose derivatives satisfy the differential equation

identically on an interval is called a solution of the equation on that interval. For

instance, the function y D x3
� x is a solution of the differential equation

dy

dx
D 3x

2
� 1

on the whole real line. This differential equation has more than one solution; in fact,

y D x3
� x C C is a solution for any value of the constant C:

E X A M P L E 5
Show that for any constantsA andB , the function y D Ax3

CB=x

is a solution of the differential equation x2y 00
� xy 0

� 3y D 0 on

any interval not containing 0.

Solution If y D Ax3
C B=x, then for x ¤ 0 we have

y
0
D 3Ax

2
� B=x

2 and y
00
D 6Ax C 2B=x

3
:

Therefore,

x
2
y

00
� xy

0
� 3y D 6Ax

3
C

2B

x
� 3Ax

3
C

B

x
� 3Ax

3
�

3B

x
D 0;

provided x ¤ 0. This is what had to be proved.

The order of a differential equation is the order of the highest-order derivative appear-

ing in the equation. The DE in Example 5 is a second-order DE since it involves y 00

and no higher derivatives of y. Note that the solution verified in Example 5 involves

two arbitrary constants, A and B . This solution is called a general solution to the

equation, since it can be shown that every solution is of this form for some choice of

the constants A and B . A particular solution of the equation is obtained by assign-

ing specific values to these constants. The general solution of an nth-order differential

equation typically involves n arbitrary constants.

An initial-value problem (IVP) is a problem that consists of:

(i) a differential equation (to be solved for an unknown function) and

(ii) prescribed values for the solution and enough of its derivatives at a particular point

(the initial point) to determine values for all the arbitrary constants in the general

solution of the DE and so yield a particular solution.

Remark It is common to use the same symbol, say y, to denote both the dependent

variable and the function that is the solution to a DE or an IVP; that is, we call the

solution function y D y.x/ rather than y D f .x/.

Remark The solution of an IVP is valid in the largest interval containing the initial

point where the solution function is defined.

E X A M P L E 6
Use the result of Example 5 to solve the following initial-value

problem.

8

<

:

x2y 00
� xy 0

� 3y D 0 .x > 0/

y.1/ D 2

y 0.1/ D �6
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(a)

Z

dx D

Z

1 dx D x C C

(c)

Z

x
2
dx D

x3

3
C C

(e)

Z

1
p

x
dx D 2

p

x C C

(g)

Z

sin x dx D � cos x C C

(i)

Z

sec2
x dx D tan x C C

(k)

Z

sec x tan x dx D secx C C

(b)

Z

x dx D
x2

2
C C

(d)

Z

1

x2
dx D

Z

dx

x2
D �

1

x
C C

(f)

Z

x
r
dx D

xrC1

r C 1
C C .r ¤ �1/

(h)

Z

cos x dx D sin x C C

(j)

Z

csc2
x dx D � cot x C C

(l)

Z

csc x cot x dx D � csc x C C

Observe that formulas (a)–(e) are special cases of formula (f). For the moment, r must

be rational in (f), but this restriction will be removed later.

The rule for differentiating sums and constant multiples of functions translates

into a similar rule for antiderivatives, as reflected in parts (b) and (c) of Example 2

above.

The graphs of the different antiderivatives of the same function on the same in-

y

x

C D �3

C D �2

C D �1

C D 0

C D 1

C D 2

C D 3

Figure 2.37 Graphs of various

antiderivatives of the same function

terval are vertically displaced versions of the same curve, as shown in Figure 2.37. In

general, only one of these curves will pass through any given point, so we can obtain a

unique antiderivative of a given function on an interval by requiring the antiderivative

to take a prescribed value at a particular point x.

E X A M P L E 3
Find the function f .x/ whose derivative is f 0.x/ D 6x2

� 1 for

all real x and for which f .2/ D 10.

Solution Since f 0.x/ D 6x2
� 1, we have

f .x/ D

Z

.6x
2
� 1/ dx D 2x

3
� x C C

for some constant C . Since f .2/ D 10, we have

10 D f .2/ D 16 � 2C C:

Thus, C D �4 and f .x/ D 2x3
� x � 4. (By direct calculation we can verify that

f 0.x/ D 6x2
� 1 and f .2/ D 10.)

E X A M P L E 4 Find the function g.t/ whose derivative is
t C 5

t3=2
and whose graph

passes through the point .4; 1/.

Solution We have

g.t/ D

Z

t C 5

t3=2
dt

D

Z

.t
�1=2
C 5t

�3=2
/ dt

D 2t
1=2
� 10t

�1=2
C C

Since the graph of y D g.t/ must pass through .4; 1/, we require that

1 D g.4/ D 4 � 5C C:

Hence, C D 2 and

g.t/ D 2t
1=2
� 10t

�1=2
C 2 for t > 0:
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Differential Equations and Initial-Value Problems
A differential equation (DE) is an equation involving one or more derivatives of an

unknown function. Any function whose derivatives satisfy the differential equation

identically on an interval is called a solution of the equation on that interval. For

instance, the function y D x3
� x is a solution of the differential equation

dy

dx
D 3x

2
� 1

on the whole real line. This differential equation has more than one solution; in fact,

y D x3
� x C C is a solution for any value of the constant C:

E X A M P L E 5
Show that for any constantsA andB , the function y D Ax3

CB=x

is a solution of the differential equation x2y 00
� xy 0

� 3y D 0 on

any interval not containing 0.

Solution If y D Ax3
C B=x, then for x ¤ 0 we have

y
0
D 3Ax

2
� B=x

2 and y
00
D 6Ax C 2B=x

3
:

Therefore,

x
2
y

00
� xy

0
� 3y D 6Ax

3
C

2B

x
� 3Ax

3
C

B

x
� 3Ax

3
�

3B

x
D 0;

provided x ¤ 0. This is what had to be proved.

The order of a differential equation is the order of the highest-order derivative appear-

ing in the equation. The DE in Example 5 is a second-order DE since it involves y 00

and no higher derivatives of y. Note that the solution verified in Example 5 involves

two arbitrary constants, A and B . This solution is called a general solution to the

equation, since it can be shown that every solution is of this form for some choice of

the constants A and B . A particular solution of the equation is obtained by assign-

ing specific values to these constants. The general solution of an nth-order differential

equation typically involves n arbitrary constants.

An initial-value problem (IVP) is a problem that consists of:

(i) a differential equation (to be solved for an unknown function) and

(ii) prescribed values for the solution and enough of its derivatives at a particular point

(the initial point) to determine values for all the arbitrary constants in the general

solution of the DE and so yield a particular solution.

Remark It is common to use the same symbol, say y, to denote both the dependent

variable and the function that is the solution to a DE or an IVP; that is, we call the

solution function y D y.x/ rather than y D f .x/.

Remark The solution of an IVP is valid in the largest interval containing the initial

point where the solution function is defined.

E X A M P L E 6
Use the result of Example 5 to solve the following initial-value

problem.

8

<

:

x2y 00
� xy 0

� 3y D 0 .x > 0/

y.1/ D 2

y 0.1/ D �6
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Solution As shown in Example 5, the DE x2y 00
� xy 0

� 3y D 0 has solution y D

Ax
3
CB=x, which has derivative y 0

D 3Ax
2
�B=x

2. At x D 1 we must have y D 2

and y 0
D �6. Therefore,

AC B D 2

3A � B D �6:

Solving these two linear equations for A and B , we get A D �1 and B D 3. Hence,

y D �x3
C 3=x for x > 0 is the solution of the IVP.

One of the simplest kinds of differential equation is the equation

dy

dx
D f .x/;

which is to be solved for y as a function of x. Evidently the solution is

y D

Z

f .x/ dx:

Our ability to find the unknown function y.x/ depends on our ability to find an

antiderivative of f:

E X A M P L E 7
Solve the initial-value problem

8

<

:

y 0
D

3C 2x2

x2

y.�2/ D 1:

Where is the solution valid?

Solution

y D

Z �

3

x2
C 2

�

dx D �
3

x
C 2x C C

1 D y.�2/ D
3

2
� 4C C

Therefore, C D 7
2

and

y D �
3

x
C 2x C

7

2
:

Although the solution function appears to be defined for all x except 0, it is only a

solution of the given IVP for x < 0. This is because .�1; 0/ is the largest interval

that contains the initial point �2 but not the point x D 0, where the solution y is

undefined.

E X A M P L E 8
Solve the second-order IVP

8

<

:

y 00
D sin x

y.�/ D 2

y 0.�/ D �1:
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Solution Since .y 0/0 D y 00
D sin x, we have

y
0
.x/ D

Z

sin x dx D � cos x C C1:

The initial condition for y 0 gives

�1 D y
0
.�/ D � cos� C C1 D 1C C1;

so that C1 D �2 and y 0.x/ D �.cos x C 2/. Thus,

y.x/ D �

Z

.cos x C 2/ dx

D � sin x � 2x C C2:

The initial condition for y now gives

2 D y.�/ D � sin� � 2� C C2 D �2� C C2;

so that C2 D 2C 2� . The solution to the given IVP is

y D 2C 2� � sin x � 2x

and is valid for all x.

Differential equations and initial-value problems are of great importance in applica-

tions of calculus, especially for expressing in mathematical form certain laws of nature

that involve rates of change of quantities. A large portion of the total mathematical

endeavour of the last two hundred years has been devoted to their study. They are usu-

ally treated in separate courses on differential equations, but we will discuss them from

time to time in this book when appropriate. Throughout this book, except in sections

devoted entirely to differential equations, we will use the symbol P to mark exercises

about differential equations and initial-value problems.

E X E R C I S E S 2.10

In Exercises 1–14, find the given indefinite integrals.

1.

Z

5 dx 2.

Z

x
2
dx

3.

Z

p

x dx 4.

Z

x
12
dx

5.

Z

x
3
dx 6.

Z

.x C cosx/ dx

7.

Z

tanx cos x dx 8.

Z

1C cos3 x

cos2 x
dx

9.

Z

.a
2
� x

2
/ dx 10.

Z

.AC Bx C Cx
2
/ dx

11.

Z

.2x
1=2
C 3x

1=3
/ dx 12.

Z

6.x � 1/

x4=3
dx

13.

Z �

x3

3
�

x2

2
C x � 1

�

dx

14. 105

Z

.1C t
2
C t

4
C t

6
/ dt

In Exercises 15–22, find the given indefinite integrals. This may

require guessing the form of an antiderivative and then checking

by differentiation. For instance, you might suspect that
R

cos.5x � 2/ dx D k sin.5x � 2/CC for some k. Differentiating

the answer shows that k must be 1=5.

15.

Z

cos.2x/ dx 16.

Z

sin
�

x

2

�

dx

17.I

Z

dx

.1C x/2
18.I

Z

sec.1 � x/ tan.1 � x/ dx

19.I

Z

p

2x C 3 dx 20.I

Z

4
p

x C 1
dx

21.

Z

2x sin.x2
/ dx 22.I

Z

2x
p

x2
C 1

dx

Use known trigonometric identities such as

sec2 x D 1C tan2 x, cos.2x/ D 2 cos2 x � 1 D 1 � 2 sin2
x, and

sin.2x/ D 2 sinx cosx to help you evaluate the indefinite integrals

in Exercises 23–26.

23.I

Z

tan2
x dx 24.I

Z

sinx cosx dx
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Solution As shown in Example 5, the DE x2y 00
� xy 0

� 3y D 0 has solution y D

Ax
3
CB=x, which has derivative y 0

D 3Ax
2
�B=x

2. At x D 1 we must have y D 2

and y 0
D �6. Therefore,

AC B D 2

3A � B D �6:

Solving these two linear equations for A and B , we get A D �1 and B D 3. Hence,

y D �x3
C 3=x for x > 0 is the solution of the IVP.

One of the simplest kinds of differential equation is the equation

dy

dx
D f .x/;

which is to be solved for y as a function of x. Evidently the solution is

y D

Z

f .x/ dx:

Our ability to find the unknown function y.x/ depends on our ability to find an

antiderivative of f:

E X A M P L E 7
Solve the initial-value problem

8

<

:

y 0
D

3C 2x2

x2

y.�2/ D 1:

Where is the solution valid?

Solution

y D

Z �

3

x2
C 2

�

dx D �
3

x
C 2x C C

1 D y.�2/ D
3

2
� 4C C

Therefore, C D 7
2

and

y D �
3

x
C 2x C

7

2
:

Although the solution function appears to be defined for all x except 0, it is only a

solution of the given IVP for x < 0. This is because .�1; 0/ is the largest interval

that contains the initial point �2 but not the point x D 0, where the solution y is

undefined.

E X A M P L E 8
Solve the second-order IVP

8

<

:

y 00
D sin x

y.�/ D 2

y 0.�/ D �1:
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Solution Since .y 0/0 D y 00
D sin x, we have

y
0
.x/ D

Z

sin x dx D � cos x C C1:

The initial condition for y 0 gives

�1 D y
0
.�/ D � cos� C C1 D 1C C1;

so that C1 D �2 and y 0.x/ D �.cos x C 2/. Thus,

y.x/ D �

Z

.cos x C 2/ dx

D � sin x � 2x C C2:

The initial condition for y now gives

2 D y.�/ D � sin� � 2� C C2 D �2� C C2;

so that C2 D 2C 2� . The solution to the given IVP is

y D 2C 2� � sin x � 2x

and is valid for all x.

Differential equations and initial-value problems are of great importance in applica-

tions of calculus, especially for expressing in mathematical form certain laws of nature

that involve rates of change of quantities. A large portion of the total mathematical

endeavour of the last two hundred years has been devoted to their study. They are usu-

ally treated in separate courses on differential equations, but we will discuss them from

time to time in this book when appropriate. Throughout this book, except in sections

devoted entirely to differential equations, we will use the symbol P to mark exercises

about differential equations and initial-value problems.

E X E R C I S E S 2.10

In Exercises 1–14, find the given indefinite integrals.

1.

Z

5 dx 2.

Z

x
2
dx

3.

Z

p

x dx 4.

Z

x
12
dx

5.

Z

x
3
dx 6.

Z

.x C cosx/ dx

7.

Z

tanx cos x dx 8.

Z

1C cos3 x

cos2 x
dx

9.

Z

.a
2
� x

2
/ dx 10.

Z

.AC Bx C Cx
2
/ dx

11.

Z

.2x
1=2
C 3x

1=3
/ dx 12.

Z

6.x � 1/

x4=3
dx

13.

Z �

x3

3
�

x2

2
C x � 1

�

dx

14. 105

Z

.1C t
2
C t

4
C t

6
/ dt

In Exercises 15–22, find the given indefinite integrals. This may

require guessing the form of an antiderivative and then checking

by differentiation. For instance, you might suspect that
R

cos.5x � 2/ dx D k sin.5x � 2/CC for some k. Differentiating

the answer shows that k must be 1=5.

15.

Z

cos.2x/ dx 16.

Z

sin
�

x

2

�

dx

17.I

Z

dx

.1C x/2
18.I

Z

sec.1 � x/ tan.1 � x/ dx

19.I

Z

p

2x C 3 dx 20.I

Z

4
p

x C 1
dx

21.

Z

2x sin.x2
/ dx 22.I

Z

2x
p

x2
C 1

dx

Use known trigonometric identities such as

sec2 x D 1C tan2 x, cos.2x/ D 2 cos2 x � 1 D 1 � 2 sin2
x, and

sin.2x/ D 2 sinx cosx to help you evaluate the indefinite integrals

in Exercises 23–26.

23.I

Z

tan2
x dx 24.I

Z

sinx cosx dx
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25.I

Z

cos2
x dx 26.I

Z

sin2
x dx

Differential equations

In Exercises 27–42, find the solution y D y.x/ to the given

initial-value problem. On what interval is the solution valid? (Note

that exercises involving differential equations are prefixed with the

symbolP .)

27.P

(

y
0
D x � 2

y.0/ D 3
28.P

(

y
0
D x

�2
� x

�3

y.�1/ D 0

29.P

(

y
0
D 3
p

x

y.4/ D 1
30.P

(

y
0
D x

1=3

y.0/ D 5

31.P

(

y
0
D Ax

2
C Bx C C

y.1/ D 1
32.P

(

y
0
D x

�9=7

y.1/ D �4

33.P

(

y
0
D cos x

y.�=6/ D 2
34.P

(

y
0
D sin.2x/

y.�=2/ D 1

35.P

(

y
0
D sec2

x

y.0/ D 1
36.P

(

y
0
D sec2

x

y.�/ D 1

37.P

8

ˆ

<

ˆ

:

y
00
D 2

y
0
.0/ D 5

y.0/ D �3

38.P

8

ˆ

<

ˆ

:

y
00
D x

�4

y
0
.1/ D 2

y.1/ D 1

39.P

8

ˆ

<

ˆ

:

y
00
D x

3
� 1

y
0
.0/ D 0

y.0/ D 8

40.P

8

ˆ

<

ˆ

:

y
00
D 5x

2
� 3x

�1=2

y
0
.1/ D 2

y.1/ D 0

41.P

8

ˆ

<

ˆ

:

y
00
D cos x

y.0/ D 0

y
0
.0/ D 1

42.P

8

ˆ

<

ˆ

:

y
00
D x C sinx

y.0/ D 2

y
0
.0/ D 0

43.P Show that for any constants A and B the function

y D y.x/ D Ax C B=x satisfies the second-order differential

equation x2y 00
C xy 0

� y D 0 for x ¤ 0.

Find a function y satisfying the initial-value problem:

8

<

:

x2y 00
C xy 0

� y D 0 .x > 0/

y.1/ D 2

y 0.1/ D 4:

44.P Show that for any constants A and B the function

y D Axr1
C Bxr2 satisfies, for x > 0, the differential

equation ax2
y

00
C bxy

0
C cy D 0, provided that r1 and r2

are two distinct rational roots of the quadratic equation

ar.r � 1/C br C c D 0.

Use the result of Exercise 44 to solve the initial-value problems in

Exercises 45–46 on the interval x > 0.

45.P

8

ˆ

ˆ

<

ˆ

ˆ

:

4x2y 00
C 4xy 0

� y

D 0

y.4/ D 2

y 0.4/ D �2

46.P

8

<

:

x2y 00
� 6y D 0

y.1/ D 1

y 0.1/ D 1

2.11 Velocity and Acceleration

Velocity and Speed
Suppose that an object is moving along a straight line (say the x-axis) so that its po-

sition x is a function of time t , say x D x.t/. (We are using x to represent both the

dependent variable and the function.) Suppose we are measuring x in metres and t

in seconds. The average velocity of the object over the time interval Œt; t C h� is the

change in position divided by the change in time, that is, the Newton quotient

vaverage D
�x

�t
D

x.t C h/ � x.t/

h
m/s:

The velocity v.t/ of the object at time t is the limit of this average velocity as h! 0.

Thus, it is the rate of change (the derivative) of position with respect to time:

Velocity: v.t/ D
dx

dt
D x

0
.t/:

Besides telling us how fast the object is moving, the velocity also tells us in which

direction it is moving. If v.t/ > 0, then x is increasing, so the object is moving to the

right; if v.t/ < 0, then x is decreasing, so the object is moving to the left. At a critical

point of x, that is, a time t when v.t/ D 0, the object is instantaneously at rest—at that

instant it is not moving in either direction.

We distinguish between the term velocity (which involves direction of motion as

well as the rate) and speed, which only involves the rate and not the direction. The
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speed is the absolute value of the velocity:

Speed: s.t/ D jv.t/j D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

:

A speedometer gives us the speed a vehicle is moving; it does not give the velocity.

The speedometer does not start to show negative values if the vehicle turns around and

heads in the opposite direction.

E X A M P L E 1

(a) Determine the velocity v.t/ at time t of an object moving along the x-axis so that

at time t its position is given by

x D v0t C
1

2
at

2
;

where v0 and a are constants.

(b) Draw the graph of v.t/, and show that the area under the graph and above the

t-axis, over Œt1; t2�, is equal to the distance the object travels in that time interval.

Solution The velocity is given by

v.t/ D
dx

dt
D v0 C at:

Its graph is a straight line with slope a and intercept v0 on the vertical (velocity) axis.

The area under the graph (shaded in Figure 2.38) is the sum of the areas of a rectangle

and a triangle. Each has base t2 � t1. The rectangle has height v.t1/ D v0 C at1, and

the triangle has height a.t2 � t1/. (Why?) Thus, the shaded area is equal to

y

t

y D v.t/ D v0 C at

t1 t2

t2 � t1

a.t2 � t1/

v0

Figure 2.38 The shaded area equals the

distance travelled between t1 and t2

Area D .t2 � t1/.v0 C at1/C
1

2
.t2 � t1/Œa.t2 � t1/�

D .t2 � t1/

h

v0 C at1 C
a

2
.t2 � t1/

i

D .t2 � t1/

h

v0 C
a

2
.t2 C t1/

i

D v0.t2 � t1/C
a

2
.t

2
2 � t

2
1 /

D x.t2/ � x.t1/;

which is the distance travelled by the object between times t1 and t2.

Remark In Example 1 we differentiated the position x to get the velocity v and then

used the area under the velocity graph to recover information about the position. It

appears that there is a connection between finding areas and finding functions that

have given derivatives (i.e., finding antiderivatives). This connection, which we will

explore in Chapter 5, is perhaps the most important idea in calculus!

Acceleration
The derivative of the velocity also has a useful interpretation. The rate of change of the

velocity with respect to time is the acceleration of the moving object. It is measured

in units of distance/time2. The value of the acceleration at time t is

Acceleration: a.t/ D v
0
.t/ D

dv

dt
D

d2x

dt2
:
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25.I

Z

cos2
x dx 26.I

Z

sin2
x dx

Differential equations

In Exercises 27–42, find the solution y D y.x/ to the given

initial-value problem. On what interval is the solution valid? (Note

that exercises involving differential equations are prefixed with the

symbolP .)

27.P

(

y
0
D x � 2

y.0/ D 3
28.P

(

y
0
D x

�2
� x

�3

y.�1/ D 0

29.P

(

y
0
D 3
p

x

y.4/ D 1
30.P

(

y
0
D x

1=3

y.0/ D 5

31.P

(

y
0
D Ax

2
C Bx C C

y.1/ D 1
32.P

(

y
0
D x

�9=7

y.1/ D �4

33.P

(

y
0
D cos x

y.�=6/ D 2
34.P

(

y
0
D sin.2x/

y.�=2/ D 1

35.P

(

y
0
D sec2

x

y.0/ D 1
36.P

(

y
0
D sec2

x

y.�/ D 1

37.P

8

ˆ

<

ˆ

:

y
00
D 2

y
0
.0/ D 5

y.0/ D �3

38.P

8

ˆ

<

ˆ

:

y
00
D x

�4

y
0
.1/ D 2

y.1/ D 1

39.P

8

ˆ

<

ˆ

:

y
00
D x

3
� 1

y
0
.0/ D 0

y.0/ D 8

40.P

8

ˆ

<

ˆ

:

y
00
D 5x

2
� 3x

�1=2

y
0
.1/ D 2

y.1/ D 0

41.P

8

ˆ

<

ˆ

:

y
00
D cos x

y.0/ D 0

y
0
.0/ D 1

42.P

8

ˆ

<

ˆ

:

y
00
D x C sinx

y.0/ D 2

y
0
.0/ D 0

43.P Show that for any constants A and B the function

y D y.x/ D Ax C B=x satisfies the second-order differential

equation x2y 00
C xy 0

� y D 0 for x ¤ 0.

Find a function y satisfying the initial-value problem:

8

<

:

x2y 00
C xy 0

� y D 0 .x > 0/

y.1/ D 2

y 0.1/ D 4:

44.P Show that for any constants A and B the function

y D Axr1
C Bxr2 satisfies, for x > 0, the differential

equation ax2
y

00
C bxy

0
C cy D 0, provided that r1 and r2

are two distinct rational roots of the quadratic equation

ar.r � 1/C br C c D 0.

Use the result of Exercise 44 to solve the initial-value problems in

Exercises 45–46 on the interval x > 0.

45.P

8

ˆ

ˆ

<

ˆ

ˆ

:

4x2y 00
C 4xy 0

� y

D 0

y.4/ D 2

y 0.4/ D �2

46.P

8

<

:

x2y 00
� 6y D 0

y.1/ D 1

y 0.1/ D 1

2.11 Velocity and Acceleration

Velocity and Speed
Suppose that an object is moving along a straight line (say the x-axis) so that its po-

sition x is a function of time t , say x D x.t/. (We are using x to represent both the

dependent variable and the function.) Suppose we are measuring x in metres and t

in seconds. The average velocity of the object over the time interval Œt; t C h� is the

change in position divided by the change in time, that is, the Newton quotient

vaverage D
�x

�t
D

x.t C h/ � x.t/

h
m/s:

The velocity v.t/ of the object at time t is the limit of this average velocity as h! 0.

Thus, it is the rate of change (the derivative) of position with respect to time:

Velocity: v.t/ D
dx

dt
D x

0
.t/:

Besides telling us how fast the object is moving, the velocity also tells us in which

direction it is moving. If v.t/ > 0, then x is increasing, so the object is moving to the

right; if v.t/ < 0, then x is decreasing, so the object is moving to the left. At a critical

point of x, that is, a time t when v.t/ D 0, the object is instantaneously at rest—at that

instant it is not moving in either direction.

We distinguish between the term velocity (which involves direction of motion as

well as the rate) and speed, which only involves the rate and not the direction. The
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speed is the absolute value of the velocity:

Speed: s.t/ D jv.t/j D

ˇ

ˇ

ˇ

ˇ

dx

dt

ˇ

ˇ

ˇ

ˇ

:

A speedometer gives us the speed a vehicle is moving; it does not give the velocity.

The speedometer does not start to show negative values if the vehicle turns around and

heads in the opposite direction.

E X A M P L E 1

(a) Determine the velocity v.t/ at time t of an object moving along the x-axis so that

at time t its position is given by

x D v0t C
1

2
at

2
;

where v0 and a are constants.

(b) Draw the graph of v.t/, and show that the area under the graph and above the

t-axis, over Œt1; t2�, is equal to the distance the object travels in that time interval.

Solution The velocity is given by

v.t/ D
dx

dt
D v0 C at:

Its graph is a straight line with slope a and intercept v0 on the vertical (velocity) axis.

The area under the graph (shaded in Figure 2.38) is the sum of the areas of a rectangle

and a triangle. Each has base t2 � t1. The rectangle has height v.t1/ D v0 C at1, and

the triangle has height a.t2 � t1/. (Why?) Thus, the shaded area is equal to

y

t

y D v.t/ D v0 C at

t1 t2

t2 � t1

a.t2 � t1/

v0

Figure 2.38 The shaded area equals the

distance travelled between t1 and t2

Area D .t2 � t1/.v0 C at1/C
1

2
.t2 � t1/Œa.t2 � t1/�

D .t2 � t1/

h

v0 C at1 C
a

2
.t2 � t1/

i

D .t2 � t1/

h

v0 C
a

2
.t2 C t1/

i

D v0.t2 � t1/C
a

2
.t

2
2 � t

2
1 /

D x.t2/ � x.t1/;

which is the distance travelled by the object between times t1 and t2.

Remark In Example 1 we differentiated the position x to get the velocity v and then

used the area under the velocity graph to recover information about the position. It

appears that there is a connection between finding areas and finding functions that

have given derivatives (i.e., finding antiderivatives). This connection, which we will

explore in Chapter 5, is perhaps the most important idea in calculus!

Acceleration
The derivative of the velocity also has a useful interpretation. The rate of change of the

velocity with respect to time is the acceleration of the moving object. It is measured

in units of distance/time2. The value of the acceleration at time t is

Acceleration: a.t/ D v
0
.t/ D

dv

dt
D

d2x

dt2
:
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The acceleration is the second derivative of the position. If a.t/ > 0, the velocity is

increasing. This does not necessarily mean that the speed is increasing; if the object is

moving to the left (v.t/ < 0) and accelerating to the right (a.t/ > 0), then it is actually

slowing down. The object is speeding up only when the velocity and acceleration have

the same sign. (See Table 2.)

Table 2. Velocity, acceleration, and speed

If velocity is and acceleration is then object is and its speed is

positive positive moving right increasing

positive negative moving right decreasing

negative positive moving left decreasing

negative negative moving left increasing

If a.t0/ D 0, then the velocity and the speed are stationary at t0. If a.t/ D 0 during

an interval of time, then the velocity is unchanging and, therefore, constant over that

interval.

E X A M P L E 2
A point P moves along the x-axis in such a way that its position

at time t s is given by

x D 2t
3
� 15t

2
C 24t ft:

(a) Find the velocity and acceleration of P at time t:

(b) In which direction and how fast is P moving at t D 2 s? Is it speeding up or

slowing down at that time?

(c) When is P instantaneously at rest? When is its speed instantaneously not chang-

ing?

(d) When is P moving to the left? to the right?

(e) When is P speeding up? slowing down?

Solution

(a) The velocity and acceleration of P at time t are

v D
dx

dt
D 6t

2
� 30t C 24 D 6.t � 1/.t � 4/ ft/s and

a D
dv

dt
D 12t � 30 D 6.2t � 5/ ft/s2

:

(b) At t D 2 we have v D �12 and a D �6. Thus, P is moving to the left with

speed 12 ft/s, and, since the velocity and acceleration are both negative, its speed

is increasing.

(c) P is at rest when v D 0, that is, when t D 1 s or t D 4 s. Its speed is unchanging

when a D 0, that is, at t D 5=2 s.

(d) The velocity is continuous for all t so, by the Intermediate-Value Theorem, has a

constant sign on the intervals between the points where it is 0. By examining the

values of v.t/ at t D 0, 2, and 5 (or by analyzing the signs of the factors .t�1/ and

.t � 4/ in the expression for v.t/), we conclude that v.t/ < 0 (and P is moving to

the left) on time interval .1; 4/. v.t/ > 0 (and P is moving to the right) on time

intervals .�1; 1/ and .4;1/.

(e) The acceleration a is negative for t < 5=2 and positive for t > 5=2. Table 3

combines this information with information about v to show where P is speeding

up and slowing down.
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Table 3. Data for Example 2

Interval v.t/ is a.t/ is P is

.�1; 1/ positive negative slowing down

.1; 5=2/ negative negative speeding up

.5=2; 4/ negative positive slowing down

.4;1/ positive positive speeding up

The motion of P is shown in Figure 2.39.

Figure 2.39 The motion of the point P in

Example 2
x�20 �15 �10 �5 5 10 15 20

t D 1
t D 4

0

t D 5=2

E X A M P L E 3
An object is hurled upward from the roof of a building 10 m high.

It rises and then falls back; its height above ground t s after it is

thrown is

y D �4:9 t
2
C 8t C 10 m;

until it strikes the ground. What is the greatest height above the ground that the object

attains? With what speed does the object strike the ground?

Solution Refer to Figure 2.40. The vertical velocity at time t during flight is

v.t/ D �2.4:9/ t C 8 D �9:8 t C 8 m/s:

The object is rising when v > 0, that is, when 0 < t < 8=9:8, and is falling for

t > 8=9:8. Thus, the object is at its maximum height at time t D 8=9:8 � 0:8163 s,

and this maximum height is

ymax D �4:9

�

8

9:8

�2

C 8

�

8

9:8

�

C 10 � 13:27 m:

The time t at which the object strikes the ground is the positive root of the quadratic

equation obtained by setting y D 0,

Figure 2.40

�4:9t
2
C 8t C 10 D 0;

namely,

t D
�8 �

p

64C 196

�9:8
� 2:462 s:

The velocity at this time is v D �.9:8/.2:462/C 8 � �16:12. Thus, the object strikes

the ground with a speed of about 16.12 m/s.
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The acceleration is the second derivative of the position. If a.t/ > 0, the velocity is

increasing. This does not necessarily mean that the speed is increasing; if the object is

moving to the left (v.t/ < 0) and accelerating to the right (a.t/ > 0), then it is actually

slowing down. The object is speeding up only when the velocity and acceleration have

the same sign. (See Table 2.)

Table 2. Velocity, acceleration, and speed

If velocity is and acceleration is then object is and its speed is

positive positive moving right increasing

positive negative moving right decreasing

negative positive moving left decreasing

negative negative moving left increasing

If a.t0/ D 0, then the velocity and the speed are stationary at t0. If a.t/ D 0 during

an interval of time, then the velocity is unchanging and, therefore, constant over that

interval.

E X A M P L E 2
A point P moves along the x-axis in such a way that its position

at time t s is given by

x D 2t
3
� 15t

2
C 24t ft:

(a) Find the velocity and acceleration of P at time t:

(b) In which direction and how fast is P moving at t D 2 s? Is it speeding up or

slowing down at that time?

(c) When is P instantaneously at rest? When is its speed instantaneously not chang-

ing?

(d) When is P moving to the left? to the right?

(e) When is P speeding up? slowing down?

Solution

(a) The velocity and acceleration of P at time t are

v D
dx

dt
D 6t

2
� 30t C 24 D 6.t � 1/.t � 4/ ft/s and

a D
dv

dt
D 12t � 30 D 6.2t � 5/ ft/s2

:

(b) At t D 2 we have v D �12 and a D �6. Thus, P is moving to the left with

speed 12 ft/s, and, since the velocity and acceleration are both negative, its speed

is increasing.

(c) P is at rest when v D 0, that is, when t D 1 s or t D 4 s. Its speed is unchanging

when a D 0, that is, at t D 5=2 s.

(d) The velocity is continuous for all t so, by the Intermediate-Value Theorem, has a

constant sign on the intervals between the points where it is 0. By examining the

values of v.t/ at t D 0, 2, and 5 (or by analyzing the signs of the factors .t�1/ and

.t � 4/ in the expression for v.t/), we conclude that v.t/ < 0 (and P is moving to

the left) on time interval .1; 4/. v.t/ > 0 (and P is moving to the right) on time

intervals .�1; 1/ and .4;1/.

(e) The acceleration a is negative for t < 5=2 and positive for t > 5=2. Table 3

combines this information with information about v to show where P is speeding

up and slowing down.
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Table 3. Data for Example 2

Interval v.t/ is a.t/ is P is

.�1; 1/ positive negative slowing down

.1; 5=2/ negative negative speeding up

.5=2; 4/ negative positive slowing down

.4;1/ positive positive speeding up

The motion of P is shown in Figure 2.39.

Figure 2.39 The motion of the point P in

Example 2
x�20 �15 �10 �5 5 10 15 20

t D 1
t D 4

0

t D 5=2

E X A M P L E 3
An object is hurled upward from the roof of a building 10 m high.

It rises and then falls back; its height above ground t s after it is

thrown is

y D �4:9 t
2
C 8t C 10 m;

until it strikes the ground. What is the greatest height above the ground that the object

attains? With what speed does the object strike the ground?

Solution Refer to Figure 2.40. The vertical velocity at time t during flight is

v.t/ D �2.4:9/ t C 8 D �9:8 t C 8 m/s:

The object is rising when v > 0, that is, when 0 < t < 8=9:8, and is falling for

t > 8=9:8. Thus, the object is at its maximum height at time t D 8=9:8 � 0:8163 s,

and this maximum height is

ymax D �4:9

�

8

9:8

�2

C 8

�

8

9:8

�

C 10 � 13:27 m:

The time t at which the object strikes the ground is the positive root of the quadratic

equation obtained by setting y D 0,

Figure 2.40

�4:9t
2
C 8t C 10 D 0;

namely,

t D
�8 �

p

64C 196

�9:8
� 2:462 s:

The velocity at this time is v D �.9:8/.2:462/C 8 � �16:12. Thus, the object strikes

the ground with a speed of about 16.12 m/s.
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Falling under Gravity
According to Newton’s Second Law of Motion, a rock of mass m acted on by an un-

balanced force F will experience an acceleration a proportional to and in the same

direction as F ; with appropriate units of force, F D ma. If the rock is sitting on

the ground, it is acted on by two forces: the force of gravity acting downward and the

reaction of the ground acting upward. These forces balance, so there is no resulting

acceleration. On the other hand, if the rock is up in the air and is unsupported, the

gravitational force on it will be unbalanced and the rock will experience downward

acceleration. It will fall.

According to Newton’s Universal Law of Gravitation, the force by which the earth

attracts the rock is proportional to the mass m of the rock and inversely proportional

to the square of its distance r from the centre of the earth: F D km=r2. If the relative

change �r=r is small, as will be the case if the rock remains near the surface of the

earth, then F D mg, where g D k=r2 is approximately constant. It follows that

ma D F D mg, and the rock experiences constant downward acceleration g. Since g

does not depend on m, all objects experience the same acceleration when falling near

the surface of the earth, provided we ignore air resistance and any other forces that may

be acting on them. Newton’s laws therefore imply that if the height of such an object

at time t is y.t/, then

d
2
y

dt2
D �g:

The negative sign is needed because the gravitational acceleration is downward, the

opposite direction to that of increasing y. Physical experiments give the following

approximate values for g at the surface of the earth:

g D 32 ft/s2 or g D 9:8 m/s2.

E X A M P L E 4
A rock falling freely near the surface of the earth is subject to a

constant downward acceleration g, if the effect of air resistance is

neglected. If the height and velocity of the rock are y0 and v0 at time t D 0, find the

height y.t/ of the rock at any later time t until the rock strikes the ground.

Solution This example asks for a solution y.t/ to the second-order initial-value prob-

lem:

8

ˆ

<

ˆ

:

y
00
.t/ D �g

y.0/ D y0

y
0
.0/ D v0:

We have

y
0
.t/ D �

Z

g dt D �gt C C1

v0 D y
0
.0/ D 0C C1:

Thus, C1 D v0.

y
0
.t/ D �gt C v0

y.t/ D

Z

.�gt C v0/dt D �
1

2
gt

2
C v0t C C2

y0 D y.0/ D 0C 0C C2:

Thus, C2 D y0. Finally, therefore,
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y.t/ D �
1

2
gt

2
C v0t C y0:

E X A M P L E 5
A ball is thrown down with an initial speed of 20 ft/s from the top

of a cliff, and it strikes the ground at the bottom of the cliff after

5 s. How high is the cliff?

Solution We will apply the result of Example 4. Here we have g D 32 ft/s2,

v0 D �20 ft/s, and y0 is the unknown height of the cliff. The height of the ball

t s after it is thrown down is

y.t/ D �16t
2
� 20t C y0 ft:

At t D 5 the ball reaches the ground, so y.5/ D 0:

0 D �16.25/ � 20.5/C y0 ) y0 D 500:

The cliff is 500 ft high.

E X A M P L E 6
(Stopping distance) A car is travelling at 72 km/h. At a certain

instant its brakes are applied to produce a constant deceleration of

0.8 m/s2. How far does the car travel before coming to a stop?

Solution Let s.t/ be the distance the car travels in the t seconds after the brakes are

applied. Then s00.t/ D �0:8 (m/s2), so the velocity at time t is given by

s
0
.t/ D

Z

�0:8 dt D �0:8t C C1 m/s:

Since s0
.0/ D 72 km/hD 72 � 1; 000=3; 600 D 20 m/s, we have C1 D 20. Thus,

s
0
.t/ D 20 � 0:8t

and

s.t/ D

Z

.20 � 0:8t/ dt D 20t � 0:4t
2
C C2:

Since s.0/ D 0, we have C2 D 0 and s.t/ D 20t � 0:4t2. When the car has stopped,

its velocity will be 0. Hence, the stopping time is the solution t of the equation

0 D s
0
.t/ D 20 � 0:8t;

that is, t D 25 s. The distance travelled during deceleration is s.25/ D 250 m.
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Falling under Gravity
According to Newton’s Second Law of Motion, a rock of mass m acted on by an un-

balanced force F will experience an acceleration a proportional to and in the same

direction as F ; with appropriate units of force, F D ma. If the rock is sitting on

the ground, it is acted on by two forces: the force of gravity acting downward and the

reaction of the ground acting upward. These forces balance, so there is no resulting

acceleration. On the other hand, if the rock is up in the air and is unsupported, the

gravitational force on it will be unbalanced and the rock will experience downward

acceleration. It will fall.

According to Newton’s Universal Law of Gravitation, the force by which the earth

attracts the rock is proportional to the mass m of the rock and inversely proportional

to the square of its distance r from the centre of the earth: F D km=r2. If the relative

change �r=r is small, as will be the case if the rock remains near the surface of the

earth, then F D mg, where g D k=r2 is approximately constant. It follows that

ma D F D mg, and the rock experiences constant downward acceleration g. Since g

does not depend on m, all objects experience the same acceleration when falling near

the surface of the earth, provided we ignore air resistance and any other forces that may

be acting on them. Newton’s laws therefore imply that if the height of such an object

at time t is y.t/, then

d
2
y

dt2
D �g:

The negative sign is needed because the gravitational acceleration is downward, the

opposite direction to that of increasing y. Physical experiments give the following

approximate values for g at the surface of the earth:

g D 32 ft/s2 or g D 9:8 m/s2.

E X A M P L E 4
A rock falling freely near the surface of the earth is subject to a

constant downward acceleration g, if the effect of air resistance is

neglected. If the height and velocity of the rock are y0 and v0 at time t D 0, find the

height y.t/ of the rock at any later time t until the rock strikes the ground.

Solution This example asks for a solution y.t/ to the second-order initial-value prob-

lem:

8

ˆ

<

ˆ

:

y
00
.t/ D �g

y.0/ D y0

y
0
.0/ D v0:

We have

y
0
.t/ D �

Z

g dt D �gt C C1

v0 D y
0
.0/ D 0C C1:

Thus, C1 D v0.

y
0
.t/ D �gt C v0

y.t/ D

Z

.�gt C v0/dt D �
1

2
gt

2
C v0t C C2

y0 D y.0/ D 0C 0C C2:

Thus, C2 D y0. Finally, therefore,
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y.t/ D �
1

2
gt

2
C v0t C y0:

E X A M P L E 5
A ball is thrown down with an initial speed of 20 ft/s from the top

of a cliff, and it strikes the ground at the bottom of the cliff after

5 s. How high is the cliff?

Solution We will apply the result of Example 4. Here we have g D 32 ft/s2,

v0 D �20 ft/s, and y0 is the unknown height of the cliff. The height of the ball

t s after it is thrown down is

y.t/ D �16t
2
� 20t C y0 ft:

At t D 5 the ball reaches the ground, so y.5/ D 0:

0 D �16.25/ � 20.5/C y0 ) y0 D 500:

The cliff is 500 ft high.

E X A M P L E 6
(Stopping distance) A car is travelling at 72 km/h. At a certain

instant its brakes are applied to produce a constant deceleration of

0.8 m/s2. How far does the car travel before coming to a stop?

Solution Let s.t/ be the distance the car travels in the t seconds after the brakes are

applied. Then s00.t/ D �0:8 (m/s2), so the velocity at time t is given by

s
0
.t/ D

Z

�0:8 dt D �0:8t C C1 m/s:

Since s0
.0/ D 72 km/hD 72 � 1; 000=3; 600 D 20 m/s, we have C1 D 20. Thus,

s
0
.t/ D 20 � 0:8t

and

s.t/ D

Z

.20 � 0:8t/ dt D 20t � 0:4t
2
C C2:

Since s.0/ D 0, we have C2 D 0 and s.t/ D 20t � 0:4t2. When the car has stopped,

its velocity will be 0. Hence, the stopping time is the solution t of the equation

0 D s
0
.t/ D 20 � 0:8t;

that is, t D 25 s. The distance travelled during deceleration is s.25/ D 250 m.
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E X E R C I S E S 2.11

In Exercises 1–4, a particle moves along the x-axis so that its

position x at time t is specified by the given function. In each case

determine the following:

(a) the time intervals on which the particle is moving to the right

and (b) to the left;

(c) the time intervals on which the particle is accelerating to the

right and (d) to the left;

(e) the time intervals when the particle is speeding up and

(f) slowing down;

(g) the acceleration at times when the velocity is zero;

(h) the average velocity over the time interval Œ0; 4�.

1. x D t2 � 4t C 3 2. x D 4C 5t � t2

3. x D t3 � 4t C 1 4. x D
t

t2 C 1

5. A ball is thrown upward from ground level with an initial

speed of 9.8 m/s so that its height in metres after t s is given

by y D 9:8t � 4:9t2. What is the acceleration of the ball at

any time t? How high does the ball go? How fast is it moving

when it strikes the ground?

6. A ball is thrown downward from the top of a 100-metre-high

tower with an initial speed of 2 m/s. Its height in metres above

the ground t s later is y D 100� 2t � 4:9t2. How long does it

take to reach the ground? What is its average velocity during

the fall? At what instant is its velocity equal to its average

velocity?

7.I (Takeoff distance) The distance an aircraft travels along a

runway before takeoff is given by D D t2, where D is

measured in metres from the starting point, and t is measured

in seconds from the time the brake is released. If the aircraft

will become airborne when its speed reaches 200 km/h, how

long will it take to become airborne, and what distance will it

travel in that time?

8. (Projectiles on Mars) A projectile fired upward from the

surface of the earth falls back to the ground after 10 s. How

long would it take to fall back to the surface if it is fired

upward on Mars with the same initial velocity? gMars D 3:72

m/s2.

9. A ball is thrown upward with initial velocity v0 m/s and

reaches a maximum height of h m. How high would it have

gone if its initial velocity was 2v0? How fast must it be thrown

upward to achieve a maximum height of 2h m?

10. How fast would the ball in Exercise 9 have to be thrown

upward on Mars in order to achieve a maximum height of

3h m?

11. A rock falls from the top of a cliff and hits the ground at the

base of the cliff at a speed of 160 ft/s. How high is the cliff?

12. A rock is thrown down from the top of a cliff with the initial

speed of 32 ft/s and hits the ground at the base of the cliff at a

speed of 160 ft/s. How high is the cliff?

13. (Distance travelled while braking) With full brakes applied,

a freight train can decelerate at a constant rate of

1=6 m/s2. How far will the train travel while braking to a full

stop from an initial speed of 60 km/h?

14.A Show that if the position x of a moving point is given by a

quadratic function of t , x D At2 C Bt C C , then the average

velocity over any time interval Œt1; t2� is equal to the

instantaneous velocity at the midpoint of that time interval.

15.I (Piecewise motion) The position of an object moving along

the s-axis is given at time t by

s D

8

<

:

t2 if 0 � t � 2

4t � 4 if 2 < t < 8

�68C 20t � t2 if 8 � t � 10.

Determine the velocity and acceleration at any time t . Is the

velocity continuous? Is the acceleration continuous? What is

the maximum velocity and when is it attained?

(Rocket flight with limited fuel) Figure 2.41 shows the velocity v

in feet per second of a small rocket that was fired from the top of a

tower at time t D 0 (t in seconds), accelerated with constant

upward acceleration until its fuel was used up, then fell back to the

ground at the foot of the tower. The whole flight lasted 14 s.

Exercises 16–19 refer to this rocket.

v

t

.4; 96/

.14;�224/

Figure 2.41

16. What was the acceleration of the rocket while its fuel lasted?

17. How long was the rocket rising?

18.I What is the maximum height above ground that the rocket

reached?

19.I How high was the tower from which the rocket was fired?

20. Redo Example 6 using instead a nonconstant deceleration,

s 00.t/ D �t m/s2.
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C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ Line L is tangent to curve C at point P:

˘ the Newton quotient of f .x/ at x D a

˘ the derivative f 0
.x/ of the function f .x/

˘ f is differentiable at x D a.

˘ the slope of the graph y D f .x/ at x D a

˘ f is increasing (or decreasing) on interval I:

˘ f is nondecreasing (or nonincreasing) on interval I:

˘ the average rate of change of f .x/ on Œa; b�

˘ the rate of change of f .x/ at x D a

˘ c is a critical point of f .x/.

˘ the second derivative of f .x/ at x D a

˘ an antiderivative of f on interval I

˘ the indefinite integral of f on interval I

˘ differential equation ˘ initial-value problem

˘ velocity ˘ speed ˘ acceleration

� State the following differentiation rules:

˘ the rule for differentiating a sum of functions

˘ the rule for differentiating a constant multiple of a function

˘ the Product Rule ˘ the Reciprocal Rule

˘ the Quotient Rule ˘ the Chain Rule

� State the Mean-Value Theorem.

� State the Generalized Mean-Value Theorem.

� State the derivatives of the following functions:

˘ x ˘ x
2

˘ 1=x ˘

p

x

˘ xn
˘ jxj ˘ sinx ˘ cos x

˘ tanx ˘ cot x ˘ sec x ˘ csc x

� What is a proof by mathematical induction?

Review Exercises

Use the definition of derivative to calculate the derivatives in

Exercises 1–4.

1.
dy

dx
if y D .3x C 1/2 2.

d

dx

p

1 � x2

3. f 0
.2/ if f .x/ D

4

x2
4. g0

.9/ if g.t/ D
t � 5

1C
p

t

5. Find the tangent to y D cos.�x/ at x D 1=6.

6. Find the normal to y D tan.x=4/ at x D � .

Calculate the derivatives of the functions in Exercises 7–12.

7.
1

x � sinx
8.
1C x C x2

C x3

x4

9. .4 � x2=5
/
�5=2 10.

p

2C cos2 x

11. tan � � � sec2
� 12.

p

1C t2 � 1
p

1C t2 C 1

Evaluate the limits in Exercises 13–16 by interpreting each as a

derivative.

13. lim
h!0

.x C h/20
� x20

h
14. lim

x!2

p

4x C 1 � 3

x � 2

15. lim
x!�=6

cos.2x/ � .1=2/

x � �=6
16. lim

x!�a

.1=x2/ � .1=a2/

x C a

In Exercises 17–24, express the derivatives of the given functions

in terms of the derivatives f 0 and g0 of the differentiable functions

f and g.

17. f .3 � x2
/ 18. Œf .

p

x/�
2

19. f .2x/
p

g.x=2/ 20.
f .x/ � g.x/

f .x/C g.x/

21. f .x C .g.x//2/ 22. f

�

g.x2/

x

�

23. f .sinx/ g.cos x/ 24.

s

cosf .x/

sing.x/

25. Find the tangent to the curve x3y C 2xy3
D 12 at the point

.2; 1/.

26. Find the slope of the curve 3
p

2x sin.�y/ C 8y cos.�x/ D 2

at the point
�

1
3
;

1
4

�

.

Find the indefinite integrals in Exercises 27–30.

27.

Z

1C x4

x2
dx 28.

Z

1C x
p

x
dx

29.

Z

2C 3 sinx

cos2 x
dx 30.

Z

.2x C 1/
4
dx

31. Find f .x/ given that f 0.x/ D 12x2
C 12x3 and f .1/ D 0.

32. Find g.x/ if g0.x/ D sin.x=3/C cos.x=6/ and the graph of g

passes through the point .�; 2/.

33. Differentiate x sinx C cosx and x cos x � sinx, and use the

results to find the indefinite integrals

I1 D

Z

x cos x dx and I2 D

Z

x sinx dx:

34. Suppose that f 0.x/ D f .x/ for every x. Let g.x/ D x f .x/.

Calculate the first several derivatives of g and guess a formula

for the nth-order derivative g.n/
.x/. Verify your guess by in-

duction.

35. Find an equation of the straight line that passes through the

origin and is tangent to the curve y D x3
C 2.

36. Find an equation of the straight lines that pass through the point

.0; 1/ and are tangent to the curve y D
p

2C x2.

37. Show that
d

dx

�

sinn
x sin.nx/

�

D n sinn�1
x sin..n C 1/x/.

At what points x in Œ0; �� does the graph of y D sinn
x sin.nx/

have a horizontal tangent? Assume that n � 2.

38. Find differentiation formulas for y D sinn
x cos.nx/,

y D cosn x sin.nx/, and y D cosn x cos.nx/ analogous to the

one given for y D sinn
x sin.nx/ in Exercise 37.

39. Let Q be the point .0; 1/. Find all points P on the curve y D

x2 such that the line PQ is normal to y D x2 at P . What is

the shortest distance from Q to the curve y D x2?
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E X E R C I S E S 2.11

In Exercises 1–4, a particle moves along the x-axis so that its

position x at time t is specified by the given function. In each case

determine the following:

(a) the time intervals on which the particle is moving to the right

and (b) to the left;

(c) the time intervals on which the particle is accelerating to the

right and (d) to the left;

(e) the time intervals when the particle is speeding up and

(f) slowing down;

(g) the acceleration at times when the velocity is zero;

(h) the average velocity over the time interval Œ0; 4�.

1. x D t2 � 4t C 3 2. x D 4C 5t � t2

3. x D t3 � 4t C 1 4. x D
t

t2 C 1

5. A ball is thrown upward from ground level with an initial

speed of 9.8 m/s so that its height in metres after t s is given

by y D 9:8t � 4:9t2. What is the acceleration of the ball at

any time t? How high does the ball go? How fast is it moving

when it strikes the ground?

6. A ball is thrown downward from the top of a 100-metre-high

tower with an initial speed of 2 m/s. Its height in metres above

the ground t s later is y D 100� 2t � 4:9t2. How long does it

take to reach the ground? What is its average velocity during

the fall? At what instant is its velocity equal to its average

velocity?

7.I (Takeoff distance) The distance an aircraft travels along a

runway before takeoff is given by D D t2, where D is

measured in metres from the starting point, and t is measured

in seconds from the time the brake is released. If the aircraft

will become airborne when its speed reaches 200 km/h, how

long will it take to become airborne, and what distance will it

travel in that time?

8. (Projectiles on Mars) A projectile fired upward from the

surface of the earth falls back to the ground after 10 s. How

long would it take to fall back to the surface if it is fired

upward on Mars with the same initial velocity? gMars D 3:72

m/s2.

9. A ball is thrown upward with initial velocity v0 m/s and

reaches a maximum height of h m. How high would it have

gone if its initial velocity was 2v0? How fast must it be thrown

upward to achieve a maximum height of 2h m?

10. How fast would the ball in Exercise 9 have to be thrown

upward on Mars in order to achieve a maximum height of

3h m?

11. A rock falls from the top of a cliff and hits the ground at the

base of the cliff at a speed of 160 ft/s. How high is the cliff?

12. A rock is thrown down from the top of a cliff with the initial

speed of 32 ft/s and hits the ground at the base of the cliff at a

speed of 160 ft/s. How high is the cliff?

13. (Distance travelled while braking) With full brakes applied,

a freight train can decelerate at a constant rate of

1=6 m/s2. How far will the train travel while braking to a full

stop from an initial speed of 60 km/h?

14.A Show that if the position x of a moving point is given by a

quadratic function of t , x D At2 C Bt C C , then the average

velocity over any time interval Œt1; t2� is equal to the

instantaneous velocity at the midpoint of that time interval.

15.I (Piecewise motion) The position of an object moving along

the s-axis is given at time t by

s D

8

<

:

t2 if 0 � t � 2

4t � 4 if 2 < t < 8

�68C 20t � t2 if 8 � t � 10.

Determine the velocity and acceleration at any time t . Is the

velocity continuous? Is the acceleration continuous? What is

the maximum velocity and when is it attained?

(Rocket flight with limited fuel) Figure 2.41 shows the velocity v

in feet per second of a small rocket that was fired from the top of a

tower at time t D 0 (t in seconds), accelerated with constant

upward acceleration until its fuel was used up, then fell back to the

ground at the foot of the tower. The whole flight lasted 14 s.

Exercises 16–19 refer to this rocket.

v

t

.4; 96/

.14;�224/

Figure 2.41

16. What was the acceleration of the rocket while its fuel lasted?

17. How long was the rocket rising?

18.I What is the maximum height above ground that the rocket

reached?

19.I How high was the tower from which the rocket was fired?

20. Redo Example 6 using instead a nonconstant deceleration,

s 00.t/ D �t m/s2.
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C H A P T E R R E V I E W

Key Ideas

� What do the following statements and phrases mean?

˘ Line L is tangent to curve C at point P:

˘ the Newton quotient of f .x/ at x D a

˘ the derivative f 0
.x/ of the function f .x/

˘ f is differentiable at x D a.

˘ the slope of the graph y D f .x/ at x D a

˘ f is increasing (or decreasing) on interval I:

˘ f is nondecreasing (or nonincreasing) on interval I:

˘ the average rate of change of f .x/ on Œa; b�

˘ the rate of change of f .x/ at x D a

˘ c is a critical point of f .x/.

˘ the second derivative of f .x/ at x D a

˘ an antiderivative of f on interval I

˘ the indefinite integral of f on interval I

˘ differential equation ˘ initial-value problem

˘ velocity ˘ speed ˘ acceleration

� State the following differentiation rules:

˘ the rule for differentiating a sum of functions

˘ the rule for differentiating a constant multiple of a function

˘ the Product Rule ˘ the Reciprocal Rule

˘ the Quotient Rule ˘ the Chain Rule

� State the Mean-Value Theorem.

� State the Generalized Mean-Value Theorem.

� State the derivatives of the following functions:

˘ x ˘ x
2

˘ 1=x ˘

p

x

˘ xn
˘ jxj ˘ sinx ˘ cos x

˘ tanx ˘ cot x ˘ sec x ˘ csc x

� What is a proof by mathematical induction?

Review Exercises

Use the definition of derivative to calculate the derivatives in

Exercises 1–4.

1.
dy

dx
if y D .3x C 1/2 2.

d

dx

p

1 � x2

3. f 0
.2/ if f .x/ D

4

x2
4. g0

.9/ if g.t/ D
t � 5

1C
p

t

5. Find the tangent to y D cos.�x/ at x D 1=6.

6. Find the normal to y D tan.x=4/ at x D � .

Calculate the derivatives of the functions in Exercises 7–12.

7.
1

x � sinx
8.
1C x C x2

C x3

x4

9. .4 � x2=5
/
�5=2 10.

p

2C cos2 x

11. tan � � � sec2
� 12.

p

1C t2 � 1
p

1C t2 C 1

Evaluate the limits in Exercises 13–16 by interpreting each as a

derivative.

13. lim
h!0

.x C h/20
� x20

h
14. lim

x!2

p

4x C 1 � 3

x � 2

15. lim
x!�=6

cos.2x/ � .1=2/

x � �=6
16. lim

x!�a

.1=x2/ � .1=a2/

x C a

In Exercises 17–24, express the derivatives of the given functions

in terms of the derivatives f 0 and g0 of the differentiable functions

f and g.

17. f .3 � x2
/ 18. Œf .

p

x/�
2

19. f .2x/
p

g.x=2/ 20.
f .x/ � g.x/

f .x/C g.x/

21. f .x C .g.x//2/ 22. f

�

g.x2/

x

�

23. f .sinx/ g.cos x/ 24.

s

cosf .x/

sing.x/

25. Find the tangent to the curve x3y C 2xy3
D 12 at the point

.2; 1/.

26. Find the slope of the curve 3
p

2x sin.�y/ C 8y cos.�x/ D 2

at the point
�

1
3
;

1
4

�

.

Find the indefinite integrals in Exercises 27–30.

27.

Z

1C x4

x2
dx 28.

Z

1C x
p

x
dx

29.

Z

2C 3 sinx

cos2 x
dx 30.

Z

.2x C 1/
4
dx

31. Find f .x/ given that f 0.x/ D 12x2
C 12x3 and f .1/ D 0.

32. Find g.x/ if g0.x/ D sin.x=3/C cos.x=6/ and the graph of g

passes through the point .�; 2/.

33. Differentiate x sinx C cosx and x cos x � sinx, and use the

results to find the indefinite integrals

I1 D

Z

x cos x dx and I2 D

Z

x sinx dx:

34. Suppose that f 0.x/ D f .x/ for every x. Let g.x/ D x f .x/.

Calculate the first several derivatives of g and guess a formula

for the nth-order derivative g.n/
.x/. Verify your guess by in-

duction.

35. Find an equation of the straight line that passes through the

origin and is tangent to the curve y D x3
C 2.

36. Find an equation of the straight lines that pass through the point

.0; 1/ and are tangent to the curve y D
p

2C x2.

37. Show that
d

dx

�

sinn
x sin.nx/

�

D n sinn�1
x sin..n C 1/x/.

At what points x in Œ0; �� does the graph of y D sinn
x sin.nx/

have a horizontal tangent? Assume that n � 2.

38. Find differentiation formulas for y D sinn
x cos.nx/,

y D cosn x sin.nx/, and y D cosn x cos.nx/ analogous to the

one given for y D sinn
x sin.nx/ in Exercise 37.

39. Let Q be the point .0; 1/. Find all points P on the curve y D

x2 such that the line PQ is normal to y D x2 at P . What is

the shortest distance from Q to the curve y D x2?
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40. (Average and marginal profit) Figure 2.42 shows the graph of

the profit $P.x/ realized by a grain exporter from its sale of x

tonnes of wheat. Thus, the average profit per tonne is $P.x/=x.

Show that the maximum average profit occurs when the aver-

age profit equals the marginal profit. What is the geometric

significance of this fact in the figure?

P.x/

x

Figure 2.42

41. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function F.r/ given for r � 0 by

F.r/ D

8

<

:

mgR2

r2
if r � R

mkr if 0 � r < R

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

42. (Compressibility of a gas) The isothermal compressibility of

a gas is the relative rate of change of the volume V with re-

spect to the pressure P at a constant temperature T; that is,

.1=V / dV=dP: For a sample of an ideal gas, the temperature,

pressure, and volume satisfy the equation PV D kT; where k

is a constant related to the number of molecules of gas present

in the sample. Show that the isothermal compressibility of such

a gas is the negative reciprocal of the pressure:

1

V

dV

dP
D �

1

P
:

43. A ball is thrown upward with an initial speed of 10 m/s from

the top of a building. A second ball is thrown upward with

an initial speed of 20 m/s from the ground. Both balls achieve

the same maximum height above the ground. How tall is the

building?

44. A ball is dropped from the top of a 60 m high tower at the same

instant that a second ball is thrown upward from the ground

at the base of the tower. The balls collide at a height of 30 m

above the ground. With what initial velocity was the second

ball thrown? How fast is each ball moving when they collide?

45. (Braking distance) A car’s brakes can decelerate the car at 20

ft/s2. How fast can the car travel if it must be able to stop in a

distance of 160 ft?

46. (Measuring variations in g) The period P of a pendulum of

length L is given by P D 2�
p

L=g, where g is the accelera-

tion of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 1/2% decrease in the period

P . (Variations in the period of a pendulum can be used

to detect small variations in g from place to place on the

earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

Challenging Problems

1. René Descartes, the inventor of analytic geometry, calculated

the tangent to a parabola (or a circle or other quadratic curve) at

a given point .x0; y0/ on the curve by looking for a straight line

through .x0; y0/ having only one intersection with the given

curve. Illustrate his method by writing the equation of a line

through .a; a2/, having arbitrary slopem, and then finding the

value ofm for which the line has only one intersection with the

parabola y D x2. Why does the method not work for more

general curves?

2. Given that f 0.x/ D 1=x and f .2/ D 9, find:

(a) lim
x!2

f .x2
C 5/ � f .9/

x � 2
(b) lim

x!2

p

f .x/ � 3

x � 2

3. Suppose that f 0.4/ D 3, g0.4/ D 7, g.4/ D 4, and g.x/ ¤ 4

for x ¤ 4. Find:

(a) lim
x!4

�

f .x/ � f .4/

�

(b) lim
x!4

f .x/ � f .4/

x2
� 16

(c) lim
x!4

f .x/ � f .4/
p

x � 2
(d) lim

x!4

f .x/ � f .4/

.1=x/ � .1=4/

(e) lim
x!4

f .x/ � f .4/

g.x/ � 4
(f) lim

x!4

f .g.x// � f .4/

x � 4

4. Let f .x/ D
n

x if x D 1; 1=2; 1=3; 1=4; : : :

x2 otherwise.

(a) Find all points at which f is continuous. In particular, is

it continuous at x D 0?

(b) Is the following statement true or false? Justify your an-

swer. For any two real numbers a and b, there is some x

between a and b such that f .x/ D .f .a/C f .b// =2.

(c) Find all points at which f is differentiable. In particular,

is it differentiable at x D 0?

5. Suppose f .0/ D 0 and jf .x/j >
p

jxj for all x. Show that

f 0.0/ does not exist.

6. Suppose that f is a function satisfying the following condi-

tions: f 0.0/ D k, f .0/ ¤ 0, and f .x C y/ D f .x/f .y/ for

all x and y. Show that f .0/ D 1 and that f 0.x/ D k f .x/

for every x. (We will study functions with these properties in

Chapter 3.)

7. Suppose the function g satisfies the conditions: g0.0/ D k, and

g.x C y/ D g.x/C g.y/ for all x and y. Show that:

(a) g.0/ D 0, (b) g0.x/ D k for all x, and

(c) g.x/ D kx for all x. Hint: Let h.x/ D g.x/ � g0.0/x.

8. (a) If f is differentiable at x, show that

(i) lim
h!0

f .x/ � f .x � h/

h
D f

0
.x/

(ii) lim
h!0

f .x C h/ � f .x � h/

2h
D f

0
.x/

(b) Show that the existence of the limit in (i) guarantees that

f is differentiable at x.
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(c) Show that the existence of the limit in (ii) does not guaran-

tee that f is differentiable at x. Hint: Consider the func-

tion f .x/ D jxj at x D 0.

9. Show that there is a line through .a; 0/ that is tangent to the

curve y D x3 at x D 3a=2. If a ¤ 0, is there any other line

through .a; 0/ that is tangent to the curve? If .x0; y0/ is an

arbitrary point, what is the maximum number of lines through

.x0; y0/ that can be tangent to y D x3? the minimum num-

ber?

10. Make a sketch showing that there are two straight lines, each of

which is tangent to both of the parabolas y D x2
C4xC1 and

y D �x
2
C 4x � 1. Find equations of the two lines.

11. Show that if b > 1=2, there are three straight lines through

.0; b/, each of which is normal to the curve y D x2. How

many such lines are there if b D 1=2? if b < 1=2?

12. (Distance from a point to a curve) Find the point on the curve

y D x2 that is closest to the point .3; 0/. Hint: The line from

.3; 0/ to the closest point Q on the parabola is normal to the

parabola at Q.

13.I (Envelope of a family of lines) Show that for each value of

the parameter m, the line y D mx � .m2=4/ is tangent to the

parabola y D x2. (The parabola is called the envelope of the

family of lines y D mx � .m
2
=4/.) Find f .m/ such that the

family of lines y D mx C f .m/ has envelope the parabola

y D Ax2
C Bx C C:

14.I (Common tangents) Consider the two parabolas with equa-

tions y D x2 and y D Ax2
CBxCC: We assume thatA ¤ 0,

and if A D 1, then either B ¤ 0 or C ¤ 0, so that the two

equations do represent different parabolas. Show that:

(a) the two parabolas are tangent to each other if

B2
D 4C.A � 1/;

(b) the parabolas have two common tangent lines if and only

if A ¤ 1 and A
�

B
2
� 4C.A � 1/

�

> 0;

(c) the parabolas have exactly one common tangent line if ei-

ther A D 1 and B ¤ 0, or A ¤ 1 and B2
D 4C.A � 1/;

(d) the parabolas have no common tangent lines if either

A D 1 andB D 0, orA ¤ 1 andA
�

B2
�4C.A�1/

�

< 0.

Make sketches illustrating each of the above possibilities.

15. Let C be the graph of y D x3.

(a) Show that if a ¤ 0, then the tangent to C at x D a also

intersects C at a second point x D b.

(b) Show that the slope of C at x D b is four times its slope

at x D a.

(c) Can any line be tangent to C at more than one point?

(d) Can any line be tangent to the graph of

y D Ax
3
C Bx

2
C Cx CD at more than one point?

16.I Let C be the graph of y D x4
� 2x

2.

(a) Find all horizontal lines that are tangent to C:

(b) One of the lines found in (a) is tangent to C at two dif-

ferent points. Show that there are no other lines with this

property.

(c) Find an equation of a straight line that is tangent to the

graph of y D x4
� 2x2

C x at two different points. Can

there exist more than one such line? Why?

M 17. (Double tangents) A line tangent to the quartic (fourth-degree

polynomial) curve C with equation y D ax4
C bx3

C cx2
C

dx C e at x D p may intersect C at zero, one, or two other

points. If it meets C at only one other point x D q, it must be

tangent to C at that point also, and it is thus a “double tangent.”

(a) Find the condition that must be satisfied by the coefficients

of the quartic to ensure that there does exist such a double

tangent, and show that there cannot be more than one such

double tangent. Illustrate this by applying your results to

y D x4
� 2x2

C x � 1.

(b) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that PQ is parallel to the line tangent to

C at x D .p C q/=2.

(c) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that C has two distinct inflection points

R and S and that RS is parallel to PQ.

18. Verify the following formulas for every positive integer n:

(a)
dn

dxn
cos.ax/ D an cos

�

ax C
n�

2

�

(b)
dn

dxn
sin.ax/ D an sin

�

ax C
n�

2

�

(c)
dn

dxn

�

cos4
x C sin4

x

�

D 4
n�1 cos

�

4x C
n�

2

�

19. (Rocket with a parachute) A rocket is fired from the top of a

tower at time t D 0. It experiences constant upward accelera-

tion until its fuel is used up. Thereafter its acceleration is the

constant downward acceleration of gravity until, during its fall,

it deploys a parachute that gives it a constant upward accelera-

tion again to slow it down. The rocket hits the ground near the

base of the tower. The upward velocity v (in metres per sec-

ond) is graphed against time in Figure 2.43. From information

in the figure answer the following questions:

(a) How long did the fuel last?

(b) When was the rocket’s height maximum?

(c) When was the parachute deployed?

(d) What was the rocket’s upward acceleration while its motor

was firing?

(e) What was the maximum height achieved by the rocket?

(f) How high was the tower from which the rocket was fired?

.3; 39:2/

.12;�49/

.15;�1/

v (m/s)

�40

�30

�20

�10

10

20

30

40

t (s)
2 4 6 8 10 12 14

Figure 2.43
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40. (Average and marginal profit) Figure 2.42 shows the graph of

the profit $P.x/ realized by a grain exporter from its sale of x

tonnes of wheat. Thus, the average profit per tonne is $P.x/=x.

Show that the maximum average profit occurs when the aver-

age profit equals the marginal profit. What is the geometric

significance of this fact in the figure?

P.x/

x

Figure 2.42

41. (Gravitational attraction) The gravitational attraction of the

earth on a mass m at distance r from the centre of the earth is

a continuous function F.r/ given for r � 0 by

F.r/ D

8

<

:

mgR2

r2
if r � R

mkr if 0 � r < R

whereR is the radius of the earth, and g is the acceleration due

to gravity at the surface of the earth.

(a) Find the constant k in terms of g and R.

(b) F decreases as m moves away from the surface of the

earth, either upward or downward. Show that F decreases

as r increases from R at twice the rate at which F de-

creases as r decreases from R.

42. (Compressibility of a gas) The isothermal compressibility of

a gas is the relative rate of change of the volume V with re-

spect to the pressure P at a constant temperature T; that is,

.1=V / dV=dP: For a sample of an ideal gas, the temperature,

pressure, and volume satisfy the equation PV D kT; where k

is a constant related to the number of molecules of gas present

in the sample. Show that the isothermal compressibility of such

a gas is the negative reciprocal of the pressure:

1

V

dV

dP
D �

1

P
:

43. A ball is thrown upward with an initial speed of 10 m/s from

the top of a building. A second ball is thrown upward with

an initial speed of 20 m/s from the ground. Both balls achieve

the same maximum height above the ground. How tall is the

building?

44. A ball is dropped from the top of a 60 m high tower at the same

instant that a second ball is thrown upward from the ground

at the base of the tower. The balls collide at a height of 30 m

above the ground. With what initial velocity was the second

ball thrown? How fast is each ball moving when they collide?

45. (Braking distance) A car’s brakes can decelerate the car at 20

ft/s2. How fast can the car travel if it must be able to stop in a

distance of 160 ft?

46. (Measuring variations in g) The period P of a pendulum of

length L is given by P D 2�
p

L=g, where g is the accelera-

tion of gravity.

(a) Assuming that L remains fixed, show that a 1% increase

in g results in approximately a 1/2% decrease in the period

P . (Variations in the period of a pendulum can be used

to detect small variations in g from place to place on the

earth’s surface.)

(b) For fixed g, what percentage change in L will produce a

1% increase in P ?

Challenging Problems

1. René Descartes, the inventor of analytic geometry, calculated

the tangent to a parabola (or a circle or other quadratic curve) at

a given point .x0; y0/ on the curve by looking for a straight line

through .x0; y0/ having only one intersection with the given

curve. Illustrate his method by writing the equation of a line

through .a; a2/, having arbitrary slopem, and then finding the

value ofm for which the line has only one intersection with the

parabola y D x2. Why does the method not work for more

general curves?

2. Given that f 0.x/ D 1=x and f .2/ D 9, find:

(a) lim
x!2

f .x2
C 5/ � f .9/

x � 2
(b) lim

x!2

p

f .x/ � 3

x � 2

3. Suppose that f 0.4/ D 3, g0.4/ D 7, g.4/ D 4, and g.x/ ¤ 4

for x ¤ 4. Find:

(a) lim
x!4

�

f .x/ � f .4/

�

(b) lim
x!4

f .x/ � f .4/

x2
� 16

(c) lim
x!4

f .x/ � f .4/
p

x � 2
(d) lim

x!4

f .x/ � f .4/

.1=x/ � .1=4/

(e) lim
x!4

f .x/ � f .4/

g.x/ � 4
(f) lim

x!4

f .g.x// � f .4/

x � 4

4. Let f .x/ D
n

x if x D 1; 1=2; 1=3; 1=4; : : :

x2 otherwise.

(a) Find all points at which f is continuous. In particular, is

it continuous at x D 0?

(b) Is the following statement true or false? Justify your an-

swer. For any two real numbers a and b, there is some x

between a and b such that f .x/ D .f .a/C f .b// =2.

(c) Find all points at which f is differentiable. In particular,

is it differentiable at x D 0?

5. Suppose f .0/ D 0 and jf .x/j >
p

jxj for all x. Show that

f 0.0/ does not exist.

6. Suppose that f is a function satisfying the following condi-

tions: f 0.0/ D k, f .0/ ¤ 0, and f .x C y/ D f .x/f .y/ for

all x and y. Show that f .0/ D 1 and that f 0.x/ D k f .x/

for every x. (We will study functions with these properties in

Chapter 3.)

7. Suppose the function g satisfies the conditions: g0.0/ D k, and

g.x C y/ D g.x/C g.y/ for all x and y. Show that:

(a) g.0/ D 0, (b) g0.x/ D k for all x, and

(c) g.x/ D kx for all x. Hint: Let h.x/ D g.x/ � g0.0/x.

8. (a) If f is differentiable at x, show that

(i) lim
h!0

f .x/ � f .x � h/

h
D f

0
.x/

(ii) lim
h!0

f .x C h/ � f .x � h/

2h
D f

0
.x/

(b) Show that the existence of the limit in (i) guarantees that

f is differentiable at x.
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(c) Show that the existence of the limit in (ii) does not guaran-

tee that f is differentiable at x. Hint: Consider the func-

tion f .x/ D jxj at x D 0.

9. Show that there is a line through .a; 0/ that is tangent to the

curve y D x3 at x D 3a=2. If a ¤ 0, is there any other line

through .a; 0/ that is tangent to the curve? If .x0; y0/ is an

arbitrary point, what is the maximum number of lines through

.x0; y0/ that can be tangent to y D x3? the minimum num-

ber?

10. Make a sketch showing that there are two straight lines, each of

which is tangent to both of the parabolas y D x2
C4xC1 and

y D �x
2
C 4x � 1. Find equations of the two lines.

11. Show that if b > 1=2, there are three straight lines through

.0; b/, each of which is normal to the curve y D x2. How

many such lines are there if b D 1=2? if b < 1=2?

12. (Distance from a point to a curve) Find the point on the curve

y D x2 that is closest to the point .3; 0/. Hint: The line from

.3; 0/ to the closest point Q on the parabola is normal to the

parabola at Q.

13.I (Envelope of a family of lines) Show that for each value of

the parameter m, the line y D mx � .m2=4/ is tangent to the

parabola y D x2. (The parabola is called the envelope of the

family of lines y D mx � .m
2
=4/.) Find f .m/ such that the

family of lines y D mx C f .m/ has envelope the parabola

y D Ax2
C Bx C C:

14.I (Common tangents) Consider the two parabolas with equa-

tions y D x2 and y D Ax2
CBxCC: We assume thatA ¤ 0,

and if A D 1, then either B ¤ 0 or C ¤ 0, so that the two

equations do represent different parabolas. Show that:

(a) the two parabolas are tangent to each other if

B2
D 4C.A � 1/;

(b) the parabolas have two common tangent lines if and only

if A ¤ 1 and A
�

B
2
� 4C.A � 1/

�

> 0;

(c) the parabolas have exactly one common tangent line if ei-

ther A D 1 and B ¤ 0, or A ¤ 1 and B2
D 4C.A � 1/;

(d) the parabolas have no common tangent lines if either

A D 1 andB D 0, orA ¤ 1 andA
�

B2
�4C.A�1/

�

< 0.

Make sketches illustrating each of the above possibilities.

15. Let C be the graph of y D x3.

(a) Show that if a ¤ 0, then the tangent to C at x D a also

intersects C at a second point x D b.

(b) Show that the slope of C at x D b is four times its slope

at x D a.

(c) Can any line be tangent to C at more than one point?

(d) Can any line be tangent to the graph of

y D Ax
3
C Bx

2
C Cx CD at more than one point?

16.I Let C be the graph of y D x4
� 2x

2.

(a) Find all horizontal lines that are tangent to C:

(b) One of the lines found in (a) is tangent to C at two dif-

ferent points. Show that there are no other lines with this

property.

(c) Find an equation of a straight line that is tangent to the

graph of y D x4
� 2x2

C x at two different points. Can

there exist more than one such line? Why?

M 17. (Double tangents) A line tangent to the quartic (fourth-degree

polynomial) curve C with equation y D ax4
C bx3

C cx2
C

dx C e at x D p may intersect C at zero, one, or two other

points. If it meets C at only one other point x D q, it must be

tangent to C at that point also, and it is thus a “double tangent.”

(a) Find the condition that must be satisfied by the coefficients

of the quartic to ensure that there does exist such a double

tangent, and show that there cannot be more than one such

double tangent. Illustrate this by applying your results to

y D x4
� 2x2

C x � 1.

(b) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that PQ is parallel to the line tangent to

C at x D .p C q/=2.

(c) If the line PQ is tangent to C at two distinct points x D p

and x D q, show that C has two distinct inflection points

R and S and that RS is parallel to PQ.

18. Verify the following formulas for every positive integer n:

(a)
dn

dxn
cos.ax/ D an cos

�

ax C
n�

2

�

(b)
dn

dxn
sin.ax/ D an sin

�

ax C
n�

2

�

(c)
dn

dxn

�

cos4
x C sin4

x

�

D 4
n�1 cos

�

4x C
n�

2

�

19. (Rocket with a parachute) A rocket is fired from the top of a

tower at time t D 0. It experiences constant upward accelera-

tion until its fuel is used up. Thereafter its acceleration is the

constant downward acceleration of gravity until, during its fall,

it deploys a parachute that gives it a constant upward accelera-

tion again to slow it down. The rocket hits the ground near the

base of the tower. The upward velocity v (in metres per sec-

ond) is graphed against time in Figure 2.43. From information

in the figure answer the following questions:

(a) How long did the fuel last?

(b) When was the rocket’s height maximum?

(c) When was the parachute deployed?

(d) What was the rocket’s upward acceleration while its motor

was firing?

(e) What was the maximum height achieved by the rocket?

(f) How high was the tower from which the rocket was fired?

.3; 39:2/

.12;�49/

.15;�1/

v (m/s)

�40

�30

�20

�10

10

20

30

40

t (s)
2 4 6 8 10 12 14

Figure 2.43
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