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Supersampling in Ray Tracing

Ray Tracing:

Rendering the scene:
Generating a 2-dimensional image of a 3-dimensional scene that
amounts to:

@ determining the visible object at each pixel on the screen,

@ determining how bright the object is.
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Ray Tracing:

Rendering the scene:

Generating a 2-dimensional image of a 3-dimensional scene that
amounts to:

@ determining the visible object at each pixel on the screen,
@ determining how bright the object is.

Ray tracing:
Determining the visible object at each pixel by shooting a ray from the
view point through each pixel.

Note:
Ray tracing can also determine how bright the object is.
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Supersampling in Ray Tracing

Supersampling:

@ A pixel is not a point, but a small
square area.

@ Shooting a ray through each pixel
center results in the well-known
jaggies in the image.

@ The solution is to shoot more than
one ray per pixel.
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Supersampling in Ray Tracing

Supersampling:

@ A pixel is not a point, but a small
square area.

@ Shooting a ray through each pixel
center results in the well-known

jaggies in the image. F‘
@ The solution is to shoot more than

one ray per pixel.

Supersampling:
instead of taking one sample point per pixel, we take many. J
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Supersampling in Ray Tracing

How should we distribute the rays over the pixel :

@ Distributing rays regularly isn’t such a good idea. Small per-pixel
error, but regularity in error across rows and columns. (which
triggers the human visual system.)
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Supersampling in Ray Tracing

How should we distribute the rays over the pixel :

@ Distributing rays regularly isn’t such a good idea. Small per-pixel
error, but regularity in error across rows and columns. (which
triggers the human visual system.)

@ It's better to choose the sample points in a somewhat random
fashion.

@ We want the sample points to be distributed in such a way that the
number of hits is closed to the percentage of covered area.

v
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persampling in Ray Traci

Sample Point Set  Rendered Half-Plane (4x zoom)
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Supersampling in Ray Tracing

Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and the
percentage of the pixel area where that object is visible.
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Supersampling in Ray Tracing

Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and the
percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the pixel.
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Supersampling in Ray Tracing

Discrepancy:

Discrepancy of sample set with respect to object:

The difference between the percentage of hits for an object and the
percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the pixel.

Discrepancy of the sample set:

The maximum discrepancy over all possible ways that an object can
be visible inside the pixel.
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Supersampling in Ray Tracing

How discrepancy can be useful?

Based on the discrepancy of given set of sample points we can decide
if it is good enough: if the discrepancy is low enough we decide to
keep it, and otherwise we generate a new random set.
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Supersampling in Ray Tracing

How discrepancy can be useful?

Based on the discrepancy of given set of sample points we can decide
if it is good enough: if the discrepancy is low enough we decide to
keep it, and otherwise we generate a new random set.

@ For this we need an algorithm that computes the discrepancy of a
given point set.
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Computing the Discrepancy

@ Assume that curved objects
are approximated using 7
polygonal meshes. g

@ So the 2-dimensional objects :
that we must consider are the
projections of the facet of
polyhedra.

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 10/50



Computing the Discrepancy

@ Assume that curved objects
are approximated using 7
polygonal meshes. g

@ So the 2-dimensional objects :
that we must consider are the
projections of the facet of
polyhedra.

@ Most likely, a single pixel intersects a single polygon side which is
like intersecting a half-plane.

@ Therefore we restrict our attention to half-plane discrepancy.
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Computing the Discrepancy

U=1[0:1] x[0:1]: The unit square
(pixel)

H = The (infinite) set of all possible
half-planes (scene)

S = A set of n sample points in U
Continuous measure : u(h) = area of
hnu

Discrete measure :

ps(h) = card(S N h)/card(S)
Discrepancy of hwrt S :

Ag(h) = |u(h) — ps(h)]

Half-plane discrepancy of S :

AH(S) = suppey As(h)
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Computing the Discrepancy

@ We first identify a finit set of condidate half-planes.
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Computing the Discrepancy

@ We first identify a finit set of condidate half-planes.

@ The half-plane of maximum discrepancy must pass through at
least one sample point.

@ Let it pass through exactly one point.

@ The maximum discrepancy must be at a local extremum of the
continuous measure.
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Computing the Discrepancy

@ We first identify a finit set of condidate half-planes.

@ The half-plane of maximum discrepancy must pass through at
least one sample point.

@ Let it pass through exactly one point.

@ The maximum discrepancy must be at a local extremum of the
continuous measure.

@ There are an infinite number of h through each point p, but only
O(1) of them are local extrema.
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Computing the Discrepancy

Let:
@ p = (px,py) be apointin S,
@ Ip(¢) be the line through p that makes
an angle ¢ with the positive x-axis for
0 < ¢ < 2m,
@ hp(¢) be the half-plane initially lying
above Ip(¢).

@ We are interested in the local extrema of the function

¢ = u(hp())-
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Computing the Discrepancy

@ There is a constant number of local extrema per point p € S.
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Computing the Discrepancy

@ There is a constant number of local extrema per point p € S.

@ Thus the total number of condidate half-planes with one point on
their boundary is O(n).
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Computing the Discrepancy

@ There is a constant number of local extrema per point p € S.

@ Thus the total number of condidate half-planes with one point on
their boundary is O(n).

@ Moreover, we can find the extrema and the corresponding
half-planes in O(1) time per point.
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Computing the Discrepancy

Lemma 8.1

Let S be a set of n points in the unit square U. A half-plane h that
achieves the maximum discrepancy with respect to S is of one of the
following types:

(/) h contains one point p € S on its boundary,
(i) h contains two or more points of S on its boundary.

The number of type (/) condicates is O(n), and they can be found in
O(n) time.
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Computing the Discrepancy

@ The number of type (ii) condidates is quadratic.

@ Because the number of type (/) condidates is linear, we treat them
in a brute-force way: for each of the O(n) half-planes we compute
their continuous measure in constant time, and their discrete
measure in O(n) time. This way the muximum of the
discrepancies of this half-planes can be computed in O(n?) time.

@ For the type (ii) candidates we need some new techniques.
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Computing the Discrepancy

Theorem 8.2

The half-plane discrepancy of a set S of n points in the unit square can
be computed in O(n?) time.

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 17 /50



Duality:

@ A point in the plane has two parameters: its x-coordinate and its
y-coordinate.

@ A (non-vertical) line in the plane also has two parameters: its
slope and its intersection with the y-axis.

@ Therefore we can map a set of points to a set of lines, and vice
versa, in a one-to-one manner.
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Duality:

@ A point in the plane has two parameters: its x-coordinate and its
y-coordinate.

@ A (non-vertical) line in the plane also has two parameters: its
slope and its intersection with the y-axis.

@ Therefore we can map a set of points to a set of lines, and vice
versa, in a one-to-one manner.

Duality transform:

One-to-one mapping of a set of points to a set of lines such that
certain properties are preserved.

@ The image of an object under a duality transform is called the dual
of the object.

v
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One possible and simple duality tranform:

@ point p: (px,py) < line p* 1y = pxx — py
@ linel:y=mx+b < point [*: (m,—b)

primal plane dual plane
o 2= (Pe,Dy) o IF=(m,—b)
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One possible and simple duality tranform:

@ point p: (px,py) < line p* 1y = pxx — py
@ linel:y=mx+b < point [*: (m,—b)

Note:
The duality transform is not defined for vertical lines.

primal plane dual plane
o 2= (Pe,Dy) o IF=(m,—b)
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Observation 8.3
Let p be a point in the plane and let / be a non-vertical line in the
plane. The duality transform o — o0* has the following properties.

@ ltis incidence preserving: p € ['if and only if I* € p*.

@ It is order preserving: p lies above / if and only if /* lies above p*.

v

primal plane dual plane
* 3*
¥ ¢ o= y ;
pie 73 P’
P4
P2
x a x
P
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Duality can be applied to other objects, e.g. segments:

@ Let s:= pq be a line segment

primal plane
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Duality can be applied to other objects, e.g. segments:

@ Let s:= pq be a line segment

primal plane

dual plane

@ Dual of a segment is a double wedge.
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Duality can be applied to other objects, e.g. parabola:

@ parabolalf : y = x?/2

@ point p = (px, py) on U
@ derivative of U/ at pis py, i.e., p* has
same slope as tangent line

@ tangent line intersects y-axis at
(Oa _p)2(/2)
@ = p*istangentline at p

@ if g lies directly above or below p,
then g* is the line parallel to p*
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How duality can be useful?

@ If you can solve a problem in the dual plane, you could solved it in
the primal plane as well by mimicking the solution to the dual
problem in the primal problem.

@ Looking at things on the dual plane provides new perspectives.
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Back to the discrepancy problem:

To determine our discrete measure, we need to:
{(p.q)

@ Determine how many sample P

points lie below a given line(in ¢ L
the primal plane). a
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Back to the discrepancy problem:

To determine our discrete measure, we need to:

{{p.g)
q
@ Determine how many sample P
points lie below a given line(in ¢ L
the primal plane). a
Dualizes to:
X

@ Given a point in the dual plane
we want to determine how
many sample lines lie above it.
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Arrangements of Lines

Arrangements:

Arrangement A(L):

Let L be a set of n lines in the plane. L induces a subdivision of the
plane that consists of vertices,edges, and faces.This is called the
arrangement induced by L, denoted A(L).

/ \ Verex
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Arrangements of Lines

Simple arrangment:

An arrangement is called simple if no three lines pass through the
same point and no two lines are parallel.
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Arrangements of Lines

Simple arrangment:

An arrangement is called simple if no three lines pass through the
same point and no two lines are parallel.

Complexity:
The complexity of an arrangement is defined as the total number of
vertices, edges, and faces of the arrangement.
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Arrangements of Lines

Theorem 8.4
Let L be a set of nlines in the plane, and let A(L) be the arrangement
induced by L.
() The number of vertices of A(L) is at most n(n—1)/2.
(ii) The number of edges of A(L) is at most n.
(iii) The number of faces of A(L) is at most n?/2 +n/2 +1.

Equality holds in these three statements if and only if A(L) is simple.
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Arrangements of Lines

Theorem 8.4
Let L be a set of nlines in the plane, and let A(L) be the arrangement
induced by L.
() The number of vertices of A(L) is at most n(n—1)/2.
(ii) The number of edges of A(L) is at most n.
(iii) The number of faces of A(L) is at most n?/2 +n/2 +1.

Equality holds in these three statements if and only if A(L) is simple.

@ Total complexity of an arrangement is O(n?). J
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Arrangements of Lines

Constructing Arrangements:

@ We place a bounding box B(L)
that contains all the vertices of
A(L) in its interior.

@ The subdivision defined by the bounding box plus the part of the
arrangement inside it has bounded edges only and can be stored
in a doubly-connected edge list.
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Arrangements of Lines

Constructing Arrangements:

Goal:
Compute A(L) in bounding box in DCEL representation

@ A plane sweep algorithm would run in O(n? log n) time.
e faster: Incremental algorithm (O(n?))
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Arrangements of Lines

Incremental Algorithm:

@ Compute a bounding box B(L) that
contains all vertices of A(L) in its
iterior and initialize the DCEL.

@ Incrementally add each line /; to Aj_+
and update DCEL.
e Find the edge e on B(L) that
contains the leftmost intersection
point of /; and A;
e Split face bounded by e
@ Move on to next intersected face
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Arrangements of Lines

Incremental Algorithm:

@ Splitting a face f intersected by /;:
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Arrangements of Lines

Incremental Algorithm:

@ Splitting a face f intersected by /;:
o Assume that the face intersected by /; to the left of f has already
been split.
e Find the edge € where /; leaves f and its twin.
Create two new records for new faces f' and " created by /.
e Create a new vertex record for vertex v/ where /; intersects &
(hnée).
o Create two new records for half-edges created by v’.
o Create half-edge record for the edge /i N f.
o Delete records for ¢ and f.

@ Move to face bounded by twin(¢’).
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Arrangements of Lines

Incremental Algorithm:

Algorithm CONSTRUCTARRANGEMENT(L)

Input. A set L of n lines in the plane.

Outpur. The doubly-connected edge list for the subdivision induced by B(L)
and the part of A(L) inside B(L), where B(L) is a bounding box containing
all vertices of A(L) in its interior.

1. Compute a bounding box B(L) that contains all vertices of A(L) in its

interior.

2. Construct the doubly-connected edge list for the subdivision induced by
B(L).

3. fori—1ton

4, do Find the edge e on B(L) that contains the leftmost intersection point

of {; and A;.

5. f — the bounded face incident to e

6. while f is not the unbounded face, that is, the face outside B(L)

7 do Split f, and set f to be the next intersected face.
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Arrangements of Lines

Running time analysis:

@ Step 1, computing B(L), can be done in O(n?) time.

@ Step 2, constructing DCEL for B(L), takes only constant time.

@ Step 4, Finding the first face split by /; takes O(n) time.

@ We now bound the time it takes to split the faces intersected by /;
(step 7).

@ The edges we encounter are on the boundary of faces whose
closure is intersected by /;. This leads us to the concept of zones. )
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Arrangements of Lines

Zones:

Zone of a line /in an arrangement:

The zone of a line / in an arrangement A(L) is the set of faces of A(L)
whose closure intersects /.
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Arrangements of Lines

Zones:

Complexity:

The complexity of a zone is defined as the total complexity of all the
faces it consists of, i.e. the sum of the number of edges and vertices of
these faces.
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Arrangements of Lines

Zones:

Complexity:

The complexity of a zone is defined as the total complexity of all the
faces it consists of, i.e. the sum of the number of edges and vertices of
these faces. )

@ The time we need to insert line /; is linear in the complexity of the
zone of f;in A(h, ..., 1).
@ The Zone Theorem tells us that his quantity is linear.
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Arrangements of Lines

Zone Theorem:

Theorem 8.5 (Zone Theorem)

The complexity of the zone of a line in an arrangement of m lines in the
plane is O(m).
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Arrangements of Lines

Proof of Zone Theorem:

@ Given an arrangement of m lines, A(L), and a line /.

@ Without loss of generality we assume that / coincides with the
X-axis.

@ An edge is a left bounding edge for the face lying to the right of it
and a right bounding edge for the face lying to the left of it.

@ Claim: the number of left bounding edges of the faces in the zone
of /'is at most 5m.(Same for number of right bounding edges)
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Arrangements of Lines

Proof of Zone Theorem:

(/) Assume first that no line of L is horizontal.

Claim: the number of left bounding edges of the faces in the zone of /
is at most 5m.(Same for number of right bounding edges)

@ By induction on m.

@ For m = 1: Trivial. [
(1 left bounding edge < 5)

@ Form>1:
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let /i be the rightmost line intersecting / (assume it’s unique).

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let /i be the rightmost line intersecting / (assume it’s unique).

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.

@ When adding /, the number of
such edges increases:
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let /; be the rightmost line intersecting / (assume it’s unique).

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.

@ When adding /, the number of
such edges increases:
@ One new left bounding edge
on /.
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let /; be the rightmost line intersecting / (assume it’s unique).

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.

@ When adding /, the number of
such edges increases:

@ One new left bounding edge
on /.

e Two old left bounding edges
split by /.
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let /; be the rightmost line intersecting / (assume it’s unique).

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.

@ When adding /, the number of
such edges increases:

@ One new left bounding edge
on /.

e Two old left bounding edges
split by /.

@ Hence, the total number of left
bounding edged in this case is
atmost5(m—1)+3 < 5m.
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Arrangements of Lines

Proof of Zone Theorem:

(2) If exactly two lines intersect / in the rightmost intersection point:

@ Denote these lines by /4 ,b.

@ The zone of in A(L\ /1) has
at most 5(m-1) left bounding
edges.

@ /; has two left bounding edges

@ I is split into two left bounding
edges

@ /; splits two other left bounding
edges

@ Hence, the new zone
complexity is at most
5(m—-1)+5=5m.

v

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 41/50



Arrangements of Lines

Proof of Zone Theorem:

(3) If several lines (> 2) intersect / in the rightmost intersection point:

@ Pick /4 randomly out of these
lines.

@ The zone of in A(L\ /1) has
at most 5(m — 1) left bounding
edges.

@ When adding /i, the number of
such edges increases:

e Two new edges on /. 12
e Two old edges split by /.

@ Hence, the new zone
complexity is at most
5(m—-1)+4<5m.

v
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Arrangements of Lines

Proof of Zone Theorem:

(if) And what if there are horizontal lines?

@ A horizontal line that does’nt
coincide with /, introduces less

complexity into A(L) than a ///

non-horizontal line.

@ If L contains a line /; that W

coincide with /, the addition of
lito A(L\ [;) increases the
number of left bounding edges
by at most4m — 2

@ This concludes the proof of the
Zone Theorem.

v
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Arrangements of Lines

Theorem 8.6

A doubly-connected edge list for the arrangement induced by a set of n
lines in the plane can be constructed in O(n?) time.
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Arrangements of Lines

Run time analysis:

1. 0(n?)
2. constant

3 XL, 0() = 0()

in total O(n?)

(CS Dept. Yazd-U.)

Algorithm CONSTRUCTARRANGE-

MENT(L)

Input. Set L of n lines.
Output. DCEL for A(L) in B(L).

1. Compute bounding box B(L).
2. Construct DCEL for subdivision
induced by B(L).
3. fori+1lton
4. do insert /;.
Arrangements and Duality May 10, 2011
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Back to Discrepancy (Again):

@ For every line between two sample points, we want to determine
how many sample points lie below that line.

@ For every vertex in the dual plane, we want to determine how
many sample lines lie above it.

@ We build the arrangement A(S*) and use that to determine, for
each vertex, how many lines lie above it.
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Levels and Discrepancy

Levels and Discrepancy:

level of a point:

The level of a point in an arrangement of lines is the number of lines
strictly above it.
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Levels and Discrepancy

Levels and Discrepancy:

level of a point:

The level of a point in an arrangement of lines is the number of lines

strictly above it.

levels of vertices
in an arrangement
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Levels and Discrepancy

Computing the Levels:

@ Foreachline /in §*:

o Compute the level of the
leftmost vertex. O(n)

e Walk along / from left to right
to visit the other vertices on
/, using the DCEL. The level
only changes at a vertex,
and the change can be /
computed by inspecting the
edges incident to the vertex
that is encountered.O(1)

level =1

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 48 /50



Levels and Discrepancy

Computing the Levels:

@ Foreachline /in §*:

o Compute the level of the
leftmost vertex. O(n)

e Walk along / from left to right
to visit the other vertices on
/, using the DCEL. The level
only changes at a vertex,
and the change can be /
computed by inspecting the
edges incident to the vertex
that is encountered.O(1)

@ The levels of all vertices of
A(S*) can be computed in
O(n?) time.

level =1
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Levels and Discrepancy

Summary:

Problem regarding points S in ray-tracing

Dualize to a problem of lines L.

Compute arrangement of lines A(L).

Compute level of each vertex in A(L).

Use this to compute discrete measures in primal space.

We can determine how good a distribution of sample points is in
O(n?) time.
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Levels and Discrepancy

END.
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