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Supersampling in Ray Tracing

Ray Tracing:
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Supersampling in Ray Tracing

Ray Tracing:

Rendering the scene:

Generating a 2-dimensional image of a 3-dimensional scene that
amounts to:

determining the visible object at each pixel on the screen,
determining how bright the object is.

Ray tracing:

Determining the visible object at each pixel by shooting a ray from the
view point through each pixel.

Note:
Ray tracing can also determine how bright the object is.
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Supersampling in Ray Tracing

Supersampling:

A pixel is not a point, but a small
square area.
Shooting a ray through each pixel
center results in the well-known
jaggies in the image.
The solution is to shoot more than
one ray per pixel.

Supersampling:

instead of taking one sample point per pixel, we take many.
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Supersampling in Ray Tracing

How should we distribute the rays over the pixel :

Distributing rays regularly isn’t such a good idea. Small per-pixel
error, but regularity in error across rows and columns. (which
triggers the human visual system.)
It’s better to choose the sample points in a somewhat random
fashion.
We want the sample points to be distributed in such a way that the
number of hits is closed to the percentage of covered area.
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Supersampling in Ray Tracing
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Supersampling in Ray Tracing

Discrepancy:

Discrepancy of sample set with respect to object:
The difference between the percentage of hits for an object and the
percentage of the pixel area where that object is visible.

Note:
we don’t know in advance which objects will be visible in the pixel.

Discrepancy of the sample set:
The maximum discrepancy over all possible ways that an object can
be visible inside the pixel.
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Supersampling in Ray Tracing

How discrepancy can be useful?
Based on the discrepancy of given set of sample points we can decide
if it is good enough: if the discrepancy is low enough we decide to
keep it, and otherwise we generate a new random set.

For this we need an algorithm that computes the discrepancy of a
given point set.
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Computing the Discrepancy

Assume that curved objects
are approximated using
polygonal meshes.
So the 2-dimensional objects
that we must consider are the
projections of the facet of
polyhedra.

Most likely, a single pixel intersects a single polygon side which is
like intersecting a half-plane.
Therefore we restrict our attention to half-plane discrepancy.
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Computing the Discrepancy

U = [0 : 1]× [0 : 1] : The unit square
(pixel)
H = The (infinite) set of all possible
half-planes (scene)
S = A set of n sample points in U
Continuous measure : µ(h) = area of
h ∩ U
Discrete measure :
µS(h) = card(S ∩ h)/card(S)

Discrepancy of h wrt S :
∆S(h) = |µ(h)− µS(h)|
Half-plane discrepancy of S :
∆H(S) = suph∈H ∆S(h)
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Computing the Discrepancy

We first identify a finit set of condidate half-planes.

The half-plane of maximum discrepancy must pass through at
least one sample point.

Let it pass through exactly one point.

The maximum discrepancy must be at a local extremum of the
continuous measure.

There are an infinite number of h through each point p, but only
O(1) of them are local extrema.
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Computing the Discrepancy

Let:
p := (px ,py ) be a point in S,
lp(φ) be the line through p that makes
an angle φ with the positive x-axis for
0 ≤ φ < 2π,
hp(φ) be the half-plane initially lying
above lp(φ).

We are interested in the local extrema of the function
φ→ µ(hp(φ)).
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Computing the Discrepancy

There is a constant number of local extrema per point p ∈ S.

Thus the total number of condidate half-planes with one point on
their boundary is O(n).

Moreover, we can find the extrema and the corresponding
half-planes in O(1) time per point.
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Computing the Discrepancy

Lemma 8.1
Let S be a set of n points in the unit square U. A half-plane h that
achieves the maximum discrepancy with respect to S is of one of the
following types:

(i) h contains one point p ∈ S on its boundary,
(ii) h contains two or more points of S on its boundary.

The number of type (i) condicates is O(n), and they can be found in
O(n) time.
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Computing the Discrepancy

The number of type (ii) condidates is quadratic.

Because the number of type (i) condidates is linear, we treat them
in a brute-force way: for each of the O(n) half-planes we compute
their continuous measure in constant time, and their discrete
measure in O(n) time. This way the muximum of the
discrepancies of this half-planes can be computed in O(n2) time.

For the type (ii) candidates we need some new techniques.
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Computing the Discrepancy

Theorem 8.2
The half-plane discrepancy of a set S of n points in the unit square can
be computed in O(n2) time.
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Duality

Duality:

A point in the plane has two parameters: its x-coordinate and its
y-coordinate.
A (non-vertical) line in the plane also has two parameters: its
slope and its intersection with the y-axis.
Therefore we can map a set of points to a set of lines, and vice
versa, in a one-to-one manner.

Duality transform:
One-to-one mapping of a set of points to a set of lines such that
certain properties are preserved.

The image of an object under a duality transform is called the dual
of the object.
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Duality

One possible and simple duality tranform:

point p : (px ,py ) ⇐⇒ line p∗ : y = pxx − py

line l : y = mx + b ⇐⇒ point l∗ : (m,−b)

Note:
The duality transform is not defined for vertical lines.
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Duality

Observation 8.3
Let p be a point in the plane and let l be a non-vertical line in the
plane. The duality transform o 7→ o∗ has the following properties.

It is incidence preserving: p ∈ l if and only if l∗ ∈ p∗.
It is order preserving: p lies above l if and only if l∗ lies above p∗.
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Duality

Duality can be applied to other objects, e.g. segments:

Let s := p̄q be a line segment

Dual of a segment is a double wedge.

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 21 / 50



Duality

Duality can be applied to other objects, e.g. segments:

Let s := p̄q be a line segment

Dual of a segment is a double wedge.

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 21 / 50



Duality

Duality can be applied to other objects, e.g. segments:

Let s := p̄q be a line segment

Dual of a segment is a double wedge.

(CS Dept. Yazd -U.) Arrangements and Duality May 10, 2011 21 / 50



Duality

Duality can be applied to other objects, e.g. parabola:

parabola U : y = x2/2
point p = (px ,py ) on U
derivative of U at p is px , i.e., p∗ has
same slope as tangent line
tangent line intersects y-axis at
(0,−p2

x/2)

⇒ p∗ is tangent line at p
if q lies directly above or below p,
then q∗ is the line parallel to p∗
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Duality

How duality can be useful?

If you can solve a problem in the dual plane, you could solved it in
the primal plane as well by mimicking the solution to the dual
problem in the primal problem.

Looking at things on the dual plane provides new perspectives.
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Duality

Back to the discrepancy problem:

To determine our discrete measure, we need to:

Determine how many sample
points lie below a given line(in
the primal plane).

Dualizes to:

Given a point in the dual plane
we want to determine how
many sample lines lie above it.
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Arrangements of Lines

Arrangements:

Arrangement A(L):

Let L be a set of n lines in the plane. L induces a subdivision of the
plane that consists of vertices,edges, and faces.This is called the
arrangement induced by L, denoted A(L).
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Arrangements of Lines

Simple arrangment:

An arrangement is called simple if no three lines pass through the
same point and no two lines are parallel.

Complexity:
The complexity of an arrangement is defined as the total number of
vertices, edges, and faces of the arrangement.
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Arrangements of Lines

Theorem 8.4
Let L be a set of n lines in the plane, and let A(L) be the arrangement
induced by L.

(i) The number of vertices of A(L) is at most n(n − 1)/2.
(ii) The number of edges of A(L) is at most n2.
(iii) The number of faces of A(L) is at most n2/2 + n/2 + 1.

Equality holds in these three statements if and only if A(L) is simple.

Total complexity of an arrangement is O(n2).
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Arrangements of Lines

Constructing Arrangements:

We place a bounding box B(L)
that contains all the vertices of
A(L) in its interior.

The subdivision defined by the bounding box plus the part of the
arrangement inside it has bounded edges only and can be stored
in a doubly-connected edge list.
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Arrangements of Lines

Constructing Arrangements:

Goal:
Compute A(L) in bounding box in DCEL representation

A plane sweep algorithm would run in O(n2 log n) time.
faster: Incremental algorithm (O(n2))
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Arrangements of Lines

Incremental Algorithm:

Compute a bounding box B(L) that
contains all vertices of A(L) in its
iterior and initialize the DCEL.

Incrementally add each line li to Ai−1
and update DCEL.

Find the edge e on B(L) that
contains the leftmost intersection
point of li and Ai
Split face bounded by e
Move on to next intersected face
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Arrangements of Lines

Incremental Algorithm:

Splitting a face f intersected by li :
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Arrangements of Lines

Incremental Algorithm:

Splitting a face f intersected by li :
Assume that the face intersected by li to the left of f has already
been split.
Find the edge e′ where li leaves f and its twin.
Create two new records for new faces f ′ and f ” created by li .
Create a new vertex record for vertex v ′ where li intersects e′

(li ∩ e′).
Create two new records for half-edges created by v ′.
Create half-edge record for the edge li ∩ f .
Delete records for e′ and f .

Move to face bounded by twin(e′).
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Arrangements of Lines

Incremental Algorithm:
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Arrangements of Lines

Running time analysis:

Step 1, computing B(L), can be done in O(n2) time.
Step 2, constructing DCEL for B(L), takes only constant time.
Step 4, Finding the first face split by li takes O(n) time.
We now bound the time it takes to split the faces intersected by li
(step 7).
The edges we encounter are on the boundary of faces whose
closure is intersected by li . This leads us to the concept of zones.
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Arrangements of Lines

Zones:

Zone of a line l in an arrangement:

The zone of a line l in an arrangement A(L) is the set of faces of A(L)
whose closure intersects l .
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Arrangements of Lines

Zones:

Complexity:
The complexity of a zone is defined as the total complexity of all the
faces it consists of, i.e. the sum of the number of edges and vertices of
these faces.

The time we need to insert line li is linear in the complexity of the
zone of li in A(l1, . . . , li).
The Zone Theorem tells us that his quantity is linear.
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Arrangements of Lines

Zone Theorem:

Theorem 8.5 (Zone Theorem)
The complexity of the zone of a line in an arrangement of m lines in the
plane is O(m).
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Arrangements of Lines

Proof of Zone Theorem:

Given an arrangement of m lines, A(L), and a line l .
Without loss of generality we assume that l coincides with the
x-axis.
An edge is a left bounding edge for the face lying to the right of it
and a right bounding edge for the face lying to the left of it.
Claim: the number of left bounding edges of the faces in the zone
of l is at most 5m.(Same for number of right bounding edges)
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Arrangements of Lines

Proof of Zone Theorem:

(i) Assume first that no line of L is horizontal.

Claim: the number of left bounding edges of the faces in the zone of l
is at most 5m.(Same for number of right bounding edges)

By induction on m.
For m = 1: Trivial.
(1 left bounding edge ≤ 5)
For m > 1:
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Arrangements of Lines

Proof of Zone Theorem:

(1) Let l1 be the rightmost line intersecting l (assume it’s unique).

The zone of l in A(L \ l1) has
at most 5(m − 1) left bounding
edges.
When adding l1, the number of
such edges increases:

One new left bounding edge
on l1.
Two old left bounding edges
split by l1.

Hence, the total number of left
bounding edged in this case is
at most 5(m − 1) + 3 < 5m.
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split by l1.

Hence, the total number of left
bounding edged in this case is
at most 5(m − 1) + 3 < 5m.
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Arrangements of Lines

Proof of Zone Theorem:

(2) If exactly two lines intersect l in the rightmost intersection point:

Denote these lines by l1 ,l2.
The zone of l in A(L \ l1) has
at most 5(m-1) left bounding
edges.
l1 has two left bounding edges
l2 is split into two left bounding
edges
l1 splits two other left bounding
edges
Hence, the new zone
complexity is at most
5(m − 1) + 5 = 5m.
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Arrangements of Lines

Proof of Zone Theorem:

(3) If several lines (> 2) intersect l in the rightmost intersection point:

Pick l1 randomly out of these
lines.
The zone of l in A(L \ l1) has
at most 5(m − 1) left bounding
edges.
When adding l1, the number of
such edges increases:

Two new edges on l1.
Two old edges split by l1.

Hence, the new zone
complexity is at most
5(m − 1) + 4 < 5m.
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Arrangements of Lines

Proof of Zone Theorem:

(ii) And what if there are horizontal lines?

A horizontal line that does’nt
coincide with l , introduces less
complexity into A(L) than a
non-horizontal line.
If L contains a line li that
coincide with l , the addition of
li to A(L \ li) increases the
number of left bounding edges
by at most 4m − 2
This concludes the proof of the
Zone Theorem.
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Arrangements of Lines

Theorem 8.6
A doubly-connected edge list for the arrangement induced by a set of n
lines in the plane can be constructed in O(n2) time.
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Arrangements of Lines
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Levels and Discrepancy

Back to Discrepancy (Again):

For every line between two sample points, we want to determine
how many sample points lie below that line.
For every vertex in the dual plane, we want to determine how
many sample lines lie above it.
We build the arrangement A(S∗) and use that to determine, for
each vertex, how many lines lie above it.
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Levels and Discrepancy

Levels and Discrepancy:

level of a point:
The level of a point in an arrangement of lines is the number of lines
strictly above it.
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Levels and Discrepancy

Computing the Levels:

For each line l in S∗:
Compute the level of the
leftmost vertex. O(n)
Walk along l from left to right
to visit the other vertices on
l , using the DCEL. The level
only changes at a vertex,
and the change can be
computed by inspecting the
edges incident to the vertex
that is encountered.O(1)

The levels of all vertices of
A(S∗) can be computed in
O(n2) time.
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Levels and Discrepancy

Summary:

Problem regarding points S in ray-tracing
Dualize to a problem of lines L.
Compute arrangement of lines A(L).
Compute level of each vertex in A(L).
Use this to compute discrete measures in primal space.
We can determine how good a distribution of sample points is in
O(n2) time.
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Levels and Discrepancy

END.
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