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Preface

This is the third edition of my textbook intended for students who wish to obtain an

introduction to the theory of partial differential equations (PDEs, for short). Why

is there a new edition? The answer is simple: I wanted to improve my book. Over

the years, I have received much positive feedback from readers from all over the

world. Nevertheless, when looking at the book or using it for courses or lectures,

I always find some topics that are important, but not yet contained in the book, or

I see places where the presentation could be improved. In fact, I also found two

errors in Sect. 6.2, and several other corrections have been brought to my attention

by attentive and careful readers.

So, what is new? I have completely reorganized and considerably extended

Chap. 7 on hyperbolic equations. In particular, it now also contains a treatment

of first-order hyperbolic equations. I have written a new Chap. 9 on the relations

between different types of PDEs. I have inserted material on the regularity theory for

semilinear elliptic equations and systems in various places. In particular, there is a

new Sect. 14.3 that shows how to use the Harnack inequality to derive the continuity

of bounded weak solutions of semilinear elliptic equations. Such equations play an

important role in geometric analysis and elsewhere, and I therefore thought that such

an addition should serve a useful purpose. I have also slightly rewritten, reorganized,

or extended most other sections of the book, with additional results inserted here and

there.

But let me now describe the book in a more systematic manner. As an introduc-

tion to the modern theory of PDEs, it does not offer a comprehensive overview of

the whole field of PDEs, but tries to lead the reader to the most important methods

and central results in the case of elliptic PDEs. The guiding question is how one

can find a solution of such a PDE. Such a solution will, of course, depend on given

constraints and, in turn, if the constraints are of the appropriate type, be uniquely

determined by them. We shall pursue a number of strategies for finding a solution

of a PDE; they can be informally characterized as follows:

0. Write down an explicit formula for the solution in terms of the given data

(constraints). This may seem like the best and most natural approach, but this

v



vi Preface

is possible only in rather particular and special cases. Also, such a formula

may be rather complicated, so that it is not very helpful for detecting qualitative

properties of a solution. Therefore, mathematical analysis has developed other,

more powerful, approaches.

1. Solve a sequence of auxiliary problems that approximate the given one and

show that their solutions converge to a solution of that original problem.

Differential equations are posed in spaces of functions, and those spaces are of

infinite dimension. The strength of this strategy lies in carefully choosing finite-

dimensional approximating problems that can be solved explicitly or numerically

and that still share important crucial features with the original problem. Those

features will allow us to control their solutions and to show their convergence.

2. Start anywhere, with the required constraints satisfied, and let things flow

towards a solution. This is the diffusion method. It depends on characterizing a

solution of the PDE under consideration as an asymptotic equilibrium state for a

diffusion process. That diffusion process itself follows a PDE, with an additional

independent variable. Thus, we are solving a PDE that is more complicated than

the original one. The advantage lies in the fact that we can simply start anywhere

and let the PDE control the evolution.

3. Solve an optimization problem and identify an optimal state as a solution of the

PDE. This is a powerful method for a large class of elliptic PDEs, namely, for

those that characterize the optima of variational problems. In fact, in applications

in physics, engineering, or economics, most PDEs arise from such optimization

problems. The method depends on two principles. First, one can demonstrate

the existence of an optimal state for a variational problem under rather general

conditions. Second, the optimality of a state is a powerful property that entails

many detailed features: If the state is not very good at every point, it could be

improved and therefore could not be optimal.

4. Connect what you want to know to what you know already. This is the continuity

method. The idea is that if you can connect your given problem continuously with

another, simpler, problem that you can already solve, then you can also solve the

former. Of course, the continuation of solutions requires careful control.

The various existence schemes will lead us to another, more technical, but equally

important, question, namely, the one about the regularity of solutions of PDEs. If one

writes down a differential equation for some function, then one might be inclined to

assume explicitly or implicitly that a solution satisfies appropriate differentiability

properties so that the equation is meaningful. The problem, however, with many of

the existence schemes described above is that they often only yield a solution in

some function space that is so large that it also contains nonsmooth and perhaps

even noncontinuous functions. The notion of a solution thus has to be interpreted in

some generalized sense. It is the task of regularity theory to show that the equation

in question forces a generalized solution to be smooth after all, thus closing the

circle. This will be the second guiding problem of this book.

The existence and the regularity questions are often closely intertwined. Reg-

ularity is often demonstrated by deriving explicit estimates in terms of the given
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constraints that any solution has to satisfy, and these estimates in turn can be used

for compactness arguments in existence schemes. Such estimates can also often be

used to show the uniqueness of solutions, and, of course, the problem of uniqueness

is also fundamental in the theory of PDEs.

After this informal discussion, let us now describe the contents of this book in

more specific detail.

Our starting point is the Laplace equation, whose solutions are the harmonic

functions. The field of elliptic PDEs is then naturally explored as a generalization

of the Laplace equation, and we emphasize various aspects on the way. We shall

develop a multitude of different approaches, which in turn will also shed new light

on our initial Laplace equation. One of the important approaches is the heat equation

method, where solutions of elliptic PDEs are obtained as asymptotic equilibria of

parabolic PDEs. In this sense, one chapter treats the heat equation, so that the present

textbook definitely is not confined to elliptic equations only. We shall also treat

the wave equation as the prototype of a hyperbolic PDE and discuss its relation to

the Laplace and heat equations. In general, the behavior of solutions of hyperbolic

differential equations can be rather different from that of elliptic and parabolic

equations, and we shall use first-order hyperbolic equations to exhibit some typical

phenomena. In the context of the heat equation, another chapter develops the theory

of semigroups and explains the connection with Brownian motion. There exist

many connections between different types of differential equations. For instance,

the density function of a system of ordinary differential equations satisfies a first-

order hyperbolic equation. Such equations can be studied by semigroup theory, or

one can add a small regularizing elliptic term to obtain a so-called viscosity solution.

Other methods for obtaining the existence of solutions of elliptic PDEs, like the

difference method, which is important for the numerical construction of solutions,

the Perron method; and the alternating method of H.A. Schwarz are based on the

maximum principle. We shall present several versions of the maximum principle

that are also relevant to applications to nonlinear PDEs.

In any case, it is an important guiding principle of this textbook to develop

methods that are also useful for the study of nonlinear equations, as those present

the research perspective of the future. Most of the PDEs occurring in applications in

the sciences, economics, and engineering are of nonlinear types. One should keep in

mind, however, that, because of the multitude of occurring equations and resulting

phenomena, there cannot exist a unified theory of nonlinear (elliptic) PDEs, in

contrast to the linear case. Thus, there are also no universally applicable methods,

and we aim instead at doing justice to this multitude of phenomena by developing

very diverse methods.

Thus, after the maximum principle and the heat equation, we shall encounter

variational methods, whose idea is represented by the so-called Dirichlet principle.

For that purpose, we shall also develop the theory of Sobolev spaces, including

fundamental embedding theorems of Sobolev, Morrey, and John–Nirenberg. With

the help of such results, one can show the smoothness of the so-called weak

solutions obtained by the variational approach. We also treat the regularity theory of

the so-called strong solutions, as well as Schauder’s regularity theory for solutions in



viii Preface

Hölder spaces. In this context, we also explain the continuity method that connects

an equation that one wishes to study in a continuous manner with one that one

understands already and deduces solvability of the former from solvability of the

latter with the help of a priori estimates.

The final chapter develops the Moser iteration technique, which turned out to be

fundamental in the theory of elliptic PDEs. With that technique one can extend many

properties that are classically known for harmonic functions (Harnack inequality,

local regularity, maximum principle) to solutions of a large class of general elliptic

PDEs. The results of Moser will also allow us to prove the fundamental regularity

theorem of de Giorgi and Nash for minimizers of variational problems.

At the end of each chapter, we briefly summarize the main results, occasionally

suppressing the precise assumptions for the sake of saliency of the statements. I

believe that this helps in guiding the reader through an area of mathematics that

does not allow a unified structural approach, but rather derives its fascination from

the multitude and diversity of approaches and methods and consequently encounters

the danger of getting lost in the technical details.

Some words about the logical dependence between the various chapters: Most

chapters are composed in such a manner that only the first sections are necessary

for studying subsequent chapters. The first—rather elementary—chapter, however,

is basic for understanding almost all remaining chapters. Section 3.1 is useful,

although not indispensable, for Chap. 4. Sections 5.1 and 5.2 are important for

Chaps. 7 and 8. Chapter 9, which partly has some survey character, connects various

previous chapters. Sections 10.1–10.4 are fundamental for Chaps. 11 and 14, and

Sect. 11.1 will be employed in Chaps. 12 and 14. With those exceptions, the various

chapters can be read independently. Thus, it is also possible to vary the order in

which the chapters are studied. For example, it would make sense to read Chap. 10

directly after Chap. 2, in order to see the variational aspects of the Laplace equation

(in particular, Sect. 10.1) and also the transformation formula for this equation with

respect to changes of the independent variables. In this way one is naturally led to a

larger class of elliptic equations. In any case, it is usually not very efficient to read

a mathematical textbook linearly, and the reader should rather try first to grasp the

central statements.

This book can be utilized for a one-year course on PDEs, and if time does not

allow all the material to be covered, one could omit certain sections and chapters,

for example, Sect. 4.3 and the first part of Sect. 4.4 and Chap. 12. Also, Chap. 9 will

not be needed for the rest of the book. Of course, the lecturer may also decide to

omit Chap. 14 if he or she wishes to keep the treatment at a more elementary level.

This book is based on various graduate courses that I have given at Bochum and

Leipzig. I thank Antje Vandenberg for general logistic support, and of course also

all the people who had helped me with the previous editions. They are listed in

the previous prefaces, but I should repeat my thanks to Lutz Habermann and Knut

Smoczyk here for their help with the first edition.
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Concerning corrections for the present edition, I would like to thank Andreas

Schäfer for a very detailed and carefully compiled list of corrections. Also, I thank

Lei Ni for pointing out that the statement of Lemma 5.3.2 needed a qualification.

Finally, I thank my son Leonardo Jost for a discussion that leads to an improvement

of the presentation in Sect. 11.3. I am also grateful to Tim Healey and his students
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Chapter 1

Introduction: What Are Partial Differential

Equations?

As a first answer to the question, What are PDEs, we would like to give a definition:

Definition 1. A PDE is an equation involving derivatives of an unknown function

uW ˝ ! R, where ˝ is an open subset of Rd , d � 2 (or, more generally, of a

differentiable manifold of dimension d � 2).

Often, one also considers systems of PDEs for vector-valued functions uW ˝ !
RN , or for mappings with values in a differentiable manifold.

The preceding definition, however, is misleading, since in the theory of PDEs

one does not study arbitrary equations but concentrates instead on those equations

that naturally occur in various applications (physics and other sciences, engineering,

economics) or in other mathematical contexts.

Thus, as a second answer to the question posed in the title, we would like to

describe some typical examples of PDEs. We shall need a little bit of notation:

A partial derivative will be denoted by a subscript,

ux i WD @u

@x i
for i D 1; : : : ; d :

In case d D 2, we write x; y in place of x1; x2. Otherwise, x is the vector

x D .x1; : : : ; xd /.

Examples. (1) The Laplace equation

�u WD
d
X

iD1

ux i x i D 0 .� is called the Laplace operator/;

or, more generally, the Poisson equation

�u D f for a given function f W ˝ ! R:

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,
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2 1 Introduction

For example, the real and imaginary parts u and v of a holomorphic function

uW ˝ ! C (˝ � C open) satisfy the Laplace equation. This easily follows

from the Cauchy–Riemann equations:

ux D vy ;

uy D �vx ;
with z D x C iy

implies

uxx C uyy D 0 D vxx C vyy :

The Cauchy–Riemann equations themselves represent a system of PDEs. The

Laplace equation also models many equilibrium states in physics, and the

Poisson equation is important in electrostatics.

(2) The heat equation: Here, one coordinate t is distinguished as the “time”

coordinate, while the remaining coordinates x1; : : : ; xd represent spatial

variables. We consider

u W ˝ � R
C ! R; ˝ open in R

d ; R
C WD ft 2 R W t > 0g;

and pose the equation

ut D �u; where again �u WD
d
X

iD1

uxi xi :

The heat equation models heat and other diffusion processes.

(3) The wave equation: With the same notation as in (2), here we have the equation

ut t D �u:

It models wave and oscillation phenomena.

(4) The Korteweg–de Vries equation

ut � 6uux C uxxx D 0

(notation as in (2), but with only one spatial coordinate x) models the

propagation of waves in shallow waters.

(5) The Monge–Ampère equation

uxxuyy � u2
xy D f;

or in higher dimensions

det .uxi xj /i;j D1;:::;d D f;
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with a given function f , is used for finding surfaces (or hypersurfaces) with

prescribed curvature.

(6) The minimal surface equation

�

1 C u2
y

�

uxx � 2uxuyuxy C
�

1 C u2
x

�

uyy D 0

describes an important class of surfaces in R3.

(7) The Maxwell equations for the electric field strength E D .E1; E2; E3/ and

the magnetic field strength B D .B1; B2; B3/ as functions of

.t; x1; x2; x3/:

div B D 0 .magnetostatic law/;

Bt C curl E D 0 .magnetodynamic law/;

div E D 4�% .electrostatic law; % D charge density/;

Et � curl E D �4�j .electrodynamic law; j D current density/;

where div and curl are the standard differential operators from vector analysis

with respect to the variables .x1; x2; x3/ 2 R
3.

(8) The Navier–Stokes equations for the velocity v.x; t/ and the pressure p.x; t/

of an incompressible fluid of density % and viscosity �:

%v
j
t C %

3
X

iD1

viv
j

xi � ��vj D �pxj for j D 1; 2; 3;

div v D 0

(d D 3, v D .v1; v2; v3/).

(9) The Einstein field equations of the theory of general relativity for the curvature

of the metric (gij / of space-time:

Rij � 1

2
gij R D �Tij for i; j D 0; 1; 2; 3 .the index 0 stands for the

time coordinate t D x0).

Here, � is a constant, Tij is the energy–momentum tensor (considered as

given), while

Rij WD
3
X

kD0

 

@

@xk
� k

ij � @

@xj
� k

ik C
3
X

lD0

�

� k
lk� l

ij � � k
lj � l

ik

�

!

(Ricci curvature)
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with

� k
ij WD1

2

3
X

lD0

gkl

�

@

@xi
gjl C @

@xj
gi l � @

@xl
gij

�

and

.gij / WD.gij /�1 (inverse matrix)

and

R WD
3
X

i;j D0

gij Rij (scalar curvature).

Thus R and Rij are formed from first and second derivatives of the unknown

metric .gij /.

(10) The Schrödinger equation

i„ut D � „2

2m
�u C V.x; u/

(m D mass, V D given potential, uW ˝ ! C) from quantum mechanics is

formally similar to the heat equation, in particular in the case V D 0. The

factor i .D
p

�1/, however, leads to crucial differences.

(11) The plate equation

��u D 0

even contains fourth derivatives of the unknown function.

We have now seen many rather different-looking PDEs, and it may seem hopeless

to try to develop a theory that can treat all these diverse equations. This impression

is essentially correct, and in order to proceed, we want to look for criteria for

classifying PDEs. Here are some possibilities:

(I) Algebraically, i.e., according to the algebraic structure of the equation:

(a) Linear equations, containing the unknown function and its derivatives only

linearly. Examples (1), (2), (3), (7), (11), as well as (10) in the case where

V is a linear function of u.

An important subclass is that of the linear equations with constant

coefficients. The examples just mentioned are of this type; (10), however,
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only if V.x; u/ D v0 � u with constant v0. An example of a linear equation

with nonconstant coefficients is

d
X

i;j D1

@

@xi

�

aij .x/uxj

�

C
d
X

iD1

@

@xi

�

bi.x/u
�

C c.x/u D 0

with nonconstant functions aij , bi , c.

(b) Nonlinear equations.

Important subclasses:

– Quasilinear equations, containing the highest-occurring derivatives of

u linearly. This class contains all our examples with the exception of

(5).

– Semilinear equations, i.e., quasilinear equations in which the term with

the highest-occurring derivatives of u does not depend on u or its lower-

order derivatives. Example (6) is a quasilinear equation that is not

semilinear.

PDEs that are not quasilinear are called fully nonlinear. Example (5) is a fully

nonlinear equation.

Naturally, linear equations are simpler than nonlinear ones. We shall

therefore first study some linear equations.

(II) According to the order of the highest-occurring derivatives: The Cauchy–

Riemann equations and (7) are of first order; (1), (2), (3), (5), (6), (8), (9), (10)

are of second order; (4) is of third order; and (11) is of fourth order. Equations

of higher order rarely occur, and most important PDEs are second-order PDEs.

Consequently, in this textbook we shall almost exclusively study second-order

PDEs.

(III) In particular, for second-order equations the following partial classifications

turns out to be useful:

Let

F .x; u; uxi ; uxi xj / D 0

be a second-order PDE. We write the equation in symmetric form, that is,

replace uxi xj by 1
2
.uxi xj C uxj xi /. We then introduce dummy variables and

study the function

F
�

x; u; pi ; pij

�

:

The equation is called elliptic in ˝ at u.x/ if the matrix

Fpij .x; u.x/; uxi .x/; uxi xj .x//i;j D1;:::;d
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is positive definite for all x 2 ˝ . (If this matrix should happen to be negative

definite, the equation becomes elliptic by replacing F by �F .) Note that this

may depend on the function u. For example, if f .x/ > 0 in (5), the equation is

elliptic for any solution u with uxx > 0. (For verifying ellipticity, one should

write in place of (5)

uxxuyy � uxyuyx � f D 0;

which is equivalent to (5) for a twice continuously differentiable u.) Examples

(1) and (6) are always elliptic.

The equation is called hyperbolic if the above matrix has precisely one

negative and .d �1/ positive eigenvalues (or conversely, depending on a choice

of sign). Example (3) is hyperbolic, and so is (5), if f .x/ < 0, for a solution u

with uxx > 0. Finally, an equation that can be written as

ut D F.t; x; u; uxi ; uxi xj /

with elliptic F is called parabolic. Note, however, that there is no longer a

free sign here, since a negative definite .Fpij / is not allowed. Example (2) is

parabolic. Obviously, this classification does not cover all possible cases, but

it turns out that other types are of minor importance only. Elliptic, hyperbolic,

and parabolic equations require rather different theories, with the parabolic

case being somewhat intermediate between the elliptic and hyperbolic ones,

however.

(IV) According to solvability:We consider a second-order PDE

F .x; u; uxi ; uxi xj / D 0 for u W ˝ ! R;

and we wish to impose additional conditions upon the solution u, typically

prescribing the values of u or of certain first derivatives of u on the boundary

@˝ or part of it.

Ideally, such a boundary value problem satisfies the three conditions of

Hadamard for a well-posed problem:

– Existence of a solution u for given boundary values.

– Uniqueness of this solution.

– Stability, meaning continuous dependence on the boundary values.

The third requirement is important, because in applications, the boundary

data are obtained through measurements and thus are given only up to certain

error margins, and small measurement errors should not change the solution

drastically.

The existence requirement can be made more precise in various senses:

The strongest one would be to ask that the solution be obtained by an explicit

formula in terms of the boundary values. This is possible only in rather

special cases, however, and thus one is usually content if one is able to

deduce the existence of a solution by some abstract reasoning, for example
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by deriving a contradiction from the assumption of nonexistence. For such an

existence procedure, often nonconstructive techniques are employed, and thus

an existence theorem does not necessarily provide a rule for constructing or at

least approximating some solution.

Thus, one might refine the existence requirement by demanding a construc-

tive method with which one can compute an approximation that is as accurate

as desired. This is particularly important for the numerical approximation

of solutions. However, it turns out that it is often easier to treat the two

problems separately, i.e., first deducing an abstract existence theorem and then

utilizing the insights obtained in doing so for a constructive and numerically

stable approximation scheme. Even if the numerical scheme is not rigorously

founded, one might be able to use one’s knowledge about the existence

or nonexistence of a solution for a heuristic estimate of the reliability of

numerical results.

Exercise. Find five more examples of important PDEs in the literature.



Chapter 2

The Laplace Equation as the Prototype

of an Elliptic Partial Differential Equation
of Second Order

2.1 Harmonic Functions: Representation Formula

for the Solution of the Dirichlet Problem on the Ball

(Existence Techniques 0)

In this section ˝ is a bounded domain in Rd for which the divergence theorem

holds; this means that for any vector field V of class C1.˝/ \ C0. N̋ /;

Z

˝

div V.x/dx D
Z

@˝

V.z/ � �.z/do.z/; (2.1.1)

where the dot � denotes the Euclidean product of vectors in Rd , � is the exterior

normal of @˝ , and do.z/ is the volume element of @˝ . Let us recall the definition

of the divergence of a vector field V D .V 1; : : : ; V d / W ˝ ! Rd :

div V.x/ WD
d
X

iD1

@V i

@xi
.x/:

In order that (2.1.1) holds, it is, for example, sufficient that @˝ be of class C 1.

Lemma 2.1.1. Let u; v 2 C 2. N̋ /. Then we have Green’s 1st formula

Z

˝

v.x/�u.x/dx C
Z

˝

ru.x/ � rv.x/dx D
Z

@˝

v.z/
@u

@�
.z/do.z/ (2.1.2)

(here, ru is the gradient of u), and Green’s 2nd formula

Z

˝

fv.x/�u.x/ � u.x/�v.x/g dx D
Z

@˝

�

v.z/
@u

@�
.z/ � u.z/

@v

@�
.z/

�

do.z/:

(2.1.3)

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,

DOI 10.1007/978-1-4614-4809-9 2,

© Springer Science+Business Media New York 2013

9
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Proof. With V.x/ D v.x/ru.x/, (2.1.2) follows from (2.1.1). Interchanging u and

v in (2.1.2) and subtracting the resulting formula from (2.1.2) yield (2.1.3). ut

In the sequel we shall employ the following notation:

B.x; r/ WD
˚

y 2 R
d W jx � yj � r

�

(closed ball)

and

ı

B.x; r/ WD
˚

y 2 R
d W jx � yj < r

�

(open ball)

for r > 0, x 2 R
d.

Definition 2.1.1. A function u 2 C 2.˝/ is called harmonic (in ˝) if

�u D 0 in ˝:

In Definition 2.1.1, ˝ may be an arbitrary open subset of Rd . We begin with the

following simple observation:

Lemma 2.1.2. The harmonic functions in ˝ form a vector space.

Proof. This follows because � is a linear differential operator. ut

Examples of harmonic functions:

1. In Rd , all constant functions and, more generally, all affine linear functions are

harmonic.

2. There also exist harmonic polynomials of higher order, for example,

u.x/ D
�

x1
�2 �

�

x2
�2

for x D
�

x1; : : : ; xd
�

2 R
d.

3. Let h W D ! C be holomorphic for some open D � C; that means that h is

differentiable in D and satisfies

@

@Nzh D 0 with
@

@Nz D 1

2

�

@

@x
C i

@

@y

�

; (2.1.4)

where z D x C iy (with i WD
p

�1 being the imaginary unit) is the coordinate on

C and Nz D x�iy. (Thus, in contrast to our standard notation, we now write .x; y/

in place of .x1; x2/, as this corresponds to the convention usually employed in

complex analysis.) If we decompose h D u C iv into its real and imaginary

parts, (2.1.4) becomes the system of Cauchy–Riemann equations

@u

@x
D @v

@y
;

@u

@y
D � @v

@x
: (2.1.5)
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When u and v are twice differentiable (which, in fact, automatically follows

from (2.1.4) as one of the basic facts of complex analysis (cf., e.g., [1])—see

also Corollary 2.2.1 below), this implies

@2u

@x2
C @2u

@y2
D 0 and

@2v

@x2
C @2v

@y2
D 0; (2.1.6)

i.e., the real and imaginary part of a holomorphic function are harmonic.

Conversely, given a harmonic function u W D ! R, as shown in complex

analysis, one may then solve (2.1.5) for v to obtain a holomorphic function

h D u C iv W D ! C.

When, in analogy to (2.1.4), we also use the notation

@

@z
D 1

2

�

@

@x
� i

@

@y

�

; (2.1.7)

we obtain the decomposition for the Laplace operator on C Š R2

� D @2

@x2
C @2

@y2

D
�

@

@x
� i

@

@y

��

@

@x
C i

@

@y

�

D 4
@

@z

@

@Nz : (2.1.8)

4. For x; y 2 R
d with x ¤ y (be careful: we revert to our original notation, i.e.,

x; y now are vectors again, not scalar components as in the previous example),

we put

� .x; y/ WD � .jx � yj/ WD
(

1
2�

log jx � yj for d D 2;

1
d.2�d/!d

jx � yj2�d for d > 2;
(2.1.9)

where !d is the volume of the d -dimensional unit ball B.0; 1/ � Rd .

We have

@

@xi
� .x; y/ D 1

d!d

�

xi � yi
�

jx � yj�d ;

@2

@xi @xj
� .x; y/ D 1

d!d

n

jx � yj2 ıij � d
�

xi � yi
� �

xj � yj
�

o

jx � yj�d�2 :
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Thus, as a function of x, � is harmonic in Rd n fyg. Since � is symmetric in x

and y, it is then also harmonic as a function of y in Rd n fxg. The reason for the

choice of the constants employed in (2.1.9) will become apparent after (2.1.13)

below.

Definition 2.1.2. � from (2.1.9) is called the fundamental solution of the Laplace

equation.

What is the reason for this particular solution � of the Laplace equation in Rd n
fyg? The answer comes from the rotational symmetry of the Laplace operator. The

equation

�u D 0

is invariant under rotations about an arbitrary center y. (If A 2 O.d/ (orthogonal

group) and y 2 Rd , then for a harmonic u.x/, u.A.x�y/Cy/ is likewise harmonic.)

Because of this invariance of the operator, one then also searches for invariant

solutions, i.e., solutions of the form

u.x/ D '.r/ with r D jx � yj :

The Laplace equation then is transformed into the following equation for ' as a

function of r , with 0 denoting a derivative with respect to r ,

' 0 0 .r/ C d � 1

r
' 0 .r/ D 0:

Solutions have to satisfy

' 0 .r/ D cr1�d

with constant c. Fixing this constant plus one further additive constant leads to the

fundamental solution � .r/.

Theorem 2.1.1 (Green representation formula). If u 2 C 2. N̋ /, we have for

y 2 ˝ ,

u.y/ D
Z

@˝

�

u.x/
@�

@�x

.x; y/ � � .x; y/
@u

@�
.x/

�

do.x/ C
Z

˝

� .x; y/�u.x/dx

(2.1.10)

(here, the symbol @
@�x

indicates that the derivative is to be taken in the direction of

the exterior normal with respect to the variable x).

Proof. For sufficiently small " > 0,

B.y; "/ � ˝;

since ˝ is open. We apply (2.1.3) for v.x/ D � .x; y/ and ˝ n B.y; "/ (in place of

˝). Since � is harmonic in ˝ n fyg, we obtain



2.1 Existence Techniques 0 13

Z

˝ n B.y;"/

� .x; y/�u.x/dx D
Z

@˝

�

� .x; y/
@u

@�
.x/ � u.x/

@� .x; y/

@�x

�

do.x/

C
Z

@B.y;"/

�

� .x; y/
@u

@�
.x/ � u.x/

@� .x; y/

@�x

�

do.x/:

(2.1.11)

In the second boundary integral, � denotes the exterior normal of ˝ nB.y; "/, hence

the interior normal of B.y; "/.

We now wish to evaluate the limits of the individual integrals in this formula for

" ! 0. Since u 2 C 2. N̋ /, �u is bounded. Since � is integrable, the left-hand side

of (2.1.11) thus tends to

Z

˝

� .x; y/�u.x/dx:

On @B.y; "/, we have � .x; y/ D � ."/. Thus, for " ! 0,

ˇ

ˇ

ˇ

ˇ

Z

@B.y;"/

� .x; y/
@u

@�
.x/do.x/

ˇ

ˇ

ˇ

ˇ

� d!d "d�1� ."/ sup
B.y;"/

jruj ! 0:

Furthermore,

�
Z

@B.y;"/

u.x/
@� .x; y/

@�x

do.x/ D @

@"
� ."/

Z

@B.y;"/

u.x/do.x/

.since � is the interior normal of B.y; "//

D 1

d!d "d�1

Z

@B.y;"/

u.x/do.x/ ! u.y/:

Altogether, we get (2.1.10). ut

Remark. Applying the Green representation formula for a so-called test function

' 2 C 1
0 .˝/,1 we obtain

'.y/ D
Z

˝

� .x; y/�'.x/dx: (2.1.12)

This can be written symbolically as

�x� .x; y/ D ıy; (2.1.13)

where �x is the Laplace operator with respect to x and ıy is the Dirac delta

distribution, meaning that for ' 2 C 1
0 .˝/,

ıyŒ'� WD '.y/:

1 C 1
0 .˝/ WD ff 2 C 1.˝/, supp.f / WD fx W f .x/ ¤ 0g is a compact subset of ˝g.
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In the same manner, �� . � ; y/ is defined as a distribution, i.e.,

�� . � ; y/Œ'� WD
Z

˝

� .x; y/�'.x/dx:

Equation (2.1.13) explains the terminology “fundamental solution” for � , as well

as the choice of constant in its definition.

Remark. By definition, a distribution is a linear functional ` on C 1
0 that is

continuous in the following sense:

Suppose that .'n/n2 N � C 1
0 .˝/ satisfies 'n D 0 on ˝ nK for all n and some fixed

compact K � ˝ as well as limn! 1 D˛'n.x/ D 0 uniformly in x for all partial

derivatives D˛ (of arbitrary order). Then

lim
n! 1

`Œ'n� D 0

must hold.

We may draw the following consequence from the Green representation formula:

If one knows �u, then u is completely determined by its values and those of

its normal derivative on @˝ . In particular, a harmonic function on ˝ can be

reconstructed from its boundary data. One may then ask conversely whether one

can construct a harmonic function for arbitrary given values on @˝ for the function

and its normal derivative. Even ignoring the issue that one might have to impose

certain regularity conditions like continuity on such data, we shall find that this is

not possible in general, but that one can prescribe essentially only one of these two

data. In any case, the divergence theorem (2.1.1) for V.x/ D ru.x/ implies that

because of � D div grad, a harmonic u has to satisfy

Z

@˝

@u

@�
do.x/ D

Z

˝

�u.x/dx D 0; (2.1.14)

so that the normal derivative cannot be prescribed completely arbitrarily.

Definition 2.1.3. A function G.x; y/, defined for x; y 2 N̋ , x ¤ y, is called a

Green function for ˝ if:

1. G.x; y/ D 0 for x 2 @˝ .

2. h.x; y/ WD G.x; y/ � � .x; y/ is harmonic in x 2 ˝ (thus in particular also at

the point x D y).

We now assume that a Green function G.x; y/ for ˝ exists (which indeed is true

for all ˝ under consideration here) and put v.x/ D h.x; y/ in (2.1.3) and subtract

the result from (2.1.10), obtaining

u.y/ D
Z

@˝

u.x/
@G.x; y/

@�x

do.x/ C
Z

˝

G.x; y/�u.x/dx: (2.1.15)
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Equation (2.1.15) in particular implies that a harmonic u is already determined by

its boundary values uj @˝ .

This construction now raises the converse question: If we are given functions

' W @˝ ! R, f W ˝ ! R, can we obtain a solution of the Dirichlet problem for

the Poisson equation

�u.x/ D f .x/ for x 2 ˝;

u.x/ D '.x/ for x 2 @˝;
(2.1.16)

by the representation formula

u.y/ D
Z

@˝

'.x/
@G.x; y/

@�x

do.x/ C
Z

˝

f .x/G.x; y/dx‹ (2.1.17)

After all, if u is a solution, it does satisfy this formula by (2.1.15).

Essentially, the answer is yes; to make it really work, however, we need to impose

some conditions on ' and f . A natural condition should be the requirement that

they be continuous. For ', this condition turns out to be sufficient, provided that

the boundary of ˝ satisfies some mild regularity requirements. If ˝ is a ball, we

shall verify this in Theorem 2.1.2 for the case f D 0, i.e., the Dirichlet problem

for harmonic functions. For f, the situation is slightly more subtle. It turns out

that even if f is continuous, the function u defined by (2.1.17) need not be twice

differentiable, and so one has to exercise some care in assigning a meaning to the

equation �u D f . We shall return to this issue in Sects. 12.1 and 13.1 below. In

particular, we shall show that if we require a little more about f , namely, that it

be Hölder continuous, then the function u given by (2.1.17) is twice continuously

differentiable and satisfies

�u D f:

Analogously, if H.x; y/ for x; y 2 N̋ , x ¤ y is defined with2

@

@�x

H.x; y/ D 1

k@˝k for x 2 @˝

and a harmonic difference H.x; y/ � � .x; y/ as before, we obtain

u.y/ D 1

k@˝k

Z

@˝

u.x/do.x/ �
Z

@˝

H.x; y/
@u

@�
.x/do.x/

C
Z

˝

H.x; y/�u.x/dx: (2.1.18)

2Here, k @˝ k denotes the measure of the boundary @˝ of ˝; it is given as
R

@˝ do.x/.
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If now u1 and u2 are two harmonic functions with

@u1

@�
D @u2

@�
on @˝;

applying (2.1.18) to the difference u D u1 � u2 yields

u1.y/ � u2.y/ D 1

k@˝k

Z

@˝

.u1.x/ � u2.x// do.x/: (2.1.19)

Since the right-hand side of (2.1.19) is independent of y, u1 � u2 must be constant

in ˝ . In other words, a solution of the Neumann boundary value problem

�u.x/ D 0 for x 2 ˝;

@u

@�
D g.x/ for x 2 @˝

(2.1.20)

is determined only up to a constant, and, conversely, by (2.1.14), a necessary

condition for the existence of a solution is

Z

@˝

g.x/do.x/ D 0: (2.1.21)

Boundary conditions tend to make the theory of PDEs difficult. Actually, in many

contexts, the Neumann condition is more natural and easier to handle than the

Dirichlet condition, even though we mainly study Dirichlet boundary conditions

in this book as those occur more frequently. There is in fact another, even easier,

boundary condition, which actually is not a boundary condition at all, the so-called

periodic boundary condition. This means the following. We consider a domain of

the form ˝ D .0; L1/ � � � � � .0; Ld / � Rd and require for u W N̋ ! R that

u.x1; : : : ; xi�1; Li ; xiC1; : : : ; xd / D u.x1; : : : ; xi�1; 0; xiC1; : : : ; xd / (2.1.22)

for all x D .x1; : : : ; xd / 2 ˝; i D 1; : : : ; d . This means that u can be periodically

extended from ˝ to all of Rd . A reader familiar with basic geometric concepts will

view such a u as a function on the torus obtained by identifying opposite sides in

˝ . More generally, one may then consider solutions of PDEs on compact manifolds.

Anyway, we now turn to the Dirichlet problem on a ball. As a preparation, we

compute the Green function G for such a ball B.0; R/. For y 2 Rd , we put

Ny WD

8

<

:

R2

jyj2
y for y ¤ 0;

1 for y D 0:
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( Ny is the point obtained from y by reflection across @B.0; R/.) We then put

G.x; y/ WD

8

<

:

� .jx � yj/ � �
�

jyj
R

jx � Nyj
�

for y ¤ 0;

� .jxj/ � � .R/ for y D 0:
(2.1.23)

For x ¤ y, G.x; y/ is harmonic in x, since for y 2
ı

B.0; R/, the point Ny lies in

the exterior of B.0; R/. The function G.x; y/ has only one singularity in B.0; R/,

namely, at x D y, and this singularity is the same as that of � .x; y/. The formula

G.x; y/ D �

 

�

jxj2 C jyj2 � 2x � y
�

1=2

!

� �

0

B

@

 

jxj2 jyj2

R2
C R2 � 2x � y

!

1=2

1

C

A

(2.1.24)

then shows that for x 2 @B.0; R/, i.e., jxj D R, we have indeed

G.x; y/ D 0:

Therefore, the function G.x; y/ defined by (2.1.23) is the Green function of B.0; R/.

Equation (2.1.24) also implies the symmetry

G.x; y/ D G.y; x/: (2.1.25)

Furthermore, since � .jx � yj/ is monotonic in jx � yj, we conclude from (2.1.24)

that

G.x; y/ � 0 for x; y 2 B.0; R/: (2.1.26)

Since for x 2 @B.0; R/,

jxj2 C jyj2 � 2x � y D jxj2 jyj2

R2
C R2 � 2x � y;

(2.1.24) furthermore implies for x 2 @B.0; R/ that

@

@�x

G.x; y/ D @

@ jxj
G.x; y/ D 1

d!d

jxj
jx � yjd

� 1

d!d

jxj
jx � yjd

jyj2

R2

D R2 � jyj2

d!d R

1

jx � yjd
:

Inserting this result into (2.1.15), we obtain a representation formula for a harmonic

u 2 C 2.B.0; R// in terms of its boundary values on @B.0; R/:

u.y/ D R2 � jyj2

d!d R

Z

@B.0;R/

u.x/

jx � yjd
do.x/: (2.1.27)
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The regularity condition here can be weakened; in fact, we have the following

theorem:

Theorem 2.1.2. (Poisson representation formula; solution of the Dirichlet prob-

lem on the ball): Let ' W @B.0; R/ ! R be continuous. Then u, defined by

u.y/ WD

8

<

:

R2�jyj2

d!d R

R

@B.0;R/
'.x/

jx�yjd
do.x/ for y 2

ı

B.0; R/;

'.y/ for y 2 @B.0; R/;
(2.1.28)

is harmonic in the open ball
ı

B.0; R/ and continuous in the closed ball B.0; R/.

Proof. Since G is harmonic in y, so is the kernel of the Poisson representation

formula

K.x; y/ WD @G

@�x

.x; y/ D R2 � jyj2

d!d R
jx � yj�d :

Thus u is harmonic as well.

It remains only to show continuity of u on @B.0; R/. We first insert the harmonic

function u � 1 in (2.1.27), yielding

Z

@B.0;R/

K.x; y/do.x/ D 1 for all y 2
ı

B.0; R/: (2.1.29)

We now consider y0 2 @B.0; R/. Since ' is continuous, for every " > 0 there exists

ı > 0 with

j'.x/ � '.y0/j <
"

2
for jx � y0j < 2ı: (2.1.30)

With

� WD sup
y2@B.0;R/

j'.y/j ;

by (2.1.28) and (2.1.29) we have for jy � y0j < ı that

ˇ

ˇ

ˇ
u.y/ � u.y0/

ˇ

ˇ

ˇ
D
ˇ

ˇ

ˇ

ˇ

Z

@B.0;R/

K.x; y/ .'.x/ � '.y0// do.x/

ˇ

ˇ

ˇ

ˇ

�
Z

jx�y0j�2ı

K.x; y/ j'.x/ � '.y0/j do.x/

C
Z

jx�y0j>2ı

K.x; y/ j'.x/ � '.y0/j do.x/

� "

2
C 2�

�

R2 � jyj2
�

Rd�2ı�d : (2.1.31)
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For estimating the second integral, note that because of jy � y0j < ı, for

jx � y0j > 2ı also jx � yj � ı. Having chosen ", we have fixed ı. Then, for

showing continuity, we may assume that y is sufficiently close to y0. Thus, since

jy0j D R, for sufficiently small jy � y0j, then also the second term on the right-hand

side of (2.1.31) becomes smaller than "=2, and we see that u is continuous at y0. ut

Corollary 2.1.1. For ' 2 C 0.@B.0; R//, there exists a unique solution u 2 C 2

.
ı

B.0; R// \ C 0.B.0; R// of the Dirichlet problem

�u.x/ D 0 for x 2
ı

B.0; R/;

u.x/ D '.x/ for x 2 @B.0; R/:

Proof. Theorem 2.1.2 shows the existence. Uniqueness follows from (2.1.15);

however, in (2.1.15) we have assumed u 2 C 2.B.0; R//, while more generally, here

we consider continuous boundary values. This difficulty is easily overcome: Since u

is harmonic in
ı

B.0; R/, it is of class C 2 in
ı

B.0; R/, for example, by Corollary 2.1.2

below. Consequently, for jyj < r < R, applying (2.1.27) with r in place of R,

we get

u.y/ D r2 � jyj2

d!d r

Z

@B.0;r/

u.x/

jx � yjd
do.x/;

and since u is continuous in B.0; R/, we may let r tend to R in order to get the

representation formula in its full generality. ut

Corollary 2.1.2. Any harmonic function u W ˝ ! R is real analytic in ˝ .

Proof. Let z 2 ˝ and choose R such that B.z; R/ � ˝ . Then by (2.1.27), for

y 2
ı

B.z; R/,

u.y/ D R2 � jy � zj2

d!d R

Z

@B.z;R/

u.x/

jx � yjd
do.x/;

which is a real analytic function of y 2
ı

B.z; R/. ut

2.2 Mean Value Properties of Harmonic Functions.

Subharmonic Functions. The Maximum Principle

Theorem 2.2.1 (Mean value formulae). A continuous or, more generally, a

measurable and locally integrable u W ˝ ! R is harmonic if and only if for any

ball B.x0; r/ � ˝ ,

u.x0/ D S.u; x0; r/ WD 1

d!d rd�1

Z

@B.x0;r/

u.x/do.x/ (spherical mean), (2.2.1)
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or equivalently, if for any such ball,

u.x0/ D K.u; x0; r/ WD 1

!d rd

Z

B.x0;r/

u.x/dx (ball mean). (2.2.2)

Proof. “)”:

Let u be harmonic. (By definition, u then is twice differentiable, hence continuous,

but see Corollary 2.2.1 below on this point.) Then (2.2.1) follows from Poisson’s

formula (2.1.27) (since we have written (2.1.27) only for the ball B.0; R/, take the

harmonic function v.x/ WD u.x C x0/ and apply the formula at the point x D 0).

Alternatively, we may prove (2.2.1) from the following observation:

Let u 2 C 2.
ı

B.y; r//, 0 < % < r . Then by (2.1.1)

Z

B.y;%/

�u.x/dx D
Z

@B.y;%/

@u

@�
.x/do.x/

D
Z

@B.0;1/

@u

@%
.y C %!/%d�1d!

in polar coordinates ! D x � y

%

D %d�1 @

@%

Z

@B.0;1/

u.y C %!/d!

D %d�1 @

@%

�

%1�d

Z

@B.y;%/

u.x/do.x/

�

D d!d %d�1 @

@%
S.u; y; %/: (2.2.3)

If u is harmonic, this yields @
@%

S.u; y; %/ D 0, and so S.u; y; %/ is constant in �.

Because of

u.y/ D lim
%!0

S.u; y; %/; (2.2.4)

for a continuous u this implies the spherical mean value property. Because of

K.u; x0; r/ D d

rd

Z r

0

S.u; x0; %/%d�1d%; (2.2.5)

we also get (2.2.2) if (2.2.1) holds for all radii % with B.x0; %/ � ˝ .

“(”:

We point out that in the argument to follow, we do not need the continuity of u; it

suffices that u be measurable and locally integrable.

We have just seen that the spherical mean value property implies the ball mean

value property. The converse also holds:
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If K.u; x0; r/ is constant as a function of r , i.e., by (2.2.5)

0 D @

@r
K.u; x0; r/ D d

r
S.u; x0; r/ � d

r
K.u; x0; r/;

then S.u; x0; r/ is likewise constant in r , and by (2.2.4) it thus always has to equal

u.x0/.

Suppose now (2.2.1) for B.x0; r/ � ˝ . We want to show first that u then has to

be smooth. For this purpose, we use the following general construction:

Put

%.t/ WD
(

cd exp
�

1
t2�1

�

if 0 � t < 1;

0 otherwise,

where the constant cd is chosen such that
Z

Rd

%.jxj/dx D 1:

The reader should note that %.jxj/ is infinitely differentiable with respect to x. For

f 2 L1.˝/, B.y; r/ � ˝ , we consider the so-called mollification

fr .y/ WD 1

rd

Z

˝

%

� jy � xj
r

�

f .x/dx: (2.2.6)

Then fr is infinitely differentiable with respect to y.

If now (2.2.1) holds, we have

ur.y/ D 1

rd

Z r

0

Z

@B.y;s/

%
� s

r

�

u.x/do.x/ds

D 1

rd

Z r

0

%
� s

r

�

d!d sd�1S.u; y; s/ds

D u.y/

Z 1

0

%.�/d!d �d�1d�

D u.y/

Z

B.0;1/

% .jxj/ dx

D u.y/:

Thus a function satisfying the mean value property also satisfies

ur.x/ D u.x/; provided that B.x; r/ � ˝:

Thus, with ur also u is infinitely differentiable. We may thus again consider (2.2.3),

i.e.,
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Z

B.y;%/

�u.x/dx D d!d %d�1 @

@%
S.u; y; %/: (2.2.7)

If (2.2.7) holds, then S.u; x0; %/ is constant in %, and therefore, the right-hand side

of (2.2.7) vanishes for all y and % with B.y; %/ � ˝ . Thus, also

�u.y/ D 0

for all y 2 ˝ , and u is harmonic. ut

With this observation, we easily obtain the following corollary:

Corollary 2.2.1 (Weyl’s lemma). Let u W ˝ ! R be measurable and locally

integrable in ˝ . Suppose that for all ' 2 C 1
0 .˝/,

Z

˝

u.x/�'.x/dx D 0:

Then u is harmonic and, in particular, smooth.

Proof. We again consider the mollifications

ur.x/ D 1

rd

Z

˝

%

� jy � xj
r

�

u.y/dy:

For ' 2 C 1
0 and r < dist.supp.'/; @˝/, we obtain

Z

˝

ur .x/�'.x/dx D
Z

˝

1

rd

Z

˝

%

� jy � xj
r

�

u.y/dy�'.x/dx

D
Z

˝

u.y/�'r.y/dy

exchanging the integrals and observing that .�'/r D �.'r/,
so that the Laplace operator commutes with the mollification

D 0;

since by our assumption for r also 'r 2 C 1
0 .˝/.

Since ur is smooth, this also implies

Z

˝

�ur .x/'.x/dx D 0 for all ' 2 C 1
0 .˝r /;

with ˝r WD fx 2 ˝ W dist.x; @˝/ > rg.

Hence,

�ur D 0 in ˝r :

Thus, ur is harmonic in ˝r .
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We consider R > 0 and 0 < r � 1
2
R. Then ur satisfies the mean value property

on any ball with center in ˝r and radius � 1
2
R. Since

Z

˝r

jur.y/j dy �
Z

˝r

1

rd

Z

˝

%

� jx � yj
r

�

ju.x/j dx dy

�
Z

˝

ju.x/j dx

obtained by exchanging the integrals and using
R

Rd
1

rd %
�

jx�yj
r

�

dy D 1, the ur have

uniformly bounded norms in L1.˝/, if u 2 L1.˝/. If u is only locally integrable,

the preceding reasoning has to be applied locally in ˝ , in order to get the local

uniform integrability of the ur . Since this is easily done, we assume for simplicity

u 2 L1.˝/.

Since the ur satisfy the mean value property on balls of radius 1
2
R, this implies

that they are also uniformly bounded (keeping R fixed and letting r tend to 0).

Furthermore, because of

jur.x1/ � ur.x2/j � 1

!d

�

2

R

�d Z

B.x1;R=2/nB.x2;R=2/

[B.x2;R=2/nB.x1;R=2/

jur .x/j dx

� 1

!d

�

2

R

�d

sup jur j 2Vol .B.x1; R=2/ n B.x2; R=2// ;

the ur are also equicontinuous. Thus, by the Arzela–Ascoli theorem, for r ! 0, a

subsequence of the ur converges uniformly towards some continuous function v. We

must have u D v, because u is (locally) in L1.˝/, and so for almost all x 2 ˝ , u.x/

is the limit of ur.x/ for r ! 0 (cf. Lemma A.3). Thus, u is continuous, and since

all the ur satisfy the mean value property, so does u. Theorem 2.2.1 now implies the

claim. ut

Definition 2.2.1. Let v W ˝ ! Œ�1; 1/ be upper semicontinuous, but not

identically �1. Such a v is called subharmonic if for every subdomain ˝ 0 �� ˝

and every harmonic function u W ˝ 0 ! R (we assume u 2 C 0. N̋ 0/) with

v � u on @˝ 0;

we have

v � u on ˝ 0:

A function w W ˝ ! .�1; 1�, lower semicontinuous, w 6� 1, is called

superharmonic if �w is subharmonic.
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Theorem 2.2.2. A function v W ˝ ! Œ�1; 1/ (upper semicontinuous, 6� �1) is

subharmonic if and only if for every ball B.x0; r/ � ˝ ,

v.x0/ � S.v; x0; r/; (2.2.8)

or, equivalently, if for every such ball

v.x0/ � K.v; x0; r/: (2.2.9)

Proof. “)”

Since v is upper semicontinuous, there exists a monotonically decreasing sequence

.vn/n2N of continuous functions with v D limn2N vn. By Theorem 2.1.2, for every

vn, there exists a harmonic

un W B.x0; r/ ! R

with

unj@B.x0;r/ D vnj@B.x0;r/

�

� vj@B.x0;r/

�

I

hence, in particular,

S.un; x0; r/ D S.vn; x0; r/:

Since v is subharmonic and un is harmonic, we obtain

v.x0/ � un.x0/ D S.un; x0; r/ D S.vn; x0; r/:

Now n ! 1 yields (2.2.8). The mean value inequality for balls follows from that

for spheres (cf. (̃2.2.5)). For the converse direction, we employ the following lemma:

Lemma 2.2.1. Suppose v satisfies the mean value inequality (2.2.8) or (2.2.9) for

all B.x0; r/ � ˝ . Then v also satisfies the maximum principle, meaning that if there

exists some x0 2 ˝ with

v.x0/ D sup
x2˝

v.x/;

then v is constant. In particular, if ˝ is bounded and v 2 C 0. N̋ /, then

v.x/ � max
y2@˝

v.y/ for all x 2 ˝:

Remark. We shall soon see that the assumption of Lemma 2.2.1 is equivalent to v

being subharmonic, and therefore, the lemma will hold for subharmonic functions.

Proof. Assume

v.x0/ D sup
x2˝

v.x/ DW M:
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Thus,

˝M WD fy 2 ˝ W v.y/ D Mg ¤ ;:

Let y 2 ˝M , B.y; r/ � ˝ . Since (2.2.8) implies (2.2.9) (cf. (2.2.5)), we may

apply (2.2.9) in any case to obtain

0 D v.y/ � M � 1

!d rd

Z

B.y;r/

.v.x/ � M /dx: (2.2.10)

Since M is the supremum of v, always v.x/ � M , and we obtain v.x/ D M for all

x 2 B.y; r/. Thus ˝M contains together with y all balls B.y; r/ � ˝ , and it thus

has to coincide with ˝ , since ˝ is assumed to be connected. Thus u.x/ D M for

all x 2 ˝ . ut

We may now easily conclude the proof of Theorem 2.2.2:

Let u be as in Definition 2.2.1. Then v�u likewise satisfies the mean value inequality,

hence the maximum principle, and so

v � u in ˝ 0;

if v � u on @˝ 0. ut

Corollary 2.2.2. A function v of class C 2.˝/ is subharmonic precisely if

�v � 0 in ˝:

Proof. “(”:

Let B.y; r/ � ˝ , 0 < % < r . Then by (2.2.3)

0 �
Z

B.y;%/

�v.x/dx D d!d %d�1 @

@%
S.v; y; %/:

Integrating this inequality yields, for 0 < % < r ,

S.v; y; %/ � S.v; y; r/;

and since the left-hand side tends to v.y/ for % ! 0, we obtain

v.y/ � S.v; y; r/:

By Theorem 2.2.2, v then is subharmonic.

“)”: Assume �v.y/ < 0. Since v 2 C 2.˝/, we could then find a ball B.y; r/ � ˝

with �v < 0 on B.y; r/. Applying the first part of the proof to �v would yield

v.y/ > S.v; y; r/;
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and v could not be subharmonic. ut

Examples of subharmonic functions:

1. Let d � 2. We compute

� jxj˛ D .d˛ C ˛.˛ � 2// jxj˛�2 :

Thus jxj˛ is subharmonic for ˛ � 2 � d . (This is not unexpected because jxj2�d

is harmonic.)

2. Let u W ˝ ! R be harmonic and positive, ˇ � 1. Then

�uˇ D
d
X

iD1

�

ˇuˇ�1uxi xi C ˇ.ˇ � 1/uˇ�2uxi uxi

�

D
d
X

iD1

ˇ.ˇ � 1/uˇ�2uxi uxi ;

since u is harmonic. Since u is assumed to be positive and ˇ � 1, this implies

that uˇ is subharmonic.

3. Let u W ˝ ! R again be harmonic and positive. Then

� log u D
d
X

iD1

�uxi xi

u
� uxi uxi

u2

�

D �
d
X

iD1

uxi uxi

u2
;

since u is harmonic. Thus, log u is superharmonic, and � log u then is subhar-

monic.

4. The preceding examples can be generalized as follows:

Let u W ˝ ! R be harmonic, f W u.˝/ ! R convex. Then f ıu is subharmonic.

To see this, we first assume f 2 C 2. Then

�f .u.x// D
d
X

iD1

�

f 0.u.x//uxi xi C f 00.u.x//uxi uxi

�

D
d
X

iD1

f 00.u.x// .uxi /2 (since u is harmonic)

� 0;

since for a convex C 2-function f 00 � 0. If the convex function f is not of class

C 2, there exists a sequence .fn/n2N of convex C 2-functions converging to f

locally uniformly. By the preceding, fn ı u is subharmonic, and hence satisfies

the mean value inequality. Since fn ı u converges to f ı u locally uniformly,
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f ı u satisfies the mean value inequality as well and so is subharmonic by

Theorem 2.2.2.

We now return to studying harmonic functions. If u is harmonic, u and �u both

are subharmonic, and we obtain from Lemma 2.2.1 the following result:

Corollary 2.2.3 (Strong maximum principle). Let u be harmonic in ˝ . If there

exists x0 2 ˝ with

u.x0/ D sup
x2˝

u.x/ or u.x0/ D inf
x2˝

u.x/;

then u is constant in ˝ .

A weaker version of Corollary 2.2.3 is the following:

Corollary 2.2.4 (Weak maximum principle). Let ˝ be bounded and u 2 C 0. N̋ /

harmonic. Then for all x 2 ˝ ,

min
y2@˝

u.y/ � u.x/ � max
y2@˝

u.y/:

Proof. Otherwise, u would achieve its supremum or infimum in some interior point

of ˝ . Then u would be constant by Corollary 2.2.3, and the claim would also hold

true. ut

Corollary 2.2.5 (Uniqueness of solutions of the Poisson equation). Let f 2
C 0.˝/, ˝ bounded, u1; u2 2 C 0. N̋ / \ C 2.˝/ solutions of the Poisson equation

�ui.x/ D f .x/ for x 2 ˝ .i D 1; 2/:

If u1.z/ � u2.z/ for all z 2 @˝ , then also

u1.x/ � u2.x/ for all x 2 ˝:

In particular, if

u1j@˝ D u2j@˝ ;

then

u1 D u2:

Proof. We apply the maximum principle to the harmonic function u1 � u2. ut

In particular, for f D 0, we once again obtain the uniqueness of harmonic

functions with given boundary values.
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Remark. The reverse implication in Theorem 2.2.1 can also be seen as follows:

We observe that the maximum principle needs only the mean value inequalities.

Thus, the uniqueness of Corollary 2.2.5 holds for functions that satisfy the mean

value formulae. On the other hand, by Theorem 2.1.2, for continuous boundary

values there exists a harmonic extension on the ball, and this harmonic extension

also satisfies the mean value formulae by the first implication of Theorem 2.2.1.

By uniqueness, therefore, any continuous function satisfying the mean value

property must be harmonic on every ball in its domain of definition ˝ , hence on

all of ˝ .

As an application of the weak maximum principle we shall show the removability

of isolated singularities of harmonic functions:

Corollary 2.2.6. Let x0 2 ˝ � R
d .d � 2/, u W ˝ n fx0g ! R harmonic and

bounded. Then u can be extended as a harmonic function on all of ˝; i.e., there

exists a harmonic function

Qu W ˝ ! R

that coincides with u on ˝ n fx0g.

Proof. By a simple transformation, we may assume x0 D 0 and that ˝ contains the

ball B.0; 2/. By Theorem 2.1.2, we may then solve the following Dirichlet problem:

�Qu D 0 in
ı

B.0; 1/;

Qu D u on @B.0; 1/:

We consider the following Green function on B.0; 1/ for y D 0:

G.x/ D
(

1
2�

log jxj for d D 2;

1
d.2�d/!d

.jxj2�d � 1/ for d � 3:

For " > 0, we put

u".x/ WD Qu.x/ � "G.x/ .0 < jxj � 1/:

First of all,

u".x/ D Qu.x/ D u.x/ for jxj D 1: (2.2.11)

Since on the one hand, u as a smooth function possesses a bounded derivative along

jxj D 1, and on the other hand (with r D jxj), @
@r

G.x/ > 0, we obtain, for

sufficiently large ",

u".x/ > u.x/ for 0 < jxj < 1:

But we also have

lim
x!0

u".x/ D 1 for " > 0:
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Since u is bounded, consequently, for every " > 0 there exists r."/ > 0 with

u".x/ > u.x/ for jxj < r."/: (2.2.12)

From these arguments, we may find a smallest "0 � 0 with

u"0.x/ � u.x/ for jxj � 1:

We now wish to show that "0 D 0.

Assume "0 > 0. By (2.2.11) and (2.2.12), we could then find z0, r. "0

2
/ < jz0j < 1,

with

u "0
2

.z0/ < u.z0/:

This would imply

min
x2

ı

B.0;1/nB.0;r.
"0
2 //

�

u "0
2

.x/ � u.x/
�

< 0;

while by (2.2.11), (2.2.12)

min
y2@B.0;1/[@B.0;r.

"0
2 //

�

u "0
2

.y/ � u.y/
�

D 0:

This contradicts Corollary 2.2.4, because u "0
2

� u is harmonic in the annular region

considered here. Thus, we must have "0 D 0, and we conclude that

u � u0 D Qu in B.0; 1/ n f0g:

In the same way, we obtain the opposite inequality

u � Qu in B.0; 1/ n f0g:

Thus, u coincides with Qu in B.0; 1/ n f0g. Since Qu is harmonic in all of B.0; 1/, we

have found the desired extension. ut

From Corollary 2.2.6 we see that not every Dirichlet problem for a harmonic

function is solvable. For example, there is no solution of

�u.x/ D 0 in
ı

B.0; 1/ n f0g;

u.x/ D 0 for jxj D 1;

u.0/ D 1:
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Namely, by Corollary 2.2.6 any solution u could be extended to a harmonic function

on the entire ball
ı

B.0; 1/, but such a harmonic function would have to vanish

identically by Corollary 2.2.4, since its boundary values on @B.0; 1/ vanish, and

so it could not assume the prescribed value 1 at x D 0.

Another consequence of the maximum principle for subharmonic functions is a

gradient estimate for solutions of the Poisson equation:

Corollary 2.2.7. Suppose that in ˝ ,

�u.x/ D f .x/

with a bounded function f . Let x0 2 ˝ and R WD dist.x0; @˝/. Then

juxi .x0/j � d

R
sup

@B.x0;R/

juj C R

2
sup

B.x0;R/

jf j for i D 1; : : : ; d: (2.2.13)

Proof. We consider the case i D 1. For abbreviation, put

� WD sup
@B.x0;R/

juj ; M WD sup
B.x0;R/

jf j :

Without loss of generality, suppose again x0 D 0. The auxiliary function

v.x/ WD �

R2
jxj2 C x1

�

R � x1
�

�

d�

R2
C M

2

�

satisfies, in B.0; R/,

�v.x/ D �M;

v
�

0; x2; : : : ; xd
�

� 0 for all x2; : : : ; xd ;

v.x/ � � for jxj D R; x1 � 0:

We now consider

Nu.x/ WD 1

2

�

u
�

x1; : : : ; xd
�

� u
�

�x1; x2; : : : ; xd
��

:

In B.0; R/, we have

j�Nu.x/j � M;

Nu.0; x2; : : : ; xd / D 0 for all x2; : : : ; xd ;

jNu.x/j � � for all jxj D R:
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We consider the half-ball BC WD fjxj � R; x1 > 0g. The preceding inequalities

imply

�.v ˙ Nu/ � 0 in
ı

BC;

v ˙ Nu � 0 on @BC:

The maximum principle (Lemma 2.2.1) yields

jNuj � v in BC:

We conclude that

jux1.0/j D lim
x1!0
x1>0

ˇ

ˇ

ˇ

ˇ

Nu.x1; 0; : : : ; 0/

x1

ˇ

ˇ

ˇ

ˇ

� lim
x1!0
x1>0

v.x1; 0; : : : ; 0/

x1
D d�

R
C R

2
M;

i.e., (2.2.13). ut

Other consequences of the mean value formulae are the following:

Corollary 2.2.8 (Liouville theorem). Let u W Rd ! R be harmonic and bounded.

Then u is constant.

Proof. For x1; x2 2 Rd , by (2.2.2) for all r > 0,

u.x1/ � u.x2/ D 1

!d rd

�Z

B.x1;r/

u.x/dx �
Z

B.x2;r/

u.x/dx

�

D 1

!d rd

�Z

B.x1;r/nB.x2;r/

u.x/dx �
Z

B.x2;r/nB.x1;r/

u.x/dx

�

:

(2.2.14)

By assumption

ju.x/j � M;

and for r ! 1,

1

!d rd
Vol .B.x1; r/ n B.x2; r// ! 0:

This implies that the right-hand side of (2.2.14) converges to 0 for r ! 1.

Therefore, we must have

u.x1/ D u.x2/:

Since x1 and x2 are arbitrary, u has to be constant. ut

Another proof of Corollary 2.2.8 follows from Corollary 2.2.7:
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By Corollary 2.2.7, for all x0 2 Rd , R > 0, i D 1; : : : ; d ,

juxi .x0/j � d

R
sup
Rd

juj :

Since u is bounded by assumption, the right-hand side tends to 0 for R ! 1, and

it follows that u is constant. This proof also works under the weaker assumption

lim
R!1

1

R
sup

B.x0;R/

juj D 0:

This assumption is sharp, since affine linear functions are harmonic functions on Rd

that are not constant.

Corollary 2.2.9 (Harnack inequality). Let u W ˝ ! R be harmonic and

nonnegative. Then for every subdomain ˝ 0 �� ˝ there exists a constant c D
c.d; ˝; ˝ 0/ with

sup
˝0

u � c inf
˝0

u: (2.2.15)

Proof. We first consider the special case ˝ 0 D
ı

B.x0; r/, assuming B.x0; 4r/ � ˝ .

Let y1; y2 2 B.x0; r/. By (2.2.2),

u.y1/ D 1

!d rd

Z

B.y1;r/

u.y/dy

� 1

!d rd

Z

B.x0;2r/

u.y/dy;

since u � 0 and B.y1; r/ � B.x0; 2r/

D 3d

!d .3r/d

Z

B.x0;2r/

u.y/dy

� 3d

!d .3r/d

Z

B.y2 ;3r/

u.y/dy;

since u � 0 and B.x0; 2r/ � B.y2; 3r/

D 3d u.y2/;

and in particular,

sup
B.x0;r/

u � 3d inf
B.x0;r/

u;

which is the claim in this special case.
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For an arbitrary subdomain ˝ 0 �� ˝ , we choose r > 0 with

r <
1

4
dist.˝ 0; @˝/:

Since ˝ 0 is bounded and connected, there exists m 2 N such that any two points

y1; y2 2 ˝ 0 can be connected in ˝ 0 by a curve that can be covered by at most m

balls of radius r with centers in ˝ 0. Composing the preceding inequalities for all

these balls, we get

u.y1/ � 3md u.y2/:

Thus, we have verified the claim for c D 3md . ut

The Harnack inequality implies the following result:

Corollary 2.2.10 (Harnack convergence theorem). Let un W ˝ ! R be a

monotonically increasing sequence of harmonic functions. If there exists y 2 ˝ for

which the sequence .un.y//n2N is bounded, then un converges on any subdomain

˝ 0 �� ˝ uniformly towards a harmonic function.

Proof. The monotonicity and boundedness imply that un.y/ converges for n ! 1.

For " > 0, there thus exists N 2 N such that for n � m � N ,

0 � un.y/ � um.y/ < ":

Then un � um is a nonnegative harmonic function (by monotonicity), and by

Corollary 2.2.9,

sup
˝0

.un � um/ � c"; .wlog y 2 ˝ 0/;

where c depends on d , ˝ , and ˝ 0. Thus .un/n2N converges uniformly in all of ˝ 0.

The uniform limit of harmonic functions has to satisfy the mean value formulae as

well, and it is hence harmonic itself by Theorem 2.2.1. ut

Summary

In this chapter we encountered some basic properties of harmonic functions, i.e., of

solutions of the Laplace equation

�u D 0 in ˝;

and also of solutions of the Poisson equation

�u D f in ˝

with given f .
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We found the unique solution of the Dirichlet problem on the ball (Theorem 2.1.2),

and we saw that solutions are smooth (Corollary 2.1.2) and even satisfy ex-

plicit estimates (Corollary 2.2.7) and in particular the maximum principle (Corol-

lary 2.2.3, Corollary 2.2.4), which actually already holds for subharmonic functions

(Lemma 2.2.1). All these results are typical and characteristic for solutions of

elliptic PDEs. The methods presented in this chapter, however, mostly do not readily

generalize, since they have used heavily the rotational symmetry of the Laplace

operator. In subsequent chapters we thus need to develop different and more general

methods in order to show analogues of these results for larger classes of elliptic

PDEs.

Exercises

2.1. Determine the Green function of the half-space

fx D .x1; : : : ; xd / 2 R
d W x1 > 0g:

2.2. On the unit ball B.0; 1/ � Rd , determine a function H.x; y/, defined for

x ¤ y, with

(i) @
@�x

H.x; y/ D 1 for x 2 @B.0; 1/

(ii) H.x; y/ � � .x; y/ is a harmonic function of x 2 B.0; 1/. (Here, � .x; y/ is a

fundamental solution.)

2.3. Use the result of Exercise 2.2 to study the Neumann problem for the Laplace

equation on the unit ball B.0; 1/ � Rd :

Let g W @B.0; 1/ ! R with
R

@B.0;1/
g.y/ do.y/ D 0 be given. We wish to find a

solution of

�u.x/ D 0 for x 2
ı

B.0; 1/;

@u

@�
.x/ D g.x/ for x 2 @B.0; 1/:

2.4. Let u W B.0; R/ ! R be harmonic and nonnegative. Prove the following

version of the Harnack inequality:

Rd�2.R � jxj/
.R C jxj/d�1

u.0/ � u.x/ � Rd�2.R C jxj/
.R � jxj/d�1

u.0/

for all x 2 B.0; R/.

2.5. Let u W Rd ! R be harmonic and nonnegative. Show that u is constant (Hint:

Use the result of Exercise 2.4.).
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2.6. Let u be harmonic with periodic boundary conditions. Use the maximum

principle to show that u is constant.

2.7. Let ˝ � R3 n f0g, u W ˝ ! R harmonic. Show that

v.x1; x2; x3/ WD 1

jxju

�

x1

jxj2 ;
x2

jxj2 ;
x3

jxj2

�

is harmonic in the region ˝ 0 WD
n

x 2 R3 W
�

x1

jxj2
; x2

jxj2
; x3

jxj2

�

2 ˝
o

.

– Is there a deeper reason for this?

– Is there an analogous result for arbitrary dimension d?

2.8. Let ˝ be the unbounded region fx 2 Rd W jxj > 1g. Let u 2 C 2.˝/ \ C 0. N̋ /

satisfy �u D 0 in ˝ . Furthermore, assume

lim
jxj!1

u.x/ D 0:

Show that

sup
˝

juj D max
@˝

juj:

2.9. (Schwarz reflection principle):

Let ˝C � fxd > 0g,

˙ WD @˝C \ fxd D 0g ¤ ;: (2.2.16)

Let u be harmonic in ˝C, continuous on ˝C [ ˙ , and suppose u D 0 on ˙ . We

put

Nu.x1; : : : ; xd / WD
(

u.x1; : : : ; xd / for xd � 0;

�u.x1; : : : ; �xd / for xd < 0:

Show that Nu is harmonic in ˝C [ ˙ [ ˝�, where ˝� WD fx 2 Rd W .x1; : : : ; �xd /

2 ˝Cg.

2.10. Let ˝ � Rd be a bounded domain for which the divergence theorem holds.

Assume u 2 C 2. N̋ /; u D 0 on @˝ . Show that for every " > 0,

2

Z

˝

jru.x/j2 dx � "

Z

˝

.�u.x//2 dx C 1

"

Z

˝

u2.x/ dx:



Chapter 3

The Maximum Principle

Throughout this chapter,˝ is a bounded domain in Rd . All functions u are assumed

to be of class C 2.˝/.

3.1 The Maximum Principle of E. Hopf

We wish to study linear elliptic differential operators of the form

Lu.x/ D
d
X

i;jD1

aij .x/uxixj .x/C
d
X

iD1

bi .x/uxi .x/C c.x/u.x/;

where we impose the following conditions on the coefficients:

1. Symmetry: aij .x/ D aj i.x/ for all i; j and x 2 ˝ (this is no serious restriction).

2. Ellipticity: There exists a constant � > 0 with

� j�j2 �
d
X

i;jD1

aij .x/� i �j for all x 2 ˝; � 2 R
d

(this is the key condition).

In particular, the matrix .aij .x//i;jD1;:::;d is positive definite for all x, and the

smallest eigenvalue is greater than or equal to �.

3. Boundedness of the coefficients: There exists a constant K with

ˇ

ˇaij .x/
ˇ

ˇ ;
ˇ

ˇbi .x/
ˇ

ˇ ; jc.x/j � K for all i; j andx 2 ˝:

Obviously, the Laplace operator satisfies all three conditions. The aim of this chapter

is to prove maximum principles for solutions of Lu D 0. It turns out that for

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,
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that purpose, we need to impose an additional condition on the sign of c.x/,

since otherwise no maximum principle can hold, as the following simple example

demonstrates: The Dirichlet problem

u00.x/C u.x/ D 0 on .0; �/;

u.0/ D 0 D u.�/;

has the solutions

u.x/ D ˛ sin x

for arbitrary ˛, and depending on the sign of ˛, these solutions assume a strict

interior maximum or minimum at x D �=2. The Dirichlet problem

u00.x/ � u.x/ D 0;

u.0/ D 0 D u.�/;

however, has 0 as its only solution.

As a start, let us present a proof of the weak maximum principle for subharmonic

functions (Lemma 2.2.1) that does not depend on the mean value formulae:

Lemma 3.1.1. Let u 2 C 2.˝/ \ C 0. N̋ /, �u � 0 in ˝ . Then

sup
˝

u D max
@˝

u: (3.1.1)

(Since u is continuous and ˝ is bounded, and the closure N̋ thus is compact, the

supremum of u on ˝ coincides with the maximum of u on N̋ .)

Proof. We first consider the case where we even have

�u > 0 in ˝:

Then u cannot assume an interior maximum at some x0 2 ˝ , since at such a

maximum, we would have

uxixi .x0/ � 0 for i D 1; : : : ; d;

and thus also

�u.x0/ � 0:

We now come to the general case �u � 0 and consider the auxiliary function

v.x/ D ex
1

;

which satisfies

�v D v > 0:
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For each " > 0, then

�.u C "v/ > 0 in ˝;

and from the case studied in the beginning, we deduce

sup
˝

.u C "v/ D max
@˝
.u C "v/:

Then

sup
˝

u C " inf
˝

v � max
@˝

u C "max
@˝

v;

and since this holds for every " > 0, we obtain (3.1.1). ut

Theorem 3.1.1. Assume c.x/ � 0, and let u satisfy in ˝

Lu � 0;

i.e.,

d
X

i;jD1

aij .x/uxixj C
d
X

iD1

bi .x/uxi � 0: (3.1.2)

Then also

sup
x2˝

u.x/ D max
x2@˝

u.x/: (3.1.3)

In the case Lu � 0, a corresponding result holds for the infimum.

Proof. As in the proof of Lemma 3.1.1, we first consider the case

Lu > 0:

Since at an interior maximum x0 of u, we must have

uxi .x0/ D 0 for i D 1; : : : ; d;

and

.uxixj .x0//i;jD1;:::;d negative semidefinite,

and thus by the ellipticity condition also

Lu.x0/ D
d
X

i;jD1

aij .x0/uxixj .x0/ � 0;

such an interior maximum cannot occur.
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Returning to the general case Lu � 0, we now consider the auxiliary function

v.x/ D e˛x
1

for ˛ > 0. Then

Lv.x/ D
�

˛2a11.x/C ˛b1.x/
�

v.x/:

Since˝ and the coefficients bi are bounded and the coefficients satisfy ai i .x/ � �,

we have for sufficiently large ˛,

Lv > 0;

and applying what we have proved already to u C "v

.L.u C "v/ > 0/ ;

the claim follows as in the proof of Lemma 3.1.1. The case Lu � 0 can be reduced

to the previous one by considering �u. ut

Corollary 3.1.1. Let L be as in Theorem 3.1.1, and let f 2 C 0.˝/, ' 2 C 0.@˝/

be given. Then the Dirichlet problem

Lu.x/ D f .x/ for x 2 ˝; (3.1.4)

u.x/ D '.x/ for x 2 @˝;

admits at most one solution.

Proof. The difference v.x/ D u1.x/ � u2.x/ of two solutions satisfies

Lv.x/ D 0 in ˝;

v.x/ D 0 on @˝;

and by Theorem 3.1.1 it then has to vanish identically on ˝ . ut

Theorem 3.1.1 supposes c.x/ � 0. This assumption can be weakened as follows:

Corollary 3.1.2. Suppose c.x/ � 0 in ˝ . Let u 2 C 2.˝/ \ C 0. N̋ / satisfy

Lu � 0 in ˝:

With uC.x/ WD max.u.x/; 0/, we then have

sup
˝

uC � max
@˝

uC: (3.1.5)

Proof. Let ˝C WD fx 2 ˝ W u.x/ > 0g. Because of c � 0, we have in ˝C,
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d
X

i;jD1

aij .x/uxixj C
d
X

iD1

bi.x/uxi � 0;

and hence by Theorem 3.1.1,

sup
˝C

u � max
@˝C

u: (3.1.6)

We have

u D 0 on @˝C \˝ (by continuity of u/;

max
@˝C \ @˝

u � max
@˝

u;

and hence, since @˝C D .@˝C \˝/[ .@˝C \ @˝/,

max
@˝C

u � max
@˝

uC: (3.1.7)

Since also

sup
˝

uC D sup
˝C

u; (3.1.8)

(3.1.5) follows from (3.1.6) and (3.1.7). ut

We now come to the strong maximum principle of E. Hopf:

Theorem 3.1.2. Suppose c.x/ � 0, and let u satisfy in ˝ ,

Lu � 0: (3.1.9)

If u assumes its maximum in the interior of˝ , it has to be constant. More generally,

if c.x/ � 0, u has to be constant if it assumes a nonnegative interior maximum.

For the proof, we need the boundary point lemma of E. Hopf:

Lemma 3.1.2. Suppose c.x/ � 0 and

Lu � 0 in ˝ 0 � R
d ;

and let x0 2 @˝ 0. Moreover, assume

(i) u is continuous at x0.

(ii) u.x0/ � 0 if c.x/ 6� 0.

(iii) u.x0/ > u.x/ for all x 2 ˝ 0.

(iv) There exists a ball
ı

B.y;R/ � ˝ 0 with x0 2 @B.y;R/.
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We then have, with r WD jx � yj,

@u

@r
.x0/ > 0;

provided that this derivative (in the direction of the exterior normal of ˝ 0) exists.

Proof. We may assume

@B.y;R/ \ @˝ 0 D fx0g:

For 0 < � < R, on the annular region
ı

B.y;R/ n B.y; �/, we consider the auxiliary

function

v.x/ WD e�
 jx�yj2 � e�
R2 :

We have

Lv.x/ D
(

4
2
d
X

i;jD1

aij .x/
�

xi � yi
� �

xj � yj
�

� 2


d
X

iD1

ai i .x/C bi.x/
�

xi � yi
�

)

e�
 jx�yj2

C c.x/
�

e�
 jx�yj2 � e�
R2
�

:

For sufficiently large 
 , because of the assumed boundedness of the coefficients of

L and the ellipticity condition, we have

Lv � 0 in
ı

B.y;R/ n B.y; �/: (3.1.10)

By (iii) and (iv),

u.x/ � u.x0/ < 0 for x 2
ı

B.y;R/:

Therefore, we may find " > 0 with

u.x/ � u.x0/C "v.x/ � 0 for x 2 @B.y; �/: (3.1.11)

Since v D 0 on @B.y;R/, (3.1.11) continues to hold on @B.y;R/. On the other

hand,

L.u.x/� u.x0/C "v.x// � �c.x/u.x0/ � 0 (3.1.12)

by (3.1.10) and (ii) and because of c.x/ � 0. Thus, we may apply Corollary 3.1.2

on
ı

B.y;R/ n B.y; �/ and obtain

u.x/ � u.x0/C "v.x/ � 0 for x 2
ı

B.y;R/ n B.y; �/:
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Provided that the derivative exists, it follows that

@

@r
.u.x/ � u.x0/C "v.x// � 0 atx D x0;

and hence for x D x0,

@

@r
u.x/ � �"@v.x/

@r
D "

�

2
Re�
R2
�

> 0: ut

Proof of Theorem 3.1.2: We assume by contradiction that u is not constant but has

a maximum m (� 0 in case c 6� 0) in ˝ . We then have

˝ 0 WD fx 2 ˝ W u.x/ < mg ¤ ;

and

@˝ 0 \˝ ¤ ;:

We choose some y 2 ˝ 0 that is closer to @˝ 0 than to @˝ . Let
ı

B.y;R/ be the

largest ball with center y that is contained in ˝ 0. We then get

u.x0/ D m for some x0 2 @B.y;R/

and

u.x/ < u.x0/ for x 2 ˝ 0:

By Lemma 3.1.2,

Du.x0/ ¤ 0;

which, however, is not possible at an interior maximum point. This contradiction

demonstrates the claim. ut

3.2 The Maximum Principle of Alexandrov

and Bakelman

In this section, we consider differential operators of the same type as in the previous

one, but for technical simplicity, we assume that the coefficients c.x/ and bi.x/

vanish. While similar results as those presented here continue to hold for vanishing

bi.x/ and nonpositive c.x/, here we wish only to present the key ideas in a situation

that is as simple as possible.
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Theorem 3.2.1. Suppose that u 2 C 2.˝/\ C 0. N̋ / satisfies

Lu.x/ WD
d
X

i;jD1

aij .x/uxixj � f .x/; (3.2.1)

where the matrix .aij .x// is positive definite and symmetric for each x 2 ˝ .

Moreover, let

Z

˝

jf .x/jd

det .aij .x//
dx < 1: (3.2.2)

We then have

sup
˝

u � max
@˝

u C diam.˝/

d!
1=d

d

 

Z

˝

jf .x/jd

det .aij .x//
dx

!1=d

: (3.2.3)

In contrast to those estimates that are based on the Hopf maximum principle (cf.,

e.g., Theorem 3.3.2 below), here we have only an integral norm of f on the right-

hand side, i.e., a norm that is weaker than the supremum norm. In this sense, the

maximum principle of Alexandrov and Bakelman is stronger than that of Hopf.

For the proof of Theorem 3.2.1, we shall need some geometric constructions. For

v 2 C 0.˝/, we define the upper contact set

TC.v/ WD
˚

y 2 ˝ W 9p 2 R
d 8x 2 ˝ W v.x/ � v.y/C p � .x � y/

�

: (3.2.4)

The dot “�” here denotes the Euclidean scalar product of Rd . The p that occurs in

this definition in general will depend on y; that is, p D p.y/. The set TC.v/ is that

subset of ˝ in which the graph of v lies below a hyperplane in RdC1 that touches

the graph of v at .y; v.y//. If v is differentiable at y 2 TC.v/, then necessarily

p.y/ D Dv.y/. Finally, v is concave precisely if TC.v/ D ˝ .

Lemma 3.2.1. For v 2 C 2.˝/, the Hessian

.vxixj /i;jD1;:::;d

is negative semidefinite on TC.v/.

Proof. For y 2 TC.v/, we consider the function

w.x/ WD v.x/ � v.y/� p.y/ � .x � y/:

Then w.x/ � 0 on ˝ , since y 2 TC.v/ and w.y/ D 0. Thus, w has a maximum

at y, implying that .wxixj .y// is negative semidefinite. Since vxixj D wxixj for all

i; j , the claim follows. ut
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If v is not differentiable at y 2 TC.v/, then p D p.y/ need not be unique,

but there may exist several p’s satisfying the condition in (3.2.4). We assign to

y 2 TC.v/ the set of all those p’s, i.e., consider the set-valued map

�v.y/ WD
˚

p 2 R
d W 8x 2 ˝ W v.x/ � v.y/C p � .x � y/

�

:

For y … TC.v/, we put �v.y/ WD ;.

Example 3.2.1. ˝ D
ı

B.0; 1/, ˇ > 0,

v.x/ D ˇ.1� jxj/:

The graph of v thus is a cone with a vertex of height ˇ at 0 and having the unit

sphere as its base. We have TC.v/ D
ı

B.0; 1/,

�v.y/ D

8

<

:

B.0; ˇ/ for y D 0;
n

�ˇ y

jyj

o

for y ¤ 0:

For the cone with vertex of height ˇ at x0 and base @B.xo; R/,

v.x/ D ˇ

�

1 � jx � x0j
R

�

and ˝ D
ı

B.x0; R/, and analogously,

�v

�

ı

B.x0; R/

�

D �v.x0/ D B.0; ˇ=R/: (3.2.5)

We now consider the image of ˝ under �v,

�v.˝/ D
[

y2˝

�v.y/ � R
d :

We will let Ld denote d -dimensional Lebesgue measure. Then we have the

following lemma:

Lemma 3.2.2. Let v 2 C 2.˝/ \ C 0. N̋ /. Then

Ld .�v.˝// �
Z

TC.v/

jdet .vxixj .x//j dx: (3.2.6)

Proof. First of all,

�v.˝/ D �v.T
C.v// D Dv.TC.v//; (3.2.7)
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since v is differentiable. By Lemma 3.2.1, the Jacobian matrix of Dv W ˝ ! Rd ,

namely, .vxixj /, is negative semidefinite on TC.v/. Thus Dv � " Id has maximal

rank for " > 0. From the transformation formula for multiple integrals, we then get

Ld

�

.Dv � " Id/
�

TC.v/
��

�
Z

TC.v/

ˇ

ˇ

ˇ
det

�

vxixj .x/ � "ıij
�

i;jD1;:::;d

ˇ

ˇ

ˇ
dx: (3.2.8)

Letting " tend to 0, the claim follows because of (3.2.7). ut

We are now able to prove Theorem 3.2.1. We may assume

u � 0 on @˝

by replacing u by u � max@˝ u if necessary.

Now let x0 2 ˝ , u.x0/ > 0. We consider the function �x0 on B.x0; ı/ with

ı D diam.˝/ whose graph is the cone with vertex of height u.x0/ at x0 and base

@B.x0; ı/. From the definition of the diameter ı D diam˝ ,

˝ � B.x0; ı/:

Since we assume u � 0 on @˝ , for each hyperplane that is tangent to this cone

there exists some parallel hyperplane that is tangent to the graph of u. (In order to

see this, we simply move such a hyperplane parallel to its original position from

above towards the graph of u until it first becomes tangent to it. Since the graph of

u is at least of height u.x0/, i.e., of the height of the cone, and since u � 0 on @˝

and @˝ � B.x0; ı/, such a first tangency cannot occur at a boundary point of ˝

but only at an interior point x1. Thus, the corresponding hyperplane is contained in

�v.x1/.) This means that

��x0 .˝/ � �u.˝/: (3.2.9)

By (3.2.5),

��x0 .˝/ D B .0; u.x0/=ı/ : (3.2.10)

Relations (3.2.6), (3.2.9), and (3.2.10) imply

Ld .B .0; u.x0/=ı// �
Z

TC.u/

jdet .uxixj .x//j dx;

and hence
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u.x0/ � ı

!
1=d

d

�Z

TC.u/

jdet .uxixj .x//j dx

�1=d

D ı

!
1=d

d

�Z

TC.u/

.�1/d det .uxixj .x// dx

�1=d

(3.2.11)

by Lemma 3.2.1. Without assuming u � 0 on @˝ , we get an additional term

max@˝ u on the right-hand side of (3.2.11). Since the formula holds for all x0 2 ˝ ,

we have the following result:

Lemma 3.2.3. For u 2 C 2.˝/\ C 0. N̋ /,

sup
˝

u � max
@˝

u C diam.˝/

!
1=d

d

�Z

TC.u/

.�1/d det .uxixj .x// dx

�1=d

: (3.2.12)

In order to deduce Theorem 3.2.1 from this result, we need the following elementary

lemma:

Lemma 3.2.4. On T C.u/,

.�1/d det .uxixj .x// � 1det
�

aij .x/
�

0

@� 1

d

d
X

i;jD1

aij .x/uxixj .x/

1

A

d

: (3.2.13)

Proof. It is well known that for symmetric, positive definite matrices A and B ,

detA detB �
�

1

d
trace AB

�d

;

which is readily verified by diagonalizing one of the matrices, which is possible if

that matrix is symmetric.

Inserting A D .�uxixj /, B D .aij / (which is possible by Lemma 3.2.1 and the

ellipticity assumption), we obtain (3.2.13). ut

Inequalities (3.2.12) and (3.2.13) imply

sup
˝

u � max
@˝

u C diam.˝/

d!
1=d

d

0

B

@

Z

TC.u/

�

�
Pd

i;jD1 a
ij .x/uxixj .x/

�d

det .aij .x//
dx

1

C

A

1=d

:

(3.2.14)

In turn (3.2.14) directly implies Theorem 3.2.1, since by assumption, �
P

aij

uxixj � �f , and the left-hand side of this inequality is nonnegative on TC.u/

by Lemma 3.2.1. ut
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We wish to apply Theorem 3.2.1 to some nonlinear equation, namely, the two-

dimensional Monge–Ampère equation.

Thus, let ˝ be open in R2 D f.x1; x2/g, and let u 2 C 2.˝/ satisfy

ux1x1.x/ux2x2.x/ � u2
x1x2

.x/ D f .x/ in ˝; (3.2.15)

with given f . In order that (3.2.15) be elliptic:

(i) The Hessian of u must be positive definite, and hence also

(ii) f .x/ > 0 in ˝ .

Condition (3.2) means that u is a convex function. Thus, u cannot assume a

maximum in the interior of ˝ , but a minimum is possible. In order to control the

minimum, we observe that if u is a solution of (3.2.15), then so is (�u). However,

Eq. (3.2.15) is no longer elliptic at (�u), since the Hessian of (�u) is negative and

not positive, so that Theorem 3.2.1 cannot be applied directly. We observe, however,

that Lemma 3.2.3 does not need an ellipticity assumption and obtain the following

corollary:

Corollary 3.2.1. Under the assumptions (3.2) and (3.2), a solution u of the Monge–

Ampère equation (3.2.15) satisfies

inf
˝

u � min
@˝

u � diam.˝/p
�

�Z

˝

f .x/dx

�
1
2

:

The crucial point here is that the nonlinear Monge–Ampère equation for a

solution u can be formally written as a linear differential equation. Namely, with

a11.x/ D 1

2
ux2x2.x/; a12.x/ D a21.x/ D 1

2
ux1x2.x/;

a22.x/ D 1

2
ux1x1.x/

(3.2.15) becomes
2
X

i;jD1

aij uxixj .x/ D f .x/;

and is thus of the type considered. Consequently, in order to deduce properties of a

solution u, we have only to check whether the required conditions for the coefficients

aij .x/ hold under our assumptions about u. It may happen, however, that these

conditions are satisfied for some, but not for all, solutions u. For example, under

the assumptions (i) and (ii), (3.2.15) was no longer elliptic at the solution (�u).



3.3 Maximum Principles for Nonlinear Differential Equations 49

3.3 Maximum Principles for Nonlinear Differential

Equations

We now consider a general differential equation of the form

F Œu� D F.x; u;Du;D2u/ D 0; (3.3.1)

with F W S WD ˝ � R � Rd
� S.d;R/ ! R, where S.d;R/ is the space of

symmetric, real-valued, d � d matrices. Elements of S are written as .x; z; p; r/;

here p D .p1; : : : ; pd / 2 Rd , r D .rij /i;jD1;:::;d 2 S.d;R/. We assume that F is

differentiable with respect to the rij .

Definition 3.3.1. The differential equation (3.3.1) is called elliptic at u 2 C 2.˝/ if

�

@F

@rij

�

x; u.x/;Du.x/;D2u.x/
�

�

i;jD1;:::;d

is positive definite. (3.3.2)

For example, the Monge–Ampère equation (3.2.15) is elliptic in this sense if the

conditions (i) and (ii) at the end of Sect. 3.2 hold.

It is not completely clear what the appropriate generalization of the maximum

principle from linear to nonlinear equations is, because in the linear case, we always

have to make assumptions on the lower-order terms. One interpretation that suggests

a possible generalization is to consider the maximum principle as a statement

comparing a solution with a constant that under different conditions was a solution

of Lu � 0. Because of the linear structure, this immediately led to a comparison

theorem for arbitrary solutions u1; u2 of Lu D 0. For this reason, in the nonlinear

case, we also start with a comparison theorem:

Theorem 3.3.1. Let u0; u1 2 C 2.˝/ \ C 0. N̋ /, and suppose

(i) F 2 C 1.S/.

(ii) F is elliptic at all functions tu1 C .1 � t/u0, 0 � t � 1.

(iii) For each fixed .x; p; r/, F is monotonically decreasing in z.

If

u1 � u0 on @˝

and

F Œu1� � F Œu0� in ˝;

then either

u1 < u0 in ˝

or

u0 � u1 in ˝:

Proof. We put
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v WD u1 � u0;

ut WD tu1 C .1 � t/u0 for 0 � t � 1;

aij .x/ WD
Z 1

0

@F

@rij

�

x; ut .x/;Dut .x/;D
2ut .x/

�

dt;

bi.x/ WD
Z 1

0

@F

@pi

�

x; ut .x/;Dut .x/;D
2ut.x/

�

dt;

c.x/ WD
Z 1

0

@F

@z

�

x; ut .x/;Dut .x/;D
2ut.x/

�

dt

(note that we are integrating a total derivative with respect to t ,

namely, d
dt
F.x; ut .x/;Dut .x/;D

2ut.x//, and consequently, we can
convert the integral into boundary terms, leading to the correct
representation of Lv below; cf. (3.3.3)),

Lv WD
d

X

i;jD1

aij .x/vxixj .x/C
d

X

iD1

bi.x/vxi .x/C c.x/v.x/:

Then

Lv D F Œu1� � F Œu0� � 0 in ˝: (3.3.3)

The operatorL is elliptic because of (ii), and by (iii), c.x/ � 0. Thus, we may apply

Theorem 3.1.2 for v and obtain the conclusions of the theorem. ut

The theorem holds in particular for solutions of F Œu� D 0. The key point in the

proof of Theorem 3.3.1 then is that since the solutions u0 and u1 of the nonlinear

equation F Œu� D 0 are already given, we may interpret quantities that depend on u0
and u1 and their derivatives as coefficients of a linear differential equation for the

difference.

We also would like to formulate the following uniqueness result for the Dirichlet

problem for F Œu� D f with given f :

Corollary 3.3.1. Under the assumptions of Theorem 3.3.1, suppose u0 D u1 on @˝

and

F Œu0� D F Œu1� in ˝:

Then u0 D u1 in ˝ .

As an example, we consider the minimal surface equation: Let ˝ � R2 D
f.x; y/g. The minimal surface equation then is the quasilinear equation

�

1C u2y

�

uxx � 2uxuyuxy C
�

1C u2x
�

uyy D 0: (3.3.4)

Theorem 3.3.1 implies the following corollary:
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Corollary 3.3.2. Let u0; u1 2 C 2.˝/ be solutions of the minimal surface equation.

If the difference u0 � u1 assumes u maximum or minimum at an interior point of ˝ ,

we have

u0 � u1 � const in ˝:

We now come to the following maximum principle:

Theorem 3.3.2. Let u 2 C 2.˝/ \ C 0. N̋ / and let F 2 C 2.S/. Suppose that for

some � > 0, the ellipticity condition

� j�j2 �
d
X

i;jD1

@F

@rij
.x; z; p; r/� i �j (3.3.5)

holds for all � 2 R
d , .x; z; p; r/ 2 S . Moreover, assume that there exist constants

�1; �2 such that for all .x; z; p/,

F.x; z; p; 0/ sign.z/

�
� �1 jpj C �2

�
: (3.3.6)

If

F Œu� D 0 in ˝;

then

sup
˝

juj � max
@˝

juj C c
�2

�
; (3.3.7)

where the constant c depends on �1 and the diameter diam.˝/.

Here, one should think of (3.3.6) as an analogue of the sign condition c.x/ � 0

and the bound for the bi.x/ as well as a bound of the right-hand side f of the

equation Lu D f .

Proof. We shall follow a similar strategy as in the proof of Theorem 3.3.1 and shall

reduce the result to the maximum principle from Sect. 3.1 for linear equations. Here

v is an auxiliary function to be determined, and w WD u�v. We consider the operator

Lw WD
d
X

i;jD1

aij .x/wxi xj C
d
X

iD1

bi.x/wxi

with

aij .x/ WD
Z 1

0

@F

@rij

�

x; u.x/;Du.x/; tD2u.x/
�

dt; (3.3.8)

while the coefficients bi.x/ are defined through the following equation:
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d
X

iD1

bi .x/wxi D
d
X

i;jD1

Z 1

0

� @F

@rij

�

x; u.x/;Du.x/; tD2u.x/
�

� @F

@rij

�

x; u.x/;Dv.x/; tD2u.x/
�

�

dt � vxixj

C F .x; u.x/;Du.x/; 0/ � F .x; u.x/;Dv.x/; 0/ : (3.3.9)

(That this is indeed possible follows from the mean value theorem and the

assumption F 2 C 2. It actually suffices to assume that F is twice continuously

differentiable with respect to the variables r only.) Then L satisfies the assumptions

of Theorem 3.1.1. Now

Lw D L.u � v/

D
d

X

i;jD1

�Z 1

0

@F

@rij

�

x; u.x/;Du.x/; tD2u.x/
�

dt

�

uxixj CF.x; u.x/;Du.x/; 0/

�
d

X

i;jD1

�Z 1

0

@F

@rij

�

x; u.x/;Dv.x/; tD2u.x/
�

dt

�

vxixj �F.x; u.x/;Dv.x/; 0/

D F
�

x; u.x/;Du.x/;D2u.x/
�

�

0

@

d
X

i;jD1

˛ij .x/vxixj C F .x; u.x/;Dv.x/; 0/

1

A ; (3.3.10)

with

˛ij .x/ D
Z 1

0

@F

@rij

�

x; u.x/;Dv.x/; tD2u.x/
�

dt (3.3.11)

(this again comes from the integral of a total derivative with respect to t). Here by

assumption

� j�j2 �
d

X

i;jD1

˛ij .x/� i �j for all x 2 ˝; � 2 R
d : (3.3.12)

We now look for an appropriate auxiliary function v with

M v WD
X

˛ij .x/vxixj C F.x; u.x/;Dv.x/; 0/ � 0: (3.3.13)
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We now suppose that for ı WD diam.˝/, ˝ is contained in the strip f0 < x1 < ıg.

We now try

v.x/ D max
@˝

uC C �2

�

�

e.�1C1/ı � e.�1C1/x
1
�

(3.3.14)

(uC.x/ D max.0; u.x//).

Then

M v D � �2

�
.�1 C 1/2 ˛11.x/e.�1C1/x

1 C F.x; u.x/;Dv.x/; 0/

� � �2 .�1 C 1/2 e.�1C1/x
1 C �2�1 .�1 C 1/ e.�1C1/x

1 C �2

� 0

by (3.3.6) and (3.3.12). This establishes (3.3.13). Equation (3.3.10) then implies,

even under the assumption F Œu� � 0 in place of F Œu� D 0,

Lw � 0:

By definition of v, we also have

w D u � v � 0 on @˝:

Theorem 3.1.1 thus implies

u � v in ˝

and (3.3.7) follows with c D e.�1C1/ diam.˝/ � 1. More precisely, under the

assumption F Œu� � 0, we have proved the inequality

sup
˝

u � max
@˝

uC C c
�2

�
; (3.3.15)

but the inequality in the other direction of course follows analogously, i.e.,

inf
˝

u � min
@˝

u� � c
�2

�
(3.3.16)

.u�.x/ WD min.0; u.x///. ut

Theorem 3.3.2 is of interest even in the linear case. Let us look once more at the

simple equation

f 00.x/C �f .x/ D 0 for x 2 .0; �/;

f .0/ D f .�/ D 0;
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with constant �. We may apply Theorem 3.3.2 with � D 1, �1 D 0,

�2 D
(

� sup.0;�/ jf j for � > 0;

0 for � � 0:

It follows that

sup
.0;�/

jf j � c� sup
.0;�/

jf j I

i.e., if

� <
1

c
;

we must have f � 0. More generally, in place of �, one may take any function c.x/

with c.x/ � � on .0; �/ and consider f 00.x/ C c.x/f .x/ D 0, without affecting

the preceding conclusion. In particular, this allows us to weaken the sign condition

c.x/ � 0. The sharpest possible result here is that f � 0 if � is smaller than the

smallest eigenvalue �1 of d 2

dx2
on .0; �/, i.e., 1. This analogously generalizes to other

linear elliptic equations, for example,

�f.x/C �f .x/ D 0 in ˝;

f .y/ D 0 on @˝:

Theorem 3.3.2 does imply such a result, but not with the optimal bound �1.

A reference for this chapter is Gilbarg–Trudinger [12].

Summary and Perspectives

The maximum principle yields examples of so-called a priori estimates, i.e.,

estimates that hold for any solution of a given differential equation or class of

equations, depending on the given data (boundary values, right-hand side, etc.),

without the need to know the solution in advance or without even having to

guarantee in advance that a solution exists. Conversely, such a priori estimates

often constitute an important tool in many existence proofs. Maximum principles

are characteristic for solutions of elliptic (and parabolic) PDEs, and they are not

restricted to linear equations. Often, they are even the most important tool for

studying certain nonlinear elliptic PDEs.

Exercises

3.1. Let ˝1;˝2 � Rd be disjoint open sets such that N̋
1 \ N̋

2 contains a smooth

hypersurface T , for example,
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˝1 WD f.x1; : : : ; xd / Wjxj < 1; x1 > 0g;

˝2 WD f.x1; : : : ; xd / Wjxj < 1; x1 < 0g;

T D f.x1; : : : ; xd / Wjxj < 1; x1 D 0g:

Let u 2 C 0. N̋
1 [ N̋

2/\ C 2.˝1/ \ C 2.˝2/ be harmonic on ˝1 and on ˝2, i.e.,

�u.x/ D 0; x 2 ˝1 [˝2:

Does this imply that u is harmonic on ˝1 [˝2 [ T ?

3.2. Let˝ be open in R
2 D f.x; y/g. For a nonconstant solution u 2 C 2.˝/ of the

differential equation

uxy D 0 in˝;

is it possible to assume an interior maximum in ˝?

3.3. Let ˝ be open and bounded in Rd. On

˝ � Œ0;1/ � R
dC1D f.x1; : : : ; xd ; t/g;

we consider the heat equation

ut D �u; where � D
d
X

iD1

@2

.@xi /2
:

Show that for bounded solutions u 2 C 2.˝ � .0;1// \ C 0. N̋ � Œ0;1//,

sup
˝� Œ0;1/

u � sup
. N̋ �f0g/[.@˝�Œ0;1//

u:

3.4. Let u W ˝ ! R be harmonic, ˝ 0 �� ˝ � Rd . We then have, for all i; j

between 1 and d ,

sup
˝0

juxi xj j �
�

2d

dist.˝ 0; @˝/

�2

sup
˝

juj:

Prove this inequality. Write down and demonstrate an analogous inequality for

derivatives of arbitrary order!

3.5. Let ˝ � Rd be open and bounded. Let u 2 C 2.˝/ \ C 0. N̋ / satisfy

�u D u3; x 2 ˝;

u � 0; x 2 @˝:

Show that u � 0 in ˝ .
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3.6. Prove a version of the maximum principle of Alexandrov and Bakelman for

operators

Lu D
n
X

i;jD1

aij .x/uxi xj .x/;

assuming in place of ellipticity only that det.aij .x// is positive in ˝ .

3.7. Control the maximum and minimum of the solution u of an elliptic Monge–

Ampère equation

det.uxi xj .x// D f .x/

in a bounded domain ˝ .

3.8. Let u 2 C 2.˝/ be a solution of the Monge–Ampère equation

det.uxi xj .x// D f .x/

in the domain ˝ with positive f . Suppose there exists x0 2 ˝ where the Hessian

of u is positive definite. Show that the equation then is elliptic at u in all of ˝ .

3.9. Let R2 WD f.x1; x2/g;˝ WD
ı

B.0;R2/ n B.0;R1/ with R2 > R1 > 0. The

function �.x1; x2/ WD aCb log.jxj/ is harmonic in˝ for all a; b. Let u 2 C 2.˝/\
C 0. N̋ / be subharmonic, i.e.,

�u � 0; x 2 ˝:

Show that

M.r/ �
M.R1/ log.R2

r
/CM.R2/ log. r

R1
/

log.R2
R1
/

with

M.r/ WD max
@B.0;r/

u.x/

and R1 � r � R2.

3.10. Let

u1 WD 1

2
C 1

2
.x2 C y2/;

u2 WD 3

2
� 1

2
.x2 C y2/:

Show that u1 and u2 solve the Monge–Ampère equation

uxxuyy � u2xy D 1
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and

u1 D u2 D 1 on @B.0; 1/:

Is this compatible with the uniqueness result for the Dirichlet problem for nonlinear

elliptic PDEs?

3.11. Let ˝T WD ˝ � .0; T /, and suppose u 2 C 2.˝T / \ C 0. N̋
T / satisfies

ut D �u C u2 in˝T ;

u.x; t/ > c > 0 for .x; t/ 2 .˝ � f0g/[ .@˝ � Œ0; T //:

Show that

(a) u > c for all .x; t/ 2 N̋
T .

(b) If in addition u.x; t/ D u.x; 0/ for all x 2 @˝ and all t , then T < 1.



Chapter 4

Existence Techniques I: Methods Based

on the Maximum Principle

4.1 Difference Methods: Discretization of Differential

Equations

The basic idea of the difference methods consists in replacing the given differential

equation by a difference equation with step size h and trying to show that for

h ! 0, the solutions of the difference equations converge to a solution of the

differential equation. This is a constructive method that in particular is often applied

for the numerical (approximative) computation of solutions of differential equations.

In order to show the essential aspects of this method in a setting that is as simple as

possible, we consider only the Laplace equation

�u D 0 (4.1.1)

in a bounded domain in ˝ in Rd . We cover Rd with an orthogonal grid of mesh size

h > 0; i.e., we consider the points or vertices

�

x1; : : : ; xd
�

D .n1h; : : : ; nd h/ (4.1.2)

with n1; : : : ; nd 2 Z. The set of these vertices is called R
d
h , and we put

N̋
h WD ˝ \ R

d
h : (4.1.3)

We say that x D .n1h; : : : ; nd h/ and y D .m1h; : : : ; md h/ (all ni ; mj 2 Z) are

neighbors if

d
X

iD1

jni � mi j D 1; (4.1.4)

or equivalently

jx � yj D h: (4.1.5)
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Ω

Fig. 4.1 x (cross) and its neighbors (open dots) and an edge path in N̋
h (heavy line) and vertices

from �h (solid dots)

The straight lines between neighboring vertices are called edges. A connected union

of edges for which every vertex is contained in at most two edges is called an edge

path (see Fig. 4.1).

The boundary vertices of N̋
h are those vertices of N̋

h for which not all their

neighbors are contained in N̋
h. Let �h be the set of boundary vertices. Vertices in

N̋
h that are not boundary vertices are called interior vertices. The set of interior

vertices is called ˝h.

We suppose that ˝h is discretely connected, meaning that any two vertices in ˝h

can be connected by an edge path in ˝h. We consider a function

u W N̋
h ! R

and put, for i D 1; : : : ; d , x D .x1; : : : ; xd / 2 ˝h,

ui.x/ WD 1

h

�

u.x1; : : : ; xi�1; xi C h; xiC1; : : : ; xd / � u.x1; : : : ; xd /
�

;

uN{.x/ WD
1

h

�

u.x1; : : : ; xd / � u.x1; : : : ; xi�1; xi � h; xiC1; : : : ; xd /
�

: (4.1.6)

Thus, ui and uN{ are the forward and backward difference quotients in the i th

coordinate direction. Analogously, we define higher-order difference quotients, for

example,

uiN{.x/ D uN{i .x/ D .uN{/i .x/

D
1

h2

�

u.x1; : : : ; xi C h; : : : ; xd / � 2u.x1; : : : ; xd /

C u.x1; : : : ; xi � h; : : : ; xd /
�

: (4.1.7)

If we wish to emphasize the dependence on the mesh size h, we write uh; uh
i ; uh

N{i in

place of u; ui ; uiN{, etc.
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The main reason for considering difference quotients, of course, is that for

functions that are differentiable up to the appropriate order, for h ! 0, the difference

quotients converge to the corresponding derivatives. For example, for u 2 C 2.˝/,

lim
h!0

uhiN{.xh/ D @2

.@xi /2
u.x/; (4.1.8)

if xh 2 ˝h tends to x 2 ˝ for h ! 0. Consequently, we approximate the Laplace

equation

�u D 0 in ˝

by the difference equation

�huh WD
d
X

iD1

uh
iN{ D 0 in ˝h; (4.1.9)

and we call this equation the discrete Laplace equation. Our aim now is to solve the

Dirichlet problem for the discrete Laplace equation

�huh D 0 in ˝h;

uh D gh on �h; (4.1.10)

and to show that under appropriate assumptions, the solutions uh converge for h !
0 to a solution of the Dirichlet problem

�u D 0 in ˝;

u D g on @˝; (4.1.11)

where gh is a discrete approximation of g. Considering the values of uh at the

vertices of ˝h as unknowns, (4.1.10) leads to a linear system with the same number

of equations as unknowns. Those equations that come from vertices all of whose

neighbors are interior vertices themselves are homogeneous, while the others are

inhomogeneous.

It is a remarkable and useful fact that many properties of the Laplace equation

continue to hold for the discrete Laplace equation. We start with the discrete

maximum principle:

Theorem 4.1.1. Suppose

�huh � 0 in ˝h;

where ˝h, as always, is supposed to be discretely connected. Then

max
N̋h

uh D max
�h

uh: (4.1.12)

If the maximum is assumed at an interior point, then uh has to be constant.
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Proof. Let x0 be an interior vertex, and let x1; : : : ; x2d be its neighbors. Then

�huh.x/ D 1

h2

 

2d
X

˛D1

uh.x˛/ � 2duh.x0/

!

: (4.1.13)

If �huh.x/ � 0, then

uh.x0/ �
1

2d

2d
X

˛D1

uh.x˛/; (4.1.14)

i.e., uh.x0/ is not bigger than the arithmetic mean of the values of uh at the neighbors

of x0. This implies

uh.x0/ � max
˛D1;:::;2d

uh.x˛/; (4.1.15)

with equality only if

uh.x0/ D uh.x˛/ for all ˛ 2 f1; : : : ; 2d g: (4.1.16)

Thus, if u assumes an interior maximum at a vertex x0, it does so at all neighbors

of x0 as well, and repeating this reasoning, then also at all neighbors of neighbors,

etc. Since ˝h is discretely connected by assumption, uh has to be constant in N̋
h.

This is the strong maximum principle, which in turn implies the weak maximum

principle (4.1.12). ut

Corollary 4.1.1. The discrete Dirichlet problem

�huh D 0 in ˝h;

uh D gh on � h;

for given gh has at most one solution.

Proof. This follows in the usual manner by applying the maximum principle to the

difference of two solutions. ut

It is remarkable that in the discrete case this uniqueness result already implies an

existence result:

Corollary 4.1.2. The discrete Dirichlet problem

�huh D 0 in ˝h;

uh D gh on � h;

admits a unique solution for each gh W �h ! R.
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Proof. As already observed, the discrete problem constitutes a finite system of

linear equations with the same number of equations and unknowns. Since by

Corollary 4.1.1, for homogeneous boundary data gh D 0, the homogeneous solution

uh D 0 is the unique solution, the fundamental theorem of linear algebra implies the

existence of a solution for an arbitrary right-hand side, i.e., for arbitrary gh. ut

The solution of the discrete Poisson equation

�huh D f h in ˝h (4.1.17)

with given f h is similarly simple; here, without loss of generality, we consider only

the homogeneous boundary condition

uh D 0 on � h; (4.1.18)

because an inhomogeneous condition can be treated by adding a solution of the

corresponding discrete Laplace equation.

In order to represent the solution, we shall now construct a Green function

Gh.x; y/. For that purpose, we consider a particular f h in (4.1.17), namely,

f h.x/ D
(

0 for x ¤ y;
1
h2 for x D y;

for given y 2 ˝h. Then Gh.x; y/ is defined as the solution of (4.1.17) and (4.1.18)

for that f h. The solution for an arbitrary f h is then obtained as

uh.x/ D h2
X

y2˝h

Gh.x; y/f h.y/: (4.1.19)

In order to show that solutions of the discrete Laplace equation �huh D 0 in

˝h for h ! 0 converge to a solution of the Laplace equation �u D 0 in ˝ ,

we need estimates for the uh that do not depend on h. It turns out that as in the

continuous case, such estimates can be obtained with the help of the maximum

principle. Namely, for the symmetric difference quotient

uQ{.x/ WD 1

2h

�

u.x1; : : : ; xi�1; xi C h; xiC1; : : : ; xd /

� u.x1; : : : ; xi�1; xi � h; xiC1; : : : ; xd /
�

D
1

2
.ui.x/ C uN{.x// ; (4.1.20)

we may prove in complete analogy with Corollary 2.2.7 the following result:

Lemma 4.1.1. Suppose that in ˝h,

�huh.x/ D f h.x/: (4.1.21)
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Let x0 2 ˝h, and suppose that x0 and all its neighbors have distance greater than

or equal to R from �h. Then

ˇ

ˇuh
Q{ .x0/

ˇ

ˇ � d

R
max

˝h

ˇ

ˇuh
ˇ

ˇC R

2
max

˝h

ˇ

ˇf h
ˇ

ˇ : (4.1.22)

Proof. Without loss of generality i D 1, x0 D 0. We put

� WD max
˝h

ˇ

ˇuh
ˇ

ˇ ; M WD max
˝h

ˇ

ˇf h
ˇ

ˇ :

We consider once more the auxiliary function

vh.x/ WD �

R2
jxj2 C x1.R � x1/

�

d�

R2
C

M

2

�

:

Because of

�h jxj
2 D

d
X

iD1

1

h2

�

.xi C h/2 C .xi � h/2 � 2.xi/2
�

D 2d;

we have again

�hvh.x/ D �M

as well as

vh.0; x2; : : : ; xd / � 0 for all x2; : : : ; xd ;

vh.x/ � � for jxj � R; 0 � x1 � R:

Furthermore, for Nuh.x/ WD 1
2
.uh.x1; : : : ; xd / � uh.�x1; x2; : : : ; xd //;

ˇ

ˇ�h Nuh.x/
ˇ

ˇ � M for those x 2 ˝h, for which this expression is

defined,

Nuh.0; x2; : : : ; xd / D 0 for all x2; : : : ; xd ;
ˇ

ˇNuh.x/
ˇ

ˇ � � for jxj � R; x1 � 0:

On the discretization BC
h of the half-ball BC WD fjxj � R; x1 > 0g, we thus have

�h

�

vh ˙ Nuh
�

� 0

as well as

vh ˙ Nuh � 0 on the discrete boundary of BC
h
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(in order to be precise, here one should take as the discrete boundary all vertices in

the exterior of
ı

BC that have at least one neighbor in
ı

BC). The maximum principle

(Theorem 4.1.1) yields
ˇ

ˇNuh
ˇ

ˇ � vh in BC
h ;

and hence

ˇ

ˇuhQ{ .0/
ˇ

ˇ D 1

h

ˇ

ˇNuh.h; 0; : : : ; 0/
ˇ

ˇ � 1

h
vh.h; 0; : : : ; 0/

� d�

R
C R

2
M C �

R2
.1 � d/h:

ut

For solutions of the discrete Laplace equation

�huh D 0 in ˝h; (4.1.23)

we then inductively get estimates for higher-order difference quotients, because if

uh is a solution, so are all difference quotients uh
i ; uh

N{ ; uh
Q{
uh

iN{ ; uh
Q{N{

, etc. For example,

from (4.1.22) we obtain for a solution of (4.1.23) that if x0 is far enough from the

boundary �h, then

ˇ

ˇuh
Q{Q{.x0/

ˇ

ˇ �
d

R
max

˝h

ˇ

ˇuh
Q{

ˇ

ˇ �
d 2

R2
max

N̋h

ˇ

ˇuh
ˇ

ˇ D
d 2

R2
max

�h

ˇ

ˇuh
ˇ

ˇ : (4.1.24)

Thus, by induction, we can bound difference quotients of any order, and we obtain

the following theorem:

Theorem 4.1.2. If all solutions uh of

�huh D 0 in ˝h

are bounded independently of h (i.e., max�h

ˇ

ˇuh
ˇ

ˇ � �), then in any subdomain

Q̋ �� ˝ , some subsequence of uh converges to a harmonic function as h ! 0.

Convergence here first means convergence with respect to the supremum

norm, i.e.,

lim
n!0

max
x2˝n

jun.x/ � u.x/j D 0;

with harmonic u. By the preceding considerations, however, the difference quotients

of un converge to the corresponding derivatives of u as well.

We wish to briefly discuss some aspects of difference equations that are

important in numerical analysis. There, for theoretical reasons, one assumes that

one already knows the existence of a smooth solution of the differential equation

under consideration, and one wants to approximate that solution by solutions of

difference equations. For that purpose, let L be an elliptic differential operator and

consider discrete operators Lh that are applied to the restriction of a function u to

the lattice ˝h.
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Definition 4.1.1. The difference scheme Lh is called consistent with L if

lim
h!0

.Lu �Lhu/ D 0

for all u 2 C 2. N̋ /.

The scheme Lh is called convergent to L if the solutions u; uh of

Lu D f in ˝; u D ' on @˝ ,

Lhuh D f h in ˝h;where f h is the restriction of f to ˝h,

uh D 'h on �h, where 'h is the restriction to ˝h of a

continuous extension of ',

satisfy

lim
h!0

max
x2˝h

juh.x/ � u.x/j D 0:

In order to see the relation between convergence and consistency we consider the

“global error”

�.x/ WD uh.x/ � u.x/

and the “local error”

s.x/ WD Lhu.x/ � Lu.x/

and compute, for x 2 ˝h,

Lh�.x/ D Lhuh.x/ � Lhu.x/ D f h.x/ � Lu.x/ � s.x/

D �s.x/; since f h.x/ D f .x/ D Lu.x/:

Since

lim
h!0

sup
x2�h

j�.x/j D 0;

the problem essentially is

Lh�.x/ D �s.x/ in ˝h;

�.x/ D 0 on �h:

In order to deduce the convergence of the scheme from its consistency, one thus

needs to show that if s.x/ tends to 0, so does the solution �.x/, and in fact uniformly.

Thus, the inverses L�1
h have to remain bounded in a sense that we shall not make

precise here. This property is called stability.
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In the spirit of these notions, let us show the following simple convergence result:

Theorem 4.1.3. Let u 2 C 2. N̋ / be a solution of

�u D f in ˝;

u D ' on @˝:

Let uh be the solution

�huh D f h in ˝h;

uh D 'h on �h;

where f hand'h are defined as above. Then

max
x2˝h

ˇ

ˇuh.x/ � u.x/
ˇ

ˇ ! 0 for h ! 0:

Proof. Taylor’s formula implies that the second-order difference quotients (which

depend on the mesh size h) satisfy

uiN{.x/ D
@2u

.@xi /2

�

x1; : : : ; xi�1; xi C ıi ; xiC1; : : : ; xd
�

;

with �h � ıi � h. Since u 2 C 2. N̋ /, we have

sup
jıi j�h

�

@2u

.@xi /2
.x1; : : : ; xi C ıi ; : : : ; xd / �

@2u

.@xi /2
.x1; : : : ; xi ; : : : ; xd /

�

! 0

for h ! 0, and thus the above local error satisfies

sup js.x/j ! 0 for h ! 0:

Now let ˝ be contained in a ball B.x0; R/; without loss of generality x0 D 0.

The maximum principle then implies, through comparison with the function R2�

jxj
2, that a solution v of

�hv D � in ˝h;

v D 0 on �h;

satisfies the estimate

jv.x/j �
sup j�j

2d

�

R2 � jxj
2
�

:

Thus, the global error satisfies

sup j�.x/j �
R2

2d
sup js.x/j ;

hence the desired convergence. ut
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4.2 The Perron Method

Let us first recall the notion of a subharmonic function from Sect. 2.2, since this will

play a crucial role:

Definition 4.2.1. Let ˝ � Rd , f W ˝ ! Œ�1;1/ upper semicontinuous in ˝ ,

f 6� �1. The function f is called subharmonic in ˝ if for all ˝ 0 �� ˝ , the

following property holds:

If u is harmonic in˝ 0 and f � u on @˝ 0, then also f � u

in ˝ 0.

The next lemma likewise follows from the results of Sect. 2.2:

Lemma 4.2.1. (i) Strong maximum principle: Let v be subharmonic in˝ . If there

exists x0 2 ˝ with v.x0/ D sup˝ v.x/, then v is constant. In particular, if

v 2 C 0. N̋ /, then v.x/ � max@˝ v.y/ for all x 2 ˝ .

(ii) If v1; : : : ; vn are subharmonic, so is v WD max.v1; : : : ; vn/.

(iii) If v 2 C 0. N̋ / is subharmonic and B.y;R/ �� ˝ , then the harmonic

replacement Nv of v, defined by

Nv.x/ WD

8

<

:

v.x/ for x 2 ˝ n B.y;R/;
R2�jx�yj2

dwdR

R

@B.y;R/
v.z/

jz�xjd
do.z/ for x 2 B.y;R/;

is subharmonic in ˝ (and harmonic in B.y;R/).

Proof. (i) This is the strong maximum principle for subharmonic functions.

Although we have not written it down explicitly, it is a direct consequence

of Theorem 2.2.2 and Lemma 2.2.1.

(ii) Let ˝ 0 �� ˝ , u harmonic in ˝ 0, v � u on @˝ 0. Then also

vi � u on @˝ 0 for i D 1; : : : ; n;

and hence, since vi is subharmonic,

vi � u on˝ 0:

This implies

vi � u on˝ 0;

showing that v is subharmonic.

(iii) First v � Nv, since v is subharmonic. Let ˝ 0 �� ˝ , u harmonic in ˝ 0, v � u

on @˝ 0. Since v � v, also v � u on @˝ 0, and thus, since v is subharmonic,

v � u on ˝ 0 and thus v � u on ˝ 0 n
ı

B.y;R/. Therefore, also v � u on
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˝ 0 \ @B.y;R/. Since v is harmonic, hence subharmonic on ˝ 0 \B.y;R/, we

get v � u on ˝ 0 \ B.y;R/. Altogether, we obtain v � u on ˝ 0. This shows

that v is subharmonic. ut

For the sequel, let ' be a bounded function on ˝ (not necessarily continuous).

Definition 4.2.2. A subharmonic function u 2 C 0. N̋ / is called a subfunction with

respect to ' if

u � ' for all x 2 @˝:

Let S' be the set of all subfunctions with respect to '. (Analogously, a superhar-

monic function u 2 C 0. N̋ / is called superfunction with respect to ' if u � '

on @˝ .)

The key point of the Perron method is contained in the following theorem:

Theorem 4.2.1. Let

u.x/ WD sup
v2S'

v.x/: (4.2.1)

Then u is harmonic.

Remark. If w 2 C 2.˝/ \ C 0. N̋ / is harmonic on ˝ and if w D ' on @˝ , the

maximum principle implies that for all subfunctions v 2 S' , we have v � w in ˝

and hence

w.x/ D sup
v2S'

v.x/:

Thus, w satisfies an extremal property. The idea of the Perron method (and the

content of Theorem 4.2.1) is that, conversely, each supremum in S' yields a

harmonic function.

Proof of Theorem 4.2.1: First of all, u is well defined, since by the maximum

principle v � sup@˝ ' < 1 for all v 2 S' . Now let y 2 ˝ be arbitrary.

By (4.2.1) there exists a sequence fvng � S' with limn!1 vn.y/ D u.y/. Replacing

vn by max.v1; : : : ; vn; inf@˝ '/, we may assume without loss of generality that

.vn/n2N is a monotonically increasing, bounded sequence. We now choose R with

B.y;R/ �� ˝ and consider the harmonic replacements Nvn for B.y;R/. The

maximum principle implies that .Nvn/n2N likewise is a monotonically increasing

sequence of subharmonic functions that are even harmonic in B.y;R/. By the

Harnack convergence theorem (Corollary 2.2.10), the sequence .Nvn/ converges

uniformly on B.y;R/ towards some v that is harmonic on B.y;R/. Furthermore,

lim
n!1

Nvn.y/ D v.y/ D u.y/; (4.2.2)

since u � Nvn � vn and limn!1 vn.y/ D u.y/. By (4.2.1), we then have v � u in

B.y;R/. We now show that v � u in B.y;R/. Namely, if

v.z/ < u.z/ for some z 2 B.y;R/; (4.2.3)
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by (4.2.1), we may find Qu 2 S' with

v.z/ < Qu.z/: (4.2.4)

Now let

wn WD max.vn; Qu/: (4.2.5)

In the same manner as above, by the Harnack convergence theorem (Corollary

2.2.10), Nwn converges uniformly on B.y;R/ towards some w that is harmonic on

B.y;R/. Since wn � vn and wn 2 S' ,

v � w � u in B.y;R/: (4.2.6)

By (4.2.2) we then have

w.y/ D v.y/; (4.2.7)

and with the help of the strong maximum principle for harmonic functions

(Corollary 2.2.3), we conclude that

w � v inB.y;R/: (4.2.8)

This is a contradiction, because by (4.2.4),

w.z/ D lim
n!1

Nwn.z/ D lim
n!1

max.vn.z/; Qu.z// � Qu.z/ > v.z/ D w.z/:

Therefore, u is harmonic in ˝ .

Theorem 4.2.1 tells us that we obtain a harmonic function by taking the

supremum of all subfunctions of a bounded function '. It is not clear at all, however,

that the boundary values of u coincide with vp. Thus, we now wish to study the

question of when the function u.x/ WD supv2S'
v.x/ satisfies

lim
x!�2@˝

u.x/ D '.�/:

For that purpose, we shall need the concept of a barrier.

Definition 4.2.3. (a) Let � 2 @˝ . A function ˇ 2 C 0.˝/ is called a barrier at �

with respect to ˝ if

(i) ˇ > 0 in N̋ n f�g; ˇ.�/ D 0.

(ii) ˇ is superharmonic in ˝ .

(b) � 2 @˝ is called regular if there exists a barrier ˇ at � with respect to ˝ .

Remark. The regularity is a local property of the boundary @˝: Let ˇ be a local

barrier at � 2 @˝; i.e., there exists an open neighborhood U.�/ such that ˇ is a

barrier at � with respect to U \ ˝ . If then B.�; �/ �� U and m WD infU nB.�;�/ ˇ,

then
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Q̌ WD
(

m for x 2 N̋ n B.�; �/;

min.m; ˇ.x// for x 2 N̋ \ B.�; �/;

is a barrier at � with respect to ˝ .

Lemma 4.2.2. Suppose u.x/ WD supv2S'
v.x/ in ˝ . If � is a regular point of @˝

and ' is continuous at �, we have

lim
x!�

u.x/ D '.�/: (4.2.9)

Proof. Let M WD sup@˝ j'j. Since � is regular, there exists a barrier ˇ, and the

continuity of ' at � implies that for every " > 0 there exists ı > 0 and a constant

c D c."/ such that

j'.x/ � '.�/j < " for jx � �j < ı; (4.2.10)

cˇ.x/ � 2M for jx � �j � ı (4.2.11)

(the latter holds, since infjx��j�ı ˇ.x/ DW m > 0 by definition of ˇ). The functions

'.�/ C " C cˇ.x/;

'.�/ � " � cˇ.x/;

then are super- and subfunctions, respectively, with respect to ', by (4.2.10) and

(4.2.11). By definition of u thus

'.�/ � " � cˇ.x/ � u.x/;

and since superfunctions dominate subfunctions, we also have

u.x/ � '.�/ C " C cˇ.x/:

Hence, altogether,

ju.x/ � '.�/j � " C cˇ.x/: (4.2.12)

Since limx!� ˇ.x/ D 0, it follows that limx!� u.x/ D '.�/. ut

Theorem 4.2.2. Let ˝ � Rd be bounded. The Dirichlet problem

�u D 0 in ˝;

u D ' on @˝;

is solvable for all continuous boundary values ' if and only if all points � 2 @˝ are

regular.
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Proof. If ' is continuous and @˝ is regular, then u WD supv2S'
v solves the Dirichlet

problem by Theorem 4.2.1. Conversely, if the Dirichlet problem is solvable for all

continuous boundary values, we consider � 2 @˝ and '.x/ WD jx � �j. The solution

u of the Dirichlet problem for that ' 2 C 0.@˝/ then is a barrier at � with respect

to ˝ , since u.�/ D '.�/ D 0 and since min@˝ '.x/ D 0, by the strong maximum

principle u.x/ > 0, so that � is regular. ut

4.3 The Alternating Method of H.A. Schwarz

The idea of the alternating method consists in deducing the solvability of the

Dirichlet problem on a union ˝1 [˝2 from the solvability of the Dirichlet problems

on ˝1 and ˝2. Of course, only the case ˝1 \ ˝2 ¤ ; is of interest here.

In order to exhibit the idea, we first assume that we are able to solve the

Dirichlet problem on ˝1 and ˝2 for arbitrary piecewise continuous boundary data

without worrying whether or how the boundary values are assumed at their points

of discontinuity. We shall need the following notation (see Fig. 4.2):

Then @˝ D �1[�2, and since we wish to consider sets ˝1; ˝2 that are overlapping,

we assume @˝� D 
1 [ 
2 [ .�1 \ �2/. Thus, let boundary values ' by given on

@˝ D �1 [ �2. We put

'i WD 'j�i .i D 1; 2/;

m WD inf
@˝

';

M WD sup
@˝

':

We exclude the trivial case ' D const. Let u1 W ˝1 ! R be harmonic with boundary

values

u1j�1 D '1; u1j
1 D M: (4.3.1)

Next, let u2 W ˝2 ! R be harmonic with boundary values

u2j�2 D '2; u2j
2 D u1j
2 : (4.3.2)

Γ
1

Ω
1

Ω∗

Ω
2

Γ
2

γ2 γ1

Fig. 4.2
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Unless '1 � M , by the strong maximum principle,

u1 < M in ˝1
1I (4.3.3)

hence in particular,

u2j
2 < M; (4.3.4)

and by the strong maximum principle, also

u2 < M in ˝2; (4.3.5)

and thus in particular,

u2j
1 < u1j
1 : (4.3.6)

If '1 � M , then by our assumption that ' � const is excluded, '2 6� M , and (4.3.6)

likewise holds by the maximum principle. Since by (4.3.2), u1 and u2 coincide on

the partition of the boundary of ˝ � , by the maximum principle again

u2 < u1 in ˝ � :

Inductively, for n 2 N, let

u2nC1 W ˝1 ! R; u2nC2 W ˝2 ! R;

be harmonic with boundary values

u2nC1j�1 D '1; u2nC1j
1 D u2nj
1 ; (4.3.7)

u2nC2j�2 D '2; u2nC2j
2 D u2nC1j
2 : (4.3.8)

From repeated application of the strong maximum principle, we obtain

u2nC3 < u2nC2 < u2nC1 on ˝ � ; (4.3.9)

u2nC3 < u2nC1 on ˝1; (4.3.10)

u2nC4 < u2nC2 on ˝2: (4.3.11)

Thus, our sequences of functions are monotonically decreasing. Since they are also

bounded from below by m, they converge to some limit

u W ˝ ! R:

1The boundary values here are not continuous as in the maximum principle, but they can easily

be approximated by continuous ones satisfying the same bounds. This easily implies that the

maximum principle continues to hold in the present situation.
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The Harnack convergence theorem (Corollary 2.2.10) then implies that u is har-

monic on ˝1 and ˝2, hence also on ˝ D ˝1 [ ˝2. This can also be directly

deduced from the maximum principle: For simplicity, we extend un to all of ˝ by

putting

u2nC1 WD u2n on ˝2 n˝�;

u2nC2 WD u2nC1 on ˝1 n˝�:

Then u2nC1 is obtained from u2n by harmonic replacement on ˝1, and analogously,

u2nC2 is obtained from u2nC1 by harmonic replacement on ˝2. We write this

symbolically as

u2nC1 D P1u2n; (4.3.12)

u2nC2 D P2u2nC1: (4.3.13)

For example, on ˝1 we then have

u D lim
n!1

u2n D lim
n!1

P1u2n: (4.3.14)

By the maximum principle, the uniform convergence of the boundary values

(in order to get this uniform convergence, we may have to restrict ourselves to an

arbitrary subdomain ˝ 0
1 �� ˝1) implies the uniform convergence of the harmonic

extensions. Consequently, the harmonic extension of the limit of the boundary

values equals the limit of the harmonic extensions, i.e.,

P1 lim
n!1

u2n D lim
n!1

P1u2n: (4.3.15)

Equation (4.3.14) thus yields

u D P1u; (4.3.16)

meaning that on˝1, u coincides with the harmonic extension of its boundary values,

i.e., is harmonic. For the same reason, u is harmonic on ˝2.

We now assume that the boundary values ' are continuous and that all boundary

points of ˝1 and ˝2 are regular. Then first of all it is easy to see that u assumes its

boundary values ' on @˝ n .�1 \ �2/ continuously. To verify this, we carry out the

same alternating process with harmonic functions v2n�1 W ˝1 ! R, v2n W ˝2 ! R

starting with boundary values

v1j�1 D '1; v1j
1 D m (4.3.17)

in place of (4.3.1). The resulting sequence .vn/n2N then is monotonically increasing,

and the maximum principle implies

vn < un in ˝ for all n: (4.3.18)
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Since we assume that @˝1 and @˝2 are regular and ' is continuous, un and vn then

are continuous at every x 2 @˝ n .�1 \�2/. The monotonicity of the sequence .un/,

the fact that un.x/ D vn.x/ D '.x/ for x 2 @˝ n .�1 \ �2/ for all n, and (4.3.18)

then imply that u D limn!1 un at x as well.

The question whether u is continuous at @˝1 \ @˝2 is more difficult, as can

be expected already from the observation that the chosen boundary values for u1

typically are discontinuous there even for continuous '. In order to be able to treat

that issue here in an elementary manner, we add the hypotheses that the boundaries

of ˝1 and ˝2 are of class C 1 in some neighborhood of their intersection and that

they intersect at a nonzero angle. Under this hypotheses, we have the following

lemma:

Lemma 4.3.1. There exists some q < 1, depending only on ˝1 and ˝2, with the

following property: If w W ˝1 ! R is harmonic in ˝1 and continuous on the closure
N̋

1 and if

w D 0 on �1;

jwj � 1 on 
1;

then

jwj � q on 
2; (4.3.19)

and a corresponding result holds if the roles of ˝1 and ˝2 are interchanged.

The proof will be given in Sect. 4.4 below.

With the help of this lemma we may now modify the alternating method in such

a manner that we also get continuity on @˝1 \ @˝2. For that purpose, we choose an

arbitrary continuous extension N' of ' to 
1, and in place of (4.3.1), for u1 we require

the boundary condition

u1j�1 D '1; u1j
1 D N'; (4.3.20)

and otherwise carry through the same procedure as above. Since the boundaries @˝1

and @˝2 are assumed regular, all un then are continuous up to the boundary. We put

M2nC1 WD max

2

ju2nC1 � u2n�1j ;

M2nC2 WD max

1

ju2nC2 � u2nj :

On 
2, we then have

u2nC2 D u2nC1; u2n D u2n�1;

hence

u2nC2 � u2n D u2nC1 � u2n�1;
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and analogously on 
1,

u2nC3 � u2nC1 D u2nC2 � u2n:

Thus, applying the lemma with w D
.u2nC3�u2nC1/

M2nC2
, we obtain

M2nC3 � qM2nC2

and analogously

M2nC2 � qM2nC1:

Thus Mn converges to 0 at least as fast as the geometric series with coefficient q < 1.

This implies the uniform convergence of the series

u1 C

1
X

nD1

.u2nC1 � u2n�1/ D lim
n!1

u2nC1

on N̋
1, and likewise the uniform convergence of the series

u2 C

1
X

nD1

.u2nC2 � u2n/ D lim
n!1

u2n

on N̋
2. The corresponding limits again coincide in ˝�, and they are harmonic on

˝1, respectively ˝2, so that we again obtain a harmonic function u on ˝ . Since all

the un are continuous up to the boundary and assume the boundary values given by

' on @˝ , u then likewise assumes these boundary values continuously.

We have proved the following theorem:

Theorem 4.3.1. Let ˝1 and ˝2 be bounded domains all of whose boundary points

are regular for the Dirichlet problem. Suppose that ˝1 \ ˝2 ¤ ; and that ˝1 and

˝2 are of class C 1 in some neighborhood of @˝1 \ @˝2 and that they intersect

there at a nonzero angle. Then the Dirichlet problem for the Laplace equation on

˝ WD ˝1 [ ˝2 is solvable for any continuous boundary values.

4.4 Boundary Regularity

Our first task is to present the proof of Lemma 4.3.1:

In the sequel, with r WD jx � yj ¤ 0, we put

˚.r/ WD �d!d � .r/ D

(

ln 1
r

for d D 2;

1
d�2

1

rd�2 for d � 3:
(4.4.1)



4.4 Boundary Regularity 77

Γ
1

O

x

y

γ2

Ω
1

Γ
2

Ω
2

γ1

dγ1(y)α

Fig. 4.3

O

x
y

dω

γ1

dγ1(y)

ν

dγ1(y)cos β

β

Fig. 4.4

We then have for all � 2 R
n,

@

@�
˚.r/ D r˚ � � D �

1

rd
.x � y/ � 
� (4.4.2)

We consider the situation depicted in Fig. 4.3.

That is, x 2 ˝1; y 2 
1, ˛ ¤ 0; �; @˝1; @˝2 2 C 1. Let d
1.y/ be an

infinitesimal boundary portion of 
1 (see Fig. 4.4).

Let d! be the infinitesimal spatial angle at which the boundary piece d
1.y/ is

seen from x. We then have

d
1.y/ cos ˇ D jx � yj
d�1 d! (4.4.3)

and cos ˇ D
y�x

jy�xj
� �. This and (4.4.2) imply

h.x/ WD

Z


1

@

@�
˚.r/d
1.y/ D

Z


1

d!: (4.4.4)

The geometric meaning of (4.4.4) is that
R


1

@˚
@�

.r/d
1.y/ describes the spatial

angle at which the boundary piece 
1 is seen at x. Since derivatives of harmonic

functions are harmonic as well, (4.4.4) yields a function h that is harmonic on ˝1
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and continuous on @˝1 n .�1 \ �2/. In order to make the proof of Lemma 4.3.1

geometrically as transparent as possible, from now on, we only consider the case

d D 2 and point out that the proof in the case d � 3 proceeds analogously.

Let A and B be the two points where �1 and �2 intersect (Fig. 4.5). Then h is not

continuous at A and B , because

lim
x!A
x2�1

h.x/ D ˇ; (4.4.5)

lim
x!A
x2
1

h.x/ D ˇ C �; (4.4.6)

lim
x!A
x2
2

h.x/ D ˛ C ˇ: (4.4.7)

Let

�.x/ WD � for x 2 
1

and

�.x/ WD 0 for x 2 �1:

Then hj@˝1 � � is continuous on all of @˝1, because

lim
x!A
x2�1

.h.x/ � �.x// D lim
x!A
x2�1

h.x/ � 0 D ˇ;

lim
x!A
x2
1

.h.x/ � �.x// D lim
x!A
x2
1

h.x/ � � D ˇ C � � � D ˇ:

By assumption, there then exists a function u 2 C 2.˝1/ \ C 0. N̋
1/ with

�u D 0 in ˝1;

u D hj@˝1 � � on @˝1:
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For

v.x/ WD h.x/ � u.x/

�
(4.4.8)

we have

�v D 0 for x 2 ˝1;

v.x/ D 0 for x 2 �1;

v.x/ D 1 for x 2 
1:

The strong maximum principle thus implies

v.x/ < 1 for all x 2 ˝1; (4.4.9)

and in particular,

v.x/ < 1 for all x 2 
2: (4.4.10)

Now

lim
x!A
x2
2

v.x/ D
1

�

 

lim
x!A
x2
2

h.x/ � ˇ

!

D
˛

�
< 1; (4.4.11)

since ˛ < � by assumption. Analogously, lim x!B
x2
2

v.x/ < 1, and hence since N
2 is

compact,

v.x/ < q < 1 for all x 2 N
2 (4.4.12)

for some q > 0. We put m WD v � w and obtain

m.x/ D 0 for x 2 �1;

m.x/ � 0 for x 2 
1:

Since m is continuous in @˝1 n .�1 \ �2/ and @˝1 is regular, it follows that

lim
x!x0

m.x/ D m.x0/ for all x0 2 @˝1 n .�1 \ �2/:

By the maximum principle, m.x/ � 0 for all x 2 ˝1, and since also

lim
x!A

m.x/ D lim
x!A

v.x/ � w.A/ D lim
x!A

v.x/ � 0 (w is continuous);

we have for all x 2 N
2,

w.x/ � v.x/ < q < 1: (4.4.13)
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The analogous considerations for M WD v C w yield the inequality

�w.x/ � v.x/ < q < 1I (4.4.14)

hence, altogether,

jw.x/j < q < 1 for all x 2 N
2:

We now wish to present a sufficient condition for the regularity of a boundary

point y 2 @˝:

Definition 4.4.1. ˝ satisfies an exterior sphere condition at y 2 @˝ if there exists

x0 2 R
n with B.x0; �/ \ N̋ D fyg.

Examples. (a) All convex regions and all regions of class C 2 satisfy an exterior

sphere condition at every boundary point. (See Fig. 4.6a.)

(b) At inward cusps, the exterior sphere condition does not hold. (See Fig. 4.6b.)

Lemma 4.4.1. If ˝ satisfies an exterior sphere condition at y, then @˝ is regular

at y.

Proof.

ˇ.x/ WD

8

<

:

1

�d�2 � 1

jx�x0jd�2 for d � 3;

ln jx�x0j
�

for d D 2;

yields a barrier at y. Namely, ˇ.y/ D 0 and ˇ is harmonic in R
n n fx0g, hence

in particular in ˝ . Since for x 2 N̋ n fyg, jx � x0j > �, also ˇ.x/ > 0 for all

x 2 N̋ n fyg. ut

We now wish to present Lebesgue’s example of a nonregular boundary point,

constructing a domain with a sufficiently pointed inward cusp.

Let R3 D f.x; y; z/g, x 2 Œ0; 1�, �2 WD y2 C z2,

u.x; y; z/ WD

Z 1

0

x0
p

.x0 � x/2 C �2
dx0 D v.x; �/ � 2x ln �



4.4 Boundary Regularity 81

x0

y, z

Fig. 4.7

Ω

−
1
2 0 1

2

Fig. 4.8

with

v.x; �/ D
p

.1 � x/2 C �2 �
p

x2 C �2

C x ln
ˇ

ˇ

ˇ

�

1 � x C
p

.1 � x/2 C �2

� �

x C
p

x2 C �2

�
ˇ

ˇ

ˇ
:

We have

lim
.x;�/!0

x>0

v.x; �/ D 1:

The limiting value of �2x ln �, however, crucially depends on the sequence .x; �/

converging to 0. For example, if � D jxj
n, we have

�2x ln � D �2nx ln jxj
x!0
���! 0:

On the other hand, if � D e� k
2x , k; x > 0, we have

lim
.x;�/!0

.�2x ln �/ D k > 0:

The surface � D e� k
2x has an “infinitely pointed” cusp at 0. (See Fig. 4.7.)

Considering u as a potential, this means that the equipotential surfaces of u for the

value 1 Ck come together at 0, in such a manner that f 0.0/ D 0 if the equipotential

surface is given by � D f .x/. With ˝ as an equipotential surface for 1C k, then u

solves the exterior Dirichlet problem, and by reflection at the ball .x � 1
4
/2 C y2 C

z2 D 1
4
, one obtains a region ˝ 0 as in Fig. 4.8.

Depending on the manner, in which one approaches the cusp, one obtains

different limiting values, and this shows that the solution of the potential problem

cannot be continuous at .x; y; z/ D
�

� 1
2
; 0; 0

�

, and hence @˝ 0 is not regular at
�

� 1
2
; 0; 0

�

.
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Summary

The maximum principle is the decisive tool for showing the convergence of various

approximation schemes for harmonic functions. The difference methods replace

the Laplace equation, a differential equation, by difference equations on a discrete

grid, i.e., by finite-dimensional linear systems. The maximum principle implies

uniqueness, and since we have a finite-dimensional system, then it also implies the

existence of a solution, as well as the control of the solution by its boundary values.

The Perron method constructs a harmonic function with given boundary values

as the supremum of all subharmonic functions with those boundary values. Whether

this solution is continuous at the boundary depends on the geometry of the boundary,

however.

The alternating method of H.A. Schwarz obtains a solution on the union of two

overlapping domains by alternately solving the Dirichlet problem on each of the two

domains with boundary values in the overlapping part coming from the solution of

the previous step on the other domain.

Exercises

4.1. Employing the notation of Sect. 4.1, let x0 2 ˝h � R
2
h have neighbors

x1; : : : ; x4. Let x5; : : : ; x8 be those points in R
3 that are neighbors of exactly two

of the points x1; : : : ; x4. We put

Q̋
h WD fx0 2 ˝h W x1; : : : ; x8 2 N̋

h/:

For u W N̋
h ! R, x0 2 Q̋

h, we put

Q�hu.x0/ D 1

6h2

0

@4

4
X

˛D1

u.x˛/ C
8
X

ˇD5

u.xˇ/ � 20u.x0/

1

A :

Discuss the solvability of the Dirichlet problem for the corresponding Laplace and

Poisson equations.

4.2. Let x0 2 ˝h have neighbors x1; : : : ; x2d . We consider a difference operator

Lu for u W ˝h ! R,

Lu.x0/ D

2d
X

˛D0

b˛u.x˛/;

satisfying the following assumptions:

b˛ � 0 for ˛ D 1; : : : ; 2d;

2d
X

˛D1

b˛ > 0;

2d
X

˛D0

b˛ � 0:
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Prove the weak maximum principle: Lu � 0 in ˝h implies

max
˝h

u � max
�h

u:

4.3. Under the assumptions of Sect. 4.2, assume in addition

b˛ > 0 for ˛ D 1; : : : ; 2d;

and let ˝h be discretely connected. Show that if a solution of Lu � 0 assume its

maximum at a point of ˝h, it has to be constant.

4.4. Carry out the details of the alternating method for the union of three domains.

4.5. Let u be harmonic on the domain ˝ , x0 2 ˝; B.x0; R/ � ˝; 0 � r � � �

R; �2 D rR. Then

Z

j#jD1

u.x0 C r#/u.x0 C R#/d# D

Z

j#jD1

u2.x0 C �#/d#:

Conclude that if u is constant in some neighborhood of x0, it is constant on all of ˝ .



Chapter 5

Existence Techniques II: Parabolic Methods.

The Heat Equation

5.1 The Heat Equation: Definition and Maximum Principles

Let ˝ 2 R
d be open, .0; T / � R [ f1g,

˝T WD ˝ � .0; T /;

@�˝T WD
�

N̋ � f0g
�

[
�

@˝ � .0; T /
�

: (See Fig. 5.1.)

We call @�˝T the reduced boundary of ˝T .

For each fixed t 2 .0; T / let u.x; t/ 2 C 2.˝/, and for each fixed x 2 ˝ let

u.x; t/ 2 C 1..0; T //. Moreover, let f 2 C 0.@�˝T /, u 2 C 0. N̋
T /. We say that u

solves the heat equation with boundary values f if

ut.x; t/ D �xu.x; t/ for .x; t/ 2 ˝T ;

u.x; t/ D f .x; t/ for .x; t/ 2 @�˝T : (5.1.1)

Written out with a less compressed notation, the differential equation is

@

@t
u.x; t/ D

d
X

iD1

@2

@x2
i

u.x; t/:

Equation (5.1.1) is a linear, parabolic partial differential equation of second order.

The reason that here, in contrast to the Dirichlet problem for harmonic functions, we

are prescribing boundary values only at the reduced boundary is that for a solution

of a parabolic equation, the values of u on ˝ � fT g are already determined by its

values on @�˝T , as we shall see in the sequel.

The heat equation describes the evolution of temperature in heat-conducting

media and is likewise important in many other diffusion processes. For example, if

we have a body in R
3 with given temperature distribution at time t0 and if we keep

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,

DOI 10.1007/978-1-4614-4809-9 5,
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the temperature on its surface constant, this determines its temperature distribution

uniquely at all times t > t0. This is a heuristic reason for prescribing the boundary

values in (5.1.1) only at the reduced boundary.

Replacing t by �t in (5.1.1) does not transform the heat equation into itself.

Thus, there is a distinction between “past” and “future.” This is likewise heuristically

plausible.

In order to gain some understanding of the heat equation, let us try to find

solutions with separated variables, i.e., of the form

u.x; t/ D v.x/w.t/: (5.1.2)

Inserting this ansatz into (5.1.1), we obtain

wt .t/

w.t/
D �v.x/

v.x/
: (5.1.3)

Since the left-hand side of (5.1.3) is a function of t only, while the right-hand side

is a function of x, each of them has to be constant. Thus

�v.x/ D ��v.x/; (5.1.4)

wt .t/ D ��w.t/; (5.1.5)

for some constant �. We consider the case where we assume homogeneous boundary

conditions on @˝ � Œ0;1/, i.e.,

u.x; t/ D 0 for x 2 @˝;

or equivalently,

v.x/ D 0 for x 2 @˝: (5.1.6)

From (5.1.4) we then get through multiplication by v and integration by parts

Z

˝

jDv.x/j2dx D �

Z

˝

v.x/�v.x/dx D �

Z

˝

v.x/2dx:
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Consequently,

� � 0

(and this is the reason for introducing the minus sign in (5.1.4) and (5.1.5)).

A solution v of (5.1.4) and (5.1.6) that is not identically 0 is called an

eigenfunction of the Laplace operator, and � an eigenvalue. We shall see in

Sect. 11.5 that the eigenvalues constitute a discrete sequence .�n/n2N, �n ! 1

for n ! 1. Thus, a nontrivial solution of (5.1.4) and (5.1.6) exists precisely if

� D �n, for some n 2 N. The solution of (5.1.5) then is simply given by

w.t/ D w.0/e��t :

So, if we denote an eigenfunction for the eigenvalue �n by vn, we obtain the solution

u.x; t/ D vn.x/w.0/e
��n t

of the heat equation (5.1.1), with the homogeneous boundary condition

u.x; t/ D 0 for x 2 @˝

and the initial condition

u.x; 0/ D vn.x/w.0/:

This seems to be a rather special solution. Nevertheless, in a certain sense, this

is the prototype of a solution. Namely, because (5.1.1) is a linear equation, any

linear combination of solutions is a solution itself, and so we may take sums of such

solutions for different eigenvalues �n. In fact, as we shall demonstrate in Sect. 11.5,

any L2-function on ˝ , and thus in particular any continuous function f on N̋ ,

assuming˝ to be bounded, which vanishes on @˝ , can be expanded as

f .x/ D
X

n2N
˛nvn.x/; (5.1.7)

where the vn.x/ are the eigenfunctions of �, normalized via

Z

˝

vn.x/
2dx D 1

and mutually orthogonal:

Z

˝

vn.x/vm.x/dx D 0 for n ¤ m:
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Then ˛n can be computed as

˛n D
Z

˝

vn.x/f .x/dx:

We then have an expansion for the solution of

ut.x; t/ D �u.x; t/ for x 2 ˝; t � 0;

u.x; t/ D 0 for x 2 @˝; t � 0;

u.x; 0/ D f .x/

 

D
X

n

˛nvn.x/

!

; for x 2 ˝; (5.1.8)

namely,

u.x; t/ D
X

n2N

˛ne��ntvn.x/: (5.1.9)

Since all the �n are nonnegative, we see from this representation that all the “modes”

˛nvn.x/ of the initial values f are decaying in time for a solution of the heat

equation. In this sense, the heat equation regularizes or smoothes out its initial

values. In particular, since thus all factors e��nt are less than or equal to 1 for t � 0,

the series (5.1.9) converges in L2.˝/, because (5.1.7) does.

If instead of the heat equation we considered the backward heat equation

ut D ��u;

then the analogous expansion would be u.x; t/ D
P

n ˛ne�ntvn.x/, and so the

modes would grow, and differences would be exponentially enlarged, and in fact,

in general, the series will no longer converge for positive t . This expresses the

distinction between “past” and “future” built into the heat equation and alluded to

above.

If we write

q.x; y; t/ WD
X

n2N
e��ntvn.x/vn.y/; (5.1.10)

and if we can use the results of Sect. 11.5 to show the convergence of this series, we

may represent the solution u.x; t/ of (5.1.8) as

u.x; t/ D
X

n2N
e��ntvn.x/

Z

˝

vn.y/f .y/dy by (5.1.9)

D

Z

˝

q.x; y; t/f .y/dy: (5.1.11)
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Instead of demonstrating the convergence of the series (5.1.10) and that u.x; t/ given

by (5.1.9) is smooth for t > 0 and permits differentiation under the sum, in this

chapter, we shall pursue a different strategy to construct the “heat kernel” q.x; y; t/

in Sect. 5.3.

For x; y 2 R
n, t; t0 2 R, t ¤ t0, we define the heat kernel at .y; t0/ as

�.x; y; t; t0/ WD 1

.4� jt � t0j/
d
2

e
jx�yj2

4.t0�t / :

We then have

�t .x; y; t; t0/ D �
d

2.t � t0/
�.x; y; t; t0/C

jx � yj2

4.t0 � t/2
�.x; y; t; t0/;

�xi .x; y; t; t0/ D
xi � yi

2.t0 � t/
�.x; y; t; t0/;

�xixi .x; y; t; t0/ D
.xi � yi /2

4.t0 � t/2
�.x; y; t; t0/C

1

2.t0 � t/
�.x; y; t; t0/;

i.e.,

�x�.x; y; t; t0/ D
jx � yj

2

4.t0 � t/2
�.x; y; t; t0/C

d

2.t0 � t/
�.x; y; t; t0/

D �t .x; y; t; t0/:

The heat kernel thus is a solution of (5.1.1). The heat kernel� is similarly important

for the heat equation as the fundamental solution � is for the Laplace equation.

We first wish to derive a representation formula for solutions of the (homoge-

neous and inhomogeneous) heat equation that will permit us to compute the values

of u at time T from the values of u and its normal derivative on @�˝T . For that

purpose, we shall first assume that u solves the equation

ut.x; t/ D �u.x; t/C '.x; t/ in ˝T

for some bounded integrable function '.x; t/ and that˝ � R
d is bounded and such

that the divergence theorem holds. Let v satisfy vt D ��v on ˝T . Then

Z

˝T

v' dx dt D

Z

˝T

v.ut ��u/ dx dt

D

Z

˝

�Z T

0

v.x; t/ut .x; t/ dt

�

dx �

Z T

0

�Z

˝

v�u dx

�

dt
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D
Z

˝

�

v.x; T /u.x; T / � v.x; 0/u.x; 0/�
Z T

0

vt .x; t/u.x; t/dt

�

dx

�
Z T

0

�Z

˝

u�vdx

�

dt �
Z T

0

Z

@˝

�

v
@u

@�
� u

@v

@�

�

do dt

D
Z

˝�fT g
vu dx �

Z

˝�f0g
vu dx �

Z T

0

Z

@˝

�

v
@u

@�
� u

@v

@�

�

do dt:

(5.1.12)

For v.x; t/ WD �.x; y; T C "; t/ with T > 0 and y 2 ˝d fixed we then have,

because of vt D ��v,

Z

˝�fT g
�u dx D

Z

˝T

�' dx dt C
Z

˝�f0g
�u dx

C
Z T

0

�Z

@˝

�

�
@u

@�
� u

@�

@�

�

do

�

dt: (5.1.13)

For " ! 0, the term on the left-hand side becomes

lim
"!0

Z

˝

�.x; y; T C "; T /u.x; T /dx D u.y; T /:

Furthermore,�.x; y; T C"; t/ is uniformly continuous in "; x; t for " � 0, x 2 @˝ ,

and 0 � t � T or for x 2 ˝ , t D 0. Thus (5.1.13) implies, letting " ! 0,

u.y; T / D

Z

˝T

�.x; y; T; t/'.x; t/ dx dt C

Z

˝

�.x; y; T; 0/u.x; 0/ dx

C

Z T

0

�Z

@˝

�

�.x; y; T; t/
@u.x; t/

@�
� u.x; t/

@�.x; y; T; t/

@�

�

do

�

dt:

(5.1.14)

This formula, however, does not yet solve the initial boundary value problem, since

in (5.1.14), in addition to u.x; t/ for x 2 @˝ , t > 0, and u.x; 0/, also the normal

derivative @u
@�
.x; t/ for x 2 @˝ , t > 0, enters. Thus we should try to replace

�.x; y; T; t/ by a kernel that vanishes on @˝ � .0;1/. This is the task that we

shall address in Sect. 5.3. Here, we shall modify the construction in a somewhat

different manner. Namely, we do not replace the kernel, but change the domain of

integration so that the kernel becomes constant on its boundary. Thus, for � > 0,

we let

M.y; T I�/ WD

(

.x; s/ 2 R
d � R; s � T W

1

.4�.T � s//
d
2

e
� jx�yj2

4.T�s/ � �

)

:
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For any y 2 ˝;T > 0, we may find �0 > 0 such that for all � > �0,

M.y; T I�/ � ˝ � Œ0; T �:

We always have

.y; T / 2 M.y; T I�/;

and in fact, M.y; T I�/ \ fs D T g consists of the single point .y; T /. For t falling

below T , M.y; T I�/ \ fs D tg is a ball in R
d with center .y; t/ whose radius first

grows but then starts to shrink again if t is decreased further, until it becomes 0 at a

certain value of t .

We then perform the above computation on M.y; T I�/ (� > �0) in place of

˝T , with

v.x; t/ WD �.x; y; T C "; t/ � �;

and as before, we may perform the limit " & 0. Then

v.x; t/ D 0 for .x; t/ 2 @M.y; T I�/;

so that the corresponding boundary term disappears.

Here, we are interested only in the homogeneous heat equation, and so, we put

' D 0. We then obtain the representation formula

u.y; T / D �

Z

@M.y;T I �/

u.x; t/
@�

@�x
.x; y; T; t/do.x; t/

D �

Z

@M.y;T I �/

u.x; t/
jx � yj

2.T � t/
do.x; t/; (5.1.15)

since

@�

@�x
D �

jx � yj

2.T � t/
� D �

jx � yj

2.T � t/
� on @M.y; T I�/: (5.1.16)

In general, the maximum principles for parabolic equations are qualitatively dif-

ferent from those for elliptic equations. Namely, one often gets stronger conclusions

in the parabolic case.

Theorem 5.1.1. Let u be as in the assumptions of (5.1.1). Let˝ � R
d be open and

bounded and

�u � ut � 0 in ˝T : (5.1.17)
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We then have

sup
N̋T

u D sup
@�˝T

u: (5.1.18)

(If T < 1, we can take max in place of sup.)

Proof. Without loss of generality T < 1.

(i) Suppose first

�u � ut > 0 in ˝T : (5.1.19)

For 0 < " < T , by continuity of u and compactness of N̋
T�", there exists

.x0; t0/ 2 N̋
T�" with

u.x0; t0/ D max
N̋T�"

u: (5.1.20)

If we had .x0; t0/ 2 ˝T�", then �u.x0; t0/ � 0, ru.x0; t0/ D 0, ut.x0; t0/ D

0 would lead to a contradiction; hence we must have .x0; t0/ 2 @˝T�". For

t D T � " and x 2 ˝ , we would get �u.x0; t0/ � 0, ut.x0; t0/ � 0, likewise

contradicting (5.1.19). Thus we conclude that

max
N̋T�"

u D max
@�˝T�"

u; (5.1.21)

and for " ! 0, (5.1.21) yields the claim, since u is continuous.

(ii) If we have more generally�u � ut � 0, we let v WD u � "t , " > 0. We have

vt D ut � " � �u � " D �v � " < �v;

and thus by (i),

max
N̋T

u D max
N̋T
.v C "t/ � max

N̋T
v C "T D max

@�˝T
v C "T � max

@�˝T
u C "T;

and " ! 0 yields the claim.

ut

Theorem 5.1.1 directly leads to a uniqueness result:

Corollary 5.1.1. Let u, v be solutions of (5.1.1) with u D v on @�˝T , where ˝ �

R
d is bounded. Then u D v on N̋

T .

Proof. We apply Theorem 5.1.1 to u � v and v � u. ut
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This uniqueness holds only for bounded ˝ , however. If, for example, ˝ D R
d ,

uniqueness holds only under additional assumptions on the solution u.

Theorem 5.1.2. Let ˝ D R
d and suppose

�u � ut � 0 in ˝T ;

u.x; t/ � M e�jxj2 in ˝T for M;� > 0;

u.x; 0/ D f .x/ x 2 ˝ D R
d : (5.1.22)

Then

sup
N̋T

u � sup
Rd

f: (5.1.23)

Remark. This maximum principle implies the uniqueness of solutions of the

differential equation

�u D ut on ˝T D R
d � .0; T /;

u.x; 0/ D f .x/ for x 2 R
d ;

u.x; t/ � M e�jxj2 for .x; t/ 2 ˝T :

The condition (5.1.22) is a condition for the growth of u at infinity. If this condition

does not hold, there are counterexamples for uniqueness. For example, let us choose

u.x; t/ WD

1
X

nD0

g.n/.t/

.2n/Š
x2n

with

g.t/ WD

(

e
�1

tk t > 0; for some k > 1;

0 t D 0;

v.x; t/ WD 0 for all .x; t/ 2 R � .0;1/:

Then u and v are solutions of (5.1.1) with f .x/ D 0. For further details we refer to

the book of John [14].

Proof of Theorem 5.1.2: Since we can divide the interval .0; T / into subintervals of

length � < 1
4�

, it suffices to prove the claim for T < 1
4�

, because we shall then get

sup
Rd�Œ0;k��

u � sup
Rd�Œ0;.k�1/��

u � � � � � sup
Rd

f .x/:
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Thus let T < 1
4�

. We may then find " > 0 with

T C " <
1

4�
: (5.1.24)

For fixed y 2 R
d and ı > 0, we consider

vı.x; t/ WD u.x; t/ � ı�.x; y; t; T C "/; 0 � t � T: (5.1.25)

It follows that

vıt ��vı D ut ��u � 0; (5.1.26)

since � is a solution of the heat equation. For ˝� WD B.y; �/, we thus obtain from

Theorem 5.1.1

vı.y; t/ � max
@�˝�

vı: (5.1.27)

Moreover,

vı.x; 0/ � u.x; 0/ � sup
Rd

f; (5.1.28)

and for jx � yj D �,

vı.x; t/ � M e�jxj2 � ı
1

.4�.T C " � t//
d
2

exp

�

�2

4.T C " � t/

�

� M e�.jyjC�/2 � ı
1

.4�.T C "//
d
2

exp

�

�2

4.T C "/

�

:

Because of (5.1.24), for sufficiently large �, the second term has a larger exponent

than the first, and so the whole expression can be made arbitrarily negative; in

particular, we can achieve that it is not larger than sup
Rd f . Consequently,

vı � sup
Rd

f on @�˝�: (5.1.29)

Thus, (5.1.27) and (5.1.29) yield

vı.y; t/ D u.y; t/ � ı�.y; y; t; T C "/ D u.y; t/ � ı
1

.4�.T C " � t//
d
2

� sup
Rd

f:

The conclusion follows by letting ı ! 0.
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Actually, we can use the representation formula (5.1.12) to obtain a strong

maximum principle for the heat equation, in the same manner as the mean value

formula could be used to obtain Corollary 2.2.3:

Theorem 5.1.3. Let ˝ � R
d be open and bounded and

�u � ut D 0 in ˝T ;

with the regularity properties specified at the beginning of this section. Then if there

exists some .x0; t0/ 2 ˝ � .0; T � with

u.x0; t0/ D max
˝T

u

�

or wi th u.x0; t0/ D min
˝T

u

�

;

then u is constant in N̋
t0 .

Proof. The proof is the same as that of Lemma 2.2.1, using the representation

formula (5.1.12). (Note that by applying (5.1.15) to the function u � 1, we obtain

�

Z

@M.y;T I�/

jx � yj

2.T � t/
do.x; t/ D 1;

and so a general u that solves the heat equation is indeed represented as some

average. Also, M.y; T I�2/ � M.y; T I�1/ for �1 � �2, and as � ! 1, the

sets M.y; T I�/ shrink to the point .y; T /.) ut

Of course, the maximum principle also holds for subsolutions, i.e., if

�u � ut � 0 in ˝T :

In that case, we get the inequality “�” in place of “D” in (5.1.15), which is what is

required for the proof of the maximum principle. Likewise, the statement with the

minimum holds for solutions of

�u � ut � 0:

Slightly more generally, we even have

Corollary 5.1.2. Let ˝ � R
d be open and bounded and

�u.x; t/C c.x; t/u.x; t/ � ut.x; t/ � 0 in ˝T ;

with some bounded function

c.x; t/ � 0 in ˝T : (5.1.30)



96 5 Existence Techniques II: Parabolic Methods. The Heat Equation

Then if there exists some .x0; t0/ 2 ˝ � .0; T � with

u.x0; t0/ D max
˝T

u � 0; (5.1.31)

then u is constant in N̋
t0 .

Proof. Our scheme of proof still applies because, since c is nonpositive, at a

nonnegative maximum point .x0; t0/ of u, c.x0; t0/u.x0; t0/ � 0 which strengthens

the inequality used in the proof. ut

Again, we obtain a minimum principle when we reverse all signs.

For use in Sect. 6.1 below, we now derive a parabolic version of E.Hopf’s boundary

point Lemma 3.1.2. Compared with Sect. 3.1, we shall reverse here the scheme of

proof, i.e., deduce the boundary point lemma from the strong maximum principle

instead of the other way around. This is possible because here we consider less

general differential operators than the ones in Sect. 3.1 so that we could deduce

our maximum principle from the representation formula. Of course, one can also

deduce general Hopf type maximum principles in the parabolic case, in a manner

analogous to Sect. 3.1, but we do not pursue that here as it will not yield conceptually

or technically new insights.

Lemma 5.1.1. Suppose the function c is bounded and satisfies c.x; t/ � 0 in ˝T .

Let u solve the differential inequality

�u.x; t/C c.x; t/u.x; t/ � ut.x; t/ � 0 in ˝T ;

and let .x0; t0/ 2 @�˝T . Moreover, assume:

(i) u is continuous at .x0; t0/.

(ii) u.x0; t0/ � 0 if c.x/ 6� 0.

(iii) u.x0; t0/ > u.x; t/ for all .x; t/ 2 ˝T .

(iv) There exists a ball
ı
B..y; t1/; R/ � ˝T with .x0; t0/ 2 @B..y; t1/; R/.

We then have, with r WD j.x; t/ � .y; t1/j,

@u

@r
.x0; t0/ > 0; (5.1.32)

provided that this derivative (in the direction of the exterior normal of ˝T ) exists.

Proof. With the auxiliary function

v.x/ WD e�
.jx�yj2C.t�t1/2/ � e�
R2 ;

the proof proceeds as the one of Lemma 3.1.2, employing this time the maximum

principle Theorem 5.1.3. ut
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I do not know of any good recent book that gives a detailed and systematic

presentation of parabolic differential equations. Some older, but still useful,

references are [9, 23].

5.2 The Fundamental Solution of the Heat Equation.

The Heat Equation and the Laplace Equation

We first consider the so-called fundamental solution

K.x; y; t/ D �.x; y; t; 0/ D 1

.4�t/
d
2

e� jx�yj2
4t ; (5.2.1)

and we first observe that for all x 2 R
d , t > 0,

Z

Rd

K.x; y; t/dy D 1

.4�t/
d
2

d!d

Z 1

0

e� r2

4t rd�1dr D 1

�
d
2

d!d

Z 1

0

e�s2sd�1ds

D 1

�
d
2

Z

Rd

e�jyj2dy D 1: (5.2.2)

For bounded and continuous f W Rd ! R, we consider the convolution

u.x; t/ D
Z

Rd

K.x; y; t/f .y/dy D 1

.4�t/
d
2

Z

Rd

e� jx�yj2

4t f .y/dy: (5.2.3)

Lemma 5.2.1. Let f W Rd ! R be bounded and continuous. Then

u.x; t/ D
Z

Rd

K.x; y; t/f .y/dy

is of class C1 on R
d � .0;1/, and it solves the heat equation

ut D �u: (5.2.4)

Proof. That u is of class C1 follows, by differentiating under the integral (which

is permitted by standard theorems), from the C1 property of K.x; y; t/. Conse-

quently, we also obtain

@

@t
u.x; t/ D

Z

Rd

@

@t
K.x; y; t/f .y/dy D

Z

Rd

�xK.x; y; t/f .y/dy D �xu.x; t/:

ut
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Lemma 5.2.2. Under the assumptions of Lemma 5.2.1, we have for every x 2 R
d

lim
t!0

u.x; t/ D f .x/:

Proof.

jf .x/ � u.x; t/j D
ˇ

ˇ

ˇ

ˇ

f .x/ �
Z

Rd

K.x; y; t/f .y/dy

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

Rd

K.x; y; t/.f .x/ � f .y//dy

ˇ

ˇ

ˇ

ˇ

with (5.2.2)

D
ˇ

ˇ

ˇ

ˇ

ˇ

1

.4�t/
d
2

Z 1

0

e� r2

4t rd�1
Z

Sd�1

.f .x/ � f .x C r�// do.�/ dr

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

1

�
d
2

Z 1

0

e�s2sd�1
Z

Sd�1

�

f .x/ � f .x C 2
p
ts�/

�

do.�/ ds

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

� � �
Z M

0

� � � C � � �
Z 1

M

� � �
ˇ

ˇ

ˇ

ˇ

� sup
y2B.x;2

p
tM/

jf .x/ � f .y/j C 2 sup
Rd

jf j
d!d

�
d
2

Z 1

M

e�s2sd�1ds:

Given " > 0, we first choose M so large that the second summand is less than "=2,

and we then choose t0 > 0 so small that for all t with 0 < t < t0, the first summand

is less than "=2 as well. This implies the continuity. ut

By (5.2.3), we have thus found a solution of the initial value problem

ut.x; t/ ��u.x; t/ D 0 for x 2 R
d ; t > 0;

u.x; 0/ D f .x/;

for the heat equation. By Theorem 5.1.2 this is the only solution that grows at most

exponentially.

According to the physical interpretation, u.x; t/ is supposed to describe the

evolution in time of the temperature for initial values f .x/. We should note,

however, that in contrast to physically more realistic theories, we here obtain an

infinite propagation speed as for any positive time t > 0, the temperature u.x; t/

at the point x is influenced by the initial values at all arbitrarily faraway points y,

although the strength decays exponentially with the distance jx � yj.

In the case where f has compact support K , i.e., f .x/ D 0 for x … K , the

function from (5.2.3) satisfies

ju.x; t/j �
1

.4�t/
d
2

e� dist.x;K/2

4t

Z

K

jf .y/j dy; (5.2.5)

which goes to 0 as t ! 1.
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Remark. Equation (5.2.5) yields an explicit exponential rate of convergence!

More generally, one is interested in the initial boundary value problem for the

inhomogeneous heat equation.

Let ˝ � R
d be a domain, and let ' 2 C 0.˝ � Œ0;1//, f 2 C 0.˝/,

g 2 C 0.@˝ � .0;1// be given. We wish to find a solution of

@u.x; t/

@t
��u.x; t/ D '.x; t/ in ˝ � .0;1/;

u.x; 0/ D f .x/ in ˝;

u.x; t/ D g.x; t/ for x 2 @˝; t 2 .0;1/: (5.2.6)

In order for this problem to make sense, one should require a compatibility condition

between the initial and the boundary values: f 2 C 0. N̋ /, g 2 C 0.@˝�Œ0;1//, and

f .x/ D g.x; 0/ for x 2 @˝: (5.2.7)

We want to investigate the connection between this problem and the Dirichlet

problem for the Laplace equation, and for that purpose, we consider the case where

' � 0 and g.x; t/ D g.x/ is independent of t . For the following consideration

whose purpose is to serve as motivation, we assume that u.x; t/ is differentiable

sufficiently many times up to the boundary. (Of course, this is an issue that will

need a more careful study later on.) We then compute

�

@

@t
��

�

1

2
u2t D utut t � ut�ut �

d
X

iD1
u2
xi t

D ut
@

@t
.ut ��u/ �

d
X

iD1
u2
xi t

D �

d
X

iD1
u2
xi t

� 0: (5.2.8)

According to Theorem 5.1.1,

v.t/ WD sup
x2˝

ˇ

ˇ

ˇ

ˇ

@u.x; t/

@t

ˇ

ˇ

ˇ

ˇ

2

then is a nonincreasing function of t .

We now consider

E.u.�; t// D
1

2

Z

˝

d
X

iD1
u2
xi

dx
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and compute

@

@t
E.u.�; t// D

Z

˝

d
X

iD1
utxiuxi dx

D �
Z

˝

ut�udx; since ut.x; t/ D @

@t
g.x/ D 0 for x 2 @˝

D �
Z

˝

u2t dx � 0: (5.2.9)

With (5.2.8), we then conclude that

@2

@t2
E.u.�; t// D �

Z

˝

@

@t
u2t dx D �

Z

˝

�u2t dx C 2

Z

˝

d
X

iD1
u2
xi t

dx

D �

Z

@˝

@

@�
u2t do.x/C 2

Z

˝

d
X

iD1
u2
xi t

dx:

Since u2t � 0 in ˝ , u2t D 0 on @˝ , we have on @˝

@

@�
u2t � 0:

It follows that

@2

@t2
E.u.�; t// � 0: (5.2.10)

Thus E.u.�; t// is a monotonically nonincreasing and convex function of t . In

particular, we obtain

@

@t
E.u.�; t// � ˛ WD lim

t!1
@

@t
E.u.�; t// � 0: (5.2.11)

Since E.u.�; t// � 0 for all t , we must have ˛ D 0, because otherwise for

sufficiently large T ,

E.u.�; T // D E.u.�; 0//C

Z T

0

@

@t
E.u.�; t//dt � E.u.�; 0//C ˛T < 0:

Thus it follows that

lim
t!1

Z

˝

u2t dx D 0: (5.2.12)
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In order to get pointwise convergence as well, we have to utilize the maximum

principle once more. We extend u2t .x; 0/ from ˝ to all of R
d as a nonnegative,

continuous function l with compact support and put

v.x; t/ WD
Z

Rd

1

.4�t/
d
2

e� jx�yj2
4t l.y/dy: (5.2.13)

We then have

vt ��v D 0;

and since l � 0, also

v � 0;

and thus in particular

v � u2t on @˝:

Thus w WD u2t � v satisfies

@

@t
w ��w � 0 in ˝;

w � 0 on @˝;

w.x; 0/ D 0 for x 2 ˝; t D 0: (5.2.14)

Theorem 5.1.1 then implies

w.x; t/ � 0;

i.e.,

u2t .x; t/ � v.x; t/ for all x 2 ˝; t > 0: (5.2.15)

Since l has compact support, from Lemma 5.2.2 and (5.2.5),

lim
t!1

v.x; t/ D 0 for all x 2 ˝;

and thus also

lim
t!1

u2t .x; t/ D 0 for all x 2 ˝: (5.2.16)

Thus, let our regularity assumptions be valid, and consider a solution of our

initial boundary value theorem with boundary values that are constant in time. We

conclude that its time derivative goes to 0 as t ! 1. Thus, if we can show that
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u.x; t/ converges for t ! 1 with respect to x in C 2, the limit function u1 needs

to satisfy

�u1 D 0;

i.e., be harmonic. If we can even show convergence up to the boundary, then u1

satisfies the Dirichlet condition

u1.x/ D g.x/ for x 2 @˝:

From the remark about (5.2.5), we even see that ut .x; t/ converges to 0 exponen-

tially in t .

If we know already that the Dirichlet problem

�u1 D 0 in ˝;

u1 D g on @˝ (5.2.17)

admits a solution, it is easy to show that any solution u.x; t/ of the heat equation with

appropriate boundary values converges to u1. Namely, we even have the following

result:

Theorem 5.2.1. Let ˝ be a bounded domain in R
d , and let g.x; t/ be continuous

on @˝ � .0;1/, and suppose

lim
t!1

g.x; t/ D g.x/ uniformly in x 2 @˝: (5.2.18)

Let F.x; t/ be continuous on ˝ � .0;1/, and suppose

lim
t!1

F.x; t/ D F.x/ uniformly in x 2 ˝: (5.2.19)

Let u.x; t/ be a solution of

�u.x; t/ �
@

@t
u.x; t/ D F.x; t/ for x 2 ˝; 0 < t < 1;

u.x; t/ D g.x; t/ for x 2 @˝; 0 < t < 1: (5.2.20)

Let v.x/ be a solution of

�v.x/ D F.x/ for x 2 ˝;

v.x/ D g.x/ for x 2 @˝: (5.2.21)

We then have

lim
t!1

u.x; t/ D v.x/ uniformly in x 2 ˝: (5.2.22)
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Proof. We consider the difference

w.x; t/ D u.x; t/ � v.x/: (5.2.23)

Then

�w.x; t/ � @

@t
w.x; t/ D F.x; t/ � F.x/ in ˝ � .0;1/;

w.x; t/ D g.x; t/ � g.x/ in @˝ � .0;1/; (5.2.24)

and the claim follows from the following lemma: ut

Lemma 5.2.3. Let ˝ be a bounded domain in R
d , let �.x; t/ be continuous on

˝ � .0;1/, and suppose

lim
t!1

�.x; t/ D 0 uniformly in x 2 ˝: (5.2.25)

Let 
.x; t/ be continuous on @˝ � .0;1/, and suppose

lim
t!1


.x; t/ D 0 uniformly in x 2 @˝: (5.2.26)

Let w.x; t/ be a solution of

�w.x; t/ �
@

@t
w.x; t/ D �.x; t/ in ˝ � .0;1/;

w.x; t/ D 
.x; t/ in @˝ � .0;1/: (5.2.27)

Then

lim
t!1

w.x; t/ D 0 uniformly in x 2 ˝: (5.2.28)

Proof. We choose R > 0 such that

2x1 < R for all x D .x1; : : : ; xd / 2 ˝; (5.2.29)

and consider

k.x/ WD eR � ex
1

: (5.2.30)

Then

�k D �ex
1

:

With � WD infx2˝ ex
1
, we thus have

�k � ��: (5.2.31)
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We consider, with constants �; c0; � to be determined, and with

�0 WD inf
x2˝

k.x/; �1 WD sup
x2˝

k.x/;

the expression

m.x; t/ WD �
k.x/

�
C �

k.x/

�0
C c0

k.x/

�0
e

� �
�1
.t��/

(5.2.32)

in ˝ � Œ�;1/.

Then

�m.x; t/ �
@

@t
m.x; t/

< �� � �
�

�0
� c0

�

�0
e

� �
�1
.t��/

C c0
�1

�0

�

�1
e

� �
�1
.t��/

< ��: (5.2.33)

Furthermore,

m.x; �/ > c0 for x 2 ˝; (5.2.34)

m.x; t/ > � for .x; t/ 2 @˝ � Œ�;1/: (5.2.35)

By our assumptions (5.2.25) and (5.2.26), for every �, there exists some � D �.�/

with

j�.x; t/j < � for x 2 ˝; t � �; (5.2.36)

j
.x; t/j < � for x 2 @˝; t � �: (5.2.37)

In (5.2.32) we now put

� D �.�/; c0 D sup
x2˝

jw.x; �/j :

Then

m.x; �/˙ w.x; �/ � 0 for x 2 ˝ by (5.2.34);

m.x; t/˙ w.x; t/ � 0 for x 2 @˝; t � �;

by (5.2.35), (5.2.37), and (5.2.27);

�

� �
@

@t

�

.m.x; t/˙ w.x; t// � 0 for x 2 ˝; t � �;

by (5.2.33), (5.2.36), and (5.2.27).
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It follows from Theorem 5.1.1 (observe that it is irrelevant that our functions are

defined only on ˝ � Œ�;1/ instead of ˝ � Œ0;1/, and initial values are given on

˝ � f�g) that

jw.x; t/j � m.x; t/ for x 2 ˝; t > �;

� �

�

�1

�
C
�1

�0

�

C c0
�1

�0
e

� �
�1
.t��/

;

and this becomes smaller than any given " > 0 if � > 0 from (5.2.36) and (5.2.37)

is sufficiently small and t > �.�/ is sufficiently large. ut

5.3 The Initial Boundary Value Problem

for the Heat Equation

In this section, we wish to study the initial boundary value problem for the

inhomogeneous heat equation

ut .x; t/ ��u.x; t/ D '.x; t/ for x 2 ˝; t > 0;

u.x; t/ D g.x; t/ for x 2 @˝; t > 0;

u.x; 0/ D f .x/ for x 2 ˝;

(5.3.1)

with given (continuous and smooth) functions '; g; f . We shall need some prepa-

rations.

Lemma 5.3.1. Let ˝ be a bounded domain of class C 2 in R
d . Then for every ˛ <

d
2

C 1, T > 0, there exists a constant c D c.˛; d;˝/ such that for all x0; x 2 @˝ ,

0 < t � T , letting � denote the exterior normal of @˝ , we have

ˇ

ˇ

ˇ

ˇ

@K

@�x
.x; x0; t/

ˇ

ˇ

ˇ

ˇ

� ct�˛ jx � x0j
�dC2˛ :

Proof.

@

@�x
K.x; x0; t/ D

1

.4�t/
d
2

@

@�x
e� jx�x0j2

4t D �
1

.4�t/
d
2

.x � x0/ � �x

2t
e� jx�x0j2

4t :

As we are assuming that the boundary of ˝ is a manifold of class C 2, and since

x; x0 2 @˝ , and �x is normal to @˝ , we have

j.x � x0/ � �x j � c1 jx � x0j
2
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with a constant c1 depending on the geometry of @˝ . Thus

ˇ

ˇ

ˇ

ˇ

@

@�x
K.x; x0; t/

ˇ

ˇ

ˇ

ˇ

� c2t
� d
2 �1 jx � x0j

2 e� jx�x0j2
4t (5.3.2)

with some constant c2. With a parameter ˇ > 0, we now consider the function

 .s/ WD sˇe�s for s > 0: (5.3.3)

Inserting s D jx�x0j2
4t

, ˇ D d
2

C 1 � ˛, we obtain from (5.3.3)

e� jx�x0j2
4t � c3 jx � x0j

�d�2C2˛ t
d
2 C1�˛; (5.3.4)

with c3 depending on ˇ, i.e., on d and ˛. Inserting (5.3.4) into (5.3.2) yields the

assertion. ut

Lemma 5.3.2. Let˝ � R
d be a bounded domain of class C 2 with exterior normal

�, and let 
 2 C 0.@˝ � Œ0; T �/ (T > 0). We put

v.x; t/ WD �

Z t

0

Z

@˝

@K

@�y
.x; y; �/
.y; t � �/do.y/d�: (5.3.5)

We then have

v 2 C1.˝ � Œ0; T �/;

v.x; 0/ D 0 for all x 2 ˝; (5.3.6)

and for all x0 2 @˝ , 0 < t � T ,

lim
x!x0

v.x; t/ D

.x0; t/

2
�

Z t

0

Z

@˝

@K

@�y
.x0; y; �/
.y; t � �/do.y/d�: (5.3.7)

Here, we require that the convergence of x to x0 takes place in some cone (of angle

smaller than �=2) about the normal to the boundary.

Proof. First of all, Lemma 5.3.1, with ˛ D 3
4
, implies that the integral in (5.3.5)

indeed exists. The C1-regularity of v with respect to x then follows from the

corresponding regularity of the kernel K by the change of variables � D t � � .

Equation (5.3.6) is obvious as well. It remains to verify the jump relation (5.3.7).

For that purpose, it obviously suffices to investigate

�

Z �0

0

Z

@˝\B.x0;ı/

@K

@�y
.x; y; �/
.y; t � �/do.y/d� (5.3.8)
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for arbitrarily small �0 > 0, ı > 0. In particular, we may assume that ı0 and � are

chosen such that for any given " > 0, we have for y 2 @˝ , jy � x0j < ı, and

0 � � < �0,

j
.x0; t/ � 
.y; t � �/j < ":

Thus, we shall have an error of magnitude controlled by " if in place of (5.3.8), we

evaluate the integral

�

Z �0

0

Z

@˝\B.x0;ı/

@K

@�y
.x; y; �/
.x0; t/do.y/d�: (5.3.9)

Extracting the factor 
.x0; t/ it remains to show that

� lim
x!x0

Z �0

0

Z

@˝\B.x0;ı/

@K

@�y
.x; y; �/do.y/d� D

1

2
CO.ı/: (5.3.10)

Also, we observe that since 
 is continuous, it suffices to show that (5.3.10) holds

uniformly in x0 if x approaches @˝ in the direction normal to @˝ . In other words,

letting �.x0/ denote the exterior normal vector of @˝ at x0, we may assume

x D x0 � ��.x0/:

In that case, �2 D jx � x0j
2, and since @˝ is of class C 2, for y 2 @˝ ,

jx � yj
2 D jy � x0j

2 C �2 CO
�

jy � x0j
2

jx � x0j
�

:

The term O
�

jy � x0j
2

jx � x0j
�

here is a higher-order term that does not influence

the validity of our subsequent limit processes, and so we shall omit it in the sequel

for the sake of simplicity. Likewise, for y 2 @˝ ,

.x � y/ � �y D .x � x0/ � �y C .x0 � y/ � �y D ��CO
�

jx0 � yj
2
�

;

and the term O.jx0 � yj
2/ may be neglected again.

Thus we approximate

@K

@�y
.x; y; �/ D

1

.4��/
d
2

.x � y/ � �y

2�
e� jx�yj2

4�

by

1

.4��/
d
2

.��/

2�
e� jx0�yj2

4� e� �2

4� :
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This means that we need to estimate the expression

Z �0

0

Z

@˝\B.x0;ı/

1

2.4�/
d
2

�

�
d
2 C1

e� jx0�yj2
4� e� �2

4� do.y/d�:

We introduce polar coordinates with center x0 and put r D jx0 � yj. We then obtain,

again up to a higher-order error term,

�Vol.Sd�2/
1

2.4�/
d
2

Z �0

0

1

�
d
2 C1

e� �2

4�

Z ı

0

e� r2

4� rd�2dr d�;

where Sd�2 is the unit sphere in R
d�1

D �Vol.Sd�2/

4�
d
2

Z �0

0

1

�
3
2

e� �2

4�

Z ı

2�
1
2

0

e�s2sd�2ds d�

D Vol.Sd�2/

2�
d
2

Z 1

�2

4�0

1

�
1
2

e��
Z ı�

1
2
�

0

e�s2sd�2ds d�:

In this integral we may let � tend to 0 and obtain as limit

Vol.Sd�2/

2�
d
2

Z 1

0

1

�
1
2

e��
Z 1

0

e�s2sd�2ds d� D 1

2
: (5.3.11)

By our preceding considerations, this implies (5.3.10).

Equation (5.3.11) is shown with the help of the gamma function

� .x/ D
Z 1

0

e�t tx�1dt for x > 0:

We have

� .x C 1/ D x� .x/ for all x > 0;

and because of � .1/ D 1, then

� .nC 1/ D nŠ for n 2 N:

Moreover,

Z 1

0

sne�s2ds D 1

2
�

�

nC 1

2

�

for all n 2 N:

In particular,

�

�

1

2

�

D 2

Z 1

0

e�s2ds D
p
�
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and

�
d
2 D

Z

Rd

e�jxj2dx D Vol.Sd�1/

Z 1

0

e�r2rd�1dr D 1

2
Vol.Sd�1/�

�

d

2

�

I

hence

Vol.Sd�1/ D 2�
d
2

�
�

d
2

� :

With these formulae, the integral (5.3.11) becomes

2�
d�1
2

�
�

d�1
2

�

1

2�
d
2

�

�

1

2

�

� 1
2
�

�

d � 1
2

�

D 1

2
:

ut

In an analogous manner, one proves the following lemma:

Lemma 5.3.3. Under the assumptions of Lemma 5.3.2, for

w.x; t/ WD
Z t

0

Z

@˝

K.x; y; �/
.y; t � �/ do.y/ d� (5.3.12)

(x 2 ˝ , 0 � t � T ), we have

w 2 C1.˝ � Œ0; T �/;

w.x; 0/ D 0 for x 2 ˝: (5.3.13)

The function w extends continuously to N̋ � Œ0; T �, and for x0 2 @˝ we have

lim
x!x0

rxw.x; t/ � �.x0/ D

.x0; t/

2

C

Z t

0

Z

@˝

@K

@�x0
.x0; y; �/
.y; t � �/ do.y/ d�; (5.3.14)

with the same cone condition as before.

We now want to try first to find a solution of

�u �
@

@t
u D 0 in ˝ � .0;1/;

u.x; 0/ D 0 for x 2 ˝;

u.x; t/ D g.x; t/ for x 2 @˝; t > 0; (5.3.15)
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by Lemma 5.3.2.

We try

u.x; t/ D �

Z t

0

Z

@˝

@K

@�y
.x; y; t � �/
.y; �/ do.y/ d�; (5.3.16)

with a function 
.x; t/ yet to be determined. As a consequence of (5.3.7), (5.3.15),


 has to satisfy, for x0 2 @˝ ,

g.x0; t/ D
1

2

.x0; t/ �

Z t

0

Z

@˝

@K

@�y
.x0; y; t � �/
.y; �/ do.y/ d�;

i.e.,


.x0; t/ D 2g.x0; t/C 2

Z t

0

Z

@˝

@K

@�y
.x0; y; t � �/
.y; �/ do.y/ d�: (5.3.17)

This is a fixed-point equation for 
 , and one may attempt to solve it by iteration;

i.e., for x0 2 @˝ ,


0.x0; t/ D 2g.x0; t/;


n.x0; t/ D 2g.x0; t/C 2

Z t

0

Z

@˝

@K

@�y
.x0; y; t � �/
n�1.y; �/ do.y/d�

for n 2 N. Recursively, we obtain


n.x0; t/ D 2g.x0; t/C 2

Z t

0

Z

@˝

n
X

�D1
S�.x0; y; t � �/g.y; �/ do.y/d� (5.3.18)

with

S1.x0; y; t/ D 2
@K

@�y
.x0; y; t/;

S�C1.x0; y; t/ D 2

Z t

0

Z

@˝

S�.x0; z; t � �/
@K

@�y
.z; y; �/ do.z/ d�:

In order to show that this iteration indeed yields a solution, we have to verify that

the series

S.x0; y; t/ D

1
X

�D1
S�.x0; y; t/

converges.
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Choosing once more ˛ D 3
4

in Lemma 5.3.1, we obtain

jS1.x0; y; t/j � ct�3=4 jx0 � yj�.d�1/C 1
2 :

Iteratively, we get

jSn.x0; y; t/j � cnt
�1C n

4 jx0 � yj
�.d�1/C n

2 :

We now choose n D max.4; 2.d � 1// so that both exponents are positive. If now

jSm.x0; y; t/j � ˇmt
˛ for some constant ˇm and some ˛ � 0;

then

jSmC1.x0; y; t/j � cˇ0ˇm

Z t

0

.t � �/˛��3=4 d�;

where the constant c comes from Lemma 5.3.1 and

ˇ0 WD sup
y2@˝

Z

@˝

jz � yj
�.d�1/C 1

2 do.z/:

Furthermore,

Z t

0

.t � �/˛��3=4d� D
� .1C ˛/�

�

1
4

�

�
�

5
4

C ˛
� t˛C1=4;

where on the right-hand side we have the gamma function introduced above.

Thus

jSnC�.x0; y; t/j � ˇn.cˇ0/
� t˛C�=4

�
Y

�D1

�
�

˛ C 3
4

C �=4
�

�
�

1
4

�

� .˛ C 1C �=4/
:

Since the gamma function grows factorially as a function of its arguments, this

implies that

1
X

�D1
S�.x0; y; t/

converges absolutely and uniformly on @˝ � @˝ � Œ0; T � for every T > 0. We thus

have the following result:

Theorem 5.3.1. The initial boundary value problem for the heat equation on a

bounded domain˝ � R
d of class C 2, namely,

�u.x; t/ �
@

@t
u.x; t/ D 0 in ˝ � .0;1/;

u.x; 0/ D 0 in ˝;

u.x; t/ D g.x; t/ for x 2 @˝; t > 0;
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with given continuous g, admits a unique solution. That solution can be repre-

sented as

u.x; t/ D �

Z t

0

Z

@˝

˙.x; y; t � �/g.y; �/ do.y/ d�; (5.3.19)

where

˙.x; y; t/ D 2
@K

@�y
.x; y; t/C 2

Z t

0

Z

@˝

@K

@�z

.x; z; t � �/

1
X

�D1
S�.z; y; �/ do.z/ d�:

(5.3.20)

Proof. Since the series
P1

�D1 S� converges,


.x0; t/ D 2g.x0; t/C 2

Z t

0

Z

@˝

1
X

�D1
S�.x0; y; t � �/g.y; �/ do.y/ d�

is a solution of (5.3.17). Inserting this into (5.3.16), we obtain (5.3.20). Here, one

should note that

t�3=4 jy � xj
�.d�1/C 1

2

1
X

�D1
S�.x0; y; �/;

and hence also˙.x; y; t/ converges absolutely and uniformly on @˝ � @˝ � Œ0; T �

for every T > 0. Thus, we may differentiate term by term under the integral

and show that u solves the heat equation. The boundary values are assumed by

construction, and it is clear that u vanishes at t D 0. Uniqueness follows from

Theorem 5.1.1. ut

Definition 5.3.1. Let˝ � R
d be a domain. A function q.x; y; t/ that is defined for

x; y 2 N̋ , t > 0 is called the heat kernel of ˝ if:

(i)
�

�x �
@

@t

�

q.x; y; t/ D 0 for x; y 2 ˝; t > 0; (5.3.21)

(ii)

q.x; y; t/ D 0 for x 2 @˝; (5.3.22)

(iii) and for all continuous f W ˝ ! R

lim
t!0

Z

˝

q.x; y; t/f .x/dx D f .y/ for all y 2 ˝: (5.3.23)
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Corollary 5.3.1. Any bounded domain˝ � R
d of class C 2 has a heat kernel, and

this heat kernel is of class C 1 on N̋ with respect to the spatial variables y. The heat

kernel is positive in ˝ , for all t > 0.

Proof. For each y 2 ˝ , by Theorem 5.3.1, we solve the boundary value problem

for the heat equation with initial values 0 and

g.x; t/ D �K.x; y; t/:

The solution is called �.x; y; t/, and we put

q.x; y; t/ WD K.x; y; t/C �.x; y; t/: (5.3.24)

Obviously, q.x; y; t/ satisfies (i) and (ii), and since

lim
t!0

�.x; y; t/ D 0;

andK.x; y; t/ satisfies (iii), then so does q.x; y; t/.

Lemma 5.3.3 implies that q can be extended to N̋ as a continuously differentiable

function of the spatial variables.

That q.x; y; t/ > 0 for all x; y 2 ˝; t > 0 follows from the strong maximum

principle (Theorem 5.1.3). Namely,

q.x; y; t/ D 0 for x 2 @˝;

lim
t!0

q.x; y; t/ D 0 for x; y 2 ˝; x ¤ y;

while (iii) implies

q.x; y; t/ > 0 if jx � yj and t > 0 are sufficiently small.

Thus, q � 0 and q ¤ 0, and so, by Theorem 5.1.3,

q > 0 in ˝ �˝ � .0;1/: ut

Lemma 5.3.4 (Duhamel principle). For all functions u; v on N̋ � Œ0; T � with the

appropriate regularity conditions, we have

Z T

0

Z

˝

n

v.x; t/ .�u.x; T � t/C ut.x; T � t//

� u.x; T � t/ .�v.x; t/ � vt .x; t//
o

dx dt

D

Z T

0

Z

@˝

�

@u

@�
.y; T � t/v.y; t/ �

@v

@�
.y; t/u.y; T � t/

�

do.y/ dt

C

Z

˝

fu.x; 0/v.x; T / � u.x; T /v.x; 0/g dx: (5.3.25)
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Proof. Same as the proof of (5.1.12) ut

Corollary 5.3.2. If the heat kernel q.z;w; T / of˝ is of class C 1 on N̋ with respect

to the spatial variables, then it is symmetric with respect to z and w, i.e.,

q.z;w; T / D q.w; z; T / for all z;w 2 ˝; T > 0: (5.3.26)

Proof. In (5.3.25), we put u.x; t/ D q.x; z; t/, v.x; t/ D q.x;w; t/. The double

integrals vanish by properties (i) and (ii) of Definition 5.3.1. Property (iii) of

Definition 5.3.1 then yields v.z; T / D u.w; T /, which is the asserted symmetry.

ut

Theorem 5.3.2. Let ˝ � R
d be a bounded domain of class C 2 with heat kernel

q.x; y; t/ according to Corollary 5.3.1, and let

' 2 C 0. N̋ � Œ0;1//; g 2 C 0.@˝ � .0;1//; f 2 C 0.˝/:

Then the initial boundary value problem

ut .x; t/ ��u.x; t/ D '.x; t/ for x 2 ˝; t > 0;

u.x; t/ D g.x; t/ for x 2 @˝; t > 0;

u.x; 0/ D f .x/ for x 2 ˝; (5.3.27)

admits a unique solution that is continuous on N̋ � Œ0;1/ n @˝ � f0g and is

represented by the formula

u.x; t/ D

Z t

0

Z

˝

q.x; y; t � �/'.y; �/dy d�

C

Z

˝

q.x; y; t/f .y/dy

�

Z t

0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/do.y/d�: (5.3.28)

Proof. Uniqueness follows from the maximum principle. We split the existence

problem into two subproblems.

We solve

vt .x; t/ ��v.x; t/ D 0 for x 2 ˝; t > 0;

v.x; t/ D g.x; t/ for x 2 @˝; t > 0;

v.x; 0/ D f .x/ for x 2 ˝;

(5.3.29)
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i.e., the homogeneous equation with the prescribed initial and boundary condi-

tions, and

wt .x; t/ ��w.x; t/ D '.x; t/ for x 2 ˝; t > 0;

w.x; t/ D 0 for x 2 @˝; t > 0;

w.x; 0/ D 0 for x 2 ˝;

(5.3.30)

i.e., the inhomogeneous equation with vanishing initial and boundary values.

The solution of (5.3.27) is then given by

u D v C w:

We first address (5.3.29), and we claim that the solution v can be represented as

v.x; t/ D
Z

˝

q.x; y; t/f .y/dy �
Z t

0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/do.y/d�:

(5.3.31)

The facts that v solves the heat equation and the initial condition v.x; 0/ D
f .x/ follow from the corresponding properties of q. Moreover, q.x; y; t/ D
K.x; y; t/ C �.x; y; t/ with �.x; y; t/ coming from the proof of Corollary 5.3.1.

By Theorem 5.3.1, this � can be represented as

�.x; y; t/ D
Z t

0

Z

@˝

˙.x; z; t � �/K.z; y; �/do.z/ d�; (5.3.32)

and by Lemma 5.3.3, we have for y 2 @˝ ,

@�

@�y
.x; y; t/ D ˙.x; y; t/

2
C
Z t

0

Z

@˝

˙.x; z; t � �/ @K
@�y

.z; y; �/do.z/ d�:

(5.3.33)

This means that the second integral on the right-hand side of (5.3.31) is precisely of

the type (5.3.19), and thus, by the considerations of Theorem 5.3.1, v indeed satisfies

the boundary condition v.x; t/ D g.x; t/ for x 2 @˝ , because the first integral of

(5.3.31) vanishes on the boundary.

We now turn to (5.3.30). For every � > 0, we let z.x; t; �/ be the solution of

zt .x; t I �/ ��z.x; t; �/ D 0 for x 2 ˝; t > �;

z.x; t I �/ D 0 for x 2 @˝; t > �;

z.x; � I �/ D '.x; �/ for x 2 ˝:

(5.3.34)
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This is a special case of (5.3.29), which we already know how to solve, except that

the initial conditions are not prescribed at t D 0, but at t D � . This case, however,

is trivially reduced to the case of initial conditions at t D 0 by replacing t by t � � ,

i.e., considering �.x; t I �/ D z.x; t C � I �/. Thus, (5.3.34) can be solved.

We then put

w.x; t/ D
Z t

0

z.x; t I �/d�: (5.3.35)

Then

wt .x; t/ D
Z t

0

zt .x; t I �/d� C z.x; t I t/ D
Z t

0

�z.x; t I �/d� C '.x; t/

D �w.x; t/C '.x; t/

and

w.x; t/ D 0 for x 2 @˝; t > 0;

w.x; 0/ D 0 for x 2 ˝:

Thus, w is a solution of (5.3.30) as required, and the proof is complete, since the

representation formula (5.3.28) follows from the one for v and the one for w that, by

(5.3.35), comes from integrating the one for z. The latter in turn solves (5.3.34) and

so, by what has been proved already, is given by

z.x; t I �/ D
Z

˝

q.x; y; t � �/'.y; �/dy:

Thus, inserting this into (5.3.35), we obtain

w.x; t/ D
Z t

0

Z

˝

q.x; y; t � �/'.y; �/dy d�: (5.3.36)

This completes the proof. ut

We briefly interrupt our discussion of the solution of the heat equation and record

the following simple result on the heat kernel q for subsequent use:

Z

˝

q.x; y; t/dy � 1 (5.3.37)

for all t � 0. To start, we have

lim
t!0

Z

˝

q.x; y; t/dy D 1: (5.3.38)
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This follows from (5.3.23) with f � 1 and the proof of Corollary 5.3.1 which

enables to replace the integration w.r.t. x in (5.3.23) by the one w.r.t. y in (5.3.38).

Next, we observe that

@q

@�y
.x; y; t/ � 0 (5.3.39)

because q is nonnegative in ˝ and vanishes on the boundary @˝ (see (5.3.22)

and Corollary 5.3.1). We then note that the solution of Theorem 5.3.2 for ' �

1; g.x; t/ D t; and f .x/ D 0 is given by u.x; t/ D t . In the representation

formula (5.3.28), using (5.3.39), this yields

Z t

0

Z

˝

q.x; y; t � �/dy d� � t; (5.3.40)

from which (5.3.37) is derived upon a little reflection.

We now resume the discussion of the solution established in Theorem 5.3.2. We

did not claim continuity of our solution at the corner @˝ � f0g, and in general, we

cannot expect continuity there unless we assume a matching condition between the

initial and the boundary values. We do have, however,

Theorem 5.3.3. The solution of Theorem 5.3.2 is continuous on all of N̋ � Œ0;1/

when we have the compatibility condition

g.x; 0/ D f .x/ for x 2 @˝: (5.3.41)

Proof. While the continuity at the corner @˝ � f0g could also be established from

a refinement of our previous considerations, we provide here some independent

and simpler reasoning. By the general superposition argument that we have already

employed a few times (in particular in the proof of Theorem 5.3.2), it suffices to

establish continuity for a solution of

vt .x; t/ ��v.x; t/ D 0 for x 2 ˝; t > 0;

v.x; t/ D g.x; t/ for x 2 @˝; t > 0;

v.x; 0/ D 0 for x 2 ˝; (5.3.42)

with a continuous g satisfying

g.x; 0/ D 0 for x 2 @˝; (5.3.43)

and for a solution of

wt .x; t/ ��w.x; t/ D 0 for x 2 ˝; t > 0;

w.x; t/ D 0 for x 2 @˝; t > 0;

w.x; 0/ D f .x/ for x 2 ˝; (5.3.44)
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with a continuous f satisfying

f .x/ D 0 for x 2 @˝: (5.3.45)

(We leave it to the reader to check the case of a solution of the inhomogeneous

equation ut .x; t/ ��u.x; t/ D '.x; t/ with vanishing initial and boundary values.)

To deal with the first case, we consider, for � > 0,

Qvt.x; t/ ��Qv.x; t/ D 0 for x 2 ˝; t > 0;

Qv.x; t/ D 0 for x 2 @˝; 0 < t � �;

Qv.x; t/ D g.x; t � �/ for x 2 @˝; t > �;

Qv.x; 0/ D 0 for x 2 ˝: (5.3.46)

Since, by (5.3.43), the boundary values are continuous at t D � , by the boundary

continuity result of Theorem 5.3.2, Qv.x; �/ is continuous for x 2 @˝ . Also, by

uniqueness, Qv.x; t/ D 0 for 0 � t � � , because both the boundary and initial values

vanish there. Therefore, again by uniqueness, v.x; t/ D Qv.x; tC�/, and we conclude

the continuity of v.x; 0/ for x 2 @˝ .

We can now turn to the second case. We consider some bounded C 2 domain Q̋

with N̋ � Q̋ . We put f C.x/ WD max.f .x/; 0/ for x 2 ˝ and f .x/ D 0 for

x 2 Q̋ n˝ . Then, because of (5.3.45), f C is continuous on Q̋ . We then solve

Qwt .x; t/ �� Qw.x; t/ D 0 for x 2 Q̋ ; t > 0;

Qw.x; t/ D 0 for x 2 @ Q̋ ; t > 0;

Qw.x; 0/ D f C.x/ for x 2 Q̋ : (5.3.47)

By the continuity result of Theorem 5.3.2, Qw.x; 0/ is continuous for x 2 Q̋ and

therefore in particular for x 2 @˝ . Since f C.x/ D 0 for x 2 @˝ , Qw.x; t/ ! 0

for x 2 @˝ and t ! 0. Since the initial values of Qw are nonnegative, Qw.x; t/ � 0

for all x 2 Q̋ and t � 0 by the maximum principle (Theorem 5.1.1). In particular,

Qw.x; t/ � w.x; t/ for x 2 @˝ since w.x; t/ D 0 there. Since also Qw.x; 0/ D

f C.x/ � f .x/ D w.x; 0/, the maximum principle implies Qw.x; t/ � w.x; t/ for

all x 2 N̋ ; t � 0. Altogether, w.x; 0/ � 0 for x 2 @˝ . Doing the same reasoning

with f �.x/ WD min.f .x/; 0/, we conclude that also w.x; 0/ � 0 for x 2 @˝ , i.e.,

altogether, w.x; 0/ D 0 for x 2 @˝ . This completes the proof. ut

Remark. Theorem 5.3.2 does not claim that u is twice differentiable with respect

to x, and in fact, this need not be true for a ' that is merely continuous. However,

one may still justify the equation

ut.x; t/ ��u.x; t/ D '.x; t/:
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We shall return to the analogous issue in the elliptic case in Sects. 12.1 and 13.1. In

Sect. 13.1, we shall verify that u is twice continuously differentiable with respect to

x if we assume that ' is Hölder continuous.

Here, we shall now concentrate on the case ' D 0 and address the regularity issue

both in the interior of ˝ and at its boundary. We recall the representation formula

(5.1.14) for a solution of the heat equation on ˝ ,

u.x; t/ D
Z

˝

K.x; y; t/u.y; 0/ dy

C
Z t

0

Z

@˝

�

K.x; y; t � �/
@u.y; �/

@�

� @K
@�y

.x; y; t � �/u.y; �/
�

do.y/ d�: (5.3.48)

We put K.x; y; s/ D 0 for s � 0 and may then integrate the second integral from 0

to 1 instead of from 0 to t . Then K.x; y; s/ is of class C1 for x; y 2 R
d , s 2 R,

except at x D y; s D 0. We thus have the following theorem:

Theorem 5.3.4. Any solution u.x; t/ of the heat equation in a domain˝ is of class

C1 with respect to x 2 ˝ , t > 0.

Proof. Since we do not know whether the normal derivative @u
@�

exists on @˝ and

is continuous there, we cannot apply (5.3.48) directly. Instead, for given x 2 ˝ ,

we consider some ball B.x; r/ contained in ˝ . We then apply (5.3.48) on
ı

B.x; r/

in place of ˝ . Since @B.x; r/ in ˝ is contained in ˝ , and u as a solution of the

heat equation is of class C 1 there, the normal derivative @u
@�

on @B.x; r/ causes no

problem, and the assertion is obtained. ut

In particular, the heat kernel q.x; y; t/ of a boundedC 2-domain˝ is of classC1

with respect to x; y 2 ˝ , t > 0. This also follows directly from (5.3.24), (5.3.32),

and (5.3.20) and the regularity properties of˙.x; y; t/ established in Theorem 5.3.1.

From these solutions it also follows that
@q

@�y
.x; y; t/ for y 2 @˝ is of class C1 with

respect to x 2 ˝ , t > 0. Thus, one can also use the representation formula (5.3.28)

for deriving regularity properties. Putting q.x; y; s/ D 0 for s < 0, we may again

extend the second integral in (5.3.28) from 0 to 1, and we then obtain by integrating

by parts, assuming that the boundary values are differentiable with respect to t ,

@

@t
u.x; t/ D

Z

˝

@

@t
q.x; y; t/f .y/dy

�

Z 1

0

Z

@˝

@q

@�y
.x; y; t � �/

@

@�
g.y; �/ do.y/ d�

C lim
�!0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/ do.y/: (5.3.49)
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Since q.x; y; t/ D 0 for x 2 @˝ , y 2 ˝ , t > 0, also
@q

@�y
.x; y; t � �/ D 0 for

x; y 2 @˝; � < t , and

@

@t
q.x; y; t/ D 0 for x 2 @˝; y 2 ˝; t > 0 (5.3.50)

(passing to the limit here is again justified by (5.3.32)). Since the second integral in

(5.3.49) has boundary values @
@t
g.x; t/, we thus have the following result:

Lemma 5.3.5. Let u be a solution of the heat equation on the bounded C 2-domain

˝ with continuous boundary values g.x; t/ that are differentiable with respect to t .

Then u is also differentiable with respect to t , for x 2 @˝ , t > 0, and we have

@

@t
u.x; t/ D @

@t
g.x; t/ for x 2 @˝; t > 0: (5.3.51)

We are now in position to establish the connection between the heat and Laplace

equation rigorously that we had arrived at from heuristic considerations in Sect. 5.2.

Theorem 5.3.5. Let ˝ � R
d be a bounded domain of class C 2, and let f 2

C 0.˝/, g 2 C 0.@˝/. Let u be the solution of Theorem 5.3.2 of the initial boundary

value problem:

�u.x; t/ � ut.x; t/ D 0 for x 2 ˝; t > 0;

u.x; 0/ D f .x/ for x 2 ˝; (5.3.52)

u.x; t/ D g.x/ for x 2 @˝; t > 0:

Then u converges for t ! 1 uniformly on N̋ towards a solution of the Dirichlet

problem for the Laplace equation

�u.x/ D 0 for x 2 ˝;

u.x/ D g.x/ for x 2 @˝: (5.3.53)

Proof. We write u.x; t/ D u1.x; t/ C u2.x; t/, where u1 and u2 both solve the heat

equation, and u1 has the correct initial values, i.e.,

u1.x; 0/ D f .x/ for x 2 ˝;

while u2 has the correct boundary values, i.e.,

u2.x; t/ D g.x/ for x 2 @˝; t > 0;

as well as

u1.x; t/ D 0 for x 2 @˝; t > 0;

u2.x; 0/ D 0 for x 2 ˝:
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By Lemma 5.2.3, we have

lim
t!1

u1.x; t/ D 0:

Thus, the initial values f are irrelevant, and we may assume without loss of

generality that f � 0, i.e., u D u2.

One easily sees that q.x; y; t/ > 0 for x; y 2 ˝ , because q.x; y; t/ D 0 for all

x 2 @˝ , and by (iii) of Definition 5.3.1, q.x; y; t/ > 0 for x; y 2 ˝ and sufficiently

small t > 0. Since q solves the heat equation, by the strong maximum principle, q

then is indeed positive in the interior of ˝ for all t > 0 (see Corollary 5.3.1).

Therefore, we always have

@q

@�y
.x; y; t/ � 0: (5.3.54)

Since q.x; y; t/ solves the heat equation with vanishing boundary values, Lemma

5.2.3 also implies

lim
t!1

q.x; y; t/ D 0 uniformly in N̋ � N̋ (5.3.55)

(utilizing the symmetry q.x; y; t/ D q.y; x; t/ from Corollary 5.3.1). We then have

for t2 > t1,

ju.x; t2/ � u.x; t1/j D

ˇ

ˇ

ˇ

ˇ

Z t2

t1

Z

@˝

@q

@�z

.x; z; t/g.z/do.z/dt

ˇ

ˇ

ˇ

ˇ

� max
@˝

jgj

Z t2

t1

Z

@˝

�

�
@q

@�z

.x; z; t/

�

do.z/dt

D � max jgj

Z t2

t1

Z

˝

�yq.x; y; t/dy dt

D � max jgj

Z t2

t1

Z

˝

qt .x; y; t/dy dt

D � max jgj

Z

˝

fq.x; y; t2/ � q.x; y; t1/g dy

! 0 for t1; t2 ! 1 by (5.3.55):

Thus u.x; t/ converges for t ! 1 uniformly towards some limit function u.x/ that

then also satisfies the boundary condition

u.x/ D g.x/ for x 2 @˝:
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Theorem 5.3.2 also implies

u.x/ D �

Z 1

0

Z

@˝

@q

@�z

.x; z; t/g.z/do.z/dt:

We now consider the derivatives @
@t

u.x; t/ DW v.x; t/. Then v.x; t/ is a solution of

the heat equation itself, namely, with boundary values v.x; t/ D 0 for x 2 @˝ by

Lemma 5.3.5. By Lemma 5.2.3, v then converges uniformly to 0 on N̋ for t ! 1.

Therefore, �u.x; t/ converges uniformly to 0 in N̋ for t ! 1, too. Thus, we

must have

�u.x/ D 0: ut

As a consequence of Theorem 5.3.5, we obtain a new proof for the solvability

of the Dirichlet problem for the Laplace equation on bounded domains of class C 2,

i.e., a special case of Theorem 4.2.2 (together with Lemma 4.4.1):

Corollary 5.3.3. Let˝ � R
d be a bounded domain of class C 2, and let g W @˝ !

R be continuous. Then the Dirichlet problem

�u.x/ D 0 for x 2 ˝; (5.3.56)

u.x/ D g.x/ for x 2 @˝; (5.3.57)

admits a solution that is unique by the maximum principle.

References for this section are Chavel [4] and the sources given there.

5.4 Discrete Methods

Both for the heuristics and for numerical purposes, it can be useful to discretize the

heat equation. For that, we shall proceed as in Sect. 4.1 and also keep the notation of

that section. In addition to the spatial variables, we also need to discretize the time

variable t ; the corresponding step size will be denoted by k. It will turn out to be

best to choose k different from the spatial grid size h.

The discretization of the heat equation

ut.x; t/ D �u.x; t/ (5.4.1)

is now straightforward:

1

k

�

uh;k.x; t C k/ � uh;k.x; t/
�

D �hu
h;k.x; t/

D
1

h

2 d
X

iD1

n

uh;k
�

x1; : : : ; xi�1; xi C h; xiC1; : : : ; xd ; t
�

� 2uh;k
�

x1; : : : ; xd ; t
�

C uh;k
�

x1; : : : ; xi � h; : : : ; xd ; t
�

o

: (5.4.2)
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Thus, for discretizing the time derivative, we have selected a forward difference

quotient. In order to simplify the notation, we shall mostly write u in place of uh;k .

Choosing

h2 D 2dk; (5.4.3)

the term u.x; t/ drops out, and (5.4.2) becomes

u.x; t C k/ D 1

2d

d
X

iD1

�

u
�

x1; : : : ; xi C h; : : : ; xd ; t
�

Cu
�

x1; : : : ; xi � h; : : : ; xd ; t
��

: (5.4.4)

This means that u.x; t C k/ is the arithmetic mean of the values of u at the 2d

spatial neighbors of .x; t/. From this observation, one sees that if the process

stabilizes as time grows, one obtains a solution of the discretized Laplace equation

asymptotically as in the continuous case.

It is possible to prove convergence results as in Sect. 4.1. Here, however, we shall

not carry this out. We wish to remark, however, that the process can become unstable

if h2 < 2dk. The reader may try to find some examples. This means that if one

wishes h to be small so as to guarantee accuracy of the approximation with respect

to the spatial variables, then k has to be extremely small to guarantee stability of the

scheme. This makes the scheme impractical for numerical use.

The mean value property of (5.4.4) also suggests the following semidiscrete

approximation of the heat equation: Let ˝ � R
d be a bounded domain. For " > 0,

we put ˝" WD fx 2 ˝ W dist.x; @˝/ > "g. Let a continuous function g W @˝ ! R

be given, with a continuous extension to N̋ n ˝", again denoted by g. Finally, let

initial values f W ˝ ! R be given. We put iteratively

Qu.x; 0/ D f .x/ for x 2 ˝;

Qu.x; 0/ D 0 for x 2 R
d n˝;

u.x; nk/ D
1

!d"d

Z

B.x;"/

Qu.y; .n � 1/k/ dy for x 2 ˝;n 2 N;

and

Qu.x; nk/ D

(

u.x; nk/ for x 2 ˝";

g.x/ for x 2 R
d n˝";

n 2 N:

Thus, in the nth step, the value of the function at x 2 ˝" is obtained as the

mean of the values of the preceding step of the ball B.x; "/. A solution that is

time independent then satisfies a mean value property and thus is harmonic in ˝"

according to the remark after Corollary 2.2.5.
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Summary

In this chapter we have investigated the heat equation on a domain ˝ 2 R
d :

@

@t
u.x; t/ ��u.x; t/ D 0 for x 2 ˝; t > 0:

We prescribed initial values

u.x; 0/ D f .x/ for x 2 ˝;

and, in the case that ˝ has a boundary @˝ , also boundary values

u.y; t/ D g.y; t/ for y 2 @˝; t � 0:

In particular, we studied the Euclidean fundamental solution

K.x; y; t/ D
1

.4�t/
d
2

e� jx�yj2
4t ;

and we obtained the solution of the initial value problem on R
d by convolution:

u.x; t/ D

Z

Rd

K.x; y; t/f .y/dy:

If ˝ is a bounded domain of class C 2, we established the existence of the heat

kernel q.x; y; t/, and we solved the initial boundary value problem by the formula

u.x; t/ D

Z

˝

q.x; y; t/f .y/dy �

Z t

0

Z

@˝

@q

@�z

.x; z; t � �/g.z; �/do.z/d�:

In particular, u.x; t/ is of class C1 for x 2 ˝ , t > 0 because of the

corresponding regularity properties of the kernel q.x; y; t/. The solutions satisfy

a maximum principle saying that a maximum or minimum can be assumed only on

˝ � f0g or on @˝ � Œ0;1/ unless the solution is constant. Consequently, solutions

are unique. If the boundary values g.y/ do not depend on t , then u.x; t/ converges

for t ! 1 towards a solution of the Dirichlet problem for the Laplace equation

�u.x/ D 0 in ˝;

u.x/ D g.x/ for x 2 @˝:

This yields a new existence proof for that problem, although requiring stronger

assumptions for the domain˝ when compared with the existence proof of Chap. 4.

The present proof, on the other hand, is more constructive in the sense of giving an

explicit prescription for how to reach a harmonic state from some given state f .
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Exercises

5.1. Let ˝ � R
d be bounded,˝T WD ˝ � .0; T /. Let

L WD

d
X

i;jD1
aij .x; t/

@2

@xi@xj
C

d
X

iD1
bi.x; t/

@

@xi

be elliptic for all .x; t/ 2 ˝T , and suppose

ut � Lu;

where u 2 C 0. N̋
T / is twice continuously differentiable with respect to x 2 ˝ and

once with respect to t 2 .0; T /.

Show that

sup
˝T

u D sup
@�˝T

u:

5.2. Using the heat kernel �.x; y; t; 0/ D K.x; y; t/, derive a representation

formula for solutions of the heat equation on ˝T with a bounded ˝ � R
d and

T < 1.

5.3. Show that for K as in Exercise 5.2,

K.x; 0; s C t/ D

Z

Rd

K.x; y; t/K.y; 0; s/dy

(a) If s; t > 0

(b) If 0 < t < �s

5.4. Let ˙ be the grid consisting of the points .x; t/ with x D nh, t D mk,

n;m 2 Z; m � 0, and let v be the solution of the discrete heat equation

v.x; t C k/ � v.x; t/

k
�

v.x C h; t/ � 2v.x; t/C v.x � h; t/

h2
D 0

with v.x; 0/ D f .x/ 2 C 0.R/.

Show that for k
h2

D 1
2
,

v.nh;mk/ D 2�m
m
X

jD0

�

m

j

�

f ..n �mC 2j /h/:

Conclude from this that

sup
˙

jvj � sup
R

jf j:
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5.5. Use the method of Sect. 5.3 to obtain a solution of the Poisson equation on

˝ � R
d , a bounded domain of class C 2, continuous boundary values g W @˝ ! R,

and continuous right-hand side ' W ˝ ! R, i.e., of

�u.x/ D '.x/ for x 2 ˝;

u.x/ D g.x/ for x 2 @˝:

(For the regularity issue, we need to refer to Sect. 13.1.)



Chapter 6

Reaction–Diffusion Equations and Systems

6.1 Reaction–Diffusion Equations

In this section, we wish to study the initial boundary value problem for nonlinear

parabolic equations of the form

ut.x; t/ ��u.x; t/ D F.x; t; u/ for x 2 ˝; t > 0;

u.x; t/ D g.x; t/ for x 2 @˝; t > 0;

u.x; 0/ D f .x/ for x 2 ˝; (6.1.1)

with given (continuous and smooth) functions g; f and a Lipschitz continuous

function F (in fact, Lipschitz continuity is only needed w.r.t. to u; for x and t ,

continuity suffices). The nonlinearity of this equation comes from the u-dependence

of F. While we may consider (6.1.1) as a heat equation with a nonlinear term on the

right-hand side, i.e., as a generalization of

ut .x; t/ ��u.x; t/ D 0 for x 2 ˝; t > 0 (6.1.2)

(with the same boundary and initial values), in the case where F does not depend

on the spatial variable x, i.e., F D F.t; u/, we may alternatively view (6.1.1) as a

generalization of the ODE:

ut .t/ D F.t; u/ for t > 0;

u.0/ D u0:
(6.1.3)

For such equations, we have, for the case of a Lipschitz continuous F, a local

existence theorem, the Picard–Lindelöf theorem. This says that for given initial

value u0, we may find some t0 > 0 with the property that a unique solution exists

for 0 � t < t0. When F is bounded, solutions exist for all t , as follows from

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,
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an iterated application of the Picard–Lindelöf theorem. When F is unbounded,

however, solutions may become infinite in finite time; a standard example is

ut.t/ D u2.t/ (6.1.4)

with positive initial value u0. The solution is

u.t/ D
�

1

u0
� t

��1

(6.1.5)

which for positive u0 becomes infinite in finite time, at t D 1
u0

.

We shall see in this section that this qualitative type of behavior, in particular

the local (in time) existence result, carries over to the reaction–diffusion equa-

tion (6.1.1). In fact, the local existence can be shown like the Picard–Lindelöf

theorem by an application of the Banach fixed-point theorem; here, of course, we

need to utilize also the results for the heat equation (6.1.2) established in Sect. 5.3.

We shall thus start by establishing the local existence result:

Theorem 6.1.1. Let ˝ � R
d be a bounded domain of class C 2, and let

g 2 C 0.@˝ � Œ0; t0�/; f 2 C 0. N̋ /;

with g.x; 0/ D f .x/ for x 2 @˝;

and let

F 2 C 0. N̋ � Œ0; t0� � R/

be locally bounded, i.e., given � > 0 and f 2 C 0. N̋ /, there exists M D M.�/ with

jF.x; t; v.x//j � M for x 2 N̋ ; t 2 Œ0; t0�; jv.x/ � f .x/j � �; (6.1.6)

and locally Lipschitz continuous w.r.t. u, i.e., there exists a constant L D L.�/ with

jF.x; t; u1.x// � F.x; t; u2.x//j � Lju1.x/ � u2.x/j

for x 2 N̋ ; t 2 Œ0; t0�; ku1 � f kC 0. N̋ /; ku2 � f kC 0. N̋ / < �: (6.1.7)

(Of course, (6.1.6) follows from (6.1.7), but it is convenient to list it separately.)

Then there exists some t1 � t0 for which the initial boundary value problem

ut.x; t/ ��u.x; t/ D F.x; t; u/ for x 2 ˝; 0 < t � t1;

u.x; t/ D g.x; t/ for x 2 @˝; 0 < t � t1;

u.x; 0/ D f .x/ for x 2 ˝; (6.1.8)

admits a unique solution that is continuous on N̋ � Œ0; t1�.



6.1 Reaction–Diffusion Equations 129

Proof. Let q.x; y; t/ be the heat kernel of ˝ of Corollary 5.3.1. According to

(5.3.28), a solution then needs to satisfy

u.x; t/ D
Z t

0

Z

˝

q.x; y; t � �/F.y; �; u.y; �//dy d�

C
Z

˝

q.x; y; t/f .y/dy

�
Z t

0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/do.y/d�: (6.1.9)

A solution of (6.1.9) then is a fixed point of

˚ W v 7!
Z t

0

Z

˝

q.x; y; t � �/F.y; �; v.y; �//dy d�

C
Z

˝

q.x; y; t/f .y/dy

�
Z t

0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/do.y/d� (6.1.10)

which maps C 0. N̋ � Œ0; t0�/ to itself. We consider the set

A WD fv 2 C 0. N̋ � Œ0; t1�/ W sup
x2 N̋ ;0�t�t1

jv.x; t/ � f .x/j < �g: (6.1.11)

Here, we choose t1 > 0 so small that

t1M � �

2
(6.1.12)

and

t1L < 1: (6.1.13)

For v 2 A

j˚.v/.x; t/ � f .x/j �
ˇ

ˇ

ˇ

ˇ

Z t

0

Z

˝

q.x; y; t � �/F.y; �; v.y; �//dy d�

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

Z

˝

q.x; y; t/f .y/dy

�
Z t

0

Z

@˝

@q

@�y
.x; y; t � �/g.y; �/do.y/d� � f .x/

ˇ

ˇ

ˇ

ˇ

� tM C cf;g.t/; (6.1.14)
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where we have used (5.3.40) and cf;g.t/ controls the difference of the solution

u0.x; t/ at time t of the heat equation with initial values f and boundary values

g from its initial values, i.e., supx2 N̋ ju0.x; t/ � f .x/j. That latter quantity can be

made arbitrarily small, for example, smaller than
�

2
by choosing t sufficiently small,

by continuity of the solution of the heat equation (see Theorem 5.3.3). Together with

(6.1.12), we then have, by choosing t1 sufficiently small,

j˚.v/.x; t/ � f .x/j < �; (6.1.15)

that is, ˚.v/ 2 A. Thus, ˚ maps the set A to itself.

We shall now show that ˚ is a contraction on A: for v;w 2 A, using (5.3.40)

again, and our Lipschitz condition (6.1.7),

sup
x2 N̋ ;0�t�t1

j˚.v/.x; t/ � ˚.w/.x; t/j

D sup
x2 N̋ ;0�t�t1

ˇ

ˇ

ˇ

ˇ

Z t

0

Z

˝

q.x; y; t � �/.F.y; �; v.y; �//

�F.y; �;w.y; �///dy d� j

� t1L sup
x2 N̋ ;0�t�t1

jv.x; t/ � w.x; t/j; (6.1.16)

with t1L < 1 by (6.1.13). Thus, ˚ is a contraction on A, and the Banach fixed-point

theorem (see Theorem A.1 of the appendix) yields the existence of a unique fixed

point in A that then is a solution of our problem (6.1.8). We still need to exclude

that there exists a solution outside A, but this is simple as the next lemma shows. ut

Lemma 6.1.1. Let u1.x; t/; u2.x; t/ 2 C 0. N̋ � Œ0; T �/ be solutions of (6.1.8) with

ui.x; t/ D g.x; t/ for x 2 @˝; 0 � t � T , jui.x; 0/ � f .x/j � �

2
for x 2 N̋ ,

i D 1; 2. Then there exists a constantK D K.�/ with

sup
x2 N̋

ju1.x; t/ � u2.x; t/j � eKt sup
x2 N̋

ju1.x; 0/� u2.x; 0/j for 0 � t � T: (6.1.17)

Proof. By the representation formula (5.3.28),

u1.x; t/ � u2.x; t/ D
Z

˝

q.x; y; t/.u1.y; 0/ � u2.y; 0//dy

C
Z t

0

Z

˝

q.x; y; t � �/.F.y; �; u1.y; �//

� F.y; �; u2.y; �///dy d� (6.1.18)

Then, as long as supx jui.x; t/ � f .x/j � �, we have the bound from (6.1.7):

jF.x; t; u1.x; t// � F.x; t; u2.x; t//j � Lju1.x; t/ � u2.x; t/j: (6.1.19)
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Using (5.3.37) and (6.1.19) in (6.1.18), we obtain

sup
x2 N̋

ju1.x; t/ � u2.x; t/j � sup
x2 N̋

ju1.x; 0/ � u2.x; 0/j

C L

Z t

0

sup
x2 N̋

ju1.x; �/ � u2.x; �/jd� (6.1.20)

which implies the claim by the following general calculus inequality. ut

Lemma 6.1.2. Let the integrable function � W Œ0; T � ! R
C satisfy

�.t/ � �.0/C c

Z t

0

�.�/d� (6.1.21)

for all 0 � t � T and some constant c. Then for 0 � t � T

�.t/ � ect�.0/: (6.1.22)

Proof. From (6.1.21)

d

dt

�

e�ct

Z t

0

�.�/d�

�

� e�ct�.0/I

hence

e�ct

Z t

0

�.�/d� � 1 � e�ct

c
�.0/;

from which, with (6.1.21), the desired inequality (6.1.22) follows. ut

We have the following important consequence of Theorem 6.1.1, a global existence

theorem:

Corollary 6.1.1. Under the assumptions of Theorem 6.1.1, suppose that the solu-

tion u.x; t/ of (6.1.8) satisfies the a priori bound

sup
x2 N̋ ;0���t

ju.x; �/j � K (6.1.23)

for all times t for which it exists, with some fixed constant K . Then the solution

u.x; t/ exists for all times 0 � t < 1.

Proof. Suppose the solution exists for 0 � t � T . Then we apply Theorem 6.1.1 at

time T instead of 0, with initial values u.x; T / in place of the original initial values

u.x; 0/ and conclude that the solution continues to exist on some interval Œ0; T C t0/

for some t0 > 0 that only depends on K . We can therefore iterate the procedure to

obtain a solution for all time. ut
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In order to understand the qualitative behavior of solutions of reaction–diffusion

equations

ut .x; t/ ��u.x; t/ D F.t; u/ on ˝T ; (6.1.24)

it is useful to compare them with solutions of the pure reaction equation

vt.x; t/ D F.t; v/; (6.1.25)

which, when the initial values

v.x; 0/ D v0 (6.1.26)

do not depend on x, likewise is independent of the spatial variable x. It therefore

satisfies the homogeneous Neumann boundary condition

@v

@�
D 0; (6.1.27)

where �, as always, is the exterior normal of the domain˝ . Therefore, comparison

is easiest when we also assume that u satisfies such a Neumann condition

@u

@�
D 0 on @˝; (6.1.28)

instead of the Dirichlet condition of (6.1.1). We therefore investigate that situation

now, even though in Chap. 5 we have not derived existence theorems for parabolic

equations with Neumann boundary conditions. For such results, we refer to [9].

We have the following general comparison result:

Lemma 6.1.3. Let u; v be of class C 2 w.r.t. x 2 ˝ , of class C 1 w.r.t. t 2 Œ0; T �, and

satisfy

ut .x; t/ ��u.x; t/ � F.x; t; u/ � vt.x; t/ ��v.x; t/ � F.x; t; v/

for x 2 ˝; 0 < t � T;

@u.x; t/

@�
� @v.x; t/

@�
for x 2 @˝; 0 < t � T;

u.x; 0/ � v.x; 0/ for x 2 ˝; (6.1.29)

with our above assumptions on F which in addition is assumed to be continuously

differentiable w.r.t. u with @F
@u

� 0. Then

u.x; t/ � v.x; t/ for x 2 N̋ ; 0 � t � T: (6.1.30)

Proof. w.x; t/ WD u.x; t/ � v.x; t/ satisfies w.x; 0/ � 0 in ˝ and @w
@�

� 0 on

@˝ � Œ0; T �, as well as

wt .x; t/ ��w.x; t/ � dF.x; t; �/

du
w.x; t/ � 0 (6.1.31)
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with � WD su C .1 � s/v for some 0 < s < 1. Lemma 5.1.1 and the parabolic

maximum principles mentioned there then imply w � 0, i.e., (6.1.30). ut

For example, a solution of

ut ��u D �u3 for x 2 N̋ ; t > 0 (6.1.32)

with

u.x; 0/ D u0.x/ for x 2 ˝; @u.x; t/

@�
D 0 for x 2 @˝; t > 0 (6.1.33)

can be sandwiched between solutions of

vt .t/ D �v3.t/; v.0/ D m; and wt .t/ D �w3.t/; w.0/ D M (6.1.34)

with m � u0.x/ � M , i.e., we have

v.t/ � u.x; t/ � w.t/ for x 2 N̋ ; t > 0: (6.1.35)

Since v and w as solutions of (6.1.34) tend to 0 for t ! 1, we conclude that u.x; t/

(assuming that it exists for all t � 0) also tends to 0 for t ! 1 uniformly in x 2 ˝ .

We now come to one of the topics that make reaction–diffusion interesting and

useful models for pattern formation, namely, travelling waves.

We consider the reaction–diffusion equation in one-dimensional space

ut D uxx C f .u/ (6.1.36)

and look for solutions of the form

u.x; t/ D v.x � ct/ D v.s/; with s WD x � ct: (6.1.37)

This travelling wave solution moves at constant speed c, assumed to be > 0 w.l.o.g,

in the increasing x-direction. In particular, if we move the coordinate system with

speed c, i.e., keep x � ct constant, then the solution also stays constant. We do not

expect such a solution for every wave speed c but at most for particular values that

then need to be determined.

A travelling wave solution v.s/ of (6.1.36) satisfies the ODE

v00.s/C cv0.s/C f .v/ D 0; with 0 D d

ds
: (6.1.38)

When f � 0, then a solution must be of the form v.s/ D c0 C c1e
�cs and therefore

becomes unbounded for s ! �1, i.e., for t ! 1. In other words, for the

heat equation, there is no nontrivial bounded travelling wave. In contrast to this,

depending on the precise nonlinear structure of f , such travelling wave solutions

may exist for reaction–diffusion equations. This is one of the reasons why such

equations are interesting.



134 6 Reaction–Diffusion Equations and Systems

As an example, we consider the Fisher equation in one dimension,

ut D uxx C u.1 � u/: (6.1.39)

This is a model for the growth of populations under limiting constraints: The term

�u2 on the r.h.s. limits the population size. Due to such an interpretation, one is

primarily interested in nonnegative solutions.

We now apply some standard concepts from dynamical systems1 to the underly-

ing reaction equation

ut D u.1� u/: (6.1.40)

The fixed points of this equation are u D 0 and u D 1. The first one is unstable, the

second one stable. The travelling wave equation (6.1.38) then is

v00.s/C cv0.s/C v.1 � v/ D 0: (6.1.41)

With w WD v0, this is converted into the first-order system

v0 D w; w0 D �cw � v.1 � v/: (6.1.42)

The fixed points then are .0; 0/ and .1; 0/. The eigenvalues of the linearization at

.0; 0/, i.e., of the linear system

�0 D �; �0 D �c� � �; (6.1.43)

are

�˙ D 1

2

�

�c ˙
p
c2 � 4

�

: (6.1.44)

For c2 � 4, they are both real and negative, and so the solution of (6.1.43) yields

a stable node. For c2 < 4, they are conjugate complex with a negative real part,

and we obtain a stable spiral. Since a stable spiral oscillates about 0, in that case,

we cannot expect a nonnegative solution, and so, we do not consider this case here.

Also, for symmetry reasons, we may restrict ourselves to the case c > 0, and since

we want to exclude the spiral then to c � 2.

The eigenvalues of the linearization at .1; 0/, i.e., of the linear system

�0 D �; �0 D �c�C �; (6.1.45)

are

�˙ D 1

2

�

�c ˙
p

c2 C 4
�

I (6.1.46)

1Readers who are not familiar with this can consult [17].
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they are real and of different signs, and we obtain a saddle. Thus, the stability

properties are reversed when compared to (6.1.40) which, of course, results from

the fact that ds
dt

D �c is negative.

For c � 2, one finds a solution with v � 0 from .1; 0/ to .0; 0/, i.e., with

v.�1/ D 1; v.1/ D 0. v0 � 0 for this solution. We recall that the value of a

travelling wave solution is constant when x � ct is constant. Thus, in the present

case, when time t advances, the values for large negative values of x which are close

to 1 are propagated to the whole real line, and for t ! 1, the solution becomes

1 everywhere. In this sense, the behavior of the ODE (6.1.40) where a trajectory

goes from the unstable fixed point 0 to the stable fixed point 1 is translated into a

travelling wave that spreads a nucleus taking the value 1 for x D �1 to the entire

space.

The question for which initial conditions a solution of (6.1.39) evolves to such

a travelling wave, and what the value of c then is has been widely studied in

the literature since the seminal work of Kolmogorov and his coworkers [22]. For

example, they showed when u.x; 0/ D 1 for x � x1, 0 � u.x; 0/ � 1 for

x1 � x � x2, u.x; 0/ D 0 for x � x2, then the solution u.x; t/ evolves towards

a travelling wave with speed c D 2. In general, the wave speed c depends on the

asymptotic behavior of u.x; 0/ for x ! ˙1.

6.2 Reaction–Diffusion Systems

In this section, we extend the considerations of the previous section to systems of

coupled reaction–diffusion equations. More precisely, we wish to study the initial

boundary value problems for nonlinear parabolic systems of the form

u˛t .x; t/ � d˛�u˛.x; t/ D F ˛.x; t; u/ for x 2 ˝; t > 0; ˛ D 1; : : : ; n; (6.2.1)

for suitable initial and boundary conditions. Here, u D .u1; : : : ; un/ consists of n

components, the d˛ are nonnegative constants, and the functions F ˛.x; t; u/ are

assumed to be continuous w.r.t. x; t and Lipschitz continuous w.r.t. u, as in the

preceding section. Again, the u-dependence here is the important one.

We note that in (6.2.1), the different components u˛ are only coupled through

the nonlinear terms F.x; t; u/ while the left-hand side of (6.2.1) for each ˛ only

involves u˛, but no other component uˇ for ˇ ¤ ˛. Here, we allow some of

the diffusion constants d˛ to vanish. The corresponding equation for u˛.x; t/ then

becomes an ordinary differential equation with the spatial coordinate x assuming

the role of a parameter. If we ignore the coupling with other components uˇ with

positive diffusion constants dˇ, then such a u˛.x; t/ evolves independently for each

position x. In particular, in the absence of diffusion, it is no longer meaningful to

impose a Dirichlet boundary condition. When d˛ is positive, however, diffusion

between the different spatial positions takes place. We have already explained in

Sect. 5.1 why the diffusion constants should not be negative.
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We first observe that, when we assume that the d˛ are positive, the proofs of

Theorem 6.1.1 and Corollary 6.1.1 extend to the present case when we make

corresponding assumptions on the initial and boundary values. The reason is that the

proof of Theorem 6.1.1 only needs norm estimates coming from Lipschitz bounds,

but no further detailed knowledge on the structure of the right-hand side. Thus

Corollary 6.2.1. Let the diffusion constants d˛ all be positive. Under the assump-

tions of Theorem 6.1.1 for the right-hand side components F ˛, and with the same

type of boundary conditions for the components u˛, suppose that the solution

u.x; t/ D .u1.x; t/; : : : ; un.x; t// of (6.2.1) satisfies the a priori bound

sup
x2 N̋ ;0���t

ju.x; �/j � K (6.2.2)

for all times t for which it exists, with some fixed constant K . Then the solution

u.x; t/ exists for all times 0 � t < 1.

In the sequel, we shall assume that the reaction term F depends on u only, but

not explicitly on x or t . That is, we shall consider the system

u˛t .x; t/ � d˛�u˛.x; t/ D F ˛.u.x; t// for x 2 ˝; t > 0; ˛ D 1; : : : ; n; (6.2.3)

with further assumptions on F to be specified in a moment.

For the following considerations, it will be simplest to assume homogeneous

Neumann boundary conditions

@u˛.x; t/

@�
D 0 for x 2 @˝; t > 0; ˛ D 1; : : : ; n: (6.2.4)

Again, we assume that the solution u.x; t/ stays bounded and consequently exists

for all time. We want to compare u.x; t/ with its spatial average Nu defined by

Nu˛.t/ WD 1

k˝k

Z

˝

u˛.x; t/dx; (6.2.5)

where k˝k is the Lebesgue measure of ˝ .

We also assume that the right-hand side F is differentiable w.r.t. u, and

sup
x;t

kdF.u/

du
k � L: (6.2.6)

Finally, let

d0 WD min
˛D1;:::;n

d˛ > 0 (6.2.7)

and �1 > 0 be the smallest Neumann eigenvalue of � on ˝ , according to

Theorem 11.5.2 below. We then have
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Theorem 6.2.1. Assume that u.x; t/ is a bounded solution of (6.2.1) with homoge-

neous Neumann boundary conditions (6.2.4). Assume that

ı WD d0�1 � L > 0: (6.2.8)

Then

Z

˝

d
X

iD1
juxi .x; t/j2dx � c1e

�2ıt (6.2.9)

for a constant c1, and

Z

˝

ju.x; t/ � Nu.t/j2dx � c2e
�2ıt (6.2.10)

for a constant c2.

Thus, under the conditions of the theorem, spatial oscillations decay exponen-

tially, and the solution asymptotically behaves like its spatial average. In the next

Sect. 6.3, we shall investigate situations where this does not happen.

Proof. We put, similarly to Sect. 5.2,

E.u.�; t// D 1

2

Z

˝

d
X

iD1

n
X

˛D1

1

d˛
.u˛
xi
/2dx

and compute

d

dt
E.u.�; t// D

Z

˝

d
X

iD1

n
X

˛D1

1

d˛
u˛
txi

u˛
xi

dx

D
Z

˝

d
X

iD1

n
X

˛D1

1

d˛
u˛
xi

@.d˛�u˛ C F ˛.u//

@xi
dx

D �
Z

˝

X

˛

.�u˛/2dx C
Z

˝

d
X

iD1

n
X

˛D1

1

d˛
u˛
xi

X

ˇ

@F ˛

@uˇ
u
ˇ

xi
;

since
@u.x; t/

@�
D 0 for x 2 @˝

� ��1
Z

˝

d
X

iD1

X

˛

.u˛
xi
/2dx C L

Z

˝

d
X

iD1

X

˛

1

d˛
.u˛
xi
/2dx

� �2ıE.u.�; t//; (6.2.11)
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using Corollary 11.5.1 below and (6.2.8). This differential inequality by integration

readily implies (6.2.9).

By Corollary 11.5.1 again, we have

�1

Z

˝

ju.x; t/ � Nu.t/j2dx �
Z

˝

d
X

iD1
uxi .x; t/

2dx; (6.2.12)

and so (6.2.9) implies (6.2.10). ut

We now consider the case where all the diffusion constants d˛ in (6.2.3) are

equal. After rescaling, we may then assume that all d˛ D 1 so that we are looking

at the system

u˛t .x; t/ ��u˛.x; t/ D F ˛.u.x; t// for x 2 ˝; t > 0: (6.2.13)

We then have

Theorem 6.2.2. Assume that u.x; t/ is a bounded solution of (6.2.13) with homo-

geneous Neumann boundary conditions (6.2.4). Assume that

ı D �1 � L > 0: (6.2.14)

Then

sup
x2˝

ju.x; t/ � Nu.t/j � c3e
�2ıt (6.2.15)

for a constant c3.

Proof (incomplete). We shall leave out the summation over the index ˛ in our

notation, i.e., write u2t or utut in place of
Pn

˛D1 u˛t u˛t and so on.

As in Sect. 5.2, we compute

�

@

@t
��

�

1

2
u2t D utut t � ut�ut �

d
X

iD1
u2
xi t

D ut
@

@t
.ut ��u/ �

d
X

iD1
u2
xi t

� Lu2t �
d
X

iD1
.uxi t /

2: (6.2.16)

Therefore, by Corollary 11.5.1,

@

@t

Z

˝

u2t D
Z

˝

�

@

@t
u2t ��u2t

�

� 2.L� �1/

Z

˝

u2t � 0 (6.2.17)
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by (6.2.14). By parabolic regularity theory (a reference is [9]), we then get control

over higher norms of u; this is analogous to elliptic regularity theory but not carried

out in detail in this book. Actually, most of what we need can be derived from elliptic

regularity theory, except for the following bound which follows from (6.2.17).

v.t/ WD sup
x2˝

ˇ

ˇ

ˇ

ˇ

@u.x; t/

@t

ˇ

ˇ

ˇ

ˇ

2

is a nonincreasing function of t . In particular,
@u.x;t/

@t
remains uniformly bounded

in t . Writing our equation for u˛ as1

�u˛.x; t/ D 1

d˛
.u˛t .x; t/ � F ˛.x; t; u//; (6.2.18)

we may then apply Theorem 13.1.2(a) below to obtain C 1;� bounds on u.x; t/ as

a function of x that are independent of t , for some 0 < � < 1. Then, first using

the Sobolev embedding Theorem 11.1.1 for some p > d , and then these pointwise,

time-independent bounds on u.x; t/ and
@u.x;t/

@xi
,

sup
x2˝

ju.x; t/ � Nu.t/j �
Z

˝

ju.x; t/ � Nu.t/jpdx

C
Z

˝

X

i

ˇ

ˇ

ˇ

ˇ

@

@xi
.u.x; t/ � Nu.t//

ˇ

ˇ

ˇ

ˇ

p

dx

� c

Z

˝

ju.x; t/ � Nu.t/j2dx C c

Z

˝

X

i

ˇ

ˇ

ˇ

ˇ

@u.x; t/

@xi

ˇ

ˇ

ˇ

ˇ

2

dx;

for some constant c. From (6.2.9) and (6.2.10), we then obtain (6.2.15). ut

A reference for reaction–diffusion equations and systems that we have used in this

chapter is [29].

6.3 The Turing Mechanism

The turing mechanism is a reaction–diffusion system that has been proposed as a

model for biological and chemical pattern formation. We discuss it here in order

to show how the interaction between reaction and diffusion processes can give

1For this step, we no longer need the assumption that the d˛ are all equal, and so, we keep them in

the next formula, nor the assumption that F does not depend on x and t , and so, we also allow for

that in our formula.
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rise to structures that neither of the two processes is capable of creating by itself.

The Turing mechanism creates instabilities w.r.t. spatial variables for temporally

stable states in a system of two coupled reaction–diffusion equations with different

diffusion constants. This is in contrast to the situation considered in the previous ÷,

where we have derived conditions under which a solution asymptotically becomes

spatially constant (see Theorems 6.2.1 and 6.2.2). In this section, we shall need to

draw upon some results about eigenvalues of the Laplace operator that will only be

established in Sect. 11.5 below (see in particular Theorem 11.5.2).

The system is of the form

ut D �u C 
f .u; v/;

vt D d�v C 
g.u; v/; (6.3.1)

where the important parameter is the diffusion constant d that will subsequently be

taken> 1. Its relation with the properties of the reaction functions f; g will drive the

whole process. The parameter 
 > 0 is only introduced for the subsequent analysis,

instead of absorbing it into the functions f and g. Here u; v W ˝ � R
C ! R for

some bounded domain˝ � R
d of class C1, and we fix the initial values

u.x; 0/; v.x; 0/ for x 2 ˝;

and impose Neumann boundary conditions

@u

@n
.x; t/ D 0 D @v

@n
.x; t/ for all x 2 @˝; t � 0:

One can also study Dirichlet type boundary condition, for example, u D u0; v D
v0 on @˝ where u0 and v0 are a fixed point of the reaction system as introduced

below. In fact, the easiest analysis results when we assume periodic boundary

conditions.

In order to facilitate the mathematical analysis, we have rescaled the independent

as well as the dependent variables compared to the biological or chemical models

treated in the literature on pattern formation. We now present some such examples,

again in our rescaled version. All parameters a; b; �;K; k in those examples are

assumed to be positive.

(1) Schnakenberg reaction

ut D �u C 
.a � u C u2v/;

vt D d�v C 
.b � u2v/:

(2) Gierer–Meinhardt system

ut D �u C 
.a � bu C u2

v
/;

vt D d�v C 
.u2 � v/:
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(3) Thomas system

ut D �u C 


�

a � u � �uv

1C u CKu2

�

;

vt D d�v C 


�

˛.b � v/ � �uv

1C u CKu2

�

:

A slightly more general version of (2) is

(2’)

ut D �u C 


�

a � u C u2

v.1C ku2/

�

;

vt D d�v C 
.u2 � v/:

We turn to the general discussion of the Turing mechanism. We assume that we

have a fixed point .u0; v0/ of the reaction system:

f .u0; v0/ D 0 D g.u0; v0/:

We furthermore assume that this fixed point is linearly stable. This means that

for a solution w of the linearized problem

wt D 
Aw; with A D
�

fu.u0; v0/ fv.u0; v0/

gu.u0; v0/ gv.u0; v0/

�

; (6.3.2)

we have w ! 0 for t ! 1. Thus, all eigenvalues � of A must have

Re.�/ < 0;

as solutions are linear combinations of terms behaving like e�t .

The eigenvalues of A are the solutions of

�2 � 
.fu C gv/�C 
2.fugv � fvgu/ D 0 (6.3.3)

(all derivatives of f and g are evaluated at .u0; v0/); hence

�1;2 D 1

2



�

.fu C gv/˙
q

.fu C gv/
2 � 4.fugv � fvgu/

�

: (6.3.4)

We have Re.�1/ < 0 and Re.�2/ < 0 if

fu C gv < 0; fugv � fvgu > 0: (6.3.5)
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The linearization of the full reaction–diffusion system about .u0; v0/ is

wt D
�

1 0

0 d

�

�w C 
Aw: (6.3.6)

We let 0 D �0 < �1 � �2 � � � � be the eigenvalues of � on ˝ with

Neumann boundary conditions, and yk be a corresponding orthonormal basis of

eigenfunctions, as established in Theorem 11.5.2 below,

�yk C �kyk D 0 in ˝;

@yk

@n
D 0 on @˝:

When we impose the Dirichlet boundary conditions u D u0; v D v0 on @˝ in place

of Neumann conditions, we should then use the Dirichlet eigenfunctions established

in Theorem 11.5.1. We then look for solutions of (6.3.6) of the form

wke�t D
�

˛yk

ˇyk

�

e�t

with real ˛; ˇ. Inserting this into (6.3.6) yields

�wk D �
�

1 0

0 d

�

�kwk C 
Awk : (6.3.7)

For a nontrivial solution of (6.3.7), � thus has to be an eigenvalue of

�


A �
�

1 0

0 d

�

�k

�

:

The eigenvalue equation is

�2 C �.�k.1C d/� 
.fu C gv//

C d�k
2 � 
.dfu C gv/�k C 
2.fugv � fvgu/ D 0:

(6.3.8)

We denote the solutions by �.k/1;2.

Equation (6.3.5) then means that

Re �.0/1;2 < 0 .recall �0 D 0/:

We now wish to investigate whether we can have

Re �.k/ > 0 (6.3.9)

for some higher mode �k.
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Since by (6.3.5), �k > 0; d > 0, clearly

�k.1C d/� 
.fu C gv/ > 0;

we need for (6.3.9) that

d�k
2 � 
.dfu C gv/�k C 
2.fugv � fvgu/ < 0: (6.3.10)

Because of (6.3.5), this can only happen if

dfu C gv > 0:

Computing this with the first equation of (6.3.5), we thus need

d ¤ 1;

fugv < 0:

If we assume

fu > 0; gv < 0; (6.3.11)

then we need

d > 1: (6.3.12)

This is not enough to get (6.3.10) negative. In order to achieve this for some

value of �k , we first determine that value � of �k for which the lhs of (6.3.10) is

minimized, i.e.,

� D 


2d
.dfu C gv/; (6.3.13)

and we then need that the lhs of (6.3.10) becomes negative for �k D �. This is

equivalent to

.dfu C gv/
2

4d
> fugv � fvgu: (6.3.14)

If (6.3.14) holds, then the lhs of (6.3.10) has two values of �k where it vanishes,

namely,

�̇ D 


2d

�

.dfu C gv/˙
q

.dfu C gv/
2 � 4d.fugv � fvgu/

�

D 


2d

�

.dfu C gv/˙
q

.dfu � gv/
2 C 4dfvgu

�

(6.3.15)
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and it becomes negative for

�� < �k < �C: (6.3.16)

We conclude

Lemma 6.3.1. Suppose (6.3.14) holds. Then .u0; v0/ is spatially unstable w.r.t. the

mode �k , i.e., there exists a solution of (6.3.7) with

Re � > 0

if �k satisfies (6.3.16), where �˙ are given by (6.3.15).

Equation (6.3.14) is satisfied for

d > dc D �2fvgu � fugv

f 2
u

C 2

f 2
u

p

fvgu.fvgu � fugv/ : (6.3.17)

Whether there exists an eigenvalue �k of � satisfying (6.3.16) depends on the

geometry of ˝ . In particular, if ˝ is small, all nonzero eigenvalues are large (see

Corollaries 11.5.2, 11.5.3 for some results in this direction), and so it may happen

that for a given ˝ , all nonzero eigenvalues are larger than �C. In that case, no

Turing instability can occur.

We may also view this somewhat differently. Namely, given ˝ , we have the

smallest nonzero eigenvalue �1. Recalling that �C in (6.3.15) depends on the

parameter 
 , we may choose 
 > 0 so small that

�C < �1:

Then, again, (6.3.16) cannot be solved, and no Turing instability can occur. In other

words, for a Turing instability, we need a certain minimal domain size for a given

reaction strength or a certain minimal reaction strength for a given domain size.

If the condition (6.3.16) is satisfied for some eigenvalue�k , it is also of geometric

significance for which value of k this happens. Namely, by Courant’s nodal domain

theorem (see the remark at the end of Sect. 11.5), the nodal set fyk D 0g of the

eigenfunction yk divides ˝ into at most .k C 1/ regions. On any of these regions,

yk then has a fixed sign, i.e., is either positive or negative on that entire region. Since

yk is the unstable mode, this controls the number of oscillations of the developing

instability.

We summarize Turing’s result

Theorem 6.3.1. Suppose that at a solution .u0; v0/ of

f .u0; v0/ D 0 D g.u0; v0/; (6.3.18)
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we have

fu C gv < 0; (6.3.19)

fugv � fvgu > 0: (6.3.20)

Then .u0; v0/ is linearly stable for the reaction system

ut D 
f .u; v/;

vt D 
g.u; v/:

Suppose that d > 1 satisfies

dfu C gv > 0; (6.3.21)

.dfu C gv/
2 � 4d.fugv � fvgu/ > 0: (6.3.22)

Then .u0; v0/ as a solution of the reaction–diffusion system

ut D �u C 
f .u; v/;

vt D d�vC 
g.u; v/

is linearly unstable against spatial oscillations with eigenvalue �k whenever �k
satisfies (6.3.16).

When we compare (6.3.19) and (6.3.21), we see that necessarily fu > 0, since

d > 1. Also, fv and gu must then have opposite signs for (6.3.19), and let us assume

that gu > 0. We then have fv < 0 and gv < 0. We may then interpret u as the density

of an activator and v as that of an inhibitor. At (6.3.18), the activator and the inhibitor

are in balance. The Turing mechanism tells us that this balance can get destroyed

when the inhibitor is diffusing faster than the activator (d > 1). Consequently, at

some places, the density of the inhibitor can get so low that it no longer inhibits the

growth of the activator to keep the latter confined within suitable bounds. This then

is the source of the Turing instability. For this mechanism to work, the frequency of

the spatial oscillation patterns must be carefully controlled, see (6.3.16).

Since we assume that ˝ is bounded, the eigenvalues �k of � on ˝ are discrete,

and so it also depends on the geometry of˝ whether such an eigenvalue in the range

determined by (6.3.16) exists. The number k controls the frequency of oscillations

of the instability about .u0; v0/ and thus determines the shape of the resulting spatial

pattern.

Thus, in the situation described in Theorem 6.3.1, the equilibrium state .u0; v0/

is unstable, and in the vicinity of it, perturbations grow at a rate eRe�, where � solves

(6.3.8).

Typically, one assumes, however, that the dynamics is confined within a bounded

region in .RC/
2
. This means that appropriate assumptions on f and g for u D 0 or

v D 0, or for u and v large ensure that solutions starting in the positive quadrant can
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neither become zero nor unbounded. It is essentially a consequence of the maximum

principle that if this holds for the reaction system, then it also holds for the reaction–

diffusion system, see the discussion in Sects. 6.1 and 6.2.

Thus, even though .u0; v0/ is locally unstable, small perturbations grow ex-

ponentially; this growth has to terminate eventually, and one expects that the

corresponding solution of the reaction–diffusion system settles at a spatially inho-

mogeneous steady state. This is the idea of the Turing mechanism. This has not yet

been demonstrated in full rigour and generality. So far, the existence of spatially

heterogeneous solutions has only been shown by singular perturbation analysis near

the critical parameter dc in (6.3.17). Thus, from the global and nonlinear perspective

adopted in this book, the topic has not yet received a complete and satisfactory

mathematical treatment.

We want to apply Theorem 6.3.1 to the example (1). In that case we have

u0 D a C b;

v0 D b

.a C b/2

.of course, a; b > 0/

and at .u0; v0/ then

fu D b � a

aC b
;

fv D .aC b/2;

gu D � 2b

a C b
;

gv D �.a C b/2;

fugv � fvgu D .aC b/2 > 0:

Since we need that fu and gv have opposite signs (in order to get dfu C gv > 0

later on), we require

b > a:

fu C gv < 0 then implies

0 < b � a < .a C b/3; (6.3.23)

while dfu C gv > 0 implies

d.b � a/ > .a C b/3: (6.3.24)

Finally, .dfu C gv/
2 � 4d.fugv � fvgu/ > 0 requires

�

d.b � a/ � .a C b/3
�2
> 4d.aC b/4: (6.3.25)
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The parameters a; b; d satisfying (6.3.23)–(6.3.25) constitute the so-called Tur-

ing space for the reaction–diffusion system investigated here.

For many case studies of the Turing mechanism in biological pattern formation, we

recommend [28].

Summary

In this chapter, we have studied reaction–diffusion equations

ut .x; t/ ��u.x; t/ D F.x; t; u/ for x 2 ˝; t > 0

as well as systems of this structure. They are nonlinear because of the u-dependence

of F . Solutions of such equations combine aspects of the linear diffusion equation

ut.x; t/ ��u.x; t/ D 0

and of the nonlinear reaction equation

ut.t/ D F.t; u/

but can also exhibit genuinely new phenomena like travelling waves.

The Turing mechanism arises in systems of the form

ut D �u C 
f .u; v/;

vt D d�vC 
g.u; v/;

under appropriate conditions, in particular when an inhibitor v diffuses at a faster

rate than an enhancer u, i.e., when d > 1 and certain conditions on the derivatives

fu; fv; gu; gv are satisfied. A Turing instability means that for such a system, a

spatially homogeneous state becomes unstable. Thus, spatially nonconstant patterns

will develop. This is obviously a genuinely nonlinear phenomenon.

Exercises

6.1. Consider the nonlinear elliptic equation

�u.x/C �u.x/ � u3.x/ D 0 in a domain˝ � R
d ;

u.y/ D 0 for y 2 @˝: (6.3.26)
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Let �1 be the smallest Dirichlet eigenvalue of ˝ (cf. Theorem 11.5.1 below). Show

that for � < �1, u � 0 is the only solution (hint: multiply the equation by u and

integrate by parts and use Corollary 11.5.1 below).

6.2. Consider the nonlinear elliptic system

d˛�u˛.x/C F ˛.x; u/ D 0 for x 2 ˝; ˛ D 1; : : : ; n; (6.3.27)

with homogeneous Neumann boundary conditions

@u˛.x/

@�
D 0 for x 2 @˝; ˛ D 1; : : : ; n: (6.3.28)

Assume that

ı D �1 min
˛D1;:::;n

d˛ � L > 0 (6.3.29)

as in Theorem 6.2.1. Show that u � const.

6.3. Determine the Turing spaces for the Gierer–Meinhardt and Thomas systems.

6.4. Carry out the analysis of the Turing mechanism for periodic boundary

conditions.



Chapter 7

Hyperbolic Equations

7.1 The One-Dimensional Wave Equation and the Transport

Equation

The basic prototype of a hyperbolic PDE is the wave equation

@2

@t2
u.x; t/ ��u.x; t/ D 0 for x 2 ˝ � R

d ; t 2 .0;1/; or t 2 R: (7.1.1)

This is a linear second-order PDE, like the Laplace and heat equations. As with the

heat equation, we consider t as time and x as a spatial variable. In this introductory

section, we consider the case where the spatial variable x is one-dimensional. We

then write the wave equation as

ut t.x; t/ � uxx.x; t/ D 0: (7.1.2)

We are going to reduce (7.1.2) to two first-order equations, called transport

equations. Let '; 2 C 2.R/. Then

u.x; t/ D '.x C t/C  .x � t/ (7.1.3)

obviously solves (7.1.2).

This simple fact already leads to the important observation that in contrast to the

heat equation, solutions of the wave equation need not be more regular for t > 0

than they are at t D 0. In particular, they are not necessarily of class C1. We shall

have more to say about that issue, but right now we first wish to motivate (7.1.3):

'.x C t/ solves

't � 'x D 0; (7.1.4)

 .x � t/ solves

 t C  x D 0; (7.1.5)
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and the wave operator

L WD @2

@t2
�
@2

@x2
(7.1.6)

can be written as

L D

�

@

@t
�
@

@x

� �

@

@t
C

@

@x

�

; (7.1.7)

i.e., as the product of the two operators occurring in (7.1.4) and (7.1.5). This

suggests the transformation of variables

� D x C t; � D x � t: (7.1.8)

The wave equation (7.1.2) then becomes

u��.�; �/ D 0; (7.1.9)

and for a solution, u� has to be independent of �, i.e.,

u� D ' 0.�/ (where “ 0 ” denotes a derivative as usual),

and consequently,

u D

Z

' 0.�/C  .�/ D '.�/C  .�/: (7.1.10)

Thus, (7.1.3) actually is the most general solution of the wave equation (7.1.2).

Remark 7.1.1. Equations (7.1.4) and (7.1.5) are formally quite similar to the

Cauchy–Riemann equations (2.1.5). Likewise, the decomposition (7.1.7) is anal-

ogous to (2.1.8). In fact, when putting t D iy, the two decompositions are the

same. From an analytical perspective, however, this similarity is deceptive, as the

properties of the corresponding solutions, and hence of solutions of the Laplace and

wave equations, resp., are very different, as we shall now further explore.

Since the solution (7.1.3) contains two arbitrary functions, we may prescribe two

data at t D 0, namely, initial values and initial derivatives, again in contrast to

the heat equation, where only initial values could be prescribed. From the initial

conditions

u.x; 0/ D f .x/;

ut.x; 0/ D g.x/;
(7.1.11)

we obtain

'.x/C  .x/ D f .x/;

' 0.x/ �  0.x/ D g.x/; (7.1.12)
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and thus

'.x/ D f .x/

2
C 1

2

Z x

0

g.y/dy C c;

 .x/ D f .x/

2
�
1

2

Z x

0

g.y/dy � c (7.1.13)

with some constant c. Hence we have the following theorem:

Theorem 7.1.1. The solution of the initial value problem

ut t.x; t/ � uxx.x; t/ D 0 for x 2 R; t > 0;

u.x; 0/ D f .x/;

ut.x; 0/ D g.x/;

is given by

u.x; t/ D '.x C t/C  .x � t/

D
1

2
ff .x C t/C f .x � t/g C

1

2

Z xCt

x�t

g.y/dy: (7.1.14)

(For u to be of class C 2, we need to require f 2 C 2, g 2 C 1.)

The representation formula (7.1.14) leads to a couple of observations:

1. We can explicitly determine the value of the solution g at any time t from its

initial data at time 0. In fact, the value of g.x; t/ depends not only on the values

of � at the two points �˙ D x ˙ t but also on the values of � inside the interval

between �� and �C. Remarkably, the values outside that interval play no role for

the value at .x; t/.

2. Conversely, the value of � at some point � influences values of the solution g at

time t only at the two points x D � ˙ t . Likewise, the values of � at � play a role

for the value at time t only in the interval Œ�� t; �C t �. That means that the effect

of the initial data is propagated only inside a wedge with slope 1. In other words,

the propagation speed for the effect of initial data is 1, hence in particular finite.

This is in stark contrast to the heat equation where the representation formula

(5.1.11) tells us that the solution at any time t and at any point x is influenced by

the initial values at all places. Therefore, in this sense, the heat equation leads to

infinite propagation speed, which clearly is a physical idealization.

We should point out here that, however, as we shall see in Sect. 7.4, the

dependence of the solution of the wave equation for an even number of space

dimensions is different from the one in odd dimensions. Thus, the phenomenon

just analyzed for the one-dimensional wave equation does not hold in the same

manner for even dimensions.
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3. The representation formula (7.1.14) does not require any assumptions on the dif-

ferentiability of � and � , or on � and  , in fact, not even their continuity. At first

glance, this might look like an oddity or, worse, seem to be a problem, since a

function that is not differentiable cannot claim any right for being a solution of

a differential equation. It will turn out, however, that it is advantageous to take a

more positive look at this issue. In fact, there are many instances of differential

equations where we cannot find a differentiable solution. This is particularly

relevant when one wishes to understand the formation of singularities where

any kind of regular behavior of a solution, like differentiability, breaks down. In

many such cases, however, it is still possible to define some notion of generalized

solution. Such a generalized solution need not necessarily be differentiable or

even continuous. The key point, however, is that it satisfies some relation that

a differentiable solution, often called a classical solution in this context, also

necessarily would have to satisfy if it existed. That relation, like (7.1.14), is

formulated in such a way that it continues to be meaningful for nondifferentiable

functions. A function that satisfies such a relation then is called a generalized

solution. By this simple device, we have extended our concept of the solution of

a differential equation. Since the class of solutions thereby has become larger, it

should be correspondingly easier to prove the existence of a solution. This may

now appear as a cheap trick, like changing a problem that one wishes to solve,

but cannot, to an easier one. This misses the point, however. Often, there is a

reason underlying the model, like the formation of a singularity, that prevents the

existence of a classical solution, whereas there should still exist some kind of

generalized solution . In other cases, a successful strategy for finding a classical

solution might consist in first showing the existence of a generalized solution and

then proving that such a generalized solution has to be differentiable after all,

and therefore a classical solution. This will be a guiding scheme in subsequent

chapters where we shall go more deeply into the existence and regularity for

elliptic PDEs. Actually, this is what much of the modern theory of PDEs is about.

4. In any case, the representation formula (7.1.14) provides a solution of the wave

equation also for non-smooth initial data �; � . So, we can solve the wave equation

for not necessarily smooth initial data, as we could do for the heat equation

by the representation formula (5.1.11). In contrast to the latter, however, which

produced a solution that was smooth for t > 0 regardless of the initial data, for

the wave equation, the solution is not any more regular than the initial values �.

That is, for non-smooth initial data, we also obtain a non-smooth solution only.

7.2 First-Order Hyperbolic Equations

In this section, we generalize the transport equation that we have found in Sect. 7.1.

We start, however, differently, namely, with the system of ordinary differential

equations

Pxi .t/ D f i .t; x.t// for i D 1; : : : ; d: (7.2.1)
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We shall often use a vector notation

Px.t/ D f .t; x.t// (7.2.2)

with x D .x1; : : : ; xd / and analogously for f . We shall assume

jf .t; x/j � c1.1C jxj/ (7.2.3)

jf .t; x/ � f .t; y/j � c2jx � yj for all t 2 R; x; y 2 R
d ; (7.2.4)

for some constants c1; c2, i.e., at most linear growth and Lipschitz continuity of the

right-hand side of our equation. Under these conditions, we can use the Picard–

Lindelöf theorem to obtain a solution of (7.2.1) for all t for any given initial

values x.0/.

We now consider the first-order partial differential equation

@

@t
h.x; t/C

d
X

iD1
f i .t; x/

@h.x; t/

@xi
D 0 (7.2.5)

with prescribed initial values h.x; 0/. For the special case d D 1; f D 1, this is the

transport equation encountered in Sect. 7.1.

In order to study (7.2.5), we consider the characteristic equation

Yt .t; x/ D f .t; Y.t; x//

Y.0; x/ D x: (7.2.6)

This equation is the same as (7.2.1). The method of characteristics reduces a partial

differential equation like (7.2.5) to a system of ordinary differential equations of the

form (7.2.1).

Equation (7.2.6) can be solved because of (7.2.3) and (7.2.4). For initial values

h.x; 0/ of class C 1, there then exists a unique solution h.x; t/ of (7.2.5) of class C 1

which is characterized by the property that it is constant along characteristics, i.e.,

h.Y.t; x/; t/ D h.x; 0/ for all t 2 R; x 2 R
d : (7.2.7)

To see this, we simply compute

d

dt
h.Y.t; x/; t/ D

@

@t
h.Y.t; x/; t/C

d
X

iD1
Y it .t; x/

@

@xi
h.Y.t; x/; t/

D
@

@t
h.Y.t; x/; t/C

d
X

iD1
f i.t; Y.t; x//

@

@xi
h.Y.t; x/; t/:

Thus, (7.2.5) is satisfied if h.Y.t; x/; t/ is independent of t , and the initial condition

then yields (7.2.7).
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When we look at (7.2.5) as a PDE, we see from the method of characteristics that

we can solve it for general initial values that are prescribed at some hypersurface that

is transversal to the characteristic curves. That means that we can consider some

hypersurface u.�/; t.�/ for � 2 R
d that is nowhere tangential to the characteristic

curves Y.t; x/ and prescribe that

h.x.�/; t.�// D h0.�/ (7.2.8)

for some function h0. We then simply extend h by being constant along the

characteristic curve through x.�/; t.�/. Of course, since h has to be constant along

characteristics, we can prescribe only one value on each characteristic, and this then

leads to the condition that the hypersurface along which we prescribe initial values

has to be noncharacteristic, i.e., nowhere tangent to a characteristic curve.

We now consider a somewhat different equation that will come up in Sects. 8.2

and 9.1 below, as a so-called continuity equation:

@

@t
h.x; t/ D

d
X

iD1

@

@xi
.�f i .t; x/h.x; t//: (7.2.9)

We rewrite (7.2.9) as

@

@t
h.x; t/C

d
X

iD1
f i .t; x/

@h.x; t/

@xi
C

d
X

iD1

@f i.t; x/

@xi
h.x; t/ D 0; (7.2.10)

in order to treat it as an extension of (7.2.5). We let Z.t; x/ be the solution of

Zt .t; x/ D
@f i .t; x/

@xi
Z.t; x/ (7.2.11)

Z.0; x/ D 1: (7.2.12)

The solution of (7.2.10), i.e., of (7.2.9), is determined by

h.Y.t; x/; t/Z.t; x/ D h.x; 0/ for all t 2 R; x 2 R
d ; (7.2.13)

that is, by an extension of (7.2.7).

We now consider a first-order PDE that is more general than (7.2.9) or (7.2.5)

and that exhibits some new phenomena. We cannot present all details here, but

wish to provide at least some understanding of the perspicuous phenomena. For

a detailed textbook treatment of first-order hyperbolic equations, we refer to [7,14].

Our PDE is

@

@t
h.x; t/C

d
X

iD1
F i .t; x; h/

@h.x; t/

@xi
: (7.2.14)
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Again, we need to make certain structural assumptions on F ; for simplicity, we

assume here that F is smooth and that it satisfies some growth condition like

jF i.t; x; h/j � C jhj (7.2.15)

for some constant C and all i; t; x.

The crucial aspect here is that the functions F i may now also depend on the

solution h itself. As before, we consider a characteristic equation with appropriate

initial condition:

Yt.t; x/ D F.t; x;h0.x// (7.2.16)

Y.0; x/ D x (7.2.17)

for some prescribed function h0.x/. When h then is again constant along such

characteristic curves, i.e.,

h.Y.t; x/; t/ D h.Y.0; x/; 0/ for all t � 0; (7.2.18)

with initial values

h.x; 0/ D h0.x/; (7.2.19)

we obtain a solution of (7.2.14), since then

0 D
d

dt
h.Y.t; x/; t/ D

@

@t
h.Y.t; x/; t/C

n
X

iD1
Y it .t; x/

@

@xi
h.Y.t; x/; t/

D
@

@t
h.Y.t; x/; t/C

n
X

iD1
F i .t; Y.t; x/; h0.x//

@

@xi
h.Y.t; x/; t/;

and since h is constant on characteristic curves, we have from (7.2.17) and (7.2.19)

that

h.Y.t; x/; t/ D h0.x/;

which when inserted into the previous equation yields (7.2.14), indeed.

In particular, when F is independent of t , (7.2.16) becomes

Yt .t; x/ D F.x; h0.x// (7.2.20)

whose solution with (7.2.17) is simply

Y.t; x/ D F.x; h0.x//t C x; (7.2.21)

that is, a straight line with slope F.x; h0.x//.

Now, however, we may have a problem: These straight lines, or more generally,

the characteristic curves solving (7.2.16), might intersect for some t > 0. When
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the solution h then has different values along such intersecting curves, we obtain

conflicting values at such an intersection point. In other words, at intersections

of characteristic curves, the solution is not unambiguously determined. Or, put

differently, the system (7.2.14) in general does not possess a smooth solution that

exists for all time t > 0.

We consider the following example (Burgers’ equation):

ht .x; t/C hhx.x; t/ D 0 (7.2.22)

with x 2 R
1 and initial condition

h.x; 0/ D h0.x/: (7.2.23)

The characteristic equation (7.2.21) then becomes

Y.t; x/ D h0.x/t C x: (7.2.24)

We first consider

h0.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 for x � 0;

1 � x for 0 < x < 1;

0 for x � 1:

(7.2.25)

Then

h.x; t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 for x � t
1�x
1�t

for t < x < 1

0 for x � 1

(7.2.26)

is constant along the solutions of (7.2.24). (One checks, for instance, that h..1� x/

t C x; t/ D 1 � x in the region t < x < 1.) The characteristic curves, however,

intersect for t � 1 so that the solution exists only for t < 1. One possibility to define

a consistent solution also for t � 1 consists in separating two regions of smoothness

by the shock curve x D 1Ct
2

, i.e., simply put, for t � 1,

h.x; t/ D

(

1 for x � 1Ct
2
;

0 for x � 1Ct
2
:

(7.2.27)

In fact, the jump of h across the curve x D 1Ct
2

satisfies some consistency condition,

the so-called Rankine–Hugoniot condition, which we shall now explain. The idea

is the following (considering, for simplicity, only the case of one space dimension,

x 2 R
1): We consider an equation of the form

ht .x; t/C ˚.h.x; t//x D 0: (7.2.28)

For instance, in (7.2.22), we may take ˚.h/ D h2

2
.
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We multiply (7.2.28) by some smooth function �.x; t/ with compact support in

˝ � .0;1/ and integrate to get

Z

t�0

Z

x2R

.ht .x; t/C ˚.h.x; t//x/� dxdt D 0 (7.2.29)

and integrate by parts to obtain

Z

t�0

Z

x2R

.h�t C ˚.h/�x/dxdt D 0: (7.2.30)

When h is a solution of (7.2.28), this relation then has to hold for all � with compact

support, and conversely, when this holds for all such �, and h is differentiable,

we may integrate by parts to obtain (7.2.29). When (7.2.29) holds for all smooth

functions � with compact support, one may conclude that (7.2.28) holds (this

is sometimes called the fundamental lemma of the calculus of variations). Thus,

whenever h is differentiable, the relation (7.2.30) for all � is equivalent to the

differential equation (7.2.28). The advantage of (7.2.30), however, is that this

relation is meaningful even when h is not, or is not known to be, differentiable.

It merely has to be integrable, together with ˚.h/. This leads to the following:

Definition 7.2.1. When the identity (7.2.30) holds for all compactly supported

smooth �, for some integrable h for which ˚.h/ is also integrable, then h is called a

weak solution of (7.2.28).

When now h jumps from the value h� to hC along a (differentiable) curve x D

.t/, then from (7.2.30), we can deduce the jump condition

˚.hC/ �˚.h�/ D P
.hC � h�/: (7.2.31)

This can be seen as follows. Let the curve 
 divide the .x; t/ plane into two regions

X˙ such that h has the limit h˙ when approaching 
 from X˙. Let � be compactly

supported, but not necessarily vanish along 
 . From (7.2.30), we obtain

0 D

Z

X�

.h�t C ˚.h/�x/dxdt C

Z

XC

.h�t C ˚.h/�x/dxdt: (7.2.32)

Since � is compactly supported, integration by parts yields

Z

X�

.h�t C ˚.h/�x/dxdt D �

Z

X�

.ht C ˚.h/x/� dxdt

C

Z




.h�n
2 C ˚.h�/n

1/� d
.t/

D

Z




.h�n
2 C ˚.h�/n

1/� d
.t/ (7.2.33)
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where n D .n1; n2/ is the unit normal vector of the curve 
 . Here, the right-hand

side of the formula has a C-sign because n is chosen to point fromX� toXC. When

the parametrization x D 
.t/ is such that X� is to the left of 
 , then

n D 1
p

1C P
2
.1;� P
/: (7.2.34)

By the same argument,

Z

XC

.h�t C ˚.h/�x/dxdt D �

Z




.hCn
2 C ˚.hC/n

1/� d
.t/: (7.2.35)

Combining the two relations (7.2.33) and (7.2.35), we obtain

Z




..˚.hC/ � ˚.x�//n
1 C .hC � h�/n

2/� d
.t/ D 0: (7.2.36)

Since this holds for all �, with (7.2.34), we conclude the Rankine–Hugoniot jumping

relation (7.2.31). We note that this condition does not determine or constrain the

jump curve, but only the difference of the values of h on the two sides of that curve.

We note, however, that the jump condition (7.2.31) does not determine the jump

curve 
 itself, but only the magnitude of the discontinuity across it.

For (7.2.27), we have h� D 1; hC D 0;˚.h�/ D
h2�
2

D 1
2
; ˚.hC/ D 0; P
 D 1

2
,

so that (7.2.31) holds, indeed.

We now consider the initial values

h0.x/ D

(

0 for x � 0;

1 for x � 0:
(7.2.37)

In this case, we encounter the opposite problem: There is no characteristic curve in

the region 0 < x < t . One possibility to overcome this problem is by putting

h.x; t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 for x � 0;
x
t

for 0 < x < t;

1 for x � t:

(7.2.38)

This is a so-called rarefaction wave. Equation (7.2.38) again yields a weak solution

in the sense of (7.2.30). This, however, is not the only possible consistent solution.

Therefore, one needs selection criteria for distinguishing particular solutions.

For instance, for (7.2.28), the solution (7.2.21) of the characteristic equation

becomes

Y.t; x/ D ˚h.h0.x//t C x: (7.2.39)
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Therefore, when a characteristic curve with value h� from the left of the curve 


hits a characteristic curve with value hC from the right, we should have

˚h.h�/ > ˚h.hC/: (7.2.40)

Finally, at the end of this section, let me present a short discussion, without many

details, of the general first-order partial differential equation,

F.x1; : : : ; xd ; u; p1; : : : ; pd / (7.2.41)

for an unknown function u.x1; : : : ; xd /, with

pi WD uxi for i D 1; : : : ; d; (7.2.42)

with subscripts denoting partial derivatives. Here, we assume F to be twice

continuously differentiable.

The characteristic curves of (7.2.41) are defined as the solutions of

Pxi D Fpi (7.2.43)

Pu D
d
X

iD1
piFpi (7.2.44)

Ppi D Fxi C Fupi (7.2.45)

for i D 1; : : : ; d . The P refers to the derivative w.r.t., the new independent variable

t , i.e., we consider xi ; u; pi here as functions of t . Since F is twice continuously

differentiable, the right-hand sides of these equations are locally Lipschitz, and

these characteristic equations can therefore be locally solved by the Picard–Lindelöf

theorem.

We then have

d

dt
F .x.t/; u.t/; p.t// D

X

i

Fxi Pxi C
X

i

Fpi Ppi C Fu Pu D 0; (7.2.46)

i.e.,F � const along characteristics. Therefore, the natural strategy to solve (7.2.41)

is to propagate the initial values along characteristic curves.

As an example, we briefly discuss the Hamilton–Jacobi equation

ut CH.t; q1; : : : ; qn; uq1 ; : : : ; uqn/ D 0; (7.2.47)

again assuming H to be twice continuously differentiable. In order to reduce

(7.2.47) to the form (7.2.41), we simply put

.x1; : : : ; xd / D .q1; : : : ; qn; t/; i.e.,
dxd

dt
D 1I hence pd D ut :
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With F D ut C H;pj D uqj , the characteristic equations of (7.2.47) then are, for

j D 1; : : : ; n,

Pqj D Hpj ; Ppj D �Hqj ; (7.2.48)

Pu D
n
X

jD1
pjFpj C pdFpd D

X

j

pjHpj �H; Ppd D �Ht : (7.2.49)

In fact, when qj and pj are determined from (7.2.48), then (7.2.49) yields u. The

equations (7.2.48) are the Hamilton equations of classical mechanics.

Let u D '.t; q1; : : : ; qn; �1; : : : ; �n/ be a solution of (7.2.47) depending on

parameters �1; : : : ; �n, then, since also u C const is a solution (as H in (7.2.47)

does not depend explicitly on u),

u D ' C � (7.2.50)

is called a complete integral if

det.'qj �k /j;kD1;:::;n: (7.2.51)

With parameters �1; : : : ; �n,

'�j D �j ; 'qj D pj (7.2.52)

then yields a .2n/-parameter family of solutions of (7.2.48). This is Jacobi’s

theorem.

For more details about first-order partial differential equations, we refer to [5,

14], and for the Hamilton–Jacobi equation, we suggest [5, 21].

7.3 The Wave Equation

We return to the wave equation (7.1.1). In order to understand the specific features

of this equation better, we shall compare and contrast the wave equation with the

Laplace and the heat equations. As in Sect. 5.1, we consider some open ˝ � R
d

and try to solve the wave equation on

˝T D ˝ � .0; T / .T > 0/

by separating variables, i.e., writing the solution u of

ut t.x; t/ D �xu.x; t/ on ˝T ;

u.x; t/ D 0 for x 2 @˝; (7.3.1)
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as

u.x; t/ D v.x/w.t/ (7.3.2)

as in (5.1.2). This yields, as in Sect. 5.1,

wt t .t/

w.t/
D �v.x/

v.x/
; (7.3.3)

and since the left-hand side is a function of t , and the right-hand side one of x, each

of them is constant, and we obtain

�v.x/ D ��v.x/; (7.3.4)

wt t .t/ D ��w.t/; (7.3.5)

for some constant � � 0 (maximum principle).

As in Sect. 5.1, v is thus an eigenfunction of the Laplace operator on ˝ with

Dirichlet boundary conditions to be studied in more detail in Sect. 11.5 below. From

(7.3.5), since � � 0, w is then of the form

w.t/ D ˛ cos
p
� t C ˇ sin

p
� t: (7.3.6)

As in Sect. 11.5, referring to the expansions demonstrated in Sect. 11.5, we let

0 < �1 � �2 � �3 : : : denote the sequence of Dirichlet eigenvalues of � on

˝ , and v1; v2; : : : the corresponding orthonormal eigenfunctions, and we represent

a solution of our wave equation (7.3.1) as

u.x; t/ D
X

n2N

�

˛n cos
p

�n t C ˇn sin
p

�n t
�

vn.x/: (7.3.7)

In particular, for t D 0, we have

u.x; 0/ D
X

n2N

˛nvn.x/; (7.3.8)

and so the coefficients ˛n are determined by the initial values u.x; 0/. Likewise,

ut.x; 0/ D
X

n2N

ˇn
p

�n vn.x/ (7.3.9)

and so the coefficients ˇn are determined by the initial derivatives ut .x; 0/ (the

convergence of the series in (7.3.9) is addressed in Theorem 11.5.1 below). So,

in contrast to the heat equation, for the wave equation, we may supplement the

Dirichlet data on @˝ by two additional data at t D 0, namely, initial values and

initial time derivatives.
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From the representation formula (7.3.7), we also see, again in contrast to the heat

equation, that solutions of the wave equation do not decay exponentially in time

but rather that the modes oscillate like trigonometric functions. In fact, there is a

conservation principle here; namely, the so-called energy

E.t/ WD 1

2

Z

˝

(

ut .x; t/
2 C

d
X

iD1
uxi .x; t/

2

)

dx (7.3.10)

is given by

E.t/ D 1

2

Z

˝

8

<

:

 

X

n

�

�˛n
p

�n sin
p

�n t C ˇn
p

�n cos
p

�n t
�

vn.x/

!2

C
d
X

iD1

 

X

n

�

˛n cos
p

�n t C ˇn sin
p

�n t
� @

@xi
vn.x/

!2
9

=

;

dx

D 1

2

X

n

�n.˛
2
n C ˇ2n/; (7.3.11)

since

Z

˝

vn.x/vm.x/dx D
(

1 for n D m;

0 otherwise;

and

d
X

iD1

Z

˝

@

@xi
vn.x/

@

@xi
vm.x/ D

(

�n for n D m;

0 otherwise

(see Theorem 11.5.1). Equation (7.3.11) implies that E does not depend on t , and

we conclude that the energy for a solution u of (7.3.1), represented by (7.3.7), is

conserved in time.

We now consider this issue from a somewhat different perspective. Let u be a

solution of the wave equation

ut t .x; t/ ��u.x; t/ D 0 for x 2 R
d ; t > 0: (7.3.12)

We again have the energy norm of u:

E.t/ WD 1

2

Z

Rd

(

ut .x; t/
2 C

d
X

iD1
uxi .x; t/

2

)

dx: (7.3.13)



7.3 The Wave Equation 163

We have

dE

dt
D
Z

Rd

(

utut t C
d
X

iD1
uxiuxi t

)

dx

D
Z

Rd

(

ut.ut t ��u/C
d
X

iD1
.utuxi /xi

)

dx

D 0 (7.3.14)

if u.x; t/ D 0 for sufficiently large jxj (where that may depend on t , so that this

computation may be applied to solutions of (7.3.12) with compactly supported

initial values).

In this manner, it is easy to show the following result about the region of

dependency of a solution of (7.3.12), partially generalizing the corresponding results

of Sect. 7.4 to arbitrary dimensions:

Theorem 7.3.1. Let u be a solution of (7.3.12) with

u.x; 0/ D f .x/; ut.x; 0/ D 0 (7.3.15)

and let K WD suppf
�

WD
˚

x 2 Rd W f .x/ ¤ 0
�

�

be compact. Then

u.x; t/ D 0 for dist.x;K/ > t: (7.3.16)

Proof. We show that f .y/ D 0 for all y 2 B.x; T / implies u.x; T / � 0, which is

equivalent to our assertion. We put

E.t/ WD 1

2

Z

B.x;T�t /

(

u2t C
d

X

iD1
u2
yi

)

dy (7.3.17)

and obtain as in (7.3.14) (cf. (2.1.1))

dE

dt
D

Z

B.x;T�t /

n

utut t C
X

uyi uyi t

o

dy

� 1

2

Z

@B.x;T�t /

n

u2t C
X

u2
yi

o

do.y/

D
Z

@B.x;T�t /

�

ut
@u

@�
� 1

2

�

u2t C
X

u2
yi

�

�

do.y/:

By the Schwarz inequality, the integrand is nonpositive, and we conclude that

dE

dt
� 0 for t > 0:
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Since by assumption E.0/ D 0 and E is nonnegative, necessarily

E.t/ D 0 for all t � T;

and hence

u.y; t/ D 0 for jx � yj � T � t;

so that

u.x; T / D 0

as desired. ut

Theorem 7.3.2. As in Theorem 7.3.1, let u be a solution of the wave equation with

initial values

u.x; 0/ D f .x/ with compact support

and

ut.x; 0/ D 0:

Then

v.x; t/ WD
Z 1

�1

e� s2

4t

p
4�t

u.x; s/ds

yields a solution of the heat equation

vt.x; t/ ��v.x; t/ D 0 for x 2 R
d ; t > 0

with initial values

v.x; 0/ D f .x/:

Proof. That u solves the heat equation is seen by differentiating under the integral

@

@t
v.x; t/ D

Z 1

�1

@

@t

0

@

e� s2

4t

p
4�t

1

Au.x; s/ds

D
Z 1

�1

@2

@s2

0

@

e� s2

4t

p
4�t

1

Au.x; s/ds

(since the kernel solves the heat equation)

D
Z 1

�1

e� s2

4t

p
4�t

@2

@s2
u.x; s/ds
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D
Z 1

�1

e� s2

4t

p
4�t

�xu.x; s/ds

(sinceusolves the wave equation)

D�v.x; t/;

where we omit the detailed justification of interchanging differentiation and integra-

tion here. Then v.x; 0/ D u.x; 0/ D f .x/ follows as in Sect. 5.1. ut

7.4 The Mean Value Method: Solving the Wave Equation

Through the Darboux Equation

Let v 2 C 0.Rd /, x 2 R
d , r > 0. As in Sect. 2.2, we consider the spatial mean

S.v; x; r/ D 1

d!d rd�1

Z

@B.x;r/

v.y/do.y/: (7.4.1)

For r > 0, we put S.v; x;�r/ WD S.v; x; r/, and S.v; x; r/ thus is an even function

of r 2 R. Since @
@r
S.v; x; r/jrD0 D 0, the extended function remains sufficiently

many times differentiable.

Theorem 7.4.1 (Darboux equation). For v 2 C 2.Rd /,

�

@

@r2
C d � 1

r

@

@r

�

S.v; x; r/ D �xS.v; x; r/: (7.4.2)

Proof. We have

S.v; x; r/ D 1

d!d

Z

j�jD1
v.x C r�/ do.�/;

and hence

@

@r
S.v; x; r/ D 1

d!d

Z

j�jD1

d
X

iD1

@v

@xi
.x C r�/� i do.�/

D 1

d!d rd�1

Z

@B.x;r/

@

@�
v.y/ do.y/;

where � is the exterior normal of B.x; r/

D 1

d!d rd�1

Z

B.x;r/

�v.z/ dz

by the Gauss integral theorem. (7.4.3)
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This implies

@2

@r2
S.v; x; r/ D � d � 1

d!d rd

Z

B.x;r/

�v.z/dz C 1

d!d rd�1

Z

@B.x;r/

�v.y/ do.y/

D �d � 1
r

@

@r
S.v; x; r/C 1

d!d rd�1
�x

Z

@B.x;r/

v.y/ do.y/

(7.4.4)

because

�x

Z

@B.x;r/

v.y/ do.y/ D �x

Z

@B.x0;r/

v.x � x0 C y/ do.y/

D
Z

@B.x0;r/

�xv.x � x0 C y/ do.y/

D
Z

@B.x;r/

�v.y/ do.y/:

Equation (7.4.4) is equivalent to (7.4.2). ut

Corollary 7.4.1. Let u.x; t/ be a solution of the initial value problem for the wave

equation

ut t.x; t/ ��.x; t/ D 0 for x 2 R
d ; t > 0;

u.x; 0/ D f .x/;

ut .x; 0/ D g.x/: (7.4.5)

We define the spatial mean

M.u; x; r; t/ WD 1

d!d rd�1

Z

@B.x;r/

u.y; t/ do.y/:s (7.4.6)

We then have

@2

@t2
M.u; x; r; t/ D

�

@2

@r2
C d � 1

r

@

@r

�

M.u; x; r; t/: (7.4.7)

Proof. By the first line of (7.4.4),

�

@2

@r2
C d � 1

r

@

@r

�

M.u; x; r; t/ D 1

d!d rd�1

Z

@B.x;r/

�yu.y; t/ do.y/

D 1

d!d rd�1

Z

@B.x;r/

@2

@t2
u.y; t/ do.y/;
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since u solves the wave equation, and this in turn equals

@2

@t2
M.u; x; r; t/:

ut

For abbreviation, we put

w.r; t/ WD M.u; x; r; t/: (7.4.8)

Thus w solves the differential equation

wt t D wrr C d � 1

r
wr (7.4.9)

with initial data

w.r; 0/ D S.f; x; r/;

wt .r; 0/ D S.g; x; r/:vspace � �3pt (7.4.10)

If the space dimension d equals 3, for a solution w of (7.4.9), v WD rw then solves

the one-dimensional wave equation

vt t D vrr (7.4.11)

with initial data

v.r; 0/ D rS.f; x; r/;

vt .r; 0/ D rS.g; x; r/: (7.4.12)

By Theorem 7.1.1, this implies

rM.u; x; r; t/ D 1

2
f.r C t/S.f; x; r C t/C .r � t/S.f; x; r � t/g

C 1

2

Z rCt

r�t

�S.g; x; �/d�: (7.4.13)

Since S.f; x; r/ and S.g; x; r/ are even functions of r , we obtain

M.u; x; r; t/ D 1

2r
f.t C r/S.f; x; r C t/ � .t � r/S.f; x; t � r/g

C 1

2r

Z tCr

t�r

�S.g; x; �/d�: (7.4.14)

We want to let r tend to 0 in this formula. By continuity of u,

M.u; x; 0; t/ D u.x; t/; (7.4.15)
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and we obtain

u.x; t/ D tS.g; x; t/ C @

@t
.tS.f; x; t//: (7.4.16)

By our preceding considerations, every solution of class C 2 of the initial value

problem (7.4.5) for the wave equation must be represented in this way, and we thus

obtain the following result:

Theorem 7.4.2. The unique solution of the initial value problem for the wave

equation in 3 space dimensions,

ut t.x; t/ ��u.x; t/ D 0 for x 2 R
3; t > 0;

u.x; 0/ D f .x/;

ut.x; 0/ D g.x/;

(7.4.17)

for given f 2 C 3.R3/, g 2 C 2.R3/, can be represented as

u.x; t/ D 1

4�t2

Z

@B.x;t/

 

tg.y/C f .y/C
3
X

iD1
fyi .y/.y

i � xi /
!

do.y/:

(7.4.18)

Proof. First of all, (7.4.16) yields

u.x; t/ D 1

4�t

Z

@B.x;t/

g.y/do.y/C @

@t

�

1

4�t

Z

@B.x;t/

f .y/do.y/

�

: (7.4.19)

In order to carry out the differentiation in the integral, we need to transform the

mean value of f back to the unit sphere, i.e.,

1

4�t

Z

@B.x;t/

f .y/do.y/ D t

4�

Z

jzjD1
f .x C tz/do.z/:

The Darboux equation implies that u from (7.4.19) solves the wave equation, and

the correct initial data result from the relations

S.w; x; 0/ D w.x/;
@

@r
S.w; x; r/jrD0 D 0

satisfied by every continuous w. ut

An important observation resulting from (7.4.18) is that for space dimensions

3 (and higher), a solution of the wave equation can be less regular than its initial

values. Namely, if u.x; 0/ 2 C k, ut .x; 0/ 2 C k�1, this implies u.x; t/ 2 C k�1,

ut.x; t/ 2 C k�2 for positive t .
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Moreover, as in the case d D 1, we may determine the regions of influence of

the initial data. It is quite remarkable that the value of u at .x; t/ depends on the

initial data only on the sphere @B.x; t/, but not on the data in the interior of the ball

B.x; t/. This is the so-called Huygens principle. This principle, however, holds only

in odd dimensions greater than 1, but not in even dimensions. We want to explain

this for the case d D 2. Obviously, a solution of the wave equation for d D 2 can

be considered as a solution for d D 3 that happens to be independent of the third

spatial coordinate x3.

We thus put x3 D 0 in (7.4.19) and integrate on the sphere @B.x; t/ D fy 2 R
3 W

.y1 � x1/2 C .y2 � x2/2 C .y3/2 D t2g with surface element

do.y/ D t

jy3j
dy1dy2:

Since the points .y1; y2; y3/ and .y1; y2;�y3/ yield the same contributions, we

obtain

u.x1; x2; t/ D 1

2�

Z

B.x;t/

g.y/
q

t2 � jx � yj2
dy

C @

@t

0

B

@

1

2�

Z

B.x;t/

f .y/
q

t2 � jx � yj2
dy

1

C

A
;

where x D .x1; x2/, y D .y1; y2/, and the ball B.x; t/ now is the two-dimensional

one.

The values of u at .x; t/ now depend on the values on the whole disk B.x; t/ and

not only on its boundary @B.x; t/.

A reference for Sects. 7.3 and 7.4 is John [14].

Summary

In this chapter we have studied the wave equation

@2

@t2
u.x; t/ ��u.x; t/ D 0 for x 2 R

d ; t > 0

with initial data

u.x; 0/ D f .x/;

@

@t
u.x; 0/ D g.x/:

In contrast to the heat equation, there is no gain of regularity compared to the initial

data, and in fact, for d > 1, there may even occur a loss of regularity.
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As was the case with the Laplace equation, mean value constructions are

important for the wave equation, and they permit us to reduce the wave equation

for d > 1 to the Darboux equation for the mean values, which is hyperbolic as well

but involves only one spatial coordinate.

The propagation speed for the wave equation is finite, in contrast to the heat

equation. The effect of perturbations sets in sharply, and in odd dimensions greater

than 1, it also terminates sharply (Huygens principle).

The energy

E.t/ D
Z

Rd

�

jut.x; t/j2 C jrxu.x; t/j2
�

dx

is constant in time.

By a certain time averaging, a solution of the wave equation yields a solution of

the heat equation.

In fact, any solution of the one-dimensional wave equation can be represented as

u.x; t/ D '.x C t/C  .x � t/

with arbitrary functions '; . Since such functions need not be regular, we naturally

arrive at a concept of a generalized solution of the wave equation. When ' and  

are differentiable, they satisfy the transport equations

't � 'x D 0;  t C  x D 0:

We have then considered the more general first-order hyperbolic equation

@

@t
h.x; t/C

d
X

iD1
f i .t; x/

@h.x; t/

@xi
D 0:

This equation is solved by the method of characteristics. That simply means that we

let h be constant along characteristic curves, i.e., solutions of the system of ODEs

Pxi .t/ D f i.t; x.t// for i D 1; : : : ; d:

The more general hyperbolic equation

@

@t
h.x; t/C

d
X

iD1
f i .t; x; h/

@h.x; t/

@xi
;

i.e., where the factors f i now also may depend on the solution itself, can still be

approached by the method of characteristics. Here, however, the problem arises that

characteristic curves may intersect, leading to singularities of the solution because

of incompatible values along these curves. Conversely, the family of characteristic

curves may also leave out some region of space, necessitating some interpolation

scheme.
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Exercises

7.1. We consider the wave equation in one space dimension,

ut t � uxx D 0 for 0 < x < �; t > 0;

with initial data

u.x; 0/ D
1
X

nD1
˛n sin nx; ut.x; 0/ D

1
X

nD1
ˇn sin nx

and boundary values

u.0; t/ D u.�; t/ D 0 for all t > 0:

Represent the solution as a Fourier series

u.x; t/ D
1
X

nD1

n.t/ sin nx

and compute the coefficients 
n.t/.

7.2. Consider the equation

ut C cux D 0

for some function u.x; t/, x; t 2 R, where c is constant. Show that u is constant

along any line

x � ct D const D �;

and thus the general solution of this equation is given as

u.x; t/ D f .�/ D f .x � ct/

where the initial values are u.x; 0/ D f .x/. Does this differential equation satisfy

the Huygens principle?

7.3. We consider the general quasilinear PDE for a function u.x; y/ of two

variables,

auxx C 2buxy C cuyy D d;

where a; b; c; d are allowed to depend on x; y; u; ux , and uy . We consider the curve


.s/ D .'.s/;  .s// in the xy-plane, where we wish to prescribe the function u and

its first derivatives:

u D f .s/; ux D g.s/; uy D h.s/ for x D '.s/; y D  .s/:
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Show that for this to be possible, we need the relation

f 0.s/ D g.s/' 0.s/ C h.s/ 0.s/:

For the values of uxx; uxy; uyy along 
 , compute the equations

' 0uxx C  0uxy D g0;

' 0uxy C  0uyy D h0:

Conclude that the values of uxx; uxy , and uyy along 
 are uniquely determined by

the differential equations and the data f; g; h (satisfying the above compatibility

conditions), unless

a 02 � 2b' 0 0 C c' 02 D 0

along 
 . If this latter equation holds, 
 is called a characteristic curve for the solution

u of our PDE auxx C 2buxy C cuyy D d . (Since a; b; c; d may depend on u and

ux; uy , in general it depends not only on the equation, but also on the solution, which

curves are characteristic.) How is this existence of characteristic curves related

to the classification into elliptic, hyperbolic, and parabolic PDEs discussed in the

introduction? What are the characteristic curves of the wave equation ut t �uxx D 0?



Chapter 8

The Heat Equation, Semigroups,

and Brownian Motion

8.1 Semigroups

We first want to reinterpret some of our results about the heat equation. For

that purpose, we again consider the heat kernel of R
d , which we now denote by

p.x; y; t/,

p.x; y; t/ D 1

.4�t/
d
2

e�
jx�yj

2

4t : (8.1.1)

For a continuous and bounded function f W Rd ! R, by Lemma 5.2.1,

u.x; t/ D
Z

Rd

p.x; y; t/f .y/dy (8.1.2)

then solves the heat equation

�u.x; t/ � ut.x; t/ D 0: (8.1.3)

For t > 0, and letting C 0
b denote the class of bounded continuous functions, we

define the operator

Pt W C 0
b .R

d / ! C 0
b .R

d /

via

.Ptf /.x/ D u.x; t/; (8.1.4)

with u from (8.1.2). By Lemma 5.2.2

P0f WD lim
t!0

Ptf D f I (8.1.5)
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i.e., P 0 is the identity operator. The crucial point is that we have for any t1; t2 � 0,

P t1Ct2 D P t2 ı P t1 : (8.1.6)

Written out, this means that for all f 2 C 0
b .R

d /,

Z

Rd

1

.4� .t1 C t2//
d
2

e
�

jx�yj2

4.t1Ct2/ f .y/ dy

D

Z

Rd

1

.4�t2/
d
2

e
�

jx�zj2

4t2

Z

Rd

1

.4�t1/
d
2

e
�

jz�yj2

4t1 f .y/ dy dz: (8.1.7)

This follows from the formula

1

.4� .t1 C t2//
d
2

e
�

jx�yj2

4.t1Ct2/ D
1

.4�t2/
d
2

1

.4�t1/
d
2

Z

Rd

e
�

jx�zj2

4t2 e
�

jz�yj2

4t1 dz; (8.1.8)

which can be verified by direct computation (cf. also Exercise 5.3).

There exists, however, a deeper and more abstract reason for (8.1.6): Pt1Ct2f .x/

is the solution at time t1 C t2 of the heat equation with initial values f . At time t1,

this solution has the value Pt1f .x/. On the other hand, Pt2.Pt1f /.x/ is the solution

at time t2 of the heat equation with initial values Pt1f . Since by Theorem 5.1.2, the

solution of the heat equation is unique within the class of bounded functions and

the heat equation is invariant under time translations, it must lead to the same result

starting at time 0 with initial values Pt1f and considering the solution at time t2, or

starting at time t1 with value Pt1f and considering the solution at time t1 C t2, since

the time difference is the same in both cases. This reasoning is also valid for the

initial value problem because solutions here are unique as well, by Corollary 5.1.1.

We have the following results:

Theorem 8.1.1. Let ˝ � R
d be bounded and of class C 2, and let g W @˝ ! R be

continuous. For any f 2 C 0
b .˝/, we let

P˝;g;tf .x/

be the solution of the initial value problem

�u � ut D 0 in ˝ � .0;1/;

u.x; t/ D g.x/ for x 2 @˝;

u.x; 0/ D f .x/ for x 2 ˝: (8.1.9)

We then have

P˝;g;0f D lim
t&0

P˝;g;tf D f for all f 2 C 0.˝/; (8.1.10)

P˝;g;t1Ct2 D P˝;g;t2 ı P˝;g;t1 : (8.1.11)
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Corollary 8.1.1. Under the assumptions of Theorem 8.1.1, we have for all t0 � 0

and for all f 2 C 0
b .˝/,

P˝;g;t0f D lim
t& t0

P˝;g;tf:

We wish to cover the phenomenon just exhibited by a general definition:

Definition 8.1.1. Let B be a Banach space, and for t > 0, let Tt W B ! B be

continuous linear operators with:

(i) T0 D Id

(ii) Tt1Ct2 D Tt2 ı Tt1 for all t1; t2 � 0

(iii) limt!t0 Ttv D Tt0v for all t0 � 0 and all v 2 B

Then the family fTtgt�0 is called a continuous semigroup (of operators).

A different and simpler example of a semigroup is the following: Let B be the

Banach space of bounded, uniformly continuous functions on Œ0;1/. For t � 0,

we put

Ttf .x/ WD f .x C t/: (8.1.12)

Then all conditions of Definition 8.1.1 are satisfied. Both semigroups (for the

heat semigroup, this follows from the maximum principle) satisfy the following

definition:

Definition 8.1.2. A continuous semigroup fTtgt�0 of continuous linear operators of

a Banach space B with norm k � k is called contracting if for all v 2 B and all t � 0,

kTtvk � kvk : (8.1.13)

(Here, continuity of the semigroup means continuous dependence of the operators

Tt on t .)

8.2 Infinitesimal Generators of Semigroups

If the initial values f .x/ D u.x; 0/ of a solution u of the heat equation

ut.x; t/ ��u.x; t/ D 0 (8.2.1)

are of class C 2, we expect that

lim
t&0

u.x; t/ � u.x; 0/

t
D ut.x; 0/ D �u.x; 0/ D �f.x/; (8.2.2)
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or with the notation

u.x; t/ D P t f .u/

of the previous section,

lim
t&0

1

t
.P t � Id/f D �f: (8.2.3)

We want to discuss this in more abstract terms and verify the following definition:

Definition 8.2.1. Let fTt gt�0 be a continuous semigroup on a Banach space B .

We put

D.A/ WD
�

v 2 B W lim
t&0

1

t
.Tt � Id/v exists

�

� B (8.2.4)

and call the linear operator

A W D.A/ ! B;

defined as

Av WD lim
t&0

1

t
.Tt � Id/v; (8.2.5)

the infinitesimal generator of the semigroup fTtg.

ThenD.A/ is nonempty, since it contains 0.

Lemma 8.2.1. For all v 2 D.A/ and all t � 0, we have

TtAv D ATtv: (8.2.6)

Thus A commutes with all the Tt .

Proof. For v 2 D.A/, we have

TtAv D Tt lim
�&0

1

�
.T� � Id/v

D lim
�&0

1

�
.TtT� � Tt /v (since Tt is continuous and linear)

D lim
�&0

1

�
.T�Tt � Tt /v (by the semigroup property)

D lim
�&0

1

�
.T� � Id/Ttv

D ATtv: ut
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In particular, if v 2 D.A/, then so is Ttv. In that sense, there is no loss of regularity

of Ttv when compared with v .D T0v/.

In the sequel, we shall employ the notation

J�v WD
Z 1

0

�e��sTsv ds for � > 0 (8.2.7)

for a contracting semigroup fTtg. The integral here is a Riemann integral for

functions with values in some Banach space. The standard definition of the Riemann

integral as a limit of step functions easily generalizes to the Banach-space-valued

case. The convergence of the improper integral follows from the estimate

lim
K;M!1













Z M

K

�e��sTsvds













� lim
K;M!1

Z M

K

�e��s kTsvk ds

� lim
K;M!1

kvk
Z M

K

�e��sds

D 0;

which holds because of the contraction property and the completeness of B .

Since
Z 1

0

�e��sds D
Z 1

0

� d

ds

�

e��s
�

ds D 1; (8.2.8)

J�v is a weighted mean of the semigroup fTtg applied to v. Since

kJ�vk �
Z 1

0

�e��s kTsvk ds

� kvk
Z 1

0

�e��sds

by the contraction property

� kvk (8.2.9)

by (8.2.8), J� W B ! B is a bounded linear operator with norm kJ�k � 1.

Lemma 8.2.2. For all v 2 B , we have

lim
�!1

J�v D v: (8.2.10)

Proof. By (8.2.8),

J�v � v D
Z 1

0

�e��s.Tsv � v/ds:
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For ı > 0, let

I 1� WD















Z ı

0

�e��s.Tsv � v/ds
















; I 2� WD












Z 1

ı

�e��s.Tsv � v/ds













:

Now let " > 0 be given. Since Tsv is continuous in s, there exists ı > 0 such that

kTsv � vk <
"

2
for 0 � s � ı

and thus also

I 1� �
"

2

Z ı

0

�e��sds <
"

2

by (8.2.8). For each ı > 0, there also exists �0 2 R such that for all � � �0,

I 2� �

Z 1

ı

�e��s .kTsvk C kvk/ ds

� 2 kvk

Z 1

ı

�e��sds (by the contraction property)

<
"

2
:

This easily implies (8.2.10). ut

Theorem 8.2.1. Let fTtgt�0 be a contracting semigroup with infinitesimal genera-

tor A. Then D.A/ is dense in B .

Proof. We shall show that for all � > 0 and all v 2 B ,

J�v 2 D.A/: (8.2.11)

Since by Lemma 8.2.2,

fJ�v W � > 0; v 2 Bg

is dense in B , this will imply the assertion. We have

1

t
.Tt � Id/J�v D

1

t

Z 1

0

�e��sTtCsv ds �
1

t

Z 1

0

�e��sTsv ds

since Tt is continuous and linear

D
1

t

Z 1

t

�e�te���T�v d� �
1

t

Z 1

0

�e��sTsv ds

D
e�t � 1

t

Z 1

t

�e���T�v d� �
1

t

Z t

0

�e��sTsv ds

D
e�t � 1

t

�

J�v �

Z t

0

�e���T�v d�

�

�
1

t

Z t

0

�e��sTsv ds:
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The last term, the integral being continuous in s, for t ! 0 tends to ��T0v D
��v, while the first term in the last line tends to �J�v. This implies

AJ�v D � .J� � Id/ v for all v 2 B; (8.2.12)

which in turn implies (8.2.11). ut

For a contracting semigroup fTt gt�0, we now define operators

DtTt W D.DtTt /.� B/ ! B

by

DtTtv WD lim
h!0

1

h
.TtCh � Tt / v; (8.2.13)

whereD.DtTt / is the subspace of B where this limit exists.

Lemma 8.2.3. v 2 D.A/ implies v 2 D.DtTt/, and we have

DtTtv D ATtv D TtAv for t � 0: (8.2.14)

Proof. The second equation has already been established as shown in Lemma 8.2.1.

We thus have for v 2 D.A/,

lim
h&0

1

h
.TtCh � Tt / v D ATtv D TtAv: (8.2.15)

Equation (8.2.15) means that the right derivative of Ttv with respect to t exists for all

v 2 D.A/ and is continuous in t . By a well-known calculus lemma, this then implies

that the left derivative exists as well and coincides with the right one, implying

differentiability and (8.2.14). The proof of the calculus lemma goes as follows: Let

f W Œ0;1/ ! B be continuous, and suppose that for all t � 0, the right derivative

dCf .t/ WD limh&0
1
h
.f .t C h/ � f .t// exists and is continuous. The continuity of

dCf implies that on every interval Œ0; T � this limit relation even holds uniformly in

t . In order to conclude that f is differentiable with derivative dCf , one argues that

lim
h&0













1

h
.f .t/ � f .t � h// � dCf .t/













� lim
h&0













1

h
.f ..t � h/C h/ � f .t � h// � dCf .t � h/













C lim
h&0





dCf .t � h/ � dCf .t/




 D 0: /

ut

We can interpret Lemma 8.2.3 as:
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Corollary 8.2.1. For a contracting semigroup fTtgt�0 with infinitesimal generator

A and v 2 D.A/, u.t/ WD Ttv satisfies

u0.t/ D Au.t/ with u.0/ D v: (8.2.16)

Proof. Since we have seen in the proof of Lemma 8.2.3 that u.t/ is differentiable

w.r.t. t , the differential equation (8.2.16) is simply a restatement of (8.2.14), and that

u satisfies the initial condition u.0/ D v is a reformulation of T0 D Id. ut

Theorem 8.2.2. For � > 0, the operator .� Id �A/ W D.A/ ! B is invertible (A

being the infinitesimal generator of a contracting semigroup), and we have

.� Id �A/�1 D R.�;A/ WD 1

�
J�; (8.2.17)

i.e.,

.� Id �A/�1v D R.�;A/v D
Z 1

0

e��sTsv ds: (8.2.18)

Proof. In order that .� Id �A/ be invertible, we need to show first that .� Id �A/ is

injective. So, we need to exclude that there exists v0 2 D.A/, v0 ¤ 0, with

�v0 D Av0: (8.2.19)

For such a v0, we would have by (8.2.14)

DtTtv0 D TtAv0 D �Ttv0; (8.2.20)

and hence

Ttv0 D e�tv0: (8.2.21)

Since � > 0, for v0 ¤ 0, this would violate the contraction property

kTtv0k � kv0k ;

however. Therefore, .� Id �A/ is invertible for � > 0. In order to obtain (8.2.17),

we start with (8.2.12), i.e.,

AJ�v D �.J� � Id/v;

and get

.� Id �A/J�v D �v: (8.2.22)
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Therefore, .� Id �A/ maps the image of J� bijectively onto B . Since this image is

dense in D.A/ by (8.2.11) and since .� Id �A/ is injective, .� Id �A/ then also has

to map D.A/ bijectively onto B . Thus, D.A/ has to coincide with the image of J�,

and (8.2.22) then implies (8.2.17). ut

Lemma 8.2.4 (Resolvent equation). Under the assumptions of Theorem 8.2.2, we

have for �;� > 0,

R.�;A/�R.�;A/ D .� � �/R.�;A/R.�;A/: (8.2.23)

Proof.

R.�;A/ D R.�;A/.� Id �A/R.�;A/

D R.�;A/..� � �/ Id C.� Id �A//R.�;A/

D .� � �/R.�;A/R.�;A/CR.�;A/:
ut

We now want to compute the infinitesimal generators of some examples with

the help of the preceding formalism. We begin with the translation semigroup as

introduced at the end of Sect. 8.1:B here is the Banach space of bounded, uniformly

continuous functions on Œ0;1/, and Ttf .x/ D f .x C t/ for f 2 B , x; t � 0. We

then have

.J�f /.x/ D

Z 1

0

�e��sf .x C s/ds D

Z 1

x

�e��.s�x/f .s/ds; (8.2.24)

and hence

d

dx
.J�f /.x/ D ��f .x/C �.J�f /.x/: (8.2.25)

By (8.2.12), the infinitesimal generator satisfies

AJ�f .x/ D �.J�f � f /.x/; (8.2.26)

and consequently

AJ�f D
d

dx
J�f: (8.2.27)

At the end of the proof of Theorem 8.2.2, we have seen that the image of J�
coincides with D.A/, and we thus have

Ag D
d

dx
g for all g 2 D.A/: (8.2.28)

We now intend to show that D.A/ contains precisely those g 2 B for which d
dx
g

belongs to B as well. For such a g, we define f 2 B by

d

dx
g.x/ � �g.x/ D ��f .x/: (8.2.29)
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By (8.2.25), we then also have

d

dx
.J�f /.x/ � �J�f .x/ D ��f .x/: (8.2.30)

Thus

'.x/ WD g.x/ � J�f .x/

satisfies

d

dx
'.x/ D �'.x/; (8.2.31)

whence '.x/ D ce�x , and since ' 2 B , necessarily c D 0, and so g D J�f .

We thus have verified that the infinitesimal generatorA is given by (8.2.28), with

the domain of definitionD.A/ containing precisely those g 2 B for which d
dx
g 2 B

as well.

We now wish to generalize this example in the following important direction. We

consider a system of autonomous ordinary differential equations:

dxi

dt
D F i .x/; i D 1; : : : ; d;

x.0/ D x0: (8.2.32)

We shall often employ vector notation, i.e., write x D .x1; : : : ; xd /, etc. We assume

here that the F i are continuously differentiable and that for all x0 2 R
d , the solution

x.t/ exists for all t 2 R. With

St.x0/ WD x.t/; (8.2.33)

we can then define a contracting semigroup by

Utf .x0/ WD f .St .x0// (8.2.34)

in the Banach space of all continuous functions with bounded support in R
d . This

semigroup is called the Koopman semigroup. Except for the more restricted Banach

space, this clearly generalizes the semigroup Tt from (8.1.12) which corresponds to

the ODE dx
dt

D 1 (d D 1). We then have

J�f .x/ D
Z 1

0

�e��sf .Ss.x//ds

D
Z 1

0

d

ds
.�e��s/f .Ss.x//ds

D
Z 1

0

e��s

d
X

iD1

@f

@xi
F i .x/ds C f: (8.2.35)
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Using (8.2.26) again, we then have

AJ�f D �.J�f � f / D J�
X

i

fxiF
i : (8.2.36)

Thus, using again that the image of J� consists with D.A/, we obtain

Ag D
X

i

gxiF
i for all g 2 D.A/: (8.2.37)

Thus, by Corollary 8.2.1, h.t; x/ WD Utf .x/ satisfies the partial differential

equation:

@h

@t
�
X

i

@h

@xi
F i.x/ D 0: (8.2.38)

We next wish to study a semigroup that is dual to the Koopman semigroup, the

Perron–Frobenius semigroup. We first observe that Utf is defined by (9.1.1) for

any f 2 L1.Rd / (although Ut is not a continuous semigroup on L1). We then

define a semigroupQt on L1.Rd / by

Z

Qtf .x/g.x/dx D
Z

f .x/Utg.x/dx for all f 2 L1; g 2 L1: (8.2.39)

In order to get a more explicit form of Qt , we consider g D �A, the characteristic

function of a measurable set A. Then

Z

A

Qtf .x/dx D
Z

Qtf .x/�A.x/dx

D
Z

f .x/Ut�A.x/dx

D
Z

f .x/�A.St .x//dx by (9.1.1)

D
Z

A

f .x/St .x/dx

D
Z

S�1
t .A/

f .x/dx:

We thus obtain

Z

A

Qtf .x/dx D
Z

S�1
t .A/

f .x/dx for all f 2 L1: (8.2.40)

This is the characteristic property of the Perron–Frobenius semigroup.

Since Ut is contracting, i.e., kUtgk1 	 �gk1 for all g, as is clear from (9.1.1),

from Hölder’s inequality (A.4), we see that Qt is contracting as well. Letting A
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be the infinitesimal generator of U t as given in (8.2.37) and denoting by A� the

infinitesimal generator of Qt , we readily obtain from (8.2.39)
Z

A�f .x/g.x/dx D
Z

f .x/Ag.x/dx for all f 2 D.A�/; g 2 D.A/:

(8.2.41)

When g is continuously differentiable with compact support and f is continuously

differentiable, we can insert (8.2.37) and integrate by parts to obtain

Z

A�f .x/g.x/dx D �
Z

X

i

@f .x/F i .x/

@xi
g.x/dx: (8.2.42)

Since we show in the appendix that the compactly supported differentiable functions

are dense in L1, we infer

A�f D �
X

i

@.fF i /

@xi
(8.2.43)

for continuously differentiable f. By Corollary 8.2.1 again, h.t; x/ WD Qtf .x/

satisfies the partial differential equation:

@h

@t
C
X

i

@.hF i/

@xi
D 0: (8.2.44)

This equation has been studied already in Sect. 7.2; see (7.2.9). For more details

about the Koopman and Perron–Frobenius semigroups, we refer to [25].

We now want to study the other example from Sect. 8.1, the heat semigroup,

according to the same pattern. Let B be the Banach space of bounded, uniformly

continuous functions on R
d , and

Ptf .x/ D 1

.4�t/
d
2

Z

e�
jx�yj2

4t f .y/dy for t > 0: (8.2.45)

We now have

J�f .x/ D
Z

Rd

Z 1

0

�

.4�t/
d
2

e��t�
jx�yj2

4t dtf .y/dy: (8.2.46)

We compute

�J�f .x/ D
Z

Rd

Z 1

0

�

.4�t/
d
2

�xe��t�
jx�yj2

4t dtf .y/dy

D
Z

Rd

Z 1

0

�e��t @

@t

 

1

.4�t/
d
2

e�
jx�yj2

4t

!

dtf .y/dy
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D ��f .x/ �
Z

Rd

Z 1

0

@

@t

�

�e��t
� 1

.4�t/
d
2

e�
jx�yj2

4t dtf .y/dy

D ��f .x/C �J�f .x/:

It follows as before that

AJ�f D �J�f; (8.2.47)

and thus

Ag D �g for all g 2 D.A/: (8.2.48)

We now want to show that this time, D.A/ contains all those g 2 B for which �g

is contained in B as well. For such a g, we define f 2 B by

�g.x/ � �g.x/ D ��f .x/ (8.2.49)

and compare this with

�J�f .x/ � �J�f .x/ D ��f .x/: (8.2.50)

Thus ' WD g � J�f is bounded and satisfies

�' � �' D 0 for � > 0: (8.2.51)

The next lemma will imply ' � 0, whence g D J�f as desired.

Lemma 8.2.5. Let � > 0. There does not exist a bounded ' 6� 0 with

�'.x/ D �'.x/ for all x 2 R
d : (8.2.52)

Proof. For a solution of (8.2.52), we compute

�'2 D 2 jr'j
2 C 2'�'

�

with r' D

�

@

@x1
'; : : : ;

@

@xd
'

��

D 2 jr'j2 C 2�'2 by (8.2.52). (8.2.53)

Let x0 2 R
d . We choose C 2-functions �R for R � 1 with

0 � �R.x/ � 1 for all x 2 R
d ; (8.2.54)

�R.x/ D 0 for jx � x0j � RC 1; (8.2.55)

�R.x/ D 1 for jx � x0j � R; (8.2.56)

jr�R.x/j C j��R.x/j � c0 with a constant c0 that does (8.2.57)

not depend on x and R.
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We compute

�
�

�2R'
2
�

D �2R�'
2 C '2��2R C 8�R'r�R � r'

� 2�2R jr'j
2 C 2��2R'

2 C
�

��2R
�

'2 � 2�2R jr'j
2 � 8 jr�Rj

2 '2

by (8.2.53) and the Schwarz inequality

D 2��2R'
2 C

�

��2R � 8 jr�Rj2
�

'2: (8.2.58)

Together with (8.2.54)–(8.2.57), this implies

0 D

Z

B.x0;RC1/

�
�

�2R'
2
�

� 2�

Z

B.x0;R/

'2 � c1

Z

B.x0;RC1/nB.x0;R/

'2; (8.2.59)

where the constant c1 does not depend on R.

By assumption, ' is bounded, so

'2 � K: (8.2.60)

Thus (8.2.59) implies

Z

B.x0;R/

'2 �
c2K

�
Rd�1; (8.2.61)

where the constant c2 again is independent of R. Equation (8.2.53) implies that ' is

subharmonic. The mean value inequality (cf. Theorem 2.2.2) thus implies

'2.x0/ �
1

!dRd

Z

B.x0;R/

'2 �
c2K

!d�R
(by (8.2.61)) ! 0 for R ! 1:

(8.2.62)

Thus, '.x0/ D 0. Since this holds for all x0 2 R
d , ' has to vanish identically. ut

Lemma 8.2.6. Let B be a Banach space, L W B ! B a continuous linear operator

with kLk � 1. Then for every t � 0 and each x 2 B , the series

exp.tL/x WD

1
X

�D0

1

�Š
.tL/�x

converges and defines a continuous semigroup with infinitesimal generator L.

Proof. Because of kLk � 1, we also have

kLnk � 1 for all n 2 N: (8.2.63)

Thus















n
X

�Dm

1

�Š
.tL/�x
















�

n
X

�Dm

1

�Š
t� kL�xk � kxk

n
X

�Dm

t�

�Š
: (8.2.64)
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By the Cauchy property of the real-valued exponential series, the last expression

becomes arbitrarily small for sufficiently large m; n, and thus our Banach-space-

valued exponential series satisfies the Cauchy property as well, and therefore it

converges, since B is complete. The limit exp.tL/ is bounded, because by (8.2.64)
















n
X

�D0

1

�Š
.tL/�x

















 et kxk

and thus also

kexp.tL/xk 
 et kxk : (8.2.65)

As for the real exponential series, we have

1
X

�D0

.t C s/�

�Š
L�x D

0

@

1
X

�D0

t�

�Š
L�

1

A

 

1
X

�D0

s�

�Š
L�

!

x; (8.2.66)

i.e.,

exp..t C s/L/ D exp tL ı exp sL; (8.2.67)

whence the semigroup property. Furthermore,













1

h
.exp.hL/ � Id/ x � Lx
















1
X

�D2

h��1

�Š
kL�xk 
 kxk

1
X

�D2

h��1

�Š
:

Since the last expression tends to 0 as h ! 0, L is the infinitesimal generator of the

semigroup fexp.tL/gt�0. ut

In the same manner as (8.2.67), one proves (cf. (8.2.66)) the following lemma.

Lemma 8.2.7. Let L;M W B ! B be continuous linear operators satisfying the

assumptions of Lemma 8.2.6, and suppose

LM D ML: (8.2.68)

Then

exp.t.M C L// D exp.tM/ ı exp.tL/: (8.2.69)

We have started our discussion with the semigroup of operators Tt , and we have

then introduced the operators J� and the infinitesimal generator A. In practice,

however, it is rather the other way around. The operator A is what is typically

given, and it defines some differential equation, as in Corollary 8.2.1. Solving this

differential equation then amounts to constructing the semigroup fTt g. The Hille–

Yosida theorem shows us how to do this. From A, we first construct the J� and then

with their help the Tt .
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Theorem 8.2.3 (Hille–Yosida). Let A W D.A/ ! B be a linear operator whose

domain of definition D.A/ is dense in the Banach space B . Suppose that the

resolvent R.n;A/ D .n Id �A/�1 exists for all n 2 N and that
















�

Id �1
n
A

��1















� 1 for all n 2 N: (8.2.70)

Then A generates a unique contracting semigroup.

Proof. As before, we put

Jn WD
�

Id �1
n
A

��1

for n 2 N (cf. Theorem 8.2.2).

The proof will consist of several steps:

(1) We claim

lim
n!1

Jnx D x for all x 2 B; (8.2.71)

and

Jnx 2 D.A/ for all x 2 B: (8.2.72)

Namely, for x 2 D.A/, we first have

AJnx D JnAx D Jn.A � n Id/x C nJnx D n.Jn � Id/x; (8.2.73)

and since by assumption kJnAxk � kAxk, it follows that

Jnx � x D 1

n
JnAx ! 0 for n ! 1:

As D.A/ is dense in B and the operators Jn are equicontinuous by our

assumptions, (8.2.71) follows. Equation (8.2.73) then also implies (8.2.72).

(2) By Lemma 8.2.6, the semigroup

fexp.sJn/gs�0

exists, because of (8.2.70). Putting s D tn, we obtain the semigroup

fexp.tnJn/gt�0
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and likewise the semigroup

T
.n/
t WD exp.tAJn/ D exp.tn.Jn � Id// .t � 0/

(cf. (8.2.73)). By Lemma 8.2.7, we then have

T
.n/
t D exp.�tn/ exp.tnJn/: (8.2.74)

Since by (8.2.70)

kexp.tnJn/xk �

1
X

�D0

.nt/�

�Š
kJ �n xk � exp.nt/ kxk ;

it follows that









T
.n/
t









� 1; (8.2.75)

and thus, in particular, the operators are equicontinuous in t � 0 and n 2 N.

(3) For all m; n 2 N, we have

JmJn D JnJm: (8.2.76)

Since by (8.2.74), Jn commutes with T
.n/
t ; then also Jm commutes with T

.n/
t

for all n;m 2 N, t � 0. By Lemmas 8.2.3 and 8.2.6, we have for x 2 B ,

DtT
.n/
t x D AJnT

.n/
t x D T

.n/
t AJnxI (8.2.77)

hence









T
.n/
t x � T

.m/
t x









D













Z t

0

Ds

�

T
.m/
t�s T

.n/
s x

�

ds













D













Z t

0

T
.m/
t�s T

.n/
s .AJn � AJm/ x ds













� t k.AJn � AJm/xk (8.2.78)

with (8.2.75). For x 2 D.A/, we have by (8.2.73)

.AJn � AJm/ x D .Jn � Jm/ Ax: (8.2.79)

Equations (8.2.78), (8.2.79), and (8.2.71) imply that for x 2 D.A/,

�

T
.n/
t x

�

n2N
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is a Cauchy sequence and the Cauchy property holds uniformly on 0 � t � t0,

for any t0. Since the operators T
.n/
t are equicontinuous by (8.2.75) and D.A/ is

dense in B by assumption, then
�

T
.n/
t x

�

n2N

is even a Cauchy sequence for all x 2 B , again locally uniformly with respect

to t . Thus the limit

Ttx WD lim
n!1

T
.n/
t x

exists locally uniformly in t , and Tt is a continuous linear operator with

kTtk � 1 (8.2.80)

(cf. (8.2.75)).

(4) We claim that .Tt /t�0 is a semigroup. Namely, since fT .n/t gt�0 is a semigroup

for all n 2 N, using (8.2.75), we get

kTtCsx � TtTsxk �









TtCsx � T

.n/
tCsx









C








T
.n/
tCsx � T

.n/
t Tsx










C








T
.n/
t Tsx � TtTsx










�









TtCsx � T

.n/
tCsx









C




T .n/s x � Tsx






C









�

T
.n/
t � Tt

�

Tsx








;

and this tends to 0 for n ! 1.

(5) By (4) and (8.2.80), fTtgt�0 is a contracting semigroup. We now want to

show that A is the infinitesimal generator of this semigroup. Letting NA be the

infinitesimal generator, we are thus claiming

NA D A: (8.2.81)

Let x 2 D.A/. From (8.2.71) and (8.2.73), we easily obtain

TtAx D lim
n!1

T
.n/
t AJnx; (8.2.82)

again locally uniformly with respect to t . Thus, for x 2 D.A/,

lim
t&0

1

t
.Ttx � x/ D lim

t&0

1

t
lim
n!1

�

T
.n/
t x � x

�

D lim
t&0

1

t
lim
n!1

Z t

0

T .n/s AJnx ds by (8.2.77)

D lim
t&0

1

t

Z t

0

TsAx ds

D Ax:
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Thus, for x 2 D.A/, we also have x 2 D. NA/, and Ax D NAx. All that remains

is to show that D.A/ D D. NA/. By the proof of Theorem 8.2.2, .n Id � NA/ maps

D.A/ bijectively onto B . Since .n Id �A/ already maps D.A/ bijectively onto

B , we must haveD.A/ D D. NA/ as desired.

(6) It remains to show the uniqueness of the semigroup fTtgt�0 generated by A.

Let f NTtgt�0 be another contracting semigroup generated by A. Since A then

commutes with NTt , so do AJn and T
.n/
t . We thus obtain as in (8.2.78) for x 2

D.A/,









T
.n/
t x � NTtx









D












Z t

0

Ds

� NTt�sT .n/s x
�

ds













D












Z t

0

�

� NTt�sT .n/s .A� AJn/x
�

ds













:

Then (8.2.71) implies

NTtx D lim
n!1

T
.n/
t

for all x 2 D.A/ and then as usual also for all x 2 B; hence NTt D Tt . ut

We now wish to show that the two examples of the translation and the heat

semigroup that we have been considering satisfy the assumptions of the Hille–

Yosida theorem. Again, we start with the translation semigroup and continue to

employ the previous notation. We had identified

A D d

dx
(8.2.83)

as the infinitesimal generator, and we want to show thatA satisfies condition (8.2.70).

Thus, assume

�

Id �1
n

d

dx

��1

f D g; (8.2.84)

and we have to show that

sup
x�0

jg.x/j � sup
x�0

jf .x/j : (8.2.85)

Equation (8.2.84) is equivalent to

f .x/ D g.x/ � 1

n
g0.x/: (8.2.86)

We first consider the case where g assumes its supremum at some x0 2 Œ0;1/. We

then have

g0.x0/ � 0 .D 0; if x0 > 0/:
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From this,

sup
x

g.x/ D g.x0/ � g.x0/ � 1

n
g0.x0/ D f .x0/ � sup

x

f .x/: (8.2.87)

If g does not assume its supremum, we can at least find a sequence .x�/�2N � Œ0;1/

with

g.x�/ ! sup
x

g.x/: (8.2.88)

We claim that for every "0 > 0 there exists �0 2 N such that for all � � �0,

g0.x�/ < "0: (8.2.89)

Namely, if we had

g0.x�/ � "0 (8.2.90)

for some "0 and almost all �, by the uniform continuity of g0 that follows

from (8.2.86) because f; g 2 B , there would also exist ı > 0 such that

g0.x/ �
"0

2
if jx � x� j � ı

for all � with (8.2.90). Thus we would have

g.x� C ı/ D g.x�/C

Z ı

0

g0.x� C t/dt � g.x�/C
"0ı

2
: (8.2.91)

On the other hand, by (8.2.88), we may assume

g.x�/ � sup
x

g.x/ �
"0ı

4
;

which in conjunction with (8.2.91) yields the contradiction

g.x� C ı/ > supg.x/:

Consequently, (8.2.89) must hold. As in (8.2.87), we now obtain for each " > 0

sup
x

g.x/ D lim
�!1

g.x�/ � lim
�!1

�

g.x�/ �
1

n
g0.x�/

�

C
"

n

D lim
�!1

f .x�/C
"

n
� sup

x

f .x/C
"

n
:

The case of an infimum is treated analogously, and (8.2.85) follows.
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We now want to carry out the corresponding analysis for the heat semigroup,

again using the notation already established. In this case, the infinitesimal generator

is the Laplace operator:

A D �: (8.2.92)

We again consider the equation

�

Id �1
n
�

��1

f D g; (8.2.93)

or equivalently,

f .x/ D g.x/ � 1

n
�g.x/; (8.2.94)

and we again want to verify (8.2.70), i.e.,

sup
x2Rd

jg.x/j � sup
x2Rd

jf .x/j : (8.2.95)

Again, we first consider the case where g achieves its supremum at some x0 2 R
d .

Then

�g.x0/ � 0;

and consequently,

sup
x
g.x/ D g.x0/ � g.x0/ � 1

n
�g.x0/ D f .x0/ � sup

x
f .x/: (8.2.96)

If g does not assume its supremum, we select some x0 2 R
d , and for every � > 0,

we consider the function

g�.x/ WD g.x/ � � jx � x0j2 :

Since

lim
jxj!1

g�.x/ D �1;

g� assumes its supremum at some x� 2 R
d . Then

�g�.x�/ � 0;

i.e.,

�g.x�/ � 2d�:
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For y 2 R
d , we obtain

g.y/ � g.x�/C � jy � x0j2

� g.x�/ � 1

n
�g.x�/C �

�

2d

n
C jy � x0j2

�

D f .x�/C �

�

2d

n
C jy � x0j2

�

� sup
x2Rd

f .x/C �

�

2d

n
C jy � x0j2

�

:

Since � > 0 can be chosen arbitrarily small, we thus get for every y 2 R
d

g.y/ � sup
x2Rd

f .x/;

i.e., (8.2.95) if we treat the infimum analogously.

It is no longer so easy to verify directly that (8.2.94) is solvable with respect

to g for given f . By our previous considerations, however, we already know

that � generates a contracting semigroup, namely, the heat semigroup, and the

solvability of (8.2.94) therefore follows from Theorem 8.2.2. Of course, we could

have deduced (8.2.70) in the same way, since it is easy to see that (8.2.70) is

also necessary for generating a contracting semigroup. The direct proof given here,

however, was simple and instructive enough to be presented.

8.3 Brownian Motion

We consider a particle that moves around in some set S , for simplicity assumed to

be a measurable subset of Rd , obeying the following rules: The probability that the

particle that is at the point x at time t happens to be in the set E � S for s � t is

denoted by P.t; xI s; E/. In particular,

P.t; xI s; S/ D 1;

P.t; xI s;;/ D 0:

This probability should not depend on the positions of the particles at any times

less than t . Thus, the particle has no memory, or, as one also says, the process has

the Markov property. This means that for t < � � s, the Chapman–Kolmogorov

equation

P.t; xI s; E/ D

Z

S

P.�; yI s; E/P.t; xI �; y/dy (8.3.1)
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holds. Here, P .t; xI �; y/ has to be considered as a probability density, i.e.,

P.t; xI �; y/ � 0 and
R

S
P.t; xI �; y/dy D 1 for all x; t; � . We want to assume

that the process is homogeneous in time, meaning that P.t; xI s; E/ depends only

on .s � t/. We thus have

P.t; xI s; E/ D P.0; xI s � t; E/ DW P.s � t; x; E/;

and (8.3.1) becomes

P.t C �; x;E/ WD

Z

S

P.�; y;E/P.t; x; y/dy: (8.3.2)

We express this property through the following definition:

Definition 8.3.1. Let B a �-additive set of subsets of S with S 2 B. For t > 0,

x 2 S , and E 2 B, let P.t; x;E/ be defined satisfying:

(i) P.t; x;E/ � 0, P.t; x; S/ D 1:

(ii) P.t; x;E/ is �-additive with respect to E 2 B for all t; x.

(iii) P.t; x;E/ is B-measurable with respect to x for all t; E .

(iv) P.t C �; x;E/ D
R

S P.�; y;E/P.t; x; y/dy (Chapman–Kolmogorov equa-

tion) for all t; � > 0, x;E .

Then P.t; x;E/ is called a Markov process on .S;B/.

Let L1.S/ be the space of bounded functions on S . For f 2 L1.S/, t > 0,

we put

.Ttf /.x/ WD

Z

S

P.t; x; y/f .y/dy: (8.3.3)

The Chapman–Kolmogorov equation implies the semigroup property

TtCs D Tt ı Ts for t; s > 0: (8.3.4)

Since, by (i), P.t; x; y/ � 0 and

Z

S

P.t; x; y/dy D 1; (8.3.5)

it follows that

sup
x2S

jTtf .x/j � sup
x2S

jf .x/j ; (8.3.6)

i.e., the contraction property.

In order that Tt map continuous functions to continuous functions and that

fTtgt�0 define a continuous semigroup, we need additional assumptions. For

simplicity, we consider only the case S D R
d .
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Definition 8.3.2. The Markov process P.t; x;E/ is called spatially homogeneous

if for all translations i W Rd ! R
d ,

P.t; i.x/; i.E// D P.t; x;E/: (8.3.7)

A spatially homogeneous Markov process is called a Brownian motion if for all

% > 0 and all x 2 R
d ,

lim
t&0

1

t

Z

jx�yj>%

P.t; x; y/dy D 0: (8.3.8)

Theorem 8.3.1. Let B be the Banach space of bounded and uniformly continuous

functions on R
d , equipped with the supremum norm. Let P.t; x;E/ be a Brownian

motion. We put

.Ttf /.x/W D
Z

Rd

P.t; x; y/f .y/dy for t > 0;

T0f D f:

Then fTtgt�0 constitutes a contracting semigroup on B .

Proof. As already explained, P.t; x;E/ � 0, P.t; x;Rd / D 1 implies the

contraction property:

sup
x2Rd

j.Ttf /.x/j � sup
x2Rd

jf .x/j for all f 2 B; t � 0; (8.3.9)

and the semigroup property follows from the Chapman–Kolmogorov equation. Let

i be a translation of Euclidean space. We put

if .x/ WD f .ix/

and obtain

iTtf .x/ D Ttf .ix/ D

Z

Rd

P.t; ix; y/f .y/dy

D

Z

Rd

P.t; ix; iy/f .iy/dy;

since d.iy/ D dy for a translation,

D

Z

Rd

P.t; x; y/f .iy/dy;

since the process is spatially homogeneous,

D Tt if .x/;
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i.e.,

iTt D Tt i: (8.3.10)

For x; y 2 R
d , we may find a translation i W Rd ! R

d with

ix D y:

We then have

j.Ttf /.x/ � .Ttf /.y/j D j.Ttf /.x/ � .iTtf /.x/j D jTt.f � if /.x/j :

Since f is uniformly continuous, this implies that Ttf is uniformly continuous as

well; namely,

jTt .f � if /.x/j D
ˇ

ˇ

ˇ

ˇ

Z

P .t; x; z/.f .z/ � f .iz//dz

ˇ

ˇ

ˇ

ˇ

� sup
z

jf .z/ � f .iz/j ;

and if jx � yj < ı, then also jz � izj < ı for all z 2 R
d , and ı may be chosen such

that this expression becomes smaller than any given " > 0. Note that this estimate

does not depend on t .

It remains to show continuity with respect to t . Let t � s. For f 2 B , we consider

jTtf .x/ � Tsf .x/j D jT�g.x/ � g.x/j for � WD t � s; g WD Tsf

D

ˇ

ˇ

ˇ

ˇ

Z

Rd

P.�; x; y/.g.y/ � g.x//dy

ˇ

ˇ

ˇ

ˇ

because of

Z

Rd

P.t; x; y/dy D 1

�

ˇ

ˇ

ˇ

ˇ

Z

jx�yj�%

P.�; x; y/.g.y/ � g.x//dy

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

Z

jx�yj>%

P.�; x; y/.g.y/ � g.x//dy

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

Z

jx�yj�%

P.�; x; y/.g.y/ � g.x//dy

ˇ

ˇ

ˇ

ˇ

C 2 sup
z2Rd

jf .z/j

Z

jx�yj>%

P.�; x; y/dy

by (8.3.9). Since we have checked already that g D Tsf satisfies the same

continuity estimates as f , for given " > 0, we may choose % > 0 so small that

the first term on the right-hand side becomes smaller than "=2. For that value of %
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we may then choose � so small that the second term becomes smaller than "=2 as

well. Note that because of the spatial homogeneity, � can be chosen independently

of x and y. This shows that fTtgt�0 is a continuous semigroup, and the proof of

Theorem 8.3.1 is complete. ut

An example of Brownian motion is given by the heat kernel

P.t; x; y/ D 1

.4�t/
d
2

e�
jx�yj2

4t : (8.3.11)

We shall now see that this already is the typical case of a Brownian motion.

Theorem 8.3.2. Let P.t; x;E/ be a Brownian motion that is invariant under all

isometries of Euclidean space, i.e.,

P.t; i.x/; i.E// D P.t; x;E/ (8.3.12)

for all Euclidean isometries i . Then the infinitesimal generator of the contracting

semigroup defined by this process is

A D c�; (8.3.13)

where c D const > 0 and� DLaplace operator, and this semigroup then coincides

with the heat semigroup up to reparametrization, according to the uniqueness result

of Theorem 8.2.3. More precisely, we have

P.t; x; y/ D 1

.4�ct/
d
2

e�
jx�yj2

4ct : (8.3.14)

Proof. (1) Let B again be the Banach space of bounded, uniformly continuous

functions on R
d , equipped with the supremum norm. By Theorem 8.3.1, our

semigroup operates on B . By Theorem 8.2.1, the domain of definitionD.A/ of

the infinitesimal operator A is dense in B .

(2) We claim thatD.A/\C1.Rd / is still dense in B . To verify that, as in Sect. 2.2,

we consider mollifications with a smooth kernel, i.e., for f 2 D.A/,

fr .x/ D 1

rd

Z

Rd

%

� jx � yj
r

�

f .y/dy as in (2.2.6)

D
Z

Rd

�.jzj/f .x � rz/dz: (8.3.15)

Since we are assuming translation invariance, if the function f .x/ is contained

in D.A/, so is .irzf /.x/ D f .x � rz/ for all r > 0, z 2 R
d in D.A/, and the

defining criterion, namely,

lim
t!0

1

t

�Z

Rd

P.t; x; y/f .y � rz/ � f .x � rz/

�

D 0;
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holds uniformly in r ; z. Approximating the preceding integral by step functions

of the form
P

� c�f .x � rz�/ (where we have only finitely many summands,

since � has compact support), we see that since f does, fr also satisfies

limt!0
1
t

�R

Rd
P.t; x; y/fr .y/ dy � fr .x/

�

D 0, hence is contained in D.A/.

Since fr is contained in C1.Rd / for r > 0 and converges to f uniformly as

r ! 0, the claim follows.

(3) We claim that there exists a function ' 2 D.A/ \ C1.Rd / with

xjxk
@2'

@xj @xk
.0/ �

d
X

jD1

.xj /2 for all x 2 R
d : (8.3.16)

For that purpose, we select  2 B with

@2 

@xj @xk
.0/ D 2ıjk

 

ıjk D

(

1 for j D k

0 otherwise

!

;

and from (2), we find a sequence .f .�//�2N � D.A/ \ C1.Rd /, converging

uniformly to  . Then

@2

@xj @xk
f .�/
r .0/ D

1

rd

Z

@2

@xj @xk
%

�

jy � xj

r

�
ˇ

ˇ

ˇ

ˇ

xD0

f .�/.y/ dy

!
1

rd

Z

@2

@xj @xk
%

�

jy � xj

r

�
ˇ

ˇ

ˇ

ˇ

xD0

 .y/ dy for � ! 1

D
1

rd

Z

�

�

jy � xj

r

�

@2

@xj @xk
 .y/ dy

replacing the derivative with respect to x by one with

respect to y and integrating by parts

!
@2

@xj @xk
 .0/ for r ! 0

D 2ıjk :

We may thus put ' D f
.�/
r for suitable � 2 N, r > 0, in order to

achieve (8.3.16). By Euclidean invariance, for every x0 2 R
d , there then exists

a function in D.A/ \ C1.Rd /, again denoted by ' for simplicity, with

.xj � x
j
0 /.x

k � xk0 /
@2'

@xj @xk
.x0/ �

X

.xj � x
j
0 /
2 for all x 2 R

d : (8.3.17)

(4) For all x0 2 R
d , j D 1; : : : ; d , r > 0, t > 0,

Z

jx�x0j�r

.xj � x
j
0 /P.t; x0; x/dx D 0; x0 D

�

x10 ; : : : ; x
d
0

�

I (8.3.18)
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namely, let

i W Rd ! R
d

be the Euclidean isometry defined by

i.xj � x
j
0 / D �.xj � xj0 /;

i.xk � xk0 / D xk � xk0 for k ¤ j
(8.3.19)

(reflection across the hyperplane through x0 that is orthogonal to the j th

coordinate axis). We then have

Z

jx�x0j�r

.xj � x
j
0 /P.t; x0; x/dx D

Z

jx�x0j�r

i.xj � x
j
0 /P.t; ix0; ix/dx

D �
Z

jx�x0j�r

.xj � x
j
0 /P.t; x0; x/dx

because of (8.3.19) and the assumed invariance of P , and this indeed im-

plies (8.3.18).

Similarly, the invariance of P under rotations of Rd yields

Z

jx�x0j�r

.xj � xj0 /2P.t; x0; x/dx D
Z

jx�x0j�r

.xk � xk0 /
2P.t; x0; x/dx

for all x0 2 R
d ; r > 0; t > 0; j; k D 1; : : : ; d; (8.3.20)

and finally as in (8.3.18),

Z

jx0�xj�r

.xj � xj0 /.xk � xk0 /P.t; x0; x/dx D 0 for j ¤ k; (8.3.21)

if x0 2 R
d , r > 0, t > 0, j; k 2 f1; : : : ; d g.

(5) Let ' 2 D.A/ \ C 2.Rd /. We then obtain the existence of

A'.x0/ D lim
t&0

1

t

Z

Rd

P.t; x0; x/.'.x/ � '.x0//dx

D lim
t&0

1

t

Z

jx�x0j�"

P.t; x0; x/.'.x/ � '.x0//dx by (8.3.8)

D lim
t&0

1

t

Z

jx�x0j�"

d
X

jD1

.xj � xj0 /
@'

@xj
.x0/P.t; x0; x/dx
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C lim
t&0

1

t

Z

jx�x0j�"

1

2

X

j;k

.xj � xj0 /.xk � xk0 /

� @2'

@xj @xk
.x0 C �.x � x0//P.t; x0; x/dx

by Taylor expansion for some � 2 Œ0; 1/, as ' 2 C 2.Rd /.

The first term on the right-hand side vanishes by (8.3.18). Thus, the limit

for t & 0 of the second term exists, and it follows from (8.3.17) and

P.t; x0; x/ � 0 that

lim sup
t&0

1

t

Z

jx�x0j�"

X

.xj � x
j
0 /
2P.t; x0; x/dx < 1: (8.3.22)

By (8.3.8), this limit superior does not depend on " > 0, and neither does the

corresponding limit inferior.

(6) Now let f 2 D.A/ \ C 2.Rd /. As in (5), we obtain, by Taylor expanding f

at x0,

1

t
.Ttf .x0/ � f .x0//

D
1

t

Z

Rd

.f .x/ � f .x0//P.t; x0; x/dx

D
1

t

Z

jx�x0j>"

.f .x/ � f .x0//P.t; x0; x/dx

C
1

t

Z

jx�x0j�"

X

j

.xj � x
j
0 /
@f

@xj
.x0/P.t; x0; x/dx

C
1

t

Z

jx�x0j�"

1

2

X

j;k

.xj � x
j
0 /.x

k � xk0 /
@2f

@xj @xk
.x0/P.t; x0; x/dx

C
1

t

Z

jx�x0j�"

X

j;k

.xj � x
j
0 /.x

k � xk0 /�ij ."/P.t; x0; x/dx

(where the notation suppresses the x-dependence of the remainder

term �ij ."/, since this converges to 0 for " ! 0 uniformly in x, since

f 2 C 2.Rd /)

D
1

t

Z

jx�x0j>"

.f .x/ � f .x0//P.t; x0; x/dx

C
1

t

Z

jx�x0j�"

X

j

.xj � x
j
0 /
2 @2f

.@xj /2
.x0/P.t; x0; x/dx
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C1

t

Z

jx�x0j�"

X

j;k

.xj � x
j
0 /.x

k � xk0 /�ij ."/P.t; x0; x/dx

by (8.3.18) and (8.3.21): (8.3.23)

By (8.3.8), the first term on the right-hand side tends to 0 as t ! 0 for every

" > 0. Because of (8.3.22) and lim"!0 �ij ."/ D 0 (since f 2 C 2), the last term

converges to 0 as " ! 0 for every t > 0. Since we have observed at the end of

(5), however, that in the second term on the right-hand side, limits can be performed

independently of ", for all " > 0, we obtain the existence of

lim
t&0

1

t

Z

jx�x0j�"

X

.xj � xj0 /2
@2f

.@xj /2
.x0/P.t; x0; x/dx D Af .x0/; (8.3.24)

by performing the limit t ! 0 on the right-hand side of (8.3.23).

The argument of (3) shows that for f 2 D.A/,

@2f

.@xj /2
.x0/

may approximate arbitrary values, and so in particular, we infer the existence of

lim
t&0

1

t

Z

jx�x0j�"

X

.xj � x
j
0 /
2P.t; x0; x/dx

independently of ". By (8.3.20), for each j D 1; : : : ; d ,

lim
t&0

1

t

Z

jx�x0j�"

.xj � x
j
0 /
2P.t; x0; x/dx

exists and is independent of j and by translation invariance independent of x0 as

well. We thus call this limit c. By (8.3.24), we then have

Af .x0/ D c�f .x0/:

The rest follows from Theorem 8.2.3. ut

Remark. If we assume only spatial homogeneity, i.e., translation invariance, but

not invariance under reflections and rotations, the infinitesimal generator still is a

second-order differential operator; namely, it is of the form

Af .x/ D
d
X

j;kD1

ajk.x/
@2f

@xj @xk
.x/C

d
X

jD1

bj .x/
@f

@xj
.x/
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with

ajk.x/ D lim
t&0

1

t

Z

jy�xj�"

.yj � xj /.yk � xk/P.t; x; y/dy;

and thus, in particular,

ajk D akj ; ajj � 0 for all j; k;

and

bj .x/ D lim
t&0

1

t

Z

jy�xj�"

.yj � xj /P.t; x; y/dy;

where the limits again are independent of " > 0. The proof can be carried out with

the same methods as employed for demonstrating Theorem 8.3.2.

A reference for the present chapter is Yosida [32].

Summary

The heat equation satisfies a Markov property in the sense that the solution u.x; t/

at time t1 C t2 with initial values u.x; 0/ D f .x/ equals the solution at time t2 with

initial values u.x; t1/. Putting

.Ptf /.x/ WD u.x; t/;

we thus have

.Pt1Ct2f /.x/ D Pt2.Pt1f /.x/I

i.e., Pt satisfies the semigroup property

Pt1Ct2 D Pt2 ı Pt1 for t1; t2 � 0:

Moreover, fPt gt�0 is continuous on the space C 0 in the sense that

lim
t&t0

Pt D Pt0

for all t0 � 0 (in particular, this also holds for t0 D 0, with P0 D Id).

Moreover, Pt is contracting because of the maximum principle, i.e.,

kPtf kC 0 � kf kC 0 for t � 0; f 2 C 0:



204 8 The Heat Equation, Semigroups, and Brownian Motion

The infinitesimal generator of the semigroup Pt is the Laplace generator, i.e.,

� D lim
t&0

1

t
.Pt � Id/:

Upon these properties one may found an abstract theory of semigroups in Banach

spaces. The Hille–Yosida theorem says that a linear operatorA W D.A/ ! B whose

domain of definitionD.A/ is dense in the Banach space B and for which Id � 1
n
A is

invertible for all n 2 N, and













.Id �1
n
A/�1













� 1

generates a unique contracting semigroup of operators

Tt W B ! B .t � 0/:

For a stochastic interpretation, one considers the probability density P.t; x; y/

that some particle that during the random walk happened to be at the point x at

a certain time can be found at y at a time that is larger by the amount t . This

constitutes a Markov process inasmuch as this probability density depends only

on the time difference, but not on the individual values of the times involved.

In particular, P.t; x; y/ does not depend on where the particle had been before

reaching x (random walk without memory). Such a random walk on the set S

satisfies the Chapman–Kolmogorov equation

P.t1 C t2; x; y/ D

Z

S

P.t1; x; z/P.t2; z; y/dz

and thus constitutes a semigroup.

If such a process on R
d is spatially homogeneous and satisfies

lim
t&0

1

t

Z

jx�yj>�

P.t; x; y/ dy D 0

for all � > 0 and x 2 R
d , it is called a Brownian motion. One shows that up to a

scaling factor, such a Brownian motion has to be given by the heat semigroup, i.e.,

P.t; x; y/ D
1

.4�ct/d=2
e�

jx�yj2

4ct :
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Exercises

8.1. Let f 2 C 0.Rd / be bounded and u.x; t/ a solution of the heat equation:

ut.x; t/ D �u.x; t/ for x 2 R
d ; t > 0;

u.x; 0/ D f .x/:

Show that the derivatives of u satisfy

ˇ

ˇ

ˇ

ˇ

@

@xj
u.x; t/

ˇ

ˇ

ˇ

ˇ

� const sup jf j � t�1=2:

(Hint: Use the representation formula (5.2.3) from Sect. 5.2.)

8.2. As in Sect. 8.2, we consider a continuous semigroup

exp.tA/ W B ! B .t � 0/; B a Banach space.

Let B1 be another Banach space, and for t > 0, suppose

exp.tA/ W B1 ! B

is defined, and we have for 0 < t � 1 and for all ' 2 B1,

k exp.tA/'kB � const t�˛k'kB1 for some ˛ < 1:

Finally, let

˚ W B ! B1

be Lipschitz continuous.

Show that for every f 2 B , there exists T > 0 with the property that the

evolution equation

@v

@t
D Av C ˚.v.t// for t > 0;

v.0/ D f

has a unique, continuous solution v W Œ0; T � ! B .

(Hint: Convert the problem into the integral equation

v.t/ D exp.tA/f C

Z t

0

exp..t � s/A/˚.v.s//ds;
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and use the Banach fixed-point theorem (as in the standard proof of the

Picard–Lindelöf theorem for ODEs) to obtain a solution of that integral equation.)

8.3. Apply the results of Exercises 8.1 and 8.2 to the initial value problem for the

following semilinear parabolic PDE:

@u.x; t/

@t
D �u.x; t/C F.t; x; u.x/;Du.x// for x 2 R

d ; t > 0;

u.x; 0/ D f .x/;

for compactly supported f 2 C 0.Rd /. We assume that F is smooth with respect to

all its arguments.

8.4. Demonstrate the assertion in the remark at the end of Sect. 8.3.



Chapter 9

Relationships Between Different Partial

Differential Equations

9.1 The Continuity Equation for a Dynamical System

As in Sect. 6.1, we consider a system of ordinary differential equations (ODEs)

dxi .t/

dt
D F i .t; x1.t/; : : : ; xd .t//; for i D 1; : : : ; d: (9.1.1)

For notational convenience, we shall leave out the vector index i ; thus, in the

sequel. x may stand for the vector .x1; : : : ; xd /.

We assume that F in (9.1.1) is Lipschitz continuous with respect to x and

continuous with respect to t so that the Picard–Lindelöf theorem guarantees the

existence of a solution for 0 � t � T for some T > 0. In the sequel, we shall often

assume that this holds for T D 1.

We let x.t; y/ be the solution of (9.1.1) with

x.0; y/ D y: (9.1.2)

The idea is to consider the flow generated by the system (9.1.1). That is, for a

measurable set A � R
d of initial values, we consider the set At WD x.t; A/ of

their images under the dynamical system (9.1.1). Instead of sets, however, it is more

useful to consider probability densities h.x; t/ of x; that is, for each measurable

A � R
n, the probability that x.t/ is contained in A is given by

Z

A

h.y; t/dy; (9.1.3)

and we have the normalization

Z

Rd

h.y; t/dy D 1 for all t � 0: (9.1.4)
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When x satisfies (9.1.1), the density h, as a quantity derived from x, then also has

to satisfy some evolution equation. In fact, h evolves according to the continuity

equation

@

@t
h.x; t/ D

d
X

iD1

@

@xi
.�F i .t; x/h.x; t// D �div.hF /: (9.1.5)

This equation states that the change of the probability density in time is the negative

of the change of the state as a function of its value. (In mechanics, this is also

called the conservation of mass equation. It represents the Eulerian point of view

that works with fields in contrast to the Lagrangian point of view that considers the

individual trajectories of (9.1.1).) We note that this equation is a generalization of

the Eq. (8.2.44) derived in Sect. 8.2.

We shall give two derivations of (9.1.5). At this point, these derivations will be

formal, in the sense that we do not yet know whether a solution exists. Actually, the

existence issue has already been addressed in Sect. 7.2, as we shall remark below.

We consider the functional

I.A; �/ W D

Z

AtC�

h.x.t C �; y/; t C �/dx.t C �/

D

Z

At

h.x.t C �; y/; t C �/ det
@x.t C �/

@x.t/
dx.t/;

where in the last step, we have used the flow x to transform the set AtC� back into

the original set At . We compute (with some obvious shorthand notation)

d

d�
I.A; �/j�D0 D

Z

At

.ht C hxxt C h divxt /dx D

Z

At

.ht C div.hF //dx; (9.1.6)

where, of course, for the last step, we have used (9.1.1). Since this holds for every

A, (9.1.5) follows.

For the alternative derivation of (9.1.5), we assume that we have an initial density

�.x/ WD h.x; 0/; (9.1.7)

and we write

h.x; t/ DW Qt�.x/: (9.1.8)

This indicates that we consider the density h.t; :/ as the temporal evolution of the

initial density � under the dynamical system (9.1.1). Equation (9.1.3) then yields

Z

A

Qt�.x/ D

Z

x.t;:/�1.A/

�.x/ D

Z

Rn

�.x/�A.x.t; x// (9.1.9)

for the characteristic function �A of the set A.
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When we put, for a function  , k.t; x/ WD  .x.t; x//, we have

k.t; x.�t; x// D  .x/ (9.1.10)

(because x.t; x.�t; x// D x). Taking the total derivative of (9.1.10) with respect

to t then yields at t D 0, and hence by time translation at every t � 0,

@k.t; x/

@t
�
X

i

@k.t; x/

@xi
F i.t; x/ D 0: (9.1.11)

Inserting (9.1.11) with  D �A into (9.1.9) yields

Z

A

@

@t
Qt�.x/ D

Z

�.x/
X

i

@�A.x.t; x//

@xi
F i .t; x/

D �

Z

X

i

@

@xi
.�.x/F i.t; x//�A.x.t; x//

D �

Z

A

Qt

 

X

i

@

@xi
.�.x/F i.t; x//

!

:

Since this holds for every measurableA � R
d , we see, recalling (9.1.8), that h.x; t/

satisfies (9.1.5), indeed.

Equation (9.1.5) is, of course, the same as (7.2.5), the partial differential equation

of first order that we have studied in Sect. 7.2.

9.2 Regularization by Elliptic Equations

As already emphasized repeatedly, a crucial issue in the theory of PDEs is regularity

of solutions. We have to break the circulus vitiosus that in order to qualify as a

solution of some PDE, a function should be sufficiently differentiable, but a PDE

can force any putative solution to have some singularities, and the spaces in which

we may naturally seek solutions and the schemes by which we try to obtain them

typically also contain nonsmooth functions. We have already seen the basic idea

how to overcome this problem, namely, to relax the requirement for a function to

count as a solution. More precisely, we seek some criterion that, for a differentiable

function, is necessary and sufficient to be a solution of the PDE in question, but

that as such does not depend on the differentiability of that function. A function that

then satisfies this requirement, without necessary being differentiable, is called a

weak solution of that PDE. The existence problem for solutions of PDEs is thereby

broken up into two subproblems. The first one concerns the existence of a weak

solution, and the second one consists in the investigation of the regularity properties
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of weak solutions. For certain classes of PDEs, in particular, elliptic ones, as we

shall see in subsequent chapters, one can show that any weak solution is sufficiently

differentiable. In that case, the scheme then succeeds in finding a classical solution.

In other cases, weak solutions may inevitably have some singularities. One then tries

to understand the nature of these singularities and what constraints weak solutions

have to obey.

There exist two important methods for defining weak solutions. One, which we

shall explore in Sects. 10.1 and 11.2, simply multiplies the differential equation

in question by any smooth functions, so-called test functions, and integrates by

parts to shift the derivatives from the unknown, and perhaps singular, solution to

the test functions. When the resulting identity is satisfied for all test functions,

we have a weak solution. The second method is based on the observation that

solutions of many PDEs have to satisfy some maximum principle and, conversely,

can be characterized by that maximum principle. Again, the maximum principle by

itself does not stipulate any differentiability, and therefore, one can try to develop

a concept of weak solution on the basis of the maximum principle. In fact, as we

shall explain, the maximum principle can even achieve more than that. It can yield

a selection principle among possible weak solutions, or expressed differently, it can

enforce uniqueness of weak solutions by selecting that weak solution that is best

possible in the sense of regularity properties.

Let us describe the idea first before we implement it in an existence scheme.

We recall from Chap. 2 that a twice differentiable function g is called harmonic

in the domain˝ � R
d if

�g.x/ D 0 for all x 2 ˝: (9.2.1)

Likewise, such a function 
 is called subharmonic in ˝ if

�
.x/ � 0 for all x 2 ˝: (9.2.2)

It turns out that these two concepts, harmonic and subharmonic, can be defined

in terms of each other, so as to dispense with the smoothness requirements. The

property required in the following definition is equivalent to (9.2.2) when 
 is twice

differentiable.

Definition 9.2.1. Let 
 W ˝ ! Œ�1;1/ be upper semicontinuous (i.e., whenever

.xn/ � ˝ converges to x 2 ˝ , then 
.x/ � lim supn!1 
.xn/), with 
 �= � 1.

Then 
 is called subharmonic in˝ if whenever g is harmonic in˝ 0
b ˝ and 
 � g

on @˝ 0, then also


 � g in ˝ 0: (9.2.3)

Thus, a not necessarily smooth subharmonic function can be characterized in terms

of harmonic functions. A subharmonic function has to lie below any harmonic

function with the same boundary values on some subdomain of ˝ . Conversely, we

would like to characterize a harmonic function by always lying above subharmonic
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functions with the same boundary values. This is not yet sufficient, however, because

this property also holds for any superharmonic function (superharmonic functions

are defined in the same as subharmonic ones, simply by reversing inequalities; for

instance, in the smooth case, a subharmonic 
 has to satisfy �
 � 0). Of course,

we could then characterize a harmonic function by lying above all subharmonic and

below all superharmonic ones. It is often more convenient, however, to use only

subharmonic function and obtain a harmonic function as the smallest function that

lies above all subharmonic ones. That is the idea of the Perron method that we have

developed in Sect. 4.2. We recall Theorem 4.2.1.

Theorem 9.2.1. Let � be a bounded function on @˝ . Then

g.x/ WD sup

�� on @˝;
 subharmonic in ˝


.x/ (9.2.4)

is a harmonic function on˝ . g is smooth in˝ . Under suitable regularity conditions

on˝ and � (not specified here), it satisfies the Dirichlet condition g.y/ D �.y/ for

y 2 @˝ .

This, however, in the present context is only an interlude, meant to motivate

a solution concept for certain first-order equations where, according to our con-

siderations above, we need to reckon with singularities as well as with issues of

non-uniqueness. We consider problems of the form

@h.x; t/

@t
C J

�

@h.x; t/

@x
; x

�

D 0 for x 2 R
d ; t > 0

h.x; 0/ D h0.x/ for x 2 R
d : (9.2.5)

Here, J is assumed to be bounded and continuous. Equation (9.2.5) can be seen as

a generalization of (7.2.14), and therefore, in particular, we have to reckon with all

the phenomena discussed in Sect. 7.2. As argued there, in general, we cannot expect

to find a differentiable solution of (9.2.5), and on the other hand, when we give

up the smoothness requirement, there could be several functions that may count as

a solution. Thus, we wish to find among those a best one. Of course, we need to

qualify what “best” means here. For instance, it could select a solution that is most

regular or, put differently, has the mildest possible singularity.

The idea of viscosity solutions that has been developed in [6] and that we are

going to present now consists in approximating (9.2.5) by another equation with

better solution properties. We then take the solutions of the approximating equations

and hope that they tend to a good solution of the original equation (9.2.5) when the

approximation parameter goes to 0. This works as follows:

@h�.x; t/

@t
C J

�

@h�.x; t/

@x
; x

�

D ��h� for x 2 R
d ; t > 0

h�.x; 0/ D h0.x/ for x 2 R
d : (9.2.6)
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� > 0 is the approximation parameter that we want to let to tend to 0. The term

��h�, while being of higher order than the terms in the original equation (9.2.5),

ensures the regularity of solutions. (9.2.6) is a parabolic equation, and its solutions

h� satisfy some maximum principle as we shall explain and utilize below. The idea

then is to obtain or define a solution of (9.2.5) as h D lim�!0 h
� (perhaps, we might

have to take a subsequence, but this is not important for the principal idea). h need

not be smooth or even continuous, even though the h� are, because the regularity

properties of the latter may become worse and worse as � ! 0. Nevertheless,

certain properties of the h� should persist in the limit. In fact, it turns out that

h can be characterized and distinguished from other solutions of (9.2.5) by some

maximum principle property which we shall now explain. The key point is that this

is a property of the approximation solutions that does not depend on the value of

� > 0.

Suppose that

h� � � has a maximum at .x0; t0/ 2 R
d � .0;1/ (9.2.7)

for some smooth function �. Then

@h�.x0; t0/

@t
D
@�.x0; t0/

@t
;
@h�.x0; t0/

@x
D
@�.x0; t0/

@x
(9.2.8)

and

�h�.x0; t0/ � ��.x0; t0/: (9.2.9)

Therefore, from (9.2.6), we can deduce that

@�.x0; t0/

@t
C J

�

@�.x0; t0/

@x
; x

�

� ���.x0; t0/: (9.2.10)

A key point here is, of course, that Eq. (9.2.5) involves only first derivatives of h,

but not h itself.

Similarly, when h� � Q� has a minimum at .x0; t0/, we have

@ Q�.x0; t0/

@t
C J

�

@ Q�.x0; t0/

@x
; x

�

� �� Q�.x0; t0/: (9.2.11)

Conversely, when these inequalities hold for any such � or Q�, resp., then h� is a

solution of (9.2.6). The expectation that this property passes to the limit � ! 0 now

motivates

Definition 9.2.2. A function h that is bounded and uniformly continuous on R
d �

Œ0;1/ is called a viscosity solution of (9.2.5) if h.x; 0/ D h0.x/ for all x 2 R
d

(where h0 is also assumed to be bounded and uniformly continuous) if whenever
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for a smooth function �, h � � has a local maximum (minimum) at .x0; t0/ 2 R
d �

.0;1/, then

@�.x0; t0/

@t
C J

�

@�.x0; t0/

@x
; x

�

� .�/0: (9.2.12)

In particular, the solution concept of this definition does not require any differentia-

bility of h. For the test functions �, we can actually require that h � � � .�/0 and

h.x0; t0/ � �.x0; t0/ D 0. Derivatives then are only evaluated for test functions that

touch h at the point in question, but not for h itself.

First of all, this solution concept is consistent in the sense that when a viscosity

h is smooth, it is a classical solution of (9.2.5). This is trivial; as in that case, we

may use the test function � D h so that h � � � 0 has both a local maximum and

minimum at any point, and the two inequalities in (9.2.12) then yield (9.2.5). With a

little more work, one shows that when a viscosity h is only known to be of class C 1

then it already is a classical solution of (9.2.5). Also, when J satisfies a Lipschitz

condition, then viscosity solutions are unique. We refer to [7] for details.

The existence question is more subtle. One can use the general theory of

parabolic equations to obtain the existence of a solution of (9.2.6) for any � > 0, as

well as suitable uniform estimates that are independent of � and that can be used to

obtain the uniform convergence of some subsequence of h� to some function h for

� ! 0. As we have explained, the viscosity inequalities pertain to the limit, and h

therefore is a viscosity solution in the sense of the definition.

The fundamental points in the scheme are that the higher order term �� has a

regularizing effect and that the qualitative control of the solutions gained from the

maximum principle is independent of � > 0 and can therefore passed on to the limit

for � ! 0.



Chapter 10

The Dirichlet Principle. Variational Methods

for the Solution of PDEs (Existence
Techniques III)

10.1 Dirichlet’s Principle

We consider the Dirichlet problem for harmonic functions once more.

We want to find a solution u W ˝ ! R, ˝ � R
d a domain, of

�u D 0 in ˝;

u D f on @˝;
(10.1.1)

with given f .

Dirichlet’s principle is based on the following observation: Let u 2 C 2.˝/ be a

function with u D f on @˝ and

Z

˝

jru.x/j2 dx D min

�Z

˝

jrv.x/j2 dx W v W ˝!R with vDf on @˝

�

: (10.1.2)

We now claim that u then solves (10.1.1). To show this, let

� 2 C1
0 .˝/:

1

According to (10.1.2), the function

˛.t/ WD
Z

˝

jr.u C t�/.x/j2 dx

possesses a minimum at t D 0, because u C t� D f on @˝ , since � vanishes on

@˝ . Expanding this expression, we obtain

1C1
0 .A/ WD f' 2 C1.A/ W the closure of fx W '.x/ ¤ 0g is compact and contained in Ag.
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˛.t/ D
Z

˝

jru.x/j2 dx C 2t

Z

˝

ru.x/ � r�.x/dx C t2
Z

˝

jr�.x/j2 dx: (10.1.3)

In particular,˛ is differentiable with respect to t , and the minimality at t D 0 implies

P̨ .0/ D 0: (10.1.4)

By (10.1.3) this implies

Z

˝

ru.x/ � r�.x/dx D 0; (10.1.5)

and this holds for all � 2 C1
0 .˝/.

Integrating (10.1.5) by parts, we obtain

Z

˝

�u.x/�.x/dx D 0 for all � 2 C1
0 .˝/: (10.1.6)

We now recall the following well-known and elementary fact:

Lemma 10.1.1. Suppose g 2 C 0.˝/ satisfies

Z

˝

g.x/�.x/dx D 0 for all � 2 C1
0 .˝/:

Then g � 0 in ˝ .

Applying Lemma 10.1.1 to (10.1.6) (which is possible, since �u 2 C 0.˝/ by

our assumption u 2 C 2.˝/), we indeed obtain

�u.x/ D 0 in ˝;

as claimed.

This observation suggests that we try to minimize the so-called Dirichlet integral

D.u/ WD
Z

˝

jru.x/j2 dx (10.1.7)

in the class of all functions u W ˝ ! R with u D f on @˝ . This is Dirichlet’s

principle.

It is by no means evident, however, that the Dirichlet integral assumes its infimum

within the considered class of functions. This constitutes the essential difficulty

of Dirichlet’s principle. In any case, so far, we have not specified which class of

functions u W ˝ ! R (with the given boundary values) we allow for competition;

the possibilities include functions of class C1, which would be natural, since we

have shown already in Chap. 2 that any solution of (10.1.1) automatically is of
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regularity class C1; functions of class C 2, which would be natural, since then the

differential equation �u.x/ D 0 would have a meaning; and functions of class

C 1 because then at least (assuming ˝ bounded and f sufficiently regular, e.g.,

f 2 C 1) the Dirichlet integralD.u/ would be finite. Posing the question somewhat

differently, should we try to minimize D.U / in a space of functions that is as large

as possible, in order to increase the chance that a minimizing sequence possesses a

limit in that space that then would be a natural candidate for a minimizer, or should

we rather select a smaller space in order to facilitate the verification that a tentative

solution is a minimizer?

In order to analyze this question, we consider a minimizing sequence .un/n2N

forD, i.e.,

lim
n!1

D.un/ D inf fD.v/ W v W ˝ ! R; v D f on @˝g DW �; (10.1.8)

where, of course, we assume un D f on @˝ for all un. To find properties of such a

minimizing sequence, we shall employ the following simple lemma:

Lemma 10.1.2. Dirichlet’s integral is convex, i.e.,

D.tu C .1� t/v/ � tD.u/C .1 � t/D.v/ (10.1.9)

for all u; v; and t 2 Œ0; 1�.
Proof.

D.tu C .1� t/v/ D
Z

˝

jtru C .1 � t/rvj2

�
Z

˝

n

t jruj2 C .1 � t/ jrvj2
o

because of the convexity of w 7! jwj2

D tD.u/C .1 � t/Dv:
ut

Now let .un/n2N be a minimizing sequence. Then

D.un � um/ D
Z

˝

jr.un � um/j2

D 2

Z

˝

jrunj2 C 2

Z

˝

jrumj2 � 4

Z

˝

ˇ

ˇ

ˇ

ˇ

r
�

un C um

2

�
ˇ

ˇ

ˇ

ˇ

2

D 2D.un/C 2D.um/ � 4D
�

un C um

2

�

: (10.1.10)

We now have
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� � D

�

un C um

2

�

by definition of � (10.1.8)

� 1

2
D.un/C 1

2
D.um/ by Lemma 10.1.2

! � for n;m ! 1; (10.1.11)

since .un/ is a minimizing sequence. This implies that the right-hand side of

(10.1.10) converges to 0 for n;m ! 1, and so then does the left-hand side. This

means that .run/n2N is a Cauchy sequence with respect to the topology of the space

L2.˝/. (Since run has d components, i.e., is vector-valued, this says that @un
@xi

is a

Cauchy sequence inL2.˝/ for i D 1; : : : ; d .) SinceL2.˝/ is a Hilbert space, hence

complete; run thus converges to some w 2 L2.˝/. The question now is whether w

can be represented as the gradient ru of some function u W ˝ ! R. At the moment,

however, we know only that w 2 L2.˝/, and so it is not clear what regularity

properties u should possess. In any case, this consideration suggests that we seek

a minimum of D in the space of those functions whose gradient is in L2.˝/. In a

subsequent step we would then have to analyze the regularity properties of such a

minimizer u. For that step, the starting point would be relation (10.1.5), i.e.,

Z

˝

ru.x/ � r�.x/dx D 0 for all � 2 C1
0 .˝/; (10.1.12)

which continues to hold in the context presently considered. By Corollary 2.2.1 this

already implies u 2 C1.˝/. In the next chapter, however, we shall investigate this

problem in greater generality.

Dividing the problem into two steps as just sketched, namely, first proving the

existence of a minimizer and afterwards establishing its regularity, proves to be a

fruitful approach indeed, as we shall find in the sequel. For that purpose, we first

need to investigate the space of functions just considered in more detail. This is the

task of the next section.

10.2 The Sobolev Space W1;2

Definition 10.2.1. Let ˝ � R
d be open and u 2 L1loc.˝/. A function v 2 L1loc.˝/

is called weak derivative of u in the direction xi (x D .x1; : : : ; xd / 2 R
d ) if

Z

˝

�v D �
Z

˝

u
@�

@xi
dx (10.2.1)

for all � 2 C 1
0 .˝/.

2 We write v D Diu.

2 C k
0 .˝/ WD ff 2 C k.˝/ W the closure of fx W f .x/ ¤ 0g is a compact subset of ˝g (k D

1; 2; : : :).



10.2 The Sobolev Space W 1;2 219

A function u is called weakly differentiable if it possesses a weak derivative in

the direction xi for all i 2 f1; : : : ; d g.

It is obvious that each u 2 C 1.˝/ is weakly differentiable, and the weak

derivatives are simply given by the ordinary derivatives. Equation (10.2.1) is then

the formula for integrating by parts. Thus, the idea behind the definition of weak

derivatives is to use the integration by parts formula as an abstract axiom.

Lemma 10.2.1. Let u 2 L1loc.˝/, and suppose v D Diu exists. If dist.x; @˝/ > h,

we have

Di .uh.x// D .Diu/h.x/:

Proof. By differentiating under the integral, we obtain

Di .uh.x// D 1

hd

Z

@

@xi
%
�x � y

h

�

u.y/dy

D �1
hd

Z

@

@yi
%
�x � y

h

�

u.y/dy

D 1

hd

Z

%
�x � y

h

�

Diu.y/dy by (10.2.1)

D .Diu/h.x/:

ut

Lemmas A.3 and 10.2.1 and formula (10.2.1) imply the following theorem:

Theorem 10.2.1. Let u; v 2 L2.˝/. Then

v D Diu

precisely if there exists a sequence .un/ � C1.˝/ with

un ! u;
@

@xi
un ! v in L2.˝ 0/ for any˝ 0 �� ˝:

Definition 10.2.2. The Sobolev space W 1;2.˝/ is defined as the space of those

u 2 L2.˝/ that possess a weak derivative of class L2.˝/ for each direction xi .i D
1; : : : ; d /.

In W 1;2.˝/ we define a scalar product

.u; v/W 1;2.˝/ WD
Z

˝

uv C
d
X

iD1

Z

˝

Diu �Di v

and a norm

kukW 1;2.˝/ WD .u; u/
1
2

W 1;2.˝/
:
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We also define H 1;2.˝/ as the closure of C1.˝/ \ W 1;2.˝/ with respect to the

W 1;2-norm, and H 1;2
0 .˝/ as the closure of C1

0 .˝/ with respect to this norm.

Corollary 10.2.1. W 1;2.˝/ is complete with respect to k�kW 1;2 , and is hence a

Hilbert space. W 1;2.˝/ D H 1;2.˝/.

Proof. Let .un/n2N be a Cauchy sequence in W 1;2.˝/. Then .un/n2N,

.Diun/n2N (i D 1; : : : ; d ) are Cauchy sequences in L2.˝/. Since L2.˝/ is

complete, there exist u; vi 2 L2.˝/ with

un ! u; Diun ! vi in L2.˝/ .i D 1; : : : ; d /:

For � 2 C 1
0 .˝/, we have

Z

Diun � � D �
Z

unDi�;

and the left-hand side converges to
R

vi � �, the right-hand side to �
R

u � Di�.

Therefore,Diu D vi , and thus u 2 W 1;2.˝/. This shows completeness.

In order to prove the equality H 1;2.˝/ D W 1;2.˝/, we need to verify that the

space C1.˝/ \W 1;2.˝/ is dense in W 1;2.˝/. For n 2 N, we put

˝n WD
�

x 2 ˝ W kxk < n; dist.x; @˝/ >
1

n

�

;

with ˝0 WD ˝�1 WD ;. Thus,

˝n �� ˝nC1 and
[

n2N

˝n D ˝:

We let f'j gj2N be a partition of unity subordinate to the cover

˚

˝nC1 n N̋
n�1

�

of˝ . Let u 2 W 1;2.˝/. By Theorem 10.2.1, for every " > 0, we may find a positive

number hn for any n 2 N such that

hn � dist.˝n; @˝nC1/;

k.'nu/hn � 'nukW 1;2.˝/ <
"

2n
:

Since the 'n constitute a partition of unity, on any˝ 0 �� ˝ , at most finitely many

of the smooth functions .'nu/hn are non-zero. Consequently,

Qu WD
X

n

.'nu/hn 2 C1.˝/:
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We have

ku � QukW 1;2.˝/ �
X

n

k.'nu/hn � 'nuk < ";

and we see that every u 2 W 1;2.˝/ can be approximated by C1-functions. ut

Corollary 10.2.1 answers one of the questions raised in Sect. 10.1, namely,

whether the function w considered there can be represented as the gradient of an

L2-function.

Examples:

(i) We consider˝ D .�1; 1/ � R and u.x/ WD jxj.
In that case, u 2 W 1;2..�1; 1//, and

Du.x/ D
(

1 for 0 < x < 1;

�1 for � 1 < x < 0;

because for every � 2 C 1
0 ..�1; 1//,

Z 0

�1

��.x/dx C
Z 1

0

�.x/dx D �
Z 1

�1

�0.x/ � jxj dx:

(ii) Again,˝ D .�1; 1/ � R, and

u.x/ WD
(

1 for 0 � x < 1;

0 for � 1 < x < 0;

is not weakly differentiable, for if it were, necessarily Du.x/ D 0 for x ¤
0; hence as an L1loc function Du � 0, but we do not have, for every � 2
C 1
0 ..�1; 1//,

0 D
Z 1

�1

�.x/ � 0 dx D �
Z 1

�1

�0.x/u.x/dx D �
Z 1

0

�0.x/dx D �.0/:

Remark. Any u 2 L1loc.˝/ defines a distribution (cf. Sect. 2.1) lu by

luŒ'� WD
Z

˝

u.x/'.x/dx for ' 2 C1
0 .˝/:

Every distribution l possesses distributional derivatives Di l , i D 1; : : : ; d ,

defined by

Di lŒ'� WD �l
�

@'

@xi

�

:
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If v D Diu 2 L1loc.˝/ is the weak derivative of u, then

Di lu D lv;

because

lvŒ'� D
Z

˝

Diu.x/'.x/dx D �
Z

˝

u.x/
@'

@xi
.x/dx D Di luŒ'�

for all ' 2 C1
0 .˝/.

Whereas the distributional derivative Di lu always exists, the weak derivative

need not exist. Thus, in general, the distributional derivative is not of the form

lv for some v 2 L1loc.˝/, i.e., not represented by a locally integrable function.

This is what happens in Example (ii). Here, Dlu D ı0, the delta distribution

at 0, because

DluŒ'� D �luŒ' 0� D �
Z 1

�1

u.x/' 0.x/dx D �
Z 1

0

' 0.x/dx D '.0/:

The delta distribution cannot be represented by some locally integrable func-

tion v, because, as one easily verifies, there is no function v 2 L1loc..�1; 1//
with

Z 1

�1

v.x/'.x/dx D '.0/ for all ' 2 C1
0 .˝/:

This explains why u from Example (ii) is not weakly differentiable.

(iii) This time, ˝ D B.0; 1/ � R
d , and u.x/ WD x

jxj
, i.e., we consider a mapping

from B.0; 1/ to R
d . u is smooth except at x D 0 where it is discontinuous. For

d D 1, of course, u.x/ D 1 for x > 0 and u.x/ D �1 for x < 0. Hence, in

that case, as in Example (ii), u is not weakly differentiable. We now consider

the case d > 1. We let ei be the i th unit vector, i.e., x D
P

i x
iei . For x ¤ 0,

we have

@

@xi
x

jxj D ei

jxj � xix

jxj3 : (10.2.2)

We claim that, for d > 1, this extends as the weak derivative Diu across the

singularity at x D 0. To check this, we need to verify that

Z

B.0;1/

�

ei

jxj � xix

jxj3

�

� D �
Z

B.0;1/

x

jxj
@�

@xi
(10.2.3)

for all test functions � 2 H
1;2
0 .B.0; 1/;Rd /. (Note that (10.2.3) has to be

understood in the vector sense; for instance, x
jxj

@�

@xi
stands for

Pd
˛D1

x˛

jxj
@�˛

@xi
.)

First of all, we observe that (10.2.3) holds for all such � that vanish in

the vicinity of 0, because u is smooth away from 0. In order to handle the

discontinuity at 0, we introduce the Lipschitz cut-off functions
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�m WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if jxj � 2�m

1
2m�1

�
1

jxj
� 2m�1

�

if 2�m � jxj � 2�.m�1/

0 if 2�.m�1/ � jxj

and write � D .1 � �m/� C �m�. The first term then vanishes near 0,

and therefore, as just explained, this term is fine in (10.2.3). In order to

verify (10.2.3) for a general �, we therefore only have to verify that the

contributions coming from �m� go to 0 for m ! 1. When we insert �m'

in (10.2.3), the only contribution that does not obviously go to 0 for m ! 1
(and d > 1) is

Z

x

jxj
@�m

@xi
�: (10.2.4)

However, since

@�m

@xi
D
(

21�m xi

jxj3
for 2�m � jxj � 2�.m�1/

0 otherwise

we have
ˇ

ˇ

ˇ

ˇ

@�m

@xi

ˇ

ˇ

ˇ

ˇ

� 2

jxj since 2�m � jxj:

Therefore, (10.2.4) does go to 0 for m ! 1. We conclude that u possesses

weak derivatives for d > 1, indeed. We note, however, from (10.2.2) that

ˇ

ˇ

ˇ

ˇ

D
x

jxj

ˇ

ˇ

ˇ

ˇ

2

D d � 1

jxj2 ; (10.2.5)

and so,
Z

B.0;1/

jDuj2 < 1 for d � 3;

i.e., u 2 W 1;2.B.0; 1// for d � 3, but not for d D 2.

(iv) We leave it to the reader to check that

u.x/ WD log log
1

jxj (10.2.6)

is in W 1;2 on the ball B.0; 1
2
/ � R

2. Again, this u is discontinuous (and

unbounded) at x D 0. Thus, also for d D 2, functions in the Sobolev space

W 1;2 need not be continuous.

We now prove a replacement lemma exhibiting a characteristic property of Sobolev

functions:
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Lemma 10.2.2. Let ˝0 �� ˝ , g 2 W 1;2.˝/, u 2 W 1;2.˝0/, u � g 2 H
1;2
0 .˝0/.

Then

v.x/ WD
(

u.x/ for x 2 ˝0;

g.x/ for x 2 ˝ n˝0;

is contained in W 1;2.˝/, and

Div.x/ D
(

Diu.x/ for x 2 ˝0;

Dig.x/ for x 2 ˝ n˝0:

Proof. By Corollary 10.2.1, there exist gn 2 C1.˝/, un 2 C1.˝0/ with

gn ! g in W 1;2.˝/;

un ! u in W 1;2.˝0/;

un � gn D 0 on @˝0: (10.2.7)

We put

win.x/ WD
(

Diun.x/ for x 2 ˝0;

Dign.x/ for x 2 ˝ n˝0;

vn.x/ WD
(

un.x/ for x 2 ˝0;

gn.x/ for x 2 ˝ n˝0;

wi .x/ WD
(

Diu.x/ for x 2 ˝0;

Dig.x/ for x 2 ˝ n˝0:

We then have for ' 2 C 1
0 .˝/,

Z

˝

'win D
Z

˝0

'win C
Z

˝n˝0

'win D
Z

˝0

'Diun C
Z

˝n˝0

'Dign

D �
Z

˝0

unDi' �
Z

˝n˝0

gnDi'

since the two boundary terms resulting from integrating the two

integrals by parts have opposite signs and thus cancel because of

gn D un on @˝0

D �
Z

˝

vnDi'
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by (10.2.7). Now for n ! 1,

Z

˝

'win !
Z

˝0

'Diu C
Z

˝n˝0

'Dig;

Z

˝

vnDi' !
Z

˝

vDi';

and the claim follows. ut

The next lemma is a chain rule for Sobolev functions:

Lemma 10.2.3. For u 2 W 1;2.˝/, f 2 C 1.R/, suppose

sup
y2R

ˇ

ˇf 0.y/
ˇ

ˇ < 1:

Then f ı u 2 W 1;2.˝/, and the weak derivative satisfies D.f ı u/ D f 0.u/Du.

Proof. Let un 2 C1.˝/, un ! u in W 1;2.˝/ for n ! 1. Then

Z

˝

jf .un/� f .u/j2 dx � sup
ˇ

ˇf 0
ˇ

ˇ

2
Z

˝

jun � uj2 dx ! 0

and

Z

˝

ˇ

ˇf 0.un/Dun � f 0.u/Du
ˇ

ˇ

2
dx � 2 sup

ˇ

ˇf 0
ˇ

ˇ

2
Z

˝

jDun �Duj2 dx

C 2

Z

˝

ˇ

ˇf 0.un/ � f 0.u/
ˇ

ˇ

2 jDuj2 dx:

By a well-known result about L2-functions, after selection of a subsequence, un
converges to u pointwise almost everywhere in ˝ .3 Since f 0 is continuous, f 0.un/

then also converges pointwise almost everywhere to f 0.u/, and since f 0 is also

bounded, the last integral converges to 0 for n ! 1 by Lebesgue’s theorem on

dominated convergence.

Thus

f .un/ ! f .u/ in L2.˝/

and

D.f .un// D f 0.un/Dun ! f 0.u/Du in L2.˝/;

and hence f ı u 2 W 1;2.˝/ and D.f ı u/ D f 0.u/Du. ut

3See p. 240 of [19].
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Corollary 10.2.2. If u 2W 1;2.˝/, then also juj 2W 1;2.˝/, andDjuj D sign u �Du.

Proof. We consider f".u/ WD .u2 C "2/
1
2 � ", apply Lemma 10.2.3, and let " ! 0,

using once more Lebesgue’s theorem on dominated convergence to justify the limit

as before. ut

We next prove the Poincaré inequality (see also Corollary 11.5.1 below).

Theorem 10.2.2. For u 2 H 1;2
0 .˝/, we have

kukL2.˝/ �
� j˝j
!d

�
1
d

kDukL2.˝/ (10.2.8)

where j˝j denotes the (Lebesgue) measure of ˝ and !d is the measure of the unit

ball in R
d . In particular, for any u 2 H 1;2

0 .˝/, its W 1;2-norm is controlled by the

L2-norm of Du:

kukW 1;2.˝/ �
 

1C
� j˝j
!d

�
1
d

!

kDukL2.˝/

Proof. Suppose first u 2 C 1
0 .˝/; we put u.x/ D 0 for x 2 R

d n ˝ . For ! 2 R
d

with j!j D 1, by the fundamental theorem of calculus, we obtain by integrating

along the ray fr! W 0 � r < 1g that

u.x/ D �
Z 1

0

@

@r
u.x C r!/dr:

Integrating with respect to ! then yields, as in the proof of Theorem 2.2.1,

u.x/ D � 1

d!d

Z 1

0

Z

j!jD1

@

@r
u.x C r!/ d!dr

D � 1

d!d

Z 1

0

Z

@B.x;r/

1

rd�1

@u

@�
.z/d�.z/dr

D � 1

d!d

Z

˝

1

jx � yjd�1

d
X

iD1

@

@yi
u.y/

xi � yi
jx � yj

dy; (10.2.9)

and thus with the Schwarz inequality,

ju.x/j � 1

d!d

Z

˝

1

jx � yjd�1
� jDu.y/j dy: (10.2.10)
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We now need a lemma:

Lemma 10.2.4. For f 2 L1.˝/, 0 < � � 1, let

.V�f /.x/ WD
Z

˝

jx � yjd.��1/ f .y/dy:

Then





V�f






L2.˝/
� 1

�
!
1��
d j˝j� kf kL2.˝/ :

Proof. B.x;R/ WD fy 2 R
d W jx � yj � Rg. Let R be chosen such that j˝j D

jB.x;R/j D !dR
d . Since in that case

j˝ n .˝ \ B.x;R//j D jB.x;R/ n .˝ \ B.x;R//j

and

jx � yjd.��1/ � Rd.��1/ for jx � yj � R;

jx � yjd.��1/ � Rd.��1/ for jx � yj � RI

it follows that

Z

˝

jx � yjd.��1/ dy �
Z

B.x;R/

jx � yjd.��1/ dy D 1

�
!dR

d� D 1

�
!
1��
d j˝j� :

(10.2.11)

We now write

jx � yjd.��1/ jf .y/j D
�

jx � yj
d
2 .��1/

� �

jx � yj
d
2 .��1/ jf .y/j

�

and obtain, applying the Cauchy Schwarz inequality,

ˇ

ˇ.V�f /.x/
ˇ

ˇ �
Z

˝

jx � yjd.��1/ jf .y/j dy

�
�Z

˝

jx � yjd.��1/ dy

�
1
2
�Z

˝

jx � yjd.��1/ jf .y/j2 dy

�
1
2

;

and hence

Z

˝

jV�f .x/j2 dx � 1

�
!
1��
d j˝j�

Z

˝

Z

˝

jx � yjd.��1/jf .y/j2 dy dx
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by estimating the first integral of the preceding inequality
with (10.2.11)

�
�

1

�
!
1��
d j˝j�

�2 Z

˝

jf .y/j2dy

by interchanging the integrations with respect to x and y and applying (10.2.11)

once more, whence the claim. ut

We may now complete the proof of Theorem 10.2.2: Applying Lemma 10.2.4

with� D 1
d

and f D jDuj to the right-hand side of (10.2.10), we obtain (10.2.8) for

u 2 C 1
0 .˝/. Since by definition ofH

1;2
0 .˝/, it containsC 1

0 .˝/ as a dense subspace,

we may approximate u in the H 1;2-norm by some sequence .un/n2N � C 1
0 .˝/.

Thus, un converges to u in L2 and Dun to u. Thus, the inequality (10.2.8) that has

been proved for un extends to u. ut

Remark. The assumption that u is contained in H
1;2
0 .˝/, and not only in H 1;2.˝/,

is necessary for Theorem 10.2.2, since otherwise the nonzero constants would

constitute counterexamples. However, the assumption u 2 H
1;2
0 .˝/ may be

replaced by other assumptions that exclude nonzero constants, for example,by
R

˝
u.x/dx D 0.

For our treatment of eigenvalues of the Laplace operator in Sect. 11.5, the

fundamental tool will be the compactness theorem of Rellich:

Theorem 10.2.3. Let ˝ 2 R
d be open and bounded. Then H 1;2

0 .˝/ is compactly

embedded in L2.˝/; i.e., any sequence .un/n2N � H
1;2
0 .˝/ with

kunkW 1;2.˝/ � c0 (10.2.12)

contains a subsequence that converges in L2.˝/.

Proof. The strategy is to find functions wn;" 2 C 1.˝/, for every " > 0, with

kun � wn;"kW 1;2.˝/ <
"

2
(10.2.13)

and

kwn;"kW 1;2.˝/ � c1 (10.2.14)

(the constant c1 will depend on ", but not on n). By the Arzela–Ascoli theorem,

.wn;"/n2N then contains a subsequence that converges uniformly, hence also in L2.

Since this holds for every " > 0, one may appeal to a general theorem about compact

subsets of metric spaces to conclude that the closure of .un/n2N is compact inL2.˝/

and thus contains a convergent subsequence. That theorem4 states that a subset of

4See, for example, [18], Theorem 7.38.
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a metric space is compact precisely if it is complete and totally bounded, i.e., if

for any " > 0, it is contained in the union of a finite number of balls of radius ".

Applying this result to the (closure of the) sequence .wn;"/n2N, we infer that there

exist finitely many z� , � D 1; : : : ; N , in L2.˝/ such that for every n 2 N,

kwn;" � z�kL2.˝/ <
"

2
for some � 2 f1; : : : ; N g: (10.2.15)

Hence, from (10.2.13) and (10.2.15), for every n 2 N,

kun � z�kL2.˝/ < " for some �:

Since this holds for every " > 0, the sequence .un/n2N is totally bounded, and so

its closure is compact in L2.˝/, and we get the desired convergent subsequence in

L2.˝/.

It remains to construct the wn;". First of all, by definition ofH
1;2
0 .˝/, there exists

wn 2 C 1
0 .˝/ with

kun � wnkW 1;2.˝/ <
"

4
: (10.2.16)

By (10.2.12), then also

kwnkW 1;2.˝/ � c0
0 for some constant c0

0: (10.2.17)

We then define wn;" as the mollification of wn with a parameter h D h."/ to be

determined subsequently:

wn;".x/ D 1

hd

Z

˝

%
�x � y

h

�

wn.y/dy:

The crucial step now is to control the L2-norm of the difference wn � wn;" with the

help of the W 1;2-bound on the original un. This goes as follows:

Z

˝

jwn.x/ � wn;".x/j2dx D
Z

˝

�Z

jyj�1

%.y/.wn.x/ � wn.x � hy//dy
�2

dx

�
Z

˝

 

Z

jyj�1

%.y/

Z hjyj

0

ˇ

ˇ

ˇ

ˇ

@

@r
wn.x � r!/

ˇ

ˇ

ˇ

ˇ

dr dy

!2

dx with ! D y

jyj

D
Z

˝

 

Z

jyj�1

%.y/
1
2 %.y/

1
2

Z hjyj

0

ˇ

ˇ

ˇ

ˇ

@

@r
wn.x � r!/

ˇ

ˇ

ˇ

ˇ

dr dy

!2

dx

�
�Z

jyj�1

%.y/dy

��Z

jyj�1

%.y/h2jyj2
Z

jDwn.x/j2 dx dy

�
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by Hölder’s inequality [(A.4) of the appendix] and Fubini’s theorem. Since
R

jyj�1

%.y/ dy D 1, we obtain the estimate

kwn � wn;"kL2.˝/ � h kDwnkL2.˝/ :

Because of (10.2.17), we may then choose h such that

kwn � wn;"kL2.˝/ <
"

4
: (10.2.18)

Then (10.2.16) and (10.2.18) yield the desired estimate (10.2.13). ut

10.3 Weak Solutions of the Poisson Equation

As before, let ˝ be an open and bounded subset of Rd , g 2 H 1;2.˝/. With the

concepts introduced in the previous section, we now consider the following version

of the Dirichlet principle. We seek a solution of

�u D 0 in ˝;

u D g for @˝
�

meaning u � g 2 H 1;2
0 .˝/

�

;

by minimizing the Dirichlet integral

Z

˝

jDvj2 (here,Dv D .D1v; : : : ;Dd v//

among all v 2 H 1;2.˝/ with v � g 2 H 1;2
0 .˝/. We want to convince ourselves that

this approach indeed works. Let

� WD inf

�Z

˝

jDvj2 W v 2 H 1;2.˝/; v � g 2 H 1;2
0 .˝/

�

;

and let .un/n2N be a minimizing sequence, meaning that un � g 2 H 1;2
0 .˝/, and

Z

˝

jDunj2 ! �:

We have already argued in Sect. 10.1 that for a minimizing sequence .un/n2N,

the sequence of (weak) derivatives .Dun/ is a Cauchy sequence in L2.˝/.

Theorem 10.2.2 implies

kun � umkL2.˝/ � const kDun �DumkL2.˝/ :
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Thus, .un/ also is a Cauchy sequence inL2.˝/. We conclude that .un/n2N converges

in W 1;2.˝/ to some u. This u satisfies

Z

˝

jDuj2 D �

as well as

u � g 2 H 1;2
0 .˝/;

because H
1;2
0 .˝/ is a closed subspace of W 1;2.˝/. Furthermore, for every v 2

H
1;2
0 .˝/, t 2 R, puttingDu �Dv WD

Pd
iD1Diu �Div, we have

� �
Z

˝

jD.u C tv/j2 D
Z

˝

jDuj2 C 2t

Z

˝

Du �Dv C t2
Z

˝

jDvj2 ;

and differentiating with respect to t at t D 0 yields

0 D d

dt

Z

˝

jD.u C tv/j2 jtD0 D 2

Z

˝

Du �Dv for all v 2 H 1;2
0 .˝/:

Definition 10.3.1. A function u 2 H 1;2.˝/ is called weakly harmonic, or a weak

solution of the Laplace equation, if

Z

˝

Du �Dv D 0 for all v 2 H 1;2
0 .˝/: (10.3.1)

Any harmonic function obviously satisfies (10.3.1). In order to obtain a harmonic

function from the Dirichlet principle one has to show that, conversely, any solution

of (10.3.1) is twice continuously differentiable, hence harmonic. In the present case,

this follows directly from Corollary 2.2.1:

Corollary 10.3.1. Any weakly harmonic function is smooth and harmonic. In par-

ticular, applying the Dirichlet principle yields harmonic functions. More precisely,

for any open and bounded ˝ in R
d , g 2 H 1;2.˝/, there exists a function u 2

H 1;2.˝/\ C1.˝/ with

�u D 0 in ˝

and

u � g 2 H 1;2
0 .˝/:

The proof of Corollary 10.3.1 depends on the rotational invariance of the Laplace

operator and therefore cannot be generalized. For that reason, in the sequel, we

want to develop a more general approach to regularity theory. Before turning to that

theory, however, we wish to slightly extend the situation just considered.



232 10 Existence Techniques III

Definition 10.3.2. Let f 2 L2.˝/. A function u 2 H 1;2.˝/ is called a weak

solution of the Poisson equation�u D f if for all v 2 H 1;2
0 .˝/,

Z

˝

Du �Dv C
Z

˝

f v D 0: (10.3.2)

Remark. For given boundary values g (meaning u � g 2 H 1;2
0 .˝/), a solution can

be obtained by minimizing

1

2

Z

˝

jDwj2 C
Z

˝

f w

inside the class of all w 2 H 1;2.˝/ with w�g 2 H 1;2
0 .˝/. Note that this expression

is bounded from below by the Poincaré inequality (Theorem 10.2.2), because we are

assuming fixed boundary values g.

Lemma 10.3.1 (Stability lemma). Let uiD1;2 be a weak solution of�ui D fi with

u1 � u2 2 H 1;2
0 .˝/. Then

ku1 � u2kW 1;2.˝/ � const kf1 � f2kL2.˝/ :

In particular, a weak solution of�u D f , u �g 2 H 1;2
0 .˝/ is uniquely determined.

Proof. We have

Z

˝

D.u1 � u2/Dv D �
Z

˝

.f1 � f2/v for all v 2 H 1;2
0 .˝/;

and thus in particular,

Z

˝

D.u1 � u2/D.u1 � u2/ D �
Z

˝

.f1 � f2/.u1 � u2/

� kf1 � f2kL2.˝/ ku1 � u2kL2.˝/
� const kf1 � f2kL2.˝/ kDu1 �Du2kL2.˝/

by Theorem 10.2.2, and hence

kDu1 �Du2kL2.˝/ � const kf1 � f2kL2.˝/ :

The claim follows by applying Theorem 10.2.2 once more. ut

We have thus obtained the existence and uniqueness of weak solutions of the

Poisson equation in a very simple manner. The task of regularity theory then consists

in showing that (for sufficiently well-behaved f ) a weak solution is of class C 2 and

thus also a classical solution of �u D f .
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We shall present three different methods, namely, the so-called L2-theory, the

theory of strong solutions, and the C ˛-theory. The L2-theory will be developed in

Chap. 11, the theory of strong solutions in Chap. 12, and the C ˛-theory in Chap. 13.

10.4 Quadratic Variational Problems

We may ask whether the Dirichlet principle can be generalized to obtain solutions of

other PDEs. In general, of course, a minimizer u of some variational problem has to

satisfy the corresponding Euler–Lagrange equations, first in the weak sense, and if u

is regular, also in the classical sense. In the general case, however, regularity theory

encounters obstacles, and weak solutions of Euler–Lagrange equations need not

always be regular. We therefore restrict ourselves to quadratic variational problems

and consider

I.u/ WD
Z

˝

8

<

:

d
X

i;jD1

aij .x/Diu.x/Dj u.x/

C 2

d
X

jD1

bj .x/Dj u.x/u.x/C c.x/u.x/2

9

=

;

dx:

(10.4.1)

We require the symmetry condition aij D aj i for all i; j . In addition, the coefficients

aij .x/, bj .x/, c.x/ should all be bounded. Then I.u/ is defined for u 2 H 1;2.˝/.

As before, we compute, for ' 2 H 1;2
0 .˝/,

I.u C t'/ D I.u/C 2t

Z

˝

�

X

i;j

aijDiuDj' C
X

j

bjuDj'

C
�

X

j

bjDj u C cu

�

'

�

dx C t2I.'/: (10.4.2)

A minimizer u thus satisfies, as before,

d

dt
I.u C t'/jtD0 D 0 for all ' 2 H 1;2

0 .˝/I (10.4.3)

hence

Z

˝

8

<

:

X

j

 

X

i

aijDiu C bju

!

Dj' C

0

@

X

j

bjDj u C cu

1

A'

9

=

;

dx D 0 (10.4.4)

for all ' 2 H 1;2
0 .˝/.
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If u 2 C 2.˝/ and aij ; bj 2 C 1.˝/, then (10.4.4) implies the differential

equation

d
X

jD1

@

@xj

 

d
X

iD1

aij .x/
@u

@xi
C bj .x/u

!

�
d
X

jD1

bj .x/
@u

@xj
� c.x/u D 0: (10.4.5)

As the Euler–Lagrange equation of a quadratic variational integral, we thus obtain a

linear PDE of second order. This equation is elliptic when we assume that the matrix

.aij .x//i;jD1;:::;d is positive definite at every x 2 ˝ .

In the next chapter we should see that weak solutions of (10.4.5) [i.e., solutions

of (10.4.4)] are regular, provided that appropriate assumptions for the coefficients

aij , bj , and c hold. The direct method of the calculus of variations, as this

generalization of the Dirichlet principle is called, consists in finding a weak solution

of (10.4.5) by minimizing I.u/, and then demonstrating its regularity. We finally

wish to study the transformation behavior of the Dirichlet integral and the Laplace

operator with respect to changes of the independent variables. We shall also need

that transformation rule for our investigation of boundary regularity in the next

chapter.

Thus let

� ! x.�/

be a diffeomorphism from˝ 0 to ˝ . We put

gij WD
d
X

˛D1

@x˛

@� i
@x˛

@�j
; (10.4.6)

gij WD
d
X

˛D1

@� i

@x˛
@�j

@x˛
; (10.4.7)

i.e.,

d
X

kD1

gkig
kj D ıij D

(

1 for i D j;

0 for i ¤ j;

and

g WD det
�

gij



i;jD1;:::;d
: (10.4.8)

We then have, for u.�.x//,

d
X

˛D1

�

@u

@x˛

�2

D
d
X

˛D1

d
X

i;jD1

@u

@� i
@� i

@x˛
@u

@�j
@�j

@x˛
D

d
X

i;jD1

gij
@u

@� i
@u

@�j
: (10.4.9)
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The Dirichlet integral thus transforms via

Z

˝

d
X

˛D1

�

@u

@x˛

�2

dx D
Z

˝0

d
X

i;jD1

gij
@u

@� i
@u

@�j
p
gd�: (10.4.10)

By (10.4.5), the Euler–Lagrange equation for the integral on the right-hand side is

1
p
g

d
X

jD1

 

@

@�j

 

p
g

d
X

iD1

gij
@u

@� i

!!

D 0; (10.4.11)

where we have added the normalization factor 1=
p
g. This means that under our

substitution x D x.�/ of the independent variables, the Laplace equation, i.e., the

Euler–Lagrange equation for the Dirichlet integral, is transformed into (10.4.11).

Likewise, (10.4.5) is transformed into

1
p
g

d
X

jD1

@

@�j

�

p
g

� d
X

i;˛;ˇD1

a˛ˇ.x/
@� i

@x˛
@�j

@xˇ
@

@� i
u C

X

˛

b˛.x/
@�j

@x˛
u

��

�
X

j;˛

b˛.x/
@�j

@x˛
@u

@�j
� c.x/u D 0; (10.4.12)

where x D x.�/ has to be inserted, of course.

10.5 Abstract Hilbert Space Formulation of the Variational

Problem. The Finite Element Method

The present section presents an abstract version of the approach described in

Sect. 10.3 together with a method for constructing an approximate solution.

We again set out from some model problem, the Poisson equation with homoge-

neous boundary data

�u D f in ˝;

u D 0 on @˝:
(10.5.1)

In Definition 10.3.2 we introduced a weak version of that problem, namely the

problem of finding a solution u in the Hilbert space H
1;2
0 .˝/ of

Z

˝

DuD' C
Z

˝

f ' D 0 for all ' 2 H 1;2
0 .˝/: (10.5.2)
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This problem can be generalized as an abstract Hilbert space problem that we now

wish to describe:

Definition 10.5.1. Let .H; .�; �// be a Hilbert space with associated norm k�k, A W
H � H ! R a continuous symmetric bilinear form. Here, continuity means that

there exists a constant C such that for all u; v 2 H ,

A.u; v/ � C kuk kvk :

Symmetry means that for all u; v 2 H ,

A.u; v/ D A.v; u/:

The form A is called elliptic, or coercive, if there exists a positive � such that for all

v 2 H ,

A.v; v/ � � kvk2 : (10.5.3)

In our example,H D H
1;2
0 .˝/, and

A.u; v/ D 1

2

Z

˝

Du �Dv: (10.5.4)

Symmetry is obvious here, continuity follows from Hölder’s inequality, and ellip-

ticity results from

1

2

Z

Du �Du D 1

2
kDuk2L2.˝/

and the Poincaré inequality (Theorem 10.2.2), which implies for u 2 H 1;2
0 .˝/,

kuk
H
1;2
0 .˝/

� const kDukL2.˝/ :

Moreover, for f 2 L2.˝/,

L W H 1;2
0 .˝/ ! R; v 7!

Z

˝

f v;

yields a continuous linear map on H 1;2
0 .˝/ (even on L2.˝/).

Namely,

kLk WD sup
v ¤ 0

jLvj
kvkW 1;2.˝/

� kf kL2.˝/ ;

for by Hölder’s inequality,

Z

˝

f v � kf kL2.˝/ kvkL2.˝/ � kf kL2.˝/ kvkW 1;2.˝/ :
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Of course, the purpose of Definition 10.5.1 is to isolate certain abstract assump-

tions that allow us to treat not only the Dirichlet integral, but also more general

variational problems as considered in Sect. 10.4. However, we do need to impose

certain restrictions, in particular for satisfying the ellipticity condition. We consider

A.u; v/ WD 1

2

Z

˝

8

<

:

d
X

i;jD1

aij .x/Diu.x/Dj v.x/C c.x/u.x/v.x/

9

=

;

dx;

with u; v 2 H D H
1;2
0 .˝/, where we assume:

(A) Symmetry:

aij .x/ D aj i.x/ for all i; j; and x 2 ˝:

(B) Ellipticity: There exists � > 0 with

d
X

i;jD1

aij .x/�i�j � �j�j2 for all x 2 ˝; � 2 R
d :

(C) Boundedness: There exists� < 1 with

jc.x/j; jaij j � � for all i; j; and x 2 ˝:

(D) Nonnegativity:

c.x/ � 0 for all x 2 ˝:

The ellipticity condition (B) and the nonnegativity (D) imply that

A.v; v/ � 1

2
�

Z

˝

Dv �Dv for all v 2 H 1;2
0 .˝/;

and using the Poincaré inequality, we obtain

A.v; v/ � �

2
kvkH 1;2.˝/ for all v 2 H 1;2

0 .˝/I

i.e., A is elliptic in the sense of Definition 10.5.1. The continuity of A of course

follows from the boundedness condition (C), and the symmetry is condition (A).

Theorem 10.5.1. Let .H; .�; �// be a Hilbert space with norm k�k, V � H convex

and closed, A W H � H ! R a continuous symmetric elliptic bilinear form, L W
H ! R a continuous linear map. Then

J.v/ WD A.v; v/C L.v/

has precisely one minimizer u in V.
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Remark. The solution u depends not only on A and L but also on V , for it solves

the problem

J.u/ D inf
v2V

J.v/:

Proof. By ellipticity of A, J is bounded from below, namely,

J.v/ � � kvk2 � kLk kvk � �kLk2

4�
:

We put

� WD inf
v2V

J.v/:

Now let .un/n2N � V be a minimizing sequence, i.e.,

lim
n!1

J.un/ D �: (10.5.5)

We claim that .un/n2N is a Cauchy sequence, from which we then deduce, since V

is closed, the existence of a limit

u D lim
n!1

un 2 V:

The Cauchy property is verified as follows: By definition of �,

� � J

�

un C um

2

�

D 1

2
J.un/C 1

2
J.um/ � 1

4
A.un � um; un � um/:

(Here, we have used that if un and um are in V , so is unCum
2

, because V is convex.)

Since J.un/ and J.um/ by (10.4.5) for n;m ! 1 both converge to �, we

deduce that

A.un � um; un � um/

converges to 0 for n;m ! 1. Ellipticity then implies that kun � umk converges to

0 as well, and hence the Cauchy property.

Since J is continuous, the limit u satisfies

J.u/ D lim
n!1

J.un/ D inf
v2V

J.v/

by the choice of the sequence .un/n2N.

The preceding proof yields uniqueness of u, too. It is instructive, however, to

see this once more as a consequence of the convexity of J : Thus, let u1; u2 be two

minimizers, i.e.,

J.u1/ D J.u2/ D � D inf
v2V

J.v/:
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Since together with u1 and u2,
u1Cu2
2

is also contained in the convex set V , we have

� � J

�

u1 C u2

2

�

D 1

2
J.u1/C 1

2
J.u2/� 1

4
A.u1 � u2; u1 � u2/

D � � 1

4
A.u1 � u2; u1 � u2/;

and thus A.u1 � u2; u1 � u2/ D 0, which by ellipticity of A implies u1 D u2. ut

Remark. Theorem 10.5.1 remains true without the symmetry assumption for A.

This is the content of the Lax–Milgram theorem, proved in Appendix A.

This remark allows us also to treat variational integrands that in addition to the

symmetric terms

d
X

i;jD1

aij .x/DiDj v.x/ .aij D aj i/

and c.x/u.x/v.x/ also contain terms of the form 2
Pd

jD1 b
j .x/Dj u.x/v.x/ as

in (10.4.1). Of course, we need to impose conditions on the function bj .x/ so as

to guarantee boundedness and nonnegativity (the latter requires bounds on jbj .x/j
depending on � and a lower bound for jc.x/j). We leave the details to the reader.

Corollary 10.5.1. The other assumptions of the previous theorem remaining in

force, now let V be a closed linear (hence convex) subspace ofH . Then there exists

precisely one u 2 V that solves

2A.u; '/CL.'/ D 0 for all ' 2 V: (10.5.6)

Proof. The point u is a critical point (e.g., a minimum) of the functional

J.v/ D A.v; v/C L.v/

in V precisely if

2A.v; '/CL.'/ D 0 for all ' 2 V:

Namely, that u is a critical point means here that

d

dt
J.u C t'/jtD0 D 0 for all ' 2 V:

This, however, is equivalent to

0 D d

dt
.A.u C t'; u C t'/C L.u C t'//jtD0 D 2A.u; '/CL.'/:

Conversely, if that holds, then

J.u C t'/ D J.u/C t.2A.u; '/C L.'//C t2A.'; '/ � J.u/
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for all ' 2 V , and u thus is a minimizer. The existence and uniqueness of a

minimizer established in the theorem thus yields the corollary. ut

For our example A.u; v/ D 1
2

R

Du � Dv; L.v/ D
R

f v with f 2 L2.˝/,

Corollary 10.5.1 thus yields the existence of some u 2 H 1;2
0 .˝/ satisfying

Z

˝

Du �D' C
Z

˝

f ' D 0; (10.5.7)

i.e, a weak solution of the Poisson equation in the sense of Definition 10.3.2.

As explained above, the assumptions apply to more general variational problems,

and we deduce the following result from Corollary 10.5.1:

Corollary 10.5.2. Let ˝ � R
d be open and bounded, and let the functions

aij .x/ .i; j D 1; : : : ; d / and c.x/ satisfy the above assumptions (A)–(D). Let

f 2 L2.˝/. Then there exists a unique u 2 H 1;2
0 .˝/ satisfying

Z

˝

8

<

:

d
X

i;jD1

aij .x/Diu.x/Dj'.x/C c.x/u.x/'.x/

9

=

;

dx

D
Z

˝

f .x/'.x/dx for all ' 2 H 1;2
0 .˝/:

Thus, we obtain a weak solution of

�
d

X

i;jD1

@

@xi

�

aij .x/
@

@xj
u.x/

�

C c.x/u.x/ D f .x/

with u D 0 on @˝ . Of course, so far, this equation does not yet make sense, since

we do not know yet whether our weak solution u is regular, i.e., of class C 2.˝/.

This issue, however, will be addressed in the next chapter.

We now want to compare the solution of our variational problem J.v/ ! min in

H with the one obtained in the subspace V of H .

Lemma 10.5.1. Let A W H �H ! R be a continuous, symmetric, elliptic, bilinear

form in the sense of Definition 10.5.1, and let L W H ! R be linear and continuous.

We consider once more the problem

J.v/ WD A.v; v/C L.v/ ! min: (10.5.8)

Let u be the solution in H uV the solution in the closed linear subspace V . Then

ku � uV k � C

�
inf
v2V

ku � vk (10.5.9)

with the constants C and � from Definition 10.5.1.
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Proof. By Corollary 10.5.1,

2A.u; '/C L.'/ D 0 for all ' 2 H;

2A.uV ; '/C L.'/ D 0 for all ' 2 V;

hence also

2A.u � uV ; '/ D 0 for all ' 2 V: (10.5.10)

For v 2 V , we thus obtain

ku � uV k2 � 1

�
A.u � uV ; u � uV / by ellipticity of A

D 1

�
A.u � uV ; u � v/C 1

�
A.u � uV ; v � uV /

D 1

�
A.u � uV ; u � v/ from (10.5.10) with ' D v � uV 2 V

� C

�
ku � uV k ku � vk ;

and since the inequality holds for arbitrary v 2 V , (10.5.9) follows. ut

This lemma is the basis for an important numerical method for the approximative

solution of variational problems. Since numerically only finite-dimensional prob-

lems can be solved, it is necessary to approximate infinite-dimensional problems

by finite-dimensional ones. Thus, J.v/ ! min cannot be solved in an infinite-

dimensional Hilbert space like H D H 1;2
0 .˝/, but one needs to replace H by some

finite-dimensional subspace V of H that on the one hand can easily be handled

numerically and on the other hand possesses good approximation properties. These

requirements are satisfied well by the finite element spaces. Here, the region ˝ is

subdivided into polyhedra that are as uniform as possible, for example, triangles or

squares in the two-dimensional case (if the boundary of˝ is curved, of course, it can

only be approximated by such a polyhedral subdivision). The finite elements then

are simply piecewise polynomials of a given degree. This means that the restriction

of such a finite element  onto each polyhedron occurring in the subdivision is a

polynomial. In addition, one usually requires that across the boundaries between

the polyhedra,  be continuous or even satisfy certain specified differentiability

properties. The simplest such finite elements are piecewise linear functions on

triangles, where the continuity requirement is satisfied by choosing the coefficients

on neighboring triangles approximately. The theory of numerical mathematics then

derives several approximation theorems of the type sketched above. This is not

particularly difficult and rather elementary, but somewhat lengthy and therefore not

pursued here. We rather refer to the corresponding textbooks like Strang–Fix [30]

or Braess [3].
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The quality of the approximation of course depends not only on the degree of the

polynomials but also on the scale of the subdivision employed. Typically, it makes

sense to work with a fixed polynomial degree, for example, admitting only piecewise

linear or quadratic elements, and make the subdivision finer and finer.

As presented here, the method of finite elements depends on the fact that

according to some abstract theorem, one is assured of the existence (and uniqueness)

of a solution of the variational problem under investigation and that one can

approximate that solution by elements of cleverly chosen subspaces. Even though

that will not be necessary for the theoretical analysis of the method, for reasons of

mathematical consistency it might be preferable to avoid the abstract existence result

and to convert the finite-dimensional approximations into a constructive existence

proof instead. This is what we now wish to do.

Theorem 10.5.2. LetA W H�H ! R be a continuous, symmetric, elliptic, bilinear

form on the Hilbert space .H; .�; �// with norm k�k, and let L W H ! R be linear

and continuous. We consider the variational problem

J.v/ D A.v; v/C L.v/ ! min:

Let .Vn/n2N � H be an increasing (i.e., Vn � VnC1 for all n) sequence of closed

linear subspaces exhaustingH in the sense that for all v 2 H and ı > 0, there exist

n 2 N and vn 2 Vn with

kv � vnk < ı:

Let un be the solution of the problem

J.v/ ! min in Vn

obtained in Theorem 10.5.1. Then .un/n2N converges for n ! 1 towards a

solution of

J.v/ ! min in H:

Proof. Let

� WD inf
v2H

J.v/:

We want to show that

lim
n!1

J.un/ D �:

In that case, .un/n2N will be a minimizing sequence for J in H , and thus it will

converge to a minimizer of J inH by the proof of Theorem 10.5.1. We shall proceed

by contradiction and thus assume that for some " > 0 and all n 2 N,

J.un/ � � C " (10.5.11)

(since Vn � VnC1, we have J.unC1/ � J.un/ for all n, by the way).
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By definition of �, there exists some u0 2 H with

J.u0/ < � C "=2: (10.5.12)

For every ı > 0, by assumption, there exist some n 2 N and some vn 2 Vn with

ku0 � vnk < ı:

With wn WD vn � u0, we then have

jJ.vn/ � J.u0/j � jA.vn; vn/ �A.u0; u0/j C jL.vn/� L.u0/j

� A.wn;wn/C 2jA.wn; u0/j C kLk kwnk

� C kwnk2 C 2C kwnk ku0k C kLk kwnk

< "=2

for some appropriate choice of ı.

Thus

J.vn/ < J.u0/C "=2 < � C " by (10.5.12) < J.un/ by (10.5.11),

contradicting the minimizing property of un.

This contradiction shows that .un/n2N indeed is a minimizing sequence, implying

the convergence to a minimizer as already explained. ut

We thus have a constructive method for the (approximative) solution of our

variational problem when we choose all the Vn as suitable finite-dimensional

subspaces of H . For each Vn, by Corollary 10.5.1, one needs to solve only a

finite linear system, with dimVn equations; namely, let e1; : : : ; eN be a basis of

Vn. Then (10.5.6) is equivalent to the N linear equations for un 2 Vn,

2A.un; ej /CL.ej / D 0 for j D 1; : : : ; N: (10.5.13)

Of course, the more general quadratic variational problems studied in Sect. 10.4 can

also be covered by this method; we leave this as an exercise.

10.6 Convex Variational Problems

In the preceding sections, we have studied quadratic variational problems, and we

provided an abstract Hilbert space interpretation of Dirichlet’s principle. In this

section, we shall find out that what is essential is not the quadratic structure of the

integrand, but rather the fact that the integrand satisfies suitable bounds. In addition,

we need the key assumption of convexity of the integrand, and hence, as we shall

see, also of the variational integral.
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For simplicity, we consider only variational integrals of the form

I.u/ D
Z

˝

f .x;Du.x//dx; (10.6.1)

whereDu D .D1u; : : : ;Ddu/ denotes the weak derivatives of u 2 H 1;2.˝/, instead

of admitting more general integrands of the type

f .x; u.x/;Du.x//: (10.6.2)

The additional dependence on the function u itself, instead of just on its derivatives,

does not change the results significantly, but it makes the proofs technically more

complicated. In Sect. 14.4 below, when we address the regularity of minimizers, we

shall even drop the dependence on x and consider only integrands of the form

f .Du.x//;

in order to make the proofs as transparent as possible while still preserving the

essential features.

The main result of this section then is the following theorem:

Theorem 10.6.1. Let ˝ � R
d be open, and consider a function

f W ˝ � R
d ! R

satisfying:

(i) f .�; v/ is measurable for all v 2 R
d.

(ii) f .x; �/ is convex for all x 2 ˝ .

(iii) f .x; v/ � �
.x/C �jvj2 for almost all x 2 ˝ , all v 2 R
d , with 
 2 L1.˝/,

� > 0.

We let g 2 H 1;2.˝/, and we consider the variational problem

I.u/ WD
Z

˝

f .x;Du.x//dx ! min

among all u 2 H 1;2.˝/ with u � g 2 H
1;2
0 .˝/ (thus, g are boundary values

prescribed in the Sobolev sense).

Then I assumes its infimum; i.e., there exists such a u0 with

I.u0/ D inf
u�g2H

1;2
0 .˝/

I.u/:

To simplify our further considerations, we first observe that it suffices to consider

the case g D 0. Namely, otherwise, we consider, for w D u � g,

Qf .x;w.x// WD f .x;w.x/ C g.x//:
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The function Qf satisfies the same structural assumptions that f does; this is clear

for (i) and (ii), and for (iii), we observe that

Qf .x;w.x// � �
.x/C �jw.x/C g.x/j2 � �
.x/C �

�

1

2
jw.x/j2 � jg.x/j2

�

;

and so Qf satisfies the analogue of (iii) with

Q
.x/ WD 
.x/C �jg.x/j2 2 L1

and Q� WD 1
2
�. Thus, for the rest of this section, we assume

g D 0: (10.6.3)

In order to prepare the proof of the Theorem 10.6.1, we shall first derive some

properties of the variational integral I . We point out that in the next two lemmas

the function v takes its values in R
d , i.e., is vector- instead of scalar-valued, but that

will not influence our reasoning at all.

Lemma 10.6.1. Suppose that f is as in Theorem 10.6.1, but with (ii) weakened to

(ii’) f .x; �/ is continuous for all x 2 ˝ ,

and supposing in (iii) only � 2 R, but not necessarily � > 0.

Then

J.v/ WD
Z

˝

f .x; v.x//dx

is a lower semicontinuous functional on L2.˝IRd /.

Proof. We first observe that if v is in L2, it is measurable, and since f .x; v/

is continuous with respect to v, f .x; v.x// then is measurable by a basic result

in Lebesgue integration theory.5 Now let .vn/n2N converge to v in L2.˝IRd /.
By another basic result in Lebesgue integration theory,6 after selection of a

subsequence, .vn/ also converges to v pointwise almost everywhere. (It is legitimate

to select a subsequence here, because the subsequent arguments can be applied to

any subsequence of .vn/.) By continuity of f ,

f .x; v.x// � �jv.x/j2 D lim
n!1

.f .x; vn.x// � �jvn.x/j2/:

Since f .x; vn.x// � �jv.x/j2 � �
.x/ and 
 is integrable, we may apply Fatou’s

lemma7 to obtain

5See p. 214 of [19].
6See Lemma A.1 or p. 240 of [19].
7See p. 202 of [19].
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Z

˝

�

f .x; v.x// � �jv.x/j2



dx � lim inf
n!1

Z

˝

�

f .x; vn.x// � �jvn.x/j2



dx;

and since .vn/ converges to v in L2, then also

Z

˝

f .x; v.x//dx � lim inf
n!1

Z

˝

f .x; vn.x//dx:

ut

Lemma 10.6.2. Let f be as in Theorem 10.6.1, without necessarily requiring � in

(iii) to be positive. Then

J.v/ D
Z

˝

f .x; v.x//dx

is convex on L2.˝IRd /.

Proof. Let v0; v1 2 L2.˝;Rd /; 0 � t � 1. We have

J.tv0 C .1 � t/v1/ D
Z

f .x; tv0.x/C .1 � t/v1.x//

�
Z

.tf .x; v0.x//C .1 � t/f .x; v1.x/// by (ii)

D tJ.v0/C .1 � t/J.v1/:

Thus, J is convex. ut

Lemmas 10.6.1 and 10.6.2 imply the following result:

Lemma 10.6.3. Let f be as in Theorem 10.6.1, still not necessarily requiring �>0.

With our previous simplification g D 0 (10.6.3), the functional

I.u/ D
Z

˝

f .x;Du.x//dx

is a convex and lower semicontinuous functional on H
1;2
0 .˝/.

With Lemma 10.6.3, Theorem 10.6.1 is a consequence of the following abstract

result:

Theorem 10.6.2. Let H be a Hilbert space, with norm k�k,

I W H ! R [ f1g

be bounded from below, not identically equal to C1, convex and lower semicontin-

uous. Then, for every � > 0, and u 2 H ,
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I�.u/ WD inf
y2H

�

I.y/C � ku � yk2
�

(10.6.4)

is realized by a unique u� 2 H , i.e.,

I�.u/ D I.u�/C � ku � u�k2 ; (10.6.5)

and if .u�/�>0 remains bounded as � & 0, then

u0 WD lim
�!0

u�

exists and minimizes I , i.e.,

I.u0/ D inf
u2H

I.u/:

Proof. We first verify the auxiliary statement about the uniqueness and existence of

u�. We let .yn/n2N be a minimizing sequence for (10.6.4), i.e.,

I.yn/C � ku � ynk2 ! inf
y2H

�

I.y/C � ku � yk2
�

:

For m; n 2 N, we put

ym;n WD 1

2
.ym C yn/:

We then have

I.ym;n/C � ku � ym;nk2 � 1

2

�

I.ym/C � ku � ymk2
�

C 1

2

�

I.yn/C � ku � ynk2
�

� �

4
kym � ynk2

(10.6.6)

by the convexity of I and the general Hilbert space identity













x � 1

2
.y1 C y2/













2

D 1

2

�

kx � y1k2 C kx � y2k2
�

� 1

4
ky1 � y2k2 (10.6.7)

for any x; y1; y2 2 H , which is easily derived from expressing the norm squares as

scalar products and expanding these scalar products.

Now, by definition of I�.u/, the left-hand side of (10.6.6) has to be � I�.u/,

whereas for k D m and n, I.yk/C� ku � ykk2 converges to I�.u/, by choice of the

sequence .yk/, for k ! 1. This implies that

kym � ynk2 ! 0
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for m; n ! 1. Thus, .yn/n2N is a Cauchy sequence, and it converges to a unique

limit u�. Since k�k2 is continuous, and I is lower semicontinuous, u� realizes the

infimum in (10.6.4); i.e., (10.6.5) holds.

If .u�/ then remains bounded for � ! 0, this minimizing property implies that

lim
�!0

I.u�/ D inf
y2H

I.y/: (10.6.8)

Thus, for any sequence �n ! 0, .u�n/ is a minimizing sequence for I.

We now let 0 < �1 < �2. From the definition of u�1 ,

I.u�2/C �1 ku � u�2k2 � I.u�1/C �1 ku � u�1k2 ;

and so

I.u�2/C �2 ku � u�2k2 � I.u�1/C �2 ku � u�1k2

C .�1 � �2/
�

ku � u�1k2 � ku � u�2k2
�

:

Since u�2 minimizes I.y/C �2 ku � yk2, we conclude from this and �1 < �2 that

ku � u�1k2 � ku � u�2k2 :

This means that

ku � u�k2

is a decreasing function of �, or in other words, it increases as � & 0. Since this

expression is also bounded by assumption, it has to converge as � & 0. In particular,

for any " > 0, we may find �0 > 0 such that for 0 < �1; �2 < �0,

ˇ

ˇ

ˇku � u�1k2 � ku � u�2k2
ˇ

ˇ

ˇ
<
"

2
: (10.6.9)

We put

u1;2 WD 1

2
.u�1 C u�2/ :

If we assume, without loss of generality, I.u�1/ � I.u�2/, the convexity of I implies

I.u1;2/ � I.u�1/: (10.6.10)

We then have
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I.u1;2/C �1 ku � u1;2k2

� I.u�1/C �1

�

1

2
ku � u�1k C 1

2
ku � u�2k2 � 1

4
ku�1 � u�2k2

�

by (10.6.10) and (10.6.7)

< I.u�1/C �1

�

ku � u�1k2 C "

4
� 1

4
ku�1 � u�2k2

�

by (10.6.9):

Since u�1 minimizes I.y/C �1 ku � yk2, we conclude that

ku�1 � u�2k2 < ":

So, we have shown the Cauchy property of u� for � & 0, and therefore, we obtain

the existence of

u0 D lim
�!0

u�:

By (10.6.8) and the lower semicontinuity of I , we see that

I.u0/ D inf
y2H

I.y/:

Thus, we have shown the existence of a minimizer of I . This concludes the proof of

Theorem 10.6.2, as well as that of Theorem 10.6.1. ut

While we shall see in Chap. 11 that the minimizers of the quadratic variational

problems studied in the preceding sections of this chapter are smooth, we have

to wait until Chap. 14 until we can derive a regularity theorem for minimizers

of a class of variational integrals that satisfy similar structural conditions as in

Theorem 10.6.1. Let us anticipate here Theorem 14.4.1 below:

Let f W Rd ! R be of class C1 and satisfy:

(i) There exists a constantK < 1 with

ˇ

ˇ

ˇ

ˇ

@f

@vi
.v/

ˇ

ˇ

ˇ

ˇ

� Kjvj for i D 1; : : : ; d .v D .v1; : : : ; vd / 2 R
d /:

(ii) There exist constants � > 0, � < 1 with

�j�j2 �
d
X

i;jD1

@2f .v/

@vivj
�i�j � �j�j2 for all � 2 R

d :

Let ˝ � R
d be open and bounded. Let u0 2 W 1;2.˝/ minimize

I.u/ WD
Z

˝

f .Du.x//dx
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among all u 2 W 1;2.˝/ with u � u0 2 H
1;2
0 .˝/. Then

u0 2 C1.˝/:

In order to compare the assumptions of this result with those of Theorem 10.6.1, we

first observe that (i) implies that there exist constants c and k with

jf .v/j � c C k jvj2 :

Thus, in place of the lower bound in (iii) of Theorem 10.6.1, here we have an upper

bound with the same asymptotic growth as jvj ! 1. Thus, altogether, we are

considering integrands with quadratic growth. In fact, it is also possible to consider

variational integrands that asymptotically grow like jvjp, with 1 < p < 1. The

existence of a minimizer follows with similar techniques as described here, by

working in the Banach space H
1;p
0 .˝/ and exploiting a crucial geometric property

of those particular Banach spaces, namely, that the unit ball is uniformly convex.

The first steps of the regularity proof also do not change significantly, but higher

regularity poses a problem for p ¤ 2.

The lower bound in assumption (ii) above should be compared with the convexity

assumption in Theorem 10.6.1. For f 2 C 2.Rd /, convexity means

@2f .v/

@vi@vj
�i �j � 0 for all � D .�1; : : : ; �d /:

Thus, in contrast to the assumption in the regularity theorem, we are not summing

here with respect i , and j , and so this is a stronger assumption. On the other hand,

we are not requiring a positive lower bound as in the regularity theorem, but only

nonnegativity.

The existence of minimizers of variational problems is discussed in more detail

in Jost and Li-Jost [21]. The minimizing scheme presented here is put in a broader

context in Jost [16].

Summary

The Dirichlet principle consists in finding solutions of the Dirichlet problem

�u D 0 in ˝;

u D g on @˝;

by minimizing the Dirichlet integral

Z

˝

jDu.x/j2dx
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among all functions u with boundary values g in the function space W 1;2.˝/

(Sobolev space) (which turns out to be the appropriate space for this task). More

generally, one may also treat the Poisson equation

�u D f in ˝

this way, namely, minimizing

Z

˝

jDu.x/j2 dx C 2

Z

˝

f .x/u.x/ dx:

A minimizer then satisfies the equation
Z

˝

Du.x/D'.x/ dx D 0

(respectively
R

˝
Du.x/D'.x/ dx C

R

f .x/'.x/ dx D 0 for the Poisson equation)

for all ' 2 C1
0 .˝/. If one manages to show that a minimizer u is regular (e.g., of

class C 2.˝/), then this equation results from integrating the original differential

equation (Laplace or Poisson equation, respectively ) by parts. However, since

the Sobolev space W 1;2.˝/ is considerably larger than the space C 2.˝/, we first

need to show in the next chapter that a solution of this equation (called a “weak”

differential equation) is indeed regular.

The Dirichlet principle also works for a more general class of elliptic equations,

and it admits an abstract Hilbert space formulation.

Exercises

10.1. Show that the norm

jkukj WD kukL2.˝/ C kDukL2.˝/

is equivalent to the norm kukW 1;2.˝/ (i.e., there are constants 0 < ˛ � ˇ < 1
satisfying

˛jkukj � kukW 1;2.˝/ � ˇjkukj for all u 2 W 1;2.˝//:

Why does one prefer the norm kukW 1;2.˝/?

10.2. What would be a natural definition of k-times weak differentiability? (The

answer will be given in the next chapter, but you might wish to try yourself at

this point to define Sobolev spacesW k;2.˝/ of k-times weakly differentiably

functions that are contained in L2.˝/ together with all their weak derivatives

and to prove results analogous to Theorem 10.2.1 and Corollary 10.2.1 for

them.)

10.3. Consider a variational problem of the type
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Fig. 10.1

I.u/ D
Z

˝

F.Du.x//dx

with a smooth function F W Rd ! ˝ satisfying an inequality of the form

jF.p/j � c1jpj2 C c2 for all p 2 R
d :

Derive the corresponding Euler–Lagrange equations for a minimizer [in the

weak sense; cf. (10.4.4)]. Try more generally to find conditions for integrands

of the type F.x; u.x/;Du.x// that allow one to derive weak Euler–Lagrange

equations for minimizers.

10.4. Following R. Courant, as a model problem for finite elements, we consider

the Poisson equation

�u D f in ˝;

u D 0 on @˝

in the unit square˝ D Œ0; 1��Œ0; 1� � R
2. For h D 1

2n
.n 2 N/, we subdivide˝ into

1
h2
.D 22n/ subsquares of side length h, and each such square in turn is subdivided

into two right-angled symmetric triangles by the diagonal from the upper left to the

lower right vertex (see Fig. 10.1). We thus obtain triangles �h
i ; i D 1; : : : ; 22nC1.

What is the number of interior vertices pj of this triangulation?

We consider the space of continuous triangular finite elements

Sh WD f' 2 C 0.˝/ W 'j�hi
linear for all i; ' D 0 on @˝g:

The triangular elements 'j with

'j .pi/ D ıij

constitute a basis of Sh (proof?).
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Compute

aij WD
Z

˝

D'i �D'j for all pairs i; j

land establish the system of linear equations for the approximating solution of the

Poisson equation in Sh, i.e., for the minimizer 'h of

Z

˝

jD'j2 C 2

Z

˝

f '

for ' 2 Sh, with respect to the above basis 'j of Sh (for that purpose, you have just

computed the coefficients aij !).



Chapter 11

Sobolev Spaces and L2 Regularity Theory

11.1 General Sobolev Spaces. Embedding Theorems

of Sobolev, Morrey, and John–Nirenberg

Definition 11.1.1. Let u W ˝ ! R be integrable, ˛ WD .˛1; : : : ; ˛d /,

D˛' WD
�

@

@x1

�˛1

� � �
�

@

@xd

�˛d

' for ' 2 C j˛j.˝/:

An integrable function v W ˝ ! R is called an ˛th weak derivative of u, in symbols

v D D˛u, if

Z

˝

'v dx D .�1/j˛j

Z

˝

uD˛'dx for all ' 2 C j˛j
0 .˝/: (11.1.1)

For k 2 N, 1 � p < 1, we define the Sobolev space

W k;p.˝/ WD fu 2 Lp.˝/ W D˛u exists and is contained in Lp.˝/ for all
j˛j � kg;

kukW k;p.˝/ WD

0

@

X

j˛j�k

Z

˝

jD˛ujp
1

A

1
p

:

The spaces H k;p.˝/ and H
k;p
0 .˝/ are defined to be the closures of C1.˝/ \

W k;p.˝/ and C1
0 .˝/, respectively, with respect to k�kW k;p.˝/. Occasionally, we

shall employ the abbreviation k�kp D k�kLp.˝/.

Concerning notation: The multi-index notation will be used in the present section

only. Later on, for u 2 W 1;p.˝/, first weak derivatives will be denoted byDiu; i D
1; : : : ; d , as in Definition 10.2.1, and we shall denote the vector .D1u; : : : ;Ddu/

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,

DOI 10.1007/978-1-4614-4809-9 11,
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by Du. Likewise, for u 2 W 2;p.˝/, second weak derivatives will be written

Dij u; i; j D 1; : : : ; d , and the matrix of second weak derivatives will be denoted

by D2u.

As in Sect. 10.2, one proves the following lemma:

Lemma 11.1.1. W k;p.˝/ D H k;p.˝/. The space W k;p.˝/ is complete with

respect to k�kW k;p.˝/, i.e., it is a Banach space.

We now state the Sobolev embedding theorem:

Theorem 11.1.1.

H
1;p
0 .˝/ �

(

L
dp
d�p .˝/ for p < d;

C 0. N̋ / for p > d:

Moreover, for u 2 H 1;p
0 .˝/ ,

kuk dp
d�p

� c kDukp for p < d; (11.1.2)

sup
˝

juj � c j˝j
1
d � 1

p � kDukp for p > d; (11.1.3)

where the constant c depends on p and d only.

In order to better understand the content of the Sobolev embedding theorem, we

first consider the scaling behavior of the expressions involved: Let f 2 H 1;p.Rd /\
Lq.Rd /. We look at the scaling y D �x (with � > 0) and

f�.y/ WD f
�y

�

�

D f .x/:

Then, with y D �x,

�Z

Rd

jDf�.y/jp dy

�
1
p

D �
d�p
p

�Z

Rd

jDf.x/jp dx

�
1
p

(note that on the left, the derivative is taken with respect to y, and on the right with

respect to x; this explains the �p in the exponent) and

�Z

Rd

jf�.y/jq dy

�
1
q

D �
d
q

�Z

Rd

jf .x/jq dx

�
1
q

:

Thus in the limit � ! 0, kf�kLq is controlled by kDf�kLp if

�
d
q � �

d�p
p for � < 1
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holds, i.e.,

d

q
� d � p

p
;

i.e.,

q � dp

d � p
if p < d:

(We have implicitly assumed kDf kLp > 0 here, but you will easily convince

yourself that this is the essential case of the embedding theorem.) We treat only

the limit � ! 0 here, since only for � � 1 (for f 2 H 1;p
0 .Rd /) do we have

suppf� � suppf;

and the Sobolev embedding theorem covers only the case where the functions have

their support contained in a fixed bounded set ˝ . Looking at the scaling properties

for � ! 1, one observes that this assumption on the support is necessary for the

theorem. The scaling properties for p > d will be examined after Corollary 11.1.5.

Proof of Theorem 11.1.1: We shall first prove the inequalities (11.1.2) and (11.1.3)

for u 2 C 1
0 .˝/. We put u D 0 on R

d n˝ again. As in the proof of Theorem 10.2.2,

ju.x/j �
Z xi

�1
jDiu.x

1; : : : ; xi�1; �; xiC1; : : : ; xd /j d� with x D .x1; : : : ; xd /

for 1 � i � d , and hence

ju.x/jd �
d
Y

iD1

Z 1

�1
jDiuj dxi

and

ju.x/j
d

d�1 �
 

d
Y

iD1

Z 1

�1
jDiuj dxi

!

1
d�1

:

It follows that

Z 1

�1
ju.x/j

d
d�1 dx1 �

�Z 1

�1
jD1uj dx1

�
1

d�1
�

Y

i¤1

Z 1

�1

Z 1

�1
jDiuj dxidx1

�
1

d�1

;

where we have used (A.6) for p1 D � � � D pd�1 D d � 1. Iteratively, we obtain

Z

˝

ju.x/j
d

d�1 dx �
 

d
Y

iD1

Z

˝

jDiuj dx

!

1
d�1

;
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and hence

kuk d
d�1

�
 

d
Y

iD1

Z

˝

jDiuj dx

!

1
d

� 1

d

Z

˝

d
X

iD1

jDiuj dx;

since the geometric mean is not larger than the arithmetic one, and consequently

kuk d
d�1

� 1

d
kDuk1 ; (11.1.4)

which is (11.1.2) for p D 1.

Applying (11.1.4) to juj
 (
 > 1) (juj
 is not necessarily contained in C 1
0 .˝/,

even if u is, but as will be explained at the end of the present proof, by an

approximation argument, if shown for C 1
0 .˝/, (11.1.4) continues to hold for H

1;1
0 ,

and we shall choose 
 such that for u 2 H
1;p
0 .˝/, we have juj
 2 H 1;1

0 .˝/), we

obtain

kjuj
k d
d�1

� 


d

Z

˝

juj
�1 jDuj dx � 


d








juj
�1









q
� kDukp for

1

p
C 1

q
D 1

(11.1.5)

applying Hölder’s inequality (A.4). For p < d , 
 D .d�1/p
d�p satisfies


d

d � 1 D .
 � 1/p
p � 1 ;

and (11.1.5) yields, taking q D p

p�1 into account,

kuk

d
d�1

� 


d
kuk
�1


d
d�1

� kDukp ;

i.e.,

kuk 
d
d�1

� 


d
kDukp ;

which is (11.1.2). In order to establish (11.1.3), we need the following generalization

of Lemma 10.2.4:

Lemma 11.1.2. For � 2 .0; 1�, f 2 L1.˝/ let

.V�f /.x/ WD
Z

˝

jx � yjd.��1/ f .y/dy:
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Let 1 � p � q � 1,

0 � ı D 1

p
� 1

q
< �:

Then V� maps Lp.˝/ continuously to Lq.˝/, and for f 2 Lp.˝/, we have





V�f






q
�
�

1 � ı
� � ı

�1�ı
!
1��
d j˝j��ı kf kp : (11.1.6)

Proof. Let

1

r
WD 1C 1

q
� 1

p
D 1 � ı:

Then

`.x � y/ WD jx � yjd.��1/ 2 Lr .˝/;

and as in the proof of Lemma 10.2.4, we choose R such that j˝j D jB.x;R/j D
!dR

d , and we estimate as follows:

k`kr D
�Z

˝

jx � yj
d.��1/
1�ı dy

�1�ı

�
�Z

B.x;R/

jx � yj
d.��1/
1�ı dy

�1�ı

D
�

1 � ı
� � ı

�1�ı
!1�ıd Rd.��ı/

D
�

1 � ı
� � ı

�1�ı
!
1��
d j˝j��ı :

We write

` jf j D `r.1�1=p/
�

`r jf jp
�
1
q jf jpı ;

and the generalized Hölder inequality (A.6) yields

ˇ

ˇV�f .x/
ˇ

ˇ

�
�Z

˝

`r .x � y/ jf .y/jp dy

�
1
q
�Z

˝

`r .x � y/dy
�1� 1

p
�Z

˝

jf .y/jp dy

�ı

I
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hence, integrating with respect to x and interchanging the integrations in the first

integral, we obtain





V�f






q
� sup

˝

�Z

`r .x � y/dy
�

1
r

kf kp �
�

1 � ı

� � ı

�1�ı
!
1��
d j˝j��ı kf kp

by the above estimate for k`kr . ut

In order to complete the proof of Theorem 11.1.1, we use (10.2.9), assuming first

u 2 C 1
0 .˝/ as before, i.e.,

u.x/ D � 1

d!d

Z

˝

d
X

iD1

.xi � yi /

jx � yjd
Diu.y/dy (11.1.7)

for x 2 ˝ . This implies

juj � 1

d!d
V 1
d
.jDj/: (11.1.8)

Inequality (11.1.6) for q D 1, � D 1=d then yields (11.1.3), again at this moment

for u 2 C 1
0 .˝/ only.

If now u 2 H
1;p
0 .˝/, we approximate u in the W 1;p-norm by C1

0 functions

un, and apply (11.1.2) and (11.1.3) to the difference un � um. It follows that .un/

is a Cauchy sequence in Ldp=.d�p/.˝/ (for p < d ) or C 0. N̋ / (for p > d ),

respectively. Thus u itself is contained in the same space and satisfies (11.1.2)

or (11.1.3), respectively,

Corollary 11.1.1.

H
k;p
0 .˝/ �

(

L
dp

d�kp .˝/ for kp < d;

Cm.˝/ for 0 � m < k � d
p
:
:

Proof. The first embedding iteratively follows from Theorem 11.1.1, and the second

one then from the first and the case p > d in Theorem 11.1.1. ut

Corollary 11.1.2. If u 2 H k;p
0 .˝/ for some p and all k 2 N, then u 2 C1.˝/.

The embedding theorems to follow will be used in Chap. 14 only. First we

shall present another variant of the Sobolev embedding theorem. For a function

v 2 L1.˝/, we define the mean of v on ˝ as

�
Z

˝

v.x/dx WD 1

j˝j

Z

˝

v.x/dx;

j˝j denoting the Lebesgue measure of ˝ . We then have the following result:
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Corollary 11.1.3. Let 1 � p < d and u 2 H 1;p.B.x0; R//. Then

�

�
Z

B.x0;R/

juj
dp
d�p

�

d�p
dp

� c0

�

Rp �
Z

B.x0;R/

jDujp C �
Z

B.x0 ;R/

jujp
�

1
p

; (11.1.9)

where c0 depends on p and d only.

Proof. Without loss of generality, x0 D 0. Likewise, we may assume R D 1,

since we may consider the functions Qu.x/ D u.Rx/ and check that the expressions

in (11.1.9) scale in the right way. Thus, let u 2 H 1;p.B.0; 1//. We extend u to the

ball B.0; 2/, by putting

u.x/ D u

�

x

jxj2
�

for jxj > 1:

This extension satisfies

kukH 1;p.B.0;2// � c1 kukH 1;p.B.0;1// : (11.1.10)

Now let � 2 C1
0 .B.0; 2// with

� � 0; � � 1 on B.0; 1/; jD�j � 2:

Then v D �u 2 H 1;p
0 .B.0; 2//, and by (11.1.2),

�Z

B.0;2/

jvj
dp
d�p

�

d�p
dp

� c2

�Z

B.0;2/

jDvjp
�

1
p

: (11.1.11)

Since

Dv D �Du C uD�;

from the properties of �, we deduce

jDvjp � c3
�

jDujp C jujp
�

; (11.1.12)

and hence with (11.1.10),

Z

B.0;2/

jDvjp � c4

�Z

B.0;1/

jDujp C
Z

B.0;1/

jujp
�

: (11.1.13)

Since on the other hand

Z

B.0;1/

juj
dp
d�p �

Z

B.0;2/

jvj
dp
d�p ;

(11.1.9) follows from (11.1.11) and (11.1.13). ut
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Later on (in Sect. 14.1), we shall need the following result of John and Inselberg:

Theorem 11.1.2. LetB.y0; R0/ be a ball in R
d , u 2 W 1;1.B.y0; R0//, and suppose

that for all balls B.y;R/ � R
d ,

Z

B.y;R/\B.y0 ;R0/

jDuj � Rd�1: (11.1.14)

Then there exist ˛ > 0 and ˇ0 < 1 satisfying

Z

B.y0 ;R0/

e˛ju�u0j � ˇ0R
d
0 (11.1.15)

with

u0 D 1

!dR
d
0

Z

B.y0;R0/

u (mean of u on B.y0; R0//:

In particular,

Z

B.y0;R0/

e˛u

Z

B.y0;R0/

e�˛u D
Z

B.y0;R0/

e˛.u�u0/

Z

B.y0 ;R0/

e�˛.u�u0/ � ˇ20R
2d
0 :

(11.1.16)

More generally, for a measurable set B � R
d , and u 2 L1.B/, we denote the

mean by

uB WD 1

jBj

Z

B

u.y/dy; (11.1.17)

jBj being the Lebesgue measure of B . In order to prepare the proof of Theo-

rem 11.1.2, we start with a lemma:

Lemma 11.1.3. Let ˝ � R
d be convex, B � ˝ measurable with jBj > 0, u 2

W 1;1.˝/. Then we have for almost all x 2 ˝ ,

ju.x/ � uB j � .diam˝/d

d jBj

Z

˝

jx � zj1�d jDu.z/j dz: (11.1.18)

Proof. As before, it suffices to prove the inequality for u 2 C 1.˝/. Since ˝ is

convex, if x and y are contained in ˝ , so is the straight line joining them, and we

have

u.x/� u.y/ D �
Z jx�yj

0

@

@r
u

�

x C r
y � x

jy � xj

�

dr ;
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and thus

u.x/ � uB D 1

jBj

Z

B

.u.x/ � u.y//dy

D � 1

jBj

Z

B

Z jx�yj

0

@

@r
u

�

x C r
y � x

jy � xj

�

dr dy:

This implies

ju.x/ � uB j � 1

jBj
.diam˝/d

d

ˇ

ˇ

ˇ

ˇ

ˇ

Z

j!jD1
xCr!2˝

Z jx�yj

0

@

@r
u.x C r!/dr d!

ˇ

ˇ

ˇ

ˇ

ˇ

; (11.1.19)

if instead of over B , we integrate over the ball B.x; diam˝// \ ˝ , write dy D
%d�1d! d% in polar coordinates, and integrate with respect to %. Thus, as in the

proofs of Theorems 2.2.1 and 10.2.2,

ju.x/ � uB j � 1

jBj
.diam˝/d

d

ˇ

ˇ

ˇ

ˇ

ˇ

jx�yj
Z

0

Z

@B.x;r/\˝

1

rd�1
@u

@�
.z/d� .z/dr

ˇ

ˇ

ˇ

ˇ

ˇ

D 1

jBj
.diam˝/d

d

ˇ

ˇ

ˇ

ˇ

ˇ

Z

˝

1

jx � zjd�1

d
X

iD1

@

@zi
u.z/

xi � zi

jx � zj
dz

ˇ

ˇ

ˇ

ˇ

ˇ

� .diam˝/d

d jBj

Z

˝

1

jx � zjd�1 jDu.z/j dz: ut

We shall also need the following variant of Lemma 11.1.2:

Lemma 11.1.4. Let f 2 L1.˝/, and suppose that for all balls B.x0; R/ � R
d ,

Z

˝\B.x0;R/
jf j � KR

d.1� 1
p / (11.1.20)

with some fixed K . Moreover, let p > 1, 1=p < �. Then

ˇ

ˇ.V�f /.x/
ˇ

ˇ � p � 1

�p � 1
.diam˝/

d.�� 1
p /K (11.1.21)

�

.V�f /.x/ D
Z

˝

jx � yjd.��1/ f .y/dy

�

:
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Proof. We put f D 0 in the exterior of˝ . With r D jx � yj, then

ˇ

ˇV�f .x/
ˇ

ˇ �
Z

˝

rd.��1/ jf .y/j dy

D
Z diam˝

0

rd.��1/
Z

@B.x;r/

jf .z/j dzdr

D
Z diam˝

0

rd.��1/
�

@

@r

Z

B.x;r/

jf .y/j dy

�

dr

D .diam˝/d.��1/
Z

B.x;diam˝/

jf .y/j dy

C d.1� �/

Z diam˝

0

rd.��1/�1
Z

B.x;r/

jf .y/j dydr

� K.diam˝/d.��1/Cd.1�1=p/

CKd.1� �/

Z diam˝

0

rd.��1/�1Cd.1�1=p/dr by (11.1.20)

D K
1 � 1

p

� � 1
p

.diam˝/d.��1=p/: ut

Proof of Theorem 11.1.2: Because of (11.1.14), f D jDuj satisfies the inequal-

ity (11.1.20) with K D 1 and p D d . Thus, by Lemma 11.1.4, for � > 1=d ,

V�.f /.x/ D
Z

B.y0;R0/

jx � yjd.��1/ jf .y/j dy � d � 1
�d � 1

.2R0/
�d�1: (11.1.22)

In particular, for s � 1 and � D 1
d

C 1
ds

,

V 1
d C 1

ds
.f / � .d � 1/s.2R0/

1
s : (11.1.23)

By Lemma 11.1.2, we also have, for s � 1, � D 1=ds, p D q D 1,

Z

B.y0 ;R0/

V 1
ds
.f / � ds!

1�1=ds
d jB.y0; R0/j

1
ds kf kL1.B.y0;R0//

� ds!dR
1
s

0 R
d�1
0

(11.1.24)

by (11.1.20), which, as noted, holds for K D 1 and p D d . Now

jx � yj1�d D jx � yjd.
1
ds�1/ 1s jx � yjd.

1
ds C 1

d �1/.1� 1
s / ; (11.1.25)
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and from Hölder’s inequality then

V 1
d
.f / D

Z

�

jx � yjd.
1
ds �1/ 1s jf .y/j

1
s

� �

jx � yjd.
1
ds C 1

d �1/.1� 1
s / jf .y/j1�

1
s

�

dy

� V 1
ds
.f /

1
s V 1

d C 1
ds
.f /1�

1
s : (11.1.26)

With (11.1.23) and (11.1.24), this implies
Z

B.y0;R0/

V 1
d
.f /s � ds!dR

d�1C 1
s

0 .d � 1/s�1ss�1.2R0/
s�1
s

� 2d.d � 1/s�1ss!dR
d
0

D 2
d

d � 1
!d ..d � 1/s/sRd0 :

Thus

Z

B.y0 ;R0/

1
X

nD0

V 1
d
.f /n


nnŠ
� 2d

d � 1
!dR

d
0

1
X

nD0

�

d � 1




�n
nn

nŠ

� cRd0 ; if
d � 1



<
1

e
;

i.e.,
Z

B.y0;R0/

exp

�

V1=d .f /




�

� cRd0 : (11.1.27)

Now by Lemma 11.1.3

ju.x/ � u0j � constV 1
d
.jDuj/; (11.1.28)

and since we have proved (11.1.27) for f D jDuj, (11.1.15) follows.

Before concluding the present section, we would like to derive some further

applications of the preceding lemmas, including the following version of the

Poincaré inequality:

Corollary 11.1.4. Let ˝ � R
d be convex, and u 2 W 1;p.˝/. We then have for

every measurable B � ˝ with jBj > 0,

�Z

˝

ju � uB jp
�

1
p

�
!
1� 1

d

d

jBj j˝j
1
d .diam˝/d

�Z

˝

jDujp
�

1
p

: (11.1.29)

Proof. By Lemma 11.1.3,

ju.x/ � uB j � .diam˝/d

d jBj V 1
d
.jDuj/;
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and by Lemma 11.1.2, then,









V 1
d
.jDuj/










Lp.˝/
� d!

1� 1
d

d j˝j
1
d kDukLp.˝/ ;

and these two inequalities imply the claim. ut

The next result is due to C.B. Morrey:

Theorem 11.1.3. Assume u 2 W 1;1.˝/, ˝ � R
d , and that there exist constants

K < 1, 0 < ˛ < 1, such that for all balls B.x0; R/ � R
d ,

Z

˝\B.x0;R/
jDuj � KRd�1C˛: (11.1.30)

Then we have for every ball B.z; r/ � R
d ,

osc
˝\B.z;r/

u WD sup
x;y2B.z;r/\˝

ju.x/ � u.y/j � cKr˛; (11.1.31)

with c D c.d; ˛/.

Proof. We have

osc
˝\B.z;r/

u � 2 sup
x2B.z;r/\˝

ˇ

ˇu.x/� uB.z;r/
ˇ

ˇ

� c1 sup
x2B.z;r/\˝

Z

B.z;r/

jx � yj1�d jDu.y/j dy

by Lemma 11.1.3, where c1 depends on d only, and

where we simply put Du D 0 on R
d n˝ .

D c1 sup
x2B.z;r/\˝

V 1
d
.jDu/j .x/

with the notation of Lemma 11.1.4. With

p D d

1 � ˛
; i.e., ˛ D 1 � d

p
;

and

� D 1

d
>
1

p
;

f D jDuj then satisfies the assumptions of Lemma 11.1.4, and the preceding

estimate together with Lemma 11.1.4 (applied to B.z; r/ in place of˝) then yields

osc
˝\B.z;r/

u � c2K.diamB.z; r//
1� d

p D cKr˛ :

ut
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Definition 11.1.2. A function u defined on ˝ is called ˛-Hölder continuous in ˝ ,

for some 0 < ˛ < 1, if for all z 2 ˝ ,

sup
x2˝

ju.x/ � u.z/j
jx � zj˛

< 1: (11.1.32)

Notation: u 2 C ˛.˝/. For u 2 C ˛.˝/, we put

kukC ˛.˝/ WD kukC 0.˝/ C sup
x;y2˝

ju.x/ � u.y/j
jx � yj˛ :

(For ˛ D 1, a function satisfying (11.1.32) is called Lipschitz continuous, and the

corresponding space is denoted by C 0;1.˝/.)

If u satisfies the assumptions of Theorem 11.1.3, it thus turns out to be ˛-Hölder

continuous on ˝; this follows by putting r D dist.z; @˝/ in Theorem 11.1.3. The

notion of Hölder continuity will play a crucial role in Chaps. 13 and 14.

Theorem 11.1.3 now implies the following refinement, due to Morrey, of the

Sobolev embedding theorem in the case p > d :

Corollary 11.1.5. Let u 2 H 1;p
0 .˝/ with p > d . Then

u 2 C 1� d
p . N̋ /:

More precisely, for every ball B.z; r/ � R
d ,

osc
˝\B.z;r/

u � cr
1� d

p kDukLp.˝/ ; (11.1.33)

where c depends on d and p only.

Once more, it helps in understanding the content of this embedding theorem if

we take a look at the scaling properties of the norms involved: Let f 2 H 1;p.Rd /\
C ˛.Rd / with 0 < ˛ < 1. We again consider the scaling y D �x (� > 0) and put

f�.y/ D f .x/:

Then

jf�.y1/� f�.y2/j
jy1 � y2j˛

D ��˛ jf .x1/ � f .x2/j
jx1 � x2j˛

.yi D �xi ; i D 1; 2/

and thus (ignoring the lower-order terms like kf kC 0 in the definition of the norms

for simplicity)

kf�kC ˛ D ��˛ kf kC ˛ ;
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and as has been computed above,

kf�kH 1;p D �
d�p
p kf kH 1;p :

In the limit � ! 0, thus kf�kC ˛ is controlled by kDf�kLp , provided that

��˛ � �
d�p
p for � < 1;

i.e.,

˛ � 1 � d

p
in the case p > d:

Proof of Corollary 11.1.5: By Hölder’s inequality

Z

˝\B.x0;R/
jDuj � jB.x0; R/j1�

1
p

�Z

˝\B.x0;R/
jDujp

�
1
p

(11.1.34)

� c3 kDukLp.˝/R
d
�

1� 1
p

�

(11.1.35)

D c3 kDukLp.˝/R
d�1C

�

1� d
p

�

; (11.1.36)

where c3 depends on p and d only. Consequently, the assumptions of Theo-

rem 11.1.3 hold.

The following version of Theorem 11.1.3 is called “Morrey’s Dirichlet growth

theorem” and is frequently used for showing the regularity of minimizers of

variational problems:

Corollary 11.1.6. Let u 2 W 1;2.˝/, and suppose there exist constants K 0 < 1,

0 < ˛ < 1 such that for all balls B.x0; R/ � R
d ,

Z

˝\B.x0;R/
jDuj2 � K 0Rd�2C2˛ : (11.1.37)

Then u 2 C ˛. N̋ /, and for all balls B.z; r/,

osc
B.z;r/\˝

u � c.K 0/
1
2 r˛; (11.1.38)

with c depending only on d and ˛.
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Proof. By Hölder’s inequality

Z

˝\B.x0;R/

jDuj � jB.x0; R/j
1
2

�Z

˝\B.x0;R/

jDuj2
�

1
2

� c4.K
0/
1
2Rd�1C˛

by (11.1.37), with c4 depending on d only. Thus, the assumptions of Theorem 11.1.3

hold again. ut

Finally, later on (in Sect. 14.4), we shall use the following result of Campanato

characterizing Hölder continuity in terms of Lp-approximability by means on balls:

Theorem 11.1.4. Let p � 1, d < � � d C p, and let ˝ � R
d be a bounded

domain for which there exists some ı > 0 with

jB.x0; r/ \˝j � ırd for all x0 2 ˝; r > 0: (11.1.39)

Then a function u 2 Lp.˝/ is contained in C ˛.˝/ for ˛ D ��d
p

(or in C 0;1.˝/ in

the case � D d C p), precisely if there exists a constantK < 1 with
Z

B.x0;r/\˝

ˇ

ˇu.x/ � uB.x0;r/
ˇ

ˇ

p
dx � Kpr� for all x0 2 ˝; r > 0 (11.1.40)

(where for defining uB.x0;r/, we have extended u by 0 on R
d n˝).

Proof. Let u 2 C ˛.˝/, x 2 ˝ \ B.x0; r/. We then have

ˇ

ˇu.x/� uB.x0;r/
ˇ

ˇ � .2r/˛ kukC ˛.˝/ ;

and hence

Z

B.x0;r/\˝

ˇ

ˇu � uB.x0;r/
ˇ

ˇ

p � c5 kukC ˛.˝/ r˛pCd ;

whereby (11.1.40) is satisfied.

In order to prove the converse implication, we start with the following estimate

for 0 < r < R:

ˇ

ˇuB.x0;R/ � uB.x0;r/
ˇ

ˇ

p � 2p�1 �ˇ
ˇu.x/ � uB.x0;R/

ˇ

ˇ

p C
ˇ

ˇu.x/ � uB.x0;r/
ˇ

ˇ

p�
;

and thus, integrating with respect to x on ˝ \ B.x0; r/ and using (11.1.39),

ˇ

ˇuB.x0;R/ � uB.x0;r/
ˇ

ˇ

p

� 2p�1

ırd

�Z

B.x0;r/\˝

ˇ

ˇu � uB.x0;R/
ˇ

ˇ

p C
Z

B.x0;r/\˝

ˇ

ˇu � uB.x0;r/
ˇ

ˇ

p

�

:
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This implies

ˇ

ˇuB.x0;R/ � uB.x0;r/
ˇ

ˇ � c6K
R

�
p

r
d
p

: (11.1.41)

We put Ri D R
2i

and obtain from (11.1.41)

ˇ

ˇuB.x0;Ri / � uB.x0;RiC1/

ˇ

ˇ � c7K2
i d��

p R
��d
p : (11.1.42)

For i < j , this implies

ˇ

ˇuB.x0;Ri / � uB.x0;Rj /
ˇ

ˇ � c8KR
��d
p

i : (11.1.43)

Thus
�

uB.x0;Ri /
�

i2N
constitutes a Cauchy sequence. Since (11.1.41) with ri D r

2i

also implies

ˇ

ˇuB.x0;Ri / � uB.x0;ri /
ˇ

ˇ � c6K

�

R

r

�
�
p

r
��d
p

i ! 0 for i ! 1

because of � > d , the limit of this Cauchy sequence does not depend onR. Since by

Lemma A.4, uB.x;r/ converges in L1 for r ! 0 towards u.x/, in the limit j ! 1,

we obtain from (11.1.43)

ˇ

ˇuB.x0;R/ � u.x0/
ˇ

ˇ � c8KR
��d
p : (11.1.44)

Thus, uB.x0;R/ converges not only in L1 but also uniformly towards u as R ! 0.

Since for R > 0, uB.x;R/ is continuous with respect x, then so is u.

It remains to show that u is ˛-Hölder continuous. For that purpose, let x; y 2 ˝ ,

R WD jx � yj. Then

ju.x/� u.y/j �
ˇ

ˇuB.x;2R/ � u.x/
ˇ

ˇC
ˇ

ˇuB.x;2R/ � uB.y;2R/
ˇ

ˇ

C
ˇ

ˇu.y/� uB.y;2R/
ˇ

ˇ : (11.1.45)

Now
ˇ

ˇuB.x;2R/ � uB.y;2R/
ˇ

ˇ �
ˇ

ˇuB.x;2R/ � u.z/
ˇ

ˇC
ˇ

ˇu.z/ � uB.y;2R/
ˇ

ˇ ;

and integrating with respect to z on B.x; 2R/ \ B.y; 2R/ \˝ , we obtain

ˇ

ˇuB.x;2R/ � uB.y;2R/
ˇ

ˇ

� 1

jB.x; 2R/ \ B.y; 2R/ \˝j

�

Z

B.x;2R/\˝/

ˇ

ˇu.z/ � uB.x;2R/
ˇ

ˇ dz

C
Z

B.y;2R/\˝

ˇ

ˇu.z/� uB.y;2R/
ˇ

ˇ dz
�

� c9

jB.x; 2R/ \ B.y; 2R/ \˝j
KR

��d
p Cd
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by applying Hölder’s inequality. Because of R D jx � yj,

B.x;R/ � B.y; 2R/;

and so by (11.1.39),

jB.x; 2R/ \ B.y; 2R/ \˝j � jB.x;R/ \˝j � ıRd :

We conclude that
ˇ

ˇuB.x;2R/ � uB.y;2R/
ˇ

ˇ � c10KR
��d
p : (11.1.46)

Using (11.1.44) and (11.1.46), we obtain

ju.x/ � u.y/j � c11K jx � yj
��d
p ; (11.1.47)

which is Hölder continuity with exponent ˛ D ��d
p

. ut

Later on (in Sect. 14.4), we shall use the following local version of Campanato’s

theorem:

Corollary 11.1.7. If for all 0 < r � R0 and all x 2 ˝0, we have

Z

B.x0;r/

ˇ

ˇu � uB.x0;r/
ˇ

ˇ

p � 
rdCp˛

with constants 
 and 0 < ˛ < 1, then u is locally ˛-Hölder continuous in ˝0 (this

means that u is ˛-Hölder continuous in any˝1 �� ˝0).

References for this section are Gilbarg–Trudinger [12] and Giaquinta [10].

11.2 L2-Regularity Theory: Interior Regularity of Weak

Solutions of the Poisson Equation

For u W ˝ ! R, we define the difference quotient


h
i u.x/ WD u.x C hei /� u.x/

h
.h ¤ 0/;

ei being the i th unit vector of Rd (i 2 f1; : : : ; d g).

Lemma 11.2.1. Assume u 2 W 1;2.˝/;˝ 0 �� ˝; jhj < dist.˝ 0; @˝/. Then


h
i u 2 L2.˝ 0/ and






h
i u






L2.˝0/
� kDiukL2.˝/ .i D 1; : : : ; d /: (11.2.1)
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Proof. By an approximation argument, it again suffices to consider the case u 2
C 1.˝/ \W 1;2.˝/. Then

�
h
i u.x/ D u.x C hei / � u.x/

h

D 1

h

Z h

0

Diu.x
1; : : : ; xi�1; xi C �; xiC1; : : : ; xd /d�;

and with Hölder’s inequality

ˇ

ˇ�
h
i u.x/

ˇ

ˇ

2 � 1

h

Z h

0

jDiu.x1; : : : ; xi C �; : : : ; xd /j2 d�;

and thus

Z

˝0

ˇ

ˇ�
h
i u.x/

ˇ

ˇ

2
dx � 1

h

Z h

0

Z

˝

jDiuj2 dxd� D
Z

˝

jDiuj2 dx:

ut

Conversely, we have the following result:

Lemma 11.2.2. Let u 2 L2.˝/, and suppose there exists K < 1 with �
h
i u 2

L2 .˝ 0/ and





�
h
i u






L2.˝0/
� K (11.2.2)

for all h > 0 and ˝ 0 �� ˝ with h < dist.˝ 0; @˝/. Then the weak derivative Diu

exists and satisfies

kDiukL2.˝/ � K: (11.2.3)

Proof. For ' 2 C 1
0 .˝/ and 0 < h < dist.supp'; @˝/ (supp' is the closure of

fx 2 ˝ W '.x/ ¤ 0g), we have

Z

˝

�
h
i u ' D �

Z

˝

u��h
i ' ! �

Z

˝

uDi';

as h ! 0. Thus, we also have

ˇ

ˇ

ˇ

ˇ

Z

˝

uDi'

ˇ

ˇ

ˇ

ˇ

� K k'kL2.˝/ :
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Since C 1
0 .˝/ is dense in L2.˝/, we may thus extend

' 7! �
Z

˝

uDi'

to a bounded linear functional on L2.˝/. According to the Riesz representation

theorem as quoted in the appendix, there then exists v 2 L2.˝/ with

Z

˝

'v D �
Z

˝

uDi' for all ' 2 C 1
0 .˝/:

Since this is precisely the equation definingDiu, we must have v D Diu. ut

Theorem 11.2.1. Let u 2 W 1;2.˝/ be a weak solution of �u D f with f 2
L2.˝/. For any ˝ 0 �� ˝ , then u 2 W 2;2.˝ 0/, and

kukW 2;2.˝0/ � const
�

kukL2.˝/ C kf kL2.˝/
�

; (11.2.4)

where the constant depends only on ı WD dist.˝ 0; @˝/. Furthermore, �u D f

almost everywhere in ˝ .

The content of Theorem 11.2.1 is twofold: First, there is a regularity result

saying that a weak solution of the Poisson equation is of class W 2;2 in the interior,

and second, we have an estimate for the W 2;2-norm. The proof will yield both

results at the same time. If the regularity result happens to be known already,

the estimate becomes much easier. That easier demonstration of the estimate

nevertheless contains the essential idea of the proof, and so we present it first. To

start with, we shall prove a lemma. The proof of that lemma is typical for regularity

arguments for weak solutions, and several of the subsequent estimates will turn out

to be variants of that proof. We thus recommend that the reader study the following

estimate very carefully.

Our starting point is the relation

Z

˝

Du �Dv D �
Z

˝

f v for all v 2 H 1;2
0 .˝/: (11.2.5)

(Here,Du is the vector .D1u; : : : ;Ddu/.)

We need some technical preparation: We construct some � 2 C 1
0 .˝/ with 0 �

� � 1, �.x/ D 1 for x 2 ˝ 0 and jD�j � 2
ı
. Such an � can be obtained by

mollification, i.e., by convolution with a smooth kernel as described in Lemma A.2

in the appendix, from the following function �0:

�0.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1 for dist.x;˝ 0/ � ı
8
;

0 for dist.x;˝ 0/ � 7ı
8
;

7
6

� 4
3ı

dist.x;˝ 0/ for ı
8

� dist.x;˝ 0/ � 7ı
8
:
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Thus �0 is a (piecewise) linear function of dist.x;˝ 0/ interpolating between ˝ 0,

where it takes the value 1, and the complement of ˝ , where it is 0. This is also

the purpose of the cutoff function �. If one abandons the requirement of continuous

differentiability (which is not essential anyway), one may put more simply

�.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1 for x 2 ˝ 0;

0 for dist.x;˝ 0/ � ı;

1 � 1
ı

dist.x;˝ 0/ for 0 � dist.x;˝ 0/ � ı

(note that dist.˝ 0; @˝/ � ı). It is not difficult to verify that � 2 H 1;2
0 .˝/, which

suffices for the sequel. In (11.2.5), we now use the test function

v D �2u

with � of the type just presented. This yields

Z

˝

�2 jDuj2 C 2

Z

˝

�Du � uD� D �
Z

˝

�2f u; (11.2.6)

and with the so-called Young inequality

˙ab � "

2
a2 C 1

2"
b2 for a; b 2 R; " > 0 (11.2.7)

used with a D � jDuj, b D u jD�j, " D 1
2

in the second integral, and with a D �f,

b D �u, " D ı2 in the integral on the right-hand side, we obtain

Z

˝

�2 jDuj2 � 1

2

Z

˝

�2 jDuj2 C 2

Z

˝

jD�j2 u2 C 1

2ı2

Z

˝

�2u2 C ı2

2

Z

˝

�2f 2:

(11.2.8)

We recall that 0 � � � 1, � D 1 on˝ 0 to see that this yields

Z

˝0

jDuj2 �
Z

˝

�2 jDuj2 �
�

16

ı2
C 1

ı2

�Z

˝

u2 C ı2
Z

˝

f 2:

We record this inequality in the following lemma:

Lemma 11.2.3. Let u be a weak solution of 
u D f with f 2 L2.˝/. We then

have for any ˝ 0 �� ˝ ,

kDuk2L2.˝0/ � 17

ı2
kuk2L2.˝/ C ı2 kf k2L2.˝/ ; (11.2.9)

where ı WD dist.˝ 0; @˝/.
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So far, we have not used that we are temporarily assuming u 2 W 2;2.˝ 0/ for any

˝ 0 �� ˝ . Now, however, we come to the estimate of the W 2;2-norm, so we shall

need that assumption. Let u 2 W 2;2.˝ 0/ \W 1;2.˝/ again satisfy
Z

˝

Du �Dv D �
Z

˝

f v for all v 2 H 1;2
0 .˝/: (11.2.10)

If supp v �� ˝ 0 (i.e., v 2 H
1;2
0 .˝ 00/ for some ˝ 00 �� ˝ 0), we may, assuming

u 2 W 2;2.˝ 0/, integrate by parts in (11.2.10) to obtain

Z

˝

 

d
X

iD1

DiDiu

!

v D
Z

˝

f v: (11.2.11)

This in particular holds for all v 2 C1
0 .˝

0/, and since C1
0 .˝

0/ is dense in

L2.˝ 0/, (11.2.11) then also holds for v 2 L2.˝ 0/, where we have put v D 0 in

˝ n˝ 0.

We consider the matrix D2u of the second weak derivatives of u and obtain

Z

˝0

ˇ

ˇD2u
ˇ

ˇ

2 D
Z

˝0

d
X

i;jD1

DiDj u �DiDj u

D
Z

˝0

d
X

iD1

DiDiu �
d
X

iD1

DjDju

C boundary terms that we neglect for the moment (later on, they
will be converted into interior terms with the help of cutoff
functions),

by an integration by parts that will even require the assumption
u 2 W 3;2.˝ 0/

D
Z

˝0

f

d
X

iD1

DjDj u

�
�Z

˝0

f 2

�
1
2
�Z

˝0

ˇ

ˇD2u
ˇ

ˇ

2
�

1
2

by Hölder’s inequality, (11.2.12)

and hence

Z

˝0

ˇ

ˇD2u
ˇ

ˇ

2 �
Z

˝

f 2; (11.2.13)

i.e.,





D2u






2

L2.˝0/
� kf k2L2.˝/ : (11.2.14)
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Taken together, (11.2.9) and (11.2.14) yield

kuk2W 2;2.˝0/ � .c1.ı/C 1/ kuk2L2.˝/ C 2 kf k2L2.˝/ : (11.2.15)

We now come to the actual Proof of Theorem 11.2.1: Let

˝ 0 �� ˝ 00 �� ˝; dist.˝ 00; @˝/ � ı

4
; dist.˝ 0; @˝ 00/ � ı

4
:

We again use

Z

˝

Du �Dv D �
Z

˝

f � v for all v 2 H 1;2
0 .˝/: (11.2.16)

In the sequel, we consider v with

supp v �� ˝ 00

and choose h > 0 with

2h < dist.supp v; @˝ 00/:

In (11.2.16), we may then also insert �h
i v (i 2 f1; : : : ; d g) in place of v. We obtain

Z

˝00

D�
h
i u �Dv D

Z

˝00

�
h
i .Du/ �Dv D �

Z

˝00

Du ��h
iDv

D �
Z

˝00

Du �D
�

�
h
i v
�

(11.2.17)

D
Z

˝00

f
h
i v � kf kL2.˝/ � kDvkL2.˝00/

by Lemma 11.2.1 and the choice of h. As described above, let � 2 C 1
0 .˝

00/, 0 �
� � 1, �.x/ D 1 for x 2 ˝ 0, jD�j � 8=ı. We put

v WD �2
h
i u:

From (11.2.17), we obtain

Z

˝00

ˇ

ˇ�D
h
i u
ˇ

ˇ

2 D
Z

˝00

D
h
i u �Dv � 2

Z

˝00

�D
h
i u �
h

i uD�

� kf kL2.˝/




D
�

�2
h
i u
�






L2.˝00/

C 2




�D
h
i u






L2.˝00/






h
i uD�







L2.˝00/
:
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With Young’s inequality (11.2.7) and employing Lemma 11.2.1 (recall the choice

of h), we hence obtain





�D
h
i u






2

L2.˝00/
� 2 kf k2L2.˝/ C 1

4





�D
h
i u






2

L2.˝00/

C 1

4





�D
h
i u






2

L2.˝00/
C 8 sup jD�j2 kDiuk2L2.˝00/ :

The essential point in employing Young’s inequality here is that the expression




�D
h
i u






2

L2.˝00/
occurs on the right-hand side with a smaller coefficient than on

the left-hand side, and so the contribution on the right-hand side can be absorbed

in the left-hand side. Because of � � 1 on ˝ 0 and .a2 C b2/
1
2 � a C b with

Lemma 11.2.2, as h ! 1, we obtain





D2u






L2.˝0/
� const

�

kf kL2.˝/ C 1

ı
kDukL2.˝00/

�

: (11.2.18)

Lemma 11.2.3 (with ˝ 00 in place of ˝ 0) now implies

kDukL2.˝00/ � c1

�

1

ı
kukL2.˝/ C ı kf kL2.˝/

�

(11.2.19)

with some constant c1. Inequality (11.2.4) then follows from (11.2.18) and (11.2.19).

If f happens to be even of classW 1;2.˝/, in (11.2.5) we may insertDiv in place

of v to obtain

Z

˝

D.Diu/ �Dv D �
Z

˝

Dif � v:

Theorem 11.2.1 then implies Diu 2 W 2;2.˝ 0/, i.e., u 2 W 3;2.˝ 0/. In this manner,

we iteratively obtain the following theorem:

Theorem 11.2.2. Let u 2 W 1;2.˝/ be a weak solution of 
u D f , f 2 W k;2.˝/.

For any ˝ 0 �� ˝ then u 2 W kC2;2.˝ 0/, and

kukW kC2;2.˝0/ � const
�

kukL2.˝/ C kf kW k;2.˝/

�

;

where the constant depends on d , k, and dist.˝ 0; @˝/.

Corollary 11.2.1. If u 2 W 1;2.˝/ is a weak solution of 
u D f with f 2
C1.˝/, then also u 2 C1.˝/.

Proof. From Theorem 11.2.2 and Corollary 11.1.2. ut



278 11 Sobolev Spaces and L2 Regularity Theory

The regularity theory also easily implies results about removability of isolated

singularities. We state and prove the result here for the Laplace equation, leaving it

to the reader to identify the necessary or sufficient conditions on the right-hand side

f of the Poisson equation for such a result to hold.

Corollary 11.2.2. Let u 2 .W 1;2 \ C1/.˝ n fx0g/ for some x0 2 ˝ � R
d for

d > 1 be a solution of

�u D 0: (11.2.20)

Then u extends as a smooth harmonic function to all of˝ .

Proof. We only need to show that u is a weak solution of �u D 0 in all of

˝ . Corollary 11.2.1 (or in the present special case of harmonic functions even

Corollary 2.2.1) then implies that u is smooth in ˝ , and hence also solves �u D 0

there by continuity of its second derivatives.

In order to show that u is weakly harmonic, we need to verify (10.1.5), i.e.,
Z

˝

ru.x/ � r�.x/dx D 0; (11.2.21)

for all � 2 C1
0 .˝/.

Since the result is local, we may assume that ˝ is the open unit ball
ı

B.0; 1/ �
R
d , and x0 D 0.

We now write for � > 0

� D �.�� C .1 � ��// (11.2.22)

for the cut-off function

��.x/ � 1 for � � jxj � 1

��.x/ D jxj
�

for 0 � jxj � �

��.0/ D 0:

(��� is not smooth, but in W 1;2 if � is, and this suffices for our purposes.

Alternatively, we can smooth out �� near jxj D �.)
We then have

Z

ı

B.0;1/
ru.x/�r�.x/dx D

Z

ı

B.0;1/
ru.x/�r.���.x//dxC

Z

ı

B.0;1/
ru.x/�r..1��� /�.x//dx:

(11.23)

The first term on the right hand side is 0 since u is harmonic on˝ n fx0g, that is,

on
ı

B.0; 1/ n f0g. The integrand in the second term vanishes for jxj � �. In order to

make the left hand side of (11.23) 0, that is, in order to get (11.2.21), we thus need

to show that
Z

ı

B.0;�/

ru.x/ � r..1 � ��/�.x//dx ! 0 (11.2.24)



11.2 Interior Regularity of Weak Solutions of the Poisson Equation 279

as � ! 0. The difficult term is

Z

ı
B.0;�/

�.x/ru.x/ � r..1 � ��//dx: (11.2.25)

By Hölder’s inequality, this term is controlled by

sup j�j
�Z

ı

B.0;�/

jruj2
�

1
2
�Z

ı

B.0;�/

jr��j2
�

1
2

D c�d�2 sup j�j
�Z

ı

B.0;�/

jruj2
�

1
2

;

(11.2.26)

for some constant c D c.d/. This goes to 0 for � ! 0 where for d D 2 we need to

use that
R

ı
B.0;�/

jruj2 ! 0 for � ! 0 because u 2 W 1;2. Thus, we obtain (11.2.24).

ut

Remark. In fact, by choosing the cutoff function ��.x/ D log �

log jxj for 0 � jxj � �,

even in dimension d D 2, we do not need to exploit that
R

ı

B.0;�/
jruj2 ! 0 for

� ! 0. Such a logarithmic cutoff function is often useful.

At the end of this section, we wish to record once more a fundamental

observation concerning elliptic regularity theory as encountered in the present

section for the first time and to be encountered many more times in the subsequent

sections. For any u contained in the Sobolev space W 2;2.˝/, we have the trivial

estimate

kukL2.˝/ C k
ukL2.˝/ � const kukW 2;2.˝/

(where
u is to be understood as the sum of the weak pure second derivatives of u).

Elliptic regularity theory yields an estimate in the opposite direction; according to

Theorem 11.2.1, we have

kukW 2;2.˝0/ � const.kukL2.˝/ C k
ukL2.˝// for ˝ 0 �� ˝:

Thus 
u and some lower-order term already control all second derivatives of u.

Lemma 11.2.3 shall be interpreted in this sense as well.

The Poincaré inequality states that for every u 2 H 1;2
0 .˝/,

kukL2.˝/ � const kDukL2.˝/ ;

while for a harmonic u 2 W 1;2.˝/, we have the estimate in the opposite direction,

kDukL2.˝0/ � const kukL2.˝/
(for˝ 0 �� ˝).
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In this sense, in elliptic regularity theory, one has estimates in both directions,

one direction resulting from general embedding theorems, and the other one from

the elliptic equation. Combining both directions often allows iteration arguments

for proving even higher regularity, as we have seen in the present section and as we

shall have ample occasion to witness in subsequent sections.

11.3 Boundary Regularity and Regularity Results

for Solutions of General Linear Elliptic Equations

With the help of Dirichlet’s principle, we have found weak solutions of

�u D f in ˝

with

u � g 2 H 1;2
0 .˝/

for given f 2 L2.˝/, g 2 H 1;2.˝/. In the previous section, we have seen that in

the interior of ˝ , u is as regular as f allows. It is then natural to ask whether u is

regular at @˝ as well, provided that g and @˝ satisfy suitable regularity conditions.

A preliminary observation is that a solution of the above Dirichlet problem possesses

a global bound that depends only on f and g:

Lemma 11.3.1. Let u be a weak solution of �u D f , u � g 2 H
1;2
0 .˝/ in the

bounded region˝ . Then

kukW 1;2.˝/ � c
�

kgkW 1;2.˝/ C kf kL2.˝/
�

; (11.3.1)

where the constant c depends only on the Lebesgue measure j˝j of ˝ and on d .

Proof. We insert the test function v D u � g into the weak differential equation

Z

˝

Du �Dv D �
Z

˝

f v for all v 2 H 1;2
0 .˝/

to obtain

Z

˝

jDuj2 D
Z

Du �Dg �
Z

f u C
Z

fg

� 1

2

Z

jDuj2 C 1

2

Z

jDgj2 C 1

"

Z

f 2 C "

2

Z

u2 C "

2

Z

g2
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for any " > 0, by Young’s inequality, and hence

kDuk2L2 � " kuk2L2 C kDgk2
L2

C 2

"
kf k2L2 C " kgk2L2 ;

i.e.,

kDukL2 �
p
" kukL2 C kDgkL2 C

r

2

"
kf kL2 C

p
" kgkL2 : (11.3.2)

Obviously,

kukL2 � ku � gkL2 C kgkL2 ; (11.3.3)

and by the Poincaré inequality

ku � gkL2 �
� j˝j
!d

�
1
d

.kDukL2 C kDgkL2/ : (11.3.4)

Altogether, it follows that

kDukL2 �
p
"

� j˝j
!d

�
1
d

kDukL2 C
 

1C
p
"

� j˝j
!d

�
1
d

!

kDgkL2

C 2
p
" kgkL2 C

r

2

"
kf kL2 :

We now choose

" D 1

4

�

!d

j˝j

�
2
d

;

i.e.,

p
"

� j˝j
!d

�
1
d

D 1

2
;

and obtain

kDukL2 � 3 kDgkL2 C 2

�

!d

j˝j

�
1
d

kgkL2 C
p
2 � 4

� j˝j
!d

�
1
d

kf kL2 : (11.3.5)

Inequalities (11.3.3)–(11.3.5) then also yield an estimate for kukL2 , and (11.3.1)

follows. ut
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We also wish to convince ourselves that we can reduce our considerations to the

case u 2 H
1;2
0 .˝/. Namely, we simply consider Nu WD u � g 2 H

1;2
0 .˝/, which

satisfies

�Nu D �u � � D f � � D Nf (11.3.6)

in the weak sense. Here, we are assuming g 2 W 2;2.˝/, and thus, for Nu 2 H 1;2
0 .˝/,

we obtain the equation

�Nu D Nf (11.3.7)

with Nf 2 L2.˝/, again in the weak sense. Since the W 2;2-norm of u can be

estimated by those of Nu and g, it thus suffices to consider vanishing boundary values.

We consequently assume that u 2 H 1;2
0 .˝/ is a weak solution of �u D f in ˝ .

We now consider a special situation; namely, we assume that in the vicinity of

a given point x0 2 @˝ , @˝ contains a piece of a hyperplane; for example, without

loss of generality, x0 D 0 and

@˝ \ B̊.0; R/ D
˚

.x1; : : : ; xd�1; 0/
	

\ B̊.0; R/

(here, B̊.0; R/ D fx 2 R
d W jxj < Rg is the interior of the ball B.0;R/) for some

R > 0. Let

BC.0;R/ WD
n

.x1; : : : ; xd / 2 B̊.0; R/ W xd > 0
o

� ˝:

If now � 2 C 1
0 .B̊.0; R//, we have

�2u 2 H 1;2
0 .BC.0;R//;

because we are assuming that u vanishes on @˝ \ B̊.0; R/ in the Sobolev space

sense. If now 1 � i � d � 1 and jhj < dist.supp�; @B̊.0;R//, we also have

�2
h
i u 2 H 1;2

0 .BC.0;R//:

Thus, we may proceed as in the proof of Theorem 11.2.1, in order to show that

Dij u 2 L2
�

B̊

�

0;
R

2

��

(11.3.8)

with a corresponding estimate, provided that i and j are not both equal to d .

However, since, from our differential equation, we have

Dddu D f �
d�1
X

jD1
Djj uI (11.3.9)
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we then also obtain

Dddu 2 L2
�

B̊

�

0;
R

2

��

;

and thus the desired regularity result

u 2 W 2;2

�

B̊

�

0;
R

2

��

;

as well as the corresponding estimate.

In order to treat the general case, we have to require suitable assumptions for @˝ .

Definition 11.3.1. An open and bounded set ˝ � R
d is of class C k (k D

0; 1; 2; : : : ;1) if for any x0 2 @˝ there exist r > 0 and a bijective map

� W B̊.x0; r/ ! �.B̊.x0; r// � R
d (B̊.x0; r/ D fy 2 R

d W jx0 � yj < rg)

with the following properties:

(i) �.˝ \ B̊.x0; r// � f.x1; : : : ; xd / W xd > 0g.

(ii) �.@˝ \ B̊.x0; r// � f.x1; : : : ; xd / W xd D 0g.

(iii) � and ��1 are of class C k.

Remark. This means that @˝ is a .d � 1/-dimensional submanifold of R
d of

differentiability class C k.

Definition 11.3.2. Let ˝ � R
d be of class C k, as defined in Definition 11.3.1. We

say that g W N̋ ! R is of class C l . N̋ / for l � k if g 2 C l.˝/ and if for any

x0 2 @˝ and ! as in Definition 11.3.1,

g ı !�1 W
˚

.x1; : : : ; xd / W xd � 0
	

! R

is of class C l .

The crucial idea for boundary regularity is to consider, instead of u, local

functions uı!�1 with ! as in Definition 11.3.1. As we have argued at the beginning

of this section, we may assume that the prescribed boundary values are g D 0.

Then u ı !
�1 is defined on some half-ball, and we may therefore carry over the

interior regularity theory as just described. However, in general, u ı !�1 no longer

satisfies the Laplace equation. It turns out, however, that u ı !�1 satisfies a more

general differential equation that is structurally similar to the Laplace equation and

for which one may derive interior regularity in a similar manner.

We have derived a corresponding transformation formula already in Sect. 10.4.

Thus w D u ı !�1 satisfies a differential equation (10.4.11), i.e.,

1
p
g

d
X

JD1

 

@

@�j

 

p
g

d
X

iD1
gij

@w

@� i

!!

D 0; (11.3.10)
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where the positive definite matrix gij is computed from " and its derivatives

[cf. (10.4.7)].

We shall consider an even more general class of elliptic differential equations:

Lu WD
d
X

i;jD1

@

@xj

�

aij .x/
@

@xi
u.x/

�

C
d
X

jD1

@

@xj

�

bj .x/u.x/
�

C
d
X

iD1

ci .x/
@

@xi
u.x/C d.x/u.x/

D f .x/: (11.3.11)

We shall need two essential assumptions:

(A1) (Uniform ellipticity) There exist 0 < � � � < 1 with

� j�j2 �
d
X

i;jD1

aij .x/�i�j � � j�j2 for all x 2 ˝; � 2 R
d :

(A2) (Boundedness) There exists some M < 1 with

sup
x2˝

.kb.x/k; kc.x/k; kd.x/k/ � M:

Here, for instance, kb.x/k D .
P

j b
j .x/bj .x//1=2 is the Euclidean norm of the

vector b.x/. When one is interested in how the subsequent estimates depend on the

dimension d , one should keep in mind that this quantity is bounded from above by

d supi jbi.x/j.
A function u is called a weak solution of the Dirichlet problem

Lu D f in ˝ .f 2 L2.˝/ given/;

u � g 2 H 1;2
0 .˝/;

if for all v 2 H 1;2
0 .˝/,

Z

˝

n

X

i;j

aij .x/Diu.x/Dj v.x/C
X

j

bj .x/u.x/Dj v.x/

�
 

X

i

ci .x/Diu.x/C d.x/u.x/

!

v.x/
o

dx D �
Z

˝

f .x/v.x/dx: (11.3.12)
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In order to become a little more familiar with (11.3.12), we shall first try to find

out what happens if we insert our test functions that proved successful for the weak

Poisson equation, namely, v D �2u and v D u � g. Here � is a cutoff function as

described in Sect. 11.2 with respect to ˝ 0 �� ˝ . With v D �2u, (11.3.12) then

becomes

Z

˝

(

X

�2aijDiuDju C 2
X

�aij uDiuDj�C
X

�2bjuDju

C 2
X

u2bj�Dj � �
X

�2ciuDiu � d�2u2

)

D �
Z

f �2u: (11.3.13)

In order to handle the various terms, analogously to (11.2.8), we shall use Young’s

inequality, this time of the form

X

aij aibj � "

2

X

aijaiaj C 1

2"

X

aij bibj (11.3.14)

for " > 0, .a1; : : : ; ad /; .b1; : : : ; bd / 2 R
d , and a positive definite matrix

.aij /i;jD1;:::;d . From (A1) and (A2), we thence obtain the following inequalities:

2
X

�aij uDiuDj� � "
X

�2aijDiuDj u C 1

"

X

aij u2Di�Dj �

X

�2bjuDju � "0

2

X

�2DjuDj u C 1

2"0

X

�2u2bjbj

2
X

u2bj�Dj � �
X

u2Dj �Dj �C
X

u2�2bjbj

X

�2ciuDiu � "0

2

X

�2DjuDj u C 1

2"0

X

�2u2cj cj

f �2u2 � 1

2
�2u2 C 1

2
�2f 2:

With the help of these inequalities, (11.3.13) yields

Z

�2
X

aijDiuDju � "

Z

�2
X

aijDiuDju

C "0

Z

jDuj2 �2 C
�

1

"0
M 2 CM 2 CM C 1

2

�Z

�2u2

C
�

�

"
C 1

�Z

u2 jD�j2 C 1

2

Z

�2f 2:
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We choose " D 1
2

and then "0 D �
4
, to obtain, with

Z

jDuj2 �2 � 1

�

Z

�2
X

aijDiuDju (11.3.15)

which follows from (A1) again, the desired estimate

Z

�2 jDuj2 � c1.�;�/

Z

u2 jD�j2 C c2.�;M/

Z

�2u2 C c3.�/

Z

�2f 2;

(11.3.16)

with constants c1; c2; andc3 that depend only on the indicated quantities. In fact, as

an aside, in the special case where b D c D d D f D 0, we simply have

Z

�2 jDuj2 � 2
�

�

Z

u2 jD�j2 :

With ı D dist.˝ 0; @˝/, we can have � D 1 on ˝ 0 and jD�j � 1
ı

and obtain

Z

˝0

jDuj2 �
�

c1.�;�/

ı2
C c2.�;M/

�Z

˝

u2 C c3.�/

Z

˝

f 2: (11.3.17)

This is the analogue of Lemma 11.2.3. The global bound of Lemma 11.3.1, however,

does not admit a direct generalization. If we insert the test function u�g in (11.3.12),

we obtain only (as usual, employing Young’s inequality in order to absorb all the

terms containing derivatives into the positive definite leading term)

Z

˝

jDuj2 � 1

�

Z

X

aijDiuDju

� c4.�;�;M; j˝j/
�

kgk2W 1;2 C kf k2L2.˝/ C kuk2L2.˝/
�

:

(11.3.18)

Thus, the additional term kuk2L2.˝/ appears in the right-hand side. That this is really

necessary can already be seen from the differential equation

u00.t/C �2u.t/ D 0 for 0 < t < �;

u.0/ D u.�/ D 0;
(11.3.19)

with � > 0. Namely, for � 2 N, we have the solutions

u.t/ D b sin.�t/

with b 2 R arbitrary, and these solutions obviously cannot be controlled solely

by the right-hand side of the differential equation and the boundary values, because
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those are all zero. The local interior regularity theory of Sect. 11.2, however, remains

fully valid. Namely, we have the following theorem:

Theorem 11.3.1. Let u 2 W 1;2.˝/ be a weak solution of Lu D f ; i.e.,

let (11.3.12) hold. Let the ellipticity assumption (A11.3) hold. Moreover, let all

coefficients aij .x/; : : : ; d.x/ as well as f .x/ be of class C1. Then also u 2
C1.˝/.

Remark. Regularity is a local result. Since we assume that all coefficients are C1,

in particular, on every ˝ 0 �� ˝ , we have a bound of type (A11.3), with the

constantM depending on ˝ 0 here, however.

Let us discuss the Proof of Theorem 11.3.1: We first reduce the proof to the case

bj ; ci ; d � 0, i.e., to the regularity of weak solutions of

M u WD
X

i;j

@

@xj

�

aij .x/
@

@xi
u.x/

�

D f .x/: (11.3.20)

For that purpose, we simply rewrite

Lu D f

as

M u D �
X @

@xj
.bj .x/u.x// �

X

ci .x/
@

@xi
u.x/ � d.x/u.x/C f .x/:

(11.3.21)

We then prove the following theorem:

Theorem 11.3.2. Let u 2 W 1;2.˝/ be a weak solution of M u D f with

f 2 W k;2.˝/. Assume (A11.3), and that the coefficients aij .x/ of M are of class

C kC1.˝/. Then for every ˝ 0 �� ˝ ,

u 2 W kC2;2.˝ 0/:

If





aij






C kC1.˝0/
� Mk for all i; j; (11.3.22)

then

kukW kC2;2.˝0/ � c
�

kukL2.˝/ C kf kW k;2.˝/

�

(11.3.23)

with c D c.d;�; k;Mk ; dist.˝ 0; @˝//.
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The Sobolev embedding theorem then implies that in case aij ; f 2 C1, any

solution of M u D f is of class C1 as well. The corresponding regularity for

solutions of Lu D f , as claimed in Theorem 11.3.1, can then be obtained through

the following important iteration argument: Since we assume u 2 W 1;2.˝/, the

right-hand side of (11.3.21) is in L2.˝/. According to Theorem 11.3.2, for k D 0,

then u 2 W 2;2.˝/. This in turn implies that the right-hand side of (11.3.21) is in

W 1;2.˝/. Thus, we may apply Theorem 11.3.2 for k D 1 to obtain u 2 W 3;2.˝/.

But then, the right-hand side is in W 2;2.˝/; hence u 2 W 4;2.˝/, and so on.

In that manner we deduce u 2 W m;2.˝/ for all m 2 N, and by the Sobolev

embedding theorem, hence that u is in C1.˝/.

We shall not display all details of the Proof of Theorem 11.3.2 here, since this

represents a generalization of the reasoning given in Sect. 11.2 that only needs a

more cumbersome notation, but no new ideas. We have already seen how such a

generalization works when we inserted the test function �2u in (11.3.12). The only

additional ingredient is certain rules for manipulating difference quotients, like the

product rule


h
l .ab/.x/ D 1

h
.a.x C hel/b.x C hel/ � a.x/b.x//

D a.x C hel /

h
l b.x/C

�


h
l a.x/

�

b.x/:

(11.3.24)

For example,


h
l

 

d
X

iD1

aij .x/Diu.x/

!

D
X

i

�

aij .x C hel/

h
lDiu.x/C
h

l a
ij .x/Diu.x/

�

:

(11.3.25)

As before, we use 
�h
l v as a test function in place of v, and in the case supp v ��

˝ 00, 2h < dist.supp v; @˝ 00/, we obtain
Z

˝00

X

i;j


h
l

�

aij .x/Diu.x/
�

Dj v.x/dx D
Z

f .x/
�h
l v.x/dx: (11.3.26)

With (11.3.24) and Lemma 11.2.1, this yields

Z

˝00

X

i;j

aij .x C hel/Di

h
l u.x/Dj v.x/dx

� c5.d;M1/
�

kukW 1;2.˝00/ C kf kL2.˝/
�

kDvkL2.˝00/ ; (11.3.27)

i.e., an analogue of (11.2.17). Since because of the ellipticity condition (A11.3), we

have the estimate

�

Z

˝

ˇ

ˇ�D
h
l u.x/

ˇ

ˇ

2
dx �

Z

˝

�2
X

i;j

aij .x C hel/

h
lDiu.x/


h
lDj u.x/dxI
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we can then proceed as in the proofs of Theorems 11.2.1 and 11.2.2. Readers so

inclined should face no difficulties in supplying the details.

We now return to the question of boundary regularity and state a theorem:

Theorem 11.3.3. Let u be a weak solution ofM u D f in˝ with u�g 2 H 1;2
0 .˝/.

As always, suppose (A11.3). Let f 2 W k;2.˝/, g 2 W kC2;2.˝/. Let ˝ be of

class C kC2, and let the coefficients of M be of class C kC1. N̋ / (in the sense of

Definition 11.3.1). Then

u 2 W kC2;2.˝/;

and we have the estimate

kukW kC2;2.˝/ � c
�

kf kW k;2.˝/ C kgkW kC2;2.˝/

�

;

with c depending on �, d , and ˝ , and on C kC1-bounds for the aij .

Proof. As explained at the beginning of this section, we may assume that @˝ is

locally a hyperplane, by considering the composition u ı ��1 in place of u, where �

is a diffeomorphism of the type described in Definition 11.3.1. Namely, by (10.4.12),

our equation M u D f gets transformed into an equation

QM Qu D Qf

of the same type, with estimates for the coefficients of QM following from those

for the aij as well as estimates for the derivatives of �. We have already explained

above how to obtain estimates for u in that particular geometric situation. We let this

suffice here, instead of offering tedious details without new ideas. ut

Remark. As a reference for the regularity theory of weak solutions, we recommend

Gilbarg–Trudinger [12].

11.4 Extensions of Sobolev Functions and Natural

Boundary Conditions

Most of our preceding results have been formulated for the spaces H
k;p
0 .˝/ only,

but not for the general Sobolev spaces W k;p.˝/ D H k;p.˝/. A technical reason

for this is that the mollifications that we have frequently employed use the values

of the given function in some full ball about the point under consideration, and

this cannot be done at a boundary point if the function is defined only in the

domain ˝ , perhaps up to its boundary, but not in the exterior of ˝ . Thus, it seems

natural to extend a given Sobolev function on a domain ˝ in R
d to all of Rd , or

at least to some larger domain that contains the closure of ˝ in its interior. The
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problem then is to guarantee that the extended function maintains all the weak

differentiability properties of the original function. It turns out that for this to be

successfully resolved, we need to impose certain regularity conditions on @˝ as

in Definition 11.3.1. In the spirit of that definition, we thus start with the model

situation of the domain

R
d
C WD

˚

.x1; : : : ; xd / 2 R
d ; xd > 0

	

:

If now u 2 C k.RdC/, we define an extension via

E0u.x/ WD
(

u.x/ for xd � 0;
Pk

jD1 aj u.x1; : : : ; xd�1;� 1
j
xd / for xd < 0;

(11.4.1)

where the aj are chosen such that

k
X

jD1
aj

�

� 1
j

��

D 1 for � D 0; : : : ; k � 1: (11.4.2)

One readily verifies that the system (11.4.2) is uniquely solvable for the aj
(the determinant of this system is a Vandermonde determinant that is nonzero). One

moreover verifies, and this of course is the reason for the choice of the aj , that the

derivatives of E0u up to order k � 1 coincide with the corresponding ones of u on

the hyperplane
˚

xd D 0
	

and that the derivatives of order k are bounded whenever

those of u are. Thus

E0u 2 C k�1;1.Rd /; (11.4.3)

where C l;1.˝/ is defined as the space of l-times continuously differentiable

functions on˝ whose l th derivatives are Lipschitz continuous, i.e.,

sup
x2˝

jv.x/ � v.x0/j
jx � x0j

< 1

for any such derivative v and x0 2 ˝ (see also Definition 13.1.1 below).

If now ˝ is a domain of class C k in the sense of Definition 11.3.1, and if u 2
C k. N̋ / (see Definition 11.3.2), we may locally straighten out the boundary with a

C k-diffeomorphism ��1, extend the functions u ı ��1 with the above operator E0,

and then take E0.u ı ��1/ ı �. This function then defines a local extension of class

C k�1;1 of u across @˝ . In order to obtain a global extension, we simply patch these

local extensions together with the help of a partition of unity. This is easy, and the

reader may know this construction already, but for completeness, we present the

details. We assume that ˝ is a bounded domain of class C k . Thus, @˝ is compact,

and so it may be covered by finitely many sets of the type˝ \ B̊.x0; r/ on which a

local diffeomorphism with the properties specified in Definition 11.3.1 exists.
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We call these sets ˝� , � D 1; : : : ; n, and the corresponding diffeomorphisms �� .

In addition, we may find an open set ˝0 � ˝ , with @˝ \ N̋
0 D ;, so that

˝ �
m
[

�D0

˝�:

We then let '� , � D 0; : : : ; m, be a partition of unity subordinate to this covering of

˝ and put

Eu WD '0u C
m
X

�D1

E0
�

.'�u/ ı ��1
�

�

ı �� :

This then extends u as a C k�1;1 function to some open neighborhood˝ 0 of N̋ . By

taking a C1
0 .R

d / function � with � � 1 on˝ , � � 0 in R
d n˝ 0, one may then also

extend u to the C k�1;1.Rd / function �Eu. In fact, this extension lies in C
k�1;1
0 .˝ 0/.

This was for C k-functions, but it may be extended to Sobolev functions by

approximation. Again considering the model situation of R
d
C, we observe that

u 2 W k;p.RdC/ can be approximated by the translated mollifications

uh.x C 2hed / D 1

hd

Z

yd>0

u.y/%

�

x C 2hed � y

h

�

dy

for h ! 0 (h > 0) (here, ed is the d th unit vector in R
d ). The limit for h ! 0 of

the extensionsEu.x C 2hed / then yields the extensionEu.x/. One readily verifies

that Eu 2 W k;p.˝ 0/ for some domain˝ 0 containing N̋ (for the detailed argument,

one needs the extension lemma (Lemma 10.2.2), which obviously holds for all p,

not just for p D 2) in order to handle the possible discontinuity of the highest-order

derivatives along @˝ in the above construction), and that

kEukW k;p.˝0/ � C kukW k;p.˝/ (11.4.4)

for some constant C depending on ˝ (via bounds on the maps �, ��1 from

Definition 11.3.1) and k. As above, by multiplying by a C1
0 function � with � � 1

on ˝ , � � 0 outside˝ 0, we may even assume

Eu 2 H k;p
0 .˝ 0/: (11.4.5)

Equipped with our extension operator E , we may now extend the embedding

theorems from the Sobolev spaces H
k;p
0 .˝/ to the spaces W k;p.˝/, if ˝ is a C k-

domain. Namely, if u 2 W k;p.˝/, we consider Eu 2 H
k;p
0 .˝ 0/, which then is

contained in L
dp

d�kp .˝ 0/ for kp < d , and in Cm.˝ 0/, respectively, for 0 � m <

k� d
p

, according to Corollary 11.1.1, and thus inL
dp

d�kp .˝/ orCm.˝/, by restriction
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from ˝ 0 to ˝ . Since Eu D u on ˝ , we have thus proved the following version of

the Sobolev embedding theorem:

Theorem 11.4.1. Let ˝ � R
d be a bounded domain of class C k . Then

W k;p.˝/ �
(

L
dp

d�kp .˝/ for kp < d;

Cm. N̋ / for 0 � m < k � d
p
:

(11.4.6)

In the same manner, we may extend the compactness theorem of Rellich:

Theorem 11.4.2. Let ˝ � R
d be a bounded domain of class C 1. Then any se-

quence .un/n2N that is bounded in W 1;2.˝/ contains a subsequence that converges

in L2.˝/.

The preceding version of the Sobolev embedding theorem allows us to put

our previous existence and regularity results together to obtain a very satisfactory

treatment of the Poisson equation in the smooth setting:

Theorem 11.4.3. Let ˝ � R
d be a bounded domain of class C1, and let g 2

C1.@˝/, f 2 C1. N̋ /. Then the Dirichlet problem

#u D f in ˝;

u D g on @˝;

possesses a (unique) solution u of class C1. N̋ /.

Proof. As explained in the beginning of Sect. 11.3, we may restrict ourselves to the

case where g D 0, by considering Nu D u � g in place of u, where we have extended

g as a C1-function to all of N̋ . (Since N̋ is bounded, C1-functions on N̋ are

contained in all Sobolev spaces W k;p. N̋ /.)
In Sect. 10.3, we have seen how Dirichlet’s principle produces a weak solution

u 2 H 1;2
0 .˝/ of #u D f . We have already observed in Corollary 10.3.1 that such a

u is smooth in ˝ , but of course this follows also from the more general approach of

Sect. 11.2, as stated in Corollary 11.2.1. Regularity up to the boundary, i.e., the result

that u 2 C1. N̋ /, finally follows from the Sobolev estimates of Theorem 11.3.3

together with the embedding theorem (Theorem 11.4.1). ut

Of course, analogous statements can be stated and proved with the concepts and

methods developed here in the C k-case, for any k 2 N. In this setting, however, a

somewhat more refined result will be obtained below in Theorem 13.3.1.

Likewise, the results extend to more general elliptic operators. Combining

Corollary 10.5.2 with Theorems 11.3.3 and 11.4.1, we obtain the following theorem:

Theorem 11.4.4. Let˝ � R
d be a bounded domain of classC1. Let the functions

aij .i; j D 1; : : : ; d / and c be of class C1 in ˝ and satisfy the assumptions (A)–

(D) of Sect. 10.5, and let f 2 C1.˝/, g 2 C1.@˝/ be given. Then the Dirichlet

problem
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d
X

i;jD1

@

@xi

�

aij .x/
@

@xj
u.x/

�

� c.x/u.x/ D f .x/ in ˝;

u.x/ D g.x/ on @˝;

admits a (unique) solution of class C1. N̋ /.

It is instructive to compare this result with Theorem 13.3.2 below.

We now address a question that the curious reader may already have wondered

about. Namely, what happens if we consider the weak differential equation
Z

˝

Du �Dv C
Z

˝

f v D 0 .f 2 L2.˝// (11.4.7)

for all v 2 W 1;2.˝/, and not only for those inH
1;2
0 .˝/? A solution u again has to be

as regular as f and˝ allow, and in fact, the regularity proofs become simpler, since

we do not need to restrict our test functions to have vanishing boundary values. In

particular we have the following result:

Theorem 11.4.5. Let (11.4.7) be satisfied for all v 2 W 1;2.˝/, on some C1-

domain˝ , for some function f 2 C1. N̋ /. Then also

u 2 C1. N̋ /:

The Proof follows the scheme presented in Sect. 11.3. We obtain differentiability

results on the boundary @˝ (note that here we conclude that u is smooth even on the

boundary and not only in˝ as in Theorem 11.3.1) by applying the version stated in

Theorem 11.4.1 of the Sobolev embedding theorem.

In Sect. 11.5 we shall need regularity results for solutions of
Z

˝

Du �Dv C �

Z

˝

u � v D 0 .� 2 R/; for all v 2 W 1;2.˝/: (11.4.8)

We can apply the iteration scheme described in Sect. 11.3 to establish the following

corollary:

Corollary 11.4.1. Let u be a solution of (11.4.8), for all v 2 W 1;2.˝/. If the domain

˝ is of class C1, then u 2 C1. N̋ /.

We return to the equation
Z

˝

Du �Dv C
Z

˝

f v D 0

on a C1-domain ˝ , for f 2 C1. N̋ /. Since u is smooth up to the boundary by

Theorem 11.4.5, we may integrate by parts to obtain

�
Z

˝


u � v C
Z

@˝

@u

@n
� v C

Z

˝

f v D 0 for all v 2 W 1;2.˝/: (11.4.9)
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We know from our discussion of the weak Poisson equation that already if (11.4.7)

holds for all v 2 H 1;2
0 .˝/, then, since u is smooth, necessarily

$u D f in ˝: (11.4.10)

Equation (11.4.9) then implies

Z

@˝

@u

@n
� v D 0 for all v 2 W 1;2.˝/:

This then implies

@u

@n
D 0 on @˝: (11.4.11)

Thus, u satisfies a homogeneous Neumann boundary condition. Since this boundary

condition arises from (11.4.7) when we do not impose any restrictions on v, it then

is also called a natural boundary condition.

We add some further easy observations (which have already been made in

Sect. 2.1): If u is a solution, so is u C c, for any c 2 R. Thus, in contrast to the

Dirichlet problem, a solution of the Neumann problem is not unique. On the other

hand, a solution does not always exist. Namely, we have

�
Z

˝

$u C
Z

@˝

@u

@n
D 0;

and therefore, using v � 1 in (11.4.9), we obtain the condition

Z

˝

f D 0 (11.4.12)

on f as a necessary condition for the solvability of (11.4.9), hence of (11.4.7). It

is not hard to show that this condition is also sufficient, but we do not pursue that

point here.

Again, the preceding considerations about the regularity of solutions of the

Neumann problem extend to more general elliptic operators, in the same manner

as in Sect. 11.3. This is straightforward.

Finally, one may also consider inhomogeneous Neumann boundary conditions;

for simplicity, we consider only the Laplace equation, i.e., assume f D 0 in the

above.

A solution of

$u D 0 in ˝;

@u

@n
D h on @˝ , for some given smooth function h on @˝;

(11.4.13)
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can then be obtained by minimizing

1

2

Z

˝

jDuj2 �
Z

@˝

hu in W 1;2.˝/: (11.4.14)

Here, a necessary (and sufficient) condition for solvability is

Z

@˝

h D 0: (11.4.15)

In contrast to the inhomogeneous Dirichlet boundary condition, here the boundary

values do not constrain the space in which we seek a minimizer, but rather enter into

the functional to be minimized. Again, a weak solution u, i.e., satisfying

Z

˝

Du �Dv �
Z

@˝

hv D 0 for all v 2 W 1;2.˝/; (11.4.16)

is determined up to a constant and is smooth up to the boundary, assuming, of

course, that @˝ is smooth as before.

11.5 Eigenvalues of Elliptic Operators

In this textbook, at several places (see Sects. 5.1, 6.2, 6.3, and 7.1), we have already

encountered expansions in terms of eigenfunctions of the Laplace operator. These

expansions, however, served as heuristic motivations only, since we did not show

the convergence of these expansions. It is the purpose of the present section to carry

this out and to study the eigenvalues of the Laplace operator systematically. In fact,

our reasoning will also apply to elliptic operators in divergence form,

Lu D
d
X

i;jD1

@

@xj

�

aij .x/
@

@xi
u.x/

�

; (11.5.1)

for which the coefficients aij .x/ satisfy the assumptions stated in Sect. 11.3 and are

smooth in ˝ . Nevertheless, since we have already learned in this chapter how to

extend the theory of the Laplace operator to such operators, here we shall carry out

the analysis only for the Laplace operator. The indicated generalization we shall

leave as an easy exercise. We hope that this strategy has the pedagogical advantage

of concentrating on the really essential features.

Let ˝ be an open and bounded domain in R
d . The eigenvalue problem for the

Laplace operator consists in finding nontrivial solutions of

%u.x/C �u.x/ D 0 in ˝; (11.5.2)
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for some constant �, the eigenvalue in question. Here one also imposes some

boundary conditions on u. In the light of the preceding, it seems natural to require

the Dirichlet boundary condition

u D 0 on @˝: (11.5.3)

For many applications, however, it is more natural to have the Neumann boundary

condition

@u

@n
D 0 on @˝ (11.5.4)

instead, where @
@n

denotes the derivative in the direction of the exterior normal.

Here, in order to make this meaningful, one needs to impose certain restrictions, for

example, as in Sect. 2.1, that the divergence theorem is valid for ˝ . For simplicity,

as in the preceding section, we shall assume that ˝ is a C1-domain in treating

Neumann boundary conditions. In any case, we shall treat the eigenvalue problem

for either type of boundary condition.

As with many questions in the theory of PDEs, the situation becomes much

clearer when a more abstract approach is developed. Thus, we shall work in some

Hilbert space H ; for the Dirichlet case, we choose

H D H
1;2
0 .˝/; (11.5.5)

while for the Neumann case, we take

H D W 1;2.˝/: (11.5.6)

In either case, we shall employ the L2-product

hf; gi WD
Z

˝

f .x/g.x/dx

for f; g 2 L2.˝/, and we shall also put

kf k WD kf kL2.˝/ D hf; f i 12 :

It is important to realize that we are not working here with the scalar product

of our Hilbert space H , but rather with the scalar product of another Hilbert

space, namely, L2.˝/, into which H is compactly embedded by Rellich’s theorem

(Theorems 10.2.3 and 11.4.2).

Another useful point in the sequel is the symmetry of the Laplace operator,

h
'; i D �hD';D i D h';
 i (11.5.7)
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for all '; 2 C1
0 .˝/, as well as for '; 2 C1.˝/ with

@'

@n
D 0 D @ 

@n
on @˝ .

This symmetry will imply that all eigenvalues are real.

We now start our eigenvalue search with

� WD inf
u2Hnf0g

hDu;Dui
hu; ui

 

D inf
u2Hnf0g

kDuk2L2.˝/
kuk2L2.˝/

!

: (11.5.8)

We wish to show that (because the expression in (11.5.8) is scaling invariant, in the

sense that it is not affected by replacing u by cu for some nonzero constant c) this

infimum is realized by some u 2 H with

&u C �u D 0:

We first observe that (because the expression in (11.5.8) is scaling invariant, in the

sense that it is not affected by replacing u by cu for some constant c) we may restrict

our attention to those u that satisfy

kukL2.˝/ .D hu; ui/ D 1: (11.5.9)

We then let .un/n2N � H be a minimizing sequence with hun; uni D 1, and thus

� D lim
n!1

hDun;Duni: (11.5.10)

Thus, .un/n2N is bounded in H , and by the compactness theorem of Rellich

(Theorems 10.2.3 and 11.4.2), a subsequence, again denoted by un, converges to

some limit u in L2.˝/ that then also satisfies kukL2.˝/ D 1. In fact, since

kD.un � um/k2L2.˝/ C kD.un C um/k2L2.˝/
D 2 kDunk2L2.˝/ C 2 kDumk2L2.˝/ for all n;m 2 N;

and

kD.un C um/k2L2.˝/ � � kun C umk2L2.˝/ by definition of �;

we obtain

kDun �Dumk2L2.˝/ � 2 kDunk2L2.˝/ C 2 kDumk2L2.˝/
� � kun C umk2L2.˝/ : (11.5.11)

Since by choice of the sequence .un/n2N, kDunk2L2.˝/ and kDumk2L2.˝/ converges

to �, and kun C umk2L2.˝/ converges to 4, since the un converge in L2.˝/ to an

element u of norm 1, the right-hand side of (11.5.11) converges to 0, and so then
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does the left-hand side. This, together with theL2-convergence, implies that .un/n2N

is a Cauchy sequence even in H , and so it also converges to u in H . Thus

hDu;Dui

hu; ui
D �: (11.5.12)

In the Dirichlet case, the Poincaré inequality (Theorem 10.2.2) implies

� > 0:

At this point, the assumption enters that ˝ as a domain is connected. In the

Neumann case, we simply take any nonzero constant c, which now is an element

of H nf0g, to see that

0 � � � hDc;Dci
hc; ci D 0;

i.e.,

� D 0:

Following standard conventions for the enumeration of eigenvalues, we put

� DW �1 in the Dirichlet case,

� DW �0.D 0/ in the Neumann case,

and likewise u DW u1 and u DW u0, respectively.

Let us now assume that we have iteratively determined ..�0; u0//, .�1; u1/,

: : : ; .�m�1; um�1/, with

.�0 �/ �1 � � � � � �m�1;

ui 2 L2.˝/ \ C1.˝/;

ui D 0 on @˝ in the Dirichlet case, and

@ui

@n
D 0 on @˝ in the Neumann case,

hui ; uj i D ıij for all i; j � m � 1

'ui C �iui D 0 in ˝ for i � m � 1: (11.5.13)
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We define

Hm WD fv 2 H W hv; uii D 0 for i � m� 1g

and

�m WD inf
u2Hmnf0g

hDu;Dui
hu; ui : (11.5.14)

Since Hm � Hm�1, the infimum over the former space cannot be smaller than the

one over the latter, i.e.,

�m � �m�1: (11.5.15)

Note that Hm is a Hilbert space itself, being the orthogonal complement of a

finite-dimensional subspace of the Hilbert space H . Therefore, with the previous

reasoning, we may find um 2 Hm with kumkL2.˝/ D 1 and

�m D hDum;Dumi
hum; umi : (11.5.16)

We now want to verify the smoothness of um and Eq. (11.5.13) for i D m.

From (11.5.14), (11.5.16), for all ' 2 Hm, t 2 R,

hD .um C t'/;D.um C t'/i
hum C t'; um C t'i � �m;

where we choose jt j so small that the denominator is bounded away from 0. This

expression then is differentiable w.r.t. t near t D 0 and has a minimum at 0. Hence

the derivative vanishes at t D 0, and we get

0 D hDum;D'i
hum; umi � hDum;Dumi

hum; umi
hum; 'i
hum; umi

D hDum;D'i � �mhum; 'i for all ' 2 Hm:

In fact, this relation even holds for all ' 2 H , because for i � m � 1,

hum; ui i D 0

and

hDum;Duii D hDui ;Dumi D �i hui ; umi D 0;

since um 2 Hi . Thus, um satisfies

Z

˝

Dum �D' � �m

Z

˝

um' D 0 for all ' 2 H: (11.5.17)
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By Theorem 11.3.1 and Corollary 11.4.1, respectively, um is smooth, and so we

obtain from (11.5.17)

(um C �mum D 0 in ˝:

As explained in the preceding section, we also have

@um

@n
D 0 on @˝

in the Neumann case. In the Dirichlet case, we have of course

um D 0 on @˝

(this holds pointwise if @˝ is smooth, as explained in Sect. 11.4; for a general, not

necessarily smooth, @˝ , this relation is valid in the sense of Sobolev).

Theorem 11.5.1. Let ˝ � R
d be connected, open, and bounded. Then the

eigenvalue problem

(u C �u D 0; u 2 H 1;2
0 .˝/

has countably many eigenvalues

0 < �1 < �2 � � � � � �m � � � �

with

lim
m!1

�m D 1

and pairwise L2-orthonormal eigenfunctions ui and hDui ;Duii D �i . Any v 2
L2.˝/ can be expanded in terms of these eigenfunctions,

v D
1
X

iD1

hv; uiiui (and thus hv; vi D
1
X

iD1

hv; uii2/; (11.5.18)

and if v 2 H 1;2
0 .˝/, we also have

hDv;Dvi D
1
X

iD1

�i hv; uii2: (11.5.19)

Theorem 11.5.2. Let ˝ � R
d be bounded, open, and of class C1. Then the

eigenvalue problem

(u C �u D 0; u 2 W 1;2.˝/
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has countably many eigenvalues

0 D �0 � �1 � � � � � �m � � � �

with

lim
n!1

�m D 1

and pairwise L2-orthonormal eigenfunctions ui that satisfy

@ui

@n
D 0 on @˝:

Any v 2 L2.˝/ can be expanded in terms of these eigenfunctions

v D
1
X

iD0

hv; uiiui (and thus hv; vi D
1
X

iD0

hv; uii2/; (11.5.20)

and if v 2 W 1;2.˝/, also

hDv;Dvi D
1
X

iD1

�i hv; uii2: (11.5.21)

Remark. Those v 2 L2.˝/ that are not contained in H can be characterized by the

fact that the expression on the right-hand side of (11.5.19) or (11.5.21) diverges.

The Proofs of Theorems 11.5.1 and 11.5.2 are now easy: We first check

lim
m!1

�m D 1:

Indeed, otherwise,

kDumk � c for all m and some constant c.

By Rellich’s theorem again, a subsequence of .um/ would then be a Cauchy

sequence in L2.˝/. This, however, is not possible, since the um are pairwise L2-

orthonormal.

It remains to prove the expansion. For v 2 H we put

ˇi WD hv; uii

and

vm WD
X

i�m

ˇiui ; wm WD v � vm:
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Thus, wm is the orthogonal projection of v onto HmC1, and vm then is orthogonal to

HmC1; hence

hwm; ui i D 0 for i � m:

Thus also

hDwm;Dwmi � �mC1hwm;wmi

and

hDwm;Duii D �i hui ;wmi D 0:

These orthogonality relations imply

hwm;wmi D hv; vi � hvm; vmi;

hDwm;Dwmi D hDv;Dvi � hDvm;Dvmi;
(11.5.22)

and then

hwm;wmi � 1

�mC1

hDv;Dvi;

which converges to 0 as the �m tend to 1. Thus, the remainder wm converges to 0

in L2, and so

v D lim
m!1

vm D
X

i

hv; uiiui in L2.˝/:

Also,

Dvm D
X

i�m

ˇiDui ;

and hence

hDvm;Dvmi D
X

i�m

ˇ2i hDui ;Dui i (since hDui ;Duj i D 0 for i ¤ j /

D
X

i�m

�iˇ
2
i :

Since hDvm;Dvmi � hDv;Dvi by (11.5.22) and the �i are nonnegative, this series

then converges, and then for m < n,

hDwm �Dwn;Dwm �Dwni D hDvn �Dvm;Dvn �Dvmi

D
n
X

iDmC1

�iˇ
2
i ! 0 for m; n ! 1;
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and so .Dwm/m2N is a Cauchy sequence in L2, and so wm converges in H , and

the limit is the same as the L2-limit, namely, 0. Therefore, we get (11.5.19)

and (11.5.21), namely,

hDv;Dvi D lim
m!1

hDvm;Dvmi D
X

�iˇ
2
i :

The eigenfunctions .um/m2N thus are an L2-orthonormal sequence. The closure of

the span of the um then is a Hilbert space contained in L2.˝/ and containing H .

Since H (in fact, even C1
0 .˝/ \ H , see the appendix) is dense in L2.˝/, this

Hilbert space then has to be all ofL2.˝/. So, the expansions (11.5.18) and (11.5.20)

are valid for all v 2 L2.˝/.
The strict inequality �1 < �2 in the Dirichlet case will be proved in Theorem 11.5.4

below.

A moment’s reflection also shows that the above procedure produces all the

eigenvalues of ) onH , and that any eigenfunction is a linear combination of the ui .

An easy consequence of the theorems is the following sharp version of the

Poincaré inequality (cf. Theorem 10.2.2):

Corollary 11.5.1. For v 2 H 1;2
0 .˝/,

�1hv; vi � hDv;Dvi; (11.5.23)

where �1 is the first Dirichlet eigenvalue according to Theorem 11.5.1.

For v 2 H 1;2.˝/ with @v
@�

on @˝

�1hv � Nv; v � Nvi � hDv;Dvi; (11.5.24)

where �1 now is the first Neumann eigenvalue according to Theorem 11.5.2, and

Nv WD 1
k˝k

R

˝
v.x/dx is the average of v on ˝ (k˝k is the Lebesgue measure of ˝).

Moreover, if such a v with vanishing Neumann boundary values is of classH 2;2.˝/,

then also

�1hDv;Dvi � h
v; 
vi; (11.5.25)

�1 again being the first Neumann eigenvalue.

Proof. The inequalities (11.5.23) and (11.5.24) readily follow from (11.5.14),

noting that in the second case, v�Nv is orthogonal to the constants, the eigenfunctions

for �0 D 0, since
Z

˝

.v.x/ � Nv/dx D 0: (11.5.26)

As an alternative, and in order to obtain also (11.5.25), we note thatDv D D.v� Nv/,

v D 
.v � Nv/, and

hv � Nv; v � Nvi D
1
X

iD1

hv; uii2; (11.5.27)
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that is, the term for i D 0 disappears from the expansion because v� Nv is orthogonal

to the constant eigenfunction u0. Using

hDv;Dvi D
1
X

iD1

�i hv; uii2

h*v; 
vi D
1
X

iD1

�2i hv; uii2

and �1 � �i then yields (11.5.24) and (11.5.25). ut

More generally, we can derive Courant’s minimax principle for the eigenvalues

of 
:

Theorem 11.5.3. Under the above assumptions, let P k be the collection of all k-

dimensional linear subspaces of the Hilbert spaceH . Then the kth eigenvalue of 


(i.e., �k in the Dirichlet case, �k�1 in the Neumann case) is characterized as

max
L2P k�1

min

� hDu;Dui
hu; ui W u ¤ 0; u orthogonal to L;

i.e., hu; vi D 0 for all v 2 L

�

; (11.5.28)

or dually as

min
L2P k

max

� hDu;Dui
hu; ui W u 2 L n f0g

�

: (11.5.29)

Proof. We have seen that

�m D min

� hDu;Dui
hu; ui W u ¤ 0; u orthogonal to the ui with i � m � 1

�

:

(11.5.30)

It is also clear that

�m D max

� hDu;Dui
hu; ui W u ¤ 0 linear combination of ui with i � m

�

; (11.5.31)

and in fact, this maximum is realized if u is a multiple of the mth eigenfunction um,

because �i D hDui ;Dui i
hui ;ui i � �m for i � m and the ui are pairwise orthogonal.

Now let L be another linear subspace of H of the same dimension as the span

of the ui , i � m. Let L be spanned by vectors vi , i � m. We may then find some

v D
P

˛j vj 2 L with

hv; uii D
X

j

˛j hvj ; uii D 0 for i � m � 1: (11.5.32)
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(This is a system of homogeneous linearly independent equations for the ˛j , with

one fewer equation than unknowns, and so it can be solved.) Inserting (11.5.32) into

the expansion (11.5.19) or (11.5.21), we obtain

hDv;Dvi
hv; vi D

P1
jDm �j hv; uj i2
P1

jDmhv; uj i2
� �m:

Therefore,

max
v2Lnf0g

hDv;Dvi
hv; vi � �m;

and (11.5.29) follows. Suitably dualizing the preceding argument, which we leave

to the reader, yields (11.5.28). ut

While for certain geometrically simple domains, like balls and cubes, one may

determine the eigenvalues explicitly; for a general domain, it is a hopeless endeavor

to attempt an exact computation of its eigenvalues. One therefore needs approxima-

tion schemes, and the minimax principle of Courant suggests one such method, the

Rayleigh–Ritz scheme. For that scheme, one selects linearly independent functions

w1; : : : ;wk 2 H , which then span a linear subspace L, and seeks the critical values,

and in particular the maximum of

hDw;Dwi
hw;wi for w 2 L:

With

aij WD hDwi ;Dwj i; A WD .aij /i;jD1;:::;k ;

bij WD hwi ;wj i; B WD .bij /i;jD1;:::;k ;

for

w D
X

jD1

cjwj ;

then

hDw;Dwi
hw;wi D

Pk
i;jD1 aij cicj

Pk
i;jD1 bij cicj

;

and the critical values are given by the solutions �1; : : : ; �k of

det.A� �B/ D 0:
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These values �1; : : : ; �k then are taken as approximations of the first k eigenvalues;

in particular, if they are ordered such that �k is the largest among them, that value is

supposed to approximate the kth eigenvalue. One then tries to optimize with respect

to the choice of the functions w1; : : : ;wk ; i.e., one tries to make �k as small as

possible, according to (11.5.29), by suitably choosing w1; : : : ;wk .

The characterizations (11.5.28) and (11.5.29) of the eigenvalues have many

further useful applications. The basis of those applications is the following simple

remark: In (11.5.29), we take the maximum over all u 2 H that are contained in

some subspace L. If we then enlargeH to some Hilbert spaceH 0, thenH 0 contains

more such subspaces thanH , and so the minimum over all of them cannot increase.

Formally, if we put P k.H/ WD fk-dimensional linear subspaces of H g, then, if

H � H 0, it follows that P k.H/ � P k.H 0/, and so

min
L2P k .H/

max
u2Lnf0g

hDu;Dui
hu; ui � min

L02P k .H 0/
max

u2L0nf0g

hDu;Dui
hu; ui : (11.5.33)

Corollary 11.5.2. Under the above assumptions, we let 0 < �D1 � �D2 � � � � be the

Dirichlet eigenvalues, and 0 D �N0 < �
N
1 � �N2 � � � � be the Neumann eigenvalues.

Then

�Nj�1 � �Dj for all j:

Proof. The Hilbert space for the Dirichlet case, namely, H
1;2
0 .˝/, is a subspace of

that for the Neumann case, namely,W 1;2.˝/, and so (11.5.33) applies. ut

The next result states that the eigenvalues decrease if the domain is enlarged:

Corollary 11.5.3. Let ˝1 � ˝2 be bounded open subsets of Rd . We denote the

eigenvalues for the Dirichlet case of the domain˝ by �k.˝/. Then

�k.˝2/ � �k.˝1/ for all k: (11.5.34)

Proof. Any v 2 H
1;2
0 .˝1/ can be extended to a function Qv 2 H

1;2
0 .˝2/, simply by

putting

Qv.x/ D
(

v.x/ for x 2 ˝1;

0 for x 2 ˝2 n˝1:

Lemma 10.2.2 tells us that indeed Qv 2 H 1;2
0 .˝2/. Thus, the Hilbert space employed

for ˝1 is contained in that for ˝2, and the principle (11.5.33) again implies the

result for the Dirichlet case. ut

Remark. Corollary 11.5.3 is not in general valid for the Neumann case. A first idea

to show a result in that case is to extend functions v 2 W 1;2.˝1/ to ˝2 by the

extension operator E constructed in Sect. 11.4. However, this operator does not
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preserve the norm: In general, kEvkW 1;2.˝2/
> kvkW 1;2.˝1/

, and so this does not

represent W 1;2.˝1/ as a Hilbert subspace of W 1;2.˝2/. This difficulty makes the

Neumann case more involved, and we omit it here.

The next result concerns the first eigenvalue �1 of + with Dirichlet boundary

conditions:

Theorem 11.5.4. Let �1 be the first eigenvalue of + on the open and bounded

domain ˝ � R
d with Dirichlet boundary conditions. Then �1 is a simple eigen-

value, meaning that the corresponding eigenspace is one-dimensional. Moreover,

an eigenfunction u1 for �1 has no zeros in ˝ , and so it is either everywhere positive

or negative in ˝ .

Proof. Let

+u1 C �1u1 D 0 in ˝:

By Corollary 10.2.2, we know that ju1j 2 W 1;2.˝/, and

hDju1j;Dju1ji
hju1j; ju1ji

D hDu1;Du1i
hu1; u1i

D �1:

Therefore, ju1j also minimizes

hDu;Dui
hu; ui ;

and by the reasoning leading to Theorem 11.5.1, it must also be an eigenfunction

with eigenvalue �1. Therefore, it is a nonnegative solution of

+u C �u D 0 in ˝;

and by the strong maximum principle (Theorem 3.1.2), it cannot assume a nonpos-

itive interior minimum. Thus, it cannot become 0 in ˝ , and so it is positive in ˝ .

This, however, implies that the original function u1 cannot become 0 either. Thus,

u1 is of a fixed sign.

This argument applies to all eigenfunctions with eigenvalue �1. Since two

functions v1; v2 neither of which changes sign in ˝ cannot satisfy

Z

˝

v1.x/v2.x/dx D 0;

i.e., cannot beL2-orthogonal, the space of eigenfunctions for �1 is one-dimensional.

ut

The classical text on eigenvalue problems is Courant–Hilbert [5].
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Remark. More generally, Courant’s nodal set theorem holds: Let ˝ � R
d be open

and bounded, with Dirichlet eigenvalues 0 < �1 < �2 � : : : and corresponding

eigenfunctions u1; u2; : : : . We call

� k WD fx 2 ˝ W uk.x/ D 0g

the nodal set of uk . The complement˝ n � k then has at most k components.

Summary

In this chapter we have introduced Sobolev spaces as spaces of integrable functions

that are not necessarily differentiable in the classical sense, but do possess so-

called generalized or weak derivatives that obey the rules for integration by

parts. Embedding theorems relate Sobolev spaces to spaces of Lp-functions or of

continuous, Hölder continuous, or differentiable functions.

The weak solutions of the Laplace and Poisson equations, obtained in Chap. 10

by Dirichlet’s principle, naturally lie in such Sobolev spaces. In this chapter, embed-

ding theorems allow us to show that weak solutions are regular, i.e., differentiable

of any order, and hence also solutions in the classical sense.

Based on Rellich’s theorem, we have treated the eigenvalue problem for the

Laplace operator and shown that any L2-function admits an expansion in terms of

eigenfunctions of the Laplace operator.

Exercises

11.1. Let u W ˝ ! R be integrable, and let ˛;ˇ be multi-indices. Show that if

two of the weak derivatives D˛Cˇu, D˛Dˇu, DˇD˛u exist, then the third one also

exists, and all three of them coincide.

11.2. Let u; v 2 W 1;1.˝/ with uv, uDv C vDu 2 L1.˝/. Then uv 2 W 1;1.˝/ as

well, and the weak derivative satisfies the product rule

D.uv/ D uDv C vDu:

(For the proof, it is helpful to first consider the case where one of the two functions

is of class C 1.˝/.)

11.3. For m� 2, 1� q�m=2, u 2H
2; m
qC1

0 .˝/ \ L
m
q�1 .˝/ we have u 2

H
1;mq .˝/ and

kDuk2
L
m
q .˝/

� const kuk
L

m
q�1 .˝/





D2u






L
m
qC1 .˝/

:
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(Hint: For p D m
q

,

jDiujp D Di .uDiujDiujp�2/� uDi.DiujDiujp�2/:

The first term on the right-hand side disappears upon integration over ˝ for u 2
C1
0 .˝/ (approximation argument!), and for the second one, we utilize the formula

Di .vjvjp�2/ D .p � 1/.Div/jvjp�2:

Finally, you need the following version of Hölder’s inequality:

ku1u2u3kL1.˝/ � ku1kLp1 .˝/ ku2kLp2 .˝/ ku3kLp3 .˝/

for ui 2 Lpi .˝/, 1
p1

C 1
p2

C 1
p3

D 1 (proof!).)

11.4. Let

˝1 WD B̊.0; 1/ � R
d ;

˝2 WD R
d n B̊.0; 1/;

i.e., the d -dimensional unit ball and its complement. For which values of k; p; d; ˛ is

f .x/ WD jxj˛

in W k;p.˝1/ or W k;p.˝2/?

11.5. Prove the following version of the Sobolev embedding theorem:

Let u 2 W k;p.˝/,˝ 0 �� ˝ � R
d . Then

u 2
(

L
dp

d�kp .˝ 0/ for kp < d;

Cm.˝ 0/ for 0 � m < k � d=p:

11.6. State and prove a generalization of Corollary 11.1.5 for u 2 W k;p.˝/ that is

analogous to Exercise 11.5.

11.7. Supply the details of the proof of Theorem 11.3.2 (This may sound like a

dull exercise after what has been said in the text, but in order to understand the

techniques for estimating solutions of PDEs, a certain drill in handling additional

lower-order terms and variable coefficients may be needed.)

11.8. Carry out the eigenvalue analysis for the Laplace operator under periodic

boundary conditions as defined in Sect. 2.1. In particular, state and prove an

analogue of Theorems 11.5.1 and 11.5.2.



Chapter 12

Strong Solutions

12.1 The Regularity Theory for Strong Solutions

We start with an elementary observation: Let v 2 C 3
0 .˝/. Then

,
,D2v

,
,
2

L2.˝/
D
Z

˝

d
X

i;jD1

vxi xj vxi xj D �
Z

˝

d
X

i;jD1

vxi xj xi vxj

D
Z

˝

X

iD1

vxi xi

d
X

jD1

vxj xj D k�vk2L2.˝/ : (12.1.1)

Thus, the L2-norm of �v controls the L2-norms of all second derivatives of v.

Therefore, if v is a solution of the differential equation

�v D f;

the L2-norm of f controls the L2-norm of the second derivatives of v. This is

a result in the spirit of elliptic regularity theory as encountered in Sect. 11.2 (cf.

Theorem 11.2.1). In the preceding computation, however, we have assumed that,

firstly, v is thrice continuously differentiable and, secondly, that it has compact

support. The aim of elliptic regularity theory, however, is to deduce such regularity

results, and also, one typically encounters nonvanishing boundary terms on @˝ .

Thus, our assumptions are inappropriate, and we need to get rid of them. This is the

content of this section.

We shall first discuss an elementary special case of the Calderon–Zygmund

inequality. Let f 2 L2.˝/, ˝ open and bounded in R
d . We define the Newton

potential of f as

w.x/ WD
Z

˝

� .x; y/f .y/dy (12.1.2)
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using the fundamental solution constructed in Sect. 2.1,

� .x; y/ D
(

1
2�

log jx � yj for d D 2;

1
d.2�d/!d

jx � yj2�d for d > 2:

Theorem 12.1.1. Let f 2 L2.˝/ and let w be the Newton potential of f . Then

w 2 W 2;2.˝/, �w D f almost everywhere in ˝ , and

-
-D2w

-
-
L2.Rd /

D kf kL2.˝/ (12.1.3)

(w is called a strong solution of �w D f , because this equation holds almost

everywhere).

Proof. We first assume f 2 C1
0 .˝/. Then w 2 C1.Rd /. Let ˝ �� ˝0, ˝0

bounded with a smooth boundary. We first wish to show that for x 2 ˝ ,

@2

@xi@xj
w.x/ D

Z

˝0

@2

@xi@xj
� .x; y/.f .y/ � f .x//dy

C f .x/

Z

@˝0

@

@xi
� .x; y/�j do.y/; (12.1.4)

where � D .�1; : : : ; �d / is the exterior normal and do.y/ yields the induced

measure on @˝0. This is an easy consequence of the fact that

ˇ

ˇ

ˇ

ˇ

@2

@xi @xj
� .x; y/.f .y/ � f .x//

ˇ

ˇ

ˇ

ˇ

� const
1

jx � yjd
jf .y/ � f .x/j

� const
1

jx � yjd�1
kf kC 1 :

In other words, the singularity under the integral sign is integrable. (Namely, one

simply considers

v".x/ D
Z

@

@xi
� .x; y/�".x � y/f .y/dy;

with �".y/ D 0 for jyj � ", �".y/ D 1 for jyj � 2" and jD�"j � 2
"
, and shows that

as " ! 0, Dj v" converges to the right-hand side of (12.1.4).)

Remark. Equation (12.1.4) continues to hold for a Hölder continuous f , cf.

Sect. 13.1 below, since in that case, one can estimate the integrand by

const
1

jx � yjd�˛
kf kC ˛

(0 < ˛ < 1).
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Since

�� .x; y/ D 0 for all x ¤ y;

for ˝0 D B.x; R/, R sufficiently large, from (12.1.4), we obtain

�w.x/ D 1

d!d Rd�1
f .x/

Z

jx�yjDR

d
X

iD1

�i.y/�i.y/ do.y/ D f .x/: (12.1.5)

Thus, if f has compact support, so does �w; let the latter be contained in the interior

of B.0; R/. Then

Z

B.0;R/

d
X

i;j D1

.
@2

@xi @xj
w

�2

D �
Z

B.0;R/

X

i

@

@xi
w

@

@xi
f

C
Z

@B.0;R/

Dw � @

@�
Dw do.y/

D
Z

B.0;R/

.�w/2

C
Z

@B.0;R/

Dw � @

@�
Dw do.y/: (12.1.6)

As R ! 1, Dw behaves like R1�d , D2w like R�d , and therefore, the integral on

@B.0; R/ converges to zero for R ! 1. Because of (12.1.5), (12.1.6) then yields

(12.1.3).

In order to treat the general case f 2 L2.˝/, we argue that by Theorem 10.2.7,

for f 2 C 1
0 .˝/, the W 1;2-norm of w can be controlled by the L2-norm of f .1

We then approximate f 2 L2.˝/ by .fn/ 2 C 1
0 .˝/. Applying (12.1.3) to the

differences .wn � wm/ of the Newton potentials wn of fn, we see that the latter

constitute a Cauchy sequence in W 2;2.˝/. The limit w again satisfies (12.1.3),

and since L2-functions are defined almost everywhere, �w D f holds almost

everywhere, too. ut

The above considerations can also be used to provide a proof of Theorem 11.2.1.

We recall that result:

Theorem 12.1.2. Let u 2 W 1;2.˝/ be a weak solution of �u D f , with f 2
L2.˝/. Then u 2 W 2;2.˝ 0/, for every ˝ 0 �� ˝ , and

kukW 2;2.˝0/ � const
�

kukL2.˝/ C kf kL2.˝/

�

; (12.1.7)

1See the proof of Lemma 10.3.1.
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with a constant depending only on d , ˝ , and ˝ 0. Moreover,

�u D f almost everywhere in ˝:

Proof. As before, we first consider the case u 2 C 3.˝/. Let B.x;R/ � ˝ , � 2

.0; 1/, and let � 2 C 3
0 .B.x; R// be a cutoff function with

0 � �.y/ � 1;

�.y/ D 1 for y 2 B.x; �R/;

�.y/ D 0 for y 2 R
d n B

�

x;
1 C �

2
� R

�

;

jD�j � 4

.1 � �/R
;

ˇ

ˇD2�
ˇ

ˇ � 16

.1 � �/2R2
:

We put

v WD �u:

Then v 2 C 3
0 .B.x; R//, and (12.1.1) implies





D2v






L2.B.x;R//
D k�vkL2.B.x;R// : (12.1.8)

Now,

�v D ��u C 2Du � D� C u��;

and thus





D2u






L2.B.x;�R//
�




D2v






L2.B.x;R//

� const
�

kf kL2.B.x;R// C 1

.1 � �/R
kDuk

L2
�

B
�

x; 1C�
2 �R

��

C 1

.1 � �/2R2
kukL2.B.x;R//

�

: (12.1.9)

Now let � 2 C 1
0 .B.x; R// be a cutoff function with

0 � �.y/ � 1;

�.y/ D 1 for y 2 B

�

x;
1 C �

2
R

�

;

jD�j � 4

.1 � �/R
:
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Putting w D �2u and using that u is a weak solution of �u D f , we obtain

Z

B.x;R/

Du � D.�2u/ D �

Z

B.x;R/

f �2u;

hence
Z

B.x;R/

�2 jDuj
2 D � 2

Z

B.x;R/

�uDu � D� �

Z

B.x;R/

f �2u

�
1

2

Z

B.x;R/

�2 jDuj
2 C 2

Z

B.x;R/

u2 jD�j
2

C .1 � �/2R2

Z

B.x;R/

f 2 C
1

.1 � �/2R2

Z

B.x;R/

u2:

Thus, we have an estimate for k�DukL2.B.x;R//, and also

kDuk
L2
�

B
�

x; 1C�
2 R

�� � k�DukL2.B.x;R//

� const

 

1

.1 � �/R
kukL2.B.x;R//

C .1 � �/R kf kL2.B.x;R//

!

:

(12.1.10)

Inequalities (12.1.9) and (12.1.10) yield





D2u






L2.B.x;�R//
� const

�

kf kL2.B.x;R// C
1

.1 � �/2R2
kukL2.B.x;R//

�

:

(12.1.11)

In (12.1.11) we put � D 1
2
, and we cover ˝ 0 by a finite number of balls B.x; R=2/

with R � dist.˝ 0; @˝/ and obtain (12.1.7) for u 2 C 3.˝/. For the general case

u 2 W 1;2.˝/, we consider the mollifications uh defined in appendix. Thus, let 0 <

h < dist.˝ 0; @˝/. Then

Z

˝

Duh � Dv D �

Z

fh v; for all v 2 H 1;2
0 .˝/;

and since uh 2 C 1.˝/, also

�uh D fh:

By Lemma A.3,

kuh � uk ; kfh � f kL2.˝/ ! 0:
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In particular, the uh and the fh satisfy the Cauchy property in L2.˝/. We apply

(12.1.7) for uh1 � uh2 to obtain

kuh1 � uh2kW 2;2.˝0/ � const
�

kuh1 � uh2kL2.˝/ C kfh1 � fh2kL2.˝/

�

:

Thus, the uh satisfy the Cauchy property in W 2;2.˝ 0/. Consequently, the limit u is

in W 2;2.˝ 0/ and satisfies (12.1.7). ut

If now f 2 W 1;2.˝/, then, because u 2 W 2;2.˝ 0/ for all ˝ 0 �� ˝ , Diu is

a weak solution of �Diu D Dif in ˝ 0. We then obtain Diu 2 W 2;2.˝ 00/ for

all ˝ 00 �� ˝ 0, i.e., u 2 W 3;2.˝ 00/. Iteratively, we thus obtain a new proof of

Theorem 11.2.2, which we now recall:

Theorem 12.1.3. Let u 2 W 1;2.˝/ be a weak solution of �u D f . Then u 2

W kC2;2.˝0/ for all ˝0 �� ˝ , and

kukW kC2;2.˝0/
� const

�

kukL2.˝/ C kf kW k;2.˝/

�

;

with a constant depending on k; d;˝ , and˝0.

In the same manner, we also obtain a new proof of Corollary 11.2.1:

Corollary 12.1.1. Let u 2 W 1;2.˝/ be a weak solution of �u D f , for f 2

C1.˝/. Then u 2 C1.˝/.

Proof. Theorem 12.1.3 and Corollary 11.1.2. ut

12.2 A Survey of the Lp-Regularity Theory and Applications

to Solutions of Semilinear Elliptic Equations

The results of the preceding section are valid not only for the exponent p D 2, but

in fact for any 1 < p < 1. We wish to explain this result in the present section.

The basis of this Lp-regularity theory is the Calderon–Zygmund inequality, which

we shall only quote here without proof:

Theorem 12.2.1. Let 1 < p < 1, f 2 Lp.˝/ (˝ � R
d open and bounded), and

let w be the Newton potential (12.1.1) of f . Then w 2 W 2;p.˝/, �w D f almost

everywhere in ˝ , and





D2w






Lp.˝/
� c.d; p/ kf kLp.˝/ ; (12.2.1)

with the constant c.d; p/ depending only on the space dimension d and the

exponent p.
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In contrast to the case p D 2, i.e., Theorem 12.1.1 , where c.d; 2/ D 1 for all d

and the proof is elementary, the proof of the general case is relatively involved; we

refer the reader to Bers–Schechter [2] or Gilbarg–Trudinger [12].

The Calderon–Zygmund inequality yields a generalization of Theorem 12.1.2:

Theorem 12.2.2. Let u 2 W 1;1.˝/ be a weak solution of �u D f , f 2 Lp.˝/,

1 < p < 1, i.e.,

Z

Du �D' D �

Z

f ' for all ' 2 C1
0 .˝/: (12.2.2)

Then u 2 W 2;p.˝ 0/ for any ˝ 0 �� ˝ , and

kukW 2;p.˝0/ � const
�

kukLp.˝/ C kf kLp.˝/
�

; (12.2.3)

with a constant depending on p; d;˝ 0, and ˝ . Also,

�u D f almost everywhere in ˝: (12.2.4)

We do not provide a complete proof of this result either. This time, however, we

shall present at least a sketch of the proof.

Apart from the fact that (12.1.8) needs to be replaced by the inequality





D2v






Lp.B.x;R//
� const. k�vkLp.B.x;r// (12.2.5)

coming from the Calderon–Zygmund inequality (Theorem 12.2.1), we may first

proceed as in the proof of Theorem 12.1.2 and obtain the estimate





D2v






Lp.B.x;R//
� const

 

kf kLp.B.x;R// C
1

.1 � �/R
kDuk

Lp.B.x; 1C�
2 R//

C
1

.1 � �/2R2
kukLp.B.x;r//

!

(12.2.6)

for 0 < � < 1, B.x; R/ � ˝ . The second part of the proof, namely, the estimate

of kDukLp , however, is much more difficult for p ¤ 2 than for p D 2. One

needs an interpolation argument. For details, we refer to Gilbarg–Trudinger [12]

or Giaquinta [11]. This ends our sketch of the proof.

The reader may now get the impression that the Lp-theory is a technically subtle, but

perhaps essentially useless, generalization of the L2-theory. The Lp-theory becomes

necessary, however, for treating many nonlinear PDEs. We shall now discuss an

example of this. We consider the equation

�u C � .u/jDuj2 D 0 (12.2.7)
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with a smooth � . We also require that � .u/ be bounded. This holds if we assume

that � itself is bounded, or if we know already that our (weak) solution u is bounded.

Equation (12.2.7) occurs as the Euler–Lagrange equation of the variational

problem

I.u/ WD

Z

˝

g.u.x//jDu.x/j2 dx ! min; (12.2.8)

with a smooth g that satisfies the inequalities

0 < � � g.v/ � � < 1; jg0.v/j � k < 1 (12.2.9)

(g0 is the derivative of g), with constants �; �; k, for all v.

In order to derive the Euler–Lagrange equation for (12.2.8), as in Sect. 10.4, for

' 2 H
1;2
0 .˝/, t 2 R, we consider

I.u C t'/ D

Z

˝

g.u C t'/jD.u C t'/j2 dx:

In that case,

d

dt
I.u C t'/jtD0 D

Z

(

2g.u/
X

i

Di uDi ' C g0.u/jDuj2'

)

dx

D

Z

 

�2g.u/�u � 2
X

i

Di g.u/Di u C g0.u/ jDuj2

!

' dx

D

Z

�

�2g.u/�u � g0.u/jDuj2
�

' dx

after integrating by parts and assuming for the moment u 2 C 2.

The Euler–Lagrange equation stems from requiring that this expression vanishes

for all ' 2 H
1;2
0 .˝/, which is the case, for example, if u minimizes I.u/ with respect

to fixed boundary values. Thus, that equation is

�u C
g0.u/

2g.u/
jDuj2 D 0: (12.2.10)

With � .u/ WD
g0.u/

2g.u/
, we have (12.2.7).

In order to apply the Lp-theory, we assume that u is a weak solution of (12.2.7)

with

u 2 W 1;p1.˝/ for some p1 > d (12.2.11)

(as always, ˝ � R
d , and so d is the space dimension).
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The assumption (12.2.11) might appear rather arbitrary. It is typical for nonlinear

differential equations, however, that some such hypothesis is needed. Although one

may show in the present case (see Sect. 14.4 below) that any bounded weak solution

u of class W 1;2.˝/ is also contained in W 1;p.˝/ for all p, in structurally similar

cases, for example, if u is vector-valued instead of scalar-valued [so that in place of

a single equation, we have a system of—typically coupled—equations of the type

(12.2.7)], there exist examples of solutions of class W 1;2.˝/ that are not contained

in any of the spaces W 1;p.˝/ for p > 2. We shall display such an example below,

see (12.3.4). In other words, for nonlinear equations, one typically needs a certain

initial regularity of the solution before the linear theory can be applied.

In order to apply the Lp-theory to our solution u of (12.2.7), we put

f .x/ WD �� .u.x//jDu.x/j2: (12.2.12)

Because of (12.2.11) and the boundedness of � .u/, then

f 2 Lp1=2.˝/; (12.2.13)

and u satisfies

�u D f in ˝: (12.2.14)

By Theorem 12.2.2,

u 2 W 2;p1=2.˝ 0/ for any ˝ 0 �� ˝: (12.2.15)

By the Sobolev embedding theorem (Corollaries 11.1.1 and 11.1.3, and Exercise

10.5 of Chap. 11),

u 2 W 1;p2 .˝ 0/ for any ˝ 0 �� ˝; (12.2.16)

with

p2 D
d

p1

2

d �
p1

2

> p1 because of p1 > d: (12.2.17)

Thus,

f 2 L
p2
2 .˝ 0/ for all ˝ 0 �� ˝; (12.2.18)

and we can apply Theorem 12.2.2 and the Sobolev embedding theorem once more,

to obtain

u 2 W 2;
p2
2 \ W 1;p3.˝ 0/ with p3 D

d
p2

2

d �
p2

2

> p2 (12.2.19)
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for all ˝ 0 �� ˝ 00. Iterating this procedure, we finally obtain

u 2 W 2;q.˝ 0/ for all q: (12.2.20)

We now differentiate (12.2.7), in order to obtain an equation forDiu, i D 1; : : : ; d :

�Diu C � 0.u/Di ujDuj2 C 2� .u/
X

j

Dj uDij u D 0: (12.2.21)

This time, we put

f WD �� 0.u/DiujDuj2 � 2� .u/
X

j

Dj uDij u: (12.2.22)

Then

jf j � const .jDuj3 C jDujjD2uj/;

and because of (12.2.20) thus

f 2 Lp.˝ 0/ for all p:

This means that v WD Di u satisfies

�v D f with f 2 Lp.˝ 0/ for all p: (12.2.23)

By Theorem 12.2.2, we infer

v 2 W 2;p.˝ 0/ for all p;

i.e.,

u 2 W 3;p.˝ 0/ for all p: (12.2.24)

We differentiate the equation again, to obtain equations for Dij u .i; j D 1; : : : ; d /,

apply Theorem 12.2.2, conclude that u 2 W 4;p.˝ 0/, etc. Iterating the procedure

again (this time with higher-order derivatives instead of higher exponents) and

applying the Sobolev embedding theorem (Corollary 11.1.2), we obtain the

following result:

Theorem 12.2.3. Let u 2 W 1;p1 .˝/, for p1 > d .˝ � R
d /, be a weak solution of

�u C � .u/jDuj2 D 0 (12.2.25)

where � is smooth and � .u/ is bounded. Then

u 2 C 1.˝/:
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The principle of the preceding iteration process is to use the information about the

solution u derived in one step as structural information about the equation satisfied

by u in the next step, in order to obtain improved information about u. In the example

discussed here, we use this information in the right-hand side of the equation, but in

Chap. 14 we shall see other instances.

More precisely, for our equation �u D �� .u/jDuj2, we have used calculus

inequalities, like the embedding theorems of Sobolev or Morrey, in order to transfer

information from the left-hand side to the right-hand side, and we have used elliptic

regularity theory to transfer information in the other direction. In this way, we can

work ourselves up to ever higher regularity. Such iteration processes are called

bootstrapping; they are typical and essential tools in the study of nonlinear PDEs.

Usually, to get the iteration started, one needs to know some initial regularity of the

solution, however. In Sect. 14.3, we shall improve Theorem 12.2.3 by showing that

we only need to assume the boundedness of u to get its continuity.

12.3 Some Remarks About Semilinear Elliptic Systems;

Transformation Rules for Equations and Systems

The results for solutions of semilinear elliptic equations discussed in the previous

section, however, no longer hold for systems of elliptic equations of the type of

(12.2.25). In this section, we wish to briefly discuss such systems, without being

able to provide a comprehensive treatment, however. In order to connect with

the preceding section, we start with an example. We consider the map already

considered in Example (iii) of Sect. 10.2,

u W B.0; 1/.� R
d / ! R

d ;

x 7!
x

jxj
;

which is discontinuous at 0. We have seen there that for d � 3, u 2 W 1;2

.B.0; 1/;Rd / (this means that all components of u are of class W 1;2). We recall

the formula (10.2.2): We let ei be the i th unit vector, i.e., x D
P

i xi ei . For x ¤ 0,

we have

@

@xi

x

jxj
D

ei

jxj
�

xi x

jxj3
I (12.3.1)

hence
ˇ

ˇ

ˇ

ˇ

D
x

jxj

ˇ

ˇ

ˇ

ˇ

2

D
d � 1

jxj2
: (12.3.2)
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Therefore,
Z

B.0;1/

jDuj2 < 1 for d � 3;

i.e., u 2 W 1;2.B.0; 1// for d � 3.

Next, from (12.3.1),

@2

@xi@xj
x

jxj
D �

xj ei

jxj3
�
xiej

jxj3
�
xıij

jxj3
C
3xixjx

jxj5
;

with ıij D 1 for i D j and 0 else. This implies

�
x

jxj
D �

.d � 1/x

jxj3
; (12.3.3)

and from (12.3.2) and (12.3.3)

�u C ujDuj2 D 0: (12.3.4)

Written out with indices, this is

�u˛ C u˛
d
X

i;ˇD1

jDiu
ˇj2 D 0 for ˛ D 1; : : : ; d:

In particular, we see that the equations for the components u˛ of u are coupled by

the nonlinearity.

Now, we shall show that u, even though it is not continuous at x D 0, nevertheless

is a weak solution of (12.3.4) on the ball B.0; 1/. We need to verify that, for ' 2

H
1;2
0 \L1.B.0; 1/;Rd /,

Z

B.0;1/

d
X

iD1

d
X

˛D1

.Diu
˛Di'

˛ � u˛'˛jDuj2/ D 0: (12.3.5)

In order to handle the discontinuity at 0, we utilize the Lipschitz cut-off functions

introduced in Sect. 10.2,

�m WD

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if jxj � 2�m

1
2m�1

�

1
jxj

� 2m�1
�

if 2�m � jxj � 2�.m�1/

0 if 2�.m�1/ � jxj

and write ' D .1 � �m/' C �m'. The first term then vanishes near 0, and since u

is smooth away from 0 and satisfies the (12.3.4) there, this term yields 0 in (12.3.5).
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When we insert the second term, �m', in (12.3.5), the only contribution that does

not obviously go to 0 for m ! 1 is

Z d
X

iD1

d
X

˛D1

.Diu
˛.Di�m/'

˛/: (12.3.6)

However, since

@�m

@xi
D

(

21�m xi

jxj3
for 2�m � jxj � 2�.m�1/;

0 otherwise;

we have
ˇ

ˇ

ˇ

ˇ

@�m

@xi

ˇ

ˇ

ˇ

ˇ

�
2

jxj
;

and with Hölder’s inequality, we see with (12.3.2) that (12.3.6) does go to 0 for

m ! 1.

We conclude that (12.3.5) holds, i.e., u D x
jxj

is a weak solution of (12.3.4)

on B.0; 1/, indeed. Since u is not continuous, we see that solutions of systems of

semilinear elliptic equations need not be regular, in contrast to the case for single

equations. Our example, originally found in [13], works in dimension d � 3; for a

two-dimensional example, see the exercises.

Semilinear elliptic equations of the type discussed here play an important role in

geometry; see [20].

In order to see how such semilinear systems naturally arise, we start with

the Laplace equation and investigate how it transforms under changes of the

independent and the dependent variables. We start with the independent variables;

here it suffices to consider the single Laplace equation

�u.x/ D 0: (12.3.7)

We change the independent variables via � D �.x/, and we now compute the

Laplacian of v.�.x// D u.x/ computed w.r.t. x into a differential equation w.r.t.

�; using @
@xi D

P

k
@�k

@xi
@

@�k , this results in

X

i

@2v.�.x//

.@xi /2
D
X

i

@

@xi

 

X

k

@v

@�k

@�k

@xi

!

D
X

i;k;`

@�k

@xi

@�`

@xi

@2v

@�k@�`
C
X

i;k

@2�k

.@xi /
: (12.3.8)
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Thus, if we put

ak` WD
X

i

@�k

@xi

@�`

@xi
; (12.3.9)

bk WD
X

i

@2�k

.@xi /2
; (12.3.10)

then this becomes

�v.�.x/// D
X

k;`

ak` @2v.�/

@�k@�`
C
X

k

bk @v.�/

@�k
: (12.3.11)

Thus, we have transformed the Laplace equation into another linear equation

whose coefficients, in general, are not constant. The coefficients of the leading

second-order term depend quadratically on the first derivatives of the coordinate

transformation, whereas the additional first-order term depends linearly on the

second derivatives of the transformation. Of course, if the coordinate transformation

is not singular, then .ak`/ is positive definite, and the new equation

X

k;`

ak` @2v.�/

@�k@�`
C
X

k

bk @v.�/

@�k
D 0 (12.3.12)

is still elliptic. In particular, the regularity theory for linear elliptic equations as

developed in previous chapters applies. Of course, in the present case, we know

that a solution has to be smooth as long as the coordinate transformation is smooth,

because u.x/ is smooth as a solution of the Laplace equation (12.3.7). Of course, we

may then also try to revert this procedure and transform an equation of type (12.3.12)

into the Laplace equation (12.3.7), but this is not always possible for given aij ; bi

as (12.3.9) and (12.3.10) cannot always be solved for x D x.�/.

Equation (12.3.12) is not written in divergence form. It is possible, however, to

rewrite this equation in divergence form. An easy way to see is described in the

exercises.

We now transform the dependent variables. For simplicity of notation, we again

start with the scalar equation (12.3.7) and consider the Laplacian of f ı u for some

function f . We obtain

�f ı u D
X

i

@

@xi

�

@f

@u

@u

@xi

�

D
@2f

.@u/2

X

i

�

@u

@xi

�2

C
@f

@u

X

i

@2u

.@xi /2
: (12.3.13)
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The important point here is that we obtain a coefficient
@2f .u/

.@u/2
of the linear

second-order term that depends on the solution u as well as a nonlinear first-order

term
P

i
@2u
.@xi /2

. Thus, the equation �f ı u D 0 now becomes nonlinear. In fact,

equations of this type are called semilinear.

When u and f are vectors, u D .u1; : : : ; un/; f D .f 1; : : : ; f n/, we obtain

the system

�f � ı u D
X

i

@

@xi

 

X

˛

@f �

@u˛

@u˛

@xi

!

D
X

˛;ˇ

 

@2f �

@u˛@uˇ

X

i

@u˛

@xi
@uˇ

@xi

!

C
X

˛

@f �

@u˛

X

i

@2u˛

.@xi /2
: (12.3.14)

When the transformation f is invertible, i.e., when the Jacobian
@f

@u
is invertible, this

leads us to semilinear elliptic systems of the form

�v˛ C
X

i

X

ˇ;


� ˛
ˇ


@uˇ

@xi

@u


@xi
D 0 (12.3.15)

with certain coefficients � ˛
ˇ
 . In general, when we transform both the independent

and the dependent variables, we arrive at the class of systems of the form

X

i;j

aij @2v˛

@xi @xj
C
X

i

bi @v˛

@xi
C
X

i;j

X

ˇ;


aij � ˛
ˇ


@vˇ

@xi

@v


@xj
D 0: (12.3.16)

The important fact is that this class of semilinear elliptic systems is closed

under variable transformations. That is, when we perform a transformation of the

independent or the dependent variables for a system of the form (12.3.16), we obtain

again a system of this type, of course, with different coefficients in general.

In fact, for the regularity theory of elliptic systems, it is often helpful and

important to compose a solution u D .u1; : : : ; un/ of a system of the form (12.3.16)

with a scalar function f in order to obtain an equation. The fundamental advantage

of second-order elliptic equations when compared to systems is that we can apply

the maximum principle.

Summary

A function u from the Sobolev space W 2;2.˝/ is called a strong solution of

�u D f

if that equation holds for almost all x in ˝ .
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In this chapter we show that weak solutions of the Poisson equation are strong

solutions as well. This makes an alternative approach to regularity theory possible.

More generally, for a weak solution u 2 W 1;1.˝/ of

�u D f;

where f 2 Lp.˝/, one may utilize the Calderon–Zygmund inequality to get the

Lp-estimate for all ˝ �� ˝ ,

kukW 2;p.˝0/ � const .kukLp.˝/ C kf kLp.˝//:

This is valid for all 1 < p < 1 (but not for p D 1 or p D 1).

This estimate is useful for iteration methods for the regularity of solutions of

nonlinear elliptic equations. For example, any solution u of

�u C � .u/jDuj2 D 0

with regular � is of class C 1.˝/, provided that it satisfies the initial regularity

u 2 W 1;p.˝/ for some p > d (= space dimension).

Such regularity results are no longer true for solutions of semilinear elliptic systems.

For instance, the system

�u˛ C u˛

d
X

i;ˇD1

jDi u
ˇj2 D 0 for ˛ D 1; : : : ; d

admits the singular weak solution x
jxj

for d � 3.

Finally, we have seen that transforming the independent variables in the Laplace

equation leads to a linear elliptic equation, whereas a transformation of the

dependent variable(s) leads to a semilinear elliptic equation (system).

Exercises

12.1. First, a routine exercise: Extend the reasoning of Sect. 12.2 to elliptic

equations of the form

d
X

i;j D1

Di .a
ij Dj u/ C � .u/jDuj2 D 0:
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12.2. Transform the Dirichlet integral

Z

˝

X

i

�

@u

@xi

�2

dx1 : : : dxd

via the coordinate transformation � D �.x/ into an integral w.r.t. � for v.�/ D

u.x/. Write down the Euler–Lagrange equations for the resulting integral. Observe

that this equation is in divergence form. Argue that since integral is obtained from

the Dirichlet integral by a coordinate transformation, the resulting Euler–Lagrange

equation has to be equivalent to the Laplace equation �u D 0, the Euler–Lagrange

equation of the Dirichlet integral. Therefore, you have found a differential equation

in divergence from that must be equivalent to (12.3.12). That means that the latter

equation can be rewritten in divergence form. (Of course, this can also be checked

directly, but that becomes rather lengthy. Using the transformation formula for the

Dirichlet integral as suggested in the present exercise considerably simplifies the

required computations, as we only have to transform first, but no second derivatives.)

12.3. Using the theorems discussed in Sect. 12.2, derive the following result:

Let u 2 W 1;2.˝/ be a weak solution of

�u D f;

with f 2 W k;p.˝/ for some k � 2 and some 1 < p < 1. Then u 2 W kC2;p.˝0/

for all ˝0 �� ˝ , and

kukW kC2;p.˝0/ � const .kukL1.˝/ C kf kW k;p.˝//:

12.4. Consider the equation

�u C F.u/ D 0

with jF.u/j � cjujp for some p < dC2
d�2

if d > 2 or p < 1 for d D 2.

12.5. What assumptions on F.x; u; Du/ would you need to show regularity results

for (weak, strong) solutions of equations of the form

�u.x/ C F.x; u.x/; Du.x// D 0‹

12.6. Consider the system for a map u W B.0; 1
2
/.� R

2/ ! R
2,

�u1 C
2.u1 C u2/

1 C juj2
jDuj2 D 0

�u2 C
2.u2 � u1/

1 C juj2
jDuj2 D 0:
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Show that

u1.x/ D sin log log
1

jxj

u2.x/ D cos log log
1

jxj

is a bounded weak solution with a singularity at x D 0 (cf. Example (iv) in

Sect. 10.2). This example was found in [8].



Chapter 13

The Regularity Theory of Schauder

and the Continuity Method (Existence
Techniques IV)

13.1 C ˛-Regularity Theory for the Poisson Equation

In this chapter we shall need the fundamental concept of Hölder continuity, which

we now recall from Sect. 11.1:

Definition 13.1.1. Let f W ˝ ! R, x0 2 ˝ , 0 < ˛ < 1. The function f is called

Hölder continuous at x0 with exponent ˛ if

sup
x2˝

jf .x/ � f .x0/j

jx � x0j
˛ < 1: (13.1.1)

Moreover, f is called Hölder continuous in ˝ if it is Hölder continuous at each

x0 2 ˝ (with exponent ˛); we write f 2 C ˛.˝/. If (13.1.1) holds for ˛ D 1,

then f is called Lipschitz continuous at x0. Similarly, C k;˛.˝/ is the space of those

f 2 C k.˝/ whose kth derivative is Hölder continuous with exponent ˛.

We define a seminorm by

jf jC ˛.˝/ WD sup
x;y2˝

jf .x/ � f .y/j

jx � yj
˛ : (13.1.2)

We define

kf kC ˛.˝/ D kf kC 0.˝/ C jf jC ˛.˝/

and

kf kC k;˛ .˝/

as the sum of kf kC k.˝/ and the Hölder seminorms of all kth partial derivatives of

f . As in Definition 13.1.1, in place of C 0;˛, we usually write C ˛. The following

result is elementary:

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214,
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Lemma 13.1.1. If f1; f2 2 C ˛.G/ on G � R
d , then f1f2 2 C ˛.G/, and

jf1f2jC ˛.G/ �
�

sup
G

jf1j
�

jf2jC ˛.G/ C

�

sup
G

jf2j

�

jf1jC ˛.G/ :

Proof.

jf1.x/f2.x/ � f1.y/f2.y/j

jx � yj˛
�

jf1.x/ � f1.y/j

jx � yj˛
jf2.x/j C

jf2.x/ � f2.y/j

jx � yj˛
jf1.y/j;

which directly implies the claim. ut

Theorem 13.1.1. As always, let ˝ � R
d be open and bounded,

u.x/ WD

Z

˝

� .x; y/f .y/dy; (13.1.3)

where � is the fundamental solution defined in Sect. 2.1.

(a) If f 2 L1.˝/ (i.e., supx2˝ jf .x/j < 1),1 then u 2 C 1;˛.˝/, and

kukC 1;˛.˝/ � c1 sup jf j for ˛ 2 .0; 1/: (13.1.4)

(b) If f 2 C ˛
0 .˝/, then u 2 C 2;˛.˝/, and

kukC 2;˛.˝/ � c2 kf kC ˛.˝/ for 0 < ˛ < 1: (13.1.5)

The constants in (13.1.4) and (13.1.5) depend on ˛, d , and on ˝ (on its volume

j˝j and its diameter).

Proof. (a) Up to a constant factor, the first derivatives of u are given by

vi .x/ WD

Z

˝

xi � yi

jx � yj
d

f .y/dy .i D 1; : : : ; d /:

From this formula,

ˇ

ˇvi .x1/ � vi .x2/
ˇ

ˇ � sup
˝

jf j �

Z

˝

ˇ

ˇ

ˇ

ˇ

ˇ

xi
1 � yi

jx1 � yj
d

�
xi

2 � yi

jx2 � yj
d

ˇ

ˇ

ˇ

ˇ

ˇ

dy: (13.1.6)

By the intermediate value theorem, on the line from x1 to x2, there exists some

x3 with

1“sup” here is the essential supremum, as explained in the appendix.
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ˇ

ˇ

ˇ

ˇ

ˇ

xi1 � yi

jx1 � yj
d

�
xi2 � yi

jx2 � yj
d

ˇ

ˇ

ˇ

ˇ

ˇ

�
c3 jx1 � x2j

jx3 � yj
d
: (13.1.7)

We put ı WD 2 jx1 � x2j. Since ˝ is bounded, we can find R > 0 with

˝ � B.x3; R/, and we replace the integral on ˝ in (13.1.6) by the integral

on B.x3; R/, and we decompose the latter as

Z

B.x3;R/

D

Z

B.x3;ı/

C

Z

B.x3;R/nB.x3 ;ı/

D I1 C I2; (13.1.8)

where without loss of generality, we may take ı < R. We have

I1 � 2

Z

B.x3;ı/

1

jx3 � yjd�1
dy D 2d!d ı (13.1.9)

and by (13.1.7)

I2 � c4ı.log R � log ı/; (13.1.10)

and hence

I1 C I2 � c5 jx1 � x2j˛ for any ˛ 2 .0; 1/:

This proves (a) because obviously we also have

ˇ

ˇvi .x/
ˇ

ˇ � c6 sup
˝

jf j : (13.1.11)

(b) Up to a constant factor, the second derivatives of u are given by

wij .x/ D

Z

�

jx � yj
2 ıij � d

�

xi � yi
� �

xj � yj
�

� 1

jx � yj
dC2

f .y/ dyI

however, we still need to show that this integral is finite if our assumption f 2

C ˛
0 .˝/ holds. This will also follow from our subsequent considerations.

We first put f .x/ D 0 for x 2 R
d n ˝; this does not affect the Hölder continuity

of f . We write

K.x � y/ WD
�

jx � yj
2 ıij � d

�

xi � yi
� �

xj � yj
�

� 1

jx � yjdC2

D
@

@xj

 

xi � yi

jx � yjd

!

:
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We have

Z

R1<jyj<R2

K.y/dy D

Z

jyjDR2

yj

R2

�
yi

jyj
d

�

Z

jyjDR1

yj

R1

�
yi

jyj
d

D 0; (13.1.12)

since
yi

jyjd
is homogeneous of degree 1 � d . Thus also

Z

Rd

K.y/dy D 0: (13.1.13)

We now write

wij .x/ D

Z

Rd

K.x � y/f .y/dy

D

Z

Rd

.f .y/ � f .x// K.x � y/dy (13.1.14)

by (13.1.13). As before, on the line from x1 to x2, there is some x3 with

jK.x1 � y/ � K.x2 � y/j �
c7 jx1 � x2j

jx3 � yj
dC1

: (13.1.15)

We again put

ı WD 2 jx1 � x2j

and write [cf. (13.1.14)]

wij .x1/ � wij .x2/

D

Z

Rd

f.f .y/ � f .x1// K.x1 � y/ � .f .y/ � f .x2// K.x2 � y/g dy

D I1 C I2; (13.1.16)

where I1 denotes the integral on B.x1; ı/ and I2 that on R
d n B.x1; ı/. Since

jf .y/ � f .x/j � kf kC ˛ � jx � yj
˛ , it follows that

jI1j � kf kC ˛

Z

B.x1;ı/

fjK.x1 � y/j jx1 � yj
˛ C jK.x2 � y/j jx2 � yj

˛
g dy

� c8 kf kC ˛ � ı˛ : (13.1.17)
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Moreover,

I2 D

Z

Rd nB.x1;ı/

.f .x2/ � f .x1// K.x1 � y/ dy

C

Z

Rd nB.x1;ı/

.f .y/ � f .x2// .K.x1 � y/ � K.x2 � y// dy; (13.1.18)

and the first integral vanishes because of (13.1.12). Employing (13.1.15), and since

for y 2 R
d n B.x1; ı/,

1

jx3 � yj
dC1

�
c9

jx1 � yj
dC1

;

it follows that

jI2j � c10ı kf kC ˛

Z

Rd nB.x1;ı/

jx1 � yj
˛�d�1 � c11ı

˛ kf kC ˛ : (13.1.19)

Inequality (13.1.5) then follows from (13.1.16), (13.1.17), and (13.1.19). ut

Theorem 13.1.2. As always, let ˝ � R
d be open and bounded, and ˝0 �� ˝ .

Let u be a weak solution of �u D f in ˝ .

(a) If f 2 C 0.˝/, then u 2 C 1;˛.˝/, and

kukC 1;˛.˝0/ � c12

�

kf kC 0.˝/ C kukL2.˝/

�

: (13.1.20)

(b) If f 2 C ˛.˝/, then u 2 C 2;˛.˝/, and

kukC 2;˛.˝0/ � c13

�

kf kC ˛.˝/ C kukL2.˝/

�

: (13.1.21)

Remark. The restriction 0 < ˛ < 1 is essential for Theorem 13.1.2, as well as for

the subsequent results. For example, in some neighborhood of 0, the function

u
�

x1; x2
�

D
ˇ

ˇx1
ˇ

ˇ

ˇ

ˇx2
ˇ

ˇ log
�
ˇ

ˇx1
ˇ

ˇC
ˇ

ˇx2
ˇ

ˇ

�

satisfies the inequality

juj C j�uj � const;

while the mixed second derivative @2u

@x1@x2 behaves like

log
�
ˇ

ˇx1
ˇ

ˇC
ˇ

ˇx2
ˇ

ˇ

�

:

Consequently, the C 1;1-norm of u cannot be controlled by pointwise bounds for

f WD �u and u.
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Proof. We demonstrate the estimates (13.1.20) and (13.1.21) first under the

assumption u 2 C 2;˛.˝/. We may cover ˝0 by finitely many balls that are contained

in ˝ . Therefore, it suffices to verify the estimates for the case

˝0 D B.0; r/;

˝ D B.0; R/; 0 < r < R < 1:

Let 0 < R1 < R2 < R. We choose some � 2 C 1
0 .B.0; R2// with 0 � � � 1,

�.x/ D 1 for jxj � R1, and

k�kC k;˛ .B.0;R2// � c14.R2 � R1/
�k�˛ : (13.1.22)

We put

� WD �u: (13.1.23)

Then � vanishes outside of B.0; R2/, and by (2.1.12),

�.x/ D

Z

˝

� .x; y/��.y/dy: (13.1.24)

Here,

�� D ��u C 2Du � D� C u��; (13.1.25)

and so

k��kC 0 � k�ukC 0 C c15 k�kC 2 � kukC 1 ; (13.1.26)

and by Lemma 13.1.1

k��kC ˛ � c16 k�kC 2;˛ .k�ukC ˛ C kukC 1;˛ / ; (13.1.27)

where all norms are computed on B.0; R2/. From Theorem 13.1.1 and (13.1.26) and

(13.1.27), we obtain

k�kC 1;˛ � c17 .k�ukC 0 C k�kC 2 kukC 1/ (13.1.28)

and

k�kC 2;˛ � c18 k�kC 2;˛ .k�ukC ˛ C kukC 1;˛ / ; (13.1.29)

respectively. Since u.x/ D �.x/ for jxj � R1, and recalling (13.1.22), we obtain

kukC 1;˛.B.0;R1// � c19

�

k�ukC 0.B.0;R2// C
1

.R2 � R1/2
kukC 1.B.0;R2// ;

�

(13.1.30)
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and

kukC 2;˛.B.0;R1// � c20

1

.R2 � R1/2C˛

�

k�ukC ˛.B.0;R2// C kukC 1;˛.B.0;R2//

�

(13.1.31)

respectively.

We now interrupt the proof for some auxiliary results:

Lemma 13.1.2.

(a) There exists a constant ca such that for every � > 0 and any function v 2

C 1.B.0; �// W

kvkC 0.B.0;�// � kDvkC 0.B.0;�// C cakvkL2.B.0;�// W (13.1.32)

(b) There exists a constant cb such that for every � > 0 and any function v 2

C 1;˛.B.0; �// W

kvkC 1.B.0;�// � jDvjC ˛.B.0;�// C cbkvkL2.B.0;�// (13.1.33)

[here, jDvjC ˛ is the Hölder seminorm defined in (13.1.2)].

Proof. If (a) did not hold, for every n 2 N, we could find a radius �n and a function

vn 2 C 1.B.0; �n// with

1 D kvnkC 0.B.0;�n// � kDvnkC 0.B.0;�n// C nkvnkL2.B.0;�n//: (13.1.34)

We first consider the case where the radii �n stay bounded for n ! 1 in which

case we may assume that they converge towards some radius �0 and we can consider

everything on the fixed ball B.0; �0/.

Thus, in that situation, we have a sequence vn 2 C 1.B.0; �0// for which

kvnkC 1.B.0;�0// is bounded. This implies that the vn are equicontinuous. By the

theorem of Arzela–Ascoli, after passing to a subsequence, we can assume that the

vn converge uniformly towards some v0 2 C 0.B.0; �// with kv0kC 0.B.0;�0// D 1.

But (13.1.34) would imply kv0kL2.B.0;�0// D 0; hence v � 0, a contradiction.

It remains to consider the case where the �n tend to 1. In that case, we use

(13.1.34) to choose points xn 2 B.0; �n/ with

jvn.xn/j �
1

2
kvnkC 0.B.0;�n// D

1

2
: (13.1.35)

We then consider wn.x/ WD vn.x C xn/ so that wn.0/ � 1
2

while (13.1.34) holds for

wn on some fixed neighborhood of 0. We then apply the Arzela–Ascoli argument to

the wn to get a contradiction as before.

(b) is proved in the same manner. The crucial point now is that for a sequence

vn for which the norms kvnkC 1;˛ are uniformly bounded both the vn and their first

derivatives are equicontinuous. ut
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Lemma 13.1.3.

(a) For " > 0, there exists M."/ .< 1/ such that for all u 2 C 1.B.0; 1//

kukC 0.B.0;1// � " kukC 1.B.0;1// C M."/ kukL2.B.0;1// (13.1.36)

for all u 2 C 1;˛ . For " ! 0,

M."/ � const: "�d : (13.1.37)

(b) For every ˛ 2 .0; 1/ and " > 0, there exists N."/ .< 1/ such that for all

u 2 C 1;˛.B.0; 1//

kukC 1.B.0;1// � " kukC 1;˛.B.0;1// C N."/ kukL2.B.0;1// (13.1.38)

for all u 2 C 1;˛ . For " ! 0,

N."/ � const: "� dC1
˛ : (13.1.39)

(c) For every ˛ 2 .0; 1/ and " > 0, there exists Q."/ .< 1/ such that for all

u 2 C 2;˛.B.0; 1//

kukC 1;˛.B.0;1// � " kukC 2;˛.B.0;1// C Q."/ kukL2.B.0;1// (13.1.40)

for all u 2 C 1;˛ . For " ! 0,

Q."/ � const: "�d�1�˛ : (13.1.41)

Proof. We rescale:

u�.x/ WD u

�

x

�

�

; u� W B.0; �/ ! R: (13.1.42)

Equation (13.1.36) then is equivalent to

ku�kC 0.B.0;�// � "� ku�kC 1.B.0;�// C M."/��d ku�kL2.B.0;�//: (13.1.43)

We choose � such that "� D 1, i.e., � D "�1 and apply (a) of Lemma 13.1.2. This

shows (13.1.43), and (a) follows.

For (b), we shall show

kDukC 0.B.0;1// � " jDujC ˛.B.0;1// C N."/ kukL2.B.0;1//: (13.1.44)

Combining this with (a) then shows the claim. We again rescale by (13.1.42). This

transforms (13.1.44) into

kDu�kC 0.B.0;�// � "�˛ jDu�jC ˛.B.0;�// C N."/��d�1 ku�kL2.B.0;�//: (13.1.45)
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We choose � such that "�˛ D 1, i.e., � D "� 1
˛ and apply (b) of Lemma 13.1.2. This

shows (13.1.45) and completes the proof of (b).

(c) is proved in the same manner. ut

We now continue the proof of Theorem 13.1.2:

For homogeneous polynomials p.t/; q.t/, we define

A1 WD sup
0�r�R

p.R � r/ kukC 1;˛.B.0;r// ;

A2 WD sup
0�r�R

q.R � r/ kukC 2;˛.B.0;r// :

For the proof of (a), we choose R1 such that

A1 � 2p.R � R1/ kukC 1;˛.B.0;R1// ; (13.1.46)

and for (b), such that

A2 � 2q.R � R1/ kukC 2;˛.B.0;R1// : (13.1.47)

(In general, the R1 of (13.1.46) will not be the same as that of (13.1.47).) Then

(13.1.30) and (13.1.38) imply

A1 � c21 p.R � R1/
�

k�ukC 0.B.0;R2// C
"

.R2 � R1/2
kukC 1;˛.B.0;R2//

C
1

.R2 � R1/2
N."/ kukL2.B.0;R2//

�

� c22

p.R � R1/

p.R � R2/
�

"

.R2 � R1/2
� A1

C c23 p.R � R1/ k�ukC 0.B.0;R2// C c24 N."/
p.R � R1/

.R2 � R1/2
kukL2.B.0;R2// :

(13.1.48)

We choose R2 D RCR1

2
2 .R1; R/. Then, because the polynomial p is

homogeneous,

p.R � R1/

p.R � R2/
D

p.R � R1/

p. R�R1

2
/

is independent of R and R1. Therefore,

" D
.R2 � R1/

2

2c22

p.R � R2/

p.R � R1/
� .R � R1/

2
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and

N."/ � .R � R1/
�

2.dC1/
˛

by Lemma 13.1.2(b). Thus, when we choose

p.t/ D t
2.dC1/

˛ C2;

the coefficient of kukL2.B.0;R2// in (13.1.48) is controlled.

Thus, finally

kukC 1;˛.B.0;r// �
1

p.R � r/
A1

� c25

�

k�ukC 0.B.0;R// C kukL2.B.0;R//

�

; (13.1.49)

with a constant that now also depends on the radii occurring.

In the same manner, from (13.1.31) and (13.1.40), we obtain

kukC 2;˛.B.0;r// � c26

�

k�ukC ˛.B.0;R// C kukL2.B.0;R//

�

(13.1.50)

for 0 < r < R. Since �u D f , we have thus proved (13.1.20) and (13.1.21) for

u 2 C 2;˛.˝/.

For u 2 W 1;2.˝/ we consider the mollifications uh as in Lemma A.2 of the

appendix. Let 0 < h < dist.˝0; @˝/. Then

Z

˝

Duh � Dv D �

Z

˝

fhv for all v 2 H
1;2
0 .˝/;

and since uh 2 C 1, also

�uh D fh:

Moreover, by Lemma A.2,

kfh � f kC 0 ! 0;

and for h ! 0, the fh therefore constitute a Cauchy sequence in C 0.˝/. Applying

(13.1.20) to uh1 � uh2 , we obtain

kuh1 � uh2kC 1;˛.˝0/ � c27

�

kfh1 � fh2 kC 0.˝/ C kuh1 � uh2kL2.˝/

�

: (13.1.51)

The limit function u thus is contained in C 1;˛.˝0/ and satisfies (13.1.20).

We also easily check that

kfhkC ˛ � kf kC ˛ :
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Therefore, by using the Arzela-Ascoli Theorem, the fh converge to f in C ˇ for

every ˇ < ˛ (see Section 5 in [19]). Hence

kuh1 � uh2kC 2;ˇ.˝0/ � c28

�

kfh1 � fh2 kC ˇ.˝/ C kuh1 � uh2kL2.˝/

�

: (13.1.52)

The limit function u thus is contained in C 2;ˇ.˝0/ and satisfies (13.1.21) for every

ˇ < ˛. Since the constant c28 in (13.1.52) and hence also the constant c13 in

(13.1.21) can be taken to be independent of ˇ < ˛, we obtain (13.1.21) also for

the exponent ˛, and hence u is contained in C 2;˛.˝0/ and satisfies the required

estimate. ut

Part (a) of the preceding theorem can be sharpened as follows:

Theorem 13.1.3. Let u be a weak solution of �u D f in ˝ (˝ a bounded domain

in R
d ), f 2 Lp.˝/ for some p > d , ˝0 �� ˝ . Then u 2 C 1;˛.˝/ for some ˛

that depends on p and d , and

kukC 1;˛.˝0/ � const
�

kf kLp.˝/ C kukL2.˝/

�

:

Proof. Again, we consider the Newton potential

w.x/ WD

Z

˝

� .x; y/f .y/dy;

and

vi .x/ WD

Z

˝

xi � yi

.x � y/d
f .y/dy:

Using Hölder’s inequality, we obtain

ˇ

ˇvi .x/
ˇ

ˇ � kf kLp.˝/

 

Z

dy

jx � yj
.d�1/

p
p�1

!

p�1
p

;

and this expression is finite because of p > d . In this manner, one also verifies that
@

@xi w D constvi and obtains the Hölder estimate as in the proof of Theorem 13.1.1(a)

and Theorem 13.1.2(a). ut

Corollary 13.1.1. If u 2 W 1;2.˝/ is a weak solution of �u D f with f 2

C k;˛.˝/, k 2 N, 0 < ˛ < 1, then u 2 C kC2;˛.˝/, and for ˝0 �� ˝ ,

kukC kC2;˛.˝0/ � const
�

kf kC k;˛ .˝/ C kukL2.˝/

�

:

If f 2 C 1.˝/, so is u.
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Proof. Since u 2 C 2;˛.˝/ by Theorem 13.1.2, we know that it weakly solves

�
@

@xi
u D

@

@xi
f:

Theorem 13.1.2 then implies

@

@xi
u 2 C 2;˛.˝/ .i 2 f1; : : : ; d g/;

and thus u 2 C 3;˛.˝/. The proof is concluded by induction. ut

13.2 The Schauder Estimates

In this section, we study differential equations of the type

Lu.x/ WD

d
X

i;j D1

aij .x/
@2u.x/

@xi @xj
C

d
X

iD1

bi.x/
@u.x/

@xi
C c.x/u.x/ D f .x/ (13.2.1)

in some domain ˝ � R
d . We make the following assumptions:

(A) Ellipticity: There exists � > 0 such that for all x 2 ˝ , � 2 R
d ,

d
X

i;j D1

aij .x/�i �j � � j�j
2 :

Moreover, aij .x/ D aj i.x/ for all i; j; x.

(B) Hölder continuous coefficients: There exists K < 1 such that





aij






C ˛.˝/
;




bi






C ˛.˝/
; kckC ˛.˝/ � K

for all i; j .

The fundamental estimates of J. Schauder are the following:

Theorem 13.2.1. Let f 2 C ˛.˝/, and suppose u 2 C 2;˛.˝/ satisfies

Lu D f (13.2.2)

in ˝ (0 < ˛ < 1). For any ˝0 �� ˝ , we then have

kukC 2;˛.˝0/ � c1

�

kf kC ˛.˝/ C kukL2.˝/

�

; (13.2.3)

with a constant c1 depending on ˝; ˝0; ˛; d; �; K .
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For the proof, we shall need the following lemma:

Lemma 13.2.1. Let the symmetric matrix .Aij /i;j D1;:::;d satisfy

� j�j2 �
d
X

i;j D1

Aij �i �j � � j�j2 for all � 2 R
d (13.2.4)

with

0 < � < � < 1:

Let u satisfy

d
X

i;j D1

Aij @2u

@xi @xj
D f (13.2.5)

with f 2 C ˛.˝/ (0 < ˛ < 1). For any ˝0 �� ˝ , we then have

kukC 2;˛.˝0/ � c2

�

kf kC ˛.˝/ C kukL2.˝/

�

: (13.2.6)

Proof. We shall employ the following notation:

A WD .Aij /i;j D1;:::;d ; D2u WD

�

@2u

@xi @xj

�

i;j D1;:::;d

:

If B is a nonsingular d � d -matrix and if y WD Bx; v WD u ı B�1, i.e., v.y/ D u.x/,

we have

AD2u.x/ D AB t D2v.y/B;

and hence

Tr.AD2u.x// D Tr.BAB t D2v.y//: (13.2.7)

Since A is symmetric, we may choose B such that B tA B is the unit matrix. In fact,

B can be chosen as the product of the diagonal matrix

D D

0

B

B

@

�
� 1

2

1

: : :

�
� 1

2

d

1

C

C

A

(�1; : : : ; �d being the eigenvalues of A) with some orthogonal matrix R. In this way

we obtain the transformed equation

�v.y/ D f
�

B�1y
�

: (13.2.8)

Theorem 13.1.2 then yields C 2;˛-estimates for v, and these can be transformed back

into estimates for u D v ı B . The resulting constants will also depend on the bounds
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�, � for the eigenvalues of A, since these determine the eigenvalues of D and hence

of B . ut

Proof of Theorem 13.2.1: We shall show that for every x0 2 N̋
0 there exists some

ball B.x0; r/ on which the desired estimate holds. The radius r of this ball will

depend only on dist.˝0; @˝/ and the Hölder norms of the coefficients aij ; bi ; c.

Since N̋
0 is compact, it can be covered by finitely many such balls, and this yields

the estimate in ˝0.

Thus, let x0 2 N̋
0. We rewrite the differential equation Lu D f as

X

i;j

aij .x0/
@2u.x/

@xi @xj
D
X

i;j

�

aij .x0/ � aij .x/
� @2u.x/

@xi @xj

�
X

i

bi .x/
@u.x/

@xi
� c.x/u.x/ C f .x/

DW '.x/: (13.2.9)

If we are able to estimate the C ˛-norm of ', putting Aij WD aij .x0/ and applying

Lemma 13.2.1 will yield the estimate of the C 2;˛-norm of u. The crucial term for the

estimate of ' is
P

.aij .x0/ � aij .x// @2u

@xi @xj . Let B.x0; R/ � ˝ . By Lemma 13.1.1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

i;j

�

aij .x0/ � aij .x/
� @2u.x/

@xi @xj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C ˛.B.x0;R//

� sup
i;j;x2B.x0;R/

ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇ

ˇ

ˇD2u
ˇ

ˇ

C ˛.B.x0;R//

C
X

i;j

ˇ

ˇaij
ˇ

ˇ

C ˛.B.x0;R//
sup

B.x0;R/

ˇ

ˇD2u
ˇ

ˇ : (13.2.10)

Thus, also













X

�

aij .x0/ � aij .x/
� @2u

@xi @xj













C ˛.B.x0;R//

� sup
ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇkukC 2;˛.B.x0;R// C c3 kukC 2.B.x0;R// ; (13.2.11)

where c3 in particular depends on the C ˛-norm of the aij .

Analogously,
















X

i

bi.x/
@u

@xi
.x/
















C ˛.B.x0;R//

� c4 kukC 1;˛.B.x0;R// ; (13.2.12)

kc.x/u.x/kC ˛.B.x0;R// � c5 kukC ˛.B.x0;R// : (13.2.13)
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Altogether, we obtain

k'kC ˛.B.x0;R// � sup
i;j;x2B.x0;R/

ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇ kukC 2;˛.B.x0;R//

C c6 kukC 2.B.x0;R// C kf kC ˛.B.x0;R// : (13.2.14)

By Lemma 13.2.1, from (13.2.9) and (13.2.14) for 0 < r < R, we obtain

kukC 2;˛.B.x0;r// � c7 sup
i;j;x2B.x0;R/

ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇ kukC 2;˛.B.x0;R//

C c8 kukC 2.B.x0;R// C c9 kf kC ˛.B.x0;R// : (13.2.15)

Since the aij are continuous on ˝ , we may choose R > 0 so small that

c7 sup
i;j;x2B.x0;R/

ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇ �
1

2
: (13.2.16)

With the same method as in the proof of Theorem 13.1.2, the corresponding term

can be absorbed in the left-hand side. We then obtain from (13.2.15)

kukC 2;˛.B.x0;R// � 2c8 kukC 2.B.x0;R// C 2c9 kf kC ˛.B.x0;R// : (13.2.17)

By (13.1.40), for every " > 0, there exists some Q."/ with

kukC 2.B.x0;R// � " kukC 2;˛.B.x0;R// C Q."/ kukL2.B.x0;R// : (13.2.18)

With the same method as in the proof of Theorem 13.1.2, from (13.2.18) and

(13.2.17), we deduce the desired estimate

kukC 2;˛.B.x0;R// � c10

�

kf kC ˛.B.x0;R// C kukL2.B.x0;R//

�

: (13.2.19)

We may now state the global estimate of J. Schauder for the solution of the Dirichlet

problem for L:

Theorem 13.2.2. Let ˝ � R
d be a bounded domain of class C 2;˛ (analogously

to Definition 11.3.1, we require the same properties as there, except that (iii) is

replaced by the condition that � and ��1 are of class C 2;˛). Let f 2 C ˛. N̋ /,

g 2 C 2;˛. N̋ / (as in Definition 11.3.2), and let u 2 C 2;˛. N̋ / satisfy

Lu.x/ D f .x/ for x 2 ˝;

u.x/ D g.x/ for x 2 @˝:
(13.2.20)

Then

kukC 2;˛.˝/ � c11

�

kf kC ˛.˝/ C kgkC 2;˛.˝/ C kukL2.˝/

�

; (13.2.21)

with a constant c11 depending on ˝; ˛; d; �, and K .
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The Proof essentially is a modification of that of Theorem 13.2.1, with

modifications that are similar to those employed in the proof of Theorem 11.3.3.

We shall therefore provide only a sketch of the proof. We start with a simplified

model situation, namely, the Poisson equation in a half-ball, from which we shall

derive the general case.

As in Sect. 11.3, let

BC.0; R/ D
˚

x D .x1; : : : ; xd / 2 R
d I jxj < R; xd > 0

	

:

Moreover, let

@0BC.0; R/ WD @BC.0; R/ \
˚

xd D 0
	

;

@CBC.0; R/ WD @BC.0; R/ n @0BC.0; R/:

We consider f 2 C ˛
�

BC.0; R/
�

with

f D 0 on @CBC.0; R/:

In contrast to the situation considered in Theorem 13.1.1(b), f no longer must

vanish on all of the boundary of our domain ˝ D BC.0; R/, but only on a certain

portion of it. Again, we consider the corresponding Newton potential

u.x/ WD

Z

BC.0;R/

� .x; y/f .y/dy: (13.2.22)

Up to a constant factor, the first derivatives of u are given by

vi.x/ D

Z

BC.0;R/

xi � yi

jx � yj
d

f .y/dy .i D 1; : : : ; d /; (13.2.23)

and they can be estimated as in the proof of Theorem 13.1.1(a), since there, we did

not need any assumption on the boundary values.

Up to a constant factor, the second derivatives are given by

wij .x/ D

Z

BC.0;R/

@

@xj

 

xi � yi

jx � yjd

!

f .y/dy
�

D wj i .x/
�

: (13.2.24)

For K.x � y/ D @
@xj

�

xi �yi

jx�yjd

�

, and i ¤ d or j ¤ d ,

Z

R1<jyj<R2

yd >0

K.y/dy D 0 (13.2.25)
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by homogeneity as in (13.1.12). Thus, for i ¤ d or j ¤ d , the ˛-Hölder norm of

the second derivative @2

@xi @xj u can be estimated as in the proof of Theorem 13.1.1(b).

The differential equation �u D f implies

@2

.@xd /2
u D f �

d�1
X

iD1

@2

.@xi /2
u; (13.2.26)

and so we obtain estimates for the ˛-Hölder norm of @2

.@xd /2 u as well. We can thus

estimate all second derivatives of u.

As in the proof of Theorem 13.1.2, we then obtain C 2;˛-estimates in BC.0; R/

for solutions of

�u D f in BC.0; R/ with f 2 C ˛
�

BC.0; R/
�

;

u D 0 on @0BC.0; R/;

(13.2.27)

for 0 < r < R:

kukC 2;˛.BC.0;r// � c12

�

kf kC ˛.BC.0;R// C kukL2.BC.0;R//

�

: (13.2.28)

Namely, putting

' WD �u

as in (13.1.23) with the same cutoff function as in (13.1.22), we have ' D 0 on

@BC.0; R2/ (0 < R1 < R2 < R), since � vanishes on @CBC.0; R2/, and u on

@0BC.0; R2/. Thus, again

'.x/ D

Z

BC.0;R/

� .x; y/�'.y/dy

is a Newton potential, and the preceding estimates can be used to deduce the same

result as in Theorem 13.1.2: For 0 < r < R,

kukC 2;˛.BC.0;r// � c13

�

kf kC ˛.BC.0;R// C kukL2.BC.0;R//

�

: (13.2.29)

We next consider a solution of

�u D f in BC.0; R/ with f 2 C ˛
�

BC.0; R/
�

; (13.2.30)

u D g on @0BC.0; R/ with g 2 C 2;˛
�

BC.0; R/
�

: (13.2.31)

As in Sect. 11.3, we put Nu WD u � g. We see that Nu satisfies

�Nu D f � �g DW Nf 2 C ˛
�

BC.0; R/
�

in BC.0; R/;

Nu D 0 on @0BC.0; R/:
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We have thus reduced our considerations to the above case (13.2.27), and so, from

(13.2.29), we obtain

kukC 2;˛.BC.0;r// � kNukC 2;˛.BC.0;r// C kgkC 2;˛.BC.0;r//

� c14

h





 Nf






C ˛.BC.0;R//
C kNukL2.BC.0;R// C kgkC 2;˛.BC.0;R//

i

� c15

�

kf kC ˛.BC.0;R// C kgkC 2;˛.BC.0;R// C kukL2.BC.0;R//

�

:

(13.2.32)

In order to finally treat the situation of Theorem 13.2.2, as in Sect. 11.3, we trans-

form a neighborhood U of a boundary point x0 2 @˝ with a C 2;˛-diffeomorphism

� to the ball B̊.0; R/, such that the portion of u that is contained in ˝ is mapped

to BC.0; R/, and the intersection of U with @˝ is mapped to @0BC.0; R/. Again,

Qu WD u ı ��1 on BC.0; R/ satisfies a differential equation of the same type as

Lu D f , QLQu D Qf , again with different constants �, K in (A) and (B). By the

preceding considerations, we obtain a C 2;˛-estimate for Qu in BC.0; R=2/. Again �

transforms this estimate into one for u on a subset U 0 of U . Since ˝ is bounded,

@˝ is compact and can thus be covered by finitely many such neighborhoods U 0.

The resulting estimates, together with the interior estimate of Theorem 13.2.1,

applied to the complement ˝0 of those neighborhoods in ˝ , yield the claim of

Theorem 13.2.2.

Corollary 13.2.1. In addition to the assumptions of Theorem 13.2.2, suppose that

c.x/ � 0 in ˝ . Then

kukC 2;˛.˝/ � c16

�

kf kC ˛.˝/ C kgkC 2;˛.˝/

�

: (13.2.33)

Proof. Because of c � 0, the maximum principle (see, e.g., Theorem 3.3.2) implies

sup
˝

juj � max
@˝

juj C c17 sup
˝

jf j D max
@˝

jgj C c17 sup
˝

jf j :

Therefore, the L2-norm of u can be estimated in terms of the C 0-norms of f and g,

and the claim follows from (13.2.21). ut

13.3 Existence Techniques IV: The Continuity Method

In this section, we wish to study the existence problem

Lu D f in ˝;

u D g on @˝;
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in a C 2;˛-region ˝ with f 2 C ˛. N̋ /, g 2 C 2;˛. N̋ /. The starting point for our

considerations will be the corresponding result for the Poisson equation, Kellogg’s

theorem:

Theorem 13.3.1. Let ˝ be a bounded domain of class C 1 in R
d , f 2 C ˛. N̋ /,

g 2 C 2;˛. N̋ /. The Dirichlet problem

�u D f in ˝;

u D g on @˝;
(13.3.1)

then possesses a unique solution u of class C 2;˛. N̋ /.

Proof. Uniqueness follows from the maximum principle (see Corollary 3.1.1). For

the existence proof, we first assume that f and g are of class C 1. The variational

methods of Sect. 10.3 yield a weak solution, which then is of class C 1.˝/ by

Theorem 11.3.1. Moreover, by Corollary 13.2.1,

kukC 2;˛.˝/ � c1

�

kf kC ˛ .˝/ C kgkC 2;˛.˝/

�

: (13.3.2)

We now return to the C 2;˛-case. We approximate f and g by C 1-functions fn

and gn that are defined on ˝ . Let un be the solution of the corresponding Dirichlet

problem

�un D fn in ˝;

un D gn on @˝:

For n � m, un � um then satisfies (13.3.2) on ˝ , i.e.,

kun � umkC 2;˛.˝/ � c1

�

kfn � fmkC ˛.˝/ C kgn � gmkC 2;˛.˝/

�

: (13.3.3)

Here, the constant c1 does not depend on the solutions; it depends only on the C 2;˛-

geometry of the domain. We assume that fn converges to f in C ˛.˝/, and gn to g

in C 2;˛.˝/, and so the un constitute a Cauchy sequence in C 2;˛.˝/ and therefore

converge towards some u 2 C 2;˛.˝/ that satisfies

�u D f in ˝;

u D g on @˝;

and the estimate (13.3.2). ut

We now state the main existence result of this chapter:

Theorem 13.3.2. Let ˝ be a bounded domain of class C 1 in R
d . Let the

differential operator

L D

d
X

i;j D1

aij .x/
@2

@xi @xj
C

d
X

iD1

bi.x/
@

@xi
C c.x/ (13.3.4)
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satisfy (A) and (B) from Sect. 13.2, and in addition,

c.x/ � 0 in ˝: (13.3.5)

For any f 2 C ˛. N̋ /, g 2 C 2;˛. N̋ / there then exists a unique solution u 2 C 2;˛. N̋ /

of the Dirichlet problem

Lu D f in ˝;

u D g on @˝:
(13.3.6)

Remark. It is quite instructive to compare this result and its assumptions with

Theorem 11.4.4.

Proof. Considering, as usual, Nu D u � g in place of u, we may assume g D 0, as

our problem is equivalent to

LNu D Nf WD f � Lg 2 C ˛.˝/;

Nu D 0 on @˝:

We thus assume g D 0 (and write u in place of Nu). We consider the family of

equations

Lt u D f for 0 � t � 1;

u D 0 on @˝;
(13.3.7)

with

Lt D tL C .1 � t/�: (13.3.8)

The differential operators Lt satisfy the structural conditions (A) and (B) with

�t D min.1; �/; Kt D max.1; K/: (13.3.9)

We have L0 D �, L1 D L. By Theorem 13.3.1, we can solve (13.3.7) for t D 0.

We intend to show that we may then also solve this equation for all t 2 Œ0; 1�, in

particular for t D 1. The latter is what is claimed in the theorem.

The operator

Lt W B1 WD C 2;˛. N̋ / \ fu W u D 0 on @˝g ! C ˛. N̋ / DW B2

is a bounded linear operator between the Banach spaces B1 and B2. Let ut be a

solution of Lt ut D f , ut D 0 on @˝ . By Corollary 13.2.1,

kutkC 2;˛.˝/ � c2 kf kC ˛.˝/ ;
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i.e.,

kukB1
� c2 kLt ukB2

; (13.3.10)

for all u 2 B1. Here, the constant c2 does not depend on t , because by (13.3.9), the

structure constants �t , Kt of the operators Lt can be controlled independently of t .

We want to show that for any f 2 B2 there exists a solution ut of (13.3.7), i.e., of

Lt ut D f , in B1. In other words, we want to show that the operators Lt W B1 ! B2

are surjective for 0 � t � 1. This, however, follows from the general result stated as

the next theorem. With that result, we then conclude the proof of Theorem 13.3.2.

Theorem 13.3.3. Let L0; L1 W B1 ! B2 be bounded linear operators between the

Banach spaces B1; B2. We put

Lt WD .1 � t/L0 C tL1 for 0 � t � 1:

We assume that there exists a constant c that does not depend on t , with

kukB1
� c kLt ukB2

for all u 2 B1: (13.3.11)

If then L0 is surjective, so is L1.

Proof. Let L� be surjective for some � 2 Œ0; 1�. By (13.3.11), L� then is injective

as well, and thus bijective. We therefore have an inverse operator

L�1
� W B2 ! B1:

For t 2 Œ0; 1�, we rewrite the equation

Lt u D f for f 2 B2 (13.3.12)

as

L� u D f C .L� � Lt /u D f C .t � �/.L0u � L1u/;

or

u D L�1
� f C .t � �/L�1

� .L0 � L1/u DW �u:

Thus, for solving (13.3.12), we need to find a fixed point of the operator � W B1 !

B2. By the Banach fixed point theorem, such a fixed-point exists if we can find some

q < 1 with

k�u � �vkB1
� q ku � vkB1

:

We have

k�u � �vk �




L�1
�





 .kL0k C kL1k/ jt � � j ku � vk :
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By (13.3.11),




L�1
�





 � c. Therefore, it suffices to choose

jt � � j �
1

2
.c .kL0k C kL1k//�1 DW �

for obtaining the desired fixed point. This means that if L� u D f is solvable, so is

Lt u D f for all t with jt � � j � �. Since L0 is surjective by assumption, Lt then is

surjective for 0 � t � �. Repeating the preceding argument, this time for � D �, we

obtain surjectivity for � � t � 2�. Iteratively, all Lt for t 2 Œ0; 1�, and in particular

L1, are surjective. ut

Basic references about Schauder’s approach are [2, 12]. Our treatment of the

fundamental C ˛-estimate for the Poisson equation uses scaling relations in place

of the usual weighted Hölder spaces and is hopefully a little simpler.

Summary

A solution of the Poisson equation

�u D f

with ˛-Hölder continuous f is contained in the space C 2;˛; i.e., it possesses ˛-

Hölder continuous second derivatives for 0 < ˛ < 1. (This is no longer true for

˛ D 0 or ˛ D 1. For example, if f is only continuous, a solution need not be twice

continuously differentiable.) By linear coordinate transformations this result can be

easily extended to linear elliptic differential equations with constant coefficients.

Schauder then succeeded in extending these results to solutions of elliptic equations

Lu.x/ WD
X

i;j

aij .x/
@2u.x/

@xi @xj
C

X

i

bi .x/
@u

@xi
C c.x/u.x/ D f .x/

with ˛-Hölder continuous coefficients, by considering such an operator L as a local

perturbation of an operator with constant coefficients aij ; bi ; c.

The continuity method reduces the solution of

Lu D f

to that of the Poisson equation

�u D f

by considering the operators

Lt WD tL C .1 � t/�
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for 0 � t � 1, and showing that the set of t 2 Œ0; 1� for which

Lt u D f

can be solved is open and closed (and nonempty, because the Poisson equation can

be solved). The proof of closedness rests on Schauder’s estimates.

Exercises

13.1. Let K � R
d be bounded, fn W K ! R (n 2 N) a sequence of functions with

kfnkC ˛.K/ � const (independent of n);

for some 0 < ˛ � 1. (Here and in the next exercise, in the case ˛ D 1, we consider

the space C 0;1 of Lipschitz continuous functions.) Show that .fn/n2N has to contain

a uniformly convergent subsequence.

13.2. Is it true that for all domains ˝ � R
d ; 0 < ˛ < ˇ � 1,

C ˇ.˝/ � C ˛.˝/‹

13.3. Let u 2 C k;˛.˝/ satisfy

Lu D f

for some f 2 C k;˛.˝/ (k 2 N; 0 < ˛ < 1). Here, we assume that the operator L

from (13.2.1) satisfies the ellipticity condition (A) as well as





aij






C k;˛ .˝/
;




bi






C k;˛ .˝/
; kckC k;˛.˝/ � K

for all i; j . Show that u 2 C kC2;˛.˝0/ for any ˝0 �� ˝ , and

kukC kC2;˛ .˝/ � c.kf kC k;˛ .˝/ C kukL2.˝//;

with a constant c depending on K and the quantities of Theorem 13.2.1.



Chapter 14

The Moser Iteration Method and the Regularity

Theorem of de Giorgi and Nash

14.1 The Moser–Harnack Inequality

In this chapter, as in Chap. 11, we shall consider elliptic differential operators of

divergence type. In order to concentrate on the essential aspects and not to burden

the proofs with too many technical details, in this chapter we shall omit all lower-

order terms and consider only solutions of the homogeneous equation. Thus, we

shall investigate (weak) solutions of

Lu D
d
X

i;j D1

@

@xj

�

aij .x/
@

@xi
u.x/

�

D 0;

where the coefficients aij are (measurable and) bounded and satisfy an ellipticity

condition. We thus assume that there exist constants 0 < � � � < 1 with

� j�j
2 �

d
X

i;j D1

aij .x/�i �j � � j�j
2 (14.1.1)

for all x in the domain of definition ˝ of u and all � 2 R
d .1

1As an alternative sometimes adopted in the literature, one could define the constant � by the

inequality

sup
i;j;x

ˇ

ˇaij .x/
ˇ

ˇ � �

for all x 2 ˝. Of course, these two possible definitions of � are not equivalent, but the relevant

difference is only that, in the estimates below, � would have to be replaced by d� if the alternative

definition were adopted. In fact, in subsequent sections, we shall also switch to that alternative

convention.
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Definition 14.1.1. A function u 2 W 1;2.˝/ is called a weak subsolution of L, and

we write this as Lu � 0, if for all ' 2 H 1;2
0 .˝/, ' � 0 in ˝ ,

Z

˝

X

i;j

aij .x/Di uDj 'dx � 0: (14.1.2)

Similarly, it is called a weak supersolution (Lu � 0), if we have � in (13.1.2).

Inequalities like ' � 0 are assumed to hold pointwise almost everywhere, here

and in the sequel. Likewise, sup and inf will denote the essential supremum and

infimum, respectively. Finally, as always, �
R

will denote the average mean integral:

�
Z

˝

'dx D 1

j˝j

Z

˝

'dx:

In order to familiarize ourselves with the notions of sub- and supersolutions, we

shall demonstrate the following useful lemma.

Lemma 14.1.1. (i) Let u be a subsolution, i.e. u 2 C 2.˝/; Lu � 0, and let

f 2 C 2.R/ be convex with f 0 � 0. Then f ı u is a subsolution as well.

(ii) Let u be a supersolution, f 2 C 2.R/ concave with f 0 � 0. Then f ı u is a

supersolution as well.

(iii) Let u be a solution, and f 2 C 2.R/ convex. Then f ı u is a subsolution.

Proof.

L.f ı u/ D
X

i;j

@

@xj

�

aij f 0.u/
@u

@xi

�

D f 00.u/
X

i;j

aij @u

@xi

@u

@xj
C f 0.u/Lu;

(14.1.3)

which implies all the inequalities claimed. ut

We now wish to verify that the assertions of Lemma 14.1.1 continue to hold for

weak (sub-, super-)solutions. We assume that f 0.u/ and f 00.u/ satisfy approximate

integrability conditions to make the chain rules for weak derivatives

Di .f ı u/ D f 0.u/Di.u/

and

Di .f
0 ı u/ D f 00.u/Diu for i D 1; : : : ; d

valid. (By Lemma 10.2.3 this holds if, for example,

sup
y2R

jf 0.y/j C sup
y2R

jf 00.y/j < 1:/



14.1 The Moser–Harnack Inequality 355

We obtain

Z

˝

X

i;j

aij Di .f ı u/Dj ' D
Z

X

i;j

aij f 0.u/Di uDj '

D
Z

X

i;j

aij Di uDj .f 0.u/'/

�
Z

X

i;j

aij Di uf 00.u/Dj u':

The last integral is nonnegative because of the ellipticity condition, if f is convex,

i.e., f 00.u/ � 0, and ' � 0, and consequently yields a nonpositive contribution

because of the minus sign in front of it, if u is a weak subsolution and f 0.u/ � 0.

Therefore, under those assumptions,
Z

˝

X

i;j

aij Di .f ı u/Dj ' � 0;

and f ı u is a weak subsolution.

In the same manner, one treats the weak versions of the other assertions of

Lemma 14.1.1 to obtain the following result:

Lemma 14.1.2. Under the corresponding assumptions, the assertions of

Lemma 14.1.1 hold for weak (sub-,super-)solutions, provided that the chain rule

for weak derivatives is satisfied for f 2 C 2.R/.

From Lemma 14.1.2 we derive the following result:

Lemma 14.1.3. Let u 2 W 1;2.˝/ be a weak subsolution of L, and k 2 R. Then

v.x/ WD max.u.x/; k/

is a weak subsolution as well.

Proof. We consider the function

f W R ! R;

f .y/ WD max.y; k/:

Then

v D f ı u:

We approximate f by a sequence .fn/n2N of convex functions of class C 2 with

fn.y/ D f .y/ for y 62

�

k � 1

n
; k C 1

n

�
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and

jf 0
n.y/j � 1 for all y:

Then, as in the proofs of Lemmas 10.2.2 and 10.2.3, by an approximation argument,

fn ı u converges to v D f ı u in W 1;2. Therefore,

Z

˝

X

i;j

aij Di vDj ' D lim
n!1

Z

˝

X

i;j

aij Di .fn ı u/Dj '

� 0 for ' 2 H
1;2
0 .˝/; ' � 0

by Lemma 14.1.2. ut

Remark. Of course, we also have a result analogous to Lemma 14.1.3 for weak

supersolutions. For k 2 R, if u 2 W 1;2.˝/ is a weak supersolution, then so is

min.u.x/; k/:

We now come to the fundamental estimates of J. Moser:

Theorem 14.1.1. Let u be a subsolution in the ball B.x0; 4R/ � R
d (R > 0), and

assume p > 1. Then

sup
B.x0;R/

u � c1

�

p

p � 1

�
2
p

�

�
Z

B.x0;2R/

.max.u.x/; 0//p dx

�
1
p

; (14.1.4)

with a constant c1 depending only on d and �
�

.

Remark. If u is positive, then obviously max.u; 0/ D u in (14.1.4), and this case

will constitute our main application of this result.

Theorem 14.1.2. Let u be a positive supersolution in B.x0; 4R/ � R
d . For 0 <

p < d
d�2

, and if d � 3, then

�

�
Z

B.x0;2R/

up dx

�
1
p

�
c2

�

d
d�2

� p
�2

inf
B.x0;R/

u; (14.1.5)

with c2 again depending on d and �
�

only. If d D 2, this estimate holds for any

0 < p < 1, with a constant c2 depending on p and �
�

in place of c2=
�

d
d�2

� p
�2

.

Remark. In order to see the necessity of the condition p < d
d�2

, we let L be the

Laplace operator � and

u.x/ D min
�

jxj2�d ; k
�

for some k > 0:
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According to the remark after Lemma 14.1.3, because jxj2�d is harmonic on R
d n

f0g, this is a weak supersolution on R
d . If we then let k increase, we see that the

L
d

d�2 -norm can no longer be controlled by the infimum.

From Theorems 14.1.1 and 14.1.2, we derive Harnack-type inequalities for solutions

of Lu D 0. These two theorems directly yield the following corollary:

Corollary 14.1.1. Let u be a positive (weak) solution of Lu D 0 in the ball

B.x0; 4R/ � R
d (R > 0). Then

sup
B.x0;R/

u � c3 inf
B.x0;R/

u; (14.1.6)

with c3 depending on d and �
�

only.

For general domains, we have the following result:

Corollary 14.1.2. Let u be a positive (weak) solution of Lu D 0 in a domain ˝ of

R
d , and let ˝0 �� ˝ . Then

sup
˝0

u � c inf
˝0

u; (14.1.7)

with c depending on d , ˝ , ˝0, and �
�

.

Proof. This Harnack inequality on ˝0 follows by the standard ball chain argument:

Since N̋
0 is compact, it can be covered by finitely many balls Bi WD B.xi ; R/ with

B.xi ; R/ � ˝ (we choose, e.g., R < 1
4

dist.@˝; ˝0/), i D 1; : : : ; N . Now let

y1; y2 2 ˝0; without loss of generality y1 2 Bk , y2 2 BkCm for some m � 1, and

the balls are enumerated in such manner that Bj \ Bj C1 ¤ ; for j D k; : : : ; k C

m � 1. By applying Corollary 14.1.1 to the balls Bk ; BkC1; : : :, we obtain

u.y1/ � sup
Bk

u.x/ � c3 inf
Bk

u.x/

� c3 sup
BkC1

u.x/ .since Bk \ BkC1 ¤ ;/

� c2
3 inf

BkC1

u.x/ � : : :

� cmC1
3 inf

BkCm

u.x/ � cmC1
3 u.y2/:

Since y1 and y2 are arbitrary, and m � N , it follows that

sup
˝0

u.x/ � cN C1
3 inf

˝0

u.x/: (14.1.8)

ut
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We now start with the preparations for the proofs of Theorems 14.1.1 and 14.1.2.

For positive u and a point x0, we put

�.p;R/ WD
�

�
Z

B.x0;R/

updx

�
1
p

:

Lemma 14.1.4.

lim
p!1

�.p;R/ D sup
B.x0;R/

u DW �.1; R/; (14.1.9)

lim
p!�1

�.p;R/ D inf
B.x0;R/

u DW �.�1; R/: (14.1.10)

Proof. By Hölder’s inequality, �.p;R/ is monotonically increasing with respect to

p. Namely, for p < p0 and u 2 Lp0
.˝/,

�

1

j˝j

Z

˝

up
�

1
p

�
1

j˝j
1
p

�Z

˝

1

�

p0�p

pp0
�Z

˝

.up/
p0

p

�
1
p0

D

�

1

j˝j

Z

˝

up
0

�
1
p0

:

Moreover,

�.p;R/ �

�

1

jB.x0; R/j

Z

B.x0;R/

.sup u/p
�

1
p

D �.1; R/: (14.1.11)

On the other hand, by the definition of the essential supremum, for any " > 0, there

exists some ı > 0 with

ˇ

ˇ

ˇ

ˇ

ˇ

(

x 2 B.x0; R/ W u.x/ � sup
B.x0;R/

u � "

) ˇ

ˇ

ˇ

ˇ

ˇ

> ı:

Therefore,

�.p;R/ �

 

1

jB.x0; R/j

Z

u.x/�sup u�"
x2B.x0;R/

up

!
1
p

�

�

ı

jB.x0; R/j

�
1
p

.sup u � "/;

and hence

lim
p!1

�.p;R/ � sup u � "

for any " > 0, and thus also

lim
p!1

�.p;R/ � sup u: (14.1.12)
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Inequalities (14.1.11) and (14.1.12) imply (14.1.9), and (14.1.10) is derived similarly

(or, alternatively, by applying the preceding argument to 1
u
). ut

Lemma 14.1.5. (i) Let u be a positive subsolution in ˝ , and for q > 1
2
, assume

v WD uq 2 L2.˝/:

For any � 2 H
1;2
0 .˝/, we then have

Z

˝

�2 jDvj2 �
�2

�2

�

2q

2q � 1

�2 Z

˝

jD�j2 v2: (14.1.13)

(ii) If u is a supersolution instead, this inequality holds for q < 1
2
.

Proof. The claim is trivial for q D 0. We put

f .u/ D u2q for q > 0;

f .u/ D �u2q for q < 0:

By Lemma 14.1.2, f .u/ then is a subsolution in case (i), and a supersolution in case

(ii). The subsequent calculations are based on that fact. (In the course of the proof

there will also arise integrability conditions implying the needed chain rules. For

that purpose, the proof of Lemma 10.2.3 requires a slight generalization, utilizing

varying Sobolev exponents, the Hölder inequality, and the Sobolev embedding

theorem. We leave this as an exercise for the reader.) As a test function in (14.1.2)

(or in the corresponding inequality in case (ii), we then use

' D f 0.u/ � �2: (14.1.14)

Then
Z

˝

X

ij

aij .x/Di uDj '

D
Z

˝

X

i;j

aij Di uDj uf 00.u/�2 C
Z

˝

X

i;j

aij Di uf 0.u/2�Dj �

D
Z

˝

2 jqj .2q � 1/
X

i;j

aij Di uDj u u2q�2�2 C
Z

˝

4 jqj
X

i;j

aij Di u u2q�1�Dj �:

(14.1.15)

In case (i), this is � 0. Applying Young’s inequality to the last term, for all " > 0,

we obtain

2 jqj .2q � 1/�

Z

jDuj2 u2q�2�2 � 2 jqj �"

Z

jDuj
2

u2q�2�2

C
2 jqj �

"

Z

u2q jD�j2 :
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With

" D 2q � 1

2

�

�
;

we thus obtain

Z

jDuj2 u2q�2�2 �
4

.2q � 1/2

�2

�2

Z

u2q jD�j2 ;

i.e.,
Z

jDvj2 �2 �
�2

�2

�

2q

2q � 1

�2 Z

v2 jD�j2 :

In case (ii), (14.1.15) is nonnegative, and since in that case also 2q � 1 � 0, one can

proceed analogously and put

" D
1 � 2q

2

�

�
;

to obtain (14.1.13) in that case as well. ut

We now begin the proofs of Theorems 14.1.1 and 14.1.2. Since the stated inequali-

ties are invariant under scaling, we may assume, without loss of generality, that

R D 1 and x0 D 0:

We shall employ the abbreviation

Br WD B.0; r/:

Let

0 < r 0 < r � 2r 0; (14.1.16)

and let � 2 H
1;2
0 .Br / be a cutoff function satisfying

� � 1 on Br 0 ;

� � 0 on R
d n Br ;

jD�j �
2

r � r 0 :

(14.1.17)

For the proof of Theorem 14.1.1, we may assume without loss of generality that

u is positive, since otherwise, by Lemma 14.1.3, we may consider the positive

subsolutions

vk.x/ D max.u.x/; k/
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for k > 0 (or the approximating subsolutions from the proof of that lemma), perform

the subsequent reasoning for positive subsolutions, apply the result to the vk , and

finally let k tend to 0.

We consider once more

v D uq

and assume that v 2 L2.˝/. By the Sobolev embedding theorem (Corollary 11.1.3),

for d � 3, we obtain

 

�
Z

Br0

v
2d
d�2

!
d�2
d

� c4

 

r 02 �
Z

Br0

jDvj2 C �

Z

Br0

v2

!

: (14.1.18)

If d D 2 instead of 2d
d�2 , we may take an arbitrarily large exponent p and proceed

analogously. We leave the necessary modifications for the case d D 2 to the reader

and henceforth treat only the case d � 3. With (14.1.13) and (14.1.17), (14.1.18)

yields

 

�
Z

Br0

v
2d
d�2

!
d�2
d

� Nc �
Z

Br

v2 (14.1.19)

with

Nc � c5

 

�

r 0

r � r 0

�2 �
2q

2q � 1

�2

C 1

!

: (14.1.20)

Thus, we get v 2 L
2d
d�2 .˝/. We shall iterate that step and realize that higher and

higher powers of u are integrable.

We put s D 2q and assume

jsj � � > 0;

choosing an appropriate value for � later on. Because of r � 2r 0, then

Nc � c6

�

r 0

r � r 0

�2
� s

s � 1

�2

; (14.1.21)

with c6 also depending on �. Thus, by (14.1.19) and (14.1.21), since v D u
s
2 , we

get for s � �,

�

�

ds

d � 2
; r 0
�

D
 

�
Z

Br0

v
2d
d�2

!
d�2
ds

� c7

�

r 0

r � r 0

�
2
s � s

s � 1

�
2
s
�.s; r/ (14.1.22)
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with c7 D c
1
s

6 . For s � ��, analogously,

�

�

ds

d � 2 ; r
0

�

� 1

c7

�

r 0

r � r 0

�� 2
jsj

�.s; r/ (14.1.23)

(we may omit the term
�

s
s�1
�� 2

jsj here, since it is greater than or equal to 1).

We now wish to complete the proof of Theorem 14.1.1, and therefore, we return

to (14.1.22). The decisive insight obtained so far is that we can control the integral

of a higher power of u by that of a lower power of u. We now shall simply iterate

this estimate to control even higher integral norms of u and from Lemma 14.1.4 then

also the supremum of u. For that purpose, let

sn D
�

d

d � 2

�n

p for p > 1;

rn D 1C 2�n;

r 0
n D rnC1 >

rn

2
:

Then (14.1.22) implies

� .snC1; rnC1/ � c7

 

1C 2�n�1

2�n�1 �
�

d
d�2

�n
p

�

d
d�2

�n
p � 1

!
2

p. d
d�2 /

n

�.sn; rn/

� c
n. d

d�2 /
�n

8 �.sn; rn/;

and iteratively,

�.snC1; rnC1/ � c

Pn
�D1 �. d

d�2 /
��

8 �.s1; r1/ � c9

�

p

p � 1

�
2
p

�.p; 2/: (14.1.24)

(Since we may assume u 2 Lp.˝/, therefore �.sn; rn/ is finite for all n 2 N, and

thus any power of u is integrable.) Using Lemma 14.1.4, this yields Theorem 14.1.1.

In order to prove Theorem 14.1.2, we now assume u > " > 0, in order to ensure

that �.�; r/ is finite for � < 0. This does not constitute a serious restriction, because

once we have proved Theorem 14.1.2 under that assumption, then for positive u, we

may apply the result to u C ". In the resulting inequality for u C ", namely

�

�
Z

B.x0;2R/

.u C "/p

�
1
p

� c2
�

d
d�2

� p
�2

inf
B.x0;R/

.u C "/;

we then simply let " ! 0 to deduce the inequality for u itself.
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Carrying out the above iteration analogously for s � �� with rn D 2C 2�n, we

deduce from (14.1.23) that

�.��; 3/ � c10�.�1; 2/ � c10�.�1; 1/: (14.1.25)

By finitely many iteration steps, we also obtain

�.p; 2/ � c11�.�; 3/: (14.1.26)

(The restriction p < d
d�2 in Theorem 14.1.2 arises because according to Lemma

14.1.5, in (14.1.19) we may insert v D uq only for q < 1
2
. The relation p D 2q d

d�2
that is needed to control the Lp-norm of u with (14.1.19), by (14.1.20) also yields

the factor
�

d
d�2 � p

��2
in (14.1.5).)

The only missing step is

�.�; 3/ � c12�.��; 3/: (14.1.27)

Inequalities (14.1.25)–(14.1.27) imply Theorem 14.1.2. For the proof of (14.1.27),

we shall use the theorem of John–Nirenberg (Theorem 11.1.2). For that purpose,

we put

v D log u; ' D 1

u
�2

with some cutoff function � 2 H 1;2
0 .B4/. Then

Z

B4

X

i;j

aij Di 'Dj u D �
Z

B4

�2
X

aij Di vDj v C
Z

B4

2�
X

aij Di �Dj v:

Since u is a supersolution, the left-hand side is nonnegative; hence

�

Z

B4

�2 jDvj2 �
Z

B4

�2
X

aij Di vDj v � 2

Z

B4

�
X

aij Di �Dj v

� 2�

�Z

B4

�2 jDvj2
�

1
2
�Z

B4

jD�j2
�

1
2

by the Schwarz inequality, and thus

Z

B4

�2 jDvj2 � 4

�

�

�

�2 Z

B4

jD�j2 : (14.1.28)

If now B.y; R/ � B3C 1
2

is any ball, we choose � satisfying

� � 1 on B.y; R/;

� � 0 outside of B.y; 2R/ \ B4;

jD�j � 8

R
:
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With such an �, we obtain from (14.1.28)

�
Z

B.y;R/

jDvj2 � 

1

R2
with some constant 
:

Thus, by Hölder’s inequality,

Z

B.y;R/

jDvj � !d

p

Rd�1:

Now let ˛ be as in Theorem 11.1.2. With � D ˛
!d

p



, applying that theorem to

w D 1

!d
p



v D 1

!d
p



log u;

we obtain
Z

B3

u�

Z

B3

u�� � ˇ2;

and hence

�.�; 3/ � ˇ
2
� �.��; 3/;

and hence (14.1.27), thus completing the proof.

In order to see what the Harnack inequality for supersolutions can tell us about

subsolutions, we now state

Corollary 14.1.3. Let v be a bounded weak subsolution on B.x0; 4R/. There exists

a constant 0 < ı0 < 1, independent of v and R, with

sup
B.x0;R/

v � .1 � ı0/ sup
B.x0;4R/

v C ı0 vB.x0;R/: (14.1.29)

Proof. We abbreviate

vC;R WD sup
B.x0;R/

v

and have

vC;4R � vR D �
Z

B.x0 ;R/

.vC;4R � v/

� 2d �
Z

B.x0;2R/

jvC;4R � vj

� c.vC;4R � vC;R/
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by Theorem 14.1.2 (for p D 1), since vC;4R � v is a nonnegative supersolution on

B.x0; 4R/. Consequently,

vC;R � c � 1

c
vC;4R C 1

c
vB.x0;R/: ut

This corollary tells us that unless v is constant, its supremum on the smaller ball is

smaller than the one on the larger ball in a way controlled by the difference between

the supremum and the average. Thus, it can be interpreted as a quantitative version

of the maximum principle. More generally, a (sub)solution defined on some ball is

more tightly controlled on a smaller ball. Such explicit quantitative controls are very

important in the regularity theory for solutions of elliptic equations, as we shall see

in subsequent sections.

A reference for this section is Moser [27].

Krylov and Safonov have shown that solutions of elliptic equations that are not of

divergence type satisfy Harnack inequalities as well. In order to describe their results

in the simplest case, we again omit all lower-order terms and consider solutions of

M u WD
d
X

i;j D1

aij .x/
@2

@xi @xj
u.x/ D 0:

Here the coefficients aij .x/ again need only be (measurable and) bounded and

satisfy the structural condition (14.1.1), i.e.,

�j�j2 �
d
X

i;j D1

aij .x/�i �j for all x 2 ˝; � 2 R
d

and

sup
i;j;x

jaij .x/j � �

with constants 0 < � < � < 1.

We then have the following theorem:

Theorem 14.1.3. Let u 2 W 2;d .˝/ be positive and satisfy M u � 0 almost

everywhere in B.x0; 4R/ � R
d . For any p > 0, we then have

sup
B.x0;R/

u � c1

�

�
Z

B.x0;2R/

up dx

�1=p

with a constant c1 depending on d , �
�

, and p.
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Theorem 14.1.4. Let u 2 W 2;d .˝/ be positive and satisfy M u � 0 almost

everywhere in B.x0; 4R/ � R
d . Then there exist p > 0 and some constant c2,

depending only on d and �
�

, such that

�

�
Z

B.x0;R/

up dx

�1=p

� c2 inf
B.x0;R/

u:

As in the case of divergence-type equations (see Sect. 14.2 below), these results

imply Harnack inequalities, maximum principles, and the Hölder continuity of

solutions u 2 W 2;d .˝/ of

M u D 0 almost everywhere ˝ � R
d :

Proofs of the results of Krylov–Safonov can be found in Gilbarg–Trudinger [12].

14.2 Properties of Solutions of Elliptic Equations

In this section we shall apply the Moser–Harnack inequality in order to deduce

the Hölder continuity of weak solutions of Lu D 0 under the structural condi-

tion (14.1.1). That result had originally been proved by E. de Giorgi and J. Nash

independently of each other, and with different methods, before J. Moser found the

proof presented here, based on the Harnack inequality.

Lemma 14.2.1. Let u 2 W 1;2.˝/ be a weak subsolution of L, i.e.,

Lu D
d
X

i;j D1

@

@xj

�

aij .x/
@

@xi
u.x/

�

� 0 weakly,

with L satisfying the conditions stated in Sect. 14.1. Then u is bounded from above

on any ˝0 �� ˝ . Thus, if u is a weak solution of Lu D 0, it is bounded from above

and below on any such ˝0.

Proof. By Lemma 14.1.3, for any positive k,

v.x/ WD max.u.x/; k/

is a positive subsolution (by the way, in place of v, one might also employ the

approximating subsolutions fn ı u from the proof of Lemma 14.1.3). The local

boundedness of v, hence of u, then follows from Theorem 14.1.1, using a ball chain

argument as in the proof of Corollary 14.1.2. ut

Theorem 14.2.1. Let u 2 W 1;2.˝/ be a weak solution of
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Lu D
d
X

i;j D1

@

@xj

�

aij .x/
@

@xi
u.x/

�

D 0; (14.2.1)

assuming that the measurable and bounded coefficients aij .x/ satisfy the structural

conditions

� j�j2 �

d
X

i;j D1

aij .x/�i �j ;
ˇ

ˇaij .x/
ˇ

ˇ � � (14.2.2)

for all x 2 ˝ , � 2 R
d , with constants 0 < � < � < 1. Then u is Hölder

continuous in ˝ . More precisely, for any ˝0 �� ˝ , there exist some ˛ 2 .0; 1/

and a constant c with

ju.x/ � u.y/j � c jx � yj˛ (14.2.3)

for all x; y 2 ˝0. ˛ depends on d , �
�

, and ˝0, c in addition on sup˝0
u � inf˝0 u.

Proof. Let x 2 ˝ . For R > 0 and B.x; R/ � ˝ , we put

M.R/ WD sup
B.x;R/

u; m.R/ WD inf
B.x;R/

u:

(By Lemma 14.2.1, �1 < m.R/ � M.R/ < 1:) Then

!.R/ WD M.R/ � m.R/

is the oscillation of u in B.x; R/, and we plan to prove the inequality

!.r/ � c0

� r

R

�˛

!.R/ for 0 < r � R

4
(14.2.4)

for some ˛ to be specified. This will then imply

u.x/ � u.y/ � sup
B.x;r/

u � inf
B.x;r/

u D !.r/ � c0

!.R/

R˛
jx � yj˛ : (14.2.5)

for all y with jx � yj D r . This, in turn, easily implies the claim.

We now turn to the proof of (14.2.4):

M.R/ � u and u � m.R/

are positive solutions of Lu D 0 in B.x; R/.1 Thus, by Corollary 14.1.1,

1More precisely, these are nonnegative solutions, and as in the proof of Theorem 14.1.2, one adds

" > 0 and lets " approach to 0.
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M.R/ � m

�

R

4

�

D sup
B.x; R

4 /

.M.R/ � u/ � c1 inf
B.x; R

4 /

.M.R/ � u/

D c1

�

M.R/ � M

�

R

4

��

;

and analogously,

M

�

R

4

�

� m.R/ D sup
B.x; R

4 /

.u � m.R// � c1 inf
B.x; R

4 /

.u � m.R//

D c1

�

m

�

R

4

�

� m.R/

�

:

(By Corollary 14.1.1, c1 does not depend on R.) Adding these two inequalities

yields

M

�

R

4

�

� m

�

R

4

�

� c1 � 1

c1 C 1
.M.R/ � m.R//: (14.2.6)

With # WD c1�1
c1C1

< 1, thus

!

�

R

4

�

� #!.R/:

Iterating this inequality gives

!

�

R

4n

�

� #n!.R/ for n 2 N: (14.2.7)

Now let
R

4nC1
� r � R

4n
: (14.2.8)

We now choose ˛ > 0 such that

# �
�

1

4

�˛

:

Then

!.r/ � !

�

R

4n

�

since ! is obviously monotonically increasing

� #n!.R/ by (14.2.7)

�
�

1

4n

�˛

!.R/

� 4˛
� r

R

�˛

!.R/ by (14.2.8);

whence (14.2.4). ut
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We now want to prove a strong maximum principle:

Theorem 14.2.2. Let u 2 W 1;2.˝/ satisfy Lu � 0 weakly, the coefficients aij of L

again satisfying

� j�j2 �
X

i;j

aij .x/�i �j ;
ˇ

ˇaij .x/
ˇ

ˇ � �

for all x 2 ˝ , � 2 R
d . If for some ball B.y0; R/ �� ˝ ,

sup
B.y0;R/

u D sup
˝

u; (14.2.9)

then u is constant.

Proof. If (14.2.9) holds, we may find some ball B.x0; R0/ with B.x0; 4R0/ � ˝

and

sup
B.x0;R0/

u D sup
˝

u: (14.2.10)

Without loss of generality sup˝ u < 1 because supB.y0;R/ u < 1 by Lemma 14.2.1.

For

M > sup
˝

u;

M � u then is a positive supersolution, and we may apply Theorem 14.1.2 to it.

Passing to the limit, the resulting inequalities then continue to hold for

M D sup
˝

u: (14.2.11)

Thus, as in the proof of Corollary 14.1.3, we get from Theorem 14.1.2 for p D 1

�
Z

B.x0;2R0/

.M � u/ � c inf
B.x0;R0/

.M � u/ D 0

by (14.2.10) and (14.2.11). Since by choice of M , we also have u � M ; it follows

that

u � M (14.2.12)

in B.x0; 2R0/.

Now let y 2 ˝ . We may find a chain of balls B.xi ; Ri /, i D 0; : : : ; m, with

B.xi ; 4Ri/ � ˝ , B.xi�1; Ri�1/\B.xi ; Ri / ¤ 0 for i D 1; : : : ; m, y 2 B.xm; Rm/.

We already know that u � M on B.x0; 2R0/. Because of B.x0; R0/ \ B.x1; R1/ ¤
0, this implies

sup
B.x1;R1/

u D M I

hence by our preceding reasoning

u � M on B.x1; 2R1/:
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Iteratively, we obtain

u � M on B.xm; 2Rm/;

and because of y 2 B.xm; Rm/,

u.y/ D M:

Since y was arbitrary, it follows that

u � M in ˝: ut

As another application of the Harnack inequality, we shall now demonstrate a result

of Liouville type:

Theorem 14.2.3. Any bounded (weak) solution of Lu D 0 that is defined on all of

R
d , where L has measurable bounded coefficients aij .x/ satisfying

� j�j �
X

i;j

aij .x/�i �j ;
ˇ

ˇaij .x/
ˇ

ˇ � �

for fixed constants 0 < � � � < 1 and all x 2 R
d , � 2 R

d , is constant.

Proof. Since u is bounded, infRd u and sup
Rd u are finite. Thus, for any

� < inf
Rd

u;

u � � is a positive solution of Lu D 0 on R
d . Therefore, by Corollary 14.1.1,

0 � sup
B.0;R/

u � � � c3

�

inf
B.0;R/

u � �

�

for any R > 0 and any � < infRd u, and passing to the limit, then this also holds for

� D inf
Rd

u:

Since c3 does not depend on R, it follows that

0 � sup
Rd

u � � � c3

�

inf
Rd

u � �

�

D 0;

and hence

u � const: ut
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14.3 An Example: Regularity of Bounded Solutions

of Semilinear Elliptic Equations

In this section, we shall show how the Harnack inequality naturally applies for the

regularity of solutions of nonlinear equations. We take up once more the semilinear

equation (12.2.7)

�u C � .u/jDuj2 D 0 (14.3.1)

with a smooth function � .u/, on an open and bounded ˝ � R
d . In Sect. 12.2,

we have shown that a weak solution u 2 W 1;p1.˝/ for some p1 > d is smooth.

We recall that this condition implies that u is bounded, by the Sobolev embedding

Theorem 11.1.1 (see also Morrey’s Theorem 11.1.5). In this section, we wish to

show that all bounded solutions are smooth, as an application of the Harnack

inequality. The crucial point will be to find auxiliary functions constructed from

a solution that are subharmonic and to which therefore a Harnack inequality can be

applied.

We start with the following computation for a smooth solution u. Let x0 2 ˝ ,

and C > 0, and p some constant.

�eC.u.x/�p/2 D
X

i

@

@xi
.2C.u � p/uxi eC.u.x/�p/

2

/

D 2C.u � p/�ueC.u.x/�p/2

C2C jDuj2eC.u.x/�p/2

C4C 2.u � p/2jDuj2eC.u.x/�p/2

D �2C� .u/.u � p/jDuj2eC.u.x/�p/2

C2C jDuj2eC.u.x/�p/2

C4C 2.u � p/2jDuj2eC.u.x/�p/2 :

If we now assume

� .u/ � a; (14.3.2)

and choose C with

a2 � C; (14.3.3)

then

�eC.u.x/�p/2 � 0; (14.3.4)

i.e., we have constructed a subharmonic function from a solution of (14.3.1).

Since we wish to prove a regularity result, we cannot yet assume that u is a

classical solution of (14.3.1). We need to consider weak solutions; u 2 W 1;2.˝/

with � .u/ bounded is called a weak solution of (14.3.1) if
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Z

 

X

i

Di uDi ' � � .u/jDuj2'
!

dx D 0 for all ' 2 H 1;2
0 \ L1.˝/I (14.3.5)

here, we need to require that the test function ' be bounded in order to ensure that

the integral
R

jDuj2' be finite. For a weak solution of (14.3.4), (14.3.5) then is

also satisfied in the weak sense when the conditions (14.3.2) and (14.3.3) hold (see

Sect. 14.1 for weakly subharmonic functions), i.e.,

Z

˝

X

i

Di .e
C.u.x/�p/2/Di �.x/dx � 0 for all � 2 H 1;2

0 .˝/; � � 0I (14.3.6)

here, we need to require u to be bounded in order to ensure that, computed by the

chain rule, Di .e
C.u.x/�p/2

/ is in L2.˝/. For the details, so that you can see how

a computation in the smooth case is translated into one in the weak case via an

integration by parts (the reasoning is the same as in the proof of Lemma 14.1.2):

The inequality (14.3.6) then is obtained via

Z

X

i

Di .e
C.u�p/2

Di � D
Z

X

i

2C.u � p/Di ueC.u�p/2

Di �

D
Z

X

i

Di uDi.2C.u � p/eC.u�p/2

�/

�2

Z

X

i

Di uDi ..u � p/eC.u�p/2

/�

D
Z

jDuj2� .u/2C.u � p/eC.u�p/2

�

�
Z

2C jDuj2eC.u�p/2

�

�
Z

4C 2jDuj2.u � p/2eC.u�p/2

�

� 0

for � � 0, using (14.3.2), (14.3.3) as before.

Lemma 14.3.1. Let u W B.x0; 4R/ ! R (B.x0; 4R/ a ball in R
d ) be bounded, with

sup
y1;y22B.x0;2R/

ju.y1/ � u.y2/j D M; (14.3.7)

and satisfy

�eC.u.x/�p/2 � 0 (14.3.8)
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in the weak sense for every p 2 R. Then there exists some

M 0 < M

with

sup
z1;z22B.x0;R/

ju.z1/ � u.z2/j D M 0: (14.3.9)

Proof. By (14.3.7), we can find some x1 2 B.x0; 2R/ with

meas

��

x 2 B.x0; R/ W ju.x/ � u.x1/j � M

4

��

� 1

4
meas.B.x0; R/ D !d

4
Rd :

(14.3.10)

We consider the auxiliary function

g.x/ WD 1

eCM 2
eC.u.x/�u.x1//2

:

We have

� WD sup
x2B.x0;2R/

g.x/ � 1: (14.3.11)

On the other hand, by (14.3.7), there exists some y 2 B.x0; 2R/ with

ju.y/ � u.x1/j � M

2
I

hence

� � e� 3
4CM

2

: (14.3.12)

On fx 2 B.x0; R/ W ju.x/ � u.x1/j � M
4

g [as in (14.3.10)], we have

g.x/ � e� 15
16 CM 2

: (14.3.13)

We then consider the auxiliary function

h.x/ WD � � g.x/ � 0 on B.x0; 2R/: (14.3.14)

From (14.3.12)and (14.3.13), we have

h.x/ � e� 3
4 CM 2 �e� 15

16 CM 2

on

�

x 2 B.x0; R/ W ju.x/ � u.x1/j � M

4

�

: (14.3.15)

By (14.3.8) and the definitions of g; h,

�h.x/ � 0 weakly in B.x0; 2R/; (14.3.16)
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so that, with (14.3.14), we can apply the Harnack inequality for positive

superharmonic functions, Theorem 14.1.2, to obtain

inf
x2B.x0;R/

h.x/ � c

Rd

Z

B.x0;R/

h.x/dx for some constant c > 0

� c0
�

e� 3
4 CM 2 � e� 15

16 CM 2
�

(14.3.17)

for some constant c0 that is independent of u, by (14.3.15) and (14.3.10). ut

The key of the proof was, of course, the Harnack inequality. The principle is that

when we can control a supersolution h on some sufficiently large part of the ball

B.x0; 2R/ from below, then we can control h everywhere from below on the smaller

ball B.x0; R/.

Clearly, we can iterate the proof of this lemma, to show that, given � > 0, we

find some ı > 0 with

sup
�1;�22B.x0;ı/

ju.�1/ � u.�2/j < �:

The iteration works because, by (14.3.15), whenever sup�1;�22B.x0;2R/ ju.�1/ �
u.�2/j � �, then we can decrease that supremum on B.x0; R/ by at least c0.e� 3

4 C�2 �
e� 15

16 C�2
/ for some constant c0 that does not depend on u.

Thus, we have

Theorem 14.3.1. Let u be a bounded solution of

Z

˝

 

X

i

Di uDi ' � � .u/jDuj2'
!

dx D 0 for all ' 2 H 1;2
0 \ L1.˝/ (14.3.18)

with a smooth and bounded function � . Then u is continuous in ˝ .

Once we know that u is continuous, we can derive further regularity properties

of u. As in Sect. 12.2, one shows in the end that u is smooth. In the special case

where u is a solution of the variational problem (12.2.8), this is particularly easy.

We simply take a function f with f 0.u/ D
p

g.u/ which is possible since u, hence

g.u/ is continuous. Then the variational problem
R

g.u/jDuj2 ! min becomes

the variational problem
R

jDvj2 ! min for v D f ı u, i.e., the Dirichlet integral,

that we have already treated in Sects. 10.1 and 11.2. Since f is differentiable with

positive derivative, the regularity of v then translates into the regularity of u, indeed.

Actually, inspired by this argument, we may also want to treat (14.3.1) in a similar

manner. We simply solve

˚ 0.u/ D � .u/ and f 0.u/ D e˚.u/ (14.3.19)
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and then have

�.f ı u/ D f 0.u/�u C f 00.u/jD.u/j2

D e˚.u/.�u C ˚ 0.u/jD.u/j2/

D e˚.u/.�u C � .u/jD.u/j2/;

and so, f ı u is harmonic, hence regular, when u solves (14.3.1). There are

technical issues involved, like the solvability of (14.3.19) for a continuous u, the

weak formulation of the preceding formula, and the necessary iteration to get from

continuity to smoothness, however, that we do not address here.

When we want to proceed in a more analytical manner, we can obtain the

following Caccioppoli inequality:

Lemma 14.3.2. Let u 2 W 1;2.˝/ be a bounded and continuous weak solution of

(14.3.18) in ˝ . Assume j� .u/j � a. For all x0 2 ˝ , there then exists a radius

R0 < dist.x0; @˝/, depending only on the modulus of continuity of u and the bound

a in (14.3.2), such that for all radii 0 < r < R � R0, with uR WD uB.x0;R/ (the mean

value of u on the ball B.x0; R/), we have

Z

B.x0;r/

jDuj
2 �

32

.R � r/2

Z

B.x0;R/nB.x0;r/

ju � uRj2 : (14.3.20)

Proof. We choose � 2 H
1;2
0 .B.x0; R// with

0 � � � 1;

� � 1 on B.x0; r/I hence D� � 0 on B.x0; r/;

jD�j � 2

R � r
:

As in Sect. 11.2, we employ the test function

' D .u � uR/�2

and obtain

Z

B.x0;R/

jDuj2�2 D �
Z

B.x0;R/

2Diu�Di �.u � uR/ C
Z

B.x0;R/

� .u/jDuj2.u � uR/�2

� 1

4

Z

B.x0;R/

jDuj2�2 C 4

Z

B.x0;R/

.u � uR/2jD�j2

Ca sup
B.x0;R/

ju � uRj
Z

B.x0;R/

jDuj2�2:
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By continuity of u, we may choose R so small that a supB.x0;R/ ju � uRj � 1
4
. We

then obtain

Z

B.x0;R/

jDuj2�2 � 8

Z

B.x0;R/

.u � uR/2jD�j2

� 32

.R � r/2

Z

B.x0;R/nB.x0;r/

ju � uRj2 : (14.3.21)

This yields (14.3.20). ut

The key point here is that we can use a test function like u.x/ � uR or u.x/ �
u.x0/ that, because of the continuity of u, on a sufficiently small ball B.x0; R/ leads

to an arbitrarily small factor for the nonlinear term � .u/jD.u/j2 so that it can be

dominated by the linear term.

We have seen the use of such an inequality already in Sect. 11.2, and we shall

see in Sect. 14.4 below how the Caccioppoli inequality can be used to show higher

results.

References for continuity results via Moser’s Harnack inequality for equations

and systems of the type (14.3.1) are [15,26]. As the example at the end of Sect. 12.2

shows, weak solutions of elliptic systems of the type considered here need not

be continuous, even if they are bounded. However, continuous weak solutions are

smooth; see [24].

14.4 Regularity of Minimizers of Variational Problems

The aim of this section is the proof of (a special case of) the fundamental result of

de Giorgi on the regularity of minima of variational problems with elliptic Euler–

Lagrange equations:

Theorem 14.4.1. Let F W R
d ! R be a function of class C 1 satisfying the

following conditions: For some constants K; � < 1; � > 0 and for all p D
.p1; : : : ; pd / 2 R

d :

(i)

ˇ

ˇ

ˇ

@F
@pi

.p/
ˇ

ˇ

ˇ
� K jpj .i D 1; : : : ; d /.

(ii) � j�j2 �
P @2F.p/

@pi @pj
�i �j � � j�j2 for all � 2 R

d .

Let ˝ � R
d be a bounded domain. Let u 2 W 1;2.˝/ be a minimizer of the

variational problem

I.v/ WD
Z

˝

F.Dv.x//dx;

i.e.,

I.u/ � I.u C '/ for all ' 2 H 1;2
0 .˝/: (14.4.1)

Then u 2 C 1.˝/.
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Remark. Because of (i), there exist constants c1, c2 with

jF.p/j � c1 C c2 jpj
2 : (14.4.2)

Since ˝ is assumed to be bounded, this implies

I.v/ D

Z

˝

F.Dv/ < 1

for all v 2 W 1;2.˝/. Therefore, our variational problem, namely, to minimize I in

W 1;2.˝/, is meaningful.

We shall first derive the Euler–Lagrange equations for a minimizer of I :

Lemma 14.4.1. Suppose that the assumptions of Theorem 14.4.1 hold. We then

have for all ' 2 H 1;2
0 .˝/,

Z

˝

d
X

iD1

Fpi .Du/Di ' D 0 (14.4.3)

(using the abbreviation Fpi D @F
@pi

/.

Proof. By (i),

Z

˝

d
X

iD1

Fpi .Dv/Di ' � d K

Z

˝

jDvj jD'j � d K kDvkL2.˝/ kD'kL2.˝/ ;

and this is finite for '; v 2 W 1;2.˝/. By a standard result of Lebesgue integration

theory, on the basis of this inequality, we may compute

d

dt
I.u C t'/

by differentiation under the integral sign

d

dt
I.u C t'/ D

Z

˝

X

Fpi .Du C tD'/Di ': (14.4.4)

In particular, I.u C t'/ is a differentiable function of t 2 R, and since u is a

minimizer,
d

dt
I.u C t'/jtD0 D 0: (14.4.5)

Equation (14.4.4) for t D 0 then implies (14.4.3). ut
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Lemma 14.4.1 reduces Theorem 14.4.1 to the following:

Theorem 14.4.2. Let Ai W R
d ! R, i D 1; : : : ; d , be C1-functions satisfying

the following conditions: There exist constants K;� < 1, � > 0 such that for all

p 2 R
d :

(i)
ˇ

ˇAi .p/
ˇ

ˇ � K jpj .i D 1; : : : ; d /:

(ii) � j�j
2 �

Pd
i;j D1

@Ai .p/

@pj
�i �j for all � 2 R

d .

(iii)

ˇ

ˇ

ˇ

@Ai .p/

@pj

ˇ

ˇ

ˇ
� �.

Let u 2 W 1;2.˝/ be a weak solution of

d
X

iD1

@

@xi
Ai .Du/ D 0 in ˝ � R

d ; (14.4.6)

i.e., for all ' 2 H 1;2
0 .˝/, let

Z

˝

d
X

iD1

Ai .Du/Di' D 0: (14.4.7)

Then u 2 C 1.˝/.

The crucial step in the proof will be Theorem 14.2.1, of de Giorgi and Nash.

Important steps towards Theorem 14.4.2 had been obtained earlier by S. Bernstein,

L. Lichtenstein, E. Hopf, C. Morrey, and others.

We shall start with a lemma.

Lemma 14.4.2. Under the assumptions of Theorem 14.4.2, for any ˝ 0 �� ˝

we have u 2 W 2;2.˝ 0/, and moreover, kukW 2;2.˝0/ � c kukW 1;2.˝/, where c D

c.�; �; dist.˝ 0; @˝//.

Proof. We shall proceed as in the proof of Theorem 11.2.1. For

jhj < dist.supp '; @˝/;

'k;�h.x/ WD '.x � hek/ (ek being the kth unit vector) is of class H
1;2
0 .˝/ as well.

Therefore,

0 D
Z

˝

d
X

iD1

Ai .Du.x//Di 'k;�h.x/dx

D
Z

˝

d
X

iD1

Ai .Du.x//Di '.x � hek/dx

D
Z

˝

d
X

iD1

Ai .Du.y C hek//Di '.y/dy

D
Z

˝

d
X

iD1

Ai ..Du/k;h/ Di ':
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Subtracting (14.4.7), we obtain

Z

X

i

�

Ai .Du.x C hek// � Ai .Du.x//
�

Di '.x/ D 0: (14.4.8)

For almost all x 2 ˝

Ai .Du.x C hek// � Ai .Du.x//

D
Z 1

0

d

dt
Ai .tDu.x C hek/ C .1 � t/Du.x// dt

D
Z 1

0

0

@

d
X

j D1

Ai
pj

.tDu.x C hek/C .1 � t/Du.x//Dj .u.x C hek/ � u.x//

1

A dt:

(14.4.9)

We thus put

a
ij

h .x/ WD
Z 1

0

Aipj .tDu.x C hek/C .1 � t/Du.x// dt;

and using (14.4.9), we rewrite (14.4.8) as

Z

˝

X

i;j

a
ij

h .x/Dj

�

u.x C hek/ � u.x/

h

�

Di'.x/dx D 0: (14.4.10)

Here, because of (ii) and (iii),

� j�j2 �
X

i;j

a
ij

h .x/�i �j � d� j�j2 for all � 2 R
d :

We may thus proceed as in Sect. 11.2 and put

' D 1

h
.u.x C hek/ � u.x// �2

with � 2 C 1
0 .˝ 00/, where we choose ˝ 00 satisfying

˝ 0 �� ˝ 00 �� ˝;

dist.˝ 00; @˝/; dist.˝ 0; @˝ 00/ � 1
4

dist.˝ 0; @˝/, and require

0 � � � 1;

�.x/ D 1 for x 2 ˝ 0;

jD�j � 8

dist.˝ 0; @˝/
;
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as well as

j2hj < dist.˝ 00; @˝/:

Using the notation

�h
ku.x/ D u.x C hek/ � u.x/

h
;

(14.4.10) then implies

�

Z

˝

ˇ

ˇD�h
ku
ˇ

ˇ

2
�2 �

Z

˝

X

i;j

a
ij

h

�

Dj �h
ku
� �

Di �
h
ku
�

�2

D �
Z

˝

X

i;j

a
ij

h Dj �h
ku 2�.Di �/�k

hu by (14.4.10)

� "d�

Z

˝

ˇ

ˇD�h
ku
ˇ

ˇ

2 C d�

"

Z

˝

ˇ

ˇ�h
ku
ˇ

ˇ

2 jD�j2 for all " > 0;

and with " D �
2d�

,

Z

˝

ˇ

ˇD�h
ku
ˇ

ˇ

2
�2 � c1

Z

˝00

ˇ

ˇ�h
ku
ˇ

ˇ

2 � c1

Z

˝

jDuj2

by Lemma 11.2.1, with c1 independent of h. Hence





D�h
ku






L2.˝0/
� c1 kDukL2.˝/ : (14.4.11)

Since the right-hand side of (14.4.11) does not depend on h, from Lemma 11.2.2 we

obtain D2u 2 L2.˝ 0/ and the inequality





D2u






L2.˝0/
� c1 kDukL2.˝/ : (14.4.12)

Consequently, u 2 W 2;2.˝ 0/. ut

Performing the limit h ! 0 in (14.4.10), with

aij .x/ WD Ai
pj

.Du.x//;

v WD Dku;
(14.4.13)

we also obtain

Z

˝

X

i;j

aij .x/Dj vDi ' D 0 for all ' 2 H
1;2
0 .˝/:
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By (ii), (iii), .aij .x//i;j D1;:::;d satisfies the assumptions of Theorem 14.2.1. Applying

that result to v D Dku then yields the following result:

Lemma 14.4.3. Under the assumptions of Theorem 14.2.1,

Du 2 C ˛.˝/

for some ˛ 2 .0; 1/, i.e.,

u 2 C 1;˛.˝/:

Thus v D Dku, k D 1; : : : ; d , is a weak solution of

d
X

i;j Dr

Di

�

aij .x/Dj v
�

D 0: (14.4.14)

Here, the coefficients aij .x/ satisfy not only the ellipticity condition

� j�j2 �

d
X

i;j D1

aij .x/�i �j ;
ˇ

ˇaij .x/
ˇ

ˇ � �

for all � 2 R
d , x 2 ˝ , i; j D 1; : : : ; d , but by (14.4.13), they are also Hölder

continuous, since Ai is smooth and Du is Hölder continuous by Lemma 14.4.3. For

the proof of Theorem 14.4.2, we thus need a regularity theory for such equations.

Equation (14.4.14) is of divergence type, in contrast to those treated in Chap. 13,

and therefore, we cannot apply the results of Schauder directly. However, one can

develop similar methods. For the sake of variety, here, we shall present the method

of Campanato as an alternative approach. As a preparation, we shall now prove

some auxiliary results for equations of type (14.4.14) with constant coefficients. (Of

course, these results are already essentially known from Chap. 11.)

The first result is the Caccioppoli inequality:

Lemma 14.4.4. Let .Aij /i;j D1;:::;d be a matrix with
ˇ

ˇAij
ˇ

ˇ � � for all i; j , and

� j�j
2 �

d
X

i;j D1

Aij �i �j for all � 2 R
d

with � > 0. Let u 2 W 1;2.˝/ be a weak solution of

d
X

i;j D1

Dj

�

Aij Di u
�

D 0 in ˝: (14.4.15)
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We then have for all x0 2 ˝ and 0 < r < R < dist.x0; @˝/ and all � 2 R,

Z

B.x0;r/

jDuj2 �
c2

.R � r/2

Z

B.x0;R/nB.x0;r/

ju � �j2 : (14.4.16)

Proof. We choose � 2 H
1;2
0 .B.x0; R// with

0 � � � 1;

� � 1 on B.x0; r/; hence D� � 0 on B.x0; r/;

jD�j � 2

R � r
:

As in Sect. 11.2, we employ the test function

' D .u � �/�2

and obtain

0 D
Z

X

i;j

Aij Di uDj

�

.u � �/�2
�

D
Z

X

i;j

Aij Di uDj u �2 C
Z

2
X

i;j

Aij Di u.u � �/�Dj �:

Using the ellipticity conditions, we deduce the inequality

�

Z

B.x0;R/

jDuj2�2 �
Z

B.x0;R/

X

Aij Di uDj u �2

� "� d

Z

B.x0;R/

jDuj2 �2

C �

"
d

Z

B.x0;R/nB.x0;r/

jD�j2 ju � �j2 ;

since D� D 0 on B.x0; r/. Hence, with " D 1
2

�
�d

,

Z

B.x0;R/

jDuj2 �2 � c2

.R � r/2

Z

B.x0;R/nB.x0;r/

ju � �j2 ;

and because of
Z

B.x0;r/

jDuj2 �
Z

B.x0;R/

jDuj2 �2;

the claim results. ut
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The next lemma contains the Campanato estimates:

Lemma 14.4.5. Under the assumptions of Lemma 14.4.4, we have

Z

B.x0;r/

juj2 � c3

� r

R

�d
Z

B.x0;R/

juj
2 (14.4.17)

as well as

Z

B.x0;r/

ˇ

ˇu � uB.x0;r/
ˇ

ˇ

2 � c4

� r

R

�dC2
Z

B.x0;R/

ˇ

ˇu � uB.x0;R/
ˇ

ˇ

2
: (14.4.18)

Proof. Without loss of generality r < R
2

. We choose k > d . By the Sobolev

embedding theorem (Theorem 11.1.1) or an extension of this result analogous to

Corollary 11.1.3,

W k;2.B.x0; R// � C 0.B.x0; R//:

By Theorem 11.3.1, now u 2 W k;2
�

B
�

x0;
R
2

��

, with an estimate analogous to

Theorem 11.2.2. Therefore,

Z

B.x0;r/

juj2 � c5r
d sup
B.x0;r/

juj2 � c6
rd

Rd�2k kukW k;2.B.x0;R2 //

� c3
rd

Rd

Z

B.x0;R/

juj2 :

(Concerning the dependence on the radius: The power rd is obvious. The powerRd

can easily be derived from a scaling argument, instead of carefully going through

all the intermediate estimates). This yields (14.4.17). Since we are dealing with an

equation with constant coefficients, Du is a solution along with u. For r < R
2

, we

thus obtain
Z

B.x0;r/

jDuj2 � c7
rd

Rd

Z

B.x0;R2 /
jDuj2 : (14.4.19)

By the Poincaré inequality (Corollary 11.1.4),

Z

B.x0;r/

ˇ

ˇu � uB.x0;r/
ˇ

ˇ

2 � c8r
2

Z

B.x0;r/

jDuj2 : (14.4.20)

By the Caccioppoli inequality (Lemma 14.4.4)

Z

B.x0;R2 /
jDuj2 � c9

R2

Z

B.x0;R/

ˇ

ˇu � uB.x0;R/
ˇ

ˇ

2
: (14.4.21)

Then (14.4.19)–(14.4.21) imply (14.4.18). ut

We may now use Campanato’s method to derive the following regularity result:
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Theorem 14.4.3. Let aij .x/, i; j D 1; : : : ; d , be functions of class C ˛, 0 < ˛ < 1,

on ˝ � R
d , satisfying the ellipticity condition

� j�j2 �

d
X

i;j D1

aij .x/�i �j for all � 2 R
d ; x 2 ˝ (14.4.22)

and
ˇ

ˇaij .x/
ˇ

ˇ � � for all x 2 ˝; i; j D 1; : : : ; d; (14.4.23)

with fixed constants 0 < � � � < 1. Then any weak solution v of

d
X

i;j D1

Dj

�

aij .x/Di v
�

D 0 (14.4.24)

is of class C 1;˛0

.˝/ for any ˛0 with 0 < ˛0 < ˛.

Proof. For x0 2 ˝ , we write

aij D aij .x0/ C
�

aij .x/ � aij .x0/
�

:

Letting

Aij WD aij .x0/;

(14.4.24) becomes

d
X

i;j D1

Dj

�

Aij Di v
�

D
d
X

i;j D1

Dj

�

.aij .x0/ � aij .x//Di v
�

D
d
X

j D1

Dj

�

f j .x/
�

with

f j .x/ WD
d
X

iD1

�

.aij .x0/ � aij .x//Di v
�

: (14.4.25)

This means that

Z

˝

d
X

i;j D1

Aij Di vDj ' D
Z

˝

d
X

j D1

f j Dj ' for all ' 2 H
1;2
0 .˝/: (14.4.26)

For some ball B.x0; R/ � ˝ , let

w 2 H 1;2.B.x0; R//
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be a weak solution of

d
X

i;j D1

Dj

�

Aij Di w
�

D 0 in B.x0; R/;

w D v on @B.x0; R/:

(14.4.27)

Thus w is a solution of

Z

B.x0;R/

d
X

i;j D1

Aij Di wDj ' D 0 for all ' 2 H 1;2
0 .B.x0; R//: (14.4.28)

Such a w exists by the Lax–Milgram theorem (see appendix). Note that we seek

z D w � v with

B.'; z/ WD
Z

X

Aij Di zDj '

D �
Z

X

Aij Di vDj '

D W F.'/ for all ' 2 H
1;2
0 .B.x0; R//:

Since (14.4.27) is a linear equation with constant coefficients, then if w is a solution,

so is Dkw, k D 1; : : : ; d (with different boundary conditions, of course). We may

thus apply (14.4.17) from Lemma 14.4.5 to u D Dkw and obtain

Z

B.x0;r/

jDwj2 � c10

� r

R

�d
Z

B.x0;R/

jDwj2 : (14.4.29)

(Here, Dw stands for the vector .D1w; : : : ;Ddw/.) Since w D v on @B.x0; R/,

' D v � w is an admissible test function in (14.4.28), and we obtain

Z

B.x0;R/

d
X

i;jD1

AijDiwDjw D
Z

B.x0;R/

d
X

i;jD1

AijDiwDj v: (14.4.30)

Using (14.4.27), (14.4.23) and the Cauchy–Schwarz inequality, this implies

Z

B.x0;R/

jDwj2 �
�

� d

�

�2 Z

B.x0;R/

jDvj2 : (14.4.31)

Equations (14.4.26) and (14.4.28) imply

Z

B.x0;R/

d
X

i;j D1

Aij Di .v � w/Dj ' D
Z

B.x0;R/

d
X

i;j D1

f j Dj '
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for all ' 2 H
1;2
0 .B.x0; R//. We utilize once more the test function ' D v � w to

obtain
Z

B.x0;R/

jD.v � w/j2 � 1

�

Z

B.x0;R/

X

i;j

AijDi .v � w/Dj .v � w/

D 1

�

Z

B.x0;R/

X

j

f jDj .v � w/

� 1

�

�Z

B.x0;R/

jD.v � w/j2
�

1
2

0

@

Z

B.x0;R/

X

j

ˇ

ˇf j
ˇ

ˇ

2

1

A

1
2

by the Cauchy–Schwarz inequality, i.e.,

Z

B.x0;R/

jD.v � w/j2 � 1

�2

Z

B.x0;R/

X

j

ˇ

ˇf j
ˇ

ˇ

2
: (14.4.32)

We now put the preceding estimates together. For 0 < r � R, we have

Z

B.x0;r/

jDvj2 � 2

Z

B.x0;r/

jDwj2 C 2

Z

B.x0;r/

jD.v � w/j2

� c11

� r

R

�d
Z

B.x0;R/

jDvj2 C 2

Z

B.x0;r/

jD.v � w/j2

by (14.4.29) and (14.4.31). Now

Z

B.x0;r/

jD.v � w/j2 �
Z

B.x0;R/

jD.v � w/j2 ; since r � R

� 1

�2

Z

B.x0;R/

X

j

ˇ

ˇf j
ˇ

ˇ

2
by (14.4.32)

� 1

�2
sup
i;j

x2 B.x0;R/

ˇ

ˇaij .x0/ � aij .x/
ˇ

ˇ

2
Z

B.x0;R/

jDvj2

by (14.4.25)

� c12R
2˛

Z

B.x0;R/

jDvj2 ; (14.4.33)

since the aij are of class C ˛ . Altogether, we obtain

Z

B.x0;r/

jDvj2 � 


�

� r

R

�d

C R2˛

�Z

B.x0;R/

jDvj2 (14.4.34)
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with some constant 
 . If (14.4.34) did not contain the term R2˛ (which is present

solely for the reason that the aij .x/, while Hölder continuous, are not necessarily

constant), we would have a useful inequality. That term, however, can be made to

disappear by a simple trick. For later purposes, we formulate a somewhat more

general result:

Lemma 14.4.6. Let �.r/ be a nonnegative, monotonically increasing function

satisfying

�.r/ � 

�� r

R

��

C ı
�

�.R/ C �R�

for all 0 < r � R � R0, with � > � and ı � ı0.
; �; �/. If ı0 is sufficiently small,

for 0 < r � R � R0, we then have

�.r/ � 
1

� r

R

��

�.R/ C �1r
� ;

with 
1 depending on 
; �; �, and �1 depending in addition on � (�1 D 0 if � D 0).

Proof. Let 0 < � < 1, R < R0. Then by assumption

�.�R/ � 
�� .1 C ı���/ �.R/ C �R�:

We choose 0 < � < 1 such that

2
�� D ��

with � < � < � (without loss of generality 2
 > 1), and assume that

ı0�
�� � 1:

It follows that

�.�R/ � ���.R/ C �R�

and thus iteratively for k 2 N

�.�kC1R/ � ���.�kR/ C ��k�R�

� � .kC1/��.R/ C ��k�R�

k
X

j D0

�j.���/

� 
0�
.kC1/� .�.R/ C �R�/

(where 
0, as well as the subsequent 
1, contains a factor 1
�
). We now choose k 2 N

such that

�kC2R < r � �kC1R;
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and obtain

�.r/ � �.�kC1R/ � 
1

� r

R

��

�.R/ C �1r
� : ut

Continuing with the proof of Theorem 14.4.3, applying Lemma 14.4.6 to (14.4.34),

where we have to require 0 < r � R � R0 with R2˛
0 � ı0, we obtain the inequality

Z

B.x0;r/

jDvj
2 � c13

� r

R

�d�"
Z

B.x0;R/

jDvj
2 (14.4.35)

for each " > 0, where c13 and R0 depend on ". We repeat this procedure, but this

time applying (14.4.18) from Lemma 14.4.5 in place of (14.4.17). Analogously to

(14.4.29), we obtain

Z

B.x0;r/

ˇ

ˇDw � .Dw/B.x0;r/

ˇ

ˇ

2 � c14

� r

R

�dC2
Z

B.x0;R/

ˇ

ˇDw � .Dw/B.x0;R/

ˇ

ˇ

2
:

(14.4.36)

We also have

Z

B.x0;R/

ˇ

ˇDw � .Dw/B.x0;R/

ˇ

ˇ

2 �
Z

B.x0;R/

ˇ

ˇDw � .Dv/B.x0;R/

ˇ

ˇ

2
;

because for any L2-function g, the following relation holds:

Z

B.x0;R/

ˇ

ˇg � gB.x0 ;R/

ˇ

ˇ

2 D inf
�2R

Z

B.x0;R/

jg � �j2 : (14.4.37)

(Proof: For g 2 L2.˝/; F.�/ WD
R

˝ jg � �j2 is convex and differentiable with

respect to �, and

F 0.�/ D
Z

˝

2.� � g/I

hence F 0.�/ D 0 precisely for

� D 1

j˝j

Z

˝

g;

and since F is convex, a critical point has to be a minimizer.)

Moreover,
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Z

B.x0;R/

ˇ

ˇDw � .Dv/B.x0;R/

ˇ

ˇ

2

� 1

�

Z

B.x0;R/

X

i;j

Aij
�

Diw � .Div/B.x0;R/
� �

Djw � .Dj v/B.x0;R/
�

D 1

�

Z

B.x0;R/

X

i;j

Aij
�

Diw � .Div/B.x0;R/
� �

Dj v � .Dj v/B.x0;R/
�

C 1

�

Z

B.x0;R/

X

i;j

Aij .Div/B.x0;R/
�

Dj v �Djw
�

by (14.4.30). The last integral vanishes, sinceAij .Div/B.x0;R/ is constant and v�w 2
H

1;2
0 .B.x0; R//. Applying the Cauchy–Schwarz inequality as usual, we altogether

obtain

Z

B.x0;R/

ˇ

ˇDw � .Dw/B.x0;R/
ˇ

ˇ

2 � �2

�2
d 2

Z

B.x0;R/

ˇ

ˇDv � .Dv/B.x0;R/

ˇ

ˇ

2
: (14.4.38)

Finally,

Z

B.x0;r/

ˇ

ˇDv � .Dv/B.x0;r/

ˇ

ˇ

2 � 3

Z

B.x0;r/

ˇ

ˇDw � .Dw/B.x0;r/

ˇ

ˇ

2

C 3

Z

B.x0;r/

jDv � Dwj2

C 3

Z

B.x0;r/

�

.Dv/B.x0;r/ � .Dw/B.x0;r/

�2
:

The last expression can be estimated by Hölder’s inequality

Z

B.x0;r/

�

1

jB.x0; r/j

Z

B.x0;r/

.Dv � Dw/

�2

�
Z

B.x0;r/

.Dv � Dw/2:

Thus

Z

B.x0;r/

ˇ

ˇDv � .Dv/B.x0;r/

ˇ

ˇ

2

� 3

Z

B.x0;r/

ˇ

ˇDw � .Dw/B.x0;r/

ˇ

ˇ

2 C 6

Z

B.x0;r/

jDv � Dwj2

� 3

Z

B.x0;r/

ˇ

ˇDw � .Dw/B.x0;r/

ˇ

ˇ

2 C c15R
2˛

Z

B.x0;R/

jDvj2 (14.4.39)
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by (14.4.33). From (14.4.36), (14.4.38), and (14.4.39), we obtain

Z

B.x0;r/

ˇ

ˇDv � .Dv/B.x0;r/
ˇ

ˇ

2

� c16

� r

R

�dC2
Z

B.x0;R/

ˇ

ˇDv � .Dv/B.x0;R/
ˇ

ˇ

2 C c17R
2˛

Z

B.x0;R/

jDvj2

� c16

� r

R

�dC2
Z

B.x0;R/

ˇ

ˇDv � .Dv/B.x0;R/
ˇ

ˇ

2 C c18R
d�"C2˛; (14.4.40)

applying (14.4.35) for 0 < R � R0 in place of 0 < r � R. Lemma 14.4.6 implies

Z

B.x0;r/

ˇ

ˇDv � .Dv/B.x0;r/
ˇ

ˇ

2

� c19

� r

R

�dC2˛�" Z

B.x0;R/

ˇ

ˇDv � .Dv/B.x0;R/
ˇ

ˇ

2 C c20r
dC2˛�":

The claim now follows from Campanato’s theorem (Corollary 11.1.7). ut

It is now easy to prove Theorem 14.4.2:

Proof of Theorem 14.4.2: We apply Theorem 14.4.3 to v D Du and obtain v 2
C 1;˛0

; hence u 2 C 2;˛0

. We may then differentiate the equation with respect to

xk and observe that the second derivatives Djku, j; k D 1; : : : ; d , again satisfy

equations of the same type. By Theorem 14.4.3, then D2u 2 C 1;˛00

; hence u 2
C 3;˛00

. Iteratively, we obtain u 2 Cm;˛m for all m 2 N with 0 < ˛m < 1. Therefore,

u 2 C1.

Remark. The regularity Theorem 14.4.1 of de Giorgi more generally applies to

minimizers of variational problems of the form

I.v/ WD
Z

˝

F.x; v.x/;Dv.x//dx;

where F 2 C1.˝ � R � R � R
d / again satisfies conditions like (i), (ii)

of Theorem 14.4.1 with respect to p, and 1
jpj2F.x; v; p/ satisfies smoothness

conditions with respect to the variables x and v uniformly in p.

References for this section are Giaquinta [10, 11].
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Summary

Moser’s Harnack inequality says that positive weak solutions u of

Lu D
X

i;j

@

@xj

�

aij .x/
@

@xi
u.x/

�

D 0

satisfy an estimate of the form

sup
B.x0;R/

u � const inf
B.x0;R/

u

in each ball B.x0; R/ in the interior of their domain of definition ˝ . Here,

the coefficients aij need to satisfy only an ellipticity condition, and have to be

measurable and bounded, but they need not satisfy any further conditions like

continuity. Moser’s inequality yields a proof of the fundamental result of de

Giorgi and Nash about the Hölder continuity of weak solutions of linear elliptic

differential equations of second order with measurable and bounded coefficients.

These assumptions are appropriate and useful for applications to nonlinear elliptic

equations of the type

X

i;j

@

@xj

�

Aij .u.x//
@

@xi
u.x/

�

D 0:

Namely, if one does not yet know any detailed properties of the solution u, then,

even if the Aij themselves are smooth, one can work only with the boundedness of

the coefficients

aij .x/ WD Aij .u.x//:

Here, a nonlinear equation is treated as a linear equation with not necessarily regular

coefficients.

An application is de Giorgi’s theorem on the regularity of minimizers of

variational problems of the form

Z

F.Du.x// (14.4.38)x ! min

under the structural conditions

(i) j @F
@pi

.p/j � Kjpj,

(ii) �j�j2 �
P @2F.p/

@pi @pj
�i �j � �j�j2 for all � 2 R

d ,

with constants K; � < 1; � > 0.



392 14 Moser Iteration Method and Regularity Theorem of de Giorgi and Nash

Exercises

14.1. Formulate conditions on the coefficients of a differential operator of the form

Lu D
d
X

i;j D1

@

@xj

�

aij .x/
@

@xi
u.x/

�

C
d
X

iD1

@

@xi
.bi.x/u.x// C c.x/u.x/

that imply a Harnack inequality of the type of Corollary 14.1.1. Carry out the

detailed proof.

14.2. As in Lemma 14.1.4, let

�.p;R/ D
�

�
Z

B.x0 ;R

up dx

�1=p

for a fixed positive u W B.x0; R/ ! R.

Show that

lim
p!0

�.p;R/ D exp

�

�
Z

B.x0;R/

log u.x/ dx

�

:

14.3. Show the regularity of bounded minimizers of

Z

˝

g.x; u.x//jDu.x/j2dx

where g is smooth, bounded, and � � for some constant � > 0.



Appendix. Banach and Hilbert Spaces.

The Lp-Spaces

In this appendix we shall first recall some basic concepts from calculus without

proofs. After that, we shall prove some smoothing results for Lp-functions.

Definition A.1. A Banach space B is a real vector space that is equipped with a

norm k�k that satisfies the following properties:

(i) kxk > 0 for all x 2 B , x ¤ 0.

(ii) k˛xk D j˛j � kxk for all ˛ 2 R, x 2 B .

(iii) kx C yk / kxk C kyk for all x; y 2 B (triangle inequality).

(iv) B is complete with respect to k�k (i.e., every Cauchy sequence has a limit in

B).

We recall the Banach fixed-point theorem

Theorem A.1. Let .B; k � k/ be a Banach space, A � B a closed subset, and

f W A ! B a map with f .A/ � A which satisfies the inequality

kf .x/ � f .y/k / �kx � yk for all x; y 2 A;

for some fixed � with 0 / � < 1:

Then f has unique fixed point in A, i.e., a solution of f .x/ D x.

For example, every Hilbert space is a Banach space. We also recall that concept:

Definition A.2. A (real) Hilbert space H is a vector space over R, equipped with a

scalar product

.�; �/ W H � H ! R

that satisfies the following properties:

(i) .x; y/ D .y; x/ for all x; y 2 H .

(ii) .�1x1 C �2x2; y/ D �1.x1; y/ C �2.x2; y/ for all �1; �2 2 R, x1; x2; y 2 H .

(iii) .x; x/ > 0 for all x ¤ 0, x 2 H .
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(iv) H is complete with respect to the norm

kxk WD .x; x/
1
2 :

In a Hilbert space H , the following inequalities hold:

– Schwarz inequality:

j.x; y/j 0 kxk � kyk ; (A.1)

with equality precisely if x and y are linearly dependent.

– Triangle inequality:

kx C yk 0 kxk C kyk : (A.2)

Likewise without proof, we state the Riesz representation theorem:

Let L be a bounded linear functional on the Hilbert space H, i.e., L W H ! R is

linear with

kLk WD sup
x¤0

jLxj
kxk

< 1:

Then there exists a unique y 2 H with L.x/ D .x; y/ for all x 2 H , and

kLk D kyk :

The following extension is important, too:

Theorem of Lax–Milgram: Let B be a bilinear form on the Hilbert space H that

is bounded,

jB.x; y/j 0 K kxk kyk for all x; y 2 H with K < 1;

and elliptic, or, as this property is also called in the present context, coercive,

jB.x; x/j � � kxk2 for all x 2 H with � > 0:

For every bounded linear functional T on H, there then exists a unique y 2 H with

B.x; y/ D T x for all x 2 H:

Proof. We consider

Lz.x/ D B.x; z/:
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By the Riesz representation theorem, there exists Sz 2 H with

.x; Sz/ D Lzx D B.x; z/:

Since B is bilinear, Sz depends linearly on z. Moreover,

kSzk 1 K kzk :

Thus, S is a bounded linear operator.

Because of

� kzk
2
1 B.z; z/ D .z; Sz/ 1 kzk kSzk

we have

kSzk � � kzk :

So, S is injective. We shall show that S is surjective as well. If not, there exists

x ¤ 0 with

.x; Sz/ D 0 for all z 2 H:

With z D x, we get

.x; Sx/ D 0:

Since we have already proved the inequality

.x; Sx/ � � kxk2 ;

we conclude that x D 0. This establishes the surjectivity of S . By what has already

been shown, it follows that S�1 likewise is a bounded linear operator on H . By

Riesz’s theorem, there exists v 2 H with

T x D .x; v/

D .x; Sz/ for a unique z 2 H , since S is bijective

D B.x; z/ D B.x; S�1v/:

Then y D S�1v satisfies our claim. ut

The Banach spaces that are important for us here are the Lp-spaces:

For 1 1 p < 1, we put

Lp.˝/ WD
n

u W ˝ ! R measurable,

with kukp WD kukLp.˝/ WD
�R

˝ jujp dx
�

1
p < 1

o
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and

L1.˝/ WD
n

u W ˝ ! R measurable,

with kuk1 WD kukL1 .˝/ WD sup juj < 1
o

.

Here

sup juj WD inffk 2 R W fx 2 ˝ W ju.x/j > kg is a null setg

is the essential supremum of juj.
Occasionally, we shall also need the space

L
p

loc.˝/ WD
˚

u W ˝ ! R measurable with u 2 Lp.˝ 0/ for all ˝ 0 �� ˝
2

;

1 3 p 3 4.

In those constructions, one always identifies functions that differ on a null set.

(This is necessary in order to guarantee (i) from Definition A.1.)

We recall the following facts:

Lemma A.1. The space Lp.˝/ is complete with respect to k�kp Inductively and

hence is a Banach space, for 1 3 p 3 4. L2.˝/ is a Hilbert space, with scalar

product

.u; v/L2.˝/ WD
Z

˝

u.x/v.x/dx:

Any sequence that converges with respect to k�kp contains a subsequence that

converges pointwise almost everywhere. For 1 3 p < 1, C 0.˝/ is dense in

Lp.˝/; i.e., for u 2 Lp.˝/ and " > 0, there exists w 2 C 0.˝/ with

ku � wkp < ": (A.3)

Hölder’s inequality holds: If u 2 Lp.˝/, v 2 Lq.˝/, 1=p C 1=q D 1, then

Z

˝

uv 3 kukLp.˝/ � kvkLq.˝/ : (A.4)

Inequality (A.4) follows from Young’s inequality

ab 3
ap

p
C bq

q
; if a; b � 0; p; q > 1;

1

p
C 1

q
D 1: (A.5)
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To demonstrate this, we put

A WD kukp ; B WD kvkq ;

and without loss of generality A; B ¤ 0. With a WD ju.x/j
A

, b WD jv.x/j
B

, (A.5) then

implies

Z ju.x/v.x/j
AB

5
1

p

Ap

Ap
C 1

q

Bq

Bq
D 1;

i.e., (A.4).

Inductively, (A.4) yields that if u1 2 Lp1 ; : : : ; um 2 Lpm ,

m
X

iD1

1

pi

D 1;

then

Z

˝

u1 � � � um 5 ku1kLp1 � � � kumkLpm : (A.6)

By Lemma A.1, for 1 5 p < 1, C 0.˝/ is dense in Lp.˝/ with respect to

the Lp-norm. We now wish to show that even C 1
0 .˝/ is dense in Lp.˝/. For

that purpose, we shall use so-called mollifiers, i.e., nonnegative functions % from

C 1
0 .B.0; 1// with

Z

% dx D 1:

Here,

B.0; 1/ WD
˚

x 2 R
d W jxj 5 1

6
:

The typical example is

%.x/ WD

8

<

:

c exp
�

1

jxj2�1

�

for jxj < 1;

0 for jxj � 1;

where c is chosen such that
R

% dx D 1. For u 2 Lp.˝/, h > 0, we define the

mollification of u as

uh.x/ WD 1

hd

Z

Rd

%
�x � y

h

�

u.y/dy; (A.7)
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where we have put u.y/ D 0 for y 2 Rd n ˝ . (We shall always use that convention

in the sequel.) The important property of the mollification is

uh 2 C 1
0

�

R
d
�

for a bounded ˝ .

Lemma A.2. For u 2 C 0.˝/, as h ! 0, uh converges uniformly to u on any

˝ 0 �� ˝ .

Proof.

uh.x/ D
1

hd

Z

jx�yj�h

%
�x � y

h

�

u.y/dy

D
Z

jzj�1

%.z/u.x � hz/dz with z D x � y

h
:

(A.8)

Thus, if ˝ 0 �� ˝ and 2h < dist.˝ 0; @˝/, employing

u.x/ D

Z

jzj�1

%.z/u.x/dz

(this follows from
R

jzj�1
%.z/dz D 1), we obtain

sup
˝0

ju � uhj 7 sup
x2˝0

Z

jzj�1

%.z/ ju.x/ � u.x � hz/j dz;

7 sup
x2˝0

sup
jzj�1

ju.x/ � u.x � hz/j :

Since u is uniformly continuous on the compact set fx W dist.x; ˝ 0/ 7 hg, it

follows that

sup
˝0

ju � uhj ! 0 for h ! 0: ut

Lemma A.3. Let u 2 Lp.˝/, 1 7 p < 1. For h ! 0, we then have

ku � uhkLp.˝/ ! 0:

Moreover, uh converges to u pointwise almost everywhere (again putting u D 0

outside of ˝).

Proof. We use Hölder’s inequality, writing in (A.8)

%.z/u.x � hz/ D %.z/
1
q %.z/

1
p u.x � hz/
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with 1=p C 1=q D 1, to obtain

juh.x/jp 8

�Z

jzj�1

%.z/dz

�

p
q

Z

jzj�1

%.z/ ju.x � hz/jp dz

D
Z

jzj�1

%.z/ ju.x � hz/jp dz:

We choose a bounded ˝ 0 with ˝ �� ˝ 0.

If 2h < dist.˝; @˝ 0/, it follows that

Z

˝

juh.x/jp dx 8

Z

˝

Z

jzj�1

%.z/ ju.x � hz/jp dz dx

D
Z

jzj�1

�

%.z/

Z

˝

ju.x � hz/jp dx

�

dz

8

Z

˝0

ju.y/j
p dy (A.9)

(with the substitution y D x � hz). For " > 0, we now choose w 2 C 0.˝ 0/ with

ku � wkLp.˝0/ < "

(cf. Lemma A.1). By Lemma A.2, for sufficiently small h,

kw � whkLp.˝0/ < ":

Applying (A.9) to u � w, we now obtain

Z

˝

juh.x/ � wh.x/jp dx 8

Z

˝0

ju.y/ � w.y/jp dy

and hence

ku � uhkLp.˝/ 8 ku � wkLp.˝/ C kw � whkLp.˝/ C kuh � whkLp.˝/

8 2" C ku � wkLp.˝0/ 8 3":

Thus uh converges to u with respect to k�kp . By Lemma A.1, a subsequence of uh

then converges to u pointwise almost everywhere. By a more refined reasoning, in

fact the entire sequence uh converges to u for h ! 0. ut

Remark. Mollifying kernels were introduced into PDE theory by K.O. Friedrichs.

Therefore, they are often called “Friedrichs mollifiers.”
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For the proofs of Lemmas A.2 and A.3, we did not need the smoothness of � at all.

Thus, these results also hold for other kernels, and in particular for

�.x/ D
(

1
!d

for jxj 9 1;

0 otherwise.

The corresponding convolution is

ur .x/ D 1

rd

Z

˝

�
�x � y

r

�

u.y/ dy D 1

jB.x; r/j

Z

B.x;r/

u.y/ dy DW �
Z

B.x;r/

u;

i.e., the average or mean integral of u on the ball B.x; r/. Thus, analogously to

Lemma A.3, we obtain the following result:

Lemma A.4. Let u 2 Lp.˝/, 1 9 p < 1. For r ! 0, then

�
Z

B.x;r/

u

converges to u.x/, in the space Lp.˝/ as well as pointwise almost everywhere.

For a detailed presentation of all the results that have been stated here without proof,

we refer to Jost [19].



References

1. Ahlfors, L.: Complex Analysis. McGraw Hill, New York (1966)

2. Bers, L., Schechter, M.: Elliptic equations. In: Bers, L., John, F., Schechter, M. (eds.) Partial

Differential Equations, pp. 131–299. Interscience, New York (1964)

3. Braess, D.: Finite Elemente. Springer, Berlin (1997)

4. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, Orlando (1984)

5. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik, vol. I and II, reprinted

1968, Springer. Methods of mathematical physics. Wiley-Interscience, vol. I, 1953, Vol. II,

1962, New York (the German and English versions do not coincide, but both are highly

recommended)

6. Crandall, M., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer.

Math. Soc. 277, 1–42 (1983)

7. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19, AMS

(2010)

8. Frehse, J.: A discontinuous solution to a mildly nonlinear elliptic system. Math. Zeitschr. 134,

229–230 (1973)

9. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice Hall, Englewood Cliffs

(1964)

10. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.

Princeton University Press, Princeton (1983)

11. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser,
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Index of Notation

˝ always is an open subset of Rd , usually bounded as well.

˝0 � � ˝ W , The closure N̋0 is compact and contained in˝.

For ' W ˝ ! R, the support of ' (supp ') is defined as the closure of

fx 2 ˝ W '.x/ ¤ 0g., 1

PDE, 1

uxi WD @u
@xi for i D 1; : : : ; d , 1

x D .x1; : : : ; xd /, 1

�u WD
Pd

i D 1 uxi xi D 0, 1

R
C WD ft 2 R W t > 0g, 2

ru, 9

� .x; y/ WD � .jx � yj/ WD
(

1
2�

log jx � yj for d D 2
1

d.2�d/!d
jx � yj

2�d
for d > 2

, 11

!d , 11
@
@�x

, 12

�, 13

k @˝ kDk@˝ k, 15

u.x0/ D S.u; x0; r/ WD 1
d!d rd�1

R

@B.x0 ;r/
u.x/do.x/, 20

u.x0/ D K.u; x0; r/ WD 1
!d rd

R

B.x0 ;r/
u.x/dx, 20

%.t/ WD

(

cd exp
�

1
t2�1

�

if 0 � t < 1;

0 otherwise,
, 21

TC.v/ WD
˚

y 2 ˝ W 9p 2 R
d

8x 2 ˝ W v.x/ � v.y/C p � .x � y/g, 44

�v.y/ WD
˚

p 2 R
d W 8x 2 ˝ W v.x/ � v.y/C p � .x � y/




, 45

Ld , 45

diam.˝/, 51

R
d
h , 59

N̋
h WD ˝ \R

d
h , 59

�h, 60

˝h, 60

ui .x/ WD 1
h

�

u.x1; : : : ; xi�1; xi C h; xiC1; : : : ; xd / � u.x1; : : : ; xd /
�

uN{.x/ WD 1
h

�

u.x1; : : : ; xd / � u.x1; : : : ; xi�1; xi � h; xiC1; : : : ; xd /
�

, 60

�.x; y; t; t0/ WD 1

.4�jt�t0j/
d
2

e
jx�yj

2

4.t0�t/ , 89

K.x; y; t/ D �.x; y; t; 0/ D 1

.4�t/
d
2

e�
jx�yj

2

4t , 97
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404 Index of Notation

� .x/ D
R 1

0 e�t tx�1dt for x > 0, 108

p.x; y; t/ D 1

.4�t/
d
2

e�
jx�yj

2

4t , 173

Pt W C 0
b .Rd / ! C 0

b .Rd /, 173

P˝;g;t f .x/, 174

Tt W B ! B , 175

D.A/, 176

J�v WD
R 1

0 �e��sTsvdsfor � > 0, 177

DtTt , 179

R.�;A/ WD :; Id �A/�1, 180

P.t; xI s; E /, 194

C 1
0 .A/ WD f' 2 C 1.A/ W the closure of fx W '.x/ ¤ 0g is compact and contained in Ag, 215

D.u/ WD
R

˝ jru.x/j
2

dx, 216

C k
0 .˝/ WD ff 2 C k.˝/ W the closure of fx W f .x/ ¤ 0g is a compact subset of ˝g

(k D 1; 2; : : :), 218

v D Di u, 219

W 1;2.˝/, 219

.u; v/W 1;2.˝/ WD
R

˝ u � v C
Pd

iD1

R

˝ Di u � Di v, 219

kukW 1;2.˝/ WD .u; u/
1
2

W 1;2.˝/
, 219

H 1;2.˝/, 220

H
1;2
0 .˝/, 220

.V�f /.x/ WD
R

˝ jx � yj
d.��1/

f .y/dy, 227

˛ WD .˛1; : : : ; ˛d /, 255

D˛' WD
�

@
@x1

�˛1
� � �

�

@
@xd

�˛d
' for ' 2 C j˛j.˝/, 255

D˛u, 255

W k;p.˝/ WD fu 2 Lp.˝/ W D˛u exists and is contained in Lp.˝/ for all j˛j � kg , 255

kukW k;p.˝/ WD
�
P

j˛j�k

R

˝ jD˛uj
p
�

1
p , 255

H k;p.˝/, 255

H
k;p
0 .˝/, 255

k�kp D k�kLp .˝/, 255

Du, 256

D2u, 256

.V�f /.x/ WD
R

˝ jx � yj
d.��1/

f .y/dy, 258

�
R

˝ v.x/dx WD 1
j˝j

R

˝ v.x/dx, 260

j˝j, 260

uB WD 1
jBj

R

B u.y/dy, 262

jBj, 262

osc˝\B.z;r/ u WD supx;y2B.z;r/\˝ ju.x/ � u.y/j, 266

f 2 C ˛.˝/, 267

kukC ˛ .˝/ WD kukC 0.˝/ C supx;y2˝
ju.x/�u.y/j

jx�yj
˛ , 267

C 0;1.˝/, 267

�h
i u.x/ WD u.xChei /�u.x/

h
, 271

supp ', 272

domain of class C k , 283

C l;1.˝/, 290

hf; gi WD
R

˝ f .x/g.x/dx, 296

C ˛.˝/, 329

C k;˛.˝/, 329
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jf jC ˛ .˝/ WD supx;y2˝
jf .x/�f .y/j

jx�yj˛ , 329

kf kC k;˛.˝/ , 329

k�k, 393

.�; �/, 393

Lp.˝/ WD
n

u W ˝ ! R measurable,

with kukp WD kukLp .˝/ WD
�R

˝ jujp dx
�

1
p < 1

o

, 395

L1.˝/ WD
n

u W ˝ ! R measurable, kukL1.˝/ WD sup juj < 1
o

, 395

k�kp , 396

.u; v/L2.˝/ WD
R

˝ u.x/v.x/dx, 396

uh.x/ WD 1
hd

R

Rd %
�

x�y

h

�

u.y/dy, 397
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˛-Hölder continuous, 267

alternating method of H.A. Schwarz, 72

Arzela–Ascoli, 23

B

Banach fixed point theorem, 393

Banach space, 393

barrier, 70, 80

bilinear form, 236

coercive, 236, 394

elliptic, 236, 394

boundary point

nonregular, 80

boundary point lemma of E. Hopf, 41, 96

boundary regularity, 283, 289

boundary value problem, 6

boundedness, 284

Brownian motion, 196, 198

Burgers’ equation, 156

C

Caccioppoli inequality, 375, 381

calculus of variations

direct method, 234

Calderon–Zygmund inequality, 311, 316

Campanato estimates, 383

Cauchy–Riemann equations, 2, 10

chain rule for Sobolev functions, 225

Chapman–Kolmogorov equation, 194, 195

characteristic curve, 159

characteristic equation, 153

compactness theorem of Rellich, 228, 292, 297

comparison theorem, 49

complete integral, 160

concave, 44, 354

conservation of mass, 208

constructive method, 59

constructive technique, 7

continuity equation, 154, 208

continuous semigroup, 175

contracting, 175

convex, 26, 354

convolution, 97

Courant’s minimax principle, 304

Courant’s nodal set theorem, 308

cutoff function, 274, 314

D

Darboux equation, 165

decomposition of Laplace operator, 11

decomposition of wave operator, 150

delta distribution, 222

difference equation, 59

difference method, 59

difference quotient, 271

forward and backward, 60

difference scheme, 66

consistent, 66

convergent, 66

differential equation

parabolic, 85

differential operator

elliptic, 65

linear elliptic, 37

diffusion process, 2

Dirac delta distribution, 13

Dirichlet boundary condition, 296

Dirichlet integral, 217, 230, 235

transformation behavior, 234

Dirichlet principle, 215, 230, 280
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Dirichlet problem, 17, 19, 28, 29, 40, 50, 61,

71, 99, 215, 280, 347

weak solution, 284

Dirichlet problem on the ball

solution, 18

discretely connected, 60

discretization

heat equation, 122

discretization of the heat equation, 122

distribution, 14, 221

distributional derivative, 221

divergence theorem, 9

Duhamel principle, 113

E

edge path, 60

edges, 60

eigenvalue, 136, 142, 144, 295

eigenvalue problem, 300

Einstein field equation, 3

elliptic, 5, 48, 49

elliptic differential operator

divergence type, 353

elliptic regularity theory, 279

ellipticity, 37, 284, 340

ellipticity condition, 51

energy, 162

energy norm, 162

equilibrium state, 2

estimates of J. Schauder, 340

Euler–Lagrange equations, 233, 235

example of Lebesgue, 80

existence, 6

existence problem, 346

extension of Sobolev functions, 291

exterior sphere condition, 80

F

first eigenvalue, 307

Fisher equation, 134

fixed point, 393

fully nonlinear equation, 5

fundamental estimates of J. Moser, 356

fundamental solution, 312

G

gamma function, 108

generalized solution, 152

Gierer-Meinhardt system, 140

global bound, 280

global error, 66

global existence, 131

Green function, 14, 17, 28, 63

for a ball, 16

Green representation formula, 12

Green’s formulae, 9

first Green’s formula, 9

second Green’s formula, 9

H

Hadamard, 6

Hamilton equations, 160

Hamilton-Jacobi equation, 159

harmonic, 10, 18, 19, 22, 27, 28, 279

harmonic polynomials, 10

Harnack convergence theorem, 33, 69, 74

Harnack inequality, 32, 365

heat equation, 2, 85, 97, 119, 164, 173

semidiscrete approximation, 123

strong maximum principle, 95

heat kernel, 89, 112, 173, 198

Hilbert space, 393

Hille–Yosida theorem, 188

Hölder continuous, 329

Hölder’s inequality, 396

holomorphic, 10

Huygens principle, 169

hyperbolic, 6

I

infinitesimal generator, 176

inhomogeneous Neumann boundary

conditions, 294

initial boundary value problem, 90, 111, 114,

128

initial value problem, 98, 151, 166, 168, 174

integration by parts, 219

isolated singularity, 28

iteration argument, 288

J

jump condition, 157

K

Koopman semigroup, 182

Korteweg–de Vries equation, 2

L

Laplace equation, 1, 12, 59, 61, 99

discrete, 61
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discretized, 123

fundamental solution, 12

weak solution, 231

Laplace operator, 1, 37, 198

eigenvalues, 295

rotational symmetry, 12

transformation behavior, 234

Lax–Milgram theorem, 239

linear, 10

linear equation, 4

Liouville theorem, 31

Lipschitz continuous, 267, 329

local error, 66

local existence, 128

logarithmic cut-off function, 279

M

Markov process, 195

spatially homogeneous, 196

Markov property, 194

maximum principle, 24, 27, 49, 51, 73, 91, 101,

114, 210

discrete, 61

of Alexandrov and Bakelman, 44

strong, 27, 68

of weak subsolutions, 369

strong, E. Hopf, 41

weak, 27, 38

Maxwell equation, 3

mean, 260, 262

mean value formula, 19

mean value inequality, 24

mean value property, 20, 23, 123

method of characteristics, 153

methods of Campanato, 381

minimal surface equation, 3

minimizing sequence, 230

mollification, 21, 273, 397

mollifier, 397

Monge–Ampère equation, 2, 48, 49

Morrey’s Dirichlet growth theorem, 268

Moser iteration scheme, 362

Moser–Harnack inequality, 357, 366

N

natural boundary condition, 294

Navier–Stokes equation, 3

Neumann boundary condition, 34, 132, 136,

294, 296

Neumann boundary value problem, 16

Newton potential, 311, 339

non-smooth initial data, 152

nonlinear, 50, 391

nonlinear equation, 5

nonlinear parabolic equation, 127

numerical scheme, 7

P

parabolic, 6

partial differential equation, 1

pattern formation, 139

periodic boundary condition, 16

Perron Method, 68

Perron-Frobenius semigroup, 183

Picard-Lindelöf theorem, 127

plate equation, 4

Poincaré inequality, 226, 232, 265, 298, 303

Poisson equation, 1, 27–30, 32, 235, 347

discrete, 63

gradient estimate for solutions, 30

uniqueness of solutions, 27

weak solution, 232, 240, 273

Poisson representation formula, 18

Poisson’s formula, 20

propagation of waves, 2

Q

quasilinear equation, 5

R

Rankine-Hugoniot condition, 156, 158

rarefaction wave, 158

Rayleigh–Ritz scheme, 305

reaction-diffusion equation, 128, 132

reaction-diffusion system, 135, 139

reduced boundary, 85

regular point, 71

regularity issues, 119

regularity result, 273

regularity theorem of de Giorgi, 376

regularity theory, 232

Lp-regularity theory, 316

removable singularity, 278

replacement lemma, 223

representation formula, 17, 151

resolvent, 180, 188

resolvent equation, 181

Riesz representation theorem, 273, 394

S

scalar product, 393

Schauder estimates, 340
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Schnakenberg reaction, 140

Schrödinger equation, 4

Schwarz inequality, 394

semidiscrete approximation of the heat

equation, 123

semigroup, 175, 176, 198

continuous, 175, 186

contracting, 175, 179, 196

semigroup property, 195

semilinear equation, 5

Sobolev embedding theorem, 256, 260, 267,

277, 288, 292, 316, 383

Sobolev space, 219, 255

solution of the Dirichlet problem on the ball,

18

solvability, 6

spatial variable, 2

stability, 6, 66

stability lemma, 232

strong maximum principle, 27

for the heat equation, 95

of E. Hopf, 41

strong solution, 312

subfunction, 69

subharmonic, 23, 25, 26, 68

subsolution

positive, 356

weak, 354

strong maximum principle, 369

superharmonic, 23

supersolution

positive, 356

weak, 354

T

theorem of Campanato, 269, 271

theorem of de Giorgi and Nash, 366, 378

theorem of Jacobi, 160

theorem of John and Inselberg, 262

theorem of Kellogg, 347

theorem of Lax–Milgram, 394

theorem of Liouville, 370

theorem of Morrey, 266, 267

theorem of Perron, 69, 211

theorem of Rellich, 228, 292

theorem of Turing, 144

Thomas system, 141

time coordinate, 2

transport equation, 149

travelling wave, 133

triangle inequality, 394

Turing instability, 144

Turing mechanism, 139, 146

Turing space, 147

U

uniform ellipticity, 284

uniqueness, 6

uniqueness of solutions of the Poisson

equation, 27

uniqueness result, 50

V

variational problem

constructive method, 243

minima, 376

vertex, 60

viscosity solution, 211, 212

W

wave equation, 2, 149, 164, 166, 168

wave operator, 150

weak derivative, 218, 222, 255, 272

weak maximum principle, 27

weak solution, 210, 274, 280, 313, 317, 333,

381

Hölder continuity, 366

weak solution of first order hyperbolic

equation, 157

weak solution of the Dirichlet problem, 284

weak solution of the Poisson equation, 240

weakly differentiable, 219

weakly harmonic, 231

Weyl’s lemma, 22

Y

Young inequality, 274, 396
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