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Preface

This is the third edition of my textbook intended for students who wish to obtain an
introduction to the theory of partial differential equations (PDEs, for short). Why
is there a new edition? The answer is simple: I wanted to improve my book. Over
the years, I have received much positive feedback from readers from all over the
world. Nevertheless, when looking at the book or using it for courses or lectures,
I always find some topics that are important, but not yet contained in the book, or
I see places where the presentation could be improved. In fact, I also found two
errors in Sect. 6.2, and several other corrections have been brought to my attention
by attentive and careful readers.

So, what is new? I have completely reorganized and considerably extended
Chap.7 on hyperbolic equations. In particular, it now also contains a treatment
of first-order hyperbolic equations. I have written a new Chap.9 on the relations
between different types of PDEs. I have inserted material on the regularity theory for
semilinear elliptic equations and systems in various places. In particular, there is a
new Sect. 14.3 that shows how to use the Harnack inequality to derive the continuity
of bounded weak solutions of semilinear elliptic equations. Such equations play an
important role in geometric analysis and elsewhere, and I therefore thought that such
an addition should serve a useful purpose. I have also slightly rewritten, reorganized,
or extended most other sections of the book, with additional results inserted here and
there.

But let me now describe the book in a more systematic manner. As an introduc-
tion to the modern theory of PDEs, it does not offer a comprehensive overview of
the whole field of PDEs, but tries to lead the reader to the most important methods
and central results in the case of elliptic PDEs. The guiding question is how one
can find a solution of such a PDE. Such a solution will, of course, depend on given
constraints and, in turn, if the constraints are of the appropriate type, be uniquely
determined by them. We shall pursue a number of strategies for finding a solution
of a PDE; they can be informally characterized as follows:

0. Write down an explicit formula for the solution in terms of the given data
(constraints). This may seem like the best and most natural approach, but this
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is possible only in rather particular and special cases. Also, such a formula
may be rather complicated, so that it is not very helpful for detecting qualitative
properties of a solution. Therefore, mathematical analysis has developed other,
more powerful, approaches.

1. Solve a sequence of auxiliary problems that approximate the given one and
show that their solutions converge to a solution of that original problem.
Differential equations are posed in spaces of functions, and those spaces are of
infinite dimension. The strength of this strategy lies in carefully choosing finite-
dimensional approximating problems that can be solved explicitly or numerically
and that still share important crucial features with the original problem. Those
features will allow us to control their solutions and to show their convergence.

2. Start anywhere, with the required constraints satisfied, and let things flow
towards a solution. This is the diffusion method. It depends on characterizing a
solution of the PDE under consideration as an asymptotic equilibrium state for a
diffusion process. That diffusion process itself follows a PDE, with an additional
independent variable. Thus, we are solving a PDE that is more complicated than
the original one. The advantage lies in the fact that we can simply start anywhere
and let the PDE control the evolution.

3. Solve an optimization problem and identify an optimal state as a solution of the
PDE. This is a powerful method for a large class of elliptic PDEs, namely, for
those that characterize the optima of variational problems. In fact, in applications
in physics, engineering, or economics, most PDEs arise from such optimization
problems. The method depends on two principles. First, one can demonstrate
the existence of an optimal state for a variational problem under rather general
conditions. Second, the optimality of a state is a powerful property that entails
many detailed features: If the state is not very good at every point, it could be
improved and therefore could not be optimal.

4. Connect what you want to know to what you know already. This is the continuity
method. The idea is that if you can connect your given problem continuously with
another, simpler, problem that you can already solve, then you can also solve the
former. Of course, the continuation of solutions requires careful control.

The various existence schemes will lead us to another, more technical, but equally
important, question, namely, the one about the regularity of solutions of PDEs. If one
writes down a differential equation for some function, then one might be inclined to
assume explicitly or implicitly that a solution satisfies appropriate differentiability
properties so that the equation is meaningful. The problem, however, with many of
the existence schemes described above is that they often only yield a solution in
some function space that is so large that it also contains nonsmooth and perhaps
even noncontinuous functions. The notion of a solution thus has to be interpreted in
some generalized sense. It is the task of regularity theory to show that the equation
in question forces a generalized solution to be smooth after all, thus closing the
circle. This will be the second guiding problem of this book.

The existence and the regularity questions are often closely intertwined. Reg-
ularity is often demonstrated by deriving explicit estimates in terms of the given
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constraints that any solution has to satisfy, and these estimates in turn can be used
for compactness arguments in existence schemes. Such estimates can also often be
used to show the uniqueness of solutions, and, of course, the problem of uniqueness
is also fundamental in the theory of PDEs.

After this informal discussion, let us now describe the contents of this book in
more specific detail.

Our starting point is the Laplace equation, whose solutions are the harmonic
functions. The field of elliptic PDEs is then naturally explored as a generalization
of the Laplace equation, and we emphasize various aspects on the way. We shall
develop a multitude of different approaches, which in turn will also shed new light
on our initial Laplace equation. One of the important approaches is the heat equation
method, where solutions of elliptic PDEs are obtained as asymptotic equilibria of
parabolic PDEs. In this sense, one chapter treats the heat equation, so that the present
textbook definitely is not confined to elliptic equations only. We shall also treat
the wave equation as the prototype of a hyperbolic PDE and discuss its relation to
the Laplace and heat equations. In general, the behavior of solutions of hyperbolic
differential equations can be rather different from that of elliptic and parabolic
equations, and we shall use first-order hyperbolic equations to exhibit some typical
phenomena. In the context of the heat equation, another chapter develops the theory
of semigroups and explains the connection with Brownian motion. There exist
many connections between different types of differential equations. For instance,
the density function of a system of ordinary differential equations satisfies a first-
order hyperbolic equation. Such equations can be studied by semigroup theory, or
one can add a small regularizing elliptic term to obtain a so-called viscosity solution.

Other methods for obtaining the existence of solutions of elliptic PDEs, like the
difference method, which is important for the numerical construction of solutions,
the Perron method; and the alternating method of H.A. Schwarz are based on the
maximum principle. We shall present several versions of the maximum principle
that are also relevant to applications to nonlinear PDEs.

In any case, it is an important guiding principle of this textbook to develop
methods that are also useful for the study of nonlinear equations, as those present
the research perspective of the future. Most of the PDEs occurring in applications in
the sciences, economics, and engineering are of nonlinear types. One should keep in
mind, however, that, because of the multitude of occurring equations and resulting
phenomena, there cannot exist a unified theory of nonlinear (elliptic) PDEs, in
contrast to the linear case. Thus, there are also no universally applicable methods,
and we aim instead at doing justice to this multitude of phenomena by developing
very diverse methods.

Thus, after the maximum principle and the heat equation, we shall encounter
variational methods, whose idea is represented by the so-called Dirichlet principle.
For that purpose, we shall also develop the theory of Sobolev spaces, including
fundamental embedding theorems of Sobolev, Morrey, and John—Nirenberg. With
the help of such results, one can show the smoothness of the so-called weak
solutions obtained by the variational approach. We also treat the regularity theory of
the so-called strong solutions, as well as Schauder’s regularity theory for solutions in



viii Preface

Holder spaces. In this context, we also explain the continuity method that connects
an equation that one wishes to study in a continuous manner with one that one
understands already and deduces solvability of the former from solvability of the
latter with the help of a priori estimates.

The final chapter develops the Moser iteration technique, which turned out to be
fundamental in the theory of elliptic PDEs. With that technique one can extend many
properties that are classically known for harmonic functions (Harnack inequality,
local regularity, maximum principle) to solutions of a large class of general elliptic
PDEs. The results of Moser will also allow us to prove the fundamental regularity
theorem of de Giorgi and Nash for minimizers of variational problems.

At the end of each chapter, we briefly summarize the main results, occasionally
suppressing the precise assumptions for the sake of saliency of the statements. I
believe that this helps in guiding the reader through an area of mathematics that
does not allow a unified structural approach, but rather derives its fascination from
the multitude and diversity of approaches and methods and consequently encounters
the danger of getting lost in the technical details.

Some words about the logical dependence between the various chapters: Most
chapters are composed in such a manner that only the first sections are necessary
for studying subsequent chapters. The first—rather elementary—chapter, however,
is basic for understanding almost all remaining chapters. Section 3.1 is useful,
although not indispensable, for Chap.4. Sections 5.1 and 5.2 are important for
Chaps. 7 and 8. Chapter 9, which partly has some survey character, connects various
previous chapters. Sections 10.1-10.4 are fundamental for Chaps. 11 and 14, and
Sect. 11.1 will be employed in Chaps. 12 and 14. With those exceptions, the various
chapters can be read independently. Thus, it is also possible to vary the order in
which the chapters are studied. For example, it would make sense to read Chap. 10
directly after Chap. 2, in order to see the variational aspects of the Laplace equation
(in particular, Sect. 10.1) and also the transformation formula for this equation with
respect to changes of the independent variables. In this way one is naturally led to a
larger class of elliptic equations. In any case, it is usually not very efficient to read
a mathematical textbook linearly, and the reader should rather try first to grasp the
central statements.

This book can be utilized for a one-year course on PDEs, and if time does not
allow all the material to be covered, one could omit certain sections and chapters,
for example, Sect. 4.3 and the first part of Sect. 4.4 and Chap. 12. Also, Chap. 9 will
not be needed for the rest of the book. Of course, the lecturer may also decide to
omit Chap. 14 if he or she wishes to keep the treatment at a more elementary level.

This book is based on various graduate courses that I have given at Bochum and
Leipzig. I thank Antje Vandenberg for general logistic support, and of course also
all the people who had helped me with the previous editions. They are listed in
the previous prefaces, but I should repeat my thanks to Lutz Habermann and Knut
Smoczyk here for their help with the first edition.
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Concerning corrections for the present edition, I would like to thank Andreas
Schifer for a very detailed and carefully compiled list of corrections. Also, I thank
Lei Ni for pointing out that the statement of Lemma 5.3.2 needed a qualification.
Finally, I thank my son Leonardo Jost for a discussion that leads to an improvement
of the presentation in Sect. 11.3. I am also grateful to Tim Healey and his students
Robert Kesler and Aaron Palmer for alerting me to an error in Sect. 13.1.

Leipzig, Germany Jiirgen Jost
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Chapter 1
Introduction: What Are Partial Differential
Equations?

As a first answer to the question, What are PDEs, we would like to give a definition:

Definition 1. A PDE is an equation involving derivatives of an unknown function
u: 2 — R, where §2 is an open subset of R4, d > 2 (or, more generally, of a
differentiable manifold of dimension d > 2).

Often, one also considers systems of PDEs for vector-valued functions u: 2 —
R¥, or for mappings with values in a differentiable manifold.

The preceding definition, however, is misleading, since in the theory of PDEs
one does not study arbitrary equations but concentrates instead on those equations
that naturally occur in various applications (physics and other sciences, engineering,
economics) or in other mathematical contexts.

Thus, as a second answer to the question posed in the title, we would like to
describe some typical examples of PDEs. We shall need a little bit of notation:
A partial derivative will be denoted by a subscript,

u
ui:=— fori=1,...,d.
* dx!
In case d = 2, we write x, y in place of x!, x2. Otherwise, x is the vector

X = (xl,...,xd).
Examples. (1) The Laplace equation

d
Au = Z ui =0 (A is called the Laplace operator),

i=1
or, more generally, the Poisson equation

Au = f fora given function [ :2 — R.

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 1
DOI 10.1007/978-1-4614-4809-9_1,
© Springer Science+Business Media New York 2013
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For example, the real and imaginary parts u and v of a holomorphic function
u: 2 — C (2 C C open) satisty the Laplace equation. This easily follows
from the Cauchy—Riemann equations:

Uy =Vy, . .
with z=x+41iy

Uy = —vy,
implies

Upy + Uyy =0 = vy + vyy.

The Cauchy—Riemann equations themselves represent a system of PDEs. The
Laplace equation also models many equilibrium states in physics, and the
Poisson equation is important in electrostatics.

The heat equation: Here, one coordinate ¢ is distinguished as the “time”

coordinate, while the remaining coordinates x!,...,x¢ represent spatial

variables. We consider
u:2xRY >R, QopeninRY, RY:={reR:t>0}

and pose the equation

d
u; = Au, where again Au := E Uyi i

i=1

The heat equation models heat and other diffusion processes.
The wave equation: With the same notation as in (2), here we have the equation

Uy = Au.

It models wave and oscillation phenomena.
The Korteweg—de Vries equation

Uy — 6utty 4+ tyxy =0

(notation as in (2), but with only one spatial coordinate x) models the
propagation of waves in shallow waters.
The Monge—Ampere equation

2 _
UxxUyy — uxy - f’

or in higher dimensions
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with a given function f, is used for finding surfaces (or hypersurfaces) with
prescribed curvature.
The minimal surface equation

(6)
(1 + ui) Uy — 2ttyityy + (14 12) uyy =0

describes an important class of surfaces in R?

The Maxwell equations for the electric field strength £ = (Ei, E,, E3) and
the magnetic field strength B = (By, B,, B3) as functions of

(@, x', x%, x3):

(N

div B=0
B +curl E=0

div £ = 4np
E, —curl E = —4nj

(magnetostatic law),
(magnetodynamic law),
(electrostatic law, o = charge density),

(electrodynamic law, j = current density),

where div and curl are the standard differential operators from vector analysis
with respect to the variables (xl L x2, x3) eR3

The Navier—Stokes equations for the velocity v(x, ¢) and the pressure p(x, )
of an incompressible fluid of density o and viscosity 7:

®)

3
ov! +QZvivi,- —nAv = —p,; forj =123,
i=1

divyv =0
d=3,v= ')

The Einstein field equations of the theory of general relativity for the curvature
of the metric (g;;) of space-time:

(€))

fori,j =0,1,2,3 (the index O stands for the

1
R — —giiR = «T};
I ! time coordinate ¢ = x°).

Here, « is a constant, T;; is the energy—momentum tensor (considered as
given), while

> (9
Rij::Z akF Fz

k=0

+23:(sz

=0

- 1T ))

(Ricci curvature)
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with
I 0 d 0
Iy =3 [Z:;gk[ (Wgﬂ T8 ngj)
and
(g") :=(gi;)~" (inverse matrix)
and

3
R := Z gij R;; (scalar curvature).
ij=0

Thus R and R;; are formed from first and second derivatives of the unknown
metric (g;;).
The Schrodinger equation

hz
ihu, = ——Au+ V(x, u)
2m

(m = mass, V = given potential, u: 2 — C) from quantum mechanics is
formally similar to the heat equation, in particular in the case V' = 0. The
factori (= \/—_1), however, leads to crucial differences.

The plate equation

AAu=0

even contains fourth derivatives of the unknown function.

We have now seen many rather different-looking PDEs, and it may seem hopeless
to try to develop a theory that can treat all these diverse equations. This impression
is essentially correct, and in order to proceed, we want to look for criteria for
classifying PDEs. Here are some possibilities:

@

Algebraically, i.e., according to the algebraic structure of the equation:

(a) Linear equations, containing the unknown function and its derivatives only
linearly. Examples (1), (2), (3), (7), (11), as well as (10) in the case where

V is a linear function of u.
An important subclass is that of the linear equations with constant
coefficients. The examples just mentioned are of this type; (10), however,
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(1)

(110

only if V(x,u) = vo - u with constant vo. An example of a linear equation
with nonconstant coefficients is

d d

Z % (@ (X)) + Z % (b' (x)u) + c(x)u =0

ij=1 i=1

with nonconstant functions a'/ , b', c.
(b) Nonlinear equations.
Important subclasses:

— Quasilinear equations, containing the highest-occurring derivatives of
u linearly. This class contains all our examples with the exception of
(5).

— Semilinear equations, i.e., quasilinear equations in which the term with
the highest-occurring derivatives of u does not depend on u or its lower-
order derivatives. Example (6) is a quasilinear equation that is not
semilinear.

PDEs that are not quasilinear are called fully nonlinear. Example (5) is a fully
nonlinear equation.

Naturally, linear equations are simpler than nonlinear ones. We shall
therefore first study some linear equations.
According to the order of the highest-occurring derivatives: The Cauchy—
Riemann equations and (7) are of first order; (1), (2), (3), (5), (6), (8), (9), (10)
are of second order; (4) is of third order; and (11) is of fourth order. Equations
of higher order rarely occur, and most important PDEs are second-order PDEs.
Consequently, in this textbook we shall almost exclusively study second-order
PDEs.
In particular, for second-order equations the following partial classifications
turns out to be useful:
Let

F (X,M,Mxi,lxlxixj) =0
be a second-order PDE. We write the equation in symmetric form, that is,

replace u,i,; by %(I/lxi i+ ). We then introduce dummy variables and
study the function

F (x,u,pi,pij) .

The equation is called elliptic in §2 at u(x) if the matrix
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is positive definite for all x € 2. (If this matrix should happen to be negative
definite, the equation becomes elliptic by replacing F by —F'.) Note that this
may depend on the function u. For example, if f(x) > 0in (5), the equation is
elliptic for any solution u with u,, > 0. (For verifying ellipticity, one should
write in place of (5)

UxxUyy — UxyUyx — f =0,

which is equivalent to (5) for a twice continuously differentiable u.) Examples
(1) and (6) are always elliptic.

The equation is called hyperbolic if the above matrix has precisely one
negative and (d —1) positive eigenvalues (or conversely, depending on a choice
of sign). Example (3) is hyperbolic, and so is (5), if f(x) < 0, for a solution u
with u,, > 0. Finally, an equation that can be written as

w, = F(t,x,u,uyi,ui)

with elliptic F' is called parabolic. Note, however, that there is no longer a
free sign here, since a negative definite (F),,) is not allowed. Example (2) is
parabolic. Obviously, this classification does not cover all possible cases, but
it turns out that other types are of minor importance only. Elliptic, hyperbolic,
and parabolic equations require rather different theories, with the parabolic
case being somewhat intermediate between the elliptic and hyperbolic ones,
however.

According to solvability:We consider a second-order PDE

F(x,u,ui,ui )=0foru: 2 —R,

and we wish to impose additional conditions upon the solution u, typically
prescribing the values of u or of certain first derivatives of u on the boundary
a2 or part of it.

Ideally, such a boundary value problem satisfies the three conditions of
Hadamard for a well-posed problem:

— Existence of a solution « for given boundary values.
— Uniqueness of this solution.
— Stability, meaning continuous dependence on the boundary values.

The third requirement is important, because in applications, the boundary
data are obtained through measurements and thus are given only up to certain
error margins, and small measurement errors should not change the solution
drastically.

The existence requirement can be made more precise in various senses:
The strongest one would be to ask that the solution be obtained by an explicit
formula in terms of the boundary values. This is possible only in rather
special cases, however, and thus one is usually content if one is able to
deduce the existence of a solution by some abstract reasoning, for example
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by deriving a contradiction from the assumption of nonexistence. For such an
existence procedure, often nonconstructive techniques are employed, and thus
an existence theorem does not necessarily provide a rule for constructing or at
least approximating some solution.

Thus, one might refine the existence requirement by demanding a construc-
tive method with which one can compute an approximation that is as accurate
as desired. This is particularly important for the numerical approximation
of solutions. However, it turns out that it is often easier to treat the two
problems separately, i.e., first deducing an abstract existence theorem and then
utilizing the insights obtained in doing so for a constructive and numerically
stable approximation scheme. Even if the numerical scheme is not rigorously
founded, one might be able to use one’s knowledge about the existence
or nonexistence of a solution for a heuristic estimate of the reliability of
numerical results.

Exercise. Find five more examples of important PDEs in the literature.
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The Laplace Equation as the Prototype

of an Elliptic Partial Differential Equation
of Second Order

2.1 Harmonic Functions: Representation Formula
for the Solution of the Dirichlet Problem on the Ball
(Existence Techniques 0)

In this section £ is a bounded domain in R¢ for which the divergence theorem
holds; this means that for any vector field V of class C'(£2) N C°(£2),

/div V(x)dx =/ V(z) - v(z)do(2), (2.1.1)
o) 2

where the dot - denotes the Euclidean product of vectors in R?, v is the exterior
normal of 952, and do(z) is the volume element of d§2. Let us recall the definition
of the divergence of a vector field V = (Vl, R Vd) C Q2 — R4

4 gy
div V(x) : Z 8_

In order that (2.1.1) holds, it is, for example, sufficient that d£2 be of class cl.

Lemma 2.1.1. Let u,v € C2(82). Then we have Green’s st formula

/v(x)Au(x)dx—i—/ Vu(x) - Vv(x)dx 2/ v(z)g—u(z)do(z) (2.1.2)
2 2 a2 v

(here, Vu is the gradient of u), and Green’s 2nd formula

[ @) - uavenar = [ oo -y ol dow.
2 a2 v v
(2.13)

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 9
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10 2 The Laplace Equation

Proof. With V(x) = v(x)Vu(x), (2.1.2) follows from (2.1.1). Interchanging u and
vin (2.1.2) and subtracting the resulting formula from (2.1.2) yield (2.1.3). O

In the sequel we shall employ the following notation:
B(x,r):={yeR?:|x—y| <r} (closed ball)
and
l%(x,r) ={yeR!:|x—y|<r} (open ball)

forr >0, x € R4

Definition 2.1.1. A function u € C?(£2) is called harmonic (in £2) if
Au=0 in§2.

In Definition 2.1.1, £2 may be an arbitrary open subset of R?. We begin with the
following simple observation:

Lemma 2.1.2. The harmonic functions in §2 form a vector space.

Proof. This follows because A is a linear differential operator. O

Examples of harmonic functions:

1. In RY, all constant functions and, more generally, all affine linear functions are
harmonic.
2. There also exist harmonic polynomials of higher order, for example,

u(x) = (x1)2 — (x2)2

forx = (x',...,x%) e RY
3. Let h : D — C be holomorphic for some open D C C; that means that & is
differentiable in D and satisfies

9 5 1/9 9
p—owith L= L2 ;2 214
gpi = O with 52 2(ax+’ay)’ (214

where z = x +iy (withi := V-1 being the imaginary unit) is the coordinate on
Candz = x—iy. (Thus, in contrast to our standard notation, we now write (x, y)
in place of (x!, x2), as this corresponds to the convention usually employed in
complex analysis.) If we decompose 7 = u + iv into its real and imaginary
parts, (2.1.4) becomes the system of Cauchy—Riemann equations

8u_8v 8u_ av (2.1.5)
ox dy  dy  ox’ o
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When u and v are twice differentiable (which, in fact, automatically follows
from (2.1.4) as one of the basic facts of complex analysis (cf., e.g., [1])—see
also Corollary 2.2.1 below), this implies

Pu Pu Py 9
8T gand 24 2, 216
2 T T VM T2 (2.1.6)

i.e., the real and imaginary part of a holomorphic function are harmonic.
Conversely, given a harmonic function # : D — R, as shown in complex
analysis, one may then solve (2.1.5) for v to obtain a holomorphic function
h=u+iv:D — C.

When, in analogy to (2.1.4), we also use the notation

9 zl(i_ii), 2.1.7)

we obtain the decomposition for the Laplace operator on C = R?

9% 92
Froiare

_ (9 .39 8+_8
— \ox lay ax lay
dd

=4——. 2.1.8
0z 07 ( )

A =

4. For x,y € RY with x # y (be careful: we revert to our original notation, i.e.,
X,y now are vectors again, not scalar components as in the previous example),
we put

1
5-log|x — y| ford =2
Fx.y):=T(x—yh=1"" o (2.1.9)
Mlx—ﬂ fOI'd>2,
where wy is the volume of the d-dimensional unit ball B(0, 1) C R¢.
We have

9 T y
LI y) = — (¢ — ) x =y,
g L) = o (X' =) |x =yl
2

1 . ) ) )
Peey) = gl = yPoy —d (x =) (=) I =y 77

dxioxi
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Thus, as a function of x, I' is harmonic in R? \ {y}. Since I is symmetric in x
and y, it is then also harmonic as a function of y in R \ {x}. The reason for the
choice of the constants employed in (2.1.9) will become apparent after (2.1.13)
below.

Definition 2.1.2. I" from (2.1.9) is called the fundamental solution of the Laplace
equation.

What is the reason for this particular solution I of the Laplace equation in R? \
{y}? The answer comes from the rotational symmetry of the Laplace operator. The
equation

Au=0

is invariant under rotations about an arbitrary center y. (If A € O(d) (orthogonal
group) and y € R, then for a harmonic u(x), u(A(x—y)+y) is likewise harmonic.)
Because of this invariance of the operator, one then also searches for invariant
solutions, i.e., solutions of the form

u(x) = @(r) withr = |x — y|.

The Laplace equation then is transformed into the following equation for ¢ as a
function of r, with ” denoting a derivative with respect to r,

d—1
¢'(r) + ——¢() = 0.

Solutions have to satisfy
¢(r) = cr'™

with constant c. Fixing this constant plus one further additive constant leads to the
fundamental solution I"(r).

Theorem 2.1.1 (Green representation formula). If u € C2(2), we have for
y € £2,

wn = [ {u(x)

(here, the symbol % indicates that the derivative is to be taken in the direction of
the exterior normal with respect to the variable x).

or
vy

0
(x.3) = I'(x, y)ﬁ(x)} do) + [ Ix.y)duos
(2.1.10)

Proof. For sufficiently small ¢ > 0,
B(y.e) C £2,

since £2 is open. We apply (2.1.3) for v(x) = I'(x, y) and £2 \ B(y, ¢) (in place of
£2). Since I" is harmonic in §2 \ {y}, we obtain
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d
/ I'(x. ) Au(x)dx = / {r(x Do) (T y)} do(x)
2\B(y.¢) R Vy
d
+/ {F(x Dot ) —u(n T y)}do(x).
B(y.e) Vy
2.1.11)

In the second boundary integral, v denotes the exterior normal of §£2\ B(y, ), hence
the interior normal of B(y, ¢).

We now wish to evaluate the limits of the individual integrals in this formula for
e — 0. Since u € C?(£2), Au is bounded. Since I is integrable, the left-hand side
of (2.1.11) thus tends to

/ I'(x,y)Au(x)dx.
2
On 0B(y, ¢), we have I'(x, y) = I'(¢). Thus, for ¢ — 0,

I'(x, y)—(x)do(x) < dwqe?'T'(¢) sup |Vu| — 0.

0B(y.€) B(y.e)
Furthermore,
oI (x, a
- / w0y EED oy = L ree w(x)do(x)
B(y.c) R de 9B(y.e)
(since v is the interior normal of B(y, €))
|
=— u(x)do(x) — u(y).

dwae?™" Jop(y.e) ) ) o

Altogether, we get (2.1.10). O

Remark. Applying the Green representation formula for a so-called test function
@ € C(£2)," we obtain

o) = [ Fee A .L12)
2
This can be written symbolically as
AT (x,y) = 0,, (2.1.13)

where A, is the Laplace operator with respect to x and &, is the Dirac delta
distribution, meaning that for ¢ € C$°(£2),

8ylel :== @(y).

LCPR(R2) :={f € C®(R), supp(f) := {x : f(x) # 0} is a compact subset of £2}.
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In the same manner, AI'( -, y) is defined as a distribution, i.e.,

AT(- )] = /Q F(x. y) Ap(x)dx.

Equation (2.1.13) explains the terminology “fundamental solution” for I", as well
as the choice of constant in its definition.

Remark. By definition, a distribution is a linear functional £ on C§° that is
continuous in the following sense:

Suppose that (¢, ),en C C$°(82) satisfies ¢, = 0 on 2\ K for all n and some fixed
compact K C §2 as well as lim,— o0 D*¢,(x) = 0 uniformly in x for all partial
derivatives D¢ (of arbitrary order). Then

lim £[p,] =0
n—>oo

must hold.

We may draw the following consequence from the Green representation formula:
If one knows Au, then u is completely determined by its values and those of
its normal derivative on d§2. In particular, a harmonic function on £2 can be
reconstructed from its boundary data. One may then ask conversely whether one
can construct a harmonic function for arbitrary given values on 052 for the function
and its normal derivative. Even ignoring the issue that one might have to impose
certain regularity conditions like continuity on such data, we shall find that this is
not possible in general, but that one can prescribe essentially only one of these two
data. In any case, the divergence theorem (2.1.1) for V(x) = Vu(x) implies that
because of A = div grad, a harmonic u has to satisfy

/ a—ua’o(x) :/ Au(x)dx =0, (2.1.14)
an v 2

so that the normal derivative cannot be prescribed completely arbitrarily.

Definition 2.1.3. A function G(x, y), defined for x,y € £, x # y, is called a
Green function for §2 if:

1. G(x,y) = 0forx € 952.
2. h(x,y) := G(x,y) — I'(x, y) is harmonic in x € §2 (thus in particular also at
the point x = y).

We now assume that a Green function G (x, y) for £2 exists (which indeed is true
for all §£2 under consideration here) and put v(x) = h(x, y) in (2.1.3) and subtract
the result from (2.1.10), obtaining

u(y) = /89 u(x)@do(x) + /Q G(x,y)Au(x)dx. (2.1.15)
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Equation (2.1.15) in particular implies that a harmonic u is already determined by
its boundary values u,.

This construction now raises the converse question: If we are given functions
@02 — R, f: £2 — R, can we obtain a solution of the Dirichlet problem for
the Poisson equation

Au(x) = f(x) forx € 2,

(2.1.16)
u(x) = p(x) forx € ds2,
by the representation formula
G
w) = [ o0 dow + [ frocepae L

After all, if u is a solution, it does satisfy this formula by (2.1.15).

Essentially, the answer is yes; to make it really work, however, we need to impose
some conditions on ¢ and f. A natural condition should be the requirement that
they be continuous. For ¢, this condition turns out to be sufficient, provided that
the boundary of 2 satisfies some mild regularity requirements. If £2 is a ball, we
shall verify this in Theorem 2.1.2 for the case f = 0, i.e., the Dirichlet problem
for harmonic functions. For f, the situation is slightly more subtle. It turns out
that even if f is continuous, the function u defined by (2.1.17) need not be twice
differentiable, and so one has to exercise some care in assigning a meaning to the
equation Au = f. We shall return to this issue in Sects. 12.1 and 13.1 below. In
particular, we shall show that if we require a little more about f, namely, that it
be Holder continuous, then the function u given by (2.1.17) is twice continuously
differentiable and satisfies

Au = f.

Analogously, if H(x, y) for x,y € 2, x # y is defined with?

ad 1
H(x,y) = —— forx € 082
vy 92|

and a harmonic difference H(x, y) — I'(x, y) as before, we obtain
0) = gt [ o~ [ Hexn T o)
u(y) = —— u(x)do(x) — x,y)—(x)do(x
982 Joe 092 dv

+/ H(x,y)Au(x)dx. (2.1.18)
2

Here, [|082|| denotes the measure of the boundary 952 of £2; it is given as [, do(x).
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If now u; and u, are two harmonic functions with

8u1 _ 8142
P R

applying (2.1.18) to the difference u = u; — u, yields

() — ua(y) = m /3 0 =10 o). (2.1.19)

Since the right-hand side of (2.1.19) is independent of y, u; — u, must be constant
in £2. In other words, a solution of the Neumann boundary value problem

Au(x) =0 forx € £2,

(2.1.20)
@ =g(x) forx e a2

v
is determined only up to a constant, and, conversely, by (2.1.14), a necessary
condition for the existence of a solution is

/ g(x)do(x) = 0. (2.1.21)
a2

Boundary conditions tend to make the theory of PDEs difficult. Actually, in many
contexts, the Neumann condition is more natural and easier to handle than the
Dirichlet condition, even though we mainly study Dirichlet boundary conditions
in this book as those occur more frequently. There is in fact another, even easier,
boundary condition, which actually is not a boundary condition at all, the so-called
periodic boundary condition. This means the following. We consider a domain of
the form £2 = (0, L;) x --- x (0, Ly) C R? and require for u : 2 — R that

M()Cl,...,X,‘_l,L,’,x,’+1,...,xd) = u(xl,...,xi_l,O,xi+1,...,xd) (2122)

forall x = (x1,...,xq) € £2,i = 1,...,d. This means that u can be periodically
extended from £2 to all of R?. A reader familiar with basic geometric concepts will
view such a u as a function on the torus obtained by identifying opposite sides in
£2. More generally, one may then consider solutions of PDEs on compact manifolds.

Anyway, we now turn to the Dirichlet problem on a ball. As a preparation, we
compute the Green function G for such a ball B(0, R). For y € R, we put

2
)iy fory #0,

y = y
%) for y = 0.
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(y is the point obtained from y by reflection across dB(0, R).) We then put

rlx=yh=r (Y1 —51) fory#o,
I'(|x]) = T'(R) fory = 0.

G(x,y) = (2.1.23)

For x # y, G(x, y) is harmonic in x, since for y € ;3(0, R), the point y lies in
the exterior of B(0, R). The function G(x, y) has only one singularity in B(0, R),
namely, at x = y, and this singularity is the same as that of I"(x, y). The formula

)

I3 2.2
G@w>=r(0ﬂ?+wf—mwﬁ )—r (”'”'+4v_zxy)

R2
(2.1.24)
then shows that for x € dB(0, R), i.e., |x| = R, we have indeed
G(x,y) =0.

Therefore, the function G (x, y) defined by (2.1.23) is the Green function of B(0, R).
Equation (2.1.24) also implies the symmetry

G(x,y) =G(y,x). (2.1.25)

Furthermore, since I"(|x — y|) is monotonic in |x — y|, we conclude from (2.1.24)
that

G(x,y) <0 forx,y e B(0,R). (2.1.26)
Since for x € dB(0, R),
2.2
X
Wy —2ey = EERE g oy,
R
(2.1.24) furthermore implies for x € dB(0, R) that
0 0 ] L P
—G(x,y) = —G(x,y) = — -
guy OO = g G = g x—y  dwg|x—y|? R

R -y’ 1
dogR |x —y|*

Inserting this result into (2.1.15), we obtain a representation formula for a harmonic
u € C%(B(0, R)) in terms of its boundary values on dB(0, R):

R — |y u(x)
u(y) = —— Y o). (2.1.27)
») dogR  Jopo.r |x — y|? (x)
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The regularity condition here can be weakened; in fact, we have the following
theorem:

Theorem 2.1.2. (Poisson representation formula; solution of the Dirichlet prob-
lem on the ball): Let ¢ : 0B(0, R) — R be continuous. Then u, defined by

2142 X r
Rdw,BtJ faB(o,R) \x(p—(uy)\d do(x) fory e B(0.R).
0(y) fory € dB(0, R),

u(y) := (2.1.28)

is harmonic in the open ball 103(0, R) and continuous in the closed ball B(0, R).

Proof. Since G is harmonic in y, so is the kernel of the Poisson representation
formula

R — |y

—d
—_— X — .
dorR lx — vl

G
K(x,y):= %

(x,y) =

Thus u is harmonic as well.
It remains only to show continuity of u on dB(0, R). We first insert the harmonic
function # = 1 in (2.1.27), yielding

/ K(x,y)do(x) =1 forally e 12’(0, R). (2.1.29)
dB(O,R)

We now consider yo € dB(0, R). Since ¢ is continuous, for every & > 0 there exists
8 > 0 with

&
lp(x) —@(yo)| < 3 for |x — yo| < 26. (2.1.30)
With
= sup |e(y)|.
y€dB(0.R)

by (2.1.28) and (2.1.29) we have for |y — yo| < 4 that
u(y) —u(yo) | = ‘ [ e e - g dot)
3B(O,R)
<[ K@ - e00ldow)
[x—yo|<26

+ / K. ) [o(x) — p(30)| do(x)
[x—yo|>268

£ 2102\ pd—2¢—d
§2+2u(R |y|)R 5. (2.1.31)
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For estimating the second integral, note that because of |y — yo| < &, for
|x —yo| > 26 also |x —y| > §. Having chosen ¢, we have fixed 6. Then, for
showing continuity, we may assume that y is sufficiently close to y. Thus, since
|yo| = R, for sufficiently small |y — yy|, then also the second term on the right-hand
side of (2.1.31) becomes smaller than &/2, and we see that u is continuous at yy. O

Corollary 2.1.1. For ¢ € C°B(0, R)), there exists a unique solution u € C?
(;}(0, R)) N C°(B(0, R)) of the Dirichlet problem

Au(x) =0 for x € 13(0, R),
u(x) = ¢(x) forx € dB(0, R).

Proof. Theorem 2.1.2 shows the existence. Uniqueness follows from (2.1.15);
however, in (2.1.15) we have assumed u € C?(B(0, R)), while more generally, here
we consider continuous boundary values. This difficulty is easily overcome: Since u

is harmonic in 5(0, R), itis of class C? in lc’?(O, R), for example, by Corollary 2.1.2
below. Consequently, for |y| < r < R, applying (2.1.27) with r in place of R,
e PP u(x)
dwgr - Jior) |x — y|?
and since u is continuous in B(0, R), we may let r tend to R in order to get the
representation formula in its full generality. O

u(y) = do(x),

Corollary 2.1.2. Any harmonic function u : 2 — R is real analytic in 2.

Proof. Let z € £2 and choose R such that B(z, R) C £2. Then by (2.1.27), for
Yy € B(z, R),

R —|y -2’ u(x)
uy) = — X 2 _do(v),
dosR — Joper) |x —y|
which is a real analytic function of y € g’(z, R). O

2.2 Mean Value Properties of Harmonic Functions.
Subharmonic Functions. The Maximum Principle

Theorem 2.2.1 (Mean value formulae). A continuous or, more generally, a
measurable and locally integrable u : §2 — R is harmonic if and only if for any
ball B(xy,r) C £2,

1

M(.X()) = S(M,X(),r) = W

/ u(x)do(x) (spherical mean), (2.2.1)
dB(xp,r)
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or equivalently, if for any such ball,

u(xo) = K(u, xo,r) := / u(x)dx (ball mean). (2.2.2)
B(xo.r)

wqr?

Proof. “=":

Let u be harmonic. (By definition, « then is twice differentiable, hence continuous,
but see Corollary 2.2.1 below on this point.) Then (2.2.1) follows from Poisson’s
formula (2.1.27) (since we have written (2.1.27) only for the ball B(0, R), take the
harmonic function v(x) := u(x + xo) and apply the formula at the point x = 0).
Alternatively, we may prove (2.2.1) from the following observation:

Letu € C2(B(y,7)), 0 < 0 < r. Then by (2.1.1)

/ Au(x)dx :/ %(x)do(x)
B(v.0) 9B(y.0) OV

9
= / 2+ ow)o" 'dw
0

B(0,1) do
in polar coordinates w = =y
Q
a-1 0
=0 - u(y + ow)dw
do 9B(0,1)
d-1 0 1—d
=0 —\e u(x)do(x)
do 3B(y.0)
0
=dwg0"™ 5059 (2.2.3)

If u is harmonic, this yields %S(u, y,0) = 0, and so S(u, y, 0) is constant in p.
Because of

u(y) = lim S(u, y, 0), (2.2.4)
Q—)

for a continuous u this implies the spherical mean value property. Because of

d [’ _
K(u, xo,1) = = / S(u, xo, 0)0" 'do, (2.2.5)
0

we also get (2.2.2) if (2.2.1) holds for all radii ¢ with B(x¢, 0) C £2.
4‘¢9’:
We point out that in the argument to follow, we do not need the continuity of u; it
suffices that u be measurable and locally integrable.

We have just seen that the spherical mean value property implies the ball mean
value property. The converse also holds:
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If K(u, xo, r) is constant as a function of r, i.e., by (2.2.5)
ad d d
0= _K(I/t, X0, r) = _S(u7 X0, r) - _K(uv X0, I‘),
or r r

then S(u, xo, r) is likewise constant in r, and by (2.2.4) it thus always has to equal
u(xop).

Suppose now (2.2.1) for B(xo, r) C §2. We want to show first that u then has to
be smooth. For this purpose, we use the following general construction:
Put

1 .
: > fo<t<l,
o(t) ;Z{Cdexp(rz—l) ifo=r<

otherwise,

where the constant ¢, is chosen such that

/ o(lxdx = 1.
]Rd

The reader should note that o(|x|) is infinitely differentiable with respect to x. For
f € L' (), B(y,r) C £2, we consider the so-called mollification

1 [y — x|
fr(y) = r_d/QQ (T) S(x)dx. (2.2.6)

Then f, is infinitely differentiable with respect to y.
If now (2.2.1) holds, we have

w) = [ , / o (5) ot

1
rdo

o (i) dwgs®'S(u, y, s)ds
;
1
—u(») [ e@)dwso’ o
0

= u(y) /B RICIE

= u(y).
Thus a function satisfying the mean value property also satisfies

u,(x) = u(x), providedthat B(x,r) C 2.

Thus, with u, also u is infinitely differentiable. We may thus again consider (2.2.3),
ie.,
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/ Au(x)dx = dwdgd_liS(u, y,0). 2.2.7)
B(y.0) do

If (2.2.7) holds, then S(u, xo, 0) is constant in g, and therefore, the right-hand side
of (2.2.7) vanishes for all y and o with B(y, o) C £2. Thus, also

Au(y) =0

forall y € £2, and u is harmonic. O
With this observation, we easily obtain the following corollary:

Corollary 2.2.1 (Weyl’s lemma). Let u : 2 — R be measurable and locally
integrable in §2. Suppose that for all ¢ € C§°(82),

/ u(x)Ag(x)dx = 0.
Q

Then u is harmonic and, in particular, smooth.

Proof. We again consider the mollifications

w = [ o)

For ¢ € C5° and r < dist(supp(¢), d§2), we obtain

(1 [y — x|
[wwapwar= [ [ oMY uorapw

=/MWM%@My
2

exchanging the integrals and observing that (A¢), = A(e,),
so that the Laplace operator commutes with the mollification

=0,

since by our assumption for r also ¢, € C5°(£2).
Since u, is smooth, this also implies

/ Au,(x)p(x)dx =0 forall p € C5°(£2,),
2

with 2, := {x € £ : dist(x, 982) > r}.
Hence,
Au, =0 in$2,.

Thus, u, is harmonic in £2,.
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We consider R > 0and 0 < r < %R. Then u, satisfies the mean value property
on any ball with center in §2, and radius < %R. Since

[ L |x =yl
/Qr lur(y)| dy _/Qr - /_QQ(—r )Iu(x)|dxdy

< /Q ()| dx

obtained by exchanging the integrals and using [p, rldg (I":—”) dy = 1, the u, have

uniformly bounded norms in L'(£2), if u € L'(£2). If u is only locally integrable,
the preceding reasoning has to be applied locally in §2, in order to get the local
uniform integrability of the u,. Since this is easily done, we assume for simplicity
ue L'(R).

Since the u, satisfy the mean value property on balls of radius %R, this implies
that they are also uniformly bounded (keeping R fixed and letting r tend to 0).
Furthermore, because of

1 /2\¢ .
Jur (1) — 1y (X2)] or \ & PRV L4 SOl S

UB(x2.R/2)\B(x].R/2)

IA

1

d
a (%) sup |u,| 2Vol (B(x1, R/2) \ B(x2, R/2)),

IA

the u, are also equicontinuous. Thus, by the Arzela—Ascoli theorem, for r — 0, a
subsequence of the u, converges uniformly towards some continuous function v. We
must have u = v, because u is (locally) in L'(£2), and so for almost all x € £2, u(x)
is the limit of u,(x) for r — 0 (cf. Lemma A.3). Thus, u is continuous, and since
all the u, satisfy the mean value property, so does u. Theorem 2.2.1 now implies the
claim. O

Definition 2.2.1. Let v : £ — [—00,00) be upper semicontinuous, but not
identically —oco. Such a v is called subharmonic if for every subdomain £2" CC §2
and every harmonic function u : 2’ — R (we assume u € C°(£2’)) with

v<u ond’,
we have

v<u onf.

A function w : £ — (—o00,00], lower semicontinuous, w # oo, is called
superharmonic if —w is subharmonic.
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Theorem 2.2.2. A function v : 2 — [—00, 00) (upper semicontinuous, ¥ —o0) is
subharmonic if and only if for every ball B(xo,r) C 2,

v(xo) < S(v, X0, 7), (2.2.8)
or, equivalently, if for every such ball

v(xo) < K(v, xo,7). (2.2.9)

Proof. “="

Since v is upper semicontinuous, there exists a monotonically decreasing sequence
(Vi)nen of continuous functions with v = lim, ey v,. By Theorem 2.1.2, for every
v,, there exists a harmonic

u, : B(xg,r) > R
with
Un|9B(xo.r) = VloBoor) (= V0oBor))
hence, in particular,

S(uy, xo0,7) = S(vy, X0,7).

Since v is subharmonic and u,, is harmonic, we obtain
v(x0) < up(x0) = Sy, x0,7) = Sy, Xo,7).

Now n — oo yields (2.2.8). The mean value inequality for balls follows from that
for spheres (cf. (2.2.5)). For the converse direction, we employ the following lemma:

Lemma 2.2.1. Suppose v satisfies the mean value inequality (2.2.8) or (2.2.9) for
all B(xg,r) C §2. Thenv also satisfies the maximum principle, meaning that if there
exists some xy € §2 with
v(x9) = sup v(x),
XER

then v is constant. In particular, if 2 is bounded and v € C°(82), then

v(x) < max v(y) forall x € £2.
yEINR

Remark. We shall soon see that the assumption of Lemma 2.2.1 is equivalent to v
being subharmonic, and therefore, the lemma will hold for subharmonic functions.

Proof. Assume
v(xp) = sup v(x) =: M.

XESR
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Thus,
QM =y e :v(y) =M} #0.

Let y € 2™, B(y.r) C £2. Since (2.2.8) implies (2.2.9) (cf. (2.2.5)), we may
apply (2.2.9) in any case to obtain

0=v(y)—M < ! - / (v(x) — M)dx. (2.2.10)
war® JB(y.r)

Since M is the supremum of v, always v(x) < M, and we obtain v(x) = M for all
x € B(y,r). Thus 2M contains together with y all balls B(y,r) C 2, and it thus

has to coincide with §2, since §2 is assumed to be connected. Thus u(x) = M for
all x € 2. O

We may now easily conclude the proof of Theorem 2.2.2:
Let u be as in Definition 2.2.1. Then v—u likewise satisfies the mean value inequality,
hence the maximum principle, and so

v<u in £/,

if v <uondf'. O

Corollary 2.2.2. A function v of class C*($2) is subharmonic precisely if
Av>0 in £2.

Proof. “<":
Let B(y,r) C £2,0 < o < r. Then by (2.2.3)

ad
0 < / Av(x)dx = d(l)de_l —S(V, Vs Q)
B(y.0) do

Integrating this inequality yields, for0 < o <7,
S y.0) =S, y.r),
and since the left-hand side tends to v(y) for ¢ — 0, we obtain
v(y) = S, y.7).

By Theorem 2.2.2, v then is subharmonic.
“=": Assume Av(y) < 0. Since v € C%(£2), we could then find a ball B(y,r) C £2

with Av < 0 on B(y, r). Applying the first part of the proof to —v would yield

v(y) > SO, y,r),
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and v could not be subharmonic. O
Examples of subharmonic functions:

1. Letd > 2. We compute
Alx|" = (da + oo —2)) |x|*72.

Thus |x|* is subharmonic for & > 2 — d. (This is not unexpected because |x|>~¢
is harmonic.)
2. Letu : £2 — R be harmonic and positive, 8 > 1. Then

d

Ml =y (Bl i + BB = D )

i=1

d
= ZIB(IB - l)uﬂ_zblxiuxi,

i=1

since u is harmonic. Since u is assumed to be positive and 8 > 1, this implies
that u# is subharmonic.
3. Letu : £2 — R again be harmonic and positive. Then

d

d
Uy i Uyi Uyi Uyi Uyi
Alogu=y (= =20 ) = 3=

i=1 i=1

since u is harmonic. Thus, log « is superharmonic, and —log u then is subhar-
monic.

4. The preceding examples can be generalized as follows:
Letu : 2 — R be harmonic, f : u(£2) — R convex. Then f ou is subharmonic.
To see this, we first assume f € C 2 Then

d

Afux) =Y (f' @D + £ @lx)ugin)

i=1

d
= Z " (u(x)) (uyi)*  (since u is harmonic)

i=1

207

since for a convex C2-function f” > 0. If the convex function f is not of class
C?, there exists a sequence ( f;),en of convex C2-functions converging to f
locally uniformly. By the preceding, f, o u is subharmonic, and hence satisfies
the mean value inequality. Since f, o u converges to f o u locally uniformly,
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f o u satisfies the mean value inequality as well and so is subharmonic by
Theorem 2.2.2.

We now return to studying harmonic functions. If u is harmonic, # and —u both
are subharmonic, and we obtain from Lemma 2.2.1 the following result:

Corollary 2.2.3 (Strong maximum principle). Let u be harmonic in S2. If there
exists xo € §2 with

u(xo) = supu(x) or u(xop) = inf u(x),
xen XER

then u is constant in §2.
A weaker version of Corollary 2.2.3 is the following:

Corollary 2.2.4 (Weak maximum principle). Let 2 be bounded and u € C°(£2)
harmonic. Then for all x € §2,

min #(y) < u(x) < max u(y).
min, () =ulx) = max ()
Proof. Otherwise, u would achieve its supremum or infimum in some interior point

of 2. Then u would be constant by Corollary 2.2.3, and the claim would also hold
true. 0

Corollary 2.2.5 (Uniqueness of solutions of the Poisson equation). Let [ €
C(2), 2 bounded, uj,u, € C°(82) N C*(2) solutions of the Poisson equation

Aui(x) = f(x) forxe 2 (I =12).
Ifui1(z) < ua(z) forall 7 € 82, then also
u(x) <up(x) forall x € £2.

In particular, if

Urlo = U298,

then
uy = uj.
Proof. We apply the maximum principle to the harmonic function u; — u,. O
In particular, for f = 0, we once again obtain the uniqueness of harmonic

functions with given boundary values.
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Remark. The reverse implication in Theorem 2.2.1 can also be seen as follows:
We observe that the maximum principle needs only the mean value inequalities.
Thus, the uniqueness of Corollary 2.2.5 holds for functions that satisfy the mean
value formulae. On the other hand, by Theorem 2.1.2, for continuous boundary
values there exists a harmonic extension on the ball, and this harmonic extension
also satisfies the mean value formulae by the first implication of Theorem 2.2.1.
By uniqueness, therefore, any continuous function satisfying the mean value
property must be harmonic on every ball in its domain of definition §2, hence on
all of £2.

As an application of the weak maximum principle we shall show the removability
of isolated singularities of harmonic functions:

Corollary 2.2.6. Let xo € 2 C RY(d > 2), u : 2\ {xo} — R harmonic and
bounded. Then u can be extended as a harmonic function on all of §2; i.e., there

exists a harmonic function
u:2—->R

that coincides with u on §2 \ {xo}.

Proof. By a simple transformation, we may assume xo = 0 and that 2 contains the
ball B(0,2). By Theorem 2.1.2, we may then solve the following Dirichlet problem:

Aii=0 in B(0,1),
u=u ondB(,1).

We consider the following Green function on B(0, 1) for y = 0:

1
5= log | x| ford = 2,

— 2
G0 = 1 (x]*—1) ford >3
d—d)wy =2

For ¢ > 0, we put
u(x) :=u(x)—eG(x) O<|x|<1).
First of all,
ug(x) = u(x) = u(x) for |x| =1. (2.2.11)

Since on the one hand, u as a smooth function possesses a bounded derivative along
|x|] = 1, and on the other hand (with r = |x|), %G(x) > 0, we obtain, for
sufficiently large ¢,

ug(x) > u(x) for0 < |x| <1.

But we also have

lir%us(x) =00 fore>0.
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Since u is bounded, consequently, for every ¢ > 0 there exists r(g) > 0 with
us(x) > u(x) for |x| <r(e). (2.2.12)
From these arguments, we may find a smallest &g > 0 with
ug,(x) > u(x) for |x| <1.

We now wish to show that g = 0.
Assume g9 > 0. By (2.2.11) and (2.2.12), we could then find zo, 7 (§) < |zo| < 1,
with
uzg (z0) < u(zo)-

This would imply

min u%(x) — u(x)) <0,
er}(o,l)\B(o,r(%))

while by (2.2.11), (2.2.12)

min (u%(y) — u(y)) =0.

y€0B(0.1)UdB(0.r (L))

This contradicts Corollary 2.2.4, because u @ —u is harmonic in the annular region
considered here. Thus, we must have gy = 0, and we conclude that

u<uy=u in B(0,1)\ {0}.
In the same way, we obtain the opposite inequality
u>u in B(0,1)\ {0}.

Thus, u coincides with z in B(0, 1) \ {0}. Since u is harmonic in all of B(0, 1), we
have found the desired extension. O

From Corollary 2.2.6 we see that not every Dirichlet problem for a harmonic
function is solvable. For example, there is no solution of

Au(x) =0 in B(0.1)\ {0},
u(x) =0 for |x| =1,
u(0) = 1.
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Namely, by Corollary 2.2.6 any solution « could be extended to a harmonic function

on the entire ball ]_?3(0, 1), but such a harmonic function would have to vanish
identically by Corollary 2.2.4, since its boundary values on dB(0, 1) vanish, and
so it could not assume the prescribed value 1 at x = 0.

Another consequence of the maximum principle for subharmonic functions is a
gradient estimate for solutions of the Poisson equation:

Corollary 2.2.7. Suppose that in 2,

Au(x) = f(x)

with a bounded function f. Let xo € §2 and R := dist(xo, 52). Then

d R
luyi(xo)] < — sup |u|+ —= sup |f| fori=1,...,d. (2.2.13)
R 5B(xo.R) 2 B(xo.R)

Proof. We consider the case i = 1. For abbreviation, put

w:i= sup |ul, M:= sup |f].
3B(xo,R) B(x0,R)

Without loss of generality, suppose again xo = 0. The auxiliary function

v(x) = % x>+ x' (R —x") (‘;_l; + %)
satisfies, in B(0, R),
Av(x) = —-M,
v(O,xz,...,xd) >0 forall x2,...,x%,

v(x) > pn for |x| = R, x> 0.
We now consider
u(x) := % (u(x",. ..,xd) —u(—x"x% ... ,xd)).
In B(0, R), we have

|[Au(x)| = M,
ﬁ(O,xz,...,xd) =0 forallxz,...,xd,

lu(x)] < p forall |[x|] = R.
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We consider the half-ball BT := {|x| < R, x' > 0}. The preceding inequalities
imply
A(v+i)<0 inBT,
viia>0 ondB*.

The maximum principle (Lemma 2.2.1) yields
lul <v in BT,
We conclude that

—(+1
,0,...,0
lu,1(0)] = lim ”(x—l)
x11—>00 X

ie., (2.2.13). O
Other consequences of the mean value formulae are the following:

Corollary 2.2.8 (Liouville theorem). Letu : RY — R be harmonic and bounded.
Then u is constant.

Proof. For x1,x, € RY, by (2.2.2) for all r > 0,

u(xy) —u(x;) = wdlrd (/Bm’r) u(x)dx — /B(mr) u(x)dx)

1
= i (/ u(x)dx —/ u(x)dx) .
wqr B(x1.r)\B(x2.r) B(x2,r)\B(x1.r)
(2.2.14)

By assumption
u(x)[ = M,

and for r — oo,

"z Vol (B(x1,7) \ B(xa,r)) — 0.

This implies that the right-hand side of (2.2.14) converges to 0 for r — oo.
Therefore, we must have
u(xy) = u(x2).

Since x; and x; are arbitrary, u has to be constant. O

Another proof of Corollary 2.2.8 follows from Corollary 2.2.7:
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By Corollary 2.2.7, forall xo € R, R > 0,i = 1,....d,

d
it ()| = % sup .
R4

Since u is bounded by assumption, the right-hand side tends to 0 for R — oo, and
it follows that u is constant. This proof also works under the weaker assumption

1
lim — sup |u| =0.
R—oo R B(xo,R)

This assumption is sharp, since affine linear functions are harmonic functions on R?
that are not constant.

Corollary 2.2.9 (Harnack inequality). Let u : 2 — R be harmonic and
nonnegative. Then for every subdomain 2' CC 2 there exists a constant ¢ =
c(d, $2,2") with

supu < cinfu. (2.2.15)
o Q'

Proof. We first consider the special case 2" = é(xo, r), assuming B(xo,4r) C £2.
Let y1, y2 € B(xp,r). By (2.2.2),

1
u(yn) = —— / u(y)dy
War” JBy.r)

1
i / u(y)dy,
wqr B(x0.,2r)

since u > 0 and B(y;,r) C B(xp,2r)

3d
=— u(y)dy
@a(3r)? Jp(xp2r)
3d
u(y)dy,

= wa(3r) )

since u > 0 and B(x¢,2r) C B(y», 3r)
= 3du(y2)v

and in particular,

sup u§3d inf u,
B(xo.r) B(xo.r)

which is the claim in this special case.
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For an arbitrary subdomain §2’ CC §2, we choose r > 0 with
1 . ,
r< 1 dist(£2’, 052).

Since £2’ is bounded and connected, there exists m € N such that any two points
V1, y2 € £2’ can be connected in £2’ by a curve that can be covered by at most m
balls of radius r with centers in £2’. Composing the preceding inequalities for all
these balls, we get

u(y1) < 3™ u(yy).

Thus, we have verified the claim for ¢ = 39, O
The Harnack inequality implies the following result:

Corollary 2.2.10 (Harnack convergence theorem). Ler u, : 2 — R be a
monotonically increasing sequence of harmonic functions. If there exists y € S2 for
which the sequence (u,(y))nen is bounded, then u, converges on any subdomain
2/ CC 82 uniformly towards a harmonic function.

Proof. The monotonicity and boundedness imply that u,(y) converges for n — co.
For ¢ > 0, there thus exists N € N such that forn >m > N,

0 <upy(y) —um(y) <e.

Then u, — u, is a nonnegative harmonic function (by monotonicity), and by
Corollary 2.2.9,

sup(u, — uy) < ce, (wlogy € '),
Q/

where ¢ depends on d, £2, and £2’. Thus (u,),en converges uniformly in all of £2'.
The uniform limit of harmonic functions has to satisfy the mean value formulae as
well, and it is hence harmonic itself by Theorem 2.2.1. O

Summary

In this chapter we encountered some basic properties of harmonic functions, i.e., of
solutions of the Laplace equation

Au=0 in$2,
and also of solutions of the Poisson equation
Au=f inf2

with given f.
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We found the unique solution of the Dirichlet problem on the ball (Theorem 2.1.2),
and we saw that solutions are smooth (Corollary 2.1.2) and even satisfy ex-
plicit estimates (Corollary 2.2.7) and in particular the maximum principle (Corol-
lary 2.2.3, Corollary 2.2.4), which actually already holds for subharmonic functions
(Lemma 2.2.1). All these results are typical and characteristic for solutions of
elliptic PDEs. The methods presented in this chapter, however, mostly do not readily
generalize, since they have used heavily the rotational symmetry of the Laplace
operator. In subsequent chapters we thus need to develop different and more general
methods in order to show analogues of these results for larger classes of elliptic
PDEs.

Exercises

2.1. Determine the Green function of the half-space

(x=x"....xHeR: x' >0
2.2. On the unit ball B(0,1) C R?, determine a function H(x,y), defined for
x # y, with

(i) 52-H(x,y) = 1forx € 9B(0,1)
(ii) H(x,y) — I'(x,y) is a harmonic function of x € B(0, 1). (Here, I'(x, y) is a
fundamental solution.)

2.3. Use the result of Exercise 2.2 to study the Neumann problem for the Laplace
equation on the unit ball B(0, 1) C R¢:

Let g : 0B(0,1) — R with fBB(O,l) g(y)do(y) = 0 be given. We wish to find a
solution of

Au(x) =0  forx € B(0,1),
ou

a—(x) = g(x) forx € dB(0,1).
v

24. Let u : B(0,R) — R be harmonic and nonnegative. Prove the following
version of the Harnack inequality:

R7(R —|x]) R7(R + |x|)

R+ it O = w0 == O

for all x € B(0, R).

2.5. Letu : R — R be harmonic and nonnegative. Show that u is constant (Hint:
Use the result of Exercise 2.4.).
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2.6. Let u be harmonic with periodic boundary conditions. Use the maximum
principle to show that u is constant.

2.7. Let 2 C R*\ {0}, u : 2 — R harmonic. Show that
v(xl,xz,x3) — 1 ( xI x2  x3 )

L S
el 27 [x2 7 ]x ]2

is harmonic in the region 2’ := {x eR3: ("—1 X V—}) € .Q}

[x[22 [x[?> 1x[?

— Is there a deeper reason for this?
— Is there an analogous result for arbitrary dimension d ?

2.8. Let £2 be the unbounded region {x € R? : |x| > 1}. Letu € C2(£2) N C°(2)
satisfy Au = 0 in £2. Furthermore, assume

lim u(x) =0.
|x|—o00

Show that
Sup (4| = max |uj.
| | P | |

2.9. (Schwarz reflection principle):
Let 21 C {x? > 0},

Y=t n{x? =0} #0. (2.2.16)

Let u be harmonic in 27, continuous on 2% U ¥, and suppose u = 0 on X. We
put

a(x', .. x?) = u(x',...x) for x? >0,
—u(x',...,—x%) forx? <O0.
Show that i is harmonic in 2% U ¥ U 27, where 27 := {x e R? : (x!,..., —x9)

e Rt

2.10. Let 2 C R_d be a bounded domain for which the divergence theorem holds.
Assume u € C2(£2),u = 0 on 3£2. Show that for every ¢ > 0,

2/9 |Vu(x)|>dx < 8/Q(Au(x))2 dx + é/ﬁuz(x) dx.



Chapter 3
The Maximum Principle

Throughout this chapter, £2 is a bounded domain in R?. All functions u are assumed
to be of class C2(£2).

3.1 The Maximum Principle of E. Hopf

We wish to study linear elliptic differential operators of the form

d

d
Lu(x) = Z a’ () uyi i (x) + Zbi(x)uxi (x) + c(x)u(x),

ij=1 i=1

where we impose the following conditions on the coefficients:

1. Symmetry: a” (x) = a’/*(x) foralli, j and x € §2 (this is no serious restriction).
2. Ellipticity: There exists a constant A > 0 with

d
AIEP < Z a’ (x)e'E) forallx € 2,& € R?
ij=1

(this is the key condition).

smallest eigenvalue is greater than or equal to A.
3. Boundedness of the coefficients: There exists a constant K with

\aij(x)i , \bi(x)\ Je(x)] < K foralli,jandx € 2.
Obviously, the Laplace operator satisfies all three conditions. The aim of this chapter

is to prove maximum principles for solutions of Lu = 0. It turns out that for

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 37
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that purpose, we need to impose an additional condition on the sign of c(x),
since otherwise no maximum principle can hold, as the following simple example
demonstrates: The Dirichlet problem
u”(x) +u(x) =0 on (0, ),
u(0) = 0 = u(n),
has the solutions
u(x) = asinx
for arbitrary o, and depending on the sign of «, these solutions assume a strict
interior maximum or minimum at x = /2. The Dirichlet problem
u”(x) —u(x) =0,
u(0) =0 = u(w),
however, has 0 as its only solution.

As a start, let us present a proof of the weak maximum principle for subharmonic
functions (Lemma 2.2.1) that does not depend on the mean value formulae:

Lemma 3.1.1. Leru € C*(2) N C%(2), Au> 0in 2. Then

sup # = max u. (3.1.1)
Q 082

(Since u is continuous and §2 is bounded, and the closure Q thus is compact, the
supremum of u on §2 coincides with the maximum of u on §2.)

Proof. We first consider the case where we even have
Au>0 in£2.

Then u cannot assume an interior maximum at some xy € §2, since at such a
maximum, we would have

Ugi(xg) <0 fori =1,...,d,

and thus also
Au(xy) < 0.

We now come to the general case Au > 0 and consider the auxiliary function
xl
vix) =e",

which satisfies
Av =v > 0.



3.1 The Maximum Principle of E. Hopf 39

For each ¢ > 0, then
A(u+ev) >0 in$2,

and from the case studied in the beginning, we deduce

sup(u 4 ev) = max(u + ev).
I?) 82

Then
supu + ¢infv < maxu + ¢ maxv,
o Q2 EX?) EXe;
and since this holds for every ¢ > 0, we obtain (3.1.1). |

Theorem 3.1.1. Assume c(x) = 0, and let u satisfy in §2

Lu>0,
ie.,
d d
> a (Oug + Y b (u = 0. (3.1.2)
ij=1 i=1
Then also
sup u(x) = max u(x). (3.1.3)
xXeN X€082

In the case Lu < 0, a corresponding result holds for the infimum.

Proof. As in the proof of Lemma 3.1.1, we first consider the case
Lu > 0.
Since at an interior maximum X, of #, we must have
uyi(xo) =0 fori=1,...,d,

and
(uyiri(X0)); j=1,.4 negative semidefinite,

and thus by the ellipticity condition also

d
Lu(xo) = Z a'l (x0)utyi i (xg) <0,

ij=1

such an interior maximum cannot occur.
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Returning to the general case Lu > 0, we now consider the auxiliary function
1
v(x) = e**

for « > 0. Then
Lv(x) = (aza“(x) + otbl(x)) v(x).

Since £2 and the coefficients b’ are bounded and the coefficients satisfy a'’ (x) > A,
we have for sufficiently large c,
Lv >0,

and applying what we have proved already to u + ev
(L(u+ev) > 0),

the claim follows as in the proof of Lemma 3.1.1. The case Lu < 0 can be reduced
to the previous one by considering —u. O

Corollary 3.1.1. Let L be as in Theorem 3.1.1, and let f € C°(2), ¢ € C°(082)
be given. Then the Dirichlet problem

Lu(x) = f(x) forx €2, (3.1.4)
u(x) = p(x) forx € 94s2,

admits at most one solution.

Proof. The difference v(x) = u;(x) — uz(x) of two solutions satisfies

Lv(x) =0 in$2,
v(x) =0 onadf2,

and by Theorem 3.1.1 it then has to vanish identically on 2. O
Theorem 3.1.1 supposes ¢(x) = 0. This assumption can be weakened as follows:

Corollary 3.1.2. Suppose c(x) < 0in 2. Let u € C*(£2) N C°(£2) satisfy
Lu>0 inS2.
With u™ (x) := max(u(x), 0), we then have

supu+ < maxu™. (3.1.5)
Q a2

Proof. Let 2% := {x € £ : u(x) > 0}. Because of ¢ < 0, we have in 27,
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d d
Z a’ (xX)uyiy; + Zbi(x)uxi >0,
ij=1 i=1

and hence by Theorem 3.1.1,

supu < maxu.
o+ 0+

We have

u=0 ond2t N (by continuity of u),

max u < maxu,
R2+Nae 082

and hence, since 021 = (32T N ) U (32T N 3N),

max u < max u+.

R+ 282

Since also

suput = supu,
2 ot

(3.1.5) follows from (3.1.6) and (3.1.7).
We now come to the strong maximum principle of E. Hopf:

Theorem 3.1.2. Suppose c(x) = 0, and let u satisfy in 2,

Lu > 0.

41

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

If u assumes its maximum in the interior of §2, it has to be constant. More generally,
if c(x) <0, u has to be constant if it assumes a nonnegative interior maximum.

For the proof, we need the boundary point lemma of E. Hopf:

Lemma 3.1.2. Suppose c(x) < 0 and
Lu>0 in.Q/CRd,

and let xy € 0§2". Moreover, assume

(i) uis continuous at xy.
(ii) u(xo) = 0ifc(x) # 0.
(iii) u(xo) > u(x) forall x € 2'.

(iv) There exists a ball l;(y, R) C 2/ with xy € dB(y, R).
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We then have, with r := |x — y|,
d
—u(xo) > 0,
or

provided that this derivative (in the direction of the exterior normal of §2') exists.

Proof. We may assume
dB(y, R) N 982" = {xo}.

For 0 < p < R, on the annular region E(y, R) \ B(y, p), we consider the auxiliary
function
V(x) 1= el e rR?

We have

d
Lv(x) = {4% Yo adl ) (¢ =) (=)

ij=1

d
—2y Y a () + b () (¢ — ) § e 7ol

i=1

+ c(x) (e_yl"_y|2 - e_VRZ) .

For sufficiently large y, because of the assumed boundedness of the coefficients of
L and the ellipticity condition, we have

Lv=0 in B(y,R)\ B(y,p). (3.1.10)

By (iii) and (iv),
u(x) —u(x) <0 forx € B(y, R).

Therefore, we may find ¢ > 0 with
u(x) —u(xo) +ev(x) <0 forx € dB(y, p). (3.1.11)

Since v = 0 on dB(y, R), (3.1.11) continues to hold on dB(y, R). On the other
hand,

L (u(x) — u(xo) + ev(x)) > —c(x)u(xp) > 0 (3.1.12)

by (3.1.10) and (ii) and because of c(x) < 0. Thus, we may apply Corollary 3.1.2
on loi(y, R)\ B(y, p) and obtain

u(x) —u(xo) +ev(x) <0 forx € lg(y, R)\ B(y, p).
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Provided that the derivative exists, it follows that

% (u(x) —u(xo) + ev(x)) > O0atx = xo,

and hence for x = X,

0 v(x) R
Eu(x) > —ST =& (ZVRC ) > 0. O

Proof of Theorem 3.1.2: We assume by contradiction that u is not constant but has
a maximum m (> 0 in case ¢ # 0) in £2. We then have

Q' =xeQ ux)<m#£0

and
002" N2+ 0.

We choose some y € £2’ that is closer to 02’ than to 052. Let l;(y, R) be the
largest ball with center y that is contained in §2’. We then get

u(xg) = m forsome xy € dB(y, R)

and
u(x) < u(xg) forx € 2.

By Lemma 3.1.2,
Du(xo) # 0,

which, however, is not possible at an interior maximum point. This contradiction
demonstrates the claim. O

3.2 The Maximum Principle of Alexandrov
and Bakelman

In this section, we consider differential operators of the same type as in the previous
one, but for technical simplicity, we assume that the coefficients ¢(x) and b’ (x)
vanish. While similar results as those presented here continue to hold for vanishing
b’ (x) and nonpositive c(x), here we wish only to present the key ideas in a situation
that is as simple as possible.
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Theorem 3.2.1. Suppose that u € C>(2) N C°(2) satisfies

d

Lu(x) = Y a¥ (ugy = f(x), 3B2.1)

ij=1

where the matrix (a” (x)) is positive definite and symmetric for each x € £.
Moreover, let

Sl
We then have
diam(2) ([ 1fol )
sgpu < n{}gxu + da);/d (/Q det (@ (1) dx) . (3.2.3)

In contrast to those estimates that are based on the Hopf maximum principle (cf.,
e.g., Theorem 3.3.2 below), here we have only an integral norm of f on the right-
hand side, i.e., a norm that is weaker than the supremum norm. In this sense, the
maximum principle of Alexandrov and Bakelman is stronger than that of Hopf.

For the proof of Theorem 3.2.1, we shall need some geometric constructions. For
v € C°(£2), we define the upper contact set

TT):={yeR:IpeR? Vxel:v(x)<v()+p-(x—y)}. (324

The dot “ here denotes the Euclidean scalar product of R?. The p that occurs in
this definition in general will depend on y; that is, p = p(y). The set Tt (v) is that
subset of £2 in which the graph of v lies below a hyperplane in R?*! that touches
the graph of v at (y,v(y)). If v is differentiable at y € Tt (v), then necessarily
p(y) = Dv(y). Finally, v is concave precisely if 77 (v) = £2.

Lemma 3.2.1. Forv € C?(2), the Hessian

is negative semidefinite on T (v).
Proof. For y € T (v), we consider the function
w(x) = v(x) =v(y) = p(y) - (x = ¥).

Then w(x) < 0 on £2, since y € TH(v) and w(y) = 0. Thus, w has a maximum
at y, implying that (w,:; (v)) is negative semidefinite. Since v,i,; = w,i,; for all
i, j, the claim follows. O
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If v is not differentiable at y € T (v), then p = p(y) need not be unique,
but there may exist several p’s satisfying the condition in (3.2.4). We assign to
y € T (v) the set of all those p’s, i.e., consider the set-valued map

() i={peR!:Vxe2:v(x) <v(y)+p-(x—y)}.
Fory ¢ TT(v), we put 7,(y) := 0.
Example 3.2.1. 2 = B(0,1), 8 > 0,
v(x) = B —|x]).
The graph of v thus is a cone with a vertex of height 8 at 0 and having the unit

sphere as its base. We have T (v) = 13’(0, 1),

B(,8) fory =0,

w) = {_'BI;_I} for y # 0.

For the cone with vertex of height § at x( and base dB(x,, R),

v(x) = B (1—”_—Rx°|)

and 2 = §(x0, R), and analogously,
T (lc}(xO, R)) = 1y(x0) = B(0, B/R). (3.2.5)

We now consider the image of £2 under 7,,

w(@) = [Jn() cR

yER

We will let £; denote d-dimensional Lebesgue measure. Then we have the
following lemma:

Lemma 3.2.2. Lerv € C%(2) N CO(2). Then

L4 (5(92) < /

|det (vij(x))] dx. (3.2.6)
T+

Proof. First of all,

©(2) = o (T (1) = DT T (), (3.2.7)
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since v is differentiable. By Lemma 3.2.1, the Jacobian matrix of Dv : 2 — RY,
namely, (v,i,,), is negative semidefinite on 7 (v). Thus Dv — & Id has maximal
rank for & > 0. From the transformation formula for multiple integrals, we then get

Ly ((Dv—eld) (TT(»))) < / det (vyi i (x) —58;]-)’.].:1 d‘ dx. (3.2.8)
T+®) R
Letting ¢ tend to 0, the claim follows because of (3.2.7). O

We are now able to prove Theorem 3.2.1. We may assume
u<0 onaf2

by replacing u by u — maxjg, u if necessary.

Now let xo € £2, u(xo) > 0. We consider the function k, on B(x¢,d) with
8 = diam($2) whose graph is the cone with vertex of height u(x) at xo and base
dB(xo, §). From the definition of the diameter § = diam 2,

2 C B(X(), 5)
Since we assume u < 0 on 052, for each hyperplane that is tangent to this cone
there exists some parallel hyperplane that is tangent to the graph of u. (In order to
see this, we simply move such a hyperplane parallel to its original position from
above towards the graph of u until it first becomes tangent to it. Since the graph of
u is at least of height u(xy), i.e., of the height of the cone, and since u < 0 on 952
and 0£2 C B(xo,§), such a first tangency cannot occur at a boundary point of £2
but only at an interior point x;. Thus, the corresponding hyperplane is contained in
7,(x1).) This means that
Tie,, (£2) C w($2). (3.2.9)
By (3.2.5),
Te,, (£2) = B (0, u(x0)/$) - (3.2.10)

Relations (3.2.6), (3.2.9), and (3.2.10) imply
L4 (B (0.u(x0)/5)) < / et ()] A,
T (u)

and hence
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$ 1/d
u(xo) < 7 (/ |det (i i (x))| dx)
w, T+ (u)
1) 1/d
= 1 (/ (=) det (i s (x)) dx) (3.2.11)
W, T+ (u)

by Lemma 3.2.1. Without assuming # < 0 on 9§2, we get an additional term
maxyg u on the right-hand side of (3.2.11). Since the formula holds for all x € §2,
we have the following result:

Lemma 3.2.3. Foru e C?(2) N C°(R),

diam(£2)
supu < maxu + 4
2 982 w,

1/d
(/ (—l)ddet(uxixj(x))dx) . (32.12)
T+ ()

In order to deduce Theorem 3.2.1 from this result, we need the following elementary
lemma:

Lemma 3.2.4. On T (u),

d

d
(—1)? det (uyi,s (x)) < ldet (a” (x)) —%Zaij(x)uxixj(x) . (3.2.13)
i.j=1

Proof. Tt is well known that for symmetric, positive definite matrices A and B,

1 d
detAdetB < (E trace AB) ,

which is readily verified by diagonalizing one of the matrices, which is possible if
that matrix is symmetric.

Inserting A = (—u,i,j), B = (a”) (which is possible by Lemma 3.2.1 and the
ellipticity assumption), we obtain (3.2.13). O

Inequalities (3.2.12) and (3.2.13) imply
1/d

dx

diam(£2) / (_ Z:i,j=1 al (XY i (x))d
T+ W)

supu < maxu + —
A A det (al (x))

(3.2.14)
In turn (3.2.14) directly implies Theorem 3.2.1, since by assumption, — Y a'/

uuy; < —f,and the left-hand side of this inequality is nonnegative on T (u)
by Lemma 3.2.1. O
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We wish to apply Theorem 3.2.1 to some nonlinear equation, namely, the two-
dimensional Monge—Ampere equation.
Thus, let §2 be open in R? = {(x', x?)}, and let u € C?(£2) satisfy

Uyt (O U2,2(x) — 12, 5(x) = f(x) in L2, (3.2.15)

with given f. In order that (3.2.15) be elliptic:

(i) The Hessian of u must be positive definite, and hence also
(i1)) f(x) > 0in £2.

Condition (3.2) means that u is a convex function. Thus, # cannot assume a
maximum in the interior of §2, but a minimum is possible. In order to control the
minimum, we observe that if u is a solution of (3.2.15), then so is (—u). However,
Eq. (3.2.15) is no longer elliptic at (—u), since the Hessian of (—u) is negative and
not positive, so that Theorem 3.2.1 cannot be applied directly. We observe, however,
that Lemma 3.2.3 does not need an ellipticity assumption and obtain the following
corollary:

Corollary 3.2.1. Under the assumptions (3.2) and (3.2), a solution u of the Monge—
Ampére equation (3.2.15) satisfies

igfu > Iglxgnu— di&\/;{?) (/9 f(x)dx)z.

The crucial point here is that the nonlinear Monge—Ampere equation for a
solution u can be formally written as a linear differential equation. Namely, with

1 1
a“(x) = Euxzxz(x)s alZ(x) = aZl(-x) = Euxlxz(-x)v

1
a22(x) = Euxlxl (X)

(3.2.15) becomes

2
> aT g (x) = f(x),
ij=1
and is thus of the type considered. Consequently, in order to deduce properties of a
solution u, we have only to check whether the required conditions for the coefficients
a'’ (x) hold under our assumptions about u. It may happen, however, that these
conditions are satisfied for some, but not for all, solutions u#. For example, under
the assumptions (i) and (ii), (3.2.15) was no longer elliptic at the solution (—u).
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3.3 Maximum Principles for Nonlinear Differential
Equations

We now consider a general differential equation of the form
Flu] = F(x,u, Du, D*u) = 0, (3.3.1)

with F 1 § := 2 x R x R? x S(d,R) — R, where S(d,R) is the space of
symmetric, real-valued, d x d matrices. Elements of S are written as (x, z, p,r);
here p = (p1,....pq) € R, r = (rij)ij=1...a € S(d,R). We assume that F is
differentiable with respect to the r;;.

Definition 3.3.1. The differential equation (3.3.1) is called elliptic at u € C?(R2) if

(a—F (x. u(x), Du(x), Dzu(x))) is positive definite. (3.3.2)

orij ij=1,..d

For example, the Monge—Ampere equation (3.2.15) is elliptic in this sense if the
conditions (i) and (ii) at the end of Sect. 3.2 hold.

It is not completely clear what the appropriate generalization of the maximum
principle from linear to nonlinear equations is, because in the linear case, we always
have to make assumptions on the lower-order terms. One interpretation that suggests
a possible generalization is to consider the maximum principle as a statement
comparing a solution with a constant that under different conditions was a solution
of Lu < 0. Because of the linear structure, this immediately led to a comparison
theorem for arbitrary solutions u;, u; of Lu = 0. For this reason, in the nonlinear
case, we also start with a comparison theorem:

Theorem 3.3.1. Let ug, u; € C2(£2) N C(2), and suppose

(i) FeC'(S).
(ii) F is elliptic at all functions tu; + (1 — t)up, 0 <t < 1.
(iii) For each fixed (x, p,r), F is monotonically decreasing in z.

If

u <uy onoas2

and
Flu)] > Flug] in$2,

then either
up <uy in$2

or
Uup = Up in 2.

Proof. We put
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Vi=up — U,

u=tuy + (1 —=tuy for0 <7 =<1,

1
a’(x) ::/0 g—F (x, u; (x), Duy(x), Dzu,(x)) dr,

tij

1
b (x) ::/0 2—5 (x, u; (x), Duy(x), Duy (x)) dt,

LoF
c(x) ::/ - (x.u;(x), Dug(x), D?uy(x)) dt
0 Z
(note that we are integrating a total derivative with respect to t,
namely, %F (x,u;(x), Duy(x), D*u;(x)), and consequently, we can
convert the integral into boundary terms, leading to the correct
representation of Lv below; cf. (3.3.3)),

d

d
Lv:= Z a (x)vyi s (x) + Zbi(x)vxi (x) + c(x)v(x).

ij=1 i=1
Then
Lv = Flu;]— Flup] >0 in £2. (3.3.3)

The operator L is elliptic because of (ii), and by (iii), ¢(x) < 0. Thus, we may apply
Theorem 3.1.2 for v and obtain the conclusions of the theorem. |

The theorem holds in particular for solutions of F[u] = 0. The key point in the
proof of Theorem 3.3.1 then is that since the solutions uy and u; of the nonlinear
equation F[u] = 0 are already given, we may interpret quantities that depend on ug
and u; and their derivatives as coefficients of a linear differential equation for the
difference.

We also would like to formulate the following uniqueness result for the Dirichlet
problem for F[u] = f with given f:

Corollary 3.3.1. Under the assumptions of Theorem 3.3.1, suppose uy = u; on 9052
and
Fluyl = Flu] in $2.

Then ug = uy in S2.

As an example, we consider the minimal surface equation: Let 2 C R?> =
{(x, ¥)}. The minimal surface equation then is the quasilinear equation

(1 + u%) Upy — 2UxUylyy + (1 + u%) uy, = 0. (3.3.4)

Theorem 3.3.1 implies the following corollary:
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Corollary 3.3.2. Let ug, u; € C*(82) be solutions of the minimal surface equation.
If the difference up — uy assumes u maximum or minimum at an interior point of §2,
we have

Uy —up = const in 2.

We now come to the following maximum principle:

Theorem 3.3.2. Ler u € C*(2) N C%(2) and let F € C?(S). Suppose that for
some A > 0, the ellipticity condition

d

OF o
AEP <Y 5z p g (3.3.5)

ij=1 Y

holds for all £ € RY, (x,z, p.r) € S. Moreover, assume that there exist constants
1, Lo such that for all (x, z, p),

F(x,z, p,0)sign(z
(.2 P 0)sign@) _ )4 K2 (3.3.6)
A A
If
Flul=0 in$2,
then
H2

sup |u| < max |u| + ¢ 3.3.7)
Q 982

T 5
where the constant ¢ depends on (| and the diameter diam(§2).

Here, one should think of (3.3.6) as an analogue of the sign condition c(x) < 0
and the bound for the b(x) as well as a bound of the right-hand side f of the
equation Lu = f.

Proof. We shall follow a similar strategy as in the proof of Theorem 3.3.1 and shall
reduce the result to the maximum principle from Sect. 3.1 for linear equations. Here
v is an auxiliary function to be determined, and w := u—v. We consider the operator

d d
Lw:= Z a’ (x)ywyi; + Zb’(x)wxi

ij=1 i=1

with
. " oF )
a'l (x) ::/ P (x, u(x), Du(x), tD*u(x)) dr, (3.3.8)
o Orij

while the coefficients b’ (x) are defined through the following equation:
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Zb X)w = Z / x u(x), Du(x), tDzu(x))

i,j=1

B ;TF (x, u(x), Dv(x), tDzu(x)))dt Vi
i

+ F (x,u(x), Du(x),0) — F (x,u(x), Dv(x),0).  (3.3.9)

(That this is indeed possible follows from the mean value theorem and the
assumption F € C?2. It actually suffices to assume that F is twice continuously
differentiable with respect to the variables r only.) Then L satisfies the assumptions
of Theorem 3.1.1. Now

Lw=Lu-—v)
d 1
=L (/ g (000, D). 1D (0) dt) s+ F(x,u(x), Du(x), 0)
ij=1 0 Tij

— Z (/ x u(x), Dv(x), tDzu(x))dt) Vi —F(x,u(x), Dv(x),0)

i,j=1
= F (x,u(x), Du(x), D*u(x))

d
> (x)viies + F (x.u(x). Dv(x).0) | . (3.3.10)
i.j=1

with
’ a )
a’(x) = | — (x,u(x), Dv(x).tD*u(x)) dt (3.3.11)
0 8rij
(this again comes from the integral of a total derivative with respect to ¢). Here by

assumption

d
AEP < ) @ (0)EE forallx € 2.8 e RY. (3.3.12)
i,j=1

We now look for an appropriate auxiliary function v with

My =" (X)vup + F(x,u(x), Dv(x),0) < 0. (3.3.13)
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We now suppose that for § := diam(s2), §2 is contained in the strip {0 < x! < §}.
We now try

V() = maxut + % (e(’““)s - e<#1+l>X‘) (3.3.14)

(ut(x) = max(0, u(x))).
Then

My =— % G+ D2 ()e™ DY 1 F(x u(x), Dv(x), 0)

! 1
< — o (i + D7 oy + 1) WD 4 gy
<0

by (3.3.6) and (3.3.12). This establishes (3.3.13). Equation (3.3.10) then implies,
even under the assumption F[u] > 0 in place of F[u] = 0,

Lw > 0.
By definition of v, we also have
w=u—v<0 ondf2.

Theorem 3.1.1 thus implies
u<v in$2

and (3.3.7) follows with ¢ = e TDdiam(@) _ 1 More precisely, under the
assumption F[u] > 0, we have proved the inequality

sgpu < nggxu*’ + c%, (3.3.15)

but the inequality in the other direction of course follows analogously, i.e.,

. - H2
fu> —c— 3.3.16
infu = minu~ —c~ ( )

(u™(x) := min(0, u(x))). O

Theorem 3.3.2 is of interest even in the linear case. Let us look once more at the
simple equation

F(x) +kf(x) =0 forx € (0,m),
f(0) = f(r) =0,
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with constant k. We may apply Theorem 3.3.2 with A = 1, u; = 0,

K Sup o |f] forx >0,
0 forx < 0.

It follows that
sup [ f| < ck sup | f];
(0.7) (0.7)

i.e., if

1

K< -,

¢
we must have f = 0. More generally, in place of x, one may take any function ¢ (x)
with ¢(x) < « on (0, ) and consider f”(x) + ¢(x) f(x) = 0, without affecting
the preceding conclusion. In particular, this allows us to weaken the sign condition
¢(x) < 0. The sharpest possible result here is that f = 0 if « is smaller than the
smallest eigenvalue A of % on (0, ), i.e., 1. This analogously generalizes to other

linear elliptic equations, for example,

Af(x) +«f(x) =0 in$2,
f(y) =0 onof2.

Theorem 3.3.2 does imply such a result, but not with the optimal bound A;.
A reference for this chapter is Gilbarg—Trudinger [12].

Summary and Perspectives

The maximum principle yields examples of so-called a priori estimates, i.e.,
estimates that hold for any solution of a given differential equation or class of
equations, depending on the given data (boundary values, right-hand side, etc.),
without the need to know the solution in advance or without even having to
guarantee in advance that a solution exists. Conversely, such a priori estimates
often constitute an important tool in many existence proofs. Maximum principles
are characteristic for solutions of elliptic (and parabolic) PDEs, and they are not
restricted to linear equations. Often, they are even the most important tool for
studying certain nonlinear elliptic PDEs.

Exercises

3.1. Let £2,, 82, C R? be disjoint open sets such that £, N 2, contains a smooth
hypersurface T, for example,
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Q2 ={(" . x) x| < 1,x! > 03,
2, = {(x" .. xD) x| < 1,x! <0},

T ={(x"....x") x| <1,x' =0}
Letu € CO(S_21 U Qz) N Cz(.Ql) n CZ(.QZ) be harmonic on £2; and on £2,, i.e.,
Au(x) =0, x € £2,U82,.

Does this imply that u is harmonic on £2; U §£2, U T'?

3.2. Let £2 be openin R? = {(x, y)}. For a nonconstant solution u € C?(£2) of the
differential equation
uyy =0 ing2,

is it possible to assume an interior maximum in §27?

3.3. Let £2 be open and bounded in R%. On
2 x[0,00) cRIT = {(x",....x%, 1)},
we consider the heat equation

d 32
u; = Au, where A = ZW

i=1
Show that for bounded solutions u € C%(£2 x (0, 00)) N C%(2 x [0, 00)),

sup u < sup u.
2%[0,00) (2x{0}HU(8£2x[0,00))

34. Letu : 2 — R be harmonic, 2’ cC £2 c R?. We then have, for all i, j
between 1 and d,

sup |u|.

2d 2
dist(2/,02) ) ¢

sup |Mxi xJ | =
Q/

Prove this inequality. Write down and demonstrate an analogous inequality for
derivatives of arbitrary order!

3.5. Let £2 C R? be open and bounded. Let u € C*(£2) N C°(£2) satisfy

Au =1, x €S2,

u=0, xe€oif.

Show that u = 0 in 2.
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3.6. Prove a version of the maximum principle of Alexandrov and Bakelman for

operators
n

Lu= Z a’ (x)uyi i (x),

ij=1
assuming in place of ellipticity only that det(a” (x)) is positive in £2.

3.7. Control the maximum and minimum of the solution u of an elliptic Monge—
Ampere equation
det(“xi xJ (X)) = f(X)

in a bounded domain £2.

3.8. Letu € C?(£2) be a solution of the Monge—Ampére equation

det(uyi v (x)) = f(x)

in the domain §2 with positive f. Suppose there exists xo € §2 where the Hessian
of u is positive definite. Show that the equation then is elliptic at « in all of £2.

39. Let R? := {(x',x)}, 2 := B(0,R») \ B(0,R,) with R, > R, > 0. The
funct_i0n¢(x1, x2) := a+blog(|x|) is harmonic in §2 forall @, b. Letu € C2(£2)N
C?(£2) be subharmonic, i.e.,

Au>0, xe€f.
Show that

vy < MRDIOE(E) + MR o)
V= log(%2)

with
M(r) =
(r) amax u(x)

and Ry <r < R,.

3.10. Let
o1
u =g+ SO+,
301
U= o - E(x2 + 7).

Show that #; and u; solve the Monge—Ampere equation

2
UsxUyy — Usy, = 1
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and
uy =u, =1 onaB(O, 1)

Is this compatible with the uniqueness result for the Dirichlet problem for nonlinear
elliptic PDEs?

3.11. Let 27 := £ x (0,T), and suppose u € C2(£27) N C°(27) satisfies
w, = Au+u® inf2r,
u(x,t) >c>0 for (x,1) € (£2 x {0}) U (952 x [0, T)).

Show that

(a) u > cforall (x,1) € 27.
(b) If in addition u(x, ) = u(x,0) for all x € 052 and all ¢, then T < oo.



Chapter 4
Existence Techniques I: Methods Based
on the Maximum Principle

4.1 Difference Methods: Discretization of Differential
Equations

The basic idea of the difference methods consists in replacing the given differential
equation by a difference equation with step size /& and trying to show that for
h — 0, the solutions of the difference equations converge to a solution of the
differential equation. This is a constructive method that in particular is often applied
for the numerical (approximative) computation of solutions of differential equations.
In order to show the essential aspects of this method in a setting that is as simple as
possible, we consider only the Laplace equation

Au=0 (4.1.1)

in a bounded domain in £2 in R?. We cover R? with an orthogonal grid of mesh size
h > 0;i.e., we consider the points or vertices

(xl,...,xd) = (nih,...,ngh) 4.1.2)
with ny,...,ny € Z. The set of these vertices is called RZ, and we put
Q5 :=2NRY, (4.1.3)

We say that x = (n1h,...,ngh) and y = (mih,...,mgh) (all n;,m; € 7Z) are
neighbors if

d
> ol —mi| =1, (4.1.4)
i=1
or equivalently
|x —y| = h. (4.1.5)
J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 59
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.

(L1~ N

Fig. 4.1 x (cross) and its neighbors (open dots) and an edge path in (_2;, (heavy line) and vertices
from I, (solid dots)

The straight lines between neighboring vertices are called edges. A connected union
of edges for which every vertex is contained in at most two edges is called an edge
path (see Fig.4.1).

The boundary vertices of $2;, are those vertices of £2;, for which not all their
neighbors are contained in $2,,. Let I}, be the set of boundary vertices. Vertices in
2 that are not boundary vertices are called interior vertices. The set of interior
vertices is called £2j,.

We suppose that §2;, is discretely connected, meaning that any two vertices in £2;,
can be connected by an edge path in £2;,. We consider a function

ulgh%R

andput, fori = 1,....d,x = (x',...,x%) € 2,
1 . . .
ui (x) ;== 7 (u(xl,...,x’_l,x’ +h,x’+1,...,xd)—u(xl,...,xd)),

1 . . .
ur(x) = - (u(xl,...,xd)—u(xl,...,x’_l,x’ —h,x’“,...,xd)). (4.1.6)

Thus, u; and u; are the forward and backward difference quotients in the ith
coordinate direction. Analogously, we define higher-order difference quotients, for
example,

uir(x) = uz; (x) = (ur); (x)

1 )
:ﬁ(”(xlm--,xl +hoooxDy = 2ux!, . x)
(el x =y x ), @.1.7)

If we wish to emphasize the dependence on the mesh size h, we write u", u", u’.

place of u, u;, u;;, etc.

in
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The main reason for considering difference quotients, of course, is that for
functions that are differentiable up to the appropriate order, for 7 — 0, the difference
quotients converge to the corresponding derivatives. For example, for u € C?(£2),

2

(x), (4.1.8)

. h _
Rt i () = iy

if x;, € £2, tends to x € 2 for h — 0. Consequently, we approximate the Laplace
equation
Au=0 in {2

by the difference equation

d
A= "uls =0 in ), (4.1.9)

i=1

and we call this equation the discrete Laplace equation. Our aim now is to solve the
Dirichlet problem for the discrete Laplace equation

Al =0 in 2y,
W' =g" onry, (4.1.10)

and to show that under appropriate assumptions, the solutions u”

0 to a solution of the Dirichlet problem

converge for h —

Au=0 1in S2,
u=g onds2, 4.1.11)

where g’ is a discrete approximation of g. Considering the values of u” at the
vertices of £2;, as unknowns, (4.1.10) leads to a linear system with the same number
of equations as unknowns. Those equations that come from vertices all of whose
neighbors are interior vertices themselves are homogeneous, while the others are
inhomogeneous.

It is a remarkable and useful fact that many properties of the Laplace equation
continue to hold for the discrete Laplace equation. We start with the discrete
maximum principle:

Theorem 4.1.1. Suppose
Ahuh >0 inS$2,

where §2y, as always, is supposed to be discretely connected. Then

max " = maxu”. 4.1.12)
ot I

If the maximum is assumed at an interior point, then u" has to be constant.
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Proof. Let x( be an interior vertex, and let x|, ..., xp4 be its neighbors. Then
I
A (x) = W (Zl W' (xq) — 2duh(x0)) . (4.1.13)
If Apu”(x) > 0, then
h I+ h
u' (x0) < ﬁ;u (Xa), 4.1.14)

i.e., u" (xo) is not bigger than the arithmetic mean of the values of «” at the neighbors
of x¢. This implies

u" (x0) < max u" (x4), (4.1.15)

with equality only if
W (xo) = u(xq) foralla €{l,...,2d}. (4.1.16)

Thus, if u assumes an interior maximum at a vertex Xy, it does so at all neighbors
of xo as well, and repeating this reasoning, then also at all neighbors of neighbors,
etc. Since §2;, is discretely connected by assumption, u;, has to be constant in S_Zh.
This is the strong maximum principle, which in turn implies the weak maximum
principle (4.1.12). O

Corollary 4.1.1. The discrete Dirichlet problem

Ahuh =0 in .Qh,

uh:gh oth,

for given g" has at most one solution.

Proof. This follows in the usual manner by applying the maximum principle to the
difference of two solutions. O

It is remarkable that in the discrete case this uniqueness result already implies an
existence result:

Corollary 4.1.2. The discrete Dirichlet problem
Ahuh =0 in .Qh,
u = gh onl’ h,

admits a unique solution for each g" : I}, — R.
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Proof. As already observed, the discrete problem constitutes a finite system of
linear equations with the same number of equations and unknowns. Since by
Corollary 4.1.1, for homogeneous boundary data g” = 0, the homogeneous solution
u" = 0 is the unique solution, the fundamental theorem of linear algebra implies the
existence of a solution for an arbitrary right-hand side, i.e., for arbitrary g”. O

The solution of the discrete Poisson equation
A" = f* in 2" (4.1.17)

with given £ is similarly simple; here, without loss of generality, we consider only
the homogeneous boundary condition

W"=0 onI™", (4.1.18)

because an inhomogeneous condition can be treated by adding a solution of the
corresponding discrete Laplace equation.

In order to represent the solution, we shall now construct a Green function
G"(x, y). For that purpose, we consider a particular " in (4.1.17), namely,

fh(x) — 01 for x 7é Y,

n forx =y,

for given y € £2;,. Then G”(x, y) is defined as the solution of (4.1.17) and (4.1.18)
for that f". The solution for an arbitrary f” is then obtained as

W'(x) =1 GMx.y) (). (4.1.19)

YES2),

In order to show that solutions of the discrete Laplace equation A,u" = 0 in
£2, for h — 0 converge to a solution of the Laplace equation Au = 0 in £2,
we need estimates for the u” that do not depend on /. It turns out that as in the
continuous case, such estimates can be obtained with the help of the maximum
principle. Namely, for the symmetric difference quotient

1 . . .
up(x) = ﬁ(u(xl,...,x’_l,x’ +h,x T x D)

—u(x!, XX —h,xi+1,...,xd))

1
=3 (ui (x) + uz (x)) (4.1.20)
we may prove in complete analogy with Corollary 2.2.7 the following result:

Lemma 4.1.1. Suppose that in §2,

A (x) = fh(x). (4.1.21)
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Let xo € $2p, and suppose that xy and all its neighbors have distance greater than
or equal to R from I'},. Then

d R
|u(x0)| < 7 Max |u"| + 5 T |1 (4.1.22)

Proof. Without loss of generalityi = 1, xo = 0. We put

- h . h
u.—rrxl?ahxiu ,M.—n}ix|f \

We consider once more the auxiliary function

d M
Vi(x) = % 2 4+ x'(R = x") (R—’; + 7) .
Because of

d
AplxP =) hl—z (" + 1) + (' = k)’ —2(x')*) = 2d,

i=1

we have again

A (x) = —M
as well as
vh(O,xz,...,xd) >0 forall x2,...,x%,
vh(x) >u for |[x]| >R, 0Z x!' <R.
Furthermore, for i (x) := $(u"(x", ... x?) —u"(—x',x2,... . x9)),

\Ahﬁh(x)\ < M for those x € £2,, for which this expression is
defined,

L"th(O,xz,...,xd) =0 forall x%, ..., x%,

|i"(x)|<p  for x| =R, x'=>0.
On the discretization B," of the half-ball BT := {|x| < R,x! > 0}, we thus have
Ay (V") <0

as well as

V! >0 on the discrete boundary of B;’
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(in order to be premse here one should take as the discrete boundary all vertices in

the exterior of B+ that have at least one neighbor in B+) The maximum principle
(Theorem 4.1.1) yields

|a"| <V in B},
and hence
|@mn:lmwhamim5%wmanm

du R
<HEL 2 M+—n—mh
R o

For solutions of the discrete Laplace equation

Al =0 in 2y, (4.1.23)
we then inductively get estimates for higher-order difference quotients because if
u" is a solution, so are all difference quotients uf’, h uhulhl-, Uz, etc. For example,

from (4.1.22) we obtain for a solution of (4.1.23) that if x is far enough from the
boundary I}, then
d d n d? N
|ul(xo)| < ﬁmax|u~| < _2miX|” | = Fn}g}}x\u | (4.1.24)
Thus, by induction, we can bound difference quotients of any order, and we obtain
the following theorem:

Theorem 4.1.2. If all solutions u" of
Ahuh =0 in$2,

are bounded independently of h (i.e., maxp, |uh‘ < W), then in any subdomain
Q CC 2, some subsequence of u" converges to a harmonic function as h — 0.

Convergence here first means convergence with respect to the supremum

norm, i.e.,

lim max |u,, (x) —u(x)| =0,

n—>0xe€
with harmonic u. By the preceding considerations, however, the difference quotients
of u, converge to the corresponding derivatives of u as well.

We wish to briefly discuss some aspects of difference equations that are
important in numerical analysis. There, for theoretical reasons, one assumes that
one already knows the existence of a smooth solution of the differential equation
under consideration, and one wants to approximate that solution by solutions of
difference equations. For that purpose, let L be an elliptic differential operator and
consider discrete operators L that are applied to the restriction of a function u to
the lattice £2;,.
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Definition 4.1.1. The difference scheme L, is called consistent with L if

lim (Lu— Lyu) =0
h—0

forall u € C*(R2).
The scheme L, is called convergent to L if the solutions u, ul of

Lu=f inf2,u=¢onds2,

Ly = fh in £2;,, where f” is the restriction of f to 2,

u' = qoh on I}, where ¢ is the restriction to £2; of a

continuous extension of ¢,

satisfy

lim max |u" (x) — u(x)| = 0.
h—>0x€9;,| ( ) ( )|

In order to see the relation between convergence and consistency we consider the
“global error”

o(x) := u"(x) — u(x)

and the “local error”
s(x) := Lpu(x) — Lu(x)

and compute, for x € §2,
Lyo(x) = Ly (x) — Lyu(x) = f"(x) — Lu(x) — s(x)
= —s(x), since /" (x) = f(x) = Lu(x).

Since

lim sup |o(x)| =0,

h— xerly,

the problem essentially is

Lyo(x) = —s(x) in £2y,
o(x)=0 on [},.

In order to deduce the convergence of the scheme from its consistency, one thus
needs to show that if s(x) tends to 0, so does the solution o (x), and in fact uniformly.
Thus, the inverses L,:l have to remain bounded in a sense that we shall not make
precise here. This property is called stability.
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In the spirit of these notions, let us show the following simple convergence result:

Theorem 4.1.3. Let u € C2($2) be a solution of
Au= f in$2,
u=¢ onas2.
Let u" be the solution
Al = ' in 2,
u = qoh on Iy,
where f"andg" are defined as above. Then
)1(22}272 |uh(x) — u(x)‘ —0 forh—0.
Proof. Taylor’s formula implies that the second-order difference quotients (which

depend on the mesh size /) satisfy

%u

1 i—1 i i il d
W(x,...,x Cxt 468 x ,...,x),

uir(x) =

with —h < 8" < h. Since u € C%(£2), we have

9%u | . . d %u X d
sup —(x', ... x4+, xY) = —(x',x L x ))—)O
51‘5h((3x’)2 (0x7)?

for h — 0, and thus the above local error satisfies
sup|s(x)| >0 forh — 0.

Now let £2 be contained in a ball B(xy, R); without loss of generality xo = 0.
The maximum principle then implies, through comparison with the function R>—
|x|2, that a solution v of

Ahv =1n in .Qh,

v=0 only,

satisfies the estimate

sup [l (po (2
el = S (R = 1xP?).

Thus, the global error satisfies

2
suplo(x)] = 57 sup |s(x)] .

hence the desired convergence. O
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4.2 The Perron Method

Let us first recall the notion of a subharmonic function from Sect. 2.2, since this will
play a crucial role:

Definition 4.2.1. Let 2 C R?, f : 2 — [—00, 00) upper semicontinuous in 2,
f # —oo. The function f is called subharmonic in §2 if for all 2’ CC £2, the
following property holds:

If uis harmonicin £2" and f < uon d£2’, thenalso /' < u
in £2/.
The next lemma likewise follows from the results of Sect. 2.2:
Lemma 4.2.1. (i) Strong maximum principle: Let v be subharmonic in §2. If there
exists xo € 2 with v(xo) = supg v(x), then v is constant. In particular, if
v e C%R), then v(x) < maxyo v(y) forall x € £2.
(ii) If vi,..., v, are subharmonic, so is v := max(vi,..., vy).

(iii) If v € C°%8) is subharmonic and B(y,R) CC £2, then the harmonic
replacement v of v, defined by

500 v(x) forx € 2\ B(y, R),
V(X) = 2 e y? v
£ dv‘\;dRy‘ faB(y,R) ﬁd()(z) forx € B(y, R),

is subharmonic in $2 (and harmonic in B(y, R)).

Proof. (i) This is the strong maximum principle for subharmonic functions.
Although we have not written it down explicitly, it is a direct consequence
of Theorem 2.2.2 and Lemma 2.2.1.

(ii) Let 2’ CC £, u harmonicin £2’, v < u on d£2’. Then also

vi<u ondf2 fori=1,...,n,
and hence, since v; is subharmonic,
vi<u onf2.
This implies

vi<u onf2,

showing that v is subharmonic.
(iii) First v < v, since v is subharmonic. Let £2’ CC £2, u harmonic in 2,9 < u
on 982’. Since v < v, also v < u on 052, and thus, since v is subharmonic,

v < uon £ and thus v < uon £\ lg(y,R). Therefore, also v < u on
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2’ N 0B(y, R). Since Vv is harmonic, hence subharmonic on 2’ N B(y, R), we
get v < uon £2' N B(y, R). Altogether, we obtain v < u on §2’. This shows
that v is subharmonic. O

For the sequel, let ¢ be a bounded function on £2 (not necessarily continuous).

Definition 4.2.2. A subharmonic function u € C°(£2) is called a subfunction with
respect to ¢ if

u<g¢ forallx € ds2.

Let S, be the set of all subfunctions with respect to ¢. (Analogously, a superhar-
monic function u € C°(£2) is called superfunction with respect to ¢ if u > ¢
on 052.)

The key point of the Perron method is contained in the following theorem:

Theorem 4.2.1. Let

u(x) := sup v(x). (4.2.1)

VES,

Then u is harmonic.

Remark. If w € C2(£2) N C°(£2) is harmonic on £ and if w = ¢ on 982, the
maximum principle implies that for all subfunctions v € §,, we have v < w in £2
and hence
w(x) = sup v(x).
VES,
Thus, w satisfies an extremal property. The idea of the Perron method (and the

content of Theorem 4.2.1) is that, conversely, each supremum in S, yields a
harmonic function.

Proof of Theorem 4.2.1: First of all, u is well defined, since by the maximum
principle v < supyo¢ < oo for all v € S,. Now let y € £2 be arbitrary.
By (4.2.1) there exists a sequence {v,} C S, with lim, 0 v,(y) = u(y). Replacing
v, by max(vy,...,v,,infyo ¢), we may assume without loss of generality that
(vi)nen is a monotonically increasing, bounded sequence. We now choose R with
B(y,R) CC £2 and consider the harmonic replacements v, for B(y, R). The
maximum principle implies that (v,),en likewise is a monotonically increasing
sequence of subharmonic functions that are even harmonic in B(y, R). By the
Harnack convergence theorem (Corollary 2.2.10), the sequence (v,) converges
uniformly on B(y, R) towards some v that is harmonic on B(y, R). Furthermore,

Tim 5, () = v(») = u(y), 4.22)

since u > v, > v, and lim,_, o v,(y) = u(y). By (4.2.1), we then have v < u in
B(y, R). We now show that v = u in B(y, R). Namely, if

v(z) < u(z) forsomez € B(y,R), (4.2.3)
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by (4.2.1), we may find u € S, with
v(z) < i(z). (4.2.4)
Now let
wy, i= max(v,, it). 4.2.5)

In the same manner as above, by the Harnack convergence theorem (Corollary
2.2.10), w, converges uniformly on B(y, R) towards some w that is harmonic on
B(y, R). Since w, > v, and w,, € S,

v<w<u in B(y,R). 4.2.6)
By (4.2.2) we then have

w(y) =v(y), (4.2.7)

and with the help of the strong maximum principle for harmonic functions
(Corollary 2.2.3), we conclude that

w=vin B(y, R). (4.2.8)
This is a contradiction, because by (4.2.4),
w(z) = lim w,(z) = lim max(v,(z),@(z)) > i(z) > v(z) = w(z).
n—oo n—oo

Therefore, u is harmonic in 2.

Theorem 4.2.1 tells us that we obtain a harmonic function by taking the
supremum of all subfunctions of a bounded function ¢. It is not clear at all, however,
that the boundary values of u coincide with vp. Thus, we now wish to study the
question of when the function u(x) := sup, S, v(x) satisfies

X—>

11;2139 u(x) = @(§).

For that purpose, we shall need the concept of a barrier.

Definition 4.2.3. (a) Let £ € 9£2. A function 8 € C°(£2) is called a barrier at £
with respect to £2 if

(i) B> 0in 2\ {£}; BE) = 0.

(ii) B is superharmonic in £2.
(b) & € 012 is called regular if there exists a barrier 8 at & with respect to £2.
Remark. The regularity is a local property of the boundary d£2: Let 8 be a local
barrier at £ € 052; i.e., there exists an open neighborhood U(§) such that 8 is a

barrier at £ with respect to U N £2. If then B(§, p) CC U and m := infy\ p ) B,
then
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5. )m for x € 2\ B(E, p),
min(m, B(x)) forx € 2N B(E, p),

is a barrier at § with respect to £2.

Lemma 4.2.2. Suppose u(x) := SUP,cs, v(x) in 2. If € is a regular point of 052
and ¢ is continuous at &, we have

lirng u(x) = ¢(&). (4.2.9)

Proof. Let M := sup,, |¢|. Since & is regular, there exists a barrier 8, and the
continuity of ¢ at & implies that for every ¢ > 0 there exists § > 0 and a constant
¢ = c(e) such that

lo(x) —p(§)| <& for |x — &| < 8, (4.2.10)
cB(x) >2M for|x—&|>§ (4.2.11)

(the latter holds, since infj,_¢>5 B(x) =: m > 0 by definition of 8). The functions

@) + &+ cp(x),
9(§) —e—cpx),

then are super- and subfunctions, respectively, with respect to ¢, by (4.2.10) and
(4.2.11). By definition of u thus

@) —e—cp(x) < u(x),
and since superfunctions dominate subfunctions, we also have
u(x) < @(€) + &+ cpx).
Hence, altogether,
lu(x) = (§)| = & + cB(x). (4.2.12)

Since lim, ¢ B(x) = 0, it follows that lim, ¢ u(x) = ¢(§). O
Theorem 4.2.2. Let 2 C RY be bounded. The Dirichlet problem
Au=0 inS2,
u=¢ onas2,

is solvable for all continuous boundary values ¢ if and only if all points & € 052 are
regular.
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Proof. If ¢ is continuous and 952 is regular, then u := sup,¢ s,V solves the Dirichlet
problem by Theorem 4.2.1. Conversely, if the Dirichlet problem is solvable for all
continuous boundary values, we consider § € 92 and p(x) := |x — &|. The solution
u of the Dirichlet problem for that ¢ € C°(3£2) then is a barrier at £ with respect
to §2, since u(£) = ¢(¢) = 0 and since miny, ¢(x) = 0, by the strong maximum
principle u(x) > 0, so that & is regular. O

4.3 The Alternating Method of H.A. Schwarz

The idea of the alternating method consists in deducing the solvability of the
Dirichlet problem on a union §2; U £2, from the solvability of the Dirichlet problems
on £21 and §2,. Of course, only the case £2; N £2, # @ is of interest here.

In order to exhibit the idea, we first assume that we are able to solve the
Dirichlet problem on §2; and §2, for arbitrary piecewise continuous boundary data
without worrying whether or how the boundary values are assumed at their points
of discontinuity. We shall need the following notation (see Fig. 4.2):

Then 052 = I'1U T, and since we wish to consider sets £2;, £2, that are overlapping,
we assume 02* = y; U y, U (17 N I3). Thus, let boundary values ¢ by given on
02 =1 UFZ.Weput

vi=¢ln (=12),

= 1infg,

m = infe

M := supg.
a2

We exclude the trivial case ¢ = const. Letu; : £2; — R be harmonic with boundary
values

uilp, = @1, uily, = M. 4.3.1)
Next, let u, : 2, — R be harmonic with boundary values

’42|1’2 - @27 M2|}/2 - Mll}/z' (432)

I

Fig. 4.2
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Unless ¢; = M, by the strong maximum principle,
uy <M inh (4.3.3)
hence in particular,
usly, <M, (4.3.4)
and by the strong maximum principle, also
uy <M in §2, (4.3.5)

and thus in particular,
leyl < Mllyl- (4.3.6)

If ¢y = M, then by our assumption that ¢ = constis excluded, ¢, # M, and (4.3.6)
likewise holds by the maximum principle. Since by (4.3.2), u; and u, coincide on
the partition of the boundary of §£2*, by the maximum principle again

U, <u; in 2%,
Inductively, forn € N, let
U+ 8§21 = Rougpir 0 20 - R,
be harmonic with boundary values
Uptilr, = @1, Uangily, = Uanly,, (4.3.7)
Upt2|r, = @2, Uangaly, = Uansily,. (4.3.8)

From repeated application of the strong maximum principle, we obtain

Uon43 < Uppia < Uppy1 ON 2%, (4.3.9)
Upn+3 < Uzp+1 on £21, (4.3.10)
Up+4 < UDp+42 on .Qz. (4311)

Thus, our sequences of functions are monotonically decreasing. Since they are also
bounded from below by m, they converge to some limit

u:S$2 — R.

'The boundary values here are not continuous as in the maximum principle, but they can easily
be approximated by continuous ones satisfying the same bounds. This easily implies that the
maximum principle continues to hold in the present situation.
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The Harnack convergence theorem (Corollary 2.2.10) then implies that u is har-
monic on £2; and §2;, hence also on §2 = £2; U £2,. This can also be directly
deduced from the maximum principle: For simplicity, we extend u,, to all of £2 by
putting

. *
Up+1 -= Up on .Qz\.Q s

. *
Udp+2 = Udp+1 on .Ql \.Q .

Then w5, 4+ is obtained from u,, by harmonic replacement on £2;, and analogously,
Uzp+o is obtained from uy,4+; by harmonic replacement on §2,. We write this
symbolically as

Usn+1 = Prugy, (4.3.12)
U2 = Pouzyyr. (4.3.13)

For example, on £2; we then have
u= lim up, = lim Piuy,. (4.3.14)
n—>oo n—>oo

By the maximum principle, the uniform convergence of the boundary values
(in order to get this uniform convergence, we may have to restrict ourselves to an
arbitrary subdomain £2] CC §2) implies the uniform convergence of the harmonic
extensions. Consequently, the harmonic extension of the limit of the boundary
values equals the limit of the harmonic extensions, i.e.,
Py lim up, = lim Piupy,. (4.3.15)
n—od n—>oo
Equation (4.3.14) thus yields
u= Pu, (4.3.16)

meaning that on £2, u coincides with the harmonic extension of its boundary values,
i.e., is harmonic. For the same reason, u is harmonic on £25.

We now assume that the boundary values ¢ are continuous and that all boundary
points of £2; and £2, are regular. Then first of all it is easy to see that u assumes its
boundary values ¢ on d§2 \ (I} N ;) continuously. To verify this, we carry out the
same alternating process with harmonic functions vo,—1 : 21 = R, vy, : £, - R
starting with boundary values

vilm =1, vily, =m 4.3.17)

in place of (4.3.1). The resulting sequence (v, ),en then is monotonically increasing,
and the maximum principle implies

Vv, <u,in§2 foralln. (4.3.18)
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Since we assume that d§2; and 0£2; are regular and ¢ is continuous, u, and v, then
are continuous at every x € 952 \ (I'1 N I2). The monotonicity of the sequence (u,,),
the fact that u,(x) = v,(x) = ¢(x) forx € 32 \ (I1 N I?) for all n, and (4.3.18)
then imply that # = lim,,—  u, at x as well.

The question whether u is continuous at d£2; N 92, is more difficult, as can
be expected already from the observation that the chosen boundary values for u;
typically are discontinuous there even for continuous ¢. In order to be able to treat
that issue here in an elementary manner, we add the hypotheses that the boundaries
of 2, and £2, are of class C! in some neighborhood of their intersection and that
they intersect at a nonzero angle. Under this hypotheses, we have the following
lemma:

Lemma 4.3.1. There exists some q < 1, depending only on §2, and $2,, with the
Jfollowing property: If w : §21 — R is harmonic in §2, and continuous on the closure
§2y and if

w=0 onli,

lw| <1 ony,
then
Wl <gq onys, (4.3.19)

and a corresponding result holds if the roles of §2\ and §2, are interchanged.

The proof will be given in Sect. 4.4 below.

With the help of this lemma we may now modify the alternating method in such
a manner that we also get continuity on d§2; N 9§2,. For that purpose, we choose an
arbitrary continuous extension ¢ of ¢ to y, and in place of (4.3.1), for u; we require
the boundary condition

uilp, = @1, uily, =@, (4.3.20)

and otherwise carry through the same procedure as above. Since the boundaries 042,
and 062, are assumed regular, all u, then are continuous up to the boundary. We put

M,y = max [t2n 41 — u2p—1] .
2

Moy, s = n}ax [t2n 42 — un] .
1

On y,, we then have
Up+2 = Udp+1, U2p = U2p—1,

hence
Upp+2 — Udp = Up+1 — U2p—1,
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and analogously on y,

Udp+3 — Udp+1 = Udp+2 — Up-

(L‘211+3_u2n+1)

Thus, applying the lemma with w = Morrs

, we obtain

My43 < qMop4s

and analogously
Moyt2 < qMop41.

Thus M,, converges to 0 at least as fast as the geometric series with coefficientg < 1.
This implies the uniform convergence of the series

o0
up + E (tons1 — uzp—1) = lim up,4
n—>oo

n=1

on 2}, and likewise the uniform convergence of the series

o0
up + E (U2n42 — U2p) = lim uy,
1 n—>0o0
e

on £2,. The corresponding limits again coincide in £2*, and they are harmonic on
£21, respectively £2,, so that we again obtain a harmonic function u on £2. Since all
the u,, are continuous up to the boundary and assume the boundary values given by
@ on 082, u then likewise assumes these boundary values continuously.

We have proved the following theorem:

Theorem 4.3.1. Let §2, and §2, be bounded domains all of whose boundary points
are regular for the Dirichlet problem. Suppose that §2, N §2, # @ and that §2, and
$2, are of class C' in some neighborhood of 3§2; N 382, and that they intersect
there at a nonzero angle. Then the Dirichlet problem for the Laplace equation on
§2 := §2, U £25 is solvable for any continuous boundary values.

4.4 Boundary Regularity

Our first task is to present the proof of Lemma 4.3.1:
In the sequel, with r := |x — y| # 0, we put

ln} ford =2,

D(r):=—dwsI(r) =
) ) ﬁrd%z ford > 3.

(4.4.1)
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We then have for all v € R”,
d 1
—P(r)=V@.v=——(x—y)- . (4.4.2)
v rd

We consider the situation depicted in Fig. 4.3.

Thatis, x € 21;y € y,a # 0,7,08,002, € C'. Let dy;(y) be an
infinitesimal boundary portion of y; (see Fig.4.4).

Let dw be the infinitesimal spatial angle at which the boundary piece dy;(y) is
seen from x. We then have

dyi(y)cos B = |x — y|* " dw (4.4.3)

and cos 8 = 6:3 - v. This and (4.4.2) imply

ad
h(x) := /yl B—UCD(r)dyl(y) = /yl dw. 4.4.4)

The geometric meaning of (4.4.4) is that fyl %%(r)dyl (y) describes the spatial
angle at which the boundary piece y; is seen at x. Since derivatives of harmonic
functions are harmonic as well, (4.4.4) yields a function / that is harmonic on £2;
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I A
3 N
7 ¢
B\ T,
Fig. 4.5

and continuous on 02 \ (/7 N I%). In order to make the proof of Lemma 4.3.1
geometrically as transparent as possible, from now on, we only consider the case
d = 2 and point out that the proof in the case d > 3 proceeds analogously.

Let A and B be the two points where I'] and I intersect (Fig. 4.5). Then 4 is not
continuous at A and B, because

lim h(x) = B, 4.4.5)
ery
ILII/IQ h(x) =8+ m, (4.4.6)
iEVl
lin/l4 h(x) =a + B. 4.4.7)
iEyz

Let

p(x):=n forx ey
and

p(x):=0 forxel.
Then h|3e, — p is continuous on all of 952, because

tim ((x) = p(x)) = lim h(x) —0 = B,

X€n X€E€n

lim (7(x) = p(x)) = lim h(x) = =p + 7 - = p.

XEy| XE€y1
By assumption, there then exists a function u € C2(£2;) N C°(£2,) with

Au=0 in £2,
u = ]’l|391 —p on 891.
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For
v(x) = — (4.4.8)

we have

Av =0 forx e £,
v(x) =0 forx eI,

v(x) =1 forx € y;.

The strong maximum principle thus implies

v(x) <1 forall x € 2y, (4.4.9)
and in particular,
v(x) <1 forall x € ps. (4.4.10)
Now
. 1. o
lim v(x) = — (hm h(x) —,3) =— <1, 4.4.11)
x—A T x—A T
X€yy X€yy

since ¢ < 7 by assumption. Analogously, lim.—5 v(x) < 1, and hence since y; is
XEy2
compact,

v(ix) <g<1 forallx €y, (4.4.12)
for some g > 0. We put m := v — w and obtain

m(x) =0 forx e,

m(x) >0 forx e y.
Since m is continuous in 3521 \ (I N I;) and 92, is regular, it follows that
Xli_)n;()m(x) =m(xg) forall xo € 082\ (I'1NI3).
By the maximum principle, m(x) > 0 for all x € §2;, and since also
,31—131 m(x) = Yll_rg1 v(x) —w(A) = 31—131 v(x) > 0 (w is continuous),

we have for all x € y»,

wx) <v(x) <g<1. (4.4.13)
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a B(xz,s)

Fig. 4.6

The analogous considerations for M := v + w yield the inequality
—w(x) <v(x) <g<1; (4.4.14)

hence, altogether,
w(x)] <g <1 forall x € ps.

We now wish to present a sufficient condition for the regularity of a boundary
point y € 082:

Definition 4.4.1. (2 satisfies an exterior sphere condition at y € 952 if there exists
xo € R" with B(xo, p) N 2 = {y}.

Examples. (a) All convex regions and all regions of class C? satisfy an exterior
sphere condition at every boundary point. (See Fig.4.6a.)
(b) Atinward cusps, the exterior sphere condition does not hold. (See Fig. 4.6b.)

Lemma 4.4.1. If §2 satisfies an exterior sphere condition at y, then 052 is regular
aty.

Proof.

ﬂ(x) . ,Dd+2 — W ford > 3,
ln@ ford =2,

yields a barrier at y. Namely, 8(y) = 0 and f is harmonic in R" \ {xo}, hence
in particular in £2. Since for x € £ \ {y}, |[x —xo| > p, also f(x) > 0 for all
x e 2\ {y}. O

We now wish to present Lebesgue’s example of a nonregular boundary point,
constructing a domain with a sufficiently pointed inward cusp.
Let R? = {(x,y,2)}, x € [0,1], p? := y? + 22,

u(x,y,2): dxo = v(x,p) —2xInp

_/1 X0
0 +/(xo—x)2+ p?
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Fig. 4.7

Fig. 4.8
with
v(x.p) = V(1 = x)2 + p? — Vx2 + p?
+xln‘<1—x+ \/(l—x)z—i—pz) (x+ x2+p2)).
We have

lim v(x,p) = 1.
g o

The limiting value of —2x In p, however, crucially depends on the sequence (x, p)
converging to 0. For example, if p = |x|", we have

x—0
—2xInp = —2nxIn|x| — 0.
On the other hand, if p = e_ﬁ, k,x > 0, we have

Iim (—2xInp) =k > 0.
(x,p)—>0( P)

The surface p = e has an “infinitely pointed” cusp at 0. (See Fig.4.7.)
Considering u as a potential, this means that the equipotential surfaces of u for the
value 1+ k come together at 0, in such a manner that f’(0) = 0 if the equipotential
surface is given by p = f(x). With £2 as an equipotential surface for 1 4 k, then u
solves the exterior Dirichlet problem, and by reflection at the ball (x — %)2 + 2+
2= }1, one obtains a region £’ as in Fig. 4.8.

Depending on the manner, in which one approaches the cusp, one obtains
different limiting values, and this shows that the solution of the potential problem
cannot be continuous at (x, y,z) = (—%, 0,0), and hence 0£2’ is not regular at

(-1.0.0).
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Summary

The maximum principle is the decisive tool for showing the convergence of various
approximation schemes for harmonic functions. The difference methods replace
the Laplace equation, a differential equation, by difference equations on a discrete
grid, i.e., by finite-dimensional linear systems. The maximum principle implies
uniqueness, and since we have a finite-dimensional system, then it also implies the
existence of a solution, as well as the control of the solution by its boundary values.

The Perron method constructs a harmonic function with given boundary values
as the supremum of all subharmonic functions with those boundary values. Whether
this solution is continuous at the boundary depends on the geometry of the boundary,
however.

The alternating method of H.A. Schwarz obtains a solution on the union of two
overlapping domains by alternately solving the Dirichlet problem on each of the two
domains with boundary values in the overlapping part coming from the solution of
the previous step on the other domain.

Exercises

4.1. Employing the notation of Sect.4.1, let xo € $2, C R% have neighbors
X1,...,Xx4. Let x5,...,xg be those points in R3 that are neighbors of exactly two
of the points xi, ..., x4. We put

2 = {xo €2, X1,...,X8 € .Qh).
Foru: 2, > R, xo € Qh, we put

4 8
jhu(xo) = # 42 u(xy) + Z u(xg) — 20u(xo)
a=1 B=5

Discuss the solvability of the Dirichlet problem for the corresponding Laplace and
Poisson equations.

4.2. Let Xo € £2), have neighbors xi, ..., x,,. We consider a difference operator
Luforu: 2, — R,

2d
Lu(xo) = Y _ bytt(xy).
a=0

satisfying the following assumptions:

2d 2d
by >0 fora=1,...,2d, Zbd >0, Zba <0.
=1 a=0
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Prove the weak maximum principle: Lu > 0 in £2;, implies

maxu < max u.
25 I

4.3. Under the assumptions of Sect. 4.2, assume in addition
by >0 fora=1,...,2d,

and let £2;, be discretely connected. Show that if a solution of Lu > 0 assume its
maximum at a point of £2p, it has to be constant.

4.4. Carry out the details of the alternating method for the union of three domains.

4.5. Let u be harmonic on the domain £2, xg € £, B(xo,R) C 2,0 <r <p <
R,,o2 = rR. Then

/ u(xo + rH)u(xo + RY)dv = / u*(xo + p)dd.
[91=1 [9]=1

Conclude that if u is constant in some neighborhood of xy, it is constant on all of 2.



Chapter 5
Existence Techniques II: Parabolic Methods.
The Heat Equation

5.1 The Heat Equation: Definition and Maximum Principles

Let 2 € R¥ be open, (0, T) C R U {00},
QT = Q X (07 T)v

0* 27 = (£ x {0}) U (asz x (0, T)). (See Fig. 5.1.)

We call 0* 27 the reduced boundary of 7.

For each fixed t € (0,T) let u(x,t) € C%*(£2), and for each fixed x € £ let
u(x,t) € C'((0,T)). Moreover, let f € C°(3*27), u € C°(27). We say that u
solves the heat equation with boundary values f if

u(x,t) = Acu(x,t) for (x,t) € 27,
u(x,t) = f(x,t) for (x,t) € 9* Q7. (5.1.1)

Written out with a less compressed notation, the differential equation is

9 S
gu(x, l) = IZ; @u(x, t)

Equation (5.1.1) is a linear, parabolic partial differential equation of second order.
The reason that here, in contrast to the Dirichlet problem for harmonic functions, we
are prescribing boundary values only at the reduced boundary is that for a solution
of a parabolic equation, the values of u on £2 x {T'} are already determined by its
values on 0* 27, as we shall see in the sequel.

The heat equation describes the evolution of temperature in heat-conducting
media and is likewise important in many other diffusion processes. For example, if
we have a body in R? with given temperature distribution at time ¢y and if we keep

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 85
DOI 10.1007/978-1-4614-4809-9_5,
© Springer Science+Business Media New York 2013
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Fig. 5.1

the temperature on its surface constant, this determines its temperature distribution
uniquely at all times # > 7. This is a heuristic reason for prescribing the boundary
values in (5.1.1) only at the reduced boundary.

Replacing ¢ by —t in (5.1.1) does not transform the heat equation into itself.
Thus, there is a distinction between “past” and “future.” This is likewise heuristically
plausible.

In order to gain some understanding of the heat equation, let us try to find
solutions with separated variables, i.e., of the form

u(x,t) = v(x)w(t). (5.1.2)
Inserting this ansatz into (5.1.1), we obtain

wi (1) Av(x)
w(t) — v(x)

Since the left-hand side of (5.1.3) is a function of ¢ only, while the right-hand side
is a function of x, each of them has to be constant. Thus

(5.1.3)

Av(x) = —Av(x), (5.1.4)
we(t) = —Aw(t), (5.1.5)

for some constant A. We consider the case where we assume homogeneous boundary
conditions on 452 X [0, c0), i.e.,

u(x,t) =0 forx €982,
or equivalently,

v(x) =0 forx € d52. (5.1.6)

From (5.1.4) we then get through multiplication by v and integration by parts

/Q|Dv(x)|2dx = —/Qv(x)Av(x)dx = /\/Qv(x)zdx.
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Consequently,
A>0

(and this is the reason for introducing the minus sign in (5.1.4) and (5.1.5)).

A solution v of (5.1.4) and (5.1.6) that is not identically 0 is called an
eigenfunction of the Laplace operator, and A an eigenvalue. We shall see in
Sect. 11.5 that the eigenvalues constitute a discrete sequence (A,),en, Ay — 00
for n — oo. Thus, a nontrivial solution of (5.1.4) and (5.1.6) exists precisely if
A = Ay, for some n € N. The solution of (5.1.5) then is simply given by

w(t) = w(0)e ™.

So, if we denote an eigenfunction for the eigenvalue A, by v,,, we obtain the solution

u(x, 1) = v (x)w(0)e !
of the heat equation (5.1.1), with the homogeneous boundary condition

u(x,t) =0 forx € df2
and the initial condition

u(x,0) = v, (x)w(0).

This seems to be a rather special solution. Nevertheless, in a certain sense, this
is the prototype of a solution. Namely, because (5.1.1) is a linear equation, any
linear combination of solutions is a solution itself, and so we may take sums of such
solutions for different eigenvalues A,. In fact, as we shall demonstrate in Sect. 11._5,

any L2-function on £2, and thus in particular any continuous function f on £2,
assuming £2 to be bounded, which vanishes on 92, can be expanded as

) = (), (5.1.7)

neN

where the v, (x) are the eigenfunctions of A, normalized via

/ vp(x)?dx =1
Q

and mutually orthogonal:

/ Ve (X)v(x)dx =0 forn # m.
Q2
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Then «;,, can be computed as

@ = [ s,
2
We then have an expansion for the solution of

u(x,t) = Au(x,t) forx € 2,t >0,
u(x,t) =0 forx € 082,¢t > 0,

u(x,0) = f(x) (: Zanvn(x)), for x € 2, (5.1.8)

namely,

u(x,t) = Zane_k”’vn(x). (5.1.9)

neN

Since all the A,, are nonnegative, we see from this representation that all the “modes”
oV, (x) of the initial values f are decaying in time for a solution of the heat
equation. In this sense, the heat equation regularizes or smoothes out its initial
values. In particular, since thus all factors e *! are less than or equal to 1 forz > 0,
the series (5.1.9) converges in L?(£2), because (5.1.7) does.

If instead of the heat equation we considered the backward heat equation

u; = —Au,

then the analogous expansion would be u(x,t) = Y a,e*'v,(x), and so the
modes would grow, and differences would be exponentially enlarged, and in fact,
in general, the series will no longer converge for positive . This expresses the
distinction between “past” and “future” built into the heat equation and alluded to
above.

If we write

g y.0) =Y e M (x)va(y). (5.1.10)

neN

and if we can use the results of Sect. 11.5 to show the convergence of this series, we
may represent the solution u(x, t) of (5.1.8) as

e, = e ) [ 00y by 619

neN

=qu»0ﬂww. (5.1.11)
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Instead of demonstrating the convergence of the series (5.1.10) and that u(x, ¢) given
by (5.1.9) is smooth for # > 0 and permits differentiation under the sum, in this
chapter, we shall pursue a different strategy to construct the “heat kernel” g (x, y, )
in Sect. 5.3.

Forx,y e R", t, 1y € R, t # ty, we define the heat kernel at (y, 7o) as

1 =*
A(x’y’t7t0) = —de4(to}—t)_
(4 |t —1o])?
We then have
d =yl
A ’ ’t’t :_—A tt —A ’ ’t,t ’
t(x Yy 0) 2(1_ ) (x, Y, 0) + 4(t ) (x y 0)
xi —yi
A ; N ,[,t = —A , ,t,[ ,
x (X, p,1,10) 2D (x, y.t.10)
(x' = y')?

1
S A(x, y,1,10) + = ——A(x, y,1, 1),
Ko —1)? (x.y 0)+2(to—t) (x,y.1.1)

Axixi (xa Y, Z‘,IO)

i.e.,

x —yP? d
Ay A(x, y,t,t =—A ST —A LV, LT
< A(x, y,1.1) 2o —1)? (x.y.1.10) + =1 (x. y.1.1)
= A/(x,y,t,1).

The heat kernel thus is a solution of (5.1.1). The heat kernel A is similarly important
for the heat equation as the fundamental solution I" is for the Laplace equation.

We first wish to derive a representation formula for solutions of the (homoge-
neous and inhomogeneous) heat equation that will permit us to compute the values
of u at time 7 from the values of u and its normal derivative on 9*$27. For that
purpose, we shall first assume that « solves the equation

ur(x,1) = Au(x,t) + ¢(x,t) in 27

for some bounded integrable function ¢(x, ¢) and that 2 C R? is bounded and such
that the divergence theorem holds. Let v satisfy v, = —Av on §27. Then

/ v dx dt :/ v(u, — Au) dx dt
.QT -QT

:/Q (/OTv(x,t)ut(x,t)dt) dx—/OT (/QvAudx) dr
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T
:/ [v(x, TYu(x,T) — v(x,0)u(x,0) — / ve(x, Hu(x, Z)dti| dx
Q 0

_/0 (/ uAvdx)dt //(va_”_u_) Jodr
S R S N

(5.1.12)

For v(x,t) := A(x,y,T + &,t) with T > 0and y € £22¢ fixed we then have,
because of v; = —Avy,

/ Audx:/ A(pdxdt+/ Audx
2x{T} 2r £2x{0}

T
+/ (/ (A% —ua—A) do) dr. (5.1.13)
0 R v av

For & — 0, the term on the left-hand side becomes

lim | A(x,y,T +¢& Tu(x,T)dx = u(y,T).

e—>0 0

Furthermore, A(x, y, T + ¢, t) is uniformly continuousin ¢, x, ¢ fore > 0, x € 052,
and0 <t < T orforx € £2,¢t = 0. Thus (5.1.13) implies, letting ¢ — 0,

u(y,T) =/Q Alx,y, T, t)p(x,t)dx dt +/K2A(x,y,T, 0)u(x,0)dx
T

T B(x n aA(x,y,T,t)) )

(5.1.14)

This formula, however, does not yet solve the initial boundary value problem, since
in (5.1.14), in addition to u(x,t) for x € 952, t > 0, and u(x, 0), also the normal
derivative g—:‘(x,t) for x € 382, t > 0, enters. Thus we should try to replace
A(x,y,T,t) by a kernel that vanishes on 92 x (0, 00). This is the task that we
shall address in Sect.5.3. Here, we shall modify the construction in a somewhat
different manner. Namely, we do not replace the kernel, but change the domain of
integration so that the kernel becomes constant on its boundary. Thus, for © > 0,
we let

1 lx—y|2

My, T;pn) :=14(x,s) € R? x Rs<T:—————e T > .
4 (T —s))2
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Forany y € £2,T > 0, we may find o > 0 such that for all & > p,
M(y,T;pn) C $2x[0,T].
We always have

».T)ye M(y,T; ),

and in fact, M(y, T; u) N {s = T} consists of the single point (y, T'). For ¢ falling
below T, M(y, T; ) N {s = t} is a ball in R? with center (y, #) whose radius first
grows but then starts to shrink again if 7 is decreased further, until it becomes 0 at a
certain value of 7.

We then perform the above computation on M(y, T; i) (u > o) in place of
27, with

vix,t) = A(x,y, T +et)—pu,
and as before, we may perform the limit ¢ \ 0. Then
v(x,t) =0 for(x,t) € IM(y,T; ),
so that the corresponding boundary term disappears.

Here, we are interested only in the homogeneous heat equation, and so, we put
¢ = 0. We then obtain the representation formula

A
u(y, T) = —/ u(x,t)—x,y, T,t)do(x,t)
OM(y.Tsp0) vy
lx — y|
= ,u/ u(x,t)———do(x,1), (5.1.15)
OM(y.T3p0) AT —1)
since
A lx — y| [x — y|
S A Ry W A IM(y, T: 10). 5.1.16
e 2T —1) 2Tl MO T (>.1.16)

In general, the maximum principles for parabolic equations are qualitatively dif-
ferent from those for elliptic equations. Namely, one often gets stronger conclusions
in the parabolic case.

Theorem 5.1.1. Let u be as in the assumptions of (5.1.1). Let 2 C R? be open and
bounded and

Au—u; >0 in Q7. (5.1.17)
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We then have

supu = sup u. (5.1.18)
or 0*Qr

(If T < oo, we can take max in place of sup.)

Proof. Without loss of generality 7 < co.

®

(i)

Suppose first
Au—u, >0 in £27. (5.1.19)

For 0 < ¢ < T, by continuity of # and compactness of 5_27_8, there exists
(X(), t9) € 27—, with

u(xo, fp) = max u. (5.1.20)
Q7 —¢

If we had (xo, %) € 27—, then Au(xg, ty) < 0, Vu(xo, t0) = 0, u;(xo,20) =
0 would lead to a contradiction; hence we must have (x¢,#) € 0§27_.. For

t =T —¢eand x € 2, we would get Au(xg, to) < 0, u;(x0,%) > 0, likewise
contradicting (5.1.19). Thus we conclude that

max ¥ = max u, (5.1.21)
r—¢ 0* Q27—

and for ¢ — 0, (5.1.21) yields the claim, since u is continuous.
If we have more generally Au —u, > 0, we letv := u — et, ¢ > 0. We have

Vvi=u—&e<Au—eg= Av—¢g < Ay,
and thus by (i),
maxu = max(v 4+ et) <maxv + &7 = max v+ T < maxu + 7T,
r Qr Qr 8*-QT 8*-QT

and ¢ — 0 yields the claim.

Theorem 5.1.1 directly leads to a uniqueness result:

Corollary 5.1.1. Let u, v be solutions of (5.1.1) with u = v on 3* Qr, where 2 C
RY is bounded. Then u = v on 2.

Proof. We apply Theorem 5.1.1 to u — v and v — u. O
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This uniqueness holds only for bounded 2, however. If, for example, 2 = R4,
uniqueness holds only under additional assumptions on the solution u.

Theorem 5.1.2. Let 2 = R? and suppose
Au—u, >0 in 27,

u(x,t) < MeM""|2 in 27 for M, 1 > 0,

u(x,0) = £(x) xef =R (5.1.22)
Then
supu < sup f. (5.1.23)
Qr R4

Remark. This maximum principle implies the uniqueness of solutions of the
differential equation

Au = u, on 27 = R? x (0,7),
u(x,0) = f(x) for x € RY,

u(x,r) < M for (x,1) € 27

The condition (5.1.22) is a condition for the growth of u at infinity. If this condition
does not hold, there are counterexamples for uniqueness. For example, let us choose

o

, §" @ ,,
M()C,Z) = ’;(2—’1)!)62

with

—1
e ¢t >0, forsomek > 1,

g(t) =
0 =0,

v(x,t):=0 forall (x,7) € R x (0, 00).
Then u and v are solutions of (5.1.1) with f(x) = 0. For further details we refer to

the book of John [14].

Proof of Theorem 5.1.2: Since we can divide the interval (0, T') into subintervals of
length 7 < ﬁ, it suffices to prove the claim for 7 < ﬁ, because we shall then get
sup u < sup u<-.--<sup f(x).
RY x[0,k1] R x[0,(k—1)7] RY
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Thuslet T < We may then find € > 0 with

L
ax-

1
T — 5.1.24
+e< N ( )

For fixed y € R? and § > 0, we consider
V(x, 1) = u(x,t) —8A(x,y,t,T +¢), 0<t<T. (5.1.25)
It follows that
V= AV =, — Au <0, (5.1.26)

since A is a solution of the heat equation. For £2# := B(y, p), we thus obtain from
Theorem 5.1.1

V(y, 1) < max . (5.1.27)
a*Qp
Moreover,
Vo (x,0) < u(x,0) < sup f, (5.1.28)
R4
and for [x — y| = p,
1 2
V(x,1) < Ml g y exp( p )
An(T +e—1)° 4T +e—1)

< M l+0* g

e ()
4n(T +¢)? Plar+o)

Because of (5.1.24), for sufficiently large p, the second term has a larger exponent
than the first, and so the whole expression can be made arbitrarily negative; in
particular, we can achieve that it is not larger than supp. f. Consequently,

vV <sup £ ond*Q*. (5.1.29)
]Rd

Thus, (5.1.27) and (5.1.29) yield

1
(T +e—1))%

V() =u(y.t) —8A(y.y.t.T + &) = u(y.t) — 8

<sup f.
R4

The conclusion follows by letting § — 0.
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Actually, we can use the representation formula (5.1.12) to obtain a strong
maximum principle for the heat equation, in the same manner as the mean value
formula could be used to obtain Corollary 2.2.3:

Theorem 5.1.3. Let 2 C RY be open and bounded and
Au—u, =0 inQ27r,

with the regularity properties specified at the beginning of this section. Then if there
exists some (xo, ty) € 2 x (0, T] with

u(xo, to) = maxu (or with u(xo, o) = rninu) ,
Qr Qr

then u is constant in §2y,.

Proof. The proof is the same as that of Lemma 2.2.1, using the representation
formula (5.1.12). (Note that by applying (5.1.15) to the function u = 1, we obtain

|x — y|
M/ XN o) = 1,
om(y, Ty 2(T —1)

and so a general u that solves the heat equation is indeed represented as some

average. Also, M(y,T;pu2) C M(y,T;py) for uy < po, and as u — oo, the
sets M(y, T; ) shrink to the point (y, T).) O

Of course, the maximum principle also holds for subsolutions, i.e., if
Au—u; >0 in Q7.
In that case, we get the inequality “<” in place of “=""in (5.1.15), which is what is
required for the proof of the maximum principle. Likewise, the statement with the
minimum holds for solutions of

Au—u, <0.

Slightly more generally, we even have

Corollary 5.1.2. Let 2 C R? be open and bounded and
Au(x,t) + c(x,Hu(x,t) —u(x,t) >0 in 27,
with some bounded function

c(x,1) <0 inQr. (5.1.30)
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Then if there exists some (xo, ty) € 2 x (0, T] with

u(xo, to) = maxu > 0, (5.1.31)

2r
then u is constant in §2y,.

Proof. Our scheme of proof still applies because, since ¢ is nonpositive, at a
nonnegative maximum point (xo, o) of u, c¢(xo, to)u(xo, to) < 0 which strengthens
the inequality used in the proof. O

Again, we obtain a minimum principle when we reverse all signs.

For use in Sect. 6.1 below, we now derive a parabolic version of E.Hopf’s boundary
point Lemma 3.1.2. Compared with Sect. 3.1, we shall reverse here the scheme of
proof, i.e., deduce the boundary point lemma from the strong maximum principle
instead of the other way around. This is possible because here we consider less
general differential operators than the ones in Sect.3.1 so that we could deduce
our maximum principle from the representation formula. Of course, one can also
deduce general Hopf type maximum principles in the parabolic case, in a manner
analogous to Sect. 3.1, but we do not pursue that here as it will not yield conceptually
or technically new insights.

Lemma 5.1.1. Suppose the function c is bounded and satisfies c(x,t) < 0 in §27.
Let u solve the differential inequality

Au(x,t) + c(x,Hu(x,t) —u(x,t) >0 in 27,

and let (xg, ty) € 0*R27. Moreover, assume:

(i) u is continuous at (x, tp).
(ii) u(xo,t9) = 0 ifc(x) # 0.
(iii) u(xo, to) > u(x,t) forall (x,t) € 27.

(iv) There exists a ball l;((y, t1), R) C Q27 with (xo,1y) € 0B((y,11), R).

We then have, with r :== |(x,t) — (y,11)],
du
—(x0,1%) >0, (5.1.32)
ar

provided that this derivative (in the direction of the exterior normal of §2r) exists.

Proof. With the auxiliary function

v(x) 1= e VP yR

the proof proceeds as the one of Lemma 3.1.2, employing this time the maximum
principle Theorem 5.1.3. O
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I do not know of any good recent book that gives a detailed and systematic
presentation of parabolic differential equations. Some older, but still useful,
references are [9, 23].

5.2 The Fundamental Solution of the Heat Equation.
The Heat Equation and the Laplace Equation

We first consider the so-called fundamental solution

1 le—y[?

e, (5.2.1)
(4mt)>

K(x,y,t) = A(x, y,t,0) =

and we first observe that for all x € RY, ¢ > 0,

d / e rd Ydr = —dwd/ e 597 1ds
1

==, e—|Y‘2dy = 1. (5.2.2)
T2 JR

/ K(x,y,t)dy =
Rd

For bounded and continuous f : R¢ — R, we consider the convolution

u(x,t) = / K(x,y,t) f(y)dy = ! i / e (5.2.3)
R4 (4mt)2 Jrd
Lemma 5.2.1. Let f : RY — R be bounded and continuous. Then
) = [ Ky £y
is of class C*® on R? x (0, 00), and it solves the heat equation
= Au. (5.2.4)

Proof. That u is of class C* follows, by differentiating under the integral (which
is permitted by standard theorems), from the C°° property of K(x, y,t). Conse-
quently, we also obtain

d d
2 utxt) = /R K0 )y = /R CAK(r .0 [y = At )

|
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Lemma 5.2.2. Under the assumptions of Lemma 5.2.1, we have for every x € R?

tli_l}(l)u(x, t) = f(x).

Proof.

|/ (x) — ulx, 1)

1= [ Koy 0]

= /Rd K(x, y.0)(f(x) — f(Y))dy‘ with (5.2.2)

= ! 2 an B
B (4m)‘é/o € /Sd_1 (f(x) = f(x +rE))do(E)dr

— L * —s? d—1 _ d
e /Sd_l (F@) = fx +2v/is8)) do§) ds

T2

_ /OM+/M°°‘

< sup |f(x)— SO+ 2sup|f]
yEB(x.2+/TM) R4

A

da)d
d
2

o0 2
/ e 5471 ds.
M

Given ¢ > 0, we first choose M so large that the second summand is less than &/2,
and we then choose 7y > 0 so small that for all  with 0 < ¢ < ¢¢, the first summand
is less than ¢/2 as well. This implies the continuity. O

T

By (5.2.3), we have thus found a solution of the initial value problem
u(x,t) — Au(x,t) =0 forx € Rd, t >0,
u(x,0) = f(x),

for the heat equation. By Theorem 5.1.2 this is the only solution that grows at most
exponentially.

According to the physical interpretation, u(x,t) is supposed to describe the
evolution in time of the temperature for initial values f(x). We should note,
however, that in contrast to physically more realistic theories, we here obtain an
infinite propagation speed as for any positive time ¢ > 0, the temperature u(x, ?)
at the point x is influenced by the initial values at all arbitrarily faraway points y,
although the strength decays exponentially with the distance |x — y]|.

In the case where f has compact support K, i.e., f(x) = 0 for x ¢ K, the
function from (5.2.3) satisfies

_ distx.K)?

e /K £ ()] dy. (52.5)

|u(x, )] =

(41)s

which goes to 0 as  — oo.
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Remark. Equation (5.2.5) yields an explicit exponential rate of convergence!

More generally, one is interested in the initial boundary value problem for the
inhomogeneous heat equation.

Let 2 C RY be a domain, and let ¢ € C%2 x [0,00)), f € C%R),
g € C°03£2 x (0, 00)) be given. We wish to find a solution of

8u(axt,t) — Au(x,t) = ¢(x,1) in 2 x (0, 00),

u(x,0) = f(x) in£,
u(x,t) = g(x,t) forx €982, € (0,00). (5.2.6)

In order for this problem to make sense, one should require a compatibility condition
between the initial and the boundary values: f € C°(2), g € C°(3£2x[0, 00)), and

f(x) = g(x,0) forx e ds2. 5.2.7)

We want to investigate the connection between this problem and the Dirichlet
problem for the Laplace equation, and for that purpose, we consider the case where
¢ = 0 and g(x,f) = g(x) is independent of ¢. For the following consideration
whose purpose is to serve as motivation, we assume that u(x, ) is differentiable
sufficiently many times up to the boundary. (Of course, this is an issue that will
need a more careful study later on.) We then compute

ad A 1, A d 2
5_ Eut—utbl”_ut ut_zuxit

i=1
9 d
= utg(u, —AM)—ZM?C,'I

i=1

d
=Y, <o. (5.2.8)

i=1
According to Theorem 5.1.1,

du(x,t) 2

v(t) := sup o

XESR

then is a nonincreasing function of 7.
We now consider

d
E(u(-,1)) = %/QZuiidx

i=l1
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and compute

9 d
gE(u(',t)) = /Q ;umiuxidx
. d
= —/ u; Audx, since u;(x,t) = Eg(x) =0 forx e€df2
Q

_ / w2dx <0, (5.2.9)
2

With (5.2.8), we then conclude that

9? 9 d
Pt == [ gudax = [ aa 2 [ 3,0

d
0 2 2
=— | —udo(x)+ 2/ i, dx.
/39 v’ 2 ; !

Since #? > 0in £2, u> = 0 on 352, we have on 952

0
2
—

<0.
ov

It follows that
32
ﬁE(u(u 1) > 0. (5.2.10)

Thus E(u(-,t)) is a monotonically nonincreasing and convex function of 7. In
particular, we obtain

0 0
—E@u(-,1) <a:= lim —E(u(-t)) <0. (5.2.11)
ot t—o0 Ot

Since E(u(-,t)) > 0 for all 7, we must have @ = 0, because otherwise for

sufficiently large T,
9
Eu(-,T)) = E(u(-,0)) +/ gE(u(-,t))dt < E(-0))+al <O0.
0
Thus it follows that

lim [ u’dx = 0. (5.2.12)

—>0o0 Q
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In order to get pointwise convergence as well, we have to utilize the maximum
principle once more. We extend u?(x,0) from £ to all of R as a nonnegative,

continuous function / with compact support and put

1 2
V(x, 1) ::/ de—‘ S 1()dy.

RY (47t)2
We then have
v, — Av = 0,
and since [ > 0, also
v>0,
and thus in particular
v>ul ondfR.

Thus w := ut2 — v satisfies

0
—w—Aw <0 in$2,

ot
w<0 onas2,

w(x,0) =0 forx e 2,1t =0.
Theorem 5.1.1 then implies
w(x,1) <0,

ie.,

uf(x,t) <wv(x,t) forallx € £2,t>0.

Since / has compact support, from Lemma 5.2.2 and (5.2.5),

lim v(x,t) =0 forall x € £2,
—>00
and thus also

lim u?(x,t) =0 forall x € £2.
—>00

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)

Thus, let our regularity assumptions be valid, and consider a solution of our
initial boundary value theorem with boundary values that are constant in time. We
conclude that its time derivative goes to 0 as ¢t — oo. Thus, if we can show that
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u(x, t) converges for t — oo with respect to x in C2, the limit function us, needs
to satisfy

Auge = 0,

i.e., be harmonic. If we can even show convergence up to the boundary, then us,
satisfies the Dirichlet condition

Uso(x) = g(x) forx € 052.
From the remark about (5.2.5), we even see that u,(x,?) converges to 0 exponen-
tially in 7.
If we know already that the Dirichlet problem

Allgo =0 in £2,
Uso = g Onas2 (5.2.17)

admits a solution, it is easy to show that any solution u(x, ¢) of the heat equation with
appropriate boundary values converges to us,. Namely, we even have the following
result:

Theorem 5.2.1. Let $2 be a bounded domain in R?, and let g(x,t) be continuous
on 082 x (0, 00), and suppose

tlim g(x,t) = g(x) uniformlyin x € 052. (5.2.18)
—>00
Let F(x,t) be continuous on §2 x (0, 00), and suppose
tlim F(x,t) = F(x) uniformlyinx € 2. (5.2.19)
—>00

Let u(x,t) be a solution of

ad
Au(x,t)—gu(x,t)zF(x,t) forx e 2, 0<t<oo,
u(x,t) = g(x,t) forx €df2, 0<t <oo. (5.2.20)
Let v(x) be a solution of

Av(x) = F(x) forx € $2,
v(x) = g(x) forx € d52. (5.2.21)

We then have

lim u(x,t) =v(x) uniformlyinx € 2. (5.2.22)
—>00
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Proof. We consider the difference
w(x,t) = u(x,t) —v(x). (5.2.23)
Then
Aw(x,t) — %w(x, t) = F(x,t) — F(x) in £ x (0,00),
w(x,t) = g(x,t) —g(x) indf2 x (0, 00), (5.2.24)

and the claim follows from the following lemma: O

Lemma 5.2.3. Let 2 be a bounded domain in R?, let ¢(x,t) be continuous on
§2 x (0, 00), and suppose

tlim ¢(x,t) =0 uniformlyinx € 2. (5.2.25)
—>00
Let y(x,t) be continuous on 952 x (0, 00), and suppose

lim y(x,t) =0 uniformly in x € 052. (5.2.26)

—>00
Let w(x, t) be a solution of

0 .
Aw(x,t) — Ew(x, t) =¢(x,t) in$2 x(0,00),
w(x,t) = y(x,t) in 382 x (0, 00). (5.2.27)

Then

lim w(x,t) =0 uniformlyinx € 2. (5.2.28)
—>00

Proof. We choose R > 0 such that

2x' < R forallx = (x',... . x%) e 2, (5.2.29)
and consider
k(x):=eR —e*. (5.2.30)
Then
Ak = —e*'.

With k := inf,cp e , we thus have

Ak < —k. (5.2.31)
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We consider, with constants 1, ¢g, T to be determined, and with

ko := inf k(x), 1 := sup k(x),
XER xen

the expression

k k k —(—r
m(x,1) =1 f{x) + 1 foc) + co iz)e (70

in £2 x [1, 00).
Then

ad
Am(x,t) — Em(x,t)

K K1

(5.2.32)

K Kk K _x_
<= f— —co—e MU p gL e T o (5.2.33)

Ko Ko Ko K1
Furthermore,

m(x,t) > ¢y forx e §2,

m(x,t) >n for(x,t) € 982 x [t, 00).

(5.2.34)
(5.2.35)

By our assumptions (5.2.25) and (5.2.26), for every 7, there exists some t = 7(7)

with
|p(x,t)|<n forx e 2, t=>r,
ly(x,t)| <n forx €02, t>r1.
In (5.2.32) we now put
t=1(n), c¢o=sup|w(x,1)l.
XESR
Then
m(x,7) w(x,t) >0 for x € 2 by (5.2.34),
m(x,t) £ w(x,t) >0 forx € 02, t > 1,
by (5.2.35), (5.2.37), and (5.2.27);
d
A—g (m(x,t) £w(x,t)) <0 forx € 2,t >,

by (5.2.33), (5.2.36), and (5.2.27).

(5.2.36)
(5.2.37)



5.3 The Initial Boundary Value Problem for the Heat Equation 105

It follows from Theorem 5.1.1 (observe that it is irrelevant that our functions are
defined only on £2 x [, 00) instead of §2 x [0, c0), and initial values are given on
£2 x {t}) that

[w(x,t)| <m(x,t) forxe 2, t>r,

K1 K1 Kl -
<n=+—)+co—re W,
K Ko Ko

and this becomes smaller than any given ¢ > 0 if n > 0 from (5.2.36) and (5.2.37)
is sufficiently small and ¢ > 7(n) is sufficiently large. O

5.3 The Initial Boundary Value Problem
for the Heat Equation

In this section, we wish to study the initial boundary value problem for the
inhomogeneous heat equation
u(x,t) — Au(x,t) = p(x,t) forx € 2,t >0,
u(x,t) = g(x,t) forx € df2,t >0, (5.3.1)
u(x,0) = f(x) forx e £2,
with given (continuous and smooth) functions ¢, g, f. We shall need some prepa-
rations.

Lemma 5.3.1. Let 2 be a bounded domain of class C* in RY. Then for every o <
% + 1, T > 0, there exists a constant ¢ = c(«, d, §2) such that for all xy, x € 052,
0 <t <T, letting v denote the exterior normal of 082, we have

0 -
‘au (¥, x0. )| < et | — x| T
Proof.
0 K(x. xo.1) = 1 d - \X—Afo\z _ 1 (x — x0) - vy o \x—‘;o\z.
e T (4 Ovx (4nr)s 2

As we are assuming that the boundary of £2 is a manifold of class C?2, and since
X, X9 € 82, and v, is normal to 952, we have

[(x —x0) - vy| <c1]x— X0 2
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with a constant ¢; depending on the geometry of d§2. Thus

_d_, _bxol
<t | x —xolTe T # (5.3.2)

‘iK(x,xo,t)
IV,

with some constant ¢;. With a parameter § > 0, we now consider the function

V(s) = sPe™ fors > 0. (5.3.3)

Inserting s = %, B = % + 1 — o, we obtain from (5.3.3)

_lx? —d— dyq_
e W <yl —xo| TH I (5.3.4)

with ¢3 depending on f, i.e., on d and «. Inserting (5.3.4) into (5.3.2) yields the
assertion. O

Lemma 5.3.2. Let 2 C R? be a bounded domain of class C* with exterior normal
v, andlety € C°(02 x [0, T]) (T > 0). We put

v(x,t) = —/ / a—K(x,y, T)y(y,t — t)do(y)dr. (5.3.5)
0 Jag vy

We then have

ve C®(2 x[0,T)]),
v(x,0) =0 forallx € 2, (5.3.6)

andforall xo € 02,0 <t < T,

t
lim v(x,t) = y(xo. 1) —/0 /39 gTK(xo,y, Dy(y,t —t)do(y)dr. (5.3.7)
y

X—>X0 2

Here, we require that the convergence of x to Xy takes place in some cone (of angle
smaller than 1 /2) about the normal to the boundary.

Proof. First of all, Lemma 5.3.1, with ¢ = %, implies that the integral in (5.3.5)
indeed exists. The C°-regularity of v with respect to x then follows from the
corresponding regularity of the kernel K by the change of variables 0 = t — 7.
Equation (5.3.6) is obvious as well. It remains to verify the jump relation (5.3.7).
For that purpose, it obviously suffices to investigate

To oK
—/0 /a —(x,y,0)y(y,t —t)do(y)dr (5.3.8)

2N B(x0.8) 3Vy
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for arbitrarily small ty > 0, § > 0. In particular, we may assume that §y and t are
chosen such that for any given ¢ > 0, we have for y € 982, |y — x¢| < 8, and
0<7t<1,

ly(xo,1) —y(y.t —7)| <e.

Thus, we shall have an error of magnitude controlled by ¢ if in place of (5.3.8), we
evaluate the integral

[T S ortandoae (539)
32NB(x.8) IVy
Extracting the factor y(xo, f) it remains to show that
T oK 1
— lim / / —(x,y,0)do(y)dt = = 4+ O(9). (5.3.10)
x=>x0 Jo  JagnBos) IVy 2

Also, we observe that since y is continuous, it suffices to show that (5.3.10) holds
uniformly in x¢ if x approaches 952 in the direction normal to d52. In other words,
letting v(x¢) denote the exterior normal vector of 952 at x,, we may assume

x = xo — pv(xo).

In that case, u?> = |x — x0|2, and since 02 is of class C?, for y € 942,
=3P =1y = ol + 12 4+ 0 (1 = xol’ |x = xol ).

The term O (| y —xo|* |x — x0|) here is a higher-order term that does not influence

the validity of our subsequent limit processes, and so we shall omit it in the sequel
for the sake of simplicity. Likewise, for y € 952,

(x =) vy = (x=x0) vy + (o = ) vy = =+ O (Ixo = yP’),

and the term O(|xo — y|*) may be neglected again.
Thus we approximate

I (x=y)-v, _bol
X, Y, 1) = e &
vy (4rnt)2 2t

by

_ o—y|? 2
1 ( M)e_lmh)l b
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This means that we need to estimate the expression

% 1 o=y _u?
/ / v f e e_lTrdo(y)dr.
4 4
0 JoenB(xo.) 2(4m)2 T2

We introduce polar coordinates with center x, and putr = |x¢ — y|. We then obtain,
again up to a higher-order error term,

4 1 I D L B
uVol(S972) v / v e_W/ e wri2drdr,
2(4m)z Jo T2 t! 0

where S~ is the unit sphere in R?~!

d—2 T -4
uVol(S47%) 0 Le_ﬁ /2;} e—szsd—st dr
0

4t

d 3
42 0 T2
1
sa2
Vol(S972) [*® 1 _ K2 g
=—7 1, 1¢° e 57 2ds do.
22 i 02 0

In this integral we may let u tend to 0 and obtain as limit

Vol(S972) [ 1 00 1
L{,) —le_”/ e 54 2ds do = —. (5.3.11)
22 0 o2 0 2

By our preceding considerations, this implies (5.3.10).
Equation (5.3.11) is shown with the help of the gamma function

0o
I'(x) :/0 e 't*7'dt forx > 0.
We have
I'(x+1)=xI'(x) forallx >0,
and because of I'(1) = 1, then
I'n+1)=n! forneN.

Moreover,

In particular,
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and
o 1 d
wt :/ e dx = Vol(Sd_l)/ e dr = —Vol(S4Hr (= );
R4 0 2 2
hence
d
2n2
Vol(§97") = ——.
r(g)

With these formulae, the integral (5.3.11) becomes

d—1

2z 1 1 1 d—1 1
2 L (Y L dony L
r(Eat \2) 2 )7

O
In an analogous manner, one proves the following lemma:
Lemma 5.3.3. Under the assumptions of Lemma 5.3.2, for

t

w(x,t) 1= / / K(x,y,0)y(y,t —t)do(y)dr (5.3.12)

0 Jae
(x €82,0<t<T) wehave
we C®(2x10,T)),
w(x,0) =0 forx e $2. (5.3.13)

The function w extends continuously to 2 x [0, T, and for xo € 382 we have

y(xo0,1)
2

lim Viw(x,1)-v(xg) =
X—>X0

! oK
+/ / (x0, ¥y, 0)y(y,t —1)do(y)dz, (5.3.14)
o Joo

vy,

with the same cone condition as before.

We now want to try first to find a solution of

Au—%uzo in £2 x (0, 00),

u(x,0) =0 for x € £2,
u(x,t) = g(x,t) forx €df2, t >0, (5.3.15)
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by Lemma 5.3.2.
We try

u(x,t) = —/ / 3—K(x,y,t —1)y(y,7)do(y)dr, (5.3.16)
0 Jag dvy

with a function y(x, 1) yet to be determined. As a consequence of (5.3.7), (5.3.15),
y has to satisfy, for xy € 052,

1 4 0K
(0. 1) = Sy (xont) - / / K ooyt = Dy 1) do(y) dr.
2 0 Jag 0vy
ie.,
! 0K
y(x0.1) = 2g(xo0.1) +2 / / oyt~ oy 0 do()dr. (5:3.17)
0 Joa OVy

This is a fixed-point equation for y, and one may attempt to solve it by iteration;
i.e., for xo € 952,

Yo(xo,1) = 2g(xo0,1),
! 0K

Va0, 1) = 2 (x0.1) + 2 / / oyt = (0 0 do()ae
0 Joa OVy

for n € N. Recursively, we obtain

t n

o) =260 +2 [ [ Y S0t - D doae (5:318)
0 Joe i

with

oK
Si(xo, y,1) = 2a—(xO,y,t),
Vy

! 0K
Sv41(x0, y, 1) = 2/ / Sy(x0,2,t —1)=—(2, ¥, 1) do(z) dt.
o Joo v,

In order to show that this iteration indeed yields a solution, we have to verify that
the series

o0
S(x()v yvt) - ZS\}(XOs yst)

v=1

converges.
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Choosing once more o = % in Lemma 5.3.1, we obtain

- —(d—1)+1
3/4 _yl ( ) 3

[S1(x0, y, )| < ct [x0

Iteratively, we get
|8, (x0, ¥, 8)| < c,t 1t |x0 — y|—(d—1)+g.
We now choose n = max(4,2(d — 1)) so that both exponents are positive. If now

| S (X0, ¥, 1) < Bnt® for some constant §,, and some & > 0,

then
1
|Sim1(x0, ¥, )] < Cﬁoﬁm/ (t — )% 4 dr,
0

where the constant ¢ comes from Lemma 5.3.1 and

(] — 1
By = sup/ 2= Y4 do ().
yean Jag

Furthermore,

3

oa_—3/4 1 '\ a+1/4
/ (t—1)%t"dr ( ) —_—t

where on the right-hand side we have the gamma function introduced above.
Thus

v 3 1
ﬁn(c.lgo)v[a-i-vﬂ l_[ r (Ol + 1 + /’L/4) I (Z)

S , ’Z S
[Sn4v (X0, y,1)] T+ 1+ /4

Since the gamma function grows factorially as a function of its arguments, this
implies that

ZSV(XOs y,t)

v=1

converges absolutely and uniformly on 052 x 982 x [0, T'] forevery T > 0. We thus
have the following result:

Theorem 5.3.1. The initial boundary value problem for the heat equation on a
bounded domain 2 C R? of class C?, namely,

Au(x,t) — %u(x, t)=20 in 2 x (0, 00),

u(x,0)=0 in $2,
u(x,t) = g(x,t) forx €982, t>0,
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with given continuous g, admits a unique solution. That solution can be repre-
sented as

t
u(x,t) = —/O /39 Y(x,y,t —1)g(y,t)do(y)dr, (5.3.19)

where

0K [ 9K -
S(x.y.) =2—(x.y.1) + 2/ / — (X2t —1) ) S y.1)do(z)dr.
3vy 0 IR al)z o

(5.3.20)

Proof. Since the series Y .- | S, converges,

Yo =280 +2 [ 38,600 = 000 dor)ar
v=1

is a solution of (5.3.17). Inserting this into (5.3.16), we obtain (5.3.20). Here, one
should note that

00
— —(d— 1
t 3/4 Iy _ )C| (d—D+3 Z S\}(-x()s ¥, ‘L’),

v=1

and hence also X' (x, y, t) converges absolutely and uniformly on 952 x 952 x [0, T']
for every 7 > 0. Thus, we may differentiate term by term under the integral
and show that u solves the heat equation. The boundary values are assumed by
construction, and it is clear that u vanishes at # = 0. Uniqueness follows from
Theorem 5.1.1. O

Definition 5.3.1. Let £2 C R? be a domain. A function g (x, y, ) that is defined for
X,y € £2,t > 01is called the heat kernel of £2 if:

(1)
d
(AX — 5) q(x,y,t) =0 forx,y e, t>0, (5.3.21)
(i1)
q(x,y,t) =0 forx € a8, (5.3.22)

(iii) and for all continuous f : 2 — R

liII(l)/ q(x,y,t) f(x)dx = f(y) forally e £2. (5.3.23)
—> Q
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Corollary 5.3.1. Any bounded domain §2 C R? of class C? has a heat kernel, and
this heat kernel is of class C' on §2 with respect to the spatial variables y. The heat
kernel is positive in 2, for all t > 0.

Proof. For each y € §2, by Theorem 5.3.1, we solve the boundary value problem
for the heat equation with initial values 0 and

g(x,t) = —K(x,y,1).
The solution is called u(x, y, t), and we put
q(x,y,t):= K(x,y,t) + p(x, y,1). (5.3.24)
Obviously, g(x, y, ) satisfies (i) and (ii), and since
lim p(x, y,1) =0,

and K(x, y,t) satisfies (iii), then so does ¢ (x, y, 7).

Lemma 5.3.3 implies that ¢ can be extended to £2 as a continuously differentiable
function of the spatial variables.

That g(x, y,t) > O forall x,y € §£2,¢t > 0 follows from the strong maximum
principle (Theorem 5.1.3). Namely,

q(x,y,1) =0 forx € 082,
limg(x,y,1) =0 forx,y € Q,x#y,
t—

while (iii) implies
q(x,y,t) >0 if|x —y|andt > O are sufficiently small.
Thus, g > 0 and ¢ # 0, and so, by Theorem 5.1.3,

g >0 in £ x £2 x (0,00). O

Lemma 5.3.4 (Duhamel principle). For all functions u,v on 2 x [0, T] with the
appropriate regularity conditions, we have

T
/ /{v(x,t)(Au(x,T—t)+u,(x,T—r))
0 2
—u(x,T—Z)(Av(x,t)—v,(x,t))}dxdt
T 9 9
-[ [ {B—f)‘(y, T =000 = S 0wy, T —r)} do(y) di

+/ {u(x,0)v(x, T) —u(x, T)v(x,0)} dx. (5.3.25)
2
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Proof. Same as the proof of (5.1.12) |
Corollary 5.3.2. Ifthe heat kernel q(z,w, T) of 2 is of class C" on §2 with respect
to the spatial variables, then it is symmetric with respect to z and w, i.e.,

q(z,w,T) =qw,z,T) forallz,we 2, T > 0. (5.3.26)

Proof. In (5.3.25), we put u(x,t) = q(x,z,t), v(x,t) = q(x,w,t). The double
integrals vanish by properties (i) and (ii) of Definition 5.3.1. Property (iii) of
Definition 5.3.1 then yields v(z, T) = u(w,T), which is the asserted symmetry.

O

Theorem 5.3.2. Let 2 C RY be a bounded domain of class C* with heat kernel
q(x,y,t) according to Corollary 5.3.1, and let

@ e CUR2 x[0,00), geC’0R2x(0,00), feC" Q).
Then the initial boundary value problem
u(x,t) — Au(x,t) = p(x,t) forx € 2,t>0,

u(x,t) = g(x,t) forx €982,t >0,
u(x,0) = f(x) forx e $2, (5.3.27)

admits a unique solution that is continuous on 2 x [0,00) \ 92 x {0} and is
represented by the formula

u(x,t)=/0 /Qq(x,y,t—f)fp(y,r)dydf
4 / g(x.y.0) F()dy
2

t
_// Y eyt = Dg(do(y)de.  (5328)
0 a2

v,

Proof. Uniqueness follows from the maximum principle. We split the existence
problem into two subproblems.
We solve

vi(x,t) — Av(x,t) =0 forx € 2,¢t > 0,
v(x,t) = g(x,t) forx € 0§2,¢t > 0, (5.3.29)
v(x,0) = f(x) forx e 2,
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i.e., the homogeneous equation with the prescribed initial and boundary condi-
tions, and
we(x,t) — Aw(x,t) = o(x,t) forx € 2,t >0,
w(x,t) =0 forx € 082,t > 0, (5.3.30)
w(x,0) =0 for x € £2,

i.e., the inhomogeneous equation with vanishing initial and boundary values.
The solution of (5.3.27) is then given by

u=v-+w.

We first address (5.3.29), and we claim that the solution v can be represented as

! 0
q
vt = [ atenfouy= [ [ - og0.0dote
2 0 Jop OVy
(5.3.31)
The facts that v solves the heat equation and the initial condition v(x,0) =
f(x) follow from the corresponding properties of g. Moreover, ¢(x,y,t) =

K(x,y,t) + pn(x,y,t) with u(x, y,t) coming from the proof of Corollary 5.3.1.
By Theorem 5.3.1, this  can be represented as

t
w(x,y,t) = / / Y(x,z,t —1)K(z, y,7)do(z) dr, (5.3.32)
0 Joo

and by Lemma 5.3.3, we have for y € 952,

0 2(x,p,1)
_M(_x7y,t) — —y

! oK
- + / / Y(x,z,t —1)—(z. y,1)do(z) dt.
oy 2 0o Jae vy

(5.3.33)
This means that the second integral on the right-hand side of (5.3.31) is precisely of
the type (5.3.19), and thus, by the considerations of Theorem 5.3.1, v indeed satisfies
the boundary condition v(x,t) = g(x,t) for x € 052, because the first integral of

(5.3.31) vanishes on the boundary.
We now turn to (5.3.30). For every t > 0, we let z(x, ¢, t) be the solution of

z(x,t;7) — Az(x,t, 1) =0 forx € 2,t > 7,
z2(x,t;1) =0 forx € 02,t >, (5.3.34)

z2(x,7;1) = p(x,7) forx € £2.
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This is a special case of (5.3.29), which we already know how to solve, except that
the initial conditions are not prescribed at + = 0, but at # = t. This case, however,
is trivially reduced to the case of initial conditions at # = 0 by replacing ¢ by t — t,
i.e., considering ¢ (x,t; ) = z(x,t 4 ;7). Thus, (5.3.34) can be solved.

We then put

t
wi(x,t) =/ 7(x, t; v)dr. (5.3.35)
0

Then

t

t
we(x,t) = / z(x,t;r)de + z(x, t5t) = / Az(x, t;t)dt 4+ @(x, 1)
0 0
= Aw(x.1) + ¢(x.1)
and

w(x,t) =0 forx €0d82,t >0,
w(x,0) =0 forx € £2.

Thus, w is a solution of (5.3.30) as required, and the proof is complete, since the
representation formula (5.3.28) follows from the one for v and the one for w that, by
(5.3.35), comes from integrating the one for z. The latter in turn solves (5.3.34) and
so, by what has been proved already, is given by

Ax.t57) = / q(x,y.t =)y, r)dy.
Q2
Thus, inserting this into (5.3.35), we obtain

w(x,t) = /0 /Qq(x, v, t —1)p(y, t)dydr. (5.3.36)

This completes the proof. O

We briefly interrupt our discussion of the solution of the heat equation and record
the following simple result on the heat kernel ¢ for subsequent use:

/ g(x,y.1)dy <1 (5.3.37)
2
for all ¢+ > 0. To start, we have

lim | g(x,y,t)dy = 1. (5.3.38)
=0 Jo
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This follows from (5.3.23) with f = 1 and the proof of Corollary 5.3.1 which
enables to replace the integration w.r.t. x in (5.3.23) by the one w.r.t. y in (5.3.38).
Next, we observe that

9
—q(x,y,t) <0 (5.3.39)
avy

because ¢ is nonnegative in {2 and vanishes on the boundary 952 (see (5.3.22)
and Corollary 5.3.1). We then note that the solution of Theorem 5.3.2 for ¢ =
I, g(x,t) = t,and f(x) = 0is given by u(x,t) = t. In the representation
formula (5.3.28), using (5.3.39), this yields

t
/ / q(x,y,t —t)dydr <t¢, (5.3.40)
0 Je

from which (5.3.37) is derived upon a little reflection.
We now resume the discussion of the solution established in Theorem 5.3.2. We
did not claim continuity of our solution at the corner d§2 x {0}, and in general, we
cannot expect continuity there unless we assume a matching condition between the
initial and the boundary values. We do have, however,

Theorem 5.3.3. The solution of Theorem 5.3.2 is continuous on all of 2 x [0, 00)
when we have the compatibility condition

g(x,0) = f(x) forx e ds2. (5.3.41)

Proof. While the continuity at the corner 052 x {0} could also be established from
a refinement of our previous considerations, we provide here some independent
and simpler reasoning. By the general superposition argument that we have already
employed a few times (in particular in the proof of Theorem 5.3.2), it suffices to
establish continuity for a solution of

vi(x,t) — Av(x,t) =0 forx € 2,¢t >0,
v(x,t) = g(x,t) forx € 082,t >0,
v(x,0) =0 forx € £2, (5.3.42)

with a continuous g satisfying
g(x,0) =0 forx € 952, (5.3.43)

and for a solution of

wi(x,t) — Aw(x,t) =0 forx e 2,¢t >0,
w(x,t) =0 forx € 082, t > 0,
w(x,0) = f(x) forx €S2, (5.3.44)
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with a continuous f satisfying
f(x) =0 forx e df2. (5.3.45)

(We leave it to the reader to check the case of a solution of the inhomogeneous
equation u; (x, 1) — Au(x,t) = ¢(x,t) with vanishing initial and boundary values.)
To deal with the first case, we consider, for T > 0,

Vi(x,t) — Av(x,t) =0 forx € 2,¢t >0,
v(x,t) =0 forx €02,0<t <7,
v(x,t) =g(x,t —1) forx € 082, > 1,
V(x,0) =0 for x € £2. (5.3.46)

Since, by (5.3.43), the boundary values are continuous at # = t, by the boundary
continuity result of Theorem 5.3.2, ¥(x, t) is continuous for x € 952. Also, by
uniqueness, v(x,t) = 0 for 0 < ¢ < 7, because both the boundary and initial values
vanish there. Therefore, again by uniqueness, v(x, t) = v(x, t+1), and we conclude
the continuity of v(x, 0) for x € 952.

We can now turn to the second case. We consider some bounded C2 domain £2
with 2 C £. We put f*(x) := max(f(x),0) for x € £ and f(x) = 0 for
X € S~2\.§2 Then, because of (5.3.45), £ is continuous on £2. We then solve

Wi (x, 1) — Aw(x,t) =0 forx € 2,1 >0,
Ww(x,1) =0 forx € 92, ¢t > 0,
w(x,0) = fH(x) forx e £2. (5.3.47)

By the continuity result of Theorem 5.3.2, #(x, 0) is continuous for x € £2 and
therefore in particular for x € 3£2. Since fT(x) = 0 for x € 382, w(x,t) — 0
for x € 052 and ¢+ — 0. Since the initial values of w are nonnegative, w(x,?) > 0
forall x € 2 and > 0 by the maximum principle (Theorem 5.1.1). In particular,
w(x,t) > w(x,t) for x € 052 since w(x,t) = 0 there. Since also w(x,0) =
f(x) > f(x) = w(x,0), the maximum principle implies w(x, ) > w(x,t) for
all x € 2.t > 0. Altogether, w(x,0) < 0 for x € 3£2. Doing the same reasoning
with f~(x) := min( f(x),0), we conclude that also w(x,0) > 0 for x € 952, i.e.,
altogether, w(x,0) = 0 for x € 052. This completes the proof. O

Remark. Theorem 5.3.2 does not claim that u is twice differentiable with respect
to x, and in fact, this need not be true for a ¢ that is merely continuous. However,
one may still justify the equation

u(x,t) — Au(x,t) = (x,1).
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We shall return to the analogous issue in the elliptic case in Sects. 12.1 and 13.1. In
Sect. 13.1, we shall verify that u is twice continuously differentiable with respect to
x if we assume that ¢ is Holder continuous.

Here, we shall now concentrate on the case ¢ = 0 and address the regularity issue
both in the interior of £2 and at its boundary. We recall the representation formula
(5.1.14) for a solution of the heat equation on 2,

u(x,t)zng(x,y,t)u(y,O)dy

' du(y, 1)
+/O /3:2 (K(x,y,t—r) %

—a—K(x, v, t —u(y, r)) do(y)dr. (5.3.48)
v,

We put K(x, y,s) = 0 for s < 0 and may then integrate the second integral from 0
to oo instead of from 0 to . Then K(x, y, s) is of class C* for x, y € RY s € R,
exceptat x = y, s = 0. We thus have the following theorem:

Theorem 5.3.4. Any solution u(x,t) of the heat equation in a domain 2 is of class
C > with respectto x € 2,t > 0.

Proof. Since we do not know whether the normal derlvatlve % exists on 02 and
is continuous there, we cannot apply (5.3.48) directly. Instead for given x € £,

we consider some ball B(x, r) contained in £2. We then apply (5.3.48) on E(x, r)
in place of £2. Since dB(x,r) in §2 is contained in £2, and u as a solution of the
heat equation is of class C! there, the normal derivative 2 a” on dB(x,r) causes no
problem, and the assertion is obtained. O

In particular, the heat kernel ¢(x, y, t) of a bounded C?-domain £2 is of class C*
with respect to x, y € £2, ¢ > 0. This also follows directly from (5.3.24), (5.3.32),
and (5.3.20) and the regularity properties of X'(x, y, t) established in Theorem 5.3.1.
From these solutions it also follows that aaT‘i(x, y,t) for y € 082 is of class C > with
respect to x € £2,¢ > 0. Thus, one can also use the representation formula (5.3.28)
for deriving regularity properties. Putting g(x, y,s) = 0 for s < 0, we may again
extend the second integral in (5.3.28) from 0 to oo, and we then obtain by integrating
by parts, assuming that the boundary values are differentiable with respect to ¢,

) = / a0 £y

/ / U (x, vt )2 ) do(y) e
92

v,

+ lim —q(x, v, t —1)g(y,1)do(y). (5.3.49)
7—0 AR a\)y
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Since g(x,y,t) = Oforx € 02,y € £,t > 0, also _;qu (x,y,t —1) = 0 for
y
X,y €082,t <t,and

d
Eq(x,y,t) =0 forxedf2, yef2,t>0 (5.3.50)
(passing to the limit here is again justified by (5.3.32)). Since the second integral in

(5.3.49) has boundary values % g(x, 1), we thus have the following result:

Lemma 5.3.5. Let u be a solution of the heat equation on the bounded C*-domain
§2 with continuous boundary values g(x, t) that are differentiable with respect to t.
Then u is also differentiable with respect to t, for x € 952, t > 0, and we have

%u(x,t) = %g(x,t) forx € 982, t > 0. (5.3.51)

We are now in position to establish the connection between the heat and Laplace
equation rigorously that we had arrived at from heuristic considerations in Sect. 5.2.

Theorem 5.3.5. Let 2 C R? be a bounded domain of class C?, and let f €
C%8), g € C%08). Let u be the solution of Theorem 5.3.2 of the initial boundary
value problem:

Au(x,t) —u(x,t) =0 forx e 82, t>0,
u(x,0) = f(x) forx €S2, (5.3.52)
u(x,t) = g(x) forxeadf2, t>0.

Then u converges for t — oo uniformly on 2 towards a solution of the Dirichlet
problem for the Laplace equation

Au(x) =0 forx € £2,
u(x) = g(x) forx € d82. (5.3.53)

Proof. We write u(x,t) = u'(x,t) + u?(x,t), where u' and u? both solve the heat
equation, and u! has the correct initial values, i.e.,

u'(x,0) = f(x) forx e 2,
while 2 has the correct boundary values, i.e.,
W(x,1) = g(x) forx €982, t >0,
as well as
u'(x,t) =0 forx €dfR, t >0,
W(x,00) =0 forx e £2.
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By Lemma 5.2.3, we have
lim ul(x,t) =0.
—>00

Thus, the initial values f are irrelevant, and we may assume without loss of
generality that = 0, i.e., u = u’.

One easily sees that g(x, y,t) > 0 for x,y € £2, because ¢(x, y,t) = 0 for all
x € 052, and by (iii) of Definition 5.3.1, ¢(x, y,t) > O for x, y € £2 and sufficiently
small # > 0. Since g solves the heat equation, by the strong maximum principle, g
then is indeed positive in the interior of §2 for all # > 0 (see Corollary 5.3.1).

Therefore, we always have
a
A (x,y,1) <0, (5.3.54)
v,

Since g(x, y, t) solves the heat equation with vanishing boundary values, Lemma
5.2.3 also implies

lim g(x, y,t) = 0 uniformly in £2 x 2 (5.3.55)
—>00

(utilizing the symmetry ¢(x, y,t) = q(y, x,t) from Corollary 5.3.1). We then have
fort, > 11,

lu(x, 1) —u(x, )| =

/2/ a—q(x,z,t)g(z)a’o(z)dt
n Jae v,

%) aq d
< ——(x,z,t dr
_n;gXIgI/n /m( s )) o

5]
:—max|g|/ /Qqu(x,y,t)dydt
4l

[5)
= —max|g|/ / q:(x,y,t)dydt
1 2

- —max|g|[9{q<x,y,zz)—q(x,y,n)}dy

— 0 forty,t, — oo by (5.3.55).

Thus u(x, t) converges for 1 — oo uniformly towards some limit function u(x) that
then also satisfies the boundary condition

u(x) = g(x) forx € 0£2.
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Theorem 5.3.2 also implies
u(x) = —/ / —(x,z,t)g(2)do(z)dt.
o Jog 0v;

We now consider the derivatives %u(x, t) =: v(x,t). Then v(x,¢) is a solution of
the heat equation itself, namely, with boundary values v(x,?) = 0 for x € 952 by
Lemma 5.3.5. By Lemma 5.2.3, v then converges uniformly to 0 on £2 for t — oc.
Therefore, Au(x,t) converges uniformly to 0 in Q2 for t — oo, too. Thus, we
must have

Au(x) = 0. 0

As a consequence of Theorem 5.3.5, we obtain a new proof for the solvability
of the Dirichlet problem for the Laplace equation on bounded domains of class C2,
i.e., a special case of Theorem 4.2.2 (together with Lemma 4.4.1):

Corollary 5.3.3. Let 2 C R? be a bounded domain of class C?, and let g : 92 —
R be continuous. Then the Dirichlet problem

Au(x) =0 forx e §2, (5.3.56)
u(x) = g(x) forx €052, (5.3.57)
admits a solution that is unique by the maximum principle.

References for this section are Chavel [4] and the sources given there.

5.4 Discrete Methods

Both for the heuristics and for numerical purposes, it can be useful to discretize the
heat equation. For that, we shall proceed as in Sect. 4.1 and also keep the notation of
that section. In addition to the spatial variables, we also need to discretize the time
variable ¢; the corresponding step size will be denoted by k. It will turn out to be
best to choose k different from the spatial grid size .

The discretization of the heat equation

u(x,t) = Au(x,t) (5.4.1)
is now straightforward:
% (uh'k(x,t + k) —u*(x, 1))
= A (x,1)
12
h i=1

=2 () (L x| (542)

{uh’k (' xT +h,xi+1,...,xd,t)
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Thus, for discretizing the time derivative, we have selected a forward difference
quotient. In order to simplify the notation, we shall mostly write u in place of uX.
Choosing

h? =2dk, (5.4.3)

the term u(x, t) drops out, and (5.4.2) becomes

d

u(x,t +k)= %Z(u(xl,...,x" —l—h,...,xd,t)
i=1
+u(x',ox = h, x40). (5.4.4)

This means that u(x,t + k) is the arithmetic mean of the values of u at the 2d
spatial neighbors of (x,f). From this observation, one sees that if the process
stabilizes as time grows, one obtains a solution of the discretized Laplace equation
asymptotically as in the continuous case.

It is possible to prove convergence results as in Sect. 4.1. Here, however, we shall
not carry this out. We wish to remark, however, that the process can become unstable
if h?> < 2dk. The reader may try to find some examples. This means that if one
wishes / to be small so as to guarantee accuracy of the approximation with respect
to the spatial variables, then k has to be extremely small to guarantee stability of the
scheme. This makes the scheme impractical for numerical use.

The mean value property of (5.4.4) also suggests the following semidiscrete
approximation of the heat equation: Let £2 C R? be a bounded domain. For & > 0,
we put 2, := {x € 2 : dist(x, 0£2) > e}. Let a continuous function g : 32 — R
be given, with a continuous extension to £2 \ £2,, again denoted by g. Finally, let
initial values f : £2 — R be given. We put iteratively

u(x,0) = f(x) for x € £2,
i(x,0) =0 forx e RY \ 2,
u(x,nk) = i / u(y,(n—1k)dy forx e £2,neN,
Wa&” JB(x.e)
and
k) fi 2.,
i(x.nk) = § Lo nk) - forx e neN.
g(x) for x € RY \ 2.,

Thus, in the nth step, the value of the function at x € 2, is obtained as the
mean of the values of the preceding step of the ball B(x,¢). A solution that is
time independent then satisfies a mean value property and thus is harmonic in §2,
according to the remark after Corollary 2.2.5.
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Summary

In this chapter we have investigated the heat equation on a domain 2 € R?:
d
Eu(x,t) — Au(x,t) =0 forx e £2,t > 0.
We prescribed initial values
u(x,0) = f(x) forx e £2,
and, in the case that §2 has a boundary 952, also boundary values
u(y,t) = g(y,t) fory e adf2,t > 0.

In particular, we studied the Euclidean fundamental solution

1 =P

K(x,y,t) = —e @
(4mt)>

and we obtained the solution of the initial value problem on R by convolution:

w(eut) = /R KC .0 f(0)dy.

If §2 is a bounded domain of class C2, we established the existence of the heat
kernel ¢(x, y, t), and we solved the initial boundary value problem by the formula

! 0
u(x,t) = /Qq(x,y,t)f(y)dy —/0 /a.rz a—i(x,z,t —1)g(z,1)do(z)dr.

In particular, u(x,t) is of class C*® for x € £, ¢t > 0 because of the
corresponding regularity properties of the kernel ¢(x, y,¢). The solutions satisfy
a maximum principle saying that a maximum or minimum can be assumed only on
£2 x {0} or on 982 x [0, co) unless the solution is constant. Consequently, solutions
are unique. If the boundary values g(y) do not depend on ¢, then u(x, t) converges
fort — oo towards a solution of the Dirichlet problem for the Laplace equation

Au(x) =0 in £2,
u(x) = g(x) forx € ds2.

This yields a new existence proof for that problem, although requiring stronger
assumptions for the domain £2 when compared with the existence proof of Chap. 4.
The present proof, on the other hand, is more constructive in the sense of giving an
explicit prescription for how to reach a harmonic state from some given state f.
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Exercises

5.1. Let 2 C R? be bounded, 27 := £ x (0, 7). Let

d 92 a 9
L= U(x, 1) ——— b'(x,t)—
Z a”(x )3x’ ox/ +IZ=; x )ax’

ij=1

be elliptic for all (x,t) € 27, and suppose
u, < Lu,

where u € C°(£27) is twice continuously differentiable with respect to x € £ and
once with respectto ¢ € (0, 7).
Show that
supu = sup u.
Qr a* Q7

5.2. Using the heat kernel A(x,y,7,0) = K(x,y,t), derive a representation
formula for solutions of the heat equation on 27 with a bounded 2 C R and
T < oo.

5.3. Show that for K as in Exercise 5.2,

K(x,0,s +1t) = / K(x,y,t)K(y,0,s)dy
R4

(a) If s, >0
b) fo<t <—s

5.4. Let X be the grid consisting of the points (x,?) with x = nh, t = mk,
n,m € Z, m > 0, and let v be the solution of the discrete heat equation

vix,t +k)—v(x,t) 3 v(x + h,t) —2v(x,t) +v(x — h,t) _

k h? 0

with v(x,0) = f(x) € C°(R).

k 1
Show that for 2=

v(nh,mk) = 27" 3" (’7) F((n=m + 2j)h).

j=0
Conclude from this that

sup [v| < sup|f].
) R
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5.5. Use the method of Sect.5.3 to obtain a solution of the Poisson equation on
2 c R?, a bounded domain of class C2, continuous boundary values g : 02 — R,
and continuous right-hand side ¢ : 2 — R, i.e., of

Au(x) = ¢(x) forx € £2,
u(x) = g(x) forx e 952.

(For the regularity issue, we need to refer to Sect. 13.1.)



Chapter 6
Reaction-Diffusion Equations and Systems

6.1 Reaction-Diffusion Equations

In this section, we wish to study the initial boundary value problem for nonlinear
parabolic equations of the form
u(x,t) — Au(x,t) = F(x,t,u) for x € £2,t>0,

u(x,t) = g(x,t) for x €082,t >0,

u(x,0) = f(x) for x € 2, (6.1.1)
with given (continuous and smooth) functions g, f and a Lipschitz continuous
function F (in fact, Lipschitz continuity is only needed w.r.t. to u; for x and ¢,
continuity suffices). The nonlinearity of this equation comes from the u-dependence

of F. While we may consider (6.1.1) as a heat equation with a nonlinear term on the
right-hand side, i.e., as a generalization of

us(x,t) — Au(x,t) =0 forx e £2,t>0 (6.1.2)

(with the same boundary and initial values), in the case where F does not depend
on the spatial variable x, i.e., F = F(t,u), we may alternatively view (6.1.1) as a
generalization of the ODE:

u:(t) = F(t,u) fort >0,
M(O) = Ugp.

(6.1.3)

For such equations, we have, for the case of a Lipschitz continuous F, a local
existence theorem, the Picard—Lindeldf theorem. This says that for given initial
value ug, we may find some 7, > 0 with the property that a unique solution exists
for 0 < t < typ. When F is bounded, solutions exist for all #, as follows from

J. Jost, Partial Differential Equations, Graduate Texts in Mathematics 214, 127
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an iterated application of the Picard—Lindelof theorem. When F is unbounded,
however, solutions may become infinite in finite time; a standard example is

u (1) = u?(t) (6.1.4)

with positive initial value . The solution is
1 -1
u(t) = (— — t) (6.1.5)
U

which for positive uy becomes infinite in finite time, at t = ulo

We shall see in this section that this qualitative type of behavior, in particular
the local (in time) existence result, carries over to the reaction—diffusion equa-
tion (6.1.1). In fact, the local existence can be shown like the Picard—Lindel6f
theorem by an application of the Banach fixed-point theorem; here, of course, we
need to utilize also the results for the heat equation (6.1.2) established in Sect.5.3.
We shall thus start by establishing the local existence result:

Theorem 6.1.1. Let 2 C RY be a bounded domain of class C?, and let

geC’0R x[0,1]), feCY%R),
with g(x,0) = f(x) forx €082,

and let
F € C°(£2 x [0,1)] x R)
be locally bounded, i.e., given > 0 and f € C°(R2), there exists M = M (1) with
|F(x,t,v(x))| <M forx e 2,t €[0,1)], [v(x) — f(x)| <n. (6.1.6)
and locally Lipschitz continuous w.r.t. u, i.e., there exists a constant L = L(n) with
|F(x.t,u1(x)) = F(x, 1, uz(x))| < Llui (x) — uz(x)]
forx € 2,1 €[0,1], us — f”CO(Q)s [z — f”cO(Q) <. (6.1.7)

(Of course, (6.1.6) follows from (6.1.7), but it is convenient to list it separately.)
Then there exists some t; < to for which the initial boundary value problem

u(x,t) — Au(x,t) = F(x,t,u) forx € 2,0<t <t
u(x,t) = g(x,t) forx €02,0<t <1,
u(x,0) = f(x) forx € 82, (6.1.8)

admits a unique solution that is continuous on 2 x [0, 1,].
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Proof. Let q(x,y,t) be the heat kernel of §2 of Corollary 5.3.1. According to

(5.3.28), a solution then needs to satisfy
t
u(x,t) = / / qx,y,t —t)F(y,t,u(y,t))dydr
0o Jo

+[ q(x,y,t) f(y)dy
2

t
d
- / / (v, .1~ Dg (v, Do ()T
0 Jop OVy

A solution of (6.1.9) then is a fixed point of
t
D:vi> / / qx,y,t —t)F(y,t,v(y,7))dydr
0o Je
+ [ atrn s
t aq
- . (.1 = 0)g(y. D)do(y)de
0 Jog 0Vy

which maps C°(£2 x [0, t0]) to itself. We consider the set

A={eC’2x[0,1]): sup  |v(x, 1) = f(x)] <n}

X€R,0<t<n

Here, we choose #; > 0 so small that

nM <

N3

and
nlL < 1.

Forv e A

|2M)(x.1) = f(x)] =

+ ‘/ q(x,y,t) f(y)dy
2

! 0
[ [ 3= 080 0doc - £x)
0 Jog OVy

<M Hcpg(t),

/ / q(x, yvt _T)F(yvts V(y,‘lf))dy dr
0 J2

(6.1.9)

(6.1.10)

6.1.11)

6.1.12)

(6.1.13)

(6.1.14)
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where we have used (5.3.40) and czg(t) controls the difference of the solution
up(x,t) at time ¢ of the heat equation with initial values f and boundary values
g from its initial values, i.e., sup g |uo(x,t) — f(x)|. That latter quantity can be
made arbitrarily small, for example, smaller than g by choosing ¢ sufficiently small,
by continuity of the solution of the heat equation (see Theorem 5.3.3). Together with
(6.1.12), we then have, by choosing #; sufficiently small,

@MW) (x.1) = f(x)] <. (6.1.15)

that is, @(v) € A. Thus, @ maps the set A4 to itself.
We shall now show that @ is a contraction on A: for v,w € A, using (5.3.40)
again, and our Lipschitz condition (6.1.7),

sup  [P(V)(x,1) = P(w)(x.1)]

X€R.0<t<1
t
= s [ [ atwrr- 0@
x€R.0<t<n 1V0 J 2
—F(y.t,w(y,7)))dy dr|
<t L sup |v(x,t) —w(x,1)], (6.1.16)
X€R.0<t<1

with ;L < 1 by (6.1.13). Thus, @ is a contraction on A4, and the Banach fixed-point
theorem (see Theorem A.1 of the appendix) yields the existence of a unique fixed
point in A that then is a solution of our problem (6.1.8). We still need to exclude
that there exists a solution outside A, but this is simple as the next lemma shows. O

Lemma 6.1.1. Ler u;(x,1), ur(x,1) € C°(2 x [0, T)) be solutions of (6.1.8) with
u;(x,1) = g(x,t) forx € 02,0 <t < T, |lu;(x,0) — f(x)| < 1 forx € £,
i = 1,2. Then there exists a constant K = K(n) with

sup |ug(x, 1) — uz(x, 1) < e sup |u1(x,0) —us(x,0)| for0 <t <T. (6.1.17)
xeR xeR

Proof. By the representation formula (5.3.28),
) = us(e.0) = [ g0 30020 ~ (.00
2

t
+/ / q(x, y,t =) (F(y, 7, u1(y, 7))
0o Je
— F(y,t,uz(y,7)))dydr (6.1.18)
Then, as long as sup, |u; (x,?) — f(x)| < n, we have the bound from (6.1.7):

|F(x,t,u(x,t)) — F(x,t,uz(x,t))| < Lluy(x,t) — ua(x,1)|. (6.1.19)
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Using (5.3.37) and (6.1.19) in (6.1.18), we obtain

sup |ui(x, 1) —uz(x, 7)| < sup |ui(x,0) — uz(x, 0)]
XEN XESR

t
+L/ sup |u; (x, 7) —up(x, )|de (6.1.20)
0 xe@

which implies the claim by the following general calculus inequality. O

Lemma 6.1.2. Let the integrable function ¢ : [0, T] — R satisfy

t
80 =90+ [ gt 6.121)
0
forall0 <t <T and some constant c. Then for0 <t <T

#(t) < e“9p(0). (6.1.22)

Proof. From (6.1.21)

% (e_” /Ot ¢(r)dt) <e “¢(0);

hence

—ct

—ct ' l—e
e $(r)dr < #(0),
0 c

from which, with (6.1.21), the desired inequality (6.1.22) follows. O

We have the following important consequence of Theorem 6.1.1, a global existence
theorem:

Corollary 6.1.1. Under the assumptions of Theorem 6.1.1, suppose that the solu-
tion u(x,t) of (6.1.8) satisfies the a priori bound

sup |u(x,7)| < K (6.1.23)

xeR,0<t<t

for all times t for which it exists, with some fixed constant K. Then the solution
u(x, t) exists for all times 0 < t < oo.

Proof. Suppose the solution exists for 0 < ¢ < 7. Then we apply Theorem 6.1.1 at
time 7 instead of 0, with initial values u(x, T') in place of the original initial values
u(x, 0) and conclude that the solution continues to exist on some interval [0, T + #;)
for some 7y > 0 that only depends on K. We can therefore iterate the procedure to
obtain a solution for all time. O
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In order to understand the qualitative behavior of solutions of reaction—diffusion
equations

u(x,t) — Au(x,t) = F(t,u) on 27, (6.1.24)

it is useful to compare them with solutions of the pure reaction equation
vi(x,t) = F(t,v), (6.1.25)

which, when the initial values
v(x,0) = v (6.1.26)

do not depend on x, likewise is independent of the spatial variable x. It therefore
satisfies the homogeneous Neumann boundary condition

d

o, (6.1.27)

av
where v, as always, is the exterior normal of the domain £2. Therefore, comparison

is easiest when we also assume that u satisfies such a Neumann condition

% =0 onds2, (6.1.28)
ov

instead of the Dirichlet condition of (6.1.1). We therefore investigate that situation
now, even though in Chap. 5 we have not derived existence theorems for parabolic
equations with Neumann boundary conditions. For such results, we refer to [9].
We have the following general comparison result:

Lemma 6.1.3. Let u,v be of class C> w.rit. x € 2, of class C' w.r.t. t € [0, T], and

satisfy
u(x,t) — Au(x,t) — F(x,t,u) > v(x,t) — Av(x,t) — F(x,t,v)
forx e 2,0<t <T,
du(x,t) - av(x,1)
v T v
u(