

آشنايِى با روشها و الكَوريتم هاى حل عددى

wjo

منابع

نيكوكار، م. 1 1 1 أ محاسبات عددى، انتشارات گُسترش علوم بايه.

Salgado, A.J. and Wise, S.M., 2023. Classical Numerical Analysis: A Comprehensive Course. Cambridge University Press.
Burden, R. 2016. Numerical Analysis, 10th Edition, Cengage Learning, Boston, MA, USA.

فصل اول: خطاها

 The

() شناخت منابع خطاو تشْخيص آنها در هر مسئله
 ب) شناخت انواع خطاها و و ابطه آنهيا با دقت يكى تقريب
 ه) شناخت روش هالى محاسبه پايدار و نايايدار 9 ${ }^{\text {4 محاسبه مقدالر تقريبى فرمول ها و توابع. }}$

ب) خطاى نمايش اعداد (خطالي تَرد كردن)

متناهم از ارقام بسط يكى عدد بـبـب اين خطا مى شُود.

ت) خطاى عمليات حسابى حاصل بعضى اعمال بر دو عامل عددى دارارى تعداد نامتتناهم رقم الست و انتخاب تعدادى متناهى از اين الرقام سبب اين خطا مى شود.
ث) خطاى روش

روش هالى عددى عموما تكرإى هستند و تقر يبى لز جواب دقيق را به دست مى دهند. دقت اين تقريب به نوع روش و ور رحله توقف آن بستّالى دارد.

إيَّر a تقريبى

$$
a \simeq A
$$

|- فرض كنيد

$$
e\left(a_{n}\right)=\left|-\frac{n+1}{n}\right|=\frac{1}{n}
$$

$$
\frac{1}{n}<0 / 001 \quad \text { الست قرا, }
$$

كه از آن نتيجه مى شود n>1000 اولين n كم مر نامساوى الخيرصدق مى كند

$$
\mathbf{a}_{\mathbf{n}}=\frac{100 r}{1001}=1 / 000999 \quad \text { كة به 1/ز آى }
$$

الما هميششه وضع به گّونه الى نيست كه عدد 1, A داشثته باششيه. معمولا A،مجهول است و يا اعشار,

$$
\sqrt{r}=1, f+f r, r \Delta s r r \ldots
$$

 و دقيقترى از آن است. حال فرض كنيد كه حدود
 مدرس: دكا
ان

$$
\text { shatan } A
$$

در اكثر روش هالى عددى حدود جواب ، يعنى كران بالا و بايينى لرالى جواب، قابل محاسبه است.

$$
\begin{aligned}
& \mathrm{e}(1,+1)=0 \text { ooftitagr... }
\end{aligned}
$$

خطاى مطلت حدي يك عدد تُريبي a عددى است كه از خطاى هطلن آن كوجكتر نباشد و آن را با $e_{\text {نشان میدهيم، بنابرإين }}$

$$
e(a) \leq e_{a}
$$

توجه :

خطاى هـالت حiى را به دست أوريد.

$$
A=\frac{r}{r}, \quad a=0,9 V \quad, e(a)=\left|\frac{r}{r}-\frac{q V}{100}\right|=\frac{1}{r 00} \quad, e_{a}=0,0 \% \quad|\quad| \quad \text { الe }
$$

$$
\begin{aligned}
& \left.A=\frac{r}{r} . \quad a=0,99 \quad \epsilon(a)=\left|\frac{r}{r}-\frac{99}{100}\right|=\frac{r}{r 00}, \quad e_{\mathrm{a}}=0,0\right) \quad \text { (ب } \\
& \text { a=0, } 99
\end{aligned}
$$

11 توجه : هرگاه
$=$
$5 \rightarrow+A_{0}=x^{2}$

$$
|A-a| \leq e_{a}
$$

$$
a-e_{a} \leq A \leq a+e_{a}
$$

بنا بر قرارداد، نامسووى) اخير رأ هنحصراً به صورت زير مىنويسيم :

$$
A=a \pm e_{a}
$$

ل كرده اسدت. دقت كدام ماشين نويس بيششتر بوده الدت؟
 باشد تقريب بهتر (دقيقتر) است. هركاه در اندازءگيرى دو طول برحسب سانتيستر داثنته باشيم :

敦 $=r r \Delta, \wedge \pm 0,1$
(دوم است زيرا در دحاسبه $L_{r}=r, r \pm 0,1$
 كميت است.

$$
\delta(\mathbf{a})=\frac{|\mathbf{A}-\mathbf{a}|}{\mathbf{A}}
$$

همانطور كه ديده مى شود ، A كه معمولامقدال آن معلوم نيست، همه در صورت و وهم در مخرج كسر موجود است، لذا مي توان يكى كرلن بالا براى آن به دست آورد.

$$
\pi=r, 1 r(r D), e=r, r,(r D), \frac{0}{r}=1, r,<(r D)
$$

$\pi=3.1415926535897932384626433 \ldots$
$e=2.718281828459045235360287471 .$.
$\frac{5}{3}=1.6666666666 \ldots$
e is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler. Alternatively, e can be called Napier's constant after John Napier.

در اين روش با توجه به مقدالر اولين رقمّ ناخواسته، تقريبى از عدد را بدست
مى آوريهم. مثّلا در تَّرد كردن تا دو رقم اعشار :

$$
r, r \not r \vee s=r / r \Delta(r D), r, \forall \wedge r o=r, v \wedge(r \mathbf{D})
$$

ترد كردن تا n , ققم اعششار
به طور كلى A A

$$
A=a_{1} a_{Y} \ldots a_{m /} b_{v_{1}} b_{Y} \cdot b_{n} b_{n+1} \ldots
$$

$r, \& \wedge 000010 \mathcal{F}=7, \xi 9(4 D)$
(اولين رقهم ناخواسته ه است و و بعد اس الز آن
(قفم مخالف صضر وجود دارد) I ا: اكَر >0程.

$r, 490=r, 4 \varphi(4 D)$
 فرد باشد مانّند (I) و در غير الينصورت مانند (II) عمل مى كنيهم.

Clos
(

$$
\begin{aligned}
& \frac{r}{r}=\cdot / \bar{s}=0, g c v(r \mathrm{D}) \\
& \sqrt{r}=1 / f|f r| r 0 s r r v=1, r \mid r(r \mathrm{D}) \\
& r, 99=r, \circ(\mid D)
\end{aligned}
$$

 ساده تر است و در اكثثر ماشين حسابهـا الز آن استماهم مى شون).

$$
\begin{aligned}
& |\mathbf{A}-\mathbf{a}| \leq \Delta \times 10^{-(\mathbf{n}+1)} \\
& \mathbf{o r}
\end{aligned}
$$

$$
|\mathbf{A}-\mathbf{a}| \leq \frac{1}{r} \times 10^{-\mathbf{n}}
$$

 مورد نظر باشل لز دقت مضاعف الستفاده مى شوه.

فرض كنيد A عددى مخالف صفر باشد . آنتّاه A ر ا مى توان به هورت: ى

$$
A=a \times 10^{b}
$$

 اين نمايش را نمايش مميز سيار نيز مى نامـل (با تغيير نما، مميز در بين الرقام a تعيير محل مى دهد).

ارقام با معنا (significant figures)

ب) ت) التّر d=78

$$
\frac{r r}{r}=r, \mu(r S), \pi=r, 1+r(r S), \sqrt{r}=r(1 S), 1,99=r, \circ(r S)
$$

 , دحاسبه حداكثر خطاى حاصل جمع و تفاضل.

 $9,409-10^{-r} \leq \sqrt{1 y}+\sqrt{0} \leq 9,509+10^{-r}$
$1, \Delta A Y-10^{-r} \leq \sqrt{1 V}-\sqrt{\Delta} \leq 1, \Delta \Delta Y+10-r$
$\pi \sqrt{r}=Y, Y Y Y q+e_{r}^{\prime}$

$$
e_{r}^{\prime} \leq \frac{1}{r} \times 10^{-r}+e_{r}
$$

$$
e_{r}^{\prime} \leq 0, \Delta \times 10^{-r}+r, r \vee V a \times 10^{-r}=r, \text { rYVa } \times 10^{-r}
$$

$e_{r} \leq 0, \Delta \times 10^{-r}(r, \Delta \Delta \Delta A)=r, r \vee \vee Q \times 10^{-r}$

$$
r, f \varphi r \varphi \leq \pi \sqrt{r} \leq r, 4 \mu r r
$$

$$
\begin{aligned}
& \text { هـجْنين } \\
& e_{f} \leq e_{1}+e_{r} \leq 10-r
\end{aligned}
$$

n

 براى خطاى مطلق حدى حاصل ضرب abc به عنوان تقريبى از مقدار ABC و بيان مى وشود: $e_{a b c} \leq a b e_{c}+a c e_{b}+b c e_{a}$

توجّه: در عمل تقسيم معمولاُ به گُنهاى عمل میشود كه تقسيم تبديل به عمل ضرب گردد مـّال: هرگاه اعداد را تا سه رقم اعشارگرد كتيم عبارت

$x=\pi \cdot \frac{1}{r} \cdot \frac{1}{\sqrt{\Delta}}=\pi \cdot \frac{1}{r} \cdot \frac{1}{\Delta} \cdot \sqrt{\Delta}$ $=\pi \cdot \frac{1}{r} \cdot(0, r) \sqrt{\Delta}=(0, r) \pi \frac{1}{r} \sqrt{\Delta}$

$$
\begin{array}{ll}
\pi=r, / \mu r+e_{\pi}, & e_{\pi} \leq \frac{1}{r} \times 10^{-r} \\
\sqrt{\Delta}=r, r \mu \varepsilon+e_{\sqrt{\Delta}}, & e_{\sqrt{\Delta}} \leq \frac{1}{r} \times 10^{-r} \\
\frac{1}{r}=0, r \mu r+e_{\frac{1}{}}, & e_{\frac{1}{} \leq \frac{1}{r} \times 10^{-r}}
\end{array}
$$

$x=(0, r) r$, Irr $\left.\times r, r r 9 \times 0, \mu r r+e_{x}\right] \quad \sum \quad e_{x}^{\prime} \leq \frac{1}{r} \times 10^{-r}+e_{x}$
$x=0, \varphi \varepsilon \wedge+e_{x}^{\prime}$

$$
c_{x} \leq 0, r\left[r, r \mu \varphi \times 0, r r r e_{\pi}+r, \text { Mr } \times 0, r r r e_{\sqrt{0}}+r, \text {, } \mu \times r, r r e_{e_{\frac{1}{2}}}\right]
$$

$$
e_{x} \leq 0, r \times \frac{1}{r} \times 10^{-r} \times 1, \Lambda 19
$$

$$
\left.e_{x} \leq \Lambda, \lambda 1\right\rangle \times 10^{-t}
$$

$$
\begin{aligned}
& e_{x=}^{\prime} \leq \frac{1}{r} \times 10^{-r}+\lambda, \lambda 19 \times 10^{-r} \\
& e_{x}^{\prime} \leq 1, r \Lambda r \times 10^{-r}
\end{aligned}
$$

هرگّاه تابعى n متغيره به صورت隹

$$
f\left(A_{1}, A_{\mathrm{r}}, \cdots, A_{n}\right)=f\left(a_{1}, a_{\mathrm{r}}, \cdots, a_{n}\right)+e_{f}
$$

$e_{f} \leq e_{a},\left.\frac{\partial f}{\partial x_{1}}\right|_{a}+\left.e_{a_{1}} \frac{\partial f}{\partial x_{\uparrow}}\right|_{a}+\cdots+\left.e_{a_{n}} \frac{\partial f}{\partial x_{n}}\right|_{a}$
حجم كرْأى به شعاع مثرال
$V=\frac{r^{r}}{r} \pi r^{r} \square V=x y z^{r} \quad$ آوري.أعداد را تا حهار رقم اعشار گرد كنيدر

$$
\begin{array}{ll}
x=\frac{r}{r}=1, \mu r r r+e_{x}, & e_{x} \leq \frac{1}{r} \times 10^{-r} \\
z=\frac{0}{r}=1,999 \gamma+e_{z}, & e_{z} \leq \frac{1}{r} \times 10^{-r} \\
z=10-r
\end{array}
$$

$V=(1, \mu \mu \mu \mu)(\mu, 1 \% \mid \varepsilon)(1,999 K)^{r}+e_{V} \quad e_{V}^{\prime} \leq \frac{1}{r} \times 10^{-r}+e_{V}$
$V=19, \mu q \mu r+e_{V}^{\prime} \quad e_{V} \leq e_{x} \frac{\partial V}{\partial x}+e_{y} \frac{\partial V}{\partial y}+e_{z} \frac{\partial V}{\partial z}$

$$
e_{V} \leq \frac{1}{r} \times 10^{-r}\left\{y z^{r}+x z^{r}+r x y z^{r}\right\}
$$

Taylor Polynomial and Series

Theorem:
Suppose f has $\mathrm{n}+1$ continuous derivatives on $[\mathrm{a}, \mathrm{b}]$. Let $\mathrm{x}, \mathrm{x}_{0} \in[\mathrm{a}, \mathrm{b}]$. Then

共

$f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n+1}(x) \quad \mathrm{f}(\mathrm{x})=\mathrm{P}_{\mathrm{n}}(\mathrm{x})+\mathrm{R}_{\mathrm{n}+1}(\mathrm{x})$,

$$
R_{n+1}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \quad \text { for some } \xi=\xi(x) \text { between } x_{0} \text { and } x .
$$

This Equation is called the Taylor series expansion of $f(x)$ about x_{0} and $R_{n+1}(x)$ is called the remainder or the truncation error. Since in practical computation with the Taylor series only a finite number of terms can be carried out, the term truncation error generally refers to the error involved in using a finite summation to approximate the sum of an infinite series.
we should not expect to be able to explicitly determine the function (x). Taylor's Theorem simply ensures that such a function exists and that its value lies between x and x_{0}. In fact, one of the common problems in numerical methods is to try to determine a realistic bound for the value of $f^{(n+1)}(\xi(x))$.

The infinite series obtained by taking the limit of $P_{n}(x)$ as $n \rightarrow \infty$ is called the Taylor series for fabout x_{0}. In the case $\mathrm{x}_{0}=0$, the Taylor polynomial is often called a Maclaurin polynomial, and the Taylor series is often called a Maclaurin series.

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n+1}(x)
$$

Since $f^{(k)}(0)=e^{0}=1$ for $k=0,1, \ldots$, then

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\frac{e^{\xi}}{(n+1)!} x^{n+1}
$$

$$
=\sum_{k=0}^{n} \frac{x^{k}}{k!}+\frac{e^{\xi}}{(n+1)!} x^{n+1} .
$$

33
EXAMPLE: Derive the Maclaurin series for $f(x)=\sin x$.
Leing

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n+1}(x)
$$

The derivatives of $\sin x$ are

$$
\begin{aligned}
f^{\prime}(x) & =\cos x, & f^{\prime}(0) & =1, \\
f^{\prime \prime}(x) & =-\sin x, & f^{\prime \prime}(0) & =0, \\
f^{\prime \prime \prime}(x) & =-\cos x, & f^{\prime \prime \prime}(0) & =-1,
\end{aligned}
$$

Therefore,

$$
\sin x=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}+(-1)^{n} \frac{x^{2 n+3}}{(2 n+3)!} \cos (\xi)
$$

35

5,

$\cos x, \sin x, e^{x}, \arctan x, \arccos x, \arcsin x, \ln x, \log _{10} x, \ldots$

در اين بخشَ مى خواهيهم نحوه محاسبه تقر يبى لز يكى تابع را شَح دهيهم و خطأى آن , ال حساب كنيهم.

 $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}$
$+\frac{e^{\xi}}{(n+1)!} x^{n+1}$
$\mathrm{x}=1$ and $\mathrm{n}=3 \square e \approx 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}=2.66667 \quad-\frac{e^{\xi}}{4!} \quad$ with $\quad 0<\xi<1$
$e^{\xi} \mid \leq e \leq 2.8$,
$(1 / 4!)(2.8)=0.11667$

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{r}}{r!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{r}}{r!}+\cdots+\frac{x^{n}}{n!}+E_{n}(x) \quad E_{n}(x)=\frac{x^{n+1}}{(n+1)!}+\frac{x^{n+r}}{(n+r)!}+\cdots
$$

$$
\left|E_{n}(x)\right| \leq \frac{1}{r} \times 10-r
$$

$$
E_{n}(x) \simeq \frac{x^{n+1}}{(n+1)!}
$$

$$
\frac{\left(\frac{1}{r}\right)^{n+1}}{(n+1)!} \leq \frac{1}{r} \times 10^{-r}=\Delta \times 10^{-t} .
$$

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{r}}{r!}+\cdots+\frac{x^{n}}{n!}+\cdots \quad 1+\frac{1}{r}+\frac{\frac{1}{1}}{r}+\frac{\frac{1}{r r}}{\zeta}+\frac{\frac{1}{\lambda!}}{r \varphi}
$$

$$
e^{1 / r} \simeq 1, \Gamma 99(\Gamma D)
$$

قاعده : هركاه نتيجه يك عبارت را nا n رقم اعشار بخواهيم، محاسبانت ميانى را با (1) رقم اعشار انجام داده و نتيهه نهايى را در آخر كار با n رقم اعشار الرائه مىنماييم.

$$
\begin{aligned}
& e^{1 / r} \simeq 1+0, \mu r r r+0,0 \Delta \Delta \varepsilon+0,00 g r+0,000 \Delta \\
& =1, \mu 909 \\
& \text { كنيم.سِ از انجام دحاسبات داريم : } \\
& \text { بنابراين با بَ رقم اعشار خواهيم داشت : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { نِابراين براى محاسبة } \\
& \frac{\left(\frac{1}{r}\right)^{n+1}}{(n+1)!} \leq \frac{1}{r} \times 10^{-r}=\Delta \times 10^{-r}
\end{aligned}
$$

$f(x)=0$ فصل دوم: حل عدوني معاهلات

يكى از مسائلى كه اغلب در كارهاى مهندسى با آن مواجه میشويم حل معادلهأى به شكل $f(x)=0$ =0 $f(x)=0$

ريشه دعادله مىنايمب ويا مىیوييم a يك صفر تابع f است.

39
$e^{-x}-\cos x=$
برخیى معادلات بهd روش هاى تحليلى قابل حل نيستند مثل:
$x+\cos x=0$
$x^{r}-(1-x)^{0}=0$

معبولاُ براى تعيين ريشهاى از يك معادله با دتت مورد نظر، لازم اسك تقر ببى از آن ريشه لِا فاهله

 دحدوديت الف: فامكا رالى موجود باشد كَ شامل ريشه باشد. محدوديت ب: بإستى ريشه در ناصله بورد نظر يكتا باشذ.

لز نظر رياضى محدوديت والف"، را به صورت زير بيان كيكنيم
1- اتابع $y=f(x)$ در فاصلa $y=0, b]$ بيوسته است.
$f(a) f(b)<0$ o $f(b), f(a)-r$
 $: x \in[a, b]$]
$f^{\prime}(x) \neq \circ$

تعيين ريشهها با دقت مورد نظر

با مشخص بودن فاصلأى كه شامل يكى ريشهُ دمأله مه

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha
$$

يّانراين با توجه به تُعريف حلد عددى مانتد N وجود دارد كه

$$
x_{N} \simeq \alpha
$$

P

يكسان هستند . از آنجايیى كه مقادير f در در بازة (0/25,0/27) تغيير علامت مى دهله و با توجه به اكيدا صعودى بونن f معادلـه تنهيا $b=0 / 27, f(b)=0 / 4662 \quad a=0 / 25, f(a)=-0 / 0288$ (4D) (

$$
\left|f\left(x_{n}\right)\right|<0,00 \mid
$$

$$
\begin{array}{|c|c|c|c|c|c}
n & a & b & x_{n}=\frac{a+b}{r} & f(a) f\left(x_{n}\right) & -0{ }_{c} \\
\hline 1 & 0, r \Delta & 0, r v & 0, r \varphi & - & 0,0019 \\
r & 0, r \Delta & 0, r \varphi & 0, r \Delta 0 & + & -0,0049 \\
r & 0, r \Delta \Delta & 0, r 4 & 0, r \Delta v \Delta & + & -0,000 \Delta
\end{array}
$$

الز اين رو ، ريشه تا سه رقما اعشار برابر 0/258 اسست .

n	a	b	$x_{\mathrm{n}}-\frac{a+b}{2}$	$\mathrm{f}(\mathrm{a}) \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) \mathrm{u}_{\mathrm{s}} \mathrm{l}_{6}$
1	$0 / 25$	$0 / 27$	$0 / 26$	-
2	$0 / 25$	$0 / 26$	$0 / 255$	+
3	$0 / 255$	$0 / 26$	$0 / 2575$	+
4	$0 / 2575$	$0 / 26$	$0 / 2588$	-
5	$0 / 2575$	$0 / 2588$	$0 / 2582$	-
6	$0 / 2575$	$0 / 2582$	$0 / 25785$	

The regula falsi method (also called false position and linear interpolation methods)

گَ وصل كنيه محل تلاقى آن با محور x ، انقريبى ازن ريشه استا

$$
y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)
$$

$$
\frac{y-f(a)}{x-a}=\frac{f(b)-f(a)}{b-a}
$$

$$
\frac{a-f(a)}{x_{1}-a}=\frac{f(b)-f(a)}{b-a}
$$

كه پی از ساده كردن ، فرمول روش نابه جايى به دست می آيد

$$
x_{1}=\frac{a f(b)-b f(a)}{f(b)-f(a)}
$$

براى تعيين x2، تقريبا مشُابه روش دو بخشىى ، سه حالت زير را در نظر مى تَيريهم:

$$
x_{2}=\frac{a f\left(x_{1}\right)-x_{1} f(a)}{f\left(x_{1}\right)-f(a)}
$$

$$
x_{2}=\frac{x_{1} f(b)-b f\left(x_{1}\right)}{f(b)-f\left(x_{1}\right)}
$$

مدرس: كـك
f(a)f($\left.x_{1}\right)=0$, ريشه
 هميشُش همكِرَاست .

مثال: تقريبى از ريشه هعالد لد

$b=0, r v, a=0, r \Delta$
 $\left|f\left(x_{n}\right)\right| \geq r \times 10^{-r}$
$f\left(x_{1}\right)=-0,0 \circ 1$
لذ اعنُار عبارت است از: $\alpha \simeq 0, r 01$

4 مثال
 -2

حون ريشه عبارت أست از :

$$
\alpha \simeq-0, v ¢ \Delta v
$$

$$
\begin{aligned}
& f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{1}\right)-0}{x_{1}-x_{2}} \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
\end{aligned}
$$

$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$

هثال: تقريبى از ريشُٔ معادلهُ x $x+\cos x=0$ را با تقريب اولئُ x0 0.7 حساب كنيد

Clum
,-
(she,

$$
\begin{align*}
& \mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{x}_{\mathrm{n}}+\cos \mathrm{x}_{n}}{1-\sin \mathrm{x}_{n}} \\
& \mathrm{x}_{1}=-0 / 73943649 \\
& \mathrm{x}_{2}=-0 / 73908515 \tag{80}\\
& \mathrm{x}_{3}=-0 / 73908513 \tag{8D}\\
& \mathrm{f}\left(\mathrm{x}_{3}\right)=5 / 383 \times 10^{-9}
\end{align*}
$$

الف) الشكال اساسى روش نيوتن آن است كه تخمين اوليه بايد نزدبكـ به ريشُه باشد تـا جمـلات دنبالــه حاصـل لز روش نيـوتن

برالى روش نيوتن استفاده مى كـنـند.
据

$$
\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right) \neq 0
$$

كَاهی تابع f مشتق ندارد كه در نتيجه امكان استفاده لز فرمول نيوتن نخوالهد بود ، ويا f'(x

(SECANT METHOD) (وش وترى

$$
\lim \frac{f\left(x_{n}\right)-f(x)}{x_{n}-x}=f^{\prime}\left(x_{n}\right) \text { o }
$$

بنابر اين ، التر x مقدالى نزديك به "x باشد ، مثنلا

$$
\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}-x_{n-1}} \approx f^{\prime}\left(x_{n}\right)
$$

$$
\begin{aligned}
& \text { از اين رو ، در فرمول نيوتن به جاى } \\
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\frac{f\left(x_{n}\right)-f\left(x_{n-1}\right)}{x_{n}}}>x_{n+1}=\frac{x_{n-1} f\left(x_{n}\right)-x_{n} f\left(x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)\left(x_{n}-x_{n-1}\right)}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
\end{aligned}
$$

Definition: The number p is a fixed point for a given function g if $g(p)=P$.
 S

Determine any fixed points of the function $g(x)=x^{2}-2$.
Solution A fixed point p for g has the property that $p=g(p)=p^{2}-2, \quad$ which implies that $0=p^{2}-p-2=(p+1)(p-2)$.

 the equation to the fixed-point form $x=g(x)$ using simple algebraic manipulation. For example, to obtain the function g described in part (c), we can manipulate the equation $x^{3}+4 x^{2}-10=0$ as follows:

$$
4 x^{2}=10-x^{3}, \quad \text { so } x^{2}=\frac{1}{4}\left(10-x^{3}\right) \text { and } x= \pm \frac{1}{2}\left(10-x^{3}\right)^{1 / 2} .
$$

To obtain a positive solution, $g_{3}(x)$ is chosen. It is not important for you to derive the functions shown here. but you should verify that the fixed point of each is actually a solution to the original equation $x^{3}+4 x^{2}-10=0$.
(a) $x=g_{1}(x)=x-x^{3}-4 x^{2}+10$
(c) $x=g_{3}(x)=\frac{1}{2}\left(10-x^{3}\right)^{1 / 2}$
(b) $x=g_{2}(x)=\left(\frac{10}{x}-4 x\right)$
(e) $x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$
(d) $x=g_{4}(x)=\left(\frac{10}{4+x}\right)^{\prime}$

$$
\begin{aligned}
& \text { ثرط كانى براى هيكرايى روش تكرار ساهه : } \\
& g(x) \in[a, b] \text {] } \\
& \text { r- }
\end{aligned}
$$

Example: consider the equation: $x e^{0.5 x}+1.2 x-5=0$
A plot of the function shows that the equation has a solution between 1 and 2. The equation can be rewritten in the form in different ways. Three possibilities are discussed next.

Case a:

$$
x=\frac{5-x e^{0.5 x}}{1.2}
$$

In this case, $\quad g(x)=\frac{5-x e^{0.5 x}}{1.2} \quad$ and $\quad g^{\prime}(x)=-\left(e^{0.5 x}+0.5 x e^{0.5 x}\right) / 1.2$.
The values of $g^{\prime}(x)$ at points $x=1$ and $x=2$, which are in the neighborhood of the solution, are:

$$
\begin{aligned}
& g^{\prime}(1)=-\left(e^{0.5 \cdot 1}+0.5 \cdot 1 e^{0.5 \cdot 1}\right) / 1.2=-2.0609 \\
& g^{\prime}(2)=-\left(e^{0.5 \cdot 2}+0.5 \cdot 2 e^{0.5 \cdot 2}\right) / 1.2=-4.5305
\end{aligned}
$$

Case b:

 $x=\frac{5}{e^{0.5 x}+1.2}$$$
\text { In this case, } \quad g(x)=\frac{5}{e^{0.5 x}+1.2} \quad \text { and } \quad g^{\prime}(x)=\frac{-5 e^{0.5 x}}{2\left(e^{0.5 x}+1.2\right)^{2}} \text {. }
$$

The values of $g^{\prime}(x)$ at points $x=1$ and $x=2$, which are in the neighborhood of the solution, are:

$$
\begin{aligned}
& g^{\prime}(1)=\frac{-5 e^{0.5 \cdot 1}}{2\left(e^{0.5 \cdot 1}+1.2\right)^{2}}=-0.5079 \\
& g^{\prime}(2)=\frac{-5 e^{0.5 \cdot 2}}{2\left(e^{0.5 \cdot 2}+1.2\right)^{2}}=-0.4426
\end{aligned}
$$

Case c:

$$
x=\frac{5-1.2 x}{e^{0.5 x}}
$$

In this case, $\quad g(x)=\frac{5-1.2 x}{e^{0.5 x}}$ and $\quad g^{\prime}(x)=\frac{-3.7+0.6 x}{e^{0.5 x}}$.
The values of $g^{\prime}(x)$ at points $x=1$ and $x=2$, which are in the neighborhood of the solution, are:

$$
\begin{aligned}
& g^{\prime}(1)=\frac{-3.7+0.6 \cdot 1}{e^{0.5} \cdot 1}=-1.8802 \\
& g^{\prime}(2)=\frac{-3.7+0.6 \cdot 2}{e^{0.5 \cdot 2}}=-0.9197
\end{aligned}
$$

These results show that the iteration function from Case b is the one that should be used since, in this case,

$$
\left|g^{\prime}(1)\right|<1 \text { and }\left|g^{\prime}(2)\right|<1
$$

Substituting from Case b in The Equation gives:
舟

$$
x_{i+1}=\frac{5}{e^{0.5 x_{i}}+1.2}
$$

Starting with $x_{1}=1$, the first few iterations are:

$$
\begin{array}{ll}
x_{2}=\frac{5}{e^{0.5 \cdot 1}+1.2}=1.7552 & x_{3}=\frac{5}{e^{0.5 \cdot 1.7552}+1.2}=1.3869 \\
x_{4}=\frac{5}{e^{0.5 \cdot 1.3869}+1.2}=1.5622 & x_{5}=\frac{5}{e^{0.5 \cdot 1.5622}+1.2}=1.4776 \\
x_{6}=\frac{5}{e^{0.5 \cdot 1.4776}+1.2}=1.5182 & x_{7}=\frac{5}{e^{0.5 \cdot 1.5182}+1.2}=1.4986
\end{array}
$$

As expected, the values calculated in the iterations are converging toward the actual solution, which is $x=1.5050$.

On the contrary, if the function $g(x)$ from Case a is used in the iteration, the first few iterations are:

$$
\begin{aligned}
& x_{2}=\frac{5-1 e^{0.5 \cdot 1}}{1.2}=2.7927 \\
& x_{4}=\frac{5-(-5.2364) e^{0.5 \cdot(-5.2364)}}{1.2}=4.4849 \\
& x_{5}=\frac{5-4.4849 e^{0.5 \cdot 4.4849}}{1.2}=-31.0262
\end{aligned}
$$

In this case, the iterations give values that diverge from the solution.

براى تعيين تتريب ريشه معادله مثال

$-1<-x<0$
$e^{-1}<e^{-x}<e^{-}$
$<0, \left\lvert\, r<g(x)<\frac{1}{r}<1\right.$ جون
$\frac{1}{r e}<\frac{e^{-x}}{r}<\frac{1}{r}$
$\frac{1}{r_{e}}<g(x)<\frac{1}{r}$
لذا براى

$$
g^{\prime}(x)=\frac{-e^{-x}}{r}
$$

$\left|g^{\prime}(x)\right|=\frac{e^{-x}}{r}<\frac{e^{*}}{r}=\frac{1}{r}<1$
$x_{1}=0, Y \cdot H_{r} \quad(F D)$
$x_{\mathrm{r}}=0, \mathrm{YYYT}$
$x_{\mathrm{r}}=0$, rora
$x_{\mathrm{r}}=0, \% \Delta \wedge 9$
$x_{0}=0$, YOVF
$x_{f}=0, r o v r$
$x_{y}=0$,roves
$x_{\mathrm{A}}=0, r \Delta \vee \&$
$x_{1}=0, r \Delta \vee 4$
$\alpha \simeq \circ, Y \Delta A$
(rD)

$$
x_{n+1}=\frac{e^{-x_{n}}}{r}
$$

