
Introduction to Parallel Computing
Mohammad Javad Rashti

CE Department, Shahid Chamran University
26/2/1395

Introduction to Parallel Computing 1

What is Parallel Computing?
• Traditionally a computer has one CPU (Central Processing Unit)

• User program is a sequence of instructions
• One CPU can execute program instructions in sequence

Introduction to Parallel Computing 2

What is Parallel Computing?
• Using multiple CPUs to solve the problem(s) in parallel
• Partitioning: Domain or functional decomposition
• Supercomputer: A highly-parallel computing system used for running parallel programs

Introduction to Parallel Computing 3

Why do we need Parallel Programming?
• Need to run the program faster
• Need to run the program with higher precision
• Need to run multiple programs simultaneously
• The program does not fit a single computer’s resources

Introduction to Parallel Computing 4

IBM BlueGeneSupercomputer

What Limits a Sequential Computer?
• Power limits

• More frequency means much more power
• Transmission speeds

• Light: 30cm/ns
• Cooper: 9cm/ns

• Physical limits
• 7nm transistors ~ 15 atoms

• Economical limits

Introduction to Parallel Computing 5

3fP 

Applications of Parallel Programming
• High Performance Computing (HPC)

• Grand Challenge Problems (Scientific and industrial)
• Scientific simulation is the third pillar of science

• Big Data & Business Problems

Introduction to Parallel Computing 6

Grand Challenge Problems
• Weather and Climate Simulation

• Weather forecast, Global warming, ...
• Pharmaceutical Simulations

• Simulation of new drugs and their effects
• Physics, Astronomy and Molecular Dynamics

• Simulation of cosmic phenomena
• Fluid and Structural Dynamics

• Building a bridge
• Building an aircraft or rocket

Introduction to Parallel Computing 7

Big Data Applications

• Data Mining

• Web Search

• Medical Data Analysis

Introduction to Parallel Computing 8

Big Data Applications
• Social Networks
• National Security
• Business Intelligence
• Retail

Introduction to Parallel Computing 9

Supercomputer Use Cases
• Top500.org Supercomputer List: updated semi-annually

Introduction to Parallel Computing 10

Big Users of Supercomputers
• Top500 Supercomputers by Segment

Introduction to Parallel Computing 11

Parallel Computing Architectures

Introduction to Parallel Computing 12

Flynn’s Matrix
• Classify based on data and instruction streams

Introduction to Parallel Computing 13

Regular PCs

Fault-tolerant systems

Vector processors

Distributed systems

Memory Classification of Parallel Architectures
• Shared Memory

• Global Address Space (GAS)
• Uniform Memory Access (UMA)
• Non-uniform Memory Access (NUMA)

• Distributed Memory

Introduction to Parallel Computing 14

Supercomputer Topology Models
• Shared Memory - Symmetric Multi-processing (SMP)

• Multiple CPU sockets on the MB
• Memory is symmetrically shared among them
• Single OS manages the whole node
• Example: regular multi-socket server nodes
• AMD Hyper-transport and Intel Quick-path

Introduction to Parallel Computing 15

Supercomputer Topology Models
• Shared Memory - Non-uniform Memory Access (NUMA)

• Each NUMA node has its own “close” memory banks

Introduction to Parallel Computing 16
AMD HT Intel QP

Supercomputer Topology Models
•Distributed Memory -•Massively Parallel Processors (MPP)

Introduction to Parallel Computing 17

Supercomputer Topology Models
•Distributed Memory – Clusters
• 426 out of top 500 supercomputers

Introduction to Parallel Computing 18

Tianhe2 – World’s fastest supercomputer cluster – 33 PFLOPS, 3M cores

How to Program in Parallel?

Introduction to Parallel Computing 19

Steps in Developing Parallel Programs
• Understand the problem

• …. and the existing sequential code
• Is the problem parallelizable?

Introduction to Parallel Computing 20

Calculate the potential energy for each of several thousand independent conformations of a molecule. When done, find the minimum energy conformation.
Parallelizable

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1) + F(k)
Non-parallelizable

Amdahl's Law

૚
ࢗ

• If none of the code can be parallelized, q = 1 and the speedup = 1 (no speedup). If all of the code is parallelized, q = 0 and the speedup is infinite (in theory).
• If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as fast.

Introduction to Parallel Computing 21

Amdahl's Law states that for a fixed workload, potential program speedup is defined by the fraction of code (q) that cannot be parallelized:

Steps in Developing Parallel Programs
• Find the critical work flow / hotspots

• Where most of the work is done
• Use profilers and performance analyzers on the sequential code

• Identify data dependencies
• Inhibitors to parallelization

• Restructure the sequential program
• Remove bottlenecks such as I/O out of the hotspots

• Partition the problem
• Domain or functional decomposition

Introduction to Parallel Computing 22

Example of Problem Partitioning

Introduction to Parallel Computing 23

Domain Decomposition Processors in adjacent blocks communicate their result.
Functional Decomposition

Steps in Developing Parallel Programs
• Arrange for Inter-process Communications
• Do we need communication?

• Embarrassingly Parallel problems
• Example: Inverting image color

• Most of the problems need communication
• Example: 3D Heat diffusion

• Communications are Overhead
• Reduce the data to be moved
• Avoid unnecessary communication in the code
• Overlap communication with computation or communication

Introduction to Parallel Computing 24

Concepts of Communication
• Latency & Bandwidth
• Explicit vs. implicit
• Synchronous vs. Asynchronous
• Scope

• Point-to-point
• Collective

Introduction to Parallel Computing 25

Parallel Programming Models

Introduction to Parallel Computing 26

Parallel Programming Models
• Programming models are abstractions

• Can be used on various architectures
• Shared Memory Model

• Thread-based Model
• Process-based Model
• Global Address Space

• Message Passing Model
• Data Parallel Model

Introduction to Parallel Computing 27

Shared Memory Model
• A shared address space between tasks
• Asynchronous read/write
• Separate mechanisms for synchronization

• Locks, semaphores, flags
• No explicit “communication” between processes

• Nobody owns the data
• Can be used over SMP, and NUMA systems
• Emulated over distributed memory systems (e.g., Numascale, ScaleMP)

Introduction to Parallel Computing 28

Thread-based Model
• Single heavy-weight process is divided into multiple threads

• All share the original address space
• Subroutine/library and compiler directives
• POSIX Threads (PThreads)
• OpenMP

Introduction to Parallel Computing 29

Shared
Memory

thread1 thread2

thread3

thread4

private private

private
private

Message Passing Model
• Multiple processes with separate memory spaces
• May reside on separate node across an “interconnection network”
• Data communication is through messages

• Sent from one process to another in the group
• Synchronization is usually implicit

• Using communication-assisted synchronization (e.g., barrier)
• As part of communication (e.g., Collectives, sendrecive)

• Message Passing Interface (MPI)
Introduction to Parallel Computing 30

Message Passing Interface (MPI)

Introduction to Parallel Computing 31

What is MPI?
• A message-passing library standard

• extended message-passing model
• not a language or compiler specification
• not a specific implementation or product

• For parallel computers, clusters, and heterogeneous networks
• Full-featured, 3 standard versions (currently version 3)
• Designed to provide access to parallel hardware for

• end users
• library writers
• tool developers

Introduction to Parallel Computing 32

A Minimal MPI Program (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
printf("Hello, world!\n");
MPI_Finalize();
return 0;

}

Introduction to Parallel Computing 33

A Minimal MPI Program (Fortran)
program main
use MPI
integer ierr

call MPI_INIT(ierr)
print *, 'Hello, world!'
call MPI_FINALIZE(ierr)
end

Introduction to Parallel Computing 34

Running MPI Programs
• The Standard does not specify how to run an MPI program.
• In general, starting an MPI program is dependent on the

implementation of MPI you are using, and might require
various scripts, program arguments, and/or environment
variables.

• mpiexec <args> or mpirun <args> is part of MPI-
2 and MPI-3, as a recommendation, but not a requirement

Introduction to Parallel Computing 35

$mpirun –host compute-0-0,compute-0-1 –n 32 ./calculate_pi 1500

Finding Out About the Environment
•Two important questions that arise early in a parallel program are:

• How many processes are participating in this computation?
• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of processes.
• MPI_Comm_rank reports the rank, a number between 0 and size-1, identifying the calling process

Introduction to Parallel Computing 36

Better Hello (C)
#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Introduction to Parallel Computing 37

Better Hello (Fortran)
program main
use MPI
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

Introduction to Parallel Computing 38

Some Basic Concepts
• Processes can be collected into groups.
• Each message is sent in a context, and must be received in the same context.
• A group and context together form a communicator.
• A process is identified by its rank in the group associated with a communicator.
• There is a default communicator whose group contains all initial processes, called MPI_COMM_WORLD.

Introduction to Parallel Computing 39

MPI Datatypes
• The data in a message to sent or received is described by a triple (address, count, datatype), where
• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the language (e.g., MPI_INT, MPI_DOUBLE_PRECISION)
• a contiguous array of MPI datatypes
• a strided block of datatypes
• an indexed array of blocks of datatypes
• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes, such an array of (int, float) pairs, or a row of a matrix stored column-wise.
Introduction to Parallel Computing 40

MPI Basic Send/Receive
• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Introduction to Parallel Computing 41

Process 0 Process 1Send(data)
Receive(data)

What is message passing?
• Data transfer plus synchronization

Introduction to Parallel Computing 42

• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

DataDataDataDataDataDataDataData

Time

MPI Tags
• Messages are sent with an accompanying user-defined integer tag, to assist the receiving process in identifying the message.
• Messages can be screened at the receiving end by specifying a specific tag, or not screened by specifying MPI_ANY_TAG as the tag in a receive.
• Some non-MPI message-passing systems have called tags “message types”. MPI calls them tags to avoid confusion with datatypes.

Introduction to Parallel Computing 43

MPI Basic (Blocking) Send
MPI_SEND (start, count, datatype, dest, tag, comm)
• The message buffer is described by (start, count, datatype).
• The target process is specified by dest, which is the rank of the target process in the communicator specified by comm.
• When this function returns, the data has been delivered to the system and the buffer can be reused. The message may not have been received by the target process.

Introduction to Parallel Computing 44

MPI Basic (Blocking) Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is received
from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.

• status contains further information
• Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.
Introduction to Parallel Computing 45

Retrieving Further Information
• Status is a data structure allocated in the user’s program.
• In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

• In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)
recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)

Introduction to Parallel Computing 46

Simple Fortran Example - 1
program main
use MPI
integer rank, size, to, from, tag, count, i, ierr
integer src, dest
integer st_source, st_tag, st_count
integer status(MPI_STATUS_SIZE)
double precision data(10)
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'Process ', rank, ' of ', size, ' is alive'
dest = size - 1
src = 0

Introduction to Parallel Computing 47

Simple Fortran Example - 2
if (rank .eq. 0) then
do 10, i=1, 10
data(i) = i

10 continue
call MPI_SEND(data, 10, MPI_DOUBLE_PRECISION,

+ dest, 2001, MPI_COMM_WORLD, ierr)
else if (rank .eq. dest) then
tag = MPI_ANY_TAG
source = MPI_ANY_SOURCE
call MPI_RECV(data, 10, MPI_DOUBLE_PRECISION,

+ source, tag, MPI_COMM_WORLD,
+ status, ierr)

Introduction to Parallel Computing 48

Simple Fortran Example - 3
call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,

st_count, ierr)
st_source = status(MPI_SOURCE)
st_tag = status(MPI_TAG)
print *, 'status info: source = ', st_source,

+ ' tag = ', st_tag, 'count = ', st_count
endif

call MPI_FINALIZE(ierr)
end

Introduction to Parallel Computing 49

MPI is Simple
• Many parallel programs can be written using just these six functions, only two of which are non-trivial:

• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV

• Point-to-point (send/recv) isn’t the only way...

Introduction to Parallel Computing 50

Introduction to Collective Operations in MPI
• Collective operations are called by all processes in a communicator.
• MPI_BCAST distributes data from one process (the root) to all others in a communicator.
• MPI_REDUCE combines data from all processes in communicator and returns it to one process.

Introduction to Parallel Computing 51

Example: PI (π) in C -1
#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{int done = 0, n, myid, numprocs, i, rc;double PI25DT = 3.141592653589793238462643;double mypi, pi, h, sum, x, a;MPI_Init(&argc,&argv);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_rank(MPI_COMM_WORLD,&myid);while (!done) {if (myid == 0) {printf("Enter the number of intervals: (0 quits) ");scanf("%d",&n);}MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);if (n == 0) break;

Introduction to Parallel Computing 52

Example: PI (π) in C - 2
h = 1.0 / (double) n;sum = 0.0;for (i = myid + 1; i <= n; i += numprocs) {x = h * ((double)i - 0.5);sum += 4.0 / (1.0 + x*x);}mypi = h * sum;MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);if (myid == 0)printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));}MPI_Finalize();

return 0;
}

Introduction to Parallel Computing 53

Alternative set of 6 Functions for Simplified MPI
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_BCAST
• MPI_REDUCE

• What else is needed (and why)?

Introduction to Parallel Computing 54

Sources of Deadlocks
• Send a large message from process 0 to process 1• If there is insufficient storage at the destination, the send must wait for the user to provide the memory space (through a receive)
• What happens with

Introduction to Parallel Computing 55

Process 0
Send(1)
Recv(1)

Process 1
Send(0)
Recv(0)

• This is called “unsafe” because it depends on the
availability of system buffers

Some Solutions to the “unsafe” Problem
• Order the operations more carefully:

Introduction to Parallel Computing 56

Process 0
Send(1)
Recv(1)

Process 1
Recv(0)
Send(0)

• Use non-blocking operations:
Process 0
Isend(1)
Irecv(1)
Waitall

Process 1
Isend(0)
Irecv(0)
Waitall

Toward a Portable MPI Environment
• In a wide variety of environments, one can do:

mpicc myprog.c –o myprog
mpirun –hostfile ./machines.list -np 10 myprog

to build, compile, run, and analyze performance.

Introduction to Parallel Computing 57

Extending the Message-Passing Interface
• Dynamic Process Management

• Dynamic process startup
• Dynamic establishment of connections

• One-sided communication
• Put/get
• Other operations

• Parallel I/O
• Other MPI-2 features

• Generalized requests
• Bindings for C++/ Fortran-90; interlanguage issues

• MPI-3 features
• Non-blocking and topological collectives

Introduction to Parallel Computing 58

When to use MPI
• Portability and Performance
• Irregular Data Structures
• Building Tools for Others

• Libraries
• Need to Manage memory on a per processor basis

Introduction to Parallel Computing 59

When not to use MPI
• Regular computation matches HPF

• But see PETSc/HPF comparison (ICASE 97-72)
• Solution (e.g., library) already exists

• http://www.mcs.anl.gov/mpi/libraries.html
• Require Fault Tolerance

• Sockets
• Distributed Computing

• CORBA, DCOM, etc.

Introduction to Parallel Computing 60

OpenMP Standard/Library

Introduction to Parallel Computing 61

OpenMP: Some syntax details to get us started
• Used for parallel programming in a shared-memory space
• Most of the constructs in OpenMP are compilerdirectives or pragmas.

– For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

• Include files
#include “omp.h”

Introduction to Parallel Computing 62

How is OpenMP typically used?
• OpenMP is usually used to parallelize loops:

• Find your most time consuming loops.
• Split them up between threads.

Introduction to Parallel Computing 63

void main()
{

int i, k, N=1000;
double A[N], B[N], C[N];
for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i]
}

}

Sequential Program #include “omp.h”
void main()
{

int i, k, N=1000;
double A[N], B[N], C[N];

#pragma omp parallel for
for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];
}

}

Parallel Program

How is OpenMP typically used?
$gcc ./my_omp_loop.c –o ./my_omp_loop -fopenmp

Introduction to Parallel Computing 64

(Cont.)
Thread 0

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 0;
ub = 250;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 1
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 250;
ub = 500;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 2
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 500;
ub = 750;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 3
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 750;
ub = 1000;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

#include “omp.h”
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];

#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + k*C[i];

}
}

OpenMP Fork-and-Join model

Introduction to Parallel Computing 65

printf(“program begin\n”);
N = 1000;
#pragma omp parallel for
for (i=0; i<N; i++)

A[i] = B[i] + C[i];
M = 500;
#pragma omp parallel for
for (j=0; j<M; j++)

p[j] = q[j] – r[j];
printf(“program done\n”); Serial

Serial

Parallel

Serial

Parallel

OpenMP Constructs
• Parallel Regions
• Worksharing (for/DO, sections, …)
• Data Environment (shared, private, …)
• Synchronization (barrier, flush, …)
• Critical sections (critical)
• Runtime functions/environment variables(omp_get_num_threads(), …)

Introduction to Parallel Computing 66

Data Environment:Default storage attributes
• Shared Memory programming model:

• Most variables are shared by default
• Global variables are SHARED among threads

• Fortran: COMMON blocks, SAVE variables, MODULE variables• C: File scope variables, static
• But not everything is shared...

• Stack variables in sub-programs called from parallel regions are PRIVATE• Automatic variables within a statement block are PRIVATE.

Introduction to Parallel Computing 67

OpenMP Parallel Regions
• Each thread executes the same code redundantly.

Introduction to Parallel Computing 68

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between all
threads.

A single
copy of A
is shared
between all
threads.

Threads wait here for all threads to
finish before proceeding (I.e. a barrier)
Threads wait here for all threads to
finish before proceeding (I.e. a barrier)

The OpenMP APICombined parallel work-share
• OpenMP shortcut: Put the “parallel” and the work-share on the same line

Introduction to Parallel Computing 69

int i;
double res[MAX];
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

int i;
double res[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

These are equivalent

Critical Construct

Introduction to Parallel Computing 70

sum = 0;
#pragma omp parallel private (lsum)
{

lsum = 0;
#pragma omp for
for (i=0; i<N; i++) {

lsum = lsum + A[i];
}
#pragma omp critical
{ sum += lsum; }

}
Threads wait their turn;
only one thread at a time
executes the critical section

Reduction Clause

sum = 0;
#pragma omp parallel for reduction (+:sum)
for (i=0; i<N; i++)
{

sum = sum + A[i];
}

Introduction to Parallel Computing 71

Shared variable

Introduction to Parallel Computing 72

