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What is Parallel Computing?
• Traditionally a computer has one CPU (Central Processing Unit)

• User program is a sequence of instructions
• One CPU can execute program instructions in sequence
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What is Parallel Computing?
• Using multiple CPUs to solve the problem(s) in parallel
• Partitioning: Domain or functional decomposition
• Supercomputer: A highly-parallel computing system used for running parallel programs
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Why do we need Parallel Programming?
• Need to run the program faster
• Need to run the program with higher precision
• Need to run multiple programs simultaneously
• The program does not fit a single computer’s resources
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IBM BlueGeneSupercomputer



What Limits a Sequential Computer?
• Power limits

• More frequency means much more power 
• Transmission speeds

• Light: 30cm/ns
• Cooper: 9cm/ns

• Physical limits
• 7nm transistors ~ 15 atoms

• Economical limits
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Applications of Parallel Programming
• High Performance Computing (HPC)

• Grand Challenge Problems (Scientific and industrial) 
• Scientific simulation is the third pillar of science

• Big Data & Business Problems
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Grand Challenge Problems
• Weather and Climate  Simulation

• Weather forecast, Global warming, ... 
• Pharmaceutical Simulations

• Simulation of new drugs and their effects
• Physics, Astronomy and Molecular Dynamics

• Simulation of cosmic phenomena
• Fluid and Structural Dynamics

• Building a bridge
• Building an aircraft or rocket
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Big Data Applications

• Data Mining

• Web Search

• Medical Data Analysis
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Big Data Applications
• Social Networks
• National Security
• Business Intelligence
• Retail
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Supercomputer Use Cases
• Top500.org Supercomputer List: updated semi-annually 
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Big Users of Supercomputers
• Top500 Supercomputers by Segment
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Parallel Computing Architectures
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Flynn’s Matrix
• Classify based on data and instruction streams
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Regular PCs

Fault-tolerant systems

Vector processors

Distributed systems



Memory Classification of Parallel Architectures
• Shared Memory

• Global Address Space (GAS)
• Uniform Memory Access (UMA)
• Non-uniform Memory Access (NUMA)

• Distributed Memory
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Supercomputer Topology Models
• Shared Memory - Symmetric Multi-processing (SMP)

• Multiple CPU sockets on the MB
• Memory is symmetrically shared among them
• Single OS manages the whole node
• Example: regular multi-socket server nodes
• AMD Hyper-transport and  Intel Quick-path
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Supercomputer Topology Models
• Shared Memory - Non-uniform Memory Access (NUMA)

• Each NUMA node has its own “close” memory banks
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Supercomputer Topology Models
•Distributed Memory -•Massively Parallel Processors (MPP)
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Supercomputer Topology Models
•Distributed Memory – Clusters
• 426 out of top 500   supercomputers
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Tianhe2 – World’s fastest supercomputer cluster  – 33 PFLOPS, 3M cores 



How to Program in Parallel?
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Steps in Developing Parallel Programs
• Understand the problem 

• …. and the existing sequential code
• Is the problem parallelizable?
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Calculate the potential energy for each of several thousand independent conformations of a molecule.  When done, find the minimum energy conformation.
Parallelizable

Calculation of the Fibonacci series (1,1,2,3,5,8,13,21,...) by use of the formula: F(k + 2) = F(k + 1) + F(k)
Non-parallelizable



Amdahl's Law

૚
ࢗ

• If none of the code can be parallelized, q = 1 and the speedup = 1 (no speedup). If all of the code is parallelized, q = 0 and the speedup is infinite (in theory). 
• If 50% of the code can be parallelized, maximum speedup = 2, meaning the code will run twice as fast. 
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Amdahl's Law states that for a fixed workload, potential program speedup is defined by the fraction of code (q) that cannot be parallelized:



Steps in Developing Parallel Programs
• Find the critical work flow / hotspots

• Where most of the work is done
• Use profilers and performance analyzers on the sequential code

• Identify data dependencies
• Inhibitors to parallelization

• Restructure the sequential program
• Remove bottlenecks such as I/O out of the hotspots

• Partition the problem
• Domain or functional decomposition

Introduction to Parallel Computing 22



Example of Problem Partitioning
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Domain Decomposition Processors in adjacent blocks communicate their result.
Functional Decomposition 



Steps in Developing Parallel Programs
• Arrange for Inter-process Communications
• Do we need communication?

• Embarrassingly Parallel problems 
• Example: Inverting image color

• Most of the problems need communication
• Example: 3D Heat diffusion

• Communications are Overhead
• Reduce the data to be moved
• Avoid unnecessary communication in the code
• Overlap communication with computation or communication
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Concepts of Communication
• Latency & Bandwidth
• Explicit vs. implicit
• Synchronous vs. Asynchronous
• Scope

• Point-to-point
• Collective
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Parallel Programming Models
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Parallel Programming Models
• Programming models are abstractions

• Can be used on various architectures
• Shared Memory Model

• Thread-based Model
• Process-based Model
• Global Address Space

• Message Passing Model
• Data Parallel Model
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Shared Memory Model
• A shared address space between tasks
• Asynchronous read/write 
• Separate mechanisms for synchronization

• Locks, semaphores, flags
• No explicit “communication” between processes

• Nobody owns the data
• Can be used over SMP, and NUMA systems 
• Emulated over distributed memory systems (e.g., Numascale, ScaleMP)
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Thread-based Model
• Single heavy-weight process is divided into multiple threads

• All share the original address space
• Subroutine/library and compiler directives
• POSIX Threads (PThreads)
• OpenMP
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Message Passing Model
• Multiple processes with separate memory spaces
• May reside on separate node across an “interconnection network”
• Data communication is through messages

• Sent from one process to another in the group
• Synchronization is usually implicit

• Using communication-assisted synchronization (e.g., barrier)
• As part of communication (e.g., Collectives, sendrecive) 

• Message Passing Interface (MPI)
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Message Passing Interface (MPI)
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What is MPI?
• A message-passing library standard

• extended message-passing model
• not a language or compiler specification
• not a specific implementation or product

• For parallel computers, clusters, and heterogeneous networks
• Full-featured, 3 standard versions (currently version 3)
• Designed to provide access to parallel hardware for

• end users
• library writers
• tool developers
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A Minimal MPI Program (C)
#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{

MPI_Init( &argc, &argv );
printf( "Hello, world!\n" );
MPI_Finalize();
return 0;

}
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A Minimal MPI Program (Fortran)
program main
use MPI
integer ierr

call MPI_INIT( ierr )
print *, 'Hello, world!'
call MPI_FINALIZE( ierr )
end
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Running MPI Programs
• The Standard does not specify how to run an MPI program.
• In general, starting an MPI program is dependent on the 

implementation of MPI you are using, and might require 
various scripts, program arguments, and/or environment 
variables.

• mpiexec <args> or mpirun <args> is part of MPI-
2 and MPI-3, as a recommendation, but not a requirement
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$mpirun –host compute-0-0,compute-0-1 –n 32 ./calculate_pi 1500



Finding Out About the Environment
•Two important questions that arise early in a parallel program are:

• How many processes are participating in this computation?
• Which one am I?

• MPI provides functions to answer these questions:
• MPI_Comm_size reports the number of processes.
• MPI_Comm_rank reports the rank, a number between 0 and size-1, identifying the calling process
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Better Hello (C)
#include "mpi.h"
#include <stdio.h>
int main( int argc, char *argv[] )
{

int rank, size;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI_Finalize();
return 0;

}
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Better Hello (Fortran)
program main
use MPI
integer ierr, rank, size

call MPI_INIT( ierr )
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE( ierr )
end
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Some Basic Concepts
• Processes can be collected into groups.
• Each message is sent in a context, and must be received in the same context.
• A group and context together form a communicator.
• A process is identified by its rank in the group associated with a communicator.
• There is a default communicator whose group contains all initial processes, called MPI_COMM_WORLD.
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MPI Datatypes
• The data in a message to sent or received is described by a triple (address, count, datatype), where
• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the language (e.g., MPI_INT, MPI_DOUBLE_PRECISION)
• a contiguous array of MPI datatypes
• a strided block of datatypes
• an indexed array of blocks of datatypes
• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes, such an array of (int, float) pairs, or a row of a matrix stored column-wise.
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MPI Basic Send/Receive
• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?
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Process 0 Process 1Send(data)
Receive(data)



What is message passing?
• Data transfer plus synchronization
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• Requires cooperation of sender and receiver
• Cooperation not always apparent in code

DataProcess 0

Process 1

May I Send?

Yes

DataDataDataDataDataDataDataData

Time



MPI Tags
• Messages are sent with an accompanying user-defined integer tag, to assist the receiving process in identifying the message.
• Messages can be screened at the receiving end by specifying a specific tag, or not screened by specifying MPI_ANY_TAG as the tag in a receive.
• Some non-MPI message-passing systems have called tags “message types”.  MPI calls them tags to avoid confusion with datatypes.
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MPI Basic (Blocking) Send
MPI_SEND (start, count, datatype, dest, tag, comm)
• The message buffer is described by (start, count, datatype).
• The target process is specified by dest, which is the rank of the target process in the communicator specified by comm.
• When this function returns, the data has been delivered to the system and the buffer can be reused.  The message may not have been received by the target process.
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MPI Basic (Blocking) Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

• Waits until a matching (on source and tag) message is received 
from the system, and the buffer can be used.

• source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE.

• status contains further information
• Receiving fewer than count occurrences of datatype is OK, but 

receiving more is an error.
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Retrieving Further Information
• Status is a data structure allocated in the user’s program.
• In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status )
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count( &status, datatype, &recvd_count );

• In Fortran:
integer recvd_tag, recvd_from, recvd_count
integer status(MPI_STATUS_SIZE)
call MPI_RECV(..., MPI_ANY_SOURCE, MPI_ANY_TAG, .. status, ierr)
tag_recvd = status(MPI_TAG)
recvd_from = status(MPI_SOURCE)
call MPI_GET_COUNT(status, datatype, recvd_count, ierr)
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Simple Fortran Example - 1
program main
use MPI
integer rank, size, to, from, tag, count, i, ierr
integer src, dest
integer st_source, st_tag, st_count
integer status(MPI_STATUS_SIZE)
double precision data(10) 
call MPI_INIT( ierr )
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr )
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr )
print *, 'Process ', rank, ' of ', size, ' is alive'
dest = size - 1
src = 0 
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Simple Fortran Example - 2
if (rank .eq. 0) then
do 10, i=1, 10
data(i) = i

10     continue
call MPI_SEND( data, 10, MPI_DOUBLE_PRECISION,

+                 dest, 2001, MPI_COMM_WORLD, ierr)
else if (rank .eq. dest) then
tag = MPI_ANY_TAG
source = MPI_ANY_SOURCE
call MPI_RECV( data, 10, MPI_DOUBLE_PRECISION,

+                 source, tag, MPI_COMM_WORLD,
+                 status, ierr)
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Simple Fortran Example - 3
call MPI_GET_COUNT( status, MPI_DOUBLE_PRECISION,

st_count, ierr )
st_source = status( MPI_SOURCE )
st_tag = status( MPI_TAG )
print *, 'status info: source = ', st_source,

+           ' tag = ', st_tag, 'count = ', st_count
endif

call MPI_FINALIZE( ierr )
end
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MPI is Simple
• Many parallel programs can be written using just these six functions, only two of which are non-trivial:

• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV

• Point-to-point (send/recv) isn’t the only way...
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Introduction to Collective Operations in MPI
• Collective operations are called by all processes in a communicator.
• MPI_BCAST distributes data from one process (the root) to all others in a communicator.
• MPI_REDUCE combines data from all processes in communicator and returns it to one process.
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Example:  PI (π) in C -1
#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{int done = 0, n, myid, numprocs, i, rc;double PI25DT = 3.141592653589793238462643;double mypi, pi, h, sum, x, a;MPI_Init(&argc,&argv);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_rank(MPI_COMM_WORLD,&myid);while (!done)  {if (myid == 0) {printf("Enter the number of intervals: (0 quits) ");scanf("%d",&n);}MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);if (n == 0) break;
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Example:  PI (π) in C - 2
h   = 1.0 / (double) n;sum = 0.0;for (i = myid + 1; i <= n; i += numprocs) {x = h * ((double)i - 0.5);sum += 4.0 / (1.0 + x*x);}mypi = h * sum;MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);if (myid == 0)printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));}MPI_Finalize();

return 0;
}
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Alternative set of 6 Functions for Simplified MPI
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_BCAST
• MPI_REDUCE

• What else is needed (and why)?
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Sources of Deadlocks
• Send a large message from process 0 to process 1• If there is insufficient storage at the destination, the send must wait for the user to provide the memory space (through a receive)
• What happens with
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Process 0
Send(1)
Recv(1)

Process 1
Send(0)
Recv(0)

• This is called “unsafe” because it depends on the 
availability of system buffers



Some Solutions to the “unsafe” Problem
• Order the operations more carefully:
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Process 0
Send(1)
Recv(1)

Process 1
Recv(0)
Send(0)

• Use non-blocking operations:
Process 0
Isend(1)
Irecv(1)
Waitall

Process 1
Isend(0)
Irecv(0)
Waitall



Toward a Portable MPI Environment
• In a wide variety of environments, one can do:

mpicc myprog.c –o myprog
mpirun –hostfile ./machines.list -np 10 myprog

to build, compile, run, and analyze performance.
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Extending the Message-Passing Interface
• Dynamic Process Management

• Dynamic process startup
• Dynamic establishment of connections

• One-sided communication
• Put/get
• Other operations

• Parallel I/O
• Other MPI-2 features

• Generalized requests
• Bindings for C++/ Fortran-90; interlanguage issues

• MPI-3 features
• Non-blocking and topological collectives
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When to use MPI
• Portability and Performance
• Irregular Data Structures
• Building Tools for Others

• Libraries
• Need to Manage memory on a per processor basis
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When not to use MPI
• Regular computation matches HPF

• But see PETSc/HPF comparison (ICASE 97-72)
• Solution (e.g., library) already exists

• http://www.mcs.anl.gov/mpi/libraries.html
• Require Fault Tolerance

• Sockets
• Distributed Computing

• CORBA, DCOM, etc.
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OpenMP Standard/Library
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OpenMP: Some syntax details to get us started
• Used for parallel programming in a shared-memory space
• Most of the constructs in OpenMP are compilerdirectives or pragmas.

– For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

• Include files
#include “omp.h”
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How is OpenMP typically used?
• OpenMP is usually used to parallelize loops:

• Find your most time consuming loops.
• Split them up between threads.
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void main()
{

int i, k, N=1000;
double A[N], B[N], C[N];
for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i]
}

}

Sequential Program #include “omp.h”
void main()
{

int i, k, N=1000;
double A[N], B[N], C[N];

#pragma omp parallel for
for (i=0; i<N; i++) {

A[i] = B[i] + k*C[i];
}

}

Parallel Program



How is OpenMP typically used?
$gcc ./my_omp_loop.c –o ./my_omp_loop -fopenmp
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(Cont.)
Thread 0

void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 0;
ub = 250;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 1
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 250;
ub = 500;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 2
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 500;
ub = 750;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

Thread 3
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];
lb = 750;
ub = 1000;
for (i=lb;i<ub;i++) {
A[i] = B[i] + k*C[i];

}
}

#include “omp.h”
void main()
{
int i, k, N=1000;
double A[N], B[N], C[N];

#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + k*C[i];

}
}



OpenMP Fork-and-Join model
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printf(“program begin\n”);
N = 1000;
#pragma omp parallel for
for (i=0; i<N; i++) 

A[i] = B[i] + C[i];
M = 500;
#pragma omp parallel for
for (j=0; j<M; j++) 

p[j] = q[j] – r[j];
printf(“program done\n”); Serial

Serial

Parallel

Serial

Parallel



OpenMP Constructs
• Parallel Regions
• Worksharing (for/DO, sections, …)
• Data Environment (shared, private, …)
• Synchronization (barrier, flush, …)
• Critical sections (critical)
• Runtime functions/environment variables(omp_get_num_threads(), …)

Introduction to Parallel Computing 66



Data Environment:Default storage attributes
• Shared Memory programming model: 

• Most variables are shared by default
• Global variables are SHARED among threads

• Fortran: COMMON blocks, SAVE variables, MODULE variables• C: File scope variables, static
• But not everything is shared...

• Stack variables in sub-programs called from parallel regions are PRIVATE• Automatic variables within a statement block are PRIVATE.
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OpenMP Parallel Regions
• Each thread executes the same code redundantly.
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double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 
copy of A 
is shared 
between all 
threads.

A single 
copy of A 
is shared 
between all 
threads.

Threads wait  here  for all threads to 
finish before proceeding (I.e. a barrier)
Threads wait  here  for all threads to 
finish before proceeding (I.e. a barrier)



The OpenMP APICombined parallel work-share
• OpenMP shortcut: Put the “parallel” and the work-share on the same line
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int i;
double  res[MAX];  
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 

}

int i;
double  res[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 

These are equivalent



Critical Construct

Introduction to Parallel Computing 70

sum = 0;
#pragma omp parallel private (lsum)
{

lsum = 0;
#pragma omp for 
for (i=0; i<N; i++) {

lsum = lsum + A[i];
}
#pragma omp critical
{ sum += lsum; }

}
Threads wait their turn;
only one thread at a time 
executes the critical section



Reduction Clause

sum = 0;
#pragma omp parallel for reduction (+:sum)
for (i=0; i<N; i++)
{

sum = sum + A[i];
}
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Shared variable
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