Linear Programming (Manufacturing with Molds)

M.M. Ghaseminya

Department of Computer Science, Yazd University

1389-2

э

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lecture Mind Map

Computational Geometry - Håkan Jons

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

・ロト・西ト・モト・モー うらぐ

- Computers play an important role in automated manufacturing, both in the design phase and in the construction phase.
- CAD/CAM facilities are a vital part of any modern factory.

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Introduction

- Computers play an important role in automated manufacturing, both in the design phase and in the construction phase.
- CAD/CAM facilities are a vital part of any modern factory.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Assumptions

- We assume that the object to be constructed is polyhedral.
- We only consider molds of one piece, not molds consisting of two or more pieces.
- We only allow the object to be removed from the mold by a single translation.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

we want to determine whether an object can be manufactured by casting

- we have to find a suitable mold for it!
- We call an object **castable** if it can be removed from its mold for at least one of these orientations.

Definition:

• top facet:

One obvious restriction on the orientation is that the object must have a horizontal top facet.

 We call a facet of P that is not the top facet an ordinary facet. Every ordinary facet f has a corresponding facet in the mold, which we denote by f'.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

To get the angle between two vectors u and v, consider the plane they span and pick the smaller angle between the two in this plane. !

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

- Let P be casted piece and \vec{d} a direction.
- P can be removed by a translation in direction d iff d makes an angle of at least 90° outward normal of every ordinary facet of P.

Except the top-facet.

• How do we find such a direction?

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

A removability criterion

- Let *P* be casted piece and \vec{d} a direction.
- P can be removed by a translation in direction d iff d makes an angle of at least 90° outward normal of every ordinary facet of P.

Except the top-facet.

• How do we find such a direction?

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Representing directions

- We assume translations in the positive *z*-direction only.
- The direction of a vector (x, y, 1) is represented by the point (x, y, 1) in the plane z = 1.

So, every point in the plane z = 1 now represents a unique direction.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

- A direction $\vec{d} = (d_x, d_y, d_z)$ makes an angle at least 90° with a outward normal $n = (n_x, n_y, n_z)$ of P iff the dot product $\vec{n} \cdot \vec{d} \le 0$.
- Notice that the inequality defines a half-plane on the plane z = 1.

The line $n_x d_x + n_y d_y + n_z d_z = 0$ splits the plane in two parts, one of which contains all locally valid directions in which *P* can be translated.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Theorem (4.2)

Let *P* be a polyhedron with *n* facets. In $\mathcal{O}(n^2)$ expected time and using $\mathcal{O}(n)$ storage it can be decided whether *P* is castable. Moreover, if *P* is castable, a mold and a valid direction for removing *P* from it can be computed in the same amount of time.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

- So, our practical problem has turned into the geometric problem of computing the intersection of half-planes.
- A half-plane in the plane (Euclidean, 2D) is defined by a linear constraint in two variables.

 $a_i x + b_i y \le 0$

• Given a bunch of half-planes, we consider the problem of finding all points (*x*, *y*) that satisfy all constraints.

The intersection of n half-planes is a convex polygonal region bounded by at most n edges.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Examples of the intersection of half-planes

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

A Divide-and-Conquer algorithm is used:

Algorithm INTERSECTHALFPLANES(*H*)

Input. A set *H* of *n* half-planes in the plane. *Output.* The convex polygonal region $C := \bigcap_{h \in H} h$.

- 1. **if** $\operatorname{card}(H) = 1$
- 2. **then** $C \leftarrow$ the unique half-plane $h \in H$
- 3. **else** Split *H* into sets H_1 and H_2 of size $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$.
- 4. $C_1 \leftarrow \text{INTERSECTHALFPLANES}(H_1)$
- 5. $C_2 \leftarrow \text{INTERSECTHALFPLANES}(H_2)$
- 6. $C \leftarrow \text{INTERSECTCONVEXREGIONS}(C_1, C_2)$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

• One version of IntersectConvexRegions was actually presented in Chapter 2!

- corollary 2.7 the Intersection of two polygons with n vertices can be computed in $\mathcal{O}(nLogn + kLogn)$ times.
- Some adjustment needed since we need to compute unbounded regions(not simple polygons)
- Also in our case $k \leq n$ since the region are convex.

イロト 不得 とくほ とくほ とうほう

 $T(n) = \begin{cases} \mathcal{O}(1) & ifn = 1\\ \mathcal{O}(nLgn) + 2T(\frac{n}{2}) & ifn > 1 \end{cases}$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

• There is in fact a faster version of IntersectConvexRegions that run in $\mathcal{O}(n)$ time .

this implies that the complexity gets lowered from $\mathcal{O}(nlog^2n)$ to $\mathcal{O}(nlogn)$

- this version is based on planeSweep.
- while the sweep line is moved downward over the regions using vertices as event point, we keep track of the intersection with the boundaries of two regions.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

- To simplify the description of the algorithm, we shall assume that there are no horizontal edges!
- we move a sweep line downward over the plane, and we maintain the edges of C1 and C2 ,intersecting the sweep line.
- C_1 and C_2 are ?
- So:we simply have pointers $left_edge_C_1$, $right_edge_C_1$, $left_edge_C_2$, and $right_edge_C_2$ to them.

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Plane Sweep Algorithm

- To simplify the description of the algorithm, we shall assume that there are no horizontal edges!
- we move a sweep line downward over the plane, and we maintain the edges of C1 and C2, intersecting the sweep line.
- C_1 and C_2 are ?
- So:we simply have pointers $left_edge_C_1$, $right_edge_C_1$, $left_edge_C_2$, and $right_edge_C_2$ to them.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

New Plane Sweep Algorithm Object

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

イロト イボト イヨト イヨト

э.

New Plane Sweep Algorithm Structure

- 1 Initialize.
- 2 Status of edges e.
- 3 Four functions needed.
- 4 The procedure that handles *e* will discover three possible edges that *C* might have.
 - The edge with *p* as upper endpoint.
 - The edge with $e \cap left_edge_C_2$ as upper endpoint.
 - The edge with $e \cap right_edge_C_2$ as upper endpoint.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Constant time to handle an edge

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

The intersection of two convex polygons can be computed in time $\mathcal{O}(n)$

- We have to prove that it adds the half-planes defining the edges of *C* in the right order.
- Consider an edge of C, and let p be its upper endpoint.Two case occurred?

Theorem (4.3)

The intersection of two convex polygonal regions in the plane can be computed in O(n) time.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(nlogn)$ time and linear storage

Finally

By Looping through all n facets we can solve the castability Problem in $O(n^2 logn)$ time.

But.

But is this the Best Time?

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(nlogn)$ time and linear storage

Finally

By Looping through all n facets we can solve the castability Problem in $\mathcal{O}(n^2logn)$ time.

But.

But is this the Best Time?

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

corollary 4.4

The common intersection of a set of n half-planes in the plane can be computed in $\mathcal{O}(nlogn)$ time and linear storage

Finally

By Looping through all n facets we can solve the castability Problem in $\mathcal{O}(n^2 logn)$ time.

But...

But is this the Best Time?

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Incremental Linear Programming

- The intersection of half-plane gives us all valid direction, but we just need one!
- Finding Just One Direction can be Done using Linear Programming.

Maximize
$$c_1x_1 + c_2x_2 + \dots + c_dx_d$$
 feasible region
Subject to $a_{1,1}x_1 + \dots + a_{1,d}x_d \leq b_1$
 $a_{2,1}x_1 + \dots + a_{2,d}x_d \leq b_2$
 \vdots
 $a_{n,1}x_1 + \dots + a_{n,d}x_d \leq b_n$ solution

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

- H is a set of n two dimensional constraints.
- $f_{\vec{c}}(p) = C_x P_x + C_y P_y$ gives objective function
- **GOAL** find $p \in R^2$ so that $p \in \cap H$ and $f_{\vec{c}}(p)$ is maximized.
- Let C denote feasible region for (H, \vec{c}) .

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Types of solutions

- i The linear program is infeasible.
- ii The feasible region is unbounded in direction \vec{c} .
- iii The feasible region has an edge e whose outward normal points in the direction \vec{c} .
- iv If none of the preceding three cases applies, then there is a unique solution, which is the vertex v of Cthat is extreme in the direction \vec{c} .

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

We Compute the Solution using an incremental algorithm in which the constraint are considered one at a time;

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lemma (4.5)

When considering another constraint (half-plane) the optimal solution point can only be effected in two ways:

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lemma (4.6)

The change in case(*ii*) can be computed in O(i) when we consider constraint (half-plane) h_i

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

We can now describe the linear programming algorithm in more detail. As above, we use l_i to denote the line that bounds the half-plane h_i .

```
Algorithm 2DBOUNDEDLP(H, \vec{c}, m_1, m_2)
Input. A linear program (H \cup \{m_1, m_2\}, \vec{c}), where H is a set of n half-planes,
  \vec{c} \in \mathbb{R}^2, and m_1, m_2 bound the solution.
Output. If (H \cup \{m_1, m_2\}, \vec{c}) is infeasible, then this fact is reported. Otherwise,
   the lexicographically smallest point p that maximizes f_{\vec{e}}(p) is reported.
     Let v_0 be the corner of C_0.
1
2.
     Let h_1, \ldots, h_n be the half-planes of H.
3
      for i \leftarrow 1 to n
4.
          do if v_{i-1} \in h_i
5.
                 then v_i \leftarrow v_{i-1}
6
                 else v_i \leftarrow the point p on \ell_i that maximizes f_{\vec{a}}(p), subject to the
                       constraints in H_{i-1}.
7.
                       if p does not exist
8.
                          then Report that the linear program is infeasible and quit.
0
      return vn
```


Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Lemma (4.7)

A solution can be computed in $\mathcal{O}(n^2)$ time.

$$\sum_{i=0}^{n} \mathcal{O}(i)$$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

・ロト・日本・日本・日本・日本・日本

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

• There is a surprisingly simple way to reduce the time complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

start by the permuting the input randomly!

• This gets rid of the worst case!

Randomized Linear Programming

• There is a surprisingly simple way to reduce the time complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$.

start by the permuting the input randomly!

This gets rid of the worst case!

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, \vec{c}, m_1, m_2)

Input. A linear program $(H \cup \{m_1, m_2\}, \vec{c})$, where *H* is a set of *n* half-planes, $\vec{c} \in \mathbb{R}^2$, and m_1, m_2 bound the solution.

Output. If $(H \cup \{m_1, m_2\}, \vec{c})$ is infeasible, then this fact is reported. Otherwise, the lexicographically smallest point *p* that maximizes $f_{\vec{c}}(p)$ is reported.

- 1. Let v_0 be the corner of C_0 .
- 2. Compute a *random* permutation h_1, \ldots, h_n of the half-planes by calling RANDOMPERMUTATION($H[1 \cdots n]$).
- 3. for $i \leftarrow 1$ to n

```
4. do if v_{i-1} \in h_i
```

- 5. **then** $v_i \leftarrow v_{i-1}$
- else v_i ← the point p on ℓ_i that maximizes f_c(p), subject to the constraints in H_{i-1}.
- 7. **if** *p* does not exist
- then Report that the linear program is infeasible and quit.
- 9. return v_n


```
Computational
Geometry
```

Casting

Half-Plane

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

RANDOMPERMUTATION Algorithm

Algorithm RANDOMPERMUTATION(A)

Input. An array $A[1 \cdots n]$.

Output. The array $A[1 \cdots n]$ with the same elements, but rearranged into a random permutation.

イロト イポト イヨト イヨト

3

- 1. for $k \leftarrow n$ downto 2
- 2. **do** $rndindex \leftarrow RANDOM(k)$
- 3. Exchange A[k] and A[rndindex].

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lemma (4.8)

The 2-dimensional linear programming problem with n constraints can be solved in O(n) randomized expected time using worst-case linear storage.

Why

- RANDOMPERMUTATION is run in O(n) time.
- Define Function x_i for adding new plane to H.
- So, total Time is $\sum \mathcal{O}(i)X_i = \mathcal{O}(n)$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lemma (4.8)

The 2-dimensional linear programming problem with n constraints can be solved in O(n) randomized expected time using worst-case linear storage.

Why

- RANDOMPERMUTATION is run in $\mathcal{O}(n)$ time.
- Define Function x_i for adding new plane to H.
- So, total Time is $\sum \mathcal{O}(i)X_i = \mathcal{O}(n)$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

In the preceding sections we avoided handling the case of an unbounded linear program by adding two additional, artificial constraints.

This is not always a suitable solution!

Lets first

how we can recognize whether a given linear program (H,c) is unbounded.

If we denote the rays starting point as p, and its direction vector as d, we can parameterize ρ as follows:

$$\rho = \{ p + \lambda \vec{d} : \lambda > 0 \}$$

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Lemma (4.9)

A linear program (H, \vec{c}) is unbounded if and only if there is a vector \vec{d} with $\vec{d}.\vec{c} > 0$ such that $\vec{d}.\vec{\eta}(h) \ge 0$ for all $h \in H$ and the linear program (H', \vec{c}) is feasible, where $H' = h \in H : \vec{\eta}(h).\vec{d} = 0.$

Computational Geometry

Casting

Half-Plane

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

2DRANDOMIZEDLP Algorithm

Algorithm 2DRANDOMIZEDLP(H, \vec{c})

Input. A linear program (H, \vec{c}) , where H is a set of n half-planes and $\vec{c} \in \mathbb{R}^2$. *Output.* If (H, \vec{c}) is unbounded, a ray is reported. If it is infeasible, then two or three certificate half-planes are reported. Otherwise, the lexicographically smallest point p that maximizes $f_{\vec{c}}(p)$ is reported.

- 1. Determine whether there is a direction vector \vec{d} such that $\vec{d} \cdot \vec{c} > 0$ and $\vec{d} \cdot \vec{\eta}(h) \ge 0$ for all $h \in H$.
- 2. if \vec{d} exists
- 3. **then** compute H' and determine whether H' is feasible.
- 4. **if** H' is feasible
- 5. **then** Report a ray proving that (H, \vec{c}) is unbounded and quit.
- 6. **else** Report that (H, \vec{c}) is infeasible and quit.
- 7. Let $h_1, h_2 \in H$ be certificates proving that (H, \vec{c}) is bounded and has a unique lexicographically smallest solution.
- 8. Let v_2 be the intersection of ℓ_1 and ℓ_2 .
- 9. Let h_3, h_4, \ldots, h_n be a random permutation of the remaining half-planes in *H*.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

11.	do if $v_{i-1} \in h_i$
12.	then $v_i \leftarrow v_{i-1}$
13.	else $v_i \leftarrow$ the point p on ℓ_i that maximizes $f_{\vec{c}}(p)$, subject to the
	constraints in H_{i-1} .
14.	if p does not exist
15.	then Let h_i, h_k (with $j, k < i$) be the certificates (possibly
	$h_i = h_k$ with $h_i \cap h_k \cap \ell_i = \emptyset$.
16	Report that the linear program is infeasible, with

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Theorem (4.10)

A 2-dimensional linear programming problem with n constraints can be solved in O(n) randomized expected time using worst-case linear storage.

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

・ロト・日本・日本・日本・日本・日本

Algorithm MINIDISC(P)

Input. A set *P* of *n* points in the plane.

Output. The smallest enclosing disc for P.

- 1. Compute a random permutation p_1, \ldots, p_n of P.
- 2. Let D_2 be the smallest enclosing disc for $\{p_1, p_2\}$.

```
3. for i \leftarrow 3 to n
```

4. **do if**
$$p_i \in D_{i-1}$$

- 5. **then** $D_i \leftarrow D_{i-1}$
- 6. **else** $D_i \leftarrow \text{MINIDISCWITHPOINT}(\{p_1, \dots, p_{i-1}\}, p_i)$
- 7. return D_n

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

MINIDISCWITHPOINT(P, q)

Input. A set P of n points in the plane, and a point q such that there exists an enclosing disc for P with q on its boundary.

Output. The smallest enclosing disc for P with q on its boundary.

- 1. Compute a random permutation p_1, \ldots, p_n of *P*.
- 2. Let D_1 be the smallest disc with q and p_1 on its boundary.

3. for
$$j \leftarrow 2$$
 to n
4. do if $p_j \in D_{j-1}$
5. then $D_j \leftarrow D_{j-1}$
6. else $D_j \leftarrow \text{MINIDISCWITH2POINTS}(\{p_1, \dots, p_{j-1}\}, p_j, q)$
7. return D_n

Computational Geometry

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

MINIDISCWITH2POINTS(P, q_1, q_2)

Input. A set P of n points in the plane, and two points q_1 and q_2 such that there exists an enclosing disc for P with q_1 and q_2 on its boundary.

・ コット (雪) ・ (目) ・ 日)

Output. The smallest enclosing disc for P with q_1 and q_2 on its boundary.

1. Let D_0 be the smallest disc with q_1 and q_2 on its boundary.

```
2. for k \leftarrow 1 to n

3. do if p_k \in D_{k-1}

4. then D_k \leftarrow D_{k-1}

5. else D_k \leftarrow the disc with q_1, q_2, and p_k on its boundary

6. return D_n
```


Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

Smallest Enclosing Discs

・ロト・日本・日本・日本・日本・日本

Casting

Half-Plane Intersection

Incremental Linear Programming

Randomized Linear Programming

Unbounded Linear Programs

