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.

Computers play an important role in automated
manufacturing, both in the design phase and in the
construction phase.
CAD/CAM facilities are a vital part of any modern
factory.
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Introduction

.
Assumptions
..

.

. ..

.

.

We assume that the object to be constructed is
polyhedral.
We only consider molds of one piece, not molds
consisting of two or more pieces.
We only allow the object to be removed from the
mold by a single translation.
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.
we want to determine whether an object can be
manufactured by casting
..

.

. ..

.

.

we have to find a suitable mold for it!
We call an object castable if it can be removed from
its mold for at least one of these orientations.

.
Definition:..

.

. ..

.

.

top facet:
One obvious restriction on the orientation is that the
object must have a horizontal top facet.
We call a facet of P that is not the top facet an
ordinary facet. Every ordinary facet f has a
corresponding facet in the mold, which we denote by
f ′.
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Angles between 3D-vectors!

.

.

. ..

.

.

To get the angle between two vectors u and v, consider
the plane they span and pick the smaller angle between
the two in this plane. !
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A removability criterion

.

.

. ..

.

.

Let P be casted piece and d⃗ a direction.
P can be removed by a translation in direction d⃗ iff d⃗
makes an angle of at least 90◦ outward normal of
every ordinary facet of P .
Except the top-facet.

How do we find such a direction?
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Representing directions
.

.

. ..

.

.

We assume translations in the positive z-direction
only.
The direction of a vector (x, y, 1) is represented by
the point (x, y, 1) in the plane z = 1.
So, every point in the plane z = 1 now represents a unique direction.
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Finding a valid direction!

.

.

. ..

.

.

A direction d⃗ = (dx, dy, dz) makes an angle at least
90◦ with a outward normal n = (nx, ny, nz) of P iff the
dot product n⃗.d⃗ ≤ 0.
Notice that the inequality defines a half-plane on the
plane z = 1.
The line nxdx + nydy + nzdz = 0 splits the plane in
two parts, one of which contains all locally valid
directions in which P can be translated.
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.
Theorem (4.2)
..

.

. ..

.

.

Let P be a polyhedron with n facets. In O(n2) expected
time and using O(n) storage it can be decided whether P
is castable.Moreover, if P is castable, a mold and a valid
direction for removing P from it can be computed in the
same amount of time.
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Half-Plane Intersection

.

.

. ..

.

.

So, our practical problem has turned into the
geometric problem of computing the intersection of
half-planes.
A half-plane in the plane (Euclidean, 2D) is defined
by a linear constraint in two variables.
aix + biy ≤ 0

Given a bunch of half-planes, we consider the
problem of finding all points (x, y) that satisfy all
constraints.
The intersection of n half-planes is a convex polygonal region bounded by at most n edges.
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Examples of the intersection of half-planes
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Computing the intersection

.

.

. ..
.

.A Divide-and-Conquer algorithm is used:
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Computing the intersection

.

.

. ..

.

.

One version of IntersectConvexRegions was
actually presented in Chapter 2!

corollary 2.7 the Intersection of two polygons with n
vertices can be computed in O(nLogn+ kLogn)
times.
Some adjustment needed since we need to compute
unbounded regions(not simple polygons)
Also in our case ,k ≤ n since the region are convex.

T (n) =

{
O(1) ifn = 1

O(nLgn) + 2T (n2 ) ifn > 1
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Total Running time of Algorithm

.

.

. ..

.

.

There is in fact a faster version of
IntersectConvexRegions that run in O(n) time .
this implies that the complexity gets lowered from O(nlog2n) to O(nlogn)

this version is based on planeSweep.
while the sweep line is moved downward over the
regions using vertices as event point, we keep track
of the intersection with the boundaries of two regions.
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Plane Sweep Algorithm

.

.

. ..

.

.

To simplify the description of the algorithm, we shall
assume that there are no horizontal edges!
we move a sweep line downward over the plane, and
we maintain the edges of C1 and C2 ,intersecting
the sweep line.
C1 and C2 are ?
So:we simply have pointers left_edge_C1,
right_edge_C1,left_edge_C2, and right_edge_C2 to
them.
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New Plane Sweep Algorithm Object
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New Plane Sweep Algorithm Structure

.

.

. ..

.

.

1 Initialize.
2 Status of edges e.
3 Four functions needed.
4 The procedure that handles e will discover three

possible edges that C might have.
The edge with p as upper endpoint.
The edge with e ∩ left_edge_C2 as upper endpoint.
The edge with e ∩ right_edge_C2 as upper endpoint.
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Constant time to handle an edge

.
The intersection of two convex polygons can be
computed in time O(n)
..

.

. ..

.

.

We have to prove that it adds the half-planes defining
the edges of C in the right order.
Consider an edge of C, and let p be its upper
endpoint.Two case occurred?
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Plane Sweep Algorithm

.
Theorem (4.3)
..

.

. ..

.

.

The intersection of two convex polygonal regions in the
plane can be computed in O(n) time.
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.
corollary 4.4
..

.

. ..

.

.

The common intersection of a set of n half-planes in the
plane can be computed in O(nlogn) time and linear
storage

.
Finally
..

.

. ..

.

.

By Looping through all n facets we can solve the
castability Problem in O(n2logn) time.

.
But. . ...
.
. ..

.

.But is this the Best Time?
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Incremental Linear Programming

.

.

. ..

.

.

The intersection of half-plane gives us all valid
direction, but we just need one!
Finding Just One Direction can be Done using Linear
Programming.
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Linear Programming Status

.

.

. ..

.

.

H is a set of n two dimensional constraints.
fc⃗(p) = CxPx + CyPy gives objective function
GOAL find p ∈ R2 so that p ∈ ∩H and fc⃗(p) is
maximized.
Let C denote feasible region for (H, c⃗).
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Types of solutions

.

.

. ..

.

.

i The linear program is infeasible.
ii The feasible region is unbounded in direction c⃗.
iii The feasible region has an edge e whose outward

normal points in the direction c⃗.
iv If none of the preceding three cases applies, then

there is a unique solution, which is the vertex v of C
that is extreme in the direction c⃗.
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Adding Half-Planes

.

.

. ..

.

.

We Compute the Solution using an incremental algorithm
in which the constraint are considered one at a time;
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Adding Half-Planes

.
Lemma (4.5)
..

.

. ..

.

.

When considering another constraint (half-plane) the
optimal solution point can only be effected in two ways:
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Adding Half-Planes

.
Lemma (4.6)
..

.

. ..

.

.

The change in case(ii) can be computed in O(i) when
we consider constraint (half-plane) hi

Figure: Worst Case
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2DBOUNDEDLP

.

.

. ..

.

.

We can now describe the linear programming algorithm in
more detail. As above, we use li to denote the line that
bounds the half-plane hi .
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Adding Half-Planes

.
Lemma (4.7)
..

.

. ..

.

.

A solution can be computed in O(n2) time.

n∑
i=0

O(i)
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Randomized Linear Programming

.

.

. ..

.

.

There is a surprisingly simple way to reduce the time
complexity from O(n2) to O(n).
start by the permuting the input randomly!

This gets rid of the worst case!
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RANDOMPERMUTATION Algorithm
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.
Lemma (4.8)
..

.

. ..

.

.

The 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected
time using worst-case linear storage.

.
Why
..

.

. ..

.

.

RANDOMPERMUTATION is run in O(n) time.
Define Function xi for adding new plane to H.
So, total Time is

∑
O(i)Xi = O(n)
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Unbounded Linear Programs

.

.

. ..

.

.

In the preceding sections we avoided handling the case
of an unbounded linear program by adding two additional,
artificial constraints.
This is not always a suitable solution!

.
Lets first..

.

. ..

.

.

how we can recognize whether a given linear program
(H, c) is unbounded.

.

.

. ..

.

.

If we denote the rays starting point as p, and its direction
vector as d, we can parameterize ρ as follows:

ρ = {p+ λd⃗ : λ > 0}

.
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Unbounded Linear Programs

.
Lemma (4.9)
..

.

. ..

.

.

A linear program (H, c⃗) is unbounded if and only if there
is a vector d⃗ with d⃗.⃗c > 0 such that d⃗.η⃗(h) ≥ 0 for all h ∈ H
and the linear program (H ′, c⃗) is feasible, where
H ′ = h ∈ H : η⃗(h).d⃗ = 0.
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2DRANDOMIZEDLP Algorithm
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2DRANDOMIZEDLP Algorithm
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Unbounded Linear Programs

.
Theorem (4.10)
..

.

. ..

.

.

A 2-dimensional linear programming problem with n
constraints can be solved in O(n) randomized expected
time using worst-case linear storage.
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