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Preface

It is thirty-eight years since the The Finite Element Method in Structural and Continuum
Mechanics was first published. This book, which was the first dealing with the finite
element method, provided the basis from which many further developments occurred. The
expanding research and field of application of finite elements led to the second edition in
1971, the third in 1977, the fourth as two volumes in 1989 and 1991 and the fifth as three
volumes in 2000. The size of each of these editions expanded geometrically (from 272
pages in 1967 to the fifth edition of 1482 pages). This was necessary to do justice to a
rapidly expanding field of professional application and research. Even so, much filtering
of the contents was necessary to keep these editions within reasonable bounds.

In the present edition we have decided not to pursue the course of having three contiguous
volumes but rather we treat the whole work as an assembly of three separate works, each
one capable of being used without the others and each one appealing perhaps to a different
audience. Though naturally we recommend the use of the whole ensemble to people wishing
to devote much of their time and study to the finite element method.

In particular the first volume which was entitled The Finite Element Method: The Basis
is now renamed The Finite Element Method: Its Basis and Fundamentals. This volume
has been considerably reorganized from the previous one and is now, we believe, better
suited for teaching fundamentals of the finite element method. The sequence of chapters
has been somewhat altered and several examples of worked problems have been added to
the text. A set of problems to be worked out by students has also been provided.

In addition to its previous content this book has been considerably enlarged by including
more emphasis on use of higher order shape functions in formulation of problems and a
new chapter devoted to the subject of automatic mesh generation. A beginner in the finite
element field will find very rapidly that much of the work of solving problems consists of
preparing a suitable mesh to deal with the whole problem and as the size of computers has
seemed to increase without limits the size of problems capable of being dealt with is also
increasing. Thus, meshes containing sometimes more than several million nodes have to be
prepared with details of the material interfaces, boundaries and loads being well specified.
There are many books devoted exclusively to the subject of mesh generation but we feel
that the essence of dealing with this difficult problem should be included here for those
who wish to have a complete ‘encyclopedic’ knowledge of the subject.



xiv Preface

The chapter on computational methods is much reduced by transferring the computer
source program and user instructions to a web site.† This has the very substantial advantage
of not only eliminating errors in program and manual but also in ensuring that the readers
have the benefit of the most recent version of the program available at all times.

The two further volumes form again separate books and here we feel that a completely
different audience will use them. The first of these is entitled The Finite Element Method
in Solid and Structural Mechanics and the second is a text entitled The Finite Element
Method in Fluid Dynamics. Each of these two volumes is a standalone text which provides
the full knowledge of the subject for those who have acquired an introduction to the finite
element method through other texts. Of course the viewpoint of the authors introduced in
this volume will be continued but it is possible to start at a different point.

We emphasize here the fact that all three books stress the importance of considering the
finite element method as a unique and whole basis of approach and that it contains many of
the other numerical analysis methods as special cases. Thus, imagination and knowledge
should be combined by the readers in their endeavours.

The authors are particularly indebted to the International Center of Numerical Methods in
Engineering (CIMNE) in Barcelona who have allowed their pre- and post-processing code
(GiD) to be accessed from the web site. This allows such difficult tasks as mesh generation
and graphic output to be dealt with efficiently. The authors are also grateful to Professors
Eric Kasper and Jose Luis Perez-Aparicio for their careful scrutiny of the entire text and
Drs Joaquim Peiró and C.K. Lee for their review of the new chapter on mesh generation.

Resources to accompany this book
Worked solutions to selected problems in this book are available online for teachers and
lecturers who either adopt or recommend the text. Please visit http://books.elsevier.com/
manuals and follow the registration and log in instructions on screen.

OCZ, RLT and JZZ

† Complete source code and user manual for program FEAPpv may be obtained at no cost from the publisher’s
web page: http://books.elsevier.com/companions or from the authors’ web page: http://www.ce.berkeley.edu/˜rlt





1

The standard discrete system and
origins of the finite element

method

1.1 Introduction

The limitations of the human mind are such that it cannot grasp the behaviour of its complex
surroundings and creations in one operation. Thus the process of subdividing all systems
into their individual components or ‘elements’, whose behaviour is readily understood, and
then rebuilding the original system from such components to study its behaviour is a natural
way in which the engineer, the scientist, or even the economist proceeds.

In many situations an adequate model is obtained using a finite number of well-defined
components. We shall term such problems discrete. In others the subdivision is continued
indefinitely and the problem can only be defined using the mathematical fiction of an
infinitesimal. This leads to differential equations or equivalent statements which imply an
infinite number of elements. We shall term such systems continuous.

With the advent of digital computers, discrete problems can generally be solved readily
even if the number of elements is very large. As the capacity of all computers is finite,
continuous problems can only be solved exactly by mathematical manipulation. The
available mathematical techniques for exact solutions usually limit the possibilities to over-
simplified situations.

To overcome the intractability of realistic types of continuous problems (continuum),
various methods of discretization have from time to time been proposed by engineers, sci-
entists and mathematicians. All involve an approximation which, hopefully, approaches in
the limit the true continuum solution as the number of discrete variables increases.

The discretization of continuous problems has been approached differently by mathemati-
cians and engineers. Mathematicians have developed general techniques applicable directly
to differential equations governing the problem, such as finite difference approximations,1–3

various weighted residual procedures,4, 5 or approximate techniques for determining the
stationarity of properly defined ‘functionals’.6 The engineer, on the other hand, often ap-
proaches the problem more intuitively by creating an analogy between real discrete elements
and finite portions of a continuum domain. For instance, in the field of solid mechanics
McHenry,7 Hrenikoff,8 Newmark,9 and Southwell2 in the 1940s, showed that reasonably
good solutions to an elastic continuum problem can be obtained by replacing small por-
tions of the continuum by an arrangement of simple elastic bars. Later, in the same context,
Turner et al.10 showed that a more direct, but no less intuitive, substitution of properties
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can be made much more effectively by considering that small portions or ‘elements’ in a
continuum behave in a simplified manner.

It is from the engineering ‘direct analogy’ view that the term ‘finite element’ was born.
Clough11 appears to be the first to use this term, which implies in it a direct use of a
standard methodology applicable to discrete systems (see also reference 12 for a history
on early developments). Both conceptually and from the computational viewpoint this is
of the utmost importance. The first allows an improved understanding to be obtained; the
second offers a unified approach to the variety of problems and the development of standard
computational procedures.

Since the early 1960s much progress has been made, and today the purely mathematical
and ‘direct analogy’approaches are fully reconciled. It is the object of this volume to present
a view of the finite element method as a general discretization procedure of continuum
problems posed by mathematically defined statements.

In the analysis of problems of a discrete nature, a standard methodology has been
developed over the years. The civil engineer, dealing with structures, first calculates force–
displacement relationships for each element of the structure and then proceeds to assemble
the whole by following a well-defined procedure of establishing local equilibrium at each
‘node’ or connecting point of the structure. The resulting equations can be solved for the
unknown displacements. Similarly, the electrical or hydraulic engineer, dealing with a
network of electrical components (resistors, capacitances, etc.) or hydraulic conduits, first
establishes a relationship between currents (fluxes) and potentials for individual elements
and then proceeds to assemble the system by ensuring continuity of flows.

All such analyses follow a standard pattern which is universally adaptable to discrete
systems. It is thus possible to define a standard discrete system, and this chapter will be
primarily concerned with establishing the processes applicable to such systems. Much of
what is presented here will be known to engineers, but some reiteration at this stage is
advisable. As the treatment of elastic solid structures has been the most developed area
of activity this will be introduced first, followed by examples from other fields, before
attempting a complete generalization.

The existence of a unified treatment of ‘standard discrete problems’ leads us to the first
definition of the finite element process as a method of approximation to continuum problems
such that

(a) the continuum is divided into a finite number of parts (elements), the behaviour of
which is specified by a finite number of parameters, and

(b) the solution of the complete system as an assembly of its elements follows precisely
the same rules as those applicable to standard discrete problems.

The development of the standard discrete system can be followed most closely through
the work done in structural engineering during the nineteenth and twentieth centuries. It
appears that the ‘direct stiffness process’ was first introduced by Navier in the early part
of the nineteenth century and brought to its modern form by Clebsch13 and others. In the
twentieth century much use of this has been made and Southwell,14 Cross15 and others have
revolutionized many aspects of structural engineering by introducing a relaxation iterative
process. Just before the Second World War matrices began to play a larger part in casting
the equations and it was convenient to restate the procedures in matrix form. The work of
Duncan and Collar,16–18 Argyris,19 Kron20 and Turner10 should be noted. A thorough study
of direct stiffness and related methods was recently conducted by Samuelsson.21
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It will be found that most classical mathematical approximation procedures as well as
the various direct approximations used in engineering fall into this category. It is thus
difficult to determine the origins of the finite element method and the precise moment of
its invention.

Table 1.1 shows the process of evolution which led to the present-day concepts of finite
element analysis. A historical development of the subject of finite element methods has
been presented by the first author in references 34–36. Chapter 3 will give, in more detail,
the mathematical basis which emerged from these classical ideas.1, 22–27, 29, 30, 32

1.2 The structural element and the structural system

To introduce the reader to the general concept of discrete systems we shall first consider a
structural engineering example with linear elastic behaviour.

Figure 1.1 represents a two-dimensional structure assembled from individual components
and interconnected at the nodes numbered 1 to 6. The joints at the nodes, in this case, are
pinned so that moments cannot be transmitted.

As a starting point it will be assumed that by separate calculation, or for that matter
from the results of an experiment, the characteristics of each element are precisely known.
Thus, if a typical element labelled (1) and associated with nodes 1, 2, 3 is examined, the
forces acting at the nodes are uniquely defined by the displacements of these nodes, the
distributed loading acting on the element ( p), and its initial strain. The last may be due to
temperature, shrinkage, or simply an initial ‘lack of fit’. The forces and the corresponding

Table 1.1 History of approximate methods

ENGINEERING MATHEMATICS

Trial
functions

Finite
differences

Rayleigh 187022

Ritz 190823
Richardson 19101

Liebman 191824

Southwell 19462

−−−−−−−−−−−−−−−−−−−−→

Variational
methods

Weighted
residuals

Rayleigh 187022

Ritz 190823 −−−−−→

−−−−−→

Gauss 179525

Galerkin 191526

Biezeno–Koch 192327

Structural
analogue

substitution

Piecewise
continuous

trial functions
Hrenikoff 19418

McHenry 194328

Newmark 19499−−−→

Courant 194329

Prager–Synge 194730

Argyris 195519

Zienkiewicz 196431−−−−−−−−−−−−→

Direct
continuum
elements

−−−−−−−−−−−−→

−−−−−−−−−−−−→

Variational
finite

differences

Turner et al. 195610 Varga 196232

Wilkins 196433

PRESENT-DAY
FINITE ELEMENT METHOD
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Fig. 1.1 A typical structure built up from interconnected elements.

displacements are defined by appropriate components (U , V and u, v) in a common co-
ordinate system (x, y).

Listing the forces acting on all the nodes (three in the case illustrated) of the element (1)
as a matrix† we have

q1 =

⎧⎪⎨
⎪⎩

q1
1

q1
2

q1
3

⎫⎪⎬
⎪⎭ q1

1 =
{
U1

V1

}
, etc. (1.1)

and for the corresponding nodal displacements

u1 =

⎧⎪⎨
⎪⎩

u1
1

u1
2

u1
3

⎫⎪⎬
⎪⎭ u1

1 =
{
u1

v1

}
, etc. (1.2)

Assuming linear elastic behaviour of the element, the characteristic relationship will
always be of the form

q1 = K1u1 + f1 (1.3)

in which f1 represents the nodal forces required to balance any concentrated or distributed
loads acting on the element. The first of the terms represents the forces induced by dis-
placement of the nodes. The matrix Ke is known as the stiffness matrix for the element (e).

Equation (1.3) is illustrated by an example of an element with three nodes with the
interconnection points capable of transmitting only two components of force. Clearly, the

†A limited knowledge of matrix algebra will be assumed throughout this book. This is necessary for reasonable
conciseness and forms a convenient book-keeping form. For readers not familiar with the subject a brief appendix
(Appendix A) is included in which sufficient principles of matrix algebra are given to follow the development
intelligently. Matrices and vectors will be distinguished by bold print throughout.
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same arguments and definitions will apply generally. An element (2) of the hypothetical
structure will possess only two points of interconnection; others may have quite a large
number of such points. Quite generally, therefore,

qe =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qe1
qe2
...

qem

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and ue =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1
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...

um

⎫⎪⎪⎪⎬
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(1.4)

with each qea and ua possessing the same number of components or degrees of freedom.
The stiffness matrices of the element will clearly always be square and of the form

Ke =

⎡
⎢⎢⎢⎢⎣

Ke
11 Ke

12 · · · Ke
1m

Ke
21

. . .
...

...
...

...

Ke
m1 · · · · · · Ke

mm

⎤
⎥⎥⎥⎥⎦ (1.5)

in which Ke
11, Ke

12, etc., are submatrices which are again square and of the size l × l,
where l is the number of force and displacement components to be considered at each node.
The element properties were assumed to follow a simple linear relationship. In principle,
similar relationships could be established for non-linear materials, but discussion of such
problems will be postponed at this stage. In most cases considered in this volume the
element matrices Ke will be symmetric.

1.3 Assembly and analysis of a structure

Consider again the hypothetical structure of Fig. 1.1. To obtain a complete solution the two
conditions of

(a) displacement compatibility and
(b) equilibrium

have to be satisfied throughout.
Any system of nodal displacements u:

u =

⎧⎪⎨
⎪⎩

u1
...

un

⎫⎪⎬
⎪⎭ (1.6)

listed now for the whole structure in which all the elements participate, automatically
satisfies the first condition.

As the conditions of overall equilibrium have already been satisfied within an element,
all that is necessary is to establish equilibrium conditions at the nodes (or assembly points)
of the structure. The resulting equations will contain the displacements as unknowns, and
once these have been solved the structural problem is determined. The internal forces in
elements, or the stresses, can easily be found by using the characteristics established a
priori for each element.
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If now the equilibrium conditions of a typical node, a, are to be established, the sum of the
component forces contributed by the elements meeting at the node are simply accumulated.
Thus, considering all the force components we have

m∑
e=1

qea = q1
a + q2

a + · · · = 0 (1.7)

in which q1
a is the force contributed to node a by element 1, q2

a by element 2, etc. Clearly,
only the elements which include point a will contribute non-zero forces, but for conciseness
in notation all the elements are included in the summation.

Substituting the forces contributing to node a from the definition (1.3) and noting that
nodal variables ua are common (thus omitting the superscript e), we have

( m∑
e=1

Ke
a1

)
u1 +

( m∑
e=1

Ke
a2

)
u2 + · · · +

m∑
e=1

f ei = 0 (1.8)

The summation again only concerns the elements which contribute to node a. If all such
equations are assembled we have simply

Ku + f = 0 (1.9)

in which the submatrices are

Kab =
m∑
e=1

Ke
ab and fa =

m∑
e=1

f ea (1.10)

with summations including all elements. This simple rule for assembly is very convenient
because as soon as a coefficient for a particular element is found it can be put immediately
into the appropriate ‘location’ specified in the computer. This general assembly process
can be found to be the common and fundamental feature of all finite element calculations
and should be well understood by the reader.

If different types of structural elements are used and are to be coupled it must be remem-
bered that at any given node the rules of matrix summation permit this to be done only if
these are of identical size. The individual submatrices to be added have therefore to be built
up of the same number of individual components of force or displacement.

1.4 The boundary conditions

The system of equations resulting from Eq. (1.9) can be solved once the prescribed support
displacements have been substituted. In the example of Fig. 1.1, where both components
of displacement of nodes 1 and 6 are zero, this will mean the substitution of

u1 = u6 =
{

0
0

}

which is equivalent to reducing the number of equilibrium equations (in this instance 12) by
deleting the first and last pairs and thus reducing the total number of unknown displacement
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components to eight. It is, nevertheless, often convenient to assemble the equation according
to relation (1.9) so as to include all the nodes.

Clearly, without substitution of a minimum number of prescribed displacements to pre-
vent rigid body movements of the structure, it is impossible to solve this system, because
the displacements cannot be uniquely determined by the forces in such a situation. This
physically obvious fact will be interpreted mathematically as the matrix K being singular,
i.e., not possessing an inverse. The prescription of appropriate displacements after the
assembly stage will permit a unique solution to be obtained by deleting appropriate rows
and columns of the various matrices.

If all the equations of a system are assembled, their form is

K11u1 + K12u2 + · · · + f1 = 0

K21u1 + K22u2 + · · · + f2 = 0

etc.

(1.11)

and it will be noted that if any displacement, such as u1 = ū1, is prescribed then the
total ‘force’ f1 cannot be simultaneously specified and remains unknown. The first equa-
tion could then be deleted and substitution of known values ū1 made in the remaining
equations.

When all the boundary conditions are inserted the equations of the system can be solved
for the unknown nodal displacements and the internal forces in each element obtained.

1.5 Electrical and fluid networks

Identical principles of deriving element characteristics and of assembly will be found in
many non-structural fields. Consider, for instance, the assembly of electrical resistances
shown in Fig. 1.2.

If a typical resistance element, ab, is isolated from the system we can write, by Ohm’s
law, the relation between the currents (J ) entering the element at the ends and the end
voltages (V ) as

J ea = 1

re
(Va − Vb) and J eb = 1

re
(Vb − Va) (1.12)

or in matrix form {
J ea
J eb

}
= 1

re

[
1 −1

−1 1

]{
Va

Vb

}

which in our standard form is simply

Je = KeVe (1.13)

This form clearly corresponds to the stiffness relationship (1.3); indeed if an external
current were supplied along the length of the element the element ‘force’ terms could also
be found.

To assemble the whole network the continuity of the voltage (V ) at the nodes is assumed
and a current balance imposed there. With no external input of current at node a we must
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Fig. 1.2 A network of electrical resistances.

have, with complete analogy to Eq. (1.8),

n∑
b=1

m∑
e=1

Ke
abVb = 0 (1.14)

where the second summation is over all ‘elements’, and once again for all the nodes

KV = 0 (1.15)

in which

Kab =
m∑
e=1

Ke
ab

Matrix notation in the latter has been dropped since the quantities such as voltage and
current, and hence also the coefficients of the ‘stiffness’ matrix, are scalars.

If the resistances were replaced by fluid-carrying pipes in which a laminar regime per-
tained, an identical formulation would once again result, with V standing for the hydraulic
head and J for the flow.

For pipe networks that are usually encountered, however, the linear laws are in general
not valid and non-linear equations must be solved.

Finally it is perhaps of interest to mention the more general form of an electrical net-
work subject to an alternating current. It is customary to write the relationships between
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the current and voltage in complex arithmetic form with the resistance being replaced by
complex impedance. Once again the standard forms of (1.13)–(1.15) will be obtained but
with each quantity divided into real and imaginary parts.

Identical solution procedures can be used if the equality of the real and imaginary quan-
tities is considered at each stage. Indeed with modern digital computers it is possible to use
standard programming practice, making use of facilities available for dealing with complex
numbers. Reference to some problems of this class will be made in the sections dealing
with vibration problems in Chapter 15.

1.6 The general pattern

An example will be considered to consolidate the concepts discussed in this chapter. This
is shown in Fig. 1.3(a) where five discrete elements are interconnected. These may be of
structural, electrical, or any other linear type. In the solution:

The first step is the determination of element properties from the geometric material and
loading data. For each element the ‘stiffness matrix’ as well as the corresponding ‘nodal

1 2

3 4 5

6
7

8

1
2 3

4 5

12 3 4 5

u++++

+ + + +=

a

{ f}[K ]

=

BAND
(c)

(b)

(a)

Fig. 1.3 The general pattern.
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loads’ are found in the form of Eq. (1.3). Each element shown in Fig. 1.3(a) has its own
identifying number and specified nodal connection. For example:

element 1 connection 1 3 4
2 1 4 2
3 2 5
4 3 6 7 4
5 4 7 8 5

Assuming that properties are found in global coordinates we can enter each ‘stiffness’
or ‘force’ component in its position of the global matrix as shown in Fig. 1.3(b). Each
shaded square represents a single coefficient or a submatrix of type Kab if more than one
quantity is being considered at the nodes. Here the separate contribution of each element
is shown and the reader can verify the position of the coefficients. Note that the various
types of ‘elements’ considered here present no difficulty in specification. (All ‘forces’,
including nodal ones, are here associated with elements for simplicity.)

The second step is the assembly of the final equations of the type given by Eq. (1.9). This
is accomplished according to the rule of Eq. (1.10) by simple addition of all numbers in
the appropriate space of the global matrix. The result is shown in Fig. 1.3(c) where the
non-zero coefficients are indicated by shading.

If the matrices are symmetric only the half above the diagonal shown needs, in fact,
to be found.

All the non-zero coefficients are confined within a band or profile which can be calcu-
lated a priori for the nodal connections. Thus in computer programs only the storage of
the elements within the profile (or sparse structure) is necessary, as shown in Fig. 1.3(c).
Indeed, if K is symmetric only the upper (or lower) half need be stored.

The third step is the insertion of prescribed boundary conditions into the final assembled
matrix, as discussed in Sec. 1.3. This is followed by the final step.

The final step solves the resulting equation system. Here many different methods can
be employed, some of which are summarized in Appendix C. The general subject of
equation solving, though extremely important, is in general beyond the scope of this
book.

The final step discussed above can be followed by substitution to obtain stresses, currents,
or other desired output quantities. All operations involved in structural or other network
analysis are thus of an extremely simple and repetitive kind. We can now define the standard
discrete system as one in which such conditions prevail.

1.7 The standard discrete system

In the standard discrete system, whether it is structural or of any other kind, we find that:

1. A set of discrete parameters, say ua , can be identified which describes simultaneously
the behaviour of each element, e, and of the whole system. We shall call these the system
parameters.
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2. For each element a set of quantities qea can be computed in terms of the system parameters
ua . The general function relationship can be non-linear, for example

qea = qea(u) (1.16)

but in many cases a linear form exists giving

qea = Ke
a1u1 + Ke

a2u2 + · · · + f ea (1.17)

3. The final system equations are obtained by a simple addition

ra =
m∑
e=1

qea = 0 (1.18)

where ra are system quantities (often prescribed as zero). In the linear case this results
in a system of equations

Ku + f = 0 = 0 (1.19)

such that

Kab =
m∑
e=1

Ke
ab and fa =

m∑
e=1

f ea (1.20)

from which the solution for the system variables u can be found after imposing necessary
boundary conditions.

The reader will observe that this definition includes the structural, hydraulic, and elec-
trical examples already discussed. However, it is broader. In general neither linearity nor
symmetry of matrices need exist – although in many problems this will arise naturally.
Further, the narrowness of interconnections existing in usual elements is not essential.

While much further detail could be discussed (we refer the reader to specific books for
more exhaustive studies in the structural context37, 38), we feel that the general exposé given
here should suffice for further study of this book.

Only one further matter relating to the change of discrete parameters need be mentioned
here. The process of so-called transformation of coordinates is vital in many contexts and
must be fully understood.

1.8 Transformation of coordinates

It is often convenient to establish the characteristics of an individual element in a coordinate
system which is different from that in which the external forces and displacements of the
assembled structure or system will be measured. A different coordinate system may, in fact,
be used for every element, to ease the computation. It is a simple matter to transform the
coordinates of the displacement and force components of Eq. (1.3) to any other coordinate
system. Clearly, it is necessary to do so before an assembly of the structure can be attempted.

Let the local coordinate system in which the element properties have been evaluated be
denoted by a prime suffix and the common coordinate system necessary for assembly have
no embellishment. The displacement components can be transformed by a suitable matrix
of direction cosines L as

u′ = Lu (1.21)
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As the corresponding force components must perform the same amount of work in either
system†

qTu = q′Tu′ (1.22)

On inserting (1.21) we have
qTu = q′TLu

or
q = LTq′ (1.23)

The set of transformations given by (1.21) and (1.23) is called contravariant.

To transform ‘stiffnesses’which may be available in local coordinates to global ones note
that if we write

q′ = K′u′ (1.24)

then by (1.23), (1.24), and (1.21)
q = LTK′Lu

or in global coordinates
K = LTK′L (1.25)

In many complex problems an external constraint of some kind may be imagined, en-
forcing the requirement (1.21) with the number of degrees of freedom of u and u′ being
quite different. Even in such instances the relations (1.22) and (1.23) continue to be valid.

An alternative and more general argument can be applied to many other situations of
discrete analysis. We wish to replace a set of parameters u in which the system equations
have been written by another one related to it by a transformation matrix T as

u = Tv (1.26)

In the linear case the system equations are of the form

Ku = −f (1.27)

and on the substitution we have
KTv = −f (1.28)

The new system can be premultiplied simply by TT, yielding

(TTKT)v = TT − TTf (1.29)

which will preserve the symmetry of equations if the matrix K is symmetric. However,
occasionally the matrix T is not square and expression (1.26) represents in fact an approx-
imation in which a larger number of parameters u is constrained. Clearly the system of
equations (1.28) gives more equations than are necessary for a solution of the reduced set
of parameters v, and the final expression (1.29) presents a reduced system which in some
sense approximates the original one.

We have thus introduced the basic idea of approximation, which will be the subject of
subsequent chapters where infinite sets of quantities are reduced to finite sets.

†With ( )T standing for the transpose of the matrix.
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1.9 Problems

1.1 A simple fluid network to transport water is shown in Fig. 1.4. Each ‘element’ of the
network is modelled in terms of the flow, J, and head, V, which are approximated by
the linear relation

Je = −KeVe

where Ke is the coefficient array for element (e). The individual terms in the flow
vector denote the total amount of flow entering (+) or leaving (−) each end point. The
properties of the elements are given by

Ke = ce

⎡
⎣ 3 −2 −1

−2 4 −2
−1 −2 3

⎤
⎦

for elements 1 and 4, and for elements 2 and 3 by

Ke = ce
[

1 −1
−1 1

]

where ce is an element related parameter. The system is operating with a known head
of 100 m at node 1 and 30 m at node 6. At node 2, 30 cubic metres of water per hour
are being used and at node 4, 10 cubic metres per hour.
(a) For all ce = 1, assemble the total matrix from the individual elements to give

J = K V

N.B. J contains entries for the specified usage and connection points.
(b) Impose boundary conditions by modifying J and K such that the known heads at

nodes 1 and 6 are recovered.
(c) Solve the equations for the heads at nodes 2 to 5. (Result at node 4 should be

V4 = 30.8133 m.)
(d) Determine the flow entering and leaving each element.

1.2 A plane truss may be described as a standard discrete problem by expressing the char-
acteristics for each member in terms of end displacements and forces. The behaviour
of the elastic member shown in Fig. 1.5 with modulus E, cross-section A and length L
is given by

q′ = K′
e u′

1

2

4

6

(1)

(2)

(3)

(4)

5

3

Fig. 1.4 Fluid network for Problem 1.1.
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where

q′ =
{
U ′

1
U ′

2

}
; u′ =

{
u′

1
u′

2

}
and K′

e = EA

L

[
1 −1

−1 1

]

To obtain the final assembled matrices for a standard discrete problem it is necessary
to transform the behaviour to a global frame using Eqs 1.23 and 1.25 where

L =
[

cos θ sin θ 0 0
0 0 cos θ sin θ

]
; q =

⎧⎪⎪⎨
⎪⎪⎩

U1

V1

U2

V2

⎫⎪⎪⎬
⎪⎪⎭

and u =

⎧⎪⎪⎨
⎪⎪⎩

u1

v1

u2

v2

⎫⎪⎪⎬
⎪⎪⎭

(a) Compute relations for q and K in terms of L, q′ and K′
e.

(b) If the numbering for the end nodes is reversed what is the final form for K compared
to that given in (a)? Verify your answer when θ = 30o.

1.3 A plane truss has nodes numbered as shown in Fig. 1.6(a).
(a) Use the procedure shown in Fig. 1.3 to define the non-zero structure of the coefficient

matrix K. Compute the maximum bandwidth.
(b) Determine the non-zero structure of K for the numbering of nodes shown in 1.6(b).

Compute the maximum bandwidth.
Which order produces the smallest band?

1.4 Write a small computer program (e.g., using MATLAB39) to solve the truss problem
shown in Fig. 1.6(b). Let the total span of the truss be 2.5 m and the height 0.8 m and use
steel as the property for each member with E = 200 GPa and A = 0.001 m2. Restrain
node 1 in both the u and v directions and the right bottom node in the v direction only.
Apply a vertical load of 100 N at the position of node 6 shown in Fig. 1.6(b). Determine
the maximum vertical displacement at any node. Plot the undeformed and deformed
position of the truss (increase the magnitude of displacements to make the shape visible
on the plot).

You can verify your result using the program FEAPpv available at the publisher’s
web site (see Chapter 18).

1.5 An axially loaded elastic bar has a variable cross-section and lengths as shown in
Fig. 1.7(a). The problem is converted into a standard discrete system by considering
each prismatic section as a separate member. The array for each member segment is
given as

qe = Keue

x (u,U )

y (v,V ) x 9

y 9

u 92

u19

1

θ

2

u
(b) Displacements(a) Truss member description

q

v
u9

Fig. 1.5 Truss member for Problem 1.2.
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where

Ke = EAe

h

[
1 −1

−1 1

]
qe =

{
qee
qee+1

}
and ue =

{
ue
ue+1

}

Equilibrium for the standard discrete problem at joint e is obtained by combining results
from segment e − 1 and e as

qe−1
e + qee + Ue = 0

where Ue is any external force applied to a joint. Boundary conditions are applied for
any joint at which the value of ue is known a priori.

Solve the problem shown in Fig. 1.7(b) for the joint displacements using the data
E1 = E2 = E3 = 200 GPa,A1 = 25 cm2,A2 = 20 cm2,A3 = 12 cm2,L1 = 37.5 cm,
L2 = 25.0 cm, L3 = 12.5 cm, P2 = 10 kN, P3 = −3.5 kN and P4 = 6 kN.

1.6 Solve Problem 1.5 for the boundary conditions and loading shown in Fig. 1.7(c). Let
E1 = E2 = E3 = 200 GPa,A1 = 30 cm2,A2 = 20 cm2,A3 = 10 cm2,L1 = 37.5 cm,
L2 = 30.0 cm, L3 = 25.0 cm, P2 = −10 kN and P3 = 3.5 kN.

1.7 A tapered bar is loaded by an end loadP and a uniform loading b as shown in Fig. 1.8(a).
The area varies as A(x) = Ax/L when the origin of coordinates is located as shown
in the figure.

The problem is converted into a standard discrete system by dividing it into equal
length segments of constant area as shown in Fig. 1.8(b). The array for each segment
is determined from

qe = Keue + f e

1 6

10

2 3 4 5

7 8 9

1 10

9

2 4 6

(a)

(b)

8

3 5 7

Fig. 1.6 Truss for Problems 1.3 and 1.4.
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u1 u2 u3 u4e=1 e=2 e=3

L1 L2 L3

E1,A1 E2,A2 E3,A3

u1=0 P2 P3 P4

u1=0 P2 P3 u4=0

(a) Bar geometry

(b) Problem 1.5

(c) Problem 1.6

Fig. 1.7 Elastic bars. Problems 1.5 and 1.6.

x

y

L

2A
P b

L

A

u1 u2 u3 u4 u5=0

h=L /4

e=1 e=2 e=3 e=4

(a) Tapered bar geometry (b) Approximation by 4 segments

Fig. 1.8 Tapered bar. Problem 1.7.

where Ke and ue are defined in Problem 1.5 and

f e = 1
2 b h

{
1
1

}

For the properties L = 100 cm, A = 2 cm2, E = 104 kN/cm2, P = 2 kN, b =
−0.25 kN/cm and u(2L) = 0, the displacement from the solution of the differential
equation is u(L) = −0.03142513 cm.

Write a small computer program (e.g., using MATLAB39) that solves the problem
for the case where e = 1, 2, 4, 8, · · · segments. Continue the solution until the absolute
error in the tip displacement is less than 10−5 cm (let error be E = |u(L)− u1| where
u1 is the numerical solution at the end).



References 17

References

1. L.F. Richardson. The approximate arithmetical solution by finite differences of physical prob-
lems. Trans. Roy. Soc. (London), A210:307–357, 1910.

2. R.V. Southwell. Relaxation Methods in Theoretical Physics. Clarendon Press, Oxford, 1st
edition, 1946.

3. D.N. de G. Allen. Relaxation Methods. McGraw-Hill, London, 1955.
4. S. Crandall. Engineering Analysis. McGraw-Hill, New York, 1956.
5. B.A. Finlayson. The Method of Weighted Residuals and Variational Principles. Academic Press,

New York, 1972.
6. K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press, New York, 3rd

edition, 1982.
7. D. McHenry. A lattice analogy for the solution of plane stress problems. J. Inst. Civ. Eng.,

21:59–82, 1943.
8. A. Hrenikoff. Solution of problems in elasticity by the framework method. J. Appl. Mech.,

ASME, A8:169–175, 1941.
9. N.M. Newmark. Numerical methods of analysis in bars, plates and elastic bodies. In L.E.

Grinter, editor, Numerical Methods in Analysis in Engineering. Macmillan, New York, 1949.
10. M.J. Turner, R.W. Clough, H.C. Martin, and L.J. Topp. Stiffness and deflection analysis of

complex structures. J. Aero. Sci., 23:805–823, 1956.
11. R.W. Clough. The finite element method in plane stress analysis. In Proc. 2nd ASCE Conf. on

Electronic Computation, Pittsburgh, Pa., Sept. 1960.
12. R.W. Clough. Early history of the finite element method from the view point of a pioneer. Int.

J. Numer. Meth. Eng., 60:283–287, 2004.
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A direct physical approach to
problems in elasticity: plane stress

2.1 Introduction

The process of approximating the behaviour of a continuum by ‘finite elements’ which
behave in a manner similar to the real, ‘discrete’, elements described in the previous chapter
can be introduced through the medium of particular physical applications or as a general
mathematical concept. We have chosen here to follow the first path, narrowing our view to
a set of problems associated with structural mechanics which historically were the first to
which the finite element method was applied. In Chapter 3 we shall generalize the concepts
and show that the basic ideas are widely applicable.

In many phases of engineering the solution of stress and strain distributions in elastic
continua is required. Special cases of such problems may range from two-dimensional
plane stress or strain distributions, axisymmetric solids, plate bending, and shells, to fully
three-dimensional solids. In all cases the number of interconnections between any ‘finite
element’ isolated by some imaginary boundaries and the neighbouring elements is con-
tinuous and therefore infinite. It is difficult to see at first glance how such problems may
be discretized in the same manner as was described in the preceding chapter for simpler
systems. The difficulty can be overcome (and the approximation made) in the following
manner:

1. The continuum is separated by imaginary lines or surfaces into a number of ‘finite
elements’.

2. The elements are assumed to be interconnected at a discrete number of nodal points
situated on their boundaries and occasionally in their interior. The displacements of
these nodal points will be the basic unknown parameters of the problem, just as in
simple, discrete, structural analysis.

3. A set of functions is chosen to define uniquely the state of displacement within each
‘finite element’ and on its boundaries in terms of its nodal displacements.

4. The displacement functions now define uniquely the state of strain within an element in
terms of the nodal displacements. These strains, together with any initial strains and the
constitutive properties of the material, define the state of stress throughout the element
and, hence, also on its boundaries.

5. A system of ‘equivalent forces’concentrated at the nodes and equilibrating the boundary
stresses and any distributed loads is determined, resulting in a stiffness relationship
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of the form of Eq. (1.3). The determination of these equivalent forces is done most
conveniently and generally using the principle of virtual work which is a particular
mathematical relation known as a weak form of the problem.

Once this stage has been reached the solution procedure can follow the standard discrete
system pattern described in Chapter 1.

Clearly a series of approximations has been introduced. First, it is not always easy to
ensure that the chosen displacement functions will satisfy the requirement of displacement
continuity between adjacent elements. Thus, the compatibility condition on such lines may
be violated (though within each element it is obviously satisfied due to the uniqueness of
displacements implied in their continuous representation). Second, by concentrating the
equivalent forces at the nodes, equilibrium conditions are satisfied in the overall sense only.
Local violation of equilibrium conditions within each element and on its boundaries will
usually arise.

The choice of element shape and of the form of the displacement function for specific
cases leaves many opportunities for the ingenuity and skill of the analyst to be employed,
and obviously the degree of approximation which can be achieved will strongly depend on
these factors.

The approach outlined here is known as the displacement formulation.1, 2

The use of the principle of virtual work (weak form) is extremely convenient and pow-
erful. Here it has only been justified intuitively though in the next chapter we shall see its
mathematical origins. However, we will also show the determination of these equivalent
forces can be done by minimizing the total potential energy. This is applicable to situa-
tions where elasticity predominates and the behaviour is reversible. While the virtual work
form is always valid, the principle of minimum potential energy is not and care has to be
taken. The recognition of the equivalence of the finite element method to a minimization
process was late.2, 3 However, Courant4 in 1943† and Prager and Synge5 in 1947 proposed
minimizing methods that are in essence identical.

This broader basis of the finite element method allows it to be extended to other con-
tinuum problems where a variational formulation is possible. Indeed, general procedures
are now available for a finite element discretization of any problem defined by a properly
constituted set of differential equations. Such generalizations will be discussed in Chapter 3,
and throughout the book application to structural and some non-structural problems will
be made. It will be found that the process described in this chapter is essentially an ap-
plication of trial-function and Galerkin-type approximations to the particular case of solid
mechanics.

2.2 Direct formulation of finite element characteristics

The ‘prescriptions’ for deriving the characteristics of a ‘finite element’ of a continuum,
which were outlined in general terms, will now be presented in more detailed mathematical
form.

† It appears that Courant had anticipated the essence of the finite element method in general, and of a triangular
element in particular, as early as 1923 in a paper entitled ‘On a convergence principle in the calculus of variations.’
Kön. Gesellschaft der Wissenschaften zu Göttingen, Nachrichten, Berlin, 1923. He states: ‘We imagine a mesh
of triangles covering the domain . . . the convergence principles remain valid for each triangular domain.’
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It is desirable to obtain results in a general form applicable to any situation, but to
avoid introducing conceptual difficulties the general relations will be illustrated with a very
simple example of plane stress analysis of a thin slice. In this a division of the region into
triangular-shaped elements may be used as shown in Fig. 2.1. Alternatively, regions may
be divided into rectangles or, indeed using a combination of triangles and rectangles. In
later chapters we will show how many other shapes also may be used to define elements.

2.2.1 Displacement function

A typical finite element, e, with a triangular shape is defined by local nodes 1, 2 and 3, and
straight line boundaries between the nodes as shown in Fig. 2.2(a). Similarly, a rectangular
element could be defined by local nodes 1, 2, 3 and 4 as shown in Fig. 2.2(b). The choice
of displacement functions for each element is of paramount importance and in Chapters 4
and 5 we will show how they may be developed for a wide range of types; however, in
the rest of this chapter we will consider only the 3-node triangular and 4-node rectangular
element shapes.

Let the displacements u at any point within the element be approximated as a column
vector, û:

u ≈ û =
∑
a

Naũea = [N1, N2, . . .
]
⎧⎪⎨
⎪⎩

ũ1

ũ2
...

⎫⎪⎬
⎪⎭

e

= Nũe (2.1)

y

x

3

1

2

e

t =
tx
ty

va(Va)

ua(Ua)a

Fig. 2.1 A plane stress region divided into finite elements.
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Fig. 2.2 Shape function N3 for one element.

In the case of plane stress, for instance,

u =
{
u(x, y)

v(x, y)

}

represents horizontal and vertical movements (see Fig. 2.1) of a typical point within the
element and

ũa =
{
ũa
ṽa

}

the corresponding displacements of a node a.
The functions Na, a = 1, 2, . . . are called shape functions (or basis functions, and,

occasionally interpolation functions) and must be chosen to give appropriate nodal dis-
placements when coordinates of the corresponding nodes are inserted in Eq. (2.1). Clearly
in general we have

Na(xa, ya) = I (identity matrix)

while
Na(xb, yb) = 0, a �= b

If both components of displacement are specified in an identical manner then we can write

Na = Na I (2.2)

and obtain Na from Eq. (2.1) by noting that Na(xa, ya) = 1 but is zero at other vertices.
The shape functions N will be seen later to play a paramount role in finite element analysis.

Triangle with 3 nodes
The most obvious linear function in the case of a triangle will yield the shape of Na of the
form shown in Fig. 2.2(a). Writing, the two displacements as

u = α1 + α2 x + α3 y

v = α4 + α5 x + α6 y
(2.3)

we may evaluate the six constants by solving two sets of three simultaneous equations which
arise if the nodal coordinates are inserted and the displacements equated to the appropriate
nodal values. For example, the u displacement gives

ũ1 = α1 + α2 x1 + α3 y1

ũ2 = α1 + α2 x2 + α3 y2

ũ3 = α1 + α2 x3 + α3 y3

(2.4)
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We can easily solve for α1, α2 and α3 in terms of the nodal displacements ũ1, ũ2 and ũ3 and
obtain finally

u = 1

2�
[(a1 + b1x + c1y) ũ1 + (a2 + b2x + c2y) ũ2 + (a3 + b3x + c3y) ũ3] (2.5)

in which

a1 = x2y3 − x3y2

b1 = y2 − y3

c1 = x3 − x2

(2.6)

with other coefficients obtained by cyclic permutation of the subscripts in the order 1, 2, 3,
and where

2� = det

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ = 2 · (area of triangle 123) (2.7)

From (2.5) we see that the shape functions are given by

Na = (aa + ba x + ca y)/(2�); a = 1, 2, 3 (2.8)

Since displacements with these shape functions vary linearly along any side of a triangle
the interpolation (2.5) guarantees continuity between adjacent elements and, with identical
nodal displacements imposed, the same displacement will clearly exist along an interface
between elements. We note, however, that in general the derivatives will not be continuous
between elements.

Rectangle with 4 nodes
An alternative subdivision can use rectangles of the form shown in Fig. 2.3. The rectangular
element has side lengths of a and b in the x and y directions, respectively. For the derivation

1

34

x

y

x9

y9

a

b

2

Fig. 2.3 Rectangular element geometry and local node numbers.
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of the shape functions it is convenient to use a local cartesian system x ′, y ′ defined by

x ′ = x − x1

y ′ = y − y1

We now need four functions for each displacement component in order to uniquely define
the shape functions. In addition these functions must have linear behaviour along each
edge of the element to ensure interelement continuity. A suitable choice is given by

u = α1 + x ′ α2 + y ′ α3 + x ′y ′ α4

v = α5 + x ′ α6 + y ′ α7 + x ′y ′ α8
(2.9)

The coefficients αa may be obtained by expressing (2.9) at each node, giving for u

ũ1 = α1

ũ2 = α1 + a α2

ũ3 = α1 + a α2 + b α3 + ab α4

ũ4 = α1 + b α3

(2.10)

We can again easily solve for αa in terms of the nodal displacements to obtain finally

u = 1

ab
[(a − x ′)(b − y ′) ũ1 + x ′ (b − y ′) ũ2 + x ′ y ′ ũ3 + (a − x ′) y ′ ũ4] (2.11)

An identical expression is obtained for v by replacing ũa by ṽa .
From (2.11) we obtain the shape functions

N1 = (a − x ′)(b − y ′)/(ab)
N2 = x ′ (b − y ′)/(ab)
N3 = x ′ y ′ /(ab)
N4 = (a − x ′) y ′ /(ab)

(2.12)

2.2.2 Strains

With displacements known at all points within the element the ‘strains’ at any point can
be determined. These will always result in a relationship that can be written in matrix
notation as†

ε = Su (2.13)

where S is a suitable linear differential operator. Using Eq. (2.1), the above equation can
be approximated by

ε ≈ ε̂ = Bũe (2.14)

with
B = SN (2.15)

† It is known that strain is a second rank tensor by its transformation properties; however, in this book we
will normally represent quantities using matrix (Voigt) notation. The interested reader is encouraged to consult
Appendix B for the relations between tensor forms and the matrix quantities.
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For the plane stress case the relevant strains of interest are those occurring in the plane
and are defined in terms of the displacements by well-known relations6 which define the
operator S

ε =
⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
, 0

0,
∂

∂y

∂

∂y
,

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

{
u

v

}

With the shape functions N1, N2 and N3 already determined for a triangular element, the
matrix B can easily be obtained using (2.15). If the linear form of the shape functions is
adopted then, in fact, the strains are constant throughout the element (i.e., the B matrix is
constant).

A similar result may be obtained for the rectangular element by adding the results for
N4; however, in this case the strains are not constant but have linear terms in x and y.

2.2.3 Stresses

In general, the material within the element boundaries may be subjected to initial strains
such as those due to temperature changes, shrinkage, crystal growth, and so on. If such
strains are denoted by ε0 then the stresses will be caused by the difference between the
actual and initial strains.

In addition it is convenient to assume that at the outset of the analysis the body is
stressed by some known system of initial residual stresses σ0 which, for instance, could
be measured, but the prediction of which is impossible without the full knowledge of the
material’s history. These stresses can simply be added on to the general definition. Thus,
assuming linear elastic behaviour, the relationship between stresses and strains will be
linear and of the form

σ = D(ε− ε0)+ σ0 (2.16)

where D is an elasticity matrix containing the appropriate material properties.
Again for the particular case of plane stress three components of stress corresponding to

the strains already defined have to be considered. These are, in familiar notation,

σ =
⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭

and for an isotropic material the D matrix may be simply obtained from the usual stress–
strain relationship6

εx − εx0 = 1

E
(σx − σx0)− ν

E
(σy − σy0)

εy − εy0 = − ν

E
(σx − σx0)+ 1

E
(σy − σy0)

γxy − γxy0 = 2(1 + ν)

E
(τxy − τxy0)
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i.e., on solving,

D = E

1 − ν2

⎡
⎣1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦

2.2.4 Equivalent nodal forces

Let

qe =

⎧⎪⎨
⎪⎩

qe1
qe2
...

⎫⎪⎬
⎪⎭

define the nodal forces which are statically equivalent to the boundary stresses and dis-
tributed body forces acting on the element. Each of the forces qea must contain the same
number of components as the corresponding nodal displacement ũa and be ordered in the
appropriate, corresponding directions.

The distributed body forces b are defined as those acting on a unit volume of material
within the element with directions corresponding to those of the displacements u at that
point.

In the particular case of plane stress the nodal forces are, for instance,

qea =
{
Ue
a

V ea

}

with components U and V corresponding to the directions of u and v, respectively (viz.
Fig. 2.1), and the distributed body forces are

b =
{
bx
by

}

in which bx and by are the ‘body force’ components per unit of volume.
In the absence of body forces equivalent nodal forces for the 3-node triangular element can

be computed directly from equilibrium considerations. In Fig. 2.4(a) we show a triangular
element together with the geometric properties which are obtained by the linear interpolation
of the displacements using (2.1) to (2.8). In particular we note from the figure [and (2.6)]
that

b1 + b2 + b3 = 0 and c1 + c2 + c3 = 0

The stresses in the element are given by (2.16) in which we assume that ε0 and σ0 are
constant in each element and strains are computed from (2.14) and, for the 3-node triangular
element, are also constant in each element. To determine the nodal forces resulting from
the stresses, the boundary tractions are first computed from

t =
{
tx
ty

}
= t

[
nx 0 ny
0 ny nx

] ⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭ (2.17)

where t is a constant thickness of the plane strain slice and nx , ny are the direction cosines
of the outward normal to the element boundary. For the triangular element the tractions
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Fig. 2.4 3-node triangle, geometry and constant stress state.

are constant. The resultant for each side of the triangle is the product of the triangle side
length (la) times the traction. Here la is the length of the side opposite the triangle node a
and we note from Fig. 2.4(a) that

la nx = − ba and la ny = − ca (2.18)

Therefore,

lat =
{
latx
laty

}
= t

[−ba 0 −ca
0 −ca −ba

] ⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭

The resultant acts at the middle of each side of the triangle and, thus, by sum of forces and
moments is equivalent to placing half at each end node. Thus, by static equivalence the
nodal forces at node 1 are given by

q1 = t

2

([−b2 0 −c2

0 −c2 −b2

]
+
[−b3 0 −c3

0 −c3 −b3

])
σ

= t

2

[
b1 0 c1

0 c1 b1

]
σ = BT

1σ� t

(2.19a)

Similarly, the forces at nodes 2 and 3 are given by

q2 = B2 σ� t

q3 = B3 σ� t
(2.19b)

Combining with the expression for stress and strain for each element we obtain

q = BT
[
D
(
Bũe − ε0

)+ σ0
]
� t

= Keũe + f e
(2.20a)
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where
Ke = BTD B� t and f e = BT(σ0 − D ε0)� t (2.20b)

The above gives a result which is now in the form of the standard discrete problem
defined in Sec. 1.2. However, when body forces are present or we consider other element
forms the above procedure fails and we need a more general approach. To make the nodal
forces statically equivalent to the actual boundary stresses and distributed body forces, the
simplest general procedure is to impose an arbitrary (virtual) nodal displacement and to
equate the external and internal work done by the various forces and stresses during that
displacement.

Let such a virtual displacement be δũe at the nodes. This results, by Eqs (2.1) and (2.14),
in virtual displacements and strains within the element equal to

δu = N δũe and δε = B δũe (2.21)

respectively.
The external work done by the nodal forces is equal to the sum of the products of the

individual force components and corresponding displacements, i.e., in matrix form

δũeT1 qe1 + δũeT2 qe2 . . . = δũeTqe (2.22)

Similarly, the internal work per unit volume done by the stresses and distributed body forces
subjected to a set of virtual strains and displacements is

δεTσ − δuTb (2.23)

or, after using (2.21),†
δũeT

(
BTσ − NTb

)
(2.24)

Equating the external work with the total internal work obtained by integrating (2.24)
over the volume of the element, 
e, we have

δũeTqe = δũeT
(∫


e

BTσ d
−
∫

e

NTb d


)
(2.25)

As this relation is valid for any value of the virtual displacement, the multipliers must be
equal. Thus

qe =
∫

e

BTσ d
−
∫

e

NTb d
 (2.26)

This statement is valid quite generally for any stress–strain relation. With (2.14) and the
linear law of Eq. (2.16) we can write Eq. (2.26) as

qe = Keũe + f e (2.27)

where
Ke =

∫

e

BTD B d
 (2.28a)

and
f e = −

∫

e

NTb d
−
∫

e

BTD ε0 d
+
∫

e

BTσ0 d
 (2.28b)

†Note that by the rules of matrix algebra for the transpose of products (A B)T = BTAT.
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For the plane stress problem ∫

e

(·) d
 =
∫
Ae

(·) t dA

where Ae is the area of the element. Here t now can be allowed to vary over the element.
In the last equation the three terms represent forces due to body forces, initial strain, and
initial stress respectively. The relations have the characteristics of the discrete structural
elements described in Chapter 1.

If the initial stress system is self-equilibrating, as must be the case with normal residual
stresses, then the forces given by the initial stress term of Eq. (2.28b) are identically zero
after assembly. Thus frequent evaluation of this force component is omitted. However, if
for instance a machine part is manufactured out of a block in which residual stresses are
present or if an excavation is made in rock where known tectonic stresses exist a removal
of material will cause a force imbalance which results from the above term.

For the particular example of the plane stress triangular element these characteristics
will be obtained by appropriate substitution. It has already been noted that the B matrix
in that example was not dependent on the coordinates; hence the integration will become
particularly simple and, in the absence of body forces, Ke and f e are identical to those given
in (2.20b).

The interconnection and solution of the whole assembly of elements follows the simple
structural procedures outlined in Chapter 1. This gives

r =
∑
e

qe = 0 (2.29)

A note should be added here concerning elements near the boundary. If, at the boundary,
displacements are specified, no special problem arises as these can be satisfied by specifying
some of the nodal parameters ũ. Consider, however, the boundary as subject to a distributed
external loading, say t̄ per unit area (traction). A loading term on the nodes of the element
which has a boundary face�e will now have to be added. By the virtual work consideration,
this will simply result in

f e → f e −
∫
�e

NTt̄ d� (2.30)

with integration taken over the boundary area of the element. It will be noted that t̄ must
have the same number of components as u for the above expression to be valid. Such a
boundary element is shown again for the special case of plane stress in Fig. 2.1.

Once the nodal displacements have been determined by solution of the overall ‘structural’-
type equations, the stresses at any point of the element can be found from the relations in
Eqs (2.14) and (2.16), giving

σ = D
(
Bũe − ε0

)+ σ0 (2.31)

Example 2.1: Stiffness matrix for 3-node triangle. The stiffness matrix for an individual
element is computed by evaluating Eq. (2.28a). For a 3-node triangle in which the moduli
and thickness are constant over the element the solution for the stiffness becomes

Ke = BT D B� t (2.32)
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where� is the area of the triangle computed from (2.7). Evaluating (2.15) using the shape
functions in (2.8) gives

Ba = 1

2�

⎡
⎣ba 0

0 ca
ca ba

⎤
⎦ (2.33)

Thus, the expression for the stiffness of the triangular element is given by

Kab = t

4�

[
ba 0 ca
0 ca ba

]⎡
⎣D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦
⎡
⎣bb 0

0 cb
cb bb

⎤
⎦ (2.34)

where Dij = Dji are the elastic moduli.

Example 2.2: Nodal forces for boundary traction. Let us consider a problem in which
a traction boundary condition is to be imposed along a vertical surface located at x = xb.
A triangular element has one of its edges located along the boundary as shown in Fig. 2.5
and is loaded by a specified traction given by

t̄ =
{
tx
ty

}
= t

{
σx
τxy

}

The normal stress σx is given by a linearly varying stress in the y direction and the shearing
stress τxy is assumed zero, thus, to compute nodal forces we use the expressions

σx = kxy and τxy = 0

in which kx is a specified constant.
Along the boundary the shape functions for either a triangular element or a rectangular

element are linear functions in y and are given by

N1 = (y2 − y)/(y2 − y1) and N2 = (y − y1)/(y2 − y1)

Γ

(xb,y1)

(xb,y2)

(tx,ty)

Fig. 2.5 Traction on vertical face.
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thus, the nodal forces for the element shown are computed from Eq. (2.30) and given by

f1 = −
∫ y2

y1

t N1

{
σx
τxy

}
dy = −

{
kx t (2y1 + y2)(y2 − y1)/6

0

}

and

f2 = −
∫ y2

y1

tN2

{
σx
τxy

}
dy = −

{
kx t (y1 + 2y2)(y2 − y1)/6

0

}

2.3 Generalization to the whole region – internal nodal
force concept abandoned

In the preceding section the virtual work principle was applied to a single element and the
concept of equivalent nodal force was retained. The assembly principle thus followed the
conventional, direct equilibrium, approach.

The idea of nodal forces contributed by elements replacing the continuous interaction of
stresses between elements presents a conceptual difficulty. However, it has a considerable
appeal to ‘practical’ engineers and does at times allow an interpretation which otherwise
would not be obvious to the more rigorous mathematician. There is, however, no need
to consider each element individually and the reasoning of the previous section may be
applied directly to the whole continuum.

Equation (2.1) can be interpreted as applying to the whole structure, that is,

u = N̄ ũ and δu = N̄ δũ (2.35)

in which ũ and δũ list all the nodal points and

N̄a =
∑
e

Ne
a (2.36)

when the point concerned is within a particular element e and a is a node point associated
with the element. If a point does not occur within the element (see Fig. 2.6)

N̄a = 0 (2.37)

A matrix B̄ can be similarly defined and we shall drop the bar, considering simply that
the shape functions, etc., are always defined over the whole domain, 
.

For any virtual displacement δũ we can now write the sum of internal and external work
for the whole region as

δũTr =
∫



δεTσ d
−
∫



δuT b d
−
∫
�

δuT t̄ d� = 0 (2.38)

In the above equation, δũ, δu and δε can be completely arbitrary, providing they stem
from a continuous displacement assumption. If for convenience we assume they are simply
variations linked by relations (2.35) and (2.14) we obtain, on substitution of the constitutive
relation (2.16), a system of algebraic equations

K ũ + f = 0 (2.39)
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Fig. 2.6 Shape function N̄a for whole domain.

where

K =
∫



BTD B d
 (2.40a)

and

f = −
∫



NTb d
−
∫
�

NT t̄ d� +
∫



BT(σ0 − D ε0) d
 (2.40b)

The integrals are taken over the whole domain 
 and over the whole surface area � on
which tractions are given.

It is immediately obvious from the above that

Kab =
∑
e

Ke
ab and fa =

∑
e

f ea (2.41)

by virtue of the property of definite integrals requiring that the total be the sum of the parts:
∫



(·)d
 =
∑
e

∫

e

(·)d
 and
∫
�

(·)d� =
∑
e

∫
�e

(·)d� (2.42)

The same is obviously true for the surface integrals in Eq. (2.40b). We thus see that the
‘secret’ of the approximation possessing the required behaviour of a ‘standard discrete
system’ of Chapter 1 lies simply in the requirement of writing the relationships in integral
form.

The assembly rule as well as the whole derivation has been achieved without involving
the concept of ‘interelement forces’ (i.e., qe). In the remainder of this book the element
superscript will be dropped unless specifically needed. Also no differentiation between
element and system shape functions will be made.

However, an important point arises immediately. In considering the virtual work for
the whole system [Eq. (2.38)] and equating this to the sum of the element contributions
it is implicitly assumed that no discontinuity in displacement between adjacent elements
develops. If such a discontinuity developed, a contribution equal to the work done by the
stresses in the separations would have to be added.
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Fig. 2.7 Differentiation of function with sloped discontinuity (C0 continuous).

Put in other words, we require that the terms integrated in Eq. (2.42) be finite. These
terms arise from the shape functionsNa used in defining the displacement u [by Eq. (2.35)]
and its derivatives associated with the definition of strain [viz. Eq. (2.14)]. If, for instance,
the ‘strains’ are defined by first derivatives of the functions N, the displacements must be
continuous. In Fig. 2.7 we see how first derivatives of continuous functions may involve
a ‘jump’ but are still finite, while second derivatives may become infinite. Such functions
we call C0 continuous.

In some problems the ‘strain’ in a generalized sense may be defined by second deriva-
tives. In such cases we shall obviously require that both the function N and its slope (first
derivative) be continuous. Such functions are more difficult to derive but are used in the
analysis of thin plate and shell problems (e.g., see volume on solid mechanics7). The
continuity involved now is called C1.
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2.4 Displacement approach as a minimization of total
potential energy

The principle of virtual displacements used in the previous sections ensured satisfaction of
equilibrium conditions within the limits prescribed by the assumed displacement pattern.
Only if the virtual work equality for all, arbitrary, variations of displacement was ensured
would the equilibrium be complete.

As the number of parameters of ũ which prescribes the displacement increases without
limit then ever closer approximation of all equilibrium conditions can be ensured.

The virtual work principle as written in Eq. (2.38) can be restated in a different form if
the virtual quantities δũ, δu, and δε are considered as variations of the real quantities.8, 9

Thus, for instance, we can write the first term of Eq. (2.38), for elastic materials, as

δU =
∫



δεTσ d
 (2.43)

where U is the strain energy of the system. For the linear elastic material described by
Eq. (2.16) the strain energy is given by

U = 1

2

∫



εTD ε d
+
∫



εT(σ0 − D ε0) d
 (2.44)

and will, after variation, yield the correct expression providing D is a symmetric matrix
(this is a necessary condition for a single-valued U to exist).8, 9

The last two terms of Eq. (2.38) can be written as

δW = −δ
(∫




uTb d
+
∫
�

uT t̄ d�

)
(2.45)

where W is the potential energy of the external loads. The above is certainly true if b and
t̄ are conservative (or independent of displacement) where we obtain simply

W = −
∫



uTb d
−
∫
�

uT t̄ d� (2.46)

Thus, instead of Eq. (2.38), we can write the total potential energy, �, as

� = U +W (2.47)

in which U is given by (2.44) and W by (2.46) and require

δ� = δ(U +W) = 0 (2.48)

In this form � is known as a functional and (2.48) is a requirement which renders the
functional stationary.

The above statement means that for equilibrium to be ensured the total potential energy
must be stationary for variations of the admissible displacements. The finite element
equations for the total potential energy are obtained by substituting the approximation for
displacements [viz. Eq. (2.35)] into Eqs (2.44) and (2.46) giving

� = 1

2
ũTK ũ + ũTf (2.49)
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in which K (where K = KT) and f are given by Eqs (2.40a) to (2.41). The variation with
respect to displacements with the finite number of parameters ũ is now written as

∂�

∂ũ
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂�

∂ũ1

∂�

∂ũ2

...

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= K ũ + f = 0 (2.50)

It can also be shown that in stable elastic situations the total potential energy is not only
stationary but is a minimum.8 Thus the finite element process seeks such a minimum within
the constraint of an assumed displacement pattern.

The greater the number of degrees of freedom, the more closely the solution will approx-
imate the true one, ensuring complete equilibrium, providing the true displacement can,
in the limit, be represented. The necessary convergence conditions for the finite element
process could thus be derived. Discussion of these will, however, be deferred to subsequent
sections.

It is of interest to note that if true equilibrium requires an absolute minimum of the total
potential energy, �, a finite element solution by the displacement approach will always
provide an approximate � greater than the correct one. Thus a bound on the value of the
total potential energy is always achieved.

If the functional � could be specified, a priori, then the finite element equations could
be derived directly by the differentiation specified by Eq. (2.50).

The well-known Rayleigh10–Ritz11 process of approximation frequently used in elastic
analysis is based precisely on this approach. The total potential energy expression is
formulated and the displacement pattern is assumed to vary with a finite set of undetermined
parameters. A set of simultaneous equations minimizing the total potential energy with
respect to these parameters is set up. Thus the finite element process as described so
far can be considered to be the Rayleigh–Ritz procedure. The difference is only in the
manner in which the assumed displacements are prescribed. In the traditionally used Ritz
process the functions are usually given by expressions valid throughout the whole region,
thus leading to simultaneous equations in which the coefficient matrix is full. In the finite
element process this specification is usually piecewise, each nodal parameter influencing
only adjacent elements, and thus a sparse and usually banded matrix of coefficients is found.

By its nature the conventional Ritz process is limited to relatively simple geometrical
shapes of the total region while this limitation only occurs in finite element analysis in the
element itself. Thus complex, realistic, configurations can be assembled from relatively
simple element shapes.

A further difference is in the usual association of the undetermined parameter ũa with a
particular nodal displacement. This allows a simple physical interpretation invaluable to
an engineer. Doubtless much of the early popularity of the finite element process is due to
this fact.

2.4.1 Bound on strain energy in a displacement formulation

While the approximation obtained by the finite element displacement approach always over-
estimates the true value of the total potential energy� (the absolute minimum corresponding



36 A direct physical approach to problems in elasticity: plane stress

to the exact solution), this is not directly useful in practice. It is, however, possible to obtain
a more useful limit in special cases.

Consider the problem in which no initial strains ε0 or initial stresses σ0 exist. Now by
the principle of energy conservation the strain energy will be equal to the work done by
the external loads which increase uniformly from zero.12 This work done is equal to −W/2
where W is the potential energy of the loads. Thus,

U + 1

2
W = 0 (2.51)

or
� = U +W = −U (2.52)

whether an exact or approximate displacement field is assumed.
If only one external concentrated loadRa is present, the strain energy bound immediately

informs us that the finite element deflection under this load has been underestimated (as
U = −W/2 = −Raua/2, where ua is the deflection at the load point). In more complex
loading cases the usefulness of this bound is limited as neither local displacements nor
local stresses, i.e., the quantities of real engineering interest, can be bounded. It is also
important to remember that this bound on strain energy is only valid in the absence of any
initial stresses or strains.

The expression for U in this case can be obtained from Eq. (2.44) as

U = 1

2

∫



εTD ε d
 (2.53)

which becomes by Eq. (2.14) simply

U = 1

2
ũT
∫



BTD B d
 ũ = 1

2
ũTK ũ (2.54)

a quadratic matrix form in which K is the stiffness matrix previously discussed.
When sufficient supports are provided to prevent rigid body motion and only linear elastic

materials are considered, the above energy expression is always positive from physical
considerations. It follows therefore that the matrix K occurring in all the finite element
assemblies is not only symmetric but is positive definite (a property defined in fact by the
requirement that the quadratic form should always be greater than zero).

This feature is of importance when the numerical solution of the simultaneous equations
is considered, as simplifications arise in the case of symmetric positive definite equations.13

2.4.2 Direct minimization

The fact that the finite element approximation reduces to the problem of minimizing the
total potential energy � defined in terms of a finite number of nodal parameters led us to
the formulation of the simultaneous set of equations given symbolically by Eq. (2.50). This
is the most usual and convenient approach, especially in linear solutions, but other search
procedures, now well developed in the field of optimization, could be used to estimate the
lowest value of �. In this text we shall continue with the simultaneous equation process
but the interested reader could well bear the alternative possibilities in mind.14, 15
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2.5 Convergence criteria

The assumed shape functions limit the infinite degrees of freedom of the real system, and
the true minimum of the energy may never be reached, irrespective of the fineness of
subdivision. To ensure convergence to the correct result certain simple requirements must
be satisfied. Obviously, for instance, the displacement function should be able to represent
the true displacement distribution as closely as desired. It will be found that this is not so
if the chosen functions are such that straining is possible when the element is subjected
to rigid body displacements at the nodes. Thus, the first criterion that the displacement
function must obey is:

Criterion 1. The displacement shape functions chosen should be such that they do not
permit straining of an element to occur when the nodal displacements are caused by a
rigid body motion.

This self-evident condition can be violated easily if certain types of function are used; care
must therefore be taken in the choice of displacement functions.

A second criterion stems from similar requirements. Clearly, as elements get smaller
nearly constant strain conditions will prevail in them. If, in fact, constant strain con-
ditions exist, it is most desirable for good accuracy that a finite size element is able to
reproduce these exactly. It is possible to formulate functions that satisfy the first crite-
rion but at the same time require a strain variation throughout the element when the nodal
displacements are compatible with a constant strain solution. Such functions will, in gen-
eral, not show good convergence to an accurate solution and cannot, even in the limit,
represent the true strain distribution. The second criterion can therefore be formulated
as follows:

Criterion 2. The displacement shape functions have to be of such a form that if nodal
displacements are compatible with a constant strain condition such constant strain will
in fact be obtained.

It will be observed that Criterion 2 in fact incorporates the requirement of Criterion 1, as
rigid body displacements are a particular case of constant strain – with a value of zero.
This criterion was first stated by Bazeley et al.16 in 1966. Strictly, both criteria need only
be satisfied in the limit as the size of the element tends to zero. However, the imposition
of these criteria on elements of finite size leads to improved accuracy, although in certain
situations (such as in axisymmetric analysis) the imposition of the second one is not possible
or essential.

Lastly, as already mentioned in Sec. 2.3, it is implicitly assumed in this derivation that no
contribution to the virtual work arises at element interfaces. It therefore appears necessary
that the following criterion be included:

Criterion 3. The displacement shape functions should be chosen such that the strains at
the interface between elements are finite (even though they may be discontinuous).

This criterion implies a certain continuity of displacements between elements. In the case
of strains being defined by first derivatives, as in the plane stress example quoted here,
the displacements only have to be continuous (C0 continuity). If, however, the ‘strains’
are defined by second derivatives, first derivatives of these have also to be continuous (C1

continuity).2
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The above criteria are included mathematically in a statement of ‘functional complete-
ness’and the reader is referred elsewhere for full mathematical discussion.17–22 The ‘heuris-
tic’ proof of the convergence requirements given here is sufficient for practical purposes
and we shall generalize all of the above criteria in Sec. 3.6 and more fully in Chapter 9.
Indeed in the latter we shall show a universal test which justifies convergence even if some
of the above criteria are violated.

2.6 Discretization error and convergence rate

In the foregoing sections we have assumed that the approximation to the displacement as
represented by Eq. (2.1) will yield the exact solution in the limit as the size h of elements
decreases. The arguments for this are simple: if the expansion is capable, in the limit,
of exactly reproducing any displacement form conceivable in the continuum, then as the
solution of each approximation is unique it must approach, in the limit of h → 0, the unique
exact solution. In some cases the exact solution is indeed obtained with a finite number
of subdivisions (or even with one element only) if the polynomial expansion used in that
element fits the exact solution. Thus, for instance, if the exact solution is of the form of a
quadratic polynomial and the shape functions include all the polynomials of that order, the
approximation will yield the exact answer.

The last argument helps in determining the order of convergence of the finite element
procedure as the exact solution can always be expanded in a Taylor series in the vicinity of
any point (or node) a as a polynomial:

u = ua +
(
∂u
∂x

)
a

(x − xa)+
(
∂u
∂y

)
a

(y − ya)+ · · · (2.55)

If within an element of ‘size’ h a polynomial expansion complete to degree p is employed,
this can fit locally the Taylor expansion up to that degree and, as x − xa and y − ya are of
the order of magnitude h, the error in u will be of the order O(hp+1). Thus, for instance,
in the case of the plane elasticity problem discussed, we used a complete linear expansion
and p = 1. We should therefore expect a convergence rate of order O(h2), i.e., the error in
displacement being reduced to 1/4 for a halving of the mesh spacing.

By a similar argument the strains (or stresses) which are given by the mth derivatives of
displacement should converge with an error of O(hp+1−m), i.e., as O(h) in the plane stress
example, where m = 1. The strain energy, being given by the square of the stresses, will
show an error of O(h2(p+1−m)) or O(h2) in the plane stress example.

The arguments given here are perhaps ‘heuristic’ from a mathematical viewpoint – they
are, however, true21, 22 and correctly give the orders of convergence, which can be expected
to be achieved asymptotically as the element size tends to zero and if the exact solution does
not contain singularities. Such singularities may result in infinite values of the coefficients
in terms omitted in the Taylor expansion of Eq. (2.55) and invalidate the arguments. How-
ever, in many well-behaved problems the mere determination of the order of convergence
often suffices to extrapolate the solution to the correct result. Thus, for instance, if the dis-
placement converges at O(h2) and we have two approximate solutions u1 and u2 obtained
with meshes of size h and h/2, we can write, with u being the exact solution,

u1 − u

u2 − u
= O(h2)

O(h/2)2
≈ 4 (2.56)
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From the above an (almost) exact solution u can be predicted. This type of extrapolation
was first introduced by Richardson23 and is of use if convergence is monotonic and nearly
asymptotic.

We shall return to the important question of estimating errors due to the discretization
process in Chapter 13 and will show that much more precise methods than those arising
from convergence rate considerations are possible today. Indeed automatic mesh refinement
processes can be introduced so that the specified accuracy can be achieved (viz. Chapters 8
and 14).

Discretization error is not the only error possible in a finite element computation. In
addition to obvious mistakes which can occur when introducing data into computers, errors
due to round-off are always possible. With the computer operating on numbers rounded off
to a finite number of digits, a reduction of accuracy occurs every time differences between
‘like’ numbers are being formed. In the process of equation solving many subtractions are
necessary and accuracy decreases. Problems of matrix conditioning, etc., enter here and
the user of the finite element method must at all times be aware of accuracy limitations
which simply do not allow the exact solution ever to be obtained. Fortunately in many
computations, by using modern machines which carry a large number of significant digits,
these errors are often small.

Another error that is often encountered occurs in approximation of curved boundaries
by polynomials on faces of elements. For example, use of linear triangles to approximate
a circular boundary causes an error of O(h2) to be introduced.

2.7 Displacement functions with discontinuity
between elements – non-conforming elements
and the patch test

In some cases considerable difficulty is experienced in finding displacement functions for an
element which will automatically be continuous along the whole interface between adjacent
elements.

As already pointed out, the discontinuity of displacement will cause infinite strains at the
interfaces, a factor ignored in this formulation because the energy contribution is limited
to the elements themselves.

However, if, in the limit, as the size of the subdivision decreases continuity is restored,
then the formulation already obtained will still tend to the correct answer. This condition
is always reached if

(a) constant strain condition automatically ensures displacement continuity, and
(b) the constant strain criteria of the previous section are satisfied.

To test that such continuity is achieved for any mesh configuration when using such
non-conforming elements it is necessary to impose, on an arbitrary patch of elements,
nodal displacements corresponding to any state of constant strain. If nodal equilibrium is
simultaneously achieved without the imposition of external, nodal, forces and if a state of
constant stress is obtained, then clearly no external work has been lost through interelement
discontinuity.

Elements which pass such a patch test will converge, and indeed at times non-conforming
elements will show a superior performance to conforming elements.
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The patch test was first introduced by Irons16 and has since been demonstrated to give
a sufficient condition for convergence.22, 24–28 The concept of the patch test can be gener-
alized to give information on the rate of convergence which can be expected from a given
element.

We shall return to this problem in detail in Chapter 9 where the test will be fully discussed.

2.8 Finite element solution process

The finite element solution of a problem follows a standard methodology. The steps in any
solution process are always performed by the following steps:

1. Define the problem to be solved in terms of differential equations. Construct the integral
form for the problem as a virtual work, variational or weak formulation.

2. Select the type and order of finite elements to be used in the analysis.
3. Define the mesh for the problem. This involves the description of the node and ele-

ment layout, as well as the specification of boundary conditions and parameters for the
formulation used. The process for mesh generation will be described in more detail in
Chapter 8.

4. Compute and assemble the element arrays. The particular virtual work, variational or
weak form provide the basis for computing specific relationships of each element.

5. Solve the resulting set of linear algebraic equations for the unknown parameters. See
Appendix C for a brief discussion on solution of linear algebraic equations.

6. Output the results for the nodal and element variables. Graphical outputs also are useful
for this step. An accurate procedure to project element values to nodes is described in
Chapter 6.

Much of the discussion in the following chapters is concerned with the development of
the theory needed to compute element arrays. For a steady-state problem the two arrays
are a coefficient array K, which we refer to as a ‘stiffness’ matrix, and a force array f .

In the next section, however, we first illustrate the solution steps for two problems for
which the exact solution is available.

2.9 Numerical examples

Let us now consider the solution to a set of problems for which an exact solution is known.
This will enable us to see how the finite element results compare to the known solution and
also to demonstrate the convergence properties for different element types. Of course, the
power of the finite element method is primarily for use on problems for which no alternative
solution is possible using results from classical books on elasticity and in later chapters we
will include results for several such example problems.

2.9.1 Problems for accuracy assessment

Example 2.3: Beam subjected to end shear. We consider a rectangular beam in a state
of plane stress. The geometric properties are shown in Fig. 2.8(a). The solution to the
problem is given in Timoshenko and Goodier based on use of a stress function solution.6

The solution for stresses is given by
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Fig. 2.8 End loaded beam: (a) Problem geometry and (b) coarse mesh.
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Pxy
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τxy = −3P
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]

whereP is the applied load and c the half-depth of the beam. For the displacement boundary
conditions

u(L, 0) = v(L, 0) = 0 and u(L, c) = u(L,−c) = 0

As shown in Fig. 2.8(a), the solution for displacements is given by

u = −P(x
2 − L2)y

2EI
− νPy(y2 − c2)

6EI
+ Py(y2 − c2)

6GI

v = νPxy2

2EI
+ P(x3 − L3)

6EI
−
(
PL2

2EI
+ νP c2

6EI
+ Pc2

3GI

)
(x − L)

In the above E and ν are the elastic modulus and Poisson ratio, G is the shear modulus
given by E/[2(1 + ν)] and I is the area moment of inertia which is equal to 2tc3/3 where
t is a constant beam thickness.

For this solution the tractions on the boundaries become{
tx
ty

}
= t

{
0

−τxy
}

for x = 0 ; − c ≤ y ≤ c

{
tx
ty

}
= t

{
σx
τxy

}
for x = L ; − c ≤ y ≤ c

For the numerical solution we choose the properties

c = 10; L = 100; t = 1; P = 80; E = 1000 and ν = 0.25

In order to perform a finite element solution to the problem we need to compute the nodal
forces for the tractions using Eq. 2.30. When many elements are used in an analysis this
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Fig. 2.9 Convergence in energy error for 3-node triangles and 4-node rectangular elements.

step can be quite tedious and it is best to write a small computer program to carry out the
integrations (e.g., using MATLAB29 or any other programming language).†

The solution to the problem is carried out using a uniform mesh of (a) 3-node triangular
elements and (b) 4-node rectangular elements and the results for the error in energy given
by

η
E

= |Eex − Efe|
Eex

≈ C h2

is plotted versus the log in element size h in Fig. 2.9. Here Eex is the energy of the exact
solution and Efe that of the finite element solution. Results for the energy are given in
Table 2.1 and the exact value for the geometry and properties selected is 3296 (energy
here is work done which is twice the stored elastic strain energy). The element size is
normalized to that of the coarsest mesh [h1 shown in Fig. 2.8(b)] and the energy error is
computed using the exact value. The expected slope of 2 is achieved for both element types
with the 4-node element giving a smaller constant C due to the presence of the xy term in
each shape function.

The stresses in each triangle are constant. The values for σx , σy and τxy obtained in
the elements at the right end of the beam (where σx is largest) are shown in Fig. 2.10(a).
The distribution of σx for x = 90 is shown in Fig. 2.10(b) where we also include values
computed by a nodal averaging method. In Chapter 6 we will show how more accurate
stresses may be obtained at nodes.

Example 2.4: Circular beam subjected to end shear. We consider a circular beam in
a state of plane stress. The geometric properties are shown in Fig. 2.11. The solution to
the problem is given in Timoshenko and Goodier based on use of a stress function.6 The
geometry and loading for the problem are shown in Fig. 2.11. The solution for stresses is

†For the triangular elements discussed in this chapter, the program FEAPpv available as a companion to this book
includes automatic computation of nodal forces for this type of loading.30
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Table 2.1 Mesh size and energy for end loaded beam

(a) 3-node triangles (b) 4-node rectangles

Nodes Elmts Energy Elmts Energy

55 80 2438.020814633 40 2984.863896144
189 320 3027.225730752 160 3212.088124234
697 1280 3223.959303515 640 3274.561666674

2673 5120 3277.628191064 2560 3290.607667261
10 465 20 480 3291.381304522 10 240 3294.649630776
41 409 81 920 3294.843527071 40 960 3295.662249951

Exact – 3296.000000000 – 3296.000000000

(-78.28,  5.96,  11.91)

(-47.92, -6.83,  -10.86)

(-44.55,  6.66,  -24.62)

(-1.64, -6.56,   7.56)

(1.64,  6.56,   7.56)

(44.55, -6.66, -24.62)

(47.92,  6.83, -10.86)

(78.28, -5.96,  11.91)

(a)
sx = 108

(b)

Fig. 2.10 End loaded beam: (a) Element stresses (σx, σy, τxy) and (b) σx stress distribution for x = 90, ©
element values and � nodal average values.
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Fig. 2.11 End loaded circular beam: (a) Problem geometry and (b) coarse mesh.
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given by

σrr = P

N

[
r + a2b2

r3
− a2 + b2

r

]
sin θ

σθθ = P

N

[
3r − a2b2

r3
− a2 + b2

r

]
sin θ

τrθ = −P
N

[
r + a2b2

r3
− a2 + b2

r

]
cos θ

whereN = a2 −b2 +(a2 +b2) log b/a. For the restraints shown in Fig. 2.11(a) the solution
for displacements is given by

ur = P

NE

{[
1

2
(1 − 3ν)r2 − a2b2(1 + ν)

2r2
− (a2 + b2)(1 − ν) log r

]
sin θ

+(a2 + b2)(θ − π) cos θ

}
−K sin θ

uθ = P

NE

{[
1

2
(5 + ν)r2 − a2b2(1 + ν)

2r2
+ (a2 + b2)[(1 − ν) log r − (1 + ν)]

]
cos θ

−(a2 + b2)(θ − π) sin θ

}
−K cos θ

where for ur(a, π/2) = 0 we obtain

K = P

NE

[
1

2
(1 − 3ν)a2 − b2(1 + ν)

2
− (a2 + b2)(1 − ν) log a

]

In the above E and ν are the elastic modulus and Poisson ratio; a and b are the inner and
outer radii, respectively (see Fig. 2.11).

For this solution the displacement ur for θ = 0 is constant and given by

ur(r, 0) = − πP

EN
(a2 + b2) = u0

Thus, instead of computing the nodal forces for the traction on this boundary we merely
set all the nodal displacements in the x direction to a constant value.

For the numerical solution we choose the properties

a = 5; b = 10; t = 1; u0 = −0.01; E = 10 000 and ν = 0.25

In addition the displacements on the boundaries are prescribed as

u(x, 0) = u0 and u(0, y) = v(0, a) = 0

The finite element solution to the problem is carried out using a uniform mesh of 3-node
triangular elements oriented as shown in Fig. 2.11(b). Results for the energy are given in
Table 2.2 and the ‘exact’ value is computed from

Eex = 1

π

[
log 2 − 0.6

] = 0.02964966844238
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for the geometry and properties selected. The element size is normalized to that of the
coarsest mesh [shown in Fig. 2.11(b)] and the energy error given in Table 2.2 again has the
expected slope of 2.

Finally, in Fig. 2.13 we compare the ur and uθ displacements from the finite element
solution of the coarsest mesh to the exact values. We observe that even with this coarse
distribution of elements the solution is quite good. Unfortunately, the stress distribution is
not as accurate and quite fine meshes are needed to obtain good values. In Chapter 6 we will
show how use of higher order elements can significantly improve both the displacements
and stresses obtained.

2.9.2 A practical application

Obviously, the practical applications of the finite element method are limitless, and it
has superseded experimental technique for plane problems because of its high accuracy,
low cost, and versatility. The ease of treatment of general boundary shapes and condi-
tions, material anisotropy, thermal stresses, or body force problems add to its practical
advantages.

Stress flow around a reinforced opening
An example of an actual early application of the finite element method to complex problems
of engineering practice is a steel pressure vessel or aircraft structure in which openings are
introduced in the stressed skin. The penetrating duct itself provides some reinforcement
round the edge and, in addition, the skin itself is increased in thickness to reduce the stresses
due to concentration effects.

Analysis of such problems treated as cases of plane stress present no difficulties. The
elements are chosen so as to follow the thickness variation, and appropriate values of this
are assigned.

The narrow band of thick material near the edge can be represented either by special
bar-type elements, or by very thin triangular elements of the usual type, to which ap-
propriate thickness is assigned. The latter procedure was used in the problem shown in
Fig. 2.14 which gives some of the resulting stresses near the opening itself. The fairly
large extent of the region introduced in the analysis and the grading of the mesh should be
noted.

Table 2.2 Mesh size and energy for curved beam

3-node triangles

Nodes Elmts Energy Error (%)

35 48 0.04056964168222 36.830
117 192 0.03245261212845 9.454
425 768 0.03035760000738 2.388

1617 3072 0.02982725603614 0.598
6305 12 288 0.02969411302439 0.150

24 897 49 152 0.02966078320581 0.037
Exact – 0.02964966844238 –
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Fig. 2.12 Curved beam: Convergence in energy error for 3-node triangles.
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Fig. 2.13 End loaded circular beam: (a) ur displacement and (b) uθ displacement for r = a.

2.10 Concluding remarks

The ‘displacement’ approach to the analysis of elastic solids is still undoubtedly the most
popular and easily understood procedure. In many of the following chapters we shall use the
general formulae developed here in the context of linear elastic analysis (e.g., in Chapter 6).
These are also applicable in the context of non-linear analysis, the main variants being the
definitions of the stresses, generalized strains, and other associated quantities.7

In Chapter 3 we shall show that the procedures developed here are but a particular case
of finite element discretization applied to the governing differential equations written in
terms of displacements.31 Clearly, alternative starting points are possible. Some of these
will be mentioned in Chapters 10 and 11.
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Fig. 2.14 A reinforced opening in a plate. Uniform stress field at a distance from opening σx = 100,σy = 50.
Thickness of plate regions A, B, and C is in the ratio of 1 : 3 : 23.

2.11 Problems

2.1 For the triangular element shown in Fig. 2.15(a), the dimensions are: a = 3 cm and
b = 4 cm. Compute the shape functions N for the three nodes of the element.

2.2 For the rectangular element shown in Fig. 2.15(b), the dimensions are: a = 6 cm and
b = 4 cm. Compute the shape functions N for the four nodes of the element.

2.3 Use the results from Problem 2.1 to compute the strain-displacement matrix B for the
triangular element shown in Fig. 2.15(a).

2.4 Use the results from Problem 2.2 to compute the strain-displacement matrix B for the
rectangular element shown in Fig. 2.15(b). The body force vector in a plane stress
problem is given by bx = 5 and by = 0. Using the shape functions determined
in Problem 2.1 compute the body force vector for the triangular element shown in
Fig. 2.15(a).

2.5 Repeat Problem 2.4 using bx = 0 and by = −30.
2.6 The body force vector in a plane stress problem is given by bx = 5 and by = 0. Using

the shape functions determined in Problem 2.2 compute the body force vector for the
rectangular element shown in Fig. 2.15(b).

2.7 Repeat Problem 2.6 using bx = 0 and by = −30.
2.8 The edge of the triangular element defined by nodes 2–3 shown in Fig. 2.15(a) is

to be assigned boundary conditions un = 0 and ts = 0 where n is a direction nor-
mal to the edge and s tangential to the edge. Determine the transformation matrix L
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Fig. 2.15 Elements for Problems 2.1 to 2.4.

[viz. Eq. (1.21)] required to transform the nodal degrees of freedom at node 2 and 3 to
be able to impose the boundary conditions.

2.9 A concentrated load,F , is applied to the edge of a two-dimensional plane strain problem
as shown in Fig. 2.16(a).
(a) Use equilibrium conditions to compute the statically equivalent forces acting at

nodes 1 and 2.
(b) Use virtual work to compute the equivalent forces acting on nodes 1 and 2.

2.10 A triangular traction load is applied to the edge of a two-dimensional plane strain
problem as shown in Fig. 2.16(b).
(a) Use equilibrium conditions to compute the statically equivalent forces acting at

nodes 1 and 2.
(b) Use virtual work to compute the equivalent forces acting on nodes 1 and 2.

2.11 For the rectangular and triangular element shown in Fig. 2.17, compute and assemble
the stiffness matrices associated with nodes 2 and 5 (i.e., K22, K25 and K55). Let
E = 1000, ν = 0.25 for the rectangle and E = 1200, ν = 0 for the triangle. The
thickness for the assembly is constant with t = 0.2 cm.

1 2

a

(a) Point loading (b) Hydrostatic loading

F

h

1 2

q

a

h

Fig. 2.16 Traction loading on boundary for Problems 2.9 and 2.10.
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Fig. 2.17 Element assembly for Problem 2.11.

2.12 The formulation given in Sec. 2.3 may be specialized to one dimension by using dis-
placement functions

ue = α1 + α2 x = N1(x) ũ1 +N2(x) ũ2

δue = N1(x) δũ1 +N2(x) δũ2

and simplifying the equation to:

Strain: ε = du

dx
= Bũ

Stress: σ = E ε = EBũ

where E is the modulus of elasticity and we assume initial stress σ0 and initial strain
ε0 are zero.
(a) For a two-node element with coordinates located at xe1 and xe2 compute the shape

functions Na which satisfy the linear approximation given above.
(b) Compute the strain matrix B for the shape functions determined in (a).
(c) Using Eqs (2.25) to (2.28b) compute the element stiffness and force vector. Assume

the body force b in the x direction is constant in each element.
(d) For the two element problem shown in Fig. 2.18 let each element have length a = 5,

the end traction t = 4, the body force b = 2 and the modulus of elasticityE = 200.
i. Generalize the element formulation given in (b) to form the whole problem.

ii. Impose the boundary condition u(0) = ũ1 = 0.
iii. Determine the solution for ũ2 and ũ3.
iv. Plot the computed finite element displacement u and stress σ vs x.

t1 2 3

1 2

a a

Fig. 2.18 One-dimensional elasticity. Problem 2.12.
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(e) The exact solution to the problem satisfies the equilibrium equation

dσ

dx
+ b = 0

and boundary conditions u(0) = 0 and t (10) = σ(10) = 4. Compute and plot the
exact solution for u(x) and σ(x).

(f) What is the maximum error in the finite element solutions for u and σ?
(g) Subdivide the mesh into four elements and repeat the above solution steps.

2.13 Download the program FEAPpv and user manual from a web site given in Chapter 19.
Note that both source code for the program and an executable version for Windows-
based systems are available at the site.

If source code is used it is necessary to compile the program to obtain an executable
version.

2.14 Use FEAPpv (or any available program) to solve the rectangular beam problem given
in Example 2.3 – verify results shown in Table 2.1.

2.15 Use FEAPpv (or any available program) to solve the curved beam problem given in
Example 2.4 – verify results shown in Table 2.2.

2.16 The uniformly loaded cantilever beam shown in Fig. 2.19 has properties

L = 2 m; h = 0.4 m; t = 0.05 m and q0 = 100 N/m

Use FEAPpv (or any available program) to perform a plane stress analysis of the
problem assuming linear isotropic elastic behaviour with E = 200 GPa and ν = 0.3.

In your analysis:
(a) Use 3-node triangular elements with an initial mesh of two elements in the depth

and ten elements in the length directions.
(b) Compute consistent nodal forces for the uniform loading.
(c) Compute nodal forces for a parabolically distributed shear traction at the restrained

end which balances the uniform loading q0.
(d) Report results for the centreline displacement in the vertical direction and the stored

energy in the beam.
(e) Repeat the analysis three additional times using meshes of 4 × 20, 8 × 40 and

16×80 elements. Tabulate the tip vertical displacement and stored energy for each
solution.

x

y

q
0

h

L

Fig. 2.19 Uniformly loaded cantilever beam. Problem 2.16.
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Fig. 2.20 Patch test for triangles. Problem 2.17.

(f) If the energy error is given by

�E = En − En−1 = Chp

estimate C and p for your solution.
(g) Repeat the above analysis using rectangular 4-node elements.

2.17 Program development project:† Write a MATLAB29 program‡ to solve plane stress
problems.

Your program system should have the following features:
(a) Input module which describes:

i. Nodal coordinate values, xa;
ii. Nodes connected to each element and material properties of each element;

iii. Node and degree-of-freedom (dof) for each applied nodal forces;
iv Node and dof for fixed (essential) boundary condition – also value if non-zero.

(b) Module to compute the stiffness matrix for a 3-node triangular element [use Eq.
(2.34)].

(c) Module to assemble element arrays into global arrays and specified nodal forces
and displacements.

(d) Module to solve Kũ + f = 0.
(e) Module to output nodal displacements and element stress and strains.
Use your program to solve the patch test problem shown in Fig. 2.20. Use the properties:
E = 2 · 105, ν = 0.3 and t = 1 (t is thickness of slab). You can verify the correctness
of your answer by computing an exact solution to the problem. The correctness of
computed arrays may be obtained using results from FEAPpv (or any available plane
stress program).

† If programming is included as a part of your study, it is recommended that this problem be solved. Several
extensions will be suggested later to create a solution system capable of performing all steps of finite element
analysis.
‡Another programming language may be used; however, MATLAB offers many advantages to write simple
programs and is also useful to easily complete later exercises.
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2.18 Program development project: Add a graphics capability to the program developed in
Problem 2.17 to plot contours of the computed finite element displacements. (Hint:
MATLAB has contour and surf options to easily perform this operation.)

Solve the curved beam problem for the mesh shown in Fig. 2.11. Plot contours for u
and v displacements. (Hint: Write a separate MATLAB program to generate the nodal
coordinates and element connections for the simple geometry of the curved beam.)
Refine the mesh by increasing the number of segments in each direction by a factor of
2 and repeat the solution of the curved beam problem.
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3

Generalization of the finite element
concepts. Galerkin-weighted

residual and variational approaches

3.1 Introduction

We have so far dealt with one possible approach to the approximate solution of the particular
problem of linear elasticity. Many other continuum problems arise in engineering and
physics and usually these problems are posed by appropriate differential equations and
boundary conditions to be imposed on the unknown function or functions. It is the object
of this chapter to show that all such problems can be dealt with by the finite element method.

Posing the problem to be solved in its most general terms we find that we seek an unknown
function u such that it satisfies a certain differential equation set

A(u) =

⎧⎪⎨
⎪⎩
A1(u)
A2(u)
...

⎫⎪⎬
⎪⎭ = 0 (3.1)

in a ‘domain’ (volume, area, etc.), �, together with certain boundary conditions

B(u) =

⎧⎪⎨
⎪⎩
B1(u)
B2(u)
...

⎫⎪⎬
⎪⎭ = 0 (3.2)

on the boundaries, �, of the domain as shown in Fig. 3.1.
The function sought may be a scalar quantity or may represent a vector of several vari-

ables. Similarly, the differential equation may be a single one or a set of simultaneous
equations and does not need to be linear. It is for this reason that we have resorted to matrix
notation in the above.

The finite element process, being one of approximation, will seek the solution in the
approximate form†

u ≈ û =
n∑
a=1

Naũa = Nũ (3.3)

where Na are shape functions prescribed in terms of independent variables (such as the
coordinates x, y, etc.) and all or most of the parameters ũa are unknown.

† In the sequel we will also use summation convention for any repeated index. Thus Na ũa ≡ ∑
a Na ũa , etc.
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Subdomain Ωe

(element)

A (u) = 0

B(u) = 0y

x

Γe

Γ

Ω

Fig. 3.1 Problem domain � and boundary �.

In the previous chapter we have seen that precisely the same form of approximation
was used in the displacement approach to elasticity problems. We also noted there that
(a) the shape functions were usually defined locally for elements or subdomains and (b) the
properties of discrete systems were recovered if the approximating equations were cast in
an integral form [viz. Eqs (2.38)–(2.42)]. With this object in mind we shall seek to cast
the equation from which the unknown parameters ũa are to be obtained in the integral form∫

�

Gb(û)d�+
∫
�

gb(û)d� = 0 b = 1 to n (3.4)

in which Gb and gb prescribe known functions or operators.
These integral forms will permit the approximation to be obtained element by element

and an assembly to be achieved by the use of the procedures developed for standard discrete
systems in Chapter 1, since, providing the functions Gb and gb are integrable, we have

∫
�

Gbd�+
∫
�

gbd� =
m∑
e=1

(∫
�e

Gbd�+
∫
�e

gbd�
)

= 0 (3.5)

where �e is the domain of each element and �e its part of the boundary.
Two distinct procedures are available for obtaining the approximation in such integral

forms. The first is the method of weighted residuals (known alternatively as the Galerkin
procedure); the second is the determination of variational functionals for which stationarity
is sought. We shall deal with both approaches in turn.

If the differential equations are linear, i.e., if we can write (3.1) and (3.2) as

A(u) ≡ Lu + b = 0 in �

B(u) ≡ Mu + t = 0 on �
(3.6)

then the approximating equation system (3.4) will yield a set of linear equations of the form

K ũ + f = 0 (3.7)

with

Kab =
m∑
e=1

Ke
ab fa =

m∑
e=1

f ea
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The reader not used to abstraction may well now be confused about the meaning of the
various terms. We shall introduce here some typical sets of differential equations for which
we will seek solutions (and which will make the problems a little more definite).

Example 3.1: Steady-state heat conduction equation in a two-dimensional domain.
Here the equations are written as

A(φ) = − ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
+Q = 0 in �

B(φ) =
⎧⎨
⎩

φ − φ̄ = 0 on �φ

k
∂φ

∂n
+ q̄ = 0 on �q

(3.8)

where u ≡ φ indicates temperature, k is the conductivity, Q is a heat source, φ̄ and q̄ are
the prescribed values of temperature and heat flow on the boundaries and n is the direction
normal to �. In the context of this equation the boundary condition for �φ is called a
Dirichlet condition and the one on �q a Neumann one.

In the above problem k and Q can be functions of position and, if the problem is non-
linear, of φ or its derivatives.

Example 3.2: Steady-state heat conduction–convection equation in two dimensions.
When convection effects are added the differential equation becomes

A(φ) = − ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
+ ux

∂φ

∂x
+ uy

∂φ

∂y
+Q = 0 in � (3.9)

with boundary conditions as in the first example. Here ux and uy are known functions of
position and represent velocities of an incompressible fluid in which heat transfer occurs.

Example 3.3: A system of three first-order equations equivalent to Example 3.1. The
steady-state heat equation in two dimensions may also be split into the three equations

A(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂qx

∂x
+ ∂qy

∂y
+Q

qx + k
∂φ

∂x

qy + k
∂φ

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 0 in � (3.10)

and

B(u) =
{
φ − φ̄ = 0 on �φ
qn − q̄ = 0 on �q

where qn is the flux normal to the boundary.
Here the unknown function vector u corresponds to the set

u =
⎧⎨
⎩
φ

qx
qy

⎫⎬
⎭
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This last example is typical of a so-called mixed formulation. In such problems the
number of dependent unknowns can always be reduced in the governing equations by
suitable algebraic operation, still leaving a solvable problem [e.g., obtaining Eq. (3.8) from
(3.10) by eliminating qx and qy].

If this cannot be done [viz. Eq.(3.8)] we have an irreducible formulation.
Problems of mixed form present certain complexities in their solution which we shall

discuss in Chapter 11.
In Chapter 7 we shall return to detailed examples of the first problem and other examples

will be introduced throughout the book. The above three sets of problems will, however,
be useful in their full form or reduced to one dimension (by suppressing the y variable) to
illustrate the various approaches used in this chapter.

Weighted residual methods

3.2 Integral or ‘weak’ statements equivalent to the
differential equations

As the set of differential equations (3.1) has to be zero at each point of the domain �, it
follows that ∫

�

vTA(u)d� ≡
∫
�

[v1A1(u)+ v2A2(u)+ · · · ]d� ≡ 0 (3.11)

where

v =

⎧⎪⎪⎨
⎪⎪⎩

v1

v2
...

⎫⎪⎪⎬
⎪⎪⎭

is a set of arbitrary functions equal in number to the number of equations (or components
of u) involved.

The statement is, however, more powerful. We can assert that if (3.11) is satisfied for all v
then the differential equations (3.1) must be satisfied at all points of the domain. The proof
of the validity of this statement is obvious if we consider the possibility that A(u) �= 0 at
any point or part of the domain. Immediately, a function v can be found which makes the
integral of (3.11) non-zero, and hence the point is proved.

If the boundary conditions (3.10) are to be simultaneously satisfied, then we require that∫
�

v̄TB(u)d� ≡
∫
�

[v̄1B1(u)+ v̄2B2(u)+ · · · ]d� = 0 (3.12)

for any set of arbitrary functions v̄.
Indeed, the integral statement that∫

�

vTA(u)d�+
∫
�

v̄TB(u)d� = 0 (3.13)

is satisfied for all v and v̄ is equivalent to the satisfaction of the differential equations (3.1)
and their boundary conditions (3.2).

In the above discussion it was implicitly assumed that integrals such as those in Eq. (3.13)
are capable of being evaluated. This places certain restrictions on the possible families to
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‘Smoothing’ zone

u

du
dx

d2u
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∆

Fig. 3.2 Differentiation of function with slope discontinuity (C0 continuity).

which the functions v or u must belong. In general we shall seek to avoid functions which
result in any term in the integrals becoming infinite. Thus, in Eq. (3.13) we generally
limit the choice of v and v̄ to bounded functions without restricting the validity of previous
statements.

What restrictions need to be placed on the functions? The answer obviously depends on
the order of differentiation implied in the equations A(u) [or B(u)]. Consider, for instance,
a function u which is continuous but has a discontinuous slope in the x direction, as shown
in Fig. 3.2 which is identical to Fig. 2.7 but is reproduced here for clarity. We imagine this
discontinuity to be replaced by a continuous variation in a very small distance� (a process
known as ‘molification’) and study the behaviour of the derivatives. It is easy to see that
although the first derivative is not defined here, it has finite value and can be integrated easily
but the second derivative tends to infinity. This therefore presents difficulties if integrals
are to be evaluated numerically by simple means, even though the integral is finite. If such
derivatives are multiplied by each other the integral does not exist and the function is known
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as non-square integrable. Such a function is said to be C0 continuous.
In a similar way it is easy to see that if nth-order derivatives occur in any term of A or B

then the function has to be such that its n− 1 derivatives are continuous (Cn−1 continuity).
On many occasions it is possible to perform an integration by parts on Eq. (3.13) and

replace it by an alternative statement of the form∫
�

C(v)TD(u)d�+
∫
�

E(v̄)TF(u)d� = 0 (3.14)

In this the operators C to F usually contain lower order derivatives than those occurring
in operators A or B. Now a lower order of continuity is required in the choice of the u
function at a price of higher continuity for v and v̄.

The statement (3.14) is now more ‘permissive’ than the original problem posed by
Eq. (3.1), (3.2), or (3.13) and is called a weak form of these equations. It is a some-
what surprising fact that often this weak form is more realistic physically than the original
differential equation which implied an excessive ‘smoothness’ of the true solution.

Integral statements of the form of (3.13) and (3.14) will form the basis of finite element
approximations, and we shall discuss them later in fuller detail. Before doing so we shall
apply the new formulation to an example.

Example 3.4: Weak form of the heat conduction equation – forced and natural bound-
ary conditions. Consider now the integral form of Eq. (3.8). We can write the statement
(3.13) as∫

�

v

[
− ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
+Q

]
dx dy +

∫
�q

v̄

[
k
∂φ

∂n
+ q̄

]
d� = 0 (3.15)

noting that v and v̄ are scalar functions† and presuming that one of the boundary conditions,
i.e.,

φ − φ̄ = 0

is automatically satisfied by the choice of the functions φ on �φ . This type of boundary
condition is often called a ‘forced’ or an ‘essential’ one.

Equation (3.15) can now be integrated by parts to obtain a weak form similar to Eq. (3.14).
We shall make use here of general formulae for such integration (Green’s formulae) which
we derive in Appendix G and which on many occasions will be useful, i.e.,∫

�

v
∂

∂x

(
k
∂φ

∂x

)
dx dy ≡ −

∫
�

∂v

∂x

(
k
∂φ

∂x

)
dx dy +

∮
�

v

(
k
∂φ

∂x

)
nxd�

∫
�

v
∂

∂y

(
k
∂φ

∂y

)
dx dy ≡ −

∫
�

∂v

∂y

(
k
∂φ

∂y

)
dx dy +

∮
�

v

(
k
∂φ

∂y

)
nyd�

(3.16)

We have thus in place of Eq. (3.15)∫
�

(
∂v

∂x
k
∂φ

∂x
+ ∂v

∂y
k
∂φ

∂y
+ vQ

)
dx dy −

∮
�

vk

(
∂φ

∂x
nx + ∂φ

∂y
ny

)
d�

+
∫
�q

v̄

[
k
∂φ

∂n
+ q̄

]
d� = 0

(3.17)

†Two functions are introduced such that simplifications are possible at later stages of the development.
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Noting that the derivative along the normal is given as

∂φ

∂n
≡ ∂φ

∂x
nx + ∂φ

∂y
ny (3.18)

and, further, making
v̄ = v on � (3.19)

without loss of generality (as both functions are arbitrary), we can write Eq. (3.17) as∫
�

(∇v)T (k∇φ)d�+
∫
�

v Q d�+
∫
�q

v q̄ d� −
∫
�φ

v k
∂φ

∂n
d� = 0 (3.20)

where the operator ∇ is simply

∇ =

⎧⎪⎪⎨
⎪⎪⎩

∂

∂x

∂

∂y

⎫⎪⎪⎬
⎪⎪⎭

We note that

(a) the variable φ has disappeared from the integrals taken along the boundary �q and that
the boundary condition

B(φ) = k
∂φ

∂n
+ q̄ = 0

on that boundary is automatically satisfied – such a condition is known as a natural
boundary condition – and

(b) if the choice of φ is restricted so as to satisfy the forced boundary conditions φ− φ̄ = 0,
we can omit the last term of Eq. (3.20) by restricting the choice of v to functions which
give v = 0 on �φ .

The form of Eq. (3.20) is the weak form of the heat conduction statement equivalent
to Eq. (3.8). It admits discontinuous conductivity coefficients k and temperature φ which
show discontinuous first derivatives, a real possibility not easily admitted in the differential
form.

3.3 Approximation to integral formulations: the
weighted residual-Galerkin method

If the unknown function u is approximated by the expansion (3.3), i.e.,

u ≈ û =
n∑
a=1

Naũa = Nũ

then it is clearly impossible to satisfy both the differential equation and the boundary con-
ditions in the general case. The integral statements (3.13) or (3.14) allow an approximation
to be made if, in place of any function v, we put a finite set of approximate functions

v ≈
n∑
b=1

wb δũb and v̂ =
n∑
b=1

w̄b δũb (3.21)
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in which δũb are arbitrary parameters. Inserting the approximations into Eq. (3.13) we have
the relation

δũT
b

[∫
�

wT
bA(N ũ) d�+

∫
�

w̄T
bB(N ũ) d�

]
= 0

and since δũb is arbitrary we have a set of equations which is sufficient to determine the
parameters ũ as

∫
�

wT
bA(N ũ) d�+

∫
�

w̄T
bB(N ũ) d� = 0; b = 1, 2, . . . , n (3.22)

Performing similar steps using Eq. (3.14) gives the set
∫
�

CT(wb)D(N ũ) d�+
∫
�

ET(w̄b)F(N ũ) d� = 0; b = 1, 2, . . . , n (3.23)

If we note that A(Nũ) represents the residual or error obtained by substitution of the
approximation into the differential equation [and B(Nũ), the residual of the boundary
conditions], then Eq. (3.22) is a weighted integral of such residuals. The approximation
may thus be called the method of weighted residuals.

In its classical sense it was first described by Crandall,1 who points out the various forms
used since the end of the nineteenth century. Later a very full exposé of the method was
given by Finlayson.2 Clearly, almost any set of independent functions wb could be used for
the purpose of weighting and, according to the choice of function, a different name can be
attached to each process. Thus the various common choices are:

1. Point collocation.3 wb = δb in (3.22), where δb is such that for x �= xb; y �= yb, wb = 0
but

∫
�

wbd� = 1 (unit matrix). This procedure is equivalent to simply making the
residual zero at n points within the domain and integration is ‘nominal’ (incidentally
although wb defined here does not satisfy all the criteria of Sec. 3.2, it is nevertheless
admissible in view of its properties). Finite difference methods are particular cases of
this weighting.

2. Subdomain collocation.4 wb = I in subdomain �b and zero elsewhere. This essentially
makes the integral of the error zero over the specified subdomains. When used with
(3.23) this is one of the many finite volume methods.5

3. The Galerkin method (Bubnov–Galerkin).4, 6 wb = Nb. Here simply the original shape
(or basis) functions are used as weighting. This method, as we shall see, frequently (but
by no means always) leads to symmetric matrices and for this and other reasons will be
adopted in this book almost exclusively.

The name of ‘weighted residuals’ is clearly much older than that of the ‘finite element
method’. The latter uses mainly locally based (element) functions in the expansion of
Eq. (3.3) but the general procedures are identical. As the process always leads to equations
which, being of integral form, can be obtained by summation of contributions from various
subdomains, we choose to embrace all weighted residual approximations under the name
of generalized finite element method. On occasion, simultaneous use of both local and
‘global’ trial functions will be found to be useful.

In the literature the names of Petrov and Galerkin6 are often associated with the use of
weighting functions such that wb �= Nb. It is important to remark that the well-known finite
difference method of approximation is a particular case of collocation with locally defined
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L

h

Q0

Fig. 3.3 Problem description and loading for 1-d heat conduction example.

basis functions and is thus a case of a Petrov–Galerkin scheme. We shall return to such
unorthodox definitions in more detail in Chapter 15.

To illustrate the procedure of weighted residual approximation and its relation to the
finite element process let us consider some specific examples.

Example 3.5: One-dimensional equation of heat conduction. The problem here will
be a one-dimensional representation of the heat conduction equation [Eq. (3.8)] with unit
conductivity. (This problem could equally well represent many other physical situations,
e.g., deflection of a loaded string with unit tension.) Here we have (see Fig. 3.3)

A(φ) = −d2φ

dx2
+Q(x) = 0 (0 < x < L) (3.24a)

with Q(x) given by

Q(x) =
{

0 0 < x ≤ L/2

−2Q0 (x/L− 1/2) L/2 < x < L
(3.24b)

The boundary conditions assumed will be simply φ = 0 at x = 0 and x = L.
The problem is solved by a Galerkin-weighted residual method in which the field φ(x) is

approximated by piecewise defined (locally based) functions. Here we use the equivalent
of Eq. (3.14) which results from an integration by parts of

∫ L

0
wb

[
− d2

dx2

(∑
a

Na φ̃a

)
+Q

]
dx = 0

to obtain ∫ L

0

[
dwb
dx

(∑
a

dNa
dx

φ̃a

)
+ wbQ

]
dx = 0 (3.25)

x

h

1 2

1

N1 N2

Fig. 3.4 Linear locally based one-dimensional shape functions.
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in which the boundary terms disappear if we require wb = 0 at the two ends.
For the Galerkin solution we use wb = Nb; hence, the above equation can be written as

K φ̃+ f = 0 (3.26)

where for each element of length h,

Ke
ba =

∫ h

0

dNb
dx

dNa
dx

dx

f eb =
∫ h

0
Nb Q(x) dx

(3.27)

with the usual rules of adding pertaining, i.e.,

Kba =
∑
e

Ke
ba and fb =

∑
e

f eb

The reader will observe that the matrix K is symmetric, i.e., Kba = Kab.
As the shape functions need only be of C0 continuity, a piecewise linear approximation

is conveniently used, as shown in Fig. 3.4. Considering a typical element 1–2 shown, we
can write (translating the cartesian origin of x to point 1)

N1 = 1 − x/h and N2 = x/h (3.28)

giving for a typical element

Ke = 1

h

[
1 −1

−1 1

]

f e = − h

6

{
2Q1 +Q2

Q1 + 2Q2

} (3.29)

where Q1 and Q2 are load intensities at the x1 and x2 coordinates, respectively.
Assembly of four equal size elements results, after inserting the boundary conditions

φ̃1 = φ̃5 = 0, in the equation set

4

L

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦

⎧⎨
⎩
φ̃2

φ̃3

φ̃4

⎫⎬
⎭ = Q0L

48

⎧⎨
⎩

0
1
6

⎫⎬
⎭ (3.30)

The solution is shown in Fig. 3.5 along with the exact solution to the problem. For compar-
ison purposes we also show a finite difference solution in which simple collocation is used
in a weighted residual equation together with the approximation for the second derivative
given by a Taylor expansion

d2φ

dx2

∣∣∣∣
xa

≈ 1

h2

(
φ̃a−1 − 2φ̃a + φ̃a+1

)
(3.31)

which yields the approximation for each node point

1

h2

(−φ̃a−1 + 2φ̃a − φ̃a+1
) +Qa = 0 (3.32)
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Again after including the boundary conditions a set of three equations for the points 2, 3
and 4 is expressed as

16

L2

⎡
⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎦

⎧⎨
⎩
φ̃2

φ̃3

φ̃4

⎫⎬
⎭ = Q0

⎧⎨
⎩

0
0

1/2

⎫⎬
⎭ (3.33)

The reader will note that the coefficient matrix for the finite element and finite difference
methods differ by only a constant multiplier (for the boundary conditions assumed in this
one-dimensional problem); however, the right sides differ significantly. We also plot the
solution to (3.33) (and one for half the mesh spacing) in Fig. 3.5. Here we note that the
nodal results for the finite element method are exact whereas those for the finite difference
solution are all in error (although convergence can be observed for the finer subdivision).
The nodal exactness is a property of the particular equation being solved and unfortunately
does not carry over to general problems.7 (See also Appendix H.) However, based on
the above result and other experiences we can say that the finite element method always
achieves (the same or) better results than classical finite difference methods. In addition, the
finite element method permits an approximation of the solution at all points in the domain
as indicated by the dashed lines in Fig. 3.5 for the one-dimensional problem.

The problem is repeated using 4-quadratic order finite elements and results are shown in
Fig. 3.6. It is evident that the use of quadratic order greatly increases the accuracy of the
results obtained. Indeed, if cubic order elements were used results would be exact, since
for linear varying Q the solution over the loaded portion will only contain polynomials up
to cubic order.
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Fig. 3.5 One-dimensional heat conduction. Solution by finite element method with linear elements and
h = L/4; finite difference method with h = L/4 and h = L/8.
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Fig. 3.6 One-dimensional heat conduction. Solution by finite element method with quadratic elements and
h = L/4.

Example 3.6: Steady-state heat conduction in two dimensions: Galerkin formulation
with triangular elements. We have already introduced the problem in Sec. 3.1 and defined
it by Eq. (3.8) with appropriate boundary conditions. The weak form has been obtained in
Eq. (3.20). Approximating the weight by v = ∑

Nbδφ̃b and solution by φ = ∑
Naφ̃a we

have immediately that
K φ̃+ f = 0

where

Ke
ba =

∫
�

(
∂Nb

∂x
k
∂Na

∂x
+ ∂Nb

∂y
k
∂Na

∂y

)
d�

f eb =
∫
�

Nb Q d�+
∫
�

Nb q̄ d�

(3.34)

Once again the components ofKba and fb can be evaluated for a typical element or subdo-
main and the system of equations built by standard methods.

For instance, considering the set of nodes and elements shown shaded in Fig. 3.7(b), to
compute the equation for node 1 it is only necessary to compute the Ke

ba for two element
shapes as indicated in Fig. 3.7. For the Type 1 element (left element in Fig. 3.7(c)) the
shape functions evaluated from (2.8) using (2.6) and (2.7) gives

N1 = 1 − y

h
; N2 = x

h
; N3 = y − x

h
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thus, the derivatives are given by:

∂N
∂x

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N1

∂x

∂N2

∂x

∂N3

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0

1

h

− 1

h

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and
∂N
∂y

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N1

∂y

∂N2

∂y

∂N3

∂y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

h

0

1

h

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Similarly, for the Type 2 element the shape functions are expressed by

N1 = 1 − x

h
; N2 = x − y

h
; N3 = y

h

x

y

1

N1

1

h

h

(a) Shape function for triangle (b) ‘Connected’ equations for node 1

(c) Type 1 and Type 2 element shapes in mesh
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Fig. 3.7 Linear triangular elements for heat conduction example.
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and their derivatives by

∂N
∂x

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N1

∂x

∂N2

∂x

∂N3

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

h

1

h

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and
∂N
∂y

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N1

∂y

∂N2

∂y

∂N3

∂y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0

− 1

h

1

h

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Evaluation of the matrix Ke
ba and f eb for Type 1 and Type 2 elements gives

Keφ̃
e = 1

2
k

⎡
⎣ 1 0 −1

0 1 −1
−1 −1 2

⎤
⎦
⎧⎨
⎩
φ̃e1
φ̃e2
φ̃e3

⎫⎬
⎭ and Keφ̃

e = 1

2
k

⎡
⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎦

⎧⎨
⎩
φ̃e1
φ̃e2
φ̃e3

⎫⎬
⎭ ,

respectively. Note that the stiffness matrix does not depend on the size h of the element.
This is a property of all two-dimensional elements in which the B matrix depends only on
first derivatives of C0 shape functions. The force vector for a constantQ over each element
is given by

f e = 1

6
Qh2

⎧⎨
⎩

1
1
1

⎫⎬
⎭

for both types of elements. Assembling the patch of elements shown in Fig. 3.7(b) gives
the equation with non-zero coefficients for node 1 as

k[4 −1 −1 −1 −1]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̃1

φ̃2

φ̃4

φ̃6

φ̃8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Qh2

The reader should note that the final stiffness for node 1 does not depend on nodes 3 and
7 of the patch, whereas there are non-zero stiffness coefficients in the individual elements.
Thus, the final result is only true when the arrangement of the nodes is regular. If the
location of any of the nodes lies on an irregular pattern then final stiffness coefficients will
remain for these nodes also.

Repeating the construction of the stiffness terms using a finite difference approximation
[as given in Eq. (3.31)] directly in the differential equation (3.8) gives the approximation

k

h2
[4 −1 −1 −1 −1]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ̃1

φ̃2

φ̃4

φ̃6

φ̃8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Q

and once again the assembled node is identical to the finite difference approximation to
within a constant multiplier. If all the boundary conditions are forced (i.e., φ = φ̄) no
differences arise between a finite element and a finite difference solution for the regular
mesh assumed. However, if any boundary conditions are of natural type or the mesh is
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irregular differences will arise. Indeed, no restrictions on shape of elements or assembly
type are imposed by the finite element approach.

Example 3.7: Steady-state heat conduction–convection in two dimensions: Galerkin
formulation. We have already introduced the problem in Sec. 3.1 and defined it by Eq. (3.9)
with appropriate boundary conditions. The equation differs only in the convective terms
from that of simple heat conduction for which the weak form has already been obtained in
Eq. (3.20). We can write the weighted residual equation immediately from this, substituting
v = wbδφ̃b and adding the convective terms. Thus we have

∫
�

(∇wb)Tk∇φ̂d�+
∫
�

wb

(
ux
∂φ̂

∂x
+ uy

∂φ̂

∂y

)
d�+

∫
�

wbQ d�+
∫
�q

wbq̄ d� = 0

(3.35)
with φ̂ = ∑

a Naφ̃a being such that the prescribed values of φ̄ are given on the boundary
�φ and that δφ̃b = 0 on that boundary [ignoring that term in (3.35)].

Specializing to the Galerkin approximation, i.e., puttingwb = Nb, we have immediately
a set of equations of the form

Kφ̃+ f = 0 (3.36)

with

Kba =
∫
�

(∇Nb)Tk∇Nad�+
∫
�

(
Nbux

∂Na

∂x
+Nbuy

∂Na

∂y

)
d�

=
∫
�

(
∂Nb

∂x
k
∂Na

∂x
+ ∂Nb

∂y
k
∂Na

∂y

)
d�+

∫
�

(
Nbux

∂Na

∂x
+Nbuy

∂Na

∂y

)
d�

fb =
∫
�

NbQd�+
∫
�q

Nbq̄d�

(3.37)

Once again the componentsKba and fb can be evaluated for a typical element or subdomain
and systems of equations built up by standard methods.

At this point it is important to mention that to satisfy the boundary conditions some of
the parameters φ̃a have to be prescribed and the number of approximation equations must
be equal to the number of unknown parameters. It is nevertheless often convenient to form
all equations for all parameters and prescribe the fixed values at the end using precisely the
same techniques as we have described in Chapter 1 for the insertion of prescribed boundary
conditions in standard discrete problems.

A further point concerning the coefficients of the matrix K should be noted here. The
first part, corresponding to the pure heat conduction equation, is symmetric (Kab = Kba)

but the second is not and thus a system of non-symmetric equations needs to be solved.
There is a basic reason for such non-symmetries which will be discussed in Sec. 3.9.

To make the problem concrete consider the domain � to be divided into regular square
elements of side h (Fig. 3.8(b)). To preserve C0 continuity with nodes placed at corners,
shape functions given as the product of the linear expansions can be written. For instance,
for node 1, as shown in Fig. 3.8(a),

N1 = x

h

y

h

and for node 2,
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Fig. 3.8 Linear square elements for heat conduction–convection example.

N2 = (h− x)

h

y

h
, etc.

With these shape functions the reader is invited to evaluate typical element contributions
and to assemble the equations for point 1 of the mesh numbered as shown in Fig. 3.8(b). If
Q is assumed to be constant, the result will be

8k

3
φ̃1 −

(
k

3
− uxh

3

)
φ̃2 −

(
k

3
− uxh

12
− uyh

12

)
φ̃3 −

(
k

3
− uyh

3

)
φ̃4

−
(
k

3
+ uxh

12
− uyh

12

)
φ̃5 −

(
k

3
+ uxh

3

)
φ̃6 −

(
k

3
+ uxh

12
+ uyh

12

)
φ̃7

−
(
k

3
+ uyh

3

)
φ̃8 −

(
k

3
− uxh

12
+ uyh

12

)
φ̃9 = −Qh2

(3.38)

This equation is similar to those that would be obtained by using finite difference approx-
imations to the same equations in a fairly standard manner.8, 9 In the example discussed
some difficulties arise when the convective terms are large. In such cases the Galerkin
weighting is not acceptable and other forms have to be used. For problems dealing with
fluid dynamics this is discussed in detail in reference 10.

3.4 Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids or fluids

In Chapter 2 we introduced a finite element by way of an application to the solid mechanics
problem of linear elasticity. The integral statement necessary for formulation in terms of
the finite element approximation was supplied via the principle of virtual work, which was
assumed to be so basic as not to merit proof. Indeed, to many this is so, and the virtual
work principle is considered by some as a statement of mechanics more fundamental than
the traditional equilibrium conditions of Newton’s laws of motion. Others will argue with
this view and will point out that all work statements are derived from the classical laws
pertaining to the equilibrium of the particle. We shall therefore show in this section that
the virtual work statement is simply a ‘weak form’ of equilibrium equations.

In a general three-dimensional continuum the equilibrium equations of an elementary
volume can be written in terms of the components of the symmetric cartesian stress tensor
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as11, 12

⎧⎨
⎩
A1

A2

A3

⎫⎬
⎭ = −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ bx

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ by

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ bz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 0 (3.39)

where b = [
bx by bz

]T
stands for the body forces acting per unit volume (which may

well include acceleration effects by the d’Alembert principle).
In solid mechanics the six stress components will be some general functions of the six

components of strain (ε) which are computed from the displacement

u = [
u v w

]T
(3.40)

and in fluid mechanics of the velocity vector u, which has identically named components.
Thus Eq. (3.39) can be considered as a general equation of the form Eq. (3.1), i.e., A(u) = 0.
To obtain a weak form we shall proceed as before, introducing an arbitrary weighting
function vector defined as

v ≡ δ u = [
δ u, δ v, δ w

]T
(3.41)

We can now write the integral statement of Eq. (3.11) as

∫
�

δuTA(u) d� = −
∫
�

[
δu

(
∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂y
+ bx

)
+ δv(A2)+ δw(A3)

]
d�

= 0
(3.42)

where the volume, �, is the problem domain.
Integrating each term by parts and rearranging we can write this as

∫
�

[
∂δu

∂x
σx +

(
∂δu

∂y
+ ∂δv

∂x

)
τxy + · · · − δu bx − δv by − δw bz

]
d�

−
∫
�

[
δu tx + δv ty + δw tz

]
d� = 0

(3.43)

where

t =
⎧⎨
⎩
tx
ty
tz

⎫⎬
⎭ =

⎧⎨
⎩
nxσx + nyτxy + nzτxz
nxτxy + nyσy + nzτyz
nxτxz + nyτyz + nzσz

⎫⎬
⎭ (3.44)

are tractions acting per unit area of external boundary surface � of the solid [in (3.43)
Green’s formulae of Appendix G are again used].

In the first set of bracketed terms in (3.43) we can recognize immediately the small strain
operators acting on δu, which can be termed a virtual displacement (or virtual velocity).
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We can therefore introduce a virtual strain (or strain rate) defined as

δε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂δu

∂x

∂δv

∂y

∂δw

∂z
∂δu

∂y
+ ∂δv

∂x
...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Sδu (3.45)

where the strain operator is defined as in Chapter 2 [Eqs (2.13)–(2.15)].
Arranging the six stress components in a vector σ in an order corresponding to that used

for δε, we can write Eq. (3.43) simply as∫
�

δεTσ d�−
∫
�

δuTb d�−
∫
�

δuTt d� = 0 (3.46)

which is the three-dimensional equivalent virtual work statement used in Eqs (2.25) and
(2.38) of Chapter 2.

We see from the above that the virtual work statement is precisely the weak form of
equilibrium equations and is valid for non-linear as well as linear stress–strain (or stress–
strain rate) relations.

The finite element approximation which we have derived in Chapter 2 is in fact a Galerkin
formulation of the weighted residual process applied to the equilibrium equation. Thus if
we take δu as the shape function times arbitrary parameters

δu =
∑
b

Nbδũb (3.47)

where the displacement field is discretized, i.e.,

u =
∑
a

Naũa (3.48)

together with the strain-displacement relations

ε =
∑
a

S Naũa =
∑
a

Baũa (3.49)

and constitutive relation of Eq. (2.16), we shall determine once again all the basic expres-
sions of Chapter 2 which are so essential to the solution of elasticity problems. We shall
consider this class of problems further in Chapter 6.

Similar expressions are vital to the formulation of equivalent fluid mechanics problems
as discussed in reference 10.

3.5 Partial discretization

In the approximation to the problem of solving the differential equation (3.1) by an expres-
sion of the standard form of Eq. (3.3), we have assumed that the shape functions N include
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all independent coordinates of the problem and that ũ was simply a set of constants. The
final approximation equations were thus always of an algebraic form, from which a unique
set of parameters could be determined.

In some problems it is convenient to proceed differently. Thus, for instance, if the
independent variables are x, y and z we could allow the parameters ũ to be functions of
z and do the approximate expansion only in the domain of x, y, say �̄. Thus, in place of
Eq. (3.3) we would have

u = N(x, y) ũ(z) (3.50)

Clearly the derivatives of ũ with respect to z will remain in the final discretization and the
result will be a set of ordinary differential equations with z as the independent variable. In
linear problems such a set will have the appearance

Kũ + C ˙̃u + · · · + f = 0 (3.51)

where ˙̃u ≡ dũ/dz, etc.
Such a partial discretization can obviously be used in different ways, but is particularly

useful when the domain �̄ is not dependent on z, i.e., when the problem is prismatic.
In such a case the coefficient matrices of the ordinary differential equations, (3.51), are
independent of z and the solution of the system can frequently be carried out efficiently by
standard analytical methods.

This type of partial discretization has been applied extensively by Kantorovich13 and
is frequently known by his name. Semi-analytical treatments are presented in reference
14 for prismatic solids where the final solution is obtained in terms of Fourier (or other)
series. However, the most frequently encountered ‘prismatic’ problem is one involving the
time variable, where the space domain �̄ is not subject to change. We shall address such
problems in Chapter 16 of this volume. It is convenient by way of illustration to consider
here heat conduction in a two-dimensional equation in its transient state. This is obtained
from Eq. (3.8) by addition of the heat storage term c(∂φ/∂t), where c is the specific heat per
unit volume. We now have a problem posed in a domain�(x, y, t) in which the following
equation holds:

A(φ) ≡ − ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
+Q+ c

∂φ

∂t
= 0 (3.52)

with boundary conditions identical to those of Eq. (3.8) and the temperature taken as zero
at time zero. Taking

φ ≈ φ̂ =
∑
a

Na(x, y) φ̃a(t) (3.53)

and using the Galerkin weighting procedure we follow precisely the steps outlined in
Eqs (3.35)–(3.37) and arrive at a system of ordinary differential equations

Kφ̃+ C
dφ̃

dt
+ f = 0 (3.54)

Here the expression for Kba and fb are identical with that of Eq. (3.34) and the reader can
verify that the matrix C is defined by

Cab =
∫
�

NacNb dx dy (3.55)
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Once again the matrix C can be assembled from its element contributions. Various
analytical and numerical procedures can be applied simply to the solution of such transient,
ordinary, differential equations which, again, we shall discuss in detail in Chapters 16
and 17. However, to illustrate the detail and the possible advantage of the process of partial
discretization, we shall consider a very simple problem.

Example 3.8: Heat equation with heat generation. Consider a long bar with a square
cross-section of size L× L in which the transient heat conduction equation (3.52) applies
and assume that the rate of heat generation varies with time as

Q = Q0e−αt (3.56)

(this might approximate a problem of heat development due to hydration of concrete). We
assume that at t = 0, φ = 0 throughout. Further, we shall take φ = 0 on all boundaries for
all times.

An approximation for the solution is taken:

φ =
M∑
m=1

N∑
n=1

Nmn(x, y) φ̃mn(t)

Nmn = cos
mπx

L
cos

nπy

L
; m, n = 1, 3, 5, · · ·

(3.57)

with x and y measured from the centre (Fig. 3.9). The even components of the Fourier
series are omitted due to the required symmetry of solution. Evaluating the coefficients
(only diagonal terms exist in K), we have

Kmn =
∫ L/2

−L/2

∫ L/2

−L/2

[
k

(
∂Nmn

∂x

)2

+ k

(
∂Nmn

∂y

)2]
dx dy = π2k

4
(m2 + n2)

Cmn =
∫ L/2

−L/2

∫ L/2

−L/2
cNmn

1 dx dy = L2c

4

fmn =
∫ L/2

−L/2

∫ L/2

−L/2
NmnQ0e−αtdx dy = 4Q0L

2

mnπ2
(−1)(m+3)/2(−1)(n+3)/2e−αt

(3.58)

This leads to an ordinary differential equation with parameters φ̃mn:

Kmnφ̃mn + Cmn
dφ̃mn

dt
+ fmn = 0 (3.59)

with φ̃mn = 0 when t = 0. The exact solution of this is easy to obtain, as is shown in
Fig. 3.9 for specific values of the parameters M , N , α and k/L2c.

The remarkable accuracy of the approximation withM = N = 3 in this example should
be noted. In this example we have used trigonometric functions in place of the more
standard polynomials used in the finite element method. In Chapter 7 we recalculate the
solution using a standard finite element method in which the solution to the time problem
is computed using a finite difference method.
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Fig. 3.9 Two-dimensional transient heat development in a square prism – plot of temperature at centre.

3.6 Convergence

In the previous sections we have discussed how approximate solutions can be obtained by
use of an expansion of the unknown function in terms of trial or shape functions. Further,
we have stated the necessary conditions that such functions have to fulfil in order that the
various integrals can be evaluated over the domain. Thus if various integrals contain only
the values of N and its first derivatives then N has to beC0 continuous. If second derivatives
are involved, C1 continuity is needed, etc. The problem which we have not yet addressed
ourselves consists of the questions of just how good the approximation is and how it can be
systematically improved to approach the exact answer. The first question is more difficult
to answer and presumes knowledge of the exact solution (see Chapter 13). The second
is more rational and can be answered if we consider some systematic way in which the
number of parameters ũ in the standard expansion of Eq. (3.3),

û =
n∑
a=1

Naũa

is presumed to increase.
In some examples we have assumed, in effect, a trigonometric Fourier-type series limited

to a finite number of terms with a single form of trial function assumed over the whole
domain. Here addition of new terms would be simply an extension of the number of terms
in the series included in the analysis, and as the Fourier series is known to be able to
represent any function within any accuracy desired as the number of terms increases, we
can talk about convergence of the approximation to the true solution as the number of terms
increases.

In other examples of this chapter we have used locally based polynomial functions
which are fundamental in the finite element analysis. Here we have tacitly assumed that
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convergence occurs as the size of elements decreases and, hence, the number of ũ parame-
ters specified at nodes increases. It is with such convergence that we need to be concerned
and we have already discussed this in the context of the analysis of elastic solids in Chapter 2
(Sec. 2.6).

We have now to determine

(a) that, as the number of elements increases, the unknown functions can be approximated
as closely as required, and

(b) how the error decreases with the size, h, of the element subdivisions (h is here some
typical dimension of an element).

The first problem is that of completeness of the expansion and we shall here assume
that all trial functions are polynomials (or at least include certain terms of a polynomial
expansion).

Clearly, as the approximation discussed here is to the weak, integral form typified by
Eq. (3.11) or (3.14) it is necessary that every term occurring under the integral be in the limit
capable of being approximated as nearly as possible and, in particular, giving a constant
value over any arbitrary infinitesimal part of the domain �.

If a derivative of order m exists in any such term, then it is obviously necessary for the
local polynomial to be at least of the orderm so that, in the limit, such a constant value can
be obtained.

We will thus state that a necessary condition for the expansion to be covergent is the
criterion of completeness: that, if mth derivatives occur in the integral form, a constant
value of all derivatives up to order m be attainable in the element domain when the size of
any element tends to zero.

This criterion is automatically ensured if the polynomials used in the shape function N
are complete to mth order. This criterion is also equivalent to the one of constant strain
postulated in Chapter 2 (Sec. 2.5). This, however, has to be satisfied only in the limit h → 0.

If the actual order of a complete polynomial used in the finite element expansion is
p ≥ m, then the order of convergence can be ascertained by seeing how closely such a
polynomial can follow the local Taylor expansion of the unknown u. Clearly the order of
error will be simply O(hp+1) since only terms of order p can be rendered correctly.

Knowledge of the order of convergence helps in ascertaining how good the approximation
is if studies on several decreasing mesh sizes are conducted. Though, in Chapter 14,
we shall see the asymptotic convergence rate is seldom reached if singularities occur in
the problem. Once again we have re-established some of the conditions discussed in
Chapter 2.

We shall not discuss, at this stage, approximations which do not satisfy the postulated
continuity requirements except to remark that once again, in many cases, convergence and
indeed improved results can be obtained (see Chapter 9).

In the above we have referred to the convergence of a given element type as its size is
reduced. This is sometimes referred to as h convergence.

On the other hand, it is possible to consider a subdivision into elements of a given size
and to obtain convergence to the exact solution by increasing the polynomial order p of
each element. This is referred to as p convergence, which is obviously assured. In general
p convergence is more rapid per degree of freedom introduced. We shall discuss both types
further in Chapter 14; although we have already noted in some examples how improved
accuracy occurs with higher term polynomials being added at each element level.
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Variational principles

3.7 What are ‘variational principles’?

What are variational principles and how can they be useful in the approximation to contin-
uum problems? It is to these questions that the following sections are addressed.

First a definition: a ‘variational principle’ specifies a scalar quantity (functional) �,
which is defined by an integral form

� =
∫
�

F

(
u,
∂u
∂x
, · · ·

)
d�+

∫
�

E

(
u,
∂u
∂x
, · · ·

)
d� (3.60)

in which u is the unknown function and F and E are specified differential operators. The
solution to the continuum problem is a function u which makes � stationary with respect
to arbitrary changes δu. Thus, for a solution to the continuum problem, the ‘variation’ is

δ� = 0 (3.61)

for any δu, which defines the condition of stationarity.15

If a ‘variational principle’ can be found, then means are immediately established for
obtaining approximate solutions in the standard, integral form suitable for finite element
analysis.

Assuming a trial function expansion in the usual form [Eq. (3.3)]

u ≈ û =
n∑
a=1

Naũa

we can insert this into Eq. (3.60) and write

δ� = ∂�

∂ũ1
δũ1 + ∂�

∂ũ2
δũ2 + · · · + ∂�

∂ũn
δũn = 0 (3.62)

This being true for any variations δũ yields a set of equations

∂�

∂ũ
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂�

∂ũ1
...

∂�

∂ũn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 0 (3.63)

from which parameters ũa are found. The equations are of an integral form necessary for
the finite element approximation as the original specification of � was given in terms of
domain and boundary integrals.

The process of finding stationarity with respect to trial function parameters ũ is an old
one and is associated with the names of Rayleigh16 and Ritz.17 It has become extremely
important in finite element analysis which, to many investigators, is typified as a ‘variational
process’.
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If the functional� is ‘quadratic’, i.e., if the function u and its derivatives occur in powers
not exceeding 2, then Eq. (3.63) reduces to a standard linear form similar to Eq. (3.7), i.e.,

∂�

∂ũ
≡ Kũ + f = 0 (3.64)

It is easy to show that the matrix K will now always be symmetric. To do this let us
consider a linearization of the vector ∂�/∂ũ. This we can write as

�

(
∂�

∂ũ

)
=

⎧⎪⎨
⎪⎩

∂

∂ũ1

(
∂�

∂ũ1

)
�ũ1 + ∂

∂ũ2

(
∂�

∂ũ1

)
�ũ2 + · · ·

...

⎫⎪⎬
⎪⎭ ≡ KT �ũ (3.65)

in which KT is generally known as the tangent matrix, of significance in non-linear analysis,
and �ũ are small incremental changes to ũ. Now it is easy to see that

KTab = ∂2�

∂ũa∂ũb
= KT

Tba (3.66)

Hence KT is symmetric.
For a quadratic functional we have, from Eq. (3.64),

�

(
∂�

∂ũ

)
= K�ũ with K = KT (3.67)

and hence symmetry must exist.
The fact that symmetric matrices will arise whenever a variational principle exists is

one of the most important merits of variational approaches for discretization. However,
symmetric forms will frequently arise directly from the Galerkin process. In such cases we
simply conclude that the variational principle exists but we shall not need to use it directly.
Further, the discovery of symmetry from a weighted residual process leads directly to known
(or previously unknown) variational principles.18

How then do ‘variational principles’ arise and is it always possible to construct these for
continuous problems?

To answer the first part of the question we note that frequently the physical aspects
of the problem can be stated directly in a variational principle form. Theorems such as
minimization of total potential energy to achieve equilibrium in mechanical systems, least
energy dissipation principles in viscous flow, etc., may be known to the reader and are
considered by many as the basis of the formulation. We have already referred to the first
of these in Sec. 2.4 of Chapter 2.

Variational principles of this kind are ‘natural’ones but unfortunately they do not exist for
all continuum problems for which well-defined differential equations may be formulated.

However, there is another category of variational principles which we may call ‘con-
trived’. Such contrived principles can always be constructed for any differentially specified
problem, either by extending the number of unknown functions u by additional variables
known as Lagrange multipliers, or by procedures imposing a higher degree of continuity
requirements such as in least squares problems. In subsequent sections we shall discuss,
respectively, such ‘natural’ and ‘contrived’ variational principles.

Before proceeding further it is worth noting that, in addition to symmetry occurring
in equations derived by variational means, sometimes further motivation arises. When
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‘natural’ variational principles exist the quantity�may be of specific interest itself. If this
arises a variational approach possesses the merit of easy evaluation of this functional.

The reader will observe that if the functional is ‘quadratic’ and yields Eq. (3.64), then
we can write the approximate ‘functional’� simply as

� = 1
2 ũTKũ + ũTf (3.68)

By simple differentiation

δ� = 1
2δ(ũ

T)Kũ + 1
2 ũTK δũ + δũTf = 0

As K is symmetric,
δũTKũ ≡ ũTKδũ

Hence
δ� = δũT(Kũ + f) = 0

which is true for all δũ and hence
Kũ + f = 0

when inserted into (3.68) we obtain

� = 1

2
ũTf = −1

2
ũTK ũ

3.8 ‘Natural’ variational principles and their relation to
governing differential equations

3.8.1 Euler equations

If we consider the definitions of Eqs (3.60) and (3.61) we observe that for stationarity we
can write, after performing some differentiations and integrations by parts,

δ� =
∫
�

δuTA(u)d�+
∫
�

δuTB(u)d� = 0 (3.69)

As the above has to be true for any variations δu, we must have

A(u) = 0 in � and B(u) = 0 on � (3.70)

If A corresponds precisely to the differential equations governing the problem of interest
and B to its boundary conditions, then the variational principle is a natural one. Equations
(3.70) are known as the Euler differential equations corresponding to the variational prin-
ciple requiring the stationarity of �. It is easy to show that for any variational principle a
corresponding set of Euler equations can be established. The reverse is unfortunately not
true, i.e., only certain forms of differential equations are Euler equations of a variational
functional. In the next section we shall consider the conditions necessary for the existence
of variational principles and give a prescription for the establishing� from a set of suitable
linear differential equations. In this section we shall continue to assume that the form of
the variational principle is known.
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To illustrate the process let us now consider a specific example. Suppose we specify a
problem by requiring the stationarity of a functional

� =
∫
�

[
1
2k

(
∂φ

∂x

)2

+ 1
2k

(
∂φ

∂y

)2

+Qφ

]
d�+

∫
�q

q̄φ d� (3.71)

in which k and Q depend only on position and we assume φ = φ̄ is satisfied on �φ .
We now perform the variation.15 This can be written following the rules of differentiation

as

δ� =
∫
�

[
k
∂φ

∂x
δ

(
∂φ

∂x

)
+ k

∂φ

∂y
δ

(
∂φ

∂y

)
+Qδφ

]
d�+

∫
�q

(q̄ δφ) d� = 0 (3.72)

As

δ

(
∂φ

∂x

)
= ∂

∂x
(δφ) (3.73)

we can integrate by parts (as in Sec. 3.3) and, since δφ = 0 on �φ , obtain

δ� =
∫
�

δφ

[
− ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
+Q

]
d�

+
∫
�q

δφ

(
k
∂φ

∂n
+ q̄

)
d� = 0

(3.74a)

This is of the form of Eq. (3.69) and we immediately observe that the Euler equations
are

A(φ) = − ∂

∂x

(
k
∂φ

∂y

)
− ∂

∂y

(
k
∂φ

∂y

)
+Q = 0 in �

B(φ) = k
∂φ

∂n
+ q̄ = 0 on �q

(3.74b)

If φ is prescribed so that φ = φ̄ on �φ and δφ = 0 on that boundary, then the problem is
precisely the one we have already discussed in Sec. 3.2 and the functional (3.71) specifies
the two-dimensional heat conduction problem in an alternative way.

In this case we have ‘guessed’ the functional but the reader will observe that the variation
operation could have been carried out for any functional specified and corresponding Euler
equations could have been established.

Let us continue the process to obtain an approximate solution of the linear heat conduction
problem. Taking, as usual,

φ ≈ φ̂ =
∑
a

Naφ̃a = Nφ̃ (3.75)

we substitute this approximation into the expression for the functional � [Eq. (3.71)] and
obtain

� =
∫
�

1

2
k

(∑
a

∂Na

∂x
φ̃a

)2

d�+
∫
�

1

2
k

(∑
a

∂Na

∂y
φ̃a

)2

d�

+
∫
�

Q
∑
a

Naφ̃a d�+
∫
�q

q̄
∑
a

Naφ̃a d�

(3.76)
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On differentiation with respect to a typical parameter φ̃b we have

∂�

∂φ̃b
=

∫
�

k

(∑
a

∂Na

∂x
φ̃a

)
∂Nb

∂x
d�+

∫
�

k

(∑
a

∂Na

∂y
φ̃a

)
∂Nb

∂y
d�

+
∫
�

QNb d�+
∫
�q

q̄Nb d� = 0
(3.77)

and a system of equations for the solution of the problem is

Kφ̃+ f = 0 (3.78)

with

Kab = Kba =
∫
�

k
∂Na

∂x

∂Nb

∂x
d�+

∫
�

k
∂Na

∂y

∂Nb

∂y
d�

fb =
∫
�

NbQ d�+
∫
�q

Nb q̄ d�
(3.79)

The reader will observe that the approximation equations are here identical with those
obtained in Sec. 3.5 for the same problem using the Galerkin process. No special advantage
accrues to the variational formulation here, and indeed we can predict now that Galerkin
and variational procedures must give the same answer for cases where natural variational
principles exist.

3.8.2 Relation of the Galerkin method to approximation via
variational principles

In the preceding example we have observed that the approximation obtained by the use
of a natural variational principle and by the use of the Galerkin weighting process proved
identical. That this is the case follows directly from Eq. (3.69), in which the variation
was derived in terms of the original differential equations and the associated boundary
conditions.

If we consider the usual trial function expansion [Eq. (3.3)]

u ≈ û = Nũ

we can write the variation of this approximation as

δû = N δũ (3.80)

and inserting the above into (3.69) yields

δ� = δũT
∫
�

NTA(Nũ) d�+ δũT
∫
�

NTB(Nũ) d� = 0 (3.81)

The above form, being true for all δũ, requires that the expression under the integrals
should be zero. The reader will immediately recognize this as simply the Galerkin form
of the weighted residual statement discussed earlier [Eq. (3.22)], and identity is hereby
proved.

We need to underline, however, that this is only true if the Euler equations of the varia-
tional principle coincide with the governing equations of the original problem. The Galerkin
process thus retains its greater range of applicability.
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3.9 Establishment of natural variational principles for
linear, self-adjoint, differential equations

General rules for deriving natural variational principles from non-linear differential equa-
tions are complicated and even the tests necessary to establish the existence of such vari-
ational principles are not simple. Much mathematical work has been done in this context
by Vainberg,19 Tonti,18 Oden,20, 21 and others.

For linear differential equations the situation is much simpler and a thorough study is
available in the works of Mikhlin,22, 23 and in this section a brief presentation of such rules
is given.

We shall consider here only the establishment of variational principles for a linear system
of equations with forced boundary conditions, implying only variation of functions which
yield δu = 0 on their boundaries. The extension to include natural boundary conditions is
simple and will be omitted.

Writing a linear system of differential equations as

A(u) ≡ Lu + b = 0 (3.82)

in which L is a linear differential operator it can be shown that natural variational principles
require that the operator L be such that

∫
�

ψT(Lγ) d� =
∫
�

γT(Lψ) d�+ b.t. (3.83)

for any two function setsψ and γ. In the above, ‘b.t.’ stands for boundary terms which we
disregard in the present context. The property required in the above operator is called that
of self-adjointness or symmetry.

If the operator L is self-adjoint, the variational principle can be written immediately as

� =
∫
�

[
1
2 uT (Lu)+ uTb

]
d�+ b.t. (3.84)

To prove the veracity of the last statement a variation needs to be considered. We thus
write (omitting boundary terms)

δ� =
∫
�

[ 1
2δu

TLu + 1
2 uTδ(Lu)+ δuTb] d� = 0 (3.85)

Noting that for any linear operator

δ(Lu) ≡ L δu (3.86)

and that u and δu can be treated as any two independent functions, by identity (3.83) we
can write Eq. (3.85) as

δ� =
∫
�

δuT[Lu + b] d� = 0 (3.87)

We observe immediately that the term in the brackets, i.e., the Euler equation of the func-
tional, is identical with the original equation postulated, and therefore the variational prin-
ciple is verified.
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The above gives a very simple test and a prescription for the establishment of natural
variational principles for differential equations of the problem.

Example 3.9: Helmholz problem in two dimensions. A Helmholz problem is governed
by a differential equation similar to the heat conduction equation, e.g.,

∇2φ + c φ +Q = 0 (3.88)

with c and Q being dependent on position only.
The above can be written in the general form of Eq. (3.82), with

L =
[
∂2

∂x2
+ ∂2

∂y2
+ c

]
; b = Q and u = φ (3.89)

Verifying that self-adjointness applies (which we leave to the reader as an exercise), we
immediately have a variational principle

� =
∫
�

[
1

2
φ

(
∂2φ

∂x2
+ ∂2φ

∂y2
+ cφ

)
+ φQ

]
dx dy (3.90)

with φ satisfying the forced boundary condition, i.e., φ = φ̄ on �φ . Integrating by parts of
the first two terms results in

� = −
∫
�

[
1

2

(
∂φ

∂x

)2

+ 1

2

(
∂φ

∂y

)2

− 1

2
c φ2 − φQ

]
dx dy (3.91)

on noting that boundary terms with prescribed φ do not alter the principle.

Example 3.10: First-order form of heat equation. This problem concerns the one-
dimensional heat conduction equation (Example 3.5, Sec. 3.3) written in first order form
as

A(u) =

⎧⎪⎪⎨
⎪⎪⎩

−q − dφ

dx
dq

dx
+Q

⎫⎪⎪⎬
⎪⎪⎭

= 0

or, using Eq. (3.82), as

L ≡

⎡
⎢⎢⎣

−1, − d

dx
d

dx
, 0

⎤
⎥⎥⎦ ; b =

{
0

Q

}
and u =

{
q

φ

}

Again self-adjointness of the operator can be tested and found to be satisfied. We now write
the functional as

� =
∫
�

⎡
⎢⎢⎣1

2

{
q

φ

}T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1, − d

dx
d

dx
, 0

⎤
⎥⎥⎦

{
q

φ

}
⎞
⎟⎟⎠ +

{
q

φ

}T {
0
Q

}
⎤
⎥⎥⎦ dx

=
∫
�

[
1

2

(
−q2 − q

dφ

dx
+ φ

dq

dx

)
+ φQ

]
dx

(3.92)



Maximum, minimum, or a saddle point? 83
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A

Fig. 3.10 Maximum, minimum and a ‘saddle’ point for a functional � of one variable.

The verification of the correctness of the above, by executing a variation, is left to the reader.

These two examples illustrate the simplicity of application of the general expressions.
The reader will observe that self-adjointness of the operator will generally exist if even
orders of differentiation are present. For odd orders self-adjointness is only possible if the
operator is a ‘skew’-symmetric matrix such as occurs in the second example.

3.10 Maximum, minimum, or a saddle point?

In discussing variational principles so far we have assumed simply that at the solution point
δ� = 0, that is the functional is stationary. It is often desirable to know whether � is at a
maximum, minimum, or simply at a ‘saddle point’. If a maximum or a minimum is involved,
then the approximation to�will always be ‘bounded’, i.e., will provide approximate values
of � which are either smaller or larger than the correct ones.† The bound in itself may be
of practical significance in some problems.

When, in elementary calculus, we consider a stationary point of a function � of one
variable u, we investigate the rate of change of d� with du and write

d(d�) = d

(
∂�

∂u
du

)
= ∂2�

∂u2
(du)2 (3.93)

The sign of the second derivative determines whether� is a minimum, maximum, or simply
stationary (saddle point), as shown in Fig. 3.10. By analogy in the calculus of variations we
shall consider changes of δ�. Noting the general form of this quantity given by Eq. (3.62)
and the notion of the second derivative of Eq. (3.65) we can write, in terms of discrete
parameters,

δ(δ�) ≡ δ

(
∂�

∂ũ

)T

δũ = δũTδ

(
∂�

∂ũ

)
= δũT

(
∂2�

∂ũ ∂ũ
δũ

)
= δũTKT δũ (3.94)

If, in the above, δ(δ�) is always negative then� is obviously reaching a maximum, if it is
always positive then � is a minimum, but if the sign is indeterminate this shows only the
existence of a saddle point.

†Provided all integrals are exactly evaluated.
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As δũ is an arbitrary vector this statement is equivalent to requiring the matrix KT to
be negative definite for a maximum or positive definite for a minimum. The form of the
matrix KT (or in linear problems of K which is identical to it) is thus of great importance
in the solution of variational problems.

3.11 Constrained variational principles. Lagrange
multipliers

3.11.1 Lagrange multipliers

Consider the problem of making a functional� stationary, subject to the unknown u obeying
some set of additional differential relationships

C(u) = 0 in � (3.95)

We can introduce this constraint by forming another functional

�̄(u,λ) = �(u)+
∫
�

λTC(u) d� (3.96)

in which λ is some set of functions of the independent coordinates in the domain� known
as Lagrange multipliers. The variation of the new functional is now

δ�̄ = δ�+
∫
�

λTδC(u) d�+
∫
�

δλTC(u) d� = 0 (3.97)

which immediately gives C(u) = 0 and, simultaneously, an added contribution to the
original δ� involving λ.

In a similar way, constraints can be introduced at some points or over boundaries of the
domain. For instance, if we require that u obey

E(u) = 0 on � (3.98)

we would add to the original functional the term
∫
�

λTE(u) d� (3.99)

withλ now being an unknown function defined only on�. Alternatively, if the constraint C
is applicable only at one or more points of the system, then the simple addition of λTC(u)
at these points to the general functional � will introduce a discrete number of constraints.

It appears, therefore, possible to always introduce additional functions λ and modify a
functional to include any prescribed constraints. In the ‘discretization’ process we shall
now have to use trial functions to describe both u and λ.

Writing, for instance,

û =
∑
a

Naũa = Nũ λ̂ =
∑
b

N̄bλ̃b = N̄λ̃ (3.100)
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we shall obtain a set of equations

∂�

∂w
=

⎧⎪⎪⎨
⎪⎪⎩

∂�

∂ũ

∂�

∂λ̃

⎫⎪⎪⎬
⎪⎪⎭

= 0 where w =
{

ũ
λ̃

}
(3.101)

from which both the sets of parameters ũ and λ̃ can be obtained. It is somewhat paradoxical
that the ‘constrained’ problem has resulted in a larger number of unknown parameters than
the original one and, indeed, has complicated the solution. We shall, nevertheless, find
practical use for Lagrange multipliers in formulating some physical variational principles,
and will make use of these in a more general context in Chapters 10 and 11.

Before proceeding further it is of interest to investigate the form of equations resulting
from the modified functional� of Eq. (3.96). If the original functional� gave as its Euler
equations a system

A(u) = 0 (3.102)

then we have (omitting the boundary terms)

δ�̄ =
∫
�

δuTA(u) d�+
∫
�

δCTλ d�+
∫
�

δλTC(u) d� = 0 (3.103)

Substituting the trial functions (3.100) we can write for a linear set of constraints

C(u) = L1u + C1

that

δ�̄ = δũT

[∫
�

NTA(û) d�+
∫
�

(L1N)Tλ̂ d�

]

+ δλ̃
T
∫
�

N̄T(L1û + C1) d� = 0
(3.104)

As this has to be true for all variations δũ and δλ̃, we have a system of equations∫
�

NTA(û) d�+
∫
�

(L1N)Tλ̂ d� = 0∫
�

N̄T(L1û + C1) d� = 0
(3.105)

For linear equations A, the first term of the first equation is precisely the ordinary,
unconstrained, variational approximation

Kuuũ + fu (3.106)

and inserting again the trial functions (3.100) we can write the approximated Eq. (3.105)
as a linear system:

Kww =
[

Kuu, Kuλ

KT
uλ, 0

] {
ũ
λ̃

}
+

{
fu
fλ

}
= 0 (3.107)

with
KT
uλ =

∫
�

N̄T (L1N) d�; fλ =
∫
�

N̄TC1 d� (3.108)
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Clearly the system of equations is symmetric but now possesses zeros on the diagonal, and
therefore the variational principle� is merely stationary. Further, computational difficulties
may be encountered unless the solution process allows for zero diagonal terms.

Example 3.11: Constraint enforcement using Lagrange multiplier. The point about
increasing the number of parameters to introduce a constraint may perhaps be best illustrated
in a simple algebraic situation in which we require a stationary value of a quadratic function
of two variables u1 and u2:

� = 2u2
1 − 2u1u2 + u2

2 + 18u1 + 6u2 (3.109)

subject to a constraint

u1 − u2 = 0 (3.110)

The obvious way to proceed would be to insert directly the equality ‘constraint’ and obtain

� = u2
1 + 24u1 (3.111)

and write, for stationarity,

∂�

∂u1
= 0 = 2u1 + 24 u1 = u2 = −12 (3.112)

Introducing a Lagrange multiplier λ we can alternatively find the stationarity of

�̄ = 2u2
1 − 2u1u2 + u2

2 + 18u1 + 6u2 + λ(u1 − u2) (3.113)

and write three simultaneous equations

∂�̄

∂u1
= 4u1 − 2u2 + λ+ 18 = 0

∂�̄

∂u2
= −2u1 + 2u2 − λ+ 6 = 0

∂�̄

∂λ
= u1 − u2 = 0

(3.114)

The solution of the above system again yields the correct answer

u1 = u2 = −12 λ = 6

but at considerably more effort. Unfortunately, in most continuum problems direct elimi-
nation of constraints cannot be so simply accomplished.†

† In the finite element context, Szabo and Kassos24 use such direct elimination; however, this involves considerable
algebraic manipulation.
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3.11.2 Identification of Lagrange multipliers. Forced boundary
conditions and modified variational principles

Although the Lagrange multipliers were introduced as a mathematical concept necessary
for the enforcement of certain external constraints required to satisfy the original variational
principle, we shall find that in many situations they can be identified with certain physical
quantities of importance to the original mathematical model. Such an identification will
follow immediately from the definition of the variational principle established in Eq. (3.96)
and through the first of the Euler equations in (3.105) corresponding to it. The variation
δ�̄, written in Eq. (3.97), supplies through its third term the constraint equation. The first
two terms can always be rewritten as∫

�

δC(u)Tλ d�+
∫
�

δuTA(u) d� = 0 (3.115a)

or ∫
�

δE(u)Tλ d� +
∫
�

δuTB(u) d� = 0 (3.115b)

This supplies the identification of λ.
In the literature of variational calculation such identification arises frequently and the

reader is referred to the excellent text by Washizu25 for numerous examples.

Example 3.12: Identification of Lagrange multiplier for boundary condition. Here
we shall introduce this identification by means of the example considered in Sec. 3.8.1. As
we have noted, the variational principle of Eq. (3.71) established the governing equation
and the natural boundary conditions of the heat conduction problem providing the forced
boundary condition

E(φ) = φ − φ̄ = 0 (3.116)

was satisfied on �φ in the choice of the trial function for φ.
The above forced boundary condition can, however, be considered as a constraint on the

original problem. We can write the constrained variational principle as

�̄ = �+
∫
�φ

λ(φ − φ̄) d� (3.117)

where � is given by Eq. (3.71).
Performing the variation we have

δ�̄ = δ�+
∫
�φ

δφλ d� +
∫
�φ

δλ(φ − φ̄) d� = 0 (3.118)

δ� is now given by the expression (3.74a) augmented by an integral∫
�φ

δφ k
∂φ

∂n
d� (3.119)

which was previously disregarded (as we had assumed that δφ = 0 on �φ). In addition to
the conditions of Eq. (3.74b), we now require that∫

�φ

δλ(φ − φ̄) d� +
∫
�φ

δφ

(
λ+ k

∂φ

∂n

)
d� = 0 (3.120)
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which must be true for all variations δλ and δφ. The first simply reiterates the constraint

φ − φ̄ = 0 on �φ (3.121)

The second defines λ as

λ = −k ∂φ
∂n

(3.122)

Noting that k(∂φ/∂n) is the negative to the flux qn on the boundary �φ , the physical
identification of the multiplier has been achieved – that is, λ ≡ qn.

The identification of the Lagrange variable leads to the possible establishment of a mod-
ified variational principle in which λ is replaced by the identification.

We could thus write a new principle for the above example:

�̄ = �−
∫
�φ

k
∂φ

∂n
(φ − φ̄) d� (3.123)

in which once again � is given by the expression (3.71) but φ is not constrained to satisfy
any boundary conditions. Use of such modified variational principles can be made to
restore interelement continuity and appears to have been first introduced for that purpose
by Kikuchi andAndo.26 In general these present interesting new procedures for establishing
useful variational principles.

A further extension of such principles has been made use of by Chen and Mei27 and
Zienkiewicz et al.28 Washizu25 discusses many such applications in the context of structural
mechanics. The reader can verify that the variational principle expressed in Eq. (3.123)
leads to automatic satisfaction of all the necessary boundary conditions in the example
considered.

The use of modified variational principles restores the problem to the original number of
unknown functions or parameters and is often computationally advantageous.

3.12 Constrained variational principles. Penalty
function and perturbed lagrangian methods

In the previous section we have seen how the process of introducing Lagrange multipliers
allows constrained variational principles to be obtained at the expense of increasing the total
number of unknowns. Further, we have shown that even in linear problems the algebraic
equations which have to be solved are now complicated by having zero diagonal terms. In
this section we shall consider alternative procedures of introducing constraints which do
not possess these drawbacks.

3.12.1 Penalty functions

Considering once again the problem of obtaining stationarity of � with a set of constraint
equations C(u) = 0 in domain �, we note that the product

CTC = C2
1 + C2

2 + · · · (3.124)
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where CT = [C1, C2, . . .] must always be a quantity which is positive or zero. Clearly, the
latter value is found when the constraints are satisfied and also clearly the variation

δ(CTC) = 0 (3.125)

as the product reaches that minimum.
We can now write a new functional

¯̄� = �+ 1

2
α

∫
�

CT(u)C(u) d� (3.126)

in which α is a ‘penalty number’ and then require the stationarity for the constrained
solution. If � is itself a minimum of the solution then α should be a positive number.
The solution obtained by the stationarity of the functional ¯̄� will satisfy the constraints
only approximately. The larger the value of α the better will be the constraints achieved.
Further, it seems obvious that the process is best suited to cases where� is a minimum (or
maximum) principle, but success can be obtained even with purely saddle point problems.
The process is equally applicable to constraints applied on boundaries or simple discrete
constraints. In this latter case integration is dropped.

3.12.2 Perturbed lagrangian

We consider once again the problem of obtaining stationarity of � with a set of constraint
equations C(u) = 0 in domain�. The Lagrange multiplier form to embed the constraint is
given in Eq. (3.96). Here we modify the expression by appending a quadratic term of the
form λTλ scaled by a parameter α. The form of the final equation is given by

�̆(u,λ) = �(u)+
∫
�

λTC(u) d�− 1

2α

∫
�

λTλ d� (3.127)

We note that as the parameter α tends toward infinity the form approaches a Lagrange
multiplier form. Accordingly, this form is called a perturbed lagrangian functional. Taking
the variation we obtain the result

δ�̆ = δ�+
∫
�

λTδC(u) d�+
∫
�

δλTC(u) d�− 1

α

∫
�

δλTλ d� = 0 (3.128)

If the constraints are a linear form given by

C(u) = C0u

we can introduce the approximations (3.100) into (3.128) to obtain the set of equations
[

Kuu Kuλ

Kλu − 1
α

Kλλ

] {
ũ
λ̃

}
=

{
f
0

}
(3.129)

where Kuu is the coefficient array from δ� and

Kuλ =
∫
�

N̄TC0 d� and Kλλ =
∫
�

N̄TN̄ d�
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The second equation of (3.129) may be solved for λ̃ in terms of ũ and substituted into the
first equation to obtain

K̄uuũ = [
Kuu + αKuλK−1

λλ Kλu

]
ũ = f

It is now apparent that the perturbed lagrangian and penalty forms are closely related. The
perturbed lagrangian uses

KuλK−1
λλ Kλu

to impose the constraint whereas the penalty approach uses
∫
�

CT
0 C0 d�

When the constraint is a simple scalar relation the two methods are identical; however,
when any other form is considered the methods will yield different approximations unless
the shape functions for λ include all the terms contained in δC(u).

Example 3.13: Constraint enforcement by penalty method. To clarify ideas let us once
again consider the algebraic problem of Sec. 3.11.1, in which the stationarity of a functional
given by Eq. (3.109) was sought subject to a constraint. With the penalty function approach
we now seek the minimum of a functional

¯̄� = 2u2
1 − 2u1u2 + u2

2 + 18u1 + 6u2 + 1
2 α (u1 − u2)

2 (3.130)

with respect to the variation of both parameters u1 and u2. Writing the two simultaneous
equations

∂ ¯̄�

∂u1
= 0,

∂ ¯̄�

∂u2
= 0

we find [
(4 + α) −(2 + α)

−(2 + α) (2 + α)

] {
u1

u2

}
+

{
18
6

}
=

{
0
0

}
(3.131)

and note as α is increased we approach the correct solution. In Table 3.1 the results are set
out demonstrating the convergence.

The reader will observe that in a problem formulated in the above manner the constraint
introduces no additional unknown parameters – but neither does it decrease their original
number. The process will always result in strongly positive definite matrices if the original
variational principle is one of a minimum and, similarly, negative definite matrices are
obtained for a maximum principle if α is negative.

In practical applications the method of penalty functions has proved to be quite effective,29

and indeed is often introduced intuitively.

Table 3.1 Convergence of two-term solution

α 1/2 1 3 5 50 500

u1 −12.000 −12.000 −12.000 −12.000 −12.000 −12.000

u2 −13.500 −13.000 −12.429 −12.273 −12.030 −12.003
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In the example presented next the forced boundary conditions are not introduced a priori
and the problem gives, on assembly, a singular system of equations

Kũ + f = 0 (3.132)

which can be obtained from the functional (providing K is symmetric)

� = 1
2 ũTKũ + ũTf (3.133)

Introducing a prescribed value of u1, i.e., writing

u1 − ū1 = 0 (3.134)

the functional can be modified to

¯̄� = �+ 1
2α(u1 − ū1)

2 (3.135)

yielding
¯̄K11 = K11 + α ¯̄f 1 = f1 − αū1 (3.136)

and giving no change in any of the other matrix coefficients. Many applications of such a
‘discrete’ kind are discussed by Campbell.30

It is easy to show in another context29, 31 that the use of a high Poisson’s ratio (ν → 0.5)
for the study of incompressible solids or fluids is in fact equivalent to the introduction
of a penalty term to suppress any compressibility allowed by an arbitrary displacement
variation.

The use of the penalty function in the finite element context presents certain difficulties.
First, the constrained functional of Eq. (3.126) leads to equations of the form

(K1 + αK2)ũ + ¯̄f = 0 (3.137)

where K1 derives from the original functional and K2 from the constraints. As α increases
the above equation degenerates to:

K2ũ = −f/α → 0

and ũ = 0 unless the matrix K2 is singular. The phenomenon where ũ ⇒ 0 is known as
locking and has often been encountered by researchers who failed to recognize its source.
This singularity in the equations does not always arise and we shall discuss means of its
introduction in Chapters 10 and 11.

Second, with large but finite values ofα numerical difficulties will be encountered. Noting
that discretization errors can be of comparable magnitude to those due to not satisfying the
constraint, we can make

α = constant(1/h)n

ensuring a limiting convergence to the correct answer. Fried32, 33 discusses this problem in
detail.

A more general discussion of the whole topic is given in reference 34 and in Chapter 11
where the relationship between Lagrange constraints and penalty forms is made clear.
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3.13 Least squares approximations

A general variational principle also may be constructed if the constraints described in the
previous section are simply the governing equations of the problem

C(u) = A(u) (3.138)

Obviously the same procedure can be used in the context of the penalty function approach
by setting � = 0 in Eq. (3.126). We can thus write a ‘variational principle’

¯̄� = 1
2

∫
�

(A2
1 + A2

2 + · · · ) d� = 1
2

∫
�

AT(u)A(u) d� (3.139)

for any set of differential equations. In the above equation the boundary conditions are
assumed to be satisfied by u (forced boundary condition) and the parameter α is dropped
as it becomes a multiplier.

Clearly, the above statement is a requirement that the sum of the squares of the residuals
of the differential equations should be a minimum at the correct solution. This minimum is
obviously zero at that point, and the process is simply the well-known least squares method
of approximation.

It is equally obvious that we could obtain the correct solution by minimizing any func-
tional of the form

¯̄� = 1
2

∫
�

(p1A
2
1 + p2A

2
2 + · · · ) d� = 1

2

∫
�

AT(u)pA(u) d� (3.140)

in which p1, p2, . . ., etc., are positive valued weighting functions or constants and p is a
diagonal matrix:

p =

⎡
⎢⎢⎢⎣
p1 0

p2

p3

0
. . .

⎤
⎥⎥⎥⎦ (3.141)

The above alternative form is sometimes convenient as it puts different importance on
the satisfaction of individual components of the equation set and allows additional freedom
in the choice of the approximate solution. Once again this weighting function could be
chosen so as to ensure a constant ratio of terms contributed by various equations.

A least squares method of the kind shown above is a very powerful alternative procedure
for obtaining integral forms from which an approximate solution can be started, and has
been used with considerable success.35, 36 As a least squares variational principle can be
written for any set of differential equations without introducing additional variables, we
may well enquire what is the difference between these and the natural variational principles
discussed previously. On performing a variation in a specific case the reader will find that
the Euler equations which are obtained no longer give the original differential equations but
give higher order derivatives of these. This introduces the possibility of spurious solutions
if incorrect boundary conditions are used. Further, higher order continuity of trial functions
is now generally needed. This may be a serious drawback but frequently can be by-passed
by stating the original problem as a set of lower order equations.
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We shall now consider the general form of discretized equations resulting from the least
squares approximation for linear equation sets (again neglecting boundary conditions which
are assumed forced). Thus, if we take

A(u) = Lu + b (3.142)

and take the usual trial function approximation

û = Nũ (3.143)

we can write, substituting into (3.140),

¯̄� = 1
2

∫
�

[(LN)ũ + b]Tp[(LN)ũ + b] d� (3.144)

and obtain

δ ¯̄� = 1
2

∫
�

δũT(LN)Tp[(LN)ũ+b] d�+ 1
2

∫
�

[(LN)ũ+b]Tp(LN) δũ d� = 0 (3.145)

or, as p is symmetric,

δ ¯̄� = δũT

{[∫
�

(LN)Tp(LN) d�

]
ũ +

∫
�

(LN)Tpb d�

}
= 0 (3.146)

This immediately yields the approximation equation in the usual form:

Kũ + f = 0 (3.147)

and the reader can observe that the matrix K is symmetric and positive definite.

Example 3.14: Least squares solution for Helmholz equation. To illustrate an actual
example, consider the Helmholz problem governed by Eq. (3.88) for which we have already
obtained a natural variational principle [Eq. (3.91)] in which only first derivatives were
involved requiring C0 continuity for u. Now, if we use the operator L and term b defined
by Eq. (3.89), we have a set of approximating equations with

Kab =
∫
�

(∇2Na + cNa)(∇2Nb + cNb) dx dy

fa =
∫
�

(∇2Na + cNa)Q dx dy
(3.148)

The reader will observe that due to the presence of second derivatives C1 continuity is now
needed for the trial functions N.

Example 3.15: Least squares solution for Helmholz equation in first-order form. An
alternative, avoiding the requirement of C1 functions, is to write Eq. (3.88) as a first-order
system. This can be written as

A(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂qx

∂x
+ ∂qy

∂y
+ cφ +Q

∂φ

∂x
− qx

∂φ

∂y
− qy

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 0 (3.149)
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or, introducing the vector u,
u = [φ, qx, qy]T = Nũ (3.150)

as the unknown we can write an approximation as

u ≈ û =
⎡
⎣Nφ 0 0

0 Nq 0
0 0 Nq

⎤
⎦

⎧⎨
⎩
φ̃
q̃x
q̃y

⎫⎬
⎭ = Nũ (3.151)

where Nφ and Nq are C0 shape functions for the φ and qx, qy variables, respectively. The
least squares approximation is now given by

δ ¯̄� = δũT
∫
�

(LN)T [(LN)ũ + b] d� = 0 (3.152a)

where

LN =

⎡
⎢⎢⎢⎢⎢⎢⎣

cNφ,
∂Nq

∂x
,

∂Nq

∂y

∂Nφ

∂x
, −Nq, 0

∂Nφ

∂y
, 0, −Nq

⎤
⎥⎥⎥⎥⎥⎥⎦

b =
⎧⎨
⎩
Q

0
0

⎫⎬
⎭ (3.152b)

The reader can now perform the final steps to obtain the K and f matrices. The approxima-
tion equations in a form requiring only C0 continuity are obtained, however, at the expense
of additional variables. Use of such forms has been made extensively in the finite element
context.35–41

3.13.1 Galerkin least squares, stabilization

It is interesting to note that the concept of penalty formulation introduced in the previous
section was anticipated as early as 1943 by Courant42 in a somewhat different manner.
He used the original variational principle augmented by the differential equations of the
problem employed as least squares constraints. In this manner he claimed, though never
proved, that the convergence rate could be accelerated.

The suggestion put forward by Courant has been used effectively by others though in a
somewhat different manner. Noting that the Galerkin process is, for self-adjoint equations,
equivalent to that of minimizing a functional, the least squares formulation using the original
equation is simply added to the Galerkin form. Here it allows non-self-adjoint operators
to be used, for instance, and this feature has been exploited with success. Consider, for
instance, an equation of the form

d2φ

dx2
+ α

dφ

dx
+Q = 0

The first order term multiplying α is a convective term and, due to its presence, no natural
variational equation is available as the differential equation is non-self-adjoint. However,
Galerkin methods have been successfully used in its solution providing the convection term
(αdφ/dx) remains relatively small compared to the second derivative term (the diffusion
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term). However, it is found that as the convection term increases the solution becomes
highly oscillatory. Here we only consider the problem in a preliminary manner and refer
the reader to references on fluid dynamics for further study (e.g., see reference 10). Suppose
in a Galerkin form given by∫

�

{
dv

dx

dφ

dx
− v

(
α

dφ

dx
+Q

)}
dx = 0 (3.153)

we add a multiple of the minimization of the least squares of the total equation. The result
is ∫

�

{
dv

dx

dφ

dx
− v

(
α

dφ

dx
+Q

)}
dx

+
∫
�

(
d2v

dx2
+ α

dv

dx

)
τ

(
d2φ

dx2
+ α

dφ

dx
+Q

)
dx = 0 (3.154)

and we see immediately that an additional diffusive term has been added which depends on
the parameter τ , though at the expense of having higher derivatives appearing in the inte-
grals. If only linear elements are used and the discontinuities ignored at element interfaces,
the process of adding the diffusive terms can stabilize the oscillations which would other-
wise occur. The idea appears to have first been used by Hughes43–45 and later studied by
Codina.46 This process in the view of the authors is somewhat unorthodox as discontinuity
of derivatives is ignored, and alternatives to this are discussed at length in reference 10.

It is interesting to note also that another application of the same Galerkin least squares
process can be made to the mixed formulation with two variables u andp for incompressible
problems. We shall discuss such problems in Chapter 11 of this volume and show how this
process can be made applicable there.

Finally, it is of interest to note that the simple procedure introduced by Courant can also
be effective in the prevention of locking of other problems. The treatment for beams has
been studied by Freund and Salonen47 and it appears that quite an effective process can be
reached.

3.14 Concluding remarks – finite difference and boundary
methods

This very extensive chapter presents the general possibilities of using the finite element
process in almost any mathematical or mathematically modelled physical problem. The
essential approximation processes have been given in as simple a form as possible, at
the same time presenting a fully comprehensive picture which should allow the reader to
understand much of the literature and indeed to experiment with new permutations. In the
chapters that follow we shall apply to various physical problems a limited selection of the
methods to which allusion has been made. In some we shall show, however, that certain
extensions of the process are possible (Chapters 11 and 15) and in another (Chapter 9) how
a violation of some of the rules here expounded can be accepted.

The numerous approximation procedures discussed fall into several categories. To re-
mind the reader of these, we present in Table 3.2 a comprehensive catalogue of the methods
used here and in Chapter 2. The only aspect of the finite element process mentioned in
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Table 3.2 Finite element approximation

this table that has not been discussed here is that of a direct physical method. In such models
an ‘atomic’ rather than continuum concept is the starting point. While much interest exists
in the possibilities offered by such models, their discussion is outside the scope of this book.

In all the continuum processes discussed the first step is always the choice of suitable
shape or trial functions. A few simple forms of such functions have been introduced as the
need demanded and many new forms will be introduced in the next two chapters. Indeed,
the reader who has mastered the essence of the present chapter will have little difficulty in
applying the finite element method to any suitably defined physical problem. For further
reading references 48–52 could be consulted.

The methods listed do not include specifically two well-known techniques, i.e., finite
difference methods and boundary solution methods (sometimes known as boundary el-
ements). In the general sense these belong under the category of the generalized finite
element method discussed here.48

1. Boundary solution methods choose the trial functions such that the governing equation
is automatically satisfied in the domain�. Thus starting from the general approximation
equation (3.22), we note that only boundary terms remain to be satisfied. We shall return
to such approximations in Chapter 12.

2. Finite difference procedures can be interpreted as an approximation based on local,
discontinuous, shape functions with collocation weighting applied (although usually the
derivation of the approximation algorithm is based on a Taylor expansion).

As Galerkin or variational approaches give, in the energy sense, the best approxima-
tion, this method has only the merit of computational simplicity and occasionally a loss
of accuracy.

To illustrate this process we recall the approximation carried out for the one-dimensional
equation (3.24a) (viz. p. 62). We now represent a localized approximation through equally
spaced nodal points by
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i −2 i −1 i i + 1 i + 2
x

φi

Fig. 3.11 A local, discontinuous shape function by parabolic segments used to obtain a finite difference
approximation.

φ(x) =
[

1
2

(
(x − xa)

2

h2
− x − xa

h

)
,

(
1 − (x − xa)

2

h2

)
, 1

2

(
(x − xa)

2

h2
+ x − xa

h

)]

×
⎧⎨
⎩
φ̃a−1

φ̃a
φ̃a+1

⎫⎬
⎭

(3.155)

where h = xa+1 − xa (shown in Fig. 3.11). It is now clear that adjacent parabolic approx-
imations in this case are discontinuous between the nodes. Values of the function and its
first two derivatives at a typical node i are given by

φ(xa) = φ̃a

∂φ

∂x

∣∣∣∣
x=xa

= 1

2h
(φ̃a+1 − φ̃a−1)

∂2φ

∂x2

∣∣∣∣
x=xa

= 1

h2
(φ̃a+1 − 2φ̃a + φ̃a−1)

(3.156)

If we insert these into the governing equation at node i, we note immediately that the
approximating equation at the node becomes

− 1

h2
(φ̃a−1 − 2φ̃a + φ̃a+1)+Qa = 0 (3.157)

This is identical to the result based on Taylor expansion given by Eq. (3.31). This is indeed
one of the cases in which the finite difference approximation is identical to the finite element
one rather than different. In Chapter 15 we shall be discussing such finite difference and
point approximations in more detail. However, the reader will note the present exercise is
simply given to underline the similarity of finite element and finite difference processes.

Many textbooks deal exclusively with these types of approximations. References 8,
53–55 discuss finite difference approximation and references 56–59 relate to boundary
methods.

3.15 Problems

3.1 Write weak forms for the following differential equations and boundary conditions. For
each form state appropriate continuity conditions for approximations to the dependent
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variable u and the weighting function v. The domain for each one-dimensional differ-
ential equation is 0 < x < 1.

(a) a
du

dx
+ cu+ q = 0; u(0) = ḡ

(b)
d

dx

(
a

du

dx

)
+ q = 0; u(0) = ḡ & a

du

dx
+ ku = ḡ at x = 1

(c) − d

dx

(
a

du

dx

)
+ b

du

dx
+ q = 0; u(0) = ḡ0; u(1) = ḡ2

(d)
d

dx

(
a

d2u

dx2

)
+ f = 0; u(0) = ḡ0; du

dx

∣∣∣∣
x=0

= h̄0 & u(1) = ḡ1

(e) − ∇T(k∇u)+ c bT(∇u)+ q = 0 in �; u = ḡ on �

The differential equations for bending of a beam are given by

(1)
dV

dx
+ q = 0 (2)

dM

dx
+ V = 0

(3)
dθ

dx
− M

EI
= 0 (4)

dw

dx
− θ − V

GA
= 0

in which V is shear force,M is moment, θ is section rotation, w is displacement, EI is
bending stiffness, GA is shear stiffness and q is load as shown in Fig. 3.12. Boundary
conditions are given by

(1) V = V̄ or w = w̄

(2) M = M̄ or θ = θ̄

3.2 Construct a weak form for the beam equations by multiplying (1) by ±δw, (2) by ±δθ ,
(3) by δM and (4) by δV .

Choose the correct sign for δw and δθ to give symmetry.
3.3 Add all boundary conditions to the weak form obtained in Problem 3.2.
3.4 Construct a variational theorem which gives the weak form obtained in Problems 3.2

and 3.3 as the first variation.
3.5 For GA = ∞ (no shear deformation) deduce the irreducible differential equation in

terms of w. Express all boundary conditions in terms of w.

x

z

w

θ

M+∆MM V+∆VV

∆x

qz

Fig. 3.12 Beam bending description.
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3.6 Construct a weak form for Problem 3.5. What is the required continuity of the de-
pendent variable needed for approximation by a finite element method? What are the
natural and essential boundary conditions for the weak form?

3.7 Construct a variational theorem which has Problem 3.6 as its first variation.
3.8 For GA = ∞ (no shear deformation) deduce the differential equations in terms of w

and M . Express all boundary conditions in terms of these variables.
3.9 Deduce a weak form for Problem 3.8 that permits approximation using C0 functions

to approximate w and M . Let

w =
2∑
a=1

Naw̃a and M =
2∑
a=1

NaM̃a

where Na are given by (3.28). Ensure your weak form gives a symmetric coefficient
matrix for these approximations.

Compute typical element matrices K and f for an element of length hwith constant
EI and q in the element.

3.10 For a simply supported beam of length 10 and constant cross-sectionEI = 3 compute
the solution for a uniform load of q = 1. The boundary conditions at each end of
the beam for a simple support are w = M = 0. Obtain a solution using 2, 4, and 8
elements. It is recommended that a small computer program be written using a high
level language, e.g. MATLAB,60 to perform the numerical calculations. Compare
your results to an exact solution.

3.11 Solve the one-dimensional heat equation given in Example 3.5 by enforcing the bound-
ary conditions by the penalty formulation described in Sec. 3.12.1. How large must
each penalty parameter be taken to make the boundary error less than 10−6|φmax |?

3.12 Deduce the Euler differential equation and boundary conditions for the variational
principle expressed as

�(u) =
∫ b

a

[
EI (

du

dx
)2 − P u2

]
dx − ug

∣∣∣∣
x=b

; u(a) = 0

Classify � as a minimum, maximum or saddle point form.
3.13 Deduce the Euler differential equation and boundary conditions for the variational

principle expressed as

�(u) =
∫ b

a

[
EA (

du

dx
)2 + ku2 − 2 qu

]
dx + α

[
(u(a))2 + (u(b))2

]

where EA and k are constant parameters and α is a penalty parameter.
3.14 Deduce the Euler equations and boundary conditions for the variational principle

expressed as

�(u, λa, λb) =
∫ b

a

[
EA (

du

dx
)2 + ku2 − 2 qu

]
dx + λau(a)+ λbu(b)

where EA, k and q are constant parameters and λa, λb are Lagrange multipliers.
3.15 The transient heat equation in one dimension is given by

− ∂

∂x

(
k
∂φ

∂x

)
+Q+ c

∂φ

∂t
= 0
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where φ is temperature, k thermal conductivity,Q heat generation per unit length and
c specific heat.

Boundary conditions may be given as

φ = φ̄ on �1 or q = − k ∂φ
∂x

= q̄ on �2

where q is the heat flux and φ̄, q̄ are specified values. Initial conditions are given as
φ(x, 0) = φ̄0(x).
(a) Construct a weak form for the problem.
(b) Using the shape functions given in Eq. (3.28) and the approximation

ue = N1(x)ũ1(t)+N2(x)ũ2(t)

δue = N1(x)δũ1 +N2(x)δũ2

construct the semi-discrete form for a typical element of length h.
(c) Consider a region of length 10, with properties k = 5, c = 1, Q = 0. Divide the

region into four equal length elements and establish the set of global semi-discrete
equations.

(d) Consider a set of discrete times tn. Approximate time derivatives of nodal values
by dφ/dt (tn) ≈ (φn − φn−1)/�t where φn is the approximation to φ(tn) and
�t = tn − tn−1 and write the fully discrete equations.

Write a computer program (e.g., using MATLAB) to solve the problem. Assume
the initial temperature of the region is zero and boundary conditions φ(0) = 0 and
φ(10) = 1 are applied at time zero and held constant. Solve the problem using
10 steps with �t = 0.01, followed by 9 steps with �t = 0.1 and finally 9 steps
with �t = 1. Plot the finite element solution for φ vs x at times 0.01, 0.1, 1.0
and 10.0.

Replace the element matrix associated with c by a diagonal (lumped) form with
ch/2 on each diagonal (h = xe2 − xe1). Repeat the above solution and compare
results with the consistent form for the matrix.
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4

‘Standard’ and ‘hierarchical’
element shape functions: some
general families of C0 continuity

4.1 Introduction

In Chapters 2 and 3 the reader was shown in some detail how linear elasticity and other
problems could be formulated and solved using very simple element forms. Although the
detailed algebra was only concerned with shape functions which arose from triangular or
rectangular shapes, it should by now be obvious that other element forms could equally well
be used. Indeed, once the element and the corresponding shape functions are determined,
subsequent operations follow a standard, well-defined path. It will be seen later that it is
possible to program a computer to deal with wide classes of problems by specifying the
shape functions only. The choice of these is, however, a matter to which intelligence has to
be applied and in which the human factor remains paramount. In this chapter some rules
for the generation of several families of one-, two-, and three-dimensional elements will be
presented.

In the problems of elasticity illustrated in Chapters 2 and 3 the displacement variable was
a vector with two or three components and the shape functions were written in matrix form.
They were, however, derived for each component separately and the matrix expressions
in these were derived by multiplying a scalar function by an identity matrix [e.g., Eq.
(2.2)]. In this chapter we shall concentrate on the scalar shape function forms, calling these
simply Na .

The shape functions used in the displacement formulation of elasticity problems were
such that they satisfy the convergence criteria of Chapter 2:

1. The continuity of the unknown only had to occur between elements (i.e., slope continuity
is not required), or, in mathematical notation, C0 continuity was needed;

2. The function has to allow any arbitrary linear form to be taken so that the constant strain
(constant first derivative) criterion could be observed in each element.

The shape functions described in this chapter will require the satisfaction of these two
criteria. They will thus be applicable to all the problems requiring C0 continuity (i.e.,
all problems governed by first or second order differential equations). Indeed they are
applicable to any situation where the functional � or δ� (see Chapter 3) is defined by
derivatives of first order only.
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The element families discussed will progressively have an increasing number of degrees
of freedom. The question may well be asked as to whether any economic or other advantage
is gained by increasing the complexity of an element. The answer here is not an easy
one although it can be stated as a general rule that as the order of an element increases
so the total number of unknowns in a problem can be reduced for a given accuracy of
representation. Economic advantage requires, however, a reduction of total computation
and data preparation effort, and this does not follow automatically for a reduced number of
total variables.

However, an overwhelming economic advantage in the case of three-dimensional analy-
ses occurs. The same kind of advantage arises on occasion in other problems but in general
the optimum element may have to be determined from case to case.

In Sec. 2.6 of Chapter 2 we have shown that the order of error in the approximation to
the unknown function is O(hp+1), where h is the element ‘size’ and p is the degree of
the complete polynomial present in the expansion. Clearly, as the element shape functions
increase in degree so will the order of error increase, and convergence to the exact solution
becomes more rapid. While this says nothing about the magnitude of error at a particular
subdivision, it is clear that we should seek element shape functions with the highest complete
polynomial for a given number of degrees of freedom.

4.2 Standard and hierarchical concepts

The essence of the finite element method already stated in Chapters 2 and 3 is in approx-
imating the unknown (displacement) by an expansion given in Eqs (2.1) and (3.3). This,
for a scalar variable u, can be written as

u ≈ û =
n∑
a=1

Naũa = Nũe (4.1)

where n is the total number of functions used and ũa are the unknown parameters to be
determined.

We have explicitly chosen to identify such variables with the values of the unknown
function at element nodes, thus making

ũa = û(xa) (4.2)

The shape functions so defined will be referred to as ‘standard’ ones and are the basis of
most finite element programs. If polynomial expansions are used and the element satisfies
Criterion 1 of Chapter 2 (which specifies that rigid body displacements cause no strain), it
is clear that a constant value of ũa specified at all nodes must result in a constant value of û:

û =
(

n∑
a=1

Na

)
u0 = u0 (4.3)

when ũa = u0. It follows that
n∑
a=1

Na = 1 (4.4)
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at all points of the domain. This important property is known as a partition of unity1 which
we will make extensive use of here and in Chapter 15. The first part of this chapter will
deal with such standard shape functions.

A serious drawback exists, however, with ‘standard’ functions, since when element re-
finement is made totally new shape functions have to be generated and hence all calculations
repeated. It would be of advantage to avoid this difficulty by considering the expression
(4.1) as a series in which the shape functionNa does not depend on the number of nodes in
the mesh n. This indeed is achieved with hierarchic shape functions to which the second
part of this chapter is devoted.

The hierarchic concept is well illustrated by the one-dimensional (elastic bar) problem
of Fig. 4.1. Here for simplicity elastic properties are taken as constant (D = E) and the
body force b is assumed to vary in such a manner as to produce the exact solution shown
on the figure (with zero displacements at both ends).

Two meshes are shown and a linear interpolation between nodal points assumed. For
both standard and hierarchic forms the coarse mesh gives

Kc
11ũ

c
1 = f1 (4.5)

For a fine mesh two additional nodes are added and with the standard shape function the
equations requiring solution are

⎡
⎢⎣
KF

11 KF
12 KF

13

KF
21 KF

22 0

KF
31 0 KF

33

⎤
⎥⎦
⎧⎨
⎩
ũ1

ũ2

ũ3

⎫⎬
⎭ =

⎧⎨
⎩
f1

f2

f3

⎫⎬
⎭ (4.6)

In this form the zero matrices have been automatically inserted due to element intercon-
nection which is here obvious, and we note that as no coefficients are the same, the new
equations have to be resolved [Eq. (2.28a) shows how these coefficients are calculated and
the reader is encouraged to work these out in detail].

With the ‘hierarchic’ form using the shape functions shown, a similar form of equation
arises and an identical approximation is achieved (being simply given by a series of straight
segments). The final solution is identical but the meaning of the parameters ũ�a is now
different, as shown in Fig. 4.1.

Quite generally,
KF

11 = Kc
11 (4.7)

as an identical shape function is used for the first variable. Further, in this particular case
the off-diagonal coefficients are zero and the final equations become, for the fine mesh,⎡

⎣K
c
11 0 0

0 KF
22 0

0 0 KF
33

⎤
⎦
⎧⎨
⎩
ũ�1
ũ�2
ũ�3

⎫⎬
⎭ =

⎧⎨
⎩
f1

f2

f3

⎫⎬
⎭ (4.8)

The ‘diagonality’feature is only true in the one-dimensional problem, but in general it will
be found that the matrices obtained using hierarchic shape functions are more nearly diag-
onal and hence usually imply better conditioning than those with standard shape functions.

Although the variables are now not subject to the obvious interpretation (as local dis-
placement values), they can be easily transformed to those if desired. Though it is not usual
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Coarse

uc
1

1 2             1             3

Fine

Exact

Approximate

u2
u3

u1

N2 N3N1

N1

(a)

1 1

1 2 1  3 

N2 N3N1

(b)

1

u2*

u1*

u3*

Fig. 4.1 A one-dimensional problem of stretching of a uniform elastic bar by prescribed body forces.

to use hierarchic forms in linearly interpolated elements their derivation in polynomial form
is simple and very advantageous.

The reader should note that with hierarchic forms it is convenient to consider the finer
mesh as still using the same, coarse, elements but now adding additional refining functions.

Hierarchic forms provide a link with other approximate (orthogonal) series solutions.
Many problems solved in classical literature by trigonometric, Fourier series, expansion
are indeed particular examples of this approach.

In the next sections of this chapter we shall consider the development of shape func-
tions for high order elements with many boundary and internal degree of freedoms. Such
development will generally be made on simple geometric forms and the reader may well
question the wisdom of using increased accuracy for such simple shaped domains – having
already observed the advantage of generalized finite element methods in fitting arbitrary
domain shapes. This concern is well founded, but in the next chapter we shall show a
general method to map high order elements into quite complex shapes.



Rectangular elements – some preliminary considerations 107

Part 1. ‘Standard’ shape functions

Two-dimensional elements

4.3 Rectangular elements – some preliminary
considerations

Conceptually (especially if the reader is conditioned by education to thinking in the cartesian
coordinate system) the simplest element form of a two-dimensional kind is that of a rectangle
with sides parallel to the x and y axes. Consider, for instance, the rectangle shown in Fig. 4.2
with nodal points numbered 1 to 8, located as shown, and at which the values of an unknown
function u (here representing, for instance, one of the components of displacement) form
the element parameters. How can suitable C0 continuous shape functions for this element
be determined?

Let us first assume that u is expressed in polynomial form in x and y. To ensure interele-
ment continuity of u along the top and bottom sides the variation must be linear. Two points
at which the function is common between elements lying above or below exist, and as two
values uniquely determine a linear function, its identity all along these sides is ensured with
that given by adjacent elements. Use of this fact was already made in specifying linear
expansions on edges for a triangle and a rectangle.

Similarly, if a cubic variation along the vertical sides is assumed, continuity will be pre-
served there as four values determine a unique cubic polynomial. Conditions for satisfying
the first criterion are now obtained.

To ensure the existence of constant values of the first derivative it is necessary that all
the linear polynomial terms of the expansion be retained.

Finally, as eight points are to determine uniquely the variation of the function, only eight
coefficients of the expansion can be retained and thus we could write

y

x

1

2

3

4

8

7

6

5

Fig. 4.2 A rectangular element.
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u = α1 + α2x + α3y + α4xy + α5y
2 + α6xy

2 + α7y
3 + α8xy

3 (4.9)

The choice can in general be made unique by retaining the lowest possible expansion
terms, though in this case apparently no such choice arises.† The reader will easily verify
that all the requirements have now been satisfied.

Substituting coordinates of the various nodes a set of simultaneous equations will be
obtained. This can be written in exactly the same manner as was done for a triangle in
Eq. (2.4) as

⎧⎪⎨
⎪⎩
ũ1
...

ũ8

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

1, x1, y1, x1y1, y2
1 , x1y

2
1 , y3

1 , x1y
3
1

...
...

...

1, x8, y8, . . . . . . x8y
3
8

⎤
⎥⎦
⎧⎪⎨
⎪⎩
α1
...

α8

⎫⎪⎬
⎪⎭ (4.10)

or simply as
ũe = Cα. (4.11)

Formally,
α = C−1ũe (4.12)

and we could write Eq. (4.9) as

u = P(x, y)α = P(x, y)C−1ũe (4.13)

in which
P(x, y) = [1, x, y, xy, y2, xy2, y3, xy3] (4.14)

Thus the shape functions for the element defined by

u = Nũe = [N1, N2, . . . , N8] ũe (4.15)

can be found as
N(x, y) = P(x, y)C−1 (4.16)

This process has, however, some considerable disadvantages. Occasionally an inverse of
C may not exist2, 3 and always considerable algebraic difficulty is experienced in obtaining
an expression for the inverse in general terms suitable for all element geometries. It is
therefore worthwhile to consider whether shape functions Na(x, y) can be written down
directly. Before doing this some general properties of these functions have to be mentioned.

Inspection of the defining relation, Eq. (4.15), reveals immediately some important char-
acteristics. First, as this expression is valid for all components of ũe,

Na(xb, yb) = δab =
{

1; a = b

0; a �= b

where δab is known as the Kronecker delta. Further, the basic type of variation along
boundaries defined for continuity purposes (e.g., linear in x and cubic in y in the above
example) must be retained. The typical form of the shape functions for the elements
considered is illustrated isometrically for two typical nodes in Fig. 4.3. It is clear that these
could have been written down directly as a product of a suitable linear function in x with a

†Retention of a higher order term of expansion, ignoring one of lower order, will usually lead to a poorer
approximation though still retaining convergence,2 providing the linear terms are always included.
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1

1

N1

Na

N2

1

2

y

x

Fig. 4.3 Shape functions for elements of Fig. 4.2.

cubic function in y. The easy solution of this example is not always as obvious but given
sufficient ingenuity, a direct derivation of shape functions is always preferable.

It will be convenient to use normalized coordinates in our further investigation. Such
normalized coordinates are shown in Fig. 4.4 and are chosen so that their values are ±1 on
the faces of the rectangle:†

ξ = x − xc

a
dξ = dx

a

η = y − yc

b
dη = dy

b

(4.17)

Once the shape functions are known in the normalized coordinates, translation into
actual coordinates or transformation of the various expressions occurring, for instance,
in the stiffness derivation is trivial for rectangular shapes. Consideration of other more
convenient ‘mapping’ methods will be addressed in Chapter 5.

4.4 Completeness of polynomials

The shape function derived in the previous section was of a rather special form [viz.
Eq. (4.9)]. Only a linear variation with the coordinate x was permitted, while in y a
full cubic was available. The complete polynomial contained in it was thus of order 1. In
general use, a convergence order corresponding to a linear variation would occur despite
an increase of the total number of variables. Only in situations where the linear variation

† In Chapter 5 we will show that this is convenient for purposes of numerical integration.
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aa

b

b
c

y

x
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xc

η

ξ

ξ = 1

ξ = −1

η = −1

 η= 1

Fig. 4.4 Normal coordinates for a rectangle.

in x corresponded closely to the exact solution would a higher order of convergence occur,
and for this reason elements with such ‘preferential’ directions should be restricted to spe-
cial use, e.g., in narrow beams or strips. Usually, we will seek element expansions which
possess the highest order of a complete polynomial for a minimum of degrees of freedom.
In this context it is useful to recall the Pascal triangle (Fig. 4.5) from which the number
of terms occurring in a polynomial in two variables x, y can be readily ascertained. For
instance, first-order polynomials require three terms, second order require six terms, third
order require ten terms, etc.

4.5 Rectangular elements – Lagrange family

Consider the element shown in Fig. 4.6 in which a series of nodes, external and internal, is
placed on a regular grid. It is required to determine a shape function for the point indicated

order 1
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x y
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1

Fig. 4.5 The Pascal triangle. (Cubic expansion shaded – 10 terms.)
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1

N(I, J )

1

(0, 0) (n, 0)

(n, m)(0,m)       (I, J ) 

1

Fig. 4.6 A typical shape function for a lagrangian element (n = 5, m = 4, I = 1, J = 4).

by the heavy circle. Clearly the product of a fifth-order polynomial in ξ which has a value of
unity at points of the second column of nodes and zero at the other nodal columns and that
of a fourth-order polynomial in η having unity on the coordinate corresponding to the top
row of nodes and zero at other nodal rows satisfies all the interelement continuity conditions
and gives unity at the nodal point concerned. Polynomials in one coordinate having this
property are known as Lagrange polynomials and can be written down directly as

lnk (ξ) = (ξ − ξ0)(ξ − ξ1) · · · (ξ − ξk−1)(ξ − ξk+1) · · · (ξ − ξn)

(ξk − ξ0)(ξk − ξ1) · · · (ξk − ξk−1)(ξk − ξk+1) · · · (ξk − ξn)
=

n∏
i=0
i �=k

ξ − ξi

ξk − ξi

(4.18)
giving unity at ξk and passing through zero at the remaining n points.

An easy and systematic method of generating shape functions of any order now can be
achieved by simple products of Lagrange polynomials in the two coordinates.4–6 Thus, in
two dimensions, if we label the node by its column and row number, I , J , we have

Na ≡ NIJ = lnI (ξ)l
m
J (η) (4.19)

where n and m stand for the number of subdivisions in each direction. Figure 4.7 shows a
few members of this unlimited family where m = n. For m = n = 1 we obtain the simple
result
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(a) (b)

(c)

Fig. 4.7 Three elements of the Lagrange family: (a) linear, (b) quadratic, (c) cubic.

Na = 1
4 (1 + ξaξ)(1 + ηaη) (4.20)

in which ξa , ηa are the normalized coordinates at node a.
Indeed, if we examine the polynomial terms present in a situation where n = m we

observe in Fig. 4.8, based on the Pascal triangle, that a large number of polynomial terms is
present above those needed for a complete expansion.7 However, when mapping of shape
functions is considered (viz. Chapter 5) some advantages occur for this family.

4.6 Rectangular elements – ‘serendipity’ family

It is often more efficient to make the functions dependent on nodal values placed on the
element boundary. Consider, for instance, the first three elements of Fig. 4.9. In each a
progressively increasing and equal number of nodes are placed on the element boundary.

1

x y

x2 y2xy

x3 y3xy2x2y

x3y xy 
3x2y2

x3y2 x2y3

x3y3

xnyn

xn yn

1

1

Fig. 4.8 Terms generated by a lagrangian expansion of order 3 × 3 (or m × n). Complete polynomials of
order 3 (or n).
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(a) (b)

(d)(c)

η
ξ

ξ = 1

η = 1

ξ =−1 

η= −1

Fig. 4.9 Rectangles of boundary node (serendipity) family: (a) linear, (b) quadratic, (c) cubic, (d) quartic.

The variation of the function on the edges to ensure continuity is linear, parabolic, and cubic
in increasing element order.

To achieve the shape function for the first element it is obvious that a product of linear
lagrangian polynomials of the form

1
4 (1 + ξ)(1 + η) (4.21)

gives unity at the top right corner where ξ = η = 1 and zero at all the other corners.
Further, a linear variation of the shape function of all sides exists and hence continuity is
satisfied. Indeed this element is identical to the lagrangian one with n = 1 and again all
the shape functions may be written as one expression:

Na = 1
4 (1 + ξaξ)(1 + ηaη)

As a linear combination of these shape functions yields any arbitrary linear variation of u,
the second convergence criterion is satisfied.

The reader can verify that the following functions satisfy all the necessary criteria for
quadratic and cubic members of the family.

‘Quadratic’ element
Corner nodes:

Na = 1
4 (1 + ξaξ)(1 + ηaη)(ξaξ + ηaη − 1) (4.22a)

Mid-side nodes:

ξa = 0 Na = 1
2 (1 − ξ 2)(1 + ηaη)

ηa = 0 Na = 1
2 (1 + ξaξ)(1 − η2)

(4.22b)

‘Cubic’ element
Corner nodes:

Na = 1
32 (1 + ξaξ)(1 + ηaη)[9(ξ

2 + η2)− 10] (4.23a)
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Mid-side nodes:

ξa = ±1 and ηa = ± 1
3

Na = 9
32 (1 + ξaξ)(1 − η2)(1 + 9ηaη)

(4.23b)

and

ξa = ± 1
3 and ηa = ±1

Na = 9
32 (1 − ξ 2)(1 + 9ξaξ)(1 + ηaη)

(4.23c)

which all satisfy the requirement

Na(ξb, ηb) = δab =
{

1; a = b

0; a �= b
(4.23d)

The above functions were originally derived by inspection, and progression to yet higher
members is difficult and requires some ingenuity.4, 5 It was therefore appropriate to name this
family ‘serendipity’ after the famous princes of Serendip noted for their chance discoveries
(Horace Walpole, 1754).

However, a quite systematic way of generating the ‘serendipity’ shape functions can be
devised, which becomes apparent from Fig. 4.10 where the generation of a quadratic shape
function is presented.7, 8

0.5

1.0
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N1 = N1 −    N5 −    N8

N1 −    N5

Step 2

N1 = (1 − ξ) (1 − η)/4

Step 1

1.0

0.5

0.5

4 7 3

1 5 2

8 6
1.0

1.0

(a) N5 =    (1− ξ2) (1−η) (b) N8 =    (1 − ξ) (1 − η2)

(c)

ξ
η

Fig. 4.10 Systematic generation of ‘serendipity’ shape functions.
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As a starting point we observe that for mid-side nodes a lagrangian interpolation of a
quadratic × linear type suffices to determine Na at nodes 5 to 8. N5 and N8 are shown
in Fig. 4.10(a) and (b). For a corner node, such as Fig. 4.10(c), we start with a bilinear
lagrangian family N̂1 and note immediately that while N̂1 = 1 at node 1, it is not zero at
nodes 5 or 8 (step 1). Successive subtraction of 1/2N5 (step 2) and 1/2N8 (step 3) ensures
that a zero value is obtained at these nodes. The reader can verify that the final expressions
obtained coincide with those of Eqs (4.22a) and (4.22b).

Indeed, it should now be obvious that for all higher order elements the mid-side and
corner shape functions can be generated by an identical process. For the former a simple
multiplication ofmth-order and first-order lagrangian interpolations suffices. For the latter
a combination of bilinear corner functions, together with appropriate fractions of mid-side
shape functions to ensure zero at appropriate nodes, is necessary.

It also is quite easy to generate shape functions for elements with different numbers of
nodes along each side by a similar systematic algorithm. This may be very desirable if a
transition between elements of different order is to be achieved, enabling a different order
of accuracy in separate sections of a large problem to be studied. Figure 4.11 illustrates the
necessary shape functions for a cubic/linear transition. Use of such special elements was
first introduced in reference 8, but the simpler formulation used here is that of reference 7.

With the mode of generating shape functions for this class of elements available it is im-
mediately obvious that fewer degrees of freedom are now necessary for a given complete

1.0

1 2

34

5 6

1.0

1

1.0

1 5 6 2

4 3

6
N5 N6

N1 = N1− 2
3 N5 −

1
3 N6

Fig. 4.11 Shape functions for a transition ‘serendipity’ element, cubic/linear.
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Fig. 4.12 Terms generated by edge shape functions in serendipity-type elements (3 × 3 and m × m).

polynomial expansion. Figure 4.12 shows this for a cubic element where only two surplus
terms arise (as compared with six surplus terms in a lagrangian of the same degree). How-
ever, when mapping to general quadrilateral shape is introduced (Chapter 5) some of these
advantages are lost rendering the lagrangian form of interpolation advantageous.

It is immediately evident, however, that the functions generated by nodes placed only
along the edges will not generate complete polynomials beyond cubic order. For higher
order ones it is necessary to supplement the expansion by internal nodes or by the use of
‘nodeless’ variables which contain appropriate polynomial terms. For example, in the next,
quartic, member9 of this family a central node is added [viz. Fig. 4.9(d)] so that all terms
of a complete fourth-order expansion will be available. This central node adds a shape
function (1 − ξ 2)(1 − η2) which is zero on all outer boundaries and coincides with the
internal function used in the quadratic lagrangian element. Once interior nodes are added it
is necessary to modify the corner and mid-side shape functions to preserve the Kronnecker
delta property (4.23d).

4.7 Triangular element family

The advantage of an arbitrary triangular shape in approximating to any boundary configu-
ration has been amply demonstrated in earlier chapters. Its apparent superiority here over
rectangular shapes needs no further discussion. However, the question of generating more
elaborate higher order elements needs to be further developed.

Consider a series of triangles generated on a pattern indicated in Fig. 4.13. The number
of nodes in each member of the family is now such that a complete polynomial expansion,
of the order needed for interelement compatibility, is ensured. This follows by comparison
with the Pascal triangle of Fig. 4.5 in which we see the number of nodes coincides exactly
with the number of polynomial terms required. This particular feature puts the triangle
family in a special, privileged position, in which the inverse of the C matrices of Eq. (4.11)
will always exist.3 However, once again a direct generation of shape functions will be
preferred – and indeed will be shown to be particularly easy.

Before proceeding further it is useful to define a special set of normalized coordinates
for a triangle.
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Fig. 4.13 Triangular element family: (a) linear, (b) quadratic, (c) cubic.

4.7.1 Area coordinates

While cartesian directions parallel to the sides of a rectangle were a natural choice for that
shape, in the triangle these are not convenient.

A new set of coordinates, L1, L2, and L3 for a triangle 1, 2, 3 (Fig. 4.14), is defined by
the following linear relation between these and the cartesian system:

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

1 = L1 + L2 + L3

(4.24)

To every set,L1,L2,L3 (which are not independent, but are related by the third equation),
there corresponds a unique set of cartesian coordinates. At point 1, L1 = 1 and L2 = L3 =
0, etc. A linear relation between the new and cartesian coordinates implies that contours of
L1 are equally placed straight lines parallel to side 2–3 on which L1 = 0, etc.

L1 = 0

L1 = 0.25

L1 = 0.5

L1 = 0.75

L1 = 1

1 2

3

(x1,y1) (x2,y2)

(x3,y3)

P(L1,L2,L3)

Fig. 4.14 Area coordinates.
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Indeed it is easy to see that an alternative definition of the coordinate L1 of a point P is
by a ratio of the area of the shaded triangle to that of the total triangle:

L1 = area P23

area 123
(4.25)

Hence the name area coordinates.
Solving Eq. (4.24) gives

La = aa + bax + cay

2�
; k = 1, 2, 3 (4.26)

in which

� = 1
2 det

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ = area 123 (4.27)

and
a1 = x2y3 − x3y2 b1 = y2 − y3 c1 = x3 − x2 (4.28)

etc., with cyclic rotation of indices 1, 2, and 3.
The identity of expressions with those derived in Chapter 2 [Eqs (2.6) and (2.7)] is worth

noting.

4.7.2 Shape functions

For the first element of the series [Fig. 4.13(a)], the shape functions are simply the area
coordinates. Thus

N1 = L1 N2 = L2 N3 = L3 (4.29)

This is obvious as each individually gives unity at one node, zero at others, and varies
linearly everywhere.

To derive shape functions for other elements a simple recurrence relation can be derived.3

However, it is very simple to write functions for an arbitrary triangle of orderM in a manner
similar to that used for the lagrangian element of Sec. 4.5.

Denoting a typical node a by three numbers I , J , andK corresponding to the position of
coordinates L1a , L2a , and L3a we can write the shape function in terms of three lagrangian
interpolations as [see Eq. (4.18)]

Na = lII (L1)l
J
J (L2)l

K
K (L3) (4.30)

In the above lII , etc., are given by expression (4.18), with L1 taking the place of ξ , etc.
It is easy to verify that the above expression gives

Na = 1 at L1 = L1I , L2 = L2J , L3 = L3K

and zero at all other nodes.
The highest term occurring in the expansion is LI1L

J
2L

K
3 and as I + J +K ≡ M for all

points the polynomial is also of order M .
Expression (4.30) is valid for quite arbitrary distributions of nodes of the pattern given

in Fig. 4.15 and simplifies if the spacing of the nodal lines is equal (i.e., 1/m). The formula
was first obtained by Argyris et al.10 and formalized in a different manner by others.7, 11

The reader can verify the shape functions for the second- and third-order elements as
given below and indeed derive ones of any higher order easily.
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(0, 0, M ) 

(0,M, 0) (M, 0, 0)

i = (I, J, K )

Fig. 4.15 A general triangular element.

Quadratic triangle [Fig. 4.13(b)]
Corner nodes:

Na = (2La − 1)La, a = 1, 2, 3

Mid-side nodes:

N4 = 4L1L2, N5 = 4L2L3, N6 = 4L3L1

Cubic triangle [Fig. 4.13(c)]
Corner nodes:

Na = 1
2 (3La − 1)(3La − 2)La, a = 1, 2, 3

Mid-side nodes:

N4 = 9
2L1L2(3L1 − 1), N5 = 9

2L1L2(3L2 − 1), etc.

and for the internal node:
N10 = 27L1L2L3

The last shape again is a ‘bubble’ function giving zero contribution along boundaries –
and this will be found to be useful in other contexts (see the mixed forms in Chapter 11).

The quadratic triangle was first derived by Veubeke12 and used later in the context of
plane stress analysis by Argyris.13

When element matrices have to be evaluated it will follow that we are faced with inte-
gration of quantities defined in terms of area coordinates over the triangular region. It is
useful to note in this context the following exact integration expression:∫∫

�

La1L
b
2L

c
3 d x d y = a! b! c!

(a + b + c + 2)!
2� (4.31)

One-dimensional elements

4.8 Line elements

So far in this book the continuum was considered generally in two or three dimensions.
‘One-dimensional’ members, being of a kind for which exact solutions are generally avail-
able, were treated only as trivial examples in Chapter 3 and in Sec. 4.2. In many practical
two- or three-dimensional problems such elements do in fact appear in conjunction with
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the more usual continuum elements – and a unified treatment is desirable. In the context
of elastic analysis these elements may represent lines of reinforcement (plane and three-
dimensional problems) or sheets of thin lining material in axisymmetric bodies. In the
context of heat conduction and other field problems similar effects occur.

Once the shape of such a function as displacement is chosen for an element of this kind,
its properties can be determined, noting, however, that derived quantities such as strain,
etc., have to be considered only in one dimension.

Figure 4.16 shows such an element sandwiched between two adjacent quadratic-type
elements. Clearly for continuity of the function a quadratic variation of the unknown with
the one variable ξ is all that is required. Thus the shape functions are given directly by the
Lagrange polynomial as defined in Eq. (4.18).

Three-dimensional elements

4.9 Rectangular prisms – Lagrange family

In a precisely analogous way to that given in previous sections equivalent lagrangian family
elements of three-dimensional type can be described.

Shape functions for such elements will be generated by a direct product of three Lagrange
polynomials. Extending the notation of Eq. (4.19) we now have

Na ≡ NIJK = lnI (ξ)l
m
J (η)l

p
K(ζ ) (4.32)

for n, m, and p subdivisions along each side and

ξ = x − xc

a
; η = y − yc

b
and ζ = z− zc

c

This element again is suggested by Zienkiewicz et al.5 and elaborated upon by Argyris
et al.6 All the remarks about internal nodes and the properties of the formulation with
mappings (to be described in the next chapter) are applicable here. The first three members
of the three-dimensional Lagrange family are shown in Fig. 4.17(a).

Fig. 4.16 A line element sandwiched between two-dimensional elements.
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8 nodes

27 nodes

64 nodes

8 nodes

20 nodes

32 nodes

(a) (b)

Fig. 4.17 Linear, quadratic and cubic right prisms with corresponding sheet and line elements. (Extra shading
on 64-node element to show node location more clearly.)

For interelement continuity the simple rules given previously have to be modified. What
is necessary to achieve such continuity is that along a whole face of an element the nodal
values define a unique variation of the unknown function. It is obvious on a face that one
of the liI will be unity and the remaining product defines the two-dimensional form given
by (4.19), thus ensuring continuity.

4.10 Rectangular prisms – ‘serendipity’ family

The serendipity family of elements shown in Fig. 4.17(b) is precisely equivalent to that
of Fig. 4.9 for the two-dimensional case.4, 8, 14 Using now three coordinates and otherwise
following the terminology of Sec. 4.6 we have the following shape functions:

‘Linear’ element (8 nodes)
Na = 1

8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ )

which is identical with the linear lagrangian element.

‘Quadratic’ element (20 nodes)
Corner nodes:

Na = 1
8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ )(ξaξ + ηaη + ζaζ − 2)
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Typical mid-side node:

ξa = 0 ηa = ±1 ζa = ±1

Na = 1
4 (1 − ξ 2)(1 + ηaη)(1 + ζaζ )

‘Cubic’ elements (32 nodes)
Corner node:

Na = 1
64 (1 + ξaξ)(1 + ηaη)(1 + ζaζ )[9(ξ

2 + η2 + ζ 2)− 19]

Typical mid-side node:

ξa = ± 1
3 ηa = ±1 ζa = ±1

Na = 9
64 (1 − ξ 2)(1 + 9ξaξ)(1 + ηaη)(1 + ζaζ )

When ζaζ = ζ 2 = 1 the above expressions reduce to those of Eqs (4.20)–(4.23c). Indeed
such elements of three-dimensional type can be joined in a compatible manner to sheet or
line elements of the appropriate type as shown in Fig. 4.17.

Once again the procedure for generating the shape functions follows that described in
Figs 4.10 and 4.11 and once again elements with varying degrees of freedom along the
edges can be derived following the same steps.

The equivalent of a Pascal triangle is now a tetrahedron and again we can observe the
small number of surplus degrees of freedom – a situation of even greater magnitude than
in two-dimensional analysis.

4.11 Tetrahedral elements

The tetrahedral family shown in Fig. 4.18 not surprisingly exhibits properties similar to
those of the triangle family.

First, once again complete polynomials in three coordinates are achieved at each stage.
Second, as faces are divided in a manner identical with that of the previous triangles, the
same order of polynomial in two coordinates in the plane of the face is achieved and element
compatibility ensured. No surplus terms in the polynomial occur.

4.11.1 Volume coordinates

Once again special coordinates are introduced defined by (Fig. 4.19):

x = L1x1 + L2x2 + L3x3 + L4x4

y = L1y1 + L2y2 + L3y3 + L4y4

z = L1z1 + L2z2 + L3z3 + L4z4

1 = L1 + L2 + L3 + L4

(4.33)

Solving Eq. (4.33) gives

Lk = ak + bkx + cky + dkz

6V
; k = 1, 2, 3, 4
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Fig. 4.18 The tetrahedral family: (a) linear, (b) quadratic, (c) cubic.

with

6V = det

∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣
(4.34a)

in which, incidentally, the value V represents the volume of the tetrahedron. By expanding
the other relevant determinants into their cofactors we have

a1 = det

⎡
⎣x2 y2 z2

x3 y3 z3

x4 y4 z4

⎤
⎦ b1 = − det

⎡
⎣1 y2 z2

1 y3 z3

1 y4 z4

⎤
⎦

c1 = − det

⎡
⎣x2 1 z2

x3 1 z3

x4 1 z4

⎤
⎦ d1 = − det

⎡
⎣x2 y2 1
x3 y3 1
x4 y4 1

⎤
⎦

(4.34b)

with the other constants defined by cyclic interchange of the subscripts in the order 1, 2, 3, 4.
Again the physical nature of the coordinates can be identified as the ratio of volumes of

tetrahedra based on an internal point P in the total volume, e.g., as shown in Fig. 4.19:
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L1 = volume P234

volume 1234
, etc. (4.35)

4.11.2 Shape functions

As the volume coordinates vary linearly with the cartesian ones from unity at one node
to zero at the opposite face then shape functions for the linear element [Fig. 4.18(a)] are
simply

Na = La a = 1, 2, 3, 4 (4.36)

Formulae for shape functions of higher order tetrahedra are derived in precisely the same
manner as for the triangles by establishing appropriate Lagrange-type formulae similar to
Eq. (4.30). The reader may verify the following shape functions for the quadratic and cubic
order cases.

‘Quadratic’ tetrahedron [Fig. 4.18(b)]
For corner nodes:

Na = (2La − 1)La a = 1, 2, 3, 4

For mid-edge nodes:
N5 = 4L1L2, etc.

‘Cubic’ tetrahedron
Corner nodes:

N1 = 1
2 (3La − 1)(3La − 2)La a = 1, 2, 3, 4

1

2

3

4

P(L1,L2,L3,L4)

Fig. 4.19 Volume coordinates.
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Mid-edge nodes:
N5 = 9

2L1L2(3L1 − 1), etc.

Mid-face nodes:
N17 = 27L1L2L3, etc.

A useful integration formula may again be quoted here:
∫∫∫

vol
La1L

b
2L

c
3L

d
4 d x d y d z = a! b! c! d!

(a + b + c + d + 3)!
6V (4.37)

4.12 Other simple three-dimensional elements

The possibilities of simple shapes in three dimensions are greater, for obvious reasons, than
in two dimensions. A quite useful series of elements can, for instance, be based on triangular
prisms (wedges) (Fig. 4.20). Here again variants of the product, Lagrange, approach or of
the ‘serendipity’ type can be distinguished. The first element of both families, shown in
Fig. 4.20(a), is identical and the shape functions are

Na = 1

2
La (1 + ζaζ ) a = 1, 2, . . . , 6

For the ‘quadratic’ element illustrated in Fig. 4.20(b) the shape functions are

Corner nodes

Na = 1
2La(2La − 1)(1 + ζaζ )− 1

2La(1 − ζ 2) a = 1, 2, . . . , 6

Mid-edge of rectangle:
N7 = L1(1 − ζ 2), etc.

Mid-edge of triangles:
N10 = 2L1L2(1 + ζ ), etc.

Such elements are not purely esoteric but have a practical application as ‘fillers’ in
conjunction with 20-noded serendipity elements.

Part 2. Hierarchical shape functions

4.13 Hierarchic polynomials in one dimension

The general ideas of hierarchic approximation were introduced in Sec.4.2 in the context
of simple, linear, elements. The idea of generating higher order hierarchic forms is again
simple. We shall start from a one-dimensional expansion as this has been shown to provide
a basis for the generation of two- and three-dimensional forms in previous sections.

To generate a polynomial of order p along an element side we do not need to introduce
nodes but can instead use parameters without any obvious physical meaning. We could
use here a linear expansion specified by ‘standard’ functions N1 and N2 and add to this a
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Fig. 4.20 Triangular prism elements (serendipity) family: (a) linear, (b) quadratic, (c) cubic.

series of polynomials always designed so as to have zero values at the ends of the range
(i.e., points 1 and 2).

Thus for a quadratic approximation, we would write over the typical one-dimensional
element, for instance,

û = N1ũ1 +N2ũ2 +N3ũ3 (4.38)

where

N1 = 1

2
(1 − ξ) N2 = 1

2
(1 + ξ) N3 = (1 − ξ 2) (4.39)

using in the above the normalized x coordinate [viz. Eq. (4.17)].
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We note that the parameter ũ3 does in fact have a meaning in this case as it is the magnitude
of the departure from linearity of the approximation û at the element centre, since N3 has
been chosen here to have the value of unity at that point.

In a similar manner, for a cubic element we simply have to add N4ũ4 to the quadratic
expansion of Eq. (4.39), where N4 is any cubic of the form

N4 = α0 + ξα1 + ξ 2α2 + ξ 3α3 (4.40)

and which has zero values at ξ = ±1 (i.e., at nodes 1 and 2). Again an infinity of choices
exists, and we could select a cubic of a simple form which has a zero value at the centre of
the element and for which dN4/dξ = 1 at the same point. Immediately we can write

N4 = ξ(1 − ξ 2) (4.41)

as the cubic function with the desired properties. Now the parameter ũ4 denotes the depar-
ture of the slope at the centre of the element from that of the linear approximation.

We note that we could proceed in a similar manner and define the fourth-order hierarchical
element shape function as

N5 = ξ 2(1 − ξ 2) (4.42)

but a physical identification of the parameter associated with this now becomes more dif-
ficult (even though it is not strictly necessary).

As we have already noted, the above set is not unique and many other possibilities exist.
An alternative convenient form for the hierarchical functions is defined by

Np+1(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1

p!
(ξp − 1) p even

1

p!
(ξp − ξ) p odd

(4.43)

where p (≥ 2) is the degree of the introduced polynomial.16 This yields the set of shape
functions:

N3 = 1
2 (ξ

2 − 1) N4 = 1
6 (ξ

3 − ξ)

N5 = 1
24 (ξ

4 − 1) N6 = 1
120 (ξ

5 − ξ), etc.
(4.44)

We observe that all derivatives of Np+1 of second or higher order have the value zero at
ξ = 0, apart from dpNp+1/dξp, which equals unity at that point, and hence, when shape
functions of the form given by Eq. (4.44) are used, we can identify the parameters in the
approximation as

ũp+1 = dpû

dξp

∣∣∣∣
ξ=0

p ≥ 2 (4.45)

This identification gives a general physical significance but is by no means necessary.
In two- and three-dimensional elements a simple identification of the hierarchic param-

eters on interfaces will automatically ensure C0 continuity of the approximation.
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4.14 Two- and three-dimensional, hierarchical elements
of the ‘rectangle’ or ‘brick’ type

In deriving ‘standard’finite element approximations we have shown that all shape functions
for the Lagrange family could be obtained by a simple multiplication of one-dimensional
ones and those for serendipity elements by a combination of such multiplications. The
situation is even simpler for hierarchic elements. Here all the shape functions can be
obtained by a simple multiplication process.

Thus, for instance, in Fig. 4.21 we show the shape functions for a lagrangian nine-noded
element and the corresponding hierarchical functions. The latter not only have simpler
shapes but are more easily calculated, being simple products of linear and quadratic terms
of Eq. (4.43) or (4.44). Using products of lagrangian polynomials the three functions
illustrated are simply

N1 = (1 − ξ)(1 + η)/4

N2 = (1 − ξ)(1 − η2)/2

N3 = (1 − ξ 2)(1 − η2)

(4.46)

The distinction between lagrangian and serendipity forms now disappears as for the latter
in the present case the last shape function (N3) is simply omitted.

Indeed, it is now easy to introduce interpolation for elements of the type illustrated
in Fig. 4.11 in which a different expansion is used along different sides. This essential
characteristic of hierarchical elements is exploited in adaptive refinement (viz. Chapter 14)
where new degrees of freedom (or polynomial order increase) is made only when required
by the magnitude of the error.

A similar process clearly applies to the three-dimensional family of hierarchical brick-
type elements.

4.15 Triangle and tetrahedron family

Once again the concepts of multiplication can be introduced in terms of area or volume
coordinates to define the triangle and tetrahedron family of elements.15, 16 Starting from the
linear shape functions for the corner nodes

Na = La

hierarchical functions for mid-side and interior nodes can be added.
For the triangle shown in Fig. 4.14 we note that along the side 1–2, L3 is identically zero,

and therefore we have
(L1 + L2)1−2 = 1 (4.47)

If ξ , measured along side 1–2, is the usual non-dimensional local element coordinate of
the type we have used in deriving hierarchical functions for one-dimensional elements, we
can write

L1|1−2 = 1
2 (1 − ξ) L2|1−2 = 1

2 (1 + ξ) (4.48)

from which it follows that we have

ξ = (L2 − L1)1−2 (4.49)
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Fig. 4.21 Standard and hierarchical shape functions corresponding to a lagrangian quadratic element.

This suggests that we could generate hierarchical shape functions over the triangle by
generalizing the one-dimensional shape function forms produced earlier. For example,
using the expressions of Eq. (4.43), we associate with the side 1–2 the polynomial of
degree p (≥ 2) defined by

Np(1−2) =

⎧⎪⎨
⎪⎩

1

p!
[(L2 − L1)

p − (L1 + L2)
p] p even

1

p!
[(L2 − L1)

p − (L2 − L1)(L1 + L2)
p−1] p odd

(4.50)

It follows from Eq. (4.48) that these shape functions are zero at nodes 1 and 2. In
addition, it can easily be shown that Np(1−2) will be zero all along the sides 3–1 and 3–2 of
the triangle, and so C0 continuity of the approximation û is assured.
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It should be noted that in this case for p ≥ 3 the number of hierarchical functions arising
from the element sides in this manner is insufficient to define a complete polynomial of
degree p, and internal hierarchical functions, which are identically zero on the boundaries,
need to be introduced; for example, for p = 3 the function L1L2L3 could be used, while
for p = 4 the three additional functions L2

1L2L3, L1L
2
2L3, L1L2L

2
3 could be adopted.

In Fig. 4.22 typical, hierarchical, linear, quadratic, and cubic trial functions for a trian-
gular element are shown. Identical procedures are obvious in the context of tetrahedra.

Hierarchical functions of other forms can be found in reference 23.

4.16 Improvement of conditioning with hierarchical
forms

We have already mentioned that hierarchic element forms give a much improved equation
conditioning for steady-state (static) problems due to their form which is more nearly diag-
onal. In Fig. 4.23 we show the ‘condition number’ (which is a measure of such diagonality
and is defined in standard texts on linear algebra; seeAppendixA) for a single cubic element
and for an assembly of four cubic elements, using standard and hierarchic forms in their
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N e
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6N e
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Fig. 4.22 Triangular elements and associated hierarchical shape functions of (a) linear, (b) quadratic, (c) cubic
form.
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λmax/λmin = 390 λmax/λmin = 36

A B

A B

λmax/λmin = 1643 λmax/λmin = 124

Single element (Reduction of condition number = 10.7)

Four element assembly (Reduction of condition number = 13.2)

Cubic order elements

A

B

Standard shape function

Hierarchic shape function

Fig. 4.23 Improvement of condition number (ratio of maximum to minimum eigenvalue of the stiffness matrix)
by use of hierarchical form (isotropic elasticity, ν = 0.15).

formulation. The improvement of the conditioning is a distinct advantage of such forms and
allows the use of iterative solution techniques to be more easily adopted.17 Unfortunately
much of this advantage disappears for transient analysis as the approximation must contain
specific modes (see Chapter 16).

4.17 Global and local finite element approximation

The very concept of hierarchic approximations (in which the shape functions are not affected
by the refinement) means that it is possible to include in the expansion

u =
n∑
a=1

Naũa (4.51)

where functions N are not local in nature. Such functions may, for instance, be the exact
solutions of an analytical problem which in some way resembles the problem dealt with,
but do not satisfy some boundary or inhomogeneity conditions. The ‘finite element’, local,
expansions would here be a device for correcting this solution to satisfy the real conditions.
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‘Local’ elements

(a)

(b)

Fig. 4.24 Some possible uses of global–local approximation. (a) Rotating slotted disc. (b) Perforated beam.

This use of the global–local approximation was first suggested by Mote18 in a problem
where the coefficients of this function were fixed. The example involved here is that of
a rotating disc with cutouts (Fig. 4.24). The global known solution is the analytical one
corresponding to a disc without cutout, and finite elements are added locally to modify
the solution. Other examples of such ‘fixed’ solutions may well be those associated with
point loads, where the use of the global approximation serves to eliminate the singularity
modelled badly by the discretization.

In some problems the singularity itself is unknown and the appropriate function can be
added with an unknown coefficient. Some aspects of this are mentioned in Chapter 15 and,
for waves, in the context of fluid dynamics, in reference 19.

4.18 Elimination of internal parameters before
assembly – substructures

Internal nodes or nodeless internal parameters yield in the usual way the element properties

∂�e

∂ũe
= Keũe + f e (4.52)

As ũe can be subdivided into parts which are common with other elements, ũe1, and others
which occur in the particular element only, ũe2, we can immediately write

∂�

∂ũe2
= ∂�e

∂ũe2
= 0
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and eliminate ũe2 from further consideration. Writing Eq. (4.52) in a partitioned form we
have

∂�e

∂ũe
=

⎧⎪⎪⎨
⎪⎪⎩

∂�e

∂ũe1
∂�e

∂ũe2

⎫⎪⎪⎬
⎪⎪⎭

=
[

Ke
11 Ke

12

Ke
21 Ke

22

]{
ũe1
ũe2

}
+
{

f e1

f e2

}
=
⎧⎨
⎩
∂�e

∂ũe1
0

⎫⎬
⎭ (4.53)

From the second set of equations given above we can write

ũe2 = − (Ke
22)

−1(Ke
21ũe1 + f e2 ) (4.54)

which on substitution yields
∂�e

∂ũe1
= K̄e

11ũe1 + f̄ e1 (4.55)

in which

K̄e
11 = Ke

11 − Ke
12(K

e
22)

−1Ke
21

f̄ e1 = f e1 − Ke
12(K

e
22)

−1f e2
(4.56)

This process of partial solution is also known in the literature as ‘static condensation’.20

Assembly of the total region then follows, by considering only the element boundary vari-
ables, thus giving a saving in the equation-solving effort at the expense of a few additional
manipulations carried out at the element stage.20

Perhaps a structural interpretation of this elimination is desirable. What in fact is involved
is the separation of a part of the structure from its surroundings and determination of its
solution separately for any prescribed displacements at the interconnecting boundaries. K̄�e

is now simply the overall stiffness of the separated structure and f̄ �e the equivalent set of
nodal forces.

If the triangulation of Fig. 4.25 is interpreted as an assembly of pin-jointed bars the reader
will recognize immediately the well-known device of ‘substructures’ used frequently in
structural engineering. Such a substructure is in fact simply a complex element from which
the internal degrees of freedom have been eliminated. Immediately a new possibility for
devising more elaborate, and presumably more accurate, elements is presented.

Figure 4.25(a) can be interpreted as a continuum field subdivided into linear triangular
elements. The substructure results in fact in one complex element shown in Fig. 4.25(b)
with a number of boundary nodes.

The only difference from elements derived in previous sections is the fact that the un-
known u now is not approximated internally by one set of smooth shape functions but by
a series of piecewise approximations. This presumably results in a slightly poorer approx-
imation but an economic advantage may arise if the total computation time for such an
assembly is saved.

Substructuring is an important device in complex problems, particularly where a repeti-
tion of complicated components arises.

In simple, small-scale finite element analysis, much improved use of simple triangular
elements was found by the use of simple subassemblies of the triangles (or indeed tetra-
hedra). For instance, a quadrilateral based on four triangles from which the central node
is eliminated was found to give an economic advantage over direct use of simple triangles
(Fig. 4.26). This and other subassemblies based on triangles are discussed by Doherty et
al.21 and used by Nagtegaal et al.22 and others.
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(a) (b)

Fig. 4.25 Substructure of a complex element.

4.19 Concluding remarks

An unlimited selection of element types has been presented here to the reader – and indeed
equally unlimited alternative possibilities exist.4, 8 What is the use of such complex elements
in practice? As presented so far the triangular and tetrahedral elements are limited to
situations where the real region is of a suitable shape which can be represented as an
assembly of flat facets and all other elements are limited to situations represented by an
assembly of right prisms. Such a limitation would be so severe that little practical purpose
would have been served by the derivation of such shape functions unless some way could
be found of distorting these elements to fit realistic curved boundaries. In fact, methods for
doing this are available and will be described in the next chapter.

4.20 Problems

4.1 Develop an explicit form of the standard shape functions at nodes 1, 3 and 6 for the
element shown in Fig. 4.27(a).

Using a Pascal triangle in ξ and η show the polynomials included in the element.
4.2 Develop an explicit form of the standard shape functions at nodes 2, 3 and 9 for the

element shown in Fig. 4.27(b).
Using a Pascal triangle in ξ and η show the polynomials included in the element.

4.3 Develop an explicit form of the standard shape functions at nodes 1, 2 and 5 for the
element shown in Fig. 4.27(c).

Using a Pascal triangle in ξ and η show the polynomials included in the element.

Fig. 4.26 A composite quadrilateral made from four simple triangles.
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Fig. 4.27 Quadrilateral element for Problems 4.1 to 4.4.

4.4 Develop an explicit expression in hierarchical form for all nodes of the element shown
in Fig. 4.27(c).

4.5 Develop an explicit form of the standard shape functions at nodes 1, 2 and 5 for the
element shown in Fig. 4.28(a).

Using a Pascal triangle in ξ and η show the polynomials included in the element.
4.6 Develop an explicit form of the standard shape functions at nodes 1, 5 and 7 for the

element shown in Fig. 4.28(b).
Using a Pascal triangle in ξ and η show the polynomials included in the element.

4.7 The mesh for a problem contains an 8-node quadratic serendipity rectangle adjacent to
a 6-node quadratic triangle as shown in Fig. 4.29. Show that the coordinates computed
from each element satisfy C0 continuity along the edge 3–7–11.

4.8 Determine an explicit expression for the shape function of node 1 of the linear trian-
gular prism shown in Fig. 4.20(a).

4.9 Determine an explicit expression for the hierarchical shape function of nodes 1, 7 and
10 of the quadratic triangular prism shown in Fig. 4.20(b).

4.10 Determine an explicit expression for the shape function of nodes 1, 7, 13 and 25 of
the cubic triangular prism shown in Fig. 4.20(c).

4.11 On a sketch show the location of the nodes for the quartic member of the tetrahe-
dron family. Construct an explicit expression for the shape function of the vertex
node located at (L1, L2, L3, L4) = (1, 0, 0, 0) and the mid-edge node located at
(0.25, 0.75, 0, 0).

4.12 On a sketch show the location of the nodes for the quartic member of the serendipity
family. Construct an explicit expression for the shape function of the vertex node
located at (ξ, η, ζ ) = (1, 1, 1) and the mid-edge node located at (0.75, 1, 1).

4.13 On a sketch show the location of the nodes for the quartic member of the triangular
prism family shown in Fig. 4.20. Construct an explicit expression for the hierarchical
shape function of a vertex node, an edge node of a triangular face and an edge node
of a rectangular face.

4.14 On a sketch show the location of the nodes for the quadratic member of the triangular
prism family in which lagrangian interpolation is used on rectangular faces (see Fig.
4.20). Construct an explicit expression for the shape function of a vertex node, an
edge node of a triangular face and an edge node of a rectangular face.
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Fig. 4.28 Quadrilateral element for Problems 4.5 and 4.6.
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Fig. 4.29 Quadratic rectangle and triangle for Problem 4.7.

4.15 On a sketch show the location of the nodes for the cubic member of the triangular
prism family in which lagrangian interpolation is used on rectangular faces (see Fig.
4.20). Construct an explicit expression for the shape function of a vertex node, an
edge node of a triangular face, an edge node of a rectangular face, a mid-face node of
a triangular face, a mid-face node of a rectangular face, and for any internal nodes.

References

1. W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, 3rd edition, 1976.
2. P.C. Dunne. Complete polynomial displacement fields for finite element methods. Trans. Roy.

Aero. Soc., 72:245, 1968.
3. B.M. Irons, J.G. Ergatoudis, and O.C. Zienkiewicz. Comments on ‘complete polynomial dis-

placement fields for finite element method’ (by P.C. Dunne). Trans. Roy. Aeronaut. Soc., 72:709,
1968.

4. J.G. Ergatoudis, B.M. Irons, and O.C. Zienkiewicz. Curved, isoparametric, ‘quadrilateral’ ele-
ments for finite element analysis. Int. J. Solids Struct, 4:31–42, 1968.



References 137

5. O.C. Zienkiewicz, B.M. Irons, J.G. Ergatoudis, S. Ahmad, and F.C. Scott. Isoparametric and
associated elements families for two and three dimensional analysis. In Finite Element Methods
in Stress Analysis, Chapter 13. Tapir Press, Trondheim, 1969.

6. J.H. Argyris, K.E. Buck, H.M. Hilber, G. Mareczek, and D.W. Scharpf. Some new elements
for matrix displacement methods. In Proc. 2nd Conf. Matrix Methods in Structural Mechanics,
volume AFFDL-TR-68-150, Wright Patterson Air Force Base, Ohio, Oct. 1968.

7. R.L. Taylor. On completeness of shape functions for finite element analysis. Int. J. Numer. Meth.
Eng., 4:17–22, 1972.

8. O.C. Zienkiewicz, B.M. Irons, J. Campbell, and F.C. Scott. Three dimensional stress analysis.
In IUTAM Symposium on High Speed Computing in Elasticity, Li’ege, 1970.

9. F.C. Scott. A quartic, two dimensional isoparametric element. Undergraduate Project, University
of Wales, 1968.

10. J.H. Argyris, I. Fried, and D.W. Scharpf. The TET 20 and TEA 8 elements for the matrix
displacement method. Aero. J., 72:618–625, 1968.

11. P. Silvester. Higher order polynomial triangular finite elements for potential problems. Int.
J. Eng. Sci., 7:849–861, 1969.

12. B. Fraeijs de Veubeke. Displacement and equilibrium models in finite element method. In O.C.
Zienkiewicz and G.S. Holister, editors, Stress Analysis, Chapter 9, pages 145–197. John Wiley
& Sons, Chichester, 1965.

13. J.H. Argyris. Triangular elements with linearly varying strain for the matrix displacement
method. J. Roy. Aero. Soc. Tech. Note, 69:711–713, 1965.

14. J.G. Ergatoudis, B.M. Irons, and O.C. Zienkiewicz. Three dimensional analysis of arch dams
and their foundations. In Proc. Symp. Arch Dams, Inst. Civ. Eng., London, 1968.

15. A.G. Peano. Hierarchics of conforming finite elements for elasticity and plate bending. Comp.
Math. and Applications, 2:3–4, 1976.

16. J.P. de S.R. Gago. A posteri error analysis and adaptivity for the finite element method. Ph.D.
thesis, Department of Civil Engineering, University of Wales, Swansea, 1982.

17. O.C. Zienkiewicz, J.P. De S.R. Gago, and D.W. Kelly. The hierarchical concept in finite element
analysis. Comp. Struct., 16:53–65, 1983.

18. C.D. Mote. Global–local finite element. Int. J. Numer. Meth. Eng., 3:565–574, 1971.
19. O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid Dynam-

ics. Butterworth-Heinemann, Oxford, 6th edition, 2005.
20. E.L. Wilson. The static condensation algorithm. Int. J. Numer. Meth. Eng., 8:199–203, 1974.
21. W.P. Doherty, E.L. Wilson, and R.L. Taylor. Stress analysis of axisymmetric solids utilizing

higher-order quadrilateral finite elements. Technical Report 69–3, Structural Engineering Lab-
oratory, Univ. of California, Berkeley, Jan. 1969.

22. J.C. Nagtegaal, D.M. Parks, and J.R. Rice. On numerical accurate finite element solutions in
the fully plastic range. Comp. Meth. Appl. Mech. Eng., 4:153–177, 1974.

23. S.J. Sherwin and G.E. Karniadakis. A new triangular and tetrahedral basis for high-order (hp)
finite element methods. Int. J. Numer. Meth. Eng. 38:3775–3802, 1995.



5

Mapped elements and numerical
integration – ‘infinite’ and

‘singularity elements’

5.1 Introduction

In the previous chapter we have shown how some general families of finite elements can
be obtained for C0 interpolations. A progressively increasing number of nodes and hence
improved accuracy characterizes each new member of the family and presumably the num-
ber of such elements required to obtain an adequate solution decreases rapidly. To ensure
that a small number of elements can represent a relatively complex form of the type that
is liable to occur in real, rather than academic, problems, simple rectangles and triangles
no longer suffice. This chapter is therefore concerned with the subject of distorting such
simple forms into others of more arbitrary shape.

Elements of the basic one-, two-, or three-dimensional types will be ‘mapped’ into
distorted forms in the manner indicated in Figs 5.1 and 5.2.

In these figures it is shown that the ‘parent’ ξ , η, ζ , or L1, L2, L3, L4 coordinates can be
distorted to a new, curvilinear set when plotted in cartesian x, y, z space.

Not only can two-dimensional elements be distorted into others in two dimensions but the
mapping of these can be taken into three dimensions as indicated by the flat sheet elements
of Fig. 5.2 distorting into a three-dimensional space. This principle applies generally,
providing a one-to-one correspondence between cartesian and curvilinear coordinates can
be established, i.e., once the mapping relations of the type

⎧⎨
⎩
x

y

z

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

fx(ξ, η, ζ )

fy(ξ, η, ζ )

fz(ξ, η, ζ )

⎫⎪⎪⎬
⎪⎪⎭

or

⎧⎪⎪⎨
⎪⎪⎩

fx(L1, L2, L3, L4)

fy(L1, L2, L3, L4)

fz(L1, L2, L3, L4)

⎫⎪⎪⎬
⎪⎪⎭

(5.1)

can be established.
Once such coordinate relationships are known, shape functions can be specified in local

(parent) coordinates and by suitable transformations the element properties established in
the global coordinate system.
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(x, y)

Cartesian map

Fig. 5.1 Two-dimensional ‘mapping’ of some elements.

In what follows we shall first discuss the so-called isoparametric form of relationship
(5.1) which has found a great deal of practical application. Full details of this formulation
will be given, including the establishment of element matrices by numerical integration.

In later sections we shall show that many other coordinate transformations also can be
used effectively.

Parametric curvilinear coordinates

5.2 Use of ‘shape functions’ in the establishment of
coordinate transformations

A most convenient method of establishing the coordinate transformations is to use the
‘standard’ type of C0 shape functions we have already derived to represent the variation of
the unknown function.
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Fig. 5.2 Three-dimensional ‘mapping’ of some elements.

If we write, for instance, for each element

x = N ′
1x1 +N ′

2x2 + · · · = N′

⎧⎪⎨
⎪⎩
x1

x2
...

⎫⎪⎬
⎪⎭ = N′x

y = N ′
1y1 +N ′

2y2 + · · · = N′

⎧⎪⎨
⎪⎩
y1

y2
...

⎫⎪⎬
⎪⎭ = N′y

z = N ′
1z1 +N ′

2z2 + · · · = N′

⎧⎪⎨
⎪⎩
z1

z2
...

⎫⎪⎬
⎪⎭ = N′z

(5.2)

in which N′ are standard shape functions given in terms of the local (parent) coordinates,
then a relationship of the required form is immediately available. Further, the points with
coordinates x1, y1, z1, etc., will lie at appropriate points of the element boundary or interior
(as from the general definitions of the standard shape functions we know that these have
a value of unity at the point in question and zero elsewhere). These points can establish
nodes a priori.

To each set of local coordinates there will correspond a set of global cartesian coordinates
and in general only one such set. We shall see, however, that a non-uniqueness may arise
if the nodal coordinates are placed such that a violent distortion occurs.
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The concept of using such element shape functions for establishing curvilinear coordi-
nates in the context of finite element analysis appears to have been introduced first by Taig.1

In his first application basic linear quadrilateral relations were used. Irons generalized the
idea for other elements.2, 3

Quite independently the exercises of devising various practical methods of generating
curved surfaces for purposes of engineering design led to the establishment of similar
definitions by Coons4 and Forrest,5 and indeed today the subjects of surface definitions and
analysis are drawing closer together due to this activity.

In Fig. 5.3 an actual distortion of elements based on the quadratic and cubic members
of the two-dimensional ‘serendipity’ family is shown. It is seen here that a one-to-one
relationship exists between the local (ξ, η) and global (x, y) coordinates. If the fixed
(nodal) points are such that a violent distortion occurs then a non-uniqueness can occur in
the manner indicated for two situations in Fig. 5.4. Here at internal points of the distorted
element two or more local coordinates correspond to the same cartesian coordinate and in
addition to some internal points being mapped outside the element. Care must be taken in
practice to avoid such gross distortion. Figure 5.5 shows two examples of a two-dimensional
(ξ, η) element mapped into a three-dimensional (x, y, z) space.

We shall often refer to the basic element in undistorted, local, coordinates as a ‘parent’
element.

In Sec. 5.5 we shall define a quantity known as the jacobian determinant. The well-known
condition for a one-to-one mapping (such as exists in Fig. 5.3 and does not in Fig. 5.4) is that
the sign of this quantity should remain unchanged at all the points of the mapped element.

It can be shown that with a parametric transformation based on bilinear shape functions,
the necessary condition is that no internal angle [such as α in Fig. 5.6(a)] be equal or greater
than 180◦.6 In transformations based on quadratic ‘serendipity’ or ‘lagrangian’ functions,

η = 1

η

ξ

ξ = 1

ξ = −1
η = −1

η

ξ

Fig. 5.3 Plots of curvilinear coordinates for quadratic and cubic elements (reasonable distortion).
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η

Fig. 5.4 Unreasonable element distortion leading to non-unique mapping and ‘overspill’. Quadratic and cubic
elements.

η
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y x

x

z
y
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Za

ξ

η

Fig. 5.5 Flat elements (of quadratic type) mapped into three dimensions.

it is necessary in addition to this requirement to ensure that the mid-side nodes are in the
‘middle half’of the distance between adjacent corners but a ‘middle third’shown in Fig. 5.6
is safer. For cubic functions such general rules are impractical and numerical checks on the
sign of the jacobian determinant are necessary. In practice a quadratic distortion is usually
sufficient.
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(a) Linear element

(b) Quadratic element
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for midpoint
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1
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Fig. 5.6 Rules for uniqueness of mapping (a) and (b).

5.3 Geometrical conformity of elements

While it was shown that by the use of the shape function transformation each parent element
maps uniquely a part of the real object, it is important that the subdivision of this into the
new, curved, elements should leave no gaps. The possibility of such gaps is indicated by
dotted lines in Fig. 5.7.

Theorem 1. If two adjacent elements are generated from ‘parents’ in which the shape
functions satisfy C0 continuity requirements then the distorted elements will be continuous
(compatible).

This statement is obvious, as in such cases uniqueness of any function u required by
continuity is simply replaced by that of uniqueness of the x, y, or z coordinate. As adjacent
elements are given the same sets of coordinates at nodes, continuity is implied.

5.4 Variation of the unknown function within distorted,
curvilinear elements. Continuity requirements

With the shape of the element now defined by the shape functions N′ the variation of the
unknown, u, has to be specified before we can establish element properties. This is most
conveniently given in terms of local, curvilinear coordinates by the usual expression

u = Nũe (5.3)

where ũe lists the nodal values.
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(a) (b)

Fig. 5.7 Compatibility requirements in a real subdivision of space.

(a) (b)

(c)

Fig. 5.8 Various element specifications: ◦ point at which coordinate specified; � point at which function
parameter specified. (a) Isoparametric. (b) Superparametric. (c) Subparametric.

Theorem 2. If the shape functions N used in (5.3) are such that C0 continuity of u is
preserved in the parent coordinates then C0 continuity requirements will be satisfied in
distorted elements.

The proof of this statement follows the same lines as that in the previous section.
The nodal values may or may not be associated with the same nodes as used to specify

the element geometry. For example, in Fig. 5.8 the points marked with a circle are used
to define the element geometry. We could use the values of the function defined at nodes
marked with a square to define the variation of the unknown.
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In Fig. 5.8(a) the same points define the geometry and the finite element analysis points.
If then

N = N′ (5.4)

i.e., the shape functions defining the geometry and the function are the same, the elements
will be called isoparametric.

We could, however, use only the four corner points to define the variation ofu [Fig. 5.8(b)].
We shall refer to such an element as superparametric, noting that the variation of geometry
is more general than that of the actual unknown.

Similarly, if for instance we introduce more nodes to define u than are used to define the
geometry, subparametric elements will result [Fig. 5.8(c)].

While for mapping it is convenient to use ‘standard’ forms of shape functions the interpo-
lation of the unknown can, of course, use hierarchic forms defined in the previous chapter.
Once again the definitions of sub- and superparametric variations are applicable.

Transformations

5.5 Evaluation of element matrices. Transformation in
ξ, η, ζ coordinates

To perform finite element analysis the matrices defining element properties, e.g., stiffness,
etc., have to be found. These will be of the form

∫
�

G d� (5.5)

in which the matrix G depends on N or its derivatives with respect to global coordinates.
As an example of this we have the stiffness matrix

K =
∫
�

BTDB d� (5.6a)

and associated body force vectors

f =
∫
�

NTb d� (5.6b)

For elastic problems the matrix for B is given explicitly by components [see the general
form of Eq. (2.15)]. For plane stress problems we have

Ba =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x
, 0

0,
∂Na

∂y

∂Na

∂y
,

∂Na

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.7)
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In elasticity problems the matrix G is thus a function of the first derivatives of N and this
situation will arise in many other classes of problems. In all, C0 continuity is needed and,
as we have already noted, this is readily satisfied by the functions of Chapter 4, written now
in terms of curvilinear coordinates.

To evaluate such matrices we note that two transformations are necessary. In the first
place, as Na is defined in terms of local (curvilinear) coordinates, it is necessary to devise
some means of expressing the global derivatives of the type occurring in Eq. (5.7) in terms
of local derivatives.

In the second place the element of volume (or surface) over which the integration has to
be carried out needs to be expressed in terms of the local coordinates with an appropriate
change in limits of integration.

5.5.1 Computation of global derivatives

Consider, for instance, the set of local coordinates ξ , η, ζ and a corresponding set of global
coordinates x, y, z. By the usual rules of partial differentiation we can write, for instance,
the ξ derivative as

∂Na

∂ξ
= ∂Na

∂x

∂x

∂ξ
+ ∂Na

∂y

∂y

∂ξ
+ ∂Na

∂z

∂z

∂ξ
(5.8)

Performing the same differentiation with respect to the other two coordinates and writing
in matrix form we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂ξ

∂Na

∂η

∂Na

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ
,

∂y

∂ξ
,

∂z

∂ξ

∂x

∂η
,

∂y

∂η
,

∂z

∂η

∂x

∂ζ
,

∂y

∂ζ
,

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂x

∂Na

∂y

∂Na

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= J

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂x

∂Na

∂y

∂Na

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.9)

In the above, the left-hand side can be evaluated as the functionsNa are specified in local
coordinates. Further, as x, y, z are explicitly given by the relation defining the curvilinear
coordinates [Eq. (5.2)], the matrix J can be found explicitly in terms of the local coordinates.
The array J is known as the jacobian matrix for the transformation.

To find now the global derivatives we invert J and write

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂x

∂Na

∂y

∂Na

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= J−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂ξ

∂Na

∂η

∂Na

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.10)

In terms of the shape function defining the coordinate transformation N′ (which as we
have seen are only identical with the shape functions N when the isoparametric formulation
is used) we have
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
a

∂N ′
a

∂ξ
xa,

∑
a

∂N ′
a

∂ξ
ya,

∑
a

∂N ′
a

∂ξ
za

∑
a

∂N ′
a

∂η
xa,

∑
a

∂N ′
a

∂η
ya,

∑
a

∂N ′
a

∂η
za

∑
a

∂N ′
a

∂ζ
xa,

∑
a

∂N ′
a

∂ζ
ya,

∑
a

∂N ′
a

∂ζ
za

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N ′
1

∂ξ
,

∂N ′
2

∂ξ
. . .

∂N ′
1

∂η
,

∂N ′
2

∂η
. . .

∂N ′
1

∂ζ
,

∂N ′
2

∂ζ
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
x1, y1, z1

x2, y2, z2

...
...

...

⎤
⎥⎥⎦

(5.11)
For two-dimensional problems we drop all the terms containing z and/or ζ in Eqs (5.8)

to (5.11).

5.5.2 Volume integrals

To transform the variables and the domain with respect to which the integration is made,
a standard process will be used which involves the determinant of J. Thus, for instance, a
volume element becomes

dx dy dz = J (ξ, η, ζ ) dξ dη dζ (5.12)

where J (ξ, η, ζ ) = det J.
This type of transformation is valid irrespective of the number of coordinates used. For its

justification the reader is referred to standard mathematical texts.† (See also Appendix F.)
Assuming that the inverse of J can be found we now have reduced the evaluation of the

element properties to that of finding integrals of the form of Eq. (5.5).
More explicitly we can write this as

∫
�

G(x, y, z) d� =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Ḡ(ξ, η, ζ ) J (ξ, η, ζ ) dξ dη dζ (5.13)

where

G(x, y, z) = G(x(ξ, η, ζ ), y(ξ, η, ζ ), z(ξ, η, ζ )) = Ḡ(ξ, η, ζ )

and the curvilinear coordinates are of the normalized type based on the right prism. Indeed
the integration is carried out within such a prism and not in the complicated distorted shape,
thus accounting for the simple integration limits. One- and two-dimensional problems will
similarly result in integrals with respect to one or two coordinates within simple limits.

While the limits of integration are simple in the above case, unfortunately the explicit
form of Ḡ is not. Apart from the simplest elements, algebraic integration usually defies our
mathematical skill, and numerical integration has to be used. This, as will be seen from
later sections, is not a severe penalty and has the advantage that algebraic errors are more
easily avoided and that general programs, not tied to a particular element, can be written
for various classes of problems.

†The determinant of the jacobian matrix is known in the literature simply as ‘the jacobian’ and is often written as

J (ξ, η, ζ ) ≡ ∂(x, y, z)

∂(ξ, η, ζ )
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5.5.3 Surface integrals

In elasticity and other applications, surface integrals frequently occur. Typical here are the
expressions for evaluating the contributions of surface tractions [see Chapter 2, Eq. (2.40b)]:

f = −
∫
�

NT t̄ d�

The element d� will generally lie on a surface where one of the coordinates (say ζ ) is
constant.

The most convenient process of dealing with the above is to consider dA as a vector
oriented in the direction normal to the surface (see Appendix F). For three-dimensional
problems we form the vector product

n dA = dA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂x

∂η

∂y

∂η

∂z

∂η

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

dξ dη

and on substitution integrate within the domain −1 ≤ ξ, η ≤ 1.
For two dimensions a line length dS arises and here the magnitude is simply

n d� = dΓ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂x

∂ξ

∂y

∂ξ

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

0

1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

dξ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂y

∂ξ

− ∂x

∂ξ

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dξ

on constantη surfaces. This may now be reduced to two components for the two-dimensional
problem.

5.6 Evaluation of element matrices. Transformation in
area and volume coordinates

The general relationship (5.2) for coordinate mapping and indeed all the subsequent state-
ments are equally valid for any set of local coordinates and could relate the localL1, L2, . . .
coordinates used for triangles and tetrahedra in the previous chapter, to the global cartesian
ones.

Indeed most of the discussion of the previous sections is valid if we simply rename the
local coordinates suitably. However, two important differences arise.

The first concerns the fact that the local coordinates are not independent and in fact
number one more than the cartesian system. The matrix J would apparently therefore
become rectangular and would not possess an inverse. The second is simply the difference
of integration limits which have to correspond with a triangular or tetrahedral ‘parent’
element.
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A simple, though perhaps not the most elegant, way out of the first difficulty is to consider
one variable as a dependent one. Thus, for example, we can introduce formally, in the case
of the tetrahedra,

ξ = L1

η = L2

ζ = L3

1 − ξ − η − ζ = L4

(5.14)

(by definition in the previous chapter) and thus preserve without change Eq. (5.8) and all
the equations up to Eq. (5.12).

As the functions Na are given in terms of L1, L2, etc., we must observe that

∂Na

∂ξ
= ∂Na

∂L1

∂L1

∂ξ
+ ∂Na

∂L2

∂L2

∂ξ
+ ∂Na

∂L3

∂L3

∂ξ
+ ∂Na

∂L4

∂L4

∂ξ
(5.15)

On using Eq. (5.14) this becomes simply

∂Na

∂ξ
= ∂Na

∂L1
− ∂Na

∂L4

with the other derivatives obtainable by similar expressions.
The integration limits of Eq. (5.13) now change, however, to correspond with the tetra-

hedron limits, typically

∫
�

G d� =
∫ 1

0

∫ 1−ζ

0

∫ 1−η−ζ

0
Ḡ(ξ, η, ζ ) dξ dη dζ (5.16)

The same procedure will clearly apply in the case of triangular coordinates.
It must be noted that once again the expression Ḡ will necessitate numerical integration

which, however, is carried out over the simple, undistorted, parent region whether this be
triangular or tetrahedral.

An alternative to the above is to express the coordinates and constraint as

rx = x − x1N
′
1 − x2N

′
2 − x3N

′
3 − · · · = 0

ry = y − y1N
′
1 − y2N

′
2 − y3N

′
3 − · · · = 0

rz = z− z1N
′
1 − z2N

′
2 − z3N

′
3 − · · · = 0

r1 = 1 − L1 − L2 − L3 − L4 = 0

(5.17)

where N ′
a = N ′

a(L1, L2, L3, L4), etc. Now derivatives of the above with respect to x, y
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and z may be written directly as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂rx

∂x

∂rx

∂y

∂rx

∂z

∂ry

∂x

∂ry

∂y

∂ry

∂z

∂rz

∂x

∂rz

∂y

∂rz

∂z

∂r1

∂x

∂r1

∂y

∂r1

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
a xa

∂Na

∂L1

∑
a xa

∂Na

∂L2

∑
a xa

∂Na

∂L3

∑
a xa

∂Na

∂L4

∑
a ya

∂Na

∂L1

∑
a ya

∂Na

∂L2

∑
a ya

∂Na

∂L3

∑
a ya

∂Na

∂L4

∑
a za

∂Na

∂L1

∑
a za

∂Na

∂L2

∑
a za

∂Na

∂L3

∑
a za

∂Na

∂L4

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L1

∂x

∂L1

∂y

∂L1

∂z

∂L2

∂x

∂L2

∂y

∂L2

∂z

∂L3

∂x

∂L3

∂y

∂L3

∂z

∂L4

∂x

∂L4

∂y

∂L4

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

(5.18)

The above may be solved for the partial derivatives of La with respect to the x, y, z
coordinates and used directly with the chain rule written as

∂Na

∂x
= ∂Na

∂L1

∂L1

∂x
+ ∂Na

∂L2

∂L2

∂x
+ ∂Na

∂L3

∂L3

∂x
+ ∂Na

∂L4

∂L4

∂x
(5.19)

The above has advantages when the coordinates are written using mapping functions as
the computation can still be more easily carried out. Also, the calculation of integrals
will normally be performed numerically (as described in Sec. 5.11) where the points for
integration are defined directly in terms of the volume coordinates.

Finally it should be remarked that any of the elements given in the previous chapter are
capable of being mapped. In some, such as the triangular prism, both area and rectangular
coordinates are used (Fig. 5.9). The remarks regarding the dependence of coordinates apply
once again with regard to the former but the processes of the present section should make
procedures clear.

Fig. 5.9 A distorted triangular prism.
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5.7 Order of convergence for mapped elements

If the shape functions are chosen in curvilinear coordinate space so as to observe the usual
rules of convergence (continuity and presence of complete first-order polynomials in these
coordinates), then convergence will occur. In the case of isoparametric (or subparametric)
elements a complete linear field is always reproduced (i.e., 1, x, y) by the curvilinear
coordinate expansion, and thus the lowest order patch test will be passed in the standard
manner on such elements.

The proof of this is simple. Consider a standard isoparametric expansion

u =
n∑
a=1

Naũa ≡ Nũ N = N(ξ, η, ζ ) (5.20)

with coordinates of nodes defining the transformation as

x =
∑

Naxa y =
∑

Naya z =
∑

Naza (5.21)

The question is under what circumstances is it possible for expression (5.20) to define a
linear expansion in cartesian coordinates:

u = α1 + α2x + α3y + α4z

≡ α1 + α2

∑
Naxa + α3

∑
Naya + α4

∑
Naza

(5.22)

If we take
ũa = α1 + α2xa + α3ya + α4za

and compare expression (5.20) with (5.22) we note that identity is obtained between these
providing ∑

Na = 1

As this is the usual requirement of standard element shape functions [see Eq. (4.4)] we can
conclude that the following theorem is valid.

Theorem 3. The constant derivative condition will be satisfied for all isoparametric ele-
ments.

As subparametric elements can always be expressed as specific cases of an isoparametric
transformation this theorem is obviously valid here also.

It is of interest to pursue the argument and to see under what circumstances higher poly-
nomial expansions in cartesian coordinates can be achieved under various transformations.
The simple linear case in which we ‘guessed’ the solution has now to be replaced by con-
sidering in detail the polynomial terms occurring in expressions such as (5.20) and (5.22)
and establishing conditions for equating appropriate coefficients.

Consider a specific problem: the circumstances under which the bilinear mapped quadri-
lateral of Fig. 5.10 can fully represent any quadratic cartesian expansion. We now have

x =
4∑
1

N ′
axa y =

4∑
1

N ′
aya (5.23)
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and we wish to be able to reproduce

u = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (5.24)

Noting that the bilinear form of N ′
a contains terms such as 1, ξ , η and ξη, the above can be

written as

u = η1 + η2ξ + η3η + η4ξ
2 + η5ξη + η6η

2 + η7ξη
2 + η8ξ

2η + η9ξ
2η2 (5.25)

where η1 to η9 depend on the values of α1 to α6.
We shall now try to match the terms arising from the quadratic expansions of the serendip-

ity kind shown in Fig. 5.10(b) where the interplation is

u =
8∑
a=1

Naũa (5.26)

where the appropriate shape functions are of the kind defined in the previous chapter. We
also can write (5.26) directly using polynomial coefficients ba, a = 1, . . . , 8, in place of
the nodal variables ũa (noting the terms occurring in the Pascal triangle) as

u = b1 + b2ξ + b3η + b4ξ
2 + b5ξη + b6η

2 + b7ξη
2 + b8ξ

2η (5.27)

It is immediately evident that for arbitrary values of η1 to η9 it is impossible to match
the coefficients b1 to b8 due to the absence of the term ξ 2η2 in Eq. (5.27). [However, if
higher order (quartic, etc.) expansions of the serendipity kind were used such matching
would evidently be possible and we could conclude that for linearly distorted elements the
serendipity family of order four or greater will always represent quadratic polynomials in
x, y.]

For the 9-node, lagrangian, element [Fig. 5.10(c)] the expansion similar to (5.28) gives

u =
9∑
a=1

Naũa (5.28)

which when expressed directly in polynomial coefficents ba, 1 = 1, . . . , 9 yields

u = b1 + b2ξ + b3η + b4ξ
2 + · · · + b8ξ

2η + b9ξ
2η2 (5.29)

and the matching of the coefficients of Eqs (5.29) and (5.25) can be made directly.
We can conclude therefore that 9-node elements better represent cartesian polynomials

(when distorted linearly) and therefore are generally preferable in modelling smooth solu-
tions. This matter was first presented by Wachspress7 but the simple proof presented above
is due to Crochet.8 An example of this is given in Fig. 5.11 where we consider the results
of a finite element calculation with 8- and 9-node elements respectively used to reproduce
a simple beam solution in which we know that the exact answers are quadratic. With no
distortion both elements give exact results but when distorted only the 9-node element does
so, with the 8-node element giving quite wild stress fluctuation.

Similar arguments will lead to the conclusion that in three dimensions again only the
lagrangian 27-node element is capable of reproducing fully a quadratic function in carte-
sian coordinates when trilinearly distorted (i.e., using the mapping for N ′

a for the 8-node
hexahedron).
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Lee and Bathe9 investigate the problem for cubic and quartic serendipity and lagrangian
quadrilateral elements and show that under bilinear distortions the full order cartesian
polynomial terms remain in lagrangian elements but not in serendipity ones. They also
consider edge distortion and show that this polynomial order is always lost. Additional
discussion of such problems is also given by Wachspress.7

5.8 Shape functions by degeneration

In the previous sections we have discussed the construction of shape functions for mapped
elements of lagrangian and serendipity type, as well as those for triangular and tetrahedral
type. We have also shown how mixtures of interpolation forms may be used to construct
elements of prism type. One may ask what happens if we distort elements such that nodes
for the lagrangian or serendipity type are coalesced – that is, they are assigned the same
node number in the mesh. We call the approach where two or more nodes are common
a degenerate form. In a degenerate form the shape function for a coalesced set of two or
more nodes is obtained by adding together the shape functions of each individual node (in
a hierarchic form, any mid-side and/or face functions are omitted).

Example 5.1: Quadrilateral degenerated into a triangular element. As a simple ex-
ample we consider the degeneration of a 4-node quadrilateral in which nodes 3 and 4
are coalesced to form the third node of a triangular element as shown in Fig. 5.12. For
an isoparametric form given in ξ , η coordinates, the shape functions for the degenerate
triangular element are given by

N1 = 1
4 (1 − ξ)(1 − η)

N2 = 1
4 (1 + ξ)(1 − η)

N3 = 1
2 (1 + η)

(5.30)

where the last function results from adding together the standard shape functions for nodes
3 and 4 of the quadrilateral element. Computing now the global derivatives for the above
functions we obtain [using (5.10)]

∂Na

∂x
= ba(1 − η)

2�(1 − η)
; ∂Na

∂y
= ca(1 − η)

2�(1 − η)
(5.31)

(a) (b) (c)Mapping nodes

Fig. 5.10 Bilinear mapping of subparametric quadratic 8- and 9-node element.
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on AA
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M

Fig. 5.11 Quadratic serendipity and lagrangian 8- and 9-node elements in regular and distorted form. Elastic
deflection of a beam under constant moment. Note poor results of 8-node element.

where ba and ca coincide with results for the standard 3-node triangular element shape
functions given in (2.6) and � is the area of the triangle as given in (2.7). Except for the
point η = 1 (the point where the nodes are coalesced) the shape function derivatives are
constant and identical to those obtained using area coordinates L1, L2, L3. Thus, for the
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degeneration we have the identities

N1 = 1
4 (1 − ξ)(1 − η) = L1

N2 = 1
4 (1 + ξ)(1 − η) = L2

N3 = 1
2 (1 + η) = L3

(5.32)

and, provided we do not consider the point η = 1, we may compute the derivatives and
integrals for 3-node triangular elements using the degeneration process.

A similar form to the above example holds when an 8-node brick element is degenerated
into a 4-node tetrahedron. In addition, however, we can compute shape functions for other
degenerate forms as indicated in Fig. 5.13. In all cases, the computation of derivatives
gives a 0/0 form at any point where nodes are coalesced. In addition, however, any faces
which degenerate into an edge will also contain a 0/0 in the derivative along that edge. The
behaviour on any remaining face of a degenerate element is either the original quadrilateral
one or a triangular one in which the shape functions are identical to the results given in
(5.32).

5.8.1 Higher order degenerate elements

When nodes for higher order quadrilateral and hexahedral elements are coalesced to give a
degenerate form it is necessary to modify the shape functions for some of the non-coalesced
nodes in order to produce results which are consistent with those computed using area or
volume coordinates, respectively. This aspect was first studied by Newton10 and Irons11

for serendipity-type elements. Here we extend the work reported in these references to
include the lagrangian-type elements. Using lagrangian elements has a distinct advantage
since all the degenerate elements preserve the properties of higher order approximation

1 2

34

1 2

3=4

ξ

η

Fig. 5.12 Degeneration of a quadrilateral into a triangle.
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in global coordinates when the element is mapped according to the trilinear form (i.e., a
subparametric form using the 8-node hexahedron).

Example 5.2: Quadratic quadrilateral degenerated to a triangular element. As an
example we consider the degeneration of a quadratic order quadrilateral to form a quadratic
order triangular element. Expressing the shape functions in hierarchical form we have for

1

2 3

(a) Brick (b) Degenerate

4

5

6

7

8

1

2 3

4

5

6

7=8

1

2 3
(c) Prism (d) Pyramid

(e) Chisel (f) Tetrahedron

4

5=6 7=8

1

2 3

4

5=6=7=8

1

2

3=4

5=6 7=8

1

2

3=4

5=6=7=8

Fig. 5.13 Some degenerate element forms for an 8-node brick element.
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1 5 2 1 5 2

34

6

7

8
9

3=4=7

68ξ

η

Fig. 5.14 Degeneration of a 8- or 9-node quadrilateral into a 6-node triangle.

the 8- or 9-node quadrilateral†

NQ
a = 1

4 (1 + ξaξ)(1 + ηaη); a = 1, 2, 3, 4

NQ
a = 1

2 (1 + ξaξ)(1 − η2); a = 6, 8

NQ
a = 1

2 (1 + ηaη)(1 − ξ 2); a = 5, 7

NQ
a = (1 − ξ 2)(1 − η2); a = 9

(5.33)

for which a hierarchical lagrangian interpolation of any function is given by

f =
4∑
a=1

NQ
a (ξ, η) fa +

8∑
a=5

NQ
a (ξ, η)�fa +N

Q
9 (ξ, η)��f9 (5.34)

where fa are nodal values,�fa are departures from linear interpolation for mid-side nodes,
and ��f9 is the departure from the 8-node serendipity interpolation at the centre node.
Thus, omitting the ninth function gives the serendipity form.

If we now coalesce the nodes 3, 4, 7 and use the above hierarchic form, the shape functions
for the vertex nodes again are given by

N
Q
1 = 1

4 (1 − ξ)(1 − η) = L1 = NT
1

N
Q
2 = 1

4 (1 + ξ)(1 − η) = L2 = NT
2

N
Q
3 = 1

2 (1 + η) = L3 = NT
3

(5.35)

[note that �f7 = 0 in any interpolation and, thus, NT
7 = 0]. Also, for the 6-node form

we omit the interior node 9 and thus, for the degenerate element, NT
9 = 0. If the resulting

degenerate element is to be identical with the 6-node triangular element we require

NT
5 = 4L1L2

NT
6 = 4L2L3

NT
8 = 4L3L1

(5.36)

†We use a superscript ‘Q’ for shape functions associated with the quadrilateral form and, later, ‘T’ to denote those
for a triangular form.
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Substituting the definitions for area coordinates given by (5.35) into (5.36) we find

NT
5 = 1

4 (1 − ξ 2)(1 − η)2

NT
6 = 1

2 (1 + ξ)(1 − η2)

NT
8 = 1

2 (1 − ξ)(1 − η2)

(5.37)

and, thus, comparing the forms given by (5.33) and (5.37) we obtain the result

NT
5 �= N

Q
5 ; NT

6 = N
Q
6 ; NT

8 = N
Q
8 (5.38)

Thus, it only remains to correct the shape function for node 5. This is accomplished by
noting

NT
5 = 1

4 (1 − ξ 2)(1 − 2 η + η2)

= 1
4 (1 − ξ 2)(2 − 2 η − 1 + η2)

= 1
2 (1 − ξ 2)(1 − η)− 1

4 (1 − ξ 2)(1 − η2)

giving the ‘corrected’ degenerate function for node 5 as

NT
5 = N

Q
5 − 1

4N
Q
9 (5.39)

The hierarchical forms now can be converted to standard isoparametric form using the
process given in Sec. 4.6.

Example 5.3: Degenerate forms for a quadratic 27-node hexahedron. The construction
for quadratic degenerate three-dimensional forms follows a similar process and, when using
the hierarchical form, the mid-side node opposite each coalesced node on a ‘face’ must be
modified using a form similar to (5.39). Again, all the shapes shown in Fig. 5.13 are possible
and permit the construction of meshes which use a mix of bricks, tetrahedra and degenerate
transition forms. In addition to the 8 vertex nodes it is necessary to add 12 mid-edge nodes,
6 mid-face nodes and one internal node to form a lagrangian quadratic order hexahedron.
For node numbers as given in Fig. 5.15 and using hierarchical interpolation, the shape
functions are given by the following:

9

10

11
12

13
14

15

16

17

18 19

20

ξ
η

1

2 3

4

5

6 7

8

ζ

21

2223 24

25

26

Fig. 5.15 Numbering for 27-node quadratic lagrangian hexagon. (Node 27 at origin of ξ , η, ζ coordinates).
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Table 5.1 Degeneration modifications for 27-node hexahedron

Coalesced nodes Modified nodes

1 and 2 omit 9 11 by 25 omit 25 13 by 23 omit 23
2 and 3 omit 10 12 by 25 omit 25 14 by 22 omit 22
3 and 4 omit 11 9 by 25 omit 25 15 by 24 omit 24
4 and 1 omit 12 10 by 25 omit 25 16 by 21 omit 21

5 and 6 omit 13 15 by 26 omit 26 9 by 23 omit 23
6 and 7 omit 14 16 by 26 omit 26 10 by 22 omit 22
7 and 8 omit 15 13 by 26 omit 26 11 by 24 omit 24
8 and 5 omit 16 14 by 26 omit 26 12 by 21 omit 21

1 and 5 omit 17 18 by 23 omit 23 20 by 21 omit 21
2 and 6 omit 18 19 by 22 omit 22 17 by 23 omit 23
3 and 7 omit 19 20 by 24 omit 24 18 by 22 omit 22
4 and 8 omit 20 17 by 21 omit 21 19 by 24 omit 24

1. For vertex nodes

Na = 1
8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ ); a = 1, 2, . . . , 8 (5.40a)

2. For mid-edge nodes

Na = 1
4

⎧⎪⎨
⎪⎩
(1 − ξ 2)(1 + ηaη)(1 + ζaζ ); a = 9, 11, 13, 15

(1 + ξaξ)(1 − η2)(1 + ζaζ ); a = 10, 12, 14, 16

(1 + ξaξ)(1 + ηaη)(1 − ζ 2); a = 17, 18, 19, 20

(5.40b)

3. For mid-face nodes

Na = 1
2

⎧⎪⎨
⎪⎩
(1 + ξaξ)(1 − η2)(1 − ζ 2); a = 21, 22

(1 − ξ 2)(1 + ηaη)(1 − ζ 2); a = 23, 24

(1 − ξ 2)(1 − η2)(1 + ζaζ ); a = 25, 26

(5.40c)

4. For interior node

Na = (1 − ξ 2)(1 − η2)(1 − ζ 2); a = 27 (5.40d)

Table 5.1 indicates which shape functions are modified when vertex nodes are coalesced.
The hierarchical shape functions to be omitted are also indicated. Note that shape functions
should only be omitted (set zero) after all coalesced node pairs are considered. Also if a
tetrahedral element is formed then all mid-face nodes are deleted and the interior node
may also be omitted, giving the final tetrahedron as a 10-node element. Again, if any
of the element forms is mapped using the degenerate subparametric form of the 8-node
hexahedron for N ′

a full quadratic behaviour in global coordinates is attained – showing the
advantage of starting from lagrangian form elements.

Consideration of cubic and higher order forms are also possible and are left as an exercise
for the interested reader.
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5.9 Numerical integration – one dimensional

Some principles of numerical integration will be summarized here together with tables of
convenient numerical coefficients.

To find numerically the integral of a function of one variable we can proceed in one of
several ways as discussed next.

5.9.1 Newton–Cotes quadrature†
In the most obvious procedure, points at which the function is to be found are determined
a priori – usually at equal intervals – and a polynomial passed through the values of the
function at these points and exactly integrated [Fig. 5.16(a)].

As n values of the function define a polynomial of degree n − 1, the errors will be of
the order O(hn) where h is the element size. The well-known Newton–Cotes ‘quadrature’
formulae can be written as

I =
∫ 1

−1
f (ξ) dξ =

n∑
i=1

f (ξi) wi (5.41)

for the range of integration between −1 and +1 [Fig. 5.16(a)]. For example, if n = 2, we
have the well-known trapezoidal rule:

I = f (−1)+ f (1) (5.42a)

for n = 3, the Simpson ‘one-third’ rule:

I = 1
3 [f (−1)+ 4f (0)+ f (1)] (5.42b)

and for n = 4:
I = 1

4 [f (−1)+ 3f (− 1
3 )+ 3f ( 1

3 )+ f (1)] (5.42c)

Formulae for higher values of n are given in reference 12.

5.9.2 Gauss quadrature

If in place of specifying the position of sampling points a priori we allow these to be
located at points to be determined so as to aim for best accuracy, then for a given number
of sampling points increased accuracy can be obtained. Indeed, if we again consider

I =
∫ 1

−1
f (ξ) dξ =

n∑
i=1

f (ξi) wi (5.43)

† ‘Quadrature’ is an alternative term to ‘numerical integration’.
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(a)

−1 0 1

(b)

−1 10

f

f

f (ξ1) 

f (ξ8)

ξ

ξ

f (ξ1) 

f (ξ2) f (ξ3) 
f (ξ4)

0.33998

0.86114

∆ = 2
7

Fig. 5.16 (a) Newton–Cotes and (b) Gauss integrations. Each integrates exactly a seventh-order polynomial
[i.e., error O(h8)].

and again assume a polynomial expression, it is easy to see that for n sampling points we
have 2n unknowns (wi and ξi) and hence a polynomial of degree 2n−1 could be constructed
and exactly integrated [Fig. 5.16(b)]. The error is thus of order O(h2n).

The simultaneous equations involved are difficult to solve, but some mathematical ma-
nipulation will show that the solution can be obtained explicitly in terms of Legendre
polynomials. Thus this particular process is frequently known as Gauss–Legendre quadra-
ture.12

Table 5.2 shows the positions and weighting coefficients for gaussian integration.
For purposes of finite element analysis complex calculations are involved in determining

the values of f , the function to be integrated. Thus the Gauss-type processes, requiring
the least number of such evaluations, are ideally suited and from now on will be used
exclusively.
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5.10 Numerical integration – rectangular (2D) or brick
regions (3D)

The most obvious way of obtaining the integral

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη (5.44)

is first to evaluate the inner integral keeping η constant, i.e.,

∫ 1

−1
f (ξ, η) dξ =

n∑
j=1

f (ξj , η)wj = ψ(η) (5.45)

Table 5.2 Gaussian quadrature abscissae and weights for∫ 1
−1 f (x)dx = ∑n

j=1 f (ξj )wj .

±ξj wj
n = 1

0 2.000 000 000 000 000
n = 2

1/
√

3 1.000 000 000 000 000
n = 3√

0.6 5/9
0.000 000 000 000 000 8/9

n = 4
0.861 136 311 594 053 0.347 854 845 137 454
0.339 981 043 584 856 0.652 145 154 862 546

n = 5
0.906 179 845 938 664 0.236 926 885 056 189
0.538 469 310 105 683 0.478 628 670 499 366
0.000 000 000 000 000 0.568 888 888 888 889

n = 6
0.932 469 514 203 152 0.171 324 492 379 170
0.661 209 386 466 265 0.360 761 573 048 139
0.238 619 186 083 197 0.467 913 934 572 691

n = 7
0.949 107 912 342 759 0.129 484 966 168 870
0.741 531 185 599 394 0.279 705 391 489 277
0.405 845 151 377 397 0.381 830 050 505 119
0.000 000 000 000 000 0.417 959 183 673 469

n = 8
0.960 289 856 497 536 0.101 228 536 290 376
0.796 666 477 413 627 0.222 381 034 453 374
0.525 532 409 916 329 0.313 706 645 877 887
0.183 434 642 495 650 0.362 683 783 378 362

n = 9
0.968 160 239 507 626 0.081 274 388 361 574
0.836 031 107 326 636 0.180 648 160 694 857
0.613 371 432 700 590 0.260 610 696 402 935
0.324 253 423 403 809 0.312 347 077 040 003
0.000 000 000 000 000 0.330 239 355 001 260

n = 10
0.973 906 528 517 172 0.066 671 344 308 688
0.865 063 366 688 985 0.149 451 349 150 581
0.679 409 568 299 024 0.219 086 362 515 982
0.433 395 394 129 247 0.269 266 719 309 996
0.148 874 338 981 631 0.295 524 224 714 753
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Evaluating the outer integral in a similar manner, we have

I =
∫ 1

−1
ψ(η) dη =

n∑
i=1

ψ(ηi) wi

=
n∑
i=1

wi

n∑
j=1

f (ξj , ηi) wj

=
n∑
i=1

n∑
j=1

f (ξj , ηi) wi wj

(5.46)

For a brick we have similarly

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ, η, ζ ) dξ dη dζ

=
n∑
k=1

n∑
j=1

n∑
i=1

f (ξi, ηj , ξk) wi wj wk

(5.47)

In the above, the number of integrating points in each direction was assumed to be the
same. Clearly this is not necessary and on occasion it may be an advantage to use different
numbers in each direction of integration.

It is of interest to note that in fact the double summation can be readily interpreted as a
single one over (n × n) points for a rectangle (or n3 points for a cube). Thus in Fig. 5.17
we show the nine sampling points that result in exact integrals of order 5 in each direction.
In the sequel when numerical integration is used we will denote the summation as a single
sum over unique points, thus we will write

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη =

m∑
l=1

f (ξl, ηl)Wl (5.48)

for two dimensions and

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f (ξ, η, ζ ) dξ dη dζ =

m∑
l=1

f (ξl, ηl, ζl)Wl (5.49)

for three dimensions. Here the weight Wl denotes the product of the appropriate one-
dimensional weights.

We can also approach the problem directly and require an exact integration of a fifth-
order polynomial in two dimensions. At any sampling point two coordinates and a value
of f have to be determined in a weighting formula of type

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη =

m∑
l=1

f (ξi, ηi)Wi (5.50)

It would appear that only seven points would suffice to obtain the same order of accu-
racy. Some formulae for three-dimensional bricks have been derived by Irons13 and used
successfully.14
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7 8 9

4 5 6

1 2 3

1

1−1

−1

η

ξ

Fig. 5.17 Integrating points for n = 3 in a square region. (Exact for polynomial of fifth order in each direction).

5.11 Numerical integration – triangular or tetrahedral
regions

For a triangle, in terms of the area coordinates the integrals are of the form

I =
∫ 1

0

∫ 1−L1

0
f (L1, L2, L3) dL2 dL1 L3 = 1 − L1 − L2 (5.51)

Once again we could use nGauss points and arrive at a summation expression of the type
used in the previous section. However, the limits of integration now involve the variable
itself and it is convenient to use alternative sampling points for the second integration by use
of a special Gauss expression for integrals in which the integrand is multiplied by a linear
function. These have been devised by Radau15 and used successfully in the finite element
context.16 It is, however, much more desirable (and aesthetically pleasing) to use special
formulae in which no bias is given to any of the natural coordinates La . Such formulae
were first derived by Hammer et al.17 and Felippa18 and a series of necessary sampling
points and weights is given in Table 5.3.19 (A more comprehensive list of higher formulae
derived by Cowper is given in reference 19.)

A similar extension for tetrahedra can obviously be made. Table 5.4 presents some
formulae based on reference 17.

5.12 Required order of numerical integration

With numerical integration used in place of exact integration, an additional error is intro-
duced into the calculation and the first impression is that this should be reduced as much as
possible. Clearly the cost of numerical integration can be quite significant, and indeed in
some early programs numerical formulation of element characteristics used a comparable
amount of computer time as in the subsequent solution of the equations. It is of interest,
therefore, to determine (a) the minimum integration requirement permitting convergence
and (b) the integration requirements necessary to preserve the rate of convergence which
would result if exact integration were used.

It will be found later (Chapters 9 and 11) that it is in fact often a disadvantage to
use higher orders of integration than those actually needed under (b) as, for very good
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Table 5.3 Numerical integration formulae for triangles

Triangular
Order Figure Error Points coordinates Weights

Linear a R = O(h2) a 1
3 ,

1
3 ,

1
3 1

Quadratic
a

b

c

R = O(h3)

a

b

c

1
2 ,

1
2 , 0

1
2 , 0, 1

2

0, 1
2 ,

1
2

1
3
1
3
1
3

Cubic
a

b

c
d

R = O(h4)

a

b

c

d

1
3 ,

1
3 ,

1
3

0.6, 0.2, 0.2

0.2, 0.6, 0.2

0.2, 0.2, 0.6

− 27
48
25
48
25
48
25
48

Quintic
a

b

c

d

e

f

g R = O(h6)

a

b

c

d

e

f

g

1
3 ,

1
3 ,

1
3

α1, β1, β1

β1, α1, β1

β1, β1, α1

α2, β2, β2

β2, α2, β2

β2, β2, α2

0.2250000000

0.1323941527

0.1323941527

0.1323941527

0.1259391805

0.1259391805

0.1259391805

with
α1 = 0.059 715 871 7

β1 = 0.470 142 064 1

α2 = 0.797 426 985 3

β2 = 0.101 286 507 3

reasons, a ‘cancellation of errors’ due to discretization and due to inexact integration
can occur.

5.12.1 Minimum order of integration for convergence

In problems where the energy functional (or equivalent Galerkin integral statements)
defines the approximation we have already stated that convergence can occur providing
any arbitrary constant value of mth derivatives can be reproduced. In the present case
m = 1 and we thus require that in integrals of the form (5.5) a constant value of G be
correctly integrated. Thus the volume of the element

∫
�

d� needs to be evaluated correctly
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Table 5.4 Numerical integration formulae for tetrahedra

Tetrahedral
Order Figure Error Points coordinates Weights

Linear a R = O(h2) a 1
4 ,

1
4 ,

1
4 ,

1
4 1

Quadratic

b 

a d

c

R = O(h3)

a

b

c

d

α, β, β, β

β, α, β, β

β, β, α, β

β, β, β, α

1
4
1
4
1
4
1
4

α = 0.585 410 20
β = 0.138 196 60

Cubic

e

b c

   d

a R = O(h4)

a

b

c

d

e

1
4 ,

1
4 ,

1
4 ,

1
4

1
2 ,

1
6 ,

1
6 ,

1
6

1
6 ,

1
2 ,

1
6 ,

1
6

1
6 ,

1
6 ,

1
2 ,

1
6

1
6 ,

1
6 ,

1
6 ,

1
2

− 4
5
9

20
9

20
9

20
9

20

for convergence to occur. In curvilinear coordinates we can thus argue that
∫
Jdζ dη dξ

has to be evaluated exactly.3, 6

5.12.2 Order of integration for no loss of convergence rate

In a general problem we have already found that the finite element approximate evaluation of
energy (and indeed all the other integrals in a Galerkin-type approximation, see Chapter 3)
was exact to the order 2(p−m), wherepwas the degree of the complete polynomial present
and m the order of differential occurring in the appropriate expressions.

Providing the integration is exact to the order 2(p−m), or shows an error ofO(h2(p−m)+1),
or less, then no loss of convergence order will occur.† If in curvilinear coordinates we take
a curvilinear dimension h of an element, the same rule applies. For C0 problems (i.e.,
m = 1) the integration formulae should be as follows:

p = 1, linear elements O(h)

p = 2, quadratic elements O(h3)

p = 3, cubic elements O(h5)

†For an energy principle use of quadrature may result in loss of a bound for 
(ũ).
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We shall make use of these results in practice, as will be seen later, but it should be
noted that for a linear quadrilateral or triangle a single-point integration is adequate. For
parabolic quadrilaterals (or bricks) 2×2 (or 2×2×2), Gauss point integration is adequate
and for parabolic triangles (or tetrahedra) three-point (and four-point) formulae of Tables 5.3
and 5.4 are needed.

The basic theorems of this section have been introduced and proved numerically in
published work.20–22

5.12.3 Matrix singularity due to numerical integration

The final outcome of a finite element approximation in linear problems is an equation
system

Kũ + f = 0 (5.52)

in which the boundary conditions have been inserted and which should, on solution for
the parameter ũ, give an approximate solution for the physical situation. If a solution is
unique, as is the case with well-posed physical problems, the equation matrix K should be
non-singular. We have a priori assumed that this was the case with exact integration and
in general have not been disappointed. With numerical integration, singularities may arise
for low integration orders, and this may make such orders impractical. It is easy to show
how, in some circumstances, a singularity of K must arise, but it is more difficult to prove
that it will not. We shall, therefore, concentrate on the former case.

With numerical integration we replace the integrals by a weighted sum of independent
linear relations between the nodal parameters ũ. These linear relations supply the only
information from which the matrix K is constructed. If the number of unknowns ũ exceeds
the number of independent relations supplied at all the integrating points, then the matrix
K must be singular.

To illustrate this point we shall consider two-dimensional elasticity problems using lin-
ear and parabolic serendipity quadrilateral elements with one- and four-point quadrature
respectively.

Here at each integrating point three independent ‘strain relations’ are used and the to-
tal number of independent relations possible equals 3 × (number of integration points).
The number of unknowns ũ is simply 2 × (number of nodes) less restrained degrees of
freedom.

In Fig. 5.18(a) and (b) we show a single element and an assembly of two elements
supported by a minimum number of specified displacements eliminating rigid body mo-
tion. The simple calculation shows that only in the assembly of the quadratic elements is
elimination of singularities possible, all the other cases remaining strictly singular.

In Fig. 5.18(c) a well-supported block of both kinds of elements is considered and here
for both element types non-singular matrices may arise although local, near singularity may
still lead to unsatisfactory results (see Chapter 9).

The reader may well consider the same assembly but supported again by the minimum
restraint of three degrees of freedom. The assembly of linear elements with a single in-
tegrating point will be singular while the quadratic ones will, in fact, usually be well
behaved.

For the reason just indicated, linear single-point integrated elements are used infrequently
in static solutions, although they do find wide use in ‘explicit’dynamics codes – but needing
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(a)
Both d.o.f.
suppressed

One d.o.f.
suppressed

(b)

(c)

Linear

Integrating point (3 independent relations)

Nodal point with 2 degrees of freedom

Quadratic

Degree of
freedom

Independent
relation

Degree of
freedom

Independent
relation

(a)

(b)

(c)

4 x 2− 3 = 5 > 1 x 3 = 3 

singular

2 x 8 − 3 = 13 > 4 x 3 = 12 

singular

6 x 2− 3 = 9 > 2 x 3 = 6 

singular

13 x 2− 3 = 23 < 8 x 3 = 24 

25 x 2−18 = 32< 16 x 3 = 48 48 x 2 = 96 < 64 x 3= 192

Fig. 5.18 Check on matrix singularity in two-dimensional elasticity problems (a), (b), and (c).

certain remedial additions (e.g., hourglass control23, 24) – while four-point quadrature is
often used for quadratic serendipity elements.†

In Chapter 9 we shall return to the problem of convergence and will indicate dangers
arising from local element singularities.

However, it is of interest to mention that in Chapter 11 we shall in fact seek matrix
singularities for special purposes (e.g., incompressibility) using similar arguments.

†Repeating the test for quadratic lagrangian elements indicates a singularity for 2 × 2 quadrature.
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5.13 Generation of finite element meshes by mapping.
Blending functions

It will be observed that it is an easy matter to obtain a coarse subdivision of the analysis
domain with a small number of isoparametric elements. If second- or third-degree elements
are used, the fit of these to quite complex boundaries is reasonable, as shown in Fig. 5.19(a)
where four parabolic elements specify a sectorial region. This number of elements would
be too small for analysis purposes but a simple subdivision into finer elements can be
done automatically by, say, assigning new positions for the nodes at the mid-points of the
curvilinear coordinates and thus deriving a larger number of similar elements, as shown in
Fig. 5.19(b). Indeed, automatic subdivision could be carried out further to generate a field
of triangular elements. The process thus allows us, with a small amount of original input
data, to derive a finite element mesh of any refinement desirable. In reference 25 this type
of mesh generation is developed for two- and three-dimensional solids and surfaces and is
reasonably efficient. However, elements of predetermined size and/or gradation cannot be
easily generated.

The main drawback of the mapping and generation suggested is the fact that the originally
circular boundaries in Fig. 5.19(a) are approximated by simple parabolas and a geometric
error can be developed there. To overcome this difficulty another form of mapping, origi-
nally developed for the representation of complex motor-car body shapes, can be adopted
for this purpose.26 In this mapping blending functions interpolate the unknown u in such
a way as to satisfy exactly its variations along the edges of a square ξ , η domain. If the
coordinates x and y are used in a parametric expression of the type given in Eq. (5.1),
then any complex shape can be mapped by a single element. In reference 26 the region
of Fig. 5.19 is in fact so mapped and a mesh subdivision obtained directly without any
geometric error on the boundary.

The blending processes are of considerable importance and have been used to construct
some interesting element families27 (which in fact include the standard serendipity elements
as a subclass). To explain the process we shall show how a function with prescribed
variations along the boundaries can be interpolated.

Consider a region −1 ≤ ξ, η ≤ 1, shown in Fig. 5.20, on the edges of which an arbitrary
function φ is specified [i.e., φ(−1, η), φ(1, η), φ(ξ,−1), φ(ξ, 1) are given]. The problem
presented is that of interpolating a function φ(ξ, η) so that a smooth surface reproducing
precisely the boundary values is obtained. Writing

N1(ξ) = 1
2 (1 − ξ) N2(ξ) = 1

2 (1 + ξ)

N1(η) = 1
2 (1 − η) N2(η) = 1

2 (1 + η)
(5.53)

for our usual one-dimensional linear interpolating functions, we note that

Pηφ ≡ N1(η)φ(ξ,−1)+N2(η)φ(ξ, 1) (5.54)

interpolates linearly between the specified functions in the η direction, as shown in
Fig. 5.20(b). Similarly,

Pξφ ≡ N1(ξ)φ(η,−1)+N2(ξ)φ(η, 1) (5.55)

interpolates linearly in the ξ direction [Fig. 5.20(c)]. Constructing a third function which
is a standard bilinear interpolation of the kind we have already encountered [Fig. 5.20(d)],
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(a)

(b)

(c)

Fig. 5.19 Automatic mesh generation by quadratic isoparametric elements. (a) Specified mesh points. (b)
Automatic subdivision into a small number of isoparametric elements. (c) Automatic subdivision into linear
triangles.

i.e.,

PξPηφ = N1(ξ)N1(η)φ(−1,−1)+N1(ξ)N2(η)φ(−1, 1)

+N2(ξ)N1(η)φ(1,−1)+N2(ξ)N2(η)φ(1, 1)
(5.56)

we note by inspection that

φ(ξ, η) = Pηφ + Pξφ − PξPηφ (5.57)

is a smooth surface interpolating exactly the boundary functions.
Extension to functions with higher order blending is almost evident, and immediately

the method of mapping the quadrilateral region −1 ≤ ξ , η ≤ 1 to any arbitrary shape is
obvious.

Though the above mesh generation method derives from mapping and indeed has been
widely applied in two and three dimensions, we shall see in the chapter devoted to adaptivity
(Chapter 14) that the optimal solution or specification of mesh density or size should guide
the mesh generation. In Chapter 8 we will discuss in much more detail how meshes with
prescribed density can be generated.

5.14 Infinite domains and infinite elements

5.14.1 Introduction

In many problems of engineering and physics infinite or semi-infinite domains exist. A typ-
ical example from structural mechanics may, for instance, be that of three-dimensional (or
axisymmetric) excavation, illustrated in Fig. 5.21. Here the problem is one of determining
the deformations in a semi-infinite half-space due to the removal of loads with the specifi-
cation of zero displacements at infinity. Similar problems abound in electromagnetics and
fluid mechanics but the situation illustrated is typical. The question arises as to how such
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Fig. 5.20 Stages of construction of a blending interpolation (a), (b), (c), and (d).

problems can be dealt with by a method of approximation in which elements of decreasing
size are used in the modelling process. The first intuitive answer is the one illustrated in
Fig. 5.21(a) where the infinite boundary condition is specified at a finite boundary placed
at a large distance from the object. This, however, begs the question of what is a ‘large dis-
tance’ and obviously substantial errors may arise if this boundary is not placed far enough
away. On the other hand, pushing this out excessively far necessitates the introduction of
a large number of elements to model regions of relatively little interest to the analyst.

To overcome such ‘infinite’ difficulties many methods have been proposed. In some a
sequence of nesting grids is used and a recurrence relation derived.28, 29 In others a boundary-
type exact solution is used and coupled to the finite element domain.30, 31 However, with-
out doubt, the most effective and efficient treatment is the use of ‘infinite elements’32–35
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(a)
Conventional

treatment

(b)
Solution using

infinite elements

u = 0
Imposed at an
arbitrary boundary

u = 0 at r = �

r

‘Infinite’ element
with two nodes at � 

Fig. 5.21 A semi-infinite domain. Deformations of a foundation due to removal of load following an excavation.
(a) Conventional treatment and (b) use of infinite elements.

pioneered originally by Bettess.36 In this process the conventional, finite elements are cou-
pled to elements of the type shown in Fig. 5.21(b) which model in a reasonable manner the
material stretching to infinity.

The shape of such two-dimensional elements and their treatment is best accomplished
by mapping34–36 these onto a finite square (or a finite line in one dimension or cube in three
dimensions). However, it is essential that the sequence of trial functions introduced in the
mapped domain be such that it is complete and capable of modelling the true behaviour
as the radial distance r increases. Here it would be advantageous if the mapped shape
functions could approximate a sequence of the decaying form

C1

r
+ C2

r2
+ C3

r3
+ · · · (5.58)

whereCa are arbitrary constants and r is the radial distance from the ‘focus’of the problem.
In the next subsection we introduce a mapping function capable of doing just this.

5.14.2 The mapping function

Figure 5.22 illustrates the principles for generation of the derived mapping function.
We shall start with a one-dimensional mapping along a line CPQ coinciding with the x
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direction. Consider the following function:

x = − ξ

1 − ξ
xC +

(
1 + ξ

1 − ξ

)
xQ = N̄CxC + N̄QxQ (5.59a)

and we immediately observe that

ξ = −1 corresponds to x = xQ + xC

2
≡ xP

ξ = 0 corresponds to x = xQ

ξ = 1 corresponds to x = ∞
where xP is a point midway between Q and C.

Alternatively the above mapping could be written directly in terms of the Q and P coor-
dinates by simple elimination of xC. This gives, using our previous notation:

x = NQxQ +NPxP

=
(

1 + 2ξ

1 − ξ

)
xQ − 2ξ

1 − ξ
xP

(5.59b)

Both forms give a mapping that is independent of the origin of the x coordinate as

NQ +NP = 1 = N̄C + N̄Q (5.60)

The significance of the point C is, however, of great importance. It represents the centre
from which the ‘disturbance’ originates and, as we shall now show, allows the expansion
of the form of Eq. (5.58) to be achieved on the assumption that r is measured from C. Thus

r = x − xC (5.61)

If, for instance, the unknown function u is approximated by a polynomial function using,
say, hierarchical shape functions and giving

u = α0 + α1ξ + α2ξ
2 + α3ξ

3 + · · · (5.62)

we can easily solve Eqs (5.59a) for ξ , obtaining

ξ = 1 − xQ − xC

x − xC
= 1 − xQ − xC

r
(5.63)

Substitution into Eq. (5.62) shows that a series of the form given by Eq. (5.58) is obtained
with the linear shape function in ξ corresponding to 1/r terms, quadratic to 1/r2, etc.

In one dimension the objectives specified have thus been achieved and the element
will yield convergence as the degree of the polynomial expansion, p, increases. Now a
generalization to two or three dimensions is necessary. It is easy to see that this can be
achieved by simple products of the one-dimensional infinite mapping with a ‘standard’ type
of shape function in η (and ζ ) directions in the manner indicated in Fig. 5.22.

First we generalize the interpolation of Eqs (5.59a) and (5.59b) for any straight line in
x, y, z space and write (for such a line as C1P1Q1 in Fig. 5.22)

x = − ξ

1 − ξ
xC1 +

(
1 + ξ

1 − ξ

)
xQ1

y = − ξ

1 − ξ
yC1 +

(
1 + ξ

1 − ξ

)
yQ1

z = − ξ

1 − ξ
zC1 +

(
1 + ξ

1 − ξ

)
zQ1 (in three dimensions)

(5.64)
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Fig. 5.22 Infinite line and element map. Linear η interpolation.

Second we complete the interpolation and map the whole ξη(ζ ) domain by adding a
‘standard’ interpolation in the η(ζ ) directions. Thus for the linear interpolation shown we
can write for elements PP1QQ1RR1 of Fig. 5.22, as

x = N1(η)

[
− ξ

1 − ξ
xC +

(
1 + ξ

1 − ξ

)
xQ

]

+N0(η)

(
− ξ

1 − ξ
xC1 +

(
1 + ξ

1 − ξ

)
xQ1

)
, etc.

(5.65)

with
N1(η) = 1

2
(1 + η) N0(η) = 1

2
(1 − η)

and map the points as shown.
In a similar manner we could use quadratic interpolations and map an element as shown

in Fig. 5.23 by using quadratic functions in η.
Thus it is an easy matter to create infinite elements and join these to a standard element

mesh as shown in Fig. 5.21(b). In the generation of such element properties only the
transformation jacobian matrix differs from standard forms, hence only this has to be
altered in conventional programs. Moreover, integration is again over the usual ‘parent’
element.

The ‘origin’ or ‘pole’ of the coordinates C can be fixed arbitrarily for each radial line, as
shown in Fig. 5.22. This will be done by taking account of the knowledge of the physical
solution expected.

In Fig. 5.24 we show a solution of the Boussinesq problem (a point load on an elastic
half-space). Here results of using a fixed displacement or infinite elements are compared
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Fig. 5.23 Infinite element map. Quadratic η interpolation.

and the big changes in the solution noted. In this example the pole of each element was
taken at the load point for obvious reasons.35

Figure 5.25 shows how similar infinite elements (of the linear kind) can give excellent
results, even when combined with very few standard elements. In this example where a
solution of the Laplace equation is used (see Chapter 3) for an irrotational fluid flow, the
poles of the infinite elements are chosen at arbitrary points of the aerofoil centre-line.

In concluding this section it should be remarked that the use of infinite elements (as
indeed of any other finite elements) must be tempered by background analytical knowledge
and ‘miracles’ should not be expected. Thus the user should not expect, for instance, such
excellent results as those shown in Fig. 5.24 for the displacement of a plane elasticity
problem. It is ‘well known’ that in this case the displacements under any load which is not
self-equilibrated will be infinite everywhere and the numbers obtained from the computation
will not be, whereas for the three-dimensional or axisymmetric case it is infinite only at a
point load.

Further use of infinite elements is made in the context of the solution of wave problems
in fluids in reference 37.
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Fig. 5.24 A point load on an elastic half-space (Boussinesq problem). Standard linear elements and infinite
line elements (E = 1, ν = 0.1, p = 1).

5.15 Singular elements by mapping – use in fracture
mechanics, etc.

In the study of fracture mechanics interest is often focused on the singularity point where
quantities such as stress become (mathematically, but not physically) infinite. Near such
singularities normal, polynomial-based, finite element approximations perform badly and
attempts have frequently been made here to include special functions within an element
which can model the analytically known singularity. References 38–53 give an extensive
literature survey of the problem and finite element solution techniques. An alternative to
the introduction of special functions within an element – which frequently poses problems
of enforcing continuity requirements with adjacent, standard, elements – lies in the use of
special mapping techniques.

An element of this kind, shown in Fig. 5.26(a), was introduced almost simultaneously by
Henshell and Shaw49 and Barsoum50, 51 for quadrilaterals by a simple shift of the mid-side
node to the quarter point in quadratic, isoparametric elements.

It can now be shown (and we leave this exercise to the curious reader) that along the
element edges the derivatives ∂u/∂x (or strains) vary as 1/

√
r where r is the distance from
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Fig. 5.25 Irrotational flow around NACA 0018 wing section.31 (a) Mesh of bilinear isoparametric and infinite
elements. (b) Computed ◦ and analytical — results for velocity parallel to surface.

the corner node at which the singularity develops. Although good results are achievable
with such elements the singularity is, in fact, not well modelled on lines other than element
edges. A development suggested by Hibbitt52 achieves a better result by using triangular
second order elements for this purpose [Fig. 5.26(b)].

Indeed, the use of distorted or degenerate isoparametric elements is not confined to elastic
singularities. Rice43 shows that in the case of plasticity a shear strain singularity of 1/r
type develops and Levy et al.54 use an isoparametric, linear quadrilateral to generate such
a singularity by the simple device of coalescing two nodes but treating these displacements
independently. A variant of this is developed by Rice and Tracey.39

The elements just described are simple to implement without any changes in a standard
finite element program. However, in Chapter 15 we introduce a method whereby any
singularity (or other function) can be modelled directly. We believe the methods to be
described there supersede the above described techniques.

5.16 Computational advantage of numerically
integrated finite elements

One considerable gain that is possible in numerically integrated finite elements is the ver-
satility that can be achieved in a single computer program.55 It will be observed that for a



178 Mapped elements and numerical integration

(a) (b)

(c)

a

1
4 a

1
4 a

a

Fig. 5.26 Singular elements from degenerate isoparametric elements (a), (b), and (c).

given class of problems the general matrices are always of the same form [see the example
of Eq. (5.7)] in terms of the shape function and its derivatives.

To proceed to evaluation of the element properties it is necessary first to specify the
shape function and its derivatives and, second, to specify the order of integration. The
computation of element properties is thus composed of three distinct parts as shown in
Fig. 5.27. For a given class of problems it is only necessary to change the prescription of
the shape functions to achieve a variety of possible elements. Conversely, the same shape
function routines can be used in many different classes of problem.

Use of different elements, testing the efficiency of a new element in a given context,
or extension of programs to deal with new situations can thus be readily achieved, and
considerable algebra avoided (with its inherent possibilities of mistakes). The computer is
thus placed in the position it deserves, i.e., of being the obedient slave capable of saving
routine work.

The greatest practical advantage of the use of universal shape function routines is that
they can be checked decisively for errors by a simple program with the patch test playing
the crucial role (viz. Chapter 9).

The incorporation of simple, exactly integrable, elements in such a system is, incidentally,
not penalized as the time of exact and numerical integration in many cases is almost identical.

5.17 Problems

5.1 A quadratic one-dimensional element is shown in Fig. 5.28 in parent form and in the
mapped configuration. Let a + b = h the total length of the mapped element.
(a) Determine the shape functions Na(ξ) for the three nodes.
(b) Plot ξ vs x for values of a ranging from 0.2h to 0.8h in increments of 0.1h.
(c) Plot Na vs x for the range of a given in part (b).
(d) Plot dNa/dx vs x for the range of a given in part (b).
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Fig. 5.28 Quadratic element for Problem 5.1.

5.2 Consider the one-dimensional problem for 0 ≤ x ≤ 1 which is defined by the weak
form

∫ 1

0

[
dδu

dx

du

dx
− δu q

]
dx − δu σ

∣∣∣∣
x=1

= 0 with u(0) = 0

with q = σ = 1.

(a) Deduce the Euler differential equation and boundary conditions for the problem.
(b) Construct an exact solution to the differential equation.
(c) Solve the weak form using a single quadratic order element with nodes placed at

x = 0, 5/16 and 1 and shape functions Na defined by:
i. Lagrange interpolation in x directly.
ii. Isoparametric interpolation for Na(ξ) with x = Na(ξ)x̃a .
Evaluate all integrals using two-point gaussian quadrature.

(d) Plot u and du/dx for the two solutions. Comment on differences in quality of the
two solutions.

5.3 It is proposed to create transition elements for use with 4-node quadrilateral element
meshes as shown in Fig. 5.29.
(a) Devise the shape functions for the transition element labelled A. The shape func-

tions must maintain compatibility along all boundaries. (Hint: The element can be
a composite form combining more than one 4-node element.)

(b) Devise the shape functions for the transition element labelled B.
(c) On a sketch show the location of quadrature points necessary to integrate each

element form.
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A

B

Fig. 5.29 Transition elements for use with 4-node quadrilaterals.

(d) As an alternative to transition elements, 4-node elements may be used for all el-
ements and constraints imposed to maintain compatibility. For the mesh shown
in the figure, number all nodes and write the constraint equations necessary to
maintain compatibility. The interior node of element B is not needed and can be
ignored.

5.4 Determine the hierarchical interpolation functions in ξ , η coordinates for the 16-node
cubic order quadrilateral shown in Fig. 5.30(a). Express your hierarchic shape functions
in a form such that interpolation is given by

f (ξ, η) =
4∑
a=1

Na(ξ, η)fa +
12∑
a=5

Na(ξ, η)�fa +
16∑
a=13

Na(ξ, η)��fa

5.5 Determine the hierarchical interpolation functions in L1, L2, L3 area coordinates for
the 10-node cubic order triangle shown in Fig. 5.30(b). Express your hierarchic shape
functions in a form such that interpolation is given by

f (L1, L2, L3) =
3∑
a=1

Na(L1, L2, L3)fa +
8∑
a=5

Na(L1, L2, L3)�fa

+
12∑
a=11

Na(L1, L2, L3)�fa +N13(L1, L2, L3)��f13

5.6 Using the shape functions developed in Problem 5.4, determine the modified shape
functions to degenerate the cubic 16-node quadrilateral into the cubic 10-node tri-
angular element using numbering as shown in Fig. 5.30. The final element must be
completely consistent with the shape functions developed in Problem 5.5.

5.7 Degenerate an 8-node hexahedral element to form a pyramid form with a rectangular
base. Write the resulting shape functions for the remaining 5 nodes.

5.8 For the triangular element shown in Fig. 5.31 show that the global coordinates may
be expressed in local coordinates as

x =
6∑
a=1

Na(Lb) x̃a = 12L2 + 18L3
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5.9 For the triangular element shown in Fig. 5.31 compute the integrals
∫
�
N2N3 d� and∫

�
N2N4 d� using:

(a) Eq. (4.31) and
(b) an appropriate numerical integration using Table 5.3.

5.10 For the triangular element shown in Fig. 5.31 compute the integrals
∫
�
Na d�; a =

1, 2, · · · , 6 using:
(a) Eq. (4.31) and
(b) an appropriate numerical integration using Table 5.3.

5.11 The 4-node quadrilateral element shown in Fig. 5.32 is used in the solution of a
problem in which the dependent variable is a scalar, u.
(a) Write the expression for an isoparametric mapping of coordinates in the element.
(b) Determine the location of the natural coordinates ξ and ηwhich define the centroid

of the element.
(c) Compute the expression for the jacobian transformation J of the element. Evaluate

the jacobian at the centroid.
(d) Compute the derivatives of the shape function N3 at the centroid.

5.12 A triangular element is formed by degenerating a 4-node quadrilateral element as
shown in Fig. 5.33. If node 1 is located at (x, y) = (10, 8) and the sides are a = 20
and b = 30:
(a) Write the expressions for x and y in terms of ξ and η.
(b) Compute the jacobian matrix J(ξ, η) for the element.
(c) Compute the jacobian J (ξ, η).
(d) For a one-point quadrature formula given by

I =
∫ 1

−1

∫ 1

−1
f (ξ, η) dξ dη = f (ξi, ηi)Wi

determine the values ofWi , ξi and ηi which exactly integrate the jacobian J (and
thus also any integral which is a constant times the jacobian).

(e) Is this the same point in the element as that using triangular coordinates La and
the one-point formula from Table 5.3? If not, why?

1 2

34

5 6

(a) 16-node quadrilateral (b) 10-node triangle

1 25 6
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Fig. 5.30 Degeneration of cubic triangle for Problem 5.5.
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Fig. 5.32 Quadrilateral for Problem 5.11.

5.13 In some instances it is desirable to perform numerical integration in which quadrature
points are located at the end points as well as at interior points. One such formula
is the Newton–Cotes type shown in Fig. 5.16(a); however, a more accurate formula
(known as Gauss–Lobatto quadrature) may be developed as

∫ 1

−1
f (ξ) dξ = [f (−1)+ f (1)]W0 +

n∑
i=1

f (ξi)Wi

Determine the location of the points ξi and the value of the weightsWi which exactly
integrate the highest polynomial of f possible. Consider:
(a) The three-point formula (n = 1).
(b) The four-point formula (n = 2).

5.14 Write the blending function mapping for a two-dimensional quadrilateral region which
has one circular edge and three straight linear edges. Make a clear sketch of the region
defined by the function and a 3 × 3 division into 4-node quadrilateral elements.
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Fig. 5.33 Degenerate triangle for Problem 5.12.

5.15 Consider a 6-node triangular element with straight edges in which two of the mid-
side nodes are placed at the quarter point. Show that the interpolation along the edge
produces a derivative which varies as 1/

√
r where r is the distance measured from

the vertex.
5.16 Compute the x and y derivatives for the shape function of nodes 1, 7 and 10 of the

quadratic triangular prism shown in Fig. 4.20(b).
5.17 Program development project: Extend the program system started in Problem 2.17 to

permit mesh generation using as input a 4-node isoparametric block and mapping as
described in Sec. 5.13. The input data should be the coordinates of the block vertices
and the number of subdivisions in each direction.

Include as an option generation of coordinates in r, θ coordinates that are then
transformed to x, y cartesian form.

(Hint: Once coordinates for all node points are specified, MATLAB can generate
a node connection list for 3-node triangles using DELAUNAY.† A plot of the mesh
may be produced using TRIMESH.)

Use your program to generate a mesh for the rectangular beam described in Example
2.3 and the curved beam described in Example 2.4. Note the random orientation
of diagonals which is associated with degeneracy in the Delaunay algorithm (viz.
Chap. 8).

5.18 Program development project: Extend the mesh generation scheme developed in
Problem 5.17 to permit specification of the block as a blending function. Only allow
two cases: (i) Lagrange interpolation which is linear or quadratic; (ii) circular arcs
with specified radius and end points.

Test your program for the beam problems described in Examples 2.3 and 2.4.

† In Chapter 8 we discuss mesh generation and some of the difficulties encountered with the Delaunay method.
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6

Problems in linear elasticity

6.1 Introduction

In this and the next chapter we deal with the set of problems in elasticity and fields which
are common in various engineering applications and will serve well to introduce practical
examples of application of the various element forms discussed in the previous chapters.

Specifically, in this chapter we again consider the problem of stress analysis for linear
elastic solids which was introduced in Chapter 2 and briefly discussed in Sec. 3.4.

The simplest two-dimensional continuum element is a triangle. In three dimensions its
equivalent is a tetrahedron, an element with four nodal corners.†

Two-dimensional elastic problems were the first successful examples of the application
of the finite element method.1, 2 Indeed, we have already used this situation to illustrate the
basis of the finite element formulation in Chapter 2 where the general relationships were
derived.

The first suggestions for the use of the simple tetrahedral element appear to be those of
Gallagher et al.3 and Melosh.4 Argyris5, 6 elaborated further on the theme and Rashid and
Rockenhauser7 were the first to apply three-dimensional analysis to realistic problems.

It is immediately obvious, however, that the number of simple tetrahedral elements which
has to be used to achieve a given degree of accuracy has to be very large and this will result
in very large numbers of simultaneous equations in practical problems. This leads to large
compute times when direct solution schemes based on Gauss elimination are used. Thus,
in recent times there is increased interest in use of iterative solution methods.

To realize the order of magnitude of the problems presented let us assume that the
accuracy of a triangle in two-dimensional analysis is comparable to that of a tetrahedron
in three dimensions. If an adequate stress analysis of a square, two-dimensional region
requires a mesh of some 20 × 20 = 400 nodes, the total number of simultaneous equations
is around 800 given two displacement variables at a node (this is a fairly realistic figure).
The bandwidth of the matrix involves 20 nodes, i.e., some 40 variables.

An equivalent three-dimensional region is that of a cube with 20×20×20 = 8000 nodes.
The total number of simultaneous equations is now some 24 000 as three displacement
variables have to be specified. Further, the bandwidth now involves an interconnection of
some 20 × 20 = 400 nodes or 1200 variables.

Given that with direct solution techniques the computation effort is roughly proportional
to the number of equations and to the square of the bandwidth, the magnitude of the problems
can be appreciated. It is not surprising therefore that efforts to improve accuracy by use

†The simplest polygonal shape which permits the approximation of the domain is known as the simplex. Thus a
triangular and tetrahedral element constitutes the simplex forms in two and three dimensions, respectively.
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Fig. 6.1 Two-dimensional analysis types for plane stress, plane strain and axisymmetry.

of higher order elements was strongest in the area of three-dimensional analysis.8–12 The
development and practical application of such elements will be described in this chapter.

We shall deal with elasticity problems for general three-dimensional applications, as well
as its simplification to some special two-dimensional situations. What we mean by two
dimensions is that the total field should be capable of being defined by two components of
displacement in the manner similar to that illustrated in Chapter 2.

The two-dimensional problems we consider are of three types:

(a) The plane stress case dealt with in Chapter 2 and shown in Fig. 6.1(a). In this problem
the only non-zero stresses are those in the plane of the problem and normal to the lamina
we have no stresses.

(b) The second case where again two displacement components exist is that of plane strain
in which all straining normal to the plane considered is prevented. Such a situation
may arise in a long prism which is being loaded in the manner shown in Fig. 6.1(b).

(c) The third and final case of two-dimensional analysis is that in which the situation is
axisymmetric. Here the plane considered is one at constant θ in a cylindrical coordinate
system r, z, θ [Fig. 6.1(c)] and again two displacements define the state of strain.

We assume the reader is familiar with the theory of linear elasticity; however, for com-
pleteness we will summarize the basic equations for the different problem classes to be
considered. For a more general discussion the reader is referred to standard references on
the subject (e.g., see references 13–18).

6.2 Governing equations

Although in some situations the use of indicial notation is advantageous as discussed in
Appendix B, for simplicity we choose to continue here the matrix form of definitions.

6.2.1 Displacement function

For the three-dimensional problem the displacement field is given by
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u =
⎧⎨
⎩
u(x, y, z)

v(x, y, z)

w(x, y, z)

⎫⎬
⎭ (6.1)

where positions are denoted by the cartesian coordinates x, y, z.
For the two-dimensional cases considered the displacement field is given by

u =
{
u(x, y)

v(x, y)

}
(6.2)

for plane stress and plane strain problems; and by

u =
{
u(r, z)

v(r, z)

}
(6.3)

for problems with axisymmetric deformation. The only difference in the latter two is the
coordinates used: x, y for cartesian coordinates and r, z for cylindrical coordinates. One
may notice that in plane stress problems, changes of thickness occur; however, no explicit
displacement assumption is given and the result will be included directly within the strain
approximation.

6.2.2 Strain matrix

The strains for a problem undergoing small deformations are computed from the displace-
ments. The form of the strain was given in Eq. (2.13) as

ε = Su (6.4)

where S is a differential operator and u the displacement field. We write the six independent
components of strain in ε where

ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y

∂

∂z
0

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩
u

v

w

⎫⎬
⎭ (6.5)

Note that in matrix form shear strain components are twice that given in tensor form in
Appendix B (e.g., γxy = 2 εxy).
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Fig. 6.2 Strains and stress involved in the analysis of axisymmetric solids.

For convenience in considering all three classes of two-dimensional problems in a unified
manner, we include four components of strain in ε and write them as

ε =

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

0 0

∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
u

v

}
+

⎧⎪⎪⎨
⎪⎪⎩

0
0
εz
0

⎫⎪⎪⎬
⎪⎪⎭

= Su + εz (6.6)

for plane problems (where εz is zero for plane strain but not for plane stress) and

ε =

⎧⎪⎪⎨
⎪⎪⎩

εr
εz
εθ
γrz

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂r
0

0
∂

∂z

1

r
0

∂

∂z

∂

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
u

v

}
= Su (6.7)

for the axisymmetric case (see Fig. 6.2).
The three problem types differ only by the presence of εz in the plane stress problem and

the εθ component in the S operator of the axisymmetric case.

6.2.3 Equilibrium equations

The equilibrium equations for the three-dimensional behaviour of a solid were presented
in Sec. 3.4. They may be written in a matrix form as

STσ + b = 0 (6.8)
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where S is the same differential operator as that given for strains in (6.5); σ is the array of
stresses which are ordered as

σ = [σx , σy , σz , τxy , τyz , τzx
]T

(6.9)

and b is the vector of body forces given as

b = [bx , by , bz
]T

(6.10)

In two-dimensional plane problems we omit τyz, τzx and bz. For axisymmetric problems
the stress is replaced by

σ = [σr , σz , σθ , τrz
]T

(6.11)

and body force by

b = [br , bz
]T

(6.12)

6.2.4 Boundary conditions

Boundary conditions must be specified for each point on the surface of the solid. Here we
consider two types of boundary conditions: (a) displacement boundary conditions and (b)
traction boundary conditions. Thus we assume that the boundary may be divided into two
parts, �u for the displacement conditions and �t for the traction conditions.

Displacement boundary conditions are specified at each point of the boundary �u as

u = ū (6.13)

where ū are known values.
Traction boundary conditions are specified for each point of the boundary �t and are

given in terms of stresses by

t = GTσ = t̄ (6.14)

in which GT is the matrix

GT =
⎡
⎣nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤
⎦ (6.15)

where nx , ny , nz are the direction cosines for the outward pointing normal to the boundary
�t . It should be noticed that the matrices G and S have identical non-zero structure. In
two dimensions G reduces to

GT =
[
nx 0 0 ny
0 ny 0 nx

]
(6.16)

with nx , ny the components of an outward pointing unit normal vector of the boundary. In
axisymmetry nx = nr and ny = nz.
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Fig. 6.3 Repeatability segments and analysis domain (shaded).

Boundary conditions on inclined coordinates
Each of the two boundary condition types are vectors and, at any point on the boundary, it
is possible to specify some components by displacement conditions and others by traction
ones. It is also possible that the conditions are given with respect to coordinates x ′, y ′, z′

which are oriented with respect to the global axes x, y, z by

x′ = Tx (6.17)

where T is an orthogonal matrix of direction cosines given by

T =
⎡
⎣cos(x ′, x) cos(x ′, y) cos(x ′, z)

cos(y ′, x) cos(y ′, y) cos(y ′, z)
cos(z′, x) cos(z′, y) cos(z′, z)

⎤
⎦ =

⎡
⎣t11 t12 t13

t21 t22 t23

t31 t32 t33

⎤
⎦ (6.18)

in which cos(x ′, x) is the cosine of the angle between the x ′ direction and the x direction.
For two dimensions

cos(x ′, z) = cos(z′, x) = 0

cos(y ′, z) = cos(z′, y) = 0

cos(z′, z) = 1

The displacement and traction vectors transform to the prime system in exactly the same
way as the coordinates; hence, we have

u′ = Tu = ū′

t′ = Tt = TGTσ = t̄′
(6.19)

Symmetry and repeatability
In many problems, the advantage of symmetry in loading and geometry can be considered
when imposing the boundary conditions, thus reducing the whole problem to more man-
ageable proportions. The use of symmetry conditions is so well known to the engineer
and physicist that no statement needs to be made about it explicitly. Less known, however,
appears to be the use of repeatability19 when an identical structure (and) loading is con-
tinuously repeated, as shown in Fig. 6.3 for an infinite blade cascade. Here it is evident
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Fig. 6.4 Repeatable sector in analysis of an impeller.

that a typical segment shown shaded behaves identically to the next one, and thus functions
such as velocities and displacements at corresponding points of AA and BB are simply
identified, i.e.,

uI = uII

Similar repeatability, in radial coordinates, occurs very frequently in problems involving
turbine or pump impellers. Figure 6.4 shows a typical three-dimensional analysis of such
a repeatable segment.

Proper use of symmetry and repeatability can reduce the required compute effort signifi-
cantly. Similar conditions can obviously be imposed to enforce conditions of ‘asymmetry’
also.

Normal pressure loading
When a pressure loading is applied normal to a surface the traction may be specified as

t = p n (6.20)

where p is the magnitude of the traction and n again is the unit outward normal to the
boundary. This is a condition which is often encountered in practical situations in which p
arises from a fluid or gas loading in which tangential components are zero.
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6.2.5 Transformation of stress and strain

The transformation of coordinates to a prime system may also be used to define transfor-
mations for stresses and strains. Expressing the stress in the cartesian tensor form

σ =
⎡
⎣σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎤
⎦ (6.21)

these transformations are given by

σ′ = TσTT (6.22)

In a matrix form, however, we must transform the quantities using the forms identified in
Appendix B. Using this we obtain the relations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx′

σy′

σz′

τx′y′

τy′z′

τz′x′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11t11 t12t12 t13t13 2 t11t12 2 t12t13 2 t13t11

t21t21 t22t22 t23t23 2 t21t22 2 t22t23 2 t23t21

t31t31 t32t32 t33t33 2 t31t32 2 t32t33 2 t33t31

t11t21 t12t22 t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)

t21t31 t22t32 t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)

t31t11 t32t12 t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx

σy

σz

τxy

τyz

τzx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

σ′ = Tσσ
(6.23)

for stresses and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx′

εy′

εz′

γx′y′

γy′z′

γz′x′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t11t11 t12t12 t13t13 t11t12 t12t13 t13t11

t21t21 t22t22 t23t23 t21t22 t22t23 t23t21

t31t31 t32t32 t33t33 t31t32 t32t33 t33t31

2 t11t21 2 t12t22 2 t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)

2 t21t31 2 t22t32 2 t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)

2 t31t11 2 t32t12 2 t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx

εy

εz

γxy

γyz

γzx

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ε′ = Tεε
(6.24)

for strains. The differences between Tσ and Tε occur from the use of the engineering
definition of shearing strain where we have introduced

γxy = 2 εxy, etc.

If the principal material axes are oriented at angle of β with respect to the coordinate
axes of the problem (Fig. 6.5), the two-dimensional representation of Tε is given by

Tε =

⎡
⎢⎢⎣

cos2 β sin2 β 0 sin β cos β
sin2 β cos2 β 0 − sin β cos β

0 0 1 0
−2 sin β cos β 2 sin β cos β 0 cos2 β − sin2 β

⎤
⎥⎥⎦ (6.25)
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Table 6.1 Relations between isotropic elastic parameters

Parameters E, ν K , G λ, µ

E = – 9KG/(3K + 2G) µ(3λ+ 2µ)/(λ+ µ)

ν = – (3K − 2G)/(6K + 2G) λ/(λ+ µ)/2
K = E/(1 − 2ν)/3 – λ+ 2µ/3
G = µ = E/(1 + ν)/2 G µ

λ = νE/(1 + ν)/(1 − 2ν) K − 2G/3 –

6.2.6 Elasticity matrix

The stress–strain equations, also known as constitutive relations, for a linearly elastic
material may be expressed by Eq. (2.16)

σ = D (ε− ε0)+ σ0 (6.26a)

or by

ε = D−1 (σ − σ0)+ ε0 (6.26b)

The D matrix is known as the elasticity matrix of moduli and the D−1 matrix as the elasticity
matrix of compliances.17 Without loss in generality, in the sequel we ignore the ε0 and σ0

terms. After obtaining final results they may be again added by replacing ε andσ by ε−ε0

and σ − σ0, respectively.

Isotropic materials
We write a general expression for isotropic materials in terms of the six stress and strain
terms. We may use any two independent elastic constants for an isotropic material.15, 17

Here we use Young’s modulus of elasticity, E, and Poisson’s ratio, ν. In Table 6.1 we
indicate relationships between E, ν and other parameters frequently encountered in the
literature. Using cartesian coordinates, for example, the expression is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx
σy
σz
τxy
τyz
τzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.27)

Inverting to obtain the appropriate D matrix yields the result

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx
σy
σz
τxy
τyz
τzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= E

d

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν (1 − ν) 0 0 0
0 0 0 (1 − 2ν)/2 0 0
0 0 0 0 (1 − 2ν)/2 0
0 0 0 0 0 (1 − 2ν)/2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.28)
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where d = (1 + ν)(1 − 2ν). The form of d places restrictions on the admissible values of
ν to keep the material parameters positive; thus, we have

−1 < ν < 1
2

The limiting values of the parameters (namely −1 and 1/2) are permitted by rewriting the
material model with Lagrange multipliers replacing the terms which are indefinite. The case
where ν = 1/2 is associated with materials which are incompressible and we shall devote
special attention to this problem in Chapter 11 since it has relevance for many applications
in solid and fluid mechanics. Generally, of course, no material can be incompressible and
we are only interested in the case where ν → 1/2. However, even for this case we will find
that care must be used when developing a finite element form.

For isotropic materials the expression for two-dimensional problems is written in terms
of the four stress and strain terms by omitting the last two rows and columns in (6.27).
Using cartesian coordinates the expression then becomes⎧⎪⎪⎨

⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

= 1

E

⎡
⎢⎢⎣

1 −ν −ν 0
−ν 1 −ν 0
−ν −ν 1 0

0 0 0 2(1 + ν)

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

σx
σy
σz
τxy

⎫⎪⎪⎬
⎪⎪⎭

(6.29)

For the plane stress case we must set σz zero to compute the appropriate D matrix. This
yields the result

εz = − ν

E

(
σx + σy

)
(6.30)

and including this in the inverse of (6.29) we obtain⎧⎪⎪⎨
⎪⎪⎩

σx
σy
σz
τxy

⎫⎪⎪⎬
⎪⎪⎭

= E

(1 − ν2)

⎡
⎢⎢⎣

1 ν 0 0
ν 1 0 0
0 0 0 0
0 0 0 (1 − ν)/2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

(6.31)

We have filled in the third column and row of the D array so that correct stresses are obtained.
Indeed, if we deleted these we would once again get the result given in Chapter 2 and one
may ask why we include the extra terms. The main reason is to permit a single form to be
used for plane stress, plane strain and axisymmetric problems and therefore minimize the
amount of programming needed to implement these in a computer program.

For the plane strain and axisymmetric problems the inverse may be performed directly
from (6.29), as all components of stress can exist. Accordingly, for these two cases we
obtain (again writing for the cartesian coordinate form)⎧⎪⎪⎨

⎪⎪⎩

σx
σy
σz
τxy

⎫⎪⎪⎬
⎪⎪⎭

= E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎣
(1 − ν) ν ν 0
ν (1 − ν) ν 0
ν ν (1 − ν) 0
0 0 0 (1 − 2ν)/2

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭
(6.32)

which is identical to the three-dimensional problem if the last two rows and columns of each
array in (6.28) are omitted. Here we observe that the case where εz is zero is treated merely
by inserting that value when computing stresses; however, σz will always exist unless the
Poisson ratio, ν, is zero.
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Anisotropic materials
We may write a general relationship for anisotropic linearly elastic materials as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σx
σy
σz
τxy
τyz
τzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 D15 D16

D21 D22 D23 D24 D25 D26

D31 D32 D33 D34 D35 D36

D41 D42 D43 D44 D45 D46

D51 D52 D53 D54 D55 D56

D61 D62 D63 D64 D65 D66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.33)

For an elastic material the D matrix must be symmetric and, hence,Dij = Dji . This results
in a possibility of 21 elastic constants for the general problem.16, 20, 21

An important class of anisotropic materials is one for which three planes of symmetry
exist and is called an orthotropic material. Here the principal axes are also in rectangular
cartesian coordinates. For orthotropic materials it is common to define the elastic material
parameters in terms of their Young’s moduli, Poisson ratios and shear moduli.

If we let x ′, y ′ and z′ be the three axes of material symmetry, the elastic strain–stress
relations may be expressed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx ′

εy ′

εz′

γx ′y ′

γy ′z′

γz′x ′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex ′
−νx ′y ′

Ey ′
−νx ′z′

Ez′
0 0 0

−νy ′x ′

Ex ′

1

Ey ′
−νy ′z′

Ex ′
0 0 0

−νz′x ′

Ex ′
−νz′y ′

Ey ′

1

Ez′
0 0 0

0 0 0
1

Gx ′y ′
0 0

0 0 0 0
1

Gy ′z′
0

0 0 0 0 0
1

Gz′x ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx ′

σy ′

σz′

τx ′y ′

τy ′z′

τz′x ′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.34)

where Ex ′ , Ey ′ ,Ez′ are elastic moduli; νx ′y ′ , νx ′z′ , etc. are Poisson ratios; and Gx ′y ′ , Gy ′z′ ,
Gz′x ′ are elastic shear modulus. Again symmetry of the D matrix results in

νi ′j ′

Ej ′
= νj ′i ′

Ei ′
(6.35)

thus reducing the number of independent components for the three-dimensional cases con-
sidered to nine parameters (three direct moduli, three Poisson ratios, and three shear moduli).

The elastic moduli for the D′ matrix are computed by inverting the square matrix appear-
ing in Eq. (6.34).

The inverse may be written as
σ′ = D′ ε′ (6.36)

If the principal material axes are expressed by the directions given in (6.17), it is necessary
to transform Eq. (6.36) to the form (6.26a) before proceeding with an analysis. This is
most easily performed by noting an equality of work given by

σ′Tε′ = σTε

ε′TD′ ε′ = εTD ε
(6.37)
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and using the expressions for transformation given by Eq. (6.24) in Eq. (6.37) gives

D = TT
εD′Tε (6.38)

Such transformation also has been used in a slightly different context in Chapter 1 [viz. Eq.
(1.25)] to transform a stiffness matrix.

For treatment of anisotropic materials in the two-dimensional problems, it is necessary
for the direction normal to the plane of deformation (i.e., the z direction for plane problems
or θ direction for axisymmetric problems) to be a direction of material symmetry. For
this case we may write a general relationship for linearly elastic deformation as (using the
cartesian form) ⎧⎪⎪⎨

⎪⎪⎩

σx
σy
σz
τxy

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

(6.39)

For an elastic material the D matrix must be symmetric and, hence,Dij = Dji . This results
in a possibility of ten elastic constants for the plane or axisymmetric problem.

In order to consider the plane stress case it is again necessary to impose the constraint
σz = 0. If we solve for εz using the third row of (6.39) we have

εz = −[D31 εx +D32 εy +D34 γxy]/D33 (6.40)

which may be substituted into the remaining three equations in (6.39) to give⎧⎪⎪⎨
⎪⎪⎩

σx
σy
σz
τxy

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
D̂11 D̂12 0 D̂14

D̂21 D̂22 0 D̂24

0 0 0 0
D̂41 D̂42 0 D̂44

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

(6.41)

in which
D̂ij = Dij −Di3D

−1
33 D3j (6.42)

are reduced elastic moduli.
For the plane stress and strain problems of an orthotropic material the principal axes

are also in rectangular cartesian coordinates; however, for the axisymmetric problem the
principal axes also must be axisymmetric (i.e., cylindrical orthotropy which is similar to
rings of a tree). For orthotropic materials it is common to define their properties in terms
of their Young’s moduli, Poisson ratios and shear moduli.

If we let x ′, y ′ (or r ′, z′) be the two axes of material symmetry in the plane of deformation,
the elastic strain–stress relations may be expressed by (6.34), after omitting the last two
rows and columns of each array. Accordingly,

⎧⎪⎪⎨
⎪⎪⎩

εx ′

εy ′

εz′

γx ′y ′

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Ex ′
−νx ′y ′

Ey ′
−νx ′z′

Ez′
0

−νy ′x ′

Ex ′

1

Ey ′
−νy ′z′

Ex ′
0

−νz′x ′

Ex ′
−νz′y ′

Ey ′

1

Ez′
0

0 0 0
1

Gx ′y ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

σx ′

σy ′

σz′

τx ′y ′

⎫⎪⎪⎬
⎪⎪⎭

(6.43)
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Fig. 6.5 Coordinate definition for transformation of material axes.

After considering symmetry the number of independent components for the two-dimensional
cases considered reduces to seven parameters (three direct moduli, three Poisson ratios, and
one shear modulus).

The elastic moduli for the D′ matrix are computed by inverting the square matrix appear-
ing in Eq. (6.43). If plane stress is considered, it is necessary to ensure σz′ is zero.

Inserting expression (6.24) into Eq. (6.37) again gives

D = TT
εD′Tε (6.44)

Example 6.1: Anisotropic, stratified, material. With the z axis representing the normal
to the planes of stratification, as shown in Fig. 6.6, we can rewrite (6.43) (again ignoring
the initial strains and stresses for convenience) as

εr = σr

E1
− ν2σz

E2
− ν1σθ

E1

εz = −ν2σr

E1
+ σz

E2
− ν2σθ

E1

εθ = −ν1σr

E1
− ν2σz

E2
+ σθ

E1

γrz = τrz

G

(6.45)

Writing the parameters as

E1

E2
= n; G

E2
= m and d = (1 + ν1)(1 − ν1 − 2nν2

2 )
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z

r

Fig. 6.6 Axisymmetrically stratified material.

we have on solving for the stresses that

D = E2

d

⎡
⎢⎢⎣
n(1 − nν2

2 ), nν2(1 + ν1), n(ν1 + nν2
2 ), 0

nν2(1 + ν1), 1 − ν2
1 , nν2(1 + ν1), 0

n(ν1 + nν2
2 ), nν2(1 + ν1), n(1 − nν2

2 ), 0
0, 0, 0, md

⎤
⎥⎥⎦ (6.46)

Initial strain -- thermal effects
Initial strains may be due to many causes. Shrinkage, crystal growth, or temperature change
will, in general, result in an initial strain vector

ε0 = [εx0 εy0 εz0 γxy0 γyz0 γzx0
]T

(6.47)

The initial strain will usually depend on position which may be included by interpolation
using shape functions.

As an example, consider the effects of change in temperature in an isotropic material.
The initial strain for a temperature change 
T = T − T0 (with T0 a temperature where no
straining is caused) with a linear coefficient of thermal expansion α is given by

ε0 = α 
T m (6.48)

where
m = [1 1 1 0 0 0

]T
(6.49)

For an isotropic material normal strains εx , εy , εz are all equal and no shear strains are
caused by a temperature change.
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Anisotropic materials present no special problems with the coefficients of thermal ex-
pansion varying with direction in the material. For example, in an orthotropic material no
shearing strains are caused for the principal material directions and we may replace (6.48)
by

ε′
0 = 
T

[
αx ′ αy ′ αz′ 0 0 0

]T
(6.50)

It is now again necessary to use the transformation between principal material directions
and those used for coordinates of the analysis using

ε0 = T−1
ε ε′

0 (6.51)

where Tε is given by (6.24). Now, in general, the γxy0, γyz0, γzx0 components are no longer
equal to zero.

6.3 Finite element approximation

The above describes the governing equations for three-dimensional behaviour of solids.
Except for the elastic constitutive equations, all the remaining equations are valid for gen-
eral materials undergoing small deformations. A finite element solution process for the
equations may be established by:

1. Using the virtual work (or weak form), equations for equilibrium given in Sec. 3.4.
2. Introducing an approximation for the displacement field u in terms of shape functions.
3. Computing strains from (6.5).
4. Computing stresses from (6.26a) where for linear elastic behaviour we use one of the

forms given in Sec. 6.2.6 for the D matrix.
5. Performing the integrations over each element (usually by quadrature).
6. Assembling the element contributions to form the global stiffness and load arrays.
7. Imposing the known traction and displacement boundary conditions.
8. Solving the resulting stiffness and load matrices.
9. Reporting desired parts of the solution.

The above steps describe a general solution framework which we shall follow in all
subsequent developments for solutions of problems in solid mechanics. Differences will
occur later in the types of weak forms used and in the expressions for strains and constitutive
equations. Otherwise the steps are standard. To illustrate the process we first consider the
general three-dimensional problem in which the virtual work expression is given by [see
(3.46) in Sec. 3.4] ∫

�

δεTσ d�−
∫
�

δuTb d�−
∫
�

δuTt d� = 0

To simplify the solution process we split the boundary into �u and �t and introduce the
known traction boundary condition. We shall also impose the displacement boundary con-
ditions in the approximations for u and assume the virtual displacement δu vanishes on �u.

For linear elastic behaviour we also may introduce the constitutive equation given by
(6.26a) and thus our virtual work equation simplifies to∫

�

δεT [σ0 + D (ε− ε0)] d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0 (6.52)

with the constraint u = ū on �u.
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e = CO(h2)

Fig. 6.7 Approximation of curved surface by linear element.

In the finite element solution we divide all integrals to be sums over individual elements
and approximate the weak form by

∑
e

∫
�e
δεT [σ0 + D (ε− ε0)] d�−

∑
e

∫
�e
δuTb d�−

∑
e

∫
�et

δuT t̄ d� = 0 (6.53)

where �e and �et denote element domains and parts of boundaries of any element where
tractions are specified, respectively. The ‘approximation’ in this step is associated with
the fact that for curved boundary surfaces the sum of element domains �e is not always
exactly equal to �, nor is the sum of �et equal to �t . This is easily observed for approx-
imations using linear elements as shown in Fig. 6.7. We observe that the error is O(h2)

which is exactly the same as the error in displacement from shape functions using linear
polynomials. Thus, the order of error in our solution is not increased by the boundary
approximation.

Displacement and strain approximation
At this point we can introduce the finite element shape function expressions to define
displacements. Accordingly, we have

u ≈ û =
⎧⎨
⎩
û

v̂

ŵ

⎫⎬
⎭ =

∑
a

Na

⎧⎨
⎩
ũa
ṽa
w̃a

⎫⎬
⎭ =

∑
a

Naũa (6.54)

where ũa, ṽa, w̃a are nodal values of the displacement. Any of the three-dimensional
interpolations given in Chapter 4 may be used to define the shape functions Na . Inserting
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Fig. 6.8 8-node brick element. Local node numbering.

the interpolation into Eq. (6.5) gives

ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γyz
γzx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

≈ ε̂ =
∑
a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x
0 0

0
∂Na

∂y
0

0 0
∂Na

∂z

∂Na

∂y

∂Na

∂x
0

0
∂Na

∂z

∂Na

∂y

∂Na

∂z
0

∂Na

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩
ũa
ṽa
w̃a

⎫⎬
⎭ =

∑
a

Baũa (6.55)

A similar expression may be written for virtual strains.

Example 6.2: Strains for 8-node brick. As an example we consider the 8-node brick
element shown in Fig. 6.8. The shape functions are given by

Na = 1
8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ )

for which the derivatives with respect to ξ , η, ζ are given by
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∂Na

∂ξ
= 1

8
ξa (1 + ηaη)(1 + ζaζ )

∂Na

∂η
= 1

8
ηa (1 + ζaζ )(1 + ξaξ)

∂Na

∂ζ
= 1

8
ζa (1 + ξaξ)(1 + ηaη)

For an 8-node brick element, the jacobian matrix in (5.11) may be expressed as

J = 1

8

8∑
b=1

⎧⎪⎨
⎪⎩
ξb(1 + ηbη)(1 + ζbζ )

ηb(1 + ζbζ )(1 + ξbξ)

ζb(1 + ξbξ)(1 + ηbη)

⎫⎪⎬
⎪⎭
[
xb yb zb

]

The shape function derivatives are now obtained from (5.10) as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Na

∂x

∂Na

∂y

∂Na

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= 1

8
J−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξa(1 + ηaη)(1 + ζaζ )

ηa(1 + ζaζ )(1 + ξaξ)

ζa(1 + ξaξ)(1 + ηaη)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

These may be used directly to define the Ba strain matrix given in Eq. (6.55).

For two-dimensional problems the finite element shape function expressions to define
the displacements are given by

u ≈ û =
{
û

v̂

}
=
∑
a

Na

{
ũa
ṽa

}
=
∑
a

Naũa (6.56)

Inserting the interpolation into Eqs (6.6) and (6.7) gives

ε =

⎧⎪⎪⎨
⎪⎪⎩

εx
εy
εz
γxy

⎫⎪⎪⎬
⎪⎪⎭

≈ ε̂ =
∑
a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂x
0

0
∂Na

∂y

0 0

∂Na

∂y

∂Na

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
ũa
ṽa

}
+

⎧⎪⎪⎨
⎪⎪⎩

0
0
εz
0

⎫⎪⎪⎬
⎪⎪⎭

=
∑
a

Baũa + εz (6.57)

for the plane problems and

ε =

⎧⎪⎪⎨
⎪⎪⎩

εr
εz
εθ
γrz

⎫⎪⎪⎬
⎪⎪⎭

=
∑
a

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Na

∂r
0

0
∂Na

∂z

Na

r
0

∂Na

∂z

∂Na

∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
ũa
ṽa

}
=
∑
a

Baũa (6.58)
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for the axisymmetric problem, respectively. In the form for axisymmetry the radius is
computed from the parametric form given by Eq. (5.2). Accordingly, for this case we have

r =
∑
b

N ′
b rb (6.59)

where rb are locations of the node points defining the N ′
b functions.

Stiffness and load matrices
Introducing the above approximations into the weak form (6.53) results in

∑
e

δũT
a

[ ∫
�e

BT
a [σ0 + D (Bbũb − ε0)] d�−

∫
�e
Nab d�−

∫
�et

Na t̄ d�

]
= 0 (6.60)

which after summing the element integrals and noting that δũa is arbitrary gives the system
of linear equations

Kab ũb + fa = 0 (6.61)

where

Kab =
∑
e

∫
�e

BT
aDBb d�

fa =
∑
e

∫
�e

[
BT
a (σ0 − Dε0)−Nab

]
d�−

∑
e

∫
�et

Na t̄ d�
(6.62)

The integration over each element domain may be computed by quadrature in which

∫
�e
(·) d� =

∫
�

(·) J d� ≈
L3∑
l=1

(·)l Jl Wl

∫
�et

(·) d� =
∫

�

(·) j d� ≈
L2∑
l=1

(·)l jl Wl

(6.63)

where J = det J is the determinant of the jacobian transformation between the global and
local volume coordinate frames, j = det j is the determinant of the jacobian transformation
between the global and local surface coordinate frames, and subscript l is associated with
each quadrature point with weight Wl . The points and weights are taken from the tables
given in Chapter 5.

Example 6.3: Quadrature for 8-node brick element. For an 8-node brick element it is
sufficient to perform volume integrals using a 2×2×2 formula. Thus L3 in (6.63) is equal
to 8 and the points and weights may be given as†

l 1 2 3 4 5 6 7 8
ξl −c c −c c −c c −c c
ηl −c −c c c −c −c c c
ζl −c −c −c −c c c c c
Wl 1 1 1 1 1 1 1 1

where c = 1/
√

3.

†Note that ordering is unimportant and any other permutation for l is permissible.
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Similarly for the surface integrals a 2 × 2 formula may be used and give L2 equal 4 with
points and weights ordered as

l 1 2 3 4
ξl −c c −c c
ηl −c −c c c
Wl 1 1 1 1

in which again c = 1/
√

3.
These formulae always have error equal to or less than that in the approximation of domain

or in the shape functions. Hence, it is never necessary to use higher order quadrature than
the above.22

A similar form holds for all the two-dimensional cases; however, the volume and surface
elements are different for the plane and axisymmetric problems. For plane stress

d� = t dx dy and d� = t ds (6.64)

where t is the thickness of the slab and may vary over the two-dimensional domain; for
plane strain

d� = dx dy and d� = ds (6.65)

where a unit thickness is considered; and for axisymmetry†
d� = 2πr dr dz and d� = 2πr ds (6.66)

In the above
ds = (dx2 + dy2

)1/2
(6.67)

for the plane problem with a similar expression for axisymmetry.
The finite element arrays may now be computed from (6.60) for quadrilateral-shaped

elements of lagrangian or serendipity type; the stiffness and load matrices defined in (6.62)
are computed using gaussian quadrature as

Ke
ab =

∫ 1

−1

∫ 1

−1
BT
a (ξ, η)DBb(ξ, η) J (ξ, η) dξ dη

≈
∑
l

BT
a (ξl, ηl)DBb(ξl, ηl) J (ξl, ηl)Wl

(6.68)

and

f ea =
∫ 1

−1

∫ 1

−1

[
BT
a (ξ, η) (σ0 − Dε0)−Na(ξ, η)b

]
J (ξ, η) dξ dη

−
∫ 1

−1
Na(ξ) t̄ j (ξ) dξ

≈
∑
l

[
BT
a (ξl, ηl) (σ0 − Dε0)−Na(ξl, ηl)b

]
J (ξl, ηl)Wl

−
∑
l

Na(ξl) t̄(ξl) j (ξl) wl

(6.69)

†Some programs omit the 2π in the definition of d� and d� and compute matrices for one radian of arc.
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in which

J = t det J; j = t

[(∂x
∂ξ

)2
+
(∂y
∂ξ

)2
]1/2

; Plane stress

J = det J; j =
[(∂x
∂ξ

)2
+
(∂y
∂ξ

)2
]1/2

; Plane strain (6.70)

J = 2πr det J; j = 2πr

[( ∂r
∂ξ

)2
+
( ∂z
∂ξ

)2
]1/2

; Axisymmetric

for the domain and boundary. The quadrature points are denoted as ξl and ηl and weights
as Wl . In (6.68) and (6.70) t , D, b, t̄ and initial stress and strain may vary in space in an
arbitrary manner and det J is computed as indicated in Sec. 5.5.

The simplicity of computation using shape functions and numerical integration should
be especially noted. This permits easy consideration of different types of interpolations for
the shape functions and different quadrature orders for numerical integration to be assessed.

6.4 Reporting of results: displacements, strains and
stresses

The reader will now have observed that, while the finite element representation of displace-
ments is in a sense optimal as it is the primary variable, both the strains and the stresses are
not realistic. In particular, in ordinary engineering problems both strains and stresses tend
to be continuous within a single material. The answers which are obtained by the finite
element calculation result in discontinuities of both strains and stresses between adjacent
elements. Thus if the direct calculation of these quantities were presented the answers
would be deemed unrealistic. For this reason, from the beginning of the finite element
method it was sought to establish these rather important quantities in a more realistic, and
possibly more accurate, way. In the very early days of finite element calculation with simple
C0 continuity elements an averaging of element strains and stresses, which are constant in
triangular elements, was made at each node. This of course gave improved results at most
points – except at those which were on the boundary.

Since the simple days of averaging further attention was given to this subject and other
methods were developed. The first of these methodologies was developed by Brauchli and
Oden23 in 1971 and consisted of assuming that a continuous representation of either strain
or stress using the sameC0 functions as for displacements could be found by solving a least
squares sense representation of the corresponding discontinuous (finite element) one. This
method proved quite expensive but often gave results which were superior to the simple
averaging – at least for some sets of problems. However, higher accuracy was not achieved
despite the additional cost of solving a full set of algebraic equations. An alternative local
procedure to improve results was proposed by Hinton and Campbell24 and was once quite
widely used.

The methods of recovery of strain and stress have progressed much further in recent years
and in Chapter 13 we discuss these fully. We find that currently an optimal procedure, which
generally gives higher order accuracy and has similar cost to simple averaging, is the patch
recovery method. In this the process of determining values of recovered strains or stresses
assumes that:



208 Problems in linear elasticity

1. At some points of the domain or each element, the strains and stresses calculated by the
direct differentiation of the shape functions are more accurate than elsewhere. Indeed
on many occasions at such points ‘superconvergence’ is demonstrated which can make
the accuracy at least one order higher than that of the finite element values computed
from derivatives of shape functions.

2. A continuous representation of such strains and stresses can be given by finding nodal
values which in the least squares sense approximate those computed by the optimal
points. Now the increased accuracy will exist over the entire domain.

The discussion of the existence of such points at which higher order may exist is deferred
to Chapter 13 but here we show how this can be easily incorporated into standard programs
dealing with elasticity.

Basically in the procedure we will assume a strain exists for an element and can be
expressed by

ε� =
∑
b

Nbε̃b (6.71)

where now ε is any component of strain. A similar expression may be written for a stress
component. The goal is to find appropriate values for ε̃b which give improved results. To
do this we use a least squares method in which the strain in a patch surrounding a vertex
node a on elements may be expressed in global coordinates by a polynomial expression of
higher order, suitable for the number of unknown parameters in the strain expression. This
polynomial expression is given by

ε�� = [1, (x − xa), (y − ya), · · ·]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̃a
α1

α2
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Pa(x)αa (6.72)

For 3-node triangles or 4-node quadrilaterals in two dimensions and 4-node tetrahedrons or
8-node brick elements in three dimensions a linear interpolation is used. For the quadratic
order elements the polynomial in Pa is also raised to quadratic order. Thus, for 6-node
triangular and 8- or 9-node quadrilateral elements in two dimensions we use

Pa = [1, (x − xa), (y − ya), (x − xa)
2, (x − xa)(y − ya), (y − ya)

2
]

The parameters in ε�� are determined using the least squares problem given by

� = 1

2

na∑
e=1

∑
l

[
Pa(xel )αa − ε̂(xel )

]2 = min (6.73)

where na is the number of elements attached to node a and xel are locations where strains
are computed. The minimization condition results in

Maαa = fa (6.74)

where

Ma =
na∑
e=1

∑
l

PT
a (x

e
l )Pa(x

e
l ) and fa =

na∑
e=1

∑
l

PT
a (x

e
l )ε̂(x

e
l ) (6.75)



Numerical examples 209

The values for the remaining nodes (e.g., at mid-side and boundary locations) may be
computed by averaging the extrapolated values computed from (6.72). For example, from
a patch, the result at node b (b �= a) is given by

ε��(xb) = Pa(xb)αa

and averaging the result from all patches which contain node b gives the final result for ε̃b.
An identical process may be used to compute stress values. We recommend that a patch

recovery method be used to report all strain or stress values. In addition, the method serves
as the basis for error assessment and methods to efficiently construct adaptive solutions to
a specified accuracy as we shall present in Chapter 14.

6.5 Numerical examples

To illustrate the application of the theory presented above we consider some example
problems. Some of the problems we include can be solved by other analytic methods and
thus serve to illustrate the accuracy of results obtained. Others, however, are from more
practical situations where either no alternative solution method exists or the method is
otherwise cumbersome to obtain thus rendering the finite element approach most useful.

Here we first solve again the two-dimensional plane stress problems considered in Chap-
ter 2 to illustrate the advantages of using 4-, 9-, and 16-node quadrilateral isoparametric
elements of lagrangian type.

Example 6.4: Beam subjected to end shear. The rectangular beam considered in Sec.
2.9.1 is solved again using lagrangian rectangular elements with 4 nodes (bilinear), 9 nodes
(biquadratic) and 16 nodes (bicubic). The mesh for the bilinear model initially has six
elements in the depth direction and 12 along the length for a total of 72 elements and 91
nodes. This is subsequently subdivided to form meshes with 12 × 24, 24 × 48, 48 × 96
and 96 × 192 elements. All other data are as defined in Sec. 2.9.1.

The analysis is repeated using 9-node biquadratic elements with an inital mesh of 3 ×
6 elements, which gives the same number of nodes. Finally, the problem is solved with a
mesh of 2 × 3 16-node bicubic elements which again gives a mesh with 91 nodes. Since
the exact solution for displacements given in Sec. 2.9.1 contains all polynomial terms of
degree 3 or less the solution with this coarse mesh is exact and no refinement is needed.

In Table 6.2 we present the results for the energy obtained from each mesh and in Fig.
6.9 we show the convergence behaviour for the 4-node and 9-node element forms. Again,
the expected rates of convergence are attained as indicated by the slopes of 2 and 4 in the
figure.

Example 6.5: Circular beam subjected to end shear. We consider next the circular
beam problem described in Sec. 2.9.1. The solution to the problem is performed using
isoparametric 4-node bilinear quadrilaterals, 9-node lagrangian quadrilaterals and 16-node
lagrangian quadrilaterals. The geometric and material data for the problem is as given in
Example 2.4.

The initial mesh for all element types uses a regular subdivision of the domain that
produces initial element patterns with 6 × 12 4-node elements, 3 × 6 9-node elements and
2 × 4 16-node elements. The mesh for each element form is shown in Fig. 6.10.
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Fig. 6.9 Convergence in energy error for 4-node and 9-node rectangular elements.

Table 6.2 Mesh size and energy for end loaded beam

4-node rectangles 9-node rectangles 16-node rectangles

Nodes Elmts Energy Elmts Energy Elmts Energy

91 72 3077.4986 18 3294.7512 8 3296.0000
325 288 3238.2915 72 3295.9174

1225 1152 3281.3465 288 3295.9947
4753 4608 3292.3206 1152 3295.9997

18 721 18 432 3295.0790 4608 3296.0000
Exact – 3296.0000 – 3296.0000 – 3296.0000

Results for the energy are given in Table 6.3 and compared to the exact value computed
from

Eex = 0.02964966844238

using the geometry and properties selected. The element size is normalized to that of the
coarsest mesh [shown in Fig. 6.10(a)] and the energy error computed from Table 6.3 has
the expected slope for 4-node elements, for 9-node elements and for cubic elements (viz.
Fig. 6.11).

We now consider some practical examples for problems which have been solved using
the finite element method.

Some simple typical examples are given which use both tetrahedral and isoparametric
brick-type elements. The isoparametric examples are all performed using Gauss quadrature
to approximate the necessary integrals.
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(a) (b) (c)

Fig. 6.10 End loaded circular beam: Coarse mesh for 4-node, 9-node and 16-node lagrangian elements.

Table 6.3 Mesh size and energy for curved beam

4-node quadrilateral 9-node quadrilateral 16-node quadrilateral

Nodes Elmts Energy Elmts Energy Elmts Energy

91 72 0.03042038175071 18 0.02970101373401 8 0.02965327376971
325 288 0.02984351371323 72 0.02965318188484 32 0.02964975296446

1225 1152 0.02969820784232 288 0.02964989418870 128 0.02964966996157
4753 4608 0.02966180825828 1152 0.02964968266120 512 0.02964966846707

18 721 18 432 0.02965270370808 4608 0.02964966933301 2048 0.02964966844276
Exact – 0.02964966844238 – 0.02964966844238 – 0.02964966844238

6.5.1 A dam subject to external and internal water pressures

A buttress dam on a somewhat complex rock foundation is shown in Fig. 6.12 and ana-
lysed.25, 26 This dam (completed in 1964) is of particular interest as it is the first to which the
finite element method was applied during the design stage. The heterogeneous foundation
region is subject to plane strain conditions while the dam itself is considered in a state of
plane stress of variable thickness.

With external and gravity loading no special problems of analysis arise.
When pore pressures are considered, the situation, however, requires perhaps some ex-

planation.
It is well known that in a porous material the water pressure is transmitted to the structure

as a body force of magnitude

bx = − ∂p

∂x
by = − ∂p

∂y
(6.76)

and that now the external pressure need not be considered.
The pore pressure p is, in fact, now a body force potential which may be determined by

solving a ‘field problem’ as described in the next chapter. Figure 6.12 shows the element
subdivision of the region and the outline of the dam. Figure 6.13(a) and (b) shows the
stresses resulting from gravity (applied to the dam only) and due to water pressure assumed
to be acting as an external load or, alternatively, as an internal pore pressure. Both solutions
indicate large tensile regions, but the increase of stresses due to the second assumption is
important.
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Fig. 6.11 Curved beam: Convergence in energy error for quadrilateral elements.

The stresses calculated here are the so-called ‘effective’ stresses. These represent the
forces transmitted between the solid particles and are defined in terms of the total stresses
σ and the pore pressures p by

σ′ = σ + mp mT = [1, 1, 0] (6.77)

i.e., simply by removing the hydrostatic pressure component from the total stress.27, 28

The effective stress is of particular importance in the mechanics of porous media such as
those that occur in the study of soils, rocks, or concrete. The basic assumption in deriving the
body forces of Eq. (6.76) is that only the effective stress is of any importance in deforming
the solid phase. This leads immediately to another possibility of formulation.29 If we
examine the equilibrium conditions of Eq. (6.8) we note that this is written in terms of total
stresses. Writing the constitutive relation, Eq. (6.26a), in terms of effective stresses, i.e.,

σ′ = D′(ε− ε0)+ σ′
0 (6.78)

and substituting into the weak form we find that the stiffness matrix is given in terms of the
matrix D′ and the force terms are augmented by an additional force

−
∫
�e

BTmp d� (6.79)

or, if p is interpolated by shape functions N ′
b, the force becomes

−
∫
�e

BTmN′ d� p̃e (6.80)

This alternative form of introducing pore pressure effects allows a discontinuous inter-
polation of p to be used [as in Eq. (6.79) no derivatives occur] and this is now frequently
used in practice.
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Fig. 6.12 Stress analysis of a buttress dam. A plane stress condition is assumed in the dam and plane strain in
the foundation. (a) The buttress section analysed. (b) Extent of foundation considered and division into finite
elements.

6.5.2 Rotating disc

Here only 18 cubic serendipity elements are needed to obtain an adequate solution, arranged
as shown in Fig. 6.14. It is of interest to observe that all mid-side nodes of the cubic elements
may be generated within the computer program and need not be specified. Also, the problem
requires the specification of body forces caused by the centrifugal effects of the rotating
disk. Here,

br = −ρ r ω2

where ρ is the mass density of the material and ω is the angular velocity.
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Fig. 6.13  Stress analysis of the buttress dam of Fig. 6.12. Principal stresses for gravity loads are combined with water pressures, which are 
assumed to act (a) as external loads, (b) as body forces due to pore pressure. 
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Fig. 6.14 A rotating disc – analysed with cubic serendipity elements.
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Fig. 6.15 Conical water tank.

6.5.3 Conical water tank

In this problem cubic serendipity elements are again used as shown in Fig. 6.15. It is worth
noting that single-element thickness throughout is adequate to represent the bending effects
in both the thick and thin parts of the container. With simple 3-node triangular elements,
several layers of elements would have been needed to give an adequate solution.
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Fig. 6.16 Encastré, thin hemispherical shell. Solution with 15 and 24 cubic serendipity elements.

6.5.4 A hemispherical dome

The possibilities of dealing with shells approached in the previous example are here further
exploited to show how a limited number of elements can adequately solve a thin shell
problem as illustrated in Fig. 6.16. This type of solution can be further improved upon
from the economy viewpoint by making use of the well-known shell assumptions involving
a linear variation of displacements across the thickness. Thus the number of degrees of
freedom can be reduced (e.g., see reference 30).

6.5.5 Arch dam in a rigid valley

This problem, perhaps a little unrealistic from the engineer’s viewpoint, was the subject
of a study carried out by a committee of the Institution of Civil Engineers and provided
an excellent test for a convergence evaluation of three-dimensional analysis.10 In Fig. 6.17
two subdivisions into quadratic and two into cubic elements are shown. In Fig. 6.18 the
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convergence of displacements in the centre-line section is shown, indicating that quite
remarkable accuracy can be achieved with even one element.

The comparison of stresses in Fig. 6.19 is again quite remarkable, though showing a
greater ‘oscillation’ with coarse subdivision. The finest subdivision results can be taken as
‘exact’ from checks by models and alternative methods of analysis.

6.5.6 Pressure vessel problem

A more ambitious problem treated with simple tetrahedra is given in reference 7. Figure
6.20 illustrates an analysis of a complex pressure vessel. Some 10 000 degrees of freedom
are involved in this analysis. A similar problem using higher order isoparametric elements
permits a sufficiently accurate analysis for a very similar problem to be performed with
only 2121 degrees of freedom (Fig. 6.21).

6.6 Problems

6.1 Use the transformation array given by

T =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

with θ = 45◦ to transform stress and strain components from their x, y, z components to
their x ′, y ′, z′ components. Let the material be linearly elastic with material parameters
given by E and ν. Show that G = E/[2(1 + ν)].

6.2 For an isotropic material expressed in E and ν compute the mean stress p = (σx +
σy + σz). If the bulk modulus is given by

p = K εv

where εv = εx + εy + εz is the volume strain, show that K = E/[3(1 − 2ν)].
6.3 The strain displacement equations for a one-dimensional problem in plane polar coor-

dinates are given by

ε =
⎧⎨
⎩
εrr
εθθ
γrθ

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ur

∂r
1

r

∂uθ

∂θ
+ ur

r
1

r
(
∂ur

∂θ
− uθ)+ ∂uθ

∂r

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The displacements are expanded in a Fourier series as

ur =
∑

un(r) cos nθ and uθ =
∑

vn(r) sin nθ
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Fig. 6.17 Arch dam in a rigid valley – various element subdivisions.
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Fig. 6.18 Arch dam in a rigid valley – centre-line displacements.
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Fig. 6.19 Arch dam in a rigid valley – vertical stresses on centre-line.
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Fig. 6.20 A nuclear pressure vessel analysis using simple tetrahedral elements.7 Geometry, subdivision, and
some stress results. N.B. Not all edges are shown.

(a) Express un(r) and vn(r) in terms of shape functions and parameter ũna and ṽna ,
respectively, and determine the strain displacement matrix for each harmonic n.

(b) For a linear elastic material show that the stiffness matrix for each harmonic is
independent of other terms in the Fourier series. (Hint: Perform integrals in θ
analytically.)

6.4 Cartesian coordinates may be expressed in terms of spherical components r , θ , and φ
as

x = r cos θ sin φ; y = r sin θ sin φ and z = r cosφ

This form permits the solution of spherically symmetric problems for which displace-
ments depend only on r and the strain-displacement equations are expressed as

εrr = ∂ur

∂r
; εθθ = εφφ = ur

r

γrφ = ∂uφ

∂r
− uφ

r
; γrθ = ∂uθ

∂r
− uθ

r
; γθφ = 0

(a) How many rigid body modes exist for this problem?
(b) Express the displacement components ur , uθ and uφ in finite element form using

one-dimensional shape functions in r .
(c) Determine the form of the strain-displacement matrix Ba for each shape function

Na .
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Fig. 6.21 Three-dimensional analysis of a pressure vessel.

(d) For a linear elastic isotropic material write the form of the stiffness matrix for the
nodal pair a and b. Show that the problem decomposes into three separate problems
in terms of each displacement component.

(e) For linear shape functions obtain an expression for the stiffness components corre-
sponding to the ur displacements using a one-point quadrature formula. Check if
the resulting stiffness matrix has correct rank.

6.5 For a linear elastic isotropic material the stiffness matrix may be computed by numerical
integration using Eq. (6.68). Alternatively, the stiffness matrix may be computed in
indicial form as indicated in Appendix B.
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Consider a plane strain problem which is modelled by 4-node quadrilateral elements.
Assume the stiffness matrix is computed using a 2 × 2 gaussian quadrature formula.
(a) Compute separately the number of additions/subtractions and multiplications nec-

essary to evaluate the stiffness using Eq. (6.68). Count only operations involving
non-zero values in B or D.

(b) Repeat the above calculation using the method of Appendix B given by Eqs (B.52)
and (B.54).

6.6 In the classical plane strain problem the strain normal to the plane of deformation (i.e.,
εz) was assumed to be zero. The problem may be ‘generalized’ by assuming εz is
constant over the entire analysis domain. The constant strain may then be related to a
resultant force Fz applied normal to the deformation plane.
(a) Following the steps given in Sec. 6.3, develop the virtual work expression (weak

form) for the generalized plane strain problem.
(b) Write finite element approximations for all the terms in the weak form.
(c) Write the expression for an element stiffness in terms of nodal parameters and the

strain εz.
(d) Show how the resultant force Fz is related to the constant strain εz.

1 3

(a) Point loading

2

a

F

h/2 h/2

q

a

1 3

(b) Hydrostatic loading

2

h/2 h/2

Fig. 6.22 Traction loading on boundary for Problems 6.7 and 6.8.

6.7 A concentrated load,F , is applied to the edge of a two-dimensional plane strain problem
which is modelled using quadratic order finite elements as shown in Fig. 6.22(a).
Compute the equivalent forces acting on nodes 1, 2 and 3.

6.8 A triangular traction load is applied to the edge of a two-dimensional plane strain
problem as shown in Fig. 6.22(b).
(a) Compute the equivalent forces acting on nodes 1, 2 and 3 by performing the integrals

exactly.
(b) Use numerical integration to compute the integrals which define the equivalent

forces. Use the minimum number of points that integrate the integral exactly.
What is the result if one-order lower is used?

6.9 An arc of 2θ for a circular boundary of radius R is approximated by the quadratic
isoparametric interpolation as shown in Fig. 6.23. For this case h = R sin θ and
c = R(1 − cos θ).

A concentrated load, F , is applied normal to the boundary at the point labelled a(ξ).
Let F = 100 N, R = 10 cm and θ = 15◦. For ξ = 0, 0.25, 0.50, 0.75, 1.0 determine:
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Fig. 6.23 Concentrated normal load on a curved boundary. Problem 6.9.
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Fig. 6.24 Quadrilateral 8- and 9-node elements. Problems 6.10 and 6.11.

(a) The equivalent forces acting on nodes 1, 2 and 3 for the case when the normal is
computed from the quadratic interpolation.

(b) The equivalent nodal forces using the normal to the circular boundary.
(c) The error between the two forms. Show on a sketch.

6.10 A mesh for a plane strain problem contains the quadratic order rectangular elements
shown in Figs 6.24(a) and (b). The elements are subjected to a constant body force
b = (0,−ρ g)T where ρ is mass density and g is acceleration of gravity. For each
element type:
(a) Use standard shape functions forNa and develop a closed form expression for the

nodal forces in terms of a, b and ρ g.
(b) Use hierarchical shape functions forNa and develop a closed form expression for

the nodal forces in terms of a, b and ρ g.
6.11 A mesh for a plane strain problem contains the quadratic order rectangular elements

shown in Figs 6.24(a) and (b). The elements are subjected to a constant temperature
change 
T . Each element is made from an isotropic elastic material with constant
properties E, ν and α.

For each element type:
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x

y

q0

h

L

Fig. 6.25 Uniformly loaded cantilever beam. Problem 6.12.

(a) Use standard shape functions forNa and develop a closed form expression for the
nodal forces in terms of a, b and the elastic properties.

(b) Use hierarchical shape functions forNa and develop a closed form expression for
the nodal forces in terms of a, b and the elastic properties.

6.12 Use the program FEAPpv (or any other available program) to solve the rectangular
beam problem given in Example 6.4 and verify the results shown in Table 6.2.

6.13 Use the program FEAPpv (or any other available program) to solve the curved beam
problem given in Example 6.5 and verify the results shown in Table 6.3.

6.14 The uniformly loaded cantilever beam shown in Fig. 6.25 has properties

L = 2 m; h = 0.4 m; t = 0.05 m and q0 = 100 N/m

Use FEAPpv or any other available program to perform a plane stress analysis of the
problem assuming linear isotropic elastic behaviour with E = 200 GPa and ν = 0.3.

In your analysis:
(a) Use quadratic lagrangian elements with an initial mesh of 1 element in the depth

and 5 elements in the length directions.
(b) Compute consistent nodal forces for the uniform loading.
(c) Compute nodal forces for a parabolically distributed shear traction at the restrained

end which balances the uniform loading q0.
(d) Report results for the centre-line displacement in the vertical direction and the

stored energy in the beam.
(e) Repeat the analysis three additional times using meshes of 2 × 10, 4 × 20 and

8×40 elements. Tabulate the tip vertical displacement and stored energy for each
solution.

(f ) If the energy error is given by


E = En − En−1 = Chq

estimate C and q for your solution. Is the convergence rate as expected? Explain
your answer.

6.15 A circular composite disk is restrained at its inner radius and free at the outer radius.
The disk is spinning at a constant angular velocity ω as shown in Fig. 6.26. The disk
is manufactured by bonding a steel layer on top of an aluminium layer as shown in
Fig. 6.26(b).
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(a) Plan of disk
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(b) Cross-section A−A
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Fig. 6.26 Spinning composite disk. Problem 6.15.

When spinning at an angular velocity of 50 rpm it is desired that the top surface be
flat. This will be accomplished by milling the initial shape of the top to a specified
level. Your task is to determine the profile for milling. To accomplish this
(a) Perform an analysis for an initially flat top surface using the dimensions given in

the figure (lengths given in mm). The elastic properties for steel areE = 200 GPa,
ν = 0.3 and ρ = 7.8 µg/mm3; those for aluminium are E = 70 GPa, ν = 0.35
and ρ = 2.6 µg/mm3 (where µ = 10−6). Be sure to use consistent units (say,
mm, sec, and µg).

The inner radius of the disk is to be restrained in the radial direction (i.e.,
u(15, z) = 0). Axial restraint is only applied at the centre of the disk (i.e.,
v(15, 0) = 0).

(b) Using the results for the vertical displacements computed in (a) reposition the top
nodes to new values for which a reanalysis should give improved results.

(c) Reanalyse the problem for the new coordinates. How accurate does this analysis
predict the desired result? What would you do to improve your answer?

6.16 A rectangular region with a circular hole is shown in Fig. 6.27. The traction on the
circular hole is zero. The region is to be used for the solution of an infinitely extending

x

y

R
A B

CD

E

θ

r

Fig. 6.27 Rectangular region with circular hole. Problem 6.16.
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plane stress problem in which the stress at infinity is given by a uniformly distributed
normal stress σ0 acting in the x direction.
The stress distribution in polar coordinates for the problem is given by

σr = 1
2 σ0

{[
1 − (

a

r
)2
]

+
[
1 + 3(

a

r
)4 − 4 (

a

r
)2
]

cos 2θ
}

σθ = 1
2 σ0

{[
1 + (

a

r
)2
]

−
[
1 + 3(

a

r
)4
]

cos 2θ
}

τrθ = − 1
2 σ0

{
1 − 3(

a

r
)4 + 2(

a

r
)2
}

sin 2θ

and the displacements by

ur = σ0r

2E

{[
1 + (

a

r
)2
]

+
[
1 − (

a

r
)4 + 4(

a

r
)2
]

cos 2θ

+ν
[
1 − (

a

4
)2
]

− ν
[
1 − (

a

r
)4
]

cos 2θ
}

uθ = σ0r

2E

{[
1 + (

a

r
)4 + 2(

a

r
)2
]

+ ν
[
1 + (

a

4
)4 − 2(

a

r
)2
]}

sin 2θ

In order for the region to satisfy the above solution it is necessary to:
(a) Enforce symmetry conditions along the boundaries AB and DE and
(b) Apply the tractions of the exact solution on the boundary BCD.
Program development project: Write a program that uses numerical integration to
compute the consistent nodal forces on the boundary BCD. (Hint: This may be done
by adding an element to FEAPpv which computes only the nodal forces for line
elements defined on the boundary BCD or by writing a MATLAB program which,
given the location of nodal coordinates on BCD, computes the nodal forces.) Your
program should also compute

E = t

∫
BCD

[
u tx + v ty

]
d�

which is twice the stored energy in a slice of thickness t . When accurately computed
(e.g., to 9 or 10 digit accuracy) this may be used as the ‘exact’ solution for the region.
Use your program and FEAPpv (or any other available program) to solve a plane
stress problem.

Let the hole radius be R = 10 cm, the thickness of the slice be t = 0.1R and take
E = 200 GPa and ν = 0.3 for the elastic properties. The boundary BC should be
placed at about 3R and the boundary CD at 2 to 3R. Assume a unit value for the stress
σ0.
(a) Use 4-node quadrilateral elements to solve the problem on a sequence of meshes

in which element sizes are reduced in half for each succeeding mesh.
(b) Plot the displacement at the hole boundary and compare to the exact solution.
(c) Compute the work done by your finite element program. (Note: In FEAPpv this

will be the ‘energy’ reported by the solver.)
(d) Compute the rate of convergence for your solution and plot on a figure similar to

that given in Fig. 6.9.
(e) Repeat the solution using 8-node serendipity elements.
(f ) Repeat the solution using 9-node lagrangian elements.
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Write a short report discussing your findings.
6.17 Program development project: Extend the program developed in Problem 2.17 to

consider plane strain and axisymmetric geometry.
6.18 Program development project: Extend the program developed in Problem 2.17 to

compute nodal forces for specified boundary tractions which are normal or tangential
to the element edge. Assume tractions can vary up to quadratic order (i.e., constant,
linear and parabolic distributions) and use numerical integration to compute values.

Test your program for an edge with constant normal stress. Then test for linear
normal and finally quadratic tangential values. Compare results with those computed
by FEAPpv (or any available program).

6.19 Program development project: Extend the program developed in Problem 2.17 to
compute nodal values of stress and strain. Follow the procedure given in Sec. 6.4 to
project element values to nodes.

Test your program using (a) the patch test of Problem 2.17 and (b) the curved beam
problem shown in Fig. 2.11.

6.20 Program development project: Add a module to the program developed in Problem
2.17 to plot contours of stress and strain components for plane stress, plane strain and
axisymmetric solids. Use the capability developed in Problem 6.19 to obtain nodal
values and the contour routine developed in Problem 2.18.

Test your program system by plotting contours of stress components for the curved
beam meshes described in Problem 2.18.

6.21 Program development project: Add a 4-node quadrilateral element to the program
system developed in Problem 2.17. Use shape functions and numerical integration to
compute the element stiffness matrix. Also include the force vector from a constant
element body force (you may need to add b to your input module).

Test your program on the curved beam problems described in Problem 2.18. Com-
pare the accuracy to that obtained using triangular elements.
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7

Field problems – heat conduction,
electric and magnetic potential and

fluid flow

7.1 Introduction

The general procedures discussed in the previous chapters can be applied to a variety of
physical problems. Indeed, some such possibilities have been indicated in Chapter 3 and
here more detailed attention will be given to a particular, but wide class, of such situations.

Primarily we shall deal with situations governed by the general ‘quasi-harmonic’ equa-
tion, the particular cases of which are the well-known Laplace and Poisson equations.1–6

The range of physical problems falling into this category is large. To list but a few frequently
encountered in engineering practice we have:

• Heat conduction
• Seepage through porous media
• Irrotational flow of ideal fluids
• Distribution of electrical (or magnetic) potential
• Torsion of prismatic shafts
• Lubrication of pad bearings, etc.

The formulation developed in this chapter is equally applicable to all, and hence only
limited reference will be made to the actual physical quantities. In all the above classes
of problems, the behaviour can be represented in terms of a scalar variable for which we
will generally use the symbol φ. In the applications to specific problems, however, we
shall generally introduce the physical variable describing the behaviour. For instance, in
discussing heat conduction applications we use the symbol T to denote the temperature.

In Chapter 3 we indicated both the ‘weak form’ and a variational principle applicable
to the Poisson and Laplace equations (see Secs 3.2 and 3.8.1). In the following sections
we shall apply these approaches to a general, quasi-harmonic equation and indicate the
ranges of applicability of a single, unified, approach by which one computer program can
solve a large variety of physical problems. It will be observed that the C0 ‘shape functions’
presented in Chapters 4 and 5 can be directly applied and that both isotropic and anisotropic
behaviour can be treated with equal ease.
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7.2 General quasi-harmonic equation

7.2.1 Governing equations

In many physical situations we are concerned with the diffusion or flow of some quantity
such as heat, mass, concentration, etc. In such problems, the rate of transfer per unit area
(flux), q, can be written in terms of its cartesian components as

q = [qx , qy , qz
]T

(7.1)

If the rate at which the relevant quantity is generated (or removed) per unit volume isQ,
then for steady-state flow the balance or continuity requirement gives

∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z
+Q = 0 (7.2)

Introducing the gradient operator

∇ =
[
∂

∂x
,

∂

∂y
,

∂

∂z

]T

(7.3)

we can write (7.2) as

∇Tq +Q = 0 (7.4)

Generally the rates of flow will be related to the gradient of some potential quantity φ.
This may be temperature in the case of heat flow, etc. A very general linear relationship
will be of the form

q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qx

qy

qz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −

⎡
⎢⎢⎢⎣
kxx , kxy , kxz

kyx , kyy , kyz

kzx , kzy , kzz

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂φ

∂x

∂φ

∂y

∂φ

∂z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= − k ∇φ (7.5)

where k is a symmetric form due to energy arguments (i.e., kxy = kyx , etc.) and is variously
referred to as Fourier’s, Fick’s, or Darcy’s law depending on the physical problem.

The final governing differential equation for the ‘potential’φ is obtained by substitution
of Eq. (7.5) into (7.4), leading to

−∇T (k ∇φ)+Q = 0 (7.6)

which has to be solved in a domain�. On the boundaries of such a domain we shall usually
encounter one of the following conditions:
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1. On �φ ,

φ = φ̄ (7.7a)

i.e., the potential is specified (Dirichlet condition).
2. On �q the normal component of flow (or flux), qn, is given as (Neumann condition)

qn = q̄ −H (φ − φ0)

where H is a transfer or radiation coefficient, φ0 is a known equilibrium value and q̄ is
a specified value. Here qn is defined as

qn = nTq with n = [nx , ny , nz]T
where n is a vector of direction cosines of the normal to the boundary surface. Accord-
ingly, we may write the second boundary condition

q̄ + nT (k ∇φ)+H (φ − φ0) = 0 (7.7b)

which holds on �q .

7.2.2 Anisotropic and isotropic forms for k

If we consider the general statement of Eq. (7.5) as being determined for an arbitrary set of
coordinate axes x, y, z we shall find that it is always possible to determine locally another
set of axes x ′, y ′, z′ with respect to which the matrix k′ becomes diagonal, as shown in

y

x

y'

x '

Stratification

Fig. 7.1 Anisotropic material. Local coordinates coincide with the principal directions of stratification.
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Fig. 7.1. With respect to such axes we have

k′ =
⎡
⎣kx ′x ′ 0 0

0 ky ′y ′ 0
0 0 kz′z′

⎤
⎦ (7.8)

Thus, the general form of the k has only three components which are associated with three
orthogonal axes. Such materials are called anisotropic or orthotropic.

The governing differential equation (7.6) for these axes can be written

−
[
∂

∂x ′

(
kx ′x ′

∂φ

∂x ′

)
+ ∂

∂y ′

(
ky ′y ′

∂φ

∂y ′

)
+ ∂

∂z′

(
kz′z′

∂φ

∂z′

)]
+Q = 0

− (∇′)T (k′ ∇′φ
)+Q = 0

(7.9)

where

∇′ =
[
∂

∂x ′ ,
∂

∂y ′ ,
∂

∂z′

]T

defines the gradient operator for the ‘prime’ coordinate system.
Alternatively, knowing k′ and the orientation of the axes x ′, y ′, z′ a transformation of

coordinates is given by
x′ = Tx

in which T are direction cosines defined as

T =
⎡
⎣cos(x ′, x), cos(x ′, y), cos(x ′, z)

cos(y ′, x), cos(y ′, y), cos(y ′, z)
cos(z′, x), cos(z′, y), cos(z′, z)

⎤
⎦

where cos(x ′, x) is the cosine of the angle between the x ′ direction and the x direction. The
inverse of T is equal to its transpose; hence

x = TTx′

In addition we may write the gradient with respect to the prime axes as

∇′(·) = T∇(·)
or alternatively

∇(·) = TT ∇′(·)
Using the above we obtain the expression

(∇′)T (k′∇′φ
) = (∇)T TT

(
k′T∇φ) (7.10a)

or
k = TTk′T or k′ = TkTT (7.10b)

Lastly for an isotropic material we can write

k = kI (7.11)

where I is an identity matrix. In two dimensions this leads to the simple form of Eq. (3.8)
as discussed in Chapter 3.
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7.2.3 Weak form and variational principle for the general
quasi-harmonic equation

Following the principles of Chapter 3, Sec.3.2, we can obtain the weak form of Eqs (7.6)
and (7.7b) by writing (using v = δφ)
∫
�

δφ
[−∇T (k ∇φ)+Q

]
d�+

∫
�q

δφ
[
q̄ + nT (k ∇φ)+H (φ − φ0)

]
d� = 0

(7.12)

for arbitrary functions δφ. Integration by parts (see Appendix G) will result in the following
weak statement∫

�

[
(∇δφ)T (k ∇φ)+ δφ Q

]
d�+

∫
�q

δφ [q̄ +H (φ − φ0)] d� +
∫
�φ

δφ qn d� = 0

(7.13)
Generally, the last term is omitted by requiring δφ = 0 and imposing the forced (Dirichlet)
boundary condition (7.7a) on �q .

It is also possible to express an integral form for the quasi-harmonic equation as a
variational principle. The functional

� =
∫
�

[
1

2
(∇φ)T (k ∇φ)+ φ Q

]
d�+

∫
�q

[
φ q̄ +H (

1

2
φ2 − φφ0)

]
d� (7.14)

gives on minimization [subject to the constraint of Eq. (7.7a)] the original problem in Eqs
(7.6) and (7.7b). The algebraic manipulations required to verify the above principle follow
precisely the lines of Sec.3.8.

Clearly material properties defined by the k matrix can vary from element to element in
a discontinuous manner. This is implied in both the weak and variational statements of the
problem.

7.3 Finite element solution process

7.3.1 Finite element discretization

The finite element solution process follows the standard solution methodology and for the
quasi-harmonic equation approximates the trial function using any of theC0 shape function
expressions given in Chapters 4 and 5. Accordingly, we use

φ ≈ φ̂ =
∑
a

Na φ̃a = N φ̃ (7.15)

in either the weak formulation of Eq. (7.13) or the variational statement of Eq. (7.14). If,
in the weak statement, we take

δφ ≈ δφ̂ =
∑
a

Wa δφ̃a = W δφ̃ with W = N (7.16)
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according to the Galerkin principle, an identical form will arise with that obtained from the
minimization of the variational principle.

The gradient of φ is now given by the approximation

∇φ̂ =
∑
a

(∇Na) φ̃a

=
∑
a

[
∂Na

∂x
,

∂Na

∂y
,

∂Na

∂z

]T

φ̃a =
∑
a

baφ̃a

(7.17)

where now ba denotes the gradient matrix of shape functions.
Substituting Eqs (7.15) to (7.17) into (7.13), we have a typical statement for an arbitrary

δφ̃a giving, for each a (assuming summation convention for b),

{[∫
�

bT
akbb d�+

∫
�q

NaHNb d�

]
φ̃b +

∫
�

NaQ d�+
∫
�q

Na (q̄ −Hφ0) d�

}
= 0

(7.18)
Evaluating the integrals for all elements leads to the set of standard discrete equations of
the form

H φ̃+ f = 0 (7.19)

with

Hab =
∫
�

bT
akbb d�+

∫
�q

NaHNb d� and fa =
∫
�

NaQ d�+
∫
�q

Na (q̄ −Hφ0) d�

(7.20)
to which prescribed values of φ̄ have to be imposed on boundaries �φ . We note that
an additional ‘stiffness’ is contributed on boundaries for which a radiation constant H is
specified.

Indeed, standard operations are followed to evaluate the above arrays using quadrature.
In the general three-dimensional case using Lagrange or serendipity-type ‘brick’ elements,
use of Gauss quadrature results in

Hab =
L3∑
l=1

ba(ξl, ηl, ζl)Tkbb(ξl, ηl, ζl) J (ξl, ηl, ζl)Wl

+
L2∑
l=1

Na(ξl, ηl)HNb(ξl, ηl) j (ξl, ηl)Wl

with a similar expression for fa .
Indeed in a computer program the same standard operations are followed to evaluate the

fluxes using

q ≡ −k ∇φ ≈ −k
∑
b

bb φ̃b (7.21)

The fluxes may be computed within the elements; however, it is often desirable to obtain
their values at nodes. This is best accomplished by the procedure summarized in Sec. 6.4
and discussed in more detail later in Chapter 13.



Finite element solution process 235

7.3.2 Two-dimensional plane and axisymmetric problem

The two-dimensional plane case is obtained by taking the gradient in the form

∇ =
[
∂

∂x
,

∂

∂y

]T

(7.22)

and taking the flux as

q =
{qx
qy

}
= −

[
kxx kxy

kyx kyy

]⎧⎪⎪⎨
⎪⎪⎩

∂φ

∂x

∂φ

∂y

⎫⎪⎪⎬
⎪⎪⎭

(7.23)

On discretization by Eqs (7.15) to (7.17) a slightly simplified form of the matrices will
now be found with ba in Eq. (7.17) replaced by

ba =
[
∂Na

∂x
,

∂Na

∂y

]T

(7.24)

and the volume element by
d� = t dx dy

where t is the slab thickness. Alternatively the formulation may be specialized to cylindrical
coordinates and used for the solution of axisymmetric situations by introducing the gradient

∇ =
[
∂

∂r
,

∂

∂z

]T

(7.25)

where r, z replace x, y to describe both the gradient and ba . With the flux now given by

q =
{qr
qz

}
= −

[
krr krz

kzr kzz

]⎧⎪⎪⎨
⎪⎪⎩

∂φ

∂r

∂φ

∂z

⎫⎪⎪⎬
⎪⎪⎭

(7.26)

the discretization of Eq. (7.18) is now performed with the volume element expressed by

d� = 2πr dr dz

and integration carried out using quadrature as described above.

Example 7.1: Plane triangular element with 3 nodes. We particularize here to the
simplest triangular element (Fig. 7.2).

With shape functions written in the alternative forms

Na = La = aa + bax + cay

2�

in which � is defined in (4.26) and aa , ba , ca in (4.28), we can compute the derivatives as

∂Na

∂x
= ∂La

∂x
= ba

2�
; ∂Na

∂y
= ∂La

∂y
= ca

2�
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Fig. 7.2 Division of a two-dimensional region into triangular elements.

giving the gradient matrix

ba = 1

2�

[
ba ca

]T
Since the gradient matrix is constant the element ‘stiffness’matrix (ignoring theH boundary
term) is given by

He = kxxt

4�

⎡
⎣b1b1 b1b2 b1b3

b2b1 b2b2 b2b3

b3b1 b3b2 b3b3

⎤
⎦+ kyyt

4�

⎡
⎣c1c1 c1c2 c1c3

c2c1 c2c2 c2c3

c3c1 c3c2 c3c3

⎤
⎦

+ kxyt

4�

⎡
⎣b1c1 b1c2 b1c3

b2c1 b2c2 b2c3

b3c1 b3c2 b3c3

⎤
⎦+ kyxt

4�

⎡
⎣c1b1 c1b2 c1b3

c2b1 c2b2 c2b3

c3b1 c3b2 c3b3

⎤
⎦

The load matrices follow a similar simple pattern and thus, for instance, due to constantQ
and using a 1-point quadrature from Table 5.3 we have La = 1/3 so that

f ea = −LaQt� = − 1

3
Qt�

This is a very simple (almost ‘obvious’) result.

Example 7.2: ‘Stiffness’ matrix for axisymmetric triangular element with 3 nodes.
The computation of the arrays for an axisymmetric problem may be performed using area
coordinates as described in Sec. 4.7.1 and quadrature in Sec. 5.11. Since the integrals for
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the ‘stiffness’matrix only involve a linear function in r (from the volume element) a 1-point
integration from Table 5.3 still is exact and results in

He =
⎧⎨
⎩
krr

4�

⎡
⎣b1b1 b1b2 b1b3

b2b1 b2b2 b2b3

b3b1 b3b2 b3b3

⎤
⎦+ kzz

4�

⎡
⎣c1c1 c1c2 c1c3

c2c1 c2c2 c2c3

c3c1 c3c2 c3c3

⎤
⎦

+ krz

4�

⎡
⎣b1c1 b1c2 b1c3

b2c1 b2c2 b2c3

b3c1 b3c2 b3c3

⎤
⎦+ kzr

4�

⎡
⎣c1b1 c1b2 c1b3

c2b1 c2b2 c2b3

c3b1 c3b2 c3b3

⎤
⎦
⎫⎬
⎭ 2πr̄

where r̄ = (r1 + r2 + r3)/3.

Example 7.3: Load matrix for axisymmetric triangular element with 3 nodes. The
nodal forces from a constant source term Q are computed from

f ea =
∫
�

LaQ2πrbLb dr dz sum on b

and thus now has quadratic terms. From Table 5.3 use of a 3-point formula is adequate to
obtain an exact result. For node 1 this gives

f e1 = 1
2 2πQ

[
1
2 (r1 + r2)+ 1

2 (r1 + r3)

]
� 1

3 = 1
6 (2r1 + r2 + r3) πQ�

with results for f e2 and f e3 obtained by cyclic permutation. The use of a 1-point formula
gives results which are of the same accuracy as that of the basic linear functions in the
approximation of φ, namely, O(h2) where h is the diameter of an element. Using this we
obtain the force array

f ea ≈ 1
3 2πr̄Q� = 2

3 πr̄Q�

7.4 Partial discretization – transient problems

The above developments have assumed that the solution to the problem is independent of
time. Many problems, however, require the solution to depend explicitly on time, both in
the loading and in the differential equation.

An example of a problem which is time dependent is a heat conduction problem in which
the loading varies with time. The solution for the temperature now requires use of the
differential equation given by

c
∂T

∂t
− ∇T (k ∇T )+Q = 0 (7.27)

where T is temperature (which now replaces φ), k the thermal conductivity, c the specific
heat per unit volume and Q a heat source term. In addition to boundary conditions of the
form given in (7.7a) and (7.7b) it is now necessary to provide the distribution of temperature
at the initial time

T (x, y, z, 0) = T0(x, y, z) (7.28)
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Extending the method used to develop (7.13), a weak form† of the time dependent
problem is given by∫

�

[
δT c

∂T

∂t
+ (∇δT )T (k ∇T )+ δTQ

]
d�+

∫
�q

δT (q̄ +H(T − T0)) d� = 0

(7.29)
where we require δT = 0 and T = T̄ on �T.

7.4.1 Finite element discretizations

A finite element solution of (7.29) is constructed using an approximation of the type given
in Sec. 3.5 where now we assume the separable form

T (x, y, z, y) ≈ T̂ (x, y, z, t) = Na(x, y, z) T̃a(t) (7.30)

With this form the spatial derivatives are associated with the shape functionsNa and the time
derivative with the parameters T̃a . Substituting (7.30) into (7.29) yields the semi-discrete
set of ordinary differential equations

C
dT̃
dt

+ HT̃ + f = 0 (7.31)

or for node a

Cab
dT̃b
dt

+HabT̃b + fa = 0

where Hab and fa are given by (7.20) and

Cab =
∫
�

NacNb d�

In Chapters 16 and 17 we shall discuss in more detail methods of solution for large sets of
equations of the form (7.31). Here, however, we consider a simple procedure in which the
time dependence is given by a finite difference approximation. We will approximate the
nodal temperatures at a time tn by

T̃(tn) ≈ T̃n

and the time derivative by
dT̃
dt

∣∣∣∣
t=tn

≈ 1

�t
(T̃n − T̃n−1)

where�t = tn− tn−1. An approximate solution to the semi-discrete equations at each time
tn is obtained by solving the set of equation[

1

�t
C + H

]
T̃n = 1

�t
C T̃n−1 − f (7.32)

If the initial condition is approximated as

T (x, 0) ≈ N(x) T̃(0) with T̃(0) = T̃0

a solution for T̃1 is immediately available from (7.32) by solving a set of algebraic equations.
For each subsequent time step the solution process is identicalto the time independent

†Note that no variational principle of the type (7.14) exists.
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(c)

(a) (b)

Fig. 7.3 ‘Regular’ and ‘irregular’ subdivision patterns.

problem except for the modified force vector and a need to use a coefficient matrix which
has a term inversely proportional on the size of the time increment.

7.5 Numerical examples – an assessment of accuracy

In Sec. 3.3, Example 3.6, we showed that by assembling explicitly worked-out ‘stiffnesses’
of triangular elements for the ‘regular’ mesh pattern shown in Fig. 7.3(a) the discretized
equations are identical with those that are derived by well-known finite difference methods.
The same result holds for the mesh pattern shown in Fig. 7.3(b).7 For cases where all
boundary conditions are given as prescribed values

φ = φ̄ on �φ

the solutions obtained by the two methods obviously will be identical, and so also will be
the orders of approximation.

However, if the mesh shown in Fig. 7.3(c) which is also based on a square arrangement of
nodes but with ‘irregular’ element pattern is used a difference between the two approaches
for the ‘load’ vector f e will be evident. The assembled equations will have the same
‘stiffness’ matrix as in Fig. 7.3(a) but will show ‘loads’ which differ by small amounts
from node to node, but the sum of which is still the same as that due to the finite difference
expressions. The solutions therefore differ only locally and will represent the same averages.

Further advantages of the finite element process are:
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1. It can deal simply with non-homogeneous and anisotropic situations (particularly when
the direction of anisotropy is variable).

2. The elements can be graded in shape and size to follow arbitrary boundaries and to allow
for regions of rapid variation of the function sought, thus controlling the errors in a most
efficient way (viz. Chapters 13 and 14).

3. Specified gradient or ‘radiation’ boundary conditions are introduced naturally and with
a better accuracy than in standard finite difference procedures.

4. Higher order elements can be readily used to improve accuracy without complicating
boundary conditions – a difficulty always arising with finite difference approximations
of a higher order.

5. Finally, but of considerable importance in the computer age, standard programs may be
used for assembly and solution.

7.5.1 Torsion of prismatic bars

The torsion of prismatic elastic bars may be solved using a quasi-harmonic equation for-
mulation. Here either a warping function or a stress function approach may be used. In
Fig. 7.4(a) we show a rectangular bar loaded by an end torqueMt . The analysis is performed
on the cross-section as shown in Fig. 7.4(b).

The use of a warping function is governed by the formulation in which displacements
are given as

u = −yzθ; v = xzθ and w = ψ(x, y) θ (7.33)

where x, y are coordinates in the cross-section and z is a coordinate of the bar axis; θ is the
rate of twist and ψ the warping function. The non-zero strain components resulting from
these displacements are given by

x

y

z

Mt

(b)(a)

x

y

a

b

Fig. 7.4 Torsion of rectangular prismatic bar.
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γxz = θ

(
∂ψ

∂x
− y

)
and γyz = θ

(
∂ψ

∂y
+ x

)
(7.34)

giving, for an isotropic elastic material, the stresses

τxz = Gγxz and τyz = Gγyz (7.35)

Inserting the stresses into the equilibrium equation gives the governing differential equation

∂

∂x

(
G
∂ψ

∂x

)
+ ∂

∂y

(
G
∂ψ

∂y

)
= 0 (7.36)

and for stress-free boundary conditions

τnz = nx τxz + ny τyz = 0 (7.37)

in which nx and ny are the direction cosines for the outward normal to the boundary of the
rectangular section. At least one value of the warping function must be specified to have a
unique solution.

The total torque acting on a cross-section is given by

Mt =
∫
A

[−τxz y + τyz x
]

dA

=
∫
A

G

[
x2 + y2 − y

∂ψ

∂x
+ x

∂ψ

∂y

]
dAθ = GJψ θ

(7.38)

where GJψ is the effective torsional stiffness.

A stress function formulation is deduced using the representation for stresses

τxz = − ∂φ

∂y
and τyz = ∂φ

∂x
(7.39)

Combining (7.36) and (7.37) with (7.39) and eliminating the warping function ψ gives the
differential equation

∂

∂x

(
1

G

∂φ

∂x

)
+ ∂

∂y

(
1

G

∂φ

∂y

)
+ 2θ = 0 (7.40)

with
φ(s) = Constant on �q (7.41)

representing a stress-free boundary condition.
The total torque acting on a cross-section is now given by

Mt =
∫
A

G

[
x
∂φ

∂x
+ y

∂φ

∂y

]
dAθ = GJφ θ (7.42)

where GJφ is the effective torsional stiffness.
The two solutions provide a bound on the torsional stiffness with the warping function

solution giving an upper bound, GJψ , and the stress function a lower bound, GJφ .
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Fig. 7.5 Torsion of a rectangular shaft. Numbers in parentheses show a more accurate solution due to Southwell
using a 12 × 16 mesh (values of φ/GθL2).

Example 7.4: Torsion of rectangular shaft. In Fig. 7.5 a test comparing the results
obtained on an ‘irregular’ mesh of 3-node triangular elements with a relaxation solution
of the lowest order finite difference approximation is shown. Both give results of similar
accuracy, as indeed would be anticipated. In general superior accuracy is available with
the finite element discretization. Furthermore, it is possible to get bounds on the torsional
stiffness, as indicated above. To illustrate this latter aspect we consider a square bar which
is solved using 4-node rectangular elements and a range of n × n meshes in which n is
the number of spaces between nodes on each side. The results for the computed torsional
stiffness values are plotted in Fig. 7.6.

The improvement in the rate of convergence for higher order elements may also be
illustrated by comparing the total error using 4-node and 9-node elements of lagrangian
type. A very accurate solution is computed from the series solution given in reference 8
and used to compute the error in the finite element solution (see Fig. 7.7).

Example 7.5: Torsion of hollow bimetallic shaft. The pure torsion of a non-homogeneous
rectangular shaft with a circular hole is illustrated in Fig. 7.8. In the finite element solution
presented, the hollow section is represented by a material for which G has a value of
the order of 10−3 compared with the other materials.† The results compare well with the
contours derived from an accurate finite difference solution.9

7.5.2 Transient heat conduction

Example 7.6: Transient heat conduction of a rectangular bar. In this example we
consider the transient heat conduction in a long square prism with sidesL×L and subjected
to a rate of heat generation

†This was done to avoid difficulties due to the ‘multiple connection’ of the region and to permit the use of a
standard program.
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Fig. 7.7 Rate of convergence for square bar. 4- and 9-node lagrangian elements.

Q = Q0 e−αt

The problem is identical to the one considered in Sec. 3.5 where shape functions are as-
sumed in a cosine form given by Eq. (3.57). Here, however, we use a standard finite
element solution with 4-node square elements. The transient solution is performed using



244 Field problems

600

1200

1400

1800

229 444 547 608
631 623

563
495 475 438

397 350 290 218
99

217

289

347

391

421

436

43587113001740

1292

855

806

725

621

480

366
609 4807358329651113116011451063888707 895445

351

654

671

676

670

666 1240 1605 1743

1617

1235

1216

1170

1073

890
1285 1485 1550 1540 1463 1378 1347 1260 1143 989

765

983

1132

1231

1740

1489
1740

1430

1740

1740

1432
1150

174117431743
1743

1743

1743

1743

1611

1775

1580

1505

1610

1765
1712

200

400

8001000

1600

1743

L

L

G2/G1 = 3

G2 G1

L/2

CL

φ = 0 on external boundary

Fig. 7.8 Torsion of a hollow bimetallic shaft. φ/GθL2 × 104.

the procedure given in Sec. 7.4.1. For the analysis we assume the following parameters:

L = c = Q0 = α = 1 and k = 0.75

π2

Using symmetry conditions, a mesh of 20 × 20 4-node elements is used to approximate
one quadrant of the domain. A constant increment in time, �t = 0.01, is used to perform
the solution. Results for the temperature at the centre of the prism are given in Fig. 7.9 and
compared to the series solutions computed in Sec. 3.5, Fig. 3.9.

Transient heat conduction of a rotor blade
In Fig. 7.10 we show some results for the transient temperature distributrion in a turbine
rotor blade. The blade is subjected to a hot gas at 1145C◦ applied to the outer boundary
in which a variable radiation constant H = α is employed. Cooling is introduced in the
internal ducts. The analysis is performed using cubic elements of serendipity type which
permit the representation of the boundaries using very few elements.

7.5.3 Anisotropic seepage

The next problem is concerned with the flow through highly non-homogeneous, anisotropic,
and contorted strata. The basic governing equation is

∂

∂x ′

(
kx ′x ′

∂H

∂x ′

)
+ ∂

∂y ′

(
ky ′y ′

∂H

∂y ′

)
= 0 (7.43)

in which H is the hydraulic head and kx ′x ′ and ky ′y ′ represent the permeability coefficients
in the direction of the (inclined) principal axes. However, a special feature has to be
incorporated to allow for changes of x ′ and y ′ principal directions from element to element.
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Fig. 7.9 Transient heat development in a square prism – plot of temperature at centre.

No difficulties are encountered in computation, and the problem together with its solution
is given in Fig. 7.11.3

7.5.4 Electrostatic and magnetostatic problems

In this area of activity frequent need arises to determine appropriate field strengths and the
governing equations are usually of the standard quasi-harmonic type discussed here. Thus
the formulations are directly transferable. One of the first applications made as early as
19674 was to fully three-dimensional electrostatic field distributions governed by simple
Laplace equations (Fig. 7.12).

In Fig. 7.13 a similar use of triangular elements was made in the context of magnetic
two-dimensional fields by Winslow6 in 1966. These early works stimulated considerable
activity in this area and much additional work has been published.11–14

The magnetic problem is of particular interest as its formulation usually involves the
introduction of a vector potential with three components which leads to a formulation dif-
ferent from those discussed in this chapter. It is, therefore, worthwhile introducing a variant
which allows the standard programs of this section to be utilized for this problem.15–17

In electromagnetic theory for steady-state fields the problem is governed by Maxwell’s
equations which are

∇ × H = −J

B = µH

∇TB = 0

(7.44)
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Fig. 7.10 Temperature distribution in a cooled rotor blade, initially at zero temperature.
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Fig. 7.11 Flow under a dam through a highly non-homogeneous and contorted foundation.

with the boundary condition specified at an infinite distance from the disturbance, requiring
H and B to tend to zero there. In the above J is a prescribed electric current density confined
to conductors, H and B are vector quantities with three components denoting the magnetic
field strength and flux density respectively, µ is the magnetic permeability which varies (in
an absolute set of units) from unity in vacuo to several thousand in magnetizing materials
and × denotes the vector (cross) product, defined in Appendix F.

The formulation presented here depends on the fact that it is a relatively simple matter
to determine the field Hs which exactly solves Eq. (7.44) when µ ≡ 1 everywhere. This is
given at any point defined by a vector coordinate r by an integral:

Hs = 1

4π

∫
�

J × (r − r′)
|r − r′|3 d�; |r − r′| =

√
(r − r′)T(r − r′) (7.45)

In the above, r′ refers to the coordinates of d� and obviously the integration domain
only involves the electric conductors where J �= 0.

With Hs known we can write
H = Hs + Hm

and, on substitution into Eq. (7.44), we have a system

∇ × Hm = 0

B = µ(Hs + Hm)

∇TB = 0

(7.46)



248 Field problems

90

70

50

30
10

a

ce

90

70

50

30

10

f

b

d

Fig. 7.12 A three-dimensional distribution of electrostatic potential around a porcelain insulator in an earthed
trough.10

If we now introduce a scalar potential φ, defining Hm as

Hm ≡ ∇φ (7.47)

we find the first of Eqs (7.46) to be automatically satisfied and, on eliminating B in the
other two, the governing equation becomes

∇T (µ∇φ)+ ∇T (µHs) = 0 (7.48)

with φ → 0 at infinity. This is precisely of the standard form discussed in this chapter
[Eq. (7.6)] with the second term, which is now specified, replacing Q.

An apparent difficulty exists, however, if µ has a discontinuity, as indeed we would
expect it to do on the interfaces of two materials. Here the term Q is now undefined and,
in the standard discretization of Eq. (7.18) or (7.19), the term (for node a)∫

�

Na Q d� ≡ −
∫
�

Na ∇T (µHs) d� (7.49)
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Fig. 7.13 Field near a magnet (after Winslow6).

apparently has no meaning. Integration by parts comes once again to the rescue and we
note that

∫
�

Na ∇T (µHs) d� ≡ −
∫
�

(∇Na)T µHs d�+
∫
�

Na nT (µHs) d� (7.50)

In subregions of constantµ, ∇THs ≡ 0, the only contribution to the forcing terms comes
as a line integral of the second term at discontinuity interfaces.

Introduction of the scalar potential makes both two- and three-dimensional magnetostatic
problems solvable by a standard program used for all the problems in this chapter. Figure
7.14 shows a typical three-dimensional solution for a transformer. Here isoparametric
quadratic brick elements of the type which were described in Chapter 5 were used.15

In typical magnetostatic problems a high non-linearity exists with

µ = µ(|H|) where |H| =
√
H 2
x +H 2

y +H 2
z (7.51)

The treatment of such non-linearities is outside the scope of this volume; however, the
solution of such problems generally uses an iterative approach in which a sequence of
linearized problems is solved.18
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Fig. 7.14 Three-dimensional transformer. (a) Field strength H. (b) Scalar potential on plane z = 4.0 cm.

Considerable economy in this and other problems of infinite extent can be achieved by
the use of the infinite elements discussed in Chapter 5.

Many examples of practical applications of computing magnetic and electric field solu-
tions have been given by Binns et al. and some are included in his recent book.19 Plate 3
given in the front of this book presents one such example.
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Fig. 7.15 A stepped pad bearing. Pressure distribution.

7.5.5 Lubrication problems

Once again a standard Poisson type of equation is encountered in the two-dimensional
domain of a bearing pad. In the simplest case of constant lubricant density and viscosity
the equation to be solved is the Reynolds equation

∂

∂x

(
h3 ∂p

∂x

)
+ ∂

∂y

(
h3 ∂p

∂y

)
= 6µV

∂h

∂x
(7.52)

where h is the film thickness, p the pressure developed, µ the viscosity and V the velocity
of the pad in the x direction.

Figure 7.15 shows the pressure distribution in a typical finite width stepped pad.20 The
boundary condition is simply that of zero pressure and it is of interest to note that the
step causes an equivalent of a ‘line load’ on integration by parts of the right-hand side of
Eq. (7.52), just as in the case of magnetic discontinuity mentioned above.

More general cases of lubrication problems, including vertical pad movements (squeeze
films) and compressibility, can obviously be dealt with, and much work has been done
here.21–28

7.5.6 Irrotational and free surface flows

The basic Laplace equation which governs the flow of viscous fluid in seepage problems is
also applicable in the problem of irrotational fluid flow outside the boundary layer created
by viscous effects. The seepage example given above is adequate to illustrate the general
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applicability in this context. Further examples for this class of problems are cited by
Martin29 and others.30–36

If no viscous effects exist, then it can be shown that for a fluid starting at rest the motion
must be irrotational, i.e.,

ωz ≡ ∂u

∂y
− ∂v

∂x
= 0 (7.53)

where u and v are appropriate velocity components.
This implies the existence of a velocity potential, giving

u = −∂φ
∂x

v = −∂φ
∂y

(7.54a)

or
u = −∇φ (7.54b)

If, further, the flow is incompressible the continuity equation [which is similar to Eq. (7.4)]
has to be satisfied, i.e.,

∇Tu = 0 (7.55)

and therefore
∇T (∇φ) = ∇2φ = 0 (7.56)

Alternatively, for two-dimensional flow a stream function may be introduced defining
the velocities as

u = −∂ψ
∂y

v = ∂ψ

∂x
(7.57)

and this identically satisfies the continuity equation. The irrotationality condition must now
ensure that

∇T(∇ψ) = ∇2ψ = 0 (7.58)

and thus problems of ideal fluid flow can be posed in either form. As the standard formu-
lation is again applicable, there is little more that needs to be added, and for examples the
reader can well consult the literature cited. We also discuss this problem in more detail in
reference 37.

The similarity with problems of seepage flow, which has already been discussed, is
obvious.38, 39

A particular class of fluid flow deserves mention. This is the case when a free surface
limits the extent of the flow and this surface is not known a priori.

The class of problem is typified by two examples – that of a freely overflowing jet
[Fig. 7.16(a)] and that of flow through an earth dam [Fig. 7.16(b)]. In both, the free surface
represents a streamline and in both the position of the free surface is unknown a priori
but has to be determined so that an additional condition on this surface is satisfied. For
instance, in the second problem, if formulated in terms of the potential for the hydraulic
head H , Eq. (7.43) governs the problem.

The free surface, being a streamline, imposes the condition

∂H

∂n
= 0 (7.59)

be satisfied there. In addition, however, the pressure must be zero on the surface as this is
exposed to atmosphere. As

H = p

γ
+ y (7.60)
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(a)

(b)
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y

Fig. 7.16 Typical free surface problems with a streamline also satisfying an additional condition of pressure = 0.
(a) Jet overflow. (b) Seepage through an earth dam.

where γ is the fluid specific weight, p is the fluid pressure, and y the elevation above some
(horizontal) datum, we must have on the surface

H = y (7.61)

The solution may be approached iteratively. Starting with a prescribed free surface
streamline the standard problem is solved. A check is carried out to see if Eq. (7.61) is
satisfied and, if not, an adjustment of the surface is carried out to make the new y equal to
the H just found. A few iterations of this kind show that convergence is reasonably rapid.
Taylor and Brown40 show such a process. Alternative methods including special variational
principles for dealing with this problem have been devised over the years and interested
readers can consult references 41–49.

7.6 Concluding remarks

We have shown how a general formulation for the solution of a steady-state quasi-harmonic
problem can be written, and how a single program of such a form can be applied to a wide
variety of physical situations. Indeed, the selection of problems dealt with here is by no
means exhaustive and many other examples of application are of practical interest. Readers
will doubtless find appropriate analogies for their own problems.

7.7 Problems

7.1 The anisotropic properties for k are kx ′ = 0.4, ky ′ = 2.1 and kz′ = 1.0. The axes are
oriented as shown in Fig. 7.17. For θ = 30◦ compute the terms in the matrix k (e.g.,
kxx , kxy , etc.) with respect to the axes x, y, z.
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Fig. 7.17 Orientation of axes for Problem 7.1.

7.2 A two-dimensional heat equation has its surface located in the x−y plane. The problem
is allowed to convect heat from the surface of the surrounding region according to

Q(x, y) = −β[φ(x, y)− φ0]

where β is a convection parameter and φ0 the temperature of the surrounding medium.
Construct a weak form for the problem by modifying Eq. (7.13).
For a finite element approximation to φ and δφ deduce the form of the matrices

which result from the modified weak form.
7.3 For the quasi-harmonic equation consider a square 8-node serendipity element with unit

side lengths in the x and y directions. Using FEAPpv (or any other available program)
determine the rank of the element matrix H for the case where k = I (i.e., isotropic
with k = 1) andH = 0 using 1 × 1 Gaussian quadrature. Repeat the calculation using
2 × 2, 3 × 3 and 4 × 4 quadrature.
(a) What is the lowest order quadrature that gives a matrix H with full rank?
(b) What is the lowest order quadrature that evaluates the matrix H exactly?
[Hint: The rank of H may be determined from the eigenproblem given by:

H vi = λivi with vTi vj = δij

where δij is the Kronnecker delta. The rank of H is the number of non-zero eigenvalues
λi (a zero is any value below the round-off limit).]

7.4 Solve Problem 7.3 for a 9-node lagrangian element.
Using the eigenvector for the zero eigenvalue of the fully integrated element array

H determine and sketch the shape of eigenvectors from any additional (spurious) zero
eigenvalues. (Note: The fully integrated element has one zero eigenvalue, λ0.)

(Hint: For the case where two zero eigenvectors v1 and v2 exist they may be expressed
in terms of v0 and another orthogonal unit vector w0 as:

v0 = α1v1 + α2v2 where αi = vT0 vi
w0 = α2v1 − α1v2

number of non-zero eigenvalues λi (a zero being a value below the computer round-off).
The vectors v0, w0 and the vectors v1, w2 are both eigenvectors of the same subspace.



Problems 255

+ −
+

−
+

(a)

−
+

−

+

(b)

−

−

+

−

+

+

−

+

−+

(c)

−

Fig. 7.18 Warping function for torsion of rectangular bar. Problem 7.5.

7.5 Consider the torsion of a rectangular bar by the warping function formulation discussed
in Sec. 7.5.1. Let a and b be the side lengths in the x and y directions, respectively. For
a homogeneous section with shear modulus G the warping function has the behaviour
shown in Fig. 7.18 for a/b ratios of 1, 1.25 and 2. Note that the behaviour transitions
from eight to four regions of ± variation. Estimate the a/b ratio where this transition
just occurs.

To make your estimate use FEAPpv (or any other available program) with a fine mesh
of quadratic lagrangian elements. Set the boundary conditions to make the warping
function zero along the x and y axes. The transition will occur at the smallest a/b for
which all the values on the perimeter of one quadrant of the cross-section have the same
sign or are ‘numerically’ zero.

7.6 A cross-section of a long prismatic section is shown in Fig. 7.19 and subjected to
constant uniform temperatures 370 Co on the left boundary and 66 Co on the right
boundary. The top and bottom edges are assumed to be insulated so that qn = 0.

The cross-section is a composite of fir (A), concrete (B), glass wool (C) and yellow
pine (D). The thermal conductivity for each of the parts is: kA = 0.11, kB = 0.78,
kC = 0.04 and kD = 0.147 in consistent units for the geometry of the section shown.
(a) Estimate the heat flow through the cross-section assuming qy = 0 and qx constant

0.
05

0.
05

0.025 0.075 0.05

A

B

C

D

Fig. 7.19 Thermal analysis of composite section. Problem 7.6.
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in each part. Let the temperatures at each junction be T (0) = 370, T (0.025) = T1,
T (0.10) = T2 and T (0.15) = 66. (Hint: Assume T is a function of x only.)

(b) Use FEAPpv (or any other available program) to compute a finite element solution
using 4-node and 9-node quadrilateral elements. First perform a solution on a
coarse mesh and use this to design a mesh using a finer discretization. Let your
final 4-node element mesh have nodal locations which coincide with those used for
the corresponding 9-node element mesh.

Plot a distribution of heat flow qn across each of the internal boundaries.
7.7 The cross-section of two tubular sections is shown in Fig. 7.20. The parts are to be

assembled by heating the outer part until it just passes over the inner part as shown in
the figure. Let ri = 10 cm, t = 5 cm and h = 10 cm and take elastic properties as
E = 200 Gpa, ν = 0.3 and α = 12 × 10−6 per Co. The parts are stress free at room
temperature 20Co. The parts just fit when the outer bar is heated to 220Co (while the
inner part is maintained at room temperature).
(a) What is the correct inner radius of the outer part at room temperature?
(b) Solve the problem using FEAPpv (or any other available program). Use a mesh of

4-node quadrilateral elements to compute the final solution for the assembled part
at room temperature assuming complete contact at the mating surface and no slip
during cooling. Plot the radial displacement at the interaction surface.

(c) Compute an estimate of the traction components at the interaction surface. Do you
think there will be slip? Why?

7.8 Company X&Y plans to produce a rectangular block which needs to be processed by
a thermal quench in a medium which is 100◦C above room temperature. The block
shown in Fig. 7.21(a) has a = 10 and b = 20 (i.e., the block is 10×10×20). It has been
determined that the thermal properties of the block may be specified by an isotropic
Fourier model in which k = 1 and c = 1. The surface convection constant H is 0.05.

The quench must be maintained until the minimum temperature in the block reaches
99◦C above room temperature. Use FEAPpv (or any other available program) to per-
form a transient analysis to estimate the required quench time.

r

z

ri t t

h

h

Fig. 7.20 Thermal assembly of tubular sections. Problem 7.7.
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Fig. 7.21 Thermal quench in 2 and 3 dimensions. Problem 7.8.

(a) First perform a two-dimensional plane analysis on a 10 × 10 cross-section using a
uniform mesh of 4-node quadrilateral elements. Use symmetry to reduce the size
of the domain analysed. The surface convection will be modelled by 2-node line
elements along the outer perimeter. The analysis region is shown in Fig. 7.21(b)
with the boundary conditions to be imposed. Locate the node where the minimum
temperature occurs and plot the behaviour vs time (a good option is to use MATLAB
to perform plots).

Estimate the duration of time needed for the minimum temperature to reach the
desired value. (Hint: One approach to selecting time increments is to select a very
small value, e.g. �t = 10−8 and perform 10 steps of the solution. Multiply the
time increment by 10 and perform 9 more steps. Repeat the multiplication until the
desired time is reached.)

(b) Using the time duration estimated in (a) perform a three-dimensional analysis using
a uniform mesh of 8-node hexahedral elements. Use symmetry to reduce the size of
the region analysed. (Note: The convection condition applies to all outer surfaces.)

Estimate the duration of quench time needed for the minimum temperature to
reach the desired value.

(c) What analyses would you perform if the block was 10 × 10 × 5?
(d) Comment on use of a two-dimensional solution to estimate the required quench

times for other shaped parts.
7.9 The distribution of shear stresses on the cross-section of a cantilever beam shown in

Fig. 7.22(a) may be determined by solving the quasi-harmonic equation50

∂2φ

∂x2
+ ∂2φ

∂y2
= 0

with boundary condition

φ = P

2I

[ ∫
y2 dx − ν

3(1 + ν)
y3

]
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Fig. 7.22 End loaded cantilever beam. Problem 7.9.

where P is the end load, I is the moment of inertia of the cross-section, ν is the Poisson
ratio of an isotropic elastic material and φ is a stress function. The shear stresses are
determined from

τxz = −∂φ
∂y

and τyz = ∂φ

∂x
+ P

2I

[
ν

1 + ν
x2 − y2

]

See reference 50 for details on the formulation.
(a) Show that the stress function satisfies the equilibrium equation when the bending

stress is computed from

σz = − P (L− z) y

I

and σx = σy = τxy = 0. L is the length of the beam.
(b) Develop a weak form for the problem in terms of the stress function φ.
(c) For a finite element formulation develop the relation to compute the boundary con-

dition for the case when either 3-node triangular or 4-node quadrilateral elements
are used.

(d) Write a program to determine the boundary values for the cross-section shown in
Fig. 7.22(b). Let w = 2 and h = 3. Use the quasi-harmonic thermal element in
FEAPpv (or any other available program) to solve for the stress function φ. Plot
the distribution for φ on the cross section.

(e) Modify the expressions in FEAPpv (or any other program for which source code
is available) to compute the stress distribution on the cross-section. Solve and
plot their distribution. Compare your results to those computed from the classical
strength of materials approach.

(Hint: Normalize your solution by the factor P/2I to simpify expressions.)
7.10 A long sheet pile is placed in soil as shown in Fig. 7.23. The anisotropic properties of

the soil are oriented so that x = x ′, and y = y ′. The governing differential equation
is given in Sec. 7.5.3. The soil has the properties kx = 2 and ky = 3. Use FEAPpv
(or any other available program) to determine the distribution of head and the flow
in the region shown. Solve the problem using a mesh of 4-node, 8-node, and 9-node
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Fig. 7.23 Seepage under a sheet pile. Problem 7.10.
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Fig. 7.24 Seepage under an axisymmetric sheet pile. Problem 7.11.

quadrilateral elements. Model the problem so that there are about four times as many
4-node elements as used for the 8- and 9-node models (and thus approximately an
equal number of nodes for each model). Compare total flow obtained from each
analysis.

7.11 An axisymmetric sheet pile is placed in soil as shown in Fig. 7.24. The anisotropic
properties of the soil are oriented so that r = r ′ and z = z′. The governing equation
for plane flow is given in Sec. 7.5.3. Deduce the Euler differential equation for the
axisymmetric problem from the weak form given in Secs 7.2.3 and 7.3.2 suitably
modified for the seepage problem.
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Assuming isotropic properties with k = 3, use FEAPpv (or any other available
program) to determine the distribution of head and the flow in the region shown.
Solve the problem using a mesh of 4-node, 8-node, and 9-node quadrilateral elements.
Model the problem so that there are about four times as many 4-node elements as used
for the 8- and 9-node models (and thus approximately an equal number of nodes for
each model). Compare total flow obtained from each analysis.

7.12 A membrane occupies a region in the x−y plane and is stretched by a uniform tension
T . When subjected to a transient load q(x, y, t) acting normal to the surface the
governing differential equation is given by

−T
[
∂2u

∂x2
+ ∂2u

∂y2

]
+m

∂2u

∂t2
= q(x, y, t)

(a) Construct a weak form for the differential equation for the case when boundary
conditions are given by u(s, t) = 0 for s on �.

(b) Show that the solution by a finite element method may be constructed using C0

functions.
(c) Approximate the u and δu by C0 shape functions Na(x, y) and determine the

semi-discrete form of the equations.
(d) For the case of steady harmonic motion, u may be replaced by

u(x, y, t) = w(x, y) exp iωt

where i = √−1 and ω is the frequency of excitation.

Using this approximation, deduce the governing equation for w. Construct a
weak form for this equation. Using C0 approximations for w determine the form
of the discretized problem.

7.13 Program development project: Modify the program developed for solution of linear
elasticity problems to solve problems described by the quasi-harmonic equation for
heat conduction. Include capability to solve both plane and axisymmetric geometry.

Specify the material properties by anisotropic values k′
x , k′

y and β (where β is the
angle x ′ makes with the x axis).
Use your program to solve the problem described in Problem 7.6. Plot contours for
temperature and heat flows qx and qy .

7.14 Program development project: Extend the program developed in Problem 7.13 to
solve transient problems.

Include an input module to specify the initial temperatures.
Also add a capability to consider time-dependent source terms for Q.
Test your program by solving the problem described in Example 7.6 of Sec. 7.5.2.

7.15 Program development project: Extend the program developed in Problem 2.17 to com-
pute nodal values of fluxes from the quasi-harmonic equation. Follow the procedure
given in Sec. 6.4 to project element values to nodes.

Test your program using (a) a patch test of your design and (b) the problem described
in Example 6.6.
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8

Automatic mesh generation

8.1 Introduction

In the previous chapters we have introduced various forms of elements and the procedures
of using these elements in the computation of approximate solutions of a wide range of
engineering problems. It is now obvious that the first step in the finite element computation
is to discretize the problem domain into a union of elements. These elements could be of
any one type or a combination of different types of those described in Chapters 4 and 5.
The union of these elements is the so-called finite element mesh. The process of creating
a finite element mesh is often termed as mesh generation.

Mesh generation has always been a time-consuming and error-prone process. This is
especially true in the practical science and engineering computations, where meshes have to
be generated for three-dimensional geometries of various levels of complexity. The attempt
to create a fully automatic mesh generator, which is a particular mesh generation algorithm
that is capable of generating valid finite element meshes over arbitrary domains and needs
only the information of the specified geometric boundary of the domain and the required
distribution of the element size, started from the work of Zienkiewicz and Phillips1 in the
early 1970s. Since then many methodologies have been proposed and different algorithms
have been devised in the development of automatic mesh generators.

The early proposed mesh generation methods, such as the isoparametric mapping method
by Zienkiewicz and Phillips,1 the transfinite mapping method by Gordon and Hall2 dis-
cussed in Sec. 5.13, and the method of generating a mesh by solving various types of
partial differential equations as described by Thompson et al.,3, 4 are often regarded as
semi-automatic mesh generation methods. This is because in the mesh generation process
the model domain has to be subdivided manually into simple subregions, i.e., multi-blocks,
which are then mapped onto regular grids to produce a mesh. This manual process is
tedious and occasionally difficult, particularly in the case of three-dimensional complex
geometries. Such mesh generation procedures are complicated further by the requirement
of varying mesh size distributions since the element sizes are controlled by the subdivision
of the simple subregions. Thus, more subregions are needed to generate a mesh which can
accommodate changes in the desired element sizes from region to region. However, one of
the main features of these mapping techniques is that, once the domain is decomposed into
mappable subregions, the generation of the elements is much easier than any other meth-
ods. In addition, the elements generated by mapping methods usually have good shape and
regular orientation. Mapping methods are often used to generate quadrilateral elements
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in two dimensions and hexahedral elements in three dimensions. Triangles, tetrahedra
and all other types of elements can be obtained by dividing quadrilaterals and hexahedra
accordingly. These generated meshes are sometimes called structured meshes. Over the
years, continuous efforts have been made to automate the mapping methods,5–10 although
automatic decomposition of a complex domain into subregions seems to be a non-trivial
task. Today, no fully automatic mesh generator using a mapping method has been achieved.

In contrast with mapping methods, in recent years concrete achievements have been made
in the development of various algorithms for the automatic generation of the so-called un-
structured meshes. Most of the unstructured mesh generation methods are designed for
generating triangular elements in two dimensions and tetrahedral elements in three dimen-
sions (known as simplex forms). These simplex forms lead to the simplest discretization
of two- and three-dimensional domains of any shape, especially when meshes with varying
element sizes in different regions of the domain are requested. A large number of auto-
matic unstructured mesh generation algorithms have been proposed in the literature, but
the most widely used algorithms are based on one or some kind of combination of the three
fundamentally distinctive methods, which are the Delaunay triangulation method,11–20 the
advancing front method21–24, 26–28, 43 and tree methods 29–31 (the finite quadtree method in
two dimensions and the finite octree method in three dimensions). By observing the fact
that a quadrilateral can be formed by two triangles which share a common edge, the above-
mentioned methods can be extended to automatically generate unstructured quadrilateral
meshes in two dimensions. However, automatically generating a hexahedral mesh10, 32–35

encounters the almost identical difficulties as that in the mapping methods, much research
is still needed in this direction.

The automatic mesh generation process has been an active research subject since the
early 1970s. The research literature on the subject is vast and different methodologies
and techniques have been proposed. In this chapter, we are mainly concerned with the
automatic mesh generation methods based on the advancing front method and the Delaunay
triangulation method. These are the basis of many existing mesh generation programs
and the basis of current research. We shall discuss the algorithmic procedures of the
advancing front method in two dimensions and the Delaunay triangulation method in three
dimensions. We shall also discuss curve and surface mesh generations. The reader is
referred to Thompson et al.5, 36 for discussions on the development of semi-automatic
multi-block mesh generation methods.

Before proceeding further on mesh generation schemes it is necessary to specify the kind
of mesh we desire. Here we should give the following information:

1. The type of element and the number of nodes required on each;
2. The size of the desired element, here the minimum size of each element generally is

specified;
3. Specification of regions of different material types or characteristics to be attached to a

given element; and
4. In some cases, the so-called stretch ratio if we wish to present elements which are

elongated in some preferential direction. This is often needed for problems in fluid
mechanics in regions where boundary layers and shocks are encountered.

Any and all of the above information has to be available at all points of the space in
which elements are to be generated. It is often convenient to present this information as
numbers attached to a background mesh, consisting say of elements of a linear kind, from
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which these values can be interpolated to any point in space. The procedure is important
particularly if the use of adaptive refinement is considered – and here all mesh generation
schemes must ensure that the input data contains this information. In adaptive refinement,
in fact in general analysis, the background mesh will simply be the last mesh used for
analysis of the problem and the refinement will proceed from there as this is the starting
point for any new mesh to be developed.

8.2 Two-dimensional mesh generation – advancing front
method

Conceptually, the advancing front method is one of the simplest generation processes. The
element generation algorithm, starting from an initial ‘front’ formed from the specified
boundary of the domain, generates elements, one by one, as the front advances into the
region to be discretized until the whole domain is completely covered by elements.

The representative element generation algorithms of the advancing front method include
the procedure introduced by Lo,21 which constructs a triangulation over a set of a priori
generated points inside of the domain, and the methodology developed by Peraire et al.,22

which generates points and triangular elements at the same time.
One of the main distinctions of the mesh generation algorithm of Peraire et al. is that

the geometrical characteristics of the mesh, such as the location of the newly generated
point, the shape of the element and the size of the element, can be controlled during the
mesh generation process, due to the fact that individual points and elements are generated
simultaneously. With the assistance of a background mesh, which is utilized to define the
geometrical characteristics of the mesh, non-uniform distribution of element sizes, often
required in highly graded meshes, can be achieved throughout the domain according to
particular specifications. Any directional orientation of the elements can also be realized
by introducing stretches in certain specified directions. These features are particularly
desirable for the nearly optimal mesh design in adaptive analysis (viz. Chapter 14) and
adaptive computations of fluid dynamics as discussed in reference 37.

The mesh generation procedure includes three main steps:

• Node generation along boundary edges to form a discretized boundary of the domain.
• Element (and node) generation within the discretized boundary.
• Element shape enhancement to improve the quality of the mesh.

Before we proceed to the discussion of mesh generation procedures, the geometrical
representation of the two-dimensional domain is introduced.

8.2.1 Geometrical characteristics of the mesh

The geometrical characteristics of the mesh such as element size, element shape and element
orientation are represented by means of mesh parameters which are spatial functions. The
mesh parameters include two orthogonal directions defined by unit vectorsαi (i = 1, 2) and
the associated element sizeshi (i = 1, 2) as illustrated in Fig. 8.1. The orthogonal directions
αi (i = 1, 2) describe the directions of element stretching. A mesh with stretched elements
in certain directions isonly necessary when a non-isotropic mesh is desired, otherwise the
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Fig. 8.1 Mesh parameters in two dimensions.

stretching directions are set to be constant unit vectors in the coordinate directions and the
related element sizes are set to be equal, i.e., h1 = h2. In this case, the generated elements
will not be stretched in any direction and an isotropic mesh type will be generated.

Background mesh
The background mesh may be represented by simple triangular elements and is employed
to accurately control the distribution of the geometrical characteristics on the new mesh. A
piecewise linear distribution of the mesh parameters (mainly element sizes and stretching as
discussed above) is represented by data assigned to nodes of the background mesh. Values
of the mesh parameters at any point inside the domain or on the boundary of the domain
can be obtained by linear interpolation. There is no requirement that the background mesh
precisely represent the geometry, but it should completely cover the domain to be meshed.
The number of the elements and the position of the nodes in the background mesh are
chosen so that the mesh parameters can be approximated in a satisfactory manner. One
or two background elements will be sufficient if a uniform (isotropic) distribution of the
element sizes hi(i = 1, 2) is required. Examples of background meshes for a given domain
are illustrated in Fig. 8.2.

8.2.2 Geometrical representation of the domain

A general two-dimensional domain, which is covered by a background mesh (viz. Fig. 8.2),
is defined by its boundary which consists of a closed loop of curved boundary segments
(viz. Fig. 8.3).

Boundary curve representation
The curvilinear boundary segments are in general represented by composite parametric
spline curves. A curved boundary segment in two dimensions, can be expressed by a vector
valued function, using a parameter t , as

x(t) = {x(t) y(t)} , 0 ≤ t ≤ 1 (8.1)
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(a) (b)

Fig. 8.2 Background meshes for a typical domain. (a) Two triangles are used in the background mesh to
represent a uniform distribution of the mesh parameters. (b) Eleven triangles are used in the background mesh
to generate a graded mesh.

Boundary edge

Boundary data point

Fig. 8.3 Boundary segments, boundary data points and orientation of a typical domain.

In general, a composite spline curve is required to be at least C1 continuous to preserve
the smoothness of the boundary curve and to satisfy the continuity conditions required by
mesh generation algorithms. A Hermite cubic spline is used in the following; however,
there are many other types of parametric spline curves that can be used to represent the
curved boundary edges.38, 39 The parametric description of a Hermite cubic spline is given
by the form

x(t) = {H0(t) H1(t) G0(t) G1(t)}

⎧⎪⎪⎨
⎪⎪⎩

x(0)
x(1)

x,t (0)
x,t (1)

⎫⎪⎪⎬
⎪⎪⎭
, 0 ≤ t ≤ 1 (8.2)

in which x(0), x(1) are the coordinates of the end points and x,t (0), x,t (1) are their respective
tangent vectors defined as

x,t (t) = dx(t)
dt

(8.3)
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Cubic Hermite polynomials are expressed as

H0(t) = 1 − 3t2 + 2t3; H1(t) = 3t2 − 2t3

G0(t) = t − 2t2 + t3; G1(t) = −t2 + t3
(8.4)

and depicted in Fig. 8.4. It is easy to verify that

Ha(b) = G′
a(b) = δab and H ′

a(b) = Ga(b) = 0; a, b = 0, 1 (8.5)

Substituting (8.4) into (8.2) we obtain

x(t) = {1 t t2 t3
}

M

⎧⎪⎪⎨
⎪⎪⎩

x(0)
x(1)

x,t (0)
x,t (1)

⎫⎪⎪⎬
⎪⎪⎭
, 0 ≤ t ≤ 1 (8.6)

where

M =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0

−3 3 −2 −1
2 −2 1 1

⎤
⎥⎥⎦ (8.7)

All boundary edges are transformed to their spline representations. For each boundary
edge, a set of ordered data points xi (i = 0, 1, . . . , n) are located. An interpolation by
piecewise cubic Hermite polynomials through pairs of these points forms a composite
parametric spline curve. The number and distribution of the points should be chosen such
that the resulting piecewise cubic spline accurately represents the geometry of the boundary.
For a curved edge segment [ui−1, ui] of length �i = ui − ui−1 (i = 1, 2, . . . , n) of the
interpolated cubic composite curve, the cubic spline has the form of

x(u) = H0(t)x(ui−1)+H1(t)x(ui)+�iG0(t)x,t (ui−1)+�iG1(t)x,t (ui)

= {1 t t2 t3
}

M

⎧⎪⎪⎨
⎪⎪⎩

x(ui−1)

x(ui)
�ix,t (ui−1)

�ix,t (ui)

⎫⎪⎪⎬
⎪⎪⎭

0 ≤ t ≤ 1
(8.8)
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G0

H0

G1

H1

t

Fig. 8.4 Cubic Hermite interpolation functions.
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where t = (u− ui−1)/�i is the local parameter of the segment [ui−1, ui] and u ∈ [u0, un].
The unknown tangents of the composite curve can be computed by the standard cubic
spline interpolation procedures, provided that the final parametric curve is C2 continuous,
with proper end conditions.38, 40 The implementation of the spline interpolation can be
simplified when the parametric coordinates of ui are taken to be ui = i(i = 1, 2, . . . , n).
For segment [ui−1, ui] = [i − 1, i], the global parametric coordinates u is then related to
the local coordinate t according to

u = ui−1 + t = i − 1 + t (8.9)

The global mapping of the region u ∈ [u0, un] in parametric space and the cubic composite
curve provided by x(u) is depicted in Fig. 8.5.

The collection of all boundary edges, following a specific sequence that is convenient
for mesh generation, forms the complete boundary of the domain. For the advancing front
method, the sequence of exterior boundary edges is usually in a counterclockwise order,
but, for interior boundary edges, is set in a clockwise order, i.e., the domain to be discretized
always has an interior area situated to the left of the boundary edges. Figure 8.3 shows
the direction of the boundary edges together with the boundary data points, of a typical
domain.

8.2.3 Triangular mesh generation

Among all the steps in the mesh generation process, we are particularly concerned with the
procedure for element generation, which include node and side generation on the boundary
curve and triangular element generation inside of the two-dimensional domain.22

y

x

X

X(u)

Xi Xi+1

u0 ui ui+1 un

u

Fig. 8.5 Composite cubic spline interpolation of a planar curve.
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Geometrical transformation of the mesh
In order to simplify the mesh generation process, a symmetric transformation matrix T,
defined by the mesh parameters, is introduced and has the form

T(x) =
2∑
i=1

1

hi
αiα

T
i ; αi =

{
α1i

α2i

}
(8.10)

It is easy to verify that the local transformation

x′ = Tx (8.11)

is in fact imposing two scaling operations with factor 1/hi in each of the corresponding
directions αi . Figure 8.6 illustrates the effect of the transformation T on a triangle formed
by nodes abc in the coordinate system (x, y) to form the triangle a′b′c′ in the coordinate
system (x ′, y ′). This demonstrates that, at a particular point, the transformation T maps
triangle with element size hi(i = 1, 2) formed in the neighbourhood of the point into a
normalized space (x ′, y ′), in which the triangular elements are approximately equilateral.

Example 8.1: Transformation of a triangle. As an example, the details of the coordinates
transformation shown in Fig. 8.6 are given as follows.
From the coordinates of nodes a, b and c, we can easily find that at node b

α1 =
( √

2
2√
2

2

)
and α2 =

(
−

√
2

2√
2

2

)

with the associated element sizes h1 = 4
√

2 and h2 = √
2.

The transformation matrix T at node b is computed, using Eq. (8.10), as

T =
√

2

16

(
1 1
1 1

)
+

√
2

4

(
1 −1

−1 1

)

Applying T to nodes a, b, c results in

xa′ = Txa =
√

2

8

{−1
7

}
, xb ′ = Txb =

√
2

4

{
1
1

}
and xc ′ = Txc =

√
2

4

{
3
3

}

These are the nodal positions for the triangle a′b′c′ in the coordinate system (x ′, y ′).

Boundary node generation
The boundary of the domain will be discretized into a polygon which will form the element
edges, herein called ‘sides’. The sides are defined by nodes generated on the composite
spline curves that represent the boundary edges. The nodes will be generated along the
curve edge and expressed by their parametric positions. The coordinates of the nodes in
the two-dimensional domain are determined using Eq. (8.8). The algorithmic procedure of
the boundary node generation is described in the following.

1. For a curved edge with typical length L, a set of sampling points xl = x(ul)
(l = 0, 1, 2, . . . , m) is first placed along the curve with parameters ul uniformly
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Fig. 8.6 An irregular triangle abc in coordinate system (x, y)mapped to a regular triangle a’b’c’ in coordinate
system (x’, y’).

distributed as shown in Fig. 8.7. The unit tangent vector of the curve is determined
at each of the sampling points as

tl = (t1
l
, t2

l
) (8.12)

where
t1l = x,ul√

x2
,ul

+ y2
,ul

and t2l = y,ul√
x2
,ul

+ y2
,ul

(8.13)

and

x,ul = (x,ul , y,ul ); x,ul = dx

du

∣∣∣∣
ul

(8.14)
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Fig. 8.7 Sampling points and mesh parameters on a composite curve segment.

2. The mesh parameters αli and hli (i = 1, 2) are computed at each sampling point by
interpolation from their values assigned on the background mesh. The transformation
matrix Tl is formed accordingly at each of the sampling point.

3. In order to find the position of the new nodes on the curve, an element size distribution
function needs to be determined along the curve edge.
Let hsl denote the element size at the arc length sl corresponding to the sampling point
xl , a vector of length hsl in the tangent direction is defined as

τ l = hsl tl (8.15)

Applying transformation Tl and assuming that Tl maps τ l to a vector Tτ l in the nor-
malized space with unit length, i.e.,

Tlτ l = Tl(hsl tl) = hslTltl (8.16)

with √
(Tlτ l)T(Tlτ l) = hsl

√
(Tltl)T(Tltl) = 1 (8.17)

Thus, the curvilinear element size hsl (l = 0, 1, 2, . . . , m) at the sampling points along
the curve in the direction of the tangent is

hsl = 1√
(Tltl)T(Tltl)

= 1√
tT
l Cltl

(8.18)

where

C = TTT =
2∑
i=1

1

h2
i

αiα
T
i (8.19)

is the two-dimensional matrix of Euclidean metric tensor in the normalized space.
4. Assume that Tl is a constant matrix in the neighbourhood of xl , it is observed, from

Eq. (8.13), thathsl is a function of the parameteru. A continuous element size distribution
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function may be achieved by a piecewise linear interpolation of the nodal values hsl using
(lagrangian) finite element shape functions along the arc length of the curve

h(u) =
m∑
l=0

hslNl(u) (8.20)

The element density function, i.e., the number of elements per length scale along the
curve, is defined as 1/h(u).

5. The total number of the sides N to be generated along the curved edge needs to be
consistent with the specified element size, which is now represented by the element
density function. Therefore, N is taken to be the nearest integer to

A =
∫ L

0

1

h(u)
ds =

∫ um

u0

1

h(u)

√
(xu)2 + (yu)2 du (8.21)

where A is the ideal number of the sides that should have been created on the boundary
curve edge. However, A is in general not an integer. To measure how close N is to A, a
consistency index is defined as

θ = A

N
= 1

N

∫ um

u0

1

h(u)

√
(xu)2 + (yu)2 du (8.22)

Because the position of the nodes at the end of the edge x0 = x(u0) and xm = x(um) are
already known, there will be (N − 1) new nodes to be generated.

6. Assume that every node on the boundary edge is generated with the same consistency
index θ , the position of a particular new node nk(k = 1, 2, . . . , (N − 1)), represented
by its parametric position uk on the boundary curve can be computed as

θ = θk = 1

k

∫ uk

u0

1

h(u)

√
(xu)2 + (yu)2 du (8.23)

and similarly, the position of new node nk+1 is given by

θ = θk+1 = 1

k + 1

∫ uk+1

u0

1

h(u)

√
(xu)2 + (yu)2 du (8.24)

From θk = θk+1 = θ , we obtain the parametric position of node nk+1 computed con-
secutively as

θ =
∫ uk+1

uk

1

h(u)

√
(xu)2 + (yu)2 du (8.25)

where k = 0, 1, 2, . . . , (N−2). In general, Eq. (8.25) can be solved iteratively for uk+1.
For example, writing Eq. (8.25) in the form of

F(uk+1) =
∫ uk+1

uk

1

h(u)

√
(xu)2 + (yu)2 du− θ = 0 (8.26)

A Newton iterative process results in

u
j+1
k+1 = u

j
k+1 − h(u

j
k+1)√

(x
u
j

k+1
)2 + (y

u
j

k+1
)2

[
F(u

j
k+1)
]

(8.27)

for j = 0, 1, 2, . . . with initial value u0
k+1 = uk .
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7. Finally, the position of the new points is mapped onto the boundary curve using Eq. (8.8).

The generation of the boundary nodes will be performed edge by edge following the
above procedure. The boundary of the domain is finally discretized and transformed to a
union of straight line sides formed by connecting the consecutive boundary nodes.

Example 8.2: To verify the above procedure, the node generation technique is applied
to a curve edge representing a quarter of a circle shown in Fig. 8.8(a). To simplify the
presentation and also to demonstrate that the node generation procedure is independent
of the curve representation of the boundary edge, we chose not to use Hermite spline to
represent the curve, but use its parametric expression in the form of

x = 4 cos(u), y = 4 sin(u); 0 ≤ u ≤ π

2
(8.28)

The mesh parameters αi and hi (i = 1, 2) are chosen to be independent of their spatial
positions, the background mesh is therefore not required. We shall follow each step of
the boundary node generation procedure to create nodes in accordance with the specified
element size.

1. Three sampling points x(u
l
) (l = 0, 1, 2) are located with u

l
equally distributed at

u0 = 0; u1 = π

4
; u2 = π

2

The unit tangent vector to the curve is, by noting Eq. (8.13),

t = (−sin(u), cos(u))T

and

t(u0) = (0, 1)T; t(u1) =
(

−
√

2

2
,

√
2

2

)T

; t(u2) = (1, 0)T

2. The stretching directions are chosen as depicted in Fig. 8.8(a), i.e.,

α1 = (1, 0)T; α2 = (0, 1)T

y y

r = 4
u =

u =

3
π

π
6

a2; h2 = 2

a1; h1 = 2

Sampling point xj

New node

Discretized boundary side

u
x x

(a) (b)

Fig. 8.8 Node generation on a curve. (a) Description of the curve and mesh parameters. (b) Nodes generated
on the curve and sides formed by nodes.
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The corresponding element sizes are set to be constant and have the values of h1 = h2 =
2. That is, we are looking for a uniform discretization on the edge.

As a result of our choice of mesh parameters, the transformation matrix T is a constant
matrix and at all sampling points

T = 1

2

(
1 0
0 0

)
+ 1

2

(
0 0
0 1

)
= 1

2

(
1 0
0 1

)

3. Applying T to tangent vector t(u0), we have

Tt(u0) = 1

2

(
1 0
0 1

)(
0
1

)
=
(

0
1
2

)

The mesh size at x(u0) along the curve is, using Eq. (8.18), hs0 = 2.
Similarly, as expected, we have

Tt(u1) =
⎛
⎝ −

√
2

4
√

2
4

⎞
⎠ ; hs1 = 2; and Tt(u2) =

( − 1
2

0

)
; hs2 = 2

4. Each element size is obtained by linear interpolation

h(u) =
2∑
l=0

hslNl(u) = 2

because hsl (l = 0, 1, 2) are constant. The element density function is

1

h(u)
= 1

2

5. The integration of the element density function, using Eq. (8.21), gives the ideal number
of sides, as

A =
∫ π

2

0

1

2

√
16 sin2(u)+ 16 cos2(u) du = π

The nearest integer N to π is 3, i.e., there should be 3 sides being generated along the
curve. In addition to the nodes at the end of the curve, 2 new nodes are required. The
consistency index has the value of

θ = A

N
= π

3

6. The parametric position of the first new node is computed using Eq. (8.25)

θ1 = π

3
=
∫ u1

0

1

2

√
16 sin2(u)+ 16 cos2(u) du =

∫ u1

0
2 du = 2u1

which gives u1 = π/6. Here Eq. (8.25) can be solved exactly, no iterative scheme needs
to be invoked. Using the above result, the parametric position u2 of the second node is
calculated as

θ2 = π

3
=
∫ u2

π
6

2 du = 2

(
u2 − π

6

)

We have u2 = π/3.
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7. Finally, the coordinates of the new nodes are obtained from the parametric equations of
the circle. Substituting u1 and u2 into Eq. (8.28), we have for node n1,

x1 = 4 cos
(π

6

)
= 2

√
3; y1 = 4 sin

(π
6

)
= 2

and for node n2

x2 = 4 cos
(π

3

)
= 2; y2 = 4 sin

(π
3

)
= 2

√
3

The curved edge is discretized by three sides after linking each of the nodes as shown in
Fig. 8.8(b).

Generation front
A generation front is established prior to starting the triangular element generation. The
initial generation front is a collection of all of the sides which form the discretized boundary
edges of the domain. Thus, it consists of a set of closed loops of boundary sides. If the
domain is composed of multiple connected regions, such as regions with different material
properties, an initial generation front will be formed for each of the regions.

Each side in the generation front is defined by its two end points. The sequence of the
sides is also arranged such that the regions to be meshed are always situated to the left of
the generation front. The initial generation front for a simple rectangular domain is shown
in Fig. 8.9(a). At any stage of the element generation process, the generation front always
forms the boundary of the region to be discretized as depicted in Fig. 8.9(b). In the process
of element generation, a side from the generation front is chosen as a base to form a new
element with either a newly generated node or an existing node from the generation front.
Once a new element is formed, the generation front is updated. Any side that has been used
to create a new element is removed from the generation front and the newly created side is
added, as illustrated in Fig. 8.9(c) and Fig. 8.9(d). The updating procedure ensures that the
generation front always forms the boundary of the region to be meshed. The sides and the
nodes in the generation front are referred to as active sides and active nodes respectively.
Processing of the generation front continues until the entire region is filled with elements
and nodes.

Element generation
The process of generating a triangular element is illustrated in Fig. 8.10 and includes the
following steps:

1. An active side ab connecting nodes a and b is selected from the generation front as a
base to form the new element. To produce a mesh with smooth transition of the element
size, the smallest side is considered first. The sides in the generation front are sorted and
updated according to their length during the element generation process to increase the
efficiency of the mesh generation algorithm.

2. At the middle point m of side ab compute the local mesh parameters αmi and hmi (i =
1, 2) for the new element by interpolating from the background mesh.

3. The element creation process can be significantly simplified when point m and all the
nodes in the generation front with respect to coordinates (x, y) are mapped to the nor-
malized coordinate system (x ′, y ′) by x′ = Tx. The element generation process will be
conducted in the coordinate system (x ′, y ′) to construct a triangle that is as regular as
possible.
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Fig. 8.9 Generation front and its updating during the element generation process: (a) The initial generation
front. (b) Generation front at a certain stage. (c) and (d) Updated generation front after the creation of a new
element.

4. Determine the ideal position of new node c′ to form the new triangle. Node c′ is con-
structed in the direction normal to side a′b′ and located at a distance h′

l from node a′ and
node b′ as shown in Fig. 8.10. Here the normal of side a′b′ is pointing to the region to
be meshed and h′

l is chosen as

h′
l =
⎧⎨
⎩

0.55la′b′ 1 ≤ 0.55la′b′

1 0.55la′b′ < 1 < 2la′b′

2la′b′ 2la′b′ ≤ 1
(8.29)

to ensure that an element with excessive distortion is not created. The constants appearing
in the expression are empirical but have been shown to work well in practice.

5. Additional points are located to create a list of the potential node to generate the new
element. These include
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r�c = h�l

n�2

n�1

p�1
p�2

p�3
p�4
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m�
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la�b�

b�

c�

h�l

h�l

Fig. 8.10 The ideal position of the new node and locations of the potential forming nodes.

• all the nodes from the generation front that fall into the circle centred at c′ with radius

rc′ = N h′
l (8.30)

These nodes are ordered by their distance from c′ and denoted by n′
1, n

′
2, . . . , n

′
M with

n′
1 being the closest to c′. The value of constant N is given here as N = 1. The

inclusion of such nodes creates the opportunity for the new element being formed
from existing nodes on the generation front.

• A collection ofL points are generated along the straight line between points c′ andm′.
These points, denoted by p′

1, p
′
2, . . . , p

′
L are also ordered according to how close they

are to node c′. Their addition ensures that a new element can always be generated.
Here L = 5 is commonly used.

It is noted that the empirical values given to N and L can be automatically modified
during the mesh generation process to include a sufficient number of nodes.

6. Nodes n′
j (j = 1, 2, . . . ,M) from the potential node list and node c′ are considered

sequentially to form the new triangle with side a′b′. Such ordering allows the existing
nodes to be considered first when they are not too far away from c′. The point that forms
the new triangle with side a′b′ is taken to be the first node that satisfies the criterion
(8.29) such that the newly formed sides of the triangle do not intersect any of the existing
sides in the generation front.

If neither nodes n′
j (j = 1, 2, . . . ,M) nor node c′ can form the new triangle, nodes

p′
j (j = 1, 2, . . . , L) are tested. The first p′

j that verifies the criterion is taken to be the
new node.
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7. New element is formed. If the new node c′ is adopted to generate the new triangle, its
coordinates are transformed back to the original coordinate system by

xc = T−1x′
c (8.31)

8. The generation front list is updated after each new element is added and any new node
is added to the node list.

The element generation process continues until the number of the sides in the gen-
eration front reduces to zero. The domain is then discretized completely by triangular
elements.

8.2.4 Mesh quality enhancement for triangles

Mesh quality enhancement is indispensable to all mesh generation algorithms, because the
shape of the triangles generated directly is not always optimal, particularly for a strongly
graded mesh with element size varying rapidly. To improve the shape of the elements, at
the final stage of the mesh generation, various mesh quality enhancement techniques, such
as mesh smoothing and mesh modification, are employed.

Mesh smoothing
In the process of mesh smoothing, the topological structure of the mesh is fixed, i.e., the
nodal connections of the elements will not be altered, but the interior nodes are reposi-
tioned to produce triangles with somewhat improved shapes. The computationally most
efficient smoothing algorithm is the well-known Laplacian smoothing41 which repositions
the internal node at the centroid of the polygon formed by its neighbouring nodes. The new
position of an internal node i is computed as

xi = 1

N

N∑
j=1

xj and yi = 1

N

N∑
j=1

yj (8.32)

where N is the number of the nodes linked to node i.
The mesh smoothing process consists of several (usually three to five) iterations. The

technique has proved to be effective and generally adjusts the mesh into one with better
shaped elements as shown in Fig. 8.11. However, the algorithm may fail if some of the
neighbouring nodes of interior node i are boundary nodes and the polygon formed by these
nodes is concave. The following example demonstrates this possibility.

e

f
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d

c

ba

e

f

i

d

c

ba

Fig. 8.11 Laplacian smoothing. Node i is repositioned.
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Example 8.3: A simple triangulated concave domain with boundary nodes a, b, c, d, e, f
and their coordinates is shown in Fig. 8.12. The new position of the only interior node i,
calculated by Eq. (8.32), is at

xi ′ = 1

6
(−1 + 4 + 4 + 0 + 0 − 1) = 1

yi ′ = 1

6
(−1 − 1 + 0 + 0 + 4 + 4) = 1

which clearly is outside the domain.
To prevent such failure, various constraints can be added to Laplacian smoothing. One

such constraint is to reposition node i only if the maximum interior angle of all the elements
linked by node i is decreasing. This constraint is in fact only necessary for those interior
nodes which have neighbouring nodes being boundary nodes.

Mesh modification
The topological structures of the mesh, such as the node–element relation, the side–element
relation and the node–node relation, are established once the process of element generation
is completed. These relations, to some extent, reflect the regularity of the mesh. For
instance, the optimal value of node–element adjacency number NE, which shows how
many elements are connected to a node in a triangular mesh, is defined as

NEop =
{

6 for interior nodes
max(� 3θ

π
+ 1

2�, 1) for boundary nodes
(8.33)

where θ is the internal angle formed by boundary edges joined at the boundary node and
�c� is the integer part of the value c. When NEop is attained for all the nodes, most of the
elements in the resulting mesh are approximately equilateral. However, if an interior node
has a node–element adjacency number far bigger or smaller than NEop, the surrounding
elements of the node may be very distorted.
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Fig. 8.12 A pathological case of Laplacian smoothing.
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Distorted elements are, in general, inevitable for a mesh with varying element sizes as less
regular transition elements are created during the element generation process. Distorted
elements are also produced because the element size h is considered only locally when
each element is formed. The distortion of the element caused by non-optimal topological
structure of the mesh cannot be corrected by smoothing alone. In the following, techniques
that alter the topology of the mesh in order to reduce the element distortion to a minimum
are described.

Node elimination. A node elimination process consists of a loop over all the interior nodes.
A node i will be eliminated if:

• i is linked with three elements, i.e., NEi = 3. i is removed together with the three
elements connected to it and replaced by a single element e′i as illustrated in Fig. 8.13.

• i is shared by four elements, i.e.,NEi = 4. i is deleted from the mesh and its four related
elements are reduced to two.

The possibility of such operations are depicted in Fig. 8.14.
It is noted that the element size distribution is almost unchanged in the process of node

elimination.

Diagonal swapping. The process of diagonal swapping examines all the element sides com-
mon to two elements. Element sides that are part of a material interface should not be altered.
Considering a side shared by two triangles e1 and e2 shown in Fig. 8.15, the edge ac will
be replaced by edge bd together with elements e1 and e2 and be substituted by elements e′1
and e′2 when one of the following frequently used criteria is satisfied:

• The maximum internal angle of the new elements e′1 and e′2 should be smaller than that
of elements e1 and e2.
or

• The node–element adjacency number improves to be closer to the optimal value after
swapping.

Both criteria work well in practice. Figure 8.16 shows two diagonal swapping steps that
satisfy the criterion of reducing the maximum angle in a region with seven elements. The
quality of the elements is obviously improved.

Swapping of diagonals is not allowed if it results in a negative area for one of the newly
created elements.

c

a b
(a)

e2

e3
e1

c

a b
(b)

e�1
i

Fig. 8.13 Elimination of node i with NEi = 3.
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Fig. 8.14 Elimination of node e with NEe = 4.

The mesh quality, such as the smoothness of the mesh and the regularity of the elements,
can be significantly improved after combined applications of mesh quality enhancement
techniques.

Example 8.4: Two triangular meshes generated by a mesh generator using the advancing
front method are shown in Fig. 8.17 and Fig. 8.18. The mesh plotted in Fig. 8.17 is used
for finite element analysis of a dam. The mesh parameters are arbitrarily given. The mesh
of Fig. 8.18 was generated in the adaptive analysis of fluid dynamics. The mesh reflects
the distribution of the specified mesh parameters which are computed from an a posteriori
error estimator.42

8.2.5 Higher order elements

Higher order elements can be created easily by adding additional intermediate nodes to
each element edge. For an interior edge, the position of an intermediate node is determined
directly by interpolation using the positions of the nodes at each end of the edge. For a
boundary edge, however, the parametric position of the intermediate node between nodes nk
and nk+1 may be computed either by Eq. (8.25) or by interpolating the parametric position
of nk and nk+1 directly, so that the position of the intermediate node can be mapped onto the

d c
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(a)
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d c

b

e�2
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(b)
a

Fig. 8.15 Diagonal swapping. Diagonal ac replaced by diagonal bd. Elements e1 and e2 changed to elements
e

′
1 and e

′
2.
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Fig. 8.16 Diagonal swapping for elements in a boundary region.

Fig. 8.17 Triangular mesh for a dam.

curvilinear boundary. These nodes are generated at the boundary node generation stage and
placed on the boundary curve after the completion of the element generation process. The
position of any interior nodes can be interpolated by the position of the element perimeter
nodes. Figure 8.19 shows the locations of vertex nodes, edge nodes and interior nodes for
some quadratic elements.
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Fig. 8.18 Triangular mesh with mesh size distribution given by an error estimator.
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Fig. 8.19 Quadratic elements.

8.2.6 Remarks

Before we proceed to the discussion of surface mesh generation, several remarks are given
on issues related to the topics discussed in this section.

Remark 8.1. The algorithm for the advancing front method has been shown to be robust in
two-dimensional mesh generation of triangles and, although not discussed here, can easily
be extended to generate quadrilaterals.87 However, in the process of generating triangles,
several empirical constants have been adopted, e.g., those used in Eqs (8.29) and (8.30). The
optimal values of these constants are still unknown. In addition, what kind of correlation
between the value of these constants and the structure of the resulting mesh is also an open
question. Because of the lack of the mathematical rigour, a robust element generation
process for the advancing front method in three dimensions is much more complicated than
that described here for two dimensions.23–26, 28

Remark 8.2. In order to implement the search algorithms required in the element generation
process efficiently, use of special data structures such as those proposed in references 44–46
for the advancing front method are advantageous.
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Remark 8.3. Other methodologies for generating quadrilateral mesh can be found in refer-
ences 30, 47–52 and 88. The various algorithms that convert an existing triangular mesh
to a quadrilateral mesh48–50, 52 are all robust, although the element size and element ori-
entation of the resulting mesh are influenced by the pre-existing triangular mesh. Among
these algorithms, the one proposed by Owen et al.,52 uses the advancing front method in
the process of converting triangles to quadrilaterals.

8.3 Surface mesh generation

Surface mesh generation is a prerequisite for many three-dimensional mesh generation al-
gorithms, such as those based on the advancing front method and the Delaunay triangulation
method, but it is not required for the finite octree method. However, generating a surface
mesh prior to three-dimensional mesh generation has its advantages:

(a) The quality of three-dimensional meshes is strongly dependent on the quality of the
surface mesh. A distorted triangle in the surface mesh will almost certainly result in a
tetrahedron with poor quality.

(b) For many applications, an accurate description of the surface of a three-dimensional
domain is essential. This can be readily realized by increasing the accuracy of the
parametric representation of the surface and by assigning proper surface mesh element
size distribution during the generation of the surface mesh.

(c) In modern engineering design, nearly all three-dimensional geometries are created by
computer aided design (CAD) systems. The boundary representation (B-Rep) of the
three-dimensional geometry exported by CAD systems often contains defects, e.g.,
gaps between connecting surfaces and discontinuities of boundary edges of the sur-
face. These defects can be corrected before and during the surface mesh generation
process. Consequently, accurate surface mesh generation prevents three-dimensional
mesh generation algorithms from failing due to presence of defects.

Although essential to many three-dimensional mesh generation algorithms, surface mesh
generation also has its own application in finite element analysis, this is especially true in
the solution of shell problems. In the process of generating a surface mesh for a three-
dimensional geometry, each face of the geometry is discretized individually, the complete
surface mesh of the geometry will be formed by a final assembly of the faces. Since we are
mainly concerned with the algorithmic procedure of the surface mesh generation, we shall
discuss the mesh generation algorithm for an individual face. The basic idea of the al-
gorithm described below, proposed by Peraire et al.53 and Peiró,54 is to perform mesh
generation, according to the prescribed element size distribution, in the two-dimensional
parametric plane and map the two-dimensional mesh onto the three-dimensional surface.
From a computational standpoint, generating triangles (or quadrilaterals) on a plane is much
simpler than that on a three-dimensional surface. The two-dimensional element generation
algorithm described in the previous section can be readily applied. Nevertheless, in order
to obtain a surface mesh that respects the prescribed geometrical characteristics, such as
element size and element shape, the mesh parameters given to the three-dimensional sur-
face mesh need to be transformed to the parametric plane. The mesh generation procedure
includes four major steps:
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(b)

Fig. 8.20 (a) A machine part. (b) Boundary faces and boundary edges of the machine part.

• Perform node generation along the curved boundary edge to form the discretized boundary
of the surface.

• Transform boundary nodes, therefore the discretized surface boundary, to the parametric
plane.

• Perform element generation in the parametric space within the discretized boundary.
• Map the mesh in parametric space onto the surface using its parametric representation.

In the following we will mainly be concerned with the processes of boundary node
generation and element generation in the parametric space, starting with the parametric
representation of three-dimensional curves and surfaces.

8.3.1 Geometrical representation

In the boundary representation of CAD systems for three-dimensional solids, the surfaces
and curves are usually given in parametric forms represented by a variety of composite
spline surfaces and curves [e.g., in the form of Bézier, B-spline or NURBS (Non-Uniform
Rational B-Splines)]. The faces of the solid are sections of the surfaces on which they
are defined. The edges that connect the faces are portions of the spline curves and are the
boundary of the faces. Figure 8.20 illustrates a machine part, its boundary faces and their
connecting edges. Figure 8.21 shows two of the faces of the same part and the composite
spline surfaces that include the faces as sections.

Although the surface mesh generation algorithm described in this section is independent
of the parametric forms of the spline function that represents the curves and surfaces, we
choose for simplicity to have boundary edges and surfaces expressed by the interpolatory
cubic Hermite parametric spline curves and surfaces, respectively. It is worth noting that
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(a) (b)

Fig. 8.21 Surfaces of the machine part. (a) A flat surface. (b) A curved surface. Darker lines are the boundaries
of the machine part surfaces.

transforming various curve and surface representations created by CAD systems to a single
convenient form can simplify the development of a mesh generation program.

Curve representation
The same curve representation described in Sec. 8.2.2 can be used for curves in three
dimensions except that the vector valued function is now in the form of

x(t) = {x(t) y(t) z(t)}, 0 ≤ t ≤ 1 (8.34)

with t again as the parameter.
An interpolation by piecewise cubic Hermite polynomials through a set of ordered data

points xi (i = 0, 1, . . . , n) located on the curve generated by CAD systems for each bound-
ary edge constructs a composite parametric spline curve in the same format as described by
Eq. (8.8), except that now x(u) represents a position in three-dimensional space. Similarly,
the number of the interpolation points and the distribution of the points should be chosen
such that the surface edge can be accurately represented. The global mapping between the
region u ∈ [u0, un] in parametric space and a three-dimensional cubic composite curve
provided by x(u) is depicted in Fig. 8.22.

Surface representation
Surfaces are represented by composite Hermite surfaces. A parametric bicubic Hermite
surface patch can be obtained from the tensor product of two cubic Hermite parametric
segments. It is represented by the four cubic curves that form its boundary and the twist
vectors at its four corner points. In parametric form, the surface patch is expressed as

x(s, t) = {H0(s) H1(s) G0(s) G1(s)} Bc

⎧⎪⎪⎨
⎪⎪⎩

H0(t)

H1(t)

G0(t)

G1(t)

⎫⎪⎪⎬
⎪⎪⎭

= {1 s s2 s3
}

MBcMT

⎧⎪⎪⎨
⎪⎪⎩

1
t

t2

t3

⎫⎪⎪⎬
⎪⎪⎭
, 0 ≤ s, t ≤ 1

(8.35)
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Fig. 8.22 Three-dimensional composite cubic spline interpolation.

where M is the matrix defined in Eq. (8.7) and

Bc =

⎡
⎢⎢⎣

x(0, 0) x(0, 1) x,t (0, 0) x,t (0, 1)
x(1, 0) x(1, 1) x,t (1, 0) x,t (1, 1)
x,s(0, 0) x,s(0, 1) x,st (0, 0) x,st (0, 1)
x,s(1, 0) x,s(1, 1) x,st (1, 0) x,st (1, 1)

⎤
⎥⎥⎦ (8.36)

is often called the boundary condition matrix, in which x(0, 0), x(0, 1), x(1, 0), x(1, 1) are
the four corners of the patch. The tangents x,s and x,t , and the twists x,st at the corners are
given by

x,s = ∂x
∂s
, x,t = ∂x

∂t
, x,st = ∂2x

∂s∂t
(8.37)

A piecewise composite surface is obtained by interpolation through a topologically rect-
angular set of data points xij (i = 0, . . . , m; j = 0, . . . , n) and their corresponding para-
meter values (vi, wj ) (i = 0, . . . , m; j = 0, . . . , n) generated from the CAD representation
of the surfaces. It consists of a network ofm×n quadrilateral surface patches. The surface
patch [vi−1, vi] × [wj−1, wj ] (i = 1, 2, . . . , m; j = 1, . . . , n) in the network is described
by

x(v,w) = {1 s s2 s3
}

MBcMT

⎧⎪⎪⎨
⎪⎪⎩

1
t

t2

t3

⎫⎪⎪⎬
⎪⎪⎭

0 ≤ s, t ≤ 1 (8.38)

Here s = (v−vi−1)/�i and t = (w−wj−1)/�j are local coordinates of the corresponding
intervals [vi−1, vi] and [wj−1, wj ],�i = vi − vi−1 and�j = wj −wj−1 are the respective
lengths of the intervals, and the boundary condition matrix is of the form

Bc =

⎡
⎢⎢⎢⎢⎣

x(vi−1, wj−1) x(vi−1, wj ) �jx,w(vi−1, wj−1) �jx,w(vi−1, wj )

x(vi, wj−1) x(vi, wj ) �jx,w(vi, wj−1) �jx,w(vi, wj )

�ix,v(vi−1, wi−1) �ix,v(vi−1, wj ) �i�jx,vw(vi−1, wj−1) �i�jx,vw(vi−1, wj )

�ix,v(vi , wj−1) �ix,v(vi , wj ) �i�jx,vw(vi, wj−1) �i�jx,vw(vi, wj )

⎤
⎥⎥⎥⎥⎦

(8.39)
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The unknown tangents x,v and x,w and twist x,vw of the composite surface can be deter-
mined by following the standard procedure for piecewise parametric surface interpolation
requiring the resulting composite surface to be at leastC1 continuous39, 40 (aC2 continuous
composite surface is usually adopted in CAD surface mesh generation).

Similar to that used in the implementation of curve interpolation described in Sec. 8.2.2,
the parametric coordinates of vi andwj are usually taken as vi = i andwj = j respectively.
For surface patch [vi−1, vi] × [wj−1, wj ] = [i − 1, i] × [j − 1, j ], the global parametric
coordinates v and w are related to the local coordinates s and t through

v = vi−1 + s = i − 1 + s, i = 1, 2, . . . , n;
w = wj−1 + t = j − 1 + t, j = 1, 2, . . . , m

(8.40)

The global one-to-one mapping between the parametric plane and the composite surface
provided by x(v,w) is illustrated in Fig. 8.23. Indeed, a region with curved boundary, as
depicted in Fig. 8.24, within the parametric plane [v0, vm] × [w0, wn] constitutes a portion
of the composite spline surface in a three-dimensional space.

8.3.2 Geometrical characteristics of the surface mesh

A surface mesh generally is three dimensional, thus, the spatial distribution of the shape and
size of the surface elements needs to be specified in three dimensions. Because the mesh
generation is performed in the two-dimensional parametric plane, proper spatial distribution
of the element shape and size in the parametric space also needs to be defined.

Mesh control function in three dimensions
As was adopted in two-dimensional mesh generation, the geometrical characteristics of
the surface mesh such as the distribution of the element shapes and sizes on the surface
are controlled by mesh parameters. For surface mesh, mesh parameters include a set of
three mutually orthogonal directions αi (i = 1, 2, 3), and their associated element sizes
hi (i = 1, 2, 3) as shown in Fig. 8.25.

Mesh parameters are defined at the nodes of a three-dimensional background mesh,
which usually consists of a small number of tetrahedral elements. The background mesh
can be constructed to cover the entire surface of the three-dimensional geometry or to cover
each face of the geometry individually. In either case, the background mesh will be created
automatically by dividing one or several hexahedra (tetrahedra or prisms) into tetrahedra.
Figure 8.26 shows a tetrahedral background mesh generated from a single hexahedron
for a single surface. The spatial distribution of the mesh parameters is furnished by the
background mesh. At a particular point on the surface, the mesh parameters are computed
by a linear interpolation of the values assigned at the nodes of the background mesh. The
geometrical characteristics at a point of the surface mesh is therefore attained. For instance,
when all three element sizes are found to be equal at the point, the tetrahedral elements in
the surrounding area of the point will be approximately equilateral. Since the faces of the
tetrahedral elements form the surface elements they are therefore approximately equilateral
triangles.
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Fig. 8.23 Composite cubic surface interpolation.

A three-dimensional geometrical transformation matrix T, similar to that defined in two-
dimensional mesh generation, is in the form of

T(x) =
3∑
i=1

1

hi
αiα

T
i (8.41)

and constitutes a scaling factor 1/hi in each of the αi directions (i = 1, 2, 3). When it is
applied to tetrahedra with element sizes hi in directionsαi at a given point in the coordinate
system (x, y, z), the tetrahedra will be mapped to equilateral tetrahedra in the normalized
space (x ′, y ′, z′). Consequently, the surface element will be mapped to equilateral triangles
in the normalized space. Indeed, transformation T also provides a mapping relationship
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Fig. 8.24 A region in parametric plane and its image on spline surface.

between parametric coordinates and the three-dimensional normalized coordinates

x′(v,w) = Tx(v,w) (8.42)

As indicated, surface mesh generation will be performed in the parametric space (v,w)
and mapped onto the surface in three dimensions. In order to accomplish the planar mesh
generation on the parametric plane, appropriate planar mesh parameters have to be assigned.
These mesh parameters must be given in such a way that, after being mapped onto the
surface, the final surface mesh respects the specified geometrical characteristics. Such
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Fig. 8.25 Mesh parameters defined in three dimensions.
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Fig. 8.26 A six tetrahedra background mesh derived from a hexahedron. The six tetrahedra are (e, f, h, a),
(a, b, f, d ), (f, h, d, a), (b, f, d, c), (d, g, h, f ), (d, c, g, f ).

a requirement can be achieved by deriving the planar mesh parameters from the three-
dimensional surface mesh parameters.

Mesh parameters in parametric plane
We start by examining a curve in the parametric plane expressed by parameter ξ and
illustrated in Fig. 8.27, i.e.,

v = v(ξ), w = w(ξ) (8.43)

or in vector form
u(ξ) = (v(ξ), w(ξ)) (8.44)
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At a particular point u(ξp), the square of arc length element ζ along the curve is expressed
as

(dζ )2 = (dv)2 + (dw)2 =
(

du
dξ

dξ

)T (du
dξ

dξ

)
= tT

ξ tξ (lξ dξ)2 = (lξdξ)
2 (8.45)

where lξ is the length of the tangent vector

lξ =
√(

du
dξ

)T (du
dξ

)
(8.46)

and tξ is the unit tangent vector

tξ = 1

lξ

du
dξ

(8.47)

This shows that the arc length element in the direction of a unit tangent along the curve in
the parametric plane can be expressed by

dζ = lξ dξ (8.48)

We now consider the image of the planar curve at point x(v(ξp), w(ξp)) on the surface
represented by

x(v,w) = (x(v,w), y(v,w), z(v,w)) (8.49)

The square of the arc length element in the direction of the unit tangent t along the curve
on the surface is given by

(ds)2 = (dx)2 + (dy)2 + (dz)2 = (dx)T(dx) (8.50)

where

dx =

⎧⎪⎪⎨
⎪⎪⎩

dx

dy

dz

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

∂x

∂v

∂x

∂w
∂y

∂v

∂y

∂w
∂z

∂v

∂z

∂w

⎤
⎥⎥⎥⎥⎥⎦

{
dv

dw

}
= [x,v, x,w

]
du (8.51)

Assume that the transformation matrix Tds , correlated to ds at x(v(ξp), w(ξp)), maps dx
to the normalized space with a unit length, i.e.,

(ds ′)2 = (dx ′)2 + (dy ′)2 + (dz′)2 = (dx)TCds(dx) = 1 (8.52)

where

Cds = TT
dsTds =

3∑
i=1

1

h2
dsi

αiα
T
i (8.53)

corresponding to the Euclidean metric tensor in the normalized space, and hdsi can be
viewed as element size associated with ds in the direction of αi .

Substitute dx into Eq. (8.52), we have

(
[x,v, x,w] du

)T
Cds
(
[x,v, x,w] du

) = 1 (8.54)
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Fig. 8.27 Arc length element dξ in parametric plane and its image on the surface.

From Eqs (8.47) and (8.48), we know that

du = lξ dξ tξ = dζ tξ (8.55)

which when substituted into Eq. (8.54) gives

(
[x,v, x,w] tξ

)T
Cds
(
[x,v, x,w] tξ

)
(dζ )2 = 1 (8.56)

This shows that for an arc length element ds along a curve on the surface, the arc length
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along its curve in the parametric plane is

dζ = 1√(
[x,v, x,w] tξ

)T
Cds
(
[x,v, x,w] tξ

) (8.57)

Replacing ds by the curvilinear element size hs and Tds by T on the surface. Using hξ ,
the element size along the planar curve on the parametric plane, in place of dζ , we have

(
[x,v, x,w] tξ

)T
C
(
[x,v, x,w] tξ

)
(hξ )

2 = 1 (8.58)

or
hξ = 1√(

[x,v, x,w] tξ
)T

C
(
[x,v, x,w] tξ

) = 1√
tT
ξ G tξ

(8.59)

The matrix of the metric tensor is now expressed as

C = TTT =
3∑
i=1

1

h2
i

αiα
T
i (8.60)

and
G = [x,v, x,w]TC[x,v, x,w] (8.61)

is the matrix of the metric tensor in the parametric space.
If we assume that T is a constant matrix in the neighbourhood of point x(v(ξp), w(ξp)),

substitute Eq. (8.60) into Eq. (8.59) and note the mapping relationship of Eq. (8.42), we
obtain hξ in a somewhat different form

hξ = 1√
tT
ξ gtξ

(8.62)

where

g =
[
gvv gvw
gwv gww

]
(8.63)

is the first fundamental matrix of the surface in the normalized space,38 and

gvv =
(
∂x ′

∂v

)2

+
(
∂y ′

∂v

)2

+
(
∂z′

∂v

)2

gvw = 2

(
∂x ′

∂v

∂x ′

∂w
+ ∂y ′

∂v

∂y ′

∂w
+ ∂z′

∂v

∂z′

∂w

)
= gwv

gww =
(
∂x ′

∂w

)2

+
(
∂y ′

∂w

)2

+
(
∂z′

∂w

)2

(8.64)

Consequently, we have established the relationship between G and g. When transforma-
tion T is a constant matrix,

G = g

This shows that the matrix of the metric tensor in parametric space is the same as the first
fundamental matrix of the surface in the normalized space.
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The two-dimensional mesh parameters αi (v(ξp), w(ξp)) and hi(v(ξp), w(ξp)) for the
planar mesh on the parametric plane are computed from the directions in which hξ attains
an extremum. To this end, Eq. (8.59) is rewritten in the form of

tT
ξ Gtξ = 1

h2
ξ

(8.65)

Let

G =
[
G11 G12

G21 G22

]
(8.66)

where
G11 = xT

,vC x,v, G12 = xT
,vC x,w, G22 = xT

,wC x,w (8.67)

and G21 = G12.
From Eq. (8.65), we know that finding the direction in which 1/h2

ξ reaches an extremum
involves the solution of an eigenproblem for the symmetric matrix G. To this end we let
λ1, λ2 with λ1 ≥ λ2 denote the eigenvalues and a1, a2 the eigenvectors of G. The mesh
parameters in the parametric plane at point (v(ξp), w(ξp)) are given as

h1(v,w) = 1√
λ1
, h2(v,w) = 1√

λ2
(8.68)

and
α1(v,w) = a1, α2(v,w) = a2 (8.69)

where the eigenvalues are computed as

λ1 = G11 +G22

2
+
√
(G11 −G22)2

4
+G2

12, λ2 = G11 +G22

2
−
√
(G11 −G22)2

4
+G2

12

(8.70)
the eigenvectors are

a1 = (cos θ, sin θ), a2 = (− sin θ, cos θ) (8.71)

with

θ = 1

2
tan−1

(
2G12

G11 −G22

)
(8.72)

8.3.3 Discretization of three-dimensional curves

In order to perform mesh generation on the parametric plane, the boundary curves of the
surface will be discretized in three-dimensional space and then projected to the parametric
plane by inverse mapping.

Node generation on the curves
The algorithmic procedure for the node generation on three-dimensional curves is identical
to that described in Sec. 8.2.2 for the two-dimensional curve. The curves are of course
now represented by Eq. (8.34). The procedure listed below is the same as that discussed in
Sec. 8.2.2 but now expressed in its three-dimensional form.
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1. A set of sampling points xl = x(ul) (l = 0, 1, 2, . . . , m) is first placed along the curve
with parameters ul uniformly distributed as shown in Fig. 8.28. The unit tangent vector
for the three-dimensional curve is computed at the sampling point as

tl = (t1
l
, t2

l
, t3

l
) (8.73)

where
t1l = x,ul

lul
; t2l = y,ul

lul
; t3l = z,ul

lul
(8.74)

with lul =
√
x2
,ul

+ y2
,ul

+ z2
,ul

and x,ul = (x,ul , y,ul , z,ul ) the tangent vector.
2. Using the interpolated values from the background mesh, the mesh parameters αli , hli

(i = 1, 2, 3) and the associated transformation matrix Tl are computed at each sampling
point.

3. The element size hsl at the sampling point xl (l = 0, 1, 2, . . . , m) in the tangent direction
is calculated by

hsl = 1√
(Tltl)T(Tltl)

= 1√
tT
l Cltl

(8.75)

where the metric tensor C is defined in Eq. (8.60).
4. A continuous element size distribution function is obtained by linear interpolation of the

nodal values hsl at sampling points using finite element shape functions

h(u) =
m∑
l=0

hslNl(u) (8.76)

The element density function is set to be 1/h(u).
5. The total number of sides N to be generated along the curve is taken to be the nearest

integer to

A =
∫ L

0

1

h(u)
ds =

∫ um

u0

1

h(u)

√
(xu)2 + (yu)2 + (zu)2 du (8.77)
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Fig. 8.28 Sampling points and mesh parameters on a three-dimensional composite curve segment.
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where L is the length of the curve. The consistency index is calculated as

θ = A

N
(8.78)

In addition to the already known end points x(u0) and x(um) of the curve, there will be
(N − 1) new nodes created along the curve.

6. The parametric positions uk+1 (k = 0, 1, 2, . . . , (N−2)) of the new nodes are computed
consecutively from

θ =
∫ uk+1

uk

1

h(u)

√
(xu)2 + (yu)2 + (zu)2 du (8.79)

by an iterative method, such as a Newton method.
7. Finally, the position of all the new points are mapped onto the boundary curve using

Eq. (8.34).

Place boundary nodes to parametric plane
In order to perform surface mesh generation in the parametric plane the discretized boundary
curves must be placed to the parametric plane to form the boundary of the region to be
meshed. However, the inverse mapping

u(x) = (v(x), w(x)) (8.80)

is in general not expressed explicitly. When a composite cubic spline surface is used to
represent the surface of the geometry, the above inverse mapping is clearly non-linear.

In addition, in the boundary representation of CAD systems and in our discussion of the
geometrical representation of curves and surfaces, the composite parametric spline curve
that represents the boundary is in fact an approximation to the edge of the surface, which
is often formed by the intersection of two or more surfaces. Similarly, the composite
spline surface is also an approximation to the surface of the geometry. As a result of such
approximations, the boundary curve and its nodes are not exactly located on the surface.

The parametric position of a boundary node on the surface can be found by assuming
that its parametric coordinates are the same as its closest point on the surface, which is to
find a point x(v,w) on the surface that is the closest point to boundary node x(uk). The
problem of finding the closest point can be formulated as: find the parametric coordinates
(v,w) of a surface point such that

D = ‖x(v,w)− x(uk)‖ = minimum (8.81)

where ‖ · ‖ denotes the Euclidean norm.
This problem is usually non-linear and may be solved by various iterative methods.55, 56

The initial approximation of the parametric coordinates of a boundary node is taken as the
computed position of a previous boundary point.

After all the boundary nodes are placed on the parametric plane, they are linked by
straight lines to form the discretized boundary of the region to be meshed.

8.3.4 Element generation in parametric plane

The element generation procedure in the parametric plane is the same as that described
in Sec. 8.2.3 except that when creating a new element, the mesh parameters αi (v, w) and
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(a) (b)

Fig. 8.29 (a) Faces and their edges of the machine part of Fig. 8.20. (b) Coarse meshes.

Fig. 8.30 Finer meshes of different element sizes. (a) View one. (b) View two.

hi(v,w) computed from the specified mesh parameters for the surface mesh have to be
utilized. After the completion of the element generation quality enhancement techniques
need to be applied which include a constraint of preserving the curvature of the surface to
improve the quality of the mesh.54, 57 The final mesh is then mapped onto the surface by
x(v,w) to obtain the required surface mesh.

The complete surface of a three-dimensional solid can be achieved after assembling the
surface mesh of all the faces. Such surface mesh may be used as the discretized boundary
for three-dimensional mesh generation, which we shall discuss in the next section.

Example 8.5: Some of the faces of the machine part shown in Fig. 8.20 are discretized
by a surface mesh generator using the algorithms discussed in this section. Figure 8.29(a)
shows the boundary representation of two of the surfaces. Coarse meshes of the surfaces
are illustrated in Fig. 8.29(b). Finer meshes of the surfaces with different element size
distribution are shown in Fig. 8.30(a) and Fig. 8.30(b) with a view from a different angle.
The surface mesh of the part with side faces removed is shown in Fig. 8.31.

Example 8.6: The boundary edges of the surface representation of a gearbox part are
shown in Fig. 8.32(a). The geometry of the part is realistic and hence somewhat complex.
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Fig. 8.31 Surface mesh of the machine part with side faces removed.

A complete surface mesh of the part generated automatically using the algorithms described
in this section is illustrated in Fig. 8.32(b).

8.3.5 Higher order surface elements

One of the advantages of generating a surface mesh in the parametric plane is that it can
produce higher order elements without additional difficulties. When a mesh of higher order
elements is generated in the parametric plane, it will be mapped onto the surface to form
a boundary fit surface mesh with all the nodes on the surface. To preserve the boundary
curves, it is important to generate the intermediate boundary edge nodes by following the
node generation procedure for curves. Figure 8.33 demonstrates a surface mesh of quadratic
elements for a mechanical part.

8.3.6 Remarks

Several remarks on issues related to the surface mesh generation are given below.

Remark 8.5. Once the discretized boundary of the region in the parametric plane is avail-
able, any two-dimensional element generation algorithm could be used to generate a valid



302 Automatic mesh generation

(b) Complete surface mesh(a) Boundary faces and edges

Fig. 8.32 Mesh generation for a gearbox part.

Fig. 8.33 Surface mesh of quadratic elements.
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mesh on the parametric plane. For convenience, we only mentioned the two-dimensional
advancing front method described in Sec. 8.2.

Remark 8.6. Equations (8.59) and (8.62) have revealed that the mesh parameters in the para-
metric plane is a function of the parameterization of the surface. In order to satisfy the
specified geometrical characteristics of the surface, the two-dimensional mesh generation
algorithm is required to be capable of generating the mesh strictly following the computed
mesh parameters for the parametric plane. Otherwise, serious distortion in the surface mesh
may occur, when the planar mesh is mapped onto the surface. We refer to references 58–63
for additional discussion on issues of surface mesh generation.

Remark 8.7. Besides the parametric representation, the surface of the three-dimensional
geometry can also be represented in a discrete form. Surface mesh generation algorithms
for surfaces represented in such form are topics of active research. Several surface mesh
generation algorithms based on discrete representation of surfaces can be found in references
64–68.

Remark 8.8. The surface mesh generation algorithms discussed in this section assume that
the geometrical representation and topological representation of the surfaces are correct,
i.e., there are no defects in the surface representation of the three-dimensional geometry.
In practical computations, this is often not the case. The boundary representation of the
geometry provided by the CAD systems sometimes contains errors or undesirable features
that will either cause the mesh generation algorithm to fail or the quality of the surface
mesh become unacceptable for three-dimensional mesh generation algorithms. Although
methodologies that automatically remove defects and detrimental features from the bound-
ary representations of the surface are not in the scope of surface mesh generation, they
critically affect the success of automatic surface mesh generation and therefore deserve
further research.

Remark 8.9. Finally, surface mesh generation is often used as the boundary discretization of
a three-dimensional geometry. The quality of the surface mesh not only affects the quality
of the three-dimensional mesh, it also affects the robustness of any three-dimensional mesh
generation algorithm. This is particularly true for the three-dimensional advancing front
mesh generation method. Although the robustness of the three-dimensional Delaunay
triangulation method is less dependent on the quality of the surface mesh, the quality of the
final three-dimensional mesh is certainly affected. To have a successful three-dimensional
mesh generation algorithm, the quality of the surface mesh must be insured before the
interior mesh generation process starts.

8.4 Three-dimensional mesh generation – Delaunay
triangulation

Many practical finite element computations are carried out on complex three-dimensional
domains. The level of difficulty to automatically generate valid meshes for arbitrary three-
dimensional domains is much greater than in two dimensions. In principle, a Delaunay tri-
angulation, advancing front and finite octree method are all applicable to three-dimensional
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mesh generation. However, the Delaunay triangulation method has attracted most of the
attention in theoretical research and software development, due to its conceptual simplicity,
mathematical rigour and algorithmic robustness. In this section, we shall be concerned with
the Delaunay triangulation method and its application to three-dimensional mesh gener-
ation. We shall also introduce mesh quality enhancement methods which are crucial to
ensure the final mesh can be used in the finite element computations.

8.4.1 Voronoi diagram and Delaunay triangulation

Delaunay triangulation69 is the dual of theVoronoi diagram.70 The properties of theVoronoi
diagram and Delaunay triangulation provide the theoretical foundation for all the mesh
generation methods based on the Delaunay method. In order to facilitate the description of
the Delaunay triangulation method for mesh generation, a brief review of the basic properties
of theVoronoi diagram and Delaunay triangulation is presented in a two-dimensional setting
for visualization convenience, but these properties are equally valid in three dimensions.

Let P = {pi, i = 1, 2, . . . , N} be a set of distinct points in the two-dimensional
Euclidean plane R2. They are referred to as the forming points in the mesh generation
literature. The Voronoi region V (pi) is defined as the set of points x ∈ R2 that are at least
as close to pi as to any other forming point, i.e.,

V (pi) = {x ∈ R2 : ‖x − pi‖ ≤ ‖x − pj‖,∀j 
= i} (8.82)

Figure 8.34(a) depicts ten Voronoi regions, with two interior regions bounded by eight
others, the total being defined by an equal number of forming points. It follows that the
Voronoi region V (pi) represents a convex polygonal region, possibly unbounded; and any
point x inside V (pi) is nearer to pi than any other forming point in P . The points that
belong to more than one region form the edges of the Voronoi regions and the edges of the
Voronoi region V (pi) are portions of the perpendicular bisectors separating the segment
joining forming points pi and pj when V (pi) and V (pj ) are contiguous. The union of the
Voronoi regions is called the Voronoi diagram of the forming point set P .

The dual graph of the Voronoi diagram is produced by connecting the forming points of
the neighbouring Voronoi regions sharing a common edge with straight lines. It forms the
Delaunay triangulation D(P ) of the Voronoi forming points P . Figure 8.34(b) illustrates
the Delaunay triangulation and its corresponding Voronoi diagram.

In addition to those already mentioned, several properties of the Delaunay triangulations
and Voronoi diagrams that are most relevant to the mesh generation algorithms of Delaunay
triangulation are listed below:71, 72

i. Delaunay triangulation is formed by triangles if no four points of the forming points P
are co-circular. These triangles are called Delaunay triangles.

ii. Each Delaunay triangle corresponds to a Voronoi vertex, which is the centre of the
circumcircle of the triangle, as depicted in Fig. 8.35.

iii. The interior of the circumcircle contains no forming points of P .
iv. The boundary of the Delaunay triangulation is the convex hull of the forming points.

In the Delaunay triangulation-based mesh generation algorithm, property (i) is used to
avoid the degeneracy; property (ii) is often used to construct data structures; property
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(iii) forms the well-known Delaunay criterion, the empty circle criterion, or the in-circle
criterion when verifying whether it is violated by the new point introduced to the Delaunay
triangulation; property (iv) is the theoretical origin of using a convex hull, which contains
all the mesh points, in mesh generation.

Example 8.7: Each Voronoi diagram corresponds to a set of forming points which forms
Delaunay triangulation. Adding a new forming point will inevitably result in a modification
of the Voronoi diagram and the Delaunay triangulation. The process of constructing a new
Voronoi diagram and Delaunay triangulation after the insertion of a new node is frequently
used in automatic mesh generation and is illustrated here in the same two-dimensional
setting shown in Fig. 8.34(b).

Let the new forming pointnbe inserted in the Delaunay triangulation shown in Fig. 8.36(a).
It falls into the circumcircles of Delaunay triangles afg, abf and bef , therefore

Forming points pi

Voronoi vertex

Edges of the Voronoi region V(pi)

(a) Voronoi diagram

Delaunay triangulation

Voronoi diagram

(b) Delaunay triangulation

Fig. 8.34 Voronoi and Delaunay diagrams for 10 forming points.

Voronoi vertex and centre of the circumcircle

Fig. 8.35 Circumcircles of the Delaunay triangles. Only three are shown.
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violating property iii. This causes the removal of the three Voronoi vertices which are
the centres of the circumcircles and their corresponding Delaunay triangles, as illus-
trated in Fig. 8.36(b). The new Delaunay triangulation is constructed by linking the
new forming point n and its contiguous forming points that form a face of the neigh-
bouring triangle followed by the construction of the new Voronoi diagram as shown in
Fig. 8.36(c).

As we have indicated previously, the process used in the last example is applicable to
three dimensions.

8.4.2 Three-dimensional mesh generation by Delaunay
triangulation

Although by definition Delaunay triangulation decomposes the convex hull of the forming
points into triangles in two dimensions and tetrahedra in three dimensions, it does not
address the issues of how Delaunay triangulation can be formed effectively; how to generate
those points that will be inserted in the triangulation; and how to preserve the boundary of
a region when the forming points are from the boundary of a concave region. These issues
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Fig. 8.36 (a) Insertion of new forming point n into Delaunay triangulation. (b) Removal of Delaunay triangles,
deleted Voronoi vertices are not shown. (c) New Delaunay triangulation and Voronoi diagram.
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are the three most important components of the automatic mesh generation algorithms of
Delaunay type. A large body of literature exists on research of these three subjects. The
most representative ones are the work of Bowyer11 and Watson12 on the efficient Delaunay
triangulation algorithms, which were introduced to mesh generation by Cavendish et al.,13

Weatherill,14 Schroeder and Shephard,15 Baker16 and George et al.;17 the early work of
Rebay,18 Weatherill and Hassan,19 Marcum and Weatherill20 on automatic point generation
algorithms; and the work of Weatherill,73 George et al.,17 Weatherill and Hassan19 on
preserving the integrity of the domain boundary.

In the following, we shall introduce the three-dimensional mesh generation procedure
of Weatherill and Hassan, which is one of the first Delaunay mesh generation procedures
that contains all three necessary components for a robust three-dimensional Delaunay mesh
generation algorithm. It includes a Delaunay triangulation algorithm; a node generation
algorithm based on specified mesh size distribution; and a surface mesh recovery procedure
that ensures the integrity of the boundary surface.

The global procedure of the three-dimensional mesh generation algorithm is as follows:

1. Input the triangular surface mesh and derive the topological data of the surface mesh,
such as edges of surface elements and node–element connections. (Figure 8.37 shows
the surface mesh of a simple three-dimensional geometry.)

2. Build a convex hull that contains all the mesh points. (An eight node convex hull is
shown in Fig. 8.38.)

3. Perform Delaunay triangulation using nodes of the surface mesh to form tetrahedra.
(Figure 8.39(a) illustrates the Delaunay triangulation of the surface nodes. A cross-
section of the triangulation is shown in Fig. 8.39(b).)

4. Create interior points, following the specified element size distribution function, and
perform Delaunay triangulation to form tetrahedra. (The results are shown in Fig. 8.40(a)
and Fig. 8.40(b).)

5. Recover any missing edges and triangular faces of the surface mesh to ensure the input
surface triangulation being contained in the volume triangulation.

Fig. 8.37 Surface mesh of a simple three-dimensional geometry.
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Fig. 8.38 Convex hull and surface mesh.

6. Identify and remove all the tetrahedra outside the domain of interest to give the final
three-dimensional mesh. (Figure 8.41(a) shows the recovered surface mesh, which is
identical to the input mesh, and Fig. 8.41(b) demonstrates the interior of the tetrahedral
mesh at a cross-section of the geometry.)

The mesh generation procedure has been shown to be computationally efficient and, prob-
ably more importantly, very robust. Indeed, the robustness of the algorithm is independent
on the complexity of the three-dimensional geometry. We shall, in the following, describe
in more detail the three main components of the procedure, i.e., the Delaunay triangulation
algorithm, the node creation algorithm and the surface mesh recovery methods.

Delaunay triangulation algorithm
The Delaunay triangulation algorithm discussed below is based on the algorithm proposed
by Bowyer,11 but it can be readily replaced by the similar algorithm of Watson12 which
differs only in its data structure.

The process of generating Delaunay triangulation is sequential. Each point is introduced
into an existing structure of the Voronoi diagram and the Delaunay triangulation, which will
be reformulated based on the in-circle criterion to form a new Delaunay triangulation. The
process is similar to that described in Example 8.7, but of course now is in three dimensions.
The main steps of the procedure are as follows:

1. Define a set of points which form a convex hull that encloses all the points to be used in
the tetrahedral mesh.

2. Introduce a new point into the convex hull.
3. Determine all vertices of the Voronoi diagram to be deleted. A vertex will be deleted if

the circumsphere, centred at the vertex, of four forming points contains the new point.
This follows from the in-circle criterion.
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(a)

(b)

Fig. 8.39 (a) Delaunay triangulation of the surface nodes. (b) A cross-section of the surface nodes Delaunay
triangulation. Six additional points are inserted before surface nodes for efficiency.

4. Find the forming points of all the deleted Voronoi vertices. These form the contiguous
points to the new point.

5. Determine the neighbouring Voronoi vertices to the deleted vertices which have not
themselves been deleted. This data provides the necessary information to enable valid
combinations of the contiguous points to be constructed.

6. Determine the forming points of the new Voronoi vertices. The forming points of new
vertices include the new point together with three points which are contiguous to the
new point and form a face of a neighbouring tetrahedra. This forms the new Delaunay
triangulation.

7. Determine the neighbouring Voronoi vertices to the new vertices.
In Step 6, the forming points of all new vertices have been computed. For each new

vertex, perform a search through the forming points of the neighbouring vertices, as found
in Step 5, to identify common triples of forming points. When a common combination
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(a)

(b)

Fig. 8.40 (a) Delaunay triangulation of the interior nodes. (b) A cross-section of the interior nodes Delaunay
triangulation.

(a) (b)

Fig. 8.41 (a) Recovered surface. (b) Tetrahedral mesh shown at a cross-section.

occurs, the neighbour of the new Voronoi vertex has been found. This forms the new
Voronoi diagram.

8. Reorder the Voronoi diagram data structure and replace (overwrite) the entries of the
deleted vertices.

9. Repeat Steps 2–8 until all the points have been inserted.
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In the mesh generation process, the new points to be inserted into the Delaunay triangu-
lation and Voronoi diagram are the surface mesh nodes and the mesh points generated
automatically following the adopted node generation algorithm.

Automatic node generation
The detailed step-by-step node generation algorithm described below creates points based
on the element size distribution of the surface mesh:

1. The node spacing function for each surface mesh node a of position xa is taken as the
average of the surface element edge length,

ha = 1

M

M∑
b=1

‖xb − xa‖ (8.83)

where xb(b = 1, 2, . . . ,M) are positions of the surface nodes connected to node a.
2. Perform Delaunay triangulation using surface mesh nodes.
3. Initialize the number of new interior points to be created, set N = 0.
4. For each tetrahedron within the domain:

(a) Locate a prospective point c at the centroid of the tetrahedron.
(b) Derive the node spacing function hc, for point c, by interpolating the node spacing

function hm (m = 1, 2, 3, 4) from the nodes of the tetrahedron.
(c) Compute the distances dm (m = 1, 2, 3, 4) from the prospective point c to each of

the four nodes of the tetrahedron.

If {dm < αhc} for any m = 1, 2, 3, 4 then
reject the point and return to the beginning of Step 4 for the next tetrahedron.

Else
compute the distance dj from the prospective point c to other
already created nodes pj (j = 1, 2, . . . , N).

If {dj < βhc} then
reject the point and return to the beginning of Step 4 for the next tetrahedron.

Else
accept the point c and add it to the interior node list pj (j = 1, 2, . . . , N)
and update N.

(d) Assign point distribution function hc to new node c.
(e) Go to the next tetrahedron.

5. If N = 0, i.e., no new point is created, exit the node generation process.
6. Perform the Delaunay triangulation of the derived points pj (j = 1, 2, . . . , N). Then,

go to Step 3.

The parameter α controls the element density by changing the allowable shape of the
formed tetrahedra, while β has an influence on the regularity of the triangulation by not
allowing points within a specified distance of each other. Both parameters can be adjusted
to control the mesh density. In practical computations, α can be chosen in the range of
0.85–1.1, and β in the range of 0.6–1.0 for an isotropic mesh. An effort to find the optimal
value of these parameters has been made in reference 74.
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It is noted that, with minor modification, the node generation algorithm can also create
nodes-based element size distribution defined by a three-dimensional background mesh.

Surface mesh recovery
The property (iv) of the Voronoi diagram and Delaunay triangulation presented in Sec. 8.4.1
implies that the surface mesh and the surface boundary of a general three-dimensional
geometry, which is seldom convex, will not be respected during the mesh generation process.
Very often, some of the surface triangles and their edges are not present in the resulting
Delaunay triangulation due to penetrations by other tetrahedra. The loss of completeness
of the original surface mesh causes the loss of integrity of the surface boundary of the
geometry. In order to derive a valid three-dimensional mesh for the given geometry, the
integrity of the surface boundary of the geometry must be respected, which can be realized
by recovering the original surface mesh.

In the surface mesh recovery procedure, the surface triangles and surface edges that
are missing from the Delaunay triangulation are first identified and then restored by the
following procedure:

Edge swapping. Edge swapping is illustrated in Fig. 8.42. If faces abd and bcd appear in
the Delaunay triangulation, but faces abc and acd exist in the surface mesh, replacing edge
bd by edge ac recovers two surface triangles. This process is attempted for each surface
edge because it is the most efficient method to recover the missing edges and triangular
faces.

Boundary edge recovery. Consider the case when surface edge joining points a and b are
missing from the Delaunay triangulation, a line ab is formed and its intersection with the
faces, edges and points of the Delaunay triangulation are identified, as shown in Fig. 8.43,
with all the possible types of intersections depicted in Fig. 8.44. Local transformations
with the newly added nodes at the intersection as shown in Fig. 8.45 are performed to all
the involved tetrahedra to recover the edge, segment by segment. This process is executed
for every missing edge.

When the combined intersection involves a node-to-face type and a face-to-node type,
edge ab can be recovered by directly linking nodes a and b, with the two involved tetrahedra
transformed to three tetrahedra as shown in Fig. 8.46.

Faces appear in
Delaunay triangulation

a

b

c

d

a

b

c

d

Faces exist in
surface mesh

Fig. 8.42 Edge swapping to recover the surface edge and faces.
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a b

Fig. 8.43 Edge ab of a surface triangle missing in the Delaunay triangulation.

Node−node-type intersection

Node−face-type intersection
and face−node-type intersection

Edge−face-type intersection
and face−edge-type intersection

Node−edge-type intersection
and edge−node-type intersection

Edge−edge-type intersection

Face−face-type intersection

Fig. 8.44 Edge-tetrahedron intersections for missing surface edges.

Boundary face recovery. The recovery of the surface triangles is conducted after the com-
pletion of the edge recovery. A surface triangle may still be missing from the tetrahedral
mesh even though all its edges are present, because the interior of the triangle face is pene-
trated by other tetrahedra. There are a total of four possibilities that a face can be intersected
by a tetrahedra as illustrated in Fig. 8.47. Every missing face can be recovered after all the
intersecting tetrahedra are determined and transformed, with newly added points, according
to their intersection type. The intersecting tetrahedron shown in Fig. 8.47 is transformed
to a combined shape of a tetrahedron, a pyramid or a prism which can be further divided
into tetrahedra as illustrated in Fig. 8.48 and Fig. 8.49.
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Transformation type Created tetrahedra
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Fig. 8.45 Tetrahedral transformation to recover a segment of the missing edges.
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Fig. 8.46 Recovery of boundary edge ab by the deletion of face cde.
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Fig. 8.47 Transformations for the recovery of surface faces. Shaded area shows the recovered portion of the
boundary face.

When a face is intersected by only one edge and the edge is common to three tetrahedra,
the face can be recovered directly by deleting the edge, with three tetrahedra transformed
to two as shown in Fig. 8.50.

Removal of added points. The points that are added in the process of recovering the boundary
edges and faces will be removed one by one together with the connected tetrahedra. The
empty polyhedron left after the deletion of each added point and its connected tetrahedra
will be triangulated directly, often with additional interior points.

It is noted, with the reference to the global mesh generation procedure, that once Step 5
of the global procedure for surface recovery starts, the tetrahedral mesh, in general, does
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Fig. 8.48 Different patterns of dividing a pyramid to tetrahedra.

not continue to be a Delaunay triangulation, which may seriously damage the quality of
the mesh near the boundary. Therefore, mesh quality enhancement becomes indispensable
after the completion of the mesh generation procedure.

8.4.3 Mesh quality enhancement

In three-dimensional mesh generation, mesh quality enhancement is almost as important
as element generation itself. This is because some poorly shaped tetrahedral elements are
created either in the Delaunay triangulation process, due to the position of the inserting
points, or in the surface mesh recovery process. Without applying certain mesh quality
enhancement procedures to improve the element quality, these poorly shaped elements may
render the three-dimensional mesh unusable in finite element computation. Unlike in two-
dimensional mesh generation, the process of improving the quality of a three-dimensional
mesh is much more complicated and tedious. The quality of a tetrahedral element may be
evaluated by different measures. A wide range of measures for the quality of tetrahedral
elements are presented in references 75–78, and any one of these measures can be employed
as criterion in the mesh quality enhancement procedure. Here we shall not get into the details
of a particular quality measure, but are mainly concerned with the methodologies that can
be used to improve the quality of the tetrahedral elements, under any specified quality
measure. Several effective element quality enhancement methods are described below.

Element transformation
Modifying the topological structure of the mesh is probably the most effective way to
improve the quality of the mesh in three dimensions and is realized by performing element
transformations of the following form:
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Fig. 8.49 Different patterns of dividing a prism to tetrahedra.

Two elements transformation. Two elements common to a face can be transformed to three
elements as shown in Fig. 8.51, if one of the elements does not satisfy the quality criterion.
To ensure that the new elements are valid, the new edge abmust intersect the removed face
cde.

Three elements transformation. As an inverse of the two element transformation, three ele-
ments common to an edge are transformed to two elements as illustrated in Fig. 8.51, if
one of the elements does not meet the quality criterion.
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Fig. 8.50 Recovery of boundary face cde by the deletion of edge ab.
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Fig. 8.51 Two elements transformed to three elements and three elements transformed to two elements.

Four elements transformation. Four elements common to an edge can be transformed to
two topologically different patterns of four elements common to an edge as depicted in
Fig. 8.52, when one of the elements fails to satisfy the quality criterion.

Five or more elements transformation. A split-collapse procedure is used for element trans-
formation when an edge is common to five or more elements. For an element that fails
the quality criterion, e.g., element abcd as shown in Fig. 8.53(a), find its edge ab and all
the elements common to the edge (five elements are shown in Fig. 8.53(a)). A node n is
added to the middle of the edge ab and splitting the elements as illustrated in Fig. 8.53(b).
The new node n is then collapsed to one of its connecting nodes, except nodes a and b, to
form new elements as demonstrated in Fig. 8.53(c) (six new elements are formed). This
procedure can be used for an edge common to any number of elements and is attempted
for each edge of the element.

All the transformations are carried out under the condition that the worst quality measure
improves after the transformation.
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Fig. 8.52 Two patterns of four elements transformed to four elements. (1) Edge ab changed to edge cd.
(2) Edge ab changed to edge ef.

Node addition and node elimination
Unlike element transformations which will only change the topological structure of the
mesh, node addition and node elimination will locally change the node density of the mesh.

Node addition. A node is added to an edge of the element if the edge is deemed too long.
This requires all the elements common to the edge being split, the process is shown in
Fig. 8.53(a) and (b).

Node elimination. A node of the element that fails the quality criterion and all the elements
connected to it are shown in Fig. 8.54(a). The node is collapsed to one of its connecting
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Fig. 8.53 Five or more elements transformation. (a) Edge ab and all the elements sharing it. (b) Node n is
added to edge ab, all the common elements are split. (c) New node n is collapsed to node c.

nodes, as illustrated in Fig. 8.54(b), so that the quality of the resulting elements improves.
The procedure is attempted for each node of the element.

The quality of the elements can be further improved if the positions of the interior nodes
are repositioned, which leads to the so-called mesh smoothing algorithm.

Mesh smoothing
The standard Laplacian smoothing cannot be applied directly to a tetrahedral mesh. It in fact
reduces the quality of the mesh. The procedure is modified to move a node incrementally
and iteratively towards each of its connecting nodes and is placed at the position that will
increase the quality of the worst element. The procedure stops when quality of the connected
elements does not improve. Several combined applications of the quality enhancement
method usually results in a mesh with much improved quality.

It is noted that the condition attached to all the quality enhancement methods, which
requires the worst element quality to improve according to an element quality criterion,
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Fig. 8.54 Node collapsing. (a) Node b and its connecting elements. (b) Collapse node b to node d.

corresponds to an optimization problem. Its application guarantees improvement of the
element quality, but could also be computationally expensive. For additional information
on mesh enhancement methods using a specific quality measure as the objective function
in the optimization process we refer to references 79–81.

8.4.4 Higher order elements

With higher order surface mesh available, higher order tetrahedral elements can be readily
obtained by finding the positions of the intermediate nodes using linear interpolation.

8.4.5 Numerical examples

Tetrahedral meshes are generated using the mesh generation procedure of Delaunay trian-
gulation described in this section. Figure 8.55(a) shows the mesh for a flask body casting.89

A cross-section of the tetrahedral mesh is illustrated in Fig. 8.55(b) to demonstrate the reg-
ularity of the mesh. Figure 8.56 presents a tetrahedral mesh for a complete V8 engine
block.

8.4.6 Remarks

Remark 8.10. The automatic node generation procedure described in this section was intro-
duced by Weatherill and Hassan, many other node generation methods also exist. Indeed,
the procedure by which new nodes are generated is the main difference between various
Delaunay mesh generation algorithms reported in the literature. From our discussion, it
is clear that once the points are available, a mesh can always be generated following a
Delaunay triangulation algorithm. Therefore, it is important to adopt a suitable node gen-
eration method that can meet the specific requirements for a particular application, so that
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(a) (b)

Fig. 8.55 (a) Tetrahedral mesh of casting part of flask body. (b) A cross-section of the tetrahedral mesh.

Fig. 8.56 Tetrahedral mesh of a V8 engine block.

an optimal mesh can be obtained for finite element computation. We refer to references
20, 82–85 for additional information.

Remark 8.11. As we have mentioned at the beginning of the chapter, it is still a demanding
and challenging task to generate structured or unstructured hexahedral meshes automat-
ically. In Chapter 11, we will observe that some hexahedral elements have advantages
in the finite element computation for incompressible materials, in addition they generally
have better accuracy compared to tetrahedral elements of the same order. Developing an
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automatic mesh generation algorithm for hexahedral elements certainly deserves further
research.

8.5 Concluding remarks

We have shown in this chapter how to generate mesh on curves, in arbitrary two-dimensional
domains, on curved surfaces and for realistic three-dimensional geometries. We presented
detailed discussion as well as algorithmic procedure for curve and surface mesh generation.
We also described the advancing front method in two-dimensional mesh generation and the
Delaunay triangulation method in three-dimensional mesh generation. The algorithms and
methodologies presented in this chapter are not only robust and have been implemented for
science and engineering applications, but also provide a basis for further research in the
development of various aspects of automatic mesh generation methods. Additional applica-
tions of the automatic mesh generation methods discussed in this chapter will be presented
again in Chapter 14 for adaptive finite element analysis and also appear in reference 37 for
fluid dynamics applications.

8.6 Problems

8.1 Write expressions for two-dimensional boundary curves in which the Hermite para-
metric segments are replaced by a cubic Bézier spline.

8.2 Write a MATLAB program86 to implement the boundary node generation procedure
described in Sec. 8.2.3.

8.3 Develop an algorithm to update the generation front for a two-dimensional advancing
front method.

8.4 For triangular meshing in two dimensions formulate a diagonal swapping criterion
such that the node–element adjacency number NEop is closer to the optimal value
after each swap.

8.5 When using the advancing front method to generate a quadrilateral mesh, prove that
a necessary condition is that initial front must contain an even number of sides.

8.6 Devise a quadrilateral mesh generation algorithm for the advancing front method that
forms each quadrilateral element from two neighbouring triangular elements with a
common edge. Assume the triangular element mesh already exists.

8.7 Devise a quadrilateral mesh generation algorithm for the advancing front method that
forms quadrilateral elements by subdividing a triangle as shown in Fig. 8.57. Assume
the triangular element mesh already exists.

8.8 Define the optimal value of node–element adjacency numberNEop for a quadrilateral
mesh.

8.9 Write expressions for three-dimensional boundary curves in which the Hermite para-
metric segments are replaced by a cubic Bézier spline.

8.10 Write expressions for three-dimensional boundary surfaces in which the bi-Hermite
parametric surface segments are replaced by bicubic Bézier splines.

8.11 Devise an algorithm to generate a quadrilateral surface mesh using the advancing
front method.
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Fig. 8.57 Triangle subdivided into three quadrilaterals. Problem 8.7.

8.12 When a new point is inserted into a Delaunay triangulation in three-dimensional mesh
generation, the new point is sometimes found to lie on a co-sphere with four other
forming points and, thus, violates the Delaunay triangulation property i of Sec. 8.4.1.
Devise an algorithm to avoid such violation.

8.13 Devise an automatic numbering algorithm to generate nodes in an advancing front
method for a Delaunay triangulation mesh generation procedure.

8.14 Show that the three elements transformation and four elements transformation used
to improve the quality of the tetrahedral mesh in Sec. 8.4.3 are special cases of the
split–collapse procedure used for the five or more elements transformation.

8.15 In element transformations in a tetrahedral mesh show that, after applying the split–
collapse procedure when an edge is common to six or more elements, the mesh quality
can be further improved by performing edge swapping to the newly formed edges.

References

1. O.C. Zienkiewicz and D.V. Phillips. An automatic mesh generation scheme for plane and curved
surfaces by isoparametric coordinates. Int. J. Numer. Meth. Eng., 3:519–528, 1971.

2. W.J. Gordon and C.A. Hall. Construction of curvilinear co-ordinate systems and application to
mesh generation. Int. J. Numer. Meth. Eng., 3:461–477, 1973.

3. J.F. Thompson, F.C. Thames, and C.W. Martin. Automatic numerical generation of body-fitted
curvilinear coordinates for a field containing any number of arbitrary two-dimensional bodies.
J. Comp. Phys., 15:299–319, 1974.

4. J.F. Thompson and Z.U.A. Warsi. Boundary-fitted coordinate systems for numerical solution of
partial differential equations. J. Comp. Phys., 47:1–108, 1982.

5. J.F. Thompson, Z.U.A. Warsi, and C.W. Martin. Numerical Grid Generation: Foundations and
Applications. North-Holland, Dordrecht, 1987.

6. T.K.H. Tam and C.G. Armstrong. 2d finite element mesh generation by medial axis subdivision.
Adv. Eng. Soft., 13:313–324, 1991.

7. M.A. Price, C.G. Armstrong, and M.A. Sabin. Hexahedral mesh generation by medial axis
subdivision, I: Solids with convex edges. Int. J. Numer. Meth. Eng., 38:3335–3359, 1995.



References 325

8. M.A. Price, C.G. Armstrong, and M.A. Sabin. Hexahedral mesh generation by medial axis
subdivision, II: Solids with flat and concave edges. Int. J. Numer. Meth. Eng., 40:111–136,
1997.

9. N. Chiba, I. Nishigaki, Y. Yamashita, C. Takizawa, and K. Fujishiro. A flexible automatic
hexahedral mesh generation by boundary-fit method. Comp. Meth. Appl. Mech. Eng., 161:145–
154, 1998.

10. A. Sheffer and M. Bercovier. Hexahedral meshing of non-linear volumes using Voronoi faces
and edges. Int. J. Numer. Meth. Eng., 49:329–351, 2000.

11. A. Bowyer. Computing Dirichlet tessellations. Comp. J., 24(2):162–166, 1981.
12. D.F. Watson. Computing the n-dimensional Delaunay tessellation with application to Voronoi

polytopes. Comp. J., 24:167–172, 1981.
13. J.C. Cavendisha, D.A. Field, and W.H. Frey. An approach to automatic three dimensional finite

element mesh generation. Int. J. Numer. Meth. Eng., 21:329–347, 1985.
14. N.P. Weatherill. A method for generating irregular computation grids in multiply connected

planar domains. Int. J. Numer. Meth. Eng., 8:181–197, 1988.
15. W.J. Schroeder and M.S. Shephard. Geometry-based fully automatic mesh generation and the

Delaunay triangulation. Int. J. Numer. Meth. Eng., 26:2503–2524, 1988.
16. T.J. Baker. Automatic mesh generation for complex three-dimensional regions using a con-

strained Delaunay triangulation. Eng. Comp., 5:161–175, 1989.
17. P.L. George, F. Hecht, and E. Saltel. Automatic mesh generator with specified boundary. Comp.

Meth. Appl. Mech. Eng., 92:269–288, 1991.
18. S. Rebay. Efficient unstructured mesh generation by means of Delaunay triangulation and

Bowyer–Watson algorithm. J. Comp. Phys., 106:125–138, 1993.
19. N.P. Weatherill and O. Hassan. Efficient 3-dimensional Delaunay triangulation with automatic

point generation and imposed boundary constraints. Int. J. Numer. Meth. Eng., 37:2005–2039,
1994.

20. D.L. Marcum and N.P. Weatherill. Unstructured grid generation using iterative point insertion
and local reconnection. AIAA J., 33(9):1619–1625, 1995.

21. S.H. Lo. A new mesh generation scheme for arbitrary planar domains. Int. J. Numer. Meth.
Eng., 21:1403–1426, 1985.

22. J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz. Adaptive remeshing for compressible
flow computations. J. Comp. Phys., 72:449–466, 1987.
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53. J. Peraire, J. Peiró, and K. Morgan. Adaptive remeshing for 3-dimensional compressible flow
computations. J. Comp. Phys., 103:269–285, 1992.
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9

The patch test, reduced integration,
and non-conforming elements

9.1 Introduction

We have briefly referred in Chapter 2 to the patch test as a means of assessing convergence
of displacement-type elements for elasticity problems in which the shape functions violate
continuity requirements. In this chapter we shall deal in more detail with this test which is
applicable to all finite element forms and will show that

(a) it is a necessary condition for assessing the convergence of any finite element approx-
imation and further that, if properly extended and interpreted, it can provide

(b) a sufficient requirement for convergence,
(c) an assessment of the (asymptotic) convergence rate of the element tested,
(d) a check on the robustness of the algorithm, and
(e) a means of developing new finite element forms which can violate compatibility (con-

tinuity) requirements.

While for elements which a priori satisfy all the continuity requirements, have correct
polynomial expansions, and are exactly integrated such a test is superfluous in principle,
but it is nevertheless useful as it gives

(f) a check that correct programming was achieved.

For all the reasons cited above the patch test has been, since its inception, and continues
to be the most important check for practical finite element codes.

The original test was introduced by Irons et al.1–3 in a physical way and could be in-
terpreted as a check which ascertained whether a patch of elements (Fig. 9.1) subject to a
constant strain reproduced exactly the constitutive behaviour of the material and resulted
in correct stresses when it became infinitesimally small. If it did, it could then be argued
that the finite element model represented the real material behaviour and, in the limit, as
the size of the elements decreased would therefore reproduce exactly the behaviour of the
real structure.

Clearly, although this test would only have to be passed when the size of the element
patch became infinitesimal, for most elements in which polynomials are used the patch size
did not in fact enter the consideration and the requirement that the patch test be passed for
any element size became standard.
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dx1εx

εx dx

s constant~

Fig. 9.1 A patch of element and a volume of continuum subject to constant strain εx . A physical interpretation
of the constant strain or linear displacement field patch test.

Quite obviously a rigid body displacement of the patch would cause no strain, and if the
proper constitutive laws were reproduced no stress changes would result. The patch test
thus guarantees that no rigid body motion straining will occur.

When curvilinear coordinates are used the patch test is still required to be passed in the
limit but generally will not do so for a finite size of the patch. (An exception here is the
isoparametric coordinate system in problems discussed in Chapter 5 since it is guaranteed
to contain linear polynomials in the global coordinates.) Thus for many problems such
as shells, where local curvilinear coordinates are used, this test has to be restricted to
infinitesimal patch sizes and, on physical grounds alone, appears to be a necessary and
sufficient condition for convergence.

Numerous publications on the theory and practice of the test have followed the original
publications cited4–6 and mathematical respectability was added to those by Strang.7, 8

Although some authors have cast doubts on its validity9, 10 these have been fully refuted11–13

and if the test is used as described here it fulfils the requirements (a)–(f) stated above.
In the present chapter we consider the patch test applied to irreducible forms (see Chap-

ter 3) but an extension to mixed forms is more important. This has been studied in references
13, 14 and 15 and made use of in many subsequent publications. The matter of mixed form
patch tests will be fully discussed in the next chapter; however, the consistency and stability
tests developed in the present chapter are always required.

One additional use of the patch test was suggested by Babuška et al.16 with a shorter
description given by Boroomand and Zienkiewicz.17 This test can establish the efficiency
of gradient (stress) recovery processes which are so important in error estimation as will
be discussed in Chapter 13.

9.2 Convergence requirements

We shall consider in the following the patch test as applied to a finite element solution of a
set of differential equations

A(u) ≡ Lu + b = 0 (9.1)

in the domain � together with the conditions

B(u) = 0 (9.2)

on the boundary of the domain, �.



Convergence requirements 331

The finite element approximation is given in the form

u ≈ û = Nũ (9.3)

where N are shape functions defined in each element, �e, and ũ are unknown parameters.
By applying standard procedures of finite element approximation the problem reduces

in a linear case to a set of algebraic equations

Kũ = f (9.4)

which when solved give an approximation to the differential equation and its boundary
conditions.

What is meant by ‘convergence’ in the approximation sense is that the approximate
solution, û, should tend to the exact solution u when the size of the elements h approaches
zero (with some specified subdivision pattern). Stated mathematically we must find that
the error at any point becomes (when h is sufficiently small)

|u − û| = O(hq) ≤ Chq (9.5)

where q > 0 and C is a positive constant, depending on the position. This must also be
true for all the derivatives of u defined in the approximation.

By the order of convergence in the variable u we mean the value of the index q in the
above definition. To ensure convergence it is necessary that the approximation fulfil both
consistency and stability conditions.18

The consistency requirement ensures that as the size of the elements h tends to zero, the
approximation equation (9.4) will represent the exact differential equation (9.1) and the
boundary conditions (9.2) (at least in the weak sense).

The stability condition is simply translated as a requirement that the solution of the
discrete equation system (9.4) be unique and avoid spurious mechanisms which may pollute
the solution for all sizes of elements. For linear problems in which we solve the system of
algebraic equations (9.4) as

ũ = K−1f (9.6)

this means simply that the matrix K must be non-singular for all possible element assemblies
(subject to imposing minimum stable boundary conditions).

The patch test traditionally has been used as a procedure for verifying the consistency
requirement; the stability was checked independently by ensuring non-singularity of ma-
trices.19 Further, it generally tested only the consistency in satisfaction of the differential
equation (9.1) but not of its natural boundary conditions. In what follows we shall show
how all the necessary requirements of convergence can be tested by a properly conceived
patch test.

A ‘weak’ singularity of a single element may on occasion be permissible and some
elements exhibiting it have been, and still are, successfully used in practice. One such case
is given by the eight-node isoparametric element with a 2 × 2 Gauss quadrature, to which
we shall refer later here. This element is on occasion observed to show peculiar behaviour
(though its use has advantages as discussed in Chapter 10). An element that occasionally
fails is termed non-robust and the patch test provides a means of assessing the degree of
robustness.
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a a

Test A Test B

u prescribed on all nodes
Kabub = fa verified at node a

u prescribed at edges of patch
ua = Kaa

−1 (fa−Kabub) (b ≠a) solved

Fig. 9.2 Patch test of forms A and B.

9.3 The simple patch test (tests A and B) – a necessary
condition for convergence

We shall first consider the consistency condition which requires that in the limit (as h
tends to zero) the finite element approximation of Eq. (9.4) should model exactly the
differential equation (9.1) and the boundary conditions (9.2). If we consider a ‘small’
region of the domain (of size 2h) we can expand the unknown function u and the essential
derivatives entering the weak approximation in a Taylor series. From this we conclude
that for convergence of the function and its first derivative in typical problems of a second-
order equation and two dimensions, we require that around a point i assumed to be at the
coordinate origin,

u = ua +
(
∂u
∂x

)
a

x +
(
∂u
∂y

)
a

y + · · · + O(hp)

∂u
∂x

=
(
∂u
∂x

)
a

+ · · · + O(hp−1)

∂u
∂y

=
(
∂u
∂y

)
a

+ · · · + O(hp−1)

(9.7)

with p ≥ 2. The finite element approximation should therefore reproduce exactly the
problem posed for any linear forms of u as h tends to zero. Similar conditions can obviously
be written for higher order problems. This requirement is tested by the current interpretation
of the patch test illustrated in Fig. 9.2. We refer to this as the base solution.

For problems involving C0 approximation we compute first an arbitrary solution of the
differential equation using a linear polynomial as the base solution and set the corresponding
parameters ũ [see Eq. (9.3)] at all ‘nodes’ of a patch which assembles completely the nodal
variable ũa (i.e., provides all the equation terms corresponding to it).

In test A we simply insert the exact value of the parameters ũ into the node a equations
and verify that

Kabũb − fa ≡ 0 (9.8)
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where fa is a force which results from any ‘body force’ required to satisfy the differential
equation (9.1) for the base solution. Generally in problems given in cartesian coordinates
the required body force is zero; however, in curvilinear coordinates (e.g., axisymmetric
elasticity problems) it can be non-zero.

In test B only the values of ũ corresponding to the boundaries of the ‘patch’ are inserted
and ũa is found as

ũa = K−1
aa (fa − Kabũb) b �= a (9.9)

and compared against the exact value.
Both patch tests verify only the satisfaction of the basic differential equation and not of

the boundary approximations, as these have been explicitly excluded here.
We mentioned earlier that the test is, in principle, required only for an infinitesimally

small patch of elements; however, for differential equations with constant coefficients the
size of the patch is immaterial and the test can be carried out on a patch of arbitrary
dimensions.

Indeed, if the coefficients are not constant the same size independence exists providing
that a constant set of such coefficients is used in the formulation of the test. This applies,
for instance, in axisymmetric problems where coefficients of the type 1/r (radius) enter
the equations and when the patch test is here applied, it is simply necessary to enter the
computation with such quantities assumed constant. Alternatively, a body force can be
computed which allows the base solution to satisfy the differential equation exactly.

If mapped curvilinear elements are used it is not obvious that the patch test posed in
global coordinates needs to be satisfied. Here, in general, convergence in the mapping
coordinates may exist but a finite patch test may not be satisfied. However, once again
if we specify the nature of the subdivision without changing the mapping function, in the
limit the jacobian becomes locally constant and the previous remarks apply. To illustrate
this point consider, for instance, a set of elements in which local coordinates are simply the
polar coordinates as shown in Fig. 9.3. With shape functions using polynomial expansions
in the r , θ terms the patch test of the kind we have described above will not be satisfied with
elements of finite size – nevertheless in the limit as the element size tends to zero it will
become true. Thus it is evident that patch test satisfaction is a necessary condition which
has always to be achieved providing the size of the patch is infinitesimal.

This proviso which we shall call weak patch test satisfaction is not always simple to
verify, particularly if the element coding does not easily permit the insertion of constant

r r

x

θ θ

Fig. 9.3 Polar coordinate mapping.
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coefficients or a constant jacobian. It is indeed fortunate that the standard isoparametric
element form reproduces exactly the linear polynomial global coordinates (see Chapter 5)
and for this reason does not require special treatment unless some other crime (such as
selective or reduced integration) is introduced.

9.4 Generalized patch test (test C) and the
single-element test

The patch test described in the preceding section was shown to be a necessary condition
for convergence of the formulation but did not establish sufficient conditions for it. In
particular, it omitted the testing of the boundary ‘load’ approximation for the case when the
‘natural’ (e.g., ‘traction of elasticity’) conditions are specified. Further it did not verify the
stability of the approximation. A test including a check on both of the above conditions is
easily constructed. We show this in Fig. 9.4 for a two-dimensional plane problem as test
C. In this the patch of elements is assembled as before but subject to prescribed natural
boundary conditions (or tractions around its perimeter) corresponding to the base function.
The assembled matrix of the whole patch is written as

Kũ = f

Fixing only the minimum number of parameters ũ necessary to obtain a physically valid
solution (e.g., eliminating the rigid body motion in an elasticity example or a single value of
temperature in a heat conduction problem), a solution is sought for the remaining ũ values
and compared with the exact base solution assumed.

Now any singularity of the K matrix will be immediately observed and, as the vector f in-
cludes all necessary source and boundary traction terms, the formulation will be completely
tested (providing of course a sufficient number of test states is used). The test described is
now not only necessary but sufficient for convergence.

With boundary traction included it is of course possible to reduce the size of the patch
to a single element and an alternative form of test C is illustrated in Fig. 9.4(b), which

y

x

Natural boundary
conditions specified

Minimum esential
boundary conditions

(a) (b)

Fig. 9.4 (a) Patch test of form C. (b) The single-element test.
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Gauss integration
points

Nine-noded
elements only

Eight and nine nodes

(a) (b)

Fig. 9.5 (a) Zero energy (singular) modes for 8- and 9-noded quadratic elements and (b) for a patch of bilinear
elements with single integration points.

is termed the single-element test.11 This test is indeed one requirement of a good finite
element formulation as, on occasion, a larger patch may not reveal the inherent instabilities
of a single element. This happens in the well-documented case of the plane strain–stress
8-noded isoparametric element with (reduced) four-point Gauss quadrature, i.e., where
the singular deformation mode of a single element (see Fig. 9.5) disappears when several
elements are assembled.† It should be noted, however, that satisfaction of a single element
test is not a sufficient condition for convergence. For sufficiency we require at least one
internal element boundary to test that consistency of a patch solution is maintained between
elements.

†This figure also shows a similar singularity for a patch of four 4-noded (bilinear interpolation) elements with
single-point quadrature, and we note the similar shape of zero energy modes (see Chapter 5, Sec. 5.12.3).
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9.5 The generality of a numerical patch test

In the previous section we have defined in some detail the procedures for conducting a patch
test. We have also asserted the fact that such tests if passed guarantee that convergence
will occur. However, all the tests are numerical and it is impractical to test all possible
combinations.

In particular let us consider the base solutions used. These will invariably be a set of
polynomials given in two dimensions as

u =
∑
i

αiPi(x, y) (9.10)

where Pi are a suitable set of low order polynomials (e.g., 1, x, y for Galerkin forms pos-
sessing only first order derivatives) and αi are parameters. It is fairly obvious that if patch
tests are conducted on each of these polynomials individually any base function of the form
given in Eq. (9.10) can be reproduced and the generality preserved for the particular com-
bination of elements tested. This must always be done and is almost a standard procedure
in engineering tests, necessitating only a limited number of combinations.

However, as various possible patterns of elements can occur and it is possible to in-
crease the size without limit the reader may well ask whether the test is complete from the
geometrical point of view. We believe it is necessary in a numerical test to consider the
possibility of several pathological arrangements of elements but that if the test is purely
limited to a single element and a complete patch around a node we can be confident about
the performance on more general geometric patterns.

Indeed even mathematical assessments of convergence are subject to limits often imposed
a posteriori. Such limits may arise if for instance a singular mapping is used.

The procedures referred to in this section should satisfy most readers as to the validity
and generality of the test.

On some limited occasions it is possible to perform the test purely algebraically and
then its validity cannot be doubted. Some such algebraic tests will be referred to later in
connection with incompatible elements.

In this chapter we have only considered linear differential equations and linear material
behaviour; however, the patch test can well be used and extended to cover non-linear
problems.

9.6 Higher order patch tests

While the patch tests discussed in the last three sections ensure (when satisfied) that con-
vergence will occur, they did not test the order of this convergence, beyond assuring us
that in the case of Eq. (9.7) the errors were, at least, of order O(h2) in u. It is an easy
matter to determine the actual highest asymptotic rate of convergence of a given element by
simply imposing, instead of a linear solution, exact higher order polynomial solutions.6, 8

The highest value of such polynomials for which complete satisfaction of the patch test
is achieved automatically evaluates the corresponding convergence rate. It goes without
saying that for such exact solutions generally non-zero source (e.g., body force) terms in
the original equation (9.1) will need to be involved.
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In addition, test C in conjunction with a higher order patch test may be used to illustrate
any tendency for ‘locking’ to occur (see Chapter 10). Accordingly, element robustness with
regard to various parameters (e.g., Poisson’s ratios near one-half for elasticity problems in
plane strain) may be established.

In such higher order patch tests it will of course first be assumed that the patch is subject
to the base expansion solution as described. Thus, for higher order terms it will be necessary
to start and investigate solutions of the type

α3x
2 +α4xy +α5y

2 + · · ·

each of which should be applied individually or as linearly independent combinations and
for each the solution should be appropriately tested.

In particular, we shall expect higher order elements to exactly satisfy certain order so-
lutions. However, in Chapter 13 we shall use this idea to find the error between the exact
solution and the recovery using precisely the same type of formulation.

9.7 Application of the patch test to plane elasticity
elements with ‘standard’ and ‘reduced’ quadrature

In the next few sections we consider several applications of the patch test in the evaluation of
finite element models. In each case we consider only one of the necessary tests which need
to be implemented. For a complete evaluation of a formulation it is necessary to consider all
possible independent base polynomial solutions as well as a variety of patch configurations
which test the effects of element distortion or alternative meshing interconnections which
will be commonly used in analysis. As we shall emphasize, it is important that both
consistency and stability be evaluated in a properly conducted test.

In Chapter 5 (Sec. 5.12) we have discussed the minimum required order of numerical
integration for various finite element problems which results in no loss of convergence
rate. However, it was also shown that for some elements such a minimum integration order
results in singular matrices. If we define the standard integration as one which evaluates
the stiffness of an element exactly† (at least in the undistorted form) then any lower order
of integration is called reduced.

Such reduced integration has some merits in certain problems for reasons which we shall
discuss in Sec. 11.5, but it can cause singularities which should be discovered by a patch
test (which supplements and verifies the arguments of Sec. 5.12.3).

Application of the patch test to some typical problems will now be shown.

Example 9.1: Patch test for base solution. We consider first a plane stress problem on
the patch shown in Fig. 9.6(a). The material is linear, isotropic elastic with properties
E = 1000 and ν = 0.3. The finite element procedure used is based on the displacement
form using 4-noded isoparametric shape functions and numerical integration as described in
Chapter 5. Since the stiffness computation includes only first derivatives of displacements,
the formulation converges provided that the patch test is satisfied for all linear polynomial

†An alternate definition for standard integration is the lowest order of integration for which the rank of the stiffness
matrix does not increase.
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Fig. 9.6 Patch for evaluation of numerically integrated plane stress problems. (a) Five-element patch. (b)
One-element patch.

solutions of displacements in the base solution. Here we consider only one of the six
independent linear polynomial solutions necessary to verify satisfaction of the patch test.
The solution considered is

u = 0.0020 x

v = −0.0006 y
(9.11a)

which produces zero body forces and zero stresses except for

σx = 2 (9.11b)

The solution given in Table 9.1 is obtained for the nodal displacements and satisfies
Eq. (9.11a) exactly.

The patch test is performed first using 2 × 2 gaussian ‘standard’ quadrature to compute
each element stiffness and resulting reaction forces at nodes. For patch test A all nodes are
restrained and nodal displacement values are specified according to Table 9.1. Stresses are
computed at specified Gauss points (1×1, 2×2, and 3×3 Gauss points were sampled) and
all are exact to within round-off error (double precision was used which produced round-off
errors less than 10−15 in the quantities computed). Reactions were also computed at all
nodes and again produced the force values shown in Table 9.1 to within round-off limits.
This approximation satisfies all conditions required for a finite element procedure (i.e.,
conforming shape functions and standard order quadrature). Accordingly, the patch test

Table 9.1 Patch solution for Fig. 9.6

Coordinates Computed displacements Forces

Node a xa ya ua va Fxa Fya

1 0.0 0.0 0.0 0.0 −2 0
2 2.0 0.0 0.0040 0.0 3 0
3 2.0 3.0 0.0040 −0.00180 2 0
4 0.0 2.0 0.0 −0.00120 −3 0
5 0.4 0.4 0.0008 −0.00024 0 0
6 1.4 0.6 0.0028 −0.00036 0 0
7 1.5 2.0 0.0030 −0.00120 0 0
8 0.3 1.6 0.0006 −0.00096 0 0
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merely verifies that the programming steps used contain no errors. Patch test A does not
require explicit use of the stiffness matrix to compute results; consequently the above patch
test was repeated using patch test B where only nodes 1 to 4 are restrained with their
displacements specified according to Table 9.1. This tests the accuracy of the stiffness
matrix and, as expected, exact results are once again recovered to within round-off errors.
Finally, patch test C was performed with node 1 fully restrained and node 4 restrained only
in the x direction. Nodal forces were applied to nodes 2 and 3 in accordance with the values
generated through the boundary tractions by σx (i.e., nodal forces shown in Table 9.1). This
test also produced exact solutions for all other nodal quantities in Table 9.1 and recovered
σx of 2 at all Gauss points in each element.

The above test was repeated for patch tests A, B, and C but using a 1 × 1 ‘reduced’
Gauss quadrature to compute the element stiffness and nodal force quantities. Patch test
C indicated that the global stiffness matrix contained two global ‘zero energy modes’
(i.e., the global stiffness matrix was rank deficient by 2), thus producing incorrect nodal
displacements whose results depend solely on the round-off errors in the calculations. These
in turn produced incorrect stresses except at the 1 × 1 Gauss point used in each element
to compute the stiffness and forces. Thus, based upon stability considerations, the use of
1×1 quadrature on 4-noded elements produces a failure in the patch test. The element does
satisfy consistency requirements, however, and provided a proper stabilization scheme is
employed (e.g., stiffness or viscous methods are used in practice) this element may be used
for practical calculations.20, 21

It should be noted that a one-element patch test may be performed using the mesh shown
in Fig. 9.6(b). The results are given by nodes 1 to 4 in Table 9.1. For the one-element
patch, patch tests A and B coincide and neither evaluates the accuracy or stability of the
stiffness matrix. On the other hand, patch test C leads to the conclusions reached using the
five-element patch: namely, 2 × 2 gaussian quadrature passes a patch test whereas 1 × 1
quadrature fails the stability part of the test (as indeed we would expect by the arguments
of Chapter 5, Sec. 5.12).

A simple test on cancellation of a diagonal during the triangular decomposition step is
sufficient to warn of rank deficiencies in the stiffness matrix.

Example 9.2: Patch test for quadratic elements: quadrature effects. In Fig. 9.7 we
show a two-element patch of quadratic isoparametric quadrilaterals. Both 8-noded serendip-
ity and 9-noded lagrangian types are considered and a basic patch test type C is performed
for load case 1. For the 8-noded element both 2 × 2 (‘reduced’) and 3 × 3 (‘standard’)
gaussian quadrature satisfy the patch test, whereas for the 9-noded element only 3 × 3
quadrature is satisfactory, with 2 × 2 reduced quadrature leading to failure in rank of the
stiffness matrix. However, if we perform a one-element test for the 8-noded and 2 × 2
quadrature element, we discover the spurious zero-energy mode shown in Fig. 9.5 and thus
the one-element test has failed. We consider such elements suspect and to be used only
with the greatest of care. To illustrate what can happen in practice we consider the simple
problem shown in Fig. 9.8(a). In this example the ‘structure’ modelled by a single element
is considered rigid and interest is centred on the ‘foundation’ response. Accordingly only
one element is used to model the structure. Use of 2 × 2 quadrature throughout leads to
answers shown in Fig. 9.8(b) while results for 3 × 3 quadrature are shown in Fig. 9.8(c).
It should be noted that no zero-energy mode exists since more than one element is used.
There is here, however, a spurious response due to the large modulus variation between
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Fig. 9.7 Patch test for 8- and 9-noded isoparametric quadrilaterals.

structure and foundation. This suggests that problems in which non-linear response may
lead to a large variation in material parameters could also induce such performance, and
thus use of the 8-noded 2 × 2 integrated element should always be closely monitored to
detect such anomalous behaviour.

Indeed, support or loading conditions may themselves induce very suspect responses for
elements in which near singularity occurs. Figure 9.9 shows some amusing peculiarities
which can occur for reduced integration elements and which disappear entirely if full
integration is used.22 In all cases the assembly of elements is non-singular even though
individual elements are rank deficient.

Example 9.3: Higher order patch test – assessment of order. In order to demonstrate a
higher order patch test we consider the two-element plane stress problem shown in Fig. 9.7
and subjected to bending loading shown as Load 2. As above, two different types of
element are considered: (a) an 8-noded serendipity quadrilateral element and (b) a 9-noded
lagrangian quadrilateral element. In our test we wish to demonstrate a feature for nine-noded
element mapping discussed in Chapter 5 (see Sec. 5.7) and first shown by Wachspress.23

In particular we restrict the mapping into the xy plane to be that produced by the 4-noded
isoparametric bilinear element, but permit the dependent variable to assume the full range
of variations consistent with the 8- or 9-noded shape functions. In Chapter 5 we showed
that the 9-noded element can approximate a complete quadratic displacement function in
x, y whereas the eight-noded element cannot. Thus we expect that the nine-noded element
when restricted to the isoparametric mappings of the 4-noded element will pass a higher
order patch test for all arbitrary quadratic displacement fields. The pure bending solution
in elasticity is composed of polynomial terms up to quadratic order. Furthermore, no body
force loadings are necessary to satisfy the equilibrium equations. For the mesh considered
the nodal loadings are equal and opposite on the top and bottom nodes as shown in Fig. 9.7.
The results for the two elements are shown in Table 9.2 for the indicated quadratures with
E = 100 and ν = 0.3.

From this test we observe that the 9-noded element does pass the higher order test
performed. Indeed, provided the mapping is restricted to the 4-noded shape it will always
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Fig. 9.8 A propagating spurious mode from a single unsatisfactory element. (a) Problem and mesh. (b) 2 × 2
integration. (c) 3 × 3 integration.

pass a patch test for displacements with terms no higher than quadratic. On the other hand,
the 8-noded element passes the higher order patch test performed only for rectangular
element (or constant jacobian) mappings. Moreover, the accuracy of the 8-noded element
deteriorates very rapidly with increased distortions defined by the parameter d in Fig. 9.7.

The use of 2 × 2 reduced quadrature improves results for the higher order patch test
performed. Indeed, two of the points sampled give exact results and the third is only
slightly in error. As noted previously, however, a single-element test for the 2×2 integrated
8-noded element will fail the stability part of the patch test and it should thus be used with
great care.
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(a)

(b)

(c)

Fig. 9.9 Peculiar response of near singular assemblies of elements.22 (a) A column of 9-noded elements with
point load response of full 3×3 and 2×2 integration. The whole assembly is non-singular but singular element
modes are apparent. (b) A fully constrained assembly of 9-noded elements with no singularity – first six
eigenmodes with full (3×3) integration. (c) Same as (b) but with 2×2 integration. Note the appearance of
‘wild’ modes called ‘Escher’ modes named so in reference 22 after this graphic artist.
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Table 9.2 Bending load case (E = 100, ν = 0.3)

Element Quadrature d vA uB vB

8-node 3 × 3
8-node 2 × 2
9-node 3 × 3

}

0
0.750 0.150 0.75225
0.750 0.150 0.75225
0.750 0.150 0.75225

8-node 3 × 3
8-node 2 × 2
9-node 3 × 3

}

1
0.7448 0.1490 0.74572
0.750 0.150 0.75100
0.750 0.150 0.75225

8-node 3 × 3
8-node 2 × 2
9-node 3 × 3

}

2
0.6684 0.1333 0.66364
0.750 0.150 0.75225
0.750 0.150 0.75225

Exact – – 0.750 0.150 0.75225

9.8 Application of the patch test to an incompatible
element

In order to demonstrate the use of the patch test for a finite element formulation which
violates the usually stated requirements for shape function continuity, we consider the
plane strain incompatible modes first introduced by Wilson et al.24 and discussed by Taylor
et al.25 The specific incompatible formulation considered uses the element displacement
approximations:

û = Naũa +Nn
1α1 +Nn

2α2 (9.12)

where Na (a = 1, . . . , 4) are the usual conforming bilinear shape functions and the last two
terms are incompatible modes of deformation defined by the hierarchical functions

Nn
1 = 1 − ξ 2 and Nn

2 = 1 − η2 (9.13)

defined independently for each element.
The shape functions used are illustrated in Fig. 9.10. The first, a set of standard bilinear

type, gives a displacement pattern which, as shown in Fig. 9.10(b), introduces spurious
shear strains in pure bending. The second, in which the parameters α1 and α2 are strictly
associated with a specific element, therefore introduces incompatibility but assures correct
bending behaviour in an individual rectangular element. The excellent performance of this
element in the bending situation is illustrated in Fig. 9.11.

In reference 25 the finite element approximation is computed by summing the potential
energies of each element and computing the nodal loads due to boundary tractions from
the conforming part of the displacement field only. Thus for the purposes of conducting
patch tests we compute the strains using all parts of the displacement field leading to a
generalization of (9.4) which may be written as

[
K11 K12

K21 K22

]{
ũ
α

}
=
{

f1

f2

}
(9.14)

Here K11 and f1 are the stiffness and loads of the 4-noded (conforming) bilinear element,
K12 and K21 (= KT

12) are coupling stiffnesses between the conforming and non-conforming
displacements, and K22 and f2 are the stiffness and loads of the non-conforming displace-
ments. We note that, according to the algorithm of reference 24, f2 must vanish from the
patch test solutions.
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(a)

(b)

(c)

Fig. 9.10 (a) Linear quadrilateral with auxiliary incompatible shape functions. (b) Pure bending and linear
displacements causing shear. (c) Auxiliary ‘bending’ shape functions with internal variables.

For a patch test in plane strain or plane stress, only linear polynomials need be considered
for which all non-conforming displacements must vanish. Thus for a successful patch test
we must have

K11ũ = f1 (9.15a)

and

K21ũ = f2 (9.15b)

If we carry out a patch test for the mesh shown in Fig. 9.12(a) we find that all three
forms (i.e., patch tests A, B, and C) satisfy these conditions and thus pass the patch test. If
we consider the patch shown in Fig. 9.12(b), however, the patch test is not satisfied. The
lack of satisfaction shows up in different ways for each form of the patch test. Patch test
A produces non-zero f2 values when α is set to zero and ũ according to the displacements
considered. In form B the values of the nodal displacements ũ5 are in error and α are
non-zero, also leading to erroneous stresses in each element. In form C all unspecified
displacements are in error as well as the stresses.

It is interesting to note that when a patch is constructed according to Fig. 9.12(c) in which
all elements are parallelograms all three forms of the patch test are once again satisfied.
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Fig. 9.11 Performance of the non-conforming quadrilateral in beam bending treated as plane stress. (a) Con-
forming linear quadrilateral. (b) Non-conforming quadrilateral.

Accordingly we can note that if any mesh is systematically refined by subdivision of each
element into four elements whose sides are all along ξ , η lines in the original element
with values of −1, 0, or 1 (i.e., by bisections) the mesh converges to constant jacobian
approximations of the type shown in Fig. 9.12(c). Thus, in this special case the incompatible
mode element satisfies a weak patch test and will converge. In general, however, it may
be necessary to use a very fine discretization to achieve sufficient accuracy, and hence the
element probably has no practical (or efficient) engineering use.

A simple artifice to ensure that an element passes the patch test is to replace the derivatives
of the incompatible modes by⎧⎪⎪⎨

⎪⎪⎩

∂Nn
a

∂x

∂Nn
a

∂y

⎫⎪⎪⎬
⎪⎪⎭

= J0

J (ξ, η)
J−1

0

⎧⎪⎪⎨
⎪⎪⎩

∂Nn
a

∂ξ

∂Nn
a

∂η

⎫⎪⎪⎬
⎪⎪⎭

(9.16)

where J (ξ, η) is the determinant of the jacobian matrix J(ξ, η) and J0 and J0 are the values
of the inverse jacobian matrix and jacobian evaluated at the element centre (ξ = η = 0).
This ensures satisfaction of the patch test for all element shapes, and with this alteration of
the algorithm the incompatible element proves convergent and quite accurate.25
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Fig. 9.12 Patch test for an incompatible element form. (a) Regular discretization. (b) Irregular discretization
about node 5. (c) Constant jacobian discretization about node 5.

An alternative approach which also passes the patch test constructs the derivatives used
in the strains as

∂Nn
a

∂x
⇐ ∂Nn

a

∂x
− 1

�e

∫
�e

∂Nn
a

∂x
d�

∂Nn
a

∂y
⇐ ∂Nn

a

∂y
− 1

�e

∫
�e

∂Nn
a

∂y
d�

(9.17)

where�e is the volume of the element.26 Indeed, this form may also be used to deduce terms
in the strain matrix of enhanced strain forms (e.g., see Sec. 10.5.3) and the justification of the
modification follows from the mixed approach used there. When the shape functions (9.13)
are inserted into (9.17) and the jacobian is constant (as it will be for any parallelogram shape
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element) we immediately find that the integral term is zero. However, when the element
has a non-constant jacobian which for the two-dimensional element has the form

J (ξ, η) = J0 + Jξ ξ + Jηη,

where J0, Jξ , Jη are constants depending on nodal coordinates of the element, the integral
term is non-zero. Thus, the effectiveness of the modification is clearly evident in producing
elements which pass the constant stress patch test for all element shapes.

9.9 Higher order patch test – assessment of robustness

A higher order patch test may also be used to assess element ‘robustness’. An element is
termed robust if its performance is not sensitive to physical parameters of the differential
equation. For example, the performance of many elements for solution of plane strain linear
elasticity problems is sensitive to Poisson’s ratio values near 0.5 (called ‘near incompress-
ibility’). Indeed, for Poisson ratios near 0.5 the energy stored by a unit volumetric strain
is many orders larger than the energy stored by a unit deviatoric strain. Accordingly finite
elements which exhibit a strong coupling between volumetric and deviatoric strains often
produce poor results in the nearly incompressible range, a problem discussed further in
Chapter 11.

This may be observed using a four-noded element to solve a problem with a quadratic
displacement field (i.e., a higher order patch test). If we again consider a pure bending
example and an eight-element mesh shown in Fig. 9.13 we can clearly observe the deterio-
ration of results as Poisson’s ratio approaches a value of one-half. Also shown in Fig. 9.13
are results for the incompatible modes described in Sec.9.8. It is evident that the response
is considerably improved by adding these modes, especially if 2 × 2 quadrature is used.

If we consider the regular mesh and 4-noded elements and further keep the domain
constant and successively refine the problem using meshes of 8, 32, 128, and 512 elements,
we observe that the answers do converge as guaranteed by the patch test. However, as
shown in Fig. 9.14, the rate of convergence in energy for Poisson ratio values of 0.25 and
0.4999 is quite different. For 0.25 the rate of convergence is nearly a straight line for all
meshes, whereas for 0.4999 the rate starts out quite low and approaches an asymptotic value
of 2 as h tends towards zero. For ν near 0.25 the element is called robust, whereas for ν
near 0.5 it is not. If we use selective reduced integration (which for the plane strain case
passes strong patch tests) and repeat the experiment, both values of ν produce a similar
response and thus the element becomes robust for all values of Poisson’s ratio less than 0.5.

The use of higher order patch tests can thus be very important to separate robust ele-
ments from non-robust elements. For methods which seek to automatically refine a mesh
adaptively in regions with high errors, as discussed in Chapter 14, it is extremely important
to use robust elements.

9.10 Concluding remarks

In the preceding sections we have described the patch test and its use in practice by con-
sidering several example problems. The patch test described has two essential parts: (a)
a consistency evaluation and (b) a stability check. In the consistencytest a set of linearly
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Fig. 9.13 Plane strain 4-noded quadrilaterals with and without incompatible modes (higher order patch test
for performance evaluation).

independent essential polynomials (i.e., all independent terms up to the order needed to
describe the finite element model) is used as a solution to the differential equations and
boundary conditions, and in the limit as the size of a patch tends to zero the finite element
model must exactly satisfy each solution. We presented three forms to perform this portion
of the test which we call forms A, B, and C.

The use of form C, where all boundary conditions are the natural ones (e.g., tractions
for elasticity) except for the minimum number of essential conditions needed to ensure
a unique solution to the problem (e.g., rigid body modes for elasticity), is recommended
to test consistency and stability simultaneously. Both one-element and more-than-one-
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Fig. 9.14 Higher order patch test on element robustness (see Fig. 9.13) – convergence test under subdivision
of elements.

element tests are necessary to ensure that the patch test is satisfied. With these conditions
and assuming that the solution procedure used can detect any possible rank deficiencies the
stability of solution is also tested. If no such condition is included in the program a stability
test must be conducted independently. This can be performed by computing the number of
zero eigenvalues in the coefficient matrix for methods that use a solution of linear equations
to compute the finite element parameters, ũ. Alternatively, the loading used for the patch
solution may be perturbed at one point by a small value (say square root of the round-off
limit, e.g., by 10−8 for round-off of order 10−15) and the solution tested to ensure that it
does not change by a large amount.

Once an element has been shown to pass all of the essential patch tests for both consistency
and stability, convergence is assured as the size of elements tends to zero. However, in some
situations (e.g., the nearly incompressible elastic problem) convergence may be very slow
until a very large number of elements are used. Accordingly, we recommend that higher
order patch tests be used to establish element robustness. Higher order patch tests involve
the use of polynomial solutions of the differential equation and boundary conditions with
the order of terms larger than the basic polynomials used in a patch test. Indeed, the order
of polynomials used should be increased until the patch test is satisfied only in a weak sense
(i.e., ash tends to zero). The advantage of using a higher order patch test, as opposed to other
boundary value problems, is that the exact solution may be easily computed everywhere in
the model.

In some of the examples we have tested the use of incompatible function and inex-
act numerical integration procedures (reduced and selective integration). Some of these
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violations of the rules previously stipulated have proved justified not only by yielding im-
proved performance but by providing methods for which convergence is guaranteed. We
shall discuss in Chapter 11 some of the reasons for such improved performance.

9.11 Problems

9.1 A Type C patch test for a plane strain problem is to be performed using the single
element shown in Fig. 9.15(a).

Assume an element has the dimensions a = 15, b = 12, c = 10 with elastic
properties E = 200, ν = 0.25. Nodes 1 and 2 are placed on the x axis and u1 = v1 =
v2 = 0 are applied as boundary restraints.
(a) Compute all nodal forces necessary to compute the test for a stress state σx = 8

with all other stresses zero.
(b) Compute the displacements u(x, y) and v(x, y) for the solution.
(c) Use FEAPpv (or any other available program) to perform the test. Is it passed?

9.2 Solve Problem 9.1 for an axisymmetric geometry† with node 1 satisfying v1 = 0 and
all other nodes free to displace. For σr = 8 consider the cases:
(a) Node 1 placed at r = 0.
(b) Node 1 placed at r = 15.

9.3 Solve Problem 9.1 for a plane stress problem with an orthotropic material given by

⎧⎨
⎩
σx ′

σy ′

τx ′y ′

⎫⎬
⎭ =

⎡
⎣200 50 0

50 100 0
0 0 75

⎤
⎦
⎧⎨
⎩
εx ′

εy ′

γx ′y ′

⎫⎬
⎭

Let nodes 1 and 2 lie on the x axis with node 1 placed at the origin.
(a) Compute the nodal forces acting on all nodes when the orthotropic axes are aligned

as shown in Fig. 9.15(b) with θ = 30◦ and a single stress σ ′
x = 5 is applied.

(b) Compute the displacement field for the case u1 = v1 = u4 = 0.
(c) Use FEAPpv (or any other available program) to perform the patch test. Is it

passed?
9.4 The example described in Problem 9.1 is used to perform a patch test on an element

with incompatible modes. The element matrix is given by

[
K C
CT V

] {
ũ
α

}
=
{

fu
fα

}

where

† Note: FEAPpv computes all axisymmetric arrays on a 1-radian sector in the θ direction, thus avoiding the 2π
factor in a complete ring sector.
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(a) Element geometry
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z = z�

(b) Orthotropic axes

θ

Fig. 9.15 One element patch test for 4-node quadrilateral. Problems 9.1 to 9.4.

K =
∫
�e

BT
uDBu d�

C =
∫
�e

BT
uDBα d�

V =
∫
�e

BT
αDBα d�

The element passes the patch test for all constant stress states when a = c; however, it
fails when a �= c.

Suggest a correction which will ensure the patch test is satisfied.
9.5 Perform a patch test for the 8-node element shown in Fig. 9.16(a) for the assumed

displacements

u = 0.1 x and v = 0

Let the origin be at the lower left corner of the element. The dimensions are a = b = 3
and c = 3.3. The material is linear isotropic elastic with E = 200 and ν = 0.3 and
plane strain conditions are assumed.
(a) Use 2 × 2 gaussian quadrature to compute the element arrays and conduct a type

A, B, and C patch test.
(b) Repeat the calculation using 3 × 3 quadrature.
(c) Consider a higher order displacement

u = 0.2xy and v = 0

and repeat (a) and (b).
(d) Discuss any differences noted.
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Fig. 9.16 One-element patch test for 8- and 9-node quadrilateral. Problems 9.5 to 9.8.

9.6 Perform a patch test for the 9-node element shown in Fig. 9.16(b) for the assumed
displacements

u = 0.1x and v = 0

Let the origin be at the lower left corner of the element. The dimensions are a = b =
e = 3, c = 3.3 and d = 3.15. Material is linear isotropic elastic with E = 200 and
ν = 0.3 and plane strain conditions are assumed.
(a) Use 2 × 2 gaussian quadrature to compute the element arrays and conduct a type

A, B, and C patch test.
(b) Repeat the calculation using 3 × 3 quadrature.
(c) Set d = 3.4 and e = 2.9 and repeat (a) and (b).
(d) Consider a higher order displacement

u = 0.2xy and v = 0

and repeat (a) to (c).
(e) Discuss any differences noted.

9.7 Solve Problem 9.5 for an axisymmetric geometry (replace x, y by r, z).
(a) Let the inner radius be located at r = 0.
(b) Let the inner radius be located at r = 3.

9.8 Solve Problem 9.6 for an axisymmetric geometry (replace x, y by r, z).
(a) Let the inner radius be located at r = 0.
(b) Let the inner radius be located at r = 3.

9.9 For the 4-element mesh configurations shown in Fig. 9.17 devise a set of patch tests for
a plane strain problem in which individual constant stress components are evaluated.
Choose appropriate dimensions and isotropic elastic properties with ν �= 0.

Use FEAPpv (or any available program) to perform Type A, B, and C tests for the
arrays evaluated by (a) 1×1 quadrature and (b) 2×2 quadrature. Discuss your findings.
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Fig. 9.17 Multi-element patch test. Problems 9.9 to 9.13.

9.10 Each quadrilateral subregion in Fig. 9.17 is to be represented by an 8-node isopara-
metric serendipity element. Each side of the region has a length of 10 units. A higher
order patch test of a plane strain problem with isotropic material with E = 200 and
ν = 0 has the displacements

u = −0.1xy and v = 0.05x2

(a) Compute the state of stress for the given displacement field.
(b) Select appropriate positions for nodes 5 to 8 for configurations (a) and (b). Specify

appropriate nodal boundary conditions to prevent rigid body motion. (Hint: Place
the origin of coordinates at the mid-point between nodes 1 and 4.)

(c) Compute appropriate nodal forces and perform a Type C patch test for each
configuration using 3 × 3 gaussian quadrature to compute arrays.

Briefly discuss your findings.
9.11 Solve Problem 9.10 using 9-node isoparametric lagrangian elements.
9.12 Replacex by r andy by z and solve Problem 9.10 using 8-node isoparametric serendip-

ity elements on an axisymmetric geometry.
9.13 Replace x by r and y by z and solve Problem 9.12 using 9-node isoparametric

lagrangian elements.
9.14 Construct the generalization of the mesh configuration shown in Fig. 9.17 to a three-

dimensional problem. For E = 200, ν = 0.25 and equal side lengths of 10 units
use 8-node isoparametric hexagonal elements to perform a Type C patch test for the
single stress σz = 5. Use both regular and distorted positions for the internal nodes.

(Hint: Check that there are no negative jacobian determinants at the nodes of each
element.)

9.15 Select dimensions and use FEAPpv (or any available program) to verify the results
shown in Fig. 9.8.
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9.16 Select dimensions and use FEAPpv (or any available program) to verify the results
shown in Fig. 9.9(a).

9.17 Select dimensions and use FEAPpv (or any available program) to verify the results
shown in Fig. 9.9(b) and (c).
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10

Mixed formulation and
constraints – complete field

methods

10.1 Introduction

The set of differential equations from which we start the discretization process will deter-
mine whether we refer to the formulation as mixed or irreducible. Thus if we consider an
equation system with several dependent variables u written as [see Eqs (3.1) and (3.2)]

A(u) = 0 in domain � (10.1a)

and
B(u) = 0 on boundary � (10.1b)

in which none of the components of u can be eliminated still leaving a well-defined problem,
then the formulation will be termed irreducible. If this is not the case the formulation will
be called mixed. These definitions were given in Chapter 3 (p. 56).

This definition is not the only one possible1 but appears to the authors to be widely
applicable2, 3 if in the elimination process referred to we are allowed to introduce penalty
functions. Further, for any given physical situation we shall find that more than one irre-
ducible form is usually possible.

As an example we shall consider the simple problem of heat conduction (or the quasi-
harmonic equation) to which we have referred in Chapters 3 and 7. In this we start with
a physical constitutive relation defining the flux [see Eq. (7.5)] in terms of the potential
(temperature) gradients, i.e.,

q = −k ∇φ q =
{
qx
qy

}
(10.2)

The continuity equation can be written as [see Eq. (7.7)]

∇Tq ≡ ∂qx

∂x
+ ∂qy

∂y
= −Q (10.3)

If the above equations are satisfied in � and the boundary conditions

φ = φ̄ on �φ or qn = q̄n on �q (10.4)

are obeyed then the problem is solved.
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Clearly elimination of the vector q is possible and simple substitution of Eq. (10.2) into
Eq. (10.3) leads to

−∇T(k ∇φ)+Q = 0 in � (10.5)

with appropriate boundary conditions expressed in terms of φ or its gradient.
In Chapter 7 we showed discretized solutions starting from this point and clearly, as no

further elimination of variables is possible, the formulation is irreducible.
On the other hand, if we start the discretization from Eqs (10.2)–(10.4) the formulation

would be mixed.
An alternative irreducible form is also possible in terms of the variables q. Here we have

to introduce a penalty form and write in place of Eq. (10.3)

∇Tq +Q = φ

α
(10.6)

where α is a penalty number which tends to infinity. Clearly in the limit both equations are
the same and in general if α is very large but finite the solutions should be approximately
the same.

Now substitution into Eq. (10.2) gives the single governing equation

∇(∇Tq)+ 1

α
k−1q + ∇Q = 0 (10.7)

which again could be used for the start of a discretization process as a possible irreducible
form.4

The reader should observe that, by the definition given, the formulations so far used in
this book were irreducible. In subsequent sections we will show how elasticity problems
can be dealt with in mixed form and indeed will show how such formulations are essential
in certain problems typified by the incompressible elasticity example to which we have
referred in Chapter 6. In Chapter 3 (Sec. 3.9) we have shown how discretization of a mixed
problem can be accomplished.

Before proceeding to a discussion of such discretization (which will reveal the advantages
and disadvantages of mixed methods) it is important to observe that if the operator specifying
the mixed form is symmetric or self-adjoint (see Sec. 3.9) the formulation can proceed from
the basis of a variational principle which can be directly obtained for linear problems.
We invite the reader to prove by using the methods of Chapter 3 that stationarity of the
variational principle given below is equivalent to the differential equations (10.2) and
(10.3) together with the boundary conditions (10.4):

� = 1
2

∫
�

qTk−1q d�+
∫
�

qT∇φ d�−
∫
�

φQ d�−
∫
�q

φq̄n d� (10.8)

for
φ = φ̄ on �φ

The establishment of such variational principles is a worthy academic pursuit and had led
to many famous forms given in the classical work of Washizu.5 However, we also know (see
Sec. 3.7) that if symmetry of weighted residual matrices is obtained in a linear problem then
a variational principle exists and can be determined. As such symmetry can be established
by inspection we shall, in what follows, proceed with such weighting directly and thus
avoid some unwarranted complexity.
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10.2 Discretization of mixed forms – some general
remarks

We shall demonstrate the discretization process on the basis of the mixed form of the
heat conduction equations (10.2) and (10.3). Here we start by assuming that each of
the unknowns is approximated in the usual manner by appropriate shape functions and
corresponding unknown parameters. Thus,

q ≈ q̂ = Nq q̃ and φ ≈ φ̂ = Nφφ̃ (10.9)

where q̃ and φ̃ are the nodal (or element) parameters that have to be determined. Similarly
the weighting functions are given by

vq ≈ v̂q = Wqδq̃ and vφ ≈ v̂φ = Wφδφ̃ (10.10)

where δq̃ and δφ̃ are arbitrary parameters.
Assuming that the boundary conditions for φ = φ̄ are satisfied by the choice of the

expansion, the weighted statement of the problem is, for Eq. (10.2) after elimination of the
arbitrary parameters, ∫

�

WT
q (k

−1q̂ + ∇φ̂) d� = 0 (10.11)

and, for Eq. (10.3) and the ‘natural’ boundary conditions,

−
∫
�

WT
φ(∇Tq̂ +Q) d�+

∫
�q

WT
φ(q̂n − q̄n) d� = 0 (10.12)

The reason we have premultiplied Eq. (10.2) by k−1 is now evident as the choice

Wq = Nq Wφ = Nφ (10.13)

will yield symmetric equations [using Green’s theorem to perform integration by parts on
the gradient term in Eq. (10.12)] of the form

[
A C
CT 0

]{
q̃
φ̃

}
=
{

f1

f2

}
(10.14)

with

A =
∫
�

NT
qk−1Nq d� C =

∫
�

NT
q ∇Nφ d�

f1 = 0 f2 =
∫
�

NT
φQ d�+

∫
�q

NT
φq̄n d�

(10.15)

This problem, which we shall consider as typifying a large number of mixed approxima-
tions, illustrates the main features of the mixed formulation, including its advantages and
disadvantages. We note that:

1. The continuity requirements on the shape functions chosen are different. It is easily seen
that those given for Nφ can be C0 continuous while those for Nq can be discontinuous in
or between elements (C−1 continuity) as no derivatives of this are present. Alternatively,
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this discontinuity can be transferred to Nφ (using Green’s theorem on the integral in C)
while maintaining C0 continuity for Nq .

This relaxation of continuity is of particular importance in plate and shell bending
problems (see reference 6) and indeed many important early uses of mixed forms have
been made in that context.7–10

2. If interest is focused on the variable q rather than φ, use of an improved approximation
for this may result in higher accuracy than possible with the irreducible form previously
discussed. However, we must note that if the approximation function for q is capable of
reproducing precisely the same type of variation as that determinable from the irreducible
form then no additional accuracy will result and, indeed, the two approximations will
yield identical answers.

Thus, for instance, if we consider the mixed approximation to the field problems
discussed using a linear triangle to determine Nφ and piecewise constant Nq , as shown in
Fig. 10.1, we will obtain precisely the same results as those obtained by the irreducible
formulation with the same Nφ applied directly to Eq. (10.5), providing k is constant
within each element. This is evident as the second of Eqs (10.14) is precisely the
weighted continuity statement used in deriving the irreducible formulation in which the
first of the equations is identically satisfied.

Indeed, should we choose to use a linear but discontinuous approximation form of Nq

in the interior of such a triangle, we would still obtain precisely the same answers, with the
additional coefficients becoming zero. This discovery was made by Fraeijs de Veubeke11

and is called the principle of limitation, showing that under some circumstances no
additional accuracy is to be expected from a mixed formulation. In a more general case
where k is, for instance, discontinuous and variable within an element, the results of
the mixed approximation will be different and on occasion superior.2 Note that a C0

continuous approximation for q does not fall into this category as it is not capable of
reproducing the discontinuous ones.

Constant q Linear q Linear φ 

Linear φ

OR +

+

=

=

Fig. 10.1 A mixed approximation to the heat conduction problem yielding identical results as the corresponding
irreducible form (the constant k is assumed in each element).
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3. The equations resulting from mixed formulations frequently have zero diagonal terms
as indeed in the case of Eq. (10.14).

We noted in Chapter 3 that this is a characteristic of problems constrained by a La-
grange multiplier variable. Indeed, this is the origin of the problem, which adds some
difficulty to a standard gaussian elimination process used in equation solving. As the
form of Eq. (10.14) is typical of many two-field problems we shall refer to the first vari-
able (here q̃) as the primary variable and the second (here φ̃) as the constraint variable.

4. The added number of variables means that generally larger size algebraic problems have
to be dealt with.

The characteristics so far discussed did not mention one vital point which we elaborate
in the next section.

10.3 Stability of mixed approximation. The patch test

10.3.1 Solvability requirement

Despite the relaxation of shape function continuity requirements in the mixed approxima-
tion, for certain choices of the individual shape functions the mixed approximation will not
yield meaningful results. This limitation is indeed much more severe than in an irreducible
formulation where a very simple ‘constant gradient’ (or constant strain) condition sufficed
to ensure a convergent form once continuity requirements were satisfied.

The mathematical reasons for this difficulty are discussed by Babuška12, 13 and Brezzi,14

who formulated a mathematical criterion associated with their names. However, some
sources of the difficulties (and hence ways of avoiding them) follow from quite simple
reasoning.

If we consider the equation system (10.14) to be typical of many mixed systems in
which q̃ is the primary variable and φ̃ is the constraint variable (equivalent to a lagrangian
multiplier), we note that the solution can proceed by eliminating q̃ from the first equation
and by substituting into the second to obtain

(CTA−1C)φ̃ = −f2 + CTA−1f1 (10.16)

which requires the matrix A to be non-singular (or Aq̃ �= 0 for all q̃ �= 0). To calculate φ̃
it is necessary to ensure that the bracketed matrix, i.e.,

H = CTA−1C (10.17)

is non-singular.
Singularity of the H matrix will always occur if the number of unknowns in the vector

q̃, which we call nq , is less than the number of unknowns nφ in the vector φ̃. Thus for
avoidance of singularity

nq ≥ nφ (10.18)

is necessary though not sufficient as we shall find later.
The reason for this is evident as the rank of the matrix (10.17), which needs to be nφ ,

cannot be greater than nq , i.e., the rank of A−1.
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In some problems the matrix A may well be singular. It can normally be made non-
singular by addition of a multiple of the second equation, thus changing the first equation
to

Ā = A + γCCT

f̄1 = f1 + γCf2

where γ is an arbitrary number. We note that the solution to (10.14) is not changed by this
modification.

Although both the matrices A and CCT are singular their combination Ā should not be,
providing we ensure that for all vectors q̃ �= 0 either

Aq̃ �= 0 or CTq̃ �= 0

In mathematical terminology this means that A is non-singular in the null space of CCT.
The requirement of Eq. (10.18) is a necessary but not sufficient condition for non-

singularity of the matrix H. An additional requirement evident from Eq. (10.16) is

Cφ̃ �= 0 for all φ̃ �= 0

If this is not the case the solution would not be unique.
The above requirements are inherent in the Babuška–Brezzi condition previously men-

tioned, but can always be verified algebraically.

10.3.2 Locking

The condition (10.18) ensures that non-zero answers for the variables q̃ are possible. If it is
violated locking or non-convergent results will occur in the formulation, giving near-zero
answers for q̃ [see Chapter 3, Eq. (3.137) ff.].

To show this, we shall replace Eq. (10.14) by its penalized form:
[

A C

CT − 1

α
I

]{
q̃
φ̃

}
=
{

f1

f2

}
with α → ∞
and I = identity matrix

(10.19)

Elimination of φ̃ leads to
(A + αCCT)q̃ = f1 + αCf2 (10.20)

As α → ∞ the above becomes simply

(CCT)q̃ = Cf2 (10.21)

Non-zero answers for q̃ should exist even when f2 is zero and hence the matrix CCT must
be singular. This singularity will always exist if nq > nφ , but can exist also when nq = nφ
if the rank of C is less than nq .

The stability conditions derived on the particular example of Eq. (10.14) are generally
valid for any problem exhibiting the standard Lagrange multiplier form. In particular the
necessary count condition will in many cases suffice to determine element acceptability;
however, final conclusions for successful elements which pass all count conditions and the
full test to ensure consistency must be evaluated by rank tests on the full matrix.
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In the example just quoted q̃ denotes flux and φ̃ temperature and perhaps the concept
of locking was not clearly demonstrated. It is much more definite where the first primary
variable is a displacement and the second constraining one is a stress or a pressure. There
locking is more evident physically and simply means an occurrence of zero displacements
throughout as the solution approaches a numerical instability limit. This unfortunately will
happen on occasion.

10.3.3 The patch test

The patch test for mixed elements can be carried out in exactly the way we have described
in the previous chapter for irreducible elements. As consistency is easily assured by taking
a polynomial approximation for each of the variables, only stability needs generally to be
investigated. Most answers to this can be obtained by simply ensuring that count condition
(10.18) is satisfied for any isolated patch on the boundaries of which we constrain the
maximum number of primary variables and the minimum number of constraint variables.15

Example 10.1: A single-element test. In Fig. 10.2 we illustrate a single-element test
for two possible formulations with C0 continuous Nφ (quadratic) and discontinuous Nq ,
assumed to be either constant or linear within an element of triangular form. As no values
of q̃ can here be specified on the boundaries, on the patch (which is here simply that of a
single element) we shall fix a single value of φ̃ only, as is necessary to ensure uniqueness.
A count shows that only one of the formulations, i.e., that with linear flux variation, satisfies
condition (10.18) and therefore may be acceptable (but will always determine elements
which fail!).

Example 10.2: Asingle-element test withC0, q̃ andφ. In Fig. 10.3 we illustrate a similar
patch test on the same element but with identicalC0 continuous shape functions specified for
both q̃ and φ̃variables. This example shows satisfaction of the basic condition of Eq. (10.18)

nq = 2

nq = 6

nφ= 6 − 1=5

nφ= 6 − 1=5

Restrained

nq < nφ
Test failed

nq > nφ
Test passed
(but results equivalent
to irreducible form)

(a)

(b)

+

+

Fig. 10.2 Single-element patch test for mixed approximations to the heat conduction problem with discontin-
uous flux q assumed. (a) Quadratic C0, φ; constant q. (b) Quadratic C0, φ; linear q.
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nq = 12 nφ = 6 − 1=5

nq > nφ

Restrained

+

Fig. 10.3 As Fig. 10.2 but with quadratic C0 continuous q.

and therefore is apparently a permissible formulation. The permissible formulation must
always be subjected to a numerical rank test.

Clearly condition (10.18) will need to be satisfied and many useful conclusions can be
drawn from such counts. These eliminate elements which will not function and on many
occasions will give guidance to elements which will.

Even if the patch test is satisfied occasional difficulties can arise, and these are indicated
mathematically by the Babuška–Brezzi condition already referred to.16 These difficulties
can be due to excessive continuity imposed on the problem by requiring, for instance, the
flux condition to be of C0 continuity class. In Fig. 10.4 we illustrate some cases in which
the imposition of such continuity is physically incorrect and therefore can be expected
to produce erroneous (and usually highly oscillating) results. In all such problems we
recommend that the continuity be relaxed on all surfaces where a physical discontinuity
can occur.

We shall discuss this problem further in Sec. 10.4.3.

10.4 Two-field mixed formulation in elasticity

10.4.1 General

In all the previous formulations of elasticity problems in this book we have used an irre-
ducible formulation, using the displacement u as the primary variable. In earlier chapters,

qII

q I
n

q 
I 

qn
II

kII

kI

(a)
qn

I  = qn
II

Only qn 
continuous

q

q

q changes abruptly
(discontinuity)

(b)

Fig. 10.4 Some situations for which C0 continuity of flux q is inappropriate. (a) Discontinuous change of
material properties. (b) Singularity.
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the virtual work principle was used to establish the equilibrium conditions and was written
as ∫

�

δεTσ d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0 (10.22)

where t̄ are the tractions prescribed on �t and with

σ = Dε (10.23)

as the constitutive relation (omitting here initial strains and stresses for simplicity).
We recall that statements such as Eq. (10.22) are equivalent to weighted residual forms

(see Chapter 3) and in what follows we shall use these frequently. In the above the strains
are related to displacement by the matrix operator S introduced in Chapter 2, giving

ε = Su

δε = S δu (10.24)

with the displacement expansions constrained to satisfy the prescribed displacements on
�u. This is, of course, equivalent to Galerkin-type weighting.

With the displacement u approximated as

u ≈ û = Nuũ (10.25)

the required stiffness equations were obtained in terms of the unknown displacement vector
ũ and the solution obtained.

It is possible to use mixed forms in which either σ or ε, or, indeed, both these variables,
are approximated independently. We shall discuss such formulations below.

10.4.2 The u–σ mixed form

In this we shall assume that Eq. (10.22) is valid but that we approximate σ independently
as

σ ≈ σ̂ = Nσ σ̃ (10.26)

and approximately satisfy the constitutive relation

σ = DSu (10.27)

which replaces (10.23) and (10.24). The approximate integral form is written as
∫
�

δσT(Su − D−1σ) d� = 0 (10.28)

where the expression in the brackets is simply Eq. (10.27) premultiplied by D−1 to establish
symmetry and δσ is introduced as a weighting variable.

Indeed, Eqs (10.22) and (10.28) which now define the problem are equivalent to the
stationarity of the functional

�HR =
∫
�

σTSu d�− 1
2

∫
�

σTD−1σ d�−
∫
�

uTb d�−
∫
�t

uT t̄ d� (10.29)
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where the boundary displacement
u = ū

is enforced on �u, as the reader can readily verify. This is the well-known Hellinger–
Reissner17, 18 variational principle, but, as we have remarked earlier, it is unnecessary in
deriving approximate equations. Using

Nuδũ in place of δu

Bδũ ≡ SNuδũ in place of δε

Nσ δσ̃ in place of δσ

we write the approximate equations (10.28) and (10.22) in the standard form [see Eq. (10.14)]
[

A C
CT 0

]{
σ̃
ũ

}
=
{

f1

f2

}
(10.30)

with

A = −
∫
�

NT
σD−1Nσ d� C =

∫
�

NT
σB d�

f1 = 0 f2 =
∫
�

NT
ub d�+

∫
�t

NT
u t̄ d�

(10.31)

In the form given above the Nu shape functions have still to be of C0 continuity, though
Nσ can be discontinuous. However, integration by parts of the expression for C allows a
reduction of such continuity and indeed this form has been used by Herrmann7, 19, 20 for
problems of plates and shells.

10.4.3 Stability of two-field approximation in elasticity (u–σ)

Before attempting to formulate practical mixed approach approximations in detail, identical
stability problems to those discussed in Sec. 10.3 have to be considered.

For the u–σ forms it is clear that σ is the primary variable and u the constraint variable
(see Sec. 10.2), and for the total problem as well as for element patches we must have as a
necessary, though not sufficient, condition

nσ ≥ nu (10.32)

where nσ and nu stand for numbers of degrees of freedom in appropriate variables.
In Fig. 10.5 we consider a two-dimensional plane problem and show a series of elements

in which Nσ is discontinuous while Nu has C0 continuity. We note again, by invoking
the Veubeke ‘principle of limitation’, that all the elements that pass the single-element test
here will in fact yield identical results to those obtained by using the equivalent irreducible
form, providing the D matrix and the determinant of the jacobian matrix are constant within
each element. They are therefore of little interest. However, we note in passing that the
Q 4/8, which fails in a single-element test, passes that patch test for assemblies of two or
more elements, and performs well in many circumstances. We shall see later that this is
equivalent to using four-point Gauss, reduced integration (see Sec. 11.5), and as we have
mentioned in Chapter 9 such elements will not always be robust.
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T 1/3

nσ = 3
nu = 3 x 2− 3 = 3
(pass)

T 3/3

= 3 x 3 = 9
= 3 x 2−3 = 3
(pass)

T 3/6

= 3 x 3 = 9
= 6 x 2 − 3 = 9
(pass)

Q 1/4

nσ = 3
nu = 4 x 2 − 3 = 5
(fail)

Q 3/8

= 3 x 3 = 9
= 8 x 2 − 3 = 13
(fail)

Q 4/8

= 4 x 3 = 12
= 8 x 2 − 3 = 13
(fail)

Q 4/9

= 4 x 3 = 12
= 9 x 2 − 3 = 15
(fail)

Two-element Q 4/8 assembly patch test

nσ = 8 x 3 = 24
nu = 13 x 2 − 3 = 23
(pass)

Fig. 10.5 Elasticity by the mixed σ–u formulation. Discontinuous stress approximation. Single-element
patch test. No restraint on σ̃ variables but three ũ degrees of freedom restrained on patch. Test condition
nσ ≥ nu [× denotes σ̃ (3 DOF) and ◦ the ũ (2 DOF) variables].

It is of interest to note that if a higher order of interpolation is used for σ than for u the
patch test is still satisfied, but in general the results will not be improved because of the
principle of limitation.

We do not show the similar patch test for the C0 continuous Nσ assumption but state
simply that, similarly to the example of Fig. 10.3, identical interpolation of Nσ and Nu

is acceptable from the point of view of stability. However, as in Fig. 10.4, restriction of
excessive continuity for stresses has to be avoided at singularities and at abrupt material
property change interfaces, where only the normal and tangential tractions are continuous.

The disconnection of stress variables at corner nodes can only be accomplished for all
the stress variables. For this reason an alternative set of elements with continuous stress
nodes at element interfaces can be introduced (see Fig. 10.6).21

In such elements excessive continuity can easily be avoided by disconnecting only the
direct stress components parallel to an interface at which material changes occur. It should
be noted that even in the case when all stress components are connected at a mid-side node
such elements do not ensure stress continuity along the whole interface. Indeed, the amount
of such discontinuity can be useful as an error measure. However, we observe that for the
linear element [Fig. 10.6(a)] the interelement stresses are continuous in the mean.
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σ linear u linear

+

(a)

(b)

σxx

τxy

σyy σtt

σnn
τnt

σtt

Fig. 10.6 Elasticity by the mixed σ–u formulation. Partially continuous σ (continuity at nodes only). (a) σ
linear, u linear. (b) Possible transformation of interface stresses with σtt disconnected.

It is, of course, possible to derive elements that exhibit complete continuity of the appro-
priate components along interfaces and indeed this was achieved by Raviart and Thomas22

in the case of the heat conduction problem discussed previously. Extension to the full stress
problem is difficult23 and as yet such elements have not been successfully noted.

Example 10.3: Pian–Sumihara rectangle. Today very few two-field elements based on
interpolation of the full stress and displacement fields are used. One, however, deserves
to be mentioned. We begin by first considering a rectangular element where interpolations
may be given directly in terms of cartesian coordinates. A 4-node plane rectangular element
with side lengths 2a in the x direction and 2b in the y direction, shown in Fig. 10.7, has

a a

b

b

y

x

(x0, y0)

Fig. 10.7 Geometry of rectangular σ–u element.
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displacement interpolation given by

u =
4∑
a=1

Na(x, y)ũa

The shape functions are given by

N1(x, y) = 1
4

(
1 − x − x0

a

)(
1 − y − y0

b

)
;N2(x, y) = 1

4

(
1 + x − x0

a

)(
1 − y − y0

b

)

N3(x, y) = 1
4

(
1 + x − x0

a

)(
1 + y − y0

b

)
;N4(x, y) = 1

4

(
1 − x − x0

a

)(
1 + y − y0

b

)

in which x0 and y0 are the cartesian coordinates at the element centre. The strains generated
from this interpolation will be such that

εx = η1 + η2y; εy = η3 + η4x; γxy = η5 + η6x + η7y

where ηj are expressed in terms of ũ. For isotropic linear elasticity problems these strains
will lead to stresses which have a complete linear polynomial variation in each element
(except for the special case when ν = 0).

Here the stress interpolation is restricted to each element individually and, thus, can be
discontinuous between adjacent elements. The limitation principle restricts the possible
choices which lead to different results from the standard displacement solution. Namely,
the approximation must be less than a complete linear polynomial. To satisfy the stability
condition given by Eq. (10.18) we need at least five stress parameters in each element. A
viable choice for a five-term approximation is one which has the same variation in each
element as the normal strains given above but only a constant shear stress. Accordingly,

⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭ =

⎡
⎣1 0 0 y − y0 0

0 1 0 0 x − x0

0 0 1 0 0

⎤
⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Indeed, this approximation satisfies Eq. (10.18) and leads to excellent results for a rec-
tangular element.

Example 10.4: Pian–Sumihara quadrilateral. We now rewrite the formulation given in
Example 10.3 to permit a general quadrilateral shape to be used. The element coordinate
and displacement field are given by a standard bilinear isoparametric expansion

x =
4∑
a=1

Na(ξ, η)x̃a and û =
4∑
a=1

Na(ξ, η) ũa

where now
Na(ξ, η) = 1

4 (1 + ξaξ)(1 + ηaη)

in which ξa and ηa are the values of the parent coordinates at node a.
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The problem remains to deduce an approximation for stresses for the general quadrilateral
element. Here this is accomplished by first assuming stresses � on the parent element
(for convenience in performing the coordinate transformation the tensor form is used, see
Appendix B) in an analogous manner as the rectangle above:

Σ(ξ, η) =
[
�ξξ �ξη
�ηξ �ηη

]
=
[
α1 + α4η α3

α3 α2 + α5ξ

]

In the above the parent normal stresses again produce constant and bending terms while
shear stress is only constant. These stresses are then transformed to cartesian space using

σ = TTΣ(ξ, η)T

It remains now only to select an appropriate form for T. The transformation must

1. produce stresses in cartesian space which satisfy the patch test (i.e., can produce constant
stresses and be stable);

2. be independent of the orientation of the initially chosen element coordinate system and
numbering of element nodes (invariance requirement).

Pian and Sumihara24 use a constant array (to preserve constant stresses) deduced from the
jacobian matrix at the centre of the element. Accordingly, with

J0 =
⎡
⎣J0,11 J0,12

J0,21 J0,22

⎤
⎦ =

⎡
⎢⎢⎣
∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦
ξ,η=0

the elements of the jacobian matrix at the centre are given by [see Eq. (5.11)]

J0,11 = 1
4xa ξa J0,12 = 1

4xa ηa

J0,21 = 1
4ya ξa J0,22 = 1

4ya ηa

Using T = J0 gives the stresses (in matrix form)

⎧⎨
⎩
σx
σy
τxy

⎫⎬
⎭ =

⎧⎨
⎩
ᾱ1

ᾱ2

ᾱ3

⎫⎬
⎭+

⎡
⎢⎢⎣

J 2
0,11η J 2

0,12ξ

J 2
0,21η J 2

0,22ξ

J0,12J0,21η J0,12J0,22ξ

⎤
⎥⎥⎦
{
α4

α5

}

where the parameters ᾱi , i = 1, 2, 3, replace the transformed quantities for the constant
part of the stresses. This approximation satisfies the constant stress condition (Condition 1)
and can also be shown to satisfy the invariance condition (Condition 2). The development
is now complete and the arrays indicated in Eq. (10.31) may be computed. We note that the
integrals are computed exactly for all quadrilateral elements (with constant D) using 2 × 2
gaussian quadrature.

An alternative to the above definition for T is to use the transpose of the jacobian inverse
at the centre of the element (i.e., T = J−T

0 ). This has also been suggested recently by several
authors as an invariant transformation. However, as shown in Fig. 10.8, the sensitivity to
element distortion is much greater for this form than the original one given by Pian and
Sumihara for the above two-field approximation. The other two options (e.g., T = JT

0
and T = J−1

0 ) do not satisfy the frame invariance requirement, thus giving elements which
depend on the orientation of the element with respect to the global coordinates.
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Fig. 10.8 Pian–Sumihara quadrilateral (P–S) compared with displacement quadrilateral (Q-4). Effect of element
distortion (Exact = 1.0).

10.5 Three-field mixed formulations in elasticity

10.5.1 The u–σ–ε mixed form

It is, of course, possible to use an independent approximation to all the essential variables
entering the elasticity problem. We can then write the three equations (10.22), (10.23), and
(10.24) in their weak form as

∫
�

δεT(Dε− σ) d� = 0∫
�

δσT(Su − ε) d� = 0∫
�

δ(Su)Tσ d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0

(10.33)

where u ≡ ū on �u is enforced.† The variational principle equivalent to Eq. (10.33) is
known by the name of Hu–Washizu5 (see Problem 10.1).

Introducing the approximations

u ≈ û = Nuũ σ ≈ σ̂ = Nσ σ̃ and ε ≈ ε̂ = Nεε̃ (10.34)

with corresponding ‘variations’ (i.e., the Galerkin form Wu = Nu, etc.) into Eq. (10.33),
and writing the approximating equations in a similar fashion as we have in the previous

† It is possible to include the displacement boundary conditions in Eq. (10.33) as a natural rather than imposed
constraint; however, most finite element applications of the principle are in the form shown.
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section yields an equation system of the following form:⎡
⎣ A C 0

CT 0 E
0 ET 0

⎤
⎦
⎧⎨
⎩
ε̃
σ̃
ũ

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2

f3

⎫⎬
⎭ (10.35)

where

A =
∫
�

NT
εDNε d�; E =

∫
�

NT
σB d�; C = −

∫
�

NT
εNσ d�

f1 = f2 = 0; f3 =
∫
�

NT
ub d�+

∫
�t

NT
u t̄ d�

(10.36)

The reader will observe that in this section we have developed all the approximations
directly without using a variational principle. In Problem 10.2 we suggest that the reader
show the equivalence of a development from the variational principle.

10.5.2 Stability condition of three-field approximation (u–σ–ε)

The stability condition derived in Sec. 10.3 [Eq. (10.18)] for two-field problems, which we
later used in Eq. (10.32) for the simple mixed elasticity form, needs to be modified when
three-field approximations of the form given in Eq. (10.35) are considered.

Many other problems fall into a similar category (for instance, plate bending) and hence
the conditions of stability are generally useful. The requirement now is that

nε + nu ≥ nσ

nσ ≥ nu
(10.37)

This was first stated in reference 25 and follows directly from the two-field criterion as
shown below.

The system of Eq. (10.35) can be ‘regularized’ by adding γE times the third equation to
the second, with γ being an arbitrary constant. We now have⎡

⎣ A C 0
CT γEET E
0 ET 0

⎤
⎦
⎧⎨
⎩
ε̃
σ̃
ũ

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2 + γEf3

f3

⎫⎬
⎭

On elimination of ε using the first of the above we have[
(γEET − CTA−1C), E

ET, 0

] {
σ̃
ũ

}
=
{

f2 + γEf3 − CTA−1f1

f3

}

From the two-field requirement [Eq. (10.18)] it follows that we require

nσ ≥ nu (10.38)

for the equation system to have a solution.
To establish the second condition we rearrange Eq. (10.35) as⎡

⎣ A 0 C
0 0 ET

CT E 0

⎤
⎦
⎧⎨
⎩
ε̃
ũ
σ̃

⎫⎬
⎭ =

⎧⎨
⎩

f1

f3

f2

⎫⎬
⎭
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This again can be regularized by adding multiples γC and γET of the third of the above
equations to the first and second respectively obtaining⎡

⎣A + γCCT, γCE C
γETCT, γETE ET

CT, E 0

⎤
⎦
⎧⎨
⎩
ε̃
ũ
σ̃

⎫⎬
⎭ =

⎧⎨
⎩

f1 + γCf2

f3 + γETf2

f2

⎫⎬
⎭

By partitioning as above it is evident that we require

nε + nu ≥ nσ (10.39)

We shall not discuss in detail any of the possible approximations to theε–σ–u formulation
or their corresponding patch tests as the arguments are similar to those of two-field problems.

In some practical applications of the three-field form the approximation of the second
and third equations in (10.33) is used directly to eliminate all but the displacement terms.
This leads to a special form of the displacement method which has been called a B̄ (B-bar)
form.26, 27 In the B̄ form the shape function derivatives are replaced by approximations
resulting from the mixed form. We shall illustrate this concept with an example of a nearly
incompressible material in Sec. 11.4.

10.5.3 The u–σ–εen form. Enhanced strain formulation

In the previous two sections the general form and stability conditions of the three-field
formulation for elasticity problems are given in Eqs (10.32) and (10.37). Here we consider
a special case of this form from which several useful elements may be deduced.

In the special form considered the strain approximation is split into two parts: one the
usual displacement-gradient term and, second, an added or enhanced strain part. Accord-
ingly, we write

ε = Su + εen δε = δ(Su)+ δεen (10.40)

Substitution into Eq. (10.33) yields the weak forms as∫
�

δ (Su)T (D (Su + εen)− σ) d� = 0∫
�

δεT
en (D (Su + εen)− σ) d� = 0∫

�

δσTεen d� = 0∫
�

δ (Su)T σ d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0

(10.41)

where, as before, u = ū is enforced on �u.
We can directly discretize Eq. (10.41) by taking the following approximations

u ≈ û = Nuũ σ ≈ σ̂ = Nσ σ̃ εen ≈ ε̂en = Nenε̃en (10.42)

with corresponding expressions for variations. Substituting the approximations into
Eq. (10.41) yields the discrete equation system⎡

⎣ A C G
CT 0 0
GT 0 K

⎤
⎦
⎧⎨
⎩
ε̃en

σ̃
ũ

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2

f3

⎫⎬
⎭ (10.43)
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where

A =
∫
�

NT
enD Nen d�; C = −

∫
�

NT
enNσ d�; G =

∫
�

NT
enD B d�

K =
∫
�

BTD B d�; f1 = f2 = 0; f3 =
∫
�

NT
ub d�+

∫
�t

NT
u t̄ d�

(10.44)

In this form there is only one zero diagonal term and the stability condition reduces to the
single condition

nu + nen ≥ nσ (10.45)

Further, the use of the strains deduced from the displacement interpolation leads to a matrix
which is identical to that from the irreducible form and we have thus included this in
Eq. (10.44) as K.

Example 10.5: Simo–Rifai quadrilateral. An enhanced strain formulation for application
to problems in plain elasticity was introduced by Simo and Rifai.28 The element has 4 nodes
and employs isoparametric interpolation for the displacement field. The derivatives of the
shape functions yield a form⎧⎪⎪⎨

⎪⎪⎩

∂Na

∂x

∂Na

∂y

⎫⎪⎪⎬
⎪⎪⎭

= 1

J (ξ, η)

{
ax,a(yb)+ bx,a(yb)ξ + cx,a(yb)η

ay,a(xb)+ by,a(xb)ξ + cy,a(xb)η

}

where aa , ba and ca depend on the nodal coordinates, and the jacobian determinant for the
4-node quadrilateral is given by†

det J = J (ξ, η) = J0 + Jξ ξ + Jηη

The enhanced strains are first assumed in the parent coordinate frame and transformed to
the cartesian frame using a transformation similar to that used in developing the Pian–
Sumihara quadrilateral in Example 10.4. Due to the presence of the jacobian determinant
in the strains computed from the displacements (as well as the requirement to later pass the
patch test for constant stress states) the enhanced strains are computed from

εen = 1

J (ξ, η)
TTE(ξ, η)T

where

E =
[
Eξξ Eξη
Eηξ Eηη

]

In matrix form this may be written as

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭
en

= 1

J (ξ, η)

⎡
⎢⎢⎣

T 2
11 T 2

21 T11T21

T 2
12 T 2

22 T12T22

2T11T12 2T21T
2

22 T11T22 + T12T21

⎤
⎥⎥⎦
⎧⎨
⎩
Eξξ
Eηη

2Eξη

⎫⎬
⎭

† In general, the determinant of the jacobian for the two-dimensional Lagrange family of elements will not contain
the term with the product of the highest order polynomial, e.g., ξη for the 4-node element, ξ2η2 for the 9-node
element, etc.
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The parent strains (strains with components in the parent element frame) are assumed as

⎧⎨
⎩
Eξξ
Eηη

2Eξη

⎫⎬
⎭ =

⎡
⎣ξ 0 0 0

0 η 0 0
0 0 ξ η

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

η1

η2

η3

η4

⎫⎪⎪⎬
⎪⎪⎭

The above is motivated by the fact that the derivatives of the shape functions with respect
to parent coordinates yields

∂Na

∂ξ
= aξ + bξη

∂Na

∂η
= aη + bηξ

and these may be combined to form strains in the usual manner, but in the parent frame.
Thus, by design, the above enhanced strains are specified to generate complete polynomials
in the parent coordinates for each strain component. References 29 and 30 discuss the
relationship between the design of assumed stress elements using the two-field form and
the selection of enhanced strain modes so as to produce the same result.

Remarks
1. The above enhanced strains are defined so that the C array is identically zero for constant

assumed stresses in each element.
2. Parent normal strains have linearly independent terms added. However, the assumed

parent shear strains are linearly dependent. Due to this linear dependence the final
shearing strain will usually be nearly constant in each element. Accordingly, to be more
explicit, normal strains are enhanced while shearing strain is de-enhanced.

Since the C array vanishes, the equation set to be solved becomes
[

A G
GT K

]{
ε̃en

ũ

}
=
{

f1

f3

}

and in this form no additional count conditions are apparently needed. The solution may
be accomplished partly at the element level by eliminating the equation associated with the
enhanced strain parameters. Accordingly,

K∗ũ = f∗
3

where
K∗ = K − GTA−1G and f∗

3 = f3 − GTA−1f1

The sensitivity of the enhanced strain element to geometric distortion is evaluated using
the problem shown in Fig. 10.9. The transformation from the parent to the global frame
is assessed using T = J0 and T = J−T

0 . These are the only options which maintain frame
invariance for the element. As observed in Fig. 10.9 the results are now better using the
inverse transpose. Since the stress and strain are conjugates in an energy sense, this result
could be anticipated from the equivalence relationship

E = 1

2

∫
�

σTε d� ≡ 1

2

∫
�

ΣTE d �
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whereE is energy and � denotes the domain of the element in the parent coordinate system
(i.e., the bi-unit square for a quadrilateral element).

The performance of the enhanced element is compared to the Pian–Sumihara element for
a shear loading on the mesh shown in Fig. 10.10. In Fig. 10.11 the convergence results for
various order meshes are shown for linear elastic, plane strain conditions with: (a) E = 70
and ν = 1/3 and (b) forE = 70 and ν = 0.499995. The results shown in Fig. 10.11 clearly
show the strong dependence of the displacement formulation on Poisson’s ratio – namely
the tendency for the element to lock for values which approach the incompressibility limit
of ν = 1/2. On the other hand, the performance of both the enhanced strain and the
Pian–Sumihara element are nearly insensitive to the value of Poisson’s ratio selected, with
somewhat better performance of the enhanced element on coarse meshing.

10.6 Complementary forms with direct constraint

10.6.1 General forms

In the introduction to this chapter we defined the irreducible and mixed forms and indicated
that on occasion it is possible to obtain more than one ‘irreducible’ form. To illustrate this in
the problem of heat transfer given by Eqs (10.2) and (10.3) we introduced a penalty function
α in Eq. (10.6) and derived a corresponding single governing equation (10.7) given in terms
of q. This penalty function here has no obvious physical meaning and served simply as a
device to obtain a close enough approximation to the satisfaction of the continuity of flow
equations.

On occasion it is possible to solve the problem as an irreducible one assuming a priori
that the choice of the variable satisfies one of the equations. We call such forms directly
constrained and obviously the choice of the shape function becomes difficult.

We shall consider two examples.

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4

a

v 
(a

) 

S−R: J
S−R: J−inverse
Q−4

Fig. 10.9 Simo–Rifai enhanced strain quadrilateral (S–R) compared with displacement quadrilateral (Q-4).
Effect of element distortion (Exact = 1.0).
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Fig. 10.10 Mesh with 4 × 4 elements for shear load.
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Fig. 10.11 Convergence behaviour for: (a) ν = 1/3; (b) ν = 0.499995.

The complementary heat transfer problem
In this we assume a priori that the choice of q is such that it satisfies Eq. (10.3) and the
natural boundary conditions

∇Tq = −Q in � and qn = qTn = q̄n on �q (10.46)

where n is the unit normal to the boundary. Thus we only have to satisfy the constitutive
relation (10.2), i.e.,

k−1q + ∇φ = 0 in � with φ = φ̄ on �φ (10.47)

A weak statement of the above is∫
�

δqT(k−1q + ∇φ) d�−
∫
�φ

δqn(φ − φ̄) d� = 0 (10.48)
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in which δqn = δqTn represents the variation of normal flux on the boundary.
Use of Green’s theorem transforms the above into∫

�

δqTk−1q d�−
∫
�

∇Tδqφ d�+
∫
�φ

δqnφ̄ d� +
∫
�q

δqnφ d� = 0 (10.49)

If we further assume that ∇Tδq ≡ 0 in � and δqn = 0 on �q , i.e., that the weighting
functions are simply the variations of q, the equation reduces to∫

�

δqTk−1q d�+
∫
�φ

δqnφ̄ d� = 0 (10.50)

This is in fact the variation of a complementary flux principle

� =
∫
�

1
2 qTk−1q d�+

∫
�φ

qnφ̄ d� (10.51)

Numerical solutions can obviously be started from either of the above equations but the
difficulty is the choice of the trial function satisfying the constraints. We shall return to this
problem in Sec. 10.6.2.

The complementary elastic energy principle
In the elasticity problem specified in Sec.10.4 we can proceed similarly, assuming stress
fields which satisfy the equilibrium conditions both on the boundary�t and in the domain�.

Thus in an analogous manner to that of the previous example we impose on the permissible
stress field the constraints which we assume to be satisfied by the approximation identically,
i.e.,

STσ + b = 0 in � and t = t̄ on �t (10.52)

Thus only the constitutive relations and displacement boundary conditions remain to be
satisfied, i.e.,

D−1σ − Su = 0 in � and u = ū on �u (10.53)

The weak statement of the above can be written as∫
�

δσT(D−1σ − Su) d�+
∫
�u

δtT(u − ū) d� = 0 (10.54)

which on integration by Green’s theorem gives∫
�

δσTD−1σ d�+
∫
�

(STδσ)Tu d�−
∫
�u

δtTū d� −
∫
�t

δtTu d� = 0 (10.55)

Again assuming that the test functions are complete variations satisfying the homoge-
neous equilibrium equation, i.e.,

STδσ = 0 in � and δt = 0 on �t (10.56)

we have as the weak statement∫
�

δσTD−1σ d�−
∫
�u

δtTū d� = 0 (10.57)

The corresponding complementary energy variational principle is

� = 1
2

∫
�

σTD−1σ d�−
∫
�u

tTū d� (10.58)

Once again in practical use the difficulties connected with the choice of the approximating
function arise but on occasion a direct choice is possible.31
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10.6.2 Solution using auxiliary functions

Both the complementary forms can be solved using auxiliary functions to ensure the satis-
faction of the constraints.

Example 10.6: Heat transfer solution by potential function. In the heat transfer prob-
lem it is easy to verify that the homogeneous equation

∇Tq ≡ ∂qx

∂x
+ ∂qy

∂y
= 0 (10.59)

is automatically satisfied by defining a function ψ such that

qx = ∂ψ

∂y
qy = −∂ψ

∂x
(10.60)

Thus we define
q = Lψ + q0 and δq = Lδψ (10.61)

where q0 is any flux chosen so that

∇Tq0 = −Q (10.62)

and

L =
[
∂

∂y
, − ∂

∂x

]T

(10.63)

the formulations of Eqs (10.50) and (10.51) can be used without any constraints and, for
instance, the stationarity

� =
∫
�

1
2 (Lψ + q0)

Tk−1(Lψ + q0) d�−
∫
�φ

(
∂ψ

∂s

)
φ̄ d� (10.64)

will suffice to so formulate the problem (here s is the tangential direction to the boundary).
The above form will require shape functions for ψ satisfying C0 continuity.

Example 10.7: Elasticity solution by Airy stress function. In the elasticity problem a
two-dimensional form can be obtained by the use of the so-called Airy stress function ψ .32

Now the equilibrium equations

STσ + b ≡

⎧⎪⎨
⎪⎩
∂σx

∂x
+ ∂τxy

∂y
+ bx

∂τxy

∂x
+ ∂σy

∂y
+ by

⎫⎪⎬
⎪⎭ = 0 (10.65)

are identically solved by choosing

σ = Lψ + σ0 (10.66)

where

L =
[
∂2

∂y2
,
∂2

∂x2
, − ∂2

∂x ∂y

]T

(10.67)
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and σ0 is an arbitrary stress chosen so that

STσ0 + b = 0 (10.68)

Again the substitution of (10.66) into the weak statement (10.57) or the complementary
variational problem (10.58) will yield a direct formulation to which no additional constraints
need be applied. However, use of the above forms does lead to further complexity in
multiply connected regions where further conditions are needed. The reader will note that
in Chapter 7 we encountered this in a similar problem in torsion and suggested a very simple
procedure of avoidance (see Sec. 7.5).

The use of this stress function formulation in the two-dimensional context was first made
by de Veubeke and Zienkiewicz33 and Elias,34 but the reader should note that now with
second order operators present, C1 continuity of shape functions is needed in a similar
manner to the problems which we have to consider in plate bending (see reference 6).

Incidentally, analogies with plate bending go further here and indeed it can be shown
that some of these can be usefully employed for other problems.35

10.7 Concluding remarks – mixed formulation or a test
of element ‘robustness’

The mixed form of finite element formulation outlined in this chapter opens a new range
of possibilities, many with potentially higher accuracy and robustness than those offered
by irreducible forms. However, an additional advantage arises even in situations where,
by the principle of limitation, the irreducible and mixed forms yield identical results. Here
the study of the behaviour of the mixed form can frequently reveal weaknesses or lack of
‘robustness’ in the irreducible form which otherwise would be difficult to determine.

The mixed approximation, if properly understood, expands the potential of the finite
element method and presents almost limitless possibilities of detailed improvement. Some
of these will be discussed further in the next two chapters, and others in references 6 and 36.

10.8 Problems

10.1 Show that the stationarity of the variational principle given by

�HW =
∫
�

1
2ε

TDε d�−
∫
�

σT(ε− Su) d�−
∫
�

uTb d�−
∫
�t

uT t̄ d�

where u ≡ ū on �u is equivalent to Eq. (10.33).
10.2 Using the variational principle of Problem 10.1 with the approximations (10.34) show

that the stationarity condition gives (10.35) and (10.36).
10.3 Show that the variational principle given by stationarity of

�en =
∫
�

1
2 (Su + εen)

T D (Su + εen) d�+
∫
�

σTεen d�

−
∫
�

uTb d�−
∫
�t

uT t̄ d�

with u = ū enforced on �u is equivalent to Eq. (10.41).
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10.4 For the rectangular element shown in Fig. 10.7 develop the expressions for ηi for the
Pian–Sumihara element described in Sec. 10.4.3. For an isotropic elastic material and
a plane stress problem compute the expressions for the stresses which result from the
strains (these are those of the displacement model described in Chap. 6). How do
these differ from those assumed for the mixed element?

10.5 For the enhanced strain formulation described in Sec. 10.5.3 use the constant stress
patch test for a plane strain problem to show that εen = 0.

Show that a necessary condition to satisfy this requirement is∫
�e

Nen d� = 0

10.6 Generalize the Simo–Rifai quadrilateral given as Example 10.5 in Sec. 10.5.3 for a
three-dimensional solid modelled by 8-node hexahedral elements.

10.7 Generalize the Simo–Rifai quadrilateral given as Example 10.5 in Sec. 10.5.3 for an
axisymmetric geometry.

10.8 A plane stress problem has the geometry shown in Fig. 10.11 and is loaded by a
uniformly distributed shear traction (i.e., ty = const.). Use FEAPpv to solve the
problem using a series of 3-node triangular meshes. The first mesh should be as
shown with each quadrilateral divided into two triangles. Consider two values for the
elastic properties: (a) E = 70, ν = 1/3 and (b) E = 70, ν = 0.499995. Let the
thickness of the slab be one unit.

Next, perform the solution using 4-node quadrilaterals based on (a) the displacement
solution described in Chap. 6; (b) the Simo-Rifai enhanced element described in Sec.
10.5.3. Plot the displacement convergence for the top and bottom points at the loaded
end. Plot contours for displacement and principal stresses.

Repeat the calculations assuming plane strain conditions.
Briefly discuss your findings.
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11

Incompressible problems, mixed
methods and other procedures of

solution

11.1 Introduction

We have noted earlier that the standard displacement formulation of elastic problems fails
when Poisson’s ratio ν becomes 0.5 or when the material becomes incompressible. Indeed,
problems arise even when the material is nearly incompressible with ν > 0.4 and the simple
linear approximation with triangular elements gives highly oscillatory results in such cases.

The application of a mixed formulation for such problems can avoid the difficulties and is
of great practical interest as nearly incompressible behaviour is encountered in a variety of
real engineering problems ranging from soil mechanics to aerospace engineering. Identical
problems also arise when the flow of incompressible fluids is encountered.

In this chapter we shall discuss fully the mixed approaches to incompressible problems,
generally using a two-field manner where displacement (or fluid velocity) u and the pressure
p are the variables. Such formulation will allow us to deal with full incompressibility as well
as near incompressibility as it occurs. However, what we will find is that the interpolations
used will be very much limited by the stability conditions of the mixed patch test. For this
reason much interest has been focused on the development of so-called stabilized procedures
in which the violation of the mixed patch test (or Babuška–Brezzi conditions) is artificially
compensated. A part of this chapter will be devoted to such stabilized methods.

11.2 Deviatoric stress and strain, pressure and volume
change

The main problem in the application of a ‘standard’ displacement formulation to incom-
pressible or nearly incompressible problems lies in the determination of the mean stress
or pressure which is related to the volumetric part of the strain (for isotropic materials).
For this reason it is convenient to separate this from the total stress field and treat it as an
independent variable. Using the ‘vector’ notation of stress, the mean stress or pressure is
given by

p = 1
3

(
σx + σy + σz

) = 1
3 mTσ (11.1)
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where m for the general three-dimensional state of stress is given by

m = [1, 1, 1, 0, 0, 0
]T

For isotropic behaviour the ‘pressure’ is related to the volumetric strain, εv , by the bulk
modulus of the material, K . Thus,

εv = εx + εy + εz = mTε = p

K
(11.2)

For an incompressible materialK = ∞ (ν ≡ 0.5) and the volumetric strain is simply zero.
The deviatoric strain εd is defined by

εd = ε− 1
3 mεv ≡ (I − 1

3 mmT
)
ε = Idε (11.3)

where Id is a deviatoric projection matrix which also proves useful in problems with more
general constitutive relations.1 In isotropic elasticity the deviatoric strain is related to the
deviatoric stress by the shear modulus G as

σd = Idσ = 2GI0ε
d = 2G

(
I0 − 1

3 mmT
)
ε (11.4)

where the diagonal matrix

I0 = 1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

2
2

2
1

1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

is introduced because of the vector notation. A deviatoric form for the elastic moduli of an
isotropic material is written as

Dd = 2G
(
I0 − 1

3 mmT
)

(11.5)

for convenience in writing subsequent equations.
The above relationships are but an alternate way of determining the stress–strain relations

shown in Chapters 2 and 6, with the material parameters related through

G = E

2 (1 + ν)

K = E

3 (1 − 2ν)

(11.6)

and indeed Eqs (11.4) and (11.2) can be used to define the standard D matrix in an alternative
manner.

11.3 Two-field incompressible elasticity (u–p form)

In the mixed form considered next we shall use as variables the displacement u and the
pressure p.
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Now the equilibrium equation (10.22) is rewritten using (11.4), treating p as an indepen-
dent variable, as

∫
�

δεTDdε d�+
∫
�

δεTmp d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0 (11.7)

and in addition we shall impose a weak form of Eq. (11.2), i.e.,

∫
�

δp

[
mTε− p

K

]
d� = 0 (11.8)

with ε = Su. Independent approximation of u and p as

u ≈ û = Nuũ and p ≈ p̂ = Npp̃ (11.9)

immediately gives the mixed approximation in the form
[

A C
CT −V

]{
ũ
p̃

}
=
{

f1

f2

}
(11.10)

where

A =
∫
�

BTDd B d�; C =
∫
�

BTmNp d�

V =
∫
�

NT
p

1

K
Np d�; f1 =

∫
�

NT
ub d�+

∫
�t

NT
u t̄ d� f2 = 0

(11.11)

We note that for incompressible situations the equations are of the ‘standard’ form, see
Eq. (10.14) with V = 0 (as K = ∞), but the formulation is useful in practice when K has
a high value (or ν → 0.5).

A formulation similar to that above and using the corresponding variational theorem
was first proposed by Herrmann2 and later generalized by Key3 for anisotropic elasticity.
The arguments concerning stability (or singularity) of the matrices which we presented in
Sec. 10.3 are again of great importance in this problem.

Clearly the mixed patch condition about the number of degrees of freedom now yields
[see Eq. (10.18)]

nu ≥ np (11.12)

and is necessary for prevention of locking (or instability) with the pressure acting now as
the constraint variable of the lagrangian multiplier enforcing zero volumetric strain.

In the form of a patch test this condition is most critical and we show in Figs 11.1 and 11.2
a series of such patch tests on elements with C0 continuous interpolation of u and either
discontinuous or continuous interpolation ofp. For each we have included all combinations
of constant, linear and quadratic functions.

In the test we prescribe all the displacements on the boundaries of the patch and one
pressure variable as it is well known that in fully incompressible situations pressure will be
indeterminate by a constant for the problem with all boundary displacements prescribed.†
†Alternatively, it is possible to omit all boundary conditions on pressure if one displacement with a component
normal to the boundary is allowed to exist.



386 Incompressible problems, mixed methods and other procedures of solution

The single-element test is very stringent and eliminates most continuous pressure ap-
proximations whose performance is known to be acceptable in many situations. For this
reason we attach more importance to the assembly test and it would appear that the follow-
ing elements could be permissible according to the criteria of Eq. (11.12) (indeed all pass
the B-B condition fully):

Triangles: T6/1; T10/3; T6/C3

Quadrilaterals: Q9/3; Q8/C4; Q9/C4

We note, however, that in practical applications quite adequate answers have been re-
ported with Q4/1, Q8/3 and Q9/4 quadrilaterals, although severe oscillations of p may
occur. If full robustness is sought the choice of the elements is limited.4

It is unfortunate that in the present ‘acceptable’ list, the linear triangle and quadrilateral
are missing. This appreciably restricts the use of these simplest elements. A possible and
indeed effective procedure here is not to apply the pressure constraint at the level of a single
element but on an assembly. This was done by Herrmann in his original presentation2 where
four elements were chosen for such a constraint as shown in Fig. 11.3(a). This composite
‘element’ passes the single-element (and multiple-element) patch tests but apparently so do
several others fitting into this category. In Fig. 11.3(b) we show how a single triangle can
be internally subdivided into three parts by the introduction of a central node. This coupled
with constant pressure on the assembly allows the necessary count condition to be satisfied
and a standard element procedure applies to the original triangle treating the central node
as an internal variable. Indeed, the same effect could be achieved by the introduction of any
other internal element function which gives zero value on the main triangle perimeter. Such
a bubble function can simply be written in terms of the area coordinates (see Chapter 4) as

Q 4/1

nu = 0
np = 0
(pass)

Q 8/4

= 0
= 3
(fail)

Q 8/3

= 0
= 2
(fail)

Q 9/4

= 2
= 3
(fail)

Q 9/3

= 2
= 2
(pass)

T 3/1

nu = 0
np = 0
(pass)

T 6/1

= 0
= 0
(pass)

T 6/3

= 0
= 2
(fail)

T 10/3

= 2
= 2
(pass)

(a)

Fig. 11.1 Incompressible elasticity u–p formulation. Discontinuous pressure approximation. (a) Single-element
patch tests. u variable (• restrained, ◦ free) 2 DOF, p variable (� restrained, � free) 1 DOF.
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nu = 2
np = 5
(fail)

T 3/1

= 7 x 2 = 14
= 5
(pass)

T 6/1

= 7 x 2 = 14
= 17
(fail)

T 6/3

= 19 x 2 = 38
= 17
(pass)

T 10/3

Q 4/1

nu = 2
np = 3
(fail)

Q 8/4

= 5 x 2 = 10
= 15
(fail)

Q 9/3

= 9 x 2 = 18
= 11
(pass)

Q 8/3 Q 9/4

= 9 x 2 = 18
= 15
(pass)

nu = 5 x 2 = 10
np = 11
(fail)

(b)

Fig. 11.1 (Cont.) Incompressible elasticity u–p formulation. Discontinuous pressure approximation. (b)
Multiple-element patch tests.

L1L2L3. However, as we have stated before, the degree of freedom count is a necessary but
not sufficient condition for stability and a direct rank test is always required. In particular
it can be verified by algebra that the conditions stated in Sec.10.3 are not fulfilled for this
triple subdivision of a linear triangle (or the case with the bubble function) and thus

Cp̃ = 0 for some non-zero values of p̃

indicating instability.
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(a)

(b)

u variable (restrained, free) 2 DOF

p variable (restrained, free) 1 DOF

T 3/C3

nu = 0
np = 2
(fail)

T 6/C6

= 0
 = 5
(fail)

T 6/C3

= 0
= 2
(fail)

Q 4/C4

nu = 0
np = 3
(fail)

Q 8/C8

= 0
= 7
(fail)

Q 8/C4

= 0
= 3
(fail)

Q 9/C4

= 2
= 3
(fail)

T 3/C3

nu = 2
np = 6
(fail)

T 6/C6

= 7 x 2 = 14
 = 18
(fail)

T 6/C3

= 7 x 2 = 14
= 6
(pass)

Q 4/C4

nu = 2
np = 8
(fail)

Q 8/C4

= 5 x 2 = 10
= 8
(pass)

Q 9/C4

= 9 x 2 = 18
= 8
(pass)

Fig. 11.2 Incompressible elasticity u–p formulation. Continuous (C0) pressure approximation. (a) Single-
element patch tests. (b) Multiple-element patch tests.
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(Bubble function)

nu = 2 np = 0

(a) +

nu = 2 np = 0

+

OR

(b)

(Bubble function)

nu = 2 np = 2

+

OR

(c)

(d)

(Bubble function)

+

OR

+

nu = 2 np = 2

Fig. 11.3 Some simple combinations of linear triangles and quadrilaterals that pass the necessary patch test
counts. Combinations (a), (c), and (d) are successful but (b) is still singular and not usable.
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1
2

Load

Triangle 1

Only vertical
movement
possible for
no volume
change

Triangle 2

Only horizontal
movement
possible for
no volume
change

Fig. 11.4 Locking (zero displacements) of a simple assembly of linear triangles for which incompressibility is
fully required (np = nu = 24).

In Fig. 11.3(c) we show, however, that the same concept can be used with good effect
for C0 continuous p.5 Similar internal subdivision into quadrilaterals or the introduction of
bubble functions in quadratic triangles can be used, as shown in Fig. 11.3(d), with success.

The performance of all the elements mentioned above has been extensively discussed6–11

but detailed comparative assessment of merit is difficult. As we have observed, it is essential
to have nu ≥ np but if near equality is only obtained in a large problem no meaningful
answers will result for u as we observe, for example, in Fig. 11.4 in which linear triangles
for u are used with the element constant p. Here the only permissible answer is of course
u = 0 as the triangles have to preserve constant volumes.

The ratio nu/np which occurs as the field of elements is enlarged gives some indication of
the relative performance, and we show this in Fig. 11.5. This approximates to the behaviour
of a very large element assembly, but of course for any practical problem such a ratio will
depend on the boundary conditions imposed.

We see that for the discontinuous pressure approximation this ratio for ‘good’ elements
is 2–3 while for C0 continuous pressure it is 6–8. All the elements shown in Fig. 11.5
perform very well, though two (Q4/1 and Q9/4) can on occasion lock when most boundary
conditions are on u.

Example 11.1: Simple triangle with bubble – MINI element. In Fig. 11.3(c) we indicate
that the simple triangle with C0 linear interpolation and an added bubble for the displace-
ments u together with continuous C0 linear interpolation for the pressure p satisfied the
count test part of the mixed patch test and, verifying the consistency condition, can be used
with success.5 Here we consider this element further to develop some understanding about
its performance at the incompressible limit.

The displacement field with the bubble is written in hierarchical form as

u ≈ û =
∑
a

Naũa +Nbubũbub (11.13)
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T6/1 γ = 4 Q4/1
γ = 2

T10/3 γ = 3 Q9/3 γ = 2.66

T6B1/3 γ = 2 Q9/4 γ = 2

T6/3C γ = 8 Q9/4C γ = 8

T3B1/3C γ = 6

(a)

(b)

Fig. 11.5 The freedom index or infinite patch ratio for various u–p elements for incompressible elasticity
(γ = nu/np). (a) Discontinuous pressure. (b) Continuous pressure. B–bubble, C–continuous.

where here

Nbub = L1L2L3 (11.14)

ũa are nodal parameters of displacement and ũbub are parameters of the hierarchical bubble
function. The pressures are similarly given by

p ≈ p̂ =
∑
a

Nap̃a (11.15)
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where p̃a are nodal parameters of the pressure. In the above the shape functions are given
by (e.g., see Eqs (4.26) and (4.29))

Na = La = 1

2�
(aa + bax + cay) (11.16)

where
aa = xbyc − xcyb; ba = yb − yc; ca = xc − yb

b, c are cyclic permutations of a and

2� = det

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ = a1 + a2 + a3

The derivatives of the shape functions are thus given by

∂Na

∂x
= ba

2�
and

∂Na

∂y
= ca

2�

Similarly the derivatives of the bubble are given by

∂Nbub

∂x
= 1

2�
(b1L2L3 + b2L3L1 + b3L1L2)

∂Nbub

∂y
= 1

2�
(c1L2L3 + c2L3L1 + c3L1L2)

The strains may be expressed in terms of the above and the nodal parameters as†

ε =
∑
a

1

2�

⎡
⎣ba 0

0 ca
ca ba

⎤
⎦ ũa +

∑
a

LbLc

2�

⎡
⎣ba 0

0 ca
ca ba

⎤
⎦ ũbub (11.17)

where again b, c are cyclic permutations of a.
Substituting the above strains into Eq. (11.11) and evaluating the integrals give

A =

⎡
⎢⎢⎣

A11 A12 A13 0
A21 A22 A23 0
A31 A32 A33 0
0 0 0 Abb

⎤
⎥⎥⎦ (11.18)

where

Aab = G

6�

[
(4babb + 3cacb) (3cabb − 2bacb)
(3bacb − 2cabb) (3babb + 4cacb)

]

Abubbub = G

2160�

[(
4bTb + 3cTc

)
bTc

bTc
(
3bTb + 4cTc

)
]

and
b = [b1, b2, b3

]T
and c = [c1, c2, c3

]T

†At this point it is also possible to consider the term added to the derivatives to be enhanced modes and delete the
bubble mode from displacement terms.
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Note in the above that all terms except Abubbub are standard displacement stiffnesses for
the deviatoric part. Similarly,

C =

⎡
⎢⎢⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

Cbub1 Cbub2 Cbub3

⎤
⎥⎥⎦ (11.19)

where

Cab = 1

6

[
bb
cb

]
and Cbubb = − 1

120

[
bb
cb

]

In all the above arrays a and b have values from 1 to 3 and bub denotes the bubble mode.
We note that the bubble mode is decoupled from the other entries in the A array – it is

precisely for this reason that the discontinuous constant pressure case shown in Fig. 11.3(b)
cannot be improved by the addition of the internal parameters associated with ũbub. Also,
the parameters ũbub are defined separately for each element. Consequently, we may perform
a partial solution at the element level12 to obtain the set of equations in the form Eq. (11.10)
where now

A =
⎡
⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ ; C =

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦ ; V =

⎡
⎣V11 V12 V13

V21 V22 V23

V31 V32 V33

⎤
⎦

with

Vab =
[
ba

2�

ca

2�

] [
τ11 τ12

τ21 τ22

]⎧⎪⎨
⎪⎩
bb

2�
cb

2�

⎫⎪⎬
⎪⎭� (11.20a)

and

τ = 3�2

10Gc

[(
3bTb + 4cTc

) −bTc
−bTc

(
4bTb + 3cTc

)
]

(11.20b)

in which
c = 12

(
bTb

)2 + 25
(
bTb

)
(cTc)+ 12

(
cTc
)2 − (bTc

)2

The reader may recognize the V array given above as that for the two-dimensional, steady
heat equation with conductivity k = τ and discretized by linear triangular elements. The
direct reduction of the bubble matrix Abubbub as given above leads to a full matrix τ . Some
numerical experiments including the above formulation are presented in Sec. 11.7.

11.4 Three-field nearly incompressible elasticity
(u–p–εv form)

A direct approximation of the three-field form leads to an important method in finite
element solution procedures for nearly incompressible materials which has sometimes been
called the B-bar method. The methodology can be illustrated for the nearly incompressible
isotropic problem. For this problem the method often reduces to the same two-field form
previously discussed. However, for more general anisotropic or inelastic materials and in
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finite deformation problems the method has distinct advantages as are discussed in refer-
ence 1. The usual irreducible form (displacement method) has been shown to ‘lock’ for
the nearly incompressible problem. As shown in Sec. 11.3, the use of a two-field mixed
method can avoid this locking phenomenon when properly implemented (e.g., using the
Q9/3 two-field form). Below we present an alternative which leads to an efficient and accu-
rate implementation in many situations. For the development shown we shall assume that
the material is isotropic linear elastic but it may be extended easily to include anisotropic
materials.

Assuming an independent approximation to εv and p we can formulate the problem by
use of Eq. (11.7) and the weak statement of relation (11.2) written as∫

�

δp
[
mTSu − εv

]
d� = 0 (11.21)

and ∫
�

δεv [Kεv − p] d� = 0 (11.22)

If we approximate the u and p fields by Eq. (11.9) and

εv ≈ ε̂v = Nvε̃v (11.23)

we obtain a mixed approximation in the form of Sec. (10.5.3) but now only for p and εv⎡
⎣ A C 0

CT 0 −E
0 −ET H

⎤
⎦
⎧⎨
⎩

ũ
p̃
ε̃v

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2

f3

⎫⎬
⎭ (11.24)

where A, C, f1, f2 are given by Eq. (11.11) and

H =
∫
�

NT
vKNv d�; E =

∫
�

NT
v Np d�; f3 = 0 (11.25)

For completeness we give the variational theorem whose first variation gives Eqs (11.7),
(11.21) and (11.22). First we define the strain deduced from the standard displacement
approximation as

εu = Su ≈ Bũ (11.26)

The variational theorem is then given as

� = 1

2

∫
�

(
εT
uDdεu + εvKεv

)
d�+

∫
�

p
(
mTεu − εv

)
d�

−
∫
�

uTb d�−
∫
�t

uT t̄ d�
(11.27)

Example 11.2: An enhanced strain triangle. In Example 11.1 we presented a two-field
formulation using continuous u and p approximations together with an added hierarchical
bubble mode to the displacements. For more general applications this form is not the most
convenient. For example, if transient problems are considered the accelerations will also
involve the bubble mode and affect the inertial terms. We will also find in the Sec. 11.7
that use of the above bubble is not fully effective in eliminating pressure oscillations in
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solutions. An alternative form is discussed in which we use a three-field approximation
involving u, p and εv discussed above, together with an enhanced strain formulation as
discussed in Sec. 10.5.3.

The enhanced strains are added to those computed from displacements as

ε̆ = εu + εe (11.28)

in which εe represents a set of enhanced strain terms. The internal strain energy is repre-
sented by

W(ε̆, εv) = 1
2

(
ε̆TDd ε̆+ εvKεv

)
(11.29)

Using the above notation a Hu–Washizu-type variational theorem for the deviatoric–spherical
split may be written as

�HW =
∫
�

[
W(ε̆, εv)+ p

(
mTε̆− εv

)+ σT (εu − ε̆)] d�+�ext (11.30)

where�ext represents the terms associated with body and traction forces. After substitution
for the mixed enhanced strain the last term simplifies to∫

�

σT (εu − ε̆) d� = −
∫
�

σTεe d� (11.31)

Taking variations with respect to u, p, εv , εe and σ the principle yields the weak form

δ�HW =
∫
�

δuTBT [Dd ε̆+ mp] d�+ δ�ext

+
∫
�

δεv [Kεv − p] d�+
∫
�

δp
[
mTε̆− εv

]
d�

+
∫
�

δεT
e [Dd ε̆+ mp − σ] d�+

∫
�

δσTεe d� = 0

(11.32)

Equal order interpolation with shape functions N are used to approximate u, p and εv as

u ≈ û = Nũ

p ≈ p̂ = Np̃

εv ≈ ε̂v = Nε̃v

(11.33)

However, only approximations for u and p are C0 continuous between elements. The
approximation for εv may be discontinuous between elements. The stressσ in each element
is assumed constant. Thus, only the approximation for εe remains to be constructed in such
a way that the third equation in (10.41) is satisfied. For the present we shall assume that
this approximation may be represented by

εe ≈ ε̂e = Beα̃e (11.34)

so that the terms involvingσ and its variation in Eq. (11.32) are zero and thus do not appear
in the final discrete equations.

With the above approximations, Eq. (11.32) may be evaluated as⎡
⎢⎢⎣

Auu Aue Cu 0
Aeu Aee Ce 0
CT
u CT

e 0 −E
0 0 −ET H

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ũ
α̃e
p̃
ε̃v

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f1

0
f2

f3

⎫⎪⎪⎬
⎪⎪⎭

(11.35)
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where Auu = A, Cu = C, fi , E and H are as defined in Eqs (11.11), (11.25) and

Aue =
∫
�

BDdBe d� = AT
eu

Aee =
∫
�

BeDdBe d�

Ce =
∫
�

BemN d�

(11.36)

Since the approximations for εv and εe are discontinuous between elements we can again
perform a partial solution for ε̃v and α̃e using the second and fourth row of (11.35). After
eliminating these variables from the first and third equation we again, as in Example 11.1,
obtain a form identical to Eq. (11.10).

As an example we consider again the 3-noded triangular element with linear approxima-
tions for N in terms of area coordinates Li . We will construct enhanced strain terms from
the derivatives of an assumed function.

Here we consider three enhanced functions given by

Ni
e = βLi + LjLk (11.37)

in which i, j, k is a cyclic permutation and β is a parameter to be determined. Note that this
form only involves quadratic terms and thus gives linear strains which are fully consistent
with the linear interpolations for p and εv . The derivatives of the enhanced function are
given by

∂Ni
e

∂x
= 1

2�

[
βbi + Ljbk + Lkbj

]
∂Ni

e

∂y
= 1

2�

[
βci + Ljck + Lkcj

] (11.38)

where

bi = yj − yk and ci = xk − xj

and � is the area of a triangular element. For constant p the requirement imposed by
Eq. 11.21 gives β = 1/3. The derivatives are inserted in the usual strain–displacement
matrix

Bie =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Ni
e

∂x
0

0
∂Ni

e

∂y

∂Ni
e

∂y

∂Ni
e

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(11.39)

While the use of added enhanced modes leads to increased cost (over use of a simple bubble
mode, as in Example 11.1) in eliminating the ε̃v and αe parameters in Eq. (11.35) the
results obtained are improved considerably, as indicated in the numerical results presented
in Sec. 11.7. Furthermore, this form leads to improved consistency between the pressure
and strain.
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11.4.1 The B-bar method for nearly incompressible problems

The second of (11.24) has the solution

ε̃v = E−1CTũ = Wũ (11.40)

In the above we assume that E may be inverted, which implies that Nv and Np have
the same number of terms. Furthermore, the approximations for the volumetric strain
and pressure are constructed for each element individually and are not continuous across
element boundaries. Thus, the solution of Eq. (11.40) may be performed for each individual
element. In practice Nv is normally assumed identical to Np so that E is symmetric positive
definite. The solution of the third equation of (11.24) yields the pressure parameters in
terms of the volumetric strain parameters and is given by

p̃ = E−THε̃v (11.41)

Substitution of (11.40) and (11.41) into the first of (11.24) gives a solution that is in terms
of displacements only. Accordingly,

Āũ = f1 (11.42)

where for isotropy

Ā =
∫
�

BTDdB d�+ WTHW

= A + WTHW
(11.43)

The solution of (11.42) yields the nodal parameters for the displacements. Use of (11.40)
and (11.41) then gives the approximations for the volumetric strain and pressure.

The result given by (11.43) may be further modified to obtain a form that is similar to
the standard displacement method. Accordingly, we write

Ā =
∫
�

B̄TDB̄ d� (11.44)

where the strain–displacement matrix is now

B̄ = IdB + 1
3 mNvW (11.45)

For isotropy the modulus matrix is

D = Dd +KmmT (11.46)

We note that the above form is identical to a standard displacement model except that
B is replaced by B̄. The method has been discussed more extensively in references 13, 14
and 15.

The equivalence of (11.43) and (11.44) can be verified by simple matrix multiplication.
Extension to treat general small strain formulations can be simply performed by replac-
ing the isotropic D matrix by an appropriate form for the general material model. The
formulation shown above has been implemented into an element included as part of the
program available on the web site. The elegance of the method is more fully utilized when
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considering non-linear problems, such as plasticity and finite deformation elasticity (see
reference 1).

We note that elimination starting with the third equation of (11.24) could be accomplished
leading to a u–p two-field form usingK as a penalty number. This is convenient for the case
wherep is continuous but εv remains discontinuous – as already discussed in Example 11.2.
Such an elimination, however, points out that precisely the same stability criteria operate
here as in the two-field approximation discussed earlier.

11.5 Reduced and selective integration and its
equivalence to penalized mixed problems

In Chapter 5 we mentioned the lowest order numerical integration rules that still preserve
the required convergence order for various elements, but at the same time pointed out the
possibility of a singularity in the resulting element matrices. In Chapter 9 we again referred
to such low order integration rules, introducing the name ‘reduced integration’ for those
that did not evaluate the stiffness exactly for simple elements and pointed out some dangers
of its indiscriminate use due to resulting instability. Nevertheless, such reduced integration
and selective integration (where the low order integration is only applied to certain parts
of the matrix) has proved its worth in practice, often yielding much more accurate results
than the use of more precise integration rules. This was particularly noticeable in nearly
incompressible elasticity (or Stokes fluid flow which is similar)16–18 and in problems of
plate and shell flexure dealt with as a case of a degenerate solid19, 20 (see reference 1 for
more information on plate and shell problems).

The success of these procedures derived initially by heuristic arguments proved quite
spectacular – though some consider it somewhat verging on immorality to obtain improved
results while doing less work! Obviously fuller justification of such processes is required.21

The main reason for success is associated with the fact that it provides the necessary
singularity of the constraint part of the matrix [viz. Eqs (10.19)–(10.21)] which avoids
locking. Such singularity can be deduced from a count of integration points,22, 23 but it
is simpler to show that there is a complete equivalence between reduced (or selective)
integration procedures and the mixed formulation already discussed in Sec. 11.3. This
equivalence was first shown by Malkus and Hughes24 and later in a general context by
Zienkiewicz and Nakazawa.25

We shall demonstrate this equivalence on the basis of the nearly incompressible elasticity
problem for which the mixed weak Galerkin integral statement is given by Eqs (11.7) and
(11.8). It should be noted, however, that equivalence holds only for the discontinuous
pressure approximation.

The corresponding irreducible form can be written by satisfying the second of Eq. (11.8)
exactly, implying

p = KmTε (11.47)

and substituting above into (11.7) as
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�

δεT2G

(
I0 − 1

3
mTm

)
ε d�+

∫
�

δεTmKmTε d�

−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0
(11.48)

On substituting
u ≈ û = Nuũ and ε ≈ ε̂ = SNuũ = Bũ (11.49)

we have (
A + Ā

)
ũ = f1 (11.50)

where A and f1 are exactly as given in Eq. (11.11) and

Ā =
∫
�

BTmKmTB d� (11.51)

The solution of Eq. (11.50) for ũ allows the pressures to be determined at all points by
Eq. (11.47). In particular, if we have used an integration scheme for evaluating (11.51)
which samples at points (ξk) we can write

p(ξk) = KmTε(ξk) = KmTB(ξk)ũ =
∑
a

Npa(ξk)p̃a (11.52)

Now if we turn our attention to the penalized mixed form of Eqs (11.7)–(11.11) we note
that the second of Eq. (11.10) is explicitly

∫
�

NT
p

(
mTBũ − 1

K
Npp̃

)
d� = 0 (11.53)

If a numerical integration is applied to the above sampling at the pressure nodes located
at coordinate (ξl), previously defined in Eq. (11.52), we can write for each scalar component
of Np ∑

l

Npa(ξl)

(
mTB(ξl)ũ − 1

K
Np(ξl)p̃

)
wl = 0 (11.54)

in which the summation is over all integration points (ξl) andWl are the appropriate weights
and jacobian determinants. Now as

Npa(ξl) = δal

if ξl is located at the pressure node a and zero at other pressure nodes, Eq. (11.54) reduces
simply to the requirement that at all pressure nodes

mTB(ξl)ũ = 1

K
Np(ξl)p̃ (11.55)

This is precisely the same condition as that given by Eq. (11.52) and the equivalence of
the procedures is proved, providing the integrating scheme used for evaluating Ā gives an
identical integral of the mixed form of Eq. (11.53).

This is true in many cases and for these the reduced integration-mixed equivalence is
exact. In all other cases this equivalence exists for a mixed problem in which an inexact
rule of integration has been used in evaluating equations such as (11.53).
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For curved isoparametric elements the equivalence is in fact inexact, and slightly different
results will be obtained using reduced integration and mixed forms. This is illustrated in
examples given in reference 26.

We can conclude without detailed proof that this type of equivalence is quite general
and that with any problem of a similar type the application of numerical quadrature at np
points in evaluating the matrix Ā within each element is equivalent to a mixed problem in
which the variable p is interpolated element by element using as p-nodal values the same
integrating points.

The equivalence is only complete for the selective integration process, i.e., application of
reduced numerical quadrature only to the matrix Ā, and ensures that this matrix is singular,
i.e., no locking occurs if we have satisfied the previously stated conditions (nu > np).

The full use of reduced integration on the remainder of the matrix determining ũ, i.e.,
A, is only permissible if that remains non-singular – the case which we have discussed
previously for the Q8/4 element.

It can therefore be concluded that all the elements with discontinuous interpolation of p
which we have verified as applicable to the mixed problem (viz. Fig. 11.1, for instance)
can be implemented for nearly incompressible situations by a penalized irreducible form
using corresponding selective integration.†

In Fig. 11.6 we show an example which clearly indicates the improvement of displace-
ments achieved by such reduced integration as the compressibility modulus K increases
(or the Poisson ratio tends to 0.5). We note also in this example the dramatically improved
performance of such points for stress sampling.

For problems in which the p (constraint) variable is continuously interpolated (C0) the
arguments given above fail as quantities such as mTε are not interelement continuous in
the irreducible form.

A very interesting corollary of the equivalence just proved for (nearly) incompressible
behaviour is observed if we note the rapid increase of order of integrating formulae with
the number of quadrature points (viz. Chapter 5). For high order elements the number of
quadrature points equivalent to the p constraint permissible for stability rapidly reaches
that required for exact integration and hence their performance in nearly incompressible
situations is excellent, even if exact integration is used. This was observed on many
occasions27–29 and Sloan and Randolf30 have shown good performance with the quintic
triangle. Unfortunately such high order elements pose other difficulties and are seldom
used in practice.

A final remark concerns the use of ‘reduced’ integration in particular and of penalized,
mixed, methods in general. As we have pointed out in Sec.10.3.1 it is possible in such forms
to obtain sensible results for the primary variable (u in the present example) even though
the general stability conditions are violated, providing some of the constraint equations are
linearly dependent. Now of course the constraint variable (p in the present example) is
not determinate in the limit.

This situation occurs with some elements that are occasionally used for the solution of
incompressible problems but which do not pass our mixed patch test, such as Q8/4 and
Q9/4 of Fig. 11.1. If we take the latter number to correspond to the integrating points these
will yield acceptable u fields, though not p.

†The Q9/3 element would involve three-point quadrature which is somewhat unnatural for quadrilaterals. It is
therefore better to simply use the mixed form here – and, indeed, in any problem which has non-linear behaviour
between p and u (see reference 1).
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Fig. 11.7 Steady-state, low Reynolds number flow through an orifice. Note that pressure variation for element
Q8/4 is so large it cannot be plotted. Solution with u/p elements Q8/3, Q8/4, Q9/3, Q9/4.

Figure 11.7 illustrates the point on an application involving slow viscous flow through
an orifice – a problem that obeys identical equations to those of incompressible elasticity.
Here elements Q8/4, Q8/3, Q9/4 and Q9/3 are compared although only the last completely
satisfies the stability requirements of the mixed patch test. All elements are found to give a
reasonable velocity (u) field but pressures are acceptable only for the last one, with element
Q8/4 failing to give results which can be plotted.4
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Fig. 11.8 A quadrilateral with intersecting diagonals forming an assembly of four T3/1 elements. This allows
displacements to be determined for nearly incompressible behaviour but does not yield pressure results.

It is of passing interest to note that a similar situation develops if four triangles of the T3/1
type are assembled to form a quadrilateral in the manner of Fig. 11.8. Although the original
element locks, as we have previously demonstrated, a linear dependence of the constraint
equation allows the assembly to be used quite effectively in many incompressible situations,
as shown in reference 31.

Example 11.3: A weak patch test – selective integration. In order to illustrate the
performance of an element which only satisfies a weak patch test we consider an axisym-
metric linear elastic problem modelled by 4-noded isoparametric elements. The material is
assumed isotropic and the finite element stiffness and reaction force matrices are computed
using a selective integration method where terms associated with the bulk modulus are
evaluated by a single-point Gauss quadrature, whereas all other terms are computed using
a 2×2 (standard) gaussian quadrature. It may be readily verified that the stiffness matrix is
of proper rank and thus stability of solutions is not an issue. On the other hand, consistency
must still be evaluated.

In order to assess the performance of a selective reduced quadrature formulation we
consider the patch of elements shown in Fig. 11.9. The patch is not as generally shaped
as desirable and is only used to illustrate performance of an element that satisfies a weak
patch test. The polynomial solution considered is

u = 2 r

v = 0
(11.56)

and material constants E = 1 and ν = 0 are used in the analysis. The resulting stress field
is given by

σr = σθ = 2 (11.57)

with other components identically zero. The exact solution for the nodal quantities of the
mesh shown in Fig. 11.9 are summarized in Table 11.1. Patch tests have been performed
for this problem using the selective reduced integration scheme described above and values
of h of 0.8, 0.4, 0.2, 0.1, and 0.05. The result for the radial displacement at nodes 2 and 5
(reported to six digits) is given in Table 11.2. All other quantities (displacements, strains,
and stresses) have a similar performance with convergence rates of at least O(h) or more.
Based on this assessment we conclude the element passes a weak patch test. A similar
result will be found for elements which are not rectangular and thus the element produces
convergent results.
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Fig. 11.9 Patch for selective, reduced quadrature on axisymmetric 4-noded elements.

Table 11.1 Exact solution for patch

Displacement Force

Node a Radius ra ũa ṽa Fra Fza

1, 4 1 − h 2(1 − h) 0 −(1 − h)h 0
2, 5 1 2 0 0 0
3, 6 1 + h 2(1 + h) 0 (1 + h)h 0

Table 11.2 Radial displacement at nodes 2 and 5

h û

0.8 2.01114
0.4 2.00049
0.2 2.00003
0.1 2.00000
0.05 2.00000

11.6 A simple iterative solution process for mixed
problems: Uzawa method

11.6.1 General

In the general remarks on the algebraic solution of mixed problems characterized by equa-
tions of the type [viz. Eq. (10.14)][

A C
CT 0

]{
x
y

}
=
{

f1

f2

}
(11.58)

we have remarked on the difficulties posed by the zero diagonal and the increased number
of unknowns (nx + ny) as compared with the irreducible form (nx or ny).

A general iterative form of solution is possible, however, which substantially reduces the
cost.32 In this we solve successively

y(k+1) = y(k) + ρr(k) (11.59)

where r(k) is the residual of the second equation computed as

r(k) = CTx(k) − f2 (11.60)
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and follow with solution of the first equation, i.e.,

x(k+1) = A−1(f1 − Cy(k+1)) (11.61)

In the above ρ is a ‘convergence accelerator matrix’ and is chosen to be efficient and
simple to use.

The algorithm is similar to that described initially by Uzawa33 and has been widely
applied in an optimization context.28, 34–38

Its relative simplicity can best be grasped when a particular example is considered.

11.6.2 Iterative solution for incompressible elasticity

In this case we start from Eq. (11.10) now written with V = 0, i.e., complete incompress-
ibility is assumed. The various matrices are defined in (11.11), resulting in the form[

A C
CT 0

]{
ũ
p̃

}
=
{

f1

0

}
(11.62)

Now, however, for three-dimensional problems the matrix A is singular (as volumetric
changes are not restrained) and it is necessary to augment it to make it non-singular. We
can do this in the manner described in Sec. 10.3.1, or equivalently by the addition of a
fictitious compressibility matrix, thus replacing A by

Ā = A +
∫
�

BT(λGmmT)B d� (11.63)

If the second matrix uses an integration consistent with the number of discontinuous pressure
parameters assumed, then this is precisely equivalent to writing

Ā = A + λGCCT (11.64)

and is simpler to evaluate. Clearly this addition does not change the equation system.
The iteration of the algorithm (11.59)–(11.61) is now conveniently taken with the ‘con-

vergence accelerator’ being simply defined as

ρ = λGI (11.65)

We now have the iterative system given as

p̃(k+1) = p̃(k) + λGr(k) (11.66)

where
r(k) = CTũ(k) (11.67)

the residual of the incompressible constraint, and

ũ(k+1) = Ā−1(f1 − Cp̃(k+1)) (11.68)

In this Ā can be interpreted as the stiffness matrix of a compressible material with bulk
modulus K = λG and the process may be interpreted as the successive addition of volu-
metric ‘initial’ strains designed to reduce the volumetric strain to zero. Indeed this simple
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approach led to the first realization of this algorithm.39–41 Alternatively the process can
be visualized as an amendment of the original equation (11.62) by subtracting the term
p/(λG) from each side of the second to give (this is often called an augmented lagrangian
form)32, 37, 38 [

A C

CT − 1

λG
I

]{
ũ
p̃

}
=
{

f1

− 1

λG
p̃

}
(11.69)

and adopting the iteration[
Ā C

CT − 1

λG
I

]{
ũ
p̃

}(k+1)

=
{

f1

− 1

λG
p̃(k)

}
(11.70)

With this, on elimination, a sequence similar to Eqs (11.66)–(11.68) will be obtained pro-
vided Ā is defined by Eq. (11.64).

Starting the iteration from

ũ(0) = 0 and p̃(0) = 0

in Fig. 11.10 we show the convergence of the maximum div u computed at any of the
integrating points used. We note that this convergence becomes quite rapid for large values
of λ = (103–104).
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Fig. 11.10 Convergence of iterations in an extrusion problem for different values of the parameter λ.
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For smaller λ values the process can be accelerated by using different ρ32 but for prac-
tical purposes the simple algorithm shown above suffices for many problems, including
applications in large strain.42 Clearly much better satisfaction of the incompressibility
constraint can now be obtained by the simple use of a ‘large enough’ bulk modulus or
penalty parameter. With λ = 104, for instance, in five iterations the initial div u is reduced
from the value ∼10−4 to 10−16, which is at the round-off limit of the particular computer
used.

Finally, we remind the reader that the above iterative process solves the equations of a
mixed problem. Accordingly, it is fully effective only when the element used satisfies the
stability and consistency conditions of the mixed patch test.

11.7 Stabilized methods for some mixed elements failing
the incompressibility patch test

It has been observed earlier in this chapter that many of the two-field u–p elements do not
pass the stability conditions imposed by the mixed patch test at the incompressible limit
(or the Babuška–Brezzi conditions). Here in particular we have such methods in which
the displacement and pressure are interpolated in an identical manner (for instance, linear
triangles, linear quadrilaterals, quadratic triangles, etc.) and many attempts for stabilization
of such elements have been introduced. Indeed one may view the bubble introduced in
Example 11.1 and the enhanced strain treatment of Example 11.2 as stabilized methods.
However, several alternative categories to these exist. The first category is the introduction
of non-zero diagonal terms of the constraint equation by adding a least squares form to
the Galerkin formulation. This was first suggested by Courant43 as a means of improving
accuracy in solutions. It appears that Brezzi and Pitkaranta in 198444 were the first to
add terms to the Galerkin solution in an attempt to stabilize results. Numerous further
suggestions have been proposed by Hughes et al. between 1986 and 1989 with the final
form again a least squares approach called the Galerkin least squares method.45–47 An
alternative proposal of achieving similar answers has been proposed by Oñate48 which gains
the addition of diagonal terms by the introduction of so-called finite increment calculus to the
formulation. More recently, a very simple stabilization has been proposed by Dohrmann
and Bochev49 in which a stabilization involving the difference between the interpolated
pressure and a direct projection of pressure is appended to the Galerkin equations in a least
squares form.

There is, however, an alternative possibility introduced by time integration of the full
incompressible formulation. Here many of the algorithms will yield, when steady-state
conditions are recovered, a stabilized form. A number of such algorithms have been dis-
cussed by Zienkiewicz and Wu in 199150 and a very efficient method has appeared as
a by-product of a fluid mechanics algorithm named the characteristic-based split (CBS)
procedure51–55 (which is discussed at length in reference 56).

In the latter algorithm there exists a free parameter. This parameter depends on the size
of the time increment. In the other methods there is a weighting parameter applied to the
additional terms introduced. We shall discuss each of these algorithms in the following
subsections and compare the numerical results obtainable.
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One may question, perhaps, that resort to stabilization procedures is not worthwhile in
view of the relative simplicity of the full mixed form. But this is a matter practice will
decide and is clearly in the hands of the analyst applying the necessary solutions.

11.7.1 Laplacian pressure stabilization

In the first part of this chapter we separated the stress into the deviatoric and pressure
components as

σ = σd + mp

Using the tensor form described in Appendix B this may be written in index form as

σij = σdij + δijp

The deviatoric stresses are related to the deviatoric strains through the relation

σdij = 2Gεdij = G

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
(11.71)

The equilibrium equations (in the absence of inertial forces) are:

∂σ dij

∂xi
+ ∂p

∂xj
+ bj = 0

Substituting the constitutive equations for the deviatoric part yields the equilibrium form
(assuming G is constant)

G

[
∂2uj

∂xi ∂xi
+ 1

3

∂2ui

∂xi ∂xj

]
+ ∂p

∂xj
+ bj = 0 (11.72)

In vector form this is given as

G[∇2u + 1
3∇(div u)] + ∇p + b = 0

where ∇2 is the laplacian operator and ∇ the gradient operator. The constitutive equation
(11.2) is expressed in terms of the displacement as

εv = ∂ui

∂xi
= div u = 1

K
p (11.73)

where div (·) is the divergence of the quantity. A single equation for pressure may be
deduced from the divergence of the equilibrium equation. Accordingly, from Eq. (11.72)
we obtain

4G

3
∇2 (div u)+ ∇2p + div b = 0 (11.74)

where upon noting (11.73) we obtain finally
(

1 + 4G

3K

)
∇2p + div b = 0 (11.75)

Thus, in general, the pressure must satisfy a Poisson equation, or in the absence of body
forces, a Laplace equation.
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We have noted the dangers of artificially raising the order of the differential equation
in introducing spurious solutions; however, in the context of constructing approximate
solutions to the incompressible problem the above is useful in providing additional terms to
the weak form which otherwise would be zero. Brezzi and Pitkaranta44 suggested adding
Eq. (11.75) to Eq. (11.7) and (on setting the body force to zero for simplicity) obtain∫

�

δp

(
mTε− 1

K
p

)
d�+

∑
e

β

∫
�e

δp∇2p d� = 0 (11.76)

where β is a parameter introduced to control accuracy. The last term may be integrated by
parts to yield a form which is more amenable to computation as∫

�

δp

(
mTε− 1

K
p

)
d�−

∑
e

β

∫
�e

∂δp

∂xi

∂p

∂xi
d� = 0 (11.77)

in which the resulting boundary terms are ignored. Upon discretization using equal order
linear interpolation on triangles for u and p we obtain a form identical to that for the bubble
in Example 11.1 with the exception that τ [viz. Eq. (11.20b)] is now given by

τ = βI (11.78)

On dimensional considerations with the first term in Eq. (11.77) the parameter β should
have a value proportional to L4/F , where L is length and F is force. We defer discussion
on the particular value until after presenting the Galerkin least squares method.

11.7.2 Galerkin least squares method

The Galerkin least squares (GLS) approach is a general scheme for solving the differential
equations (3.1) by a finite element method. We may write the GLS form as∫

�

δuTA(u) d�+
∑
e

∫
�e

δA(u)TτA(u) d� = 0 (11.79)

where the first term represents the normal Galerkin form and the added terms are computed
for each element individually including a weight τ to provide dimensional balance and
scaling. Generally, the τ will involve parameters which have to be selected for good
performance. Discontinuous terms on boundaries between elements that arise from higher
order terms in A(u) are commonly omitted.

The form given above has been used by Hughes47 as a means of stabilizing the fluid flow
equations, which for the case of the incompressible Stokes problem coincide with those
for incompressible linear elasticity. For this problem only the momentum equation is used
in the least squares terms. After substituting Eq. (11.73) into Eq. (11.72) the momentum
equation may be written as (assuming thatG andK are constant in each element and body
forces are ignored)

G
∂2uj

∂x2
i

+
(

1 + G

3K

)
∂p

∂xj
= 0 (11.80)

A more convenient form results by using a single parameter defined as

Ḡ = G

1 +G/3K
(11.81)
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With this form the least squares term to be appended to each element may be written as
∫
�e

(
Ḡ
∂2δui

∂x2
k

+ ∂δp

∂xi

)
τij

(
Ḡ
∂2uj

∂x2
m

+ ∂p

∂xj

)
d� (11.82)

This leads to terms to be added to the standard Galerkin equations and is expressed as
[

As Cs

Cs,T Vs

]{
ũ
p̃

}

where

As
ab =

∫
�e

Ḡ2∇2Naτ∇2Nb d�

Cs
ab =

∫
�e

Ḡ∇2Naτ∇Nb d�

V sab =
∫
�e

(∇Na)T τ∇Nb d�

and the operators on the shape functions are given in two dimensions by

∇2Na = ∂2Na

∂x2
1

+ ∂2Na

∂x2
2

and ∇Na =
[
∂Na

∂x1

∂Na

∂x2

]T

Note again that all infinite terms between elements are ignored (i.e., those arising from
second derivatives when C0 functions are used).

For linear triangular elements the second derivatives of the shape functions are identically
zero within the element and only the V term remains and is now nearly identical to the
Brezzi–Pitkaranta form if β coincides with the definition of τ . In the work of Hughes
et al., τ is given by

τ = −αh
2

2G
I (11.83)

where α is a parameter which is recommended to be of O(1) for linear triangles and
quadrilaterals and h is the size of the element.

11.7.3 Direct pressure stabilization

In the previous two sections we have discussed the procedures which needed certain disre-
gard for consistency to be introduced. In particular, in both methodologies certain integrals
were allowed over the individual elements with high order derivatives and interelement
values being omitted especially if these reached infinity, as happens for instance in the GLS
method when second derivatives on the interface between elements or boundary terms in
the Brezzi–Pitkaranta method are ignored.

In this section we introduce another process proposed in a recent paper by Dohrmann and
Bochev49 which seems to be totally correct and is arrived at without ignoring any terms in
the overall integrals. In this procedure we try to ensure that the difference between the C0

interpolated pressures gives answers consistent with those in which a lower order, discon-
tinuous approximation is used – i.e., one which is consistent with the general approximation
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for stresses. Thus, for instance, in triangular elements in which linear displacements are
used the stresses are only allowed to be constant within any element and the assumption of
any component being also linear is not consistent. For this reason the method looks at the
difference between the interpolated pressure which is of the same order as the displacement
and its projection onto one order lower expansion consistent with that of the stresses.

The work of Dohrmann and Bochev considers a two-field mixed approximation given by∫
�

δεTDdε d�+
∫
�

δεTmp d�−
∫
�

δuTb d�−
∫
�t

δuT t̄ d� = 0

∫
�

δp

[
mε− 1

K
p

]
d�−

∑
e

∫
�e

(δp − δp̆)
α

G
(p − p̆) d� = 0

(11.84)

in which the displacements u and pressure p are approximated by k order continuous
polynomial shape functions, p̆ is a discontinuous projection of p onto a polynomial space
of order k − 1 and α is a parameter to be selected for stability. When K → ∞ the above
form represents a stable approximation for the incompressible problem for all order of
elements provided α is set at a nominal value. In the examples we use α = 2.†

We note that the form (11.84) requires no integration by parts in which terms are ignored.
Thus, the method has considerable theoretical advantages over the previously discussed
stabilization methods.

The pressure stabilization is computed for each element individually using∫
�e

δp̆(p − p̆) d� = 0 (11.85)

and, thus, has low additional cost. Due to this form, which also holds when the variation is
interchanged on pressures, the stabilization term may also be written as∫

�e

(δp − δp̆)
α

G
(p − p̆) d� =

∫
�e

α

G
(δpp − δp̆p̆) d� (11.86)

which is now in the form of a difference of two ‘mass’-type arrays. If we approximate the
pressure by

p ≈ p̂ =
∑
a

Na p̃a = Np̃

in which Na contain the set of polynomials of order k and

p̆ =
∑
b

hb(x)βb = h(x)β

where hb(x) are the polynomials of order k − 1 the solution to (11.85) is determined from∫
�e

hTh d�β =
∫
�e

hTN d�p̃

Hβ = Gp̃

Thus, the pressure projection is given by

p̆ = h(x)H−1Gp̃ (11.87)

†Reference 49 uses α = 1. While this leads to convergence we find this value is somewhat small for our examples.
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Using the usual finite element approximation for the displacement

u =
∑
a

Na ũa = Nũ

the stabilized weak form may be written in matrix form as[
Kd C
CT −V

]{
ũ
p̃

}
=
{

f
0

}
(11.88)

where the arrays are given by

Kd =
∫
�

BTDdB d�; C =
∫
�

BTmN d�

V =
∫
�

NT

[
1

K
+ α

G

]
N d�− α

G
GTH−1G

and f is the usual force due to boundary traction and body loads. It is clear from the definition
of V that, when G/α is much smaller than K , the effect of the direct pressure stabilization
is a penalty form on the difference of the interpolated and projected pressure. The patch test
only requires pressures of order k−1 (i.e., the order of the projected pressures) to satisfy the
consistency condition. This partly explains why the above approach is successful. Further
validation is provided by the numerical experiments given below.

Example 11.4: Direct stabilization for 3-node triangular element. As an example
consider the problem of the two-dimensional plane strain problem in which the solution is
performed using linear triangles (k = 1) with shape functions given by

Na = La; a = 1, 2, 3

Here the projection for p̆ is given by a constant (k − 1 = 0) value

p̆ = 1
3 (p̃1 + p̃2 + p̃3)

Note that numerical integration of the stabilizing term may not be performed using one-
point quadrature at the element baricentre as then no contribution to the stabilizing term
would be found.

Performing the integrations for the stabilizing term (11.86) gives the result

Vstab = �α

12G

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦− �α

9G

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ = �α

18G

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦ (11.89)

where � is the area of the triangular element. We recognize this result to have the same
form as the deviatoric projection array which is positive semi-definite. The singular nature
of this array permits the constant values of p to be unaffected by the stabilizing terms, thus,
maintaining optimal accuracy for the method.

If we assemble the stabilization array given in (11.89) for the four-element patch shown
in Fig. 11.11(a) we obtain an equation for node 0

�α

18G

[
4p0 −

4∑
1

pi

]
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Fig. 11.11 Mesh patterns for pressure stabilization matrix evaluation.

which we recognize as a laplacian-type form. Similarly, for the six-element patch shown
in Fig. 11.11(b) we obtain

�α

18G

[
4p0 −

6∑
1

pi

]

which has a similar form but is not the same as the laplacian operator for this mesh pattern.
The simplicity of the direct pressure stabilization is one of its main advantages. How-

ever, it also permits applications on elements of other order and shape without significant
complication. For example, if degenerate element forms for quadratic elements are used as
discussed in Chapter 5 the direct approach provides a means of stabilizing computations for
incompressible forms without the need to add any second derivative terms (as, for example,
needed for the GLS form).

We will show later on numerical examples of how well the direct stabilization approach
works.

11.7.4 Incompressibility by time stepping

The fully incompressible case (i.e., K = ∞) has been studied by Zienkiewicz and Wu50

using various time stepping procedures. Their applications concern the solution of fluid
problems in which the rate effects for the Stokes equation appear as first derivatives of time.
We can consider such a method here as a procedure to obtain the static solutions of elasticity
problems in the limit as the rate terms become zero. Thus, this approach is considered here
as a method for either the Stokes equation or the case of static incompressible elasticity.

The governing equations for slightly compressible Stokes flow may be written as
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ρ0
∂ui

∂t
− ∂σ dij

∂xj
− ∂p

∂xi
= 0

1

ρ0c2

∂p

∂t
− ∂ui

∂xi
= 0

(11.90)

where ρ0 is density (taken as unity in subsequent developments), c = (K/ρ0)
1/2 is the

speed of compressible waves, p is the pressure (here taken as positive in tension), and ui
is a velocity (or for elasticity interpretations a displacement) in the i-coordinate direction.
Note that the above form assumes some compressibility in order to introduce the pressure
rate term. At the steady limit this term is not involved, consequently, the solution will
correspond to the incompressible case. Deviatoric stresses σdij are related to deviatoric
strains (or strain rates for fluids) as described by Eq. (11.71).

Zienkiewicz and Wu consider many schemes for integrating the above equations in time.
Here we introduce only one of the forms, which is widely used in the solution of the fluid
equations which include transport effects (see reference 56). For the full fluid equations
the algorithm is part of the characteristic-based split (CBS) method.51, 52, 54–57

The equations are discretized in time using the approximations u(tn) ≈ un and time
derivatives

∂ui

∂t
≈ un+1 − un

�t
(11.91)

where �t = tn+1 − tn. The time discretized equations are given by

un+1
i − uni

�t
= ∂σ

d,n
ij

∂xj
+ ∂pn

∂xi
+ θ2

∂�p

∂xi
(11.92a)

and
1

c2

pn+1 − pn

�t
= ∂uni

∂xi
+ θ1

∂�ui

∂xi
(11.92b)

where �p = pn+1 − pn; �ui = un+1
i − uni ; θ1 can vary between 1/2 and 1; and θ2 can

vary between 0 and 1. In all that follows we shall use θ1 = 1.
The form to be considered uses a split of the equations by defining an intermediate

approximate velocity u∗
i at time tn+1 when integrating the equilibrium equation (11.92a).

Accordingly, we consider
u∗
i − uni

�t
= ∂σ

d,n
ij

∂xj
(11.93a)

and
un+1
i − u∗

i

�t
= ∂pn

∂xi
+ θ2

∂�p

∂xi
(11.93b)

Differentiating the second of these with respect to xi to get the divergence of un+1
i and

combining with the discrete pressure equation (11.92b) results in

1

c2

�p

�t
− θ2�t

∂2�p

∂xi ∂xi
= �t

∂2pn

∂xi ∂xi
+ ∂u∗

i

∂xi
(11.93c)

Thus, the original problem has been replaced by a set of three equations which need to be
solved successively.
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Equations (11.93a), (11.93b) and (11.93c) may be written in a weak form using as
weighting functions δu∗, δu and δp, respectively (viz. Chapter 3). They are then discretized
in space using the approximations

un ≈ ûn = Nuũn and δu ≈ δû = Nuδũ

u∗ ≈ û∗ = Nuũ∗ and δu∗ ≈ δû∗ = Nuδũ∗

pn ≈ p̂n = Npp̃n and δp ≈ δp̂ = Npδp̃

with similar expressions for un+1 and pn+1. The final discrete form is given by the three
equation sets

1

�t
Mu

(
ũ∗ − ũn

) = −Aũn + f1[
1

�t
Mp + θ2�tH

]
�p̃ = −Cũ∗ −�tHp̃n + f2

1

�t
Mu

(
ũn+1 − ũ∗) = −CT

(
p̃n + θ2�p̃

)
(11.94)

In the above we have integrated by parts all the terms which involve derivatives on deviator
stress (σdij ), pressure (p) and displacements (velocities). In addition we consider only the
case where un+1

i = u∗
i = ūi on the boundary �u (thus requiring δui = δu∗

i = 0 on �u).
Accordingly, the matrices are defined as

Mu =
∫
�

NT
uNu d� Mp =

∫
�

1

c2
NT
pNp d�

A =
∫
�

BTDdB d� C =
∫
�

∂Np

∂xi
Nu d�

H =
∫
�

∂NT
p

∂xi

∂Np

∂xi
d� f1 =

∫
�t

NT
u(t̄ − knpn) d�

f2 =
∫
�u

NT
pnTū d�

(11.95)

in which Dd are the deviatoric moduli defined previously. The parameter k denotes an
option on alternative methods to split the boundary traction term and is taken as either zero
or unity. We note that a choice of zero simplifies the computation of boundary contributions;
however, some would argue that unity is more consistent with the integration by parts.

The boundary pressure acting on �t is computed from the specified surface tractions
(t̄i) and the ‘best’ estimate for the deviator stress at step (n + 1) which is given by σd,∗ij .
Accordingly,

p̄n+1 ≈ ni t̄i − niσ
d,∗
ij nj

is imposed at each node on the boundary �t .
In general we require that �t < �tcrit where the critical time step is h2/2G (in which

h is the element size). Such a quantity is obviously calculated independently for each
element and the lowest value occurring in any element governs the overall stability. It is
possible and useful to use here the value of�t calculated for each element separately when
calculating incompressible stabilizing terms in the pressure calculation and the overall time
step elsewhere (we shall label the time increments multiplying H in Eq. (11.94)3 as �tint).
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A ratio of γ = �tint/�t greater than unity improves considerably the stabilizing properties.
As Eq. (11.94)3 has greater stability than the first two equations in (11.94), and for θ2 ≥ 1/2
is unconditionally stable, we recommend that the time step used in this equation be γ�tcr for
each node. Generally a value of 2 is good as we shall show in the examples (for additional
details see reference 54).

Equation (11.94) defines a value of ũ∗ entirely in terms of known quantities at the n-step.
If the mass matrix Mu is made diagonal by lumping (see Chapter 16 and Appendix I) the
solution is thus trivial. Such an equation is called explicit. The equation for �p̃, on the
other hand, depends on both Mp and H and it is not possible to make the latter diagonal
easily.† It is possible to make Mp diagonal using a similar method as that employed for Mu.
Thus, if θ2 is zero this equation will also be explicit, otherwise it is necessary to solve a set
of algebraic equations and the method for this equation is called implicit. Once the value of
�p̃ is known the solution for ũn+1 is again explicit. In practice the above process is quite
simple to implement; however, it is necessary to satisfy stability requirements by limiting
the size of the time increment. This is discussed further in Chapter 17 and in reference 51.
Here we only wish to show the limit result as the changes in time go to zero (i.e., for a
constant in time load value) and when full incompressibility is imposed.

At the steady limit the solutions become

ũn = ũn+1 = ũ and p̃n = p̃n+1 = p̃ (11.96)

Eliminating u∗ the discrete equations reduce to the mixed problem
[

A C
CT �t

(
CTM−1

u C − θ1H
)]{ũ

p̃

}
+
{

f
0

}
= 0 (11.97)

At the steady limit we again recover a term on the diagonal which stabilizes the solution.
This term is again of a Laplace equation type – indeed, it is now the difference between
two discrete forms for the Laplace equation. The term CTM−1

u C makes the bandwidth of
the resulting equations larger – thus this form is different from all the previously discussed
methods.

11.7.5 Numerical comparisons

To provide some insight into the behaviour of the above methods we consider two example
problems. The first is a problem often used to assess the performance of codes to solve
steady-state Stokes flow problems – which is identical to the case for incompressible linear
elasticity. The second example is a problem in nearly incompressible linear elasticity.

Example 11.5: Driven cavity. A two-dimensional plane (strain) case is considered for
a square domain with unit side lengths. The material properties are assumed to be fully
incompressible (ν = 0.5) with unit viscosity (elastic shear modulus, G, of unity). All
boundaries of the domain are restrained in the x and y directions with the top boundary
having a unit tangential velocity (displacement) at all nodes except the corner ones. Since

† It is possible to diagonalize the matrix by solving an eigenproblem as shown in Chapter 16 – for large problems
this requires more effort than is practical.
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Fig. 11.12 Mesh and GLS/Brezzi–Pitkaranta results.

the problem is incompressible it is necessary to prescribe the pressure at one point in the
mesh – this is selected as the centre node along the bottom edge. The 10 × 10 element
mesh of triangular elements (200 elements total) used for the comparison is shown in
Fig. 11.12(a). The elements used for the analysis use linear velocity (displacement) and
pressure on 3-noded triangles. Results are presented for the horizontal velocity along the
vertical centre-lineAA and for vertical velocity and pressure along the horizontal centre-line
BB. Three forms of stabilization are considered:

1. Galerkin least squares (GLS)/Brezzi–Pitkaranta (BP) where the effect of α on τ is
assessed. The results for the horizontal velocity are given in Fig. 11.12(b) and for the
vertical velocity and pressure in Figs 11.12(c) and (d), respectively. From the analysis it
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Fig. 11.13 Vertical velocity and pressure for driven cavity problem.

is assessed that the stabilization parameter α should be about 0.5 to 1 (as also indicated
by Hughes et al.47). Use of lower values leads to excessive oscillation in pressure and
use of higher values to strong dissipation of pressure results.

2. Cubic bubble (MINI) element stabilization. Results for vertical velocity are nearly
indistinguishable from the GLS results as indicated in Fig. 11.13; however, those for
pressure show oscillation. Such oscillation has also been observed by others along with
some suggested boundary modifications.58 No free parameters exist for this element
(except possible modification of the bubble mode used), thus, no artificial ‘tuning’ is
possible. Use of more refined meshes leads to a strong decrease in the oscillation.

3. Direct pressure stabilization (DB). Results for vertical velocity are again well captured
as shown in Fig. 11.13; pressure results are also smooth and give good peak answers.
We have not explored the range of α which may be used for the stabilization.

4. The CBS algorithm. Finally in Fig. 11.13 we present results using the CBS solution
which may be compared with GLS, α = 0.5. Once again the reader will observe that
with γ = 2, the results of CBS reproduce very closely those of GLS, α = 0.5. However,
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in results for γ = 1 no oscillations are observed and they are quite reasonable. This ratio
for γ is where the algorithm gives excellent results in incompressible flow modelling as
will be demonstrated further in results presented in reference 56.

Example 11.6: Tension strip with slot. As our next example we consider a plane strain
linear problem on a square domain with a central slot. The domain is two units square
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Fig. 11.15 Pressures and displacements for slot problems.

and the central slot has a total width of 0.4 units and a height of 0.1 units. The ends of
the slot are semicircular. Lateral boundaries have specified normal displacement and zero
tangential traction. The top and bottom boundaries are uniformly stretched by a uniform
axial loading and lateral boundaries are maintained at zero horizontal displacement. We
consider the linear elastic problem with elastic properties E = 24 and ν = 0.5; thus,
giving an incompressible situation. An unstructured mesh of triangles is constructed as
shown in Fig. 11.14(b). The problem is solved using direct pressure (DB), Galerkin least
squares (GLS) and characteristic-based split (CBS) stabilization methods. Results for pres-
sure along the horizontal and vertical centre-lines (i.e., the x and y axes) are presented in
Figs 11.15(a) and 11.15(b) and in Tables 11.3 and 11.4. The distribution of the vertical
displacement is shown in Fig. 11.15(c). We note that the results for this problem cause very
strong gradients in stress near the ends of the slot. The mesh used for the analysis is not
highly refined in this region and hence results from different analyses can be expected to
differ in this region. The results obtained elsewhere using all three formulations are indis-
tinguishable on the plot. In general the results achieved with all forms are satisfactory and
indicate that stabilized methods may be considered for use in problems where constraints,
such as incompressibility, are encountered.
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Table 11.3 Pressure for slot problem along x = 0

Pressure at x = 0

Coord. y DB GLS CBS

0.0500 0.1841 0.2185 0.1964
0.0693 0.2516 0.2593 0.2619
0.0886 0.3563 0.3541 0.3537
0.1079 0.4339 0.4337 0.4373
0.1273 0.5091 0.5050 0.5083
0.1466 0.5744 0.5693 0.5709
0.1661 0.6311 0.6260 0.6261
0.1860 0.6857 0.6770 0.6756
0.2065 0.7243 0.7230 0.7226
0.2275 0.7592 0.7589 0.7587
0.2491 0.7943 0.7921 0.7936
0.2714 0.8174 0.8187 0.8185
0.2944 0.8503 0.8452 0.8470
0.3182 0.8589 0.8636 0.8624
0.3429 0.8918 0.8861 0.8886
0.3686 0.8982 0.9016 0.9029
0.3954 0.9163 0.9159 0.9157
0.4235 0.9354 0.9301 0.9303
0.4532 0.9360 0.9398 0.9386
0.4846 0.9503 0.9506 0.9498
0.5181 0.9605 0.9612 0.9610
0.5543 0.9720 0.9712 0.9716
0.5938 0.9813 0.9801 0.9803
0.6380 0.9871 0.9886 0.9889
0.6887 0.9976 0.9988 0.9974
0.7505 1.0098 1.0096 1.0097
0.8262 1.0222 1.0240 1.0222
0.9090 1.0383 1.0390 1.0502
1.0000 1.0534 1.0516 1.0275

11.8 Concluding remarks

In this chapter we have considered in some detail the application of mixed methods to
incompressible problems and also we have indicated some alternative procedures. The
extension to non-isotropic problems and non-linear problems is presented in reference 1,
but will follow similar lines. Here we note how important the problem is in the context of
fluid mechanics and it is there that much of the attention to it has been given.56

In concluding this chapter we would like to point out three matters:

1. The mixed formulation discovers immediately the non-robustness of certain irreducible
(displacement) elements and, indeed, helps us to isolate those which perform well from
those that do not. Thus, it has merit which as a test is applicable to many irreducible
forms at all times.

2. In elasticity, certain mixed forms work quite well at the near incompressible limit without
resort to splits into deviatoric and mean parts. These include the two-field quadrilateral
element of Pian–Sumihara and the enhanced strain quadrilateral element of Simo–Rifai
which were presented in the previous chapter. There we noted how well such elements
work for Poisson’s ratio approaching one-half as compared to the standard irreducible
element of a similar type.
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Table 11.4 Pressure for slot problem alongy=0

Pressure at y = 0

Coord. x DB GLS CBS

0.2000 2.4997 2.0775 2.1983
0.2152 1.9449 1.8805 1.9405
0.2313 1.6527 1.6682 1.6539
0.2485 1.5073 1.5314 1.5219
0.2668 1.4098 1.4291 1.4253
0.2864 1.3392 1.3542 1.3510
0.3062 1.2952 1.2957 1.2927
0.3265 1.2532 1.2543 1.2523
0.3474 1.2206 1.2209 1.2202
0.3691 1.1964 1.1910 1.1902
0.3915 1.1685 1.1702 1.1692
0.4149 1.1514 1.1515 1.1508
0.4392 1.1322 1.1348 1.1349
0.4647 1.1195 1.1209 1.1205
0.4916 1.1068 1.1082 1.1074
0.5200 1.0988 1.0977 1.0975
0.5502 1.0895 1.0879 1.0874
0.5828 1.0793 1.0796 1.0795
0.6183 1.0702 1.0722 1.0723
0.6578 1.0645 1.0657 1.0655
0.7027 1.0587 1.0596 1.0591
0.7566 1.0525 1.0539 1.0536
0.8268 1.0479 1.0489 1.0486
0.9084 1.0444 1.0453 1.0450
1.0000 1.0438 1.0443 1.0439

3. Use of stabilizing forms such as the direct pressure or time stepping form allows use of
mixed u–p elements with equal order interpolation – a form which otherwise fails the
mixed patch test (or Babuška–Brezzi condition).

11.9 Problems

11.1 Show that the variational theorem

�HR =
∫
�

1
2ε

TDdε d�−
∫
�

uTb d�−
∫
�

uT t̄ d�

+
∫
�

[
pmTε− 1

2K
p2

]
d�

generates the problem given in Eq. (11.10) as its first variation.
11.2 Show that the variational theorem given in Eq. (11.27) generates the problem given

by (11.24).
11.3 If the approximation for p contains all the terms that are in the approximation to mTε

the limitation principle yields the result that the formulation will be identical to the
standard displacement approximation given in Chapter 6.

If the number of internal degrees of freedom for the displacement u in an element is
equal to the number of parameters in the pressure p the mixed patch count condition
is passed and the consistency condition is also passed an element will not lock.

Consider the case where u is C0 continuous and p is discontinuous.
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(a) The first three members of the rectangular lagrangian family of two-dimensional
plane strain elements is shown in Fig. 4.7. Consider the general member of this
class in which the displacement u is of order n (i.e., has n + 1 nodes in each
direction) and show on the Pascal triangle (viz. Fig. 4.8) the polynomial terms
contained in the divergence term for volumetric strain mT ε.

(b) If the pressurep is approximated by an orderm lagrangian interpolation determine
the lowest order for m which will contain all the polynomial terms found in (a).

(c) Determine the lowest order of n for which the limitation principle is satisfied and
the element will not lock at the nearly incompressible limit.

11.4 Repeat Problem 11.3 for the triangular family of elements in plane strain (viz. Fig. 4.13).
Let the displacement u be approximated by an order n polynomial (i.e., has n+1 nodes
on each edge).
(a) Show on the Pascal triangle (viz. Fig. 4.8) the polynomial terms contained in the

divergence term mT ε.
(b) What order approximation for p will contain all the polynomial terms in (a)?
(c) Determine the lowest order ofn for which the limitation principle is satisfied. Note

that this order of approximation will yield a displacement formulation which will
not ‘lock’ near the incompressible limit.

(d) Is the result valid for an axisymmetric geometry? Explain your answer.
11.5 For a plane strain problem consider a linear triangular element in which the displace-

ment approximation is given by

u ≈
3∑
a=1

Laũ

together with a constant approximation for the pressure p.
Using Eq. (11.24) compute B̄. Can this formulation be used to model nearly in-

compressible problems? Justify your answer.
11.6 For an axisymmetric problem consider a linear triangular element in which the dis-

placement approximation is given by

u ≈
3∑
a=1

Laũ

together with a constant approximation for the pressure p.
Using Eq. (11.24) compute B̄. Can this formulation be used to model nearly in-

compressible problems? Justify your answer.
11.7 Consider a plane strain problem which is to be solved using a linear quadrilateral

element with the displacement approximation

u ≈
4∑
a=1

Naũ

where Na = 1/4(1 + ξaξ)(1 + ηaη) together with a constant approximation for the
pressure p.

Let the element have a rectangular form with sides a and b in the x and y directions,
respectively. Using Eq. (11.24) compute B̄. Can this formulation be used to model
nearly incompressible problems? Justify your answer.
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11.8 Consider an axisymmetric problem which is to be solved using a linear quadrilateral
element with the displacement approximation

u ≈
4∑
a=1

Naũ

where Na = 1/4(1 + ξaξ)(1 + ηaη) together with a constant approximation for the
pressure p.

Let the element have a rectangular form with sides a and b in the r and z directions,
respectively. Using Eq. (11.24) compute B̄. Can this formulation be used to model
nearly incompressible problems? Justify your answer.

11.9 Consider a rectangular plane element with sides a and b in the x and y directions,
respectively.
(a) Compute the matrix V for GLS stabilization. Ignore second derivatives of u.
(b) Consider four elements of equal size with a central node c and compute the

assembled equation for the pressure p at this node.
11.10 Consider a rectangular axisymmetric element with sides a and b in the r and z direc-

tions, respectively. Let the inner radius of the element be located at ri > a/2.
(a) Compute the matrix V for GLS stabilization. Ignore second derivatives of u.
(b) Consider four elements of equal size with a central node c located at ri and compute

the assembled equation for this node.
11.11 Consider a rectangular plane element with sides a and b in the x and y directions,

respectively.
(a) Compute the matrix V for direct pressure stabilization.
(b) Consider four elements of equal size with a central node c and compute the

assembled equation for this node.
11.12 Consider a rectangular axisymmetric element with sides a and b in the r and z direc-

tions, respectively. Let the inner radius of the element be located at ri > a/2.
(a) Compute the matrix V for direct pressure stabilization.
(b) Consider four elements of equal size with a central node c located at ri and compute

the assembled equation for this node.
11.13 The steel–rubber composite bearing shown in Fig. 11.16(a) is used to support a heavy

machine. The bearing is to have high vertical stiffness but be flexible in shear (similar
bearings are also used to support structures in seismic regions). Consider a typical
layer where tr = 1 cm and ts = 0.1 cm with a width w = 5 cm. Let the properties be
Es = 200 GPa, νs = 0.3 and Er = 5 GPa, νr = 0.495. For a state of plane strain use
FEAPpv (or any appropriate available program) to compute the stiffness for a vertical
and a horizontal applied loading.

Use 4-node and 9-node mixed u–p–εv elements to compute the vertical and hori-
zontal stiffness of a single layer [viz. Fig. 11.16(b)]. Compare your solution to answers
from a standard displacement formulation in u.

11.14 Program development project: Extend your program system started in Problem 2.17
to permit solution of a stabilized method as described in Sec. 11.7. You may select a
stabilization scheme from either the GLS method of Sec. 11.7.2 or the direct pressure
stabilization method of Sec. 11.7.3.
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Rubber

Steel

ts

tr

w

(a) Steel − rubber layers
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Rubber

ts /2

ts /2

tr

Fig. 11.16 Support bearing. Problem 12.13.

Use your program to solve the driven cavity problem described in Example 11.5.
Set the boundary velocity as shown in Fig. 11.12(a) and the nodal pressure to zero
at the centre of the bottom. Plot values shown in Figs 11.12 and 11.13. Also plot
contours for velocity components and pressure. Briefly discuss your findings.
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12

Multidomain mixed approximations
– domain decomposition and

‘frame’ methods

12.1 Introduction

In the previous chapters we have assumed in the approximations that all the variables
were defined in the same manner throughout the domain of the analysis. This process can,
however, be conveniently abandoned on occasion with the same or different formulations
adopted in different subdomains of the problem. In this case some variables are only
approximated on surfaces joining such subdomains.

There are two motivations for separating the whole domain into several subdomain re-
gions. In the first of these the concept of parallel computation is paramount. Such parallel
computation has become very important in many fields of engineering and allows us to
use completely different methodologies for solving the problem in each individual part and
even if this is not used allows us very much to increase the computer power by having sep-
arate operations going on simultaneously. In general the process we have just mentioned
is referred to as domain decomposition and we shall devote the first part of this chapter to
domain decomposition methodologies.

As this volume is not concerned in detail with the process of calculation and therefore
does not discuss the subject of parallel computing in extended form, we refer the reader to
references on the subject.1–4

Indeed the whole problem of domain decomposition associated with parallel computation
is today an active field in which many conferences are held at frequent intervals and which
seem to stir the imagination of many mathematicians and engineers. We shall discuss the
problems of this kind in part one of this chapter.

It is of interest to note, however, that the methodologies for connecting separate sub-
domains can have other outcomes and objectives. In particular here the so-called frame
methods have proved successful and, for instance, the introduction of hybrid elements by
Pian et al. pioneered this type of approximation in the 1960s.5, 6 More recently, other forms
of frame approximation have been introduced and of particular interest is one in which so-
called boundary approximations are used within an element with standard displacements
specified on a frame. This allows for the introduction of many complex elements, capable
of dealing with interesting problems on their own, which can be linked with more standard
finite element computations.7–14
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Domain decompostion methods

12.2 Linking of two or more subdomains by Lagrange
multipliers

In this section we deal with the problem of connecting two or more subdomains in which
standard finite element approximations of one form or another have been used. In particular
we shall give as examples the process in which ‘irreducible’ formulations are used but, of
course, other approximations could be introduced. The linking of such subdomains can
be easily accomplished by the introduction of Lagrange multiplier methods to which we
already referred to in Chapter 3 and elsewhere. The Lagrange multipliers for this case are
defined on the boundary interface of the connecting subdomains.

In the present case we consider two subdomains, �1 and �2, which are to be joined
together along an interface �I . The generalization to multiple domains follows the same
pattern. Independently approximated Lagrange multipliers (fluxes or tractions) are used
on the interface to join the subdomains, as in Fig. 12.1.

In the first problem considered we treat the quasi-harmonic equation expressed in terms
of the scalar potential function φ. This is followed by treatment for the elasticity problem.

12.2.1 Linking subdomains for quasi-harmonic equations

In Chapter 7 we considered the general problem for steady-state field problems. This
problem resulted in a weak form in terms of a potential function φ. The approximation in
a domain �1 may be expressed as [viz. see Eq. (7.13)] (we ignore φ1

0 for simplicity)
∫
�1

[(∇δφ1
)T (

k1 ∇φ1
)+ δφ1Q

]
d�+

∫
�q

δφ1
(
q̄1 +H 1φ1

)
d� +

∫
�I

δφ1λ d� = 0

(12.1)
where the normal flux has been replaced by a Lagrange multiplier function λ defined on
the interface �I . Similarly, for the domain �2 we have
∫
�2

[(∇δφ2
)T (

k2∇φ2
)+ δφ2Q

]
d�+

∫
�q

δφ2
(
q̄2 +H 2φ2

)
d� −

∫
�I

δφ2λ d� = 0

(12.2)

n1
n2

u1

u2
λ

Ω1

Ω2

Γ1
f Γ1

t

Γ2
f Γ2

t

Γint

Fig. 12.1 Linking two (or more) domains by traction variables defined only on the interfaces. Variables in each
domain are displacement u (irreducible form).
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in which we have used q2
n = −λ to satisfy flux continuity on the interface. The two

subdomain equations are completed by a weak statement of continuity of the potential
between the two subdomains. Thus we have∫

�I

δλ
(
φ1 − φ2

)
d� = 0 (12.3)

Discretization of the potential in each domain and the Lagrange multiplier on the interface
yields the final set of equations. Thus expressing the independent approximations as

φ1 = N1φ̃
1; φ2 = N2φ̃

2
and λ = Nλλ̃ (12.4)

we have ⎡
⎢⎢⎣

H1 0 Q1

0 H2 Q2

Q1T Q2T 0

⎤
⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ̃
1

φ̃
2

λ̃

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎧⎪⎪⎨
⎪⎪⎩

f1

f2

0

⎫⎪⎪⎬
⎪⎪⎭

= 0 (12.5)

where

H1 =
∫
�1

(∇N1)
T(k1∇N1) d�, H2 =

∫
�2
(∇N2)

T(k2∇N2) d�,

+
∫
�1
q

NT
1H

1N1 d�, +
∫
�2
q

NT
2H

2N2 d�,

Q1 =
∫
�I

NT
1 Nλ d�, Q2 = −

∫
�I

NT
2 Nλ d�,

f1 =
∫
�1

NT
1Q

1 d�+
∫
�1
q

NT
1 q̄

1 d�, f2 =
∫
�2

NT
2Q

2 d�+
∫
�2
q

NT
2 q̄

2 d�

(12.6)

The formulation outlined above for two domains can obviously be extended to many
subdomains and in many cases of practical analysis is useful in ensuring a better matrix
conditioning and allowing the solution to be obtained with reduced computational effort.15

The variables φ̃
1

and φ̃
2

appear as internal and boundary variables within each
subdomain (or superelement) and can be eliminated locally providing the matrices H1

and H2 are non-singular. Such non-singularity presupposes, however, that each of the
subdomains has enough prescribed values to prevent the singular modes. If this is not the
case partial elimination is always possible, retaining the singular modes until the complete
solution is achieved.

We note that in the derivation of the matrices in Eq. (12.6) the shape function Nλ and hence
λ itself are only specified along the interface surface. The choice of appropriate functions
for the Nλ must, of course, satisfy the mixed patch requirement with counts performed
for the interface degree of freedoms. Here the count condition can be more difficult to
satisfy when multiple subdomains are connected at a point or along a line due to presence
of multiple λ functions at these locations. One procedure to satisfy the condition is to use
mortar or dual mortar methods. This matter is taken up later in this section. However,
prior to this we consider the use of the above to include the Dirichlet boundary condition
φ − φ̄ = 0 as part of the weak solution to the problem.
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Treatment for forced boundary conditions
We note that the above form also may be used to satisfy the forced boundary condition
φ = φ̄ on �φ . For this we let �I = �φ and from Eq. (12.1) (dropping the superscript ‘1’)
obtain∫

�

[
(∇δφ)T (k ∇φ)+ δφ Q

]
d�+

∫
�q

δφ (q̄ +Hφ) d� +
∫
�φ

δφ λ d� = 0 (12.7)

Similarly, from Eq. (12.3) with φ2 = φ̄ we have
∫
�φ

δλ(φ − φ̄) d� = 0 (12.8)

The discrete form of the equations becomes

[
H Q
QT 0

] {
φ̃
λ̃

}
+
{

f
f

}
= 0 (12.9)

where

H =
∫
�

(∇N)T(k∇N) d�+
∫
�q

NTHN d�

Q =
∫
�φ

NTNλ d�

f =
∫
�

NTQ d�+
∫
�q

NTq̄ d� fλ = −
∫
�φ

NT
λφ d�

(12.10)

in which

φ = Nφ̃ and λ = Nλλ̃ (12.11)

Mortar and dual mortar methods
The mortar method is a procedure which is used to join multiple subdomains.16 Consider as
an example a two-dimensional problem in which we use 4-noded (bilinear) quadrilaterals
in�1 and 9-noded (biquadratic) quadrilaterals in�2. To connect subdomains the Lagrange
multiplier may be approximated as shown in Fig. 12.2 for a subdomain with five segments
along the interface. The use of the constant part at an end is required if multiple subdomains
exist at the end point, otherwise the interpolation may be continued with normal linear
interpolation as shown for the left end in Fig. 12.2. Along the interface we may connect
subdomains with a different number of segments as shown in Fig. 12.3(a). Thus, if we

N1 N2 N3 N4 N5

Fig. 12.2 Mortar function for Lagrange multiplier. Form for linear edges on �1 elements.
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Ω1

Ω2

Ω1

Ω2

ΓI

(a) Interface for Ω1 and Ω2 (b) Subincrements for quadrature

η2
η1

Ω1

Ω2

Fig. 12.3 Two-dimensional mortar interface.

assume the Lagrange multiplier interpolation uses Nλ = N1 (except at end points)† the
interface term resulting from (12.3) yields

Q1 =
∫
�I

NT
1 N1 d� and Q2 = −

∫
�I

NT
2 N1 d� (12.12)

The integral for Q1 may be evaluated for each element edge using quadrature described
in Chapter 4; however, evaluation by quadrature of the integral for Q2 requires further
subdivision into subincrements along the element edges as indicated in Fig. 12.3(b).

The dual mortar method is an alternate form of the mortar method which has advantages
for Lagrange multiplier and penalty forms. The dual shape functions are defined to satisfy

∫
�e

N̂aNb d� = δab

∫
�e

Nb d� (12.13)

where N̂a denotes a dual shape function and δab is a Kronecker delta function. Figure 12.4
shows the dual functions computed for the standard linear functions shown in Fig. 12.2. The
dual functions are discontinuous between elements, which is permitted since no derivatives
appear for the Lagrange multipliers λ.

The dual functions may be computed for each element edge separately. For linear edges
the result is shown in Fig. 12.5. The process may be repeated for higher order functions
without difficulty; however, for higher order edges nodes appear between the ends and,
thus, with arbitrary spacing the computation must be computed for each case separately.

The advantage of the dual functions is evident from the definition of Q1 (assuming we
start with Nλ = N1). Here we observe that

Q1 =
∫
�I

NT
1 N̂λ d� = Q̂1 (12.14)

where Q̂1 is diagonal by the properties of Eq. (12.13).

†An alternative to avoiding modification at end points is to use a stabilization method such as one equivalent to
the direct pressure stabilization presented in Sec. 11.7.3.
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N1 N2 N3 N4 N5

Fig. 12.4 Dual mortar function for Lagrange multiplier. Form for linear edges on �1 elements.

N1 N2

1

^
N1

^
N2

2

1

Fig. 12.5 Mortar and dual mortar shape functions for two-dimensional linear edge.

12.2.2 Linking subdomains for elasticity equations

In this problem we formulate the approximation in domain�1 in terms of displacements u1

resulting from an irreducible (displacement) form of the elasticity equations. The traction
t1 on the interface is denoted by λ. With the weak form using the standard virtual work
expression [see Eq. (6.52)] ignoring σ0 and ε0 we have†∫

�1
δ(Su1)TD1Su1 d�−

∫
�I

δu1Tλ d� −
∫
�1
δu1Tb d�−

∫
�1
t

δu1T t̄ d� = 0 (12.15)

in which as usual we assume that the satisfaction of the prescribed displacement on �1
u is

implied by the approximation for u1. Similarly in domain �2 we can write, now putting
the interface traction as t2 = −λ to ensure equilibrium between the two domains,∫

�2
δ(Su2)TD2Su2 d�+

∫
�I

δu2Tλ d� −
∫
�2
δu2Tb d�−

∫
�2
t

δu2T t̄ d� = 0 (12.16)

The two subdomain equations are completed by a weak statement of displacement con-
tinuity on the interface between the two domains, i.e.,

†Here we use (6.4) to replace ε and δε by Su and Sδu, respectively.
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∫
�I

δλT(u2 − u1) d� = 0 (12.17)

Discretization of displacements in each domain and of the Lagrange multipliers (trac-
tions) λ on the interface yields the final system of equations. Thus putting the independent
approximations as

u1 = N1ũ1; u2 = N2ũ2; λ = Nλλ̃ (12.18)

we have ⎡
⎣ K1 0 Q1

0 K2 Q2

Q1T Q2T 0

⎤
⎦
⎧⎨
⎩

ũ1

ũ2

λ̃

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2

0

⎫⎬
⎭ (12.19)

where

K1 =
∫
�1

B1TD1B1 d�, K2 =
∫
�2

B2TD2B2 d�

Q1 = −
∫
�I

NT
1 Nλ d�, Q2 =

∫
�I

NT
2 Nλ d� (12.20)

f1 =
∫
�1

NT
1 b1 d�+

∫
�1

NT
1 t̄1 d�, f2 =

∫
�2

NT
2 b2 d�+

∫
�2

NT
2 t̄2 d�

The process described here is very similar to that introduced by Kron 17 at a very early
date and, more recently, used by Farhat et al. in the FETI (finite element tearing and
interconnecting) method18 which uses the process on many individual element partitions
as a means of iteratively solving large problems.

The formulation is, of course, subject to limitations imposed by the stability and consis-
tency conditions of the mixed patch test for selection of appropriate number of λ variables.

The formulation just used can, of course, be applied to a single field displacement for-
mulation in which we are required to specify the displacement on the boundaries in a weak
sense – rather than imposing these directly on displacement shape functions.

This problem can be approached directly or can be derived simply using (12.15) and
(12.17) in which we put u2 = ū, the specified displacement on �I ≡ �u.

Now the equation system is simply[
K1 Q1

Q1T 0

] {
ũ1

λ̃

}
=
{

f1

fλ

}
(12.21)

where
fλ = −

∫
�I

NT
λ ū d� (12.22)

This formulation is often convenient for imposing a prescribed displacement on an ele-
ment field when the boundary values cannot fit the shape function form.

We have approached the above formulation directly via weak or weighted residual forms.
A variational principle could be given here simply as the minimization of total potential
energy (see Chapter 2) subject to a Lagrange multiplier λ imposing subdomain continuity.
The stationarity of

� =
2∑
i=1

[
1

2

∫
�i
(Sui )TDiSui d�−

∫
�i

uiTb d�−
∫
�it

uiT t̄ d�

]
+
∫
�I

λT(u2 − u1) d�

(12.23)
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would result in the equation set (12.15) to (12.17). The formulation is, of course, subject
to limitations imposed by the stability and consistency conditions of the mixed patch test
for selection of the appropriate number of λ variables.

Example 12.1: Amortar method for two-dimentional elasticity. Mortar and dual mortar
methods may also be used in the solution of elasticity problems. The formulation follows
that given for the quasi-harmonic equation with appropriate change in variables. To indicate
the type of result which occurs using mortar or dual mortar forms we consider the problem
of a strip loaded by a uniform pressure along a short segment. The problem is solved as a
single region using a fine mesh over the whole domain and also by a two subdomain form
in which fine elements are in the top layer only (see Fig. 12.6). Contours for the vertical
displacement are presented in Fig. 12.7 for the two cases. It is evident that the mortar
treatment produces excellent continuity in displacement. A comparison for the vertical
stress, σy , is not shown here again the results exhibit very small discontinuity.

12.3 Linking of two or more subdomains by perturbed
lagrangian and penalty methods

In the previous section we have shown how linking can be achieved using Lagrange multipli-
ers. A disadvantage of the Lagrange multiplier approach is the addition of extra unknowns
(the Lagrange multipliersλ) and the creation of equations which have zero on the diagonal.
As we have shown previously (viz. Chapter 3) it is possible to avoid both of these situations
using a perturbed lagrangian or penalty form.

The perturbed lagrangian form of the equations may be achieved by modifying Eq.
(12.17) to ∫

�I

δλT(u2 − u1) d� − 1

α

∫
�I

δλTλ d� = 0 (12.24)

(a) No interface (b) Mortar interface

Fig. 12.6 Mesh and nodal loading for vertically loaded strip.
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(b) Mortar interface

Fig. 12.7 Vertical displacement for strip loaded over short segment of top.

in which α is a large (penalty) parameter. Inserting the approximation (12.18) into (12.15),
(12.16) and (12.24) results in the form

⎡
⎣K1 0 Q1

0 K2 Q2

Q1T Q2T − 1
α

V

⎤
⎦
⎧⎨
⎩

ũ1

ũ2

λ̃

⎫⎬
⎭ =

⎧⎨
⎩

f1

f2

0

⎫⎬
⎭ (12.25)

where in addition to the arrays defined in Eq. (12.20)

V =
∫
�I

NT
λNλ d� (12.26)

Clearly, as the parameter α tends to infinity the result becomes identical to the Lagrange
multiplier form. Such approximation thus behaves as a penalty-type form. Formally, we
can eliminate the Lagrange multiplier parameters from (12.25) to obtain

[
(K1 + αQ1V−1Q1T) αQ1V−1Q2T

αQ2V−1Q1T (K2 + αQ2V−1Q2T)

] {
ũ1

ũ2

}
=
{

f1

f2

}
(12.27)

which we recognize as a penalty-type form

[K1 + αK2] ũ = f

[viz. Eq. (3.137)].
An alternative to the above solves (12.24) for each point on the boundary �I yielding

λ = α
(
u2 − u1

)
(12.28)

Substituting this into (12.15) and (12.16) then gives

∫
�1
δ(Su1)TD1Su1 d�− α

∫
�I

δu1T(u2 − u1) d� −
∫
�1
δu1Tb d�−

∫
�1
t

δu1T t̄ d� = 0

(12.29)
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and∫
�2
δ(Su2)TD2Su2 d�+ α

∫
�I

δu2T(u2 − u1) d� −
∫
�2
δu2Tb d�−

∫
�2
t

δu2T t̄ d� = 0

(12.30)
Introducing now the approximations for u1 and u2 produces the penalty form[

(K1 + αK11
2 ) −αK12

2
αK21

2 (K2 + αK22
2 )

] {
ũ1

ũ2

}
=
{

f1

f2

}
(12.31)

where
Kij

2 =
∫
�I

NT
i Nj d�; i, j = 1, 2 (12.32)

which we again recognize as a penalty form as given in Eq. (3.137).
The differences between the penalty form (12.27) and that of (12.31) are significant:

(a) The form given by (12.27) will not exhibit locking provided the choice for the Nλ

satisfies the conditions for the mixed patch test.
(b) The form given by (12.31) and (12.32) usually requires use of reduced quadrature on

Kij
2 in order to avoid locking for reasons we discussed in Chapter 11.

(c) Using standard or dual mortar methods the form (12.27) satisfies consistency condi-
tions (e.g., constant stress) across the interface.19 Generally, the form (12.31) does not
transmit a constant stress condition correctly at the interface unless perfect matching
of meshes occurs on �I .

The above remarks clearly favour the form (12.27); however, this form requires the
inversion of the matrix V (or a solution process equivalent to such inversion) and this can
present difficulties. For the dual mortar method discussed in Sec. 12.2.1, the Lagrange
multiplier can be eliminated by a perturbed lagrangian approach using the discretized form
of (12.26) approximated as

V ≈
∫
�i

N̂T
λNλ d� (12.33)

In this case the matrix to be inverted is also diagonal and the Lagrange multiplier may be
locally eliminated to give a penalty form.

12.3.1 Nitsche method and discontinuous Galerkin approximation

An alternative to Lagrange multiplier and penalty methods for including the Dirichlet bound-
ary condition was introduced by Nitsche.20 Here we consider the procedure to include the
condition φ = φ̄ in the weak form of the quasi-harmonic equation. We first add together
Eqs (12.7) and (12.8) to obtain∫

�

[
(∇δφ)T(k ∇φ)+ δφQ

]
d� +

∫
�q

δφ (q̄ +Hφ) d� +
∫
�φ

δφ λ d�

+
∫
�φ

δλ
(
φ − φ̄

)
d� = 0 (12.34)

The normal flux qn on the boundary part �φ is replaced by

λ = qn(φ) = −nT(k∇φ) δλ = qn(δφ) = −nT(k∇δφ)
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(a) Nitsche method: c = 10 (b) Penalty method: c = 10
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Fig. 12.8 Solution of one-dimensional heat equation of Example 3.5 in Chapter 3.

thus eliminating the appearance of the Lagrange multiplier and giving a weak form ex-
pressed entirely in terms of φ. One now can note that these two terms on �φ can be zero
for φ and δφ having constant values. Thus, to make the method stable Nitsche adds a
penalty-like term

∫
�φ

δφ α
(
φ − φ̄

)
d�

However, it is not required that α be large to ensure a good satisfaction of the boundary
condition. The value recommended by Nitsche for linear elements is

α = c
|k|
h

c = O(10)

where h is an element size and |k| a norm of the diffusion matrix.
The above steps give the weak form

∫
�

[
(∇δφ)T (k∇φ)+ δφQ

]
d�+

∫
�q

δφ (q̄ +Hφ) d� +
∫
�φ

δφqn(φ) d�

+
∫
�φ

qn(δφ) [φ − φ̄] d�

︸ ︷︷ ︸
Symmetry

+
∫
�φ

δφα [φ − φ̄] d�

︸ ︷︷ ︸
Stability

= 0 (12.35)

Substituting the approximation for φ given by Eq. (12.11) into (12.35) gives

H φ̃ = f (12.36)
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where

H =
∫
�

(∇N)Tk(∇N) d�+
∫
�q

NTHN d�

−
∫
�φ

NT
(
nT[k(∇N)]

)
d� −

∫
�φ

(
nT[k(∇N)]

)T
N d� +

∫
�φ

NTαN d�

f = −
∫
�

NTQ d�−
∫
�q

NTq̄ d�

−
∫
�φ

(
nT[k(∇N)]

)T
φ̄ d� +

∫
�φ

NTαφ̄ d�

The Nitsche method results in a form in terms of the original primary variables of the
problem. We can easily extend this to consider the connection of multiple subdomains.

Example 12.2: Dirichlet boundary condition. To indicate the performance of the Nitsche
method in satisfaction of the Dirichlet boundary condition, we consider the one-dimensional
problem given in Chapter 3 as Example 3.5. There the differential equation was given as

A(φ) = − d2φ

dx2
+Q(x) = 0 0 ≤ x ≤ L

with boundary conditions φ(0) = φ(L) = 0. We shall consider two domains: �1 for
0 ≤ x < L/2 and�2 for L/2 < x ≤ L. The loading on�2 is a linear continuous function
and that on �1 is zero. Using the Lagrange multiplier solution for this problem results
in exact satisfaction of the boundary conditions φ(0) = φ(L) = 0, and, consequently,
the same solution as given for the standard finite element solution in Chapter 3, Fig. 3.5.
Using the Nitsche method with c = 10 and h = L/4 and L/8 (k = 1) gives the solution
shown in Fig. 12.8(a). For comparison we drop the terms on the boundary with q(φ),
and q(δφ) (i.e., use the penalty form alone) but keep the same value for c. This solution
is shown in Fig. 12.8(b). Of course, increasing the size of c with either approach will
improve the satisfaction of the boundary condition – but with an increased sensitivity in
equation solution. The overall improvement of the Nitsche method is clearly evident and is
accomplished without an increase in equation condition number. The results using quadratic
results are even better as shown in Fig. 12.9.

Multiple subdomain problems
We again return to the problem of connecting two subdomains defined in �1 and �2 in
which the common interface is �I . The weak form of the problem may be written now as

G =
2∑
i=1

∫
�i

[(∇δφi)T (
ki∇φi)+ δφiQi

]
d�+

∫
�iq

δφi
(
q̄ i +Hiφi

)
d�

+
∫
�I

[δφ1 − δφ2]qn(φ
1, φ2) d� +

∫
�I

qn(δφ
1, δφ2) [φ1 − φ2] d�

+
∫
�I

[δφ1 − δφ2]α [φ1 − φ2] d� = 0

(12.37)
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Fig. 12.9 Solution of one-dimensional heat equation of Example 3.5 in Chapter 3. Quadratic elements.
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Fig. 12.10 Two subdomain solution using Nitsche method for one-dimensional heat equation of Example 3.5
in Chapter 3. Linear elements.
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which results from adding Eqs (12.1) and (12.2) and setting the Lagrange multiplier to

λ = qn(φ
1, φ2) and δλ = qn(δφ

1, δφ2) (12.38)

which now becomes a function of the flux from both sides of the interface.
This form is an extension of the concept of Nitsche and, of course, can be effectively

used to consider multiple subdomains in an obvious manner. When extended to the case
where each element becomes a subdomain the problem assumes a form known as the
discontinuous Galerkin method.21–25

The discontinuous Galerkin method was first introduced by Reed and Hill26 for analysis
of neutron transport problems. It was analysed by Lesaint and Raviart for its mathematical
properties.27 As shown in the paper by Zienkiewicz et al. the method is most effective in
problems which have significant convection effects – and is less accurate than standard
(continuous) finite elements for problems which possess only diffusion effects.28 Here we
are interested in the method primarily for connecting subdomains which contain either a
large number of standard elements or have high order expansions with significant number
of parameters not associated with the boundary.

Example 12.3: Two domain problem. To indicate the performance in the presence of
multiple domains we again consider the one-dimensional of Example 12.2. We shall con-
sider two domains: �1 for 0 ≤ x ≤ L/2 and�2 for L/2 ≤ x ≤ L. The loading on�2 is a
linear continuous function and that on�1 is zero. The Nitsche method is used with four and
eight elements (two and four in each subdomain, respectively) and a value of c = 10. The
solution is shown in Fig. 12.10 and again indicates quite rapid convergence with increased
number of elements. We also show results for the same problem with quadratic elements,
Fig. 12.11, in which no discernible jump exists for the eight-element case.

Frame methods

12.4 Interface displacement ‘frame’

12.4.1 General remarks

In the preceding examples we have used traction as the Lagrange multiplier interface vari-
able linking two or more subdomains of elasticity problems. Due to lack of rigid body
constraints the elimination of local subdomain displacements has generally been impossi-
ble. For this and other reasons it is convenient to accomplish the linking of subdomains via
a displacement field defined only on the interface [Fig. 12.12(a)] and to eliminate all the
interior variables so that this linking can be accomplished via a standard stiffness matrix
procedure using only the interface variables.

A displacement frame can be made to surround the subdomain completely and if all
internal variables are eliminated will yield a stiffness matrix of a new ‘element’which can be
used directly in coupling with any other element with similar displacement assumptions on
the interface, irrespective of the procedure used for deriving such an element [Fig. 12.12(b)].

In all the examples of this section we shall approximate the frame displacements as

v = Nv ṽ on �I (12.39)
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(a) 4-Elements: c = 10
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(b) 8-Elements: c = 10

Fig. 12.11 Two subdomain solution using Nitsche method for one-dimensional heat equation of Example 3.5
in Chapter 3. Quadratic elements.

(a)

Interface frame

Ω1

Ω2

(b)

Ω1

Nodes defining v 

u = v  Nv v

Γ1

Γl

Γ1

Fig. 12.12 Interface displacement field specified on a ‘frame’ linking subdomains. (a) Two-domain link. (b) A
‘superelement’ (hybrid) which can be linked to many other similar elements.

and consider the ‘nodal forces’ contributed by a single subdomain�1 to the ‘nodes’ on this
frame. Using virtual work (or weak) statements we have with discretization∫

�1
i

NT
v t d� = q1 (12.40)

where t are the tractions the interior exerts on the imaginary frame and q1 are the nodal
forces developed. The balance of the nodal forces contributed by each subdomain now
provides the weak condition for traction continuity.

As finally the tractions t can be expressed in terms of the frame parameters ṽ only, we
shall arrive at

q1 = K1ṽ + f1
0 (12.41)
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where K1 is the stiffness matrix of the subdomain �1 and f1
0 its internally contributed

‘forces’.
From this point onwards the standard assembly procedures are valid and the subdomain

can be treated as a standard element which can be assembled with others by ensuring that
∑
j

qj = 0 (12.42)

where the sum includes all subdomains (or elements). We thus have only to consider a
single subdomain �e in what follows.

12.4.2 Linking displacement frame on equilibrating form
subdomains

In this form we shall assume a priori the stress field expansion is given by

σT = σ + σ0 (12.43)

and that the equilibrium equations are identically satisfied as

STσ ≡ 0; STσ0 ≡ b in � and Gσ = 0; Gσ0 = t̄ on �te

The equation ∫
�e
δ(Su)Tσ d�−

∫
�e
δuTb d�−

∫
�te

δuT t̄ d� = 0 (12.44)

is identically satisfied and we write a weak form of the constitutive equation and interface
condition as (see Chapter 10, Sec. 10.6)∫

�e
δσT(D−1σT − Su) d�+

∫
�Ie

δtT(u − v) d�

≡
∫
�e
δσTD−1(σ + σ0) d�−

∫
�Ie

(Gδσ)Tv d� = 0

On discretization, noting that the field u does not enter the problem

σ = Nσ σ̃ and v = Nv ṽ

we have, on including Eq. (12.40),[
Ae Qe

QeT 0

]{
σ̃
ṽ

}
=
{

f e1
qe − f e2

}
(12.45)

where

Ae =
∫
�e

NσD−1Nσ d� Qe = −
∫
�Ie

(GNσ )
TNv d�

f e1 = −
∫
�e

NσD−1σ0 d� and f e2 =
∫
�Ie

NvGσ0 d�



Linking of boundary (or Trefftz)-type solution by the ‘frame’ of specified displacements 445

Here elimination of σ̃ is simple and we can write directly

Keṽ = qe − f e2 + QeT(Ae)−1f e1 and Ke = QeT(Ae)−1Qe (12.46)

In Sec.10.6 we have discussed the possible equilibration fields and have indicated the dif-
ficulties in choosing such fields for a finite element, subdivided, field. In the present case
the situation is quite simple as the parameters describing the equilibrating stresses inside
the element can be chosen arbitrarily in a polynomial expression.

Example 12.4: Equilibrium field. If we use a simple polynomial expression in two
dimensions:

σx = α0 + α1x + α2y

σy = β0 + β1x + β2y

τxy = γ0 + γ1x + γ2y

we note that to satisfy the equilibrium we require

STσ =

⎡
⎢⎢⎣
∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

⎤
⎥⎥⎦σ =

{
α1 + γ2

β2 + γ1

}
= 0

and this simply means

γ2 = −α1

γ1 = − β2

Thus a linear expansion in terms of 9 − 2 = 7 independent parameters is easily achieved.
Similar expansions can of course be used with higher order terms.

It is interesting to observe that:

1. nσ ≥ nv − 3 is needed to preserve stability.
2. By the principle of limitation, the accuracy of this approximation cannot be better than

that achieved by a simple displacement formulation with compatible expansion of v
throughout the element, providing similar polynomial expressions arise in stress com-
ponent variations.

In practice two advantages of such elements, known as hybrid-stress elements, are ob-
tained. In the first place it is not necessary to construct compatible displacement fields
throughout the element (a point useful in their application to, say, a plate bending prob-
lem). In the second for distorted (isoparametric) elements it is easy to use stress fields
varying with the global coordinates.

The first use of such elements was made by Pian5 and many successful variants are in
use today.6, 29–41

12.5 Linking of boundary (or Trefftz)-type solution by the
‘frame’ of specified displacements

Boundary methods in which the chosen fields for both displacement and stress fields satisfy
a priori the homogeneous equations of equilibrium and constitutive equations (and indeed
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on occasion some prescribed boundary traction or displacement conditions) have been
considered by Trefftz.42 Here such methods are called Trefftz-type solutions.

Thus in Eqs (12.45) and (12.44) the subdomain (element e) �e integral terms disappear
and, as the internal δt and δu variations are linked, we combine all into a single statement
(in the absence of body force terms) as

−
∫
�Ie

δtT(u − v) d� −
∫
�te

δuT(t − t̄) d� = 0 (12.47)

This coupled with the boundary statement (12.40) provides the means of devising stiffness
matrix statements of such subdomains.

For instance, if we express the approximate fields as

u = Nũ (12.48)

implying
σ = D(SN)ũ and t = Gσ = GD(SN)ũ

we can write [−He Qe

QeT 0

]{
ũ
ṽ

}
=
{

f e1
q

}
(12.49)

where

He =
∫
�Ie

[GD(SN)]TN d� +
∫
�te

NTGD(SN) d�

Qe =
∫
�Ie

[GD(SN)]TNvd�

f e1 = −
∫
�te

NT t̄ d�

(12.50)

In Eqs (12.49) and (12.50) we have omitted the domain integral of the particular solution
σ0 corresponding to the body forces b but have allowed a portion of the boundary �te to be
subject to prescribed tractions. Full expressions including the particular solution can easily
be derived.

Equation (12.49) is immediately available for solution of a single boundary problem in
which v and t̄ are described on portions of the boundary. More importantly, however, it
results in a very simple stiffness matrix for a full element enclosed by the frame. We now
have

Keṽ = q + f e (12.51)

in which

Ke = QeT(He)−1Qe

f e = QeT(He)−1f e1
(12.52)

This form is very similar to that of Eq. (12.46) except that now only integrals on the
boundaries of the subdomain element need to be evaluated.

Much has been written about so-called ‘boundary elements’ and their merits and dis-
advantages.9–11, 13, 43–51 Very frequently singular Green’s functions are used to satisfy the
governing field equations in the domain.46–50 The singular function distributions used do
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not lend themselves readily to the derivation of symmetric coupling forms of the type given
in Eq. (12.49). Zienkiewicz et al.51–54 show that it is possible to obtain symmetry at a cost
of two successive integrations. Further it should be noted that the singular distributions
always involve difficult integration over a point of singularity and special procedures need
to be used for numerical implementation. For this reason the use of generally non-singular
Trefftz functions is preferable and it is possible to derive complete sets of functions satisfy-
ing the governing equations without introducing singularities,51–54 and simple integration
then suffices.

While boundary solutions are confined to linear homogeneous domains these give very
accurate solutions for a limited range of parameters, and their combination with ‘standard’
finite elements has been occasionally described. Several coupling procedures have been
developed in the past,51–54 but the form given here coincides with the work of Zielinski
and Zienkiewicz,55 Jirousek7, 56–58 and Piltner.14 Jirousek et al. have developed very gen-
eral two-dimensional elasticity and plate bending elements which can be enclosed by a
many-sided polygonal domain (element) that can be directly coupled to standard elements
providing that same-displacement interpolation along the edges is involved, as shown in
Fig. 12.13. Here both interior elements with a frame enclosing an element volume and
exterior elements satisfying tractions at free surface and infinity are illustrated.

Rather than combining in a finite element mesh the standard and the Trefftz-type ele-
ments (‘T-elements’13) it is often preferable to use the T-elements alone. This results in the
whole domain being discretized by elements of the same nature and offering each about
the same degree of accuracy. The subprogram of such elements can include an arsenal of
homogeneous ‘shape functions’ Ne [see Eq. (12.48)] which are exact solutions to different
types of singularities as well as those which automatically satisfy traction boundary con-
ditions on internal boundaries, e.g., circles or ellipses inscribed within large elements as
shown in Fig. 12.14. Moreover, by completing the set of homogeneous shape functions by
suitable ‘load terms’ representing the non-homogeneous differential equation solution, u0,
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D
D

T

(a)

D D

D D

D D

D

D

D

T

t = 0 t = 0

(b)

Fig. 12.13 Boundary–Trefftz-type elements (T) with complex-shaped ‘frames’ allowing combination with stan-
dard, displacement elements (D). (a) An interior element. (b) An exterior element.
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Fig. 12.14 Boundary–Trefftz-type elements. Some useful general forms.58

one may account accurately for various discontinuous or concentrated loads without labo-
rious adjustment of the finite element mesh.

Clearly such elements can perform very well when compared with standard ones, as the
nature of the analytical solution has been essentially included. Figure 12.15 shows excellent
results which can be obtained using such complex elements. The number of degrees of
freedom is here much smaller than with a standard displacement solution but, of course,
the bandwidth is much larger.58

Two points come out clearly in the general formulation of Eqs (12.47)–(12.50).
First, the displacement field, u given by parameters ũ, can only be determined by ex-

cluding any rigid body modes. These can only give strains SN identically equal to zero
and hence make no contribution to the H matrix.

Second, stability conditions require that (in two dimensions)

nu ≥ nv − 3

and thus the minimum nu can be readily found (viz. Chapter 10). Once again there is little
point in increasing the number of internal parameters substantially above the minimum
number as additional accuracy may not be gained.

We have said earlier that the ‘translation’ of the formulation discussed to problems gov-
erned by the quasi-harmonic equations is almost evident. Now identical relations will hold
if we replace

u → φ

σ → q

t → qn

S → ∇

(12.53)

For the Poisson equation
∇2φ = Q (12.54)

a complete series of analytical solutions in two dimensions can be written as

Re (zn) = 1, x, x2 − y2, x3 − 3xy3, . . .

Im (zn) = y, 2xy, . . .
for z = x + iy (12.55)
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Fig. 12.15 Application of Trefftz-type elements to a problem of a plane stress tension bar with a circular hole.
(a) Trefftz element solution. (b) Standard displacement element solution. (Numbers in parentheses indicate
standard solution with 230 elements, 1600 DOF.)
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Fig. 12.16 Boundary–Trefftz-type ‘elements’ linking two domains of different materials in an elliptic bar
subject to torsion (Poisson equations).55 (a) Stress function given by internal variables showing almost complete
continuity. (b) x component of shear stress (gradient of stress function showing abrupt discontinuity of material
junction).

With the above we get

Ne = [1, x, y, x2 − y2, 2xy, x3 − 3xy2, 3x2y, . . .
]

(12.56)

A simple solution involving two subdomains with constant but different values ofQ and
a linking on the boundary is shown in Fig. 12.16, indicating the accuracy of the linking
procedures.
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Fig. 12.17 ‘Superelements’ built from assembly of standard displacement elements with global functions
eliminating singularities confined to the assembly.

12.6 Subdomains with ‘standard’ elements and global
functions

The procedure just described can be conveniently used with approximations made internally
with standard (displacement) elements and global functions helping to deal with singulari-
ties or other internal problems. Now simply an additional term will arise inside nodes placed
internally in the subdomain but the effect of global functions can be contained inside the
subdomain. The formulation is somewhat simpler as complicated Trefftz-type functions
need not be used.

We leave details to the reader and in Fig. 12.17 show some possible, useful, subdomain
assemblies. We shall return to this again in Chapter 15.

12.7 Concluding remarks

The possibilities of elements or ‘superelements’ constructed by the mixed-incomplete field
methods of this chapter are numerous. Many have found practical use in existing computer
codes as ‘hybrid elements’; others are only now being made widely available. The use of
a frame of specified displacements is only one of the possible methods for linking Trefftz-
type solutions. As an alternative, a frame of specified boundary tractions t has also been
successfully investigated.10, 45 In addition, the so-called ‘frameless formulation’9, 11 has
been found to be another efficient solution (for a review see reference 13) in the Trefftz-type
element approach. All of the above-mentioned alternative approaches may be implemented
into standard finite element computer codes. Much further research will elucidate the
advantages of some of the forms discovered and we expect the use of such developments
to continue to increase in the future.

12.8 Problems

12.1 Compute explicit relations for linear one-dimensional dual shape functions using
Eq. (12.13). Verify the results shown in Fig. 12.5.

12.2 Compute explicit relations for quadratic one-dimentinal dual shape functions using
Eq. (12.13). Assume the element side is straight and the interior node is at the centre
of the edge.
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12.3 Compute an explicit relation at node a for 4-node dual shape functions. Use
Eq. (12.13) and assume the surface mesh for elements is as shown in Fig. 12.18.
Sketch the shape of the global dual function at node a (e.g., as shown for a two-
dimensional edge in Fig. 12.4).

12.4 The mesh segment shown in Fig. 12.19 occurs in a problem in which the two sides
are to be joined using a standard mortar method. If node a is located at 0.4h from
node b perform the integrals necessary to construct the contributions to the Qi arrays
appearing in Eq. (12.12).

12.5 The mesh segment shown in Fig. 12.19 occurs in a problem in which the two sides
are to be joined using a dual mortar method. If node a is located at 0.4h from
node b perform the integrals necessary to construct the contributions to the Qi arrays
appearing in Eq. (12.12). (Note: It is necessary to replace one N by N̂ for the dual
approach.)

12.6 Write a MATLAB program to solve the one-dimensional problem of Example 3.5
in Chapter 3. Modify the program to enforce the boundary conditions using the
Nitsche method described in Sec. 12.3.1. Verify your program by solving the example
illustrated in Fig. 12.8(a).

12.7 Perform the derivations given in Sec. 12.5 which include the effects of a non-zero
body force b to define σ0.

12.8 For the quasi-harmonic equation given by ∇2φ = Q construct the linking of Trefftz-
type solutions by a ‘frame’ of specified values for φ. (Hint: Follow the suggestions
given in Eq. (12.53).)

h

h

h h

a

Fig. 12.18 Surface description for Problem 12.3.

h

h h

a

b

Fig. 12.19 Tied segment for Problems 12.4 and 12.5.
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13

Errors, recovery processes and
error estimates

13.1 Definition of errors

We have stressed from the beginning of this book the approximate nature of the finite
element method and on many occasions we have compared it with known exact solutions.
Also, in reference to the ‘accuracy’ of the procedures, we suggested and discussed the
manner by which this accuracy could be improved. Indeed one of the objectives of this
chapter is concerned with the question of accuracy and a possible improvement on it by
a posteriori treatments of the finite element data. We refer to such processes as recovery.
We shall also consider the discretization error of the finite element approximation and a
posteriori estimates of such error. In particular, we describe two distinct types of a posteriori
error estimators, recovery-based error estimators and residual-based error estimators. The
importance of highly accurate recovery methods in the computation of the recovery-based
error estimators is discussed. We also demonstrate how various recovery methods can be
used in the construction of residual-based error estimators.

Before proceeding further it is necessary to define what we mean by error. This we
consider to be the difference between the exact solution and the approximate one. This can
apply to the basic function, such as displacement which we have called u, and is given as

e = u − û (13.1)

where, as before, û denotes a finite element solution and u the exact solution. In a similar
way, however, we could focus on the error in the strains (i.e., gradients in the solution),
such as ε or stresses σ and describe the error in these quantities as

eε = ε− ε̂
eσ = σ − σ̂ (13.2)

The specification of local error in the manner given in Eqs (13.1) and (13.2) is generally
not convenient and occasionally misleading. For instance, under a point load both errors
in displacements and stresses will be locally infinite but the overall solution may well be
acceptable. Similar situations will exist near re-entrant corners where, as is well known,
stress singularities exist in elastic analysis and gradient singularities develop in field prob-
lems. For this reason various ‘norms’ representing some integral scalar quantity are often
introduced to measure the error.
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13.1.1 Norms of errors

If, for instance, we are concerned with a general linear equation of the form of Eq. (3.6)
(cf. Chapter 3), i.e.,

Lu + b = 0 (13.3)

we can define an energy norm written for the error as

‖e‖ =
∣∣∣∣
∫
�

eTLe d�

∣∣∣∣
1
2

≡
∣∣∣∣
∫
�

(u − û)TL (u − û) d�

∣∣∣∣
1
2

(13.4)

where | · | denotes the absolute value of the argument.
This scalar measure corresponds in fact to the square root of the quadratic functional

such as we have discussed in Sec. 3.9 of Chapter 3 and where we sought its minimum in
the case of a self-adjoint operator L.

For elasticity problems the energy norm is defined in the same manner and yields,

‖e‖ =
[ ∫

�

(Se)TDSe d�

]1
2

(13.5)

(with symbols as used in Chapters 2 and 6).
Here e is given by Eq. (13.1), the operator S defines the strains as

ε = Su and ε̂ = Sû (13.6a)

and D is the elasticity matrix (see Chapters 2 or 6), giving the stress as

σ = Dε and σ̂ = Dε̂ (13.6b)

in which for simplicity we ignore initial stresses and strains.
Using the above relations the energy norm of Eq. (13.5) can be written alternatively as

‖e‖ =
[ ∫

�

(ε− ε̂)T D (ε− ε̂) d�

] 1
2

=
[ ∫

�

(ε− ε̂)T (σ − σ̂) d�

] 1
2

=
[ ∫

�

(σ − σ̂)T D−1 (σ − σ̂) d�

]1
2

(13.7)

and its relation to strain energy is evident.
Other scalar norms can easily be devised. For instance, the L2 norm of displacement

error can be written as

‖e‖L2 =
[ ∫

�

(u − û)T (u − û) d�

]1
2

(13.8a)

and that for stresses error as

‖eσ‖L2 =
[ ∫

�

(σ − σ̂)T (σ − σ̂) d�

]1
2

(13.8b)
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Such norms allow us to focus on a particular quantity of interest and indeed it is possible
to evaluate ‘root mean square’ (RMS) values of its error. For instance, the RMS error in
displacement, �u, becomes for the domain �

|�u| =
(‖e‖2

L2

�

)1
2

(13.9)

Similarly, the RMS error in stress, �σ, becomes for the domain �

|�σ| =
(‖eσ‖2

L2

�

)1
2

(13.10)

Any of the above norms can be evaluated over the whole domain, any subdomain, or even
an individual element.

We note that

‖e‖ =
( m∑
K=1

‖e‖2
K

)1
2

(13.11)

where K refers to individual elements �K such that their sum (union) is �.
We note further that the energy norm given in terms of the stresses, the L2 norm of

stress and the RMS stress error have a very similar structure and that these are similarly
approximated.

Effect of a singularity
At this stage it is of interest to invoke the discussion of Chapter 2 (Sec. 2.6) concerning
the rates of convergence. We noted there that with trial functions in the displacement
formulation of degree p, the errors in the stresses were of the order O(hp). This order of
error should therefore apply to the energy norm error ‖e‖. While the arguments are correct
for well-behaved problems with no singularity, it is of interest to see how the above rule is
violated when singularities exist.

To describe the behaviour of stress analysis problems we define the variation of the
relative energy norm error (percentage) as

η = ‖e‖
‖u‖ × 100% (13.12)

where

‖u‖ =
[ ∫

�

εTDε d�

] 1
2

(13.13)

is the energy norm of the solution. In Figs 13.1 and 13.2 we consider two similar stress
analysis problems. In the first a strong singularity is present, however, in the second the
singularity is removed by introducing a rounded corner. In both figures we show the relative
energy norm error for anh refinement constructed by uniform subdivision of the initial mesh
and for ap refinement in which polynomial order is increased throughout the original mesh.

We note two interesting facts. First, the h convergence rate for various polynomial orders
of the shape functions is nearly the same in the example with singularity (Fig. 13.1) and
is well below the theoretically predicted optimal order O(hp), [or O(NDF)−p/2 as the
NDF (number of degrees of freedom) is approximately inversely proportional to h2 for a
two-dimensional problem].
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Fig. 13.1 Analysis of L-shaped domain with singularity.

Second, in the case shown in Fig. 13.2, where the singularity is avoided by rounding the
re-entrant corner, the h convergence rate improves for elements of higher order, although
again the theoretical (asymptotic) rate is not quite achieved.

The reason for this behaviour is clearly the singularity, and in general it can be shown
that the rate of convergence for problems with singularity is

O(NDF)−[min(λ,p)]/2 (13.14)

where λ is a number associated with the intensity of the singularity. For elasticity problems
λ ranges from 0.5 for a nearly closed crack to 0.711 for a 90◦ corner. The rate of convergence
illustrated in Fig. 13.2 approaches the theoretically optimal order for all values of p used
in the elements.

13.2 Superconvergence and optimal sampling points

In this section we shall consider the location of points at which the stresses, or displacements,
give their most accurate values in typical problems of a self-adjoint kind. We shall note that
on many occasions the displacements, or the function itself, are most accurately sampled
at the nodes defining an element and that the gradients or stresses are best sampled at some
interior points. Indeed, in one dimension at least, we find that such points often exhibit
the quality known as superconvergence (i.e., the values sampled at these points show an
error which decreases more rapidly than elsewhere). Obviously, the user of finite element
analysis should be encouraged to employ such points but at the same time note that the
errors overall may be much larger. To clarify these ideas we start with a typical problem of
second order in one dimension.
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Fig. 13.2 Analysis of L-shaped domain without singularity.

13.2.1 A one-dimensional example

Here we consider a problem of a second order equation such as we have discussed in
Chapter 3 and which may be typical of either one-dimensional heat conduction or the
displacements of an elastic bar with varying cross-section. This equation can readily be
written as

d

dx

(
k

du

dx

)
+ βu+Q = 0 (13.15)

with the boundary conditions either defining the values of the function u or of its gradients
at the ends of the domain.

Let us consider a typical problem as illustrated in Fig. 13.3. Here we show an exact
solution for u and du/dx for a span of several elements and indicate the type of solution
which will result from a finite element calculation using linear elements. We have already
noted that on occasions we shall obtain exact solutions for u at nodes (see Figs 3.5 and 3.6).
This will happen when the weighting function contains the exact solution of the homoge-
neous differential equation (Appendix H) – a situation which happens for Eq. (13.15) when
β = 0, k is constant in each element and polynomial shape functions are used. In all cases,
even when β is non-zero and linear shape functions are used, the nodal values generally
will be much more accurate than those elsewhere, Fig. 13.3(a). For the gradients shown
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Fig. 13.3 Optimal sampling points for the function (a) and its gradient (b) in one dimension (linear elements).

in Fig. 13.3(b) we observe large discrepancies of the finite element solution from the exact
solution but we note that somewhere within each element the results are exact.

It would be useful to locate such points and indeed we have already remarked in the
context of two-dimensional analysis that values obtained within the elements tend to be
more accurate for gradients (strains and stresses) than those values calculated at nodes.
Clearly, for the problem illustrated in Fig. 13.3(b) we should sample somewhere near the
centre of each element.

Pursuing this problem further in a heuristic manner we note that if higher order elements
(e.g., quadratic elements) are used the solution still remains exact or nearly exact at the
end nodes of an element but may depart from exactness at the interior nodes, as shown
in Fig. 13.4(a). The stresses, or gradients, in this case will be optimal at points which
correspond to the two Gauss quadrature points for each element as indicated in Fig. 13.4(b).
This fact was observed experimentally by Barlow.1

We shall now state in an axiomatic manner that:

(a) the displacements are best sampled at the nodes of the element, whatever the order of
element used, and

(b) the best accuracy for gradients or stresses is obtained at the Gauss points corresponding
to the order of polynomial used in the solution.
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Fig. 13.4 Optimal sampling points for the function (a) and its gradient (b) in one dimension (quadratic elements).

At such points the order of the convergence of the function or its gradients is at least
one order higher than that which would be anticipated from the appropriate polynomial
and thus such points are known as superconvergent. The reason for such superconvergence
will be shown in the next section where we introduce the reader to a theorem developed by
Herrmann.2

13.2.2 The Herrmann theorem and optimal sampling points

The concept of least squares fitting has additional justification in self-adjoint problems
in which an energy functional is minimized. In such cases, typical of a displacement
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formulation of elasticity, it can be readily shown that the minimization is equivalent to a
least squares fit of the approximate stresses to the exact ones. Thus quite generally we can
start from a theory given by the differential equation

Lu = ST(ASu) = p (13.16)

In the above, L is a self-adjoint operator defined by S and A (symmetric) and p are
prescribed matrices of position. The minimization of an energy functional � defined as

� = 1
2

∫
�

(Su)TASu d�−
∫
�

uTp d� (13.17)

gives at an absolute minimum the exact solution u = ū, is equivalent to minimization of
another functional �∗ defined as

�∗ = 1
2

∫
�

[S (u − ū)]TAS (u − ū) d� (13.18)

The above quadratic functional [Eq. (13.17)] arises in all linear self-adjoint problems.
For elasticity problems this theorem is given by Herrmann2 and shows that the approxi-

mate solution for Su approaches the exact one Sū as a weighted least squares approxima-
tion.

The proof of the Herrmann theorem is as follows. The variation of � defined in
Eq. (13.17) gives, at u = ū (the exact solution),

δ� = 1
2

∫
�

(Sδu)T ASū d�+ 1
2

∫
�

(Sū)T ASδu d�−
∫
�

δuTp d� = 0

or as A is symmetric

δ� =
∫
�

(Sδu)T ASū d�−
∫
�

δuTp d� = 0

in which δu is any arbitrary variation. Thus we can select

δu = u

and ∫
�

(Su)TASū d�−
∫
�

uTp d� = 0

Subtracting the above from Eq. (13.17) and noting the symmetry of the A matrix, we can
write

� = 1
2

∫
�

[S (u − ū)]T AS (u − ū) d�− 1
2

∫
�

(Sū)T ASū d� (13.19)

where the last term is not subject to variation. Thus

�∗ = �+ constant (13.20)

and its stationarity is equivalent to the stationarity of �.
It follows directly from the Herrmann theorem that, for one dimension and by a well-

known property of the Gauss–Legendre quadrature points, if the approximate gradients
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Fig. 13.5 The integration property of Gauss points: p = 1, p = 2, and p = 3 which guarantees supercon-
vergence.

are defined by a polynomial of degree p − 1, where p is the degree of the polynomial
used for the unknown function u, then stresses taken at these quadrature points must be
superconvergent. The single point at the centre of an element integrates precisely all linear
functions passing through that point and, hence, if the stresses are exact to the linear form
they will be exact at that point of integration. For any higher order polynomial of order
p, the Gauss–Legendre points numbering p will also provide points of superconvergent
sampling. We see this from Fig. 13.5 directly. Here we indicate one, two, and three point
Gauss–Legendre quadrature showing why exact results are recovered there for gradients
and stresses.

For points based on rectangles and products of polynomial functions it is clear that the
exact integration points will exist at the product points as shown in Fig. 13.6 for various
rectangular elements assuming that the weighting matrix A is diagonal. In the same figure
we show some triangles and what appear to be ‘good’but are not necessarily superconvergent
sampling points. Though we find that superconvergent points do not exist in triangles, the
points shown in Fig. 13.6 are optimal. In Fig. 13.6 we contrast these points with the
minimum number of quadrature points necessary for obtaining an accurate (though not
always stable) stiffness representation and find these to be almost coincident at all times.
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Fig. 13.6 Optimal superconvergent sampling and minimum integration points for some C0 elements.

In Fig. 13.7 representing an analysis of a cantilever beam by four rectangular quadratic
serendipity elements we see how well the stresses sampled at superconvergent points behave
compared to the overall stress pattern computed in each element.

The extension of the idea of superconvergent points from one-dimensional elements to
two-dimensional rectangles is fairly obvious. However, the full order of superconvergence
is lost when isoparametric distortion of elements occurs. We have shown, however, that
results at the pth order Gauss–Legendre points still remain excellent and we suggest that
superconvergent properties of the integration points continue to be used for sampling.

In all of the above discussion we have assumed that the weighting matrix A is diagonal. If
a diagonal structure does not exist the existence of superconvergent points is questionable.
However, excellent results are still available through the sampling points defined as above.

Finally, we refer readers to references 3–8 for surveys on the superconvergence phe-
nomenon and its detailed analyses.

13.3 Recovery of gradients and stresses

In the previous section we have shown that sampling of the gradients and stresses at certain
points within an element is optimal and higher order accuracy can be achieved. However,
we would also like to have similarly accurate quantities elsewhere within each element for
general analysis purposes, and in particular we need such highly accurate displacements,
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gradients and stresses when energy norm or other norms representing the particular quantity
of interest have to be evaluated in error estimates. We have already shown how with some
elements very large errors exist beyond the superconvergent point and attempts have been
made from the earliest days to obtain a complete picture of stresses which is more accurate
overall. Here attempts are generally made to recover the nodal values of stresses and
gradients from those sampled internally and then to assume that throughout the element the
recovered stressesσ∗ are obtained by interpolation in the same manner as the displacements

σ∗ = Nuσ̃
∗ (13.21)

We have already suggested a process used almost from the beginning of finite element
calculations for triangular elements, where elements are sampled at the centroid (assuming
linear shape functions have been used) and then the stresses are averaged at nodes. We
have referred to such recovery in Chapter 6. However, this is not the best for triangles
and for higher order elements such averaging is inadequate. Here other procedures were
necessary, for instance Hinton and Campbell9 suggested a method in which stresses at all
nodes were calculated by extrapolating the Gauss point values. A method of a similar
kind was suggested by Brauchli and Oden10 who used the stresses in the manner given
by Eq. (13.21) and assumed that these stresses should represent in a least squares sense
the actual finite element stresses. This is therefore an L2 projection. Although this has a
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Fig. 13.8 Interior superconvergent patches for quadrilateral elements (linear, quadratic, and cubic) and triangles
(linear and quadratic).

similarity with the ideas contained in the Herrmann theorem it reverses the order of least
squares application and has not proved to be always stable and accurate, especially for even
order elements. In the following presentation we will show that highly improved results can
be obtained by direct polynomial ‘smoothing’ of the optimal values. Here the first method
of importance is called superconvergent patch recovery.11–13

13.4 Superconvergent patch recovery – SPR

13.4.1 Recovery for gradients and stresses

We have noted above that the stresses sampled at certain points in an element possess a
superconvergent property (i.e., converge at a rate comparable to that of displacement) and
have errors of orderO(hp+1). A fairly obvious procedure for utilizing such sampled values
seems to the authors to be that of involving a smoothing of such values by a polynomial of
order p within a patch of elements for which the number of sampling points can be taken as
greater than the number of parameters in the polynomial. In Fig. 13.8 we show several such
patches each assembled around an interior vertex (corner) node. The first four represent
rectangular elements where the superconvergent points are well defined. The last two give
patches of triangles where the ‘optimal’sampling points used are not quite superconvergent.

If we accept the superconvergence of σ̂ at certain points k in each element then it is
a simple matter (which also turns out computationally much less expensive than the L2

projection) to compute σ∗ which is superconvergent at all points within the element. The
procedure is illustrated for two dimensions in Fig. 13.8, where we shall consider interior
patches (assembling all elements at interior nodes) as shown.

At each superconvergent point the values of σ̂ are accurate to order p+1 (not p as is true
elsewhere). However, we can easily obtain an approximation σ̄∗ given by a polynomial of
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degree p, with identical order to those occurring in the shape function for displacement,
which has superconvergent accuracy everywhere when this polynomial is made to fit the
superconvergent points in a least squares manner.

Thus we proceed for each component σ̂i of σ̂ as follows: writing the recovered solution as

σ̄ ∗
i = p(x, y)ai (13.22a)

in which

p(x, y) = [1, x̄, ȳ, · · · , ȳp
]

ai = [a1, a2, · · · , am
]T (13.22b)

with x̄ = x − xc, ȳ = y − yc where xc, yc are the coordinates of the interior vertex node
describing the patch.

For each element patch we minimize a least squares functional with n sampling points,

� = 1

2

n∑
k=1

[
σ̂i(xk, yk)− pkai

]2
(13.23)

where
pk = p(xk, yk)

[(xk, yk) correspond to the coordinates of the sampling superconvergent point k)] obtaining
immediately the coefficient ai as

ai = A−1bi (13.24)

where

A =
n∑
k=1

pT
kpk and bi =

n∑
k=1

pT
k σ̂i(xk, yk) (13.25)

The availability of σ̄∗ allows superconvergent values of σ̃∗ to be determined at all nodes.
For example, each component of the recovered solution at node a in the element patch is
obtained by

(σ̃ ∗
i )a = σ̄ ∗

i (xa, ya) = p(xa, ya)ai (13.26)

It should be noted that on external boundaries or indeed on interfaces where stresses are
discontinuous the nodal values should be calculated from interior patches and evaluated in
the manner shown in Fig. 13.9. As some nodes belong to more than one patch, average
values of σ̃∗ are best obtained. The superconvergence of σ∗ throughout each element is
established by Eq. (13.21).

In Fig. 13.10 we show in a one-dimensional example how the superconvergent patch
recovery reproduces exactly the stress (gradient) solutions of order p + 1 for linear or
quadratic elements. Following the arguments of Chapter 9 on the patch test it is evident
that superconvergent recovery is now achieved at all points. Indeed, the same figure shows
why averaging (or L2 projection) is inferior (particularly on boundaries).

Figure 13.11 shows experimentally determined convergence rates for a one-dimensional
problem (stress distribution in a bar of length L = 1; 0 ≤ x ≤ 1 and prescribed body
forces). A uniform subdivision is used here to form the elements, and the convergence
rates for the stress error at x = 0.5 are shown using the direct stress approximation σ̂ , the
L2 recovery σL and σ ∗ obtained by the SPR procedure using elements from order p = 1
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Fig. 13.9 Recovery of boundary or interface gradients.

to p = 6. It is immediately evident that σ ∗ is superconvergent with a rate of convergence
being at least one order higher than that of σ̂ . However, as anticipated, the L2 recovery
gives much poorer answers, showing superconvergence only for odd values of p and almost
no improvement for even values of p, while σ ∗ shows a two-order increase of convergence
rate for even order elements (tests on higher order polynomials are reported in reference 14).
This ultraconvergence has been verified mathematically.15–17 Although it is not observed
when elements of varying size are used, the important tests shown in Figs 13.12 and 13.13
indicate how well the recovery process works for problems in two dimensions.

In the first of these, Fig. 13.12, a field problem is solved in two dimensions using a very
irregular mesh for which the existence of superconvergent points is only inferred heuristi-
cally. The very small error in σ ∗

x is compared with the error of σ̂x and the improvement is
obvious. Here σx = ∂u/∂x where u is the field variable.

In the second, i.e., Fig. 13.13, a problem of stress analysis, for which an exact solution is
known, is solved using three different recovery methods. Once again the recovered solution
σ ∗ (SPR) shows much improved values compared with σL. It is clear that the SPR process
should be included in all codes if simply to present improved stress values, to which we
have already alluded in Chapters 6 and 7.

The SPR procedure which we have just outlined has proved to be a very powerful tool
leading to superconvergent results on regular meshes and much improved results (nearly
superconvergent) on irregular meshes. It has been shown numerically that it produces super-
convergent recovery even for triangular elements which do not have superconvergent points
within the element. Recent mathematical proofs confirm these capabilities of SPR.16–21 It is
also found, for linear elements on irregular meshes, that SPR produces superconvergence of
order O(h1+α) with α greater than zero.22 The SPR procedure, introduced by Zienkiewicz
and Zhu in 1992,11–13 is recommended as the best recovery procedure which is simple to
use. However, the procedure has been modified by various investigators.23–27 Some of the
modifications have been shown to produce improved results in certain instances but with
additional computational costs. One such modification appends satisfaction of discrete
equilibrium equations and/or boundary conditions to the functional where the least squares
fit is performed. While the satisfaction of known boundary tractions can on occasion
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be useful most of the additional constraints introduced have affected the superconvergent
properties adversely and in general the modified versions of SPR such as those by Wiberg
et al.23, 24 and by Blacker and Belytschko25 have not proved to be effective.

Example 13.1: SPR stress projection for rectangular element patch. As an example
we consider the SPR projection for a stress component σi on the patch of rectangular
elements shown in Fig. 13.14. The elements are 4-node rectangles in which shape functions
are given by bilinear interpolations. Thus, the optimal sampling points are given by the
points at the centre of each element.

The recovered solution is given by a linear polynomial expressed as

σ ∗
i = [1 , (x − x1) , (y − y1)

]
⎧⎨
⎩
ā1

ā2

ā3

⎫⎬
⎭
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Fig. 13.12 Poisson equation in two dimensions solved using arbitrary-shaped quadratic quadrilaterals.

For this patch of elements, (13.23) is given by

� = 1

2

4∑
k=1

[
σ̂i(xk, yk)− pka

]2
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where

pk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
1 −a/2 −b/2] for k = 1[
1 a/2 −b/2] for k = 2[
1 a/2 b/2

]
for k = 3[

1 −a/2 b/2
]

for k = 4
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Evaluating the minimum for � and performing the sum gives the equations

Aa = b

where

A =
⎡
⎣4 0 0

0 a2 0
0 0 b2

⎤
⎦

and

b =
⎛
⎝
⎡
⎣ 1

−a/2
−b/2

⎤
⎦ σ̂ i1 +

⎡
⎣ 1

a/2
−b/2

⎤
⎦ σ̂ i2 +

⎡
⎣ 1

a/2
b/2

⎤
⎦ σ̂ i3 +

⎡
⎣ 1

−a/2
b/2

⎤
⎦ σ̂ i4

⎞
⎠

The solution for the parameters is given by

a1 = 1

4
[ σ̂i1 + σ̂i2 + σ̂i3 + σ̂i4]

a2 = 1

2a
[−σ̂i1 + σ̂i2 + σ̂i3 − σ̂i4]

a3 = 1

2b
[−σ̂i1 − σ̂i2 + σ̂i3 + σ̂i4]

Inserting the parameters into the equation for the recovered stress gives

σ ∗
i =

[
1

4
,

(x − x1)

2a
,

(y − y1)

2b

] ⎧⎨
⎩

σ̂i1 + σ̂i2 + σ̂i3 + σ̂i4
−σ̂i1 + σ̂i2 + σ̂i3 − σ̂i4
−σ̂i1 − σ̂i2 + σ̂i3 + σ̂i4

⎫⎬
⎭
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We note that the above yields SPR values at an internal node of a regular mesh which are
the same as that obtained by averaging. Unfortunately, this is not the case when the mesh is
irregular or boundary nodes are considered, as the reader can easily establish, where SPR
will retain high accuracy but averaging will not.

13.4.2 SPR for displacements and stresses

The superconvergent patch recovery can be extended to produce superconvergent displace-
ments. The procedure for the displacements is quite simple if we assume the superconver-
gent points to be at nodes of the patch. However, as we have already observed it is always
necessary to have more data than the number of coefficients in the particular polynomial
to be able to execute a least squares minimization. Here of course we occasionally need a
patch which extends further than before, particularly since the displacements will be given
by a polynomial one order higher than that used for the shape functions. In Fig. 13.8,
however, we show for most assemblies that an identical patch to that used for stresses will
suffice. Larger element patches have also been suggested in reference 28 but it does not
seem anything is gained.

The recovered solution u∗ has on occasion been used in dynamic problems (e.g.,
Wiberg28, 29), since in this class of problems the displacements themselves are often impor-
tant. We also find such recovery useful in problems of fluid dynamics.

When both recovered displacements and stresses are desired, it is advantageous to com-
pute the recovered stresses directly using the derivatives of the recovered displacements.
The advantage of computing recovered stresses directly from displacements means that
we have now obtained fully superconvergent results for all element types. Indeed, a re-
cent study by Zhang and Naga,30 for field problems, has found that SPR using nodal field
variable sampling produces better recovered gradients in certain instances. For example,
although both SPR using gradient sampling and SPR using field variable sampling achieve
ultraconvergence in the recovered gradient at vertex nodes of quadratic triangles, ultracon-
vergence of the recovered gradient at the mid-edge nodes can only be obtained by SPR
using field variable sampling. A similar procedure to that studied in reference 30 has been
used by Wiberg and Hager31 in eigenfrequency computations. Thus, field variable recov-
ery should probably always be used for triangular and tetrahedral elements, as well as for
other element types when both superconvergent displacements and stresses or strains are
required.

The SPR recovery technique described in this section takes advantage of the supercon-
vergence property of the finite element solutions and/or the availability of optimal sampling
points. A recovery method which does not need such information has been devised and
will be discussed in the next section.

13.5 Recovery by equilibration of patches – REP

Although SPR has proved to work well generally and much research has been devoted to its
mathematical analyses, the reason behind its capability of producing an accurate recovered
solution even when superconvergent points do not in fact exist remains an open question.
We have therefore sought to determine viable recovery alternatives. One of these, known
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by the acronym REP (recovery by equilibrium of patches), will be described next. This
procedure was first presented in reference 32 and later improved in reference 33.

To some extent the motivation is similar to that of Ladevèze et al.34, 35 who sought to
establish (for somewhat different reasons) a fully equilibrating stress field which can replace
that of the finite element approximation. However, we believe that the process presented
here and in reference 33 is simpler although equilibrium is satisfied in an approximate
manner.

The starting point for REP is the governing equilibrium equation

STσ + b = 0 (13.27)

In a finite element approximation this becomes∫
�p

BTσ̂ d�−
∫
�p

NTb d�−
∫
�p

NTt d� = 0 (13.28)

where σ̂ are the stresses from the finite element solution. In the above�p is the domain of
a patch and the last term comes from the tractions on the boundary of the patch domain �p.
These can, of course, represent the whole problem, a patch of a few elements or a single
element.

As is well known the stresses σ̂ which result from the finite element analysis will in
general be discontinuous and we shall seek to replace them in every element patch by a
recovered system which is smooth and continuous.

To achieve the recovery we proceed in an analogous way to that used in the SPR procedure,
first approximating the stress in each patch by a polynomial of appropriate order σ̄∗, second
using this approximation to obtain nodal values of σ̃∗ and finally interpolating these values
by standard shape functions.

The stress σ is taken as a vector of appropriate components, which for convenience we
write as:

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1

σ2
...

σn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13.29)

The above notation is general with, for instance, σ1 = σx , σ2 = σy and σ3 = τxy describing
a two-dimensional plane elastic analysis.

We shall write each component of the above as a polynomial expansion of the form:

σ̄ ∗
i = [1, x̄, ȳ, · · ·] ai = p(x, y)ai (13.30)

where p is a vector of polynomials, ai is a set of unknown coefficients for the ith component
of stress and x̄, ȳ are as described for (13.22b).

For equilibrium we shall always attempt to ensure that the smoothed stress σ̄∗ satisfies in
a least squares sense the same patch equilibrium conditions as the finite element solution.
Accordingly, ∫

�p

BTσ̂ d� ≈
∫
�p

BTσ̄∗ d� (13.31)

where

σ̄∗ = Pa =
⎡
⎣p 0 0

0 p 0
0 0 p

⎤
⎦
⎧⎨
⎩

a1

a2

a3

⎫⎬
⎭ (13.32)
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written here again for the case of three stress components. Obvious modifications are made
for more or fewer components.

It has been found in practice that the constraints provided by Eq. (13.31) are not sufficient
to always produce non-singular least squares minimization. Accordingly, the equilibrium
constraints are split into an alternative form in which each component of stress is subjected
to equilibrium requirements. This may be achieved by expressing the stress as

σ̄∗ =
∑
i

1i σ̄ ∗
i =

∑
i

σ̄∗
i

σ̂ =
∑
i

1i σ̂i =
∑
i

σ̂i
(13.33)

in which
11 = [1, 0, 0

]T ; 12 = [0, 1, 0
]T

etc. (13.34)

The equations are now obtained by imposing the set of constraints
∫
�p

BTσ̂i d� ≈
∫
�p

BTσ̄∗
i d� =

∫
�p

BT1ip d� ai (13.35)

The imposition of the approximate equation (13.35) allows each set of coefficients ai
to be solved independently reducing considerably the solution cost and here repeating a
procedure used with success in SPR.

A least squares minimization of Eq. (13.35) is expressed as

� = 1

2

(
Hiai − fpi

)T (
Hiai − fpi

)
(13.36)

where

Hi =
∫
�p

BT1ip d� and fpi =
∫
�p

BTσ̂i d� (13.37)

The minimization condition results in

ai = [HT
i Hi

]−1
HT
i fpi (13.38)

Nodal values σ̃∗ are obtained from Eq. (13.30) and the final recovered solution is given
by Eq. (13.21).

The REP procedure follows precisely the details of SPR near boundaries and gives overall
an approximation which does not require knowledge of any superconvergent points. The
accuracy of both processes is comparable.

13.6 Error estimates by recovery

One of the most important applications of the recovery methods is its use in the computation
of a posteriori error estimators. With the recovered solutions available, we can now evaluate
errors simply by replacing the exact values of quantities such as u, σ, etc., which are in
general unknown, in Eqs (13.1) and (13.2), by the recovered values which are more accurate
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than the direct finite element solution. We write the error estimators in various norms such
as

‖e‖ ≈ ‖ê‖ = ‖u∗ − û‖
‖e‖L2 ≈ ‖ê‖L2 = ‖u∗ − û‖L2

‖eσ‖L2 ≈ ‖êσ‖L2 = ‖σ∗ − σ̂‖L2

(13.39)

For example, an error estimator of the energy norm for elasticity problems has the form

‖ê‖ =
[ ∫

�

(
σ∗ − σ̂)T

D−1
(
σ∗ − σ̂) d�

] 1
2

(13.40)

Similarly, estimates of the RMS error in displacement and stress can be obtained through
Eqs (13.9)–(13.10). Error estimators formulated by replacing the exact solution with the
recovered solution are sometimes called recovery-based error estimators. This type of
error estimator was first introduced by Zienkiewicz and Zhu.36

The accuracy or the quality of the error estimators is measured by the effectivity index θ ,
which is defined as

θ = ‖ê‖
‖e‖ (13.41)

A theorem presented by Zienkiewicz and Zhu12 shows that for all estimators based on
recovery we can establish the following bounds for the effectivity index:

1 − ‖e∗‖
‖e‖ ≤ θ ≤ 1 + ‖e∗‖

‖e‖ (13.42)

where e is the actual error and e∗ is the error of the recovered solution, e.g.,

‖e∗‖ = ‖u − u∗‖ (13.43)

The proof of the above theorem is straightforward if we write Eq. (13.40) as

‖ê‖ = ‖u∗ − û‖ = ‖ (u − û)− (u − u∗) ‖ = ‖e − e∗‖ (13.44)

Using now the triangle inequality we have

‖e‖ − ‖e∗‖ ≤ ‖ê‖ ≤ ‖e‖ + ‖e∗‖ (13.45)

from which the inequality (13.42) follows after division by ‖e‖. Obviously, the theorem is
also true for error estimators of other norms. Two important conclusions follow:

1. any recovery process which results in reduced error will give a reasonable error estimator
and, more importantly,

2. if the recovered solution converges at a higher rate than the finite element solution we
shall always have asymptotically exact estimation.

To prove the second point we consider a typical finite element solution with shape func-
tions of order p where we know that the error (in the energy norm) is

‖e‖ = O(hp) (13.46)
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If the recovered solution gives an error of a higher order, e.g.,

‖e∗‖ = O(hp+α) α > 0 (13.47)

then the bounds of the effectivity index are:

1 −O(hα) ≤ θ ≤ 1 +O(hα) (13.48)

and the error estimator is asymptotically exact, that is

θ → 1 as h → 0 (13.49)

This means that the error estimator converges to the true error. This is a very important
property of error estimators based on recovery and is not generally shared by residual-based
estimators which we discuss in the next section.

13.7 Residual-based methods

Other methods to obtain error estimators have been proposed by many investigators working
in the field.37–49 Most of these make use of the residuals of the finite element approximation,
either explicitly or implicitly. Error estimators based on these methods are often called
residual error estimators. Those using residuals explicitly are termed explicit residual
error estimators; the others are called implicit residual error estimators.

In this section we are concerned with both explicit and implicit residual error estimators.
To simplify the presentation, we use the quasi-harmonic equation in a two-dimensional
domain as the model problem. The governing equation of the problem is given by

−∇T (k∇φ)+Q = 0 in � (13.50)

with boundary conditions

φ = φ̄ on �φ
qTn = qn = q̄ on �q

In the above
q = −k∇φ = [qx, qy

]T
(13.51)

is a flux, n is the unit outward normal to the boundary � and qn is the flux normal to the
boundary (see Chapters 3 and 7).

The error of the finite element solution φ̂ is written as

e = φ − φ̂ (13.52)

The global energy norm error for domain � [viz. Eq. (13.11)] is

‖e‖ =
( m∑
K=1

‖e‖2
K

) 1
2

(13.53)

where for each element K

‖e‖2
K =

∫
�K

(∇e)Tk∇e d�

=
∫
�K

1

k
[(qx − q̂x)

2 + (qy − q̂y)
2] d�

(13.54)

In what follows, we shall first discuss the explicit residual error estimator.
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13.7.1 Explicit residual error estimator

The energy norm for an explicit residual error estimator has been derived by various au-
thors48, 49 and has a general form

‖ê‖ =
( m∑
K=1

‖ê‖2
rK

) 1
2

(13.55)

with element contributions

‖ê‖2
rK

= C1

∫
�K

r2
K d�+ C2

∫
�K

J 2 d� (13.56)

where
rK = − ∇T

(
k∇φ̂)+Q (13.57)

is the element interior residual and J is the discontinuity in the normal flux qn at each
edge of elementK , which we call a jump discontinuity. For example, at an edge shared by
element K and its neighbouring element I , we have

J = q̂nK + q̂nI (13.58)

where
q̂nK = q̂TnK and q̂nI = q̂TnI

are the finite element normal fluxes.
The constants C1 and C2 that appear in (13.56) are mesh dependent parameters and

generally are unknown. This renders the explicit residual error estimators in the form of
Eq. (13.56) less useful in practical computations.

For the particular case of constant k an explicit form for C1 and C2 has been obtained
for a 4-node quadrilateral element.38, 39 This element explicit residual error estimator has
the form

‖ê‖2
rK

= h2

24k

∫
�K

r2 d�+ h

24k

∫
�K

J 2 d� (13.59)

The derivation of Eq. (13.59) was achieved following some heuristic assumptions on the
error distribution and manipulations of the element residuals. It was found that the major
contribution to the error estimator is from the term involving the jump discontinuities and
that the term for the element interior residual is of higher order. Therefore, in practice the
following form

‖ê‖2
rK

= h

24k

∫
�K

J 2 d� (13.60)

is often used. Indeed, this form of the explicit residual error estimator has been most widely
used.

In the following, we shall show, as an example, that the explicit residual error estimator
of Eq. (13.60) can also be derived from a particular recovery-based error estimator.

Example 13.2: Deriving explicit residual error estimator. For simplicity we consider
a square element �K and its neighbouring elements as shown in Fig. 13.15. The element
contribution of the recovery-based error estimator is in the form

‖ê‖2
K =

∫
�K

1

k
[(q∗

x − q̂x)
2 + (q∗

y − q̂y)
2] d� (13.61)
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Fig. 13.15 An element patch. Element �K and its neighbors.

The main steps involved in the derivation of the residual error estimator of Eq. (13.60) are
as follows:

1. Construct a recovered solution for element�K from elements�K ,�xK+1 and�yK+1 and
forming recovery-based error estimator ‖ê‖2

K1
.

2. Construct a recovered solution for element�K from elements�K ,�xK−1 and�yK−1 and
forming recovery-based error estimator ‖ê‖2

K2
.

3. Average ‖ê‖2
K1

and ‖ê‖2
K2

to obtain the final recovery-based error estimator which results
in the explicit residual error estimator of Eq. (13.60).

In the first step, consider �K and its two neighbouring elements �xK+1 and �yK+1 , the
recovered solutions are expressed as

q∗
x1

= q̂xK + α1Zx(x)

q∗
y1

= q̂yK + β1Zy(y)
(13.62)

where Zx and Zy are linear functions in x and y respectively, i.e.,

Zx(x) = 1 − 2

(
xi − x

h

)

Zy(y) = 1 − 2

(
yi − y

h

) (13.63)

with h the edge length of the square element

h = xi − xi−1 = yi − yi−1

and α1, β1 are unknown parameters to be determined by a recovery process. A recovery
process for q∗

x1
is shown in Fig. 13.16. A similar result holds for q∗

y1
.

The recovery method of averaging is used by requiring the recovered solution to be the
average of the finite element solution at the boundary of the element, i.e., at the edge shared
by �K and �xK+1

q∗
x1
(xi) = 1

2
[q̂xK (xi)+ q̂xK+1(xi)] (13.64a)
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and at the edge shared by element �K and �yK+1

q∗
y1
(yi) = 1

2
[q̂yK (yi)+ q̂yK+1(yi)] (13.64b)

Substituting Eq. (13.62) into Eqs (13.64a)–(13.64b), α1 and β1 have the solution

α1 = 1

2Zx(xi)
(q̂xK+1(xi)− q̂xK (xi)) = −1

2
J (xi)

β1 = 1

2Zy(yi)
(q̂yK+1(yi)− q̂yK (yi)) = −1

2
J (yi)

(13.65)

where J (xi) is the jump discontinuity along edge xi (viz. Fig. 13.16) and J (yi) is the jump
discontinuity along edge yi . In the above, we have used the fact that at xi

q̂nK = q̂xK and q̂nK+1 = −q̂xK+1

and at yi
q̂nK = q̂yK and q̂nK+1 = −q̂yK+1

The determined recovered solutions are now in the form of

q∗
x1

= q̂xK − 1

2
J (xi)Zx

q∗
y1

= q̂yK − 1

2
J (yi)Zy

(13.66)

Error estimator ‖ê‖2
K1

for element�K is attained by substituting the above q∗
x1

and q∗
y1

into
Eq. (13.61)

‖ê‖2
K1

= 1

4k

∫
�K

(J (xi)
2Z2

x + J (yi)
2Z2

y) d� (13.67)

Notice that J (xi) and Zy are the only function of y and J (yi) and Zx are the only function
of x, we have the first recovery-based error estimator for element �K

‖ê‖2
K1

= 1

4k

(∫ xi

xi−1

Z2
x dx

∫ yi

yi−1

J (xi)
2 dy +

∫ yi

yi−1

Z2
y dy

∫ xi

xi−1

J (yi)
2 dx

)

= h

12k

(∫
�yi

J (xi)
2 d� +

∫
�xi

J (yi)
2 d�

) (13.68)

where �xi denotes the limits from xi−1 to xi and �yi from yi−1 to yi . In the above we have
used the following results

∫ xi

xi−1

Z2
x dx =

∫ yi

yi−1

Z2
y dy = h

3

Similarly, in the second step consider elements �K , �xK−1 and �yK−1 with the recovered
solutions written as

q∗
x2

= q̂xK + α2Zx

q∗
y2

= q̂yK + β2Zy
(13.69)
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Fig. 13.16 Recovered solution and jump for �xK
and �xK+1

.

To determine the unknown parameters α2 and β2 we again use the recovery method of
averaging and require that at the edge shared by �K and �xK−1

q∗
x2
(xi−1) = 1

2
(q̂xK−1(xi−1)+ q̂xK (xi−1)) (13.70)

and at the edge shared by element �K and �yK−1

q∗
y2
(yi−1) = 1

2
(q̂yK−1(yi−1)+ q̂yK (yi−1)) (13.71)

Following the exact procedure used in step one, α2 and β2 are solved as

α2 = 1

2Zx(xi−1)
(q̂xK−1(xi−1)− q̂xK (xi−1)) = −1

2
J (xi−1)

β2 = 1

2Zy(yi−1)
(q̂yK−1(yi−1)− q̂yK (yi−1)) = −1

2
J (yi−1)

(13.72)

Here J (xi−1) and J (yi−1) are jump discontinuities along edges xi−1 and yi−1 respectively.
The recovered solutions are now written as

q∗
x2

= q̂xK − 1

2
J (xi−1)Zx

q∗
y2

= q̂yK − 1

2
J (yi−1)Zy

(13.73)

Substituting Eq. (13.73) into Eq. (13.61) the second recovery-based error estimator can be
obtained

‖ê‖2
K2

= h

12k

(∫
�xi−1

J (yi−1)
2 d� +

∫
�yi−1

J (xi−1)
2 d�

)
(13.74)
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Finally, to include the influence of all the neighbouring elements, it is only natural to let the
recovery error estimator for element �K be taken as the average of ‖ê‖2

K1
and ‖ê‖2

K2
, i.e.,

‖ê‖2
K = 1

2
(‖ê‖2

K1
+ ‖ê‖2

K2
) (13.75)

Substituting the expressions of ‖ê‖2
K1

and ‖ê‖2
K2

, we have

‖ê‖2
K = h

24k

(∫
�yi

J (xi)
2 d� +

∫
�xi

J (yi)
2 d� +

∫
�xi−1

J (yi−1)
2 d� +

∫
�yi−1

J (xi−1)
2 d�

)

= h

24k

∫
�K

J 2 d�

(13.76)

This is exactly the explicit residual error estimator of Eq. (13.60).
We have demonstrated, by the above example, that the explicit residual error estimator for

the bilinear element can be derived from a recovery-based error estimator using averaging as
the recovery method. For more general discussions on the relationship between recovery-
based error estimators and explicit residual error estimators we refer to references 50 and 51;
for discussion on the equivalence of recovery-based error estimators with certain explicit
residual estimators we refer to references 48 and 52; for using a recovery method in the
computation of the explicit residual error estimator the reader is referred to reference 53.
We shall now turn our attention to how to use a recovery method in the computation of
implicit residual error estimators.

13.7.2 Implicit residual error estimators

The computation of implicit residual error estimators requires solving an auxiliary boundary
value problem with residuals as input data for the approximation error. Among all the
existing implicit residual error estimators, the equilibrated residual estimator has been
shown to be the most robust.54–56

In what follows we restrict our discussion to the equilibrated residual error estimator
for the model problem of Eq. (13.50). The construction of an equilibrated residual er-
ror estimator for other problems, such as elasticity problems, proceeds in an analogous
manner.57

We again consider an interior element K . Substituting the finite element solution φ̂ into
Eq. (13.50) results in, for element K ,

−∇T(k∇φ̂)+Q = rK in �K (13.77)

and
−(k∇φ̂)Tn = q̂n on �K

Subtracting the above equations from Eq. (13.50) gives an element boundary value problem
for error e as

−∇T (k∇e)+ rK = 0 in �K (13.78)

with boundary condition
− (k∇e)T n = qn − q̂n on �K
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We notice immediately that Eq. (13.78) is not solvable because the exact normal flux
qn on the element boundary is in general unknown. A natural strategy to overcome this
difficulty is to replace the exact solution by a recovered solution q∗

n which can be computed
from the finite element flux in element K and its surrounding elements (as we did in the
computation of a recovery-based error estimator).

We can now write the Neumann boundary value problem for the element error as

−∇T (k∇e)+ rK = 0 in �K (13.79)

with boundary condition
− (k∇e)T n = q∗

n − q̂n on �K

An approximate solution to the above equation for ê appearing in the energy norm, ‖ê‖K ,
defines an implicit element residual error estimator.

Various recovery techniques can be used to compute the normal flux q∗
n .34, 42, 43 However,

the Neumann problem of Eq. (13.79) will have a solution if q∗
n is computed such that the

residuals satisfy the equilibrium condition
∫
�K

NcrK d�+
∫
�K

Nc
(
q∗
n − q̂n

)
d� = 0 (13.80)

where Nc is the shape function for node c of element K . Although Nc can be a shape
function of any order, a linear shape function seems to be the most practical in the following
computation.

The residuals which satisfy Eq. (13.80) are said to be equilibrated, thus the recovered
solution q∗

n satisfying Eq. (13.80) is called the equilibrated flux. An error estimator which
uses the solution of the element error problem of Eq. (13.80) with the equilibrated flux q∗

n

is termed an equilibrated residual error estimator. This type of residual error estimator
was first introduced by Bank and Weiser42 and later more rigorously pursued by Ainsworth
and Oden.46

It is apparent that the most important step in the computation of the equilibrated residual
error estimator is to achieve the recovered normal flux q∗

n which satisfies Eq. (13.80).
Once q∗

n is determined, the error problem Eq. (13.79) can be readily solved for an element
following a standard finite element procedure. Therefore we shall focus our attention on
the recovery process.

The technique of recovering normal flux by equilibrated residuals was first proposed by
Ladevéze et al.,34 Kelly41 and followed by Ohtsubo and Mitamura.58 A different version
of this technique was later used by Ainsworth and Oden49 where a detailed description of
the application to various mesh patterns can be found. Here we shall consider a typical
element patch of triangles as shown in Fig. 13.17.

To determine q∗
n , we first substitute the residual rK of Eq. (13.77) into Eq. (13.80) and

upon integrating by parts obtain
∫
�K

NcQ d�+
∫
�K

(∇Nc)T
(
k∇φ̂) d�+

∫
�K

Ncq
∗
n d� = 0 (13.81)

Let the recovered interelement boundary normal flux have the form

q∗
n = 1

2 (q̂K + q̂I )T ns + Zs (13.82)
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Fig. 13.17 Typical patch with interior vertex node a showing a local numbering of elements ei and edges Si.

where the first term on the right-hand side is the average of the normal flux of the finite
element solution from element K and its neighbour element I as shown in Fig. 13.18; ns
is the outward normal on the edge s of element K; and Zs is a linear function defined on
the edge s, shared by elements K and I , with end nodes a and b and

Zs = N̂ s
aa
s
a + N̂ s

ba
s
b (13.83)

where N̂ s
a , N̂

s
b are the dual shape functions introduced in Sec. 12.2.1 and in the present case

are given by

N̂ s
a = 2

|hs | [2Ns
a −Ns

b ] and N̂ s
b = 2

|hs | [2Ns
b −Ns

a ] (13.84)

where Ns
a and Ns

b are the linear shape functions defined for edge S and |hs | is the length
of the edge. The unknown parameters asa and asb are to be determined from the residual
equilibrium equation (13.81).

It is easy to verify that ∫
s

Ns
a N̂

s
b d� = δab (13.85)

where δab is the Kronecker delta given by:

δab =
{

1, a = b

0, a �= b
(13.86)

Let a denote a typical interior vertex node. ChooseNc = Na in Eq. (13.81) and consider
the element patch associated with the linear shape function Na as shown in Fig. 13.17.
Assign element 1 as element K in the patch (i.e., e1 = eK ).

It is obvious that Na is zero at the exterior boundary of the element patch. A local
numbering for the elements and edges connected to node a in the patch is given. The edge
normals shown here are the result of a global edge orientation.
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Fig. 13.18 Element interface for equilibrated flux recovery.

For element e1 in the patch, substituting Eq. (13.82) into Eq. (13.81) for each edge and
observing that Na is non-zero only on the edges s1 and s2 and in the n1 and n2 directions
we have∫

�e1

NaQ d�+
∫
�e1

(∇Na)T (k∇φ̂) d�−
∫
s1

1
2Na(q̂e1 + q̂e5)

Tns1 d�

+
∫
s2

1
2Na(q̂e1 + q̂e2)

Tns2 d� −
∫
s1

NaZs1 d� +
∫
s2

NaZs2 d� = 0
(13.87)

where a boundary integral takes a negative sign if the edge normal shown in Figs 13.17
and 13.18 points inward to the element.

Let fe1 denote the first four, computable, terms of the above equation and notice that
[using Eq. (13.85)] ∫

s1

NaZs1 d� =
∫
s1

Na
(
N̂ s
aa

s1
a + N̂ s

ba
s1
b

)
d� = as1a (13.88a)

and ∫
s2

NaZs2 d� =
∫
s2

Na
(
N̂ s
aa

s2
a + N̂ s

ba
s2
b

)
d� = as2a (13.88b)

Equation (13.87) now becomes

−as1a + as2a = −fe1 (13.89)

Similar equations result for element e2 to e5 of the patch in Fig. 13.17 giving the equation
set

Aa = f (13.90)

where

A =

⎡
⎢⎢⎢⎢⎣

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1

⎤
⎥⎥⎥⎥⎦
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a = [as1a , as2a , as3a , as4a , as5a
]T

and
f = [−fe1 , −fe2 , −fe3 , −fe4 , −fe5

]T

It is easy to verify that these equations are linearly dependent but have solutions determined
up to an arbitrary constant. A procedure to obtain an optimal particular solution is described
as follows.35, 42, 49 First, a particular solution a0 of Eq. (13.90) is found by choosing, for
example, as5a = 0. Second, the corresponding homogeneous equation

Ab = 0 (13.91)

with b = [b1, b2, b3, b4, b5]T is solved for a non-zero particular solution with the choice
of, corresponding to as5a , b5 = 1. It is easy to verify that bi is either 1 or −1 due to the
structure of A. In the element patch considered here b = [1, 1, 1, 1, 1]T.

The final particular solution of Eq. (13.90) takes the form of

a = a0 + γb (13.92)

where the constant γ is determined by the minimization of

� = aTa (13.93)

The minimization condition gives

γ = − bTa0

bTb
(13.94)

The solution gives the nodal value asia at node a for each connected edge of the element
patch.

Boundary nodes and their related element patches can be considered in the same fashion
except that we can take q∗

n = q̄n, the known flux, for the element edge being part of �q. For
edges coincident with �φ , we let the first term on the right-hand side of Eq. (13.82) be zero.
By considering each vertex node of the mesh and its associated element patch, we will be
able to determine asa and asb in Eq. (13.83) for every edge, thus the recovered normal flux
q∗
n in the form defined by Eq. (13.82) on the element boundary is achieved. The procedure

described above for recovering the normal flux is a recovery by element residuals.
We note that the non-uniqueness of the solution of Eq. (13.90) represents the non-

uniqueness of the equilibrium status of the element residuals. The choice of the arbitrary
constant in solving Eq. (13.90) will certainly affect the accuracy of the recovered solution
q∗
n , and therefore the accuracy of the error estimator.
With q∗

n determined, the local error problem Eq. (13.79) is usually solved by a higher
order (e.g., p + 1 or even p + 2) approximation. The solution of the problem is then
employed in the equilibrated residual error estimator ‖ê‖rK . The global error estimator ‖ê‖
is obtained through Eq. (13.55). The global error estimator has been shown to be an upper
bound of the exact error,46 although it is not a trivial task to prove its convergence.

We have shown here that a proper recovery method is the key to the computation of
equilibrated residual error estimators. Indeed, carefully chosen recovery methods are very
important in the computation of all the implicit residual error estimators. Numerical perfor-
mance of residual-based error estimators was tested by Babuška et al.54–56 and Carstensen
et al.59 and compared with that of recovery-based error estimators.
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Fig. 13.19 Repeating patch of irregular and quadrilateral elements.

13.8 Asymptotic behaviour and robustness of error
estimators – the Babuška patch test

It is well known that elements in which polynomials of order p are used to represent the
unknown u will reproduce exactly any problem for which the exact solution is also defined
by such a polynomial. Indeed the verification of this behaviour is an essential part of the
‘patch test’ which has to be satisfied by all elements to ensure convergence, as we have
discussed in Chapter 9.

Thus if we are attempting to determine the error in a general smooth solution we will
find that this error is dominated by terms of order p + 1. The response of any patch to an
exact solution of order p+ 1 will therefore determine the asymptotic behaviour when both
the size of the patch and of all the elements tends to zero. If the patch is assumed to be
one of a repeatable kind, its behaviour when subjected to an exact solution of order p + 1
will give the exact asymptotic error of the finite element solution. Thus, any estimator can
be compared with this exact value and the asymptotic effectivity index can be established.
Figure 13.19 shows such a repeatable patch of quadrilateral elements which evaluate the
performance of the error estimators for quite irregular meshes.

We have indeed shown how true superconvergent behaviour reproduces exactly such
higher order solutions and thus leads to an effectivity index of unity in the asymptotic
limit. In the papers presented by Babuška et al.54–56 the procedure of dealing with such
repeatable patches for various patterns of two-dimensional elements is developed. Thus, if
we are interested in solving the differential equation

Lu+ f = 0 (13.95)

where L is a linear differential operator of order 2p, we consider exact solutions (harmonic
solutions) to the homogeneous equation (f = 0) of the form

uex =
∑
m

amx
myn = P(x, y)a; n = p + 1 −m (13.96)

The boundary conditions are taken as

uex|x+Lx = uex|x and uex|y+Ly = uex|y (13.97)

where Lx and Ly are periodic distances in the x and y directions, respectively (viz. repeat-
ability, Sec. 6.2.4, page 192). In general, the individual terms of Eq. (13.96) do not satisfy
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the differential equation and it is necessary to consider linear combinations in terms of the
parameters in L as

a′ = Ta (13.98)

This solution serves as the basis for conducting a patch test in which the boundary conditions
are assigned to be periodic and to prevent constant changes to u.† The correct constant value
may be computed from

∫
patch

(Nũ + C) d� =
∫

patch
uex d� (13.99)

To compute upper and lower bounds (θU and θL) on the possible effectivity indices of the
error estimators, all possible combinations of the harmonic solution must be considered.
This may be achieved by constructing an error norm of the solutions, for example the L2

norm of the flux (or stress)

‖eq‖2
L2

=
∫

patch
(qex − q̂)T (qex − q̂) d� = (a′)T

TTEexTa′ (13.100)

and

‖êq‖2
L2

=
∫

patch

(
q∗ − q̂

)T (
q∗ − q̂

)
d� = (a′)T

TTE∗Ta′ (13.101)

and solving the eigenproblem

TTE∗Ta′ = θ2TTEexTa′ (13.102)

to determine the minimum (lower bound) and maximum (upper bound) effectivity indices.
Further details of the process summarized here are given in Boroomand and Zienkiew-
icz32, 33 and by Zienkiewicz et al.60

These bounds on the effectivity index are very useful for comparing various error es-
timators and their behaviour for different mesh and element patterns. However, a single
parameter called the robustness index has also been devised54 and is useful as a guide to
the robustness of any particular estimator

R = max

(
|1 − θL| + |1 − θU |, |1 − 1

θL
| + |1 − 1

θU
|
)

(13.103)

A large value of this index obviously indicates a poor performance. Conversely the best
behaviour is that in which

θL = θU = 1 (13.104)

and this gives
R = 0 (13.105)

In the series of tests reported in references 54–56 various estimators have been compared.
Table 13.1 shows the highest robustness index value of an equilibrating residual-based error
estimator, ERpB, and the SPR recovery error estimator for a set of particular patches of
triangular elements.54

†For elasticity-type problems the periodic boundary conditions prevent rigid rotations.
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Table 13.1 Robustness index R for equilibrated
residual ERpB and SPR (ZZ-discrete) estimators
for a variety of anisotropic situations and element
patterns, p = 2

Estimator form Robustness index – R

ERpB 10.21
SPR (ZZ-discrete) 0.02

This performance comparison is quite remarkable and it seems that in all the tests quoted
by Babuška et al.54–56 and summarized in Babuška and Strouboulis61 the recovery estimator
using SPR performs best. Indeed we shall observe that in many cases of regular subdivision,
when full superconvergence occurs the ideal, asymptotically exact solution characterized
by R = 0 will be obtained.

In Table 13.2 we show some results obtained for regular meshes of triangles and rectangles
with linear and quadratic elements. In the rectangular elements used for problems of heat
conduction type, superconvergent points are exact and the ideal result is obtained for both
linear and quadratic elements. It is surprising that this also occurs in elasticity where the
proof of superconvergent points is lacking [since for ν > 0 A in (13.17) is not diagonal].
Further, the REP procedure also seems to yield superconvergence except for elasticity with
quadratic elements.

For regular meshes of quadratic triangles generally superconvergence is not expected and
it does not occur for either heat conduction or elasticity problems. However, the robustness
index has very small values (R < 0.10 for SPR andR < 0.12 for REP) and these estimators
are therefore very accurate.

In Fig. 13.20 and Table 13.3 very irregular meshes of triangular and quadrilateral elements
are analysed in repeatable patterns. It is of course not possible to present here all tests
conducted by the effectivity patch test. The results shown are, however, typical – others
are given in reference 32. It is interesting to observe that the performance measured by the
robustness index on quadrilateral elements is always superior to that measured on triangles.

13.9 Bounds on quantities of interest

Although we have shown that excellent estimators of errors exist today, many are striving to
know that these estimators are not only close but that they are bounded. The strain energy
was one of the first quantities in which bounds could be established. Here the classical
work of Fraeijs de Veubeke in the mid-1960s is of vital importance.62, 63

It was quickly realized by Fraeijs de Veubeke that the standard (displacement) proce-
dures from which structural analysis usually started would provide a lower bound of the
strain energy contained in the structure and thus always underestimated the value of strain
energy. He therefore sought procedures which could solve the same structural problem
by concentrating on so-called complementary energy which would allow to be established
solutions in which the strain energy would always be overestimated. This process proved
very difficult as equilibrating solutions have to be established at all stages. A possible way,
useful for many two-dimensional problems, was suggested in reference 64 in which stress
functions and the slab analogy were used. Nevertheless the methodology never succeeded
as a practical way of providing the bounds of strain energy in an actual analysis.
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Table 13.2 Effectivity bounds and robustness of SPR and REP recovery estimator for regular meshes of triangles
and rectangles with linear and quadratic shape function (applied to heat conduction and elasticity problems).
Aspect ratio = length(L)/height(H ) of elements in patch tested

Linear triangles and rectangles (heat conduction/elasticity)

SPR REP

Aspect ratio L/H θL θU R θL θU R

1/1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/2 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/4 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/8 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/16 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/32 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/64 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Quadratic rectangles (heat conduction)

θL θU R θL θU R

1/1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/2 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/4 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/8 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/16 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/32 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/64 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Quadratic rectangles (elasticity)

θL θU R θL θU R

1/1 1.0000 1.0000 0.0000 0.9991 1.0102 0.0111
1/2 1.0000 1.0000 0.0000 0.9991 1.0181 0.0189
1/4 1.0000 1.0000 0.0000 0.9991 1.0136 0.0145
1/8 1.0000 1.0000 0.0000 0.9991 1.0030 0.0039
1/16 1.0000 1.0000 0.0000 0.9968 1.0001 0.0033
1/32 1.0000 1.0000 0.0000 0.9950 1.0000 0.0050
1/64 1.0000 1.0000 0.0000 0.9945 1.0000 0.0055

Quadratic triangles (elasticity)

θL θU R θL θU R

1/1 0.9966 1.0929 0.0963 0.9562 1.0503 0.0940
1/2 0.9966 1.0931 0.0965 0.9559 1.0481 0.0923
1/4 0.9967 1.0937 0.0970 0.9535 1.0455 0.0924
1/8 0.9967 1.0943 0.0976 0.9522 1.0603 0.1081
1/16 0.9966 1.0946 0.0980 0.9518 1.0666 0.1148
1/32 0.9966 1.0947 0.0981 0.9517 1.0684 0.1167
1/64 0.9965 1.0947 0.0982 0.9516 1.0688 0.1172

Much later when the residual method was being applied to determine error in structural
analysis it was realized that once again opportunity existed for establishing bounds. The
residuals are nothing else but a measure by which the numerical solution fails to satisfy
the differential equations of the problem. By using a local solution, generally based on a
few elements or even a single element, the error can be estimated locally and the total error
obtained by combining these estimates for all elements. The completely independent solu-
tion for the displacement, stresses, etc. established by the residuals provides the measure
of the error. This solution can be carried out in a number of ways and here a departure from



492 Errors, recovery processes and error estimates

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 13.20 Repeating patch types.

the original, say displacement, method can be made. As many local problems are solved,
it is assumed the total error is a combination of local (patch) solutions. It seems that one
of the first to extend the concept of establishing upper bounds is Kelly in 198441 and sub-
sequent work.65 He endeavoured to obtain solutions for the residual placed as a load with
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Table 13.3 Effectivity bounds and robustness of SPR and REP recovery estimator for irregular meshes of
(a, b, c, d) and quadrilaterals (e, f, g, h)

Linear element (heat conduction)

SPR REP

Mesh pattern θL θU R θL θU R

a 0.9626 1.0054 0.0442 0.9709 1.0145 0.0443
b 0.9715 1.0156 0.0447 0.9838 1.0167 0.0329
c 0.9228 1.4417 0.5189 0.8938 1.8235 0.9297
d 0.8341 1.2027 0.3685 0.9463 1.9272 0.9810
e 0.9943 1.0175 0.0232 0.9800 1.0589 0.0789
f 0.9969 1.0152 0.0183 0.9849 1.0582 0.0733
g 0.9987 1.0175 0.0188 0.9987 1.0175 0.0188
h 0.9991 1.0068 0.0077 0.9979 1.0062 0.0083

Linear elements (elasticity)

SPR REP

θL θU R θL θU R

a 0.9404 1.0109 0.0741 0.9468 1.0148 0.0707
b 0.8869 1.0250 0.1520 0.9392 1.0275 0.0915
c 0.8550 1.6966 0.8415 0.8037 2.0522 1.2486
d 0.7945 1.2734 0.4788 0.7576 1.9416 1.1840
e 0.9946 1.0247 0.0301 0.9579 1.0508 0.0928
f 1.0038 1.0281 0.0318 0.9612 1.0467 0.0855
g 0.9959 1.0300 0.0341 0.9960 1.0298 0.0338
h 0.9972 1.0139 0.0168 0.9965 1.0122 0.0157

Quadratic elements (heat conduction)

θL θU R θL θU R

a 0.9443 1.0295 0.0877 0.9339 1.0098 0.0805
b 0.8146 1.0037 0.2313 0.9256 1.0028 0.0832
c 0.7640 1.0486 0.3000 0.9559 1.2229 0.2670
d 0.8140 1.0141 0.2423 0.9091 1.2808 0.3717
e 0.9762 1.0053 0.0296 0.9901 1.0177 0.0276
f 0.9691 1.0045 0.0363 0.9901 1.0322 0.0421
g 0.9692 1.0004 0.0322 0.9833 1.0024 0.0195
h 0.9906 1.0113 0.0207 1.0045 1.0261 0.0307

Quadratic elements (elasticity)

θL θU R θL θU R

a 0.9144 1.0353 0.1277 0.9197 1.0244 0.1111
b 0.7302 1.0355 0.4038 0.8643 1.0346 0.1905
c 0.7556 1.1024 0.4163 0.8387 1.2422 0.4035
d 0.7624 1.0323 0.3430 0.8244 1.2632 0.4388
e 0.9702 1.0102 0.0408 0.9682 1.0058 0.0386
f 0.9651 1.0085 0.0446 0.9749 1.0286 0.0537
g 0.9457 1.0115 0.0688 0.9807 1.0125 0.0321
h 0.9852 1.0141 0.0290 0.9996 1.0522 0.0526

equilibrating methodologies. Two similar alternative approaches, though stemming from
completely different origins, were proposed by Ladevèze34, 66 and almost simultaneously
by Bank and Weiser.42 These ideas were later adopted by Ainsworth and Oden forming
much of the basis to their book.49
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The methodologies so far produced are very effective when the basic quantity of interest
is a simple one, such as strain energy or the energy norm. However, when the quantity
of interest is more localized and if for instance it is the displacement at some part of the
structure, rather than an overall measure of stresses as it is in the case of energy, different
procedures arise and pure examination of energy errors does not suffice or it is not very
selective in showing how to obtain the answers. For this reason much effort has been given
in recent years in discussing the possibilities of bounds and the manner by which such
localized goals of analysis can be solved. Much of the recent work in this field concentrates
on such methodologies.

The first to give attention to the possible extension of norms to other quantities of interest
appeared in a series of papers presented by Babuška and Miller in 1984.67–69 These papers
laid the foundations for much of the work continued some ten years later and which today
occupies much interest. Here it appears that the first full extension of the methodology is
due to Peraire et al. first published in 1997 with many papers following.70–75

By extending the ideas introduced in the Babuška and Miller papers, Peraire et al. show
that whatever the quantity of interest is, it is always possible to establish an adjoint problem
which can be solved on the same mesh of the original problem but now with different loads
for dealing with the accuracy. Such adjoint problems may be called differently and names
such as extraction problems and dual problems are also used. Although many people are
now entering the field and the methodology has been followed by Oden and Prudhomme
in a series of papers, it appears that only Peraire so far has extended the approach to non-
self-adjoint problems such as fluid dynamics.73–75

The equilibrated methods have always provided upper bounds for such quantities as
strain energy. A similar bounding occurs if we look at the energy in the adjoint approaches.
However, some interest now goes back to placing satisfactorily the lower bounds and thus
bracketing the solution. Of course, lower bounds of zero values have been used and this is
rather defeatist because they do not provide tight estimates. It is our belief that more precise
bounds are required and here the work of Dı́ez and Huerta seems to lead the way.47, 76, 77

13.10 Which errors should concern us?

In this chapter we have shown how various recovery procedures can accurately estimate
the overall error of the finite element approximation and thus provide a very accurate error
estimating method. We have also shown that estimators based on SPR recovery are superior
to those based on residual computation. The error estimation discussed here concerns,
however, only the original solution and if the user takes advantage of the recovered values
a much better solution is already available. In the next chapter we shall be concerned with
adaptivity processes which are aimed at reduction of the original finite element error. Here
again we shall show the excellent values of the effectivity index which can be obtained
with SPR-type methods on examples for which an ‘exact’ solution is available from very
fine mesh computations. What perhaps we should also be concerned with are the errors
remaining in the recovered solutions, if indeed these are to be made use of. This problem
is still unsolved and at the moment all the adaptive methods simply aim at the reduction of
various norms of error in the finite element solution directly provided.
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13.11 Problems

13.1 Let the assumed stress for Example 13.1 in Sec. 13.4.1 be given as

σ ∗
i = [1 , (x − x1) , (y − y1) , (x − x1)(y − y1)

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ā1

ā2

ā3

ā4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Compute the recovered stress and compare the result with that of Example 13.1. Is
this result superconvergent?

13.2 Show all the relations necessary to extend the SPR algorithm to three-dimensional
elastic problems.

What is the expression for σ ∗
i that should be used for 8-node hexahedral elements?

13.3 Program development project: Implement the SPR procedure in the solver system
developed in Problem 2.17 and subsequent chapters. Assume the problem is modelled
by the quasi-harmonic equation using 4-node quadrilateral elements. (Hint: Extend
the result from Problem 6.19.)

13.4 Program development project: Implement the SPR procedure in the solver developed
in Problem 2.17 and subsequent additions. Assume a linear elastic problem that is
modelled using 4-node quadrilateral elements. (Hint: Extend the result from Problem
6.19.)

13.5 The element size h appearing in the explicit residual error estimator given by Eq.
(13.59) is often taken as a constant for a particular element of certain shape. Consider
results from Example 13.2 and explain why the accuracy of the explicit residual error
estimator will deteriorate when the aspect ratio of the element increases, i.e., when
the mesh becomes more anisotropic.

13.6 Extend the technique of recovering normal flux by equilibrated residuals described
in Sec. 13.7.2 to two-dimensional elastic problems. Consider both plane and axisym-
metric geometry.

13.7 Extend the technique of recovering normal flux by equilibrated residuals described in
Sec. 13.7.2 to three-dimensional elastic problems.

13.8 Program development project: Implement a recovery-based error estimator or a
residual-based error estimator in the solver system developed in Problem 2.17 and
subsequent exercises.

13.9 Program development project: Extend the program developed in Problem 2.17 to
compute the SPR solution for displacements. Use the recovered displacements to
compute strains and from these stresses.

Follow the procedure given in Sec. 13.4.2 to project 3-node triangular and 4-node
quadrilateral element values to nodes.

Test your program using (a) the patch test of Problem 2.17 and (b) the curved beam
problem shown in Fig. 2.11.

Report results for both displacements and stresses.
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14

Adaptive finite element refinement

14.1 Introduction

In the previous chapter we have discussed at some length various methods of recovery
by which the finite element solution results could be made more accurate and this led us
to devise various procedures for error estimation. In this chapter we are concerned with
methods which can be used to reduce the errors once a finite element solution has been
obtained. As the process depends on previous results at all stages it is called adaptive.
Such adaptive methods were first introduced to finite element calculations by Babuška and
Rheinboldt in the late 1970s.1, 2

Before proceeding further it is necessary to clarify the objectives of refinement and
specify ‘permissible error magnitudes’ and here the engineer or user must have very clear
aims. For instance the naive requirement that all displacements or all stresses should be
given within a specified tolerance is not acceptable. The reasons for this are obvious as at
singularities, for example, stresses will always be infinite and therefore no finite tolerance
could be specified. The same difficulty is true for displacements if point or knife edge loads
are considered.

The most common criterion in general engineering use is that of prescribing a total limit
of the error computed in the energy norm. Often this error is required not to exceed a
specified percentage of the total energy norm of the solution and in the many examples
presented later we shall use this simple criterion. However, using a recovery type of error
estimator it is possible to adaptively refine the mesh so that the accuracy of a certain
quantity of interest, such as the RMS error in displacement and/or RMS error in stress (see
Chapter 13, Eqs (13.9) and (13.10)), satisfies some user-specified criterion. We should
recognize that mesh refinement based on reducing the RMS error in displacement is in
effect reducing the average displacement error in a user-specified region (e.g., in each
element); similarly mesh refinement based on reducing the RMS error in stress is the same
as reducing the average stress error in a user-specified region. Here we could, for instance,
specify directly the permissible error in stresses or displacements at any location. Some
investigators (e.g., Zienkiewicz and Zhu3) have used RMS error in stress in the adaptive
mesh refinement to obtain more accurate stress solutions. Others (e.g., Oñate and Bugeda4)
have used the requirement of constant energy norm density in the adaptive analysis, which
is in fact equivalent to specifying a uniform distribution of RMS error in stress in each
element. We note that the recovery type of error estimators are particularly useful and
convenient in designing adaptive analysis procedures for the quantities of interest. For



Introduction 501

other methodologies of designing adaptive analysis procedures based on error estimation
of the quantities of interest, we refer to references 5–7.

As we have already remarked in the previous chapter we will at all times consider the
error in the actual finite element solution rather than the error in the recovered solution. It
may indeed be possible in special problems for the error in the recovered solution to be
zero, even if the error in the finite element solution itself is quite substantial. (Consider
here for instance a problem with a linear stress distribution being solved by linear elements
which result in constant element stresses. Obviously the element error will be quite large.
But if recovered stresses are used, exact results can be obtained and no errors will exist.)
The problem of which errors to consider still needs to be answered. At the present time
we shall consider the question of recovery as that of providing a very substantial margin of
safety in the definition of errors.

Various procedures exist for the refinement of finite element solutions. Broadly these
fall into two categories:

1. Theh-refinement in which the same class of elements continue to be used but are changed
in size, in some locations made larger and in others made smaller, to provide maximum
economy in reaching the desired solution.

2. Thep-refinement in which we continue to use the same element size and simply increase,
generally hierarchically, the order of the polynomial used in their definition.

It is occasionally useful to divide the above categories into subclasses, as theh-refinement
can be applied and thought of in different ways. In Fig. 14.1 we illustrate three typical
methods of h-refinement:

1. The first of theseh-refinement methods is element subdivision (enrichment) [Fig. 14.1(b)].
Here refinement can be conveniently implemented and existing elements, if they show
too much error, are simply divided into smaller ones keeping the original element bound-
aries intact. Such a process is cumbersome as many hanging points are created where
an element with mid-side nodes is joined to a linear element with no such nodes. On
such occasions it is necessary to provide local constraints at the hanging points and the
calculations become more involved. In addition, the implementation of de-refinement re-
quires rather complex data management which may reduce the efficiency of the method.
Nevertheless, the method of element subdivision is quite widely used.

2. The second method is that of a complete mesh regeneration or remeshing [Fig. 14.1(c)].
Here, on the basis of a given solution, a new element size is predicted in all the domains
and a totally new mesh is generated. Thus a refinement and de-refinement are simulta-
neously allowed. This of course can be expensive, especially in three dimensions where
mesh generation is difficult for certain types of elements, and it also presents a problem
of transferring data from one mesh to another. However, the results are generally much
superior and this method will be used in most of the examples shown in this chapter. For
many practical engineering problems, particularly of those for which the element shape
will be severely distorted during the analysis, adaptive mesh regeneration is a natural
choice.

3. The final method, sometimes known as r-refinement [Fig. 14.1(d)], keeps the total num-
ber of nodes constant and adjusts their position to obtain an optimal approximation.5–7

While this procedure is theoretically of interest it is difficult to use in practice and there
is little to recommend it. Further it is not a true refinement procedure as a prespecified
accuracy cannot generally be reached.
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(a) Original mesh

(b) Mesh enhancement by subdivision (enrichment)

(c) Mesh enhancement by remeshing

(d) r-refinement of original mesh by reposition of nodes

Fig. 14.1 Various procedures by h-refinement.
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We shall see that with energy norms specified as the criterion, it is a fairly simple matter
to predict the element size required for a given degree of approximation. Thus very few
re-solutions are generally necessary to reach the objective.

With p-refinement the situation is different. Here two subclasses exist:

1. One in which the polynomial order is increased uniformly throughout the whole domain;
2. One in which the polynomial order is increased locally using hierarchical refinement.

In neither of these has a direct procedure been developed which allows the prediction of the
best refinement to be used to obtain a given error. Here the procedures generally require
more resolutions and tend to be more costly. However, the convergence for a given number
of variables is more rapid with p-refinement and it has much to recommend it.

On occasion it is possible to combine efficiently the h- and p-refinements and call it the
hp-refinement. In this procedure both the size of elements h and their degree of polynomial
p are altered. Much work has been reported in the literature by Babuška, Oden and others
and the interested reader is referred to the references.8–18

In Secs 14.2 and 14.3 we shall discuss both the h- and the p-refinement methods. In
Sec. 14.3 we also include some details of the very simple and yet efficient hp-refinement
process introduced by Zienkiewicz, Zhu and Gong.19

14.2 Adaptive h-refinement

14.2.1 Predicting the required element size in h adaptivity

In the introduction to this chapter we have mentioned several alternative processes of h-
adaptivity and we suggested that the process in which the complete mesh is regenerated is in
general the most efficient. Such a procedure allows elements to be de-refined (or enlarged)
as well as refined (made smaller) and invariably starts at each stage of the analysis from a
specification of the mesh size h defined at each nodal point of the previous mesh. Standard
interpolation is used to find the size of elements required at any point in the domain. As
the refinement process proceeds for each subsequent stage of analysis the computed mesh
sizes h are based on a prescribed accuracy at the nodes of the previous mesh.

The error estimators discussed in the previous chapter allow the global energy (or similar)
norm of the error to be determined and the errors occurring locally (at the element level)
are usually also well represented. If these errors are within the limits prescribed by the
analyst then clearly the work is completed. More frequently these limits are exceeded and
refinement is necessary. The question which this section addresses is how best to effect
this refinement. Here obviously many strategies are possible and much depends on the
objectives or goals to be achieved.

In the simplest case we shall seek, for instance, to make the relative energy norm er-
ror η [viz. Eq. (13.12)] less than some specified value η̄ (say 5% for many engineering
applications). Thus

η ≤ η̄ (14.1)

is to be achieved.
In an ‘optimal mesh’ it is desirable that the distribution of element energy norm error (i.e.,

‖e‖K ) should be equal for all elements. Thus if the total permissible error is determined
(assuming that it is given by the result of the approximate analysis) as
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Permissible error ≡ η̄‖u‖ = η̄
(‖û‖2 + ‖e‖2

)1/2
(14.2)

here we have used20

‖e‖2 = ‖u‖2 − ‖û‖2 (14.3)

We could pose a requirement that the error in any element k should be

‖e‖K < η̄

(‖û‖2 + ‖e‖2

m

)1/2

≡ ēm (14.4)

where m is the number of elements involved.
Elements in which the above is not satisfied are obvious candidates for refinement. Thus

if we define a refinement ratio by

ξK = ‖e‖K
ēm

(14.5)

we shall refine whenever†
ξK > 1 (14.6)

The refinement ratio ξK can be approximated, of course, by replacing the true error in Eqs
(14.4) and (14.5) with the error estimators.

The refinement could be carried out progressively by refining only a certain number of
elements in which ξ is higher than a specified limit. This type of element subdivision process
is also known as mesh enrichment as depicted in Fig. 14.1(b). This process of refinement
though ultimately leading to a satisfactory solution being obtained with a relatively small
number of total degrees of freedom, is in general not economical as the total number of
trial solutions is usually excessive.

It is more efficient to try to design a completely new mesh which satisfies the requirement
that

ξK ≤ 1 (14.7)

in all elements.
One possibility here is to invoke the asymptotic convergence rate criteria to predict the

element size distribution. For instance, if we assume

‖e‖K ∝ h
p
K (14.8)

where hK is the current element size and p the polynomial order of approximation, then to
satisfy the requirement of Eq. (14.4) the new generated element size should be no larger
than

hnew = ξ
−1/p
K hK (14.9)

Mesh generation programs in which the local element size can be specified are available
now as we have already discussed in Chapter 8 and these can be used to design a new
mesh for which the reanalysis is carried out.21, 22 In the figures we show how starting
from a relatively coarse solution a single mesh prediction often allows a solution (almost)
satisfying the specified accuracy requirement to be achieved.

The reason for the success of the mesh regeneration based on the simple assumption of
asymptotic convergence rate implied in Eq. (14.8) is the fact that with refinement the mesh

†We can indeed ‘de-refine’ or use a larger element spacing where ξK < 1 if computational economy is desired.
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tends to be ‘optimal’ and the localized singularity influence no longer affects the overall
convergence.

Of course the effects of any singularity will still remain present in the elements adjacent
to it. An improved mesh results if in such elements we use the appropriate convergence
and replace p by λ in Eqs (14.8) and (14.9), to obtain

hnew = ξ
−1/λ
K hK (14.10)

in which λ is the singularity strength, see Chapter 13, Eq. (13.14). A conservative number
to use here is λ = 0.5 as most singularity parameters lie in the range 0.5–1.0. With this
procedure, added to the refinement strategy, we frequently achieve accuracies better than
the prescribed limit in one remeshing.

14.2.2 Numerical examples

In the examples which follow we will show in general a process of refinement in which
the total number of degrees of freedom increases with each stage, even though the mesh
is redesigned. This need not necessarily be the case as a fine but badly structured mesh
can show much greater error than a near-optimal one. To illustrate this point we show in
Fig. 14.2 a refinement designed to reach 5% accuracy in one step starting from uniform mesh
subdivisions. We note that now, in at least one refinement, a decrease of total error occurs
with a reduction of total degrees of freedom (starting from a uniform 8 × 8 subdivision
with 544 equations and η = 9.8% to η = 3.1% with 460 equations).

We shall now present further typical examples of h-refinement with mesh adaptivity. In
all of these, full mesh regeneration is used at every step.

Example 14.1: Short cantilever beam. This problem refers to a short cantilever beam in
which two very high singularities exist at the corners attached to a rigid wall. The beam is
loaded by a uniform load along the top boundary as illustrated in Figs 14.3 and 14.4. In the
refinement process we use both the mesh criteria of Eqs (14.9) and (14.10).23 In Figs 14.3
and 14.4 we show three stages of an adaptive solution and in Fig. 14.5 we indicate how
rapidly these converge, although all uniform refinements converge at a very slow rate (due
to the singularities).

The same problem is also solved by both mesh enrichment and mesh regeneration using
linear quadrilateral elements to achieve 5% accuracy. The prescribed accuracy is obtained
with optimal rate of convergence being reached by both adaptive refinement processes
(Fig. 14.6). However, the mesh enrichment method requires seven refinements, as shown
in Fig. 14.7, while mesh regeneration requires only three (see Fig. 14.8). Here the refinement
criterion, Eq. (14.6), is used for the mesh enrichment process.

Example 14.2: Stressed cylinder. As we mentioned earlier, the value of the energy norm
error is not necessarily the best criterion for practical refinement. Limits on the local
stress error can be used effectively. Such errors are quite simply obtained by the recovery
processes described in the previous chapter (SPR in Sec. 13.4 and REP in Sec. 13.5). In
Fig. 14.9 we show a simple exercise recently conducted by Oñate and Bugeda4 in which a
refinement of a stressed cylinder is made using various criteria as described in the caption
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Fig. 14.3 Short cantilever beam and adaptive meshes of linear triangular elements.
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Fig. 14.4 Adaptive mesh of quadratic triangular elements for short cantilever beam.

of Fig. 14.9. It will be observed that the stress tolerance method generally needs a much
finer mesh.

Example 14.3: A Poisson equation in a square domain. This example is fairly straight-
forward and starts from a simple square domain in which suitable loading terms exist in a
Poisson equation to give the solution shown in Fig. 14.10.12 In Fig. 14.11 we show the first
subdivision of this domain into regular linear and quadratic elements and the subsequent
refinements. The elements are of both triangular and quadrilateral shape and for the linear
ones a target error of 10% in total energy has been set, while for quadratic elements the
target error is 1% of total energy. In practically all cases three refinements suffice to reach
a very accurate solution satisfying the requirements despite the fact that the original mesh
cannot capture in any way the high intensity region illustrated in the previous figure. It is
of interest to note that the effectivity indices in all cases are very close to one – this is true
even for the original refinement. Figure 14.12 shows the convergence for various elements
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Fig. 14.7 Short cantilever solved by mesh enrichment. Linear quadrilateral elements.

Mesh 1 η = 43.20% Mesh 2 η  = 9.60% Mesh 3 η  = 5.00%

Fig. 14.8 Short cantilever solved by mesh regeneration. Linear quadrilateral elements.

with the error plotted against the total number of degrees of freedom. The reader should
note that the asymptotic rate of convergence is exceeded when the refinement gets closer
to its final objective.

Example 14.4: An L-shaped domain. It is of interest to note the results in Fig. 14.13 which
come from an analysis of a re-entrant corner using isoparametric quadratic quadrilaterals.
Here two meshes are shown together with the convergence data of the solution.

Example 14.5: A machine part. For this machine part problem plane strain conditions are
assumed. A prescribed accuracy of 5% relative error is achieved in one adaptive refinement
(see Fig. 14.14) with linear quadrilateral elements. The convergence of the shear stress τxy
is shown in Fig. 14.15.
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d.o.f.: 1980 7034 6944 1984

231873987376d.o.f.: 2224

(a) (b) (c) (d)

Fig. 14.9 Sequence of adaptive mesh refinement strategies based on (a) equal distribution of the global energy
error between all the elements, (b) equal distribution of the density of energy error, (c) equal distribution of the
maximum error in stresses at each point, and (d) equal distribution of the maximum percentage of the error in
stresses at each point. All final meshes have less than 5% energy norm error.

Base contour value = − 0.365100 
Maximum contour value = 0.852200
Contour interval = 0.060865(a)

Base contour value = −0.365100 
Maximum contour value = 0.852200
Contour interval = 0.060865(b)

Fig. 14.10 Poisson equation ‘exact’ solutions. (a) ∂u/∂x contours. (b) ∂u/∂y contours.
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Fig. 14.11 Poisson problem of Fig. 14.10. Adaptive solutions for: (a) linear triangles; (b) linear quadrilaterals;
(c) quadratic triangles; (d) quadratic quadrilaterals. θ∗ based on SPR, θ L based on L2 projection. Target error
10% for linear elements and 1% for quadratic elements.
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Fig. 14.12 Adaptive refinement for Poisson problem of Fig. 14.10.
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Fig. 14.13 Adaptive refinement of an L-shaped domain in plane stress with prescribed error of 1%.
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p = 1
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(a) Mesh 1 (565 d.o.f.)  η = 9.75% (b) Mesh 2 (3155 d.o.f.)  η = 4.85%

Fig. 14.14 Adaptive refinement of machine part using linear quadrilateral elements. Target error 5%.

Base contour value = −1.833000 
Maximum contour value = 0.586500
Contour interval = 0.163095

Base contour value = −1.833000 
Maximum contour value = 0.586500
Contour interval = 0.163095

Fig. 14.15 Adaptive refinement of machine part. Contours of shear stress for original and final mesh.

Example 14.6: Aperforated gravity dam. The final example of this section shows a more
practical engineering problem of a perforated dam. This dam was analysed in the late 1960s
during its construction. The problem was revisited to choose a suitable mesh of quadratic
triangles. Figure 14.16(a) shows the mesh chosen. Despite the high order of elements
the error is quite high, being around 17%. One stage of adaptive refinement reaches the
specified value of 5% error in energy norm. As we have seen in previous examples such
convergence is not always possible but it is achieved here. We believe this typical example
shows the advantages of adaptivity and the ease with which a final good mesh can be arrived
at automatically.
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Mesh 1 (η = 16.5%, θ = 1.05, 728 DOF)

(a)

Mesh 2 (η = 4.9%, θ = 1.06, 1764 DOF)

(b)

Fig. 14.16 Quadratic triangle. Automatic mesh generation to achieve 5% accuracy. Plane strain analysis of a
dam with perforation, water loading only. (a) Original mesh. (b) Refined mesh.

14.3 p-refinement and hp-refinement

The use of non-uniform p-refinement is of course possible if done hierarchically and many
attempts have been made to do this efficiently. Some of this was done as early as 1983.24, 25

However, the general process is difficult and necessitates many assumptions about the
decrease of error. Certainly, the desired accuracy can seldom be obtained in a single step
and most of the work on this requires a sequence of steps. We illustrate such a refinement
process in Fig. 14.17 for the perforated dam problem presented in the previous section.

The same applies to hp-processes in which much work has been done during the last
two decades.8–18 We shall quote here only one particular attempt at hp-refinement which
seems to be particularly efficient and where the number of resolutions is quite small. The
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Fig. 14.17 Adaptive solution of perforated dam by p-refinement. (a) Stage three, 206 d.o.f. (b) Stage five,
365 d.o.f.

methodology was introduced by Zienkiewicz et al. in 198919 and we shall quote here some
of the procedures suggested.

The first procedure is that of pursuing an h-refinement with lower order elements (e.g.,
linear or quadratic elements) to obtain, say, a 5% accuracy, at which stage the energy norm
error is nearly uniformly distributed throughout all elements. From there a p-refinement
is applied in a uniform manner (i.e., the same p is used in all elements). This has very
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substantial computational advantages as programming is easy and can be readily accom-
plished, especially if hierarchical functions are used. The uniformp-refinement also allows
the global energy norm error to be approximately extrapolated by three consecutive solu-
tions.26

The convergence of the p-refinement finite element solution can be written as27

‖e‖ ≤ CN−β (14.11)

whereC and β are positive constants depending on the solution of the problem andN is the
number of degrees of freedom. We assume that for each refinement the error is, observing
Eq. (14.3),

‖u‖2 − ‖ûq‖2 = CN−2β
q (14.12)

with q = p − 2, p − 1, p for the three solutions. Eliminating the two constants C and β
from the above three equations, ‖u‖2 can be solved by

‖u‖2 − ‖ûp‖2

‖u‖2 − ‖ûp−1‖2
=
(‖u‖2 − ‖ûp−1‖2

‖u‖2 − ‖ûp−2‖2

) log(Np−1/Np)

log(Np−2/Np−1)

(14.13)

The global energy norm error for the final solution and indeed the error at any stage of
the p-refinement can be determined using

‖e‖2 = ‖u‖2 − ‖ûq‖2 (14.14)

q = 1, 2, . . . , p.

Example 14.7: h–p-refinement of L-shaped domain and short cantilever beam. Gen-
erally the high accuracy is gained rapidly by refinement, at least from examples performed
to date. In Figs 14.18 and 14.19 we show two examples for which we have previously used
an h-refinement. The first illustrates the L-shaped domain with one singularity and the
second the short cantilever beam with two strong singularities. Both problems are solved
first using h-refinement until target 5% accuracy is reached using quadratic triangles. At
this stage the p is increased to third and fourth order so that three solutions are available.
At the end of the third solution the error is less than 1%.

In the same paper19 an alternative procedure is suggested. This uses a very coarse mesh at
the outset followed by p-refinement. In this case the error at the element level is estimated
at the last stage of the p-refinement as the difference between the last two refinements
(e.g., the third and fourth order when the maximum p is 4). The global error estimator is
calculated by the extrapolation procedure used in the previous example. The element error
estimator is for order p − 1 rather than the highest order p. It is, however, very accurate.
The element error estimator is subsequently used to compute the optimal mesh size as
described in Sec. 14.2.1. Nearly optimal rate of convergence is expected to be achieved
because the optimal mesh is designed for p− 1 order elements. Details of this process will
be found again in the reference and will not be discussed further.

At no stage of the hp-refinements have we used here any of the estimators quoted in
the previous chapter. However, their use would make the optimal mesh design at order p
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Fig. 14.18 Solution of L-shaped domain by h–p-refinement (as defined in Example 14.4 of previous section)
using procedure one of reference 19.

possible, because the element error can be accurately estimated at order p. It will result in
an optimal hp-refinement.

The two examples we have quoted above are reanalysed using the alternative process
described above and presented in Figs 14.20 and 14.21. In both cases the final accuracy
shows an error of less than 1% but it is noteworthy that the total number of degrees of
freedom used with the second method is considerably less than that in the first and still
achieves a nearly optimal rate of convergence.

We can conclude this section on hp-refinement with a final example where a highly
singular crack domain is studied. Once again the second procedure is used showing in
Fig. 14.22 a remarkable rate of convergence.
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Fig. 14.19 Solution of short cantilever by h–p-adaptive refinement using procedure one of reference 19.

14.4 Concluding remarks

The methods of estimating errors and adaptive refinement which are described in this and
the previous chapter constitute a very important tool for practical application of finite
element methods. The range of applications is large and we have only touched here upon
the relatively simple range of linear elasticity and similar self-adjoint problems. A recent
survey shows many more areas of application28 and the reader is referred to this publication
for interesting details. At this stage we would like to reiterate that many different norms
or measures of error can be used and that for some problems the energy norm is not in fact
‘natural’. A good example of this is given by problems of high-speed gas flow, where very
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Fig. 14.20 Solution of L-shaped domain by h–p-adaptive refinement using alternative procedure of ref-
erence 19.

steep gradients (shocks) can develop. The formulation of such problems is complex, but
this is not necessary for the present argument.

For problems in fluid mechanics discussed in reference 29 and similarly for problems
of strain localization in plastic softening discussed in reference 30 no global norms can be
used effectively. In such situations it is convenient to base the refinement on the value of
the maximum curvatures developed by the solution of u. On occasion an elongation of
the elements will be used to refine the mesh appropriately. Figure 14.23 shows a typical
problem of shock capturing solved adaptively.
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Fig. 14.21 Solution of short cantilever by h–p-adaptive refinement using alternative procedure of ref-
erence 19.

14.5 Problems

14.1 Program development project: Implement a mesh enrichment algorithm (as described
in Sec. 14.2.1) in the solution system started in Problem 2.17 and extended in sub-
sequent exercises. Assume the problem is given by the quasi-harmonic equation
and modelled using 3-node triangular elements. (Hint: Adapt the mesh generation
program developed in Problems 5.17 and 5.18 to generate the mesh using the new
coordinates resulting from enrichment.)
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Fig. 14.22 Adaptive h–p-refinement for a singular crack using alternative procedure of reference 19.
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(a) Local mesh (b) Pressure coefficients

Fig. 14.23 Directional mesh refinement. Gas flow past a circular cylinder – Mach number 3. Third refinement
mesh 709 nodes (1348 elements).

14.2 Program development project: Implement an adaptive mesh regeneration algorithm
(as described in Sec.14.2) in the solution system started in Problem 2.17 and extended
in subsequent exercises. Assume the problem is given by the quasi-harmonic equation
and modelled using 3-node triangular elements.

14.3 Solve Example 2.3 using linear (3-node) elements. Follow the mesh refinement pro-
cedure described in Sec. 14.2 for adaptive h refinement and show that the optimal
rate of convergence of the finite element method can be attained when a prescribed
accuracy is achieved.

14.4 Solve Problem 2.3 using quadratic (6-node) elements. Follow the mesh refinement
procedure described in Sec. 14.2 for adaptive h refinement and show that the optimal
rate of convergence of the finite element method can be attained when prescribed
accuracy is achieved.

14.5 Program development project: Devise and implement in the solution system started
in Problem 2.17 an hp refinement strategy (see Sec. 14.3) to attain a prescribed accu-
racy. Assume the problem is given by the quasi-harmonic equation and hierarchical
triangular elements are used to define the finite element p-models.
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27. I. Babuška, B.A. Szabo, and I.N. Katz. The p version of the finite element method. SIAM J.
Numer. Anal., 18:512–545, 1981.
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15

Point-based and partition of unity
approximations. Extended finite

element methods

15.1 Introduction

In all of the preceding chapters, the finite element method was characterized by the sub-
division of the total domain of the problem into a set of subdomains called elements. The
union of such elements gave the total domain. The subdivision of the domain into such
components is of course laborious and difficult necessitating mesh generation as discussed
in Chapter 8. Further if adaptivity processes are used, generally large areas of the prob-
lem have to be remeshed. For this reason, much attention has been given to devising
approximation methods which are based on points without necessity of forming elements.

When we discussed the matter of generalized finite element processes in Chapter 3, we
noted that point collocation or in general finite differences did in fact satisfy the requirement
of the pointwise definition. However, the early finite differences were always based on a
regular arrangement of nodes which severely limited their applications. To overcome this
difficulty, since the late 1960s the proponents of the finite difference method have worked
on establishing the possibility of finite difference calculus being based on an arbitrary
disposition of collocation points. Here the work of Girault,1 Pavlin and Perrone,2 and Snell
et al.3 should be mentioned. However, a full realization of the possibilities was finally
offered by Liszka and Orkisz,4, 5 and Krok and Orkisz6 who introduced the use of least
squares methods to determine the appropriate shape functions.

At this stage Orkisz and coworkers realized not only that collocation methods could be
used but also the full finite element, weak formulation could be adopted by performing
integration. Questions of course arose as to what areas such integration should be applied.
Liszka and Orkisz4 suggested determining a ‘tributary area’ to each node providing these
nodes were triangulated as shown in Fig. 15.1(a). On the other hand in a somewhat differ-
ent context Nay and Utku7 also used the least squares approximation including triangular
vertices and points of other triangles placed outside a triangular element thus simply re-
turning to the finite element concept. We show this kind of approximation in Fig. 15.1(b).
Whichever form of tributary area was used the direct least squares approximation centred
at each node will lead to discontinuities of the function between the chosen integration
areas and thus will violate the rules which we have imposed on the finite element method.
However, it turns out that such rules could be violated and here the patch test will show that
convergence is still preserved.
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(a) (b)

Fig. 15.1 Patches of triangular elements and tributary areas.

However, the possibility of determining a completely compatible form of approximation
existed. This compatible form in which continuity of the function and of its slope if required
and even higher derivatives could be accomplished by the use of so-called moving least
squares methods. Such methods were originated in another context (Shepard,8 Lancaster
and Salkauskas9, 10). The use of such interpolation in the meshless approximation was first
suggested by Nayroles et al.11–13 This formulation was named by the authors as the diffuse
finite element method.

Belytschko and coworkers14, 15 realized the advantages offered by such an approach
especially when dealing with the development of cracks and other problems for which
standard elements presented difficulties. His so-called ‘element-free Galerkin’ method led
to many seminal publications.

An alternative use of moving least squares procedures, called hp-cloud methods, was
suggested by Duarte and Oden.16, 17 They introduced at the same time a concept of hierar-
chical forms by noting that all shape functions derived by least squares possess the partition
of unity property (viz. Chapter 4). Thus higher order interpolations could be added at each
node rather than each element, and the procedures of element-free Galerkin or of the diffuse
element method could be extended.

The use of all the above methods still, necessitates integration. Now, however, this in-
tegration need not be carried out over complex areas. A background grid for integration
purposes is introduced though internal boundaries are no longer required. Thus such nu-
merical integration on regular grids is used by Belytschko18, 19 and other approaches are
being explored. However, another interesting possibility was suggested by Babuška and
Melenk.20, 21

Babuška and Melenk use a partition of unity but now the first set of basic shape functions
is derived on a standard finite element, say the linear triangle. Most of the approximations
then arise through addition of hierarchical variables centred at nodes. We feel that this kind
of approach which necessitates very few elements for integration purposes combines well
the methodologies of ‘element-free’ and ‘standard element’ approximation procedures. We
shall demonstrate a few examples later for the application of such methods which seem to
present a very useful extension of the hierarchical approach.
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Incidentally the procedures based on local elements also have the additional advantage
that global functions can be introduced in addition to the basic ones to represent special
phenomena, for instance the presence of a singularity or waves. Both of these are important
and the idea presented by this can be exploited. This is especially useful in solution of certain
wave phenomena22 and Belytschko and coworkers have coined the term ‘XFEM’(extended
finite element method) and exploited the approach to insert cracks in domains.23–34

This chapter will conclude with reference to other similar procedures which we do not
have time to discuss.

15.2 Function approximation

We consider here a local set of n points in two (or three) dimensions defined by the coordi-
nates xk, yk, zk; k = 1, 2, . . . , n or simply xk = [xk, yk, zk] at which a set of data values of
the unknown function ũk are given. It is desired to fit a specified function form to the data
points. In order to make a fit it is necessary to:

1. Specify the form of the functions, p(x), to be used for the approximation. Here as
in the standard finite element method, it is essential to include low order polynomials
necessary to model all the derivatives contained in the differential equation or in the weak
form approximation being used. Certainly a complete linear and sometimes quadratic
polynomial will always be necessary.

2. Define the procedure for establishing the fit.

Here we will consider some least squares fit methods as the basis for performing the
fit. The functions will mostly be assumed to be polynomials; however, in addition other
functions can be considered if these are known to model well the solution expected (e.g.,
see reference 22 on use of ‘wave’ functions).

15.2.1 Least squares fit

We shall first consider a least squares fit scheme which minimizes the square of the distance
between n data values ũk defined at the points xk and an approximating function evaluated
at the same points û(xk). We assume the approximation function is given by a linearly
independent set of m polynomials pj (x)

û(x) =
m∑
j=1

pj (x)αj ≡ p(x)α (15.1)

in which α is a set of parameters to be determined. A least squares scheme is introduced
to perform the fit to a set of n data points and this is written as (see Chapter 13 for similar
operations). Minimize

J = 1
2

n∑
k=1

(û(xk)− ũk)
2 = min (15.2)
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where the minimization is to be performed with respect to the values ofα. Substituting the
values of û at the points xk we obtain

∂J

∂αj
=

n∑
k=1

∂ûk

∂αj
· (û(xk)− ũk) = 0; j = 1, 2, . . . , m (15.3)

where

ûk =
m∑
j=1

pj (xk)αj = pk α

in which pk ≡ p(xk). This set of equations may be written in a compact matrix form as

∂J

∂α
=

n∑
k=1

pT
k (pkα− ũk) = 0 . (15.4)

We can define the result of the sums as

H =
n∑
k=1

pT
kpk = PTP and g =

n∑
k=1

pT
k ũk = PTũ (15.5)

in which

P =

⎡
⎢⎢⎢⎣

p1

p2
...

pn

⎤
⎥⎥⎥⎦ and ũ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ũ1

ũ2
...

ũn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The above process yields the set of linear algebraic equations

Hα = g

which, provided H is non-singular, has the solution

α = H−1g (15.6)

We can now write the approximation for the function as

û = p(x)H−1PTũ = N(x)ũ

where N(x) are the appropriate shape or basis functions. In general

Ni (xj ) �= δij

as it always has been for standard finite element shape functions. However, the partition of
unity [viz. Eq. (4.4)] is always preserved provided p(x) contains a constant.

Example 15.1: Fit of a linear polynomial. To make the process clear we first consider a
dataset, ũk , defined at four points, xk , to which we desire to fit an approximation given by
a linear polynomial

û(x) = α1 + xα2 + yα3 = p(x)α
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If we consider the set of data defined by

xk = [−4.0 −1.0 0.0 6.0
]

yk = [ 5.0 −5.0 0.0 3.0
]

ũk = [−1.5 5.1 3.5 4.3
]

we can write the arrays as

P =

⎡
⎢⎢⎣

1 −4 5
1 −1 −5
1 0 0
1 6 3

⎤
⎥⎥⎦ and ũ =

⎧⎪⎪⎨
⎪⎪⎩

−1.5
5.1
3.5
4.3

⎫⎪⎪⎬
⎪⎪⎭

Using Eq. (15.5) we obtain the values

H = PTP =
⎡
⎣4 1 3

1 53 3
3 3 59

⎤
⎦ and g = PTũ =

⎧⎨
⎩

11.4
26.7

−20.1

⎫⎬
⎭

which from Eq. (15.6) has the solution α = [3.1241 , 0.4745 , −0.5237]T. The least
squares fit for these data points together with the difference between the data points and
the values of the fit at xk is given in Table 15.1.

15.2.2 Weighted least squares fit

Let us now assume that the point at the origin, x0 = 0 (k = 3 of Example 15.1), is the point
about which we are making the expansion and, therefore, the one where we would like to
have the best accuracy. Based on the linear approximation above we observe that the direct
least squares fit yields at the point in question the largest discrepancy. In order to improve
the fit we can modify our least squares fit for weighting the data in a way that emphasizes
the effect of distance from a chosen point. We can write such a weighted least squares fit
as the minimization of

J = 1
2

n∑
k=1

w(xk − x0) (û(xk)− ũk)
2 = min (15.7)

Table 15.1 Data and least squares fit for Example 15.1

k 1 2 3 4

xk −4 −1 0 6
yk 5 −5 0 3
ũk −1.500 5.100 3.500 4.300
ûk −1.392 5.268 3.124 4.400
Difference −0.108 −0.168 0.376 −0.100
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Fig. 15.2 Weighting function for Eq. (15.8): c = 0.125.

wherew is the weighting function. Many choices may be made for the shape of the function
w. If we assume that the weight function depends on a radial distance, r , from the chosen
point we have

w = w(r); r2 = (x − x0) · (x − x0)

One functional form for w(r) is the exponential Gauss function:

w(r) = exp(−cr2); c > 0 and r ≥ 0 (15.8)

For c = 0.125 this function has the shape shown in Fig. 15.2 and when used with the
previously given four data points yields the linear fit shown in Table 15.2.

15.2.3 Interpolation domains and shape functions

In what follows we shall invariably use the least squares procedure to interpolate the un-
known function in the vicinity of a particular node i. The first problem is that when
approximating to the function it is necessary to include a number of nodes equal at least

Table 15.2 Difference between weighted least
squares fit and data

xk −4 −1 0 6
yk 5 −5 0 3
ũk −1.500 5.100 3.500 4.300
ûk −0.880 5.247 3.487 5.246
Error −0.620 −0.147 0.013 −0.946
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to the number of parameters of α sought to represent a given polynomial. This number,
for instance, in two dimensions is three for linear polynomials and six for quadratic ones.
As always the number of nodal points has to be greater than or equal to the bare minimum
which is the number of parameters required. We should note in passing that it is always
possible to develop a singularity in the equation used for solvingα, i.e., Eq. (15.6) if the data
points lie for instance on a straight line in two or three dimensions. However, in general we
shall try to avoid such difficulties by reasonable spacing of nodes. The domain of influence
can well be defined by making sure that the weighting function is limited in extent so that
any point lying beyond a certain distance rm is weighted by zero and therefore is not taken
into account. Commonly used weighting functions are, for instance, in direction r , given
by

w(r) =
⎧⎨
⎩

exp(−cr2)− exp(−cr2
m)

1 − exp(−cr2
m)

; c > 0 and 0 ≤ r ≤ rm

0; r > rm

(15.9)

which represents a truncated Gauss function. Another alternative is to use a Hermitian
interpolation function as employed for the beam example in Sec. 2.9:

w(r) =

⎧⎪⎨
⎪⎩

1 − 3

(
r

rm

)2

+ 2

(
r

rm

)3

; 0 ≤ r ≤ rm

0; r > rm

(15.10)

or alternatively the function

w(r) =

⎧⎪⎨
⎪⎩

[
1 −

(
r

rm

)2
]n

; 0 ≤ r ≤ rm and n ≥ 2

0; r > rm

(15.11)

is simple and has been effectively used. For circular domains, or spherical ones in three
dimensions, a simple limitation of rm suffices as shown in Fig. 15.3(a). However, occa-
sionally use of rectangular or hexahedral subdomains is useful as also shown in that figure
and now of course the weighting function takes on a different form:

w(x, y) =
{
Xi(x)Yj (y); 0 ≤ x ≤ xm; 0 ≤ y ≤ ym; and i, j ≥ 2

0; x > xm, y > ym
(15.12)

with

Xi(x) =
[

1 −
(
x

xm

)2
]i

; Yj (y) =
[

1 −
(
y

ym

)2
]j

The above two possibilities are shown in Fig. 15.3. Extensions to three dimensions using
these methods is straightforward.

Clearly the domains defined by the weighting functions will overlap and it is necessary if
any of the integral procedures are used such as the Galerkin method to avoid such an overlap
by defining the areas of integration. We have suggested a couple of possible ideas in
Fig. 15.1 but other limitations are clearly possible. In Fig. 15.4, we show an approxima-
tion to a series of points sampled in one dimension. The weighting function here always
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Fig. 15.4 A one-dimensional approximation to a set of data points using parabolic interpolation and direct
least squares fit to adjacent points.

embraces three or four nodes. Limiting, however, the domains of their validity to a distance
which is close to each of the points provides a unique definition of interpolation. The reader
will observe that this interpolation is discontinuous. We have already pointed out such a
discontinuity in Chapter 3, but if strictly finite difference approximations are used this does
not matter. It can, however, have serious consequences if integral procedures are used and
for this reason it is convenient to introduce a modification to the definition of weighting
and method of calculation of the shape function which is given in the next section.
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15.3 Moving least squares approximations – restoration
of continuity of approximation

The method of moving least squares was introduced in the late 1960s by Shepard8 as a
means of generating a smooth surface interpolating between various specified point values.
The procedure was later extended for the same reasons by Lancaster and Salkauskas9, 10

to deal with very general surface generation problems but again it was not at that time
considered of importance in finite elements. Clearly in the present context the method
of moving least squares could be used to replace the local least squares we have so far
considered and make the approximation fully continuous.

In the moving least squares methods, the weighted least squares approximation is applied
in exactly the same manner as we have discussed in the preceding section but is established
for every point at which the interpolation is to be evaluated. The result of course completely
smooths the weighting functions used and it also presents smooth derivatives noting of
course that such derivatives will depend on the locally specified polynomial.

To describe the method, we again consider the problem of fitting an approximation to
a set of data items ũi , i = 1, . . . , n defined at the n points xi . We again assume the
approximating function is described by the relation

u(x) ≈ û(x) =
m∑
j=1

pj (x)αj = p(x)α (15.13)

where pj are a set of linearly independent (polynomial) functions and αj are unknown
quantities to be determined by the fit algorithm. A generalization to the weighted least
squares fit given by Eq. (15.7) may be defined for each point x in the domain by solving
the problem

J (x) = 1
2

n∑
k=1

wx(xk − x)[ũk − p(xk)α]2 = min (15.14)

In this form the weighting function is defined for every point in the domain and thus can
be considered as translating or moving as shown in Fig. 15.5. This produces a continuous
interpolation throughout the whole domain.

Figure 15.6 illustrates the problem previously presented in Fig. 15.4 now showing con-
tinuous interpolation. We should note that it is now no longer necessary to specify ‘domains
of influence’ as the shape functions are defined in the whole domain.

The main difficulty with this form is the generation of a moving weight function which
can change size continuously to match any given distribution of points xk with a limited
number of points entering each calculation. One expedient method to accomplish this is to
assume the function is symmetric so that

wx(xk − x) = wx(x − xk)

and use a weighting function associated with each data point xk as

wx(xk − x) = wk(x − xk)

The function to be minimized now becomes

J (x) = 1
2

n∑
k=1

wk(x − xk)[ũk − p(xk)α]2 = min (15.15)
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In this form the weighting function is fixed at a data point xk and evaluated at the point
x as shown in Fig. 15.7. Each weighting function may be defined such that

wx(r) =
{
fk(r), if |r| ≤ rk

0, otherwise
(15.16)
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Fig. 15.7 A ‘fixed’ weighting function approximation to the MLS method.

and the terms in the sum are zero whenever r2 = (x − xk)T(x − xk) and |r| > rk . The
parameter rk defines the radius of a ball around each point, xk; inside the ball the weighting
function is non-zero while outside the radius it is zero. Each point may have a different
weighting function and/or radius of the ball around its defining point. The weighting
function should be defined such that it is zero on the boundary of the ball. This class of
function may be denoted as C0

q (rk), where the superscript denotes the boundary value and
the subscript the highest derivative for which C0 continuity is achieved. Other options for
defining the weighting function are available as discussed in the previous section. The
solution to the least squares problem now leads to

α(x) = H−1(x)
n∑
j=1

gj (x)ũj = H−1(x)g(x)ũ (15.17)

where

H(x) =
n∑
k=1

wk(x − xk)p(xk)Tp(xk) (15.18a)

and

gj (x) = wj(x − xj )p(xj )T (15.18b)

In matrix form the arrays H(x) and g(x) may be written as

H(x) = PTw(�x)P

g(x) = PTw(�x)
(15.19)
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in which

w(�x) =

⎡
⎢⎢⎢⎣
w1(x − x1) 0 · · · · · ·

0 w2(x − x2) 0 · · ·
...

...
. . .

...

· · · · · · 0 wn(x − xn)

⎤
⎥⎥⎥⎦ (15.20)

The moving least squares algorithm produces solutions forαwhich depend continuously
on the point selected for each fit. The approximation for the function u(x) now may be
written as

û(x) =
n∑
j=1

Nj(x)ũj (15.21)

where
Nj(x) = p(x)H−1(x)gj (x) (15.22)

define interpolation functions for each data item ũj . We note that in general these ‘shape
functions’ do not possess the Kronecker delta property which we noted previously for finite
element methods – that is

Nj(xi ) �= δji (15.23)

It must be emphasized that all least squares approximations generally have values at the
defining points xj in which

ũj �= û(xj ) (15.24)

i.e., the local values of the approximating function do not fit the nodal unknown values.
Indeed û will be the approximation used in seeking solutions to differential equations and
boundary conditions and ũj are simply the unknown parameters defining this approxima-
tion.

The main drawback of the least squares approach is that the approximation rapidly
deteriorates if the number of points used, n, largely exceeds that of them polynomial terms
in p. This is reasonable since a least squares fit usually does not match the data points
exactly.

A moving least squares interpolation as defined by Eq. (15.21) can approximate globally
all the functions used to define p(x). To show this we consider the set of approximations

U =
n∑
j=1

Nj(x)Ũj (15.25)

where
U = [û1(x) û2(x) . . . ûn(x)

]T
(15.26a)

and
Ũj = [ũj1 ũj2 . . . ũjn

]T
(15.26b)

Next, assign to each ũjk the value of the polynomial pk(xj ) (i.e., the kth entry in p) so that

Ũj = p(xj ) (15.27)

Using the definition of the interpolation functions given by Eqs (15.21) and (15.22) we have

U =
n∑
j=1

Nj(x)p(xj ) =
n∑
j=1

p(x)H−1(x)gj (x)p(xj ) (15.28)
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which after substitution of the definition of gj (x) yields

U =
n∑
j=1

p(x)H−1(x)wj (x − xj )p(xj )Tp(xj )

= p(x)H−1
n∑
j=1

wj(x − xj )p(xj )Tp(xj )

= p(x)H−1H(x) = p(x)

Equation (15.29) shows that a moving least squares form can exactly interpolate any function
included as part of the definition of p(x). If polynomials are used to define the functions, the
interpolation always includes exact representations for each included polynomial. Inclusion
of the zero order polynomial (i.e., 1) implies that

n∑
j=1

Nj(x) = 1 (15.29)

This is called a partition of unity (provided it is true for all points, x, in the domain).35 It
is easy to recognize that this is the same requirement as applies to standard finite element
shape functions.

Derivatives of moving least squares interpolation functions may be constructed from the
representation

Nj(x) = p(x)vj (x) (15.30)

where
H(x)vj (x) = gj (x) (15.31)

For example, the first derivatives with respect to x is given by

∂Nj

∂x
= ∂p
∂x

vj + p
∂vj
∂x

(15.32a)

and
H
∂vj
∂x

+ ∂H
∂x

vj = ∂gj
∂x

(15.32b)

where
∂H
∂x

=
n∑
k=1

∂wk(x − xk)
∂x

p(xk)Tp(xk) (15.33a)

and
∂gj
∂x

= ∂wj (x − xj )
∂x

p(xj ) (15.33b)

Higher derivatives may be computed by repeating the above process to define the higher
derivatives of vj . An important finding from higher derivatives is the order at which the
interpolation becomes discontinuous between the interpolation subdomains. This will be
controlled by the continuity of the weight function only. For weight functions which are
C0
q continuous in each subdomain the interpolation will be continuous for all derivatives

up to order q. For the truncated Gauss function given by Eq. (15.9) only the approximated
function will be continuous in the domain, no matter how high the order used for the p
basis functions. On the other hand, use of the Hermitian interpolation given by Eq. (15.10)
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produces C1 continuous interpolation and use of Eq. (15.11) produces Cn continuous in-
terpolation. This generality can be utilized to construct approximations for high order
differential equations.

Nayroles et al. suggest that approximations ignoring the derivatives ofαmay be used to
define the derivatives of the interpolation functions.11–13 While this approximation simplifies
the construction of derivatives as it is no longer necessary to compute the derivatives for H
and gj , there is little additional effort required to compute the derivatives of the weighting
function. Furthermore, for a constant in p no derivatives are available. Consequently, there
is little to recommend the use of this approximation.

15.4 Hierarchical enhancement of moving least squares
expansions

The moving least squares approximation of the function u(x) was given in the previous
section as

û(x) =
n∑
j=1

Nj(x)ũj (15.34)

where Nj(x) defined the interpolation or shape functions based on linearly independent
functions prescribed by p(x) as given by Eq. (15.22). Here we shall restrict attention to
one-dimensional forms and employ polynomial functions to describe p(x) up to degree k.
Accordingly, we have

p(x) = [1 x x2 . . . xk
]

(15.35)

For this case we will denote the resulting interpolation functions using the notation Nk
j (x),

where j is associated with the location of the point where the parameter ũj is given and
k denotes the order of the polynomial approximating functions. Duarte and Oden suggest
using Legendre polynomials instead of the form given above;16 however, conceptually the
two are equivalent and we use the above form for simplicity. A hierarchical construction
based on Nk

j (x) can be established which increases the order of the complete polynomial
to degree p. The hierarchical interpolation is written as

û(x) =
n∑
j=1

⎛
⎜⎜⎜⎝Nk

j (x)ũj +Nk
j (x)

[
xk+1 xk+2 . . . xp

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃j1

b̃j2
...

b̃jq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠

=
n∑
j=1

Nk
j (x)

(
ũj + q(x)b̃j

) =
n∑
j=1

Nk
j (x)

[
1 q(x)

]{ũj
b̃j

}

where q = p− k and b̃jm, m = 1, . . . , q, are additional parameters for the approximation.
Derivatives of the interpolation function may be constructed using the method described
by Eqs (15.30)–(15.33b).

The advantage of the above method lies in the reduced cost of computing the interpolation
function Nk

j (x) compared to that required to compute the p-order interpolations Np
j (x).
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Shepard interpolation
For example, use of the functions N0

j (x), which are called Shepard interpolations,8 leads
to a scalar matrix H which is trivial to invert to define the N0

j . Specifically, the Shepard
interpolations are

N0
j (x) = H−1(x)gj (x) (15.36)

where

H(x) =
n∑
k=1

wk(x − xk) (15.37a)

and
gj (x) = wj(x − xj ) (15.37b)

The fact that the hierarchical interpolations include polynomials up to order p is easy to
demonstrate. Based on previous results from standard moving least squares the interpolation
with b̃j = 0 contains all the polynomials up to degree k. Higher degree polynomials may
be constructed from

û(x) =
n∑
j=1

⎛
⎜⎜⎜⎝Nk

j (x)ũj +Nk
j (x)

[
xk+1 xk+2 . . . xp

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃j1

b̃j2
...

b̃jq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ (15.38)

by setting all ũj to zero and for each interpolation term setting one of the b̃jk to unity with
the remaining values set to zero. For example, setting b̃j1 to unity results in the expansion

û(x) =
n∑
j=1

Nk
j (x)x

k+1 = xk+1 (15.39)

This result requires only the partition of unity property

n∑
j=1

Nk
j (x) = 1 (15.40)

The remaining polynomials are obtained by setting the other values of b̃jk to unity one at a
time. We note further that the same order approximation is obtained using k = 0, 1 or p.16

The above hierarchical form has parameters which do not relate to approximate values of
the interpolation function. For the case where k = 0 (i.e., Shepard interpolation), Babuška
and Melenk36 suggest an alternate expression be used in which q in Eq. (15.38) is taken as[
1 x x2 . . . xp

]
and the interpolation written as

û(x) =
n∑
j=1

N0
j (x)

(
p∑
k=0

l
p
k (x)ũjk

)
(15.41)

In this form the lpk (x) are Lagrange interpolation polynomials (e.g., see Sec. 4.5) and ũjk are
parameters with dimensions of u for the j th term at point xk of the Lagrange interpolation.
The above result follows since Lagrange interpolation polynomials have the property

lk(xi) = δki =
{

1, if k = i

0, otherwise
(15.42)
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We should also note that options other than polynomials may be used for the q(x). Thus,
for any function qi(x) we can set the associated b̃j i to unity (with all others and ũj set to
zero) and obtain

û(x) =
n∑
j=1

Nk
j (x)qi(x) = qi(x) (15.43)

Again the only requirement is that

n∑
j=1

Nk
j (x) = 1

Thus, for any basic functions satisfying the partition of unity a hierarchical enrichment may
be added using any type of functions. For example, if one knows that the structure of the
solution involves exponential functions in x it is possible to include them as members of
the q(x) functions and thus capture the essential part of the solution with just a few terms.
This is especially important for problems which involve solutions with different length
scales. A large length scale can be included in the basic functions, Nk

j (x), while other
smaller length scales may be included in the functions q(x). This will be illustrated further
in Volume 3 in the chapter dealing with waves.

The above discussion has been limited to functions in one space variable; however,
extensions to two and three dimensions can be easily constructed. In the process of this
extension we shall encounter some difficulties which we address in more detail in the
section on partition-of-unity finite element methods. Before doing this we explore in
the next section the direct use of least squares methods to solve differential equations using
collocation methods.

15.5 Point collocation – finite point methods

Finite difference methods based on Taylor formula expansions on regular grids can, as ex-
plained in Chapter 3, Sec. 3.14, always be considered as point collocation methods applied
to the differential equation. They have been used to solve partial differential equations for
many decades.37–39 Classical finite difference methods commonly restrict applications to
regular grids. This limits their use in obtaining accurate solutions to general engineering
problems which have curved (irregular) boundaries and/or multiple material interfaces. To
overcome the boundary approximation and interface problem curvilinear mapping may be
used to define the finite difference operators.40

The extension of the finite difference methods from regular grids to general arbitrary and
irregular grids or sets of points has received considerable attention (Girault,1 Pavlin and
Perrone,2 Snell et al.3). An excellent summary of the current state of the art may be found
in a recent paper by Orkisz40 who himself has contributed very much to the subject since
the late 1970s (Liszka and Orkisz4).

More recently such finite difference approximations on irregular grids have been pro-
posed by Batina41 in the context of aerodynamics and by Onãte et al.42–44 who introduced
the name ‘finite point method’. Here both elasticity and fluid mechanics problems have
been addressed.

In point collocation methods the set of differential equations, which here is taken in the
form described in Sec. 3.1, is used directly without the need to construct a weak form or
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perform domain integrals. Accordingly, we consider

A(u) = 0 (15.44a)

as a set of governing differential equations in a domain � subject to boundary conditions

B(u) = 0 (15.44b)

applied on the boundaries �. An approximation to the dependent variable u may be con-
structed using either a weighted or moving least squares approximation since at each collo-
cation point the methods become identical. In this we must first describe the (collocation)
points and the weighting function. The approximation is then constructed from Eq. (15.21)
by assuming a sufficient order polynomial for p in Eq. (15.13) such that all derivatives
appearing in Eqs (15.44a) and (15.44b) may be computed. Generally, it is advantageous
to use the same order of interpolation to approximate both the differential and boundary
conditions.40 The resulting discrete form for the differential equations at each collocation
point becomes

A(N(xi )ũi ) = 0; i = 1, 2, . . . , ne (15.45a)

and the discrete form for each boundary condition is

B(N(xi )ũi ) = 0; i = 1, 2, . . . , nb (15.45b)

The total number of equations must equal the number of collocation points selected. Ac-
cordingly,

ne + nb = n (15.46)

It would appear that little difference will exist between continuous approximations in-
volving moving least squares and discontinuous ones as in both locally the same polynomial
will be used. This may well account for the convergence of standard least squares approx-
imations which we have observed in Chapter 3 for discontinuous least squares forms but
in view of our previous remarks about differentiation, a slight difference will in fact exist
if moving least squares are used and in the work of Onãte et al.42–44 which we mentioned
before such moving least squares are adopted.

In addition to the choice for p(x), a key step in the approximation is the choice of the
weighting function for the least squares method and the domain over which the weighting
function is applied. In the work of Orkisz45 and Liszka46 two methods are used:

1. A ‘cross’ criterion in which the domain at a point is divided into quadrants in a cartesian
coordinate system originating at the ‘point’ where the equation is to be evaluated. The
domain is selected such that each quadrant contains a fixed number of points, nq . The
product of nq and the number of quadrants, q, must equal or exceed the number of poly-
nomial terms in p less one (the central node point). An example is shown in Fig. 15.8(a)
for a two-dimensional problem (q = 4 quadrants) and nq = 2.

2. A ‘Voronoi neighbour’ criterion in which the closest nodes are selected as shown for a
two-dimensional example in Fig. 15.8(b).

There are advantages and disadvantages to both approaches – namely, the cross criterion
leads to dependence on the orientation of the global coordinate axes while the Voronoi
method gives results which are sometimes too few in number to get appropriate order
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Fig. 15.8 Methods for selecting points. (a) Cross. (b) Voronoi.

approximations. The Voronoi method is, however, effective for use in Galerkin solution
methods or finite volume (subdomain collocation) methods in which only first derivatives
are needed.

The interested reader can consult reference 40 for examples of solutions obtained by this
approach. Additional results for finite point solutions may be found in work by Onãte et
al.42 and Batina.41

One advantage of considering moving least squares approximations instead of simple
fixed point weighted least squares is that approximations at points other than those used to
write the differential equations and boundary conditions are also continuously available.
Thus, it is possible to perform a full post-processing to obtain the contours of the solution
and its derivatives.

In the next part of this section we consider the application of the moving least squares
method to solve a second-order ordinary differential equation using point collocation.

Example 15.2: Collocation (point) solution of ordinary differential equations. We
consider the solution of ordinary differential equations using a point collocation method.
The differential equation in our examples is taken as

−a d2u

dx2
+ b

du

dx
+ cu− f (x) = 0 (15.47)

on the domain 0 < x < L with constant coefficients a, b, c, subject to the boundary
conditions u(0) = g1 and u(L) = g2. The domain is divided into an equally spaced
set of points located at xi, i = 1, . . . , n. The moving least squares approximation de-
scribed in Sec. 15.3 is used to write difference equations at each of the interior points (i.e.,
i = 2, . . . , n− 1). The boundary conditions are also written in terms of discrete approxi-
mations using the moving least squares approximation. Accordingly, for the approximate
solution using p-order polynomials to define the p(x) in the interpolations

û(x) =
n∑
j=1

N
p
i (x)ũi (15.48)
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we have the set of n equations in n unknowns:

n∑
i=1

N
p
i (x1)ũi = g1 (15.49a)

n∑
i=1

(
−a d2N

p
i

dx2
+ b

dNp
i

dx
+ cN

p
i

)
x=xj

ũi − f (xj ) = 0; j = 2, . . . , n− 1 (15.49b)

and
n∑
i=1

N
p
i (xn)ui = g2 (15.49c)

The above equations may be written compactly as:

Kũ + f = 0 (15.50)

where K is a square coefficient matrix, f is a load vector consisting of the entries from gi and
f (xj ), and ũ is the vector of unknown parameters defining the approximate solution û(x).
A unique solution to this set of equations requires K to be non-singular (i.e., rank(K) = n).
The rank of K depends both on the weighting function used to construct the least squares
approximation as well as the number of functions used to define the polynomials p. In order
to keep the least squares matrices as well conditioned as possible, a different approximation
is used at each node with

p(j)(x) = [1 x − xj (x − xj )
2 . . . (x − xj )

p] (15.51)

defining the interpolations associated with Np
j (x). The matrix K will be of correct rank

provided the weighting function can generate linearly independent equations.
The accurate approximation of second derivatives in the differential equation requires

the use of quadratic or higher order polynomials in p(x).40 In addition, the span of the
weighting function must be sufficient to keep the least squares matrix H non-singular at
every collocation point. Thus, the minimum span needed to define quadratic interpolations
of p(x) (i.e.,p = k = 2) must include at least three mesh points with non-zero contributions.
At the problem boundaries only half of the weighting function span will be used (e.g., the
right half at the left boundary). Consequently, for weighting functions which go smoothly to
zero at their boundary, a span larger than four mesh spaces is required. The span should not
be made too large, however, since the sparse structure of K will then be lost and overdiffuse
solutions may result.

Use of hierarchical interpolations reduces the required span of the weighting function.
For example, use of interpolations with k = 0 requires only a span at each point for which
the domain is just covered (since any span will include its defining point, xk , the H matrix
will always be non-singular). For a uniformly spaced set of points this is any span greater
than one mesh spacing.

For the example we use the weighting function described by Eq. (15.11) with a weight
span 4.4 (rm = 2.2h) times the largest adjacent mesh space for the quadratic interpolations
with k = p = 2 and a weight 2.01 times the mesh space for the hierarchical quadratic
interpolations with k = 0, p = 2.
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We consider the example of a string on an elastic foundation with the differential equation

−a d2u

dx2
+ cu+ f = 0; 0 < x < 1 (15.52)

with the boundary conditions u(0) = u(1) = 0. This is a special form of Eq. (15.47). The
parameters for solution are selected as

a = 0.01 c = 1 f = −1

The exact solution is given by

u(x) = 1 − cosh(mx)− (1 − cosh(m))
sinh(mx)

sinh(m)
, m =

(
c

a

)1/2

The problem is solved using 27 points and k = p = 2 producing the results shown in
Fig. 15.9.

The process was repeated using the hierarchical interpolations with k = 0 and p = 2
using nine points (which results in 27 parameters, the same as for the first case). The results
are shown in Fig. 15.10.

The hierarchical interpolation permits the solution to be obtained using as few as two
points. A solution with two points and interpolations with k = 0 and p = 3 and 5 is
shown in Figs 15.11 and 15.12, respectively. Note, however, that with the hierarchical
form additional collocation points have to be introduced to achieve a sufficient number of
equations. We show such collocation points in Fig. 15.10.
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Fig. 15.9 String on elastic foundation solution using MLS form based on nodes: 27 points, k = 2, p = 2.
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Fig. 15.10 String on elastic foundation hierarchic solution: 9 nodal points, k = 0, p = 2.
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Fig. 15.12 String on elastic foundation solution: 2 points, k = 0, p = 5.

15.6 Galerkin weighting and finite volume methods

15.6.1 Introduction

Point collocation methods are straightforward and quite easy to implement, the main task
being only the selection of the subdomain on which to perform the fit of the function from
which the derivatives are computed. Disadvantages arise, however, in the need to use high
order interpolations such that accurate derivatives of the order of the differential equation
may be computed. Further the treatment of boundaries and material interfaces present
difficulties.

An alternative, as we have discussed in Chapter 3, is the use of ‘weak’ or ‘variational’
forms which are equivalent to the differential equation. Approximations then require func-
tions which have lower order than in the differential equation. In addition, boundary condi-
tions often appear as ‘natural’ conditions in the weak form – especially for flux (derivative
or Neumann)-type boundary conditions. This advantage now is balanced by a need to
perform integration over the whole domain.

Here, we consider problems of the form given by (see Sec. 3.2)†∫
�

C(v)TD(u) d�+
∫
�

E(v)TF(u) d� = 0 (15.53)

in which the operators C, D, E and F contain lower derivatives than those occurring
in operators A and B given in Eqs (15.44a) and (15.44b), respectively. For example,

†We assume that the boundary terms are described such that v̄ = v.
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the solution of second order differential equations (such as those occurring in the quasi-
harmonic or linear elasticity equation) have differential operators for C to F with derivatives
no higher than first order.

The approximate solution to forms given by Eq. (15.53) may be achieved using moving
least squares and alternative methods for performing the domain integrals.

15.6.2 Subdomain collocation – finite volume method

A simple extension of the point collocation method is to use subdomains (elements) defined
by the Voronoi neighbour criterion. The integrals for each subdomain are approximated as
a constant evaluated at the originating point as

nd∑
i

C(vi )TD(ui )�i +
nb∑
i

E(vi )TF(ui )�i = 0 (15.54)

where nd + nb = n, the total number of unknown parameters appearing in the approxima-
tions of u and v.

The validity of the above approximation form can be established using patch tests (see
Chapter 9). This approach is often called subdomain collocation or the finite volume
method. This approach has been used extensively in constructing approximations for fluid
flow problems.47–53 It has also been employed with some success in the solution of problems
in structural mechanics.54

15.6.3 Galerkin methods – diffuse elements

Moving least squares approximations have been used with weak forms to construct Galerkin-
type approximations. The origin of this approach can be traced to the work of Liszka46

and Orkisz.40 Additional work, originally called the diffuse element approximation, was
presented in the early 1990s by Nayroles et al.11–13 Beginning in the mid-1990s the method
has been extensively developed and improved by Belytschko and coauthors under the name
element-free Galerkin.14, 15, 55, 56 A similar procedure, called ‘hp-clouds’, was also pre-
sented by Oden and Duarte.16, 17, 57 Each of the methods is also said to be ‘meshless’;
however, in order to implement a true Galerkin process it is necessary to carry out inte-
grations over the domain. What distinguishes each of the above processes is the manner
in which these integrations are carried out. In the element-free Galerkin method a back-
ground ‘grid’ is often used to define the integrals whereas in the hp-cloud method circular
subdomains are employed. Differing weights are also used as a means of generating the
moving least squares approximation. The interested reader is referred to the appropriate lit-
erature for more details. Another source to consult for implementation of the EFG method
is reference 19. Here we present only a simple implementation for solution of an ordinary
differential equation.

Example 15.3: Galerkin solution of ordinary differential equations. The moving least
squares approximation described in Sec. 15.3 is now used as a Galerkin method to solve
a second order ordinary differential equation. For an arbitrary function W(x) satisfying
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W(0) = W(L) = 0, a weak form for the differential equation may be deduced using the
procedures presented in Chapter 3. Accordingly, we obtain

∫ L

0

[
dW

dx
a

du

dx
+W

(
b

du

dx
+ cu− f (x)

)]
dx = 0 (15.55)

subject to the boundary conditions u(0) = g1 and u(L) = g2. Using a hierarchical moving
least squares form a p-order polynomial approximation to the dependent variable may be
written as

û(x) =
n∑
j=1

N0
j (x)q̄jp(x)ũ

p
j (15.56)

where
q̄jp = [1 x − xj (x − xj )

2 . . . (x − xj )
p] (15.57)

Note that in the above form we have used the representation

q̄jp(x)ũ
p
j = ũj + q(x)b̃j

The approximation to the weight function is similarly taken as

Ŵ (x) =
n∑
j=1

N0
j (x)q̄jp(x)W̃

p
j (15.58)

in which W̃p
j are arbitrary parameters satisfying W(0) = W(L) = 0. The approximation

yields the discrete problem

n∑
i=1

(W̃p
i )

T
n∑
j=1

{∫ L

0

[
d(q̄T

ipN
0
i )

dx
a

d(q̄jpN0
j )

dx
+ q̄T

ipN
0
i

(
b

d(q̄jpN0
j )

dx
+ cq̄jpN0

j

)]
dx

}
ũj

=
n∑
i=1

(W̃p
i )

T
∫ L

0
q̄T
ipN

0
i f (x) dx

(15.59)

Since Wp
i is arbitrary, the solution to the approximate weak form yields the set of equations

n∑
j=1

{∫ L

0

[
d(q̄T

ipN
0
i )

dx
a

d(q̄jpN0
j )

dx
+ q̄T

ipN
0
i

(
b

d(q̄jpN0
j )

dx
+ cq̄jpN0

j

)]
dx

}
ũj

=
∫ L

0
q̄T
ipN

0
i f (x) dx; i = 1, 2, . . . , n

(15.60)

The set of equations only needs to be modified to satisfy the essential boundary equations.
This is accomplished by replacing the equations corresponding to W1 = Wn = 0 by
ũ1 = g1 and ũn = g2.

The Galerkin form requires only first derivatives of the approximating functions as op-
posed to the second derivatives required for the point collocation method. This reduction,
however, is accompanied by a need to perform integrals over the domain. For weighting
functions given by Eq. (15.11) all functions entering the approximation are polynomial
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and rational polynomial expressions, thus, a closed form evaluation is impractical. Ac-
cordingly, we evaluate integrals using Gauss and Gauss–Lobatto quadrature over each
interval generated by the basis points in the moving least squares representation (i.e., xj for
j = 1, 2, . . . , n). As an example of the type of solutions possible we consider the string on
elastic foundation problem given in the previous section. For the parameters a = 0.001,
c = 1 with loading f = −1 and zero boundary conditions a Galerkin solution using 3- and
4-point Gauss quadrature and 4- and 5-point Gauss–Lobatto quadrature is shown in Figs
15.13–15.16. A mesh consisting of nine equally spaced points is used to define the intervals
for the solution and quadrature. The weight function is generated for k = 0, p = 2 with a
span of 2.1 mesh points.

Based upon this elementary example it is evident that the answers for a 9-point mesh
depend on accurate evaluation of integrals to produce high-quality answers.

15.7 Use of hierarchic and special functions based on
standard finite elements satisfying the partition of
unity requirement

15.7.1 Introduction

In Sec. 15.4, we discussed the possibility of introducing hierarchical variables to shape
functions based on moving least squares interpolations. However, a simpler approach to
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Fig. 15.13 String on elastic foundation solution: 3-point Gauss quadrature.
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Fig. 15.14 String on elastic foundation solution: 4-point Gauss quadrature.
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Fig. 15.16 String on elastic foundation solution: 5-point Gauss–Lobatto quadrature.

hierarchical forms and indeed to extensions by other functions can be based on simple finite
element shape functions.

One important application of the partition of unity method starts from a set of finite
element basis functions, Ni(x). An approximation to u(x) is now given by

u(x) ≈ û(x) =
∑
i

Ni(x)

[
ũi +

∑
α

q(i)α (x)bαi

]
(15.61)

where Ni(x) is the conventional (possibly isoparametric) finite element shape function at
node i, q(i)α are global functions associated with node i, and ũi , and bαi are parameters
associated with the added global hierarchical functions. We must note that as before ũi will
not represent a local value of the function unless the function qi become zero at the node i.

Here we assume that conventional shape functions which satisfy the partition of unity
condition ∑

i

Ni = 1

are used. Thus, the above form is a hierarchic finite element method based on the partition of
unity.21, 58, 59 We note in particular that the function q(i)α may be different for each node and
thus the form may be effectively used in an adaptive finite element procedure as described
in Chapter 14.

Equation (15.61) provides options for a wide choice of functions for q(i)α :

1. Polynomial functions. In this case the method becomes an alternative hierarchical
scheme to that presented in Part 2 of Chapter 4.
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2. Harmonic ‘wave’ functions. This is a multiscale method and will be discussed in detail
in Volume 3.

3. Singular functions. These can be used to introduce re-entrant corner or singular load
effects in elliptic problems (e.g., heat conduction or elasticity forms).

Derivatives of Eq. (15.61) are computed directly as

∂û

∂xk
=
∑
i

[
∂Ni

∂xk
ũi +

∑
α

(
∂Ni

∂xk
q(i)α +Ni

q(i)α

∂xk

)
bαi

]
(15.62)

The reader will note that the narrow band structure of the standard finite element method
will always be maintained as it is determined by the connectivity of Ni . Note also that
the standard element on which the shape functions Ni were generated can be used for
all subsequent integrations. Such a formulation is very easy to fit into any finite element
program.

15.7.2 Polynomial hierarchical method

To give more details of the above hierarchical finite element method we first consider the
one-dimensional approximation in a 2-noded element where

û = N1
[
ũ1 + q(1)b1

]+N2
[
ũ2 + q(2)b2

]
(15.63)

in which
N1 = x2 − x

x2 − x1
; N2 = x − x1

x2 − x1

and

q(1) = q(2) = [xk, xk+1, · · ·]
bi = [bi1, bi2, · · ·]T (15.64)

We recall that N1 +N2 = 1 and N1x1 +N2x2 = x.
Investigation of the term xk in the approximation

û = N1(x)
[
ũ1 + xkbk1

]+N2(x)
[
ũ2 + xkbk2

]
(15.65)

we observe that a linear dependence with the usual finite element approximation occurs
when ũi = xi b̃0 and k = 1 with b11 = b12 = b̃1. In this case Eq. (15.65) becomes

û = [N1x1 +N2x2] b̃0 + [N1 +N2] xb̃1

= xb̃0 + xb̃1

In one dimension linear dependence can be avoided by setting k to 2 in Eqs (15.63) and
(15.64). However, in two- and three-dimensional problems the linear dependence cannot
be completely avoided, and we address this next.58, 60

An approximation over two-dimensional triangles may be expressed as

u(x, y) ≈ û(x, y) =
3∑
i=1

Li
[
ũi + q(i)bi

]
(15.66)
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whereLi are the area coordinates defined in Chapter 4. We consider the case where complete
quadratic functions are added as

q(i) = [x2, xy, y2
]

(15.67)

to give a complete second-order polynomial approximation for u. Although this gives a
complete second-order polynomial approximation there are two ways in which the cubic
term x2y can be obtained.

1. The first sets
ũi = bi1 = bi3 = 0 and bi2 = xiα̃

giving

û =
3∑
i=1

Li · [xy] · xiα̃ = x2yα̃

2. The second alternative to compute the same term sets

ũi = bi2 = bi3 = 0 and bi1 = yiα̃

giving

û =
3∑
i=1

Li · [x2] · yiα̃ = x2yα̃

A similar construction may be made for the polynomial term xy2.
An alternative is to construct the interpolation to depend on each node as

q(i) = [(x − xi)
2 (x − xi)(y − yi) (y − yi)

2
]

(15.68)

This form, while conceptually the same as the original formulation, appears to be better
conditioned and also avoids some of the problems of linear dependency.60 In Sec. 15.7.4 we
will discuss in more detail a methodology to deal with the problem of linear dependency;
however, before doing so we illustrate the use of the hierarchical finite element method by
an application to two-dimensional problems in linear elasticity.

15.7.3 Application to linear elasticity

In the previous section the form for polynomial interpolation in two dimensions was given.
Here we consider the use of the interpolation to model the behaviour of problems in linear
elasticity. For simplicity only the displacement model for plane strain as discussed in
Chapters 2 and 6 is considered; however, the use of the hierarchic interpolations can easily
be extended to other forms and to mixed models.

For a displacement model the finite element arrays may be computed using the formula-
tion given in Chapter 6. For two-dimensional plane strain problems, the strain–displacement
relations may be written in matrix form as

ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂v

∂y

∂u

∂y
+ ∂v

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.69)
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Inserting the interpolations for u and v given by Eq. (15.61) and using Eq. (15.62) to
compute derivatives, the strain–displacement relations become

ε =
N∑
i=1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Nk
i

∂x
0

0
∂Nk

i

∂y
∂Nk

i

∂y

∂Nk
i

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

[
ũi
ṽi

]

+
N∑
i=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Nk

i

∂x
qki +Nk

i

∂qki
∂x

)
0

0

(
∂Nk

i

∂y
qki +Nk

i

∂qki
∂y

)
(
∂Nk

i

∂y
qki +Nk

i

∂qki
∂y

) (
∂Nk

i

∂x
qki +Nk

i

∂qki
∂x

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
b̃ui
b̃vi

]

whereN is the number of nodes for an element. The first term is identical to the usual finite
element strain–displacement matrices [see Eq. (6.57)] and the second term has identical
structure to the usual arrays. Thus, the development of all element arrays follows standard
procedures.

Example 15.4: A quadratic triangular element. For a triangular element with linear
interpolation the shape functions and quadratic polynomial hierarchic terms are given by
Ni = Li and Eq. (15.68), respectively. Using isoparametric concepts the coordinates are
given by

x =
3∑
i=1

N1
i x̃i =

3∑
i=1

Li x̃i (15.70)

and are used to construct all polynomials appearing in hierarchical form (15.68).
A set of patch tests is first performed to assess the stability and consistency of the above

hierarchic form. The set consists of one-, two-, four-, and eight-element patches as shown
in Fig. 15.17. First, we perform a stability assessment by determining the number of zero
eigenvalues for each patch. The results for hierarchical interpolation are shown in Table
15.3.

The eigenproblem assessment reveals that the hierarchic interpolation has excess zero
eigenvalues (i.e., spurious zero energy modes) only for meshes consisting of one or two
elements. Furthermore, only two element meshes in which one side is a straight line through
both elements have excess zero values. Once the mesh has no straight intersections the
number of zero modes becomes correct (e.g., contain only the three rigid body modes).

Consistency tests verify that all meshes contain terms of up to quadratic polynomial order
– thus also validating the correctness of the coding.

As a simple test problem using the hierarchical finite element method we consider a finite
width strip containing a circular hole with diameter half the width of the strip. The strip is
subjected to axial extension in the vertical direction and, due to symmetry of the loading
and geometry, only one quadrant is discretized as shown in Figs 15.18 and 15.19.

The meshes in Fig. 15.18 employ the hierarchical interpolation considered above; whereas
those in Fig. 15.19 use standard 6-node isoparametric quadratic triangles with two degrees
of freedom per node (i.e., u and v). The material is taken as linear elastic with E = 1000
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(a) One element (b) Two element, a 

(c) Two element, b (d) Two element, c 

(e) Four element (f) Eight element

Fig. 15.17 Patches for eigenproblem assessment.

Table 15.3 Triangle element patch tests: number of eigenvalues,
minimum non-zero value, and maximum value (k = 2) – quadratic
hierarchical terms

Mesh No. zero Min. value Max. value

1 7 4.7340E + 01 2.0560E + 06
2a 5 4.0689E + 01 2.1543E + 05
2b 5 4.1971E + 02 2.2648E + 05
2c 3 1.5728E + 02 2.3883E + 06
4 3 1.0446E + 02 2.9027E + 05
8 3 9.5560E + 01 3.4813E + 05

and ν = 0.25. The half-width of the strip is 10 units and the half-height is 18 units. The
hole has radius 5.

The problem size and computed energy (which indicates solution accuracy) are shown
in Table 15.4 for the hierarchical method, in Table 15.5 for the 6-node isoparametric for-
mulation and in Table 15.6 for 3-node linear triangular elements.

The 6-node isoparametric method gives overall the best accuracy; however, the hierar-
chical element is considerably better than the 3-node triangular element and offers great
advantages when used in adaptive analysis.60
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(a) 28 elements (b) 112 elements

Fig. 15.18 Hierarchic elements: tension strip.

(a) 28 elements (b) 112 elements

Fig. 15.19 Isoparametric 6-noded elements: tension strip.
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Table 15.4 Hierarchical element. Boundary
segments straight

Nodes Elements Equations Energy

30 28 156 131.7088
85 112 537 127.8260

279 448 1971 126.7641
1003 1792 7527 126.5908

Table 15.5 Isoparametric element. Boundary
segments have curved sides

Nodes Elements Equations Energy

30 28 129 127.3350
279 112 483 126.6483

1003 448 1863 126.5661
3795 1792 7311 126.5593

Table 15.6 Linear triangular element

Nodes Elements Equations Energy

30 28 36 137.652
85 112 129 131.065

279 448 483 128.008
1003 1792 1863 126.958
3795 7168 7311 126.662

15.7.4 Solution of forms with linearly dependent equations

A typical problem for a steady-state analysis in which the algebraic equations are generated
from the hierarchical finite element form described above, such as given by Eqs (15.66)
and (15.67), produces algebraic equations in the standard form, i.e.,

Kã + f = 0 (15.71)

where the parameters ã include both nodal ũi and hierarchical parameters bi . We assume
that occasionally the ‘stiffness matrix’ K and ‘force’ vector f include equations which are
linearly dependent with other equations in the system and, thus, K can be singular.

If the system is solved by a direct elimination scheme (e.g., as described in Chapter 2 or
in books on linear algebra such as references 61 or 62) it is possible to set a tolerance for
the pivot below which an equation is assumed to be linearly dependent and can be omitted
from the calculations (e.g., see references 63 and 64).

An alternative to the above is to perturb Eq. (15.71) to

[K + εDK ]�ãk = f − Kãk (15.72)

where DK are diagonal entries of K, ε is a specified value and

ãk+1 = ãk +�ãk (15.73)
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is used to define an iterative strategy. An initial guess of zero may be used to start the solution
process. Certainly a choice of a small value for ε (e.g., 10−6) leads to rapid convergence.60

15.8 Concluding remarks

In this chapter we have considered a number of methods which eliminate or reduce our de-
pendence on meshing the total domain. There are a number of other approaches having the
same aim which have been pursued with success. These include the smooth particle hydro-
dynamics (SPH) method (Lucy,65 Gingold and Monaghan,66 Benz67) and the reproducing
kernel (RPK) method (Liu et al.68, 69) applied to problems in solid and fluid mechanics.
Bonet and coworkers70 improve the method of SPH and show its possibilities. Another
approach has recently been introduced by Yagawa.71, 72 These are not described here and
the reader is referred to the literature for details.

15.9 Problems

15.1 Data for a distributed loading to be applied to an analysis is tabulated in Table 15.7.
The data is to be fit using the least squares analysis described in Sec. 15.2.1 in which

p(x) = [1 x x2 x3 x4
]

Determine and plot the solution obtained with this data.
15.2 Data for a distributed loading to be applied to an analysis is tabulated in Table 15.7.

The data is to be fit using the moving least squares analysis described in Sec.15.3. Use
the weight function given by Eq. (15.11) with rm = 2 and a Shepard approximation,

p(x) = 1

Write a MATLAB program to compute the fit at intervals on x of 0.1 units. Plot the
solution obtained.

15.3 Data for a distributed loading to be applied to an analysis is tabulated in Table 15.7.
The data is to be fit using the moving least squares analysis described in Sec.15.3. Use
the weight function given by Eq. (15.11) with rm = 2 and a linear approximation,

p(x) = [1 x − xj
]

for xj − rm < x < xj + rm

Write a MATLAB program to compute the fit at intervals on x of 0.1 units. Plot the
solution obtained.

15.4 Solve the differential equation

− d2u

dx2
+ u+ f = 0; 0 < x < 1

Table 15.7 Data for force in Problems 15.1 to 15.3

k 1 2 3 4 5 6 7 8

xk 0.0 1.0 2.0 3.5 5.0 6.5 8.3 10.0
f̃ k 6.0 3.0 1.6 −1.4 −1.3 0.3 0.9 0.0
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where the boundary conditions are u(0) = u(1) = 1 and f is a concentrated unit load
at x = 0.4 units.

Write a MATLAB program to solve the problem. Use a moving least square method
with Shepard interpolation and the point collocation method described in Sec. 15.5.
Let the points be located at 0.2 intervals (6 points). Repeat the solution using points
spaced at 0.1 intervals (11 points). Plot the two solutions and comment on the be-
haviour obtained.

15.5 Solve the differential equation

− d2u

dx2
+ u+ f = 0; 0 < x < 1

where the boundary conditions are u(0) = u(1) = 1 and f is a concentrated unit load
at x = 0.4 units.

Write a MATLAB program to solve the problem. Use a moving least square method
with Shepard interpolation and the Galerkin method described in Sec. 15.6. Let the
points be located at 0.2 intervals (6 points). Repeat the solution using points spaced
at 0.1 intervals (11 points). Plot the two solutions and comment on the behaviour
obtained.

15.6 Repeat Problem 15.4 using a hierarchical interpolation with

q(j)(x) = x − xj

where xj is the coordinate of the point.
15.7 Repeat Problem 15.5 using a hierarchical interpolation with

q(j)(x) = x − xj

where xj is the coordinate of the point.
15.8 In the moving least squares approximation, the shape functionNj(x) of Eq. (15.22) is

derived by minimization of the function J (x) in Eq. (15.14). Derive a shape function
for the moving least squares approximation by minimization of the function

J (x) = 1
2

∫
�

w(x − y)[u(y)− p(y)α]2dy = min

15.9 In the least square fit and the construction of shape functions for the moving least
squares approximation the matrix H in Eqs (15.5) and (15.18a) may be singular for
a given set of points if the monomials used in the polynomial basis are not chosen
properly. Devise an algorithm that can choose the terms used in the polynomial basis
automatically so that matrix H is always non-singular.
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16

The time dimension –
semi-discretization of field and

dynamic problems and analytical
solution procedures

16.1 Introduction

In most of the problems considered so far in this text conditions that do not vary with time
were generally assumed. There is little difficulty in extending the finite element idealization
to situations that are time dependent as indicated briefly in Chapters 3 and 7.

The range of practical problems in which the time dimension has to be considered is great.
Transient heat conduction, wave transmission in fluids and dynamic behaviour of structures
are typical examples. While it is usual to consider these various problems separately
– sometimes classifying them according to the mathematical structure of the governing
equations as ‘parabolic’ or ‘hyperbolic’1 – we shall group them into one category to show
that the formulation is identical.

In the first part of this chapter we shall formulate, by a simple extension of the methods
used so far, matrix differential equations governing such problems for a variety of physical
situations. Here a finite element discretization in the space dimension only will be used
and a semi-discretization process followed (see Chapter 3). In the remainder of this chapter
various analytical procedures of the solution for the resulting ordinary linear differential
equation system will be dealt with. These form the basic arsenal of steady-state and transient
analysis.

Chapter 17 will be devoted to the discretization of the time domain itself.

16.2 Direct formulation of time-dependent problems
with spatial finite element subdivision

16.2.1 The ‘quasi-harmonic’ equation with time differential

In many physical problems the quasi-harmonic equation takes the form in which time
derivatives of the unknown function φ occur. In the three-dimensional case typically we
might have [viz. Eq. (7.6)]
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− ∂

∂x

(
k
∂φ

∂x

)
− ∂

∂y

(
k
∂φ

∂y

)
− ∂

∂z

(
k
∂φ

∂z

)
+
(
Q̄+ µ

∂φ

∂t
+ ρ

∂2φ

∂t2

)
= 0 (16.1)

In the above, quite generally, all the parameters may be prescribed functions of time, or in
non-linear cases of φ, as well as of space x, i.e.,

k = k(x, φ, t) Q̄ = Q̄(x, φ, t) etc. (16.2)

If a situation at a particular instant of time is considered, the time derivatives of φ and all
the parameters can be treated as prescribed functions of space coordinates. Thus, at that
instant the problem is precisely identified with those treated in Chapter 7 if the whole of
the quantity in the last parentheses of Eq. (16.1) is identified as the source term Q.

The finite element discretization of this in terms of space elements has already been fully
discussed and we found that with the prescription

φ =
∑

Naφ̃a = Nũ with N = N(x, y, z) and ũ = ũ(t) (16.3)

for each element, the standard form of assembled equations†
Kũ + f = 0 (16.4)

was obtained. Element contributions to the above matrices are defined in Chapter 7 and
need not be repeated here except for that representing the ‘load’ term due to Q. This is
given by

f =
∫
�

NTQ d� (16.5)

Replacing Q by the last bracketed term of Eq. (16.1) we have

f =
∫
�

NT

(
Q̄+ µ

∂φ

∂t
+ ρ

∂2φ

∂t2

)
d� (16.6)

However, from Eq. (16.3) it is noted that φ is approximated in terms of the nodal parameters
ũ. On substitution of this approximation we have

f =
∫
�

NTQ̄ d�+
(∫

�

NTµN d�

)
dũ
dt

+
(∫

�

NTρ N d�

)
d2ũ
dt2

(16.7)

and on expanding Eq. (16.4) in its final assembled form we get the following matrix differ-
ential equation:

M ¨̃u + C ˙̃u + Kũ + f = 0

˙̃u ≡ dũ
dt

¨̃u ≡ d2ũ
dt2

(16.8)

in which all the matrices are assembled from element submatrices in the standard manner
with submatrices Ke and f e still given by relations (7.20) in Chapter 7 and

Ceab =
∫
�

NaµNb d� and Me
ab =

∫
�

Naρ Nb d� (16.9)

†We have replaced the matrix H of Chapter 7 by K and φ̃ by ũ to facilitate later comparison with other transient
equations.
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Once again these matrices are symmetric as seen from the above relations.
Boundary conditions imposed at any time instant are treated in the standard manner.
The variety of physical problems governed by Eq. (16.1) is so large that a comprehensive

discussion of them is beyond the scope of this book. A few typical examples will, however,
be quoted.

Equation (16.1) with ρ = 0
This is the standard transient heat conduction equation1, 2 which has been discussed in the
finite element context in Sec. 7.4 and by several authors.3–6 This same equation is applicable
in other physical situations – one of these being the soil consolidation equations7 associated
with transient seepage forms.8

Equation (16.1) with µ = 0
Now the relationship becomes the famous Helmholz wave equation governing a wide range
of physical phenomena. Electromagnetic waves,9 fluid surface waves10 and compression
waves11 are but a few cases to which the finite element process has been applied.

Equation (16.1) with µ �= ρ �= 0
This damped wave equation is of yet more general applicability and has particular signifi-
cance in fluid mechanics (wave) problems.

The reader will recognize that what we have done here is simply an application of
the process of partial discretization described in Sec. 3.5. It is convenient, however, to
perform the operations in the manner suggested above as all the matrices and discretization
expressions obtained from steady-state analysis are immediately available.

16.2.2 Dynamic behaviour of elastic structures with linear damping

While in the previous section we have been concerned with, apparently, a purely mathe-
matical problem, identical reasoning can be applied directly to the wide class of dynamic
behaviour of elastic structures following precisely the general lines of Chapters 2 and 6.

When displacements of an elastic body vary with time two sets of additional forces are
called into play. The first is the inertia force, which for an acceleration characterized by ü
can be replaced by its static equivalent −ρü using the well-known d’Alembert principle.
This is a force with components in directions identical to those of the displacement u and
(generally) given per unit of volume. In this context ρ is simply the mass per unit volume.

The second force is that due to (frictional) resistances opposing the motion. These may be
due to microstructure movements, air resistance, etc., and are often related in a non-linear
way to the velocity u̇. For simplicity of treatment, however, only a linear viscous-type
resistance will be considered, resulting again in unit volume forces in an equivalent static
problem of magnitude −µu̇. In the above µ is a set of viscosity parameters which can
presumably be given numerical values.12

The equivalent static problem, at any instant of time, is now discretized precisely in the
manner of Chapters 2 and 6, but replacing the distributed body force b by its equivalent

b̄ − ρü − µu̇

The element (nodal) forces given by Eq. (6.62) now become (excluding initial stress and
strain contributions)
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f e = −
∫
�e

NTb d� = −
∫
�e

NTb̄ d�+
∫
�e

NTρü d�+
∫
�e

NTµu̇ d� (16.10)

in which the first force is that due to an external distributed body load and need not be
considered further.

Substituting Eq. (16.10) into the general equilibrium equations we obtain finally, on
assembly, the following matrix differential equation:

M ¨̃u + C ˙̃u + Kũ + f = 0 (16.11)

in which K and f are assembled stiffness and force matrices obtained by the usual addition
of element stiffness coefficients and of element forces due to external specified loads,
initial stresses, etc., in the manner fully described before. The new matrices C and M are
assembled by the usual rule from element submatrices given by

Ce
ab =

∫
�e

NT
aµNb d� (16.12a)

and
Me
ab =

∫
�e

NT
a ρ Nb d� (16.12b)

The matrix Me is known as the element mass matrix and the assembled matrix M as the
system mass matrix. Similarly, the matrix Ce is known as the element damping matrix and
the assembled matrix C as the system damping matrix.

It is of interest to note that in early attempts to deal with dynamic problems of this
nature the mass of the elements was usually arbitrarily ‘lumped’ at nodes, always resulting
in a diagonal mass matrix even if no actual concentrated masses existed. The fact that
such a procedure was, in fact, unnecessary and apparently inconsistent was simultaneously
recognized by Archer13 and independently by Leckie and Lindberg14 in 1963. The general
presentation of the results given in Eq. (16.12b) is due to Zienkiewicz and Cheung.15 The
name consistent mass matrix has been coined for the mass matrix defined here, a term
which may be considered to be unnecessary since it is the logical and natural consequence
of the discretization process. By analogy the matrices Ce and C may be called consistent
damping matrices.†

For many computational processes the lumped mass matrix is, however, more convenient
and economical. Many practitioners are today using such matrices exclusively – sometimes
showing good accuracy. While with simple elements a physically obvious methodology
of lumping is easy to devise, this is not the case with higher order elements and we shall
return to the process of ‘lumping’ later.

Determination of the damping matrix C is in practice difficult as knowledge of the
viscous matrix µ is lacking. It is often assumed, therefore, that the damping matrix is a
linear combination of stiffness and mass matrices, i.e.,

C = αM + βK (16.13)

Here the parameters α and β are determined experimentally.12, 16 Such damping is known
as ‘Rayleigh damping’ and has certain mathematical advantages which we shall discuss
later. On occasion C may be completely specified and such approximation devices are not
necessary.

† For simplicity we shall only consider distributed inertia – concentrated damping forces being a limiting case.
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16.2.3 ‘Mass’ or ‘damping’ matrices for some typical elements

It is impractical to present in an explicit form all the mass matrices for the various elements
discussed in previous chapters. Some selected examples only will be discussed here.

Example 16.1: Plane stress and plane strain. Using triangular elements discussed in
Chapter 2 the matrix Ne is defined as

Ne = [Ne
1 Ne

2 Ne
3

]
where Ne

a = NaI, a = 1, 2, 3 and I =
[

1 0
0 1

]

Equation (2.8) gives the shape functions as

Na = aa + bax + cay

2�
, a = 1, 2, 3

where � is the area of the triangular element.
If the thickness of the element is h and this is assumed to be constant within the element,

we have, for the mass matrix, Eq. (16.12b),

Me = ρ h

∫∫
NTN dx dy or Me

ab = ρ h I
∫∫

Na Nb dx dy

If the relationships of Eq. (2.8) are substituted, it is easy to verify that
∫∫

NaNb dx dy =
{

1
6� when a = b
1

12� when a �= b
(16.14)

Thus taking the total mass of the element as

m = ρh�

the (consistent) mass matrix becomes

Me = m

12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 1 0
0 2 0 1 0 1

1 0 2 0 1 0
0 1 0 2 0 1

1 0 1 0 2 0
0 1 0 1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.15)

If the mass is physically lumped at the nodes in three equal parts the ‘lumped’ mass matrix
contributed by the element is

Me = m

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16.16)
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Certainly both matrices differ considerably and yet in applications the results of the analysis
can be almost identical.

Example 16.2: Mass for isoparametric elements. The mass matrix for an isoparametric
element may be computed by numerical integration as described in Chapter 5. For example,
for two-dimensional elements the mass is given by

Me
ab ≈

∑
l

Na(ξl, ηl)ρNa(ξl, ηl) Jl wl (16.17)

for plane problems and

Me
ab ≈

∑
l

Na(ξl, ηl)ρNa(ξl, ηl) rl Jl wl (16.18)

for axisymmetric problems.
Now since it is the shape functions which are integrated, the order of quadrature needs

to be selected according to the requirements given in Sec. 5.12. Generally, the order used
for standard integration will suffice to accurately compute the mass. Reduced quadrature
should not be used since spurious results can be obtained due to loss in rank of the mass
matrix.

16.2.4 Mass ‘lumping’ or diagonalization

We have referred to the computational convenience of lumping of mass matrices and pre-
senting these in diagonal form. On some occasions such lumping is physically obvious (see
the linear triangle for instance), in others this is not the case and a ‘rational’ procedure is
required. For matrices of the type given in Eq. (16.12b) several alternative approximations
have been developed, as discussed in Appendix I. In all of these the essential requirement
of mass preservation is satisfied, i.e.,

∑
a

M̃aa =
∫
�

ρ d� (16.19)

where M̃aa is the diagonal for a component of the lumped mass matrix M̃.
Three main procedures exist (see Fig. 16.1):

1. The row sum method in which
M̃aa =

∑
b

Mab

2. Diagonal scaling in which
M̃aa = cMaa

with c adjusted so that Eq. (16.19) is satisfied,17, 18 and
3. Evaluation of M using a quadrature involving only the nodal points and thus automati-

cally yielding a diagonal matrix for standard finite element shape functions19, 20 in which
Na = 0 for x = xb, b �= a.



Direct formulation of time-dependent problems with spatial finite element subdivision 569

II
I

III

I

II III

I II III

I II III

II
III

I III

I II

I

II

III

Row sum procedure

Diagonal scaling procedure

Quadrature using nodal points

1/4 1/4

1/4 1/4

1/3

1/3 1/3

5/24 5/24

7/24 7/24

1

4

3/16 3/16

5/16 5/16

1/8 1/8

3/8 3/8

0 0

1/3 1/3

1/3 1/3

1/3 1/3

00

3/57

3/57 3/57

16/5716/57

8/36

8/36

8/36 8/36

1/361/36

1/36 1/36
1/3

1/3

1/3 1/3

−1/12

−1/12 −1/12

−1/12

4/36

4/36

4/36 4/36

1/361/36

1/36 1/36

16/57

16/36

Fig. 16.1 Mass lumping for some two-dimensional elements.

It should be remarked that Eq. (16.19) does not hold for hierarchical shape functions
where no lumping procedure appears satisfactory.

The quadrature (numerical integration) process is mathematically most appealing but
frequently leads to negative or zero lumped masses. Such a loss of positive definiteness
is undesirable in some solution processes and cancels out the advantages of lumping. In
Fig. 16.1 we show the effect of various lumping procedures on triangular and quadrilateral
elements of linear and quadratic type. It is clear from these that the optimal choice to lump
the mass is by no means unique.

In general we would recommend the use of lumped matrices only as a convenient nu-
merical device generally paid for by some loss of accuracy. An exception to this is for
‘explicit’ time integration of dynamics problems where the considerable efficiency of their
use more than compensates for any loss in accuracy (see Chapter 17). However, we note
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that it has occasionally been shown that lumping can improve accuracy of some problem
by error cancellation. It can be shown that in the transient approximation the lumping
process introduces additional dissipation of the ‘stiffness matrix’ form and this can help in
cancelling out numerical oscillation.

To demonstrate the nature of lumped and consistent mass matrices it is convenient to
consider a typical one-dimensional problem specified by the equation

∂φ

∂t
− ∂

∂x

[
µ
∂

∂x

(
∂φ

∂t

)]
− ∂

∂x

(
k
∂φ

∂x

)
= 0

Semi-discretization here gives a typical nodal equation a as

(Mab +Hab) ˙̃ub +Kabũb = 0

where

Mab =
∫
�

NaNb dx, Hab =
∫
�

dNa
dx

µ
dNb
dx

dx, Kab =
∫
�

dNa
dx

k
dNb
dx

dx

and it is observed that H and K have identical structure. With linear elements of constant
size h the approximating equation at a typical node a (and surrounding nodes a − 1 and
a + 1) can be written as follows

Mab
˙̃ub ≡ h

6

( ˙̃ua−1 + 4 ˙̃ua + ˙̃ua+1
)

Hab ˙̃ub ≡ µ

h

(−˙̃ua−1 + 2 ˙̃ua − ˙̃ua+1
)

Kabũb ≡ k

h
(−ũa−1 + 2ũa − ũa+1)

If a lumped approximation is used for M, that is M̃, we have, simply by adding coefficients
using the row sum method,

M̃ab
˙̃ub = h ˙̃ua

The difference between the two expressions is

M̃ab
˙̃ub −Mab

˙̃ub ≡ h

6

(−˙̃ua−1 + 2 ˙̃ua − ˙̃ua+1
)

and is clearly identical to that which would be obtained by replacingµ by h2/6. Asµ in the
above example can be considered as a viscous dissipation we note that the effect of using
a lumped matrix is that of adding an extra amount of such viscosity and can often result in
smoother (though possibly less accurate) solutions.

Eigenvalues and analytical solution procedures

16.3 General classification

We have seen that as a result of semi-discretization many time-dependent problems can be
reduced to a system of ordinary differential equations of the characteristic form given by
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M ¨̃u + C ˙̃u + Kũ + f = 0 (16.20)

In this, in general, all the matrices are symmetric. Cases involving non-symmetric matrices
are also found in some fluid problems.21 This second-order system often becomes first order
if M is zero as, for instance, in transient heat conduction problems. We shall now discuss
some methods of solution of such ordinary differential equation systems. In general, the
above equations can be non-linear (if, for instance, stiffness matrices are dependent on non-
linear material properties or if large deformations are involved) but here we shall concentrate
on linear cases only.

Systems of ordinary linear differential equations can always in principle be solved analyt-
ically without the introduction of additional approximations. The remainder of this chapter
will be concerned with such analytical processes. While such solutions are possible they
may be so complex that further recourse has to be taken to the process of approximation; we
shall deal with this matter in the next chapter. The analytical approach provides, however,
an insight into the behaviour of the system which the authors always find helpful.

Some of the matter in this chapter will be an extension of standard well-known procedures
used for the solution of differential equations with constant coefficients that are encountered
in most studies of dynamics or mathematics. In the following we shall deal successively
with:

1. Determination of free response (f = 0)
2. Determination of steady-state periodic response (f(t) periodic)
3. Determination of transient response (f(t) arbitrary).

In the first two, initial conditions of the system are not required and a general solution
is simply sought. The transient response initial conditions are required and we will devote
considerable attention to this type in Sec. 16.8.

16.4 Free response – eigenvalues for second-order
problems and dynamic vibration

16.4.1 Free dynamic vibration – real eigenvalues

If no damping or forcing terms exist in the dynamic problem of Eq. (16.20) it reduces to

M ¨̃u + Kũ = 0 (16.21)

A general solution of such an equation may be written as

ũ = ū exp(iωt)

the real part of which simply represents a harmonic response as exp(iωt) ≡ cosωt+i sinωt .
Then on substitution we find that ω can be determined from

(−ω2M + K)ū = 0 (16.22)

This is a general linear eigenvalue or characteristic value problem and for non-zero solu-
tions the determinant of the above coefficient matrix must be zero:

|−ω2M + K| = 0 (16.23)
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Such a determinant will in general give n positive values of ω2 (or ω2
j , j = 1, 2, . . . , n)

when the size of the matrices K and M is n × n, providing the matrices K and M are
symmetric positive definite.†

While the solution of Eq. (16.23) cannot determine the actual values of ũ we can find n
vectors ūj that give the proportions for the various terms. Such vectors are known as the
normal modes of the system or eigenvectors and are made unique by normalizing so that

ūT
jMūj = 1; j = 1, 2, . . . , n (16.24)

At this stage it is useful to note the property of modal orthogonality, i.e., that

ūT
i Mūj = 0; (i �= j) and ūT

i Kūj = 0; (i �= j) (16.25)

The proof of the above statement is simple. As Eq. (16.22) is valid for any mode we can
write

ω2
i Mūi = Kūi and ω2

jMūj = Kūj

Premultiplying the first by ūT
j and the second by ūT

i and noting the symmetry of M and K
so that

ūT
jMūi = ūT

i Mūj and ūT
jKūi = ūT

i Kūj

the difference becomes
(ω2

i − ω2
j )ū

T
i Mūj = 0

and if ωi �= ωj‡ the orthogonality condition for the matrix M has been proved. From this
the orthogonality of the vectors with K follows immediately. The final condition

ūT
i Kūi = ω2

follows from Eq. (16.24) and a premultiplication of Eq. (16.22) for equation i by ūi .

16.4.2 Determination of eigenvalues

To find the actual eigenvalues it is seldom practical to write the polynomial expanding the
determinant given in Eq. (16.23) and alternative techniques have to be developed. Many
extremely efficient procedures are available and the reader can find some interesting matter
in references 22–28.

In some processes the starting point is the standard eigenvalue problem given by

Hx = λx (16.26)

in which H is a symmetric matrix and hence has real eigenvalues. Equation (16.22) can be
written as

M−1Kū = ω2ū (16.27)

†A symmetric matrix is positive definite if all the diagonals of the triangular factors are positive, this is a usual
case with structural problems – all roots of Eq. (16.23) are real positive numbers (for a proof see reference 1).
These are known as the natural frequencies of the system. If only the M matrix is symmetric positive definite
while K is symmetric positive semidefinite the roots are real and positive or zero.
‡ For any case where repeated frequencies occur we merely enforce the orthogonality by construction.
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on inverting M with λ = ω2, but symmetry is in general lost.
If, however, we write in triangular form (i.e., the Cholesky factors)

M = LLT and M−1 = L−TL−1

in which L is a lower triangular matrix (i.e., has all zero coefficients above the diagonal),
Eq. (16.22) may now be written as

Kū = ω2LLTū

Calling
LTū = x (16.28)

and multiplying by L−1 we have finally

Hx = ω2x (16.29)

in which
H = L−1KL−T (16.30)

which is of the standard form of Eq. (16.26), as H is now symmetric.
Having determined ω2 (all, or only a few, of the selected smallest values corresponding

to fundamental periods) the modes of x are found, and hence by use of Eq. (16.28) the
modes of ū.

If the matrix M is diagonal – as it will be if the masses have been ‘lumped’ – the
procedure of deriving the standard eigenvalue problem is simplified and here appears the
first advantage of the diagonalization, which we have discussed in Sec. 16.2.4.

16.4.3 Free vibration with the singular K matrix

In static problems we have always introduced a suitable number of support conditions to
allow the stiffness matrix K to be inverted, or what is equivalent to solve the static equations
uniquely. If such ‘support’ conditions are in fact not specified, as may well be the case with
a rocket travelling in space, the arbitrary fixing of a minimum number of support conditions
allows a static solution to be obtained without affecting the stresses. In dynamic situations
such a fixing is not permissible and frequently one is faced with the problem of a free
oscillation for which K is singular and therefore does not possess unique triangular factors
or an inverse.

To preserve the applicability of methods which require an inverse (e.g., methods based
on inverse power iteration27) a simple artifice is possible. Equation (16.22) is modified to

[(K + αM)− (ω2 + α)M]ū = 0 (16.31)

in which α is an arbitrary constant of the same order as the typical ω2 sought. The new
matrix (K + αM) is no longer singular and can be factored (or inverted) for use in the
standard eigensolution procedure to find (ω2 + α) and hence ω2.

This simple but effective avoidance of an otherwise serious difficulty was first suggested
by Cox29 and Jennings.30 Alternative methods of dealing with the above problem are given
in references 31 and 32.
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16.4.4 Reduction of the eigenvalue system

Independent of which technique is used to determine the eigenpairs of the system (16.22),
the effort for n× nmatrices is at least one order greater than that involved in an equivalent
static situation. Further, while the number of eigenvalues of the real system is infinite,
in practice, we are generally interested only in a relatively small number of the lower
frequencies and it is possible to simplify the computation by reducing the size of the
problem.

To achieve a reduced problem we assume that the unknown ū can be expressed in terms
ofm (� n) vectors t1, t2, . . . , tm and corresponding participating factors xi . We now write

ū = t1x1 + t2x2 + · · · + tmxm = Tx (16.32)

Inserting Eq. (16.32) into Eq. (16.22) and premultiplying by TT we have a reduced
problem with only m eigenpairs:

(ω∗)2M∗x = K∗x (16.33)

where
M∗ = TTMT K∗ = TTKT

and ω∗ are now eigenvalues of the reduced system, which for the appropriate choice of the
ti vectors can be good approximations to the eigenvalues of the original system.

If by good fortune the trial vectors were to be chosen as eigenvectors of the original matrix
the system would become diagonal and all eigenvalues (i.e., in this case ω∗ = ω) could
be determined by a trivial calculation. This indeed is what some iterative eigenproblem
strategies attempt (e.g., subspace or Lanczos methods27, 33). It is also of course possible
by physical insight to find vectors t that correspond closely to the principal modes of the
movement (e.g., see reference 34).

16.4.5 Some examples

There are a variety of problems for which practical solutions exist, so only a few simple
examples will be shown.

Example 16.3: Vibration of a simply supported beam. Figure 16.2 shows the first three
vibration modes of a simply supported beam with length 40 and rectangular cross-section
of width 1 and depth 2 units. The elastic properties are E = 30 000, ν = 0, and ρ = 0.1
units. The beam is modelled using 9-noded quadrilateral elements of lagrangian type with
the central node at the left end restrained in the x and y direction and the central node at the
right end restrained only in the y direction. The problem is also solved using a mesh with
1000 2-noded beam elements which include effects of transverse shearing deformation.
In Table 16.1 we present the values for the first three frequencies obtained from the finite
element analysis and compare to the value obtained from an exact solution for the Euler–
Bernoulli beam without shear deformation. It is evident that transverse shearing strains
affect the frequencies computed for this problem and, thus, illustrate the importance of
using a correct theory for calculations.
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Table 16.1 Frequencies for a simply supported beam

Solution form ω1 ω2 ω3

9-noded element 3.7785 59.2236 290.0804
2-noded element 3.7787 59.2338 290.1774
Beam theory 3.8050 60.8807 308.2080

(a)

(b)

(c)

Fig. 16.2 Simply supported beam. (a) ω1 = 3.7785. (b) ω2 = 59.2236. (c) ω3 = 290.0804.

Example 16.4: Vibration of an earth dam. Figure 16.3 shows the vibration of a two-
dimensional earth dam resting on a rigid foundation. The earth dam is modelled by linear
triangular elements and includes the effects of different material layers.

Example 16.5: Electromagnetic fields. The basic dynamic equation (16.8) can be derived
for a variety of non-structural problems. The eigenvalue problem once again occurs with
‘stiffness’ and ‘mass’ matrices now having alternate physical meanings.

A particular form of the more general equations discussed earlier is the well-known
Helmholz wave equation which, in two-dimensional form, is

∂2φ

∂x2
+ ∂2φ

∂y2
+ 1

c̄2

∂2φ

∂t2
= 0 (16.34)

If the boundary conditions do not force a response, an eigenvalue problem results which
has significance in several fields of physical science.

The first application is to electromagnetic fields. Figure 16.4 shows a modal shape of
a field for a waveguide problem. Simple linear triangular elements are used here. More
complex three-dimensional oscillations are also discussed in reference 9.

Example 16.6: Waves in shallow water. A similar equation also describes to a reasonable
approximation the behaviour of shallow water waves in a body of water:
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(a)

(b)

(c)

(d)

Fig. 16.3 (a) Mesh showing layers considered. (b) Earth dam, Mode 1. (c) Earth dam, Mode 2. (d) Earth dam,
Mode 3.

∂

∂x

(
h
∂ψ

∂x

)
+ ∂

∂y

(
h
∂ψ

∂y

)
+ 1

g

∂2ψ

∂t2
= 0 (16.35)

in which h is the average water depth, ψ the surface elevation above average and g the
gravity acceleration.21

Thus natural frequencies of bodies of water contained in harbours of varying depths may
easily be found.10 Figure 16.5 shows the modal shape for a particular harbour.

16.5 Free response – eigenvalues for first-order
problems and heat conduction, etc.

If in Eq. (16.20) M = 0, we have a form typical of the transient heat conduction equation
[see Eq. (16.1)]. For free response we seek a solution of the homogeneous equation

C ˙̃u + Kũ = 0 (16.36)
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Once again an exponential form can be used:

ũ = ū exp(−λt)

Substituting we have
(−λC + K)ū = 0 (16.37)

which again gives an eigenvalue problem identical to that of Eq. (16.22). As C and K
are usually positive definite, λ will be positive and real. The solution therefore represents
simply an exponential decay term and is not really steady state. Combination of such terms,
however, can be useful in the solution of initial value transient problems but is of little value
per se.

16.6 Free response – damped dynamic eigenvalues

We shall now consider the full equation (16.20) for free response conditions. Writing

M ¨̃u + C ˙̃u + Kũ = 0 (16.38)

and substituting
ũ = ū exp(αt) (16.39)

we have the characteristic equation

(α2M + αC + K)ū = 0 (16.40)

whereα and ū will in general be found to be complex. The real part of the solution represents
a decaying vibration.

The eigenvalue problem involved in Eq. (16.39) is more difficult than that arising in the
previous sections. In solutions to date the problem is usually solved by splitting Eq. (16.38)
into two first-order equations. This is accomplished by defining

˙̃u = v

and writing the split form as
[

M 0
0 −M

]{
v̇
˙̃u
}

+
[

C K
M 0

]{
v
ũ

}
=
{

0
0

}
(16.41)

Now substituting
ũ = ū exp(αt) v = v̄ exp(αt)

gives the general linear eigenproblem
(
α

[
M 0
0 −M

]
+
[

C K
M 0

]){
v̄
ū

}
=
{

0
0

}
(16.42)

This form has been studied by Chen et al.35–37 Similar to the first-order problem, no
steady-state solution exists and once more the concept of eigenvalues of the above kind is
generally of importance only in modal analysis, as we shall see later.
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16.7 Forced periodic response

If the forcing term in Eq. (16.20) is periodic or, more generally, if we can express it as

f = f̄ exp(αt) (16.43)

where α is complex, i.e.
α = α1 + i α2 (16.44)

then a general solution can once more be written as

ũ = ū exp(αt) (16.45)

Substituting the above in Eq. (16.20) gives
(
α2M + αC + K

)
ū ≡ K̄ū = −f̄ (16.46)

which is no longer an eigenvalue problem but can be solved formally by inverting the matrix
K̄ as

ū = −K̄−1 f̄ (16.47)

The solution is thus precisely of the same form as that used for static problems but now,
however, has to be determined in terms of complex quantities.

With periodic input the solution after an initial transient is not sensitive to the initial
conditions and the above solution represents the finally established response. It is valid
for problems of dynamic structural and fluid-structure responses as well as for problems
typical of heat conduction in which we simply put M = 0.

16.8 Transient response by analytical procedures

16.8.1 General

In the previous sections we have been concerned with steady-state general solutions which
took no account of the initial conditions of the system or of the non-periodic form of
the forcing terms. The response taking these features into account is essential if we con-
sider, for instance, the earthquake behaviour of structures or the transient behaviour of the
heat conduction problem. The solution of such general cases requires either a full-time
discretization, which we shall discuss in detail in the next chapter, or the use of special
analytical procedures.

16.8.2 Frequency response procedures

In Sec. 16.7 we have shown how the response of the system to any forcing terms of the
general periodic type or in particular to a periodic forcing function

f = f̄ exp(iωt) (16.48)
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can be obtained by solving a simple equation system. As a completely arbitrary forcing
function can be represented approximately by a Fourier series or in the limit, exactly, as a
Fourier integral, the response to such an input can be obtained by a synthesis of a curve
representing the response of any quantity of interest, e.g., the displacement at a particular
point, etc., to all frequencies ranging from zero to infinity. In fact only a limited number of
such forcing frequencies has to be considered and a result can be synthesized efficiently by
fast Fourier transform techniques.38 We shall not discuss the mathematical details for such
procedures which can be found in standard texts on structural dynamics.12, 16

The technique of frequency response is readily adapted to problems where the damping
matrix C is of an arbitrary specified form. This is not the case with the more widely used
modal decomposition procedures which are to be described in the next section.

By way of illustration we show in Fig. 16.6 the frequency response of an artificial harbour
[see Eq. (16.35)] to an input of waves with different frequencies and damping due to the
radiation of reflected waves which imposes a very particular form on the damping matrix.
Details of this problem are given elsewhere.21, 39, 40 Similar techniques are frequently used
in the analysis for the foundation response of structures where radiation of energy occurs.41

16.8.3 Modal decomposition analysis

This procedure is probably the most important and widely used in practice. Further, it
provides an insight into the behaviour of the whole system, which is of value where strictly
numerical processes are used. We shall therefore describe it in detail in the context of the
general problem of Eq. (16.20), i.e.,

M ¨̃u + C ˙̃u + Kũ + f = 0 (16.49)

where f is an arbitrary function of time.
We have seen that the general solution for the free response is of the form

ũ =
n∑
i=1

ūi exp(αit) (16.50)

where αi are the (complex) eigenvalues and ūi are the (complex) eigenvectors (Sec. 16.6).
For forced response we shall assume that the problem is linear such that the solution can
be written as a linear combination of the modes

ũ =
n∑
i=1

ūiyi(t) = [ū1, ū2, . . .
]

y(t) (16.51)

where the scalar modal participation factor yi is now a function of time. This shows in a
clear manner the proportions of each mode occurring. Such a decomposition of an arbitrary
vector presents no restriction as all the modes are linearly independent vectors (with those
for repeated frequencies being constructed to be linearly independent as mentioned in
Sec. 16.4).

If expression (16.51) is substituted into Eq. (16.49) and the result is premultiplied by the
complex conjugate transposed, ūT

i (i = 1, . . . , n), then the result is simply a set of scalar,
independent, equations

miÿi + ci ẏi + kiyi + fi = 0 (16.52)
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where
mi = ūT

i Mūi , ci = ūT
i Cūi , ki = ūT

i Kūi and fi = ūT
i f

as for true eigenvectors ūi

ūT
i Mūj = ūT

i Cūj = ūT
i Kūj = 0

when i �= j (this result was proved in Sec.16.4 for real eigenpairs but is valid generally for
complex pairs, as could be verified by the reader).

Each scalar equation of (16.52) can be solved by elementary procedures independently
and the total vector of response obtained by superposition following Eq. (16.51). In the
general case, as we have shown in Sec. 16.6, the eigenpairs are complex and their determi-
nation is not simple.31 The more usual procedure is to use real eigenpairs corresponding to
the solution of Eq. (16.21):

Kū = ω2Mū (16.53)

Decoupled equations with real variables y exist only if

ūT
i Cūj = 0; i �= j

which generally does not occur as the eigenvectors now guarantee only orthogonality with
M and K and not of the damping matrix. However, if the damping matrix C is of the form of
Eq. (16.13), i.e., a linear combination of M and K, such orthogonality will obviously occur.
Unless the damping is of a definite form which requires special treatment, an assumption
of orthogonality is made and Eq. (16.52) is assumed valid in terms of such eigenvectors.

From Eq. (16.53) we have
Kūi = ω2

i Mūi (16.54a)

and on premultiplying by ūT
i we obtain

ki = ω2
i mi (16.54b)

Writing the modal damping in the form

ci = 2ωξi (16.54c)

(where ξi represents the ratio of damping to its critical value) and assuming that the modes
have been normalized so that mi = 1 [see Eq. (16.24)], Eq. (16.52) can be rewritten in
standard second order form:

ÿi + 2ωiξi ẏi + ω2
i yi + fi = 0 (16.54d)

A general solution is then obtained as

yi = exp(−ξiωit)
[
ẏi0 + ξiωiyi0

ω̄
sin ω̄i t + yi0 cos ω̄i t

]

+ 1

ω̄ i

∫ t

0
exp(−ξiωi[t − τ ]) sin ω̄i(t − τ)fi(τ ) dτ

(16.55)

in which ω̄i = ωi
√

1 − ξ 2
i and yi0, ẏi0 are initial conditions computed from

yi0 = ūT
i Mũ(0) and ẏi0 = ūT

i M ˙̃u(0) (16.56)
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The solution of Eq. (16.55) can be carried out by assuming the forcing function is given
by linear interpolation between discrete time points tk and then evaluating the resulting
integrals exactly. Alternatively, a numerical solution can be carried out and the response
obtained. In practice, often a single calculation is carried out for each mode to determine
the maximum responses and a suitable addition of these results is used. Such processes are
described in standard texts and are used as procedures to calculate the bounds on behaviour
of structures subjected to seismic loading.12, 16, 28

16.8.4 Damping and participation of modes

The type of calculation implied in modal decomposition apparently necessitates the deter-
mination of all modes and eigenvalues, a task of considerable magnitude. In fact only a
limited number of modes usually need to be taken into consideration as often the response
to higher frequency is critically damped and insignificant.

To show that this is true consider the form of the damping matrices. In Sec. 16.2
[Eq. (16.13)] we have indicated that the damping matrix is often assumed as

C = αM + βK (16.57)

Indeed a form of this type is necessary for the use of modal decomposition, although other
generalizations are possible.42, 43 From the definition of ξi , the ratio to critical damping
ratio in Eq. (16.54c), we see that this can now be written as

ξi = 1

2ωi
ūT
i (αM + βK)ūi = 1

2ωi

(
α + βω2

i

)
(16.58)

Thus if the coefficient β is of greater importance, as is the case with most structural damping,
ξi grows withωi and at high frequency an overdamped condition will arise.12 This is indeed
fortunate as, in general, an infinite number of high frequencies exist which are not modelled
by any finite element discretization.

We shall see in the next chapter that in the step-by-step recurrence computation the high
frequencies often control the problem, and this effect needs to be ‘filtered out’ for realistic
results.

16.9 Symmetry and repeatability

In concluding this chapter it is worth remarking that in dynamic calculation we have once
again encountered all the general principles of assembly, etc., that are applicable to static
problems. However, some aspects of symmetry and repeatability which were used previ-
ously (see Sec. 6.2.4) need amending. It is obviously possible for symmetric structures
to vibrate in an unsymmetrical manner, for instance, and similarly a repeatable structure
contains modes which are themselves non-repeatable. However, even here considerable
simplification can still be made; details of this are discussed by Williams,44 Thomas45 and
Evensen.46
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16.10 Problems

16.1 Specialize the problem given in Sec. 16.2 for the case where ρ = 0. Construct Ce

and Ke for a typical 3-node triangular element and a 6-node hierarchical triangle in
which coordinates are given by

x =
3∑
a=1

La x̃a

16.2 An axial bar under transient loading is governed by

∂

∂x

(
EA

∂u

∂x

)
+ q = ρA

∂2u

∂t2

and boundary conditions

u(x, t) = ḡ(t), x on �1 or EA
∂u

∂x
= P̄ (t), x on �2

where ḡ(t) and P̄ (t) are specified displacement and force, respectively.

(a) Construct a weak form for the problem. Is there a variational theorem for the
problem?

(b) Consider an isoparametric element interpolation

xe(ξ) = N1(ξ) x̃
e
1 +N2(ξ) x̃

e
2

ue(ξ, t) = N1(ξ) ũ
e
1(t)+N2(ξ) ũ

e
2(t)

withN1 = (1−ξ)/2 andN2 = (1+ξ)/2 and show the stiffness and mass element
arrays are given by

Ke = EA

h

[
1 −1

−1 1

]
and Me = 1

6 ρAh

[
2 1
1 2

]
,

respectively (where h = x̃e2 − x̃e1).
(c) Let

u(x, t) =
∑
i

ūi (x) exp iωit

and determine the discrete eigenproblem resulting from the weak form developed
in (a). Is there a variational theorem for the problem?

(d) Consider a two-element problem shown in Fig. 16.7 and solve the eigenprob-
lem developed in (c). Let u(0, t) = P̄ (L, t) = 0 and use material properties
E = A = ρ = L = 1 and q = 0.

1 2 3

L

Fig. 16.7 Two-element bar for Problem 16.2.
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(e) Write a MATLAB program to solve the discrete eigenproblem. Check your pro-
gram using the two-element solution; then solve the problem using 4, 8, and 16
elements. Plot the first two eigenvalues vs the number of elements.

(f ) Obtain an exact value for the first two eigenvalues and plot the error for each vs
the number of elements on a log–log plot. What is the rate of convergence?

(g) Replace the element mass matrix by a lumped form given by

Me = 1
2 ρh

[
1 0
0 1

]

and repeat parts (d) and (e)

16.3 Compute the lumped mass matrix by row sum (Method I) for a cubic order serendipity
element which is a square with side length a. Note it is only necessary to compute
one vertex and one mid-side value.

16.4 Compute the lumped mass matrix by diagonal scaling (Method II) for a cubic order
serendipity element which is a square with side length a. Note it is only necessary to
compute one vertex and one mid-side value.

16.5 Compute the lumped mass matrix by row sum (Method I) for a cubic order lagrangian
element which is a square with side length a. Note it is only necessary to compute
one vertex, one mid-side value and the interior node value.

16.6 For a three-dimensional cube with side lengths a in each direction compute the lumped
mass matrix by row sum (Method I) for a quadratic order lagrangian element. Note
it is only necessary to compute one vertex, one mid-side value and the interior node
value.

16.7 Show that the degeneration of a 9-node lagrangian quadrilateral in ξ, η coordinates
into a 6-node triangle as described in Example 5.2 of Sec. 5.8.1 yields the same mass
matrix as that derived for the triangle using L1, L2, L3 area coordinates. Note it is
only necessary to compute one vertex and one mid-side value for the triangle.

16.8 The bar shown in Fig. 16.8 is divided into four elements and has the right end attached
to a damper. A weak form for the problem may be written as

M ¨̃u + C ˙̃u + Kũ + f = 0

where M and K are obtained using the element arrays given in Problem 16.1. For
ũ = [ũ2 ũ3 ũ4 ũ5

]T
:

(a) Construct M and K for the problem.
(b) Construct C for the problem.
(c) Use MATLAB to compute the eigensolution for the problem. Plot real and imag-

inary parts for the problem. On a separate plot show as vectors the real and
imaginary parts of the complex frequencies. Are they proportional?

16.9 Use FEAPpv to verify the results given for Example 16.3 in Table 16.1 and Fig. 16.2.
Use a consistent mass matrix for the computation. Repeat the analysis using a lumped
mass. If the mesh is refined several times, do you expect the results to converge? Why?

1 2 3 4 5

L c

Fig. 16.8 Four-element bar with end damper for Problem 16.8.
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16.10 Use FEAPpv to compute the first three eigenpairs for the rectangular beam problem
described in Example 2.3 of Sec.2.9. Use the same properties for E and ν and let
ρ = 0.001.

Using the first mode and P = 1 for 0 < t < 2 obtain the solution for the first
3 seconds using �t = 0.1. Plot the results for the vertical displacement at the tip
where loading is applied.

Repeat the solution using three modes.
16.11 The curved beam problem described in Example 2.4 of Sec.2.9 is to be solved for

the case where the boundary condition at y = 0 is specified by the shear stress of
the exact solution. For the case of linear variation of displacements on the boundary
edge write a MATLAB program to compute the consistent nodal loads for a unit
force P and four equally spaced segments.

For the mesh shown in Fig. 2.11(b) use FEAPpv to compute the first eigenpair
(the one where ωi is smallest) for the problem assuming the same properties for E
and ν and take ρ = 1.

Using the first mode and u(x, 0) = sin2 t for 0 < t < π obtain the solution for
the first 5 seconds using �t = 0.1. Plot the results for the vertical displacement at
the tip where loading is applied.

Repeat the solution using three modes.
16.12 Program development project: Extend the program system started in Problem 2.17

to compute a lumped and a consistent mass matrix for 3-node triangular and 4-node
quadrilateral elements. Use the generalized eigenproblem [V,D] = EIG(K,M)

from MATLAB to compute the eigenvectors (V = ūi) and eigenvalues (D = ωi).
Use your program to determine the eigenvalues and eigenvectors for the curved

beam analysed in Problem 16.11. Results may be checked using FEAPpv.
16.13 Program development project: Extend the program system developed for Problem

16.12 to perform mode superposition as described in Sec. 16.8.3. You may omit the
modal damping factors ξi for simplicity.

For the rectangular beam considered as Example 2.3 (using triangular elements
as shown in Fig. 2.8), assume the end shear is applied suddenly at time zero and held
constant for 2 seconds at which time it is suddenly removed.

Perform a modal solution in which only the lowest eigenvalue mode is used. For a
time increment of�t = 0.001 determine and plot the first 5 seconds of response for
the vertical displacement at the tip centre-line. Repeat the solution using the lowest
three eigenvalue modes. Compare your solutions with that in which all modes are
included (which is the exact solution for the semi-discrete equations). Comment on
differences obtained.
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17

The time dimension – discrete
approximation in time

17.1 Introduction

In the last chapter we have shown how semi-discretization of dynamic or transient field
problems leads, in linear cases, to sets of ordinary differential equations of the form†

Mü + Cu̇ + Ku + f = 0 where
du
dt

≡ u̇, etc. (17.1)

subject to initial conditions

u(0) = u0 and u̇(0) = u̇0

or for transient field problems (e.g., heat conduction) to

Cu̇ + Ku + f = 0 (17.2)

subject to the initial condition
u(0) = u0

In many practical situations non-linearities exist, typically altering the above equations
by making

M = M(u) C = C(u) Ku = P(u) (17.3)

The analytical solutions previously discussed, while providing much insight into the
behaviour patterns (and indispensable in establishing such properties as natural system
frequencies), are in general not economical for the solution of transient problems in linear
cases and not applicable when non-linearity exists. In this chapter we shall therefore revert
to discretization processes applicable directly to the time domain.

For such time discretization the finite element method, including in its definition the
finite difference approximation, is of course widely applicable and provides the greatest
possibilities, though much of the classical literature on the subject uses only the latter.1–6

We shall demonstrate here how the finite element method provides a useful generalization
unifying many existing algorithms and providing a variety of new ones.

As the time domain is infinite we shall inevitably curtail it to a finite time increment �t
and relate the initial conditions at tn (and sometimes before) to those at time tn+1 = tn+�t ,
obtaining so-called recurrence relations. In all of this chapter, the starting point will be
that of the semi-discrete equations (17.1) or (17.2), though, of course, the full space–time

† To simplify notation, we omit the ‘tilde’on approximations in time of the independent variable, thus, ũ(tn) ≈ un.
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domain discretization could be considered simultaneously. This, however, usually offers
no advantage, for, with the regularity of the time domain, irregular space–time elements
are not required. Indeed, if product-type shape functions are chosen, the process will
be identical to that obtained by using first semi-discretization in space followed by time
discretization. An exception here is provided in convection dominated problems where
simultaneous discretization may be desirable (as is discussed in reference 7).

The first concepts of space–time elements were introduced in 1969–708–11 and the devel-
opment of processes involving semi-discretization is presented in references 12–21. Full
space–time elements are described for convection-type equations in references 22, 23 and
24 and for elastodynamics in references 25, 26 and 27.

The presentation of this chapter will be divided into three parts. In the first we shall derive
a set of single-step recurrence relations for the linear first and second order problems of
Eqs (17.2) and (17.1). Such schemes have a very general applicability and are preferable to
multistep schemes described in the second part as the time step can be easily and adaptively
varied. In the third part we briefly describe a discontinuous Galerkin scheme and show its
application in some simple problems.

When discussing stability problems we shall often revert to the concept of modally
uncoupled equations introduced in the previous chapter. Here we recall that the equation
systems (17.1) and (17.2) can be written as a set of scalar equations:

miÿi + ci ẏi + kiyi + fi = 0 (17.4)

or
ci ẏi + kiyi + fi = 0 (17.5)

in the respective eigenvalue participation factors yi . We shall find that the stability require-
ments here are dependent on the eigenvalues associated with such equations, ωi . It turns
out, however, fortunately, that it is never necessary to obtain the system eigenvalues or
eigenvectors due to a powerful theorem first stated for finite element problems by Irons and
Treharne.28

The theorem states simply that the system eigenvalues can be bounded by the eigenvalues
of individual elements ωe. Thus

min
j
(ωj )

2 ≥ min
e
(ωe)2 and max

j
(ωj )

2 ≤ max
e
(ωe)2 (17.6)

The stability limits can thus (as will be shown later) be related to Eq. (17.4) or (17.5)
written for a single element.

Single-step algorithms

17.2 Simple time-step algorithms for the first-order
equation

17.2.1 Weighted residual finite element approach

We shall now consider Eq. (17.2) which may represent a semi-discrete approximation to
a particular physical problem or simply be itself a discrete system. The objective is to
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obtain an approximation for un+1 given the value of un and the forcing vector f acting in
the interval of time�t . It is clear that in the first interval un is the initial condition u0, thus
we have an initial value problem. In subsequent time intervals un will always be a known
quantity determined from the previous step.

In each interval, in the manner used in all finite element approximations, we assume that
u varies as a polynomial and take here the lowest (linear) expansion as shown in Fig. 17.1
writing

u ≈ û(t) = un + τ

�t
(un+1 − un) (17.7)

with τ = t − tn.
This can be translated to the standard finite element expansion giving

û(t) =
∑

Niui =
(

1 − τ

�t

)
un +

(
τ

�t

)
un+1 (17.8)

in which the unknown parameter is un+1.
The equation by which this unknown parameter is provided will be a weighted residual

approximation to Eq. (17.2). Accordingly, we write the variational problem

∫ �t

0
w(τ )T [Cu̇ + Ku + f ] dτ = 0 (17.9)

in which w(τ ) is an arbitrary weighting function. We write the approximate form

w(τ ) = W(τ)δun+1 (17.10)

in which δun+1 is an arbitrary parameter. With this approximation the weighted residual
equation to be solved is given by

∫ �t

0
W(τ)[C ˙̂u + Kû + f ] dτ = 0 (17.11)

Introducing θ as a weighting parameter given by

θ = 1

�t

∫ �t
0 W(τ)τ dτ∫ �t
0 W(τ) dτ

(17.12)

un (known) un + 1
(to be determined)

τ

tn tn + 1

∆t

Fig. 17.1 Approximation to u in the time domain.
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we can immediately write

1

�t
C(un+1 − un)+ K[un + θ(un+1 − un)] + f̄ = 0 (17.13)

where f̄ represents an average value of f given by

f̄ =
∫ �t

0 W f dτ∫ �t
0 W dτ

(17.14)

or
f̄ = fn + θ(fn+1 − fn) (17.15)

if a linear variation of f is assumed within the time increment.
Equation (17.13) is in fact almost identical to a finite difference approximation to the

governing equation (17.2) at time tn + θ�t , and in this example little advantage is gained
by introducing the finite element approximation. However, the averaging of the forcing
term is important, as shown in Fig. 17.2, where a constant W (that is θ = 1/2) is used and
a finite difference approximation presents difficulties.

Figure 17.3 shows how different weight functions can yield alternate values of the para-
meter θ . The solution of Eq. (17.13) yields

un+1 = (C + θ�tK)−1[(C − (1 − θ)�tK)un −�t f̄ ] (17.16)

and it is evident that in general at each step of the computation a full equation system
needs to be solved though of course a single inversion (or factorization using a Gauss-type
solution process) is sufficient for linear problems in which the time increment �t is held
constant. Methods requiring such an inversion are called implicit. However, when θ = 0
and the matrix C is approximated by its lumped equivalent CL the solution is called explicit
and is exceedingly cheap for each time interval. We shall show later that explicit algorithms
are conditionally stable (requiring the�t to be less than some critical value�tcrit) whereas
implicit methods may be made unconditionally stable for some choices of the parameters.

1

2f

W

n + 1 n ∆t

2

n n + 1∆t

∆t1
3∆t1

2

f = 1.5
fn +1/2 indeterminate

f = 
fn +1/3 indeterminate

2
3

(a) (b)

Fig. 17.2 ‘Averaging’ of the forcing term in the finite-element-time approach.
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∆t

θ = 0

θ = 1
2

θ = 1

θ = 1
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θ = 2
3

θ = 1
3

(a)

(b)

(c)

(d)

(e)

(f)

1

W = 

Fig. 17.3 Shape functions and weight functions for two-point recurrence formulae.

17.2.2 Taylor series collocation

A frequently used alternative to the algorithm presented above is obtained by approximating
separately un+1 and u̇n+1 by truncated Taylor series. We can write, assuming that un and
u̇n are known:

un+1 = un +�t u̇n + β�t(u̇n+1 − u̇n) (17.17a)

and use collocation to satisfy the governing equation at tn+1 [or alternatively using the
weight function shown in Fig. 17.3(c)] which gives

Cu̇n+1 + Kun+1 + fn+1 = 0 (17.17b)

In the above β is a parameter, 0 ≤ β ≤ 1, such that the last term of Eq. (17.17a) represents
a suitable difference approximation to the truncated expansion.

Substitution of Eq. (17.17a) into Eq. (17.17b) yields a recurrence relation for u̇n+1:

u̇n+1 = −(C + β�tK)−1[K(un + (1 − β)�t u̇n)+ fn+1] (17.18)
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where un+1 is now computed by substitution of Eq. (17.18) into Eq. (17.17a).
We remark that:

(a) the scheme is not self-starting† and requires the satisfaction of Eq. (17.2) at t = 0
[whereas the finite element in the time scheme given by (17.13) is self-starting];

(b) the computation requires, with identification of the parameters β = θ , an identical
equation-solving problem to that in the finite element scheme of Eq. (17.16) and, finally,
as we shall see later, stability considerations are identical.

The procedure is introduced here as it has some advantages in non-linear computations.

17.2.3 Other single-step procedures

As an alternative to the weighted residual process other possibilities of deriving finite ele-
ment approximations exist, as discussed in Chapter 3. For instance, variational principles
in time could be established and used for the purpose. This was indeed done in the early
approaches to finite element approximation using Hamilton’s or Gurtin’s variational prin-
ciple.29–32 However, as expected, the final algorithms turn out to be identical. A variant
on the above procedures is the use of a least square approximation for minimization of the
equation residual.13, 14 This is obtained by insertion of the approximation (17.7) into (17.2).
The reader can verify that the recurrence relation becomes

[
1

�t
CTC + 1

2

(
KTC + CTK

)+ 1

3
�tKTK

]
un+1

−
[

1

�t
CTC + 1

2

(
KTC − CTK

)− 1

6
�tKTK

]
un

+ 1

�t2
CT
∫ �t

0
f dτ + 1

�t
KT
∫ �t

0
fτ dτ = 0

(17.19)

requiring a more complex equation solution and always remaining ‘implicit’. For this reason
the algorithm is largely of purely theoretical interest, though as expected its accuracy is
nearly exact for results shown in Fig. 17.4, in which a single degree of freedom equation
(17.2) is used with

K → K = 1 C → C = 1 f → f = 0

with initial condition u0 = 1. Here, the various algorithms previously discussed are
compared. Now we see from this example that the θ = 1/2 algorithm performs almost
as well as the least squares one. It is popular for this reason and is known as the Crank–
Nicolson scheme after its originators.33

17.2.4 Consistency and approximation error

For the convergence of any finite element approximation, it is necessary and sufficient
that it be consistent and stable. We have discussed these two conditions in Chapter 9

† By ‘self-starting’ we mean an algorithm is directly applicable without solving any subsidiary equations. Other
definitions are also in use.
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Fig. 17.4 Comparison of various time-stepping schemes on a first-order initial value problem.

and introduced appropriate requirements for boundary value problems. In the temporal
approximation similar conditions apply though the stability problem is more delicate.

Clearly the function u itself and its derivatives occurring in the equation have to be
approximated with a truncation error ofO(�tα), where α ≥ 1 is needed for consistency to
be satisfied. For the first-order equation (17.2) it is thus necessary to use an approximating
polynomial of order p ≥ 1 which is capable of approximating u̇ to at least O(�t).

The truncation error in the local approximation of u with such an approximation is
O(�t2) and all the algorithms we have presented here using the p = 1 approximation of
Eq. (17.7) will have at least that local accuracy,34 as at a given time, t = n�t , the total
error can be magnified n times and the final accuracy at a given time for schemes discussed
here is of order O(�t) in general.

We shall see later that the arguments used here lead to p ≥ 2 for the second-order
equation (17.1) and that an increase of accuracy can generally be achieved by use of higher
order approximating polynomials.

It would of course be possible to apply such a polynomial increase to the approximating
function (17.7) by adding higher order degrees of freedom. For instance, we could write
in place of the original approximation a quadratic expansion:

u ≈ û(t) = un + τ

�t
(un+1 − un)+ τ

�t

(
1 − τ

�t

)
ŭn+1 (17.20)

where ŭ is a hierarchic internal variable. Obviously now both un+1 and ŭn+1 are unknowns
and will have to be solved for simultaneously. This is accomplished by using the weighting
function

w = W(τ)δun+1 + W̆ (τ )δŭn+1 (17.21)

whereW(τ) and W̆ (τ ) are two independent weighting functions. This will obviously result
in an increased size of the problem.

It is of interest to consider the first of these obtained by using the weighting W alone in
the manner of Eq. (17.11). It is easy to verify that we now have to add to Eq. (17.13) a term
involving ŭn+1 which is

[
1

�t
(1 − 2θ)C + (θ − θ̃ )K

]
ŭn+1 (17.22)
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where

θ̃ = 1

�t2

∫ �t
0 Wτ 2dτ∫ �t

0 W dτ

It is clear that the choice of θ = θ̃ = 1/2 eliminates the quadratic term and regains the
previous scheme, thus showing that the values so obtained have a local truncation error of
O(�t3). This explains why the Crank–Nicolson scheme possesses higher accuracy.

In general the addition of higher order internal variables makes recurrence schemes too
expensive and we shall later show how an increase of accuracy can be more economically
achieved.

In a later section of this chapter we shall refer to some currently popular schemes in which
often sets of us have to be solved for simultaneously. In such schemes a discontinuity is
assumed at the initial condition and additional parameters (ũ) can be introduced to keep the
same linear conditions we assumed previously. In this case an additional equation appears
as a weighted satisfaction of continuity in time.

The procedure is therefore known as the discontinuous Galerkin process and was in-
troduced initially by Reed and Hill35 to solve neutron transport problems. An analysis of
the method was given by Lesaint and Raviart.36 It has subsequently been applied to solve
problems in fluid mechanics and heat transfer23, 37, 38 and to problems in structural dynam-
ics.25–27 As we have already stated, the introduction of additional variables is expensive,
so somewhat limited use of the concept has so far been made. However, one interesting
application is in error estimation and adaptive time stepping.39

17.2.5 Stability

If we consider any of the recurrence algorithms so far derived, we note that for the homo-
geneous form (i.e., with f = 0) all can be written in the form

un+1 = Aun (17.23)

where A is known as the amplification matrix.
The form of this matrix for the first algorithm derived is, for instance, evident from

Eq. (17.16) as
A = (C + θ�tK)−1 (C − (1 − θ)�tK) (17.24)

Any errors present in the solution will of course be subject to amplification by precisely the
same factor.

A general solution of any recurrence scheme can be written as40

un+1 = µun (17.25)

and by insertion into Eq. (17.23) we observe that µ is given by eigenvalues of the matrix as

(A − µI)un = 0 (17.26)

Clearly if any eigenvalue µ is such that

|µ| > 1 (17.27)
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all initially small errors will increase without limit and the solution will be unstable. In the
case of complex eigenvalues the above is modified to the requirement that the modulus of
µ satisfies Eq. (17.27).

As the determination of system eigenvalues is a large undertaking it is useful to consider
only a scalar equation of the form (17.5) (representing, say, one-element performance). The
bounding theorems of Irons and Treharne28 will show why we do so and the results will
provide general stability bounds if maximums are used. Thus for the case of the algorithm
discussed in Eq. (17.26) we have for the scalar form of (17.24)

A = c − (1 − θ)�tk

c + θ�tk
= 1 − (1 − θ)ω�t

1 + θω�t
= µ (17.28)

where ω = k/c and µ is evaluated from Eq. (17.26) simply as µ = A to allow non-trivial
un. (This is equivalent to making the determinant of A −µI zero in the more general case.)

In Fig. 17.5 we show how µ (or A) varies with ω�t for various θ values. We observe
immediately that:

(a) for θ ≥ 1/2

|µ| ≤ 1 (17.29)

and such algorithms are unconditionally stable;
(b) for θ < 1/2 we require

ω�t ≤ 2

1 − 2θ
(17.30)

for stability. Such algorithms are therefore only conditionally stable. Here of course
the explicit form with θ = 0 is typical.

The critical value of �t below which the scheme is stable with θ < 1/2 needs the
determination of the maximum value of µ from a typical element. For instance, in the case
of the thermal conduction problem in which we have the coefficients caa and kaa defined
by expressions

caa =
∫
�

c̃N2
a d� and kaa =

∫
�

∇Nak̃∇Na d� (17.31)
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Fig. 17.5 The amplification A for various versions of the θ algorithm.
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we can presuppose uniaxial behaviour with a single degree of freedom and write for a linear
element

N = h− x

h
c =

∫ h

0
c̃N2 dx = 1

3
c̃h k =

∫ h

0
k̃

(
dN

dx

)2

dx = k̃

h

Now

ω = k

c
= 3k̃

c̃h2

This gives

�t ≤ 2

1 − 2θ

c̃h2

3k̃
= �tcrit (17.32)

which of course means that the smallest element size, hmin, dictates overall stability. We
note from the above that:

(a) in first-order problems the critical time step is proportional to h2 and thus decreases
rapidly with element size making explicit computations difficult;

(b) if mass lumping is assumed where c̃lump > c̃cons the critical time step is larger than that
obtained using a consistent mass.

In Fig. 17.6 we show the performance of the scheme described in Sec. 17.2.1 for various
values of θ and �t in the example we have already illustrated in Fig. 17.4, but now using
larger values of �t . We note now that the conditionally stable scheme with θ = 0 and
a stability limit of �t = 2 shows oscillations as this limit is approached (�t = 1.5) and
diverges when exceeded.

Stability computations which were presented for the algorithm of Sec. 17.2.1 can of
course be repeated for the other algorithms which we have discussed.
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If identical procedures are used, for instance on the algorithm of Sec. 17.2.2, we shall find
that the stability conditions, based on the determinant of the amplification matrix (A −µI),
are identical with the previous one providing we set θ = β. Algorithms that give such
identical determinants will be called similar in the following presentations.

In general, it is possible for different amplification matrices A to have identical deter-
minants of (A − µI) and hence identical stability conditions, but differ otherwise. If in
addition the amplification matrices are the same, the schemes are known as identical. In the
two cases described here such an identity can be shown to exist despite different derivations.

17.2.6 Some further remarks. Initial conditions and examples

The question of choosing an optimal value of θ is not always obvious from theoretical
accuracy considerations. In particular with θ = 1/2 oscillations are sometimes present,14

as we observe in Fig. 17.6 (�t = 2.5), and for this reason some prefer to use θ = 2/3, which
is considerably ‘smoother’ (and which incidentally corresponds to a standard Galerkin
approximation in time41). In Table 17.1 we show the results for a one-dimensional finite
element problem where a bar at uniform initial temperature is subject to zero temperatures
applied suddenly at the ends. Here 10 linear elements are used in the space dimension with
L = 1. The oscillation errors occurring with θ = 1/2 are much reduced for θ = 2/3.
The time step used here is much longer than that corresponding to the lowest eigenvalue
period, but the main cause of the oscillation is in the abrupt discontinuity of the temperature
change.

For similar reasons Liniger42 derives θ which minimizes the error in the whole time
domain and gives θ = 0.878 for the simple one-dimensional case. We observe in Fig. 17.5
how well the amplification factor fits the exact solution with these values. Again this value
will smooth out many oscillations. However, most oscillations are introduced by simply
using a physically unrealistic initial condition.

In part at least, the oscillations which for instance occur with θ = 1/2 and�t = 2.5 (see
Fig. 17.6) in the previous example are due to a sudden jump in the forcing term introduced
at the start of the computation. This jump is evident if we consider this simple problem
posed in the context of the whole time domain. We can take the problem as implying

f (t) = −1 for t < 0

Table 17.1 Percentage error for finite elements in time: θ = 2/3 (Galerkin) and θ = 1/2
(Crank–Nicolson) scheme; �t = 0.01

x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5

t/θ 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2 2/3 1/2

0.01 10.8 28.2 1.6 3.2 0.5 0.7 0.6 0.1 0.5 0.2
0.02 0.5 3.5 2.1 9.5 0.1 0.0 0.5 0.7 0.7 0.4
0.03 1.3 9.9 0.5 0.7 0.8 3.1 0.5 0.2 0.5 0.6
0.05 0.5 4.5 0.4 0.2 0.5 2.3 0.4 0.8 0.5 1.0
0.10 0.1 1.4 0.1 2.0 0.1 1.4 0.1 1.9 0.1 1.6
0.15 0.3 2.2 0.3 2.1 0.3 2.2 0.3 2.1 0.3 2.2
0.20 0.6 2.6 0.6 2.6 0.6 2.6 0.6 2.6 0.6 2.6
0.30 1.4 3.5 1.4 3.5 1.4 3.5 1.4 3.5 1.4 3.5
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giving the solution u = 1 with a sudden change at t = 0, resulting in

f (t) = 0 for t ≥ 0

As shown in Fig. 17.7 this represents a discontinuity of the loading function at t = 0.
Although load discontinuities are permitted by the algorithm they lead to a sudden dis-

continuity of u̇ and hence induce undesirable oscillations. If in place of this discontinuity
we assume that f varies linearly in the first time step�t (−�t/2 ≤ t ≤ �t/2) then smooth
results are obtained with a much improved physical representation of the true solution, even
for such a long time step as �t = 2.5, as shown in Fig. 17.7.

Similar use of smoothing is illustrated in a multidegree of freedom system (the represen-
tation of heat conduction in a wall) which is solved using two-dimensional finite elements43

(Fig. 17.8).
Here the problem corresponds to an instantaneous application of prescribed temperature

(T = 1) at the wall sides with zero initial conditions. Now again troublesome oscillations
are almost eliminated for θ = 1/2 and improved results are obtained for other values of θ
(2/3, 0.878) by assuming the step change to be replaced by a continuous one. Such smooth-
ing is always advisable and a continuous representation of the forcing term is important.

17.3 General single-step algorithms for first- and
second-order equations

17.3.1 Introduction

We shall introduce in this section two general single-step algorithms applicable to Eq.
(17.1):

Mü + Cu̇ + Ku + f = 0

These algorithms will of course be applicable to the first-order problem of Eq. (17.2) simply
by putting M = 0.

An arbitrary degree polynomial p for approximating the unknown function u will be
used and we must note immediately that for the second-order equations p ≥ 2 is required
for consistency as second-order derivatives have to be approximated.

The first algorithm SSpj (single step with approximation of degree p for equations of
order j = 1, 2) will be derived by use of the weighted residual process and we shall find that
the algorithm of Sec. 17.2.1 is but a special case. The second algorithm GNpj (generalized
Newmark44 with degree p and order j ) will follow the procedures using a truncated Taylor
series approximation in a manner similar to that described in Sec. 17.2.2.

In what follows we shall assume that at the start of the interval, i.e., at t = tn, we know

the values of the unknown function u and its derivatives, that is un, u̇n, ün up to
p−1
un and

our objective will be to determine un+1, u̇n+1, ün+1 up to
p−1
un+1, where p is the order of the

expansion used in the interval.
This is indeed a rather strong presumption as for first-order problems we have already

stated that only a single initial condition, u(0), is given and for second-order problems two
conditions, u(0) and u̇(0), are available (i.e., the initial displacement and velocity of the
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u
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u0
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B

Exact

f Smoothed (A)

Standard (B)

∆t

∆t

Fig. 17.7 Importance of ‘smoothing’ the force term in elimination of oscillations in the solution. �t = 2.5.

system). We can, however, argue that if the system starts from rest we could take u(0) to
p−1
u (0) as equal to zero and, providing that suitably continuous forcing of the system occurs,

the solution will remain smooth in the higher derivatives. Alternatively, we can differentiate
the differential equation to obtain the necessary starting values.

17.3.2 The weighted residual finite element form SSpj

In the SSpj algorithm the expansion of the unknown vector u is taken as a polynomial of

degree p.19, 20 With the known values of un, u̇n, ün up to
p−1
un at the beginning of the time

step �t , we write, as in Sec. 17.2.1,

τ = t − tn �t = tn+1 − tn (17.33)

and using a polynomial expansion of degree p,

u ≈ û = un + τ u̇n + 1

2!
τ 2ün + · · · + 1

(p − 1)!
τp−1 p−1

un + 1

p!
τpαpn (17.34)
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(b) Galerkin (θ = 0.667)
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(c) Liniger (θ = 0.878)
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Fig. 17.8 Transient heating of a bar; comparison of discontinuous and interpolated (smoothed) initial conditions
for single-step schemes.

where the only unknown is the vector αpn ,

αpn ≈ p
u ≡ dpu

dtp
(17.35)

which represents some average value of the pth derivative occurring in the interval�t . The
approximation to u for the case of p = 2 is shown in Fig. 17.9.

We recall that in order to obtain a consistent approximation to all the derivatives that
occur in the differential equations (17.1) and (17.2), p ≥ 2 is necessary for the full
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Fig. 17.9 A second-order time approximation.

dynamic equation and p ≥ 1 is necessary for the first-order equation. Indeed the low-
est approximation, that is p = 1, is the basis of the algorithm derived in the previous
section.

The recurrence algorithm will now be obtained by inserting u, u̇ and ü [obtained by
differentiating Eq. (17.34)] into Eq. (17.1) and satisfying the weighted residual equation
with a single weighting function W(τ). This gives

∫ �t

0
W(τ)

[
M
(

ün + τ
...
un + · · · + 1

(p − 2)!
τp−2αpn

)

+ C
(

u̇n + τ ün + · · · + 1

(p − 1)!
τp−1αpn

)

+ K
(

un + τ u̇n + · · · + 1

p!
τpαpn

)
+ f
]

dt = 0

(17.36)

as the basic equation for determining αpn .
Without explicitly specifying the weighting function used we can, as in Sec.17.2.1,

generalize its effects by writing

θk =
∫ �t

0 Wτk dτ

�tk
∫ �t

0 W dτ
k = 0, 1, . . . , p

f̄ =
∫ �t

0 W f dτ∫ �t
0 W dτ

(17.37)

where we note θ0 is always unity. Equation (17.36) can now be written more compactly as

Aαpn + M ˙̄un+1 + C ˙̄un+1 + Kūn+1 + f̄ = 0 (17.38)
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where

A = θp−2�t
p−2

(p − 2)!
M + θp−1�t

p−1

(p − 1)!
C + θp�t

p

p!
K

ūn+1 =
p−1∑
q=0

θq�t
q

q!

q
un

˙̄un+1 =
p−1∑
q=1

θq−1�t
q−1

(q − 1)!

q
un

¨̄un+1 =
p−1∑
q=2

θq−2�t
q−2

(q − 2)!

q
un

(17.39)

As ūn+1, ˙̄un+1 and ¨̄un+1 can be computed directly from the initial values we can solve
Eq. (17.38) to obtain

αpn = −A−1
[
M ¨̄un+1 + C ˙̄un+1 + Kūn+1 + f̄

]
(17.40)

It is important to observe that ūn+1, ˙̄un+1 and ¨̄un+1 here represent some mean predicted
values of un+1, u̇n+1 and ün+1 in the interval and satisfy the governing Eq. (17.1) in a
weighted sense if αpn is chosen as zero.

The procedure is now complete as knowledge of the vectorαpn permits the evaluation of

un+1 to
p−1
un+1 from the expansion originally used in Eq. (17.34) by putting τ = �t . This

gives

un+1 = un +�t u̇n + · · · + �tp

p!
αpn = ûn+1 + �tp

p!
αpn

u̇n+1 = u̇n +�t ün + · · · + �tp−1

(p − 1)!
αpn = ˙̂un+1 + �tp−1

(p − 1)!
αpn

...

p−1
un+1 =p−1

un +�tαpn

(17.41)

In the above û, ˙̂u, etc., are again quantities that can be written down a priori (before solving
for αpn ). These represent predicted values at the end of the interval with αpn = 0.

To summarize, the general algorithm necessitates the choice of values for θ1 to θp and
requires

(a) computation of ūn+1, ˙̄un+1 and ¨̄un+1 using the definitions of Eqs (17.39);
(b) computation of αpn by solution of Eq. (17.40);
(c) computation of un+1 to

p−1
un+1 by Eqs (17.41).

After completion of stage (c) a new time step can be started. In first-order problems the
computation of ¨̄u can obviously be omitted.

If matrices C and M are diagonal the solution of Eq. (17.40) is trivial providing we
choose

θp = 0 (17.42)
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With this choice the algorithms are explicit but, as we shall find later, only sometimes
conditionally stable.

When θp > 0, implicit algorithms of various kinds will be available and some of these
will be found to be unconditionally stable. Indeed, it is such algorithms that are of great
practical use.

Important special cases of the general algorithm are the SS11 and SS22 forms given
below.

Example 17.1: The SS11 algorithm. If we consider the first-order equation (that is j = 1)
it is evident that only the value of un is necessarily specified as the initial value for any
computation. For this reason the choice of a linear expansion in the time interval is natural
(p = 1) and the SS11 algorithm is for that reason most widely used.

Now the approximation of Eq. (17.34) is simply

u = un + τα (α1
n = α = u̇) (17.43)

and the approximation to the average satisfaction of Eq. (17.2) is simply

Cα+ K(ūn+1 + θ�tα)+ f̄ = 0 (17.44)

with ūn+1 = un. Solution of Eq. (17.44) determines α as

α = − (C + θ�tK)−1
(
f̄ + Kun

)
(17.45)

and finally
un+1 = un +�tα (17.46)

The reader will verify that this process is identical to that developed in Eqs (17.7)–(17.13)
and hence will not be further discussed except perhaps for noting the more elegant compu-
tation form above.

Example 17.2: The SS22 algorithm. With Eq. (17.1) we considered a second-order sys-
tem (j = 2) in which the necessary initial conditions require the specification of two
quantities, un and u̇n. The simplest and most natural choice here is to specify the minimum
value of p, that is p = 2, as this does not require computation of additional derivatives at
the start. This algorithm, SS22, is thus basic for dynamic equations and we present it here
in full.

From Eq. (17.34) the approximation is a quadratic

u = un + τ u̇n + 1
2τ

2α (α2
n ≡ α ≈ ü) (17.47)

The approximate form of the ‘weighted’ dynamic equation is now

Mα+ C( ˙̄un+1 + θ1�tα)+ K(ūn+1 + 1
2θ2�t

2α)+ f̄ = 0 (17.48)

with predicted ‘mean’ values

ūn+1 = un + θ1�t u̇n
˙̄un+1 = u̇n

(17.49)
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After evaluation of α from Eq. (17.40), the values of un+1 are found by Eqs (17.41) which
become simply

un+1 = un +�t u̇n + 1
2�t

2α

u̇n+1 = u̇n +�tα
(17.50)

This completes the algorithm which is of much practical value in the solution of dynamics
problems.

In many respects the previous example resembles the Newmark algorithm44 which we
shall discuss in the next section and which is widely used in practice with the forms

un+1 = un +�t u̇n + ( 1
2 − β)�t2ün + β�t2ün+1

u̇n+1 = u̇n + (1 − γ )�t ün + γ�t ün+1

Indeed, the stability properties of the SS22 algorithm turn out to be identical with the
Newmark algorithm if

θ1 = γ ; θ2 = 2β; θ1 ≥ θ2 ≥ 1
2 (17.51)

for unconditional stability. In the above γ and β are conventionally used Newmark par-
ameters.

For θ2 = 0 the algorithm is ‘explicit’ (assuming both M and C to be diagonal) and can
be made conditionally stable if θ1 ≥ 1/2.

The algorithm is clearly applicable to first-order equations described as SS21 and we
shall find that the stability conditions are identical. In this case, however, it is necessary to
identify an initial condition for u̇0 and

u̇0 = −C−1
(
Ku0 + f̄0

)

is one possibility.

17.3.3 Truncated Taylor series collocation algorithm GNpj

In the derivation using collocation, we consider the satisfaction of the governing equation
(17.1) only at the end points of the interval �t [which results from the weighting function
shown in Fig. 17.3(c)] and write

Mün+1 + Cu̇n+1 + Kun+1 + fn+1 = 0 (17.52)

with appropriate approximations for the values of un+1, u̇n+1 and ün+1. It will be shown
that again as in Sec. 17.2.2 a non-self-starting process is obtained, which in most cases,
however, gives an algorithm similar to the SSpj one we have derived. The classical Newmark
method44 will be recognized as a particular case together with its derivation process in a
form presented generally in existing texts.45 Because of this similarity we shall term the
new algorithm generalized Newmark (GNpj).
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If we consider a truncated Taylor series expansion similar to Eq. (17.17a) for the function
u and its derivatives, we can write

un+1 = un +�t u̇n + · · · + �tp

p!

p
un + βp

�tp

p!

(
p
un+1 − p

un
)

u̇n+1 = u̇n +�t ün + · · · + �tp−1

(p − 1)!

p
un + βp−1

�tp−1

(p − 1)!

(
p
un+1 − p

un
)

...
p−1
un+1 = p−1

un+�t pun −β1�t
(
p
un+1 − p

un
)

(17.53)

In Eqs (17.53) we have effectively allowed for a polynomial of degreep (i.e., by including
terms up to �tp) plus a Taylor series remainder term in each of the expansions for the
function and its derivatives with a parameter βj , j = 1, 2, . . . , p, which can be chosen to
give good approximation properties to the algorithm.

Insertion of the first three expressions of (17.53) into Eq. (17.52) gives a single equation

from which
p
un+1 can be found. When this is determined, un+1 to

p−1
un+1 can be evaluated

using Eqs (17.53). Satisfying Eq. (17.52) is almost a ‘collocation’ which could be obtained
by inserting the expressions (17.53) into a weighted residual form (17.36) with W =
δ(tn+1) (the Dirac delta function). However, the expansion does not correspond to a unique
function u.

In detail we can write the first three expansions of Eqs (17.53) as

un+1 = ŭn+1 + βp
�tp

p!

p
un+1

u̇n+1 = ˙̆un+1 + βp−1
�tp−1

(p − 1)!

p
un+1

ün+1 = ¨̆un+1 + βp−2
�tp−2

(p − 2)!

p
un+1

(17.54)

where

ŭn+1 = un +�t u̇n + · · · + (1 − βp)
�tp

p!

p
un

˙̆un+1 = u̇n +�t ün + · · · + (1 − βp−1)
�tp−1

(p − 1)!

p
un

¨̆un+1 = ün +�t
...
un + · · · + (1 − βp−2)

�tp−2

(p − 2)!

p
un

(17.55)

Inserting the above into Eq. (17.52) and solving for
p
un+1 gives

p
un+1= −A−1

[
M ¨̆un+1 + C ˙̆un+1 + Kŭn+1 + fn+1

]
(17.56)

where

A = βp−2�t
p−2

(p − 2)!
M + βp−1�t

p−1

(p − 1)!
C + βp�t

p

p!
K

We note immediately that the above expression is formally identical to that of the SSpj
algorithm, Eq. (17.40), if we make the substitutions
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βp = θp βp−1 = θp−1 βp−2 = θp−2 (17.57)

However, ŭn+1, ˙̆un+1, etc., in the generalized Newmark, GNpj, are not identical to ūn+1,
¯̇un+1, etc., in the SSpj algorithms. In the SSpj algorithm these represent predicted mean
values in the interval �t while in the GNpj algorithms they represent predicted values at
tn+1.

The computation procedure for the GN algorithms is very similar to that for the SS
algorithms, starting now with known values of un to

p
un. As before we have the given initial

conditions and we can often arrange to use the differential equation and its derivatives to
generate higher derivatives for u at t = 0. However, the GN algorithm requires use of

p
u0

in the computation of the next time step.
An important member of this family is the GN22 algorithm.

The Newmark algorithm (GN22)
We have already mentioned the classical Newmark algorithm as it is one of the most popular
for dynamic analysis. It is indeed a special case of the general algorithm of the preceding
section in which a quadratic (p = 2) expansion is used, this being the minimum required
for second-order problems. We describe here the details in view of its widespread use.

The expansion of Eq. (17.53) for p = 2 gives

un+1 = un +�t u̇n + 1
2 (1 − β2)�t

2ün + 1
2β2�t

2ün+1 = ŭn+1 + 1
2β2�t

2ün+1

u̇n+1 = u̇n + (1 − β1)�t ün + β1�t ün+1 = ˙̆un+1 + β1�t ün+1

(17.58)

and this together with the dynamic equation (17.52),

Mün+1 + Cu̇n+1 + Kun+1 + fn+1 = 0 (17.59)

allows the three unknowns un+1, u̇n+1 and ün+1 to be determined.
We now proceed as we have already indicated and solve first for ün+1 by substituting

(17.58) into (17.59). This yields as the first step

ün+1 = −A−1{fn+1 + C ˙̆un+1 + Kŭn+1} (17.60)

where
A = M + β1�tC + 1

2β2�t
2K (17.61)

After this step the values of un+1 and u̇n+1 can be found using Eqs (17.58).
As in the general case, β2 = 0 produces an explicit algorithm whose solution is very

simple if M and C are assumed diagonal.
It is of interest to remark that the accuracy can be slightly improved and yet the advantages

of the explicit form preserved for SS/GN algorithms by a simple iterative process within
each time increment. In this, for the GN algorithm, we predict uin+1, u̇in+1 and üin+1 using
expressions (17.54) with (

p
un+1

)i
=
(
p
un+1

)i−1

and setting for i = 1 (
p
un+1

)0
= 0
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This is followed by rewriting the governing equation (17.52) as

M
[

üi−1
n+1 + β2 �t

p−2

(p − 2)!

(
p
un+1

)i]
+ Cu̇i−1

n+1 + Kui−1
n+1 + fn+1 = 0 (17.62)

and solving for
(
p
un+1

)i
.

This predictor–corrector iteration has been successfully used for various algorithms,
though of course the stability conditions remain unaltered from those of a simple explicit
scheme.46

For implicit schemes we note that in the general case, Eqs (17.58) have scalar coefficients
while Eq. (17.59) has matrix coefficients. Thus, for the implicit case some users prefer
a slightly more complicated procedure than indicated above in which the first unknown
determined is un+1. This may be achieved by expressing Eqs (17.58) in terms of the un+1

to obtain

ün+1 = ¨̂un+1 + 2

β2�t2
un+1

u̇n+1 = ˙̂un+1 + 2β1

β2�t
un+1

(17.63)

where

¨̂un+1 = − 2

β2�t2
un − 2

β2�t
u̇n − 1 − β2

β2
ün

˙̂un+1 = − 2β1

β2�t
un +

(
1 − 2β1

β2

)
u̇n +

(
1 − β1

β2

)
�t ün

(17.64)

These are now substituted into Eq. (17.59) to give the result

un+1 = −A−1(fn+1 + C ˙̂un+1 + M ¨̂un+1) (17.65)

where now

A = 2

β2�t2
M + 2β1

β2�t
C + K

which again on using Eqs (17.63) and (17.64) gives u̇ and ü. The inversion is here identical
to within a scalar multiplier and, thus, precludes use of the explicit form where β2 is zero.

17.4 Stability of general algorithms

Consistency of the general algorithms of SS and GN type is self-evident and assured by
their formulation.

In a similar manner to that used in Sec. 17.2.5 we can conclude from this that the local
truncation error is O(�tp+1) as the expansion contains all terms up to τp for SS and �tp

for GN algorithms. However, the total truncation error after n steps is onlyO(�tp) for the
first-order equation system and O(�tp−1) for the second-order one. Details of accuracy
discussions and reasons for this can be found in reference 6.

The question of stability is paramount and in this section we shall discuss it in detail for
the SS type of algorithms. The establishment of similar conditions for the GN algorithms
follows precisely the same pattern and is left as an exercise to the reader. It is, however,
important to remark here that it can be shown that
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(a) the SS and GN algorithms are generally similar in performance;
(b) their stability conditions are identical when θp ≡ βp.

The proof of the last statement requires some elaborate algebra and is given in reference 6.
The determination of stability requirements follows precisely the pattern outlined in

Sec. 17.2.5. However, for practical reasons we shall

(a) avoid writing explicitly the amplification matrix A;
(b) immediately consider the scalar equation system implying modal decomposition and

no forcing, i.e.,

mü+ cu̇+ ku = 0 (17.66)

Equations (17.37), (17.40) and (17.41) written in scalar terms define the recurrence
algorithms. For the homogeneous case the general solution can be written down as

un+1 = µun

u̇n+1 = µu̇n
...

p−1
un+1 = µ

p−1
un

(17.67)

and substitution of the above into the equations governing the recurrence can be written
quite generally as

SXn = 0 (17.68)

where

Xn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un
�tu̇n
...

�tp−1 p−1
un

�tp
p
un

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(17.69)

The matrix S is given below in a compact form which can be verified by the reader:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 b2 · · · bp−1 bp

1 − µ 1
1

2!
· · · 1

(p − 1)!

1

p!

0 1 − µ 1 · · · 1

(p − 2)!

1

(p − 1)!
...

...
...

...
...

...

0 0 0 · · · 1
1

2!
0 0 0 · · · 1 − µ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17.70)
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where

b0 = θ0�t
2k

b1 = θ0�tc + θ1�t
2k

...

bq = θq−2

(q − 2)!
m+ θq−1�t

(q − 1)!
c + θq�t

2

q!
k, q = 2, 3, . . . , p

and θ0 = 1.
For non-trivial solutions for the vector Xn to exist it is necessary for

det S = 0 (17.71)

This provides a characteristic polynomial of order p for µ which yields the eigenvalues
of the amplification matrix. For stability it is sufficient and necessary that the moduli of all
eigenvalues [see Eq. (17.27)] satisfy

|µ| ≤ 1 (17.72)

We remark that in the case of repeated roots the equality sign does not apply. The reader
will have noticed that the direct derivation of the determinant of S is much simpler than
writing down matrix A and finding the eigenvalues. The results are, of course, identical.

The calculation of stability limits, even with the scalar (modal) equation system, is non-
trivial. For this reason in what follows we shall only do it for p = 2 and p = 3. However,
two general procedures will be introduced here.

The first of these is the so-called z transformation. In this we use a change of variables
in the polynomial putting

µ = 1 + z

1 − z
(17.73)

where z as well asµ are in general complex numbers. It is easy to show that the requirement
of Eq. (17.72) is identical to that demanding the real part of z to be negative (see Fig. 17.10).

The second procedure introduced is the well-known Routh–Hurwitz condition47–49 which
states that for a polynomial

c0z
n + c1z

n−1 + · · · + cn−1z+ cn = 0 with c0 > 0 (17.74)

the real part of all roots will be negative if, for c1 > 0,

det

[
c1 c3

c0 c2

]
> 0; det

⎡
⎣c1 c3 c5

c0 c2 c4

0 c1 c3

⎤
⎦ > 0 (17.75)

and generally

det

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 c3 c5 c7 · · ·
c0 c2 c4 c6 · · ·
0 c1 c3 c5 · · ·
0 0 c2 c4 · · ·
...

. . .

0 0 0 · · · cn−2 cn

⎤
⎥⎥⎥⎥⎥⎥⎦
> 0 (17.76)

With these tools in hand we can discuss in detail the stability of specific algorithms.
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Fig. 17.10 The µ = (1 + z)/(1 − z) transformation.

17.4.1 Stability of SS22/SS21 algorithms

The recurrence relations for the algorithm given in Eqs (17.48) and (17.50) can be written
after inserting

un+1 = µun; u̇n+1 = µu̇n and f = 0 (17.77)

as

mα + c (u̇n + θ1�tα)+ k
(
un + θ1�tu̇n + 1

2θ2�t
2α
) = 0

−µun + un +�tu̇n + 1
2�t

2α = 0

−µu̇n + u̇n +�tα = 0

Changing the variable according to Eq. (17.73) results in the characteristic polynomial

c0z
2 + c1z+ c2 = 0 (17.78)

with

c0 = 4m+ (4θ1 − 2)�tc + 2(θ2 − θ1)�t
2k

c1 = 2�tc + (2θ1 − 1)�t2k

c2 = �t2k

(17.79)

The Routh–Hurwitz requirement for stability is simply that

c0 > 0 c1 ≥ 0 det

[
c1 0
c0 c2

]
> 0

or simply
c0 > 0 c1 ≥ 0 c2 > 0 (17.80)

These inequalities give for unconditional stability the condition that

θ2 ≥ θ1 ≥ 1
2 (17.81)
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This condition is also generally valid when m = 0, i.e., for the SS21 algorithm (the first-
order equation) though now θ2 = θ1 must be excluded.

It is possible to satisfy the inequalities (17.80) only at some values of�t yielding condi-
tional stability. For the explicit process θ2 = 0 with SS22/SS21 algorithms the inequalities
(17.80) demand that

2m+ (2θ1 − 1)�tc − θ1�t
2k ≥ 0

2c + (2θ1 − 1)�tk ≥ 0
(17.82)

The second one is satisfied whenever

θ1 ≥ 1
2 (17.83)

and for θ1 = 1/2 the first supplies the requirement that

�t2 ≤ 4m

k
(17.84)

The last condition does not permit an explicit scheme for SS21, i.e., whenm = 0. Here,
however, if we take θ1 > 1/2 we have from the first equation of Eq. (17.82)

�t <
2θ1 − 1

θ1

c

k
(17.85)

It is of interest for problems of structural dynamics to consider the nature of the bounds
in an elastic situation. Here we can use the same process as that described in Sec. 17.2.5 for
first-order problems of heat conduction. Looking at a single element with a single degree
of freedom and consistent mass yields in place of condition (17.84)

�t ≤ 2√
3

h

C
= �tcrit

where h is the element size and

C =
√
E

ρ

is the speed of elastic wave propagation. For lumped mass matrices the factor becomes
√

2.
Once again the ratio of the smallest element size over wave speed governs the stability

but it is interesting to note that in problems of dynamics the critical time step is proportional
to hwhile, as shown in Eq. (17.32), for first-order problems it is proportional to h2. Clearly
for decreasing mesh size explicit schemes in dynamics are more efficient than in thermal
analysis and are exceedingly popular in certain classes of problems.

17.4.2 Stability of various higher order schemes and equivalence
with some known alternatives

Identical stability considerations as those described in previous sections can be applied to
SS32/SS31 and higher order approximations. We omit here the algebra and simply quote
some results.6
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SS32/31. Here for zero damping (c = 0) in SS32 we require for unconditional stability
that

θ1 >
1
2 θ2 ≥ θ1 + 1

6 θ2 ≥ 1
4 θ3 ≥ 3

2

3θ1θ2 − 3θ2
1 + θ1 ≥ θ3

(17.86)

For first-order problems (m = 0), i.e., SS31, the first requirements are as in dynamics
but the last one becomes

3θ1θ
2
1 − 3θ2 + θ1 ≥ θ3 − [6θ1(θ1 − 1)+ 1]2

9(2θ1 − 1)
(17.87)

With θ3 = 0, i.e., an explicit scheme when c = 0,

�t2 ≤ 12(2θ1 − 1)

6θ2 − 1

m

k
(17.88)

and when m = 0,

�t ≤ θ2 − θ1

6θ2 − 1

c

k
(17.89)

SS42/41. For this (and indeed higher orders) unconditional stability in dynamics problems
m �= 0 does not exist. This is a consequence of a theorem by Dahlquist.50 The SS41 scheme
can have unconditional stability but the general expressions for this are cumbersome. We
quote one example that is unconditionally stable:

θ1 = 5
2 θ2 = 35

6 θ3 = 25
2 θ4 = 24

This set of values corresponds to a backward difference four-step algorithm of Gear.51

It is of general interest to remark that certain members of the SS (or GN) families of
algorithms are similar in performance and identical in the stability (and hence recurrence)
properties to others published in the large literature on the subject. Each algorithm claims
particular advantages and properties. In Tables 17.2–17.4 we show some members of this
family.41, 50–56 Clearly many more algorithms that are applicable are present in the general
formulae.

We remark here that identity of stability and recurrence always occurs with multistep
algorithms, which we shall discuss briefly in the next section.

Table 17.2 SS21 equivalents

Algorithms Theta values

Zlamal41 θ1 = 5
6 , θ2 = 2

Gear51 θ1 = 3
2 , θ2 = 2

Liniger52 θ1 = 1.0848, θ2 = 1
Liniger52 θ1 = 1.2184, θ2 = 1.292
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Table 17.3 SS31 equivalents

Algorithms Theta values

Gear51 θ1 = 2, θ2 = 11
3 , θ3 = 6

Liniger52 θ1 = 1.84, θ2 = 3.07, θ3 = 4.5
Liniger52 θ1 = 0.8, θ2 = 1.03, θ3 = 1.29

Table 17.4 SS32 equivalents

Algorithms Theta values

Houbolt53 θ1 = 2, θ2 = 11
3 , θ3 = 6

Wilson 
54 θ1 = 
, θ2 = 
2, θ3 = 
3

(
 = 1.4 commonly used)
Bossak–Newmark55 θ1 = 1 − αB

(mü+ ku = 0, θ2 = 2
3 − αB + 2βB

γB = 1
2 − αB ) θ3 = 6βB

Bossak–Newmark55 θ1 = 1 − αB
(mü+ cu̇+ ku = 0, θ2 = 1 − 2αB
γB = 1

2 − αB , θ3 = 1 − 3αB
βB = 1

6 − 1
2αB )

Hilber–Hughes–Taylor56 θ1 = 1
(mü+ ku = 0, θ2 = 2

3 + 2βH − 2α2
H

γH = 1
2 − αH ) θ3 = 6βH (1 + αH )

Multistep methods

17.5 Multistep recurrence algorithms

17.5.1 Introduction

In the previous sections we have been concerned with recurrence algorithms valid within a
single time step and relating the values of un+1, u̇n+1, ün+1 to un, u̇n, ün, etc. It is possible to
derive, using very similar procedures to those previously introduced, multistep algorithms
in which we relate un+1 to the values un, un−1, un−2, etc., without explicitly introducing
the derivatives. Much classical work on stability and accuracy has been introduced on such
multistep algorithms and hence they deserve mention here.

We shall show in this section that a series of such algorithms may be simply derived
using the weighted residual process. For constant time increments�t , it can be shown that
this set possesses identical stability and accuracy properties to the SSpj procedures.

17.5.2 The approximation procedure for a general multistep
algorithm

As in Sec. 17.3.2 we shall approximate the function u of the second-order equation

Mü + Cu̇ + Ku + f = 0 (17.90)
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by a polynomial expansion of the order p, now containing a single unknown un+1. This
polynomial assumes knowledge of the value of un, un−1, . . ., un−p+1 at appropriate times
tn, tn−1, . . ., tn−p+1 (Fig. 17.11).

We can write this polynomial as

u(t) =
1∑

j=1−p
Nj (t)un+j (17.91)

where Lagrange interpolation in time is given by (see Chapter 4)

Nj(t) =
1∏

k=1−p
k �=j

t − tn+k
tn+j − tn+k

(17.92)

Substituting this approximation into Eq. (17.91) gives

u̇ =
1∑

j=1−p
Ṅj (t)un+j and ü =

1∑
j=1−p

N̈j (t)un+j (17.93)

where Ṅj and N̈j denote the time derivatives of the shape functions. Insertion of u, u̇ and
ü into the weighted residual equation form yields

∫ tn+1

tn

W(t)

1∑
j=1−p

[(
N̈jM + ṄjC +NjK

)
un+j +Nj fn+j

]
dt = 0 (17.94)

with the forcing functions interpolated similarly from its nodal values. Using (17.92) and
the definition for θk given by (17.37) leads to a recurrence relation which may be used to
compute un+1.

un−1

un

un+1

un−p+1

n−p+1 n−2 n−1 n n+1

Nn−1 Nn Nn+1

t

1

Lagrange
interpolation
polynomials of order p 
(shape function)

Approximate
domain

∆t ∆t

Fig. 17.11 Multistep polynomial approximation.
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Example 17.3: Two-point interpolation: p = 1. Evaluating Eq. (17.92) for the two
points we obtain

N1 = t − tn

tn+1 − tn
= 1

�t
(t − tn) = τ

�t

N0 = tn+1 − t

tn+1 − tn
= 1

�t
(tn+1 − t) = 1 − τ

�t

(17.95a)

where �t = tn+1 − tn and τ = t − tn. Here the derivative is computed directly as

dN1

dt
= − dN0

dt
= 1

�t
(17.95b)

Second derivatives are obviously zero, hence this form may only be used for first-order
equations as

1

�t
C(un+1 − un)+ K[(1 − θ)un + θun+1] + f̄ = 0 (17.95c)

which is, obviously, identical to the SS11 result given previously.

Example 17.4: Three-point interpolation: p = 2. Evaluating Eq. (17.92) for the three
points gives

N1 = (t − tn−1)(t − tn)

(tn+1 − tn−1)(tn+1 − tn)

N0 = (t − tn−1)(t − tn+1)

(tn − tn−1)(tn − tn+1)

N−1 = (t − tn)(t − tn+1)

(tn−1 − tn)(tn−1 − tn+1)

(17.96a)

The derivatives follow immediately from Eqs (17.92) and (17.93) as

dN1

dt
= (t − tn)+ (t − tn−1)

(tn+1 − tn−1)(tn+1 − tn)

dN0

dt
= (t − tn+1)+ (t − tn−1)

(tn − tn−1)(tn − tn+1)

dN−1

dt
= (t − tn+1)+ (t − tn)

(tn−1 − tn)(tn−1 − tn+1)

(17.96b)

This is the lowest order which can be used for second-order equations and has second
derivatives

d2N1

dt2
= 2

(tn+1 − tn−1)(tn+1 − tn)

d2N0

dt2
= 2

(tn − tn−1)(tn − tn+1)

d2N−1

dt2
= 2

(tn−1 − tn)(tn−1 − tn+1)

(17.96c)
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The recurrence relation for the two-step method with �t constant is given by[
1

�t2
M + 1

�t
(θ̄1 + 1

2 )C + 1
2 (θ̄2 + θ̄1)K

]
un+1+[

− 2

�t2
M − 2

�t
θ̄1C + (1 − θ̄2)K

]
un+[

1

�t2
M + 1

�t
(θ̄1 − 1

2 )C + 1
2 (θ̄2 − θ̄1)K

]
un−1 + f̄ = 0

(17.96d)

where f̄ is the effect of the integrated force resultant and θ̄k is computed using (17.92), but
now has different values for stability than given for θk in the SS22 form.

The above form is identical to the form originally derived by Newmark44 (however, the
conventional parameters are usually β and γ ) and also corresponds to the SS22 and GN22
forms when parameters are related by:

γ = θ̄1 + 1
2 = θ1 = β1 and β = 1

2 (θ̄2 + θ̄1) = 1
2θ2 = 1

2β2

The explicit form of this algorithm with 2β = θ̄2 = θ2 = β2 = 0 and γ = θ̄1 + 1/2 =
θ1 = β1 = 1/2 is frequently used as an alternative to the single-step explicit form. It is
then known as the central difference approximation obtained by direct differencing. The
reader can easily verify that the simplest finite difference approximation of Eq. (17.1) in
fact corresponds to the above with θ̄2 = 0 and θ̄1 = 0.

Higher order multistep forms follow the general pattern given above for the two- and
three-point forms and need not be discussed more here. In general there are no added
advantages using the multistep form and, quite generally, we recommend use of the one-
step forms SSpj and GNpj given above.

17.6 Some remarks on general performance of numerical
algorithms

In Secs 17.2.5 and 17.3.3 we have considered the exact solution of the approximate recur-
rence algorithm given in the form

un+1 = µun, etc. (17.97)

for the modally decomposed, single degree of freedom systems typical of Eqs (17.4) and
(17.5). The evaluation of µ was important to ensure that its modulus does not exceed unity
so that stability is preserved.

However, analytical solution of the linear homogeneous differential equations is also
easy to obtain in the form

ũ = ūeλt or un+1 = une
λ�t (17.98)

and comparison of µ with such a solution is always instructive to provide information on
the performance of algorithms in the particular range of eigenvalues.

In Fig. 17.5 we plotted the exact solution e−ω�t and compared it with the values of µ for
various θ algorithms approximating the first-order equation, noting that here

λ = −ω = −k
c

and is real.
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Immediately we see there that the performance error is very different for various values of
�t and obviously deteriorates at large values. Such values in a real multivariable problem
correspond of course to the ‘high frequency’ responses which are often less important, and
for smooth solutions we favour algorithms whereµ tends to values much less than unity for
such problems. However, response through the whole time range is important and attempts
to choose an optimal value of θ for various time ranges has been performed by Liniger.52

Table 17.1 of Sec.17.2.6 illustrates how an algorithm with θ = 2/3 and a higher truncation
error than that of θ = 1/2 can perform better in a multidimensional system because of such
properties.

Similar analysis can be applied to the second-order equation. Here, to simplify matters,
we consider only the homogeneous undamped equation in the form

mü+ ku = 0 (17.99)

in which the value of λ is purely imaginary and corresponds to a simple oscillator. By
examining µ we can find not only the amplitude ratio (which for high accuracy should be
unity) but also the phase error.

In Fig. 17.12(a) we show both the variation of the modulus of µ (which is called the
spectral radius) and in Fig. 17.12(b) that of the relative period for the SS22/GN22 schemes,
which of course are also applicable to the two-step equivalent. The results are plotted against

�t

T
where T = 2π

ω
; ω2 = k

m

In Fig. 17.13(a) and (b) similar curves are given for the SS23 and GN23 schemes fre-
quently used in practice and discussed previously.

Here as in the first-order problem we often wish to suppress (or damp out) the response to
frequencies in which�t/T is large (say greater than 0.1) in multidegree of freedom systems,
as such a response will invariably be inaccurate. At the same time below this limit it is
desirable to have amplitude ratios as close to unity as possible. It is clear that the stability
limit with θ1 = θ2 = 1/2 giving unit response everywhere is often undesirable (unless
physical damping is sufficient to damp high frequency modes) and that some algorithmic
damping is necessary in these cases. The various schemes shown in Figs 17.12 and 17.13
can be judged accordingly and provide the reason for a search for an optimum algorithm.

We have remarked frequently that although schemes can be identical with regard to
stability their performances may differ slightly. In Fig. 17.14 we illustrate the application
of SS22 and GN22 to a single degree of freedom system showing results and errors in each
scheme.

17.7 Time discontinuous Galerkin approximation

A time discontinuous Galerkin formulation may be deduced from the finite element in the
time approximation procedure considered in this chapter. This is achieved by assuming the
weight function w and solution variables u are approximated within each time interval�t as

u = u+
n +�u(t) t−n ≤ t < t−n+1

w = w+
n +�w(t) t−n ≤ t < t−n+1

(17.100)

where the time t−n is the limit from times smaller than tn and t+n is the limit from times
larger than tn and, thus, admit a discontinuity in the approximation to occur at each discrete
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Fig. 17.12 SS22, GN22 (Newmark) or their two-step equivalent.

time location. The functions �u and �w are defined to be zero at tn and continuous up to
the time t−n+1 where again a discontinuity can occur during the next time interval.

The discrete form of the governing equations may be deduced starting from the time de-
pendent partial differential equations where standard finite elements in space are combined
with the time discontinuous Galerkin approximation and defining a weak form in a space–
time slab. Alternatively, we may begin with the semi-discrete form as done previously in
this chapter for other finite element in time methods. In this second form, for the first-order
case, we write
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Fig. 17.14 Comparison of the SS22 and GN22 (Newmark) algorithms: a single DOF dynamic equation with
periodic forcing term, θ1 = β1 = 1/2, θ2 = β2 = 0.

I =
∫ t−n+1

t−n
wT (Cu̇ + Ku + f) dτ = 0 (17.101)

Due to the discontinuity at tn it is necessary to split the integral into

I =
∫ t+n

t−n
wT(Cu̇ + Ku + f) dτ +

∫ t−n+1

t+n
wT(Cu̇ + Ku + f) dτ = 0 (17.102)

which gives

I = (w+
n )

T[C(u+
n − u−

n )] + (w+
n )

T
∫ t−n+1

t+n
(Cu̇ + Ku + f) dτ

+
∫ t−n+1

t+n
(�w)T (Cu̇ + Ku + f) dτ = 0

(17.103)

in which now all integrals involve approximations to functions which are continuous.
To apply the above process to a second-order equation it is necessary first to reduce the

equation to a pair of first-order equations. This may be achieved by defining the momenta

p = Mu̇ (17.104)
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and then writing the pair

Mu̇ − p = 0

ṗ + Cu̇ + Ku + f = 0
(17.105)

The time discrete process may now be applied by introducing two weighting functions as
described in reference 39.

Example 17.5: Solution of a scalar equation. To illustrate the process we consider the
simple first-order scalar equation

cu̇+ ku+ f = 0 (17.106)

We consider the specific approximations

u(t) = u+
n + τ�u−

n+1

w(t) = w+
n + τ�w−

n+1

(17.107)

where �u−
n+1 = u−

n+1 − u+
n , etc., and

τ = t − tn

tn+1 − tn
= t − tn

�t

defines the time interval 0 < τ < �t . This approximation gives the integral form

I = w+
n

[
c(u+

n − u−
n )
]+ w+

n �t

∫ 1−

0+

[
1

�t
c�u−

n+1 + k
(
u+
n + τ�u−

n+1

)+ f

]
dτ

+�t

∫ 1−

0+
�w−

n+1τ

[
1

�t
c�u−

n+1 + k
(
u+
n + τ�u−

n+1

)+ f

]
dτ = 0

(17.108)

Evaluation of the integrals gives the pair of equations[
(c + k�t) 1

2k�t
1
2k�t ( 1

2c + 1
3k�t)

]{
u+
n

�u−
n+1

}
+
{
�tf̄

�t�f̄

}
=
{
cu−

n

0

}
(17.109a)

where {
f̄

�f̄

}
=
∫ �t

0

{
f

τf

}
dτ (17.109b)

Thus, with linear approximation of the variables the time discontinuous Galerkin method
gives two equations to be solved for the two unknowns u+

n and u−
n+1.

To illustrate the performance of the above scheme we compare the amplification matrix
for the discontinuous Galerkin and standard Galerkin method in Fig. 17.15. In addition
we use the method to solve the example described in Fig. 17.4 and present the results in
Fig. 17.16. It is possible to also perform the solution with constant approximation. Based
on the above this is achieved by setting �u−

n+1 and �w−
n+1 to zero yielding the single

equation
(c + k�t)u+

n +�tf̄ = cu−
n (17.110)

and now since the approximation is constant over the entire time the u+
n also defines exactly

the u−
n+1 value. This form will now be recognized as identical to the backward difference

implicit scheme defined in Fig. 17.4 for θ = 1.
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Fig. 17.15 The amplification A for standard and discontinuous Galerkin schemes.

Finally, we compare the error in the amplification matrix for different step sizes. The error
defined by

E = Â(�t)− Aex(�t)

where the Â is the amplification for the approximate form and Aex = exp(−�t), the
exact value. In Fig. 17.17(a) we present the values for the single-step algorithms and
in Fig. 17.17(b) those for the discontinuous Galerkin and two-step quadratic continuous
Galerkin solution. We note that the θ = 1/2 (Crank–Nicolson), discontinuous Galerkin
andp = 2 continuous Galerkin solutions are all second-order accurate (slope zero for small
�t = 0) while other values have finite slope and hence are only first-order accurate. It is
also evident that the error at larger steps for the p = 2 continuous Galerkin is more accurate
than the discontinuous Galerkin. Thus, for the same computational effort the use of the
continuous form is more appropriate in this class of problems. For this reason we will not
pursue use of the discontinuous Galerkin time integration procedure further here.

17.8 Concluding remarks

The derivation and examples presented in this chapter cover, we believe, the necessary tool-
kit for efficient solution of many transient problems governed by Eqs (17.1) and (17.2). In
the next chapter we shall elaborate further on the application of the procedures discussed
here and show that they can be extended to solve coupled problems which frequently arise
in practice and where simultaneous solution by time stepping is often needed.

Finally, as we have indicated in Eq. (17.3), many problems have coefficient matrices or
other variations which render the problem non-linear. This topic is addressed further for
structural and solid mechanics problems in reference 57 and we note also that the issue
of stability after many time steps is more involved than the procedures introduced here to
investigate local stability.
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Fig. 17.16 Comparison of standard and discontinuous Galerkin schemes on a first-order initial value problem.
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17.9 Problems

17.1 Verify the recurrence relation given in Eq. (17.19) using a least squares minimization
process in which (17.7) is substituted into (17.2).

17.2 Determine the stability characteristics for a scalar form of the least squares recurrence
relation given in Eq. (17.19). Plot the behaviour of the amplification matrix vs �t .

17.3 Houbolt’s method was originally developed as a multi-step method for the equation
of motion written as

Mün+1 + Cu̇n+1 + Kun+1 + fn+1 = 0

with updates given by

u̇n+1 = 1

6�t
(11un+1 − 18un + 9un−1 − 2un−2)

ün+1 = 1

�t2
(2un+1 − 5un + 4un−1 − un−2)

(a) Following the approach given in Sec. 17.2.5 determine the amplification matrix
in the form

Xn+1 = AXn with Xn+1 = [un+1 un un−1
]T

(b) For the undamped and unloaded case (i.e., c = f = 0) determine and plot the
spectral radius |µ| and period elongation �T/T vs the time increment �t/T as
shown in Fig. 17.13. T is the period of the undamped equation.

17.4 Consider the scalar first-order equation:

cu̇+ ku+ f = 0

Construct the discrete form for transient solution using the SS11 algorithm described
in Sec. 17.3.

For the data c = k = 1 and f = sin2 t obtain, by hand, the solution for the first
five steps using a time step of �t = 0.1.

Write a MATLAB program to solve the problem for 0 ≤ t ≤ 2.
17.5 Consider the scalar second-order equation:

mü+ cu̇+ ku+ f = 0

Construct the discrete form for transient solution using the SS22 algorithm described
in Sec. 17.3.
(a) For the data m = k = 1, c = 0 and f = sin2 t obtain, by hand, the solution for

the first five steps using a time step of �t = 0.05.
Write a MATLAB program to solve the problem for 0 ≤ t ≤ 2.

(b) Repeat (a) for c = 0.05.
17.6 Consider the scalar second-order equation:

mü+ cu̇+ ku+ f = 0

Construct the discrete form for transient solution using the GN22 algorithm described
in Sec. 17.3.
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(a) For the data m = k = 1, c = 0 and f = sin2 t obtain, by hand, the solution for
the first five steps using a time step of �t = 0.05.

Write a MATLAB program to solve the problem for 0 ≤ t ≤ 2.
(b) Repeat (a) for c = 0.05.

17.7 For the general second-order equation

mü+ cu̇+ ku+ f = 0

develop the discrete form for the SS32 algorithm.
17.8 For the general second-order equation

mü+ cu̇+ ku+ f = 0

develop the discrete form for the GN32 algorithm.
17.9 The general second-order equation may be split into the pair of first-order equations

given by

Mv̇ + Cv + Ku + f = 0

u̇ − v = 0

(a) Develop the discrete form of the equations using the SS11 algorithm.
(b) For the scalar form of the equations determine the amplification matrix and the

stability characteristics of the method.
(c) For the data m = k = 1, c = 0 and f = sin2 t obtain, by hand, the solution for

the first five steps using a time step of �t = 0.05.
(d) Write a MATLAB program to solve the problem for 0 ≤ t ≤ 2.

17.10 The Hilber–Hughes–Taylor (HHT) algorithm56 is given by†
Mün+α + Cu̇n+α + Kun+α + fn+α = 0

where tn+α = (1 − αH )tn + αH tn+1,

un+α = (1 − αH )un + αHun+1

u̇n+α = (1 − αH )u̇n + αH u̇n+1

ün+α = ün+1

and fn+α is the force at tn+α . The algorithm is completed using the GN22 relations
(17.58) with

β1 = 3

2
− αH and β2 = 1

2
(2 − αH )

2

(a) For the scalar form of the equations determine the amplification matrix and the
stability characteristics of the method. (If necessary, use MATLAB to determine
the roots of the stability equation.)

(b) For the data m = k = 1, c = 0 and f = sin2 t obtain, by hand, the solution for
the first five steps using a time step of �t = 0.05.

(c) Write a MATLAB program to solve the problem for 0 ≤ t ≤ 2.

† In the original publication αH = 1 + α and α had negative values. The definition used here is more consistent
with other usage in this chapter and αH is always positive.
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17.11 Using the Routh–Hurwitz criterion described in Sec. 17.4 perform the stability
analysis for the first-order problem described by SS11.

17.12 Using the Routh–Hurwitz criterion described in Sec. 17.4 perform the stability
analysis for the second-order problem described by SS22.

17.13 Using the Routh–Hurwitz criterion described in Sec. 17.4 perform the stability
analysis for the second-order problem described by GN22.

17.14 Use FEAPpv to solve the rectangular beam problem described in Problem 16.13.
Compare the solution with that computed by modal analysis. (Note: The comparison
with the full modal solution gives the error between the discrete integration and an
exact integration of the semi-discrete system.)

17.15 Use FEAPpv to solve the curved beam problem described in Problem 16.11. Compare
the solution with that computed by modal analysis.

17.16 Program development project: Extend the program system started in Problem 2.17
to perform time integration using the single-step algorithms described in Sec. 17.3.
Your implementation should include:
(a) SS11 to integrate a first-order system such as encountered for thermal analysis.
(b) SS22 to integrate a second-order system for transient analysis of solids.
(c) GN22 to integrate a second-order system for transient analysis of solids.
Test your program by integrating a single degree of freedom problem for which you
have a hand calculation for verification use.

Solve the rectangular beam problem described in Problem 16.13. Compare the
solution with that computed by modal analysis. (Note: The comparison with the
full modal solution gives the error between the discrete integration and the exact
integration of the semi-discrete system.)
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18

Coupled systems

18.1 Coupled problems – definition and classification

Frequently two or more physical systems interact with each other, with the independent
solution of any one system being impossible without simultaneous solution of the others.
Such systems are known as coupled and of course such coupling may be weak or strong
depending on the degree of interaction.

An obvious ‘coupled’problem is that of dynamic fluid–structure interaction. Here neither
the fluid nor the structural system can be solved independently of the other due to the
unknown interface forces.

A definition of coupled systems may be generalized to include a wide range of problems
and their numerical discretization as:1

Coupled systems and formulations are those applicable to multiple domains and dependent
variables which usually (but not always) describe different physical phenomena and in
which

(a) neither domain can be solved while separated from the other;
(b) neither set of dependent variables can be explicitly eliminated at the differential equa-

tion level.

The reader may well contrast this with definitions of mixed and irreducible formulations
introduced in Chapter 3 and discussed fully in Chapter 10 and find some similarities. Clearly
‘mixed’ and ‘coupled’ formulations are analogous, with the main difference being that in
the former elimination of some dependent variables is possible at the governing differential
equation level. In the coupled system a full analytical solution or inversion of a (discretized)
single system is necessary before such elimination is possible.

Indeed, a further distinction can be made. In coupled systems the solution of any single
system is a well-posed problem and is possible when the variables corresponding to the
other system are prescribed. This is not always the case in mixed formulations.

It is convenient to classify coupled systems into two categories:

Class I. This class contains problems in which coupling occurs on domain interfaces
via the boundary conditions imposed there. Generally the domains describe different
physical situations but it is possible to consider coupling between domains that are
physically similar in which different discretization processes have been used.
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Class II. This class contains problems in which the various domains overlap (totally or
partially). Here the coupling occurs through the governing differential equations de-
scribing different physical phenomena.

Typical of the first category are the problems of fluid–structure interaction illustrated
in Fig. 18.1(a) where physically different problems interact and also structure–structure
interactions of Fig. 18.1(b) where the interface simply divides arbitrarily chosen regions in
which different numerical discretizations are used.

The need for the use of different discretizations may arise from different causes. Here
for instance:

Interface

Interface

(a) Fluid−structure interaction (physically different domains)

(b) Structure−structure interaction (physically identical domains)

Fig. 18.1 Class I problems with coupling via interfaces (shown as thick line).



Coupled problems – definition and classification 633

1. Different finite element meshes may be advantageous to describe the subdomains.
2. Different procedures such as the combination of boundary method and finite elements

in respective regions may be computationally desirable.
3. Domains may simply be divided by the choice of different time-stepping procedures,

e.g., of an implicit and explicit kind.

In the second category, typical problems are illustrated in Fig. 18.2. One of these is that
of metal extrusion where the plastic flow is strongly coupled with the temperature field
while at the same time the latter is influenced by the heat generated in the plastic flow. This
problem is included to illustrate a form of coupling that commonly occurs in analyses of
solids. The other problem shown in Fig. 18.2 is that of soil dynamics (earthquake response
of a dam) in which the seepage flow and pressures interact with the dynamic behaviour of
the soil ‘skeleton’.

We observe that, in the examples illustrated, motion invariably occurs. Indeed, the vast
majority of coupled problems involve such transient behaviour and for this reason the
present chapter will only consider this area. It will thus follow and expand the analysis
techniques presented in Chapters 16 and 17.

As the problems encountered in coupled analysis of various kinds are similar, we shall
focus the presentation on three examples:

1. fluid–structure interaction (confined to small amplitudes);
2. soil–fluid interaction;

(a) Seepage through a porous medium interacts with its dynamic,
(a) structural behaviour

Imposed position

(b) Problem of metal extrusion in which the plastic flow is coupled
with the thermal field

Fig. 18.2 Class II problems with coupling in overlapping domains.
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3. implicit–explicit dynamic analysis of a structure where the separation involves the pro-
cess of temporal discretization.

In these problems all the typical features of coupled analysis will be found and extension
to others will normally follow similar lines. As a final remark, it is worthwhile mentioning
that problems such as linear thermal stress analysis to which we have referred frequently
in this volume are not coupled in the terms defined here. In this the stress analysis problem
requires a knowledge of the temperature field but the temperature problem can be solved
independently of the stress field.† Thus the problem decouples in one direction. Many
examples of truly coupled problems will be found in available books.3–5

18.2 Fluid–structure interaction (Class I problems)

18.2.1 General remarks and fluid behaviour equations

The problem of fluid–structure interaction is a wide one and covers many forms of fluid
which we do not discuss in this book. The consideration of problems in which the fluid is in
substantial motion is considered in standard texts on fluid dynamics (e.g., see reference 6)
and, thus, we exclude at this stage such problems as flutter where movement of an aerofoil
influences the flow pattern and forces around it leading to possible instability. For the same
reason we also exclude here the ‘singing wire’ problem in which the shedding of vortices
reacts with the motion of the wire.

However, in a very considerable range of problems the fluid displacement remains small
while interaction is substantial. In this category fall the first two examples of Fig. 18.1
in which the structural motions influence and react with the generation of pressures in a
reservoir or a container. A number of symposia have been entirely devoted to this class of
problems which is of considerable engineering interest, and here fortunately considerable
simplifications are possible in the description of the fluid phase. References 7–22 give some
typical studies.

In such problems it is possible to write the linearized dynamic equations of fluid behaviour
about the hydrostatic state as

∂(ρv)
∂t

≈ ρ0
∂v
∂t

= − ∇p + b (18.1)

where v is the fluid velocity, ρ is the fluid density (with ρ0 the density in the hydrostatic
state), p the pressure and b is a constant body force of gravity. In postulating the above we
have assumed

1. that the density ρ0 varies by a small amount only so may be considered constant;
2. that velocities are small enough for convective effects to be omitted;
3. that viscous effects by which deviatoric stresses are introduced can be neglected in the

fluid.

† In a general setting the temperature field does depend upon the strain rate. However, these terms are not included
in the form presented in this volume and in many instances produce insignificant changes to the solution.2
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The reader can in fact note that with the preceding assumption Eq. (18.1) is a special
form of a more general relation (described in reference 6).

The linearized continuity equation based on the same assumption is

ρ0 div v ≡ ρ0∇Tv = − ∂ρ

∂t
(18.2)

and noting that
∂ρ

∂t
≈ ρ0

K

∂p

∂t
(18.3)

where K is the bulk modulus of the fluid, we can write

∇Tv = − 1

K

∂p

∂t
(18.4)

Elimination of v between (18.1) and (18.4) gives the well-known scalar wave equation
governing the pressure p:

∇2p = 1

c2

∂2p

∂t2
(18.5)

where

c =
√
K

ρ0
(18.6)

denotes the speed of sound in the fluid.
The equations described above are the basis of acoustic problems.

18.2.2 Boundary conditions for the fluid. Coupling and radiation

In Fig. 18.3 we focus on the Class I problem illustrated in Fig. 18.1(a) and on the boundary
conditions possible for the fluid part described by the governing equation (18.5). As we
know well, either normal gradients or values of p now need to be specified.

Actual surface

Mean surface

Ns

Nf

zη

1

2

3

4

Fig. 18.3 Boundary conditions for the fluid component of the fluid–structure interaction.
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Interface with solid
On the boundaries ©1 and ©2 in Fig. 18.3 the normal velocities (or their time derivatives)
are prescribed. Considering the pressure gradient in the normal direction to the face n we
can thus write, by Eq. (18.1),

∂p

∂n
= −ρ0 ˙̄vn = − ρ0nT ˙̄v (18.7)

where n is the direction cosine vector for an outward pointing normal to the fluid region
and ˙̄vn is prescribed.

Thus, for instance, on boundary ©1 coupling with the motion of the structure described
by displacement u occurs. Here we put

˙̄vn = ün = nTü (18.8)

while on boundary ©2 where only horizontal motion exists we have

˙̄vz = 0 (18.9)

Coupling with the structure motion occurs only via boundary ©1 .

Free surface
On the free surface (boundary ©3 in Fig. 18.3) the simplest assumption is that

p = 0 (18.10)

However, this does not allow for any possibility of surface gravity waves. These can be
approximated by assuming the actual surface to be at an elevation η relative to the mean
surface. Now

p = ρ0gη (18.11)

where g is the acceleration due to gravity. From Eq. (18.1) we have, on noting vz = ∂η/∂t

and assuming ρ0 to be constant,

ρ0
∂2η

∂t2
= − ∂p

∂z
(18.12)

and on elimination of η, using Eq. (18.11), we have a specified normal gradient condition

∂p

∂z
= − 1

g

∂2p

∂t2
= − 1

g
p̈ (18.13)

This allows for gravity waves to be approximately incorporated in the analysis and is known
as the linearized surface wave condition.

Radiation boundary
Boundary ©4 physically terminates an infinite domain and some approximation to account
for the effect of such a termination is necessary. The main dynamic effect is simply that the
wave solution of the governing equation (18.5) must here be composed of outgoing waves
only as no input from the infinite domain exists.

If we consider only variations in x (the horizontal direction) we know that the general
solution of Eq. (18.5) can be written as

p = F(x − ct)+G(x + ct) (18.14)
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where c is the wave velocity given by Eq. (18.6) and the two waves F and G travel in
positive and negative directions of x, respectively.

The absence of the incoming wave G means that on boundary ©4 we have only

p = F(x − ct) (18.15)

Thus
∂p

∂n
≡ ∂p

∂x
= F ′ (18.16)

and
∂p

∂t
= −cF ′ (18.17)

where F ′ denotes the derivative of F with respect to (x − ct). We can therefore eliminate
the unknown function F ′ and write

∂p

∂n
= −1

c
ṗ (18.18)

which is a condition very similar to that of Eq. (18.13). This boundary condition was
first presented in reference 7 for radiating boundaries and has an analogy with a damping
element placed there. More accurate forms are possible to represent far field radiation
conditions. For example, use of so-called perfectly matched layers (PML) is reported in
references 23, 24.

18.2.3 Weak form for coupled systems

A weak form for each part of the coupled system may be written as described in Chapter 3.
Accordingly, for the fluid we can write the differential equation as

δ�f =
∫
�f

δp

[
1

c2
p̈ − ∇2p

]
d� = 0 (18.19)

which after integration by parts and substitution of the boundary conditions described above
yields∫
�f

[
δp

1

c2
p̈ + (∇δp)T(∇p)

]
d�+

∫
�1

δpρ0 nTü d�+
∫
�3

δp
1

g
p̈ d�+

∫
�4

δp
1

c
ṗ d� = 0

(18.20)
where �f is the fluid domain and �i the integral over boundary part ©i .

Similarly for the solid the weak form after integration by parts is given by∫
�

δuT
[
ρs ü + µu̇ + STDSu − b

]
d�−

∫
�t

δuT t̄ d� = 0 (18.21)

where for pressure defined positive in compression the surface traction is defined as

t̄ = −pns = pn (18.22)

since the outward normal to the solid is ns = −n. The traction integral in Eq. (18.21) is
now expressed as ∫

�t

δuT t̄ d� =
∫
�t

δuTnp d� (18.23)
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(1) In complex physical situations, the interaction between compressibility and internal
gravity waves (interaction between acoustic modes and sloshing modes) leads to a
modified scalar wave equation. Equation (18.5) should then be replaced by a more
complex equation: in a stratified medium for instance, the irrotationality condition for
the fluid is not totally verified (the fluid is irrotational in a plane perpendicular to the
stratification axis).16

(2) The variational formulation defined by Eq. (18.20) is valid in the static case provided
the following constraints conditions are added

∫
�f
p d� + ρ0c

2
∫
∂�f

nTu d� = 0 for
a compressible fluid filling a cavity,

∫
�1
nTu d� + ∫

�2
p/ρ0g d� = 0, for an incom-

pressible liquid with a free surface contained inside a reservoir. The static behaviour
is important for the modal response of coupled systems when modal truncation needs
static corrections in order to accelerate the convergence of the method. This static be-
haviour is also of prime importance for the construction of reduced matrix models when
using dynamic substructuring methods for fluid structure interaction problems.17, 18

18.2.4 The discrete coupled system

We shall now consider the coupled problem discretized in the standard (displacement)
manner with the displacement vector approximated as

u ≈ û = Nuũ (18.24)

and the fluid similarly approximated by

p ≈ p̂ = Npp̃ (18.25)

where ũ and p̃ are the nodal parameters of each field and Nu and Np are appropriate shape
functions.

The discrete structural problem thus becomes

M ¨̃u + C ˙̃u + Kũ − Qp̃ + f = 0 (18.26)

where the coupling term arises due to the pressures (tractions) specified on the boundary as∫
�t

NT
u t̄ d� =

∫
�t

NT
unNp d�p̃ = Qp̃ (18.27)

The terms of the other matrices are already well known to the reader as mass, damping,
stiffness and force.

Standard Galerkin discretization applied to the weak form of the fluid equation (18.20)
leads to (including the possibility of a source term, q)

S ¨̃p + C̃ ˙̃p + Hp̃ + ρ0QT ¨̃u + q = 0 (18.28)

where

S =
∫
�

NT
p

1

c2
Np d�+

∫
�3

NT
p

1

g
Np d�

C̃ =
∫
�4

NT
p

1

c
Np d�

H =
∫
�

(∇Np)
T∇Np d�

(18.29)

and Q is identical to that of Eq. (18.27).
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18.2.5 Free vibrations

If we consider free vibrations and omit all force and damping terms (noting that in the fluid
component the damping is strictly that due to radiation energy loss) we can write the two
equations (18.26) and (18.28) as a set:

[
M 0
ρ0QT S

]{
¨̃u
¨̃p

}
+
[

K −Q
0 H

]{
ũ
p̃

}
= 0 (18.30)

and attempt to proceed to establish the eigenvalues corresponding to natural frequencies.
However, we note immediately that the system is not symmetric (nor positive definite) and
that standard eigenvalue computation methods are not directly applicable. Physically it is,
however, clear that the eigenvalues are real and that free vibration modes exist.

The above problem is similar to that arising in vibration of rotating solids and special
solution methods are available, though costly.25 It is possible by various manipulations to
arrive at a symmetric form and reduce the problem to a standard eigenvalue one.14–22, 25–28

A simple method proposed by Ohayon proceeds to achieve the symmetrization objective
by putting ũ = ŭeiωt , p̃ = p̆eiωt and rewriting Eq. (18.30) as

Kŭ − Qp̆ − ω2Mŭ = 0

Hp̆ − ω2Sp̆ − ω2ρ0QTŭ = 0
(18.31)

and an additional variable q̆ such that

p̆ = ω2q̆ (18.32)

After some manipulation and substitution we can write the new system as
⎧⎪⎨
⎪⎩

⎡
⎢⎣

K 0 0

0 1
ρ0

S 0

0 0 0

⎤
⎥⎦− ω2

⎡
⎢⎣

M 0 Q

0 0 1
ρ0

S

QT 1
ρ0

ST − 1
ρ0

H

⎤
⎥⎦
⎫⎪⎬
⎪⎭

⎧⎨
⎩

ŭ
p̆
q̆

⎫⎬
⎭ = 0 (18.33)

which is a symmetric generalized eigenproblem. Further, the variable q̆ can now be elim-
inated by static condensation and the final system becomes symmetric and now contains
only the basic variables. The system (18.32), with static corrections, may lead to convenient
reduced matrix models through appropriate dynamic substructuring methods.19

An alternative that has frequently been used is to introduce a new symmetrizing variable
at the governing equation level, but this is clearly not necessary.14, 15

As an example of a simple problem in the present category we show an analysis of
a three-dimensional flexible wall vibrating with a fluid encased in a ‘rigid’ container29

(Fig. 18.4).

18.2.6 Forced vibrations and transient step-by-step algorithms

The reader can easily verify that the steady-state, linear response to periodic input can
be readily computed in the complex frequency domain by the procedures described in
Chapter 16. Here no difficulties arise due to the non-symmetric nature of equations and
standard procedures can be applied. Chopra and coworkers have, for instance, done many
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(a)

Mode 1
Frequency: 9.8 Hz

(b)

Mode 2
Frequency: 43.6 Hz

(c)

Mode 3
Frequency: 55 Hz

Fig. 18.4 Body of fluid with a free surface oscillating with a wall. Circles show pressure amplitude and squares
indicate opposite signs. Three-dimensional approach using parabolic elements.
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studies of dam/reservoir interaction using such methods.30, 31 However, such methods are
not generally economical for very large problems and fail in non-linear response studies.
Here time-stepping procedures are required in the manner discussed in the previous chapter.
However, simple application of methods developed there leads to an unsymmetric problem
for the combined system (with ũ and p̃ as variables) due to the form of the matrices appearing
in (18.30) and a modified approach is desirable.32 In this, each of the equations (18.26) and
(18.28) is first discretized in time separately using the general approaches of Chapter 17.

Thus in the time interval	t we can approximate ũ using, say, the general SS22 procedure
as follows. First we write

ũ = un + u̇nτ +ατ
2

2
(18.34)

with a similar expression for p,

p̃ = pn + ṗnτ + βτ
2

2
(18.35)

where τ = t − tn.
Insertion of the above into Eqs (18.26) and (18.28) and weighting with two separate

weighting functions results in two relations in whichα and β are the unknowns. These are

Mα+ C
( ˙̄un+1 + θ1	tα

)+ K
(
ūn+1 + 1

2θ2	t
2α
)

− Q
(
p̄n+1 + 1

2 θ̄2	t
2β
)+ fn+1 = 0

(18.36a)

and
Sβ+ QTα+ H

(
p̄n+1 + 1

2 θ̄2	t
2β
)+ qn+1 = 0 (18.36b)

where

ūn+1 = un + θ1	t u̇n
˙̄un+1 = u̇n
p̄n+1 = pn + θ̄1	t ṗn

(18.37)

are the predictors for the n+1 time step. In the above the parameters θi and θ̄i are similar to
those of Eq. (18.49) and can be chosen by the user. It is interesting to note that the equation
system can be put in symmetric form as⎡

⎣(M + θ1	tC + 1
2θ2	t

2K) −Q

−QT −
(

H + 2

θ̄2	t2
S
)
⎤
⎦
{
α

β̂

}
=
{

F1

F2

}
(18.38)

where the second equation has been multiplied by −1, the unknown β has been replaced
by

β̂ = 1
2 θ̄2	t

2β (18.39)

and the forces are given by

F1 = −fn+1 − C ˙̄un+1 − Kūn+1 + Qp̄n+1

F2 = qn+1 + Hp̄n+1
(18.40)

It is not necessary to go into detail about the computation steps as these follow the usual
patterns of determiningα and β and then evaluation of the problem variables, that is un+1,
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pn+1, u̇n+1 and ṗn+1 at tn+1 before proceeding with the next time step. Non-linearity of
structural behaviour can also be accommodated (e.g., see reference 33). It is, however,
important to consider the stability of the linear system which will, of course, depend on
the choice of θi and θ̄i . Here we find, by using procedures described in Chapter 17, that
unconditional stability is obtained when

θ2 ≥ θ1 θ1 ≥ 1
2

θ̄2 ≥ θ̄1 θ̄1 ≥ 1
2

(18.41)

It is instructive to note that precisely the same result would be obtained if GN22 approxi-
mations were used in Eqs (18.34) and (18.35).

The derivation of such stability conditions is straightforward and follows precisely the
lines of Sec.17.4 of the previous chapter. However, the algebra is sometimes tedious.
Nevertheless, to allow the reader to repeat such calculations for any case encountered we
shall outline the calculations for the present example.

Stability of the fluid–structure time-stepping scheme32

For stability evaluations it is always advisable to consider the modally decomposed system
with scalar variables. We thus rewrite Eqs (18.36a) and (18.36b) omitting the forcing terms
and putting θi = θ̄i as

mα + c(u̇n + θ1	tα)+ k(un + θ1	tu̇n + 1
2θ2	t

2α)

− q(pn + θ1	tṗn + 1
2θ2	t

2β) = 0
(18.42a)

and
sβ + qα + h(pn + θ1	tṗ + 1

2θ2	t
2β) = 0 (18.42b)

To complete the recurrence relations we have

un+1 = un +	tu̇n + 1
2	t

2α

u̇n+1 = u̇n +	tα

pn+1 = pn +	tṗn + 1
2	t

2β

ṗn+1 = ṗn +	tβ

(18.42c)

The exact solution of the above system will always be of the form

un+1 = µun

u̇n+1 = µu̇n

pn+1 = µpn

ṗn+1 = µṗn

(18.43)

and immediately we put

µ = 1 + z

1 − z

knowing that for stability we require the real part of z to be negative.
Eliminating all n+ 1 values from Eqs (18.42c) and (18.43) leads to

u̇n = 2z

	t
un ṗn = 2z

	t
pn

α = 4z2

(1 − z)	t2
un β = 4z2

(1 − z)	t2
pn

(18.44)
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Inserting (18.44) into the system (18.42a) and (18.42b) gives

(a11z
2 + b11z+ k)un + (a12z

2 + b12z− q)pn = 0
4qz2un + (a22z

2 + b22z+ h′)pn = 0
(18.45)

where

a11 = 4m′ − 2(1 − 2θ1)c
′ − 2k(θ1 − θ2)

a12 = 2q(θ1 − θ2)

a22 = 4s − 2(θ1 − θ2)h
′

b11 = 2c′ − k(1 − 2θ1)

b12 = (1 − 2θ1)q

b22 = −(1 − 2θ1)h
′

(18.46)

in which
m′ = m

	t2
c′ = c

	t
h′ = 	t2h

For non-trivial solutions to exist the determinant of the coefficient matrix Eq. (18.45) has
to be zero. This determinant provides the characteristic equation for zwhich, in the present
case, is a polynomial of fourth order of the form

a0z
4 + a1z

3 + a2z
2 + a3z+ a4 = 0

Thus use of the Routh–Hurwitz conditions given in Sec. 17.4 ensures stability requirements
are satisfied, i.e., that the roots of z have negative real parts. For the present case the
requirements are the following

a0 > 0 and ai ≥ 0, i = 1, 2, 3, 4

The inequality
a11a22 − 8q2(θ1 − θ2) > 0 (18.47)

is satisfied for m′, c′, k, s, h′ ≥ 0 if

θ1 ≥ 1
2 θ2 ≥ θ1

The inequality

a1 = a11
[−h′(1 − 2θ1)

]+ [2c′ − k(1 − 2θ1)
]
a22 − 4qb12 ≥ 0 (18.48)

is also satisfied if
θ1 ≥ 1

2 θ2 ≥ θ1

The inequalities

a2 = a11h
′ + b11b22 + a22k + 4q2 ≥ 0

a3 = b11h
′ + b22k ≥ 0

(18.49)

are satisfied if (18.47) and (18.48) are satisfied. The inequality

a4 = kh′ ≥ 0 (18.50)
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is automatically satisfied. Finally the two inequalities

a1a2 − a0a3 ≥ 0

a1a2a3 − a0a
2
3 − a4a

2
1 ≥ 0

(18.51)

are also satisfied if (18.47) and (18.48) are satisfied.
If all the equalities hold then m′s > 0 has to be satisfied. In case m′s = 0 and c′ = 0

then θ2 > θ1 must be enforced.

18.2.7 Special case of incompressible fluids

If the fluid is incompressible as well as being inviscid, its behaviour is described by a simple
laplacian equation

∇2p = 0 (18.52)

obtained by putting c = ∞ in Eq. (18.5).
In the absence of surface wave effects and of non-zero prescribed pressures the discrete

equation (18.28) becomes simply

Hp̃ = −QT ¨̃u (18.53)

as wave radiation disappears. It is now simple to obtain

p̃ = −H−1QT ¨̃u (18.54)

and substitution of the above into the structure equation (18.26) results in

(
M + QH−1QT

)
¨̃u + C ˙̃u + Kũ + f = 0 (18.55)

This is now a standard structural system in which the mass matrix has been augmented by
an added mass matrix as

Mu = QH−1QT (18.56)

and its solution follows the standard procedures of previous chapters.
We have to remark that:

1. In general the complete inverse of H is not required as pressures at interface nodes only
are needed.

2. In general the question of when compressibility effects can be ignored is a difficult one
and will depend much on the frequencies that have to be considered in the analysis. For
instance, in the analysis of the reservoir–dam interaction much debate on the subject has
been recorded.34 Here the fundamental compressible period may be of order H/c where
H is a typical dimension (such as height of the dam). If this period is of the same order
as that of, say, earthquake forcing motion then, of course, compressibility must be taken
into account. If it is much shorter then its neglect can be justified.
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18.2.8 Cavitation effects in fluids

In fluids such as water the linear behaviour under volumetric strain ceases when pressures
fall below a certain threshold. This is the vapour pressure limit. When this is reached
cavities or distributed bubbles form and the pressure remains almost constant. To follow
such behaviour a non-linear constitutive law has to be introduced. Although this book is
primarily devoted to linear problems we here indicate some of the steps which are necessary
to extend analyses to account for non-linear behaviour.

A convenient variable useful in cavitation analysis was defined by Newton35

s = div(ρu) ≡ ∇T(ρu) (18.57)

where u is the fluid displacement. The non-linearity now is such that

p = −K div u = c2s, if s < (pa − pv)/c
2

p = pa − pv, if s > (pa − pv)/c
2 (18.58)

Here pa is the atmospheric pressure (at which u = 0 is assumed), pv is the vapour pressure
and c is the sound velocity in the fluid.

Clearly monitoring strains is a difficult problem in the formulation using the velocity and
pressure variables [Eq. (18.1) and (18.5)]. Here it is convenient to introduce a displacement
potential ψ such that

ρu = −∇ψ (18.59)

From the momentum equation (18.1) we see that

ρü = −∇ψ̈ = −∇p
and thus

ψ̈ = p (18.60)

The continuity equation (18.2) now gives

s = ρ div u = −∇2ψ = 1

c2
p = 1

c2
ψ̈ (18.61)

in the linear case [with an appropriate change according to conditions (18.58) during cavi-
tation].

Details of boundary conditions, discretization and coupling are fully described in refer-
ence 36 and follow the standard methodology previously given. Figure 18.5, taken from
that reference, illustrates the results of a non-linear analysis showing the development of
cavity zones in a reservoir.

18.3 Soil–pore fluid interaction (Class II problems)

18.3.1 The problem and the governing equations. Discretization

It is well known that the behaviour of soils (and indeed other geomaterials) is strongly
influenced by the pressures of the fluid present in the pores of the material. Indeed, the
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0.15 s 0.20 s

0.25 s 0.30 s

0.35 s 0.40 s

0.50 s 0.55 s

0.60 s 0.65 s

175.40
186.00 m

0.00 m

−100.00 m

186 m

(a) Structure−fluid mesh (quadratic elements)

(b) Zones in which cavitation develops

Fig. 18.5 The Bhakra dam–reservoir system.36 Interaction during the first second of earthquake motion showing
the development of cavitation.

concept of effective stress is here of paramount importance. Thus if σ describes the total
stress (positive in tension) acting on the total area of the soil and the pores, and p is the
pressure of the fluid (positive in compression) in the pores (generally of water), the effective
stress is defined as

σ′ = σ + mp (18.62)

Here mT = [1, 1, 1, 0, 0, 0] if we use the notation in Chapter 11. Now it is well known
that it is only the stress σ′ which is responsible for the deformations (or failure) of the solid
skeleton of the soil (excluding here a very small volumetric grain compression which has
to be included in some cases). Assuming for the development given here that the soil can
be represented by a linear elastic model we have

σ′ = Dε (18.63)
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Immediately the total discrete equilibrium equations for the soil–fluid mixture can be written
in exactly the same form as is done for all problems of solid mechanics:

M ¨̃u + C ˙̃u +
∫
�

BTσ d�+ f = 0 (18.64)

where ũ are the displacement discretization parameters, i.e.,

u ≈ û = Nũ (18.65)

B is the strain–displacement matrix and M, C, f have the usual meaning of mass, damping
and force matrices, respectively.

Now, however, the term involving the stress must be split as∫
�

BTσ d� =
∫
�

BTσ′ d�−
∫
�

BTmp d� (18.66)

to allow the direct relationship between effective stresses and strains (and hence displace-
ments) to be incorporated. For a linear elastic soil skeleton we immediately have

M ¨̃u + C ˙̃u + Kũ − Qp̃ + f = 0 (18.67)

where K is the standard stiffness matrix written as∫
�

BTσ′ d� =
(∫

�

BTDB d�

)
ũ = Kũ (18.68)

and Q couples the field of pressures in the equilibrium equations assuming these are dis-
cretized as

p ≈ p̂ = Npp̃ (18.69)

Thus
Q =

∫
�

BTmNp d� (18.70)

In the above discretization conventionally the same element shapes are used for the ũ and
p̃ variables, though not necessarily identical interpolations. With the dynamic equations
coupled to the pressure field an additional equation is clearly needed from which the pressure
field can be derived. This is provided by the transient seepage equation of the form

−∇T (k∇p)+ 1

Q
ṗ + ε̇v = 0 (18.71)

where Q is related to the compressibility of the fluid, k is the permeability and εv is the
volumetric strain in the soil skeleton, which on discretization of displacements is given by

εv = mTε = mTBũ (18.72)

The equation of seepage can now be discretized in the standard Galerkin manner as

QT ˙̃u + S ˙̃p + Hp̃ + q = 0 (18.73)

where Q is precisely that of Eq. (18.70), and

S =
∫
�

NT
p

1

Q
Np d� H =

∫
�

(∇Np)
Tk∇Np d� (18.74)
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with q containing the forcing and boundary terms. The derivation of coupled flow–soil
equations was first introduced by Biot37 but the present formulation is elaborated upon
in references 32, 34–45 where various approximations, as well as the effect of various
non-linear constitutive relations, are discussed.

We shall not comment in detail on any of the boundary conditions as these are of standard
type and are well documented in previous chapters.

18.3.2 The format of the coupled equations

The solution of coupled equations often involves non-linear behaviour, as noted previously
in the cavitation problem. However, it is instructive to consider the linear version of Eqs
(18.67) and (18.73). This can be written as[

M 0
0 0

]{
¨̃u
¨̃p

}
+
[

C 0
QT S

]{ ˙̃u
˙̃p
}

+
[

K −Q
0 H

]{
ũ
p̃

}
= −

{
f
q

}
(18.75)

Once again, like in the fluid–structure interaction problem, overall asymmetry occurs
despite the inherent symmetry of the M, C, K, S and H matrices. As the free vibration
problem is of no great interest here, we shall not discuss its symmetrization. In the transient
solution algorithm we shall proceed in a similar manner to that described in Sec. 18.2.6 and
again symmetry will be observed.

18.3.3 Transient step-by-step algorithm

Time-stepping procedures can be derived in a manner analogous to that presented in
Sec. 18.2.6. Here we choose to use the GNpj algorithm of lowest order to approximate
each variable.

Thus for ũ we shall use GN22, writing

un+1 = un +	t u̇n + 1
2	t

2ün + 1

2
β2	t

2	ün+1

≡ upn+1 + 1
2β2	t

2	ün+1

u̇n+1 = u̇n +	t ün + β1	t	ün+1

≡ u̇pn+1 + β1	t	ün+1

(18.76)

For the variables p that occur in first-order form we shall use GN11, as

pn+1 = pn +	t ṗn + θ	t	ṗn+1

≡ ppn+1 + θ	t	ṗn+1
(18.77)

In the above upn+1, etc., denote values that can be ‘predicted’ from known parameters at
time tn and

	ün+1 = ün+1 − ün 	ṗn+1 = ṗn+1 − ṗn (18.78)

are the unknowns.
To complete the recurrence algorithm it is necessary to insert the above into the cou-

pled governing equations [(18.64) and (18.73)] written at time tn+1. Thus we require the
following equalities
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Mün+1 + Cu̇n+1 +
∫
�

BTσ′
n+1 − Qpn+1 + fn+1 = 0

QTu̇n+1 + Sṗn+1 + Hpn+1 + qn+1 = 0
(18.79)

in which σ′
n+1 is evaluated using the constitutive equation (18.63) in incremental form and

knowledge of σ′
n as

σ′
n+1 = σ′

n + D	εn+1 = σ′
n + DB	un+1 (18.80)

In general the above system may be non-linear and indeed on many occasions the H
matrix itself may be dependent on the values of u due to permeability variations with strain.
It is of interest to look at the linear form as the non-linear system usually solves a similar
form iteratively.33

Here insertion of Eqs (18.76), (18.77) and (18.80) into (18.79) results in the equation
system⎡

⎣(M + β1	tC + 1
2β2	t

2K) −Q

−QT −
(

H + 1

θ	t
S
)
⎤
⎦
{
	ün+1

	 ˙̆pn+1

}
=
{

F1

F2

}
(18.81)

where F1 and F2 are vectors that can be evaluated from loads and solution values at tn.
Symmetry in the above is obtained by multiplying Eq. (18.36b) by −1 and defining

	 ˙̆pn+1 = β1	t	ṗn+1 (18.82)

The solution of Eq. (18.81) and the use of Eqs (18.76) and (18.77) complete the recurrence
relation.

The stability of the linear scheme can be found by following identical procedures to those
used in Sec. 18.2.6 and the result is that stability is unconditional when27

β2 ≥ β1 β1 ≥ 1
2 θ ≥ 1

2 (18.83)

18.3.4 Special cases and robustness requirements

Frequently the compressibility of the fluid phase, which forms the matrix S, is such that

S ≈ 0

compared with other terms. Further, the permeability k may on occasion also be very small
(as, say, in clays) and

H ≈ 0

leading to so-called ‘undrained’ behaviour.
Now the coefficient matrix in (18.81) becomes of the lagrangian constrained form (see

Chapter 10), i.e., [
A −Q

−QT 0

]{
	ün+1

	 ˙̆pn+1

}
=
{

F1

F2

}
(18.84)

and is solvable only if
nu ≥ np

where nu and np denote the number of ũ and p̃ parameters, respectively.
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u
p

Fig. 18.6 ‘Robust’ interpolations for the coupled soil–fluid problem.

The problem is indeed identical to that encountered in incompressible behaviour and
the interpolations used for the u and p variables have to satisfy identical criteria. As C0

interpolation for both variables is necessary for the general case, suitable element forms are
shown in Fig. 18.6 and can be used with confidence. Alternatively, equal order interpolation
may be used for u and p in conjunction with stabilized forms discussed in Sec.11.7.

The formulation can of course be used for steady-state solutions but it must be remarked
that in such cases an uncoupling occurs as the seepage equation can be solved independently.

Finally, it is worth remarking that the formulation also solves the well-known soil con-
solidation problem where the phenomena are so slow that the dynamic term M ¨̃u tends to 0.
However, no special modifications are necessary and the algorithm form is again applicable.

18.3.5 Examples – soil liquefaction

As we have already mentioned, the most interesting applications of the coupled soil–fluid
behaviour is when non-linear soil properties are taken into account. In particular, it is a
well-known fact that repeated straining of a granular, soil-like material in the absence of
the pore fluid results in a decrease of volume (densification) due to particle rearrangement.
Constitutive equations which include this effect are available;33 however, here we only
represent a typical result which they can achieve when used in a coupled soil–fluid solution.
When a pore fluid is present, densification will (via the coupling terms) tend to increase the
fluid pressures and hence reduce the soil strength. This, as is well known, decreases with
the compressive mean effective stress.

It is not surprising therefore that under dynamic action the soil frequently loses all of its
strength (i.e., liquefies) and behaves almost like a fluid, leading occasionally to catastrophic
failures of structural foundations in earthquakes. The reproduction of such phenomena with
computational models is not easy as a complete constitutive behaviour description for soils
is imperfect. However, much effort devoted to the subject has produced good results38–45
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Fig. 18.7 Soil–pressure water interaction. Computation and centrifuge model results compared on a problem
of a dyke foundation subject to a simulated earthquake.
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Fig. 18.7 (Cont.)

and a reasonable confidence in predictions achieved by comparison with experimental
studies exists. One such study is illustrated in Fig. 18.7 where a comparison with tests
carried out in a centrifuge is made.44, 45 In particular the close correlation between computed
pressure and displacement with experiments should be noted.

18.3.6 Biomechanics, oil recovery and other applications

The interaction between a porous medium and interstitial fluid is not confined to soils. The
same equations describe, for instance, the biomechanics problem of bone–fluid interaction
in vivo. Applications in this field have been documented.46, 47

On occasion two (or more) fluids are present in the pores and here similar equations can
again be written46, 47 to describe the interaction. Problems of ground settlement in oil fields
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due to oil extraction, or flow of water/oil mixtures in oil recovery are good examples of
application of techniques described here.

18.4 Partitioned single-phase systems – implicit–explicit
partitions (Class I problems)

In Fig. 18.1(b), describing problems coupled by an interface, we have already indicated the
possibility of a structure being partitioned into substructures and linked along an interface
only. Here the substructures will in general be of a similar kind but may differ in the
manner (or simply size) of discretization used in each or even in the transient recurrence
algorithms employed. In Chapter 12 we have described special kinds of mixed formulations
allowing the linking of domains in which, say, boundary-type approximations are used in
one and standard finite elements in the other. We shall not return to this phase and will
simply assume that the total system can be described using such procedures by a single
set of equations in time. Here we shall only consider a first-order problem (but a similar
approach can be extended to the second-order dynamic system):

C ˙̃u + Kũ + f = 0 (18.85)

which can be partitioned into two (or more) components, writing
[

C11 C12

C21 C22

]{ ˙̃u1
˙̃u2

}
+
[

K11 K12

K21 K22

]{
ũ1

ũ2

}
+
{

f1

f2

}
=
{

0
0

}
(18.86)

Now for various reasons it may be desirable to use in each partition a different time-step
algorithm. Here we shall assume the same structure of the algorithm (SS11) and the same
time step (	t) but simply a different parameter θ in each. Proceeding thus as in the other
coupled analyses we write

ũ1 = u1n + τα1

ũ2 = u2n + τα2
(18.87)

Inserting the above into each of the partitions and using different weight functions, we
obtain

C11α1 + C12α2 + K11(u1n + θ	tα1)+ K12(u2n + θ	tα2)+ f̄1 = 0

C21α1 + C22α2 + K21(u1n + θ̄	tα1)+ K22(u2n + θ̄	tα2)+ f̄2 = 0
(18.88)

This system may be solved in the usual manner for α1 and α2 and recurrence relations
obtained even if θ and θ̄ differ. The remaining details of the time-step calculations follow
the obvious pattern but the question of coupling stability must be addressed. Details of
such stability evaluation in this case are given elsewhere48 but the result is interesting.

1. Unconditional stability of the whole system occurs if

θ ≥ 1
2 θ̄ ≥ 1

2

2. Conditional stability requires that
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	t ≤ 	tcrit

where the	tcrit condition is that pertaining to each partitioned system considered without
its coupling terms.

Indeed, similar results will be obtained for the second-order systems

M ¨̃u + C ˙̃u + Kũ + f = 0 (18.89)

partitioned in a similar manner with SS22 or GN22 used in each.
The reader may well ask why different schemes should be used in each partition of the

domain. The answer in the case of implicit–implicit schemes may be simply the desire
to introduce different degrees of algorithmic damping. However, much more important is
the use of implicit–explicit partitions. As we have shown in both ‘thermal’ and dynamic-
type problems the critical time step is inversely proportional to h2 and h (the element
size), respectively. Clearly if a single explicit scheme were to be used with very small
elements (or very large material property differences) occurring in one partition, this time
step may become too short for economy to be preserved in its use. In such cases it may
be advantageous to use an explicit scheme (with θ = 0 in first-order problems, θ2 = 0 in
dynamics) for a part of the domain with larger elements while maintaining unconditional
stability with the same time step in the partition in which elements are small or otherwise
very ‘stiff’. For this reason such implicit–explicit partitions are frequently used in practice.

Indeed, with a lumped representation of matrices C or M such schemes are in effect
staggered as the explicit part can be advanced independently of the implicit part and im-
mediately provides the boundary values for the implicit partition. We shall return to such
staggered solutions in the next section.

The use of explicit–implicit partitions was first recorded in 1978.49–51 In the first reference
the process is given in an identical manner as presented here; in the second, a different
algorithm is given based on an element split (instead of the implied nodal split above) as
described next.

Implicit–explicit solution – element partition
We again consider the first-order problem given in Eq. (18.85) and split as

CI
˙̃uI + CE

˙̃uE + KI ũI + KE ũE + f = 0 (18.90)

where the subscript I denotes an implicit partition and subscript E an explicit one. An
iteration process may be used in which one or more iterations per time step are used. The
recurrence relation for u at iteration j is written using GN11 as

u(j)n+1 = u(j−1)
n+1 + θ	t u̇(j)n+1 (18.91)

with
u(0)n+1 = un + (1 − θ)	t u̇n (18.92)

Using the iteration process an approximation for the implicit–explicit split is now taken
as

ũI = u(j)n+1

ũE = u(j−1)
n+1

˙̃uI = ˙̃uE = u̇(j)n+1

thus yielding the system of equations at iteration j as



Staggered solution processes 655

(C + θ	tKI )u̇
(j)
n+1 + F(j) = 0 (18.93)

where F(j) contains the loading terms which depend on known values at tn and possibly
previous iterate values (j − 1). The above algorithm has stability properties which depend
on the choice of θ . For a linear system with θ ≥ 0.5 the implicit part is unconditionally
stable and stability depends on the	tcrit of the explicit elements.50, 51 Performing only one
iteration in each time step is normally used; however, improved accuracy in the explicit
partition can occur if additional iterations are used, although the cost of each time step is
obviously increased.

18.5 Staggered solution processes

18.5.1 General remarks

We have observed in the previous section that in the nodal-based implicit–explicit partition-
ing of time stepping it was possible to proceed in a staggered fashion, achieving a complete
solution of the explicit scheme independently of the implicit one and then using the results
to progress with the implicit partition. It is tempting to examine the possibility of such
staggered procedures generally even if each uses an independent algorithm.

In such procedures the first equation would be solved with some assumed (predicted)
values for the variable of the other. Once the solution for the first system was obtained its
values could be substituted in the second system, again allowing its independent treatment.
If such procedures can be made stable and reasonably accurate many possibilities are
immediately open, for instance:

1. Completely different methodologies could be used in each part of the coupled system.
2. Independently developed codes dealing efficiently with single systems could be com-

bined.
3. Parallel computation with its inherent advantages could be used.
4. Finally, in systems of the same physics, efficient iterative solvers could easily be devel-

oped.

The problems of such staggered solutions have been frequently discussed36, 52–55 and on
occasion unconditional stability could not be achieved without substantial modification. In
the following we shall indicate some options available.

18.5.2 Staggered process of solution in single-phase systems

We shall look at this possibility first, having already mentioned it as a special form arising
naturally in the implicit–explicit processes of Sec.18.4. We return here to consider the
problem of Eq. (18.85) and the partitioning given in Eq. (18.86). Further, for simplicity we
shall assume a diagonal form of the C matrix, i.e., that the problem is posed as

[
C11 0
0 C22

]{ ˙̃u1
˙̃u2

}
+
[

K11 K12

K21 K22

]{
ũ1

ũ2

}
+
{

f1

f2

}
=
{

0
0

}
(18.94)
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As we have already remarked, the use of θ = 0 in the first equation and θ̄ ≥ 0.5 in
the second [see Eq. (18.88)] allowed the explicit part to be solved independently of the
implicit. Now, however, we shall use the same θ in both equations but in the first of the
approximations, analogous to Eq. (18.88), we shall insert a predicted value for the second
variable:

ũ2 = up2 = u2n (18.95)

This is similar to the treatment of the explicit part in the element split of the implicit–explicit
scheme and gives in place of Eq. (18.88)

C11α1 + K11(u1n + θ	tα1) = −f1 − K12u2n (18.96)

allowing direct solution for α1.
Following this step, the second equation can be solved for α2 with the previous value of

α1 inserted, i.e.,

C22α2 + K22(u2n + θ	tα2) = −f2 − K21(u1n + θ	tα1) (18.97)

This scheme is unconditionally stable if θ ≥ 0.5, i.e., the total system is stable provided
each stagger is unconditionally stable. A similar condition holds for linear second-order
dynamic problems.

Obviously, however, some accuracy will be lost as the approximation of Eq. (18.96) is
that of the predicted value of u2. The approximation is consistent and hence convergence
will occur as 	t → 0.

The advantage of using the staggered process in the above is clear as the equation solving,
even though not explicit, is now confined to the magnitude of each partition and computa-
tional economy occurs.

Further, it is obvious that precisely the same procedures can be used for any number of
partitions and that again the same stability conditions will apply. Define the arrays

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11

C22

. . .

Cii

. . .

Ckk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18.98a)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 0 · · · 0

K21 K22
...

...
. . .

Kii

...
. . . 0

Kk1 · · · Kk,k−1 Kkk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 K12 · · · K1k

0 0 · · · ...
...

. . .

0
...

. . . Kk−1,k

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= KL + KU

(18.98b)

and consider the partition
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Fig. 18.8 Accuracy of an explicit-split procedure compared with a standard implicit process for heat conduction
of a bar.

C ˙̃u + KLũ + KU ũ + f = 0 (18.99)

Introducing now the approximation

ui = uin + ταi (18.100)

and using Eq. (18.95) gives the discrete form

(C + θ	tKL)α+ KUun + f̄ = 0 (18.101)

where f̄ contains the load and effects from un.
In approximating the first equation set it is necessary to use predicted values for u2,

u3, · · · , uk , writing in place of Eq. (18.96),

C11α1 + K11(u1n + θ	tα1)+ K12u2n + K13u3n + · · · + f1 = 0 (18.102)

and continue similarly to (18.97), with the predicted values now continually being replaced
by better approximations as the solution progresses.

The partitioning of Eq. (18.98a) can be continued until only a single equation set is
obtained. Then at each step the equation that requires solving for αi is of the form

(Cii + θ	tKii )αi = Fi (18.103)

where Fi contains the effects of the load and all the previously computed ui . For partitions
where each submatrix is a scalar Eq. (18.103) is a scalar equation and computation is thus
fully explicit and yet preserves unconditional stability for θ ≥ 0.5. This type of partition-
ing and the derivation of an unconditionally stable explicit scheme was first proposed by
Zienkiewicz et al.56 An alternative and somewhat more limited scheme of a similar kind
was given by Trujillo.57
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Fig. 18.9 Partitions corresponding to the well-known ADI (alternating direction implicit) finite difference
scheme.

Clearly the error in the approximation in the time step decreases as the solution sweeps
through the partitions and hence it is advisable to alter the sweep directions during the
computation. For instance, in Fig. 18.8 we show quite reasonable accuracy for a one-
dimensional heat-conduction problem in which the explicit-split process was used with
alternating direction of sweeps. Of course the accuracy is much inferior to that exhibited
by a standard implicit scheme with the same time step, though the process could be used
quite effectively as an iteration to obtain steady-state solutions. Here many other options
are also possible.

It is, for instance, of interest to consider the system given in Eqs (18.98a), (18.98b)
and (18.99) as originating from a simple finite difference approximation to, say, a heat-
conduction equation on the rectangular mesh of Fig. 18.9.

Here it is well known that the so-called alternating direction implicit (ADI) scheme58

presents an efficient solution for both transient and steady-state problems. It is fairly obvious
that the scheme simply represents the procedure just outlined with partitions representing
lines of nodes such as (1, 5, 9, 13), (2, 6, 10, 14), etc., of Fig. 18.9 alternating with partitions
(1, 2, 3, 4), (5, 6, 7, 8), etc.

Obviously the bigger the partition, the more accurate the scheme becomes, though of
course at the expense of computational costs. The concept of the staggered partition clearly
allows easy adoption of such procedures in the finite element context. Here irregular
partitions arbitrarily chosen could be made but so far applications have only been recorded
in regular mesh subdivisions.58 The field of possibilities is obviously large. Use in parallel
computation is obvious for such procedures.

A further possibility which has many advantages is to use hierarchical variables based on,
say, linear, quadratic and higher expansions and to consider each set of these variables as
a partition.59 Such procedures are particularly efficient in iteration if coupled with suitable
preconditioning60 and form a basis of multigrid procedures.61–63

18.5.3 Staggered schemes in fluid–structure systems and
stabilization processes

The application of staggered solution methods in coupled problems representing different
phenomena is more obvious, though, as it turns out, more difficult.
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For instance, let us consider the linear discrete fluid–structure equations with po = 1
and damping omitted, written as [see Eqs (18.26) and 18.28)]

[
M 0
QT S

]{
ü
p̈

}
+
[

K −Q
0 H

]{
u
p

}
+
{

f
q

}
=
{

0
0

}
(18.104)

where we have omitted the tilde superscript for simplicity.
For illustration purposes we shall use the GN22 type of approximation for both variables

and write using Eq. (18.76)

un+1 = upn+1 + 1
2β2	t

2	ün+1

u̇n+1 = u̇pn+1 + β1	t	ün+1

pn+1 = ppn+1 + 1
2 β̄2	t

2	p̈n+1

ṗn+1 = ṗpn+1 + β̄1	t	p̈n+1

(18.105)

which together with Eq. (18.104) written at t = tn+1 completes the system of equations
requiring simultaneous solution for 	ün+1 and 	p̈n+1.

Now a staggered solution of a fairly obvious kind would be to write the first set of
equations (18.104) corresponding to the structural behaviour with a predicted (approximate)
value of pn+1 = ppn+1, as this would allow an independent solution for 	ün+1 writing

Mün+1 + Kun+1 = −f + Qppn+1 (18.106)

This would then be followed by the solution of the fluid problem for 	p̈n+1 writing

Sp̈n+1 + Hpn+1 = −q − QTün+1 (18.107)

This scheme turns out, however, to be only conditionally stable,48 even if βi and β̄i are
chosen so that unconditional stability of a simultaneous solution is achieved. (The stability
limit is indeed the same as if a fully explicit scheme were chosen for the fluid phase.)

Various stabilization schemes can be used here.27, 48 One of these is given below. In this
Eq. (18.106) is augmented to

Mün+1 + (K + QS−1QT
)
un+1 = −f + Qppn+1 + QS−1QTupn+1 (18.108)

before solving for 	ün+1. It turns out that this scheme is now unconditionally stable
provided the usual conditions

β2 ≥ β1 β1 ≥ 1
2

are satisfied.
Such stabilization involves the inverse of S but again it should be noted that this needs to

be obtained only for the coupling nodes on the interface. Another stable scheme involves
a similar inversion of H and is useful as incompressible behaviour is automatically given.

Similar stabilization processes have been applied with success to the soil–fluid
system.64, 65
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18.6 Concluding remarks

The range of problems which may be considered as coupled is very large and forms studies
which are now often referred to as ‘multi-physics’ problems. The range of possible algo-
rithms to solve such problems has been summarized above; however, new methods often
are proposed (e.g., see reference 66).

Another class of problems which may be considered as coupled considers ‘multi-scale’
effects. These attempt to bridge the behaviour of materials from, for example, a micro to a
macro scale. This topic is very popular today and is discussed further in reference 33.
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61. R. Löhner and K. Morgan. An unstructured multigrid method for elliptic problems. Int. J. Numer.
Meth. Eng., 24:101–115, 1987.

62. M. Adams. Heuristics for automatic construction of coarse grids in multigrid solvers for finite
element matrices. Technical Report UCB//CSD-98–994, University of California, Berkeley,
1998.

63. M. Adams. Parallel multigrid algorithms for unstructured 3D large deformation elasticity and
plasticity finite element problems. Technical Report UCB//CSD-99–1036, University of Cali-
fornia, Berkeley, 1999.

64. K.C. Park. Stabilization of partitioned solution procedures for pore fluid–soil interaction analysis.
Int. J. Numer. Meth. Eng., 19:1669–1673, 1983.

65. O.C. Zienkiewicz, D.K. Paul, and A.H.C. Chan. Unconditionally stable staggered solution
procedures for soil–pore fluid interaction problems. Int. J. Numer. Meth. Eng., 26:1039–1055,
1988.

66. J.Y. Kim, N.R.Aluru, and D.A. Tortorelli. Improved multi-level Newton solvers for fully coupled
multi-physics problems. Int. J. Numer. Meth. Eng., 58:463–480, 2003.



19

Computer procedures for finite
element analysis

19.1 Introduction

A companion program to this book is available which can carry out analyses for most of the
theory presented in previous chapters. In particular the computer program discussed here
may be used to solve any one-, two-, or three-dimensional linear steady-state or transient
problem. The program also has capabilities to perform non-linear analysis for the type of
problems discussed in reference 1.

Source listings and a user manual may be obtained at no charge from the author’s in-
ternet web site (http://www.ce.berkeley.edu/˜rlt) or the publisher’s internet web site (http://
books.elsevier.com/companions). The program is written mostly in Fortran with some rou-
tines in C (see author’s web site for more information on using C for user modules). Any
errors reported by readers will be corrected so that up-to-date versions are available.

The version available for download is called FEAPpv which is an acronym for Finite
Element Analysis Program – personal version. It is intended mainly for use in learning finite
element programming methodologies and in solving small to moderate size problems on
single processor computers. A simple management scheme is employed to permit efficient
use of main memory with limited need to read and write information to disk.

Finite element programs can be separated into three basic parts:

1. Data input module and pre-processor
2. Solution module
3. Results module and post-processor.

19.2 Pre-processing module: mesh creation

FEAPpv is mainly a solution module but provides simple data input and pre-processor
capabilitites which permit generation of meshes using the multiblock schemes of
Zienkiewicz and Phillips2 and Gordon and Hall.3 Alternatively the data may be input from
neutral files written by other pre-processing systems (e.g., GiD4).

Data input for the program consists of specification (or generation) of: (1) the coordi-
nates for each node; (2) the element form and the nodal connection list for each element;
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(3) boundary conditions and loads to be applied; and (4) material property data. The user
manual describes the format for specifying the data to be used by FEAPpv.

19.2.1 Element library

As part of the input data it is necessary to describe the element formulation to be used in
forming the ‘stiffness’ matrix and ‘load’ vector of each problem. This may be provided
either by user written modules (see below) or using the element library provided with the
program.

Currently, the element library in FEAPpv includes:

1. Solid elements for two-dimensional linear elasticity. Forms are provided for the irre-
ducible formulation described in Chapters 2 and 6; the three-field mixed form described
in Sec. 11.3 and the enhanced strain form described in Sec. 10.5.3. The elements per-
mit consideration of elastic models which are isotropic or orthotropic as described in
Chapter 6.
(a) For the irreducible form the element shape may range from a 3-node triangle to a

9-node lagrangian quadrilateral.
(b) For the three-field mixed form the element shape may be a 4-node, 8-node or 9-node

quadrilateral form.
(c) For the enhanced strain model the element is restricted to a 4-node quadrilateral

form.
2. Solid elements for three-dimensional linear elasticity. Only the irreducible form for a

4-node tetrahedron or an 8-node brick may be used. The 8-node brick may be degenerated
into other forms by giving the same node number to nodes used to perform the degenerate
shape (see Sec.5.8). The elastic material model may be isotropic or orthotropic as
described in Chapter 6.

3. Frame (rod) elements for two- and three-dimensional elasticity. Conventional structural
elements are provided to perform analysis of elastic two- and three-dimensional frame
structures. While these forms have not been discussed in this text, except as suggested
problems for solution, they are useful for use in general analysis. The theory is contained
in standard references for structural analysis and also in reference 1.

4. Truss elements for two- and three-dimensional elasticity. Similar to frame elements,
the FEAPpv system includes conventional truss elements which may be used to analyse
plane and space truss structures.

5. Plate element for linear elasticity. A plate bending element for use in the analysis of
plates which include the primary effects of transverse shear (so-called Reissner–Mindlin
theory1) is provided. The element form may be either a 3-node triangle or a 4-node
quadrilateral. The theory is described in references 1, 5, 6.

6. Shell element for three dimensions with linear elasticity. A 4-node quadrilateral element
form for use in modelling general shell forms is provided. The element includes mem-
brane and bending effects only and, thus, may be used only for analysis of ‘thin’ shells.
The theory for the element is given in reference 7. The element form should be a 4-node
quadrilateral.



666 Computer procedures for finite element analysis

7. Membrane element for linear elasticity. A general elastic membrane form is provided
which is the same as the shell element but without the bending terms. The element form
should be a 4-node quadrilateral.

8. Thermal elements for two- and three-dimensional Fourier heat conduction. The theory
described in Chapter 7 for transient heat conduction is provided in elements which
solve two- and three-dimensional problems. The Fourier model may be isotropic or
orthotropic.

9. User developed elements. Users may develop and add element modules for any problem
which can be formed by the finite element approach described in this book. Details for
writing modules will be found in the Programers Manual available at the web sites.

19.3 Solution module

The main part of FEAPpv is a solution module which permits users to analyse a large
range of problems formulated by the finite element method. Specific solution methods are
prepared by the user using a unique command language, which is a sequence of statements
which describe each algorithm. The current version of FEAPpv permits both ‘batch’ and
‘interactive’ problem solution. The commands provided permit specification of problems
with either symmetric or unsymmetric ‘stiffness’ matrices, selection of direct or iterative
solution of the linear algebraic equation system, selection of different transient solution
algorithms, and output of solution results in either a text or graphics format. Commands
which permit solution of a symmetric generalized linear eigenproblem (see Chapter 16)
using a ‘subspace’ method8, 9 are also available as well as a feature to compute the eigen-
values and vectors for an element stiffness.

While the main thrust of this book is the solution of linear problems, the system FEAPpv is
capable of solving both linear and non-linear problems. The use of special ‘loop’commands
permits the construction of algorithms which require iteration or time stepping. In addition
features to solve problems in which load following is needed are provided in the form
of ‘arc-length’-type methods.10–12 The solution of problems for which it is not possible to
deduce an accurate ‘stiffness’matrix may be attempted using a quasi-Newton method based
on the BFGS method.13, 14 The user manual available at the web site provides examples for
several algorithms as well as a list of all available commands.

19.4 Post-processor module

As noted above the FEAPpv system contains capabilities to report results as text data written
to an output file or in graphical form which may be displayed on the screen or written to files
for processing by other systems. Files are written in PostScript format (in an encapsulated
form which may be used by many programs – e.g., TeX or LaTeX).

The general features of graphical post-processing are limited to displaying two-dimen-
sional objects. More complex forms require an interface to a separate pre-/post-processing
system (e.g., GiD.4). The two-dimensional capabilities in FEAPpv include display of the
mesh including node and element numbers, boundary conditions and loads. Contour plots
for each degree of freedom of the solution system may be displayed as well as contours of
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element values such as stress or strain components. The user manual provides a list of all
commands for constructing graphical outputs.

The available version for graphics is limited to X-window applications and compilers
compatible with the current HP Fortran 95 compiler for Windows-based systems.15

19.5 User modules

A key ingredient of the FEAPpv system is the ability of a user to add their own modules
to extend the capabilities of the program to other classes of problems, material models, or
solution strategies. Some user developed modules are available at the authors’ web site
given above and include element modules for other problem forms, an interface to other
linear equation solvers, etc. Experienced programmers should be able to easily adapt these
routines to include additional features.

Programming additions to the system may be performed following descriptions in the
Programmer Manual available at the web sites.
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Appendix A

Matrix algebra

The mystique surrounding matrix algebra is perhaps due to the texts on the subject
requiring a student to ‘swallow too much’ at one time. It will be found that in order
to follow the present text and carry out the necessary computation only a limited
knowledge of a few basic definitions is required.

Definition of a matrix

The linear relationship between a set of variables x and b

a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

a31x1 + a32x2 + a33x3 + a34x4 = b3

(A.1)

can be written, in a short-hand way, as

[A] {x} = {b} (A.2)

or
Ax = b (A.3)

where

A ≡ [A] =
[
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

]

x ≡ {x} =

⎧⎪⎨
⎪⎩
x1

x2

x3

x4

⎫⎪⎬
⎪⎭

b ≡ {b} =
{
b1

b2

b3

}
(A.4)

The above notation contains within it the definition of both a matrix and the process
of multiplication of two matrices. Matrices are defined as ‘arrays of number’ of the



Matrix addition or subtraction 669

type shown in Eq. (A.4). The particular form listing a single column of numbers is
often referred to as a vector or column matrix, whereas a matrix with multiple columns
and rows is called a rectangular matrix. The multiplication of a matrix by a column
vector is defined by the equivalence of the left and right sides of Eqs (A.1) and (A.2).

The use of bold characters to define both vectors and matrices will be followed
throughout the text – generally lower case letters denoting vectors and capital letters
matrices.

If another relationship, using the same a constants, but a different set of x and b,
exists and is written as

a11x
′
1 + a12x

′
2 + a13x

′
3 + a14x

′
4 = b′

1

a21x
′
1 + a22x

′
2 + a23x

′
3 + a24x

′
4 = b′

2

a31x
′
1 + a32x

′
2 + a33x

′
3 + a34x

′
4 = b′

3

(A.5)

then we could write
[A] [X] = [B] or AX = B (A.6)

in which

X ≡ [X] =

⎡
⎢⎣
x1, x ′

1
x2, x ′

2
x3, x ′

3
x4, x ′

4

⎤
⎥⎦ B ≡ [B] =

[
b1, b′

1
b2, b′

2
b3, b′

3

]
(A.7)

implying both the statements (A.1) and (A.5) arranged simultaneously as
[
a11x1 + · · ·, a11x

′
1 + · · ·

a21x1 + · · ·, a21x
′
1 + · · ·

a31x1 + · · ·, a31x
′
1 + · · ·

]
= B ≡ [B] =

[
b1, b′

1
b2, b′

2
b3, b′

3

]
(A.8)

It is seen, incidentally, that matrices can be equal only if each of the individual terms
is equal.

The multiplication of full matrices is defined above, and it is obvious that it has a
meaning only if the number of columns in A is equal to the number of rows in X for
a relation of the type (A.6). One property that distinguishes matrix multiplication is
that, in general,

AX �= XA

i.e., multiplication of matrices is not commutative as in ordinary algebra.

Matrix addition or subtraction

If relations of the form from (A.1) and (A.5) are added then we have

a11(x1 + x ′
1)+ a12(x2 + x ′

2)+ a13(x3 + x ′
3)+ a14(x4 + x ′

4) = b1 + b′
1

a21(x1 + x ′
1)+ a22(x2 + x ′

2)+ a23(x3 + x ′
3)+ a24(x4 + x ′

4) = b2 + b′
2

a31(x1 + x ′
1)+ a32(x2 + x ′

2)+ a33(x3 + x ′
3)+ a34(x4 + x ′

4) = b3 + b′
3

(A.9)

which will also follow from
Ax + Ax′ = b + b′
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if we define the addition of matrices by a simple addition of the individual terms of
the array. Clearly this can be done only if the size of the matrices is identical, i.e., for
example,

[
a11 a12

a21 a22

a31 a32

]
+
[
b11 b12

b21 b22

b31 b32

]
=
[
a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32

]

or

A + B = C (A.10)

implies that every term of C is equal to the sum of the appropriate terms of A and B.
Subtraction obviously follows similar rules.

Transpose of a matrix

This is simply a definition for reordering the terms in an array in the following manner:

[
a11 a12 a13

a21 a22 a23

]T

=
[
a11 a21

a12 a22

a13 a23

]
(A.11)

and will be indicated by the symbol T as shown.
Its use is not immediately obvious but will be indicated later and can be treated here

as a simple prescribed operation.

Inverse of a matrix

If in the relationship (A.3) the matrix A is ‘square’, i.e., it represents the coefficients of
simultaneous equations of type (A.1) equal in number to the number of unknowns x,
then in general it is possible to solve for the unknowns in terms of the known coefficients
b. This solution can be written as

x = A−1b (A.12)

in which the matrix A−1 is known as the ‘inverse’ of the square matrix A. Clearly A−1

is also square and of the same size as A.
We could obtain (A.12) by multiplying both sides of (A.3) by A−1 and hence

A−1A = I = AA−1 (A.13)

where I is an ‘identity’ matrix having zero on all off-diagonal positions and unity on
each of the diagonal positions.

If the equations are ‘singular’ and have no solution then clearly an inverse does not
exist.
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A sum of products

In problems of mechanics we often encounter a number of quantities such as force that
can be listed as a matrix ‘vector’:

f =

⎧⎪⎪⎨
⎪⎪⎩

f1

f2
...

fn

⎫⎪⎪⎬
⎪⎪⎭

(A.14)

These, in turn, are often associated with the same number of displacements given by
another vector, say,

a =

⎧⎪⎪⎨
⎪⎪⎩

u1

u2
...

un

⎫⎪⎪⎬
⎪⎪⎭

(A.15)

It is known that the work is represented as a sum of products of force and displacement

W =
n∑
k=1

fk uk

Clearly the transpose becomes useful here as we can write, by the rule of matrix
multiplication,

W = [f1 f2 . . . fn]

⎧⎪⎪⎨
⎪⎪⎩

u1

u2
...

un

⎫⎪⎪⎬
⎪⎪⎭

= fTu = uTf (A.16)

Use of this fact is made frequently in this book.

Transpose of a product

An operation that sometimes occurs is that of taking the transpose of a matrix product.
It can be left to the reader to prove from previous definitions that

(A B)T = BTAT (A.17)

Symmetric matrices

In structural problems symmetric matrices are often encountered. If a term of a matrix
A is defined as aij , then for a symmetric matrix

aij = aji or A = AT

A symmetric matrix must be square. It can be shown that the inverse of a symmetric
matrix is also symmetric

A−1 = (A−1
)T ≡ A−T
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Partitioning

It is easy to verify that a matrix product AB in which, for example,

A =

⎡
⎢⎣
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

⎤
⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎣

b11 b12

b21 b22

b31 b32

b41 b42

b51 b52

⎤
⎥⎥⎥⎥⎥⎦

could be obtained by dividing each matrix into submatrices, indicated by the lines, and
applying the rules of matrix multiplication first to each of such submatrices as if it were
a scalar number and then carrying out further multiplication in the usual way. Thus, if
we write

A =
[

A11 A12

A21 A22

]
B =
[

B1

B2

]

then

AB =
[

A11B1 A12B2

A21B1 A22B2

]

can be verified as representing the complete product by further multiplication.
The essential feature of partitioning is that the size of subdivisions has to be such as

to make the products of the type A11B1 meaningful, i.e., the number of columns in A11

must be equal to the number of rows in B1, etc. If the above definition holds, then all
further operations can be conducted on partitioned matrices, treating each partition as
if it were a scalar.

It should be noted that any matrix can be multiplied by a scalar (number). Here,
obviously, the requirements of equality of appropriate rows and columns no longer
apply.

If a symmetric matrix is divided into an equal number of submatrices Aij in rows
and columns then

Aij = AT
ji

The eigenvalue problem

An eigenvalue of a symmetric matrix A of size n × n is a scalar λi which allows the
solution of

(A − λi I)φi = 0 and det | A − λi I |= 0 (A.18)

where φi is called the eigenvector.
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There are, of course, n such eigenvalues λi to each of which corresponds an eigen-
vector φi . Such vectors can be shown to be orthonormal and we write

φT
i φj = δij =

{
1 for i = j

0 for i �= j

The full set of eigenvalues and eigenvectors can be written as

Λ =
⎡
⎣

λ1 0
. . .

0 λn

⎤
⎦ Φ = [φ1, . . . φn

]

Using these the matrix A may be written in its spectral form by noting from the
orthonormality conditions on the eigenvectors that

Φ−1 = ΦT

then from
AΦ = ΦΛ

it follows immediately that
A = ΦΛΦT (A.19)

The condition number κ (which is related to equation solution round-off) is defined as

κ = | λmax |
| λmin | (A.20)



Appendix B

Tensor-indicial notation in the
approximation of elasticity

problems

Introduction

The matrix type of notation used in this volume for description of tensor quantities
such as stresses and strains is compact and we believe easy to understand. However, in
a computer program each quantity often will still have to be identified by appropriate
indices and the conciseness of matrix notation does not always carry over to the pro-
gramming steps. Further, many readers are accustomed to the use of indicial-tensor
notation which is a standard tool in the study of solid mechanics. For this reason we
summarize here the formulation of the finite element arrays in an indicial form.

Some advantages of such reformulation from the matrix setting become apparent
when evaluation of stiffness arrays for isotropic materials is considered. Here some
multiplication operations previously necessary become redundant and the element mod-
ule programs can be written more economically.

When finite deformation problems in solid mechanics have to be considered the use
of indicial notation is almost essential to form many of the arrays needed for the residual
and tangent terms.

This appendix adds little new to the discretization ideas – it merely repeats in a
different language the results already presented.

Indicial notation: summation convention

A point P in three-dimensional space may be represented in terms of its cartesian
coordinates xi , i = 1, 2, 3. The limits that i can take define its range. To define these
components we must first establish an oriented orthogonal set of coordinate directions
as shown in Fig. B.1. The distance from the origin of the coordinate axes to the point
define a position vector x. If along each of the coordinate axes we define the set of unit
orthonormal base vectors, ii , i = 1, 2, 3 which have the property

ii · ij = δij =
{

1 for i = j

0 for i �= j
(B.1)
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x1

x2

i1

i2

x

x1(P)

x2(P)

P

Fig. B.1 Orthogonal axes and a point: Cartesian coordinates.

where ( ) · ( ) denotes the vector dot product. The components of the position vector
are constructed from the vector dot product

xi = ii · x; i = 1, 2, 3 (B.2)

From this construction it is easy to observe that the vector x may be represented as

x =
3∑
i=1

xi ii (B.3)

In dealing with vectors, and later tensors, the form x is called the intrinsic notation of
the coordinates and xi ii the indicial form.† An intrinsic form is a physical entity which
is independent of the coordinate system selected, whereas an indicial form depends on
a particular coordinate system.

To simplify notation we adopt the common convention that any index which is
repeated in any given term implies a summation over the range of the index. Thus, our
short-hand notation for Eq. (B.3) is

x = xi ii = x1 i1 + x2 i2 + x3 i3 (B.4)

For two-dimensional problems, unless otherwise stated, it will be understood that the
range of the index is two.

Similarly, we can define the components of the displacement vector u as

u = ui ii (B.5)

Note that the components (u1, u2, u3) replace the components (u, v, w) used through-
out most of this volume.

To avoid confusion with nodal quantities to which we previously also attached sub-
scripts we shall simply change their position to a superscript. Thus, ũa2 has the same
meaning as ṽa used previously, etc.

†Often in an indicial form of equations the base vectors are omitted from the final equation.
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Derivatives and tensorial relations

In indicial notation the derivative of any quantity with respect to a coordinate component
xi is written compactly as

∂

∂xi
≡ ( ),i (B.6)

Thus we can write the gradient of the displacement vector as

∂ui

∂xj
≡ ui,j ; i, j = 1, 2, 3 (B.7)

In a cartesian coordinate system the base vectors do not change their magnitude or
direction along any coordinate direction. Accordingly their derivatives with respect to
any coordinate is zero as indicated in Eq. B.8

∂ii
∂xj

= ii,j = 0 (B.8)

Thus, in cartesian coordinates the derivative of the intrinsic displacement u is given by

u,j = ui,j ii + ui ii,j = ui,j ii (B.9)

The collection of all the derivatives defines the displacement gradient which we write
in intrinsic notation as

∇u = ui,j ii ⊗ ij (B.10)

The symbol ⊗ denotes the tensor product between two base vectors and since only
two vectors are involved the gradient of the displacement is called second rank. The
notation used to define a tensor product follows that used in reference 1.

Any second rank intrinsic quantity can be split into symmetric and a skew symmetric
(anti-symmetric) parts as

A = 1

2

[
A + AT

]+ 1

2

[
A − AT

] = A(s) + A(a) (B.11)

where A and its transpose have cartesian components

A = Aij ii ⊗ ij ; AT = Aji ii ⊗ ij (B.12)

The symmetric part of the displacement gradient defines the (small) strain†

ε = ∇u(s) = 1

2

[∇u + (∇u)T
]

= 1

2

[
ui,j + uj,i

]
ii ⊗ ij

= εij ii ⊗ ij = εji ii ⊗ ij

(B.13)

†Note that this definition is slightly different from that occurring in Chapters 2 to 6. Now the shearing strain is
given by εij = 1/2 γij when i �= j .
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and the skew symmetric part gives the (small) rotation

ω = ∇u(a) = 1

2

[∇u − (∇u)T
]

= 1

2

[
ui,j − uj,i

]
ii ⊗ ij

= ωij ii ⊗ ij = −ωji ii ⊗ ij

(B.14)

The strain expression is analogous to Eq. (2.13). The components εij and ωij may be
represented by a matrix as

εij =
[
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

]
=
[
ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

]
(B.15)

ωij =
[

0 ω12 ω13

ω21 0 ω23

ω31 ω32 0

]
=
[

0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

]
(B.16)

Coordinate transformation

Consider now the representation of the intrinsic coordinates in a system which has
different orientation than that given in Fig. B.1. We represent the components in the
new system by

x = x ′
i ′ i′i ′ (B.17)

Using Eq. (B.2) we can relate the components in the prime system to those in the origi-
nal system as

x ′
i ′ = i′i · x = i′i · ij xj = �i ′j xj (B.18)

where
�i ′j = i′i ′ · ij = cos(x ′

i ′, xj ) (B.19)

define the direction cosines of the coordinate in a manner similar to that of Eq. (6.18).
Equation (B.18) defines how the cartesian coordinate components transform from

one coordinate frame to another. Recall that summation convention implies

x ′
i ′ = �i ′1x1 +�i ′2x2 +�i ′3x3 i ′ = 1, 2, 3 (B.20)

In Eq. (B.18) i ′ is called a free index whereas j is called a dummy index since it may
be replaced by any other unique index without changing the meaning of the term (note
that the notation used does not permit an index to appear more than twice in any term).
Summation convention will be employed throughout the remainder of this discussion
and the reader should ensure that the concept is fully understood before proceeding.
Some examples will be given occasionally to illustrate its use.

Using the notion of the direction cosines, Eq. (B.18) may be used to transform
any vector with three components. Thus, transformation of the components of the
displacement vector is given by

u′
i ′ = �i ′juj i ′, j = 1, 2, 3 (B.21)
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Indeed we can also use the above to express the transformation for the base vectors
since

i′i ′ = (i′i ′ · ij
)

ij = �i ′j ij (B.22)

Similarly, by interchanging the role of the base vectors we obtain

ij = (ij · i′i ′
)

i′i ′ = �i ′j i′i ′ (B.23)

which indicates that the inverse of the direction cosine coefficient array is the same as
its transpose.

The strain transformation follows from the intrinsic form written as

ε = ε′
i ′j ′ ii ′ ⊗ ij ′ = εklik ⊗ il (B.24)

Substitution of the base vectors from Eq. (B.23) into Eq. (B.24) gives

ε = �i ′kεkl�j ′lii ′ ⊗ ij ′ (B.25)

Comparing Eq. (B.25) with Eq. (B.24) the components of the strain transform according
to the relation

ε′
i ′j ′ = �i ′kεkl�j ′l (B.26)

Variables that transform according to Eq. (B.21) are called first rank cartesian ten-
sors whereas quantities that transform according to Eq. (B.26) are called second rank
cartesian tensors. The use of indicial notation in the context of cartesian coordinates
will lead naturally to each mechanics variable being defined in terms of a cartesian
tensor of an appropriate rank.

Stress may be written in terms of its components σij which may be written in a matrix
form similar to Eq. (B.15)

σij =
[
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

]
; i, j = 1, 2, 3 (B.27)

In intrinsic form stress is given by

σ = σij ii ⊗ ij (B.28)

and, using similar logic as used for strain, can be shown to transform as a second rank
cartesian tensor. The symmetry of the components of stress may be established by
summing moments (angular momentum balance) about each of the coordinate axes to
obtain

σij = σji (B.29)

Equilibrium and energy

Introducing a body force vector
b = bi ii (B.30)
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we can write the static equilibrium equations (linear momentum balance) for a differ-
ential element as

divσ + b ≡ (σji,j + bi
)
ii = 0 (B.31)

where the repeated index again implies summation over the range of the index, i.e.,

σji,j ≡
3∑
j=1

σji,j = σ1i,1 + σ2i,2 + σ3i,3

Note that the free index i must appear in each term for the equation to be meaningful.
As a further example of the summation convention consider an internal energy term

W = σij εij (B.32)

This expression implies a double summation; hence summing first on i gives

W = σ1j ε1j + σ2j ε2j + σ3j ε3j

and then summing on j gives finally

W = σ11 ε11 + σ12 ε12 + σ13 ε13

+ σ21 ε21 + σ22 ε22 + σ23 ε23

+ σ31 ε31 + σ32 ε32 + σ33 ε33

We may use symmetry conditions on σij and εij to reduce the nine terms to six terms.
Accordingly,

W = σ11ε11 + σ22ε22 + σ33ε33 + 2(σ12ε12 + σ23ε23 + σ31ε31)

= σ11ε11 + σ22ε22 + σ33ε33 + σ12γ12 + σ23γ23 + σ31γ31
(B.33)

Following a similar expansion we can also show the result

σijωij ≡ 0 (B.34)

Elastic constitutive equations

For an elastic material the most general linear relationship we can write for components
of the stress–strain characterization is

σij = Dijkl

(
εkl − ε0

kl

)+ σ 0
ij (B.35)

Equation (B.35) is the equivalent of Eq. (2.16) but now written in indicial notation. We
note that the elastic moduli which appear in Eq. (B.35) are components of the fourth
rank tensor

D = Dijklii ⊗ ij ⊗ ik ⊗ il (B.36)

The elastic moduli possess the following symmetry conditions

Dijkl = Djikl = Dijlk = Dklij (B.37)



680 Tensor-indicial notation in the approximation of elasticity problems

the latter arising from the existence of an internal energy density in the form2

W(ε) = 1

2
εijDijklεkl + εij

[
σ 0
ij −Dijklε

0
kl

]
(B.38)

which yields the stress from

σij = ∂W

∂εij
(B.39)

By writing the constitutive equation with respect to x ′
i ′ and using properties of the

base vectors we can deduce the transformation equation for moduli as

D′
i ′j ′k′l′ = �i ′m�j ′n�k′p�l′qDmnpq (B.40)

A common notation for the intrinsic form of Eq. (B.35) is

σ = D :
(
ε− ε0

)+ σ0 (B.41)

in which : denotes the double summation (contraction) between the elastic moduli and
the strains.

The elastic moduli for an isotropic elastic material may be written in indicial form
as

Dijkl = λδij δkl + µ(δikδjl + δilδjk) (B.42)

where λ, µ are the Lamé constants. An isotropic linear elastic material is always
characterized by two independent elastic constants. Instead of the Lamé constants we
can use Young’s modulus, E, and Poisson’s ratio, ν, to characterize the material. The
Lamé constants may be deduced from

µ = E

2(1 + ν)
and λ = νE

(1 + ν)(1 − 2ν)
(B.43)

Finite element approximation

If we now introduce the finite element displacement approximation given by Eq. (2.1),
using indicial notation we may write for a single element

ui ≈ ûi = Naũ
a
i i = 1, 2, 3; a = 1, 2, . . . , n (B.44)

where n is the total number of nodes on an element. The strain approximation in each
element is given by the definition of Eq. (B.13) as

ε̂ij = 1

2

[
Na,j ũ

a
i +Na,i ũ

a
j

]
(B.45)

The internal virtual work for an element is given as

δUI =
∫

e

δε : σ d
 =
∫

e

δεijσij d
 (B.46)
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Using Eqs (B.45) and (B.46) and noting symmetries inDijkl we may write the internal
virtual work for a linear elastic material as

δUI = δũai

∫

e

Na,jDijklNb,l d
 ũbk

+ δũai

∫

e

Na,j
(
σ 0
ij −Dijklε

0
kl

)
d


(B.47)

which replaces in indicial notation the matrix form presented in Chapters 2 to 6.
In describing a stiffness coefficient two subscripts have been used previously and

the submatrix Kab implied 2 × 2 or 3 × 3 entries for the ab nodal pair, depending on
whether two- or three-dimension displacement components were involved. Now the
scalar components

Kab
ij i, j = 1, 2, 3; a, b = 1, 2, . . . , n (B.48)

define completely the appropriate stiffness coefficient with ij indicating the relative
submatrix position (in this case for a three-dimensional displacement).

Note that for a symmetric matrix we have previously required that

Kab = KT
ba (B.49)

In indicial notation the same symmetry is implied if

Kab
ij = Kba

ji (B.50)

The stiffness tensor is now defined from Eq. (B.47) as

Kab
ik =

∫

e

Na,jDijklNb,l d
 (B.51)

When the elastic properties are constant over the element we may separate the integra-
tion from the material constants by defining

Wab
ij =

∫

e

Na,iNb,j d
 (B.52)

and then perform the summations with the material moduli as

Kab
ik = Wab

jl Dijkl (B.53)

In the case of isotropy a particularly simple result is obtained

Kab
ik = λWab

ik + µ[Wab
ki + δikW

ab
jj ] (B.54)

which allows the construction of the stiffness to be carried out using fewer arithmetic
operations as compared with the use of matrix form.3

Using indicial notation the final equilibrium equations of the system are written as

Kab
ik ũ

b
k + f ai = 0 i = 1, 2, 3 (B.55)

and in this scalar form every coefficient is simply identified. The reader can, as a simple
exercise, complete the derivation of the force terms due to the initial strain ε0

ij , stress
σ 0
ij , body force bi and external traction t̄i .
Indicial notation is at times useful in clarifying individual terms, and this introduction

should be helpful as a key to reading some of the current literature.
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Table B.1 Mapping between matrix and tensor indices for second
rank symmetric tensors

Form Index number

Matrix 1 2 3 4 5 6

Tensor 11 22 33 12 & 21 23 & 32 31 & 13
xx yy zz xy & yx yz & zy zx & xz

Relation between indicial and matrix notation

The matrix form used throughout most of this volume can be deduced from the indicial
form by a simple transformation between the indices. The relationship between the
indices of the second rank tensors and their corresponding matrix form can be performed
by an inspection of the ordering in the matrix for stress and its representation shown
in Eq. (B.27). In the matrix form the stress was given in Chapter 6 as

σ = [ σ11 σ22 σ33 σ12 σ23 σ31

]T
(B.56)

This form includes use of symmetry of stress components. The mapping of the indices
follows that shown in Table B.1.

Table B.1 may also be used to perform the map of the material moduli by noting that
the components in the energy are associated with the index pairs from the stress and
the strain. Accordingly, the moduli transform as

D1111 → D11; D2233 → D23; D1231 → D46; etc. (B.57)

The symmetry of the stress and strain is imbedded in Table B.1 and existence of an
energy function yields symmetry of the modulus matrix, i.e., Dab = Dba .
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Appendix C

Solution of simultaneous linear
algebraic equations

A finite element problem leads to a large set of simultaneous linear algebraic equations
whose solution provides the nodal and element parameters in the formulation. For ex-
ample, in the analysis of linear steady-state problems the direct assembly of the element
coefficient matrices and load vectors leads to a set of linear algebraic equations. In this
section methods to solve the simultaneous algebraic equations are summarized. We
consider both direct methods where an a priori calculation of the number of numerical
operations can be made, and indirect or iterative methods where no such estimate can
be made.

Direct solution

Consider first the general problem of direct solution of a set of algebraic equations
given by

Kũ = f (C.1)

where K is a square coefficient matrix, ũ is a vector of unknown parameters and f is a
vector of known values. The reader can associate these with the quantities described
previously: namely, the stiffness matrix, the nodal unknowns, and the specified forces
or residuals.

In the discussion to follow it is assumed that the coefficient matrix has properties such
that row and/or column interchanges are unnecessary to achieve an accurate solution.
This is true in cases where K is symmetric positive (or negative) definite.† Pivoting may
or may not be required with unsymmetric, or indefinite, conditions which can occur
when the finite element formulation is based on some weighted residual methods. In
these cases some checks or modifications may be necessary to ensure that the equations
can be solved accurately.1–3

For the moment consider that the coefficient matrix can be written as the product of a
lower triangular matrix with unit diagonals and an upper triangular matrix. Accordingly,

K = LU (C.2)

†For mixed methods which lead to forms of the type given in Eq. (10.14) the solution is given in terms of a positive
definite part for q̃ followed by a negative definite part for φ̃.
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where

L =

⎡
⎢⎢⎣

1 0 · · · 0
L21 1 · · · 0
...

. . .
...

Ln1 Ln2 · · · 1

⎤
⎥⎥⎦ (C.3)

and

U =

⎡
⎢⎢⎣
U11 U12 · · · U1n

0 U22 · · · U2n
...

. . .
...

0 0 · · · Unn

⎤
⎥⎥⎦ (C.4)

This form is called a triangular decomposition of K. The solution to the equations can
now be obtained by solving the pair of equations

Ly = f (C.5)

and
Uũ = y (C.6)

where y is introduced to facilitate the separation, e.g., see references 1–5 for additional
details.

The reader can easily observe that the solution to these equations is trivial. In terms
of the individual equations the solution is given by

y1 = f1

yi = fi −
i−1∑
j=1

Lijyj i = 2, 3, . . . , n
(C.7)

and

ũn = yn

Unn

ũi = 1

Uii

(
yi −

n∑
j=i+1

Uij ũj

)
i = n− 1, n− 2, . . . , 1

(C.8)

Equation (C.7) is commonly called forward elimination while Eq. (C.8) is called back
substitution.

The problem remains to construct the triangular decomposition of the coefficient
matrix. This step is accomplished using variations on gaussian elimination. In practice,
the operations necessary for the triangular decomposition are performed directly in the
coefficient array; however, to make the steps clear the basic steps are shown in Fig. C.1
using separate arrays. The decomposition is performed in the same way as that used in
the subprogram DATRI contained in the FEAPpv program; thus, the reader can easily
grasp the details of the subprograms included once the steps in Fig. C.1 are mastered.
Additional details on this step may be found in references 3–5.

In DATRI a Crout form of gaussian elimination is used to successively reduce the
original coefficient array to upper triangular form. The lower portion of the array is
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K11 K12 K13

K21 K22 K23

K31 K32 K33

L11 = 1 U11 = K11

Step 1. Active zone. First row and column to principal diagonal.

Active zone

K12 K13

K21 K22 K23

K31 K32 K33

L21 = K21/U11

U11

Step 2. Active zone. Second row and column to principal diagonal. Use first row of K to
eliminate L21 U11. The active zone uses only values of K from the active zone and
values of L and U which have already been computed in steps 1 and 2.

Active zone
Reduced zone

1 0

L22 = 1 U22 = K22 − L21 U12

U12 = K12

0

K13

K23

K31 K32 K33

L21

U11

Step 3. Active zone. Third row and column to principal diagonal. Use first row to 
eliminate L31 U11; use second row of reduced terms to eliminate L32 U22 (reduced 
coefficient K32). Reduce column 3 to reflect eliminations below diagonal.

Active zone
Reduced zone

1

0

L31

L31 = K31/U11

L32 = (K32−L31U12)/U22

L32

1

0 0

0

L33 = 1

U12

U22

0 0

U13 = K13

U23 = K23 − L21U13

U33 = K33 − L31U13 − L32U23

Fig. C.1 Triangular decomposition of K.

used to store L − I as shown in Fig. C.1. With this form, the unit diagonals for L are
not stored.

Based on the organization of Fig. C.1 it is convenient to consider the coefficient array
to be divided into three parts: part one being the region that is fully reduced; part two
the region that is currently being reduced (called the active zone); and part three the
region that contains the original unreduced coefficients. These regions are shown in
Fig. C.2 where the j th column above the diagonal and the j th row to the left of the
diagonal constitute the active zone. The algorithm for the triangular decomposition of
an n× n square matrix can be deduced from Fig. C.1 and Fig. C.3 as follows:

U11 = K11; L11 = 1 (C.9)

For each active zone j from 2 to n,

Lj1 = Kj1

U11
; U1j = K1j (C.10)

Lji = 1

Uii

(
Kji −

i−1∑
m=1

LjmUmi

)

Uij = Kij −
i−1∑
m=1

LimUmj i = 2, 3, . . . , j − 1

(C.11)
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Kj1, Kj2 Kjj

K1j

K2j

•
•
•

• • •

Reduced
zone

Unreduced zone

j th row
active zone

j th column active zone
U

L

Fig. C.2 Reduced, active and unreduced parts.

Li1 Li2 Li, i−1• • •

Lj1 Lj2 Lj, i−1• • • Kji

Uii Kij

U1i

U2i

Ui−1, i

•
•

•

U1j

U2j

Ui−1, j

•
•

•

Fig. C.3 Terms used to construct Uij and Lji.

and finally

Ljj = 1

Ujj = Kjj −
j−1∑
m=1

LjmUmj
(C.12)
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Table C.1 Example: triangular decomposition of 3 × 3 matrix

K L U⎡

⎣
4 2 1
2 4 2
1 2 4

⎤

⎦

⎡

⎣
1

⎤

⎦

⎡

⎣
4

⎤

⎦

Step 1. L11 = 1, U11 = 4

⎡

⎣
2 1

2 4 2
1 2 4

⎤

⎦

⎡

⎣
1
0.5 1

⎤

⎦

⎡

⎣
4 2

3

⎤

⎦

Step 2. L21 = 2
4 = 0.5, U12 = 2, U22 = 1, U22 = 4 − 0.5 × 2 = 3

⎡

⎣
1
2

1 2 4

⎤

⎦

⎡

⎣
1
0.5 1
0.25 0.5 1

⎤

⎦

⎡

⎣
4 2 1

3 1.5
3

⎤

⎦

Step 3. L31 = 1
4 = 0.25, U13 = 1, L32 = 2 − 0.25 × 2

3
= 1.5

3
= 0.5

U23 = 2 − 0.5 × 1 = 1.5, L33 = 1, U33 = 4 − 0.25 × 1 − 0.5 × 1.5 = 3
⎡

⎣
1
0.5 1
0.25 0.5 1

⎤

⎦

⎡

⎣
4 2 1

3 1.5
3

⎤

⎦ =
⎡

⎣
4 2 1
2 4 2
1 2 4

⎤

⎦

Step 4. Check

The ordering of the reduction process and the terms used are shown in Fig. C.3. The
results from Fig. C.1 and Eqs (C.9)–(C.12) can be verified using the matrix given in
the example shown in Table C.1.

Once the triangular decomposition of the coefficient matrix is computed, several
solutions for different right-hand sides f can be computed using Eqs (C.7) and (C.8).
This process is often called a resolution since it is not necessary to recompute the L
and U arrays. For large size coefficient matrices the triangular decomposition step is
very costly while a resolution is relatively cheap; consequently, a resolution capability
is necessary in any finite element solution system using a direct method.

The above discussion considered the general case of equation solving (without row
or column interchanges). In coefficient matrices resulting from a finite element for-
mulation some special properties are usually present. Often the coefficient matrix is
symmetric (Kij = Kji) and it is easy to verify in this case that

Uij = LjiUii (no sum) (C.13)

For this problem class it is not necessary to store the entire coefficient matrix. It is
sufficient to store only the coefficients above (or below) the principal diagonal and
the diagonal coefficients. Equation (C.13) may be used to construct the missing part.
This reduces by almost half the required storage for the coefficient array as well as the
computational effort to compute the triangular decomposition.

The required storage can be further reduced by storing only those rows and columns
which lie within the region of non-zero entries of the coefficient array. Problems
formulated by the finite element method and the Galerkin process normally have a
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symmetric profile which further simplifies the storage form. Storing the upper and
lower parts in separate arrays and the diagonal entries of U in a third array is used in
DATRI. Figure C.4 shows a typical profile matrix and the storage order adopted for
the upper array AU, the lower array AL and the diagonal array AD. An integer array
JD is used to locate the start and end of entries in each column. With this scheme it is
necessary to store and compute only within the non-zero profile of the equations. This
form of storage does not severely penalize the presence of a few large columns/rows
and is also an easy form to program a resolution process (e.g., see subprogram DASOL
in FEAPpv and reference 4).

The routines included in FEAPpv are restricted to problems for which the coefficient
matrix can fit within the space allocated in the main storage array. In two-dimensional
formulations, problems with several thousand degrees of freedom can be solved on to-
day’s personal computers. In three-dimensional cases, however, problems are restricted
to a few thousand equations. To solve larger size problems there are several options.
The first is to retain only part of the coefficient matrix in the main array with the rest
saved on backing store (e.g., hard disk). This can be quite easily achieved but the size
of problem is not greatly increased due to the very large solve times required and the
rapid growth in the size of the profile-stored coefficient matrix in three-dimensional
problems.

A second option is to use sparse solution schemes. These lead to significant program
complexity over the procedure discussed above but can lead to significant savings in
storage demands and compute time – especially for problems in three dimensions. Nev-
ertheless, capacity in terms of storage and compute time is again rapidly encountered
and alternatives are needed.

Iterative solution

One of the main problems in direct solutions is that terms within the coefficient matrix
which are zero from a finite element formulation become non-zero during the triangular
decomposition step. While sparse methods are better at limiting this fill than profile
methods they still lead to a very large increase in the number of non-zero terms in the
factored coefficient matrix. To be more specific consider the case of a three-dimensional
linear elastic problem solved using 8-node isoparametric hexahedron elements. In a
regular mesh each interior node is associated with 26 other nodes, thus, the equation of
such a node has 81 non-zero coefficients – three for each of the 27 associated nodes. On
the other hand, for a rectangular block of elements with n nodes on each of the sides the
typical column height is approximately proportional to n2 and the number of equations
to n3. In Table C.2 we show the size and approximate number of non-zero terms in
K from an element finite formulation for linear elasticity (i.e., with three degrees of
freedom per node). The table also indicates the size growth with column height and
storage requirements for a direct solution based on a profile solution method.

From the table it can be observed that the demands for a direct solution are growing
very rapidly (storage is approximately proportional to n5) while at the same time the
demands for storing the non-zero terms in the stiffness matrix grow proportional to the
number of equations (i.e., proportional to n3 for the block).
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Fig. C.4 Profile storage for coefficient matrix.
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Table C.2 Partial list of solutions commands

Non-zeros in K Profile storage data
Side
nodes

Number of
equations Words (×10−6) Mbytes Col. Ht. Words (×10−6) Mbytes

5 375 0.02 0.12 90 0.03 0.27
10 3000 0.12 0.96 330 0.99 7.92
20 24 000 0.96 7.68 1260 30.24 241.82
40 19 2000 7.68 61.44 4920 944.64 7557.12
80 153 6000 61.44 491.52 18 440 28 323.84 22 6584.72

Iterative solution methods use the terms in the stiffness matrix directly and thus
for large problems have the potential to be very efficient for large three-dimensional
problems. On the other hand, iterative methods require the resolution of a set of
equations until the residual of the linear equations, given by

r(i) = f − Kũ(i) (C.14)

becomes less than a specified tolerance.
In order to be effective the number of iterations i to achieve a solution must be

quite small – generally no larger than a few hundred. Otherwise, excessive solution
costs will result. At the time of writing this book the subject of iterative solution for
general finite element problems remains a topic of intense research. There are some
impressive results available for the case where K is symmetric positive (or negative)
definite; however, those for other classes (e.g., unsymmetric or indefinite forms) are
generally not efficient enough for reliable use in the solution of general problems.

For the symmetric positive definite case methods based on a preconditioned conjugate
gradient method have been particularly effective.6–8 The convergence of the method
depends on the condition number of the matrix K – the larger the condition number, the
slower the convergence (see reference 3 for more discussion). The condition number
for a finite element problem with a symmetric positive definite stiffness matrix K is
defined as

κ = λn

λ1
(C.15)

where λ1 and λn are the smallest and largest eigenvalue from the solution of the eigen-
problem (viz. Chapter 16)

KΦ = ΦΛ (C.16)

in whichΛ is a diagonal matrix containing the individual eigenvaluesλi and the columns
of Φ are the eigenvectors φi associated with each of the eigenvalues.

Usually, the condition number for an elasticity problem modelled by the finite ele-
ment method is too large to achieve rapid convergence and a preconditioned conjugate
gradient (PCG) is used.6 A symmetric form of preconditioned system is written as

Kpz = PKPTz = Pf (C.17)

where
PTz = ũ (C.18)
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Now the convergence of the PCG algorithm depends on the condition number of Kp.
The problem remains to construct a preconditioner which adequately reduces the con-
dition number. In FEAPpv the diagonal of K is used; however, more efficient schemes
incorporating also multigrid methods are discussed in references 7 and 8.
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Appendix D

Some integration formulae for
a triangle

Let a triangle be defined in the xy plane by three points (x1, y1), (x2, y2), (x3, y3) with
the origin of the coordinates taken at the centroid (or baricentre), i.e.,

x1 + x2 + x3

3
= y1 + y2 + y3

3
= 0

Then integrating over the triangle area we obtain:

∫
dx dy = 1

2

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣
= � = area of triangle

∫
x dx dy =

∫
y dx dy = 0

∫
x2 dx dy = �

12

(
x2

1 + x2
2 + x2

3

)
∫
y2 dx dy = �

12

(
y2

1 + y2
2 + y2

3

)
∫
x y dx dy = �

12
(x1y1 + x2y2 + x3y3)
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Some integration formulae for
a tetrahedron

Let a tetrahedron be defined in the xyz coordinate system by four points (x1, y1, z1), (x2,
y2, z2), (x3, y3, z3) (x4, y4, z4) with the origin of the coordinates taken at the centroid,
i.e.,

x1 + x2 + x3 + x4

4
= y1 + y2 + y3 + y4

4
= z1 + z2 + z3 + z4

4
= 0

Then integrating over the tetrahedron volume

∫
dx dy dz = 1

6

∣∣∣∣∣∣∣
1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣
= V = tetrahedron volume

Provided the order of numbering the nodes is as indicated on Fig. 4.18(a) then also:∫
x dx dy dz =

∫
y dx dy dz =

∫
z dx dy dz = 0∫

x2 dx dy dz = V

20

(
x2

1 + x2
2 + x2

3 + x2
4

)
∫
y2 dx dy dz = V

20

(
y2

1 + y2
2 + y2

3 + y2
4

)
∫
z2 dx dy dz = V

20

(
z2

1 + z2
2 + z2

3 + z2
4

)
∫
x y dx dy dz = V

20
(x1y1 + x2y2 + x3y3 + x4y4)∫

y z dx dy dz = V

20
(y1z1 + y2z2 + y3z3 + y4z4)∫

z x dx dy dz = V

20
(z1x1 + z2x2 + z3x3 + z4x4)
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Some vector algebra

Some knowledge and understanding of basic vector algebra is needed in dealing with
complexities of elements oriented in space as occur in beams, shells, etc. Some of the
operations are summarized here.

Vectors (in the geometric sense) can be described by their components along the
directions of the x, y, z axes.

Thus, the vector V01 shown in Fig. F.1 can be written as

V01 = x1i + y1j + z1k (F.1)

in which i, j, k are unit vectors in the direction of the x, y, z axes.
Alternatively, the same vector could be written as

V01 =
{
x1

y1

z1

}
(F.2)

(now a ‘vector’ in the matrix sense) in which the components are distinguished by
positions in the column.

Addition and subtraction

Addition and subtraction is defined by addition and subtraction of components. Thus,
for example,

V02 − V01 = (x2 − x1)i + (y2 − y1) j + (z2 − z1)k (F.3)

The same result is achieved by the definitions of matrix algebra; thus

V02 − V01 = V21 =
{
x2 − x1

y2 − y1

z2 − z1

}
(F.4)
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1

2

0

z

y

x
y1

z1

x1
y2

z2

x2

V21

V02

V01

Fig. F.1 Vector addition.

‘Scalar’ products

A scalar product of two vectors is defined as

A · B = B · A =
3∑
k=1

akbk (F.5)

If

A = ax i + ayj + azk
B = bx i + byj + bzk (F.6)

then
A · B = axbx + ayby + azbz (F.7)

Using the matrix notation

A =
{
ax
ay
az

}
B =
{
bx
by
bz

}
(F.8)

the scalar product becomes
A · B = ATB = BTA (F.9)

Length of vector

The length of the vector V21 is given, purely geometrically, as

l21 =
√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 (F.10)
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B

A

C

Ic = Ia Ib sin γ

γ

lb

lc

Fig. F.2 Vector multiplication (cross product).

or in terms of matrix algebra as

l21 =
√

V21 · V21 =
√

VT
21V21 (F.11)

Direction cosines

Direction cosines of a vector are simply, from the definition of the projected component
of lengths, given as (Fig. F.1)

cos αx = x2 − x1

l21
= V21 · i

l21
(F.12)

The scalar product may also be written as (Fig. F.2)

A · B = B · A = lalb cos γ (F.13)

where γ is the angle between the two vectors A and B and la and lb are their lengths,
respectively.

‘Vector’ or cross product

Another product of vectors is defined as a vector oriented normally to the plane given
by two vectors and equal in magnitude to the product of the length of the two vectors
multiplied by the sine of the angle between them. Further, the direction of the normal
vector follows the right-hand rule as shown in Fig. F.2 in which

A × B = C (F.14)

is shown.
Thus, from the right-hand rule, we have

A × B = −B × A (F.15)
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It is worth noting that the magnitude (or length) of C is equal to the area of the paral-
lelogram shown in Fig. F.2.

Using the definition of Eq. (F.6) and noting that

i × i = j × j = k × k = 0 (F.16)

i × j = k , j × k = i , k × i = j

we have

A × B = det

∣∣∣∣∣
i j k
ax ay az
bx by bz

∣∣∣∣∣
= (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k

In matrix algebra this does not find a simple counterpart but we can use the above to
define the vector C†

C = A × B =
{
aybz − azby
azbx − axbz
axby − aybx

}
(F.17)

The vector product will be found particularly useful when the problem of erecting a
normal direction to a surface is considered.

Elements of area and volume

If ξ andη are some curvilinear coordinates, then the following vectors in two-dimensional
plane

dξ =

⎧⎪⎨
⎪⎩

∂x

∂ξ

∂y

∂ξ

⎫⎪⎬
⎪⎭ dξ dη =

⎧⎪⎨
⎪⎩

∂x

∂η

∂y

∂η

⎫⎪⎬
⎪⎭ dη (F.18)

defined from the relationship between the cartesian and curvilinear coordinates, are
vectors directed tangentially to the ξ and η equal constant contours, respectively. As
the length or the vector resulting from a cross product of dξ × dη is equal to the area
of the elementary parallelogram we can write

d(area) = det

⎡
⎢⎢⎣
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎦ dξ dη (F.19)

by Eq. (F.17).

† If we rewrite A as a skew symmetric matrix

Â =
⎡

⎣
0 −az ay
az 0 −ax

−ay ax 0

⎤

⎦

then an alternative representation of the vector product in matrix form is C = ÂB.
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Similarly, if we have three curvilinear coordinates ξ , η, ζ in the cartesian space, the
‘triple’ or box product defines a differential volume

d(vol) = (dξ × dη) · dζ = det

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

dξ dη dζ (F.20)

this follows simply from the geometry. The bracketed product, by definition, forms
a vector whose length is equal to the parallelogram area with sides tangent to two of
the coordinates. The second scalar multiplication by a length and the cosine of the
angle between that length and the normal to the parallelogram establishes a differential
volume element.

The above equations serve in changing the variables in surface and volume integrals.
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Integration by parts in two or three
dimensions (Green’s theorem)

Consider the integration by parts of the following two-dimensional expression∫∫



φ
∂ψ

∂x
dx dy (G.1)

Integrating first with respect to x and using the well-known relation for integration by
parts in one dimension∫ xR

xL

u dv = −
∫ xR

xL

v du+ (uv)x=xR − (uv)x=xL (G.2)

we have, using the symbols of Fig. G.1,∫∫



φ
∂ψ

∂x
dx dy = −

∫∫



∂φ

∂x
ψ dx dy +

∫ yT

yB

[
(φ ψ)x=xR − (φ ψ)x=xL

]
dy (G.3)

If now we consider a direct segment of the boundary d� on the right-hand boundary,
we note that

dy = nx d� (G.4)

where nx is the direction cosine between the outward normal and the x direction.
Similarly on the left-hand section we have

dy = − nx d� (G.5)

The final term of Eq. (G.3) can thus be expressed as the integral taken around an
anticlockwise direction of the complete closed boundary:∮

�

φψnx d� (G.6)

If several closed contours are encountered this integration has to be taken around
each such contour. The general expression in all cases is∫∫




φ
∂ψ

∂x
dx dy = −

∫∫



∂φ

∂x
ψ dx dy +

∮
�

φψnx d� (G.7)
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y

dy

yT

yB

x

n

Ω
Γ

dΓ

n
xL

xR

Fig. G.1 Definitions for integrations in two dimensions.

Similarly, if differentiation in the y direction arises we can write∫∫



φ
∂ψ

∂y
dx dy = −

∫∫



∂φ

∂y
ψ dx dy +

∮
�

φψny d� (G.8)

where ny is the direction cosine between the outward normal and the y axis.
In three dimensions by identical procedure we can write∫∫∫




φ
∂ψ

∂y
dx dy dz = −

∫∫∫



∂φ

∂y
ψ dx dy dz+

∮
�

φψny d� (G.9)

where d� becomes the element of the surface area and the last integral is taken over
the whole surface.
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Solutions exact at nodes

The finite element solution of ordinary differential equations may be made exact at the
interelement nodes by a proper choice of the weighting function in the weak (Galerkin)
form. To be more specific, let us consider the set of ordinary differential equations
given by

A(u)+ f(x) = 0 (H.1)

where u is the set of dependent variables which are functions of the single independent
variable ‘X’ and f is a vector of specified load functions. The weak form of this set of
differential equations is given by∫ xR

xL

vT [A(u)+ f ] dx = 0 (H.2)

The weak form may be integrated by parts to remove all the derivatives from u and
place them on v. The result of this step may be expressed as∫ xR

xL

[
uTA∗(v)+ vTf

]
dx + [B∗(v)

]T
B(u)
∣∣∣xR
xL

= 0 (H.3)

where A∗(v) is the adjoint differential equation and B∗(v) and B(u) are terms on the
boundary resulting from integration by parts.

If we can find the general integral to the homogeneous adjoint differential equation

A∗(v) = 0 (H.4)

then the weak form of the problem reduces to∫ xR

xL

vTf dx + [B∗(v)
]T

B(u)
∣∣∣xR
xL

= 0 (H.5)

The first term is merely an expression to generate equivalent forces from the solution
to the adjoint equation and the last term is used to construct the residual equation
for the problem. If the differential equation is linear these lead to a residual which
depends linearly on the values of u at the ends xL and xR. If we now let these be
the location of the end nodes of a typical element we immediately find an expression
to generate a stiffness matrix. Since in this process we have never had to construct
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an approximation for the dependent variables u it is immediately evident that at the
end points the discrete values of the exact solution must coincide with any admissible
approximation we choose. Thus, we always obtain exact solutions at these points.

If we consider that all values of the forcing function are contained in f (i.e., no point
loads at nodes), the terms in B(u) must be continuous between adjacent elements. At
the boundaries the terms in B(u) include a flux term as well as displacements.

As an example problem, consider the single differential equation

d2u

dx2
+ P

du

dx
+ f = 0 (H.6)

with the associated weak form∫ xR

xL

v

[
d2u

dx2
+ P

du

dx
+ f

]
dx = 0 (H.7)

After integration by parts the weak form becomes

∫ xR

xL

[
u

(
d2v

dx2
− P

dv

dx

)
+ vf

]
dx +

[
v

(
du

dx
+ Pu

)
− dv

dx
u

]xR
xL

= 0 (H.8)

The adjoint differential equation is given by

A∗(v) = d2v

dx2
− P

dv

dx
= 0 (H.9)

and the boundary terms by

B∗(v) =
{

v

− dv

dx

}
(H.10)

and

B(u) =
{

du

dx
+ Pu

u

}
(H.11)

For the above example two cases may be identified:

1. P zero – where the adjoint differential equation is identical to the homogeneous
equation in which case the problem is called self-adjoint.

2. P non-zero – where we then have the non-self-adjoint problem.

The finite element solution for these two cases is often quite different. In the first case
an equivalent variational theorem exists, whereas for the second case no such theorem
exists.†

In the first case the solution to the adjoint equation is given by

v = Ax + B (H.12)

†An integrating factor often may be introduced to make the weak form generate a self-adjoint problem; however,
the approximation problem will remain the same. See Sec. 3.11.2.
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which may be written as conventional linear shape functions in each element as

NL = xR − x

xR − xL
; NR = x − xL

xR − xL
; (H.13)

Thus, for linear shape functions in each element used as the weighting function the
interelement nodal displacements for u will always be exact (e.g., see Fig. 3.4) irre-
spective of the interpolation used for u.

For the second case the exact solution to the adjoint equation is

v = AePx + B = Az+ B (H.14)

This yields the shape functions for the weighting function

NL = zR − z

zR − zL
; NR = z− zL

zR − zL
; (H.15)

which when used in the weak form again yield exact answers at the interelement nodes.
After constructing exact nodal solutions for u, exact solutions for the flux at the

interelement nodes can also be obtained from the weak form for each element. The
above process was first given by Tong for self-adjoint differential equations.1

References

1. P. Tong. Exact solution of certain problems by the finite element method. J. AIAA, 7:179–180,
1969.



Appendix I

Matrix diagonalization or lumping

Some of the algorithms discussed in this volume become more efficient if one of
the global matrices can be diagonalized (also called ‘lumped’ by many engineers).
For example, the solution of some mixed and transient problems are more efficient
if a global matrix to be inverted (or equations solved) is diagonal [viz. Chapter 11,
Eq. (11.94) and Chapter 16, Secs 16.2.4 and 16.4.2]. Engineers have persisted with
purely physical concepts of lumping; however, there is clearly a need for devising a
systematic and mathematically acceptable procedure for such lumping.

We shall define the matrix to be considered as

A =
∫



NTcN d
 (I.1)

where c is a matrix with small dimension. Often c is a diagonal matrix (e.g., in mass
or simple least square problems c is an identity matrix times some scalar). When A is
computed exactly it has full rank and is not diagonal – this is called the consistent form
of A since it is computed consistently with the other terms in the finite element model.
The diagonalized form is defined with respect to ‘nodes’ or the shape functions, e.g.,
Na = NaI; hence, the matrix will have small diagonal blocks, each with the maximum
dimension of c. Only when c is diagonal can the matrix A be completely diagonalized.
Four basic lines of argument may be followed in constructing a diagonal form.

The first procedure is to use different shape functions to approximate each term in
the finite element discretization. For the A matrix we use substitute shape functions
N̄a for the lumping process. No derivatives exist in the definition of A; hence, for this
term the shape functions may be piecewise continuous within and between elements
and still lead to acceptable approximation. If the shape functions used to define A are
piecewise constants, such that N̄a is a certain part of the element surrounding the node
a and zero elsewhere, and such parts are not overlapping or disjoint, then clearly the
matrix of Eq. (I.1) becomes nodally diagonal as

∫



N̄T
a cN̄b d
 =

{ ∫

a

c d
 a = b

0 a �= b
(I.2)

Such an approximation with different shape functions is permissible since the usual
finite element criteria of integrability and completeness are satisfied. We can verify
this using a patch test to show that consistency is still maintained in the approximation.
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(a)

a

Na

(b)

a

Na

Fig. I.1 (a) Linear and (b) piecewise constant shape functions for a triangle.

The functions selected need only satisfy the condition

N̄a = N̄aI with
∑
a

N̄a = 1 (I.3)

for all points in the element and this also maintains a partition of unity property in all
of 
. In Fig. I.1 we show the functions Na and N̄a for a triangular element.

The second method to diagonalize a matrix is to note that condition (I.1) is simply a
requirement that ensures conservation of the quantity c over the element. For structural
dynamics applications this is the conservation of mass at the element level. Accordingly,
it has been noted that any lumping that preserves the integral of c on the element will
lead to convergent results, although the rate of convergence may be lower than with
use of a consistent A. Many alternatives have been proposed based upon this method.
The earliest procedures performed the diagonalization using physical intuition only.
Later alternative algorithms were proposed. One suggestion, often called a ‘row sum’
method, is to compute the diagonal matrix from

Aab =
{ ∑

c

∫

a

NT
a cNc d
 a = b

0 a �= b
(I.4)

This simplifies to

Aab =
{ ∫


a
NT
a c d
 a = b

0 a �= b
(I.5)

since the sum of the shape functions is unity. This algorithm makes sense only when
the degrees of freedom of the problem all have the same physical interpretation. An
alternative is to scale the diagonals of the consistent mass to satisfy the conservation
requirement. In this case the diagonal matrix is deduced from

Aab =
{
m
∫

a

NT
a cNb d
 a = b

0 a �= b
(I.6)

where m is selected so that ∑
a

Aaa =
∫



c d
 (I.7)

The third procedure uses numerical integration to obtain a diagonal array without
apparently introducing additional shape functions. Use of numerical integration to
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evaluate the A matrix of Eq. (I.1) yields a typical term in a summation form (following
Chapter 8)

Aab =
∫



NT
a cNb d
 =

∑
q

(
NT
a cNb

)
ξq
JqWq (I.8)

where ξq refers to the quadrature point at which the integrand is evaluated, J is the jaco-
bian volume transformation at the same point andWq gives the appropriate quadrature
weight.

If the quadrature points for the numerical integration are located at nodes then, for
standard shape functions (viz. Chapter 4), by Eq. (I.3) the diagonal matrix is given

Aab =
{

cJaWa a = b

0 a �= b
(I.9)

where Ja is the jacobian and Wa is the quadrature weight at node a.
Appropriate weighting values may be deduced by requiring the quadrature formula

to exactly integrate particular polynomials in the natural coordinate system. In general
the quadrature should integrate a polynomial of the highest complete order in the shape
functions. Thus, for 4-noded quadrilateral elements, linear functions should be exactly
integrated. Integrating additional terms may lead to improved accuracy but is not
required. Indeed, only conservation of c is required.

For low order elements, symmetry arguments may be used to lump the matrix. It
is, for instance, obvious that in a simple triangular element little improvement can be
obtained by any other lumping than the simple one in which the total c is distributed
in three equal parts. For an 8-noded two-dimensional isoparametric element no such
obvious procedure is available. In Fig. I.2 we show the case of rectangular elements
of 4-, 8-, and 9-noded type and lumping by Eqs (I.5), (I.6) and (I.9).

It is noted that for the 8-noded element some of the lumped quantities are negative
when Eq. (I.5) or Eq. (I.9) is used. These will have some adverse effects in certain
algorithms (e.g., time-stepping schemes to integrate transient problems) and preclude
their use. In Fig. I.3 we show some lumped matrices for triangular elements computed
by quadrature [i.e., Eq. (I.9)]. It is noted here that the cubic element has negative terms
while the quadratic element has zero terms. The zero terms are particularly difficult to
handle as the resulting diagonal A matrix no longer has full rank and thus may not be
inverted.

Another aspect of lumping is the performance of the element when distorted from
its parent element shape. For example, as a rectangular element is distorted and ap-
proaches a triangular shape it is desirable to have the limit triangular shape case behave
appropriately. In the case of a 4-noded rectangular element the lumped matrix for all
three procedures gives the same answer. However, if the element is distorted by a
transformation defined by one parameter f as shown in Fig. I.4 then the three lumping
procedures discussed so far give different answers. The jacobian transformation is
given by

J = ab(1 − f ) (I.10)

and c is here taken as the identity matrix.
The form (I.5) gives

Aaa =
{
ab (1 − f/3) at top nodes
ab (1 + f/3) at bottom nodes (I.11)
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Fig. I.2 Diagonalization of rectangular elements by three methods.
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the form (I.6) gives

Aaa =
{
ab(1 − f/2) at top nodes
ab(1 + f/2) at bottom nodes (I.12)

and the quadrature form (I.9) yields

Aaa =
{
ab(1 − f ) at top nodes
ab(1 + f ) at bottom nodes (I.13)

The 4-noded element has the property that a triangle may be defined by coalescing 2
nodes and assigning them to the same global node in the mesh. Thus, the quadrilateral
is identical to a 3-noded triangle when the parameter f is unity. The limit value for
the row sum method will give equal lumped terms at the 3 nodes while method (I.6)
yields a lumped value for the coalesced node which is two-thirds the value at the other
nodes and the quadrature method (I.9) yields a zero lumped value at the coalesced
node. Thus, methods (I.6) and (I.9) give limit cases which depend on how the nodes
are numbered to form each triangular element. This lack of invariance is not desirable
in computer programs; hence for the 4-noded quadrilateral, method (I.5) appears to be
superior to the other two. On the other hand, we have observed above that the row sum
method (I.5) leads to negative diagonal elements for the 8-noded element; hence there
is no universal method for diagonalizing a matrix.

A fourth but not widely used method is available which may be explored to deduce a
consistent matrix that is diagonal. This consists of making a mixed representation for
the term creating the A matrix.

Consider a functional given by

�1 = 1

2

∫



uTcu d
 (I.14)

The first variation of �1 yields

δ�1 =
∫



δuTcu d
 (I.15)

Approximation using the standard form

u ≈ û = Naũa = Nũ (I.16)

yields

δ�1 = δũT

∫



NTcN d
ũ (I.17)

This yields exactly the form for A given by Eq. (I.1).
We can construct an alternative mixed form by introducing a momenta-type variable

given by
p = cu (I.18)

A Hellinger–Reissner-type mixed form may then be expressed as

�2 =
∫



uTp d
− 1

2

∫



pTc−1p d
 (I.19)
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and has the first variation

δ�2 =
∫



δuTp d
+
∫



δpT
(
u − c−1p

)
d
 (I.20)

The term with variation on u will combine with other terms so is not set to zero;
however, the other term will not appear elsewhere so can be solved separately.

If we now introduce an approximation for p as

p ≈ p̂ = nbp̃b = np̃ (I.21)

then the variational equation becomes

δ�2 = δũT

∫



NTn d
p̃ + δp̃T

(∫



nTN d
ũ −
∫



nTc−1 n d
p̃

)
(I.22)

If we now define the matrices

G =
∫



nNT d


H =
∫



nTc−1n d
 (I.23)

then the weak form is

δ�2 = [ δũT δp̃T
] ([ 0 GT

G − H

]{
ũ
p̃

}
=
{

0
0

})
(I.24)

Eliminating p̃ using the second row of Eq. (I.24) gives

A = GTH−1G (I.25)

for which diagonal forms may now be sought. This form has again the same options as
discussed above but, in addition, forms for the shape functions n can be sought which
also render the matrix diagonal.
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Nävert, U., 590, 596, 629
Nay, R.A., 525, 560
Naylor, D.J., 91, 101, 398, 426
Nayroles, B., 526, 538, 547, 560
Neitaanmaki, P., 465, 496
Newmark, N., 600, 606, 618, 630
Newmark, N.M., 1, 3, 17
Newton, R.E., 155, 184, 565, 587, 634, 645, 648, 660,

661
Nickell, R.E., 565, 587, 594, 629
Nicolson, P., 594, 629
Nikuchi, N., 253, 262
Nishigaki, I., 265, 325
Nithiarasu, P., 69, 71, 101, 132, 137, 175, 185, 252,

262, 266, 326, 379, 382, 407, 414, 419, 421, 427,
428, 519, 524, 527, 560, 571, 576, 580, 587, 590,
628, 634, 635, 660

Nitsche, J.A., 438, 453
Norrie, D.H., 252, 262

Oden, J.T., 81, 96, 101, 102, 207, 228, 363, 381, 390,
425, 442, 453, 466, 478, 479, 484, 487, 496, 497,
498, 503, 514, 518, 523, 524, 526, 538, 539, 547,
551, 552, 553, 555, 558, 560, 562, 590, 628

Oglesby, J.J., 176, 185



716 Author index

Oh, K.P., 251, 262
Ohayon, R., 634, 639, 660, 661
Ohnimus, S., 483, 498
Ohtsubo, H., 484, 498
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and transformation of coordinates, 12
see also Convergence of approximations; Elasticity

finite element approximations for small
deformations; Function approximation; Least
squares approximations; Moving least squares
approximations/expansions; Tensor-indicial
notation in the approximation of elasticity
problems

Arch dam in a rigid valley example, 216–17
Area coordinates, 117–18
Assembly and analysis of structures:

boundary conditions, 6–7
electrical networks, 7–9
fluid networks, 7–9
general process, 5–6
step one, determination of element properties, 9–10
step two, assembly of final equations, 10
step three, insertion of boundary conditions, 10
step four, solving the equation system, 10

Assessment of accuracy, numerical examples, 239–53
Asymptotic behaviour and robustness of error

estimators, 488–90
Asymptotic convergence rate, 504–5
Augmented lagrangian form, 406
Automatic mesh and node generation see Mesh

generation
Auxiliary functions, with complementary forms,

378–9
Axisymmetric deformation problems, 188–9, 235–7

B-bar method for nearly incompressible problems,
397–8

Babuška patch test, 490
Babuška–Brezzi condition, 363
Back substitution, simultaneous equations, 684
Base solution, patch test, 332
Basis functions see Shape functions
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Beam, circular, subjected to end shear example,
209–10

Beam, rectangular, subjected to end shear example,
209

Bearings, stepped pad, 251
Biomechanics problem of bone–fluid interaction,

652
Blending functions, 169–70
Body forces, distributed, 26
Boundary conditions:

about boundary conditions, 6–7, 191
Dirichlet, 59
and equivalent nodal forces, 29
errors from approximation of curved boundaries, 39
forced, 59
forced with natural variational principles, 81
and identification of Lagrange multipliers, 87–8
linear elasticity equations:

on inclined coordinates, 192
normal pressure loading, 193
symmetry and repeatability, 192–3

natural (Neumann condition), 60
nodal forces for boundary traction example, 30–1

Boundary value problems:
element, 483
Neumann, 484

Bounded estimators, 490–4
equilibrated methods, 494

Boussinesq problem, 174–6

CAD, with surface mesh generation, 286
Cavitation effects in fluids, 645–6
CBS (characteristic-based split) procedure, 407
Central difference approximation, multistep

recurrence algorithms, 618
Characteristic-based split (CBS) procedure, 407
Collocation:

collocation methods, 525
subdomain/finite volume mehod, 61, 547
Taylor series collocation, 593–4
see also Point collocation

Complementary forms see under Mixed formulations
Completeness of expansions, 75
Computer procedures:

about computer procedures, 664
see also FEAPpv (Finite ElementAnalysis Program

– personal version)
Conical water tank example, 215–16
Consistency index, mesh generation, 274, 299
Consistent damping matrices, 566
Consistent mass matrix, 566
Constant stress state, 3-node triangle, 26–7
Constitutive relations, 195
Constrained parameters, 12
Constrained variational principles:

discretization process, 84–6

enforcement with Lagrange multiplier example, 86
locking, 91
penalty function method, 88–9, 90–1
penalty method for constraint enforcement

example, 90
perturbed lagrangian functional, 89–91
see also Lagrange multipliers

Constraint and primary variables, 360
Continuity requirements:

mapped elements, 143–5
mixed formulations, 358–9

Continuous and discrete problems, 1
Contravariant sets of transformations, 12
Contrived variational principles, 77
Convergence of approximations, 74–5

and completeness of expansions, 75
criterion of completeness, 75
h convergence, 75
p convergence, 75
ultraconvergence, 469
see also Superconvergence

Convergence criteria and displacement shape
functions:

and constant strain conditions, 37
and functional completeness statements, 38
and rigid body motion, 37
for standard and hierarchical element shapes, 103
strains to be finite, 37

Convergence rate and discretization error rate, 38–9
Convergence requirements, patch test, 330–1
Coordinates:

coordinate transformation, 11–12, 677–8
global, 12
local, 12

Coupled systems:
about coupled systems, 631–4, 660
classes, 631–2
definitions, 631
different discretizations, need for, 632–3
partitioned single-phase systems – implicit–explicit

partitions (Class I problems), 653–5
see also Fluid-structure interaction (Class 1

problem); Soil-pore fluid interaction (Class II
problems); Staggered solution processes

Crank-Nicholson scheme, 594, 596
Cubic elements, serendipity family, 113–14

conical water tank example, 215–16
rotating disc analysis example, 212–15

Cubic Hermite polynomials, 269
Cubic triangle, triangular elements family, 119
Curvilinear coordinates, patch test, 330

D’Alembert principle, linear damping, 565
Dam subject to external and internal water pressure

example, 210–14
Dam/reservoir interaction, 641
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Damping:
algorithmic damping, 619
and participation of modes, 583
see also Dynamic behaviour of elastic structures

with linear damping; Time dependence;
Transient response by analytical procedures

Darcy’s law, 230
DATRI (FEAPpv sub program), 684–8
Degeneration/degenerate forms:

about degeneration, 153–9
degenerate forms for a quadratic 27-node

hexahedron example, 158–9
higher order degenerate elements, 155–9
quadratic quadrilateral degenerated triangular

element example, 156–8
quadrilateral degenerated into a triangular element

example, 153
Degrees of freedom:

and matrices, 5
and total potential energy, 35

Delaunay triangulation see Mesh generation,
three-dimensional, Delaunay triangulation

Deviatoric stress and strain, 383–4
deviatoric form for elastic moduli of an isotropic

material, 384
laplacian pressure stabilization, 408–9
pressure change, 384

Diagonality with shape functions, 105
Diagonalization or mass lumping, 568–70, 704–9
Diffuse finite element method, 526
Diffusion or flow problems, 230
Direct minimization, 36
Direct pressure stabilization approach to

incompressible problems, 410–13
Direction cosines, 232
Dirichlet boundary conditions, 59, 231

Nitsche method example, 440
Discontinuity of displacement problems, 39–40

between elements, 32–3
Discontinuous Galerkin method, 442, 596
Discrete and continuous problems, 1
Discrete systems, standard methodology for, 2
Discretization:

about discretization procedures, 2
constrained variational principles, 84–6
discretization error and convergence rate, 38–9

singularities problems, 38
finite element process, 233–4
of mixed forms, 358–60
partial, 71–4
three-dimensional curves, 297–9

Displacement, virtual, 28
Displacement approach:

and bound on strain energy, 35–6
direct minimization, 36
and minimizing total potential energy, 34–6

Displacement discontinuity between elements
problems, 32–3, 39–40

and patch tests, 39–40
Displacement formulation, 20
Displacement functions:

about displacement functions, 21–4
rectangle with 4 nodes, 22–4
shape functions, 22
triangle with 3 nodes, 22–3

Displacement gradient, 676
Displacements, result reporting, 207–9
Distributed body forces, 26
Domain decomposition methods see Subdomain

linking by Lagrange multipliers; Subdomain
linking by perturbed lagrangian and penalty
methods

Driven cavity incompressibility example, 416–19
Dual mortar method, 433–4
Dummy and free index, 677
Dynamic behaviour of elastic structures with linear

damping:
about dynamic behaviour, 565–6
consistent damping matrices, 566
consistent mass matrix, 566
d’Alembert principle, 565
element damping matrix, 566
element mass matrix, 566
mass for isoparametric elements example, 568
plane stress and plane strain example, 567–8
see also Eigenvalues and time dependent problems;

Time dependence

Effective stress concept, 646
Effective stresses with pore pressure, 211–14
Effectivity (error recovery) index θ , 477
Eigenproblem assessment, 554
Eigenvalues and time dependent problems:

about time dependent problems, 570–1
eigenvalues determination, 572–3
eigenvectors, 572
electromagnetic fields example, 575, 577
forced periodic response, 579
free dynamic vibration – real eigenvalues, 571–2
free responses – damped dynamic eigenvalues,

578
free responses – for first-order problems, 576–8
free vibration with singular K matrix, 573
general linear eigenvalue/characteristic value

problem, 572
matrix algebra, 672–3
and modal orthogonality, 572
reduction of the eigenvalue system, 574
standard eigenvalue problem, 572–3
vibration of an earth dam example, 575–6
vibration of a simple supported beam example,

574–5
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Eigenvalues and time dependent problems – cont.
waves in shallow water example, 575–7
see also Transient response by analytical

procedures
Elastic constitutive equations, 679–80
Elastic continua, stress and strain in:

approximations, 20
and principle of virtual work, 20
solution principle, 19, 24–6
‘weak form of the problem’, 20

Elastic solution by Airy stress function, 378–9
Elastic structures see Dynamic behaviour of elastic

structures with linear damping
Elasticity finite element approximations for small

deformations:
approximate weak form, 202
constitutive equation, 201
displacement and strain approximation, 202–5

strains for 8-node brick example, 203–4
equation solution process, 201–2
stiffness and load matrices, 205

quadrature for 8-node brick element example,
205–7

virtual work expression, 201
Elasticity (linear) equations:

anisotropic materials, 197–9
example, 199–200

boundary conditions:
about boundary conditions, 191
on inclined coordinates, 192
normal pressure loading, 193
symmetry and repeatability, 192–3

constitutive relations, 195
displacement function:

axisymmetric deformation, 189
plane stress and plain strain, 189
three-dimensions, 188–9
two-dimensions, 189

elasticity matrix of compliances, 195
elasticity matrix of moduli, 195
equilibrium equations, 190–1
initial strain, 200
isotropic materials, 195–6
material symmetry, 198
orthotropic materials, 197, 198
strain matrix, 189–90
thermal effects, 200–1
transformation of stress and strain, 194–5

Elasticity (linear) problems:
about direct physical approaches, 19–20, 46–7
about linear elasticity problems, 187–8
accuracy assessment:

beam subjected to end shear example, 40–2
circular beam subjected to end shear example,

42–5
convergence criteria, 37–8

convergence rate considerations, 38–9
displacement approach, 34–6
displacement function, 21–4
finite element solution process, 40
formulation of finite element characteristics, 20–31
generalization to whole region, 31–3
nodal forces for boundary traction example, 30–1
result reporting, 207–9
stiffness matrix for 3-node triangle example, 29–30
stress flow around a reinforced opening application,

45–7
two-dimensional:

axisymmetric, 188
plane strain, 188
plane stress, 188

Elasticity (linear) problem examples:
arch dam in a rigid valley, 216–17
beam subjected to end shear, 209
circular beam subjected to end shear, 209–10
conical water tank, 215–16
dam subject to external and internal water pressure,

210–14
hemispherical dome, 216
pressure vessel problem, 217
rotating disc analysis, 212–15

Elasticity matrix:
compliances, 195
moduli, 195

Electrical networks, assembly, 7–9
Electrostatic field problems, 245–51
Element boundary value problem, 483
Element damping matrix, 566
Element mass matrix, 566
Element matrices, evaluation of, 148–50
Element properties determination, 9–10
Element shape functions see Shape functions
Element subdivision, h-refinement methods, 501
Energy:

and equilibrium, 678–9
minimization of an energy functional, 463

Equation systems:
assembly, 10
solving, 10

Equilibrated methods, bounded estimators, 494
Equilibrated residual estimators, 483–4
Equilibrating form subdomains, 444–5
Equilibrium:

and energy, 678–9
and total potential energy, 35

Equilibrium equations, linear elasticity, 190–1
‘Equivalent forces’ concept, 19–20
Errors:

about errors/error definitions, 456, 494
bounds on quantities of interest, 490–4
effectivity index θ , 477
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error estimators:
asymptotic behaviour and robustness, 488–90
explicit residual error estimator, 479–83
implicit residual error estimator, 483–7
recovery-based, 476–8
residual-based, 478–87

from approximation of curved boundaries, 39
from round-off, 39
Herrmann theorem, 462–5
and irregular scalar quantities, 456
local errors, 456
norms of errors, 457–9
optimal sampling points, 459–65
permissible error magnitudes, 500
recovery of gradients and stresses, 465–7
relative energy norm error, 458
RMS error, 500
singularity effects, 457–8
see also Adaptive finite element refinement;

Discretization error and convergence rate;
Recovery by equilibrium of patches (REP);
Residual-based error estimators;
Superconvergence

Euclidean metric tensor, 294
Euler equations, 78–80

and constrained variational principles, 85
Explicit methods, with time discretization, 592
Explicit residual error estimators, 479–83
Extended finite element method (XFEM), 527
External loads, potential energy, 34

FEAPpv (Finite ElementAnalysis Program – personal
version):

about FEAPpv, 664
DATRI sub program, 684–8
element library, 665–6
post-processor module, 666–7
pre-processing module: mesh creation, 664–6
solution module, 666
user modules, 667

Fick’s law, 230
Field, electrostatic and magnetostatic, problems,

245–51
Finite element approximations see Elasticity finite

element approximations for small deformations
Finite element characteristics:

direct formulation, 20–31
see also Displacement functions; Nodal forces;

Strain in elastic continua; Stress in elastic
continua

Finite element discretization, 233–4
Finite element mesh generation by mapping, 169–70
Finite element method/concept:

displacement approach, 34–6
history of approximate methods, 3
with indicial notation, 680–2

scalar and vector quantities, 54
solution process, 40
see also Generalized finite element method/concept

Finite volume method/subdomain collocation,
61, 547

Flow or diffusion problems, 230
Fluid flow problems, 251–3
Fluid networks, assembly, 7–9
Fluid-structure interaction (Class 1 problem):

about fluid behaviour equations, 634–5
acoustic problems, 635
boundary conditions for the fluid, 635–7

free surface, 636
interface with solid, 636
linearized surface wave condition, 636
perfectly matched layers (PML), 637
radiation boundary, 636–7

cavitation effects in fluids, 645–6
discrete coupled system, 638
forced vibrations and transient step-by-step

algorithms, 639–44
dam/reservoir interaction, 641
Routh-Hurwitz conditions, 643
stability of the fluid-structure time-stepping

scheme, 642–4
free vibrations, 639–40
linearized dynamic equations, 634
special case of incompressible fluids, 644

added mass matrix, 644
standard Galerkin discretization, 638
weak form for coupled systems, 637–8
see also Soil-pore fluid interaction (Class II

problems)
Fluid-structure systems, staggered schemes, 658–9
Forced boundary conditions, 59

with natural variational principles, 81
Forced periodic response, 579
Forming points, Delaunay triangulation, 304
Formulations see Irreducible formulations; Mixed

formulations
Forward elimination, simultaneous equations, 684
Fourier’s law, 230
Fracture mechanics, solutions with mapping, 176–7
Frame methods of linking displacement frames:

about frame methods, 442–4
hybrid-stress elements, 445
interior and exterior elements, 447
linking on equilibrating form subdomains, 444–5

equilibrium field example, 445
subdomains with standard elements and global

functions, 451
Trefftz-type solutions, 445–51
using virtual work, 443–4

Free and dummy index, 677
Free surface flow and irrotational problems, 251–3
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Function approximation:
about function approximation, 527
interpolation domains and shape functions, 530–2
least squares fit scheme, 527–9
weighted least squares fit, 527–9

Functionals, 34
stationary, 34

Galerkin method/procedure/principle:
diffuse elements, 547

solution of ordinary differential equations
example, 547–9

discontinuous, 442, 596
and finite element discretization, 233–4
least squares (GLS) stabilization method, 94–5,

409–10
and variational principles, 80
see also Weighted residual-Galerkin method

Galerkin standard discretization, 638
Galerkin time discontinuous approximation,

619–25
Gauss quadrature, 160, 234
Gauss-Legendre quadrature points, 161, 463–5
General linear eigenvalue/characteristic value

problem, 572
Generalized finite element method/concept:

about finite element generalization, 54–6, 95–7,
525

convergence, 74–5
partial discetization, 71–4
virtual work as ‘weak’ form of equilibrium

equations, 69–71
see also Constrained variational principles;

Lagrange multipliers; Variational principles;
Weighted residual-Galerkin method

Generalized Newmark (GN) algorithms:
GN22 algorithm, 608–9
GNpj algorithm, 606–9
stability, 609–12

Global coordinates, 12
Global derivatives, computation of, 146–7
GLS (Galerkin least squares) stabilization method,

94–5, 409–10
GN algorithms see Generalized Newmark (GN)

algorithms
Gradient, with rates of flow, 230
Gradient matrix, 234
Green’s theorem (integration by parts in two or three

dimensions), 699–700
Gurtin’s variational principle, 594

h convergence, 75
h-refinement see Adaptive finite element refinement
Hamilton’s variational principle, 594
Hanging points, h-refinement methods, 501
Heat conduction:

steady-state, equation in two-dimensions example,
55–6

steady-state Galerkin formulation with triangular
elements example, 65–8

time problems, 237–8
weak form-forced and boundary conditions

example, 59
Heat conduction-convection:

steady state, equation in two-dimensions example,
56

steady-state Galerkin formulation in
two-dimensions example, 68–9

Heat equation:
in first-order form example, 82–3
with heat generation example, 73–4

Heat transfer solution by potential function example,
378

Hellinger–Reissner variation principle, 365
Helmholz equation, least squares solution example,

93–4
Helmholz problem in two-dimensions example, 82
Helmholz wave equation, 565
Hemispherical dome example, 216
Hermite cubic spline/Hermite polynomials, 268–9
Hermitian interpolation function, 531
Herrmann theorem and optimal sampling points,

462–5
Hierarchic finite element method based on the

partition of unity:
about hierarchical forms, 549–52
and global functions, 551
and harmonic wave functions, 552
linear elasticity application, 553–7
polynomial hierarchial method, 552–3
quadratic triangular element example, 554–7
and singular functions, 552
solution of forms with linearly dependent

equations, 557–8
Hierarchical shape functions:

concepts, standard and hierarchical, 104–6
diagonality, 105
global and local finite element approximation,

131–2
improving of conditioning with hierarchical forms,

130–1
one-dimensional (elastic bar) problem, 105–6
one-dimensional hierarchic polynomials, 125–7
polynomial form, 106
triangle and tetrahedron family, 128–30
two- and three-dimensional elements of the brick

type, 128
Hu–Washizu variational principle/theorem, 370, 395
Hybrid-stress elements, 445

Identical and similar algorithms, 599
Identity matrix, 232
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Implicit equations, 416
Implicit methods, with time discretization, 592
Implicit residual error estimators, 483–7

equilibrated residual estimator, 483–4
Incompressible elasticity, three-field (u-p-εv form),

393–8
anisotropic materials, 394
B-bar method for nearly incompressible problems,

397–8
enhanced strain triangle example, 394–6
Hu–Washizu-type variational theorem, 395
variational theorem, 394

Incompressible elasticity, two-field (u-p form),
384–93

bubble function, 386–7
locking (instability) prevention, 385, 390
patch tests, multiple-element, 386–9
patch tests, single-element, 386–9
simple triangle with bubble – MINI element

example, 390–3
driven cavity example, 418

stability (or singularity) of the matrices, 385
Incompressible problems:

about incompressible problems, 383, 421–2
and deviatoric stress and strain, 383–4
driven cavity example, 416–19
reduced and selective integration and its

equivalence to penalized mixed problems,
398–404

slow viscous flow application, 402–3
with weak patch test example, 403–4

simple iterative solution for mixed problems:
Uzawa method, 404–7

tension strip with slot example, 419–21
Incompressible problems for some mixed elements

failing the incompressibility patch test, 407–21
about the stability conditions, 407–8
characteristic-based split (CBS) procedure, 407
direct pressure stabilization, 410–13

3-node triangular element example, 412–13
driven cavity example, 418
implicit equations, 416

Galerkin least squares method, 409–10
driven cavity example, 417–18

incompressibility by time stepping, 413–16
Stokes flow equation, 413–14

laplacian pressure stabilization, 408–9
deviatoric stresses and strains, 408

Indicial notation: summation convention, 674–5
see also Tensor-indicial notation in the

approximation of elasticity problems
Infinite domains and elements:

about infinite domains and elements, 170–2
Boussinesq problem, 174–6
convergence considerations, 173
electrostatic and magnetostatic problems, 250

mapping function, 172–6
quadratic interpolations, 174–5

Initial strain, and elasticity equations, 200
Integral/‘weak’ statements, 57–60
Integration see Numerical integration
Integration by parts in two or three dimensions

(Green’s theorem), 699–700
Integration formulae:

tetrahedron, 693
triangles, 692

Interpolating functions, 169
see also Shape functions

Interpolation domains, 530–2
circular/spherical domains, 531
discontinuous interpolation, 532
Hermitian interpolation function, 531
and weighting functions, 531

Irreducible formulations, 56, 356–7, 359, 360
see also Mixed formulations

Irregular scalar quantities, and errors, 456
Irrotational and free surface flow problems, 251–3
Isoparametric concepts, 554
Isoparametric expansions/elements, 145, 151–2

transformer example, 249–50
Isotropic and anisotropic forms for k, 231–2
Isotropic materials, elasticity equations, 195–6
Iterative solution, simultaneous equations, 688–91

Jacobian matrix, mapped elements, 146, 174
Jump discontinuites, 479–83

Kantorovich partial discretization, 72
Kronecker delta function/property, 108–9, 116, 433,

485

Lagrange multipliers:
boundary conditions identification example, 87–8
and constrained variational principles, 84–6
constraint enforcement example, 86
identification of, 87–8
see also Subdomain linking by Lagrange

multipliers
Lagrange polynomials, 110–12
Lamé constants, 680
Least squares approximations, 92–5

Galerkin least squares, stabilization, 94–5
and the Herrmann theorem, 462–3
interpolation domains and shape functions, 530–2
solution for Helmholz equation example, 93–4
and variational principles, 92
see also Moving least squares approximations/

expansions
Least squares fit scheme, 527–8

fit of a linear polynomial example, 528–9
weighted least squares fit scheme, 529–30

Line (one-dimensional) elements, 119–20
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Linear damping see Dynamic behaviour of elastic
structures with linear damping

Linear differential operators, 24–5
Linear elasticity see Elastic continua, stress and strain

in; Elasticity (linear) equations; Elasticity
(linear) problems

Linear and non-linear relationships, 11
Linearization of vectors, 77
Linearized surface wave condition, fluid-structure

interaction, 636
Linking subdomains by Lagrange multipliers see

Subdomain linking by Lagrange multipliers
Load matrix for axisymmetric triangular element with

3 nodes example, 237
Local coordinates, 12
Local errors, 456
Locking, constrained variational principles, 91
Lubrication problems, 251

Magnetostatic field problems, 245–51
Mapped elements:

about mapping, 138–9
blending functions, 169–70
Boussinesq problem, 174–5
continuity requirements, 143–5
evaluation of element matrices, 148–50
finite element mesh generation, 169–70
fracture mechanics application, 176–7
geometric conformity of elements, 143
global derivatives, computation of, 146–7
infinite domains and elements, 170–6
interpolating functions, 169
isoparametric elements, 145
jacobian matrix, 146
one-to-one mapping, 141
order of convergence, 151–3
parametric curvilinear coordinates, 139–45
parent elements, 141
quadratic distortion, 142–3
shape functions for coordinate transformations,

139–43
singular elements by mapping, 176–7
subparametric elements, 145
surface integrals, 148
transformations, 145–50
uniqueness rules, 142–3
unreasonable element distortion problems, 141–2
variation of the unknown function problems, 143–5
volume integrals, 147
see also Degeneration; Numerical integration

Mass lumping or diagonalization, 568–70, 704–9
Material symmetry, 198
Matrices/matrix notation:

about matrices, 54
and degrees of freedom, 5
evaluation of element matrices, 148–50

stiffness matrix, 4–5
transformation matrix, 12

Matrix algebra:
addition, 669–70
definitions, 668–9

arrays, 668–9
columns, 669

eigenvalue problem, 672–3
inversion, 670
partitioning, 672
spectral form of a matrix, 673
subtraction, 669–70
sum of products, 671
symmetric matrices, 671
transpose of a product, 671
transposing, 670

Matrix singularity due to numerical integration,
167–8

Maxwell’s equations, 245–9
Mesh enrichment, 504
Mesh generation:

about manual, semi-automatic and automatic mesh
generation, 264–6

adaptive refinement, 266
background mesh, 267–8
background meshes, 265–6
boundary curve representation, 267–70
geometrical characteristics of meshes, 266–7
Hermite cubic spline, 268
with mapping, 169–70
structured and unstructured meshes, 265
using quadratic isoparametric elements, 169–70

Mesh generation, surface meshes:
about surface mesh generation, 286–7, 301–3
CAD applications, 286
composite cubic surface interpolation, 290–1
curve representation, 288
discretization of three-dimensional curves:

node generation on the curves, 297–9
place boundary nodes to parametric plane, 299

element generation in parametric plane, 299–300
examples, 300–1

geometrical characteristics, 290–7
geometrical representation, 287–90
higher order surface elements, 301–2
major steps, 287
mesh control function in three dimensions, 290–3
parametric plane parameters, 293–7
spline surface, 290, 292
surface representation, 288–90

Mesh generation, three-dimensional, Delaunay
triangulation:

about Delaunay triangulation, 303–4, 306–7, 321–3
automatic node generation procedure, 311–12
Delaunay triangulation algorithm, procedure for,

308–11
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element transformation:
two elements, 317, 318
three elements, 317, 318
four elements, 318, 319
five or more elements, 318, 320

forming points, 304
global procedure, 307–8
higher order elements, 321
mesh quality enhancement, 316–21
mesh smoothing, 320–1
node addition and elimination, 319–20
numerical examples, 321, 322
surface mesh recovery procedure:

boundary edge recovery, 312, 313, 314
boundary face recovery, 313, 315, 316, 317
edge swapping, 312
removal of added points, 315–16

Voronoi diagram, 304–6, 308–10
example, 305–6
properties, 304

Voronoi vertices, 309–10
Mesh generation, two dimensional, advancing front

method:
about the advancing front method, 266, 285–6
active sides and active nodes, 277
boundary node generation:

algorithmic procedure, 271–5
procedure verification example, 275–7

consistency index, 274
diagonal swapping, 282–4
distorted elements, 282
element generation steps, 277–80
Euclidean metric tensor, 273–4
generation front, 277–8
geometrical transformation of the mesh, 271

transformation of a triangle example, 271
higher order elements, 283–5
mesh modification, 281–3
mesh quality enhancement for triangles, 280–3
mesh smoothing, 280

example, 281
node elimination, 282
triangular mesh generation, 270–80

Method of weighted residuals see Weighted
residual-Galerkin method

Minimization of an energy functional, 463
Mixed formulations:

about mixed and irreducible formulations, 56,
356–7, 379

complementary forms with direct constraint:
about directly constrained forms, 375
auxiliary function solutions, 378–9
complementary elastic energy principle, 377
complementary heat transfer problem, 376–7
elastic solution by Airy stress function, 378–9

heat transfer solution by potential function
example, 378

continuity requirements, 358–9
count condition satisfying, 362
discretization of, 358–60
Hu–Washizu variational principle, 370
locking, 361–2
patch test, 362–3

physical discontinuity problems, 363
single-element test examples, 362–3

primary and constraint variables, 360
principle of limitation, 359
singular and non-singular matrices, 361
solvability requirement, 360–1
stability of mixed approximation, 360–3
and the variational principle, 357

Mixed formulations in elasticity, three-field:
stability condition, 371–2
u-σ -ε mixed form, 370–1
u-σ -εen form – enhanced strain formulation, 372–5

enhanced strain aspects, 374–5
shearing strain effects, 374
Simo-Rifai quadrilateral example, 373–4, 375

Mixed formulations in elasticity, two-field:
about two-field formulations, 363–4
Hellinger-Reissner variation principle, 365
Pian-Sumihara quadrilateral example, 368–70
Pian-Sumihara rectangle example, 367–8
u-σ mixed form, 364–5
u-σ mixed form stability, 365–70

Modal decomposition analysis, 580–3
Modal orthogonality, 572
Mortar/dual mortar methods, 432–4

for two-dimensional elasticity example, 436
Moving least squares approximations/expansions,

533–8
hierarchical enhancement, 538–40
partition of unity, 537
Shepard interpolation, 539–40
and symmetric functions, 533–5
and weighting functions, 533–5

Multidomain mixed approximations:
about multidomain mixed approximations, 429,

451
see also Frame methods of linking displacement

frames; Subdomain linking by Lagrange
multipliers; Subdomain linking by perturbed
lagrangian and penalty methods

Multigrid procedures, staggered solution processes,
658

Multistep methods/multistep recurrence algorithms
see Time discretization, multistep recurrence
algorithms

Natural variational principles see Variational
principles
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Neumann boundary value problem, 484
Neumann (natural) boundary condition, 60
Newton–Cotes quadrature, 160
Nitsche method for subdomain linking, 438–40

Dirichlet boundary condition example, 440
Nodal forces equivalent to boundary stresses and

forces, 26–31
3-node triangle, 26–7
boundary considerations, 29
external and internal work done, 28
internal force concept abandoned for

generalization, 31–3
nodal forces for boundary traction example, 30–1
plane stress problem, 29
stiffness matrix for 3-node triangle example, 29–30
see also Whole region generalization

Norms of errors, 457–9
Numerical algorithms, 618–19
Numerical integration:

computational advantages, 177–8
Gauss quadrature, 160–1
and matrix singularity, 167–8
minimum order for convergence, 165–6
Newton–Cotes quadrature, 160
one dimensional, 160–1
order for no loss of convergence rate, 166–7
rectangular (2D) or brick regions (3D), 162–4
required order, 164–8
triangular or tetrahedral regions, 164
see also Mapped elements

Oil fields:
ground settlement, 652–3
oil recovery, 653

One dimensional elements, line elements, 119–20
One-to-one mapping, mapped elements, 141
Optimal sampling points and the Herrmann theorem,

462–5
Orthotropic materials, elasticity equations, 197, 198

p convergence, 75
p and ph-refinement see Adaptive finite element

refinement
Parametric curvilinear coordinates, 139–45
Parent elements, mapped elements, 141
Partial discretization, 71–4

finite element discretizations, 238
heat equation with heat generation example, 73–4
Kantorovich, 72
transient problems, 237–9

Partition of unity:
and shape functions, 105, 537
see also Hierarchic finite element method based on

the partition of unity
Partitioned single-phase systems – implicit–explicit

partitions (Class I problems), 653–5

Pascal triangle, 110, 116
Patch recovery, superconvergent (SPR), 467–74, 490
Patch test:

about the patch test, 329–30, 347–50
application to an incompatible element, 343–7
application to elasticity elements with ‘standard’

and ‘reduced’ quadrature, 337–43
for base solution example, 337–9
higher order test-assessment of order example,

340–3
for quadratic elements: quadrature effects

example, 339–40
Babuška patch test, 490
base solution, 332
consistency requirement, 331
convergence requirements, 330–1, 332, 334–5
curvilinear coordinates, 330
degree of robustness, 331, 488–9
and discontinuity of displacement, 39–40
generality of a numerical patch test, 336
higher order patch tests, 336–7

assessment of robustness, 347
mapped curvilinear elements, 333
mixed formulations, 362–3
non-robust elements, 331
single element tests, 335
size of patch, 333
stability condition, 331
tests A and B, simple tests, 332–4
test C, generalized test, 334–5
weak patch test satisfaction, 333–4

PCG (preconditioned conjugate gradient), with
iterative solutions, 690–1

Penalized mixed problems, and reduced and selective
integration, 398–404

Penalty functions, constrained variational principles,
88–9

Penalty methods see Subdomain linking by perturbed
lagrangian and penalty methods

Perfectly matched layers (PML), 637
Periodic response, forced, 579
Permissible error magnitudes, 500
Perturbed lagrangian functional, constrained

variational principles, 89–91
Perturbed lagrangian method see Subdomain linking

by perturbed lagrangian and penalty methods
Plane stress problem, 29
Plane triangular element with 3 nodes example, 235–6
PML (perfectly matched layers), 637
Point collocation:

about point collocation, 61, 540–2, 546–7
cross criterion method, 541
Galerkin weighting and finite volume methods,

546–9
with hierarchical interpolations, 543–6
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solution of ordinary differential equations example,
542–6

subdomain collocation/finite element method, 61,
547

Voronoi neighbour criterion method, 541–2
see also Least squares approximations; Moving

least squares approximations/expansions
Polynomial hierarchial method based on the partition

of unity, 552–3
Porous material, pore pressure effects, 211–14
Potential energy:

external loads, 34
total, 34

Preconditioned conjugate gradient (PCG), with
iterative solutions, 690–1

Prescribed functions of space coordinates, 564
Pressure vessel problem example, 217
Primary and constraint variables, 360
Principle of limitation, mixed formulations, 359
Principle of virtual work, 20
Prismatic problems, 72

Quadratic distortion, mapped elements, 142–3
Quadratic elements, serendipity family, 113
Quadratic interpolations, 174–5
Quadratic isoparametric elements, 169–70, 249
Quadratic triangle, triangular elements family, 119
Quasi-harmonic equations:

about quasi-harmonic equations, 229
anisotropic and isotropic forms for k, 231–2
axisymmetric problem, 235–7
governing equations, 230–1
with time differential, 563–5
and torsion of prismatic bars, 240–2
two-dimensional plane, 235–6
weak form and variational principal, 233

r-refinement see Adaptive finite element refinement
Rayleigh–Ritz process/procedure, 35
Recovery, definition, 456
Recovery based error estimators, 476–8

see also Errors
Recovery by equilibrium of patches (REP), 474–6,

490
Rectangle with 4 nodes, displacement function, 22–4
Rectangular (square) bar, transient heat conduction

example, 242–4, 246
Rectangular (three-dimensional) prisms:

Lagrange family, 120–1
serendipity family, 121–2

Rectangular (two-dimensional) elements:
concepts, 107–9
Lagrange family, 110–12
serendipity family, 112–16
see also Standard shape functions

Recurrence algorithm, 603

Recurrence relations, 589
Reduced and selective integration and its equivalence

to penalized mixed problems, 398–404
Relative energy norm error, 458
REP (Recovery by equilibrium of patches), 474–6,

490
Reproducing kernel (RPK) method, 558
Residual-based error estimators:

about residual error estimators, 478
explicit residual error estimators, 479

deriving, example, 479–83
implicit residual error estimators, 483–7

equilibrated residual estimator, 483–4
jump discontinuites, 479–83
recovery processes, 480–1

Result reporting, displacements, strains and stresses,
207–9

Ritz process, 35
RMS error, 500
Robustness index, 488–90
Rotating disc analysis example, 212–15
Rotor blade, transient heat conduction example, 242,

246
Round-off errors, 39
Routh-Hurwitz conditions, fluid-structure interaction,

643
Routh-Hurwitz stability requirements for SS22/SS21

algorithms, 612

Scalar and vector quantities, 54
Seepage:

anisotropic, 244–5, 247
fluid flow, 252
soil-pore fluid interaction equation, 647
transient seepage, 565

Self-adjointness/symmetry properties, variational
principles, 81, 357

Semi-discretization see Time dependence
Serendipity family, cubic elements:

conical water tank example, 215–16
rotating disc analysis, 212–15

Serendipity family, rectangular elements, 112–16,
121–2

corner shape functions, 115
cubic elements, 113–14
mid-side functions, 114–15
quadratic elements, 113
shape function generation, 114

Shape functions:
about shape functions, 22, 103–4
and convergence criteria, 103
for coordinate transformations, 139–43
diagonality, 105
elimination of internal parameters before assembly,

132–3
and partition of unity, 105, 537
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Shape functions – cont.
standard and hierarchical concepts, 104–6
substructuring, 133–4
tetrahedral elements, 124–5
and the triangular element family, 118–19
see also Displacement functions; Hierarchical

shape functions; Standard shape functions
Shepard interpolation, moving least squares

expansions, 539–40
Similar and identical algorithms, 599
Simo and Rifai enhanced strain formulation, 373–4,

375
Simultaneous discretization, 590
Simultaneous linear equations:

back substitution, 684
DATRI (FEAPpv sub program), 684–8
direct methods/solutions, 683–8
forward elimination, 684
iterative solution, 688–91

preconditioned conjugate gradient (PCG), 690–1
resolution process, 687
triangular decomposition, 684, 685

Single-step (SS) algorithms:
SS11 algorithm:

example, 605
stability, 612–13

SS22 algorithm:
example, 605
stability, 612–13

SS32/SS31 algorithms, stability of, 613–15
SS42/SS41 algorithms, stability of, 614
stability, 609–15
weighted residual finite element form SSpj, 601–6
see also Time discretization, single-step algorithms,

first and second order equations
Singular elements by mapping, 176–7
Singularities, effects on errors, 458–9
Singularities problems, and convergence rate, 38
Smooth particle hydrodynamics (SPH) method, 558
Soil consolidation equations, 565
Soil-pore fluid interaction (Class II problems):

about soil-pore fluid interaction, 645–8
biomechanics problem of bone–fluid interaction,

652
coupled equations format, 648
effective stress concept, 646
oil fields, ground settlement, 652–3
robustness requirements, 650
soil liquefaction examples, 650–2
special cases, 649–50
transient step-by-step algorithm, 648–9

Solutions exact at nodes, 701–3
Spectral radius, 619, 620
SPR (superconvergent patch recovery), 467–74, 490
SS algorithms see Single-step (SS) algorithms

Stability/stabilization:
algorithm stability, 609–15
generalized Newmark (GN) algorithms, 609–12
incompressible problems, direct pressure

stabilization, 410–13
laplacian pressure stabilization, 408–9
least squares (GLS) stabilization method, 94–5,

409–10
patch test stability condition, 331
staggered schemes, 658–9
see also Incompressible problems for some

mixed elements failing the incompressibility
patch test; Single-step (SS) algorithms; Time
discretization

Staggered solution processes:
about staggered solutions, 655
alternating direction implicit (ADI) scheme, 658
in fluid-structure systems and stabilization

processes, 658–9
multigrid procedures, 658
in single phase systems, 655–8

Standard discrete systems:
about, 1–3, 55
definition and unified treatment, 2, 10–11
linear and non-linear relationships, 11
system equations, 11
system parameters, 10–11
transformation of coordinates, 11–12
see also Assembly and analysis of structures

Standard shape functions:
Kronecker delta, 108–9
standard and hierarchical concepts, 104–6
one-dimensional (line) elements, 119–20
two-dimensional elements, 107–19

completeness of polynomials, 109–10
Lagrange family, 110–12
rectangular element concepts, 107–9
rectangular element families, 110–16
serendipity family, 112–16
triangular element family, 116–19

three-dimensional elements, 120–5
rectangular prisms, Lagrange family, 120–1
rectangular prisms, serendipity family, 121–2
tetrahedral elements, 122–5

Stepped pad bearings, 251
Stiffness, direct stiffness process, 2–3
Stiffness matrix, 4–5

for axisymmetric triangular element with 3 nodes
example, 236–7

Stokes flow equation, 413–14
Strain in elastic continua, 19, 24–5

and relationship with stress, 25
see also elastic continua, stress and strain in;

Elasticity (linear) problems
Strain energy:

strain energy bound, 36
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of a system, 34
Strain matrix equations, 189–90
Strain rate (virtual strain), 71
Strains, result reporting, 207–9
Stress in elastic continua, 19, 25–6

initial residual stresses, 25
and relationship with strain, 25
see also elastic continua, stress and strain in;

Elasticity (linear) problems
Stress function, and tension of prismatic bars, 240–2
Stresses, result reporting, 207–9
Structural element and system, 3–5
Structure assembly, general process, 5–6
Structured and unstructured meshes, 265
Subdomain collocation/finite volume method, 61, 547
Subdomain linking by Lagrange multipliers, 430–6

for elasticity equations, 434–6
mortar method for two-dimensional elasticity

example, 431, 436
for quasi-harmonic equations, 430–4

mortar/dual mortar methods, 432–4
treatment for forced boundary conditions, 432

Subdomain linking by perturbed lagrangian and
penalty methods:

about, 436–8
discontinuous Galerkin method, 442
multiple subdomain problems, 440–2
Nitsche method, 438–41
two domain problem example, 442

Subparametric elements, 145
Substructuring, 133–4
Superconvergence, 208, 459–65

about superconvergence, 459
Herrmann theorem and optimal sampling points,

462–5
one-dimensional example, 460–2
superconvergent patch recovery (SPR), 467–74,

490
for displacement and stresses, 474
SPR stress projection for rectangular element

patch example, 470–4
Surface integrals, 148
Surface mesh generation see Mesh generation, surface

meshes
Symmetric operators, 357
Symmetry properties/self-adjointness, variational

principles, 81
Symmetry and repeatability, with time dependence,

583
System equations, 11
System parameters, 10–11

Taylor series collocation, 593–4
Tension strip with slot incompressibility example,

419–21

Tensor-indicial notation in the approximation of
elasticity problems:

about the tensor-indicial notation, 674
coordinate transformation, 677–8

free and dummy index, 677
derivatives, 676–7
displacement gradient, 676
elastic constitutive equations, 679–80
equilibrium and energy, 678–9
finite element displacement approximation, 680–2

stiffness coefficient/tensor, 681
first and second rank cartesian tensors, 678
indicial and matrix notation relation, 682
indicial notation: summation convention, 674–5

indicial form, 675
intrinsic notation, 675

Lamé constants, 680
tensor products, 676
tensorial relations, 676–7

Tetrahedral (three-dimensional) elements, 122–5
cubic shape functions, 124–5
quadratic shape functions, 124
volume coordinates, 122–4

Tetrahedron, integration formulae, 693
Thermal effects, elasticity equations, 200–1
Three-dimensional elements:

about three-dimensional elements, 120, 125
rectangular prisms, Lagrange family, 120–1
rectangular prisms, serendipity family, 121–2
tetrahedral elements, 122–5

Time dependence:
about time dependence, 563
and boundary conditions, 565
damped wave equation, 565
direct formulation of with spatial finite element

subdivision, 563–70
Helmholz wave equation, 565
mass lumping or diagonalization, 568–70
and partial discretization, 237–9
prescribed functions of space coordinates, 564
quasi-harmonic equation with time differential,

563–5
soil consolidation equations, 565
symmetry and repeatability, 583
transient heat conduction equation, 565
see also Dynamic behaviour of elastic structures

with linear damping; Eigenvalues and time
dependent problems; Transient response by
analytical procedures

Time discontinuous Galerkin approximation, 619–24
solution of a scalar equation example, 623–5

Time discretization:
about discrete approximation in time, 589–90
general performance of numerical algorithms,

618–19
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Time discretization, multistep recurrence algorithms:
about multistep recurrence algorithms, 615
approximation procedures, 615–18
central difference approximation, 618
and recurrence relations, 589
three-point interpolation example, 617–18
two-point interpolation example, 617

Time discretization, single-step algorithms, first order
equations, 590–600

amplification matrix, 596
conditionally stable/unconditionally stable

algorithms, 592
consistency and approximation error, 594–6
Crank–Nicholson scheme, 594, 596
different weight functions problems, 592
discontinuous Galerkin process, 596
explicit/implicit solutions, 592
Gurtin’s variational principle, 594
Hamilton’s variational principle, 594
identical and similar algorithms, 599
initial value problems, 591
load discontinuities, 600
optimal value of θ , 599
smoothing usage, 600, 601, 602
stability, 596–9, 609–15

conditional/unconditional stability, 597–8
Taylor series collocation, 593–4

starting/non-starting schemes, 594
weighted residual finite element approach, 590–3

Time discretization, single-step algorithms, first and
second order equations:

about general single-step algorithms, 600–1
GN22 Newmark algorithm, 608–9
GNpj truncated Taylor series collocation algorithm,

606–9
mean predicted values, 60
predictor-corrector iteration, 609
recurrence algorithm, 603
Routh-Hurwitz stability requirements, 612
SS11 algorithm:

example, 605
stability, 612–13

SS22 algorithm:
example, 605–6
stability, 612–13

SS32/SS31 algorithms, stability, 613–15
SS42/SS41 algorithms, stability, 614
stability, conditional/unconditional, 605
stability of general algorithms, 609–15
weighted residual finite element form SSpj, 601–6

Time-stepping procedures, 641
Torsion of prismatic bars, 240–2

hollow bimetallic shaft example, 242
rectangular shaft example, 242
stress function approach, 241
warping function approach, 240–1

Total potential energy:
and equilibrium, 35
minimization by displacement approach, 34–6

Tractions, and virtual work, 70
Transformation of coordinates, 11–12

and approximations, 12
and constrained parameters, 12
contravariant sets, 12
stress and strain for linear equations, 194–5

Transformation matrix, 12
Transformations, 145–50
Transient heat conduction:

rectangular bar example, 242–4
rotor blade example, 244, 246

Transient response by analytical procedures:
about transient response, 579
damping and participation of modes, 583
frequency response procedures, 579–80
modal decomposition analysis, 580–3
see also Time dependence

Trefftz-type solutions for boundary linking, 445–51
Triangle with 3 nodes, displacement function, 22–3
Triangles, integration formulae, 692
Triangular decomposition, simultaneous equations,

684, 685
Triangular (two-dimensional) element family, 116–19

area coordinates, 117–18
cubic triangle, 119
quadratic triangle, 119
shape functions, 118–19

Truncated Taylor series expansion algorithm GNpj,
606–9

Two-dimensional elements see Rectangular
(two-dimensional) elements; Triangular
(two-dimensional) element family

Two-dimensional plane problem, 235–7
load matrix for axisymmetric triangular element

with 3 nodes example, 237
plane triangular element with 3 nodes example,

235–6
stiffness matrix for axisymmetric triangular

element with 3 nodes example, 236–7

u-σ -ε mixed forms see under Mixed formulations
Ultraconvergence, 469
Uzawa method, iterative solution process for mixed

problems, 404–7

Variational principles:
about variational principles, 76–8
contrived variational principles, 77
Euler equations, 78–80
forced boundary condition equations, 81
and the Galerkin method/process, 80
heat equation in first-order form example, 82–3
Helmholz problem in two-dimensions example, 82
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least squares approximations, 92–5
maximum, minimum, or saddle point?, 83–4
natural variational principles, 78–80, 81–3
self-adjointness/symmetry properties, 81, 357
see also Constrained variational principles;

Lagrange multipliers
Variational theorem, 394
Vector algebra:

about vector algebra, 694
addition, 694–5
direction cosines, 696
elements of area and volume, 697–8
length of a vector, 695–6
scalar products, 695
subtraction, 694–5
vector or cross product, 696–7

Vector linearization, 77
Vector potential, 245
Vibration:

of an earth dam example, 575–6
free vibration with singular K matrix, 573
of a simple supported beam example, 574–5
also see under Fluid-structure interaction (Class 1

problem); Eigenvalues and time dependent
problems

Virtual displacement, 28
Virtual strain (strain rate), 71
Virtual work:

principle, 20, 34
and tractions, 70
as ‘weak form’ of equilibrium equations, 69–71

Viscous flow problems, 251–3
Volume integrals, 147
Voronoi diagram, 304–6, 308–10

see also Mesh generation, three-dimensional,
Delaunay triangulation

Voronoi neighbour criterion point collocation, 541–2

Warping function, and tension of prismatic bars,
240–2

Weak form:
coupled systems, 637–8
integral/‘weak’ statements, 57–60
quasi-harmonic equations, 233
small elastic deformations, 202
and virtual work, 69–71
‘weak form of the problem’, 20
‘Weak’/integral statements, 57–60

Weighted least squares approximation, 463
Weighted least squares fit scheme, 529–30
Weighted residual-Galerkin method:

about the weighted residual method, 55, 60–2
approximation to integral formulations, 60–9
convergence, 74–5
Galerkin formulation with triangular elements

example, 65–8
and integral/‘weak’ statements, 57–60
one-dimensional equation of heat conduction

example, 62–5
and partial discretization, 72
partial discretization, 71–4
and point collocation, 61
residuals, 61
restrictions needed, 58
steady-state heat conduction in two-dimensions

example, 65–8
steady-state heat conduction-convection in

two-dimensions example, 68–9
and subdomain collocation, 61
virtual work as the ‘weak form’ of equilibrium,

69–71
weak form of the heat conduction equation

example, 59–60
Weighting function choice, 701
Whole region generalization, 31–3
Work done principle/concept, 28

virtual work, 34

XFEM (extended finite element method), 527
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