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Galileo(1564-1642)
Galileo Paradox: which shows that there
are as many perfect squares as there are whole
numbers, even though most numbers are not
perfect squares.



Simplicio: Here a difficulty presents itself which appears to me insoluble. Since it is clear that we may have one line greater than another, each containing an
infinite number of points, we are forced to admit that, within one and the same class, we may have something greater than infinity, because the infinity of points in the
long line is greater than the infinity of points in the short line. This assigning to an infinite quantity a value greater than infinity is quite beyond my comprehension.

Salviati: This is one of the difficulties which arise when we attempt, with our finite minds, to discuss the infinite, assigning to it those
properties which we give to the finite and limited; but this I think is wrong, for we cannot speak of infinite quantities as being the
one greater or less than or equal to another. To prove this I have in mind an argument which, for the sake of clearness, I shall put in the form
of questions to Simplicio who raised this difficulty.
I take it for granted that you know which of the numbers are squares and which are not.

Simplicio: I am quite aware that a squared number is one which results from the multiplication of another number by itself; thus 4, 9, etc., are squared numbers which
come from multiplying 2, 3, etc., by themselves.

Salviati: Very well; and you also know that just as the products are called squares so the factors are called sides or roots; while on the other hand those numbers
which do not consist of two equal factors are not squares. Therefore if I assert that all numbers, including both squares and non-squares, are more than the squares
alone, I shall speak the truth, shall I not?

Simplicio: Most certainly.

Salviati: If I should ask further how many squares there are one might reply truly that there are as many as the corresponding number of roots, since every square has
its own root and every root its own square, while no square has more than one root and no root more than one square.

Simplicio: Precisely so.

Salviati: But if I inquire how many roots there are, it cannot be denied that there are as many as the numbers because every number is the root of some square. This
being granted, we must say that there are as many squares as there are numbers because they are just as numerous as their roots, and all the numbers are roots. Yet
at the outset we said that there are many more numbers than squares, since the larger portion of them are not squares. Not only so, but the proportionate number of
squares diminishes as we pass to larger numbers, Thus up to 100 we have 10 squares, that is, the squares constitute 1/10 part of all the numbers; up to 10000, we find
only 1/100 part to be squares; and up to a million only 1/1000 part; on the other hand in an infinite number, if one could conceive of such a thing, he would be forced
to admit that there are as many squares as there are numbers taken all together.

Sagredo: What then must one conclude under these circumstances?

Salviati: So far as I see we can only infer that the totality of all numbers is infinite, that the number of squares is infinite, and that the number of their roots is infinite;

neither is the number of squares less than the totality of all the numbers, nor the latter greater than the former; and finally the attributes
"equal," "greater," and "less," are not applicable to infinite, but only to finite,
quantities. When therefore Simplicio introduces several lines of different lengths and asks me how it is possible that the longer ones do not
contain more points than the shorter, I answer him that one line does not contain more or less or just as many points as another, but that each line
contains an infinite number.— Galileo, Two New Sciences





an + bn = cn

“I have found for this
truly wonderful proof,
but the margin is too
small to hold it.”



Problem of Points:
Two equally skilled players are interrupted while playing a game of chance for a
certain amount of money. Given the score of the game at that point, how should the
stakes be divided?



Probability in Print



Leibniz was the first to use
the term analysis situs )ǀǊҳǛƽ(

Dissertatio de Arte
Combinatoria:

John Wallis(1616–1703)

He is credited with introducin the symbol for infinity.



Bernoulli discovered the constant e:

The number of ways in which a total
of m points can be obtained by
throwing n dice at once is equal to
the coefficient of
in:



A casino offers a game of chance for a single player in which a fair coin is tossed at each stage.
The pot starts at 1 dollar and is doubled every time a head appears. The first time a tail appears,
the game ends and the player wins whatever is in the pot. Thus the player wins 1 dollar if a tail
appears on the first toss, 2 dollars if a head appears on the first toss and a tail on the second, 4
dollars if a head appears on the first two tosses and a tail on the third, 8 dollars if a head appears
on the first three tosses and a tail on the fourth, and so on. In short, the player wins 2k−1 dollars if
the coin is tossed k times until the first tail appears.
What would be a fair price to pay the casino for entering the game? To answer this we need to
consider what would be the average payout: With probability 1/2, the player wins 1 dollar; with
probability 1/4 the player wins 2 dollars; with probability 1/8 the player wins 4 dollars, and so on.
The expected value is thus

Assuming the game can continue as long as the coin toss results in heads, in particular that the
casino has unlimited resources, this sum grows without bound, and so the expected win for the
player, at least in this idealized form, is an infinite amount of money. Considering nothing but the
expectation value of the net change in one's monetary wealth, one should therefore play the game
at any price if offered the opportunity. Yet, in published descriptions of the game, many people
expressed disbelief in the result. Martin quotes Ian Hacking as saying "few of us would pay even
$25 to enter such a game" and says most commentators would agree. The paradox is the
discrepancy between what people seem willing to pay to enter the game and the infinite expected
value.



If p is the probability of the
success of an event, the
probabilty of exactly r
successes followed by n-r
failures is:







Introduced differential and integral calculus to
probability



The problem in more mathematical terms is: Given a needle of length dropped on a plane ruled with parallel
lines t units apart, what is the probability that the needle will cross a line?

Let x be the distance from the center of the needle to the closest line, let θ be the acute angle between the needle
and the lines.

The uniform probability density function of x between 0 and t /2 is

The uniform probability density function of θ between 0 and π/2 is

The two random variables, x and θ, are independent, so the joint probability density function is the product

The needle crosses a line if

This GIF image describes the solution of Buffon's Needle Problem for the "short needle" case
Suppose .

Integrating the joint probability density function gives the probability that the needle will cross a line:

A particularly nice argument for this result can alternatively be given using "Buffon's noodle".



In the first, simpler case above, the formula obtained for the probability can be rearranged
to:

Thus, if we conduct an experiment to estimate P, we will also have an estimate for π.
Suppose we drop n needles and find that h of those needles are crossing lines, so is

approximated by the fraction . This leads to the formula:

In 1901, Italian mathematician Mario Lazzarini performed the Buffon's needle experiment.
Tossing a needle 3408 times, he obtained the well-known estimate 355/113 for π, which
is a very accurate value, differing from π by no more than 3×10−7









Classic definition of
probability:

1. Probability is the ratio of the "favored events" to the total possible events.
2. The first principle assumes equal probabilities for all events. When this is not
true, we must first determine the probabilities of each event. Then, the
probability is the sum of the probabilities of all possible favored events.
3. For independent events, the probability of the occurrence of all is the
probability of each multiplied together.
4. For events not independent, the probability of event B following event A (or
event A causing B) is the probability of A multiplied by the probability that A
and B both occur.
5. The probability that A will occur, given that B has occurred, is the probability
of A and B occurring divided by the probability of B.
6. Three corollaries are given for the sixth principle, which amount to Bayesian
probability. Where event Ai ∈ {A1, A2, ...An} exhausts the list of possible causes
for event B, Pr(B) = Pr(A1, A2, ...An). Then

“I had no need of such a
hypothesis.”





In 1860 he suggested a cardinal arithmetic for infinite
numbers, years before any work by Georg Cantor (who
completed his dissertation in 1867) and without access
to Bernard Bolzano's 1851 (posthumous) Paradoxien des
Unendlichen.
In 1881 he set out the axiomatization of natural number
arithmetic, a few years before Richard
Dedekind and Giuseppe Peano.
In 1885 he distinguished between first-order and
second-order quantification. In the same paper he set
out what can be read as the first (primitive) axiomatic
set theory, anticipating Zermelo by about two decades
(Brady 2000, pp. 132–3).
In 1886 he saw that Boolean calculations could be
carried out via electrical switches, the same idea that
was used decades later to produce digital computers.

Pragmatism







The law of excluded
gambling system:

The law of stability of
statistical frequencies:



First axiom
The probability of an event is a non-negative real number:

where is the event space and is any event in . In particular, is
always finite, in contrast with more general measure theory. Theories
which assign negative probability relax the first axiom.
Second axiom
This is the assumption of unit measure: that the probability that
some elementary event in the entire sample space will occur is 1. More
specifically, there are no elementary events outside the sample space.

This is often overlooked in some mistaken probability calculations; if you
cannot precisely define the whole sample space, then the probability of
any subset cannot be defined either.
Third axiom
This is the assumption of σ-additivity:
Any countable sequence of disjoint (synonymous with mutually exclusive)

l           events satisfies

Some authors consider merely finitely additive probability spaces, in
which case one just needs an algebra of sets, rather than a σ-
algebra.Quasiprobability distributions in general relax the third axiom



Pigeonhole theorem vs. Probability Theory



n P(n)

20 41.1%

23 50.7%

30 70.6%

50 97%

57 99%

100 99.99997%

200 99.
999999999999999999999
9999998%



Pathways to Probability, Amy C.
King/Cecil Read, 1963.

An Objective Theory of Probability,
Gillies, 1973.

wikipedia.com


