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INTRODUCTION TO OPTIMIZATION

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances.
In design, construction, and maintenance of any engineering system, engineers
have to take many technological and managerial decisions at several stages.
The ultimate goal of all such decisions is either to minimize the effort required
or to maximize the desired benefit. Since the effort required or the benefit
desired in any practical situation can be expressed as a function of certain
decision variables, optimization can be defined as the process of finding the
conditions that give the maximum or minimum value of a function. It can be
seen from Fig. 1.1 that if a point JC* corresponds to the minimum value of
function/(JC), the same point also corresponds to the maximum value of the
negative of the function, —f(x). Thus, without loss of generality, optimization
can be taken to mean minimization since the maximum of a function can be
found by seeking the minimum of the negative of the same function. There is
no single method available for solving all optimization problems efficiently.
Hence a number of optimization methods have been developed for solving
different types of optimization problems.

The optimum seeking methods are also known as mathematical program-
ming techniques and are generally studied as a part of operations research.
Operations research is a branch of mathematics concerned with the application
of scientific methods and techniques to decision making problems and with
establishing the best or optimal solutions. Table 1.1 lists various mathematical
programming techniques together with other well-defined areas of operations
research. The classification given in Table 1.1 is not unique; it is given mainly
for convenience.



Figure 1.1 Minimum of/(jc) is same as maximum of —f(x).

Mathematical programming techniques are useful in finding the minimum
of a function of several variables under a prescribed set of constraints. Sto-
chastic process techniques can be used to analyze problems described by a set
of random variables having known probability distributions. Statistical meth-
ods enable one to analyze the experimental data and build empirical models to

TABLE 1.1 Methods of Operations Research

Mathematical Programming
Techniques

Calculus methods
Calculus of variations
Nonlinear programming
Geometric programming
Quadratic programming
Linear programming
Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Network methods: CPM and

PERT
Game theory
Simulated annealing
Genetic algorithms
Neural networks

Stochastic Process
Techniques

Statistical decision theory
Markov processes
Queueing theory
Renewal theory
Simulation methods
Reliability theory

Statistical Methods

Regression analysis
Cluster analysis, pattern

recognition
Design of experiments
Discriminate analysis

(factor analysis)

re*, Minimum of f(x)

x*, Maximum of - f(x)



obtain the most accurate representation of the physical situation. This book
deals with the theory and application of mathematical programming techniques
suitable for the solution of engineering design problems.

1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton,
Lagrange, and Cauchy. The development of differential calculus methods of
optimization was possible because of the contributions of Newton and Leibnitz
to calculus. The foundations of calculus of variations, which deals with the
minimization of functionals, were laid by Bernoulli, Euler, Lagrange, and
Weirstrass. The method of optimization for constrained problems, which in-
volves the addition of unknown multipliers, became known by the name of its
inventor, Lagrange. Cauchy made the first application of the steepest descent
method to solve unconstrained minimization problems. Despite these early
contributions, very little progress was made until the middle of the twentieth
century, when high-speed digital computers made implementation of the op-
timization procedures possible and stimulated further research on new meth-
ods. Spectacular advances followed, producing a massive literature on opti-
mization techniques. This advancement also resulted in the emergence of
several well-defined new areas in optimization theory.

It is interesting to note that the major developments in the area of numerical
methods of unconstrained optimization have been made in the United Kingdom
only in the 1960s. The development of the simplex method by Dantzig in 1947
for linear programming problems and the annunciation of the principle of op-
timality in 1957 by Bellman for dynamic programming problems paved the
way for development of the methods of constrained optimization. Work by
Kuhn and Tucker in 1951 on the necessary and sufficiency conditions for the
optimal solution of programming problems laid the foundations for a great deal
of later research in nonlinear programming. The contributions of Zoutendijk
and Rosen to nonlinear programming during the early 1960s have been very
significant. Although no single technique has been found to be universally
applicable for nonlinear programming problems, work of Carroll and Fiacco
and McCormick allowed many difficult problems to be solved by using the
well-known techniques of unconstrained optimization. Geometric program-
ming was developed in the 1960s by Duffin, Zener, and Peterson. Gomory did
pioneering work in integer programming, one of the most exciting and rapidly
developing areas of optimization. The reason for this is that most real-world
applications fall under this category of problems. Dantzig and Charnes and
Cooper developed stochastic programming techniques and solved problems by
assuming design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the
physical limitations led to the development of multiobjective programming
methods. Goal programming is a well-known technique for solving specific



types of multiobjective optimization problems. The goal programming was
originally proposed for linear problems by Charnes and Cooper in 1961. The
foundations of game theory were laid by von Neumann in 1928 and since then
the technique has been applied to solve several mathematical economics and
military problems. Only during the last few years has game theory been applied
to solve engineering design problems.

Simulated annealing, genetic algorithms, and neural network methods rep-
resent a new class of mathematical programming techniques that have come
into prominence during the last decade. Simulated annealing is analogous to
the physical process of annealing of solids. The genetic algorithms are search
techniques based on the mechanics of natural selection and natural genetics.
Neural network methods are based on solving the problem using the efficient
computing power of the network of interconnected "neuron" processors.

1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering
problem. To indicate the wide scope of the subject, some typical applications
from different engineering disciplines are given below.

1. Design of aircraft and aerospace structures for minimum weight
2. Finding the optimal trajectories of space vehicles
3. Design of civil engineering structures such as frames, foundations,

bridges, towers, chimneys, and dams for minimum cost
4. Minimum-weight design of structures for earthquake, wind, and other

types of random loading
5. Design of water resources systems for maximum benefit
6. Optimal plastic design of structures
7. Optimum design of linkages, cams, gears, machine tools, and other

mechanical components
8. Selection of machining conditions in metal-cutting processes for mini-

mum production cost
9. Design of material handling equipment such as conveyors, trucks, and

cranes for minimum cost
10. Design of pumps, turbines, and heat transfer equipment for maximum

efficiency
11. Optimum design of electrical machinery such as motors, generators,

and transformers
12. Optimum design of electrical networks
13. Shortest route taken by a salesperson visiting various cities during one

tour
14. Optimal production planning, controlling, and scheduling



15. Analysis of statistical data and building empirical models from exper-
imental results to obtain the most accurate representation of the physical
phenomenon

16. Optimum design of chemical processing equipment and plants
17. Design of optimum pipeline networks for process industries
18. Selection of a site for an industry
19. Planning of maintenance and replacement of equipment to reduce op-

erating costs
20. Inventory control
21. Allocation of resources or services among several activities to maxi-

mize the benefit
22. Controlling the waiting and idle times and queueing in production lines

to reduce the costs
23. Planning the best strategy to obtain maximum profit in the presence of

a competitor
24. Optimum design of control systems

1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as fol-
lows.

( - )
Find X = \ } > which minimizes /(X)

U J

subject to the constraints

gj(X) < 0, J = 1,2,. . .,m ( 1 1}

Ij(X) = 0, J = 1,2,. . .,/>

where X is an n-dimensional vector called the design vector, /(X) is termed
the objective Junction, and gj (X) and Ij (X) are known as inequality and equal-
ity constraints, respectively. The number of variables n and the number of
constraints m and/or/? need not be related in any way. The problem stated in
Eq. (1.1) is called a constrained optimization problem.^ Some optimization

1In the mathematical programming literature, the equality constraints Z7(X) = 0 , j = 1,2,. . .,p
are often neglected, for simplicity, in the statement of a constrained optimization problem, al-
though several methods are available for handling problems with equality constraints.



problems do not involve any constraints and can be stated as:

("X1-)

Find X = < X} > which minimizes/(X) (1.2)

Such problems are called unconstrained optimization problems.

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities some
of which are viewed as variables during the design process. In general, certain
quantities are usually fixed at the outset and these are called preassigned pa-
rameters. All the other quantities are treated as variables in the design process
and are called design or decision variables xh i = 1,2,. . .,n. The design vari-

ables are collectively represented as a design vector X = \ } >. As an ex-

U J
ample, consider the design of the gear pair shown in Fig. 1.2, characterized
by its face width b, number of teeth Tx and T2, center distance d, pressure
angle \[/, tooth profile, and material. If center distance d, pressure angle xj/,
tooth profile, and material of the gears are fixed in advance, these quantities
can be called preassigned parameters. The remaining quantities can be collec-

tively represented by a design vector X = < X2 ) = < T1 >. If there are no

W W
restrictions on the choice of b, Tx, and T2, any set of three numbers will con-
stitute a design for the gear pair. If an n-dimensional Cartesian space with each
coordinate axis representing a design variablext (i = 1,2,. . .,n) is considered,
the space is called the design variable space or simply, design space. Each
point in the rc-dimensional design space is called a design point and represents
either a possible or an impossible solution to the design problem. In the case

of the design of a gear pair, the design point < 20 >, for example, represents

I 4 0 J

r , o )
a possible solution, whereas the design point < — 20 > represents an impos-

L 40.5J



Figure 1.2 Gear pair in mesh.

sible solution since it is not possible to have either a negative value or a frac-
tional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily;
rather, they have to satisfy certain specified functional and other requirements.
The restrictions that must be satisfied to produce an acceptable design are col-
lectively called design constraints. Constraints that represent limitations on the
behavior or performance of the system are termed behavior or functional con-
straints. Constraints that represent physical limitations on design variables such
as availability, fabricability, and transportability are known as geometric or
side constraints. For example, for the gear pair shown in Fig. 1.2, the face
width b cannot be taken smaller than a certain value, due to strength require-
ments. Similarly, the ratio of the numbers of teeth, TxIT2, is dictated by the
speeds of the input and output shafts, Nx and Af2. Since these constraints depend
on the performance of the gear pair, they are called behavior constraints. The
values of Tx and T2 cannot be any real numbers but can only be integers.
Further, there can be upper and lower bounds on T1 and T2 due to manufac-
turing limitations. Since these constraints depend on the physical limitations,
they are called side constraints.

d

b

N2

N1

Ti

T2



1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality con-
straints gj (X) < 0. The set of values of X that satisfy the equation gj (X) =
0 forms a hypersurface in the design space and is called a constraint surface.
Note that this is an (n-l)-dimensional subspace, where n is the number of
design variables. The constraint surface divides the design space into two re-
gions: one in which gj (X) < 0 and the other in which gj (X) > 0. Thus the
points lying on the hypersurface will satisfy the constraint gj (X) critically,
whereas the points lying in the region where gj (X) > 0 are infeasible or un-
acceptable, and the points lying in the region where gj (X) < 0 are feasible or
acceptable. The collection of all the constraint surfaces gy (X) = 0, j =
1,2,. . .,m, which separates the acceptable region is called the composite con-
straint surface.

Figure 1.3 shows a hypothetical two-dimensional design space where the
infeasible region is indicated by hatched lines. A design point that lies on one
or more than one constraint surface is called a bound point, and the associated
constraint is called an active constraint. Design points that do not lie on any
constraint surface are known as free points. Depending on whether a particular
design point belongs to the acceptable or unacceptable region, it can be iden-

Figure 1.3 Constraint surfaces in a hypothetical two-dimensional design space.
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tified as one of the following four types:

1. Free and acceptable point
2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Fig. 1.3.

1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate
design which merely satisfies the functional and other requirements of the
problem. In general, there will be more than one acceptable design, and the
purpose of optimization is to choose the best one of the many acceptable de-
signs available. Thus a criterion has to be chosen for comparing the different
alternative acceptable designs and for selecting the best one. The criterion with
respect to which the design is optimized, when expressed as a function of the
design variables, is known as the criterion or merit or objective function. The
choice of objective function is governed by the nature of problem. The objec-
tive function for minimization is generally taken as weight in aircraft and aero-
space structural design problems. In civil engineering structural designs, the
objective is usually taken as the minimization of cost. The maximization of
mechanical efficiency is the obvious choice of an objective in mechanical en-
gineering systems design. Thus the choice of the objective function appears to
be straightforward in most design problems. However, there may be cases
where the optimization with respect to a particular criterion may lead to results
that may not be satisfactory with respect to another criterion. For example, in
mechanical design, a gearbox transmitting the maximum power may not have
the minimum weight. Similarly, in structural design, the minimum-weight de-
sign may not correspond to minimum stress design, and the minimum stress
design, again, may not correspond to maximum frequency design. Thus the
selection of the objective function can be one of the most important decisions
in the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied
simultaneously. For example, a gear pair may have to be designed for mini-
mum weight and maximum efficiency while transmitting a specified horse-
power. An optimization problem involving multiple objective functions is
known as a multiobjective programming problem. With multiple objectives
there arises a possibility of conflict, and one simple way to handle the problem
is to construct an overall objective function as a linear combination of the
conflicting multiple objective functions. Thus if Z1 (X) and/2(X) denote two
objective functions, construct a new (overall) objective function for optimi-
zation as

/(X) = a,/,(X) + a2/2(X) (1.3)



where ax and a2 are constants whose values indicate the relative importance
of one objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying /(X) = c = constant forms a hypersurface
in the design space, and for each value of c there corresponds a different mem-
ber of a family of surfaces. These surfaces, called objective function surfaces,
are shown in a hypothetical two-dimensional design space in Fig. 1.4.

Once the objective function surfaces are drawn along with the constraint
surfaces, the optimum point can be determined without much difficulty. But
the main problem is that as the number of design variables exceeds two or
three, the constraint and objective function surfaces become complex even for
visualization and the problem has to be solved purely as a mathematical prob-
lem. The following example illustrates the graphical optimization procedure.

Figure 1.4 Contours of the objective function.

uptimumjDoint



Example IA Design a uniform column of tubular section (Fig. 1.5) to carry
a compressive load P = 2500 kgf for minimum cost. The column is made up
of a material that has a yield stress (a )̂ of 500 kgf/cm2, modulus of elasticity
(E) of 0.85 X 106 kgf/cm2, and density (p) of 0.0025 kgf/cm3. The length of
the column is 250 cm. The stress induced in the column should be less than
the buckling stress as well as the yield stress. The mean diameter of the column
is restricted to lie between 2 and 14 cm, and columns with thicknesses outside
the range 0.2 to 0.8 cm are not available in the market. The cost of the column
includes material and construction costs and can be taken as 5W + 2d, where
W is the weight in kilograms force and d is the mean diameter of the column
in centimeters.

SOLUTION The design variables are the mean diameter (d) and tube thick-
ness (t):

- a - t t

The objective function to be minimized is given by

/(X) = 5W + Id = 5p/x dt + Id = 9.82X1X2 + 2Jc1 (E2)

Section A-A

Figure 1.5 Tubular column under compression.
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The behavior constraints can be expressed as

stress induced < yield stress
stress induced < buckling stress

The induced stress is given by

• , , p 2 5 0 °
induced stress = O1 = — - = (E3)

TT dt TTXiX2

The buckling stress for a pin-connected column is given by

, „ . Euler buckling load Tr2EI 1
buckling stress = ob = = —~ (E4)

cross-sectional area / TT at

where

/ = second moment of area of the cross section of the column

= ^ ( 4 + dj)(do + Cl1)(Cl0 - Cl1) = ^Kd + tf + (d- t)2]

• [(d + t) + (d~ t)][(d + t ) - ( d - 0 ]

= I dt(d2 + t2) = I X1X2(X
2 + xl) (E5)

Thus the behavior constraints can be restated as

2500
S1(X) = 500 < 0 (E6)

TTXxX2

2500 7T2(0.85 X IQ6X^ + xl)
g2(X) = flff.m2 ^ 0 (E7)

TTX1X2 8(250)

The side constraints are given by

2 < d < 14
0.2 < t < 0.8

which can be expressed in standard form as

g3(X) = -X1 + 2.0 < 0 (E8)



S 4 ( X ) =xx- 1 4 . 0 < 0 ( E 9 )

g5(X) = -X2 + 0.2 < 0 (E10)

S6(X) = X2 - 0.8 < 0 (E11)

Since there are only two design variables, the problem can be solved graphi-
cally as shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design
space where the two axes represent the two design variables Jc1 and X2. To plot
the first constraint surface, we have

S1(X) = ^ - - 500 < 0
TTJC1JC2

that is,

JC1Jc2 > 1.593

Thus the curve JC1JC2 = 1.593 represents the constraint surface Si(X) = 0. This
curve can be plotted by finding several points on the curve. The points on the
curve can be found by giving a series of values to JC1 and finding the corre-
sponding values of Jc2 that satisfy the relation JC1Jc2 = 1.593:

jc, 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Jc2 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P1 Q1 passing through all these points is
drawn as shown in Fig. 1.6, and the infeasible region, represented by g\(X)
> 0 OrJc1JC2 < 1.593, is shown by hatched lines.f Similarly, the second con-
straint g2(X) < 0 can be expressed as xxx2(x

2\ H-Jc2) > 47.3 and the points
lying on the constraint surface g2(X) = 0 can be obtained as follows:

IfOrJc1JC2(X? + JC|) = 47.3]:

jc, 2 4 6 8 10 12 14

jc2 2.41 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P2Q2, the feasible region is identified, and
the infeasible region is shown by hatched lines as shown in Fig. 1.6. The
plotting of side constraints is very simple since they represent straight lines.
After plotting all the six constraints, the feasible region can be seen to be given
by the bounded area ABCDEA.

trThe infeasible region can be identified by testing whether the origin lies in the feasible or in-
feasible region.



Figure 1.6 Graphical optimization of Example 1.1.

Next, the contours of the objective function are to be plotted before finding
the optimum point. For this, we plot the curves given by

/ (X) = 9.82X,JC2 + Ixx = c = constant

for a series of values of c. By giving different values to c, the contours of /
can be plotted with the help of the following points.

Optimum point
(5.44, 0.293)

ABCDEA = Feasible region

Buckling constraint
g2M = 0

Yield constraint
g,(x) = O

A E

?7Pl

C D

Ql

Q2



For 9.82X1Jc2 4- 2X1 = 50.0:

X2 0 . 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

jc, 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

For 9.82X,JC2 + 2X1 = 40.0:

jc2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Jc1 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05

For 9.82X1X2 H- 2xj = 31.58 (passing through the corner point C):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

JC, 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20

F o r 9.82X1X2 + 2X1 = 2 6 . 5 3 (pass ing th rough the corner point B):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x, 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82X1X2 = 2X1 = 20.0:

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X1 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Fig. 1.6 and it can be seen that the objective
function cannot be reduced below a value of 26.53 (corresponding to point B)
without violating some of the constraints. Thus the optimum solution is given
by point B with d* = x* = 5.44 cm and t* = X2 = 0.293 cm with/min =
26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained
or unconstrained, depending on whether or not constraints exist in the problem.

1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems
can be classified into two broad categories. In the first category, the problem



is to find values to a set of design parameters that make some prescribed func-
tion of these parameters minimum subject to certain constraints. For example,
the problem of minimum-weight design of a prismatic beam shown in Fig.
1.7a subject to a limitation on the maximum deflection can be stated as fol-
lows.

Find X = , which minimizes

W (1.4)
/ (X) = plbd

subject to the constraints

Stip(X) < <5max

b > 0

d > 0

where p is the density and 5tip is the tip deflection of the beam. Such problems
are called parameter or static optimization problems. In the second category
of problems, the objective is to find a set of design parameters, which are all
continuous functions of some other parameter, that minimizes an objective
function subject to a set of constraints. If the cross-sectional dimensions of the
rectangular beam are allowed to vary along its length as shown in Fig. 1.7ft,
the optimization problem can be stated as:

Find X(r) = ) J / \ ( which minimizes

/[X(O] = P f b(t)d(t)dt (1.5)
Jo

Figure 1.7 Cantilever beam under concentrated load.



subject to the constraints

StJp[X(O] ^ Smax, 0 < t < /
6(0 > 0, 0 < t < /
rf(0 ^ 0, 0 < t < /

Here the design variables are functions of the length parameter t. This type of
problem, where each design variable is a function of one or more parameters,
is known as a trajectory or dynamic optimization problem [1.40].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems
can be classified as optimal control and nonoptimal control problems.

Optimal Control Problem. An optimal control (OC) problem is a mathemati-
cal programming problem involving a number of stages, where each stage
evolves from the preceding stage in a prescribed manner. It is usually described
by two types of variables: the control (design) and the state variables. The
control variables define the system and govern the evolution of the system
from one stage to the next, and the state variables describe the behavior or
status of the system in any stage. The problem is to find a set of control or
design variables such that the total objective function (also known as the per-
formance index, PI) over all the stages is minimized subject to a set of con-
straints on the control and state variables. An OC problem can be stated as
follows [1.40]:

Find X which minimizes/(X) = S fi(xhy^) (1.6)
/ = i

subject to the constraints

qi(xi9yd + yt = yi + i, i = 1,2,. . .,/

gj(xj) < 0, J= 1,2,. . . , /

hk(yk) < 0, * = 1,2,. . .,/

where xt is the ith control variable, yt the ith state variable, a n d / the contri-
bution of the ith stage to the total objective function; gj9 hk, and qt are functions
of Xj, yk and xt and yh respectively, and / is the total number of stages. The
control and state variables Jc1 and yt can be vectors in some cases. The following
example serves to illustrate the nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12s in a vertically
upward direction [1.32]. The thrust of the rocket can be changed only at the



discrete points located at distances of 0, s, 2s, 3s, . . . , 11s. If the maximum
thrust that can be developed at point / either in the positive or negative direction
is restricted to a value of F1-, formulate the problem of minimizing the total
time of travel under the following assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of
the rocket are changed be numbered as 1,2, 3, . . . , 1 3 (Fig. 1.8). Denoting

Control
points

Distance from
starting pointFigure 1.8 Control points in the path of the rocket.



Xj as the thrust, V1 the velocity, at the acceleration, and YYi1 the mass of the
rocket at point /, Newton's second law of motion can be applied as

net force on the rocket = mass X acceleration

This can be written as

thrust — gravitational force — air resistance = mass X acceleration

or

xt - mg - kxvt = Yn1Q1 (E1)

where the mass Yn1 can be expressed as

YYl1 = YYl1-X ~ k2S (E2)

and kx and k2 are constants. Equation (Ej) can be used to express the acceler-
ation, ah as

*i kxvt
0/ = g (E3)

YYIi mi

If tt denotes the time taken by the rocket to travel from point i to point / H- 1,
the distance traveled between the points / and / + 1 can be expressed as

s = vfi + \aii\

or

1 9 (X; k\V\

from which t{ can be determined as

. 2 , ^ (Xi k\Vi\

h = : (E5)
*i _ _k[Vi

YYl1 YYl1

Of the two values given by Eq. (E5), the positive value has to be chosen for
th The velocity of the rocket at point i + 1, V1+ u can be expressed in terms
of Vi as (by assuming the acceleration between points i and /H- 1 to be constant



for simplicity)

V1 + x = V1 + afi (E6)

The substitution of Eqs. (E3) and (E5) into Eq. (E6) leads to

*,+ 1 = L? + * ( * - , - ^ ) (E7)
S \mi mi )

From an analysis of the problem, the control variables can be identified as the
thrusts X1 and the state variables as the velocities, V1. Since the rocket starts at
point 1 and stops at point 13,

V1 = v 13 = 0 (E8)

Thus the problem can be stated as an OC problem as

Find X = < . which minimizes

f \ / T "\
. 2 , o (Xi k*Vi\

/(X) = 2 ^ = 2 7 — '

^ \m,- m,- / y

subject to

m, + i = m, — ̂ 2
5 ' ' = 1>2,. • .,12

^+i=>? + 2 , (^-^-^) , / = 1,2 12

|JC,-| < F / ? i = 1,2,. . .,12

vx = ^ , 3 = 0

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the na-
ture of expressions for the objective function and the constraints. According



to this classification, optimization problems can be classified as linear, nonlin-
ear, geometric, and quadratic programming problems. This classification is
extremely useful from the computational point of view since there are many
special methods available for the efficient solution of a particular class of prob-
lems. Thus the first task of a designer would be to investigate the class of
problem encountered. This will, in many cases, dictate the types of solution
procedures to be adopted in solving the problem.

Nonlinear Programming Problem. If any of the functions among the objec-
tive and constraint functions in Eq. (1.1) is nonlinear, the problem is called a
nonlinear programming (NLP) problem. This is the most general program-
ming problem and all other problems can be considered as special cases of the
NLP problem.

Example 1.3 The step-cone pulley shown in Fig. 1.9 is to be designed for
transmitting a power of at least 0.75 hp. The speed of the input shaft is 350
rpm and the output speed requirements are 750, 450, 250, and 150 rpm for a
fixed center distance of a between the input and output shafts. The tension on
the tight side of the belt is to be kept more than twice that on the slack side.
The thickness of the belt is t and the coefficient of friction between the belt

Figure 1.9 Step-cone pulley.



and the pulleys is /JL. Formulate the problem of finding the width and diameters
of the steps for minimum weight.

SOLUTION The design vector can be taken as

d2 ,

X = d3 ' •

d4 '

where dt is the diameter of the rth step on the output pulley and w is the width
of the belt and the steps. The objective function is the weight of the step-cone
pulley system:

/(X) = pw j (d2 + d\ + d\ + d\ + d[2 + d'i + d'-i2 + d?)

+4+(i)>4 + (I)1 »
where p is the density of the pulleys and d\ is the diameter of the /th step on
the input pulley.

To have the belt equally tight on each pair of opposite steps, the total length
of the belt must be kept constant for all the output speeds. This can be ensured
by satisfying the following equality constraints:

Cx - C2= 0 (E2)

C1-C3=O (E3)

Cx-C4 = O (E4)

where C1 denotes length of the belt needed to obtain output speed N1 (i =
1,2,3,4) and is given by [1.66,1.67]



where N is the speed of the input shaft and a is the center distance between
the shafts. The ratio of tensions in the belt can be expressed as [1.66,1.67]

Ti

— = e^
T1

where T\ and Tl
2 are the tensions on the right and slack sides of the /th step,

/x the coefficient of friction, and O1 the angle of lap of the belt over the ith
pulley step. The angle of lap is given by

O1: = TT - 2 sin"1

L 2a

and hence the constraint on the ratio of tensions becomes

e x p ^ [ » - 2 s i n - ' ^ - l ) ^ ] ] ] f c 2 , /=1,2,3,4 (E5)

The limitation on the maximum tension can be expressed as

T\ < stw, i = 1,2,3,4 (E6)

where s is the maximum allowable stress in the belt and t is the thickness of
the belt. The constraint on the power transmitted can be stated as (using lbf

for force and ft for linear dimensions)

(V1 - nVd/(350)

^000 * °'75

which can be rewritten, using T\ = stw (upper bound used for simplicity) and
Eq. (E5), as

» ( . - « , [ - , ( . - 2 s in- [ ( f - , ) £ ] ) ] ) » , ;

(jlffio)a0'75' ' - U A 4 «»
Finally, the lower bounds on the design variables can be taken as

w > 0 (E8)

di > 0, i = 1,2,3,4 (E9)



As the objective function, (E1), and most of the constraints, (E2) to (E9), are
nonlinear functions of the design variables dx, d2, d3, d4, and w, this problem
is a nonlinear programming problem.

Geometric Programming Problem

Definition A function h(K) is called a posynomial if h can be expressed as
the sum of power terms each of the form

C1Xx X2 Xn

where C1 and atj are constants with C1 > 0 and x} > 0. Thus a posynomial with
N terms can be expressed as

A geometric programming (GMP) problem is one in which the objective
function and constraints are expressed as posynomials in X. Thus GMP prob-
lem can be posed as follows [1.44]:

Find X which minimizes

NQ / n \

/(X) = S1 C1- ( I I XfA9 q > 0, Xj > 0 (1.8)

subject to

Nk / n v

gk(X) = S aik I n x/s» J > 0, aik > 0, -̂ > 0, k = 1,2,. . .,m

where Â 0 and Nk denote the number of posynomial terms in the objective and
Ath constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling ma-
chine weighing 5000 Ib. Formulate the problem of finding the wire diameter
(d), coil diameter (D), and the number of turns (N) of each spring (Fig. 1.10)
for minimum weight by limiting the deflection to 0.1 in. and the shear stress
to 10,000 psi in the spring. In addition, the natural frequency of vibration of
the spring is to be greater than 100 Hz. The stiffness of the spring (k), the shear
stress in the spring (r), and the natural frequency of vibration of the spring (/„)
are given by

SD3N

ird



Figure 1.10 Helical spring.

f = 1 S = I U4G 8 = ^Ggd

where G is the shear modulus, F the compressive load on the spring, w the
weight of the spring, p the weight density of the spring, and Ks the shear stress
correction factor. Assume that the material is spring steel with G = 12 X 106

psi and p = 0.3 lb/in3, and the shear stress correction factor is Ks « 1.05.

SOLUTION The design vector is given by

' • [ : ] • [ ; ]

and the objective function by

/(X) = weight = — irDNp (E1)

N (number of turns)

D

d

F

F



The constraints can be expressed as

^ . F SFD3N ^ ^
deflection = - = . < 0.1

k d G

that is,

*l(X) = vllfik > l (E2)

SFD
shear stress = Ks —j < 10,000

that is,

^Gg d
natural frequency = — j = - -^- > 100

that is,

y/Ggd

Since the equality sign is not included (along with the inequality symbol, > )
in the constraints of Eqs. (E2) to (E4), the design variables are to be restricted
to positive values as

d > 0, D > 0 , A r > 0 (E5)

By substituting the known data, F = weight of the milling machine /4 = 1250
Ib, p = 0.3 lb/in3, G = 12 x 106 psi, and Ks = 1.05, Eqs. (E1) to (E4) become

/(X) = lir2(03)d2DN = 0.7402JC 2̂JC3 (E6)

»-®-ijgi5$-•**>-*'">• <E->
&<x> - i S -2<mxW >' <Et)



It can be seen that the objective function, / (X) , and the constraint functions,
gi(X) to #3(X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem. A quadratic programming problem is a
nonlinear programming problem with a quadratic objective function and linear
constraints. It is usually formulated as follows:

n n n

F(X) = c + S q,x, + 2 2 Q0X1XJ (1.9)
i=\ i=1j=1

subject to

n

Tt dijXi = bj9 j = 1,2,. . .,m

JC/ > 0 , I = 1 , 2 , . . . , n

where c, qh Qtj, atj, and fy are constants.
Example 1.5 A manufacturing firm produces two products, A and B, using
two limited resources. The maximum amounts of resources 1 and 2 available
per day are 1000 and 250 units, respectively. The production of 1 unit of
product A requires 1 unit of resource 1 and 0.2 unit of resource 2, and the
production of 1 unit of product B requires 0.5 unit of resource 1 and 0.5 unit
of resource 2. The unit costs of resources 1 and 2 are given by the relations
(0.375 - 0.00005W1) and (0.75 - 0.000Iw2), respectively, where w, denotes
the number of units of resource i used ( / = 1 , 2 ) . The selling prices per unit
of products A and B, pA and p B , are given by

pA = 2.00 - 0.0005JC^ - 0.00015JC5

pB = 3.50 - 0.0002^ - 0.0015*fl

where xA and xB indicate, respectively, the number of units of products A and
B sold. Formulate the problem of maximizing the profit assuming that the firm
can sell all the units it manufactures.

SOLUTION Let the design variables be the number of units of products A
and B manufactured per day:

The requirement of resource 1 per day is (xA + 0.5jt#) and that of resource 2
is (0.2x̂ 4 + 0.5JC#) and the constraints on the resources are



xA + 0.5*5 ^ 1000 (E1)

0.2X4 + 0.5xB < 250 (E2)

The lower bounds on the design variables can be taken as

xA * 0 (E3)

X8^O (E4)

The total cost of resources 1 and 2 per day is

(X4 + 0.5jcfi) [0.375 - 0.00005(JC4 + 0.5jcfl)]

+ (0.2Jc4 H- 0.5JC^) [0.750 - 0.0001(0.2Jc4 + 0.5jcfl)]

and the return per day from the sale of products A and B is

^(2.00 - 0.0005Jc4 - 0.00015JC5) + jcfl(3.50 - 0.0002^ - 0.0015jcfl)

The total profit is given by the total return minus the total cost. Since the
objective function to be minimized is the negative of the profit per day, / (X)
is given by

/ (X) = (JĈ  + 0.5jcfl) [0.375 - 0.00005(Jc4 + 0.5JCB)]

+ (0.2JĈ 4 + 0.5jcfl) [0.750 - 0,0001(0.2Jc4 + 0.5JCB)]

- JC/1(2.00 - O.OOO5JC,4 - 0.00015JCB)

- JCB(3.50 - 0.0002Jĉ  - 0.0015JCa) (E5)

As the objective function [Eq. (E5)] is a quadratic and the constraints [Eqs.
(E1) to (E4)] are linear, the problem is a quadratic programming problem.

Linear Programming Problem. If the objective function and all the constraints
in Eq. (1.1) are linear functions of the design variables, the mathematical pro-
gramming problem is called a linear programming (LP) problem. A linear
programming problem is often stated in the following standard form:

F M X = [ I ]
n

which minimizes / (X) = Zl C1X1
i= 1



subject to the constraints (1.10)

n

S aijXi = bp j = 1,2,. . .,m

X1 > 0, I = 1,2,. . .,ft

where C1-, a,-,-, and bj are constants.

Example 1.6 A scaffolding system consists of three beams and six ropes as
shown in Fig. 1.11. Each of the top ropes A and B can carry a load of Wx,
each of the middle ropes C and D can carry a load of W1, and each of the
bottom ropes E and F can carry a load of W3. If the loads acting on beams 1,
2, and 3 are X1, x2, and X3, respectively, as shown in Fig. 1.11, formulate the
problem of finding the maximum load (JC1 + x2 + X3) that can be supported by
the system. Assume that the weights of the beams 1, 2, and 3 are W1, w2, and
W3, respectively, and the weights of the ropes are negligible.

SOLUTION Assuming that the weights of the beams act through their re-
spective middle points, the equations of equilibrium for vertical forces and
moments for each of the three beams can be written as:

For beam 3:

TE + Tp = X3 + w3

X3Ol) + w3(2l) - Tp(Al) = 0

Beam 2

Beam 1

Beam 3

Figure 1.11 Scaffolding system with three beams.



For beam 2:

Tc + TD - TE = X2 + W2

X2(I) + W2(I) + TE(l) - TD(2l) = 0

For beam 1:

TA +TB - TC - TD - TF = X1 + W1

XxOl) + W1C2I) - TB(9l) + Tc(2l) + 7D(4/) + 7>(7/) = 0

where T1 denotes the tension in rope /. The solution of these equations gives

TF = Ix3 + 5 W3

TE = \x3 + \w3

TD = \x2 + Ix3 + jw2 + \w3

Tc = JX2 + ^x3 + \w2 + ^w3

TB = Ix1 + |-r2 + \x3 + 5W1 + \w2 + ^w3

TA = \xx + Ix2 + }x3 + jw, + § W2 + ^w3

The optimization problem can be formulated by choosing the design vector as

1 • S
Since the objective is to maximize the total load

/ (X) = -(X1 + x2 + X3) (E1)

The constraints on the forces in the ropes can be stated as

TA S W1 (E2)

TB * W, (E3)

Tc ^ W2 (E4)

TD * W2 (E5)

TE S W3 (E6)

TF * W3 (E7)



Finally, the nonnegativity requirement of the design variables can be expressed
as

X1 > 0

X2 > 0

X3 > 0 (E8)

Since all the equations of the problem (E1) to (E8), are linear functions of Jc1,
X2, and Jc3, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design
Variables

Depending on the values permitted for the design variables, optimization prob-
lems can be classified as integer- and real-valued programming problems.

Integer Programming Problem. If some or all of the design variables Jc1, JC2,
. . . , Xn of an optimization problem are restricted to take on only integer (or
discrete) values, the problem is called an integer programming problem. On
the other hand, if all the design variables are permitted to take any real value,
the optimization problem is called a real-valued programming problem. Ac-
cording to this definition, the problems considered in Examples 1.1 to 1.6 are
real-valued programming problems.

Example 1,7 A cargo load is to be prepared from five types of articles. The
weight wh volume vh and monetary value C1 of different articles are given
below.

Article Type w, V1 c,

1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles Jt1- selected from the /th type (/ = 1,2,3,4,5), so
that the total monetary value of the cargo load is a maximum. The total weight
and volume of the cargo cannot exceed the limits of 2000 and 2500 units,
respectively.

SOLUTION Let xt be the number of articles of type i (i = 1 to 5) selected.
Since it is not possible to load a fraction of an article, the variables xt can take
only integer values.



The objective function to be maximized is given by

/ (X) = 5JC, + 6jt2 + 3JC3 + 2JC4 + Sx5 (E1)

and the constraints by

4Jc1 H- Sx2 + 2JC3 + 5JC4 + 3JC5 < 2000 (E2)

9^1 + Ix2 + 4Jt3 + 3JC4 H- 8x5 < 2500 (E3)

xt >: 0 and integral, i = 1,2,. . .,5 (E4)

Since xt are constrained to be integers, the problem is an integer programming
problem.

1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization prob-
lems can be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem. A stochastic programming problem is an
optimization problem in which some or all of the parameters (design variables
and/or preassigned parameters) are probabilistic (nondeterministic or stochas-
tic). According to this definition, the problems considered in Examples 1.1 to
1.7 are deterministic programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectan-
gular under-reinforced concrete beam that can carry a bending moment M with
a probability of at least 0.95. The costs of concrete, steel, and form work are
given by Cc = $200/m3, Cs = $5OOO/m3 and Cf = $40/m2 of surface area.
The bending moment M is a probabilistic quantity and varies between 1 X 105

and 2 X 105 N-m with a uniform probability. The strengths of concrete and
steel are also uniformly distributed probabilistic quantities whose lower and
upper limits are given by

fc = 25 and 35 MPa

fs = 500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions
of the beam are deterministic quantities.

SOLUTION The breadth b in meters, the depth d in meters, and the area of
reinforcing steel As in square meters are taken as the design variables Jc1, X2,
and Jc3, respectively (Fig. 1.12). The cost of the beam per meter length is given



Figure 1.12 Cross section of a reinforced con-
crete beam.

by

/(X) = cost of steel + cost of concrete + cost of formwork

= A5C5 + (bd - AS)CC + 2(b + d)Cf (E1)

The resisting moment of the beam section is given by [1.69]

and the constraint on the bending moment can be expressed as [1.70]

P[MR - M > 0] = P [AS/S (d - 0.59 ^ ) - M > oj > 0.95 (E2)

where P[ • • • ] indicates the probability of occurrence of the event [ • • • ].
To ensure that the beam remains under-reinforced, 1^ the area of steel is

bounded by the balanced steel area A^ as

As < A^ (E3)

where

1If steel area is larger than Af\ the beam becomes over-reinforced and failure occurs all of a
sudden due to lack of concrete strength. If the beam is under-reinforced, failure occurs due to
lack of steel strength and hence it will be gradual.

d

b



Since the design variables cannot be negative, we have

d > 0

b > 0

As > 0 (E4)

Since the quantities M, fc, and fs are nondeterministic, the problem is a sto-
chastic programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and nonseparable pro-
gramming problems based on the separability of the objective and constraint
functions.

Separable Programming Problem

Definition A function /(X) is said to be separable if it can be expressed as
the sum of n single-variable functions, Z1(Jc^9Z2(X2), . . . ,fn(xn),

 t n a t is,

n

/(X) = 2/,(X,) (l.ii)
/ = 1

A separable programming problem is one in which the objective function
and the constraints are separable and can be expressed in standard form as:

n

Find X which minimizes Z(X) = S /(JC,) (1.12)
I = i

subject to

n

gj(X) = S 1 giJ{Xi) < bj9 j = 1,2,. . .,m

where bj is a constant.

Example 1.9 A retail store stocks and sells three different models of TV sets.
The store cannot afford to have an inventory worth more than $45,000 at any
time. The TV sets are ordered in lots. It costs $a; for the store whenever a lot
of TV model j is ordered. The cost of one TV set of model j is cy. The demand
rate of TV model j is dj units per year. The rate at which the inventory costs
accumulate is known to be proportional to the investment in inventory at any
time, with qj = 0.5, denoting the constant of proportionality for TV model j .



Formulate the problem of minimizing the average annual cost of ordering and
storing the TV sets.

SOLUTION Let Xj denote the number of TV sets of model j ordered in each
lot (j = 1,2,3)- Since the demand rate per year of model 7 is dj, the number
of times the TV model j needs to be ordered is d} IXJ. The cost of ordering TV
model j per year is thus ajdj/xj, j = 1,2,3. The cost of storing TV sets of
model j per year is qjCjXj/2 since the average level of inventory at any time
during the year is equal to CjXj/2. Thus the objective function (cost of ordering
plus storing) can be expressed as

/(X) = № + ̂ ) + (** + *%*) + (^ + *%*) (E1)\ Xx 2 / \ X2 2 / \ X3 2 /

where the design vector X is given by

X = j *2 (E2)

I")
The constraint on the volume of inventory can be stated as

C1X1 + C2X2 + C3X3 < 45,000 (E3)

The limitation on the storage area is given by

S1X1 + S2X2 + S3X3 < 90 (E4)

Since the design variables cannot be negative, we have

Xj > 0, J = 1,2,3 (E5)

Each TV set occupies an area of Sj = 0.40 m2 and the maximum storage space
available is 90 m2. The data known from the past experience are given below.

Ordering cost O7 ($)
Unit cost Cj ($)
Demand rate, dj

TV Model j

1

50
40

800

2

80
120
400

3

100
80

1200



By substituting the known data, the optimization problem can be stated as
follows:
Find X which minimizes

/40,000 ^ \ /32,000 ^ \ /120,000 ^ \
/(X) = — + 1Ox1 + — + 3Ox2 + + 2Ox3

V *i / \ X2 J \ x3 )

(E6)

subject to

S1(X) = 4Ox1 4- 12Ox2 + 8Ox3 < 45,000 (E7)

S2(X) = 0.40(X1 + X2 + X3) < 90 (E8)

S3(X) = -X1 < 0 (E9)

S4(X) = -X2 < 0 (E10)

S5(X) = - x 3 < 0 (E11)

It can be observed that the optimization problem stated in Eqs. (E6) to (E11) is
a separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization
problems can be classified as single- and multiobjective programming prob-
lems. According to this classification, the problems considered in Examples
1.1 to 1.9 are single objective programming problems.

Multiobjective Programming Problem. A multiobjective programming prob-
lem can be stated as follows:

Find X which minimizesZ1(X) ,/2(X),. . .,A(X)

subject to (1.13)

S7(X) < 0, J= 1,2,...9m

where/1? /2,. . ., fk denote the objective functions to be minimized simulta-
neously.

Example 1.10 A uniform column of rectangular cross section is to be con-
structed for supporting a water tank of mass M (Fig. 1.13). It is required (1)
to minimize the mass of the column for economy, and (2) to maximize the
natural frequency of transverse vibration of the system for avoiding possible



Cross section of
the column

Figure 1.13 Water tank on a column.

resonance due to wind. Formulate the problem of designing the column to
avoid failure due to direct compression and buckling. Assume the permissible
compressive stress to be amax.

SOLUTION Let X1 = b and X2 = d denote the cross-sectional dimensions of
the column. The mass of the column (m) is given by

m = pbdl = plX]X2 (Ei)

where p is the density and / is the height of the column. The natural frequency
of transverse vibration of the water tank (co), by treating it as a cantilever beam
with a tip mass M, can be obtained as [1.68]:

_ r 3Ei f2

w " UM + 1 ^ ) H (Ez)

where E is the Young's modulus and / is the area moment of inertia of the
column given by

I = T2-bd3 (E3)

The natural frequency of the water tank can be maximized by minimizing -co.
With the help of Eqs. (E1) and (E3), Eq. (E2) can be rewritten as

03-UlHM +^0 ,Ix1X2)]
 (E4)

d

b

I

M



The direct compressive stress (ac) in the column due to the weight of the water
tank is given by

Mg Mg
bd XxX2

and the buckling stress for a fixed-free column (ab) is given by [1.71]

_ /VISA ±_T?EX\
a» ~ yw) bd ~ 48/2 (Efi)

To avoid failure of the column, the direct stress has to be restricted to be less
than amax and the buckling stress has to be constrained to be greater than the
direct compressive stress induced.

Finally, the design variables have to be constrained to be positive. Thus the
multiobjective optimization problem can be stated as follows:

Find X = ] l [ which minimizes

/,(X) = PIx1X2 (E7)

T FY r 3 1 1 / 2

j: / v \ ZXxX2/2(X) = - 2 33 (E8)

IAlXM + -i^ PIx1X2)]

subject to
g,(X) = I**- - ffmax < 0 (E9)

X1X2

-™ - 5 - ̂ s °
g3(X) = -X1 < 0 (E11)

g4(X) = -x2 < 0 (E12)

1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimi-
zation problems are given under the heading of mathematical programming
techniques in Table 1.1. The classical methods of differential calculus can be
used to find the unconstrained maxima and minima of a function of several
variables. These methods assume that the function is differentiate twice with
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