
iSleep: Unobtrusive Sleep Quality Monitoring using Smartphones

Abstract
The quality of sleep is an important factor in maintain-

ing a healthy life style. To date, technology has not en-
abled personalized, in-place sleep quality monitoring and
analysis. Current sleep monitoring systems are often diffi-
cult to use and hence limited to sleep clinics, or invasive to
users, e.g., requiring users to wear a device during sleep.
This paper presents iSleep – a practical system to moni-
tor an individual’s sleep quality using off-the-shelf smart-
phone. iSleep uses the built-in microphone of the smart-
phone to detect the events that are closely related to sleep
quality, including body movement, couch and snore, and in-
fers quantitative measures of sleep quality. iSleep adopts
a lightweight decision-tree-based algorithm to classify vari-
ous events based on carefully selected acoustic features, and
tracks the dynamic ambient noise characteristics to improve
the robustness of classification. We have evaluated iSleep
based on the experiment that involves 7 participants and to-
tal 51 nights of sleep, as well the data collected from real
iSleep users. Our results show that iSleep achieves consis-
tently above 90% accuracy for event classification in a vari-
ety of different settings. By providing a fine-grained sleep
profile that depicts details of sleep-related events, iSleep al-
lows the user to track the sleep efficiency over time and re-
late irregular sleep patterns to possible causes.
1 Introduction

Sleep plays an important role in our overall health. Hav-
ing insufficient amount of sleep can easily cause fatigue and
lack of concentration during the day. Besides the amount
of sleep, the quality of sleep is also an important factor in
maintaining a healthy life style. Clinical studies show that
sleep is related to many serious diseases including diabetes,
obesity and depression [18] [26].

To date, technology has not enabled personalized, in-
place sleep quality monitoring and analysis. Polysomnog-
raphy (PSG) is the primary clinical tool for sleep monitor-
ing [14]. It can provide a quantitative profiling of sleep to
diagnose sleep disorders. However, due to the need of var-
ious sensors, PSG-based sleep quality measurement is usu-
ally limited to clinical settings. Actigraphy has been studied
as an inexpensive alternative to assess sleep and wakeful-
ness based on body movement [8]. Several portable sleep
assessment products are designed based on PSG or actigra-
phy technologies, including ZEO [7], Sleep Tracker [5] and
fitbit [1]. However, they are invasive to users as they re-
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quire a device to be worn by the user during sleep. A recent
in-depth survey of 230 participants suggested that, although
most people are interested in using technology to track their
sleep quality, many are resistant to the idea of having to wear
a device during sleep [15].

Several Android and iOS Apps such as Sleep as An-
droid [3] and Sleep Cycle [4] can monitor body movement
overnight using the on-board accelerometer of smartphone.
They rely on actigraphy-based methods to infer the current
sleep stage (e.g., deep or light stage). However, these apps
require the phone to be placed on the bed to collect accel-
eration data. This not only is inconsistent with the habit of
most users, but also may obstruct the user’s body movement
during sleep. Moreover, many important events that inter-
rupt sleep, such as coughing and snoring, can not be reliably
detected based on acceleration.

This paper presents iSleep – a practical system to monitor
an individual’s sleep quality using off-the-shelf smartphone.
iSleep is very easy to use and truly unobtrusive: the user
just needs to start iSleep app and place the phone somewhere
close to the bed (e.g., on a night stand). iSleep uses the built-
in microphone of the smartphone to detect the events that are
closely related to sleep quality, including body movement,
couch and snore. Based on the detected events, iSleep infers
quantitative measures of sleep quality based on actigraphy
and Pittsburgh Sleep Quality Index (PSQI) [12] which are
two well-established scoring criteria in sleep literature. We
have released an initial version of iSleep on the Google Play
Store [2]. Within 6 days, iSleep was installed by more than
100 users from 9 countries on various Android devices. By
providing a detailed sleeping profile, iSleep enables the us-
er to be aware of irregular sleep patterns like restlessness
caused by extensive snoring which are otherwise hard to
find. Moreover, as an unobtrusive, portable, in place moni-
toring tool, iSleep can track sleep quality quantitatively over
a long period of time, which helps healthcare provider diag-
nose trends related to certain diseases.

A key challenge in the design of iSleep is that the acous-
tic profile of sleep varies significantly from person to person
and in different environments. For instance, different people
likely snore in different ways in terms of sound loudness and
frequency. Moreover, the diversity of sleep environments,
such as loudness of noise from appliances, can also affec-
t the accuracy of detecting sleep-related events. Designed
for capturing close vocals, the built-in microphone of smart-
phone usually has low sensitivity, which makes it difficult to
detect certain events such as body rollovers whose acoustic
intensity is typically only several dB higher than ambien-
t noise. To address these challenges, we carefully analyze
the acoustic data collected from real sleep experiments and
choose several statistical acoustic features that can differen-
tiate environment noise and various sleep-related events. To
improve the robustness of detection, iSleep tracks the ambi-
ent noise characteristics and updates the noise model adap-
tively. Finally, iSleep adopts a lightweight decision-tree-



based algorithm to classify various sleep-related events and
derive quantitative sleep quality measures. We have evaluat-
ed iSleep extensively in a long-term experiment that involves
7 participants and total 51 nights of sleep, as well as using
the data collected from the Android phones that download-
ed and installed iSleep from Google Play Store. Our results
show that iSleep achieves consistently above 90% classifi-
cation accuracy for various events, across different subjects
and in a variety of different sleep environments. Moreover,
the sleep monitoring results of iSleep can greatly improve
the fidelity of subjective, questionnaire-based sleep assess-
ment tools like PSQI whose utility is otherwise impeded by
the inaccuracy of subject’s memory and perception.

2 Related Work
According to AASM (American Academy of Sleep

Medicine), the sleep stage scoring based on polysomnogra-
phy (PSG) has long been considered as the “gold standard”
of sleep study [21]. A polysomnogram typically requires the
recording of multiple channels including electroencephalog-
raphy (EEG), electro-oculography (EOG), electromyogra-
phy (EMG), electrocardiography (ECG) or heart rate, res-
piratory effort, air flow, oxygen saturation and etc. [14].
The result of PSG includes a collection of indices such as
sleep onset latency, total sleep time and etc, which are con-
sidered together to infer the sleep quality. Due to the need
of various sensors, PSG-based sleep quality measurement is
usually limited to sleep clinics.

Actigraphy has been studied as an inexpensive alterna-
tive to assess human sleep and wakefulness [8] based on the
subject’s body movements overnight. The basic idea is that
the state of sleep and wake can be inferred from the amoun-
t of body movement during sleep [8]. Through processing
the logged acceleration data, epoch-by-epoch (usually 30
second or 1 minute) sleep/wake predictions are calculated.
Several algorithms [19] [28] [17] have been proposed to de-
rive sleep quality from actigraphy. The average accuracy
of predicting sleep/wake state is around 90% (reported 88%
in [17] and 94-96% in [30]). However, actigraphy-based
methods require the subject to wear a device on limbs (e.g.,
wrist). Moreover, they cannot reliably detect cough and s-
nore which are shown to play an important role in the quality
of sleep [12].

A widely used subjective sleep quality assessmen-
t method is through PSQI (Pittsburgh Sleep Quality Index)
[12], which is a self-rated questionnaire to assess the sleep
quality and disturbance over a long-term interval. In PSQI, a
set of sleep measures are collected, including sleep latency,
sleep duration, sleep disturbance and etc. PSQI has been
shown useful in numerous studies [9] [13] over a variety
of populations. However, the accuracy of PSQI is highly
variable and is often impeded by the inaccuracy of subject’s
memory and perception.

Several commercial personal sleep assessment products
are currently available. Watch PAT [6] detects respiratory
disturbances during sleep by monitoring peripheral arterial
tone (PAT). The users are required to attach a probe to their
finger during sleep. ZEO [7] is a popular sleep monitor-
ing product that infers sleep stages using three EEG sensors
contained in a head band worn by the user during sleep. Sev-
eral actigraphy-based products such as Sleep Tracker [5] and
fitbit [1] require the user to wear the device containing ac-

celerometer during sleep.
Recently, several research efforts aimed at developing

low-cost sleep assessment systems. In [27], a wearable
neck-cuff system for real-time sleep monitoring is designed
based on oximetry sensor, microphone and accelerometer.
SleepMiner [10] predicts the sleep quality based on the us-
er’s daily context information such as sound, light, postures,
and positions. In [20], the body position and movements
during sleep are monitored using accelerometers attached to
bed mattress. A dense pressure sensitive bedsheet for sleep
posture monitoring is proposed in [23]. However, these sys-
tems incur nontrivial monetary costs of hardware or profes-
sional installation.

Several Android and iOS Apps such as Sleep as Android
[3] and Sleep Cycle [4] can measure sleep quality. Al-
l of them exclusively rely on the actigraphy-based methods
that monitor body movements overnight using smartphones.
However, sleep-related events such as cough and snore can
not be reliably detected based on acceleration. For exam-
ple, snore is the sound caused by the vibration of respiratory
structures while sleeping due to obstructed air movement,
and is not necessarily associated with body motion. More-
over, since the motion data is collected through the built-
in accelerometer, the phone must be put on the bed, which
not only is inconsistent with the habit of most users, but al-
so may obstruct the individual’s body movement. In addi-
tion, due to the high power consumption of continuous ac-
celerometer sampling, the phone needs to be connected to
the charger during the night, which is difficult when it is
placed on the bed.

Recently, several systems have been developed to detec-
t events of interests using the microphone on smartphones.
StressSense [25] was proposed to recognize stress from hu-
man voice using smartphones. SoundSense [24] adopts a
light-weight and scalable architecture to recognize different
kinds of ambient sounds such as speech and music. In [16], a
location classification system based on captured images and
sound is presented, where a GMM-based sound classifier is
trained to detect acoustic events such as car and crowd noise.
iSleep leverages the existing body of work on acoustic sig-
nal processing. However, iSleep employs novel techniques
to address the challenges specific to sleep-related event clas-
sification, including highly diverse acoustic profiles of sleep.

3 System Requirements and Challenges
iSleep is designed to be a “sleep diary” that provides the

user real-time, fine-grained feedback to their sleep quality on
a daily basis 1. Specifically, iSleep is designed to meet the
following requirements: (1) Since iSleep operates over night
while the user is asleep, it needs to be unobtrusive. It should
minimize the burden on the user, and the user should not feel
any kind of uncomfort when using the system. (2) iSleep
needs to provide fine-grained measurement, such as overall
sleep efficiency and the occurrences of events that may inter-
rupt sleep, such as cough and snore. Such fine-grained sleep
profiling helps the user understand what factors affect their
sleep quality. (3) iSleep needs to deliver robust monitoring
accuracy across different users, smartphones and sleep en-
vironments. (4) The users’ privacy needs to be strictly pro-

1iSleep is not designed or certified for clinical use, although the moni-
toring results provided by iSleep could be potentially useful for professional
diagnosis of sleep-related disease such as insomnia [8].
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Figure 1. The architecture of iSleep system.
tected. Due to the inherently private nature of sleep, any
concern (or even suspension) of privacy breach may preven-
t the adoption of sleep monitoring technology like iSleep.
For instance, the system should process the sensor samples
on the fly and only keep sleep-related data (e.g., the num-
ber/loudness of snores), instead of sending any raw sensor
samples to a remote server, because they may capture sensi-
tive information such as audio of sleep talks, conversations
before/after sleep and etc.

In order to meet these requirements, three major chal-
lenges need to be addressed in developing iSleep. First, in
order to effectively monitor the sleep quality in an unobtru-
sive manner, iSleep samples and analyzes acoustic signals
from the built-in microphone to detect sleep-related events.
Therefore, the user only needs to leave the phone somewhere
close to the bed (up to several meters). However, the built-in
microphone of smartphone is designed for capturing close
vocals, and usually has low sensitivity. Moreover, many
sleep-related events only generate low-intensity sound. For
example, the intensity of the sound from a roll-over move-
ment is typically only several dB higher than that of ambient
noise.

Second, iSleep needs to detect sleep-related events in a
robust manner across different users and environments. For
instance, different people likely snore in different ways in
terms of sound frequency and loudness. Moreover, even the
same person may snore differently due to the change of body
position overnight. Noises from appliances such as fans may
also have a major impact on the acoustic event detection ac-
curacy.

Lastly, in order to preserve users’ privacy, iSleep does not
store or transmit raw sound samples. Instead, sound data is
processed locally on the smartphone in real-time, while only
the event detection results such as the number of occurrences
of snore/cough/body movement are kept and shown to the
user. To capture the features of various acoustic events, the
microphone must be sampled at a high rate. Due to the re-
source constrains of smartphones, the acoustic processing
algorithms must be extremely lightweight in order to process
the data in real-time, while maintaining satisfactory event
detection accuracy.

4 System Overview
Keeping the above challenges in mind, we aim to build a

light-weight sleep quality monitoring system that is reliable
in detecting sleep-related events across different users and
environments. Fig. 1 shows the architecture of the iSleep
system. First, the acoustic signal is continuously sampled

at the frequency of 16 kHz from the microphone, and seg-
mented into frames. Second, the acoustic frames are fed
to Noise Detection, where the system determines whether a
frame only contains the sound of ambient noise. The mod-
el of ambient noise is then updated based on detected noise
frames. As a result, the system is able to adapt to the changes
of ambient noise. Third, acoustic features such as root mean
square and variance will be extracted from the frames that
potentially contain events of interest. The extracted features,
along with the updated ambient noise model, are fed to the
Sleep Event Detection, where sleep-related events such as
snoring, coughing and body movement will be detected.

iSleep derives both short-term (one-night) and long-term
sleep quality from sleep-related events according to two
well-established sleep scoring criteria: actigraphy and Pitts-
burgh Sleep Quality Index (PSQI) [12]. iSleep uses actig-
raphy to estimate the sleep/wake states overnight and then
computes a metric called sleep efficiency, which is the ra-
tio of actual sleep time to total in-bed time. Compared with
other quality measures such as sleep stages, sleep efficiency
provides a quantitative and more intuitive feedback to users.
In addition to one-night sleep efficiency, iSleep employs P-
SQI to estimate long-term sleep quality over multiple night-
s. PSQI is a self-rated questionnaire which assesses sleep
quality and disturbances over a long time interval. Based on
the detected events such as snoring and coughing, iSleep is
able to estimate the answers to several PSQI questions such
as “During the past month, how often have you had trou-
ble sleeping because you cough or snore loudly?”. Then a
sleep quality score can be calculated based on scoring rules
specified by PSQI.

As an unobtrusive, portable tool for in-place sleep mon-
itoring, Sleep has a potential in helping users improve their
sleep quality and stay healthy in many ways. For example,
by providing a sleeping profile that depicts details of sleep-
related events, iSleep allows the user to track the sleep effi-
ciency over time, relate bad sleep to possible causes like ex-
tensive snores which are otherwise hard to identify, and help
their healthcare providers diagnose trends related to certain
diseases. Moreover, the fine-grained sleep events detect-
ed by iSleep can greatly improve the fidelity of subjective,
questionnaire-based sleep assessment tools like PSQI whose
utility is otherwise impeded by the inaccuracy of subject’s
memory and perception.

5 System Design
In this section, we describe the design of the iSleep sys-

tem. First, we discuss the sleep-related events that iSleep can



detect, and the acoustic features used to detect those events.
Next, we describe how to estimate the ambient noise. Lastly,
we discuss sleep-related event classification. Our design is
based on careful analysis of real data of a long-term exper-
iment that involves 7 subjects and total 51 nights of sleep.
The details of the experimental setting are described in Sec-
tion 7.
5.1 Sleep Events and Feature Extraction

Since most people sleep in a relatively quiet environment
at night, iSleep categorizes the possible sounds during sleep
into sleep-related events, ambient noise, and other sounds
such as those caused by cars/trains passing by. Specifically,
the sleep-related events of interest include body movement,
snoring and coughing. Our key insight is that, even though
the acoustic profiles of sleep events are highly dependent on
each individual, they have distinguishable features in terms
of energy and frequency. For example, the dominant fre-
quency of snoring is much lower than that of other events.

In order to build a light-weight classifier that can adapt to
different individuals and environments, we choose three fea-
tures based on the key characteristics of each sleep-related
event. The first feature is root mean square (rms), which cap-
tures the loudness of sound. Let f be a frame that consists of
n samples of acoustic amplitude s1,s2, ...,sn. In our imple-
mentation, each frame contains 1,600 acoustic samples that
are collected at 16 kHz. The rms of the frame is given by

rms( f ) =

√
s2

1 + s2
2 + ...+ s2

n

n
(1)

where rms( f ) denotes the value of rms for frame f . The
second feature we choose is the ratio of low-band to high-
band energies (rlh). The change of rlh over time reflects the
transition of dominant frequency. The rise of rlh indicates
that the proportion of low-band energy in the total energy is
increasing. In other words, the dominant frequency is tran-
siting in the direction of high to low. For example, the dom-
inant frequency of snoring is significantly lower than that of
the ambient noise and other activities. As a result, the rise
of rlh can be used to effectively detect snoring. In order to
compute the rlh of frame f , we need to calculate the energy
of frame f in both low and high frequency bands. The low-
band frame f l is calculated by applying a low-pass filter as
follows,

sl
i = sl

i−1 +α× (si − sl
i−1) (2)

where sl
i is the i-th acoustic sample of the low-band frame

f l , and the default value of α is set to be 0.25. The high-
band frame f h is computed by applying a high-pass filter as
follows,

sh
i = α× (sh

i−1 + si − si−1) (3)

where sh
i is the i-th acoustic sample of the high-band frame

f h, and the default value of α is set to be 0.25. Then the rlh
of frame f , rlh( f ), is given by

rlh( f ) =
rms( f l)

rms( f h)
(4)
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Figure 2. Histograms of recorder noise generated by different de-
vices. The duration of acoustic data used is 4 seconds. The x-axis indi-
cates the normalized amplitude.
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Figure 3. The histogram of variance of std (Equ. 5) within 4-second
noise window. The data is extracted from real experiments, containing
3,644 noise windows (14,576 seconds).

The third feature is variance (var), which reflects how far the
amplitudes of acoustic signals within the frame are spread
out. For example, the var of a frame associated with body
movement is typically much lower than that of snoring or
coughing.

5.2 Noise Characterization
In a typical scenario, the events related to sleep quality,

including body movement and snoring, are rare while most
sounds are noise generated by various sources. Thus noise
identification is critical to the accuracy of detecting sleep-
related events. In this paper, we refer to the ambient sounds
that last for a relatively long period as noises, as opposed to
the short-duration sounds that are caused by a sleeping indi-
vidual. Specifically, acoustic noise is caused by two major
sources. The first is the background noise generated by the
recording unit itself while recording. The level of recorder
noise of built-in microphone of smartphone is much higher
than that of external standalone microphone. In addition, the
recorder noise level varies with different smartphones.

Fig. 2 shows the amplitude distributions of recorder nois-
es collected by sampling the microphones of 4 different de-
vices (iPhone 4s, Nexus 7, Nexus 4 and an external confer-
ence microphone) in a quiet room for 4 seconds. The sam-
pling frequency is 16 kHz and the value of each sample is
scaled to [−1,1] from its original 16-bit representation. We
can observe that the noise level of external conference mi-
crophone is substantially lower than those of the built-in mi-
crophones of smartphones. Among the smartphones, iPhone
4s generates the lowest level of recorder noise.

Another common source of noise is appliances that are
operating overnight (e.g., fan or air-conditioner). Fig. 4
shows the distribution of three features extracted from dif-
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Figure 5. (a) The histograms of sound intensity of different types of
noises. (b) The normalized standard deviation of each frame. The acous-
tic data is collected by iPhone 4s for a duration of 4 seconds.

ferent types of noises. Three groups of audio clips are used,
which are noise recorded by Nexus 4, noise with A/C oper-
ating recorded by Nexus 4, and noise recorded by Nexus 7.
The total length of each audio clips is around 140 minutes
(84000 frames), and they are extracted from data collected
from different users during sleep. We can observe that the
mean and standard deviation across different groups differ
substantially. For example, the operation of A/C results in
a wider distribution in all three features (rms, rlh and var).
However, a key observation is that most values in all three
cases fall within the range of mean± 3× std, regardless of
the types of the noises or smartphones used.
5.3 Noise Model Estimation

The result in Section 5.2 suggests that, the key feature
that differentiates noise from event-related sound is its rela-
tively stable variance. This is due to the fact that the noise
does not vary substantially within a short duration (i.e., a few
seconds). This observation allows us to design a simple yet
robust sleep-event detection method based on the noise pro-
file. The basic idea is to detect events based on the thresholds
of features that are calculated using the noise measurement.
To adapt to different environments, the system continuously
detects and updates the current noise model, which is used
to calculate the thresholds used to detect and classify sleep
events.

Specifically, iSleep first detects noise from a sequence
of frames with stable standard deviations. It involves two
steps. First, the system calculates the standard deviation
stdi = std( fi), where fi denotes the i-th frame, which cap-
tures the stability of acoustic signal within a frame. Howev-
er, the standard deviation varies with different devices and
noise profiles. Therefore, in order to to improve the robust-
ness of noise detection, we normalize the standard devia-
tion of each frame within a T -second window (containing
40 frames in our implementation) as follows:

stdi =
stdi − stdmean

stdmean − stdmin
(5)

where stdmean and stdmin denote the mean and minimum s-
tandard deviation within the current window W . Second,
the system calculates the variance of the normalized stan-
dard deviation within the window W . Fig. 3 shows the
histogram of the variance based on 3,644 noise windows

collected from real experiments conducted by different sub-
jects. We can see that the variances of most noise windows
are grouped within [0.4,0.5]. More than 95% variances are
below 0.5. Therefore, we use 0.5 as a threshold to detect
noise. Specifically, the frames within a noise window will
be considered as noise if the variance is lower than 0.5.

Fig. 5(b) plots the normalized standard deviation of dif-
ferent noises. We can see that, even though they have dif-
ferent acoustic amplitude distribution (shown in Fig. 5(b)),
the normalized standard deviations are similar. Since their
variances are lower than the preset threshold 0.5, they will
be classified as noise. The histogram in Fig. 6 shows the
distribution of acoustic signals for a duration of 4 second-
s. It contains a slight body movement lasting from around
2.8s to 3.8s. As the sound of the movement is very slight,
its distribution is close to that of noise without operating ap-
pliance. However, we can observe that the normalized stan-
dard deviation has a variance of 1.75, which clearly reflects
the movement event. Therefore, these frames will be classi-
fied as frames of interest and fed into the feature extraction
component.

A typical scenario at night is that the fan of A/C or heater
is automatically turned on and off, leading to a changing
noise profile. Fig. 7 shows the scenario where the air con-
ditioner is turned on. Fig. 7(b) shows the variance over the
past 4 seconds. In the detection result shown in Fig. 7(c),
we can observe that only a short period corresponding to
the transition is detected as non-noise sound. As such noise
misclassification only occurs in occasional transient states
of appliances, it does not affect the accuracy of sleep-related
event detection. Fig. 8 shows another typical scenario where
the sounds of sleep events are included. We can see that on-
ly the parts without human generated sounds are detected as
noise. Therefore, our noise detection algorithm is able to
effectively detect changing noise.

After a sequence of frames is detected as noise frames,
iSleep calculates three features for each of the frames. In or-
der to estimate the current noise, iSleep computes the mean
and standard deviation (mean(rms), std(rms), mean(rlh),
std(rlh), mean(var) and std(var)) for each feature. Then,
each newly calculated distribution feature Fnew will be used
to update the current corresponding feature (Fcur) according
to an Exponential Moving Average (EMA) algorithm as fol-
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lows,

Fcur = Fcur +β× (Fnew −Fcur) (6)

In our implementation, the default value of β is set to be
0.5. The EMA algorithm ensures that estimated noise model
adapt to the changing noise profile. After the features of
current noise are updated, they will be stored and used in the
event detection process.
5.4 Event Detection

The main objective of sleep-related event detection is to
achieve robust performance across different users, smart-
phone platforms and environments. iSleep adopts an adap-
tive event detection algorithm that adapts to the estimated
noise model. First, acoustic features are extracted and nor-
malized for each frame that is not detected as noise frame.
Then, based on the normalized features (rms, rlh and var),
frames are classified. Lastly, we apply operators in mathe-
matical morphology [29] to the classification results to filter
out false-positive and false-negative errors.
5.4.1 Feature Extraction

iSleep normalizes the features of each frame based on the
current measurement of noise. Such a calibration process
allows the system to adapt to different devices and environ-
ments. For example, the rms value of frame f is normalized
as follows,

rms( f ) =
rms( f )−mean(rms)

std(rms)
(7)

where rms( f ) is the normalized rms, mean(rms) and
std(rms) are the current distribution features associated with
rms extracted from the noise. Likewise, rlh and var are also
normalized using the corresponding distribution features of
the noise and the results are denoted as rlh( f ) and var( f ),
respectively.

Fig. 10 shows the distribution of three normalized fea-
tures. It is plotted from the data collected from 7 subject-
s using 3 different devices during a one-week experiment.
Fig. 11 shows the zoom-in plot after excluding coughing
and taking events. The frames associated with each event
are manually labeled and extracted. Then the three features
of each frame are calculated and normalized using the cur-
rent model of the noise. Four test subjects live close to the

railway, and one subject lives in an apartment with automat-
ic central A/C. In addition, the three devices have different
noise profiles. However, Fig. 10 and 11 show that, after
normalization, the same events are grouped together and d-
ifferent groups are clearly separable.

5.4.2 Event Classification
Motivated by the results in Fig. 10 and 11, we design

a decision-tree based classifier (shown in Fig. 9) to de-
tect sleep-related events. Compared with other more ad-
vanced classification techniques such as SVM (support vec-
tor machine) [11], decision tree requires less computational
resources, while achieving satisfactory accuracy for simple
feature vectors. Fig. 12 shows the splitting conditions of
the decision tree. The dotted rectangles indicate the splitting
features, and the leaf nodes denote the classification results.
The splitting features and thresholds are determined based
on the information gain calculated using entropy. Specifi-
cally, the entropy of a node T is given by

Entropy(T ) =−∑
j

p( j) · log(p( j)) (8)

where p( j) is the relative frequency of class j at node T .
Since iSleep focuses on detecting three sleep events, there-
fore, j = 3. After splitting node T into k nodes (T1, T2, ...
Tk), the information gain is given by

G = Entropy(T )− [
k

∑
j=1

ni

n
Entropy(Tj)] (9)

where n j is the number of samples in node Tj and n is the
number of samples in node T . For each splitting, the system
chooses the split that maximizes the information gain.

Next, we describe the classification process in detail.
First, the non-noise frames are split into two groups accord-
ing to the rlh, which captures the dominant frequency. S-
ince rlh is the ratio between low-band and high-band energy,
high rlh means low dominant frequenc. As we can observe
in Fig. 12(a), this splitting condition is able to separate the
sounds into two groups; one group includes sounds of noise,
movement and coughing with relatively high frequency, and
another group includes other sounds with lower dominant
frequencies.
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Then the frames in the high-frequency group are further
split into two groups based on var, shown in Fig. 12(a). S-
ince var reflects how far the intensities of acoustic signals
within the frame are spread out, it is able to separate frames
caused by coughing from those caused by movement and
noise in the high-frequency group. Therefore, the system is
able to detect cough frames at this stage. Likewise, as shown
in Fig. 12(c), in the low-frequency sound group, frames con-
taining snore can also be detected according to var.

In the third branch shown in Fig. 9, we aim to split the
frames caused by movement and noise according to rms.
Both sounds have relatively high dominant frequency and
low variance. As shown in Fig. 12(b), since the sound inten-
sity of movement is higher than that of noise, rms is able to
separate the frames caused by movement from those caused
by noise. As a result, the movement frames are detected at
this stage.

5.4.3 Handling Mis-classifications
As the occurrence of most events results in clustered

frames, isolated event frames are likely false positives.
Therefore, after event frames are detected, we apply the
opening operator in mathematical morphology [29] to fil-
ter out isolated frame events. Mathematical morphology is
widely used in the identification of geometrical structures in
image processing. Specifically, single or continuous event
frames can be filtered out if the number of these continu-
ous frames is less than the operator diameter (default value
is 5). We apply the closing operator [29] to the resultant
frame sequence after applying the opening operator, in or-
der to connect those event areas with narrow gaps between
them. This is because the narrow gap between two continu-
ous event frame clusters is likely false negative. Specifically,
if the length of the gap is less than the diameter of closing
operator, the frames within the gap will be classified as event
frames. Finally, we apply dilation operator [29] with the di-

ameter of 2 frames to the continuous event frames. This will
result in an expansion of 2 frames on both ends of the event
frame sequences. The purpose of dilation is to ensure that
the “edge” of this event is included.

Fig. 16 shows the event detection process in a typical s-
cenario. The duration of the acoustic signal is 85 seconds,
where the body movement of the user (18-26th second) is
followed by a sequence of snoring events (38-83th second).
Figure 16(a), (b) and (c) show the normalized features. We
can observe that the increase of rlh clearly reflects the snor-
ing event. The movement events usually have the similar
rlh with noise, but higher rms and var. In Fig. 16(d), the
first plot shows the classification result for each frame. We
can see that the movement and snoring events are detected
correctly, but several noise frames are misclassified as even-
t frames. The second plot in Fig. 16(d) shows the event
detection result after we apply the opening, closing and di-
lation operators. We can see that the isolated misclassified
frames are removed, and the gap between two sequences of
movement frames are closed. However, the snoring event at
around 58 second is also filtered out. This is mainly because
this particular snoring event is extremely short with very low
intensity. As a result, only a single frame within this snoring
event is detected as snoring frame. This frame is removed in
the opening operation, causing a false negative error. How-
ever, misclassifying a weak event is acceptable because its
impact on the final sleep quality assessment is negligible.

5.5 Two-user Scenario
iSleep is a “personal” mobile App that is designed to on-

ly monitor the sleep quality of a single user. When more
than one users sleep in the same room, we assume each user
runs a separate iSleep application on her/his own phone. In
the following, we focus on the two-user scenario while the
similar technique can be applied to more users. Fig. 17 illus-
trates a typical scenario where two individuals sleep in the
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Figure 16. The event detection process of a 85-second acoustic sig-
nal that contains sound of body movement and snoring. (a), (b) and
(c) show the features for each frame, respectively. (d) shows the event
detection results before and after opening, closing and dilation opera-
tions.

same bed and their phones are placed close to the bed, e.g.,
on two night stands. We assume that the phone is always
closer to its owner than the other person.

The major challenge for event detection in the two-user
scenario is that the sound of one user can be captured by
both phones, leading to inaccurate sleep quality assessment.
Moreover, since the microphones of different phones have d-
ifferent sensitivities (as shown in Fig. 2), the sound intensity
can not be used to reliably differentiate two users. Our key
idea of differentiating the events of two users is to compare
the rms associated with the events. As discussed in Section
7.3.3, rms decreases when the phone is located further from
the user. This is because rms indicates the loudness of the
sound. For instance, in Fig. 17, the distance between user A
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Figure 17. The process of differentiating the events of two users.

and phone B is longer than that between user A and phone
A. Therefore, for the sound of user A, the rms calculated by
phone A is larger than that by phone B.

In addition, since rms is normalized by the noise model
measured by each phone, the impact of difference in micro-
phones’ sensitivities is mitigated. Fig. 13 shows the rms
and rms of audio clip recorded by three devices (Nexus 4,
Galaxy Nexus and Nexus 7) at the same distance. In Fig.
13(a), we can see that there exist substantial differences in
rms, especially between Nexus 7 and the other two devices.
However, Fig. 13(b) shows that, after normalizing rms by
the current noise model, the impact brought by different de-
vices is minimized. In other words, two phones can compare
their distances to the sound source according to rms. Fig.
14 shows how the moving events of two users are detected,
where the users and phones are located as shown in Fig. 17.
We can see that, during user B’s movement, the rms calcu-
lated by phone B is higher than that calculated by phone A.
Thus iSleep is able to recognize two users by comparing the
rms calculated by two phones.

Specifically, this process involves three steps. First,
iSleep sends the computed rms and the timestamps of corre-
sponding frames to a server. Second, the server groups the
data sent by the phones in the same room. The phones in
the same room generate very similar rms series (see Fig. 13
and Fig. 14) although their amplitudes are different. This
observation allows the server to easily identify the phones in
the same room without knowing their exact locations. Third,
for each event, the server compares the rms computed by t-
wo phones in the same room and sends back the larger value
to each phone. We note that the amount of traffic between
the phone and server is light. According to data collected
from 7 iSleep users, the rms generated during a single night
of sleep is about 1 kB.
5.6 Sleep Scoring

iSleep uses the detected sleep-related events to derive
quantitative measures of sleep quality based on two criteria.
One is actigraphy that only requires information about body
movement of a whole-night sleep. The other is PSQI, where
all the detected events are considered jointly for estimating
the sleep quality.

In our implementation of actigraphy-based estimation,
iSleep adopts similar method proposed in [30], where the
sleep/wake state of a minute is determined by taking 4 pre-
vious minutes and 2 following minutes into account. The
model takes the form:



A1 Time to go bed at night
A2 Minutes taken to fall asleep
A3 Get-up time in the morning
A4 Hours of actual sleep per night
B1 Cannot sleep within 30 minites
B2 Wake up in the middle of the night or early morning
B3 Cannot breath comfortably
B4 Cough or snore loudly

Table 1. Metrics from PSQI that iSleep uses to estimate the sleep
quality.

Duration of Sleep A4
Sleep Disturbance B1, B2, B3, B4
Sleep Latency A2, B1
Sleep Efficiency A1, A3, A4

Table 2. The left column is the components in PSQI that can be
derived from detected events. The right column is the metrics that are
used to calculate the corresponding component score.

D =P(W−4A−4 +W−3A−3 +W−2A−2 +W−1A−1

+W0A0 +W+1A+1 +W+2A+2)
(10)

where P is a scale factor for the entire equation, W−i, W0 and
W+i represent the weighting factor for the previous minute,
current minute and following minute, and A−i, A0 and A+i
indicate the activity scores for the previous minute, current
minute and following minute, respectively. If D ≥ 1, the
state of the current is determined as wake, whereas D ≤ 1
means the current minute is in sleep state. The model used
in iSleep adopts the weighting factors suggested in [30]. It
takes the following form:

D =0.125(0.15A−4 +0.15A−3 +0.15A−2 +0.08A−1

+0.21A0 +0.12A+1 +0.13A+2)
(11)

where the activity score A is the number of frames associat-
ed with body movement in each minute. Fig. 15 shows the
prediction of wake/sleep state over a 8-hour recording dur-
ing sleep. The first plot shows the calculated activity scores
for each minute. The second plot shows the calculated D
value by using Eqn. 10. The last plot is the sleep/wake esti-
mation result. We can see that the user changes from sleep
state to wake state 4 times throughout the night. The dura-
tion of each wake state lasts around 10 minutes. The sleep
efficiency is defined as the ratio of actual sleep time to total
in-bed time:

Sleep E f f iciency =
Tsleep

Tsleep +Twake
(12)

For the long-term sleep quality estimation, iSleep calcu-
lates the scores of 4 components listed in Table 2 from PSQI.
In order to calculate the component scores, iSleep measures
the metrics listed in Table. 1 based on the detected events.
However, some of the metrics used to calculate the score
of Sleep Disturbance can not be measured by iSleep. For
example, some of them are related to the bedroom’s temper-
ature, whether having dream, or feeling pain during sleep.
As a result, instead of using the 9 metrics, iSleep uses only
4 metrics that can be inferred from the detected events and
scales the score by multiplying 9

4 . The scoring rules of the
other components are the same as specified in PSQI.
6 Implementation

iSleep is implemented on Android 4.2.2 Jelly Bean. The
application file has a size of around 1 MB and takes 2.7 MB

(a) (b) (c)

Figure 18. The user interface of iSleep. (a) The screen showing sleep
efficiency and sleep states over night. (b) The screen showing the sleep
events detected overnight and the normalized loudness of each event.
(c) The screen showing the history of sleep efficiencies and events.

storage on the phone after installed. It requires about 20 MB
RAM allocation while running. The displaying and process-
ing functions are implemented in separate threads to ensure
the timeliness of acoustic sampling and processing.

iSleep samples the built-in microphone at 16 KHz. The
samples are buffered and segmented into frames with the du-
ration of 0.1 second. Based on the variance, iSleep detects
non-noise frames and noise-frames. Noise frames are used
to estimate current noise distribution. Then, according to
the noise distribution and features extracted from the non-
noise frames, iSleep detects sleep-related events and saves
them for further processing. Lastly, for each night, iSleep
uses actigraphy to generate a short-term sleep quality report
according to the movement events. For each week, iSleep
estimates the long-term sleep quality according to PSQI and
all the detected sleep events. To protect the users’ priva-
cy, iSleep only buffers the raw acoustic signal for the last
4 seconds and the buffered data is erased after the feature
extraction.

We have released an initial version of iSleep on the
Google Play Store [2]. The screen shots are shown in Fig.
18. The application is easy to use and understand. Before
sleep, the user only needs to start the app and put the phone
on the nightstand within 6 feet of the bed. iSleep prevents
the CPU from sleeping, so that it can still keep running af-
ter the screen is turned off by pressing the power button.
After getting up, the user needs to stop the monitoring to
see the sleep efficiency and detected sleep events. Within
6 days of release, iSleep has been installed by around 100
users from more than 9 countries on various Android de-
vices. The feedbacks collected from the Google Play Store
and the app show that users like to use iSleep to track their
sleep quality and be aware of their sleep events. For exam-
ple, Hossam (who has ties with the authors) gave iSleep the
top rating and left the review:

“I am discovering new things about my sleeping
habits using this App. It’s very easy to use and
it reflects the quality of my sleep very accurately!
Thumbs up !!!”

7 Evaluation
In this section, we evaluate the performance of iSleep us-

ing experiments. Our primary results show that iSleep is
able to effectively capture various sleep events and accurate-
ly estimate the sleep quality of the user.
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7.1 Experimental Setting
We conduct three sets of experiments to evaluate the per-

formance of iSleep. Section 7.2 presents the experimental
results of a long-term experiment that involves 7 subjects
and total 51 nights of sleep. Section 7.3 presents micro-
benchmarks that evaluate the system performance under d-
ifferent settings and environmental factors. Section 7.4 e-
valuates iSleep based on the data collected from its Android
application released on Google Play Store.

Two metrics are used to quantify the performance of sleep
event detection. Event detection accuracy (EDA) evaluates
the accuracy of snoring and coughing detection. It is de-
fined as the ratio of the number of correctly detected events
to the total number of events. A snoring or coughing even-
t is successfully detected as long as a subset of the frames
associated with it is correctly classified. For instance, a s-
noring event containing 10 frames is considered as detect-
ed if iSleep correctly classifies at least one of these frames.
This is mainly because iSleep only considers the number of
occurrences of these two types of events when calculating
PSQI scores. Moreover, the duration of a single snoring or
coughing event is relatively short (typically around 1 sec-
ond). Therefore, for our application, it is not necessary to
detect the exact duration of these events.

Another performance metric used in our evaluation is
frame detection accuracy (FDA). Different from EDA, FDA
quantifies the performance of body movement detection. It
is defined as the percentage of the correctly classified move-
ment frames in all frames associated with the movement.
This is because the calculation of activity score D (Eqn. 11)
in actigraphy is based on the number of frames associated
with body movement in each minute. Therefore, it is impor-
tant to evaluate iSleep’s accuracy in detecting the duration
of body movement.

Our both evaluation metrics are based on true positive re-
sults, because the classification algorithm yields very few
false positive results. The reason for this is two fold. First,
the acoustic features we chose are very effective in differen-
tiating different events. As a result, a sleep event is rarely
mis-classified as another type of event. Second, adaptive
noise modeling and the mathematical morphology adopted
by iSleep can effectively eliminate the noise frames that are
mis-classified as sleep events.

subject No. of Nights Move (FDA) Snore (EDA) Cough (EDA)
1 13 91.7% 585/601(97.3%) 0/0
2 6 92.0% 0/0 0/0
3 12 89.8% 114/122(93.4%) 0/0
4 7 93.4% 0/0 0/0
5 4 94.1% 0/0 0/0
6 4 92.2% 0/0 85/85
7 5 90.1% 0/0 0/0

total 51 91.9% 699/723(96.7%) 85/85

Table 3. The event detection result based on the data collected from
7 subjects and total 51 nights of sleep.

7.2 Long-term Experiment
In this section, we present the result of a long-term ex-

periment. 7 participants (2 males, 5 females) are recruited
for data collection. The duration of the data collection for
each participant varies from 3 to 14 days. There are totally
51 nights of sleep during the experiment.

The experimental platform used in data collection is com-
posed of three components. First, two smartphones/tablets
are put on both sides of the subject to collect acoustic data
during sleep. The distance between the phone and the sub-
ject is around 5 feet, unless otherwise specified. The record-
ed audio clips are stored on the phones and retrieved for
analysis after the experiment. Second, an omnidirectional
microphone (Snowball USB Microphone) is attached on the
headboard to collect the high-quality audio as ground truth
of snoring and coughing events. A small laptop is connected
with the microphone to store recorded audio clips. In or-
der to minimize the impact of the noise from laptop fan, we
place the laptop 16 feet away from the bed and connect it
with the microphone using a long cable. Third, in order to
record the ground truth of body movements, an iPod touch is
used to log the acceleration data of the user during sleep. It
is put inside a sport armband attached to the subject’s lower
leg.

After the data collection, we first synchronize the data
captured by different devices. Then the snoring and cough-
ing events are manually labeled from the high quality audio
clips recorded by external microphones. The acceleration
data collected by the iPod attached to the leg is used to ob-
tain the ground truth for movement events. To evaluate the
accuracy of sleep quality monitoring, each subject is asked
to fill a PSQI questionnaire about how they feel about their
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Figure 20. The sleep states and events of user 1 and 6 during the long-term experiment. The sleep states are calculated using the body movements
based on actigraphy.
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Figure 21. The noise levels (with 95% confidence interval) of two
subjects during the long-term experiment.

sleeps during the period of data collection. The question-
naires are then used to correlate with the sleep quality mea-
sures calculated by iSleep.

Our evaluation is based on the data collected from 7 sub-
jects and total 51-night sleeps. The overall detection results
are shown in Table 3. We can see that the movement detec-
tion accuracies are relatively stable across different subjects,
and the average FDA is 91.9%. The snoring detection accu-
racy is 97.3% and 93.4% for subject 1 and 3, respectively.
The system achieves 100% coughing detection accuracy for
subject 6.

Fig. 19 shows the sleep efficiency and sleep events de-
tected by iSleep during the experiment. There are two snor-
ers (user 1 and 3) out of seven subjects. Specifically, user 1
usually snores periodically (every 2 or 3 seconds) for a dura-
tion of around one minute. User 3 snores more sporadically.
Another observation is that coughing events are detected for
user 6 during the first three days of experiment. This is due
to the fact that user 6 happened to catch a cold. The num-
ber of coughing events gradually decreases every night as
the user recovers. We can see that the users who snore or
cough during sleep are more likely to have more dynamic
and lower sleep efficiency. The main reason is that snores
and coughs are usually followed by body movements, which
indicate wakefulness of the user.

Fig. 20 shows the detailed sleep states and events detect-
ed by iSleep of user 1 and 6. We have several interesting
observations: (1) Most of the snoring and coughing events
are accompanied by body movements, which cause the sub-
ject to transition from sleep state to wake state. (2) User 1
usually snores during 2 to 5 am. (3) At the fifth night, user 1
got in bed about 1.5 hours later than she usually does. Due
to the reduction of sleep time, her sleep efficiency is signif-
icantly lower than the other 12 nights. (4) The low sleep
efficiency of user 6 is caused by her relatively short sleep
time (around 7 hours) and frequent body movement due to

the cold symptoms. The subjects are enthusiastic about these
patterns of their sleep discovered in the experiment, and ex-
pressed interests in adopting tools like iSleep for long-term,
daily sleep monitoring. We also note that iSleep users are
able to make these observations easily on their own through
the interface of iSleep shown in Fig. 18.

We observed different noise profiles in the sleeping envi-
ronments of participants. Fig. 21 shows the noise intensity
at different nights for User 3 and User 6. Although the noise
level for each subject is relatively stable over time, the noise
of User 6 is louder and substantially more dynamic than that
of User 3. The high-quality audio data of external micro-
phone confirms that this was due to the louder A/C in User
6’s home. Despite the substantial differences in sleeping en-
vironments of different subjects, iSleep achieved consistent-
ly high detection accuracy, as shown in Table 3.

In order to evaluate the performance of measuring long-
term sleep quality, we compare the 4 component scores
(shown in Table 2) that are obtained from the subjects’ PSQI
questionnaires and iSleep. According to the scoring rules of
PSQI, each component is scored on a scale of 0 to 3, where
0 means better and 3 means worse. For example, the score
of Sleep Efficiency is calculated as follows:

Sleep Efficiency ≥85%, score=0;
75%≤ Sleep Efficiency <85%, score=1;
65%≤ Sleep Efficiency <75%, score=2;
Sleep Efficiency <65%, score=3.

iSleep calculates the component scores according to the
same rules based on the detected sleep events. Table 4
shows the scores computed from subject questionnaires and
by iSleep. We can observe that there is only one mismatch
for Duration of Sleep, Sleep Disturbance, and Sleep Laten-
cy. And the score discrepancy for each mismatch is only
one. This result demonstrates that iSleep can accurately pre-
dict users’ answers to these questions based on objective as-
sessment of sleep-related events. As a result, iSleep can be
used as a reliable sleep diary that significantly reduces users’
burden on remembering the details of their past sleeps.

7.3 Micro-benchmarks
This section presents a set of micro-benchmarks that e-

valuate the performance of iSleep under various distance and
noise settings. We also evaluate iSleep in two-user scenarios
and its processing overhead and impact on battery lifetime.



Ground truth: Detection result:move move

Figure 22. Event detection results based on
a 10-second audio clip recorded at different dis-
tances (3, 6, and 9 feet). The movement events
are labeled. (a), (b) and (c) show their features.
(d), (e) and (f) are the detection results.
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Figure 23. The accuracy of user recognition in
two-user scenarios. In each experiment, six pairs
of devices are used. The audio in each experi-
ment contains movement events for a duration of
around 10 minutes.
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Figure 24. The impact of distance between
the phone and the user on detection accuracy of
movement. The acoustic data for each distance is
collected from a 6.5-hour real experiment.

Subject Duration of Sleep Sleep Disturbance Sleep Latency
PSQI iSleep PSQI iSleep PSQI iSleep

1 1 1 1 1 1 1
3 2 2 1 1 1 1
4 1 1 1 1 0 1∗
5 1 1 1 1 1 1
6 3 3 3 2∗ 1 1
7 2 1∗ 1 1 0 0

Table 4. The comparison of PSQI scores provided by the subjects
and computed by iSleep. The component score ranges from 0 (best) to
3 (worst). The scores of iSleep that do not match those from subjects’
PSQI questionnaires are labeled by *.

7.3.1 Impact of Distance
In real scenarios, users likely place their phones at dif-

ferent distances from the bed. In order to evaluate iSleep’s
performance with respect to the distance between the phone
and the user, we put phones at 3, 6 and 9 feet away from the
user during sleep, respectively. The evaluation for each dis-
tance is based on a one-night experiment that lasts about 6.5
hours containing movement and snore events. The result of
movement detection is shown in Fig. 24. We can see that in-
creasing the distance between the phone and the user leads to
lower movement detection accuracy. When the distances are
3 feet and 6 feet, the mis-classifications are mainly caused
by minor leg or arm movements with relatively low sound
intensity. However, when the distance is 9 feet, the sound
intensity of movement events is substantially reduced. An-
other observation is that, the FDAs of different devices are
relatively consistent at the same distance. This is because the
acoustic features used in classification are normalized by the
current noise model, making the detection robust against the
differences in microphones’ sensitivities.

Fig. 22 shows the features and detection results of a 10-
second audio clip captured from different distances. We can
observe that the increase of distance leads to lower rms and
var. As a result, the frames on the edges of a movement
event with low sound intensity are more likely to be mis-
classified as noise. However, the detection of snore events is
not affected by distance because of the significantly higher
sound intensity.

Next, we investigate the accuracy of recognizing two
users under different device and distance settings. As dis-
cussed in Section 5.5, iSleep compares the rms calculated
by two devices to differentiate the events of different users.
We focus on body movement events here because they have
lower intensity than other events and hence are more diffi-

Device pair 1 ft. 1.5 ft. 2 ft. 2.5 ft. 3 ft.
pair 1 60/62 58/58 66/66 61/61 60/60
pair 2 59/62 57/58 65/66 61/61 60/60
pair 3 60/62 57/58 66/66 61/61 60/60
pair 4 57/62 55/58 65/66 60/61 60/60
pair 5 60/62 57/58 65/66 60/61 60/60
pair 6 57/62 56/58 64/66 60/61 59/60

Table 5. The user recognition accuracy by taking the majority vote
for each movement event. The details devices are shown in Fig. 23.

cult to differentiate. The recognition accuracy is defined as
the percentage of movement frames which are correctly as-
sociated with the user. Six pairs of devices are used for each
setting of distance difference. For each pair, one device is
put 3 feet away from the user, while the other is located at 4,
4.5, 5, 5.5 and 6 feet away, respectively.

Fig. 23 shows the recognition accuracy based on rms of
each frame. We can observe that, the accuracy raises with
the difference of distances. Moreover, the pairs consisting
of the same model of devices result in higher recognition ac-
curacy (over 91%), because their microphones have similar
sensitivity. However, since each sleep-related event is com-
posed of a sequence of frames, the recognition accuracy can
be improved by taking a simple majority vote of the frames.
As shown in Table 5, the average recognition accuracy is im-
proved to 98%. The mis-recognitions mainly occur on the
movement events with a short duration, such as a slight leg
jerking for less than one second. When the distance differ-
ence is 1.5 feet or further, iSleep can achieve a recognition
accuracy of more than 95%.

7.3.2 Impact of Noise
We now examine the impact of noise on the performance

of iSleep. The evaluation is based on the real data containing
body movements, snoring, coughing, and noises from vari-
ous appliances including a humidifier (around 9 feet away
from the bed), a ceiling fan (around 8 feet above the bed)
and the central A/C (two vents on the ceiling of the bed-
room). The operational time of each of these appliances is
at least 2.5 hours. iSleep can reliably detect all the snoring
and coughing events under different noises. The result of
movement detection is shown in Fig. 25. We can observe
that the operation of appliances increases the average noise
level, leading to an up to 10% drop in FDA. This is mainly
because when the noise level rises, some movement frames
with low sound intensity are mis-classified as noise. Specifi-
cally, iSleep can still achieve over 90% movement detection
accuracy, while the ceiling fan and humidifier are operating.
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Figure 25. The impact of appliance noise on movement detection
accuracy, based on the data from a real real experiment that lasts about
10 hours.

noise Truth: coughmove

Result: noise update move cough

Figure 26. Event detection in the presence of operating A/C. (a), (b)
and (c) show the acoustic features over time. (d) shows the detected
noise frames that are used to update current noise model. (e) is the
detection result.

Fig. 26 shows a typical event detection process in the p-
resence of noise. The duration of the audio clip is 40 second-
s, when the A/C starts operating at 0 second. We can observe
that during the first 4 seconds, the rlh rises from around 0 to
around 20, due to the low-frequency sound from A/C. Then
the sound of the first 4 seconds is detected as noise, and used
to update the noise model. As a result, the rlh falls back to
around 0 at the 5th second. At the 9th second, the rlh rises
again, due to the speed change of the A/C fan. iSleep detects
sound from 10 to 14 seconds as noise, and updates the noise
model at the 14th second.
7.3.3 Processing Time and Energy Consumption

We expect the smartphone to be connected to the charger
when iSleep is used for the whole night. However, users may
forget to charge the phone, or would like to use iSleep during
short naps without having to charging the phone. We now
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Figure 27. The actual sleep times and in-bed times of 4 iSleep App
users.

Phones ND FE ED Total % of CPU Time
Nexus 7 30ms 38ms 0.15ms 68.15ms 1.7%
Nexus 4 28ms 36ms 0.13ms 64.13ms 1.6%
Nexus S 67ms 88ms 0.27ms 155.27ms 3.9%

Galaxy Nexus 40ms 53ms 0.15ms 93.15ms 2.3%
Galaxy Note II 33ms 40ms 0.15ms 73.15ms 1.8%

Table 6. The average CPU time consumed by different components
of iSleep to process 4-second acoustic data. (ND: noise detection, FE:
feature extraction, ED: event detection).

evaluate the processing time of each component of iSleep
and the system energy consumption. The evaluation results
based on 5 devices are shown in Table 6. We can see that the
feature extraction component consumes the most process-
ing time among all components, since three features need
to be computed for each frame. Thanks to the light-weight
decision-tree based classifier, the event detection component
only consumes around 0.2% of total CPU time. We also e-
valuate energy consumption of iSleep based on the battery
usage data from the Android system. Since the screen is
turned off, computation and microphone sampling are the
major sources of power consumption. On average, iSleep
consumes around 4% battery per hour (excluding the system
consumption of Android). This result suggests that, a fully
charged phone running iSleep likely survives a full night of
usage without connecting to the charger.
7.4 Evaluation using iSleep App Data

This section presents a preliminary evaluation based on
the data of real iSleep users. We collected data from the
Android phones that downloaded and installed iSleep from
Google Play Store during the first week after the release of
iSleep. Although there were more than 100 installs, as ex-
pected, many users opted out the data collection. The infor-
mation collected include users’ ratings on the accuracy of
sleep efficiency computed by iSleep as well as the numbers
of various events detected during each night (no raw acous-
tic data was collected). On the screen of monitoring results,
iSleep shows a slide bar (see Fig. 18) that allows the user to
rate the accuracy of the sleep efficiency measured by iSleep
on a scale of 0 (not accurate) to 100 (very accurate). The
average of 25 scores on sleep efficiency from users is above
85%. Fig. 27 shows the results of four users randomly cho-
sen from those who participated in the data collection. We
can see that, both the total in-bed time and actual sleep time
are relatively consistent for the same user, reflecting the us-
er’s normal sleep behavior. A detailed analysis of the results
also suggests that the shorter sleep time is usually caused by
either snoring or extensive body movement. Another obser-
vation by correlating the sleep efficiency and user ratings is
that, users are more likely to give low feedback scores when
the measured sleep efficiency is low.
8 Conclusion and Future Work

We have described the design, implementation, and eval-
uation of iSleep – a practical system to monitor an individu-
al’s sleep quality using off-the-shelf smartphone. Compared
with existing solutions, iSleep is very easy to use and un-
obtrusive. iSleep uses the built-in microphone of the smart-
phone to detect the events that are closely related to sleep
quality, including body movement, couch and snore, and in-
fers quantitative measures of sleep quality based on actig-
raphy and Pittsburgh Sleep Quality Index (PSQI). A key
challenge in the design of iSleep is to address the high level
of diversity in users’ sleep behavior, sleeping environments,



and user devices. iSleep adopts a lightweight algorithm to
classify various sleep-related events based on carefully se-
lected statistical acoustic features. iSleep adapts to dynam-
ic ambient noise characteristics to improve the robustness
of classification. We have evaluated iSleep extensively in a
long-term experiment that involves 7 participants and total
51 nights of sleep. Our results show that iSleep achieves
above 90% accuracy for sleep-rated event classification in a
different settings. The fine-grained sleep profile measured
by iSleep also enabled users to track details of sleep events
over time and discover irregular sleep patterns.

We plan to improve the design of iSleep in several aspect-
s. The high-rate microphone sampling is a major source of
energy consumption. We will investigate an adaptive sam-
pling scheme in which the microphone is sampled at a low
rate, and only sampled at a higher rate when a potential event
is detected. To this end, we will leverage several signal pro-
cessing techniques such as exponential differential filter to
detect sudden changes of acoustic features. We will also
perform more detailed analysis of the data collected from
iSleep users. By integrating mobile apps for daily activity
recognition, we will also investigate the correlation between
the user’s activities during the day and quality of sleep at
night.

Environmental factors such as room temperature play an
important role in quality of sleep. In the future, we plan to
integrate iSleep with tools that can monitor sleep environ-
ments [22]. This will enable in-depth analysis of causes of
interrupted sleep and irregular sleep patterns, providing im-
portant information for healthcare providers to find trends
related to certain diseases.
9 Disclaimer

We have obtained IRB approval from the primary au-
thors’ institution for the use of human subjects in this study,
including the controlled experiments and the data collection
from our mobile app. Required by IRB, the data collection
consent form of our mobile app must include the contacts of
PI and IRB office. To conceal author identity, we have re-
leased two versions of our mobile app on Google Play. The
first version, by name iSleep, does not collect data from user-
s and hence requires no content form. We have removed any
information from iSleep download page that may reveal the
identifies of authors. The second version, whose name is not
included in this paper, was used to collect data for this paper
and contains necessary IRB information.
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