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Preface 

Nonlinear partial differential equations (PDEs) is a vast area. and practition- 
ers include applied mathematicians. analysts. and others in the pure and ap- 
plied sciences. This introductory text on nonlinear partial differential equations 
evolved from a graduate course I have taught for many years at the University 
of Nebraska at  Lincoln. It emerged as a pedagogical effort to  introduce. at a 
fairly elementary level. nonlinear PDEs in a format and style that is accessible 
to students with diverse backgrounds and interests. The audience has been a 
mixture of graduate students from mathematics. physics, and engineering. The 
prerequisites include an elementary course in PDEs emphasizing Fourier series 
and separation of variables. and an elementary course in ordinary differential 
equations. 

There is enough independence among the chapters to  allow the instructor 
considerable flexibility in choosing topics for a course. The text may be used 
for a second course in partial differential equations. a first course in nonlinear 
PDEs, a course in PDEs in the biological sciences. or an advanced course in 
applied mathematics or mathematical modeling. The range of applications in- 
clude biology. chemistry. gas dynamics, porous media. combustion. traffic flow. 
water waves. plug flow reactors. heat transfer. and other topics of interest in 
applied mathematics. 

There are three major changes from the first edition, which appeared in 
1993. Because the original chapter on chemically reacting fluids was highly 
specialized for an introductory text. it has been removed from the new edi- 
tion. Additionally. because of the surge of interest in mathematical biology. 
considerable material on that topic has been added; this includes linear and 
nonlinear age structure. spatial effects. and pattern formation. Finally. the text 
has been reorganized with the chapters on hyperbolic equations separated from 
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the chapters on diffusion processes. rat,her than int,ermixirig them. 
The references have been updated and. as in the previous edition. are se- 

lected to suit, t,he needs of an introductory text. point'ing the reader to parallel 
treatments and resources for further study. Finally, many new exercises have 
been added. The exercises are intermediate-level and are designed to build t,he 
students' problem solving techniques beyond what is experienced in a beginning 
course. 

Chapter 1 develops a perspective on how to understand problems involving 
PDEs and horn the subject, interrelakes wit'li physical phenomena. The subject 
is developed from the basic conservation law. which, when appended to consti- 
tutive relations, gives rise to the fundamental models of diffusion. advection, 
and reaction. There is emphasis on understanding that nonlinear hyperbolic 
and parabolic PDEs describe evolutionary processes: a solution is a signal that 
is propagated int,o a spacetime domain from the boundaries of that domain. 
Also. there is focus on the structure of the various equations arid what the terms 
describe physically. Chapters 2-3 deal with wave propagation and hyperbolic 
problems. In Chapter 2 we assume that the equations have smooth solutions 
and we develop algoritlinis to solve the equat,ions analytically. In Chapter 3 we 
study discontinuous solutions and shock format,ion. and we introduce the con- 
cept of a weak solution. In keeping with our strategy of thinking about initial 
waveforms evolving in time. we focus on the initial 1-alue problem rather than 
the general Cauchy problem. The idea of characteristics is central and forms 
the thread that, weaves through t,hese two chapters. Next. Chapter 4 introduces 
the shallow-water equations as the prototype of a hyperbolic system. arid those 
equations are taken t'o illustrate basic concepts associat,ed wit,h hyperbolic sys- 
t e m :  characteristics. Riemann's method. the hodograph transformation. and 
asyrnpt'otic behavior. Also. the general classification of systems of first-order 
PDEs is developed. and weakly nonlinear methods of analysis are described: 
the latter are illustrated by a derivation of Burgers' equation. 

Chapters 1-4 can form t,he basis of a one-semester course focusing on wave 
propagation. characteristics, and hyperbolic equations. 

Chapter 5 introduces diffusion processes. After establishing a probabilist,ic 
basis for diffusion, we examine methods that are useful in studying the solution 
structure of diffusion problems. including phase plane analysis. similarity meth- 
ods. and asymptotic expansions. The prototype equations for reaction-diffusion 
and advection-diffusion. Fisher's equation and Burgers' equation. respectively. 
are studied in detail with emphasis 011 traveling wave solutions. the st,abilit,y 
of those solutions. arid the asymptotic behavior of solutions. The Appendix 
to  Chapt,er 5 reviews phase plane analysis. In Chapter 6 we discuss systems 
of reaction-diffusion equations, emphasizing applications and model building, 
especially in t,he biological sciences. \Ye expend some effort addressing theoret- 
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ical concepts such as existence, uniqueness, comparison and maximum princi- 
ples. energy estimates, blowup. and invariant sets: a key application includes 
pattern forniation. Finally, elliptic equations are introduced in Chapter  7 as a 
asymptotic limit of reaction-diffusion equations: nonlinear eigenvalue problems, 
stability. and bifurcation phenomena forin the core of this chapter. 

Chapter 1, along with Chapters 5-8. can form the basis of a one-semester 
course in diffusion and reaction-diffusion processes. with emphasis on PDEs in 
mathematical biology. 

I want to acknowledge many users of the first edition who suggested im- 
pro.\ ements, corrections. and new topics. Their excitement for a second edition. 
along with the unwavering encouragement of my editor Susanne Steitz-Filler at 
JYiley. provided the stimulus to actually complete it. M y  own interest in nonlin- 
ear PDEs was spawned over many years by collaboration with those with whom 
I have had the privilege of working: Kane Yee at Kansas State. John Bdzil at 
Los Alamos. *4sh Kapila at Rensselaer Polytechnic Institute. and several of my 
colleagues at Nebraska (Professors Steve Cohn. Steve Dunbar. Tony Joern in 
biology. Glenn Ledder. Tom Shores. Vital! Zlotnik in geology, and my former 
student Bill \Volesensky. now at the College of Saint Rlary). Readers of this 
text \\-ill see the influence of the classic books of G. B. IVhitham (Lznear  and 
Nonlznear Waues) and J. Smoller (Shock  W a v e s  and  Reactaon-Dzffuszon Equa- 
tzons). R. Courant and K. 0. Friedrichs (Supersonzc Flow and  Shock W a v e s ) .  
and the text on mathematical biology by J. D. Murray (Mathematzeal  Bzology). 
Finally, I express niy gratitude to the National Science Foundation and to the 
Department of Energy for supporting my research efforts over the last several 
years 

J .  David Logan 
Lincoln. Kebraska 





Introduction to Partial Differential 
Equations 

Partial differential equations (PDEs) is one of the basic areas of applied analy- 
sis, and it is difficult to imagine any area of applications where its impact is not 
felt. In recent decades there has been tremendous emphasis on understanding 
and modeling nonlinear processes; such processes are often governed by nonlin- 
ear PDEs. and the subject has become one of the most active areas in applied 
mathematics and central in modern-day mathematical research. Part  of the 
impetus for this surge has been the advent of high-speed, powerful computers. 
where computational advances have been a major driving force. 

This initial chapter focuses on developing a perspective on understanding 
problems involving PDEs and how the subject interrelates with physical phe- 
nomena. It also provides a transition from an elementary course. emphasizing 
eigenfunction expansions and linear problems. to  a more sophisticated way of 
thinking about problems that is suggestive of and consistent with the methods 
in nonlinear analysis. 

Section 1.1 summarizes some of the basic terminology of elementary PDEs, 
including ideas of classification. In Section 1.2 we begin the study of the ori- 
gins of PDEs in physical problems. This interdependence is developed from the 
basic, one-dimensional conservation law. In Section 1.3 we show how consti- 
tutive relations can be appended to the conservation law to obtain equations 
that model the fundamental processes of diffusion, advection or transport. and 
reaction. Some of the common equations. such as the diffusion equation. Burg- 
ers’ equation, Fisher’s equation. and the porous media equation, are obtained 

A n  Introductzon to Nonlznear Partzal Dzfferentzal Equatzons, Second Edztaon 
By J. David Logan 
Copyright @ 2008 John &?ley & Sons. Inc. 



2 1. Introduction t o  Partial Differential Equations 

as models of these processes. In Section 1.4 we introduce initial and boundary 
value problems to see how auxiliary data specialize the problems. Finally. in 
Section 1.5 we discuss wave propagation in order to  fix the notion of how evo- 
lution equations carry boundary and initial signals into the domain of interest. 
iTJe also introduce some common techniques for determining solutions of a cer- 
tain form (e.g., traveling wave solutions). The ideas presented in this chapter 
are intended to build an understanding of evolutionary processes so that the 
fundamental concepts of hyperbolic problems and characteristics, as well as 
diffusion problems, can be examined in later chapters with a firmer base. 

1.1 Partial Differential Equations 

1.1.1 Equations and Solutions 

A partzal dafferentzal equataon is an equation involving an unknown function of 
several variables and its partial derivatives. To fix the notion. a second-order 
PDE an two zndependent vartables is an equation of the form 

G ( z . t ,  u.u,. U ~ . Z L , , . U ~ ~ ? U , ~ )  = 0. ( ~ . t )  E D. (1.1.1) 

where. as indicated. the independent variables x and t lie in some given domain 
D in R2.  By a solutzon to  (1.1.1) we mean a twice continuously differentiable 
function u = u(x .  t )  defined on D that. when substituted into (1.1.1). reduces 
it to an identity on D.  The function u(z ,  t )  is assumed to be twice continuously 
differentiable. so that it makes sense to calculate its first and second derivatives 
and substitute them into the equation: a smooth solution like this is called a 
classzcal solutzon or genuzne solutzon. Later we extend the notion of solution 
to  include functions that may have discontinuities, or discontinuities in their 
derivatives: such functions are called weak solutzons. The xt domain D where 
the problem is defined is referred to as a spacetzme domaan, and PDEs that 
include time t as one of the independent variables are called evolutzon equa- 
tions. When the two independent variables are both spatial variables, say. z 

and y rather than x and t .  the PDE is an equzlzbrzum or steady-state equation. 
Evolution equations govern time-dependent processes, and equilibrium equa- 
tions often govern physical processes after the transients caused by initial or 
boundary conditions die away. 

Graphically. a solution u = u ( x . t )  of (1.1.1) is a smooth surface in three- 
dimensional xtu space lying over the domain D in the xt plane, as shown 
in Figure 1.1. An alternative representation is a plot in the xu-plane of the 
function u = u(x .  t o )  for some fixed time t = t o  (see Figures 1.1 and 1.2). Such 
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X 

Figure 1.1 Solution surface u = u(z . t )  in xtu space. also showing a time 
snapshot or wave profile u(2. t o )  at time t o .  The functions f 3  g .  and h represent 
values of u on the boundary of the domain. which are often prescribed as initial 
and boundary conditions. 

Figure 1.2 Time snapshot u(z .  t o )  at  t = t o  graphed in xu space. Often several 
snapshots for different times t are graphed on the same set of xu coordinates 
to indicate how the wave profiles are evolving in time. 

representations are called t i m e  snapshots  or wave profiles of the solution: time 
snapshots are profiles in space of the solution u = u ( z . t )  frozen at  a fixed 
time t o ?  or. stated differently, slices of the solution surface at  a fixed time to. 
Occasionally. several time snapshots are plotted simultaneously on the same 
set of xu axes to indicate how profiles change. It is also helpful on occasion to  
think of a solution in abstract terms. For example, suppose that u = u ( z . t )  
is a solution of a PDE for z E R and 0 5 t 5 T .  Then for each t .  u ( z , t )  is a 
function of J: (a profile), and it generally belongs to  some space of functions X. 
To fix the idea, suppose that X is the set of all twice continuously differentiable 
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functions on R that approach zero at infinity. Then the solution can be regarded 
as a mapping from the time interval [O.T] into the function space X; that is. 
to each t in [O.T] we associate a function u ( . . t ) ,  which is the wave profile a t  
time t .  

A PDE has infinitely many solutions, depending on arbitrary functions. For 
example. the wave equatzon 

utt - c 2 u,, = 0 (1.1.2) 

has a general solution that is the superposition (sum) of a right traveling wave 
F ( x  - c t )  of speed c and a left traveling wave G ( x  + ct)  of speed c; that  is, 

U(X. t )  = F ( x  - c t )  + G ( x  + ct)  (1.1.3) 

for any twice continuously differentiable functions F and G. (See the Exercises 
at the end of this section.) We contrast the situation in ordinary differen- 
tial equations. where solutions depend on arbitrary constants: there, initial or 
boundary conditions fix the arbitrary constants and select a unique solution. 
For PDEs this occurs as well: initial and boundary conditions are usually im- 
posed and select one of the infinitude of solutions. These auxiliary or subsidiary 
conditions are suggested by the underlying physical problem from which the 
PDE arises. or by the type of PDE. A condition on u or its derivatives given 
at  t = 0 along some segment of the x axis is called an znztzal condztzon. while 
a condition along any other curve in the xt plane is called a boundary condz- 
taon. PDEs with auxiliary conditions are called znztzal value problems.  boundary 
value problems. or anztzal-boundary value problems.  depending on the type of 
subsidiary conditions that are specified. 

Example. The initial value problem for the wave equation is 

Utf, - c 2 u,, = 0. 2 E R. t > 0. (1.1.4) 

u(x. 0 )  = f (x), Ut(.. 0) = g(x). z E R, (1.1.5) 

where f and g are given twice continuously differentiable functions on R. The 
unique solution is given by (see Exercise 2) 

1 
2 

u(x. t )  = - [ f ( x  - c t )  + f(. + ct)] + - (1.1.6) 

which is D ‘  Alembert’s f o rmula .  So, in this example we think of the auxiliary 
data (1.1.5) as selecting one of the infinitude of solutions given by (1.1.3). Kote 
that the solution at (x. t )  depends only on the initial data (1.1.5) in the interval 
[ z - c t , x + c t ] .  0 
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Statements regarding the single second-order PDE (1.1.1) can be general- 
ized in various directions. Higher-order equations (as well as first-order equa- 
tions). several independent variables. and several unknown functions (governed 
by systems of PDEs) are all possibilities. 

1.1.2 Classification 

PDEs are classified into different types. depending on either the type of phys- 
ical phenomena from which they arise or a mathematical basis. As the reader 
has learned from previous experience, there are three fundamental types of 
equations: those that govern diffusion processes, those that govern wave propa- 
gation. and those that govern equilibrium phenomena. Equations of mixed type 
also occur. We consider a single. second order PDE of the for 

U ( X .  t ) ~ , ,  + 2 b ( ~ .  t)u,t + C ( X .  t)ut* = d ( x .  t ,  U .  u,. u t )?  ( ~ . t )  E D ,  (1.1.7) 

where a ,  b. and c are continuous functions on D ,  and not all of a ,  b. and c 
vanish simultaneously at some point of D .  The function d on the right side is 
assumed to be continuous as well. Classification is based on the combination 
of the second-order derivatives in the equation. If we define the dzscrzmznant 
A by A = b2 - a c ,  then (1.1.7) is hyperbolzc if A > 0, parabolac if A = 0, and 
ellaptzc if A < 0. 

Hyperbolic and parabolic equations are evolution equations that govern 
wave propagation and diffusion processes, respectively, and elliptic equations 
are associated with equilibrium or steady-state processes. In the latter case. we 
use 2 and y as independent variables rather than x and t .  There is also a close 
relationship between the classification and the kinds of initial and boundary 
conditions that may be imposed on a PDE to obtain a well-posed mathematical 
problem. or one that is physically relevant. Because classification is based on 
the highest-order derivatives in (1.1.7). or the prznczpal part  of the equation, 
and because A depends on x and t .  equations may change type as x and t vary 
throughout the domain. 

Now we demonstrate that equation (1.1.7) can be transformed t o  certain 
simpler, or canonzcal. forms. depending on the classification. by a change of 
independent variables 

[ = [ ( x ,  t ) .  7 = q(2. t ) .  (1.1.8) 

S;Te now perform this calculation. with the view of actually trying to determine 
(1.1.8) such that (1.1.7) reduces to a simpler form in the [q coordinate system. 
The transformation (1.13) is assumed to be invertible. which requires that the 
Jacobian J = &rjt - ttrj, be nonzero in any region where the transformation 
is applied. A straightforward application of the chain rule, which the reader 
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can verify, shows that the left side of (1.1.7) becomes. under the change of 
independent variables (1.1.8) 

au,, + 2bu,t + cutt + . . = AuCC + 2BuC, + Cu,, + . . . , (1.1.9) 

where the three dots denote terms with lower-order derivatives. and where 

Notice that the expressions for A and C have the same form, namely 

aoz + 2bdzp t  + CQ:. 

and are independent. 

end. set 
In the hyperbolzc case me can choose ( and r j  such that A = C = 0. To this 

aoz + 2 b 0 , ~ t  + co; = 0. (1.1 . l o )  

Because the discriminant A is positive, we can write (1.1.10) as (assume that 
a is not zero) 

To determine d. we regard it as defining loci (curves) in the xt plane via the 
equation O(X. t )  = const. The differentials dx  and dt along one of these curves 
satisfy the relation p,dx + Qtd t  = 0 or d t /dx  = -Q,/&. Therefore 

(1.1.11) 

is a differential equation whose solutions determine the curves d(x, t )  = const. 
On choosing the + and - signs in ( l . l . l l) ,  respectively, we obtain { ( z . t )  and 
q(2 . t )  as integral curves of (1.1.11). making A = C = 0. Consequently. if 
(1.1.7) is hyperbolic, it can be reduced to  the canonzeal hyperbolzc f o r m  

UEv + ' . . = 0, 

where the three dots denote terms involving lower-order derivatives (we leave 
it as an exercise to show that B is nonzero in this case). 

The differential equations (1.1.1 1) are called the characterzstac equatzons 
associated with (1.1.7). and the two sets of solution curves [(x. t )  = const and 
rj(x. t )  = const are called the characterzstzc curves. or just the characterzstzcs: [ 
and r j  are called characterzstzc coordanates. In summary, in the hyperbolic case 
there are two real families of characteristics that provide a coordinate system 
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where the equation reduces to a simpler form. Characteristics are the funda- 
mental concept in the analysis of hyperbolic problems because characteristic 
coordinates form a natural curvilinear coordinate system in which to examine 
these problems. In some cases. PDEs simplify to ODES along the characteristic 
curves. 

In the parabolic case (b2 - a c  = 0 )  there is just one family of characteristic 
curves. defined by 

Thus we may choose E = {(x~ t )  as an integral curve of this equation to  make 
A = 0. Then. if = q(x,t) is chosen as any smooth function independent of 
E (i.e.. so that the Jacobian is nonzero). one can easily determine that B = 0 
automatically. giving the parabolzc canonzcal form 

UEE + ' ' . = 0. 

Characteristics rarely play a role in parabolic problems. 
In the elliptic case (b2 - ac < 0) there are no real characteristics and, as in 

the parabolic case. characteristics play no role in elliptic problems. However, it 
is still possible to eliminate the mixed derivative term in (1.1.7) to obtain an 
elliptic canonical form. The procedure is to determine complex characteristics 
by solving (l.l .ll)% and then take real and imaginary parts to  determine a 
transformation (1.1.8) that makes A = C and B = 0 in (1.1.9). We leave it as 
an exercise to show that the transformation is given by 

Then the elliptic canonical form is 

u,, + ua3 + ' .  . = 0. 

where the Laplacian operator becomes the principal part. 

Example. It is easy to see that the characteristic curves for the wave equa- 
tion (1.1.2). which is hyperbolic, are the straight lines x - ct = const and 
x + ct = const. These are shown in Figure 1.3. In this case the characteristic 
coordinates are given by < = x - c t  and 17 = x+ct. In these coordinates the wave 
equation transforms to  ucr, = 0. We regard characteristics as curves in space- 
time moving with speeds c and -c. and from the general solution (1.1.3) we 
observe that signals are propagated along these curves. In hyperbolic problems. 
in general, the characteristics are curves in spacetime along which signals are 
transmitted. 0 
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x t ct = const x - ct = const 

Figure 1.3 Characteristic diagram for the wave equation showing the forward 
and backward characteristics x - ct = const and x + ct = const. 

If the coefficients a ,  b. and c of the second-order derivatives in equa- 
tion (1.1.7) depend on x. t ,  and u.  then (1.1.7) is called a quaszlznear equa- 
tion. In this case we make the same classification as above. depending on the 
sign of the discriminant A: now the type of the equation depends not only on 
the spacetime domain but also on the solution u itself. The canonical forms 
listed above are no longer valid in this case. and the characteristics defined 
by (1.1.11) cannot be determined a priori since a .  b. and c depend on u. the 
unknown solution itself. Therefore. there is a significant increase in difficulty 
when the principal part of the equation is nonlinear. 

There are other ways to  approach the classification problem. In the pre- 
ceding discussion the focus was on determining transformations under which 
a simplification occurs. In Section 6.1 we take a different perspective and ask 
whether it is possible to determine the solution u near a curve where the values 
of u and its first derivatives are known. That discussion is accessible to the 
reader at the present juncture, if desired. Yet another view of classification is 
presented in Chapter 4. where hyperbolic systems are discussed. Finally. from a 
physical perspective, we observe later in this chapter that hyperbolic problems 
are associated with wave propagation: parabolic problems, with diffusion; and 
elliptic problems. with equilibria. 

1.1.3 Linear versus Nonlinear 

The most important classification criterion is to distinguish PDEs as linear or 
nonlznear. Roughly, a homogeneous PDE is linear if the sum of two solutions is 
a solution, and a constant multiple of a solutions is a solution. Otherwise. it is 
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nonlinear. The division of PDEs into these two categories is a significant one. 
The mathematical methods devised to deal with these two classes of equations 
are often entirely different, and the behavior of solutions differs substantially. 
One underlying cause is the fact that the solution space to a linear, homoge- 
neous PDE is a vector space, and the linear structure of that  space can be 
used with advantage in constructing solutions with desired properties that  can 
meet diverse boundary and initial conditions. Such is not the case for nonlinear 
equations. 

It is easy to find examples where nonlinear PDEs exhibit behavior with 
no linear counterpart. One is the breakdown of solutions and the formation of 
singularities. such as shock waves. A second is the existence of solitions, which 
are solutions to  nonlinear dispersion equations. These solitary wave solutions 
maintain their shapes through collisions, in much the same was as linear equa- 
tions do, even though the interactions are not linear. Nonlinear equations have 
come to the forefront because, basically. the world is nonlinear! 

Nore formally. linearity and nonlinearity are usually defined in terms of the 
properties of the operator that  defines the PDE itself. Let us assume that the 
PDE (1.1.1) can be written in the form 

Lu = F,  (1.1.12) 

where F = F ( z . t )  and L is an operator that  contains all the operations (dif- 
ferentiation. multiplication, composition, etc.) that  act on u = u(z . t )  . For 
example, the wave equation utt - u,, = 0 can be written Lu = 0. where L is 
the partial differential operator 8; - 82. In (1.1.12) we reiterate that all terms 
involving the unknown function u are on the left side of the equation and are 
contained in the expression Lu; the right side of (1.1.12) contains in F only 
expressions involving the independent variables z and t .  If F = 0, then (1.1.12) 
is said to  be homogeneous; otherwise. it is nonhomogeneous. We say that an 
operator L is lznear if it is additive and if constants factor out of the operator, 
that is, (1) L(u  + v)  = Lu + Lv, and (2) L(cu) = cLu. where u and v are func- 
tions (in the domain of the operator) and c is any constant. The PDE (1.1.12) 
is lznear if L is a linear operator: otherwise, the PDE is nonlznear. 

Example. The equation Lu = ut + uu, = 0 is nonlinear because. for example. 
L(cu) = cut + c2uu,. which does not equal cLu = c(ut + uu,). 0 

Conditions (1) and (2) stated above imply that a linear homogeneous equa- 
tion Lu = 0 has the property that if u1. u2.. . . , u, are n solutions. the linear 
combinat ion 

u = C l U l  + c2u2 + ’ .  . + C,U, 
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is also a solution for any choice of the constants c1, c2, . . . , en. This fact is called 
the superposztaon pranczple for linear equations. For nonlinear equations we can- 
not superimpose solutions in this manner. The superposition principle can often 
be extended to  infinite sums for linear problems. provided that convergence re- 
quirements are met. Superposition for linear equations allows one to construct. 
from a given set of solutions, another solution that meets initial or boundary 
requirements by choosing the constants c1. c2, . . . judiciously. This observation 
is the basis for the Fourier method. or eigenfunction expansion method, for 
linear. homogeneous boundary value problems, and we review this procedure 
at the end of the section. Moreover. superposition can often be extended to a 
family of solutions depending on a continuum of values of a parameter. More 
precisely. if u = u(x. t :  k )  is a family of solutions of a linear homogeneous PDE 
for all values of k in some interval of real numbers I .  one can superimpose these 
solutions formally using integration by defining 

where c = c ( k )  is a function of the parameter k .  Under certain conditions that 
must be established, the superposition u ( z . t )  may again be a solution. As in 
the finite case, there is flexibility in selecting c ( k )  to meet boundary or initial 
conditions. In fact, this procedure is the vehicle for transform methods for 
solving linear PDEs (Laplace transforms. Fourier transforms, etc.). We review 
this technique below. Finally. for a homogeneous, linear PDE the real and 
imaginary parts of a complex solution are both solutions. This is easily seen 
from the calculation 

L(v  + zm) = Lv + ZLW = 0 + 0 = 0. 

where the real-valued functions c and w satisfy Lv = 0 and Lw = 0. None 
of these methods based on superposition are applicable to  nonlinear problems. 
and other methods must be sought. In summary, there is a profound difference 
between properties and solution methods for linear and nonlinear problems. 

If most solution methods for linear problems are inapplicable to nonlinear 
equations, what methods can be developed? We mention a few. 

1. Perturbation Methods. Perturbation methods are applicable to  problems 
where a small or large parameter can be identified. In this case an approx- 
imate solution is sought as a series expansion in the parameter. 

2 .  Samalarzty Methods. The similarity method is based on the PDE and its 
auxiliary conditions being invariant under a family of transformations de- 
pending on a small parameter. The invariance transformation allows one 
to identify a canonical change of variables that reduces the PDE to an 
ordinary differential equation (ODE). or reduces the order of the PDE. 
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3. Characterastzc Methods. Nonlinear hyperbolic equations, which are associ- 
ated with wave propagation, can be analyzed with success in characteristic 
coordinates (i.e.. coordinates in spacetime along which the waves or signals 
propagate). 

4. Transformataons. Sometimes it is possible to identify transformations that 
change a given nonlinear equation into a simpler equation that can be 
solved. 

5. Numeracal Methods. Fast, large-scale computers have given tremendous im- 
petus to  the development and analysis of numerical algorithms to solve 
nonlinear problems and. in fact. have been a stimulus to to  the analysis of 
nonlinear equations. 

6 .  Travelzng Wave Solutaons. Seeking solutions with special properties is a key 
technique. For example. traveling waves are solutions to  evolution prob- 
lems that represent fixed waveforms moving in time. The assumption of 
a traveling wave profile to  a PDE sometimes reduces it to  an ODE, often 
facilitating the analysis and solution. Traveling wave solutions form one 
type of similarity solution. 

7.  Steady State Solutaons and Thew Stabalzty. Many PDEs have steady-state, 
or time-independent. solutions. Studying these equilibrium solutions and 
their stability is an important activity in many areas of application. 

8. Ad HOC Methods. The mathematical and applied science literature is replete 
with articles illustrating special methods that analyze a certain type of 
nonlinear PDE. or restricted classes of nonlinear PDEs. 

These methods are primarily solution methods. which represent one aspect 
of the subject of nonlinear PDEs. Other basic issues are questions of existence 
and uniqueness of solutions, the regularity (smoothness) of solutions. and the 
investigation of stability properties of solutions. These and other theoretical 
questions have spawned investigations based on modern topological and alge- 
braic concepts. and the subject of nonlinear PDEs has evolved into one of the 
most diverse, active areas of applied analysis. 

1.1.4 Linear Equations 

In this subsection we review, through examples, two techniques from elementary 
PDEs that illustrate the use of the superposition principles mentioned above. 
These calculations arise later in analyzing the local stability of equilibrium 
solutions to nonlinear problems. 
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Example. (Separatzon of Varzables) Consider the following problem for u = 

u(z ,  t )  on the bounded interval I : 0 5 z 5 1 with t > 0. that is 

u+. = Au. 0 < x < 1. t > 0. (1.1.13) 

u(0, t )  = u(1.t)  = 0, t > 0, (1.1.14) 

u(z.O) = f ( x ) .  0 5 z 5 1, (1.1.15) 

where A is a linear, spatial differential operator of the form 

Au = - ( p ~ z ) z  + qu. 

The functions p = p ( z )  and q = q(x) are given. with p of one sign on 1. and 
p ,  p ' .  and q continuous on I .  Problems of this type are solved by Fourier's 
method. or the method of eigenfunction expansions. The idea is to  construct 
infinitely many solutions that satisfy the PDE and the boundary conditions. 
equations (1.1.13) and (1.1.14)% and then superimpose them. rigging up the 
constants so that the initial condition (1.1.15) is satisfied. This technique is 
called separatzon of varaables, based on an assumption that the solution has 
the form u(x. t )  = g(t)y(z) .  where g and y are to be determined. When we 
substitute this form into the PDE and rearrange terms we obtain 

- 9/ - - Ay 
9 Y  

where the left side depends only on t and the right side depends only on x. A 
function o f t  can equal a function of x for all z and t only if both are equal to  
a constant. say, -A. called the separataon constant. Therefore 

and we obtain two ODES, one for g and one for y: 

9' = -Xg, -Ay = Xy. 

We say that the equation separates. If we substitute the assumed form of u 
into the boundary conditions (1.1.14). then we obtain 

y(0) = y(1) = 0. 

The temporal equation is easily solved to get g(t)  = cecxt ,  where c is an 
arbitrary constant. The spatial equation along with its homogeneous (zero) 
boundary conditions give a boundary value problem (BVP) for y: 

-Ay = Xy, O < X < I ,  

y(0) = y(1) = 0. 

(1.1.16) 

(1.1.17) 
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This BVP for y ,  which is differential eigenvalue problem called a Sturm- 
Lzouvalle problem. has the property there are infinitely many real. discrete 
values of the separation constant A. say, A = A,, n = 1 . 2 .  .... for which there 
are corresponding solutions y = y,(z). n = 1 . 2 .  .... The A, are called the ezgen- 
values for the problem and the corresponding solutions y = yn(z)  are called the 
ezgenfunctzons. The eigenvalues have the property that they are ordered and 
IAnl + m as n + cx;. Therefore we have obtained a countably infinite number 
of solutions to  the PDE that satisfy the boundary conditions: 

Xow. here is where superposition is used. We add up these solutions and pick 
the constants c, so that the initial condition (1.1.15) is satisfied, thus obtaining 
the solution to the problem; that is, we form 

n=l  

Formally applying the initial condition gives 

(1.1.18) 
n = l  

The right side is an expansion of the initial condition f in terms of the eigen- 
functions yn. and we can use it to determine the coefficients en. This calculation 
is enabled by a very important property of the eigenfunctions. namely, orthog- 
onality. If we define the inner product of two functions 0 and y by 

f' 

then we say Q and y are orthogonal if (4. $) = 0. The set of eigenfunctions yn 
of the Sturm-Liouville problem (1.1.16)-(1.1.17) are mutually orthogonal, or 

Therefore, if we multiply (1.1.18) by a fixed but arbitrary ym and formally 
integrate over the interval I ,  we then obtain 

n=l 

Because of orthogonality. the infinite series on the right side collapses to the 
single term c,(ym? y,). Therefore the coefficient c, is given by 
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This relation is true for any m. and so the coefficients c, are 

n = 1.2. ... ( f .  Y n )  

(Yn.  Yn) 
c, = ~ (1.1.19) 

Therefore, we have obtained the solution of (1.1.13)-(1.1.15) in the form of a 
series representation. or eigenfunction expansion, 

The preceding calculation took a lot for granted. but it can be shown rigorously 
that the steps are valid. 17 

An expansion of a function f(x) in terms of the eigenfunctions yn(x). as in 
(1.1.18). is called the generalized Fourzer serzes for f .  and the coefficients c,, 

given by (1.1.19), are the Fourzer coeficients. It can be shown that that the 
series converges in the mean-square sense: 

Pointwise and uniform convergence theorems require suitable smoothness con- 
ditions on the function f .  

The method of separation of variables is successful under general boundary 
conditions of the form 

C Y U ( O . ~ ) + ~ U , ( O . ~ )  = O .  y ~ ( l . t ) + d u , ( l . t )  = 0 ,  

where a ,  3, y, and 6 are given constants. Of course. the interval over which 
the problem is defined may be any bounded interval a 5 x 5 b; we chose 
a = 0 and b = 1 for simplicitl- of illustration. The method may be extended 
to problems over higher-dimensional. bounded, spatial domains, as well as to  
nonhomogeneous problems. For example, if the PDE in (1.1.13)-(1.1.15) is 
replaced by the nonhomogeneous equation 

U t  = AU + F ( x , t ) ,  0 < z < 1. t > 0. 

we can expand the nonhomogeneous term F as a Fourier series of the eigen- 
functions for the homogenous problem. or 

n=l 
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where the m(t) are the known Fourier coefficients ( t  is a parameter in the 
expansion) that can be computed from orthogonality property of the eigen- 
functions. Then we assume the solution takes the form 

n=l  

Substituting these forms into the PDE and the initial condition determines the 
cn( t )  and therefore the solution to the nonhomogeneous problem. 

Problems that are defined over infinite spatial domains require different 
techniques based on transform methods. 

Example. (Transform Method) Consider the following problem on an infinite 
spatial domain: 

U t  = uzz. 1 > 0. t > 0. 

t > 0. u(0 , t )  = 0, 

u(z .0)  = f(.), z > 0. 

Because there are two derivatives with respect to  z, we expect to  impose an- 
other boundary condition at infinity. Therefore. we demand that u be bounded 
as z + cm. Further. we assume that f is piecewise continuous and absolutely 
integrable over z > 0. We can proceed as in the preceding example and try a 
solution of the form u ( z , t )  = g ( t ) y ( z ) .  where g and y are to  be determined. 
Substituting into the differential equation leads to  

g /  = -Xg. -y” = Xy. 

where X is the separation constant. As before, g ( t )  = cePxt, where c is an arbi- 
trary constant. The boundary conditions imply that y is bounded and y(0) = 0. 
Thus we have the boundary value problem 

= Xy, z > 0. 

y(0) = 0, y bounded. 

This is a boundary value problem on the semi-infinite domain z > 0. If X 5 0 
there are no nontrivial. bounded solutions (check this), and therefore X > 0. 
Let us write X = k 2 ;  then the general solution to  the boundary value problem 
is 

y(z) = a sin k z .  

where a is an arbitrary constant and k > 0. Consequently we have found a 
family of solutions depending upon a parameter k :  

u(z, t ,  k )  = aePkZt  sin k z .  
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In contrast to  the last example, on a bounded interval. where the eigenval- 
ues were discrete, the eigenvalues in the present case form a continuum. We 
superimpose these solutions over all k and write 

u(z. t )  = a(tt)e-"t sin ~cz cik, iE 
where u ( k )  is a function of k .  We can determine u ( k )  from the initial condition. 
Putting t = 0 in the last equation gives 

roc 

(1.1.20) 

This is an integral equation from which we can recover a ( k )  using a special 
case of the Fourier integral theorem: Iff  is piecewise continuous and absolutely 
integrable on T > 0, and if 

f(z) = /I a ( k )  sin ~cz d k .  

then 

The function u is the Fourier sine transform of f .  and f is the inverse sine 
transform of a. Putting everything together gives an integral representation of 
the solution to the problem. namely 

u(z. t )  = 2 lm ( im f ( 6 )  sin k< dE e-lcZt sin kz dk  
7T 1 

f ( [ )  (1" e-ICZt sin kE sin kz  d k )  d<. 
0 

where we have changed the order of integration in the last step. Actually. the 
interior integral can be calculated analytically, or looked up in a table, which 
we leave as an exercise. 0 

The reader should notice the great similarity of the solution forms in these 
two examples-finite domain versus infinite domain, discrete eigenvalues versus 
a continuum of eigenvalues. and expansions in terms of sums versus integrals. 
The role of superposition is critical in linear problems, but it does not carry 
over to nonlinear problems. 

Terminology. We introduce some notation and terminology for some function 
spaces that commonly occur in analysis. Let D be an open domain (a set that 
does not contain any of its boundary) in either one or several dimensions. 
Because D is an open domain we do not have to  deal with the question of 
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existence of derivatives a t  boundary points. Using an overbar, D. we denote the 
closure of D.  which consists of D and its boundary dD;  that is, = D U dD.  
By C"(D)  we denote the set of all continuous functions on D that have n 
continuous derivatives in D (partial derivatives if D is of dimension greater 
than 1). The space of continuous functions on D is denoted by C ( D ) ,  and 
C"(D)  denotes the space of continuous functions on D that  have derivatives 
of all orders. When a function u belongs to one of these sets, e.g., C"(D) ,  we 
sometimes say that u is of class C" on D.  

EXERCISES 

1. Show that the wave equation utt - c2uZ, = 0 reduces to the canonical form 
u,c7 = 0 under the change of variables 5 = x - c t ,q  = x + ct, and use 
this information to  show that the general solution of the wave equation is 
u(x. t )  = F(x-ct)+G(z+ct),  where F and G are arbitrary C2(R) functions. 

2 .  Derive D'Alembert's formula for the initial value problem for the wave 
equation using Exercise 1 and determining F and G from the initial con- 
ditions. 

3. Let u be of class C3. Show that u = u(x. t )  is a solution of the wave equation 

Figure 1.4 Characteristic parallelogram A BCD whose sides are characteristic 
straight lines x-ct = const and x+ct = const. The numbers h and k are positive 
constants that define the size of ABCD. 
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utt - c2uXx = 0 if, and only if, u satisfies the difference equation 

u(x - ck;  t - h) + u(z  + ck .  t + h)  

= ~ ( 2  - ch, t - k )  + U ( Z  + ch. t + k )  

for all constants h,  k > 0. Interpret this result geometrically in the xtplane 
by observing that the difference equation relates the value of u at the 
vertices of a characteristic parallelogram whose sides are the characteristic 
straight lines x + ct = const and x - ct = const (see Figure 1.4). 

4. Assuming that the initial data f and g for the initial value problem for the 
wave equation in Exercise 3 have compact support (i.e., f and g vanish for 
1x1 sufficiently large), prove that the solution ~ ( x ,  t )  has compact support 
in x for each fixed time t .  

5. Find the general solution of the PDE 

x*uxx + 2ztuxt + t2utt = 0 

by transforming the equation to canonical form using characteristic coor- 
dinates E = t / x ,  q = t .  

6. Let u = u(z, t )  be a solution of the nonlinear equation 

a ( u x ,  U t ) U x x  + 2b(ux, U t ) U x t  + c(ux.  U t ) U t t  = 0.  

Introduce new independent variables via < = <(x.t) and 77 = q(z.t), and 
a new function d = 4 ( [ , ~ )  defined by 4 = zu, + tut - u. Prove that 
4~ = x. 4, = t ,  and d satisfies the h e a r  PDE 

a ( [ .  q)@,, - 2 b ( t .  17)&, + c(E, d4EE = 0. 

(This transformation. known as a hodograph, or a Legendre .  transformation. 
transforms a nonlinear equation of the given form to a linear equation by 
reversing the roles of the dependent and independent variables.) 

7. Find a formula for the solution of the initial-boundary value problem 

2 
utt = c uxx. x > 0,  t > 0.  

u(x. 0) = f ( x ) ,  Ut(.. 0) = g(z), x > 0,  

u(0.t)  = h ( t ) ,  t > 0. 

Hznt: Use D'Alembert's formula for 2 > ct and the difference equation in 
Exercise 3 for 0 < z < ct. Assume sufficient differentiability. 
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8. Solve the outgoing signaling problem 

2 
utt = c u,,. x > 0, t E R, 

u(0 , t )  = s ( t ) .  t E R. 

9. Consider the PDE 

4u,, + 5uxt + U t t  = 2 - U t  - u,. 

Find the characteristic coordinates and graph the characteristic curves in 
the xt plane. Reduce the equation to canonical form and find the general 
solution. 

10. Classify the PDE 
xu,, - 4utt = 0.  

In the case x > 0 find the characteristic coordinates and sketch the char- 
acteristics in an appropriate region in the xt plane. 

11. Use the separation of variables method to find a series representation of 
the solution to the following problems: 

(a) 

ut = Du,,. 0 < x < T ,  t > 0. 
u(0.t)  = 0. u(x,t) = 0, t > 0, 
u(z .0)  = f ( t ) ,  0 < x < x. 

2 
U t t  = c u,,; 0 < x < 1: t > 0, 

u(0; t )  = 0, u(1; t )  = 0, t > 0, 
u(x; 0) = 0, Ut(X; 0) = g(t) ,  0 < x < x. 

u,, + uyy = 0, 0 < x < 1, 0 < y < x, 
u(z,O) = 0. uy(x;x) = 0, 0 < x < 1, 

U ( 0 , Y )  = 0, U ( 1 , Y )  = S ( Y ) ,  0 < Y < x 

12. Find the general solution of the Euler-Darboux equation 

in the case m = 1. Hint: Look at  ((x - y ) ~ ) , ~ .  
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1.2 Conservation Laws 

lIany of the fundamental equations in the natural and physical sciences are 
obtained from conservataon laws. which are balance laws. equations expressing 
the fact that some quantity is balanced throughout a process. In thermody- 
namics. for example. the first law states that the change in internal energy in 
a system is equal to, or is balanced by. the total heat added to  the system plus 
the work done on the system. Thus the first law of thermodynamics is really an 
energy balance law. or conservation law. As another example. consider a fluid 
flowing in some region of space that consists of chemical species undergoing 
chemical reaction. For a given chemical species. the time rate of change of the 
total amount of that species in the region must equal the rate a t  which the 
species flows into the region, minus the rate at which the species flows out, 
plus the rate at which the species is created. or consumed. by the chemical 
reactions. This is a verbal statement of a conservation law for the amount of 
the given chemical species. Similar balance or conservation laws occur in all 
branches of science. In the biosciences. for example. the rate of change of an 
animal population in a fixed region must equal the birth rate, minus the death 
rate. plus the migration rate (emigration or immigration) into or out of the 
region. 

1.2.1 One Dimension 

ibthematically, conservation laws translate into integral or differential equa- 
tions, which are then regarded as the governzng equatzons or equataons of mo- 
tzon of the process. These equations dictate how the process evolves in time. 
Here we are interested in processes governed by partial differential equations. 
TYe now formulate the basic one-dimensional conservation law. out of which 
will evolve some of the basic models and concepts in nonlinear PDEs. 

Let us consider a quantity u = u(x. t )  that depends on a single spatial vari- 

x = a  x x = b  

Figure 1.5 Cylindrical tube of cross-sectional area A showing a cross section 
at x and a finite section I :  a 5 x 5 b. There is no variation of any quantity in 
a fixed cross section. 
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able x E R and time t > 0. We assume that u is a density or concentration 
measured in an amount per unit volume. where the amount may refer to  popu- 
lation, mass. energy. or any quantity. By definition. u varies in only one spatial 
direction. the direction denoted by x. M-e imagine further that  the quantity 
is distributed in a tube of cross-sectional area A (see Figure 1.5). Again. by 
assumption. u is constant in any cross section of the tube, and the variation is 
only in the x direction. Now consider an arbitrary segment of the tube denoted 
by the interval I = [a.  b ] .  The total amount of the quantity u inside I at time 
t is 

Total amount of quantity in I = u(x .  t ) A d x .  Lb 
Now assume that there is motion of the quantity in the tube in the axial 
direction. \Ye define the flux Q ( z . ~ )  of u at x at  time t as the amount of the 
quantity u flowing through the cross section at x at time t .  per unit area. per 
unit time. Thus the dimensions of o are [o] = amount/(area . time), where 
the bracket notation denotes dzmensaons of By convention, we take Q to  be 
positive if the flow at  x is in the positive x direction. and to be negative at x 
if the flow is in the negative x direction. Therefore. at time t the net rate that  
the quantity is flowing into the interval I is the rate that it is flowing in a t  
n: = a minus the rate that it is flowing out a t  x = b: 

Net rate that the quantity flows into I = Ao(a, t )  - Ad(b, t ) .  

Finally. the quantity u may be created or destroyed inside I by an external or 
internal source (e.g.. by a chemical reaction if u were a species concentration, or 
by birth or death if u were a population density). We denote this source func- 
tzon, which is a local function acting at each x, by f (z, t .  u) and its dimensions 
are given by [ f ]  = amount/(volume. time). (The source f could also depend on 
derivatives of u.) Consequently. f is the rate that u is created (or destroyed) 
a t  5 at time t .  per unit volume. Note that the source function f may depend 
on u itself. as well as space and time. I f f  is positive. we say that it is a source, 
and if f is negative. we say that it is a sznk. Kow. given f ,  we may calculate 
the total rate that  u is created in I by integration. We have 

Rate that quantity is produced in/ by sources = f (x. t .  u(x. t ) ) A  dx. l 
The fundamental conservation law may now be formulated for the quantity u: 
For any interval I .  we have 

Time rate of change of the total amount in 1 

= net rate that the quantity flom7s into I 

+ rate that the quantity is produced in I 
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In terms of the mathematical symbols and expressions that we introduced 
above, after canceling the constant cross-sectional area A. we have 

u(z ,  t )  dz = o(a. t )  - o(b, t )  + f (z .  t .  u )  dz. (1.2.1) f ih l 
In summary. (1.2.1) states that the rate that u changes in the interval I must 
equal the net rate at which u flows into I plus the rate that u is produced in I 
by sources. Equation (1.2.1) is called a conservatzon law zn zntegral form, and 
it holds even if u ,  Q. or f is not a smooth (continuously differentiable) function. 
The latter remark is important when we consider physical processes giving rise 
to shock waves. or discontinuous solutions, in subsequent chapters. 

If conditions are placed on the triad u. 6. and f .  then (1.2.1) may be trans- 
formed into a single PDE. Two results from elementary integration theory are 
required to  make this transformation: (1) the fundamental theorem of calculus. 
and (2) the result on differentiating an integral with respect to a parameter in 
the integrand. Precisely: 

1. J,bq2(5,t)dz = d(b.t) - d ( a , t ) .  

These results are valid if Q and u are continuously differentiable functions on R2. 
Of course. (1) and (2)  remain correct under less stringent conditions. but the 
assumption of smoothness is all that is required in the subsequent discussion. 
Therefore. assuming smoothness of u and 0. as well as continuity o f f .  equations 
(1) and (2) imply that the conservation law (1.2.1) may be written 

[lu,(z> t )  + oz(x. t )  - f(x. t ,  u)]  dz = 0 for all intervals I = [a.  b ] .  (1.2.2) 

Because the integrand is a continuous function of z. and because (1.2.2) holds 
for all intervals of integration I .  it follows that the integrand must vanish 
identically : 

u t + d , = f ( z , t . u ) .  Z E R .  t > 0 .  (1.2.3) 

Equation (1.2.3) is a PDE relating the density u = u ( z . t )  and the flux o = 

o ( x ,  t ) .  Both are regarded as unknowns, whereas the form of the source function 
f is assumed to  be given. Equation (1.2.3) is called a local conservatzon law. in 
contrast to the integral form (1.2.1). The oz term is called the flux term because 
it arises from the movement. or transport. of u through the cross section at z. 
The source term f is called a reactzon term (especially in chemical contexts) or 
a growth or anteractzon term (in biological contexts). Finally, we have defined 
the flux Q as a function of x and t ;  this dependence on space and time may occur 
through dependence on u or its derivatives. For example. a physical assumption 
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may require us to posit d(x. t )  = @(x. t ,  u(x, t ) ) .  where the flux is dependent on 
u itself. 

It is important to observe that (1.2.3) was derived under assumptions of 
smoothness. If smoothness of the density or flux is not guaranteed. as occurs in 
the study of discontinuous solutions, then (1.2.3) must be abandoned in favor 
of the integral form (1.2.1) of the conservation law, which is always valid. This 
issue becomes the focus of study in Chapter 3. 

Finally, we make a general observation about deriving conservation laws. 
In the preceding discussion the balance law was applied to  an entire interval 
I .  Assuming smoothness, we can derive the conservation law directly using a 
small interval [x.x + Ax] and then take the limit as Ax -+ 0. Applying the 
balance law to the small box [x? x + Ax]. we obtain 

d 
- (u(<,  t ) A  AX) = Ad(x. t )  - AQ(Z + AX. t )  + f ( t ,  7, ~ ( 7 .  t ) ) A  AX. 
d t  

where < and 17 are points in [x. x+ Ax]. guaranteed by the mean value theorem. 
Now, dividing by A A x  gives 

Taking the limit as Ax 4 0 gives the conservation law (1.2.3). These two 
methods for obtaining the conservation law are called, appropriately. the large- 
box method and the small-box method. 

1.2.2 Higher Dimensions 

It is straightforward to formulate conservation laws in higher dimensions. In 
this section we limit the discussion to three-dimensional Euclidean space R3. 
Let x = (x1.22.x3) denote a point in R3, and assume that u = u(x, t )  is a scalar 
density function representing the amount per unit volume of some quantity of 
interest distributed throughout a domain D c R3. In this domain let V be 
an arbitrary region with a smooth boundary denoted by dV. By an argument 
similar to the one-dimensional case. the total amount of the quantity in V is 
given by the volume integral 

Total amount in V = u(x, t )  dx. L 
where dx = dxldx2dx3 represents a volume element in R3. M’e prefer to write 
the volume integral over V with a single integral sign rather than the usual 
triple integral. Now. we know that the time rate of change of the total amount 
in V must be balanced by the rate that  the quantity is produced in V by 
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Figure 1.6 Volume V with boundary dV showing a surface element dS with 
outward normal n and flux vector 0. The outward normal determines the ori- 
entation of the surface element. 

sources. plus the net rate that the quantity flows through the boundary of V. 
SYe let f ( z , t . u )  denote the source term. so that the rate that the quantity is 
produced in V is given by 

Rate that u is produced by sources = f ( z ,  t .  u) dx  J,' 
In three dimensions the flow can be in any direction. and therefore the flux 

is given by a vector +(z . t ) .  If n(z) denotes the outward unit normal vector 
to the region V (see Figure 1.6). then the net outward flux of the quantity u 

through the boundary aV is given by the surface integral 

Net outward flux through dV = +(x. t )  . n(z) dS, 1" 
a ) d x = - L v  $ - n d S t l  fdz. (1.2.4) 

where dS denotes a surface element on dV. Hence, the balance law for u is 
given by 

The minus sign on the flux term occurs because outward flux decreases the rate 
that u changes in V. 

The integral form of the conservation law (1.2.4) can be reformulated as a 
local condition. that is, a PDE. provided that u and 0 are sufficiently smooth 
functions. In this case the surface integral can be written as a volume integral 
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over V using the divergence theorem (the divergence theorem is the fundamental 
theorem of calculus in three dimensions) 

h d i v + d z =  4.nd.S. (1.2.5) 

where div is the divergence operator. Using (1.2.5) and bringing the derivative 
under the integral on the left side of (1.2.4) yields 

s,, 

The arbitrariness of V then implies the differential form of the balance law: 

ut d i v 4  = f ( z . t . u ) ,  z E D. t > 0. (1.2.6) 

Equation (1.2.6) is the three-dimensional version of equation (1.2.3). 

EXERCISES 

1. The derivation of the fundamental conservation law (1.2.3) assumed the 
cross-sectional area A of the tube to be constant. Derive integral and dif- 
ferential forms of the conservation law assuming that the area is a slowly 
varying function of z. that is. A = A ( z )  and A’(s) is small. [Note that 
A ( z )  cannot change significantly over small changes in z: otherwise. the 
one-dimensional assumption of the state functions u and d being constant 
in any cross section would be violated.] 

2. Assuming that there are no sources and 4 = d(u). show that the conserva- 
tion law (1.2.1) is equivalent to 

i” u(z. t*) dz = .i” u(z, t l )  dz + 

for all tl and t 2 .  

1.3 Constitutive Relations 

Because equation (1.2.3). or (1.2.6). is a single PDE for two unknown quantities 
(the density u and the flux d). intuition indicates that another equation is re- 
quired to  have a well-determined system. This additional equation is a relation 
that is usually based on an assumption about the physical properties of the 
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Figure 1.7 Time snapshot of the density distribution u(x, t )  illustrating Fick's 
law. The arrows indicate the direction of the flow. from higher concentrations 
to lower concentrations. The flow is said to be down  the gradzent. 

medium. or the processes involved, which in turn is based on empirical reason- 
ing. Equations expressing these assumptions are called constztutive relatzons or 
equatzons of state.  Thus, a constitutive equation is on a different level from the 
basic conservation law: the latter is a fundamental law of nature connecting 
the density u to  the flux 0. whereas a constitutive relation is an approximate 
equation whose origin is in empirics. We present several key examples. 

Example. (Dzffuszon Equatzon)  At the outset assume that no sources are 
present (f = 0) and the process is governed by the basic conservation law 
in one dimension 

u t + &  = o .  2 E R. t > 0. (1.3.1) 

In many physical processes it is observed that the amount of the substance, 
represented by its density u. flowing through a cross section at x at  time t is 
proportional to the density gradient u,: that is, o(x.t) x u,(x,t). If u, > 0. 
then Q < 0 and the substance flows to the left, and if u, < 0, then q5 > 0 and 
the substance flows to  the right. Figure 1.7 illustrates the situation. We say 
that u flows down  the  gradzent. For example, the second law of thermodynamics 
states that  heat behaves in this manner: heat flows from hotter regions to  colder 
regions, and the steeper the temperature distribution curve. the more rapid the 
flow of heat. As another example. if u represents a concentration of insects, one 
may observe that insects move from high concentrations to low concentrations 
with a rate proportional to the concentration gradient. Therefore. we assume 
the basic constitutive law 

p(x. t )  = -Du,(x, t ) .  (1.3.2) 

which is known as Fzck's law. Processes described by this law are called lanear 
dzffuszon processes. The positive proportionality constant D is called the dzffu- 
szon constant.  and it has dimensions [D] = length2/time. Fick's law accurately 
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describes the behavior of many physical and biological systems, and in Chapter 
5 we give a supporting argument for it on the basis of a probability model and 
random walk. 

Equations (1.3.1) and (1.3.2) give a pair of PDEs for the two unknowns u 
and 0. They combine easily to form a single second-order linear PDE for the 
unknown density u = u(x. t )  given by 

ut - Du,, = 0. (1.3.3) 

Equation (1.3.3), called the dzffuszon equatzon. governs conservative processes 
when the flux is specified by Fick‘s law. It may not be clear at this time why 
(1.3.3) should be termed the diffusion equation; suffice it to note for the moment 
that Fick’s law implies that a substance moves into adjacent regions because of 
concentration gradients. We refer to the Dux,  term in (1.3.3) as the dzffuszon 
term. 0 

The diffusion constant D defines a crude characteristic time (or time scale) 
T for the process. If L is a length scale (eg. .  the length of the container). the 
quantity 

L2 
D 

T=- ( 1.3.4) 

is the only constant in the process with dimensions of time, and T gives a 
measure of the time required for discernible changes in concentration to  occur 
over the length L.  

Example. (Heat Equatzon) If u = u(x. t )  is the thermal energy density (energy 
per volume) in a heat-conducting medium. then u = pCT, where p is the mass 
density (mass per unit volume), C is the specific heat (energy per unit mass 
per degree). and T = T(x,t) is the temperature (degrees). In the absence of 
sources the conservation law is 

(pCT)t + 0, = 0. 

where 0 is the energy flux. The constitutive law, which is a heat analog of 
Fick’s law, is 

a = -KTx(x,  t ) ,  

where K is the thermal conductivity of the region. In heat transfer this is 
called Fourzer’s law of heat conductzon. Thus, heat energy moves down the 
temperature gradient. The conservation law becomes 

Tt - kTxx = 0, 

where k = K/pC is the diffusivity. This is the heat equation. which is just the 
diffusion equation in the context of heat flow. 0 
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Example. (Reactzon-Dzffuszon Equatzon) If sources are present ( f f 0 ) .  the 
conservation law 

ut + 0, = f(.. t .  u )  (1.3.5) 

and Fick's law (1.3.2) combine to give 

ut - Du,, = f(z? t .  u ) .  (1.3.6) 

which is called a reactaon-dtffuszon equataon. Reaction-diffusion equations are 
nonlinear if the reaction term f is nonlinear in u. These equations are of great 
interest in nonlinear analysis and applications, particularly in combustion pro- 
cesses and in biological systematics. 17 

Example. (Fzsher 's Equatzon) In studies of elementary population dynamics. 
one proposal is that populations are governed by the logistic law. which states 
that the rate of change of the total population u = u ( t )  in a fixed spatial 
domain is given by 

dt  
(1.3.7) 

where r > 0 is the growth rate and K > 0 is the carryzng capaczty. Initially. if u 
is small. the linear growth term ru in (1.3.7) dominates and rapid population 
growth results: as u becomes large. the quadratic competition term -ru2/K 
kicks in to inhibit the growth. For large times t ,  the population equilibrates 
toward the asymptotically stable state u = K .  the carrying capacity. Now we 
add spatial effects. Suppose that the population u is a population density and 
depends on a spatial variable z as well as time t :  that  is, u = u(z .  t ) .  Then. as 
in the preceding discussion. a conservation law may be formulated as 

(1.3.8) 

where f = f(u) = ru(1  - u / K )  is the assumed local source term given by the 
logistics growth law. and 0 is the population flux. Assuming Fick's law for the 
flux. we have 

ut - Du,, = ru 1 - - . (1.3.9) 

The reaction-diffusion equation (1.3.9) is Fzsher's equatzon. after R. A. Fisher. 
who studied the equation in the context of investigating the distribution of an 
advantageous gene as it diffuses through a given population. Discussion of this 
equation. which is one of the fundamental equations in mathematical biology. 
is given in subsequent chapters. 

( 2 

0 

Example. (Burgers' Equation) To the basic conservation law with no sources 
we now append the constitutive relation 

o = -Du, + Q(u).  (1.3.10) 
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The density u then satisfies 

ut - DUX, + Q(u) ,  = 0. (1.3.11) 

Now there are two terms contributing to  the flux, a Fick’s law type of term 
-Dux ,  which introduces a diffusion effect. and a flux term Q ( u ) ,  depending 
only on u itself, that leads to what is interpreted later as advection. In the 
special case that Q ( u )  = u2/2. equation (1.3.11) can be written 

ut + uuX = Du,,. (1.3.12) 

which is Burgers’ eqvataon. This is one of the fundamental model equations 
in fluid mechanics and illustrates the coupling between advection and diffu- 
sion. Later we derive (1.3.12) using a weakly nonlinear approximation of the 
equations of gas dynamics. When D = 0 (no diffusion), then 

ut + uu, = 0. (1.3.13) 

which is called the znvzsczd Burgers * equatzon (also. Riemann’s equation). It 
is the prototype equation for nonlinear advection and arises in gas dynamics. 
traffic flow, chromatography. and flood waves in rivers. Equation (1.3.13) is 
hyperbolic and describes wave propagation, whereas (1.3.12) is parabolic and 
models diffusion. 

Example. (Advectzon Equatzon) The simplest flux term occurs when the mate- 
rial forming the density is carried along by the medium having a fixed velocity, 
as in the case of particulants carried by. for example, wind or water. In these 
cases the flux is given by the simple linear relationship 

0 = cu. (1.3.14) 

where c is a positive constant having the dimensions of speed. The basic con- 
servation law is 

U t  T C U ,  = 0.  (1.3.15) 

which is the advection equatzon. The term advectaon refers to  the horizontal 
movement of a physical property (e.g.. a density wave): other equivalent terms 
are convectzon and transport. which have the same meaning. For example. bi- 
ologists use the term advection while many engineers use the term convection. 
JVe use these terms interchangeably. This linear first-order PDE (1.3.15) is 
the simplest wave equation. Figure 1.8 compares how a signal at time t = 0 
propagates under advection. diffusion. and advection-diffusion processes. 0 

Example. (Dzffuszon zn R3) In Section 1.2 we obtained the basic conservation 
law 

ut + div$ = f ( x .  t .  v ) .  
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advection 
Z l t  t = O  t = T  

f = O  
U advection - diffusion 

Figure 1.8 Comparison of advection, diffusion. and advection-diffusion pro- 
cesses. 

In R3 Fick’s law takes the form 4 = -D grad u; that is. the flux is in the 
direction of the negative gradient of u. Recall the direction of maximum increase 
is in the direction of the gradient. Vsing the vector identity div(gradu) = Au, 
where 

a2 a2 a2 A = - + - + -  
ax: ax; ax; 

is the Laplaczan operator, and assuming that the diffusion coefficient D is 
constant, the conservation law becomes 

U t  - D A u  = f ( 5 .  t .  u ) .  

which is a reaction-diffusion equation in R3. If there are no sources ( f  = 0). 
we obtain the three-dimensional diffusion equation ut - DAu = 0. 0 

In summary, we introduced a few of the fundamental PDEs that have been 
examined extensively by practitioners of the subject. An understanding of these 
equations and a development of intuition regarding the fundamental processes 
that they. and other equations. describe is one of the goals of this treatment. 1T-e 
end this section with the problem of modeling flow through a porous medium. 

Example. (Porous Medza) Consider a fluid (e.g.. water) seeping downward 
through the soil. and let p = p(x.t) be the density of the fluid. with positive 
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x measured downward. In a given volume of soil only a fraction of the space 
is available to  the fluid; the remaining space is reserved for the soil itself. In 
this sense, the soil is a porous medium through which the fluid flows. If the 
fraction of the volume that is available to  the fluid is denoted by K .  called the 
poroszty. the fluid mass balance law in a given section of unit cross-sectional 
area between x = a and x = b is given by 

(1.3.16) 

where d is the mass flux. 117, assume that the mass flux is 13 = pz." where 2: is 
the volumetric flow rate. Assuming requisite smoothness, the integral balance 
law (1.3.16) can be written 

v t  + (pu), = 0. (1.3.17) 

Here we assumed that the porosity is constant, but in general it could depend 
on x or even p. The conservation law (1.3.17) contains two unknowns. the 
density and the flow rate, and therefore we need a constitutive equation that 
relates the two. For reasonably slow flows it is observed experimentally that 
the volumetric flow rate is given by 

where p = p(x.t) is the pressure, and the positive constants g, p,  and u are 
the acceleration due to  gravity, the permeability. and the viscosity of the fluid, 
respectively. Equation (1.3.18) is Darcy's law. and it is a basic assumption in 
many groundwater problems. It is physically plausible because it confirms our 
intuition that the flow rate should depend on the pressure gradient as well as 
gravity. Darcy's law is a statement replacing a momentum balance law. When 
(1.3.18) is substituted into (1.3.17). we obtain the groundwater equation: 

(1.3.19) 

Equation (1.3.19) contains two unknowns, p and p .  because the constitutive 
relation (1.3.18) introduced yet another unknown, the pressure. Consequently. 
we require another equation to obtain a determined system. 

If the fluid is a gas. it is common to neglect gravity and assume an equation 
of state for the gas of the form p = p ( p ) .  In particular. we assume a y-law gas 
having equation of state 

; = ($ (1.3.20) 
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where po and PO are positive constants and > 1. Substituting (1.3.20) into 
(1.3.19) and setting g = 0 yields a single PDE for the density p having the form 

(1.3.21) 

where a = f i ~ , u p o / v p ~ .  Equation (1.3.21) is a nonlinear diffusion equation called 
the porous medzum equataon. and it governs flows subject to three laws: mass 
conservation, Darcy's law, and the gas equation of state. See Aronson (1986) 
for a survey on the porous medium equation. 0 

Finally. we point out that  it is often crucial to  nondimensionalize a prob- 
lem. Differential equations. when formulated. involve dimensioned dependent 
and independent variables such as time. length. and temperature. The Buck- 
ingham Pi theorem guarantees that a dimensionally consistent physical law can 
always be transformed to one where the variables, as well as the parameters, 
are dimensionless. A valid comparison of the relative magnitudes of the terms 
in an equation can be made only when a problem is nondimensionalized. Fur- 
ther, the dimensionless problem often offers an economy over the dimensioned 
version in that there is a reduction in the number of parameters. The process 
of nondimensionalization is sometimes called scalzng. Lin & Segel (1974) and 
Logan (2006a) thoroughly discuss scaling and dimensional analysis. 

Example. (Scaling) In Fisher's equation, 

ut = Du,, + r u  1 - - , ( il-> 
the variables t .  x. and u have dimensions is time. length, and animals per area. 
respectively. The parameters are the growth rate T with units of l / t ime, the 
carrying capacity K with units of animals per area. and the diffusion constant 
D with dimensions length-squared per time. Using the parameters we can build 
dimensionless variables by defining 

Note that each has the form of a dimensioned variable divided by a constant 
with the same dimension. W-e refer to these constants in the denominator as 
scales. For example, the population density is scaled by K .  which means that 
the population is being measured relative to the carrying capacity: T - ~  is the 
time scale. meaning that time is being measured relative to  the (inverse) growth 
rate. and so on. There are usually several ways to determine the scales. By the 
chain rule we can transform the PDE into the dimensionless variables. Observe 
that derivatives in the PDE transform via 

dv d2u K d2a 
- 

d U  

d t  d r  dx2  D / r d C 2 '  
-==K-- ,  
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and therefore the PDE becomes 

d u  K azU 
rK-  = D-- + rKw(1 - u ) ?  

d r  DlrdC2 

or 
u, = vcc + v ( l  - v). 

Therefore. in dimensionless variables Fisher's equation reduces to a model equa- 
tion without any constants at all. This simpler equation may be analyzed. and. 
if required. a return to  interpretations in terms of the original dimensioned 
quantities can be made. 0 

EXERCISES 

1. Write the PDE 
U t  + uu, + u,,, = 0 

in the form of a conservation law, identifying the flux O. Given u as a 
solution for which u ,  u,, and u,, approach zero as 1x1 + x, show that 

J - X  J -m 

for all t > 0. 

2 .  In three dimensions assume show that advection should be modeled by the 

ut + div cu = 0. 

where c = c(x) is the velocity of the medium. Given c as a constant vector, 
show that u = f ( x  - ct) is a solution for any real-valued differentiable 
function f .  

equation 

3. Show that Burgers' equation (1.3.12) can be transformed into the linear 
diffusion equation (1.3.3) by the Cole-Hopf transformatton 

2Dv, u = --. 
v 

4. Show that the PDE 
ut + kuu, + q(t)u = 0 

can be reduced to  the inviscid Burgers' equation 

us + uz', = 0 

using the transformation 
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Show that the same transformation transforms 

ut + kuu, + q(t)u - Du,, = O 

into 
cs + tw, - g-l(s)uxx = 0. 

where g = (k/D)exp ( - J q ( t ) d t ) .  

5 .  By rescaling, show that the porous media equation can be written in the 
form 

uT = ( u m ) < z $  (m  > 2 ,  

for appropriately chosen dimensionless variables 7 .  [. and u. 

6. Show that the nonlinear growth-diffusion equation 

st = k(S3), ,  + a s  
can be reduced to the porous medium equation by the transformations 

1 2 a t  S = p ( z , t ) e a t ,  T = -e . 
2a 

7 .  Consider a porous medium where the fluid is water. and assume that the 
density p is constant. What equation must the pressure p satisfy? Describe 
the pressure distribution. 

8. Nondimensionalize the growth-advection-diffusion equation 

ut = Dux, - cu, + ru. 

9. The population density u(z . t )  of zooplankton in a deep lake varies as a 
function of depth 1c > 0 and time t (x = 0 is the surface). Zooplankton 
diffuse with diffusion constant D ,  and buoyancy effects cause them to mi- 
grate toward the surface with an advection speed of ag. where g is the 
acceleration due to  gravity. Ignore birth and death rates. 

(a) Find a PDE model for the population density of zooplankton in the 
lake. along with the the appropriate boundary conditions at x = 0 and 
1c = +cx. 

(b) Find the steady-state population density u = U ( z )  for zooplankton as 
a function of depth, and sketch its graph. 
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10. Let u = u(z .  y. t )  satisfy the following PDE and boundary conditions: 

&2U,, + uyy = 0. 0 < y < 1. 5 E R, t > 0, 
uy(z. 0, t )  = 0, uy(z ,  1. t )  + &%Ltt(S. 1. t )  = 0. 

z E R, t > 0, 

where E is small. Assuming a perturbation expansion 

u = uo(z.t) + U1(z,y.t)E2 + . . .  . 
show that uo satisfies the wave equation. 

1.4 Initial and Boundary Value Problems 

So far we encountered several types of PDEs governing different types of phys- 
ical processes: 

ut = Du,, (diffusion) 
ut = Dux,  + f(z.  t ,  u )  
ut + cu, = 0 
U t  + C U ,  = Du,, 
U t  + U U ,  = Du,, 

(reaction-diffusion) 
(advect ion) 
(advection-diffusion) 
(nonlinear advection-diffusion) 

As we noted earlier. we are seldom interested in the general solution to a 
PDE, which contains arbitrary functions. Rather. we are interested in solving 
the PDE subject to auxiliary conditions such as initial conditions, boundary 
conditions. or both. 

One of the fundamental problems in PDEs is the p u r e  znztzal value prob lem 
(or Cauchy prob lem)  on R having the form 

U t  + F ( z .  t .  u, u,. u,,) = 0. z E R. t > 0, (1.4.1) 

u(z.O) = U O ( X ) .  z E R. (1.4.2) 

where uo(z) is a given function. Interpreted physically. the function uo(z) rep- 
resents a szgnal at time t = 0, and the PDE is the equation that propagates 
the signal in time. Figure 1.9 depicts this interpretation. In wave propagation 
problems. the signal is usually called a wawe or wave  profile. There are several 
fundamental questions associated with the pure initial value problem (1.4.1)- 
(1.4.2). 
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Exzstence of Solutzons. Given an initial signal ug ( x )  satisfying specified 
regularity conditions (e.g., continuous. bounded. integrable, or whatever) % 

does a solution u = u(x.t) exist for all z E R and t > O? If a solution 
exists for all t > 0. it is called a global solutzon. Sometimes solutions are 
only local; that is. they exist for only up to  finite times. For nonlinear 
hyperbolic problems. for example. a signal can propagate up to  a finite time 
and blowup occurs: that is, the signal experiences a gradient catastrophe 
where u, becomes infinite and the solution ceases to  be smooth. In other 
problems, for example in some reaction-diffusion equations, the solution u 
itself may blow up. 

Unzqueness. If a solution of (1.4.1)-(1.4.2) exists. is the solution unique? 
For a properly posed physical problem we expect an affirmative answer. and 
therefore we expect the governing initial value problem. which is regarded 
as a mathematical model for the physical system. to  mirror the properties 
of the system when considering uniqueness and existence questions. 

Contznuous Dependence on Data. Another requirement of a physical prob- 
lem is that of stability; that is, if the initial condition is changed by only 
a small amount. the system should behave in nearly the same way. Mathe- 
matically, this is translated into the statement that the solution should de- 
pend continuously on the initial data. In PDEs, if the initial value problem 
has a unique solution that depends continuously on the initial conditions, 
we say that the problem is well-posed. A similar statement can be made 
for boundary value problems. A basic question in PDEs is the problem of 
well-posedness. 

Regularzty of Solutzons. If a solution exists. how regular is it? In other 
words. is it continuous. continuouslv differentiable. or piecewise smooth? 

Figure 1.9 
initial signal or waveform ug (x). 

Schematic indicating the time evolution. or propagation. of an 
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5 .  Asymptotzc Behavzor. If an initial signal can be propagated for all times 
t > 0. we may inquire about its asymptotic behavior. or the form of the 
signal for long times. If the signal decays, for example, what is the decay 
rate? Does the signal disperse, or does it remain coherent for long times? 
Does it keep the same shape? 

These are a few of the issues in the study of PDEs. The primary issue, 
however. from the point of view of the applied scientist. may be methods of 
solution. If a physical problem leads to an initial value problem as a mathe- 
matical model, what methods are available or can be developed to obtain a 
solution. either exact or approximate? Or, if no solution can be obtained (say. 
other than numerical). what properties can be inferred from the governing 
PDEs themselves? For example. what is the speed of propagation? Are solu- 
tions wave-like, diffusion-like. or dispersive? These questions are addressed in 
subsequent chapters. 

Several examples illustrate the diversity of solutions. 

Example. (Dzfluszon Equatzon) The solution to initial value problem for the 
diffusion equation 

ut = DuZZ.  x E R, t > 0. 

u ( z .  0) = ug(z). z E R. 

is. as one may verify (e.g., using Fourier transforms). as follows: 

The solution is valid for all t > 0 and z E R under rather mild restrictions on 
the initial signal uo(z) ,  and the solution has a high degree of smoothness even 
if the initial data uo are discontinuous. Succinctly stated, diffusion smooths out 
signals. 0 

Example. (Advectzon Equataon) Consider the linear initial value problem for 
the advection equation 

U t f C U ,  = 0.  x E R .  t > 0 ,  

u (z .0)  = ug(z).  z E R. 

where c is a positive constant. It is easy to  check that u(z .  t )  = f ( x  - ct) is a 
solution of the PDE for any differentiable function f. We can apply the initial 
condition to determine f by writing u(z .0)  = f(z) = uo(z). Therefore the 
global solution to the initial value problem is 

? , ( T  t )  = q j n ( r  - r t )  T c R t -, n 
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Graphically. the solution is the initial signal ug(x) shifted to the right by the 
amount ct, as shown in Figures 1.10 and 1.11. Therefore, the initial signal moves 
forward undistorted in spacetime at speed c. Regarding regularity. even if uo is 
discontinuous, it appears that the solution holds. provided we can make sense 
of derivatives of discontinuous functions. 0 

Example. (Inazscid Burgers ' Equatzon) A more complicated example is the 
nonlinear Cauchy problem 

ut+uu,  = O .  x ER. t > 0, 
1 

u(2,O) = - 
1 + 2 2 '  

x E R. 

In contrast to the two preceding examples. the solution does not exist for all 
t > 0. The initial waveform. in the form of a bell-shaped curve, distorts during 
propagation and a gradient catastrophe occurs in finite time. The argument we 
present to show this nonexistence of a global solution is typical of the types 
of general arguments that are developed later to study nonlinear hyperbolic 
problems. Assume that this problem has a solution u = u(x,t), and consider 
the family of curves in xt space defined by the differential equation 

dx 
d t  
- = u(xc ,  t ) .  

Denote a curve C in this family by x = ~ ( t ) .  Along this curve we have d u / d t  = 

u t ( z ( t ) .  t )  + u z ( z ( t ) .  t )dx/dt  = 0. and therefore u = constant on C.  The curve 
C must be a straight line because d2x /d t2  = du/dt = 0. The curve C. which is 
called a characterzstac curue. is shown in Figure 1.12 emanating from a point 

,X 

Position 

Figure 1.10 Right traveling wave, which represents the solution to the ad- 
vection equation. shown in xu space. 
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( E .  0) on the initial timeline (z axis) to an arbitrary point ( 2 .  t )  in spacetime. 
The equation of C is given by 

2 - 6 = u(<. O ) t ,  

where its speed (the reciprocal of its slope), u(E, 0) = (1 + c2)-’. is determined 
by the initial condition and the fact that u is constant on C.  Now let us de- 
termine how the gradient u, of u evolves along curve C. For simplicity denote 
g ( t )  = u,(z(t) .  t ) .  Then 

dx 2 2 
g ’ ( t )  = u x x z  + U,t = (ut  + uu,), - u: = -u, = - g ( t )  

The general solution of g’ = -g2 is 

1 
g ( t )  = tfc. c const. 

But g(0 )  = 1/c = -2</(1 + < 2 ) 2  is the initial gradient, and therefore g is given 
by 

1 
g ( t )  = t - (1 + ( 2 ) 2 / 2 < ’  

Sote  that E may be chosen positive. Therefore. along the straight line C the 
gradient u, becomes infinite at the finite time t = (1 + [’)’/2[. Therefore a 
smooth solution cannot exist for all t > 0. 0 

The nonexistence of a global solution to the initial value problem is a typi- 
cally nonlinear phenomenon. Because physical processes are often governed by 
nonlinear equations, we may well ask what happens after the gradient catastro- 
phe. Actually. the distortion of the wave profile and development of an infinite 
gradient is the witnessing of the formation of a shock wave (i.e.% a discontin- 
uous solution that propagates thereafter). However, the idea of a nonsmooth 

Figure 1.11 
space. 

Right traveling wave shown in Figure 1.10 represented in xtu- 
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Figure 1.12 Characteristic C emanating from the z axis. 

solution to a PDE is a concept that must be formulated carefully, and we carry 
out this program in Chapter 3 .  

Another type of problem associated with PDEs is the szgnalzng prob lem.  
In this case the domain of the problem is the first quadrant z > 0, t > 0 in 
spacetime. and initial data are given along the positive z axis: data are also 
prescribed along the positive t axis as boundary conditions. or signaling data 
(see Figure 1.13). The form of a szgnalzng prob lem is 

z > 0, ut + F ( z .  t .  u. u,. uz,) = 0, t > 0, (1.4.3) 

u ( z . 0 )  = ug(z),  z > 0, ( 1.4.4) 

u(0. t )  = U l ( t ) .  t > 0,  (1.4.5) 

where ug(z) is the given initial state and ul ( t )  is a specified signal imposed 

Signaling condition 

Initial condition 
U , ( d  

Figure 1.13 Schematic representing a signaling problem where signaling data 
are prescribed at z = 0 along the time axis and initial data are prescribed at  
t = 0 along the spatial axis. 
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at  x = 0 for all times t > 0. As in the case of the initial value problem, the 
signaling problem may or may not have a solution that exists for all times t .  

In lieu of the condition (1.4.5) given at z = 0. one may impose a condition 
on the derivative u of the form 

U 5 ( 0 >  t )  = u*( t ) ,  t > 0. (1.4.6) 

or some combination of u and up. 

u(0. t )  + Cru,(O, t )  = uz(t) .  t > 0. 

If the PDE is a conservation law and Fick's law &(z. t )  = -Dup(z ,  t )  holds. 
condition (1.4.6) translates into a condition on the flux 0. The condition that 
the flux be zero at x = 0 is the physical condition that the amount of u that 
passes through x = 0 is zero; in heat flow problems this condition is called 
the insulated boundary condztzon. A boundary condition of the type (1.4.5) is 
called a Dzrzchlet condztzon. and one of the type (1.4.6) is called a N e u m a n n  
condztzon. Mixed conditions are called Robzn condztzons. 

If the spatial domain is finite. that  is. a 5 x 5 b. one may expect to  impose 
boundary data along both x = a and x = b. and therefore we consider the 
znztzal-boundary value problem 

ut + F ( z .  t .  u, uz. upp) = 0, a < x < b ,  t > 0 ,  (1.4.7) 

u ( x . 0 )  = u ~ ( z ) .  < z < b. (1.4.8) 

u(a. t )  = U l ( t ) .  u(b. 0) = u*(t). t > 0. ( 1.4.9) 

where uo. u1. and u2 are given functions. If (1.4.7) is the diffusion equation, 
this problem has a solution under mild restrictions on the data. However. if 
we consider the advection equation. the problem seldom has a solution for 
arbitrary boundary data, as the following example shows. 

Example. Consider the initial-boundary value problem 

u t+cup=O.  0 < x < 1 ,  t > 0 .  

with initial and boundary conditions given by (1.4.8) and (1.4.9) with a = 0 
and b = 1. Lye have noted already that the general solution of the advection 
equation is u(x. t )  = f(x - c t ) .  for an arbitrary function f .  Consequently, u 
must be constant on the straight lines x - ct = constant (see Figure 1.14). 
Clearly. therefore. data cannot be independently specified along the boundary 
x = b. In this case. the initial data along 0 < z < 1 are carried along the 
straight lines to the segment A on x = 1: the boundary data along x = 0 is 
carried to  the segment B on x = 1. Thus u(1. t )  cannot be specified arbitrarily. 
0 
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x 

Figure 1.14 Right-moving characteristics carrying left boundary and initial 
data into the region of interest. Arbitrary data may not be prescribed along 
the right boundary x = 1 labeled A and B. 

The preceding example shows that we must be careful in defining a well- 
posed problem. Mathematically correct initial conditions and boundary con- 
ditions are associated with types of PDEs (hyperbolic, parabolic, elliptic). as 
well as their order. Conditions that ensure well-posedness are often suggested 
by the underlying physical problem. 

Example. ( W a v e  Equation) The wave equation 

(1.4.10) 2 
U t t  - c u,, = 0. 2 E R, t > 0. 

is second-order in t .  and therefore it does not fit into the category of equations 
defined by (1.4.1). Because it is second order in t .  we are guided by our experi- 
ences with ordinary differential equations to  impose two conditions at t = 0. a 
condition on u and a condition on ut. Therefore, the pure initial value problem 
for the wave equation consists of (1.4.10) subject to the initial conditions 

u(x,0)  = ug(2). ut(x.0) = u1(x). T E R. (1.4.11) 

where uo and u1 are given functions. If uo E C2(R) and u1 E C1(R), the 
unique, global solution to (1.4.10)-(1.4.11) is given by D’Alembert’s formula 
(1.1.6) with f = uo and g = u1. 0 

Example. The initial value problem 

utt + u,, = 0. 5 E R. t > 0. (1.4.12) 

u(2. 0) = uo(2). ut(x, 0) = u1(x), 2 E R ( 1.4.13) 
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is not well-posed because small changes, or perturbations. in the initial data 
can lead to  arbitrarily large changes in the solution (see Exercise 5). Equa- 
tion (1.4.12) is Laplace's equation (with variables x and t .  rather than the 
usual x and y). which is elliptic. In general. initial conditions are not correct 
for elliptic equations. which are naturally associated with equilibrium phenom- 
ena and boundary data. 0 

To summarize. the auxiliary conditions imposed on a PDE must be con- 
sidered carefully. In the sequel. as the subject is developed, the reader should 
become aware of which conditions go with which equations in order to  ensure, 
in the end. a well-formulated problem. 

EXERCISES 

1. Solve the signaling problem 

U t  +tux = o .  x > 0. t > 0, 

u(x.0) = 1. x > 0. 

1 + t 2  
u (0 , t )  = ~ 

1 + 2t2' 
t > 0, 

using the fact that u must be constant on the curves x = ct + 5. where < is 
constant. Hint: Treat the regions x > ct and x < ct separately. 

2.  Obtain the solution to the initial value problem 

ut = u x x .  x E R, t > 0.  

u (x .0 )  = u g  if 1x1 < L and u(x.0)  = 0 if 1x1 > L. 

where uo is a constant. in the form 

x + L  

where erf is the error function 

Show that for x fixed and for large t ,  we obtain 

u0 L u(x, t )  N - fi. 
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3. Find a formula for the solution to the initial-boundary value problem 

u t - u z = O ,  0 < z < l .  t > 0 .  

u(z.O) = 2, 

u(1 . t )  = - 
1 + t 2 ’  

0 < z < 1. 

t > 0. 
2 

4. Let u E C1 be a solution to the Cauchy problem 

U t  + Q(u) ,  = 0 ,  2 E R. t > 0. 

u(x. 0) = uo(z),  2 E R, 

where Q(0)  = 0. Q”(u) > 0, and uo is integrable on R with UO(Z) = 0 for 
z < zo (for some “0). and ug(z) > 0 otherwise. Define 

U ( z .  t )  = 1: u(s ,  t )  d s  

(a) Show that U satisfies the equation Ut + Q(U,) = 0. 

(b) Prove that Q ( u )  2 Q(u)  + c(u) (u  - c ) .  where ~ ( u )  = Q/(u ) .  

(c) Prove that Ut + c(u)U, 5 c(v)v - Q ( u ) .  

(d) Show that U ( z .  t )  5 U(<% o)+t[c(v)v-Q(u)] .  where < is the point where 
the line defined by dz/dt  = c(c) through the point (z. t )  intersects the 
z axis. 

(e) In the inequalities above. show that equality holds if 

( f )  Give a geometric-physical interpretation of the results above. 

= u. 

5. By considering solutions u,  (z. t )  = n-’ cos nz cosh nt. show that the initial 
value problem (1.4.12)-(1.4.13) for Laplace‘s equation is not well-posed. 

6. Consider the initial value problem for the backward diffusion equation: 

ut+u,, = O .  2 ER,  t > 0.  

u(z.O) = 1. z E R. 

Show that the solution does not depend continuously on the initial condi- 
tion by considering the functions 

1 
u,(x. t )  = 1 + - exp(n2t) s innz.  

n 
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1.5 Waves 

One of the cornerstones of PDEs is wave propagation. A wave is a recognizable 
signal that is transferred from one part of the medium to another part with 
a recognizable speed of propagation. Energy is often transferred as a wave 
propagates. but matter may not be. There is hardly any area of science or 
engineering where wave phenomena are not a critical part of the subject. nTe 
mention a few areas where wave propagation is of fundamental importance. 

Fluid mechanics (water waves. aerodynamics. meteorology. traffic flow) 
Acoustics (sound waves in air and liquids) 
Elasticity (stress waves, earthquakes) 
Physics (optics. electromagnetic wave5, quantum mechanics) 
Biology (spread of diseases, population dispersal. nerve signal transmission) 
Porous media (groundwater dynamics, contaminant migration) 
Chemistry (combustion and detonation waves) 

1.5.1 Traveling Waves 

The simplest form of a mathematical wave is a function of the form 

u(z9  t )  = f ( .  - ct) .  (1.5.1) 

Tje interpret the density u as the strength of the signal. At t = 0 the wave 
has the form f(.). which is the initial wave profile. Then f ( z  - ct)  represents 
the profile at time t .  which is just the initial profile translated to the right 
ct spatial units. The constant c represents the speed of the wave. Evidently. 
(1.5.1) represents a right traveling wave of speed c. Similarly, u(z .  t )  = f ( z+ct )  
represents a left traveling wave of speed c. These types of waves propagate 
undistorted along the straight lines z - ct = const. (or z + ct = const.) in 
spacetime. 

A key question is whether a given PDE can propagate such a traveling 
wave or, in different words, whether a traveling wave solution (TWS) exists 
for a given PDE. This question is generally posed without regard to  initial 
conditions (time is usually regarded as varying from --oc to +x). so that the 
wave is assumed to have existed for all times. However. boundary conditions of 
the form 

u ( - x . ~ )  = const., u ( + x . t )  = const. (1.5.2) 

may be imposed. A wavefront solutzon is a Tm'S of the form u ( z . t )  = f ( .  - 
c t )  (or f ( z  + c t ) )  subject to the conditions (1.5.2) of constancy at  plus and 
minus infinity (not necessarily the same constant): at present. the function f 
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is assumed to  have the requisite degree of smoothness defined by the PDE 
(C1(R). C2(R),  . . .). Figure 1.15 shows a typical wavefront. If u approaches the 
same constant at both plus and minus infinity, the wavefront solution is called 
a pulse. 

The key computational device is to substitute the form U(Z,  t )  = f ( z  - ct) 
into the PDE and observe whether it transforms the PDE into an ODE for the 
unknown wave profile f .  which is a function of a single variable z = IC - ct. 
interpreted as a moving coordinate. The speed c of the wave is not known. To 
carry out the substitution it is necessary to calculate how the derivatives of u 
transform. By the chain rule, we have 

U t  = f ’ ( z ) z t  = - c f ’ ( z ) ,  

us = f ’ ( z ) z ,  = f ’ ( z ) .  

We easily find utt = c 2 f ” ( z ) .  u,, = f ” ( z ) ,  and so on for higher derivatives. 
Therefore. the general equation 

ut = G(u.  u,. u,,) 

transforms into 
-cf ’  = G ( f .  f ’ .  f ” ) .  z E R, 

which is an ODE for f and the unknown wave speed c. If boundary conditions 

f(-..) = f o .  f ( + x )  = fl 

are imposed, we interpret this problem as a nonlinear eigenvalue problem for 
f ,  with c a5 an eigenvalue. 

Example. (Advection Equatzon) \Ye have already observed that 

u(x, t )  = f ( z  - c t ) ,  

Figure 1.15 A right traveling wavefront with speed c. A wavefront solution 
is a TFI‘S with constant states at &x. 
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where f is a differentiable function. is a solution to the PDE 

U t  + cu, = 0. (1.5.3) 

Therefore, the advection equation (1.5.3) admits wavefront solutions. and it is 
the simplest example of a wave equation. 0 

Example. (Wave Equation) The wave equation 

2 
utt = c u,, 

has solutions that are the superposition of right and left traveling waves (see 
Section 1.1). 0 

Example. (Dzfluszon Equation) The diffusion equation cannot propagate non- 
constant wavefronts. To verify this fact, we substitute u = f ( z ) .  where 
z = z - ct. into the diffusion equation ut = Du,, to  obtain the following 
ordinary differential equation for the wave profile f :  

z E R - c f ’ ( z )  = D f ” ( z ) .  

This linear differential equation has the general solution 

f ( z )  = a + be-“”/D. 

where a and b are arbitrary constants. The only possibility for f to be constant 
a t  both plus and minus infinity is to require b = 0. Thus, there are travel- 
ing wave solutions. but no nonconstant wavefront solutions to  the diffusion 
equation. 0 

Example. (Korteweg-de Vries Equation) The KdV equation is 

U t  + uu, + u,,, = 0. (1.5.4) 

This nonlinear equation admits traveling wave solutions of different types. One 
particular type is the soliton, or solitary wave, which is now derived. Assume 
that u = f ( . z ) .  where z = IC - ct. Substituting into (1.5.4) gives 

-cf’ + f f ’  + f”’ = 0. (1.5.5) 

where the prime denotes d / d z .  Integrating (1.5.5) 2 times yields, after rear- 

(1.3.6) 

where a and b are constants of integration. Here we took the plus sign on the 
square root; later we observe that this can be done without loss of generality. 
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Figure 1.16 Plot of the soliton (1.5.8) at t = 0 with -, = 0.5 and 0 - 7  = 3.0. 
A soliton is an example of a pulse. 

The first-order differential equation (1.5.6) for the form of the wave f is sepa- 
rable. However. the expression under the radical on the right side is a cubic in 
f .  and therefore different cases must be considered depending on the number 
of real roots. double roots. and so on. LVe examine only one case, namely. when 
the cubic has three real roots. where one is a double root. So let us assume that 

- f 3  + 3 c f 2  + 6af + 6b  = ( f  - -/)’(a - f ) .  0 < 7 < a. 

Then the differential equation (1.5.6) becomes 

1 
( f  - n,)-l(a - f ) - ” 2  df = - d z .  

& 
The substitution f = + (a - ?)sech2w easily reduces (1.5.7) to 

(1.5.7) 

which integrates to w = d-2. Consequently, traveling waves in the 
case we are considering have the form 

1/2 

u(x. t )  = 7, 4 (a  - 7)sech2[K(x - c t )] .  K = (2) . ( 1.5.8) 

A graph of the waveform. which is a pulse. is shown in Figure 1.16. It is 
instructive to  write the roots ct and fir in terms of the original parameters. To 
this end we have 

- f 3  + 3cf2 + 6af + 6b = ( f  - fi,)’(a - f )  

= - f 3  + (a + 2 4 f 2  - (23a + fi/’)f + “,’a. 
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Therefore, the wave speed c is given by 

(1.5.9) 

The speed of the wave relative to  the state 6, ahead of the wave is proportional 
to  the amplitude A = a. - y. Both the amplitude and the width of the wave 
depend on the wave speed c. Thus, the taller and wider the wave, the faster it 
moves. For linear waves. say. governed by the wave equation. the speed of propa- 
gation is independent of the amplitude of the wave. Such a waveform (1.5.8) is 
known as a soloton, or solztary wave, and many of the important equations 
of mathematical physics exhibit soliton-type solutions (e.g.. the Boussinesq 
equation. the Sine-Gordon equation, the Born-Infeld equation, and nonlinear 
Schrodinger equations). In applications. the value of such solutions is that  if a 
pulse or signal travels as a soliton. the information contained in the pulse can 
be carried over long distances with no distortion or loss of intensity. Solitons 
occur in fluid mechanics, nonlinear optics. and other nonlinear phenomena. 0 

There is an interesting history of solitary waves. In 1836 John Scott Russell. 
a Scottish engineer, observed such a wave moving along a canal. He followed 
it on horseback, noting that it propagated a long distance without changing 
form. Many at  the time doubted his observation and thought that such waves 
could not exist. However. Boussinesq, in 1872, showed that in a special limit of 
the equations of fluid flow such water waves can exist: Korteweg and deVries 
obtained (1.5.4) in the 1890. It wasn't until the 1960s that physicists Kruskal 
and Zabusky obtained the equation as a continuum limit of a model of nonlinear 
spring mass chains. and they coined the term soloton. 

The interaction between two solitons is both interesting and unexpected. If 
two solitons are moving to the right and the one behind represents a stronger 
signal (therefore moving faster) than the one ahead. the large one overtakes 
the slower. smaller wave and a complicated nonlinear interaction occurs. after 
which both waves return to their original shape. The only change is a phase 
shift in the two waves. The initial value problem for the KdV equation, with 
u(z .0 )  = uo(2). IL: E R. also has interesting behavior. If the initial profile uo 
approaches zero fast enough at z = km. then, over time, the solution divides 
into a finite number of solitons moving to the right at their respective speeds 
(smaller to  larger). plus a small dispersive disturbance moving to  --x. 

The problem of determining whether a given PDE admits wavefront solu- 
tions is fundamental. and it occupies much attention in subsequent chapters. 
The search for these types of solutions is one of the basic methods in the anal- 
ysis of nonlinear problems. 
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Figure 1.17 A plane wave of amplitude A, wave number k ,  and frequency LU. 

1.5.2 Plane Waves 

Another type of wave of interest is a plane wave. or wave train.  These waves 
are traveling. periodic waves of the form 

u(z . t )  = A C O S ( ~ X  - d ) ,  (1.5.10) 

where A is the amplitude of the wave. k the wave number. and w the frequency. 
The wave number  k is a measure of the number of spatial oscillations (per 
27r units) observed at a fixed time. and the frequency w is a measure of the 
number of oscillations in time (per 27r units) observed at a fixed spatial location. 
The number X = 27r/k is the wavelength,  and P = 2 ~ / w  is the period. The 
wavelength measures the distances between successive crests, and the period 
measures the time for an observer located at a fixed position n: to see a repeat 
pattern (see Figure 1.17). Note that (1.5.10) may be written 

so (1.5.10) represents a traveling wave moving to  the right with speed c = wk.  
This number is called the phase velocaty. and it is the speed that one would 
have to move to remain on the crest of the wave. For calculations the complex 
form 

~ ( z ,  t )  z Aez((""-wt) (1.5.11) 

is preferred because differentiations with the exponential function are simpler. 
After the calculations are completed, one can use Euler's formula exp(i6) = 

cos B + i sin 0 and take real or imaginary parts to  recover a real solution. The 
technique of searching for plane wave solutions is applicable to  linear equations, 
but a modification applies to some nonlinear problems. Finding plane wave 
solutions is a powerful method for determining properties of linear problems. 
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Example. (Dzffuszon Equatzon) We seek solutions of the form of equation (1.5.11) 
to the diffusion equation 

ut = Dux,. (1.5.12) 

Substituting (1.5.11) into (1.5.12) gives 

w = - iDk2.  (1.5.13) 

Equation (1.5.13) is a condition, called a dzsperszon relatzon, between the fre- 
quency w and the wave number k that must be satisfied for (1.5.12) to  admit 
plane wave solutions. Thus we have determined a class of solutions 

u(z ,  t ;  k )  = Ae-Dk*teeZk5. k E R (1.5.14) 

for the diffusion equation that depends on an arbitrary parameter k .  the wave 
number. The factor exp(ilcz) represents a spatial oscillation, and the factor 
Aexp(-Dk2t) represents a decaying amplitude. Note that the rate of decay 
depends on the wave number k ;  waves of shorter wavelength decay more rapidly 
than do waves of longer wavelength. 0 

Example. ( Wave Equation) Substituting (1.5.11) into the wave equation 

utt = c 2 u x x  (1.5.15) 

forces 
w = +ck. 

Therefore, the wave equation admits solutions of the form 

(1.5.16) 

i k ( 5 i c t )  u(z,t) = Ae 

which are right and left sinusoidal traveling waves of speed c. 0 

The technique of looking for solutions of the form (1.5.11) for linear, homo- 

Lu = 0, (1.5.17) 

where L is a linear constant-coefficient operator, always leads to a relation 
connecting the frequency w and the wave number k of the form 

geneous PDEs of the form 

G ( k . w )  = 0. (1.5.18) 

This condition is called the dzsperszon relatzon corresponding to  the PDE 
(1.5.17). and it characterizes plane wave solutions entirely. Generally. linear 
PDEs (1.5.17) can be classified according to their dispersion relation in the 
following way. Assume that (1.5.18) may be solved for w in the form 

w = w ( k ) .  (1.5.19) 
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UTe say that the PDE is dzsperszve if J ( k )  is real and if J ’ (k )#O.  When w(k.) 
is complex, the PDE is dzffuszve. The diffusion equation. from the example 
above, has dispersion relation u, = - zk2D,  which is complex; thus the diffusion 
equation is classified as diffusive. The classical wave equation (1.5.15) is neither 
diffusive nor dispersive under the foregoing classification. Even though its solu- 
tions are wave-like, it is not classified as dispersive since its dispersion relation 
(see 1.5.16) satisfies w” = 0.  For the wave equation, the speed of propagation 
is c and is independent of the wave number k .  For dispersive equations. the 
speed of propagation, or the phase velocity w l k ,  depends on the wave number 
(or equivalently. the wavelength). The wave equation is generally regarded as 
the prototype of a hyperbolic equation, and the term dzsperszve is reserved for 
equations where the phase velocity depends on k .  We caution the reader that  
the term dzsperszon is often used in a diffusion context (e.g.. a group of animals 
dispersing). and it is important to be aware of this. 

Example. (Schrodinger Equatzon) In quantum mechanics, the Schrodinger 
equation for a free particle. under appropriate scalings, is 

ut = zu,,. 

It is easy to see that the dispersion relation is w = k 2 ,  so that the Schrodinger 
equation is dispersive. The Schrodinger equation is neither parabolic nor hy- 
perbolic. 0 

1.5.3 Plane Waves and Transforms 

Using a plane wave assumption. we already constructed the class of solutions 
u ( z ,  t ;  k )  = Ae-DkZtezkx.  k E R. to the diffusion equation 

ut = Du,,, x E R, t > 0 .  

Formally, superimposing these solutions, we obtain 

(1.5.20) 

which can be verified to be a solution to the diffusion equation, provided that 
A ( k )  is a well-behaved function (e.g.. continuous, bounded. and integrable on 
R). Having (1.5.20) as a solution opens up the possibility of selecting the func- 
tion A ( k )  so that other conditions (e.g., an initial condition) can be met. There- 
fore, let us impose the initial condition 

zL(2.0) = uo(2). 2 E IR 
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to the diffusion equation. From (1.5.20) it follows that 

UO(X) = A(k)ezks d k .  (1.5.21) 

We recognize ug(z) as the Fourier transform of A(k) ,  and therefore A(k)  must 
be the inverse Fourier transform of the function ug(z). We remind the reader of 
these facts by recalling the Fourzer integral theorem [see. e.g., Stakgold 19981. 

Theorem. Let f be a continuous. bounded. integrable function on R. and let 

be the Fourier t,ransform of f .  Then, for all z E R, we have 

f(x) = & f (k )e - ' l i s  d k .  

Applying this theorem (the variables k and x have been interchanged) to 1.5.21) 
leads us to conclude that 

Consequently. we have obtained the solution to  the Cauchy problem for the 
diffusion equation 

U t  - Du,, = 0.  x E W. t > 0, (1.5.22) 

u(z ,0)  = Ug(Z). 2 E R. (1 5.23) 

in the form 

( 1.5.24) 

Interchanging the order of integration allows us to  formally write the solution 
as 

The inner integral may be calculated outright by noting 
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Therefore, the solution to the initial value problem (1.5.22)-(1.5.23) for the 
diffusion equation is given by 

(1.5.26) 

We derived this solution formally. but we have not proved that it is indeed a 
solution. A proof would consist of a rigorous argument that (1.5.25) satisfies 
the diffusion equation (1.5.22) and the initial condition (1.5.23). To show well 
posedness. a uniqueness argument would have to be supplied as well as a proof 
that the solution is stable to small perturbations of the initial data. We shall not 
carry out these arguments here. but rather, refer the reader to  the references 
for the details. 

This method (finding plane wave solutions followed by superposition and 
use of the Fourier integral theorem) is equivalent to the classical Fourier trans- 
form method learned in elementary courses where one takes a Fourier transform 
of the PDE and initial condition to reduce the problem to an ordinary differen- 
tial equation in the transform domain. which is then solved. Then the inverse 
Fourier transform is applied to  return the solution in the original domain. This 
method is generally applicable to the pure initial value problems on the real 
line for linear equations with constant coefficients. 

Fourier integral expressions of the type obtained above can be approximated 
for large times by the method of stationary phase [e.g., see Bhatnagar 19791. 

1.5.4 Nonlinear Dispersion 

For nonlinear equations we do not expect plane wave solutions of the form 
(1.5.16), and therefore a dispersion relation will not exist as it does for linear 
equations. Moreover, superposition for nonlinear equations is invalid. However, 
in some nonlinear problems. there may exist traveling periodic wave trains of 
the form 

u(2.  t )  = U ( Q ) ,  Q = lclc - wt. (1.5.27) 

where U is a periodic function. For example, consider the nonlinear PDE 

utt - uzz  + f’(u) = 0. ( 1.5.28) 

where f(u) is some function of u. yet to  be specified. If (1.5.27) is substituted 
into (1.5.28). we obtain the ordinary differential equation 

( 2  - Ic2)Uee + f ’ ( U )  = 0. 

Here we are using subscripts Q to denote ordinary derivatives of U with respect 
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t W  
U 

Figure 1.18 
with amplitude A .  

Phase space orbit representing the periodic solution (1.5.31) 

6'. Multiplication by UQ and subsequent integration gives 

i(u2 - kz)U," + f ( U )  = A, (1.5.29) 

where A is a constant of integration. The goal is to determine U as a periodic 
function of 6'. Equation (1.5.29) has the same form as an energy conservation 
law. where f is a potential function. which suggests introducing the variable 
W defined by W = UQ. Then 

(1.5.30) 
2 

d 2  - k Z  [ A  - f (Uil, W* = ~ 

which are the integral curves. Assuming that d 2  > k 2 ,  we have 

(1.5.31) 

which defines a locus of points in the UW plane. For example, let us choose 
f ( U )  = U4. Then the locus (1.5.31) is a closed path, representing a periodic 
solution of (1.5.291, as shown in Figure 1.18. Notice that A. which has been 
taken positive. is the amplitude of the oscillation represented by the closed 
path. To find U as a function of 6' in the case f ( U )  = U4 we write (1.5.29) as 

(1.5.32) 

This formula defines the periodic function U = U(6') implicitly: in this case 
U ( 0 )  can be determined explicitly as an elliptic function, and we leave this as 
an exercise. The period of the oscillation can be determined by integrating over 
one-quarter period in the integral on the right side of (1.5.32). taking care to  
choose the appropriate sign. If P denotes the period, we obtain on integration 
an equation of the form 

P = P(w.  k .  A) .  (1.5.33) 
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In other words, the frequency LC? will depend on the amplitude A as well as the 
wave number k .  Consequently. the wave speed c = d / k  will be amplitude- 
dependent. This amplitude dependence in the nonlinear dispersion relation 
(1.5.33) is one important distinguishing aspect of nonlinear phenomena. 

These calculations can be carried out for nonlinear equations of the form 
(1.5.28) for various potential functions f ( u ) .  Periodic solutions are obtained 
when U oscillates between two simple zeros of A - f ( U ) .  A thorough discussion 
of nonlinear dispersion can be found in Whitham (1974). 

EXERCISES 

Find the dispersion relation for the advection-diffusion equation 

ut + au, = Du,,, ( a .  D > 0 ) ,  

and show that it is diffusive. Use superposition and the Fourier integral 
theorem to find an integral representation of the solution of the initial 
value problem for this equation. Hznt: You will need the Fourier transform 
of e z a 5 f ( x ) .  

Consider the KdV equation in the form ut - 6uu, + u,,, = 0. x E R, 
t > 0. Let u = u(x. t )  be a solution that decays. along with its derivatives, 
very rapidly to zero as 1x1 + m. Show that s, u dx and s, u2 dx are both 
constant in time. 

Examine the form of traveling wave solutions of the KdV equation (1.5.4) in 
the case that the cubic expression on the right side of (1.5.6) has a triple 
real root. 

Determine and sketch traveling wave solutions of the equation 

utt - u,, = - sinu 

in the form 

u(x. t )  = 4 arctan { exp * [;-I}, ~ 0 < c < l .  

For the following PDEs find the dispersion relation and classify the equa- 
tions as diffusive, dispersive, or neither: 

2 (d) U t t  - c u,, + bu = 0 (Klein-Gordon equation) 

(a) utt + a2u,,,, = 0 (beam equation) 

(b) ut + u,,, = 0 (dispersive wave equation) 

(c) U t  + + bu,,, = 0 (linearized KdV equation) 
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6. 

7.  

8. 

9. 

10. 

Consider the heat equation in an infinite domain x > 0 where the boundary 
condition at x = 0 is a periodic function over all time: 

U t  = ku,,. x > 0, t E R, 
u(0.t)  = TO + AeZwt, t E R. 

where TO. A. and w of constants. and where u = U ( Z .  t )  is the temperature. 
This problem models temperatures in the ground subject to surface pe- 
riodic temperatures. Find u(x. t )  and determine the amplitude and phase 
shift, relative to the values at the surface. at a depth x. Answer the same 
questions if instead the flux is imposed at the boundary: 

-Ku,(O. t )  = AeZWt? t E R. 

By superimposing plane wave solutions to the dispersive wave equation 
ut + u,,, = 0, find an integral representation of the solution to  the Cauchy 
problem and write your answer in terms of the Airy function 

Find solutions of the outgoing signaling problem for the wave equation: 

2 
U t t  - c u,, = 0, x > 0. t E R. 

u,(O. t )  = s ( t ) .  t E R. 

In equation (1.5.28) take f(u) = u2/2  and determine periodic solutions of 
the form u = U ( 8 ) ,  where 8 = kx - wt. What is the period of oscillation? 
Does w depend on the amplitude of oscillation in this case? 

In equation (1.5.28) assume that the potential function f ( u )  has the ex- 
pansion 

U' 

2 
f(u) = - + nu4 + ' ' .  , 

where n is a small known parameter. Assuming that the amplitude is small, 
show that periodic wave trains are given by 

u(e) = u c0s Q + cos 38 + . . . , 
where the frequency and amplitude are 

LJ' = 1 + k2 + 3aa2 + . . .  . 



58 1. Introduction t o  Partial Differential Equations 

11. The nonlznear Schrodinger equation occurs in the description of water 
waves. nonlinear optics, and plasma physics. It is given by 

iut + u,, + -,/u21u = 0. (1.5.34) 

where :/ > 0 and u = u(z ,  t )  is complex-valued. 

(a) If u = U ( z ) e z ( k z - d t )  , where z = x - ct, show that 

d 2  U dU 
dz2 dz 
- + i (2k  - c)- + ( k z  - w + k2)U + yu3 = 0. 

(b) If c = 2 k ,  show that 

for some appropriately chosen constant a ,  where C is an arbitrary 
constant. 

(c) Taking C = 0 and a > 0. show that 

U ( z )  = E s e c h ( f i ( z  - c t ) ) ,  

and comment on the properties of this solution. 

12. Let F = F ( u )  be a smooth function and suppose 

utt - u,, = F’(u) .  

Assuming that u and its partial derivative u, both go to zero as 1x1 -+ x. 
show that 

(iu; + + u ~  + ~ ( u ) )  = const. 

13. Show that solutions of the nonlinear Schrodinger equation (1.5.34) with 
-/ = 1 have the properties 

;lu14) dx = const. 

provided u and its derivatives approach zero sufficiently fast as 1x1 -+ 0. 

Reference Notes. Partial differential equations have a long history and a 
correspondingly vast literature. The early developments in PDEs were in the 
post calculus years of the early 1700s and involved the geometry of surfaces. 
However, it soon became clear that PDEs were models of physical phenomena 
like fluid flow, vibrating strings, heat conduction, and so on. Euler, Bernoulli 
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D'Alembert % Laplace, Lagrange, Fourier, Cauchy, and others developed many 
of the basic ideas in the linear theory and its applications. It wasn't until the 
last half of the twentieth century. as part of the general interest in nonlinear 
science and advancement of computation, that nonlinear PDEs came to the 
forefront. particularly in their role in wave propagation and diffusion. 

It is impractical to  cite more than just a few key references. There are books 
at all levels and several research journals, in both mathematics and the pure 
and applied sciences. that can be consulted for an entry point to  the literature. 
Here we reference only a few of the texts and cite only articles that are relevant 
to the particular topic under discussion. 

Elementary. entry-level texts focus almost exclusively on linear problems, 
emphasizing Fourier series, integral transforms. and boundary value problems. 
The long-time standard has been Churchill (1969). which remains an excellent 
introduction to  Fourier series and boundary value problems. There are many 
more recent introductory texts. too many to cite. We mention Strauss (1992), 
an outstanding treatment, and the author's text (Logan 2004), which is a brief 
introduction. More advanced texts include the classic by John (1982). as well 
as Evans (1998), AIcOwen (2003), Guenther & Lee (1996). Renardy & Rogers 
(2004), and Stakgold (1998). Strichartz (1994) gives an outstanding perspective 
on Fourier transforms and distributions. 

More specialized, theoretical books include Friedman (1964) for parabolic 
equations, Gilbarg & Trudinger (1983) for elliptic equations, Protter & )Vein- 
berger (1967) for maximum principles, and Pao (1992) for both nonlinear 
parabolic and elliptic equations. The treatises by Courant & Hilbert (1953, 
1962) provide a wealth of information on elliptic and hyperbolic equations, 
and Courant & Friedrichs (1948) is still a standard in shock waves and gas 
dynamics. Kevorkian & Cole (1981) and Zauderer (2006) discuss perturbation 
methods. For nonlinear equations one can consult Lax (1973), Smoller (1994) 
and Whitham (1974), all of which are key books. Another text on nonlinear 
PDEs that is very similar to  the first edition of the present text (Logan 1994) 
is Debnath (1997). Bhatnagar (1979) is an excellent introduction to nonlinear 
dispersive waves, and solitons are discussed in Drazin & Johnson (1989). 

Two excellent volumes that introduce several common and ad hoc methods 
for nonlinear PDEs are Ames (1965, 1972) 





First-Order Equations and Characteristics 

A single first-order PDE is a hyperbolic equation that is wave-like, that is. 
associated with the propagation of signals at finite speeds. The fundamental 
idea associated with hyperbolic equations is the notion of a characteristic, a 
curve in spacetime (a hypersurface in higher dimensions) along which signals 
propagate. There are several ways of looking at the concept of a characteristic: 
one definition, and this forms the basis of our definition of a characteristic. is 
that  it is a curve along which the PDE can be reduced to  a simpler form, for 
example. an ordinary differential equation. But ultimately. the characteristics 
are the curves along which information is carried. 

The aim in this chapter is to build a solid base of understanding of charac- 
teristics by examining a first-order PDE in one spatial variable and time. We 
focus on the initial value problem and the signaling problem, and carry out 
the analysis under the assumption that a continuous smooth solution exists. 
In Chapter 3 the concept of a weak solution is discussed, and the smoothness 
assumptions are relaxed. In Sections 2.1 and 2 . 2  we study linear and nonlinear 
equations, respectively, and in Section 2.3 we examine the general quasilinear 
equation. Then in Section 2.4 we address the subject of wavefront expansions 
and show that discontinuities in the derivatives also propagate along the char- 
acteristics. In Section 2 . 5  we discuss the general nonlinear equation of first 
order. 

A n  Introduction to Nonlinear Partzal Differential Equations, Second Edition. 
By J. David Logan 
Copyright @ 2008 John Wiley & Sons, Inc. 
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2.1 Linear First-Order Equations 

2.1.1 Advection Equation 

We already showed that the initial value problem for the advection equa- 
tion, namely 

ut+cu,  = o .  x ER, t > 0. (2.1.1) 

u(z .  0) = uo(z). x E R. (2.1.2) 

has a unique solution given by u(z .  t )  = uo(z - c t ) ,  which is a right traveling 
wave of speed c. We now present an alternative derivation of this solution that is 
in the spirit of the analysis of hyperbolic PDEs. In this entire section we assume 
that the initial signal uo is a smooth (continuously differentiable) function. 

First we recall a basic fact from elementary calculus. If u = u(x.t) is a 
function of two variables and IC = z ( t )  defines a smooth curve C in the zt 
plane. the total derivative of u along the curve C is given, according to the 
chain rule. by 

d dx 
d t  dt  

This expression defines how u changes along C.  By observation, the left side 
of equation (2.1.1) is a total derivative of u along the curves defined by the 
equation dz/dt = c. We may therefore recast (2.1.1) into the statement 

-u (x ( t ) ,  t )  = ut(x(t).t) + u z ( z ( t ) .  t)- .  

du dx 
- = 0 along the curves defined by - = c. 
d t  d t  

or ~ equivalently 
u = constant on x - ct = 5. 

where [ is a constant. In these expressions we have suppressed the arguments of 
u for concise notation: all expressions involving u are assumed to be evaluated 
along the curve. namely. at ( x ( t ) . t ) .  Consequently, the PDE (2.1.1) reduced to  
an ordinary differential equation. which was subsequently integrated, along the 
family of curves x - ct = 5. which are solutions to  d z / d t  = c. If we draw one 
of these curves in the zt plane that passes through an arbitrary point (2, t ) .  it 
intersects the z axis at ( E ,  0): its speed is c and its slope is l / c  because we are 
graphing t versus z rather than z versus t .  It is common to refer to the speed 
of a curve in spacetime, rather than its slope (see Figure 2.1). Now, because u 
is constant on this curve. we have 

u(z.  t )  = u(5. 0 )  = uo(5) = uo(x - c t ) .  

which is the solution to  the initial value problem (2.1.1)-(2.1.2). The totality of 
all the curves x - ct = <. where [ is constant, is called the set of charactersstzc 
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Figure 2.1 Characteristic curve with speed c passing through the arbitrary 
point (5. t ) .  

curves for this problem. The constant E acts as a parameter and distinguishes 
the curves. A graph of the set of characteristic curves on a spacetime diagram 
(i.e.* in the xt plane) is called the characteristzc diagram for the problem. 
Figure 2 . 2  shows the characteristic diagram for the problem (2.1.1)-(2.1.2). 
The characteristic curves. or just characteristics. are curves in spacetime along 
which signals propagate. In the present case. the signal is the constancy of u 
that is carried along the characteristics. Further-and this will turn out to be 
a defining feature-the PDE reduces to an ordinary differential equation along 
the characteristics. 

Figure 2.2 Characteristic diagram for the PDE (2.1.1) showing the family of 
characteristic curves 5 - ct = E .  The curves have speed c and are parameterized 
by their intersection E with the x axis. 
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2.1.2 Variable Coefficients 

l i e  can extend the preceding notions to more complicated problems. First 
consider the linear initial value problem 

ut + C ( 2 , t ) U X  = 0. x E R. t > 0, 
u(x. 0) = uo(2). x E R, 

(2.1.3) 

(2.1.4) 

where c = c ( x . t )  is a given continuous function. The left side of the PDE 
(2.1.3) is a total derivative along the curves in the xt plane defined by the 
differential equation 

dx 
- = c ( x ,  t ) .  (2.1.5) 
d t  

Along these curves 

or, in other words. u is constant. Therefore 

Again the PDE (2.1.3) reduces to an ordinary differential equation (which was 
integrated to a constant) along a special family of curves. the characteristics de- 
fined by (2.1.5). The function c = c(x .  t )  gives the speed of these characteristic 
curves, which varies in spacetime. 

Example. Consider the initial value problem 

U t  - xtu, = 0, x E w. t > 0, (2.1.6) 

u(x.O) = uo(x), z E R. (2.1.7) 

The characteristics are defined by the equation 

dx 
dt  

= -2t .  - 

which, on quadrature, gives 
t 2 / 2  x = [ e -  . 

where E is a constant. On these curves the PDE becomes 

dx du 
d t  d t  

U t  - xtu, = U t  - -ux = - = 0. 

(2.1.8) 

or 
t 2 / 2  u = const on x = < e -  . 
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Figure 2.3 Characteristic diagram for (2.1.6) showing the family of charac- 
teristics given by (2.1.8). 

The characteristic diagram is shown in Figure 2.3, with an arbitrary point (z, t )  
labeled on a given characteristic that emanates from a point (t, 0) on the 2 axis. 
From the constancy of u along the characteristics. we have 

u(5. t )  = u(E. 0) = .o([) = uo ( x e t 2 / 2 )  . 
which is a solution to  (2.1.6)-(2.1.7). valid for all t > 0. Figure 2.4 shows how 
an initial signal ug(z) is focused along the characteristics to a region near 2 = 0 
as time increases. 0 

Figure 2.4 Diagram showing how an initial signal is propagated in spacetime 
by the PDE (2.1.6) along the characteristics (2.1.8). 

This method. called the method of characteristics. can be extended to non- 
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homogeneous initial value problems of the form 

ut + c(z. t ) U Z  = f (z. t ) .  z E R. t > 0, (2.1.9) 

U ( 5 , O )  = U O ( 2 ) .  z E R, (2.1.10) 

where c and f are given continuous functions. Now the PDE (2.1.9) reduces to  
the ordinary differential equation 

on the characteristic curves defined by 

dz 
dt 
- = c ( x ,  t ) .  

(2.1.11) 

(2.1.12) 

The pair of differential equations (2.1.11)-(2.1.12) can. in theory, be solved 
subject to the initial conditions 

z = (, u = U O ( [ )  on t = 0, 

to find the solution. The constant [ is again a parameter that distinguishes 
each characteristic by defining its intersection with the z axis. In practice it 
may be impossible to solve the characteristic system (2.1.11)-(2.1.12) in closed 
form. and one may have to adopt numerical quadrature methods. Existence 
and uniqueness results from ordinary differential equations imply that a unique 
solution of (2.1.11)-(2.1.12) exists in some neighborhood of each point (zo, 0); 
however, a global solution for all t > 0 may not exist. 

Boundary value problems are handled in the same way. Boundary data 
along z = 0 (the t axis) of the form 

u(0 , t )  = g ( t )  

can be parameterized by 

t = 7 ,  u = g ( T )  on z = 0, 

which give conditions on the characteristic system. 

Example. (Boundary Value Problem) Consider the initial-boundary value 
problem 

U t + U z = O ,  z > o .  t > 0 .  

U ( Z , O )  = 0. 

u (0 . t )  = t e - t ,  

2 > 0. 

t > 0. 
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The characteristic system is 

du dx 
dt dt 

= 0: - = 1: - 

which has general solution 

u = q .  x = t + c z .  

The characteristics are straight lines of slope 1 emanating from both the x and 
t axes. Because conditions on the axes are different. we separate the problem 
into two regions. x > t and x < t (ahead and behind the line x = t .  which is 
the separating characteristic). It if clear that u = 0 in the entire region x > t 
because u is constant on characteristics, and it is zero along the x axis. Along 
the t axis the data can be parameterized by 

t = r 3  u = r e p T >  x = O .  

It follows that the arbitrary constants c1 and c2 are given by 

c1 = re-T .  c2 = -r. 

Therefore the solution is given in parametric form by 

u = re -T .  x = t - r. 

Eliminating the parameter r gives 

u ( x ,  t )  = ( t  - x)ex- t .  x > t .  

EXERCISES 

1. Solve the initial value problem 

ut+2ux = o ,  x ER, t > 0. 

u(x .0)  = - 
1 + x2. 

1 
x E R. 

Sketch the characteristics. Sketch wave profiles at  t = 0. t = 1. and t = 4. 

2. Solve the initial value problem 

ut + 2tux = 0 ,  x E R. t > 0.  

u(x, 0) = e-z2,  x E R. 

3. Solve the initial value problem 

2 U t - x u x = O ,  X E R .  t > 0 ,  

u(x .0)  = x + 1. 5 E R. 
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4. Solve the signaling problem 

2 
U t - Z  u,=O, x > o .  t E R .  

u(0. t )  = g ( t ) .  t E R. 

5 .  Solve the initial-boundary value problem 

2 
u t - 5  u x = o .  x > o .  t > 0 ,  

u(z,O) = e-,. 5 > 0. 
u(0. t )  = 1. t > 0. 

6. Insofar as possible. write down a formula for the solution to the initial value 
problem 

ut + cu, = f ( t ) ,  z E R. t > 0.  

u(z .0)  = uo(5), z E R. 

2.2 Nonlinear Equations 

IVhen nonlinear terms are introduced into PDEs, the situation changes dra- 
matically from the linear case discussed in Section 2.1. The method of char- 
acteristics. however, still provides the vehicle for obtaining information about 
how initial signals propagate. To begin. consider the simple nonlinear initial 
value problem 

ut + c(u)u,  = 0. z E R. t > 0. 
u(x,O) = uo(2). x E R. 

(2.2.1) 

(2.2.2) 

where c = c(u)  is a given smooth function of u: here and in this entire section, 
the initial signal uo is assumed to be smooth. We recognize (2.2.1) as the basic 
conservation law 

ut + @(u)z = 0, c (u )  = d ’ ( U ) ?  

where d = ~ ( u )  is the flux. The nonlinearity in (2.2.1) occurs in the advection 
term c(u)u,. Equation 2.2.1. often called a kznematzc wave equatzon, arises 
in nonlinear wave phenomena when dissipative effects such as viscosity and 
diffusion are ignored. It is a special case of the more general quasilinear equation 
that is discussed in the next section. 
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Figure 2.5 Characteristic given by x - < = c(uo(<))t having speed c(uo(E)). 

To analyze (2.2.1) let us assume for a moment that a C1 solution u = u(x. t )  
exists for t > 0. Motivated by the approach for linear equations in Section 2.1. 
we define characteristic curves by the differential equation 

dx 
dt  
- = C ( U ) ?  (2.2.3) 

where u = u(x. t ) .  Of course, contrary to the situation for linear equations. the 
right side of this equation is not known a priori because the solution is not yet 
determined. Thus the characteristics cannot be determined in advance. In any 
case. along the curves defined by (2.2.3) the PDE (2.2.1) becomes 

dx du 
d t  d t  

U t  + c(u)u, = U t  + u,- = - = 0. 

or u = const. Thus u is constant on the characteristic curves. It is easy to  
observe that the characteristic curves defined by (2.2.3) are straight lines. for 

du 
dt2 d t  d t  

= c’(u)- = 0. 
d2Z - dc(u) _ _ -  - 

Therefore. let us draw a characteristic back in time from an arbitrary point 
(x? t )  in spacetime to a point (<, 0) on the x axis (see Figure 2.5). The equation 
of this characteristic is given by 

J: - E = c(uo(<))t. (2.2.4) 

where we have noted that its speed (reciprocal slope) is given by dx ld t  or 
c(u(0.  <)), because u is constant on the entire characteristic line. Further, it 
follows that 

u(x* t )  = .([, 0) = uo(<). 
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Therefore. if a solution to the initial value problem exists for t > 0, then 
necessarily it must be given by 

4 z ,  t )  = uo(E). (2.2.5) 

where E = [(z. t )  is given implicitly by (2.2.4). 

obtained under the assumption that a C1 solution exists for all t > 0. Let us 
now verify that we indeed have a solution by substituting (2.2.5) into the PDE 
(2.2.1). We have 

The partial derivatives <t and E5 can be calculated by implicit differentiation 
of (2.2.4) to obtain 

The solution of (2.2.1)-(2.2.2) determined implicitly by (2.2.4) and (2.2.5) was 

ut = ub(E)Et. ux = .b(OEz. 

-Et = c’bo(”ub(0Ett + c(?Jo(t)) ,  1 - Ez = c ’ (uo( l ) )ub(<) lz t .  

(2.2.6) 

where D = 1 + c’(uo(<))ub(<)t. Consequently, ut + c(u)u, = 0. 
The preceding equations were obtained under the assumption that a unique 

solution u = u ( z , t )  exists for all t > 0. Implicit, therefore, is the assumption 
that each point (z, t )  in the zt plane uniquely determines a value of 5 .  and the 
partial derivatives (2.2.6) exist and are finite for all z and t .  It seems clear that  
the derivatives in (2.2.6). however. will not be finite unless some restrictions 
are placed on the initial signal uo and the function c(u)  in order to guarantee 
that the denominator D will not vanish. One such set of conditions is that 
the derivatives u’ and c’ both have the same sign; then the denominator D in 
(2.2.6) is always positive. and it can be verified that (2.2.4) and (2.2.5) provide 
a solution to  (2.2.1)-(2.2.2). R’e record this result as a theorem. 

Theorem. If the functions c and uo are C1(R) and if uo and c are either both 
nondecreasing or both nonincreasing on X, the nonlinear initial value prob- 
lem (2.2.1)-(2.2.2) has a unique solution defined implicitly by the parametric 
equations 

4 x 7  t )  = uo(<), 

2 - E = c(uo(<))t. 

Example. Consider the problem 

ut+uu,  = o .  z E R .  t > 0.  (2.2.7) 

(2.2.8) u(zc,  0) = o if z 5 0: u(z .  0) = e-l/x if z > 0. 
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Figure 2.6 Graph of the initial waveform (2.2.8). 

Figure 2.7 Characteristic diagram associated with (2.2.7)-(2.2.8). 

Here c(u)  = u and uo(z) are smooth nondecreasing functions on R. The initial 
signal uo(z) is shown in Figure 2.6. The characteristics emanating from a point 
( E > O )  on the z axis have speed c(uo(E)) = uo(<). Hence c = 0 if <SO, and the 
characteristics are vertical lines: c = exp(-1/<) if E > 0 and the characteristics 
fan out and approach speed unity as E increases. Figure 2.7 shows the char- 
acteristic diagram. The wave in the region where the characteristics fan out 
is called a rarefactzon wave or release wave. Figure 2.8 shows how the initial 
wave is propagated along the characteristics (recall that  u is constant on the 
characteristics). The solution to the problem (2.2.7)-(2.2.8) is given implicitly 

by 

u(z . t )  = 0 

u(z. t )  = e- ' /< .  where z - 5 = t e - l l E  for z > 0. 0 

for z 5 0, 

In Chapter 3 we address the important question of what happens when the 
hypotheses of the last theorem are not satisfied and the derivatives u, and ut 
in (2.2.6) blow up. In this case the wave develops a discontinuity known as a 
shock. 
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Figure 2.8 Rarefaction! or release: wave. 

EXERCISES 

1. Consider the initial value problem 

U t $ U U ,  =0, z EW. t > 0, 

u(5.0)  = -z. z E R. 

Sketch the characteristic diagram and find the solution. 

2. Solve the nonlocal advection equation 

+ (JG' F ( u ( t , t ) ) d < )  uz = 0. 0 < 5 < 1. t > 0, 

u(2.0) = f ( z ) .  0 < 5 < 1, 

u(O.t) = 0. t > 0. 

Solve it also in the case the boundary condition is u(0,  t )  = g ( t )  (see Logan 
2003). 

3. Solve the signaling problem 

ut = -u, + u 2 .  5 > 0, t E R. 
u(0.t) = g ( t ) ,  t E R. 

2.3 Quasilinear Equations 

Now we examine the nonlinear PDE 

ut + c ( 2 ,  t ,  u )u ,  = f ( 5 ,  t ,  u ) .  I E R, t > 0 ,  (2.3.1) 
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where the coefficients c and f are continuous functions. Such equations are 
called quasz-lanear because of the way the nonlinearity occurs-that is. the 
equation is linear in the derivatives and the nonlinearity occurs through multi- 
plication by coefficients that depend on u. We consider the initial value problem 
and append to (2.3.1) the initial condition 

u(x. 0 )  = urJ(x). x E R. (2.3.2) 

where ug(z) is continuously differentiable on R. Our approach in this section 
will be the same as in Section 2.2: we examine (2.3.1) and (2.3.2) under the 
assumption that a smooth solution exists, postponing a discussion of discon- 
tinuous solutions to Chapter 3. The goal at  present is to build further on the 
method of characteristics and show how an algorithm can be constructed to 
solve (2.3.1)-( 2.3.2). 

Therefore, let u = u ( x . t )  be a smooth solution to (2.3.1)-(2.3.2). From 
the prior discussion we observe that the PDE (2.3.1) reduces to the ordinary 
differential equation 

(2.3.3) 
du 
dt 
- = f ( x 3  t ,  u) 

along the family of curves (characteristics) defined by 

dx 
dt 
- = c(x .  t .  u). (2.3.4) 

We may regard (2.3.3) and (2.3.4) as a system of two ordinary differential 
equations (called the characterastzc system) for u and x, and we may solve 
them in principle, subject to the initial conditions 

u=uo(<).  x = [  at t = O  (2.3.5) 

to obtain the solution. Here, as before. we regard < as a number that parame- 
terizes the characteristic curves, giving the intersection of the curves with the 
x axis. 

Example. Consider the initial value problem 

U t  + uus = -u. x E R, t > 0 ,  
m 
d, 

U ( Z . 0 )  = --. x E R. 
2 

The characteristic system is 

with initial data 

dx du 
dt dt 

-u on - = u, - - - 

E 
2 ’  

u=-- x = <  at t = 0 .  

(2.3.6) 

(2.3.7) 

(2.3.8) 

(2.3.9) 
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It is straightforward to  solve (2.3.8) to  obtain 

u = aePt ,  x = b - a e p t ;  (2.3.10) 

where a and b are constants of integration. Applying the initial conditions 
(2.3.9) gives a and b in terms of the parameter E according to  

E E 
= 2'  a = --- 2 '  

Then the solution of the characteristic system (2.3.8) is, in parametric form 

E -t E u = - - e  % x = - ( ~ + e - ~ ) ,  E E R  

In the present case we may eliminate the parameter < from the second equation 

2 2 

to obtain 

Thus 
xect 

u(x, t )  = - ~ 

1 + e- t '  

which is a smooth solution valid for all t > 0 and 5 E R. 0 

It is unlikely in the general case that the calculations can be performed 
as in the example and a smooth. closed-form solution derived. The signaling 
problem. as well as other boundary value problems. may be handled in a similar 
manner using the method of characteristics. 

Example. Consider the initial-boundary value problem 

ut+uuz =O. x > 0. t > 0, (2.3.11) 

u(5 .0 )  = 1, 2 > 0. (2.3.12) 

u(0 . t )  = - t > 0 .  
1 + t2' 

(2.3.13) 

The PDE reduces to the total derivative duldt = 0 on the characteristic curves 
defined by dxldt = u. Thus 

dx 
d t  

u = const on - = u. 

As we determined earlier. the characteristics are straight lines with speed u. 
Therefore, all the characteristics emanating from the x axis. where u = 1. have 
speed 1. Figure 2.9 shows the characteristic diagram for (2.3.11)-(2.3.13). This 
means that the constant solution u = 1 is carried into the region x > t by 
these characteristics. For 5 < t the characteristics fan out because the speed 
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t 
X 

Figure 2.9 Characteristic diagram associated with (2.3.1 1)-( 2.3.13) 

u decreases along the t axis according to  the boundary condition (2.3.13). Let 
us now select an arbitrary point ( z , t )  in the region x < t where we want to  
determine the solution. Following this characteristic back to the boundary x = 
0, we denote its intersection point by (0, r ) .  The equation of this characteristic 
is given by 

2 = u(O.r)(t - r ) ,  

By the constancy of u along the characteristics, we know that 

1 
u(z: t )  = u(0, r )  = - 

1 +r2,  

and r = r(x, t )  is given implicitly by formula (2.3.14). In the present case we 
may solve (2.3.14) for r to obtain 

r =  -1 + J1+ 42(t  - 2 )  
(2.3.15) 

2 2  

Note that (2.3.14) reduces to a quadratic equation in IT that  can be solved by the 
quadratic formula, taking the plus sign on the square root in order to satisfy the 
boundary condition. Consequently, a solution to the problem (2.3.11)-(2.3.13) 
is 

u ( z , t )  = 1 for z 2 t ,  
1 

u(2.t)  = - for z < t ,  
1++ 

where T is given by (2.3.15). 0 



76 2. First-Order Eauations and Characteristics 

2.3.1 The General Solution 

In some contexts the general solution of the quasilinear equation (2.3.1) is 
needed, in terms of a single, arbitrary function. To determine the general so- 
lution we make some definitions and observations. An expression w ( ~ ,  t ,  u) is 
called afirst  zntegrul of the characteristic system (2.3.3)-(2.3.4) if W(Z. t ,  u) = k 
(constant). on solutions to  (2.3.3)-(2.3.4). In other words. w ( X ( t ) . t ,  U ( t ) )  = k 
for all t in some interval I .  if z = X ( t ) ,  u = U ( t ) ,  t E I ,  is a solution to  
(2.3.3)-(2.3.4). Taking the total derivative of this last equation with respect to  
t and using the chain rule gives 

wxc+wt+L!Juf  = 0 ,  t E I .  (2.3.16) 

where each of the terms in this equation are evaluated at ( X ( t ) ,  t ,  U ( t ) ) .  
In addition. if Y(Z. t .  u) is a first integral of the characteristic system. then 

the equation 11..(~, t ,  u) = k defines. implicitly, a surface u = u(x, t ) .  on some 
domain D in the xt plane, provided u, # 0. Thus 

W ( X .  t .  U(Z> t ) )  = k. (x? t )  E D. 

Using the chain rule we calculate the partial derivatives of u as 

W t  + W u U t  = 0. QX + wuu, = 0. 

or 

Each term on the right is evaluated at (z. t ,  U(Z, t ) ) .  Observe that the curve 
( X ( t ) ,  t ,  U ( t ) )  lies on this surface because $ ( X ( t ) .  t .  U ( t ) )  = k .  

We claim that this surface u = ~ ( x .  t )  is a solution to  the partial differential 
equation (2.3.1). To prove this, fix an arbitrary point (<. T )  in D .  Then 

(2.3.17) 

where c and all the terms on the right side are evaluated at  (<.T,w) ,  where 
w' = u([. 7 ) .  But a solution curve ( X ( t ) .  t ,  U ( t ) )  lies on the surface and passes 
through the point (<. T .  C J )  at t = T .  That is, ( E .  T ,  'J) = ( X ( T ) ,  T ,  U (T ) ) .  There- 
fore, the right side of (2.3.17) may be evaluated at ( X ( T ) ,  T ,  U ( T ) ) .  

In general. we expect to find two independent first integrals to the char- 
acteristic system, ~ ( t .  5.  u) and ~ ( t ,  x. u) .  The general solutzon of (2.3.1) is 
then 

G(w(t .  Z. u), ~ ( t .  x. u)) = 0. (2.3.18) 

where G is an arbitrary function. We can formally solve for one of the variables 
and write this as ~ ( t .  Z. u) = g(X( t .  5. u ) ) ~  where g is an arbitrary function. 
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We leave it as an exercise (using the chain rule) to show that if $(t ,  x. u) and 
X ( t .  x, u)  are first integrals of the characteristic system. then (2.3.18) defines. 
implicitly. a solution u = u(z. t )  to (2.3.1) for any function G. provided Gyvu + 
G x X u  # 0. 

Example. Consider the equation 

5 
ut + 2tu, = -. 

2u + 1 

The characteristic system is 

5 
- - 

dx du - : 2 t .  - - 
dt  d t  2u + 1 ' 

The first equation gives first integral d = x - t2  = c1. Then the second equation 
becomes 

Separating variables and integrating gives another first integral x = u2 + u + 
i t3  - xt = c2. Therefore. the general solution is 

G (x - t 2 ,  u2 + u + 3t3 - x t )  = 0 ,  

where G is an arbitrary function. This expression defines implicit solutions. It 
can also be written 

2 u2 + 21 + $3 - xt = g (x - t ) ? 

where g is an arbitrary function. This quadratic in u can be solved to determine 
explicit solutions. 0 

Example. Consider the linear problem 

u(x .0)  = x3.  x > 0, 
lim u ( x , t )  = t3 ,  t > 0. 
2-0 

The boundary condition should be interpreted in a limiting sense. The charac- 
teristic system is 

dx t du u 
d t  x 1  d t  x' 

- - - _ - _  - - 

The first equation integrates immediately to  give the first integral 

2 x2 - t = c1, 
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which defines the characteristics, a family of hyperbolas, in the xt plane. To 
solve the second characteristic equation we can substitute for x and write 

But this integration is rather involved. and sometimes it is easier to  find a 
second first integral by manipulating the characteristic equations directly. If 
we divide the two characteristic equations we get 

Therefore we have 
dx t d t  x 

Adding these two equations gives 

Now we can separate variables and integrate to get 

U 
- = cz. 
x + t  

iT;e can immediately write the general solution as 

or 
u = (x + t )G(x2  - t 2 ) .  

Now we determine the arbitrary function G on each side of the separating 
characteristic x = t .  For x > t we use the initial data to  get 

u(x, 0) = xG(x2)  = x3, 

which implies the form of G is G ( z )  = z .  Therefore we have 

u = (x + t ) ( 2  - t 2 ) .  x > t .  

For x < t we use the boundary data to get 

u(0,  t )  = tG(-t2) = t3.  

which implies the form of G is G ( z )  = -2. Therefore we have 

21 = (x + t)( tZ - 5 < t .  

Note that as x -+ 0. the boundary condition is satisfied 
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It is clear from the solution that u is continuous across the characteristic 
x = t .  However. u, is not continuous across x = t because for x > t we 
have u, = (x + t ) ( 2 2 )  + x2 - t 2  + 4t2 as x + t+ and for x < t we have 
u, = (x + t ) ( - 2 x )  + t 2  - x2 + -4t2 as x --f t - .  The fact that discontinuities 
are propagated along characteristics is a feature of nonlinear PDEs. 0 

EXERCISES 

1. Solve the initial value problem 

ut + U U ,  = -ku2, x E R, t > 0. 
u(2,O) = 1, X E R. 

where k is a positive constant. Sketch the characteristics. 

2 .  Consider the initial value problem 

ut + U U ,  = - ku ,  2 E R, t > 0. 
u(x. 0) = uo(5). n: E R. 

where k is a positive constant. Determine a condition on uo so that a 
smooth solution exists for all t > 0 and x E R, and determine the solution 
in parametric form. 

3. Solve the initial value problem 

ut + cu, = xu, x E R. t > 0. 
u(x .0 )  = ug(x), x E Iw, 

where c is a positive constant. Sketch the characteristics. 

4. Solve the initial value problem 

ut - xtu, = 2 ,  2 E Iw. t > 0, 
u(x. 0) = uo(2). 2 E R. 

5 .  Solve the signaling problem 

ut +u ,  = u 2 %  X > 0, t E Iw, 
u(0. t )  = U O ( t ) ?  t E R. 

6. Consider the PDE 
2 2  + t 2  
u(x - t )  

u, = ~ 

X + t  
ut + - 

x - t 
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(a) Show that d = 2xt - u2 and w = u2 - x2 - t2 are two first integrals of 
the characteristic system and find the general solution. 

(b) Find the solution that satisfies u = 0 on the line 2t = x. 

7. Show that if u = u(x. y)  satisfies the equation 

where n is a positive integer, then 

u = xnf p ) ,  
where f is an arbitrary function. 

8. Derive the general solution 

of the PDE 
t2ut + x2uz = (x + t )u .  

9. Consider 
U U t  + u, = 1 

with Cauchy data u = x/2 on x = t for x E (0.1). Show that 

42 - 2t - x2 
2(2 - x) ' 

u =  

Find the domain of validity and sketch the characteristics. 

10. Consider 
tut + (x + u)u, = u + t2  

with Cauchy data u = x on t = 1 for x E R. Show that 

x - t2 
u=- + t2.  

1 + l n t  

Find the domain where the solution is valid. 
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Figure 2.10 Discontinuities in derivatives propagating along characteristics. 

2.4 Propagation of Singularities 

In the preceding discussion and examples we assumed that the initial and 
boundary data were given by smooth functions. Now we consider the case 
where the initial or boundary data are continuous but may have discontinuities 
in their derivatives. The question we address is how those discontinuities on 
the boundary of the region are propagated into the region of interest. A simple 
example shows what to expect. 

Example. Consider the simple advection equation 

ut+cu, = o .  z € R  t > 0, (2.4.1) 

subject to  an initial condition given by a piecewise smooth function uo defined 

by 
x < o  

0 < z < 1 u(z .0)  = ug(z) = 1 - 2.  { I: x > 1 .  

Because the general solution of (2.4.1) is u(z . t )  = f ( z  - ct) ,  a right traveling 
wave, u is constant on the characteristic curves z - ct = const. which carry 
the initial data into the region t > 0 (see Figure 2.10). Thus the discontinuities 
in u’ at 5 = 0 and 2 = 1 are carried along the characteristics into the region 
t > 0 .  0 
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t A  Wavefront 
S ( X ,  t )  - X - X ( t )  = 0 

6 = const > 0 

I . - 
X 

Figure 2.11 A wavefront x = X ( t )  and associated curvilinear coordinates [ 
and q. 

In summary, characteristics carry data  from the boundary into the region. 
Therefore, abrupt changes in the derivatives on the boundary produce corre- 
sponding abrupt changes in the region. In other words, discontinuities in deriva- 
tives propagate along the characteristics. For a general nonlinear equation. as 
we observe in Chapter 3 .  discontinuities in the boundary functions themselves 
do not propagate along characteristics: these kinds of singularities are shocks 
and they propagate along different spacetime curves. 

For the simple nonlinear kinematic wave equation 

U t  + c(u)u, = 0. (2.4.2) 

we now demonstrate that discontinuities in the derivatives propagate along 
characteristics. Let [ = [(x-t) be a curve in xt-space separating two regions 
where a solution u = u ( z , t )  is C1. and suppose that u has a crease in the 
surface; that is. that u is continuous across the curve, but there is a simple 
jump discontinuity in the derivatives of u across the curve. Such a curve is 
sometimes called a wavefront (see Figure 2.11). Observe that this is a different 
use of the term wavefront from that used in the context of TWS. To analyze 
the behavior of u along the wavefront. we introduce a new set of curvilinear 
coordinates given by 

[ = [(z. t ) .  q = q(x ,  t ) .  (2.4.3) 

For example, q(z,t) = const can be taken as the family of curves orthogonal 
to [(z. t )  = const. Then the chain rule for derivatives implies 

U t  = U&t + ullqt. ux = u& + uqqx' 
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Here there should be no confusion in using the same variable u for the trans- 
formed function of [ and 7. The PDE (2.4.2) therefore becomes 

([t  + .(.)Ez)q + (7t + c(u)7z)u7) = 0. (2.4.4) 

This equation is valid in the regions ( > 0 and [ < 0. Also. by hypothesis 

4 0 + ,  7) = 4 0 - ,  71, (2.4.5) 

(2.4.6) 

Consequently. the tangential derivatives are continuous across the wavefront 

Next we introduce some notation for the jump in a quantity across a wave- 
front. Let Q be some quantity that has a value &+ just ahead (to the right) of 
the wavefront. and a value Q- just behind (to the left) of the wavefront. Then 
the jump zn the quantzty Q across the wavefront is defined by 

[ ( z , t )  = 0. 

[&I = Q- - Q+. 

Continuing with our calculation. we take the limit of equation (2.4.4) as [ + O f  
and then take the limit of (2.4.4) as E i 0-. Subtracting the two results gives 

(2.4.7) 

where we used (2.4.5) and (2.4.6). If we assume that [uc]#O, then 

Et + .(u)ls = 0. (2.4.8) 

In particular, if the wavefront [(z. t )  = 0 is given by z = X ( t ) ,  then (2.4.8) be- 
comes 

- = C(.). (2.4.9) 
dX 
d t  

That is, E(z,t) = 0 must be a characteristic. We summarize the result in the 
following theorem. 

Theorem. Let D be a region of spacetime. and let [(z. t )  = z - X ( t )  = 0 be a 
smooth curve lying in D that partitions D into two disjoint regions Dt and D- 
(see Figure 2.12). Let u be a smooth solution to  (2.4.2) in D+ and D- that 
is continuous in D ,  and assume that the derivatives of u suffer simple jump 
discontinuities across [ ( z . t )  = 0. Then [ ( z . t )  = 0 must be a characteristic 
curve. 

The next issue concerns the magnitude of the jump [uz] as the wave prop- 
agates via (2.4.2) along a characteristic. Under special assumptions we now 
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c ,\ 

Figure 2.12 

Wavefron t 

x 

Figure 2.13 Wavefront propagating into a constant state. 

derive an ordinary differential equation for the magnitude of the jump that 
governs its change. Let us assume that the wavefront is at the origin n: = 0 at 
time t = 0, and that the state ahead of the wave is a constant state u = uo. 
Then the characteristics ahead of the wavefront have constant speed co = c(u0). 

and the wavefront itself has equation [(n:,t) = z - cot = 0 (see Figure 2.13). 
Thus u = uo for < > 0. The coordinate lines < = constant are parallel to the 
wavefront. and we want to examine the behavior of the wave near the wave- 
front (where < is small and negative) as time increases. Therefore, using the 
assumption that [ is small. we make the Ansatz 

u0, ( > 0 (ahead) 
(behind) 

u = {  
uo + u l ( t ) <  + ;uz(t)[* + . . .  % 6 < 0 

Computing the derivatives yields 

U t  = u1(t)(-co) + Eu:(t) + uz(t)E(-co) + W). (2.4.10) 

(2.4.11) Uz = ul( t )  + u2(t)E + WE2), 
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and 

c(u) = co + c’(Zlo)(u - uo) + O ( ( u  - u#) 

= co + c’(uo)u1(t)[ + 0(E2). 

Note that the approach here is to trade in the independent 

(2.4.12) 

variables t and x 
for new variables t and E .  where E is a curvilinear coordinate measuring the 
distance from the wavefront. Now substitute (2.4.10)-(2.4.12) into the PDE 
(2.4.2) to  obtain 

- COUl + c ( 4  - cou2) + 0(E2) 

+ ((co + c’(uo)ud + 0(E2)) (u1 + u2E + 0(t2)) = 0. 

Because this equation holds for all [. we may set the coefficients of the 
powers of E equal to  zero: the O(1) and O(E) coefficients are 

O(1) : 

O ( [ )  : u; + C’(u0)u: = 0. 

-cou1 + cou1 = 0. 

The O(1) equation holds identically. and the O ( [ )  equation is a differential 
equation for the first-order correction u l ( t )  in the expansion for u in region just 
behind the wavefront ([ < 0). Because uz is given by (2.4.11). the function u l ( t )  
also will approximate the jump [u,] to first order. [Recall that [u,] = u,(E-. t )  
because uz(E+, t )  = 0.1 Solving the O([) differential equation for u1 gives 

(2.4.13) 

where k is a constant of integration that can be determined by initial data. 
that  is, the initial jump in u, at time t = 0. If c/(uo) > 0 and k < 0. that 
is, the wavefront initially has a negative jump at  z = 0 . t  = 0. as shown in 
Figure 2.14. then (2.4.13) implies that  the gradient jump will steepen and the 
wave will break at a finite time tb = -k/c’(uo). If k > 0. the jump in the 
gradient will tend to zero as t goes to  infinity. 

A wavefront calculation is one of the standard tools used in nonlinear hy- 
perbolic problems to gain information about signal propagation along charac- 
teristics. The method lies in the domain of what is often called weakly nonlznear 
theory. When we discuss hyperbolic systems in Chapter 4. we find this tech- 
nique to  be a valuable tool in deriving manageable equations that approximate 
wavefront phenomena in nonlinear problems. 
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Figure 2.14 Evolution along a characteristic of a jump discontinuity in the 
derivative until a gradient catastrophe occurs at a breaking time t b .  

EXERCISES 

1. Consider the initial value problem 

ut + u%, = 0, x E R. t > 0. 

u(z,O) = 1. if x > 0: u(x.0) = - . if x < 0. 
22 - 1 
2 - 1  

Sketch the initial signal and determine the initial jump in u,. Sketch the 
characteristic diagram. and approximate the time t b  for the wave to break 
along the characteristic x = t .  

2.5 General First-Order Equation 

Now we consider the general first order nonlinear PDE 

H ( z . t . u . p , g ) = O .  p=u, .  q = u t .  (2.5.1) 

on the domain x E R. t > 0, subject to the initial condition 

u(x.0) = uo(x), z E R. ( 2 . 5 . 2 )  

In the PDE (2.5.1) there now is no obvious directional derivative that defines 
characteristic directions along which the PDE reduces to an ordinary differ- 
ential equation. However, with some elementary analysis we can discover such 
directions. Let C be a curve in spacetime given by 

x = .(s), t = t ( s ) ,  
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A 
t 

Figure 2.15 Characteristic emanating from (<> 0). 

where s is a parameter (see Figure 2.15). Then the total derivative of u along 
C is 

We ask whether there is a special direction (x’, t’) that has special significance 
for (2.5.1). We first calculate the total derivatives of p and q along C.  To this 
end 

P ’ =x- d ( u x )  - U X X d  + uxtt/.  

q / = - -  d(uZLt) - utsx’ + uttt’. 

(2.5.3) 

(2.5.4) 
d s  

Now take the two partial derivatives (with respect to z and with respect to  t )  
of the PDE (2.5.1) to obtain 

Comparing (2.5.3) and (2.5.4) with the last two terms in (2.5.5) and 
(2.5.6) suggests a judicious choice for the direction (z’, t’) to be 

x’ = H p :  t’ = Hq. (2.5.7) 

In this case equations (2.5.3) and (2.5.4) combine to become 

and the total derivative of u along C becomes 

u’ = pH, + qH,. (2.5.9) 

Let us summarize our results. If characteristic curves are defined by the system 
of differential equations (2.5.7), then (2.5.8) and (2.5.9) hold along these curves; 
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the latter form a system of ordinary differential equations that dictate how u. 
p ,  and q change along the curves. In other words. (2.5.8) and (2.5.9) hold along 
(2.5.7). The entire set of equations (2.5.7)-(2.5.9) is called the churucterzstzc 
system associated with the nonlinear PDE (2.5.1). It is a system of five ordinary 
differential equations for 2, t ,  u, p .  and q. 

In principle, therefore. we can develop an algorithm to solve the initial value 
problem (2.5.1)-(2.5.2). IVe emphasize that the following calculations are made 
assuming that a smooth solution exists. The initial condition (2.5.2) translates 
into 

z = < %  u = uo(<) at t = 0. (2.5.10) 

(2.5.11) 

where < is. as before, a real number that parameterizes the characteristics 
curves, representing their intersection with the z axis. To solve the character- 
istic system we would also need a condition on q at t = 0. Such a condition can 
be obtained from the PDE (2.5.1) itself, for we can evaluate the PDE along the 
t = 0 timeline to obtain 

(2.5.12) 

Assuming that (2.5.12) can be solved for q (the condition Hq#O for t = 0 
guarantees this), we obtain 

q = q(<)  at t = 0. (2.5.13) 

Finally. the characteristic system (2.5.7)-(2.5.9) can be solved. subject to  the 
initial conditions (2.5.10), (2.5.11), and (2.5.13). to obtain t, 2, u, p ,  and q 
along a characteristic curve. In some cases the parameters may be eliminated 
to obtain an explicit form u = u(z .  t )  for the solution. 

Example. Consider the initial value problem 

u t + u ; = o .  X E R .  t > O  

u ( z .0 )  = 2 .  

H ( z .  t .  u , p .  q )  = q + p* = 0. 

z E R. 

Here 

and the initial timeline can be parameterized by 

x = < .  t = 0 .  u=<. p = l .  

The PDE (2.5.15) then gives at t = 0 a condition on q: 

q = -1. 

(2.5.14) 

(2.5.15) 

(2.5.16) 

(2.5.17) 
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The characteristic system (2.5.7)-(2.5.9) corresponding to (2.5.15) is 

5’ = 2p. t’ = 1, u’ = 2p2 + q .  p’ = 0, q’ = 0. (2.5.18) 

Because (2.5.18) is autonomous, we may assume that the initial data are given 
at  s = 0. Solving this system is straightforward in the present case (for other 
problems. solving the characteristic system may be difficult or impossible). 
Clearly, t = s and 

p = c1 and q = C Z ,  (2.5.19) 

where c1 and c2 are constants. Therefore, from (2.5.18), we obtain 

x’ = 2cl or 5 = 2c1t + cg. (2.5.20) 

where c3 is another constant. Next. from (2.5.18). we have 

2 u/ = 2c, + c2, 

and consequently 
21 = (2c: + c2)t + c4. (2.5.21) 

Applying the initial conditions (2.5.16) and (2.5.17) allows us to  determine the 
constants e l ,  . . . c4. Easily we obtain 

c1 = 1, c2 = -1; c3 = I ,  c4 = E ;  

and therefore 
x = 2 t + < ,  u = t + J .  

In this instance we can eliminate the parameter ( and obtain the analytic 
solution 

u(x. t )  = 5 - t .  

The characteristic curves in this problem are given by II: = 2t + E and are 
straight lines in spacetime moving with speed 2. 0 

Example. Consider the initial value problem 

H ( z , t . u . p . q ) = 2 t q t 2 x p - p 2 - 2 u = O .  s E R ,  t > o  ( 2 . 5 . 2 2 )  

u(x, 0) = uo(2). J: E R (2.5.23) 

At t = 0 we have z = <. u = uO(5). and p = ub(<). To complete the initial data  
we need q at t = 0. From (2.5.22) we have 

H(J. 0, uo(<)..b(J). 4 )  = 0 

But q drops out of this equation and we are unable to  determine q at t = 0. 
Thus the PDE (2.5.22) does not determine the initial derivative in the time 
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direction, and therefore not enough information is given to  move away from the 
initial timeline. Notice that the characteristic direction (d. t’) = ( H p ,  H q )  = 

(2z  - 2p, 2t) is. at t = 0. given by (2< - 2ub(<), O ) ,  which is a vector in the same 
direction as the initial time line. Thus the characteristic curves, which are to  
carry the initial data into the region t > 0. are tangent to  the initial time line 
and do not have a component in the time direction to carry signals forward. 
Thus (2.5.22)-(2.5.23) is not a well-posed problem. 0 

We summarize the comments in the preceding paragraph by making the 
following formal statement: A necessary condition that the initial value prob- 
lem (2.5.1)-(2.5.2) have a smooth solution is that equation (2.5.1) with t = 0 
uniquely determine q as a function of x, u. and p .  A condition that guarantees 
this solvability is that Hq#O at each point (z. 0. u, p .  q ) .  Under this condition it 
can be shown that a local solution exists about each point (x. 0) on the initial 
timeline. 

This same procedure can be extended to solve the PDE (2.5.1) subject 
to data given along any curve r in spacetime; that is, we consider the PDE 
(2.5.1) with the initial condition (2.5.2) replaced by the boundary condition 

u(x,t) = f ( z , t )  on r, (2.5.24) 

where f is a given function (see Figure 2.16).  If we parameterize the curve r 
by z = x ( [ ) . t  = t (<)% condition (2.5.24) becomes 

u = f (40,  t ( E ) )  = F ( 0  along I-. 

As in the initial value problem. we must be able to determine p and q along the 
curve r so that we have enough data to solve the characteristic system. The 
PDE (2.5.1) must hold along I?, so that 

f f ( t ( J ) , 4 < ) ,  F ( < ) , p ( E ) .  = 0. (2.5.25) 

Figure 2.16 Illustration of Cauchy data where u is prescribed along a curve 
r. 
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Further. taking d / d <  of u (i.e.. differentiating u along r),  we have 

(2.5.26) 

Equations (2.5.25) and (2.5.26) represent two equations for p ( J )  and q(<). We 
expect to be able to solve these equations when the Jacobian is nonzero, or 

d t  dx 
Hp- - Hq-#O. 

dt dt 
(2.5.27) 

Geometrically. the solvability condition (2.5.27) requires that the characteristic 
direction (x’, t’) = ( H p .  H q )  traverse the boundary curve r, which has direction 
(dx/d<,  d t / d < ) .  In other words. (2.5.27) means that the boundary curve r must 
nowhere have characteristic direction. As noted earlier. if the curve along which 
the data are prescribed has characteristic direction at a point on the curve. not 
enough information is supplied to  carry data off that curve into the region 
where the problem is to be solved. 

The initial value problem (2.5.1)-(2.5.2). or the more general problem 
(2.5.1) with data (2.5.24) given on a curve r, is called a Cauchy problem. 
The general theory of Cauchy problems (existence. uniqueness. and regularity 
of solutions) is discussed in many of the references [see, eg . ,  John 19821. 

2.5.1 Complete Integral 

Another class of important solutions to the general nonlinear equation 

H ( x ,  y. u , p .  4) = 0, p = u,. 4 = uY (2.5.28) 

are those that depend on two independent parameters. a and b. A complete 
zntegral of (2.5.28) is a two-parameter family of surfaces 

f(x. y. U ,  a, b)  = 0 

that implicitly defines a solution u.  We are using independent variables x and 
y in place of x and t because of many applications to surface theory and to 
optics. The characteristic system is usually written in the form 

Notice, for example, that the ratio dp/O means p = const. A complete integral 
can be used in some cases to solve the PDE subject to a condition along some 
given curve. 
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Example. The eikonal equation from optics is 

2 2 2  u , + u y = n .  (2.5.30) 

where n is a constant. Thus H = p 2  + q2 = n2 = 0. The characteristic system 
is 

Therefore p and q are constant, and using (2.5.30). we get 

p = a. q = dn2 - a2 = const. 

Taking the differential of u = U(Z. y) then gives 

d u  = p d x  + q d y  = adz  + d m d y .  

Therefore 
u = ax + J n 2 - a Z y  + b,  

where b is another arbitrary constant. Therefore we have determined a complete 
integral, which is a two-parameter family of planes, of the eikonal equation. 
Clearly this method can be easily adapted to any first-order PDE that depends 
only on p and q .  I3 

Example. Consider the Cauchy problem 

p2q = 1, u ( x . 0 )  = 3J: + 1. 

A complete integral is 
1 

u = ax + l y + b .  

u = 3 z + $ y + l .  0 

a2 
Applying the initial condition gives u(x. 0) = ax + b = 3x + 1, giving a = 3 and 
b = 1. Therefore 

EXERI C ISES 

1. Solve the initial value problem 

u t + u z  = t .  z ER, t > o .  
u(x .0 )  = 0. J: E R. 

2 .  Solve the initial value problem 

Ut +u, = 0. x E R. t > 0. 
u(x .0 )  = -2. x E R. 

Does the solution exist for all t > O? 
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3. Find the characteristic system associated with the Hamzlton-Jacobz equa- 
tzon 

U t  + h( t .  5 ,  u,) = 0, 

where h is a given function called the Hamdtonian. 

4. Find a first-order PDE associated with each of the following surfaces ( a  
and b are parameters). 

a) 2 + y2 + (u - u)’ = r’. 

b) (z - a)2  + (y - b ) 2  + u2 = r2 .  

5. Assuming that no independent variables occur. that is, if the PDE has the 
form H ( u .  p .  q )  = 0. show that a complete integral is 

where, from the PDE, p = f(u. a ) .  

6 .  Find a complete integral of the PDE 

2 u, + yuy - u = 0. 

7. Determine the characteristic system associated with the nonlinear equation 

U t  + c(u)u, = 0, 

and show that it coincides with the results obtained in Section 2 . 2 .  

8. Use the method of characteristics to determine two different solutions to 
the initial value problem 

u = p - 3 q 2 ,  2 X E R .  t > 0 ,  

u (z .0)  = x2. 5 E R. 

9. Solve 

ut =u:. 5 E R B ,  t > 0. 
u ( 5 . ~ )  = 2z3/2. E R. 

10. Consider the Helmholtz equation 

(A + P ) u  = 0. z E R2, 

where k is a large parameter. By writing u = A(z)ezk.u, show that to order 
O ( k 2 ) .  the function y = ~ ( z )  satisfies the eikonal equation 

grad$.  gradw = 1. 
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2.6 A Uniqueness Result 

Up to this point our approach has been algorithmic in nature; that is, most ef- 
forts have gone into the actual construction of solutions. and we have essentially 
ignored existence and uniqueness questions. Having constructed a solution in 
some manner, one may legitimately ask whether a different construction could 
give a different solution. Both to answer this question and to give the reader a 
flavor of a simple theoretical result, we prove a basic uniqueness result due to A. 
Haar in 1928. The proof given below is an adaptation of that given in Courant 
l2 Hilbert (1962). and it applies to  a specific class of nonlinear equations. 

Ure require one definition. namely, what it means for a function to satisfy 
a Lipschitz condition. A function f (x. y) satisfies a Lzpschztz condztzon wzth 
respect to y on a domain D in the plane if. and only if, there exists a constant 
k > 0 such that 

If(z, Y1) - f(.? Y2) l  I klYl - Y2l  

for all (x. y1) and (x? y ~ )  in D .  The constant k is called the Lzpschztz constant  
wzth respect t o  y. 

The reader may have encountered this concept in ordinary differential equa- 
tions; it is a condition on f ( x ,  y) that guarantees uniqueness of solutions to the 
initial value problem d y / d x  = f (z .y) .y(xo)  = yo. It is not difficult to  show 
that the property of being Lipschitz is stronger than continuity. yet weaker 
than differentiability. 

We may extend the concept to several variables. For example. a function 
f ( x ,  y, z )  is said to be Lipschitz in y and z if there exist two positive constants 
k and m such that 

for all (x. ~ 1 . ~ 1 )  and (x, y2,zZ). The constants k and m are the Lipschitz con- 
stants with respect to y and z .  respectively. 

Now the uniqueness theorem of Haar. 

Theorem. Consider a PDE of the form 

where G is continuous and satisfies a Lipschitz condition with respect to u and 
p in X4, and k is the Lipschitz constant with respect to  p .  Let u and u be 
smooth solutions of (2.6.1) such that 

u(x, 0) = u(x. O),  2 1  5 x 5 x2. 
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Then u(z. tj = v(2: t )  on the triangle 

The proof is as follows. Let 7u = u - v. We need to show that w = 0 on T .  
First, using the Lipschitz propeIty, we obtain 

lwtl = IUt - ~ t 1  = / G ( ~ . z . u , u , )  - G ( t , x , v , v z ) / .  

5 alu - 2'1 + k/u ,  - v,I = alwl + k/w,J.  

At points where w > 0, the last inequality can be written 

Wt < bw + klw,l. (2.6.2) 

where b > a. Now we define the function W by W = wepbt .  It clearly suffices 
to show that W = 0 on T .  We proceed by contradiction and assume without 
loss of generality that W is positive at some point in T .  Let P be a point 
in T (a closed bounded set) where W assumes a local maximum, where, of 
course, W > 0. The point P cannot be on the base of T because W = 0 there. 
Thus P must be in the interior of T or on the lateral sides. In this case (see 
Figure 2.17) the directions ( - k ,  -1) and ( k ,  -1) both point into T .  Therefore. 
the directional derivatives of W in these two directions must be nonpositive 
(W has a maximum at P ) :  

(4, -l)(W,. Wt) = -kw; - wtso, 
( k .  -lj(W,, Wt) = kW, - wtso. 

Consequently 

I 

x2 - x  I 

Figure 2.17 Triangle T 
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IVt 2 IcIlilj,l at P. 

or. in terms of w 
ut 2 bu: + k]w,l at  P. 

This contradicts (2.6.2). which completes the proof. 0 

2.7 Models in Biology 

2.7.1 Age Structure 

A key problem in demography is to determine how the age structure of a 
population evolves in time. The age structure is described by an age distribution 
function u = u(a . t ) .  where u(a,t)da represents the approximate number of 
females at time t between the ages a and a + da.  Often females are studied 
in demographic models because they have a well-defined beginning and end to  
their reproductive capacities. For simplicity, we write the age range as 0 5 a < 
x even though the age at death is finite. The total female population at time 
t is 

X ( t )  = u ( a .  t ) d a .  bX 
The goal is to develop a model that dictates how the age distribution responds 
under influence of birth and death forces. 

The governing equation is a simple population balance law. We derive it 
using a small-box method. In an arbitrary small interval [a. a + da] the rate of 
change of the number of individuals must equal the rate that  they enter the 
interval at age a ,  minus the rate they leave at age a + da. minus the rate that  
die. The approximate number of females the interval is u(a .  t ) d a .  and therefore 

d 
- [.(a3 t ) d a ]  = U ( U .  t )  - U ( U  + da. t )  - ~ ( u ) u ( u .  t ) d a ,  
d t  

where the nonnegative function m(a) is the age-specific death rate. Dividing 
by da and passing to  the limit as da + 0 gives 

ut = -u, - m(u)u. 

Thus, the balance law is an advection equation with speed 1 with a sink term 
given by the mortality rate: notice that the flux is 0 = u. or the number crossing 
the age a line at time t is just u(a.  t ) .  which is the population density at that age. 
This model has its origins in the work of McKendrick in 1926 and in subsequent 
studies by Von Foerster in 1959. and it is called the AdcKendrick-Von Foerster 
equatzon. 
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At' time t = 0 we assume a given age distribution 

u(a.O) = f ( a ) .  a 2 0. 

To account for births we assume that there is a nonnegative fecundity rate 
b ( a , t ) ,  which depends on both time and age of the female, where b ( a . t )  is 
the average number of offspring per female of age a at time t :  it is called the 
maternzty  functzon. We expect b to  be zero until the age of onset of maturity and 
zero after menopause. In between these ages the fecundity rate varies according 
to  age: for example, in humans, females of age 25 produce more offspring than 
do women of age 35. Because u(a. t ) d a  is the number of females between a and 
a + da, and b is the average reproduction rate, then the number of offspring 
produced by females from age a to  age a + da is b(a .  t ) u ( a ,  t ) d a .  Thus. the total 
number of offspring produced by all females is the integral (sum) over all ages. 
or 

B ( t )  = b(a.  t ) u ( a .  t ) d a .  

Observe that B(t )  is precisely u(0,  t ) ,  so this equation defines a boundary con- 
dition at  a = 0. 

Figure 2.18 depicts the evolution of age structure profiles at fixed times in 
three-dimensional atu space. Age-structured models can be represented visually 
as a conveyor belt moving at speed one (Figure 2.19). Grains of sand on the belt 
represent the female population density. and the belt contains holes through 
which the sand falls, representing mortality. A scale is located at the ages of 
fertility, a ,  < a < a l t f ;  it weighs the female population and sends an electrical 
signal to the valve in the funnel a t  a = 0, which releases newborns to  the 
population at the fecundity rate. At a ~ .  the maximum lifetime and length of 
the belt. the population density is zero. [t] 

il 

In summary. the age-structured model is given by 

U t  = -u, - m(a)u, a > 0 .  t > o .  (2.7.1) 

u(a.O) = f ( a ) .  a 2 0. (2.7.2) 

u(0 . t )  = 1 b ( a , t ) u ( a . t ) d a .  t > 0.  (2.7.3) 

What makes this problem especially interesting, and difficult. is that  the 
left boundary condition at age a = 0 is not known. but rather depends on 
the solution u ( a . t ) ,  which is also unknown. This type of condition is called 
a nonlocal boundary condztzon because it depends on the integrated unknown 
solution in the problem. 

co 

Example. (Stable Age Structure)  Rather than attempting to solve (2.7.1)- 
(2.7.3) directly. we can ignore the initial condition and ask what happens over 
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1 

a = O  a = a m  

u(0,t) = B(t) 

& 

I 1  \ I b 

a = a M  a = a1 a axis 

Figure 2.18 Age-structured model. Here, f ( u )  is the initial. known age struc- 
ture, and u(0,  t )  = B ( t )  is the unknown offspring at  age a = 0 and time t .  The 
age structure u ( u , t )  for a > t is affected only by the initial population f ( a ) .  
whereas for u < t it is affected by the entire population and its fecundity. a~ is 
the maximum lifetime and individuals follow paths a = t+ constant in age-time 
space. 

I-/ ye conveyor belt 

Figure 2.19 Conveyer belt visualization of an evolving age structure. 

a long time. Births from the initial population f ( u )  only affect the solution for 
a finite time because those individuals and their offspring die. Therefore, in the 
case that the maternity function is independent of time [i.e.. b = b ( a ) ] ,  we can 
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look for an age distribution of the form 

u(a , t )  = U ( a ) e r t ,  t large, 

where U is an unknown age structure and r is an unknown growth rate. Sub- 
stituting into the PDE (2.7.1) and making reductions gives an ODE for U :  

U ' (a )  = -(m(a) + r ) U ( a ) .  

This equation can be solved by separation of variables to  get 

jy(a) = c e - r a e -  s," m ( s ) d s .  

where C is a constant. Letting S(a)  = exp (- m(s)ds)  . called the survzvor- 
ship functzon (which is the probability of surviving to age a), we can write the 
long-time solution as 

u(a.  t )  = Cert--raS(a). (2.7.4) 

To determine r we substitute (2.7.4) into the nonlocal boundary condition 
(2.7.3) to  obtain 

1 = 1 b(a)e- 'aS(a)da.  (2.7.5) 

This is the classic Euler-Loth equatzon. The right side of (2.7.5) is a decreasing 
function of r ranging from infinity to  zero. and therefore there is a unique value 
of T that satisfies the equation. If r > 1, then the population will grow; if r < 1, 
the population will die out. In the special case m = collst, the Euler-Loth 
eauation is 

h? 

Example. (The Renewal Equation) The characteristic method can be used to  
study (2.7.1)-(2.7.3) in the simple case when b = b(a)  and m = constant. The 
PDE (2.7.1) is 

ut = -u, -mu, a > 0. t > 0. (2.7.6) 

If we change independent variables via (characteristic coordinates) 

[ = a - t ,  r = t :  

then (2.7.6) becomes 

U, = -mu, where U = U(<. t ) .  

Then 
U ( [ ,  T )  = C([)e-mT: 
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where C is an arbitrary function. In terms of the original variables. we have 

u(a,  t )  = C(a - t ) e - V  

To determine the arbitrary function C. we consider two cases, a > t and a < t .  
(See Figure 5.1.) The arbitrary function will be different in each case. The 
solution in a > t is determined by the initial age structure. and we have 

u(a,O) = C(a)  = f ( a ) .  

Therefore 
u(a. t )  = f ( a  - t ) e -mt ,  a > t .  

For a < t the boundary condition gives 

u(0 . t )  = ~ ( t )  = C(-t)ePmt,  

(2.7.7) 

or 
C ( s )  = B(-s )ePms.  

Consequently 
u(a ,  t )  = B(t  - a ) e P m a .  a < t .  (2.7.8) 

The solution to  (2.7.1)-(2.7.3) in the case m(a) = m and b ( a . t )  = b(a)  is 
given by (2.7.7)-(2.7.8), but B is still unknown. To find B. we substitute the 
expressions (2.7.7)-(2.7.8) into the yet unused nonlocal boundary condition 
(2.7.3). after breaking up the integral into two. We obtain 

B( t )  = ix b(a )u (a .  t ) da  

l r 
b(a)u(a ,  t ) da  + b(a )u (a .  t ) d a .  r t 

=.i 
or 

B(t )  = b(a)B( t  - a)e-mada + b ( a ) f ( a  - t ) ePmtda .  (2.7.9) 

Equation (2.7.9) is a linear integral equation for the unknown B( t ) .  and it 
is called the renewal equatzon. Once it is solved for B( t ) ,  then (2.7.7)-(2.7.8) 
give the age structure for the population. For long times the second integral is 
zero because the maternity vanishes for large ages. Generally, (2.7.9). a non- 
homogeneous Volterra equation, is difficult to solve and must be dealt with 
numerically. or by successive approximation (iteration). See. for example. Lo- 
gan (2006a). 0 
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2.7.2 Structured Predator-Prey Model 

Nonlinearities can enter demography in various ways. For example. the birth 
and death schedules may depend the total population N ( t ) ,  or there may be 
other populations that affect the mortality rate: for example, in the case of 
an animal population. predators may consume the animals. In this section we 
study a predator-prey model and show how. using the method of moments (a 
method akin to  an energy method). the problem can be reduced to solving a 
system of ODES. This is an important technique to  add to  our analytic toolbox 
for dealing with PDEs. 

IT-e consider a population of prey with age density u(a. t )  and constant per 
capita mortality rate m. Then. as above, the governing age-time dynamics is 
given by (2.7.6) and the initial condition (2.7.2). We assume that the maternity 
function has the form 

b ( a )  = boae-Ya. 

Then the prey produce offspring (eggs) given by 

B(t )  = boae-7au(a. t )da .  i* (2.7.10) 

Now let us introduce a total predator that consumes the eggs of the prey 
population. We assume that the predator population is P = P( t ) ,  and we do 
not consider age structure in this population. (To stimulate thinking about 
this model, recall that egg-eating predators is one of the theories posed for 
the demise of the dinosaurs.) Because predators eat only eggs ( a  = 0). the 
PDE (2.7.6) is unaffected. What is affected is the number of offspring u(0 , t )  
produced. Thus we no longer have u(0.t)  = B(t ) .  but rather we must include 
a predation term that decreases the egg population. The simplest model is 
the Lotka-Volterra model (mass action), which requires that the number eggs 
eaten be proportional to the product of the number of eggs and the number of 
predators. Thus. we have 

~(0. t )  = B( t )  - kB( t )P( t ) ,  

where k is the predation rate. Because the right side can be negative, we define 
M ( B ,  P )  = max(B - kBP, 0) and take the number of eggs at a = 0 to  be 

~(0. t )  = M ( B .  P ) .  (2.7.11) 

This equation provides the boundary condition for the problem. Finally. we 
impose Lotka-Volterra dynamics on the predator population. or 

= -6P -k cBP. 
dP 
dt  
- (2.7.12) 
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where S is the per capita mortality rate. Hence. in the absence of eggs, predators 
die out. Initially. we take P(0)  = Po. In summary. the model is given by the 
PDE (2.7.6). the initial condition (2.7.2). the boundary condition (2.7.11). and 
the predator equation (2.7.12). 

We remark that if the predators consumed prey other than eggs, then a 
predation term would have to  be included as a sink term on the right side of 
the dynamical equation (2.7.6). 

The method of moments allows us to obtain a system of ordinary differential 
equations for the total prey and predator populations N ( t )  and P ( t ) .  In the 
analysis, we will also obtain equations for some additional auxiliary variables, 
but the end result is a system of ODES, which is simpler than the mixed 
PDE-ODE system. The idea is to multiply the PDE (2.7.6) by some moment 
function g ( a )  and then integrate over 0 5 a 5 x. The only requirement is that  
u(a, t ) g ( a )  + 0 as a + x. On taking g to be different functions. we can obtain 
equations that lead to the differential equations that we seek. The reader will 
find it valuable to verify these calculations. Proceeding in general. we multiply 
the PDE by g and integrate to obtain 

f JCrng(a)u(a .  t )da  = - im JCx g(a)u , (a .  t )da  - m g(a)u (a .  t)da. 

The first integral on the right can be integrated by parts to get 

g(a)u(a.  t ) d a  = Af (B ,  P)g(O)+ g’(a)u(a,  t )da-m g (a )u (a .  t)da. 

(2.7.13) 
KOW we make different choices for g. If g(a )  = 1, then (2.7.13) becomes 

- = Al(B. P) - m N ,  (2.7.14) 
d hT 
d t  

an ODE involving N .  P.  and B. If we take g(a)  = b(a) ,  the maternity function. 
then (2.7.13) becomes 

f LX im JCm 
simply 

- = - y B  + boH - mB. 
dB 
d t  

where H = H ( t )  is defined by 

(2.7.15) 

H ( t )  = lo e-%(a, t)da. 

But now H is yet a new variable. To obtain an equation involving H ,  we take 
g(a )  = e - y a .  Then (2.7.13) becomes 

dH 
dt  
- = M ( B ,  P) - (2.7.16) 
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Therefore we have four ODEs. (2.7.14), (2.7.15), (2.7.16), and (2.7.12) for N ,  
P ,  B ,  and H ,  respectively. Clearly the ilr equation decouples from the system 
and we can consider just the three ODEs 

- dP = -6P + cBP, - dB = - (m + 7 ) B  + boH? - dH = M ( B .  P )  - (m + 3 ) H .  
d t  d t  d t  

The initial conditions are P(0) = Po. B(0)  = boae-’af(a)da, and H ( 0 )  = 

e-yuf(a)da. \Ye may now proceed with a numerical method to solve the 
system and determine the resulting dynamics. A sample calculation is requested 
in the Exercises. 

2.7.3 Chemotherapy 

We introduced two types of structure in a biological context-spatial structure 
and age structure. It is intuitively clear that any quantity that is characteris- 
tic of an organism‘s state can be used as a structural variable; these include 
development or maturation level. length, weight. and so on. In this section we 
study a simple model of leukemia cancer cell maturation and the effects of a 
chemotherapy regimen as a control mechanism. The model was introduced by 
Bischoff et al. (1971). and a more detailed motivation is given in Edelstein- 
Keshet (2005. pp 463ff). 

We assume that malignant cells undergo a maturation process measured by 
a physiological variable z. where x is normalized so that 0 5 x 5 1. At x = 0 
cells are created from parent cells that divide into two at maturity. which is 
x = 1. We assume a constant rate v of cell maturation. or dxldt = v ,  and 
we let u = u(x.t) denote the density of cells at maturation stage x at time 
t ;  in particular. u(x, t)dz is the approximate number of cells have maturation 
between n: and x + dx. The relevant quantities are summarized below: 

x = maturation level of a malignant cell 

u(z, t )  = maturation density of malignant cells 

v = rate of maturation of cells 

c ( t )  = chemotheraputic drug concentration 

A conservation law describes the dynamics of cell growth and death via 
chemotherapy. We take the death rate to  be of the form m(t)u,  where 
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This rate has the form of illichaelis-Menten enzyme kinetics. It should be clear 
from previous discussion that the model equations are 

ut +vu, = -m(t)u,  0 < z < 1. t  > 0. (2.7.17) 

u ( z , 0 )  = uo, 0 5 z 5 1 (2.7.18) 

u(0. t )  = 2 4 l . t ) .  t > 0. (2.7.19) 

where uo is the initial maturation distribution of malignant cells. and where 
the boundary condition (2.7.19) is interpreted as parent cell division creating 
two daughter cells. 

lye can analyze the model by the characteristic method. Along the char- 
acteristics I(: = ct + [ the PDE reduces to d u / d t  = -m(t)u,  which leads to  a 
general solution 

u ( z .  t )  = ~ ( z  - vt)e-i\f(t). 
t where K is an arbitrary function and n l ( t )  = so m(s)ds .  

For z > vt we have u(z% 0) = K ( z )  = U O .  Hence the solution is 

u(z,t) = uoe-"f(t). I(: > zit. (2.7.20) 

For z < vt the boundary condition (2.7.19) gives 

K(-Lit)e-"'(t) = 2 ~ ( 1  - vt)e-'f(t). 

which means that K satisfies the functional relation K ( z )  = K(l  + z ) .  It is 
easy to  see that a solution has the form K ( z )  = Kge". Substituting into the 
relation gives a = - ln2.  Therefore K ( z )  = KOe-'ln2, and, using the fact that  
u(0,O) = uo, we have 

. 5 < vt. (2.7.2 1) u ( z , t )  = u0e-z ln2  u t I n 2  - M ( t )  e e  

Equations (2.7.20)-( 2.7.2 1) give the solution of (2.7.17)-( 2.7.19). 
Observe that the total number of cells at any time t > 1/u  is 

See Exercise 7 for a numerical example. 



2.7 Models in Biology 105 

2.7.4 Mass Structure 

We modeled the age structure of a population by the age density u = u(a , t ) .  
where u(a ,  t )da  is the approximate number of individuals between ages a and 
a + da. We found 

U t  = -ua - pu. 

where p is the per capita mortality rate. Age is just one of the many structure 
variables that demographers and ecologists study. Rather than age a, we might 
rather consider mass m. length 2. weight w. development stage 6 %  or any other 
physiological variable attached to the individuals. 

For example, in a mass-structured population. u(m, t)dm is the approximate 
number of individuals having mass between m and m + dm at time t ,  where 
u = u(m.t)  is the mass density of the population, given in dimensions of 
individuals per mass. At a fixed t .  a graph of u(m. t )  versus m gives the mass 
structure of the population. As in the age structured model, a conveyor belt 
picture aids in visualizing the dynamics (see Figure 2.19). To obtain a growth 
law we start with the basic conservation law 

ut = -& - pu, 

where 4 = o(m. t )  measures the flux through mass space of individuals having 
mass m at time t .  The flux has dimensions of individuals per time. How fast 
individuals move depends on their mass growth rate g = g(m,t) .  or the rate 
that mass is accumulated by an individual of mass m. given in dimensions of 
mass per time. For an individual, we have 

The assumption is that all individuals of the same mass experience the same 
growth rate. The t dependence in g comes from environmental effects, for ex- 
ample. food availability or quality. which may vary over time. Therefore the 
flux is given by 

$5 = gu ,  

and the balance law is 
Uf, = - (gu) ,  - pu, ( 2 . 7 . 2 2 )  

where the per capita mortality rate is p = p(m. t ) .  
Kext we determine how individuals are recruited to the population. We 

make the simplifying assumption that all individuals are born with mass mb, 

and therefore the domain of the problem is t 2 0 and mb 5 m 5 m f ,  where 
mj is the maximum possible mass that an individual can accumulate over its 
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lifespan. Thus. ~ ( m f .  t )  = 0. If we integrate (2.7.22) over the range of masses. 
we obtain 

= g(mb. t)u(mb. t )  - g(mf .  t ) u ( m f .  t )  - pu dm. L:": 
The term on the left is the growth rate of the entire population. The second 
term on the right is zero, and the last term is the death rate. Therefore. in- 
dividuals are recruited to the population at rate g(mb. t)u(mb. t ) .  But births 
are due to the reproduction of individuals during their period of fertility (as 
in age-structured models we restrict the analysis to the female population). 
Let b(m,t) denote the maternity function. or birth rate. given in units of off- 
spring per female per time. Typically. b will be zero except over the domain of 
masses where females are fertile. The time dependence arises from environmen- 
tal factors such as food availability. The rate that females produce offspring is 
therefore 

b(m. t )u(m,  t)dm. L: 
and thus we have the boundary condition 

g(mb. t)u(mb, t )  = b(m. t)u(m. t)dm. (2.7.23) JY 
In summary. the PDE (2.7.22). an initial condition 

u(m.0) = f ( m ) ,  mb 5 m 5 m f .  (2.7.24) 

and the boundary condition (2.7.23) define a well-posed mathematical problem 
to determine how the mass structure of the entire population evolves. As in the 
age-structured model. the mass-structured model is punctuated by a nonlocal 
boundary condition. 

2.7.5 Size-Dependent Predation 

The central problem in population ecology is to  understand the factors that 
regulate animal and plant populations. Therefore. models of consumer-resource 
interactions, and especially predation, are key in quantitatively studying some 
of these fundamental mechanisms. The basic models develop the dynamics of 
unstructured prey and predator populations u = u ( t )  and p = p ( t ) .  respectively. 
The simplest model is the familiar Lotka-Vo/olterra model 

u' = ru - aup.  p' = -dp + bup. 
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where r and d are the per capita growth and mortality rates of the prey and 
predator, respectively, and the predation rate, given by mass action kinetics, 
proportional to the product up of the populations. This model predicts oscil- 
lating populations around an equilibrium ( d / b ,  ./a). A step up in detail is, for 
example. the Rosenzwezg-MacArthur model 

au au 
u’=ru ( I-- ;)--.. P’=-dP+c--- 

1 + ahup’ 

where the prey grow logistically and the predation rate is given by a Holling 
type I1 expression 

au 
1 + ahu‘ 

where a is the attack rate and h is the handling time for a prey item. This model 
has rich dynamics where, for example, as the carrying capacity increases, an 
asymptotically stable equilibrium bifurcates into a unstable equilibrium with 
the appearance of a limit cycle (a Hopf bifurcation). (See. for example. Kot 
2001. pp 132ff.) 

Adding structure to one or both populations leads to systems of PDEs. De- 
pending on the type of structure imposed on the populations, the system has 
varying degrees of difficulty. In perhaps the simplest case, in a spatially struc- 
tured population we need only add diffusion or advection terms to the dynam- 
ical model. retaining the predation terms. For example, a spatially structured 
Loth-Volterra model with diffusion has the form 

ut = D ~ u , ,  + ru - aup. pt = Dzp,, - d p  + bup, 

where u = u(2. t )  is the population density of prey at  location 2 ,  and p = p(z ,  t )  
is the predator density at 2 .  The assumption here is that predation is local 
and has the same form at each location. These types of models are discussed 
extensively in Murray (2002. 2003). 

Size-structured populations, in which the correlation between the predator 
size and the size of the prey is monitored, are more complicated. Let u = u(z. t )  
denote the density of prey at  size z and p = p ( y . t )  denote the density of 
predators of size y. In this discussion assume size means mass. Generally, size 
ranges are 0 5 2 5 X and 0 5 y 5 Y. If K ( z )  denotes the set of all predator 
sizes y that consume prey of size 2.  then a mass action predation term is given 

by 

where we have integrated over the appropriate predator density to find the 
total number of predators that interact with prey of size 2.  Therefore, the prey 
dynamics is given by 

ut = -(gu), - p(z)u - uu (2.7.25) 
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where g = g( t . 2 )  is the mass growth rate of the prey. In a similar way. the 
population law for the predator density is 

u ( z  t)dz.  ( 2 . 7 . 2 6 )  

where I(y) is the set of all prey sizes z that are consumed by predators of size 
y, and where 2 = ~ ( y . t )  is the mass growth rate of the predator. The size 
dependent mortality rates for prey and predators are p and m, respectively. In 
this model predation decreases the density of prey and decreases the mortality 
rate of the predators. This model can be extended to  predation events governed 
by Holling type I1 responses. 

.I Pt = -(rP)y - m(Y) + bP 
X E I ( Y )  

EXERCISES 

1. Consider a population of organisms whose per capita death rate is 3% per 
month and that the fecundity rate, in births per female per age in months, 
is given by b ( a )  = 4 for 3 5 a 5 8. and b ( a )  = 0 otherwise. Use the Euler- 
Lotka equation to calculate the long-term growth rate T of the population. 
What is the long-time population distribution? 

2.  An age-structured population in which older persons are removed at  a 
faster rate than younger persons. and no one survives past age x = L .  can 
be modeled by the initial boundary value problem 

cu 
U t  +u,  = -- % O < x < L .  t > 0 .  

L - 2  
u(0. t )  = b(t). t > 0:  u(1.0) = f ( 2 ) .  0 < 2 < L. 

Find the age-structured population density u(2. t )  and give physical inter- 
pretations of the positive constant c and the positive functions b ( t )  and 

f ( t ) .  

3 .  Consider the model 

U t  = -u, - m(U)u.  a > 0 ,  t > 0 

u (0 . t )  = b(U)u(a,t)da, t > 0 

u (a .0 )  = f ( a ) .  a 2 0. 
s 

where the mortality and birth rates depend on the total population U = 
U ( t ) .  Assume that b’(U) 5 0 and m’(U) 2 0. 

(a) Show that 

= (b (U)  - m ( U ) ) U .  
dU 
dt 
- (2 .7 .27)  
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(b) Let 6 be a local asymptotically stable equilibrium of the total popula- 
tion equation (2.7.27). Show that the associated long-time population 
distribution is 

u(a)  = b(E)ve-m(? 

4. Consider the age-structured model in the case where the mortality rate is 
constant (m(u) = m) and the maternity function is a constant (b(a.  t )  = 4 ) .  
At time t = 0 assume the age distribution is f ( a )  = uo for 0 < a 5 S. and 
f ( u )  = 0 for a > 6. 

(a) Show that the renewal equation takes the form 

(b) Show that B( t )  satisfies the differential equation 

B’ = (a - m)B. 

and determine B ( t )  and the population density u(a. t ) .  What is the 
total size of the population N ( t )  at any time t? 

5. Consider an age-structured model where the per capita mortality rate de- 
pends on the total population N = N ( t )  and the maternity function is 
b(a) = boe-?a : 

U t  = -21, - rn(N)u,  a > O.t > 0 .  
30 

u ( 0 , t )  = 1 boe-yau(a.t)da. 

u(a .0)  = f ( a ) ,  a > 0. 

(a) Use the method of moments to  obtain the system of ODEs 

- (bo - 7 - rn(N))B? 
dB dN 

dt dt 
- = B - m(N)N;  - - 

for N ( t )  and the offspring B ( t )  = u(0. t ) .  (Kote that the maternity 
function in this model is unreasonable since it provides for newborns 
giving birth. but it may be a good approximation for the case when 
the population reproduces at a very young age.) 

(b) Show that the relation B = (bo - nr)N gives a solution to  the ODEs in 
the N B  plane. 

(c) Show that the solution to the system cannot oscillate and. in fact, 
approaches a steady state. 
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6. Numerically solve the system of equations (2.7.14), (2.7.15), (2.7.16), 
(2.7.12) and plot the prey and predator populations N ( t )  and P ( t )  for 
0 5 t 5 125. Take bo = 5 and the remaining constants to be unity. Accord- 
ing to  your calculation. is there a basis for controlling pests by introducing 
predators that selectively eat their eggs? 

7. In the chemotherapy example assume that a cell matures in about 14.4 h. 
and assume the rate constants in the uptake rate are 01 = 0.25 (per hour) 
and D = 0.3 pg/mL. If the concentration c ( t )  is maintained at  a constant 
value of 15 mg/mL per kilogram of body weight, how long does it take in a 
70 kg patient for the total number of cells to  decay to 0.1% of their initial 
population? [Also see Edelstein-Keshet 2005.1 

8. Consider the age-structured model 

ut = -u, - mu, a > 0. t  > 0. 
u(0.t)  = b( lVA)NA.  t > 0. 

u(a .0)  = f ( a ) .  a > 0. 

where 

u(a. t )da 

is the total adult population. 

(a) Interpret this model and show that N A  satisfies the differential-delay 
equation 

(b) Show that there is a single positive equilibrium (constant) solution in 
(a) and examine its stability to small perturbations. 

9. In the mass-structured model given by (2.7.22), (2.7.23), and (2.7.24). sup- 
pose, rather than giving birth, that the number of individuals increases by 
division (such as cells. e.g.). In particular. let bo(rn, A1.t) be the given per 
capita rate that  individuals of mass 121 divide into individuals of mass m 
at time t .  Denote 

3(m. t )  = i,l" b(m. A1, t )u(M,  t ) d M .  

Formulate a mass-structured model to incorporate this modification. 
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10. Consider a population that is structured in both age a and mass m. and 
define the population density by u = u(a. m. t ) ,  where u(a, m, t )  da dm 
approximates the number of individuals at  time t having age in the interval 
(a.  a + da) and mass in the interval (m. m + dm).  As time progresses. an 
individual moves through age space at the speed 1. and it moves through 
mass space at  rate g = g(a, m. t ) .  Argue that the governing equation is 

Ut = -u, - (gu), - pu> 

where the mortality rate may depend on age, mass, and time, or p = 
p(a, m. t ) .  Another way to think about this equation is in terms of a basic 
conservation law in two dimensions (a  and m). 

ut = -div p - pu, 

where d is the flux vector d = (u .gu) ,  and div = ((a/&), ( d l d m ) ) .  

Reference Notes. Continuous. age-structured models have received a lot of 
attention. Cushing (1994) has an extensive bibliography that serves as an entry 
point to the literature for both continuous and discrete models. Relevant to the 
discussion in the last section. we refer the reader to Metz et al. (1988) and Logan 
(2008). 





Weak Solutions to Hyperbolic Equations 

Chapter 2 emphasized the role of characteristics in hyperbolic problems and 
the development of algorithms for determining solutions. The underlying as- 
sumption was that a continuous, smooth solution exists. at least up to some 
time when it ceased to  be valid. Now we lay the foundation for investigation of 
discontinuous, or weak, solutions, and the propagation of shock waves. 

By our very definition, a solution to a first-order PDE must be smooth, 
or have continuous first partial derivatives. so that it makes sense to  calcu- 
late those derivatives and substitute them into the PDE to check if, indeed, we 
have a solution. Such smooth solutions are called classzcal or genuzne solutions. 
Now we want to  generalize the notion of a solution and admit discontinuous 
functions. If a discontinuity in a solution surface exists along some curve in 
spacetime. there must be some means of checking for a solution along that 
curve without calculating the partial derivatives, which do not exist along the 
curve. The aim is to develop such a criterion and formulate the general con- 
cept of a weak solution. In the first three sections we derive a jump condition 
that holds across a discontinuity and show how shocks fit into a solution. Sec- 
tion 3.4 examines two applications. traffic flow and chemical reactors, to  gain 
understanding of characteristics and shock formation in practical settings. In 
Section 3 . 5  we introduce the underlying mathematical ideas and state a formal 
definition of a weak solution. Finally, in Section 3.6 we discuss the asymptotic. 
or long-time. behavior of solutions. The scenario is as follows. At time t = 0 
a smooth profile is propagated in time until it evolves into a shock wave. or 
a discontinuous signal; after this discontinuous wave forms, we ask how the 
strength of the discontinuity behaves and along what path in spacetime it is 
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propagated. Understanding this process gives a complete picture of how an 
initial signal evolves via a first-order PDE. 

3.1 Discontinuous Solutions 

Characteristics play a fundamental role in understanding how solutions to  first- 
order PDEs propagate. So far our study presupposed that solutions are smooth, 
or, at the worst, piecewise smooth and continuous. Now we take up the question 
of discontinuous solutions. As the following example shows. linear equations 
propagate discontinuous initial or boundary data into the region of interest 
along char act erist ics . 

Example. Consider the advection equation 

U t  + C U 2  = 0, x E R. t > 0, (c > 0) 

subject to the initial condition ~ ( x ,  0) = uo(x), where uo is defined by YO = 1 
if x < 0 and uo = 0 if x > 0. Because the solution to  the advection equation 
is Y = U O ( X  - ct) .  the initial condition is propagated along the characteristics 
x - ct = const. and the discontinuity at x = 0 is propagated along the line 
rz: = ct. as shown in Figure 3.1. Thus the solution to the initial value problem 
is given by 

u(z .  t )  = 0 if x > t :  u(x, t )  = 1 if z < t .  0 

Yow examine a simple nonlinear problem with the same initial data. In 
general. a hyperbolic system with piecewise constant initial data is called a 
Riemann problem. 

x = ct 
t I 

Figure 3.1 Characteristics x - ct = const. 
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u = l  ' u = o  X 

Figure 3.2 Characteristics for the initial value problem (3.1.1)-(3.1.2) 

u = l  ' u = o  X 

Figure 3.3 Insertion of a line x = mt along which the discontinuity is carried. 

Example. Consider the initial value problem 

U t $ U U ,  = 0, x ER. t > 0, (3.1. I) 

u(x, 0) = 1 if x < 0; u(x,O) = O  if x > 0. (3.1.2) 

We know from Chapter 2 that du ld t  = 0 along dx /d t  = u. or u = const on 
the straight-line characteristics having speed u. The characteristics emanating 
from the x axis have speed 0 (vertical) if x > 0, and they have speed unity (1) 
if x < 0. The characteristic diagram is shown in Figure 3.2. Immediately. at  
t > 0, the characteristics collide and a contradiction is implied because u must 
be constant on characteristics. One way to  avoid this impasse is to insert a 
straight line x = mt of nonnegative speed along which the initial discontinuity 
at x = 0 is carried. The characteristic diagram is now changed to  Figure 3.3. 
For x > mt we can take u = 0, and for x < mt we can take u = 1, thus 
giving a solution to  the PDE (3.1.1) on both sides of the discontinuity. The 
only question is the choice of m; for any m 2 0 it appears that a solution can 
be obtained away from the discontinuity and that solution also satisfies the 
initial condition. Shall we give up uniqueness for this problem? Is there some 
other solution that we have not discovered? Or, is there only one valid choice 
o fm?  0 
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The answers to these questions lie at the foundation of what a discontinuous 
solution is. As it turns out, in the same way that discontinuities in derivatives 
have to propagate along characteristics, discontinuities in the solutions them- 
seh-es must propagate along special loci in spacetime. These curves are called 
shock paths. and they are not, in general. characteristic curves. LZ'hat dictates 
these shock paths is the basic conservation law itself. As we observed earlier, 
PDEs arise from conservation laws in integral form. and the integral form of 
these laws holds true even though the functions may not meet the smoothness 
requirements of a PDE. The integral form of these Conservation or balance laws 
implies a condition, called a jump condatzon. that allows a consistent shock path 
to  be fit into the solution that carries the discontinuity. Indeed. conservation 
must hold even across a discontinuity. So the answer to the questions posed in 
the last example is that there is a special value of m (in fact, m = $) for which 
conservation holds along the discontinuity. 

3.2 Jump Conditions 

To obtain a restriction about how a solution across a discontinuity propagates, 
we consider the integral conservation law 

(3.2.1) 

where u is the density and $J is the flux. Equation (3.2.1) states that the time 
rate of change of the total amount of u inside the interval [u. b] must equal the 
rate that u flows into [u. b] minus the rate that u flows out of [ u ~  b ] .  Under suit- 
able smoothness assumptions (e.g., both u and o continuously differentiable). 
(3.2.1) implies 

ut -c 9z = 0, ( 3 . 2 . 2 )  

which is the differential form of the conservation law. Recall that Q may depend 
on z and t through dependence on u [i.e.. d = ~ ( u ) ] ,  and (3.3.1) can be written 

U t  + c(u)uz  = 0, c(u)  = Q ' ( U ) .  (3.2.3) 

But if u and 0 have simple jump discontinuities. we still insist on the validity 
of the integral form (3.2.1). 

Now assume that z = s ( t )  is a smooth curve in spacetime along which u 
suffers a simple discontinuity (see Figure 3.4): that is, assume that u is continu- 
ously differentiable for z > s ( t )  and z < s ( t ) .  and that u and its derivatives have 
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I 
a s( t )  b X 

Figure 3.4 Smooth curve in spacetime along which a discontinuity is propa- 
gated. Such a curve is called a shock path.  

finite one-sided limits as z + s ( t ) -  and z + s ( t )+.  Then, choosing a < s ( t )  
and b > s ( t ) ,  equation (3.2.1) may be written 

Leibniz' rule for differentiating an integral whose integrand and limits depend 
on a parameter (here the parameter is time t )  can be applied on the left side 
of (3.2.4). because the integrands are smooth. We therefore obtain 

L s ( t ) u t ( x . t ) d z + l ~ ~ ) u t ( x ~ t ) d x + u ( ~ - , t ) ~ '  b 

-u(s+, t ) s '  = d(a.  t )  - o(b. t ) .  (3.2.5) 

where u(s- .  t )  and U ( S + ,  t )  are the limits of u ( z .  t )  as z ---f s ( t ) -  and z + s ( t )+,  
respectively, and s' = d s / d t  is the speed of the discontinuity z = s ( t ) .  In 
(3.2.5) we now take the limit as a 4 s ( t ) -  and b + s ( t )+.  The first two terms 
to  go zero because the integrand is bounded and the interval of integration 
shrinks to zero. Therefore, we obtain 

-s'[u] + [ o (u ) ]  = 0 ,  (3.2 . G )  

where the brackets denote the jump of the quantity inside across the disconti- 
nuity (the value on the left minus the value on the right). Equation (3.2.6) is 
called the j u m p  condataon. (In fluid mechanical problems. conditions across a 
discontinuity are known as Rankine-Hugoniot conditions.) It relates conditions 
both ahead of and behind the discontinuity to the speed of the discontinuity 
itself. In this context. the discontinuity in u that propagates along the curve 
z = s ( t )  is called a shock wave. and the curve z = s ( t )  is called the shock path.  
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or just the shock: s' is called the shock speed. and the magnitude of the jump 
in u is called the shock strength. The form of (3.2.6) gives the correspondence 

(3.2.7) 

between a given PDE (3.2.2) and its associated shock condition (3.2.6): equa- 
tion (3.2.7) makes it easy to  remember the jump conditions associated with a 
PDE in conservation form. 

(. ' . ) t  tf -d [(. ' .)I. (. ' . ) x  tf [(. . .)I. 

Example. Consider 
U t  + uux = 0.  

In conservation form this PDE can be written 

u t + ( % )  X = o :  

where the flux is 4 = u2/2. According to (3.2.6). the jump condition is given 

-s"u] + [;I = 0; 

or ' u++u-  

So the speed of the shock is the average of the u values ahead of and behind 
the shock. Returning to  (3.1.1)-(3.1.2), where the initial condition is given by 
the discontinuous data u = 1 for x < 0 and u = 0 for x > 0. a shock can be fit 
with speed 

2 .  
s =  

O i - 1  1 s '=-  - - - 
2 2 '  

Therefore. a solution consistent with the jump condition to the initial value 
problem (3.1.1)-( 3.1.2) is 

t t 
2 2 

u(x.t) = 1 i f x  < -: u(x.t) = 0 i f x  > -. 0 

3.2.1 Rarefaction Waves 

Another difficulty can occur with nonlinear equations having discontinuous 
initial or boundary data. 

Example. Consider the equation 

ut+Z1ux = o ;  z E E :  t > 0, 
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t 
u = o  4 u = l  

u = o  I u = l  

Figure 3.5 Spacetime diagram showing a characteristic void. 

subject to  the initial condition 

u(z,O) = 0 if x < 0; u(z,O) = 1 if x > 0. 

The characteristic diagram is plotted in Figure 3 . 5 .  Because u is constant along 
characteristics. the data u = 1 are carried into the region x > t along charac- 
teristics with speed 1, and the data u = 0 are carried into the region x < 0 
along vertical (speed 0) characteristics. There is a region 0 < n: < t void of 
the characteristics. In this case there is a continuous solution that connects the 
solution u = 1 ahead to the solution u = 0 behind. We simply insert charac- 
teristics (straight lines in this case) passing through the origin into the void in 
such a way that u is constant on the characteristics and u varies continuously 
from 1 to 0 along these characteristics (see Figure 3.6). In other words. along 
the characteristic x = ct.  0 < c < 1, take u = c. Consequently, the solution to  
the Riemann problem is 

u ( z , t )  = 0 

u ( z , t )  = - 

if z < 0. 

if O < - < 1, 
t t 

X X 
u (5 . t )  = 1 if J: > t .  

A solution of this type is called a centered expanszon wave, or a fan; other terms 
are release wave or rarefaction wave. The idea is that  the wave spreads as time 
increases; a wave profile is shown in Figure 3.7.  0 

3.2.2 Shock Propagation 

Here are some remarks regarding formation of shock waves. In air. for exam- 
ple, the speed that finite signals or waves propagate is proportional to  the local 
density of air. (We are not referring to small-amplitude signals, as in acoustics, 
that propagate at a constant sound speed.) Thus, a t  local points where the 
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fan 

21 = 0 , u = l  

Figure 3.6 Insertion of a characteristic fan in the 

u = l  

void in Figure 3 . 5 .  

x = o  x = t  

Figure 3.7 Graph of a wave profile at time t corresponding to  the character- 
istic diagram in Figure 3.6. 

density is higher. the signal (or the value of the density a t  that point) propa- 
gates faster. Therefore. a density wave propagating in air will gradually distort 
and steepen until it propagates as a discontinuous disturbance. or shock wave. 
Figure 3.8 depicts various time snapshots of such a density wave. The wave 
steepens in time because of the tendency of the medium to propagate signals 
faster at higher density: thus point A moves to  the right faster than point B. 
and finally. a shock forms. This same mechanism causes rarefaction waves to  
form, which release the density and spread out the wave on the backside. This 
dependence of propagation speed on amplitude is reflected mathematically in 
the conservation law ( 3 . 2 . 3 )  by noting that the characteristic speed c = c(u)  
depends on u; this phenomenon is typically nonlinear. 

Therefore. discontinuities do not need to be present initially; shocks can 
form from the distortion of a perfectly smooth solution. The time when the 
shock forms, usually signaled by an infinite spatial derivative or gradient catas- 
trophe. is called the breakmg tame. Determining conditions under which solu- 
tions blow up in this manner is one of the important problems in nonlinear 
hyperbolic problems. The problem of fitting in a shock (i.e.. determining the 
spacetime location of the shock) after the blowup occurs is a difficult problem. 
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1 
~~ 

position X 

Figure 3.8 Schematic showing how a wave profile steepens into a shock wave. 
Points where the density is higher are propagated at a higher speed. 

both analytically and numerically. We emphasize again that the distortion of 
wave profile and the formation of a shock is a distinctly nonlinear phenomenon. 

We end this section with an example of shock fitting. 

Example. (Shock Fitting) Consider the initial value problem 

ut+uu,  = o ,  x ER. t > o .  

u(x,O) = -1, 0 < 5 < 1, 
1, x < 0. i 0, 2 > 1. 

Here C ( U )  = u and the characteristics emanate with speed u from the x axis 
as shown in the characteristic diagram in Figure 3.9. The flux is ~ ( u )  = u2/2. 
and the jump condition is 

/ U1 +u2 

2 .  
where u1 is the value of u ahead of the shock and u2 is the value of u behind 
the shock. Clearly, a shock must form at t = 0 with speed s’ = (-1 + l ) / 2  = 0 
and propagate until time t = 1. as shown in Figure 3.10. To continue the shock 
beyond t = 1. we must know the solution ahead of the shock. Therefore. we 
introduce an expansion wax-e in the void in Figure 3.10; that is, in this region 
we take 

s =--- 

2 - 1  u = -. 

The straight-line characteristics issuing from x = 1.t = 0 have equation 
2 = - k t  + 1 or (x - l ) / t  = k = constant. This expansion fan takes u from the 
value -1 to the value 0 ahead of the wave. The shock beyond t = 1, according 
to  the jump condition. has speed 

/ (x- l ) / t +  1 
2 

s =  (3.2.8) 
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-1  u = l  ' u = - 1  1 u = o  x 

Figure 3.9 Characteristic diagram with intersecting characteristics. Fig- 
ures 3.10-3.12 show how a shock is fit into the diagram. 

t f  
shock I 

void A 
u = o  

~ 

Figure 3.10 Insertion of a shock for 0 < t < 1. 

To find the shock path we note that s' = dx/dt. so equation (3.2.8) is a first- 
order ordinary differential equation for the shock path. This ODE can be ex- 
pressed in the form 

dx x 1 - l / t  
dt 2t 2 '  

which is a first-order linear equation. The initial condition is n: = 0 at  t = 1. 
where the shock starts. The solution is 

- _ _ _  ~ - 

x = s ( t )  = t + l -  2 4 ,  15 t 5 4. (3.2.9) 

and a plot is shown in Figure 3.11. The shock in (3.2.9) will propagate until 
z = 1 at t = 4. At this instant the shock runs into the vertical characteristics 
emanating from z > 1. and the jump condition (3.2.8) is no longer valid. The 
new jump condition for t > 4 is 
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\ Shock 
x = t t 1 - 2vT 

Fan 

-1 I 1 

Figure 3.11 Insertion of a fan in the void region and the resulting shock for 
1 < t < 4 .  

Therefore. the shock is a straight line with speed for t > 4, and its equation 

The complete solution is indicated on the wave diagram in Figure 3.12. 
In summary, we think of shock propagation in the following way. The speed 

of the shock is the average value of the solution ahead and the solution behind; 
the characteristics ahead and behind carry information to  the shock, dictating 
its path. A similar interpretation may be advanced, in general, for more com- 
plicated problems such as aerodynamic flows. The location of the shock path 
is determined by the flow ahead and the flow behind. Information about the 
flow is carried by the characteristics to the shock front. fixing its position in 
spacetime according to  the jump conditions, or conservation laws. that  hold at  
the shock front. 

0 
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Figure 3.12 Continuation of the shock for t > 4. 

EXERCISES 

1. Consider the Rienlann problem 

U t  + c(u)uz  = 0. z E R. t > 0. 

where c(u) = Q’(u) > 0. and c’(u) > 0. with initial condition 

(a) u(z .0)  = ug> z > 0: u(z .0)  = u1. z < 0: uo and u1 positive constants 
with u1 > ug or 

(b) u(z.0) = uo. z > 0; u(z .0)  = u1. z < 0: uo and ul positive constants 
with u1 < uo. 

In each case draw a representative characteristic diagram showing the 
shock path, and find a formula for the solution. 

2 .  How do the results of Exercise 1 change if c’(u) < O? 

3. Consider the equation 
U t  + c(u)u, = 0. 
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with c twice continuously differentiable and c(u) = ~’(u). xhere d is the 
flux. Given 

d(u2) - d(u1) - - + c(u2) 
u2 - u1 2 

for all u1 and u2, show that d(u) is a quadratic function of u. 

4. Consider the initial value problem 

ut +uuz  = 0. z E R. t > 0. 
z < 0. 

Find a continuous solution for t < 1. For t > 1 fit a shock and find the form 
of the solution. Finally, sketch time snapshots of the wave for t = 0, t = 
z 1  t = 1. and t = z. 1 3 

3.3 Shock Formation 

In Section 3.1 we introduced the Rieniann problem, where the initial data  were 
discontinuous. Now we consider the problem of shock formation from smooth 
data, and. in particular, the question of when the blowup occurs. We focus on 
the initial value problem 

ut + c(u)u,  = 0, z E R, t > 0. (3.3.1) 

u ( z ,  0) = uo(x), 2 E R. (3.3.2) 

where c(u)  > 0, c’(u) > 0, and uo E C1. We showed in Chapter 2 that if uo is a 
nondecreasing function on R, then a smooth solution u = u(z ,  t )  exists for all 
t > 0 and is given implicitly by the formulas 

u(x, t )  = ug(<). where z - < = c(uo(E))t.  (3.3.3) 

Therefore. for singularities to occur in (3.3.1)-(3.3.2). necessarily uo must be 
strictly decreasing in some open interval. 

Consider the case when ug(z) > 0 and uh(z) < 0 on R. The characteristic 
equations are 

dx 
dt  

u = const on - = C(.). 

Therefore. the characteristics. which are straight lines, issuing from two points 
<I and 6 2  on the z axis with <1 < < z 3  have speeds c ( u o ( [ ~ ) )  and c (uo(&) ) ,  
respectively. Because uo is decreasing and c is increasing. it follows that 

4uo ((1 1) > c b o  ( E 2  1).  
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Figure 3.13 

In other words, the characteristic emanating from [I is faster than the one 
emanating from (2 (see Figure 3.13). Therefore, the characteristics cross and 
a contradiction results because u is a different constant on each characteristic. 
So a smooth solution cannot exist for all t > 0. 

To determine the breaking time. or the time when a gradient catastrophe 
occurs, we calculate u, along a characteristic, which has equation 

x - E = c (uo ( t ) ) t .  (3.3.4) 

Let g ( t )  = u,(x(t) . t)  denote the gradient of u along the characteristic z = x ( t )  
given by (3.3.4). Then 

But differentiating the PDE (3.3.1) with respect 

U t ,  + c(u)u,, + c’(u)uE 

Comparing the last two equations gives 

= -c(u)g2 dg - 
dt 

along the characteristic. Equation (3.3.5) can be 

to  x gives 

= 0. 

(3.3.5) 

solved easily to obtain 

(3.3.6) 

where g ( 0 )  is the initial gradient a t  t = 0. Translating (3.3.6) into alternate 
notation gives 

(3.3.7) 
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Figure 3.14 Diagram showing how a wave evolves into a shock wave. The 
breaking time t b  is the time when the gradient catastrophe occurs. 

which is a formula for the gradient u, along the characteristic (3.3.4).  Because 
of the assumptions ( U O  nonincreasing and c increasing), it follows that ub and 
c’ in the denominator of (3.3.7) have opposite signs, and therefore u, will blow 
up at a finite time along the characteristic (3.3.4).  Consequently. if we examine 
u, along all the characteristics, the breaking time for the wave will be on 
the characteristic. parameterized by [, where the denominator in (3.3.7) first 
vanishes. Denoting 

F(E) = c (uo(0 ) .  F ’ ( 8  = .6K)c’(.o(C)). 

we conclude that the wave first breaks along the characteristic [ = & for which 
IF’([)/ is maximum. Then the time of the first breaking is 

1 

F’(<b) ‘ 

tb = -- 

The positive time t b  is called the breakzng time of the wave. Figure 3.14 illus- 
trates several time snapshots of a wave that breaks at time t b .  

If the initial data uo are not monotone, breaking will first occur on the 
characteristic [ = [ b ,  for which F’([) < 0 and IF’(()I is maximum. 

Example. Consider the initial value problem 

ut+uu, = o .  2 E R. t > 0. 
u(x, 0) = e P 2 ,  cc E R. 

The initial signal is a bell-shaped curve, and characteristics emanate from the 
2 axis with speed c(u)  = u. A characteristic diagram is shown in Figure 3.15. 
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It is clear that  the characteristics collide and a shock will form on the front 
portion of the wave along the characteristics emanating from the positive II: 

axis. To determine the breaking time of the wave, we compute 

F(<) = c(uo(<)) = e-E2. 

Then 
F’(<) = -2(‘e-E2andF’’(<) = -(4<* - 2)e -E2 .  

Thus F”(<) = 0 when < = <b = m. This is where F’ is a maximum. There- 
fore, the breaking time is 

so  breaking first occurs along the characteristic < = <b at  time t b .  The solution 
of the initial value problem up to time t b  is given implicitly by 

u(x,t) = e-E2,  

where < = <(x, t )  is the solution of x - < = e-E2t. 0 

There is an alternate way to look at the problem of determining the breaking 
time of a wave for the initial value problem (3.3.1)-(3.3.2). The solution is given 

Figure 3.15 
t b  = 1.16, and breaking first occurs on the characteristic <b = m. 

Characteristic diagram. The breaking time is approximately 
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implicitly by the formulas (3.3.3). To determine the solution explicitly. we must 
be able to  solve the equation 

2 - t = .(.o(t))t (3.3.8) 

for < and substitute the result into the equation u = u g ( < )  to find u = u(x. t )  
(i.e.. u as a function of x and t ) .  lye may ask when it is possible to solve 
(3.3.8) for <. This is a standard problem involving the implicit function theorem. 
If we write (3.3.8) as 

J ( 2 .  t .  <) = 2 - < - c(uo([)) t  = 0, (3.3.9) 

then the condition that allows us to  locally solve (3.3.9) for < is that  the partial 
derivative of J with respect to < must be nonzero. Thus we must have 

-1 - c’(uo(<))ubK)t # 0. (3.3.10) 

This is the same condition that the denominator of (3.3.7) be nonzero (i.e.. 
u, is not infinite). Consequently. if condition (3.3.10) holds, then for each (x. 
t )  we can uniquely determine the characteristic, designated by < >  that  leads 
backward in time from ( 2 .  t )  to the point (<> 0) on the initial timeline (x axis). 

EXERCISES 

1. Consider the initial value problem 

ut+uu,  = o ,  z ER. t > o ,  
x E R. 

1 
u(x .0)  = -- 

1 +x2‘ 

Find the breaking time t b  of the wave and write the solution for 0 < t < t b  

in implicit form. Sketch the characteristic diagram. 

2 .  Discuss the existence of a global solution ( 2  E R. t > 0) for the initial value 
problem 

ut = -5, X E R .  t > 0 ,  
21 

u(2 .  0) = uo(2). 2 E R. 

Sketch the characteristic diagram. 

3. Consider the conservation law 

U t  + Q ( U ) ,  = 0. 2 E R. t > 0, 
z E E. u(z .0)  = ug( lc )  > 0, 

where 0‘. 0” > 0. and where ub > 0. Show there exists a constant E for 
which u, < E / t  for all t > 0. 
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4. Consider the initial-boundary value problem 

ut+uu, = 0 ,  x > 0, t > 0. 
u(x,O) = 1. z > 0: u(O.t) = t + 1. t > 0. 

Sketch a characteristic diagram and find the breaking time t b ,  Determine 
the solution up to  t = t b .  After the shock forms. calculate its path in 
spacetime. Solutzon: s ( t )  = ( t  + 3)(3t  + 1)/16. 

5. Consider the initial value problem 

ut + UU, = -ku2, z E R. t > 0 ( k  > O), 
u(x. 0) = uo(x) > 0. x E R. 

(a) Find u implicitly. 

(b) Determine conditions on k and uo such that a shock will not form. 

(c) If a shock forms, what is t b ?  

6. Consider the PDE 
ut + uu, = B ( x  - vt), 

where u is a positive constant and the function B satisfies the conditions 
B(y)  = 0 if Iy( 2 yo and B(y) > 0 otherwise. (This PDE is a conservation 
law with a moving source term.) 

(a) Show there exists a traveling wave solution of the form u = u ( x  - vt) 
satisfying u(+m) = uo < v if; and only if 

(b) Let u(x,O) = U O .  2 E R. By transforming to  a moving coordinate 
system (moving with speed w). show that 

du d z  
d r  d r  
- = B ( z )  on - = u - u ,  

with u = uo and z = x at r = 0. 

(c) In part (b) take B(y )  = B = constant for / y (  5 a and B ( y )  = 0 
otherwise. Draw a characteristic diagram in ~r space in both the case 
v < uo and the case u > U O .  When do shocks form? Discuss the case 
u = uo. 
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7. Consider the initial value problem 

ut f U U ,  = 0. z E R. t > 0. 

u (z ,o)  = 2 - z2 for z < 1: u(z, 0) = 1 for z 2 1. 

Sketch the characteristic diagram and find the breaking time t b .  Write the 
solution for t < t b .  

8. Consider the initial value problem 

ut+uu, = o ,  z ER. t > 0.  

u(z,O) = 1 for z > 1; u(z,O) = 1x1 - 1 for z < 1. 

Find a solution containing a shock and determine the shock path. 

9. Consider the initial value problem 

ut+uu, = o .  2 E R .  t > 0.  

u(z,O) = 2 if z < 0, u(z .0)  = 1 if O < z < 2, u(z.0) = 0 if z > 2. 

Find a solution containing a shock and determine the shock path. (In this 
case two shocks merge into a single shock.) 

10. Consider the initial value problem 

ut+uu,  = o .  2 E R, t > o ,  
u(z,O) = cosz,  0 5 z 5 -. 
u(z .0)  = 0. 

u(2,O) = 1. 

7r 

2 
7r 

II: > - $  

2 
z < 0. 

Show that ux blows up at t b  = 1 and at  location xb = 7 ~ 1 2 .  Write the solu- 
tion for 0 < t < t b  in implicit form and sketch the characteristic diagram. 

3.4 Applications 

There are many applications of first-order PDEs to problems in science and 
engineering. Rather than present an exhaustive list. we focus on two applica- 
tions, one involving traffic flow and one involving a plug flow chemical reactor. 
In Chapter 4. where we consider systems of first-order equations. there is more 
fertile ground for applications. 
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3.4.1 Traffic Flow 

What was once a novel application of first-order PDEs-namely. the appli- 
cation to  traffic flow-has become commonplace in treatments of first order 
PDEs. Nevertheless, the application is interesting and provides the novice with 
a simple, concrete example where intuition and mathematics can come together 
in a familiar setting. 

Imagine a single-lane roadway occupied by cars whose density u = u(z. t )  
is given in vehicles per unit length, and the flux of vehicles d ( z . t )  is given 
in vehicles per unit time. The length and time units are usually miles and 
hours. We are making a continuum assumption here by regarding u and Q as 
continuous functions of the distance 2 .  (A more satisfying treatment might 
be to regard the vehicles as discrete entities and write down finite difference 
equations to  model the flow; this approach has been developed. but we shall 
not follow it here.) The basic conservation law requires that the time rate of 
change of the total number of vehicles in any interval [u. b] equals the inbound 
flon7 rate at z = u minus the outbound flow rate a t  z = 6. or. in integral form, 

(3.4.1) 

If u and d are smooth functions. then in the standard way we can obtain a 
PDE relating u and 0 that models the flow of the cars. This equation is the 
conservation law 

U t  + oz = 0. (3.4.2) 

Now we need to  assume a constitutive relation for the flux 9. The flux represents 
the rate that vehicles go by a given point: it seems desirable for the flux to 
depend on the traffic density u. or 0 = @(u). If u = 0. the flux should be 
zero: if u is large, the flux should also be zero because the traffic is jammed. 
Therefore, we assume that there is a positive value of u ,  say, u3’ such that 
o(u3) = 0. Otherwise, we assume that Q is positive and concave down on the 
interval (O,u,), and Q has a unique maximum at urnax. Thus u = u,,, is the 
value of the density where the greatest number of vehicles go by. In summary. 
the assumptions on the flux are 

o(u)>0 and d”(u) < 0 on (0. u,),  

p(0) = 6 ( u 3 )  = 0 Q’(u) > 0 on [ O - ~ r n a x ) ,  

d ( u )  < 0 on (urnax. u3].  d(unlax)  = 0. (3.4.3) 

ut + c(u)uz = 0. where c(u)  = @I(. ) .  d ( u )  < 0. (3.4.4) 

See Figure 3.16. As before, we may write the PDE (3.4.2) as 
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I /  / I \ 

v ! \ >  
Figure 3.16 
density u. 

Experimentally measured flux Q as a function of the vehicle 

Equation (3.4.4) has characteristic form 

du 
dt  

u = const on - = c(u) .  (3.4.5) 

Therefore, signals that  travel at characteristic speed c (u )  propagate forward 
into the traffic if u < u,,,, and signals propagate backward if u > urn,,. Be- 
cause c’(u) < 0. waves will show a shocking-up effect on their backside. For 
example. if there is a density wave in the form of a bell-shaped curve, with the 
density everywhere less than urnax. the wave will propagate as shown in Fig- 
ures 3.17 and 3.18, which show the characteristic diagram and time snapshots 
of the wave, respectively. 

f t  / release 

Figure 3.17 
bell-shaped curve. 

Characteristic diagram for an initial density in the form of a 

To see how a driver experiences and responds to such a density wave. we 
define the velocity V = V(u) of the traffic flow defined by the equation 

d(u) = uV(u) .  (3.4.6) 
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Figure 3.18 Diagram showing how the density wave profile “shocks up“ on 
the backside when c’(u) < 0. 

Like 4 and u ,  V is a point function of (z, t ) ,  giving a continuum of values at 
each location n: in the flow. With this interpretation, V is the actual velocity of 
the vehicle a t  (z, t ) .  Equation (3.4.6) states that density times velocity equals 
flux, which is a correct statement. We now place one additional restriction on 
0 that will guarantee V is a decreasing function of u: in particular, we assume 
that u d ( u )  < @(u) (see Exercise 1). Using (3.4.6) we find 

c(u) = d ( U )  = uV’(u) + V ( u ) .  

Then, because V’ < 0. it follows that C ( U )  < V ( u ) .  Consequently, the traffic 
moves at  a speed greater than the speed signals are propagated in the flow. For 
example. a driver approaching a density wave like the one shown in Figure 3.18 
will decelerate rapidly through the steep rear of the wave and then accelerate 
slowly through the rarefaction on the front side. 

Typical experimental numbers for values of the various constants are quoted 
in Whitham (1974). For example, on a highway, u3 = 225 vehicles per mile. 
u,,, = 80 vehicles per mile, and the maximum flux is 1500 vehicles per hour. 
Interestingly enough, the velocity that gives this maximum flux is a relatively 
slow 20 miles per hour. In another case study. in the Lincoln Tunnel linking 
New York and New Jersey, a flux given by d(u) = auln(u,/u).  with a = 17.2 
and ug = 228, was found to fit the experimental data. 

Another common phenomenon is a stream of traffic of constant density 
ug < urnax suddenly encountering a traffic light that  turns red at time t = 0. 
Figure 3.19 shows the resulting shock wave that is propagated back into the 
flow. Ahead of the shock, the cars are jammed at  density u = ug and velocity 
is zero: behind the shock the cars have density ug and corresponding velocity 
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Jammed: u = uj 
Shock I 

light 
Q Q Q Q Q  

u = u o  

Figure 3.19 Spacetime diagram showing the effect of a red light stopping a 
uniform stream of traffic. A shock is propagated back into the traffic. This is a 
shock that we experience regularly when we drive a vehicle. 

V(u0)  > c(u0) > 0. Figure 3.20 illustrates the characteristic diagram and a 
typical vehicle trajectory. The speed of the shock is given by the jump condition 

Shock A t  

I u = uo 

Figure 3.20 
uniform stream of traffic. 

Characteristic diagram associated with a red light stopping a 

1 Qahead - @behind - 0 - O(u0) 4 u o )  ~ 0. - - s =  
Uahead - Ubehind U J  - UO u3 - uo 

If the traffic light turns green at  some time t = t o ,  a centered rarefaction wave 
is created that releases the density as the stopped vehicles move forward. The 
lower value of the density created by the rarefaction ahead of the shock wave 
will force the shock to  change direction and accelerate through the intersection. 
A characteristic diagram of this situation is shown in Figure 3.21. Observe that 
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Shock - Centered rarefaction 

u = uo u = o  

Figure 3.21 When the light turns green a rarefaction wave releases the 
jammed traffic and the shock turns to  go through the intersection itself. At 
a busy intersection. the shock does not get through the intersection before the 
light turns red again. 

the characteristics are straight lines. and the fan must take characteristics of 
speed c(u3)  behind the rarefaction to characteristics of speed c(0) ahead of 
the rarefaction. The density u must change from the jammed value u3 behind 
to the fan to the value zero ahead (because there are no cars ahead). The 
characteristic speed c( u )  in the rarefaction is therefore given by the equation 

m 
.L 

c (u )  = -. 
t - t o  

Note that u is constant on straight lines. so c(u)  is constant on straight lines: the 
straight lines in the fan emanating from (0. t o )  are given by x / ( t  - to) = const. 
The curved shock path can be computed by the jump condition 

dz d(u) - d u o )  s'= - = 
d t  u - uo 

The Exercises provide further practice in traffic flow problems 

3.4.2 Plug Flow Chemical Reactors 

In industry. many types of chemical reactors produce products from given re- 
actants. One of these is called a plug flow reactor (also called a pis ton  flow. 
slug flow. or ideal tubular reactor) .  A model of this reactor is a long tube where 
a reactant enters at a fixed rate and a chemical reaction takes place as the 
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Fe$ed ((1 Outflow Q 

+ A  + 
\ \ 
\ \ 

Figure 3.22 Plug flow reactor with material entering and leaving at the same 
volumetric flow rate Q. 

material moves through the tube. producing the final product as it leaves the 
other end. In such a reactor the flow is assumed to  be one-dimensional-that 
is, all state variables are assumed to be constant in any cross section: the vari- 
ation takes place only in the axial direction. A model of a plug flow reactor of 
cross-sectional area A and length L is shown in Figure 3 .22 .  A reactant A is 
fed in the left end at J: = 0 at the constant volumetric rate Q (volume/second). 
On entry, A reacts chemically and produces a product B; that is. A -+ B. 
The rate of production. or the chemical reaction rate, is given by r .  measured 
in mass/volume/time. The material leaves the reactor a t  J: = L at  the same 
volumetric flow rate Q. If a = a(z ,  t )  denotes the concentration of the chemical 
species A, given in mass per unit volume. then the flux is then given by &a. 
The model equation governing the evolution of the concentration a(z . t )  can 
be expressed from a basic conservation law, which states that the time rate of 
change of the total amount of A in the section [ ~ : 1 , ~ : 2 ]  must balance the net 
flux of A through x1 and 2 2 .  plus the rate at which A is consumed by the 
chemical reaction in [XI. x2]. This is expressed symbolically as 

Au(J:. t )  d ~ :  = Q u ( x ~ .  t )  - Q u ( x ~ .  t )  + (3.4.7) 

Assuming that a is sufficiently differentiable and using the arbitrariness of the 
interval [ L C ~ , J : ~ ] ~  (3.4.7) reduces to  the PDE 

Q 
A'  

at + va, = r: ti = - (3.4.8) 

Equation (3.4.8) is the advection equation with a source term. We next make 
some assumptions regarding the reaction rate r. By the law of mass action, 
the reaction rate depends on the concentration a as well as the temperature 
at which the reaction occurs. For first-order kinetics, r = -ka.  where k is a 
temperature-dependent rate factor (called the rate constant, which is a slight 
misnomer). Rather than introduce another variable (temperature) % however, 
we assume that k is a constant; so, we consider the problem 

at + va, = - k a .  (3.4.9) 
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Figure 3.23 Characteristic diagram for the initial-boundary value problem 
(3.4.9)-(3.4.11). 

To equation (3.4.9) we append the initial condition 

a ( z . 0 )  = ao, 0 < z < L .  (3.4.10) 

and the boundary condition 

a(O.t)  = f ( t ) ,  t > 0. (3.4.1 I )  

The initial concentration in the reactor is ao. a constant, and the concentration 
of the feed at z = 0 is f ( t ) :  therefore. the flux at  x = 0 is Qf(t). We can solve 
this problem by characteristics. The characteristic form of (3.4.9) is 

= -ka on z = v t + c l ,  
da 
d t  
- (3.4.12) 

where c1 is a constant. Hence 

a = c2e -Ict  on x = v t  + c1. (3.4.13) 

where c:, is another constant. We note (see Figure 3.23) that the initial and 
boundary data are carried along straight-line characteristics at speed v to  the 
boundary at x = L ,  which is the right end of the reactor. Therefore, we divide 
the problem into two regions, x > vt  and x < vt. For x > v t  we parameterize 
the initial data by a = a0.x = .('. at t = 0. Then, from (3.4.13). the constants 
are given by 

c1 = ao. c2 = .('. (3.4.14) 

Thus 
a(x. t )  = a(&? x > vt .  (3.4.15) 
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Figure 3.24 Exercise 2. 

In z < vt we parameterize the boundary data (3.4.11) by a = f(~),t = T. at  
z = 0. Then the constants c1 and c2 in (3.4.13) are given by 

C 1  = -UT C2 = f ( 'T)e".  

Then 
a = f ( r )e - " t - ' )  on z = v ( t -  T), 

a(z. t )  = f ( t  - Z) e-kz 'v ,  z < vt. (3.4.16) 

Equations (3.4.15)-( 3.4.16) solve the problem (3.4.9)-( 3.4.11). Physically. the 
concentration decays from its initial or boundary value as it moves through the 
reactor a t  constant speed v = Q/A.  

More realistic reactors are nonisothermal. In that case an energy balance 
equation is required to go with the chemical species equation. and a coupled 
system for the species concentration and the temperature is obtained. 

O r  

21 

EXERCISES 

In traffic flow the flux is given by #(u) = uV(u) ,  where V is the velocity. 
and conditions (3.4.3) hold for the flux. Determine a growth condition on 
Q that is implied by the assumption V' < 0. 

In the traffic flow problem assume that the flux is given by $(u) = au(u, - 
u), where a and u3 are positive constants. Find the vehicle velocity V ( u )  
and the characteristic speed ~ ( u ) .  Describe how a density wave like the one 
shown in Figure 3.24 evolves in time. On a characteristic diagram indicate 
the path of a vehicle approaching such a wave from behind. How does the 
situation change if the density wave is like the one in Figure 3.25? 

It was determined experimentally that traffic flow through the Lincoln 
Tunnel is approximately described by the conservation law ut + & = 0 
with flux 

d(u) = au In 3, 
U 

U 
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4. 

- A  

Figure 3.25 Exercise 2. 

I 
- X 0  

Figure 3.26 Exercise 3. 

where a and uu3 are known positive constants. Suppose that the initial den- 
sity u of the traffic varies linearly from bumper-to-bumper traffic (behind 
n: = - 2 0 )  to no traffic (ahead of n: = 0). as sketched in Figure 3.26. Two 
hours later, where does u = u,/2? 

(Flood waves) The height h = h ( z , t )  of a flood wave is modeled by the 
advection equation 

ht + qz = 0, 

where the water flux is given by the Chezy law q = vh. where the average 
stream velocity 'L' is given by c = a&. where a > 0 is a proportionality 
constant. Show that flood wave propagate 1.5 times faster than the average 
stream velocity. 

3.5 Weak Solutions: A Formal Approach 

lF7e took a heuristic approach to introduce the concept of a discontinuous so- 
lution. The implication was that a discontinuous solution is a function that is 
smooth and satisfies the PDE on both sides of a curve, the shock path: along 
the shock path the function suffers a simple discontinuity and, as well. satisfies 
a jump condition relating its values on both sides of the discontinuity to the 
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speed of the discontinuity itself. We want to develop a more formal, mathemat- 
ical definition of these concepts. The result will be an extension of the notion 
of a solution to a PDE to include nonclassical solutions. 

For definiteness. consider the initial value problem 

ut + @ ( U ) ,  = 0. 2 E R. t > 0. (3 .5 .1)  

u ( x .  0) = uo(x) .  5 E R. (3 .5 .2)  

where 6 is a continuously differentiable function on R. By a classzcal. or genuzne. 
solution to (3.5.1)-(3.5.2) is meant a smooth function u = u(z, t )  that satisfies 
(3.5.1)-(3.5.2). For motivation. assume for the moment that u = u(z, t )  is a 
classical solution, and let f (2 ,  t )  be any smooth function that vanishes outside 
some closed. bounded set in the plane. Closed. bounded sets in the plane are 
compact sets. and the closure of the set of points where a function f is nonzero 
is called the support  of f .  denoted by supp f .  Therefore, the assumption is 
that f is a function with compact support. The set of all smooth functions 
with compact support is denoted by (26. Therefore, we may choose a rectangle 
D = { ( x . t )  : a 5 x 5 b. 0 5 t 5 T}, where f = 0 along z = a. x = b. and 
t = T (see Figure 3.27) .  If we multiply (3 .5 .1)  by f and integrate over D. we 
obtain 

(3 .5 .3)  

Integrating both terms in (3 .5 .3)  by parts then gives 

b 

= - i f (z. O)uo(z) dx - 

a b 

Figure 3.27 Rectangular region containing the support of the function f 
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and 

J O  J a  
5 dx dt. 

Therefore. from (3.5.3). we have 

/ 2 0 / ( u f t + f z o ) d x d t +  .hO uofdx=O. (3.5.4) 

To summarize. if u is a genuine solution to (3.5.1)-(3.5.2) and f is any smooth 
function with compact support. the integral relation (3.5.4) holds. We now 
observe that the integrands in (3.5.4) do not involve any derivatives of either u 
or 0. Thus (3.5.4) remains well defined even if u and @(u)  or their derivatives 
have discontinuities. lye use equation (3.5.4), therefore. as a basis of a definition 
for a generalized solution of the initial value problem. The formal definition is 
given below. 

Definition. A bounded piecewise smooth function u(z .  t )  is called a weak so- 
lutzon of the initial value problem (3.5.1)-(3.5.2)- where u~ is assumed to be 
bounded and piecewise smooth if, and only if, (3.5.4) is valid for all smooth 
functions f with compact support. 

This is the general definition of a solution that does not require smoothness. 
(In other contexts using the Lebesgue integral. we can replace the piecewise 
smooth condition by measurable.) 

To verify that the notion of weak solution is indeed an extension of the usual 
notion of a classical solution. we should actually check that if u is smooth and 
satisfies (3.5.4) for all functions f with compact support. then u is a solution 
to the initial value problem (3.5.1)-(3.5.2). We leave this verification as an 
Exercise. 

Does the definition of a weak solution, involving equation (3.5.4), result in a 
formula for the shock speed that is consistent with the jump condition derived 
in Section 3.3? The answer is, of course, affirmative, and we now present that  
argument. This gives an alternative may to derive the jump condition. To carry 
out the analysis. we recall Green‘s. 

Theorem. (Green’s Theorem) Let C be a piecewise smooth. simple closed curve 
in the zt plane. and let D denote the domain enclosed by C. If p = p ( x ,  t )  and 
q = q(x> t )  are smooth functions in D U C. then 

where the line integral over C is taken in the counterclockwise direction. 
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t 

Let r be a smooth curve in spacetime given by x = s ( t )  along which u has 
a simple jump discontinuity, and let D be a ball centered at some point on 

and lying in the t > 0 plane (Figure 3.28). Further, let D1 and 0 2  denote 
the disjoint subsets of D on each side of r. Xow, choose f E Ch in D. From 
condition (3.5.4) we have 

A 

The product rule for derivatives and the fact that u is smooth in Dz allows the 
second integral in (3.5.5) to be written as 

where in the last step we used Green's theorem. But the line integral is nonzero 
only along r because of the choice of f .  Therefore. denoting by u1 and u2 
the limiting values of u on the front- and backsides of r ,  respectively (i.e.. 
u1 = u(s( t )+,  t )  and uz = u(s( t ) - .  t ) ) ,  we have 

L2 / ( u f t  + 4qu) fz )  dxdt  = f ( - W  dz + d u 2 )  d t ) .  (3.5.6) L: 
In a similar manner, we obtain 

L, / ( u f t  + $(u) fz )  dx d t  = f ( - u ~  dx + O ( U I )  d t ) .  (3.5.7) 

l- 

Figure 3.28 
u occurs. 

Ball D centered on a curve r along which a discontinuity in 
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Equations (3.5.5)-( 3.5.7) imply 

f(-[u] dx + [o(u)]  d t )  = 0. (3.5.8) 

where the brackets denote the jump in the quantity inside (e.g.. [u] = u2 - 211). 

Finally. the fact that f may be chosen arbitrarily leads to the conclusion that 

-[.I dz + [d(u)] d t  = 0. 

or 
-s'(t)[u] + [o(u)] = 0. (3.5.9) 

which is the jump condition obtained in Section 3.3. In conclusion. we showed 
that the definition of a weak solution leads to the jump condition across a shock. 

The weak form of solutions given in integral form by (3.5.4) ties down the 
idea: where the solution is smooth. the PDE holds, and where the solution is 
discontinuous, the shock condition is implied. The next example shows that 
care must be taken when going from a PDE to the integrated form of the weak 
solution. 

Example. Consider the PDE 

U t  + uuz = 0. (3.5.10) 

Any positive smooth solution of this equation is a smooth solution of both the 
conservation lams 

each of which satisfies different jump conditions. because the flux is different. 
Thus, to one PDE there are associated different weak solutions, depending on 
the form in which the equation is written. 13 

Therefore we cannot tell what the correct shock condition is if the only thing 
given is the PDE. This means that the most basic. relevant piece of informa- 
tion is the integral form of the conservation law or the PDE in conservation 
form. where the flux is identified. Fortunately. in real applications in en,' Dineer- 
ing and sciences. the integral form of the conservation lam usually comes out 
initially from the modeling process. If the underlying physical process is un- 
known, a PDE by itself does not uniquely determine the conservation law or 
shock conditions. 

Exercise 6 shows that the uniqueness problem is in fact even worse than 
expected. Weak solutions are not unique. and another condition is required 
if we want otherwise. Such a condition is called an entropy condztzon. which 
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dictates how the speed of the characteristics ahead of and behind a shock wave 
must relate to the shock speed itself. For the PDE (3.5.1) with @"(u) > 0. 
it can be proved that there is a unique solution to the initial value problem 
(3.5.1)-( 3.5.2) that also satisfies the condition 

(3.5.12) 

where a > 0 and E is a positive constant independent of 2. t .  and a. Equa- 
tion (3.5.12) is called the entropy conditzon, and it requires that a solution can 
jump downward only as we traverse a discontinuity from left to right. In terms 
of characteristic speeds, (3.5.12) implies (Exercise 7) the entropy inequality 

aE 
t 

u(z  + a. t )  - u(z ,  t )  5 -. z E R, t > 0, 

d ( u 2 )  > s' > O'(.l), (3.5.13) 

where s' is the shock speed and u1 and u2 are the states ahead of and behind the 
shock, respectively. Equation (3.5.13) establishes the shock speed as interme- 
diate between the speeds of the characteristics ahead and behind. The entropy 
condition originates from a condition in gas dynamics that requires the entropy 
increase (as required in the second law of thermodynamics) across a shock wave. 
the latter of which is basically an irreversible process. This condition precludes 
the existence of rarefaction shocks. where there is a positive jump from left to 
right across the shock wave. The proof of existence and uniqueness of a weak 
solution satisfying the entropy condition is beyond the scope of this text, and 
we refer the reader to Lax (1973) or Smoller (1994) for accessible treatments. 

EXERCISES 

1. Let u and u g  be smooth functions that satisfy (3.5.4) for all f E CA. Prove 
that u and ug satisfy the initial value problem (3.5.1)-(3.5.2). Hznt: Choose 
f judiciously, use integration by parts, and use the fact that if hfdz  = 0 
for all f E (2;. where h is continuous, then h = 0. 

2 .  Find a weak solution to each of the following initial value problems: 

ut + ( e U ) ,  = 0, z E R, t > 0, 
u(z .0)  = 2 if z < 0: u(z,O) = 1 if J: > 0 

ut + 2uu, = 0, z E R, t > 0, 
u(z ,o )  = fi if z < 0; U ( Z , O )  = O if 2 > 0. 
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3. (Porous Medza) Consider the flow of an incompressible fluid through a 
porous medium (e.g., water flowing through soil). The soil is assumed to  
contain a large number of pores through which the water can infiltrate 
downward, driven by gravity. With the positive x axis oriented downward. 
let u = u ( z , t )  denote the ratio of the water-filled pore space to the total 
pore space at the depth z, at time t .  Thus. u = 0 is dry soil and u = 1 
is saturated soil, where all the pore space is filled with water. The basic 
conservation law holds for volumetric water content u, namely 

U t  + dz = 0, 

where q is the vertical flux. In one model of partially saturated, gravity- 
dominated flow. the flux is assumed to  have the form 

qb= kun,  

where k and n are positive constants depending on soil characteristics; k is 
called the hydraulzc conductzvzty. In the following, take n = 2 and k = 1. If 
the moisture distribution in the soil is u = initially. and if a t  the surface 
z = 0 the water content is u = 1 (saturated) for 0 < t < 1 and u = $ for 
t > 1, what is the water content u(x,t) for x,t > 0? Plot the jump in u 
across the shock as a function of time. 

4. (Trafic Flow) In the model of traffic flow presented in Section 3.4. the 
velocity V is found experimentally to  be related to  the density u by the 
constitutive relation V = vo(1 - u / U ) ,  where uo is the maximum speed 
and U is the maximum density. At time t = 0 cars are traveling along the 
roadway with constant velocity 2v0/3. and a truck enters the roadway at 
z = 0 traveling at speed V o / 3 .  It continues at this constant speed until it 
exits at x = L.  

(a) On a spacetime diagram sketch the path of the truck and the path of 
the shock while the truck is on the road. 

(b) After the truck leaves the road, find the time that the car following the 
truck takes to catch the traffic ahead of the truck. 

(c) Describe the qualitative behavior of the weak solution for all t > 0 

5. Determine the jump conditions associated with the equations (3.5.11). 

6. Consider the initial value problem 

ut + uu, =O. Z E R ,  t > 0 .  

u ( x , 0 )  =0 if x < 0: u(x,0)  = 1 i f x  > 0, 
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and let u and u be defined by 

u(x,t) = 0 if x < i. u(z,O) = 1 if x > 
u(x,t) = 0 if x < 0. 
u(x,t) = 1 if x > t .  

u ( z , t )  = 7 if 0 < x < t ,  

Sketch u and v and the characteristics. Are both u and u weak solutions 
to the initial value problem? If the entropy condition (3.5.12) is assumed, 
which is the correct solution? 

7. Show the entropy condition (3.5.12) implies the entropy inequality (3.5.13). 

8. Consider the initial value problem 

u(x,O) = 0 if x > 0 and u(x,O) = U ( z )  if z < 0; 

where U is unknown. Determine conditions on a shock x = s ( t ) ;  t > 0, in 
the upper half-plane that are consistent with definition of a weak solution, 
and then. under these conditions, calculate U in terms of s ( t ) .  What is 
U ( x )  if s ( t )  = m- I? 

9. Consider the conservation law 

where g is a discontinuous source term given by g ( x )  = 1 if x > and 
g(x) = C = const if x < i. Find the weak solution when the initial 
condition is u(z .  0) = U = const for all z E R. 

10. Consider the initial-boundary value problem 

ut + u, = -u + u ( l , t ) ,  O < x < l ,  t > 0 ,  
u (z ,o)  = uf)(x), 0 < Z < 1; u(O,t) = ub(t), t > 0. 

This problem has an unknown source term evaluated on the boundary of 
the domain, and it arises in a problem in detonation theory. 

(a) Find an analytic expression for u(1.t) .  0 < t < 1, and determine the 
solution in t < x < 1. 

(b) Derive a differential-difference equation for u(1. t ) .  t > 1. and a for- 
mula for the solution in terms of u(1, t )  in the region 0 < z < t .  z < 1. 
Solution: ~ ' ( 1 .  t )  + au(1, t - 1) = U [ U b ( t  - 1) + u i ( t  - l)], u = l /e .  
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(c) If ub(0) = uo(0). show that the jump condition across the line z = t is 
given by 

u+(t) - u( t )  = ePt [ub(O) - u0(0)]. 

(d) Find the solution in the case ug(t) = 0 and uo(z) = z. 

11. Show that u(z : . t )  = x / t  if -4 < z < 4. and u(5. f )  = 0 otherwise. 
is a weak solution to the equation ut + (u2/2) ,  = 0 on the domain x E 
R. t 2 t o  > 0. LYhere are the shocks, and what are their speeds? Sketch a 
characteristic diagram and a typical wave profile for t > t o .  and show that 
the entropy condition holds. 

12. Solve the Riemann problem 

ut + Q, = 0, u(z .  0) = 1 if z < 0. and u(z .  0) = 0 if z > 0. 

where the flux o is 

3.6 Asymptotic Behavior of Shocks 

3.6.1 Equal- Area Principle 

Next, in a simple context, we study the evolution of an initial waveform over 
its entire history. as propagated by the nonlinear equation ut + c(u)u, = 0. 
The scenario is as follows. An initial signal uo(11:) at t = 0 begins to  distort 
and '+shocks up" at breaking time t = t b ;  after the shock forms. the shock 
discontinuity follows a path z = s ( t )  in spacetime. One of the fundamental 
problems in nonlinear analysis is to determine the shock path and how the 
strength of the shock varies along that path for large times t .  

Central to  the calculation of the asymptotic form is an interesting geometric 
result called the equal-area prznczple. To formulate this principle in a simple 
manner. me limit the types of initial data that we consider. We say that an initial 
profile u = uo(2) satzsfies property (P) if uo(z) is a smooth. nonnegative pulse: 
that is. uo belongs to C1(R) and has a single maximum (say. at z = zo): u0 is 
nondecreasing for x < zo and nonincreasing for z > 20. and u0 approaches a 
nonnegative constant value as 1x1 - x. Therefore. we consider the initial value 
problem 

ut + c(u)u, = 0. 11: E R, t > 0, (3.6.1) 

u ( z , 0 )  = uo(x). z E R. (3.6.2) 
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where uo satisfies property (P) and c(u)  = d(u) > 0, c'(u) 2 0. We know from 
Section 3.3 that a classical solution exists only up to some time t = t b  when a 
gradient catastrophe occurs, and it is given implicitly by 

21 = uo(E). (3.6.3) 

z = 5' + F(<) t ,  F ( < )  = c(uo( '9) .  (3.6.4) 

Equation (3.6.4) defines straight-line characteristic curves propagating from 
z = 5' at t = 0 into the spacetime domain with speed F ( < ) .  

Accordingly, as the initial signal propagates. the wave breaks at the first 
time t b  where the characteristics collide. For t > t b 3  instead of forming the weak 
solution with a shock, let us assume that the wave actually breaks (like an ocean 
wave). forming a multivalued wavelet where the intersecting characteristics are 
carrying their constant values of u. JVe interpret the formation of this wavelet 
as shown in Figure 3.29. A point P : (<>u) on the initial wave at  t = 0 is 
propagated to a point P' : ( x ~  u )  on the multivalued wavelet at time t .  where the 
coordinate z at time t is given by (3.6.4); points having height u are propagated 
at  speed ~ ( u ) .  We may now state: 

Now we define the equal-area principle: The location of the shock z = s ( t )  
at time t is the position at which a vertical line cuts off equal area lobes of 
the multivalued wavelet. Figure 3.30 shows the geometric interpretation of this 
rule. 

Two simple facts are required to demonstrate the equal-area principle. and 
these are recorded formally in the following two lemmas. The first states that  
the area under a section of the wavelet remains unchanged as that section 

U 

Y 
Figure 3.29 Initial wave profile evolving into a multivalued wavelet. Points 
at height u on the wave are propagated at speed F(E) = c(uo(E)). 
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Position of 
shock 11 

Multivalued Equal 
wave form areas 

at t > tb 

s ( t )  

Figure 3.30 Equal-area rule. 

is propagated in time (see Figure 3.31). and the second states that the area 
under the weak solution (i.e., the discontinuous solution with a shock) remains 
unchanged as it is propagated in time (see Figure 3.32). 

Figure 3.31 

Lemma. Consider a section of the initial waveform between x = a and x = b. 
with uo(a) = uo(b). with uo satisfying property (P). Then. for any t > 0 the 
area under this section of the wave remains constant as it propagates in time. 

The proof of this fact is geometrically obvious (see Figure 3.31). From 
(3.6.4). the x coordinates a and b are moved in time t to a + F ( a ) t  and b+F(b)t ,  
respectively. Any horizontal line segment PQ at t = 0 has the same length as 



3.6 Asymptotic Behavior of Shocks 151 

Figure 3.32 

P’Q’ at time f because points on the wave at  the same height u move at  the 
same speed ~ ( u ) .  

Lemma. Let a and b be chosen such that uo(a) = uo(b). where uo satisfies 
property (P)? and assume that the shock locus is given by z = s ( t )  with a + 
f F ( a )  < s(f) < b + f F ( b )  for t in some open interval I. Then 

b+tF(b)  
u(z, t )  dz = const, f E I .  (3.6.5) .I a + t F ( a )  

where u = u(z ,  f) is the weak solution. 

The proof of (3.6.5) can be carried out by showing the derivative of the left 
side of (3.6.5) is zero. We leave this calculation as an exercise. 

The equal-area principle now follows easily from the two lemmas because 
the multivalued waveform shown in Figure 3.31 and the weak solution shown in 
Figure 3.32 both encompass the same area, the area under the initial waveform 
from z = a to z = b. We remark that these lemmas and the equal-area rule hold 
for more general initial data than that satisfying property (P). Furthermore, 
in the argument above we assumed that ~ ( u )  > 0: equally valid is the case 
~ ( u )  < 0. with the appropriate adjustments. 
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3.6.2 Shock Fitting 

The general problem of determining the position of the shock locus is funda- 
mental in hyperbolic systems. The equal-area principle leads to a quantitative 
condition whereby the shock path z = s ( t )  can be calculated directly for cer- 
tain simple equations. In this subsection we consider the initial value problem 
for the inviscid Burgers' equation: 

U t $ U U ,  = o .  z E R, t > o ,  (3.6.6) 

u(z .  0) = ug(z) .  z E R. (3.6.7) 

where ug satisfies property (P). Thus c(u)  = u; the case for arbitrary c(u)  is 
discussed in Whitham (1974). 

First suppose that the shock is at  some yet undetermined location z = s ( t )  
at some time t > t b .  and assume that the two characteristics carrying data 
to the shock from ahead and behind are specified by (1 = <l(t)  and <z = 

< 2 ( t ) .  respectively (Figure 3.33). By construction the equations of these two 
characteristics are 

'1; Shock 

Figure 3.33 Two characteristics from behind and ahead that intersect the 
shock at  time t .  

and therefore 

4 t )  = El + uo((1)t s ( t )  = E2 + uo(Ez)t. (3.6.8) 
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Time t = 0 Time t > tb 

5 2  

Figure 3.34 Whitham‘s rule. The chord PQ on the initial curve that cuts off 
equal areas has slope - l / t *  where t is the time at the shock. 

It follows immediately from (3.6.8) that 

(3.6.9) 

which is an equation for the time at the shock in terms of the known initial 
signal and the still unknown values of El and &. The ratio on the right side of 
(3.6.9) is the reciprocal of the slope of the chord PQ on the initial wave profile 
ug connecting the points ( < ~ . u o ( & ) )  and ([1,u0(<1)). as shown in Figure 3.34. 
Because the movement of the wavelet in zu space is governed by the linear 
transformation (x. u )  + (x + ut. u). straight lines are mapped to  straight lines, 
and therefore the chord PQ is mapped to  a vertical segment P’Q’ at time t .  
[This argument cannot be made in the case for arbitrary c(u) .]  This vertical 
segment is the shock at time t ,  and the shock strength is clearly given by the 
formula 

shock strength = uo(&) - uo(E1). (3.6.10) 

Remember. and & are still undetermined. Equation (3.6.8) gives two equa- 
tions for El. &,  and s ( t ) .  and therefore we need one additional relation to  
determine these quantities and thus to determine the shock path. This addi- 
tional relation comes from the equal-area principle. Because the shock cuts off 
equal-area lobes in the multivalued wavelet. the chord PQ must cut off equal- 
area lobes on the initial wave profile. as shown in Figure 3.34. This means that 
the area under the initial wave profile uo from & to (‘1 must equal the area of 
the trapezoid whose upper boundary is the chord PQ. Or. quantitatively. this 
is k: uo(E) = + b O ( E l )  + uo(E2)1(<1 - ( 2 ) .  (3.6.11) 

Therefore. in principle, we have developed an algorithm to determine the shock 
position s ( t ) :  For each fixed t > t b .  solve the three equations in (3.6.8) and 
(3.6.11) to determine s ( t ) . [ I ( t ) ,  and < 2 ( t ) .  It is clear that one cannot always 
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carry out this calculation analytically. and consequently. a numerical procedure 
may be the only recourse. 

However. one can proceed geometrically by Whztham’s rule, a simple con- 
struction on the initial waveform to determine the location and time evolution 
of the shock. This rule is based on equation (3.6.9). 

Whitham’s Rule. For a succession of values of time t ,  draw a chord on the 
initial profile uo of slope - l / t  cutting off equal-area lobes. Then shift the end- 
points of the chord to the right by the amounts tuo(E2) and tuo(E1). respectively. 
obtaining the location of the shock at  the time t .  

Some practice in applying this rule is given in the Exercises 

3.6.3 Asymptotic Behavior 

Limiting the discussion to the initial value problem (3.6.6)-(3.6.7) for the invis- 
cid Burgers’ equation, we next investigate the long-time behavior of the shock 
path and the shock strength. For definiteness, we consider an initial wave pro- 
file uo satisfying property (P) with the additional stipulation that uo(x) = u* 
for z 5 0 and for z 2 a > 0. Here u* is a fixed positive constant. Thus uo(x) 
is a single hump. and we assume that the area under the hump, that is, the 
area bounded by uo(x). u = u*, x = 0, and z = a ,  is A. From (3.6.9) the shock 
strength must vanish as t increases; the question is the rate of decay and the 
path of the shock. We demonstrate that for large t 

Shock strength N (Y )  ~ (3.6.12) 

s ( t )  N u*t + (2At)’l2. (3.6.13) 

Thus the shock strength decays like t-’/’ and the shock path is eventually 
parabolic. We also show that for large t the wave profile behind the shock is 
given by 

X 
u(x:, t)  N - 

t 
(3.6.14) 

The symbol N means in a limiting or asymptotic sense; we use the notation 
t >> 1 to indicate that t is large. 

The initial wave profile is shown in Figure 3.35. Using the equal-area rule 
applied to the initial profile, along with equation (3.6.9). we observe that <l(t)  
will eventually be larger than a because the slope of the chord must go to zero 
for large t. Therefore 

uo(<l(t)) = u* for t >> 1. (3.6.15) 
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Now. subtraction of u*([1 - & )  from both sides of equation (3.6.11) yields 

d; lc io(E) - u*l dE = + ( E l  - E 2 ) [ u 0 ( 1 2 )  - u*]. E l  > a .  

Using (3.6.9) to replace (1 - (2 gives 

But the left side of (3.6.16) can be written 

la[uo( . )  - u*I@ + / “ [ uo (5 )  - u*] dz = [uo(E) - u*I 4. 
2 a J,P 

Quo(O - u*l d5 = -[uo(E2) 2 

Hence (3.6.16) becomes 

(3.6.17) 

For t >> 1 the left side of (3.6.17) approaches the area A because E2 approaches 
0 for t >> 1. Further, the quantity uo(E2) - u* is the shock strength. Thus, for 
t >> 1. the estimate (3.6.12) holds. 

t 
- u*I2. t1 > a. 

To deduce (3.6.13). we use equation (3.6.8) in the form 

s ( t )  = t 2 ( t )  + t .o(€2(t)) .  

But from (3.6.12) we have uo(&(t)) N u* + (2A/t)lI2 for t >> 1. and we also 
have &(t )  - 0 for t >> 1. Relation (3.6.13) follows. 

To prove that the wave has the form (3.6.14), we note that the point on 
the wavelet at  x = 0 at t = 0 moves a t  speed u* and hence is located at  
z = u*t at time t .  Clearly. u = u* for z < u*t. At the same time the shock is 

Figure 3.35 Initial wave profile uo(z) having area A. 
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at s ( t )  = u*t + (2At)’/’. and u = u* for z > s ( t ) .  So we need the solution in 
the interval u*t < z < u*t + (2At)’I2. But the solution in this interval is as 
follows, from (3.6.3) and (3.6.4), 

u = ug([),  where z = E + tuo([). 

Therefore 
X - E  u =  -, 

t 
But for t >> 1 we have E = (2 - 0. and so 

t 
X 

u ( ~ . t )  - -. u*t < z < u*t + (2At)1’2, t >> 1. (3.6.18) 

Figure 3.36 shows the triangular wave that develops for long times. 

EXERCISES 

Prove the second lemma following the equal-area principle. Hznt: Break up 
the integral into two parts. each having a smooth integrand. Differentiate 
using Leibniz‘ rule, and then use the jump conditions that hold across the 
shock. 

Use Whitham’s rule to determine the shock position geometrically and the 
wave profile for the initial value problem 

2 
ut + uu, = 0. u(2,O) = - 

1 + 2 2  

at  the times t = 1.3,5,7.  When does this wave break? 

Y ‘  W X  

(2At)”* 

Figure 3.36 Evolution of a wave profile into a triangular wave for long times. 
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U* 

I t tx: 
0'  a 

Figure 3.37 Initial wave profile ug(z) with a dip of area A. 

3. Consider the initial value problem (3.6.6)-(3.6.7) where the initial wavelet 
has the form shown in Figure 3.37. Determine the form of the wavelet. the 
strength of the shock, and the shock locus for t >> 1. 

Reference Notes. Practically all of the general texts mentioned in the refer- 
ence notes at the end of Chapter 1 discuss first-order partial differential equa- 
tions and characteristics. Particularly relevant is Whitham (1974). especially 
with regard to the asymptotic behavior of shocks and the equal-area rule. Also 
recommended is Lax (1973) and Lighthill (1978). The latter has a detailed dis- 
cussion of the equal-area rule. The classic treatise on fluid mechanics by Landau 
& Lifshitz (1987) discusses these topics from an intuitive, physical viewpoint. 

The two volumes on first-order equations by Rhee et al. (2001) contain a 
wealth of information and examples. 

An example of a plug flow reactor is the digestive tract in many animals. 
Logan et al. (2002) examine simple models of digestion with temperature and 
location dependence. Texts in chemical engineering focusing on reaction kinetics 
are a good source of nontrivial examples. 





Hyperbolic Systems 

Most physical systems involve several unknown functions. For example. the 
complete description of a fluid mechanical system might require knowledge 
of the density, pressure, temperature, and the particle velocity, so we would 
expect to  formulate a system of PDEs to describe the flow. The central idea 
for hyperbolic systems, as for a single equation. is that of characteristics, and 
it is this thread that weaves through the entire subject. 

Section 4.1 develops. from first principles, two physical models that serve to  
illustrate the concepts. First. we derive the PDEs that govern waves in shallow 
water: this derivation is simple and serves as a precursor to the formulation of 
the conservation laws of gas dynamics; the latter is the paradigm of applied 
nonlinear hyperbolic PDEs. Section 4.2 extends the notion of characteristics to 
systems of equations. and out of this development evolves a formal classification 
of hyperbolicity. Section 4.3 gives several examples of Riemann’s method, or the 
method of characteristics, applied to  the shallow water equations with various 
boundary conditions. Sections 4.4 and 4.5 discuss the theory of weakly nonlinear 
waves and conditions along a wavefront propagating into a region of spacetime. 
Because Burgers‘ equation is fundamental in PDEs, we give its derivation from 
the equations of gas dynamics in a weakly nonlinear limit. 

An Introduction to Nonlinear Partial Differential Equations, Second Edition. 
By J .  David Logan 
Copyright @ 2008 John Wiley & Sons, Inc. 
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4.1 Shallow-Water Waves; Gas Dynamics 

4.1.1 Shallow-Water Waves 

The partial differential equations governing waves in shallow water can be ob- 
tained from a limiting form of the general equations of fluid mechanics when 
the ratio of the water depth to the wavelength of a typical surface wave is 
small. In the present treatment, however, we obtain these equations a priori 
without the benefit of knowing the conservation laws of general fluid flow. The 
shallow-water equations. which represent mass and momentum balance in the 
fluid. are highly typical of other hyperbolic systems, and thus they provide a 
solid example of the methods of nonlinear analysis in a simple context. 

density 
H2O 

Bottom I 
I 

X 

Figure 4.1 

Figure 4.1 shows the geometry. Water. which has constant density p ,  lies 
above a flat bottom. We measure the distance along the bottom by a coordinate 
x, and y measures the height above the bottom. There is assumed to  be no 
variation in the z direction. which is into the paper. Let H be the height of the 
undisturbed surface. and assume that the height of the free surface is given at 
any time t and location z by y = h ( z . t ) .  At the free surface the pressure is 
P O .  the ambient air pressure. With no loss of generality, we may assume that 
PO = 0. If a typical wave on the surface has wavelength L.  the shallow water 
assumption is that H is small compared to L (i.e., H << L ) .  In this case. we 
may ignore vertical motions and assume that there is a flow velocity u(5, t )  in 
the z direction that is an average velocity over the depth. 

Because vertical motions are ignored, each volume Ax Ay AZ of fluid is 
in hydrostatic balance in the vertical direction. That is. the upward pressure 
force on a fluid volume equals the downward pressure force plus the force caused 
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n e  I surface 

Figure 4.2 

by gravity. Figure 4.2 shows a typical fluid element. If pressure is denoted by 
P ( x .  y. t ) .  we can write the hydrostatic balance equation as 

P ( x ,  y ,  t )  AX AZ = P ( x .  y + Ay. t )  Ax AZ + pg AX Ay Az. 

Dividing by A x  Ay AZ and taking t,he limit as Ay + 0 yields 

Py(x .  y. t )  = -pg. 

Integrating this equation from a depth y to  the free surface h gives an equation 
for the pressure P:  

P(x .  Y. t )  = Po + PS(h(X, t )  - Y) (Po = 0). (4.1.1) 

Next we derive an equation for mass balance, which requires that the time rate 
of change of the total mass in a region between x = a and x = b equal the mass 
flux into the region at x = a minus the mass flux out of the region at  x = b. In 
the present case, the mass flux at x is given by the density times the velocity 
u at x times the cross-sectional area at x: the latter is given by h Az. where 
the width in the z direction is taken to be Az. Thus mass flux = puh Az. in 
units of mass per unit time. Therefore. the mass balance law is 

f lb h ( x ,  t )  dx  = u(a, t )h(a ,  t )  - u(b. t )h(b,  t ) .  (4.1.2) 

where the constant quantity p AZ canceled from each term. As usual. if u and 
h are smooth, then equation (4.1.2) may be cast into the PDE 

ht + (uh) ,  = 0 .  (4.1.3) 
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Equations (4.1.2) and (4.1.3) represent mass conservation in integral and dif- 
ferential form, respectively. We recall that the former must be used when u and 
h have discontinuities. 

The next equation is momentum balance zn the x dzrectzon. [Recall that 
we assumed hydrostatic balance in the y direction, giving (4.1.2).] hiomenturn 
balance requires that the time rate of change of the total momentum in the 
zone between x = a and x = b equal the net momentum flux (the rate at which 
momentum flows into the region at z = a minus the rate of momentum flowing 
out of the region at z = b) .  plus the forces (pressure) acting on the region (at 
z = a and x = b ) .  Momentum is mass times velocity. so the total momentum 
in a 5 x 5 b is given by 

Total momentum = pu(z,  t )h(z ,  t ) A z  dx.  i” 
Momentum flux through a section at z is the momentum multiplied by the 
velocity at z, or (puhAz)u. Therefore. the net momentum flux is given by 

Net momentum flux = ph(a, t )u(a,  t)’Az - ph(b, t)u(b, t)’Az. 

The force acting on the face of area h(a, t)Az is the pressure P(a,  y, t ) .  But the 
pressure varies with depth according to (4.1.2)? and therefore we must integrate 
over the depth to obtain the total force acting a t  x = a, which is 

h(a . t )  

(Pressure force at z = a )  = 1 P(a. y. t )Az  dy 

= B h ( a l  t)’Az. 
2 

Similarly 

PS 
2 

P(b: y, t )Az  dy = --h(b, t )2Az.  (Pressure force at  z = b)  = - 

Consequently. the integral form of the momentum balance equation is 

f i” h(z ,  t ) u ( z .  t )  dz (4.1.4) 

= h(a,  t )u(a,  t)’ - h(b, t)u(b. t ) 2  + g [ h ( a :  t ) Z  - h(b, t ) 7 .  
2 

where p A z  canceled from each term. A differential form of this conservation 
law may be obtained if u and h have the requisite degree of smoothness. Then 

(hu)t + (hu2 + ih ’ )  = 0. 
5 

(4.1.5) 
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Equations (4.1.3) and (4.1.5) are coupled nonlinear PDEs for the velocity 
u and the height h of the free surface. and these equations are the governing 
evolution equations for shallow-water waves. Clearly. equation (4.1.3) can be 
expanded to give 

ht + uh, + hu, = 0. (4.1.6) 

A simple exercise shows that the momentum equation (4.1.5) can be written. 
with the aid of (4.1.6), simply as 

ut + U U ,  + gh, = 0. (4.1.7) 

Equations (4.1.6) and (4.1.7) are model equations for shallow-water theory. 
They are quasilinear and resemble the nonlinear model equations from Chap- 
ters 2 and 3. 

4.1.2 Small-Amplitude Approximation 

If we restrict the analysis to small-amplitude waves on the surface that do not 
deviate much from the undisturbed depth H ,  and if the velocity is small. then 
(4.1.6) and (4.1.7) can be linearized. To this end. assume that 

u(x, t )  = 0 + ~ ( x ,  t ) .  h(x, t )  = H + V ( X .  t ) .  (4.1.8) 

where 7 and u. and their derivatives, are small (V is small compared to H ) .  The 
small quantities v and u are perturbations. and they represent quantities that  
deviate slightly from the constant equilibrium state h = H ,  u = 0. Substituting 
(4.1.8) into (4.1.6) and (4.1.7) give nonlinear equations for these deviations: 

Vt  + V V ~  + ( H  + V)U, = 0. ut + WW, + gqz = 0. (4.1.9) 

These equations. called the nonlznear perturbatzon equatzons, govern the evolu- 
tion of the small deviations from equilibrium, assuming that some initial and 
boundary conditions are specified. Equations (4.1.9) are no simpler than the 
original shallow-water equations; however, if we retain only the linear terms in 
(4.1.9). we have 

(4.1.10) 

The reasoning is that  quadratic terms such as uqx are small compared to linear 
terms. Equations (4.1 . lo) are called the lznearzzed perturbation equatzons. Sow, 
it is easy to  eliminate one of the unknowns in (4.1.10) and obtain a single, 
linear equation in one unknown. Differentiating the first equation in (4.1.10) 
with respect to  t and the second with respect to  x, and then using the equality 
of uxt and ut,. we obtain 

Vt t  - gHqzz = 0. (4.1.11) 

qt + H v ,  = 0, ut + gVz = 0. 
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lye recognize this as the classical linear wave equation for q whose solution 
consists of right and left traveling waves 

q ( 2 .  t )  = FI(Z - &Et) + F2(x A G t ) .  

where FI and F2 are arbitrary functions. Thus small-amplitude surface waves 
are governed by the wave equation. and they travel at speed m. It is straight- 
forward to show that the velocity perturbation u also satisfies the wave equation 

ctt - gHvxx = 0. (4.1.12) 

We emphasize that (4.1.11) and (4.1.12) are small-amplitude equations and 
hold only in the limit as the perturbations go to zero. 

4.1.3 Gas Dynamics 

The subject of gas dynamics is at the core of nonlinear PDEs, and it is difficult 
to overstate its role in the history and development of the subject. Many of 
the analytical and numerical methods in nonlinear analysis were spawned by 
investigations in fluid mechanics. and in particular, in aerodynamics and the 
flow of gases. Any serious student of PDEs must be well grounded in basic 
concepts of fluid flow. 

The equations of gas dynamics consist of conservation laws and constitutive 
relations that define the properties of the gas. The conservation laws are non- 
linear PDEs that express conservation of mass. momentum. and energy. For 
constitutive equations we consider the simplest case and assume an ideal gas 
law. 

To fix the notion. we consider a tube of constant cross-sectional area A 
through which a gas is flowing in such a way that the physical variables are 
constant over any cross section. This assumption gives the motion its one- 
dimensional character. Further. we assume the gas is a continuum: that is. the 
physical parameters may be regarded as point functions of time t and a fixed, 
laboratory, spatial coordinate x in the longitudinal direction (Figure 4.3). Let 
u = u(x.t) denote the velocity of a cross section of gas, p = p(x.t) denote 
the density of the gas. and p = p(x.t) denote the pressure. By convention, 
p(x. t ) A  is the force on the cross section at J: caused by the gas to  the left of x. 
All physical quantities are measured in the fixed laboratory frame of reference; 
thus the velocity u(x, t )  is the velocity measured by an observer located at lab- 
oratory position x. This velocity is the velocity of different material as the gas 
passes by. Laboratory measurements of this type are called Eulerian measure- 
ments. and the laboratory coordinate x is called an Eulerzan coordznate. There 
is an alternative description. the Lagrangian description. where all the physical 
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quantities are measured with respect to an observer moving with the gas (Lin 
& Segel 1974, Logan 2006a). 

x = a  x = b  

Figure 4.3 Cylindrical tube of cross-sectional area A containing a gas flowing 
in the axial direction. 

In the section of the tube between x = a and x = b,  mass conservatzon 
requires that the time rate of change of the total mass inside [a,  b] equal the 
rate that mass flows in at x = a minus the rate that mass flows out a t  x = b. 
Symbolically. 

$ Lb p(x.  t ) A  dx = u(a.  t )p(a.  t ) A  - u(b. t)p(b. t )A .  (4.1.13) 

which is the integral form of the mass conservation law. If u and p are smooth, 
we deduce the local form of the conservation law: 

pt + (P), = 0. (4.1.14) 

The PDE (4.1.14) representing mass conservation is often called the continuity 
equation. 

Momentum balance demands that the rate of change of momentum of the 
gas inside the region [a ,  b] equal the rate that momentum flows into the region 
at x = a. minus the rate that momentum flows out of the region at x = b, plus 
the net force on the region (caused by the pressure at  x = a and x = b ) .  We 
express this balance law mathematically as 

p(x?  t )u (x .  t ) A  dx = p(a? t)u(a.  ~ ) A u ( u ,  t )  - p(b.  t)u(b. t)Au(b. t )  ix 

Assuming smoothness, the integral form may be expressed in local form as 
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An exercise shows that with the aid of (4.1.14). equation (4.1.16) can be ex- 
pressed as 

p(ut + uu,) + p ,  = 0. (4.1.17) 

Equations (4.1.14) and (4.1.17), expressing mass and momentum balance, are 
quasilinear PDEs governing gas flow in the tube. However, there are three 
unknowns, u, p. and p .  An additional equation is required to have a well deter- 
mined system. We turn at this point to an equation of state that defines the 
material properties of the gas. The simplest assumption is to take a barotropzc 
equatzon of state 

P = f ( P I .  f’. f ”  > 0, (4.1.18) 

where f is a given function. For example, if there are no temperature changes, 
some gases can be modeled by the equation p = k p r ,  where k is a positive 
constant and y > 1 (for air. y = 1.4). Equations (4.1.14). (4.1.17). and (4.1.18) 
then form a well-determined system and govern barotropzc flow. 

In general. however, there are temperature changes in a system. and the 
pressure p depends on both the density p and the temperature T = T ( z .  t ) .  For 
example. an ideal gas satisfies the well-known equation 

p = RpT, (4.1.19) 

where R is the universal gas constant. This equation of state introduces an- 
other unknown. the temperature T ,  and yet another equation is needed. This 
additional equation is the conservation of energy law, which must be considered 
when temperature changes occur. 

We may write down an energy balance law in the same manner as for mass 
and momentum. There are two kinds of energy in a system, the kinetic energy 
of motion and the internal energy: the latter is due to molecular movement, 
and so on. We denote the specific internal energy function by e = e(z,  t ) ,  given 
in energy units per unit mass. Thus the total energy in the region [a, b] is given 

by 

Total energy in [a ,  b] = 

- - 

Kinetic energy of [a,  b] + Internal energy inside [a! b] 

How can the total energy change? Energy, both kinetic and internal, can flow 
in and out of the region. and energy can change by doing work. It is the forces 
caused by the pressure that do the work, and the rate that a force does work is 
the force times the velocity. In other words, the rate of change of total energy in 
the region [a. b] must equal the rate at which total energy flows into the region 
at IC = a ,  minus the rate at which energy flows out of the region at x = b, plus 
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the rate at which the pressure force does work at  the face x = a. minus the rate 
at which pressure does work at the face x = b. Expressed symbolically, this is 

s,” p (: + e )  A d z  = [ i p ( a ,  t )u (a ,  t)’A + p(a, t ) e ( a ,  t ) A  u ( a ,  t )  
d t  1 

- - p ( b ,  t ) u ( b .  t )2A + p ( b ,  t ) e ( b ,  t)A u ( b .  t )  

(4.1.20) 

which is the integral form of the conservation of energy law. Assuming smooth- 
ness. we conclude that 

[: 1 
+ P ( U ,  t ) u ( ~ .  t ) A  - p(b .  t ) u ( b .  t )A,  

which is the energy balance equation. 
Equations (4.1.14), (4.1.17), and (4.1.21) are the equations of gas dynamics, 

expressing conservation of mass and balance of momentum and energy. There 
are four unknowns: the density p. the velocity u. the pressure p ,  and the specific 
internal energy e. We point out that there are some physical effects that  have 
been neglected in these equations. In the momentum equation we have assumed 
that there are no external forces present (e.g.. gravity or an electromagnetic 
field) and that there are no viscous forces present; both these types of forces 
can change momentum. Flows without viscous effects are called inwzscid. Fur- 
thermore, in the energy balance equation we neglected diffusion effects (heat 
transport) resulting from temperature gradients: if viscous forces were present, 
they would also do work and would have to be included as well. 

Generally, equations (4.1.14). (4.1.17). and (4.1.21) are supplemented by 
two equations of state of the form 

P = P ( P .  T )  

and 
e = e ( p .  T). 

(4.1.22) 

(4.1.23) 

called a thermal equation of state and a caloric equation of state, respectively. 
Under these constitutive assumptions there are five equations in five unknowns: 
p. u, p ,  T ,  and e .  A special case is the ideal gas law, 

p = RpT, e = c,T. (4.1.24) 

where c, is the constant specific heat at constant volume. Under the assumption 
(4.1.24) of an ideal gas, the energy equation (4.1.21) can be written in several 
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ways. depending on the choice of variables. For example. we leave it as an 
exercise to show that the energy equation can be written 

pcv(Tt + U T , )  + pu, = 0. (4.1.25) 

In the same way that linearized equations for small disturbances are ob- 
tained from the fully nonlinear shallow-water equations, we can obtain lin- 
earized equations governing small-amplitude waves in gas dynamics. In this 
case the linearized theory is called acoustzcs. and the resulting equations gov- 
ern ordinary sound waves in a gas. As in the case of shallow-water waves, the 
linearized equations of acoustics are linear wave equations (Exercise 5). 

EXERCISES 

1. Show that (4.1.7) follows from (4.1.6) and (4.1.5). 

2. Derive (4.1.12). 

3. Derive (4.1.25) under the ideal gas assumption (4.1.24). 

4. In the case of an ideal gas. equations (4.1.24). show that the energy balance 
equation can be written 

where y = 1 + R/c,. 

5. (Acoustzcs) Consider the barotropic flow of a gas governed by (4.1.14). 
(4.1.17)* and (4.1.18). Let c2 = f ’ ( p ) ,  which is the square of the sound 
speed. Assume that the gas is in a constant equilibrium state u = 0. p = 

PO. p =PO. and let ci = f’(p0). Let 

u = 0 + qx. t ) ?  p = po + p(x. t ) ,  

where U is a small. velocity perturbation and p is a small (compared to 
PO) density perturbation. and derivatives of U and p are small as well. 
Show that. under the assumption that quadratic terms in the perturbations 
may be ignored compared to linear terms, deviations U and 6 from the 
equilibrium state each satisfy the wave equation 

2 
utt - Co7dsz = 0. 

and therefore acoust,ic signals travel a t  speed co. 
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4.2 Hyperbolic Systems and Characteristics 

A single first-order PDE is essentially wave-like, and we identified a family of 
spacetime curves (characteristics) along which the PDE reduces to  an ODE. 
Characteristics are spacetime loci along which signals are transmitted. Now we 
ask whether such curves exist for a sys tem of first-order PDEs. and the answer 
leads to a general classification of systems. 

To fix the idea and motivate the general definition and procedure. we ana- 
lyze the shallow-water equations 

ht + uh, + h ~ ,  = 0, 

ut + U U ,  + gh, = 0. 

(4.2.1) 

(4.2.2) 

The technique we apply is applicable to  other systems. We search for a direc- 
tion in spacetime in which both equations. simultaneously, contain directional 
derivatives of h and u in that direction. To begin. we take a linear combination 
of (4.2.1) and (4.2.2) to  get 

or, on rearranging terms to get the derivatives of h and of u together, we obtain 

3'1 [ht + (u + y )  hz]  + 7 2  [ut + ( U  + $h)  u.1 = 0.  (4.2.3) 

where 71 and 7 2  (not necessarily constant) are to  be determined. From (4.2.3) 
the total derivative of h and the total derivative of u will be in the same 
direction if we force 

s72 - h7l - -  - 

71 7 2  
or 

Therefore, take y1 = 1 and 7 2  = m. Then (4.2.3) becomes 

If 71 = 1 and y2 = -m. then (4.2.3) becomes 
7 

(4.2.4) 

(4.2.5) 

(4.2.6) 

In summary, we replaced the original shallow-water equations by alternate 
equations obtained by taking linear combinations. in which the derivatives of 
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h and u occur in the same direction. namely. u + 
in (4.2.6). In other words. along curves defined by 

in (4.2.5) and u - fi 

dx 
d t  
- = u + J g h ,  

the PDE (4.2.5) reduces to 

dh f i d u  - + -- = 0. 
dt  g d t  

which is an ODE. Also, along the curves defined by 

- d x = u - f i .  
d t  

the PDE (4.2.6) reduces to 

Equations (4.2.7)-( 4.2.10) become 

dx dh * d"" = O  along - d t  = u +  Jgh. 
dt  g d t  

(4.2.7) 

(4.2.8) 

(4.2.9) 

(4.2.10) 

(4.2.11) 

Equations (4.2.11) are the characterzstac equatzons. or characteristic form. cor- 
responding to  (4.2.1) and (4.2.2). 

To review. for the two-PDE system (4.2.1) and (4.2.2). there are two families 
of characteristic curves defined by equations (4.2.7) and (4.2.9). Along these 
curves the PDEs reduce to ODES. 

4.2.1 Classification 

The classification of a system of n first-order PDEs is based on whether there 
are n directions along which the PDEs reduce to  n ODES. To be more precise, 
assume that we are given a system of n equations in n unknowns u1.. . . . un. 
which we write in matrix form as 

Ut + A ( x ,  t ,  U)U, = b ( x .  t ,  u). (4.2.12) 

where u = ( ~ 1 . .  . . . u , ) ~ ,  b = ( b l , .  . . , bn) t .  and A = ( a z J ( z ,  t ,  u)) is an n x n 
matrix. The superscript t denotes the transpose operation, and boldface letters 
denote column vectors. In the subsequent analysis we prefer matrix notation 
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rather than the more cumbersome index notation. For example, in matrix form 
the shallow-water equations are, 

In this case u = (h.  u ) ~ ,  b = (0, O ) t .  and the matrix A is 

A =  (; :). (4.2.13) 

Now we ask whether there is a family of curves along which the PDEs 
(4.2.12) reduce to  a system of ODES. that is, in which the directional derivative 
of each u, occurs in the same direction. We proceed as in the example of the 
shallow-water equations and take a linear combination of the n equations in 
(4.2.12). This amounts to multiplying (4.2.12) on the left by a row vector 
yt = (71.. . . , rn).  which is to be determined. Thus 

ytut + ytAu,  = ytb. (4.2.14) 

M7e want (4.2.14) to have the form of a linear combination of total derivatives 
of the u, in the same direction A; that is, we want (4.2.14) to  have the form 

mt(ut + Xux) = ytb (4.2.15) 

for some m. Consequently. we require 

m = y. mtX = r t A .  

or 
y t A  = Xyt (4.2.16) 

This means that X is an eigenvalue of A and y t  is a corresponding left eigen- 
vector. Note that X as well as y can depend on x, t ,  and u. So. if (X ,y t )  is an 
eigenpair . then 

y t - du = ytb along - = X(z. t ,  u). (4.2.17) 

and the system of PDEs (4.2.12) is reduced to  a single ODE along the family of 
curves, called characterastacs, defined by dxldt  = A. The eigenvalue X is called 
the characterastac darectzon. Clearly. because there are n unknowns, it would 
appear that n ODES are required; but if A has n distinct real eigenvalues. there 
are n ordinary differential equations, each holding along a characteristic direc- 
tion defined by an eigenvalue. In this case we say that the system is hyperbolic. 
We record the following definition. 

d x  
d t  d t  

Definition. The quasilinear system (4.2.12) is hyperbolic if A has n real eigen- 
values and n linearly independent left eigenvectors. If (4.2.12) is hyperbolic 
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and the eigenvalues are distinct. it is strictly hyperbolic. The system (4.2.12) is 
ellzptic if A has no real eigenvalues. and it is parabolic if A has n real eigen- 
values but fewer than n. independent left eigenvectors. In the hyperbolic case. 
the system of n equations (4.2.17). obtained by selecting each of the n distinct 
eigenpairs, is called the characterist ic form of (4.2.12). 

No exhaustive classification is made in the case that A has both real and 
complex eigenvalues. Recall that if a matrix has n distinct, real eigenvalues, 
it has n independent left eigenvectors. because distinct eigenvalues have inde- 
pendent eigenvectors. It is, of course. possible for a matrix to have fewer than 
n distinct eigenvalues (multiplicities can occur), yet have a full complement 
of n independent eigenvectors. Finally. we recall that the eigenvalues can be 
calculated directly from the equation 

det(A - X I )  = 0, 

a condition that follows immediately from the stipulation that the homogeneous 
linear system of equations (4.2.16) must have nontrivial solutions. 

More general systems of the form 

B(x .  t ,  U ) U t  + A(x ,  t .  U ) U ,  = b(z. t .  U )  (4.2.18) 

can be considered as well. If B is nonsingular. (4.2.18) can be transformed into 
a system of the form (4.2.12) by multiplying through by B inverse. However. 
let us follow through with the analysis of (4.2.18) as it stands. We ask whether 
there is a vector y such that the equation 

yt(But + Au,) = ytb (4.2.19) 

can take the form 
m t ( O u t  + QU,) = rtb.  (4.2.20) 

where Q and 3 are scalar functions. If so. there is a single direction (a. 8)  where 
the directional derivative of each uLlz in the equation is in that same direction. 
To elaborate. let z = z(s).y = y(s) be a curve l' such that d z / d s  = a and 
d z / d s  = 9. Along this curve d u / d s  = c m ,  + put .  so (4.2.20) may be written 

(4.2.21) 

which is a differential equation along r. Now, the conditions that (4.2.19) and 
(4.2.20) are equivalent are 

y t B  = mtB, y t A = mta, (4.2.22) 
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or. on eliminating m. we obtain 

y t (Ba  - AB) = 0. (4.2.23) 

A necessary and sufficient condition that the homogeneous equation (4.2.23) 
has a nontrivial solution Y~ is 

det(Ba - AO) = 0. (4.2.24) 

Equation (4.2.24) is a condition on the direction (a?/?) of the curve r. Such 
a curve is said to be churucterzstac. and (4.2.21) is said to  be in characterzstzc 
form. As before, we say that a system (4.2.18) satisfying (4.2.24) is hyperbolzc 
if the linear algebraic system (4.2.23) has n linearly independent solutions y t .  
where the directions (a .  ,8) are real and not both a and D are zero. The direc- 
tions need not be distinct. It may be the case that either B or A is singular, 
but we assume that A and B are not both singular so that the system becomes 
degenerate. If det B = 0. then 3 = 0 is a solution of (4.2.24) for any a,  and 
therefore the IL: direction is characteristic (i.e.. the horizontal lines t = const are 
characteristics): similarly. if det A = 0. the vertical coordinate lines z = const 
are characteristics. If no real directions (a3  0 )  exist, the system (4.2.9) is called 
ellzptzc: the system (4.2.18) is called parabolzc if there are n real directions 
defined by (4.2.24) but fewer than n linearly independent solutions of (4.2.23). 

Example. For the shallow-water equations (4.2.1)-(4.2.2) the coefficient ma- 
trix A given by (4.2.13). The eigenvalues of (4.2.13) are found from det(A - 
X I )  = 0. or 

The eigenvalues are X = uk., which are real and distinct. Thus the shallow- 
water equations are strictly hyperbolic. Notice that the eigenvalues define the 
characteristic directions (cf. (4.2.11)). The eigenvectors are are (1, a) and 
(1, -a), which define the appropriate linear combination of the PDEs. 13 

Now we see why a single first-order quasilinear PDE is hyperbolic. The 
coefficient matrix for the equation 

U t  + c(2, t .  u)u, = b(z. t .  u) 

is just the real scalar function c(z, t .  u), which has the single eigenvalue c(z. t .  u ) .  
In this direction, that is. if d z / d t  = c(2.t .u).  the PDE reduces to  du/dt = 
b(s . t , u ) .  0 
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Example. Consider the system 

U t  - 21, = 0, 

vt - cu, = 0. 

where c is a constant. The equivalent matrix form is 

(4.2.25) 

(D, + (4 11) (:), = (:) 
The coefficient matrix 

has eigenvalues X = &&. Therefore. if c > 0. the system is hyperbolic, and if 
c < 0, the system is elliptic. It is straightforward to  eliminate the unknown v 
from the two equations (4.2.25) and obtain the single second-order PDE 

utt - cu,, = 0. (4.2.26) 

If c > 0, we recognize (4.2.26) as the wave equation, which is hyperbolic. If 
c < 0. then (4.2.26) is elliptic [if c = -1. then (4.2.26) is Laplace's equation]. 
Therefore. the classification scheme for systems is consistent with the classifi- 
cation in Chapter 1 for second-order linear equations. For the system (4.2.25) 
in the hyperbolic case ( c  > 0). the characteristic directions are &&, and the 
characteristic curves are 

dx 
- = && or II: = *&t+const. 
d t  

These two families of characteristics are straight lines of speed & and -4. 
To find the characteristic form of (4.2.25), we proceed as in the example of the 
shallow-water equations and take a linear combination of the two equations to 
obtain 

YI(Ut - v,) + Yz(2IZ't - cu,) = 0. 

Rearranging to put the derivatives of u and the derivatives of v in different 

Therefore the derivatives of u and v are in the same direction if c y 2 I y 1  = 

Thus we take -,I = && and 7 2  = 1. Consequently. the characteristic form of 
the PDEs (4.2.25) is 

+&Ut T &uz) + (.t F h,) = 0. 
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or 
&&u + v = const along x = F&t + const. 

The expressions *&u + v are called Raemann znvarzants;' they are expressions 
that are constant along the characteristic curves. It follows immediately that 

&u + 'u = f(z + &t), -&u + u = g(z - At), 

where f and g are arbitrary functions. We can obtain formulas for u and v by 
solving these equations simultaneously. Thus we obtained the general solution 
of (4.2.25) in terms of arbitrary functions; the latter are determined from initial 
or boundary data. 

There are basically two ways to find the characteristic form of a system of 
hyperbolic equations. ?Ve can calculate the eigenvalues and eigenvectors directly 
and then use (4.2.17); or we can proceed directly and take linear combinations 
of the equations as we did for the shallow-water equations at  the beginning 
of this section and for the wave equation. For a small number of equations 
(n  5 3)  the latter method may be preferable. Additional examples are given in 
the Exercises. 

In summary, a system of hyperbolic equations can be transformed a system 
of equations where each equation in the new system involves directional deriva- 
tives in only one direction. that is, in the direction of the characteristics. This 
transformed set of characteristic equations reduce to ODES along the charac- 
teristic curves. Often. they can be solved and used to  obtain the solution to  
the original system. This method is called the method of characterastacs, and it 
is fundamental in the analysis of hyperbolic problems. 

Example. The characteristic form of the shallow-water equations (4.2.1)- 
(4.2.2) is given by (4.2.11). We can write (4.2.11) as 

The differential equations on the characteristic curves may be integrated di- 
rectly to obtain 

B. Riemann, who is most known for his work in analysis, was one of the early 
investigators of wave phenomena and he pioneered some of the techniques and 
methods for nonlinear equations and shock waves, particularly in the area of fluid 
dynamics. 
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The quantities R, are R z e m a n n  anvarzants. and they are constant along char- 
acteristics: R+ is constant along a characteristic of the family d x l d t  = u+ m. 
and R- is constant along a characteristic of the family dxldt = u - m. The 
constant may vary from one characteristic to another. In the shallow-water 
equations. the characteristics with direction u + fl are called the posztzve 
characterzstzcs (or C+ characteristics). and the characteristics with direction 
u - fi are called the negatzve characterzstzcs (or C- characteristics). Conse- 
quently, as for a single PDE. characteristics carry signals or information: the 
C+ characteristics carry the constancy of R+, and the C -  characteristics carry 
the constancy of R-. Armed with this fact, we are able to solve the shallow- 
water equations for some types of initial and boundary data.  This is discussed 
in Section 4.3. 

Example. (Dzffuszon Equatzon)  The diffusion equation ut = u,, may be writ- 
ten as the first-order system 

ut = v,. u, = u.  (4.2.27) 

which, in matrix form. is 

(; :) (:), + (; ol) (3, = (:). 
This is in the form (4.2.18) with det B = 0. Here. det(Bcu - A3) = 3’ = 0 
forces 3 = 0. so the characteristic direction (0 .0)  is in the direction of the x- 
axis. confirming previous observations. The eigenvalue equation ?,(Bee - A3) = 

0 becomes 

which has only one solution. namely. y t  = (0. c). where c is a constant. There- 
fore. the system (4.2.27) is parabolic, consistent with the classification of the 
second-order diffusion equation. If we interpret the characteristics. here hor- 
izontal straight lines with speed infinity. as curves in spacetime that carry 
signals. then the diffusion equation transmits signals a t  infinite speed. Recall 
that the diffusion equation with an initial point source (zero everywhere except 
at a single point) has a solution that is nonzero for all real x for t > 0. Thus 
signals travel infinitely fast. 0 

EXERCISES 

1. The electrical current i = i ( x .  t )  and voltage v = v ( x ,  t )  at a position z at 
time t along a transmission line satisfy the first-order system 

Cut + i ,  = -Gc, Lit + v, = -Ri. 
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where C. G, L. and R are positive constants denoting the capacitance, 
leakage, inductance. and resistance, respectively. all per unit length in the 
line. Show that this system is hyperbolic and write it in characteristic form. 
Sketch the two families of characteristics on an xt diagram. 

2 .  (Gas Dynamzcs). The equations governing barotropic flow are 

Pt + (PU),  = 0, (pu)t  + (pu2 +p)z = 0, P = f ( p ) .  

where f ’ .  f” > 0. 

(a) Show that these equations may be written 

2 pt + up, + c p u z  = 0, put + puu, + p ,  = 0, 

where c2 = f ’ ( p ) .  

(b) Derive the characteristic form for the equations in part (a). You should 
get 

dp du dx 
dt dt 
- k p c - = ~  on c* :Z  = u i c .  

(c) Prove that 

R* = / dp * u = constant on C’. 

(d) Determine the Riemann invariants R& in part (c) assuming that the 
equation of state is f ( p )  = kp? ~ where k > 0 and y > 1 are constants. 

3. Consider the linear nonhomogeneous system 

(Y1 1:) (3, + (D, = (g) 
on x > 0 . t  > 0. where 0 < a < 1, and where f and g are given continuous 
functions. 

(a) Show that the system is hyperbolic and find the characteristic form of 
the equations. 

(b) Sketch the characteristics on an xt diagram. 

(c) Determine expressions that are constants on the characteristics. 
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(d) To the system of PDEs append the initial and boundary conditions 

u(0.t)  = 0, t > 0. 

u ( z ,  0) = m ( z ,  0). cc > 0, where Q > 0. 

For any t > 0, prove that the boundary condition on v is given by 

b [ F ( r t )  + a G ( ~ t ) ]  F ( t )  - G ( t )  v(0, t )  = da(0, T t )  + 
a(a - 1) + a(1-a)  

where F and G are the antiderivatives of f and g ,  and 

1 - a  a - a  
r = -  . b = -  

l + a  a + a '  

(Logan 1989). 

4. Consider the linear, strictly hyperbolic system 

U t  + A(x .  t)ux = 0. 

Show that the transformation u = Pw. where P - l A P  = D, and D is a 
diagonal matrix having the eigenvalues of A on its diagonal, transforms the 
system into a linear system 

Wt + D ( z .  t)w, = C(Z, tjw 

with the derivatives of the components of w decoupled. What are the char- 
acteristic directions? W-hy does such a matrix P exist? Write the system 
in characteristic form. 

5. Solve the linear initial value problem 

U t  + vt + 3ux + 2v, = 0. 

- ut + wt + 5ux + 2vx = 0. 

u(z .  0) = sinz,  

cc E R, t > 0, 
v(z ,  0) = e5 .  z E R. 

Sketch the characteristics in the zt plane. Solutzon: u = sin(z + t ) . v  = 
[8 sin(z - 2 t )  + 6 exp(z - 2 t )  - 8 sin(z + t ) ] / 6 .  

6. Consider the system 

U t  + 4uX - 621, = 0, 

vt + u, - 3v, = 0. 

(a) Show that the system is strictly hyperbolic. 

(b) Transform the system to characteristic form by finding the eigenvalues 
and left eigenvectors. 
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(c) Find the general solution in terms of arbitrary functions. 

(d) Determine the characteristics and Riemann invariants. 

7 .  A simple analog of a detonation is given by model equations 

U t  + f ( u ,  2 ) .  = 0. zt = --f(u.  2 ) .  

where u = u(x, t )  is a temperature-like quantity, and z = z(x. t )  is the mass 
fraction of the reactant A in an exothermic, irreversible, chemical reaction 
A -+ B (i.e.. z is the mass of A divided by the sum of the masses of A 
and B): f ( u ,  z )  defines an equation of state and r (u ,  z )  defines the chem- 
ical reaction rate. Assume that f u , f u u  > 0 and fi < 0. These equations 
represent an idealized for model chemical-fluid mechanic interactions in a 
chemically reactive medium. Show that this system is hyperbolic, find the 
characteristic directions. and transform the system to characteristic form. 

8. Consider the hyperbolic system 

Ut + uv, = u f i .  

vt + vu, = vfi, 

and u, v > 0. Show that the characteristic directions are = k l / f i ,  and the 
left eigenvectors are (fi. &&). On the positive characteristic show that 

fi + J;; - x = const. 

4.3 The Riemann Method 

Using the shallow water equations as the model, we illustrate how to solve a 
variety of initial-boundary value problems by the method of characteristics. or 
Rzemann’s method. As we observed in Section 4.2, under some circumstances 
it is possible to determine expressions, called Rzemann znvarzants, that are 
constant along the characteristic curves. Knowing these invariants and relating 
them back to the initial and boundary conditions permits the determination of 
their values on the characteristics: this information then points the way toward 
the solution of the problem. 

4.3.1 Jump Conditions for Systems 

Before proceeding with representative problems, we pause to consider shock 
relations for a system of hyperbolic equations in conservation form. The situa- 
tion is much the same as in the single-equation case discussed in Section 3.3. 
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We assume that the governing equations governing are integral conservation 
laws of the form 

(4.3.1) 

where the q k .  ( a k ?  and f k  are physical quantities depending on x, t .  and n un- 
known functions. or densities, u~(x. t ) .  . . . . un(x, t ) .  The (arc are flux terms and 
the f k  are local source terms. Under the hypothesis that  the U k  are contin- 
uously differentiable, we can proceed in the usual way to obtain a system of 
PDEs of the form 

( q k ( x . t .  u))t f ( ( a k ( z .  t ,  u)), = f k ( z .  t .  u) ( k  = 1.. . . . n).  (4.3.2) 

where u = ( ~ 1 . .  . . . un) .  M’e say that the system (4.3.2) is in conservation form. 
If the functions U k  have simple discontinuities along a smooth curve x = s ( t )  
in spacetime, the same argument as in Section 3.3 can be applied to  obtain the 
n j u m p  condatzons 

- s ’ [ q k ]  + [(a,] = 0 ( k  = 1.. . . . n) .  (4.3.3) 

where s’ = d s / d t .  and where [Q] = Q--Q+ denotes the jump in the quantity Q 
across z = s ( t ) .  The curve x = s ( t )  is the shock path.  s’ is the shock veloczty. and 
the waveforms uk themselves, as their discontinuities propagate along z = s ( t ) .  
are collectively called a shock wave. The same proviso holds as for a single 
scalar. conservation law. namely. the correct jump conditions can be obtained 
from integral forms of the conservation laws because there is no unique way to  
obtain PDEs in conservation form from a system of arbitrary PDEs. 

Example. The shallow-water equations derived in Section 4.1 were obtained 
from integral conservation laws. which led. in turn, to a system of PDEs in 
conservation form 

ht + ( h ~ ) ~  = 0. 

(hu)t + ( h U 2  + i h 2 ) z  = 0. 

(4.3 A )  

(4.3.5) 

where we have set g = 1. (The fact that the shallow-water equations can be 
rescaled to set the acceleration due to gravity equal to  unity is explored in 
Exercise 1.) Thus. according to (4.3.3). the jump conditions are 

(4.3.6) 

lye regard (4.3.6) as two equations relating five quantities consisting of the 
\dues  of h and of u ahead of and behind the shock. and the shock velocity s’. 
In the context of shallowwater theory a propagating shock is called a bore. 
0 



4.3 The Riemann Method 181 

4.3.2 Breaking Dam Problem 

We imagine water a t  height 1 held motionless in x < 0 by a dam placed at  
x = 0. Ahead of the dam (x > 0) there is no water. At time t = 0 the dam 
is suddenly removed. and the problem is to  determine the height and velocity 
of the water for all t > 0 and x E R. according to the shallow-water theory. 
Consequently. the governing equations are (4.3.4) and (4.3.5) subject to the 
initial conditions 

u(x, 0) = 0 for 3: E R: h(x.  0 )  = 1 for z < 0, 

h(x .0)  = 0 for x > 0. (4.3.7) 

The solution of this problem, using Riemann's method, is a blend of physical 
intuition and analytic calculations. the former guiding the latter. We prefer 
this approach, which interrelates the physics and the mathematics. rather than 
purely analytic reasoning that ignores the origins of the problem. From Sec- 
tion 4.2 we know that the shallow-water equations (4.3.4) and (4.3.5) can be 
put in the characteristic form 

(4.3.8) 

Direct integration gives 

(4.3.9) 

where R+ and R- are the two Riemann invariants. which are expressions that 
are constant on the C+ and C- characteristics. respectively. We first examine 
the C- curves emanating from the negative x axis. where the water is located. 
The speed of the negative characteristics is u- A, and therefore the C- curves 
leave the negative x axis (where u = 0 and h = 1) with speed -1. Along a C- 
characteristic we have 

R- = 2 J T ; - u  = 2 d m -  ~ ( x . 0 )  = 2 .  (4.3.10) 

Similarly, a Ct characteristic eniariating from the negative x axis has initial 
speed +l. and on such a characteristic we have 

R+ = 2JT;  + u = 2.  (4.3.11) 

Therefore. at a point P in the region x < -t,  both (4.3.10) and (4.3.11) hold, 
giving u = 0 and h = 1 in the domain x < -t. Because h and u are constant in 
this entire region. the speeds of the C+ and C- characteristics are constants 
($1 and -1. respectively), so these characteristics are straight lines in the 
region x < -t. This portion of the characteristic diagram is shown in Figure 4.4. 
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The region z < -t is the region of spacetime that cannot be affected by the 
removal of the dam. The first signal back into the water is the leading edge of 
rarefaction wave that releases the lower water height ahead of the wave. This 
signal travels along z = -t at  speed -1. 

We also expect the water to move into x > 0 as a bore. subject to the jump 
conditions (4.3.6). Ahead of the bore (see Figure 4.4) we have u = h = 0. and 
therefore the jump conditions (4.3.6) become 

I u?+h-/2 
s’ =up. s = 

U -  
(4.3.12) 

where h- and u- are the values of h and u just behind the bore. I t  follows 
immediately from (4.3.12) that h- = 0: that is. there is no jump in height 
across the bore. To determine u-. and hence the bore velocity s‘, we need to  
know the solution u(x. t) in the triangular region behind the bore and in front 
of the leading edge of the rarefaction x = -t. 

One way to proceed is to  observe that the C+ characteristics carry infor- 
mation forward in time: they originate on the negative x axis and end on the 
bore. Because equation (4.3.11) holds on every C+ characteristic, it must in 
fact hold everywhere behind the bore (this is because the C+ come from a 
constant state, u = 0 and h = 1, in this problem: if the initial state were not 
constant. this conclusion could not be made). Hence, (4.3.11) must hold just 
behind the bore, or 

2 4 L - i u -  = 2 .  

Consequently, because h- = 0. we must have u- = 2 and s’ = 2 .  We conclude 
that the bore is a straight line x = 2t :  the jump in the height h across the bore 
is zero, and the jump in the velocity u is 2 .  

To find the solution u(z.t) and h(x.t) in the region behind the bore we 
expect. from earlier experience with rarefactions in traffic flow. to fit in a fan of 

C- characteristics f +  

Figure 4.4 Kegative ( C - )  characteristics for the breaking dam problem 
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C- characteristics connecting the solution along x = -t to  the solution along 
x = 2t .  Therefore. we insert straight-line C- characteristics into this region. 
passing through the origin, with equations 

Rarefaction 
head 

X = - t  

u = O .  h 

Bore 
x = 2t 

X 

C- C+ 

Figure 4.5 Characteristic diagram for the breaking dam problem 

x = (u - h ) t ,  (4.3.13) 

where u - fi is the speed of a C- characteristic. Then, in this triangular 
region: we obtain 

(4.3.14) 

Using (4.3.14) along with (4.3.11)< where the latter holds at all points of the 
region, gives 

2 
u=-+&. 

t 

( 2  - x / t )2  (-t < x < 2 t ) .  (4.3.15) 
+ I), h(x. t )  = 

3 9 
u(x. t )  = 

We already know that u = h = 0 for x > 2t .  and u = 0, h = 1 for x < -t.  
Thus we have a complete solution to  the problem. Figure 4.5 shows a complete 
characteristic diagram, and Figure 4.6 shows typical time snapshots of the 
velocity and height. 

4.3.3 Receding Wall Problem 

Imagine water in x > 0 being held motionless at height h = 1 by a wall at  
x = 0. At time t = 0 the wall is pulled back along a given spacetime path 
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Y 

-t 0 2t 

Figure 4.6 Velocity and water height profiles for the dam breaking problem 

x = X ( t ) ,  t > 0, where X satisfies the conditions X’(0 )  = 0. X ’ ( t )  < 0, and 
X ” ( t )  < 0. Thus the wall has negative velocity and continues to accelerate 
backward as time increases. The problem is to  determine the velocity and 
height of the water for X ( t )  < x and t > 0. Shallow-water theory is assumed 
to model the evolution of the system. The initial and boundary conditions are 
expressed analytically by 

u(x. 0) = 0, h(x, 0) = 1 for T > 0. (4.3.16) 

and 
u ( X ( t ) : t )  = X ’ ( t ) ,  t > 0 (4.3.17) 

Equation (4.3.17) expresses the fact that the velocity of the water adjacent 
to the  all is the same as the velocity of the wall. As it turns out. we cannot 
independently impose a condition on height of the water a t  the wall: intuitively. 
we should be able to determine h at  the wall as a part of the solution to the 
problem. 

Again we resort to  the characteristic form of the shallow-water equations: 

dx 
R + = 2 h + u = c o n s t  on C + :  = u + v % .  (4.3.18) 

dx 
d t  

R-=2J i ; : -u=cons t  on C - : - = u - & .  (4.3.19) 

There is enough information in the characteristic form of the equations to  
solve the problem. The idea is to let the C’ and C- characteristics carry the 
constancy of R+ and R- from the boundaries into the region of interest. First 
we consider the C- characteristics emanating from the positive z axis. Because 
u = 0 and h = 1 along the J: axis. the C- characteristics leave the x axis with 
speed -1. Along each of these characteristics R- has the same constant value: 

2 d h -  u = 2 .  (4.3.20) 

However. because (4.3.20) holds along every C- characteristic, at must hold 
everywhere in x > X ( t ) ;  that is, the negative Riemann invariant is constant 
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Wall 

throughout the region of interest. Because the speed of the C- characteristics 
is more negative than the speed of the wall along the path of the wall. the C- 
curves must intersect the wall path as shown in Figure 4.7. Equation (4.3.20) 
permits us to calculate the water height h at the wall, because u at the wall is 
known. Thus the height of the water at the wall is given by 

/ x = t  

Figure 4.7 Negative characteristics for the retracting wall problem 

(4.3.21) 

The C+ characteristics emanating from the IZ: axis have initial speed 1. and it 
is easy to  see that in the region x > t we have the constant state u = 0 and 
h = 1; this is the region of spacetime not influenced by the motion of the wall. 
The leading signal into the water ahead travels at speed 1 along the limiting 
C+ characteristic 2 = t .  Because both u and h are constant ahead of this 
initial signal. both sets of characteristics are straight lines in this region. Now 
consider a C+ characteristic emanating from the wall, as shown in Figure 4.8. 
It is straightforward to see that C+ must be a straight line; along a C' we 
have 

2 h  + u = const. (4.3.22) 

The constant. of course, will vary from one C+ to another because u is chang- 
ing along the wall. Adding and subtracting (4.3.22) and (4.3.20). the latter 
holding everywhere. shows that on a specific Ct characteristic both u and h 
constant. Hence, the speed u + of a specific C+ must be constant, and 
the characteristic is therefore a straight line. The C+ characteristic emanating 
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Figure 4.8 Ct characteristic emanating from the retracting wall. 

from ( X ( T ) ,  T )  is expressed by the equation 

2 - X ( r )  = (u + h ) ( t  - T )  

(4.3.23) 

where we used (4.3.21) and (4.3.17). and applied the fact that  u and h are 
constant on the characteristic. 

X 

Figure 4.9 Characteristic diagram for the retracting wall problem. 

Finally, we may determine the solution h and u at an arbitrary point (z. t )  
in the region X ( t )  < x < t .  Again using the constancy of h and u on a C+. we 
have 

u(z .  t )  = u ( X ( r ) ,  T )  = X ’ ( T )  (4.3.24) 
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and 

(4.3.25) 

where 7 = T(X, t )  is given implicitly by (4.3.23). The characteristic diagram is 
shown in Figure 4.9. 

In the two preceding problems one of the Riemann invariants is constant 
throughout the region of interest. Whenever this occurs. we call the solution 
in the nonuniform region a simple wave. One can show that a simple wave 
solution always exists adjacent to a uniform state provided that the solution 
remains smooth. In the two examples we considered, the constancy of one of 
the Riemann invariants occurred because all of the characteristics originated 
from a constant state: if the initial conditions are not constant, the simple wave 
argument cannot be made. 

4.3.4 Formation of a Bore 

IVe can examine the preceding problem in the case where the wall is pushed 
forward instead of being retracted. If we draw a typical wall path in this case, it 
is easy to  see that two C+ characteristics will collide, indicating the formation of 
a shock wave or bore (see Figure 4.10). Assume that the wall path is z = X ( t ) .  
where X’( t )  > 0 and X ” ( t )  > 0, and let TI  and 72 be two values of t with 
7 1  < 72 .  The C+ characteristics emanating from ( X ( T ~ ) , T ~ )  and ( X ( T . , ) , T ~ )  
have speeds [see (4.3.23)] given by 

respectively. Because X’ is increasing by assumption, X’(r2) > X ’ ( q ) .  and it 
follows that the characteristic at 72 is faster than the characteristic 7 1 .  Thus 
the two characteristics must intersect. 

Let us now consider a special case and take the wall path to  be 

X = X ( t )  = at2.  t > 0, 

where a is a positive constant. From (4.3.23) the C+ characteristics coming 
from the wall have the equation 

x - = (1 + 3 ~ 7 ) ( t  - 7). (4.3.26) 

Equation (4.3.26) defines 7 implicitly as a function of x and t .  Therefore, given 
x and t ,  we may ask when it is possible to  solve (4.3.26) uniquely for T [i.e., 
determine a unique C+ characteristic passing through (x. t ) ] .  m‘riting (4.3.26) 
as 
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Figure 4.10 Two colliding Cf characteristics emanating from an accelerating 
wall. 

Figure 4.11 Characteristics intersecting to form a shock wave at time 
t = 1/3a. 

F ( z .  t .  7 )  = X - aT2 + (1 + 3 a T ) ( T  - t )  = 0. (4.3.27) 

we know from analysis that it is possible to  locally solve F ( z .  t .  T )  = 0 for T if 
F,(x. t .  .)#O. In the present case 

F, = 1 + ~ U T  - 3at. 

Therefore, the formation of the bore will occur at the first time t b  when F, = 0, 
or 
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The breaking time is 1/(3a) and occurs along the T = 0 characteristic, or n: = t .  
Figure 4.11 shows the characteristic diagram for this problem. The bore. after 
it forms. moves into a constant state u = 0. h = 1. The speed of the bore 
is determined by the jump conditions (4.3.6) and the state u and h behind 
the bore. Like most nonlinear initial-boundary value problems, this problem 
is computationally complex and cannot be resolved analytically. and one must 
resort to numerical methods. 

We consider a simpler problem, where the wall moves into the motionless 
water with depth 1 at  a constant. positive speed V: that is. the path of the 
wall is n: = X ( t )  = Vt, t > 0. \Ye expect a bore to form immediately and move 
with constant velocity into the uniform state u = 0. h = 1. Behind the bore we 
expect that there is a uniform state u = V, with h still to  be determined (note 
that the shallow-water equations can have constant solutions). The speed of 
the bore and the depth of water h- behind the bore can be determined by the 
jump conditions (4.3.6). From those conditions. we obtain 

x = vt I 

Figure 4.12 Bore with speed s’ caused by a constant-velocity wall. 

(4.3.28) 

The bore speed s’ can be eliminated to obtain 

h! - h? - (1 + 2V2)h- + 1 = 0, (4.3.29) 

which is a cubic equation for h-. Using calculus. it is easy to see that there is 
a single negative root and two positive roots. one less than 1 and one greater 
than 1. FVe reject the negative root because the depth is nonnegative. and we 
reject the smaller positive root because the bore speed. from (4.3.28). would 
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be negative. Therefore. h- is the largest positive root of (4.3.29). The solution 
is shown on the diagram in Figure 4.12. 

4.3.5 Gas Dynamics 

The equations governing one-dimensional gas dynamics, derived in Section 4.1 ~ 

are given in conservation form by 

Pt + (QUIZ = 0. (PU) t  + (PU2 +PI1 = 0, (4.3.30) 

where p is the density, u the velocity, and p the pressure given by the equation 
of state p = kp', where k > 0 and y > 1. It was shown in Exercise 2 of 
Section 4.2 that the characteristic form of (4.3.30) is 

2c dx - +u = const on - = u f c ,  (4.3.31) 
"/ - 1 d t  

where c2 = p ' ( p ) .  The form of the PDEs (4.3.30) and the Riemann invariants in 
(4.3.31) bear a strong resemblance to the equations from shallow-water theory. 
lye chose to analyze the shallow-water equations, believing that the reader will 
have a better feeling for the underlying physical problem. We could just as well 
have studied the pzston problem in gas dynamics. In this problem we imagine 
that the gas in a tube (see Figure 4.13) is set into motion by a piston at  one 
end (the piston plays the role of the wall or wavemaker in the shallow-water 
equations). A device of a piston is not as unrealistic as it may first appear. For 
example, in aerodynamics the piston may model a blunt object moving into 
a gas: or. the piston may represent the fluid on one side of a valve after it is 
opened. or it may represent a detonator in an explosion process. The piston 
problem, that is. the problem of determining the motion of the gas for a given 
piston movement. is fundamental in nonlinear PDEs and gas dynamics. lye 
leave some of these problems to the Exercises. 

Piston 
\-A 

Figure 4.13 Piston moving into a gas. 
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EXERCISES 

1. The shallow-water equations (4.3.4)-(4.3.5) are conservation laws in di- 
mensioned variables. Select new dimensionless independent and dependent 

where T = L / a .  and where H is the undisturbed water height and L 
is a typical wavelength. Rewrite the shallow-water equations in terms of 
dimensionless variables. 

2 .  Solve the receding wall problem in the case that the wall path is given by 
x = -Vt. where V is a positive constant. 

3. Verify that the cubic equation (4.3.29) always has one negative root and 
two positive roots. 

4. Consider a gas a t  rest (u = 0 , p  = po) in a cylindrical tube x > 0, and 
suppose that the governing equations are given by (4.3.30) or (4.3.31). At 
time t = 0 a piston located at x = 0 begins to  move along the spacetime 
path x = X ( t ) .  t > 0. Discuss the resulting motion of the gas in the 
following cases: 

(a) X ( t )  satisfies the conditions X ( 0 )  = 0. X’( t )  < 0, and X ” ( t )  < 0. 

(b) X ( t )  = Vt .  where V > 0. 

(c) If X ( t )  = at2.  where a > 0. at what time does a shock wave form? 

5. A metallic rod of constant cross section initially a t  rest and occupying 
x > 0 undergoes longitudinal vibrations. The governing equations are 

2Y 

Po 
uh - et = 0, tit - -eeh = 0. 

Here. t is time, h is a spatial coordinate attached to  a fixed cross section 
with h = 2 at t = 0; u = u(h. t )  is the velocity of the section h; e = e(h.  t )  is 
the strain, or the lowest-order approximation of the distortion at  h: Y > 0 
is the stiffness (Young’s modulus): and po is the initial constant density. 
Beginning at t = 0, the back boundary (h = 0) is moved with velocity 
-t [i.e., u ( 0 , t )  = -t, t > 01. Write this problem in characteristic form. 
identifying the Riemann invariants and characteristics. Can the initial- 
boundary value problem be solved analytically by the Riemann method? 
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4.4 Hodographs and Wavefronts 

Again using the shallowwater equations as the model, we illustrate some other 
standard procedures to  analyze and understand nonlinear hyperbolic systems. 

4.4.1 Hodograph Transformation 

The hodograph transformation is a nonlinear transformation that changes a 
system of quasilinear equations to a linear one. The idea. attributed to Rie- 
mann, is to interchange the dependent and independent variables. To illustrate 
the method we consider the shallow-water equations. which we write in the 
dimensionless form (Exercise 1, Section 4.3) 

ht + uh, + hu, = 0, 

U t  + U U ,  + h, = 0. 

(4.4.1) 

(4.4.2) 

Both the depth h and the velocity u are functions of z and t :  

h = h ( z ,  t ) .  u = ~ ( z ,  t ) .  (4.4.3) 

Regarding (4.4.3) as a transformation from xt space to hu space. let us assume 
that the Jacobian of the transformation. namely 

J =  

is never zero. Then the transformation (4.4.3) is invertible. and we can solve for 
z and t in terms of h and u to  obtain 2 = z ( h .  u), t = t (h .  u ) .  The derivatives 
of the various quantities are related by the chain rule. mre have 

xt = Xhht  + x u U t  = 0. 2 ,  = xhhx + X,U, = 1. 

and similarly for tt and t,. From these equations it follows that 

The shallow-water equations (4.4.1) and (4.4.2) can then be written 

-2 ,  + ut, - hth = 0. 

zh - uth + t ,  = 0. 

(4.4.4) 

(4.4.5) 

which is a linear system for z = z(h.u)  and t = t ( h . u ) .  \Fre can eliminate z 
by cross-differentiation to obtain a single second-order equation for t = t (h .  U )  

given by 
t,, = h-l(h2th)h.  (4.4.6) 
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This linear hyperbolic equation can be reduced to  canonical form by the stan- 
dard method of introducing characteristic coordinates < and q defined by 

< = 2 & - u .  r/=aJTI+u. 

In terms of these coordinates, we obtain 

which has t,he general solution 

where f and g are arbitrary functions. Therefore. equation (4.4.6) for t has 
general solution 

t (h ,  u )  = f ( 2 d - L  - u )  + g(2& + u) .  (4.4.7) 

In principle, (4.4.4) can be solved for z (by integrating with respect to h )  to 
obtain z = a(h .  u) .  

To obtain the solution to an initial-boundary value problem, one would have 
to determine the arbitrary functions from boundary or initial data and then 
invert the equations t = t (h ,  u ) .  z = z ( h ,  u )  to obtain h and u. For example. 
suppose that initial conditions of the form 

u(z .  0) = urJ(5). h ( z .  0) = ho(z).  J: E R (4.4.8) 

are appended to  the shallow-water equations (4.4.1) and (4.4.2). Then, in prin- 
ciple, the variable z can be eliminated from (4.4.8) to obtain a locus in the hu 
plane along which t = 0 and z are given. Then. the initial value problem (4.4.1), 
(4.4.2), and (4.4.8) transforms to a Cauchy problem for (4.4.4) and (4.4.5). For 
all practical purposes this procedure is usually impossible to carry out. and it 
is better to perform numerical calculations on the original nonlinear problem; 
thus. as noted by JVhitham (1974. p. 184). the hodograph analysis seems to be 
mainly of academic interest. 

4.4.2 Wavefront Expansions 

In Section 2.4 we introduced the idea of an expansion near a wavefront for a 
single first-order PDE. The same procedure works for systems as well. The prob- 
lem is to determine how a continuous waveform with a derivative discontinuity 
propagates in time. In particular, along what path in spacetime do deriva- 
tive discontinuities propagate. and how do the magnitudes of the jumps in the 
derivatives evolve? iT-e expect. of course, that discontinuities in the derivatives 
will propagate along characteristics. We can validate this expectation by an 
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argument similar to  that presented in Section 2.4. The main interest here is 
to  determine how the magnitude of the jumps propagate in the special case 
that a wavefront is moving into a constant state. In this case an expansion in 
a neighborhood of the wavefront proves to be a convenient procedure. and we 
illustrate it with a specific example. 

Wavefront 
ecx, t )  = x - X(t1 = 0 

u = uo 

/ i X  

Figure 4.14 Wavefront moving into a constant medium. 

At t = 0 we imagine a water wave, governed by the shallow-water theory. 
whose depth profile h(z ,  0) and accompanying velocity profile u(2. 0) are con- 
tinuous functions with a simple jump discontinuities in their spatial derivatives 
at x = 0. and smooth otherwise. Ahead of the wave (x > 0) there is a uniform 
state h = ho3 'u = U O .  For t > 0 we assume that the discontinuity propagates 
along a curve x = X ( t )  in spacetime. called a wavefront, where both h and 
u are smooth on each side of the curve. We introduce a coordinate < whose 
coordinate lines are parallel to the curve 2 = X ( t ) ;  in particular, we define 

< = 2 - X ( t ) .  

Then the wavefront is given by [ = 0: ahead of the wavefront < > 0. and < < 0 
behind the wavefront (see Figure 4.14). The goal is to  determine the behavior of 
the wave in a neighborhood of the wavefront. that  is, for < small and negative. 

Ahead of the wave we assume a uniform state. and behind the wave we 
assume that h and u have expansions as power series in <. Hence, we make the 
Ansatz 

h = h o .  U = U O  f o r < > 0 .  (4.4.9) 

h = h o t h l ( t ) < + i h 2 ( t ) [ 2 + . . .  , (4.4.10) 

u = U O  + u l ( t )<  + ;u2(t)t2 + . . . . for < < 0. 
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For [ < 0 we then have 

ht = hi[ - hlX’  - hzX’E + 0(r2), h, = hi + h 2 ~  + O(E2): (4.4.11) 

and similarly for ut and u,. Substituting all these expressions into the governing 
PDEs (4.4.1) and (4.4.2); and then setting the coefficients of powers of E equal 
to  zero, gives. to leading order 

(uo - X’)hl  + hou1 = 0, 

hl + (uo - X’)Ul = 0 ,  

(4.4.12) 

(4.4.13) 

and at  order O ( ( )  

hi - X’h2 + ~ 0 h 2  + 2ulhl + hou2 = 0.  

U: - X’UZ + U ;  + ~ 0 ~ 2  + h2 = 0.  

(4.4.14) 

(4.4.15) 

The leading order equations (4.4.12)-(4.4.13) are equations for u1 and hl.  that ,  
according to (4.4.10). define corrections to  uo and ho in the expansions for u 
and h. By (4.4.11) we see that hl gives the leading order approximation for h, 
behind the wavefront, and because h is constant ahead of the front, hl therefore 
provides the leading order approximation for the jump in h, across the front. A 
similar remark holds true for u1. The system (4.4.12)-(4.4.13) is homogeneous 
and will have a nontrivial solution u1 and hl if. and only if. the determinant 
of the coefficient matrix vanishes, or 

X’ = uo 4 Jho. (4.4.16) 

Equation (4.4.16) defines the wavefront speed, which is constant. Consequently, 
to  leading order the wavefront is a straight line. There are two possibilities, 
depending on whether the plus or minus sign is chosen. If the plus sign is 
selected, we refer to  the wavefront as a downstream wave, and if the minus 
sign is chosen (giving a slower speed), we refer to  the wavefront as an upstream 
wave. In either case the solution to the homogeneous system (4.4.12)-(4.4.13) 
can be written 

(X’  - uo)hi 
h0 

u1 = (4.4.17) 

Therefore, u1 and hl are linearly related. and so we need determine only one 
of the quantities. 

We first examine downstream waves where X‘ = uo + hA/2. Substituting 
into the O ( [ )  equations (4.4.14) and (4.4.15) yields 

hi - ha 1 / 2  h2 + 2ulhl + hou2 = 0.  

U:  - ha 112 ~2 + ~1 + h2 = 0. 

(4.4.18) 

(4.4.19) 
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The goal is to obtain an equation that determines hl or u1. On first observation 
we have some difficulty because (4.4.18) and (4.4.19) contain both h2 and u2. 

neither of which is known. However. further observation indicates that .  remark- 
ably. h2 and u2 may be eliminated from (4.4.18) and (4.4.19) by multiplying 
(4.4.19) by 6 and then adding the result to (4.4.18). This gives 

hi + 2ulhl + ho 112 u1 I + h:’2u: = 0.  (4.4.20) 

/ 

h = ho 

Figure 4.15 Wave with a negative gradient breaking downstream. 

Kow we can use (4.4.17) to  eliminate u1 from (4.4.20) and obtain 

(4.4.21) 

which is a single ordinary differential equation for hl.  The variables in (4.4.21) 
separate and it is easy to find its solution 

(4.4.22) 

where hl(0) denotes the initial value of hl (i.e.% the initial value of the jump in 
the derivative h, at  2 = t = 0). 

Kow, using (4.4.22), we can make some interesting observations regard- 
ing the evolution of a jump discontinuity. If hl(0) is negative. as shown in 
Figure 4.15, the wave will eventually break downstream. This is because the 
denominator of (4.4.22) will vanish at finite time, giving an infinite gradient 
just behind the wavefront. ’VI&ves with positive gradients will not break down- 
stream. 



4.4 Hodographs and Wavefronts 197 

In the case of upstream waves. where the minus sign is chosen in (4.4.16), a 
calculation similar to  the one presented above leads to the following equation 
for hl :  

Easily, this equation has solution 

2 6  hi = 
2&/hl(O) - 3t’ 

t 

Figure 4.16 Tidal bore breaking upst’ream. 

Consequently. if hI(0) .  the initial jump in h, across the wavefront, is posi- 
tive, the wave will break in finite time as shown in Figure 4.16. Such waves are 
called tadal bores. 

We refer to %-hitham (1974) for a full discussion of wavefront expansions 
for general hyperbolic systems and how those expansions relate to wavefronts 
in geometric optics. In the next section we devise a procedure. called weakly 
nonlznear analysts. similar to the one discussed above to  determine how special 
types of short-wavelength signals are propagated in a gas dynamic medium. 

EXERCISES 

1. Consider the gas dynamic equations 

pt + ( P U ) ,  = 0. p ( U t  + uu,) + p ,  = 0, p = kp’ 

Define the sound speed c by the equation c2 = p’(p).  
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(a) Show that the equations may be written in terms of c and the particle 
velocity u as 

C t  + uc, + q c u ,  = 0, 
L 
n 
L 

ut + uux + - cc, = 0. 
7 - 1  

(b) Perform the hodograph transformation on the equations in part (a) to  
obtain the system 

ct, = 0, 2,  - ut, + - 
2 ? - 1 

2 
ct, = 0, 7 - 1  

2,  - ut, + - 

for z = x(c.  u) and t = t (c ,  u). 

(c) Show that t satisfies the second-order wave equation 

2n 2c 
t b b  f - t b  = t,,, where b = - 

b 7 - 1 '  

where n = (y + 1) / [2(1  - 1)]> and obtain the general solution in the 
case n = 1. 

2 .  This exercise deals with the hodograph transformation and the Born-Infeld 
equation 

(1 - 9;)oZ.z + 2@,9t&t - (1 + 9 2 ) O t t  = 0. 

(a) Introduce new independent and dependent variables via 

(b) Reduce the system in part (a) to the single linear hyperbolic equation 

2 u t u u  + (1 + 2UU)E,, + 1;2<wv + 2u6, + 2vt, = 0. 

and then introduce characteristic coordinates 

(1 + 4u1;)1/2 - 1 (1 + 4u1;)1/2 - 1 
r =  ~ s =  

21; 2u f 

to obtain ETS = 0. 

and then apply the hodograph transformation to obtain the system 
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(c) Show that one may take 

6 = F ( r )  - 1 s2G/(s) ds.  Q = G(s) - 1 r2F’(r )  dr. 

where F and G are arbitrary functions, and therefore derive the solu- 
tion @ given by 

@ = J’rF’(r )  dr + /” sG’(s) ds. 

(d) Finally, introduce p = F ( r )  and cr = G ( s ) .  with inverses r = @ i ( p )  and 
s = @;(cr). and show that the solution may be written in the form 

0 = @l(P)  + @ 2 ( o ) .  

where 
m 

p = 2 - t + 

(Whitham 1974, p. 617). 

a/;(.) do. o = 2 + t - @?(p) dp. L 
3. The shallow water equations governing flood waves on a flat river of incline 

a are 
cu2  

h 
ht + uh, + hu, = 0. ut + U U ,  + g*hx = g * S  - -. 

where S = t a n a , g *  = gcosa ,  and C is the coefficient of friction. Here h is 
the depth of the water measured perpendicular from the bottom and u is 
the velocity in the z direction along the bed (Kevorkian 1990). Consider a 
wavefront z = X ( t )  propagating into a uniform state u = ug, h = ho. along 
which h and u are continuous but have discontinuous derivatives. Perform 
a wavefront expansion analysis to show that a wave will break if 

uo > 2Jg*ho, 

regardless of the sign of h,(O+, 0). Given uo < 2 m ,  show that the jump 
in h, will decay exponentially in the case h,(O+. 0) > 0. but in the case 

the wave will break in finite time. (This means that a sufficiently strong 
downstream flood wave will be headed by a bore.) 



200 4. Hyperbolic Systems 

Figure 4.17 Wedge of unit thickness. 

4. The small, longitudinal vibrations of a bar of density p = p(z) .  stiffness 
E = E ( z ) ,  and cross-sectional area 0 = o(z) are governed by the wave 
equation pautt = (aEu,),, where u = u ( z ,  t )  is the displacement of a cross 
section [for a derivation see, e.g., Lin & Segel 19741. This equation can be 
transformed to a system of two first-order equations by introducing the 
variables u = ut (the velocity) and w = u, (the stress). The purpose of 
this exercise is to determine how a wavefront (caused, say. by strikin, 0 one 

end of the bar) propagates down the length of the bar. 

(a) Assume a wavefront expansion 

v = v0 +zy(z)<+.. .  . w = wo +wl(z)< + . . .  for < < 0. 

where < = t - .u(x) = 0 is the wavefront and where v = w0 = const. 
w = w0 = 0 for [ > 0. Show that to leading order, the wavefront is 
described by the differential equation 

(b) Show that 
( 6 E W ’ ) ’ U l  (x) 

u i ( z )  = - 
2 u E ~ ’  ‘ 

and therefore 

along the wavefront. 
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(c) Consider a uniform ( p  and E constant) bar in the shape of a wedge as 
shown in Figure 4.17. Show that jumps in uX and wz both increase as 
the area decreases, and interpret the result physically. 

5. Consider the nonlinear system 

U t  - t q X  = 0, t1t - uuX = 0. 

Assume that a wavefront is moving into a constant state. To leading order, 
determine the speed of the front and determine how a jump in ux evolves 
along the front. 

4.5 Weakly Nonlinear Approximations 

It is evident that general systems of nonlinear partial differential equations 
are complex and that no procedure. simple or otherwise, can be developed 
to analytically solve most of these problems. Therefore. much effort has gone 
into developing techniques to  reduce the complexity of these systems. Often, 
this means examining a problem in some special limit whereby the system can 
be reduced to a simpler one, and progress can be made in elucidating some 
of the qualitative features of the original problem. One such method. which 
arose out of weakly nonlinear geometric optics. is an asymptotic method that 
yields a problem in what is termed a weakly nonlznear lamzt. In geometric optics 
one attempts to construct formal solutions that are high-frequency asymptotic 
solutions for bounded time intervals. The idea extends to  other systems and can 
be explained as follows. Suppose that a medium exists in a rest state and that in 
some localized region of space a small-amplitude. small-wavelength disturbance 
occurs. This event is then propagated to nearby regions by the equations of 
motion, which describe the dynamics of the problem. In this process we try 
to  identify a small parameter. and then we assume that the states can be 
represented as an expansion in that small parameter. The reader will recall 
that the acoustic approximation in gas dynamics was obtained in a similar 
manner, and the linear wave equation resulted in the special limit of waves 
of small amplitude. But now we wish to  carry the analysis one step further 
and retain some of the nonlinear interactions that are present in the original 
system. 

We illustrate the weakly nonlinear analysis by considering the gas dynamic 
equations. The central idea is to  consider small-amplitude waves whose wave- 
length is small compared to the overall size of the spatial region where the 
problem is defined. We show that such disturbances are propagated by Burgers' 
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equation, thereby giving a derivation of one of the important model equations 
of applied analysis. 

4.5.1 Derivation of Burgers' Equation 

Consider the one-dimensional flow of a barotropic fluid that is governed by the 
gas dynamic equations 

Pt +up,  + pu, = 0. 

p = k p S .  
P"t + puux + p ,  = +x,, 

(4.5.1) 

(4.5.2) 

(4.5.3) 

where p is the density. u the particle velocity, p the pressure. p the viscos- 
ity. and k and y positive constants. Equation (4.5.1) is mass conservation and 
equation (4.5.2) is momentum balance. where the only two acting forces are 
the pressure and the viscous force. Equation (4.5.3) is the barotropic equation 
of state. In this model flow there is no heat diffusion and no heat generated 
or dissipated by mechanical or viscous forces. Our goal is to reduce the com- 
plexity of (4.5.1)-(4.5.3) by restricting the range of applicability, that  is, by 
investigating a wave propagation problem in a special limit. 

Figure 4.18 1l;avelet of thickness d propagating in a container of character- 
istic length L.  

To this end, assume that a wave with representative thickness d is propa- 
gating to the right into a constant. undisturbed state u = 0 . p  = PO. p = PO. 
and let n: = X ( t )  represent the location of some reference point on the wave as 
it moves forward in time: moreover. let L be a length that is representative of 
the size of the region where the wave is propagating (e.g.. the length of a tube 
or vessel) (see Figure 4.18). The assumption is that d is small compared to  L ,  
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and therefore the parameter E defined by 

d 
L 

& = -  

is a small quantity that can serve as an expansion parameter in a perturbation 
series 

In this problem it is essential to  introduce normalized variables and refor- 
mulate the equations in dimensionless terms: only then can we be certain of the 
order of magnitude of the various quantities in the equations. The sound speed 
in the region ahead of the wave is given by co = ( ? p o / p ~ ) ’ / ~ ;  therefore. the 
acoustic time t ,  defined by t ,  = L/CO is the time required for a signal traveling 
at speed co to traverse a distance comparable to the magnitude of the length of 
the vessel. We take the acoustic time as a characteristic time for the problem 
and introduce the dimensionless time variable 

t 
7- = -. 

t ,  

For the characteristic length we select the representative wave width d and 
introduce the dimensionless spatial coordinate 

x - X ( t )  
t =  > 

which measures the distance to  the location of the wave on the scale of the 
wave. We choose P O ,  po.  and co to be the density, pressure, and velocity scales. 
respectively, and we define the dimensionless dependent variables p .  p ,  and ii by 

- P - P  p = - ,  p = - ,  
Po Po 

Letting D ( t )  = X ’ ( t )  denote the velocity of 
we also introduce D ( t ) ;  defined by 

- u  

CO 
u = -. 

the reference point on the wave; 

In terms of the dimensionless variables. equations (4.5.1)-(4.5.3) become 

E p T  - D p s  + GPE + puc = 0 .  (4.5.4) 

&PUT - ?DEE + p i i q  + , - - I p s  = 2&viiEc, (4.5.5) 

p =  PY , (4.5.6) 

where 
1/=--- 2P (4.5.7) 

~ P O C O E  d 
is a dimensionless constant and where E << 1. The reader is asked to  verify 
these equations in Exercise 1. 
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Next comes a crucial step, namely, the assumption of the form of the ex- 
pansion of the dependent variables in powers of the small parameter E .  jL-e 
take 

Because of the equation of state (4.5.6). we automatically have, by substituting 
(4.5.8) into (4.5.6), the expansion 

- .)2 + 0 ( & 3 ) .  (4.5.11) 
2 

Is(<* T )  = 1 + EYPO(<.  7 )  + E 

This is just the Taylor series expansion of p Y  about E = 0. Thus, the assumption 
is that the disturbance. whose density is p .  is of order 1 with small variations: 
the velocity D of the wave is on the same order as the speed of sound in the 
undisturbed medium ahead of the wave, and the particle velocity ii within the 
wave is small in comparison. Such assumptions describe what is termed a weakly 
nonlanear model. 

The next step is to  substitute the expansions (4.5.8)- (4.5.11) into the gov- 
erning PDEs (4.5.4)-(4.5.5). It is straightforward to show that (4.5.4) becomes 

E2P0T - (Do + E D l ) ( E P O <  + E2Pl<) + E2U0PO< 

+ (1 + EPO)(EUOE + E 2 U 1 E )  = 0 ( ~ 3 )  (4.5.12) 

and (4.5.5) becomes 

- 2  2 
5 u0.T - (I + EPo)(Do + E D l ) ( & U O <  + E2u1<) + E uouo< 

+ E P ~ ~  + c2plE + E 2 (7 - i)PoPoE = 2E2uUoEE + o ( & ~ ) .  (4.5.13) 

Because these equations should hold for any E ,  we are free to set the coefficients 
of the various powers of E equal to zero. The leading order contributions from 
equations (4.5.12)-( 4.5.13) are 

-DoPo< + uo< = 0. 

- D o U o g  + Po< = 0. 

(4.5.14) 

(4.5.15) 

and the next-order contributions, which are the correction terms. are 
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Equations (4.5.14) and (4.5.15) are two homogeneous equations for uo and PO; 
there will be nontrivial solution provided that the determinant of the coefficient 
matrix vanishes: 

Do = 1. (4.5.18) 

In this case both (4.5.14) and (4.5.15) become = u o ~ .  Because both uo and 
po are zero ahead of the wave. we must have uo = PO. We have therefore deter- 
mined the leading order wave velocity Do in (4.5.10), and we have a relation 
between po and uo. 

To find a single equation for po we analyze the correction equations (4.5.16) 
and (4.5.17). Substituting (4.5.18) into (4.5.16) and (4.5.17) and using uo = po.  
we obtain 

P I E  + UIE = -POT + Dlpo< - 2pop0<? 

PI< - ~ 1 s  = -POT + D ~ P o <  - (;/ - ~)POPO< + ~ w P o < < .  

(4.5.19) 

(4.5.20) 

Adding these two equations gives a single equation for p o .  It is now convenient 
to introduce the quantity U(E. r )  defined by 

- 

(7 + 1)po - (y + l )uo  U =  2 - 2 (4.5.21) 

Then the sum of the equations gives 

UT - DlUC + UU< = u U ~ E ,  (4.5.22) 

which is similar to Burgers' equation. We can eliminate the term in (4.5.22) 
involving D1 by defining a new spatial coordinate q by 

(4.5.23) 

With this transformation. (4.5.22) becomes 

u, + uuq = uuqq. (4.5.24) 

which is Burgers' equataon. Here, u = ~(7.7) = U ( < ( q .  T). T): the lowercase let- 
ter u should not be confused with the velocity in the original equations (4.5.1)- 
(4.5.2). 

To summarize, have obtained Burgers' equation in a weakly nonlinear limit 
of the gas dynamic equations (4.5.1)-(4.5.3). The procedure was to look for 
equations that govern small deviations from a uniform state in acoustic time. 
on the scale of the width of the disturbance. The reader should contrast the 
situation in acoustics. where linear equations (in fact. the wave equation) gov- 
ern the small perturbations; there. acoustic signals are small-amplitude distur- 
bances on the timescale of acoustic time and on the lengthscale of the vessel. 
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Burgers' equation, which followed froin the weakly nonlinear limit ~ governs 
small-amplitude disturbances of short wavelength. compared to  the size of the 
vessel, over the acoustic timescale. 

It is common in applied mathematics to  study complex problems on different 
timescales or lengthscales: generally, one obtains different governing equations 
in each limit. accompanied by an overall simplification. The solution of the 
problem in a specific limit often clarifies some aspects of complex physical 
systems. giving information about the behavior of the system under special 
conditions. A good example of the utility of scaling and examining a problem in 
special limits occurs in combustion theory, where there are several time scales: 
for example. the acoustic timescale. the chemical timescale, the timescale for 
diffusion. and the hydrodynamic timescale. By examining a problem on a rapid 
chemical timescale. for example. one may be able to  neglect diffusion terms in 
the equations since diffusion may occur in some regimes on a much slower scale. 
In this manner one reduces the complexity of problems. Another illustration 
is water waves. Some of the important equations of applied mathematics. such 
as the Korteweg-deVries equation and the Boussiriesq equations, result from 
studying the full nonlinear equations of hydrodynamics in a special limit (e.g.. 
when the wavelength of a surface wave is long in comparison to the depth of 
the channel). 

Earlier we showed the existence of traveling wave solutions to Burgers' 
equation. Now we relate that calculation to  the discussion presented above. Nre 
recall that the determination of traveling waves for Burgers' equation involves 
a constant. unknown wave speed. This wave speed is related to  the correction 
term D1 in (4.5.10) and (4.5.23) in the following manner. The disturbance is 
centered along the coordinate [ = 0 for all time. But in the yr-coordinate 
system of equation (4.3.24) the wave is on the path 17 = J;Dl(y)dy. and its 
speed is D l ( 7 ) .  which is unknown. So we are free to search for constant values 
D1 for which Burgers' equation (4.5.24) admits traveling wave solutions of 
speed D1. Generally. D1 is not constant for wave profiles that change in time. 

EXERCISES 

1. Verify equations (4.5.4)-(4.5.6). 

2. The purpose of this exercise is to perform a weakly nonlinear analysis on a 
simple nonlinear equation. Consider the scalar advection-diffusion equation 

U t  + Q(.)Z = p&cz\ 

where t .  2, and u are dimensionless variables of order 1. p = p l ~ ~  + 
O ( E ~ ) .  E << 1. and Q ( U )  can be expanded in a Taylor series about u = 110 = 
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constant. Let z = X ( t )  be a representative location on a wave that is prop- 
agating into the uniform state U O .  Introduce the variable < = (z - X ( t ) ) / &  
and assume that 

u ( ~ ,  t )  = U o  + EU1(<,  t )  + E 2 U 2 ( t ,  t )  + 0 ( & 3 ) .  

D ( t )  = Do(t) + EDl(t)  + 0 ( E 2 ) .  

where D = X‘ .  To leading order. determine the speed of the wave. and 
show that u1 satisfies the Burgers’-like equation 

where a is a constant. 

3. Consider the PDE in Exercise 2 with p = p ( ~ ) .  To study the long-time 
behavior of the system. assumes the expansion 

where 

17 = 2 - X ( t ) ,  7- = E t .  

and where 2 = X ( t )  is a reference location on a wave propagating into the 
constant state u = u O .  To leading order, determine the speed of the wave 
and find an equation for the first correction u1 (q.  T ) .  Discuss the two cases 
p = O ( E )  and p = O(E’). 

Reference Notes. Parallel introductory treatments of gas dynamics and the 
shallow water equations can be found in Kevorkian (1990) and Logan (2006a). 
Two definitive works on gas dynamics are the classic treatises by Courant & 
Friedrichs (1948) and Whitham (1974). Smoller (1994) addresses some of the 
mathematical issues in these areas. Another complete reference is Rozdestven- 
skii & Janenko (1983). An introduction to the theory of hyperbolic conservation 
laws is found in Majda (1986). 





5 
Diffusion Processes 

In this chapter we examine equations that model basic diffusion processes and 
introduce mathematical methods that are useful in studying the structure of 
their solutions. These methods include similarity methods. the asymptotic ex- 
pansion of integrals, and phase plane methods. The latter is included in an 
appendix to the chapter. 

First we review fundamentals and relate diffusion to the probability concept 
of a random walk. In Section 5 . 2  the idea of invariance of a PDE under a one- 
parameter family of stretching transformations is introduced. and we show how 
this type of invariance leads to  a reduction of the PDE to an ODE. Solutions 
obtained in this way are called szmdaraty solutaons. and the method of deter- 
mining solutions through invariance properties is one of the basic techniques of 
applied mathematics: it is applicable to many classes of PDEs. In Section 5 . 3  
we apply the similarity method to nonlinear diffusion models. One of the most 
significant results is that, unlike their linear counterparts, nonlinear diffusion 
equations can propagate signals that resemble a wavefront traveling at finite 
speed. Sections 5.4 and 5.5 extend the study to  reaction-diffusion processes and 
advection-diffusion processes. respectively. Fisher's equation is a prototype of 
reaction-diffusion processes, and we investigate the existence of traveling wave 
solutions and their stability. In the same way? Burgers' equation, examined in 
Section 5 . 5 ,  is the basic model equation for nonlinear advection-diffusion pro- 
cesses. In Section 5.6 the asymptotic expailsion of integrals containing a large 
parameter is discussed briefly and Laplace's theorem is applied to  understand 
the behavior of the solution to the initial value problem for Burgers' equation. 
In particular. we investigate the solution in the limit of small values of the 

An Introductzon to Nonlznear Partzal Dzfferentzal Equataons, Second Edatzon. 
By J .  David Logan 
Copyright @ 2008 John \Tiley & Sons. Inc. 
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diffusion constant. and the initial value problem with a point source is solved. 
Finally. the Appendix at  the end of the chapter reviews two-dimensional 

systems and phase plane analysis. Many problems in PDEs. especially those 
associated with the determination of traveling wave solutions, can be studied 
in the context of a two-dimensional dynamical system. 

5.1 Diffusion and Random Motion 

To set the stage. we briefly state a few basic results from linear diffusion theory, 
some of which were introduced in Chapter 1. The linear diffusion equation is 
the parabolic PDE 

U t  = Dues, 

which comes from the conservation law 

ut + 0, = 0 

and Fick's law, 
@ = -Dux.  

The diffusion constant D, measured in length-squared per time. is a measure 
of how fast the quantity measured by u (particles. chemicals, animals, heat 
energy, etc.) diffuses from high concentrations to  low concentrations. Fick's 
law stipulates that the flow is down the gradient. 

In Section 1.5 we showed that the initial value problem for the diffusion 
equation 

ut = Du,,, x E R, t > 0, (5.1.1) 

u(x .  0) = U O ( Z ) ,  z E R. (5.1.2) 

is 

U ( X .  t )  = u ~ ( < ) K ( x  - <. t )  d<. l 
where the diffusion kernel K ( y . t )  is 

(5.1.3) 

For any < and any t > 0 the kernel K(z -< ,  t )  is itself a solution to the diffusion 
equation, called the fundamental solutzon. Time snapshots of the kernel func- 
tion are shown in Figure 5.1. One can show that K has the following properties: 

(1.) limtio- K ( x  - [. t )  = 0 for each fixed x # E 
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(2.)  lim,,o+ K ( x  - <. t )  = +m for x = <. 
(3.)  ,xlymK(~ - 6, t )  = 0 for each fixed t > 0. 

(4.) Jw K(X - [, t ) d X  = 1, t > 0. 

These properties imply that the diffusion kernel K ( z  - <; t )  is a solution to the 
initial value problem 

ut = Dux,, x E R, t > 0. 
U(X. 0) = S(X - 0, X E R. 

where S(X - [) is the delta function, that is, a distribution representing a point 
source of unit intensity at z = <. Figure 5.1 illustrates how a unit amount (of 
energy, say) applied at  z = < at t = 0 diffuses through a medium with diffusion 
constant D. The solution of the initial value problem can be regarded as the 
superposition of a continuum distribution of sources uo(<), 6 E R. Furthermore. 
linear diffusion is a process where initial signals are propagated with infinite 
speed; for example, the solution K ( z  - <* t )  is nonzero for any X, regardless of 
how large, for any time t > 0, and regardless of how small. Therefore, we must 
always be aware of the limitations imposed by the diffusion equation when 
modeling a physical process (e.g., heat flow). 

Another important result associated with the diffusion equation is the max- 
imum principle. We take up this principle in Chapters 6 and 7. For the present 
we remark that a solution to the diffusion equation must take on its maximum 
value on the boundary of the domain over which the problem is defined. Phys- 
ically. this means that the density function u cannot clump in the interior of 
the domain. This result is physically plausible because the diffusion equation 
comes from Fick’s law, an assumption that forces movement from high to low 
concentrations. The time snapshots of the fundamental solution of the diffusion 

Figure 5.1 Time snapshots of the diffusion kernel K(z-<.  t )  for various times 
t .  
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equation shown in Figure 5.1 suggest that  the diffusion equation does indeed 
describe diffusion-like processes. 

There are differenti ways to think about diffusion. In chemistry and physics 
it is easy to  deduce, reasoning at an atomic or molecular level. how substances 
diffuse because of random motion. This microscopic description of diffusion is 
based on statistics and the fact that atoms or molecules collide randomly. These 
random collisions cause an assemblage of molecules to  move from regions of high 
concentrations to regions of lower concentrations. For example, if a noxious gas 
is released at a point in a room. the colliding molecules of gas and the air lead 
to  the eventual dispersion of the gas throughout the room. This stochastic, 
molecular model is the basis of the kinetic theory of gases. and it has a firm 
root in mathematics and in empirics 

In chemically based biological systems where we are tracking molecular con- 
centrations. we observe the same phenomenon. For example, a chemical, toxic 
to fish. might be dumped locally in a reservoir; the spread of the chemical 
throughout the reservoir can be understood by the molecular collision model. 
In other biological systems, however, the same spreading effects are observed. 
but the cause is not random collisions on a microscopic scale. but interactions 
on a macroscopic scale. This effect is illustrated by the spread of an infectious 
disease. If infected individuals are introduced in a large population of suscep- 
tible individuals, then the infection can spread throughout the population by 
personal contact or respiration of airborne particulates. Even in clumped pop- 
ulations of organisms. there is a tendency for individuals to migrate from the 
high density regions to low density regions: this macroscopic dispersion is the 
result of population pressures such as competition for resources or might. in 
humans, even have some psychological basis. But the observation is the same as 
in the molecular collision model-movement from high to low concentrations. 

We modeled diffusion by Fzck's law (or Fourier's law in heat conduction), 
which states that the flux. or motion. is proportional to  the steepness of the 
concentration curve: ~ ( x .  t )  = -Du,(x. t ) .  So the migration is *'down the con- 
centration gradient ." away from the most concentrated regions, and the greater 
the changes in concentration. the faster the motion. M'hen this relation is sub- 
stituted into the basic conservation law ut = -&, we obtain the diffusion 
equation ut = Duzs .  

Yow vie want to show how this diffusion model arises from a stochastic 
argument based on random motion. 15-e might expect the two to be related 
because the fundamental solution to the diffusion equation generated by a 
point source at x = p, and given by the diffusion kernel 

looks very similar to the normal probability density. Recall that  a normal ran- 
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I I I I * 
x-2h x-h x x+h  x+2h 

Figure 5.2 A lattice of points on the x axis on which a particle moves ran- 
domly. In each small time step T it moves one lattice point to the right with 
probability p or one lattice point to  the left with probability q = 1 - p .  

dom variable X has probability density function (the "bell-shaped curve") 

where p is the mean, or center of the density. and 0 is the standard deviation, 
a measure of the spread about the mean. Amazingly enough. if we take the 
standard deviation to depend on time via 0 = m, so that the spread of the 
data increases with time. then we obtain K ( z  - p ,  t ) .  which is the fundamental 
solution to the diffusion equation! 

The close relationship between the diffusion and probability is not acciden- 
tal. We now look in a different direction to affirm this relationship. 

Let x be an arbitrary point on the z axis and divide the z axis into small 
equal segments of length h so that the entire axis is composed of a lattice of 
discrete points ..., 2-2h.z-h,  z, z f h .  z+2h. ... . (See Figure 5.2.) We imagine 
a particle (an atom. cell, animal, etc.) that moves randomly on this lattice of 
points in such a way that if it resides at one of these lattice points at time t ,  
then, during a small interval of time T ,  it moves to  the lattice point to  the right 
with probability p or to  the lattice point to the left with probability q = 1 - p .  
Such a process is called a random walk. Let u = u(z. t )  be the probability that 
the particle is at z at time t .  We want an equation for u. Clearly, there are two 
ways to  get to  5 at time t + T .  The particle can be at z - h at time t and jump 
to the right, or be at  z + h at time t and jump to the left. The law of total 
probability' therefore implies that 

U(Z. t + T )  = U ( X  - h,  t ) p  + U ( X  + h. t ) q .  

which is a partial difference equation in u. Now we expand the terms on the 

If an event E consists of two disjoint events A and B. the Pr(E) = Pr(E1A) Pr(A) + 
Pr(E1B) Pr(B). 
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left and the right in Taylor series about the point (x. t )  to  obtain 

u(x, t )  + ut(x,  t)r  + O ( r 2 )  = p (u(x, t )  - us(x, t ) h  + &,(x, t )h2  + O ( h 3 ) )  

+q (u(x. t )  + u,(z, t ) h  + ~u, , (z .  t)h2 + O ( h 3 ) )  . 

where O(?) denotes higher-order terms that have a factor of at least 7’ and 
O ( h 3 )  denotes terms that have a factor of at least h3. Simplifying this equation 
gives 

First, in the case p = q = i, this equation becomes 

Now we take a special limit as r --+ 0 and h -+ 0 while maintaining the ratio 
h2/2r at  a fixed constant D ,  then we obtain 

ut(~,t) = Du,,(z.t), 

which is the diffusion equation. 
If p # q. we further assume that p - q = O(h) ,  which means that the 

probabilities of moving to  the left or to the right are nearly the same. Then we 
take the limit in (5.1.4) as as r -+ 0 and h i 0 while maintaining 

SVe obtain the the advection-diffusion equation 

ut(x. t )  = --CU,(Z, t )  + Duzz(2 .  t ) .  

or the diffusion equation with drift. 

Example. (Bzologzcal Invaszon) Consider a very long canal where a nonindige- 
nous alga species is accidentally released at 5 = 0. After a long period of time it 
is observed that the speed of the biological invasion outward in both directions 
from x = 0 is nearly constant. We show that this observation can be explained 
by a growth-diffusion model 

~t = Du,, + ?u. z E R, t > 0. 

Initially. u(x .0 )  = u06(z). which is a point source at z = 0 of magnitude ug. 
Let z = z f ( t )  denote the position of the wavefront, defined by the location 
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where u = u f ,  where u f  is a small, given value of the density and uf < U O .  

Then. using the fundamental solution to the growth-diffusion equation, we get 

Isolating the exponential term of the left side and then taking logarithms gives 

y t  - - x ( t )2  = In ( z m )  . 
4Dt 

Now we make a clever approximation. For large times t ,  the linear term in t on 
the left side is much larger than the logarithm term on the right side because t 
grows much faster than does lnt .  Therefore, the only two terms in this equation 
that can balance for large t are the two terms on the left. Thus the long time, 
approximate position of the invasion front is 

Consequently, the speed of the front approaches a constant value m. 0 
EXERCISES 

1. Show that the advection-diffusion-decay equation 

ut = Du,, - cux - ru 

can be transformed into the linear diffusion equation with an appropriate 
change of independent and dependent variables. 

2 .  As noted, the fundamental solution K ( x .  t) of diffusion equation is nonzero 
for all t > 0, and therefore in a unit, concentrated point source spreads 
out infinitely fast. giving a nonphysical result. If we consider ultra-small 
amplitude signals. say of magnitude q. to be imperceptible, then the more 
physical effectzve regzon of znfluence of a point source is defined as 

R = { ( x , t )  : K ( z , t )  2 Q } .  

On a spacetime diagram sketch the region R. 

3. If uo is a bounded. continuous function on R, show that the solution u(x. t) 
of the initial value problem (5.1.1)-(5.1.2) satisfies the condition 

inf ug(t) 5 u(x. t )  5 supuo(z), 

where the sup and inf are taken over all of R. 
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4. Find all solutions of the diffusion equation ut = u,, having the form 

5. Find the solution of the initial value problem (5.1.1)-(5.1.2) when D = 1 
and the initial condition is given by 

uo(z) = 0 if x < 0. uo(x) = 1 if z > 0. 

The solution is 
1 + erf(x/&) 

2 
u =  

6. Consider the initial value problem (5.1.1)-(5.1.2) for the diffusion equation. 
and assume uo > 0. D = 1. and J R  uo(z) dx = 1. Let 

z ( t )  = z u ( z , t )  dz 2 ( t )  = (x - z)2u(z. t )  dx 1 L 
denote the mean and variance of the distribution u(z .  t ) .  respectively. Prove 
that Z ( t )  = Z(0) and cr2(t) = 2t + a2(0) .  

7 .  A model of nonlocal diffusion is the equation 

ut = ( k  * u)(z3t). 5 E R. t > 0. 

where k * u is the convolutton of k = k(x) and u = u(x,t) defined by 
( k  * u)(x. t )  = JE k ( z  - y)u(y. t )  dy.  The convolution averages u against 
the translates of the given continuous function k .  Assume that k is an 
even function with the property that k ( x ) z n  is absolutely integrable on R 
for each n 2 0, and assume that u is sufficiently smooth. Show that the 
nonlocal equation may be approximated by the local equation 

ut = mou + m2u,, + m ~ u z z s s  + . . . , 
where m, is the nth moment of k defined by 

k(y)f dy. n = 0 , l .  2 . .  . . . l X  
m, = - 

n! LX 

U t  = { ICu,, 

Take k ( z )  = exp(-z2) and numerically compute the even moments mo 
through m6. 

8. Consider the Barenblatt equation 

if ut 2 0 
if ut < O ' mu,, 

where k and m are distinct positive constants. Is this equation linear? Shorn 
that the Barenblatt equation can be written 

out + blutl = u,, 

for some constants a and b 
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5.2 Similarity Methods 

In this section we introduce a powerful method, called the szmzlarzty method. 
for finding transformations that reduce PDEs to  ODES. This method takes ad- 
vantage of the natural symmetries in a PDE and permits us to  define special 
variables that facilitate the reduction. Equations that model physical problems 
often inherit symmetries from the underlying physical system: for example, a 
physical system that is translationally invariant produces governing equations 
that are unchanged under a translation of coordinates. Equations with symme- 
tries. or equivalently, equations that are invariant under a given transformation. 
have a simple structure that can be used to  advantage to  simplify the problem. 
The similarity method is applicable to all types of PDEs. and it is particularly 
applicable to diffusion equations. 

We do not present the most general similarity method. but rather, refer 
the reader to  one of the books listed in the references. [The first edition of 
the applied mathematics text by Logan (1987) has a general introduction.] In 
this section we focus on a method developed by G. D. Birkhoff in the 1930s 
and consider the special case of scale transformations, or transformations of 
the variables represented by simple multiples of those variables. These are 
called stretchzng transformatzons. and Birkhoff's method is called the method 
of stretchzngs. 

At the outset we consider a first-order PDE of the form 

G(x. t .u .p .q)  = 0. p = u,. q = ut. (5.2.1) 

The formal definition is as follows. 

Definition. A one-parameter famzly of stretching transformatzons, denoted by 
T,. is a transformation on xtu space of the form 

3 = Eax> t= E b t ,  ii = E C U ,  (5.2.2) 

where a, b. and c are constants and E is a real parameter restricted to some 
open interval I containing E = 1. 

By the chain rule. the stretching transformation (5.2.2) automatically in- 
duces a transformation on the derivatives p and q via the formulas 

= EC-ap. 4 = Ec-b 4 .  (5.2.3) 

To motivate the definition of what it means for the PDE (5.2.1) to  be invariant 
under T,. we use an example. 
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Example. Consider the nonlinear advection equation 

ut + uu, = 0, 

or, equivalently 
q + u p = o .  (5.2.4) 

In the transformed coordinate system the operator defining (5.2.4) is 4 + U p .  
According to (5.2.2) and (5.2.3). we obtain 

q + up = &c-bq + &2c-a UP. 

If we impose -b = c + a, then (5.2.5) can be written 

(5.2.5) 

4 + ~p = &2c-a ( 4  + U P ) .  (5.2.6) 

Therefore, under the transformation 

z = Eax. t = E a - c t ,  u = E C U ,  (5.2.7) 

for any constants a and c. the expression defining the PDE in the transformed 
coordinate system is a multiple of the original expression defining the PDE. 
This is what is meant by invariance of (5.2.4) under (5.2.7). 0 

Definition. The PDE (5.2.1) is znwarzant under the one-parameter family T, of 
stretching transformations (5.2.2) if. and only if, there exists a smooth function 
f ( E )  such that 

G(%,  t, U . P .  Q) = f (E)G(z,  t .  u.p, q )  (5.2.8) 

for all E in I .  with f(1) = 1. If f ( E )  = 1 for all E in I the PDE is absolutely 
invarzant. 

Now we can state and prove the basic reduction theorem. 

Theorem. If the PDE (5.2.1) is invariant under T, given by (5.2.2), then the 
transformation 

u = t C / b y ( z ) ,  z = - (5.2.9) 

reduces the PDE (5.2.1) to a first order ordinary differential equation in y(z) 

of the form 

dz? y, y’) = 0. (5.2.10) 

5 

ta/b 

The new independent variable z defined in (5.2.9) is called a szmzlarzty 
varaable, and (5.2.9) is called a szmzlarzty transformatzon. After solving (5.2.10) 
for the unknown function y ,  substitution into (5.2.9) yields the self-samzlar form 
of the solution u. 
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Before proving the theorem, we give another example. 

Example. We observed that the nonlinear advection equation (5.2.4) is invari- 
ant under the stretching transformation (5.2.7). Then the similarity transfor- 
mations is given by 

The constants a and c are arbitrary at this point. and they are usually chosen 
so that (5.2.11) can satisfy certain initial or boundary conditions given with the 
problem. Substituting (5.2.11) into the (5.2.4) requires the partial derivatives 
ut and u,. The chain rule gives 

t c / ( c - a ) - l  ax t c / ( a - c ) t a / ( c - a ) - l  Y .  I 
Y f -  t '  U t = -  a - c  c - a  

Y l  u, = - 

Consequently, (5.2.4) becomes 

a C 
yy' + -2y' + - Y = 0, a - c  c - a  

(5.2.12) 

which is an ordinary differential equation for y = y(z). 0 

The proof of the basic reduction theorem is straightforward. By invariance 
of (5.2.2) under T, we infer that (5.2.8) holds; and. because (5.2.2) holds for all 
E in some interval I containing E = 1. we may differentiate (5.2.8) with respect 
to E and afterward set E = 1 to obtain 

UXG,  + btGt + CUG, + ( C  - a)pG, + ( C  - b)qG, = f'(1)G. (5.2.13) 

This first-order linear PDE for G is a consequence of the invariance assumption. 
As expected, not every PDE (5.2.2) will be invariant under T,, and (5.2.13) 
imposes a condition on the form of G. The characteristic system associated 
with (5.2.13) is 

and there are five independent first integrals given by 

Therefore, the general solution of (5.2.13) is (Chapter 2) 

G = t f ' ( l ) / b Q f ( Z .  u t - c / b . p t ( a - c ) / b ,  q t l - b / c ) .  (5.2.14) 
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where 9 is an arbitrary function and z = x / t a / b .  This equation fixes the form 
of G. Now u is given by (5.2.9). and the partial derivatives p and q may be 
calculated to give 

Substituting these expressions into (5.2.14) yields the equation 

which is an ordinary differential equation of the form (5.2.10). completing the 
proof. 0 

The method is easily extended to second-order PDEs. We state the basic 
reduction theorem in this case and leave the proof to the reader. 

Theorem. If the second-order PDE 

is invariant under the one-parameter family T, of stretching transformations 
( 5 . 2 . 2 ) ,  then the transformation (5.2.9) reduces the (5.2.15) to a second-order 
ordinary differential equation of the form 

g ( z .  y >  yl. y//) = 0. (5.2.16) 

lye observe that the one-parameter family of transformations ( 5 . 2 . 2 )  on xtu 
space induces a transformation on the second derivatives. just as it did on the 
first derivatives [see ( 5 . 2 . 3 ) ] .  Denoting second derivatives by 

r = u x x ,  s = uzt. v = utt, 

it follows immediately that 

7 = Ec-2aT.  = Ec-a-b s .  = EC-2bv. 

Example. Consider the diffusion equation 

or 
q - Dr = 0. 

(5.2.17) 

(5.2.18) 
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Jl’e now determine a stretching transformation (5.2.2) under which (5.2.18) is 
invariant. We have 

4 - DF = E c - b q  - D E ~ - ~ ~ ~  = E C - b ( q  - Dr), 

provided that 
b = 2a. (5.2.19) 

Therefore (5.2.18) is invariant under the stretching transformation 

5 = &, f= p t .  6 = E C U  (5.2.20) 

for any choice of the constants a and c. The similarity transformation is then 
given by 

(5.2.21) 
X 

= tcPa y(z). z = - 
4. 

Substitution into (5.2.17) gives 

z C 
Dy” + -y’ - -y = 0. 

2 2a 
(5.2.22) 

Next let us impose conditions on (5.2.17) and consider the problem on the 
domain z > 0. t > 0, subject to  the initial condition 

u(z,O) = 0, z > 0, (5.2.23) 

and the boundary conditions 

u(0 , t )  = 1. U ( X , t )  = 0, t > 0. (5.2.24) 

Physically, this problem models diffusion into the region z > 0 where the 
concentration u is zero initially and a constant concentration u = 1 is imposed 
at  x = 0. From (5.2.21) it follows that (5.2.23) and the second equation in 
(5.2.24) both translate into the condition 

y(o3) = 0. (5.2.25) 

On the other hand, the first condition in (5.2.24) forces 

u(0, t )  = tc’Zay(0) = 1. t > 0. 

The only possibility that the left side can be independent o f t  is to force c = 0. 
Therefore, the ODE (5.2.22) becomes 

y I /  + - y = o .  z I z > o ,  (5.2.26) 
2 0  

subject to the boundary conditions 

y(0) = 1, y ( x )  = 0. (5.2.27) 
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It is straightforward to  solve (5.2.26) to obtain 

where c1 and c2 are constants of integration. Equation (5.2.28) may be written 
in terms of the error function erf(s) 

as 

The condition y(0) = 1 forces c1 = 1, and subsequently the condition y(30) = 0 
implies that 

1 + c p h E e r f  (x) = 0. 

or c2 = -1/m. The solution to (5.2.26)-(5.2.27) is therefore 

Consequently, the solution to the initial-boundary value problem (5.2.17). 
(5.2.23), (5.2.24) is 

U(X, t )  = 1 - erf 

The preceding discussion centered on an algorithm for determining a group 
of stretching transformations under which a given PDE is invariant, and then 
using the similarity transformation to reduce the PDE to an ODE. There was 
no mention of the underlying reasons for the reduction other than to  say that in- 
variance or symmetry implies simplicity in the equations. The theory goes back 
to the late nineteenth century with the seminal work of S. Lie on the invari- 
ance of ODES under one-parameter groups of transformations. Quite generally, 
invariance leads to simplifications in terms of new variables that are znvariants 
of the family of transformations. Notice. for example, that the quantities defin- 
ing the similarity transformation (5.2.9). namely, ut-c/b and z/ talb,  are both 
invariants of (5.2.2) : 

As mentioned above, the stretching method can be extended to much more 
general transformations. 
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One should not conclude that the similarity method is a universal method 
that is applicable in all cases. Even though a given PDE admits a symmetry of 
the form (5 .2 .2) .  it may be impossible to find constants a, b, and c that force 
u. given by (5.2.9), to satisfy given initial or boundary conditions; that is, aux- 
iliary conditions. especially on finite domains, sometimes break the symmetry. 
However, the method is applicable to many problems, and it is one of the basic 
techniques for solving PDEs on infinite domains. 

EXERCISES 

1. Verify equation (5 .2 .22) .  

2. Use the similarity met,hod to solve the problem 

ut -uzz = 0 ,  x > 0.  t > 0.  

u(x,O) = 0. x > 0 ,  

u,(O.t) = -1, U ( X , t )  = 0.  t > 0.  

Give a physical interpretation of this problem. 

3. Use the similarity method to derive the fundamental solution K ( z , t )  of 
the diffusion equation ut = Du,,. Hznt: Use the condition Jw K ( x ,  t)dx = 
1, t > 0. 

4. A first-order ODE of the form p - f ( x .  y) = 0.  where p = y’(x), is said to be 
absolutely invariant under the stretching transformation 5 = m, Q = cay  
if p - f ( % ? y )  = p - f ( s , y )  for all E in I ,  where I is an open interval 
containing E = 1. In this case prove that the ODE can be reduced to a 
separable equation of the form d s / s  = d r / ( F ( r )  - ar)  for appropriately 
chosen r and s. 

5. Associated with an Ornstein-Uhlenbeck process in stochastic dynamics is 
the PDE 

ut = ;uzz - xu,, 

where u(x . t )  is the probability that a particle starting at  x in (-a,.) at 
time t = 0 stays within [-a, u] for all s with 0 5 s 5 t .  Assume u(-a, t )  = 
u(a, t )  = 0 for all t .  In the long-time limit show that the particle will escape 
the domain [--a% a] with probability 1. Hint: Look at  the steady state. 

6. Consider the spherically symmetric diffusion equation 

ut = !k u,, + -u, ( 3 
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7. 

Find a stretching transformation under which the PDE is invariant and 
show that 

r 
- and 
vmt 

are invariants. Find all solutions of the form u = At-3 /2U(s) .  where s = 
TI&. Find the solution in the case that there is an point source initial 
condition at the origin at time t = 0. The answer is 

u ( r , t )  = e-7-2/4kt 

( 4 d t ) 3 / 2  

which is the fundamental solution of the diffusion equation in three dimen- 
sions. 

Consider the radially symmetric diffusion 

with a unit point source initial condition at the origin given at time t = 0. 
Use similarity methods to obtain the fundamental solution to the diffusion 
equation in two dimensions: 

e - T 2 / 4 k t  u ( r , t )  = - 
4nkt 

5.3 Nonlinear Diffusion Models 

It is clear that nonlinearities can arise in diffusion models from source terms. 
They also originate in other ways, as the next two examples show. 

Example. (Insect Dzspersal) The study of insect and animal dispersal leads to 
a natural nonlinearity in the flux term. If there is an increase in diffusion due 
to population pressure. it is reasonable to assume that the diffusion coefficient 
D is a function of the density u.  Then Fick’s law takes the form 

d = -D(u)uz .  (5.3.1) 

Substituting into the conservation law ut +Qz = 0 yields the nonlinear diffusion 
equation 

U t  - (D(u )u5) z  = 0. (5.3.2) 

Writing out the derivatives in (5.3.2) gives 

U t  - D(u),u, - D(u)uzz  = 0: (5.3.3) 
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so the variable diffusion constant gives rise to  a nonlinear advection term 
-D(u),u, or -(D’(u)u,)u,, which implies a propagation signal of speed 
-D’(u)u,. 0 

Example. (Heat Conduction) For linear heat transfer the governing equations 
are the conservation law for energy density 

(pCT)t + 4,  = 0, (5.3.4) 

and Fourier‘s law for the heat flux: 

4 = -KT,. (5.3.5) 

Here, T = T ( z , t )  is the temperature. and the constants p. C ,  and K are the 
density. specific heat. and thermal conductivity of the medium. respectively 
(see Chapter 1). In many applications where the temperature range is limited, 
the specific heat may be regarded essentially as a constant. However. over 
wide temperature ranges the specific heat is not constant. but rather. is a 
function of the temperature itself; that is, C = C(T) .  In this case (5.3.4) and 
(5.3.5) combine to  give 

(5.3.6) 
K 

P 
(C(T)T)t  - -Tzz = 0 ,  

which is a nonlinear diffusion equation for the temperature T .  0 

Equations (5.3.2) and (5.3.6) are nonlinear diffusion models that have at- 
tracted considerable attention in the literature. The simplest assumptions are 
that the diffusion coefficient D in (5.3.2) and the specific heat C in (5.3.6) are 
power functions, or 

(5.3.7) 

n and 

C ( T )  = CO (g) . cO. constants, n > 0. (5.3.8) 

In a different context, equation (5.3.2), along with the constitutive assumption 
(5.3.7)’ is called the porous medium equation, and it governs the motion of a 
fluid through a porous domain (Section 1.3).  0 

Fourier’s law (5.3.5) may be generalized in yet another direction, as the 
next example shows. 

Example. (Non-Fickian Flux) In Fickian diffusion the flux is proportional to  
the gradient u,, and therefore the flux becomes arbitrarily large when very steep 
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profiles are present. In some cases this unbounded response to large gradients 
seems nonphysical, and a bounded flux may be preferable. In a general case, 
where the flux depends on us, we suppose 

4 = -DF(u,) ,  

where F is a smooth. monotonically increasing function on R with the property 
that it remains bounded at  &m. Specifically, we suppose that / F ( w ) /  5 Ad, 
F ( 0 )  = 0. F’(0) = 1. F’(w) > 0, and F’(w) -+ 0 as w 4 &m. Typical 
functions having these properties are 

W 

d m ’  
F ( w )  = arctanw. F(w) = tanhw. F ( w )  = 

Notice that Fickian flux is then an approximation to the general nonlinear flux 
when the gradients are small. This is because. by Taylor‘s theorem 

We refer to Logan (2001) for examples and references on bounded fluxes. Also 
see Kurganov & Rosenau (1997). 0 

Example. In a low-temperature liquid phase of helium, heat transport is not 
governed by Fourier’s law, but rather by the nonlinear Gorter-Mellink law, 

4 = -KT:l3, K const. (5.3.9) 

Combined with (5.3.4). this gives the nonlinear heat conduction equation 

Tt - k ( T y 3 ) ,  = 0; 

where k = K/Cp and C and p are constants. 0 

In the sequel, and in the exercises, properties of some of these nonlinear 
equations are examined using the similarity method. 

Example. Consider the nonlinear diffusion equation 

ut - (uu,), = 0. (5.3.10) 

which is a special case of (5.3.2) and (5 .3 .7) .  We assume that the constants have 
been scaled out of the problem. To compare the nonlinear equation (5.3.10) 
(Boltzmann’s problem) with the linear diffusion equation, we consider (5.3.10) 
over the domain n: E R. t > 0, subject to  the initial condition of a unit point 
source applied at J: = 0 at time t = 0; that  is, 

= S ( J : ) ,  



5.3 Nonlinear DifFusion Models 227 

with 

and 

(5.3.11) 

u(&m, t )  = 0 ,  t > 0. 

We know from Section 5.1 that the solution to the linear diffusion equation in 
this case is the fundamental solution. To determine a solution to the nonlinear 
problem. we proceed by the similarity method. It is easy to see that (5.3.10) is 
invariant under the stretching transformation 

U .  u = E2b-a jj = E a x  t - b  = E t 

Consequently, the similarity transformation is given by 

X 
= t ( 2 a - b ) I b  y(z) ,  z = -. (5.3.12) 

Rather than immediately determine the ODE for y. we specialize a and b by 
imposing the condition (5.3.11). We have 

t a l b  

(5.3.13) 

This condition can be independent o f t  only provided that a l b  = i. Then the 
similarity transformation (5.3.12) becomes 

u = t - 1 / 3 y ( z ) .  z = xtr1I3.  (5.3.14) 

Substituting into the PDE (5.3.10) yields an ODE for y = y(z): 

3(yy’)’ + y + zy’ = 0. 

This equation may be integrated at  once to give 

3yy’ + zy = const. (5.3.15) 

Because the solution must be symmetric about z = 0 [note uz(O,t) = 0 and 
thus y’(0) = 01, we infer that the constant must be zero. Further. the boundary 
condition u = 0 at  infinity must hold. Hence, from (5.3.15) it follows that we 
may take 

(5.3.16) 

where A is a constant of integration. which can be determined from condition 
(5.3.13). To this end. we obtain 

1 = s, y(z) dz  = 1; y(z) dz = ($43: 
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which gives A = ($)'I3. Therefore, we constructed a piecewise smooth solution 

(5.3.17) 

Time snapshots are shown in Figure 5.3. The solution (5.3.17) to  the nonlinear 

Figure 5.3 Time snapshots of the solution (5.3.17). 

diffusion equation (5.3.10) is fundamentally different from the smooth funda- 
mental solution K(2. t )  to the linear diffusion equation when a point source 
is present at 2 = 0.t = 0. The solution (5.3.17) represents a sharp wavefront 
I I : ~  = At113 propagating into the medium with speed 

Ahead of the wave the concentration u is zero, and at  the front there is a jump 
discontinuity in the derivative of u. The wave slows down as t increases. Murray 
(2002) remarks. for example, that grasshoppers exhibit this type of dispersal 
behavior. In summary, nonlinear diffusion problems can behave quite differ- 
ently from linear problems. even showing wave-like structure with propagating 
wavefronts. 0 

Example. Consider the nonlinear diffusion model 

U U t  - u,, = 0. x > 0, t > 0, (5.3.18) 

subject to auxiliary conditions 

u(2,O) = 0. II: > 0. (5.3.19) 

U ( W , t )  = 0. t > 0. (5.3.20) 

u,(O,t) = -1, t > 0. (5.3.21) 
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This problem is a simplified version of the nonlinear heat conduction problem 
(5.3.6) and (5.3.8) subject to a heat flux condition (5.3.21) imposed at x = 0, 
and the condition that u = 0 initially. and at  infinity. It is straightforward to 
see that (5.3.19) is invariant under the stretching transformation 

5 = p x ,  f= Ebt, 21 = p a  U 

This invariance leads to the similarity transformation 

(5.3.22) 

Restrictions on the constants a and b are determined by the initial and bound- 
ary conditions. Computing u,(O. t )  gives 

t l - 3 u / b  t 
y *‘ u, = (5.3.23) 

and therefore 
u z ( ~ ,  t )  = ti-3a/by’(0) = -1. (5.3.24) 

The left side of (5.3.24) cannot depend on t ,  so a / b  = 5 .  Consequently, the 
similarity transformation (5.3.22) becomes 

(5.3.25) 

(The inclusion of the factor & in the denominator of z makes the subsequent 
calculations more manageable.) Condition (5.3.20) implies that 

y(33) = 0. (5.3.26) 

and the initial condition (5.3.19) can be written 

because z -+ oc as t -+ O+. for each fixed x > 0. Therefore, (5.3.19) yields 
the same condition as (5.3.20). namely (5.3.26). The flux condition (5.3.21) 
becomes 

y’(0) = -&. (5.3.27) 

Finally, substituting (5.3.25) into the PDE (5.3.18) yields the ODE 

yt’ - y(y - zy’) = 0, z > 0. (5.3.28) 

Therefore, the reduction is complete. The PDE (5.3.18) and three auxil- 
iary conditions (5.3.19)-(5.3.21) have been transformed into a second-order 
ODE (5.3.28) subject to the two boundary conditions (5.3.26) and (5.3.27). 
Once the latter boundary value problem is solved for y = y(z) ,  the solution to 
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1.5 

the original problem is given by (5.3.25). We point out that the three original 
boundary conditions coalesced into two conditions on y: this coalescence had to  
occur because only two side conditions are required for the second-order equa- 
tion (5.3.28). Had it not occurred, the boundary value problem for y would be 
overdetermined and the similarity method would have failed. 

The solution to  the nonautonomous equation (5.3.28) is by no means simple. 
and we must resort to numerical methods to  determine y(z). This retreat from 
analytic calculations is common in applied mathematics; it is more typical than 
not that analytic, closed-form solutions cannot be found. and hence numerical 
calculations are required in most problems. In the present case, (5.3.28) together 
with the conditions (5.3.26) and (5.3.27), form a boundary value problem on 
the semi-infinite interval 0 < z < 30, and we can use a shootang method to  de- 
termine a numerical solution. The shooting method can be described briefly as 
follows. Most software packages for second-order differential equations require 
initial conditions. that is. conditions on both y(0) and y’(0). Here the initial 
condition y(0) is not known. Therefore, we compute the numerical solution for 
several values of y(0) .  along with the given value of y’(0), until the numeri- 
cal solution matches the right boundary condition y ( x )  = 0. Of course. the 
shooting method is more delicate on an infinite interval, and one must have 
confidence that a unique solution to  the boundary value problem exists in the 
first place. See the Exercises for verification. Following the procedure described. 
we found that y(0) = 1.5111; the solution to  the boundary value problem for y 
is plotted in Figure 5.4. 

0‘ 5 
- 

10 

Figure 5.4 Plot of the numerical solution of the nonlinear equation (5.3.28) 
subject to the boundary conditions (5.3.26) and (5.3.27). 

The solution to  the original PDE (5.3.18) subject to  (5.3.19)-(5.3.21) is 
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u = u(x. t )  given by (5 .3 .25) .  For each fixed time to. the solution profile is 

which is the profile y in Figure 5.4 scaled horizontally by the factor 1/&tAl3 
and then amplified by the factor t ; l3. Hence, the time snapshots of the solution 
are geometrically similar. from whence the terminology szmzlarzty method can 
be justified. We remark that the class of self-similar solutions to  a given problem 
is invariant itself; that  is, solutions are mapped to  solutions under the stretching 
transformation. 0 

We present one additional example. leaving many of the detailed calcula- 
tions to  the reader. 

Example. (The Porous Medium Equation) Consider 

Ut  = ( U r n ) z z ,  (m 2 2 )  

Assuming a transformation 

b t= E t .  3 = Eax, U = E  u ,  

we find invariance when b - 1 = mb - 2a,  and invariants u/tb and x / t a .  Taking 

u = t b U ( Z ) ,  z = x t r a ,  

we find 
-azU’ + bU = (Urn)”. 

Choosing b = -a, we can integrate this equation to  get 

(Urn)/ = -azU, 

where we have set the constant of integration equal to zero. Solving this last 
equation then gives the one-parameter family of solutions 

If we pick m = 3 and a = 1; then we obtain 

Under a point source initial condition, u(x,O) = 6(x), the signal propagates 
outward in spacetime with support between the straight lines x = *3Kt with 
u = 0 for x < -3Kt and x > 3Kt. The reader is invited to  draw several 
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solution profiles, which are spreading arcs of circles with decreasing amplitude 
as time increases, in the region where the support lies. 0 

Finally. the similarity method discussed in this and preceding sections can 
be extended to  more general transformations. For example, traveling wave so- 
lutions of the form 

u = y ( z ) .  z = x - c t  (5.3.29) 

are actually self-similar solutions and originate from an invariance property of 
the defining PDE under certain one-parameter families of transformations. We 
already observed (see, e.g., the Korteweg-deVries equation in Section 1.5) that 
a transformation of the form (5.3.29) reduces some PDEs to  an ODE for y(z). 

Example. It is easily checked that the PDE 

U t  = u,, + 2121, 
is invariant under the one-parameter family of transformations 

- 
Z = X - & t ,  t = t ,  u = u + & ,  

t ,  U +  - .  
and that the invariants are 

X 

t 
Taking 

X 

Z 
u = F ( z )  - -, z = t .  

1 
the PDE reduces to 

F ' ( z )  + - F ( z )  = 0. 
z 

which is easily solved to obtain similarity solutions F ( z )  = C / z .  Thus 

c-2 
t 

u ( x . t )  = - . n  

EXERCISES 

1. Consider the differential equation (5.3.28) subject to the boundary condi- 
tions (5.3.26) and (5.3.27). Show that the transformation 

u: = z y. 2 v = 22(y - zy') 

reduces (5.3.28) to  a first-order autonomous equation 

dv v(2 - w) - - - 
dw 3 w - v '  

and show that the solution trajectory in the wu plane is along a separatrix 
connecting the origin to a saddle point at w = 2. v = 6. Thus show that y 
behaves like y N 212' as z + m. 
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2 .  Use the similarity method to analyze the nonlinear diffusion problem 

U t  - = 0. 5 > 0 ,  t > 0. 
u5(0.t)  = -1, t > 0, 

u(5. 0) = 0, z > 0 ,  u(o0. t )  = 0. t > 0. 

Show that a similarity transformation is given by u = &y(z). z = x/& 
and that the problem reduces to  

3y’)”’’ + zy’ - y = 0, z > 0, 
y’(0) = 1. y(0c)  = 0. 

Use the transformation w = zyl/’ , v = ~ ( y ’ ) l / ~  to reduce the problem to a 
wv phase plane. and argue that the unique trajectory is along a separatrix 
connecting two critical points. Compute y(0) and show that y(z) N C Z - ~  
as z -+ 30, for some constant C.  and hence for fixed t .  that 

as z + 30. 
At3/2 

5 2  
u(5. t )  N - 

Sketch a graph of y = y(z).  

3. Use the similarity method to  find an analytic solution to  the problem 

X U t  - u,, = 0, 5 > 0. 

u(5,O) = 0. 2 > 0. 
u(m. t )  = 0,  t > 0,  

u,(O,t) = -1. 

t > 0 ,  

t > 0.  

4. The second-order ordinary differential equation 

y” - G(x.  y, y’) = 0 

is znvarzant under the one-parameter family of stretching transformations 

%=Ex. g = & y  b 

if there exists a smooth function f ( ~ ) ,  f(1) = 1. for which 

- (3% V , F )  = P ( E ) ( T  - G(z .y ,p ) ) .  

where r = y” and p = y’. Prove that the second-order equation for y can 
be reduced to a first-order equation of the form 

dv - g(v ,  W) - ( b  - l ) ~  
dul v - bw 

- - 

where w = y/xb and u = y‘/xb-’, and g is a fixed function of v and 20. 

(The variables w and v are called Lze varzables, and the wv plane is called 
the Lze plane, after S. Lie.) 
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5 .  Consider the nonlinear PDE 

2 
U U t  + u, = 0. 

Find the simplest, nontrivial stretching transformation under which the 
PDE is invariant, determine the similarity transformation. reduce the PDE 
to an ordinary differential equation, and solve to find the self-similar solu- 
tions. Solutzon: u ( z ,  t )  = Cexp(4x2/t) .  

6. Consider the porous medium equation 

ut = (urn),,, m > 2. 

Discuss the behavior of similarity solutions of the form u = t l / (m-l)y(z) ,  
where z = x / t .  

7. (Chapter 4 is required for this exercise.) A metallic rod of constant cross 
section initially a t  rest and occupying z > 0 undergoes longitudinal vibra- 
tions. The governing equations are 

Here. t is time, h is a spatial coordinate attached to a fixed cross section 
with h = z at t = 0. v = v(h, t )  is the velocity of the section h,  e = e(h ,  t )  is 
the strain, or the lowest order approximation of the distortion at  h;  Y > 0 
is the stiffness (Young’s modulus). and po is the initial constant density. 
Beginning at t = 0 the back boundary ( h  = 0) is moved with velocity -t 
[i.e.. a(0 . t )  = -t, t > 01. Use the method of stretching to  determine the 
solution and the shock path. 

8. The acoustic approximation equations are given by 

V t  + UU, = 0. U t  - v, = 0, 

What is the stretching transformation under which the equations are in- 
variant? Find all solutions of the form u = U ( z ) ,  %‘ = V ( z ) ,  where z = z / t .  

5.4 Reaction-Diffusion; Fisher’s Equation 

Many natural processes inherently involve the mechanisms of both diffusion 
and reaction, and such problems are often modeled by reactaon-diffusaon (R-  
D )  equations of the form 

U t  - Du,, = f(u), (5.4.1) 
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where f is a given nonlinear function of u. In Section 1.3 we introduced, for 
example, the Fisher equation 

(5.4.2) 

to model the diffusion of a species (e.g., an insect density u) when the reaction 
or growth term is the logistics law. Here, D is the diffusion constant, and r and 
K are the growth rate and carrying capacity. respectively. R-D equations have 
become one of the most important classes of nonlinear equations because of 
their occurrence in many biological and chemical (e.g.. combustion) processes. 

The Fisher equation is a prototype of R-D equations in one dimension, and 
we use it as a vehicle to introduce three mathematical techniques often em- 
ployed to  study R-D equations. The first is the question of existence of wave- 
front solutions, the second is a singular perturbation technique to determine 
the form of the wavefront. and the third is the stability of wavefront solutions 
under small perturbations of the waveform. 

Let us rewrite the Fisher equation in dimensionless form by selecting di- 
mensionless variables 

Therefore. ii measures the population relative t o  the carrying capacity K. f 
measures time relative to the growth rate T .  and 5 measures distances relative 
to  m. which is a diffusion lengthscale. In these variables Fisher's equation 
becomes 

Uf - u,, = U ( l  - 77). 

The constants scaled out of the problem. Now. to  ease the notation we drop 
the overbars on the variables and study Fisher's equation in the form 

U t  - u,, = u(1 - u). (5.4.3) 

5.4.1 Traveling Wave Solutions 

We investigate the question of whether equation (5.4.3) admits traveling wave 
solutions (abbreviated TWS) of wavefront type. To review, these are solutions 
of the form 

u(x.t) = U ( z ) .  where z = x - ct,  (5.4.4) 

where c is a positive constant and U ( z )  has the property that it approaches 
constant values a t  z = *m. The function U representing the waveform, and to 
be determined, should be twice continuously differentiable on R. A priori. the 
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wave speed c is unknown. but must be determined as part of the solution to 
the problem. Substituting (5.4.4) into (5.4.3) yields the following second-order 
ordinary differential equation for U ( z )  

-cU' - U" = U(1-  U ) ,  -m < z < x. (5.4.5) 

where prime denotes the derivative d l d z .  This equation cannot be solved 
in closed form, and the best approach to  analyze the problem is in a two- 
dimensional phase plane. (See the Appendix at the end of the chapter.) In the 
standard way. this nonlinear differential equation can be reduced to  a pair of 
first-order equations by introducing a new dependent variable V defined by 
V = U'. Then we obtain the autonomous system 

U' = v, 
v' = -cv - U ( 1 -  U ) .  (5.4.6) 

The critical points of this system in the UV phase plane are P:(O,O) and Q:(l.O). 
The Jacobian matrix of the linearized system is 

J ( U , V )  = ( O l )  
2 U - 1  -c 

It is easy to check that the eigenvalues of J ( 1 . 0 )  are 

which are real and of opposite sign; therefore. (1.0) is a saddle point. The 
eigenvalues of J ( 0 , O )  are 

-c* d'2=-Z 
2 

A* = 

Therefore (0.0) is a stable node if c2 2 4 (the eigenvalues are real and both 
negative), and (0 ,O)  is a stable spiral if c2 < 4 (the eigenvalues are complex with 
negative real part). In phase space the parameter z must tend to  +oc or --x as 
the path enters or exits a critical point. Therefore, for the solution to  approach 
constant states at infinity, we must show that there is a path connecting P and 
Q .  Because P is stable and Q is unstable. the path can only connect Q to P .  
In summary. the path connecting Q to P. if it exists. is described by functions 
U = U ( z ) ,  V = V ( z ) .  with boundary conditions U + 1 as z --+ --x. and U + 0 
as z + +x. The problem of showing that there is a TiVS has been put in the 
context of finding a path connecting two critical points in the phase plane. 

\Then (0.0) is a spiral, paths oscillate and U becomes negative. Because 
we want only physically meaningful solutions (U is a population density), we 
reject this case. Therefore we seek a unique path connecting the saddle point Q 
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at 2 = --x to  the stable node P at  +m. Further, because Q is a saddle point, 
such a path must be one of the unstable manifolds exiting Q. 

To draw a phase diagram we note that the nullclines consist of the 
U axis, where the vector field points directly downward. and the parabola 
V = - ( l /c )U( l  - U ) ,  where the vector field points to the left. The diagram is 
shown in Figure 5.5. Actually. the fact that  the separatrix, or unstable mani- 
fold. leaving Q must enter the origin requires some proof, which we leave as an 
exercise. The separatrix connecting Q to P represents a monotone decreasing 
TWS whose profile is shown in Figure 5.6 for the case c 2 2 .  

Figure 5.5 Phase portrait for (5.4.6) when c 2 2 .  

Figure 5.6 
corresponds to the separatrix connecting Q to P in Figure 5.5. 

Traveling wave solution to Fisher’s equation when c 2 2 .  This 

Theorem. For each c 2 2 there exists a unique TLYS u(z, t )  = U ( x  - c t )  solu- 
tion to equation (5.4.3) with the properties that U is monotonically decreasing 
on R. U(-m) = 1. U ( m )  = 0. and U ’ ( + x )  = 0. 
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5.4.2 Perturbation Solution 

We showed the existence of a TWS by appealing to a geometric argument in a 
phase plane, but we do not have a formula for the solution. Using a perturbation 
method we can obtain an approximation of the solution in the case c 2 2 .  A 
perturbation method is an attempt to find an expansion for the solution of a 
problem in terms of a power series in some small parameter. 

1.Z‘e seek an approximate solution to  the boundary value problem 

U” + cu/ + U ( 1 -  U )  = 0, cx, < z < +x, (5.4.7) 

U ( - X )  = 1. U ( + x )  = 0. (5.4.8) 

where c 2 2 .  Because equation (5.4.7) is autonomous (independent of explicit 
dependence on z ) ,  if U ( z )  is a solution. then so is U ( z  + zo) for any fixed 
constant zo. In other words, the solution curve may be translated to  the left or 
right, and we still obtain a solution. Consequently, we can take 

U ( 0 )  = ;. (5.4.9) 

because the value at z = 0 can be chosen to be any number in the range of U .  
Now we identify a small parameter in the problem by taking 

1 
E = - < 0.25. 

c2 - 

Then the differential equation (5.4.7) becomes 

&ul’ + u‘ + &L’( 1 - U )  = 0. (5.4.10) 

In (5.4.10) the dominant term is U’ when E is small. and the equation is. 
approximately, U’ = 0. which has constant solutions; thus this approximation 
holds for large z since li = 0 for z large and positive. and U = 1 for z large 
and negative. In the large interval where U is changing from 1 to 0. a different 
dominant balance must occur. Therefore. we shrink this large interval to an 
order 1 interval by introducing the change of variables 

(5.4.11) 

The differential equation (5.4.10) then becomes 

Eg’I+g’+g( l -g)  = o ,  (5.4.12) 

where prime denotes d/ds.  Thus. in terms of the order 1 variable s. the last two 
terms in (5.4.12) dominate the second derivative term. The auxiliary conditions 
(5.4.8) and (5.4.9) translate to 

g ( - x )  = 1. g(0) = ;. g(+oc) = 0. (5.4.13) 
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TO find an approximate solution of (5.4.12)-(5.4.13) we assume a perturbation 
series 

g ( s )  = g o ( s ) + E g 1 ( s ) + E 2 g 2 ( s ) + . . .  * (5.4.14) 

which is an expansion in powers of the small parameter E .  and where the coeffi- 
cients go. 91, g2, and so on. are to be determined. Substituting (5.4.14) into the 
differential equation (5.4.12) and auxiliary conditions (5.4.13). and then setting 
the coefficients of the powers of E equal to  zero gives the following sequence of 
problems for go. 91. and so on: 

gh = -go(l -go). go(0) = $, go(-m) = 1, go(+m) = 0. (5.4.15) 

9: = -g1(1 -90) +g:, (5.4.16) g1(-X) = gI(0) = g1(+M) = 0 , .  . . . 

Equation (5.4.15) can be solved to  obtain 

go(s) = (1 + es ) - ' .  (5.4.17) 

which meets all three boundary conditions in (5.4.15). Then (5.4.16) can be 

(5.4.18) 

Consequently, in terms of the original variables U and z ,  and the wave speed 
c. the expansion (5.4.14) becomes 

Therefore. we have obtained an approximate, asymptotic form of the traveling 
wave U ( t )  when c 2 2 .  The approximation is most accurate for large c and least 
accurate for c = 2. It can be shown that the O(l /c4)  term is uniform for all 
t E R (i.e., the first two terms in the expansion give a uniform approximation 
that is valid for all 2 ) .  Actually. the first term. (1 +eZ/ ' ) - ' .  is remarkably close 
(within a few percent) to a numerically computed solution. even in the case 
c = 2. 

Those familiar with perturbation methods recognize (5.4.10) as a standard 
singular perturbation problem because the small parameter E multiplies the 
highest derivative. However, because the boundary conditions at  infinity are 
automatically satisfied by the scaled problem (5.4.12), equation (5.4.10) is re- 
ally just a regular perturbation problem, and the leading order term in the 
expansion gives a uniformly valid approximation on the entire domain. 
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5.4.3 Stability of Traveling Waves 

One of the most important and interesting topics in applied mathematics is the 
stability of a given state. For example. the traveling wave solution for Fisher's 
equation represents a state. realized by a surface u = U ( x  - ct) defined over 
spacetime. IVe say that a state is asymptotacally stable if a small perturbation 
imposed on the state a t  some time (say, t = 0) eventually decays away and the 
system returns to its original state. We now show that the TWS to Fisher's 
equation is asymptotically stable to  small perturbations in the moving coordi- 
nate frame of the wave. subject to the condition that the perturbation vanish 
outside some closed interval. 

We first write Fisher's equation (5.4.3) in a moving coordinate frame by 
changing variables to 

t = t ,  z = x - c t ,  

where c 2 2. Then (5.4.3) becomes 

ut - u,, - cu, = u(1 - u). (5.4.20) 

As is common practice. we are reusing the symbol u to denote the dependent 
3 variable as a function o f t  and z .  Lye obtained a wavefront solution U ( z )  

(5.4.20). so we consider solutions of the form 

u = U ( z )  + V(z. t ) .  (5.4.2 

where V is a small perturbation of the state U ( z ) .  We assume that 

V ( z , t )  = 0 for /zl 2 L.  for some L > 0. 

which means that the perturbation vanishes outside some bounded interval 
in the moving frame. Figure 5.7 shows a typical perturbation V on the wave 
U ( z ) .  Lye further suppose that V ( z .  O ) ,  the perturbation at  time t = 0, is given. 
Substituting (5.4.21) into (5.4.20) gives a PDE for the perturbation. namely. 

v, - v,, - C V ,  = (1 - 2U)V - v2. (5.4.22) 

Equation (5.4.22) is called the nonlanear perturbatzon equatzon, and it governs 
the small deviations V. However, because V is small, we may neglect the V- 
squared term in favor of the remaining lower-order terms. Then we obtain the 
ltnearzzed Perturbation equatzon 

v, - v,, - cv, = (1 - 2U)V. (5.4.23) 

\Ye look for solutions of the form 

~ ( z .  t )  = c (z )ePAt .  (5.4.24) 
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Figure 5.7 
small perturbation V(z, t )  in the moving coordinate frame. 

naveling wave solution to Fisher’s equation with an imposed 

Substituting (5.4.24) into (5.4.23) yields a second-order equation for the spatial 
part ~ ( z )  

Y” + c d  + [A + 1 - 2U(z)] = 0, (5.4.25) 

and the boundary condition on V implies 

Y ( - L )  = v ( L )  = 0. (5.4.26) 

Equations (5.4.25) and (5.4.26) form an eigenvalue problem for v ( z ) ,  where the 
growth factor X is interpreted as an eigenvalue. If there exist negative eigenval- 
ues. (5.4.24) implies that the perturbation V will grow in time and the TWS 
U ( z )  is unstable. However. if the only eigenvalues to (5.4.25)-(5.4.26) are posi- 
tive. V will decay (exponentially) to zero as t + m, and U ( z )  is asymptotically 
stable. 

To solve the eigenvalue problem (5.4.25)-(5.4.26) we apply the Liouville- 
Green transformation to eliminate the first derivative term and put the problem 
in normal form. In the present case the transformation is 

u ( z )  = w ( z ) e - c z / 2 .  (5.4.27) 

Then 

(5.3.28) 

w(-L)  = w(L) = 0. (5.4.29) 

A lot is known about boundary value problems in this form. For example, if 
q ( z )  > 0 and q as contanuous, the ezgenvalues X of the boundary value problem 
2 ~ 9 ”  + (A - q(z))uj = 0. w(-L) = w(L) = 0,  on the znterval -L < z < L.  are 
all posztzve. In our case 

C2 

4 
2 U ( z )  + - - 1 2 2 U ( z )  > O for c 2 2 .  
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and consequently, the eigenvalue problem (5.4.28)-(5.4.29). and hence (5.4.25)- 
(5.4.26), has positive eigenvalues. giving the asymptotic stability result. 

In summary, we showed that a small perturbation of finite extent, imposed 
in the traveling wave frame on the waveform U ( z ) ,  decays as t + cc, and the 
system returns asymptotically to its original state. This type of small perturba- 
tion argument is common in applied mathematics. and the stability calculation 
for Fisher's equation is representative of many of them. 

5.4.4 Nagumo's Equation 

Another important equation in mathematical biology is Nagumo 's equatzon. 
which arises in the study of electrical impulses along nerves. But we can think 
of this equation ecologically as a model of growth-diffusion where the growth 
rate is given by the Allee model. f(u) = u(u - a ) (  1 - u) (quantities are scaled), 
where a < and 1 is the carrying capacity. Nagumo's equation is 

ut = u,, + u(u - a) ( l  - u ) .  (5.4.30) 

The ,411ee effect is a generalization of the logistic law with negative growth at  
small population densities below a value a. An interpretation is that  at small 
densities animals are less able to find mates, resulting in negative growth. 

We look for wavefront solutions of the form u = U ( z ) ,  where z = 2 - ct. 
Substituting into (5.4.30) and then reducing the resulting second-order ODE 
for U to  a system, we obtain 

u' = v, (5.4.31) 

v' = -cv - U(U - a) ( l  - U ) .  (5.4.32) 

There are three equilibria lying on the U axis in phase space: ( O , O ) ,  (a.  0). 
and (1.0). The Jacobian matrix is 

It is easy to show that J(O.0) and J(1,O) have real eigenvalues of opposite 
sign. and therefore (0.0) and ( 1 , O )  are saddle points. The matrix J ( a , O )  has 
negative trace and positive determinant, and so ( a ,  0) is asymptotically stable. 
The eigenvalues of J ( a ,  0) are 

X = --c k Jc2 - 4a( 1 - a)>  . ( 
and so we conclude that ( a . 0 )  is a spiral if c2 < 4a(l - a )  and a node if 
c2 > 4a(l  - a ) .  A phase diagram is drawn in Figure 5.8 in the spiral case. For 
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Figure 5.8 Phase plane diagram for Nagumo’s equation. 

a TWS to exist with constant states at infinity, there must be an orbit that  
connects two critical points. 

We can find orbits by dividing the two equations in (5.4.31)-(5.4.32) to  
obtain 

dV 
dU V 

CV - U ( U  - ~ ) ( l -  U) _ -  - 

Careful examination reveals that V has the form V = bU(1 - U ) ,  where b is a 
constant. Substituting gives 

Therefore we know the wave speed. We can solve the equation 

V = U’ = bU(U - 1) 

using separation of variables to  obtain 

(5.4.33) 

which is the traveling 
half-plane connecting 

EXERCISES 

wave corresponding to  the heteroclinic orbit’ in the lower 
( 1 , O )  to (0,O). 

1. Show that the traveling wave solution U ( z )  obtained for Fisher’s equation 
in the case c 2 2 has the property that the slower the wave moves (i.e., the 
smaller c is), the st,eeper the wavefront. 



244 5. DifFusion Processes 

2 .  Find an exact solution to Fisher's equation (5.4.3) of the form 

To what wave speed c does this solution correspond? 

3. Consider the nonlinear R-D equation 

ut - (uuz)z  = u(1 -  u). 

Investigate the existence of wavefront-type TWS of speed c = 1/&. Show 
that solutions exist of the form 

u = U ( z )  = 1 - exp ( -- ;). z < o :  u = o .  z > o  ( z = x - c t ) .  

4. Equilibrium solutions u = u ( z )  to Fisher's equation on the domain 0 < 
x < a with Dirichlet boundary conditions satisfy the nonlinear boundary 
value problem 

u l /+  u(1  - u) = 0. 0 < x < a;  u(0)  = .(a) = 0. 

(a) Show that nontrivial. positive. steady solutions exist provided that 
a > T. Hznt: In the phase plane show that 

where urn = u(a/2)  = maxu. 

(b) For 0 < a - T << 1 show that the nontrivial solution takes the form 
u = :(a - ~ ) s i n ( ~ x / a )  + O ( ( a  - T ) ' ) .  Hint: Rescale the problem to 
obtain 

and thenassumeu(y) = ~ ~ ( ~ ) + E U ~ ( Y ) + E ~ U Z ( ~ ) + . . . .  where& = a - T .  

(c) Using the hint in part (a), show that u, N 1 - e-a/2 as a + 30. 

5 .  Derive equation (5.4.33). which is the TWS to Nagumo's equation. 

6. Determine the existence of smooth TWS of the problem 

ut = uzz  + f(.), 
where 

f ( u )  = u if o 5 u 5 +. f ( u )  = 1 - u if + < u 5 1, 

and u + 1 as t -+ -30 and Y -+ 0 as z + +x. 



5.5 Advection-DifFusion; Burgers’ Equation 245 

7 .  Find all traveling wave solutions u = U ( z ) .  z = x - ct. to the problem 

1 2  (u  + p ) t  = uxx - u,. 

with the property U(-m) = 1. U ( w )  = 0, U ( 0 )  = $. 
8. Find all traveling wavefront solutions to the reaction-advection equation 

ut = -u, + u(1 -  u). 

9. Consider the nonlinear advection-diffusion equation 

ut = Duz, - g(u)x.  

(a) Given g ( u )  = u. show that there are no nonconstant wavefront solu- 
tions. 

(b) Assuming that g is strictly convex (g ” (u )  > 0, or g”(u) < 0). show 
there exists a wavefront solution with constant states a t  infinity, and 
find an implicit formula for the solution. 

10. Consider the system 

ut = Du,, - U ,  - 3 ~ t .  S t  = - S  + f (u) .  

where f ( 0 )  = 0, f’ > 0. f ”  < 0. and D ,  D > 0 .  Show that a wavefront 
solution exists with s ,  u -+ 0 as x - +m. and u -+ 1 as x + --x. What 
is s(-m)? 

5.5 Advect ion-Diffusion; Burgers’ Equation 

The prototype for nonlinear advection-diffusion processes is Burgers ‘ equatzon: 

U t  + uuX - Du,, = 0 .  (5.5.1) 

The term uu, represents a nonlinear advection or transport term, and Du,, is 
a Fickian diffusion term. On one hand. the advection term has a shockzng-up 
effect on an initial waveform. while the diffusion term attempts to  smear out the 
solution. Thus (5.5.1) is a balance between these two effects. Equation (5.5.1) is 
often taken as the analog equation of compressible, viscous fluid flow; in that 
case the diffusion term is interpreted as a model viscosity term. which is also 
a dissipative term that tends to  smear out signals. In Section 4.5.1 we derived 
Burgers‘ equation in a weakly nonlinear asymptotic limit of governing equations 
of viscous flow. 
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5.5.1 Traveling Wave Solution 

The competition between the advection term and the dissipative term is best 
observed by deriving traveling wave solutions. Therefore. we look for twice 
continuously differentiable solutions of (5.5.1) of the form 

u ( r .  t )  = U ( z )  z = z - ct. (5.5.2) 

where the wave speed c is to be determined and U approaches positive constant 
values u1 at z = +x. and u2 at z = --x. respectively; we assume u1 < u2. 
Substituting (5.5.2) into (5.5.1) gives an ODE for u = U ( z ) ,  

-cU' + UU' - DU" = 0. 

where prime denotes d l d z .  This equation can be integrated immediately to  
obtain 

-cU + ?jU2 - DU' = A, (5.5.3) 

where A is a constant of integration. Writing (5.5.3) in standard form gives 

U' = D- ' ( ;U2  - CU - A) .  (5.5.4) 

To evaluate A and c we take the limit as z -+ --co and z -+ 30 in (5.5.4) to  get 

Hence 
(5.5.5) 

which gives the wave speed as the average of the two known states at infinity. 
Therefore. the constant of integration A is given by 

The differential equation (5.5.4) therefore becomes 

-2DU' = (U - u ~ ) ( u : ,  - U). (5.5.6) 

Separating variables and integrating gives 

U 2  - u 
In -. 

D U ~ - U I  U - u l  
2 

- 
z 

where the constant of integration is chosen so that U ( 0 )  = c. Note that c is 
the average value of u1 and u2, and because (5.5.6) is autonomous, U can 
be chosen to be any value between u1 and u2 (solutions are translationally 
invariant). Solving for U then gives the wave profile 

u2 - u1 
U ( z )  = u1 + 

1 + exp [(u2 - ul)z/2D] 
(5.5.7) 
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Z I 

Figure 5.9 Traveling wave solution (5.5.7) to Burgers' equation. 

where z = X - c t  is a moving coordinate. A plot of (5.5.7) is shown in Figure 5.9. 

In summary. we constructed a positive monotonically decreasing TWS that 
approaches constant states at infinity. The speed c of the wave is the average 
value of the states u1 and u2 at infinity. A waveform of this shape would break 
and form a shock if the diffusion term were absent: its presence prevents the 
deformation. and the advection term and diffusion term are exactly balanced. 
The diffusion coefficient D affects the shape of the waveform: if D is large. 
there is a greater diffusive effect and the wave has a shallow gradient. On 
the other hand, if D is small. the gradient is steep. Analytically, we can see 
this as follows. The thickness of the wave (5.5.7) is defined to  be the quantity 
(Q--u~) /  max Iu'(z)l. which one can easily compute to  be ~ D / ( u ~ - u I ) .  because 
the maximum derivative occurs at z = 0. Because the profile in Figure 5.9 
resembles the actual profile in a real shock wave when D is small, the TWS 
(5.5.7) is usually called the shock structure solution; in an actual. physical 
shock wave (not the mathematical shock wave defined by a discontinuity as in 
Chapter 3),  the tendency of a wave to  break is balanced by viscous effects in 
the region where the steep gradients occur. We discuss the limiting behavior 
as D + 0 in the sequel. 

5.5.2 Initial Value Problem 

Now we change gears and address the initial value problem for Burgers' equa- 
tion: 

ut + U U ,  - Du,, = 0; x E R, t > 0, (5.5.8) 

u(z ,  0) = uo(.), X E R. (5.5.9) 
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Amazingly enough. this problem can be reduced to  the initial value problem for 
the linear diffusion equation and can be solved analytically. The reduction is 
accomplished by the Cole-Hopf transformation, a change of variables discovered 
independently by J.  Cole and E. Hopf in the early 1950s. First, we introduce a 
(potential) function w defined by the equation 

u = w,. (5.5.10) 

Then (5.5.8) becomes 

which can be integrated immediately with respect to x to  obtain 

tL.1t + - Dw,, = 0. (5.5.11) 

Next introduce the dependent function L? defined by 

w = -2Dlnv. (5.5.12) 

It is easy to calculate the derivatives of w and substitute them into (5.5.11) to  
obtain 

0 = wt + 1ul2 2 x  - Dw,, = - 2 D v - ' ( ~ t  - Dv,,). 

Therefore. the transformation 

2Dv, u = --. 
0 

which is a combination of (5.5.10) and (5.5.12), reduces (5.5.8) to 

(5.5.13) 

vt - Dv,, = 0. (5.5.14) 

which is the diffusion equation. Equation (5.5.13) is the Cole-Hopf transfor- 
matzon. Also, via (5.5.13). the initial condition (5.5.9) on u transforms into an 
initial condition on u.  Lye have 

~D.LI,(x. 0) 
u(z .0)  = uo(x) = - 

v ( x ,  0) 

Integrating both sides of this equation yields 

v(z.0) = vg(x) = exp ( -- ;D ~ x u o ( u ) " v )  . (5.5.15) 

Now. the solution to the initial value problem (5.5.14)-(5.5.15) for the diffusion 
equation is 
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Consequently, from (5.5.13), we obtain 

U = -- - - (5.5.16) 

where vo(E) is given by (5.5.15). It is now straightforward to see that the 
solution (5.5.16) of the initial value problem can be written as 

2Dv, &[(x - 0/tlvo(E)ex~[-(X - 6)'/4Dt]dx 
I3 J, v o ( ~ )  exP[-(x - w 4 ~ t 1  d~ 

(5.5.17) 

where 

(5.5.18) 

In summary, we found an analytic expression for the solution of the initial value 
problem associated with Burgers' equation. 

EXERCISES 

1. Show that the solution to the initial value problem 

U t  + U U ,  - Dux,  = 0, x E R. t > 0. 

u(x .  0) = U if x < 0: U ( Z ,  0) = 0 if x > 0. 

can be written 

exp[U(z - ~ t / 2 ) / 2 ~ ] e r f c  [ - x / ( 2 6 ) ]  

erfc [(x - ~ t ) / ( 2 6 ) ]  
c5-l = 1 + , 

where erfc = 1 - erf is the complementary error function. Discuss the 
behavior of the solution for small D.  Sketch time snapshots of the solution. 

2. (a) Find an equilibrium solution u = u*(x) to  Burgers' equation ut+uu, = 
u,, on the interval 0 < x < a subject to  the boundary conditions u = 0 
at  x = 0 and u= 1 at x = a. 

(b) Let u(x , t )  = u*(x) + U(x,t), where U is a small perturbation of the 
equilibrium solution. and where U = 0 at x = 0 .a .  Show that the 
linearized perturbation equation for U is given by 

Ut = U,, - (u*U),. 0 < x < a. t > 0. 

(c) By assuming solutions of the form U = $(x)ex t .  $(O) = o ( a )  = 0. show 
that X must be negative and therefore u* is asymptotically stable to  
small perturbations. Hznt: LIultiply the @-equation by 0 and integrate 
from x = 0 to  x = a .  
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5.6 Asymptotic Solution to Burgers’ Equation 

In the preceding section we obtained a formula [equations (5.5.17)-(5.5.18)] 
for the solution to the initial value problem for Burgers’ equation. We want to  
understand certain aspects of this solution. It is common practice in nonlinear 
partial differential equations to examine problems. or solutions to  problems. in 
various limits. For example, if a parameter is present, one can inquire about the 
behavior in the limit of small or large values of the parameter. Or, one may ask 
about the long-time behavior of the solution. The first problem we consider is 
the behavior of the solution to  the initial value problem for Burgers’ equation 
in the limit of small values D of the diffusion constant. Intuitively, we expect 
the solution to approach the solution to the inviscid Burgers’ equation in the 
limit of small D ,  and we show that our intuition is correct. We then investigate 
how Burgers’ equation propagates a delta function (i.e.. a point source), both 
in the limit of small D and in the limit of large D .  

To determine the solution in specific cases it is necessary to  approximate 
the integrals in formula (5.5.17) by asymptotic formulas [see, eg. .  Murray 1984 
or Bender & Orszag 19781. We state one of the key results. Laplace’s theorem. 
and give a heuristic proof. 

Theorem. (Laplace)  Consider the integral 

(5.6.1) 

where g is continuous and h is in class C2.  Let a be a single stationary point 
of h,  or h’(a) = 0, and assume that h”(a) < 0. Then 

f ( s )  N g(u )esh (a )  as s + m. 
s h‘l ( a )  

(5.6.2) 

Formula (5.6.2) is an estimate giving the dominant behavior of the integral 
(5.6.1) for large values of the parameter s. We can observe instantly that the 
integrals in equation (5.5.17) have the form (5.6.1) if we make the identification 
s = 1/D, h(<) = -G(<. 5.  t ) /2 ,  and g(<) = ( x - < ) / t  in one case [the numerator 
of (5.5.171, and g(<) = 1 in the other case (the denominator of (5.5.17)). Then 
(5.6.2) gives the behavior as D + 0. 

To demonstrate the validity of (5.6.2) in a special case we expand g and h 
about < = a. using Taylor’s formula to get 

s(E) = s ( a )  + s’(a)(E - a )  + . . . 1 

h(<) = h ( a )  + h’(a)(< - U) + ih”(a) (< - a ) 2  + . . . 
= h(a) + $”(a)(< - a)* + .  . . . 
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(We are assuming a higher degree of smoothness than stated in the theorem; 
as remarked, our argument contains a degree of hand-waving.) Then. keeping 
only leading order terms, we obtain 

33 

f ( s i  d a l e  s h ( a )  1, e s h ” ( a ) ( f - a ) 2 / 2  d<. 

Making the change of variables 

gives 

which gives (5.6.2). 

Using the result of Laplace’s theorem we can estimate the integrals in equa- 
tion (5.5.17). Making the identification mentioned above. we obtain 

where < = a is a single stationary point (a maximum) of G, regarded as a 
function of < with parameters x and t .  Later we deduce the consequences of 
the assumption that G has a single stationary point. From (5.5.18) we get 

(’ - ‘I. 
t 

1 
t 

G”([, 2 .  t )  = ub(<) + -. GI(<. 2. t )  = uo(t) - ~ 

Furthermore 

- c e - G ( < . z . t ) / 2 D  d< E e - G ( a . z , t ) / 2 D  

t 

Therefore, from (5.5.17) in Section 5.5, we conclude that 

2 - a  
u(2 , t )  N - as D + 0, 

t 
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t Y  

Figure 5.10 

where a is the single stationary point of G and is given by uo(a) = (z - a ) / t .  
Therefore. in this case we can write the solution to  the initial value problem to 
Burgers‘ equation as 

u ( 2 . t )  - uo(a) as D -+ 0. 

where a is the single root of z = a+tuo(a).  Notice that this is the same solution 
that we obtained for the initial value problem for the inviscid Burgers’ equation 
(with D = 0): therefore, we have recovered the inviscid solution in the limit as 
D -+ 0. 

If the assumption that [ = a is a single stationary point of G holds true. 
then the graphs of u g ( < )  and (z - [ ) / t  must have a single intersection point. 
Figure 5.10 shows how the graph of the initial data uo may appear in this case, 
namely. as an increasing function of <. We recall that shocks will not develop 
for such initial data when propagated by the inviscid Burgers’ equation. 

5.6.1 Evolution of a Point Source 

For the linear diffusion equation we showed that a point source (a delta func- 
tion) at  z = 0, t = 0 evolves according to  the fundamental solution K ( z . t ) .  
Further, in Section 5.3 we calculated the evolution of such a source for a nonlin- 
ear diffusion equation. It is interesting to ask how such a point source is propa- 
gated by Burgers’ equation, which is a nonlinear advection-diffusion equation. 
Consequently. we consider the initial value problem 

U t  + U U ,  = Du,,. x E R, t > 0, (5.6.3) 

u(z ,  0) = 6(z). 2 E R. (5.6.4) 

\Ye assume that the source is located at 2 = 0-. that is. just to the left of the 
origin. We apply the solution (5.5.17)-(5.5.18) of Section 5.5. In the present 
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case the quantity G in (5.5.18) is 

Consequently 

Letting N and A denote the numerator and denominator in (5 .5 .17) ,  we have 

A = e  ,-(X-C)*/4Dt d< + 

Now make the substitution z = (x - <)/m to  obtain. after some calculus 
and algebra 

The numerator can be calculated in nearly the same manner to  obtain 

N = 2De-X2/4Dt(e1/2D - 1 ) .  (5.6.6) 

Therefore, the solution to the initial value problem (5.6.3)-(5.6.4) can be writ- 
ten 

e - x 2 / 4 D t  

u(z,t) = - = - (e‘ - 1) , (5.6.7) N E  A [fi + (e‘ - 1 )  J;&ze-zz dz]  

where r = l / 2 D .  
Observe that the solution in (5.6.7) has the form of a similarity solution 

u = mf (r .  z ) ,  where z = x / f i  (see Sections 5.2 and 5.3) .  
There are two different limits in which (5.6.7) can be examined. In the limit 

of small r (or large D )  we expect diffusion to dominate, and in the limit of 
large r (or small D )  we expect advection to dominate. 

1. Lirnzt of Large D. In this case we consider the ratio u(z ,  t ) / K ( z ,  t ) .  where u 
is given by (5 .6 .7)  and K is the fundamental solution to  the linear diffusion 
equation. We show that this ratio tends to unity as D increases. therefore 
proving the expected result that u behaves asymptotically like the solution 
to the linear diffusion equation. To this end, it is straightforward to see 
that we may write u/K in terms of r as 

(5.6.8) 



254 5. Diffusion Processes 

The limit of the right side of (5.6.8) as r -+ 0 is easily calculated to  be 1 
(Exercise 3). thereby proving 

u(x. t )  N K ( x .  t )  as D + m. (5.6.9) 

2 .  Lzmit of Small D. This case is more difficult, and also more interesting. We 
first write the solution (5.6.7) of the initial value problem (5.6.3)-(5.6.4) as 

u(2,  t )  = &a, r ) ,  (5.6.10) 

where z = and 

Clearly, we may replace er - 1 by er for large r and write 

We can now determine the behavior of F ( z ,  r )  for large r over different 
ranges of z .  

If z < 0, the integral in the denominator of (5.6.11) approaches fi. and it is 
routine to show 

Therefore 
F ( 2 . r )  - 0 as r + m for z < 0. (5.6.12) 

If z > 0. we require the asymptotic approximation Jvm e-CdC N e-7' I2rl as 
q -+ 30. which is the leading order approximation of the complementary error 
function erfc for large q (Abramowitz & Stegun 1964). Then (5.6.11) becomes 

(5.6.13) 

Now. if z > 1. then F ( z . r )  N 0 as r -+ m. and if 0 < z < 1. then F ( z . r )  N z 
as r + 30. 

In summary, we showed that F ( z .  r )  - 0 as r + cc for z < 0 and z > 1. In 
the interval 0 < z < 1 we have F ( z .  r )  w z .  Translating this information back 
to the solution u given by (5.6.10). we have, as D -+ 0, 

X 
u(x. t )  - - for 0 < z < A: u(x. t )  - 0 otherwise. (5.6.14) 

t 
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Figure 5.11 
Burgers' equation. in the case of a small diffusion constant D.  

Evolution of a delta function initial condition. propagated by 

Figure 5.11 shows the limiting solution (5.6.14) for a small diffusion constant 
D ;  as expected, we obtain a shock-like structure where diffusion plays a small 
role compared to nonlinear advection. Near z = 1, that is, near the wavefront 
~t: = a, it can be shown that there is a steep transition region of order O ( D )  
(Whitham 1974, p. 105). 

The preceding analysis for Burgers' equation can be carried out because a 
closed-form solution to  the initial value problem is available. For other nonlinear 
equations. like Fisher's equation, the analysis is often more difficult because 
analytic solutions are not known. 

EXERCISES 

1. Verify ( 5 . 6 . 5 )  and (5.6.6). 

2. In Laplace's theorem let h ( { )  = 1 - E2 and sketch the graph of es( ' -cZ)  
for various values of s. Note that for large s the main contribution to  the 
integral f ( s )  comes from the neighborhood of E = 0. where h has a local 
maximum. Estimate the integral 

f ( s )  = 1, cos2 E e s ( ' - E 2 )  d[ 
w 

for large s. 

3. Show that the limit as r -+ 0 of the right side of (5.6.8) is unity. Hznt: 
Expand er in a Taylor series and note that the integral ~ z m ~ e - z 2 d z  

tends to  a constant. 

4. Verify (5.6.12) and (5.6.13). 

5. Show that near the wavefront ( z  = l) ,  formula (5.6.10) for F ( z ,  T )  becomes 
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Hint: Note that z2 - 1 - 2 ( 2  - 1). 

6. Derive the solution (5.6.7) using similarity methods. 



Appendix: Dynamical Systems 

This appendix is a brief presentation of phase plane analysis in two-dimensional 
nonlinear dynamical systems. It is meant to  be a tool that allows quick reference 
when reading certain parts of the book. 

A two-dimensional nonlinear autonomous system has the form 

(5.7.1) 

where p and q are given functions that are assumed to have continuous deriva- 
tives of all orders. By a solutzon of (5.7.1) we mean a pair of smooth functions 
x = x ( t ) .  y = y(t)  that  satisfy the differential equations (5.7.1) for all t in some 
interval I .  The interval I is often the whole real line. Graphically. we represent 
the solution as a curve in the z y  plane. called the phase plane. A solution curve 
is called an orbzt, path.  or trajectory of (5.7.1). The independent variable t is 
regarded as a parameter along the curve and is interpreted as time. The orbits 
have a natural positive direction to  them, namely. the direction in which they 
are traced out as the time parameter t increases; to indicate this direction an 
arrow is placed on a given orbit. Because the system is autonomous (t does 
not appear on the right sides). the solution is invariant under a time transla- 
tion: therefore. the time t may be shifted along any orbit. A constant solution 
x ( t )  = 20. y ( t )  = yo to (5.7.1) is called an equzlzbrzum solutzon, and its orbit 
is a single point (z0,yO) in the phase plane. Clearly. such points satisfy the 
algebraic relations 

P ( Z , Y )  = 0 q ( x . y )  = 0. (5.7.2) 

Points that satisfy (5.7.2) are called crztzcal poznts (also. rest poznts and equz- 
lzbrzum pozn t s ) ,  and each such point represents an equilibrium solution. It is 
evident that no other orbit can pass through a critical point a t  finite time t :  
otherwise, uniqueness of the initial value problem is violated. For the same 
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reason, no orbits can cross. The totality of all the orbits of (5.7.1) and critical 
points. graphed in the phase plane, is called the phase dzagram. The qualitative 
behavior of the phase diagram is determined to  a large extent by the location 
of the critical points and the local behavior of orbits near those points. The 
Pozncark-Bendaxson theorem in two dimensions characterizes the behavior of 
the possible orbits of (5.7.1): 

(a) An orbit cannot approach a critical point in finite time: that is. if an orbit 
approaches a critical point, then, necessarily. t --+ *x. 

(b) As t -+ &m. an orbit either approaches a critical point. moves on a closed 
path, approaches a closed path, or leaves every bounded set. A closed orbit 
is a peraodac solution. 

The Poincark-Bendixson theorem does not hold in three or more dimensions. 
In principle, orbits can be found by integrating the differential relationship 

(5.7.3) 

which comes from dividing the two equations in (5.7.1). When this is done, 
information about how a given orbit depends on the time parameter t is lost: 
however, this is seldom crucial. 

The right sides of (5.7.1) define a vector field <p.y> in the phase plane: 
the orbits are the curves that have this vector field as their tangents. Thus the 
orbits are the integral curves of (5.7.3). The loci p(x.y) = 0 and y ( x , y )  = 0. 
where the vector field is vertical and horizontal, respectively. are called the 
nullclznes. Determining the phase portrait of (5.7.1) is generally facilitated by 
graphing the nullclines and determining the direction of the vector field <p. g> 

in the regions separated by the nullclines. 
The following two results of Bendixson and Poincark, respectively, are also 

helpful. 

(a) Ifp,+q, is of one sign in a region of the phase plane. the system (5.7.1) can- 
not have a closed orbit in that  re,' pion. 

(b) A closed orbit of (5.7.1) must surround at least one critical point. 

Critical points are also classified as to their stability. A critical point is stable 
if each orbit sufficiently near the point at some time to remains in a prescribed 
circle about the point for all t > t o .  If this is not the case, the critical point is 
unstable. A critical point is asymptotacally stable if it is stable and every orbit 
sufficiently near the point a t  some time t o  approaches the point as t 4 cc. An 
asymptotically stable critical point is called an attractor. 
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Linear Systems 
A linear system has the form 

x’ = ax + by. 

y f  = cx + dy.  

(5.7.4) 

(5.7.5) 

Hereafter, we use a prime to  denote the time derivative. We assume up front 
that ad - bc is nonzero; then the only critical point of (5.7.4)-(5.7.5) is the 
origin x = 0. y = 0. We write the system in matrix form as 

XI = Ax, (5.7.6) 

where x = ( ~ , y ) ~  (the superscript T means transpose) is the vector of un- 
knowns and A is the coefficient matrix 

By assumption, det A # 0. Solutions of (5.7.6) are obtained by assuming 

x ( t )  = vext.  (5.7.7) 

where v is a constant vector and X is a constant. both to be determined. 
Substituting this form into (5.7.6) yields the algebraic eigenvalue problem 

AV = XV. (5.7.8) 

Any eigenpair (X,v) of (5.7.8) gives a solution of (5.7.6) of the form (5.7.7). 
Therefore, if (X1,vl) and (X2.v~) are two eigenpairs with A1 and X2 distinct. 
all solutions of (5.7.6) are given by the linear combination 

x(t) = clvl  exp(A1t) + czvz exp(Azt), (5.7.9) 

where c1 and c2 are arbitrary constants. This includes the case when A1 and 
A2 are complex conjugates: then real solutions may be found by taking the 
real and imaginary parts of (5.7.9). If XI = XZ = A. there may not be two 
linear independent eigenvectors v1 and v2; if two independent eigenvectors 
exist, (5.7.9) remains valid: if not (there is a single eigenvector v). the general 
solution to (5.7.6) is 

x(t) = clvexp(At) + c2(w + v t )  exp(Xt), (5.7.10) 

for some constant vector w that satisfies ( A  - X1)w = v. 
Therefore, we may catalog the different types of solutions of the linear 

system (5.7.6). depending on the eigenvalues and eigenvectors of the coefficient 
matrix A .  The results in the following summary come directly from the forms 
of the general solution (5.7.9) or (5.7.10). 
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Figure 5.12 Saddle point. 

Case 1. If the eigenvalues are real and have opposite signs. the critical point 
(0.0) is a saddle poznt. and a generic phase portrait is shown in Figure 5.12. 
The two orbits entering the origin are the two stable manafolds, and the two 
orbits exiting the origin are the two unstable manafolds; the directions of these 
manifolds at the critical point are determined by the two eigenvectors. The 
stable manifolds correspond to  the negative eigenvalue and the unstable man- 
ifolds correspond to the positive eigenvalue. These special manifolds are called 
separatraces. A saddle point is unstable. 

Figure 5.13 Center. 

Case  2. If the eigenvalues are purely imaginary, the orbits form closed curves 
(ellipses) representing periodic solutions, and the origin is a center  (see Fig- 
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ure 5.13). A center is stable. 
Case 3. If the eigenvalues are complex (conjugates) and not purely imag- 

inary, the orbits spiral into, or out of. the origin. depending on whether the 
real part of the eigenvalues is negative or positive, respectively. In this case the 
origin is called a spiral point or a focus (see Figure 5.14). If the real part of the 
eigenvalues is negative. the spiral point is an attractor, which is asymptotically 
stable; if the real part is positive. the point is unstable. 

Figure 5.14 Asymptotically stable spiral. 

Case 4.  If the eigenvalues are real, are distinct, and have the same sign, the 
origin is classified as a node. In this case all the orbits enter the origin if the 
eigenvalues are negative (giving an attractor), and all the orbits exit the origin 

I 

Figure 5.15 Unstable node. 
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Figure 5.16 Degenerate stable node. 

if the eigenvalues are positive (giving an unstable node). The detailed orbital 
structure near the origin is determined by the eigenvectors. One of them defines 
the direction in which orbits enter (or exit) the origin, and the other defines 
the direction approached by the orbits as t approaches minus. or plus. infinity 
(see Figure 5.15). 

Case  5. If the eigenvalues are real and equal, the critical point at the origin 
is still classified as a node. but it is of different type than in case 4 because 
there may be only one eigenvector. In this case the node is called degenerate 
(see Figure 5.16). The node is an attractor if the eigenvalue is negative. and it 
is unstable if the eigenvalue is positive. 

The eigenvalues of A are calculated as the roots of the characteristic equa- 
tion 

X2 - t r  AX + det A = 0 

where t r A  denotes the trace of A and de tA is the determinant of A. The 
corresponding eigenvectors are the solution to the homogeneous equation 

( A  - X I ) V  = 0. 

A useful result is that (0,O) is asymptotically stable if. and only if, t r  A < 0 
and det A > 0. 

Nonlinear Systems 
Xow we return to  the nonlinear system (5.7.1). The key idea is that  

(5.7.1) can be studied by examining a linearization near the critical points. 
Let 2 = 2 0 ,  y = yo be an isolated critical point of (5.7.1), meaning that there 



Appendix: Dynamical Systems 263 

is a neighborhood of (z0,yo) that contains no other critical points. The lo- 
cal structure of the orbits near this critical point for the nonlinear system 
(5.7.1) can be determined. under fairly broad conditions, by examining the 
linearized system at that point. Let 2( t )  and y ( t )  denote small perturbations 
about the equilibrium (20 .  yo). with 

z ( t )  = 2 0  + 2 ( t ) .  y ( t )  = yo + g ( t ) .  

Substituting into the nonlinear system gives 

2/ = p ( z 0  + 2 .  yo + g),  g’ = q(z0 + 2 .  yo + g) .  

If the right sides are expanded in Taylor series, we obtain 

2’ = p(zo. yo) + p,(zo. y0)2 + p,(zo.  yo)Y + higher order terms. 

Y’ = q(zol Yo) + qz(zo, Yo)Z + qy(zo.  YO)^ + higher order terms. 

But p ( z 0 .  yo) = q(z0, yo) = 0. so to leading order the perturbations satisfy the 
linear system (;;) = ?( z09Yo) P&o.Yo) (5.7.11) 

qz(zo.yo) qy(zo.1Jo)  

We assume that the coefficient matrix 

which is called the Jacobzan matrzx at (50. yo), has a nonzero determinant. The 
linearized system for the small perturbations. whose behavior is determined by 
the eigenvalues and eigenvectors of J .  dictate the local behavior of orbits for 
the nonlinear system near (50. yo). 

The main result is as follows: Let ( 2 0 .  yo) be an isolated critical point of the 
nonlinear system (5.7.1). Suppose that det J ( z 0 .  yo) # 0 and that J ( z 0 .  yo) does 
not have purely imaginary eigenvalues. Then (5.7.1) has the same qualitative 
orbital structure near (20. yo) as the linearized system has near (0.0). 

By qualztatzve structure we mean the same stability characteristics and the 
same nature of critical point (saddle, node, or focus). The case that does not 
extend to  the nonlinear system is that of a center for the linear system. In this 
case one must examine the higher-order terms to  determine the nature of the 
critical point of the nonlinear system. If the Jacobian matrix for the linearized 
system has a zero eigenvalue. then higher-order terms play a crucial role and 
the nature of the critical point of the nonlinear system may differ from a node. 
saddle. focus. or center. For example. it may have nodal structure on one side 
and a saddle structure on the other. A careful analysis is required in the case 
when det J = 0. 
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Figure 5.17 Phase portrait of the nonlinear system (5.7.12). P : (0.0) and Q : 
(-1.0) are the two critical points. a saddle and an unstable spiral, respectively. 
The nullclines y’ = 0 are represented by the dashed lines. 

The phase diagram of (5.7.1) is determined by finding all the critical points, 
analyzing their nature and stability. and then examining the global behavior 
and structure of the orbits. For example, it is an interesting problem to deter- 
mine whether an orbit connects two critical points in the system: such connec- 
tions are called heteroclanic orbats. An orbit connecting a critical point to itself 
is a homoclanzc orbat. 

Example. Consider t,he nonlinear system 

5’ = Y, y’ = x - y + xz - 2xy. (5.7.12) 

There are two critical points P : (0.0) and Q : ( - l > O ) .  The Jacobi matrix 
J(O.0)  at P is 

(; :1) ‘ 

which has eigenvalues (-1 f &)/2. These are real with opposite signs. and 
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therefore P is a saddle point. The Jacobi matrix J(-1, 0) at Q is 

The eigenvalues are (1 5 i&)/2, which are complex with positive real part. 
Thus Q is an unstable spiral point. The nullclines are y = 0 (where x’ = 0 
and the vector field is vertical) and y = x ( l  + x)/(1 + 22) (where y’ = 0 and 
the vector field is horizontal). A phase diagram is shown in Figure 5.17. The 
nullclines y’ = 0 are shown dotted. There is a heteroclinic orbit exiting the 
spiral point Q and entering the saddle point P along a separatrix, or one of its 
stable manifolds. 0 

All computer algebra systems (MATLAB. Mathematica, Maple, and oth- 
ers) have packages. or easily used programs, that plot phase diagrams in two 
dimensions. An easy to  use. outstanding ODE solver and graphics package has 
been developed in MATLAB by John Polking (Polking 2004). 

EXERCISES 

1. For the following linear systems. find the type of the critical point and its 
stability, find the general solution, and sketch a phase diagram. 

3 1  (a) x’ = -5x + 2y* y’ = x - y. 

(b) 2’ = 4x - 3 ~ .  y’ = 62 - 7 ; ~ .  

(c) 2’ = -2x - 3y, y’ = 32 - 2y. 

(d) 2’ = -3y. y’= 62. 

2. For the following nonlinear systems. find all the equilibria, analyze their 
stability. draw the nullclines and sketch a phase diagram. 

(a) x’ = z - xy, 

(b) 2’ = y. 

y’ = y - xy. 

y’ = x2 - 1 - y. 

(c) 5’ = y + (1 - x) (2 - x). y/  = y - ux2. u > 0. 

(d) x’ = x - y 3  y’ = -y + (5x2)/(4 + x2). 
3. State why the system x’ = x + x3 - 2y. y‘ = y5 - 32 has no periodic 

solutions (closed cycles). 

Reference Notes. A good introduction to the diffusion equation and random 
walks is given in the first chapter of Zauderer (2006). Also see Murray (2002, 
2003) and Okubo & Levin (2001). An elementary discussion of the general simi- 
larity method is presented in Logan (1987). See also Dresner (1983) and Rogers 
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& Ames (1989): the latter contains an extensive bibliography as well as numer- 
ous. recent applications. The similarity method as it applies to problems in the 
calculus of variations is discussed in Logan (1977. 1987). For a treatment of 
Fisher's equation. see Murray (1977, 2002. 2003). Canosa (1973) is a classic pa- 
per on TWS to Fisher's paper. A good source for Burgers' equation is Whitham 
(1974); Kreiss and Lorenz (1989) discuss questions of uniqueness and existence 
of solutions to boundary value problems associated with Burgers' equation. 

For a detailed discussion of phase plane phenomena, the reader may con- 
sult one of the many excellent books on the subject: see. for example. Strogatz 
(1994) or Hirsch et al. (2004). Llost sophomore-level differential equation texts 
give introductory material (see, e.g., Logan 2006b). as do texts on mathemat- 
ical biology, where phase plane methods are essential (Edelstein-Keshet 2005. 
Brauer & Castillo-Chavez 2001). In fact. mathematical biology texts are one of 
the best sources for elementary approaches and interesting applications. 



Reaction- Diffusion Systems 

During the last few decades there has been intense research devoted to the 
study and application of reaction-diffusion equations. One of the motivat- 
ing factors was a celebrated paper by A. Turing in 1952. He proposed that 
reaction-diffusion could serve as a model for the chemical basis of morpho- 
genesis, or the development of form and pattern in the embryological stage of 
various organisms. His observation was that spatially inhomogeneous patterns 
can be generated by diffusion-driven instabilities. It is not surprising, therefore. 
that tremendous interest was spawned in the biological sciences in the general 
subject of reaction-diffusion equations. A parallel development took place in 
combustion phenomena, where reaction-diffusion processes occur with equal 
importance. The interest in reaction-diffusion equations that these two areas, 
the biological sciences and combustion theory, generated in the mathematical 
community has been profound and a significant step has been taken in the 
understanding of nonlinear processes and nonlinear PDEs. 

This chapter is an introduction to reaction-diffusion systems. In Chapter 5 
we introduced Fisher’s equation, which is a model for a diffusing population 
with logistics growth. Row we wish to study some simple examples where sys- 
tems of such equations arise. In Section 6.1 we formulate models for competing 
populations, interacting chemical species, chemotaxis (the interaction of a dif- 
fusing population and a chemical attractant), and the deposition of a pollutant 
in groundwater flows. In Section 6.2 we examine a basic problem for reaction- 
diffusion equations: the existence of traveling wave solutions. In Sections 6.3 
and 6.4 we introduce some of the theoretical questions associated with reaction- 
diffusion equations, and nonlinear parabolic systems in general. In particular, 

An Introductzon to Nonlinear Partaal Dzfferential Equations, Second Edition. 
By J.  David Logan 
Copyright @ 2008 John Wiley & Sons, Inc. 
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we ask about existence and uniqueness of solutions. and we formulate max- 
imum principles and comparison theorems. In Section 6.5 we introduce the 
energy method, a technique for obtaining estimates and bounds on various 
quantities (e.g., the energy) associated with the solutions of reaction-diffusion 
or other evolution equations: we also study the blowup problem and the method 
of invariant sets. Finally, in the last section we examine Turing systems and 
pattern formation in biology. 

6.1 Reaction-Diffusion Models 

In Chapter 5 we introduced Fisher's equation 

which is a prototype for a single reaction-diffusion equation. In this section 
we discuss the origin of systems of reaction-diffusion equations and we take 
up several mathematical models that illustrate applications of interest. Let 
u,(x. t ) ,  i = 1. . . . , n. be smooth functions representing n unknown concentra- 
tions or densities in a given one-dimensional system (say, in a tube of unit 
cross-sectional area and of infinite or finite extent). These quantities may be 
interacting population densities, chemical concentrations, energy densities. or 
whatever, distributed over the length of the tube. Let qo,(x, t ) .  z = 1,. . . . n, 
denote the flux of the quantity u,, with the usual convention that d, is positive 
if the net flow of u, is to  the right, and let f ,  be the rate of production of u,. 
The dimensions of the quantities u,. @,, and f t  are 

amount amount amount 
[',I = time . area [UZI = volume' 

[fi l  = time . volume ' 

Generally, the production rate f ,  of u, may depend on both space and time as 
well as all the densities: 

The basic conservation law developed in Chapter 1 for a single density now 
applies to each density u,. That is. if I = [a ,b]  is an interval representing an 
arbitrary section of the tube. then 

x=b b 

u , d i = - a , ~  +i f , d x ,  i = l  . . . . ,  n. (6.1.1) 

These n equations express the fundamental principle that the rate of change 
of the total amount of the quantity u, in I must be balanced by the net rate 

f lb x=a 
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that u, flows into I plus the rate that u, is produced in I .  In the usual way, 
assuming smoothness. the system of integral balance laws can be reduced to a 
system of n partial differential equations 

(u,)t + (q , ) ,  = f L ,  i = 1..  . . ,n.  (6.1.2) 

where the densities u, and the fluxes d, are unknown, and the production rates 
(source or reaction terms) f ,  are assumed to be given. It is clear that (6.1.2) can 
be written in vector form as 

Ut + = f(z. t ,  u). (6.1.3) 

where 

u = (u1.. . . . U,)? + = (01.. . . , @,)? f = ( f l . .  . . % f n ) T .  

System (6.1.3) represents n equations with 2n unknowns (u and +). Additional 
equations come from constitutive relations that connect the flux to the den- 
sity gradients. When appended to (6.1.3). the constitutive relations effectively 
eliminate the flux from the equations and we obtain a system of PDEs for the 
unknown densities alone. 

The simplest constitutive assumption is to impose that the flux CD, depend 
only on the gradient of the 5th density u,. not on the remaining densities. 
Symbolically this is expressed as 

d, = -D2(U,),. z = 1 ,2 . .  . . , n ,  (6.1.4) 

where the D, are diffusion constants. If the diffusion constants are positive, 
then the flow is from high concentration regions to low concentration regions. 
But it may occur, for example, that organisms are attracted to their kind and 
movement is up t he  concentratzon gradzent. that is, from low concentration to  
high concentration regions. In this case. a diffusion constant could be nega- 
tive. Or. one density may represent an animal population. while another may 
represent a chemical concentration. In the case of chemotaxis. animals may be 
attracted to chemicals (e.g.. pheromones) with a negative diffusion constant. In 
any case, substituting (6 1.4) into (6.1.2) gives a s y s t e m  of reactzon-dzffuszon 
equatzons 

(u2)t - Dz(U,),, = f,(Z t . U l . .  . . .u,)* 2 = 1.2 . .  . . -12. (6.1.5) 

for the n unknown densities u1, . . . , un. In vector form this is 

U t  - Du,, = f(z. t ,  u). (6.1.6) 

where D = diag(D1,. . . , D,) is an n by n diagonal matrix with the diffusion 
constants on the diagonal. In the system (6 1.6) the coupling is through the 
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reaction terms fi: the diffusion operators on the left side of the equations are 
decoupled because of the simple form of the constitutive relations (6.1.4). 

A step up in difficulty is to assume that there is cross-dzfuszon between 
the densities u,. This means that the flux @z of the density u, depends on the 
gradients of all the densities, not just the gradient of u, alone. Thus 

O t = - C D , J ( ~ J ) x ,  i = 1 . 2  . . . . ,  TL, (6.1.7) 

or. in matrix form 
4 = -Dux ,  (6.1.8) 

where D = ( D z J )  is an n x n matrix of diffusion coefficients. D,, is a measure 
of how uz diffuses into u,. Therefore. substitution of (6.1.8) into (6.1.3) gives a 
system the same form as (6.1.6). but with D a nondiagonal matrix. In the case 
of cross-diffusion, (6.1.6) represents a system of reaction-diffusion equations 
that is coupled through both the reaction terms and the differential operators. 
It is. of course. possible that the diffusion coefficients depend on the densities 
u,. Examples of this type of phenomenon were given in Chapter 5 for one- 
dimensional heat flow. These models extend to several spatial variables as well. 

We now present several situations where reaction-diffusion equations occur 
naturally. These examples come from a variety of physical and biological con- 
texts, and they indicate the breadth of application of this important class of 
equations. In general, reaction-diffusion equations are of great importance in 
applied mathematics. 

6.1.1 Predator-Prey Model 

We noted that Fisher's equation 

U t  - Du,. = r u  1 - ( "1 K 

is a simple model of a population u that diffuses while it grows according to the 
logistics growth law. Multiple populations lead to interacting populations. For 
example, suppose that one population is a predator whose population density is 
'c and another is prey whose population density is u. Assume the prey grows at 
a rate proportional to its population (the Malthus model). and the predator, in 
the absence of prey. dies at a rate proportional to its population. The number 
of interactions between the predators and the prey can be simply modeled 
by mass action kinetics; this means it is proportional to the product uu; this 
interaction increases the number of predators while it reduces the number of 



6.1 Reaction-Diffusion Models 271 

prey. In summary 

Growth rate of prey = fl (u. v) = au - buu, 

Growth rate of predator = fz(u.  v)  = -C'U + duv, 

where a, b. and c are positive proportionality constants. If 91 and 02 denote 
the fluxes of the prey and the predators. respectively, and we assume Fick's 
law for each, that is 

dl = -D1ux. 42 = -D2vx ( D l  and DZ positive constants). 

then the balance laws are 

ut - Dlu,, = au - buv. 

tit - Dzv,, = -CV + dub!. 

The growth rates in these coupled reaction-diffusion equations come from laws 
originally proposed by A. Lotka and V. Volterra in 1926. The Lotka-Volterra 
model provides for an interaction model where one growth rate is increased 
by the interaction, while the other is decreased. This type of model, in gen- 
eral. is called a predator-prey model. Population models in ecology are a rich 
source of reaction-diffusion equations. The consideration of different interac- 
tion terms, population-dependent diffusion coefficients. and several species all 
lead to important models that are studied extensively in population dynamics. 

6.1.2 Combustion 

A combustion process involves mass, momentum, and energy transport in a 
chemically reacting fluid. We consider a simplified system where a substance 
in a tube undergoes an exothermic (heat releasing) chemical reaction A + 

B, where A is the reactant and B is the product. As the reaction proceeds. 
temperature changes occur and both heat energy and matter diffuse through 
the medium. In this simple model. there is no advection. Let a = u ( z , t )  be 
the concentration (in moles per volume) of the reactant A, and let T = T ( z ,  t )  
be the absolute temperature of the medium. in degrees Kelvin. Mass balance 
takes the form 

at + dx = f (a ,T) ,  (6.1.9) 

where 0 is the flux of A and f(u. T )  is the consumption rate of A. or the rate 
that A is consumed by the reaction. Assume that the flux is given by Fick's law 

C#I = -Da,, (6.1.10) 
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where D is the mass diffusion coefficient. Thus, the flux is caused by concen- 
tration gradients. From chemical kinetics theory it is known that the reaction 
rate has the form 

f ( a .  T )  = -Same-E’RT. (6.1.11) 

where m > 0 is the order of the reactzon, E is the actavatton energy, R is the 
universal gas constant, and s is the preexponentzal factor. Equation (6.1.11) is 
called the Arrhenzus equatzon, after its originator. Finally, (6.1.9)-(6.1.11) give 
the mass balance law 

at - Dux, = - s u ~ ~ - ~ / ~ ~ .  (6.1.12) 

Now energy balance. If c is the specific heat per unit volume (cal/deg . vol). 
cT represents the energy density in calories per volume. 1t-e assume that the 
entire chemical mixture has the same specific heat. The energy flux is taken 
to -KT, (Fourier‘s law). where K is the thermal conductivity, and the energy 
(heat) production term is proportional to the reaction rate and is given by 

where Q > 0 is the heat of reaction. The energy balance equation is therefore 

(cT)t - (KT,), = 

or 
Tt - kT,, = c - ~ Q s ~ ~ ~ - ~ / ~ ~ ,  (6.1.13) 

where k = K / c  is the diffusivity. Therefore. we obtained a reaction-diffusion 
model (6.1.12)-(6.1.13) for the temperature and concentration of the reactant. 

Equations (6.1.12)-(6.1.13) are usually supplemented by initial and bound- 
ary conditions. If the tube has finite length (0 < z < L ) .  at the ends of the 
tube we impose 

(6.1.14) 

which means that the flux of A is zero at  the ends. or no chemical can escape the 
confines of the tube. If the ends of the tube are held at fixed temperatures. then 

T(0. t )  = Ti. T ( L ,  t )  = T2, t > 0. (6.1.15) 

a,(O. t )  = ax(L1 t )  = 0. t > 0. 

Initial conditions are 

T(z,O) = To(z). a ( z . 0 )  = ao(z). 0 < z < L.  (6.1.16) 

Equations (6.1.12)-(6.1.16) define a well-posed, reaction-diffusion system called 
the solad-fuel combustion problem. 
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The solid-fuel problem can be non-dimensionalized by defining 

where a0 and To are reference values for mass and temperature. Then, equations 
(6.1.12)-(6.1.13) become, on taking m = 1 and dropping the overbars, 

at = as. - aesIT .  Tt = dT,. + pae-@lT. 

with 

Example. (Semenov Problem) If both heat and mass diffusion are slow com- 
pared to  reaction kinetics, then diffusion can be neglected. then a and T are 
functions of time only and we obtain 

a' = -ae'/T. T' = paee/T, (6.1.17) 

which is the Semenov problem. The initial conditions are 

~(0) = 1, T(0)  = 1. 

which means that the system is at  temperature To at time t = 0, and a0 is the 
mass of the reactant. The Semenov problem can actually be solved in analytic 
form using the exponential integral 

Ei(z)  = - -e-"du. 

See Logan (1994. p 318) for the formula. But here we take a qualitative ap- 
proach. Multiplying the first equation in (6.1.17) by p and then adding gives 

,/?a + T = O + 1, 

Lrn t 

where we have used the initial conditions to evaluate the constant of integration. 
We can now eliminate a and obtain the model equation 

T' = (9 + 1 - T ) e - T  T(0)  = 1. 

This differential equation is an first-order autonomous equation. and it is easy 
to  see that there irs a single positive. equilibrium at the value T* = 9+ 1. (Draw 
the phase line.) Therefore. the solution curve begins at T = 0 at time t = 0 
and then increases up to the equilibrium value T'. The mass of the reactant 
decreases from 1 to 0 as the reactant is depleted. 

In real reactions the activation energy is large. and so Q is a large parame- 
ter. In this case the temperature increases slowly as the reaction proceeds; then 



274 6 .  Reaction-Diffusion Systems 

there is a threshold value of time when there is a sharp increase in temperature 
up to the equilibrium value. This event. where the reaction rapidly goes to  
completion. is called zgnztzon. Using singular perturbation methods this phe- 
nomenon can be analyzed analytically [see, e.g., Kapila 1983. and Logan 1994. 
pp 318-3221. and the length of the induction period can be approximated. 

6.1.3 Chemotaxis 

Another reaction-diffusion process is the motion of organisms under the in- 
fluence of diffusion and chemotaxis; the latter is motion induced by variations 
in the concentration of chemicals produced by the organisms themselves. A 
classic example can be described as follows. Slime mold amoebae feed on bac- 
teria in the soil and are uniformly spatially distributed when the food supply 
is plentiful. However, as the food supply is depleted, the organisms begin to  
secrete a chemical [cyclic adenosine monophosphate (cALlP)] that acts as an 
attractant. It is observed that the amoebae move up the concentrutzon grudaent 
toward the high concentrations of the chemical and interesting wave patterns 
and aggregates form. These types of chemotactic motion occur in a variety of 
biological phenomena. Another example is the release of pheromones by some 
organisms: these chemicals act may as sexual attractants or as communication 
devices to  signal predators. 

We analyze a one-dimensional model and let a = u(x, t )  denote the popu- 
lation density of an organism (say, amoebae) and c = c ( x , t )  denote the con- 
centration of a chemical attractant secreted by the amoeba. We assume that 
there is motion of the organism due to random movement (diffusion) and due 
to  chemotaxis. The chemical produced by the organism diffuses through the 
medium. The reaction-diffusion system is, by previous accounts 

(6.1.18) 

(6.1.19) 

where 41 and 4 2  are the fluxes of the organism and chemical, respectively, 
and F is the sate of production of the chemical. Kow we make some specific 
constitutive assumptions. The chemical is assumed to  move only by diffusion, 
and therefore 

4 2  = - k z ,  

where 6 is the diffusion constant. The chemical decays at  a constant rate, and 
its production rate is proportional to the population of the organism. or 

F ( u ,  c) = f a  - Icc, 
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where f is the rate of secretion and k is the decay rate. Finally, the flux 01 
of the organism consists of two parts: one contribution from diffusion and the 
other. from chemotaxis. Then 

We assume Fickian diffusion, or 

where p > 0 is the motility. For the chemotactic contribution we argue that 
&hem is proportional to the gradient of the chemical concentration; in addition, 
if the number of organisms is doubled for a given concentration gradient. the 
flux should be twice as great, and therefore &hem should also be proportional 
to a. Consequently 

pchern = vacz, 

where u > 0 is a proportionality constant that measures the strength of the 
chemotaxis. There is no minus sign in the last constitutive equation because 
the organism is assumed to move toward the attractant. or up the gradient. 

Substitution of all these quantities into (6.1.18) and (6.1.19) gives a coupled 
system of reaction-diffusion equations 

at = pazz - ~ ( a c , ) ,  = 0, ct = 6cZz + fa - kc.  (6.1.20) 

which governs the concentration c of the chemical and population density a of 
the organism. This system is strongly coupled in that the differential operator in 
(6.1.20) involves derivatives of both c and a. Further, the nonlinear chemotactic 
flux assumption leads to a more complicated nonlinear diffusion term than in 
the preceding examples. 

It is clear that different constitutive relations for F, &hem, and &Iff can be 
considered, leading to yet more complicated models. For example, 6 and p may 
depend on the concentrations themselves, or the source term F for the secreted 
chemical may have a nonlinear functional dependence on c and a. Some of 
these models have been examined in the literature. and Murray (2002) can be 
consulted for references and applications. 

Examples in this section show broad applicability of reaction-diffusion equa- 
tions. We have done no analysis of these systems, but we infer a rich underlying 
theory that applies to these systems. Do solutions exist, and are they unique? 
What kinds of initial boundary value problems are well posed? Are there wave- 
front solutions? What is the long-time behavior of solutions, and can spatial 
patterns form? Are wavefront solutions stable to small perturbations? In the 
sequel we address some of these questions. In particular, in Section 7.6 we 
examine the stability of the uniform state for (6.1.20). 
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EXERCISES 

In the Semenov problem numerically solve the differential equation 

T' = ( 3  + 1 - T)e-8 /T ,  T(0) = 1. 

when 6' = 10 and 3 = 6 and draw the solution curve in the interval 300 5 
t 5 600. Observe the ignition effect. Explain why this occurs by plotting 
the exponential factor on the right side of the equation when 6' is large. 

Consider the reaction-diffusion system 

U t  - u,, = ~ ( l  - u - YU), Z't - cTz = -but'. ( T .  b > 0).  

In the special case u = (1 - b ) ( l  - U ) / T  ( b  not equal to  l ) ,  show that the 
system reduces to  Fisher's equation. 

Let u = U(Z. t )  denote the population of an organism and n. = n(z .  t )  denote 
the concentration of a nutrient to  which the organisms are attracted. Give 
an interpretation of the model equations 

where D, a. and k are positive constants. In the special case that a = 2 0 .  
find solutions ofthe form u = V ( z ) .  n. = N(.Z) .  where z = z-ct. U(k-rx) = 
0 and -V(-CO) = 0, N(+-rx) = 1. Sketch the solutions and interpret them 
biologically. 

Consider the chemical reaction mechanism 

A - X ,  2 X + Y + 3 X ,  B + X - + Y + D ,  X + E .  

where the concentrations a, b,  d, and e of the chemical species A, B, D, 
and E, respectively. are held constant. If rate constants are unity, write out 
a system of two ODES that govern the time evolution of the concentrations 
z and y of X and Y. For a = 2 and b = 6. describe how the concentrations 
z and y evolve. If the diffusion constants for X and Y are identical, what is 
the reaction-diffusion system that governs the spacetime evolution of the 
species? 

(Ohmzc Heatzng) Electrical devices often generate heat when current flows 
through them. Therefore we consider equations of heat conduction coupled 
to the equations of electromagnetism, through ohmic heating. Let D be a 
nice domain in R2. and let T = T ( z . y , t )  and 0 = ~(x.y,t) denote the 
temperature and electrical potential, respectively. The steady-state model 
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is given by the conservation law for heat energy and the equation for con- 
servation of charge' 

V. ( K ( T ) V T )  + o(T) 1 VO 1 2 =  0. V .  (o(T)V@) = 0. 

where (x. y) E D ,  K is the temperature-dependent thermal conductivity. 
and o is the temperature-dependent electrical conductivity. We expect to 
give boundary conditions on T and 0 on d D .  

(a) Write out the model explicitly using partial derivatives in both rectan- 
gular and polar coordinates. 

(b) Let D be a rectangle 0 < x < L.  0 < y < b. Assume the boundaries 
y = 0 and y = b to  be thermally and electrically insulated. On the 
side x = 0 take 0 = VO and T = To? while on x = L take 0 = Vl 
and T = TO. Write out the boundary value problem explicitly. and, 
assuming T = T ( x )  and @ = ~ ( x ) .  show 0 and T = T ( 4 )  satisfy 

In the special case the resistivity (the inverse of conductivity) is linear 
in temperature and K is constant. find the temperature distribution in 
the region D.  

(c) In the last part, with general conductivities K and 0,  show that the 
maximum temperature depends only on the potentials a t  the endpoints 
and on the two conductivities. but not on the size of the region. 

(d) Kext assume the boundaries y = 0 and y = b are electrically insulated 
and T = 0 on those boundaries. On x = 0 take Q = 0. while on x = L 
take 0 = V: assume that the sides are thermally insulated. Find a 
formula for the potential 9. and find an equation that determines T 
implicitly. 

6.2 Traveling Wave Solutions 

A fundamental question regarding nonlinear PDEs is the existence of traveling 
waves. We introduced this concept in Chapters 1 and 5 for a single PDE. In this 
section we study the existence of such solutions for systems of partial differential 
equations by considering two examples. the geographic spread of a disease, 

In this exercise we use V for the grad operator. 
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which is a basic reactive-diffusive system. and the flow and sedimentation of 
pollutants in groundwater, which is a reaction-advection-diffusion system. 

It is difficult to formulate encompassing principles that apply to general 
classes of equations, and therefore the usual strategy is to examine each system 
separately. The procedure. however, is easy to follow: Assume a solution of the 
PDEs of the form of a traveling wave, u = u(x - c t ) .  where c is the wave 
speed. and reduce the problem to a system of ordinary differential equations 
for the waveforms u. The latter dynamical system is a problem in a two- or 
higher-dimensional phase space. and the question of existence of TIVS is often 
reduced to the existence of an orbit of the dynamical system connecting two 
critical points (a heteroclinic orbit) or an orbit connecting a single critical point 
(a homoclinic orbit). The critical points represent the boundary conditions at  
infinity. Interpreted in a different way. the unknown wave speed c acts as an 
unknown eigenvalue (i.e.. a number for which there is a solution to  a given 
boundary value problem). To show rigorously that such orbits exist in phase 
space is often a difficult task and involves determining the local structure of 
the vector field near the critical points, as well as the global structure. Two 
examples illustrate this procedure. 

6.2.1 Model for the Spread of a Disease 

IVe consider the geographic spread (in one dimension) of a rabies epidemic in a 
population of foxes. Some of the same assumptions apply to  the spread of other 
epidemics among other organisms. We assume that that the fox population 
is divided into two classes, the number of susceptibles S = S(x,t). and the 
number of infectives I = I ( x .  t ) .  which includes those in the incubation stage. 
\Ye assume the infected class increases a t  a rate 3SI .  where 3 > 0 is the 
infection rate. and therefore the susceptible population decreases a t  the same 
rate. Further. the death rate of infectives is proportional to  the number of 
infectives -d. where a > 0 is the mortality rate. We assume that susceptibles 
become infectives with a very short incubation period. Finally. we postulate 
that infectives diffuse, possibly because of disorientation. but that  susceptibles 
do not diffuse. The model equations are therefore 

(6.2.1) 

(6.2.2) 
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where D is the diffusion constant of the infectives. It is straightforward to 
normalize this reaction-diffusion system and obtain dimensionless equations 

st = -SI .  

It = I,, + S I  - bI; 

(6.2.3) 

(6.2.4) 

where b is a dimensionless parameter given by b = ,u/$So. representing the ratio 
of the death rate to the initial rate of infection. In the sequel we assume that b < 
1. The quantity SO is the initial number of susceptibles. [To nondimensionalize. 
we scaled both S and I by So. time by (13So)-~. and x by D / a ] .  

We seek wavefront solutions to the reaction-diffusion system (6.2.3)-(6.2.4). 
These are solutions of the form 

s = S ( Z ) ,  I = I(.). z = 2 - ct. (6.2.5) 

IT-e anticipate that ahead of the wave we should have the boundary conditions 

S ( t x )  = 1. I ( + x )  = 0. (6.2.6) 

or that the wavefront is moving into a state where there are no infectives. 
After the wave passes. we expect that there are no infectives (rabies is almost 
always fatal). At the present time it is not possible to  determine the number of 
susceptibles, if any, after passage of the epidemic wave. Therefore. at z = --x 
we assume boundary conditions 

S’(-x) = 0. I ( -cc)  = 0.  (6.2.7) 

where it is required that the derivative of S vanish. Substituting (6.2.5) into 
(6.2.3) and (6.2.4) gives the nonlinear system 

cS’ = S I .  -cI‘ - I” = S I  - bI. (6.2.8) 

Applying the first equation in (6.2.8), we see that the second becomes 

which integrates to 
-cI + I’ = CS - cb 1nS + A. (6.2.9) 

where A is a constant of integration. Evaluating (6.2.9) at 2 = +CC gives 
A = -c. and therefore 

S’ = c- lSI ,  (6.2.10) 

I’ = -c(S + I )  + bc 1nS + c. (6.2.11) 
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S 

Figure 6.1 Yullclines and direction field associated with the system (6.2.10)- 
(6.2.11). 

This system can be analyzed by phase plane techniques (see the Appendix 
to  Chapter 5 ) .  The nullclines (where S’ = 0 and where I’ = 0) are easily 
determined. S’ = 0 along S = 0 and I = 0. and I’ = 0 along the locus 

I = b In S - S + 1. (6.2.12) 

It is easily checked that this locus, when sketched in the 5’1 plane, has a positive 
maximum at S = b and crosses the S axis a t  S = 1 and S = a. where o satisfies 
the algebraic equation b lna  - o + 1 = 0. Note that o < b < 1. In the first 
quadrant we have S’ > 0. while in the third quadrant S’ < 0. Above the locus 
defined by (6.2.12) we have I’ < 0, and below the locus I’ > 0. The critical 
points are (1.0) and (0.0). which are the intersections of the loci S’ = 0 and 
I’ = 0. A graph of the direction field is shown in Figure 6.1. 

The type and stability of the two critical points can be determined by 
linearization. The Jacobian matrix is 

J ( S . 1 )  = ( - b c  - c + s  I -c :). 
At S = a and I = 0 the matrix J (a ,  0) has real eigenvalues of opposite sign. so 
(a, 0) is a saddle point. At S = 1 and I = 0 the matrix J(1. 0) has eigenvalues 
A that satisfy the characteristic equation X2 + cX + (1 - b)  = 0. Therefore 

X = + { - c *  [c’ - 4(1 - b)]”’}. 

If c > 2(1 - b ) l / * .  the eigenvalues are both real and negative and (1.0) is a 
stable node. If c < 2(1 - b ) l / * ,  the eigenvalues are complex with negative real 
parts and ( 1 , O )  is a stable spiral. The phase diagram is shown in Figures 6.2 
and 6.3. In both cases there is a unique separatrix connecting the critical point 
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i I * = Q  

Figure 6.2 Phase portrait of (6,2.10)-(6.2.11) in the case c > 2 J m  

I 
I 
I 
I 
I 
I 

I 
I ‘  = 0 

Figure 6.3 Phase portrait of (6.2.10)-(6.2.11) in the case c < 2 d n .  
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Figure 6.4 Traveling wave solution to the reaction-diffusion system (6.2.3)- 
(6.2.4). 

(g.0) at z = -cc to (1.0) at z = +m. and each corresponds to  a traveling 
wave. On physical grounds we reject the case when ( 1 , O )  is a spiral because the 
number of infectives oscillates around I = 0 for large z ,  giving negative values. 
Consequently. if c > 2(1 - b)l / ’ ,  there is traveling wave solution of the form 
shown in Figure 6.4 corresponding to the heteroclinic orbit (the separatrix) 
connecting the saddle point (0.0) to  the stable node (1.0). This wave travels 
at speed c. 

Note that o is the number of susceptibles that survive the epidemic. and it 
is an increasing function of the parameter b: thus the smaller b. the fewer foxes 
survive the rabies epidemic. If b = 0.5. for example, o is about 0.2. and so 20% 
of the foxes survive: the dimensionless wave speed is c = 1.414. The reader is 
referred to Murray (2002. 2003) for references to  actual studies comparing the 
theoretical results to experimental observations. 

Example. (Dzffusion of Susceptibles) When susceptibles also diffuse, the dy- 
namics is given by the system 

where D is the diffusion constant, assumed the same for both populations. As 
boundary conditions we assume that 
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Substituting S = S ( z ) .  I = I ( z ) .  z = 2 - ct. gives 

-cS' = -3S I+  DS", 

-cI' = 3SI - P I  + DI". 

Adding these equations gives 

C P 
D D 

u" + --u' = - I .  u =: s + I .  

IIultiplying by the integrating factor exp(cz/D) leads to  

(6.2.13) 

(6.2.14) 

Now integrate from z = -m to z and use the boundary conditions t o  obtain 

The right side is positive. and it follows that 

S ( z )  + I ( z )  < S(x)  + I ( = )  = N .  

and therefore S ( z )  < N for all z .  

condition for a traveling wave to propagate. Note that 
Even though me cannot solve the problem, we can still determine a necessary 

l X  x 

I ( z ) d z  > - I ( z ) S ( z ) d z .  L 1Y 1, 
Also. if we integrate (6.2.14) over the real line. again using the boundary con- 
ditions, we obtain 

OL 

2 SX S ( z ) I ( z ) d z  = 1, I ( z ) d z .  
P --x 

Comparing this to the previous equation forces 

3 AT 
- > 1. 

P 

This condition is a necessary condition for a wave to  propagate. Clearly. the 
condition is violated if the mortality rate p is too large. or if the infection rate 
3 is too small. Stated in a different way. there is a minimal population density 

= p / 3  necessary to propagate an epidemic wave. One can show (Koble 1974) 
that the epidemic wave propagates with speed 

c =  .J3ND. 
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6.2.2 Contaminant Transport in Groundwater 

In this section we formulate a nonlinear advection-reaction-diffusion model 
for the transport of solutes (e.g.. contaminants) through a one-dimensional 
porous medium (e.g.. soil). The model is based on mass balance and consti- 
tutive assumptions for the flux of the solute and the rate of adsorption of the 
solute to the fixed soil matrix. The assumptions leads to  a coupled system of 
reaction-diffusion equations with a nonlinear advection term, and the question 
of existence of TWS is addressed. 

Pore space Soil 

Figure 6.5 
dissolved in a liquid. 

Porous medium of cross-sectional area A carrying a chemical 

We consider a one-dimensional underground flow in the horizontal direction 
(denoted by x) occurring in a tube of cross-sectional area A (Figure 6.5). The 
tube is assumed to be a porous medium where the fluid (water) can occupy 
only a fraction 0 of the total volume. The fraction Q is called the poroszty of 
the medium, and we assume that it is constant. We let C = C ( s . t )  denote 
the mass concentration of a chemical (the solute) dissolved in the water and 
-V = iY(2.t) denote the mass concentration of the chemical that  is adsorbed 
on the soil. By q = q(z. t )  we denote the flux of the solute. In the usual manner 
we can express mass balance in integral form as 

where [a.b]  is an arbitrary section of the tube. Equation (6.2.15) states that  
the time rate of change of the total amount of the solute in the section [a. b] 
is balanced by the net rate a t  which the solute flows into the section minus 
the rate of solute adsorption by the soil in that section. Assuming smoothness 
of the functions C, N. and q. we may express (6.2.15) as a partial differential 
equation 

QCt + qz  + N, = 0. (6.2.16) 
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To complete the formulation we require constitutive relations. Mre assume that 
the flux q has two contributions: the first is Fickian diffusion. and the second 
is a transport term caused by the bulk movement of the fluid through the 
medium. Thus 

dBC2 
q = -DC, + - 

2 ,  
(6.2.17) 

where D is the diffusion constant and B is a bulk movement constant. An 
additional constitutive relation is needed to relate C and AT. Such relations are 
usually determined empirically: the simplest is a linear equilibriium relationship 
AT = 0iC. Another possible assumption is a nonequilibrium expression Nt = 
a(.Vo-N). where a is a positive constant and N o  is the maximum concentration 
where the soil becomes saturated. This equation determines N as a function 
of time and it can be substituted, along with (6.2.17), into (6.2.16) to obtain 
a single equation for C.  The growth rate a may also depend in some manner 
on the solute concentration C.  Some of these assumptions are explored in the 
exercises. For the present discussion we assume a nonequilibrium constitutive 
equation for the rate of adsorption of the form 

iVt = K R ( N ,  C ) .  (6.2.18) 

where K is a rate constant and where R is a rate function having the sigmoid 
form 

(6.2.19) 

where L V ~  is a maximum. constant concentration where the soil is saturated 

Figure 6.6 Graph of the locus R ( N ,  C )  = 0 defined by (6.2.19). 

with the chemical, and CO is a threshold value of the solute concentration where 
the rate function switches on. Equations (6.2.18) and(6.2.19) imply that the 
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rate of adsorption increases with the concentration C up to some maximum 
rate. while it decreases with the concentration N :  in other words. the rate 
decreases as the soil becomes more adsorbed with the chemical pollutant. A 
graph of the equilibrium locus R ( S .  C) = 0 is shown in Figure 6.6. Above the 
equilibrium curve the adsorption rate is negative and the adsorbed chemical 
is returned to the water: below the equilibrium curve the adsorption rate is 
positive and the solute is deposited on the soil. Consequently, in this model 
there is a tendency toward an equilibrium state. This model is a generalization 
of some of the other models found in the literature: the reader can consult. for 
example, Guenther & Lee (1988) for an elementary discussion of linear models. 

TT-ith assumptions (6.2.17) and (6.2.19), equations (6.2.16) and (6.2.18) be- 
come 

QCt +QBCC, + X t  = DC,,, (6.2.20) 

(6.2.21) 

These equations can be nondiinensionalized by introducing the dimensionless 
parameters 

Then we have 

n , + k  n - -  ( = O .  

(6.2.22) 

(6.2.23) 

where 3 and k are dimensionless constants defined by 

\Ye seek traveling wave solutions of (6.2.22)-(6.2.23) of the form (we use the 
symbol w for the scaled wave speed) 

c = c(< - w). n = n(< - ZT). (6.2.24) 

Ahead of the wave we assume that c = n = 0. that is. that the solute and 
adsorbed concentrations are zero: after the wave passes, the conditions behind 
it will be determined depending on the velocity w .  Thus the boundary conditions 
are 

c(+m) = n ( + x )  = 0. (6.2.25) 
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Substituting (6.2.24) into (6.2.22) and (6.2.23) gives 

(6.2.26) I I f  - z c l  + cc’ - 3vn = c . 

-vn’+k n - -  = o .  ( 1 2 )  
(6.2.27) 

where a prime denotes d/dz. where z = 5 - ur. Noting that cc’ = ( c 2 / 2 ) ’ .  equa- 
tion (6 .2.26)  can be integrated with respect to  z ,  and the constant of integration 
can be determined by the boundary conditions (6 .2.25) .  After rearrangement. 
we obtain 

(6.2.28) 

lye analyze this system in the phase plane. The nullclines are given by the 
parabola 

n = 2(3v ) - l c (c  - 2v). (6.2.30) 

where the vector field is vertical (cf = 0). and the equilibrium curve 

(6.2.31) 

where the vector field is horizontal (nf = 0). These curves are shown in Fig- 
ure 6.7. The origin ( O , O ) ,  representing the state at plus infinity. is a critical 
point; there is at least one additional critical point in the first quadrant. The 
c-coordinates of the critical points are the positive real roots of the cubic equa- 
tion 

c3 - 2vc2 + (1  - 2 0 c ) c  - 2%’ = 0, (6.2.32) 

which comes from equating (6.2.30) and (6.2.31). Figure 6.7 shows the case of 
a single positive root of (6.2.32). We argue that for any v > 0 there is an orbit 
connecting (c-. n - )  to ( O . O ) ,  where c- is the smallest positive root of (6.2.32) 
and n- = c T / ( 1 +  c:). This heteroclinic orbit represents a TJl3 to the system 

Figure 6.7 shows a generic case: the equilibrium curve is fixed. but the 
parabola depends on the parameters 13 and v. In any case, the parabola has 
a negative minimum at c = v. and it lies strictly below the equilibrium curve 
for 0 < c < c-. The linearized Jacobian matrix associated with the nonlinear 
system (6.2.28)-( 6.2.29) is 

(6.2.22)-( 6.2.23) .  
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Figure 6.7 Nullclines and direction field associated with the system (6.2.28)- 
(6.2.29). Ws is the stable manifold entering the critical point (0,O). 

The eigenvalues of J(O.0) are -2' and k/u. and therefore (0.0) is a saddle point. 
The eigenvectors are (1.0) and (1. -( 1 + k /c2) / ,3 ) .  Now define the region T by 

(c.n) : n > 0. c < c-, n > 2(3v)-'c(c - 27>), and n < - c2 } .  
1 +c* 

which is the region in the first quadrant below the equilibrium curve. above 
the parabola. and to the left of the first positive intersection point of the two 
curves. This region is shaded in Figure 6.7. Let lYs be the one-dimensional 
stable manifold (the separatrix) entering (0,O). This manifold must enter (0.0) 
from the region T .  Now follow this manifold backward as z -+ -m. Because the 
vector field along the boundaries of T. taken backward in time, point inward, 
we argue that W s  cannot leave the region T, and consequently it must enter 
the critical point (c-. L). The argument here can be stated differently-if 
time is reversed. the boundary of T consists of ingress points (the vector field 
is inward), so by the U-azemski retract theorem [see, e.g.. Hartman 19641, the 
curve W" must enter ( c - . n - ) .  We can also note that on the contrary. if Ws 
did touch the boundary of T .  uniqueness would be violated. Therefore, there 
exists an orbit (the separatrix) connecting (c-. n-) to  (0.0). thus producing a 
traveling wave solution to the advection-reaction-diffusion system for any wave 
speed ti > 0. Figure 6.8 shows the qualitative behavior of these concentration 
waves (further details may be found in Cohn & Logan 1995). 

In the two preceding examples the problem of determining traveling waves 
reduced to a two-dimensional phase plane analysis. This is more than can usu- 
ally be expected in a problem. 3Iore often than not, the dynamical system has 
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Figure 6.8 Traveling concentration waves. 

dimension three (or more); and the analysis is considerably more difficult. 

EXERCISES 

1. In the rabies epidemic model. discuss the existence of traveling wave solu- 
tions in the case that the parameter b. the ratio of the death rate to the 
infection rate, is greater than unity. 

2 .  Consider the mass balance equation (6.2.16) for the groundwater problem. 

(a) Derive an equation for the concentration C when the flux is given by 
q = -DCx + dVC, and N = aC.  where V is the velocity of the bulk 
movement of the water through the soil and a is a positive constant. 
Do traveling wave solutions exist in this case? 

(b) Along with (6.2.16) and (6.2.17); assume that the rate of adsorption is 
given by IVt = aC - n/N. where a and -( are positive constants. Show 
that traveling waves for the resulting system exist, and describe them. 

3. Consider the reactive-diffusive system 

U t  - Du,, = ~ ( l  - u - c), uL.'t - uXx = U U ( U  - b ) .  

where a.  b. and D are positive constants 

(a) Interpret this scaled model in a predator-prey setting. 

(b) In the special case D = 0,  investigate the existence of traveling waves 
(Dunbar 1983). 

4. A simplified, scaled model of a detonation process is given by the system 

U t  + U U ,  + Ax = Du,,. A t  = T ( U .  A), 
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where u is a scaled temperature-like variable and X is the mass fraction 
of the product species P in a reversible chemical reaction R t) P with 
reaction rate T given by 

and D is a positive constant. Show that there exist positive traveling wave 
solutions to this nonlinear advection-reaction-diffusion system if the wave 
speed c exceeds the value of u at +cc (Logan & Dunbar 1992). 

5. Show that traveling waves exist for wave speeds c > 2 for the reaction- 
advection system 

ut + uu, + 21, = ( 2  - u)(u - 1). Z't = 1 - 2' - z c l ' " .  

(Logan bL Shores 1993) 

6. Determine all nonnegative traveling waves for the system 

[Note: A large number of examples and exercises on traveling waves in 
biological and chemical systems can be found in Murray (2002. 2003).] 

7. A model for the burning of a solid waste material is given by the system 

ut = ur, + k a r ( u )  at = -ar (u ) .  

where u = u ( x 5  t )  is the temperature: a = a ( z ,  t )  is the concentration of the 
immobile. combustible. unburned waste material: k is a positive constant: 
and r ( u )  is the burning rate. Investigate the existence of traveling wave 
solutions of speed c that satisfy the boundary conditions ( u .  a )  + (0, a+)  

at plus infinity and (u.  a )  -+ ( u - .  0) at minus infinity, where a+ and u- are 
some constants. Specifically: 

(a) Show that if such solutions exist, then necessarily u- = ka+.  

(b) Assume that r ( u )  = rgu. ro > 0, and show that traveling waves exist 
for wave speeds c satisfying c2 > 4rou-. Interpret this result physically. 

(c) Examine the problem assuming that the burning rate is r(u)  = 0 if 
u 5 uh. and ~ ( u )  = ro(u - ub) if u > ub. where uh is an ignition 
temperature where the combustion process switches on (Grindrod 1996. 
pp 64-65). 
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8. Consider the system of reaction-advection-diffusion equations 

U t  = Du,, - Y U ,  - u F ( u ,  u ) .  

ct = - ~ F ( u . L ~ ) ,  

where a. b,  D .  and A, are positive constants. Find a system of ODES for trav- 
eling waveforms u = U ( z ) .  u = V ( z ) .  z = z - ct. If boundary conditions 
are given by 

U ( - x )  = U l ,  V(+x) = 0. V(-m) = 0, V(+W) = Y,. 

what conditions must the reaction term F satisfy for wavefront solutions to 
exist? Sketch possible wave profiles. Assuming that wavefronts exist. show 
that the speed c of the wave is less than the advection speed ?. 

9. The following system of PDEs arises in the study of bioremediation of 
aquifer systems where immobile. indigenous microbes attached to  the soil 
are stimulated to  consume a contaminant and produce nontoxic products 
(Logan 2001, p. 107) 

RSt = -US, - F. At = -cA, - rF. AIt = y F  - b ( M  - i l I o ) ,  

where A121(z. t )  is the density of the microbes. S(z. t )  is the density of the 
contaminant (e.g.. a hydrocarbon). A(z ,  t )  is the density of a nutrient stim- 
ulant (eg. .  oxygen), and F = qSAAI/[(K,+S)(K,+A)] is the biodegrada- 
tion rate. R > 1 is the retardation constant. v is the average velocity of the 
subsurface flow. b is the decay rate of the bacteria. y is the yield. AIo is a 
reference microbe density. and r is the mass of the nutrient used per mass 
contaminant degraded; q. K,. and K ,  are rate constants. Write a short 
paragraph discussing the origin of the various terms in the model equa- 
tions. Find the speed c of an assumed wavefront that satisfies the boundary 
conditions S = 0, A = A0 at -x, S = S,, A = 0 at  +x. and AI = L I I ~  
at hx. Without solving the traveling wave differential equations. sketch 
anticipated profiles of S. A. and Llf as a function of the variable 2 = z - ct. 

10. Investigate the existence of TWS for the system 

p t  = k lsp2  + k2q. pt  = -uq, - k2q + k l sp2 .  

with q -+ 0 at +x and p + 0 at  -x. 

11. A chemical wave moves through a tube z 2 0. where a free protein in 
solution of concentration u becomes irreversibly bound to the immobile 
matrix structure of the medium. The concentration of the bound protein is 
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2'. and the total concentration of binding sites is B. The dynamics is given 
by 

where 

is the rate of chemical binding of the protein. 

(a) If u = uo and u = 0 at  2 = 0 for all time t ,  does there exist a nonuniform 

ut = Du,, - CYU, - f ( u ,  v ) ~  V t  = f ( ~ .  v) .  

f ( u ?  U) = k l ( B  - U ) U  - k221 

equilibrium solution? 

(b) Does there exist a uniform equilibrium? 

(c) In R show that there is a TWS with u. 21 -+ 0 as z + +x, provided 

where c is the wave speed. What are the states at -m? 

6.3 Existence of Solutions 

IVe now consider the question of existence of a solution to a nonlinear initial 
value problem 

U t  - Du,, = f(u), 5 E R. t > 0. (6.3.1) 

u(z ,  0) = uo(z).  z E R. (6.3.2) 

For the present we consider the scalar case. and conditions on uo and the 
nonlinear reaction term f ( u )  will be imposed later. 

It is easy to write some simple examples of problems for which a solution 
does not exist for all t > 0. The initial value problem 

ut - Du,, = u2. x E R. 
z E R. 

t > 0. 
u(z,O) = uo. 

where uo is a positive constant. has a spatially independent solution u(z ,  t )  = 

uo/( l  - uot). which blows up in finite time. A less trivial example is given in 
Section 6.5. Further. if a solution exists. it need not be unique, as the following 
example shows. Consider the initial-boundary value problem 

U t  - u,, = 2ul12. 

u(x,O) = 0, 

2 E R. t > 0 
2 E R. 

It is easy to check that both u(2.  t )  = 0 and u(z .  t )  = t2 are solutions. There- 
fore. to guarantee existence and uniqueness it is evidently necessary to  impose 
conditions on the initial data and the type of nonlinearity. 
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6.3.1 Fixed-Point Iteration 

Of course, the best strategy for showing that a solution to  a given problem exists 
is actually to exhibit a formula for the solution. For certain linear problems, 
we can actually proceed in this manner. For example, using Fourier transforms 
one can derive the solution to  the linear, nonhomogeneous diffusion problem 

U t  - Du,, = g(z , t ) ,  z E R, t > 0. (6.3.3) 

u(z. 0) = uo(z). 2 E R. (6.3.4) 

For reference (we need this solution in the sequel). it is given by 

t 

K ( z  - y. t ) u o ( y )  dY + 1 K ( z  - y. t - s)g(y. s) dyds. (6.3.5) 

where K ( z .  t )  is the diffusion kernel 

(6.3.6) 

and where uo and g are continuous bounded functions. For nonlinear problems, 
however. it is usually impossible to find such formulas. and alternative methods 
must be found to prove existence. Such existence questions are common in 
applied analysis, and in this section we formulate a general method that applies 
to many nonlinear problems. This method, called fixed-point iteration, is an 
impressive illustration of the unifying power of abstraction in analysis. The 
basic idea is to  produce a sequence. through iteration of a certain map. that 
converges to  the solution of the problem, thus showing existence. 

\Ye indicate, for the purpose of motivation. the methodology in two differ- 
ent settings. nonlinear algebraic equations and ordinary differential equations, 
before addressing the existence question for nonlinear PDEs. 

Example. (Fixed-Point Iteration) Consider a nonlinear algebraic equation in 
the form 

z = @(z). (6.3.7) 

where 0 is a given continuous function defined on R. By selecting an initial 
approximate zo and then iterating the map d repeatedly via 

z,+1 = o(zn) .  12 = 0 .1 .2 . .  . . . (6.3.8) 

we produce a sequence of numbers zo.z1.22,23. . . .. which, under certain con- 
ditions. converges to  a root of (6.3.7). For, suppose that z, converges to  some 
number z’ (i.e., limz, = z’). Then, taking the limit of both sides of (6.3.8) as 
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Figure 6.9 A cobweb diagram showing fixed-point iteration in the convergent 
case. 

n + x and using the continuity of ~5 gives x’ = limq(z,) = o(limx,) = ~ ( z ’ ) ,  
and therefore z’ is a root of (6.3.7). Thus existence of a root can be proved 
from a limiting process. Because d ( d )  = 2’.  the function 0 maps d to itself. 
and therefore z’ is called a fixed poznt of the mapping O. The process (6.3.8) is 
often called fixed-poznt zterutzon. The situation is shown geometrically in Fig- 
ure 6.9: a root 5’ is the z coordinate of the intersection of the graphs of y = z 

and y = ~ ( x ) .  The sequence z, can be determined geometrically by drawing a 
cobweb diagram, depending on the shape of the graph of 0. If the graph is d is 
too steep at x ’ ,  as shown in Figure 6.10. the sequence defined by the iterative 
process (6.3.8) will not converge to the root. or fixed point, 2’. When will the 
fixed-point iteration converge? To fix the idea. let o be a continuous function 
on R and satisfy a Lzpschatz condataon of the form 

lo (x)  - o(z)i 5 klz - 21 for all x . z  E R. (6.3.9) 

where k is a constant with 0 < k < 1. Notice that the Lipschitz condition puts 
a bound on all secant lines or chords connecting two points on the graph of 0. 
thereby restricting the steepness of the graph. Under condition (6.3.9) it is not 
difficult to observe that for any choice of 20. the iterative process (6.3.8) will 
converge to the unique root of (6.3.7). To prove this fact. we show that x, is 
a Cauchy sequence of real numbers. and hence convergent. First we calculate 
the distance between consecutive iterates as 

Then. if 1x1 - 501 = a. we have 
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Figure 6.10 Cobweb diagram for fixed-point iteration in the divergent case. 

whereupon. for any positive integer p .  we obtain 

Izn-p - xn/ 5 Ixn+p - zn+p-1 1 + lx”-p-l - x , + p - 2 /  + 
5 akn+P-l + a k ” + p - Z  + 
5 ak”[kp-l  + k p - 2  + . . + 11 

akn <-  
1 - k ‘  

Here. to get the first line we added and subtracted all the terms between x,+ 
and x, and then used the triangle inequality: to  get the final inequality we 
applied the fact that the sum of the geometric series is Ck” = 1/(1 - k ) .  
Thus, because k < 1. the difference /z,+~ - xnl can be made arbitrarily small 
provided that n is chosen large enough. for all p > 0. In other words. for any 
E > 0 there is an integer A’ such that 1 ~ , + ~  - x,l < E for n > 1Y and any 
p > 0. So. by definition. the sequence xn  is a Cauchy sequence. and therefore 
it converges to  some 2’. Our earlier argument showed that x’ = limx, is a 
root of (6.3.7). It is straightforward to show that the root x’ is unique. By way 
of contradiction. let z’ and z’’ be two distinct roots of (6.3.7): from (6.3.9) we 
have Ix’-x’’l = lf(x’)-f(z’’)l 5 kIx’-x’’l .  for k < 1, which is a contradiction: 
consequently. only one root can exist. 

To summarize. we have shown that if o is a continuous function on IW satis- 
fying the Lipschitz condition (6.3.9). then (6.3.7) has a unique real root. There- 
fore. we proved the existence of a solution without exhibiting it explicitly: the 
argument is clearly based on the fact that the set of real numbers IR is complete 
(Cauchy sequences converge) and the assumption that the iteration function 
Q satisfies a Lipschitz condition. The latter condition. equation (6.3.9). can be 
interpreted alternatively by noting that the distance between d(x) and 4 2 )  
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is strictly less than the distance between x and z ;  that is, $I is a contractaon 
mappzng. The ideas of fixed-point iteration, contraction mappings, and com- 
pleteness can be generalized to a broad setting where they apply to ordinary 
and partial differential equations, integral and functional equations. and other 
equations of interest in applied analysis. 

Example. (Picard I terat ion)  In ODEs we are interested in the existence of a 
solution to the initial value problem 

Y' = f ( t .  Y ) ?  Y ( t 0 )  = Yo. (6.3.10) 

where t o  and yo are given constants: f is assumed to be a continuous function. 
W-e can easily rewrite the initial value problem (16.3.10) as an integral equation 
by integrating from t o  to t to obtain 

(6.3.11) 

The right side of (6.3.11) can be regarded as a mapping @ on the set of con- 
tinuous functions: that  is, with each continuous function y there is associated 
another continuous function @(y) defined at each t by 

t 

@(Y) ( t )  = Yo + l" f(s3  Y(S)) ds.  

Therefore. the integral equation (6.3.11) may be written in the form 

which formally has the same structure as the algebraic equation (6.3.7) in the 
preceding example. Therefore, in the same manner we may fashion a sequence 
of functions y o ( t ) .  y l ( t ) . y 2 ( t ) .  . . . by the iteration formula 

Yn+l(t)  = @(Yn) ( t ) .  
r t  

= Yo + J,, f(S.Yn(S)) ds ,  n = 0 . 1 . 2 , .  . . . (6.3.12) 

where the first iterate is y o ( t )  = yo. In the context of ODEs. the sequence of 
iterates y n ( t )  obtained in this way are called Pzcard zterates. and the fixed-point 
iteration procedure is Pzcard zteratzon. One is left with the task of showing 
that the sequence converges to  a solution of the given integral equation. or 
equivalently. the given initial value problem. 

It is not difficult to prove the following theorem [see. e.g.. Birkhoff & Rota 
19651: 
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Theorem. Let f ( t .  y) be a continuous function and assume that f satisfies 
the Lipschitz condition 

If(t, y) - f ( t .  z)i 5 kly - zl for all y. z E R and It - to1 5 T 

Then. for any yo the Picard iterates yn( t )  converge uniformly on (t-to( 5 T .  and 
the limiting function is a unique solution to the initial value problem (6.3.10) 
on the interval It - t o /  5 T .  

6.3.2 Semilinear Equations 

U'ith the ideas in the preceding paragraphs as motivation, we now consider 
the question of existence of a solution to the nonlinear initial value problem 
(6.3.1)-(6.3.2). The last example on ordinary differential equations suggests 
the strategy of writing the initial value problem as an integral equation. A 
hint on how to accomplish this is found in the solution (6.3.5) to the linear, 
nonhomogeneous problem (6.3.3)-(6.3.4). For the moment. assume that f and 
uo are bounded. continuous functions on R. If u(z . t )  is a solution of (6.3.1)- 
(6.3.2). then 

u~(x. t )  - D u X x ( z .  t )  = f ( u ( z . t ) )  = g ( X ,  t ) .  ~ ( 2 .  0) = u ~ ( x ) .  (6.3.13) 

Thus. from (6.3.5) we expect that 

or 

K(z-y. t )uo(y)  dy+ .I" .If, K(z-y% t - s ) f ( u ( y ,  s)) dyds .  (6.3.14) 

which is a nonlinear integral equation for u = u(5. t ) .  One can show that 
u = u(2. t )  is a solution of (6.3.1)-(6.3.2) if, and only if. u = u(z . t )  is a 
solution of (6.3.14). Equation (6.1.14) has the form 

u = @(u), 

where @ is the mapping defined on the set of bounded continuous functions by 
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Thus one can define an iterative process by unll = @(un) .  or 

U n - l ( Z .  t )  = 1 K ( z  - y. t)uo(y) dy 
R 

+ lt .i, I((. - y. t - S ) f ( U n ( Y .  3)) 44 ds. 

n = l . 2 . 3  . . . . .  (6.3.15) 

with 

uo(z. t )  = K ( z  - y. t )uo(y)  dy. (6.3.16) 

The initial approximation uo(x. t )  given by (6.3.16) is just the first term on the 
right side of (6.3.14). and it is the solution to the linear. homogeneous diffusion 
equation with initial condition u ( z .  0) = ug(z).  There should be no confusion 
in using the notation UO(X, t )  and ug(x) for these two different objects: we shall 
always indicate the arguments so that the context is clear. Lye are now in a 
position to prove an existence theorem for the initial value problem (6.3.1)- 
(6.3.2) under suitable assumptions. This version of the theorem was adapted 
from Kolmogorov et al. (1937) in their celebrated paper on nonlinear reaction- 
diffusion equations. In the proof of the following theorem me use the fact that  
the diffusion kernel K is strictly positive and that 

K ( z  - y. t - s )  dx = 1 

L 

for all y and all s < t .  (6.3.17) 

Theorem. (Ezzstence- Cnzqueness) Consider the initial value problem (6.3.1)- 
(6.3.2 where ug(z) is a bounded continuous function on R. and where f is a 
bounded continuous function on R that satisfies the global Lipschitz condition 

if(.) - f(z,)i 5 klu - 2:l for all u. v E R. (6.3.18) 

where k is a positive constant independent of u and c.  Then for any T > 0. 
there exists a unique. bounded. solution u(z ,  t )  of (6.3.1) -(6.3.2) for z E R and 
O l t S T .  

Proof: SYe show that the sequence un(z. t )  defined by (6.3.15) and (6.3.16) 
converges uniformly on R x [O. T ]  to  a function that is a solution of (6.3.1)- 
(6.3.2). First we note that the Lipschitz condition (6.3.18) implies that  

lf(uo(z.t)l L If(0)l + kluo(z.t)l l (1 + k)m,  

m = max{f(O).supluo(z)/}. 
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Then. from (6.3.15) and (6.3.17) we obtain 

t 
5 i (1 + k ) m d s  = A l t  (6.3.19) 

For convenience we introduce the notation 

Then, from (6.3.19), we get 

Afi( t )  5 Mt .  0 5 t 5 T .  (6.3.20) 

Kext we obtain a bound for /un+1 - u,I. From (6.3.15) we have 

lun+l(z*t) - U n ( Z . t ) l  

I .i’ 
= k l  M n ( s ) d s .  

K ( z  - y ,  t - s)kAl,(s) d y d s  

t 

Taking the supremum, we obtain 

t 

M n T l ( t ) < k A  M,(s)ds,  O L t < T .  n = 1 . 2 . 3  , . . . .  (6.3.21) 

Using (6.3.20) and (6.3.21). we can obtain bounds on each Mn. To this end. 
observe that 

and so on, to finally obtain 

Equation (6.3.22) implies that the sequence ZL,(Z, t )  converges uniformly on 
R x  [O. T ]  to some continuous, bounded function U ( Z .  t ) .  Then, taking the limit of 
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both sides of (6.3.15) and using the uniform convergence to  pull the limit under 
the integral, we observe that the limit function u(2.t) satisfies the integral 
equation (6.3.14) and therefore is a solution to  the initial value problem (6.3.1)- 
(6.3.2). 

Uniqueness of u(z .  t )  can be proved by the standard contradiction argument. 
Let v ( x .  t )  be another bounded. continuous solution of (6.3.14). Then 

Now let M ( t )  = sup Iu(x. s )  - ~ ( 2 .  .)I, taken over all x E R and s 5 t .  It follows 
that 

M ( t )  5 k I' K ( x  - y, t - s ) M ( s )  dy ds = k M(s) ds.  

which is impossible unless M ( t )  = 0. Therefore. u = 2' and solutions are unique. 
completing the proof. 0 

.I' 

The preceding existence-uniqueness theorem has a very strict hypothesis, 
namely. the global Lipschitz condition on the reaction term f ( u ) .  The reaction 
term f(u) = u(1- u) for the Fisher equation, for example. does not satisfy this 
because. in this case 

If(u)-f(w)/  = / u -u2 -v++2 !  2 / = ) l - u - v u - v / .  

and the right side cannot be bounded by klu - d for all u and v in R. How- 
ever, if u and v are restricted, the factor 11 - u - vl can be bounded and we 
obtain a local f o r m  of a Lipschitz condition. Thus, we want to formulate an 
existence-uniqueness theorem by weakening the hypothesis to a local Lipschitz 
condition, thereby obtaining a theorem with broader applicability. We also take 
the opportunity to introduce some basic concepts from elementary functional 
analysis that permits us to resolve existence-uniqueness issues in a variety of 
contexts that includes many of the equations occurring in applied mathematics. 
As mentioned earlier, this unifying approach shows the power of abstraction 
in mathematics and should convince even the most skeptical of the value of 
abstract methods. 

6.3.3 Normed Linear Spaces 

We recall from elementary linear algebra that a real linear space (or vector 
space) is a set of objects (numbers. vectors. matrices. functions. or whatever) 
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on which an addition is defined and in which multiplication of the objects by 
scalars (real numbers) is defined. In other words. if X denotes the set of objects 
and u and v are in X .  then u + c is defined and belongs to  X .  and au is defined 
and belongs to  X for any u in X and any real number a. The addition must 
satisfy the usual rules of addition: commutativity, associativity, existence of a 
zero element. and existence of an inverse element (-u) corresponding to  each 
u in X .  More specifically: 

1. u + %' = 7J + u. u + (c  + w) = (u + 7J) + w. 
2 .  There is an element 0 in X such that u + 0 = u for all u in X .  

3 For each u in X there is an inverse (denoted by -u) in X for which u + 
( -u )  = 0. 

Similarly, the scalar multiplication must satisfy a minimal set of rules: 

4. l u  = u for all u in X 

5 .  (ab)u = a(bu).  (a  + b)u = au + bu, a(u + u )  = au + uu. for all u and 2: in 
X and all a and b in R. 

Any set of objects on which addition and scalar multiplication is defined 
and the rules (1)-(5) hold is called a real h e a r  space. Thus a linear space is a 
set on which there is well-defined algebraic structure. 

Given a linear space X with its algebraic structure, one may also impose 
geometry, that is. a measure of the size of a given element of the space. If to  
each u in a linear space X there is associated a nonnegative number, denoted 
by ~ ~ ~ 1 ~ .  satisfying the three properties 

llu/l = 0 e u = 0: 

Ilu + 2'11 2 ~ ~ u ~ l  + / j 7 ~ l l  

llaull = lalllu/l for a E R, u E X :  (6.3.23) 

(6.3.24) 

then X is a normed  h e a r  space. and the measure of size 1 1  . / I  is called a norm 
on X .  In a natural way. a dzstance func t zon  may be defined in a normed linear 
space by the formula 

dist(u, 21) = I/u - z!ll. 

Common examples of normed linear spaces are 

for u. 2: E R, 

1. X = the real numbers R, with lixll = 1x1: the distance between z and y is 

1 %  - YI. 
2. X = R" = ((21% 2 2 . .  . . , x,)Ix, E R} = the set of all ordered n-tuples of 

real numbers: one norm is the Euclzdean norm 'l(x1,. . . . x,)i' = (xy + 
. . .  + x;)ll2: two other norms are il(xl.. . . .x,)11 = Ix1/ + 
l~(x~,...~xn)l~ =max{lxll . lxnl}. Thus it is possible to  define different 
norms on a given linear space. 
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3 .  X = the set of real n by TZ matrices, with ~ ~ L I I ~ ~  = Clnz,,/, where AI = 

(m.7). 

1Iany of the normed linear spaces of interest in applied mathematics are 
spaces of functions. For example: 

4. X = the set of continuous functions defined on a closed interval [a. b]. This 
linear space is denoted by C [ a .  b ] .  It can be made into a normed linear space 
by defining llulj = max 1 u ( z )  1 ~ IT here the maximum is taken over a 5 17: 5 b. 
.Another norm on C[a.b] is IIuII = J,b lu(z)ldz. 

5 .  X = the set of bounded. uniformly continuous functions on R. This linear 
space is often denoted by BC. A norm on BC is ~~u~~ = sup ~ u ( z ) i .  n: E W. 

The reader should verify that some of the norms defined in the preceding ex- 
amples do indeed satisfy the conditions (6.3.23). 

It is a fundamental property of the real number of system that Cauchy 
sequences converge. Specifically, if z, is a sequence of real numbers having 
the property that for any E > 0 there exists a positive integer AT such that 
Izn+p - znl < E for all n > A- and all p > 0. the sequence 2, must converge 
to a real number. This fact follows from the completeness axiom of the real- 
number sl-stem. which states that every bounded set of real numbers must have 
a least upper bound (supremum) and a greatest lower bound (infimum). lye can 
generalize this notion to an arbitrary norined linear space X in the following 
manner. Let u,  be a sequence of elements in a normed linear space X .  We say 
that un converges to an element u if for any E > 0 there is a positive integer 
S such that llun - ull < E for all n > ,Ir: this type of convergence is also called 
n o r m  convergence. or convergence in the norm topology. We say that u ,  is a 
Cauchy sequence in X if. and only if. for any E > 0 there is a positive integer 
lY such that I ~ U , + ~  - u,II < E for all n > X and p > 0. A normed linear space 
X is said to be complete if it has the property that every Cauchy sequence in 
X converges to  an element of X .  A complete normed linear space is called a 
Banach space. 

Example. Consider the normed linear space C[O. 11 of continuous functions on 
[0,1] with the norm IIuIl = max Iu(17:)l. It is not difficult to prove that C[O. 11 
with this norm is a Banach space. On the other hand. if the norm is defined 
by llull = 1; lu(z)ldz. then C[O. I] with this norm is not complete (the reader is 
asked to  demonstrate this fact in an exercise at the end of the section): however, 
C[O. 11 with this norm may be completed in much the same way that the rational 
numbers are completed to obtain the real numbers, namely. by appending to  
C[O. I] the limits of all Cauchy sequences of functions in C[O. 11. The resulting 
space is denoted by L1[O. 11 and is known as the space of Lebesgue integrable 
functions on [O. 11. We remark that limits of Cauchy sequences in C[O, I] may not 
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be Riemann integrable. and therefore the integral in the definition of the norm 
must be generalized to the Lebesgue integral. In a similar manner. the Lp[a.  b] 
spaces are Banach spaces that arise by completing the continuous functions in 
the norm 

l l P  

I I ~ I I P  = [ib lu(x)l’dr] 

Now we state the fundamental result, which is the vehicle to  an existence 
theorem for nonlinear partial differential equations. Let X be a Banach space 
and suppose that Q : X + X is a mapping on X .  If d has the property that 
l lg(u) -o(v)11 5 cyIIu-v:J/ for all u and in X. for some positive constant cy < 1, 
then Q is called a contractzon muppzng. Then we have the following theorem. 

Theorem. (Banach Faxed-Poznt Theorem) If @ : X + X is a contraction 
mapping on a Banach space X .  then Q has precisely one fixed point [i.e., there 
exists a unique u E X such that ~ ( u )  = u]. 

Proof: Earlier in this section we proved this theorem for a contraction map- 
ping on the reals. The general proof for a Banach space is exactly the same 
argument with the absolute values replaced by norms. 0 

Remark. In applications, p is usually not a contraction on the entire Banach 
space. but rather only on a closed subset in the space. (A set G in a Banach 
space is closed if any convergent sequence in G has its limit in G.) It is straight- 
forward to prove that the fixed-point theorem remains valid on closed subsets 
of a Banach space. 

6.3.4 General Existence Theorem 

Using the machinery of a Banach space and the fixed-point theorem. we now 
formulate and prove an existence theorem for the semilinear problem (6.3.1)- 
(6.3.2).  where only a local Lipschitz condition is required. First we establish 
some notation. Consider a function u = u(x. t ) .  For each jixed time t we can 
regard u as a function of z (on R) representing a slice of the surface u(x ,  t )  at 
time t ,  or equivalently. a time snapshot of the wave. The underlying Banach 
space B in the following formulation will specify the type of functions that these 
time snapshots or wave profiles can be. Therefore. let B be the Banach space 
of all bounded, continuous functions u(x.t) on R ( t  fixed). and let i iu(. . t) l i~ 
denote the norm of a function u(z, t) in B. Specifically. we take 

Ilu(. , t) l l~ = suplu(z,t) l  fo r t  fixed. (6.3.25) 
XEW 
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This norm is denoted as the sup norm (this norm is usually denoted with the 
subscript x rather than B: however, we shall maintain this generic notation 
because the following results can be extended to other Banach spaces with other 
norms). Kow, let T be positive and let C([O.T]: B) be the set of all continuous 
functions defined on the interval 0 5 t 5 T that have values in the Banach 
space B. Thus, to each t E [O. TI we associate a bounded. continuous function 
u(x.  t )  on z E R ( t  fixed) that is an element of the Banach space B. The set 
C([O.T]; B ) .  whose elements will be denoted by either u or u ( z ,  t ) .  is a Banach 
space in its own right with norm 

(6.3.26) 

Lye must be careful not to confuse the various objects that we have defined: 
there are two Banach spaces here. B and C([O,T].  B). The objects in B are 
denoted by either u(x : . t )  or u ( . . t )  and are considered to  be a functions of 2 .  

with t fixed: the norm in B is denoted by the subscript B, and we prefer to  use 
the norm notation Ilu(.. t ) l i ~  with the generic dot argument because the spatial 
variable has been "sup-ed out" in taking the norm. Regarded as an object in 
C([O. TI. B), u = u ( z ,  t )  is a function of both z and t .  such that for each t on 
[O.T] the association of u(z: , t )  in B is continuous; in this space there is no 
subscript on the norm symbol. Another way of thinking about the objects in 
C([O,T]. B )  is as continuous curves in the Banach space B: that is, to each t in 
the parameter interval [O.T] we associate an element u( . .  t )  of B. Interpreted 
still differently. to each t we associate a wave profile in B, and the totality 
of all the wave profiles forms the surface u = u(z . t ) .  We also introduce the 
convolution operation 

(K * u)(z t )  = K ( z  - g >  t )u(g .  t )  dy, L 
where K ( z .  t )  is the diffusion kernel. K * u is the convolution of K with u, and 
( K  * u) ( . . t )  also belongs to B. Perhaps the greatest difficulty in proving the 
existence theorem is sorting out the notation. 

Theorem. (Local Ezzstence) Consider the initial value problem (6.3.1)-(6.3.2) where 
uo E B and f satisfies the following conditions 

1. f E C1(Iw). 

2.  f ( 0 )  = 0, and for each fixed t in [O. TI, f ( u ( z .  t ) )  E B for each u(z% t )  E B. 

3. For any A1 > 0 there exists a constant k .  depending only on LW. such that 

l l f ( u ( ' . t ) )  - f ( u ( ' 3 t ) ) l l B  5 k i iu ( ' , t )  - L' ( ' , t ) I IE  

for all t E [O,T] and all u(x, t )  and ~ ( x ,  t )  in B with i lu(. . t) l l~ 5 hl and 
11'!u'('. t)ijB 5 211. 
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Then there exists t o  > 0, where t o  depends only on f and liuo(.)lI~. such that 
the initial value problem (6.3.1)-(6.3.2) has a unique solution u = u(z . t )  in 

C([O. to]: B), and Ilull 5 2 l / ~ O ( . ) I / B .  

Proof: We define a closed subset G of the Banach space C( [0, to]: B) and 
show that the mapping 

is a contraction mapping on G. Then we apply the Remark after the statement 
of the Banach fixed-point theorem to produce a solution to u = qb(u), which 
by our previous remarks is a solution to the initial value problem. To this end. 
define 

G = { u  E C([O.T];B)  : 

llu(.,t) - ( K  *uo)( .%t) l l~  L I I ~ o ( . ) I I B ,  for 0 5 t 5 to}. 

where t o  = l /2k.  The set G is closed and nonempty (e.g., zero is in-t?). Also, 
the defining property of G. the triangle inequality, and the fact that 

ll(K*u)(.,t)IlB 5 l l~( . . t ) / lB.  (6.3.28) 

imply that llu(.. t ) ~ ~ ~ L 2 1 1 u 0 ( . ) ~ ~ ~ .  whereupon taking the supremum on t gives 

I I u I I 5 2  I /  uo I1 B .  (6.3.29) 

This proves the last statement in the theorem. Kow, we have from rule(2) listed 
at  the beginning of Section 6.3.3. that for any 0 5 t 5 t o .  

llf(u(..t)) - f ( V ( . . t ) ) l I B  5 kIlu(., t )  - 4.. t)llB 

L kllu - 4 (6.3.30) 

Because k depends only on the sup norm of u and v. and of course on f ,  it 
is clear that t o  depends only on f and the sup norm of uo. by virtue of the 
inequality (6.3.29). 
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The fact that 0 maps G into G [i.e.. @(u)  E G if u E G] follows from the 
sequence of inequalities 

r t  

Sow we prove that Q is a contraction. We have 

Taking the supremum over t E [O. T ]  then gives 

Il4u) - @(.)I1 I i l lu - 4. 
Therefore, d is contraction on the closed subset G of the Banach space 
C([O.T] ;  B). By the Remark following the fixed-point theorem it follows that 
there is a unique fixed point in G [i.e.. a unique solution to the initial value 
problem (6.3.1)-(6.3.2) in GI. 

It remains to show that there are no solutions outside the set G. This fact 
results from the following general argument. If u and 'u are two solutions lying 
in C([O. TI; B )  that satisfy the same initial condition. then 

from which it easily follows that 
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Multiplying this inequality by ePk t  gives the result that 

which in turn implies that 11u(.,t) - v ( . . t ) l l ~  = 0. or u = v. Consequently. the 
theorem is proved. 0 

The theorem is only a local existence result, guaranteeing a solution for 
0 5 t 5 to? for some to. Under certain conditions we may extend the solution 
to any finite time T. We have the following result. 

Theorem. (Global Exzstence) Under the same hypotheses of the last theorem, 
assume in addition that the solution is a priori bounded in the sup norm on 
0 5 t 5 T; that is. assume that there is a constant C > 0 depending only on 
supXER/uo(x)1 such that if u is any solution of (6.3.1)-(6.3.2) in 0 5 t 5 T .  
then supXERIu(x.t)~ 5 C.  Then the solution to (6.3.1)-(6.3.2) exists for all t in 
[O,T], and u(z .  t )  E B. Here T may be infinity. giving global existence. 

Proof: The local theorem guarantees a solution u on [O,to]. Then we can 
apply the local theorem again with initial condition u(z .  t o )  to get a solution 
on [to, 2 to] .  Continuing in this manner we can obtain, after a finite number of 
steps. a solution on [O.T]. 3 

Example. Consider the initial value problem for Fisher's equation: 

ut - Dux, = ~ ( 1 -  u ) .  z E JR. t > 0 ,  

u ( 2 ,  0) = uo(z),  z E R. 

Here f ( u )  = u(1 - u). Clearly. f ( 0 )  = 0. f is smooth, and 

suplf(u) - f ( ~ ) l  = Sup(l1 - u - uu - u I )  5 k S U P ~ U  - u I ,  
where k = 1 + suplul + sup~ul, and the sup is taken over z E R. Therefore, the 
local Lipschitz condition holds. Further. if u E B ,  so is f ( u ) .  The local existence 
theorem guarantees a solution on [0, to], for some positive t o .  To prove existence 
for all t > 0 we would need to have an a priorz bound on solutions. Such a 
bound can be obtained from the comparison theorems in the next section. 0 

Proofs proceed in the same way for systems of reaction-diffusion equations 
of the form 

Ut - Du,, = f ( U ) ,  x E R, t > 0,  

u(z,O) = U o ( 2 ) :  2 E R, 
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where u and f are n-vectors, and D = diag(d1.. . . ~ d,) is a diagonal matrix 
with positive diagonal entries (see Smoller 1994. Chapter 14, Section A). Kow. 
the Banach space B is a space of vector-valued functions on R with values 
in Rn.  and each component is bounded, continuous function. The equivalent 
integral equation is 

U(Z% t )  = K(z - y. t ) u o ( y )  d~ + it s, K(. - Y, t - S)f(U(Y,  s)) dyds,  s, 
where K(z, t )  is a diagonal matrix with diagonal elements 

e - x 2 / 4 d , t  kz(Z. t )  = ~ , z = 1  . . . . .  n. 
l./G&3 

EXERCISES 

1. Consider the linear initial value problem 

U t  - Du,, = U U .  z E R, t > 0;  ~ ( z . 0 )  = u ~ ( z ) .  z E R, 

where uo E B. where a and D are positive constants. and where B is the 
space of all continuous, bounded functions on R with the sup norm. Use 
the machinery in this section to prove that a solution exists for all t 2 0. 

2 .  Consider the initial value problem 

U t  - Du,, = up. z E R, t > 0: ~ ( z . 0 )  = U O ( Z ) .  z E R, 

where p > 1. and uo is a bounded continuous function on R 

(a) Use the local existence theorem to prove that a unique solution exists 
for 0 5 t 5 t o .  

(b) Show that a global solution does not, in general, exist. 

3. Prove that the linear space C[O. 11 with norm JJu/l  = J,' Iu(z)ldz is not a 
Banach space by considering the Cauchy sequence of continuous functions 

0 5 x 5 ;  

+ 5 x 5 ; t n  
U n ( X )  = n -  

1 linear. 

4. Consider the advection-diffusion problem 

U t  - Dux, = F(u) , ,  5 E R, t > 0, 
U ( L  0) = U O ( Z ) ,  Z E R. 
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(a) Show that the integral representation of a solution to this initial value 
problem is given by 

where K is the diffusion kernel. 

(b) Let F ( u )  = u2/2. Formulate and prove a local existence theorem for 
the initial value problem. 

6.4 Maximum Principles and Comparison 
Theorems 

Section 6.3 dealt with the question of existence of solutions to the initial value 
problem for certain nonlinear reaction-diffusion equations. Now we want to 
formulate two other theoretical concepts associated with diffusion problems 
and parabolic equations: maximum principles and comparison theorems. 

A maximum principle is a statement about where a solution to  a problem 
acquires on its maximum value. There are correspondingly minimum princi- 
ples. The problems can be initial value problems or boundary value problems, 
or mixed problems. For example. diffusion processes. by their very physical na- 
ture. tend to  smear out the density function u. and this precludes clumping of 
the solution in the interior of the given spacetime domain; therefore. diffusion 
problems have solutions whose maximum occurs on the boundary of the do- 
main. Comparison theorems, on the other hand, are statements that compare 
the solutions to  two similar problems. say, differing only in their boundary or 
initial values. If one of the problems can be solved. a comparison theorem can 
give bounds on the solution of the problem that perhaps cannot be solved. This 
information can be used to obtain the asymptotic behavior of the solution as 
t increases or produce a priori bounds that guarantee the existence of global 
solutions. 

6.4.1 Maximum Principles 

A maximum principle is a theorem indicating where a solution to  a given PDE 
assumes its maximum value. A simple example involving the linear diffusion 
equation illustrates the concept. 



310 6. Reaction-Diffusion Systems 

Example. Consider a solution u = u(5. t )  to the equation 

Hu E U t  - ku,, = f ( z  t )  (6.4.1) 

on the bounded spacetime domain D shown in Figure 6.11. Assume that D is 
open and its boundary consists of a segment S (excluding the endpoints) at 
time t = T > 0 and a lower boundary B that does include the endpoints of 
S. IVe also assume D is convex (contains the line segment connecting any two 
points in the domain) and lies strictly in the upper half-plane t > 0. Further. 
assume that u E C(D)  and u E C 2 ( D ) ,  where D = D U S U B is the closure of 
D.  that is, D along with its boundary. Portions of D can lie on the initial time 
line t = 0: for example. D may be a rectangular region with a segment of B 
lying along t = 0. Kow. if the source term f in (6.4.1) is strictly negative, that 
is 

Hu = f < 0. ( z . t )  E D ,  (6.4.2) 

it is easy to show that a local maximum of u cannot occur in D or on S .  By 
way of contradiction. assume that there is such a point (20 .  t o )  in D U S .  Then. 
from calculus. we must have 

U , ( X o .  t o )  = 0. U,,(Z:o. to) 5 0. ut (Z0.  t o )  2 0. 

But then Hu 2 0 at (zo,to). contradicting (6.4.2). Consequently. if the source 
term is strictly negative. the maximum value of any solution to  (6.4.1) must 
occur on B. the lower portion of the boundary. 0 

IYe extend the ideas in this example to other cases with more general differ- 
ential operators. or perhaps allowing equality in (6.4.2). Therefore. define the 
operator P defined by 

Pu = u ( z  t)u,, + b(z, t )u ,  - U t .  (6.4.3) 

t f  

I 

X 

Figure 6.11 Open domain D 
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where a and b are continuous functions on n. We say that P is unzformly 
parabolzc in D if a(x. t )  2 m > 0 in D. for some constant m. First. we remark 
that the result of the last example can be extended at once to the operator P. 
If Pu > 0. a local maximum of u cannot occur in D or on S because, at such 
a point. u,, 5 0, u, = 0, and ut 2 0. which violate Pu > 0. 

lh-e now state and prove the weak m a x z m u m  prznczple, which essentially 
states that functions u satisfying Pu + c (x . t )u  2 0 on D .  where c ~ O  on D.  
must assume their maximum on B. The result is called weak because it does 
not preclude the maximum also occurring at an interior point in D.  There is 
also a strong m a x z m u m  prznczple. which we shall formulate later, but not prove. 
that does preclude a maximum occurring in D unless 'u is constant up to that 
point of time. 

Theorem. ( W e a k  M a x z m u m  Prznczple) Let u E C(D) n C 2 ( D )  be a solution 
of the equation 

Pu cu = f ( z . t ) .  (x,t) in D.  (6.4.4) 

where c and f are C ( D ) .  c(x .  t )  5 0. f (x. t )  2 0 in D ,  and P is uniformly 
parabolic in D.  Then u assumes its positive maximum on B. provided that it 
exists. 

Proof: The idea of the proof is to assume the contrary and construct a 
function that violates the usual calculus conditions for a maximum. Most proofs 
of maximum principles use this strategy in one way or another, but some proofs 
require clever constructions. 

Suppose that u has a positive maximum in D. To show that this maximum 
must occur somewhere on B. we first define the auxiliary function 

u(x.  t )  = u(x. t )  - E t .  

If u has a positive maximum in 0, so does v for E sufficiently small. By way of 
contradiction. assume that the positive maximum of v occurs a t  a point ( 2 0 %  t o )  
in D U S .  Then 

v,(zg, t o )  = 0. U,,(xo. t o )  5 0. 

Now calculate vt. We have 
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Next. choose a number d > 0 such that vt(x0> t )  5 - ~ / 2  for t o  - d 5 t 5 t o .  
Then integration gives 

This contradicts the assumption that v has a positive maximum at (xo.to). So 
the positive maximum of v must occur on B. Now we can make the following 
estimates: 

maxu = max(v + ~ t )  5 mgxv + ET 
D D D 

= maxv + ET = max(u - ~ t )  + ET 5 maxu + ET 
B B B 

Because E is arbitrary, maxgu 5 maxgu.  and therefore the maximum must 
occur someplace on B. completing the proof. 0 

If c = 0 and f = 0. we have the linear homogeneous equation Pu = 0. If 
u is a solution to this equation. so is u + constant. for any constant. Thus. for 
this equation we may always assume that u has a positive maximum. and this 
hypothesis in the weak maximum principle may be deleted. FVe therefore have 
the following corollary. 

Corollary. Let u E C ( D )  n C 2 ( D )  be a solution of 

P u = 0  on D.  

where P is uniformly parabolic on D.  Then u assumes its maximum and min- 
imum on B. 

IVe can take the analysis one step further and prove the following theo- 
rems with no assumption on the sign of the function c = c(x .  t ) .  This theorem 
will yield simple proofs of uniqueness theorems, which are requested in the 
Exercises. 

Theorem. Let u E C ( D )  0 C 2 ( D )  be a solution of 

Pu + cu = f (x. t )  on D. 

u = O  on B, 

where .f 2 0 on D .  Then u = 0 in D.  

Proof: First consider the case c 5 0 in D .  By way of contradiction. assume 
that u is strictly positive at some point of D.  Then u has a positive maximum 
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in D.  and by the weak maximum principle u must have a positive maximum 
on B. contradicting the hypothesis that u = 0 on B. If u < 0 at  some point 
in D ,  then in the same way it must have a negative minimum on B, again a 
contradiction. So in the case c50  we must have u = 0 in D. 

Now assume that c 5 0 is not satisfied. In this case choose a constant X 2 c 
in D and set u = wext. Then w satisfies the equation 

Pw + (c - X)w = f e - x t  in D 

w = O  o n B  

But now c - X 5 0, and therefore the weak maximum principle may be applied 
to get w = 0 in D. Hence we must have u = 0 in D.  which completes the 
argument. 0 

As mentioned earlier, there is a strong maximum principle that states the 
consequences of having a maximum inside D. We state. without proof, a simpli- 
fied version of this theorem that applies to  the simply connected. convex region 
D shown in Figure 6.11. An easily accessible, general version is stated and 
proved in Smoller (1994). Protter & Weinberger (1967)) or Friedman (1964). 

Theorem. (Strong Muxzmum Prznczple) Let u E C ( D )  n C 2 ( D )  be a solution 
of the equation 

where P is uniformly parabolic in D.  where c 5 0 and f 2 0 (respectively. 
f 5 0) in D. and c and f are continuous in D.  Let m be a nonnegative 
maximum (respectively, nonpositive minimum) of u in D ,  and suppose that 
u(zo*to) = m at some point of D .  Then u = m at all points (z. t )  in D with 
t < to. 

Pu + c(x.  t )u  = f(x. t )  in D.  

The strong maximum principle is also valid on unbounded domains (that are 
open and connected), provided that the functions a, b, c. and f are continuous 
and bounded on D ,  and the terms max and min in the statement of the theorem 
above are replaced by sup and inf. 

Example. Maximum principles do not necessarily hold for systems of diffusion 
equations. Consider the system 

u,, - ut20, v,, - 9u, - vt 2 0, 

on the unit square 0 5 z 5 1. 0 5 t 5 1. A solution is 

u(x .  t )  = -ezft .  u(z .  t )  = t - 4(z - 0.5)*. 

Here, u and u are negative on the bottom and side boundaries, yet u > 0 along 
z=;. 0 
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6.4.2 Comparison Theorems 

We alluded to the fact that a comparison theorem is a result that compares 
solutions to  similar problems. For example, consider the semilinear equation 

ut - a(.. t ) ~ , ,  - b(z, t ) ~ ,  = f ( ~ .  t .  U )  (6.4.5) 

on the convex domain D shown in Figure 6.11. Here. a and b are continuous 
functions on D and a(z . t )  2 p > 0. The reaction term f is continuously 
differentiable on D x R. Let v = v(x,t) and u = u(z , t )  be two solutions of 
(6.4.5) in D ,  and suppose that u 5 2' on the lower boundary B of D.  Then it 
follows that u < 21 on the entire domain D.  To prove this fact, let w = u - u. 
Then LC < 0 on B and 

aw,, + bw, - wt = f ( z .  t. 7 ~ )  - f(x. t ,  u) on D.  

By the mean value theorem. we obtain 

f(., t .  u )  - f(.. t ,  7 J )  = fu(.. t ,  u*)w.  

U *  = QU + (1 - Q)w, 0 < Q < 1. 

Consequently, 

aw,, + bw, + f U w  - wt = 0 on D.  

w < 0 on B. 

We now have a form of the problem for w in which we can apply the weak 
maximum principle. Suppose first that f u  5 0 on D.  Directly from the weak 
maximum principle we conclude that w 5 0 in D (otherwise. if w were positive 
at  some point of D ,  a positive maximum would have to occur on B. a contra- 
diction). If the coefficient fU does not satisfy the condition f U  < 0 on D ,  choose 
a number X such that X 2 f u  in D and let w = Wexp(Xt). Then W satisfies 
the problem 

aW,, + bW, + ( f u  - X ) W  - Wt = 0 

W < O  o n B .  

on D.  

Because f u  - X < 0, we can apply the weak maximum principle to conclude 
that W 5 0 on D and thus ascertain w 5 0 on D as well. Here is a formal 
statement of what we proved. 

Theorem. (Comparison Theorem) Let u, v E C ( D )  n C 2 ( D )  be two solutions 
of the semilinear equation (6.4.5) under the stated assumptions. If u 5 v on B, 
then u 5 v in D.  
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It is not difficult to  generalize and extend this result to general nonlinear 
equations. To this end we require one bit of terminology. Let us assume that 
F ( x .  t ,  u ,p ,  T )  is a given continuously differentiable function of its five argu- 
ments. We say that F is ellzptzc with respect to  a function u = u(x,t) at a 
point (z. t )  if F r ( x ,  t .  u(z. t ) .  us(x. t ) ,  u,,(z. t ) )  > 0. 

Theorem. (General Comparzson Theorem) Let D be the domain in Fig- 
ure 6.11, and consider the equation 

L[u] = F ( x .  t ,  u. u,. u,,) - ut = f(x. t )  in D. (6.4.6) 

where F = F ( x .  t .  u .p ,  r )  is a given continuously differentiable function of its 
five arguments. and f is continuous on D. Suppose that u, w, and W are 
continuous in D and C2 on D and that u is a solution of (6.4.6). Further. 
assume that F is elliptic on D with respect to the functions Qw + (1 - Q)u  and 
OM' + (1 - Q)u. where 0 E [O. 11. If 

L[W] 5 f(x,t) 5 L[w] in D.  

and 
w < u < W  o n B .  

then 

w 5 u 5 W in D.  (6.4.7) 

Proof: Let zi = w - u. Then t i  5 0 on B ,  and we must show that zi 5 0 in 
D.  We have 

or 
F ( x ,  t .  w. w,, wxs) - F ( x , t ,  u ,  u,. u Z z )  - vt 2 0 on D 

By Taylor's theorem we obtain 

F ( x ,  t ,  u'. w,, w,,) - F ( x .  t .  U ,  u,, u,,) = F,v + FPvs + F,u,,. 

where the partial derivatives F,, Fp. and F,. are evaluated at  (z. t .  Ow + (1 - 
Q)u ,  Ow, + (1 - Q)u,. QwXx + (1 - Q)u,,) and 0 < 6' < 1. Therefore 

F,.v,, + Fpv, + F,u - vt 2 0 on D. 

This equation is now in the form. with its coefficients as continuous functions 
of x and t on D.  where we can apply the weak maximum principle. As in the 
proof of the comparison theorem. the principle can be applied regardless of the 
sign of F,. All we require is that F,.. evaluated at  the point indicated above. be 
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positive and bounded away from zero on D .  Thus the weak maximum principle 
implies that 2' 5 0 in D. giving the leftmost inequality in (6.4.7). We leave the 
right inequality as an exercise. 0 

EXERCISES 

1. Consider the nonlinear diffusion problem 

(K(zL)u,) ,  - U t  = 0. 0 < 2 < 1. 0 < t < T ,  

u ( x . 0 )  = 1 + x ( 1 -  x)> 0 < 2 < 1. 

u(0 . t )  = u(1 . t )  = 1 0 < t < T .  

where the diffusion coefficient K = K ( u )  is a continuously differentiable 
function and K ( u )  > 0. Show that if u is a solution to  this problem. then 
1 5 u ( 2 , t )  5 ;. 

2. Prove the rightmost inequality in (6.4.7). 

3 .  Let D be the infinite domain R x (0. T). and let u be continuous on D and 
C2 on D. and assume that 

ut - uss = 0 in D.  

Let JU = supDu.  Prove that if M is finite. s ~ p , ~ ~ u ( x . O )  = iM. Hznt:  
Proceed by contradiction and apply the weak maximum principle on a 
sufficiently large bounded domain to the function 2: = u - ~ ( 2 t  + x2). 

4. Consider the initial-boundary value problem 

u, ,+2u-tut=O, o < x < 7 r .  t > 0 ,  

u (0 . t )  = u(7r.t) = 0. u(x .0 )  = 0, 0 < z < 7T. t > 0. 

Use the method of separation of variables to show that this problem has 
nonzero solutions. Does the maximum principle apply? 

5 .  Consider the equation 

x2uzz - ut = 0. -1 < x < 1. 0 < t < ;. 

Does the maximum principle apply? Hznt:  Consider u = -x(x + at). 

6. (a) Let D be the infinite strip -m < x < m. 0 < t < T ,  and consider the 
differential operator P defined by 

Pu = a ( x .  t)u,, + b(x. t )u5 + c(x% t ) u  - ut. 

where a(x.t) 2 p > 0 in D.  c(2. t )  5 0 in D.  and a, b. and c are continuous 
functions on D .  Prove that if Pu > 0 in D.  or if Pu 2 0 and c < 0 in D .  
then u cannot have a positive maximum in D. 
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(b) Formulate and prove a corresponding theorem regarding a negative 
minimum. 

7. Prove the following one-dimensional version of a comparison theorem. Let 
f and g be continuous functions on [u. b] with continuous second derivatives 
on (a.  b ) .  Assume that f ( a )  2 g ( a ) ,  f ( b )  2 g ( b ) .  and g”(x) 2 f”(z) for z 

in (a.  b) .  Prove that f 2 g on (a?  b). 

6.5 Energy Estimates and Asymptotic Behavior 

Kow we introduce an important technique that is applicable to all types of 
PDEs. This technique and its variations, collectively called energy methods, 
allow us to obtain bounds on certain quantities associated with the solution. 
prove uniqueness. show that solutions blow up. and obtain other important 
information about the behavior of solutions. One vehicle for establishing en- 
ergy estimates is integration by parts. one of the basic techniques in partial 
differential equations: another is a set of key inequalities. 

Let u = u(z3 t )  be the solution of a given evolution problem on the domain 
0 5 x 5 1.t 2 0. The quantity E ( t ) ,  defined by 

E ( t )  = uZ(x,t) dx. 1’ 
is called the e n e r g y  at time t :  it is the total area under the wave profile squared. 
One of the important problems for solutions of evolution equations is to obtain 
bounds on E ( t ) .  For example. if we could obtain an estimate of the form E( t )  5 
Cl t .  where C is a positive constant. we could conclude that the energy decays 
like l / t .  and in fact, goes to zero as t gets large. In a generalized sense this 
would mean that the solution u itself would have to go to zero asymptotically. 
Another quantity of interest is the integral of the square of the gradient. or 

r l  

Q ( t )  = / u%(x; t )  dz .  
0 

If one can show. for example, that Q(t )  tends to zero as t goes to infinity, then 
u, must to go to zero in a generalized sense and thus u must tend to a constant. 
Results like this are important. for example. in showing that reaction-diffusion 
equations occurring in the biological sciences cannot give rise to spatial patterns 
that involve density variations. 
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6.5.1 Calculus Inequalities 

To obtain energy and gradient estimates, we require some basic inequalities. 
One cannot underestimate the role that inequalities play in the theory of PDEs. 
Here we introduce only a few of the basic inequalities: a detailed development 
of other important inequalities, for example, the Sobolev inequalities. can be 
found in the references. 

The first result is Young’s inequality. which permits a product to be bounded 
by a sum: it is a generalization of the inequality between the arithmetic and 
geometric mean. 

Young’s Inequality. Let f and g be positive quantities. and let p and g be 
positive real numbers satisfying l / p  + l / q  = 1. Then 

Figure 6.12 Geometric proof of Young‘s inequality. 

Example. If we take f = J,” u ( ~ ) ~ d z  and g = J,b . c ( ~ ) ~ d z ,  and p = g = 2, then 
Young’s inequality gives 

A geometric proof of Young’s inequality follows easily from the graph in 
Figure 6.12. Here fg is the area of the rectangle. while f P / p  is the area under 



6.5 Energy Estimates and Asymptotic Behavior 319 

the curve y = 2 P - l  from 0 to f (shaded). Because 4 - 1 = l / (p  - l) ,  the 
area under the curve x = y4-l from 0 to g.  which is gq/q.  is the dotted area. 
Geometrically. the sum of the shaded area and the dotted area exceeds the area 
of the rectangle. 0 

Another useful inequality is the Holder inequality, which is a generaliza- 
tion of the Cauchy-Schwarz: we leave its proof. which follows from Young‘s 
inequality. as an exercise. 

Holder’s Inequality. If p and q are positive real numbers satisfying l / p  + 
l / q  = 1. then 

provided that the two integrals on the right exist. 

Finally, we need the following results, known as Pozncare‘ znequalztzes. These 
inequalities relate integrals of functions to  integrals of their derivatives when 
certain boundary conditions hold true. We state the inequalities on the interval 
[O. 11. but they hold true on any interval with appropriate adjustment of the 
const ants. 

Poincarh Inequalities. Let u = u(x) be twice continuously differentiable on 
[O. 11. 

1 
1. If u(0)  = u(1) = 0, then So ~ ’ ( 5 ) ~  dx 2 7i2 Jl ~ ( x ) ~  dx.  

2 .  If u’(0) = ~’(1) = 0. then Jt u”(x)’ dx 2 T* Jt ~ ’ ( x ) ~ d x .  

Sl’e prove (1) and leave ( 2 )  as an exercise. First. consider the eigenvalue problem 

u’I + xu = 0 (0 < 2 < 1). u(0)  = u(1) = 0. 

which has eigenvalues An = n27i2 and corresponding orthonormal eigenfunc- 
tions u,(z) = \/ZsinnTx. n = 1 , 2 . .  . .. Expanding u in terms of these eigen- 
functions, we obtain 

where the a, are the Fourier coefficients 

1 

a,, = ( 1 / h )  / u(x) sin n ~ x  dx 
0 
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Using integration by parts and the orthogonality property of the u,(z). we 
have 

But 

again using orthogonality. This completes the argument. 0 

The Poincari: inequalities can be generalized to higher dimensions where 
they relate the norms (the Lz-norm) of functions to  the norms of their gradients 
(Smoller 1994. pp. l l 2 f f ) .  

6.5.2 Energy Estimates 

Lye are now in a position to  obtain estimates of E ( t )  and Q ( t )  for various 
initial-boundary value problems. The four examples in this section illustrate 
the various techniques. 

Example. Consider the semilinear reaction-diffusion equation 

U t  - U x x  = f ( u ) .  0 < z < 1. t > 0. (6.5.1) 

u ( z . 0 )  = ug(z). 0 < z < 1. (6.5.2) 

U , ( O . t )  = ux(l.t) = 0, t > 0. (6.5.3) 

where the reaction term f is assumed to be continuously differentiable and 
supuER if’(u)l = iLf < m. Let 

1 

Q ( t )  = 1 u:dz. 
0 
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Then. differentiating Q gives 

where we used integration by parts and applied (6.5.1) and (6.5.2). We use 
Poincark’s inequality on the first term on the right side of the last equation, 
and we bound the second integral by 

Therefore 
1 1 

Q’(t) 5 - 2 ~ ’  1 ~5 d~ + 2 M  us dx = 2(M - r*)Q(t) = pQ(t) .  

where p = 2 ( M  - T’) .  We obtained a differential inequality for the quantity 
Q(t )  of the form 

Q’(t) - /*.Q(t) i 0. 
Multiplying by the integrating factor e-pt gives 

(Qe-@)’ 5 0, 

and then integrating from 0 to t yields 

Q ( t )  I Q ( 0 ) e p t .  

So. we obtained a bound on Q(t ) .  If p < 0 (i.e., M < r2 ) .  then &(t) decays ex- 
ponentially as t tends to  infinity. So if the nonlinear problem (6.5.1)-(6.5.3) has 
a solution u = u(x,t), and if f is a smooth function with the property that 
suplf’(u)l = M < T’ .  then 

Biologically. for example, this result precludes spatial pattern formation (e.g. ~ 

spatial striations) in reactive-diffusive systems governed by (6.5.1)-(6.5.3). 0 

We now consider a reaction-advection-diffusion equation where inequalities 
are used in an ingenious way to show that if the initial wave profile is square- 
integrable. then the wave profile for any t > 0 is square integrable. Another 
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way of stating this is to say that the L2 norm of the solution remains bounded. 
or stays under control. as t increases. 

Example. Consider the initial-boundary value problem 

ut - Du,, + UU, = f(u). 0 < 5 < 1. t > 0. (6.5.3) 

u(x.0) = uo(5). 0 < z < 1. (6.5.5) 

u(0. t )  = u(1, t )  = 0, t > 0. (6.5.6) 

Assume that uo(0) = uo(1) = 0 and uo is continuous and nonnegative on [O. 11: 
further assume that the reaction term f is a bounded continuous function on 
Iw. 121 = sup l f l .  and D > 0. \Ye prove that E ( t )  = 1,' u(x. t)2 dx stays bounded 
for all t and, in fact. we calculate an upper estimate. Using (6.5.4) and (6.5.6). 
we have 

r l  
E ' ( t )  = 2 J, uut dx 

1 

= 2 1 u(Du,, - uu, + f ( u ) )  dz 

The second integral is zero by the boundary conditions on u at x = 0 and 
x = 1: the first integral can be integrated by parts to obtain 

1 1 1 uu,, dx = U U , ~ ;  - 1 u: dx 

The third integral can be bounded by the following sequence of inequalities: 

(Holder's inequality) 

(Poincark's inequality) 

(Young's inequality) 
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Putting all the inequalities together yields 

1 M2D-1 
= - D L  u:dx+--- 

7r2 

where, in the last step. Poincark's inequality is reapplied. Therefore. we derived 
the differential inequality 

M 2  
E' ( t )  + D7r2E(t) 5 - 

D7i2 ' 

hIultiplying by eDTZt  and then integrating from 0 to  t yields 

Therefore. the energy remains bounded for all t > 0, and an upper bound on 
the energy has been obtained. 0 

Another important problem is to determine whether solutions blow up in 
finite time. Again, an energy-type argument is relevant. 

Example. (Blowup) Consider the reactive-diffusive sy-stem 

U t  = uxx + u3. 0 < x < 7r. t > 0. (6.5.7) 

u(0, t )  = u(7r,t) = 0. t > 0. (6.5.8) 

u(x .0 )  = uo(x), 0 < x < T .  (6.5.9) 

where uo is continuous and nonnegative on [O. 7r].  M'e demonstrate that  if 

lo uo(x)sinzdz > 2 ,  (6.5.10) 

then the solution blows up in finite time. To this end we observe that the 
maximum principle implies that u 2 0. so long as the solution exists. and we 
define 

Integration by parts gives 

(ux ,s inz+u3s inz)dx  = - s ( t )  + 
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Now apply Holder's inequality with p = 3 and q = $ to  get 

s ( t )  = u sin x dz = sin2l3 z u  sin113 x dz 6" 

Therefore 

~ ( t ) ~  5 4 ln u3 sin 3: dx. 

and hence 

s ' ( t )  2 - s ( t )  + - s ( t )3  
4 '  

t > 0:  s ( 0 )  > 2 .  (6.5.11) 

]Ye now show that the inequality (6.5.11) implies that s ( t )  + +x at a finite 
t ,  and thus the solution blows up in finite time. Expression (6.5.11) reminds 
us of a Bernoulli equation in ordinary differential equations, except that  it is 
an inequality. But the same technique applies. Specifically. let u = l/s2. Then 
(6.5.11) becomes a linear inequality in u ( t )  given by 

d ( t )  5 2 4 t )  - ;. 
Multiplying through by the integrating factor e--2t and integrating from 0 to  
t yields 

~ ( t )  I ____ + u(0)e2'. 
1 - e-2t 

4 

(6.5.12) 

But because s ( 0 )  > 2 .  the right side of (6.5.12) goes to infinity a t  a finite value 
o f t ,  showing that s ( t )  blows up at finite time. 0 

Example. (Uniqueness) In this example we use energy estimates to show that 
an initial-boundary value problem associated with Burgers' equation can have 
at  most one solution. Consider the problem 

ut + uuX = Dux,. 0 < x < 1, t > 0. (6.5.13) 

u ( z , 0 )  = uo(x), 0 < z < 1. (6.5.14) 

u(O.t) = u(1.t)  = 0. 0 < 5 < 1. (6.5.15) 
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In the usual manner assume that both u and u are solutions to (6.5.13)-(6.5.15): 
then w = u - v satisfies the equation 

(6.5.16) 

with w = 0 along x = 0, x = 1, and t = 0. Take E ( t )  = 1,’ w(x; t)’dz. Then 

1 

Dww,, dx - i 1 (aw),w dx. (6.5.17) 

The first term on the right can be integrated by parts to obtain 

Du*w,, dx = -D h’ 
The second integral on the right of (6.5.17) can be written 

where integration by parts has been applied yet again. Thus 

and (6.5.17) becomes 

We have shown that E’(t)  5 cE(t)  for all t > 0. where c is a positive constant. 
As in previous examples we multiply by ePct  and integrate from 0 to t to obtain 
the inequality E ( t )  5 E(0)ect. But E(0)  = 0, and therefore E ( t )  = 0 for all 
t > 0, showing that w is identically zero. Thus u = v and uniqueness is estab- 
lished. (Uniqueness can also be proved by using the Cole-Hopf transformation 
to transform Burgers’ equation to  the diffusion equation.) 0 
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6.5.3 Invariant Sets 

Another method used to predict the long time behavior of solutions of certain 
classes of reaction-diffusion equations is the method of invariant sets. To in- 
troduce the concept we first consider the plane autonomous system of ordinary 
differential equations 

du dv 
d t  d t  
- = f(2L.v) - = g ( u , c ) .  (6.5.18) 

A domain C c R2 enclosed by a smooth. simple closed curve dC is an anvarzant 
set  for (6.5.18) if any solution ( u ( t ) .  ~ ' ( t ) )  with (u(0).  ~(0)) in C remains in C 
for all t > 0. It is clear that if the vector field f = ( f . g )  along dC points into 
the region C. which is implied by the condition f n < 0 on dC, where n is the 
outward unit normal. then C is an invariant set. Having information about the 
existence of bounded. invariant sets allows us to extract information about the 
longtime behavior of solutions of (6.5.18); for example, the Poincark-Bendixson 
theorem states that if ( u ( t ) .  v ( t ) )  remains bounded as t becomes infinite. then 
the orbit tends to a critical point. is a periodic solution. or approaches a periodic 
solution. 

This concept extends in a natural way to systems of reaction-diffusion equa- 
tions. The idea is t o  find a closed bounded region in the space of dependent 
variables that traps the solution for all t > 0. or a t  least up until the time the 
solution ceases to exist. If such a region can be found. then one automatically 
obtains a priori bounds on the solution (recall that a priori bounds are often re- 
quired to obtain global existence of solutions). Even if the region is unbounded, 
useful information can often be extracted. 

To fix the concept, we consider a system of two reaction-diffusion equations 
of the form 

ut = dlu,, + f ( u 3  L ' )  U t  = d2tlz, + g(u .  v ) .  z E I, t > 0, (6.5.19) 

where u = (u .  v )  is the unknown solution vector, f = (f. g) is the vector field 
of nonlinear reaction terms. dl and d2 are nonnegative diffusion constants. and 
I is an interval in Iw, possibly all of R. The functions f and g are continuous. 
and initial conditions are given by 

u(2 .0)  = uo(2) .  u ( z . 0 )  = V r J ( I ) .  z E I .  (6.5.20) 

If I is not all of R. then we assume Dirichlet or Neumann boundary conditions 
at the ends of the interval. 

Definition. Let C be a closed set in Iw'. If u ( z . t )  is a solution to (6.5.19)- 
(6.5.20) for 0 5 t < S 5 x. with given boundary conditions. and the initial 
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values and boundary values are in C. and u(z , t )  is in C for all z E I and 
0 < t < 6. then C is called an znvariant set for the solution u(z.t). 

The next theorem asserts that if the vector field f points inward along the 
boundary of a rectangle. then the rectangle must be an invariant set. 

Theorem. Let C = [a? b] x [c. d] be a rectangle in uu space. and let Co denote 
its interior and aC denote the boundary. with n the outward unit normal. If 

f(u) . n  < 0 on dC. (6.5.21) 

then C is an invariant set for (6.5.19)-(6.5.20). 

Proof; We proceed by contradiction and assume that C is not an invariant 
set. Then, without loss of generality. we may suppose that u(zo.to) = b for 
some (50. to) with u ( x .  t )  < b for all z E I. 0 < t < t o .  yet 

ut(zo%to) 2 0. (6.5.22) 

Then the function u ( z .  to). regarded as a function of z. must have a maximum 
at z = 20. [For example. let h(z )  = u(z.to). so that h(z0) = b. If h'(z0) > 0. 
then h(;rl) > b for some 21 > zo sufficiently close to  20. Then u(zl.to) > b,  
and because u is continuous. u(5.t) > b in some neighborhood of (zl.to). In 
particular. u ( x . t )  > b for some z E I and some t < to. which is contrary to our 
assumption. Similarly. we cannot have h'(z0) < 0.1 Therefore u,,(zo.to) 5 0. 
Moreover. at (20. t o ) .  we have 

ut = dlu,, + f ( u .  u) 5 f ( u .  u )  = f(u) . n < 0. (6.5.23) 

The latter statement following from the fact the n = (1.0) on the boundary 
u = b. But (6.5.23) contradicts (6.5.22). and therefore C must be an invariant 
set, completing the proof. 0 

Example. The FitzHugh-Nagumo equations are 

ut = u,, + u(1-  u ) ( u  - a) - u UL't = Cy%',, + cru - ; u .  

where 0 < a < 1. Q 2 0, and cr. 7 > 0. These equations model conduction along 
nerve fibers. Here 

f ( u .  u )  = u(1 - u ) ( u  - a) - v. g(u. u )  = (Ju - yJ. 

are the reaction terms. Let C be the rectangle shown in Figure 6.13. It is easy 
to  see that the vector field f = (f. g) points inward along the boundaries of the 
rectangle: thus (6.5.21) holds and C is an invariant set. 0 
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I 

f = o  

Figure 6.13 Invariant rectangle for the FitzHugh-Nagumo equations. 

Example. The last theorem can be generalized immediately to an n-dimensional 
system 

Ut = D(u)u,, + C(U)U, + f(u.t) .  2 E I .  t > 0, (6.5.24) 

where D and C are n x n diagonal matrices with D 2 0 (D is positive serni- 
definite), f is continuously differentiable. and u = (211.. . . . u,) is the unknown 
solution vector. Then any region (a box in Rn) of the form 

c = [ U l , b l ]  X . . .  X [U,,b,J 

is an invariant set for (6.5.24) with appropriate initial and boundary conditions. 
provided that 

f (u . t ) .  n < O for all u E dC. t > 0, 

where n is the outward unit normal to  C. The proof is left as an exercise. 0 

This last result can be generalized under certain conditions to  permit in- 
variant sets to have the forin of a convex subset of R". We now formulate this 
general result and refer the reader to  Smoller (1994) for a simple proof. 

Consider the reaction-diffusion system (6.5.24) where D 2 0 and C are con- 
tinuous matrices. not necessarily diagonal. and f is continuously differentiable. 
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Let G,. z = 1. . . . . p ,  be continuously differentiable, real-valued functions on R" 
and define the regions E, = {u E Rn : G,(u)<O} for z = 1.. . . . p .  Assume that 
grad G, is never zero. Recall that  the vector grad G, is normal to  the locus 
G,(u) = 0, which is a level curve of the surface z = G,(u) in Itn+'. Now define 

C = ny='=lE,, 

so that C is the intersection of half-spaces. Clearly C is closed. To show that C 
is an invariant set for (6.5.24), three conditions hold at  every boundary point 
of c: 
1. The gradient of the G, that defines the particular section of the boundary 

under consideration must be a left eigenvector of the diffusion matrix D 
and the advection matrix C.  

2 .  The vector field f along the boundary must point into the region. 

3. On every section of the boundary the function G, defining that portion of 
the boundary must be a convex function; this implies, of course. that  the 
region C is convex. 

To formulate these conditions mathematically. we say that a function G is quasz- 
conwex at a point v in Rn if grad G(v).h = 0 implies that  hTQ(v)h 2 0, where 
Q is the matrix of second partial derivatives of G; that is. Q = (d2G/du,dw,). 
Then one can prove the following: C is an invariant set for (6.5.24) provided 
the following three conditions hold: for all t > 0 and for every u* E dC (so that 
Gz(u") = 0 for some 2 ) :  

1. grad G,(u*) is a left eigenvector of D ( u * )  and of C(u*). 

2. grad G,(u*) . f(u*, t )  < 0. 

3. If grad G,(u*)D(u*) = pgrad G,(u*) and p#O. then G, is quasiconvex at 
U*. 

EXERCISES 

1. Prove the Poincari! inequality ( 2 ) .  

2 .  Consider the initial value problem for the diffusion equation 

~t - Du,, = 0. z E R. t > 0, 
u(2.0) = U O ( Z ) ,  z E R. 

where uo is bounded and continuous, and JRu:(z)dx is finite. Prove that 
there exists a constant C such that lu(z,t)l 5 C/t1/4 for all t > 0. 
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3. Consider the problem 

ut - u,, = f ( u ) .  0 < x < 1, t > 0. 

u(x .0 )  = uo(z),  0 < 2 < 1, 
u(0 . t )  = u(1.t)  = 0. t > 0. 

where f is continuously differentiable and sup l f '(u)l < 7i2.  Prove that if a 
unique solution u = u(x. t )  exists, then 

4. Consider the reactive-diffusive system 

ut - D ~ u , ~  = f ( ~ .  tj). CL'~ - D ~ V , ~  = g(u .  2-1). 0 < z < 1, t > 0. 

u(z .0)  = ug(x). 2 3 ( X , O )  = ?Jo(z), 0 < 5 < 1, 

u, = r,  at z = 0 and z = 1 for all t > 0. 

where f and g are continuously differentiable and f u .  f L .  gu. gv are 
bounded. Let 

D = min(D1.02).  A1 = sup((f2 + f," + g: + $)'I2 : u. u E R}. 

Show that if 4111 - 27r2D < 0. then limt,, q ( t )  = 0. where 

q ( t )  = i (u2  + L I Z )  dx. 
0 

5 .  (a) Show that the boundary value problem 

-4 = he", O < x < 1. u(O) = u(1) = 0. 

has no solution for S > n2/e .  Hznt: Show that J,' ol(6e" - Alu)dz = 
0. where A1 is the smallest eigenvalue of the linear problem -0'' = 

A@. d(0) = ~ ( l )  = 0, and $1 is a corresponding eigenfunction. 

(b) (Gelfund Problem) Show that the initial-boundary value problem 

ut - u,, = Se", 0 < x < 1. t > 0. 

u ( z .  0) = 0. 0 < x < 1: u(0. t )  = u(1, t )  = 0. t > 0. 

does not have a global solution if S > 7r2/e. Hznt: Show that 

where E ( t )  = Ji q(x)u(z. t )  dx. 



6.5 Energy Estimates and Asymptotic Behavior 331 

6. Consider the initial value problem for the Schrodinger equation 

ut = zuxz. 2 E w. t > 0: u(z .  0) = ug(z). 2 E R. 

and assume that a solution u = ~ ( 2 .  t )  exists for all t > 0 and z E R with u 
and all of its derivatives vanishing at  1x1 = x. Prove that E ( t )  = Jx ua dz 
is constant for t > 0. 

7 .  Consider the system 

Ut = A u X .  0 < X  < 1. t > 0 ,  

U(0.t) = u(1.t) = 0. t > 0: u(z.0) = ug(z), 0 < z < 1, 

where u = u(z. t )  is an n-vector and A is a constant matrix with AT = A. 
Prove that E'( t )  = 0 where E ( t )  = 1,' uTudz. 

8. Consider the problem 

ut - u,, = f(u). 0 < 2 < 7r. t > 0. 
u(0. t )  = U ( T ,  t )  = 0, t > 0: u(z 0) = ug(z) .  0 < 2 < 7r. 

where 210 is nonnegative and continuous. and 

f ( u )  > 0. f'(u) > 0. f"(u) > 0 for u > 0, 

and 1" du/f(u) is finite. If 1; ug(z) dx is sufficiently large, prove that the 
solution blows up in finite time. Hznt: Consider s ( t )  = 1; u(z, t )  s inz  dx 
and utilize the fact that 1; f(u) s inz  dx > f(/; u s i n z  dz)  to  get s ' ( t )  2 
- X s ( t )  + f ( s ( t ) )  for some X > 0. 

llu112 = 1,' l u ( ~ ) 1 ~ d z .  Prove for all c > 0 and all integers 3 ,  k 2 1 that 
9. Assume that u E Ccc(R) and that u(cc + 1) = u(z) for all z. and denote 

/ / u q 2  < - c / / u ( 3 + k )  112 + c - 3 q u / 1 2 .  

This is an example of a Sobolev-type inequality. 

10. (Navzer-Stokes Equataons) The Navier-Stokes equations. which govern a 
Newtonian viscous fluid, are 

ut - UAU + ( u .  grad)u + gradp = f(x). div u = 0, 

where x = (2, y. z ) ,  and where u = u(x. t )  is the velocity vector. p = p(x, t )  
the pressure, f is the body force. I/ > 0 the viscosity. and A is the three- 
dimensional Laplacian. Let R be an open, bounded region in space with 
smooth boundary do,  and assume that the Navier-Stokes equations hold 
in R with u = 0 on dR for all t > 0, and u(x. 0) = ug(x) on R. Prove that 



332 6 .  Reaction-Diffusion Systems 

for all t > 0. where Ilu(t)// denotes the L2 norm 

Thus the energy remains bounded for all time. Hznt: Integrate over R ,  then 
use integration by parts followed by three-dimensional versions of Young's 
and Poincarit's inequalities. 

11. The flow of an ideal, incompressible fluid of constant density in an open 
bounded domain R in R3 with a smooth boundary is governed by the 
momentum law and the incompressibility condition 

ut + (u . grad)u + grad p = 0. div u = 0, z E R, t > 0. 

where u is the velocity and p is the pressure. Assume that the flow is parallel 
to the boundary [i.e.. u . n  = 0 on dR], and initially u(x.0) = UO(X) .  x E R. 
Prove that 

llu(t)ll = l l u o l l .  t > 0. 

(The notation is the same as in Exercise 10.) 

12. Consider the reactive-diffusive system 

ut = Ux, + (1 - u2 - V 2 ) U .  V t  = uzz + (1 - u2 - u"u. 

Show that the unit circle in uv space is an invariant set. Hznt: Consider 
the set C, = { (u. u) : u2 + u2 5 1 + E }  for E > 0. 

13. In combustion theory the solid-fuel model is 

yt = Qxx - yr(T), Tt = kTxX + qyr(T) .  

where y is the mass fraction of the reactant, T is the temperature. and D, 
k ,  and q are positive constants. The reaction rate is r (T )  = exp ( -EIRT).  
where E and R are positive constants. Show that C = { ( y . T )  : 0 5 y 5 
1. T 2 a > 0) is an invariant set. Hznt: First consider y in the range 
--E 5 y 5 1. 

14. Consider the reaction-diffusion problem 

U t  = u x x  - u +up. 0 < x < 7r .  t > 0, 
u(z .0)  = uo(z) > 0. 0 < z < 7r ;  u(0 , t )  = u(7r.t) = 0, t > 0, 

where p > 1. If A" uo (z) sin z dz > P / ( P - ' ) .  

show that the solution blows up in finite time. 
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6.6 Pattern Formation 

Morphogeneszs describes how patterns and forms develop in animals and plants. 
The complex processes involved in morphogenesis are not completely under- 
stood. However. in a seminal paper Alan Turing (1952) developed the idea 
that chemical species present during the development process can react and 
diffuse in such a way to create patterns. The patterns are instabilities created 
by the presence of a diffusion mechanism, which is contrary to our established 
intuition of regarding diffusion as a stabilizing. smoothing process. 

We begin by considering the general system of reaction-diffusion equations 
on the interval 0 < x < L given by 

ut = QU,, + f(u, v). ut = 3v,, A g(u, v) ,  (6.6.1) 

with no-flux boundary conditions 

u, = u, = 0 at  x = 0, L.  

This system is called a Turzng system. We are interested in the stability of 
a uniform steady state. We show that with special values of the parameters 
it is possible that small perturbations from the uniform state grow and pro- 
duce patterns, or density variations. in spite of the presence of diffusion in the 
problem. 

Suppose that u = E ,  u = E is a constant equilibrium solution that must 
satisfy 

f(u, a) = 0. g(G, v)  = 0. 

Let U and V denote small perturbations from equilibrium and take 

u = u + U ( x .  t ) .  v = v + V ( x ,  t ) .  (6.6.2) 

Substituting (6.6.2) into (6.6.1) and the boundary conditions. using Taylor's 
expansion on f and g, and then deleting the nonlinear terms. gives linearized 
perturbation equations for U and V that satisfy no-flux boundary conditions: 

ut = au,, + fu(u.v)U + fu(E1U)V. (6.6.3) 

v, = ~Vx*+gu(u,v)u+g~(u.v)V. (6.6.4) 

In matrix notation. with 

W = ( F ) %  D = ( "  O ) .  J = (  fu (u. v) fv (u. q 
0 P gu(u,v) g,(u.v) 

the perturbation equations (6.6.3)-(6.6.4) can be written as 

Wt = DW,, + JW. (6.6.5) 
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The boundary conditions are 

W, = 0 at z = 0. L .  (6.6.6) 

The system (6.6.5)-(6.6.6) is linear and can be solved by separation of 
variables. To this end assume 

W ( X %  t )  = o( t )Y (x ) .  

Substituting into the system and separating the spatial and temporal parts 
gives 

~ ’ ( t )  = 00(t).  (giving o(t) = eut )  

and 
DY” + ( J  - 0 I ) Y  = 0. Y ’ ( 0 )  = Y ’ ( L )  = 0. (6.6.7) 

where 0 is the separation constant, which is the growth rate of the perturba- 
tions. The boundary value problem has solutions of the form 

n r x  
L 

Y = Y ,  = c,cos-. n = 0 . 1 . 2 . .  . . , 

where C is constant. Substituting into (6.6.7) gives 

i 
This system of algebraic equations will have a nontrivial solution when 

(6.6.8) 

This equation is a condition on the growth factor 0 that must hold if there are 
nontrivial solutions. T/\;hen expanded, (6.6.8) is a quadratic equation for the 
complex roots 0 = 0,. the growth rate of the nth mode. The roots 0, depend 
on the diffusion constants a ,  3. the equilibrium solution Tl? the size of the 
medium L ,  and the wavelength 2L/n  of the perturbation. 

l lodal solutions of the boundary values problem for the perturbations are 
given by 

n7rx 
L 

W, = Cneff7tt cos -. 

Therefore the general solution of (6.6.5)-(6.6.6). which is the general form of 
how perturbations evolve, is the sum of all the Fourier modes. or 

n r z  
L 

W ( X .  t )  = C Cneunt cos -. 

where the constants are determined by the initial perturbations. If one can 
find values of the parameters that make one of the roots 0, positive or have 
a positive real part. then there is an unstable mode. If 0, is negative or has a 
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negative real part for every n. then all modes decay and the uniform state is 
stable. In this latter case, patterns cannot form. 

Example. (Chemotazzs) We now apply these ideas to a problem in cell aggre- 
gation. first introduced in Section 6.1. A slzme mold populatzon is a collection 
of unicellular amoeboid cells that feed on bacteria in the soil. When the food 
supply is plentiful. the bacteria are generally uniformly spatially distributed 
throughout the soil: but as the food supply becomes depleted and starvation 
begins. the amoeba start to  secrete a chemical (CAMP) that acts as an attrac- 
tant to the other amoeba and aggregation sites form. The rest of the story is 
even more interesting as the aggregation sites evolve into slugs that ultimately 
develop into a sporangiophores consisting of a stalk and head containing new 
spores. The spores are released, and the process begins anew. We are interested 
here in only the first part of this complicated problem, the onset of aggregation. 
We work in one spatial dimension. 

We derived this model of chemotaxis in Section 6.1. To review. let a = a(x. t )  
and c = c ( x ,  t )  denote the density and concentration of the cellular amoeba and 
CAMP, respectively. The fundamental conservation laws are 

at = pu,, - v(ac,),. ct = sc,, + f a  - Ice. 

Both a and c satisfy no-flux boundary conditions. specifically 

(6.6.9) 

a, = c, = 0. x = 0. L, 

which means that there is no escape from the medium. Notice that equations 
(6.6.9) do not quite form a Turing system: however, the analysis is the same. 

There is a constant equilibrium solution a = a. c = E provided 

f z i  = IcE. 

In other words. the production of the chemical equals its degradation. This 
equilibrium state represents the spatially uniform state in the soil before ag- 
gregation begins. To determine the local stability of this state, we let 

u = ?i + A(x. t ) .  c = C + C ( X .  t ) .  

where A and C are small perturbations. Substituting these quantities into the 
system gives. after simplification. the perturbation equations 

At = PA,, - v((E + A ) C X ) , ,  Ct = SC,, + f A  - kC. 

These equations are nonlinear because of the AC, term in the amoeba equation. 
If we discard the nonlinear term on the assumption that the product of small 
terms is even smaller. then we obtain the linearized perturbation equations 

At = PA,,  - uEC,, , C+. = SC,, + f A - IcC. (6.6.10) 
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Easily one sees that the perturbations satisfy no-flux boundary conditions. 

modal solutions of the form 
AIotivated by the previous discussion of the Turing system. we assume 

A ( z , t )  = cleUtcosm. C ( z , t )  = cZeUtcosrz. (6.6.11) 

where 
nrr 
L '  

r = -  n = O , 1 . 2 , 3  . . . . .  

The growth factor a is to be determined. and c1 and c2 are constants. No- 
tice the form of the solutions (6.6.11). The spatial part is bounded and periodic 
with frequency r and period 2rrlr. and the temporal part is exponential with 
growth factor a. which may be a real or complex number. If a is negative or has 
a negative real part, then the perturbation will decay and the equilibrium state 
will return (stable); if a is positive or has positive real part. then the pertur- 
bations will grow and the equilibrium will be unstable. To obtain a condition 
on a. we substitute (6.6.3) into (6.6.2) to obtain 

( a  + p~ )e l  - vTir c2 = 0. 2 2 -fcl  + ( a  + k + Sr2)c2 = 0, 

which relate all the parameters. These are linear. homogeneous equations for c1 
and c2. For nontrivial solutions the determinant of the coefficient matrix must 
be zero. or 

(a  + pr2) (a  + k + ST')  - f vZr2  = 0. 

This equation relates the temporal growth factor 0% the spatial frequency T .  and 
the other constants in the problem. Expanded out. this equation is quadratic 
in a ,  specifically 

a2 + y10 + 7 2  = 0, 

where 
21 = r 2 ( p  + r )  + IC > 0, 7 2  = r2[p(Sr2 + IC) - f ~ ] .  

The roots of this quadratic are 

Clearly, one of the roots is always negative or has a negative real part. The 
other root can have a positive or negative real part. depending on the value 
of the discriminant 7; - 472. \Ye are interested in determining whether there 
are parameter choices that lead to  an instability: therefore we want a positive. 
Hence. 72 must be negative, or 

p(&2 + k )  < fva. 
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density at 
time t > 0 

at time t 0 
with n = 2 

0 X L 

Figure 6.14 Plot showing the growing amoeba density at  times t = 0 and 
t > 0 when the uniform state is unstable to  local perturbations in the mode 
n = 2 .  The instability gives rise to  two aggregation sites at the ends of the 
medium where the density is higher and is growing as time increases. 

If this inequality holds, there is an unstable mode and perturbations will grow. 
Thus, for each value of n we obtain a frequency r = r,, and a corresponding 
growth factor on, and the nth mode grows when 

1-1 ( S-+k n;2 ) < fvE. (6.6.12) 

Lye can ask what factors destabilize the uniform state in the amoeba-CAMP 
system and promote aggregation-that is, when is (6.6.12) likely to hold? We 
can list the factors that may make the left side of the inequality (6.6.12) smaller 
than the right side: low motility 1-1 of the bacteria, low degradation rate k or 
large production rate f of CAMP. large chemotactic strength v ,  large dimensions 
L of the medium. a small value of n (thus, low frequency perturbations are less 
stabilizing than high frequency perturbations) , and decreasing the diffusion 
constant of the CAMP. Figure 6.14 shows time snapshots of the amoeba density 
for the mode n = 2 when it is unstable. The regions where the amplitude is high 
correspond to  higher concentrations of amoeba, that is. regions of aggregation. 
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Example. (Predator-Prey Model with Dzffusion) Consider the scaled Lotka- 
Volterra model of population dynamics with added diffusion of the two species: 

(6.6.13) 

(6.6.14) 

where a > 0 and D is the diffusion constant. The population densities are u 
and I,)? where u represents prey. and I,? represents predators. When diffusion 
is removed ( D  = 0). we obtain the Lotka-Volterra model for the spatially 
independent populations 

ut = u ( l  - v) .  

Ut = au(u - 1). 

(6.6.15) 

(6.6.16) 

Equations (6.6.15)-(6.6.16) have equilibria (0,O) and (1.1). and it is routine 
to show that (0.0) is a a saddle point (the Jacobian of the linearization has 
real unequal eigenvalues) and (1.1) is a center for the linearized system (the 
Jacobian matrix has purely imaginary eigenvalues); in the latter case we can 
easily show that (1.1) is also a center for (6.6.15)-(6.6.16). What happens 
when there is diffusion? On an interval x E I = [O,L] with no-flux boundary 
conditions, namely 

u, = v, = 0, x = 0. L,  

both populations tend to spatially uniform states for t -+ x. The following 
argument is due to Murray (1975) and is based on the fact that there is a 
conservation law for the diffusionless system (6.6.15)-(6.6.16) given by 

a ( u  - Inu) + u - lnv = constant. 

(To see this, divide the two equations in (6.6.15)-(6.6.16). separate variables; 
and integrate.) Therefore, we define 

s(x; t )  = a(u - In u) + v - In v.  

Note that s is constant when D = 0. A straightforward exercise with partial 
differentiation shows 

The conditions on s are 

s, = 0; x = 0 , L ;  

and 
s ( x , o )  = a(uo(x) - lnuo(2)) + VO(Z) - lnvo(2) = so(x). 
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Now define the energy 

S ( t )  = s ( z , t )d t .  l 
Then. using integration by parts on the s,, term and the no-flux boundary 
conditions: 

S’(t) = l s t  dx 
= D L  ((szz - a  (2)’ - (5)’) dx 
= - D L  (s:  + a  (2)’ + D ( % ) 2 )  U dz 5 0 

Therefore S ( t )  in nonincreasing. Moreover, it is bounded below because 

S ( t )  = j I  s(z . t )  dz 2 jI(a + 1)dz = L(a  + I). 

We can therefore conclude that S ( t )  approaches a finite limit as t + m. It 
follows that S’(t) approaches zero as t m. which forces u, and u, to approach 
zero as t + 30. Therefore, the system (6.6.13)-(6.6.14) with no-flux conditions 
approaches a uniform state. This shows. for example, that no patterns can form 
in this model. 

Example. (Crztzcal Patch Size) For a population undergoing growth and dis- 
persal. the critical patch size is the minimum size of the spatial domain needed 
for their survival. In the simplest case of linear growth, we take the population 
model 

ut = Dux,  + ru, L E (0, L). t > 0. 
with u(0. t )  = u(L, t )  = 0 for all t > 0, and 

u(z .0)  = f(z). 2 E [ O ,  L]. 

This problem can be solved easily using separation of variables. Putting u = 
4(t)y(x) and substituting into the PDE and boundary conditions gives 

Therefore @(t)  = e-xt and y satisfy the Sturm-Liouville problem 

Dy” + ( r  + X)y = 0, y(0) = y(L) = 0. 

It is easy to see that the eigenvalues and eigenfunctions are 

n2x2 . n7rx 
L2 , yn =sin-, n = 1 , 2 , 3 , .  . . , A n = - r + D -  

L 
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Using superposition we have 
x 

n = l  

where the a, are determined by the initial condition and orthogonality. We get 

a, = 1 f(x) sin n m ~  dx. 
2 L  

Notice that the solution goes to zero if 

Dn2T2 
L2 

r < -  forall n = l . 2 . 3  . . . . .  

But this inequality holds for all n if it holds for n = 1. or 

DT2 
r < -  

L2 . 
Thus. for the population to survive, we need 

or 

The right side of this inequality is the critical domain size. What it means is 
that there is at least one Fourier mode that grows. Problems of this type become 
more interesting when the growth rate is nonlinear. or the spatial dimension is 
2.  0 

EXERCISES 

1. Solve the linear system 

ut = u,, + V. Vt  = v,, - u. z E (0. L ) ,  

with no-flux boundary conditions on u and T.) at x = 0, L ,  and initial con- 
ditions 

u ( x ,  0) = U g ( 2 ) .  V ( X ,  0) = cg(2). z E (0.  L ) .  

Describe the long-time behavior of the system. 

2 .  For the following reaction-diffusion system 

U t  = U Z X  + 3~ + 1 3 ~ .  Lit = 9tlXz - u - 3 ~ .  2 E (0. T)% 

with no-flux boundary conditions. show that diffusion can destabilize an 
equilibrium state. Proceed by showing that the trivial solution is stable. 
Then do a stability analysis and determine which modes are unstable. 
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3 .  Extend the analysis of (6.6.13)-(6.6.14) to the problem of n dimensions. 
that is, to  

ut = au,, + u ( l  - v).  

wt = At),, + UW(U - 1). 

where x E 0. a nice bounded region in Rn, and 

du d u  
dn d n  

= 0. x E 80. - - -  - 

4. A phytoplankton-zooplankton model is given by 

ZP2 
Pt = P,, + rP(1  - P )  - ~ 

a2 + P2 ' 

Explain the origin of the terms in these equations. Assume that a positive 
equilibrium solution P .  2 exists. and show that it is not possible to have 
diffusion-driven instabilities in this system. 

5 .  Examine the stability of the equilibrium solution of the Turing system 

ut = Du,, + 1 - u + U ~ V .  ct = II,, + 2 - u2v, 0 < x < T. 

under no-flux boundary conditions. Specifically. determine values of D for 
which various modes n are unstable. 

6. Consider Fisher's equation with Dirichlet boundary conditions: 

7i 7r 
< X < - - .  

2 u,, + u ( l  - u) .  -- 
2 

ut = 

7T 
u = 3 at x = & - .  

2 

(a) Show that u,(x) = 3/(1 +cosx)  is a nonconstant steady state solution. 

(b) Define perturbations U ( x .  t )  by the equation u = u,(x) + U ( x ,  t ) .  and 
find the linearized perturbation equation and boundary conditions for 
U ( x .  t ) .  

(c) Assume a solution to the linearized equation of the form U = eutg(x) ,  
and show that g must satisfy 

cosx - 5 7r 
g = u g %  g = O  at x=*-. 

g" + 1 +cosx 2 
(6.6.17) 
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(d) Show that if the perturbation equation has a nontrivial solution, then 
P < 0, thereby showing local stability of the steady solution. Hznt: 
Consider two cases. when g is positive and when g is negative on the 
interval. and then examine at the signs of g” and the other terms in 
(5.41) at a maximum or minimum point. 

7. In this extensive exercise we investigate a model developed by Gierer & 
Sleinhardt (1972) to show how two-dimensional instabilities can be driven 
by diffusive effects. In two dimensions and time let a = a(x.y.t) and 
h = h(z,y.t) be concentrations of two chemicals (an activator and an 
inhibitor) in a fixed rectangular domain 0 5 x 5 L,. 0 5 y 5 L,. Both 
chemical species have natural decay, and both diffuse with unequal diffusion 
constants. Therefore. we consider the model 

U‘ 

h 
at = c1- - p u + D ~ A a ,  

ht = C ~ U ’  - vh + DzAh. 

where the normal derivatives of a and h vanish on the boundary of the 
rectangle. The first terms on the right sides of both equations represent 
the chemical kinetics. 

(a) Show that the model may be nondimensionalized and written in the 

U* 
ut = ct---u+Au.  

ut = O u 2 - y + D A u .  

where cy. 3. y. and D are appropriately chosen dimensionless constants. 
(Hznt: Scale time by p- ’> and scale the spatial variables by m.) 
M’hat is the scaled spatial domain 0 5 z 5 L1. 0 5 9 5 L2? Note that 
the x. y. and t in this system are scaled variables. 

form 

U 

(b) Show that a uniform equilibrium solution is 

(c) Assuming u = u* + &(x.y, t )  and II = uu* + .u(z.y,t).  where d and 
v are small perturbations from equilibrium. show that the linearized 
system of perturbation equations is 

1 0  ” (  at w ” ) = (  2& 2 8 ) ( ; ) + ( 0  D ) (  2:). 
where the normal derivatives of 4 and @ vanish on the boundary of the 
scaled domain. 
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(d) Assume modal solutions in (c) having the form 

m7rx n7ry 

( ) = ( ) e g t c o s r  cos ->  

L2 

where m and n are nonnegative integers, A and B are constants. and a 
is the growth rate. Why can you do this? Show that nontrivial solutions 
of this form exist if, and only if 

det (a1 - M + q 2 N )  = 0, (6.6.18) 

and 
2 

q2 = ( y )2  + (E) 
(e) Show that condition (6.6.18) reduces to 

a2 + [-tr A1 + (Ar + 1)q2]a + Dq4 - t r  114 q2 + det Al = 0, 

and conclude that R e a  < 0 if. and only if 

t r M  - ( N +  l ) q 2  < 0. (6.6.19) 

Dq4 - t r  hl q2 + det M > 0. (6.6.20) 

( f )  Assume that the diffusionless steady state (occurring when D1 = 0 2  = 
0) is stable. or t r M  < 0 and dethf  > 0. Show that (6.6.19) holds 
automatically and therefore. for instability. that  equation (6.6.20) must 
be violated. 

(g) Show that there exist parameter values that violate condition (6.6.20). 
In fact. show that when 

1 - a D  > J2odetnl> 0, 

then there is a range of values of values of q that  give this condition. 
Hznt: The left side of (6.6.20) is a concave down parabola in the variable 
q2.  Find the minimum.) 

(h) Explain why the preceding calculations show that a diffusive instability 
arises in the Gierer-Meinhardt model. 
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8. In a fishing zone 0 5 x 5 L.  with x = 0 representing a straight shoreline 
and x = L an outer boundary, fish grow according to the logistics law and 
are harvested at a constant per capita rate h. Allowing for diffusion. the 
model for the population density is 

At the outer boundary assume the fish population is zero (caused. e.g., by 
excessive fishing). and assume a no-flux boundary condition at the shore- 
line. Initially. take u ( x . 0 )  = uo(x). and assume T > E .  Determine con- 
ditions under which the uniformly zero equilibrium population is stable 
to small perturbations. and therefore the fish population goes extinct. In 
particular. to prevent the population from collapsing, show that one must 
have L 2 J D l ( 4 r  - 4h).  

Reference Notes. The literature on reaction-diffusion equations is extensive. 
Edelstein-Keshet (2005) is an outstanding introduction. Other good starting 
places are books by Murray (2002. 2003). Smoller (1994). Fife (1979). Britton 
(1986, 2003). Grindrod (1996), and Allen (2007). All have detailed bibliogra- 
phies that serve as a guide to  further reading. Articles on pattern formation 
include Turing (1952). Levin & Segel (1985), and the popular article by hIur- 
ray (1988). Applications in mathematical physiology, n-hich unfortunately is 
slighted in this text, can be found in Keener & Sneyd (1998). For information 
about chemically reacting systems. especially combustion phenomena. see the 
Reference Notes in Chapter 7. 

Traveling waves are discussed in Volpert & Volpert (1994). An introductory 
paper in TWS in groundwater flow is van Duijn & Knabner (1992). Dehlarsily 
(1986) is an excellent quantitative treatment of contaminant transport and 
groundwater flow. 



7 
Equilibrium Models 

In this final chapter we address some problems in the theory of nonlinear elliptic 
partial differential equations. We consider only some representative examples. 
many of which are elementary; we do not lay out a general theory. One way 
to think about elliptic equations is that they are equilibrium problems born 
out of the time-asymptotic limit of reaction-diffusion equations. For example, 
steady-state solutions, if they exist, of the parabolic reaction-diffusion equation 

U t  - au = f(u) (7.0.1) 

must satisfy the equilibrium equation 

-au = f ( u ) .  ( 7.0.2) 

The latter semilinear equation is a steady-state equation in that time does not 
appear, and u = u(x). a function of the spatial variable only. So one may think 
of the solutions u(z ,  t )  of (7.0.1) as evolving into the solutions u = u(x) of 
(7.0.2) as t gets large. One of the major problems in the study of reaction- 
diffusion equations is to confirm this observation in special cases, and it leads 
to questions of existence of solutions of both (7.0.1) and (7.0.2) and also to 
questions of stability and bifurcation. 

Equilibrium. or steady-state, equations such as (7.0.2) are elliptic. and they 
are fundamentally different from parabolic and hyperbolic equations. Initial 
conditions for elliptic equations are inappropriate: rather, only boundary con- 
ditions lead to well-posed elliptic problems. Thus, concepts such as charac- 
teristics. which are fundamental for hyperbolic problems. play no role in the 

A n  Introductaon to Nonlanear Partial Dafferentzal Equataons, Second Edztaon. 
By J. David Logan 
Copyright @ 2008 John Wiley & Sons. Inc. 
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steady state. For elliptic equations we look for solutions on a spatial domain 
that match given conditions on the boundary of that  domain: we do not regard, 
as in the case of hyperbolic or parabolic equations, initial or boundary data  as 
being carried into the domain along, for example. characteristic curves. 

In Section 7.1 a few basic elliptic models are reviewed. In Section 7.2 we 
present two of the fundamental tools in the study of nonlinear elliptic equations: 
the maximum principle and the basic existence theorem. Section 7 . 3  focuses on 
a nonlinear eigenvalue problem, and in Section 7.4 we address the question 
of the stability of equilibrium solutions to (7.0.1) and the related issue of the 
bifurcation of solutions of (7.0.2) when a parameter is present. Finally. we 
introduce nonlinear stability analysis based on normal modes. 

The field of nonlinear elliptic boundary value problems is a vast area of 
intensive study, and our treatment is parsimonious when compared to evolution 
equations. The reader is invited to explore this field further by consulting one 
or more of the references cited in the Reference Notes at the end of the chapter. 

7.1 Elliptic Models 

In this section we review some classical elliptic models, observe how nonlinear- 
ities can appear, and focus in on some key questions that naturally arise. 

Example. (Laplace's Equatzon) Let D be an open. bounded. connected region 
in R" with boundary d D .  and let u = U ( X .  t )  denote a density in D at position 
n: = ( 5 1  , 2 2 , .  . . .x,) at time t .  Suppose that at time t = 0 we specify the density 
to be u ( z . 0 )  = U O ( X ) ,  and suppose that for all t 2 0 we impose the boundary 
condition 

~ ( 5 . t )  = h(n:), IC E d D ,  t > 0 ,  (7.1.1) 

where h is given. The basic conservation law and Fick's law imply that the 
density evolves according to  the diffusion equation 

ut -Au=O.  X E D ,  t > 0 ,  (7.1.2) 

where we assume that the region is homogeneous and the diffusion constant is 
unity. A is the n-dimensional Laplacian. If we imagine that the system evolves 
for long enough time that the initial condition at  t = 0 no longer affects changes 
in the system, then we reach an asymptotic state that  is independent of time 
[i.e.. u = u ( x ) ]  that satisfies 

Au=O. X E D ,  (7.1.3) 
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along with the boundary condition (7.1.1). The elliptic equation (7.1.3) is 
Laplace's equataon. and the boundary value problem consisting of Laplace's 
equation (7.1.3) and the boundary condition (7.1.1) is the Dirachlet problem on 
the domain D.  If the boundary condition (7.1.1) is replaced by a flux condition 
of the form 

du 
- =g(z). z E d D .  t > 0. (7.1.4) 
dn 

where duldn = gradu . n, and n is the outward unit normal on aD.  then 
the boundary value problem consisting of Laplace's equation (7.1.3) and the 
flux condition (7.1.4) is the Neumann problem. More generally. a boundary 
condition of the form 

du 
dn 

~ ( z ) u  + b ( ~ ) -  = ~ ( 2 ) .  2 E d D .  t > 0 (7.1.5) 

is called a mixed condition (or a Robzn condztaon). 
The Dirichlet, Neumann. and Robin problems are three of the most im- 

portant problems in analysis. Questions of existence, uniqueness. and how to 
construct solutions are key. 0 

There is another issue with elliptic equations. namely the lack of continuous 
dependence of the solution on Cauchy data. As the next important example 
shows. the Cauchy problem is not well-posed for elliptic equations, in that small 
changes in the Cauchy data lead to arbitrarily large changes in the solution. 

Example. ( H a d a m a d ' s  Ezample)  Consider the Cauchy problem 

u,, + u y y  = 0. 

u(2 ,O)  = 0. uy(2.  0) = 0. 

Clearly. u = 0 is a solution to this problem. Now change the Cauchy data to  

which. for large n. represents only a small change in the data. It is straightfor- 
ward to  verify that the solution is given by 

1 
n2 

u ( x > ~ )  = -sinnzsinhny. 

For large values of n the exponentially growing sinh function dominates the 
nP2 factor. and hence the solution deviates from the original solution 'u = 0 by 
an arbitrarily large amount. Thus a small change in the Cauchy data produces 
an arbitrarily large change in the solution. 0 
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Obtaining solutions to  Laplace‘s equation on bounded domains D can some- 
times be accomplished by separation of variables. provided the domain has a 
simple geometric form. for example, bounded by coordinate planes in a curvilin- 
ear coordinate system. On unbounded domains transform methods may apply. 
Conformal transformations may be applicable to both bounded and unbounded 
domains in two dimensions. Any text on complex variables can be consulted 
for conformal techniques. 

Example. (Pozsson’s Equatzon) Returning to  the discussion in the preceding 
example. if a time-independent source f ( ~ )  is present in the domain D. then 
the density u = u(2. t )  is governed by the parabolic nonhomogeneous diffusion 
equation 

ut - kAu = f ( ~ ) .  2 E D .  t > 0. 

Equilibrium solutions u = U ( Z )  are therefore governed by the elliptic equation 

-Au = f ( ~ ) .  z E D. (7.1.6) 

which is Pozsson’s equatzon. For boundary conditions on d D  we can append 
either a Dirichlet, Neumann. or Robin condition. If the source depends on the 
u, we obtain a semilinear elliptic equation of the form 

-Au = f ( 2 .u ) .  5 E D.  0 (7.1.7) 

Equation (7.1.7) is one of the basic nonlinear elliptic equations: when the 
nonlinearity occurs in the source term and not in the differential operator, the 
equation is in general called semzlanear. 

Example. (Reactzon-Dzffuszon Equatzons) As we pointed out in the last chap- 
ter. there is considerable interest in nonlinear reactive-diffusive systems. These 
systems are governed. for example. by semilinear equations of the form 

ut - dlAu = f ( u .  u ) .  ut - d2Ac = g(u .  v). (7.1.8) 

where u and c represent unknown density functions (populations, chemical con- 
centrations, etc.) and dl  and dz are diffusion constants. These equations provide 
qualitative models for a number of biological. chemical. and physical phenom- 
ena: predator-prey interactions, chemical reactions. combustion phenomena. 
morphogenesis. and nerve-pulse conduction. to mention only a few. 11-e are of- 
ten interested in the equilibrium situation where u and t) are time-independent. 
In this case. u = u(x) and L’ = U ( Z )  satisfy the elliptic system 

-dlAu = f ( u .  u). --dZAC = g(u. u ) .  (7.1.9) 
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subject to the boundary conditions imposed on the problem. We can think 
of the solutions of (7.1.9) as the asymptotic limit of the solutions of (7.1.8), 
provided that solutions exist. 0 

The interpretation above leads to several interesting questions. For exam- 
ple, what kinds of initial data imposed on (7.1.8) cause its solutions to evolve 
into the stationary solutions of the equilibrium problem (7.1.9)? This question 
becomes even more exciting when one discovers that (7.1.9) may admit mul- 
tiple equilibrium solutions. So, we can liken equilibrium solutions of (7.1.9) to 
critical points for plane autonomous systems of ODES and then ask similar 
stability questions for the stationary solutions of the PDEs (7.1.9). For exam- 
ple, is a given stationary solution of (7.1.9) asymptotically stable, that is, does 
it attract all solutions of (7.1.8) that are sufficiently close to  it (measured in 
some norm) at  time t = O? These are important questions in nonlinear analysis 
associated with reaction-diffusion equations and the resulting elliptic systems 
that arise in a time-asymptotic limit. 

Another important task is to investigate bifurcation, or branching. phenom- 
ena in systems such as (7.1.8) and (7.1.9). For example, the system (7.1.8) may 
contain a parameter such that below a critical value there is a single, asymp- 
totically stable equilibrium solution of (7.1.9): then, as the parameter increases 
beyond the critical value, additional equilibria appear and the previous asymp- 
totically stable solution may become unstable. The study of multiple equilibria 
and their stability properties, as functions of parameters in the system, lies a t  
the foundation of bifurcation theory. 

Yet another class of problems associated with elliptic equations are non- 
linear eigenvalue problems. These are discussed in Section 7.4. A classic linear 
eigenvalue problem is introduced in the next example. 

Example. (Schrodznger Equatzon) In the doctrine of classical mechanics the 
position of a particle of mass m moving under the influence of a potential 
V ( x ) , z  E R3. is determined precisely by solving the differential equations of 
motion given by Newton's second law, subject to initial conditions. After the 
turn of the twentieth century it was recognized that the classical theory did 
not apply in all cases. and quantum mechanics was developed. In quantum 
theory a statistical interpretation is advanced where all that  can be known 
about a particle's location is the probability of it being in some region of space. 
The information about a quantum mechanical system is contained in a state 
function y ( x .  t ) .  called the wavefunction, where lQlz represents the probability 
density; that is, 
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represents the probability of finding the particle in the volume D.  It is a fuii- 
dameiital postulate of quantum mechanic that the wave function satisfies the 
time-dependent Schrodinger equation 

A 
2m 

(7.1.10) 

where A is the three-dimensional Laplacian and h = 27rfi is Planck's constant. 
If we assume that Q(x.t) = T ( t ) Q ( x ) .  then (7.1.10) separates into the two 

where E is a separation constant. The equation for 9 is called the tzme- 
zndependent Schrodanger equatzon. and it is elliptic. 11-hen boundary conditions 
are imposed. the time-independent problem is an eigenvalue problem where the 
eigenvalues E are the possible energy levels of the particle. 0 

EXERCISES 

1. The divergence theorem in R" is contained in the statement 

where D is an open, bounded region in Rn with smooth boundary d D .  n k  

is the kth component of the outward unit normal on d D .  and u is a scalar 
function with u E C(D)  n C1(D). 

(a) Use the divergence theorem to derive the integration-by-parts formula 

vDku dx = uvnk dS - uDkc dx. 
L D  L 

(b) Use the integration-by-parts formula to derive Green's identities: 

uAu dx = LD 02 dS - L grad u grad L' dx. s, 
where A is the n-dimensional Laplacian, grad = (01.. . . , Dn)  is the 
gradient operator. and du/dn is the normal derivative given by 

du 
- = g r a d u . n  
dn 

where n is the normal vector. 
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(c) Prove that classical solutions in C ( D )  nC2(D) to  the Dirichlet problem 

-Au = g(z). z E D.  

u = f ( ~ ) %  z E d D .  

are unique, provided that they exist. Assume f 3  g E C(D).  

Use an energy method to  show that the parabolic problem 

U t  - au = 0. E D. t > 0. 
u(z . t )  = 0, z E dD. t > 0. 
~(5.0) = 0. z E D. 

has only the trivial solution u = 0 on D x R+ Hznt: Consider E ( t )  = 

s, U(Z> t)2dz and use Exercise l (b) .  

Determine all solutions of Laplace's equation Au = 0 of the form u = 

y ( r ) . r  = Iz - <I .  where z = (21,. . . , z n ) ,  where < = (<I.. . is a fixed 
point in Rn. and where T is the Euclidean distance from z to  <. In particular. 
show 

if n > 2 .  
Cr2-n 

y ( r )  = A + 2-n ~ ( r )  = A + C l n r  

where A and C are constants. 

Show that the PDE 

if n = 2 ;  

2 
uxx + 2 u y y  = YUy 

is elliptic. Determine characteristic coordinates and reduce the equation to 
canonical form. 

Consider the initial value problem for the Schrodinger equation for a free 
particle 

U t  = iuxz. z E R, t > 0. 
u(z .  0) = ug(z),  z E R. 

where uo is continuous and square integrable on R. Prove that if a solution 
u(x. t )  exists and vanishes, along with all of its derivatives. a t  infinity, then 

(This scaled form of the Schrodinger equation. without the accompanying 
constants. is often discussed in mathematics literature.) 
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Use the solution to  the initial value problem for the heat equation (see 
Section 5.1) to determine a formal solution to the initial value problem in 
Exercise 5. Compare and contrast the two kernels in the integral represen- 
tations of the solutions to these two initial value problems. 

The Helmholtz equation in R3 is 

Au + cu = 0. 

where c is a positive constant and A is the three-dimensional Laplacian. 
Find all solutions of the form U ( X )  = 9( lz - < I ) ,  where [ is a fixed point in 
w3. 

(Korteweg-de Vrzes and Schrodznger) There is a close connection between 
potentials in the Schrodinger equation and solutions to  the KdV equation. 
and this exercise explores one of them. Let u = u(x. t )  be a solution to the 
KdV equation 

U t  + uzZx + 6uuX = 0, 

and suppose that u is chosen as the potential in the time-independent 
Schrodinger equation 

-(LIZ, + U Y )  = X W .  (7.1.11) 

where t appears as a parameter in X and 2.'. Assume that u and its deriva- 
tives approach zero as 1x1 + cx;, and assume 

Shorn that if X is an eigenvalue in (7.1.11) with corresponding eigenfunction 
v> then, in fact. X is independent of t .  Hznt: Substitute u from (7.1.11) into 
the KdV equation and show that 

X'(t)v2 + (uh ,  - h ~ , ) ,  = 0. 

for some appropriately chosen function h. 

7.2 Theoretical Results 

Another feature of elliptic problems is that  a solution must satisfy a condition 
requiring that it take on its maximum or minimum value on the boundary of 
the domain over which the problem is defined. In this section we present two of 
the fundamental tools used in the analysis of elliptic problems. the maximum 
principle and the basic existence theorem. 
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7.2.1 Maximum Principle 

In the sequel we assume that D is an open, bounded, connected subset of R”. 
and we denote the points of D by n: = (XI.. . . , zn ) .  The symbol D will denote 
the closure of D ,  that is, D = D U d D .  where d D  is the boundary of D .  We 
will not deal with questions of regularity of the boundary; generally. we assume 
that the boundary of D is sufficiently smooth to  give validity to our results. 
For elliptic equations it is not much more difficult to  work in n-dimensional 
space. and then our results will be valid when specialized to either R2 or R3. 
The Laplacian in EX” is the second-order differential operator A defined by 

AIL = uxlZl + .  . . + ux,x, 
We say that a function u E C 2 ( D )  is subharmonzc (superharmonzc) in D if 
-Au < 0 in D (correspondingly. -Au 2 0 in D ) .  A function u E C 2 ( D )  that  
satisfies Laplace’s equation Au = 0 in D is said to be harmonzc in D .  

The maximum principle. in its simplest form. requires that a subharmonic 
function on D that is continuous in D assume its maximum value on the bound- 
ary d D .  Correspondingly. the minimum principle insists that a superharmonic 
function assume its minimum value on d D .  It is clear that  these results should 
be expected if one restricts the analysis to  n = 1, where D is an interval in R1 
and u is a function on D .  In this case the Laplacian is just the second deriva- 
tive operator and u” 2 0  means that u is concave up, and u” 5 0 means that 
u is concave down. Respectively, such functions have their maximum and their 
minimum at the endpoints (assuming that they are not constant functions). In 
fact, the one-dimensional case is a convenient mnemonic device. Therefore. we 
have the following weak form of the maximum principle. 

Theorem. (Weak Maxzmum Principle) If u E C(D)  n C 2 ( D )  and Au 2 0 on 
D .  then maxDu = maxaD u. 

Because u is a continuous function on a compact (closed and bounded) 
set. the function u must assume its maximum somewhere on 0. The theorem 
states that the maximum must occur at least somewhere on aD. but it does not 
preclude the maximum also occurring at an interior point. A stronger version 
of the maximum principle. stated later. will preclude this, unless the function is 
constant. Now the proof of the weak maximum principle (this proof is given in 
most books on PDEs). First. we observe that if Au > 0 on D (strict inequality). 
then a maximum cannot occur in D :  at  such a point uxzxt <0 for all 2 ,  which 
violates Au > 0 at  that  point. Next consider the case Au 2 0 on D .  For E > 0 
we define the auxiliary function II = u + for which Au > 0. From the 



354 7. Equilibrium Models 

strict inequality case. we know that 'L' cannot assume its maximum in D.  Then 
maxD u = maxaD v. Consequently 

msxu 5 m_ax(u + ~ 1 x 1 ~ )  = max(u + ~1x1~) 5 maxu + Emax / x / ~ .  

Because E is arbitrary. maxBu 5 maxaDu. The opposite inequality is auto- 
matically true. and therefore the theorem is proved. 

D D i3D d D  dD 

0 

Replacing 'u by -u in the statement of the theorem gives a weak form of 
the minimum principle. as follows. 

Theorem. (Weak hlznzmum Prznczple) If u E C(D) n C 2 ( D )  and Au 5 0 on 
D.  then minnu = minaD u. 

It is obvious that if u is harmonic in D and continuous on D. then u must 
assume both its maximum and minimum on d D .  In particular. if u = 0 on d D  
and Au = 0 in D.  then u must vanish identically in D .  Therefore, a harmonic 
function on D that is continuous in D is uniquely determined by its values on 
the boundary. 

We now state. without proof. the strong version of the maximum principle. 
A proof can he found in Protter & Weinberger (1967). which is an excellent 
reference for maximum principles. iVe formulate the theorem for more general 
elliptic operators than the Laplacian. To this end. let us consider an operator 
L defined by 

Lu = c c at, (+ZZZJ  + c b, (+ZJ 1 (7.2.1) 

where the coefficients uz3 and b, are continuously differentiable functions on D 
that are continuous on 0, and where 

z 3  3 

( 7 . 2 . 2 )  
2 3  I )  

for all x in D. for some positive real number p. An operator L satisfying 
these conditions is called uniformly elliptzc in D.  Of course, the Laplacian 
A is uniformly elliptic. Then, one version of the strong form of the maximum 
principle can be stated as follows. 

Theorem. (Strong Maxzmum Prznczple) Let u E C(D)  n C 2 ( D ) .  and assume 
that Lu + c(z)u 2 0 for x E D.  where L is uniformly elliptic in D.  and where the 
function c is continuous. bounded. and c 5 0 on D. If u attains a nonnegative 
maximum JI in D ,  then u = dl for all z E D. 

One can also draw some conclusions about the normal derivative of u at 
the boundary. 
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Theorem. Under the same hypotheses, assume that u 5 AI in D ,  u = M at  a 
boundary point 20.  and A1 2 0. If xo lies on a boundary of some sphere inside 
D.  then duldn > 0 at  20. provided that u is not constant in D.  

If the boundary of D is smooth. then an interior ball. or sphere. can always 
be placed at 20. It can be shown that we need not restrict the conclusion of the 
theorem to the normal derivative: more generally. the directional derivative of 
u in any outward direction is positive. 

The corresponding minimum principle may be stated as follows. The proof 
comes from replacing u by -u in the weak maximum principle. and me leave it 
as a simple exercise. 

Theorem. (Strong Mznzmum Pranczple) Let u E C(D) n C 2 ( D ) .  and assume 
that Lu + C(Z)U 5 0 for z E D. where L is uniformly elliptic in D ,  and where 
c is continuous. bounded. and c 5 0 on D .  If u attains a nonpositive minimum 
m in D.  then u = m for all z E D .  

Once we have maximum and minimum principles, it is straightforward to 
obtain comparison theorems. For example, we have the following theorem. 

Theorem Let u. 2: E C(D) n C 2 ( D )  and assume that Lu 2 0 and Lv = 0 in D. 
where L is a uniformly elliptic operator given by (7.2.1). If u 5 w on d D .  then 
u 5 11 for all 2 E D. 

For the proof, let w = c - u . Then w 2 0 on dD and Lw 5 0 on D.  Now. 
by way of contradiction. assume that ~ ( z o )  < 0 for some zo in D. Then 'ui 

has a negative minimum in D. and therefore by the strong minimum principle 
the function w must be constant and negative in D.  But this contradicts the 
fact that w is nonnegative on d D .  Hence u: 2 0 on D .  giving the result. Our 
assumption that D is a bounded set is important in this theorem: it is not true, 
in general. for unbounded domains. 0 

The Exercises contain several applications of the maximum and minimum 
principles. 

7.2.2 Existence Theorem 

Let us consider the semilinear boundary value problem 

-Lu = ~ ( z . u ) .  z E D.  

u = h ( z ) .  z E d D ,  

(7.2.3) 

(7.2.4) 
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where L is the uniformly elliptic operator defined by (7.2.1). The function h in 
the Dirichlet boundary condition. and the function f ,  defined in D xR. are both 
assumed to be smooth (class C') on their respective domains. A minus sign 
appears in front of the operator L on the left side of (7.2.3) so that subsequent 
inequalities will have a symmetric form. (In fact, the maximum and minimum 
principles stated above are often presented with negative signs on the operator 
and the inequalities reversed.) 

Another fundamental tool in the analysis of elliptic equations and eigen- 
value problems for elliptic operators is the notion of upper and lower solutions 
to (7.2.4)-(7.2.4). and the fact that if such solutions exist. a classical solution 
can be sandwiched in between. In the next section, where we discuss eigen- 
value problems, we will experience the power of this method to prove existence 
results. A function U in C(D) n C 2 ( D )  is called an upper solutaon to (7.2.3)- 
(7.2.4) if 

- Lu 2 f ( z . U ) .  z E D. 

z E dD.  U 2 h(x), 

(7.2.5) 

(7.2.6) 

A lower solution g ( x )  is defined similarly. with the two inequalities reversed. 
The fundamental theorem can now be stated. 

Theorem. (Emstence) If the boundary value problem (7.2.3)-(7.2.4) has a 
lower solution g ( r )  and an upper solution U(x) with ~ ( z )  5 U(x) in D. then the 
boundary value problem (7.2.3)-(7.2.4) has a solution ~ ( z )  with the property 
that g(z) 5 u(x) 5 U(x) in D .  

Accessible proofs can be found in Sattinger (1973) and Smoller (1994). One 
method of proof uses the idea of monotone iteration schemes: that  is. monotone 
sequences of iterates bounded by the upper and lower solutions are constructed 
and can be shown to converge a solution from both above and below. There are 
other proofs using topological. or degree. methods. Upper and lower solutions 
were introduced in the late 1960s. The proof of the general existence theorem 
using monotone iteration methods and upper and lower solutions was given by 
H. Amann in 1971 and D. Sattinger in 1972. The result is valid for boundary 
conditions more general than (7.2.4). Generalizations have been offered in other 
directions as well. The reader can consult the complete bibliography in Pao 
(1992) for specific references to  these and other treatments of the subject. 

Example. Let D be the square 0 < x. y < a in R2 and consider the boundary 
value problem (BVP) 

-Au = ~ ( 1 -  U) 2 E D .  

u = 0  x E d D .  

(7.2.7) 

(7.2.8) 
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where A is the two-dimensional Laplacian. We use the existence theorem to 
prove that a solution exists to this BVP. provided that the square D is large 
enough. The reader should be alert to the notation change. where we are using 
z and y in lieu of z1 and 2 2 .  First. define U(z) as the solution to  the ordinary 
differential equation 4’ = U ( l  - u)  on 0 < z < a,  with U ( 0 )  = i i (a )  = 0. 
Then fi(z) > O  on dD and -Aii = -ii’/ = ii(1 - u) 2 0 .  Therefore. U(x) is an 
upper solution of the BVP (7.2.7)-(7.2.8). To find a lower solution we proceed 
as follows. First. consider the eigenvalue problem 

-Au=Xu i n D .  

u = 0 ondD.  

The eigenvalues are given by X = 7rz(n2 + m2)/a2 for m, n = 1 . 2 , 3 , .  . .. Thus 
the smallest eigenvalue is XI = 27r2/a2. and an associated eigenfunction is given 
by o(z.y) = sin(m/a)sin(.iry/a). which is positive on D. Then -A9 = X1d 
and d = 0 on dD. Kow choose a such that A1 < 1, and take g = EO. where E is 
a positive constant to  be selected later. Then 

AU - + ~ ( l  - U) = ~d(--X1 + 1 - ~ 4 )  > 0. 

provided that E is chosen small enough. Therefore. g is a lower solution. By the 
existence theorem there is a solution u to (7.2.7)-(7.2.8) with the property that 
EQ(Z .  u) 5 u(z. y)  5 U(z) for all (x. y )  in D. provided that a is large enough. 
0 

A similar existence theorem using upper and lower solutions holds for 
parabolic equations as well. For example, 

ut - AU = f ( z , ~ ) .  

u(z .  t )  = g(z> t ) .  

u (z .0)  = u ~ ( z ) .  

2 E D. 

z E dD, 

z E D. 

0 < t < T.  

0 < t < T. 
( 7.2.9) 

(7.2.10) 

(7.2.11) 

We assume that f is a smooth function of its arguments and that the initial 
and boundary conditions are continuous. We say that g(x .  t )  is a lower solution 
of (7.2.9)-(7.2.11) if (7.2.9)-(7.2.11) hold with the inequality 5 rather than 
with equality. In the same way, U(z. t )  is an upper solution if (7.2.9)-(7.2.11) 
hold with the inequality 2 .  Both g and ti are assumed to  be twice continuously 
differentiable on 0~ = D x (0. T) and continuous on 0 ~ .  Then we state. without 
proof. the following existence theorem. 

Theorem. Let g and fi be lower and upper solutions of (7.2.9)-(7.2.11) with 
- u(z . t )  5 i i(z . t)  on f l ~ .  Then the initial boundary value problem (7.2.9)- 
(7.2.11) has a solution u(z . t )  with u(z.t)  5 u(x.t) 5 i i ( z , t )  on f l ~  that is 
continuous on n~ and class C’(0,). 
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EXERCISES 

1. Let u E C(D) n C2(D) be a solution of Au + CE=,bk(z)u, + c(z)u = 0 on 
D.  where c(z) < 0 in D. Prove that u = 0 on d D  implies that u = 0 in D. 
Hznt: Show that min u 2 0 and max u 5 0. 

2. Use the maximum principle to prove that a harmonic function on D and 
continuous in D is uniquely determined by its values on dD. 

3. Mhat can be deduced about solutions to the nonlinear Dirichlet problem 

Au = u 2 ,  x E D. 

z E dD? U ( X )  = 0. 

4. Let D = { ( x ,  y)lO < X. y < T }  be a domain in R2, and consider the Dirichlet 
problem 

uxx + ugy + 2u = 0 i n D .  

u = 0 ondD.  

Where does the maximum of u occur? 

5. Let 
ut = u,, + eu ,  x > O t  > 0, 

with u = 0 on z = 0 and t = 0. Show that - ln(1 - t )  is an upper solution 
and - ln(1 - t + h(z .  t ) )  is a lower solution provided ht = h,, with h = t 
on z = 0 and h = 0 on t = 0. Show that u(x. 1) -+ +m as z -+ +x. 

6. Let 0 in R" denote the unbounded domain 1x1 > 1. and let u E C2(n). 
liin,+m u ( x )  = 0. and Au = 0 in Q. Prove the maxn lu/ = maxaQ lul. 

7.3 Eigenvalue Problems 

7.3.1 Linear Eigenvalue Problems 

The reader is familiar with eigenvalue problems occurring in matrix theory (the 
algebraic eigenvalue problem) and in ordinary differential equations (Sturm- 
Liouville problems). In Section 7.1 we mentioned how an eigenvalue problem 
arises naturally for the Schrodinger equation in quantum mechanics. In this 
section we examine eigenvalue problems for PDEs with the goal of obtaining 
results about eigenvalues for nonlinear equations. 
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One of the most important problems for linear partial differential operators 
is the eigenvalue problem for the negative Laplacian on a given open. bounded. 
connected domain D in Rn.  The problem is to  determine values of X for which 
the BVP 

-Au = X U .  x E D ,  

u = 0, x E d D ,  

(7.3.1) 

( 7.3.2) 

has a nontrivial solution. To review. the values of X for which nontrivial so- 
lutions exist are called ezgenwalues. and the corresponding solutions are called 
ezgenfunctzons. The set of eigenvalues is called the spectrum of -A. It is also 
of interest to replace the Dirichlet boundary condition (7.3.2) with a Keumann 
condition on the normal derivative. du/dn = 0 on d D .  Generally. eigenvalues 
and the corresponding eigenfunctions depend on the boundary condition, the 
operator. and the domain D .  

Example. In addition to quantum theory. the physical origin of eigenvalue 
problems for PDEs comes out of the study of vibration problems. For example. 
let D represent an elastic membrane in two dimensions. Under special assump- 
tions. the vertical displacement U(X. t )  of the membrane from equilibrium at  
position x = ( 2 1  ~ za) at time t is governed by the two-dimensional wave equa- 
tion 

U t t  - a AU = 0. x E D.  t > 0.  (7.3.3) 

where a > 0 is a physical constant. If the boundary of the membrane is held 
fixed (pinned). the boundary condition is 

u = 0 .  x E 8 D .  t > 0.  (7.3.4) 

Of interest in many engineering applications are solutions of the form 

u(x. t )  = U ( z ) e Z d t .  (7.3.5) 

Such solutions are oscillatory in time with frequency w .  The shape of the solu- 
tion is U ( X ) .  If (7.3.3)-(7.3.4) admit solution of the form (7.3.5). d is called a 
natural frequency and U ( x )  is called a normal mode. To find such solutions we 
substitute (7.3.5) into (7.3.3) and (7.3.4) to obtain 

- A U = X U .  X E D ,  

U = O .  X E ~ D ,  

where X = dz/a. Therefore, an eigenvalue problem must be solved to  determine 
the natural frequencies and normal modes of vibrating membranes. 0 
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A lot is known about the eigenvalues and eigenfunctions for -A. the nega- 
tive Laplacian. For special regions such as rectangles and balls. explicit formulas 
are known. The classic book by Courant & Hilbert (1953) is one of the best 
references for properties of eigenvalues of linear partial differential operators. 
For the sequel we require only a few facts that are collected together in the 
following theorem on the prznczpal (smallest) eigenvalue and its monotoiiicity. 
The domain D over which the problem is defined is assumed to be an open, 
bounded region with a sufficiently smooth boundary. 

Theorem. For the eigenvalue problem (7.3.1)-(7.3.2) on the domain D. there 
are infinitely many eigenvalues A,. n = 1 . 2 , 3 . .  . . that can be arranged in a 
sequence 0 < A1 5 A2 5 A3 5 . ' .  with lim A, = +x. The eigenfunction O(Z) 

associated with the prznczpal ezgenvalue A1 can be chosen to be positive on 
D. Moreover, if D* is a subdomain of D. the principal eigenvalue AT for the 
eigenvalue problem (7.3.1)-(7.3.2) on D* has the property that AT 2 XI. 

This theorem extends to more general operators and boundary conditions. 
For example, if L is a uniformly elliptic operator on D. we can consider the 
eigenvalue problem 

-Lu + C ( Z ) U  = A ~ ( z ) u ,  z E D ,  

where a = 1 and b 2 0 or a = 0 and b = 1, and where c ,r  E C(D),  c > 0 aiid 
T > 0. The principal eigenvalue XI is real, nonnegative, and has multiplicitl- 1; 
the corresponding principal eigenfunction can be taken to  be positive on D. 

In the theorem. the set of eigenfunctions &(z) form an orthonormal ba- 
sis for Lz(D),  and therefore any function f E L2(D)  can be expanded in its 
generalized Fourier series 

where f n  are the Fourier coefficients 

This is the fact that makes the separation-of-variables method work for PDEs 
involving the Laplacian on bounded domains. 
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7.3.2 Nonlinear Eigenvalue Problems 

We begin with an example of a semilinear problem that has its origins in 
combustion phenomena. Our analysis of this problem follows that of Bebernes 
and Eberly (1989); see also Pao (1992). 

Example. Consider the solid-fuel model  in several dimensions 

ut - Au = Se". x E D. t > 0, 

with initial and boundary conditions 

U(X, 0) = U O ( Z ) ,  z E D ,  

u ( ~ : , t )  = 0, x E aD.  t > 0. 

In the combustion model u is a dimensionless. perturbed temperature variable. 
In the steady-state case we have the nonlinear boundary value problem 

-Au = Se". x E D.  

x E aD. u = 0. 

( 7.3.6) 

(7.3.7) 

which is called the Gelfand problem. An important problem in combustion 
theory is to determine values of the parameter S, which is an eigenvalue, for 
which the problem has a positive solution. 0 

With the Gelfand problem as motivation, we are led to consider a wide class 
of nonlinear eigenvalue problems of the form 

-Au = X ~ ( X .  u ) ,  x E D.  

u = 0. x E dD.  

(7.3.8) 

(7.3.9) 

M'e assume that f is continuous on D x R and f ( x . u )  2 0. Notice that the 
linear eigenvalue problem for -A is not a special case of (7.3.8)-(7.3.9) because 
f(x. u) = u does not satisfy the positivity requirement. Because we are inter- 
ested in nonnegative solutions, we define the spec t rum o as the set of all real 
numbers X for which a nonnegative solution of (7.3.8)-(7.3.9) exists. It is easy 
to show that if there is a positive number A1 in 0. then 0 must also contain 
the interval (0. A l ) .  So for any X in the interval 0 5 X 5 XI. there is a nonneg- 
ative solution to (7.3.8)-(7.3.9). (Clearly. 0 E 0.) Consequently, the nonlinear 
problem (7.3.8)-(7.3.9) will not have a discrete spectrum as we have come to 
expect from linear boundary value problems. We record this as our first result. 

Theorem. If A1 > 0 and XI E 0 ,  then [O. XI] C: cr. 
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The proof uses the fundamental existence theorem on upper and lower so- 
lutions for elliptic equations stated in Section 7.2. Let 0 < X < XI be fixed. 
Then ~ ( z )  = 0 is a lower solution to  (7.3.8)-(7.3.9) because f is nonnegative. 
Sow let U(z) be the nonnegative solution of (7.3.8)-(7.3.9) corresponding to 
X I .  It is clear that 

-AU = X l f ( ~ .  U )  2 X f ( z . U ) .  z E D.  

and therefore ti is an upper solution to (7.3.8)-(7.3.9). By the existence theorem 
there is a solution u ( z )  to (7.3.8)-(7.3.9) satisfying 0 5 u ( z )  5 ii(x),x E D ,  
thereby completing the proof. 0 

?;ow we prove an important result on the nonexistence of eigenvalues beyond 
a certain value. provided that f is bounded below by a linear function of u. 

Theorem. Suppose that 

f (z. u )  2 h ( z )  + r ( z )u .  (z. u )  E D x [O, 

where h and r are continuous on D. and h , r  > 0 on D .  Then the eigenvalue 
problem (7.3.8)-(7.3.9) has no nonnegative solutions for any X 2 X l ( r ) .  where 
X l ( r )  is the principal eigenvalue of the problem 

-Au = X ~ ( Z ) U .  z E D: u = 0, z E d D .  (7.3.10) 

Again the proof uses the idea of upper and lower solutions. By way of 
contradiction. assume that i i(z)  is a nonnegative solution of (7.3.8)-(7.3.9) with 
X 2 X l ( r ) .  Then it is easy to see that 6 is an upper solution of the BVP 

-Au = X ( h ( z )  + r(II:)u), II: E D ;  u = 0. z E dD. (7.3.11) 

Moreover. it is obvious that u = 0 is a lower solution of (7.3.11). By the 
existence theorem on upper and lower solutions there is a solution u (z) of 
(7.3.11) with the property that 0 5 u ( z )  5 U(z) for z E D.  Moreover. by the 
maximum principle we must have ~(z) > 0 on D [because -Au > Xr(z)u 2 0 
on D.  and u = 0 on d o ] .  

Now let 0 be the positive, principal eigenfunction of (7.3.10) corresponding 
to the principal eigenvalue X ~ ( T ) .  By Green's identity. we have 

(uAd - dAu) dz = jo(Xh + Xru) - XI ( r )rou]  dz. 

Therefore 
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which implies X ~ ( T )  > A, a contradiction. Consequently, no nonnegative solu- 
tion of (7.3.8)-(7.3.9) can exist for X 2 X l ( r ) .  completing the proof. 0 

Example. Consider the Gelfand problem 

-Au = Xe". x E D ,  

u=O. x E d D .  

Here we have f ( x > u )  = e" 2 u + 1 for u 2 0. so the last theorem applies 
with h = T = 1. We conclude that the Gelfand problem has no nonnegative 
solutions for any X 2 XI, where XI is the principal eigenvalue of the problem 
-Au = Xu, x E D ,  with u = 0 on d D .  To compute X I  see Exercise 3. 0 

Of course, the main question is the existence of a positive eigenvalue of 
(7.3.8)- ( 7.3.9). 

Theorem. If f(x. u) > 0 for z E D and u 2 0, then there exists a real number 
A* > 0 such that the eigenvalue problem (7.3.8)-(7.3.9) has a positive solution 
on D for X = A * .  

The strong maximum principle shows that a necessary condition for a posi- 
tive solution is X 2 0. For. let X < 0. Then -Au = Xf(x. u) < 0 on D and u 5 0 
on D. By the maximum principle. u 5 0 in D. a contradiction. To complete the 
proof we need to show that there is a positive solution for some X*  > 0. Again 
the idea of upper and lower solutions is essential. We have already shown that 
- u = 0 is a lower solution for any A* > 0. Now let be the solution to 

-AIL = 1. E D.  

u = 0. x E d D .  

By the maximum principle we have ii > 0 on D. For A* sufficiently small 

1 = -AG 2 X * f ( . , U ) ,  IZ: E D.  

Therefore, G is an upper solution to (7.3.8)-(7.3.9) for X = A *  (note that f is 
bounded). By the existence theorem there is a solution u(z) of (7.3.8)-(7.3.9). 
with X = A * ,  satisfying the condition 0 5 u(x) 5 U(z).  z E D.  Again by 
the maximum principle we must have u(x) > 0. Note that u cannot be an 
identically zero solution because f(x, u) > 0. 

EXERCISES 

1. Consider the eigenvalue problem (7.3.8)-(7.3.9). where f(x. u) E C2, f ( z l  0 )  > 
0, fu(x.O) > 0, and fuu(x ,u)  2 0. for all x E D and u 2 0. Given 
X > X,(fu(z.O)). prove that there are no nonnegative solutions. 
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2 .  Consider the nonlinear boundary value problem 

A u + p u = u 3 ,  X E D .  

x E d D .  u = 0. 

Prove that if p is sufficiently small, then u = 0 is the only solution. Hznt: 
Take p < X I .  where XI is the principal eigenvalue of -A on D. 

3. Let D be the open ball x2  + y2 < 1 in the plane. Find a value of XI for 
which the eigenvalue problem 

- (uzz  + uyy) = Xe". x E D :  u = 0.  x E d D  

has no nonnegative solution for X 2 X I .  

4. In two dimensions, find the eigenvalues and eigenfunctions of -A with 
Dirichlet boundary conditions on the domain 0 5 x 5 a. 0 5 y 5 b. 
Answer the same question when the domain is a disk of radius R. 

7.4 Stability and Bifurcation 

Physical systems governed by nonlinear partial differential equations suggest 
many interesting mathematical questions. One of these. which we now consider, 
is the existence of equilibrium solutions and how those solutions depend on 
parameters that occur in the problem. For example, equilibrium solutions may 
exist for some values of a parameter, yet not for other values. More interestingly. 
as a parameter is varied. there may be a critical value where an equilibrium 
solution may lose its stability properties and no longer exist as a physical 
possibility. even though it may continue to  exist in a mathematical sense. At the 
same critical value, division may occur and additional equilibria may suddenly 
appear. The study of problems of this type lies in the domain of stability and 
bifurcation theory. R'e first introduce some problems in the realm of ordinary 
differential equations, after which we study related questions for PDEs. 

7.4.1 Ordinary Differential Equations 

We motivate the key ideas with an example in ODES. 

Example. Consider an animal population whose growth is determined by a 
logistics growth law. while a t  the same time the population is harvested at a 
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stable i-\ 
unstable 11; ~ 

I 1 /4 P 

Figure 7.1 Bifurcation diagram showing the locus (7.4.3). a graph of the 
constant ~ equilibrium solutions versus the bifurcation parameter p.  The point 
B is a bifurcation point where the stability changes: the states on the upper 
branch are stable, and the states on the lower branch are unstable. 

constant rate. If U = U ( r )  is the population at  time r. then the governing 
evolution equation is 

(7.4.1) 

where r is the growth rate, K the carrying capacity, and h the constant harvest- 
ing rate. with h > 0. Equation (7.4.1) can be nondimensionalized by introducing 
the scaled variables 

u=- t = r r .  
U 
K '  

Then. in dimensionless variables, (7.4.1) becomes 

du 
dt  
- = u(1-  u) - P. (7.4.2) 

where p is dimensionless harvesting parameter defined by p = h / r K .  Now. 
treating p as control parameter. we ask whether equilibrium populations exist; 
that is. whether there are any constant solutions of (7.4.2). These are easily 
found by setting d u l d t  = 0. In the present cases, the equilibrium populations 
are values of u that satisfy 

l * J = - Z p  
2 

u =  (7.4.3) 

Therefore. if the harvesting parameter p exceeds i. there are no equilibrium 
populations: if 0 < p < $ %  there are two possible equilibrium states. lire sketch 
the locus (7.4.3) on a pu-coordinate system to indicate the dependence of equi- 
librium solutions on the parameter p. Such a graph is shown in Figure 7.1 
and is called a bzfurcatzon dzagram: the harvesting parameter p is called the 
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Figure 7.2 Diagram showing the direction of the integral curves of (7.4.2). 

bzfurcatzon parameter. At the critical value 1.1 = i. where equilibrium solutions 
appear, the point on the bifurcation diagram is called a bzfurcatzon poant. IVe 
can physically interpret the result in the following manner. If p is too large. 
that is. if there is too much harvesting. then (7.4.2) shows that du/dt is nega- 
tive the population dies out. As the harvesting is decreased. there is a critical 
value of 1.1 below which two sizes of equilibrium populations can exist: in these 
two populations there is a balance between growth and harvesting. I$- le can now 
ask whether nature prefers one of those equilibrium populations over the other. 
This question is at the heart of the concept of stability. If the system is in one 
of these equilibrium states and a small perturbation is imposed, say, by intro- 
ducing a few more animals. does the system go out of balance. or does it return 
to the original equilibrium? This question can be resolved easily by examining 
the direction field of the differential equation (7.4.2) in the case 0 < 1.1 < :. 
Letting u- and u- denote the two equilibrium populations defined in (7.4.3). 
with the plus and minus signs. respectively, we observe that 

du 
- < O  if u>u+, 
d t  

dU 
- < 0  if O < u < u - .  
d t  

Therefore. the solutions of (7.4.2) must behave as in Figure 7.2. So u+ niust 
be an attractor. or a stable equilibrium. and u- must be a repeller. or unsta- 
ble equilibrium. Therefore. nature prefers the larger equilibrium population. 
Therefore the upper branch of the equilibrium curve shown on the bifurcation 
diagram in Figure 7.1 is stable, while the lower branch is unstable. 0 

The types of questions addressed above form the basis of bifurcation and 
stability theory. Xany problems in the physical and natural sciences have these 
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ingredients. and it is of interest to determine how equilibrium solutions depend 
on parameters occurring in the problem. and the stability of these equilibrium 
states. 

This example leads us to  consider the general ordinary differential equation 

(7.4.4) 

where f is a given function of u and a bifurcation parameter p. Equilibrium 
solutions u of (7.4.4) satisfy the relation 

A graph of the locus (7.4.5) in a pu plane is called a bzfurcutzon dzagrum. 
Generally, the locus may be quite complicated, with many branches and several 
intersections. A heuristic argument determines if a given point (p .  u,) on the 
locus represents a stable or unstable equilibrium. Let u( t )  = u, + w ( t ) .  where 
~ ( t )  represents a small perturbation from the constant equilibrium state u,. 
Note that ue depends on p >  but to keep the notation uncluttered we suppress 
this dependence in the symbolism. Substituting into (7.4.4) and expanding in 
a Taylor series give 

= f(p. ue) + f u ( p ;  ue)w + 0(u2) 
= f u ( p .  ue)w + O(w2).  

Ignoring the higher-order term O(w2).  the perturbation u! satisfies the lin- 
earized equation 

dw 
- = aw, 
d t  a = fu(p. u e ) .  

which has solution 
w(t) = const . eat.  

Therefore. if a > 0, the perturbation w grows and u, is unstable: if a < 0 the 
perturbation w decays to zero and u, is stable. This argument contains the 
seeds of a rigorous proof that the sign of the quantity f u (p ,  u,) determines the 
nature of the stability of an equilibrium state u, for fairly general conditions on 
the function f. We refer the reader to texts on ODES for a precise formulation 
and proof of a general result. 

Example. In equation (7.4.2). f ( p . u )  = u(1 - u) - p. Therefore, f u (p .u )  = 

1 - 2u. If u is an equilibrium solution with u < i, then fu  > 0 and u is 
unstable: if u > i, then f u  < 0 and u is stable. This is consistent with the 
previous conclusion that any solution on the upper branch of the locus shown 
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in Figure 7.1 is stable, while any equilibrium state on the lower branch is 
unstable. 0 

These ideas easily extend to  systems of ordinary differential equations and 
are discussed in most texts in differential equations. 

7.4.2 Partial Differential Equations 

The archetypical reaction-diffusion equation is the semilinear equation 

U t  - AU = f ( p , ~ ) .  x E D.  t > 0. (7.4.6) 

with boundary and initial conditions given by 

~ ( x ,  t )  = 0. t > 0, z E d D :  ~ ( 2 . 0 )  = ug( l~) .  5 E D ,  (7.4.7) 

where f is a given function and p is a real parameter. Equilibrium solutions 
are defined by solutions of the elliptic problem 

-Au = f ( p . ~ ) ,  z E D. 

x E d D .  u = 0. 

(7.4.8) 

(7.4.9) 

jFrom the discussion in Section 7.3. where we considered eigenvalue problems 
and f had the form f ( p ,  u )  = p g ( u ) ,  it is clear that  this elliptic problem may 
have solutions for some values of p and yet no solution for other values of p. 
Suppose that there is an equilibrium solution u,(z) of (7.4.8)-(7.4.9) for some 
value of the parameter p. In what sense is this equilibrium stable or unstable? 
There are several definitions of stability for reaction diffusion equations. but 
here we focus on one version of Liapunov stability. The fundamental question 
is whether a time-dependent solution of the reaction diffusion problem (7.4.6)- 
(7.4.7) converges to an equilibrium solution of (7.4.8)-(7.4.9) as t approaches 
infinity. JVhether or not we get convergence depends on the set of initial func- 
tions ug(x)  in the initial condition in (7.4.7). Evidently, if we start a t  t = 0 too 
far away from the equilibrium solution. then we may not obtain convergence. 
Thus stability of u, may be local, requiring that 210 be sufficiently close to 
u,. LVe formulate the following definition, which is similar to the definition in 
ordinary differential equations. 

Definition. An equilibrium solution u,(x) of (7.4.8)-(7.4.9) is stable if for any 
E > 0 there is a 6 > 0 for which 

I U O ( X )  - u,(z)i < 6 for x E D 
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implies that 

I.(., t )  - u,(x) 1 < E for 2 E D ,  t > 0.  

In addition, if 
lim lu (x , t )  - u,(x)l = 0 for x E D ,  

t-cc 

then ue is asymptotically stable. If u, is not stable, it is unstable. 

The set of initial conditions uo for which u, is stable is called the domain  of 
attraction of u,. If the domain of attraction contains all initial functions. then 
ue is called globally stable. or a global attractor. 

Example. Consider the elliptic problem 

- A u = ~ u - u ,  3 X E D :  

u = 0,  x E d D ,  

(7.4.10) 

(7.4.11) 

which we regard as a time-asymptotic limit of a reaction-diffusion system. It 
is natural to ask whether this problem has solutions. We shall show that if 
0 < p < X I ,  where X I  is the principal eigenvalue of the operator -A on D ,  
no nontrivial solutions exist. By way of contradiction, assume that a nontrivial 
solution u of (7.4.10)-(7.4.11) exists. Then there is a domain D' C D such that 
u satisfies the boundary value problem 

-Au = pu - u3% x E D'. u = 0, x E dD' ,  (7.4.12) 

and u is of one sign on D'. Let X i  be the principal eigenvalue of -A on D' 
with its corresponding eigenfunction d(x) strictly positive on D'. Thus 

-Acp = Aid. x E D': cp = 0. x E dD'. (7.4.13) 

Note that A: 2 A1 because D' C D.  Using Green's identity and equa- 
tions (7.4.12) and (7.4.13). we have 

But the last integral is strictly of one sign because u is of one sign. d is positive. 
and p < A1 5 X i .  This a contradiction. and no nontrivial solution can exist. 
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Example. Next consider the reaction-diffusion problem 

~ ~ - A u = ~ u - u  3 ~ X E D .  t > 0 .  (7.4.14) 

~ ( x . 0 )  = U O ( Z ) .  z E D. (7.4.15) 

u(x.t) = 0. x E d D ,  t > 0, (7.4.16) 

where uo is a bounded, continuous function. From an earlier example this prob- 
lem has only one equilibrium solution, namely, ue = 0, for 0 < p < X I .  where 
X I  is the principal eigenvalue of the negative Laplacian on D.  We show that 
u, = 0 is asymptotically stable in the sense that there exist positive constants 
a and C for which 

Iu(x. t)l I CePat sup luo(x)l (7.4.17) 

for all t > 0 and x E D.  To begin, pick a region D' _> D such that the principal 
eigenvalue X i  of -A on D' satisfies the inequality ,LL < X i  < X I .  Choose the 
eigenfunction o ( x )  corresponding to X i  to be positive and normalized to  satisfy 
the condition supD, lO(x)1 = 1. Then 

XED 

-Ay  xi^$ X E D '  with = O .  x E dD' .  (7.4.18) 

Now set 
u(x, t )  = ~ ( x ,  t ) y ( x ) e P a t  

for x E D. t > 0, where a is to  be selected later. Note that $ is positive on D .  
From (7.4.14) and (7.4.18) we can show that w satisfies the PDE 

2grad d grad w 

11, 
aw + + (a + p - - w2w2eP2at )w - wt = 0. 

(7.4.19) 

for x E D and t > 0. This equation has the form 

Aw + C bJ(x)w,, + cw - W t  = 0, 

where 
c = a + p - X , - w  I 

2 4 2 e -2at . 

Equation (7.4.19) has the form for which the maximum principle for parabolic 
operators applies, provided that c < 0 (see Section 6.4). But we can ensure that 
c < 0 by choosing a sufficiently small. because p < X i .  The auxiliary conditions 
on w are 
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Therefore, by the maximum principle. 

(7.4.20) 

Selecting the constant C to be the quantity on the right side of (7.4.20) then 
gives the result (7.4.17). showing that the zero equilibrium solution of (7.4.14)- 
(7.4.16) is asymptotically stable, provided that p < XI, for arbitrary initial 
conditions U O .  0 

We are left to wonder about what happens in the reaction-diffusion system 
(7.4.14)-(7.4.16) when the parameter p exceeds XI. Clearly, u = 0 is still an 
equilibrium solution. The following example shows that two additional equilib- 
ria appear. The method relies on the fundamental existence theorem on upper 
and lower solutions stated in Section 7.2. 

Example. Consider (7.4.10)-(7.4.11) with p > X I ,  where A 1  is the principal 
eigenvalue of -A on domain D.  We show that there exist at last two nontrivial 
solutions, one positive and one negative. Let u = a4, where Q is a constant 
to  be selected later and 4 is the positive eigenfunction associated with the 
eigenvalue X I .  Then 

-A@=X14, x E D ;  # = O ,  x E d D .  

Therefore, 

-Au - pu + u3 = -&A@ - + ~ ~ 4 ~ ,  
= ad(& - p + a242). 

Now choose la1 sufficiently small to force A1 - p + a2q52 < 0. Consequently, if 
a > 0, then aq is a positive lower solution, and if a < 0, then a4 is a negative 
upper solution of (7.4.10)-(7.4.11). It remains to  determine a positive upper 
solution and a negative lower solution. Consider a domain D' containing D.  
and let ?h(x) be the positive eigenfunction of the principal eigenvalue Xl, of the 
negative Laplacian on D'. That is. 

-A$ = Xi$,  x E D'; 4 = 0 ,  x E dD'. 

We then have X i  5 A1 < p. Now take u = /3$, which yields 

-Au - pu + u3 = ,@$(Xi - p + P2G2), 

and consider this equation on D ,  where L!J > 0. If is chosen large enough and 
/3 > 0, then p$ is a positive upper solution that exceeds a$, a > 0. Similarly. if 

is a negative lower solution that is chosen large enough and p < 0, then 
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does not exceed a@. cr < 0. We conclude that there must be a positive solution 
of (7.4.10)-(7.4.11) and a negative solution of (7.4.10)-(7.4.11). 0 

We regard (7.4.10)-(7.4.11) as a bifurcation problem in the following sense. 
As the parameter p increases from small positive values. there is a critical 
value p = A1 where the equilibrium solution u = 0 branches. or bifurcates. into 
three equilibrium solutions (u = 0, and the positive and negative solution). 
\Ye represent this phenomenon schematically on a bifurcation diagram as in 
Figure 7.3. This type of bifurcation is called a pztchfork bzfurcatzon because 
of the shape of the locus. It can be shown that for p > XI there is only one 
positive and one negative solution. so there are no additional branches to the 
diagram. See. for example. Sattinger (1973), from where these examples are 
adapted. Stakgold (1971) contains an elementary discussion of these ideas. 

Example. We address the question of stability of the zero solution in the 
equation above, in one spatial dimension. Another standard method, called 
lanearzzed stabzlaty analysas, is applied. The question is: Do small perturbations 
at  the initial time, near the zero solution distribution, decay to  zero or grow 
without bound as t gets large? Let us consider the problem 

ut - u,, = pu - u3. 

u(0, t )  = u(7r.t) = 0. 

u(z .  0) = &UO(Z) .  

0 < x < 7r. t > 0. 

t > 0, 
0 < z < 7r. 

(7.4.21) 

(7.4.22) 

(7.4.23) 

Figure 7.3 Bifurcation diagram indicating the existence of an equilibrium 
solution for values of the parameter p. For p < XI. only a trivial solution 
exists: for p > XI, there are three equilibrium solutions. two nontrivial. The 
vertical axis could represent any feature of an equilibrium solution. for example, 
its maximum value (upper branch) or its minimum value (lower branch). 
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We note that u = 0 is an asymptotic solution to  the problem for all p > 0. We 
introduced an initial condition of the form (7.4.23). where E is a small parame- 
ter, to study the evolution of a small initial perturbation in the problem. From 
prior results the zero solution is stable for p < XI, where A 1  is the principal 
eigenvalue of -d2 /dx2  on the interval 0 < z < 7r. It is easy to  determine the 
eigenvalues and eigenfunctions of the problem 

-u”(z) = Au(z). 0 < 2 < 7r: u(0) = U(7r) = 0. 

They are 

Therefore. the principal eigenvalue is A1 = 1. The standard stability ar- 
gument proceeds by assuming a solution of (7.4.21)-(7.4.23) of the form 
u(z.t) = ~v(z.t). where v is an order 1 function. One can regard this form 
as the zero solution plus a small perturbation represented by ~ v ,  E << 1. If this 
form of u is substituted into the problem (7.4.21)-(7.4.23). then 

A, = n2.  u,(z) = sinnz.  n = 1 , 2 , 3  

v t - V z , = p v - E  2 3  I,’ ~ O<z<7r , t>O1 (7.4.24) 

v (0 . t )  = V(T,t) = 0, t > 0. ( 7.4.25) 

v(z.0) = ug(z) ,  0 < 2 < 7.r. ( 7.4.26) 

Because we are unable to solve this nonlinear equation exactly, we use an 
approximation and carry out a linear stability analysis. That is. we assume 
that the nonlinear term in (7.4.24) is small and negligible, which gives the 
linearized equation 

V t  - v,, = pu. (7.4.27) 

If v remains bounded, then the assumption that EV is small remains valid and 
it is consistent to drop the nonlinear term. In this case we say that the zero 
solution is (linearly) stable to small perturbations. If w grows without bound. 
the assumption that the nonlinear term in (7.4.24) is small. with the subsequent 
linearization. is invalid. In this case the zero solution is (linearly) unstable to 
small perturbations. In the latter case the full nonlinear equations must be 
analyzed to predict the correct evolutionary behavior of the small perturbation. 

Equation (7.4.27). along with the boundary and initial conditions (7.4.25)- 
(7.4.26). can be solved by the method of separation of variables. Let ~ ( z .  t )  = 

T ( t ) X ( z ) .  and substitute into (7.4.27) and the boundary conditions (7.4.25). 
In the usual way the PDE separates and we obtain a boundary value problem 
(a Sturm-Liouville problem) for X .  namely 

X ”  + AX = 0, 0 < 2 < 7r. X ( 0 )  = X(7r) = 0. (7.4.28) 

and an equation for T .  namely 

T’ = ( p  - A)T. (7.4.29) 
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Here X is the separation constant. The boundary value problem (7.4.28) has 
eigenvalues and eigenfunctions given by 

A, = n2. x,(x) = sinnz. n = 1.2 ,3 . .  . . .  

and the T equation has solutions 

T,(t) = e (p -n2) t .  n = 1 . 2 , 3 . .  . . . 

Therefore, we have determined infinitely many solutions of the PDE (7.4.27) 
and the boundary conditions (7.4.25) of the form 

~,(z.t) = T,(t)X,(x) = e(p-"2)tsinnz.  n = 1.2,3.  

These are the Fourier modes. which we can superimpose to find a linear com- 
bination that meets the initial condition. Hence, we take 

c(x9 t )  = C ane(p-n2) t  sin nz.  ( 7.4.30) 
n 

Applying the initial condition (7.4.26) yields 

n 

which is the Fourier sine series for uo(5). The Fourier coefficients are 

a,  = 2 1" uo(z) sin nz dz. 
i7 

(7.4.31) 

Consequently, the solution of the boundary value problem (7.4.25)-(7.4.27) is 
given by (7.4.30), with the a, given by (7.4.31). In summary. 

v(z. t )  = a,e(p"- l) t  sin x + a2e(pL-4)t sin 2 2  + a3e(pL-9)t sin 3 2  + . . . . (7.4.32) 

It is clear from (7.4.32) that if p < 1. then all the exponential terms decay and 
.u(x,t) approaches zero for large t .  Thus. the zero solution is asymptotically 
stable to small perturbations. If p > 1, at  least one of the terms (Fourier 
modes) in (7.4.32) grows exponentially and the perturbation grows without 
bound; the zero solution is (linearly) unstable. 0 

The stability analysis in this example was based on linearization. In the case 
p > 1 the linearized equation (7.4.27) is no longer an accurate approximation 
of (7.4.24) because. as the solution (7.4.32) shows. the assumption that v3 is 
small is no longer valid. Consequently. the solution (7.4.32) is no longer an 
accurate approximation of the solution to the nonlinear problem in this case. 
and we have inherent inconsistencies. Therefore. let us see if we can deal with 
the nonlinear problem directly to get more information in the unstable regime. 
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Example. Consider the nonlinear boundary value problem (7.4.24) with auxil- 
iary conditions (7.4.25) and (7.4.26), where the bifurcation parameter p is just 
slightly larger than unity. \Ye introduce another standard technique by per- 
forming a normal-mode analysis for the nonlinear equation. We assume that 
the boundary value problem (7.4.24)-(7.4.26) has a solution of the form 

u ( x ,  t )  = C yn ( t )  sin nx, (7.4.33) 
n 

where the yn(t)  are to be determined. iVe are motivated by the linearized 
problem and the fact that the eigenfunctions of the spatial problem are sin nx. 
By Fourier analysis we know that the yn( t )  are given by the Fourier coefficients 

(7.4.34) 

LIultiplying equation (7.4.24) by sinnx and integrating from 0 to T gives 

(7.4.35) 

Then. using (7.4.33). we get 

= p lT c(ym sin rnx) sin nx dx - E~ u3 sin nx dx. (7.4.36) 
m Ln 

Using the fact that the eigenfunctions sin nx are orthogonal on [0,7r]. that is. 

0. ifn # m 
1. i f n = m  

sinmxsinnxdx = 

equation (7.4.36) can be written as 

(7.4.37) 
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Now let us manipulate the nonlinear term on the right side of (7.4.37) by 
substituting for u. We have 

3 

sin nx dx = lT ( F  yk sin kx) sin nx dx 

= ajkmnyjykym, 
j .k,na 

where 

a J k m n  = lT s in jx  sin kx sin m x  sin nx dx. 

Therefore, (7.4.37) becomes 

and we have derived a coupled system of ODES for the coefficients y n ( t ) .  This 
system. because of the nonlinearity. is poorly coupled because each equation 
contains all of the yn.  Initial conditions supplement (7.4.38) in the form 

(7.4.39) 

which comes from (7.4.34) and (7.4.36). We cannot solve (7.4.38)-(7.4.39), but 
we can advantageously apply the assumption that p is slightly larger than 1 to 
obtain the qualitative behavior of the solution in the asymptotic limit of large t .  
First we remark that if the terms of order E~ are neglected in (7.4.38). then the 
equations decouple and the only growing solution is y l ( t ) :  the remaining yn. for 
n = 2.3. .  . ., still decay because n2 - p  > 0. Therefore. for a first approximation 
of the solution we take 

y n ( t )  = yn(0)e- (n2- f i ) t  for n = 2 , 3 .  . . . . 

Then, for n = 1, in equation (7.4.38) we retain only the term involving y1 on 
the right side to obtain 

(7.4.40) 

where we have used the fact that all11 = s: sin4 x dx = 3 ~ 1 8 .  We recog- 
nize (7.4.40) as a Bernoulli equation, which can be reduced to a linear equation 
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via the transformation y1 = w-~/’ .  An routine calculation shows that 21: satis- 
fies 

3 2  
u1’ - 2 ( 1 -  p)w = 2, 

which has solution 
3&2 

W ( t )  = ce’(1-P)‘ - ___ 
4(1 - P I  ’ 

Thus y1 is given to  leading order by 

(7.4.41) 

and the constant C and be determined from the initial condition to  be 

For large t we observe that w ( t )  -+ 3~’ / [4(p  - l)], and therefore 

( 7.4.42) 

Consequently, 

u ( z , t )  d-sinz, t >> 1 (7.4.43) 

as the leading order approximation to (7.4.21)-(7.4.23) for large t .  In conclu- 
sion, the linearized analysis in the foregoing example predicted, incorrectly, 
that u(z ,  t )  grows exponentially without bound if p > 1; the refined analysis 
shows. in fact. that u approaches a nonzero steady state given by (7.4.43) in 
the case when p is slightly larger than unity. 0 

This nonlinear, normal-mode stability analysis applies to  many types of 
nonlinear problems. The general issue of stability of equilibrium solutions to 
reaction-diffusion equations is an intriguing and well-developed area of study, 
and additional sources are given in the references. 

Example. (Crztzcal Domaan Szze) We end the section with an example from 
ecology on the critical patch size for animals experiencing both growth and 
diffusion. Does growth dominate, or does diffusion cause the population to  go 
extinct, and how does it depend on the size of the patch? We model the problem 
with Fisher’s equation and no-flux boundary conditions. We have 

ut - Duxx = ru 1 - - ! ( 3 (7.4.44) 

(7.4.45) u It-.t = 0 
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Let us reduce to  dimensionless form by scaling time by 1/r. distance by L / 2 ,  
and population density by K .  Then we have the problem 

ut-6uxx = u ( 1 - u ) ,  

u(*l . t )  = 0 

where 
- 40 
b = - .  

rL2 
(7.4.46) 

The steady state u = u(x) satisfies 

Su” + u ( l  - u) = 0; 

u(i1) = 0. 

We now go to the phase plane 

1 
v1 = --u(1 6 -u). 

We can get integral curves by dividing the two equations to  obtain 

dv - u( l  -u) - -  - 
du sv ’ 

which separates to 
1 
6 

vdv = --u(1 - u)du. 

It is convenient to  introduce the function 

F ( u )  = ;u2 - $3, 

which is the antiderivative of u(1- u). Then the first integrals, or orbits, of the 
system are 

(7.4.47) 
1 1 
2 6 
-v2 = - - F ( u )  + c. 

where K is an arbitrary constant. 

points are (0,O) and (1.0) and the Jacobian is 
Before evaluating the constant C, let us picture the phase plane. The critical 

The matrix J (1 .0)  has two real eigenvalues of opposite sign. and so ( 1 , O )  is 
a saddle point. The eigenvalues of J(0,O) are purely imaginary.. and so the 
linearized system has a center a t  the origin. By symmetry, the nonlinear system 
has a center as well. Figure 7.4 shows the form of the phase diagram. It is clear 
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x = - 1  

b 

0 U 

x = l  

Figure 7.4 The uz: phase plane showing a center a t  (0,O) and a saddle at 
(1.0). The value a ,  occurring at z = 0 is the maximum value of the solution 
curve. 

that if there is a positive equilibrium solution u = u(x) to the boundary value 
problem, then it is symmetric about the origin x = 0. and its maximum value 
is u(0)  = a < 1. The figure shows what the solution must look like in the 
phase plane. It still must be shown that there is an orbit that  satisfies the zero 
boundary conditions when x = *l. 

We can evaluate the constant C in (7.4.47) by noting that u = a at 2: = 0. 
Thus C = ( l / b ) F ( a ) .  and the orbits are given by 

@ 2  = - ( F ( a )  2 - F ( u ) ) .  6 

Now we go to  u and x coordinates and rewrite the last expression as 

* dx = * f i J F ( a )  - F ( u ) .  

du z -6, 
Integrating over the bottom half of the curve. from x = 0 to  x = 1. and applying 
the fact that the derivative is negative. we get 

s,” J F ( a )  - F ( u )  

In the integral on the left we make the substitution w = u / a ,  and we replace 
b by (7.4.46) to obtain 

(7.4.48) 
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l a  I 

Figure 7.5 Plot showing the domain size L versus the Q. the maximum value 
of the equilibrium solution curve. The curve crosses the L axis at 7rm. 

The integral function @ ( a )  defines a mapping that associates with each Q (the 
maximum of u) a value of the domain size L.  It has the following properties: 

1. @(a)  is positive on (0.1) and @'(a) > 0. 

2 .  @(a)  -+ cc as Q + 1. 

3. @(a)  -+ ~m as Q + 0. 

The proof of property 1 is left as an exercise. Property 2 follows from the fact 
that the the improper integral (7.4.48) diverges in the limit as Q ---f 1. Property 
3 can be verified by first noting 

F ( Q )  - F(QtU) = i c y 2  (1 - w2 - +( l -  w") . 

and thus, for small a.  using the following binomial expansion: 

= fi(1 - w2)--1/2 + O(cY). 

Therefore, as a + 0; we obtain 

Figure 7.5 shows a plot of L = @(a) .  For any L > ~m there is a unique 
value of the maximum a for which the problem has a solution. If L < 7rm 

then there is no solution. 0 

Example. (Stabzlzty of the Equzlzbrzum) Let us denote the nonzero equilibrium 
found in the last example by u = ug(z). To investigate its stability we let o(z. t )  
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be a small perturbation and take u = uo(z)+o(x. t ) .  Substituting into the PDE 
and boundary condition (7.4.44)-(7.4.45) gives, after ignoring the nonlinear 
terms. 

L L 
2 

<z<-; t > 0 ,  qt = Doss+r  

We can solve this linear PDE by the method of separation of variables. Let 
~ ( z .  t )  = T(t)y(z) and substitute into the PDE to obtain 

= -A. 
T’ - Dy” + T (1 - 2 ~ o / K )  y 

T Y 
-- 

where -A is the separation constant. Then we get T(t) = Ce-xt and a Sturm- 
Liouville problem for the spatial part y: 

y (-;) = 0; y (;) = 0. (7.4.49) 

Our goal is to  show that the eigenvalues X of (7.4.49) are strictly positive. which 
will prove that perturbations decay over time and the steady solution is stable. 
Fix X to be the smallest eigenvalue and y(x) a corresponding eigenfunction. 
From Sturm-Liouville theory we know that y is of one sign on the interval 

The demonstration proceeds much like an energy argument. We multiply 
the differential equation in (7.4.49) by uo and integrate over the interval to 
obtain 

-L/2 < x < L/2 .  

Integrating the first term by parts and using the fact that uo vanishes on the 
boundary gives 

L / 2  
-D LL12 uby/dx + r /‘I2 yuo (1 - 2s) dx = -A I L I 2  uoy dx. (7.4.50) 

- L / 2  - L / 2  

Kow, the steady-steady solution uo satisfies the equilibrium equation 

We multiply this equation by y and integrate the same way as above to obtain 

L I 2  LIZ 
uhy’dx + yuo (1 - $) dz = 0. 

-D LL12 - L / 2  
(7.4.51) 
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Subtracting equation (7.4.51) from (7.4.50) and solving for X gives 

Because y is of one sign in the interval. we conclude that the smallest eigenvalue 
is positive: therefore all the eigenvalues are positive and the equilibrium solution 
uo is stable to small perturbations. 

Figure 7.6 summarizes the stability properties of the two equilibrium solu- 
tions, uo and the trivial equilibrium 0. 0 

A 
L :  

I 
I 

C 
L 

1 stable 

(stable 
I ,a 

a =o a =1 

Figure 7.6 If L < L ,  = i;m. the only equilibrium solution is the trivial 
one. with Q = 0. As L increases there is a bifurcation at L ,  into two solutions. 
with a new nonzero solution appearing. For L > L,. the zero solution becomes 
unstable while the nonzero solution is stable. 

EXERCISES 

1. Consider the linear problem 

ut = u,, + u. 5 E ( 0 , L ) .  

u(0) = u ( L )  = 0, 

where L is a bifurcation parameter. Show that a bifiircatioii of the equi- 
librium solution occurs at L = T and determine the stability for the cases 
L < T and L > T .  

2 .  Consider the nonlinear elliptic problem 

-Au = f ( u ) .  5 E D ,  

u = 0.  x E d D .  
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where the function f ( u )  - Xlu does not vanish identically on any open 
interval (0. u*)% where XI is the principal eigenvalue of -A on the domain 
D .  

(a) Prove that if this problem has a positive solution. then necessar- 
ily f ( u )  - X ~ U  changes sign for u < 0. Hint: Compute the integral 
S,(f(u) - X l u ) ~  dx. using Green’s identity, where d is the positive 
eigenfunction corresponding to  XI. 

(b) Given f (u) -X,u < 0 for u > 0. prove that a solution cannot be positive 
at any point in D. 

3. Consider the nonlinear elliptic problem 

-Au + f ( ~ )  = P U ,  x E D ,  

u = 0. x E d D .  

where f E C2(R). /. f ( 0 )  = f ’ ( 0 )  = 0, where f ( u ) / u  is strictly increasing 
(decreasing) for u > 0 (u  < 0). and where l im~u~-x f ( u ) / u  = +x. Let XI 
be as in Exercise 2 .  Prove the following: 

(a) If 0 < p < XI, the problem has only the trivial solution. 

(b) If p > XI, there exists at least one positive nontrivial solution. 

(c) If p > XI, the problem has a unique positive solution. 

[See Hernandez (1986) or Stakgold 8.~ Payne (1973).] 

4. Consider the nonlinear initial-boundary value problem 

U t  - u,, = pu(1 - u), 

u(0, t )  = u(7r. t )  = 0. 

u(2,O) = E U O ( 2 ) .  

0 < 2 < 57, 

t > 0. 
t > 0. 

0 < 2 < 57. 

Use a linear stability analysis to investigate the stability of the zero so- 
lution. and determine a critical value pc of the parameter p above which 
the zero solution is unstable. For p only slightly larger than pc. perform 
a nonlinear stability analysis to  determine the long-time behavior of the 
solution. 

5. Consider the pure initial value problem 

ut - u,, = p u ( 1  - u). 2 E R, t > 0. 

on an infinite domain. Both u = 0 and u = 1 are asymptotic solutions. Use 
linear stability analysis to  determine the stability of each of these solutions. 
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(Hznt: First take u = E V :  then take u = 1 + E V .  Use the superposition 
principle and the Fourier integral theorem to solve the linearized problems.) 
Solve the nonlinear problem exactly when the initial condition is given by 
u(x .0 )  = E .  2 E R. 

6. Consider the nonlinear BVP for u = u(x, y.  t ) :  

1 
ut = + uyy)  - u,,,, - uz,uy, x E R. 0 < y < 1. t > 0, 

u(x.0,t) = O . u ( z . l , t ) = l .  X E R , t > O .  

(a) Show that u = y is an equilibrium solution. 

(b) Letting u = y + U ( x , y . t ) .  where U is a small perturbation, find the 
linearized perturbation equation for U .  

(c) Letting li = e U t e t k z F ( y ) .  show that 

F” + ( k 2 R  - OR - k4R - k 2 ) F  = 0, F ( 0 )  = F(1) = 0. 

Hence. show that solutions exist of the form 

F, (y) = sin n7ry 

exist provided 

1 n2T2 
g = gn = k 2  - k4 - - k 2  + - 

R R ‘  
n =  1 , 2 . 3  . . . .  

(d) Given 
k2 + n27r2 

R >  k 2 - - 4  ’ 

prove that the nth mode grows without bound. and therefore that 
u = y is unstable. 

(a) Find the equilibrium solution of 

ut = u,, - uu,, 0 < x < L ,  u(0)  = 0. u(L) = 1. 

7. Show that the trivial solution to  (7.4.44)-(7.4.45) is stable if L < 7rm 

and unstable if L > n m .  

8. Consider 
U t  = u,, + f ( u ) .  0 < x < L .  

with no-flux boundary conditions at x = 0 and x = L .  Let f(u,) = 0 and 
determine conditions for which u, is locally stable. 
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9. (Insect Swarms) In one dimension. consider a swarm of insects that  advects 
to the right or the left depending on whether the density is higher to the 
right of the center of the distribution or to  the left of center. respectively. 
The model is 

U t  = Du,, - ( c ( z . ~ ) u ) , .  

00 
where 

c( t .  x )  = 1 U(Y. t )& - 1: 4 4 ,  t)&. 

(a) Let U(Z. t )  = s_”, u(y. t ) d y  and U ( t )  = sR u(y. t ) dy  and show that 

ut = Dv,, - (U - ~v)v,, 

with v -+ 0 as x + -m. and u + M as x + fm. where hf is constant. 

(b) Find the equilibrium solution to the problem in part (b).  

(c) Find the equilibrium solution for u, and sketch its graph. 

10. On R2 consider 
U t  = Au, 1 ~ 1 .  1 ~ 1  < 1, t > 0. 

with Robin data 

with a. b > 0. Show that the trivial solution is unstable. 

Reference Notes. There are many outstanding general treatments, as well 
as books treating special topics. on elliptic equations. For general study. one 
can consult Gilbarg & Trudinger (1983). Courant & Hilbert (1953, 1962). and 
Smoller (1983). Linear eigenvalue problems are discussed in Courant & Hilbert 
(1953). The classic book by Protter gC Weinberger (1967) has a complete treat- 
ment of the maximum principle for elliptic and parabolic equations; see also 
Smoller (1994). The book by Pao (1992) contains a thorough treatment of non- 
linear elliptic problems and monotone iteration methods. Bifurcation problems 
are discussed in many places: we cite the monograph by Sattinger (1973) and 
the review article by Stakgold (1971). The review by Hernandez (1986) on el- 
liptic problems is recommended. as well as the account in the monograph by 
Bebernes & Eberly (1989). which is focused on combustion. Zauderer (2006) 
can be consulted for a treatment of the nonlinear stability analysis based on 
normal modes. and asymptotic methods in general. 
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