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Preface

Barry Arnold has made fundamental contributions to many different areas of
statistics including order statistics, distribution theory, Bayesian inference, mul-
tivariate analysis, bounds and orderings, and characterization problems. He has
written numerous research articles (see the list of his Publications) in all these
topics, and these have received many citations over the years.

During his illustrious career, he has contributed significantly to the statis-
tical profession in many different ways—as a teacher (at Iowa State University,
University of California at Riverside, and other places), supervisor (to many
graduate students), researcher, administrator (as the Head of the Department
of Statistics at University of California at Riverside), organizer (of numerous
invited sessions in conferences), and editor (of Journal of Multivariate Analysis,
managing editor of The Annals of Statistics, as well as being on the editorial
board of many other journals).

All three of us have had a long association with Barry and have enjoyed our
collaboration with him for the past two decades. Those who know him as well
as we do certainly have an appreciation for his wit and humor, lively lectures,
keen interest in statistics, and great enthusiasm for research. We consider him
to be our friend, guide, and philosopher, and we feel that our lives have been
greatly enriched by our association with him.

When Barry turned 65 last year, we therefore took the opportunity to
organize an International Conference on Distribution Theory, Order
Statistics, and Inference in his honor. This conference was held during
June 16-18, 2004, at the University of Cantabria, Santander, Spain, where he
has been a frequent visitor for a number of years. A number of his friends, col-
leagues, coauthors, and researchers participated in this event. The conference,
with participation from around 140 delegates, was a great success.

Some selected papers that were presented at this conference have been in-
cluded in this volume. We thank all the authors for their contributions for
this volume and also the referees for helping us in the evaluation of these
manuscripts. We also express our sincere gratitude to Tom Grasso (editor,
Birkh&user, Boston) for his support and encouragement for this project, and
to Ms. Debbie Iscoe for assisting us with the preparation of this volume.
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It is with great pleasure that we dedicate this volume to our friend,
Barry C. Arnold!

N. Balakrishnan
McMaster University
Hamilton, Canada

Enrique Castillo
University of Cantabria
Santander, Spain

Jose Maria Sarabia
University of Cantabria
Santander, Spain



Barry C. Arnold:
Career and Accomplishments

Barry C. Arnold was born on December 6, 1939, in the London borough of
Lewisham to Charles and Irene Arnold. He was the second child born to his
parents with his sister, Nina Arnold, born earlier on January 24, 1938.

After their house was bombed by the Germans, they were evacuated from
London and then lived in Herne Bay, Barrie, and Blackpool before settling in
Caterham, Surrey, a few miles south of London. In April 1952, the family
emigrated to Canada. After attending St. Laurent High School, Barry joined
the Engineering Program at McGill University in 1956. When the family moved
to Hamilton in 1958, he transferred to McMaster University and graduated in
1961 with a Bachelor’s degree in mathematics (statistics).

Barry subsequently entered the graduate program in statistics at Stanford
University, the school that he selected because, not only was it highly recom-
mended, but it also had some palm trees on campus. This was a good choice as
Stanford had an all-star faculty that included Ted Anderson, Herman Chernoff,
Kai Lai Chung, Shanti Gupta, M. V. Johns, Sam Karlin, Ingram Olkin, Rupert
Miller, Lincoln Moses, Emmanuel Parzen, Charles Stein, Herbert Solomon, and
Pat Suppes. His classmates here were a pretty impressive group, too, which
included Norm Breslow, Morris Eaton, Brad Efron, Leon Gleser, Burt Holland,
Myles Hollander, Jay Kadane, Carl Morris, Jim Press, Richard Royall, Steve
Samuels, Galen Shorack, Muni Srivastava, David Sylwester, Grace Wahba, and
Jim Zidek. Barry graduated from Stanford in 1965 after writing a doctoral
dissertation under the guidance of Pat Suppes. Another event of importance
that occurred while Barry was at Stanford was that he got married to Carole
Revelle in September 1964. From that day on, he has had his own personal
psychologist, of course!

From Stanford, Barry went to Iowa State University and joined the faculty
with a joint appointment in the Departments of Mathematics and Statistics.
There, he had good friends and plenty of intellectual stimulation from many
statisticians of repute that included Ted Bancroft, H. A. David, H. T. David,
Wayne Fuller, Dick Groeneveld, Chien-Pai Han, Dean Isaacson, B. K. Kale,
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Oscar Kempthorne, Bill Kennedy, Glen Meeden, Ed Pollak, Joe Sedransk, and
Vince Sposito. During 1968-1969, Barry was a visiting professor at the Cole-
gio de Postgraduados in Chapingo, Mexico, lecturing in pretty bad Spanish.
During 1974-1975, he went on a AID assignment, working with the Ministry of
Agriculture in Lima, Peru. Though he was not successful in selling sampling
methods there, he did improve his Spanish!

In 1979, Barry hung up his snow shovel, donated his winter coat to the
Salvation Army, and moved to Riverside, California, to join Jim Press (whom
he knew from Stanford) and his department there. He has been there since
then. He spent two years (1982-1984) back in Mexico as the Director of the
University of California Education Abroad Program.

Barry Arnold has served the Department of Statistics at the University of
California, Riverside, as Chair for a number of years. In addition, he has pro-
vided distinguished service to the statistical community at large by his activities
in various capacities for professional societies such as the American Statistical
Association and the Institute of Mathematical Statistics. He has participated
in numerous national and international conferences and delivered many invited
and plenary lectures. He has provided valuable service to several research jour-
nals in various capacities including associate editor of Journal of Multivariate
Analysis, Journal of the American Statistical Association and Communications
in Statistics, editor-in-chief of Journal of Multivariate Analysis, and managing
editor of The Annals of Statistics.

Barry Arnold has been elected a Fellow of the American Statistical As-
sociation and the Institute of Mathematical Statistics, and a member of the
International Statistical Institute.

He has had a long list of stimulating coworkers and coauthors. Particu-
larly noteworthy are Enrique Castillo and Jose Maria Sarabia (both at the
University of Cantabria, Santander, Spain), H. N. Nagaraja (at The Ohio State
University, Columbus, Ohio, USA) and N. Balakrishnan (McMaster University,
Hamilton, Ontario, Canada). Numerous visits to Santander, Hamilton, and
Texcoco, Mexico (where Barry has worked with Jose Villasefior) have provided
him with many pleasant productive interludes. He has never been to a foreign
country he did not like, and so he rarely turns down any invitation!

Over the past 40 years, Barry Arnold, through his tremendous research
in many different areas of statistics, and especially in distribution theory and
ordered data, has greatly influenced the trend of research in these areas and
has provided inspiration and encouragement to many young researchers. It is
our wish and sincere hope that he will continue his contributions to the field
with added vigor, interest, and energy!
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Stochastic Comparisons of Bernoulli Sums and
Binomial Random Variables

Philip J. Boland and Harshinder Singh

National University of Ireland, Dublin, Ireland
West Virginia University and NIOSH, Morgantouwn, WV, USA

Abstract: There are many practical situations in sampling and testing, when
the probability of success varies in a sequence of n independent Bernoulli trials.
In many of these cases and for various reasons, we may find it useful to compare
the distribution of the number of successes X = 3 Bin(1,p;) in n such trials
with a binomial random variable Y = Bin(n, p) for some p. For example, such a
comparison might be useful in deciding whether or not stratified sampling is su-
perior (or inferior) to simple random sampling in survey sampling, or whether
or not partition (or subdomain) testing is to be preferred to simple random
testing in attempting to find faults in software. We will discuss the rationale
behind several methods and orders for stochastically comparing the random
variables X and Y. These include comparing their means, but also comparing
them with respect to the usual stochastic order, the precedence order, the > 1
order and even the likelihood ratio order. It will be seen that many interest-
ing comparisons between X and Y depend on the relationship between p and
various means (harmonic, geometric, arithmetic, complimentary geometric, and
complimentary harmonic) of the components in the vector p = (p1,p2,- - -,Pn)-

Keywords and phrases: Bernoulli and binomial random variables, stochastic
order, stochastic precedence, arithmetic, geometric, harmonic, complimentary
geometric, complimentary harmonic means

1.1 Introduction

The binomial distribution Y ~ Bin(n, p), where the variable of interest Y is the
number of successes in n independent Bernoulli trials, is one of the most basic
and classic probability distributions. However, in many situations of interest,
the probability of success in the subsequent Bernoulli trials might vary from

3
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trial to trial, in which case the random variable of interest would be actually
X ~ YT Bin(1,p;). It is often of interest to compare the distributions of X and
Y for given values of (py, ..., pn) and p. For example, such a comparison might
be useful in deciding whether or not stratified random sampling (where X is the
number of successes) is superior (or inferior) to simple random sampling (where
the number of successes is Y') in survey sampling with replacement, or whether
or not partition (or subdomain) testing is to be preferred to simple random
testing in attempting to find faults in software; see Boland et al. (2002, 2003a).

There are of course many different ways in which one might compare the two
random variables X and Y, and often an appropriate comparison is determined
by the context of the application that one has in mind. For example, if we are
interested in the average number of successes, we would probably prefer X to Y
if the expected number of successes F(X) is greater than E(Y). In some cases,
the probabilities of success {p, p1,...,pn} are all small, and hence a success is
a rare event. For example, imagine a situation where one is testing for the
occurrence of a rare disease in a country and where the prevalence in the it
geographical area is given by p;, while the overall prevalence in the country is
given by p. In such a situation, we might be interested in observing just one
(or at least one) success (individual with the disease in question), and hence
might compare X (the number found with stratified testing with one selection
from each of the geographical areas) and Y (the number found from a simple
random sample of the whole area) by considering the probabilities of at least
one success with each method.

If it is desirable to observe as many successes as possible, then surely we
would prefer X to Y (or conversely Y to X) if for every t, P(X > t) > P(Y > t)
(respectively, P(X > t) < P(Y > t)). In this case, we are comparing the ran-
dom variables X and Y by what is commonly known as the usual stochastic
order, which is a rather strong partial ordering on the set of all random vari-
ables. A closely related (but weaker method of comparing distributions) is the
(relatively new) stochastic order known as the precedence order, whereby we
prefer X to Y (and say that Y precedes X) if P(X >Y) - P(X <Y) > 0.
This essentially says that the chances of X exceeding Y are at least as great as
those of Y exceeding X.

We have discussed the rationale behind several methods (and implicitly
stochastic orders) for comparing the random variables X and Y. In Section
1.2, we will formally define stochastic orderings corresponding to these (and
some other) methods for comparing X and Y. In Section 1.3, we will see that
many interesting comparisons between X and Y depend on the relationship
between p and various mathematical means (harmonic, geometric, arithmetic,
complimentary geometric, and complimentary harmonic) of the components in
the vector p = (p1,p2,...,Pn). Graphical insight into these comparisons is
provided in Section 1.4 for the case when n = 2 .
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1.2 Stochastic Orders for Random Variables

The concept of stochastic order is often useful in comparing random variables.
There are, of course, a wide variety of possible partial orders which one may
consider on the set of random variables, and some of them (for example, the
mean order, the >y, order, and the precedence order) are basically total
orders in that for these any two random variables may be compared (for the
mean order this is the case if one restricts attention to those random variables
with a finite mean). Many other stronger stochastic orders of interest (like
the usual stochastic order or the likelihood ratio order) are partial orders. In
this section we will briefly define and review some of the stochastic orders that
are particularly useful in comparing sums of Bernoulli random variables. The
article of Shaked and Shanthikumar (1994) provides an excellent resource on
stochastic orders in general.

If U is a random variable, we use Fy(t) = P(U < t), Fy(t) = 1 - Fy(t),
and fy(t) to represent, respectively, the distribution function, the survival
function, and the density or mass function of U. In reliability theory and
survival analysis the hazard rate (or failure rate) function ry(t) = fu(t)/Fy(t)
provides a useful characterization of the random variable U (when it exists),
and represents the instantaneous rate of failure at time ¢ given survival up to
time t. We begin our list of some basic stochastic orders with the well-known
and classical usual stochastic order.

Definition 1.2.1 U is greater than V in the usual stochastic order
(U >4 V) if Fy(t) > Fy(t) for all ¢.

Definition 1.2.2 If the hazard rate function of U is less than that of V at all
points ¢ (ry(t) < ry(t)), then we say that U exceeds V in the hazard rate
order and write U >, V. U is greater than V in the likelihood ratio order
(and we write U >3, V' ) if fu(t)/fv(t) 1 ¢t

Generally speaking, the usual stochastic order, the hazard rate order, and
the likelihood ratio order are probably the most frequently used stochastic or-
ders, although the last two are perhaps not of much practical use when compar-
ing sums of Bernoulli random variables. The mean ordering is a very weak but
total stochastic order on the set of random variables with finite expectation.

Definition 1.2.3 We say that U is greater than V in the mean order (and

The next (total) stochastic order we consider is called the F'(1) order, and may
be useful when the interest is in at least one success. This may occur when,
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for example, one is testing for the occurrence of a rare disease in a country or
a fault in a piece of software, or even when one is sampling to find a faulty tax
return in a revenue office!

Definition 1.2.4 We say that U is greater than V in the F(1) order (and
write U >pq) V) if P(U 2 1) > P(V > 1).

The precedence order is a relatively new stochastic order which essentially was
used by Singh and Misra (1996) to study the reliability of redundancy alloca-
tions in certain engineering systems. Arcones et al. (2002) provide nonpara-
metric estimates of distribution functions that are constrained by a stochastic
precedence order similar to that defined below.

Definition 1.2.5 We define U to be larger than V in the stochastic
precedence order (or V precedes U) whenever P(U > V) > P(U < V),
and in this case we write U >, V.

One may readily establish the following implications between the above stochas-
tic orders:

U2y V=U2 V=U24V=> bothU >mn V and U >y V

Note that the usual stochastic ordering is stronger than both the mean and
F(1) orderings, although neither of these last two orderings implies the other
in general. In the case where U and V are independent random variables, then
the usual stochastic order is stronger than the precedence order [see Boland et
al. (2004)], although this is not generally true when U and V are dependent
as the precedence order takes into account the joint distribution of the random
variables.

1.3 Stochastic Order Comparisons for Sums of
Bernoulli Random Variables

Many stochastic order comparisons between X ~ Y%, Bin(l,p;) and ¥ ~
Bin(n,p) can be characterized in terms of p and functions of the vector of
probabilities p = (p1, P2, - - ., pn). We will find it useful to consider the following
means for a vector p:

Definition 1.3.1 (Means of p)
Pa = Zpi/nv
/
ﬁg = {sz}l " 9
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Pn = n/(zl/pi),

Pa = 1-Y (1-pj)/m,
p = 1-{IIa-m}"",
pn = 1-n/{31/(1-p)}

which are respectively the arithmetic, geometric, harmonic, complimentary
arithmetic, complimentary geometric, and complimentary harmonic means of p.

From basic but classical results in analysis, we know that in general
Dh Sﬁg < Pa = Pea Sﬁcg < Dch-

In Boland et al. (2004), it was shown that for any vector of probabilities p
= (p1,p2,--.,Pn) where 0 < p; < 1 for at least one i € {1,...,n}, there exists
a unique root p of the equation

g1, pn,p) =P(X>Y)-P(Y > X)=0.

We will denote this unique root by pgp, (using sp for stochastic precedence).
Note therefore that pg, is the unique value of p, which for a given vector p
= (p1,p2; - - -, k) yields X ~ 3" Bin(l,p;) =5 Bin(n,p) ~ Y. Using the fact
that the usual stochastic order implies the precedence order for independent
X and Y, one may show [see Boland et al. (2004)] that pgy < Psp < Deg- It is
conjectured that for small values of p; (i =1,...,n), one has pg < Pgp.

Example 1.3.1 (Means for p) For the vector p = (0.15, 0.20,0.25,0.30,0.35),
one can easily establish that ps, = 0.2507 and

(Bh, Bg> Pay Peg> Pen) = (0.2288,0.2395,0.2500, 0.2534, 0.2567).

The following theorem [proofs of which can be found in Boland et al. (2002,
2003b, 2004)| summarizes many of the known stochastic order comparisons
between the random variables X and Y.

Theorem 1.3.1 Let X ~ .7, Bin(1,p;) and Y ~ Bin(n,p). Then

1. X Zst (Sst) Y g pSﬁg (pZﬁcg)

2.X 2 (Sw) Y © X 24 (Sir) Y © p<Pn (P2 Deh)
8. X 2pay (Sra) Y © p<DPey (P2 Dey)

4 X Zmn (Sma) Y © p<Pa (P2 Pea=D0a)

5. X 29 (Sop) Y & p<pyp (p2Dsp)
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1.4 Graphical Insight for Two-Dimensional
Stochastic Comparisons

Some interesting perspectives on stochastic comparisons for X and Y can be
made in two dimensions by visualizing various contour plots.

Example 1.4.1 X ~ Bin(1,0.1) + Bin(1,0.4) and Y ~ Bin(2, p).

Let us for the moment concentrate on the vector of probabilities p =
(0.1,0.4). One may naturally ask for what values of p is X greater (or less)
than Y ~ Bin(2,p) in some stochastic order? One may readily establish that
for the vector of probabilities (p, p2) = (0.1,0.4), one has

(Phy Dgs Pas Dsps Pegs Per) = (0.160, 0.200,0.250, 0.257, 0.265, 0.280).

The contour plots of these various (harmonic, geometric, arithmetic, prece-
dence, complimentary geometric, and complimentary harmonic) means for
(p1,p2) = (0.1,0.4) are given in Figure 1.1, and are respectively denoted by
the letters (h, g, a, sp, cg, ch). For example, all points in the graph on the
curve denoted by “g” have the same geometric mean as the coordinates of the
point (0.1,0.4) (in particular, of course, the point (0.4,0.1)), and all points on
the line denoted by “a” have the same arithmetic mean as the coordinates of
(0.1,0.4). On inspecting Figure 1.1 (paying particular attention to the curves
“g” and “cg”) and applying Theorem 1.3.1, it is clear for example that X is
stochastically larger than Y ~ Bin(2, p) for any p < 0.20, and in turn stochas-
tically less than Y ~ Bin(2, q) for any g > 0.265 in the usual stochastic order.
Other similar comparisons lead us to conclude that

Bin(2,p) <¢ X (forp <0.20) and X <4 Bin(2,q) (for ¢ > 0.265),
Bin(2,p) <ir X (forp <0.16) and X < Bin(2,q) (for ¢ > 0.280),
Bin(2,0265) =pq X
Bin(2,0.250) =, X,
Bin(2,0.257) =, X.

Example 1.4.2 X ~ Bin(1,p1) + Bin(l,p2) and Y ~ Bin(2,0.25). Now we
consider the binomial random variable Y ~ Bin(2,0.25) and see how it com-
pares stochastically with X = Bin(1, p;)+Bin(1, pq) for various (p1, p2). In Fig-
ure 1.2, the curve “g” (respectively “cg”) represents those points (p1, p2) which
have the same geometric (complimentary geometric) mean as the components
in the vector (0.25,0.25). From Theorem 1.3.1, we note that any point (p1, p2)
lying on or above the “g” contour corresponds to an X ~ Bin(1,p1)+Bin(1, p2)
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Figure 1.1: Contour means for probabilities (0.1,0.4)

which is greater in the usual stochastic order than ¥ ~ Bin(2,0.25), and sim-
ilarly that any point (pi,p2) lying below the “cg” contour corresponds to an
X ~ Bin(1,p1) + Bin(1,p2) which is less than Y ~ Bin(2,0.25) in the usual
stochastic order.

Figure 1.3 is an extension of Figure 1.2, in which one can clearly see the
“ch,” “sp,” “a,” and “h” contour curves for (0.25,0.25) in addition to the “g” and
“cg” contours. It allows one to see clearly which X are stochastically greater
(smaller) than Bin(2,0.25) for the other stochastic orders considered here. For
example, X is greater (less) than Bin(2,0.25) in the stochastic precedence
order if it corresponds to a point (p1, p2) on or above (below) the “sp” contour.
Also if X = Bin(1,0.18) + Bin(1,0.40), then X > Bin(2,0.25), but X and
Bin(2,0.25) are not comparable in the hazard rate or likelihood ratio orders.

In conclusion, in this article we have given a reasonably thorough account of
how one may stochastically compare X = 3" Bin(1,p;) in n trials with a bino-
mial random variable Y = Bin(n, p) for some p, in terms of (p1, p2, ..., pn) and
p. These results suggest interesting future research should be done in extend-
ing consideration to stochastic comparisons of two Bernoulli sums of the form
X =3 Bin(1l,p;) and X* =} Bin(1, p}), and characterizing such comparisons
in terms of functions of the vectors (p1,pe,- - .,pn) and (p},p5,...,05)-
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Figure 1.2: (Usual) stochastic order comparisons for X and Y = Bin(2,0.25)
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Figure 1.3: Various stochastic order comparisons for X and Y = Bin(2, 0.25)
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Stopped Compound Poisson Process
and Related Distributions

Claude Lefévre

Université Libre de Bruzelles, Bruzelles, Belgium

Abstract: This chapter considers the first-crossing problem of a compound
Poisson process with positive integer-valued jumps in a nondecreasing lower
boundary. The cases where the boundary is a given linear function, a stan-
dard renewal process, or an arbitrary deterministic function are successively
examined. Our interest is focused on the eract distribution of the first-crossing
level (or time) of the compound Poisson process. It is shown that, in all cases,
this law has a simple remarkable form which relies on an underlying polyno-
mial structure. The impact of a raise of a lower deterministic boundary is also
discussed.

Keywords and phrases: Compound Poisson process, first-crossing, lower
boundary, ballot theorem, generalized Abel-Gontcharoff polynomials, general-
ized Poisson distribution, quasi-binomial distribution, damage model

2.1 Introduction

Many questions in probability and statistics can be formulated as first-crossing
problems between the trajectory of a random process and a nondecreasing
boundary, fixed or random, that starts either below or above the trajectory.
Applications arise, for instance, in the modelling of queues, dams, and storage,
in the theory of risk and ruin in insurance and finance, in the planning of se-
quential statistical procedures, and in the study of order statistics and empirical
processes. The mathematical analysis of first-crossing problems is often focused
on asymptotic approximations when explicit formulae are not available.

The present paper deals with the problem of the first-crossing of a com-
pound Poisson process with positive integer-valued jumps in a nondecreasing
lower boundary. We will successively examine the cases where the boundary
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is a given linear function, a standard renewal process, or an arbitrary deter-
ministic function (Sections 2.2-2.4). Our purpose is to determine, for each of
these situations, the ezact (i.e., nonasymptotic) distribution of the correspond-
ing first-crossing level (or time). We will also discuss the impact of a raise of
the boundary in the deterministic case (Section 2.5).

To tackle these questions, it would be possible to have recourse to a standard
technique based on Laplace transforms. Here, however, we will follow a different
method which has the advantage that it leads to a simple and efficient evaluation
of the distribution by recursion. This approach relies on the property that
the first-crossing level probabilities have an underlying polynomial component
with a remarkable structure. For the general case (i.e., with a deterministic
boundary), the polynomials involved correspond to the so-called generalized
Abel-Gontcharoff polynomials. Recently, in a few joint papers with Picard, we
have developed a general theory on polynomials (and even functions) that enjoy
such a structure, and we have used it to study several first-crossing problems in
epidemic and risk theories; see, for example, Lefevre and Picard (1990, 1999)
and Picard and Lefevre (1994, 1996, 2003).

Moreover, this work will allow us to point out several nonstandard discrete
distributions of own interest. In particular, we will present extensions of the
Poisson law and the binomial law which are based on the generalized Abel-
Gontcharoff polynomials (Section 2.5). We mention that various special cases
of these distributions have been previously derived in a context of urn models;
see, for example, Kotz and Balakrishnan (1997).

It is worth noticing that the first-crossing problem of a compound Poisson
in a nondecreasing upper boundary is of different nature. Indeed, with a lower
boundary, crossing occurs necessarily on a continuous part of the trajectory
(and so corresponds to a meeting), while with an upper boundary, crossing
arises always at a jump time of the trajectory.

First-crossing problems for a Poisson or compound Poisson process in a
given lower or upper boundary, linear or arbitrary, is the object of many papers
in the literature. We refer to, for example, Pyke (1959), Daniels (1963), Durbin
(1971), Zacks (1991), Stadje (1993), Gallot (1993), Zacks (1997), Béhm and
Mohanty (1997), Picard and Lefevre (1997), De Vylder (1999), Perry et al.
(1999), Zacks et al. (1999), Perry (2000), Ignatov et al. (2001), Perry et al.
(2002), Stadje and Zacks (2003) and Ignatov and Kaishev (2004).

Throughout the chapter, the compound Poisson process is generated from a
Poisson process with parameter A > 0, and the successive jump sizes W;, 7 > 1,
are i.i.d. r.v.’s with positive integer values. Initially, the process starts at a
positive integer level k; the case k = 0, however, will be also considered in some
special places (clearly marked).
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2.2 The Boundary Is Linear

Let us assume that the boundary is a linear increasing straight line with slope
1/b > 0. To begin with, we examine the case where the line passes at the
origin. Obviously, crossing can only occur at positive integer levels 5. Thus,
the effective boundary reduces to the discrete set of points {(bj,j),57 > 1},
denoted by Bs.

From the structure of the Poisson process, one can discretize the possible
crossing times bj and focus on these instants, denoted by ¢t = 1,2,.... So, the
boundary By becomes the bisectrix {(t,t),t > 1}. Moreover, the compound
Poisson process is then described by the sequence {k + S;,t € N} where

50:07 a'nd StZY'l++Y27 t217

the r.v.’s ¥;, ¢ > 1, being i.i.d. with compound Poisson laws of parameter Ab
and jump sizes W;; thus, for t > 1,

vt o (A0t
P(S;=s5)=e Y S P(Wit -+ Wi=s), seN
I=1 )

For our purpose, we prefer to rewrite the law of S¢, £t > 1, as
P(S; = 5) = e e (Abt), s€N, (2.1)

where, using an argument x say,
es(z) = g, seN, (2.2)

the set {q*!, s > 1} denoting the I-th convolution of the distribution of W7y, for
any | > 1, and ¢!° = §; 9. Note that the generating function of these e,’s is

oo

S es(@)at =), zeo,1], (2.3)
s=0

where ¢(z) is the p.g.f. of the law of Wj.

From (2.2), we see that for each s € N, e4(z) is a polynomial of degree s in z,
for z € N and, by extension, for z € R. The family of polynomials {es(z), s € N}
is linearly independent when P(W; = 1) > 0 (since then, ¢}* > 0). For clarity,
this condition is assumed to hold true; otherwise, passing to the limit is allowed.
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A basic property satisfied by the e,’s is the following convolution property,
which is a direct consequence of (2.3):

S

es(x1 + x2) = Z ei(x1)es—i(z2), for any z1,72 €R. (2.4)
=0

Now, we want to determine the distribution of the first-crossing level, de-
noted by N, of the bisectrix by the compound Poisson (starting at k). Thus,

N =87 suchthat k+Sr="1T. (2.5)

Theorem 2.2.1 For a linear boundary By,

P(N =nlk) = ;%e—*b““)enub(m n), neN. (2.6)

PROOF. By the ballot theorem [see, e.g., Takdcs (1967)], if {Y¥;,7s > 1} is a
sequence of i.i.d. N-valued r.v.’s, then their partial sums S, t > 1, satisfy the
relations below:

k
Pk+Si>t, k<t<n-1, and k+ S, =n) = EP(k—{—Sn:n), n > k.
By (2.1) and (2.5), this is equivalent to
k k_—xon
P(N =n—kl|k) = EP(SH =n—k)= e en—k(Abn), n >k,

hence (2.6). [ |

Let us suppose that the compound Poisson process starts at level k£ = 0, and
the linear boundary does not pass at the origin but is of the form {(a+bj,j),j €
N} with @ > 0 and b > 0; this boundary is denoted by By .

Corollary 2.2.2 For a linear boundary Bgp,

P(N =n|0) = e~Matbn)e IN(a+bn)], neN. (2.7)

a+ bn
PROOF. Counting the number of events arising during the time interval [0, al,
we get from (2.1) (with b= 1, t = a) and (2.6) that
n
P(N=n|0) = Y e ex(a)P(N =n—klk)
k=0

_ Aa ex(Aa)
Ala+bn) k
e _n E k—)\a en—k(Abn).
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But it can be shown from (2.3) that

nen z1 + z2) Zkek xl

(z for any = 0 # z1 + z9,
P 2), y 1 #0# 21+ 22

which yields (2.7). n

Special case. In the particular case of a simple Poisson process, (2.2) yields
es(x) =z°/s!, s € N. So, for By, (2.6) becomes

k4100 .
P(N=n|k)= ( )n' ( ) )\bk+)

i.e., k+ N has a Borel-Tanner distribution [see, e.g., Johnson et al. (1992)].
For Bgp, (2.7) becomes

n € N, (2.8)

n—1
P(N =n|0) = Aa Mb'—n)]— e Mattn) - peN, (2.9)
n!

that is, N has a generalized Poisson distribution [see, e.g., Consul (1989)]. Thus,
the laws derived in (2.6) and (2.7) provide compound extensions of the more
classical laws given in (2.8) and (2.9).

Going back to the original situation, we know by the SLLN that S;/t —g.s.
E(Y1) = Abmy where m; = E(Wj). Thus, if Abm; < 1, we see by (2.5) that
N < 00 a.s. The moments of N can then be obtained by standard methods (in
terms of the moments m; = E(W}), j > 1).

Property 2.2.3 If Abm; < 1, then the first two moments of N, for example,
are given by

E(N) = kXomy/(1 - Xbmy), (2.10)
Var(N) = kXbmg/(1 — Abmy)3. (2.11)

PROOF. From the conditional p.g.f. of Sy, given S; (with argument z € [0, 1]),
we see that the process {zste)‘bt[l_g(z)],t € N} forms a martingale. Applying
the optional stopping theorem with respect to time 7' (which is allowed because
Abm; < 1), we obtain a Wald identity:

E ( { Ze,\b[l—g(z)]}zv) — e kN[1-g(2)] (2.12)

Put 2z = e with v € R_, define the function ¢(v) = v + Ab[1 — g(e”)] and let
% be the inverse function ¢!, that is, ¢(u) = v when u = ¢(v) (u € R_) (it
exists because Abm; < 1). Then, (2.12) becomes

Y P(N = n)e™ = ek, (2.13)

n=0
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By successive differentiations and putting u = 0, we obtain, for example,
E(N) = k[¢(0) — 1], and Var(N) = ky?(0), (2.14)
and since by definition of ¢ and 1,

P D(u) = 1/¢W(v), with ¢M(0) =1 - Abmy,
@ (u) = ~¢@(w)/[pV ()]}, with ¢@(0) = —Abmy,

(2.14) yields (2.10) and (2.11). [

2.3 The Boundary Is of Renewal Type

Let {X;,j7 > 1} be a sequence of i.i.d. r.v.’s, and denote their partial sums
by D; = X3 +---+ X, t > 1. The boundary under consideration here is the
renewal process {(Dj, j),j > 1}, starting at level 0; it is denoted by B;.
Adopting the above time change, one may still come back to a bisectrix
boundary, but this time, for the actualized process {k+St,t € N} where Sy = 0,
Ss=Y1+---+Y,t>1, and ther.v.’s Y, i > 1, are i.i.d. with compound
Poisson laws of parameters, this time random, AX; and jump sizes W;. Thus,
fort>1,
P(S; = s) = E[e *Pte,(\D;)], s€N. (2.15)

It is clear that the ballot theorem is again applicable; this leads to the
formula (2.16) below. Inserting (2.2)in (2.16), we then deduce the more explicit
formula (2.17).

Theorem 2.3.1 For a renewal type boundary B,

k
P(N =nlk) = H—nE[e_’\DH"en(/\DHn)], n € N. (2.16)

Denoting by h()\) the Laplace transform E(e %),

noo W
POV =) = =S S (o), men, @an)
=0

where ()Y is the I-th derivative of (.).

Now, let us suppose that the compound Poisson process starts at level k = 0,
and the renewal process is shifted in time by a quantity a; the boundary is
denoted by B, ;. Following the proof of Corollary 2.2.2, we deduce from (2.16)
the formula (2.18) below. Note, however, that (2.18) is less tractable than
(2.16).
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Corollary 2.3.2 For a renewal type boundary B, r,

P(N=n|0)=a E {ed(aw")enwa + Dn)] } , neN. (2.18)

a+ D,

Special case. For a simple Poisson process with the boundary B,, (2.17) gives

k ﬂ ([h()\)]k+"> ) ,

PN =nlk) = g

n € N. (2.19)

For instance, if X has a gamma distribution with E(e™*X) = [u/(u+ )] ¢, for
given parameters y, ¢ > 0, then (2.19) becomes

ck ck+(c+1)n A\ o \Fe
P(N=nlk)= ——— N
( nlk) ck—+—(c+1)n( n )(/\-{-p) (A+u e
(2.20)

that is, N has a generalized negative binomial distribution [see, e.g., Johnson
et al. (1992)].

Finally, by the same argument as for Property 2.2.3, we can find the mo-
ments of N under the condition Adym; < 1 where d; = E(X3).

Property 2.3.3 If Addym1 < 1, then the first two moments of N, for example,
are given by

E(N) = k/\dlml/(l - /\dlml), (2.21)

Var(N) = kMdimg + dm3Var(X1)]/(1 — Mdymg)3. (2.22)

2.4 The Boundary Is Any Deterministic Function

Let us examine the case of an arbitrary nondecreasing deterministic boundary,
denoted by By, and which is represented as a set of points {(u;, ), > 1} where
the u;’s, j > 1, form a given sequence of nondecreasing non-negative reals.

As before, we may apply a time change which allows us to consider a bisec-
trix boundary, for the compound Poisson process {k + St,t € N} where Sp = 0,
S;=Y14+---+Y;,t>1and ther.v.’s Y;, 1 > 1, are i.i.d. with compound Pois-
son laws of parameters, this time nonhomogeneous, A(u; — u;—1) (with up = 0)
and jump sizes W;. Thus, for t > 1,

P(S; = s) = e Mte, (M), seN. (2.23)

For convenience, we denote U = {uy, up,...} and E'U = {u;41,ui42,. ..} the
[-shifted family, for any [ € N.
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To determine the law of N, we will follow a nonstandard approach of alge-
braic and computational nature. The mathematical tool used is a remarkable
family of polynomials, which is called of generalized Abel-Gontcharoff (in short,
AG) type. We refer the reader to Lefevre and Picard (1990) and Picard and
Lefevre (1996) for a general presentation of these polynomials.

Let us briefly recall their construction. For that, the two basic elements
are an arbitrary family of reals U = {uy,us,...}, and any family of linearly
independent polynomials {e,(z),n € N} of degree n in z (€ R), with ep(z) = 1.
Then, an associated family of generalized AG polynomials, {Gn(z|U),n € N},
of degree n in z, is defined univocally by the following recursion:

n—1

Gn(z|U) = ep(z) — Zen_s(usH)Gs(w]U), n €N; (2.24)
s=0

in particular, Go(z|U) = 1 and G,(u1|U) = 6, 0. We underline that this recur-
sion being quite direct, the G,’s can be numerically computed in a direct and ef-
ficient way. Notice that (2.24) can also be viewed as an Abelian-type expansion
of e, with respect to the family {Gs, s € N}. The generalized AG polynomials
enjoy various other nice properties. So, the identity G (z|U+a) = Gp(z—a|U)
holds for any real a. Moreover, a Taylor-type expansion of G, about y (€ R)
and with respect to the family {es, s € N} yields

n
Gu(@|U) =Y es(x — y)Gns(y| EU), neN. (2.25)
s=0
Clearly, for y = u3, (2.25) provides another possible recursion for the G,’s,
using the previous border conditions G, (u1|U) = dp 0.

Theorem 2.4.1 For a deterministic boundary Bg,
P(N = nlk) = e +n G (0|{-Mu;, j > k}), neN. (2.26)

PRrROOF. It will be easier hereafter to take ug € [0,u1], instead of ug = 0. In
other words, at time ug the compound Poisson process is at level k and the
successive parameters of S;, t > 1, are given by A(us — ug),t > 1. So, it is
natural to denote P(N = nlk) = pu[k, \(U — up)], n € N. Firstly, using a
renewal argument, we obtain

Palk, AU = ug)l = Y " P(Y1 = 8)pn_slk + 5 — L,A(EU —u1)], neN, (2.27)
s=0

where we put, for k£ = 0, pp[0, A(U —ug)] = dn 0. Let us try to find an expression
of the form

Dok, MU — up)] = e MWin=W) R (_ug| — AE¥"IU), neN,  (2.28)
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with E7'U = {u;,j € N}, for some (so far) mysterious function R,. Then,
(2.27) becomes, after simplification,

Rp(—=Aug| — AE*1U) = Z es(Au1 — Mug) Rp—s(—Au1| — AEFT571U), neN,

= (2.29)
where for k = 0, Ry(—Aug| —~ AE"U) = §,0. Now, we observe that the
recursion (2.29) is equivalent to the recursion (2.25) written for the polynomial
Gn(=Aug| — AE*~1U). Both recursions being also based on the same border
conditions, we deduce that R,(—Aug| — AE*~1U) = Gp(=Mug| — AEF1U) for
all n € N. Therefore, (2.28) with up = 0 yields (2.26). [

With a compound Poisson process starting at £ = 0, we suppose that the
boundary begins with a delay of a > 0, that is, is the set {(a + u;,7),j € N}
where, as before, ug = 0 and U = {u;, j > 1}; it is denoted by B, 4. From the
proof of Theorem 2.4.1, we see that (2.26) is valid too when k = 0, hence the
following result.

Corollary 2.4.2 For a deterministic boundary B, 4,
P(N =n|0) = e *@tu) G [0]{-A(a+u;), j€N}], neN. (2.30)

One can show that (2.26) and (2.30) reduce to (2.6) and (2.7) for a linear
boundary, because when the u;’s depend linearly on j,

T —ux

Gn(z|U) = en(r — tuny1), m€eN. (2.31)

T — Up41

Also, as expected, a randomization of (2.26), (2.30) yields (2.16), (2.18) for a
renewal type boundary. These verifications are omitted.

Special case. For a simple Poisson process, the G,’s correspond to the
standard (nongeneralized) AG polynomials. Then, the identity G,(az|aU) =
a"Gr(z|U) holds for any real a, which yields a minor simplification in (2.26)
and (2.30).

Illustration. Motivated by applications in queueing and graph theory, Takéacs
(1989) derived in his Example 2 an expression for the law of the first-crossing
level of the bisectrix line by a particular process {k + S;,t € N} where the r.v.’s
Y;, i > 1, are independent and exponentially distributed with parameters of
geometric form A\pgt! (0<p=1-g<1).

Let us consider the more general situation where the Y;’s are compound
Poisson distributed with the same geometric parameters and jump sizes W;.
Thus, this corresponds to the first-crossing problem of a compound Poisson
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process with a boundary By as above where u; — u;_1 = pg?~L, j > 1, that is,
with u; =1 —¢7, j > 0. By (2.26), we then have

P(N =nlk) = =" G, (A, 5 > k}), neN. (2.32)

To compare with the approach of Takacs, we observe from (2.24) that Gy,
in (2.32) may also be viewed as a polynomial in g of degree n(n+2k—1)/2. In
the Poisson case, one knows that G, (A|{A\¢’,j > k}) = (A\p)"Gn(1/p |{¢’ /P, j >

k}). Thus, the factor denoted by <I>§:2n(q) in Takacs corresponds in our notation

to (n!)Gn(1/p [{¢?/p,j > k}). Takécs exploited the property that Qgﬁn(q) isa
polynomial in ¢ of degree n(n+ 2k —3)/2, to derive a (different) recurrence for-
mula for its determination. The method proposed, however, is rather intricate;
moreover, it relies on the particular geometric form of the parameters.

Now, as proposed by Takécs, let us examine the asymptotic distribution of
N when A — oo and p — 0 in such a way that \p — a (0 < a < 00). Thus,
g~ 1—a/), yielding ¢ ~ 1 —aj/), j > 0, so that by (2.32) with (2.31),

P(N = n|k) — kf_

e ke la(k+n)], neN. (2.33)
n

In the Poisson case, (2.33) becomes the formula (38) given in Takdcs. Other
limiting behaviours could be of some interest. For example, suppose that k — oo
and ¢~ 1—a/k (0 < a < 00). Then, ¢** ~ 7%, j > 0, and we get

P(N =nlk) —» e M= ¢ [N\(1—€¢7%)], neN.

2.5 A Higher Deterministic Boundary

Pursuing the analysis made in Section 2.4, let us introduce a second lower
deterministic boundary that is situated above the first one. More precisely, the
new boundary, By say, corresponds to a set of points {(v;,),j > 1} where,
as for By, 0 < v; < vy < ---, but in addition, v; < w; for all j > 1. The
first-crossing level of the compound Poisson process with Bgp is denoted by
Np,.

Our goal is to point out the distributional impact of raising the boundary
B to Bgp. For that, we will determine the conditional law of Nj, given N.

Theorem 2.5.1 For a deterministic boundary Bg above By,

Gm(0{ =My, j > k})

Gr(0|{—Auj, j > k})

X Gn—m(ol{_)‘(um+j - vm+k)a Jj2 k})’ 0<m<n. (2'34)

P(Np=m|k,N=n) =
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ProOOF. By definition,

P(Np, = mlk) P(N = nlk, N, = m)
P(N = n|k) ’

P(Np =mlk,N =n) = 0<m< n

(2.35)
The probabilities P(N = nl|k) and P(Nj, = m|k) are provided by (2.26). More-
over, the event (N = n|k, N, = m) is equivalent to the event that starting
at level 0, the compound process crosses the following boundary, {(um+k+; —
Um+k,J),J € N} (which thus begins with a delay), for the first time at level
n —m. So, by (2.30), we get

P(N = n|k, Nj, = m) = e Uk+n—"m+x) Gr-m(O{—A(Um+j — Um+k), J > k}).
(2.36)
Substituting (2.26) and (2.36) in (2.35) then yields (2.34). u

Linear boundaries. (1) To begin with, let us consider two vertical lines for the
boundaries after level k, that is, By = {(u,j),j > k} and Bg, = {(v,J),j > k}
with v < u. By (2.34) and using (2.31), we find that

em (M) en_m[A(u — v)]

P(Np =mlk,N=n) = , <m<n. 2.37
(N, = m| n) e ) 0<m<n (2.37)
In particular, for a simple Poisson process, N has a binomial law:
n\ /v\m v\n—m
P(N, =m|k, N =n) = (m) (E) (1 - 5) . (2.38)

Note that k has an indirect role in these formulae (and the next ones) through
the definition of the boundaries.

(2) Suppose now that these boundaries are two parallel lines after level k,
ie. Bg = {{u+b(j—k),jl,7 >k} and By, = {[v+b(5 —k),j],7 > k} with
b> 0 and v < u. Again by (2.34) and (2.31),

em[A(v +bm)] en—m{A[u— v+ b(n — m)]}
en[A(u+ bn))

v(u —v)(u+bn)
u(v +bm)[u — v+ b(n—m)]’

P(N,=mlk,N=n) =

0<m<n (239

For a Poisson process, Nj, has a quasi-binomial law of kind II [in the sense of
Consul and Mittal (1975)]:

v(u —v) (n) (v-+bm)™ [y~ v + bln — )"

P(Np =mlk,N=n) = " m S

(2.40)
(3) Finally, suppose that the boundaries are, after level k, two nonintersect-
ing lines until level k£ + n, that is, By = {[u + b(j — k), 7],k < j < k+n} and
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Bar = {[v+d(j—k),j],k < j < k+n} withb,d > 0 and v+d(j—k) < u+b(j—k)
for k < j <k+ n. Then,
em[A(v+ dm)] epm[A(u — v + bn — dm)]

en[A(u + bn)]

ofu = v+ (b = d)m](u + bn)
wWordm)(u—vtbn—dm) °CSTS™ (2.41)

P(Ny = m|k, N =n) =

For a Poisson process,

vin\ju—v —dml (v + dm)y™1
P(Nh‘—‘mlk,N:n):—(m)[ +(lzu-+(—1)bn§"(_l+d )

u
X (u+bn—v—dm)" ™1 (2.42)

in particular, if By is vertical, that is, when b = 0, (2.42) corresponds to a
quasi-binomial law of kind I [following Consul (1974)]:

P(Np =mlk,N=n)=v (:l) (v + dm)™ ! (u— v — dm)r—m

un

)

whilst if Bgp, is vertical, that is, when d = 0, (2.42) becomes

1/n\v™ (u—v+bm)(u—v+bn)r ™1
P(Nh=m|k,N=n):~(m> ( (u_+_)§)n)n—1 ) :

u

Appellations. It might be worth giving a name to the remarkable distribu-
tions (2.26) and (2.34). In view of the special cases (2.9) and (2.40), and the
central role of the generalized AG polynomials, we suggest calling (2.26) a gen-
eralized AG Poisson law and (2.34) a generalized AG binomial law—the word
“generalized” being omitted for a simple Poisson process.

As the usual Poisson and binomial distributions, these two generalized AG
laws are linked by various properties. This can be examined in a context of
damage models [see, Bhaskara Rao and Shanbhag (1982)], and is the object of
a work in preparation. We only present here the following simple result.

Property 2.5.2 Let N be a random variable with generalized AG Poisson law.
Suppose that N is a.s. finite and can be decomposed into the sum of two random
variables, Ny and Ny say, valued in N. Then, Ny, has a generalized Poisson law
if, and only if, Ny given N = n has a generalized binomial law, for all n € N,

PROOF. Let us go back to the previous first-crossing type representation. The
necessity part follows directly from Theorem 2.5.1. For the sufficiency part, we
write
o0
P(Np=mlk)= Y P(N =n|k) P(Ny=m|k,N=n), meN. (243)

n=m
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Inserting in (2.43) the laws of N and Nj given N = n such as specified by
hypothesis yields

o0
P(Np=mlk) = D e Gu(0l{-Mv;, j > k})

n=m

X Gn—m(ol{")‘(umﬂ' — Um+k)s J 2 k})
= ce U Gp[0[{-Xvj, j 2 k}], meN,

where
[o @]
c= E e~ MUk tmin—Vkim) Gn(Ol{—)\(um+j — Umak)y J 2 k}
n=0

It then remains to note that ¢ = 1 because the distribution of N is assumed to
be nondefective. n
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Constructions of Discrete Bivariate Distributions

C. D. Lai
Massey University, Palmerston North, New Zealand

Abstract: Various techniques for constructing discrete bivariate distributions
are scattered in the literature. We review these methods of construction and
group them into some loosely defined clusters.

Keywords and phrases: Bernoulli, bivariate distributions, conditioning; canon-
ical correlation, clustering, constructions, compound, discrete, extreme points,
Fréchet bounds, marginal transformation, mixing, sampling, trivariate, trunca-
tions, urn models, weighting functions

3.1 Introduction

Over the last two or three decades, a vast amount of literature on discrete
bivariate and multivariate distributions has been accumulated. For an extensive
account of these distributions, we refer our readers to the books by Kocherlakota
and Kocherlakota (1992) and Johnson et al. (1997), and the review articles by
Papageorgiou (1997), Kocherlakota and Kocherlakota (1998), and Balakrishnan
(2004, 2005).

In this chapter, we restrict ourselves to reviewing methods of constructing
discrete bivariate distributions. A review on constructions of continuous bi-
variate distributions is given by Lai (2004). Unlike their continuous analogues,
discrete bivariate distributions appear to be harder to construct. One of the
problems is highlighted in Kemp and Papageorgiou (1982) in which they said,
“Various authors have discussed the problem of constructing meaningful and
useful bivariate versions of a given univariate distribution, the main difficulty
being the impossibility of producing a standard set of criteria that can always
be applied to produce a unique distribution which could unequivocally be called
the bivariate version.” Many bivariate distributions arise without having pre-
specified the marginals. There is no satisfactory unified mathematical scheme

29
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of classifying these methods. What we hope to achieve is to group them into
semicoherent clusters. The clusters may be listed as

Mixing and compounding

Trivariate reduction

One conditional and one marginal given
Conditionally specified method

Construction of discrete bivariate distributions with given marginals and
correlation

Sums and limits of Bernoulli trials models
Sampling from urn models
Clustering (bivariate distributions of order k)

Construction of finite bivariate distributions via extreme points of convex
sets

Generalized distributions method
Canonical correlation coefficients and semi-groups
Distributions arising from accident theory

Bivariate distributions generated from weight functions
Marginal transformations method
Truncation method

Constructions of positively dependent discrete bivariate distributions.

~ Several of these are also common methods for constructing continuous bi-
variate distributions. We refer the reader to Lai (2004) for a review of these
and other methods of constructing continuous bivariate distributions. We note
that for discrete bivariate distributions, the probability generating function is
often used as a tool for construction as well as for studying their properties.
We have not discussed computer generation of discrete bivariate random
variables. We refer interested readers to the works by Professors A. W. Kemp
and C. D. Kemp on this subject. Kocherlakota and Kocherlakota (1992) present
several such references by the Kemps.

3.2 Mixing and Compounding

3.2.1 Mixing

As for continuous bivariate distributions, an easy way to construct a discrete
bivariate distribution is to use the method of mixing two or more distributions.
Suppose H; and H, are two discrete bivariate distributions; then

H(a:,y)=aH1(a;,y)+(1—a)H2(x,y) (31)
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(0 < a <1) is a new bivariate distribution.

Example: Consider the problem of describing the sex distribution of twins.
Twin pairs fall into three classes: MM, MF, and FF where M denotes male and
F female. This leads to the trinomial distribution. As twins may be dizygotic
or monozygotic, a mixture of trinomials results. For more details, see Blischke
(1978), Goodman and Kruskal (1959), and Strandskov and Edelen (1946).

Papageorgiou and David (1994) studied several countable mixtures of bino-
mial distributions.

3.2.2 Compounding

Compounding is perhaps the most common method of constructing discrete
bivariate distributions. Let X and Y be two random variables with parameters
61 and 02, respectively. For a given value of (6;,63), X and Y may be either
independent or correlated.

(i) X and Y are conditionally independent.

If 6; and 65 are independent, then the resulting pair Xand Y are also inde-
pendent. For example, for given (8, 62), X and Y are independent Poissons. If
0; and 6 are independent gammas, then the resulting X and Y are independent
negative binomials.

e 6; and 6, may have a bivariate distribution such as the case of Consael’s
bivariate Poisson distribution [Consael (1952)].

e David and Papageorgiou (1994) presented several compounded bivariate
Poisson distributions that can be derived in this manner.

(ii) X and Y are dependent for given values of the compounding parameters.

e The compounded bivariate Poisson distributions given by Kocherlakota
(1988) are obvious examples.

e Another example is the generalized Consael distribution obtained by

(X,Y) ~ BivP(A1, A0, A3) A F(A1, A2, A3)
(A1,2,23)

12,

where the symbol A denotes compounding. Here Biv P(A1, A2, A3) has a

bivariate Poisson distribution with a probability-generating function given
by

g(s,t) = exp{A1(s — 1) + A2t — 1) + A3(st — 1)}, (3.2)
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and (A1, A2, A3) has a trivariate distribution function F.

For example, Hg distribution [Kemp and Papageorgiou (1982)] is obtained
when (A1,A\2, A3) has a trivariate normal distribution.

There are other variants of compounding; see, for example, Chapter 8 of
Kocherlakota and Kocherlakota (1992).

3.3 Trivariate Reduction

This is also known as “the variables in common method.” The idea here is
to create a pair of dependent random variables from three or more random
variables. In many cases, these initial random variables are independent, but
occasionally they may be dependent. An important aspect of this method is
that the functions connecting these random variables to the two dependent
random variables are generally elementary ones; random realizations of the
latter can therefore be generated easily from random realizations of the former.
A broad definition of the variables-in-common technique is as follows. Set

(3.3)

X =11(X1, X9, X3),
Y = m(X1, Xo, X3),

where X, X5, X3 are not necessarily independent or identically distributed. A
narrow definition is

X = X1+ X3,

Y = X9+ Xj, } (3.4)
with X7, X3, X3 being i.i.d. Another possible definition is

X = T(Xl, X3),

Y =1(X3, X3), (3:5)

with (i) the X; being independently distributed and having c.d.f. Fy(z;; A;), and
(ii) X and Y having distributions Fy(z; A1+ A2) and Fy(y; A1+ A3), respectively.

Example: Suppose X; ~Poisson()\;), ¢ = 1,2,3. Define X = X; + X3, Y =
X2 + X3 so that the joint pgf of (X,Y) is given by

g(s,t) = exp{Ai(s — 1) + A2t — 1) + A3(st — 1)} (3.6)

which is called the bivariate Poisson distribution. This distribution is often
used as a basis for obtaining a compound bivariate Poisson distribution. More
specifically, if each independent \;~Gamma(c;, 3), then the resulting distri-
bution is a bivariate negative binomial [see, e.g., Stein and Juritz (1987)]. If
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each independent \;~GIG(ay, (;, %) (GIG = generalized inverse Gaussian), then
(X,Y) has a bivariate inverse Gaussian—Poisson distribution.

(Note: Ay + Ag ~ GIG(oq + a2,(1 + (2, 5). The inverse Gaussian—Poisson
distribution is a special case of Sichel distribution.)

An obvious disadvantage of this method is that the correlation is restricted
to be strictly positive.

Zheng and Matis (1993) generalized the trivariate reduction method by
considering a random rewarding system so that

¥ = X1+ X9 with prob m;
X, with prob1 — m;

and
Y = X1+ X3 with prob mo
) X3 with prob 1 — m,.

Several discrete bivariate distributions were constructed, whose marginal
distributions are mixtures of negative binomial distributions.

Lai (1995) proposed an extension to the model of Zheng and Matis (1993)
by setting
X = X; + 11 Xo,
Y = X3+ Xy, (3.7)

where I; (i = 1, 2) are indicator random variables which are independent of X,
but (I, I5) has a joint probability function.

3.4 One Conditional and One Marginal Given

A discrete bivariate distribution can be expressed as the product of a marginal
distribution and a conditional distribution as

Pr{X =2,Y =y} =Pr{Y = y|X = 2} Pr{X =z}. (3.8)

This is an intuitively appealing approach, especially when Y can be thought
of caused by, or predictable from, X.

Moreover, given positive Pr{X = z|Y = y} for all z,y, and Pr{Y = y|X =
Zo}, for all y and a fixed zg, the joint distribution can be determined uniquely
[Patil (1965)]:

Pr{X=z|Y =y} Pr{Y =y|X = wo}.

Pr{X = =
r{ nY =y} Pr{X = zlY =y}

(3.9)
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Normalization determines the proportional constant; see, for example, Gelman
and Speed (1993).

Furthermore, discrete bivariate distributions can be generated from given
conditional distributions and regression functions. We will discuss this in the
next section dealing with conditionally specified distributions below.

Examples: Korwar (1975), Dahiya and Korwar (1977), Cacoullos and Papa-
georgiou (1983), Papageorgiou (1983, 1984, 1985a), Kyriakoussis (1988), and
Kyriakoussis and Papageorgiou (1989).

3.5 Conditionally Specified Method

Suppose in the preceding section, both Pr(Y = y|X = z) and Pr(X = z|Y = y)
are given for all z and y. We may have then overspecified the conditions as
the two conditional distributions may not be compatible. In cases in which
compatibility is confirmed, the question of possible uniqueness of the compat-
ible distribution need to be addressed. The book of Arnold et al. (1999) has
revolutionized this subject area as it provides a rich mechanism for generating
bivariate distributions. This book focuses on those conditional distributions
that are members of some well-defined parametric families such as the exponen-
tial families. Three discrete distributions are from exponential families, that is,
binomial, geometric, and Poisson. Section 4.12 of the above mentioned mono-
graph devotes a discussion to constructions of bivariate binomial, geometric,
and Poisson distributions.

Section 7.7 of Arnold et al. (1999) discusses generation of bivariate discrete
distributions (as well as continuous bivariate distributions) for a given condi-
tional distribution of X given Y and the regression function of ¥ on X. In
particular, Wesolowski (1995) has shown that if X|Y = y has a power series
distribution, that is,

Pr(X = z]Y = y) = c(z)y*/c* (),

then the joint distribution of (X,Y) will be uniquely determined by the regres-
sion function of Y on X provided ¢(-) is reasonably well behaved.
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3.6 Construction of Discrete Bivariate Distributions
with Given Marginals and Correlation

3.6.1 Discrete Fréchet bounds

For given marginals F and G, Hoeffding (1940) and Fréchet (1951) have proved
that there exist bivariate distribution functions, H;, and Hy, called the lower
and upper Fréchet bounds, respectively, having minimum and maximum corre-
lation. Specifically, we have

Hy(z,y) = max[F(z) + G(y) — 1, 0] (3.10)
Hy(z,y) = min[F(x), G(y)] (3.11)
satisfying
Hi(z,y) < H(z,y) < Hu(z,y) (3.12)
and that
pL < p<py (3.13)

where pr, p and py denote the Pearson product-moment correlation coefficients
for Hy, H and Hy, respectively.

3.6.2 Probability functions of Fréchet bounds

We now assume that X and Y are discrete with ranges that are subsets of
N ={0,1,2,...}. Let h, f, and g be the probability functions that correspond
to H,F, and G, respectively. Our aim now is to construct the probability
functions hyp and hy that correspond to Hy and Hy, respectively. In the
following, we adopt the notations given in Nelsen (1987).

Let D denote the portion of N2 where Hy(x,y) > 0, D’ denote the comple-
ment of D in N2, and 8D denote the border of D; that is,

D ={(z,y) € N*|F(z) + G(y) - 1 > 0}
D' = {(z,y) € N?|F(z) + G(y) - 1 =0},
and
oD = {(.’II,y) € D|(:1:— l,y),(m,y— 1) or (117— Ly- 1) ¢ D}
Nelsen (1987) has shown that

hL(fL',y)
f(z) (z,y) €0D,(z,y—1) ¢ D,(z—1,y) € 3D
9(y) (z,y) €0D,(z—1,y) ¢ D,(z,y— 1) € 0D
= F(z)+G(y) -1 (z,y) €dD,(z,y—1) ¢ D,(z-1,y) ¢ D
1-Flz-1)-G(y—-1) (z,y)€dD,{z,y—1)€dD,(z—1,y) € 0D

0 otherwise.
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In order to obtain Ay, we set

S ={(z,y) € N*|F()

=Gy}
T = {(z,y) € N}|F(z) > G

)},

and
98 = {(z,y) € S|(z,y—1) ¢ S},
T ={(z,y) €TI(z—1,y) ¢ T}.

Nelsen (1987) has shown that

hU(a;,y)
f(l') (1">y)€857($_1»y—1)6T, Ol’y:O
a(y) (z,y)€dS,(r—1,y—1)€S, orz=0,y#0
= F(z)+Gy) -1 (z,yyedTl,(z—1,y—1)€ S, orc=0
1-Flz-1)-Gly—-1) (z,9)edTl,(z—1,y—1)€T, ory=0, 2#0

0 otherwise.

The author has also presented two examples of finding hz and another two of
finding hy.

3.6.3 Construction of bivariate distributions

Having obtained Az, and hyy, we are now in a position to generate one-parameter
or two-parameter families of bivariate distributions with given marginals:

hog = Ohi(z,y) + (1 -0 — ¢)f(z)g(y) + ¢hu(z,v), 0,0 > 0,0 + ¢ < 1. (3.14)

Upon setting 8 = 0, ¢ > 0, we obtain a one-parameter family with positive
correlation; and upon setting ¢ = 0,6 > 0, a one-parameter family with neg-
ative correlation; and correlation coefficients for members of these families are
functions of 4, ¢, p1, and py.

Mardia (1970, p. 33) has noted that if we let §2 = Z-(1—v) and ¢ = Z-(1+7),
then (3.14) becomes

2

hy = %(1 = Nh(z,y) + (1 =) f(z)g(y) + %72(1 +7hu(z,y)  (3.15)

It is worth noting that for ¢ = 0,
ho = Ohi(z,y) + (1 - 6)f(x)g(y) (3.16)
and that the correlation coefficient p is given by
p=06pr, 0<0<1 (3.17)

which has values between pr and 0. Thus for any desired correlation p between
pr and 0, we can find the required value of € in [0, 1] to satisfy (3.17).
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Similarly, for § = 0, ¢ > 0, we have

he = (1 - ¢)f(z)g(y) + ¢hu(z,v) (3.18)

and that the correlation coefficient p is given by

p=¢pu. (3.19)

For any desired correlation between 0 and py, we can find the required value
of ¢ in [0, 1].

Nelsen (1987) presented two examples:
1. both marginals are Poisson but with different parameters, p = —0.5 and

2. one marginal is binomial (n = 4, p = 0.8) and the other discrete uniform
on {1,2,3,4,5}; and p positive.

If we wish to use Mardia’s one-parameter family (3.15), then the correlation
coefficient p for h, is given by

2 2
p= 3(1 - Y)pL+ 7(1 +v)pu-

To find the required value p between p, and py, we need to solve for «y in
the following cubic equation

(pv — pL)¥* + (pu + pL)V? — 2p = 0.

Then, we can construct the probability function by substituting the value «
into (3.14).

3.6.4 Construction of bivariate Poisson distributions

Griffiths et al. (1979) gave procedures for constructing bivariate Poisson distri-
butions having negative correlations when the two marginals are specified. For
given Poisson marginals F' and G having parameters A\; and Ao, respectively,
they calculated and tabulated the minimum and maximum correlation coeffi-
cients (i.e., the correlation coefficients of H; and Hy defined, respectively, by
(3.10) and (3.11)).
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3.7 Sums and Limits of Bernoulli Trials

3.7.1 The bivariate Bernoulli distribution

Suppose (X,Y) has Bernoulli marginals; then it has only four possible values:
(1,1),(1,0),(0,1), (0,0) with probabilities p11, p10, Po1, Poo, respectively. The
marginal probabilities are given by

P1+ = P11 +p1o =1 — poy, (3.20)
P+1=p11+po1=1-—pio

It is easy to show that the correlation coefficient is given by

_ __ pupi+p+ (3.21)

v P1+P0+P+1P+0 )

It takes on values -1 and +1 when p1; = pgg = 0 and p19 = po1 = 0, respectively.
Here, p = 0 implies X and Y are independent.

3.7.2 Construction of bivariate Bernoulli distributions

It is well known that in the univariate case, the binomial, negative binomial
(including geometric), hypergeometric and Poisson distributions are obtainable
from the univariate Bernoulli distribution. Marshall and Olkin (1985) showed
that these methods of derivation (using sums and limits) can be extended to
twodimensions to obtain many bivariate distributions with binomial, negative
binomial, geometric, hypergeometric, or Poisson marginals.

3.8 Sampling from Urn Models

Many discrete bivariate distributions are constructed by sampling from urn
models. There are two types of sampling: (i) direct sampling and (ii) inverse
sampling. By inverse sampling, we mean the sampling is continued until &
individuals of a certain type are observed. For both types, sampling may be
with or without replacement.

Suppose a population has three distinct characters and let the population
size be N. Let N;, ¢ = 0,1, 2, be the number of individuals having character
i, for 1 = 0,1, 2 such that Ny + N; + Ny = N (alternatively, an urn contains
N balls of three different colours, N; being of i*? colour (i = 0, 1,2) such that
No+ N1 + N2 = N). Suppose that n individuals (balls) are drawn from the
population (urn) with various forms of sampling schemes, and let X and Y
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Table 3.1: Bivariate distributions from direct and inverse samplings

No | Name Type of | Replace | Special Features
Sampling | (Yes/No)
(i) | Bivariate Binomial | Direct Yes N; finite
(ii) | Bivariate Inverse Yes N; infinite
Negative Binomial
(iii) | Bivariate Direct No —
Hypergeometric
(iv) | Bivariate Inverse Inverse No —
Hypergeometric
(v) | Bivariate Negative Direct — Trinomial
Hypergeometric compounded by
bivariate beta
(vi) | Bivariate Inverse Inverse — Negative trinomial
Negative compounded by
Hypergeometric bivariate beta
(vii) | Bivariate Polya Direct Add c additional
individuals
(viii) | Bivariate Inverse Add c additional
Inverse Polya individuals

denote the number of type 1 character and type 2 character, respectively, in
the sample. We can then construct various kinds of bivariate distributions
which are summarized below:

e Distribution (i) is also known as type 1 bivariate binomial distribution;
see, for example, Section 3.3 of Kocherlakota and Kocherlakota (1992).

e For distribution (ii), see, for example, Section 5.2 of Kocherlakota and
Kocherlakota (1992).

e For distributions (iii)-(vi), see Janardan (1972, 1973, 1975, 1976), Janar-
dan and Patil (1970, 1971, 1972). See also Chapter 6 of Kocherlakota and
Kocherlakota (1992).

e For distributions (vii) and (viii), see Janardan and Patil (1970, 1971) and
Patil et al. (1986).

For other references and other distributions generated from urn models, see
Johnson and Kotz (1977), Korwar (1988), and Marshall and Olkin (1990).
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3.9 Clustering (Bivariate Distributions of Order k)

In recent years, several bivariate generalizations of the binomial, negative bi-
nomial, hypergeometric, Poisson, logarithmic, and other distributions were ob-
tained. These are often called bivariate distributions of order k or bivariate
cluster distributions; see Balakrishnan and Koutras (2002). As they bear the
names binomial, negative binomial, hypergeometric, and negative hypergeomet-
ric, it is not surprising that they also have the origin of sampling from an urn
with and without replacements.

3.9.1 Preliminary

Consider an urn that contains balls of & + 1 types such that « balls bear the
number 0 and §; balls bear the number 7,7 =1,2,... k.

(i) Suppose a sample of n balls is drawn with replacement. Let X denote
the sum of the numbers shown on the balls drawn and p;, 7 = 1,2,...,k be

k
the probability that a ball bearing the number ¢ will be drawn: >~ p; = p and

g = 1 — p is the probability that a ball bearing a zero will be dr;,wln. Then, X
has a cluster binomial distribution.

(ii) If the sampling scheme above is without replacement, then a cluster
hypergeometric distribution results.

(iii) If as in (i) above, but with n not fixed and letting X be the sum of
numbers sampled before the 7P zero, then X has a cluster negative binomial
distribution.

(iv) If as in (ii) above but the compositions of balls is to be altered at each
stage by adding a ball of the same type as the sampled one before the next
draw is made, then X has a cluster Polya distribution.

3.9.2 Bivariate Distributions of order &

Now we may generalize this idea to the bivariate case.

Suppose an urn contains balls of two different colours (say colour 1 and
colour 2). The balls of colour 7 are numbered from 0 to k;, i = 1, 2. n balls are
drawn with replacement. Let p;; denote the probability that a ball of colour
i will bear number j, 7 = 0,1,2,...,k;. Let X and Y denote the sum of the
numbers of the first and second colour, respectively; then (X,Y) has a cluster
bivariate binomial distribution [Panaretos and Xekalaki (1986)].

Suppose now in the above example, k; = ko and another ball is added and
labelled by (0, 0) with proportion p such that p+ 32, Zle pi; = 1. Balls are
drawn with replacement until the r balls ( 7 > 1) bearing the number (0, 0)
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appear. Let X and Y denote the sum of the numbers on colour 1 and colour
2, respectively. Then (X,Y’) has the bivariate negative binomial distribution of
order & [Philippou et al. (1989) and Antzoulakos and Philippou (1991)].

Philippou et al. (1989) obtained a bivariate Poisson distribution of order k
by taking limits from the above model such that

pi; — 0 and rpi; = Ay (0< Ay <oo, for1<i<2,1<5<k).

For construction of bivariate logarithmic series distribution of order k, also a
limiting case of bivariate negative binomial of order k, see Philippou et al. (1989,
1990). For constructions of bivariate Polya and inverse Polya distributions of
order k, see Philippou and Tripsiannis (1991).

Aki and Hirano (1994, 1995) have constructed multivariate geometric dis-
tributions of order k. For a review on this subject, see Chapter 42 of Johnson
et al. (1997) and Balakrishnan and Koutras (2002).

Philippou and Antzoulakos (1990) have obtained several bivariate distribu-
tions of order k through a “generalised sequence of order k” which was first
introduced by Aki (1985). For other types of bivariate binomial distributions
of order k, see Ling and Tai (1990).

3.10 Construction of Finite Bivariate Distributions
via Extreme Points of Convex Sets

In this section, we consider the construction of bivariate distributions with
finite support. The key reference for the following discussion is that of Rao and
Subramanyam (1990).

Let M(F,G) be the collection of all bivariate distributions with finite sup-
port and marginals F' and G. Then M is a compact convex set. In order to
give an insight of the problem, we begin by considering joint probabilities of X
and Y: pij = Pr(X =4,Y = j), pi = Pr(X =4), ¢; = Pr(Y = j), i,= 1,2;
i=1,2,3.

It is easy to see that the following set of equations hold (assuming for the
time being that p;; and p;2 are known):

P13 = DP1— P11 — P12
P21 = q —P1un ) (322)
D22 = g2 — D12

P13 +P23 = G3
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Figure 3.1: Feasible region

There are five equations and four unknowns. As p;; > 0, it follows that

P13=p1—pi1—pP12=>0
po1=q—pi1 >0
. 3.23
p2=¢q—p122>0 ( )
P23s=¢q3~—p1+p11+p2=>0

The above may be expressed as four inequalities for p;; and pjo. These are

P11+ P12 < p1
rus<q
. 3.24
P12 < @2 ( )
P11 +pi2 201 —qs

In addition, we have two obvious inequalities which are
pi1 20 and p12 2 0.

These six inequalities may be illustrated by the diagram above. The feasible
region of bivariate distributions is a hexagon. However, if either q; or g2 exceeds
p1, the region is then reduced to a pentagon. If both ¢; and g2 exceed p;, then
the region is a quadrilateral. If both ¢; and g2 are smaller or equal to p; — g3,
then the region is a triangle. If one of ¢; and ¢, is less than p; — g3 whereas the
other one exceeds p; — g3, then the resulting region is a quadrilateral.

Note that the intersections of the boundary lines are the extreme points. In
this example, there are three to six extremal points.

Well-established mathematical fact: Let A;(i = 1,2,...,n) be the
extreme points of a compact convex set M. Then any element B of M can be

n n
written as B = ) oy A; where Y o; = 1.

i=1 =1
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It follows that we can generate a discrete bivariate distribution after the
extreme points are identified.

3.10.1 Finding extreme points

From the above discussion, it is clear that it is easy to generate a bivariate
distribution with specified marginals if we can identify the extremal points of
M. F;)r examplle, suppos? wc:a have p; = %,pg = %;(h = %,CD = %,Q3 ='%. As
g2 = 5 > p1 = 3, the region is a pentagon. It follows from the above diagram
that one of the intersections is p11 = p1 — g3 = %i,pm = 0. It follows from
(3.22) and (3.23) that one of the extreme points of M is

1 1

1 0 3
1 1
5 20

The other four extreme points can be found similarly.

Let m be the number of p; > 0 and n be the number of ¢; > 0. This
contingency table has (m — 1)(n — 1) degrees of freedom. In general, we have
(m + n) equations and (m + n — 1) unknowns (i.e., one equation is always
redundant). These (m + n — 1) equations are expressed in terms of p;,¢; and
the (m — 1)(n — 1) free parameters (with dependent parameters on the left of
the equations, and p;, ¢; and free parameters on the right). Also as the free
parameters p;; > 0, we therefore have (m +n — 1)+ (m — 1)(n — 1) = mn
inequalities. Hence they form a polygon with a maximum of mn sides.

Oluyede (1994) obtained a family of bivariate binomial distributions gener-
ated by extreme bivariate Bernoulli distributions.

3.11 Generalized Distributions

The adjective “generalized” has often been used for discrete distributions, how-
ever, its meaning is not uniquely defined. In the literature, there is no clear-cut
discrimination between the terms “compound” and “generalized.” Moreover,
the word “generalized” in this discussion is also used with other meanings such
as extension. For example, we used the term “generalized inverse Gaussian” in
Section 3.3 to denote a distribution which includes the inverse Gaussian as its
special case.

We now define “generalized” in a restricted sense.

Suppose the pgf (probability-generating function) of a distribution Fj is
g1(s). If the argument s is replaced by the pgf go(s) of another distribution F3,
then the resulting generating function g;(ga(s)) is also a probability-generating
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function. This distribution is called a generalized Fy distribution. More pre-
cisely, it is called an Fj distribution generalized by the generalizer (or general-
izing distribution) F5. It may be written in the symbolic form

F1V F; (3.25)

see Johnson and Kotz (1969, p. 202).
In the univariate case, the generalized distribution is simply a compound
distribution.

3.11.1 Generalized bivariate distributions

The above idea may be extended to the bivariate case. In a general setting,
there are at least two ways of “generalizing.”

(i) Let G(s) be the pgf of the original distribution F; and (s, t) be the joint
pgf of the bivariate distribution of F5. Then a generalized bivariate distribution
can be obtained by replacing s of G by (s, t) to give

g(s,t) = G(w(s,t)). (3.26)

(ii) Let G(s, t) be the original pgf of a bivariate distribution Fj. Replace the
arguments s and ¢t of G by the univariate pgf’s m1(s) and my(t), respectively, so
that the resulting generalized distribution has pgf

9(s,t) = G(mi(s), m(t))- (3.27)

(iii) The third way may be obtained by combining the trivariate reduction
technique together with the “generalized” method. Let m; be the pgf of the
generalizer X; and G; be the pgf of the distribution that generalizes X;,i =
1,2,3. Let (X,Y) = (X1+X3, X2+ X3). Then the resulting generalized bivariate
distribution of (X,Y) has pgf given by

g(s,t) = G1(m1(8))Ga(m2(t))G3(m3(st))- (3.28)

3.11.2 Generalized bivariate Poisson distributions
(i) Bivariate Neyman type A distributions

Holgate (1966) constructed three types of bivariate Neyman A distributions.
Type I: This corresponds to (3.26) with G being the pgf of a Poisson and
m(s,t), the pgf of the bivariate Poisson given by

7(s,t) = exp{Ai1(s — 1) + At — 1) + A3(st — 1)} (3.29)

Type II: This corresponds to (3.27) where G is the pgf of the bivariate
Poisson given by (3.29) and 71 (s) = exp{¢1(s — 1)} and ma(t) = exp{p2(t —1)}.
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Type III: This is obtained via the trivariate reduction method such that
X = X1+X3and Y = Xo+ X3 where X; (i = 1, 2, 3) are independent Neyman A
distributions. Alternatively, let Gi(s) = exp{\i(s — 1)} and m;(s) = exp{ (s —
1)}. By applying (3.28), we obtain this distribution.

(ii) Bivariate Poisson binomial distributions

Charalambides and Papageorgiou (1981a) also derived three types of bivariate
Poisson binomial distributions based on the “generalized” method.

3.11.3 Generalized bivariate general binomial distributions

Three types of bivariate generalized general binomials were derived by Char-
alambides and Papageorgiou (1981b).

For other examples, see Papageorgiou and Kemp (1983).

3.12 Canonical Correlation Coefficients and
Semigroups

3.12.1 Diagonal expansion

The diagonal expansion of a bivariate distribution involves representing it as

aH(z,y) = dF(@)dG)Y p(@)ns(0), (3.30)

i=1

& and 7; being known as the canonical variables and the p; as the canonical
correlations.

When X and Y have finite moments of all orders, sets of orthonormal poly-
nomials {P,} and {Q,} can be constructed with respect to F' and G; for ex-
ample, the Krawtchouk polynomials for binomial marginals, the Meixner poly-
nomials for negative binomial marginals, and the Poisson—Charlier polynomials
for Poisson marginals.

If

v :
E[X™MY =y] = a polynomial of degree n } , (3.31)

E[Y"|X =z| = a polynomial of degree n

then H has a diagonal expression in terms of F' and G and their respective
orthonormal polynomials.
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3.12.2 Canonical correlation coefficients and positive definite
sequence

Suppose now X and Y are two exchangeable variables so that the two sets
of orthonormal polynomials {P,} and {Q,} are identical. A sequence {t,}
is said to be positive definite with respect to {Q,} if for all M (integer), all

M
z =0,1,2,...and all sequences {a,} of real numbers, Y a,Qn(z) implies that
n=0

M
Y antnQn(z). (We assume here ty = 1.)
n=0
For finite discrete bivariate distributions, Eagleson (1969) showed that every

canonical sequence {p, : Z p? < oo} is a positive definite sequence. Griffiths

(1970) generalized the result to the case when the support of X is unbounded.

3.12.3 Moment sequence and canonical correlation coefficient

A sequence {b,} is said to be a moment sequence if it can be expressed as

= [t"dG(t) for some distribution function G. Assume again that the support
of X is unbounded and X and Y are exchangeable. Tyan and Thomas (1975)
showed that every sequence of canonical correlation coefficients is a moment
sequence on [0, 1] or [-1,1]. If X is non-negative, then the moment sequence is
defined on [0, 1]. Conversely, if {p, = p™} is a sequence of canonical correlation
coefficients, it is easy to show that every moment sequence is a sequence of
canonical correlation coefficients. For the binomial and Poisson, the sequence
{p"} is indeed a sequence of canonical correlation coefficients; see, for example,
Lancaster (1983).

3.12.4 Constructions of bivariate distributions via
canonical sequences

Let C denote the set of all sequences of canonical correlation coefficients.

o It is easy to see that C is convex. Hence, if {a,} and {b,} are two
sequences of canonical correlation coefficients, then {p, = Aap+(1—A)b,}
is also a sequence of canonical correlation coefficients for a new bivariate
distribution having the same set of marginals.

e As positive definite sequences are closed under termwise multiplication,
C forms a semigroup with respect to termwise multiplication. For fi-
nite discrete distribution, this result was proved by Vere-Jones (1971).
Vere-Jones’s result can be easily generalized to the case with unbounded
support. In other words, {p, = a,b,} is a sequence of canonical corre-
lation coefficients if {a,} and {b,} are. In this way, numerous bivariate
distributions can be constructed.
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3.13 Bivariate Distributions from Accident Models

In Section 20.3 and Section 21, Hutchinson and Lai (1990) considered the joint
distribution of the severities of injury to two people in the same road accident.
It was found that a bivariate normal distribution, generated by the method of
variables in common, may be used to model such injury. Here, we are concerned
with the number of injury accidents rather than the amount of injury.

Let X denote the number of injury accidents on a given stretch of highway
and Z; denote the number of fatalities in the i*® accident, i = 1,2,..., X. Also,
let Y denote the total number of fatalities recorded among the X accidents. In
other words, we may represent them in the following manner:

Y=Zi1+2Z,+---+72x (3.32)

The question of interest is to find the joint distribution of X and Y. Unlike
the bivariate distributions we have discussed so far, the two marginals are, in
general, of different types of univariate distributions.

Following the pioneering work of Edwards and Gurland (1961) in using
a discrete bivariate distribution (i.e., a bivariate negative binomial) to model
accident data, Leiter and Hamdan (1973), Cacoullos and Papageorgiou (1980,
1982) and others developed several models to represent the joint distribution
of (X,Y) as specified in (3.32).

3.13.1 The Poisson-Poisson, Poisson-binomial, and

Poisson-Bernoulli methods

Suppose X has a Poisson distribution. By letting Z; (assuming they are i.i.d),
we obtain

¢ Poisson-Bernoulli model when Z; has a Bernoulli distribution [Leiter and
Hamdan (1973)].

e Poisson-Binomial model when Z; has a binomial distribution [Cacoullos
and Papageorgiou (1980)].

¢ Poisson-Poisson model when Z; has a Poisson distribution [Leiter and
Hamdan (1973)].

¢ Poisson-geometric model when Z; has a geometric distribution [Papageor-
giou (1985Db)].
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3.13.2 Negative binomial-Poisson and negative
binomial-Bernoulli models

It has been pointed out by many authors [see Kemp (1970)] that the num-
ber of accidents is more adequately described by a negative binomial (i.e., the
Poisson distribution whose parameter A has a gamma distribution). For this
reason, Cacoullos and Papageorgiou (1982) constructed the following bivariate
distribution assuming X to have a negative binomial distribution.

e Negative binomial-Poisson model where Z; has a Poisson distribution.

e Negative binomial-Bernoulli models where Z has a Bernoulli distribution.
The joint distribution of (X,Y) is a special case of the bivariate negative
binomial of Edwards and Gurland (1961).

3.14 Bivariate Distributions Generated from
Weight Functions

Let f(z,y) be the probability function of (X,Y). Kocherlakota (1995), and
Gupta and Tripathi (1996) defined the probability function of the weighted
distribution with the weight function W(z,y) as

fzy)W(z,y)

In particular, they considered the multiplicative weight function of the form
W(z,y) = 2y,

where £(® = z(z —1) --- (z — o+ 1). The weighted bivariate Poisson, weighted
bivariate binomial, weighted bivariate negative binomial, and weighted bivariate
logarithmic series distributions were obtained by this method; see also Section
43.5 of Johnson et al. (1997) for other details.

3.15 Marginal Transformations Method

The marginal transformation method to generate a continuous bivariate dis-
tribution from another continuous bivariate distribution can be implemented
easily. Suppose (X,Y) has a joint cumulative distribution function H(z,y)
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with marginal F(z) and G(y). If we transform X — X* and Y — Y*, then the
joint distribution function of (X* Y*) is given by

H*(z%,y") = H(F'[F*(z)], GG (")), (3.33)

where F* and G* are the distribution functions of X* and Y™*, respectively.
The key to this method lies on the fact that U = F(X),V = G(Y) as well
as U' = F*(X*),V/ = G*(Y*) are all uniformly distributed for continuous
marginals. Thus, the method cannot be readily applied to construct discrete
bivariate distributions as discrete random variables cannot be transformed into
uniform random variables.

It appears that the method can be transportable if H(z,y) is continuous,
whereas X* and Y* are two discrete random variables with finite or countable
values. Then, the H*(z*, y*) can be expressed as

o Fl(z*) (Gl(y*)
H*(z*,y") = /_ /_ h(z,y) dzdy, (3.34)

where h(z,y) is the joint density function of (X,Y).

Van Ophem (1999) has constructed a discrete bivariate distribution in this
manner assuming h(z,y) to be the standard bivariate normal density function
with correlation coefficient p. Lee (2001) derived the range of correlation coeffi-
cients of a discrete bivariate distribution and showed that the discrete bivariate
distribution of Van Ophem (1999) has a flexible correlation coefficient.

3.16 Truncation Methods

Similar to its continuous counterpart, discrete bivariate distributions may be ob-
tained through truncations. Truncations may be necessary where certain values
are missing or may not be recorded in the data sets. Piperigou and Papageor-
giou (2003) gave a wunified treatment of three types of zero class
truncation:

o The zero cell (0,0) is not recorded.
e The zero class for the variable X, {(0,y), y =0,1,...}, is not recorded.

e The zero class for both X and Y, {(0,y), y =0,1,...;(z,0), z=0,1,...},
is not recorded.

Using the probability-generating function approach, various properties of the
truncated discrete bivariate distributions are then examined.
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3.17 Construction of Positively Dependent Discrete
Bivariate Distributions

There are various concepts of positive dependence for a bivariate distribution.
We consider only two of these here.

A pair of random variables, X and Y, are said to be positively quadrant
dependent (PQD) if the following inequality holds, that is, if

Pr(X <z,Y <Y)>Pr(X <z)Pr(Y <y). (3.35)

The variable Y is said to be positive regression dependent (PRD) on X if
Pr(Y > z| X = z) is increasing in z for every y.

For other concepts of stochastic dependence, one may see, for example,
Chapter 12 of Hutchinson and Lai (1990).

3.17.1 Positive quadrant dependent distributions

We shall begin with construction of a pair of PQD binary variables. A binary
random variable may be used to indicate the state of a component (or a system)
which is either functioning or not functioning. More specifically, we let the
binary variable X; denote the state of the ith component such that

X; =

{ 1 if it is functioning (3.36)

0 otherwise.

Then, Pr(X; = 1) is the static reliability of the component at a given time
instant.

Suppose X and Y are two identically distributed binary random variables
having the joint probability function given as follows:

PriX=0)=a+b, Pr(X=1)=1-a-b

and
Pr(Y=0)=a+b, Pr(Y=1)=1-a-b.

Table 3.2: Joint probabilities

Pr(X =0,Y=0)=a Pr(X=0,Y=1)=b
Pi(X=1,Y=0)=b | Pr(X=LY=1)=1-a_2
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We now proceed to construct a pair of PQD binary variables as follows:

Clearly, for (z,y) = (0,1),(1,0), or (1,1), inequality (3.35) readily holds
without requiring any condition. Thus, the binary pair X and Y are positively
quadrant dependent if and only if

Pr(X =0,Y =0) > Pr(X =0) Pr(Y =0) (3.37)
which is equivalent to the condition
(a+b)?<a. (3.38)

It is clear that for a given b, 0 < b < 1, we can solve for a so that (3.38)
holds. It is easy to show that

1-2b)—+v1—-4b 1-2b 1-—4b
OS( )2 <a<( ); .

(3.39)

Now, let X and Y be two discrete non-negative integer valued random
variables with Pr(X =4, Y =j) =p;;, i=1,2,...,rand j=1,2,...,c.
Holzsager (1996) has proved that if

Pir1j41 Pr(X <4, Y <) > Pr(X <i,Y = j+1)Pr(X =i+1,Y < j), (3.40)

then X and Y are PQD. Thus, (3.40) provides a mechanism to construct a pair
of discrete PQD random variables.

Rao and Subramanyam (1990) provided a mechanism to identify the extreme
points of the set of all discrete PQD bivariate distributions when the marginal
distributions have finite support. It is easy to see that we can utilize this idea
to generate PQD discrete distributions with finite marginals.

3.17.2 Positive regression dependent distributions

Subramanyam and Rao and (1996) also provided an algorithm to identify the
extreme points of the set of all discrete PRD bivariate distributions when the
marginal distributions have finite support. After identifying these points, pos-
itive regression dependent discrete bivariate distributions can be constructed.
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The Normal-Laplace Distribution and Its Relatives

William J. Reed
University of Victoria, Victoria, BC, Canada

Abstract: The normal-Laplace (NL) distribution results from convolving in-
dependent normally distributed and Laplace distributed components. It is the
distribution of the stopped state of a Brownian motion with a normally dis-
tributed starting value if the stopping hazard rate is constant. Properties of
the NL distribution discussed in the article include its shape and tail behaviour
(fatter than the normal), its moments, and its infinite divisibility. The dou-
ble Pareto-lognormal distribution is that of an exponentiated normal-Laplace
random variable and provides a useful parametric form for modelling size distri-
butions. The generalized normal-Laplace (GNL) distribution is both infinitely
divisible and closed under summation. It is possible to construct a Lévy process
whose increments follow the GNL distribution. Such a Lévy motion can be used
to model the movement of the logarithmic price of a financial asset. An option
pricing formula is derived for such an asset.

Keywords and phrases: Fat tails, generalized normal-Laplace distribution,
double Pareto-lognormal distribution, Brownian-Laplace motion, Lévy process,
financial returns, option value

4.1 Introduction

Although the normal (Gaussian) distribution plays a central role in basic statis-
tics, it has long been recognized that the empirical distributions of many phe-
nomena modelled by the normal distribution sometimes do not closely follow
the Gaussian shape. For example, Wilson (1923) in a paper in the Journal
of the American Statistical Association stated that “the frequency we actually
meet in everyday work in economics, biometrics, or vital statistics often fails
to conform closely to the so-called normal distribution.” In recent years, the
huge burst of research interest in financial modelling along with the availability
of high-frequency price data and the concomitant realisation that logarithmic
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price returns do not follow exactly a normal distribution [see, for example, Ry-
dberg (2000)], as previously assumed, has led to a search for more realistic
alternative parametric models.

Distributions can of course differ from one another in myriad ways, but
those for which empirical distributions modelled by the normal tend to differ
from the normal can be broadly classified into two kinds, viz., the presence of
skewness, and having fatter tails than the normal (leptokurtosis).

A number of alternative parametric forms have been used to deal with
the presence of leptokurtosis, ranging from the Student-t (including the ¢
or Cauchy) distribution to the logistic and Laplace distributions. The Laplace
distribution can be extended to an asymmetric form (skew-Laplace) as well as
to the generalized Laplace distribution [Kotz et al. (2001)]. Other distributions
of this type, which are parameter rich and can incorporate both skewness and
kurtosis, are the generalized hyperbolic distributions [Barndorff Nielsen (1977)
and Eberlein and Keller (1995)] and its subclass the normal inverse Gaussian
distribution [Barndorff Nielsen (1997)]. These latter distributions have all been
used recently in finance to model logarithmic price returns.

It is the purpose of this chapter to present a new distribution which (in its
symmetric form) behaves somewhat like the normal distribution in the middle
of its range, and like the Laplace distribution in its tails. This distribution,
named herein as the normal-Laplace distribution, results from convolving inde-
pendent normal and Laplace components. Skewness can be introduced into the
distribution by using a skew-Laplace component in the convolution.

In Section 4.2 the distribution is defined and its genesis and properties are
discussed. In Section 4.3 the double Pareto-lognormal distribution (which is
that of an exponentiated normal-Laplace random variable) is briefly discussed
along with its use in modelling the size distribution of various phenomena.
Also in this section the generalized normal-Laplace distribution is introduced
and some of its properties are discussed. In Section 4.4 the construction of a
Lévy process (termed Brownian-Laplace motion), whose increments follow the
generalized normal-Laplace distribution, is described along with its potential
use in financial modelling. This includes the determination of the option value
of a European call option for an asset whose logarithmic price follows Brownian-
Laplace motion. In Section 4.5 parameter estimation for the normal-Laplace
and generalized normal-Laplace distributions is discussed.



The Normal-Laplace Distribution and Its Relatives 63

4.2 The Normal-Laplace Distribution

Definition

"The basic normal-Laplace distribution can be defined in terms of its cumulative
distribution function (cdf) which for all real y is

o= (1) —6 (L ) SR(a0 = (y = /o) = «;Rwa + - mZ)l ,)

where ® and ¢ are the cdf and probability density function (pdf) of a standard
normal random variable and R is Mills’ ratio:

®° 1-¢
Ry~ 2E) _1-9()
¢(z) #(z)
The location parameter y can assume any real value while the scale parameter
o and the other two parameters a and 3, which determine tail behaviour, are

assumed to be positive.
The corresponding density (pdf) is

o) =

We shall write

6 (1) IR0 - = w/fo)+ R(Go + (v =m/o). (42)

Y ~ NL(y, 0%, 5) (4.3)

to indicate that a random variable Y has such a distribution.

Genesis

The distribution arises as the convolution of a normal distribution and an asym-
metric Laplace, that is, ¥ ~ NL(u, 02, a, §) can be represented as

YLzZ4+w, (4.4)

where Z and W are independent random variables with Z ~ N(u, c?) and W
following an asymmetric Laplace distribution with pdf

ap P forw <0
fw(w) = { Eé e— W forw >0 (4.5)
a+ ’ :

Such a convolution might naturally occur if a Brownian motion

dX = vdt + Tdw (4.6)



64 W. J. Reed

with initial state Xo ~ N(u,02) were to be observed at an exponentially dis-
tributed time T'; or, put another way, if such a Brownian motion were stopped
(or “killed,” or observed) with a constant hazard rate A, and the stopped state
X (T) observed. This follows from the fact that the state of the Brownian mo-
tion (4.6) with fixed (nonrandom) initial state after an exponentially distributed
time follows an asymmetric Laplace distribution [see Kotz et al. (2001, p. 145)].

Thus, for example, if the logarithmic price of a stock or other financial
asset {log P;};>0 followed Brownian motion, as has been widely assumed, the
log(price) at the time of the first trade on a fixed day n, say, could be expected
to follow a distribution close to a normal-Laplace. This is because the log(price)
at the start of day n would be normally distributed, while under the assumption
that trades on day n occur in a Poisson process, the time until the first trade
would be exponentially distributed.

Some properties

Because a Laplace random variable can be represented as the difference between
two exponentially distributed variates [Kotz et al. (2001)] it follows from (4.4)
that an NL(u, 02, o, 3) random variable can be expressed as

YL u+0Z+Ejoa—Ey/B, (4.7)

where F, F are independent standard exponential deviates and Z is a standard
normal deviate independent of F; and E2. This provides a convenient way to
simulate pseudo-random numbers from the NL distribution.

Kotz et al. (2001, p. 149) provide several other representations of asymmet-
ric Laplace random variables. With suitable adjustment (addition of a N(u, 0?)
component), these all carry over for normal-Laplace random variables. Some
other properties are:

e Shape and tail behaviour. The normal-Laplace pdf is smooth (differentiable)
and has a single mode. It decays to zero as y — +00. In the case a = 3 it is
symmetric and bell-shaped, occupying a intermediate position between a normal
and a Laplace distribution. Figure 4.1 shows the NL(0, 1/3, 1/v/3, 1/v/3)
distribution (solid curve), which has mean zero and variance 1 along with the
normal (dot-dash) and Laplace (dashed) distributions with the same mean and
variance. The parameters « and 8 determine the behaviour in the right and
left tails, respectively. Small values of either of these parameters correspond to
heaviness in the corresponding tail. Figure 4.2 shows the NL(0,1,1,8) pdf for
values of # = 1,1/2,1/3,1/4 and 1/5, while Figure 4.3 shows the symmetric
NL(0,1,a, ) pdf for values of @ = 2,1,3/4 and 1/2.

In comparison with the N(u,0?) distribution, the NL(u, 02, a, 8) distribu-
tion will always have more weight in the tails, in the sense that for y suitably
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Figure 4.1: Solid curve—the normal-Laplace density with u = 0,02 =1/3,a =
1/ V3. 3=1 / /3, which has mean 0 and variance 1; dot-dash curve—standard
normal density; and dashed curve—the Laplace density with mean zero and
variance 1
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Figure 4.2: The density of the NL(0,1,1,3) for (moving down the peaks) 3 =
1,1/2,1/3,1/4, and 1/5
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Figure 4.3: Densities of the standard normal and symmetric normal-Laplace
distribution. The curve with the highest peak is the density of N(0,1) and
(moving down the peaks) the densities of N(0,1,c,a) with o = 2,1,3/4 and
1/2

small F(y) > ®((y — p)/o), while for y suitably large 1 — F(y) > 1 — ®((y —
p)/o). This follows from the expression (4.1) for the cdf, because the term
BR(ao — (y — p)/o) — aR(Bo + (y — u)/o) is decreasing in y from oo to —oco
over the interval (—oo, c0).

If the NL distribution is thought of as a convolution of normal and Laplace
components, it is the Laplace component that dominates in the tails in the
sense that the tails decay exponentially, that is,

fy) ~ ki e™™ (y— o0), fy) ~ kg & (y — —o00),
where k1 = aexp[as + o202 /2] and ky = Bexp|—fBo + F%0?%/2].
eMoment generating function (mgf). From the representation (4.4), it follows
that the mgf of NL(a, 3, u,0?) is the product of the mgfs of its normal and
Laplace components. Specifically, it is given by
afexp(us + 0%s?/2
My (s) = Bexp(p /2)
(a—s)(B+s)

o Mean, variance, and cumulants. Expanding the cumulant generating function,
Ky (s) = log My (s), we obtain

EY)=p+1/a-1/8 and Var(Y)=o0>+1/a®+1/8% (4.9)

(4.8)

Higher-order cumulants are

kr=(r—1Da"+(-8)""), for integer r > 2. (4.10)
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In particular,
k3 =2/a® —2/B% ky=6/a+6/5% (4.11)

e Closure under linear transformation. The NL distribution is closed under
linear transformation. Specifically, if Y ~ NL(a, 3, u,02%) and a and b are any
constants, then aY + b ~ NL(a/a, 8/a, ap + b, a®c?).

o Infinite divisibility. The NL distribution is infinitely divisible. This follows
from writing its mgf as

o= (8 54) G2) " (75)

for any integer n > 0 and noting that the term in square brackets is the mgf of
a random variable formed as Z + Gy — G2, where Z, G and G are independent
and Z ~ N(£&, %) and G; and G2 have gamma distributions with parameters
1/n and « and 1/n and 3, respectively.

Some special cases

From the representation (4.4) of the NL as a convolution of normal and Laplace
components, it is clear that as ¢ — 0, the distribution tends to an asymmetric
Laplace distribution; and as a, 3 — o0, it tends to a normal distribution. If
only 8 = oo, the distribution is that of the sum of independent normal and
exponential components and has a fatter tail than the normal only in the upper
tail. In this case, the pdf is

£1w) = a6 (=2 Rleo - (v - /o) (4.12)

Similarly if only @ = oo, the distribution exhibits extra-normal variation only
in the lower tail and the pdf is

£y} = 89 (11) R + (v =)o), (413)

Clearly the general NL(u, 02, o, 3) pdf (4.2) can be represented as a mixture
of the above pdfs as

fly) = f1 W) + ——=f2(v)- (4.14)

+ﬁ

A special case of some importance already mentioned (Fig. 4.3) is the
symmetric normal-Laplace distribution arising when a = (3, with pdf

1) =5 ¢(=F) [R(ar— - w/o)+ Rlag + (y=w/o)]. (415



68 W. J. Reed

4.3 Related Distributions

4.3.1 The double Pareto-lognormal distribution

The double Pareto-lognormal distribution is related to the normal-Laplace dis-
tribution in the same way as the lognormal is related to the normal, that is,
a random variable X for which log X ~ NL(u, 02, a, B) is defined as following
the double Pareto-lognormal distribution. As such it can be termed the “log
normal-Laplace.” However, the name “double Pareto-lognormal” (which was
coined because the distribution results from the product of double Pareto and
lognormal components) has already been used [Reed and Jorgensen (2004)].
The double Pareto-lognormal (or dPIN) distribution shares many characteris-
tics with the log-hyperbolic distribution (Barndorff-Nielsen, 1977). For exam-
ple, it exhibits power-law behaviour in both tails and has an approximately
hyperbolic shape when the pdf is plotted on logarithmic axes. Like the log-
hyperbolic distribution, the dPIN distribution has proved useful in modelling
size distributions. It has been shown to provide a very good fit to a variety of
empirical size distribution data [such as incomes and wealth, city sizes, particle
sizes, oil field sizes, etc.; see Reed and Jorgensen (2004)].

4.3.2 The generalized normal-Laplace distribution

While the NL distribution is infinitely divisible, it is not closed under the con-
volution operation, that is, sums of independent NL random variables do not
themselves follow NL distributions. The generalized normal-Laplace is an ex-
tension of the NL distribution for which a closure property of this type holds.
The advantage of this is that for such a class of distributions one can construct
a Lévy motion for which the increments follow the given distribution. This is
useful in financial applications for obtaining an alternative stochastic process
model to Brownian motion for logarithmic prices, in which the increments (log-
arithmic returns) exhibit fatter tails than the normal distribution (something
that has been widely observed in high-frequency finance data).

The generalized-normal Laplace (GNL) distribution is defined as that of a
random variable X with characteristic function

_ | aBexp(ips — 025%/2) g
donL(s) = { (a —is)(8+ is) } (4.16)
and hence moment generating function
_ [aBexp(ps +0252/2)]"
MgniL(s) = { (a—s)(B+s) } ’ (4.17)
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where a, 3, p and ¢ are positive parameters, —oo < p < 0o. Let
X ~ GNL(g, 0%, e, 8, p)
denote the random variable X following such a distribution.! Writing the mgf

) exp(pps + po?s*/2) (ais)p <ﬂis>p,

it can be seen that X can be represented as

1 1
XL pu+opZ+ ~Gi - BG2, (4.18)

where Z, Gy, and G3 are independent with Z ~ N(0,1) and G, G2 are gamma
random variables with scale parameter 1 and shape parameter p, that is, with
probability density function (pdf)

—Uu

L o1
v(u) = ——=uf""e™", u > 0.
) =10)

From (4.16) it is easily established that the GNL is infinitely divisible. Fur-
thermore, sums of independent and identically distributed (iid) GNL random
variables, with common a and 3 parameters, also follow a GNL distribution.

The mean and variance of the GNL(y, 02, o, 8, p) distribution are

E(Y)=p<u+§—l> and Var(Y)=p(02+$+%)»

g
while the higher-order cumulants are (for r > 2)
1 1
ke = plr = 1)1 (Er' + (—1)’?) . (4.19)

Note that the coefficient of kurtosis

s 1 3ot + 8%
K4/Ks = P (020202 + o + (7)2

is decreasing in p.

The parameters 1 and o2 influence the central location and spread of the
distribution, while o, 8 and p affect the tail behaviour. Ceteris paribus decreas-
ing a (or ) puts more weight into the upper (or lower) tail. When o = 3 the
distribution is symmetric and in the limiting case @ = 3 = 0o the GNL reduces
to a normal distribution. Also increasing p moves the shape of the distribution
towards normality. In the case p = 1, the GNL becomes an ordinary normal-
Laplace (NL) distribution. For finite values of o and 3 the GNL distribution,
like the NL distribution, has fatter tails than a normal distribution.

'The distribution with the above mgf with u = 0 = 0 has been called the generalized
Laplace distribution by Kotz et al. (2001) (it has also been called the Bessel function distribu-
tion and the variance-gamma distribution by other authors). The generalized normal-Laplace
distribution defined above bears the same relation to the normal-Laplace distribution as does
the generalized Laplace to the Laplace.
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4.4 A Lévy Motion Based on the GNL Distribution

We now consider a Lévy process {X:}+>0, say for which the increments X;, —
X, have characteristic function (¢gnL(s))?, where ¢gnr is the characteristic
function of the GNL(u, 02, a, 8, p) defined in (4.16) [such a construction is al-
ways possible for an infinitely divisible distribution; see, for example, Schoutens
(2003)]. It is not difficult to show that the Lévy triplet for this process is
(pu, po®, A) where A is the Lévy measure of asymmetric Laplace motion [see
Kotz et al. (2001, p. 198)]. Laplace motion has an infinite number of jumps in
any finite time interval (a pure jump process). The extension considered here
adds a continuous Brownian component to Laplace motion. We shall thus call
the process {X;}+>0 defined above Brownian-Laplace motion.

The increments X;,, — X, of this process will follow a GNL(u, 02, @, 3, pt)
distribution and will have fatter tails than the normal. However, as t in-
creases the kurtosis of the distribution drops. Exactly this sort of behaviour has
been observed in various studies on high-frequency financial data [see Rydberg
(2000)] — very little kurtosis in the distribution of logarithmic returns over long
intervals but increasingly fat tails as the reporting interval is shortened. Thus,
Brownian-Laplace motion seems to provide a good model for the movement of
logarithmic prices.

4.4.1 Option pricing for assets with logarithmic prices following
Brownian-Laplace motion

We consider an asset whose price S; is given by
St = SO exP(Xt)7

where {X;};>0 is a Brownian-Laplace motion with Xy = 0 and parameters
w, 0%, a, B3, p. We wish to determine the risk-neutral valuation of a European
call option on the asset with strike price K at time 7" and a discount rate 7.

It can be shown using the Escher equivalent martingale measure [see
Schoutens (2003, p. 77)] that the option value can be expressed in a form
similar to that of the Black-Scholes formula. Precisely,

oV = S, / &F (250 +1)de — e TK / &b (2 (4.20)

where v = log(K/Sp) and

enp(T;0) = f°° eadeNL(y)dy :
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is the pdf of X7 under the risk-neutral measure. Here, dg;VL is the pdf of
the T-fold convolution of the generalized normal-Laplace, GNL(y, 02, o, 8, p),
distribution and @ is the unique solution to the following equation involving its
mgf

log Mgn1(6 + 1) — log MgnL(0) = 7. (4.22)

The T-fold convolution of GNL(u, 02, a, 3, p) is GNL(u, 02, @, 8, pT') and so its
moment generating function is (4.17) with p replaced by pT'. This provides the
denominator of the expression (4.21) for the risk-neutral pdf.

Now let

1

o o]
Iy = / &L (z;0)de = ——
y ONE [Man1(6)]T

o0
/ a () (4.23)
Y
so that
OV = Solpy1 — e T K,

Thus, to evaluate the option value, we need to evaluate only the integral in
(4.23). This can be done using the representation (4.18) of a GNL random
variable as the sum of normal, positive, and negative gamma components. The
integral can be written as

o [ [ (2T s, a2

where

afT
e
T(pT)

is the pdf of a gamma random variable with scale parameter a and shape pa-
rameter pT', and ¢ is the pdf of a standard normal deviate. After completing
the square in x and evaluating the z integral in terms of ®¢, the complementary
cdf of a standard normal, the integral can be expressed as

o0 oo e (7 —u+v—ppT —65%pT
Lo — : dvdu. (4.25
| stwa=0) [ gwis+o0)0 e vdu. (4.25)

For given parameter values, the double integral in (4.25) can be evaluated
numerically quite quickly and thence via (4.24) and (4.23) the option value can
be computed.

Figure 4.4 shows the difference (vertical axis) between the Black-Scholes
option value (assuming a normal distribution for logarithmic daily returns) and
the option value assuming a GNL distribution for various values of the current
stock price (horizontal axis). The strike price was set at K = 1 and the discount
rate at 7 = 0.05 per annum. The distribution of daily logarithmic returns was
assumed to be GNL(y = 0,02 = 0.02,a = 17.5,3 = 17.5,p = 0.1). This has

pT'—1_—azx

9(z;a) = e
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Figure 4.4: The difference between option values for a European call option us-
ing a normal distribution (Black-Scholes option value) and a generalized normal-
Laplace (GNL) distribution for the log(price) increments. The horizontal axis
shows the current stock price, S, and the vertical axis the difference in option
values. The strike price was set at K = 1; the per-annum discount rate at r =
0.05; the GNL parameter values at p = 0, 0% = 0.02,a = 17.5, 8 = 17.5, p = 0.1;
and the normal distribution for computing the Black-Scholes option value had
mean 0 and variance 0.00165, the same as those of the GNL. The three curves
correspond to exercise dates (moving down the peaks) T' = 10, 30, and 60 days
ahead

mean zero and variance of 0.00165, which was used in computing the Black-
Scholes option value. The coefficient of kurtosis is 4.68, which is close to the
value of 4.73 observed for a sequence of 929 logarithmic returns for IBM common
stock over the period Jan. 1999-Sept. 2003. The three curves correspond to
exercise dates T = 10, 30, and 60 days in advance.

It can be seen in Figure 4.4 that “at the money” (S = 1) the Black-Scholes
price is too high. Although the difference is less than one-tenth of one cent it
amounts to about 1.5 percent (for 7' = 10) of the Black-Scholes option value.
The corresponding percentages for T' = 30 and T = 60 are about 0.5 percent
and about 0.3 percent. The reason why the difference decreases as T increases is
that the distribution of log-returns (GNL(y, 02, a, 3, pT')) is closer to normality
for larger T' (a central limit effect).

Far enough “in the money” (S > 1) or “out of the money” (S < 1), the
Black-Scholes valuation is too low. This is because the normal model fails to
anticipate more extreme fluctuations, which are slightly more likely to occur
with the GNL distributed daily returns.
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4.5 Estimation for NL and GNL Distributions

For the NL distribution, maximum likelihood estimation of parameters can be
carried out numerically because there is a closed-form expression for the pdf. In
fact, it is shown in Reed and Jorgensen (2003) how one can estimate y analyt-
ically and then maximize numerically the concentrated (profile) log-likelihood
over the remaining three parameters. Another approach, also discussed by Reed
and Jorgensen, uses the EM-algorithm (considering an NL random variable as
the sum of normal and Laplace components, with one regarded as missing data).
Things are more difficult for the GNL distribution, because there is no
apparent closed-form expression for the pdf. It may be possible to use the
EM-algorithm, but calculating the required conditional expectations appears
to be a formidable task. Parameter estimates can be obtained by the method
of moments (solving the equations produced by setting the first five sample
cumulants equal to their theoretical counterparts, using (4.19)). This can be
achieved by solving numerically a pair of equations (in o and () and then
obtaining the solutions for the other parameters by substitution. One drawback
with the method of moments is that it is difficult to impose constraints on
parameters (such as requiring estimates of a, 3, p, and o2 be positive) and
estimates that are unsatisfactory in this respect may sometimes occur.
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Some Observations on a Simple Means of
Generating Skew Distributions

Arthur Pewsey

Universidad de Extremadura, Cdceres, Spain

Abstract: During the last decade, a substantial part of Barry Arnold’s research
effort has been directed towards developing models capable of describing the
forms of asymmetry manifested by real data. One general and seemingly ele-
gant means of constructing skew distributions is provided by a lemma presented
in Azzalini (1985). The now widely known skew-normal distribution is just one
special case belonging to the family of distributions generated using the con-
struction implicit in that lemma. In this paper, a simple alternative proof of the
lemma is given, and reflections are made upon how the construction arising from
it has been employed in the literature. The densities of various special cases
are presented, which highlight both the flexibility and limitations of the con-
struction. Likelihood-based inference for the parameters of the location-scale
extensions of classes arising from the construction is also considered. General
results are given for the solutions to the score equations and for the observed
information matrix. For the special case of the skew-normal distribution, it
is shown that, for one of the solutions to the score equations, the observed
information matrix is always singular.

Keywords and phrases: Asymmetry, boundary estimates, location-scale
family, observed information matrix, reparametrisation, score equations, skew-
normal distribution

5.1 Introduction

The mainspring for this chapter is the following lemma from Azzalini (1985).

Lemma 5.1.1 Let f be a density function that is symmetric about 0, and G an
absolutely continuous distribution function such that G’ is symmetric about 0.

75
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Then
2f(2)G(Az) (—o0 < z < 00)

s a density function for any real \.

Rather than reproduce the proof of Azzalini (1985), we present the following
alternative, which we consider to be simpler and more direct.

PRrROOF. Given the definitions of f and G, the proof only requires us to show
that 2f(2)G(\z) integrates to 1. Thus, making use of the assumed symmetry
of f and G about 0, we have

[ 2600 = 2{f (; FEG0d+ [ F()G0)z
0 0
= 2 [ L f(2)GAz)dz+ /_ _f@ - G()\z)}dz]
= 2/_000 f(z)dz = 1.

|

In what follows we will refer to any density generated using the construction
implicit in the lemma as belonging to the family S()A) (“s” being the first letter
of “skew”).

The remainder of the chapter is divided into two main sections. In the first,
we consider the flexibility and limitations of the construction arising from Az-
zalini’s lemma. In Section 5.3, we discuss issues of inference and present new re-
sults for the score equations and observed information matrix for location-scale
extensions of any class in S(A). These results lead to interesting observations

regarding likelihood-based inference for location-scale extensions of classes in
S(A) generated using f(z) = ¢(z).

5.2 Flexibility and Limitations of the Construct

Azzalini (1985, 1986) and Henze (1986) considered in detail the case where f
and G are the density function and distribution function, respectively, of the
standard normal distribution. The resulting class of distributions is referred to
in the literature as the skew-normal class. Using an obvious notation, we will
denote the skew-normal class as Sye(A).

Surprisingly, the inherent flexibility of the construction in Azzalini’s lemma
has been little exploited. Indeed, authors have generally limited themselves to
cases such as the skew-normal class where f and G are the density and dis-
tribution function, respectively, of some common distribution. For instance,
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Mukhopadhyay and Vidakovic (1995) refer to the Spa(A), Sty13(A), Siz(A) and
Sap(A) classes obtained using the standard normal, 3, logistic and double ex-
ponential distributions, respectively. DiCiccio et al. (1997), Azzalini and Cap-
itanio (2003), and Jones and Faddy (2003) consider the general S; 1, (\) class
which has Sse () as a limiting class. Gupta, Chang and Huang (2002) consider
all the classes to which we have referred so far, as well as the S,y () class
generated using a uniform distribution.

In Figure 5.1, we present the densities of Syga(A), St,1,(A), SiL(A), and
Sap(A) distributions for A-values of 0, 2, 5, 20, and 100. The S;,7,()) class
results on using the ¢9 distribution, proposed as being the simplest ¢ distribution
by Jones (2002), as the common distribution. The densities of the last three of
these classes are:

1 Az
P15 (2 A) = (2 + 22)3/2 {1 + (2+ )\2z2)1/2} ’
2¢e?
A} =
ALE ) = AR s e
and
A1) /2, 2<0, A>0,
) eF(1—e?/2), z>0, A>0,
ap (2 A) = e*(1—e*%/2), z<0, A<0,
e~2(1-3) /2, z2>0, A<O,
respectively.

The plots in Figure 5.1 provide an indication of the range of distributions
that can be generated using the construction of Azzalini’s lemma with well-
known distributions defined on . Clearly, the four classes are capable of mod-
elling different ranges of skewness and kurtosis, and one major consideration
in choosing between them in practice would be the weights in their tails. As
is evident from these plots, even for only moderately skew members of a given
Sr(A) class (with A > 0), the right-hand tail behaviour is essentially that of
the limiting half-f distribution obtained as A — oc.

As an example of combining a density and a distribution function from dif-
ferent distributions, Mukhopadhyay and Vidakovic (1995) refer to the S;, ()
class obtained using a t, density and the distribution function of the logistic
distribution. More recently, Nadarajah and Kotz (2003) presented results for
the moment properties of certain Syiz(A) classes, while Nadarajah (2003) stud-
ied classes of the form S,g(A). In fact, for the Spa(A), St 7,(A), SiL(A), and
Sap(\) classes, little flexibility is gained by replacing F' in the Sfr(A) formula-
tion by the distribution function, G say, of any one of the other three classes,
as the ranges of densities generated using the different combinations differ only
very marginally. However, the flexibility of the construction arising out of Az-
zalini’s lemma improves considerably on widening the set of possible component
distributions.
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Figure 5.1: Densities of: (a) Spa(A), (b) St,1(A), (¢) Si(A) and (d) Sap(A)
distributions for A-values of 0 (unbroken), 2 (dot), 5 (dash), 20 (dot dash), and
100 (long dash)

As two examples of classes generated using somewhat nonstandard densities
with finite interval support, in Figure 5.2 we present some densities from the
Sir(A) and S, () classes. The first of these results on combining the triangular
density

0, z2z<-1,2>1,
t(z) =¢ 14z, -1<2<0,
1 -z, 0<2z<1,

and the corresponding distribution function

0, z < -1,

1 z
_ “+Z(1+§), -1<2z<0,
T(z) = §+z(1—-§—), 0<z<1,

1, z> 1.
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Figure 5.2: Densities of: (a) S¢r(A) and (b) Sqr(A) distributions for A-values of
0 (unbroken), 2 (dot), 5 (dash), 20 (dot dash), and 100 (long dash)

The second combines the logistic distribution function with the quadratic
density

2) = { -2, -1<:<1,
0, z< =1, z> 1.
From a practical point of view, it is debatable whether these two classes provide
useful models for real data. Nevertheless, the potential of the construction is
manifest and it is conceivable that for a given application a suitable density
and distribution function combination might be found that would provide an
adequate model.

5.3 Inference

5.3.1 General considerations

Generalising what has been observed for the classes considered so far, any
Sta(A) class includes densities ranging from the symmetric density f (A = 0)
through to the (generally highly skew) positive and negative half-f densities
(A = £00).

Of course, in practice, we will usually be interested in fitting some member
of the location-scale extension of a S¢g(\) class to data, rather than a member
of the Sy () class itself. Introducing some extra notation, if Z ~ S¢g(A), then
X =&+ Zn~ Sig(€,m, A), where Sgg(§,n, A) denotes the extended class.
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Now, we might envisage that inference for any Syg(€,7, ) class will po-
tentially be fraught as precisely what £ represents depends on the value of .
For instance, when A = 0, £ pinpoints the centre of a symmetric distribution,
whereas when A = oo, £ is the lower bound for the support of a half-f distri-
bution. Clearly, the maximum likelihood (ML) estimate of £ in the second of
these two scenarios will be very different from that in the first [see, e.g., Pewsey
(2002, 2004)]. For (at the very least) the Sya(£,n, ) class, this is not merely
an observation of academic concern. It is known [see Azzalini (1985), Azzalini
and Capitanio (1999), and Pewsey (2000)] that, for this class, maximum like-
lihood estimation often results in a solution on the boundary of the parameter
space corresponding to a half-normal distribution, with the probability of such
a solution occurring being greatest for small-sized samples drawn from highly
skew cases of the Syeo(€, 7, A) class. Moreover, the usual regularity conditions
underpinning likelihood inference do not apply for solutions on the boundary
of a parameter space.

Other known problems associated with ML estimation for the Sga(€,n, A)
class are those of:

1. multiple maxima on the likelihood surface [Pewsey (2000)],

2. a solution to the score equations always exists associated with A = 0
[Azzalini (1985), Arnold et al. (1993), and Chiogna (1997)],

3. the expected information matrix is singular when A = 0 [Azzalinj (1985)].

The last of these problems can be circumvented using reparametrisation
[Azzalini (1985)]. As we will show, the second problem is not unique to the
Sea(€,m, A) class. We will also demonstrate that the observed information ma-
trix is in fact always singular for any Syc(€,n, A) class for which G”(0) = ¢'(0)
is 0.

5.3.2 Score equations for any Syz(€,7, ) class

Consider Z ~ Syg(A) for which @ra(2;A) = 2f(2)G(Az). Then X =&+ Zn ~
Sra(€, 1, A) with density

stecnn=21 (5 (59}

where z, £ and A € R and n € R*. Thus, for a random sample, x = (z1, ..., Z,),
drawn from S¢g(€, 7, A), the log-likelihood function is

(& n, A x)=nlog2 ~nlogn+Z:logf (a:z; €> +ilogG{/\ (:Ezn—{:)}
. . (5.1)
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Assuming f’ exists, and denoting G’ as g, the first-order partial derivatives
of the log-likelihood are:

--{ 7 %zaiizs}

o g()\zi)
N Zz" GOz)’

i=
where z; = (z; — &) /7. Setting v; = f'(2;)/f(2i) and w; = g(Az)/G(Nz;), the
solutions to the score equations satisfy —v = Aw, (1 + 20 + AZw) = 0 and
zw = 0. So, for any solution, Zv = —1. Solving for £, n and A, any solution to
the score equations satisfies £ = Tw/w, n = £U— 0T and A = —U/w. Clearly, for
A = 0 to be a solution to the score equations requires 7 to equal 0. However, if
A=0,w=2¢(0), £ =7 and n = —vx. Then, 7 is the solution to

i=1 f (—‘—z; 5)
However, we repeat, A = 0, { = T and = —vZ will only be a solution to the

score equations if, for this choice of 1, 7 also equals 0, that is, if

s ()
57

These findings generalise results given by Arnold et al. (1993) and Chiogna
(1997) for the skew-normal distribution. As ¢'(2) = —z¢(z), our results confirm
that, as shown by Arnold et al. (1993), A =0,¢ =%, and n? = Y1, (z; —Z)?/n
is always a solution to the score equations for the Sya (£, n, A) class. Moreover, it
is evident that this combination will always be a solution to the score equations
for any Syi(§,n, A) class, whatever the choice of G.

5.3.3 Observed information matrix for any S;g(¢,7,A) class

Assuming ¢’ and f” exist, and letting u; = f”(z;)/f(2:) and t; = ¢'(Az;)/G(Az),
the second-order partial derivatives of the log-likelihood (5.1) can be expressed
as follows:

9%l — —
oe = T (VTN =D,
2 S
%aln = —% {-v -+ 202 ~zu+ N (-7},
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0% n — —
_ )
EoN 77{w—+—)\(zt 2w )},
8—2l S {z2v2 — 22y — 270+ A222w? — \%22t - 203w — 1}
on* ’
0% n — —— o2l —
R 2F _ 2,2 U (52 — 222
Frox n{zw—i-/\(zt zw)}7 E3Y n(z%t — 22w?).
For any solution to the score equations, zw = 0 and zv = —1. Also, if there

is a solution to the score equations for which A = 0, then (as 7 = 0, £ = 7,
Z =0, w; = 2¢(0), t;, = 2¢’(0) and n = —vE) for any such solution:

o2l n — o2l n —s 0%l 2ng(0)

— = —— (2 _7 = —— 2 _ = —

o2 n? v* -~ oton  n? (20" —7m), OEON n o’
0% N ——s —— 02l 0%l —
= ——(22¢2 - 52 = _ = 2 ! — 2 2 .
o 772(2 v? - 22u+ 1), o 0, ETY 2n22{4'(0) — 2¢°(0)}

We note that ¢’(0) = 0 for any differentiable density g that is symmetric about
0. This certainly holds for the standard normal, logistic and ¢ densities, but
not for the density of the double exponential distribution.

As we have stated previously, for a skew-normal distribution A = 0, { =T,
and n? = % ,(z; — 7)2/n always provides a solution to the score equations.
For this solution, w; = 2¢(0) = /2/7, z; = (z;—T)/n and hence Z = 0 and 22 =
Pz —Z)?/nn? = 1. Also, v; = ¢'(2)/é(2z) = —2 and thus ¥ = —% = 0,
v2 zi_g =1, 202 = 23 and 2202 = 2%. Moreover, as u; = ¢"(2;)/P(z) = (22 —1),
T=22-1=0,70=2(:2—1) = 25—z = 23 and 22u = (2% — 1). For this
solution then, the second-order partial derivatives become

0%l n 0%l

8%l n
gr__n g o L __T )
52" @ e meaa - VU™

8_2l _2n 92l 9%l _2n

o2~ 2 max 0 9x . ¢
and the observed information matrix is therefore

1n* 0 2/m/y
n 0 2/n? 0

v2/m/n 0 2/m

which is obviously always singular.
Similarly, for any Syi(€,n, A) class, the observed information matrix for the
solution A =0, £ =7 and n? = 30, (z; — T)?/n is,

1/ 0 29(0)/n
n 0 2/n? 0
29(0)/n 0  —2¢'(0) + 44%(0)
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which is singular if ¢’(0) = 0, and undefined if g is not differentiable at the
origin. This suggests that, for any Syc (€, n, A) class of distributions, it would
be advisable to reparametrise [see Azzalini (1985)].
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Bivariate Distributions Based on the Generalized
Three-Parameter Beta Distribution

José Maria Sarabia and Enrique Castillo

University of Cantabria, Santander, Spain

Abstract: The generalized three-parameter beta distribution with pdf propor-
tional to 2% 1(1 —z)¥71 /{1 — (1 - \)z}**? is a flexible extension of the classical
beta distribution with interesting applications in statistics. In this chapter,
several bivariate extensions of this distribution are studied. We propose models
with given marginals: a first model consists of a transformation with mono-
tonic components of the Dirichlet distribution and a second model that uses
the bivariate Sarmanov—Lee distribution. Next, the class of distributions whose
conditionals belong to the generalized three-parameter beta distribution is con-
sidered. Two important subfamilies are studied in detail. The first one contains
as a particular case the models of Libby and Novick (1982) and Olkin and Liu
(2003). The second family is more general, and contains among others, the
model proposed by Arnold, Castillo and Sarabia (1999). In addition, using two
different conditional schemes, we study conditional survival models. Multivari-
ate extensions are also discussed. Finally, an application to Bayesian analysis
is given.

Keywords and phrases: Generalized three-parameter beta distribution,
Gauss hypergeometric distribution, Dirichlet and Sarmanov-Lee distributions,
conditionally specified models

6.1 Introduction

The purpose of this paper is to study several classes of bivariate distributions
whose conditionals and /or marginals belong to the generalized three-parameter
beta distribution, and to one of their extensions. There are several reasons
that justify the study of these classes of distributions. Bivariate or multivariate
versions of the generalized three-parameter beta distribution will clearly be

85
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useful tools for data analysts and modelers. For example, in the analysis of
income data, we are interested in the study of the evolution of the proportion
of expenses of a certain departure of goods (e.g., health, foods, etc.) in several
periods of time. In this case, we seek multivariate distributions whose marginals
and/or conditionals have at least three parameters, in order to model, mean,
variance and skewness, and with unlimited correlations of any sign. Another
important application arises in Bayesian statistics. The well-known Dirichlet
distribution with probability density function:

-1 e -1
f(@1, ey ) P g 1 — g — =)%Y
defined over z; > 0,i=1,2,...,m,and }_ z; < 1, is a natural prior distribution

for the parameters of a multinomial distribution; see Kotz, Balakrishnan and
Johnson (2000). However, if we deal with an independent or correlated bino-
mial distribution, we need a density defined over the m-dimensional unit cube
0<z;<1,i=1,2,...,m. Recently, Olkin and Liu (2003) proposed a distribu-
tion of this kind. This distribution possesses marginal distributions of classical
beta type and conditionals of the generalized three-parameter beta type. How-
ever, it is not conjugate for likelihoods that are the product of independent or
correlated binomial distributions. This fact suggests multivariate distributions
whose conditional distributions are of generalized three-parameter beta type.
The use of conjugate prior distributions with conditional specification has been
proposed by Arnold, Castillo and Sarabia (1998, 1999).

The paper is organized as follows. Section 6.2 presents a brief review of
the generalized three-parameter beta distribution. Section 6.3 proposes models
with given marginals. A first model consists of a transformation with monotonic
components of the Dirichlet distribution and a second model uses the bivari-
ate Sarmanov-Lee distribution. In Section 6.4 the class of distributions whose
conditionals belong to the generalized three-parameter beta distribution is con-
sidered. T'wo important subfamilies are studied in detail. The first one contains
as a particular case the models of Libby and Novick (1982) and Olkin and Liu
(2003). The second family is more general, and contains among others, the
model proposed by Arnold, Castillo and Sarabia (1999). Some extensions are
discussed in Section 6.6. Applications to Bayesian analysis are given in Section
6.7. In Section 6.8, using two different conditional schemes, conditional survival
models are studied. Finally, some multivariate extensions are also discussed.
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6.2 The Generalized Three-Parameter
Beta Distribution

The generalized three-parameter beta distribution has pdf

/\axa—-l(l _ :L‘)b_l
f(z;a,b,\) =14 B(a,b){1 - (1 - Nz}t
0

if 0<z<1, (6.1)

otherwise,

where B(a,b) = I'(a)T'(b)/T'(a + b) represents the beta function. We denote
by X ~ GB(a,b,\) the random variable with pdf (6.1). When A = 1, (6.1)
reduces to the standard beta distribution. If X ~ GB(a,b, A), then 1 — X ~
GB(b,a, A1), which is a property shared with the standard beta distribution.
The cdf can be expressed in terms of the incomplete beta function. Whena =1,
then (6.1) becomes

0 if z<0
Fz;b,)) = 1_{—-1Lf-—}b if 0<z<l (6.2)
1-(1-Nz - ’
1 if z>1.
If b=1, (6.1) becomes
0 it z<0
F(z;a,)) = {————”——} if 0<z<1 (6.3)
e 1—(1-Nz - ’ '
1 if z>1.

In the case a = b= 1/2, the cdf corresponding to (6.1) is

0 if z<0
F(z;\) = gta.n_1 ( 1/\$ ) if 0<z<«1

s -z

1 if z>1.

The generalized three-parameter beta distribution is the distribution of the
ratio X;/(X; + X2), where X; ~ G(a, A1) and X3 ~ G(b, A9) are independent
gamma variables, and where A = \;/)\o. Alternatively, we can obtain (6.1)
from a standard beta distribution; if Z ~ B(a, b), then,

Z

TTaonz ~ 9B, (6.4)
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Libby and Novick (1982) studied these distributions in a multivariate setting
and use them for fitting utility functions. Chen and Novick (1984) used them
as priors for binomial sampling models. The kth moment of (6.1) is:

. Bla+k,b)

BXH) = B(a,b)

oFi(a+k,a+bja+b+k;1—A);

here, 9 F} represents the Gauss hypergeometric function defined by

oFi(a,b;c;2) = io: Mzn

e (6.5)
n=0 n :

where (a)o =1 and (a)p =ala+1)---(a+n—-1)=T(a+n)/T'(a),n > 1,is
called the Pochammer coefficient. According to Pham-Gia and Duong (1989)
and Johnson, Kotz and Balakrishnan (1995), the presence of the parameter A
allows GB to take a variety of shapes wider than the standard beta distribu-
tion. For example, a GB(a, a, A) random variable can be positively or negatively
skewed according to A > 1 or X\ < 1, respectively. In relation with the kurtosis
coefficient, there exists a region of A where the kurtosis is smaller than the kur-
tosis of the normal distribution, and for other values of A the kurtosis is larger
than the kurtosis of a normal distribution.

6.2.1 Relationships with other distributions and extensions

The generalized three-parameter beta random variable can be related with well-
known probability distributions by means of simple transformations. These
results will be applied in later sections. We consider a random variable Z ~
GB(a,b, A). The monotone transformation X = Z/(1 — Z) leads to the random
variable with pdf

2\ xa—l

f(l';a,b,/\): B(a,b)(l-{-,\$)a+b if 0<z<oo,
0

(6.6)

otherwise.

This distribution corresponds to the Pearson type VI distribution, sometimes
called second-kind beta distribution or beta-prime distribution, with scale pa-
rameter A; Stuart and Ord (1987, Chapter 6) and Johnson, Kotz and Balakrish-
nan (1995, Chapter 27). A random variable with pdf (6.6) will be denoted by
X ~ B2(a,b, \). Now, if we consider the transformation X = log(Z)—log(1-2),
we obtain the pdf

)\a ea:l:
B(a,b) (1 + Ae®)att’

f(z;a,0,7) = (6.7)
which corresponds to the logarithm of a F distribution with location parameter

log\. If X1 ~ x3, and X3 ~ x3,, the random variable log A + log{—%; /3‘;} is
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distributed according to (6.7), that is, the log of a F distribution with a location
parameter [Fisher (1924)]. This distribution is called type III generalized lo-
gistic distribution by Balakrishnan (1992). This distribution has been recently
introduced by Jones (2004) in a different way.

A natural extension of (6.1) is the Gauss hypergeometric distribution. This
distribution was considered by Armero and Bayarri (1994) in a queuing theory
context, and its probability density function is given by

:Ca_l(l _ x)b—l

f(@ia,b,e,0) = { MBbeNTTa5yE 1 0szs1 (6.8)
0 otherwise,
where the normalizing constant is
n(a,b,¢c,\) "t = B(a,b) o F1(a,c;a+b; 1 — ). (6.9)

It will be denoted X ~ GH(a,b,c,A). The Gauss hypergeometric distribution
reduces to the classical beta distribution when ¢ = 0 or A = 1, and reduces to
the generalized beta distribution when ¢ = a + b or when A — 0, with b > ¢. If
a =b =1, we have the cdf

1 [1_ 1
1A [~ 1= (1= Nz’

If X ~GH(a,b,c,\) we have

F(z;e,\) = 0<z<1.

Bla+k,b) oFi(a+k,c;a+b+k;1—X)

E(X* = .
=" Flacarbin

Because it has an additional parameter, it possesses a better flexibility for data
fitting, and it is possible to match the first four moments. On the other hand, it
is a conjugate prior distribution for several likelihoods, including the binomial
case, the geometric case, and the negative binomial.

6.3 Models with Generalized Three-Parameter
Beta Marginals

In this section, we propose distributions whose marginal distributions are of
the generalized three-parameter beta type. Because the generalized three-
parameter beta is related to the classical beta distribution by the monotonic
transformation (6.4), we will use models of distributions whose marginal distri-
butions are of the classic beta type.
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6.3.1 Model based on the Dirichlet distribution

We begin with a Dirichlet distribution for (Z1, Z2). The first model has the
following stochastic representation

A Zo )
X,Y) = , , 6.10
( ) ()\1 +(1-M)Z Ao+ (11— X)) 2 (6.10)
(Z1,2Z2) ~ Dir(6q,09,03), (6.11)

where Dir (61, 62, 63) represents a bivariate Dirichlet distribution with pdf

1 f1-1_6y~1 831
- 1— 2 — 29)%
f(zlv z2) B(al, 02, 03) 21 %) ( %1 Z2) y
defined on the set z; +22 < 1, 21, 29 > 0, where B(61, 03,63) = [[T'(6;)/T' (3 6;).
The properties of the model in (6.10)—(6.11) can be derived using the properties
of the Dirichlet distribution. The joint probability density function is given by

/\(191)\32 m01“1y92_1[1 —z—y+(1- /\1/\2)xy]03—1

H0) = 561,000 1= (L= Al [1 =~ (1 da)ul 7%

(6.12)
with support
0<z,y<I1; z+y—(1—-AA)zy <1.

The marginal distributions of (6.10) are

X ~ 93(01,02+03,)\1),
Y ~ gB(02701+03a)‘2)7

and the conditional distributions are not standard, and are given by (;\1 =
1-X):

1- X\
flzly) = szflg(ﬁﬁs)<

1-Jdy Az A1
1_y‘1_xw>u-xwy’
1- 5\1x Aoy Ag
1—-zx .1—5\2y) (1—Agy)?’

Y
flylz) = ! lmfs(og,og)(

l—=x

which have been written in this way for the sake of easy comparison with the
Dirichlet case. If \; = 1, ¢ = 1,2, f(z|y) and f(y|z) are scale beta distribu-
tions. Note that, because the Dirichlet distribution has negative correlation
and because the marginal transformations in (6.10) are both monotone, the
correlations in the new model are also negative. Figure 6.1 shows the joint pdf,
the contour plot and the marginal distributions with positive skewness. The
graph shows a negative correlation coefficient.



Bivariate Distributions Based on the Three-Parameter Beta Distribution 91
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Figure 6.1: Bivariate Dirichlet-GBeta distribution with pdf (6.12) and
parameters 8; = 05 = 3, 63 = 2, A\; = Ay = 3, and marginals with
positive skewness

6.3.2 Model based on the Sarmanov-Lee distribution

Let fi(z) and f2(y) be univariate pdf with supports A;, and let ¢;(z) be bounded
nonconstant functions such that

/ ¢i(2) fi(2)dz =0, i=1,2.
R

Sarmanov (1966) defined the following bivariate pdf with given marginals f;(x)
and f2(y)

f(@,y) = fi(@) f2(y){1 + wer(x)p2(y)}, (6.13)

where w is a real number such that 1 + wey(z)d2(y) > 0, ¥(z,y). Lee (1996)
studied some properties of this family and proposed a multivariate version. In
our case, f; and f» are of the generalized three-parameter beta distribution
type. In order to specify formula (6.13), we need to determine the mixing
functions ¢;(x) for this type of marginals, and to know the constraints to be
satisfied by w. In this situation, because of A; C [0, 1], it is possible to use
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Corollary 1 of Lee (1996). Consequently, we propose the bivariate distribution:
f(z,958,b, A, w) = fi(z; a1, b1, M) fa(y; ag, ba, M) {1 + wor(z)a(y)}, (6.14)
where

fi(z;aiabia/\i) ~ gB(aiabia)‘i)) i:1727
$i(z) = z—p, =12,

-1 -1 ] { 1 1 }
max , < w < min , ,
{#Wz (1—N1)(1—#2)} pi(l = p2) " (1 — pa)po

and p; and pop represent the mathematical expectations of X and Y, respec-
tively. Several properties of this model have been studied by Lee (1996). For
example, the regression of Y on X is linear and is given by

E(Y|X =z) = p2 + wn(z — p1),

where 1o = E[Y¢2(Y)]. The model presents a range of correlation wider than
the Farlie-Gumbel-Morgenstern model with given marginals. A property of the
proposed model is that it can be expressed as a linear combination of products
of univariate GB and weighted GB as follows:

f@y8bAw) = (1+wpps)fi(z)f2(y) + wepe fi'(2) 7' (y)
—wppip f1(2) f3'(y) — wprpe f1 () f2(y),
where f’(2) = zfi(2)/us, i = 1,2, represent the weighted version of the GB

distribution. With some changes, this model can be adapted to obtain a two-
dimensional distribution with marginals of the type (6.8).

6.4 The Generalized Three-Parameter Beta
Conditionals Distribution

Let (X,Y) be a two-dimensional random variable with support on the unit
square. We want to consider all possible joint distributions for (X,Y) with the
following properties:

(a) For each y € (0,1), the conditional distribution of X given Y = y is
a generalized three-parameter beta distribution with parameters a;(y),
b1(y) and A1(y), which may depend on y.

(b) For each z € (0,1), the conditional distribution of ¥ given X = z is
a generalized three-parameter beta distribution with parameters aqs(x),
ba(x) and Ag(zx), which may depend on z.
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Thus, we seek the most general random variable (X,Y’) such that the condi-
tional distributions satisfy

XY=y ~ GB(ai(y),bi(y), (), (6.15)
YIX=2 ~ GB(ax(x),ba(x), A2(z)), (6.16)
where a;(z) : {0,1] — R™, b(z) : [0,1] = R* and \(z) : RT — R are
unknown functions. Now, writing the density as product of marginals and

conditionals, we obtain the functional equation

L M@eOne ~ (1 g@yeene ¢
where
_ alyfr(y)
“) = Blar(y), biv)
Ao(z) fx ()
uz(x)

B(az(x), ba(z))’
Milz) = 1-=X(2), i=1,2,

and fx(x), fy(y) represent the marginal densities. The solution of the func-
tional equation (6.17) is not trivial. In this paper, we consider two important
particular cases. The first case corresponds to constants and known A;(u) = A;
for ¢ = 1,2. In this case, the generalized three-parameter beta distribution
belongs to the two-parameter exponential family and so we can use some well
known results. The second case corresponds to the choice a;(u) = a; and
bi(u) = b;, Yu € (0,1), 7 = 1,2. In this case, the generalized beta distribution
does not belong to the exponential family, but (6.17) becomes a Stephanos-
Levi-Civita-Suto functional equation type, that can be easily solved. In the
following sections, we will study these two cases.

6.4.1 The Generalized Beta conditionals distribution with
Ai(+) constant

If A is known and if we write (6.1) in the form
f(z;a,b) x z71(1 — z)Lexp [a log{z/(1 - Az)} + blog{(1 — z)/(1 - 5\13)}} ,
we have a two-parameter exponential family, and we can make use of a theorem

due to Arnold and Strauss (1991), dealing with bivariate distributions with
conditionals in prescribed exponential families. Then, we consider two different



94 J. M. Sarabia and E. Castillo

exponential families of densities {fi1(x;8) : § € © C ]Rll} and {fo(y;7) : T €
T c R®}, where

2
fi(z;8) = r1(z)B2(6) exp {Z 01"111'(1')} (6.18)
=1
and ,
f2(y; 7) = ra(y)Ba(z) exp {Z Tj‘]2j(y)} : (6.19)
j=1

The class of all bivariate pdf f(z,y) with conditionals in these prescribed ex-
ponential families can be obtained as follows.

Theorem 6.4.1 Let f(x,y) be a bivariate density whose conditional densities
satisfy

f(zly) = fi(=z;8(y))
and

f(ylz) = foly; ()
for every x and y for some functions 8(y) and 7(z), where fi and fo are as
defined in (6.18) and (6.19). It follows that f(x,y) is of the form

f(z,y) = r1(@)ra(y) exp { ¢ (2) M P ()" } (6.20)
in which
V(@) = 1, qu(2),...,06())
and
D) =1,qa), - -, 0261))

and M is a matriz of parameters of dimension (€1 + 1) x (€2 + 1) subject to the
requirement that

/ /R  fla,y)dady = 1. (6.21)

The term €™ is the normalizing constant that is a function of the other m;;’s
determined by the constraint (6.21).

Note that the class of densities with conditionals in the prescribed family
is itself an exponential family with (¢; + 1) x (¢3 + 1) — 1 parameters. Upon
partitioning the matrix M in (6.20) in the following manner

meo | mor -+ Mog

M= | Mo , (6.22)

—_ _+_ —_ _— [
l
| M
|

mye,0
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it can be verified that independent marginals will be encountered iff the matrix
M = 0. The elements of M determine the dependence structure in f(z, ).

. Now, we may apply Theorem 6.4.1 to the case of the generalized three-
parameter beta distribution, where (6.18) and (6.19) are of the form (6.1). In
this case, we have {1 = f5 = 2 and the functions 1, r2, ¢11, g12, g21, and g2 are
of the form (5\z =1-X;,1=12):

ri(z) = {z(1-2)}"'I1(0<z<1),
ra(y) = {y(1-y} ' 10<y<1),
gu(z) = log{z/(1- Az},
qua(z) = log{(1 —z)/(1 - M=)},
@i(y) = log{y/(1- )},

goa(y) = log{(1-y)/(1-dey)}.

Finally, substituting these functions in the general expression (6.20), we obtain
the class of bivariate densities with generalized three-parameter beta condition-
als (assuming constant \;), which is given by

f(z,y) < fx(z) fy (y) exp{u(z, y)}, (6.23)
where
X ~ GB(mi, mao, M),
Y ~ GB(mip, mao, A1),
and

u(z, y) =mi1q11(2)g21(y) +mi2q11(x)g22(y) +ma1g12(2) g21 (¥) +ma2q12(x) g22(y)-

The parameters mqq, mi2, Mo1, and mog are the dependence parameters. In
order for it to be a proper density (integrate to 1), we need to impose the
following restrictions to their parameters:

m10, M20, Mo1, Moz > 0, (6.24)
mi1, M2, Ma1, M2 < 0, (6.25)
A1, Ag > 0. (6.26)

If we denote

a1(y) = mao+mulog{y/(1— Aay)} + maalog{(1 —y)/(1 - day)},
bi(y) = mao+malog{y/(1— Aay)} + maglog{(1 —v)/(1 - day)},
az(x) = mor + ma1log{z/(1 — M\z)} + ma log{(1 — z)/(1 — M)},
ba(x) = mog + mizlog{z/(1 — A1z)} + maalog{(1 — z)/(1 — M)},
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we have
XY =y ~ GB(ai(y),ba(y), M),
YIX=2 ~ GB(az(x),bs(x), A2),
and the marginal densities of X and Y are given by
g™o~H(1 —z)™0 ! B(as(z), ba(2))
X )
= (1= Najmorma T ym)

ym(]l_l(]. _ y)moz—l . B(ai(y), h1(y))
1 — (1 _ AQ)y]m01+m02 A(Ill(y) .

fx(z)

exp(mgo) X [

frv) = eXP(moo)X[

Note that the marginal distributions are not generalized three-parameter beta
distributions, except in the independence case. If we define two auxiliary ran-
dom variables

Z1 ~ GB(mig, mag, A1)
and
Zy ~ GB(mo1, mp2, A2),

we can then write the normalizing constant of two alternative forms:
exp(moo) = {B(mao, ma0) E[Blaz(Z1), ba(21))/ 35"} AP0,
= {B(mo1, mo) E[Bla1(Z2), by(22))/X7 )}/ 05027

The moments of X and Y can be written in terms of expectations of the random

variables Z; and Z,. Then, for n = 1,2,..., we have
Bxmy - EZIB(@(Z),b(Z0) 25 ™)
E(B(ay(Z), ba(Z1)) /224D
n ai(Z:
pyny = ElZBB(a(Z) (Z) X))

E[B(ay(Z2), bi(22))/27" ]
The modes of (6.23) are given by the solution in (z,y) to the system:

fx () + fx(2){g21(y)[m11g11 () + margiz ()]
+g22(y)[ma2q11 () + maagra(2)]} = 0,
fr(y) + fr ) {au(z)[mi1g31(y) + mi2ga2(y)]
+q12(2) [Mm21921 (y) + ma2gao ()]} = 0.
It seems that one, two and four modes are possible. Figure 6.2 shows a joint
pdf with two modes. Multimodality appears in other models with conditional
specification; see Arnold, Castillo and Sarabia (2000, 2001). Some simplified

submodels can be obtained invoking symmetry, and/or exchangeability assump-
tions.
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Figure 6.2: Bimodal distribution with generalized three-parameter beta
conditionals

6.4.2 The Generalized Beta conditionals distribution with
constant q;(-) and b;(-)

Assume now that a and b are fixed and known parameters, and that A is un-
known. In this case, (6.1) does not belong to the exponential family. Then we
seek the more general bivariate random variable, such that their conditional
distributions are of the type

X|Y:y ~ gB(al,bl,)q(y)), (6.27)
YIX =T gB(az,bg,)\z(w)). (6.28)

Then, the functional equation (6.17) becomes

A(y)@z (1 - 2"y (y) _ Ae(2)?2y™ (1 - y)bz_le(-’”)‘ (6.29)
B(ay, b)) {1 = M (y)z}arths B(az, b2){1 — Ao(z)y}ozttz

Denoting

_ wal_l(l _ I)bl—l
ui(z) = Blay, b)a(@) fx (@)’ (6.30)
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y (1 -yt

U , 6.31
W = B N ®) (631
we obtain the functional equation

{1-M(y)atortt {1 - h(a)y}ortts’
which is solved in the following lemma.

Lemma 6.4.1 Under constraint a; + by = ag + b, the solutions of equation

(6.32) are:
ui(@) = (mag — mapz)® (6.33)
mi1 — ma1y
up(y) = (mu — may)?, (6.35)
So(z) = Dt masr (6.36)

3
mi11 — m12®
where m;; are constants.

PROOF. Raising to the power 1/(a; + b1) = 1/(az + b2) both sides of the
equation and denoting v;(x) = u;(x)!/(%+%) we obtain the functional equation

v (z) — vi(2) A (2)y — v2(y) + va(y) M (y)z = O,

which is a functional equation of the form

k

> filz)gi(y) =0,

i=1

which is a functional equation of the type Stephanos-Levi-Civita-Suto. The

solution of this equation appears in Theorem 1.3 on page 13 in Arnold, Castillo
and Sarabia (1999). n

The joint and the marginal pdfs are obtained from (6.29)—(6.31) and (6.33)-
(6.36), and are given by

(L'al—l(]. _ m)bl—lyag—l(l _ y)a1+b1—a2—1

x X )
f(@y) (m11 — m12T — Mo1y — magzy)artht
f (x) xal_l(l _ w)b1—1
x
X (m11 — mygz)@thr—=92{my; — my; — (12 + moz)z}o2’
yaz—l(l _ y)a1+b1 —ag—1
fr(y) «

(m11 — ma1y)br{mi1 — miz — (m21 + ma2)y}*’

Their properties are studied in the following section.
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The basic model

Without lost of generality, we assume m;; = 1. Then, we work with the joint
pdf (0 <z,y <1)
l.a1—~1(1 _ .’E)bl_ly“?'l(l _ y)a1+b1—a2—1

(1 — myaz — ma1y — mogzy)@rth

flz,y)

(6.37)

whose conditional distributions are (6.27) and (6.28), with

1 —myg — (mao1 + mao2)y

/\l(y) = 1 — ma1y )
1 —mg1 — (mig + ma2)x
)\2($) - 1-— mi2& ’

and the marginal pdfs are:

m111—1(]_ _ (E)bl_l
(1 — magz)n+bi—a2{] — my; — (M2 + maog)x}o2’
ya2_1(1 _ y)a1+b1—a2—1

(1 = ma1y)t1{1 — mig — (ma1 + maog)y}®’

fx(z) «

fry) «

In general, the marginals are not generalized beta distributions. The parameter
constraints for it to be a genuine joint density are

al,a2,b1 >0, a1 +by—ag >0,
mi2,M21 < 1, mya+ mor +moz < 1.

The new model (6.37) includes the following important particular cases.
e The independence case:
miama; + mag = 0.
In this case, the marginals are generalized beta distributions.
e The Libby and Novick (1982) model, which corresponds to the choice
miz + mgy +moz = 1.

This model presents generalized three-parameter beta marginals and
conditionals.

e The Olkin and Liu (2003) model, which corresponds to the choice
miz =mg =0, me =1

This model presents classical beta marginals and generalized three-para-
meter beta conditionals.
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o Gauss Hypergeometric Model. This model corresponds to the choice
miz =mo; =0
and contains the Olkin and Liu (2003) model that will be studied in the
next section.

A Gauss hypergeometric marginals model

If we choose myy = mi2 = 0, we obtain a model that depends on four parame-
ters, and its joint pdf is
a1—1(1 . Z')bl—lyaz—l(l _ y)al—l—bl —ag—1

(1 — may)arth ’
(6.38)

T
f(xv Y; a1, a2, b17 m) = n(ah az, blv m)

where the normalizing constant is given by
n(ay, ag, by, m)_1 = B(a1, b1)B(ag, a1 + by, a2) 2 F1(a1,az;a1 + by;m). (6.39)
For (6.38) to be a genuine probability density function, it is necessary that
ai,bi,a1+b1—-a3 >0, m<1.

This model contains as a particular case the Olkin and Liu (2003) proposal, for
m = 1. This model satisfies signp(X, Y) = sign(m). Consequently, if0 < m <1
we have positive correlation and if m < 0, negative correlation. The marginal
distributions are of the Gauss hypergeometric type and are given by

:L.a]—-l (1 _ iE)bl—l

fx(x) = B(ag, a1+ by — az2)n(as, az, by, m)

(1= ma)e
_ yL(1 - y)mth—e-]
fr(y) = Bla1,bi)n(as,a2,b,m) (1 - my)n

Figure 6.3 shows the bivariate pdf and contour plots corresponding to the model
with Gauss hypergeometric marginals with parameters a; = as =, by = 4, and
m = —3 and m = 1/20.

6.4.3 Dependence conditions

In this section, we study some dependence conditions corresponding to the
conditional models. A distribution is said to be positively ratio likelihood de-
pendent (or positive quadrant dependence) if the density f(z,y) satisfies the
condition

f(x,v1) f(z2,42) > f(z1,y2) f(22, 1) (6.40)
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).4 0.6 0.8 1

Figure 6.3: Bivariate pdf and contour plots corresponding to a model with
Gauss hypergeometric marginals with parameters a; = as =, by = 4, m = -3
(upper) and m = 1/20 (lower)

for every =1 < z2, 11 < y2 in S(X) and S(Y), respectively; see Barlow and
Proschan’s (1981, Theorem 5.4.2). By substituting the general pdf (6.20) in
(6.40), we obtain the condition

8% (1) = § (@) MIZP (31) — I (92)] 2 0. (6.41)

In the case of model (6.23), it is not possible to obtain a general condition
about the parameters m;; for (6.41) to hold. In general, it is quite possible to
encounter both positive and negative correlations for this model. With respect
to model (6.37), we can obtain more explicit results. Considering the function
9(y) = Pr(X > z|Y = y), it can be proved that the sign of its first derivative
depends on the sign of mjamg; +mgz. Thus, according to Barlow and Proschan
(1981), we conclude that X is stochastically increasing or decreasing with Y.
So, for values of m;; such that the correlation coefficient exists, we have

sign p(X,Y) = sign(miama; + masg).

Scalar measures of dependence such as the correlation coefficient, do not always
tell everything of the dependence properties of a bivariate distribution. The
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local dependence function [see, e.g., Holland and Wang (1987) and Jones (1996)]
defined by

6%log f(,y)

v(z, y) = ~oz0y

gives more detailed information. For the joint pdf (6.23), the local dependence
function is

(6.42)

B ag — a1T — azy + azTy
M@Y= = T = A= e L= = al]

where
ag = mii,
ar = mi1+ Aimal,
az = m1 + Aamyo,
a3 = my1+ Aima1 + damiz + A1 Aamae.

Similarly, the local dependence function of the model (6.37) is given by

~(z,y) = (a1 + b1)(miamear + ma2)
Y (1 — myoz — mo1y — magxy)?’

Note that the local dependence function has the same sign as the correlation
coefficient.

6.5 Bivariate Distributions with Gauss
Hypergeometric Conditionals

In this section, we obtain some interesting classes of bivariate distributions with
Gauss hypergeometric conditionals of kind (6.8). We seek the most general
bivariate density of (X,Y) such that the associated conditionals satisfy

XIYzy ~ gH(ahbl)C))‘l(y))v
YIX:—.'E ~ gH(ag,bg,C,/\g(fE)),

where A;(2), i« = 1,2, are unknown functions and now the parameters a;, b;,
it = 1,2 and c are fixed and known. Defining

_ :1:“1_1(1 _ fE)bl_l
R o S W F )y pu (6.43)
y2 (1 —y)=

wlW) = e M) (6.44)
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we have the functional equation

u(@e _ up(y)te
I-{1- M}z 1-{1-2(z)}y

whose solution is given in Lemma 6.4.1. Then, the joint pdf becomes

_ . . :L'al_l(l _ x)bl—l
f(z,y) = n(a1,bi,c \(y)) - :\1(y)}c
xa1~1(1 _ w)bl—lyag—l(l . y)b2—1
{1 - M(y)}eua(y)
:Ual_l(l _ x)bl—lyag—l(l _ y)bz—l

(m11 — miox — mo1y — mogzy)°®

fr(y)

(6.45)

Using (6.43), we get the marginal distributions as

.’130'1_1(1 _ .’II)bl—l

n(ag, by, ¢, A2(z))u1(x)

fx(z) =

xa1—-1 (1 _ x)bl_l

o 2F1(a2’ c;az+ by 1 — )\1(33)) (mll _ mlzw)c

and
y2 (1 -yt
(m11 — ma1y)°

Jr(y) o 2Fi(a1, ¢ a1 + by 1~ Ao(y))
For this family, the local dependence function (6.42) is

c(magmey + mag)
1 — m1ax — ma1y — maxy)?

v(z,y) = (

which shows that the sign of the correlation coefficient is determined by the
sign of c(miama1 + mag).

6.5.1 A flexible model

A simple and flexible model with six parameters is

.’L‘al_l(l _ m)bl—lyarl(l _ y)bg—].
(1 — may)*

f(z,y) =n(a,b,c,m) , (6.46)

which has been obtained by letting m1; = 1 and mi2 = mg; = 0 in (6.45). The
normalizing constant is given by

n(a,b,c,m)”! = B(ay, b1)B(ag, b2) 3F2({a1, ag, c}; {a1 + b1, a2 + b, c};m),
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where ,Fy(g; b; z) denotes the generalized hypergeometric function. The marginal
distributions are

fX(IL') = B(a27 b2)n(a, b7 c, m)xal_l(l - m)bl_l 2F1 (a27 C;az + b2; mm),
fr(y) = Bl(a1,b)n(a,b,c,m)yy® (1 —y)»27! yFi(ay, ¢; a1 + by; my).

This model admits positive correlations for 0 < cm < 1 and negative correla-
tions for em < 0. Several moments can be obtained from

n(a + r1,ag + ro, by + 81, be + s2, ¢, m)

E[Xrl(l _ X)slym(l _Y)32] = n(a1 as, by, ba, c m)

?

(6.47)
and its local dependence function is

cm

v(z,y) = 1= may)?

6.6 Other Bivariate Distributions with
Specified Conditionals

By means of Jacobians, we can obtain new families of two-dimensional distribu-
tions whose conditional distributions are of certain types. Consider a bivariate
distribution with joint pdf fz, z,(21,22), with conditionals of the generalized
three-parameter beta type. Then, the bivariate random variable (X, X2) with
joint pdf

frx(one) = fuzn (1o T 1
XX SR T IB B\ T 0 T+ 22) (L +21)2(1 + 22)2
has conditional distributions of the Pearson type VI, as in (6.6). For example,
if we begin with the bivariate distribution (6.38), we obtain the distribution
with Pearson type VI conditionals

a1—1 _.az2—1
Iy Ty

{1 + 1 +x2+ (1 — m)xlxg}al*'bl '

le;X2(1"17 2172) = n(a’lya@, bl? m)

This model was considered by Castillo and Sarabia (1990). In this way, we can
obtain distributions whose conditionals are of the type log F. Again, using the
basic distribution (6.38), we obtain the class of distributions

e?171 +agxs

{1+ e™ + e%2 + (1 — m)errtz2}artby’

Fx1,%,(21, x2) = n(a1, az, b1, m)
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6.7 Application to Bayesian Inference

In Bayesian inference, when a bivariate prior distribution in needed, a family of
distributions that can model both positive and negative associations and also
allow one to easily obtain the posterior density is usually preferred. Correlated
binary data occur in many applications. In the simplest case, assume that our

model for the data is formed by two independent binomial random variables,
with likelihood

£(p1,p2) x pT* (1 — p1)™ "1 p32(1 — po)"2 2. (6.48)

For the prior specification of (p;, p2), note that a natural conjugate prior for p;,
assuming that pp is known, is a beta prior or any beta extension. The same is
of course true for ps, assuming p; is known. It is then natural to look for the
most general density for (p;, p2) whose conditionals satisfy

pilpe ~ GB(a1(p2), bi(p2), A1),
p2lpr ~ GB(az(p1), ba(p1), A2) (6.49)

or

b1 lp2 ~ gH(alv b, c, /\1(1)2)),

p21p1 ~ gH(GQ, b?) ¢, )\2(}71)) (650)
that is, a conditionally conjugate prior in the terminology of Arnold, Castillo
and Sarabia (1998, 1999).

The prior distributions corresponding to the specifications (6.49) and (6.50)
are given by (6.23) and (6.46), respectively. Both models can be used as con-
jugate prior distributions for the likelihood (6.48). Both priors allow us to
accommodate dependent as well as independent prior beliefs. In the model
(6.49), we need the elicitation of ten hyperparameters, and in the (6.50) we
need only six. When combining (6.49) or (6.50) with the data, it is evident
that only four of the parameters are affected by the data. Specifically, if

(p17 PZ) ~ BgHC(a'h b1> az, b27 c, m)7
where BGHC (a1, by, ag, be, ¢, m) denotes the joint pdf (6.46), then
(p1,p2)|z ~ BGHC (a1 + z1,b1 + ny — x1, a2 + T2, by + na — 22, ¢, m).

If we use the prior (6.49) or (6.50), the resulting posterior density is readily
implemented using the Gibbs sampler; for example, with model (6.50), we have

pl(p2,2) ~ GH(a1+ z1,b1 +n1 — z1,¢,1 — mpa),
p2|(p1,2) ~ GH(ag+ z2,b2 +ng —z2,¢,1 — mpy).



106 J. M. Sarabia and E. Castillo

If we are interested in the ratio of the corresponding odds ratios, that is, in the
cross-product ratio

_pn/(l—p1)
p2/(1—p2)’

and (p1,p2) is distributed as in (6.50), the mean value according to formula
(6.47) is

®(p1,p2)

n(a; + 1,a2—1,b; — 1,bo + 1,¢,m)
n(al’ a2, bl’ b?a ¢, m) -

E[®(p1,p2)] =

6.8 Conditional Survival Models

In this section, we consider new models for the generalized three-parameter
beta distribution with conditional specification, by conditioning on events of
the type {X > z} and {Y > y}. This problem was considered initially by
Arnold (1992). We study the case corresponding to (6.2). Then, let (X,Y) be
a two-dimensional random variable with support [0, 1] x [0, 1] such that for each
y €(0,1),

b
Pr(X>x|Y>y)={1f—‘”} , 0<z <1, (6.51)
1-M(y)z
and for each z € (0,1)
1 b
1= Xo(z)y

The corresponding joint survival function compatible with (6.51) and (6.52)
must be of the form

(1-2)°(1-y)°

Pr(X >z,Y >y) = '
(X >z,Y >y) (14 A2 + A21y + Ag2wy)b

(6.53)

Note that X ~ GB(1,b,1+ A12) and Y ~ GB(1,b,1+ A2;). Consequently, this
model presents marginal and conditional distributions of the same kind. The
independence case corresponds to the choice Aga = A12A21. This type of models
can be viewed as having proportional hazard functions. From model (6.53), we
can build a copula taking b = 1 and A2 = A2 = 0. After some computations,
we obtain
zy(l — A+ Az + Ay)
14+ dzy ’

Ci(z,y) = (6.54)
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with 0 < A < 1. The Spearman correlation coefficient of (6.54) is

ps) = 12 [ [ 10r(@,0) - abasay
= % {%(12 — M)A —4(1+ A)log(1+ A) + 2(1 — X)Polylog(2, —)\)} ,

where Polylog(n, z) represents the nth polylogarithm function of z, and the
Kendall’s 7 coefficient is

) = 1_4/ /13@(36:0 5C,\($ Y) 4 dy

= 1- 3—)‘—5 {1+ 2)?10g(1 +,\) A}

6.9 Multivariate Extensions

A straightforward k-dimensional extension of Theorem 6.4.1 can be obtained.
It may be used to generate k-dimensional joint densities with generalized beta
conditionals. We consider a k-dimensional random vector X = (Xj,..., Xy)
and introduce the notation X (i) to denote the vector X with the 7th coordinate
deleted. An analogous notation is used to define z(;). We are then led to

consider joint densities for X for which, for each ¢ and each z; € R,
Xil X = zy ~ GB(ai(zgy), bi(zy), M), 1=1,2,...,k

for some functions a;(-), b;i(-) and A;(+), 2 = 1,2,..., k. The resulting class of
k-dimensional generalized three-parameter conditional is of the form

fx(@) = {H ri(z:) ] exp{jj SIS [H 065 (; ”

11=0¢ 72 =0 ‘lk“O

where
ri(z;) {z;(1—z)}7Y, i=1,2,...,k
qio(.’l,‘i) = 1, 7= 1 2 k
Qil(-ri) = log{wz/( zxz)}, i=1,2,...,k

and where my is a function of the other m;, chosen so that the density integrates
to 1. There are constraints on the m;, needed to ensure that the conditional
densities are proper beta densities.
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A Kotz-Type Distribution for Multivariate
Statistical Inference

Dayanand N. Naik and Kusaya Plungpongpun
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Silpakorn University, Bangkok, Thailand

Abstract: In this chapter, we consider a Kotz-type distribution (of a p-variate
random vector X') which has fatter tail regions than that of multivariate normal
distribution, and its probability density function (pdf) is given by

FmE) =¢ | D72 exp {—[(x — p)'S7(x — w3},

4
where p € %P, X is a positive definite matrix and ¢, = 2—25?—2-; We review
m2(p

various characteristics and provide a simulation algorithm to simulate samples
from this distribution. Estimation of the parameters using the maximum likeli-
hood method is discussed. An interesting fact is that the maximum likelihood
estimators under this distribution are the generalized spatial median (GSM)
estimators as defined by Rao (1988). Using the asymptotic distribution of the
estimates, statistical inferences on the parameters of the distribution are illus-
trated with an example.

Keywords and phrases: Generalized spatial median, Kotz-type distribution,
simulation algorithm, simultaneous confidence intervals

7.1 Introduction
Our focus in this chapter is the probability density function
- 1
fomE) = cp | B3 oW B 0o e g B opd,  (1.0)

where ¢, = f%. This pdf of p x 1 random vector X has appeared in the

literature in different forms. For example, it is a special case of pdf proportional

111
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° exp {~I(x - /A~ ]F},

where A is p. d. and r > 1 [Simoni (1968)]. Further, it is a special case of an
elliptically symmetric distribution denoted by ECp(u, X, g), having the pdf

F(x) = 672 g[(x — p)'=" (x — )],

where g is a one-dimensional real-valued function independent of p and ¢, is a
normalizing constant. The function g is usually referred to as density generator.
See Muirhead (1982) and Fang et al. (1990) for details on elliptically symmetric
distributions. For the distribution in (7.1), g(t) = exp{—v/t}.

Kotz (1975) and Fang et al. (1990) studied a special class of elliptical distri-
butions and named this class as Kotz-type distributions. If X ~ ECp(p, X, g)
and the density generator g is of the form g(u) = c,u™ Lexp(—ru®), r,s>
0, 2N +p > 2, then we say that X possesses a symmetric Kotz distribution.
The pdf of X is given by

o) = | 177 [(x—p) S x—p)]N Vexp {—r[(x—p)'= " x—p))*},

where ¢, = ﬁéﬁ‘—z) rP 32 See Nadarajah (2003) for a recent exposition
and applications of Kotz-type distributions. The pdf (7.1) is obtained when
N=1,s=%andr=1.

Kano (1994) and Gémez et al. (1998) studied a special class of elliptical
distributions called power exponential distributions. A random vector X is said
to have a p-dimensional power exponential distribution with parameters p, X
and 3, denoted by PE,(u, X, 3), where p € RP, ¥ is a p x p positive definite
symmetric matrix and 3 € (0, 00), if its density function is

00,1, 2, ) = o B exp { =S - A x- )

where ¢, = —prﬁ)ﬂﬂ—. See Lindsey (1999) for an application of power
BT g2t

exponential distributions to analyze repeated measures data. For 3 = %, the
distribution (7.1) is obtained after adjusting the scaling to absorb the 1/2 in
the exponent.

The distribution (7.1) has heavier tail regions than the multivariate normal
distribution and hence can be useful in providing robustness against “outliers”
(Lindsey (1999)]. The pdf in (7.1) can be written as a normal mixture; see
Kariya and Sinha (1989) and Kano (1994). For p = 1, the pdfin (7.1) reduces to
that of a double exponential distribution. Hence, we may treat this distribution
as a multivariate generalization of double exponential distribution. However,
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this is not a multivariate double exponential distribution because its marginal
distributions are not double exponential distributions. See Kotz et al. (2001)
for several multivariate double exponential (Laplace) distributions.

In the following subsections we will provide various characteristics of a Kotz-
type distribution, such as moments and the marginal and conditional distribu-
tions. A simulation algorithm to simulate data from this distribution is provided
in Section 7.2. Estimation of parameters using maximum likelihood method will
be discussed in Section 7.3. We show that the MLE of the location parameter
under the assumption of a Kotz-type distribution is same as the generalized
spatial median (GSM) defined by Rao (1988). Multivariate analysis of variance
is performed in Section 7.4 and illustrated with an example.

7.1.1 Moments and other properties

In the following, we provide the expected value, variance covariance matrix, and
Mardia’s measures of skewness and kurtosis [Mardia (1970)] of the distribution
given in (7.1) using some formulae in Baringhaus and Henze (1992).

The expected value, E(X) = p, the variance covariance matrix, Var(X) =
(p+ 1)X, Mardia’s multivariate skewness measure, B1p = 0, and Mardia’s mul-

tivariate kurtosis measure, 5, = E p-({-p2+1)+3 . Suppose xi,...,X, are a set of

sample multivariate data. Then, Mardia’s multivariate skewness and kurto-
sis measures are defined, respectively, as b1, = n 2 Y% Y7, g5 and by, =
n~! ?:l 91121:7 where gij = (xi - i),s';l (xj - i)’ L,j=1,...,nX= % in=1 Xis
and S, = 13" (x;—%)(x;—%)'". The asymptotic distribution of Mardia’s skew-
ness measure, by, under any elliptically symmetric distribution, is a weighted
sum of two independent x? random variables [Baringhaus and Henze (1992)].

That is,

D
nblp quf, + aQXi p—1)(p+4) » (7'2)
6

where oy = %[ﬁ% —2my+p(p+ 2)] and az = ﬁﬁ%??‘ﬂij' For the Kotz-type

distribution in (7.1), my4 = ﬂ’ﬁ#}, and mg = 22 (J; i)l(%’?H)(p +5) " Also,

from Henze (1994), the asymptotic distribution of Mardia’s kurtosis measure,
bop, under any elliptically symmetric distribution, is

Va(by = pp+2)(p+3)/(p+1)) 2 N(O, 7, (73)

2
where 72 =rg —r? + %m(% —rg). For the distribution in (7.1),

1
vp+1

plp+1)(p+2)(p+3)---(p+(k-1))
(p+ 1)/ ’

Tk = ( )*E[R" = k=1
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7.1.2 Marginal and conditional distributions

Suppose X is partitioned as X = (X{;), X(y))'; where X (1) = (z1,...,7x),
X(2) = (Tk+1,---,Tp)" With k < p and similarly, p = (“21)7“1(2))I with p(qy =
(1, ..., pk) and pgy = (pk41, - - -, p1p)’. Further suppose X is accordingly par-

titioned as
Y1 X
Y= ,
( Y01 oo )

where X;; is a k x k p.d. matrix and Xy is a (p — k) X (p — k) p.d. matrix
and X9 = X5;. Then, X4y has an elliptically symmetric ECi(t(1), £11, 91)
distribution with

- 1 4 -
gq1(t) = t%k/ W ¢! —o.;)%’c e VE qu.
0

The marginal characteristics of X1y are E(X(y)) = p), Var(X(y) = (p+
1)Z11, Bip(X (1)) = 0, and Bap(X (1)) = HEL2p+3),
The conditional distribution of X () given X (1) is elliptically contoured

ECy_k(p91, X221, g2.1), where

Bo1 = Mt 22121_11("(1) — K@)
To1 = X — Zg¥7'T10, and

_ 1
g21(t) = exp {—[t+ (xq)— M(1))’2111 (xq) — pa))?}

7.2 An Algorithm for Simulation

In this section, we provide an algorithm for simulating data from the distribu-
tion in (7.1). Naik and Patwardhan (1991) have used a method for simulating
data from a bivariate Kotz-type distribution. We shall use a similar method
to generate a random sample from a p-variate Kotz-type distribution. The
proposed algorithm is given as follows.

Step 1. Simulate y’ = (y1,. .., yp) having the density
) = ¢ exp{-V¥y},

where —oo < y; < 00, and ¢, = fﬁ—z—). Note that f(y) is the standardized
mZ0(p

version of Kotz-type distribution given in (7.1) and also E(y) = 0 and Var(y) =
(p+ I,
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The simulation of y is achieved by using the polar coordinate transformation
as follows:

y1 = Rcost
y2 = Rsin#fcosby

Yp—1 = Rsinf;sinés .- -sinfd, 5 cosb,_1
yp = Rsinfysinby---sinf,_osinf, 1,

where R = /y'y, §; € [0,m)for 1 < j <p-—2 and 6, € [ 0,27). The
Jacobian of the transformation is RP~! Hg’;f sinP~7=1(9;). For the pdf f(y),
R ~ G(p,1). See Koutras (1986) for the distribution of the quadratic form
under an elliptical gamma law.

For an odd p, Rand 6§;, j=1,...,p—1, are independently distributed
with the probability density function given by

1

g(r) = ) rP~1e=", thatis, R ~ G(p,1) and
o) = 52 (B s,
g(2) = ?%%1—!)]!2@’"3(92),

o6y = D5 (T3] st
o(6) = 2—5% sin? (05,
9(0p-2) = 3sin(ly2),
901 = 5.

For an even p, Rand §;, j=1,...,p—1, areindependently distributed
with the probability density function given by

1

g(r) = m rP7le™ and
p—2 |(ES2)! 2
g(61) = 27 [((1)—2—)5)]_' sin”~2(6;),
(p-5)---3-1

g(62) = p—3[

5 ] sinP~3(6,),

(p—4)---4-2
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o4 (2501

g(03) = oo sin”~*(63),

o) = 157 [EZ0E0] swentien),
9(Op—2) = %Sin(%—z),

g(op—l) = %

Of course, any uniform random number generating algorithm can be suc-
cessfully used with the inverse cumulative distribution function to generate
pseudo-random numbers from a nonuniform distribution.

To simulate 8§ ~ g¢(8), we use the bisection method, which is one of the
popular numerical inversion algorithms. See Devroye (1986) for details.

Algorithm: Find an initial interval [a, b] to which the solution belongs.

REPEAT
g e
IF G(6) <U THEN a + 6
ELSE b — 6
UNTIL b—a <26
RETURN 6
Here, 6 > 0 is a small number.

Step 2. Obtain x’ = (21, ...,%,) having the distribution in (7.1) by making
the transformation x = T'y + p, where g’ = (u1,...,4p) and I'T' = X. Note
that E(X)=p and V(X) = (p+ 1)Z.

For example, to generate a 5-variate (p = 5) random vector x’ = (z1, . .., Z5)
having the distribution in (7.1), first we simulate y’ = (y1,...,ys) which has
the density

fly) = 6—41; eXP{— y’y}, — 00 <y; < 0,
where
y1 = Rcost,
y2 = Rsiné; cosbs,
ys = Rsin6; sinfy cosbs,
y4 = DRsin6;sinf,sinb;cosby,
ys = Rsin6;sinfysinfssinby,

and R and §; are independently distributed with

1
g(r) = 21 rie7", thatis, R ~ G(5,1) and
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3 .
g(01) = Zs1n3(01),

9(8y) = %sin2(02),
g(03) = %Sinws),
g(0s) =

1
o

where 6; € [0,7) for j = 1,2,3 and 64 € [ 0,27). Then, we obtain x by making
the transformation x = I'y + p for fixed g and T.

7.3 Estimation of Parameters

Many researchers have discussed statistical inference for elliptical distributions.
For example, see Fang and Anderson (1990) and the references therein. How-
ever, the maximum likelihood theory developed in Fang and Anderson (1990)
assumes that the samples x3,...,X, have the same mean vector p and scale
matrix ¥ and the joint distribution of all the samples is elliptically symmetric.
In fact, in this case, the maximum likelihood estimators of p and ¥ are essen-
tially the same as those in the multivariate normal case [see Fang and Anderson
(1990, Theorem 1, p. 205)].

Several authors have discussed statistical inference for certain elliptical dis-
tributions. For example, Lange et al. (1989) used multivariate t-distribution
and maximum likelihood method to analyze certain regression and repeated
measures data, and Lindsey (1999) used multivariate power exponential dis-
tribution to analyze certain repeated measures data. In each case, numerical
algorithms were used to find the estimates of the parameters. See Naik et
al. (2002) for a discussion of likelihood based inference for AR(1) and MA(1)
models under elliptical distributions. In the following we discuss estimation of
parameters using maximum likelihood methods when an iid sample from (7.1)
is available.

Suppose X1, . . ., Xy, is a random sample from Kotz-type distribution in (7.1).
Then the log-likelihood function is given by

n
n e
In L(1,%) = nlnc— 7 |z Y Vi — ) =N x - ).
i=1
The MLEs of i and 3 are obtained by minimizing

gln |3 | +Zn: V(i — p)S7 (i — o) (7.4)

simultaneously w.r.t. ;¢ and X.
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When ¥ = I, the solution to the above problem or the MLE of p is the
spatial median introduced by Haldane (1948) and for general X it is generalized
spatial median introduced by Rao (1988) and studied by Naik (1993).

7.3.1 Generalized spatial median (GSM)

In this section, we consider the estimation of the location parameter . Haldane
(1948) defined the spatial median of multivariate data vectors xi,...,X, as a
point (vector) i € RP that minimizes

}E:sz ;HI-ZZI\/ —p)'(xi — )

with respect to p. For p > 1, the vector fi is unique except when all the mass
of the distribution is concentrated on a line [Haldane (1948) and Ducharme
and Milasevic (1987)] and is invariant under orthogonal transformation, but
not under affine transformation [Brown (1983) and Ducharme and Milasevic
(1987)].

Rao (1988) defined two generalized spatial medians that are invariant under
affine transformation as:

(i) a vector fi that minimizes

> \/(Xi — p)'S7H(xi — p)
i=1

with respect to u, where S is the usual sample variance covariance matrix,
and

(ii) a vector fu that minimizes

ln|2ﬂ—#jz:\/bq w)'E"1(x; — )

simultaneously with respect to g and X.

Thus, we note that the MLE of g under the assumption of a Kotz-type
distribution in (7.1) for x3,...,x, is same as the generalized spatial median
defined by Rao (1988).

7.3.2 Computation of GSM and £

Let xi,...,X, be a random sample from (7.1). Then, the GSM of p that
minimizes (7.4) can be computed in two stages as follows (see Naik, 1993).
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Suppose X is known or set to an initial value and ¥ = GG/, for a nonsin-
gular G. Then the generalized spatial median ft that minimizes

3 Vo =y S i - )
i=1

w.r.t. p can be obtained as fi = G, where ¥ is the spatial median that min-
imizes Y7, /(y; — V) (y; — V) w.r.t. v. Here, y; = G™'x; and v = G 1.
Spatial median can be computed using an algorithm given in Gower (1974).

Next using f, the maximum likelihood estimate of ¥ is obtained as the
matrix ¥ that minimizes (7.4) with respect to X as a solution to the non-linear
equation given by

w1 S (=) — ) _
IS V- S - )

Solving these equations generally requires computational algorithms. Now the
two steps are iterated until a certain convergence criteria are met and thus the
maximum likelihood estimates of both g and ¥ are obtained.

While Naik and Patwardhan (1991) have successfully implemented this al-
gorithm for a bivariate version of the distribution in (7.1), Naik (1993) studied
the case when ¥ has an equi-correlation structure. It is shown in these works
that the maximum likelihood estimates are unique and easy to obtain. How-
ever, with the current level of computational advances, it is much easier and
efficient to use nonlinear optimization methods to obtain maximum likelihood
estimates of all the parameters. We have adopted SAS’ IML procedure for
writing the computer programs. Using the Newton-Raphson method, the opti-
mization yields unique estimates in the feasible regions under most covariance
structures.

7.3.3 The asymptotic distribution of GSM

Using the same arguments and derivations as in Huber (1967, 1981), Ducharme
and Milasevic (1987), and Naik (1993), the asymptotic distribution of the max-
imum likelihood estimate, fi (which is also the generalized spatial median), can
be summarized in the following theorem.

Theorem 7.3.1 (Asymptotic Distribution of GSM) Let x,...,z, be a
random sample from p-variate (p > 1) Kotz-type distribution (7.1) with param-
eters pu and X, and f1 be the mazimum likelihood estimate of p. Then

Va(p - p) 2 N(0, SA'BAT'E),
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where

5 _ E[ (X = ) (X = )’
(X —w)=HX - p)

and

A

E

1 (2_ (X -p)(X —p) ) .
VX — )= (X - p) (X —p)S (X —p)
Further, B and A can be estimated by
5 _ 1 (@@ p)
= —— —,
"o (=)' (@ - )

~ 1 <& 1

Vi@ — iayS ™ (@ - )

o _(@m—m)@m—p) }}
—~—1 3
(- p)E (@ — i)

where £ is the mazimum likelihood estimate of .

Using Theorem 7.3.1, we can perform statistical inference on p. For example,
a test for Hy : p = pg can be performed using

N ~-1,
TS =n(p—pe)Q (k- o) ~ X3, (7.5)

where & = SAT'BAT'S.
Further, the following corollary to Theorem 7.3.1 provides simultaneous
confidence intervals for a set of m linear functions, alf, i = 1,...,m, of p.

Corollary 7.3.1 (Simultaneous Confidence Intervals) Using Theorem
7.8.1, the 100(1—a)% Bonferroni simultaneous confidence intervals for m linear
functions of ps, are given by

. [ a'Qa; . | dQa; )
(a;p, — Ra/(2m) ln ) 04# + Zo/(2m) zn yi=1,...,m, (7-6)

where a;s are vectors of known constants and z,/om) 1S the upper 100(1 —
a/(2m))th percentile of a standard normal distribution.
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7.4 An Example

Using a multivariate data set from the following example, we illustrate the
computation of the maximum likelihood estimates and perform some statistical
inference. All the computations are done using programs written in SAS/IML
software.

The data measuring cork boring of tress given in Rao (1988) consists of
the weights of cork boring in four directions (north, east, south, and west) for
28 trees in a block of plantations. Khattree and Naik (1999) have done an
extensive analysis of these data and the data can also be found in that book.

The sample statistics, namely, sample mean, X, covariance matrix, S,, and
correlation matrix, R, for these data are:
/
% = (50.54, 46.18, 49.68, 45.18),
280.03 215.76 278.14 218.19
0.89 212.08 220.88 165.25

0.90 0.83 337.50 250.27
0.88 0.77 092 217.93

st =

* Elements of R are on the lower diagonal.
Next, the ML estimates of g and X using the optimization algorithm are:
/
L o= (46.62, 42.72, 46.01, 42.09) ,
60.81 46.24 62.18 49.36
f){*} _ 0.89 44.71 50.24 36.99 and
N 090 0.85 78.35 5841 |’
0.88 0.77 0.92 51.39

318.55 246.67 356.88 275.39
246.67 238.98 304.91 210.48
356.88 304.91 492.34 351.96
275.39 210.48 351.96 301.44

o
Il
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In the following, we construct simultaneous confidence intervals for the
contrasts,

01 = pnorth — Heast + bsouth — Hwest,

Oy = Hnorth — Msouth, and

03 = Heast — Hwest -
These contrasts will let us check whether or not the bark deposit is uniform in
all the four directions. Estimates of these contrasts are easily determined as
91 = 7.82, 92 = 0.61, and 93 = 0.63. The asymptotic standard errors of these
estimates are given by: SE(f;) = 2.14, SE(d;) = 1.86, and SE(63) = 2.07.

Using Corollary 7.3.1, the 95% Bonferroni simultaneous confidence intervals
for 61,05, and 03 are respectively given by

(2.70, 12.95), (—3.84, 5.07) and (—4.31, 5.58).

It may be noted that the only significant contrast is the difference of the
mean bark deposits in the directions of north and south and the east and
west directions. Neither the contrast of deposits between the south and north
directions nor that in the east and west directions is significant.

We have used this example to illustrate the computation of the maximum
likelihood estimates and various other quantities of interest under Kotz-type dis-
tribution in (7.1). Computation of the estimates is easily done using programs
written in SAS/IML software. Multivariate analysis of variance (MANOVA)
and problems of discriminant analysis, assuming (7.1) as the underlying prob-
ability distribution, are discussed in detail in Plungpongpun (2003).
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Dependent Random Variables with Given
Marginal Distributions
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Abstract: Let X1,..., Xg be d (d > 3) dependent random variables with finite
variances such that X; ~ F;. Results on the set Sy(F1,...,Fy) of possible
correlation matrices with given margins are obtained; this set is relevant for
simulating dependent random variables with given marginal distributions and
a given correlation matrix. When F; = --- = Fy = F, we let S;(F) denote the
set of possible correlation matrices. Of interest is the set of F' for which Sg(F’)
is the same as the set of all non-negative definite correlation matrices; using a
construction with conditional distributions, we show that this property holds
only if F is a (location-scale shift of a) margin of a (d — 1)-dimensional spherical
distribution.

Keywords and phrases: Spherically symmetric, elliptically contoured, cop-
ula, partial correlation, Fréchet bounds

8.1 Introduction

This article is concerned with the range of correlation matrices when the univari-
ate margins are specified. This is of interest when simulating random variables
with given univariate distributions. In general, one does not get the entire
set of non-negative definite correlation matrices. For example, for the singular
correlation matrices, there must be linear dependencies in the random variables.

To state the problem more precisely, we introduce the following notation.
Let X1,..., X4 be dependent random variables such that X; ~ Fj, where
Fi, ..., Fy are univariate distributions with finite variances a%, .. .,0621. The
correlation of X; and Xy is denoted as pjx. Let Sq(F1,...,Fg) be the set of
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possible correlation matrices R = (p;x); Sa(F1, ..., Fa) is relevant for simulat-
ing dependent random variables with given distributions Fi, ..., Fg and a given
correlation matrix. When F; = --- = Fy = F and F has finite variance, the

set of correlation matrices is denoted as Sy(F’). Also, let S be the set of all
non-negative definite correlation matrices.

Further notation that will be used are the following: Fg is the marginal
distribution of (Xj;j € S); Fgr is the conditional distribution of (Xj;j € S)
given (X;;¢ € T); the Fréchet class with given compatible margins Fg,, ..., Fs,,
is denoted as F(Fg,,...,Fs, ). For example, F(Fi2, Fp3) denotes the Fréchet
class with bivariate margins Fj9, Fb3 (and univariate margins F1, Fa, F3).

Of interest is the set A, of univariate distributions F' for which Sy(F') = S.
We show that A4 contains the univariate margins of (d — 1)-dimensional spher-
ically symmetric or spherical distributions, and their location-scale transforms.
One consequence is that all correlation matrices are possible for copulas up to
dimension d = 4, but not dimensions d > 4. Copulas [Sklar (1959)] are multi-
variate distributions with uniform (0,1) margins and are a convenient way to
separate univariate margins from the dependence structure in a multivariate
distribution.

It is not possible to characterize S4(F1,..., Fg) in general. However, sim-
ulations with the multivariate normal copula or multivariate ¢, copula should
get close to the whole range of possible correlation matrices given Fi,..., Fg.
Also the multivariate normal copula may be the easiest approach to generate
a distribution with given correlation matrix and given margins, as illustrated
below.

Let @ be the univariate standard normal cumulative distribution function
(cdf) and let ®4(-; A) be the d-variate normal cdf with correlation matrix A. Let
Sas(F1, ..., Fg) be the set of possible correlation matrices with the multivariate
normal copula, ®4(®~(uy,),...,d (ug);A). Of course, Syo(Fh,...,Fy) is
a subset of Sy(Fi,...,Fy). Consider a correlation matrix R = (p;x). The
following describes how to check if R € Sqo(F1, ..., Fy). For the (j, k) bivariate
margin, suppose the bivariate normal copula with correlation parameter Ajg,
Fj, = <I)2(<I>‘1(Fj),<1>_1(Fk);/\jk) leads to the correlation p;x for Fj, Fy; note
that from Hoeffding’s identity [Hoeffding (1935)], p;x must be between the
correlations from the bivariate Fréchet lower and upper bounds: max{0, Fj +
Fy — 1} and min{F}, F}}, respectively. If the matrix A = (Aj;;z) with diagonal
elements of 1 is non-negative definite, then R € Sgo(F1,. .., Fg).

Given a feasible pji, then A can be solved for numerically using Hoeffding’s
identity:

[o¢} o0
@@ (), @ (Bl ) = Fy ) Fewn) Y = pynoron
—oo/ —0o
(8.1)
The bivariate normal cdf ®; can be numerically computed up to 15 decimal
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place precision using the code in Donnelly (1973), and a two-dimensional nu-
merical integration method [see, Davis and Rabinowitz (1984)] can be used in
(8.1). A similar idea works for the bivariate t,, distribution.

References relevant to the topic of this article are Cuadras (1992), Song
(1997), Emrich and Piedmonte (1991), and the references therein. The above
approach with the multivariate normal distribution is used by Emrich and Pied-
monte (1991) for Bernoulli margins. Cuadras (1992) generates multivariate
distributions with linear regressions and given correlations/margins but does
not mention the range of possible correlation matrices. Song (1997) generates
multivariate distributions with given correlations, margins in the exponential
dispersion family and a specific construction.

The outline of the remainder of this article is as follows. Section 8.2 contains
a summary of known results when Sy3(F) = Sjj. Section 8.3 has the approach of
obtaining bounds sequentially for diagonals of the correlation matrix. Section
8.4 has the new results concerning conditions for S4(F) = S for d > 3.

8.2 Known Results on a Range of Correlations

In this section, we state known results for the case F} = --- = F; = F. Note
that Sy(F) = Sg(F™) if F* is obtained as a location-scale transform of F.
The obvious results for d = 2 are the following:

1. If F is symmetric (about ¢), then all bivariate correlation matrices are
possible. There exists X; ~ F, Xy ~ F such that Corr (X3, X2) = p for
any p € [—1,1]. The two extreme cases come from the Fréchet lower and
upper bounds [stochastic representations Xo = 2¢ — X3, X2 = X3].

2. If F is not symmetric, then correlation of —1 cannot be achieved, because
correlation for the Fréchet lower bound [stochastic representation Xo =
F~1(1 — F(X1)) when F is continuous], the correlation is strictly greater
than —1.

The above implies that Se(F) = S5 if and only if F is symmetric. Hence
for d > 3, Sq(F') cannot be equal to S unless F' is symmetric. So the next
question is: for which symmetric F' does S4(F) = S}; for d > 37 Note also that
Sa(F1, F3) does not have the full range of correlations if F}, F; are not in the
same location-scale family; for example, the correlation of 1 is achievable only
if the Fréchet upper bound corresponds to a linear function.

In the case where F' has finite variance and is a margin of a spherical or
elliptical distribution of dimension d, then S;(F) = S). We introduce some
notation for these univariate distributions as they come up in the new results
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in Section 8.4. Let My (d > 2) be the set of possible univariate margins (with
finite variances) of spherical distributions in dimension d.
Properties of Mg for different d are the following:

e MoD M3zD---D M.

o M is set of scale mixtures of normal random variables with mean 0 and
finite variance.

e M3 is set of all symmetric distributions decreasing on [0, cc) with finite
variance.

o S4(F) =8} for F € Mg (all correlation matrices are possible if F' is the
margin of d-variate spherical distribution).

Because the U(—1, 1) distribution is in M3\ My, then all three-dimensional
correlation matrices are possible for U(—1,1) and U(0,1) margins. Hence,
all correlation matrices are possible for trivariate copulas. If all correlation
matrices are possible for d-variate copulas for dimensions d > 4, some of them
would have to be attained from nonelliptical distributions.

Some linear properties of elliptical distributions used in later sections are
mentioned below. Let (X3,..., Xy) be elliptically distributed.

(a) The conditional expectation of X; given (X;:¢ € S), S C {1,...,d}\{j}
is linear in X; for: € S.

(b) The conditional covariance matrix of (Xj,, X;,) given (X;:4 € §), § C
{1,...,d}\{Jj1, j2} is constant over values of (z;;i € S).

These are well-known properties of the multivariate normal distribution
which extend to elliptical families. For the properties of elliptical distributions
mentioned above, see Kelker (1970), Fang, Kotz and Ng (1990), and Section
4.9 of Joe (1997).

8.3 Conditional Approach

One approach to define the inequalities for the set Sy(Fi, ..., Fy) is something
analogous to the inequalities from partial correlations. Before outlining the
sequence of conditional distributions, we review partial correlations for multi-
variate normal distributions.

8.3.1 Multivariate normal and partial correlations

The bounds for a positive definite correlation matrix can be specified one diago-
nal at a time. By allowing for equalities at the boundaries, singular correlation
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matrices can be obtained. Let

1 p12 P13 p14 -+ Pid
P12 1 P23 P4 - pad
R — . . .
Pd—2,1 Pd-2,2 Pd-23 Pd-24 - Pd-2d
Pd—11 Pd-12 Pd-1,3 Pd-1,4 "' Pd-1d
Pd1 Pd2 Pd3 pas - 1

be a correlation matrix. The first diagonal consist of pj ;41 for j=1,...,d-1.
For multivariate normal distributions, these are independently free to vary in
(—1,1). The second diagonal consist of p; ;1o for j = 1,...,d — 2, the mth
diagonal consist of p; jim for j=1,...,d—m, form=1,...,d—1, and so the
last diagonal consists of piq4.

For m > 2, there are bounds on pj jim which depend on {p,;:j < s <
t<j+m,(st)# (j,j+m)}. For normal random variables, using the par-
tial correlation p; jimjj+1,.. j+m—1 for the conditional correlation of Xj, X;im
given Xji1,...,Xj4+m—-1, the bound for p;;im can be obtained from —1 <
Pj j+mlj+1,...j4m—1 < 1. Suppose the submatrix R[j : j +m)], consisting of rows
and columns j,...,5 +m of R, is decomposed as

. 1 r’{(jv m) Pj,j+m
Rlj:j+m]=| ri(j,m) Re(jm) rs(j,m) ],

(8.2)

where r{ (5,m) = (pjj+1,- - -, Pjj4m=-1), 3 (J; M) = (Pj+m,j+1, - - - Pjtmj+m=1),
and Ry(j, m) consists of the middle m — 2 rows and columns of R[j : j +m]. As-
suming that Rz(j, m) is nonsingular, the partial correlation p; ; mjjt1,...j4m—1
is

Pjj+m — rr{(j’ m)(RZ(]’ m))—ll‘g(j, m)
{111 (Gm)T(Ra(G m)) =1 (Gm) } {1 = €3G m) (Rl ) s, m) |

172

This leads to the inequality on pj jim:

r{ (j, m)(Ra(j, m)) "'r3(j,m) — D;

< pjj+m < ¥ (j,m)(Ra(,m)) ~'ra(j,m) + Djm, (83)

where
D2, = {1-r1(j,m)T(Ra(j, m))"*r1(j, m) {1 -xT (G, m) (Raj, m)) 'ra(d, m) }.
Note that a different set of inequalities obtain when the indices 1,...,d of

the random variables are permuted.
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8.3.2 General case

More generally, following constructions in Section 4.5 of Joe (1997), we can
consider inequalities based on conditional distributions, one diagonal at a time.
The first diagonal consist of the bivariate marginal distributions Fj i1, j =
1,...,d — 1. The second diagonal consist of the bivariate conditional dis-
tributions Fj; 941, j = 1,...,d — 2, and for m = 2,...,d — 2, the mth
diagonal consist of the bivariate conditional distributions F; jtmlj+1,.. j4m—1s
J=1,...,d—m, and finally the last (d — 1)th diagonal consists of F} g . 4-1-
Each conditional bivariate distribution satisfies Fréchet bounds, which are given
below.

Consider the Fréchet class F(F}..j4m—-1, Fj41...j+m), Where Fj. j1m_1 and
Fji1..j4+m have a common Fjii..j4m-1 (m — 1)-variate margin. Members of
this class have the form

Tj+1 Tj+m—1
Fj...jym(x) =/oo /oo Fj jymlj+1-j+m-1(Zj; Tj+m|2) AFj41...54m—1(2),
(8.4)
where z = (zj41,...,2j4m-1) and x = (&j,...,Zj4m). Note that the condi-
tional distribution F} ;i1 1...j4m—1(%j, Tj+m|2) is a bivariate distribution for
every z, and is bounded by the Fréchet lower and upper bounds:

max{0, Fjjji1.j4m—1(2;12) + Fjim|j+1.j4m-1(Tj1m|2z) — 1}
= F}',j+m|j+1~--j+m—1($j,$j+miz)
< min{ﬁ}lj-{-l---j-%—m-l(xjiz)’ F}+m|j+1...j+m_1(.’lfj_‘_le)}.

By integrating over z,

Fj jtm, (T, Tjym)
= / max{O, Fj|j+1“.j+m_1(xj|z)
(_oo)oo)m_l
+Fjimpjsrjim—1(Tj+m|z) — 1} dFj1.j4m-1(2)

< Fjjim(Tj, Tjm) S/ min{ Fjjj41...j4m—1(T5]2),
_oo,oo)m—l

Fjymljs1jam—1(Zj4m|2)} dFji1.jrm—1(2)
= Fj,j+m,U (.’17], .'E]+m) (85)
If Fj..j4m—1, Fjt1...j+m are given, the correlation of Fj i, is bounded by
the correlations of the two conditional Fréchet bound distributions in the in-

equalities in (8.5). Using Hoeffding’s (1940) identity, the correlation of F} j4m
can be written as

{/_o:o /_o;[Fj,j+m(1'ja-’I3j+m) - F}(mj)F}+m(xj+m)]dxjdxj+m} / (0,0;4m).
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But if only the correlations {ps;:j < s <t < j+m, (s,t) # (4,j+m)} are
given, there are in general an infinite number of choices of F}...j1m—1, Fj+1-.j+m
leading to the given correlations. This is why inequalities for R € Sy(F1, ..., Fy)
are difficult to obtain in general.

To see the effect of the choice of bivariate distributions with given correla-
tions, we specialize to the d = 3 case, for which it is easier to do some numerical
comparisons.

For d = 3, the two-dimensional numerical integrations needed to obtain
the correlations are easily computable. Given feasible correlations py2, pa3 for
F(F1, F, F3), one can find dependence parameters 612, d23 within a parametric
family C(-;8) [for example, one of the families B1-B7 in Section 5.1 of Joe
(1997)] leading to the specified correlations pio, p23 and then compute bounds
on pi3 based on (8.4) and (8.5).

For a specific numerical example to illustrate the above, we take F;, 7 =
1,2,3, to be the exponential distributions with mean 1, and set p;o = 0.1,
p23 = 0.5.

copula | LB p;3 UB pi13
B1 -0.524  0.879
B2 -0.498  0.873
B3 -0.488  (.862
B4 -0.418  0.817
B5 -0.553 0.881
B6 -0.552  0.887
B7 -0.551 0.887

The bounds on p;3 are summarized in the above table when copula families
B1-B7 in Section 5.1 of Joe (1997) are used for Fio, Fo3. Bl is the bivariate
normal copula; the other copula families interpolate independence and Fréchet
upper bound, and some of them extend to the Fréchet lower bound. All are
one-parameter families, and have reflection symmetry [c(u;, ug) = ¢(1 —uy,1 -
ug) for the copula density], or upper or lower tail dependence. Computations
were obtained through Monte Carlo simulation and numerical integration, and
sometimes it is faster to get 3-digit accuracy using Monte Carlo simulation.
When the random variables are all continuous, the simulation algorithm for the
conditional Fréchet bounds is the following:

1. Generate X5 ~ Fy, let 29 be the realization.

2. Generate X1 ~ Fjja(-|T2), let z1 be the realization.

3. Let z3 = F3_]21 (Fyj2(1]z2)) for the conditional Fréchet upper bound, and
let x3 = F;Izl(l — Fyjp(1]22)) for the conditional Fréchet lower bound.

With F; = F5 = F3 = F being the exponential distribution and p12 = 0.1,
p23 = 0.5, some comparisons from the above are:
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o In S33(F), —0.524 < p13 < 0.879 from the bivariate normal Bl copula
with the conditional Fréchet lower and upper bounds. Note that this is
the same as solving (8.1) to get A1z = 0.1195, A3 = 0.5466, leading to
bounds on A3 as (—0.7661,0.8967) from AjaA93 £ \/(1 -2 (1 - 2%,);
with exponential margins, the bivariate normal copula with correlations
—0.7661 and 0.8967, the correlations of the exponential random variables
are —0.524 and 0.879, respectively.

e In S3(F), p13 extends beyond [—0.553,0.887]. To get the complete range,
one would need to optimize over all Fya3 € F(F, F, F) with (1,2) correla-
tion 0.1 and (2,3) correlation 0.5.

e In 53, from —1 < py3 < 1, the range for p13 is [~0.812,0.912].

The above example may suggest that in some cases, Sya(F1,. .., Fy) comes
close to Sg(Fi,..., Fy).

8.4 Characterization of F' for S3(F) = S}

In this section, we use the conditional approach of the preceding section to as-
sess when it is possible for Sg(F) = Sj. The main result is that for d > 3 and
F symmetric (about 0), a necessary and sufficient condition for Sy(F) = S} is
F € Mg_;. This means that for F that is a marginal distribution of a spherical
distribution in dimension d — 1, one can attain all possible correlation matrices
up to dimension d, and this implies that some nonelliptical distributions are
needed for achieve S} for F' € M1\ M. Because the uniform (—1, 1) distri-
bution is in M3\ My, all correlation matrices are possible for 4-variate copulas,
but not copulas of dimensions greater than 4.

To check if the full range of correlation matrices is possible for Sy(F'), where
F' is symmetric, the following procedure can be used:

e For d = 3, given p12, p23, show that there exist Fyo, Fo3 € F(F, F) with
respective correlations pis, pe3 for which the conditional Fréchet bounds
will have correlations equaling the bounds for p;3 in S3.

e For d = 4, given arbitrary pi2, p13, P23, P24, p34 such that

1 p12 p13 1 p23 p2u
p12 1 pa3 and p23 1 paq
p13 pas 1 p2a p3s 1

are positive definite matrices in S5, show that there exist compatible
Fia3, Fo34 € F(F, F, F) with the specified correlations for which the con-
ditional Fréchet bounds will have correlations equaling the bounds for p14
in 5}.
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e The above idea extends to d > 5.

841 d=3

We first show the main ideas with d = 3.

Consider the Fréchet class F(Fio, Fo3) when F; = Fy» = F3 = F with
variance o2. Suppose the correlations for Fjg, F3o are P12, p23- As a special case
of (8.4), members of this class have the form

2
Fio3(z1, 29, 73) = / Figpp(z1, T3] 2) dF2(2). (8.6)

Given Fio, F39, the most negatively (positively) dependent distribution in
(8.6) obtains when Fy3jo(:|2) corresponds to the Fréchet lower (upper) bound
for all 2.

From S3, correlation matrices of the form
1 p2 p13
pi2 1 pa3

P13 p23 1

pr2p2s — /(1= phy) (1~ pda) < p1s < prapas +1/(1— plp)(L - By (87)

From (8.6), one gets

must satisfy

COV [E (Xlng), E (X3|X2)] — E [{Var (X1|X2)Var (X3|X2)}1/2]
< Cov (Xl, Xg) = Cov [E (XllXQ), E (X3|X2)] +E [COV (Xl, X3|X2)]
< Cov [E (X1]X2), E (X3]X2)] + E [{Var (X1|X2) Var (X3 X2) }'/?]
(8.8)

with equality only if X, X3 are linearly related given Xo; that is X1+¢(X2) X3 =
b(X3) for functions b, c with ¢ > 0 for the lower bound, and X; — ¢(X2)X3 =
b(Xs) for functions b, ¢ with ¢ > 0 for the upper bound.

Suppose the following stochastic representation holds for X, Xs, X3:

X1 = p12Xo+ €1, X3=p3Xo+es, (8.9)

where E (¢;|X2) = 0 for j = 1,3 (so that €, €3 are each uncorrelated with X3),
and €1, €3 can be chosen to be positively or negatively linearly related. Then,
E (X1|X2) = p12X2, E(X3]|X3) = p23Xa, Corr (X1, Xa) = p12, Corr (X2, X3) =
p23, Var(e1) = (1 — p25)0?, Var(e3) = (1 — pd3)o?, and Cov (X1, X3|X2) =
Cov (€1, €3).
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For the upper bound of (8.8), take €1, €3 to be positively linearly related
with correlation 1, so that Cov (e1, e3) = 02[(1 — p35)(1 ~ p23)]*/2, and the last
term in (8.8) becomes

o2 prapas + o2 {(1 — p%y) (1 — phs) 12,

leading to the correlation upper bound in (8.7). Similarly for the lower bound
of (8.8), take €1, €3 to be negatively linearly related with correlation —1, so that
Cov (€1, €3) = —02{(1 — p%5)(1 — p35)}}/2, and the first term in (8.8) becomes

o2pr12pas — 02 {(1 — p2o)(1 — p3s)}/,

leading to the correlation lower bound in (8.7).

The stochastic representation in (8.9) is possible for any F' € My when
(X1,X2) and (X3, X2) have elliptical distributions; in this case, ¢, = (1 —
p12)1/2Zl and €3 = (1 —p%3)1/2Z3 are chosen so that (X, Z1) and (X2, Z3) have
spherical distributions and Z; ~ F for j = 1,3. For a value of p13 between the
upper and lower bounds in (8.7), perhaps the simplest distribution leading to
P13 is an appropriate convex combination of the conditional Fréchet upper and
lower bound distributions.

Hence, we have shown that S3(F) = S3 for F € My, that is, F € My is a
sufficient condition for S3(F) = S3.

We next proceed to prove necessity. To show that S3(F) # S*(F) for F
symmetric and F' ¢ Ms, we only have to pick some p12, p2g so that one of the
bounds in (8.7) is not reached.

To get some necessary conditions for S3(F) = S3, we take the case p1o =
p23 = p # 0 to get some simpler inequalities for pi3. If (X;, X2, X3) with
X; ~ F, then we assume that (X1, X2) 4 (X3, X2) or Fig = F39 without loss of
generality, because otherwise we can always convert (X7, Xo, X3) to

(X!, XL, X5) = (X1, X2, X3) with probability 1/2,
Lo s (X3, X2, X1) with probability 1/2,

so that X} ~ F and the correlations are p}, = ph3 = p and pj3 = p13, and the
distribution of (X], X}) and (X%, X}) are both (Fi2 + F32)/2.
We will use the following lemma.

Lemma 8.4.1 Let X1, X5 be random variables with correlation p. Then

Var (E (X1|X3)) > p*Var (X1), (8.10)
with equality only if E (X1]|X3) is linear in Xs.
PROOF. Inequality (8.10) is the same as

Var (E (X1]X3)) Var (X3) > {Cov (X1, X2)}°.
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Assume X1, X3 have been standardized so that E (X;) =0, j = 1,2. Then it is
the same as

E [{E (X1|X2)}’] E(X3) 2 {E (X1X2)}*.
Let g(X2) = E (X;]|X2). Then
{E(X1X2)}* = {E (9(X2)X2)}* <E {¢*(X2)} E(X?)
by the Cauchy-Schwarz inequality. Equality holds only if g(X3) = E (X;]|X3) is
proportional to Xa. n

With the assumption of Fis = Fjg, the upper bound on p;3 of 1 can be
attained by taking X; = X3 (with probability 1). So we consider the lower
bound on p13. With (8.6),

Cov (Xl, X3) = Cov [E (X1|X2), E (X3|X2)] +E [COV (Xl, X3|X2)]

Var (E (X1|X2)) +E [COV (Xl, X3|X2)]

> Var (E (XﬂXQ)) — E[Var(X1|X2)] (811)

Equality holds for the left part of (8.7) only if X;, X3 are negatively linearly
related given Xy = z for all 2z or if there exists a function b(z) such that
X1 + X3 = b(X>) for the conditional Fréchet lower bound.

Because

Var (X;) = E [Var (X | X2)] + Var (E (X1]X2)),
(8.11) can be written as
Cov (X1, X3) > 2Var (E (X1|X2)) — Var (X1) = 2Var (E (X)) X3)) — o2,
From Lemma 8.4.1,
Cov (X1, X3) > 2p%02 — 0% = 0(2p* — 1)
or p13 > 2p? — 1, with equality only if E (X;|X3) is linear in Xo. Note that
p13 > 2p? — 1 is the inequality from (8.7) with p12 = p23 = p.

Hence, from the above, for Fi5 = F35, the lower bound for p;3 is achievable
only if two conditions hold:

(a) there is a function b such that X; + X3 = b(X5),
(b) E(X1]X2) (= E(X3|X32)) is linear in Xo.

For both conditions to hold, we must have

E (X1 + X3]X5) = 2E (X1|X2) = b(X2)
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is linear in X3. From (a) and the assumption that F' is symmetric (about 0),
there is a constant ¢ such that X; + X3 = ¢X5. Furthermore, for the conditional
Fréchet lower bound, this must mean

X1 =pXate, X3=pXs—cg

with € a symmetric random variable about 0 satisfying E (¢|X2) = 0, Var (¢) =
(1 — p?)o?. Hence (8.9), is a necessary condition for p12 = pag = p.
The above lead to the following lemma.

Lemma 8.4.2 Let F be symmetric with variance 0%, and X ~ F. Then, a
necessary condition for Ss(F) to equal S5 is that, for all —1 < p < 1, there is
a symmetric random variable €(p) satisfying E (e(p)|X) = 0 and Var (e(p)) =
(1 — p?)o? such that X has the stochastic representation

X ng + €(p).

To complete the characterization that for F' symmetric about 0, S3(F') =
S3 if and only if FF € M, we go back to consider pi2, p23 different. From
Lemma 8.4.2, linearity of X, X3 in X5 is needed, so we consider the stochastic
representation in (8.9):

X1 =p12Xo+e, X3=pa3Xo+es,

where €1 = €(p12), €3 = €(p23). In order for the extreme correlations in (8.7) to
be attainable, the conditional Fréchet lower and upper bounds must correspond
to conditional correlations of +1. Hence €;,e3 must be able to be linearly
related. This means the family of random variables €(p) must be related with
stochastic representation e(p) = c(p)eg. If € is taken as ¢(0) with variance o2,
then ¢(p) = /1 — p?. As p — 0, we get that ¢g ~ F.

We can now write X; ngg-}— V1 —p?e forall p e (—1,1). Let ¢e,x (t1,t2)
= E [exp{i(t1€0 + t2X2)}] be the characteristic function of (&g, X2), and let ¢x,
be the characteristic function of X;. The stochastic representation for X; means

that
83,(6) = bax (1y/1~ 42 10)

for all p € (—1,1). Because F is symmetric, this means that there is a function
1 such that ¢, x(t1,t2) = ¥(#3 + t3), that is, (e, X2) has bivariate spherical
distribution and F' € Ms.

84.2 d>3

The above ideas extend to any dimension d > 4. For example with d = 4, with
the conditional Fréchet bounds given Fjo3, Fy33, the bounds on pi14 depend on
012, P23, P13, P34, P24. For d = 4, consider the Fréchet class F(F)a3, Fyo3) where
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Fi93, Fyo3 have a common Fb3 bivariate margin, and F; = [ = F3 = Fy = F.
As a special case of (8.4), members of this class have the form

T2

z3
Fio34(21, 72, 3, T4) =/ / Fy93(21, 74|22, 23) dFa3(22, 23)-
—00 J—00

The conditional Fréchet lower and upper bounds lead to the smallest and largest
value of p14. The bounds for pi4 based on (8.3) can be attained if ' € M3
which include the U(—1, 1) distribution.

The algorithmic details, which include an extension of the stochastic repre-
sentation in (8.9), for simulation of four U(—1, 1) dependent random variables
with p14 at the upper or lower bound are given below. For simulation with other
F € Mg, replace “uniform on the three-dimensional sphere” with the spherical
distribution with margin F:

e Input p12, p13, P23, Pa2, pa3- Check that (p12, p13, p23) leads to a positive
definite matrix; same for (p42, pas, p23);

e The bounds for p14 given p19, p13, p23, P42, P43:
t1 =1 — (prap12 + p13p13 — 2p12p13p23)/ (1 — p33);
ta =1 — (pazpaz + pa3pa3 — 2p42p43p23) /(1 — P§3)§
ts = ((p12 — p13p23)Paz + (p13 — p12p23)pas)/ (1 — pl3);
Prau = Viila +t3; pra = —v/Eity + t3;

o Initialization from Cholesky decompositions:

asz = (1— 053)1/2; a13 = (p13 — p12p23)/a23; @43 = (P43 — pazp23)/ass;
air = (1- .0%2 - 0%3)1/2§ agqe = (1- Pz212 - 04213)1/2§

o Repeat for simulation: Generate (z1, 22, 23) uniform on three-dimensional
sphere of radius 1:
T2 = 225
T3 = p2322 + A2323;
T1 = p1222 + 41323 + a1121;
T4y = paaze+a4323 +a4421; [for p14y (conditional correlation = 1 Vzg, 23)]
Ty = pa2za+a43z3 —agaz1; [for p1y (conditional correlation = —1 Vzg, 23)]

o To get uniform(0,1) random variables, let u; = (z;41)/2,j = 1,2, 3,4, 4u.

The above algorithm extends to dimensions d > 4. Using the matrix no-
tation of (8.2), let R[1 : d — 1] and R[2 : d] be positive definite correlation
submatrices, and let A be a lower triangular matrix in the Cholesky decompo-
sition of R[2:d — 1], i.e.,, R[2 : d — 1] = AAT. Let al = (aa,...,a4,4-1,2dd)
be the last row in the Cholesky decomposition R[2 : d] = (;ZT)(AT ay), and let

al' = (a1o,.. .,G1,4-1,a11) be the last row in the Cholesky decomposition
R2:d-1] r\ (A T
(%47 1)~ (4w,

where T = (p12, ..., p1,4-1)-
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The algorithm for generating random variables at the conditional Fréchet
upper or lower bound is the following:

o Generate (z1,...,2q4-1) spherical with z; ~ FF € Mg_;.

o Let (z2,...,34-1)7 = A(2a, ..., 2a-1)T, let 71 = a1220++ - - +a1,4-124-1+
ai121, and g = agozo+- - ++a4,d—124-1 £ a4q21, with the sign determining
the conditional Fréchet upper or lower bound.

As before, for a value of p14 between the upper and lower bounds, an appro-
priate convex combination of the conditional Fréchet upper and lower bound
distributions can be used.

The above shows that for F € Mgy_1, one can achieve the lower/upper
bound for p14 and any value in between the bounds given arbitrary correlation
matrices for (X1,...,X4-1) and (Xo, ..., Xy) [recall from Section 8.2, that any
(d — 1)-dimensional correlation matrix is possible for FF € Mg4_1].

To prove our general result in d > 4 dimensions, we extend the lemmas in
the previous subsection. To get some necessary conditions for Sq(F) = Sj, we
take the case of arbitrary R[2 : d—1], and p1; = pg, 7 = 2, ...,d—1, to get some
simpler inequalities for p14. Using an argument like that for d = 3, then we can
assume without loss of generality that- (X1, Xo, ..., X4-1) 4 (X, X2, ..y Xd-1)
or F12...d_1 = Fd2-~-d—1~

The extension of Lemma, 8.4.1 is as follows.

Lemma 8.4.3 Let X1, Xo,...,X .1 be mngom variables with variance o2 and
correlation matriz R[1 : d — 1] = (rl ;%1 ), where Ry is nonsingular and
1 g

I‘r{ = (p12, ey pl,d—l)- LetZ = (Xg, ey Xd_l)T. Then
Var (E (X1{Z)) > o*rTR; 14
with equality only if E (X41|Z) is linear in Z.

PROOF. The conditional expectation g(Z) = E (X;|Z) is the function of Z that
minimizes E {{X; — h(Z)]?} over real-valued functions h(Z). Therefore, for any
linear function h,

E{[X1 - g(Z)]*} < E{[X1 - h(Z))*}. (8.12)

From regression theory, the linear function that minimizes the right-hand side
of (8.12) is r7 R5'Z; that is,

E{[X1 - g(Z)*} <E{[X: —r{ R;'Z)]*}. (8.13)

Assume that Xji,...,X4_1 have been standardized so that E(X;) =0, j =
1,...,d— 1. Then, (8.13) simplifies to

E(X?) -~ E{¢*(2)} < E(X}) - 2E{Xur{ Ry 'Z} + E{(r] R; ' 2)"}
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or
Var (E (X1)Z)) = E {¢%(Z)} > 2Cov (X1,17 R;1Z)) — orT Ry 'r1 = 0rT Ry 'y

Let Z = (Xa,...,X4-1)T. From (8.3) with j = 1 and m = d — 1, with the
assumption of Fio..g-1 = Fyo..q—1,

Cov (X1,Xq) = Covl[E(X1|Z),E(X42Z)] + E[Cov (X1, X4|Z)]
> Var (E (X1]|2)) — E [Var (X1|Z)] = 2Var (E (X1|Z)) — o2.
(8.14)

Equality holds in (8.14) only if X7, X4 are negatively linearly related given
Z = z for all z or if there exists a function b(z) such that X; + X4 = b(Z) for
the conditional Fréchet lower bound. Using Lemma 8.4.3,

Cov (X1, Xq) > 0*{2r] Ry'r; — 1}

or pig > 2r’{R2_1r1 — 1, with equality only if E(X;]Z) is linear in Z. Note
that this inequality is also the inequality from (8.3) [with r; = r1(1,d—1) =
I‘3(1, d— 1) and R2 = R2(1, d— 1)]

Hence, from the above, for Fis...4q—1 = Fyo..q4-1, the lower bound for pi14 is
achievable only if two conditions hold:

(a) there is a function b such that X; + X4 = b(Z),
(b) E(X1|Z) (= E(X4|Z)) is linear in Z.
For both conditions to hold, we must have
E (X1 + X4|Z) = 2E (X41|Z) = b(Z)

is linear in Z. From (a) and the assumption that F' is symmetric, there is a
vector ¢ such that X; + X4 = ¢TZ. Furthermore, for the conditional Fréchet
lower bound, this must mean

X1=rtTR'Z +e¢, Xy=rTR;'Z ¢,

with € a symmetric random variable about 0 satisfying E (¢|Z) = 0, Var (¢) =
(1 —rTR;'r)o?.
The above lead to the following lemma.

Lemma 8.4.4 Let F be symmetric with variance 0% such that Sy_1(F) = S;_,.
Suppose X; ~ F, for j =1,...,d — 1. Then a necessary condition for Sy(F)

1
to equal S} is that for all nonsingular matrices R[1 : d — 1] = <r1 ;_212),
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where Ry is nonsingular and r7 = (p12,...,p14-1), there is (a) a random
vector (X1, ..., Xq-1)T with the given correlation matriz R[1:d—1], and (b) a
symmetric random variable €(r1, Rg) satisfying E (e(r1, R2)| X2, ..., X4-1) =0
and Var [¢(r1, Ra)] = (1 — rT Ry 'r1)0?, such that the stochastic representation

X1 £rTR N (X, ..., Xao1)T + €(r1, Ry)
holds.

To complete the characterization that for F' symmetric about 0, S4(F) = S
if and only if F € My_1, we consider pi;, pg; to be different for j =2,...,d~1.
From Lemma 8.4.4, linearity of X1, Xy in Z = (Xq,.. .,Xd_l)T is needed, so
we consider the stochastic representation

X3 =I‘F{R2_1Z—{-61, X3:r§R2—1Z+63,

1 F
where €; = €(r1, Rg), €3 = €(rs, Ra), rg = (pdz, .- -, Pdd-1), and (rl R12>’

1 ¥ :
<r ;g ) are correlation matrices. In order for the extreme correlations in

3 It
(8.3) to be attainable, the conditional Fréchet lower and upper bounds must
correspond to conditional correlations of +1. Hence, €1, €3 must be able to
be linearly related, and the family e(r;, Rz) must be related with stochastic
representation €(ry, Ry) = epy/1—r{ Ry 1., where ¢ has variance o2. As
r; — 0, we get that eg ~ F.

We can now write X3 grlTR;lZ + €oy/1 — rfnglrl for r; and Ry (cor-
responding to a proper nonsingular correlation matrix). Let ¢ z(t1,t2) =
E [exp{i(ti0 + t2 X2 + - - -t4—1 X4-1)}] be the characteristic function of (e, Z),
and let ¢x, be the characteristic function of X;. The stochastic representation
for X1 means that

6, (8) = ¢z (t4/1 - rTR'r1  tR7'r1)

for all r1, Re. Because F' is symmetric, this means that there is a function v such
that ¢e,z(t1,t2) = ¥(t? + t Raoty). Letting ¢; = 0, the marginal distribution
of Z is 1/)(th2132) so that Z is elliptical. Write Z = AZo, where Ay Al = R
and Zg has a spherical distribution. Let ¢¢,z, be the characteristic function of
(60, Z()) Then

beoz(t1, U2) = Beyz, (b1, Abug) = (1% + uf A2 4T uy),

so that
¢€0Z0 (tla t2) = w(t% + tth)
That is, (g, Zo) has (d — 1)-dimensional spherical distribution and F' € Mg_1.
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8.5 Discussion

Problem 4.17 of my book [Joe (1997)] suggests that Sg(F) = S} if and only
if F' is a location-scale transform univariate margin of a spherical distribution
in d dimensions. At the time of writing the book, I thought the converse was
intuitively obvious, because linear expectation properties and finite variances
are associated only with elliptical distributions.

Because of queries on the problem, I have in this article filled in the details,
which turn out to be quite intricate, and the statement of the problem must
be qualified a little to be correct. For the proof of necessary conditions for
Sq4(F) = S; to hold, linear properties of expectation play an important role.

Acknowledgements. This research was supported with an NSERC Canada
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Multifractional Probabilistic Laws

M. D. Ruiz-Medina and J. M. Angulo

University of Granada, Granada, Spain

Abstract: In this paper, we apply the theory of pseudodifferential operators
and Sobolev spaces to characterize fractional and multifractional probability
densities. In the fractional case, local regularity properties of the probability
density function are given in terms of fractional moment conditions satisfied
by the characteristic function. Conversely, the parameter defining the order of
the fractional Sobolev space where the characteristic function lies provides the
index of stability in relation to fractional moment conditions of the probability
density. The extension to the multifractional case leads to the introduction of
new probabilistic models considering the theory of pseudodifferential operators
and fractional Sobolev spaces of variables order.

Keywords and phrases: Bessel distribution, fractional pseudodifferential op-
erators, Laplace distribution, multifractional pseudodifferential operators

9.1 Introduction

Fractional differential calculus allows the definition of functions with fractional
regularity /singularity orders that interpolate the classical integer-order differ-
entiable functions. The classical theory of integer-order differential equations is
then extended to the theory of fractional diffusions (anomalous diffusions). In
particular, the Gaussian kernel is associated with second-order diffusion theory,
the heat kernel; see, for example, Gnedenko and Kolmogorov (1954). Stable
laws are associated with fractional derivatives in space, that is, fractional dif-
fusion or anomalous diffusion equations; see, for example, Feller (1971) and
Samorodnitski and Taqqu (1994). The fractional order of differentiation de-
fines the stability index of the probabilistic law. While the classical diffusion
equation represents Brownian motion, anomalous diffusion equations govern
fractional Brownian motion and Lévy motion; see Seshadri and West (1982),

143
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Gorenflo and Mainardi (1998), and Meerschaert et al. (1999). The defini-
tion of fractional probability densities is not necessarily restricted to parabolic
equations. Elliptic equations, particularly fractional pseudodifferential elliptic
equations, also define important models in probability theory. The symmetric
Bessel distribution [Donoghue (1969)], the Linnik distribution, and the gener-
alized Linnik distribution are examples of fractional probability densities, given
by fractional elliptic pseudodifferential equations; see Erdogan and Ostrovskii
(1998) and Kemp (2003). These equations characterize the local regularity
properties of the functions of the fractional Sobolev space where such densities
lie.

In this paper, we consider the characterization of Bessel, Linnik, and gener-
alized Linnik distributions in terms of fractional pseudodifferential equations.
We then formulate a multifractional version of symmetric Bessel, Linnik, and
generalized Linnik distributions, based on the theory of pseudodifferential oper-
ators and fractional Sobolev spaces of variable order. We analyze the local reg-
ularity/singularity properties of the characteristic function to define fractional
moment laws. This analysis is extended to the multifractional case, provid-
ing a framework for the introduction of probabilistic laws with heterogeneous
heavy tails. Possible extensions in relation to the definition of multistable and
multifractal distributions are also discussed.

9.2 Preliminaries

We first introduce basic elements related to the theory of pseudodifferential
operators and fractional Sobolev spaces of variable order. Such operators and
spaces will be considered in the characterization of fractional and multifractional
probability densities in Sections 9.3, 9.4, and 9.5.

Let 4 and p be real numbers, with 0 < § < p < 1, and let ¢ be a real-valued
function in B> (R"), the space of all C*°-functions on R™ whose derivatives of all
orders are bounded. We say that a function p(x,§) € B® (]RQ X RZ) belongs

to S; s if and only if for any multi-indices o and 3 there exists some positive
constant Cy g such that

|DgDEp(x, €)| < Ca,p(€)7 )Pl +oIAL (9.1)

where D‘g and D,’[z , respectively, denote the derivatives with respect to £ and x,

and (&) = (1 + |€|2)'/2. The following seminorm is considered for the elements
of S%:
[x]

lpll(”) = MaX|q4g|<i SUP(x,¢)cRn xR® {|D?D£p(x, §)|<§>_U(X)+P|a|—5|ﬁ|} )
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Definition 9.2.1 [Kikuchi and Negoro (1995, 1997)] For u € S(R™), the set of
rapidly decreasing Schwartz functions, and p € 75, let P : S(R") — S (R™)
be defined as

Pux) = (2m) ™ [ éplx, €)il€)de (92

where 4(€) = [gn e~ ™&y(x)dx is the Fourier transform of u. We refer to P =
p(x, Dx) as a pseudodifferential operator of variable order with symbol p € Sg, P
The set of all pseudodifferential operators with symbol p of the class Sg, 5 1s
denoted by S7 5.

A pseudodifferential operator P € 87 5 is elliptic if there exist constants ¢ > 0
and M > 0 such that

Ip(x,€)| > c(€)°™, €| > M. (9.3)

Furthermore, Q € 87% = U,,cg Sy is said to be a left (resp. right) parametric
of P if there exists Ry, € S, 5° = [,,cr Spys (tesp. Rr € 8,5 = (\ner Sps)
such that

QP =1+ Ry (resp. PQ=1I+ Rpg),

where I denotes the identity operator. A pseudodifferential operator @ is a
parametric of P if and only if @ is simultaneously a left and right parametric
of P.

Definition 9.2.2 Let o be a real-valued function in B®(R"). The Sobolev
space of variable order o on R" is defined as

HOORM) = {u eH®=JH'®"): (D) Vue L2(Rn)} , (9.4)
s€R
where
(D)™ = / (2m) ™ exp(ix€) (€)°a(€)de (9.5)
]Rn

with (€) = (1 + |€|?)!/2, as before, and
H3R™ = {u € S'(R") : (Dx)*u € L*(R™)}.

Proposition 9.2.1 [Kikuchi and Negoro (1997)] The above-introduced frac-
tional Sobolev spaces of variable order satisfy the following properties:

(1) If u € H°O(R™), then, for P € 895, Pu € L*(R™).

(1t) Let o1 and og be functions in B¥(R"), with 01(x) > o2(x), for each
x € R™. Then, H*O)(R™) ¢ H?2O)(R™). In particular, H*O(R") ¢ HZO(R™).
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(i) H7O/(R™) is a Hilbert space with the inner product
(1, 0) roogn) = / (1D ™) (x) (D)) () dx
+ [ (D07 DI G, (96)

where g = 161111{ o(x). Moreover, S(R™) is dense in H)(R™).
X n

() Let o and 7 be functions in B®(R"). Suppose that P € S ;. Then,
there exist some constant C > 0 independent of P and some positive integer [
depending only on o, 1, p,d, and n such that

1Pull - gny < Cloli [l goer -0 @y

for u € HOO+TO)(R™), which provides the continuity of P from HoO+TO(R™)
into HTO(R™).

Theorem 9.2.1 [Kikuchi and Negoro (1997) Let P € S7 ;5 be elliptic. Then,
HOR™) = {ue H™®(R") : Pue LAR™} (9.7)

as a set. Moreover, the norm ||ul| go(y(gny 15 equivalent to the norm

1/2
oo pgny = (P22 + [l Emgem)) - (9.8)

The following results on embeddings and lifting properties for fractional
Sobolev spaces of variable order on LP(R™) hold (see Jacob and Leopold, 1993).

Theorem 9.2.2 Let 1 < p < 0o and j € N, and let o(x) = s + Y(x), with
¥ € S(R™), satisfying 0 < m’ < o(x) < m < 2, for all x € R™. Then, the
following assertions hold:

(i) The space

HITO®) = {1 € SR : (Do € (R}

is a Banach space and C§°(R™) is dense in this space.
(i) For m’j > n/p, the embedding of H,J,’U(')(R") into C°°(R™) is continuous.
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9.3 Fractional Differential Characterization

In this section, the symmetric Bessel, Linnik, and generalized Linnik distribu-
tions are characterized as the fundamental solutions (Green functions) of frac-
tional pseudodifferential models. We apply the spectral theory of self-adjoint
operators on a Hilbert space [see, e.g., Dautray and Lions (1985)], and, in par-
ticular, of fractional pseudodifferential operators on fractional Sobolev spaces
[see, e.g., Triebel (1997)].

The characteristic function fx of the symmetric Bessel distribution is given

by
Fx(\) = Elexp{iAX}] = (T+1/\—2)a 0<a<l. (9.9)
Equation (9.9) provides the Fourier transform of the Bessel potential kernel
[see Stein (1970)]. From Dautray and Lions (1985, pp. 119-126 and p. 140), the
probability density fx then satisfies the fractional pseudodifferential equation
d?\*

(I-A)fx(z)= (I - E) fx(z)=46(z), zeR, (9.10)
where —A represents the negative Laplacian operator on R, and é denotes the
Dirac-delta distribution. That is, fx is the fundamental solution to Eq. (9.10).
Thus, the probability density fx belongs to the fractional Sobolev space H?*(R).
Local regularity and asymptotic properties of fx are then given as follows:

(i) For o > 1/4, fx is Holder continuous. For a < 1/4, fx is square-
integrable, and its local properties must be analyzed in terms of suitable test
function systems [see embedding theorems between fractional Besov spaces,
Triebel (1978)].

(i1) The fractional heavy tail behaviour of fx follows from the well-known
asymptotic properties of the Bessel potential kernel. We then have

fx(z)=0(2[717®), |z] — oo

see Donoghue (1969) and Stein (1970).
Let Y be a random variable with Linnik distribution. Then, Y has its
characteristic function as

fr(X) = Elexp{iAY}] = 0<8<1.

1
1+ |A)8

The probability density fy satisfies the fractional pseudodifferential equation

B8
<I+ (—%) ) fr(w) =6@), veR (9.11)
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see Dautray and Lions (1985, pp. 119-126 and p. 140). Thus, fy belongs to the
fractional Sobolev space H3(R), and fy is Holder continuous for 8 > 1/2, and
square-integrable for 3 < 1/2, having square-integrable weak-sense fractional
derivatives up to order .

For a random variable Z with generalized Linnik distribution, the charac-
teristic function fz of Z is given by

fa(z) = Blexplirz}] = ——

1+[AB)”
see Erdogan and Ostrovskii (1998). The probability density fz is then the
fundamental solution of the fractional pseudodifferential equation

,B 14
(I-f— (-z%) ) fz(z)=4(2), z€R. (9.12)

Remark 9.3.1 Note that in reliability theory the failure rate function is de-
fined in terms of a differential model. Here, we adopt this framework to char-
acterize the probability density. Such characterization is specially useful in
engineering systems.

O0<pBr<l;

9.4 Multifractional Versions

In the examples analyzed in the previous section, the fractional parameter o
characterizes the symmetric Bessel distribution, and the fractional parameters
B and v characterize the Linnik and generalized Linnik distributions. In this
section, we formulate the multifractional versions of these distributions, given by
a functional parameter defining their heterogeneous local regularity properties.
The conditions assumed on the functional parameter are given in Section 9.2,
because we are considering the space S, 5 in the formulation of the characteristic
function.
Let o(-) = a(-) be a real-valued function in B*(R) satisfying

a@ = supar)<l,
z€R
= inf > 0. 9.13
a inf afz) (9.13)

The following multifractional version of the symmetric Bessel distribution is
considered:
1

(1 + AZ)a0)’

fg(\) = Elexp{iAX}] =
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Equivalently, f5 is the fundamental solution of the multifractional pseudo-
differential equation

~ d2 a(7)
1-00@f5@) = (1- 1) @ =0@, TR (1)

Function f; belongs to the fractional space H 2¢()(R) defined in Eq. (9.4).
Under condition (9.13), f3 is a probability density. Properties of this function
can be formulated in terms of upper and lower bounds, based on the associated
symmetric Bessel distributions

fx,(z1) = _/ReXp{_Mml}(TJrsz)Qd)‘ (9.16)
fx,(z2) = /IRexp{—iAzQ}(—1+1T2)adA. (9.17)

Note that the asymptotic behavior of f3 is now characterized in terms of the
functional parameter a(-). The probability of extreme values is then respectively
upper and lower bounded by the fractional power laws |z| "2 and |z|~172.
Thus, f5 presents a heterogeneous band-limited heavy tail behavior.

Let now ((-) and v(-) be real-valued functions in B*(R) satisfying

pv = sup B(z)v(z) <1,
zeR
Brv = irelﬁf{ B(z)v(z) > 0. (9.18)

The functional parameter versions of the Linnik and generalized Linnik distri-
butions can then be formulated as follows:

) = Blewli?) = g
@ = /R exp{—i)\fj}m i), (9.19)
fé(’\) = E[exp{i)\Z}]=(1—+W,
. 1
f3(z) = /Rexp{—z)\'zv} (1+‘,\|B(E))"(a dA. (9.20)

Functions f; and f3, respectively, are the fundamental solutions to the follow-
ing multifractional pseudodifferential equations:

(I+ (—igg)ﬂ@) fr ()

B\ ¥?)
(I+(—z‘d%) ) f2(3) = (), FeR (9.22)

0(y), yEeR, (9.21)



150 M.D. Ruiz-Medina and J.M. Angulo

They belong to the fractional Sobolev spaces H?()(R) and HA)¥()(R). From
condition (9.18), fy and f; are probability densities. Indeed, similar to the
multifractional symmetric Bessel model, the local regularity/singularity prop-
erties of the multifractional Linnik and generalized Linnik distributions can
be formulated in terms of the local properties of ordinary Linnik distributions
with parameters 3 and B, and generalized Linnik distributions with parameters

(ﬁ, T/') and (g, g).

9.5 Fractional and Multifractional Moment Laws

In this section, we study the local regularity properties of characteristic func-
tions that belong to an element of the continuous scale of fractional Sobolev
spaces. From this study, we infer the existence of fractional moments of the as-
sociated probability distribution. The multifractional formulation of this char-
acteristic function family, using the theory of fractional Sobolev spaces and
pseudodifferential operators of variable order, allows the introduction of het-
erogeneous heavy-tail probabilistic laws.

Fractional Sobolev spaces of fixed order can be considered as particular cases
of fractional Sobolev spaces of variable order (see Definition 9.2.2). Specifically,
for s € R, H%(R) is the space of tempered distributions u such that

(1+1 € )*?a(€) € P(R), €£€R. (9.23)
In this space the following inner product is considered:
(om0 1€ PYa(€)ol)de (9.2

with associated norm

1/2
[ — ( /R (14 €2 | () P ds) ,

where " stands for the Fourier transform.

Because operator (—A)*/2 defines an equivalent norm in the space H*(R),
that is, (—A)*?2 is bounded and elliptic in such space [see, for example, Stein
(1970) and Triebel (1978)], then, for any function v € H*(R),

/R (€)1 2°d < oo, (0.25)

From Eq. (9.25),
(&)l =0 (I€17°7°),  |¢] — oo, (9.26)

for a certain € > 0.
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Let X be a random variable with characteristic function fx € H*(R), with
s > 0, that is,

(I —Afx e L*R), s>0.
From Eq. (9.25), the probability density fx satisfies

/R (@) Plal?de < oo. (9.27)

Hence, fx has finite fractional moments up to order s. From Eq. (9.26), de-
pending on the range considered for the parameter s+¢, fx can be a heavy-tail
distribution. For example, X has infinite variance for s + ¢ € (0,2), and has
infinite first-order moment for s + ¢ € (0, 1).

9.5.1 Multifractional moment laws

The asymptotic properties of probability densities with associated characteristic
functionAin a fractional Sobolev space of variable order are now studied.
Let f5 be the characteristic function of a random variable X. Assume that

f;( € H°O(R). Then, f;( satisfies
(D)0 fg = (I - AV € (R),
that is,
[ exv (i3} 1z @)1+ GO aE, €eR, (9.28)
R
belongs to L2(R). Furthermore, for 0 < ¢ < ¢(Z) < 7, with 7 € R,
G [=82f5)(©) = € [ e (iat) 15(@FoE
< / exp (i€} | fg @1+ [32)2/2d5
R
< [ e (i3} 15 @1+ a0z
R
< [ exo (i3} |15 (@)1 + 5777z
R
< o / exp {i%E} | f5 ()37 dz
R

= G|z ©. (9.29)

Thus, the asymptotic behavior of f; is upper and lower bounded by the asymp-
totic behavior of the probability densities whose characteristic functions are in
the spaces H°(R) and H%(R), respectively. In that sense, we can say that fg
presents an heterogeneous heavy-tail behavior according to Eq. (9.26), with
s = ¢ and s = 7, considering suitable ranges of such parameters.
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Remark 9.5.1 Because heavy-tail probability distributions are in the domain
of attraction of stable probability laws, multistable probability distributions
can be introduced considering the above framework and the generalized central
limit theorem.

9.6 Conclusion

The theory of pseudodifferential operators and fractional Sobolev spaces is con-
sidered to characterize the local and asymptotic behavior of fractional proba-
bility densities and characteristic functions. The extended theory on pseudo-
differential operators and fractional Sobolev spaces of variable order allows the
characterization of new probabilistic models with multifractional parameters
defining their local regularity and asymptotic properties; see Ruiz-Medina et
al. (2004) for the Gaussian random field case. Some extensions of the sta-
ble probability laws can be formulated in this context from the application of
the generalized central limit theorem. Additionally, multifractal probabilistic
models can also be constructed using cascade algorithms with log-multistable
random weights. The last two aspects will be undertaken in a subsequent paper
by the authors.
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Topics in the History of Order Statistics

H. A. David
Iowa State University, Ames, IA, USA

Abstract: The term “order statistics” was introduced only in 1942, by Wilks.
However, the subject is much older, astronomers having long been interested in
estimates of location beyond the sample mean. By early in the nineteenth cen-
tury measures considered included the median, symmetrically trimmed means,
the midrange, and related functions of order statistics. In 1818, Laplace ob-
tained (essentially) the distribution of the rth-order statistic in random samples
and also derived a condition on the parent density under which the median is
asymptotically more efficient than the mean. Other topics considered are of
more recent origin: extreme-value theory and the estimation of location and
scale parameters by order statistics.

Keywords and phrases: Measures of location, distribution theory, extreme-
value theory, estimation of parameters

10.1 Introduction

Before we get into the history of order statistics a word on the term “order
statistics” is needed. The history is much older than the term which was in-
troduced in Wilks (1942, p. 401) for the ordered variates in a sample. Wilks
was concerned with setting tolerance limits. For example, he asked for the
probability that at least Vg of N measurements on a second random sample
will lie between the smallest and the largest value of a first sample of n taken
from the same population. This is a nonparametric use of order statistics. In
an extensive review paper, actually entitled “Order Statistics,” Wilks (1948)
deals with both parametric and nonparametric procedures. He includes non-
parametric tests based on the ordered observations, such as Friedman’s (1937)
two-way analysis of variance rank test, but because only the ranks are required,
such tests are no longer regarded as part of the subject of order statistics. This

157
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is in contrast to nonparametric tolerance limits and nonparametric confidence
intervals, which do require the order statistics.

An invaluable aid to writing on the history of order statistics is the extraor-
dinary compilation of lightly annotated abstracts of relevant papers up to 1949
prepared by Harter (1978). He has extended his abstracts up to 1969, with a
supplement up to 1992, in Harter (1983-1993). Nevertheless, writing a coherent
account requires more than a selection from these abstracts. Harter himself has
written a historical article (1988). Particularly valuable, as will be seen, are
parts of a paper of wider scope by Stigler (1973). I have endeavored to avoid
undue repetition and have selected from advances made more than 50 years
ago.

As far back as the second century b.c., the Greek astronomer Hipparchus
noticed variation in the length of the year. He estimated this as at most 3/4
day, “apparently by taking half the range of his observations” [Plackett (1958)].
This early date is an extreme outlier in the history of order statistics, but
outliers in observational data have long drawn astronomers and others to pay
special attention to extreme observations. The main concern was the effect of
outliers on the estimation of location. One long-standing common sense practice
was to take the average of the observations only after eliminating an equal
number of the largest and smallest values, that is, to calculate a symmetrically
trimmed mean [Anonymous (1821)]. Another approach, also still with us, was
to develop what were inevitably debatable rules for the rejection of outliers and
to apply these before calculating the mean. We turn now to a more detailed
account of measures of location. For measures of dispersion, not confined to
order statistics, see David (1998). We take this opportunity to make a slight
correction to that paper (p. 375): The exact pdf of the range in random samples
was first derived by Craig (1932).

10.2 Early Measures of Location

Given a set of comparable observations zi,...,Z,, or the corresponding or-
der statistics z(;y < -+ < (y), astronomers, geodesists, and others have long
searched for the best estimate of the mean pu. From an early time the sam-
ple mean, Z, was a natural choice [see, e.g., Plackett (1958)]. The method of
least squares [Legendre (1805)] when applied to a random sample leads to Z,
that is, 37, (z; — w)? is minimized for u = z. Gauss (1809) in fact asked the
question: Which distribution makes # the most probable estimator of u? He
showed that among symmetric, unimodal, and differentiable pdf’s the normal
is the one for which Z is the maximum likelihood estimate. Actually, following
Laplace, Gauss used not the likelihood but the posterior density f(u|Z) with a
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uniform prior, which is conceptually different but otherwise equivalent. With
this result Gauss gave a great boost to both the use of Z and the normal distri-
bution, discovered by de Moivre in 1733 as an approximation to the binomial
distribution. However, the frequent presence of outliers had made astronomers
dubious about relying on z. Stigler (1986) quotes (in translation from the
French) from a 1772 review by Jean Bernoulli III: “The problem of finding the
true mean among several observations, which is rarely the arithmetic mean, is of
considerable interest to astronomers.” Bernoulli goes on to mention Boscovich,
Lambert, Daniel Bernoulli, and De La Grange [Lagrange|. Boscovich’s method
for dealing with linear regression, nearly 50 years before the method of least
squares, led in the special case of a random sample to the median, m (for n
odd), i.e., Y |z; — p| is minimized for u = m.

The median is obviously stabler than the mean. With the help of his central
limit theorem Laplace (1818) was able to make an asymptotic comparison of
the two, finding the median asymptotically more efficient than the mean if

£(0) > 1/(20), (10.1)

where the parent density f(z) is symmetric about zero, with variance o2. The
inequality (10.1) holds for what has come to be known as the Laplace distribu-
tion f(z) = %e"w', —00 < x < 00, but does not hold for the normal. Moreover,
Laplace showed in the normal case that no linear combination of mean and
median could improve on the mean alone.

There were other possibilities besides mean and median. Anonymous (1821)
in an interesting, wide-ranging discussion (in French) on the choice of loca-
tion estimate mentions -é—(:z:(l) + Z(ny), %(a:(l) + T(9) + T(n—1) + T(n)), etc. and
more importantly the trimmed means (z(g) +- - +Z(n-1))/(n —2), (z3)+ -+
T(n-2))/(n—4), etc., He refers to “certain provinces in France, where in order to
determine the mean income from a landed property it is customary to consider
this income over a period of 20 consecutive years, to subtract the largest and the
smallest income, and then to take (1/18)th of the sum of the others.” Cournot
(1843, p. 142) even cites a law of May 15, 1818, on the transfer of property that
assesses value by the average market price over 10 of the preceding 14 years,
after elimination of the two highest and two lowest values.

Median. The notion of the median, according to, for example, Hald (1990, p.
108), goes back to the brothers Huygens in 1669, the motivation being Graunt’s
1662 life table. In addition to the residual expectation of life, the median
residual life time is also featured. For example, from a continuous graph of the
estimated survival probability as a function of age, one can easily determine that
a person of age 36 (one of the 16% to have reached this age!) has probability —21-
of living another 16 years, the median residual life time.

As a more ordinary estimator of location the median makes its first ap-
pearance in a surprising way, as a special case of Boscovich’s 1757 method of
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dealing with linear regression, nearly 50 years before Legendre proposed the
method of least squares. To determine a and b in the line fitted to points
(zi,yi),2=1,...,n, Boscovich required

> (mi—a—bz)=0

and
Z |yi — @ — bz;| = minimum.

The first condition, sometimes given up by later writers, ensured that the fitted
line y = a + bx passed through the centroid. The second condition, minimizing
the sum of the absolute deviations, was already natural in its day, but Boscovich
had a means of implementing it. His ingenious geometric method is described by
Hald (1998, p. 99). Laplace recognized its importance and provided an algebraic
proof in 1789. We present here a later version of the proof [Laplace (1818)] which
leads explicitly to the median and some of its properties. Considering without
essential loss of generality regression through the origin, Laplace minimizes
Y1 lyi — ba;| as follows: If x; is negative, change its sign and that of y;. Then
renumber the observations so that y; /21, y2/z2, . . . form a decreasing sequence.
Boscovich’s choice of b is y,/xz,, where r is determined by

Ti+ o+ T <Tpd ot zpand Ty 4o+ Tp > Tppy o+ Tpe (10.2)

To see that b, = y./x, minimizes the sum of the absolute deviations, write
e; = ¥; — bzx;. Then, in view of the renumbering, ei,...,e,—1 will be positive
and e, 41, ..., e, will be negative. If b is increased by the infinitesimal quantity
0b, the sum of the positive deviations will decrease by

(14 -+ xr-1)0b
but the sum of the absolute values of the negative deviations will increase by
(Trg1+ -+ 2,)0b

and e, will become —z,db. The sum of the absolute values of all the deviations
will therefore be increased by

(:1:,.+---+$n—331—"'_zr—l)éb-

By (10.2) this quantity is positive. Likewise, if b, is decreased by 43, the sum
of the absolute deviations will be increased by the positive quantity

(x1+ 4+ Zp —Tpy1 — -+ — Tp)0b.

Thus in both cases the sum of the absolute deviations is increased. The resulting
b, may be called a weighted median, the ordinary median being the special case
Ty =---=2p =1 (n odd).
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Midrange. For distributions of finite range it has long been realized that the
sample mean may not be the best estimator of location and that more weight
should be placed on the extreme observations. For example, see Hald (1998,
p. 85) for a discussion of Daniel Bernoulli’s 1778 approach to estimating p in
the semicircular distribution

f@)=[a®-(z-w?:, p-a<z<p+ta

Fisher (1922), in the course of a famous paper (p. 347) gives an interesting
argument for distributions depending only on a location parameter and whose
pdf’s make a finite angle with the z-axis. Taking the lower endpoint, ¢, let
f(z) = kx® in the neighborhood of ¢, where z is the distance from ¢. Then

Ia-{-l

and

PT(X(I) > :L‘) = (1 - F)n
- e-—Fn,
the approximation holding when n is large and F correspondingly small. Equat-
ing this to e™¢, where ¢ is a constant, we have

L xa+1 — E

a+1 n
This means that if we use X(;) to estimate ¢, the error z is proportional to
n~1/(@+)  For a < 1 this quantity decreases more rapidly than n~ Y2 and,
in large samples is therefore superior to the mean as a basis for a location
estimator [provided z(;) is not an outlier!]

Interestingly, in the same year Dodd (1922) compared mean, median, and
midrange for symmetric distributions. One of his conclusions is that the
midrange may be better than the mean if the pdf meets the z-axis at right
angles. He establishes the superiority of the midrange M’ over both mean and
median for a uniform distribution by comparing the densities at the population
mean of the three statistics. Dodd also derives the pdf of M’ for any distribution
having a density as

fa(m) = 2n(n — 1) [ [F(y) ~ F@m - )" 2£(4)f (2m — v)dy,

a result overlooked by Gumbel (1958, p. 108) when obtaining the simpler cdf
of M’ which may be written as

m

Far(m) =n / [F(2m — ) — F(@)]* f(z)dz.

-0



162 H. A. David

10.3 Distribution Theory

The first derivation of the distribution of X (ry in & random sample Xj, .. L Xn
from a population with cdf F(z) and pdf f(z) may be ascribed to Laplace
(1818). Being incidental to an examination of Boscovich’s 1757 method of esti-
mation, later known as Li-estimation, Laplace’s result was largely overlooked
until pointed out by Stigler (1973) and explicitly by Hald (1998, p. 448). See
also David and Edwards (2001) for a translation, with commentary, of the rel-
evant section of Laplace (1818).

What is truly surprising is that this first derivation occurs in the course
of a more general study of the distribution of the rth-order statistic among
Xi/c, ..., Xn/cn, where the ¢; are positive constants. Stripped of its specific
context, Laplace’s reasoning is a generalization of what is now a very familiar
argument: If X, = z is to make X, /c, the rth largest among the X;/c;, then
r — 1 of the X; must satisfy X;/c; < z/c,,n — r must satisfy X;/¢; > x/¢;, so
that the combined probability is proportional to

F@)Z F(esz/en) T 4 [1 ~ Fle/er)]-

If¢; = -+ = ¢, = 1, this gives, in modern terms, the pdf of X, as proportional
to

g(z) = F'~(2)[1 = F(2)]" " f(x). (10.3)

Laplace assumes f(x) = f(—z), but he uses this symmetry assumption only
later when obtaining asymptotic results. We present his asymptotic approach,
applying it however not to the special situation considered by him, but to the
“near-median” case when |r — %nl < £, where a is a constant. With z assumed
small, we have to order z2

F(z) = % +zf(0)+ %wa'(O), (10.4)

the last term vanishing by the symmetry assumption. Also

£(2) = £(0) + 522(0).

Then to order z2 we have

logg(z) = —-2(n—2r+1){zf(0)—log2]
~2(n — 1)[a2(0)] + logl (0) + 32f"(0)]
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Assuming x to be of order 1/+/n, we see that only the second term is important.
Thus asymptotically

d 1 1 a
X =N, —5—— - = —.
(r) (0, 4f2(0)n) |7 2n| <.

The constant of proportionality in (10.3) was of no importance to Laplace.
Pearson (1902) in the course of arriving at the formula

B(X(rs1) — Xer) = (”) | F@i-F@rde r=1,..,n-1

goes through the arguments needed for the derivation of fx,, (z) without writ-
ing down the result which is perhaps first given in von Bortkiewicz (1922).
Strictly, this author’s formula applies to the case F(z) = Pr{|X| < z}, where

XinN (0,1), but his argument holds for any distribution having a density func-
tion. The formula may be regarded as well known only with its appearance in
Biometrika [Irwin (1925)]. However, it is interesting to note that a brilliant,
long overlooked paper by Daniell (1920) [see Stigler (1973)] begins by obtaining
mathematically the result (in present notation)

n! ! —1 r—1 n—r
E(X(r))=(r_1)!(n_r)!/0 FH (w1 - w)* " du

as well as the corresponding result for E(X X))

10.4 Extreme-Value Theory

One of the oldest nontrivial results in order statistics arose from the following
question considered by Nicolas Bernoulli in his 1709 Ph.D. dissertation:

Given that b individuals die in a time span of a years, during which
the probability of death is constant, what is the number of years the
last survivor can expect to live?

Bernoulli reduces this to finding the expected value of the maximum of b inde-
pendent variates uniform in (0,a). After giving a combinatorial argument he
offers a second solution by what he calls a geometric approach. If the abscissa
x denotes time to death of the longest living and the ordinate y is proportional
to the probability of b — 1 deaths before time x, then the desired expectation is
the z-coordinate of the “center of gravity” of the area under the curve y = 2?71,
namely,
Jgx-abtde  ab
Jozblde b+ 1
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We note that the argument would have been more general if Bernoulli had taken
y to be proportional to the pdf of z. Only in the uniform case does his approach
work. Bernoulli goes on to consider the life expectancy of the longer living of
two individuals of different ages. The original (in Latin) may be found in Jakob
(James) Bernoulli (1975, p. 296) with a detailed commentary (in German) by
K. Kohli (p. 545). See also Hald (1990, p. 114).

Now we fast forward to von Mises (1923) who, triggered by von Bortkiewicz
(1922), pioneered the asymptotic theory of extremes of iid variates. Under the
conditions E|X| < oo and, for fixed positive c,

. 1-F(z+c)
R Ry el (a)
he shows that
E(X

nlggo F-1(1 - %)

This gives a convenient asymptotic approximation for E(X,)). The condition
(a) is typical of the tail-behavior assumptions made in subsequent extreme-
value theory work. In particular, (a) is satisfied when X is normal, in which
case von Mises proves the result, stronger than (b), that

1
lim |E(Xq) - F'(1-=)|=0.

n—00 n

See David and Edwards (2001) for a translation from the German, with com-
mentary, of von Mises’s paper.

Explicit results for the asymptotic distribution of the normalized maximum
in samples from a variety of initial distributions are given by Dodd (1923). An
elegant clarifying breakthrough is achieved by Fisher and Tippett (1928). They
point out that if a limiting distribution, A(z), of the maximum exists, then the
distribution of the largest in a sample of n drawn from A(z) must be “similar”
to A(z), that is, differing only in location and scale. This gives the functional
equation

A (z) = Aanz + by), an > 0,—00 < by, < 0.

If a, # 1, then z = apz + b, when z = b, /(1 —a,). At this point A™ = A, that
is, A = 0 or 1. Consequently the solutions fall into three classes or types:
l.a,=1 A} z) = A¥(z + by)
2. A=0whenz=0 A3 (z) = Az(anc)
3. A=1whenz=0 2(x) = Az(anz)
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The authors then show that

€

Ai(z) = e© 7, —00 <z < 00
As(z) = 0, <0
= e ° z>0,aa>0
Asz(z) = e (=27 z<0,aa>0
= 1, x> 0.

Actually Ag(z) had essentially also been obtained, and with a wider range
of validity, by Fréchet (1927) in whose honor it is sometimes named. Wilks
(1948, p. 430) notes that in spite of the different dates the two papers appeared
“almost simultaneously.” Fréchet was influenced by Lévy’s (1925, Chapter 3)
notion of the “stability” (in distribution) of the sums of independent normal and
Cauchy variates. He points out that the cdf of the maximum is the product
of the component cdf’s, just as the characteristic function of the sum is the
product of the component characteristic functions. Thus it is natural for Fréchet
to allow for differences in scale among the component variates. He restricts
himself to non-negative variates Xi,..., X,, with measures of scale o1,...,0,
(not necessarily standard deviations) of the same order of magnitude.

Fréchet now solves the functional equation

Ao(z/0) = Ag(z/01) - - Aa(z/0m),
for both A; and . He shows that

FX(n)/O’(‘T) - e—z“"as n— oo, 20,

where 0% = o + .-+ 05.

Juncosa (1949), examining the asymptotic behavior of the minimum of in-
dependent nonidentically distributed variates, shows that many more than the
three limiting forms become possible when identity of component distributions
is given up. Although citing Fréchet’s paper, he makes no reference to the above
result.

It is interesting to note that none of the 1920s authors above—von Mises,
Dodd, Fréchet, or Fisher/Tippett—refers to the work of the others. However,
Tippett (1925) in his important finite-sample paper on the extremes and the
range in normal samples compares some of his exact calculations with approx-
imations suggested in von Bortkiewicz (1922) and Dodd (1923).

The next major development was by von Mises (1936) who provided conve-
nient sufficient conditions on the initial distribution leading to the three types.
Necessary and sufficient conditions on the initial distribution were given in a
masterly paper by Gnedenko (1943), with further improvements for type 1 above
by de Haan (1970). Gumbel (1958) continues to be a useful review, especially
on applications. For a recent summary see, for example, David and Nagaraja
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(2003, Section 10.5) and for an extended account, see Galambos (1987). See
also the end-of-chapter surveys of the literature in Galambos (1987) and Reiss
(1989).

10.5 Estimation of Location and Scale Parameters
by Linear Functions of Order Statistics

Selected order statistics, such as the median, the upper and lower quartiles, and
the extremes have long been used in an ad hoc way to estimate location and
scale parameters. A unified approach is possible by the method of maximum
likelihood applied to ordered samples or subsets thereof. But this is often labo-
rious and the estimators do not necessarily have good small-sample properties.
It was not until 1952 that E.H. Lloyd, in a very influential paper, showed how
the method of least squares could be used to estimate the parameters p and o
(not confined to denote mean and standard deviation) in distributions with pdf

of the form )
l’ —
f(w;u,0)=—g( #)-
ag g

If X;,i=1,...,n, are independent, with pdf f(z;pu,o), then Y; = (X; — u)/o
has pdf g(y), not depending on x and o. The transformation also takes X
into Y(;),r=1,...,n.

Let

E(Yy) =or and cov(Yyy), X(s) =0Brs s=1,...n.

Then
E(X() =p+0oa, and cov(X(, X(s) = 0°Brs.

For given g(y), the a, and 8,5 can be computed once and for all. Then the X,
have expectations that are linear functions of u and o, with known coefficients,
and covariances (including variances) that are known up to the scale factor o2.
Lloyd realized that consequently Gauss’s least-squares theory [see, e.g., Plackett
(1949)], generalized by Aitken (1935) to cover nondiagonal covariance matrices,
results in estimators

n n
,LL* = Z’YiX(i) and o* = ZdiX(i),
i=1 i=1
that have minimum variance in the class of linear functions of the X(;). Again,

the v; and 6; can be tabulated once and for all, making the estimation
immediate.
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Apparently independently, Gupta (1952) also obtained these results. He
introduced the terms type I and type II censoring and made the important
observation that type II censoring, for example, terminating a life test at the
time of the rth failure z(,), can be treated in the same way by simply using «;
and fB;j for justi=1,...,7and j =1,...,7. Type II censoring at each end can
obviously be treated similarly.

For the corresponding asymptotic theory we refer the reader to an excellent
review [Stigler (1973)] that includes coverage of the remarkably modern paper
by Daniell (1920).

10.6 Tables

Two-decimal tables of the expectations of order statistics from standard normal
samples for n < 50 are given in Fisher and Yates (1938) (and subsequent
editions). The entries are called scores for ordinal (or ranked) data and are
recommended for data that can be ranked but not measured, as in psychological
preference tests.

The first systematic table of means, variances, and covariances of order
statistics is given in Hastings et al. (1947). This is truly a pioneering paper.
The authors write:

It would be very helpful to have (1) at least the first two moments
(including product moments) of the order statistics, and (2) tables
of the percentage points of their distributions, for samples of sizes
from 1 to some moderately large value such as 100 and for a large
representative family of distributions. This is a large order and will
require much computation

Hastings et al. deal for n < 10 with the uniform, normal, and a specially
devised long-tailed distribution given by representing X as X = (1—U)~1/10 —
U~1/10 where U is uniform over [0, 1]. The covariances in the normal case could
be computed to just 2D (decimal places), five places being provided elsewhere.
Comparisons with asymptotic approximations are also made.

In the normal case Godwin (1949) gives also the covariances for n < 10
to 5D and obtains all first two moments and product moments for n < 6 in
terms of elementary functions. Other authors were also involved but the real
breakthrough came with the advent of the high-speed computer. Teichroew
(1956) tabulates all first two raw moments and product moments for n < 20
to 10D. Sarhan and Greenberg (1956) use these, following Gupta (1952), to
obtain to 8D the coefficients of the best linear estimators of ;4 and ¢ for singly or
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doubly censored type II samples. Since then, numerous such tables for location-
scale distributions have appeared. For a listing see the Appendix, Section 8.5,
of David and Nagaraja (2003). The construction of these convenient tables
involves, among other operations, inversion of the covariance matrix of the
relevant order statistics. A listing of tables of covariance matrices, which have of
course also other uses, is given in Appendix Section 3.2. It should be noted that
the range, W,,, in normal samples received earlier attention in the remarkable
5D tables of E(W,,) by Tippett (1925) for n = 2(1)1000!
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Order Statistics from Independent
Exponential Random Variables and
the Sum of the Top Order Statistics

H. N. Nagaraja
The Ohio State University, Columbus, OH, USA

Abstract: Let X;) < --- < X(,) be the order statistics from n indepen-
dent nonidentically distributed exponential random variables. We investigate
the dependence structure of these order statistics, and provide a distributional
identity that facilitates their simulation and the study of their moment proper-
ties. Next, we consider the partial sum T; = Z;.l:iﬂ X5, 0<i1<n—1. We
obtain an explicit expression for the cdf of T;, exploiting the memoryless prop-
erty of the exponential distribution. We do this for the identically distributed
case as well, and compare the properties of T; under the two settings.

Keywords and phrases: Markov property, equal in distribution, simulation,
mixtures, selection differential

11.1 Introduction

Let Xi,..., X, be independent nonidentically distributed (inid) random vari-
ables (rvs), where X; is Exp(}\;), j = 1,...,n; that is, the pdf of X; is given
by

f](CE) = )\je_’\jm, x 2 0,

and the A; are possibly distinct. Let X(;j < --- < X() be the order statis-
tics from this sample. We investigate their dependence structure and provide
a distributional identity that facilitates their simulation and investigation of
distributional and moment properties. This is done in Section 11.2.

The work in Section 11.3 is motivated by a personal communication from

173
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Dr. Yang-Seok Choi who was interested in the distribution of

n
T,= ) Xy, 0<i<n—1. (11.1)
j=i+l
There we obtain an explicit expression for the cdf of T;. We also consider the
independent identically distributed (iid) case and relate T; to a rv known as

selection differential in the genetics literature. We then compare the properties
of T; under the iid and inid models.

11.2 Distributional Representations and
Basic Applications

We begin with a discussion of the stochastic structure of and distributional
representations for the vector of order statistics (X(y),- .., X(r)). When the );
are identical and equal to, say ), it is known that (see, e.g., David and Nagaraja,
2003, p. 18)
i
. a1 Zi .
(X(l‘),'l/—-].,...,n)—x jzzlm,'l—l,...,n y (112)
where the Z; are iid standard exponential (i.e., Exp(1)) rvs. This is known as
Rényi’s representation [Rényi (1953)].
Let X = (X(1),...,X(n)) and Z = (Z, ..., Z,)’, and define a vector o

4

(e1,...,0,0,...,0)" where aj = 1/{\(n—j + 1)}, 1 <i,j < n. Then, X,
a;'Z and (11.2) can be expressed as
x £ ¢z, (11.3)

where C is the n x n matrix of constants whose ith row is «;’. This relation is
helpful in simulating all or a subset of order statistics from a random sample of
size n from an Exp()\) parent.

When the A; are not identical, representations for the exponential order
statistics do exist. Nevzorov (1984) shows that [see also Nevzorova and Nev-
zorov (1999)] the joint distribution of order statistics can be expressed as a
mixture distribution with n! components where the various component vectors
are chosen with probability p; of picking certain permutation of the A; for or-
dering the observed rvs. To be precise, Nevzorov shows that the cdf of X(;),
the ith component of X, can be expressed as a mixture cdf given by

Fio)(z) = szFz(x), (11.4)
=1
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where
A A

Ay T+ Aam)) (Ad) + -+ Ady) - Ay
and Fj is the cdf of the rv

n=1 (11.5)

4 ey Zi
Ay + -+ Ad(n)) Qa@y+-+Xamy)  — 7

and the mixture includes all n! vectors corresponding to the n! permutations
(d(1),d(2),...,d(n)) of integers 1,2,..., n.

Tikhov (1991) gave another, simpler, form of the above representation by
introducing antiranks D(1),..., D(n) defined by

{D(i) =m} ={X4 = Xn}, 1<i, m<n. (11.6)
With these random subscripts, one can write the distributional equality

4 4y I Z;
(Apa) + -+ Apmy) (Ap@) + -+ Apw)

X () 1<i<n, (1L7)
where the Z; are iid standard exponentials and are independent of the antirank
vector (D(1),...,D(n)). The form in (11.3) also holds in this case, with a
modification that lets the elements of C to be rvs. Let us define a random
vector a; = (4y,...,4;,0,...,0),1 <i < n, where

Aj = (/\D(J) +--+ /\D(n))_l» 1<j<mn. (11'8)

Then the following distributional equality holds:
X 4 Az, (11.9)

where A is an n X n random matrix whose ith row is a;/. The elements of A
are independent of the vector Z whose components themselves are iid standard
exponential rvs. The elements of A are functions of Ay,..., A, that are de-
pendent and depend on the distribution of (D(1), ..., D(n)), given by the p; in
(11.5).

11.2.1 Remarks

1. The joint distribution of (D(1),..., D(n)), given in (11.5), can be used
to simulate this vector. We now describe how it can be done easily and more
efficiently in a sequential manner. We start with D(1); it is a discrete rv with
support Qo = {1,2,...,n} and P(D(1) = i) = A;/(D jecq, Aj)- Once D(1) is
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selected from this distribution, D(2) is chosen from Q; = {1,2,...,n}—{D(1)}
using the probability distribution given by P(D(2) = i) = A;/ (Zyeﬂl Aj)- In
general, for 1 < k <n —1, after D(1),..., D(k) are chosen, D(k + 1) is chosen
from

O = {1,2,...,n} — {D(1),D(2),...,D(k)}

using the probabilities

PDk+1)=1)= / Z/\ , 1€Q,1<k<n—1.
JEQ

2. The representation in (11.9) can be used to simulate exponential order
statistics or functions of these order statistics. If the quantity of interest is a
function of the first 7 order statistics, one need to simulate only D(1),..., D(%)
and these choices will determine the sum 3 7_, +1 AD(x) that is needed to eval-
uate the observed values of A;,j < i. Also, we need to simulate only Zk,1 <
k <i.

3. The representation for the cdf of X(;) given in (11.4) and the distri-
butional identity for the rv X(;) given in (11.7) have different purposes and
applications. The former can be used to determine probabilities associated
with X(;) assuming that the explicit form for F; is available, whereas the latter
gives a handy framework for simulation There is a distinction between (11.4)

and an equality in distribution (= ) relation obtained by replacing the cdfs with
the associated rvs in that equation. Tikhov’s (1991, p. 630) interpretation of
Nevzorov’s result makes this improper leap.

11.2.2 Applications

Moments

We can use the distributional equality in (11.7) to obtain expressions for the
moments of order statistics. Because

p 7
Xy =Y AiZ;,
i=1

Aj and Z; are independent, and the Z; are iid standard exponential, it follows
that

E(Xq) ZE
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and
VM&WJM@%M%W:ZM@+WrZ&,

upon simplification. Further, for 1 <i < k < n,

i k
CO’U(X(Z'),X(]C)) = VO,’I‘(X(.L))-FZ Z CO’U(Aj,Al)
j=1l=i+1

) ) k
= Y E(AD+Cov Y 4;, > A]. (11.10)
j=1 j=1  I=i+l
In the iid case, the A;’s are all constants and A; = 1/{\(n —j + 1)}, and
the classical results follow immediately.
Spacings of order statistics

The relation in (11.7) can also be used to study the distributional representa-
tions for spacings. For example,

Xy = Xion) £ AiZi, 2<i <,
and hence for2 <i<n-—1,
COU(X(l) - X(i—1)7 X(i+1) - X(z)) = CO'U(A,‘Zi, Ai+1Zi+1) = COU(A,‘, Ai+1)-

In the iid case, it is wellknown that the spacings are independent and thus
are uncorrelated. It appears that the covariance is zero if and only if the A; are
identical. Such a conjecture is also made in Khaledi and Kochar (2000) and a
proof is given of the claim for n = 3. (They actually prove a stronger result.)
The case where n > 3 appears to be open.

Other linear functions

For a vector 3 = (B1,...,8,)’, one can simulate 3'X values as 3'AZ using
(11.9). For example, the T; in (11.1) can be simulated as the sum

Ti=(n—19)Y AiZi+ Y (n—j+1)4;Z; (11.11)
j=1 j=it1
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In the iid case, T; is related to the selection differential, given by

Y X -ul, (11.12)

j=n—k+1

where p and ¢ are the mean and standard deviation of the parent population.
For the Exp(A) parent, both these moments are 1/A. The rv Dy is used to
measure the improvement due to selection where the top values in the sample
are selected and for small k (= n — i), it provides a good test for checking for
outliers at the upper end of the sample.

Another linear function is the total time on test given by

ZXO) +(n—19)X),

and serves as the best estimator of 1/ based on type II right censored sample
in the iid case.

11.3 Sum of the Top Order Statistics

The following classical result (see, e.g., David and Nagaraja, 2003, pp. 137-138)
is helpful in our pursuit of the cdf of the sum T;.

Lemma 11.3.1. Suppose Z,., r = 1,...,m, are independent standard exponen-
tial random variables and c,’s are distinct positive numbers. Then

m Z m
P (; (C—:) > z) = leTe'CTZ, z> 0,
= r=

where
-/ (-2)
s#Er
and the probability is 1 if z < 0.
Now recall the representation (11.11) for T; where the joint distribution of

the A, is as described in Section 11.2 and the Z; are iid standard exponential
IVs.
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11.3.1 The IID case

When the X; are identically distributed each being standard exponential, say,
Aj; would be a constant 1/c; where ¢; =n — j + 1. In that case,

i

1
ng(n—i)z<3>zj+wi, 0<i<n-1, (11.13)
J

Jj=1

where W; is the sum of (n—1) standard exponential rvs, and is a gamma(n—i, 1)

rv with pdf
1

—w, n—i—1
—_ w > 0.
mn—i—ni° Y

filw) =
Thus, Tp is a gamma(n, 1) rv. Also, because Tr,_1 = X(n),

PTh1>t)=1-(1—-eH" t>0.

For 0 < i < mn—1, one can use Lemma 11.3.1 and conditioning argument
in the representation (11.13) to obtain an explicit expression for the survival
function of T; as follows:

1
PTi>t) = Pl(n—-9)Y —Z;+Y; >t

= [ 22> —t-v) fwiy+ P>
Y

% t
1 i
= D wjexp{-ct/ C”“}m/o exp(djy)y" " dy
=1 '

_ i
—t
+ > e L (11.14)
k=0
Here, c; =n—j+1,
. o
d=9 _1=tT171 5,
Ci+1 n—1

The w; are obtained using Lemma 11.3.1, and have alternating signs. They are
given by

n— k+1 1 n! (—1)i=7
n—j+1(n—z’)!(j—1)!(i—j)!'

a
II
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The pdf of T; can be obtained by differentiating (11.14). Upon some simplifi-
cation the pdf can be expressed as

t
Cj 1 n—i—1

E W t d; dy,

JCz+1 exp{ Ci+1 } (n—i-1)! /o exp! ]y)y Y

SN /i1 o a1
fr(t) = n(,,z—1>§(;_1)(_1)1_3exp{—%t}
t . _ . .
Ty (S

Nagaraja (1981) has obtained a similar expression for the pdf of T;/(n—1) in his
study of the selection differential Dy, in (11.12) arising from a random sample
from an exponential distribution. From Nagaraja (1982), one can obtain the
asymptotic distribution of T; — (n — i) log(n) if n approaches infinity such that

=n — 1 is held fixed. Becasue the exponential distribution is in the domain
of attraction of the Gumbel distribution, the cdf of T; — klog(n) converges to
the following cdf for k& > 2:

(kkk_—;);iexp{ a/b} / exp —exp (y—g)}exp{ —y(k—5)}y**dy.
=0

Andrews (1996) has studied the finite-sample moment and distributional
properties of the selection differential Dy, for the exponential and uniform par-
ents. From his work, one can obtain explicit expressions for the first four mo-
ments of T; = (n — i)(u + 0 Dp—;) in the iid case. He also discusses asymptotes
for the moments of Dy when k& = np, 0 < p < 1, and the rate of convergence of
the finite-sample moments.

or as

11.3.2 The non-IID case

Let us assume that the A; are all distinct. As in the iid case, we dispose of the
special situations first. When ¢ = 0,

n n n
o= X5=3 %2> Zi/N
Jj=1 j=1 j=1

Hence, Lemma 11.3.1 can be used directly to obtain an explicit expression for
P (To > t).
When ¢ =n — 1, T; = Xy and hence

n

P(Tpr > t)=1-[] (1 - e”’\jt) . (11.15)

Jj=1
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As we see below, for 1 < ¢ < n — 1, the expression for P(T; > t) is more
involved.

For a given j,1 < j < n, let S(j) be a set with (i — 1) elements taken from
{1,2,.. .,nl— {j}. There are (T::ll) different choices for S(j). For each such
choice, let S(5) = {1,2,...,n} — {5} — S())

Theorem 11.3.1. Let T; be given by (11.1) with 1 < i < n — 1. Then, for
t >0, P(T; > t) can be expressed as

DN w(S())e M

J=L  S(5) keS(H)

t/(n—1i)
/ H(l —Am®) exp —A-{-Zx\— n—1i)Ag| T pdx
0

meS(j) reS(j)
=1 Su) t/(n=1) mesm res()
(11.16)
where 1
wi(S(j)) =

[iskes (1 - AA‘?) |

PROOF. The joint pdf of X(y), ..., X(p) is the sum of n! terms where each term
has the form

n
[T rwe o, 0<ay <o <z,
k=1

where (r(1),...,7(n)) is a permutation of (1,...,n). Then

n
—Ar (k)T
P(Ti>t) = Z/ ' '/0<z1<---<xn<oo H Argye” T da. (11.17)
n! =

Tip1t++Ta>t k=1
We split and group the n! terms using the following procedure:
(a) We fix X(;) = x and its parameter \;, j =1,...,n

(b) Given j, we fix the parameters associated with X(1), ..., X(;_1). There are

(1) (n—it1)= (’Z:D(i-m

such distinct ways of choosing their parameters.
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(c) The remaining parameters associated with X (i41)» - - -» X (n) can be ordered
in (n —14)! ways.

Let S°(j) be a typical (ordered) set in (b) and S°(j) be a typical ordered set in
(c). The expression for P(T; > t) given in (11.17) above can be written as

ZZ Z/ Aje N {// H/\r(k T(k>z’°dxk}

=1 500)5°0) PRmSTS S ke

n
A,
/. N 0<E<i41 << <00 H /\r(k)e (k)zkdiﬂk dzr.
Tiyr+--+Tn>t k=i+1
(11.18)
For every unordered set S(j) that leads to S5°(j),
i—1
{/ / [ 2 rgye™ ’“d:vk}
Se(j); S(J) fixed 0<z1 <<z 1<T el
can be seen as
P(max X <a)= [[ -, @>0. (11.19)

keS(5) kS ()

Further, in (11.18), for every unordered set S(j) that leads to S°(j),

—Ar ()T
Z {/“./w<wi+1<“-<mn<00 H Artige T kdwk}

5°(); 5(j) fixed Tip1to o>t k=itl
can be expressed as

Yo et Eresn

5°(5):5()fixed

n
-
/ 0<yi+1 < <Yn <00 H )\T(k)e (k)ykdyk s (11-20)
Yit1+tyn>t—(n—i)z k=i+1

by taking y, = Ty = T, k=1+1,...,n The multiple integral in (11.20), when
summed over S°(5) for a fixed S ( ) represents

PYy+- +Yp-i >t — (n—i)x)

where Y(y),...,Y{,_; are the sample order statistics generated from (n — 1)
independent exponential rvs having exp(\,)distribution, r € S(j). Thus, the
above expression is nothing but

P(SrespYe >t~ (- i)z) = P Sz =2 > t— (n=i)z), (1121)
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where the Z, are Ed standard exponential rvs. Thus, in view of Lemma 11.3.1,
for a fixed z and S(j), the expression in (11.21) reduces to

D w,(S(5))e Mt (nmilad

reS(j)

if z < t/(n—1), where the w,(S(j)) are as given in the theorem. The expression
in (11.21) is clearly 1 if z > t/(n — 7).

Combining the above with (11.19) and (11.20), and recalling (11.18), we are
led to the expression for P(T; > t) given in (11.16). |

Notes

1. The first summation in (11.16) above has n x (7Z}) x (n — 1) distinct

terms and the second summation has n x (';:11) terms.
2. The form given by (11.16) holds when ¢ = n — 1 as well. In that case
S(4) has only one element, wi(S(j)) = 1, and Ere§(j) Ar —(n—1)Ax = 0 in the
above expression. However, the expression given by (11.12) is much easier to
work with.

3. If some of the A,’s coincide, one could use limiting argument to obtain
the relevant expression for P(T; > t). The extreme setup of this type is the iid
case.

4. The distribution of the random variable T; is helpful in finding probabil-
ities of interest in the performance analysis of multiple antenna systems. See
for example, Choi et al. (2003). There, the inid case is of interest.

11.3.3 The IID case vs. the INID case

It would be interesting to study the changes in the distributional properties of
T; as one moves from the iid case to the inid case. Of course, the additional
complications that arise in the expression for the edf in the inid case are evident
in the above discussion. The question of interest could be in terms of stochastic
comparisons. For example, how do the cdf of T; in the inid case compare with
the one in the iid case?

Proschan and Sethuraman (1976) obtained a majorization result for order
statistics from heterogeneous populations with proportional hazard functions.
They showed that if the vector A = (Aq, ..., A\,) majorizesv = (v1,...,), X;
is exp();), Y; is exp(v;), and they are all mutually independent, then (Xy,. ..,
X(n)) is stochastically larger than (Y{y),...,¥(n)). Without loss of generality,
we can take Ay > --- > A, and vy > - -+ > v, then the first vector majorizes the
second if Z;zl Aj > 23':1 vj for 1 <1 < n, and equality holds when ¢ = n. This
means any monotonically increasing function of order statistics is stochastically
larger with parameter vector A than with v, and in particular, this property
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holds for T;. The iid case corresponds to the vector (A, ..., )" and is majorized
by any A with at least two distinct components. Thus, 7T; will have a larger
mean under heterogeneity than under homogeneity when the sum of the hazard
rates remains the same. But, then one has to keep in mind that

E(X1++ X)) = E(Ty) = % (iid case)

1
= Z— (inid case).

o N
When } A; = n), from the “arithmetic mean-harmonic mean inequality,” it
is clear that the mean of the sample average (= Ty/n) in the iid case is itself
(much) smaller than its mean in the inid case. Thus, a similar result for T;
when ¢ > 0 is hardly surprising given that components of T; tend to be those
X; with larger means or smaller hazard rates.
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Fisher Information and Tukey’s Linear Sensitivity
Measure Based on Ordered Ranked Set Samples

N. Balakrishnan and T. Li
McMaster University, Hamilton, ON, Canada

Abstract: Stokes (1995) derived the Fisher information and discussed the max-
imum likelihood estimation (MLE) of the parameters of a location-scale family
F (2=£) based on the ranked set sample (RSS). She found that a RSS provided
more information about both x and o than a simple random sample (SRS) of
the same size. We also focus here on the location-scale family. We use the idea
of order statistics from independent and nonidentical random variables (INID)
to propose an ordered ranked set sample (ORSS) and develop the Fisher infor-
mation and the maximum likelihood estimation based on such an ORSS. We
use logistic, normal, and one-parameter exponential distributions as examples
and conclude that in all these three cases, the ORSS does not provide as much
Fisher information as the RSS, and consequently the MLEs based on the ORSS
(MLE-ORSS) are not as efficient as the MLEs based on the RSS (MLE-RSS).
In addition to the MLEs, we are also interested in best linear unbiased estima-
tors (BLUE). For this purpose, we apply another measure of information, viz.,
Tukey’s linear sensitivity. Tukey (1965) proposed linear sensitivity to measure
information contained in an ordered sample. We use logistic, normal, one- and
two-parameter exponential, two-parameter uniform, and right triangular distri-
butions as examples and show that in all these cases except the one-parameter
exponential, in terms of linear sensitivity, the ORSS has more information than
the RSS, and consequently the BLUEs based on the ORSS (BLUE-ORSS) are
more efficient than the BLUEs based on the RSS (BLUE-RSS). In the case of
one-parameter exponential, the ORSS has only slightly less information than
the RSS with the relative efficiency being very close to 1.

Keywords and phrases: Ranked set samples, ordered ranked set samples,
Fisher information, linear sensitivity measure, best linear unbiased estimators
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12.1 Introduction

The basic procedure for obtaining a ranked set sample is as follows. First, we
draw a random sample of size n from the population and order it (without
actual measurement, e.g., visually). Then, the smallest observation is mea-
sured and the remaining are not measured. Next, another sample of size n
is drawn and ordered, and only the second smallest observation is measured.
This procedure is continued until the largest observation of the n-th sample
of size n is measured. This process is called as a one-cycle ranked set sample
of size n. If we replicate the above procedure m times, we obtain a ranked
set sample of total size N = mn. The data thus observed is denoted by
XRSS = {Xl(l)a X2(1), ceey Xm(l), ceny Xl(n)v X2(n)7 ey Xm(n)} We use the fol-
lowing figure to describe this observational process:

Cycle 1
Xim Xom o Xpm — Xl(l)
Xin Xom Xnn — Xy
: : : D — :
X1 Xom - Xpn — Xl(n)
Cycle m
Xin Xom 0 Xam — Xnpo
X1 Xom Xpn — m(2)
: : : D :
Xin Xom - Xpp — Xm(n)

The ranked set sampling was first proposed by McIntyre (1952) in order to
find a more efficient method to estimate the average yield of pasture. Since
then, numerous parametric and nonparametric procedures based on ranked set
samples have been developed in the literature. In the parametric case, Stokes
(1995) examined both maximum likelihood estimates (MLE) and best linear
unbiased estimates (BLUE) for location-scale distributions based on RSS. The
BLUE based on RSS have been further discussed by Chuiv and Sinha (1998),
Barnett and Barreto (2001), Hossain and Muttlak (2000), Zheng and Al-Saleh
(2003), and Bhoj and Ahsanullah (1996). For some other parametric aspects
of RSS, we refer the readers to Kim and Arnold (1999), Perron and Sinha
(2004), Stokes (1980b), Barreto and Barnett (1999), and Chen (2000). In the
nonparametric case, the estimation of the population mean and variance based
on RSS and the properties of these estimators have been investigated. We refer
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the readers to Takahasi and Wakimoto (1968), Dell and Clutter (1972), and
Stokes (1977, 1980a). The estimation of the parent cdf and the pdf based on
RSS have been discussed by Stokes and Sager (1988), Chen (1999), and Kvam
and Tiwari (1999).

This chapter is motivated by the work of Stokes (1995) who derived the
Fisher information and discussed the maximum likelihood estimation of the
parameters from a location-scale family F (%’i) based on the RSS. She found
that the RSS provided more information about both p and ¢ than a SRS
of the same size. We also focus here on the location-scale family. For the
purpose of computational simplicity, we discuss one-cycle ranked set sample of
size n, which is denoted by X g5 = {X(l), Xy, -- .,X(n)}. In Section 12.2, we
present the likelihood function based on the ORSS, the score equations, and
the Fisher information. Then, we compare this information measure to that
of the RSS. Next, we use the Newton-Raphson method to compare the MLE-
RSS and the MLE-ORSS. We consider three examples, viz., logistic, normal,
and one-parameter exponential distributions, and find that in all these three
cases, the ORSS does not provide as much Fisher information as the RSS, and
consequently the MLE-ORSS are not as efficient as the MLE-RSS. In addition
to the MLEs, we are also interested in the BLUEs. Hence, we discuss in Section
12.3 another measure of information, viz., Tukey’s linear sensitivity. We use
logistic, normal, one- and two-parameter exponential, two-parameter uniform,
and right triangular distributions as examples and show that in all these cases
except the one-parameter exponential, in terms of linear sensitivity, the ORSS
has more information than the RSS, and consequently the BLUE-ORSS are
more efficient than the BLUE-RSS. In the case of one-parameter exponential
distribution, the ORSS has only slightly less information than the RSS with
the relative efficiency being very close to 1.

12.2 Maximum Likelihood Estimation
Based on the ORSS

Let Xpgs = {X 1y X (2 - X (n)} be the RSS from a location-scale population

with pdf £ f (25£) and cdf F (££). 1t is then evident that if the ranking of
the RSS is perfect, the pdf of X,y is

frn(z) = - 1)?(; — T)!i- [F (a:(r)g— u)}r“l f (W)

_ n—r
X l:l - F (M>] , —00 < x(p < oo. (12.1)
o
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Because the likelihood function of the X rgs is simply the product of fi.n(z(1)), - - -,
frn(T(ny) from (12.1) due to the independence of X1y, X(2), . .-, X(n), we have
the log-likelihood function of the Xzgs to be

Il = C—-nlno+ Zlnf(z(,,)) + Zn:(r ~ 1) InF(2n)

r=1 r=1
n

+Y (n=r)Il = F(z))], =00 < 21,5 2ny < 00,

r=1

(12.2)

where C'is a constant and zy = x(";_”
Therefore, the MLE-RSS, denoted by (fimpe, Omie), is the solution of the
equations

f(zr flzy) Flzmy)
Sy Ty + i = D7y - TR =0,

2 ' (2(r) 2 @)
nt S, S s (- 1)l

2 f(z(m)
—Z:’zl(n—r)%,vfg)j =0.

(12.3)

Stokes (1995) also derived the Fisher information in RSS, from (12.2), as
0%l
Iy = Eq——
. { 8u2}
n o [P, nn—-1) f4(2) }
= —SE 12.4
st e ) 02
02l
he = E{_Guaa}

= aF {Z 72 r} e e |

%l
122 = E{—@}

_ n_[[2f(2)]* n(n—1) (Zf(2))?
- ﬁE{[f(Z)] ‘1}+ T ro o ra )

(12.6)

(12.5)

where Z is a random variate with the standard density f(z).
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Now ordering X gss in an increasing order of magnitude, we get X orss =
{XPRSS < XPRSS <. < X ORSSY which is called the ordered ranked set sample
(ORSS). Using the results of order statistics from INID random variables [see
David and Nagaraja (2003)], the density function of X 8%° (1 < r < n) is given
by

e (Tr)
1
= ('r'—l) Z{H[Eknmr]fzr xr H [1 zknxr]};
k=r+1
—00 < zp < 00, (12.7)
where 3 denotes the summation over all n! permutations (1, 42, ..., in) of

P
(1,2, ...,n). The likelihood function of X grss can then be written as

)]

H [(219 — 1)7'1(|n — ig)! 7 (zk)]ik—l 1-F (Zk)]n—ik / (Zk)]

0"2
P k=1
1 = f(zk) F zk -1 n—ik}
- — (z)]* 7 [1 = F (z)] :
o kl;Il B(k,n—k+1 ] {;g[[ k ]

—0 <2 < e < 2y < 00,

where zx = £ and B(a,b) = (a(;ir;_bl_)})! is the complete beta function. The
log-likelihood function is then

n n

= D—nlna+Zlnf(zk)+ln{ZH (z1))* 11— F(z))" ”‘]}
k=1 P k=1

—00 <2 < < 2y < 00,

where D is a constant. The MLE-ORSS, denoted by (px5: Oriei), is the solution
of the equations

I(zx) —
Sha HE 5 =0,
(12.8)
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where
o =Y {H [(P(z)) (1 = F(z0)* ]
P s=1
i — 1
[
@ =3 {H [(Fz) (1 = F(ze)™ ]
P s=1
i 1 — 1
X
(Cer
b =

ST IFG (0 F)™).
z

s=1

-7 ﬁ;(“;k» Zkf(zk)} } :

We are also interested in the Fisher information in ORSS, because it will
allow us to compare the relative efficiency of MLE-ORSS with respect to MLE-
RSS. The Fisher information in ORSS can be derived as follows:

~—
=%
=
]
=

{5}
op?
- 5o 5O a( b

o
I, = -
12 E { B;LBJ}

= %E{Z{J;((ZZ-))]Q}+}13E{G_;}+;E{%;3_G_;} (12.10)

. Lol
I = E {_%’2‘}

- {5 e {5}
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where

- X {Izll () (1 - F(z)) ]
" l; (Fe + 2 rtom) @)
_kz (Fe ~ 27tk 1)
“ = Y {I:I [(F(Z)y(1 - F(Z)"]
> (R o)
5 = Y {H (F(Z))*™ (1~ F(Z) ]
,; (e * o rigp) )

_Z (izy o7 ) 2o )

I

3
a5 = ;{H [(F(Z0))* (1= F(Zo))* "]
" ; (¥~ o) ')
" Z ((k 7 T ) @) } /
a = Z{H [(F(Z)~ (1 - F(Z,))"]
Zl(( RaR TR )

> ((Fay - o7y #re)

2

n
k=1
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ag = ) { [ [(F(Zo))= (1 = F(Z,))" ]
n X 2
i —1 n — i
2 ((F(Zk) T1- F(Zk)> d (Z’“))

k=1

X

From Egs. (12.9)-(12.11), we can see that the first terms in these equations
are actually the corresponding terms in the Fisher information in an ordered
simple random sample [see Stokes (1995)]. Moreover, we can prove that the
third term in Eqgs. (12.9) and (12.11) are always less than zero (see Appendix).
The complexity of the other terms in Egs. (12.9)-(12.11) makes it difficult for us
to determine a relation between the Fisher information in RSS and ORSS. But,
from our study of logistic, normal, and one-parameter exponential distributions,
we observe that the RSS has larger Fisher information than the ORSS in these
three cases. Stokes (1995) noted that, for the RSS, the term I;2 in (12.5) is
zero for symmetric distributions, but this may not be true for I}, in (12.10) in
the case of ORSS in general, even though it is true in the case of the logistic
distribution.

12.2.1 Logistic distribution

Let X grss and X orss be from the logistic population with pdf

1 e (=z—wlo
flz) =~ e
o (1t e-@w/7)
From Egs. (12.4)-(12.6) and Egs. (12.9)-(12.11), we can derive the Fisher infor-
mation in RSS as
n(n+ 1)
602

Ip = % {B[Z%(1 - 2F(2)))2 -1} + "—("?;—L)E[Z"‘F(Z)(l - F(2))],

—oo < <o0.

I I =0,

and the Fisher information in ORSS as

mo= "D pe
I = S{E20-F@) 1)+ ez e - Fe)

1 as 2 as
~E (—) _ sl
o { b b }
It is easy to see that If; = Ii1, I{y = Lo, but I3, < Iz, because we know

that E{(Ebz)2 - %3} < 0 (see Appendix). Table 12.1 presents the Fisher in-
formation about ¢ in RSS and ORSS, respectively, which are based on Monte
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Table 12.1: Comparison of Fisher information between RSS and ORSS from
the logistic distribution

n 2 3 4 5 6 7 8 9 10

?1;122 3.29440 5.58191 8.29451 11.45899 15.03105 19.08059 23.50773 28.33388 33.67061
;12-152 3.04032 5.01068 7.36663 10.16772 13.35357 17.01754 21.04628 25.54500 30.92350

Table 12.2: Bias and MSE of MLEs based on RSS from
the logistic distribution

3

Bias(ﬂMLE) MSE(ﬂMLE) Bia,s(é'MLE) MSE(@’MLE)

2 —0.00123 1.14555 —2.12526 5.97207
3 0.00103 0.54891 —0.16112 0.19406
4 —0.00017 0.31869 —0.10695 0.12830
5 0.00110 0.20932 —0.07887 0.09209
6 0.00002 0.14808 —0.06070 0.06933
7 0.00019 0.11038 —0.04831 0.05477
8 0.00015 0.08548 —0.03993 0.04421
9 —0.00136 0.06875 —0.03254 0.03603
10 0.00169 0.05538 —0.02809 0.03043

Carlo simulations. It is clear to see that the Fisher information in the ORSS is
moderately less than that in the RSS.

By using the Newton-Raphson method to solve Egs. (12.3) and (12.8), we
obtain the MLE-RSS and the MLE-ORSS, which we shall denote by
(fimre, Ome) and (Uye, Ors), respectively. Tables 12.2 and 12.3 present the
bias and mean square error of the MLE-RSS and MLE-ORSS determined from
10,000 Monte Carlo simulations (with 4 = 0 and ¢ = 1). When n = 2, the
MLE-RSS as well as the MLE-ORSS are far removed from the true value of
p and o, but o), . is better than &y e. When n > 3, the efficiency of the
MLE-ORSS of u is almost the same as the MLE-RSS of u, while the relative
efficiency of oy, . with respect to Gy is around 90%.

12.2.2 Normal distribution

Let Xpgss and Xgrgs be from the normal population with density function
2

f(z) = 21M€_ o2 , —00 < x < 00. Table 12.4 presents the Fisher information

in RSS and ORSS. It is clear that both I}, and I3, are less than I1; and Iz,
respectively. Tables 12.5 and 12.6 present the bias and MSE of the MLE-
RSS and the MLE-ORSS, respectively. When n = 2, the Newton-Raphson
method does not often converge based on either RSS or ORSS. When n = 3, the
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Table 12.3: Bias and MSE of MLEs based on ORSS from the logistic
distribution and relative efficiencies

n Bias(uig) MSE(uyr) RE(uyp, AmiE) Bias(oe) MSE(oiLe) RE(o3ie, OMLE)

2 —0.00123 1.14555 1.00000 —1.67503 3.06856 1.94621
3 0.00108 0.54980 0.99838 —0.18265 0.21666 0.89570
4 —-0.00018 0.31940 0.99780 —0.12261 0.14504 0.88461
5 0.00108 0.20972 0.99812 —0.09068 0.10460 0.88042
6 0.00000 0.14836 0.99809 —0.07018 0.07855 0.88265
7 0.00020 0.11055 0.99853 —0.05562 0.06178 0.88653
8 0.00010 0.08560 0.99866 —0.04604 0.04962 0.89091
9 —0.00137 0.06882 0.99904 —0.03726 0.04032 0.89374
10 0.00178 0.05545 0.99868 —0.03164 0.03368 0.90347

Table 12.4: Comparison of Fisher information between RSS
and ORSS from the normal distribution

n 02111 0’2112 0’2122 021’1"1 0'21’1"2 0’2152

2 2.96123 0.00039  4.53074 2.95681 0.00044 4.20724
3 5.88288 —0.00561  7.62492 5.86996 —0.00493 6.88766
4 9.76617 —0.00149 11.23962 9.74324 —0.00198 10.04306
5 14.61027 -0.00437 15.40385 14.57601 —0.00446 13.71449
6 20.41955 0.00434 20.07481 20.37240 0.00335 17.86093
7 27.18308 0.00227 25.29647 27.12498 0.00216 22.56148
8 34.90793 —0.06191 31.15110 34.83470 —0.06409 27.85410
9 43.59402 —0.07638 37.63034 43.49940 —0.07851 33.69233

—
o

53.24776 —0.02337 44.40295 53.14073 —0.04098 39.92216

Newton-Raphson method still often does not converge based on RSS, but it
converges based on ORSS. We can also see that the relative efficiency of uy,
with respect to fiyig is very close to 1, while the relative efficiency of oy,  with
respect to Gy g is around 90%.

12.2.3 One-parameter exponential distribution

Let X pss and X grss be from an exponential population with density function
X

f(z) = %exp (=%), £ >0, 0 > 0. Table 12.7 presents the Fisher information
about ¢ in RSS and ORSS, and it is clear from this table that the Fisher
information in ORSS is slightly less than in RSS. The bias and MSE of the
MLE from RSS and ORSS are presented in Table 12.8. The relative efficiency

of o}, 5 with respect to Gy is about 98%.
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Table 12.5: Bias and MSE of MLEs based on RSS
from the normal distribution

n Bias(ﬂMLE) MSE(ﬂMLE) Bias(&MLE) MSE(&MLE)

3 — — — —
4 0.00141 0.10676 —0.12910 0.10160
5 —0.00396 0.06799 -0.09069 0.07030
6 —0.00262 0.04912 -0.07149 0.05349
7 —0.00073 0.03804 —0.05576 0.04285
8 —0.00170 0.02834 —0.04439 0.03381
9 —0.00020 0.02309 0.03441 0.02877

10 —0.00424 0.01931 —0.03675 0.02501

Table 12.6: Bias and MSE of MLEs based on ORSS from the normal
distribution and relative efficiencies

n  Bias(ufg) MSE(uje) RE(ue,fimie) Bias(oyie) MSE(oyie) RE(oLe,OMLE)

3 —0.00054 0.17397 — —0.22907 0.18255 —
4 0.00125 0.10706 0.99721 —0.14710 0.11498 0.88360
5 —0.00400 0.06814 0.99772 —0.10249 0.08032 0.87518
6 —-0.00243 0.04935 0.99527 —0.08175 0.06104 0.87636
7 —0.00076 0.03815 0.99706 —0.06212 0.04820 0.88904
8 —0.00161 0.02840 0.99786 —0.04924 0.03838 0.88108
9 —0.00028 0.02316 0.99661 0.03868 0.03214 0.89535
10 —0.00418 0.01936 0.99729 —0.04068 0.02745 0.91093

12.2.4 Conclusions

From the above three examples, we see that even though the ORSS does not
have as much Fisher information as the RSS, the relative efliciencies are very
high, especially for the location parameter u for normal and logistic distribu-
tions. The Newton-Raphson method to obtain the MLE-RSS and the MLE-
ORSS does not often converge, or converges to a value away from the true value
when n = 2 or 3. In this case, the MLE-ORSS seems to be better than the
MLE-RSS for normal and logistic distributions in terms of both convergence
and mean square error. In the case of the one-parameter exponential distribu-
tion, the Fisher information in ORSS is only slightly less than in RSS, and the
relative efficiency of the MLE-ORSS compared to the MLE-RSS is nearly 98%.
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Table 12.7: Comparison of Fisher information between RSS and ORSS from
the one-parameter exponential distribution

n 2 3 4 5 6 7 8 9 10

02l 2.79955 5.41277 8.84513 13.08436 18.10901 23.95813 30.59065 38.15936 46.23967
0212*2 2.76277 5.32411 8.70176 12.88173 17.84192 23.61300 30.18296 37.64389 45.66347

Table 12.8: Bias and MSE of the MLE based on RSS and ORSS
from the one-parameter exponential distribution, and relative
efficiency

n BiaS(é’MLE) MSE(&MLE) Bia.S(UKALE) MSE(U;\‘IILE) RE(O’;ALE, &MLE)

2 0.01834 0.36682 0.02226 0.37486 0.97856
3 0.01415 0.19200 0.01685 0.19625 0.97837
4 0.01022 0.11638 0.01198 0.11881 0.97960
5 0.00731 0.07811 0.00851 0.07955 0.98190
6 0.00670 0.05614 0.00754 0.05712 0.98280
7 0.00540 0.04242 0.00604 0.04307 0.98494
8 0.00045 0.03290 0.00088 0.03335 0.98629
9 0.00428 0.02649 0.00447 0.02694 0.98345
10 0.00403 0.02133 0.00442 0.02158 0.98840

12.3 Tukey’s Linear Sensitivity Measure
Based on ORSS

Fisher information revealed that the RSS is more efficient than the ORSS in
the three examples discussed in the last section. Moreover, we also noted that
the MLE-RSS is in general more efficient than the MLE-ORSS in these three
cases. How about other estimators, such as the best linear unbiased estimators
based on RSS (BLUE-RSS) and ORSS (BLUE-ORSS)? Tukey’s linear sensitiv-
ity measure naturally comes in to play in this context.

Tukey (1965) proposed linear sensitivity as a measure of information in an
ordered sample. Nagaraja (1994) showed that the linear sensitivity of an or-
dered sample is actually the inverse of the variance of BLUE based on this
ordered sample. This definition of linear sensitivity and its connection to the
BLUE was extended to the multiparameter version by Chandrasekar and Bal-
akrishnan (2002). In this section, we will examine the linear sensitivity in an
ORSS and compare it with that in a RSS.

Let XRSS = {X(l),X(Q), . 7X(n)} and XORSS = {Xﬁgss S Xg%ss <.
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< XRS5 be the RSS and ORSS from a location-scale population with pdf
;f( —£) and cdf F (2£). The pdf of X2RS is as given in Eq. (12.7). Fur-
thermore, the joint pdf of X215 and X2R%S (1 < r < s < n) can be shown to
be

n ]s—l ]n—ln kl n— k’r 1

EIRSED 3D SETED DD SES S S S

P k=5 ks 1=js_1 ks=0 kn=01;=0 lp1=0
kr+l ks—l—l ks+1

X Z Z Z Z sfran(xﬂxs)

lr+1:kr+l +1—Jr4+2 ls—l=k5—1+1_js—l ls+1—0 ln=0
—00 < Ty < Ty < 00, (12.12)

where
(F— DIE~ 7 — D)l(n? - 5)!
r=Dls = Di(n— (A

war = TG )
AT @OHOCHHI )

n n
Fo= Y katdrtis— D la—ks—1,
a=1

Wy, = ikl
e (

a=r+1
a#r,s a#s
n r—1
5§ = E ka+js+§ lg.
a=1 a=1
a#r,s

From Egs. (12.7) and (12.12), the mean vector and the variance-covariance
matrix of ORSS can be computed with which the BLUE-ORSS can be obtained
using the general formula of BLUEs which was first derived by Lloyd (1952).
Specifically, with Xopss = (XORSS .. XORSS) denoting the ordered ranked
set sample from a location-scale family with location parameter p and scale pa-
XORSS_ XORSS_

rameter o (> 0)and Y = ( 1
standard random vector, the BLUE of (u, o) is given by

/
= ) denoting the corresponding

o g0 ey o

*
W -1\~ pre—1
( 0_* = (B X B) B'XY XORSS7
and its variance-covariance matrix is

Var( w ) =0 (B'S'B)”,
g
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Table 12.9: Comparison of linear sensitivity of RSS and ORSS from the logistic
distribution

n o281, 02890 o287, 2835, ARE(p} v, dsLue) ARE(oh ug,FBLUE)
2 0.87341 0.87341 0.87341 1.73650 1.00000 1.98818
3 1.75573  2.20602 1.82447  3.60392 1.03915 1.63367
4 2.96026 3.96609 3.11446 5.85548 1.05209 1.47638
5 449111 6.14675 4.74096  8.51207 1.05563 1.38481
6 6.35048  8.74662 6.70318 11.58308 1.05554 1.32429
7 8.53967 11.76594 9.01309 15.10464 1.05544 1.28376
8 11.05950 15.20538 11.62819 19.01391 1.05142 1.25047
9 13.91056 19.06575 14.60118 23.33060 1.04965 1.22369
10 17.09325 23.34781 17.90163 28.07809 1.04729 1.20260

where B = (1 p), 1= (1,1,...,1)],,, and p and X are the mean vector and
the variance-covariance matrix of Y, respectively. Similarly, if X orss denotes
an ordered ranked set sample from a scale family with scale parameter o (> 0)

and Y = Xgrss/0 denotes the corresponding standard random vector, the
BLUE of ¢ is given by

o = NIE—IXORSS/ (NIE_II‘)

and its variance is
Var(o*) = 0%/ (W= ).

From the above formulas, linear sensitivities of RSS and ORSS, denoted by
S and S*, respectively, can be computed. Note that the means and variances of
RSS are exactly the same as the means and variances of the usual order statistics
which have been computed rather extensively; see, for example, Tietjen et al.
(1977) and Balakrishnan (1992) for tables for normal and logistic distributions,
respectively.

Tables 12.9-12.14 present the linear sensitivity of RSS and ORSS from the
logistic, normal, one- and two-parameter exponential, two-parameter uniform,
and right triangular distributions, respectively. Bhoj and Ahsanullah (1996)
discussed the estimation of parameters of the generalized geometric distribution
using RSS. They used the two-parameter uniform distribution with pdf f(z) =
2—\}%, p— 30 < z < p+ 30, and right triangular distribution with pdf

flz) = 515 (£ + 2\/5), p—2v20 <z < p+ 20, as specific examples and
showed that when sample size is small (n < 5), the BLUE-RSS is not as efficient
as BLUE based on the usual order statistics (BLUE-OS). Here, we want to
compare the BLUE-ORSS to the BLUE-RSS.

It is clear from these tables that ORSS possesses more linear sensitivity
than the RSS for both location and scale parameters of logistic, normal, two-
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Table 12.10: Comparison of linear sensitivity of RSS and ORSS from the normal
distribution

n 02511 02522 UZSIl 0'2552 ARE(NELUE,/]BLUE) ARE(O'ELUE,&BLUE)
2 2.93388  0.93388 2.93388  2.00532 1.00000 2.14729
3 5.80363  2.56028 5.81448  4.52789 1.00187 1.76851
4 9.61593  4.79934 9.65043  7.56371 1.00359 1.57599
5 14.37543  7.61739 14.44306 11.11572 1.00470 1.45926
6 20.08524 10.99780 21.06979 16.91149 1.04902 1.53772
7 26.74753 14.93140 26.89108 19.81793 1.00537 1.32726
8 34.36385 19.41280 34.64788 24.97151 1.00827 1.28634
9 42.93534 24.43864 43.27344 30.67988 1.00787 1.25538
10 52.46290 30.00675 52.90568 36.86042 1.00844 1.22840

Table 12.11: Comparison of linear sensitivity of RSS and ORSS from the
one-parameter exponential distribution

n 2 3 4 5 6 7 8 9 10

028 2.80000 5.39246 8.77927 12.96275 17.04482 23.72697 30.31037 37.69593 45.88441
028* 2.76213 5.30766 8.64837 12.78917 17.73261 23.49164 30.09246 37.43908 45.60811
ARE 0.98648 0.98427 0.98509 0.98661 0.98817 0.99008 0.99281 0.99319 0.99398

Table 12.12: Comparison of linear sensitivity of RSS and ORSS from the
two-parameter exponential distribution

n o281 285 o283, 283, ARE(up1ug, foLue) ARE(0f yg, FBLUE)
2 1.14286 0.66667 3.02314 1.19512 2.64524 1.79268
3 4.29170 1.85085 11.18056 2.93206 2.60516 1.58417
4 10.06989 3.56145 25.35888  5.26941 2.51829 1.47957
5 18.96039 5.81344 46.14243 8.22941 2.43362 1.41558
6 31.35595 8.61967 109.53242 11.82492 3.49319 1.37185
7 47.58677 11.99067 109.53242 16.07860 2.30174 1.34093
8 67.93731 15.93509 152.51807 21.01255 2.24498 1.31863
9 92.65721 20.46016 204.07229 26.55999 2.20244 1.29813
10 121.96878 25.57201 263.42567 32.75320 2.15978 1.28082
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Table 12.13: Comparison of linear sensitivity of RSS and ORSS from the
two-parameter uniform distribution

n 02811 02859 0'281‘1 02S§2 ARE(u%ug: feLue) ARE(ofiur,FBLUE)
2 3.00000 1.00000 3.00000 2.57143 1.50000 1.28571
3 6.11111  3.33333 6.62196 7.60041 1.98659 1.52008
4 10.41667 7.25000 11.94679 15.69508 2.38936 1.74390
5 15.98333 12.95000 19.04924 27.19859 2.72132 1.94276
6 22.86667 20.60000 28.00786 42.31571 3.00084 2.11579
7 31.11429 30.34286 38.81823 61.15990 3.23485 2.26518
8 40.76786 42.30357 51.61002 83.99617 3.44067 2.39989
9 51.86442 56.59325 66.52622 110.87540 3.62870 2.51990
10 64.43730 73.31190  83.46182 141.96166 3.79372 2.62892

Table 12.14: Comparison of linear sensitivity of RSS and ORSS from the right
triangular distribution

n 0?81 %8y o?Si; oS3, ARE(piug, feLve) ARE(0fLug, OsLuR)
2 2.94118 0.94118 2.94118 2.19635 1.00000 2.33363
3 5.82492 2.93670 5.98326 5.79730 1.02718 1.97409
4 9.64718 6.03895 10.03109 10.87361 1.03979 1.80058
5 14.40398 10.28052 15.05528 17.40289 1.04522 1.69280
6 20.09201 15.68473 21.04194 25.36716 1.04728 1.61732
7 26.70861 22.26964 27.96545 34.75701 1.04706 1.56074
8 34.25156 30.04991 35.88645 45.57950 1.04773 1.51679
9 42.71906 39.03785 44.68710 57.76560 1.04607 1.47973

10 52.10957 49.24401  54.48783 71.39798 1.04564 1.44988
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parameter exponential, two-parameter uniform, and right triangular distribu-
tions. But, for the one-parameter exponential distribution, just as in the case
of Fisher information, ORSS possesses slightly less linear sensitivity than the
RSS. Because the ORSS has more linear sensitivity than the RSS in all cases ex-
cept the one-parameter exponential, the BLUE-ORSS turns out to be naturally
more efficient than the BLUE-RSS in all these cases.

Appendix

Result 1: The third term in Eq. (12.9) is nonpositive, viz.,

PROOF. Let "
[T (F(zr))™ 1 (1 = F(2x))" ™
k=1
Pp, n ] 3
2 1T [(F(z)) 5= 1(1 = F(2k))™ %]
P k=1
and "
. 1 — 1 n—1ig
where p;, = (41,42,...,%,) € P(1,2,---,n) and P(1,2,...,n) denotes the group

of n! permutations of (1,2,...,n).

It is evident that pp, > 0 and Z;’;l pp, = 1. Hence, (‘—‘bl)z — 4% can be
written as

! 2 n! n! n!
a1 2 a4 n ! )
(?) T (priqpi) B priqzz’i = —Zzpmppj(qm —4p,)" <0
i=1 i=1 i=1 j>i
Therefore, E {(%1)2 - %4} <0. ||

Result 2: The third term in Eq. (12.11) is nonpositive, viz.,

(-4} =

ProoF. Following the above notations and setting

on =2 (a5 - T2y o]

k=1
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(%)2)2 — & can be actually written as

as\2 ag ! 2 ! n!
2 2
(?) T (privpi) - privpi =- Zzppippj(vpi - Upj) <0.

i=1 j>i

Therefore, E {(%2)2 - %“-} <0. |
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Abstract: This paper consists of three sections. The first section gives an
overview of the basic information functions, their interpretations, and dynamic
information measures that have been recently developed for lifetime distribu-
tions. The second section summarizes the information features of univariate
Pareto distributions, tabulates transformations of a Pareto random variable
under which information measures of numerous distributions can be obtained,
and gives a few characterizations of the generalized Pareto distribution. The
final section summarizes information measures for order statistics and tabu-
lates the expressions for Shannon entropies of order statistics for numerous
distributions.

Keywords and phrases: Characterization, entropy, hazard rate, Kullback-
Leibler, reliability, Rényi, residual life, Shannon

13.1 Introduction

Professor Barry Arnold has made significant contributions to the distribution
theory and statistics. Two examples of his contributions to the field are the
theory and applications of Pareto distributions [Arnold (1983)] and order statis-
tics [Arnold et al. (1992)]. The Pareto distributions provide models for many
applications in social, natural, and physical sciences, and are related to nu-
merous other families of distributions. Order statistics have applications in
a wide range of problems in many fields, provide numerous characterizations
of probability distributions, and serve as building blocks for some statistical
methodologies including robust statistical estimation and detection of outliers,
goodness-of-fit tests, entropy estimation, and analysis of censored samples. In
this paper, we summarize information properties of Pareto distributions and

207



208 M. Asadi et al.

order statistics. We only discuss univariate Pareto distributions and refer to
Darbellay and Vajda (2000) for the multivariate case.

13.2 Information Measures

Two probability distributions F; and F; with continuous densities f;, j = 1,2,
on the support § are under consideration as models for a random prospect X.
The fundamental information measure for comparing the two distributions is
the Kullback-Leibler discrimination information,

K(fi: f2) = /Sfl(x)logfl(m)dx

f2(z)
_ o fiX
= E11 g-—f2(X), (13.1)

where f; is absolutely continuous with respect to fo and E; denotes the expec-
tation with respect to fi. K(f; : fa) > 0, where equality holds if and only if
fi(z) = fa(z) almost everywhere. But K(f : f2) is not symmetric, so it is not
a distance function. It is a measure of directed divergence between f; and fo,
where fo is the reference distribution. It is also referred to as cross-entropy and
relative entropy.

The term information reflects two aspects of (13.1). First, K(f; : f2) gener-
alizes two measures of information, entropy and mutual information, developed
by Shannon (1948) for communication theory. Second, the statistical interpre-
tation of information stems from the foundation of K(f; : f2) in probabilistic
inference via Bayes theorem [Kullback and Leibler (1951) and Kullback (1959)].
The log-ratio in (13.1) is the difference between the logarithms of the poste-
rior and prior odds in favor of Fj, referred to as the weight of evidence for Fy
provided by an observation z [Good (1950)]. Thus, K(fi : f2) is the expected
information in favor of Fj provided by X for discriminating between the two
models.

The discrimination information K(fi : fo) quantifies loss or gain of infor-
mation per natures of F; and F5. When an Fj is an ideal distribution (e.g., the
true data-generating distribution), K(fi : f2) measures loss of information in
using the other distribution instead of the ideal one. In this case, K(f1 : f2) is
also referred to as entropy loss; see Soofi (1997) for references. When F and
F; reflect two states of knowledge (e.g., prior and posterior distributions), then
K(f1: f2) measures the gain (loss) of information in using the distribution that
is reflective of more (less) knowledge instead of the alternative. In this case,
K(f1: f2) is also referred to as a utility function [Bernardo (1979)].
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The properties of (13.1) is studied extensively by Kullback (1959). Two
properties of interest in this study are invariance and decomposition.

(a) If Y = ¢(X) is a one-to-one transformation, then K(f1, : fo,) = K(fix :
fax ), where f;, denotes the distributions induced by ¢ on fj,, j=1,2.

(b) Let &=1{&,...,&,} be a partition of the support S. Then,

K(fi:f2) = K(Pr: P E) + Zn:Pl(gi)K(fl : f2; &), (13.2)

i=1

where K(P; : Po; ) = Y iv; Pi(&) log 2 g:) and Pj(&;) = [g, fi(z)dz, j =
1,2. This property is obtained by combining two expressions in Kullback
(1959).

13.2.1 Shannon entropy

Shannon entropy [Shannon (1948)] is defined by

H(X)= H(f) = — /S F(z) log f (z)dz. (13.3)

Shannon entropy measures lack of uniformity (concentration of probabilities)
under f. With a less concentrated distribution, it is more difficult to predict an
outcome. The negative entropy —H(f) = Ef[log f(X)]is the average log-height
of the density. It is the discrimination function between F and the uniform
distribution and is a measure of informativeness of F' about the prediction of
its outcomes [Zellner (1971)].

The entropy is not invariant under nonsingular transformations of X. If
Y = ¢(X) is a one-to-one transformation, then

HY)=H(X)-E [log E‘i—,drl(y)u . (13.4)

Decomposition of entropy over the partition £ of the support S is given by
n

H(f)=H(P;;€) + )Y Py(E)H(f; ), (13.5)
i=1

where H(Ps; £) is the entropy of the multinomial distribution implied by F' on
the partition.



210 M. Asadi et al.

13.2.2 Rényi information measures

The information divergence of order o {[Rényi (1961)] between two distributions
is defined by

Kuo(f1: f2) =

T log / fo z)dz, (13.6)

where a # 1.

The following representations provide some insights about the role of a in
(13.6):

Kalfiif) = —2piosBa [Tl o>
_ 1 ()]
= a—llogE2 _f_2(3(:—)._ , a<l
— 1 -fz(X)-l——a
T R ool B

That is, for @ > 1, K,(f1 : f2) is log of the expected odd in favor of Fy, given
F,, where the magnltude of « is the weight given to the odd ratio. However,
for @ < 1, pending on the weight, a or 1 — a, K(f1 : f2) can be interpreted
as the log of the expected odd in favor of Fj, given Fi, k # j = 1,2. A useful
case is when a = %, where K7 /9(f1 : f2) is symmetric in f1 and fo.

It is well known that lim,—1 Ko(f1 : fo) = K(f1 : f2) = Ki(f1 : f2). Like
(13.1), Ko(f1 : f2) is non-negative and invariant under one-to-one transforma-
tions of X.

The entropy of order a of a distribution (Rényi 1961) is defined as

Ha(f) = —log [ f*(z)dz, (13.7)
— S
where o > 0, a # 1.
It is well known that lim, ,; Ho(f) = H(f). Like (13.3), Ho(f) is not
invariant under one-to-one transformations of X. However, there is no useful
formula like (13.4) for H,(f).

Rényi entropy expressions for univariate distributions are given in Song
(2001) and Nadarajah and Zografos (2003).

13.2.3 Dynamic information

Frequently, in reliability one has information about the current age of the sys-
tem under consideration. In such cases, the age must be taken into account
when measuring information. Ebrahimi and Kirmani (1996a,b) considered the
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discrimination information between two residual distributions that take age ¢

into account. In this case, the set of interest is the residual lifetime
E=8t={z:z >t}

The discrimination information function between two residual life distribu-
tions Fj(z;t) = Pj(X —t < z|X > t) implied by two lifetime distributions
Fj(x), j = 1,2, is given by

o Tt
K(f: fst) = KIfest): last) = [ flas0log 25 0
t fg(.’l?,t)
where f;(z;t) = %J%, j = 1,2, denote the conditional densities and F}(t) =
M

Pj(8:) =1 - Fy(t), j =1,2. It is clear that for ¢y = inf{z : F(z) =1}, K(f1:
fa;to) = K(f1: f2). Foreach ¢, t >0, K(f1: fo;t) possesses all the properties
of the discrimination information function (13.1). If we consider ¢ as an index
ranging over S, then K(fi : fo;t) provides a dynamic discrimination informa-
tion function indexed by ¢ for measuring the discrepancy between the residual
life distributions Fj(z;t), j = 1,2.

The entropy of residual life distribution is defined similarly as

H(X;t)= H(f;t) = /f ;:1:;

[Ebrahimi (1996)]. 1t is clear that for tg = inf{z : F(z) = 1}, H(f;t0) = H(f).
Another set of interest that leads to dynamic information measures is the
past lifetime of the individual

S[t] ={z:z <t}

The discrimination information function between two past lifetime distribu-
tions implied by two lifetime distributions F; and F5 is given by

2 [HRE@) @R
Kl pil) = ) B e T g™

where F]%’ j = 1,2 are the conditional densities. It is clear that for t* =

inf{z : F(z) = 1}, K(f1: f2;[t"]) = K(f1, f2)-
By (13.2), for partition £ = {&, £}, we have the following dynamic infor-
mation decomposition:

K(fi: f2) =K(P1: Put)+ FL()K(fi: f3t) + FL(O) K (f1: fos [t]),

where

K(P; : Py;t) = Fi(t) log 28 + Fi(t)log %—Eg;
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[Di Crescenzo and Longobardi (2004)]
The entropy of the past lifetime distribution is defined similarly as

H(X;[t]) = —/tw%log%%dx.
The entropy decomposition (13.5) gives
H(f)=H(Ps;t)+ F()H(f;t) + F(O)H(f; [t]),

where
H(Pys;t) = —F(t) log F(t) — F(t) log F(t)

is the entropy of the Bernoulli distribution implied by F on the partition
[Di Crescenzo and Longobardi (2002)].

The Rényi measures for the residual lifetime distributions K (f1 : fo;¢) and
H,(f;t), and for the past lifetime distributions K(f1 : fo; [t]) and H,(f;[t])
are defined similarly.

13.2.4 Maximum entropy and maximum dynamic entropy

Laplace’s principle of insufficient reason assigns probability uniformly in the
absence of any constraint on the probabilities. The maximum entropy (ME)
principle extends this idea to producing probability models closest to uniform,
which are most noncommittal to information other than that explicitly taken
into account via some moment constraints [Jaynes (1957, 1982)].

The ME method subject to moment conditions seeks a distribution function
F* with the density that maximizes H(f) in a class of all distributions with
given moments

Qg ={f: Ef[T;(X)] = 6;, §=0,1,..., ]},

where T;(X) are integrable functions with respect to the density, To(X) = 6p =
1, and 8 = (4,...,60;) is a vector of moments.

Recently, Asadi et al. (2004) proposed a maximum dynamic entropy (MDE)
procedure that develops lifetime models when the information is given in terms
of differential inequality constraints describing the growth of the hazard rate
Ar(t). The MDE model in a set of distributions Qr = {f} is the distribution
with density f* such that

H(f;t) < H(f%t) Vt>0.

That is, f*(z;t) retains its ME property among all the residual lifetime distri-
butions induced by all members of p.

Like the Shannon entropy, Hs(f) is concave for all o > 0. However, the
Rényi entropy does not share the nice ME property of the Shannon entropy.
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Consequently, ME of order a subject to moment constraints has not been de-
veloped. Golan and Perloff (2002) have used Rényi entropy in the context
of an ME estimation where the support of distribution is a finite number of
points. Asadi et al. (2005) have shown that developing MDE«q models subject
to differential inequality constraints is feasible.

13.3 Information Properties of Pareto Distributions
Consider Pareto distribution with survival function
Fa(z)=(z+1)7P z>0, B>0.

We denote this distribution by Pg.
The Kullback-Leibler information function between two Pareto distributions
Pg,, 3 =1,2, is given by

K(Pg, : Pg,) =p—logp—1, (13.8)

where p = —g-';l
Shannon entropy of Pg is

H(Pg) = 1+%—logﬂ.

Because H(Pp) is a decreasing function of 3, the distributions are ordered by
Shannon entropy within the Pg family. Also, let X be distributed as Pg. Then,
X has a decreasing failure rate and by a result of Ebrahimi et al. (2004) any
non-negative random variable Z stochastically dominated by X has a smaller
entropy.

Rényi information divergence between two Pareto distributions P(3;), j =
1,2 with densities f;, j = 1,2 is given by

Ka(fr: fa) = log (oz/oa‘1 +(1- a)p") ., a+(l—a)p>0. (13.9)

l1-o
Rényi entropy of P(0) is

B* 1
G+0-1 %7 F+1

1
H,(Pg) = T~ a log of

Numerous distributions can be obtained as distributions of one-to-one trans-
formations of a random variable X distributed as Pg. Therefore, their informa-
tion functions can be derived and studied via the information functions of Pg.
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Table 13.1 lists several families of distributions and the transformations under
which they can be obtained from Pg. The Kullback-Leibler and Rényi informa-
tion functions between two members of a family, obtained from Ps;y j =1,2,
are the same as (13.8) and (13.9), where f3;, j = 1,2, are determined by the
parameters of the transformed models. Shannon entropy of these distributions
are related to H(Pg) by (13.4), where the expectation is taken with respect to
Ps. These distributions do not include location parameter because it does not
affect Shannon entropy.

Two Pareto distributions Pg;, j = 1,2, are a proportional hazard. Thus,
K(Pg, : Pgyit) = K(Pg, : Pg,) and Ko(Ps, : Pgyit) = Ka(Ps, @ Pay),
[Ebrahimi and Kirmani (1996a) and Asadi et al. (2005)]. Other dynamic mea-
sures for P(3) are as follows.

H(Pg;t) = H(Pg) + log(1 +1),

H(Ps; []) = H(Ps) +log Fs(t) + 29 1og 3.1 (1),
Fp(t)

K(Pas: Pasl6) = K(Pay: Pa) ~lon T201 ~ 2 0w £

1 _ 1
log Fg,(t), a>——F,

Ha yU) = M1y
(Psit) = Ha(Pp) + 17—
1 Fﬂa(t) 1
o BEES “7F+1

1 Fﬂ1,2 (t)
log p T—a’
l—a = [Fp (8)]° [Fs.(t)]

where B, = a(f+1) — 1 and 812 = af; + (1 — a)fe.

We note that H(Pg;t) is an increasing function of ¢ and is a decreasing
function of the shape parameter 3. Also because the density of Pz is strictly
decreasing over S, by a result of Asadi et al. (2005), Ho(Pgs;t), o > 1, uniquely
determines Fj.

Ho(Ppg; [t]) = Ha(Pg) +

Ko(Pp, : Ppy; [t]) = Ka(Pg, : Pg,) +

13.3.1 Characterizations of generalized Pareto

The generalized Pareto (GP) family shown in Table 13.1 includes the Pareto
type 1l when § > 1, the power distribution when —1 < § < 0, and the exponen-

tial distribution when A — 0. We present a few information characterizations
of GP.

(a) Let X be a non-negative random variable with a hazard function

rx(t) = %’;—((% and mean residual life function mx (t) = E(X — t|X > t).
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Table 13.1: Distributions related to Pareto distribution Pg by transformation

Distribution, Support

Survival Function

Transformation

Burr type III, Rt

Burr type IX, R

Burr type X, ®7%

Compound extreme value, R

Exponential, Rt

Extreme value type I, Rt

Extreme value type II, Rt

F, »t

Generalized logistic,
(Dubey)

Generalized Pareto, Rt

Half-Cauchy, ®1

Half-logistic, ®1

Linear failure rate, R+

Logistic, ®
(Burr type II, A = 1)

Pareto type I, [k, 00)

Pareto type IV, Rt

(type I, v = 1, typeIll, § = 1)
(Burr type XII)

Truncated exponential, [0, ]

Weibull, R+

Fy(y)=1- (1 +y"")_ts
Fy(y) =2 [,\(1 +ev)¥ay 2] -t
FY('U) =1- (1 - 6—92)6

A -1
Fy(y)=1- (1 + Ee_”/’\)
Fy(y)=e™?v
Fy (y) = ex ﬁ(l—e’\y/‘s)

Y () = exp |

Fy () =1-exp [-(00)~°]
Py (y) = 8%/2(5 + 24)7/2

Fy (y) = 8¢ (6 + ,\ey/*)"é

. 5\ -1/6-1
Fy(y) = (1 + ;y)

- 2
Fy(y) =1 — — arctany
T
= -1
Frw) = (6+1) (5 + M)

Fy (y) = e~ Gv+rs2/2)

Fy(y)=1- (1+e_”’)_(s

Py (y) = rby~?

Py(y) =8 (x+y*)7¢

—Ay _ e—~)\rc

= e
W =T =

Fy (y) = exp (—Ayé)

v=[a+2%/ 1]

y = log ({; [(1+z)£ 1] + 1}

-1/v

1/68
-1

y= [—— log (1 - (1+a:)-ﬁ/6)]1/2

y:)\log(; [(1+z)5—1:|)

Yy

«

g log(1 + z)

A Bs
3 log (1 + z log(l + z))

—% log [Blog(1 + z)] /%

v

Alog (% [(1 +:v)ﬁ/‘s - l])

| >

tan [%(1 + z)—B]

;log ((5 D+ )8~ a)

[(1 4 x)ﬂ‘s/(&'f‘l) -1

]

)

1/2
i l:(1+£log(1+z)) —1]
A 52

1 B/&
—— -1
3 log ((1 + x)

n(l+z)ﬁ/5

i [ w5 1]

11 1 1—e 2%
~ = loj —_—
Iy 3

T a+o)8

1/6
[g— log(1 + I)]

)

)
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Then
Hy(X;t)=a—logrx(t), Yo >0,

where a is a constant, if and only if Fx is GP. Also,
H,(X;t)=b+logmx(t), Ya >0,
where b is a constant, if and only if Fx is GP.

(b) Let X; and X3 be two continuous non-negative random variables with den-
sity functions f;, j = 1,2, and proportional hazard functions r(t) = cra(t).
If

H(fi;t)=d+ H(f1), (13.10)

where c is a constant, then F}, j = 1,2, are members of the GP family. The
converse holds for |A| = § as well as for the case of A = 0, that is, X;, 7 = 1,2,
are both exponential random variables. In (13.10), d = —logc, d < —logc
and d > —logc imply the exponential, Pareto, and the power distributions,
respectively.

(c) Let X; and X3 be defined as above. Then, F} and F5 are members of the
GP family if

Ho(f1;t) = da + Ha(f2; ).

(d) Let Xj,..., X, be asample from distribution Fx and Y = min(X3, ..., Xy).
Then

H(Y;t)=k+ H(X;t),
where k is a constant, if and only if Fx is GP.

The proofs for (a) are given in Asadi and Ebrahimi (2000) for the case of
Shannon entropy (o = 1), and in Asadi et al. (2005) for the general case. The
proofs of (c) and (d) are simple and follow from (b). The proof for (b) is as
follows. Note that r1(z) = cro(x) is equivalent to Fy(x) = F§(z). Using this
and (13.10), we obtain

Ck’gc/ Fa(w) FE (w)ra(u)du = d + 1 — —/ fa(u) log ra(w)du
Equivalently,
aF5(@)~ F5 (@) [ folw)logra(u)du= ~cloge [ B (w) fa(wira(u)d.
Differentiating both sides with respect to x, after some simplification, we obtain
H(fo 1) =1 - “LECOBE 1ogm(e)

which implies that F, (and hence F}) is a member of GP.
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13.3.2 ME, MED, and MDEa«a characterizations of Pareto

Consider the class of distributions with moment constraints
Qp = {f : Ef[log(a + ch)] = Habc}.

It can be shown that the Pareto distributions with the survival functions shown
in Table 13.1 are the ME model in g for various values of a, b, and ¢. The GP
is the ME when a = ¢ =1, b= §/)\, and § = R*. Pareto type I is ME when
a=0,b=c=1and S = [k,00). Pareto Il is the ME whena =k, b=c =1,
and S = R*. Pareto III is the ME whena =&k, b=1, c=v, and S = R*.

The MDE characterizations of Pareto II, GP, the minimum of an exponential
and a Pareto, and mixture of two Paretos in the classes of distributions with
differential inequalities describing the growth rate of their hazard functions are
given in Asadi et al. (2004). These characterizations are obtained based on the
monotonicity of the densities of these distributions. We should note that the ME
characterization for the minimum of exponential and Pareto can be formulated
but for the mixture of two Paretos, no ME characterization is available. The
MDEcq characterizations of these distributions are given in Asadi et al. (2004)
based on results for decreasing failure rate (DFR) distributions.

13.4 Information Properties of Order Statistics

The information properties of order statistics have been studied by a few au-
thors. Wong and Chen (1990) showed that the difference between the average
entropy of order statistics and the entropy of data distribution is a constant.
They also showed that for symmetric distributions, the entropy of order statis-
tics is symmetric about the median. Park (1995) showed some recurrence rela-
tions for the entropy of order statistics and Park (1996) provided similar results
in terms of the Fisher information. Ebrahimi et al. (2004) provided several re-
sults on the entropy of order statistics and showed that the Kullback-Leibler
functions involving order statistics are distribution-free. This section summa-
rizes some of these results and presents entropies of order statistics for numerous
distributions.

Let X, ..., X, be independent and identically distributed observations from
a distribution Fx, where F'x is differentiable with a density fx which is positive
in an interval and zero elsewhere. Denote their order statisticsby Y1 < -+ - < Y,,.
It is well known that the distribution Fi(y) = P(Y; < y), 4 = 1,...,n, has
density

I'(n+1)

fily) = Tn =i+ D0} [Fx ()] 1 - Fx ()" fx(v),




218 M. Asadi et al.

where for a positive integer z, I'(z) = (2 — 1)! is the gamma function.

The probability integral transformation of the random variable, U = Fx(X),
is pivotal in developing information results for order statistics [Ebrahimi et
al. (2004)]. The distribution of U is uniform over the unit interval. The or-

der statistics of a sample from uniform distribution Uy, ..., U, are denoted by
Wi<---<W,and W;, i =1,...,n has beta distribution with density
1 i—1 —
; == 1-w)*, 0<w<l, 13.11

where B(z1, 22) = I'(21)(22) /T (21 + 22).
The entropy of the beta distribution is

Hp (W) = logB(i,n—i+1) = (i— D) —¢(n+1)]
—~(n—)(n—i+1)—Y(n+1),

where (z) = 119%(2) is the digamma function.

Noting that W; = Fx(Y;) and Y; = F)}I(Wi) 1 = 1,...,n, are one-to-
one transformations, Ebrahimi et al. (2004) found the following information
functions for order statistics.

(a) The Kullback-Leibler discrimination information measures between the dis-
tributions of X and its order statistics Y; are given by:

Kn(fi: fx) = —Hn(Wi),
Ko(fx:fi) = logB(i,n—i+1)+n—-1.

According to both measures, the information discrepancy between the dis-
tribution of order statistics and fx decreases up to the median and then
increases. Thus, amongst the order statistics, the median has the closest
distribution to the data distribution.

(b) The discrimination information between distributions of ith and jth order

statistics is given by
rgyrin—j5+1 J
Kn(fi: fj) =log WTtn =7+ 1) 2

= (= N6 —Yn-1)] -

17—

Ir@rn—-:i+1) n—i
Special cases of interest are
1
Kn(fir1: f)) = ot Hp(Wy) — Ho(Wita)
1
Kn(fi: firn) = i H,(Ws) + Hy(Wig).

Both measures are decreasing for ¢ < (n+ 1)/2 and increasing for i > (n +
1)/2. Therefore, the distributions of the consecutive order statistics become
closer to each other as they approach the median from either extremes.
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(c) The degree of dependency among Yi,...,Y, is measured by the mutual
information between consecutive order statistics, defined by

MY, Y1) = Kup(fige1: fifier)
= M,(W;, Wiy1) — log( ) + nap(n) — i (i)
—(n—i)y(n—1) —

where f; ;1 is the joint density of (Y, Yit1),

I'(n+1) i—1
i,i+1(Yir Ui =————~ _[Fx ()]
f, +1 (y Y +1) I-\(n _ ’L)F('L)[ X(y)]
X[1 = Fx (yir )" fx (i) fx (wis1), for ¥i < yis1,
=0, otherwise.

For a given n, M,(Y;,Y;+1) is symmetric in ¢ and n — 4, increases in 4 for
i <n/2, and decreases in i for 1 > n/2. M,(Y;,Yi;+1) is also increasing in n.

(d) By (13.4), the entropies of order statistics can be computed

H(Y:) = Ho(Ws) — Eq, [log fx (Fx'(W2))], (13.12)

where H,(W;) is the entropy and E,, is an expectation of the beta distri-
bution. Thus, entropies of order statistics can be derived in terms of the
entropy of beta distributions and various beta expectations Eg,[-].

Ebrahimi et al. (2004) showed an application of (13.12) for the exponential
distribution. Table 13.2 lists several distributions and the entropies of their
order statistics obtained via (13.12). The distributions do not include scale and
location parameters. Adjustment can simply be made using (13.4) which for
Y* =AY + p gives H(Y*) = H(Y) — log A. In Table 13.2,

ai = Egllog(Wi)] = %) -~ ¥(n+1) (13.13)
by = Egllogl-W))]=v¢n—-i+1)—9¢(n+1) (13.14)
¢ = Eg[log(1+W;)] 3 1)k+1 _fi'_u (13.15)

k[(n+ k)]

Other beta expectations Ey,[ -] in Table 13.2 can be computed numerically.
The properties of Rényi and dynamic information measures of order statis-
tics are currently under investigation by the authors. Here, we close by reporting
that because Rényi information divergence is invariant under one-to-one trans-
formations, the Rényi entropy of beta distribution plays the same role as that
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Table 13.2: Entropy of order statistics for several distributions

Distribution, Support

Survival Function

Entropy of Order Statistics™

Beta, [0,1]

Beta, [0,1]
Bradford distribution, [0,1]

Burr type III, ®t

Compound extreme value, R

(Logistic, § = 1)
Exponential, Rt
Extreme value type I, R+

F, Rt

Generalized logistic, R
(Dubey)

Generalized Pareto, RT

Half-Cauchy, R+

Half-logistic, Rt
(Half-Burr II, v = 1)

Linear failure rate, rt

Pareto type II, Rt
(type, 2 =z + 1)

Pareto type I1I, Rt
(Burr XII)

Weibull, R1

Fy(z) = 2
Fx(z)=(1-2)°

log(l1 + x)

Fx(z) =1~
x (=) log 2

Fy(z) =1~ (1+x_1)—1
-1

Fy(z)=1- (1 + 6“1e—’)

Fx(z)=e™®
Fy (z) = exp [% (1 - e‘“")]
Fy(z) = 8%/2(6 4+ 25)—9/2

Px(z) =85 (6+e%)7°

Fx (=) = (1+ 6x)71/6-1

- 2
Fx(x) =1— — arctanz
™

Fx(z)=(v+1) (v +e%)7?!
Fx(z) = o= (6z+2z? /2)

Fx(z)=(1+z)"°

Fy(z) = (1 +z‘s)_

= ]
Fy(z) =e™ 7%

Hn(W;) = log 6 — (1 - 5—1) a;
Hp(W;) — log§ — (1 - 5"1) bs
Hp(W;) — loglog2 + (log 2)a;
Hn(W;) — 2b;

Hp(W;) —a; — b;

Hn(W;) — b;

Hn(Ws) — bs — Eg, [log (1 ~ log(l — W,-)é)]

Hn(W;) — (1 + 25—1) b;

Hn (W) — log 6 — (1 + 5—1) by

—Eq, []og ((1 —wy)~/8 1)]

1426

Hp (W;) = log(1 + 6) —
n(W;) — log(1 + §) Y

b;
T
H,(W;) + log 3

W

m
+Eg; [log (1 + tan?

Hp(W;) +1log2 —b; —c;

Hn(W;) — a; — Bg, [1og (52 — 27 log Wi)]

Hn(W;) — log 6 — (1 +5—1) b;

Hn(W;) — log 6 — (1 - 5—1) ai
- (1 + 5—1) bi

Hp(W;) —logé —b;

_ (1 — 5—1) Eg, [loglog(l - Wi)—l]

* a4, b;, and c; are defined in (13.13), (13.14), and (13.15), respectively.

seen for Shannon entropy. For example, Rényi information measures between
the distributions of X and its order statistics Y; are given by

Ka,n(fi:fX) = _Ha,n(Wi)
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«a
Ka,n(fX : fz) 1— aHl—a,n(Wi),
where
I 1 B([i —1lla+1,[n—ia+1)
oW = T e a4 1)

is Rényi entropy of beta distribution with density (13.11).
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Confidence Coefficients of Interpolated
Nonparametric Sign Intervals for Medians
Under No or Weak Shape Assumptions

Olivier Guilbaud
AstraZeneca, Sddertdlje, Sweden

Abstract: Non-parametric “sign” intervals for a parent median based on or-
der statistics have the important property of being generally valid. With small
sample sizes, the available confidence coefficients (CCs) are sparse, however,
and it is natural to try to interpolate between adjacent sign intervals to attain
intermediate levels. This chapter provides the CC associated with weighted
means of adjacent sign intervals over some interesting classes of parent distri-
butions, including: (a) all distributions, (b) all symmetric distributions, and
(c) all symmetric and unimodal distributions. The behavior of these CCs as
functions of the weight is simple but intuitively quite surprising, with certain
discontinuities and intervals of constancy. Some unexpected domination rela-
tions among weighted means of adjacent sign intervals follow from these results.
The resulting nondominated intervals constitute a considerable extension of the
sign intervals, with substantially more confidence-coefficient levels; and they are
valid under no or weak shape assumptions about the parent distribution.

Keywords and phases: Confidence interval, general distribution, interpola-
tion, median, nonparametric, order statistic, symmetric distribution, unimodal
distribution

14.1 Introduction

Let X(l) <. < X (n) be the order statistics of a random sample X1,...,X,
of size n > 2 from a parent X-distribution with distribution function F(z) =
Pr[X < z]. No shape assumption is made about this X-distribution; it is
only assumed that F' belongs to the general class F of all right-continuous and
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proper distribution functions. Moreover, let 8 be the midpoint of the possibly
degenerate interval of all medians of F, so §r is a uniquely defined median for
any F' € F. This article concerns interval estimation of the median §r. For
convenience, no notational distinction is made between random quantities and
the corresponding realizations.

Let r and s be any given integers satisfying 1 <r <s=n—r+1. Asis
well known, the interval

Iiry = [X(r), X (s)] (14.1)

constitutes a nonparametric confidence interval for §p. This interval is closely
related to the sign test, and therefore is sometimes called a sign interval. The
confidence coefficient over F associated with (14.1), that is, the infimum over
F € F of the coverage probability of (14.1), is equal to

r—1
n
. = _— - 14.2
Crin =1 2;:0:(1,)2 , (14.2)

and this infimum is attained for any F that is continuous at §r; see, for example,
David and Nagaraja (2003, Section 7.1).

The general validity of the sign intervals (14.1) is of considerable practical
importance. However, a weakness is that if n is small, the available confidence
coefficients (14.2) are sparse. It is then natural to consider weighted means
Iy of adjacent sign intervals I, 1) C I,y of the form

I(r,w) = [’LUX(T) + (1 — ’w)X(,_H), (1- w)X(s_l) + wX(s)} (14.3)

with 0 < w < 1 in attempts to attain, at least approximately, other levels in the
range [Crq1;n, Crn], because as a function of 0 < w < 1, the interval (14.3) is a
continuously nondecreasing set that satisfles I, ;1) C I(y) C I(r), and equals
I(r 41 for w =0, and I,y for w = 1. In (14.3) and subsequently, it is assumed
that n >3, 1<r<s=n—-r+1l,ands—r > 2.

Approximations for the coverage probability of (14.3) in case F is continuous
and “sufficiently smooth” have been proposed that are of the form

Wi Crin + (1 — w*)cr—f-l;n, (14.4)

where the weight w, is a continuous and strictly increasing function of 0 <w <1
with range [0,1]. The inverse function evaluated at w, = (7 — Cr41;n)/(Crin —
Cr+1:n) then gives the weight w to be used in (14.3) to get a nominal level (14.4)
equal to ¥ € [Cry1.n, Crip). In particular: (a) Hettmansperger and Sheather
(1986) proposed the use of w, = w(n—r)/[w(n—r)+(1—w)r]; (b) Hutson (1999)
proposed another nonlinear function of w, wy = (2113 — 1 — Cry1,0)/(Crin —
Cr+1;n) with I /o defined in terms of the incomplete beta function as I s2(r+1-
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w, n—r+w); whereas (c) Beran and Hall (1993) gave certain rate-of-convergence
(n — oo) arguments for using w, = w, that is simple linear interpolation.

In contrast to such developments, the present article deals with the following
question. What can be said about the confidence coefficient

CC(r,w,®) = inf Prlfr € I(;,)) (14.5)
Fe®

associated with (14.3) over a given nonempty class ® € F of parent distribution
functions F' of interest? The answer is provided in Sections 14.2-14.4 for the
classes F D Fg D Fgy corresponding to all X-distributions, all symmetric
X-distributions, and all symmetric and unimodal X-distributions; whereas a
partial answer (covering the case 1/2 < w < 1) is provided in Section 14.7 for
the class Fy C F corresponding to all unimodal X-distributions. [An F € F
belongs to Fy if and only if its graph {(z,y);y = F(z)} is convex over —oo <
T < x4 and concave over z, < & < oo for some point z.. Any such z, is
called a mode of F. If F' € Fgy, the median 8p is a mode of F, and F' is
continuous everywhere except possibly at 8r. See Dharmadhikari and Joag-dev
(1988, Chapter 1) for general properties of an F' € Fy]. For the classes ®
considered, the behavior of (14.5) as a function of w is simple but intuitively
quite surprising, with certain discontinuities and intervals of constancy. These
results constitute the principal achievements of this article.

Some unexpected domination relations among intervals (14.3) follow from
these results. Here, briefly, domination means that an interval is entirely con-
tained within another although it has the same confidence coefficient. The
nondominated intervals constitute a considerable extension of the sign inter-
vals. These results are considered in Sections 14.5 and 14.6. Some concluding
comments and additional results are given in Section 14.7.

14.2 Confidence Coefficient Under No
Shape Assumption

The best possible lower bound for the coverage probability of (14.3) valid for
all X-distributions is given in Theorem 14.2.1. The result is stated in terms of
(14.2) and (14.5).

Theorem 14.2.1 The confidence coefficient CC(r, w, F) associated with (14.3)
equals

Critim, if0<w<1/2,
(Crin + Cri1n)/2,  if1/2<w <1, (14.6)
Cr;na ifw =1.
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PRroOF. This equality follows for w = 0,1 from (14.1)-(14.2) and the fact that
there are F' € F which are continuous at 6, and for w = 1/2 from Guilbaud
(1979, Theorem 2.1). Moreover, it is shown: (a) in Appendix A that there is
a (symmetric) X-distribution Dgs) indexed by € > 0 such that for any given
0 < w < 1/2, the coverage probability of (14.3) tends to Cr11,n as € — 0; and

(b) in Appendix B that there is a (unimodal) X-distribution DgU) indexed by
€ > 0 such that for any given 1/2 < w < 1, the coverage probability of (14.3)
tends to (Cryn + Cri1:n)/2 as € — 0. Theorem 14.2.1 then follows from the fact
that (14.5) is a nondecreasing function of 0 < w < 1. |

As a function of 0 < w < 1, the confidence coefficient CC(r,w,F) thus
is constant over [0,1/2) and over [1/2,1), with jumps at w = 1/2,1. This
is intuitively quite surprising in view of how the interval (14.3) behaves as a
function of 0 < w < 1. One may wonder whether it makes any difference if one
restricts considerations to the subclass Fe of F that consists of all continuous
distribution functions F' € F. The answer is no in that CC(r,w, F¢) equals
CC(r,w,F) for 0 < w < 1. This follows immediately from the fact that the

X-distributions Dgs) and DS-U) referred to in the proof of Theorem 14.2.1 have
continuous distribution functions.

14.3 Confidence Coefficient Under Symmetry

The best possible lower bound for the coverage probability of (14.3) valid for
all symmetric X-distributions is given in Theorem 14.3.1. The result is stated
in terms of (14.2) and (14.5).

Theorem 14.3.1 The confidence coefficient CC(r,w, Fg) associated with (14.3)
equals

CT+1;'n,> ’LfO <w< 1/2,
Crm_1, ifl/2<w<1, (14.7)
Crin, ifw=1.

ProOF.  This equality follows for w = 0,1 from (14.1)-(14.2) and the fact
that there are F € Fg which are continuous at 6, and for w = 1/2 from
Guilbaud (1979, end of last paragraph, p. 32). Now: (a) as mentioned in the
proof of Theorem 14.2.1, there is a symmetric X-distribution Dgs) such that
for any given 0 < w < 1/2, the coverage probability of (14.3) tends to Cri1:n
as ¢ — 0; and (b) it is shown in Appendix C that there is a symmetric (and
unimodal) X-distribution DS,‘? Y) indexed by an integer m > 2 such that for
any given 1/2 < w < 1, the coverage probability of (14.3) tends to Cr.,—1



Confidence Coefficients of Interpolated Sign Intervals 229

as m — oo. Theorem 14.3.1 then follows from the fact that (14.5) is a non-
decreasing function of 0 < w < 1. |

Thus, as a function of 0 < w < 1, the confidence coefficient CC(r,w, Fg)
has the same kind of intuitively surprising behavior as CC(r,w,F). And again,
the restriction to continuous distribution functions makes no difference in that
CC(r,w,Fc NFg) equals CC(r,w,Fg) for 0 < w < 1. This follows from
the fact that the X-distributions Dés) and DS{? v referred to in the proof of
Theorem 14.3.1 have continuous distribution functions. The value of Cr.,_q
in (14.7) is strictly larger than (Cr., + Cri1,0)/2 in (14.6), so the restriction
to symmetric X-distributions has increased the confidence coefficient, though
surprisingly, only for 1/2 < w < 1.

For any F € F¢ N Fg, the coverage probability of (14.3) with w = 1/2
is equal to Cr,;p—1. This is well known, and shown for example by Noether
(1973). Actually, Noether essentially showed also the result in Theorem 14.3.1
for w = 1/2, though the “projection” method he used for an F' which is not
continuous requires that F' has at most a finite number of discontinuity points
in any bounded interval-—a condition that is not satisfied for all F' € Fg.

14.4 Confidence Coefficient Under Symmetry and
Unimodality

The best possible lower bound for the coverage probability of (14.3) valid for
all symmetric and unimodal X-distributions is given in Theorem 14.4.1. The
result is stated in terms of (14.2), (14.5) and the function §,(w) of 0 < w < 1/2
given by

br(w) = 21" (”) Y (";’”)pi(l —p)" (4 ) (14.8)

i=1
with p = w/(1 — w). It can be verified that (14.8) is a continuous and strictly

increasing function of 0 < w < 1/2 such that 6,(0) = 0 and 6,(1/2) = Crip—1 —
Cr-i—l;n-

Theorem 14.4.1 The confidence coefficient CC(r, w, Fsy) associated with (14.3)
equals

Cr+1;n + 5T(w), 2f0 S w < 1/2,
Crin1, if1/2<w<1, (14.9)
Cr;n, 'if’ll) = 1.
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PROOF. This equality follows for w = 0,1 from (14.1) and (14.2) and the fact
that there are F' € Fgy which are continuous at 8z, and is shown in Appendix
E for 0 < w < 1/2. Moreover, as mentioned in the proof of Theorem 14.3.1,
there is a symmetric and unimodal X-distribution Dg Y) such that for any given
1/2 < w < 1, the coverage probability of (14.3) tends to Cr.,—1 as m — oc.
Theorem 14.4.1 then follows from the properties of (14.8) just mentioned and
the fact that (14.5) is a nondecreasing function of 0 < w < 1. [ |

Compared to (14.7), the additional restriction to unimodal X-distributions
has increased the confidence coefficient, though surprisingly, now only for 0 <
w < 1/2. And once again, the restriction to continuous distribution functions
makes no difference in that CC(r,w,Fc N Fgy) equals CC(r,w, Fgy) for 0 <
w < 1; see Appendix E.

14.5 Domination Relations Among Interval
Estimators

The following terminology concerning interval estimators (14.3) of 6r with a
common 7 is used subsequently.

Definition 14.5.1 An interval I, ) is said to ®-dominate another interval
I(pqpry if: (2) it is “smaller” in that 0 < w’ < w” < 1; and (b) it nevertheless
has the same confidence coefficient over ®, that is CC(r,w’, ®) = CC(r,w", ®)
in terms of (14.5).

The notion of “smaller” used here is quite strong because 0 < w' < w” <1
implies that: (i) I ) is a subset of I, with probability 1 for any F' € F, and
(ii) the endpoints of I, (ruw') are strictly between those of I, with probability
1 for any F € F¢.

Now, it is evident from the behavior of (14.6) as a function of 0 < w < 1 that:
(a) the interval I, gy = I(,11) F-dominates each interval I(.,,) with 0 < w < 1/2;
and (b) the interval I, ; /5y F-dominates each interval I, ., with 1/2 <w < 1.
Thus, in case one is not willing to assume anything about F € F (except
possibly that F' € F¢, which as mentioned in Section 14.2 does not change the
confidence coefficient), it seems reasonable to restrict considerations to interval
estimators (14.3) of 8 that are not F-dominated by others, that is, to intervals
(14.3) with w € {0,1/2,1}.

The behavior of (14.7) is similar to that of (14.6), so similar conclusions can
be drawn. Thus, in case one is willing to assume that F' € Fg, but nothing else
(except possibly that F € FcNFg , which as mentioned in Section 14.3 does not
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change the confidence coefficient), it seems reasonable to restrict considerations
to intervals (14.3) with w = {0,1/2,1}.

The behavior of (14.9) implies that: (a) among the intervals I, with
0 < w < 1/2, no interval Fgy-dominates any other; whereas (b) the interval
I(r.1/2) Fsy-dominates each interval I, .,y with 1 /2 < w < 1. Thus, in case one
is willing to assume that F' € Fgy, but nothing else (except possibly that F' €
Fc NFgy, which as mentioned in Section 14.4 does not change the confidence
coeflicient), it seems reasonable to restrict considerations to intervals (14.3)
with w € [0,1/2]U {1}.

14.6 Nondominated Interval Estimators and
Available Confidence Coeflicients

Among the interval estimators (14.3) of 8, it thus seems reasonable to restrict
considerations to the nondominated ones, that is those with

w=0,1/2,1, under no shape assumption,
w=0,1/2,1, under symmetry,
0<w<1/20rw=1, under symmetry and unimodality.

These nondominated interval estimators constitute a considerable exten-
sion of the sign intervals (14.2), with substantially more confidence-coefficient
levels; and they are valid under no or weak shape assumptions about the
X-distribution.

Table 14.1 provides some numerical details about available confidence co-
efficients given by Theorems 14.2.1-14.4.1. The last two columns of this table
give the w-values 0 < wgg < 1/2 and 0 < wgs < 1/2 satisfying

CC(r,wg,Fsy) =090 and  CC(r,wgs, Fsy) =0.95  (14.10)

when such w-values exist, that is, when the levels 0.90 and 0.95 belong to the
interval [Cy41;n, Cr,n—1]; see (14.9). Given any desired level ¥ € (Cri1;n, Crin—1),
the weight 0 < w < 1/2 satisfying CC(r,w,Fgy) = 7 can be determined by
solving the equation 6,(w) = v — Cry1,, numerically through some suitable
search method, for example, regula falsi or some improved variant, with starting
values 0,(0) = 0 and 6,(1/2) = Cr.n—1 — Cry1;n. Theoretically such a search
method always converges to the unique solution, because of the properties of
(14.8) mentioned previously.

Consider for example the row corresponding to the sample size n = 10 in
Table 14.1. This row shows that with this sample size: (a) the sign intervals
T2y = [X(2), X(9)] and I(3y = [X(3), X(g)] cover the median 6 with probability
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Table 14.1: Confidence coefficients given by (14.2), (14.6), (14.7), and (14.9) of
interval estimators (14.3), as well as w-weights wgg and wgs given by (14.10)

n 1 Cry Criim (Cr;n + Cr+1;n)/2 C’r,n—l Wop  Wos
6 1 .9688 .7813 8750 9375 .306

7 1 .9844 8750 .9297 .9688 .081 .309
8 1 .9922 9297 .9609 .9844 .104
8 2 .9297 .7109 .8203 .8750

9 2 .9609 .8203 .8906 9297  .300

10 2 9785 .8906 .9346 9609 .041 .360
11 2 .9883 .9346 9614 9785 107
11 3 .9346 .7734 .8540 .8906

12 3 9614 .8540 9077 9346 223

13 3 9775 .9077 .9426 9614 331
13 4 9077 .7332 .8204 .8540

14 3 9871 .9426 .9648 9775 .064
14 4 9426 .8204 8815 9077 433

15 4 .9648 8815 9232 9426  .109

16 4 9787 .9232 .9510 .9648 .254
16 5 .9232 .7899 .8565 .8815

17 5 .9510 .8565 9037 9232 .276

18 5 .9691 .9037 .9364 .9510 483
18 6 .9037 .7621 .8329 .8565

19 5 .9808 .9364 9586 9691 .150
19 6 .9364 .8329 .8847 9037 .462

20 6 .9586 .8847 9216 9364 111




Confidence Coefficients of Interpolated Sign Intervals 233

> 0.9785 and > 0.8906, respectively, for any X-distribution; (b) the interme-
diate “middle” interval I(3;/9) covers O with probability > 0.9346 for any
X-distribution, cf. (14.6); (c) this “middle” interval I3 ;/9) covers 6 with a
probability > 0.9609 for any symmetric X-distribution, cf. (14.7); and (d) the
intervals I(2,wy with w = wgp = 0.041 and w = wgs = 0.360 cover Or with
probability > 0.90 and > 0.95, respectively, for any symmetric and unimodal
X-distribution, cf. (14.9).

14.7 Concluding Comments and Additional Results

The confidence coeflicients given by Theorems 14.2.1-14.4.1 constitute the main
results of this discussion. The subsequent results concerning domination rela-
tions and nondominated intervals in Sections 14.5 and 14.6 follow naturally
from the intuitively surprising behavior of these confidence coefficients as func-
tions of 0 < w < 1. The nondominated intervals considered in Section 14.6 are
of practical interest in that: (a) they constitute a considerable extension of the
sign intervals (14.1); (b) they are valid under no or weak shape assumptions
about the parent X-distribution; and (c) they are almost as easily implemented
as the sign intervals.

The confidence coefficient (14.5) has been derived in Sections 14.2-14.4 over
natural classes of distribution functions, but other classes may of course also be
of interest. One such class is the class Fy C F corresponding to all unimodal
X-distributions; see Section 14.1. A partial result concerning this class follows
immediately from Theorem 14.2.1 and the fact that the X-distribution DéU)
referred to in its proof is unimodal: The confidence coefficient CC(r,w,Fy)
associated with (14.3) equals

Cr—}—l;n, if w= 0,
(Cr;n + Cr—i—l;n)/z, if 1/2 Sw< 1, (14'11)
Cfr;n, if w = 1.

This result is partial in that the case with 0 < w < 1/2 is not covered. Com-
pared to (14.6), the restriction to unimodal X-distributions thus has not in-
creased the confidence coefficient for 1/2 < w < 1.

The confidence coefficients derived in this discussion can be used to make
comparisons versus interpolation methods based on (14.3) and (14.4), including
those mentioned in Section 14.1. More precisely, for any such interpolation
method, it is possible to derive the confidence coefficient (14.5) corresponding
to given values v € [Cry1.n, Crin) of the nominal level (14.4), and to study the
relation between (14.5) and (14.4) for the classes ® considered. In particular,
it is interesting to note from (14.6) and (14.11) that simple linear interpolation,
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for which Beran and Hall (1993) gave certain rate-of-convergence (n — o)
arguments, leads to a nominal level (14.4) for the “middle” interval I, ;o) that
actually equals the confidence coefficient

CC(r,1/2,F) = CC(r,1/2,Fy) = (Crn + Cri1in)/2 (14.12)

of this interval over the classes F and Fy - for any sample size n > 3.

Appendices

Appendix A

The symmetric X-distribution Dé(;s) referred to in the proofs of Theorems 14.2.1
and 14.3.1 has median 0 = 0 and density function

1/(26)— 1, if —(1+¢)<z<—1,
£, if —1l<z<l, (14.13)
1/(2¢) -1, ifl<z<(1+¢),

with 0 < € < 1/2, so suppose this is the actual X-distribution. Let 0 <
w < 1/2 be given. It can be verified that if 0 < ¢ < min(1/2,1/w — 2), then
A<LPr0e€l,,)] <A+ B with A =Pr[X11) < -1, X(s_1) > 1] and B equal
to the probability that at least one of Xy, X7 41), X(s—1), X(s) € (—=1,1). As
€ — 0: B — 0, so also the difference between Cyy 1, = Pr(X(41) <0 < X(,_1)]
and A tends to 0, and thus Pr[0 € I, ,y] — Cry15n-

Appendix B

The unimodal X-distribution Déu) referred to in the proof of Theorem 14.2.1
and in connection with (14.11) has median 6r = 0 and density function

{ 1/(2€), if —e<z <0,

14.14
g, if 0 <z <1/(2), (14.14)

with € > 0, so suppose this is the actual X-distribution. Let 1/2 < w < 1 be
given. Now, A = PrlwX () + (1 —w)X(;41) > 0] equals the sum of Pr[X,) > 0]
and Pr{Xq) < 0, X441y > —cX(y] with ¢ = w/(1 —w) > 1. The latter
term is bounded by Pr[X(,y < 0, X(,41) > ce] and Pr[X(;y < 0, X4y > O]
As € — 0: the lower bound tends to the upper, so A — Pr[X 1) > 0].
Similarly, B = Pr[(1 — w)X(s_1) + wX(,) < 0] equals the sum of Pr[X < 0]
and Pr[X(5 > 0, X(s_1) < —cX(s)]. The latter term is bounded from above by
Pr[0 < X4 < €/c] which as ¢ — 0, tends to 0, so B — Pr[X(,) < 0]. Thus as
€ — 0, Pr[0 € I;,)] =1 — A — B tends to Pr[X(,;1) < 0 < X(y)], which equals
(Cr;n + Cr+1;n)/2~
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Appendix C: An auxiliary result

Let Fc; C Fe consist of all F € F¢ that are strictly increasing in {z;0 <
F(z) < 1}, and define Feisy = Fe; N Fgy. Thus if F € Feisy, then: (a)
the X-distribution is symmetric and unimodal; (b)F € F¢; C F¢ ; and (c) the
inverse function F~!(u) is well defined and continuous for 0 < u < 1.

Now, suppose F' € Fgisy, and define Fy € Fg;sy with median 0 through
the translation Fy(z) = F(z + 0F). Moreover, let 0 < w < 1 be given, and set
¢ = w/(1 — w). It can then be verified through a development similar to that
in Guilbaud (1979, Equations (A1.2)-(A1.6)) that

/
r—1 /1ﬂf*muwr4mu (14.15)

u=

Cr;n - PI‘[GF € I(r,w)] =2n (n i 1)

with K.(u) = Fy(cFy !(u)). Note that K.(1/2) = 1/2, and that for any given
0 <u < 1/2, Kc(u) is a strictly decreasing function of 0 < ¢ < oo such that
Ko(u) = 1/2, Ki(u) = u, and K (u) — 0 as ¢ — oo. It follows immediately:
(a) from (14.15) with w = 1/2 and the result mentioned at the beginning of
the last paragraph of Section 14.3 that C.., — Cr.n—1 equals the right member
with K.(u) replaced by u; and (b) from (14.15) with w = 0 that Cp., — Cry1n
equals the right member with K (u) replaced by 1/2. These results are used in
Appendices D and E.

Appendix D

The symmetric and unimodal X-distribution Dg;? U) referred to in the proofs

of Theorems 14.3.1 and 14.4.1 has median fr = 0 and distribution function
F € Feisy C Fsy (subsequently denoted F,) given for z < 0 by

0, if x < -1,
{(Lﬂﬂ”ﬂmﬂ,if—1<x§0, (14.16)
and for x > 0 by symmetry. Suppose this is the actual X-distribution, let
1/2 < w < 1 be given, set ¢ = w/(1 — w), and note that ¢ > 1. Then (14.15)
holds with K (u) = F,(cF,;!(u)), and it can be verified using (14.16) that for
any given 0 < u < 1/2, K.,(u) —» u as m — oo. Combining this with the
representation of C;., — Cr.,—1 mentioned in Appendix C it then follows that
as m — o0o: (14.15) tends to Cryp — Crin—1, that is Pr[0 € I, )] = Crn—1.

Appendix E

The first step here is to show that CC(r, w,Feisy) equals (14.9) for 0 < w <
1/2. Thus, suppose F' € Fg;sy, and as in Appendix C, define Fy € Feisu
with median 0 through Fy(z) = F(z + 6p). Let 0 < w < 1/2 be given, set
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¢ =w/(1—w), and note that 0 < ¢ < 1. Now, for any 0 < u < 1/2, the slope of
the straight line connecting P; = (F; !(u),u) and P, = (cFy H(u), Fo(cFyt(u)))
is < the slope of the straight line connecting P; and P3 = (0,1/2), so

Fy(cFyt(w)) <cu+ (1-¢)/2, (14.17)

where the left member equals K.(u) in (14.15). Let K*(u) = cu + (1 — c)/2.
The left member of (14.15) is then < the right member of (14.15) with K.(u)
replaced by K(u). Combining this with the representation of Cr.;, — Cri1:n
mentioned in Appendix C it then follows that

r—1 -0
—feu+ (1-¢)/2]" "} du. (14.18)

n—1 1/2 ) B
PI‘[QF eI(r,'w)] > C’r+1m+2n / T {[1/2]” "

The second term in the right member can be shown to be equal to (14.8) with
p = c through straightforward integration (using transformation v’ = 2u and
obvious binominal expansion). Moreover, equality in (14.17) and (14.18) is at-
tained with the particular F € Fgygy corresponding to the uniform
X-distribution over (—1, 1), so CC(r,w, Feisy) = Cri1:n + 6-(w) for 0 < w <
1/2.

The next step is to use this to show that CC(r, w, Fsy) > Cry1.n+0,(w) for
0 < w < 1/2. Thus suppose F € Fgy, and let 0 < w < 1/2 be given. For any
given 0 < A < 1, define the auxiliary random sample X7, ..., X} with parent
distribution function F through

o X; if ‘X,—epi > A,
X = { Ui if|Xi—0r| <A, (14.19)
in terms of a random sample Uy, ...,U, from the uniform distribution over

[0F — A\, 0F + )] that is independent of X3, ..., X,,. Note that: (a) X/ and X,
have common parent median 6r; (b) the distribution function F) of X/ is linear
in (6r — X, 0r + \) and equal to F outside this interval; and (c) F) € Feisv, cf.
Dharmadhikari and Joag-dev (1988, Chapter 1). With I ('r’w)deﬁned as (14.3) in
terms of the order statistics X él), D ¢ én) of (14.19), it follows from the first
step that the inequality Pr[fF € I(’T’w)] > Cri1:n + 0 (w) holds. Now, for any
given € > 0, the event E = [|X] — X;] < g, all 1 < i < n] is a subset of the
event [|X€i) ~ Xl <€, all1 <i<nl, and it can be verified from (14.19) that

Pr(E) — 1 as A — 0; so for all sufficiently small A > 0,

PI‘[’[I)X(,.) +(1- w)X(T_H) —e<Or<(1- w)X(s_l) + ’wX(s) +e|l+e
(14.20)
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is larger than or equal to Pr[fp € I ér’w)] > Cri1:n + 0i(w). But the difference
between (14.20) and Pr[fr € I, ]} can be made arbitrarily close to zero by
choosing € > 0 sufficiently small, so the inequality Pr{fp € ()] > Cri1n +
0 (w) must hold. Thus CC(r,w,Fsy) > Cri1.n + 6r(w) for 0 < w < 1/2.

Finally, note that (14.5) is a non-increasing function of ® in that
CC(T, w, ‘I’l) > CC(T‘, w, @2)

if ®; C ®5. Then, because Feoisy C Fo NFgy C Fgy, it follows from the
results in the previous two steps that CC(r, w,Fgy) and CC(r,w,Fc N Fgy)
are equal to CC(r,w, Foisv) = Cry1;n + 0r(w) for 0 < w < 1/2.
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Abstract: In this chapter, we give conditional representations for families of
statistics based on higher-order spacings and spacing frequencies. This allows
us to compute accurate approximations to the distribution of such statistics,
including tail probabilities and critical values. These results generalize those
discussed in Gatto and Jammalamadaka (1999) and are essential in using such
statistics in various testing contexts.

Keywords and phrases: Goodness-of-fit tests, nonparametric tests, rank
tests, m-step spacings, m-step spacing frequencies, two-sample tests, Dirichlet,
gamma, negative binomial distributions

15.1 Introduction

In this article, we provide some conditional representations that allow us to
compute accurately the distribution of a large number of test statistics based on
higher-order spacings and “spacing frequencies,” following the ideas suggested
in Gatto and Jammalamadaka (1999). The key point is that many important
test statistics including the chi-square goodness-of-fit statistic, can be rewritten
as conditional statistics, and the technique we develop here allows for very
accurate approximations of their P-values, or in finding the critical values at
a given level. Testing problems that were already considered by Gatto and
Jammalamadaka (1999) included the two following classes of tests: (i) The
class of tests based on simple spacings statistics, that is, based on the gaps
between successive values of the ordered sample; and (ii) the class of tests based
on the “spacing-frequencies”, that is, the frequencies of one sample that fall in
between the successive order statistics of the other sample, which includes many
rank tests. We generalize (i) to tests based on higher-order spacings, or m-step

239
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spacings, which are the gaps between order statistics and ones that are m steps
away; and (ii) to tests based on higher-order spacing frequencies, which are the
frequencies of one sample that fall in between the order statistic of the other
sample that are m steps away. The reason to consider such tests is that they
have higher asymptotic local powers, as demonstrated in Rao and Kuo (1984)
for higher order spacings, and in Jammalamadaka and Schweitzer (1985) for
higher-order spacing frequencies.

For convenience, we first review the “conditional saddlepoint approxima-
tion” that has been described in Gatto and Jammalamadaka (1999) which
is the main tool for the proposed accurate approximations. The saddlepoint
approximation is a well-known method of asymptotic analysis that allows us
to approximate efficiently contour integrals of a general type. This method,
also called the method of steepest descent, was brought into statistical use by
Daniels (1954) and Lugannani and Rice (1980) for approximating the distribu-
tion of the sum of independent and identically distributed (i.i.d.) observations.
The saddlepoint formula P,(¢; | t2) below enables us to find the P-values of
a test statistic T1,(S1,...,Sy) based on the dependent quantities Sy, ..., S,
which admit the conditional representation T,,(S1, ..., Sn) ~ Tin(X1,. .., Xn) |
Ton(X1,-..,Xpn) = ta, where “~” signifies the equivalence in distribution. Con-
sider the independent random variables X1, ..., X,, and a statistic (T1n, T2x),
Ty, = Tln(Xla . .,Xn) € R and Ty, = Tgn(Xl, ceny Xn) € R, defined by

zn: $1i(Xs, Tiny Ton) | _

=\ Y2u(Xi, Tan) '
The joint cumulant generating function of the sum of score functions ; and
9; is given by

Kn(X\ 1) = log Elexp{\%1i(Xi, t1, t2) + Aovbai( X, t2)}], (15.1)

i=1

where A = (A1, Ag) and t = (t1, to).

Step 1  Find a € R? and 8 € R, solutions of the equations

d 8
N8 =0, o

E)) Kn((0, A2),t) =0.

Step 2  Define

0? 02
K;L/(/\, t) = a—/\a—)\?Kn()\, t), Kgn(’\27 t) = 8—)\%Kn((0, AQ), t),

1
2

det(K/(a,t))

= X
HTKEYL(B,8)

, 7 = sgn(a1) {2[Ka((0, B), ) — Kn(a, 1)]}2,
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and

Pu(ty | 2) = 1 — &(r) + 6(r) (1 - 1) , (15.2)

S T

where ¢(-) and ®(-) are the standard normal density and distribution functions,
and a; is the first element of a. Then, Vi, t2 and as n — oo,

P[Tin, >t | Ton = ta] = Po(t1 | t2){1 + O(n"1)}. (15.3)

Note that there is an asymptotically equivalent version of (15.2) which is
given by

Pt |t2)=1—®<r+%log{;}), (15.4)

and we refer to Example 15.2.2 for a numerical comparison.

The two steps given above allow one to approximate a tail probability or a
P-value. If we are interested in quantiles or critical values, see Gatto (2001,
Section 1) for an efficient algorithm for inverting this saddlepoint approxima-
tion.

15.2 Tests Based on Higher-Order Spacings

Statistics based on spacings play an important role in goodness-of-fit tests and
in tests on hazard rates in the context of reliability; see Pyke (1965) for an
excellent review. One-step spacings are the gaps between the successive ordered
sample values and, more generally, m-step spacings are the gaps between m
successive ordered sample values. One-step spacings are also very important
with circular data, that is, when data are directions in two dimensions and are
represented by angles. Indeed, one-step spacings are maximal invariant under
changes of origin and sense of rotation. Except for one or two special cases,
the exact distribution of such statistics based on uniform spacings is unknown.
For most cases, the asymptotic distribution is known but it can be potentially
misleading, especially when the sample size is moderate to small. Gatto and
Jammalamadaka (1999, Section 3.1) derived saddlepoint approximations for
test statistics based on uniform spacings. In this section, we generalize this
result and provide saddlepoint approximations to test statistics based on higher-
order or m-step uniform spacings. Tests based on such higher-order spacings
are known to be more efficient as shown by Rao and Kuo (1984).

Consider Xi,...,Xxny_1 to be a sample of independent random variables
from a given absolute continuous distribution F' with support in R. The funda-
mental problem of goodness-of-fit, is to test F' = Fy, where Fy is specified. By
the probability integral transform U; = Fy(X;), ¢ =1,..., N — 1 the goodness-
of-fit test is reduced to one of testing if Uy, ..., Unx—1 are uniformly distributed,
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that is, to test the null hypothesis
Hy: F(u) = u, Yu € [0,1).

Let 0 < Uqy) <--- < Uv-1) <1, denote the ordered sample. The simple or
one-step spacings Dy, ..., Dy are the gaps between this ordered sample, viz.,

Dz:U(z)_U(z_l), ’l':].,...,N,

where Ujg) 41§ and Uy ef 1. More generally, the m-step disjoint spacings are
the gaps between m successive values of the ordered sample. That is, denoting
lz| for the greatest integer less than or equal to z, for M = | N/m |,

Dz(:) =Uim) = Ui—1ym), 1 =1,. ..M.

Let h(-) and h;(-), i =1,..., M, be real-valued functions that satisfy some
weak regularity conditions. Most spacings statistics can then be expressed as

Zh (MD{™), (15.5)
which is not symmetric in the spacings, or as
Z h(MD{™), (15.6)

which is symmetric in the spacings. Sethuraman and Rao (1970) and Rao and
Sethuraman (1975) showed that the class of symmetric tests (15.6) based on one-
step spacings cannot discriminate alternatives converging to the null hypothesis
at asymptotic rates faster than N~1/4, which is a drawback when compared,
for example, to the Kolmogorov-Smirnov test. Del Pino (1979) showed that
tests based on m-step spacings, m > 1, have better asymptotic efficiencies than
tests based on one-step spacings. Typical examples of symmetric test statistics
(15.6) are obtained with

h(z) =logz, |z — 1], 2*

a > —1/2 and # 0 or 1. The first two functions lead to the Rao and the
log higher-order test statistics and they will be developed in Examples 15.2.1
and 15.2.2 below. The last function for a = 2 leads to the Greenwood higher-
order test statistic and will be developed in Example 15.2.3. It has maximum
asymptotic relative efficiency among symmetric m-step spacings statistics, is
asymptotically more efficient that the one-step Greenwood statistic, and indeed
the efficiency grows with m; see Table 2 in Rao and Kuo (1984).



Small Sample Asymptotics for Higher-Order Spacings 243

The exact distribution of spacings statistics is unknown in most cases and
it is common practice to rely on the limiting normal distribution, which does
however not guarantee sufficient accuracy, if we have a sample of small to mod-
erate size, or if we are interested in small tail probabilities. If a higher accuracy
is desired, the conditional saddlepoint approximation can be applied with the
following conditional representation of the m-step spacings. If Yi,...,Yss are
independent Gamma(m, b) random variables with density {¥™/T'(m)}y™ le~%,
y > 0, then, under Hy and Vb > 0,

M
(MD), ..., MDY ) ~ {m,...,YM)lZn=M}. (15.7)
=1

The equivalence in (15.7) is easy to justify; see, for example, Wilks (1962,
Section 7.7). Thus (D(m) "”Dgﬁ)—n.m) ~ Dirichlet(m, ..., m;m), and these

1-m»
m-spacings admit the conditional Gamma representation (15.7). This condi-
tional representation together with the computational steps given in Section
15.1 allow us to compute a saddlepoint approximation for the distribution of
symmetric and asymmetric test statistics based on m-step spacings. The par-
ticular case m = 1 in (15.7) corresponds to the exponential representation of
simple spacings, and using this, Gatto and Jammalamadaka (1999, Section 3.1)
developed four examples with one-step spacing statistics: the Rao spacings
test, the log spacings test, the Greenwood spacings test, and the locally most
powerful spacings test given by hi(ND;) = ®(-1)( Nil)N D;. Saddlepoint ap-
proximations were computed for these four examples with sample sizes as low
as N = 3, and they showed a very high accuracy, even for small tail probabili-
ties. By means of this new conditional representation, we provide some further

examples for the case of higher-order spacings.

Example 15.2.1 (The Rao higher-order spacings test) In order to ap-
ply Steps 1 and 2 of the saddlepoint approximation in Section 15.1, we must
determine the joint cumulant generating function of the score functions
. . (1—.17—-1?1), if.Z‘G[O,l),

Yu(z,t) = { (x—1-1), ifz €[l,00),

Yoi(z,t2) = T —ty,
with 9 = 5, ¢ =1,...,n, j = 1,2. With some algebraic computations, we
can see that, for b = m and ¢, = 1, this cumulant generating function has the
form
Km((n ), (81,1) = M[mlogm —mlog(m+ M — Xo) + Mi(1 = t1) = Ag

m+ A — )\2)m6_2)‘1

+log{P(m,m+)\1 _)\2)+(m~)\1 W

[1 = P(m,m— M = )]},
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where P(m,z) =1-e* Y™ 27/j1, m = 1,2,..., and = € R. The derivatives
of Kpr((A1, A2), (t1,1)) with respect to A\; and Ag can be obtained by automatic
symbolic computation (e.g., with Maple). The advantage of choosing b = m
as scale parameter in the conditional Gamma representation is that the ex-
pectation of the sample mean of the Gamma random variables becomes one,
and hence the “conditional saddlepoint equation,” that is, the second equa-
tion in Step 1, has the trivial solution 8 = 0. Furthermore, 8 = 0 leads to
K%,,(B,t) = MVar(Y1) = M/m and to K ((0,3),t) = 0 in the formulas of s
and r in Step 2.

Example 15.2.2 (The log higher-order spacings test) The choice of the
score function h(z) = logz in (15.6) was proposed by Darling (1953) and it
maximizes Bahadur efficiency; see Zhou and Jammalamadaka (1989). For the

case b =m and t2 = 1, the joint cumulant generating function in (15.1) is given
by

Kun((A1, A2), (21, 1))
= M[ — Aty — A2+ mlogm — (A + m) log(m — X2) + logM]

['(m)

provided that A\; > —m and Ay < m. The second derivatives of Kas((A1, A2),
(t1,1)) with respect to A; and Ao are the following:

O?Knr((M1, A2), (t1,1))/(0M)% = ¥ (1, A; +m),

K (A1, M), (81,1))/(OMdAg) = (m — Ag) ™,

and
Ar+m

(m — )\2)2,

where ¥(z) = I(z)/T'(z) is the digamma function and ¥(z,n) = (d/dz)"¥(z)
is the polygamma function, with ®{z} > 0 and n € N. The first derivatives
are not necessary because the saddlepoint equation can be efficiently solved by
a minimization routine such as Matlab’s routine fminsearch. In this example,
we consider N = 6 and m = 2, yielding the very small number of summands
or effective sample size M = 3. The numerical results are displayed in Figure
15.1 in terms of absolute errors | Pyc — Psp | and relative absolute error
| Pymc—Psp | /min{PMc, 1 —PMC}, where Py and Pgp denote the distribution
of the test statistic obtained by the 106 Monte Carlo simulated values of the test
statistic and by the saddlepoint approximation in the Lugannani and Rice form
in (15.2), or in its asymptotic equivalent version in (15.4), sometimes referred
to as “Barndorfi-Nielsen formula.”

K (M, A2), (t1,1))/(0X2)? =



Small Sample Asymptotics for Higher-Order Spacings 245

From Figure 15.1, we can see that the saddlepoint approximation has a
small relative error over the whole domain of the distribution, and therefore is
uniformly accurate. The Lugannani and Rice version in (15.2) has all relative
errors below 10 %, and it appears substantially more accurate than its asymp-
totic equivalent formula in (15.4). For this test of uniformity, the small left tail
probabilities are the most important. Note that the small increment of relative
errors at both ends of the domains is not necessarily due to an inaccuracy of the
saddlepoint approximation, because it is based on very few simulated values.
(A further analysis based on importance sampling would provide a more reli-
able comparison.) The domain of the distribution is (—o0, 0) (all approximated
distributions are almost zero at the left of —1), and the density function has a
negative skewness.

Matlab programs for the computation of this saddlepoint approximation can
be found at the address http://www.stat.unibe.ch/~gatto.

Example 15.2.3 (The Greenwood higher-order spacings test) The
choice of the score function h(z) = z? in (15.6) defines the Greenwood test
statistic. The joint cumulant generating function (15.1) for b = m and t; =1
is given by

(m — Xg)?

Kyr((A1, A2), (t1,1)) = M{mlog2+mlogm—)\1t1—/\2—— 5
1

__7211 log(—A1) + (m — 1) log(m — A2)

m—1 i p(itl _ (m=Xp)?
. 2 7 I( ) 73 )
+1lo —1)/tm-1 ( ) 2 L
gji:(')( ) m—X,/) T(j+1)I'(m—j)

provided that A\; < 0 and Ay < m, and where T'(a,z) = [ e 't 1d¢ is the
incomplete Gamma function.

15.3 Tests Based on Higher-Order
Spacing-Frequencies

Consider a first sample of (N —1) independent random variables X1, ..., Xn_1,
with underlying absolute continuous distribution F' defined on A C R, and a
second sample of n independent random variables Y7, ..., Y,, with underlying
absolute continuous distribution G, also defined on A C R. The general two-
sample problem is to test the null hypothesis Hy: F' = G. Define the random



246 R. Gatto and S. R. Jammalamadaka

Absolute error IPMC—PSPI, N=6, m=2
0.04 T T T ISR S — T T T
. . - — - ~ - \ .
. . — 4 - N - -
0.03F - Lugannani and Rice S SRR SR
5 : R : : : oS :
5 - ~— Barndorff-Nielsen : S
: s : :
%0_02_ . : /../ . . e R . . S ..\\..,..._.
S : : : : :
0
Fel
<
0.01
0 L i L . ; ! ; 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Monte Carlo distribution
Relative absolute error IPMC—PSPI/min(PMC,1-PMC}, N=6, m=2
0.35 T T T T T T T n T
5 031 _ Lugarinani and Rice ”-
T 1] P P e R
933 L ~— Barndorff-Nielsen : : : P
3 02\ .. P . . L .. D D )./. .
[%] AN -
8 Yo -
@0'15~ N Cee e T -
2
I 0.1
[
o
0.05
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Monte Carlo distribution

Figure 15.1: Saddlepoint and Monte Carlo approximations to the distribution
of the log higher-order spacings statistic, N = 6, m = 2 and M = 3. Upper
figure: absolute error | Pysc — Psp |. Lower figure: relative absolute error
| Ppec — Psp | / min{Pye, 1 — Pye}. Pue: Monte Carlo approximation to the
distribution. Pgp: saddlepoint approximations to the distribution. Solid line:
Lugannani and Rice approximation in (15.2). Dashed line: Barndorff-Nielsen
approximation in (15.4)
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variables

=1

where for convenience, we take X ) def inf{A} and X() dof sup{A}. The
numbers {Sy,...,Sn} are called the spacing frequencies becaise they corre-
spond to the frequencies or counts of the {Y;} that fall in between successive
{X} In fact, if R(X(x)) denotes the rank of the kth largest {X;} in the
combined sample, k = 1,..., N, it is easily seen that R(X)) = Z;?:l(Sj +1),
or, S, = R(X()) — R(X(-1)) =1, k=1,..., N, so that the {S;} are also the
“rank differences.”

Let h(-) and h;(-), j =1,..., N, be real-valued functions satisfying certain
regularlty conditions. Holst and Rao (1980) consider statistics of the form
N—1/2 1 h;(S;) and N~ 1/2 1 h(S;) and their asymptotic properties when
both N and n tend to infinity; formally, through nondecreasing sequences of
positive integers {N,} and {n,} such that, as v — o0,

N,
N, — 00, n, =00 and — =p, — p, 0 < p < 0.
v

Specifically, they show that if Vi,..., Vy are independent geometric random
variables with probability distribution function
PVi =kl ={p/(p+1)}*-1/(p+1), k=0,1,2,..., (15.8)
then, under Hy,
N D
j=1

where i = E[T; h;(V;)] and o2 = Var (T, h;(V;) - BLE, V, ) in which 8
is the regression coefficient given by

ﬂ:m(éh g )/Va(i:: )

J

As we stated already, the asymptotic efficiencies are improved by considering
the corresponding higher-order spacings. Therefore, we now consider the more
general case. For m > 1, denote M = | N/m], and define the “nonoverlapping”
or disjoint mth order spacing-frequencies

S ZSka ZI{YE[X(km 1) Xkmam-1))}, k=1,...,M -1,
k=1

where we take S,(cm) = l(ch\/f for k > M circularly, for convenience. Let h(-)
and hj(-),j = 1,..., N, be real-valued functions satisfying certain regularity
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conditions [see Assumption (A), in Jammalamadaka and Schweitzer (1985)],
and define the general classes of test statistics

Z hy(SSm), (15.10)
and

M
=S h(S{m), (15.11)

j:

—

which represent, respectively, the nonsymmetric and the symmetric test statis-
tics based on such higher-order spacing frequencies. Jammalamadaka and
Schweitzer (1985) discuss the asymptotic normality of such statistics (and in-
deed, more general ones based on the “overlapping” mth-order spacing frequen-
cies) both under the null hypothesis, as well as under close alternatives.

The following optimality result has been proved there; see Theorem 3.2 in
Jammalamadaka and Schweitzer (1985) for further details. Consider {Gn}, a
smooth sequence of distribution functions converging towards F, as N — oo.
It turns out that the asymptotically most powerful test for the null hypothesis
Hy against the sequence of simple alternatives

Ay: G=GpyN

is to reject Hy when

M .
J (m) o 15.12
ZI(M+1>S > ¢, (15.12)

Jj=1

where [(-) is the derivative of L(u) = impy_,00 Nz [GN(FED (u))—u),0 <u < 1.
However, such linear combinations of higher-order spacing frequencies in {S 5722}
are equivalent to linear combinations in one-step spacing frequencies S;, already
discussed in Gatto and Jammalamadaka (1999, Section 4) and need no further
elaboration.

However, among the class of symmetric tests, there is reason to consider
higher-order spacing frequencies. It is shown there that the sum of squares,
leading to the statistic

Z(S‘"‘ : (15.13)

is the optimal choice among all such symmetric nonoverlapping statistics. When
m = 1, this has been introduced by Dixon (1940) and has been shown to be
locally most powerful by Holst and Rao (1980) among such tests based on
one-step spacing-frequencies.
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For the more general statistics based on the mth-order spacing frequencies,

consider the independent random variables 7y, ..., 7y with the same negative
binomial distribution with parameters m and p/(1 + p), viz.,
. m+j—1 ( 1 >j ( p )m .
Plp = j] = ) . j=0,1,.... (15.14
[ = J] ( j ) ,) \iz5) 170 (15.14)

A moment’s reflection shows that these negative binomial random variables
arise by taking sums of the independent geometric random variables m at a
time, corresponding to one-step spacing frequencies. It can be verified that
under Hg, the mth-order spacing frequencies have the same distribution as
independent negative binomial random variables conditioned to sum up to n,
that is, if 91, . . ., nar are i.1.d. with probability function (15.14), then Vp € (0, 1),
it can be checked that

M
{81, S5} ~ o} 1Yoy =
7=1

To illustrate the power of our conditional approach through which accu-
rate saddlepoint approximations can be obtained, we quote a simple result for
symmetric statistics based on nonoverlapping mth-order spacing frequencies,
which is a consequence of the results of Jammalamadaka and Schweitzer (1985,
Theorem 4.2).

Proposition 15.3.1 Under Hy, if n ~ nq,
M
M7Y23 (0SS — Elh(n)]} -2 M0, 0 2), (15.15)
j=1

where
2

- 1+p(COV2(h(77)7TI)~

The same conditioning idea used for obtaining the first-order approximation
in (15.15) can be exploited for the construction of our saddlepoint approxima-
tion. By defining

0% = Var(h(n))

M f M 1 M
TI*V = Z hj(nj)v Tlu = 35 Z h(nj) and T2V = 3 an,
i=1 M =

the conditional distributions of (T7, | T2, = 1) and (Th, | T2, = 1) can be
approximated again by Steps 1 and 2 of Section 15.1 and with the result below.
These approximations are also accurate approximations to the distributions of
Ty and T, in (15.10) and (15.11), respectively. The following results, which
can be proved by direct verification from our general results, show how one can
find saddlepoint approximations for statistics in (15.12) and (15.13). Numerical
evaluations are somewhat straightforward and are omitted.
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Proposition 15.3.2 The joint cumulant generating function on (15.1) for the
test statistic (15.12) is given by

KM((/\la )\2), (tl, tg)) = A1t — MMty + mM log(l —p)
M .
J

ijZI log [1 pexp{)\ll (M—}— 1) + )\QH ,

where 0 <p <1 and MI(G/(M+ 1))+ X2 < —logp, forj=1,....M.

Proposition 15.3.3 The joint cumulant generating function in (15.1) for the
test statistic (15.13) is given by

KM(()q, )\2), (tl,tg)) = M[ — A1t — Aot + mlog(l — p)
~mlog{1~pe**} + s(A)),

where k(A1) = log E[e’\lﬂ], J is a negative binomial random variable with

parameters m and 1 —pe*?, 0 < p <1, A\; <0 and A3 < — logp.

15.4 Conclusion

In this discussion, we develop accurate approximations valid for small to mod-
erate sample sizes, for the distributions of statistics based on higher order
spacings, and higher-order spacing frequencies, whose exact distributions are
unavailable and asymptotics are quite inaccurate.
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Best Bounds on Expectations of
L-Statistics from Bounded Samples

Tomasz Rychlik

Polish Academy of Sciences, Torurn, Poland

Abstract: We present two optimal bounds on the expectations of arbitrary
L-statistics based on i.i.d. samples with a bounded support expressed in the
support length units. One depends on the location of the population mean
in the support interval, and the other is general. The results are explicitly
described in the special cases of single-order statistics and their differences.

Keywords and phrases: Bounded variable, i.i.d. sample, order statistic,
L-statistic, Moriguti inequality

16.1 Introduction

Assume that X, X;,..., X, are independent random variables identically dis-
tributed on a finite interval [a,b]. Let F(z) , F~!(z), and

EX =p= /01 F~Y(z)dz € (a,b) (16.1)

denote the common distribution and quantile functions, and expectation value,
respectively. Let ¢ = (c1,...,¢,) € R™ be an arbitrarily chosen vector of co-
efficients of a linear combination Z?:l ¢; X;., of order statistics Xi.n,---, Xnin
based on the sample Xy, ..., X,. In this paper, we present two sharp evalua-
tions of EY "7 | ¢;(Xi: —p1)/(b— a). The first one includes p. Observe that if 1
approaches either of the endpoints a and b, so do the expectations of all order
statistics, and the whole expression tends to zero. It is clear that the bound
depends, except for the coefficient vector ¢, on the location of y in the support
interval. This is expressed in terms of the parameter

b—p
&= b—a

€ (0,1), (16.2)

253
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which represents the relative distance of u from the upper support point in
the support length units. A general bound, independent of u, is derived by
maximizing the particular ones with respect to (16.2). We also present one- or
two- or three-point distributions which attain the bounds. The results for the
general L-statistics are presented in Section 16.2. Special cases of single-order
statistics and their differences are studied in Section 16.3.

Optimal evaluations of EY"" ; ¢;(Xin — i) in various scale units were pre-
sented in the literature. For comprehensive reviews, we refer the reader to
Arnold and Balakrishnan (1989, Chapter 3) and Rychlik (2001, Chapter 4).
Bounds with the scale parameters o, = (E|.X — p|P)/P, 1 < p < oo, generated
by the pth central absolute moments, including the most popular standard
deviation parameter o2, were described in Rychlik (1998). Some results for
specific L-statistics were known earlier; for instance, for the sample maximum
[Hartley and David (1954), Gumbel (1954), Arnold (1985), and Balakrishnan
(1993)], sample range [Plackett (1947) and Arnold (1985)], single-order statis-
tics and their differences [Moriguti (1953)], and selection differentials [Nagaraja
(1981)]. The dispersion measured by E(X — u|X > F~(v)) for some v € (0, 1)
were considered in Balakrishnan and Rychlik (2005), and respective results for
single-order statistics are due to Gajek and Okolewski (2000). Using varia-
tional methods, Hartley and David (1954) and Rustagi (1957) derived sharp
bounds for the sample maximum and range, respectively, in o9 units for the
ii.d. samples with a finite support symmetric about the mean.

Similar results were established for other models of ordered statistical data,
including the record values, progressively censored, and generalized order statis-
tics. It is worth pointing out that our approach can be easily extended to all
these models. '

16.2 General Results

Given ¢ = (cy, . - ., ¢s), we make use of the following integral representation;
n 1
EY (Xin— ) = [ [F'(0) - ilfen(a) da, (16.3)
i=1 0
where
n
fan(®) = cifin(z) (16.4)

=1

is the respective linear combination of density functions

fin(x) =nBi_1p_1(x), 1<i<n, (16.5)
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of order statistics of the i.i.d. standard uniform samples of size n, and
Bim(z) = (77)a:l(1 —)™ 7l 0<I<m,

denote the standard Bernstein polynomials. Functions (16.4) and (16.5) have
the antiderivatives

Fin(z) = Y ciFin(2), (16.6)
i=1

and

Fi:n(x) = Z Br,n(l'),

respectively. Let F;,(z), 0 < z < 1, denote the greatest convex minorant of
(16.6). Because Fz,(zx) is continuously differentiable, so is F;.,(z). Denote
the respective nondecreasing derivative by f, (z). Rychlik (2001) showed that
[, () is the projection of fezn(z) onto the family of nondecreasing functions
in L2([0, 1), dz). The set

A={0<z<1: Fy,(z) < Fap(z)} (16.7)

is open, and, if nonempty, consists of at most countably many disjoint open in-
tervals.  Assume that A = |J;(e;,B) for some oy < B < a1
Function f_ (z) is constant on each interval [, 8]  On the completion
of (16.7), f..(@) = fen(x), and is strictly increasing there. Theorem 1 of
Moriguti (1953) implies that

1 1
/ [FY(z) — plfon(z) dz < / [F~Y(z) — plf,, (x)do (16.8)
0 0
and the equality holds iff
Vi, F7}(z)=const., o; <z <fi (16.9)

The Moriguti inequality is the basic tool for establishing sharp bounds on func-
tionals of ordered statistical data. Most of the results mentioned in Section 16.1
were derived by combining the Moriguti inequality with other ones, including
the Schwarz, Holder, and Steffensen inequalities. Relation (16.8) is also crucial
in our study.

Theorem 16.2.1 Under the above assumptions and notation,

]Ezn:o Xin =1 <b_"Zn:c‘—F~ b-u (16.10)
‘\ b—a Tb-a& toTen\b—a/’ '

i=1
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If A= (0,1), then the equality holds if
P(X=p) =1 (16.11)
Ifa=%E¢ A+ (0,1), then (16.10) becomes the equality if

b—p
PXZ = =
( a’) « b_a)
w—a
PX=b= 1- = . 16.12
(X=b= 1-a =£=2 (16.12)

Ifa= 2—:5 € (@i, Bi) C A #(0,1), then the equality in (16.10) is attained if

P(X=a) = o
P(X:“_ala_(l_ﬂl)b> = b —an,
Bi — ay
P(X=b) = 18 (16.13)

PRrROOF. We first prove the inequality. Combining (16.1), (16.3), and (16.8), we
obtain

EY a(Xin-p) < [ P @) - Wi, (@) - £, (@) dz
i=1 0

1
+ / [F () - Wlf,, (z) - f, ()] de. (16.14)

Because fc.n(:c) is nondecreasing, the latter functions in the integrals are non-

positive and nonnegative, respectively. Function F~1(z)—u may range between
a—p<0and b— pu > 0. Therefore

1
| @) = L ) - S ] d
< @) [ fenle) = L@ ot 0= ) [ L@ - Lo (@) do

= (0-pEsn(1) = (b—a)Egn(a) = {az ¢i — Fgn(a)

The last equality follows from
n
Fin(1)=Fen(1) =) i
i=1
If A= (0,1), then f_ (z) is constant on [0, 1], and all the integrals in

(16.15) amount to zero. The equality in (16.14) holds if F~1(z) — p is constant
and zero on the whole unit interval, which yields (16.11).
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If o & A# (01,), it suffices to take

-1 _Ja 0<Zz<q
F (x)—{b, a<z<l, (16.16)

which evidently provides the equality in (16.15). The equality in (16.14) is
implied by the fact that the only increase point of (16.16) lies beyond (16.7)
[cf. (16.9)]. Finally, we observe that it obeys the moment condition

1
/ Fl(2)dz=0a+ (1 -a)b=p,
0

by definition.
Assume now that a € (a;,b;) C A # (0, 1), or, equivalently,

p € (Bia+ (1 — Bi)b, aia + (1 — c)b). (16.17)

The equality in (16.15) holds if

“i,h_ Ja 0<Zz<ay,
F (m)—{b’ B <z<l (16.18)

For the equality in (16.14), we also need
Flz)=c, ai<z<p; (16.19)

The first moment condition is satisfied for

p—aja—(1—06;)b
c=c(p) = . 16.20)
() y— (
We immediately check that (16.20) ranges between a and b for p restricted to
(16.17). Therefore, relations (16.18)-(16.20) define a three-point distribution
that satisfies the support condition. This completes the proof. |

The right-hand side of (16.10) represents the distance between the convex
function F;,(z) and the straight line joining its endpoints F5,(0) = 0 and
F:,(1) =37 ¢ at the point a = Z—:’é. Hence, it is always non-negative. This
vanishes for all a € (0,1) iff

n
Fin(z)2z) ¢, 0<z<1. (16.21)

i=1

Otherwise, the bound is always positive except for the endpoints. For the
majority of L-statistics, the equality conditions presented in Theorem 16.2.1 are
necessary and sufficient. Other extreme distributions may occur when 3; = a1
for some i, and a € (a4, Bit+1). These are rare cases, though, and we decided
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not to present all the solutions to the equality problem. Those presented in
Theorem 16.2.1 are the simplest ones. Note that in the last case, (16.13) reduces
to a two-point distribution if either a; = 0 or 5; = 1.

A general bound independent of p € (a,b) is derived by maximizing the
RHS of (16.10)

H(a) = azn:ci -~ Fs;.(a), 0<a<l (16.22)

This is a non-negative concave function vanishing at 0 and 1, with the contin-
uous nonincreasing derivative

n
Ria) =) ¢ - f, (a). (16.23)
i=1
Function (16.22) is maximized at any zero of (16.23). Under (16.21), both
(16.22) and (16.23) are constant zero. Otherwise, the set of zeros of (16.23) is
a possibly degenerate closed interval contained in (0, 1). The zero is unique iff
it is an interior point of the closed set [0,1]\ A. A nondegenerate interval of
zeros coincides with an element of at most countable set of closed intervals that
form the closure of (16.7). The results are summarized in Theorem 16.2.2.

Theorem 16.2.2 Put

A, = {O <a<l: f. (a)= zn:cz} . (16.24)
i=1

Then for every a. € Ax, we have

]EZ ( )<a*Zcz Fanlon). (16.25)

If A, = (0,1), then the RHS of (16.25) is zero, and the equality is attained
for the degenerate distributions concentrated at any u € (a,b).

If (16.24) consists of a single point a.., then the equality in (16.25) holds for
(16.12) with a = a.

If (16.24) is a proper interval and a. € [ay, Bi], then the equality in (16.25)
is attained by (16.13).
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16.3 Special Cases

We first determine the upper bounds for the single-order StatlSthS Every dis-

tribution function Fj., is convex on (0, *nL—l) and concave on (n 7,1). Using
standard arguments, we calculate
El:n(a") = 0<z< 1,
F;. n(x), 0<z<a, .
;. = - - <7<n-—
Ejn(2) { fimla)(z—1)+1, ar <z <1, 2sjsn-1,
(16.26)

where 0 < a3 < 5 is the unique solution to

fin(@)(1=1x) =1~ Fjn(z),
and
F,,.(z)=Fyp(z)=2" 0<z<l.

Consequently, for the sample minimum, bounds (16.10) and (16.25) amount to
zero, which is clear by EX;., <EX = pu. For 2 < j <n— 1, we have two cases.
Ifa<p<aja+ (1 —aq)b, then a > a1, and, applying (16.26), we get

B(T22E) <a-fnla)a = -1= Umlon -1} (45 ) 1620

The bound is positive, because _]f)n(x) is a density function on (0,1), and

fim(a1) is its maximal value. Here a € (a;,1) = A, and due to (16.13),
bound in (16.27) is attained if

P(X=a) = oy,

P(X:“__alﬁ) = 1-aq.
1—a1

If p is large enough, that means aja + (1 — a;)b < p < b, then a < a3, and

X, _
IE( In — )32_5 Fim (2_5) (16.28)

Now a ¢ A = (a,1), and we conclude that the equality in (16.28) holds under
(16.12). Calculating the general bound (16.25) for nonextreme order statistics,
we solve the equation ij: (z) = 1. By (16.26), fj () = fjn(min{z,01}) is
strictly increasing on (0, a1) from f;.,(0) = 0 to fj.n(a1) > 1. Therefore,

X —
E (%) <ay — Fj:n (a*)a




260 T. Rychlik

where 0 < ax < a < %:—11 is the unique solution to fj.n(z) = 1.
In the case of sample maximum, (16.10) takes on the form

E Xn:n_ﬂ' <b_/~‘__ b_,u "
b—a “b-a b—a/ ’
and becomes the equality if (16.12) holds. The bound is maximized with respect

to a = g—:—’é at a, = n~ V(1) This implies the general bound

E (in - ﬂ’) < n—l/(n—l) _ n—n/(n—l)’ (1629)
—a

with the equality conditions

P(X =a) = n V1),
P(X=0b) = 1-n /0D,

Observe that the right-hand side of (16.29) tends to 1 as n — oo, which is a

trivial deterministic bound for 3(%_"7_&
Now we proceed to the differences of order statistics Xg.p, — Xjin, 1 <7 <

k < n. We easily check that function
Fj,k:n(m) = Fn(z) Fj;n(z), 0<z<1,

vanishes at 0 and 1, and is first concave decreasing (except for the case j = 1),
then convex decreasing, convex increasing, and ultimately concave increasing
(except for k = n). It attains its minimum at

1) R S

[fk:n(ﬂl) - fj:n(ﬁl)]xy 0 S T S ﬂl;
—Ej,k:n(l') = Fkn(x) - Fj:n(fE), 01 <z < as, (1631)
(frn(a2) = fin(a)] (x —1), <z <1,

Therefore,

and A = (0, £1) U (ag,1), where 0 < 31 < @, uniquely solves
[fk:n(l') - fj:n(«'zf)]m = Fk:n(m) - Fj:n(m)
when j > 2 and §; =0 for j =1, and a, < az < 1 uniquely solves

[frn(z) — f]n(x)](l —z)= an(ﬁc) — Fin(z)
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when £ < n—1 and ay = 1 for kK = n. This implies that (16.10) has three
different forms. If a < p < aga + (1 — a2)b, then a > a3, and by (16.10) and

(16.31),
E (@) < A{fin(a2) = fin(a2)} (Z: a) ’

a a

and the equality holds if
P(X=a) = ay
P(X:”_aza = 1-as

faa+(1—a)b<pu<pra+(1—pP1)b, then f1 < a < ag, and

(M) < (322) A (322) - 1o (522),

(16.32)
and the equality holds for (16.12). Eventually, for f1a + (1 — 81)b < u < b, we
have a < 1 so that the inequality

E (%) < {Fin(B) — fren(B)} ( u)

a —a

holds, and the equality conditions are

P(X_ —(1—61 ) .
=b) = 1-8.

In order to derive the general bound, we solve F; ;. () = 0. An analysis carried
out above shows that (16.30) is the unique solution that belongs to (1, ag).
By (16.32),

Xin — X, k-1
E <_w> < Fip (a*) - Fj:n (a*) = Z Bi,n (Ot*) .

Especially, for spacings we have o, = '}u and

By the Stirling approximation, the bound tends to 1/4/27j if j is fixed, and
1/4/27(n—j) if n — j is fixed, and n tends to infinity. For the spacings of
intermediate and central-order statistics, the right-hand side of (16.33) tends
to zero in increasing samples. The maximum point (16.30) has a simple form
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Oy = % for the symmetric differences of the jth greatest and smallest order
statistics. Therefore,

Xn+1—j:n - X = 1 . n
E J <§ = 1<4<—.
( b—a —i:jB*" 2) "=0=3

Moreover, it is easy to verify that for the sample range formulae (16.10) and
(16.25) take on the forms

E Xnn — X1 <1-— H—a n— b—p, "
b—a - b—a b—a/ ’

Xn:n_Xlzn 1
E( b—a )Sl‘zn—l’

and

respectively.
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The Failure Rates of Mixtures

Henry W. Block
University of Pittsburgh, Pittsburgh, PA, USA

Abstract: Mixtures of distributions of lifetimes occur in many settings. In
engineering applications, it is often the case that populations are heterogeneous,
often with a small number of subpopulations. In survival analysis, selection
effects can often occur. The concept of a failure rate in these settings becomes
a complicated topic, especially when one attempts to interpret the shape as a
function of time. Even if the failure rates of the subpopulations of the mixture
have simple geometric or parametric forms, the shape of the mixture is often
not transparent.

Recent results, developed by the author (with Joe, Li, Mi, Savits, and Wond-
magegnehu) in a series of papers, are presented. These results focus on general
results concerning the asymptotic limit and eventual monotonicity of a mixture,
and also the overall behavior for mixtures of specific parametric families.

An overall picture is given of different things that influence the behavior of
the failure rate of a mixture.

Keywords and phrases: Failure rate, mixture, coherent systems, signature

17.1 Introduction

Mixtures are a common topic in most areas of statistics. They also play a central
role in reliability and survival analysis. However, the failure rate of mixed
distributions is a source of much confusion. Many questions and anomalies
have arisen. We discuss some of these in the following.

A much cited paper is that of Proschan (1963). In this paper, pooled data for
airplane air conditioning systems whose lifetimes are known to be exponential
exhibit a decreasing failure rate. Because decreasing failure rates are usually
associated with systems that improve with age, this was initially thought to be
counterintuitive.

267
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A second anomaly, at least to some, was that mixtures of lifetimes with
increasing failure rates could be decreasing on certain intervals. Examples of
such lifetimes can be found in Vaupel and Yashin (1985) as well as in Barlow
and Proschan (1975).

A variant of the above is due to Gurland and Sethuraman (1994, 1995),
which gives examples of mixtures of very rapidly increasing failure rates that
are eventually decreasing.

In the survival analysis literature [see, e.g., Bretagnolle and Huber-Carol
(1988), and other papers cited therein], it is known that if an important random
covariate in a Cox model is omitted, the shape of the hazard rate is drastically
changed.

A recent paper by Wang, Muller and Capra (1998) (and many articles cited
there) mentions that in many biological populations, including humans, life-
times of organisms at extreme old age exhibit decreasing hazard rate. A nat-
ural question to ask is whether this means that some of the individuals in the
population are improving or not.

This lack of understanding and general confusion about mixtures is one of
the reasons that we attempt to explain the behavior of mixtures. We have been
successful in describing the initial and final behaviors. Progress is being made
on the intermediate behavior, but a general pattern has not emerged. It is
indeed a very challenging problem.

17.2 Notation

In industrial settings, populations of components are rarely homogeneous. There
are usually at least two subpopulations. For the purposes of this paper, we
consider the case of two. The situation can be described using mixtures of
distributions.

Consider two component lifetimes with survival functions F'; and Fa, den-
sities fi and fo, and failure rates A; and As. The mixture has survival function

Fpo(t) = pF1(t) + (1 — p)Fa(t)
where 0 < p < 1, density

fm(@) = pfi(t) + (1 - p) fa(t),

and failure rate
\(t) = 2E)+ (=Dl
" pF1(t) + (1 —p)Fa(t)’

—

which can be rewritten as

Am(t) = p1(t)A1(t) + (1 — pa(8)) Aa(t),
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where _
Fi(t
pF1(t) + (1 = p)Fa(t)
Although A, is not a simple mixture of A\; and Ag, it nonetheless follows that
for every t > 0, Ap,(t) is bounded by min(A;(2), A2(t)) and max(Ai(t), Aa(t)).

17.3 Examples

The failure rates of standard distributions in reliability are often monotone
(i.e., increasing or decreasing). One result that is known is that mixtures of
distributions with decreasing failure rates have decreasing failure rates; see
Proschan (1963).

However, if A\; and Ay are not both decreasing, not much is known about
the monotonicity of A,,. We give examples to illustrate various behaviors.

Example 17.3.1 (IFR Weibulls) We consider two Weibull distributions with
increasing failure rates A1(t) = 2t and \2(t) = 32 and any 0 < p < 1. It turns
out that the mixture of these two distributions has increasing failure rate.

This behavior, however, is not typical as the following example shows.

Example 17.3.2 (IFR with exponential failure rates) Let A\;(t) = 1 —
exp(—5t) and Ay(t) = 6 — exp(—5t) and any 0 < p < 1. Here, the mixture
has strictly decreasing failure rate.

Gurland and Sethuraman (1994, 1995) believed the behavior of Example
17.3.2 was typical, that is, many mixtures have eventually decreasing failure
rates. The following example is similar to examples that these authors studied.

Example 17.3.3 (Exponential and gamma distributions) Consider dis-
tributions with densities fi(t) = exp(—t) and f2(t) = 16texp(—4t) and any
0 < p < 1. The failure rate of the mixture starts off increasing and then is
eventually decreasing. The shape of this failure rate is called upside-down bath-
tub or hump-shaped. Two standard distributions that have a failure rate with
a similar shape are the log-normal and the log-logistic.

This behavior is also not typical, as the following example shows.

Example 17.3.4 (Exponential and gamma distributions) Consider den-
sities f1(t) = 4exp(—4t) and fo(t) = texp(—t) and any 0 < p < 1. The failure
rate is eventually increasing. This shape is called bathtub (BT). Various popula-
tions exhibit such behavior [see Klein and Moeschberger (1997, p. 29)], and for
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industrial populations of this type burn-in is important [see Block and Savits
(1997)].

Again, this behavior is not typical as the following example shows.

Example 17.3.5 (IFR Weibulls) Consider distributions with failure rates
A1(t) = 2t and Ag(t) = 4¢3 and any 0 < p < 1. The mixture has a failure
rate that is increasing, then decreasing, then increasing. This shape is called
modified bathtub (MBT). Various industrial lifetimes exhibit this behavior [see
Jensen and Petersen (1982)] as do certain human populations [see Klein and
Moeschberger (1997, Section 1.9)].

In general, therefore, a multitude of behaviors is possible.

17.4 Asymptotics

Notice in the previous examples that the limit of the mixture as ¢t — oo tends
to the limit of the lower (i.e., the stronger) failure rate. Furthermore, in Ex-
amples 1, 4, and 5 the eventual monotonicity of the mixture is similar to the
monotonicity of the stronger failure rate. We state two results. To do this we
introduce a more general mixture that has a failure rate

5 £(t,6) P(d9)
M) =1 F2.0) Plao)

and let r(¢,0) = %((i’?).

Theorem 17.4.1 (Block, Mi, and Savits (1993)) Assume

(i) 7(t,0) converges to a(8) uniformly on S ast — oo;
(it) for any r(t,0) that goes to oo, the rate of convergence is exponentially
bounded (i.e., r(t,0) < exp(Lt) for larget and L > 0).

Then Ap(t) has (essentially) the same limit as the strongest r(t,0)
(i.e., tl_lglo Am(t) = ess infycga(8)).

Theorem 17.4.2 .(Block and Joe (1997)) Consider the finite mizture

Eipifi(t)

An(t) = Ao
m () T piFi(t)

Yitpi=1, 0<p; <1.

Then under technical conditions on the first derivatives of 7i(t) = %%, i=

1,2,...,n (essentially the r;(t) behave like ratios of polynomials), the ultimate
monotonicity of A, (t) is the same as that of the strongest component.
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Remark 17.4.1 Improved versions of these two theorems can be found in
Block, Li, and Savits (2003b).

17.5 Mixtures of Distributions with Linear
Failure Rates

Although the asymptotic behavior of the failure rate of a mixture has been stud-
ied and the initial behavior is not hard to determine, little is known about the
intermediate behavior. Block, Savits, and Wondmagegnehu (2003) determined
the overall monotone behavior of the failure rate of a mixture of distributions
with a linear failure rate. For two components, the mixture is

_ PAW+ (=50
S DN DY

Consider the two distributions with linear failure rates

/\1(t) = ¢t + dy and )\Q(t) = cot + dy

which are assumed to be increasing, i.e., ¢; > 0, ¢ = 1,2. Four cases are
considered:

(a) parallel rates (¢; = ¢ = ¢2,d; < dg);

(b) rates with the same y-intercept (d; = d = dg, ¢1 < c2);
(c) noncrossing rates (c1 < ¢2,d; < dg, contains a) and b));
(d) crossing rates (c; < co,d; > da).

The results are as follows.

(a) Parallel Failure Rates: Here ¢; = ¢ = ¢ and d; < dp. Let a = dp — d;
and § = % There are two cases:

Case (0 < § < 2): The mixture failure rate is increasing (IFR).

Case (2 < §): There exists {1 < {2 and the following two subcases
hold:

Subcase (0 < p < (1): Here, the mixture has a modified bathtub
(MBT) failure rate.

Subcase ({1 < p < {2): Here, the failure rate is bathtub-shaped
(BT).
Subcase (2 < p < 1): IFR.
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(b) Same y-intercept. There exists 0 < £ < 1 and there are two cases.
Case (0 < p < &): MBT.
Case (§ <p<1): IFR.

(c) Noncrossing (includes (a) an (b) above). There are three possibilities:
IFR, BT, and MBT.

(d) Crossing
Case (t < tp): Many cases, only three shapes (IFR, BT, MBT).
Case (to < t): Many cases only two shapes (IFR, MBT).

These lead to a total of five possible monotonicity behaviors in the crossing
cases. There will be at most four changes of monotonicity in these cases. See
Block, Savits, and Wondmagegnehu (2003) for details.

17.6 Mixtures of Standard Reliability Distributions

Recently, attempts have been made to study the behavior of mixtures of stan-
dard reliability distributions. We summarize some of the recent work.

Weibull [Wondmagegnehu (2002)] Two Weibulls, same shape parameter a > 1
with failure rates

A1(t) = 010t Ag(t) = Bpat® .

For small p, the only behavior is MBT. For large p, the only behavior is IFR.
Jiang and Murthy (1998) have also determined the above by computational
methods as well as all other cases. These involve eight different shapes with
from 0 to 4 changes of monotonicity.

Exponential and Weibull [Wondmagegnehu, Navarro, and Hernandez (2004)]
/\1(t) = 01, )\Q(t) = Bgata_l

Case (a > 2): Decreasing, increasing, then decreasing.
Case (a = 2): For small p, UBT. For large p, as in the a > 2 case.
Case (1 < a < 2): Two behaviors are possible.

Gamma All cases for the gamma distributions have been determined by Gupta
and Warren (2001) using theoretical, numerical, and graphical techniques. Six
different shapes were encountered with from 0 to 4 changes of monotonicity.

Normal There is a long history of the shapes of the densities for mixtures of
normal distributions. See Schilling, Watkins, and Watkins (2002) for a summary
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and also Robertson and Fryer (1969). Recent work on the failure rate appears
in Block, Li, and Savits (2004). Failure rates of mixtures of truncated normals
can be found in Navarro and Hernandez (2002).

17.7 Preservation Under Mixtures

From Sections 17.2 and 17.4, various examples demonstrate that finite mixtures
of distributions with increasing failure rates need not have increasing failure
rates. However, for continuous mixtures of distributions with increasing failure
rates, there are conditions under which the mixture has an increasing failure
rate. This was noted by Lynch (1999). The mixing distribution requires a
strong joint property.

Theorem 17.7.1 (Lynch (1999)) Let {F(t6)|6 > 0} be a family of survival
Junctions that is logconcave in (t,0) and an increasing in 6. Also, let M be a
distribution with increasing failure rate. Then

Ft) = / F(116) dM(0)
has an increasing failure rate.

Remark 17.7.1 As shown in Block, Li, and Savits (2003a), the logconcave
condition is not particularly restrictive. For example, the Weibull distribution
with survival function

F(t|0) = exp(—t*/6*71) for §>0 and a>1

is increasing in 6 and logconcave in (¢, ). This gives that mixing with respect
to Weibulls with increasing failure rates preserves increasing failure rates.

Remark 17.7.2 Similar results for other reliability classes were shown in Block,
Li, and Savits (2003a).

17.8 Analytic Tools for Determining the
Shape of Mixtures

Puri and Singh (1986), Mi (1996), Block, Savits, and Singh (2002), and Savits
(2003) all examine conditions under which:

N'(2)
D'(t)

= tonicity of N
monotonicity o D)’

monotonicity of
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In particular, Puri and Singh (1986) examine functions with no change of mono-
tonicity (i.e., either increasing or decreasing); Mi (1996) and Block, Savits, and
Singh (2002) consider one change of monotonicity (i.e., bathtub functions);
and Savits (2003) considers multiple changes of monotonicity (i.e., rollercoaster
functions). The results obtained in these papers include the marginal cost re-
sults of Berg (1986) and Chen and Savits (1992), and also results on the mono-
tonicity of the failure rate obtained by Glaser (1980) and Gupta and Warren
(2001). In these latter cases,

f'@)
f(t)

where f(t) is the density. The reason this is important for mixtures is that 7(t)
is often much easier to analyze than r(t).

monotonicity of 7(t) = — = monotonicity of r(t) =

17.9 Coherent Systems

Using some of the techniques described previously, the monotonicity of the fail-
ure rate of a coherent system can be determined. In the case where the compo-
nents are independent, Block, Li, and Savits (2003b) determined conditions for
describing the asymptotic behavior of the failure rate of a system in terms of
the asymptotic behavior of the failure rate of the components. The conditions
involve the min path or the min cut sets of the system. If the components
are also identically distributed, Samaniego (1985) showed that the reliability of
the system has a representation as a mixture and the mixture coefficients are a
probability vector called the signature. Recently, Block, Dugas, and Samaniego
(2004) showed that the asymptotic failure rate of such a system can be deter-
mined by using the signature representation just mentioned. Min path and min
cut sets do not appear in this result and this does not follow from the result of
Block, Li, and Savits (2003b). We give both results. Results on the eventual
monotonicity of the system failure rate follow similarly.

Theorem 17.9.1 (Block, 