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Preface to the Second
Edition

In this new edition, which is a substantially revised version of the old one,
I have added five new chapters: Vectors in Relativity (Chapter 8), Tensor
Analysis (Chapter 17), Integral Transforms (Chapter 29), Calculus of Varia-
tions (Chapter 30), and Probability Theory (Chapter 32). The discussion of
vectors in Part II, especially the introduction of the inner product, offered the
opportunity to present the special theory of relativity, which unfortunately,
in most undergraduate physics curricula receives little attention. While the
main motivation for this chapter was vectors, I grabbed the opportunity to
develop the Lorentz transformation and Minkowski distance, the bedrocks of
the special theory of relativity, from first principles.

The short section, Vectors and Indices, at the end of Chapter 8 of the first
edition, was too short to demonstrate the importance of what the indices are
really used for, tensors. So, I expanded that short section into a somewhat
comprehensive discussion of tensors. Chapter 17, Tensor Analysis, takes
a fresh look at vector transformations introduced in the earlier discussion of
vectors, and shows the necessity of classifying them into the covariant and
contravariant categories. It then introduces tensors based on—and as a gen-
eralization of—the transformation properties of covariant and contravariant
vectors. In light of these transformation properties, the Kronecker delta, in-
troduced earlier in the book, takes on a new look, and a natural and extremely
useful generalization of it is introduced leading to the Levi-Civita symbol. A
discussion of connections and metrics motivates a four-dimensional treatment
of Maxwell’s equations and a manifest unification of electric and magnetic
fields. The chapter ends with Riemann curvature tensor and its place in Ein-
stein’s general relativity.

The Fourier series treatment alone does not do justice to the many appli-
cations in which aperiodic functions are to be represented. Fourier transform
is a powerful tool to represent functions in such a way that the solution to
many (partial) differential equations can be obtained elegantly and succinctly.
Chapter 29, Integral Transforms, shows the power of Fourier transform in
many illustrations including the calculation of Green’s functions for Laplace,
heat, and wave differential operators. Laplace transforms, which are useful in
solving initial-value problems, are also included.
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Preface to Second Edition

The Dirac delta function, about which there is a comprehensive discussion
in the book, allows a very smooth transition from multivariable calculus to
the Calculus of Variations, the subject of Chapter 30. This chapter takes
an intuitive approach to the subject: replace the sum by an integral and the
Kronecker delta by the Dirac delta function, and you get from multivariable
calculus to the calculus of variations! Well, the transition may not be as
simple as this, but the heart of the intuitive approach is. Once the transition
is made and the master Euler-Lagrange equation is derived, many examples,
including some with constraint (which use the Lagrange multiplier technique),
and some from electromagnetism and mechanics are presented.

Probability Theory is essential for quantum mechanics and thermody-
namics. This is the subject of Chapter 32. Starting with the basic notion of
the probability space, whose prerequisite is an understanding of elementary
set theory, which is also included, the notion of random variables and its con-
nection to probability is introduced, average and variance are defined, and
binomial, Poisson, and normal distributions are discussed in some detail.

Aside from the above major changes, I have also incorporated some other
important changes including the rearrangement of some chapters, adding new
sections and subsections to some existing chapters (for instance, the dynamics
of fluids in Chapter 15), correcting all the mistakes, both typographic and
conceptual, to which I have been directed by many readers of the first edition,
and adding more problems at the end of each chapter. Stylistically, I thought
splitting the sometimes very long chapters into smaller ones and collecting
the related chapters into Parts make the reading of the text smoother. I hope
I was not wrong!

I would like to thank the many instructors, students, and general readers
who communicated to me comments, suggestions, and errors they found in the
book. Among those, I especially thank Dan Holland for the many discussions
we have had about the book, Rafael Benguria and Gebhard Griibl for pointing
out some important historical and conceptual mistakes, and Ali Erdem and
Thomas Ferguson for reading multiple chapters of the book, catching many
mistakes, and suggesting ways to improve the presentation of the material.
Jerome Brozek meticulously and diligently read most of the book and found
numerous errors. Although a lawyer by profession, Mr. Brozek, as a hobby,
has a keen interest in mathematical physics. I thank him for this interest and
for putting it to use on my book. Last but not least, I want to thank my
family, especially my wife Sarah for her unwavering support.

S.H.

Normal, IL
January, 2008
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Innocent light-minded men, who think that astronomy can
be learnt by looking at the stars without knowledge of math-
ematics will, in the next life, be birds.

—Plato, Timaeos

This book is intended to help bridge the wide gap separating the level of math-
ematical sophistication expected of students of introductory physics from that
expected of students of advanced courses of undergraduate physics and engi-
neering. While nothing beyond simple calculus is required for introductory
physics courses taken by physics, engineering, and chemistry majors, the next
level of courses—both in physics and engineering—already demands a readi-
ness for such intricate and sophisticated concepts as divergence, curl, and
Stokes’” theorem. It is the aim of this book to make the transition between
these two levels of exposure as smooth as possible.

Level and Pedagogy

I believe that the best pedagogy to teach mathematics to beginning students
of physics and engineering (even mathematics, although some of my mathe-
matical colleagues may disagree with me) is to introduce and use the concepts
in a multitude of applied settings. This method is not unlike teaching a lan-
guage to a child: it is by repeated usage—by the parents or the teacher—of
the same word in different circumstances that a child learns the meaning of
the word, and by repeated active (and sometimes wrong) usage of words that
the child learns to use them in a sentence.

And what better place to use the language of mathematics than in Nature
itself in the context of physics. I start with the familiar notion of, say, a
derivative or an integral, but interpret it entirely in terms of physical ideas.
Thus, a derivative is a means by which one obtains velocity from position
vectors or acceleration from velocity vectors, and integral is a means by
which one obtains the gravitational or electric field of a large number of
charged or massive particles. If concepts (e.g., infinite series) do not succumb
easily to physical interpretation, then I immediately subjugate the physical



Preface

situation to the mathematical concepts (e.g., multipole expansion of electric
potential).

Because of my belief in this pedagogy, I have kept formalism to a bare
minimum. After all, a child needs no knowledge of the formalism of his or her
language (i.e., grammar) to be able to read and write. Similarly, a novice in
physics or engineering needs to see a lot of examples in which mathematics
is used to be able to “speak the language.” And I have spared no effort to
provide these examples throughout the book. Of course, formalism, at some
stage, becomes important. Just as grammar is taught at a higher stage of a
child’s education (say, in high school), mathematical formalism is to be taught
at a higher stage of education of physics and engineering students (possibly
in advanced undergraduate or graduate classes).

Features

The unique features of this book, which set it apart from the existing text-
books, are

e the inseparable treatments of physical and mathematical concepts,
e the large number of original illustrative examples,

e the accessibility of the book to sophomores and juniors in physics and
engineering programs, and

e the large number of historical notes on people and ideas.

All mathematical concepts in the book are either introduced as a natural tool
for expressing some physical concept or, upon their introduction, immediately
used in a physical setting. Thus, for example, differential equations are not
treated as some mathematical equalities seeking solutions, but rather as a
statement about the laws of Nature (e.g., the second law of motion) whose
solutions describe the behavior of a physical system.

Almost all examples and problems in this book come directly from physi-
cal situations in mechanics, electromagnetism, and, to a lesser extent, quan-
tum mechanics and thermodynamics. Although the examples are drawn from
physics, they are conceptually at such an introductory level that students of
engineering and chemistry will have no difficulty benefiting from the mathe-
matical discussion involved in them.

Most mathematical-methods books are written for readers with a higher
level of sophistication than a sophomore or junior physics or engineering stu-
dent. This book is directly and precisely targeted at sophomores and juniors,
and seven years of teaching it to such an audience have proved both the need
for such a book and the adequacy of its level.

My experience with sophomores and juniors has shown that peppering the
mathematical topics with a bit of history makes the subject more enticing. It
also gives a little boost to the motivation of many students, which at times can
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run very low. The history of ideas removes the myth that all mathematical
concepts are clear cut, and come into being as a finished and polished prod-
uct. It reveals to the students that ideas, just like artistic masterpieces, are
molded into perfection in the hands of many generations of mathematicians
and physicists.

Use of Computer Algebra

As soon as one applies the mathematical concepts to real-world situations,
one encounters the impossibility of finding a solution in “closed form.” One
is thus forced to use approximations and numerical methods of calculation.
Computer algebra is especially suited for many of the examples and problems
in this book.

Because of the variety of the computer algebra softwares available on the
market, and the diversity in the preference of one software over another among
instructors, I have left any discussion of computers out of this book. Instead,
all computer and numerical chapters, examples, and problems are collected in
Mathematical Methods Using Mathematica®, a relatively self-contained com-
panion volume that uses Mathematica®.

By separating the computer-intensive topics from the text, I have made it
possible for the instructor to use his or her judgment in deciding how much
and in what format the use of computers should enter his or her pedagogy.
The usage of Mathematica® in the accompanying companion volume is only a
reflection of my limited familiarity with the broader field of symbolic manipu-
lations on the computers. Instructors using other symbolic algebra programs
such as Maple® and Macsyma® may generate their own examples or trans-
late the Mathematica® commands of the companion volume into their favorite
language.
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Note to the Reader

“Why,” said the Dodo, “the best way to ex-
plain it is to do it.”

—Lewis Carroll

Probably the best advice I can give you is, if you want to learn mathematics
and physics, “Just do it!” As a first step, read the material in a chapter
carefully, tracing the logical steps leading to important results. As a (very
important) second step, make sure you can reproduce these logical steps, as
well as all the relevant examples in the chapter, with the book closed. No
amount of following other people’s logic—whether in a book or in a lecture—
can help you learn as much as a single logical step that you have taken yourself.
Finally, do as many problems at the end of each chapter as your devotion and
dedication to this subject allows!

Whether you are a physics or an engineering student, almost all the ma-
terial you learn in this book will become handy in the rest of your academic
training. Eventually, you are going to take courses in mechanics, electro-
magnetic theory, strength of materials, heat and thermodynamics, quantum
mechanics, etc. A solid background of the mathematical methods at the level
of presentation of this book will go a long way toward your deeper under-
standing of these subjects.

As you strive to grasp the (sometimes) difficult concepts, glance at the his-
torical notes to appreciate the efforts of the past mathematicians and physi-
cists as they struggled through a maze of uncharted territories in search of
the correct “path,” a path that demands courage, perseverance, self-sacrifice,
and devotion.

At the end of most chapters, you will find a short list of references that you
may want to consult for further reading. In addition to these specific refer-
ences, as a general companion, I frequently refer to my more advanced book,
Mathematical Physics: A Modern Introduction to Its Foundations, Springer-
Verlag, 1999, which is abbreviated as [Has 99]. There are many other excellent
books on the market; however, my own ignorance of their content and the par-
allelism in the pedagogy of my two books are the only reasons for singling out
[Has 99].
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Coordinates and Calculus






Chapter 1

Coordinate Systems
and Vectors

Coordinates and vectors—in one form or another—are two of the most
fundamental concepts in any discussion of mathematics as applied to physi-
cal problems. So, it is beneficial to start our study with these two concepts.
Both vectors and coordinates have generalizations that cover a wide vari-
ety of physical situations including not only ordinary three-dimensional space
with its ordinary vectors, but also the four-dimensional spacetime of relativity
with its so-called four vectors, and even the infinite-dimensional spaces used
in quantum physics with their vectors of infinite components. Our aim in this
chapter is to review the ordinary space and how it is used to describe physical
phenomena. To facilitate this discussion, we first give an outline of some of
the properties of vectors.

1.1 Vectors in a Plane and in Space

We start with the most common definition of a vector as a directed line
segment without regard to where the vector is located. In other words, a vector
is a directed line segment whose only important attributes are its direction
and its length. As long as we do not change these two attributes, the vector is
not affected. Thus, we are allowed to move a vector parallel to itself without
changing the vector. Examples of vectors' are position r, displacement Ar,
velocity v, momentum p, electric field E, and magnetic field B. The vector
that has no length is called the zero vector and is denoted by 0.

Vectors would be useless unless we could perform some kind of operation
on them. The most basic operation is changing the length of a vector. This
is accomplished by multiplying the vector by a real positive number. For
example, 3.2r is a vector in the same direction as r but 3.2 times longer. We

1Vectors will be denoted by Roman letters printed in boldface type.
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(b)

Figure 1.1: lllustration of the commutative law of addition of vectors.

can flip the direction of a vector by multiplying it by —1. That is, (—1) xr =
—r is a vector having the same length as r but pointing in the opposite
direction. We can combine these two operations and think of multiplying a
vector by any real (positive or negative) number. The result is another vector
lying along the same line as the original vector. Thus, —0.732r is a vector
that is 0.732 times as long as r and points in the opposite direction. The zero
vector is obtained every time one multiplies any vector by the number zero.
Another operation is the addition of two vectors. This operation, with
which we assume the reader to have some familiarity, is inspired by the obvious
addition law for displacements. In Figure 1.1(a), a displacement, Ar; from
A to B is added to the displacement Ars from B to C to give AR their
resultant, or their sum, i.e., the displacement from A to C: Ar; + Ar, = AR.
Figure 1.1(b) shows that addition of vectors is commutative: a+b = b + a.
It is also associative, a + (b 4+ ¢) = (a + b) + ¢, i.e., the order in which you
add vectors is irrelevant. It is clear that a4+ 0 = 0 + a = a for any vector a.

Example 1.1.1. The parametric equation of a line through two given points
can be obtained in vector form by noting that any point in space defines a vector
whose components are the coordinates of the given point.> If the components of
the points P and @ in Figure 1.2 are, respectively, (pz, py,p-) and (¢z, ¢y, q-), then
we can define vectors p and q with those components. An arbitrary point X with
components (z,y,z) will lie on the line PQ if and only if the vector x = (z,v, 2)
has its tip on that line. This will happen if and only if the vector joining P and X,
namely x — p, is proportional to the vector joining P and @, namely q — p. Thus,
for some real number ¢, we must have

x—p=tlq-p) o x=t(q—p)+p

This is the vector form of the equation of a line. We can write it in component
form by noting that the equality of vectors implies the equality of corresponding
components. Thus,

y = (qy — py)t + Py,
= (qz - pz)t + Pz,
which is the usual parametric equation for a line. [}

2We shall discuss components and coordinates in greater detail later in this chapter. For
now, the knowledge gained in calculus is sufficient for our discussion.
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Z

Figure 1.2: The parametric equation of a line in space can be obtained easily using
vectors.

There are some special vectors that are extremely useful in describing
physical quantities. These are the unit vectors. If one divides a vector
by its length, one gets a unit vector in the direction of the original vector.
Unit vectors are generally denoted by the symbol é with a subscript which
designates its direction. Thus, if we divided the vector a by its length |a| we
get the unit vector €, in the direction of a. Turning this definition around,
we have

Box 1.1.1. If we know the magnitude |a| of a vector quantity as well as
its direction &, we can construct the vector: a = |a|é,.

This construction will be used often in the sequel.

The most commonly used unit vectors are those in the direction of coor-
dinate axes. Thus é,, €,, and €, are the unit vectors pointing in the positive
directions of the z-, y-, and z-axes, respectively.> We shall introduce unit
vectors in other coordinate systems when we discuss those coordinate systems
later in this chapter.

1.1.1 Dot Product

The reader is no doubt familiar with the concept of dot product whereby
two vectors are “multiplied” and the result is a number. The dot product of
a and b is defined by

a-b = |a||b|cosb, (1.1)
where |a| is the length of a, |b| is the length of b, and 6 is the angle between

the two vectors. This definition is motivated by many physical situations.

3These unit vectors are usually denoted by i, j, and k, a notation that can be confusing
when other non-Cartesian coordinates are used. We shall not use this notation, but adhere
to the more suggestive notation introduced above.

use of unit vectors

unit vectors along
the z-, y-, and
z-axes

dot product
defined
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N

Figure 1.3: No work is done by a force orthogonal to displacement. If such a work
were not zero, it would have to be positive or negative; but no consistent rule exists to
assign a sign to the work.

The prime example is work which is defined as the scalar product of force and
displacement. The presence of cosf ensures the requirement that the work
done by a force perpendicular to the displacement is zero. If this requirement
were not met, we would have the precarious situation of Figure 1.3 in which
the two vertical forces add up to zero but the total work done by them is
not zero! This is because it would be impossible to assign a “sign” to the
work done by forces being displaced perpendicular to themselves, and make
the rule of such an assignment in such a way that the work of F' in the figure
cancels that of N. (The reader is urged to try to come up with a rule—e.g.,
assigning a positive sign to the work if the velocity points to the right of the
observer and a negative sign if it points to the observer’s left—and see that it
will not work, no matter how elaborate it may be!) The only logical definition
of work is that which includes a cos factor.

The dot product is clearly commutative, a-b = b - a. Moreover, it dis-
tributes over vector addition

(a+b)-c=a-c+b-c.

To see this, note that Equation (1.1) can be interpreted as the product of the
length of a with the projection of b along a. Now Figure 1.4 demonstrates*
that the projection of a + b along c is the sum of the projections of a and b
along c (see Problem 1.2 for details). The third property of the inner product
is that a - a is always a positive number unless a is the zero vector in which
case a - a = 0. In mathematics, the collection of these three properties—
commutativity, positivity, and distribution over addition—defines a dot (or
inner) product on a vector space.
The definition of the dot product leads directly to a-a = |a|? or

la| = va - a, (1.2)

which is useful in calculating the length of sums or differences of vectors.
4Figure 1.4 appears to prove the distributive property only for vectors lying in the same
plane. However, the argument will be valid even if the three vectors are not coplanar.

Instead of dropping perpendicular lines from the tips of a and b, one drops perpendicular
planes.
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Y
Proj. of by |

Proj. of 5

Figure 1.4: The distributive property of the dot product is clearly demonstrated if we
interpret the dot product as the length of one vector times the projection of the other
vector on the first.

One can use the distributive property of the dot product to show that
if (ag,ay,a.) and (bg,by,b,) represent the components of a and b along the
axes x, y, and z, then

a-b=ayb, +ayb, +ab.. (1.3)

From the definition of the dot product, we can draw an important conclu-
sion. If we divide both sides of a-b = |a||b| cos 6 by |a|, we get

a~b_

al

Noting that |b|cos 6 is simply the projection of b along a, we conclude

|b|cosf or (|Z|> b =|blcosd = &, -b=|b|cosb.

Box 1.1.2. To find the perpendicular projection of a wvector b along
another vector a, take the dot product of b with &,, the unit vector along a.

Sometimes “component” is used for perpendicular projection. This is not
entirely correct. For any set of three mutually perpendicular unit vectors in
space, Box 1.1.2 can be used to find the components of a vector along the
three unit vectors. Only if the unit vectors are mutually perpendicular do
components and projections coincide.

1.1.2 Vector or Cross Product

Given two space vectors, a and b, we can find a third space vector ¢, called
the cross product of a and b, and denoted by ¢ = a x b. The magnitude
of c is defined by |c| = |a||b| sin® where 6 is the angle between a and b.
The direction of c is given by the right-hand rule: If a is turned to b (note
the order in which a and b appear here) through the angle between a and b,

dot product in
terms of
components

a useful relation to
be used frequently
in the sequel

cross product of
two space vectors

right-hand rule
explained
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a (right-handed) screw that is perpendicular to a and b will advance in the
direction of a x b. This definition implies that

axb=-bxa.

This property is described by saying that the cross product is antisymmet-
ric. The definition also implies that

a-(axb)=b-(axb)=0.

That is, a x b is perpendicular to both a and b.?
The vector product has the following properties:

ax (ab) = (ca) x b =a(a x b), axb=-bxa,
ax(b+c)=axb+axc, axa=0. (1.4)

Using these properties, we can write the vector product of two vectors in terms
of their components. We are interested in a more general result valid in other
coordinate systems as well. So, rather than using x, y, and z as subscripts for
unit vectors, we use the numbers 1, 2, and 3. In that case, our results can
also be used for spherical and cylindrical coordinates which we shall discuss
shortly.

a X b = (Oélél + OZQéQ —+ Oégég) X (61(31 —+ ﬂzég —+ 63é3)
=a151€1 X €1 + 13281 X €3 + a1 3381 X €3
+ 182 X €1 + 3289 X €3 + 3362 X &3

+ azfB1€3 X €1 + azfaeéz X € + azfzé3 X é3.
But, by the last property of Equation (1.4), we have
é1><é1:é2><é2:é3><é3:0.

Also, if we assume that €1, €2, and é3 form a so-called right-handed set,
ie., if

€ Xé2:_é2><é]_:é3,
él X é3 = —é3 X él = —ég, (15)
éQXégZ—é3Xé2:é1,

then we obtain

ax b= (afs—azf)ér + (a3f — ai1B3)és + (a1 f2 — a2 )és3

5This fact makes it clear why a x b is not defined in the plane. Although it is possible
to define a x b for vectors a and b lying in a plane, a X b will not lie in that plane (it
will be perpendicular to that plane). For the vector product, a and b (although lying in a
plane) must be considered as space vectors.
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A A A

e € e
det| o, 0O, o4 =

B B B

Figure 1.5: A 3 x 3 determinant is obtained by writing the entries twice as shown,
multiplying all terms on each slanted line and adding the results. The lines from upper
left to lower right bear a positive sign, and those from upper right to lower left a negative
sign.

which can be nicely written in a determinant form® cross product in
terms of the
€ € e3 determinant of
axb=det|a; as asz]. (1.6) components
B B2 Bs

Figure 1.5 explains the rule for “expanding” a determinant.

Example 1.1.2. From the definition of the vector product and Figure 1.6(a),

we note that area of a
parallelogram in
terms of cross
product of its two
sides

|a X b| = area of the parallelogram defined by a and b.

So we can use Equation (1.6) to find the area of a parallelogram defined by two
vectors directly in terms of their components. For instance, the area defined by
a=(1,1,—-2) and b = (2,0, 3) can be found by calculating their vector product

é1 & &3

axb=det| 1 1 —2 | =3é; — Téy — 2é3,
2 0 3
and then computing its length
la x b| = /324 (=7)2 4 (—2)2 = V62. ™
I
a | lal sin @
|
®
b
(a) (b)

Figure 1.6: (a) The area of a parallelogram is the absolute value of the cross product of
the two vectors describing its sides. (b) The volume of a parallelepiped can be obtained
by mixing the dot and the cross products.

6No knowledge of determinants is necessary at this point. The reader may consider (1.6)
to be a mnemonic device useful for remembering the components of a x b.
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Example 1.1.3. The volume of a parallelepiped defined by three non-coplanar
vectors, a, b, and ¢, is given by |a- (b x ¢)|. This can be seen from Figure 1.6(b),
where it is clear that

volume = (area of base)(altitude) = |b x c|(]a|cos#) = |(b X c) - a|.

The absolute value is taken to ensure the positivity of the area. In terms of compo-
nents we have

volume = |(b x ¢)1a1 + (b X ¢)2a2 + (b X ¢)3a|
= |(B2v3 — Bsv2)a1 + (Bsy1 — Brys)az + (Biy2 — B2y1)as),
which can be written in determinant form as

(5] a2 as
volume =|a-(bxc)|=|det | 81 B2 B3
Y1 2 )3

Note how we have put the absolute value sign around the determinant of the matrix,
so that the area comes out positive. [ ]

Historical Notes

The concept of vectors as directed line segments that could represent velocities,
forces, or accelerations has a very long history. Aristotle knew that the effect of two
forces acting on an object could be described by a single force using what is now
called the parallelogram law. However, the real development of the concept took an
unexpected turn in the nineteenth century.

With the advent of complex numbers and the realization by Gauss, Wessel, and
especially Argand, that they could be represented by points in a plane, mathemati-
cians discovered that complex numbers could be used to study vectors in a plane.
A complex number is represented by a pair’ of real numbers—called the real and
imaginary parts of the complex number—which could be considered as the two
components of a planar vector.

This connection between vectors in a plane and complex numbers was well es-
tablished by 1830. Vectors are, however, useful only if they are treated as objects
in space. After all, velocities, forces, and accelerations are mostly three-dimensional
objects. So, the two-dimensional complex numbers had to be generalized to three
dimensions. This meant inventing ways of adding, subtracting, multiplying, and
dividing objects such as (z,y, z).

The invention of a spatial analogue of the planar complex numbers is due to
William R. Hamilton. Next to Newton, Hamilton is the greatest of all English
mathematicians, and like Newton he was even greater as a physicist than as a
mathematician. At the age of five Hamilton could read Latin, Greek, and Hebrew.
At eight he added Italian and French; at ten he could read Arabic and Sanskrit,
and at fourteen, Persian. A contact with a lightning calculator inspired him to
study mathematics. In 1822 at the age of seventeen and a year before he entered
Trinity College in Dublin, he prepared a paper on caustics which was read before the
Royal Irish Academy in 1824 but not published. Hamilton was advised to rework
and expand it. In 1827 he submitted to the Academy a revision which initiated the
science of geometrical optics and introduced new techniques in analytical mechanics.

7See Chapter 18.
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In 1827, while still an undergraduate, he was appointed Professor of Astronomy
at Trinity College in which capacity he had to manage the astronomical observations
and teach science. He did not do much of the former, but he was a fine lecturer.

Hamilton had very good intuition, and knew how to use analogy to reason from
the known to the unknown. Although he lacked great flashes of insight, he worked
very hard and very long on special problems to see what generalizations they would
lead to. He was patient and systematic in working on specific problems and was
willing to go through detailed and laborious calculations to check or prove a point.

After mastering and clarifying the concept of complex numbers and their relation
to planar vectors (see Problem 18.11 for the connection between complex multiplica-
tion on the one hand, and dot and cross products on the other), Hamilton was able
to think more clearly about the three-dimensional generalization. His efforts led
unfortunately to frustration because the vectors (a) required four components, and
(b) defied commutativity! Both features were revolutionary and set the standard
for algebra. He called these new numbers quaternions.

In retrospect, one can see that the new three-dimensional complex numbers had
to contain four components. Each “number,” when acting on a vector, rotates the
latter about an axis and stretches (or contracts) it. Two angles are required to
specify the axis of rotation, one angle to specify the amount of rotation, and a
fourth number to specify the amount of stretch (or contraction).

Hamilton announced the invention of quaternions in 1843 at a meeting of the
Royal Irish Academy, and spent the rest of his life developing the subject.

1.2 Coordinate Systems

Coordinates are “functions” that specify points of a space. The smallest
number of these functions necessary to specify a point is called the dimension
of that space. For instance, a point of a plane is specified by two numbers, and
as the point moves in the plane the two numbers change, i.e., the coordinates
are functions of the position of the point. If we designate the point as P, we
may write the coordinate functions of P as (f(P), g(P)).® Each pair of such
functions is called a coordinate system.

There are two coordinate systems used for a plane, Cartesian, denoted
by (z(P),y(P)), and polar, denoted by (r(P),0(P)). As shown in Figure 1.7,

- - - 1

¥P) | )

0(P)

o x(P) o

Figure 1.7: Cartesian and polar coordinates of a point P in two dimensions.

8Think of f (or g) as a rule by which a unique number is assigned to each point P.

coordinate
systems as
functions.

11
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the “function” x is defined as giving the distance from P to the vertical axis,
while 6 is the function which gives the angle that the line OP makes with a
given fiducial (usually horizontal) line. The origin O and the fiducial line are
completely arbitrary. Similarly, the functions r and y give distances from the
origin and to the horizontal axis, respectively.

Box 1.2.1. In practice, one drops the argument P and writes (x,y) and

(r,0).

We can generalize the above concepts to three dimensions. There are three
coordinate functions now. So for a point P in space we write

(f(P), 9(P), h(P)),

where f, g, and h are functions on the three-dimensional space. There are
three widely used coordinate systems, Cartesian (z(P),y(P), z(P)), cylin-
drical (p(P),p(P),z(P)), and spherical (r(P),0(P),p(P)). ¢(P) is called
the azimuth or the azimuthal angle of P, while (P) is called its polar
angle. To find the spherical coordinates of P, one chooses an arbitrary point
as the origin O and an arbitrary line through O called the polar axis. One
measures OP and calls it r(P); 6(P) is the angle between OP and the polar
axis. To find the third coordinate, we construct the plane through O and per-
pendicular to the polar axis, drop a projection from P to the plane meeting
the latter at H, draw an arbitrary fiducial line through O in this plane, and
measure the angle between this line and OH. This angle is ¢(P). Cartesian
and cylindrical coordinate systems can be described similarly. The three co-
ordinate systems are shown in Figure 1.8. As indicated in the figure, the polar
axis is usually taken to be the z-axis, and the fiducial line from which ¢(P)
is measured is chosen to be the xz-axis. Although there are other coordinate
systems, the three mentioned above are by far the most widely used.

(b)

Figure 1.8: (a) Cartesian, (b) cylindrical, and (c) spherical coordinates of a point P in
three dimensions.
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Which one of the three systems of coordinates to use in a given physi-
cal problem is dictated mainly by the geometry of that problem. As a rule,
spherical coordinates are best suited for spheres and spherically symmetric
problems. Spherical symmetry describes situations in which quantities of in-
terest are functions only of the distance from a fixed point and not on the
orientation of that distance. Similarly, cylindrical coordinates ease calcula-
tions when cylinders or cylindrical symmetries are involved. Finally, Cartesian
coordinates are used in rectangular geometries.

Of the three coordinate systems, Cartesian is the most complete in the
following sense: A point in space can have only one triplet as its coordinates.
This property is not shared by the other two systems. For example, a point
P located on the z-axis of a cylindrical coordinate system does not have a
well-defined ¢(P). In practice, such imperfections are not of dire consequence
and we shall ignore them.

Once we have three coordinate systems to work with, we need to know
how to translate from one to another. First we give the transformation rule
from spherical to cylindrical. It is clear from Figure 1.9 that

p=rsinf, ey = Pspn, 2 =rcosb. (1.7)
Thus, given (r,0, ) of a point P, we can obtain (p, ¢, z) of the same point by
substituting in the RHS.
Next we give the transformation rule from cylindrical to Cartesian. Again
Figure 1.9 gives the result:
T =pcosy, Y=psing, Zear = Zeyl- (1.8)
We can combine (1.7) and (1.8) to connect Cartesian and spherical coordi-

nates:

x =rsinfcosyp, y=rsinfsing, z=rcosh. (1.9)
Z
TP
TSP
-
r -
0 -7 !
N
: o
(p p\\\ I//

Figure 1.9: The relation between the cylindrical and spherical coordinates of a point
P can be obtained using this diagram.
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Box 1.2.2. Equations (1.7)-(1.9) are extremely important and worth be-
ing committed to memory. The reader is advised to study Figure 1.9
carefully and learn to reproduce (1.7)-(1.9) from the figure!

The transformations given are in their standard form. We can turn them
around and give the inverse transformations. For instance, squaring the first
and third equations of (1.7) and adding gives p? + 22 =72 or r = \/p2 + 22,
Similarly, dividing the first and third equation yields tanf = p/z, which
implies that § = tan~!(p/z), or equivalently,

- cosf = 0 =cos ! (Z) =cos ! i .
r r Vp? + 22

Thus, the inverse of (1.7) is

T = \/,02 +22, f=tan"! (';)) =cos ! < - ) y  Psph = Peyl-

\/pz 422
(1.10)
Similarly, the inverse of (1.8) is
p= a2ty
1 /(Y -1 T .1 Y
= tan~! ( ) = cos = sin , 1.11
¥ T <\/a:2+y2> <\/x2+y2> ( )
Zcyl = Zcar,

and that of (1.9) is

r:\/x2+y2+z2,

2 2
6 = tan~* \/x ty =cos! *
z \/a:2+y2+22
2 2
:sin1< Va?ty ) (1.12)

\/a:2+y2+z2
-1 (Y -1 z 1 Y
© = tan ( ):cos ( ):sm ( )
T \/x2—|—y2 \/332—|—y2

An important question concerns the range of these quantities. In other
words: In what range should we allow these quantities to vary in order to cover
the whole space? For Cartesian coordinates all three variables vary between
—o0 and +oo. Thus,

—xo<r<4oo, —ooly<4oo, —oo<z<+o0.
The ranges of cylindrical coordinates are

0<p<oo, 0<p<2r, —o0<2z<o00.



1.2 Coordinate Systems

Note that p, being a distance, cannot have negative values.? Similarly, the
ranges of spherical coordinates are

0<r<oo, 0<O0<m 0<¢<2m.

Again, r is never negative for similar reasons as above. Also note that the
range of 6 excludes values larger than 7. This is because the range of ¢ takes
care of points where 6 “appears” to have been increased by 7.

Historical Notes

One of the greatest achievements in the development of mathematics since Euclid
was the introduction of coordinates. Two men take credit for this development: Fer-
mat and Descartes. These two great French mathematicians were interested in the
unification of geometry and algebra, which resulted in the creation of a most fruitful
branch of mathematics now called analytic geometry. Fermat and Descartes who
were heavily involved in physics, were keenly aware of both the need for quantitative
methods and the capacity of algebra to deliver that method.

Fermat’s interest in the unification of geometry and algebra arose because of his
involvement in optics. His interest in the attainment of maxima and minima—thus
his contribution to calculus—stemmed from the investigation of the passage of light
rays through media of different indices of refraction, which resulted in Fermat’s
principle in optics and the law of refraction. With the introduction of coordinates,
Fermat was able to quantify the study of optics and set a trend to which all physicists
of posterity would adhere. It is safe to say that without analytic geometry the
progress of science, and in particular physics, would have been next to impossible.

Born into a family of tradespeople, Pierre de Fermat was trained as a lawyer
and made his living in this profession becoming a councillor of the parliament of
the city of Toulouse. Although mathematics was but a hobby for him and he could
devote only spare time to it, he made great contributions to number theory, to
calculus, and, together with Pascal, initiated work on probability theory.

The coordinate system introduced by Fermat was not a convenient one. For one
thing, the coordinate axes were not at right angles to one another. Furthermore,
the use of negative coordinates was not considered. Nevertheless, he was able to
translate geometric curves into algebraic equations.

René Descartes was a great philosopher, a founder of modern biology, and a
superb physicist and mathematician. His interest in mathematics stemmed from his
desire to understand nature. He wrote:

... I have resolved to quit only abstract geometry, that is to say, the
consideration of questions which serve only to exercise the mind, and
this, in order to study another kind of geometry, which has for its object
the explanation of the phenomena of nature.

His father, a relatively wealthy lawyer, sent him to a Jesuit school at the age
of eight where, due to his delicate health, he was allowed to spend the mornings in
bed, during which time he worked. He followed this habit during his entire life. At
twenty he graduated from the University of Poitier as a lawyer and went to Paris
where he studied mathematics with a Jesuit priest. After one year he decided to

9In some calculus books p is allowed to have negative values to account for points on the
opposite side of the origin. However, in physics literature p is assumed to be positive.To go
to “the other side” of the origin along p, we change ¢ by 7, keeping p positive at all times.
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join the army of Prince Maurice of Orange in 1617. During the next nine years he
vacillated between various armies while studying mathematics.

He eventually returned to Paris, where he devoted his efforts to the study of
optical instruments motivated by the newly discovered power of the telescope. In
1628 he moved to Holland to a quieter and freer intellectual environment. There he
lived for the next twenty years and wrote his famous works. In 1649 Queen Christina
of Sweden persuaded Descartes to go to Stockholm as her private tutor. However
the Queen had an uncompromising desire to draw curves and tangents at 5 a.m.,
causing Descartes to break the lifelong habit of getting up at 11 o’clock! After only
a few months in the cold northern climate, walking to the palace for the 5 o’clock
appointment with the queen, he died of pneumonia in 1650.

Descartes described his algebraic approach to geometry in his monumental work
La Géométrie. 1t is in this work that he solves geometrical problems using algebra
by introducing coordinates. These coordinates, as in Fermat’s case, were not lengths
along perpendicular axes. Nevertheless they paved the way for the later generations
of scientists such as Newton to build on Descartes’ and Fermat’s ideas and improve
on them.

Throughout the seventeenth century, mathematicians used one axis with the y
values drawn at an oblique or right angle onto that axis. Newton, however, in a book
called The Method of Fluzxions and Infinite Series written in 1671, and translated
much later into English in 1736, describes a coordinate system in which points are
located in reference to a fixed point and a fixed line through that point. This was
the first introduction of essentially the polar coordinates we use today.

1.3 Vectors in Different Coordinate Systems

Many physical situations require the study of vectors in different coordinate
systems. For example, the study of the solar system is best done in spherical
coordinates because of the nature of the gravitational force. Similarly calcu-
lation of electromagnetic fields in a cylindrical cavity will be easier if we use
cylindrical coordinates. This requires not only writing functions in terms of
these coordinate variables, but also expressing vectors in terms of unit vectors
suitable for these coordinate systems. It turns out that, for the three coordi-
nate systems described above, the most natural construction of such vectors
renders them mutually perpendicular.

Any set of three (two) mutually perpendicular unit vectors in space (in the
plane) is called an orthonormal basis.!’ Basis vectors have the property
that any vector can be written in terms of them.

Let us start with the plane in which the coordinate system could be Carte-
sian or polar. In general, we construct an orthonormal basis at a point and
note that

)

10The word “orthonormal” comes from orthogonal meaning “perpendicular,” and normal

meaning “of unit length.”
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A
A
e e

o>

(a) (b)

Figure 1.10: The unit vectors in (a) Cartesian coordinates and (b) polar coordinates.
The unit vectors at P and () are the same for Cartesian coordinates, but different in
polar coordinates.

Box 1.3.1. The orthonormal basis, generally speaking, depends on the
point at which it is constructed.

The vectors of a basis are constructed as follows. To find the unit vector
corresponding to a coordinate at a point P, hold the other coordinate fixed
and increase the coordinate in question. The initial direction of motion of P
is the direction of the unit vector sought. Thus, we obtain the Cartesian unit
vectors at point P of Figure 1.10(a): &, is obtained by holding y fixed and
letting = vary in the increasing direction; and &, is obtained by holding x fixed
at P and letting y increase. In each case, the unit vectors show the initial
direction of the motion of P. It should be clear that one obtains the same set
of unit vectors regardless of the location of P. However, the reader should
take note that this is true only for coordinates that are defined in terms of
axes whose directions are fixed, such as Cartesian coordinates.

If we use polar coordinates for P, then holding 6 fixed at P gives the
direction of &, as shown in Figure 1.10(b), because for fixed 6, that is the
direction of increase for r. Similarly, if r is fixed at P, the initial direction
of motion of P when @ is increased is that of &y shown in the figure. If we
choose another point such as @ shown in the figure, then a new set of unit
vectors will be obtained which are different form those of P. This is because
polar coordinates are not defined in terms of any fixed axes.

Since {é,,&,} and {&,,&g} form a basis in the plane, any vector a in the
plane can be expressed in terms of either basis as shown in Figure 1.11. Thus,
we can write

A= 0yp€rp + Uyp€yp = Arp€, + g0, = Grp € + op a0, (1.13)

where the coordinates are subscripted to emphasize their dependence on the
points at which the unit vectors are erected. In the case of Cartesian coor-
dinates, this, of course, is not necessary because the unit vectors happen to
be independent of the point. In the case of polar coordinates, although this

general rule for
constructing a
basis at a point
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Figure 1.11: (a) The vector a has the same components along unit vectors at P and @
in Cartesian coordinates. (b) The vector a has different components along unit vectors
at different points for a polar coordinate system.

dependence exists, we normally do not write the points as subscripts, being
aware of this dependence every time we use polar coordinates.

So far we have used parentheses to designate the (components of) a vector.
Since, parentheses—as a universal notation—are used for coordinates of points
we shall write components of a vector in angle brackets. So Equation (1.13)
can also be written as

)

a= (ay,ay)p = (ar,a9)p = (ar, )0,

where again the subscript indicating the point at which the unit vectors are
defined is normally deleted. However, we need to keep in mind that although
(ag,ay) is independent of the point in question, (a,,ag) is very much point-
dependent. Caution should be exercised when using this notation as to the
location of the unit vectors.

The unit vectors in the coordinate systems of space are defined the same
way. We follow the rule given before:

Box 1.3.2. (Rule for Finding Coordinate Unit Vectors). To find
the unit vector corresponding to a coordinate at a point P, hold the other
coordinates fived and increase the coordinate in question. The initial di-
rection of motion of P is the direction of the unit vector sought.

It should be clear that the Cartesian basis {€,,€&,, €.} is the same for all
points, and usually they are drawn at the origin along the three axes. An
arbitrary vector a can be written as

a=a,€; +ay€y +a.é, or a= (az,ay,a,), (1.14)

where we used angle brackets to denote components of the vector, reserving
the parentheses for coordinates of points in space.
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Figure 1.12: Unit vectors of cylindrical coordinates.

The unit vectors at a point P in the other coordinate systems are obtained
similarly. In cylindrical coordinates, €, lies along and points in the direction
of increasing p at P; &, is perpendicular to the plane formed by P and the
z-axis and points in the direction of increasing ¢; €, points in the direction of
positive z (see Figure 1.12). We note that only &, is independent of the point
at which the unit vectors are defined because z is a fixed axis in cylindrical
coordinates. Given any vector a, we can write it as

a=a,é, +a,é,+a.é, or a=(ap,ayp,as). (1.15)

The unit vectors in spherical coordinates are defined similarly: €, is taken
along r and points in the direction of increasing r; this direction is called
radial; €y is taken to lie in the plane formed by P and the z-axis, is per-
pendicular to 7, and points in the direction of increasing 0; &, is as in the
cylindrical case (Figure 1.13). An arbitrary vector in space can be expressed
in terms of the spherical unit vectors at P:

a=a,é + apés + a,é, or a=(ar,ap,ay). (1.16)

It should be emphasized that

Box 1.3.3. The cylindrical and spherical unit vectors €,, &,, €, and &,
are dependent on the position of P.

Once an origin O is designated, every point P in space will define a vector,
called a position vector and denoted by r. This is simply the vector drawn
from O to P. In Cartesian coordinates this vector has components (x,y, z),
thus one can write

r =&, + yé, + ze,. (1.17)

radial direction

position vector
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y

Figure 1.13: Unit vectors of spherical coordinates. Note that the intersection of the
shaded plane with the xy-plane is a line along the cylindrical coordinate p.

But (x,y, z) are also the coordinates of the point P. This can be a source of
confusion when other coordinate systems are used. For example, in spherical
coordinates, the components of the vector r at P are (r,0,0) because r has
only a component along €, and none along &g or €,. One writes!!

r=ré,. (1.18)

However, the coordinates of P are still (1,6, ¢)! Similarly, the coordinates of
P are (p,,2) in a cylindrical system, while

r=peé,+ zé,, (1.19)

because r lies in the pz-plane and has no component along é,. Therefore,

Box 1.3.4. Make a clear distinction between the components of the
vector r and the coordinates of the point P.

A common symptom of confusing components with coordinates is as fol-
lows. Point P; has position vector r; with spherical components (r,0,0)
at P;. The position vector of a second point P» is ro with spherical compo-
nents (ry,0,0) at Ps. It is easy to fall into the trap of thinking that r; — ro
has spherical components (r; — r2,0,0)! This is, of course, not true, because
the spherical unit vectors at P, are completely different from those at Ps,
and, therefore, contrary to the Cartesian case, we cannot simply subtract
components.

HWe should really label everything with P. But, as usual, we assume this labeling to be
implied.
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One of the great advantages of vectors is their ability to express results
independent of any specific coordinate systems. Physical laws are always
coordinate-independent. For example, when we write F = ma both F and a
could be expressed in terms of Cartesian, spherical, cylindrical, or any other
convenient coordinate system. This independence allows us the freedom to
choose the coordinate systems most convenient for the problem at hand. For
example, it is extremely difficult to solve the planetary motions in Cartesian
coordinates, while the use of spherical coordinates facilitates the solution of
the problem tremendously.

Example 1.3.1. We can express the coordinates of the center of mass (CM) of
a collection of particles in terms of their position vectors.'?> Thus, if r denotes the
position vector of the CM of the collection of N mass points, m1,mse, ..., my with
respective position vectors ri,re,...,ry relative to an origin O, then'®

N
_ mari +maer2 + -+ MNIN Y heq METE

— , 1.20
mi+mz+---+mn M ( )

where M = Zszl my, is the total mass of the system. One can also think of Equation
(1.20) as a vector equation. To find the component equations in a coordinate system,
one needs to pick a fized point (say the origin), a set of unit vectors at that point
(usually the unit vectors along the axes of some coordinate system), and substitute
the components of rj, along those unit vectors to find the components of r along the
unit vectors. u

1.3.1 Fields and Potentials

The distributive property of the dot product and the fact that the unit vectors
of the bases in all coordinate systems are mutually perpendicular can be used
to derive the following:

a-b=ayb, +ayby, +a;b, (Cartesian),
a-b=ua,b,+ ayb, +a;b, (cylindrical), (1.21)
a-b=a,b. +agbyp + ayb, (spherical).

The first of these equations is the same as (1.3 ).

It is important to keep in mind that the components are to be expressed
in the same set of unit vectors. This typically means setting up mutually per-
pendicular unit vectors (an orthonormal basis) at a single point and resolving
all vectors along those unit vectors.

The dot product, in various forms and guises, has many applications in
physics. As pointed out earlier, it was introduced in the definition of work,
but soon spread to many other concepts of physics. One of the simplest—and
most important—applications is its use in writing the laws of physics in a
coordinate-independent way.

12This implies that the equation is most useful only when Cartesian coordinates are
used, because only for these coordinates do the components of the position vector of a
point coincide with the coordinates of that point.

IBWe assume that the reader is familiar with the symbol 3 simply as a summation
symbol. We shall discuss its properties and ways of manipulating it in Chapter 9.
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(x, 3, 2)

Figure 1.14: The diagram illustrating the electrical force when one charge is at the
origin.

Example 1.3.2. A point charge q is situated at the origin. A second charge ¢’ is
located at (z,y, z) as shown in Figure 1.14. We want to express the electric force
on ¢’ in Cartesian, spherical, and cylindrical coordinate systems.

We know that the electric force, as given by Coulomb’s law, lies along the line
joining the two charges and is either attractive or repulsive according to the signs
of ¢ and ¢’. All of this information can be summarized in the formula

keqql ~

Fy=""" & (1.22)

q

where k. = 1/(4meo) = 9 x 10° in SI units. Note that if ¢ and ¢’ are unlike, g¢’ < 0
and F,/ is opposite to &, i.e., it is attractive. On the other hand, if ¢ and ¢’ are of
the same sign, q¢’ > 0 and F/ is in the same direction as &, i.e., repulsive.

Equation (1.22) expresses F s in spherical coordinates. Thus, its components in
terms of unit vectors at ¢’ are </€€qq'/r2707 0>. To get the components in the other
coordinate systems, we rewrite (1.22). Noting that &, = r/r, we write

keqq' keqq'
qq r a9 .

| DP— =
1 r2 r r3

(1.23)

For Cartesian coordinates we use (1.12) to obtain 7> = (22414 22)%/?

this and (1.17) in (1.23) yields

. Substituting

F, = keqq

T (g2 4y 4 22)32 (rés +yéy + zé2).

Therefore, the components of Fy in Cartesian coordinates are

keqq'x keqq'y keqq'z
(1‘2+y2+22)3/27 (x2+y2+z2)3/2’ (1‘2+y2+2’2)3/2 :
Finally, using (1.10) and (1.19) in (1.23), we obtain

keqq . .
Fq/ = (p2 N 22)3/2 (pep —+ zez).
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Z Pl

r

ry

Figure 1.15: The displacement vector between P and P- is the difference between
their position vectors.

Thus the components of F along the cylindrical unit vectors constructed at the

location of ¢ are
keqq'p 0 keqq'z
(P2 + 22)3/27 7 (p2 + 22)3/2 | =

Since r gives the position of a point in space, one can use it to write
the distance between two points P; and P, with position vectors r; and rs.
Figure 1.15 shows that ro — ry is the displacement vector from P; to P». The
importance of this vector stems from the fact that many physical quantities
are functions of distances between point particles, and ro —ry is a concise way
of expressing this distance. The following example illustrates this.

Historical Notes

During the second half of the eighteenth century many physicists were engaged in a
quantitative study of electricity and magnetism. Charles Augustin de Coulomb,
who developed the so-called torsion balance for measuring weak forces, is credited
with the discovery of the law governing the force between electrical charges.

Coulomb was an army engineer in the West Indies. After spending nine years
there, due to his poor health, he returned to France about the same time that the
French Revolution began, at which time he retired to the country to do scientific
research.

Beside his experiments on electricity, Coulomb worked on applied mechanics,
structural analysis, the fracture of beams and columns, the thrust of arches, and the
thrust of the soil.

At about the same time that Coulomb discovered the law of electricity, there
lived in England a very reclusive character named Henry Cavendish. He was
born into the nobility, had no close friends, was afraid of women, and disinterested
in music or arts of any kind. His life revolved around experiments in physics and
chemistry that he carried out in a private laboratory located in his large mansion.

During his long life he published only a handful of relatively unimportant pa-
pers. But after his death about one million pounds sterling were found in his bank
account and twenty bundles of notes in his laboratory. These notes remained in
the possession of his relatives for a long time, but when they were published one
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hundred years later, it became clear that Henry Cavendish was one of the greatest
experimental physicists ever. He discovered all the laws of electric and magnetic
interactions at the same time as Coulomb, and his work in chemistry matches that
of Lavoisier. Furthermore, he used a torsion balance to measure the universal grav-
itational constant for the first time, and as a result was able to arrive at the exact
mass of the Earth.

Example 1.3.3. COULOMB’S LAW FOR TWO ARBITRARY CHARGES
Suppose there are point charges ¢1 at P1 and g2 at P»>. Let us write the force exerted
on g2 by ¢1. The magnitude of the force is

keq1q2

Fa = 2

where d = P1 P> is the distance between the two charges. We use d because the
usual notation r has special meaning for us: it is one of the coordinates in spherical
systems. If we multiply this magnitude by the unit vector describing the direction
of the force, we obtain the full force vector (see Box 1.1.1). But, assuming repulsion
for the moment, this unit vector is

ro —ri _ .
= €e21.
[t — 11
Also, since d = |r2 — r1|, we have
Fyy — keqlquQ _ keqigz T2—11
1= 1=
d? [r2 —r1]|? |r2 — rq]
or .
qi142
Fo1 = ¢ re —ry). 1.24
21 |r2_r1|3(2 1) (1.24)

Although we assumed repulsion, we see that (1.24) includes attraction as well. In-
deed, if g1g2 < 0, F21 is opposite to ra —r1, i.e., Fo; is directed from P> to P;. Since
F'51 is the force on g2 by ¢i, this is an attraction. We also note that Newton’s third
law is included in (1.24):

Fio = L(r1—r2) = —Fo

because ra —r1 = —(r1 — r2) and |r2 — ri| = |r1 — r2|.
We can also write the gravitational force immediately
Gmima
Fo1 = — 5 (T2 —r1), (1.25)
ra — 1
where m; and ma are point masses and the minus sign is introduced to ensure
attraction. ]

Now that we have expressions for electric and gravitational forces, we can
obtain the electric field of a point charge and the gravitational field of a point
mass. First recall that the electric field at a point P is defined to be the
force on a test charge ¢ located at P divided by ¢. Thus if we have a charge
q1, at P, with position vector r; and we are interested in its fields at P with
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position vector r, we introduce a charge ¢ at r and calculate the force on ¢
from Equation (1.24):

keqlq
F, = —ry).
T e —ry3 (r=r)
Dividing by q gives electric field of a
keqa int ch
E, = v _er1|3(r —11), (1.26) point charge

where we have given the field the same index as the charge producing it.

The calculation of the gravitational field follows similarly. The result is

m
g = —|rci rhg(r—rl). (1.27)

In (1.26) and (1.27), P is called the field point and P; the source point. field point and
Note that in both expressions, the field position vector comes first. source point

If there are several point charges (or masses) producing an electric (gravita-
tional) field, we simply add the contributions from each source. The principle superposition
behind this procedure is called the superposition principle. It is a princi- principle explained
ple that “seems” intuitively obvious, but upon further reflection its validity
becomes surprising. Suppose a charge ¢; produces a field E; around itself.
Now we introduce a second charge go which, far away and isolated from any
other charges, produced a field E; around itself. It is not at all obvious that
once we move these charges together, the individual fields should not change.
After all, this is not what happens to human beings! We act completely dif-
ferently when we are alone than when we are in the company of others. The
presence of others drastically changes our individual behaviors. Nevertheless,
charges and masses, unfettered by any social chains, retain their individuality
and produce fields as if no other charges were present.

It is important to keep in mind that the superposition principle applies
only to point sources. For example, a charged conducting sphere will not
produce the same field when another charge is introduced nearby, because the
presence of the new charge alters the charge distribution of the sphere and
indeed does change the sphere’s field. However each individual point charge
(electron) on the sphere, whatever location on the sphere it happens to end
up in, will retain its individual electric field.™

Going back to the electric field, we can write

E=E +Ey+ - +E,

for n point charges ¢1,qo, ..., q, (see Figure 1.16). Substituting from (1.26),
with appropriate indices, we obtain
kedn

(r—r2)+-.,+|r_rn|3(r—rn)

keq2
v — o3

ke q1

E:
vt — 1|3

(r—r1)+

or, using the summation symbol, we obtain

4The superposition principle, which in the case of electrostatics and gravity is needed
to calculate the fields of large sources consisting of many point sources, becomes a vital
pillar upon which quantum theory is built and by which many of the strange phenomena
of quantum physics are explained.
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Figure 1.16: The electrostatic field of NV point charges is the sum of the electric fields
of the individual charges.

Box 1.3.5. The electric field of n point charges qi,q2,...,qn, lo-
cated at position vectors r1,rs,...,r, is E = >, ‘Iffff"g (r —r;), and
the analogous expression for the gravitational field of n point masses

. _ n Gm;
ML, M2,y My 1S G = — Ei:l \r,r;‘s (r —r;).

Historical Notes

The concept of force has a fascinating history which started in the works of Galileo
around the beginning of the seventeenth century, mathematically formulated and
precisely defined by Sir Isaac Newton in the second half of the seventeenth century,
revised and redefined in the form of fields by Michael Faraday and James Maxwell
in the mid nineteenth century, and finally brought to its modern quantum field
theoretical form by Dirac, Heisenberg, Feynman, Schwinger, and others by the mid
twentieth century.

Newton, in his theory of gravity, thought of gravitational force as “action-
at-a-distance,” an agent which affects something that is “there” because of the
influence of something that is “here.” This kind of interpretation of force had both
philosophical and physical drawbacks. It is hard to accept a ghostlike influence
on a distant object. Is there an agent that “carries” this influence? What is this
agent, if any? Does the influence travel infinitely fast? If we remove the Sun from
the Solar System would the Earth and other planets “feel” the absence of the Sun
immediately?

These questions, plus others, prompted physicists to come up with the idea of a
field. According to this interpretation, the Sun, by its mere presence, creates around
itself an invisible three dimensional “sheet” such that, if any object is placed in this
sheet, it feels the gravitational force. The reason that planets feel the force of gravity
of the Sun is because they happen to be located in the gravitational field of the Sun.
The reason that an apple falls to the Earth is because it is in the gravitational field
of the Earth and not due to some kind of action-at-a-distance ghost.
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Therefore, according to this concept, the force acts on an object here, because
there exists a field right here. And force becomes a local concept. The field con-
cept removes the difficulties associated with action-at-a-distance. The “agent” that
transmits the influence from the source to the object, is the field. If the Sun is stolen
from the solar system, the Earth will not feel the absence of the Sun immediately.
It will receive the information of such cosmic burglary after a certain time-lapse
corresponding to the time required for the disturbance to travel from the Sun to the
Earth. We can liken such a disturbance (disappearance of the Sun) to a disturbance
in the smooth water of a quiet pond (by dropping a stone into it). Clearly, the dis-
turbance travels from the source (where the stone was dropped) to any other point
with a finite speed, the speed of the water waves.

The concept of a field was actually introduced first in the context of electricity
and magnetism by Michael Faraday as a means of “visualizing” electromagnetic
effects to replace certain mathematical ideas for which he had little talent. However,
in the hands of James Maxwell, fields were molded into a physical entity having an
existence of their own in the form of electromagnetic waves to be produced in 1887
by Hertz and used in 1901 by Marconi in the development of radio.

A concept related to that of fields is potential which is closely tied to the
work done by the fields on a charge (in the case of electrostatics) or a mass
(in the case of gravity). It can be shown!® that the gravitational potential
®(r) at r, of n point masses, is given by

i | Gm (1.28)

r—r;

and that of n point charges by

keg;
1.2
Z - (1.29)

Note that in both cases, the potential goes to zero as r goes to infinity. This
has to do with the choice of the location of the zero of potential, which we
have chosen to be the point at infinity in Equations (1.28) and (1.29).

Example 1.3.4. The electric charges g1, g2, g3, and g4 are located at Cartesian
(a,0,0), (0,a,0), (—a,0,0), and (0, —a,0), respectively. We want to find the electric
field and the electrostatic potential at an arbitrary point on the z-axis. We note
that

ry =a€;, T2=0aé&,, I3=—a€;, TI4i= —a€y, T =2€,
so that
r—ri; = —aé; + z€,, r—ro = —a€y + zé,
r—r3 = aé; + z2€,, r—r4 = aéy + z€;,

15See Chapter 14 for details.

potential
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and |r — r;|® = (a® + 2%)%/2 for all i. The electric field can now be calculated using
Box 1.3.5:

keql A A kqu A A
E= (a2 4 22)3/2 (—aé, + zé.) + (a2 + 22)3/2 (—aéy, + zé.)
keq3 N N keq4 A~ ~
+ (a2 + 22)3/2 (asz + z€) + (a2 + 22)3/2 (ay + z6é.)
ke

= (ag + 22)3/2 [(_aql + aq3)é1 + (_aq2 + aq4)éy + (ql + q2 + qs + q4)Zéz] .
It is interesting to note that if the sum of all charges is zero, the z-component of
the electric field vanishes at all points on the z-axis. Furthermore, if, in addition,
q1 = g3 and q2 = qu, there will be no electric field at any point on the z-axis.
The potential is obtained similarly:

d — kte keq2 keq3 keq4
T (@24 22)1/2 T (a2 4 22)1/2 T (a2 4 22)1/2 T (a2 4 22)1/2
_ ke(q1 +q2 + g3 + qa)
Va2 + 22 '
So, the potential is zero at all points of the z-axis, as long as the total charge
is zero. |

1.3.2 Cross Product

The unit vectors in the three coordinate systems are not only mutually perpen-
dicular, but in the order in which they are given, they also form a right-handed
set [see Equation (1.5)]. Therefore, we can use Equation (1.6) and write

6r &, o, 6, &, é. 6 & &,
axb=det|a; ay a.| =det|a, a, a.| =det|a. ag ay,
be b, b. b, b, b b by b,
~ ~ - ~ - ~ ~
in Cartesian CS in cylindrical CS in spherical CS
(1.30)

Two important prototypes of the concept of cross product are angular
momentum and torque. A particle moving with instantaneous linear mo-
mentum p relative to an origin O has instantaneous angular momentum
L = r x p if its instantaneous position vector with respect to O is r. In
Figure 1.17 we have shown r, p, and r X p. Similarly, if the instantaneous
force on the above particle is F, then the instantaneous torque acting on it is
T=rxF.

If there are more than one particle we simply add the contribution of
individual particles. Thus, the total angular momentum L of N particles and
the total torque T acting on them are

N N
L=> rexp, and T=)» r,xFy (1.31)
k=1 k=1

where rj, is the position of the kth particle, p;, its instantaneous momentum,
and Fy the instantaneous force acting on it.
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0

Figure 1.17: Angular momentum of a moving particle with respect to the origin O.
The circle with a dot in its middle represents a vector pointing out of the page. It is
assumed that r and p lie in the page.

Example 1.3.5. In this example, we show that the torque on a collection of three
particles is caused by external forces only. The torques due to the internal forces
add up to zero. The generalization to an arbitrary number of particles will be done
in Example 9.2.1 when we learn how to manipulate summation symbols.

For N = 3, the second formula in Equation (1.31) reduces to

T=r1 XxXF1+rs xFs +r3 x Fs.

Each force can be divided into an external part and an internal part, the latter being
the force caused by the presence of the other particles. So, we have

Fi1 = FSCXE) + F12 4+ Fi3,
Fy = F{™) 4 Fa + Fas,
F3 = Fécn) + F31 + F32,

where F12 is the force on particle 1 exerted by particle 2, etc. Substituting in the
above expression for the torque, we get

T =1 x F® 41y x FY 41y x B
+1r1 X Fioa+1r1 XFi3+1r2 X Faor +1r2 X Fog +1r3 X F31 +1r3 X Fao

=T 4 (r; —r2) x Fiz + (r1 — r3) X F13 + (r2 — r3) x Fa3,

where we used the third law of motion: Fi2 = —Fa21, etc. Now we note that the
internal force between two particles, 1 and 2 say, is along the line joining them, i.e.,
along r1 — ro. It follows that all the cross products in the last line of the equation
above vanish and we get T = T, n

We have already seen that multiplying a vector by a number gives another
vector. A physical example of this is electric force which is obtained by multi-
plying electric field by electric charge. In fact we divided the electric force by
charge to get the electric field. Historically, it was the law of the force which
was discovered first and then the concept of electric field was defined. We have
also seen that one can get a new vector by cross-multiplying two vectors. The
rule of this kind of multiplication is, however, more complicated. It turns out
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that the magnetic force is related to the magnetic field via such a cross multi-
plication. What is worse is that the magnetic field is also related to its source
(electric charges in motion) via such a product. Little wonder that magnetic
phenomena are mathematically so much more complicated than their electric
counterparts. That is why in the study of magnetism, one first introduces
the concept of magnetic field and how it is related to the motion of charges
producing it, and then the force of this field on moving charges.

Example 1.3.6. A charge ¢, located instantaneously at the origin, is moving

with velocity v relative to P [see Figure 1.18(a)]. Assuming that |v| is much smaller

than the speed of light, the instantaneous magnetic field at P due to ¢ is given by
kmqVv X €, kmqVv X T

B= r2 3

a more general formula known as the Biot—Savart law. In the above relations, k,,

is the analog of ke in the electric case.

If we are interested in the magnetic field when ¢ is located at a point other
than the origin, we replace r with the vector from the instantaneous location of the
moving charge to P. This is shown in Figure 1.18(b), where the vector from ¢i to
P is to replace r in the above equation. More specifically, we have

, or, using &, =r/r, by B = . This is a simple version of

kmqivi X (r —r1)

B, = 1.32

1 |I‘ -1 |3 ( )
If there are N charges, the total magnetic field will be
Emqrve X I‘ - I‘k)

B= 1.33

3o frae ) (133

where we have used the superposition principle. -

When a charge ¢ moves with velocity v in a magnetic field B, it experiences
a force given by

F =gv x B. (1.34)

It is instructive to write the magnetic force exerted by a charge ¢; moving
with velocity vq on a second charge g2 moving with velocity vo. We leave this
as an exercise for the reader.

Figure 1.18: The (instantaneous) magnetic field at P of a moving point charge (a)
when P is at the origin, and (b) when P is different from the origin. The field points
out of the page for the configuration shown.
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Example 1.3.7. A charge ¢ moves with constant speed v (assumed to be small
compared to the speed of light) on a straight line. We want to calculate the magnetic
field produced by the charge at a point P located at a distance p from the line as a
function of time. Cylindrical coordinates are most suitable for this problem because
of the existence of a natural axis. Choose the path of the charge to be the z-axis.
Also assume that P lies in the xy-plane, and that ¢ was at the origin at ¢ = 0. Then
V=10€&,, T=p€, r =vté,;, r—r1 = pe, —vte,. So

e =11 = V(08 — vte.) - (p&, — vte.) = v/p? + 32

and v X (r —r1) = vé; x (pé, — vté,) = pvé,. Therefore, the magnetic field is

kmqv X (r —r1) kmqpv .
B = = €.
Ir— 3 (p? + v212)3/2
Readers familiar with the relation between magnetic fields and currents in long wires
will note that the magnetic field above obeys the right-hand rule. u

1.4 Relations Among Unit Vectors

We have seen that, depending on the nature of problems encountered in
physics, one coordinate system may be more useful than others. We have
also seen that the coordinates can be transformed back and forth using func-
tional relations that connect them. Since many physical quantities are vectors,
transformation and expression of components in bases of various coordinate
systems also become important. The key to this transformation is writing one
set of unit vectors in terms of others. In the derivation of these relations, we
shall make heavy use of Box 1.1.2.

First we write the cylindrical unit vectors in terms of Cartesian unit vec-
tors. Since {&,&,,€.} form a basis, any vector can be written in terms of
them. In particular, €, can be expressed as

ép = aléz + bléy + Cléz (135)

with a1, b1, and ¢; to be determined. Next we recall that

Box 1.4.1. The dot product of two unit vectors is the cosine of the angle
between them.

Furthermore, Figure 1.12 shows that the angle between €, and &, is ¢, and
that between €, and &, is m/2 — ¢. So, by dotting both sides of Equation
(1.35) by €., é,, and &, in succession, we obtain

& e =a+0+0=0a; = a; =cosep,
N~

=cos @

éy'ép=0+b1+0:b1 = blzsincp,
N 7

=sin ¢

éz-ép:0+0+clzcl = ¢ =0.
N

=0
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Therefore,
€, = €, cosp + &, sin .
With the first and third cylindrical unit vectors €, and &, at our disposal, 6
we can determine the second, using Equation (1.5):
€, e, e
é, =€, x e, =det 0 0 1 = —e,sinp + &, cos p.
cosp sing 0
Thus,
€, = €, cosp + &,sinp,
6, = —€,siny + &, cos p, (1.36)

é, =é,.
This equation can easily be inverted to find the Cartesian unit vectors in
terms of the cylindrical unit vectors. For example, the coefficients in
éz = agép + bzé(p + Czéz
can be obtained by dotting both sides of it with &,, &,, and €, respectively,

€, =ax+0+0 = cosp = ay,
o € =0+bs+0 = —sinp = by,
e, €e,=0+04+c = 0=coy,

where we have used €, - &, = cosy, and &, - €, = —sinp—obtained by
dotting the first and second equations of (1.36) with é,—as well as é,-&, = 0.
Similarly, one can obtain €, in terms of the cylindrical unit vectors. The entire
result is

€, =€,cosp — €,sinyp
6, =é,sinp+ &, cosp (1.37)

e, —e;

Now we express the spherical unit vectors in terms of the cylindrical ones.
This is easily done for é,, because it has only €, and é, components (why?).
Thus, with

é, = a3ép + bse,,

we obtain

€, ¢ =a3+0 = az=sinb,
0+ b3 = bs = cosb,

€, €

L6Remember that &, is a unit vector in both coordinate systems. So, one can say that
the cylindrical &, has components (0,0, 1) in the Cartesian basis {€,,&y,é.}.
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where in the last step of each line, we used the fact that the angle between e,
and €, is 6 and that between &, and &, is m/2 — 0 (see Figure 1.13). With a3
and b3 so determined, we can write

€, =¢&,sin0 + e, cosb.

Having two spherical unit vectors &, and e, at our disposal,’” we can
determine the third one, using (1.5) and (1.30):
é, &, &,
€p = €&, x &, =det 0 1 0 =é,cosf —é,sind.
sinf 0 cosf
Thus,
6. = ¢,sinf + e, cosb,
€9 = €,cosf — é.sind, (1.38)
é, = é,.

The inverse relations can be obtained as before. We leave the details of
the calculation as an exercise for the reader.

Combining Equations (1.36) and (1.38), we can express spherical unit vec-
tors in terms of the Cartesian unit vectors:

€, = é,sinflcosp + &, sinfsinp + €, cos b,

€p = €, cosflcosp + €, cosfsing — €, sind, (1.39)

€, = —€;siny + €, Cos Y.

Equations (1.39) and (1.36) are very useful when calculating vector quan-
tities in spherical and cylindrical coordinates as we shall see in many examples
to follow. These equations also allow us to express a unit vector in one of the
three coordinate systems in terms of the unit vectors of any other coordinate
system.

Example 1.4.1. P; and P, have Cartesian coordinates (1,1,1) and (—1,2,—1),
respectively. A vector a has spherical components (0,2,0) at P1. We want to find
the spherical components of a at P». These are given by a- €,,, a-&q,, and a - é,,.
In order to calculate these dot products, it is most convenient to express all vectors
in Cartesian form. So, using Equation (1.39), we have

a =26y, = 2 (&, cosbicospr + €, cosbsinp; —€é,sinby),

where (71,61, ¢1) are coordinates of Pi. We can calculate these from the Cartesian
coordinates of P;:
21 1 Y1 s

cosf; = = tan o = =1 = 1=

=V12+12412=+V3 .
1 \/ +1*+ V3, m3 - 4

17Recall that €, is both a cylindrical and a spherical unit vector.
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Therefore,

af2é11+é11—é\/2f2é+2é—4é
Vav2  UVev2 o V3 Ve Ve Ve
Now we need to express €,,, €g,, and €,, in terms of Cartesian unit vectors.

Once again we use Equation (1.39) for which we need the spherical coordinates of
PQ:

V-2 1 Y2
ro = —1)2 422 4+ —12:\/67 cosfy = = - , tan = = 2.
2=+/(-1) (-1 2= /6 p2=

Similarly, Equations (1.11) and (1.12) yield

sin 0 2 \/56 COS Y2 — 1 sin P2 + 2
’ \/5 ' \/5 '
Then

€y = €, 58in 0> cos p2 + €y sin bz sin o + €, cos b2

_é\/5(_1)+é\/52 o !

Ve \ s V65 6
1. 2. 1.

=T T e T e

€9, = €5 cos B2 cos 2 + €, cos b2 sin 2 — €, sin

- <_¢16) <_¢15) o <_¢16) 55 _éz\/z

_ ! é 2 é > é
V30 T V30 Y V30
. o R 2 . 1.
€y, = —€; sin s + €, cos Y2 = —\/5% - \/5ey

We can now take the dot products required for the components:

. <2A 2, 4 ) ( 1 . 2 1A>
rcomp =a-er, = e, + e = e, + ey — e,

_ éz
V6 V6 ' /6 V6 V6 V6
S |
6 6 6
0 comp=a-é (2é+2é 4é)<1é 2é 5é)
= - ey, — T — z N x T - z
: V6 N ARV V30 V30 7 V30

2 4 20 3
6v5 6vV5 6v5 /5

. 2 . 4 2 . 1,
comp = a- €ey,, = e, + e, — e, || — e, — e
v P - <\/6 Ve e ) ( NG V5 y)

42 6 \/6
V30 V30 V/30 5
It now follows that

- 3 6.
a:e7-2—|—\/5eg2— 5ew.
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As a check, we note that

la| = 12+(\;’5)2+(_\/§>2_\/5+2+6_\/4_27

which agrees with the length of a. u
Example 1.4.2. Points P; and P have spherical coordinates (r1,01,%1) and
(r2,02, p2), respectively. We want to find: (a) the angle between their position
vectors r1 and r2 in terms of their coordinates; (b) the spherical components of ra
at Pr1; and (c) the spherical components of r1 at P». Once again, we shall express
all vectors in terms of Cartesian unit vectors when evaluating dot products.
(a) The cosine of the angle—call it y12—between the position vectors is simply
€r, - &r,. We can readily find this by using Equation (1.39):
COS Y12 = €r; - €, = (€5 sin b1 cos 1 + €y sin b1 sin 1 + é, cos 1)
- (&5 sin 02 cos p2 + &, sin O sin @2 + €, cos 62)
= sin 0 cos 1 sin 02 cos w2 + sin 1 sin 1 sin 02 sin 2 + cos 01 cos H2
= sin 01 sin 02 (cos 1 cos @2 + sin @1 sin p2) + cos 01 cos O2
= sin 01 sin 02 cos(p1 — 2) + cos 01 cos bs.
(b) To find the spherical components of rz at P1, we need to take the dot product
of ro with the spherical unit vectors at Pi:
7 comp =Tz - &r = r2é&p, - €r,
= 72 [sin 01 sin 02 cos(p1 — p2) + cos O cos O] ,
0 comp =r3 - &g, = 726, - €0,
= 72 (&, sin 02 cos Y2 + €y sin Oz sin 2 + €, cos O2)
- (&4 cos 01 cos p1 + &, cos B sin g, — € sin61)
= r2(sin 02 cos w2 cos 01 cos @1 + sin Oz sin p2 cos 61 sin 1 — cos O sin 61)
= r2[sin O3 cos 61 cos(p1 — p2) — cos B2 sin 61],
@ comp =Tz €y, = T2€p, - €y,
= 72 (&2 sin 02 cos Y2 + &, sin Oz sin 2 + €, cos O2) - (—€, sin 1 + &, cos p1)
= 72 (— sin 62 cos 2 sin @1 + sin 62 sin Y2 cos p1) = r2 sin Oz sin(p2 — v1).
(¢) The spherical components of ri at P» can be found similarly. In fact,

switching the indices “1” and “2” in the expressions of part (b) gives the desired
formulas. u

Example 1.4.3. Toillustrate further the conversion of vectors from one coordinate
system to another, consider a charge ¢ that is located at the cylindrical coordinates
(a,7/3,—a). We want to find the spherical components of the electrostatic field E
of this charge at a point P with Cartesian coordinates (a,a,a).

The most straightforward way of doing this is to convert all coordinates to
Cartesian, find the field, and then take the dot products with appropriate unit
vectors. The Cartesian coordinates of the charge are

™
Tq = Pq COS Pq :acos<3) = ,a,

71') _ \/Sa

— 0.866
3 2 @

Yqg = PqSin @q :asin(

Zqg = —a.
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Thus,
r—ry=(a— ja)é, + (a — 0.866a)&, + (a — (—a))é. = 0.5aé, + 0.134aé, + 2aé.

and
Ir —r,| = /(0.5a)2 + (0.134a)? + (2a)? = 2.066a,

and the electric field at P can be written in terms of Cartesian unit vectors at P:

keq 0.5aé,; + 0.134ae, + 2ae.
E = - = ke <
o — pg[s (F 7 Fe) = Ked (2.066a)3
0.56, + 0.1348, + 28.  keg R ) R
= keq Q81802 =) (0.0567e, +0.0152¢, +0.2268¢.).

To find the spherical components of the field at P, we first express the spherical
unit vectors at P in terms of Cartesian unit vectors. For this, we need the spherical
coordinates of P:

r=+va2+a?+a2=+3a=1732a,

cos0=>= C =1 _ 0577 = =005,
T V3a V3
Yy _a T

tanp=" =% =1 =" = 0.785.

le = a = W 4

It now follows that

€, =é;sinfcosp + €ysinfsiny + &, cosd = 0.577¢, + 0.577¢, + 0.577€.,
€9 = €, cosfcos  + €, cosfsinp — e, sinf = 0.408¢, + 0.408¢, — 0.816é.,
€, = —€;sinp + &, cos p = —0.707€, + 0.707&,.

Now we take the dot product of E with these unit vectors to find its spherical
components at P. The reader may first easily check that

&, - &, = 0.577, é.-&,=0577, & -&, =0.577,
&y - &, = 0.408, & -8, =0408, & -é.= —0.3816,

é, - e, = —0.707, €, - €, =0.707, é,-€,=0.
We can now finally calculate the field components:
E.=E-é& = k52q (0.0567€, - &, + 0.0152¢, - &, + 0.2268€, - &)
a
keq keq
=, (0.0567 x 0.577 4+ 0.0152 x 0.577 + 0.2268 x 0.577) = 0.1724 2
a
Eg=E- & = kezq (0.0567€¢ - €, + 0.0152¢&¢ - €, + 0.2268€¢ - €)
a
keq keq
=, (0.0567 x 0.408 4 0.0152 x 0.408 — 0.2268 x 0.816) = —0.1558 2
a
E,=E-é,= k€2q (0.0567€,, - &, + 0.0152é,, - &, + 0.2268é,, - €.)
a
= Fel(_0.0567 x 0.707 +0.0152 x 0.707) = ~0.0294"7.
a a

The choice of Cartesian coordinates was the most straightforward one, but one
can choose any other coordinate system to calculate the field and find the com-
ponents in any other set of unit vectors. The reader is urged to try the other
choices. |
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1.5 Problems

1.1. Find the equation of a line that passes through the following pairs of
points:

(a) (1,0,1) and (—1,1,0). (b) (2,2,—1) and (—2,-1,1).
(¢) (1,1,1) and (—1,1,-1). (d) (1,1,1) and (—2,2,0).
(e) (0,2,—1) and (3,—1,1). (f) (0,1,0) and (—1,0,—1).

1.2. Use Figure 1.4 and the interpretation of the a - b as the product of the
length of a with the projection of b along a to show that

(a+b)-c=a-c+b-c.

1.3. Take the dot product of a = b —c with itself and prove the law of cosines
by interpreting the result geometrically. Note that the three vectors form a
triangle.

1.4. Find the angle between a = 2¢é, + 3é, + €, and b = &, — 6, + 2€,.
1.5. Find the angle between a = 9¢, + &, — 6€, and b = 4, — 6, + 5€,.

1.6. Show that a = é,cosa + é;sina and b = &, cos 3 + &,sin 3 are unit
vectors in the zy-plane making angles o and 8 with the z-axis. Then take their
dot product and obtain a formula for cos(a—3). Now use sinx = cos(7/2—x)
to find the formula for sin(a — ).

1.7. Vectors a and b are the sides of a parallelogram, ¢ and d are its diagonals,
and 0 is the angle between a and b. Show that

[e? +[d|* = 2(|af* + [b]*)

and that
|c|2 — |d|2 = 4|a| |b| cos 6.

1.8. Given a, b, and c—vectors from the origin to the points A, B, and C—
show that the vector (a x b) + (b x ¢) + (c x a) is perpendicular to the plane
ABC.

1.9. Show that the vectors a = 2é, —é, + €., b = &, — 3¢, — 5¢é,, and
c = 3¢é, —4é, — 4é, form the sides of a right triangle.

1.10. (a) Find the vector form of the equation of the plane defined by the three
points P, @, and R with coordinates (p1, p2,p3), (41, ¢2,¢3), and (r1,72,73),
respectively. Hint: The position vector of a point X = (z,y, 2) in the plane
is perpendicular to the cross product of P—Cj and P_})%

(b) Determine an equation for the plane passing through the points (2, —1, 1),
(3,2,—1), and (—1,3,2).

1.11. Derive the law of sines for a triangle using vectors.
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1.12. Using vectors, show that the diagonals of a rhombus are orthogonal.

1.13. Show that a necessary and sufficient condition for three vectors to be
in the same plane is that the dot product of one with the cross product of the
other two be zero.

1.14. Show that two nonzero vectors have the same direction if and only if
their cross product vanishes.

1.15. Show the following vector identities by writing each vector in terms of
Cartesian unit vectors and showing that each component of the LHS is equal
to the corresponding component of the RHS.

(a)a-(bxc)=c-(axb)=b-(cxa).

(b)ax (bxc)=Db(a-c)—c(a-b), thisis called the bac cab rule.
(¢c) (axb)-(ecxd)=(a-c)(b-d)—(a-d)(b-c).
(
(

a
a

d) (axb)x(cxd)=Dbla-(cxd)]—alb-(cxd).
e) (axb)x(cxd)=cla-(bxd)]—d[a-(bxc)].
(f) (ax b) - (ax b) = [al2[b] — (a- ).

1.16. Convert the following triplets from the given coordinate system to the
other two. All angles are in radians.

Cartesian: (1,2,1), (0,0,1), (1,—1,0), (0,1,0), (1,1,1), (2,2,2), (0,0,5),
(1,1,0), (1,0,0).

Spherical:  (2,7/3,7/4), (5,0,7/3), (3,7/3,3w/4), (1,1,0), (1,0,0),
(5,0, &), (3,m,9), (0,4, ).

Cylindrical: (0,&,4),(2,7,0), (0,217, —-18),(1,37/4,-2), (1,2,3), (1,0,0).

1.17. Derive the second and third relations in Equation (1.21).

1.18. Points P and P’ have spherical coordinates (r,0,¢) and (r/,0',¢’),
cylindrical coordinates (p,p,z) and (p,¢’,2’), and Cartesian coordinates
(z,y,2) and (2,9, 2"), respectively. Write |r — r’| in all three coordinate
systems. Hint: Use Equation (1.2) with a = r — r’ and r and r’ written in
terms of appropriate unit vectors.

1.19. Show that Equation (1.24) is independent of where we choose the origin
to be. Hint: Pick a different origin O’ whose position vector relative to O is
R and write the equation in terms of position vectors relative to O’ and show
that the final result is the same as in Equation (1.24).

1.20. Three point charges are located at the corners of an equilateral triangle
of sides a with the origin at the center of the triangle as shown in Figure 1.19.
(a) Find the general expression for the electric field and electric potential at
(0,0, 2).

(b) Find a relation between ¢ and @ such that the z-component of the field
vanishes for all values of z. What are E and @ for such charges?

(¢c) Calculate E and @ for z = a.
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Figure 1.19:

1.21. A point charge @) and two point charges ¢ are located in the xy-plane
at the corners of an equilateral triangle of side a as shown in Figure 1.20.

(a) Find the potential and the Cartesian components of the electrostatic field
at (0,0, 2).

(b) Show that it is impossible for E to be along the z-axis.

(¢) Calculate E for z = a and find @ in terms of ¢ such that E, vanishes for
this value of z.

(d) What is the value of ® at z = a for the charges found in (c)?

1.22. Three point charges each of magnitude Q and one point charge q are
located at the corners of a square of side 2a. Using an appropriate coordinate
system.

(a) Find the electric field and potential at point P located on the diagonal
from @ to ¢ (and beyond) a distance 2v/2 a from the center.

(b) Find a relation, if it exists, between ¢ and @ such that the field vanishes
at P.

1.23. A charge ¢ is located at the spherical coordinates (a,7/4,7/3). Find
the electrostatic potential and the Cartesian components of the electrostatic
field of this charge at a point P with spherical coordinates (a, 7/6,7/4). Write
the field components as numerical multiples of k.q/a?, and the potential as a

Figure 1.20:
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numerical multiple of k.q/a.

1.24. A charge ¢ is located at the cylindrical coordinates (a,7/4,2a). Find
the Cartesian components of the electrostatic field of this charge at a point P
with cylindrical coordinates (2a,7/6,a). Write your answers as a numerical
multiple of k.q/a?. Find the electrostatic potential at P and express it as a
numerical multiple of k.q/a.

1.25. A charge ¢ is located at the cylindrical coordinates (a,7/3, —a).

(a) Find the Cartesian components of the electrostatic field E of this charge
at a point P with cylindrical coordinates (a,7/4,2a). Write your answers as
a numerical multiple of k.q/a?.

(b) Write E in terms of the cylindrical unit vectors at P.

(c) Find the electrostatic potential at P as a numerical multiple of k.q/a.

1.26. Two charges ¢ and —2q are located at the cylindrical coordinates
(a,m/4,a) and (a,27/3,—a), respectively.

(a) Find the Cartesian components of the electrostatic field at a point P with
spherical coordinates (3a, /6, 7/4). Write your answers as a numerical mul-
tiple of k.q/a?.

(b) Find the electrostatic potential at P. Write your answer as a numerical
multiple of k.q/a.

1.27. Two charges 3¢ and —q are located at the spherical coordinates
(a,m/3,7/6) and (2a,7/6,7/4), respectively.

(a) Find the cylindrical components of the electrostatic field at a point P
with spherical coordinates (3a,7/4,7/4). Write your answers as a numerical
multiple of k.q/a?.

(b) Find the electrostatic potential at P. Write your answer as a numerical
multiple of k.q/a.

1.28. A charge ¢ is located at the spherical coordinates (a,7/3,7/6). Find
the Cartesian components of the electrostatic field of this charge at a point P
with cylindrical coordinates (a,27/3,2a). Write your answers as a numerical
multiple of k.q/a®. Also find the electrostatic potential at P.

1.29. Four charges are located at Cartesian coordinates as follows: ¢ at

4v/2 2v/2
2a,0,0), —2q at (0, 2a, 0), at (—a,0,0), and — at (0, —a,0). Find
( ), —2q at ( ) 55 ( ) 550 ( )

the Cartesian components of the electrostatic field at (0,0, a).

1.30. Charge ¢ is moving at constant speed v along the positive z-axis. Two
other charges —q and 2q are moving at constant speeds v and 2v along positive
y and negative z axes, respectively. Assume that at ¢t = 0, ¢ is at the origin,
—q is at (0,a,0), and 2¢ at (0,0, —a).

(a) Find the Cartesian components of the magnetic field at a point (z,y, 2)
for t > 0.

(a) Find the cylindrical components of the magnetic field at a point (p, ¢, 2)
for t > 0.
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(a) Find the spherical components of the magnetic field at a point (r, 8, ) for
t>0.

1.31. A charge ¢ is moving at constant speed v along a curve parametrized
by
' =6as, vy =3as®, 2 = —2as>

(a) Find the Cartesian components of the magnetic field at a point (z,y, 2)
as a function of s.

(a) Find the cylindrical components of the magnetic field at a point (p, ¢, 2)
as a function of s.

(a) Find the spherical components of the magnetic field at a point (r, 6, ) as
a function of s.

1.32. Points P; and P, have Cartesian coordinates (1,1,1) and (1,1,0), re-
spectively.

(a) Find the spherical coordinates of P; and Ps.

(b) Write down the components of rq, the position vector of Py, in terms of
spherical unit vectors at P;.

(¢) Write down the components of ra, the position vector of Py, in terms of
spherical unit vectors at P;.

1.33. Points P; and P, have Cartesian coordinates (2,2,0) and (1,0, 1), re-
spectively.

(a) Find the spherical coordinates of P;.

(b) Express é,,, &g,, and &, , the spherical unit vectors at P, in terms of the
Cartesian unit vectors.

(c) Find the components of the position vector of P, along the spherical unit
vectors at P;.

(d) From its components in (c) find the length of ro, and show that it agrees
with the length as calculated from its Cartesian components.

1.34. Points P; and P> have spherical coordinates
P : (a,m/4,7/3) and Py: (a,m/3,7/4).

(a) Find the angle between their position vectors r; and rs.
(b) Find the spherical components of ro —ry at P;.
(¢c) Find the spherical components of ro — ry at Pa.

1.35. Point P; has Cartesian coordinates (1,1,0), point P, has cylindrical
coordinates (1, 1,0), and point Ps has spherical coordinates (1,1,0) where all
angles are in radians. Express rs — r; in terms of the spherical unit vectors
at P2.

1.36. Points P; and P, have Cartesian coordinates (1,1, 1) and (1,2, 1), and
position vectors ry and rg, respectively.

(a) Find the spherical coordinates of P; and Ps.

(b) Find the components of ry, in terms of spherical unit vectors at P;.
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c¢) Find the components of ry, in terms of spherical unit vectors at Ps.
(d) Find the components of ry, in terms of spherical unit vectors at Ps.
(e) Find the components of ry, in terms of spherical unit vectors at P;.

1.37. Points P, and P, have Cartesian coordinates

(x1,91,21) and (w2, Y2, 22).

(a) Find the angle between their position vectors r; and rs in terms of their
coordinates.

(b) Find the Cartesian components of ro — ry at P;.

(¢) Find the Cartesian components of ro — ry at Ps.

1.38. Points P; and P, have cylindrical coordinates

(p1,91,21) and (p2, 2, 22)

(a) Find the angle between their position vectors r; and rs in terms of their
coordinates.

(b) Find the cylindrical components of ro —ry at P.

(c) Find the cylindrical components of ro — ry at Ps.

1.39. Write the Cartesian unit vectors in terms of spherical unit vectors with
coefficients written in spherical coordinates.

1.40. Write the spherical unit vectors in terms of Cartesian unit vectors with
coefficients written in Cartesian coordinates.

1.41. In Example 1.4.3, calculate the electric field using cylindrical coordi-
nates, then find the components in terms of (a) Cartesian and (b) spherical
unit vectors.

1.42. In Example 1.4.3, calculate the electric field using spherical coordinates,
then find the components in terms of (a) Cartesian and (b) cylindrical unit
vectors.



Chapter 2

Differentiation

Physics deals with both the large and the small. Its domain of study includes
the interior of the nucleus of an atom as well as the exterior of a galaxy. It is,
therefore, natural for the scope of physical theories to switch between global,
or large-scale, and local, or small-scale regimes. Such an interplay between
the local and the global has existed ever since Newton and others discovered
the mathematical translation of this interplay: Derivatives are defined as local
objects while integrals encompass global properties. This chapter is devoted
to the concept of differentiation, which we shall consider as a natural tool with
which many physical concepts are expressed most concisely and conveniently.

All physical quantities reside in space and change with time. Even a static
quantity—once scrutinized—will reveal noticeable attributes of change, vali-
dating the old adage “The only thing that doesn’t change is the change itself.”
Thus, static, or time-independent, quantities are so only as approximations
to the true physical quantity which is dynamic.

Take the temperature of the surface of the Earth. As we move about on the
globe, we notice the variation of this quantity with location—poles as opposed
to the equator—and with time—winter versus summer. A specification of
temperature requires that of location and time. We thus speak of local and
instantaneous temperature. This is an example of the fact that, generally
speaking, all physical quantities are functions of space and time.

Locality and instantaneity have both a mathematical and a physical (or
operational) interpretation. Mathematically, they correspond to a point in
space and an instant of time with no extension or spread whatsoever. Physi-
cally, or operationally, many quantities require an extension in space and an
interval in time to be defined. Thus, a local weatherman’s morning statement
“Today’s high will be 45” limits the location to the size of a city, and the time
to at most a.m. or p.m. This is admittedly a rough localization, suitable for
a weatherman’s forecast. Nevertheless, even the most precise statements in
physics embody a space extension as well as a time interval whose “sizes” are
determined by the physical system under investigation. If we are studying
heat conduction by a metal bar several inches long, then “local” temperature
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takes a completely different meaning from the weatherman’s “local” temper-
ature. In the latter case, a city is as local as one gets, while in the former,
variations over a centimeter are significant.

2.1 The Derivative

A prime example of an instantaneously defined quantity is velocity. To find
the velocity of a moving particle at time t(, determine its position ry at time
to, determine also its position r at time ¢ with ¢ close to tg, divide r — rg by
t — tg, and make t — tg as small as possible. This defines the derivative of r
with respect to ¢ which we call velocity v:

. r—rg dr .
tg) =1 = =1(tg).
v(to) tiglg t—t, dt s (to)
Acceleration is defined similarly:
. V—1vVy dv d’r .
a(tg) = lim = = = 1(tg).
( O) t—to t — 1o dt t=to dt? t=to ( O)

Velocity and acceleration are examples of derivatives which are generally
called rate of change. In the rate of change, one is interested in the way
a quantity (dependent variable) changes as another quantity (independent
variable) is allowed to vary. In the majority of rates of change, the independent
variable is either time or one of the space coordinates.

The second type of derivative is simply the ratio of two infinitesimal phys-
ical quantities. In general, whenever a physical quantity @ is defined as the
ratio of two other physical quantities R and .S, one must define ) in a small
neighborhood (small volume, area, length, or time interval). One, therefore,
writes A

Q= lim R = dR,
As—o0 AS — dS

where AR and AS are both local small quantities. Being physical quantities,
both R and S, and therefore AR and AS are, in general, functions of position
and time. Hence, their ratio, ), is also a function of position and time. The
last sentence requires further elaboration.

In physics, we deal with two completely different, yet subtly related, ob-
jects: particles and fields. The former is no doubt familiar to the reader.
Examples of the latter are the gravitational, electric, and magnetic fields, as
well as the less familiar velocity field of a fluid such as water in a river or air
in the atmosphere. Suppose we want to specify the “state” of the two types
of objects at a particular time ¢. For a particle, this means determining its
position and momentum or velocity' at t. Imagine the particle carrying with

(2.1)

11t is a fundamental result of classical mechanics that such a specification completely
determines the subsequent motion of the particle and, therefore, any other property of the
particle will be specified by the initial position and momentum.
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it a vector representing its velocity. Then a snapshot of the particle at time ¢
depicts its location as well as its velocity, and thus, a complete specification
of the particle. A large collection of such snapshots specifies the motion of the
particle. Since each snapshot represents an instant of time, and since the col-
lection of snapshots specifies the motion, we conclude that, for particles, the
only independent variable is time.2 A problem involving a classical particle is
solved once we find its position as a function of time alone.

How do we specify the “state” of a fluid? A fluid is an extended object,
different parts of which behave differently. Attaching a vector to different
points of the fluid to represent the velocity at that point, and taking snapshots
at different times, we can get an idea of how the fluid behaves. This is
done constantly (without the arrows, of course) by weather satellites whose
snapshots are sometimes shown on our TV screens and reveal, for example,
the turbulence developed by a hurricane. A complete determination of the
fluid, therefore, entails a specification of the velocity vector at different points
of the fluid for different times. A vector which varies from point to point is
called a vector field. A problem involving a classical fluid is, therefore, solved
once we find its velocity field as a function of position and time. The concept
of a field can be abstracted from the physical reality of the fluid.? It then
becomes a legitimate physical entity whose specification requires a position,
a time, and a direction (if the field happens to be a vector field), just like the
specification of the velocity field of a fluid.

The reason for going into so much detail in the last two paragraphs is to
prevent a possible confusion. In the case of velocity and acceleration, one
divides two quantities and the limit of the ratio turns out to be a function
of the denominator, and one might get the impression that in (2.1), @ is a
function of S. This is not the case, as, in general, all three quantities, R, S,
and @ are functions of other (independent) variables, for instance, the three
coordinates specifying position and time.

Velocity and acceleration are examples of the first interpretation of deriva-
tive, the rate of change. There are many situations in which the second inter-
pretation of derivative is applicable. One important example is the density
of a physical quantity R:

AR dR

= i = 2.2
PR= AVEOAV — v (22)
where AR is the amount of the quantity R in the small volume AV. Examples
of densities are mass density p,,, electric charge density p,, number density

2This is true only in a classical picture of particles. A quantum mechanical picture
disallows a complete determination of the position and momentum of a particle.

3Historically, this abstraction was very hard to achieve in the case of electromagnetism,
where, for a long time a hypothetical “fluid” called sether was assumed to support the
electromagnetic field. It was Einstein who suggested getting rid of the fluid altogether, and
attaching physical reality and significance to the field itself.
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Pn, energy density pg, and momentum density p,. Sometimes it is convenient
to define surface and linear densities:

g AR _dR

IR = Aa—0 Aa da ’

AR _dR
Ar=lmonp =g (23)

where AR is the amount of R on the small area Aa or along the small length
Al. The most frequently encountered surface density is that of electric charge
which is commonly found on the surface of a conductor.

Another example of Equation (2.1) is pressure defined as

. AF, dF,
P=lm re = do- 24)
where AF'| is the force perpendicular to the surface Aa. This discussion
makes it clear that The most natural setting for the concept of derivative is
the ratio of two physical quantities which are defined locally. Equations (2.2)
and (2.3) are hardly interpreted as the rate of change of density with respect
to volume, area, or length!

Historical Notes

Descartes said that he “neither admits nor hopes for any principles in Physics other
than those which are in Geometry or in abstract mathematics.” And Nature couldn’t
agree more! The start of modern physics coincides with the start of modern mathe-
matics. Calculus was, in large parts, motivated by the need for a quantitative anal-
ysis of physical problems. Calculation of instantaneous velocities and accelerations,
determination of tangents to lens surfaces, evaluation of the angle corresponding to
the maximum range of a projectile, and calculation of the lengths of curves such
as the orbits of planets around the Sun were only a few of the physical motiva-
tions that instigated the intense activities of the seventeenth-century physicists and
mathematicians alike.

The problems mentioned above were tackled by at least a dozen of the greatest
mathematicians of the seventeenth century and many other minor ones. All of these
efforts climaxed in the monumental achievements of Newton and Leibniz. Newton,
in particular, noted the generality of the concept of rate of change—a concept he
used for calculating instantaneous velocities—and bestowed a universal character
upon the notion of derivative.

Of the several methods advanced to find the tangent to a curve, Fermat’s is the
closest to the modern treatment. He approximates the increment of the tangent line
with the increment of the function describing the curve and takes the ratio of the
two increments to find the angle of the tangent line. Fermat, however, ignores the
question of limits as the increments go to zero, a procedure necessary for finding
the slope of tangents. Descartes method, on the other hand, is purely algebraic and
is not plagued by the question of the limits. However, his method worked only for
polynomials.

Another great name associated with the development of calculus is Isaac Barrow
who used elaborate geometrical methods to find tangents. He was the first to point
out the connection between integration and differentiation. Barrow was a professor



2.2 Partial Derivatives

of mathematics at Cambridge University. Well versed in both Greek and Arabic (he
was once nominated for a chair of Greek at Cambridge in 1655 but was denied the
chair due to his loyalist views), he was able to translate some of Euclid’s works and
to improve the translations of other works of Euclid as well as Archimedes.

After spending some time in eastern Europe, he returned to England and ac-
cepted the Greek chair denied him before. To supplement his income, he taught
geometry at Gresham College, London. However, he soon gave up his geometry
chair to serve as the first Lucasian professor of mathematics at Cambridge from
1663 to 1669, at which time Barrow resigned his chair of mathematics in favor of
his student Isaac Newton and turned to theological studies.

His chief work Lectiones Geometricae is one of the great contributions to cal-
culus. In it he used geometrical methods, “freed from the loathsome burdens of
calculations,” as he put it.

2.2 Partial Derivatives

All physical quantities are real functions of space and time. This means that
given the three coordinates of a point in space, and an instant of time, we
can associate a real number with them which happens to be the value of the
physical quantity at that point and time.* Thus, Q(x,y, 2,t) is the value of
the physical quantity @ at time t at a point whose Cartesian coordinates are
(z,y,2). Similarly, we write Q(r,0,¢,t) and Q(p,p, z,t) for spherical and
cylindrical coordinates, respectively. Thus, ultimately, the physical quantities
are functions of four real variables. However, there are many circumstances in
which the quantity may be a function of less or more variables. An example of
the former is all static phenomena in which the quantity is assumed—really
approximated—to be independent of time. Then the quantity is a function
of only three variables.® Physical quantities that depend on more than four
variables are numerous in physics: In the mechanics of many particles, all
quantities of interest depend, in general, on the coordinates of all particles,
and in thermodynamics one encounters a multitude of thermodynamical vari-
ables upon which many quantities of interest depend.

2.2.1 Definition, Notation, and Basic Properties

We consider real functions f(z1,xs,...,2,) of many variables. General-
izing the notation that denotes the set of real numbers by R, the set of
points in a plane by R?, and those in space by R?, we consider the n-tuples

(x1,22,...,2,) as points in a (hyper)space R™. Similarly, just as the triplet
(z,y, z) can be identified with the position vector r, we abbreviate the n-tuple
(z1,22,...,2,) by r. Constant n-tuples will be denoted by the same letter

4This statement is not strictly true. There are many physical quantities which require
more than one real number for their specification. A vector is a prime example which
requires three real numbers to be specified. Thus, a vector field, which we discussed earlier,
is really a collection of three real functions.

5If the natural setting of the problem is a surface or a line, then the number of variables
is further reduced to two or one.

Isaac Barrow
1630-1677
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used for components but in boldface type. For example (a1, as,...,a,) = a
and (b1, be,...,b,) = b. This suggests using x in place of r, and we shall do
so once in a while.

Being independent, we can vary any one of the variables of a function
at will while keeping the others constant. The concept of derivative is now
applied to such a variation. The result is partial derivative. To be more
precise, the partial derivative of f(r) with respect to the independent variable

xi, at (a1,as2,...,a,) is denoted® by O (a) and is defined as follows:
of (a) = lim flat,...,ap+e€,...,ap) —f(al,..wak,...,an)' (25)
3$k e—0 €

One usually leaves out the a’s and simply writes 88 :gk , keeping in mind that

the result has to be evaluated at some specific “point” of R™. As the definition
suggests, the partial derivative with respect to xj, is obtained by the usual rules
of differentiation with the proviso that all the other variables are assumed to
be constants.

A useful strategy is to turn Equation (2.5) around and write the incre-
ment in f in terms of the partial derivative. This possibility is the result of
the meaning of the limit: The closer € gets to zero the better the ratio approx-
imates the partial derivative. Thus we can leave out lim._,o and approximate
the two sides. After multiplying both sides by €, we obtain

Apf=flar,...;a+6€,...,a,) — flar,... a5, ..., an) €

where the subscript k£ on the LHS indicates the independent variable being var-
ied. Sometimes we use the notation Ay f(a) to emphasize the point at which
the increment of the function—due to an increment in the kth argument—is
being evaluated. Most of the time, however, for notational convenience, we
shall leave out the arguments, it being understood that all quantities are to
be evaluated at some specific “point.” Since € is an increment in g, it is
natural to denote it as Axy, and write the above equation as

of
8$k

If two independent variables, say x; and z;, are varied we still can find
the increment in f:

Apif=flar,...,ap+ Az, ... 05 + Axj, ... an)
— flar,...,ak,...,a;,...,a,)
= flar,...,ax + Axp,...,a; + Az, ... an)
— flar,...,ak,...,a; + Azj,...,ay)
+ flar,...,ap, ..., a5 + Azj, ..., an)

_.f(a’lv"'aaka"'aajv"'van)v

Arf = flar,...;ap + Azgy .. yan) — flary .y Qky ..oy apn) = Axg.

6This notation may be confusing because of the a’s and the z’s. A better notation will
be introduced shortly.
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where we have added and subtracted the same term on the RHS of this equa-
tion. Now we use the definition of the change in a function at a point to
write

Apif=Apflar,. .. 0k, ...,0; + Az, ... an)
—|—Ajf(a1,...,ak,...,aj,...,an)

0
mAxkajk(al,...,ak,...,aj—l—ij,...,an)

0

(@1, ey Ay ey @Gy Q).

The first term on the RHS expresses the change in the function due to a
change in x, and the second expresses the change in the function due to a
change in x;. As their arguments show, the derivatives in the last two lines
are not evaluated at the same point. However, the difference between these
arguments is small—of order Az ;—which, when multiplied by the small Ax’s
in front of them, will be even smaller. In the limit that Az; and Az go to
zero, we can ignore this subtle difference and write

d
A f = 8ij€ Az + 0x;
J

This shows that the total change is simply the sum of the change due to z;
and Tk

Box 2.2.1. In general, the change in f due to a change in all the inde-

pendent variables is Af ~ Y1, gxf Az;.

Some of the Az’s may be zero of course. For example, if all of the Ax’s are
zero except Az; and Axy, then the equation in the Box above reduces to
(2.6). The following example describes a situation which occurs frequently in
thermodynamics.

Example 2.2.1. Suppose a physical quantity @ is a function of other physical
quantities U,V , and W. We write this as Q = f(U,V, W) with the intention that
U,V , and W are the independent variables. It is possible, however, to solve for one of
the independent variables in terms of @ and the rest of the independent variables.” Tt
is therefore legitimate to seek the partial derivative of any one of the four quantities
with respect to any other one. Because of the multitude of thermodynamic variables,
it may become confusing as to which variables are kept constant. Therefore, it is
common in thermodynamics to use the variables held constant as subscripts of the
partial derivative. Thus,

oQ oV ouU
((‘3‘/)U,VV7 (8Q)U,W7 (aV)Q,W7 (27)

"That this can be done under very mild assumptions regarding the function f is the
content of the celebrated implicit function theorem proved in higher analysis.
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are typical examples of partial derivatives, and in priciple, one can solve for V' in

terms of ), U, and W and differentiate the resulting funtion with respect to @ to

find the second term in Equation (2.7). Similarly, one can solve for U in terms of @,

V', and W and differentiate the resulting funtion with respect to V' to find the last

term. However, Box 2.2.1 allows us to bypass this (sometimes impossible) task and

evaluate derivatives by directly differentiating the given function. Let’s see how.
The first term is obvious:

oQ\  _(of
()™ ().

The key to the evaluation of the other two is Box 2.2.1 as applied to Q. We thus

write
2~ (7Y av+ (7Y av4 (%) aw (2.8)
oU )y w oV )uw oW ) v
If U and W are kept constant, then AU =0 = AW, and we have
of of AV
AQ~ ( ) AV = 1~ ( ) .
v Juw oV ) uw AQ

In the limit that AQ goes to zero, the ratio of the A’s becomes the corresponding
partial derivative and the approximation becomes equality, leading to the relation

=), (o)
a ov uw aQ U,W.

Changing f to @,® and solving for the partial derivative, we obtain

ov 1
<8Q>U,W_ (gg)UW (2.9)

which is a result we should have expected. This equation shows that we don’t have
to solve for V' in terms of the other three variables to find its derivative with respect
to Q. Just differentiate f(U,V, W) with respect to V and take its reciprocal!

The last partial derivative is obtained by setting AQ and AW equal to zero in
(2.8). The result is

() e () v 80 )
ou viw oV ) uw AV <35)VW

Once again, taking the limit as AV — 0, noting that the LHS becomes a partial
derivative, subscripting this partial with the variables held constant, and substitut-
ing Q for f,° we obtain

<8U>QW__<38)U,W (2.10)

" (00 v

8Recall that if y = f(z), then dy/dx and df /dx represent the same quantity.

9This is an abuse of notation because Q is held constant and the derivative of any
constant is always zero, while the derivative of f is well defined. This abuse of notation is
so common in thermodynamics that we shall adopt it here as well.
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Thus, by differentiating f(U,V, W) with respect to V and U and taking their ratios,
we obtain the derivative of U with respect to V; no need to solve for U in terms of
the other three variables!

Equation (2.10) is ususlly written in a more symmetric way. The numerator of
the fraction on the RHS can be replaced using Equation (2.9). Then, the result can
be written as

ou ) (8V) (8@)
= -1 (2.11)
(BV aw \9Q /) yw \OU /)y
A simpler version of this result, in which the fourth variable W is absent, is com-
monly used in thermodynamics. u

A word of caution about notation is in order. We chose the set of vari-
ables (x1,x2,...,x,) as arguments of the function f, and then denoted the
derivative by df/0xr. We could have chosen any other set of symbols such
as (Y1,Y2,---,Yn), O (t1,t2,...,t,) as the arguments. Then we would have
had to write df /Oy, or df /Oty for partial derivatives. This freedom of choice
can become confusing because, little effort is made in the literature to distin-
guish between the “free” general arguments and the specific point at which
the derivative is to be evaluated. For example, the symbol (9f/0z)(y,x) can
be interpreted in two ways: It can be the derivative of a function of two vari-
ables with respect to its first argument, subsequently evaluated at the point
with coordinates (y, z), or it could be the derivative with respect to the sec-
ond argument, in a seemingly strange world in which y is used as the first
argument! The longstanding usage of x as the first partner of a doublet by no
means reserves the first slot for x at all times. Therefore, the confusion above
is indeed a legitimate one.

We started the discussion by distinguishing between the free arguments
(z1,22,...,2,) and the specific point (a1, as,...,a,). However, making this
distinction every time we write down a partial derivative can become very
clumsy. Nevertheless, the reader should always keep in mind this distinction
and write it down explicitly whenever necessary. To minimize the confusion,
we leave out all symbols but keep only the position of the variable in the array.
Specifically,

Box 2.2.2. We write Orf for the derivative of f with respect to its
kth argument. This derivative is a function: We can evaluate it at
(a1,a2,...,ay,), for which we write O f(a1,as,...,a,) = O f(a).

This notation avoids any reference to the “free” arguments. One can choose
any symbol for the free arguments; the final answer is independent of this
choice:

af(t17t27"'7tn) 8f(y17y27"'7yn)

8kf(a17a27' "7an) =

8tk t=a 8yk y=a
_ 0f(91,0,...,00)
OV (V1=a1,...,0n=an)
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because the only thing that matters is the index k which tells us with respect
to what variable we are differentiating.

Example 2.2.2. Consider the function f(z,y,z) = ¢*¥/*. We write it first as
f(x1, 22, 23) = €*172/*3 Then

91 f(x1,22,23) = (z2/13)e" /"3,
Baf (21,22, 23) = (z1/13)e" "/ "3,
O3 f(x1, 22, 23) = —(w122/23)e" 72/ 73

Now that the functional form of all partial derivatives are derived, we can evaluate
them at any point we want. For example,

92£(1,2,3) = 1e*/?, dsf(1,1,1) = —e,
Aft,u,v) = (w/v)e™®,  Bsf(z,a,y) = —(za/y*)e™ V. |

Higher-order derivatives are defined just as in the single-variable case,
except that now mixed derivatives are also possible. Thus,

0*f
({9$12,

2 2
a@n=27 os@n=.°27

= 2 =
al(alf) —alf— = axlaxsa = 5%39%’

are all legitimate derivatives. An important property of mixed derivatives is
that—for well-behaved functions—the order of differentiation is immaterial.

Example 2.2.3. Functions which can be written as the product of single-variable
functions are important in the solution of partial differential equations. Suppose
that F(z,y,2) = f(z)g(y)h(z). Then &1 F(z,y,2) = f'(z)g(y)h(z) and the function

Oy = T @eWh(z) _ f'(@)
P f@gh(z) — f(=)

is seen to be independent of y and z. One can show similarly that

Do F Jy)  oF W (2)
x7 ) z = ) I7 ) z = )
T R S
each one depending on only one variable. ]

Example 2.2.4. Tt is sometimes necessary to find the most general function, one of
whose partial derivatives is given. This can be done by antidifferentiating (indefinite
integral) with respect to the variable of the partial derivative, treating the rest of the
variables constant. The usual “constant” of integration is replaced by a function of
the undifferentiating variables. For example, suppose 93 f(z, z,y) = ye’”zy2/z. Since
the third variable is y, and the partial derivative is with respect to the third variable,
we need to integrate with respect to y, keeping x and z constant. This gives

z

T 6y222/w
212

(1)2 2 z
e g(r) > fya) =,

fzmy) = +9(y,x),
where g, the “constant” of integration, is an arbitrary function of the first two

variables. [ |
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fx) |-, - ;
Slxo)+ df ool :_ A
Jxo) + Aff=7"===========-

X, Xy TAx

Figure 2.1: The tangent line at xo approximates the curve in a small neighborhood of
xo. If confined in this neighborhood, i.e., if Az—which is equal to dz—is small, Af
and df are approximately equal. However, df is defined regardless of the size of Ax.

2.2.2 Differentials

We now introduce the notion of differentials. Recall from calculus that, in
the case of one variable, the differential of a function is related to a linear
approximation of that function (see Figure 2.1). Basically, the tangent line at
a point xq is considered as the linear approximation to the curve representing
the function f in the neighborhood of zy. The increment in the value of the
function representing the tangent line—denoted by df (x¢)—when zy changes
to g + Az, is given by

df (zo) = <;l];) Az = <;l];) dx,

where, as a matter of notation, Az has been replaced by dz, because by defi-
nition, the differential of an independent variable is nothing but its increment.
The above equation is not an approximation: dx can be any number, large or
small, and df (xo) will be correspondingly large or small. The approximation
starts when we try to replace Af with df: The smaller the Az = dx, the
better the approximation Af(zg) =~ df(xz¢). The generalization of this idea
to two variables involves approximating the surface representing the function
f(x,y) by its tangent plane. For more variables, no visualizable geometric
interpretation is possible, but the basic idea is to replace the A’s with d’s and
the approximation with equality in Box 2.2.1. The result is

_9f Of 4o — ,
= oo o, Lo = > on, d;. (2.12)

0
df dzq + fdxz—i—---—i—
)

0

We note that dz;’s in Equation (2.12) determine the independent variables
on which f depends, and the coefficient of dx; is 9f/0x;. This observation is
the basis of transforming functions in such a way that the resulting functions
depend on variables which are physically more useful. To be specific, suppose a
function f exists which depends on (z,y, z), but from a physical perspective,
a function which depends on the derivative of f with respect to its second

differentials
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argument, and not on the second argument itself, is more valuable. This
function can be obtained by a Legendre transformation on f, obtained
by subtracting from f the product of the second argument and the derivative
of f with respect to that argument. So, define a new function g by

g=f—yhf=f—yh where h = 0yf.
Then, we get

dg=df —hdy—ydh=01fde+02fdy+ 0sfdz—hdy —ydh
=01fdx+ 0sfdz —ydh.

The differentials on the RHS of the last line indicate that the “natural” inde-
pendent variables for g are z, z, and h, and that

dg _ 0 99 _
or ~ b B oh

Legendre transformation is used frequently in thermodynamics and mechanics.

I = 0sf, —y.
ya

Example 2.2.5. The internal energy U of a thermodynamical system is a function
of entropy S, volume V, and number of moles N. These variables are called the
natural variables of U, and we write U(S, V, N). Temperature T, pressure P, and
chemical potential p, are defined as follows:

ou ou ou
m=(os) P ) = lv),

where, as is common in thermodynamics, we have indicated the variables that are

held constant as subscripts. Entropy is a hard quantity to measure: If we were to

measure OU/AS, we would have to find the ratio of the change of U to that of S;

not an easy task! On the other hand, T is easy to measure, and thus it is desirable

to Legendre transform U to obtain a function which has T as a natural variable.

The Helmholtz free energy F' is defined as F' = U — ST. We note that since
ou ou oU

dU = o dS+ o, dV+ o1 dN =TdS = PdV + pdN,

we have

dF =dU — SdT —TdS =TdS — PdV + pdN —SdT — TdS
=dU

— —SdT — PdV + udN

and, therefore

oOF _ oOF s oOF B
ar )~ V) ON ).,

Helmholtz free energy is by far the most frequently used thermodynamic function,
because all its “natural” variables, namely, T, V, and N, are easily measurable
quantities. m
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2.2.3 Chain Rule

In many cases of physical interest, the “independent” variables z; may in
turn depend on one or more variables. Let us denote these new independent
variables by (t1,t2,. .., t;,) and the functional dependence of x; by g;, so that

{Ei:gi(tl,tg,...7tm)Egi(t), i=1,2,...,n. (213)

As the t’s vary, so will the x’s and consequently the function f. Therefore, f
becomes dependent on the t’s and we can talk about partial derivatives of f
with respect to one of the ¢’s. To find such a partial derivative, we go back to
Box 2.2.1 and substitute for Az; in terms of At’s. From (2.13), we have

dg; dg; dg; dg;
Ax; ~ A A e At,, =
T Za

Jj=1

At;, i=1,2,...,n

Substituting this in the equation of Box 2.2.1 yields

0 0 0 0 9gn
(%12 AN At; + fz gQAtj—k- fzg

n

= g Z 891 (2.14)

i=1 j=1

Now suppose that we keep all of the ¢’s constant except for one, say t7. Then
At; =0 for all j except j = 7 and the sum over j will have only one nonzero
term, i.e., the seventh term. In such a case, Equation (2.14) becomes

_ Of 0g of 992 Of Ogn
AT e 062 T o 00, T 9 0 B Z

of 391
ox; (’9757

Dividing both sides by Atr, taking limit, and replacing the approximation by
equality, we obtain

of _ 0f og1  0f 09> Of Ogn Z af Ogi
oty Oxq Oty Oxo Oty 5:En oty Ox; Ot7

Instead of t7, we could have used any other one of the t’s, say ti9, or t217.

Theorem 2.2.6. (The Chain Rule). Let f(x) be a function of the z; and

x; = gi(t). Let h(t) = f(g1(t),g2(t),...,gn(t)) be a function of the ty, called
the composite of f and the g;. If t, is any one of these t’s, then

n

Oph(t) =D 0if(8(t))Dpgi(t), (2.15)

=1

where g = (g1, 92, - -+, 9n), and g(t) = (g1(t), g2(t), ..., gn(t)).

the chain rule
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In words, the chain rule states that to evaluate the partial derivative of h
with respect to its pth argument (of which there are m) at t, multiply the ith
partial of f evaluated at g(t) by the pth partial of g; evaluated at t and sum
over 4.

Sometimes the chain rule is written in the following less precise form:

0 " Of dg; " Of Ox;
f 5 07 09§~ OF 0n (2.16)
8tp P (92131 8tp P 8331 8tp
where in the last line we have substituted z; for g;.

Example 2.2.7. Suppose F is a function of three variables given by

2
'y
F =
where f is some given function, and a is a constant. Let us calculate all partial
derivatives of F' at (a,2a,a) assuming that f'(2) = a. Denote the single variable of
f by u, so that F is obtained by substituting zy/(az?) for u in f(u). The chain
rule gives

81F($7y7 Z) = f,(U)aut = f’(u) 2222!7
2
82F(I7 Y, Z) = f’(u)82u = fl(u) 52’2 ?
2
OuF(x.y.2) = f (W = —2f ()" ¥,

If 2 = a, y = 2a, and z = a, then u = a*(2a)/a® = 2, and
2a(2a)
a3
Similarly, 92F(a,2a,a) = 1 and 93F (a,2a,a) = —4.

In the notation of Theorem 2.2.6, there are three t’s: t1 =z, t2 =y, t3 = 2, and

only one g: g(t1,ta,t3) = tita/(at3). Then F becomes the composite function of f
and g. |

01F(a,2a,a) = f'(2) =4.

Example 2.2.8. One of the important occasions of the use of the chain rule is in
the transformation of derivatives from Cartesian to spherical coordinates. A good
example of such a transformation occurs in quantum mechanics where an expression
such as z0f /0y — ydf/Ox turns out to be related to angular momentum, and it is
most conveniently expressed in spherical coordinates. In this example we go through
the detailed exercise of converting that expression into spherical coordinates.

We start with the transformations

x = rsinfcos g, y = rsinfsin g, z =rcosb,

and their inverse

z Yy
r=+x%+y>+ 22, cos = , tangp = 7. 2.17
Va2 +y Ja? 4y 422 p= (2.17)
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We shall need the derivatives of spherical coordinates with respect to x and y written
in terms of spherical coordinates. We easily find these by differentiating both sides
of the equations in (2.17):

ar 0 1 T
— 2 2 2) — 1 Tt _ g
or  Ox <\/x ty +z)—2\/x2+y2+z2(2m)_r-sm@cosgo,
.00 ! _ xz _ sinfcospcosh 00 _ cosfcosp
_Smeawi'z{_Qr?’QI}i_r?’ T r = ox r ’
2 Op oy sin ¢ Op  sing
C P or T T2 T rsin 6 cos? p - dr  rsinf’
Similarly,
or . . 00 cosfsing OJp  cosy
ayfsmesmcp, oy r " Oy  rsing’
Therefore, using the chain rule as given in Equation (2.16), we get
8f:8f8r af 00 Of d¢
Or Ordx 000x Opodx
. Of | cosOcospdf sing Of
—sm@cosgoar * r 00  rsind dp’
8f:8f8r of 00  Of Op
Oy Ordy 000y Oy dy
L . Of cosOsinpdf cosp Of
—smﬁsmgoar + r 00  rsinf dp’

If we multiply the first of the last two equations by y = rsinfsin ¢ and subtract
it from the second equation multiplied by x = rsinfcos¢g, the terms involving
derivatives with respect to r and 6 cancel while the terms with ¢ derivatives add to

give
of of _of
‘Tay Yor = Op’
Details are left as an exercise for the reader. m

There is a multitude of examples in thermodynamics, for which a mastery
of the techniques of partial differentiation is essential. A property that is used
often in thermodynamics is homogeneity of functions which we derive below.

2.2.4 Homogeneous Functions

A function is called homogeneous of degree ¢ if multiplying all of its arguments
by a parameter A results in the multiplication of the function itself by A\?. More
precisely,

Box 2.2.3. We say that f(z1,22,...,z,) is homogeneous of degree q
fo()\if]_,)\ifg, cee 7)‘xn) = Aqf(xlax27 cee 7xn)'
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Two cases merit special consideration. When ¢ = 1, the function changes
at exactly the same rate as its arguments: Doubling all its arguments doubles
the function and so on. Such a function is called extensive. When ¢ = 0,
the function is called intensive, and it will not change if all its arguments
are changed by exactly the same factor.

In many cases, we want a relation between f and its partial derivatives.
We shall find this relation by differentiating both sides of Box 2.2.3 with
respect to A\. To avoid any confusion, let us evaluate both sides at the point
(b1,ba,...,by,) after differentiation. Differentiation of the RHS is easy:

RHS = g\" (b1, ba, ..., by).
For the LHS, we first let y; = Az; for all i = 1,2,...,n—so that we have a

single variable (one symbol) in the ith place—and note that

n

Z[aif(ylvaa s ,Z/n)]ﬂii,

i=1

of
LH = = =
S oA O0y; OA

i=1
where we have used the fact that 88%\1
the result at z; = b;, we obtain

= x;—by the definition of y;. Evaluating

LHS = Z bi0i f (b1, Aba, ..., Aby).
=1

Equating the LHS and the RHS, we obtain the important result

AT (b1, b, b)) = bidi f(Aby, Aba, ., Aby)

i=1

This relation holds for all values of A, in particular we can substitute A = 1 to
obtain qf(b1,ba,...,by) = > iy b;0; f(b1,ba,...,by). Keep in mind that the
b’s, although fixed, are completely arbitrary. In particular, one can substitute
z’s for them and arrive at the functional relation

qf (x1, e, ..., xy) = in(?if(xl,xg,...,a:n). (2.18)

i=1

This is the relation we were looking for.
Another important result, which the reader is asked to derive in Problem
2.17, is

Box 2.2.4. If f is homogeneous of degree q, then O0;f is homogeneous of
degree q — 1.
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Example 2.2.9. We have already seen that the natural variables of the internal extensive and
energy U of a thermodynamical system are entropy S, volume V', and number of intensive variables
moles N. Based on physical intuition, we expect the total internal energy, entropy, of
volume and number of moles of the combined system to be doubled when two iden- thermodynamics
tical systems are brought together. We conclude that the internal energy function and their relation
increases by the same factor as its arguments. A thermodynamic quantity that has to homogeneous
this property is called an extensive variable. It follows that U is an extensive functions
variable and a homogeneous function of degree one.

Now consider temperature T, pressure P, and chemical potential p, which are
all partial derivatives of U with respect to its natural variables. From Problem
2.17, we conclude that these quantities are homogeneous of degree zero. It follows
that, if we bring two identical systems together, temperature, pressure, and the
chemical potential will not change, a result expected on physical grounds. Such a
thermodynamic quantity is called an intensive variable. ]

2.3 Elements of Length, Area, and Volume

We mentioned earlier the significance of the second interpretation of the
derivative in conjunction with density. This interpretation is often used in
reverse order, i.e., in writing the infinitesimal (element) of the physical quan-
tity as a product of density and the element of volume (or area, or length).
These elements appear inside integrals and will be integrated over (see the
next chapter). As a concrete example, let us consider the mass element which
can be expressed as

volume distribution: dm(xr') = p(r’') dV (r')
surface distribution: dm(r’) = o(r') da(r’)
linear distribution: dm(r’) = A(r) di(r’)

where r’ denotes the coordinates of the location of the element of mass.

The relations above reduce the problem to that of writing the elements
of volume, area, and length. Most of the time, the evaluation of the integral
simplifies considerably if we choose the correct coordinate system. Therefore,
we need these elements in all three coordinate systems.

Basic to the calculation of all elements are elements of length in the direc-
tion of unit vectors in any of the three coordinate systems. First we define

Box 2.3.1. The primary curve along any given coordinate is the curve
obtained when that coordinate is allowed to vary while the other two coor-
dinates are held fized.

The primary length elements are infinitesimal lengths along the primary primary length
curves. By construction, they are also infinitesimal lengths along unit vectors. elements
To find a primary length element at point P’ with position vector r’ along
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a given unit vector, one keeps the other two coordinates fixed and allows
the given coordinate to change by an infinitesimal amount.!® This procedure
displaces P’ an infinitesimal distance. The length of this displacement, written
in terms of the coordinates of P’, is the primary length element along the
given unit vector. Once the three primary length elements are found, we
can calculate area and volume elements by multiplying appropriate length
elements.
A notion related to the primary length is

Box 2.3.2. A primary surface perpendicular to a primary length is
obtained when the coordinate determining the primary length is held fixed
and the other two coordinates are allowed to vary arbitrarily.

The primary element of area at a point on a primary surface is, by defini-
tion, the product of the two primary length elements whose coordinates define
that surface.

Integrating over a primary surface of a coordinate system is facilitated if
all boundaries of the surface can be described by ¢; = ¢; where ¢; is either of
the two coordinates that vary on the surface and ¢; is a constant. For example,
the third primary surface in Cartesian coordinates is a plane parallel to the
xy-plane. A problem involving integration on this plane becomes simplest if
the boundaries of the region of integration are of the form, z = ¢; and y = c¢o,
i.e., if the region of integration is a rectangle.

Finally, by taking the product of all three primary length elements, we
obtain the volume element in the given coordinate system.

2.3.1 Elements in a Cartesian Coordinate System

Consider the point P’ with coordinates (2,4, z’) as shown in Figure 2.2. To
find the primary length along &,, = &,,'! keep 3’ and 2’ fixed and let 2’
change to ' + dz’. Then P’ will be displaced by dz’ along é,. Thus, the
first primary length element—denoted by di;—is simply da’. Similarly, we
have dls = dy’, and dl3 = dz’. A general infinitesimal displacement, which is
a vector, can be written as

dl'= &, dly + &, dly + &, dls = &, do’ + &, dy +é.dz' =dr'.  (2.19)

Figure 2.2 shows that di represents the displacement vector from P’, with
position vector r’, to a meighboring point P”, with position vector r”/. But
this displacement is simply the increment in the position vector of P’. That is
why dr’ is also used for dl. Note that this vectorial infinitesimal displacement

10Usually an infinitesimal amount is expressed by a differential. Thus, an increment in
is simply dx.

M Recall that this equality holds in Cartesian—and only in Cartesian—coordinates, where
the unit vectors are independent of the coordinates of P’.
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A
z & A
dly=dy'
Py dly=dz
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! dl, = dx’
|
1z
1 N
A ! // y
[N : ’x!'

Figure 2.2: Elements of length, area, and volume in Cartesian coordinates.

includes the primary length elements as special cases: When a coordinate is
held fixed, the corresponding differential will be zero. Thus, setting dy’ = 0 =
dz', ie., holding y' and 2z’ fixed, we recover the first primary length element.
The length of di is also of interest:

di = |dl] = \/di3 + di3 + di3
= /(d2")? + (dy')? + (dz')? = \/da”? + dy”? + dz". (2.20)

In one-dimensional problems involving curves, one is either given, or has
to find, the parametric equation of a curve  whereby the coordinates
(2',y’,2") of a point on 7 are expressed as functions of a parameter, usually
denoted by t. This is concisely written as

V(t) = (xla y/a zl) = (f(t)vg(t)v h(t))v

so that the “curve function” v takes a real number ¢ and gives three real
numbers f(t), g(t), and h(t) which are the coordinates ', y’, and 2’ of a
point on the curve in space. Usually one considers an interval'? (a,b) for the
real variable t. Then (f(a),g(a),h(a)) is the initial point of the curve and
(f(b),g(b), (b)) its final point. The parameter ¢ and the functions f, g, and
h are not unique. For example, the three functions

f1(t) = acost, ¢1(t) =asint, hy(t) =0, 0<t<m,
describe a semicircle in the xy-plane. However,
fo(t) =acos (7)), ga(t) =asin(£?), ho(t)=0, 0<t<al/?

also describe the same semicircle. This arbitrariness is useful, because it allows
us to choose f, g, and h so that calculations become simple.

2Do not confuse this with the coordinates of a point in the plane. The notation (a,b)
here means all the real numbers between a and b excluding a and b themselves.

parametric
equation of a
curve
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For “flat” curves [lying in the zy-plane and given by an equation y = f(z)],
one obvious parameterization—which may not be the most convenient one—is
r=t,y=f(t)

Let us assume that we have chosen the three functions and they are of the
form

¥ =), Y =gt), 2 =h().

Then the primary lengths can be written as

dr’' = f'(t)dt, dy =g (t)dt, dz' =h'(t)dt,

and the element of displacement along the curve becomes

dr'(t) = di(t) = &, f'(t) dt + &, g'(t) dt + &. h'(t) dt,
e’ (t)] = di(t) = /[f'() di]? + [g/ (t) dt]? + [/ (t) di]?
= VIR +[g' ()] + [W(6)]? dt,

where a prime on a function denotes its derivative with respect to its argu-
ment.!3

The first primary surface at P’ is obtained by holding z’ constant and
letting the other two coordinates vary arbitrarily. It is clear that the resulting
surface is a plane passing through P’ and parallel to the yz-plane. It is also
clear that the first primary length element, dz’ is perpendicular to the first
primary surface. The first primary element of area, denoted by daq, is simply
dy’ dz’. The second and third primary surfaces are the zz-plane and the xy-
plane, respectively. These planes are perpendicular to their corresponding
length elements. The primary elements of area are obtained similarly. We

(2.21)

thus have
day = dy' dz’', das = dx' dz’, daz = dx’ dy'. (2.22)
Finally, the volume element is
dV = dly dly dlz = dx'dy'dz’. (2.23)

2.3.2 Elements in a Spherical Coordinate System

The point P’ in Figure 2.3 now has coordinates (1, ', ¢'). To find the primary
length along &,, keep 6’ and ¢’ fixed and let ' change to v’ + dr’. Then P’
will be displaced by dr’ along &,,. Thus, the first primary length element, di1,
is simply dr’. To find the primary length along &g/, keep ' and ¢’ fixed, i.e.,

13The use of primes to represent both the derivative and the coordinates of the element of
the source (such as dm) is unfortunately confusing. However, this practice is so widespread
that any alteration to it would result in more confusion. The context of any given problem
is usually clear enough to resolve such confusion.
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Z

rsin0 A’

A0 —

Figure 2.3: Elements of length, area, and volume in spherical coordinates. We have
used “A" instead of “d.”

confine yourself to the plane passing through P’ and the polar—or z—axis,
and let 6’ change to 6’ + df’. Then P’ will be displaced by'* ' df’ along
&¢r. The primary length along €, is obtained by keeping r’ and ¢’ fixed,
i.e., confining oneself to a plane passing through P’ and perpendicular to the
z-axis,'® and letting ¢’ change to ¢’ + dy’. Then P’ will be displaced along
a circle of radius 7’ sin 6’ by an angle dy’. This can be seen by noting that P’
lies in the zy-plane and that its distance from the z-axis is given by

2% +y? = (r'sin @ cos p')* + (r' sin @' sin’)* = r'*sin? ¢’

and that the RHS, which is the square of the radius of the circle, is a con-
stant. The displacement of P’ is therefore ' siné’ dy’ along é,/. A general
infinitesimal (vector) displacement can, therefore, be written as

dv' = dl = &, dly + &g dly + &, dly
=eédr' +eépr' df + e, 1 sind dy'. (2.24)

Note again that this vectorial infinitesimal displacement includes the primary
length elements as special cases. Thus, setting d¢’ = 0 = dy’, i.e., holding 6’
and ¢’ fixed, we recover the first primary length element. The length of dr’

—

(or dl) is
|dr'| = dl = \/(dr")2 + (r' d6")2 + (' sin 0’ dip')?
= \/dr’2 + 772 d"2 + 72 sin? 0’ d'?. (2.25)
MSince r’ is held fixed, P’ is confined to move on a circle of radius r/, describing an
infinitesimal arc subtended by the angle d@’.

15Fixing v’ and @’ fixes 2z’ = 1/ cos #’ which describes a plane parallel to the zy-plane, i.e.,
a plane perpendicular to the z-axis.
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primary surfaces
of spherical
coordinates
consist of a
sphere, a cone,
and a plane.

primary elements
of area in spherical
coordinates

element of volume
in spherical
coordinates

Differentiation

If we know the parametric equation of a curve in spherical coordinates,
i.e., if the coordinates 77, 6’, and ¢’ of a point on the curve can be expressed as
functions of the parameter ¢, then we can find the differentials in terms of dt
and substitute in Equation (2.25) to find an expression analogous to Equation
(2.21). We leave this as an exercise for the reader.

The first primary surface at P’ is obtained by holding ' constant and
letting the other two coordinates vary arbitrarily. It is clear that the resulting
surface is a sphere of radius 7’ passing through P’. It is also clear that the
first primary length element dr’ is perpendicular to the first primary surface.
It is not hard to convince oneself that the second and third primary surfaces
are, respectively, a cone of (half) angle 6, and a plane containing the z-axis
and making an angle of ¢’ with the z-axis. These surfaces are perpendicular
to their corresponding length elements. The primary elements of area are
obtained easily. We simply quote the results:

day = (' d0") (' sin @’ d') = r'*sin @’ d0’ dy’,

dag = (dr')(r' sin@ d¢') = 1" sin @' dr’ dy’, (2.26)
das = (dr')(r' dO0") = r' dr’ dO'.
Finally, the volume element is
dV = (dr") (' d0")(r' sin @’ d¢’) = 1"* sin @’ dr'd6’dy’. (2.27)

Table 2.1 gathers together all the primary curves and surfaces for the
three coordinate systems used frequently in this book. The reader is advised
to remember that

Box 2.3.3. All the differentials of Table 2.1 carry a prime to emphasize
that they are evaluated at P’, the location of infinitesimal elements.

Coordinate Primary Primary
system curves surfaces
1st: Straight line (z-axis) yz-plane
Cartesian ~ 2nd: Straight line (y-axis) xz-plane
3rd: Straight line (z-axis) xy-plane
1st: Rays perp. to z-axis Cylinder with axis z
Cylindrical 2nd: Circle centered on z-axis Half-plane from z-axis
3rd: Straight line (z-axis) Plane perp. z-axis
1st: Rays from origin Sphere
Spherical 2nd: Half-circle Cone of half angle 6

3rd: Circle centered on polar axis Half-plane from z-axis

Table 2.1: Primary curves and surfaces of the three common coordinate systems.
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2.3.3 Elements in a Cylindrical Coordinate System

The coordinates of P’ are now (p’,¢’, z") as shown in Figure 2.4. To find the
primary length along é,/, keep ¢’ and 2’ fixed and let p’ change to p’ + dp’.
Then P’ will be displaced by dp’ along €,. Thus, the first primary length
element dl; is simply dp’. To find the primary length along é,/, keep p" and 2’
fixed, i.e., confine yourself to a circle of radius p’ in the plane passing through
P’ and perpendicular to the z-axis, and let ¢’ change to ¢’ + dy’. Then P’
will be displaced by p’ dy¢’ along &,. The primary length along &, = &, is'®
obtained by keeping p’ and ¢’ fixed, and letting 2’ change to 2’ + dz’. Then
P’ will be displaced by dz’. A general infinitesimal (vector) displacement can,
therefore, be written as

dv' = dl = &, dly + &, dly + &/ dls
= ép’ dpl —|— é@/ pl dg@l —|— éz dZ/. (228)

Note again that this infinitesimal displacement includes the primary length
elements as special cases. The length of this vector is

|dr'| = dl = \/(dp')? + (p d/)? + (dz')?
= \/dp + p2dp’ + d2"2. (2.29)

If we know the parametric equation of a curve in cylindrical coordinates,
i.e., if the coordinates p’, ¢’, and 2’ of a point on the curve can be expressed as

Figure 2.4: Elements of length, area, and volume in cylindrical coordinates. We have
used “A” instead of “d.”

16This is the only unit vector in “curvilinear coordinates” which is independent of the
position of P’.
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primary surfaces
of cylindrical
coordinates
consist of a
cylinder and two
planes.

primary elements
of area in
cylindrical
coordinates
element of volume
in cylindrical
coordinates

Differentiation

functions of the parameter ¢, then we can find the differentials in terms of dt
and substitute in Equation (2.29) to find an expression analogous to Equation
(2.21). We leave this as an exercise for the reader.

The first primary surface at P’ is obtained by holding p’ constant and
letting the other two coordinates vary arbitrarily. It is clear that the resulting
surface is a cylinder of radius p’ passing through P’. It is also clear that the
first primary length element dp’ is perpendicular to the first primary surface.
The second and third primary surfaces are, respectively, a plane containing
the z-axis and making an angle of ¢’ with the z-axis, and a plane perpen-
dicular to the z-axis and cutting it at z’. These surfaces are perpendicular to
their corresponding length elements. The primary elements of area are again
obtained easily, and we merely quote the results

day = (p" d¢')(d2) = p' dy' d2/,
das = dp'dz’, (2.30)
daz = (dp')(p" d¢') = p"dp" di'.
Finally, the volume element is
AV = (dp")(p' d¢')(dz") = p' dp’ d’ d2’. (2.31)

Table 2.2 gathers together all the elements of primary length, surface, and
volume for the three commonly used coordinate systems.

Example 2.3.1. EXAMPLES OF ELEMENTS IN VARIOUS COORDINATE SYSTEMS
(a) The element of length in the ¢ direction at a point with spherical coordinates
(a,7v,¢) is asinydy. Note that this element is independent of ¢, and for a fixed a,
it has the largest value when v = 7/2, corresponding to the equatorial plane.

(b) The element of area for a cone of half-angle « is r sin o dr de, because for a cone,
0 is a constant (in this case, ).

Coordinate Primary Primary Volume
system length area element
elements elements
1st: dx dydz
Cartesian 2nd: dy dxdz drdydz
(z,y,2) 3rd: dz dx dy
1st: dp pdpdz
Cylindrical 2nd: pdyp dpdz pdpdpdz
(p,,2) 3rd: dz pdpdp
1st: dr 2 sin @ df dy
Spherical 2nd: rdf rsin@drde  r?sin@drdfdy
(r,0,p) 3rd: rsinfdy rdrdf

Table 2.2: Primary length and area as well as volume elements in the three common
coordinate systems. In almost all applications of the next chapter each of these variables
carries a prime.
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(c) The element of area of a cylinder of radius a is a dp dz.

(d) The element of area of a sphere of radius @ is a® sin 6 df dp. Note that the largest
element of area (for given df and dy) is at the equator and the smallest (zero) at
the two poles.

(e) The element of area of a half-plane containing the z-axis and making an angle

a with the z-axis is dp dz, independent of the angle a.
|

Example 2.3.2. Suppose Cartesian coordinates of the plane are related to two finding unit
other variables u and v via the formulas vectors without
use of geometry!

x:f(um), y:g(uvv)'

We want to consider v and v as coordinates and find the unit vectors corresponding
to them using our knowledge of differentiation gained in this chapter without any
resort to geometric arguments.

In general, the unit vector in the direction of any coordinate variable at a point P
is obtained by increasing the coordinate slightly (keeping other coordinate variables
constant), calculating the displacement vector described by the motion of P, and
dividing this vector by its length. So, consider changing u while v is kept constant.
Call the displacement obtained Afl. Then

- R . of . Og
Al = e Ax + eyAy = &, 8uAu + €y BuAu
and
8% = Vaay+ a2 =/ (X)) + (%) au
ou ou
Therefore,
o .0 .0 R . 0
Al emi*‘*yaz _ &0 +ey5h

€y =

lim - = B .
R R C A N

For é,, we keep u fixed and vary v. Calling the resulting displacement Al;, we
easily obtain

. _Of .0 )
Aly era‘a)j*eyag gty

e e ) @)

Note that for general f and g, &, and &, are not perpendicular.
The result can easily be generalized to three variables. In fact, if

x:f(u7v7w)7 y:g(u7v7w)7 Z:h(u7v7w)7
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Differentiation
then, a similar calculation as above will yield
. Of [ 4 O0g | . Oh A~ 0z 4 Oy 4 Oz
8, = € gu T au T oy _ € gu T u & gy
OF\2 ., (0g\? . (Oh)? 0x\? | (Ov)*, (92)>
VO + (30 G G+ (3" (32)
. Of | . 0g | . Oh A~ O0r 4 0y 4 0z
8, = 2 gy T v gy T 5y _ gy TCvay Ty
af\2 g\? Oh\2 9z\? oy\? 92\2
V= Gy« (3" G+ (30" (%)
.0 . 0 . . . 0 .
- AR AR S S VY A

JEE () + (3 @)+ () -

2.4 Problems

2.1. Find the partial derivatives of the following functions at the given points
with respect to the given variables. In the following r = (z,y,2) and ¢’ =
@,y 2"):

Yz

e with respect to z at (1,0,—1),

cos(zy/z) with respect to z at (m,1,1),
2?y +y?z + 2%z with respect toy at  (1,—1,2),
In <af + bg + C;) with respect to z  at (a, b, ¢),
T4+ Yy + 2z
r= \/a:2 +y2+ 22 with respect to x  at (x,y, 2),
|r — 1| with respect toy at (z,y,2,2',y,2),
1

| | with respect to 2 at (z,y,z,2,y,2").
r—r

2.2. The Earth has a radius of 6400 km. The thickness of the atmosphere
is about 50 km. Starting with the volume of a sphere and using differentials,
estimate the volume of the atmosphere. Hint: Find the change in the volume
of a sphere when its radius changes by a “small” amount.

2.3. The gravitational potential (potential energy per unit mass) at a distance
r from the center of the Earth (assumed to be the origin of a Cartesian
coordinate system) is given by
M
P =— ¢
r
where G' = 6.67 x 10! N-m?2/kg? and M = 6 x 10** kg. Using differentials,
find the energy needed to raise a 10-kg object from the point with coordinates
(4000 km, 4000 km, 3000 km) to a point with coordinates (4020 km, 4050 km,
3010 km).

L=y
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2.4. Show that the function f(x £ ct) satisfies the one-dimensional wave

equation: one-dimensional
o%f 1 0%f wave equation
02 " or

Hint: Let y = x 4+ ¢t and use the chain rule.

2.5. Assume that f”+kf =0and g” —kg = 0. Show that F(x,y) = f(x)g(y) two-dimensional

satisfies the two-dimensional Laplace’s equation: Laplace's equation
0*F  O*F
s+ . 5 =0.
ox dy

2.6. Suppose that f” —af =0, ¢ — 8g = 0, and b’ —vh = 0. Write an

equation relating «, 3, and « such that the function
F(z,y,2) = f(x)g(y)h(2)

satisfies the three-dimensional Laplace’s equation: three-dimensional

5 5 5 Laplace's equation

0°F n 0°F n o°F 0
ox?  oy? 922

2.7. Suppose that [ —af =0, ¢g” —Bg=0, " —vh =0, and v’ — wu = 0.

Write an equation relating «, (3, v, and w such that the function

F(a,y,2t) = f(z)g(y)h(2)u(t)
satisfies the heat equation: heat equation

O*F N O*F N O*F  OF
=a _ .
oz oy 922 ot
where «a is a constant.
2.8. Suppose that f”+k2f = 0, g"—l—kgg =0, h"+k?h =0, and v"+w?u = 0.
(a) Write an equation relating k,, ky, k-, and w such that the function

F(z,y,2,t) = f(2)g(y)h(z)u(t)
satisfies the three-dimensional wave equation: three-dimensional

0*F *F 9%°F 1 &2F wave equation

+ - —0.
oz oy? 922 2 ot?

(b) If w is considered as angular frequency, and c as the speed of the wave,
what is the magnitude of the vector k = (ky, ky, k2)?

xzy + y2x
f 2
a’z
stant. Assuming that f’(2) = a, find the unit vector &, in the direction of

2.9. Consider the function F(x,y,z) = > in which « is a con-

v =¢6,01F(a,a,a) + &,0.F(a,a,a) + &,0sF(a,a,a).
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23y — 1Pz + 2232

2.10. Consider the function F(z,y,z2) = f in which a is

at
a constant. Assuming that f/(17) = a, find the unit vector &, in the direction
of

v =¢&,01F(a,—a,2a) + é,0-F(a,—a,2a) + €.0sF(a, —a, 2a).

2.11. Given that f(z,y,2) = e”“\/‘fzﬂ’brzz/\/’JJ2 +y2 + 22, where k is a
constant, find the radial component (component along &,) of the vector

V = ézalf(xvya Z) + éyan(xvya Z) + ézan(xvya Z)

2.12. Given that

2k k22
81f($;y72)282f(2,$,y):agf(y,z,gj) = yx B g )

2

where k is a constant, find the function f(z,y,z). Note the order of the
variables in each pair of parentheses.

2.13. Given that f(z,y,2) = 22ysin (yz/z), find
82f(17 1771—/2)7 81.][(277(7 1)7 83.][(477(7 1)7 Blf(y,z,x), 81f(t,u,’l))-

2.14. Derive the analogue of Equation (2.11) assuming this time that Q is
held constant in all derivatives instead of W.

2.15. Which of the following functions are homogeneous?

2,2
2 . xy  xy xz

"/ % xyzsin 7| Cos o,
az z Yy

2?2 49y? 2% ar+ylz—x),

where a is a constant. For those functions that are homogeneous, find their
degree and verify that they satisfy Equation (2.18).

2.16. Suppose f and g are homogeneous functions of degrees ¢ and p, respec-
tively. What can you say about the homogeneity of f + g, fg, and f/g. If
they are homogeneous, find their degree, and verify that they satisfy Equation
(2.18).

2.17. If f is homogeneous of degree ¢, show that 0; f is homogeneous of degree
q — 1. Hint: Use the definition of homogeneity and differentiate with respect
to x;.

2.18. A function f(z,y, z) of Cartesian coordinates can also be thought of as
a function of cylindrical coordinates p, ¢, z, because the latter are functions
of the former via the relations p = /22 + y2 and tanp = y/x.

(a) Using the chain rule for differentiation, find df/0x and 0f /0y in terms
of f /0p and Of/Dp. Express your answers entirely in terms of cylindrical
coordinates.
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of

0 0
b) Show that the vector e, .~ +é +é, when written entirely in terms
Yo
Y

f f
ox 0z’

of cylindrical coordinates and cylindrical unit vectors, becomes

2.19. In each of the following, the partial derivative of a function is given.
Find the most general function with such a derivative.

(a) 0o f (2, y, 2) = zy?2. (b) 81 (2, y, 2) = a3z
(c) Drh(z,@,y) = 3% (d) Or1g(z,z,y) = e"y>.
() 029(2, 2, y) = €7y (1) Oah(z,y, 2) = * sin=.
(g)O0sf(x,y,2) = nyz. (h) 93g(z, x, ) = ezyz.
(

1) Osh(y, x,2) = 5=

x

2.20. Finish the calculation of Example 2.2.8.

2.21. Find y0f/0z — 20f /0y and 20f/0x — xdf/0z in terms of spherical
coordinates. Warning! These will not be as nice-looking as the expression
calculated in Example 2.2.8.

2.22. Given that f/(1) = 2, find

of ., ,of. [ Of,
3xew+ 3yey+ 92

for f(zyz) at the Cartesian point (—1,2,—1/2).
2.23. Given that f’(3) = —1, find the radial component of the vector

of, of., [ Of,
(’9er+ ayey+ azez

for f(y/x2 4+ y2 + 22) at the Cartesian point (2,1, —2).

2.24. Show that the function F'(k-r—wt) satisfies the three-dimensional wave
equation:
O*°F  O°F 9*°F 10°F
ox? + y? * 922 2 o2
it k = (ky, ky, k2) is a constant vector, w is a constant, and a certain relation
exists between k = |k| and w. Find this relation.

=0

2.25. In electromagnetic radiation theory one encounters an equation of the
form

71
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Differentiation

and one is interested in the partial derivative of ¢ with respect to x,y, and z.
Note the hybrid role that ¢ plays here as both a dependent and an independent
variable. Show that

ot x— f(t)

Oz [z — fOLF' (&) + [y — 9(O)g' () + [z — MO (1) — F3/2

where F(x,y, z,t) = [x—f(t)]*+[y—g(t)]?>+[z—h(¢)]?. Find similar expressions
for partial derivatives of ¢ with respect to y and z.

2.26. Consider the function f(|r —r'|) with r = zé, + yé, + zé, and v’ =
x'é; +y'é, + 2'é, being the position vectors of P and P’.
(a) Find a general expression for the vector

3féz+ 3féy of .

Ox oy t 9.

V= 0z

in terms of r and r’.
(b) If f/(3) = 3 and the coordinates of P and P’ are (1,—1,0), and (0, 1,2),
respectively, find the numerical value of V.

2.27. Find an expression in cylindrical and spherical coordinates analogous
to Equation (2.21).

2.28. A function f(z,y) of Cartesian coordinates can also be thought of as a
function of some other coordinates u and v defined by

T = usinv, Y = UCOS V.

(a) Applying the procedure of Example 2.3.2, find the unit vectors é,, and é,,.
(b) Find u and v as functions of x and y.
(c) Calculate &, and é, in terms of &, and &,.
(d) Write the vector

of
oz

of

A=ty +éy

entirely in the (u,v) coordinate system.

2.29. Find the cylindrical unit vectors in terms of Cartesian unit vectors
using the procedure of Example 2.3.2.

2.30. Find the spherical unit vectors in terms of Cartesian unit vectors using
the procedure of Example 2.3.2.

2.31. In the first part of Example 2.3.2, assume that f(u,v) = ufi(v) and
g(u,v) = ugr(v) where fi and gy are functions of only one variable.

(a) Find a relation between f; and g; to make €, and &, perpendicular.

(b) Can you recover the polar coordinates as a special case of (a)?
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2.32. The elliptic coordinates (u, ) are given by

x = acoshucosf,

y = asinhusind,

where a is a constant.

(a) What are the curves of constant u?

(b) What are the curves of constant 67

(¢) Find &, and €&y in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.33. The parabolic coordinates (u,v) are given by

r = a(u?® — v?),

Yy = 2auv,

where a is a constant.

(a) What are the curves of constant u?

(b) What are the curves of constant v?

(c) Find &, and &, in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.34. The two-dimensional bipolar coordinates (u,v) are given by

asinhu

coshu + cosv’
_ asinv
Y= coshu + cosv’
where a is a constant.
(a) What are the curves of constant u?
(b) What are the curves of constant v?
(c) Find &, and &, in terms of the Cartesian unit vectors, and examine their
orthogonality.

2.35. The elliptic cylindrical coordinates (u, 8, z)are given by

x = acoshucosf,
y = asinhusinf,

z=2z,

where a is a constant.

(a) What are the surfaces of constant u?

(b) What are the surfaces of constant 07

(c) Find é,, €ép, and &, in terms of the Cartesian unit vectors and examine
their orthogonality.
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Differentiation
2.36. The prolate spheroidal coordinates (u, 0, ) are given by

x = asinhu sin 6 cos p,
y = asinh usin 0 sin @,

z = acoshwucosf,

where a is a constant.

(a) What are the surfaces of constant u?

(b) What are the surfaces of constant 67

(c) Find é,, ég, and &, in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.37. The toroidal coordinates (u, 6, ) are given by

asinh u cos ¢

coshu — cos@’

asinhusin ¢

cosh@ — cos0’
asinu

coshu — cosf’

where a is a constant.

(a) What are the surfaces of constant u?

(b) What are the surfaces of constant 67

(c) Find é,, ég, and &, in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.38. The paraboloidal coordinates (u,v, ) are given by

T = 2auv cos @,
Yy = 2auv sin ¢,

2z = a(u?® — v?),

where a is a constant.

(a) What are the surfaces of constant u?

(b) What are the surfaces of constant v?

(c) Find é,, &,, and &, in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.39. The three-dimensional bipolar coordinates (u, 0, @) are given by

asin 6 cos p

coshu — cos@’
asinfsin @

coshu — cosf’
asinhu

coshu — cos@’
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where a is a constant.

(a) What are the surfaces of constant u?

(b) What are the surfaces of constant 67

(c) Find &, &g, and &, in terms of the Cartesian unit vectors, and examine
their mutual orthogonality.

2.40. A coordinate system (R, O, ¢) in space is defined by

2z = Rcos® cos ¢+ bcos d,
y = Rcos©sin ¢ + bsin ¢,
z= Rsin®,

where b is a constant, and 0 < R < b.

1. Express the unit vectors égr, €g, and €4 in terms of Cartesian unit
vectors with coefficients being functions of (R, ©, ¢).

2. Are unit vectors mutually perpendicular?






Chapter 3

Integration: Formalism

It is not an exaggeration to say that the most important concept, whose mas-
tery ensures a much greater understanding of all undergraduate physics, is the
concept of integral. Generally speaking, physical laws are given in local form
while their application to the real world requires a departure from locality.
For instance, Coulomb’s law in electrostatics and the universal law of gravity
are both given in terms of point particles. These are mathematical points and
the laws assume that. In real physical situations, however, we never deal with
a mathematical point. Usually, we approzimate the objects under considera-
tion as points, as in the case of the gravitational force between the Earth and
the Sun. Whether such an approximation is good depends on the properties
of the objects and the parameters of the law. In the example of gravity, on
the sizes of the Earth and the Sun as compared to the distance between them.
On the other hand, the precise motion of a satellite circling the earth requires
more than approximating the Earth as a point; all the bumps and grooves of
the Earth’s surface will affect the satellite’s motion.

This chapter is devoted to a thorough discussion of integrals from a phys-
ical standpoint, i.e., the meaning and the use of the concept of integration
rather than the technique and the art of evaluating integrals.

3.1 “[” Means “[um”

One of the first difficulties we have to overcome is the preconception instilled
in all of us from calculus that integral is “area under a curve.” This pre-
conception is so strong that in some introductory physics books the authors
translate physical concepts, in which integral plays a natural role, into the
unphysical and unnatural notion of area under a curve. It is true that calcula-
tion of the area under a curve employs the concept of integration, but it does
so only because the calculation happens to be the limit of a sum, and such
limits find their natural habitat in many physical situations.

Physical laws are
given for
mathematical
points but applied
to extended
objects.

Integral is not just
area under a
curve!
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Take the gravitational force, for example. As a fundamental physical law,
it is given for point masses, but when we want to calculate the force between
the Earth and the Moon, we cannot apply the law directly because the Earth
and the Moon cannot be considered as points with the Moon being only 60
Earth radii away. This problem was recognized by Newton who found its solu-
tion in integration. Inherent in the concept of integration is the superposition
principle whereby, as mentioned in Chapter 1, different parts of a system are
assumed to act independently. Thus a natural procedure is to divide the
big Earth and the big Moon into small pieces, write down the gravitational
force between these small pieces, invoke the superposition principle, and add
the contribution of these pieces to get the total force. Now, nothing is more
natural than this process, and no example is a more illustrative example of
integration than such a calculation.

In order to define and elucidate the concept of integration,® let us recon-
sider the gravitational field of Box 1.3.5. Instead of a known collection of point
masses, let us calculate the gravitational field at a point P of a continuous
distribution of mass such as that distributed in the volume of the Earth.
The point P is called the field point.? We divide the large mass into N
pieces, denoting the mass of the ith piece, located around the point P;, by
Am; as shown in Figure 3.1. To be able to even write the field equation for
the ith piece of mass, we have to make sure that the size of Am, is small
enough. We thus write

GAml( )
: r—r;).
B v — ;|3 !
Z
p’z~\ dm(r’)
r\
| r
b-—---1 P
,
| /ey I
I
y X — S
P el ¢
_____ -+
X X
(@) (b)

Figure 3.1: The mass distribution giving rise to a gravitational field. (a) The mass is
divided into discrete pieces labeled 1 through N with the ith piece singled out. (b) The
mass is divided into infinitesimal pieces with the piece located at r’ singled out.

1The discussion that follows may seem specific to one example, but in reality, it is much
more general. Instead of the gravitational law one can substitute any other local law, and
instead of mass, the appropriate physical quantity must be used. The examples that follow
throughout this chapter will clarify any vague points.

2The same terminology applies to electrostatic fields as well.
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The smaller the size, the better this expression approximates the field due to
Am,;. Invoking the superposition principle, we write

N
GAm; GAm(r;)
~ .= — I;), 1
T IPT D LTS Dl LT

where in the last equality we have replaced Am; with Am(r;). Aside from a
change in notation, this replacement emphasizes the dependence of the small
piece of mass on its “location.” The quotation marks around the last word
need some elaboration. In any practical slicing of the gravitating object, such
as the Earth, each piece still has some nonzero size. This makes it impossible
to define the distance between Am; and the point P. We can define this
distance to be that of the “center” of Am; from P, but then the difficulty
shifts to defining the center of the piece. Fortunately, it turns out that, as long
as we ultimately make the size of all Am;’s indefinitely small, any point—such
as P; shown in the figure—in Am; can be chosen to define its distance from
P. We are thus led to taking the limit of Equation (3.1) as the size of all
pieces tends to zero, and, necessarily, the number of pieces tends to infinity.
If such a limit exists, we call it the integral of the gravitational field and
denote it as follows:3

B Y GAm(r;) N G dm(r) :
g(r)=— lim (r—rl):—/(; e (r—r'). (3.2)

Am—0 |I‘ — I‘i|3

N—o0 1=
An identical procedure leads to a similar formula for the electrostatic field
and potential:

_ kedq(r') (r B r/)7 o :/Q kedQ(r’). (3,3)

olr -1 v —r'|

Equations (3.2) and (3.3) will be used frequently in the sequel as we try
to illustrate their use in various physical situations. Note that Fquations
(3.2) and (3.3) are independent of any coordinate systems as all physical laws
should be.

In the symbolic representation of integral on the RHS, ), called the region
of integration,* is the region—for example, the volume of the Earth—in
which the mass distribution resides, and dm(r’) is called an element of mass
located® at point P’ whose position vector is r’. P’ is called the source
point because it is the location of the source of the gravitational field, i.e.,
the mass element at that point. We also call it the integration point. The

3We shall use the symbol [, (or simply [) to indicate general integration without
regard to the dimensionality (single, double, or triple) of the integral.

4When the region of integration is one dimensional, such as an interval (a, b) on the real
line, one uses ff instead of f(a,b)'

5Whenever r’ is used as an argument of a quantity, it will refer to the coordinates of a
point not the components of its position vector.

79

integral as the
limit of a sum

region of
integration

integration point,
integration
variables, and
integrand defined



80

integration
parameters

Integration: Formalism

coordinates of r’ upon which the mass element depends—and in terms of
which it will eventually be expressed—are called the integration variables,
and whatever multiplies the products of the differentials of these variables is
called the integrand.

It is not hard to abstract the concept of integration from the specific
example of gravity. Instead of the specific form of the integral in Equations
(3.2) and (3.3), we use f(r,r’), and instead of the element of mass, we use the
element of some other quantity which we generically designate as dQ(r’). We
thus write

N
h(r) = lim > f(r,r)AQ(r;) = / f(r,r)dQ(r), (3.4)
AQR—0 4 Q
N—oo =1
where h(r), the result of integration, will be a function of r, the position
vector of P whose coordinates are called the parameters of integration.
Although we have used r and r’, the concept of integration does not require
the parameters and integration variables to be position vectors. They could be
any collection of parameters and variables. Nevertheless, we continue to use
the terminology of position vectors and call such collections the coordinates
of points.

An immediate—and important—consequence of the definition of integral
is that if the region of integration €2 is small, then, for practical calculations,
we do not need to subdivide it into many pieces. In fact, if € is small enough,
only one piece may be a good approximation to the integral. We thus write

flr,x')dQ(') = f(r.ru) AQ, (3.5)
AQ
where it is understood that AS) is a small region around point M whose
“position vector” is rp;.

Another immediate and important consequence of the definition of integral
is that if  is divided into two regions €2; and {29, then

/ flex)dQ@) = | f(r,x)dQ@) + [ f(r,x')dQ(x') (3.6)
Q (95 Q2

In order to be able to evaluate integrals, one has to express both dQ(r’)
and f(r,r’) in terms of a suitable set of coordinates. f(r,r’) poses no problem,
and in most cases it involves a mere substitution. The element of @, on the
other hand, is often related, via density, to the element of volume (or area,
or length) whose expression is more involved. Section 2.3 dealt with the
construction of elements of length, area, and volume in the three coordinate
systems.

Historical Notes

Integral calculus, in its geometric form, was known to the ancient Greeks. For
example, Euclid, by adding pieces to the area of a square inscribed in a circle,
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constructing newer polygons of larger numbers of sides, and continuing the process
until the circle is “exhausted” by regular polygons, proved the theorem: Circles
are to one another as the squares on the diameters. In essence, Euclid thinks of a
circle as the limiting case of a regular polygon and proves the above theorem for
polygons. Then he uses the argument of “exhaustion” to get to the result. Although
mathematicians of antiquity made frequent use of the method of exhaustion, no one
did it with the mastery of Archimedes.

Archimedes is arguably believed to be the greatest mathematician of antiquity.
The son of an astronomer, he was born in Syracuse, a Greek settlement in Sicily.
As a young man he went to Alexandria to study mathematics, and although he
went back to Syracuse to spend the rest of his life there, he never lost contact with
Alexandria.

Archimedes possessed a lofty intellect, great breadth of interest—both theoret-
ical and practical—and excellent mechanical skills. He is credited with finding the
areas and volumes of many geometric figures using the method of exhaustion, the
calculation of 7, a new scheme of presenting large numbers in verbal language, find-
ing the centers of gravity of many solids and plane figures, and founding the science
of hydrostatics.

His great achievements in mathematics—he is ranked with Newton and Gauss
as one of the three greatest mathematicians of all time—did not overshadow his
practical inventions. He invented the first planetarium and a pump (Archimedean
screw). He showed how to use levers to move great weights, and used compound
pulleys to launch a galley of the king of Syracuse. Taking advantage of the focusing
power of a parabolic mirror, so the story goes, he concentrated the Sun’s rays on
the Roman ships besieging Syracuse and burned them!

Perhaps the most famous story about Archimedes is his discovery of the method
of testing the debasement of a crown of gold. The king of Syracuse had ordered
the crown. Upon delivery, he suspected that it was filled with baser metal and
sent it to Archimedes to test it for purity. Archimedes pondered about the problem
for some time, until one day, as he was taking a bath, he observed that his body
was partly buoyed up by the water and suddenly grasped the principle—mow called
Archimedes’ principle—by which he could solve the problem. He was so ex-
cited about the discovery that he forgetfully ran out into the street naked shouting
“Eurekal!” (“I have found it!”).

3.2 Properties of Integral

Now that we have developed the formalism of integration, we should look
at some applications in which integrals are evaluated. As we shall see, all
integral evaluations eventually reduce to integrals involving only one variable.
Thus, it is important to have a thorough understanding of the properties
of such integrals. Some of these properties are familiar, others may be less
familiar or completely new. We gather all these properties here for the sake
of completeness.

Archimedes
287-212 B.C.
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3.2.1 Change of Dummy Variable

The symbol used as the variable of integration in the integral is completely
irrelevant. Thus, we have

/ fzgos) it = /:g(x) dr = /:g<s>ds

_ /t2 oty dt’ = /tz g(%) dk.

t1 ty

Note how the limits of integration remain the same in all integrals. The fact
that these limits use the same symbol as the first dummy variable should not
confuse the reader. What is important is that they are fixed real numbers.

3.2.2 Linearity

For arbitrary constant real numbers a and b, we have

/QMﬂﬂ+ﬁﬂﬂhﬁza/mfgﬁﬁ+bfﬁg@dt

3.2.3 Interchange of Limits

Interchanging the limits of integration introduces a minus sign:

d c
Af@ﬁ:—éfmﬁ. (3.7)

This relation implies that [ f(¢) dt = 0. (Show this implication!)

3.2.4 Partition of Range of Integration

If ¢ is a real number between the two limits, i.e., if p < ¢ < r, then
T q T
/f@ﬁ:/fmﬁ+/f@ﬁ. (3.8)
P P q

which is a special case of Equation (3.6). This property is used to evaluate
piecewise continuous functions, i.e., functions that have a finite number
of discontinuities in the interval of integration. For instance, suppose f(t) is
defined to be
filt) it p<t<aq,
f) =90 i a<t<g,
fg(t) if g<t<r,

where fi1(t), fa(t), and f3(¢) are, in general, totally unrelated (continuous)
functions. Then one divides the interval of integration into three natural
parts and writes

/prf(lt)dt:/pq1 f1(t)dt+/:2 fg(t)dtﬁ—/q:f?)(t)dt.
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J 5
fa

14 qi ] r

Figure 3.2: The integral is defined as long as there is only a finite number of disconti-
nuities (jumps) in the function.

This is illustrated in Figure 3.2.

3.2.5 Transformation of Integration Variable

When evaluating an integral it is sometimes convenient to use a new variable
of integration of which the old one is a function. Call the new integration
variable y and assume that ¢ = h(y). Then we have

b q
/ F(t) di = / F(h(w)) 1 (y) dy. (3.9)

where p and g are the solutions to the two equations

Each of these two equations must have a unique solution, otherwise, the trans-
formation of the integration variable will not be a valid procedure. This con-
dition puts restrictions on the type of function i can be. Note that we have
essentially substituted h(y) for ¢ in the original integral including the dif-
ferential h'(y)dy for dt. It is vital to remember to change the limits of
integration when transforming variables.

3.2.6 Small Region of Integration

When the region of integration is small, in the sense that the integrand does
not change much over the range of integration, then the integral can be ap-
proximated by the product of integrand and the size of the range.5 We thus
can write

b
/ F(tydt ~ (b—a)f(to). (3.10)

where ty is a number between a and b, mostly taken to be the midpoint of
the interval (a,b).

6This is simply a restatement of Equation (3.5) for the case of one variable.
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3.2.7 Integral and Absolute Value

A useful property of integrals that we shall be using sometimes is

/a " b dr

This should be clear once we realize that an integral is the limit of a sum and
the absolute value of a sum is always less than or equal to the sum of the
absolute values.

b
< / F(1)] dt. (3.11)

3.2.8 Symmetric Range of Integration

By a symmetric range of integration, we mean a range that has 0—the origin—
as its midpoint. For certain functions, partitioning such a range into two equal
pieces can simplify the evaluation of the integral considerably. So, let us write

+T 0 +T
f(t)dt = / F(t)dt + F(t) dt.
T -T 0

For the first integral, make a change of variable ¢t = —y to obtain
hy) = -y = W(y)dy=(-1)dy = —dy.
The limits of integration in y are determined by
h=T) = Yiower, (0) = Yupper = Yiower = +T, Yupper = 0.

We therefore have

0 0
/ fydt= [ f(—y)(—dy) =
Y +T

+T +T
f f

(—y) dy = (—t)dt,
where we have used the properties in Subsections 3.2.3 and 3.2.1. Combining
our results and using the second property, we get

+T +T +T

F(t)dt = (—tydt+ [ ft)dt
T 0 0

+T
= | v+ o (3.12)

A real-valued function f is called even if f(—z) = f(x), and odd if
f(=z) = —f(x). Thus, from Equation (3.12), we obtain

+T

+T +T
fode= [ f0+f)d=2 [ fod 613)
T 0

0

when f is even, and

+T

+T
foyde= [ 150+ F(-)de =0 (3.14)
T 0

when it is odd.
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3.2.9 Differentiating an Integral

We have seen that an integral can have an integrand which depends on a set of
parameters, and that the result of integration will depend on these parameters.
Thus, we can think of the integral as a function of those parameters, and in
particular, we may want to know its derivative with respect to one of the
parameters. Using the definition of integral as the limit of a sum, and the
fact that the derivative of a sum is the sum of derivatives, it is easy to show
that

o [ "o
('996»/ f(a:l,a:z,...,xn,t)dtzf 5x.f($1’$2""’x”’t)dt’ (3.15)

where we have represented the list of parameters as (x1,x2,...,x,). We can
write exactly the same relation for the integral of Equation (3.4). Assuming
that r = (z1,22,...,2,), we have

5
83:1- = 9z /frr dQ( r /8 (r,v")dQ( r'). (3.16)

In both cases the region of integration is assumed to be independent of ;.
Restricting ourselves to single integrals,” we now consider the case where
the limits of integration depend on some parameters. First, consider an inte-

gral of the form
/ ft)dt

and treat the result as a function of the limits. So, let us write
F(u,v) /f )dt = F(v,u) =—F(u,v)

and evaluate the partial derivative of F' with respect to its arguments:

oF F - F
= OF (1, 0) = llj% (u+ e,vz (u,v)
v u+te
o e f@a= [T @y de R e+ [ S dt
e—0 € e—0 €
u-+te
:_lg% fu ;]:(t)dt :_lii% 6f(€U()) :_1%,]0(7/00):_,]0(“)

The last equality follows from the fact that as € — 0, ug, lying between u and
u + €, will be squeezed to u. Note that the derivative above is independent of
the second variable. To find the other derivative, we use the result obtained
above and simply note that

OF (u,v)  OF(v,u) _ _ _
P T —01F(v,u) = —(—f(v)) = f(v).

7Since all multiple integrals are reducible to single integrals, this restriction is not severe.
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Putting these two results together, we can write

58” /uv ft)dt = f(v), 88” /uvf(t) dt = —f(u). (3.17)

In words,

Box 3.2.1. The derivative of an integral with respect to its upper (lower)
limit equals the integrand (minus the integrand) evaluated at the upper
(lower) limit.

By evaluation, we mean replacing the variable of integration. If the integrand
has parameters, they are to be left alone.

By combining Equations (3.15) and (3.17) we can derive the most general
equation. So, assume that both v and v are functions of (z1,z9,...,2,), and
write

(21,22, 5Tn)

G(xl,xg,...wn,u,v)z/ flai, e, ...z, t) dt.
u

(z1,22,...,Tx)

Then, using the chain rule. we get

oG Oou  90G v
D,G = 0;G
! Buaxi+(%8xi+l '
total derivative where D;G stands for the “total” derivative with respect to x;. This means

that the dependence of v and v on x; is taken into account. In contrast, 0;G
is evaluated assuming that u and v are constants. We note that

oG o [Y

oy = 5u/u flz1, 22, T, t) dt = —f(x1, T2, ..., Ty, 1),
oG 0 [V

o Bv/u [, mo, .o mn, t) dt = f(xr, 22,20, v),

v
oG o [Y v
= T1,22,...,Lpn,t)dt = T1,%2,...,%n,t)dt,
o = o [ foran ity = [ o)
where the partial derivative in the last equation treats v and v as constants.
It follows that

Box 3.2.2. The most general formula for the derivative of an integral is

a 'u(l‘) 31} au 'u(r) (9
o, [ SEde= g0 = S e [ s

where v = (x1,Ta, ..., Ty).

As indicated in Equation (2.16), it is common to ignore the difference between
D; and 0;; and the formula in Box 3.2.2 reflects this.



3.2 Properties of Integral

3.2.10 Fundamental Theorem of Calculus

A special case of Box 3.2.2 is extremely useful. Consider a function g of
a single variable . We want to find a function called the primitive, or
antiderivative, or indefinite integral® whose derivative is g. This can be
easily done using integrals. In fact using Box 3.2.2, we have

G(z) = /1 g(s)ds = Ccllf = dci: /rg(s) ds = g(x), (3.18)

where « is an arbitrary constant. We can add an arbitrary constant to the
RHS of the above equation and still get a primitive. Adding such a constant,
evaluating both sides at © = a, and noting that the integral vanishes, we find
that the constant must be G(a). We, therefore, obtain

G(z) — G(a) = /1 g(s) ds. (3.19)

Now suppose that F'(z) is any function whose derivative is g(z). Then,
from Equation (3.18), we see that

d dG  dF
g €@ —F@)]=", -

Therefore, G(x) — F(z) must be a constant C. It now follows from (3.19) that

=g(z) —g(z) = 0.

and we have

Box 3.2.3. (Fundamental Theorem of Calculus). Let F(x) be any
primitive of g(x) defined in the interval (a,b), i.e., any function whose
derivative is g(x) in that interval. Then,

b
F(b) — F(a) = / o(s) ds. (3.20)

The founders of calculus such as Barrow, Newton, and Leibniz thought of
an integral as a sum. At the beginning no connection between integration and
differentiation was established, and to obtain the result of an integral one
had to go through the painstaking process of adding the terms of a (infinite)
sum. It was later, that the founders of calculus realized (but did not prove)
that the process of summation and taking limits was intimately connected

8We would like to emphasize the concept of integral as the limit of a sum. Therefore,
we think it is better to reserve the word “integral” for such sums and will avoid using the
phrase “indefinite integral.”
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to the process of (anti) differentiation. In this respect, Equation (3.20) is
indeed a fundamental result, because it eliminates the cumbersome labor of
summation.
Another useful result is
G(z) — Gl(a) :/ o(s) ds :/ " (s)ds :/ iG. (3.21)

In words, the integral of the differential of a physical quantity is equal to the
quantity evaluated at the upper limit minus the quantity evaluated at the lower
limit.

Example 3.2.1. The properties mentioned above can be very useful in evaluating
some integrals. Consider the integral [ e~*"dt whose value is known to be V7 (see

Example 3.3.1). We want to use this information to obtain the integral [ 2e= dt.

First, we note that
o 42
/ e dt = \/ﬂ-.
o x

This can be shown readily by changing the variable of integration to u = y/z ¢ and
using the result of Example 3.3.1. Next, we differentiate both sides with respect to

x and use Box 3.2.2 with u = —o0 and v = co. We then get
g o —xt? o 0 —xt? o 2y —at?
LHS = dt = dt = —t dt
ox /_Ooe e 81:6 /_oo( Je

T 1/
o= 9482 for the RHS. So

/ t2e*rt2dt = \/71';373/2 (3.22)

for the LHS, and o \/
or

or, setting z = 1, [ e dt = \/27’.
We can obtain more general results. Differentiating both sides of Equation
(3.22), we obtain

e a2 _ 1-3 _
/_ et = e} 3a = vl S
Continuing the process n times, we obtain
< 1:3:5--(2n—1) _(an
/ 2re " gt = v 2n( " )1’ (2nt1)/2 (3.23)

In particular, if x = 1, we have

o 2, 1-3:5---(2n—1)
/ eV dt =/ on . -

—o0

Example 3.2.2. Integrals involving only trigonometric functions are easy to
evaluate:

b b
/ sintdt = —cost| = cosa — cosb,

a

b . .
=sinb — sin a.

a

b
/ costdt =sint




3.2 Properties of Integral

However, integrals of the form I = fab t" sintdt, in which n is a positive integer,
are not as easy to evaluate although they occur frequently in applications. One can
of course evaluate these integrals using integration by parts. But that is a tedious
process. A more direct method of evaluation is to use the ideas developed above.

A pair of slightly more complicated trigonometric integrals which will be useful
for our purposes is

cos sa — cos sb

I

b 1 b
/ sinstdt = — = cosst
o s

a

S

smsb—smsa. (3.24)

b b
1 .
/ cosstdt = = sin st
o s s

a

If we differentiate both sides with respect to s, we can obtain the integrals we are
after.® This is because each differentiation introduces one power of ¢ in the integrand.
For example if we are interested in I with n = 1, then we can differentiate the second
equation in (3.24):

d [ b g b
LHS:ds/a cosstdt:/a 83(COSSt)dt:_/a tsin st dt.

On the other hand,

RIS — 0 (smsb—smsa)
Os s

sin sb — sin sa + bcos sb — a cos sa

52 s

Setting s = 1 in these equations yields
b
/ tsintdt =sinb —sina — bcosb + acosa. (3.25)

We can also find the primitive of functions of the form z" sinx. All we need to
do is change b to x as suggested by Equation (3.18). For example, the primitive
(indefinite integral) of z sinz is obtained by substituting z for b in Equation (3.25):

/Isinxdm:sinx—sina—wcosw—i—acosa:sinw—Icosm—i—C

because —sina + acosa is simply a constant. ]

Historical Notes

After a lull of almost two millennia, the subject of “exhaustion,” like any other form
of human intellectual activity, was picked up after the Renaissance. Johannes Kepler
is reportedly the first one to begin work on finding areas, volumes, and centers of
gravity. He is said to have been attracted to such problems because he noted the
inaccuracy of methods used by wine dealers to find the volumes of their kegs.
Some of the results he obtained were the relations between areas and perimeters.
For example, by considering the area of a circle to be covered by an infinite number

of triangles, each with a vertex at the center, he shows that the area of a circle is é

9We can set s = 1 at the end if need be.
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its radius times its circumference. Similarly, he regarded the volume of a sphere as
the sum of a large number of small cones with vertices at the center. Since he knew
the volume of each cone to be ; its height times the area of its base, he concluded
that the volume of a sphere should be é its radius times the surface area.

Galileo used the same technique as Kepler to treat the uniformly accelerated
motion and essentially arrived at the formula x = éatQ. They both regarded an
area as the sum of infinitely many lines, and a volume as the sum of infinitely many
planes, without questioning the validity of manipulating infinities. Galileo regarded
a line as an indivisible element of area, and a plane as an indivisible element of
volume.

Influenced by the idea of “indivisibles,” Bonaventura Cavalieri, a pupil of
Galileo and professor in a lyceum in Bologna, took up the study of calculus upon
Galileo’s recommendation. He developed the ideas of Galileo and others on indivis-
ibles into a geometrical method and in 1635 published a book on the subject called
Geometry Advanced by a thus far Unknown Method, Indivisible of Continua.

Cavalieri joined the religious order Jesuati in Milan in 1615 while he was still
a boy. In 1616 he transferred to the Jesuati monastery in Pisa. His interest in
mathematics was stimulated by Euclid’s works and after meeting Galileo, considered
himself a disciple of the astronomer. The meeting with Galileo was set up by Car-
dinal Federico Borromeo who saw clearly the genius in Cavalieri while he was at the
monastery in Milan.

Cavalieri was largely responsible for introducing logarithms as a computational
tool in Italy. The tables of logarithms which he published included logarithms of
trigonometric functions for use by astronomers. Cavalieri also wrote on conic sec-
tions, trigonometry, optics, and astronomy. He showed by his methods of indivisibles
that, in the modern notation,

a n+1
/ e dr = °
0 n+1

for positive integral values of n up to 9.

The next important step in the development of integral calculus began when
the seventeenth-century mathematicians generalized the Greek method of exhaus-
tion. Whereas this method requires different rectilinear approximation for different
geometrical figures, the new generation of mathematicians approximated the area
under any curve by a large number of rectangles of equal width (much like it is
done today), summed up the areas, and neglected the “small corrections” in the
sum. Using essentially this kind of summation technique, Fermat showed the above
integral formula for all rational n except —1 before 1636.

Before Newton and Leibniz, the man who did most to replace the geometrical
techniques with analytical ones in calculus was John Wallis. Although he did
not begin to learn mathematics until he was about twenty, he became professor
of geometry at Oxford and the ablest British mathematician of the century, next
to Newton. One of Wallis’s notable results, obtained while he was trying to find
the area of a circle analytically, was a new formula for w. He calculated the area
bounded by the axes and the curves y = (1 — w2)" for n = 0,1,2,.... Then by
interpolation and further complicated reasoning he related the area of a unit circle
y = (1 — 2°)Y? to the previous areas and showed that

T 224.46.6.88...
2 1.3.3.5.5.7.79...
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3.3 Guidelines for Calculating Integrals

The number of situations in which integrals are used is unlimited, and we shall
see many examples of such usage in this chapter and throughout the book. Be-
fore embarking on specific examples, let us summarize some guidelines which
will be helpful in applying integrals in physical problems:

Make sure you understand what physical quantity you are trying to
calculate. Instead of searching randomly for formulas, think about the
problem and let it determine the formulas.

Determine which coordinate system is most suited for the problem.
Then place the origin and orient the axes in such a way that the prob-
lem takes the simplest form. Usually spherical coordinates are suited
for regions of integration which are symmetric about a single point. If
there is a natural “axis” associated with the problem, then cylindrical
coordinates are useful, and if the region of integration is in the shape of
a rectangular box, Cartesian coordinates may be most suitable. If there
is no obvious symmetry, then any one of the systems is just as good (or
just as bad).

Write down the local formula first, i.e., confine the problem to a small
region and write the formula, for instance, in terms of dQ(r’), dm(r’),
etc., then put the formula inside the integral. Do this in a coordinate-
independent way first. All physical laws are written with no reference
to a particular coordinate system, anyway.

Now express the formula in terms of the coordinates you have chosen.
When dealing with vector quantities, pay particular attention to unit
vectors whose directions depend on the integration point. They cannot
in general be taken out of the integral sign (see Section 3.3.2 for details).

Determine the limits of integration. In a typical situation, if you have
chosen a good coordinate system, placed the origin properly, and ori-
ented the axes nicely, then the limits of integration should be easy to
write.

Never take anything out of the integral unless you are absolutely sure
that it is independent of the integration variables. This is easily said,
but most often also easily forgotten.

Once you have evaluated the integrals and found the physical quantity
you are after, try to express your result in a coordinate-free language.
This is not, in general, easy, but in special circumstances you can im-
mediately guess the coordinate-free form of the result.

As a general rule—valid in all physical calculations—check your final
answer for correct dimensions. The dimension of the LHS must match
that of the RHS.
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3.3.1 Reduction to Single Integrals

Most integrals encountered in physics are multidimensional. Thus, it is impor-
tant to know how to evaluate multiple integrals. Let us concentrate on triple
integration, and for definiteness, let us assume that the integration variables
are actual coordinates in a Cartesian coordinate system.'® The most general
integral, namely Equation (3.4), will then be rewritten as

/ f(rr) dQ) = / 2y, ) Qe o, )
Q Q

- / / / ey 2 polal sy, ) da! dy d=,
\%

where we have reexpressed d@ in terms of some density. The region of integra-
tion V may have to be divided into a number of other more easily integrable
regions. However, in most applications, by a good choice of the order of inte-
gration, one can avoid such division. Let us assume that by integrating the
z' variable first, we will not need to divide the region. The 2z’ integration is a
single integral and is done by keeping z’ and ¥’ constant. To find the upper
limit of this integral, we pick an arbitrary point'! in the region, fix its first
two coordinates, move “up” until we hit the boundary of V' at a point. The
third coordinate of this boundary point, when expressed in terms of 2’ and
y’, will be the upper limit of the z’ integration. The lower limit is obtained
similarly. In most cases, V' is bounded by a given upper surface of the form
z = g(x,y), and a lower surface of the form z = h(z,y) as shown in Figure 3.3.

Figure 3.3: The limits of the first integration of a triple integral are defined by two
surfaces.

10Recall that the integration variables, although considered as “coordinates of a point,”
need not be an actual geometric point in space. They could, for instance, be a set of
thermodynamical variables describing a thermodynamical system.

1A common mistake at this stage is to pick a special point. To make sure that you have
picked an arbitrary point, go through the following process using the point chosen, then
pick a different point, go through the process and see if you obtain the same result for the
upper and lower limits of the integral.
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Thus, since the first two coordinates of the boundary points are =’ and 3/,
the upper limit will be g(2’,y’) and the lower limit will be h(2’,y’). We thus
write the integral as

g(z"y")
/frr dQ(r //dw dy/ fr,2' o' 2 o2,y 2') dz'
h(z’,y")

where S is the projection of V on the zy-plane. For S to be useful, it must
have the following property: Every point of the upper and lower boundaries of
V has one and only one image in .S, and no two points of the upper (or lower)
boundary project onto the same point in S. If this property is not fulfilled,
then we must choose another coordinate as our first integration variable, or,
if this does not work, divide the region of integration into pieces for each one
of which this property holds.

Let us assume that the property holds for S, and that we can do the
integral in 2’. The result of this integration is a complete elimination of the
z'-coordinate and the reduction of the triple integral down to a double integral.
To be more specific, assume that the primitive of the integrand, as a function
of 2/, is F(r,2,y', 2'), i.e., that

oOF
3Z,==f03nyCZUpQ(nyC23.

Then, the 2’ integration yields

g(z’y")
/ fa sy, )pola sy, ) d='
h

(z',y")
=F(r,2’,y,9(2",y) — F(r,2', ¢, h(z',y)) = G(r,2',y),

where the last line defines G. The triple integration has now been reduced to
a double integral, and we have

/frr dQ(r //dwdyG 2.

We follow the same procedure as above to do the double integral. Once
again, the region of integration S may have to be divided into a number of
other more easily integrable regions. However, let us assume that by inte-
grating the z’ variable first, we will not need to divide the region. The z’
integration is again a single integral and is done by keeping y’ constant. To
find the upper limit of this integral, we pick an arbitrary point in S, fix its
second coordinate, and move “to the right” until we hit the boundary of S at
a point. The first coordinate of this boundary point, when expressed in terms
of 3/, will be the upper limit of the 2’ integration. The lower limit is obtained
by “moving to the left.” Once again, in most cases, S is bounded by a given
upper curve of the form = = v(y), and a lower curve of the form x = u(y) (see
Figure 3.4). Thus, since the second coordinate of both boundary points is ¢/,
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(x71y")

v(y)

Figure 3.4: The limits of the second integration of a triple integral are defined by two
curves.

the upper limit will be v(y’) and the lower limit will be u(y’). We thus write

the integral as
/frrdQ /dy/ dr' G(r,2',y'),
u(y’)

where I is the projection of S on the y-axis. For I to be useful, it must have
the same property as S, namely: Every point of the right and left boundaries
of S has one and only one image in I, and no two points of the right (or left)
boundary project onto the same point in I. If this property is not fulfilled,
then we must choose y’ as our first integration variable, or, if this does not
work, divide the region of integration into pieces for each one of which this
property holds. Assuming that I satisfies this property, and that the primitive
of the integrand, as a function of 2/, is W (r,2’,y’), i.e, that

ow
8xl = G(r7 x/a y/)a

we get

v(y")
/ G(r,2',y')da" = W(r,o(y'),y") = W(r,uly).y') = H(r,y),
u(y’)

where the last line defines H. The triple integration has now been reduced to
a single integral, and we have

/frrdQ /Hrydy—/Hrydy,

where a and b are the end points of the interval I.

Sometimes the inverse of the foregoing operation is useful whereby a single
integral is turned into a multiple integral. This happens when the integrand
is given in terms of an integral. To be specific, suppose in the integral
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= /:gcr) dz,

o) = [ w0y,

where u and v could be functions of z. Then, the original integral can be

written as
b v b pv
I:/ {/ h(x,t)dt} dx:// h(z,t)dt dx.

Example 3.3.1. A historical example of this inverse operation is the evaluation

of the integral
1= / e da.
0

As the reader attempting to solve this integral will soon find out, it is impossible to
find a primitive of the integrand. However, with

12:/ efrzdx/ Y dy—/ / e v’ _dxdy
\0 ~ -\

—e— (12+y2)

g(x) is given by

=1
we end up with an integration over the first quadrant of the xy-plane which opens up
the possibility of using other coordinate systems. In polar coordinates, the integrand
becomes e~ and the Cartesian element of area dz dy becomes the element of area
in polar coordinates, namely rdrdf. The limits of integration correspond to the
first quadrant, with the range of @ being from 0 to w/2 and that of r being from 0
to infinity. This leads to

/2 oo 2 /2 oo 2
:/ / e " rdrdf :/ d9/ e " rdr.
0 0 0 0

N~ o~ I ~ -
=m/2 1 2‘00
0

=—_e T

2

This shows that 1% = /4 and, therefore, I = \/m/2. The reader may verify that
/ e dr = VT (3.26)

by either invoking the evenness of the integrand or starting from scratch as done
above. |

3.3.2 Components of Integrals of Vector Functions

Many calculations involve an integrand which is a vector and whose integra-
tion also leads to a vector. Let us write this as

r) :/Q A(r,r')dQ(r")

:/Q[Al(r, r')e;(r') + Az (r,v')ex(r') + As(r,r’)és(r’)] dQ(x'),
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where Ay, Ao, and A3 are the components of the vector A along the mutually
perpendicular unit vectors &1, &, and &3, respectively.'? Note that these unit
vectors are, in general, functions of the variables of integration, and that

Box 3.3.1. The geometry of the distribution of the source determines the
most convenient variables of integration (coordinate variables).

To find the component of F(r) along any unit vector &,, one simply takes
the dot product of F(r) with &,. Thus,

F,(r)=é, -F(r)=¢, /g} A(r,r")dQ(r") :/Q[éa “A(r,r')]dQ(x")
E/Q[Al(hr')fl(r/) + Ag(r,v") fo(r') + Az(r,x') f3(r')] dQ(x"), (3.27)

where f1(r') = &, - €1, fa(r)) = &, - &2, and f3(r') = &, - €3. Once these dot
products are expressed in terms of the variables of integration, the integral
becomes an ordinary integral which, in principle, can be performed using the
guidelines above.

Box 3.3.2. In practice, &, is one of the unit vectors of some convenient
coordinate system which need not be the same as the coordinate system
used for integration.

For example, one may be interested in the Cartesian components of the grav-
itational field of a spherical distribution of mass. In that case, one uses spher-
ical coordinates for integration and the unit vectors inside the integral, and
€, &y, or &, for &,. We shall illustrate this point extensively with numerous
examples scattered throughout this chapter.

Historical Notes

By the time Newton entered the scene, an immense amount of knowledge of calculus
had accumulated. In his book Lectiones Geometricae, Barrow, for example, shows
a method of finding tangents, theorems on the differentiation of products and quo-
tients of functions, change of variables in a definite integral, and even differentiation
of implicit functions. So, why, one may wonder, is the word “calculus” so much
attached to Newton and Leibniz? The answer is in these two men’s recognition of
the generality of the methods of calculus, and, more importantly, their emphasis on
the newly discovered analytic geometry.

Isaac Newton was born in the hamlet of Woolsthorpe, England, two months
after his father’s death. His mother, in need of help for the management of the fam-
ily farm, wanted Isaac to pursue a farming career. However, Isaac’s uncle persuaded
him to enter Trinity College, Cambridge University. Newton took the entrance exam

12These unit vectors are usually those of a convenient coordinate system.
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and was accepted to the College in 1661 with a deficiency in Euclidean geometry.
Apparently receiving very little stimulation from his teachers, except possibly Bar-
row, he studied Descartes’s Géométrie, as well as the works of Copernicus, Kepler,
Galileo, Wallis, and Barrow, by himself.

Upon his graduation, Newton had to leave Cambridge due to the widespread
plague in the London area to spend the next eighteen months, during 1665 and
1666, in the quiet of his family farm at Woolsthorpe. These eighteen months were
the most productive of his (as well as any other scientist’s) life. In his own words:

In the beginning of 1665 I found the ...rule for reducing any dignity
[power] of binomial to a series.!® The same year, in May, I found the method
of tangents ...and in November the direct method of Fluxions [the elements
of what is now called differential calculus|, and the next year in January had
the theory of Colours, and in May following I had entrance into the inverse
method of Fluxions [integral calculus|, and in the same year I began to think
of gravity extending to the orb of the Moon ...and ...compared the force
requisite to keep the Moon in her orb with the force of gravity at the surface
of the Earth.

Newton spent the rest of his scientific life developing and refining the ideas
conceived at his family farm. At the age of 26 he became the second Lucasian
professor of mathematics at Cambridge replacing Isaac Barrow who stepped aside
in favor of Newton. At 30 he was elected a Fellow of the Royal Society, the highest
scientific honor in England.

Newton often worked until early morning, kept forgetting to eat his meals, and
when he appeared, once in a while, in the dining hall of the college, his shoes
were down at the heels, stockings untied, and his hair scarcely combed. Being
always absorbed in his thoughts, he was very naive and impractical concerning
daily routines. It is said that once he made a hole in the door of his house for his
cat to come in and out. When the cat had kittens, he added some smaller holes in
the door!

Newton did not have a pleasant personality, and was often involved in contro-
versy with his colleagues. He quarreled bitterly with Robert Hooke (founder of the
theory of elasticity and the discoverer of Hooke’s law) concerning his theory of color
as well as priority in the discovery of the universal law of gravitation. He was also
involved in another priority squabble with the German mathematician Gottfried Leib-
niz over the development of calculus. With Christian Huygens, the Dutch physicist,
he got into an argument over the theory of light. Astronomer John Flamsteed, who
was hardly on speaking terms with Newton, described him as “insidious, ambitious,
excessively covetous of praise, and impatient of contradictions ...a good man at the
bottom but, through his nature, suspicious.”

De Morgan says that “a morbid fear of opposition from others ruled his whole
life.” Because of this fear of criticism, Newton hesitated to publish his works.
When in 1672 he did publish his theory of light and his philosophy of science, he
was criticized by his contemporaries. Newton decided not to publish in the future,
a decision that had to be abandoned frequently.

His theory of gravity, although germinated in 1665 under the influence of works
by Hooke and Huygens, was not published until much later, partly because of his
fear of criticism. Another reason for this hesitance in publishing this result was his

13Newton is talking about the binomial theorem here.

Isaac Newton
1642-1727
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lack of proof that the gravitational attraction of a solid sphere acts as if the sphere’s
map were concentrated at the center. So, when his friend Edmund Halley urged
him in 1684 to publish his results, he refused. However, in 1685 he showed that
a sphere whose density varies only with distance to the center does in fact attract
particles as though its mass were concentrated at the center, and agreed to write up
his work. Halley then assisted Newton editorially and paid for the publication. The
first edition of Philosophiae Naturalis Principia Mathematica appeared in 1687, and
the Newtonian age began.

3.4 Problems

3.1. Use Equation (3.7) to show that [ f(t)dt = 0.

3.2. In Equation (3.8), it was assumed that p < ¢ < r. Show that the
equation holds even if ¢ is not between p and r.

3.3. For each of the following integrals make the given change of variables:

(a) [otdt, t=y (b) fy 2., t=tany, 0<y < 7/2.
1 at _ oo tdt 1
(C) 0 1+t? t_lny (d) 1 1430 t_ Yy

3.4. By a suitable change of variables, show the following integral identities:

0o /2 00 1
(a) f_oo (a2+”i’;)3/2 - :122 0/ costdt. (b) fo (litt)2 = fO dt.
3.5. If
sin(wz) 4 | )
oa) = [ foosrlt )y e AN ] g,
r2—1
find ¢'(1).

3.6. Suppose that F(z) = Ocosme””tzdt, G(z) = Ocosthe””tzdt, and H(z) =
G(z) — F'(z). Find H(z) in terms of elementary functions. Show that
H(r/4) = e™/8 /2.

3.7. Suppose that F(z) = fosmm In(cos? z + 2 + 1) dt, G(z) = Osmm(cos2 x +
t2 +1)71dt, and H(z) = F'(x) + 2sinzcoszG(x). Find H(z) in terms of
elementary functions. Show that H(7/3) =1n2/2.

3.8. Evaluate the derivative of the following integrals with respect to = at
the given values of z:

(a) [y e dt at z=1. (b) [“,costdt at x=m.

(c) f_\égos(r/g) e dt at x=m. (d) foﬁ cos (v/s) ds at x=m.



3.4 Problems

3.9. Find the numerical value of the derivative of the following two integrals
atz =1:

(a) [ e =2, (b) f12+a_1sin[ moe ] dt.

0 a 2¢—(z2+a—1)2

3.10. Write the derivatives with respect to x of the following integrals in
terms of other integrals. Do not try to evaluate the integrals.

a) f: In(1 + sx) ds. (b) f: a2 (c) fol V2 + a? — 2az cost dt.
3.11. Differentiate [~°_dt/(z + t*) = 7/\/z with respect to z to show that
(@) ST iz =5 (0) 7 e =
3.12. Using the method of Example 3.2.2, find the following integrals:
a) [Pt2sintdt.  (b) [C#3sintdt.  (c) [ tisintdt.
) f; t? cost dt. (e) f; t3 cost dt. (f) f: t* cost dt.

In each case calculate the primitive of the integrand and verify your answer
by differentiating the primitive.

3.13. Find the integral

I‘(n—|—1):/ t"e tdt
0

oo
/ e~ dt
0

and then differentiating the result n times, and setting x = 1 at the end. Can
you see why I'(n + 1) is called the factorial function?

by first evaluating the integral

3.14. Sketch each of the following integrands to decide whether the approxi-
mation to the integral is good or not.

(a) f0110+t2N002 (b) f010001+t2N200
(c) ffb.l cos(bmz) dx ~ 0.2. (d) Ebl‘l cos 75 dx = 0.2.
(e) O, e 10 gt ~ 0.2, (f) [, e /100t ~ 0.2,

3.15. Show that if a function is even (odd), then its derivative is odd (even).

3.16. Use the result of Example 3.3.1 to show that

/ e~ dt = \/W.
o x
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3.17. By differentiating the electrostatic potential

B(r) :/Q ke dg(r')

v — /|

with respect to z, y, and z, and assuming that €2 is independent of z, y, and
z, show that the electric field

B(r) :/Q ke dg(r') )

v —r/|3

can be written as



Chapter 4

Integration: Applications

The preceding chapter introduced integration and dealt with its formal as-
pects. It also gave some general guidelines concerning the calculation and
manipulation of integrals, in particular how to reduce the process of multiple
integration to a number of single integrations. In this chapter, we apply the
formalism of the previous chapter to concrete examples.

4.1 Single Integrals

This section is devoted to the simple but important case of single integrals
with examples from mechanics, electrostatics and gravity, and magnetostatics.
Generally, we encounter problems which are defined and set up in a single
dimension leading to integrals that have a single variable to be integrated.

4.1.1 An Example from Mechanics

In our discussion of primitive, Equation (3.18) clearly shows that integration
can be interpreted as the inverse of differentiation. Thus, if we know the
functional form of the derivative of a quantity, we should be able to express
the quantity in terms of an integral.

Velocity is the derivative of displacement. So, we seek to write displace-
ment in terms of an integral of velocity. This is easily done as follows:!

dr ) = dr
=v
dt ds

Integrating both sides from 0 to ¢, we get

/OthZ/OtV(S)ds = r(t)—roz/otv(s)ds, (4.1)

where ro = r(0), and we used Equation (3.21).

=v(s) = dr=v(s)ds.

1 As cautioned below, we change t to s because we anticipate using t as the upper limit
of the integral.
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There is an alternative derivation of the last formula which relies directly
on the definition of integral. Since the velocity of the particle is changing,
we cannot find the displacement by simple multiplication with time. How-
ever, if we divide the time interval (from 0 to ¢) into N small subintervals,
and concentrate on the motion of the particle in each subinterval, then each
displacement can be approximated by the product of velocity and the small
time-interval, and the total displacement r(t) — ro will be simply the sum of
all such displacements. This is summarized as

N
r(t) —ro = Z v(s;) As;
i=1
which, in the limit of larger and larger IV, gives

r(t) —ro= /Otv(s) ds.

Notice how careful we have been to avoid using the same variable for
integration as well as the limit of integration. This is a practice the reader
should constantly keep in mind. As a rule

Box 4.1.1. (Caution!). Never use the same symbol for the variable of
an integral and its limits, or of an integral and of another integral of which
the first integral is the integrand.

The following example is a good illustration of the significance of the concept
of an integral and the rule in the Box above.

Example 4.1.1. In mechanics, Newton’s second law places special importance
on acceleration,? and a knowledge of acceleration is normally sufficient to solve a
mechanical problem, i.e., find displacement as a function of time. A particular
example of this situation is when acceleration is known as a function of time, in
which case we can immediately find the velocity in exact analogy with Equation
(4.1). We thus have

v(t) —vo = /Ot a(s)ds = v(t) =vo+ /Ot a(s)ds.

Notice how the argument of v is the same as the upper limit of integration. Now that
we have velocity, we can substitute it in Equation (4.1) to find the displacement.

This gives
t s
r(t) —ro :/ {vo —|—/ a(u) du} ds
0 0

t s
r(t) =ro + vot + / ds/ a(u) du.
0 0

or

2Because the second law of motion connects acceleration and the cause of motion, force.
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line s=u

Figure 4.1: The region of integration for calculating position as a double integral.

In the double integral, it is understood that the wu-integration is to be done first,
followed by the s-integration. As the last double integral suggests, the region of
integration, in the us-plane, is a right triangle bounded by the vertical axis (the s-
axis, or u = 0), the line uw = s, and the horizontal line s = ¢ as shown in Figure 4.1.
It is convenient, in this case, to change the order of integration. The lower limit of
the s-integral—the first integration—is v and the upper limit is ¢. Once this integral
is done, the u-integral goes from 0 to ¢, as can easily be verified. We, therefore, have

t t t t
r(t) =ro + vot + / du/ a(u)ds =ro + vot +/ a(u) du / ds (4.2)
0 u 0 u
t

t t
:ro—|—v0t+/ a(u)(t—u)du:ro+vot+t/ a(u)du—/ uva(u) du.
0 0 0

It is instructive for the reader to show that the first derivative of this expression
gives the velocity and the second derivative the acceleration. [ ]

Historical Notes

Two men are credited with the invention of calculus, Newton and Leibniz. Of course,
as we have seen, the “invention” of calculus was a long process involving many gen-
erations of mathematicians. Nevertheless, Newton and Leibniz made great contri-
butions to the subject and gave it a prominent role in the subsequent evolution of
mathematical thought.

Gottfried Wilhelm Leibniz studied law and, after defending a thesis in logic,
received a Bachelor of Philosophy degree. He wrote a second thesis on a universal
method of reasoning in 1666 which completed his work for a doctorate in philoso-
phy at the University of Altdorf and qualified him for a professorship. During the
years 1670 and 1671, Leibniz wrote his first papers on mechanics and produced his
calculating machine.

Leibniz was also involved in the politics of his time. In March, 1672, he went to
Paris on a political mission as an ambassador of the Elector of Mainz. While in Paris,
he made contact with notable mathematicians and scientists including Huygens. This
stirred up his interest in mathematics, a subject that he knew nothing about prior
to 1672. In 1673 he went to London and met other scientists and mathematicians
including the secretary of the Royal Society of London.

While making his living as a diplomat, he delved further into mathematics and
read Descartes and Pascal. In 1676 Leibniz was appointed librarian and councilor to
the Elector of Hanover. Twenty-four years later the Elector of Brandenburg invited
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Leibniz to work for him in Berlin. While involved in many political maneuvers,
including the succession of George Ludwig of Hanover to the English throne, Leibniz
worked in many fields and his side activities encompassed an enormous range. He
died in 1716, undeservedly neglected.

In addition to being a diplomat, Leibniz was a philosopher, lawyer, historian,
and pioneer geologist. He did important work in logic, mathematics, optics, me-
chanics, hydrostatics, nautical science, and calculating machines. Although law was
his profession, his contributions to mathematics and philosophy are among the best.
He tried endlessly to reconcile the Catholic and Protestant faiths. He founded the
Berlin Academy in 1700. He criticized the universities for being “monkish” and
charged that they possessed learning but no judgment and were absorbed in trifles.
Instead he urged that true knowledge—mathematics, physics, chemistry, anatomy,
botany, zoology, history, and geography be pursued. He favored the German lan-
guage over Latin because Latin was tied to the older, useless thought. Men mask
their ignorance, he said, by using the Latin language to impress people.

His numerous mathematical notes on differentiation and integration is full of
novel ideas. His notations were quite ingenious: He introduced the notation dy/dz
for the derivative and [ for the integral. He recognized the operations of integration
and differentiation as the inverse of one another.

4.1.2 Examples from Electrostatics and Gravity

In electrostatics or magnetostatics, one is sometimes interested in calculating
the electric or magnetic field of a linear charge or current distribution. In
electrostatics, one can imagine sprinkling electric charges on a thin piece of
string and asking for the electric field of the charge distribution. In magne-
tostatics, one flows an electric current through a thin wire and asks for the
resulting magnetic field. In general, the string or the wire, being a curve in
space, has a parametric equation given, in Cartesian coordinates say, by
(f(t),9(t),h(t)), where f, g, and h are known functions of the parameter t.
The problems of gravity are entirely analogous to those of electrostatics. The
master equation of electrostatocs is Equation (3.3) which we reproduce here
for convenience:

[ Redat) [ heda(e)
E_/Q (r—1), cp_/Q (4.3)

v — /|3 r—1/|

Cartesian Coordinates

Let us assume that Cartesian coordinates are suitable for the problem, and we
want to calculate the electrostatic field at a point P with coordinates (z,y, z)
as shown in Figure 4.2. We reduce the integrals in Equation (4.3) to single
integrals by calculating their various parts entirely in terms of ¢. First we
note that the source point P’ lies on the curve, and therefore, its coordinates
(z',y',2") are functions of t. Since we are using Cartesian coordinates, the
components of the position vector of P’ are the same as the source point’s
coordinates. Therefore, v’ = 2'é, +y'é, + 2'é. = (2, y, 2').
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Figure 4.2: Electrostatic field of a general linear charge distribution.

The element of charge
dq(x') = A(r') di(x') = A(x')\/(da')? + (dy')? + (d=')?
turns into a function of ¢ (times dt) after the substitutions:
o’ = f(t), y' =g, 2" =ht),
da’ = f'(t)dt, dy' =g'(t)dt, dz' =N (t)dt.

Similarly,
r—r =ué, +ye, + 26, —a'e, —y'e, — e,
=@x—-a)e,+(y—v)e, +(z—2")e,
and
vl =@ =)+ -y - )

r—r'|? = [(x —aV gy —y) + (y - y’ﬂ v

(4.5)

(4.6)

Substituting all the above in Equation (4.3) yields an integral in ¢ for E and
another integral in ¢ for ®. The limits of these integrals are determined from
the parametric equation of the curve describing the linear charge distribution.

As a general rule, in order to find the components of the field along a unit
vector, we use Box 1.1.2, i.e., we take the dot product of the field with that
unit vector. This involves taking the dot product of the integrand with the
unit vector. In the case of Cartesian unit vectors, this procedure simply picks
out the integral multiplying one of the unit vectors. For other coordinate

systems, this is not the case, as we shall see shortly.

Box 4.1.2. Although the geometry of the source (charge distribution) may
dictate a particular coordinate system, the components of the field can be

calculated in any coordinate system desired.
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Thus, by multiplying the integrand by €,, &,, and &, and expressing the dot
products &, - €;, €, - &,, etc., in terms of Cartesian coordinates, we can obtain
E,, E,, and E, as integrals over ¢t. A similar derivation gives the electric
potential ® as an integral over ¢. Although a formula can be obtained for the
components of the electric field for a general curve (see Problem 4.3), it is
best to learn the formalism by an example.

Example 4.1.2. The simplest example of the general discussion above is a thin
rod of length L that is uniformly charged with constant linear density A. We want
to find the electric field and the electrostatic potential at an arbitrary point P in
space, as shown in Figure 4.3(a).

As discussed at the beginning of this section, it pays to choose one’s coordinates
wisely. Clearly, the rod defines an axis naturally. So, let us choose our z-axis to lie
along the rod. Once this is done, we are free to move the origin up and down, and
orient the z- and y-axes. Let us use this freedom to put the field (or observation)
point P on the z-axis. We then have a situation depicted in Figure 4.3(b).

To continue, we need the parametric equation of the rod. Clearly, the 2’ and
y’ parts have the (unique) “parameterization” 2’ = 0 and y’ = 0. There are many
ways to parameterize the 2’ part of the curve. However, in situations involving only
one coordinate, it is most natural to set that coordinate equal to the parameter t.
So, we choose the following simple parameterization:

=0,y =0 2=t,a<t<a+L=b
Substituting this and r = zé, in Equations (4.5) and (4.6) yields
r—r =xé&, — te,,

as well as [r — r'| = Va2 + 12 and v — v'|* = (2 + £7)*/%.
Putting all this in Equation (4.3) yields

b
keAdt R R
E(z,y,2) = / (22 + 12)3/2 (€, —tez)dt (4.7)

(a) (b)

Figure 4.3: Electrostatic field of a uniformly charged rod of length L. (a) The point
P and the rod, and (b) a convenient Cartesian coordinate system for the calculation of
the field. The figure assumes a negative .
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To find the components of the field in any coordinate system, dot-multiply Equation
(4.7) by the unit vectors of that coordinate system. For Cartesian components,
E, = E - &, which picks the term multiplying é, in (4.7); E, = E - &,, which is
zero; E, = E - é., which picks the term multiplying é. in (4.7). Thus,

b
dt ke b a
E, = keA = - ,
m/a (z2 +12)3/2 =z (\/12 +b2 Va?+ a2)

E, =0, (4.8)
b
tdt 1 1
E. = —keA = —keA — .
_/a (22 4 12)3/2 (\/$2+a2 \/x2+62)
It is instructive to consider special cases of these formulas, such as when a = —L/2

and b = +L/2 (especially when L is large compared to x), which may be more
familiar to the reader. We leave such considerations as exercises.

The electrostatic potential can be obtained similarly. From Equation (4.3), we
get

b

b
LN
Blmy,2) = /a (22 +t2)1/2 dt = ke An(t + /a2 + 12)

2 2
:ke/\ln(b+\/x +b )
a+ V2 + a?

a

Cylindrical Coordinates

For cylindrical coordinates the components of the position vector of P’ are
not the same as the coordinates of P'. In fact, v’ = p'é, + 2'e..

Various parts of the “master” equation (4.3) [or (3.3)] can be calculated
as before—this time, of course, in cylindrical coordinates—and the results
substituted in it to arrive at the expression for E entirely in terms of ¢t. Thus

dg(x') = A(x') di(r') = A(')/(dp)? + pP(de 2 + (d=')2,  (4.9)
where use has been made of Equation (2.29). Similarly, we have
r—r =peé,+ze, —pé,—ze, =pe,—pe,+(z—2)e, (4.10)
which leads to the absolute value
P = -r) c-r)
= /108y — ey + (= — 2] [pe, — p'ey + (= — )]

Carrying out the dot product and keeping in mind that &, and €, are neither
the same nor perpendicular to each other, but make the two different angles
¢ and ¢’ with the z-axis, we obtain

r—r'| = \/p2 + 0= 2pp/ cos(p — ') + (2 = 2)2,

|r—r'|3={p2+p’2—2pplcos(go—g0')—1—(2—2’)2}3/2.
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Putting everything together, we obtain

. / k) ()2 + p2(d!)? + (d2)?
Q {p2+p2 —2pp'cos(p—¢') + (2 — z’)2}3/2
x (pe, — p'éy + (z — 2')e.). (4.11)
To find components in any coordinate system, use Box 1.1.2 and take the dot

product of Equation (4.11) with the appropriate unit vectors. The electro-
static potential is derived in a similar way.

Example 4.1.3. Let us reconsider the example of a rod. Obviously we should
choose our z-axis along the rod. We further move the origin so that P ends up in the
zy-plane (see Figure 4.4). This will reduce r to pé&,. The simplest parameterization

of the rod is
P =0 2=t a<t<a+L=0

We note that ¢’ is undefined. This poses no problem because, as will be seen below,
it will drop out of the equations. Putting these in Equation (4.11) we obtain

V(0)2 + (0)(de)? + (d2")?
o {p?+ (0)% — 2p(0) cos(p — ¢’) + (0 — 2")2}3/2
x [pe, + (0)&, + (0 — 2")é.] (4.12)
b dt . .
R AR

To find the components of the electric field, take the dot product of one of the
unit vectors of a coordinate system and Equation (4.12). For the p component, we
have

E = kA

b dt ) N
[ o ey oo —1ee) -2,
t

E,=E-&, = ko\
p2 +t2
b d
= keA €, €, —te, e 4.13
\/a (p2 +t2)3/2 (P(jpveg S veg) ( )
=1 =0

b dt ke b a
=kedp a2 = — :
o (PP +1%) PV /PPt a

2~

a8 —+— ~—

Figure 4.4: Electrostatic field of a uniformly charged rod of length L in cylindrical
coordinates. The figure assumes a negative \.
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for the ¢ component, we obtin

E,=E- ewfk:)\/ +t23/2(p tez)-éw
= ke €, €, —te, - =0. 4.14
/a (02+t2)‘°’/2(p~e NN (0
=0 =0

Note how the dependence on ¢ has completely disappeared because of the azimuthal
symmetry of the rod. Finally the z component is

E-E-e—kn[ U 6, — t6.) - é
R AP T (pey —te:) - &
=k )\/b di (pe,-e.—teé. &) (4.15)
e 24 42\3/2\0 P TR TR )
a (p?+1°) ~ ~

— /" tdt 1
“Ja (p? +12)%/? ‘ VR b \/p? +a?
The electrostatic potential ® can be calculated similarly.

We can also find the components in Cartesian coordinates by dot-multiplying
Equation (4.12) with Cartesian unit vectors. For example,

=E- esz:)\/ +t2 3/Q(pép—téz).écc

dt
= ke )\/ (p )3/2(pe,J er—tez el)

~ a7

=cos ¢ =0

ok )\pcosgo/b dt _ keAcosy b B a
R A N R

E, will be the same except that instead of cos it will have sing, and E, will
be identical to the E. of Equation (4.15). When ¢ = 0, we recover the result of
Example 4.1.2, because p = x when ¢ = 0. u

All the foregoing derivations in electrostatics can be applied almost ver-
batim to the theory of gravitation. The only difference is the appearance of
G instead of k. and the interpretation of A as linear mass density.

4.1.3 Examples from Magnetostatics

Probably the most realistic physical application of single integrals appears in
the calculation of magnetic fields of currents in (thin) wires. Before looking
at examples, let us briefly review magnetism.

We already mentioned in Chapter 1 that the magnetic field of N (slowly)
moving point charges is given by3

kaVk >< I‘ - I‘k)

B=
| r—rg3

(4.16)

3«Slow” compared to the speed of light which is 3 x 10® m/s.
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(b)

Figure 4.5: Magnetic field of a moving charge distribution. (a) All charges in motion
with a “sample” singled out. The vectors show the velocities of some of the charges in
the sample. (b) The sample is described by a charge Ag; and an average velocity v;.

In a typical situation, N is of the order of 10?® or more. So, instead of
adding all the terms individually, we lump together those that are close to
one another, i.e., in a small region, and subsequently describe the situation
by a current density (see Figure 4.5). This boils down to writing Equation
(4.16) as

kmAq Vv (I‘ - T )
B ~ iV i
Z Ir — 1|3
where Ag; is the amount of charge in the jth region, v; is the average velocity
of all charges in the jth region, and r; is the position vector of the “center”
of the jth region. We can rewrite the equation above as

B ~ Z Aqra v(ry)] < (r—rj;)

v —r;|3

In the limit that M — oo and Ag — 0, we obtain

Box 4.1.3. The magnetic field of a moving charge distribution is given
by
da(r’ / ]
B(r) = km/ a(rv(r’) x (r =) (4.17)
Q

v — /|3

This is the most general form of the Biot—Savart law.

The product of the element of charge and velocity appearing in the equa-
tion is related to the various forms of current we may encounter. These are
described below:

volume current density: dq(r')v(r’) = p(r')v(r') dV (') = J(x') dV (r'),
~ -~ -
=J(r')
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surface current density: dq(r')v(r’) = o(r')v(r') da(r’) = j(r') da(r’),
~ ~ -
(')

linear current density: dq(r')v(r’) = \r')v(r') di(x') = I(x') di(x').
~ -~ -
=I(r’)

The volume current density J(r’) describes a situation in which charges are
free to move in all directions. The surface current density j(r’) is used when
charges are confined to a surface. The most familiar current density is the
linear current density which is usually rewritten as

I(r') di(r') = Idi{r') = Idr'.

This follows from the fact that I(r’) is in the same direction as the velocity
(at r’') which, since charges are confined to a curve (the wire), has the same
direction as the (infinitesimal) tangent displacement along the wire, namely
dr’.
We are particularly interested in the linear case as shown in Figure 4.6.
Thus, assuming that the current I is constant—it has to be due to charge Biot-Savart law
conservation—we obtain for circuits

Box 4.1.4. The general expression for the magnetic field of a circuit is
given by

dr’ x (r —1’)

4.1
|r—r/]3 (4.18)

B(r) = kmfy(

where the circle on the integral sign implies a closed loop.

This equation is independent of any coordinate systems. We now specialize
to Cartesian and cylindrical systems.

X

Figure 4.6: A general current filament described parametrically and used to calculate
the magnetic field in Cartesian coordinates.
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Cartesian Coordinates
To obtain the magnetic field we substitute

r=xé, +yé, + z€,,
' =d'é, +y'e, +7e,,
dr' = é,dx’ + e,dy’ + é.dz’',
r—r'=(z—a)e.+ (y—y)e, + (z — 2')e.,
3/2
|I' _ I_/|3 _ |:($ _ 213/)2 + (y - y/)? + (Z - Z/)2:|
in Equation (4.18). For the cross product, we need to expand the determinant

& 8, &
dr’ x (r — ') = det dx’ dy’ dz' ,

z—x y—y z-2

using Figure 1.5.

Cylindrical Coordinates

The cylindrical coordinates can be handled in exact analogy with the Carte-
sian case. Using Equations (1.19) and (2.28), we have

r=pe,+ zé,, ' =pe, +7e,,
r—r' =peé,—pé,y+ (2 —72)e., (4.19)
dr' = e, dp' + éyp'de’ + é.d7,
o 2P = {0* + % — 2pp cos(io — ) + (= — )}

The cross product cannot be done using determinants because not everything
is written in terms of the three mutually perpendicular unit vectors: &, is
different from €, but not perpendicular to it. In fact, this difference is the
cause for the appearance of the cosine term in the last equation of (4.19). To
find the cross product, we simply multiply the two terms and use the following
relations, most of which should be familiar, and the unfamiliar ones can be
obtained using Figure 4.7:

épl X ép = éz sin(cp — (p/), épl X éz = —é(p/,
6y X &, =—€,co8(p—¢), ey xeéy=—8,
6 X €, =&, €., x &, =¢,, (4.20)

8, X 8y = &y,
The cross product can be written as
dr' x (v —v') = &.[p?d¢’ + psin(p — @) dp’ — pp’ cos(p — ¢) di']
— &y [(z—2)dp' + pld?] (4.21)
+eéppd' + e, (z—2)dy.
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Figure 4.7: The orientation of some of the cylindrical unit vectors drawn for the
calculation of cross products.

To find the components of the magnetic field, we substitute this in
Equation (4.18), take the dot product of cylindrical unit vectors with the
integrand, and use

&, &, = cos(¢ — ), &y &, =sin(¢ — ),

&8y = —sin(@ — @), &, -8, = cos(¢ — ), (4.22)

as well as the other more obvious dot products of unit vectors.

We can derive a general expression for the components of the electric field
in terms of the parametric functions of a general curve (see Problem 4.6).
However, a simple example will also illustrate the general procedure without
entangling the formulas with complicated expressions.

Example 4.1.4. A simple application of the foregoing general formalism is to
calculate the magnetic field of a circular loop of radius a. The choice of the axes
and origin of Figure 4.8 yields the following parameterization of the loop:

p=a,dp =0, ¢ =t do=dt; 2'=0 d =0, 0<t<2n.

Furthermore, because of the azimuthal symmetry of the current distribution, the
final answer will be independent of ¢. Thus, we can set that equal to zero. Inserting
this information in Equations (4.19) and (4.21) gives

Figure 4.8: The geometry of the circular loop of current.
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e —v']P = [p2 +a® — 2pacos(t) + 22]3/2

dr' x (r—r')=ée, [a2dt — pacos(t) dt] + &, azdt.

The magnetic field of Equation (4.18) can now be written as

27 A 2 & ,
B - kml/ [ é.[a® — pacos(t)| +&,az (4.23)
0

p? + a® — 2pacos(t) + 22] 3/2

Finally, to find the cylindrical components, dot-multiply (4.23) with the cylin-
drical unit vectors and use Equation (4.22) with ¢ =0 (and ¢’ = t):

on [éz (a — pcost) —l—ép/z] -€p
Bp:B~ép:kaa/ 3/2dt
o (p*>+a®—2pacost + 22)
=0 =cost
2 & e (o peost) 43,6
T e, -e,la— pcos e, €,z
= kmla / e Y dt (4.24)
o (p?+a®—2pacost + 2?)

. Iaz/% costdt
oo o (p?+a®—2pacost + 22)3/2’

Similarly,
=0 =sint
o 2T ‘ o SN
T &, -e,(a— pcost) +&, -&
BW:B'éso:kaa/ Aee ) ’ 3722dt
o (p*+a®—2pacost + z2)
27 .
sintdt
= o 4.25
az/o (p2 + a2 — 2pacost + 22)3/2 (4.25)
kmlz, o 5 2_1/2 27
== p (p”+a” —2apcost + %) =0,
and
=1 -0
on N N
B.=B-é. = kmfa/ €. @ (a —peost) + & 2/; &
o (p?+a®—2pacost + 2?)
27
(a — pcost)dt
=l : 1.26
a/o (p2 + a2 — 2pacost + 22)3/2 (4.26)

Once again the azimuthal symmetry prohibits a ¢-component for the field. These
integrals cannot be evaluated analytically, but if we specialize to the case where P
is on the z-axis (i.e., when p = 0), the integrals become trivial. In fact, we have

27
costdt
B, = kmfaz/o (a2 + 22)3/2 =0,
B*P = 07
27 2
—adt 2nkmla
B. :—kmla/o (a2 + 22)3/2 = (a2 + 22)/2°
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Historical Notes

After graduating from the college of Louis-le-Grand in Paris and subsequently spend-
ing some time in the army, Jean-Baptiste Biot entered the Ecole Polytechnique
in Paris where Monge (a noted mathematician of the time and an expert in dif-
ferential geometry) realized his potential. Because of his political views and his
participation in an attempted insurrection by the royalists against the Convention,
Biot was captured by government forces and taken prisoner. Had it not been for
Monge’s intervention and plead for his release, Biot’s promising career might have
ended.

Biot became Professor of Mathematics at the Ecole Centrale at Beauvais in
1797, and three years later joined the faculty of the College de France as Professor
of Mathematical Physics an appointment which was due to the influence of Laplace.

Biot studied a wide range of mathematical topics, mostly on the applied math-
ematics side. He made advances in astronomy, elasticity, heat, and optics while, in
pure mathematics, he also did important work in geometry. He collaborated with
Arago on the refractive properties of gases.

Biot’s most notable contribution was done in collaboration with Felix Savart
(1791-1841), who was an acoustics expert and developed the Savart disk, a device
which produced a sound wave of known frequency, using a rotating cog wheel as a
measuring device.

Biot and Savart jointly discovered that the intensity of the magnetic field set up
by a current flowing through a wire varies inversely with the distance from the wire.
This is a special case of what is now known as Biot—Savart’s Law and is fundamental
to modern electromagnetic theory.

For his work on the polarization of light passing through chemical solutions Biot
was awarded the Rumford Medal of the Royal Society. He tried twice for the post
of Secretary to the Académie des Sciences but lost out in 1822 to Fourier for this
post. When Fourier died he applied again only to lose to Arago.

4.2 Applications: Double Integrals

Whenever areas are sources of physical quantities such as fields, or interactions
take place on areas, such as pressure applied on a surface, double integrals
are used. We can be as general as in the previous section and consider a gen-
eral surface given by a parametric equation in two variables (instead of one
used for curves). However, since the geometry of surfaces is much more com-
plicated, and much less illuminating, we shall confine our discussion to very
simple geometries which require trivial and obvious parameterization. More
specifically, we restrict ourselves to primary surfaces of the three coordinate
systems.

4.2.1 Cartesian Coordinates

Since we are restricting ourselves to primary surfaces, our choice for Cartesian
coordinates is narrowed down to planes, and if we want the boundaries of the
plane to be simple in Cartesian coordinates, we are limited to just a rectangle.
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Example 4.2.1. We start with an example from electrostatics. A rectangular flat
surface of sides a and b is charged uniformly with surface charge density o, and we
are interested in the electric field at a general point P in space. This is given by

B :/ heda(r')

olr—rf?

with r = &, +yé, +zé. = (z,y,z) and v’ = 2'é, +y'&, = (z’,y’,0), where we have
chosen the plane of the rectangle to be the xy-plane. If we choose the center of the
rectangle to be our origin, our z-axis perpendicular to the plane of the rectangle,
and our z-and y-axes parallel to the sides as shown in Figure 4.9, then the element
of area coincides with the third primary element, and we can write

dq(r') = o(r') da(r') = o dz’ dy'.
We also have
r—r' = (z—a)er + (y—y)ey +26. = (z -2’y -y 2),
v —r'| = /(2 —a)? +(y—y’) + 2%
r=rP = {@ =)+ - ) + 22

Inserting all these relations in the expression for E, we obtain

keo dx' dy’ o . A
E:/ z—12)e: + (y—y)e, + zé.
af{(x—z)2+ (y—vy)2+ z2}3/2 [( ) ( )éy ]

with components

ko (z — ') dz’ dy'
ok /{@c—w') 2+ (- v+ 2P
(y—y')da’ dy’
Ey:k?e(f 27
/ {(w =22+ (y—y)*+ 22}

/ ’
EZ:kEO'Z/ dx dy 3/27
o {(w—a)+(y—y)” +2}

where everything independent of the variables of integration, =’ and g, is taken out
of the integrals.

We have already discussed a general procedure for evaluating multiple integrals
by reducing them to lower-dimensional integrals. We follow the same procedure
here: The 3’ integration has the lower limit —b/2 and the upper limit +b/2, both
independent of z’.* Similarly, the ' integration has —a/2 and a/2 as its limits.
This means that the components can be written as

a/2 b/2 4y
a2 S (o= )2+ (= )2 + 22

_ U/a/Q dx/b/Q (y_yl) dy/
By = 72 213/2”
a/2 b2 {(x —a')2 4+ (y —y')? + 2%}

4The independence of the limits is one reason that Cartesian coordinates are useful for
rectangular regions of integration. If we had chosen cylindrical coordinates, then the limits
of integration, the lines y' = —b/2 and y’ = b/2, would have had to be written in cylindrical
coordinates, giving, for the upper limit, for example, p’sing’ = b/2 or p’ = b/(2sin¢’).
Thus a p’ integration with limits dependent on ¢’ would have been involved.
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Figure 4.9: Electrostatic field of a flat rectangular charge distribution.

b/2 ’
E, = kecrz/ / dy 32"
—a/2 b2 {(z — ')+ (y—9y')? + 22}

Note that the z’ integration cannot be done until after the 3’ integration, because
the latter has an x’-dependent integrand. u
Having exhausted the (simple) possibilities for electrostatics (and gravity,
since the two are almost identical), we now turn to magnetostatics.
Example 4.2.2. Approximate the belt of a Van de Graff machine with an isolated
moving rectangle having sides a and b, and velocity v along the side b as shown in
Figure 4.10. Furthermore, assume that the charges are uniformly distributed on the
belt with surface charge density 0. We want to find the magnetic field of the belt

at a general point P in space. Let us choose the positive y-direction to be that of
the velocity. Then, Equation (4.17) becomes

B(r):km/ a'davx(rfr)_
o =P

The geometry of this example is identical to that of Example 4.2.1. Therefore, we
can immediately write the integral for B:

. / odz'dy veyX[(x—x)ez+(y—y’?éy+zéz]
{(w—a)2+ (y—y)?+ 222 ’

from which the components of the magnetic field are easily calculated:

b/2 d /
B, = kma'vz/ dx/ 4 3/27
—a/2 v {(z—2')? + (y —y')* + 2%}

By = (4.27)
a/2 b/2 ,
B, = —kmav/ (x —2) dx'/ dy io-
—a/2 —v/2 {(z —2)? + (y —y')* + 2°} u
z P
— y ——

V %
Figure 4.10: A rectangular distribution of moving charges whose magnetic field can
be calculated using Cartesian coordinates.
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4.2.2 Cylindrical Coordinates

The cylindrical system has two types of primary surface: planes and cylinders.
Although we considered planes in the previous subsection, we shall reconsider
them here because the third primary surface, that perpendicular to the z-axis,
gives us the possibility of solving planar problems with nonrectangular regions
of integration. Let us start with such a problem.

Example 4.2.3. In this example we want to calculate the gravitational field of
a uniform surface mass distribution of density o, which is a segment of a planar
annular region with inner radius a and outer radius b, and whose sides make an
angle of a as shown in Figure 4.11(a). Let us choose our origin to coincide with
the center of the annular region, our z-axis to be along one of the sides, and the
zy-plane to be the plane of the mass distribution [see Figure 4.11(b)].

Recall that in cylindrical coordinates, the components of the position vector of
P’ are not the same as the source point’s coordinates. In fact, we have

/ / A ~ A~
r=pey, r = pe, + zée.,
/ N A~ N

r—r =pe,+ze, —pey,

|I‘ _ I_/|3 _ (p2 +pl2 _ QPPICOSQOI +Z2)3/27

where in the last line we have made the simplification that the field point is in the
xz-plane, so that ¢ = 0; otherwise, we would have cos(¢ — ¢’) instead of cos ¢’. The
element of mass is given by

dm(r') = om da(r’) = om(dp’)(p'd¢’) = omp'dp'dy".

Thus, the gravitational field is

/
_ de(r)(r—r'),
o [r—r?
_ —GO' b ld / a d@l(pép+zéz _plép/) (4 28)
"L PPy (0% + 02— 2pp cos ! + 222 '

To find the components, we take the dot product of this integral with the cylindrical

(a) (b)

Figure 4.11: The annular region whose gravitational field is being calculated. The
position vector of the source point and the lengths of the sides of the element of area
are also shown.
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unit vectors. The result will then be

b a / / ’
— d(ﬁ
— _Goy ' dy (p—p'cosy’)
9 7 /a P p/o (p? + p'* = 2pp’ cos @' + 22)3/2

b < /o / /
de
:Gm /d // p sme 7 499
e o /ap P o (P24 p'? —2pp' cos ! + 22)3/2 ( )
b « ,
de
z:—G m ld, )
g o Z/a P p/o (p2—|—p’2—2pp’cos<p’+22)3/2

Let us look at some special cases of this. For a complete annular region, we
simply replace a with 27:

b 27 / / ’

— dy
=-Gom [ ¢'d / (o~ pcos ) ;
9 7 /ap Plo (02 +p2 = 2pp cos i/ + 22)3/2

b 27 / o / /

dp
= Gom ’d’/ p ey -0 4.30
Je =7 /ap Pl (02 +p2 =200 cosgpr +22)3/2 (4.30)

b 27 /

dp
.= —Gom "d ’/ :

I 7 Z/a PPy (02 + 92— 2pp cos ! + 22)/2

As expected, the p-component has disappeared.
We can further simplify the geometry by locating the field point on the z-axis.
Then, p = 0 and we have

b 2 / 27
_ P dp P
gp = Gam/a (0 + 22)3/2/0 cosp dp =0,

b / / 27 b / /
_ p dp I p dp
gz = —Gamz/a (0 + z2)3/2/0 dp' = 27ch7mz/a (2 + 22)3/2

= 27Gomz { 1 — 1 } .
Va2 + 22 /b2 + 22

If we take the limit a — 0 and b — oo, we obtain

AN 2N
g = —2nGom e, = 27Goy,, €,
V22 £
where we have used Box 4.2.1 (see below). Now note that z/|z| = +1 depending
on the sign of z. When z > 0, we get z/|z|é. = €. which is the unit normal to the
surface. When z < 0, we get z/|z|é. = —é. which is again the unit normal to (the

other side of) the surface. Denoting the unit normal by &,, we can write

g = —2nGome,.

The electrostatic analogue of this is obtained by substituting —k. = —1/4meg
for G. This yields
o
E=_"e,
260 ¢

which is the field of an infinite sheet of charge with which the reader is familiar.
Note that while g always points toward the sheet (opposite to €,, because oy, is
always positive), the direction of E is determined by the sign of oy. ]
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4.2.3 Spherical Coordinates

One of the primary surfaces of a spherical coordinate system is a sphere, and
since there are a lot of spherical objects around, it is useful to gain experience
in calculations involving spheres.

In the following, we shall be taking square roots of functions. Care needs
to be taken when doing so:

Box 4.2.1. For any real-valued quantity A, VA2 = |Al, i.e., the square
root of the square of a quantity is the absolute value of that quantity.

Failure to keep this in mind will result in incorrect conclusions, as we shall
see below.

Example 4.2.4. In this example we are interested in the gravitational field at a
general point P of a spherical cap, i.e., a segment of a spherical shell of radius a and
uniform surface density o such that the cone defined by the segment and the center
of the sphere has a half-angle « (see Figure 4.12). It is clear that the choice of axes
and origin resulting in the greatest simplification is as shown in Figure 4.12. Notice
that P is taken to lie in the xz-plane, so that ¢ = 0. We can immediately write

dm(r') /
g=-G (r— 1) (4.31)
olr—r?
with
r' = aé,, r=reé, r—r =ré. —aé,,
N3 __ 2 2 7. . / /\/ /\ 3/2
r —r'|°=4r"+a” —2ra(sinfsinf cos¢' + cosfcosh') , (4.32)

dm(r') = oday = ca’sin 0’ do’ dy'.

By inserting these relations in (4.31) and dotting the result with unit vectors, we
obtain the three components of g in various coordinate systems. In spherical coor-
dinates these are

Figure 4.12: A spherical cap whose gravitational field can be calculated using spherical
coordinates.
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o= —Gaaz/ sin @’ {r — a(sin @sin @’ cos ¢’ + cos@cos ')} db’ dy’
o {r?+a? — 2ra(sin@sin 6’ cos ¢’ + cosfcos 6)}*/?
9o = G(mg,/ sin ' (cos 0 sin 0’ cos ¢’ — sin O cos @) db’ dy’
o {r2 + a® — 2ra(sin O sin 0’ cos ¢’ + cos O cos ) }*/*’
Jo = Gaa?’/ sin? @' sin ¢’ d@’ dy’ _
o {r? + a% — 2ra(sin @ sin 0’ cos ¢’ + cos 0 cos 0")}*/2

(4.33)

The region of integration € is one in which @’ varies from 0 to «, and ¢’ from 0 to
27r. The last integral vanishes because of the ¢’ integration. The vanishing of the
(p-component is simply the result of the azimuthal symmetry.

The result above is not interesting, but if we move P to the polar axis, so that
0 = 0, then the equations simplify considerably, and we get

@ : / o / / 27
9 = —God® / (51119 (r—acos®)do / i
0 0

r2 +a? — 2racos 0)3/2

“ sinf'(r —acos6’)do’
= —2rGoa’
Toa /0 (r? +a? — 2racos 0')3/2’

@ .2/ / 27
: sin“ 0'd0
= Goad® ‘ "dy' =0,
g0 Ua_/o (r2+a2—2racosﬁ’)3/2_/0 cosy dy

g = 0.

The most interesting result is obtained when o = 7, i.e., when we have a com-
plete spherical shell. Then using

/7r sin@'(r —acos@)dd’ 1 1_\/(a—r)2 _ 1 1_|a—r|
o (r2+a?—2racosf)3/2 12 a—r T2 a—r )’

which can be looked up in a good integral table, we obtain

2rGoa® a—r
gr=-, (1—| |)7 go=0,  gp,=0.
r a—r
For points inside the shell, » < a; therefore ja =l =77 2 1, and the field
a—r a—r
vanishes. Thus, the gravitational field inside a spherical shell is zero. On the other gravitational field
hand, for points outside, r > a, and la =7l =T —1, leading to ms'de_ a spherical
a—r a—r shell is zero.

B 4rGoa® _ GM

gT - = T2 - = T2 )
where M = 4ma’0 is the total mass of the shell. This is identical to the gravitational
field of a point charge of mass M located at the center of the shell. Now, if we have concept of
a number of concentric shells, then, at a point outside the outermost one, the field spherical mass
must be that of a point charge at the common center having a mass equal to the total  distribution
mass of all the shells. Note that each shell can have a different uniform density than elaborated
others. In particular, if we have a solid sphere, with a density which is a function of
r alone, the same result holds. A density which is a function of r alone is called a
spherical mass distribution. We thus have the famous result:
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Box 4.2.2. When gravitationally attracting objects outside it, a spherical mass
distribution acts as if all its mass were concentrated into a point at its center.

Newton spent approximately twenty years convincing himself of this result.
Because of the similarity between gravity and electrostatics, the conclusion above

can be applied to the electrostatic field as well. Thus, in particular, the electrostatic

field inside any uniformly charged shell is zero. m

We take the final example of this section from mechanics and calculate the
moment of inertia of the foregoing shell about the polar axis. Recall that
the moment of inertia of a mass distribution about an axis is defined as

I= / R*dm, (4.34)
Q

where R is the distance from the integration point—location of dm—to the
reference axis.

Example 4.2.5. The moment of inertia of the spherical shell segment is obtained
easily. All we need to note is that R = asin@’. Then Equation (4.34) gives

a 27
I :/ (asin®)’ca’sin @' do’ do’ = a40/ sin® 0’ do’ dy'
Q 0 0

2rato
)Mo = ’

= 2ra'c (; cos® 0" — cos 0’ 3 (cos® a — 3cosa + 2).

We can express this in terms of total mass if we note that the area is given by

A= / a’sin@ do’' d¢' = 2rwa® / sin@’ do’ = 2ma’(1 — cos )
Q 0

so that
LM _ M

T A 2ma?(l —cosa)’

Therefore,
3
—3cosa+ 2
7= 1205 @

g 1—cosa

which reduces to I = gMa2 for a complete spherical shell (with a = ). m

4.3 Applications: Triple Integrals

To illustrate the difficulty of calculations when appropriate coordinate systems
are not chosen, in the following example we calculate the gravitational field
of a uniform hemisphere at a point P on its axis in Cartesian coordinates.
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Figure 4.13: Calculating the gravitational field of a hemisphere in the “unnatural”
Cartesian coordinates.

Example 4.3.1. The geometry of the problem is shown in Figure 4.13. The
location of P and the choice of axes indicate that

r=zé,, r =2'é, + y'éy + z'éz,
e — I‘/|3 _ {1/2 + y/2 (2 Z/)2}3/2
dm(r') = pmdV (r") = pmda’dy'd?’,

I

where pn, is the uniform mass density. Thus,

G dm(r') , dx' dy' dz' {z'é; + y'é, + (' — z)e.}
_ _ /3(1‘—1‘):Gpm/ /2 P N213/2
o [r—1 Q {z”? +y?+ (2 —2)?}

with components

2’ dz' dy’ dz’
9o = Gpm ;
o {22492+ (z— 21)2}3/2
/ / / !
y' dx' dy’ dz
gy = Gpm/ ;
Yy o {22 +y2+ (2 — z’)2}3/2
. = Gp (2 — 2)dz’ dy' d2’

o {a?+y?+ (2 — 21)2}3/2'

The limits of integrals associated with €2 can be done as discussed in Section 3.3.
In Figure 4.13, we have chosen the first integral to be along the z-axis. Then the
lower limit will be the zy-plane, or z’ = 0, and the upper limit, the surface of
the hemisphere. A general point P’ in Q with coordinates (z',y’,2") will hit the
hemisphere at 2’ = /a2 — 2’2 —y2. So, this will be the upper limit of the 2’
integration. Concentrating on the xz-component for a moment, we thus write

\/az,zzz,y/z ds'
9o = Gpm //x'dl"dy'/ : 3/2°
g 0 {Z‘l2 + y/2 + (Z _ Z1)2}

where S is the projection of the hemispherical surface on the zy-plane. To do
the remaining integrations, we refer to Figure 4.14, where the projections of the
hemisphere and the point P’ are shown. It is clear that the g3’ integration has
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upper dy’

—a

lower

Figure 4.14: The projection of €, a hemisphere, in the xy-plane.

the lower semicircle as the lower limit and the upper semicircle as the upper limit.
Finally the 2’ integration has lower and upper limits of —a and +a, respectively.
We, therefore, have

ta +\/a2,r/2 \/az,mzz,ylz 42
Jo = Gpm/ z dx'/ dy'/ “
0

—a Va2—ar? {2 4+ y2 4 (z — Z/)2}3/2'

Instead of looking up the integrals in an integral table, we note that the integrand
of the z’ integration is an odd function. This is because it is the product of #’, which
is odd, and another function, in the form of a double integral whose integrand and
limits are even functions of z’. Since the interval of integration is symmetric, the
2’ integration vanishes. A similar argument shows that the y’ integration vanishes
as well. This is as expected intuitively: We expect the field to be along the z-axis.
Therefore, g, = 0, gy, = 0, and

= Cp /+a i’ +v/a2—a’? dy’ /\/a2w’2y’2 (Z’ —2) dz
—a 0

—\/0,2—:0/2 {x/2 + y/2 + (Z _ Z/)2}3/2
+a +\/a2—z’2 dy’
— Gpm/ dz’ 4
—a 7\/1127:5’2 \/Il2 + y,2 + 22
+a +\/a2_z/2 du’
— Gpm/ dz’ Y

—Va?—z'? \/a2 + 22+ 22 +y'2 — 22y/a% — 22 — y?

The 3’ integration in the first integral can be done, but the remaining 2’ integration
will be complicated. The second %’ integral cannot even be performed in closed form.
This difficulty is a result of our poor choice of coordinates whereby the boundary of
the region of integration does not turn out to be a “natural” surface. ]

The example of the hemisphere in Cartesian coordinates indicates the
difficulty encountered when the boundaries of the integration region do not
match the primary surfaces of the coordinate system. In the next example,
we calculate the gravitational field of the hemisphere in spherical coordinates.

Example 4.3.2. The spherical coordinate system makes the problem so man-
ageable that we can consider a more general mass distribution. We will calculate



4.3 Applications: Triple Integrals

Figure 4.15: The gravitational field of a solid cone with a spherically curved top.

the gravitational field of a cone-shaped segment of a solid sphere of half-angle « as
shown in Figure 4.15. We are interested in the field at a point P on the axis of the
cone as shown. Since &g and €, cannot be defined at P (why?), we expect, from
physical intuition, that the only surviving component of the gravitational field is
radial. This component is obtained by dotting the vector field with é,:

. . Gdm(r") / ,
grfer.gfer.{_ i |r—r’|3( — 7—G/ |r—r’|3/2 — 7' cosf')

2 sin @ dr’ do’ dy’
_Gpm/ (r2 4+ 72 — 277’ cos 0")3/2 (r

sin 0’ do’ , ,
_Gpm/ / r d’l" /O (7‘2 + 72 — 2rr/ cos 9,)3/2 (T — 1’ cosf )

To do the integrations, we use the technique of differentiating inside the integral
and note that

— 7" cosf")

r—1'cost 0 1

(r2 4172 — 201 cos 0/)3/2 — Or \/r2 4172 — 21l cos O

Therefore, the integral becomes

gr = 21Gpm / 2 dr’ / sin¢ do’ © !
0 0 Or \/r2 4+ /2 — 2ry' cos 0

=27Gp o /a r'? dr'/a sin §' df’
"or Jo o Vr24+r2 —2rr cos b
a , 1 o
=27Gpm o / r2dr'( \/r2—|—r’2—2rr’cosﬁ’ )
ar J, rr/ 0
= 27erm§T {i / r’dr’ (\/r2 + 72 — 2r7r’ cos av — \/(r — r’)2)}
0
= QWGpmaar {i / ' dr' <\/r2 + 72 = 2rr’ cosa — |r — r'|)} . (4.35)
0

The integral involving the absolute value can be done easily. However, we have
to be careful about the relative size of r, a, and r’. We therefore consider two cases:
r > a and r < a. Keeping in mind that »’ < a, the first case yields
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a a 2 3

/ 7‘/|r—r'|dr':/ r'(r—r')dr': ra-_«a , r>a.

o o 2 3

For the second case, we have to split the interval of integration in two, and write
the absolute value accordingly:

/ r'|r—7‘/|dr':/ r'(r—r')dr’—k/ r'(r’—r)dr’
0 0 r

3 3 2

' a ra
= — < a.
3T 37 9 TS0

Substituting these in Equation (4.35), we get
1 “ ! / .
- + 12 + 72 — 2rr! cos a dr if r>a,
™ Jo
2 2 3 a
1
a ey P2+ 12 = 2rr'cosa dr’ i r <a.
2 3 3r r Jo

The remaining integral can also be performed with the result

2

1 a
/ r'\/r2+r’2—2rr’cosa ar' = —" (1 —3cos2a)
T Jo 12
2
a r acosa T Cos2x
2 2_9 _ _
+\/r +a 7"acosoz(3r—|—12 6 4 )
rzcosasiHQaln a—rcosa+Vr2+a2—2racosa
2 T —1rCcosa '

The special case of a = 7, i.e., a full sphere, is very important, because his-
torically it motivated the rapid development of integral calculus. For this case, we
have

a 2 2
71_/0 P\ 472 — 2 cosa dr’ 25 7“6 +(a+r)<§r—g+g>a

whereby the radial component of the field becomes

gi—(;2+rg+(a+r)(§i—g+g) if r>a,
9r = 2mGpm 5,
(122_r;_3:+(“+r)(§2_g+6) if rsa,
_:232:23 if r>a —6112\/[ if r>a,
=21Gpm =
T T B T
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The first result is the well-known fact that the field outside a uniform sphere is the
same as the field of a point charge with the same mass concentrated at the center
of the original sphere. The second result, usually obtained in electrostatics by using
Gauss’s law, would not have been obtained if we had not used absolute values when
extracting a square root. -

Example 4.3.3. A uniformly charged hollow cylinder of length L and volume
charge density p, has an inner radius a and an outer radius b (see Figure 4.16).
The cylinder is rotating with constant angular speed w about its axis. We want
to find the magnetic field produced by this motion of charges. We note that the
problem has an azimuthal symmetry, so we do not lose generality if we choose our
coordinates so that our field point P lies in the zz-plane. This is equivalent to setting
p=0.

We use cylindrical coordinates in Equation (4.17) to find the magnetic field. For
a general field point, we have

r=pe,+ zé:, r = p’ép/ + z'éz,
r—r' =pé,—pé,+(z—2)e.,
o= = {p* + p* = 20p cos ¢’ + (z = 2)*}*7,
dq(r') = pgdV (r') = pep'dp'de’dy’,  v(r') = p'wey,

so that
/ / N ~ /2 A A / I\ A A
v(r') x (r—r') =wpp &y X &, —wp &, X &, Fwp (2 —2) &, X &,
~ ~ - ~ ~ - ~ ~ -
—&é, cos ¢/ —é, é

=wp'(z—2)e, + w(p? — pp’ cosp')e..
Substituting all these results in Equation (4.17), we obtain

Whin (pgp'dp'de'dz") [p' (2 = 2')&p + (p? = pp’ cos ¢')é:]

B= 2 2 213/2
Q {p?>+ p? = 2pp' cos ¢’ + (2 — 2')?}

=

Figure 4.16: The charged rotating hollow cylinder produces a magnetic field due to
the motion of charges.
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The cylindrical components are obtained by dotting this equation with the cylindri-
cal unit vectors at P:

2 L/2 (z — 2") cos 'dp'dy’'dz’
B,=B-é¢, *kapq/ / / o ) 3/27
L2 {p? +p —2pp'cos ¢ + (2 — 2')2}
o L/2 -~
B¢:B~e¢—wkmpq/ / / (z — 2')sin'dp'd¢’dz’ 3/2:07
L/2 {p> —|—p’2—2pp cos ' + (2 — 2')%}
2 L/2 _
B op’ cosgo)dpdgadz
BZ—B~eZ—wkmpq/ // B ) | e
L/2 {p> —|—p 2pp’ cos ¢’ + (z — 2')%}

The middle equation gives zero as a result of the ¢’ integration. It turns out
that the 2’ and p’ integrations of the remaining integrals can be performed in
closed form. However, the results are very complicated and will not be repro-
duced here. Furthermore, the ¢’ integration has no closed form and must be done
numerically.

We can also obtain the components of B in other coordinate systems by dotting
B into the corresponding unit vectors. The reader may check, for example, that in
Cartesian coordinates, B, = B - &, is the same as B, above and B, is the same
as By, i.e.,, By = 0. This is due to the particular choice of our coordinate system

(p=0). u

4.4 Problems

4.1. Differentiate Equation (4.2) to find the velocity and acceleration and
compare with the expected results.

4.2. By choosing a coordinate system properly, write down the simplest para-
metric equation for the following curves. In each case specify the range of the
parameter you use:

(a) a rectangle of sides a and b, lying in the zy-plane with center at the origin
and sides parallel to the axes;

(b) an ellipse with semi-major and semi-minor axes a and b;

(¢) a helix wrapped around a cylinder with an elliptical cross section of the
type described in (b); and

(d) a helix wrapped around a cone.

4.3. Assume that the parametric equations of a linear charge density are
' = f(t),y = g(t),2” = h(t). By writing everything in Equation (4.3) in
Cartesian coordinates, show that

. / R AWV O + (9O + @)
3/2
“ {lo = FOF + Iy — 9] + [z - h(t)]’}
< (o~ FO) & + [y — 9] &, + [ —h()] &) dt.  (4.36)
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and that

/b RADVIFOP O+ IOF
i 3/2

—
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=
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_|_
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I
>
=
Pt
(V]

)

b / 2 / /

. / k@A(t)\Z/ [//(2)] +[92( 7+ ()] yo ly—a(®)] dt (437)
a {[x—f(t)] +y— 9] + [z — h(t)]
b 1(4)12 1(t)]2 "(t)]2

o / keA(ﬂg[f O] + 19/ O] + [k (t)l 3y 2= h(D) dt
a {[x—f(t)] + [y —g@®)]" + [z — ht)]

and

b ()12 1(+)]2 ()12
o= [ EAOVIOP DO R
o= 07 + Iy — 9®F + = = h(t)]’}
How is A(¢) related to A(r')?
4.4. (a) Show that
’ 6p-by= .
Va2 +y? oy V2 +y?

(b) Similarly, express é,, - €, and &, - &, in Cartesian coordinates.

(c) Use (a), (b), and Equation (4.36) to find the general expressions for E, and
E, as integrals in Cartesian coordinates similar to the integrals of Equation
(4.37).

4.5. (a) Find the nine dot products of all Cartesian and spherical unit vectors
and express the results in terms of Cartesian coordinates.

(b) Use (a) and Equation (4.36) to find general expressions for E,, Ey, and
E, as integrals in Cartesian coordinates similar to the integrals of Equation
(4.37).

4.6. Assume that the parametric equations of a linear charge density are
o= ft),¢ = g(t),z = h(t). By writing everything in Equation (4.3) in
cylindrical coordinates, show that Equation (4.11) holds and that

Fom [ RAOVIORUOPSOF O
P 3/2
“ o+ ) —2pf(t)COS(<p o®) + 1z - h(e)?}

e, €, =

x [p— f(t )cos( — )] dt (4.38)
b / 20/ 2 / 2
= <M POPHUOFTOF+OF g
: {p2+[f(t)] — 20 (t) cos(ip — g(t)) + [ = h(H)]* }

xf()sm( ()—gp)dt
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, = / P kA2 + £ (]2 + [ (2))2 (4.40)

3/2

and
o= /b ke AV (O + F2(8)g (0] + [ (1)]2 NV
@ {02+ £2(0) — 2pf () cos(io — g()) + [2 = h(0)]*}
How is A(t) related to A(r”)?

4.7. Use (4.11) to calculate Cartesian and spherical components of the electric
field in terms of integrals in cylindrical variables similar to (4.38).

4.8. Use the cylindrical coordinates for the integration variables of Example
4.1.3, but calculate the Cartesian components of E.

4.9. A uniformly charged infinitely thin circular ring of radius @ has total
charge ). Place the ring in the zy-plane with its center at the origin. Use
cylindrical coordinates.

(a) Find the electrostatic potential at P with cylindrical coordinates (p, ¢, 2)
in terms of a single integral.

(b) Find the analytic form of the potential if P is on the z-axis (evaluate the
integral).

(¢) Find the potential at a point in the zy-plane a distance 2a from the origin.
Give your answer as a number times k.Q/a.

4.10. Write a general formula for ®(r) of a charged curve in spherical coor-
dinates.

4.11. A straight-line segment of length 2L is placed on the z-axis with its
midpoint at the origin. The segment has a linear charge density given by

Q
ANz, y,z) = ,
(z,y,2) 4+ a
where () and a are constants with a > 0. Find the electrostatic potential of
this charge distribution at a point on the z-axis in Cartesian coordinates.

4.12. Same as the previous problem, except that

aQ

Look up the integral in an integral table.

(a) Does anything peculiar happen at z = +a? Based on the integration
result? Based on physical intuition? Look at the result carefully and reconcile
any conflict.

(b) What is the potential when L — oco?
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4.13. A segment of the parabola y = 2%/a—with a a constant—extending
from = 0 to x = L has a linear charge density given by

V14 (22/a)?’
where \g is a constant. Find the potential and the electric field at the point

(0,0,2). What are ® and E at (0,0,a/2)? Simplify your results as much as
possible.

Mz, y, 2)

4.14. A circular ring of radius a is uniformly charged with linear density .
(a) Find an expression for each of the three components of the electric field
at an arbitrary point in space in terms of an integral in an appropriate coor-
dinate system. Evaluate the integrals whenever possible.

(b) Find the components of the field at the point P shown in Figure 4.17.
Express your answers as a numerical multiple of k.\/a.

(c) Find the electrostatic potential at the point P shown in Figure 4.17. Ex-
press your answer as a numerical multiple of ke .

For (b) and (c) you will need to evaluate certain integrals numerically.

4.15. Counsider a uniform linear charge distribution in the form of an ellipse
with linear charge density A\. The semi-major and semi-minor axes of the el-
lipse are a and b, respectively. Use Cartesian coordinates and the parametric
equation of the ellipse.

(a) Write down the integrals that give the electric field and the electric po-
tential at an arbitrary point P in space.

(b) Specialize to the case where P lies on the axis that is perpendicular to the
plane of the ellipse and passes through its center.

(c) Specialize (a) to the case where P lies on the line containing the minor
axis.

4.16. Counsider a uniform linear charge distribution in the form of an ellipse
with linear charge density A located in the zy-plane. The semi-major and
semi-minor axes of the ellipse are 2a and a, respectively.
(a) Write the Cartesian parameterization of the ellipse in terms of trigono-
metric functions.
Pt “'

I

I

I

I

I

|

I

2

—5

Figure 4.17: The figure for Problems 4.14 and 4.21.
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(b) Write the integral that gives the Cartesian components of the electric field
at an arbitrary point (z,y, z) in space.

(¢) Specialize to the point (a,2a,2a), and write your answer as a numerical
multiple of k.\/a.

4.17. Consider a uniform linear charge distribution, with linear charge density
A, in the form of an elliptical helix whose parametric equation is given by

2’ =acost, y =bsint, 2 =ct

Use Cartesian coordinates.

(a) Write down the integrals that give the electric field and the electric po-
tential at an arbitrary point P in space.

(b) Verify that when ¢ = 0, you get the field and potential of an ellipse (see
Problem 4.15).

(c) Verify that when ¢ = 0 = b, you get the field and potential of a straight
line segment.

(d) Verify that when ¢ = 0 = b and a — oo, you get the field of an infinite
straight line.

4.18. Find the three components of the electric field and the potential of Ex-
ample 4.1.2 when a = —L/2 and b = L/2. Approximate the three components
of the electric field for the case where L >> x.

4.19. Derive all relations in Equations (4.20) and (4.21).

4.20. Figure 4.18 shows a hyperbola y = V2 + a2. Only the segment be-
tween = 0 and x = a is charged uniformly with linear density A.

(a) Write the expression for E as an integral in Cartesian coordinates.

(b) Find the three components of E as integrals over z’.

(¢) Making the substitution &’ = au, write each component as a numerical
multiple of k.\/a.

4.21. A circular ring of radius a is uniformly charged with linear density A.
The ring rotates with angular speed w about the axis perpendicular to the
plane of the ring, passing through its center.

Ql--=-=-=-=-=-—- - =

Figure 4.18: The segment of the hypebola that is charged.
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(a) Find an expression for each of the three components of the magnetic
field at an arbitrary point in space in terms of an integral in an appropriate
coordinate system. Evaluate the integrals whenever possible.

(b) Find the components of the field at the point P shown in Figure 4.17.
Express your answers as a numerical multiple of k,,Aw. (You will need to
evaluate some integrals numerically!)

4.22. An elliptical conducting ring of semi-major axis ¢ and semi-minor axis
b carries a current I.

(a) Find an expression for each of the three Cartesian components of the
magnetic field at an arbitrary point in space in terms of an integral in the
Cartesian coordinate system.

(b) Find an integral expression for the components of the field at a point on
the line perpendicular to the ellipse that passes through its center.

4.23. Perform the integrals for E,, E,, and E, of Example 4.2.1 when the
field point is on the z-axis. Hint: You can get F, and E, without doing the
integrals.

4.24. Assume that the parametric equations of a current loop are x’ =
f@t),y = g(t), 2 = h(t). By writing everything in Equation (4.18) in Carte-
sian coordinates, show that

<&®:hd/b gL -] -l -g0]
- £+ - 0@) + - ne)?)
&M—hﬂfb WOl - 10) - r0l-n0)
- £ + - o) + - ne)?)
F®Oly—9®] - g Oz~ f(1)] .
)

B.(r) = kI ' 9
J {lz= FO) + [y - o) + [z~ n(e)*}”

where a and b are the initial and final values of the parameter ¢.

4.25. By writing everything in Equation (4.18) in cylindrical coordinates,
show that

Nidp' + p'Nadig' + p'sin(ie’ — ) d2'
{02+ 2 = 2pp cos(p — ') + (= — 212}
il ]{ PNLdg! — Nodp/ + [p — pf cos(¢’ — )] d=’
" {02+ 2 = 2pp cos(p — ') + (= — )2}
B, =—k I]{ psin(p’ — @) dp’ + [pp cos(¢' — @) — p?] dy’
’ T g2 1 02— 20 cos(p — @) 4 (2 — )2}

By =kl

B,

where
N1 = (2 —2)sin(yp’ — @), Na = (2 —2")cos(¢’ — )
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| 74

2a

7

Figure 4.19: The figure for Problem 4.28.

2a

4.26. Derive Equation (4.27).
4.27. Derive Equation (4.29) from Equation (4.28).

4.28. A square of side 2a is uniformly charged with surface density o.

(a) Find the electrostatic potential at an arbitrary point in space. Do one
of the integrals and express your answer in terms of a single integral in an
appropriate coordinate system.

(b) Find the potential at a point a distance a directly above the midpoint of
one of the sides as shown in Figure 4.19. Express your answer as a numerical
multiple of k.oa.

4.29. The area in the xy-plane shown in Figure 4.21 is uniformly charged
with surface charge density o. The equation of the parabolic boundary is
y = 22 /a. Assume that the observation point (field point) P is on the z-axis

at z = a.
(a) Derive the Cartesian components of the electric field at P as double inte-
grals.

(b) Do the ¢y’ integration first and then the 2’ integration to find the compo-
nents of the electric field. Write your answers as a numerical multiples of k.o.
You will need to evaluate certain integral(s) numerically.

4.30. Using cylindrical coordinates, find the electrostatic field of a uniformly
charged circular disk of charge density ¢ and radius a:

(a) at an arbitrary point in space;

(b) at an arbitrary point on the perpendicular axis of the disk; and

P
O

Figure 4.20: The region of the xy-plane that is charged.
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Figure 4.21: The shaded region is uniformly charged.

(c) at an arbitrary point in the plane of the disk.

(d) For (b), consider the case of infinite radius and compare your result with
the infinite rectangle discussed in introductory physics books and Example
4.2.3.

4.31. Figure 4.20 shows a region of the zy-plane that is uniformly charged
with surface charge density o. The boundary of the region is given in a
polar/cylindrical coordinate system by p = acos(2¢) with —7/4 < ¢ < 7/4.
We are interested in the electrostatic potential at a point P on the z-axis with
z=a.

(a) Write the position vector of P and P’ (a typical source point) in cylindrical
coordinates. Now evaluate |r — r/|.

(b) Write the expression for dg(r’) in cylindrical coordinates.

(¢) Write the expression for the potential ® as a double integral in cylindrical
coordinates.

(d) Perform one of the integrations, and wrtie your final answer as a single
integral.

(e) Find the value of the potential as a numerical multiple of k.oa.

4.32. A cylindrical shell of radius a and length L is uniformly charged with
surface charge density . Using an appropriate coordinate system and axis
orientation:

(a) Find the electric field at an arbitrary point in space.

(b) Now let the length go to infinity and find a closed-form expression for the
field in (a). You will have to look up the integral in an integral table.

(c) Find the expression of the field for a point outside and a point inside the
cylinder.

4.33. A uniformly charged disk of radius a and surface charge density o is
inthe zy-plane with its center at the origin and is rotating about its perpen-
dicular axis with angular frequency w.

(a) Find the cylindrical components of the magnetic field produced at a point
P = (p,0, z) as double integrals in cylindrical coordinates.

(b) Now assume that P is on the z-axis and find the components of B by
performing all the integrals involved.
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4.34. An electrically charged disk of radius a is rotating about its perpen-
dicular axis with angular frequency w. Its surface charge density is given in
cylindrical coordinates by o = (0¢/a?)p?, where oq is a constant.

(a) Find the Cartesian components of the magnetic field produced at an ar-
bitrary point P = (p,0, z) as double integrals in cylindrical coordinates.

(b) Now assume that P is on the z-axis and find the components of B by
performing all the integrals involved.

4.35. Express the components of g of Example 4.2.4 in Cartesian and cylin-
drical coordinates in terms of integrals similar to Equation (4.33).

4.36. A conic surface of (maximum) radius ¢ and half-angle « is uniformly
charged with surface density o.

(a) Find the three components of the electric field at a point on the cone’s axis
a distance r from its vertex. Express your answers in terms of single integrals
in an appropriate coordinate system.

(b) Find the components of the field at r = a/v/3 when o = 7/6. By eval-
uating integrals numerically if necessary, express your answer as a numerical
multiple of k.o.

4.37. A cone with half-angle a, the distance of whose vertex from its circular
rim is L, is rotating with angular speed w about its axis. Electric charge
is distributed uniformly on the cone with surface charge density o. Use the
coordinate system appropriate for this geometry.

(a) Express the components of the magnetic field produced at an arbitrary
point in space in terms of double integrals. Evaluate those components whose
integrals are easily done.

(b) Move the field point to the axis of the cone, and write the components
of the field in terms of single integrals. Evaluate the remaining components
whose integrals are easily done.

(c) Now assume that o = /3, and express the magnitude of the field on the
axis at a distance L from the vertex of the cone as a number times k,,,woL.

4.38. A uniformly charged solid cylinder of length L, radius a, and total
charge ¢ is rotated about its axis with angular speed w. Find the magnetic
field at a point on this axis.

4.39. Use cylindrical coordinates to calculate the gravitational field of the
hemisphere of Example 4.3.1 at a point on the z-axis.
(a) Show that

322
with the other components being zero.
(b) Simplify this expression for points outside (z < 0 and z > a), and inside
(0 < z<a).
(¢) Using the result of (b), find the gravitational field of a hemisphere whose
flat side points up.

(d) Add the results of (b) and (c) to find the field of a full sphere.
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Figure 4.22: The segment of a cylinder with uniform charge density used in Problem
4.41.

4.40. Find the moment of inertia of a uniform solid cone of mass M and
half-angle a cut out of a solid sphere of radius a. What is the moment of
inertia of a whole solid sphere?

4.41. A solid cylinder of length L has a cross section which is in the shape
of a segment of an annular ring with outer radius b and inner radius a. It
is subtended by an angle « and is uniformly charged with total charge ¢
(Figure 4.22). Find the electric field at:

a) an arbitrary point in space; and

b) a point on the axis of the ring.

¢) What is the answer to (b) if we have a complete ring?

d) What is the answer to (a) if we have a complete ring that is infinitely
long? Consider the three regions: p <a, a < p <b, and p > b.

(
(
(
(

4.42. Find the moment of inertia of the (incomplete) cylinder of the previous
problem about the perpendicular axis passing through the common center of
the inner and outer radii. Assume that the total mass is M. From this result
obtain the moment of inertia of a hollow as well as a solid cylinder.
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Chapter 5

Dirac Delta Function

Paul Adrian Maurice Dirac, one of the most inventive mathematical physicists
of all time, co-founder of quantum theory, inventor of relativistic quantum
mechanics in the form of an equation which bears his name, predictor of the
existence of anti-matter, clarifier of the concept of spin, and contributor to the
unraveling of the mathematical difficulties associated with the quantization
of the general theory of relativity, came across the subject matter of this
chapter in his study of quantum mechanical scattering. In order to appreciate
the usefulness of this function, we shall start with an intuitive approach drawn
from electrostatics.

5.1 One-Variable Case

Consider a straight linear charge distribution of length L with uniform charge
density as shown in Figure 5.1(a). If the total charge of the line segment is g,
then the linear charge density will be A = ¢/L. We are interested in the graph
of the function describing the linear density in the interval (—oo, +00). As-
suming that the midpoint of the segment is o and its length L, we can easily
draw the graph of the function. This is shown in Figure 5.1(b). The graph

(a)

X0

0 | L | X
(b)

Figure 5.1: (a) The charged line segment and (b) its linear density function.
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is that of a function that is zero for values less than xg — L/2, q/L for val-
ues between xo — L/2 and xo + L/2, and zero again for values greater than
2o + L/2. Let us call this function A(x). Then, we can write

0 if z<xy—L/2,
Mz)=<¢q/L if mo—L/2<z<mo+ L/2,
0 if «>wx0+L/2.
Now suppose that we squeeze the segment on both sides so that the length

shrinks to L/2 without changing the position of the midpoint and the amount
of charge. The new function describing the linear charge density will now be

0 it z<axy—L/4,
MNx,xg) =qq2/L if z9—L/4<xz<zo+ L/4,
0 if x>wx0+L/4.

We have “factored out” ¢ for later convenience. We have also introduced a
second argument to emphasize the dependence of the function on the mid-
point. Instead of one-half, we can shrink the segment to any fraction, still
keeping both the amount of charge and the midpoint unchanged. Shrinking
the size to L/n and renaming the function A, (z, zg) to reflect its dependence
on n, gives

0 if x<wzy—L/2n,
M@, 20) =qn/L if xzg—L/2n <z <z0+ L/2N,
0 if x>ax0+L/2n,

which is depicted in Figure 5.2 for n = 10 as well as some smaller values of n.
The important property of A, (x,xo) is that its height increases at the same
time that its width decreases.

Instead of a charge distribution that abruptly changes from zero to some
finite value and just as abruptly drops to zero, let us consider a distribution

—— Ll

Xo X0 X0 Xo R

Figure 5.2: The linear density function as the length shrinks.
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that smoothly rises to a maximum value and just as smoothly falls to zero.
There are many functions describing such a distribution. For example,

(o) = gy e
T
has a peak of q\/ n/m at x = xo and drops to smaller and smaller values as
we get farther and farther away from xg in either direction. This function is
plotted for various values of n in Figure 5.3. It is clear from the figure that
the “width” of the graph of A\, (z,z¢) gets smaller as n — oo.

In both cases A\, (z,x¢) is a true linear (charge) density in the sense that
its integral gives the total charge. This is evident in the first case because
of the way the function was defined. In the second case, once we integrate
An(z, x0) from —oo to +00, we also obtain the total charge g. The region of
integration extends over all real numbers in the second case because at every
point of the real line we have some nonzero charge. Furthermore, we can
extend the interval of integration over all the real numbers even for the first
case, because the function vanishes outside the interval (xg— L/2n, xo+ L/2n)
and no extra contribution to the integral arises. We thus write

+oo
/ An(x,20) dx = ¢

— 0o

for all such functions. It is convenient to divide by ¢ and define new functions
On(z,x0) by
An (2, 70)

On(x,20) = .

-1 1 2 3

Figure 5.3: The Gaussian bell-shaped curve approaches the Dirac delta function as the
width of the curve approaches zero. The value of n is 1 for the dashed curve, 4 for the
heavy curve, and 20 for the light curve.
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so that
0 if x<x9—L/2n,
On(z,xz0) = Sn/L if zg—L/2n <z <z0+ L/2n,
0 if x>+ L/2n,

in the first case, and

6n(x,70) = \/ e (5.1)

™

in the second case. Both these functions have the property that

+oo
/ On(z,20) dx =1, (5.2)

— 00

i.e., their integral over all the real numbers is one, and, in particular, inde-
pendent of n.

Box 5.1.1. The Dirac delta function (x,xo) is defined as

§(z,m9) = lim 6,(z, o) (5.3)

n—oo

and has the following property:

“+o0
/ 0(z, o) doz = 1. (5.4)

— 0o

Equation (5.4) follows from the fact that the integral in (5.2) is independent
of n. The Dirac delta function has infinite height and zero width at xg, but
these two undefined quantities compensate for one another to give a finite area
under the “graph” of the function. The Dirac delta function is not a well-
behaved mathematical function as defined in elementary textbooks because at
the only point that it is nonzero, it is infinite! Nevertheless, this function has
been investigated rigorously in higher mathematics. For us, the Dirac delta
function is a convenient way of describing densities.

Although we have separated the arguments of the Dirac delta function
by a comma, the function depends only on the difference between the two
arguments. This becomes clear if we think of the Dirac delta function as the
limit of the exponential because the latter is a function of x —xzy. We therefore
have the important relation

d(z,x0) = 0(z — x0). (5.5)
In particular, since the delta function becomes infinite at = = x(, we have

§(z, o) = d(x — o) = 6(0) = 0. (5.6)

T=T0 T=I0
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One can think of the last equality as an identity satisfied by the Dirac delta
function:

Box 5.1.2. The Dirac delta function is zero everywhere except at the point
which makes its argument zero, in which case the Dirac delta function is
infinite.

Since the Dirac delta function is zero almost everywhere, we can shrink
the region of integration to a smaller interval. In fact,

b
/ O(x —xo)dx =1

as long as x¢ lies in the interval (a,b). If zq is outside the interval, then the
integral will be zero because the delta function would always be zero in the
region of integration. We summarize these results:

Box 5.1.3. The Dirac delta function satisfies the following relation

b .
/ 5(x—x0)da:={1 ifa <@ <b, (5.7)

0 otherwise.

Equation (5.4) is a special case of this, because —oo < xg < 400 for any
value of xq.

5.1.1 Linear Densities of Points

Any function A(z) whose integral over all real numbers is one is called a linear
density function. The §,,’s defined above are such functions. If we multiply linear density
a linear density function by a physical quantity @, the result will be a linear function
density for Q). In fact, this was how we arrived at d,,. Thus, QoA(x) is a
Q-linear density with total magnitude Q. Similarly, if M represents a mass,
then M A(z) is a linear mass density with total mass M. Conversely, if f(x)
describes the linear density of a physical quantity with total magnitude @,
then \(z) = f(z)/Q is a linear density function.
Because of Equation (5.4) the Dirac delta function is a linear density func-
tion. What kind of a distribution does it describe? To be specific, consider § function and
md(z, o) with m designating mass. This function is zero everywhere except densities of point
at xo. Thus, if it is to be a mass distribution, it has to be a point mass located charges and point
at 9. Keep in mind that md(z, x¢) is a linear mass density, so that its integral ~M3asses
is the total mass m. The linear “density” of a point mass is infinite because
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its length is zero, and this is precisely what md(x,zo) describes. In fact, the
linear density of a point physical quantity of magnitude @ located at xy can
be written as Qd(x, o) = Qd(x — xp), or generalizing,

Box 5.1.4. The linear density A(xz) of N point physical quantities
Q1,Q2,...,QnN located at x1,x2,...,xN, Tespectively, can be written as

N
Az) =Y Qrd(x — k). (5.8)
k=1

We see that with the help of the Dirac delta function we can express discrete
charge distributions (collection of point charges) in terms of functions. This
is the most useful property of the Dirac delta function.

Example 5.1.1. Three charges —q, 2q, and —q are located along the z-axis at
—a, the origin, and +a, respectively. How do we write the linear charge density for
such a charge distribution? We use Equation (5.8) with @ replaced by g¢:

3
Az) = Z qro(r — zx) = —qd(x — (—a)) + 2¢é(x — 0) — ¢d(z — a)

= —q¢d(z +a) + 2¢6(x) — gd(x — a).

Note that the Dirac delta functions ensure that no electric charge is present any
where except at * = a, x = —a, and x = 0. n

Example 5.1.2. A more interesting example of a linear charge distribution using
the Dirac delta function is that of an infinite array of point charges equally spaced
on a straight line having equal magnitudes and alternating in sign. This is a one-
dimensional model of ionic crystals.

Let us assume that the magnitude of each charge is +¢q, the spacing between it
and the neighboring charge is a, and that the charges start at —oo and extend to
+o0o with one positive charge at the origin as shown in Figure 5.4. Then it is easy

density of to write the density of this distribution. It is
one-dimensional
ionic crystal I
Az)= Y (-1)*qd(z — ka).
k=—oc0
--O0—8—O0—8— 00— 0O0—@--
o0 —a—

Figure 5.4: A one-dimensional ionic crystal. The black circles represent positive charges
and the white circles the negative charges.
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Note that for odd k£ the charge is negative and for even k it is positive. This is
because we placed a positive charge at the origin. Had we chosen the origin to
be the site of a negative charge, the above arrangement would have shifted by one

spacing.
|

5.1.2 Properties of the Delta Function

From a mathematical point of view, the most important property, which is
sometimes used to define the Dirac delta function, occurs when it multiplies a
“smooth”! function in an integrand. First look at an integral with a d,,(x—x¢)
inside. If the function f(x) multiplying 6, (x — x¢) is smooth and n is large
enough, the product f(z)d,(x — o) practically vanishes outside a narrow
interval in which 6, (x — z¢) is appreciably different from zero. For example,
if n =107, x = zo + 0.001, and we use the exponential function of Equation
(5.1), then §,(x — x¢) = 0.08, so that f(z)d,(x — xo) drops to about 8% of
the value it has at x(, assuming that f does not change appreciably in the
small interval of width 0.002 around xg. For larger values of n this drop is
even sharper. In fact, no matter what function we choose, there is always a
large enough n such that the product f(z)d,(z — x¢) will drop to as small
a value as we please in as short an interval as we please. Therefore, we can
approximate the integral over all real numbers to an integral over that small
interval. Let the interval be (xg — €,z + €). Then, we have

“+00 xro+e€
/ f@)on(z — x) do =~ / f(@)on(z — x0) dx

—o0 To—€

ro+e€
~ f(xo)/ On(z — x0) dz

0—€

“+o0
~ f(zo) / bu(z — 20) = f(xo).

— 0o

The approximation in the second line follows from the fact that f(x) is almost
constant in the small interval (zg — ¢, 29 + €). The third approximation is a
result of the smallness of §,, outside the interval, and the equality follows
because d, is a linear density function. The approximation above reaches
equality once the limit of n — oo is taken in which case d,, becomes the Dirac
delta function. Thus, we have the important relation

“+o0
/ F(@)6(z — x0) dx = f(zo). (5.9)

— 0o

1In the present context, a smooth function is one that does not change abruptly when
its argument changes by a small amount.
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integral of product This is equivalent to the following statement:
of §(x — xo) and

f(z) is simply
f(zo) Box 5.1.5. The Dirac delta function satisfies
b .
/ F@)8(x — ) do = 4 @) F a<wo<b, (5.10)
a 0 otherwise.

In words, the result of integration is the value of f at the root of the
argument of the delta function, provided this root is inside the range
of integration.

Example 5.1.3. In this example we illustrate some of the properties of the
Dirac delta function. For instance [ f(t)d(t)dt = 0 because the root of the
argument of the Dirac delta function (the point that makes the argument of the
Dirac delta function zero)—namely ¢ = 0—is outside the range of integration. The
integralf_Jr;o x0(x) dzx is zero because the function x vanishes at the point x = 0 (the
root of the argument of the delta function). Also,

+3
/ cosyd(y—m)dy =0

—o0

because m—which makes the argument of the delta function vanish—lies outside the
range of integration. However,

+3.2
/ cosyd(y —m)dy = cosm = —1

because now 7 lies inside the range of integration.
The reader is urged to check the following results:

—+oo +oo
/ cosyd(y —m)dy = —1, / sin z6(z) dz = 0,

—o0 —0o0

—+ o0 “+ o0 y
/ cosyd(y + ) dy =0, / (:os2<5(y—71')dy:07
0

/—11 et5(t) dt =1, /‘zoo zf(x)d(z)dx =0,

2.7 2.8
/ Int 6(t —e)dt =0, / Int 6(t —e)dt = 1.

—o0 —o0

As noted earlier, the Dirac delta function is not an ordinary over-the-

counter function. Nevertheless, it is possible to study it, along with many

distributions other “weird” functions called distributions, in a mathematically rigorous
and systematic way. It turns out that, in all physical applications, distribu-

tions occur inside an integral, and once they do, Equation (5.10) tells us how

to manipulate such integrals. The result of integration is always well defined

because it is simply the value of a “good” function at a point, say zy. In fact,
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the result of integration is so nice that one can even define the derivative of
the Dirac delta function by differentiating (5.10) with respect to zo. We leave
the details as an exercise and simply quote the result:

“+oo
/ F@) (z — 20) dz = — f (o) (5.11)
Higher order derivatives of the Dirac delta function can be obtained similarly. derivatives of
In fact, we have Dirac delta
function

Box 5.1.6. The nth derivative of the Dirac delta function satisfies

(—1)"f" (o) ifa <z <b,

, (5.12)
0 otherwise,

b
/ f(@)6™ (2 —x0)(z—x0) dzz = {

where the superscript (n) indicates the nth derivatives.

In many applications the argument of the Dirac delta function is not of
the simple form (z — zp), but may itself be a function g(x) whose deriva-
tive is assumed to be continuous in (a,b). Since by Equation (5.6) the delta what happens
function vanishes except when its argument is zero, in such a case, one has when the
to concentrate on the roots of g(x), i.e., values ¢ for which g(c) = 0. For argument of § is
simplicity, first assume that there is only one root ¢ of ¢ in the interval (a,b) itself a function?
and that ¢’(¢) > 0. Then, since the Dirac delta function is zero everywhere
in the interval (a,b), except at = ¢, we can shrink the region of integration
to (¢ — €,¢+ ¢€), and write

/ "5 (g(a) da = / iés(g(x)) do.

Now make the change of variable y = g(z), dy = ¢’(z) dz with the appropriate
transformation of limits of integration to get

b g(c+e)
/ 5 (g(x)) d = / o 5<y>gi‘g).

With ¢g(c¢) = 0 and ¢'(¢) > 0, we conclude that g is increasing in the interval
(c —€,c+¢), that g(c —e€) <0, and that g(c+€) > 0. We can therefore write

b B g(cte) dy 1
IRICCIEEE /9@_6) W) 2y = ()

because zero is in the region of integration and y = 0 is equivalent to z = ¢
there.
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When ¢'(c) < 0, g will be decreasing in the interval (¢ — €,¢ + €), and
g(c—¢€) >0 and g(c+ €) < 0. Thus, flipping the limits of integration so that
the smaller number corresponds to the lower limit, we obtain

b - g(c—e) dy__l _ 1
/a d(g(x)) dax = /g(chE) 5(y)g’($) T g(2) =0 g0 =0

We summarize the two results as

b 1
IRIEES 0'(e)]

If there are two roots of g in the interval, say ¢; and co with ¢y > c¢1, we
break up (a, b):

0
c1—e€ D c1+e
/ 5(g dx—/ 5 (g()) da:+/_ 5 (g() da
0 1
- Cco—€ - D co+te
+/cl+e 0 (g(x)) dx—|—/02E 0 (g(x)) dx
2
b A=y

where in the last line we used the result obtained in the previous paragraph.
It should be clear that if g has n roots ¢, ¢, ..., ¢, in (a,b), there will be a
summation of n terms in the last line of the above equation. In fact, we can
summarize the result of the foregoing discussion as

Box 5.1.7. If g(x) has the roots c1,¢a,...,¢n, and ¢'(ck) # 0 for all k
between 1 and n, then

/ g dﬁ_{ozz_ll/m'(cm ifa<en<b, 5.13)

otherwise.

When the delta function is multiplied by a smooth function f(z), a similar
argument as above—which is left to the reader—can be used to show that

/f dm_{ozz_1f<ck>/|g'<ck>| fa<o<h oo

otherwise,
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provided ¢'(cg) # 0. These results are sometimes written as an identity among

the delta functions. a very important
relation

Box 5.1.8. The Dirac delta function satisfies the following relation:

=2 e de) 2o (5.15)

1 lg’ ()

where {ck}7_, are all the roots of the equation g(x) = 0.

The formula analogous to Equation (5.14) involving the derivative of the Dirac
delta function is

/ o) (9(@)) da = {;zz_lf%ck)/m'(cm fa<e<b oo

otherwise.
Example 5.1.4. As a concrete example, let us evaluate the integral

I= /M FOS(E — a?) dt,

where f is a smooth function and a is a real constant. We can identify g(t) as 12 —qa?

with roots ¢1 = —a, c2 = a and derivative g'(t) = 2t. Therefore, Equation (5.15)
reduces to

0(t—c1)  O(t—c2) O(t—(—a)) O(t—a)

52 —a?) = = +
CO = el gl -2 T el
1
= t t— .
g {8+ @) 50— )

Substituting in the integral, we obtain

—+oo

1= a0al |- F@®){o(t+a)+d(t—a)}
1 “+o00 +o00o
= s {/_Oo F(©)3(t + a) +/_Oo f(t)a(t—a)}
1
gy L)+ F@)
Note that the integral vanishes—as expected—if f is odd. m

Example 5.1.5. We illustrate further the foregoing general discussions with some
more concrete examples. To evaluate the integral

/ sint 6(t> — n°/4) dt
1
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we note that g(t) = t> — 72 /4 which has two roots ¢1 = 7/2 and ¢co = —7/2 with
only the positive root lying in the range of integration. Moreover, g’(t) = 2¢t. Thus,

/°° sint 5(t% — 7°/4) dt flcr) sin(er) _ sin(m/2) _ 1.

lg'ey)l — 2a| — o«

3

On the other hand,
/ sint §(t° — n°/4)dt =0

—o0
because the second root ¢z is also included in the range of integration and its con-
tribution cancels that of c;.

To evaluate the integral
/ Inz 6(z° —4)dz
0

we note that g(z) = 2% — 4 which has two roots ¢; = 2 and ¢z = —2 with only the
positive root lying in the range of integration. Thus, with ¢'(z) = 2z, we have

fler) In(c;) In2
Inz 6(z" — = = =0. .
[ et SO0 < Ton) = - oass

The integral
—+oo
| rwset +atyay

is zero because there is no point in the range of integration at which the argument
of the Dirac delta function vanishes. In other words, g(y) = y? + a® has no real
roots at all.

To evaluate the integral

+m/2
/ (t+1)% §(sinwt) dt

—m/2

we note that g(¢) = sin 7t which has three roots ¢1 = —1, ¢c2 = 0, and ¢3 = +1 in
the range of integration. Thus, with ¢'(¢) = 7 cos 7t, we have

+m/2 &
2 R fle o o
/ (t+1)° é(sinmt) dt = kzzl g’ (ck | Z |7 cos(cx)]

—m/2 k=1
_(-1+1)* , (041  (1+1)* 5
" |mcos(—m)|  |mcos(0)|  |wcos(w)|
Some other concrete examples are:
+oo too
/ sin |t| 6(t° — 7°/4) dt = 2/, / cosz 6(x® — 7°)de = —1/x,
- 43
/ Inz 6(z° —1)dz =0, / cosy 6(y* + ) dy =0,
0 —o0
+m too
/ (t+1) 8(sint) dt = 35/, / F(t) (e — 1) dt = f(0),

oo “+ o0
/ Inz §(10z° + 3z — 1) dz = —0.23, / f(t)6(eh)dt = o.
0

—0o0

The reader is urged to derive all the above relations. |
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Historical Notes

“Physical laws should have mathematical beauty.” This statement was Dirac’s re-
sponse to the question of his philosophy of physics, posed to him in Moscow in 1955.
He wrote it on a blackboard that is still preserved today.

Paul Adrien Maurice Dirac (1902-1984), was born in 1902 in Bristol, Eng-
land, of a Swiss, French-speaking father and an English mother. His father, a
taciturn man who refused to receive friends at home, enforced young Paul’s silence
by requiring that only French be spoken at the dinner table. Perhaps this explains
Dirac’s later disinclination toward collaboration and his general tendency to be a
loner in most aspects of his life. The fundamental nature of his work made the
involvement of students difficult, so perhaps Dirac’s personality was well-suited to
his extraordinary accomplishments.

Dirac went to Merchant Venturer’s School, the public school where his father
taught French, and while there displayed great mathematical abilities. Upon grad-
uation, he followed in his older brother’s footsteps and went to Bristol University to
study electrical engineering. He was 19 when he graduated from Bristol University
in 1921. Unable to find a suitable engineering position due to the economic reces-
sion that gripped post-World War I England, Dirac accepted a fellowship to study
mathematics at Bristol University. This fellowship, together with a grant from the
Department of Scientific and Industrial Research, made it possible for Dirac to go
to Cambridge as a research student in 1923. At Cambridge Dirac was exposed to
the experimental activities of the Cavendish Laboratory, and he became a member
of the intellectual circle over which Rutherford and Fowler presided. He took his
PhD in 1926 and was elected in 1927 as a fellow. His appointment as university
lecturer came in 1929. He assumed the Lucasian professorship following Joseph
Larmor in 1932 and retired from it in 1969. Two years later he accepted a position
at Florida State University where he lived out his remaining years. The FSU library
now carries his name.

In the late 1920s the relentless march of ideas and discoveries had carried physics
to a generally accepted relativistic theory of the electron. Dirac, however, was dis-
satisfied with the prevailing ideas and, somewhat in isolation, sought for a better
formulation. By 1928 he succeeded in finding an equation, the Dirac equation, that
accorded with his own ideas and also fitted most of the established principles of the
time. Ultimately, this equation, and the physical theory behind it, proved to be
one of the great intellectual achievements of the period. It was particularly remark-
able for the internal beauty of its mathematical structure, which not only clarified
previously mysterious phenomena such as spin and the Fermi—Dirac statistics
associated with it, but also predicted the existence of an electron-like particle of
negative energy, the antielectron, or positron, and, more recently, it has come to
play a role of great importance in modern mathematics, particularly in the inter-
relations between topology, geometry, and analysis. Heisenberg characterized the
discovery of antimatter by Dirac as “the most decisive discovery in connection with
the properties or the nature of elementary particles . ... This discovery of particles
and antiparticles by Dirac ...changed our whole outlook on atomic physics com-
pletely.” One of the interesting implications of his work that predicted the positron
was the prediction of a magnetic monopole. Dirac won the Nobel Prize in 1933 for
this work.

Dirac is not only one of the chief authors of quantum mechanics, but he is
also the creator of quantum electrodynamics and one of the principal architects of
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“The amount of
theoretical ground
one has to cover
before being able
to solve problems
of real practical
value is rather
large, but this
circumstance is an
inevitable
consequence of
the fundamental
part played by
transformation
theory and is likely
to become more
pronounced in the
theoretical physics
of the future.”
P.A.M. Dirac
(1930)

Paul Adrien
Maurice Dirac
1902-1984
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quantum field theory. While studying the scattering theory of quantum particles, he
invented the (Dirac) delta function; in his attempt at quantizing the general theory
of relativity, he founded constrained Hamiltonian dynamics, which is one of the most
active areas of theoretical physics research today. One of his greatest contributions
is the invention of the bra (| and ket |) notation used in quantum theory.

While at Cambridge, Dirac did not accept many research students. Those who
worked with him generally thought that he was a good supervisor, but one who
did not spend much time with his students. A student needed to be extremely
independent to work under Dirac. One such student was Dennis Sciama, who later
became the supervisor of Stephen Hawking, the current holder of the Lucasian chair.

Salam and Wigner in their Preface to the Festschrift that honors Dirac on his
seventieth birthday and commemorates his contributions to quantum mechanics
succinctly assessed the man:

Dirac is one of the chief creators of quantum mechanics.... Posterity

will rate Dirac as one of the greatest physicists of all time. The present

generation values him as one of its greatest teachers.... On those privi-

leged to know him, Dirac has left his mark ...by his human greatness.

He is modest, affectionate, and sets the highest possible standards of

personal and scientific integrity. He is a legend in his own lifetime and

rightly so.
(Taken from Schweber, S. S. “Some chapters for a history of quantum field theory:
1938-1952,” in Relativity, Groups, and Topology II, vol. 2, B. S. DeWitt and R.
Stora, eds., North-Holland, Amsterdam, 1984.)

5.1.3 The Step Function

The step function 6 is defined as

1 ifz>0
0(x) = 5.17
(=) {0 if 2 <0 (5:17)

The 6 function (as it is often called) is useful in writing functions that have
discontinuities or cusps. For instance, absolute values can be written in terms
of the step function:

|z| = 20(z) — 20(—x) or |z —y|=(z—y)[(z —y) -0y —z)]

A piecewise continuous function such as

(5.18)

o(z) = {gl(x) ifo<e<1

g2(x) ifzx>1

can be written as
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Because 6 is constant everywhere except at 0, its derivative is zero ev-
erywhere except at 0. The discontinuity at 0 makes the derivative infinite
there:

0(e) — 6(—¢) 1-0
/ T e
0(0)_25% 2e _213(13 2
This strongly suggests the identification of the derivative of the step function
as the Dirac delta function. In fact, noting that

1 ifz>uxg
O(x — = 5.19
(& = 20) {0 if x < xo, ( )

and the fact that 6'(x — xo) is zero everywhere except at zp, for any well-
behaved function f(z) we obtain

[e'e) xo+e€ ro+e
[ @b @-ad= [ p@f @ an)dos fao) [ - a)de

= f(x0) O(z — 20) |21 = F(20)[0(c) — O(—€)] = f(x0)
> X7

We thus have another important representation of the Dirac delta function:
5(x —x0) = 0'(x — ) (5.20)

Example 5.1.6. For positive a, tanh(az) goes to 1 as ¢ — oo and to —1 as
r — —oo and it makes a smooth transition from one of these asymptotic values to
the other. This transition gets steeper and steeper for larger and larger values of a.
This suggests the following relation:

O(z — x0) = § alingo {1 + tanh[a(x — z0)]}

Let 04(z — x0) stand for the function on the right-hand side for any finite positive
a. Then

asech?[a(x — x0)]

0 (x — x0) = ;dcfr {1 + tanh[a(z — z0)]} = )

and

—o0

/°° 0L(x — x0) dz = Oa( — 20)| %, = 1 {1+ tanhla(x — )]}, = 1

—o0

for any value of a > 0, in particular for a — oco. Thus, we get yet another represen-
tation of the Dirac delta function:

2 _
(5(I — xo) = lim 0;(x — xo) = lim asech [a(I xo)]
a—00 a— o0 -
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5.2 Two-Variable Case

We can generalize the discussion of the previous section to the case of many
variables. For example, in two dimensions using Cartesian coordinates, we
can define the functions ¢,, as

511 (Qf —Z20,Y — yo) = Ce_n [(1—10)2+(y—y0)2] = Cein(miwofein(yiyo)i (521)

where C' is a constant to be determined in such a way as to make the integral
of d,, over the entire zy-plane equal to one. A simple calculation will show
that C' = n/m. This constant is simply the product of two “one-dimensional
constants”: one for the exponential in = and the other for the exponential in y.
This is as expected, because 6, (z — xo,y — yo) is defined to be the product of
two one-dimensional §,,’s. Such a simplicity is the result of the coordinate sys-
tems we have used and does not prevail in other—non-Cartesian—coordinate
systems, for which the constant C' must be evaluated separately.

It should be clear from (5.21) that as n increases, the height of §,, at
(x0,y0) increases while its width decreases (see Figure 5.5). What may not be
clear is that this reciprocal behavior takes place in such a way as to keep the
volume under the surface equal to one. We can define—as we did in the one
dimensional case—a surface density function as a function whose integral
over the entire plane is one. For any n, then, 6, will be a surface density
function.

The passage to the two-dimensional Dirac delta function is now clear:

0(x — x0,y — Yo) Enli_{lgodn(a:—xo,y—yg). (5.22)
The two-dimensional Dirac delta function above is zero everywhere except at

(z0,yo) where it is infinite. Thus for the Dirac delta function not to be zero
both of its arguments must be zero. 1t is convenient to define points P and P

- L

Figure 5.5: As n gets larger and larger, the two-dimensional Gaussian exponential
approaches the two-dimensional Dirac delta function. For the left bump, n = 400; for
the middle, n = 1000; and for the right spike n = 4000.
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with respective Cartesian coordinates (z,y) and (zo, 30), and position vectors
r = (z,y), ro = (2o, yo), and write

5(0) = 6(0,0) =00 if r=ry,

) (5.23)
0 otherwise.

5($—$0,y—y0)55(r—r0):{

This means

Box 5.2.1. The two-dimensional Dirac delta function is zero everywhere
except at the point which makes both of its arguments zero, in which case
the two-dimensional Dirac delta function is infinite.

We noted above that in Cartesian coordinates—and only in Cartesian
coordinates—the product of two one-dimensional §,’s gave rise to a two-
dimensional §,, which subsequently yielded the two-dimensional Dirac delta
function. Thus only in Cartesian coordinates can we conclude that

d(r —ro) = (2 — 20,y — yo) = 6(x — 20) (¥ — vo)- (5.24)

We shall see that in polar coordinates, the two-dimensional delta function
is not merely the product of two one-dimensional delta functions, but some
other factor is also present.

The density property of the two-dimensional Dirac delta function survives
the n — oo process because the integral of d,, is independent of n. On the
other hand, the delta function is zero everywhere except at the point which
makes both of its arguments zero. Therefore, for any two-dimensional region

Q, we have
1 if Pyisin Q
/5(r—r0)da(r): BOTO IS (5.25)
Q 0 otherwise.

Equation (5.25) is written independently of coordinates, and as such, the
vector arguments are to be interpreted as coordinates not components. We
can use this equation in polar coordinates to write the two-dimensional Dirac
delta function as a product of two one-dimensional delta functions. First
write?

§(r — 1) = Cd(p — po)d(¢ — o).

2We use p and ¢ instead of the more common r and § because we have reserved the
latter for the three-dimensional spherical coordinates. There is no danger of confusing the
pair (p, ¢) with the corresponding pair in cylindrical coordinates because the two pairs are
identical.
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Now substitute this in Equation (5.25) with © being the entire plane, and
note that da = pdpdy:

1 =/Q C6(p — po)d(p — o) pdpdp

00 2
:C/O d(p—po)pdp ; d(p — o) dyp
~ 2,1 -
1
:Cpo = C= .
Po

In the above derivation, we have used properties of the one-dimensional delta
function as applied to §(p — pg) and §(¢ — ¢o).

Box 5.2.2. The two-dimensional Dirac delta function can be written in
polar coordinates as

e =r0) = ) 8o p)ile—g0) = (o= po)ilp =) (526)

The last equality follows because the Dirac delta function in p forces p and
po to be equal.

A collection of point physical quantities Q1, Qo, ..., Q, located on a sur-
face can be described by a surface density og(r) using the two-dimensional
surface density Dirac delta function: .
and
two-dimensional UQ(T) = Z Qrd(r — k), (5.27)
k=1

delta function
where rj is the position vector of Q. This equation can be rewritten as

y) =D Qrd(x —zk)5(y — yr)

in Cartesian coordinates, and as

(P, ) ZQ 3(p = pr)o(w — 1) ZQM,O pr)O(% — 1)

in polar coordinates.

Example 5.2.1. With an appropriate choice of the origin and the axes of a Carte-
sian coordinate system, the surface charge density for four charges qi, q2, g3, qa lo-
cated at the four corners of a square of sides 2a can be written as

4

oq(@,y) =D ard(e —xr)5(y — yr)

=qd(zx—a)d(y —a) + ¢d(x+a)d(y —a)
+ q30(z + a)d(y + a) + qad(z — a)é(y + a).
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If polar coordinates are used, the surface charge density becomes

IS

oq(p, ) = Z’; 8(p — pr)d(p — o)
k=1
_ 5(9;2‘22 @) {0160 = 7/4) + 200 — 37/4)

+ q38(p — 51/4) + qad(p — 77r/4)}.

The reader is urged to study these two equations carefully and make sure to under-
stand the details of their derivation. [

A more interesting example is the two-dimensional ionic crystal.

Example 5.2.2. Suppose positive and negative charges +q are arranged on an
infinite square grid in such a way that the mearest neighbors of each charge have
charges of opposite sign, i.e., charges alternate both horizontally and vertically (see
Figure 5.6). Assume that the distance between each charge and its nearest neighbor
is a, and that we place our Cartesian origin at the location of a positive charge.
Then the surface charge density can be written as

ey =a Y. Y (-5 — ia)s(y - ja).

1=—00 j=—00

For a finite 2M x 2N grid one substitutes the first infinity with M and the second
one with N. Similarly, one can consider rectangular units of sides a and b for the
grid. Then one should change the second argument of the delta function (or the
argument of the delta function corresponding to y) to y — jb. ]

With an extra dimension at our disposal, we can invent many new vari-
eties of distribution of point physical quantities that were not possible in one
dimension. For example, we can put the points on a curve in the zy-plane.
It is instructive to find the surface density of such a collection of points. The
following example examines this problem.

Figure 5.6: A two-dimensional ionic crystal.
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Figure 5.7: Point charges located on a curve in the zy-plane.

Example 5.2.3. For concreteness, we consider n point charges located at n points
{Px}r—1 with Py having Cartesian coordinates (x,yx). These points are assumed
to be on a curve with the Cartesian equation y = f(z) as shown in Figure 5.7. The
surface charge density in Cartesian coordinates becomes

y):iqké(x—wk 5y — yx) quﬂﬁ—xk ( f(xk)).
k=1

If the curve is given as p = g(y), then polar coordinates are more appropriate,
and the surface charge density will be®

n

Uq(pw)zzq 3(p — pr)8(v — ¥r) :Z 60— g(en)) 8 — 1)

— pr 9(r)

For instance, if the charges are located on a circle of radius a each separated from
its nearest neighbor by an angle «, with the first charge on the z-axis, then

aq(p, ¢) Z a6 (¢ — a),

where we have used the fact that g(p) = a for a circle of radius a. n
All the properties of the delta function can be generalized to two dimen-

sions. One important property is given in Equation (5.10).

Box 5.2.3. Let Q be a region in the xy-plane and Py a point there; then

/ﬂ )6 - 10) da:{f(ro)zf(xo,yo) PR o0

0 otherwise,

where (x0,yo) are the Cartesian coordinates of Py.

3Because of the two delta functions, one can substitute p for p; and ¢ for ¢ in the
denominators.
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Differentiating both sides with respect to the first argument xg, we easily
obtain the analog of Equation (5.12):

/Q f(r)010(r —ro)da = {(;alf(ro) = —01f(xo,y0) if Pyisin €,

otherwise,

with a similar relation for differentiation with respect to the second argument.
We can combine the two relations into a single relation:

Box 5.2.4. The derivative of the Dirac delta function in two dimensions
satisfies

—0if(ro) = —0;f(xo,y0) if P is in Q,
otherwise,

/ f(r)0;6(r —rg)da =
Q

where i can be 1 or 2, 01 = 0, and 02 = 0.

5.3 Three-Variable Case

Once the generalization to two variables is realized, the three—and more—
variable cases become trivial. In fact, we had such generalizations in mind
when we wrote most of the formulas in the last section: All that is needed
is to change da to dV and keep in mind that the vectors r and rg have
three components, and points in space have three coordinates. Nevertheless,
we shall summarize the most important properties of the three-dimensional
Dirac delta function.

First we note that

5(r — ro) = 6(0) = 6(0,0,0) =00 if r =ry, (5.20)
Y70 otherwise. '

This means

Box 5.3.1. The three-dimensional Dirac delta function is zero everywhere
except at the point which makes all three of its arguments zero in which
case it is infinite.

In Cartesian coordinates, we have

6(r —ro) = d0(z — 0,y — Yo, 2 — 20)
=d(x —x0) d(y — yo) (= — 20). (5.30)
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An argument similar to the two-dimensional case can be used to show that

Box 5.3.2. In cylindrical coordinates

5(r — 1) = plocxp — p0)6(p — 0)6(z — z0), (5.31)

where r and ro on the LHS are to be understood as cylindrical coordi-
nates, not cylindrical position vectors. The corresponding formula for the
spherical coordinate system is

1

Or —ro) = 73 sinfy

§(r —10)6(0 — 00)6(¢ — vo), (5.32)

with v and ro representing the coordinates (1,6, ) and (ro,00,¢0), re-
spectively.

The density property of the three-dimensional Dirac delta function is given

by
/ 5(r — o) dV () = {1 if Py is in €, (5.33)
Q

0 otherwise,
where () is a region of space and Fp is the point with Cartesian coordi-
nates (o, Yo, 20), spherical coordinates (rg, 0o, @0 ), and cylindrical coordinates
(IOOa 0, ZO)' SlmllarlY?

Box 5.3.3. If Q is a region of space, then for a “good” function f(r),

[ st =0y ave) - {f (ro) 4 Fo is in £,
Q 0 otherwise.

Thus integration reduces to the evaluation of the function f at the coordi-
nates of Py.

The density property allows us to write the distribution of discrete physical
quantities in terms of the three-dimensional Dirac delta function. In general,

po(r) = Qrd(r — %) (5.34)
k=1
which can be rewritten as

poley,2) = 3 Qudla — 2)5ly — yi)o(= — )
k=1
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in Cartesian coordinates, as

n

Qo @, 2 Z 8(p = pi)o(¢ — @1)d(z — 21)

in cylindrical coordinates, and as

00,0) =3 L S — )60 - 0)5(p — 1)

£ Tj;sin Ok
in the spherical coordinate system. In fact, the linear and surface distributions
of a physical quantity involving the Dirac delta function are special cases of

the volume distribution. For instance, a collection of point quantities in the
zy-plane can be described by the volume density

pQ(,y, 2 ZQM z — 1)3(y — yi)d(2)

k=1

n
(2) " Qe — )8y — ).
k=1
The delta function outside the sum restricts the z-coordinates of point quan-
tities to zero, and thus their location, to the zy-plane. Similarly,

(0 — 0r)d(e — r)

describes a distribution of n point quantities on a sphere of radius a.

Example 5.3.1. Let us calculate the electrostatic field of the one-dimensional
infinite ionic crystal in Cartesian coordinates. Assume that the charges are located
on the z-axis (Figure 5.8). We treat this as a three-dimensional charge distribution
with density

oo

pqe(x,y,2) =q Z 0(y)o(z — ka). (5.35)

k=—o0

Figure 5.8: The geometry for the calculation of the electrostatic field of the one-
dimensional ionic crystal.
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The first two delta functions restrict the charges to the z-axis and the third locates
them. This density is to be substituted in the equation for the electric field in
Cartesian coordinates. Let us concentrate on the z-component

Euly,2) = ke/ pe(@' vy, 2 ) (x — 2') da’ dy' d2’ o
a{lz—a)?+@y—y)?+(z— )}

We can always take €2 to be the entire space because the delta function will restrict

the integration to the region of charges automatically. We can also choose our

coordinate system so that the field point lies in the xz-plane, i.e., y = 0. Note that

we have to prime all the arguments of p,; before we substitute it in the integral.

Having done this, we obtain

Eu(2,9,2) = keg i (—l)k/ (z —2")6(2")5(y")o(2" — ka) da’ ng/J; dz'_
fe oo o Al@—-a)+y?+(z-2)%}
Using Box 5.3.3, noting that
(z —2')
{(w =202 +y2+ (= 22}/
and that the result of integration is the evaluation of f at 2’ = 0 =3/, 2’ = ka, we
obtain

fla'y,2) =

[e'e]

EI(x7y7z):k€q Z (_1)

k T
{22 + (2 — ka)2}*/

= keq Z (=1) {m2+(z—ka)2}3/2

T > k €T
+ keq + keq -1 5
(@ e R 2 D gy

where we have broken up the summation into three pieces, a permissible act as long
as the series converges. We can combine the first and third terms by changing k to
—Fk in the first and noting that

Doing so, we get
x
(22 + 22)3/2

P2 ({x2+<z+ka>2}3/2+{x2+<z—ka)2}3/2>'

The other components of the field can be found similarly:

E.(x,0,2) = keq

EU(I707 Z) = 07

EZ(I707Z):k€q ?

(22 + 22)3/2

> & z+ ka z —ka
Fha2 (D ({xz PR (a2 (o ka>2}3/2) |

(5.36)
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Let us further simplify the problem by positioning the field point on the z-axis,
i.e., setting z = 0. This reduces the above expressions to

Ey(2,0,0) = kﬁq s T leqz 1,2 —|—k:2 2)3/2°

E,(x,0,0) =0,

. - 1k ka —ka =
P00 =k 2 () ({x2+(ka>2}3/2+{w2+(—ka>2}‘°’”> '

At a distance a from the origin on the z-axis, the field strength is

oo keq
E.(2,0,0) = { 22_: L+ g 3/2}—0.42746a2
O .
=—0.286269
By(,0,0) =0,
E-(z,0,0) =0,

where the numerical value for the sum—accurate to six decimal places—is obtained
by adding its first 150 terms.

Another useful quantity is the electrostatic potential which for an arbitrary
charge distribution is given by

— ke / - r'I (5.37)

For the one-dimensional crystal, with the volume charge density of Equation (5.35),
the electrostatic potential at an arbitrary point (z,y,2) in space becomes

@ k/ pqx y', ') da’ dy' d2’
Ao V@ =2+ (y—y)? + (s — )2

— kg Z( /\/I_x §(2' — ka)dz' dy' d2’

oo (y-y)2+(-2)

—1)*
= keq Z \/1’2—|—y2+(z—ka)

k=—o0

If we are interested in the potential at a specific point such as (z,0,0), the
expression simplifies to

- (—1)*
D(2,0,0) = keq Z
it V2 + k2a?

! + 2k i (-1)"
Va? eqk:I Va? + k%a?

keq = (_1)k
== + 2ke
|| q,; V2 + k2a?

= keq
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For x = a, this further simplifies to

®(a,0,0) = { +23° \/(141—k2} = O.1182k;q.

k=1
~ ~ -
—0.4409
We note that the potential is positive, because the field point is closest to the positive
charge at the origin. To obtain the numerical value of the sum accurate to only four
decimal places, we have to add at least 40,000 terms! This sum is, therefore, much
less convergent than the sum encountered in the evaluation of E, above. -

An important physical quantity for real crystals is the potential energy U
of the crystal. Physically, this is the amount of energy required to assemble
the charges in their final configuration. A positive potential energy corre-
sponds to positive energy stored in the system, i.e., a tendency for the system
to provide energy to the outside, once disrupted slightly from its equilibrium
position. A negative potential energy is a sign of the stability of the system,

, the tendency for the system to restore its original configuration if dis-
rupted slightly from its equilibrium position.* It is shown in electrostatics
that the potential energy of a system located within the region €2 is

U= ;/ﬂ dq(r)®(r). (5.38)

Example 5.3.2. Let us calculate the electrostatic potential energy of the one-
dimensional crystal. Let us assume that there are a total of 2N +1 charges stretching
from z = —Na to z = +Na with a positive charge at the origin. Eventually we
shall let N go to infinity, but, in order not to deal explicitly with infinities, we
assume that N is finite but large. Substituting in (5.38) the element of charge in
terms of volume density, and electrostatic potential found in the previous example,
we find

U= ;/ pq(l‘,y,Z)q)(l',y,Z) dl‘dyd'z
Q
N

- / {q S (-1 6(w>6<y>6<z—ja>}

j=—N

- (—1)*
X < keq dx dydz
N \/1’2 +y?2 + (2 — ka)?

S S

j=—Nk=—N
k#j

(ja — ka)

4A system that has negative potential energy requires some positive energy (such as
kinetic energy of a projectile) to reach a state of zero potential energy corresponding to
dissociation of its parts and their removal to infinity (where potential energy is zero).
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The restriction k # j is necessary, because the k = j terms correspond to the
interaction energy of each charge with itself, and should be excluded. Continuing
with the calculation, we write

J+k

Z Z J—kl

j=—N k=—N
k#j

2 N ity (—1)7tk N (—1)it*

_ keq
“ o 2 (2 j—k k—j

j=—N | k=—N k=j+1

In the first inner sum, let j — k = m, and in the second let k — j = m. These
substitutions change the limits of the sums, and we get

ke & (P H (-
U= 2a Z { Z m T m }

j=—N Um=N+j m=1
N N+j N—j
_ ked? (=™ (=™
SN DR e}

To evaluate the inner sums, denoted by S, we now assume that N is very large—
compared to j—so that N — j &~ N & N + j. Then the inner sum yields®

N+j m N—j 1)m N m N (_ m
e SRS SRS DD »
m=1 m=1 m=1 m=1
N m e 'm+1
=2 Z -2 Z =—2In 2.
=1 m=1
Substituting S in the expression for U, we get
N
keq?® keq?® keq®
~ —2In 2 In 2 1=-(2N In 2.
v 2a j;N( n2)= a J_E;N +1) a

The negative sign indicates that the one-dimensional salt crystal is stable. A useful
quantity used in solid-state physics is ionization energy per molecule which is defined
to be the potential energy divided by the number of molecules. Noting that the
number of molecules is half the number of particles, we obtain

2 2
2N+ 1keq 1n2z—k5q 21n2£—ak€q .

=U/N = —
v / N a a a

A real three-dimensional salt crystal has exactly the same expression. However,
the constant «, called the Madelung constant has the value of 1.747565 instead
of 2In 2 = 1.386294. (See Problem 5.17 for an alternative way of calculating the
potential energy of the one-dimensional ionic crystal.) ]

5We are really cheating here! The sum over j indicates that j can assume values close to
N, and therefore, the approximation is not valid for such j’s. However, a careful analysis,
in which one breaks up the sum over j and separates large and small values of j, shows that
the original approximation is valid as long as N is large enough.

Madelung
constant

165
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5.4 Problems

5.1. Plot the distribution on the real line of each of the following electric
linear charge densities:

(a) AMz) = 8(z — 2). (b) Az) = —d(z +1).
(c) A(z) = 5(x) — 36(x +3). (d) M=) = d(z + 1) + 35(z — 1).

5.2. Evaluate the following integrals:
° X 2 T
(a)/ e“sin " 6(2® — 1) du. (b)/ e“sin ' 6(2® — 1) du.
(C)/ €’ sin 7?5(333 + 1) dz. (d)/ sin <7T; ) §(z* + 1) dx.
0 —00
(e)/ sin~!(1/z)0(x* — 1) d. (f)/ cos(mz)8 (62 — x — 1) d.
0 —00

(2) / sin <7Te ) §(z? +2)dx. (h) / €” sin 71wé(e” sin )dx.
—0.1 2 oo 2 2
5 oo 1
(1)/ ¥ (cos ) dx. (J)/ sin~! < ) §(z* —4) d.
0 0 T

(k) / e” sin 7?5(4952 —1)ydx. (1) / In(1 + ) sin ﬂ;&(ﬁ —1)dux.

(m)/ sin 7r§ §(z® +1) d.

5.3. Show that

and

o0 +00
/ f(2)d' (g(x)) dz = — / f'(2)d(g(x)) de.

5.4. Evaluate the following integrals:

oo 2
(a) / e’ sin 7?5/(3:2 —1)dz. (b) / €” sin ﬂ-; 8 (z® — 1) da.
0

-2

(c)/ e sin W2x5’(x3 +1)dz. (d)/ sin (WS > §' (x4 1) da.
0 —o0

(e) /O°° sin™'(1/2)0 (z* — 1) da. (f)/ cos(mz)d! (622 — & — 1) da.

— 00
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(g) / sin <7T; ) §'(x* +x)dz. (h) / e” sin W; 8 (e” sin ﬂ;) dx.

—0.1
5 o)
(i) / 75 (cos 7) d. i) / sin~! (1> 5zt — 4) da.
0 0
(k) / e” sin 7;"” §'(4a? — 1)da. (1) / In(1 + z) sin ”2“” & (23 — 1) da.

(m)/ sin ﬂ-; §' (2 + 1) da.

5.5. Use integration by parts (or differentiation with respect to xp) to show
that

+oo
/ f(@)8" (x — x) dx = f"(z0)

— 00

and

+oo
/ F(@)6" (& — o) d = — " (o)

— 0o

and, in general,
—+oo
/ F(@)8" (x — xo) dx = (=1)" f™ (x0)
where 6(™ and f(™ represent the nth derivatives.
5.6. Derive Equation (5.16). Hint: Use the result of Problem 5.3.

5.7. Six point charges of equal strength ¢ are equally spaced on a circle of
radius a. What is the volume charge density describing such a distribution in
cylindrical coordinates?

5.8. Convince yourself that
og(wy)=q Y Y, (=) —ia)s(y — ja)
1=—00 j=—00

indeed describes a two-dimensional ionic crystal. Pay particular attention to
the power of (—1).

5.9. Derive Equations (5.31) and (5.32).

5.10. Plot (or describe) the distribution in space of each of the following
volume charge densities:

pal,y, ) = 3()3(y) {26(2) — 33(z + 3)}
palayy,2) = 53(x + 1)3(y — 1) {8(z — 1) — 6= + 1)},
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pqa(p,p,2) = =26(p — 3)d(p — m)d(2),

10
Pq(p;p; 2) = 20(p — m/4)d(2) {Z(—l)k“ts(p - 0-5k)} ;

k=1

Pq(rv 0, QO) = 25( - 7-‘-/4

10
pq(r,0,0) =25(p —/4)0(r — 2) {Z k“&( ;)k)},

5.11. Derive Equation (5.36).
5.12. Plot 0(t)0(1 —t), 6(t) — 6(—t), and O(t> + 1) for —oo < t < +o0.
5.13. Write 6(t?> — 1) as a product of two step functions.

5.14. For the two-dimensional ionic crystal shown in Figure 5.6:

(a) write the volume charge density describing the distribution (charges are
in the zy-plane);

(b) calculate the electrostatic field at (0,0, a); and

(¢c) calculate the electrostatic potential at an arbitrary point in space with
coordinates (z,y, z).

(d) Show that the ionization energy is of the form —ak.q?/a with o given in
terms of a sum.

(e) Numerically evaluate a.

5.15. For the three-dimensional ionic crystal:

(a) write the volume charge density describing the distribution; and

(b) calculate the electrostatic potential at an arbitrary point in space with
coordinates (z,y, 2).

(c) Show that the ionization energy is of the form —ak.q?/a with « given in
terms of a sum.

(d) Numerically evaluate a.

5.16. Two electric charges +q and —q are located at P, and P, with position
vectors ry and rs.

(a) Write the volume charge density describing these charges.

(b) Use (a) to find their dipole moment defined by [[[ r'dg(r’)

5.17. The electric charge density of the one-dimensional ionic crystal can be

written as p(r) = Z?L_N qié(r —r;).
(a) Substitute this in Equation (5.38) and get

1 N
=, > ad(r:)
i=—N
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(b) Assuming that N is very large (infinite), convince yourself that all products
¢i®(r;) in the sum are equal (in particular the sign of the charge does not
matter). Therefore, U = J (2N + 1)qo®(ro), where the subscript denotes the
zeroth charge.

(¢c) Show that ®(rg) = Z;V:_N keq;/|r; — rol.

(d) Place the origin at the location of the zeroth charge, and assume that the

this charge is positive. Then, ro = 0, r; = jaé,, and ¢; = —(—1)7¢g. Now
show that
o~ (1)
U=—(N+3)ke > .
=y ladl

(e) By breaking up the sum into two parts show that

U=—(@2N+1)

ke o (—1)7
e

a 1 J

5.18. 2N charges of equal sign and magnitude ¢ are arranged equally spaced
on a circle of radius a located in the xy-plane. Assume that the charge num-
bered 2N is at (a,0,0).

(a) Write the volume charge density of such a distribution in cylindrical co-
ordinates.

(b) Starting with an integral expression for the electric field, find the cylin-
drical components of the field at an arbitrary point P in space in terms of
a sum. The coordinates of P are (p, ¢, z). Simplify your answer as much as
possible.

(¢) Now let P have coordinates (2a,0,0). Show that all components of the
field are of the form (k.q/a?)a. Express the a for each component in terms
of a sum. What do you expect the value of o to be? Can you find that value?
(d) For N =3, i.e., six charges, calculate the numerical value of « in part (c)
for all components.

5.19. 2N + 1 charges of equal sign and magnitude ¢ are arranged on the x-
axis of a Cartesian coordinate system as shown in Figure 5.9, with the zeroth
charge at the origin. The numbers below the axis are labels of the charges.
(a) From the pattern of the figure, determine the location of the kth charge
for —N < k < N.

9a t 9a
—4a——4a—
3 2 10-1 -2 -3 X

Figure 5.9: The charges and their distances on the z-axis.
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(b) Write a volume charge density in terms of the Dirac delta function de-
scribing such a charge distribution.

(¢) Calculate the components of the electric field at a general point P with
coordinates (z,y, 2).

(d) Now let P have coordinates (a,a,0). Show that all components of the
field are of the form (k.q/a?)a where « is a numerical factor. Find this factor
for each component.

5.20. 2N positive and negative charges of equal magnitude are arranged
equally spaced and alternating in sign on a circle of radius a.

(a) Write the expression of the volume charge density describing this charge
distribution.

(b) Find the ionization energy in the form —ak.q?/a with a given in terms
of a sum. Simplify this sum as much as possible.
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Chapter 6

Planar and Spatial Vectors

The preceding chapters made heavy use of vectors in the plane and in space.
The enormous utility of the concept of vectors has prompted mathematicians
and physicists to generalize this concept to include other objects that at first
glance have no resemblance whatsoever with the planar and spatial vectors.
In this chapter, we shall study this generalization in its limited form, i.e.,
only in an algebraic context. Although the analysis of vectors is discussed
in Chapters 12 through 17, it is confined to vectors in space. The analysis
of generalized vectors is the subject of differential geometry and functional
analysis that are beyond the scope of this book.!

There are many mathematical objects used in physics that allow for the
two operations of addition and multiplication by a number. The collection
of such objects is called a vector space. Thus, a vector space is a bunch
of “things” having the property that when you add two “things” you get a
third one, and if you multiply a “thing” by a number you get another one of
those “things.” Furthermore, the operation of multiplication by a number and
addition of “things” is distributive, and a vector space always has a “thing”
that we call the zero vector.

Using the two operations of multiplication by a number and addition, we
can form a sum,

ora) + asas + - + agan, (6.1)
where a1, as,...,a,, are real numbers and aj,as,...,a, are vectors. The
sum in Equation (6.1) is called a linear combination of the n vectors and
a1, Qo,...,a, are called the coefficients of the linear combinations.

1Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, discusses differential geometry and functional analysis in some detail.

vector spaces
defined

linear combination

coefficients
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Box 6.0.1. If we can find some set of real numbers, aq,ag, ...,y (not
all of which are zero), such that the sum in (6.1) is zero, we say that the
vectors are linearly dependent. If no such set of real numbers can be
found, then the vectors are called linearly independent.

6.1 Vectors in a Plane Revisited

Before elaborating further on the generalization of vectors and their spaces,
it is instructive to revisit the familiar vectors in a plane from a point of view
suitable for generalization. We first discuss the notion of linear independence
as applied to vectors in the plane.

The two vectors &, and &, (sometimes denoted as i and j) are linearly
independent because o€, + 3€, = 0 can be satisfied only if both o and 3 are
zero. If one of them, say «, were different from zero, one could divide the
equation by a and get 5

é,=— ¢&
oY

which is impossible because &, and &, cannot lie along the same line.

Example 6.1.1. The arrows in the plane are not the only kinds of vectors dealt
with in physics. For instance, consider the set of all linear functions, or polynomials
of degree one (or less), i.e., functions of the form ao + a1t where oo and a1 are real
numbers and ¢ is an arbitrary variable. Let us call this set P1[t], where P stands for
“polynomial,” 1 signifies the degree of these polynomials, and ¢ is just the variable
used. We can add two such polynomials and get a third one of the same form. We
can multiply any such polynomial by a real number and get another polynomial. In
fact, P1[t] has all the properties of the vectors in a plane. We say that P[] and
the vectors in a plane are isomorphic which literally means they have the “same
shape.”

It is important to emphasize that two polynomials are equal if and only if all
their coefficients are equal. In particular, a polynomial is equal to zero only if it is so
for all values of t, i.e., only if its coefficients vanish. This immediately leads to the
fact that the two polynomials 1 and ¢ are linearly independent because if a+ gt = 0
(for all values of t), then « = 3 =0 (try t =0 and t = 1). m

It is easy to show that any three vectors in the plane are linearly dependent.
Figure 6.1 shows three arbitrary vectors drawn in a plane. From the tip of one
of the vectors (ag in the figure), a line is drawn parallel to one of the other two
vectors such that it meets the third vector (or its extension) at point D. The
vectors @ and D—C>' are proportional to a; and ay, respectively, and their
sum is equal to az. So we can write

—_— =
a3 =0D+ DC =aa; + Pay; = aa; + fas —az3 =0

and aj, ag, and ag are linearly dependent. Clearly we cannot do the same
with two arbitrary vectors. Thus
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Figure 6.1: Any three vectors ai, a2, and ag in the plane are linearly dependent.

Box 6.1.1. The maximum number of linearly independent vectors in a
plane is two. Any vector in a plane can be written as a linear combination
of only two non-collinear (not lying along the same line) vectors.

We also say that any two non-collinear vectors span the plane.
Suppose that we can write a vector a as a linear combination of n vectors

a=qa] +agas+ -+ aya,.

We want to see under what conditions the coefficients are unique. Suppose
that we can also write

a= fa; + fras + -+ - + fpay,

where the (’s are different from the a’s. Then, subtracting these two linear
combinations, we get

0= (a1 —B1)ar + (2 — f2)as + - - + (v — Bn)an.

This is possible only if the vectors are linearly dependent. Therefore, if we
want the coefficients to be unique, the vectors have to be linearly independent.
In particular, we can have at most two such vectors in the plane. Thus,
choosing any two linearly independent vectors a; and as in the plane, we can
expand any other vector uniquely as a linear combination of a; and a. This
brings us to the notion of a basis.

Box 6.1.2. Vectors that span the plane and are linearly independent are
called a basts for the plane.

The foregoing argument showed that any two non-collinear vectors form a
basis for the plane.

With the notion of a basis comes the concept of components of a vector.
Given a basis, there is a unique way in which a particular vector can be written

175
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in terms of the vectors in the basis. The unique coefficients of the basis vectors
are called the components of the particular vector in that basis. Another
concept associated with the basis is dimension which is defined to be the
number of vectors in a basis. It follows that the plane has two dimensions.

Example 6.1.2. The components of az in the basis {ai,a>} of Figure 6.1 are
(a, ﬂ).2 Given any basis {a1, a2} of the plane, it is readily seen that the components
of a; are (1,0) and those of as are (0, 1). [ ]

Example 6.1.3. The polynomials {1,¢} form a basis for P1[t], because they are
linearly independent and they span Pi[t]. Therefore P1[t] is a two-dimensional
vector space. The components of f = ap + a1t are (o, 1) in this basis. How do
we determine the components of f in another basis {31732} with a1 = 1+t and
a; =1 —t7 Since {a1,as} is a basis, we can write

f=2z1a1 + z2a2 = Il(l -|—t) —‘rIz(l —t) = (Il —‘rIz) + (Il —Iz)t
or
ap + ot = (Il +I2)+(I1 —xz)t = (Oéo — X1 —172)~1+(051 —$1+$2)t:0.

The linear independence of 1 and ¢ now tells us that the coefficients of 1 and ¢ should
vanish. This leads to two equations in two unknowns:
1+ 22 = ao,

X1 — T2 = Q1.
The solution of these equations are easily found to be

1= (a0 +o1), x2= (w0 —a1).

Thus, the components of f are (}(co + a1), 5(co — 1)) in the new basis. [ |

6.1.1 Transformation of Components

There are infinitely many bases in a plane, because there are infinitely many
pairs of vectors that are linearly independent. Therefore, there are infinitely
many sets of components for any given vector, and it is desirable to be able
to find a relation between any two such sets. Such a relation employs the
machinery of matrices.

Consider a vector a with components (o, az) in the basis {a;,as} and
components (o), ab) in the basis {a),al}. We can write

a=aja; + azay and  a=aja) + ahaj. (6.2)

Since {a},al} form a basis, any vector, in particular, a; or as, can be written
1“2 ) 9 ) 9
in terms of them:
o / /
a; = ajja; + azay,
li /
as = a12a] + ag2as, (63)

2Since in this chapter we are dealing primarily with components (and not coordinates),
we shall use parentheses—instead of angle brackets—to list the components.



6.1 Vectors in a Plane Revisited

where (a11,a21) and (a2, a22) are, respectively, components of a; and as in
the basis {a],a}}. Combining Equations (6.2) and (6.3), we obtain
!/ !/ !/ !/ _ ! !

aq(an1a] + as1a)) + as(areal + agas) = aja) + asa;

or
/ !/ / !/

(al — a1 — algag)al + (012 — a1 — CLQQO[Q)a2 =0.

The linear independence of aj and a} gives
!
Q= 01101 + A1202,

O/Z = a91(1 + ago0s. (64)

These equations can be written concisely as®

/
<oz/1> _ (all a12) (041) or a’ = Aa, (6.5)
Qo a1 Q22 Q2

where we have introduced the matrices

/
a= <a1) : a = <a,1> , A= (all 12) : (6.6)
[e %3 (e %) az1 Q22

The matrices a and a’ are called column vectors or 2 x 1 matrices because
they each have two rows and one column. Similarly, A is called a 2 x 2 matrix.

Let us now choose a third basis, {a],a%}, and write a = ofa] + ofay. If
(a)1,ab;) and (a}y, abs) are, respectively, the components of aj and a/, in this
third basis, then

Q

/ / i / 1
a; = ajja; + 4 s,
! / " / "
ay = ajpa; + G985
Substituting these in the second equation of (6.2) and equating the result to
a = ofal + ajal yields
1 / / / /
a1 = a0y +appdy,
" — ol o+ ahal (6 7)
Qg = Qg1 T AgpQy. .

We can write Equation (6.7) in matrix form:
a/l a/ CLI al
<a,1, () (M) o ar o w (6.8)
2 21 2 2
O// a/ a/
=) w=( ), (6.9)
Qg g1 32

and a’ is as defined before.

where

3 At this point, think of Equation (6.5) as a short-hand way of writing Equation (6.4).
Further significance of this notation will become clear after Box 6.1.3.

matrix and
column vector
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We can also discover how a” and a are related by substituting (6.4) in
(6.7). This leads to the equation

1 ! ! i i
of = (aja11 + ajqa21)ar + (ajia12 + ajqae2)as,

1 ! ! i i
af = (aha11 + a99a01 ) + (a5 a12 + ag.a22)as,

which, in matrix form, becomes

! ! ! i
ay1a11 + ajoa91 @y a12 + ajoa22
a” =A"a where A= ("1 12 H »2 . (6.10)
(1011 + A92021  U31012 + A2a22

On the other hand, the matrix equations (6.8) and (6.5) yield a” = A’(Aa),
which is consistent with Equation (6.10) only if matrix multiplication is
defined so that A” = A’A| i.e.,

li / li li / /
ay; Qo air a1z _ (011011 T Qo021 (11012 + A12022 (6.11)
i / - li i / / . .

Qg1 Qg9 a1 a2 (51011 + Q99021  A91012 + A9022

All discussions and all the equations obtained so far are based on fixing
a vector and looking at its components in different bases. However, there is
another, more physical, way of interpreting these equations. Consider (6.5).
Here the column vector on the RHS represents the components of a vec-
tor a in the basis {a;,as}. Applying the matrix A to this column vector
yields a new column vector given on the LHS, which can be interpreted as
the components of a new vector a’ in the same basis. So, in essence we have
changed the vector a into a new vector a’ via the transformation A. The first
interpretation mentioned above is called a passive transformation (a is
“passively” unchanged as basis vectors are altered); the second interpretation
is called active transformation (a is actively changed into a’). We shall
have occasion to employ both interpretations. However, the active transfor-
mation is more direct and we shall use that more often. The reader may
convince himself or herself that passive transformation in one “direction” is
completely equivalent to active transformation in the “opposite” direction.
A good example to keep in mind is the rotation of axes (passive rotation)
versus the rotation of a vector (active rotation) in the plane as shown in
Figure 6.2.

Equation (6.11) defines the “product” of two matrices in a prescribed man-
ner. To find the entry in the first row and first column of the product, multiply
the entries of the first row of the first matrix by the corresponding entries of
the first column of the second matrix and add the terms thus obtained. To
find the entry in the first row and second column of the product, multiply
the entries of the first row of the first matrix by the corresponding entries of
the second column of the second matrix and add the terms. Other entries
are found similarly. This leads us to the following rule which applies to all
matrices, not just those that are 2 x 2:
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y y

(a) (b)

Figure 6.2: (a) A vector a in a coordinate system Oxy can be (b) actively transformed
to a new vector a’ in the same coordinate system, or (c) passively transformed to a
new coordinate system O’z'y’. Note that the relation of a’ to Oxy is identical to the

relation of a to O’z’y’.

Box 6.1.3. (Matrixz Multiplication Rule). To obtain the entry in the
ith row and jth column of the product of two matrices, multiply the entries
of the ith row of the matriz on the left by the corresponding entries of the
jth column of the matrix on the right and add the products thus obtained.

For this rule to make sense, the number of entries in a row of the matrix on
the left must equal the number of entries in a column of the matrix on the
right.

We identified a column vector as a 2 x 1 matrix. With this identification,
the RHS of Equation (6.5) can be interpreted as the product of two matrices,
a 2 x 2 matrix and a 2 x 1 matrix, resulting in a 2 x 1 matrix, the column
vector on the LHS.

Matrices were obtained in a natural way in the discussion of basis changes,
and the natural operation ensued was that of multiplication. Once a mathe-
matical entity is created in this manner, a full mathematical structure becomes
irresistibly enticing. For example, such operations as addition, subtraction,
division, inversion, etc., also demand our attention. We now consider such
operations.

First, we need to define the equality of matrices: Two matrices are equal
if they have the same number of rows and columns, and their corresponding
elements are equal. Addition of two matrices is defined if they have the same
number of rows and columns in which case the sum is defined to be the sum
of corresponding elements. A 2 x 2 matrix can be added to another 2 x 2
matrix, but a column vector cannot. Thus if

A— (@1 ar and B_ b1y b2 7
a21 Aa22 b21 b22
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then
a1 +b11  aiz + b1
A+B= )
<fl21 +ba1 a2+ b22)
From the definition of the sum and the product of matrices, it is clear that

addition is always commutative but product need not be:
A+B=B+A but AB #£ BA. (6.12)

We can turn the set of 2 x 2 matrices into a vector space by defining the
product of a number and a matrix as a new matrix whose elements are the old
elements times the number. The zero “vector” is simply the zero matrix—
the 2 x 2 matrix all of whose elements are zero. The reader may verify that
all the usual operations of vectors apply to this set.* If you multiply a matrix
by the number 0, you get the zero matrix.

Example 6.1.4. Suppose

1 -1 -1 0
A—(2 3) and B—(1 2).

Then
L (1-1 =140\ _ (0 -1\ _
A+B_(2+1 3+2)_(3 5>_B+A
and
ag_ (1 “UY (=1 O) _ (1 (-4 (=11 1-0+(-1)-2
=2 3)\1 2/ 2Cn+31 20432
(2 -2
=1 )
while

sa= (D) (3 ) = (s Sn = (5 b

Clearly, AB # BA. |

=3 9)

is called the 2 x 2 identity matrix or unit matrix, and has the property
that when it multiplies any other matrix (on the right or on the left), the
latter does not get affected. The unit matrix is used to define the inverse of
a matrix A as a matrix B that multiplies A on either side and gives the unit
matrix. The inversion of a matrix is a much more complicated process than
that of ordinary numbers, and we shall discuss it in greater length later. At
this point, suffice it to say that, contrary to numbers, not all nonzero matrices
have an inverse. For example, the reader can easily verify that the nonzero
matrix (§$) cannot have an inverse.

The 2 x 2 matrix

4Note that the extra operation of multiplication of a matrix by another matrix is not
part of the requirement for the set to be a vector space.
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We have introduced 2 x 2 and column (or 2 x 1) matrices. To complete
the picture, we also introduce a row vector, or a 1 x 2 matrix. The rule of
matrix multiplication allows the multiplication of a 2 x 2 matrix and a column
vector, as long as the latter is to the right of the former: You cannot multiply
a 2 x 1 matrix situated to the left of a 2 x 2 matrix. Similarly, you cannot
multiply two 2 x 1 matrices. However, the product of a row vector (a 1 x 2
matrix) and a column vector (a 2 x 1 matrix) is defined—as long as the latter
is to the right of the former—and the result is a 1 x 1 matrix, i.e., a number.
This is because we have only one row to the left of a single column. What
about the product of a row vector and a 2 x 2 matrix? As long as the matrix
is to the right of the row vector, the product is defined and the result is a row
vector.

Example 6.1.5. With A and B as defined in Example 6.1.4 and

we have

yABx = (-1 2) (_12 _62> <_11> =(4 14 (_11) = —10.

In the manipulations above, we have used the associativity of matrix multiplication
and multiplied matrices in different orders without, of course, commuting them.
Products such as Ay, By, yy, and xx are not defined; therefore, we have not considered
them here. [ ]

There is a new operation on matrices which does not exist for ordinary
numbers. This is called transposition and is defined as follows:

Box 6.1.4. The transpose of a matriz is a new matriz whose rows are
the columns of the old matriz and whose columns are the rows of the old
matriz. The transpose of A is denoted by Al or A.

row vector

transpose of a
matrix

181



182

symmetric matrix

properties of
transposition

equation (6.14)
will not work for
arbitrary bases!

inner (dot)
product in terms
of row and column
vectors

Planar and Spatial Vectors

Therefore

If A* = A, we say that A is symmetric.

Example 6.1.6. With A, B, x, and y as defined in Example 6.1.5, we have

(Y G e ()

Note that although xx and yy are not defined, all the combinations xx, yy, yy, and
xx are defined: In the first two cases one gets a number, and in the last two cases a
2 x 2 matrix. [

It should be clear from the definition of the transpose that
(A+B) = A" + B, (AB)" = B'A, (AHE = A (6.13)

Of the three relations, the middle one is the least obvious, but the reader
can verify it directly by choosing appropriate general matrices and carrying
through the multiplications on both sides of the relation.

6.1.2 Inner Product

From our discussion of Chapter 1, we know that if a and b are vectors in the
plane having components (a, ay) and (bg,by) along the z- and y-axes, then
their dot product is

a-b=a;b; + ayb,. (6.14)

We want to generalize this dot product so that it applies to arbitrary bases.
This generalization is called the inner product.

Recall that any two non-collinear vectors {aj,as} in the plane form a
basis and any vector can be written as a linear combination of them with
the unique coefficients being the components of the vector in the basis. In
particular, the components of a; are (1,0) and those of as are (0, 1). If we were
to define the dot product in terms of components, we would have to modify
Equation (6.14) because that equation would give zero for a; - a; which would
be inconsistent with (1.1). How should we modify (6.14)? Since we want to
deal with components, a natural setting would be the language of matrices.
If a and b are the column vectors (ZZ) and (Z”; ), respectively, then we can
rewrite Equation (6.14) as

a-b=ab=(a, ay) <2‘;> = azby + ayby. (6.15)

It is this matrix relation that we want to generalize so that the result is the
true dot product of vectors no matter what basis we choose in which to express
our vectors.
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Besides the failure of Equation (6.15) for general bases, the demand for
generalization stems from another source: There are other kinds of “vectors”
that are not just arrows in the plane. For instance, the polynomials Py[t] of
degree one that we introduced in Example 6.1.1 are such vectors. How do we
define inner products for these vectors? We cannot use Equation (1.1) because
neither the length of a polynomial nor the angle between two polynomials is
defined. In fact, both the length and the angle are defined only after an
inner product has been introduced. Furthermore, there is no guarantee that
Equation (6.15) will make sense.

Let’s see how far we can go using the general properties of the inner prod-
uct discussed at the beginning of Section 1.1.1. Write a and b as a linear
combination of the basis vectors {a;, as}:

a = a1a; + asag, b = 31a; + Bha

Take the dot-product of these vectors and write it in terms of the dot-products
of the basis vectors:

a-b=(ma + axaz) - (a1 + fraz)
=a1f1a; - a; +aifa; - az

+aBias - a; + azfhas - as
Define a matrix with elements

gin =aip-ai, ¢Ji2=aj-az=3az-a; =(gz1, Y22 =az-az
Then, representing a and b as column vectors a= (&} ) and b= (g;), the
dot product can be generalized to

a-b=a'Gb= (a1 ) <911 912) <g;) , (6.16)

921  g22
where G is a symmetric matrix.

Example 6.1.7. In this example, we shall define an inner product for the vectors
in P1[t] that happens to be useful in physical applications. The idea is to find a rule
that takes two “vectors” in P1[t] and gives a real number. Since the vectors in P [t]
are functions (albeit a very special kind), one natural way of getting numbers out
of functions is by integrating them. It turns out that this is indeed the most useful
way of defining the inner product for such polynomials. So, let (a,b) be an interval
on the real line and let f = oo + a1t and g = Bo + Bt be two “vectors” in P1[t] .
We define

f-gE/ f(t)g(t)dt. (6.17)

One can show that Equation (6.17) exhibits all the properties expected of an inner
product (as outlined in Section 1.1.1). For instance, f- f is always positive because
the integrand [f(t)])? is always positive. Furthermore, f-g = g-f, and, as the reader
may check,

f-(g+h)=f-g+f h.
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These all indicate that we are on the right track.

We also note that the inner product depends on the interval chosen on the real
line. For different (a,b), we get a different inner product. The choice is usually
dictated by the physical application. We shall choose a = 0,b = 1, although this
may not be a physically suitable choice. With such a choice and with {f; = 1,f; =t}
as a basis, we obtain

gH:fl fl—/ f1 f1 dt /dt_l

gz =11 - o = /f1 () f2(t) dt = /tdt 5 = 921,
0

1
go2 = fo -fo = / fg(t)fg(t) dt = / tzdt =
0 0

1 1
c—(l )
2 3 [}

We started with Equation (1.1) as the definition of the inner product. This
definition assumed a knowledge of lengths and angles. These are notions with
which we become intuitively familiar very early in our mental development.
However, such notions are not intuitively obvious for two polynomials. That
is why the concepts of lengths and angles for objects such as polynomials
come after introducing the notion of inner product. Of course, we want these
notions to agree with the intuitive notions of lengths and angles, i.e., we want
them to be related to the inner product in precisely the same manner as given
in Equation (1.1). If we let b = a in that equation, we get a - a = |a|?. This
becomes our definition for length:

So the inner product matrix is

Box 6.1.5. Given any inner product on a set of objects that we can call
“vectors,” we define the length of a vector a as |a| = ++/a- a.

Once the notion of length is established for a general set of vectors, we
can define the angle between two vectors a and b as

‘b -b
cosf= 2 = a . (6.18)
la|[b]  \/a-avb-b

This equation and the one in Box 6.1.5 clearly show that lengths and angles
are given entirely in terms of inner products. For these concepts to be valid,
we must ensure that however we define the inner product, it will have the
property that a-a > 0 for a nonzero vector. It turns out that most inner
products encountered in applications have this property. Nevertheless, there
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are cases (very important ones) for which a-a < 0. In such cases, the concepts
of length and angles, as we know them, break down, and we have to be content
with “dot products” that may produce nonpositive numbers when a nonzero
vector is “dotted” with itself.

Even if a-a > 0, there is no a priori guarantee that the cosine obtained in
Equation (6.18) will lie between —1 and +1, as it should. However, there is
a famous inequality in mathematics called the Schwarz inequality, which
establishes this fact for those inner products which satisfy a-a > 0. We shall
come back to this later in this chapter.

Example 6.1.8. The lengths of the basis vectors {fi = 1,f> =t} of P1[t] can be
found easily using the results of Example 6.1.7:

|f1|:\/f1'f1:+\/1:1
|f2|:\/f2~f2:+\/é.

We can also find the “angle” between the two polynomials

1
cosf = fl.f2: 2 :\/3:>9:7r.
Ifillf2]  1-(1/v3) 2 6
|

The matrix G, called the inner product matrix or metric matrix,
completely determines the inner product of vectors when they are written
as linear combinations of a; and as. For example, consider a vector a with
components (a1, as) in the basis {aj,as}. Figure 6.3 shows a as the sum of
OA (which is the same as aga;) and 0A (which is the same as agag). Using
the law of cosines for the triangle OAP, we get

a2 = 0P® = 0A” + AP® —20A AP cos ¢

= Oé%|31|2 + a§|a2|2 + 2a1a2|a1||a2| cosf1s.

a

e12

a

Figure 6.3: The length of a is the same whether we use the law of cosine or the inner
product matrix G.

185

in some important
physical situations
the “length” of a
nonzero vector
can be zero—even
negative!

G is the inner
product matrix or
the metric matrix.



186 Planar and Spatial Vectors

On the other hand, using Equation (6.16), we obtain

la® =a-a= (a1 o) <g11 912) (al>
g21 922 Q2

g1101 + g12Q2 2 2
= (a1 « = af + 2g10001 00 + o
( 1 )(921051+922052) 91107 g12Q1 G2 T g22Qg

2 2
=aj -ajo] + 2a100a; - ag + as - axq;

= |a1?a? + 2a1az]a1| |ag| cos 12 + |az|? a3

and the two expressions agree. In fact, we can show this agreement very
generally:

a-b = (aa; + azay) - (fra1 + Sraz)
= aifar - a; +a1fa; - az + azfiaz - a; + azBeag - az
= a161911 + a1f2g12 + a281921 + 22922
g g1z (B ~
= (« 6 = aGb,
(o az) <921 922) (52)
where we used the distributive property of the inner product.
It should now be clear to the reader that the matrix G contains all the

information needed to evaluate the inner product of any pair of vectors. Sup-
pose now that instead of {a;,as} we choose {€;1,é2} where & and é; are

unit vectors and perpendicular to one another. Then, the matrix G will have
elements

g1 = €1 -e; =1, g2 = g21 = €1 - €3 = 0, goo = €3 - €y = 1,

i.e., G is the unit matrix. In that case, we obtain

aGb = (1 o) <é (1)> <g;> =181 + b

which is the usual expression of the dot product of two vectors in terms of
their components. A basis whose vectors have unit length and are mutually
orthonormal basis  perpendicular to one another is called an orthonormal basis. Thus,

Box 6.1.6. Only in an orthonormal basis is the dot (inner) product of two
vectors equal to the sum of the products of their corresponding components.
In such a basis the inner product matriz G is the unit matriz.

The matrix G was introduced to ensure the validity of the inner product
in an arbitrary basis. This poses some restriction on G; for example, we
saw that it had to be symmetric, i.e., g1o = g21 because of the symmetry of
the dot product. Another restriction—if we want thedot product of a basis
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vector with itself to be positive—is that g;; > 0 and g9 > 0, in which case
the inner product is called positive definite (or Riemannian). It turns
out, however, that such a restriction constrains G too much to be useful in
physical applications. Although, in most of this book, we shall adhere to
the usual positive definite or Euclidean inner product, the reader should be
aware that non-Euclidean inner products also have important applications in
physics.

Box 6.1.7. Regardless of the nature of G, we call two vectors a and b
G-orthogonal if a-b =aGb = 0.

Every point in the plane can be thought of as the tip of a vector whose
tail is the origin. With this interpretation, we can express the (G-dependent)
distance between two points in terms of vectors. Let ry be the vector to point
P, and ry the vector to point P,. Then the “length” of the displacement
vector Ar = r; — ry is the “distance” between P, and Px:

PPy’ = Ar-Ar = (r; — 12) - (r1 — 1r3) = (Ar)G(Ar). (6.19)

Keep in mind that only in the positive definite (Euclidean) case is P1P22
nonnegative. There are physical situations in which the square of the length
of the displacement vectors can be zero or even negative. We shall encounter
one such example when we discuss the special theory of relativity.

The simplicity of G in orthonormal bases makes them very much in de-
mand. So, it is important to know whether it is always possible to construct
orthonormal vectors out of general basis vectors. The construction should
involve linear combinations only. In other words, given a basis {a;,as}, we
want to know if there are linear combinations of a; and as which are orthonor-
mal. We assume that the inner product is positive definite, so that the inner
product of every nonzero vector with itself is positive. First we divide a; by
its length to get

_ar a
' la;]  ai-ai

To obtain the second orthonormal vector, we refer to Figure 6.4 which shows
that if we take away from a, its projection on a;, the remaining vector will
be orthogonal to a;. So consider

é

/ ~ A~
as =as — (az - €1)é
N~ o~ 7
projection of

as on ap

and note that
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() ()]

Figure 6.4: The illustration of the Gram—Schmidt process for two linearly independent
vectors in the plane.

This suggests defining é2 as

The reader should note that in the construction of {&;,és}, we have added
vectors and multiplied them by numbers, i.e., we have taken a linear combi-
nation of a; and ay. This process, and its generalization to arbitrary number
of vectors, is called the Gram—Schmidt process, and shows that by appro-
priately taking linear combinations, it is always possible to find orthonormal
vectors out of any linearly independent set of vectors.

Example 6.1.9. The basis {1,¢} introduced for P1[t] is not orthonormal when
the inner product is integration over the interval (0, 1) as in Example 6.1.7. Let us
use the Gram—Schmidt process to find an orthonormal basis. We note that the first
basis vector already has a unit length; so we let €, = fi = 1. To find the second
vector, we first construct

f2l:fz—(f2~é1)é1:t—(é)1:t—é

with )
|f2l|2 =f-f;= /0 (t— é)th = 112'
Then the second vector will be

LBty

&= 2 = 2=vV12(t- 1) =32t -1).
|| \/ 1
12
The reader may verify directly that {&1,é2} is an orthonormal basis. m

Example 6.1.10. Consider the vectors

a; =&, + €y and az = 2€,; + &,.
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The inner product matrix elements in the basis {ai, az} are
g =ai-ar = (& + &) (& +¢&,) =2, g12 = (& + &) - (28, + &) = 3,
go1 = az - a1 = gi2 = 3, go2 = (28, + &) - (26, + &) = 5.

or, in matrix form, G = (2 2).

Now consider vectors b and ¢, whose components in {ai,a2} are, respectively,
(1,1) and (—3,2). We can compute the scalar product of b and c in terms of these
components using Equation (6.16):

b-c=bGe= (1 1)<§ g) <_23):(1 1)<(1)>:1.

We can also write b and c in terms of €, and €, and use the usual definition of
the inner product (in terms of components) to find b-c. Since b has the components
(1,1) in {a1, a2}, it can be written as

b=a;+a: = (& + &) + (26, + &,) = 3&, + 2¢,.
Similarly,
c= —3a; +2ay = —3(& + &y) + 2(28, + &) = &, — &,.
Thus, in {€,€,}, b has components (3,2), and ¢ has components (1, —1). Then
b-c=byce +bycy =3-14+2-(-1)=1
which agrees with the previous result obtained above. [

Example 6.1.11. Consider two vectors f and g in P1[t] with
f=f(t) =a0+ait, g=g(t)=Po+ pit.

We want to find the inner product of these two vectors. First, we use the basis {1,¢}
and its corresponding G matrix found in Example 6.1.7:

1 1
f-g=fGg= (a0 o) (1 f) (g(l)) = a0fo + 5 (0B + o1fo) + sou .
3

2

Next, we use the orthonormal basis found in Example 6.1.9. In this basis G is the
identity matrix and the inner product is the usual one in terms of components.
However, the components of f and g need to be found in {&1,é2}. The reader may
check that

a1,

R 1 . 1, R
f:Oéo+a1t:Oéoe1+a1(2\/3924-261) :(0504-;051)91-&-2\/3927

g = Bo + pit = (Bo + éﬂl)é1 + 2@3(%2.

It then follows that

fog=(aw+ y01)(Bo+ 35)+ <20\é/13> <2@3) = a0 + 4 (a0 + o1 fo) + sa1 P
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Finally, we take the dot product of the two vectors using the definition of this dot
product:

1
f-g= / (o + a1t)(fo + Bat) dt
0

1 1 1

= Oéoﬁo/ dt + (aof1 + Oé1ﬁo)/ tdt+ a1 / 2 dt
0 0 0

= aofo + ;(OCO,GI + a1fo) + ;05151-

All three ways of calculating the inner product agree, as they should. ]

6.1.3 Orthogonal Transformation

Now that we have defined inner products, we may combine it with the concept
of transformation. More specifically, we seek transformations that leave the
inner product—which we shall assume to be positive definite (Euclidean)—
unchanged. Under such transformations, the length of a vector and the angle
between two vectors will not change. That is why such transformations are
called rigid transformations. We choose an orthonormal basis, so that
G = 1, and denote the transformed vectors by a prime: a’ = Aa, b’ = Ab.
Then the invariance of the inner product yields

ab' =3b = (Aa)Ab =3AAb =3b.
This will hold for arbitrary a and b only if
AA = 1. (6.20)

Matrices that satisfy this relation are called orthogonal. We now investigate
conditions under which Equation (6.20) holds by writing out the matrices:

ai a1 (e a2 _ a3y + a3, aiiaiz +azaz) _ (1 0
a2 ase ) \az1 ao2 a12a11 + az2a21 a3y + a3, 0 1
which is equivalent to the following three equations:

ajy + a3 =1, ajiaiz + azage =0, aty + a3y = 1. (6.21)

Squaring the second equation and substituting from the first and third, we
get

2 2 2 2 2\ 2 2 2 2 2
aj1ais = 5103, = (1 —a3)ajy = a3y (1 —ajy) = a3 = aj,.
The first and third equations of (6.21) now yield

2 _ 2 2 _ 2 _ 2
Q59 = G7; and ajs = a3; =1 —aj;.
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Therefore, all parameters are given in terms of a;;. Now the first equation
of (6.21) indicates that —1 < aq; < 1. It follows that a;; can be thought
of as a sine or a cosine of some angle, say 6. Let us choose cosine. Then
as2 = £ cosf. If we choose the plus sign for cosine, then the middle equation
of (6.21) shows that a12 = —ag1 = £siné, and if we choose the minus sign,
a12 = a1 = tsinf. Let us choose the plus sign for cosine. Then, we obtain
two possibilities for A:

A — [co8 6 —sinf A [ cos 6 sinf
~ \sinf  cosf or “ \—sinf cosf)"’
The difference is in the sign of the angle 6.

Writing (z,y) for the components of a vector in the plane [instead of
(a1, a2)], and (2/,3y") for the transformed vector, and using the first choice for

A, we have
'\  [cos® —sinb\ (z
y')  \sinf  cosf y
or
z' =z cosf —ysinb, (6.22)
y' = zsinf + ycos¥. (6.23)

This is how the coordinates of a point in the plane transform under a counter-
clockwise rotation of angle 6. Had we chosen the second form of A, we would
have obtained a clockwise rotation of the coordinates. Notice how we chose
the signs of sines and cosines to ensure that when 6 = 0, the rotation is the
unit matrix, i.e., no rotation at all. Although rotations are part of orthogonal
transformations, the converse is not true: There are orthogonal transforma-
tions that do not correspond to a rotation. For example, the matrix

A (cos@ sin @ ) (6.24)

sinf —cos@

is orthogonal (as the reader can verify), but it does not correspond to a rota-
tion because at # = 0 it does not give the identity matrix.
In general, the inner product of the transformed (primed) vectors will be

a/Gb’ = (Aa)GAb = 3AGAb.

For A to preserve the inner product, i.e., for a’Gb’ to be equal to aGb, we need
to have _
AGA = G. (6.25)

A matrix that satisfies Equation (6.25) is called G-orthogonal.

Historical Notes

Matrices entered mathematics slowly and somewhat reluctantly. The related notion
of determinant, which is a number associated with an array of numbers, was intro-
duced as early as the middle of the eighteenth century in the study of a system of
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linear equations. However, the recognition that the array itself could be treated as
a mathematical object, obeying certain rules of manipulation, came much later.

Logically, the idea of a matrix precedes that of a determinant as Arthur Cayley
has pointed out; however, the order was reversed historically. In fact, many of the
properties of matrices were known as a result of their connection to determinants.
Because the uses of matrices were well established, it occurred to Cayley to introduce
them as distinct entities. He says, “I certainly did not get the notion of a matrix in
any way through quaternions; it was either directly from that of a determinant or
as a convenient way of expression of” a system of two equations in two unknowns.
Because Cayley was the first to single out the matrix itself and was the first to
publish a series of articles on them, he is generally credited with being the creator
of the theory of matrices.

Arthur Cayley’s father, Henry Cayley, although from a family who had lived
for many generations in Yorkshire, England, lived in St. Petersburg, Russia. It was
in St. Petersburg that Arthur spent the first eight years of his childhood before his
parents returned to England and settled near London. Arthur showed great skill
in numerical calculations at school and, after he moved to King’s College in 1835,
his aptitude for advanced mathematics became apparent. His mathematics teacher
advised that Arthur be encouraged to pursue his studies in this area rather than
follow his father’s wishes to enter the family business as a merchant.

In 1838 Arthur began his studies at Trinity College, Cambridge, from where he
graduated in 1842. While still an undergraduate he had three papers published in
the newly founded Cambridge Mathematical Journal. For four years he taught at
Cambridge having won a Fellowship and, during this period, he published 28 papers.

A Cambridge Fellowship had a limited tenure so Cayley had to find a profession.
He chose law and was admitted to the bar in 1849. He spent 14 years as a lawyer but
Cayley, although very skilled in conveyancing (his legal speciality), always considered
it as a means to make money so that he could pursue mathematics. During this
period he met Sylvester who was also in the legal profession. Both worked at the
courts of Lincoln’s Inn in London and discussed deep mathematical questions during
their working day. During these 14 years as a lawyer Cayley published about 250
mathematical papers!

In 1863 Cayley was appointed to the newly created Sadleirian professorship of
mathematics at Cambridge. Except for the year 1882, spent at the Johns Hopkins
University at the invitation of Sylvester, he remained at Cambridge until his death
in 1895.

6.2 Vectors in Space

The ideas developed so far can be easily generalized to vectors in space. For
example, a linear combination of vectors in space is again a vector in space.
We can also find a basis for space. In fact, any three non-coplanar (not lying
in the same plane) vectors constitute a basis. To see this, let {a;,as,as} be
three such vectors drawn from a common point® and assume that b is any
fourth vector in space. If b is along any of the a’s, we are done, because then
b is a multiple of that vector, i.e., a linear combination of the three vectors

S5If the vectors are not originally drawn from the same point, we can transport them
parallel to themselves to a common point.
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o a;

Figure 6.5: Any vector in space can be written as a linear combination of three non-
coplanar vectors.

(with two coefficients being zero). So assume that b is not along any of the
a’s. The plane formed by b and as intersects the plane of a; and as along
a certain line common to both (see Figure 6.5). Draw a line from the tip of

—
b parallel to az. This line will resolve b into a vector OB in the plane of
— —
a; and ag and a vector BP parallel to az. So, we write b = OB + asags.
—
Furthermore, since OB is in the plane of a; and as, it can be written as a

—
linear combination of these two vectors: OB = aja; + asas. Putting all of
this together, we get

b = or1a; + agag + azas.

This shows that

Box 6.2.1. The mazimum number of linearly independent vectors in space
1s three. Any three non-coplanar vectors form a basis for the space.

It follows that the space is a three-dimensional vector space.

In the previous section we introduced P4 [¢], the set of polynomials of first
degree, and showed that they could be treated as vectors. We even defined
an inner product for these vectors, and from that, we calculated the length of
a vector and the angle between two vectors. This process can be generalized
to three dimensions. Let P5[t] be the set of polynomials of degree 2 (or less)
in the variable ¢. One can easily show that such a set, a typical element of
which looks like oy + a1t + ant?, has all the properties of arrows in space. We
shall use P3[t] as a prototype of vectors that are not directed line segments.
Clearly, {1,t,t%} form a basis for Ps[t]; therefore, P5t] is a three-dimensional
vector space.
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6.2.1 Transformation of Vectors

In the case of the plane, the machinery of matrices connected the components
of a vector in different bases. In the same context, we contrasted active
versus passive transformation. From now on, we want to concentrate on active
transformations, i.e., we consider transformations that alter the vectors rather
that the axes.

Consider a vector a with components(aq, s, a3) in the basis B = {a;, as,
ag}. If we transform this vector, it will acquire new components, (o], o, a%),
in the same basis B. We can therefore write

a = aja; + aszas + azas and a’ = adla; + abas + ojas, (6.26)

where a’ is the transform of a. Now suppose that we transform both a and
the basis vectors in exactly the same manner. Then the components of the
transformed a will be the same in the new basis as the original a was in the
old basis:

a' = a1a) + aal, + azal. (6.27)

Since B is a basis, any vector, in particular, the transformed basis vectors

can be written in terms of them:
aj = aj1a; + ag1as + az1as,
a'2 = a12a1 + agzas + aszas, (628)
aj = a13a; + az3as + agsas.

Now substitute Equation (6.28) in the RHS of (6.27), and the second equation

of (6.26) in the LHS of (6.27) and rearrange terms to obtain

(0} — anan — arpen — aizaz)a; + (ay — az1an — agees — agzaz)ay

!
+ (Oég — a3101 — 3200 — a33a3)a3 =0.
The linear independence of aj, as, and as gives

!

;= a1101 + a1202 + a130e3,
!

(g = 2101 + A22002 + A2303, (629)
!

a3 = az1q + asat + agsas,

which, with the introduction of 3 X 1 (column), and 3 x 3 matrices, can be
written concisely as

aq a1 a2 ais aq

0/2 = az1 Qa22 Q23 (%) or a’ = Aa. (630)
/

Qg a31 as2 ass Q3

To know how a general vector transforms, we only need the transformation
matrix, namely the 3 x 3 matrix in Equation (6.30). This, in turn, is ob-
tained completely from the transformation of basis vectors as given in Equa-
tion (6.28). The reader should note, however, that the coefficients in each line
of (6.28) appear as a column in the transformation matrix. Thus,
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Box 6.2.2. To find the transformation matrix, apply the transforma-
tion to the basis vectors, and write the transformed basis vectors in terms
of the old basis vectors. The “horizontal” coefficients become the colummns
of the transformation matriz.

Let us apply a transformation to a’ and to {a},a),a}. We could denote
the new vectors by a second prime; but, then it would give the impression
that it is the same transformation as the earlier one. This is not the case.
Therefore, we use a new symbol “”” to emphasize that the second transfor-
mations is of a completely different nature, and denote the new transformed
vectors by & and {a],as,a3}. In the basis {a;,as, a3}, &’ can be written as

v

! " 1" "
a’ = aja; + ayas + azas, (6.31)

while the application of the new transformation to the second equation of
(6.26) gives

v/ /3% ! /=2
a = a1 + apag + a3ag.
The vectors on the RHS can be written as a linear combination of {a;, as, as}:

9 / / /

a) = ajqa; + A9 a2 + asias,

9 / / /

as = a12a1 + a22a2 + a32a37 (6.32)

v / / /
az = ay3a1 + ag3a2 + az3as.

Using the by-now-familiar procedure, we can relate the coefficients as follows:

1 i ! i !

Qg app Q2 Qi3 551
" _ i ! i ! " __ /N

oy | = | abh aby abs ot or a" = A'd (6.33)
1" i ! i !

Qa3 az;  QAzp  Gsz3 a3

We can also find how a” and a are related in two ways. The first way
applies “”” to both sides of Equations (6.27) and (6.28), substitutes (6.32)
in the transformed (6.28), and the result of this substitution in (6.27). This
will give &' as a linear combination of a;, as, and as. Equating this with
Equation (6.31) will give us a matrix relation between the a” and a. Second,
we can substitute the matrix relation of Equation (6.30) in that of (6.33)
and obtain a relation between the a” and a via the product of two matrices.
Comparison of these two relations will give us the rules of multiplication for
3 x 3 matrices which, except for the number of elements involved, is identical
to the multiplication rule for the 2 x 2 matrices. Similarly, the multiplication
by a row or a column vector, etc., is exactly as before.

There is a new kind of matrix associated with the space that we could not
consider in our discussion of the plane. Let B = {a;,az,a3} be a basis for
the space, and take any two of the vectors in B, say a; and as. These two
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vectors form a plane any vector of which has only two components: If a is in
this plane, it can be written as

a = oja; + agas.

Now suppose we apply the same transformation to both a and {a;,as}. Then,
on the one hand, a’ = a;a)] +aza), and on the other hand, a’ = aja; +abas +
asagz, because the transformed a, in general, comes out of the plane of a; and
as. Therefore,

a1a] + azal, = aja; + ahas + ahas. (6.34)

But we also have
!
a; = aj1a; + az1a2 + as1as,
!
a; = aj2a1 + az2az + aszas.
Substituting these in Equation (6.34) yields
/ / ’ o
(o] —ar110q0 —ai2a0)a) + (o) —az10q —azeas)as + (a3 —az1aq — agaca)az = 0.
Linear independence of the vectors in B now gives
Qp = a1101 + ajpQe,

Qy = a2101 + a2202, (6.35)

Q3 = a3 + agaQ2,

which can be written in matrix form as

!

o an )\ g

ah | = a1 ag (oa) or a’ = Aa. (6.36)
!

Qg asp  as2

The matrix A is now a 3 X 2 matrix. It relates two-component column vectors
to three-component column vectors.

Example 6.2.1. Another way to illustrate the preceding discussion is to use first
degree polynomials. Let us multiply all polynomials of P1[t] by a fixed first degree
polynomial, say 1 + ¢. This will transform vectors of P1[t] into vectors of Pat].
In particular, it will transform the basis {1,¢} into vectors in P2[t] which can be
expressed as a linear combination of the basis vectors {1,,t*} of Pa[t]. Let fi =1,
fo =t,and f3 = t27 and note that

fl=1-1+t)=1+t=1-fi+1-f24+0-fs,
f=t(l+t)=t+t°=0-fi +1-fo+1-f;.

According to Box 6.2.2, the transformation matrix is

10
1 1
0 1
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from which we can find the transform of a general vector f = ap + a1t in Pq[t]. If
the transformed vector is written as f/ = of + ot + obt?, then

g 1 0 o
=11 <°)
o 0 1 o
This can be verified directly by multiplying f = ao + a1t by 1 + ¢. [ |

In the discussion above, we started with the plane (with two dimensions)
and transformed to space (with three dimensions). Example 6.2.1 illustrated
this transformation for P1[t] and P[t]. We can also start with three dimen-
sions and end up in two dimensions. The result will be a matrix relation of
the form

ay
ar) _ (b b2 big aly or a = Ba’ (6.37)
as ba1  baa  bas 7
Qa3
with B a 2 x 3 matrix. The following example illustrates this point.

Example 6.2.2. Let us start with P2[t] and as transformation, consider differen-
tiation which acts on the basis {1, t7t2}. It is clear that the resulting vectors will
belong to P1[t], because they will be linear combinations of 1 and ¢. With f; = 1,
fo = ¢, and f3 = t*, and using a prime to denote the transformed vector, we can
write

d

f = 1)=0=0-f . f

1 dt() 0=0-f1 +0-f3,
d

fy = =1=1-f - f.

2 dt(t) 140 - fa,
d, 2

f= (tH)=2=0-fi+2-F

3 dt() 0-fi +2-15,

giving rise to the transformation matrix

0 1 0
0 0 2/)°

The reader may verify that the coefficients (g, o) in P1[t] of the derivative of an
arbitrary polynomial f(t) = ao + a1t + aet? are given by

ab (0 1 0 zo
ah) 7 \0 0 2 !
(e}

2
which can also be obtained directly by differentiating f(t). [ ]

The point of this discussion is that if you have a collection of vectors with
various numbers of components, then it is possible to construct matrices that
relate the two sets of vectors. These matrices have different numbers of rows
and columns. The mathematics of these new matrices, their notion of equality,
their addition, subtraction, multiplication, transposition, etc., is exactly the
same as before
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Example 6.2.3. Suppose

Then A + B is not defined, but

pia (1 -1 0y (-1 0 1Y) (0 -1 1
A+B*(—1 2 1)+(1 2 —2)*(0 1 —1)
1 -1 11 0 0
A+B'=[-1 2 |+]l0 2]|=(-1 4 ]|=(A"+B)"
0 1 1 -2 1 -1

As for multiplication, we have

and

1 -1 -2 -2 3
AB= -1 2 <_11 g _12> =3 4 =5
0 1 12 -2

and
1 -1
-1 0 1 -1 2
BA = ( ) o2 = ( ) 7
1 2 -2 ( 0 1 ) -1 1
where the element in the ith row and jth column of the product is obtained by

multiplying the ith row of the left factor by the jth row of the right factor term-by-
term and adding the products (see Box 6.1.3). [ |

The 3 x 3 matrix
1 0 0
1=10 1 0
0 0 1

is the 3 x 3 identity matrix (or unit matrix), and has the property that when it
multiplies any other 3 x 3 matrix on either side, the latter does not get affected.
Similarly, when this identity matrix multiplies a three-column vector on the
left or a three-row vector on the right, it does not affect them. As in the case
of the plane, the unit matrix is used to define the inverse of a matrix A as a
matrix B that multiplies A on either side and gives the unit matrix.

6.2.2 Inner Product

As in the case of two dimensions, the usual rule of the dot product of space
vectors in terms of their components along &,, &,, and &, does not apply in
the general case. For that, we need an inner product matrix G. As in the
plane, this is a matrix whose elements are dot products of the basis vectors.
If B ={a;,as, a3} is a basis for space, then G is a 3 x 3 symmetric matrix

gi11 9gi2 Gi13
G=1[g21 922 g23], 9ij = 9ji=a;-a;, 1,j=123. (6.38)
g31  g32 g33
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Example 6.2.4. Let us find the inner product matrix for the basis {1,t,¢*} of
P2 [t] when the inner product integration is from 0 to 1. Because of the symmetry of
the matrix and the fact that we have already calculated the 2 x 2 submatrix of G, we
need to find g13, go3, and gs3. Let fi = f1(¢t) =1, f2 = fo(t) = ¢, and f3 = f3(t) = %
then

1 1
913:f1'f3:/ fl(t)f?r(t)dt:/ t*dt = 31
0 0
1 1
923:f2'f3:/ fz(t)fB(t)dt:/ t2dt = |,
0 0
1 1
gss =f3 - f3 :/ f3(t)f3(t)dt:/ trdt = 51)
0 0
It follows that

G =

W N
N N Ve
S N N

This matrix can be used to find the dot product of any two vectors in terms of their
components in the basis {1,¢,t*} of Pa[t]. n

If a and b have components (a1, a9, a3) and (81, 82, 03) in B, then their
inner product is given by

g1 912 913 51
aGb= (a1 as az) | g2 g2 g | [Pz (6.39)
g31 932 933 B3

If this expression is zero, we say that a and b are G-orthogonal. For an or- G-orthogonal
thonormal basis, the inner product matrix G becomes the unit matrix® and vectors in space
we recover the usual inner product of space vectors in terms of components.
As discussed in the case of the plane, every point in space can be thought
of as the tip of a vector whose tail is the origin. Then, we can express the
(G-dependent) distance between two points in terms of vectors. Let r; be
the vector to point P, and ry the vector to point P». Then the length of the
displacement vector is the “distance” between P; and Ps:

Ar-Ar = (r; —15) - (r1 — 1) = (Ar)G(Ar). (6.40)

Recall that only in the positive definite case is Png2 nonnegative.
As in the case of the plane, it is convenient to construct orthonormal basis
vectors in space. This can be done by the Gram—Schmidt process. Suppose Gram—Schmidt
B = {aj,as,as} is a basis for space as shown in Figure 6.6. Again, to avoid process for vectors
complications, we assume that the inner product is positive definite, so that in space
the inner product of every nonzero vector with itself is positive. We know
how to construct two orthonormal vectors out of {aj,as}; we did that in

60nly if the inner product is positive definite.
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(c)
Figure 6.6: The Gram—Schmidt process for three linearly independent vectors in space.
our discussion of the plane. Call these new orthonormal vectors {€;,é,} and
construct the vector aj,

aé = as — (3.3 -él)él — (3.3 . ég)ég

which is obtained from as by taking away its projections along €; and é,.
Now note that

él-ag:él ag—(ag él)él éi—(ag-éz)ég-éizo,
> i

() 3.3—62 a3—(a3 el)(ég éi—(ag,'ég)(ég-é%:o,
~ ~
=0 =1

i.e., a4 is orthogonal to both &; and €. This suggests defining é; as

. a’ a’
e3z|a/3|: \/ /3. ,
3 az - az
The reader should note that in the construction of {€1, &2, €3}, we have simply
taken the linear combination of ay, as, and ag.

Transformations that leave the inner products unchanged can be obtained
in exactly the same way as for the plane. For A to preserve the inner product,
we need to have _

AGA = G, (6.41)

i.e., it has to be G-orthogonal. If G is the identity matrix, then A can be
thought of as a rigid rotation and is simply called orthogonal; it satisfies

AA =1. (6.42)

If we write A as
a1l aiz2 a3
a1 Q22 a3 |,
azip azz2 ass
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then Equation (6.42) can be written as

a1 a1 as1 a1l a2 Qi3 100
a2 az azg | (a2 az aps| =10 1 0 (6.43)
a1z G23 a33 as1 az2  as3 0 0 1

It is clear from Equation (6.43) that the columns of the matrix A, considered
as vectors, have unit length and are orthogonal to other columns in the usual
positive definite inner product.” This is why A is called orthogonal.

The product on the LHS of Equation (6.43) is a 3x3 matrix whose elements
must equal the corresponding elements of the unit matrix on the RHS. For
example,

ai + a3 +a3 = 1. (6.44)

Similarly, the equality of the elements located in the first row and second
column on both sides gives

aii1ai2 + azi1a92 + azraze =0

and so on. Thus we obtain nine equations. However, simple inspection of these
equations reveals that only six of them are independent. Therefore, we can
only solve for the nine unknowns in terms of three of them (see Section 7.6).
It does not matter which three matrix elements we choose. If we choose a1,
as1, and agy, for example, then Equation (6.44) reveals that these parameters
can be sines and cosines. What this means physically is that Three parameters
are required to specify a rigid rotation of the azes.

There are many ways to specify these three parameters. One of the
most useful and convenient ways is by using Euler angles ¢, ¢, and 6 (see
Figure 6.7). Example 6.2.5 below shows that in terms of these angles, the
matrix A can be written as

cos cos p—siny cosfsing  — cos sin p—sin cos @ cos p sin ) sin 6
A = | sin 1 cos p+cosp cosfsinp —sinsinp+cosycosfcosy —cossinb
sin € sin ¢ sin 6 cos ¢ cos 6

It is straightforward to verify that A’A = 1. Euler angles are useful in de-
scribing the rotational motion of a rigid body in mechanics.

Example 6.2.5. From Figure 6.7 it should be clear that the primed basis is ob-
tained from the basis {€1, €2,&3} by the following three operations.

(a) Rotate the coordinate system about the és-axis through angle ¢. This corre-
sponds to a rotation in the €;és-plane, leaving the €s-axis unchanged. We saw in
the previous section how the 2 x 2 part of the matrix looked like. The complete
3 x 3 matrix corresponding to such a rotation is

cosp —singp 0
Ai=|sinp cosp O (6.45)
0 0 1

7This holds for 2 x 2 orthogonal matrices as well.
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€

Figure 6.7: The Euler angles and the rotations about three axes making up a general
rotation in space.

It is clear that this matrix leaves the third (z) component of a column vector un-
changed while rotating the first two (z and y) components by ¢.

(b) Rotate the new coordinate system around the new é;-axis (the £-axis in the
figure) through an angle 6. The corresponding matrix is

1 0 0
Ay=10 cosf —sind|. (6.46)
0 sinf  cos@

(c) Rotate the system about the new éz-axis (the éj3-axis in the figure) through an
angle . The corresponding matrix is

cosyp —siny 0
Az = [siny cosyp 0. (6.47)
0 0 1

It is easily verified that A = AsA2A1, i.e., the rotation A has the same effect as that
of A1, A2, and As performed in succession. ]

6.3 Determinant

Matrices have found application in many diverse fields of pure and applied
mathematics. One such application is in the solution of linear equations. Con-
sider the first set of equations in which we introduced matrices,
Equations (6.4) and (6.5). The first of these equations associates a pair of
numbers (o}, ab) to a given pair (aq,a9), ie., if we know the latter pair,
Equation (6.4) gives the former. What if we treat (o, a2) as unknown? Un-
der what conditions can we find these unknowns in terms of the known pair
(o), 04)? Let us use a more suggestive notation and write Equation (6.4) as

a1 + aipy = b1,
21T + a9y = bs. (648)
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We want to investigate conditions under which a pair (z,y) exists which sat-
isfies Equation (6.48). Let us assume that none of the a;;’s is zero. The case
in which one of them is zero is included in the final conclusion we are about
to draw. Multiply the first equation of (6.48) by as2 and the second by ais
and subtract the resulting two equations. This yields (aj1a20 — a12a21)z =

a22b1 — a12bs, which has a solution for x of the form
by — aqgb b1 — ay2b
= 2201 — a1202 - 2201 — 1202 (6.49)
a11G22 — Q12021 det A

if a11a22 — a12a21 # 0. In the last equality we have defined the determinant
of A:

A= (all 0412) = detA= a11a29 — 41209217 - (650)
az1 a2

We can also find y. Multiply the first equation of (6.48) by as; and the second
by a1 and subtract the resulting two equations. This yields

(a11a22 — a12a21)y = a11bs — az by
which has a solution for y of the form

a11bs — az1b;
= . 6.51
Y det A ( )

We can combine Equations (6.49) and (6.51) into a single matriz equation:

z\ 1 aze  —ai2) (b1
<y> ~ detA (—azl ain ) (bz> ' (6.52)

This is the inverse of the matrix form of Equation (6.48). Indeed if we had
written that equation in the form Ax = b, and if A had an inverse, say B,
then we could have multiplied both sides of the equation by B and obtained

BA x=Bb = x=Bb.
=1

This is precisely what we have in Equation (6.52)! Is the matrix multiplying
the column vector b the inverse of A? Let us find out

1 azy —aiz) (ain a2
det A \—a21 a1 az1 @22
1 a22011 — Q12021 0 (10
~ detA 0 —asia12 +ajiazn) \0 1)°

So, it is indeed the inverse of A. We denote this inverse by A~!.

Theorem 6.3.1. A matriz A = le 212> has an inverse if and only if
21 @G22

its determinant, defined by det A = a11a20 — a12a21, s not zero, in which case

Al 1 azy  —ai2
detA \—a21 ann /'
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The reader may verify that, not only A='A = 1, but also AA™! = 1.

Equation (6.48) gives the components b; and bs of a new vector obtained
from an old vector with components x and y when the matrix A acts on the
latter. We want to see what conditions A must satisfy for it to transform
vectors in a basis into vectors of a new basis. Let B = {a;,as} be the old
basis. The components of a; in B are x = 1 and y = 0; so by (6.48), a],
the vector obtained from a; by the action of A, has components by = a1 and
by = ag1. The components of az in B are x = 0 and y = 1; so a), the vector
obtained from as by the action of A, has components ¢; = a1 and c2 = ass.
The vectors (by,b2) and (c1,c2) form a basis if and only if they are linearly
independent, i.e.,

(bl,bg) = k(Cl,CQ) = (kCl,kCQ) = b = kCl, by = kCQ,
does not hold for any constant k. This is equivalent to saying that

bl 75 b2 or blcg — bZCl 7& 0.
C1 C2

Expressing the b’s and c¢’s in terms of a;;’s, we recognize the last relation as
a condition on the determinant of A. Using Theorem 6.3.1, we thus have

Box 6.3.1. A transformation (or a matriz) transforms a basis into an-
other basis if and only if it is invertible.

Let us now consider three equations in three unknowns:

a1 + aigy + a3z = by,
a1 + a2y + G232 = ba, (6.53)

a31T + as2y + azzz = ba,
which can also be written in matrix form as

ail a2 ais T by
a1 G2 G23 y|=1b2] = Ax=hb. (6.54)
asy as2 ass z b3

We eliminate z from the set of equations by multiplying the first equation
of (6.53) by a23 and the second by ai3 and subtracting. This will give one
equation in z and y. Similarly, multiplying the first equation by ass and the
third by a3 and subtracting gives another equation in x and y. These two
equations are

(a11a23 - a21a13) T+ (a12a23 - a22a13) Yy = 32351 - a13bg,

S ~ - - ~ -~ -~

=ai; =ais =b;
(a11a33 — az1a13) ¢ + (a12a33 — azza13) y = aszby — a13bs . (6.55)
~ ~ - ~ ~ - ~ ~~ -

=as; =as =bs
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Thus, we have reduced the three equations in three unknowns to two equa-
tions in two unknowns. We know how to find the solution for this set of
equations. These solutions are given in Equations (6.49) and (6.51). In order
for this equation to have a solution, the determinant of the coefficients must
not, vanish. Let us calculate this determinant:

ajjag — ajpaz = (a11a3 — ag1a13)(a12a33 — a32013)
— (a12a23 — azza13)(a11a33 — az1a13)
= (11023012033 — 011023032013 — (21013012033 + 021013032013
— (12023011033 + 012023031013 + 422013011033 — 022013031013
= ai3[a11(azea33 — azzasz) — a12(aziass — aziazs)
+ a13(azia32 — azzas;)]
= a3 |:a11 det <a22 a23) — a1z det <CL21 a23> + a3 det <CL21 CL22>:| .
asz2 as3 asr ass asr  as2

If the original set of equations is to have a solution, the expression in the
square brackets must not vanish. We call this expression the determinant

of the 3 x 3 matrix A. We can give a cookbook recipe for calculating the
determinant; but first we need the following definition:

Box 6.3.2. The cofactor A;j of an element a;; of a matriz A is defined
as the product of (—1)"*7 (i.e., +1 if i+ j is even and —1 if i + j is odd)
and the determinant of the smaller matriz (2 x 2, if A is a 3 X 3 matriz)
obtained from A when its ith row and jth column are deleted.

The following recipe applies to any (square) matrix, not just to 3 x 3
matrices:

Box 6.3.3. The determinant of A is obtained by multiplying each ele-
ment of a row (or a column) by its cofactor and adding the products.

If det A # 0, then Equation (6.49) gives
_ axnbi —apby
a3 det A

The numerator is

axpbi —ajaby = (a12a33 — az2a13)(azsbr — ai3bs)
— (a12a23 — azea13)(aszzby — a13bs3)
=a13 [&@26133 — agzazs) b1 + (aszais — arzass) by + (a12a23 — azzars) bs]
~ - ~ ~ - ~ ~ -

=C11 =C12 =C13
= a13(C11b1 + Cr2ba + Ci3bs3).
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Therefore,
. C11b1 + Cr2by + C3b3

det A
Similarly, using Equation (6.51), we find

(6.56)

a;1by —as b
a3 det A

with

ajnbe —agsiby = (a11a23 — a21a13)(azsbr — aizbs)
- (a11a33 - a31a13)(a2351 - alsbz)

= a3 Ka31a23 - a21a33) b1 + (a11a33 - a31a13) ba + (a21a13 - a11a23) bg]
~ - ~ ~ - ~ ~ -
=Ca =Co2 =Ca3

= a13(C21b1 + Ca2ba + Casbs),
so that
_ C21b1 4 Cooby + Cosbs
Y det A

With z and y thus determined, we can substitute them in any of the three
original equations and find z. Let us use the first equation; then

(6.57)

b1 —anz —any

a13
by — a1 C11b1 + Cr2bs + Cigbs 1o Ca1b1 + Ca22b2 4 Ca3bs
_ det A det A
a3
_ bi(det A — a11C11 — a12Ca1) — b2(@11C12 + a12C22) — b3(a11C13 + a12C23)
o a1z det A '

The numerator N can be calculated:

N = bifa11(as2a33 — azzasze) — a12(aziass — az1az3) + a13(aziazs — azoas)
- a11(a22a33 - a32a23) - a12(a31a23 - a21a33)]
- b2[a11(a32a13 - a12a33) + alz(a11a33 - 031013)]
— bslar1(ar2a23 — azeais) + a12(azia13 — a11a23)]

= a13 Ka21a32 - a22a31) b1 + (a12a31 - a11a32) b + (a11a22 - a12a21) bs}

~ - ~ ~ -~ ~ ~ -
=C31 =Cs2 =Cjs3
= a13(C31b1 + C32b2 + C33b3).

It now follows that
L C31b1 + C32bs + C33b3

6.58
det A ( )
We can put Equations (6.56), (6.57), and (6.58) in matrix form:

x 1 (G Cia Ciz\ (b 1

Yyl = Co1 Ca Coag ba = X = Ch. (6.59)

s det A Casy Cay Cas b det A
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This is the inverse of Equation (6.54). The reader may verify that multiplying
A on either side of C/ det A yields the identity matrix, so that C/ det A is indeed
the inverse of A. The rule for calculating this inverse is as follows. Construct
a matrix out of the cofactors and denote it by A:

All AlQ A13
A= A21 A22 A23 (660)
Az Az Asg

and note that
Cii Ci2 Ci3 B
Co1 Coa Caz | =A
C31 C32 Cs3

so, we obtain the important result

1 A Ay Az

1 ~
= A= A12 A22 A32 . (661)
det A det A Ays Aps  Ass

A1
Equation (6.61), although derived for a 3 x 3 matrix, applies to all matrices,
including a 2 x 2 one whose inverse was given in Theorem 6.3.1, as the reader
is asked to verify.

As in the case of 2 x 2 matrices, a transformation in space that takes a
basis onto another basis is invertible.

6.4 The Jacobian

With the machinery of determinants at our disposal, we can formalize the
geometric construction of area and volume elements in Chapter 2 to a pro-
cedure which can be used for all coordinate transformations. We start with
two dimensions and consider the coordinate transformation

x = f(u,v), y = g(u,v). (6.62)

Our goal is to write the element of area in the (u,v) coordinate system. This
is the area formed by infinitesimal elements in the direction of v and v, i.e.,
elements in the direction of the primary curves of the (u, v) coordinate system.
For an arbitrary change du and dv in v and v, the Cartesian coordinates
change as follows:

_of of

dx = o du + Py dv,
_Og dg

dy = ou du + Py dv.
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The element in the direction of the first primary curve is obtained by holding
v constant and letting v vary. This corresponds to setting dv = 0 in the above
equations. It follows that the first primary (vector) length element is

(6.63)

Similarly, the second primary (vector) length element, obtained by fixing u
and letting v vary, is
dly = &, day + &, dys = &,

of . Og
y dv+ ¢, 9 dv. (6.64)

0

When we derived the elements of area and volume in the three coordinate
systems in Chapter 2, we used the fact that the set of unit vectors in each
system were mutually perpendicular. Therefore, the area and volume elements
were obtained by mere multiplication of length elements. We are not assuming
that €, and e, are perpendicular. Thus, we cannot simply multiply the lengths
to get the area. However, we can use the result of Example 1.1.2 which gives
the area of a parallelogram formed by two non-collinear vectors. Writing the
cross product in terms of the determinant, we have

€, €y e,
of 5 of 0Og
7 > g . du Ou
dly x dly = det | gy, du ou du 0 | =e,det gf gg du dv
0 f 89 v v
v dv v dv 0
and the area is simply the absolute value of this cross product:
gf gg gx gy
da = |det u Y dudo = |9 " du dv, 6.65
af dg dxr Oy ( )
dv v dv  Ov

where we substituted z and y for f and g and introduced a new notation
for the (absolute value of the) determinant. The matrix whose determinant
multiplies du dv is called the Jacobian matrix, and the absolute value of its
determinant, the Jacobian.

Example 6.4.1. Let us apply Equation (6.65) to polar coordinates. The trans-
formation is

= f(r,0) =rcos0, y=g(r,0) =rsinb.

This gives
or _of ox _Of _ .
8r78rfc059, 90 = 09 = rsinf,
Jdy 09 _ . dy _ 9g _
87“787"781119’ 807897“:089’



6.4 The Jacobian

and
or Oy ; o
da=|9" O gragg—| SUY L dr do
oz y —rsin@ rcosd
a0 00
= (rcos® 0 + rsin® ) dr df = r dr db,
which is the familiar element of area in polar coordinates. H

The procedure discussed above for two dimensions can be generalized to
three dimensions using the result of Example 1.1.3 which gives the volume of a
parallelepiped formed by three non-coplanar vectors. Suppose the coordinate
transformations are of the form

x = f(u,v,w), y = g(u,v,w), z = h(u,v,w).

Then
_of of of
dx = 8udu+ Py dv + ow dw,
_0Og dg dg
dy = 8udu+ Py dv + awdw,

oh Ooh Oh
dz = 8udu+ P dv + ow dw.

The first primary element of length is obtained by fixing v and w and
allowing u to vary; similarly for the second and third primary elements of
length. We therefore have

oh

dly = &, day + &, dyy + &, dzy = éwgi du —I—éygz duté. du,
dly = &, dy + &, dys + &, dzy = éwgi dv +éygz dv +ézgz dv,
dly = &, ds + &, dys + &, dzs = éng: dw +éygi dw —I—ézgz dw.
Example 1.1.3 now yields
o Y G
dV = dIy - (dly x dl3)| = |det gz dv gg dv gg dv
2w a0 P

We summarize the foregoing argument in

Theorem 6.4.2. For the coordinates u, v, and w, related to the Cartesian
coordinates by x = f(u,v,w), y = g(u,v,w), and z = h(u,v,w), the volume
element is given by
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Ox 0y 0Oz

ou Ou Ou

_|0x Oy 0z
dv = I A du dv dw. (6.66)

Ox Oy 0z

ow Ow Ow

The (absolute value of the) determinant multiplying du dv dw is called the
Jacobian of the coordinate transformation.

Historical Notes

Determinants were mathematical objects created in the process of solving a system
of linear equations. As early as 1693 Leibniz used a systematic set of indices for the
coefficients of a system of three equations in two unknowns. By eliminating the two
unknowns from the set of three equations, he obtained an expression involving the
coefficients that “determined” whether a solution existed for the set of equations.

The solution of simultaneous linear equations in two, three, and four unknowns
by the method of determinants was created by Maclaurin around 1729. Though
not as good in notation, his rule is the one we use today and which Cramer used
in connection with his study of the conic sections. In 1764, Bezout systematized
the process of determining the signs of the terms of a determinant for n equations
in n unknowns and showed that the vanishing of the determinant is a necessary
condition for nonzero solutions to exist.

Vandermonde was the first to give a connected and logical exposition of the
theory of determinants detached from any system of linear equations, although he
used his theory mostly as applied to such systems. He also gave a rule for expanding
a determinant by using second-order minors and their complementary minors. In
the sense that he concentrated on determinants, he is aptly considered the founder
of the theory.

One of the consistent workers in determinant theory over a period of over fifty
years was James Joseph Sylvester.

In 1833 he became a student at St. John’s College, Cambridge, and took the
difficult tripos examination in the same year along with two other famous math-
ematicians, Gregory and Green (the creator of the important Green’s functions).
Sylvester came second, Green who was 20 years older than the other two came fourth
with Duncan Gregory fifth. (The first-place winner did little work of importance
after graduating.)

At this time it was necessary for a student to sign a religious oath to the Church
of England before graduating and Sylvester, being Jewish, refused to take the oath,
so could not graduate. For the same reason he was not eligible for a Smith’s prize
nor for a Fellowship.

From 1838 Sylvester started to teach physics at the University of London, one
of the few places which did not bar him because of his religion. Three years later
he was appointed to a chair in the University of Virginia but he resigned after a few
months. A student who had been reading a newspaper in one of Sylvester’s lectures
insulted him and Sylvester struck him with a sword stick. The student collapsed in
shock and Sylvester believed (wrongly) that he had killed him. He fled to New York
boarding the first available ship back to England.

On his return, Sylvester worked as an actuary and lawyer but gave private
mathematics lessons. His pupils included Florence Nightingale. By good fortune
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Cayley was also a lawyer, and both worked at the courts of Lincoln’s Inn in London.
Cayley and Sylvester discussed mathematics as they walked around the courts and,
although very different in temperament, they became life-long friends.

Sylvester tried hard to return to mathematics as a profession, and he applied
unsuccessfully for a lectureship in geometry at Gresham College, London, in 1854.
Another failed application was for the chair in mathematics at the Royal Military
Academy at Woolwich, but, after the successful applicant died within a few months
of being appointed, Sylvester became professor of mathematics at Woolwich. Being
at a military academy, Sylvester had to retire at age 55. At first it looked as though
he might give up mathematics since he had published his only book at this time,
and it was on poetry. Apparently Sylvester was proud of this work, entitled The
Laws of Verse, since after this he sometimes signed himself “J. J. Sylvester, author
of The Laws of Verse.”

In 1877 Sylvester accepted a chair at the Johns Hopkins University and founded
in 1878 the American Journal of Mathematics, the first mathematical journal in the
USA.

In 1883 Sylvester, although 68 years old at this time, was appointed to the
Savilian chair of geometry at Oxford. However he only liked to lecture on his own
research and this was not well liked at Oxford where students wanted only to do well
in examinations. In 1892, at the age of 78, Oxford appointed a deputy professor
in his place and Sylvester, by this time partially blind and suffering from loss of
memory, returned to London where he spent his last years at the Athenaeum Club.

Sylvester did important work on matrix and determinant theory, a topic in which
he became interested during the walks with Cayley while they were at the courts
of Lincoln’s Inn. In particular he used matrix theory to study higher-dimensional
geometry. He also devised an improved method of determining conditions under
which a system of polynomial equations has a solution.

The formula for the derivative of a determinant when the elements are functions
of a variable was first given in 1841 by Jacobi who had earlier used them in the
change of variables in a multiple integral. In this context the determinant is called
the Jacobian of the transformation (as discussed in the current section of this book).

6.5 Problems

6.1. What vector is obtained when the vector ay of a basis {a;, as} is actively
transformed with the matrix (8 (1))

6.2. Show that the nonzero matrix A = ({ §) cannot have an inverse. Hint:
Suppose that B = (2Y) is the inverse of A. Calculate AB and BA, set them
equal to the unit matrix and show that no solution exists for a, b, ¢, and d.

6.3. Let A = (2 le) and B = (“2 Zz) be arbitrary matrices. Find AB, A?,

C1 C:
and B and show that (AB)! = B'A".
6.4. Find the angle between 1 + ¢ and 1 — ¢ when the inner product is inte-
gration over the interval (0, 1).

6.5. Instead of (0,1), choose (—1,1) as the interval of integration for P[t].
From the basis {1, ¢}, construct an orthonormal basis using the Gram—Schmidt
process.
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6.6. Take the interval of the integration to be (—1,+1), and find the inner
product matrix for the basis {1,t} of Py[t].

6.7. Find the angle between two vectors a and b, whose components in an
orthonormal basis are, respectively, (1,2) and (2, —3). Use the Gram—Schmidt
process to find the orthonormal vectors obtained from a and b.

6.8. Use the Gram—Schmidt process to find an orthonormal basis in three
dimensions from each of the following;:

(a) (-1,1,1),(1,—1,1),(1,1,-1) (b) (1,2,2),(0,0,1),(0,1,0)

6.9. (a) Find the inner product matrix associated with the basis vectors
a;=¢€,+¢é,a,=¢€,+¢é,, andaz =¢, +¢€,.

(b) Calculate the inner product of two vectors a and b, whose components in
the basis above are, respectively, (1,—1,2) and (0, 2, 3).

(¢) Use the Gram—Schmidt process to find three orthonormal vectors out of
the basis of (a).

6.10. Use Gram—Schmidt process to find orthonormal vectors out of the three
vectors (2,—1,3), (—1,1,—2), and (3,1,2). What do you get as the last
vector? What can you say about the linear independence of the original
vectors?

6.11. What is the angle between the second and fourth vectors in the standard
basis of P3[t] when the interval of integration of the inner product is (0,1)?
Between the first and fourth vectors?

6.12. Calculate the inner product matrix for the standard basis of P3[t] when
the interval of integration of the inner product is (—1, +1). Now find the angle
between all vectors in that basis.

6.13. The inner product matrix in a basis {a;,as} is given by

G= (_21 _31).

(a) Calculate the cosine of the angle between a; and as.
(b) Suppose that a = —a; + ag and b = 2a; — a. Calculate |al, |b|, a - b,
and the cosine of the angle between a and b.

6.14. Let a; = 1 + ¢ and az = 1 — ¢ be a basis of P1[t]. Define the inner
product as the integral of products of polynomials over the interval (0, a) with
a > 0.

(a) Determine a such that a; and as are orthogonal.

(b) Given this value of a, calculate |a;| and |az].

(¢) Find two orthogonal polynomials {1, €2} of unit length that form a basis
for Tl[t].

(d) Write the polynomial b = 3 — 2t as a linear combination of &; and é;.
(e) Calculate b - b using the definition of the inner product.

(f) Calculate b- b by squaring (and then adding) the components in {&;, é2}.
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6.15. Show that the matrix C defined in Equations (6.56)—(6.59) is indeed
the transpose of the matrix A of cofactors of A.

6.16. Show directly that the matrix given in Equation (6.61) is indeed the
inverse of the matrix A.

6.17. From the transformation rules (1.8) and (1.9) giving the Cartesian
coordinates as functions of cylindrical and spherical coordinates, and using
the Jacobian (6.66), find the volume elements in cylindrical and spherical
coordinates

6.18. The elliptic coordinates are given by

x = acoshwucosf

y = asinh usin 6.

Using the Jacobian for two variables (6.65), find the element of area for the
elliptic coordinate system.

6.19. The elliptic cylindrical coordinates are given by

x = acoshwucosf
y = asinhusinf

Z=Zz

Using the Jacobian for three variables (6.66), find the element of volume for
the elliptic cylindrical coordinate system.

6.20. The prolate spheroidal coordinates are given by

x = asinhusinf cosp
y = asinhusinfsin g

z = acoshucosf

Using the Jacobian for three variables (6.66), find the element of volume for
the prolate spheroidal coordinate system.

6.21. The toroidal coordinates are given by

asinh 6 cos ¢

cosh 6 — cosu
asinh 0 sin ¢

cosh @ — cosu
asinu

cosh 6 — cosu

Using the Jacobian for three variables (6.66), find the element of volume for
the toroidal coordinate system.
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6.22. A coordinate system (R, O, ¢) in space is defined by

x = Rcos®cos¢ + bcos¢p
y = RcosOsin ¢ + bsin ¢
z= Rsin®

where b is a constant, and 0 < R < b. Using the Jacobian for three variables
(6.66), find the element of volume for this coordinate system.



Chapter 7

Finite-Dimensional Vector
Spaces

Human visual perception of dimension is limited to two and three, the plane
and space. However, his mental perception, and his ability to abstract, rec-
ognizes no bounds. If this abstraction were a mere useless mental exercise,
we would not bother to add this chapter to the book. It is an intriguing
coincidence that Nature plays along with the tune of human mental abstrac-
tion in the most harmonious way. This harmony was revealed to Hermann
Minkowski in 1908 when he convinced physicists and mathematicians alike,
that the most natural setting for the newly discovered special theory of rel-
ativity was a four-dimensional space. Eight years later, Einstein used this
concept to formulate his general theory of relativity which is the only viable
theory of gravity for the large-scale structure of space and time. In 1921,
Kaluza, in a most beautiful idea, unified the electromagnetic interaction with
gravity using a five-dimensional spacetime. Today string theory, one of the
most promising candidates for the unification of all forces of nature, uses
11-dimensional spacetime; and the language of quantum mechanics—a the-
ory that describes atomic, molecular, and solid-state physics, as well as all
of chemistry—is best spoken in an infinite-dimensional space, called Hilbert
space.

The key to this multidimensional abstraction is Descartes’ ingenious idea
of translating Euclid’s geometry into the language of coordinates whereby the
abstract Euclidean point in a plane is given the two coordinates (z,y), and
that in space, the three coordinates (z,y, z), where z, y, and z are real num-
bers. Once this crucial step is taken, the generalization to multidimensional
spaces becomes a matter of adding more and more coordinates to the list:
(z,y,z,w) is a point in a four-dimensional space, and (z,y, z, w, u) describes
a point in a five-dimensional space. In the spirit of this chapter, we want to
identify points with vectors as in the plane and space, in which we drew a
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directed line segment from the origin to the point in question. In general, an
n-dimensional Cartesian vector x is

x = (z1,22,...,Tp) (7.1)

in which z; is called the jth component of the vector. These have all the
properties expected of vectors: You can add them

X+y = (x17x27"'7xn) + (y17y27"'7yn) = (iC]_ +y17$2 +y27' oy T +yn)7
you can multiply a vector by a number
ax = a(x1, xa, ..., x,) = (ax1, QZa, . .., Qx,),

and the zero vector is 0 = (0,0, ...,0). Two vectors are equal if and only if
their corresponding components are equal. Sometimes, it will be convenient
to denote these vectors as columns rather than rows.

The set of real numbers, or the set of points on a line, is denoted by R.
It is common to denote the set of points in a plane—or, in the language of
Cartesian coordinates, the set of pairs of real numbers (z,y)—by R?, and
the set of points in space by R®. Generalizing this notation, we denote the
set of points in the n-dimensional Cartesian space by R™. We now have an
infinite collection of “spaces” of various dimensions, starting with the one-
dimensional real line R! = R, moving on to the two-dimensional plane R2,
and the three-dimensional space R?, and continuing to all the abstract spaces
R"™ with n > 4. The concepts of linear combination, linear independence,and
basis are exactly the same as before. The vectors

é;=(1,0,...,0), & =(0,1,...,0), ... &,=(0,0,...,1)  (7.2)

form a basis for R™, called the standard basis.

7.1 Linear Transformations

A linear transformation or a linear operator is a correspondence that
takes a vector in one space and produces a vector in another space in such a
way that the operation of summation of vectors and multiplication of vectors
by numbers is preserved. If we denote the linear transformation by T, then
in mathematical symbolism, the above statement becomes

T(ax + By) = aT(x) + ST(y). (7.3)

Matrices are prototypes of linear transformations. In fact, we saw earlier
that it was possible to transform vectors in the plane to vectors in space
and vice versa via 3 X 2 or 2 X 3 matrices. We did not attempt to verify
Equation (7.3) for those transformations, but the reader can easily do so.
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In fact, denoting vectors of R and R™ by column vectors, we can immediately
generalize Equations (6.36) and (6.37) to

/
aq aill a12 e Aln a1
/
(0% a1 as9 e A2n, [6%) ,
= ) . ) ) or a’ = Aa, (7.4)
/
(6799 am1 am2 cee Qmn (679

where A is an m X n matrix—i.e., it has m rows and n columns—whose
elements a;; are real numbers. The reader may verify that Equation (7.4) is
a linear transformation that maps vectors of R™ to those of R™.

Other linear operators of importance are various differential operators,
i.e., derivatives of various order. For example, it is easily verified that d/dx
is a linear operator acting on the space of differentiable functions.! This is
because

df

dg
dx + 5da:

for v and 3 real constants. Similarly d?/dz? and derivative of higher orders, as
well as partial derivatives of various kinds and orders, are all linear operators.
In fact, even when these derivatives are multiplied by functions (on the left),
they are still linear. In particular, the second-order linear differential operator

2 (@f 49 =0

d2

dz? i)

L=pa(0) ! 4 po(a)

d
is indeed a linear operator.

If a linear transformation T maps vectors of R™ to vectors of R™, and S
maps vectors of R™ to vectors of R¥, then we can “compose” or “multiply”
the two transformations to obtain a linear transformation ST which maps
vectors of R™ to vectors of R*. In terms of matrices, T is represented by an
m X n matrix T, S is represented by a k x m matrix S, and ST is represented
by an k x n matrix which is the product of S and T with S to the left of T.
The product of matrices is as outlined in Box 6.1.3.

Box 7.1.1. If A is a k X m matriz, and B is an m X n matriz, then AB
is a k X n matriz whose entries are given by Bozx 6.1.3.

The product BA is not defined unless £k = n, in which case BA will be an
m X m matrix.

Using polynomials, we can generate multidimensional vector spaces by
adding increasing powers of ¢. Then, the collection P,[t] of polynomials of
degree n and less becomes an (n + 1)-dimensional vector space. A convenient
basis for this vector space is {1,t,t2,...,¢"} which we call the standard

IThe reader may want to check that the collection of differentiable functions is indeed a
vector space with the “zero function” being the zero vector.
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basis of P,,[t]. The reader may verify that the operation of differentiation (of
any order) is a linear transformation on P,[t] which can be represented by
matrices as done in Example 6.2.2.

Example 7.1.1. Let us find the matrix that represents the operation of second
differentiation on P3[t] using the standard basis of P3[t]. Recall that we only need to
apply the second derivative to the basis vectors fi = 1, fo = ¢, f3 = ¢?, and £y = ¢>.
We use a prime to denote the transformed vector:

;o d
f, = =0=0- .
1= () =0=0-fi+0-f,
;o d
f; = t)=0=0-f . £
2 dt2() O O 1+O 2
f’:dQ(tQ):2:2-f +0-f
5T e ! »
f’:dQ(t3):6t:0-f +6-f.
LT e ! »

where we have anticipated the fact that double differentiation of Ps[t] results in
P1[t]. Following the rule of Box 6.2.2, we can write the transformation matrix as

0 0 2 0
0 0 0 6)°
We may verify that the coefficients in P1[t] of the second derivative of an arbi-
trary polynomial f(t) = ao + aat + a2t® + ast® can be obtained by the product of
the matrix of second derivative and the 4 x 1 column vector representing f(t). In

fact,
Qo

0 0 2 0 a1 o 2052
0 0 0 6 a2 - 6053 ’
a3

These are the two coefficients of the resulting polynomial in P1[t]. The polynomial
itself is 2as + 6ast which is indeed the derivative of the third degree polynomial

f(t). "}

7.2 Inner Product

Since the concepts of length and angle are not familiar for R™, we need to
define the inner product first and then deduce those concepts. We can gener-
alize the usual inner product of R? and R? in terms of components of vectors.
Let

a:(al,az,...,an) and b:(bl,bg,...,bn).

Then
a-b=aby +asby+---+a,b, (75)

is the immediate generalization of the dot product to R™.
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This, of course, is not the most general inner product. For that, we need
an inner product matrix G. As in the case of the plane and space, this is
simply a symmetric n x n matrix whose elements determine the dot products
of the vectors of the basis in which we are working.

g11 912 ... Jin
g21 g22 ... Q2n o

G = : : : , gij = gji, 4,j=1,2,...,n. (7.6)
dnil gn2 cee Inn

Example 7.2.1. Let us find the inner product matrix for the basis {1,¢,t* ¢*} of
P3[t]. As usual, we assume that the interval of integration for the inner product is
(0,1). Because of the symmetry of the matrix and the fact that we have already
calculated the 3 x 3 submatrix of G, we need to find gi4, g24, gs4, and gas. Once
again, let fi = fi(t) = 1, f2 = fo(t) = t, £3 = f3(t) = t*, and f1 = fa(t) = 3
then

1 1
pa=tifi= [ pOp@da= [ ca=,
0 0
g24 = f2 . f4 = / fz(t)f4(t) dt = / t4dt = ;
0 0

Similarly, gs4 = (1) and gaq = ; It follows that

N e
S N L
D= UL s = W
G

This matrix can be used to find the dot product of any two vectors in terms of their
components in the basis {1,t,t%, %} of P4[t]. m

If a and b have components (a1, as,...,a,) and (b1, ba, ..., b,), then their
inner product is given by

g1 912 --- Jin by

~ 921 922 .- G2n bo

aGb= (a1 az ... an)| . ] ) . (7.7)
In1  Gn2 ceo Gnn bn

As usual, if this expression is zero, we say that a and b are G-orthogonal. For
an orthonormal basis, the inner product matrix G becomes the unit matrix?
and we recover the usual inner product of vectors in terms of components.

With a positive definite inner product at hand, we can define the length of
a vector as the (positive) square root of the inner product of the vector with
itself. Can we define the angle as well? We can always define

20nly if the inner product is positive definite.
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a-b B a-b
la||b]  a-avb-b

But how do we know that the ratio on the RHS is less than one? After all,
a true cosine must have this property! It is an amazing fact of nature that
any positive definite inner product has precisely this property. To show this,
let a and b be two vectors in any vector space on which an inner product is
defined. Denote the unit vector in the a direction by €,, and construct the
vector

cosf =

b =b— (b-&,)é, (7.8)
~ ~ -
a number
which is easily seen to be perpendicular to €, (and therefore to a). If the
inner product is positive definite, then

b b >0 = [b—(b-&,)e.] [b—(b-&,)é. >0

or
b-b—2b-[(b-&,)éa] +(b-&,)2é, - &4 > 0.
N~ ~ ~ 7z N 7
=[b|? =(b-&4)2 =1

It follows that

bj2—(b-&,)%>0 = [b]>> [b- (@)]2

and

2
b > ('jf‘) = bl > (b-a)?.
a

This is the desired inequality.

Box 7.2.1. (Schwarz Inequality). If a and b are two nonzero vectors
of a wvector space for which a positive definite inner product is defined,
then

|a| [b| > |a - b].

The equality holds only if b is a multiple of a.

The last statement follows from the fact that b’ - b’ = 0 only if b’ = 0 when
the inner product is positive definite [see Equation (7.8)].

The Schwarz inequality holds not only for finite-dimensional vector spaces
such as R™ or P,[t], but also for infinite-dimensional vector spaces. It is
one of the most important inequalities in mathematical physics. One of its
consequences is that we can actually define the angle between two nonzero
vectors in R™ or P, [t] (or any other vector space, finite or infinite, for which
a positive definite inner product exists).
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Example 7.2.2. What is the angle between the third and fourth vectors in the
standard basis of P3[t] when the interval of integration of the inner product is (0,1)?
All the inner products are calculated in Example 7.2.1. Therefore,

f3 -4 _ g34 _ 1/6 _ V35
\/f3~f3\/f4~f4 \/933\/944 \/1/5\/1/7 6

or 6 = 9.594°. ]

cosf =

As in the case of the plane and space, it is convenient to construct or-
thonormal basis vectors in R™. This is done by the Gram—Schmidt process
which can easily be generalized. Suppose B = {aj,aq,...,a,} is a basis for
R™. Again, to avoid complications, we assume that the inner product is Eu-
clidean so that the inner product of every nonzero vector with itself is positive.
We know how to construct three orthonormal vectors out of {a;,as, a3}, we
did that in our discussion of the space vectors. Call these new orthonormal
vectors {€1,€2,€3}. Now construct the vector a),

aﬁl = a4 — (a4 . él)él — (a4 . ég)éz — (a4 . ég)ég

which is obtained from a4 by taking away its projections along €, €3, and é3.
Now note that

él -aﬁlzél-a4—(a4-é1)é1-é1 —(a4-é2)é2-é1 —(a4-é3)é3-é1 =0.
N 7 N 7 N 7
=1 =0 =0

Similarly, é; - a}, = 0 and &3 - a};, = 0; i.e., a is orthogonal to &, &, and é;.
This suggests defining &, as

- a) _ a)

lay|  (/a)-a)

This process can continue until we come up with n orthonormal vectors. This
will happen only if the n vectors with which we started are linearly indepen-

dent.

Box 7.2.2. If {aj,as,...,a,} are linearly independent vectors of R™,
then we can construct a set of n orthonormal vectors out of them by the
Gram—Schmidt process.

An orthonormal basis will be denoted by {é1, €2, ...,€&,}, where, as usual,
the symbol € stands for unit vectors. We can abbreviate the orthonormal
property of these vectors by writing

oo L=
R N
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There is a symbol that shortens the above statement even further. It is called
the Kronecker delta and denoted by d;;. It is defined by

1 it i

dij = L (7.9)
0 if i #j.

Therefore, the orthonormality condition can be expressed as

We shall see many examples of the use of the Kronecker delta in the sequel.

Transformations that leave the inner products unchanged can be obtained
in exactly the same way as for the plane and the space. For A to preserve the
inner product, we need to have

AGA = G, (7.11)

i.e., it has to be G-orthogonal. If G is the identity matrix, then A can be
thought of as an n-dimensional rigid rotation and is simply called orthogonal;
it satisfies

AA =1 (7.12)
or
a1 a2 ... Q1n ail a1 O P 1 0 0
a1 a2 oo Q2p a1 a2 P ¢ %) 0 1 0
An1 Ap2 ... Gpn A1p A2 .. Opn 0o o0 ... 1

It should be clear from this that the columns of the matrix A, considered as
vectors, have unit length and are orthogonal to other columns in the usual
Euclidean inner product.

7.3 The Determinant

The determinant of an n X n matrix is obtained in terms of cofactors in exactly
the same way as in the case of 3 x 3 matrices. The cofactors are themselves
determinants of (n — 1) x (n — 1) matrices which can be expanded in terms
of cofactors of their elements which are determinants of (n — 2) x (n — 2)
matrices, etc. Continuing this process, we finally end up with determinants
of 2 x 2 matrices. The determinant is also related to the inverse of a matrix
[see Equations (6.60) and (6.61)]:

Theorem 7.3.1. The matriz A has an inverse if and only if det A # 0 in
which case

An A ... An
1 ~ 1 Ap Az .. Apo
71 o o
N detAA ~detA | : S (7.13)
Aln A2n s Ann

where A;j is the cofactor of a;j as defined in Box 6.3.2.



7.3 The Determinant

Calculation of the determinant becomes extremely cumbersome when the
dimension of the matrix increases beyond 4 or 5. However, there are certain
properties of the determinant which may sometimes facilitate its calculation.
The determinant has the following properties:

1. To obtain the determinant of an n x n matrix, multiply each element of
one row (or one column) by its cofactor and then add the results.

2. The determinant of the unit matrix is 1.

3. The determinant of a matrix is equal to the determinant of its transpose:
det A = det A%,

4. If two rows (or two columns) of a matrix are proportional (in particular,
equal), the determinant of the matrix is zero.

5. If a row or column—treated as a vector in R"—of a matrix is multiplied
by a constant, the determinant of the matrix will be multiplied by the
same constant.

6. If two rows (or two columns) of a matrix are interchanged, the determi-
nant changes sign.

7. The determinant will not change if we add to one row (or one column)
a multiple of another row (or another column). The addition of rows or
columns and their multiplication by numbers are to be understood as
operations in R™.

An important relation, which we state without proof,? is
det(AB) = det A det B. (7.14)

This, in combination with det1 = 1 and AA~! = 1, gives

1

AATH) =det 1 Adet(A~1) =1 AT = .
det( )=detl = detAdet(A™") = det(A™") det A

(7.15)

In words, the determinant of the inverse of a matrix is the inverse of its
determinant.

Recall that an orthogonal matrix A satisfies AA* = 1. The third property
of the determinant given above and (7.14) can be used to obtain

det(AAY) =detl = (detA)?> =1 = detA = +1. (7.16)

So

Box 7.3.1. The determinant of an orthogonal matriz is either +1 or —1.

3See Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Chapters 3 and 25.
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7.4 Eigenvectors and Eigenvalues

One of the most important applications of the determinant is in finding cer-
tain vectors that are not affected by transformations. As an example, consider
rotation which is a linear transformation of space onto itself (or a transfor-
mation from R? to R3). A general rotation in space is very complicated (see
Example 6.2.5 and the discussion immediately preceding it), but if we can
find an axis which is unaffected by the operation, then the process becomes a
simple rotation about this axis.

When we say that a vector is unaffected, we mean that its direction (and
not necessarily its magnitude) is unchanged. We use n X n matrices to repre-
sent transformations of R™. If x is a (column) vector in R™ whose direction is
not affected by the transformation T, then we can write

Tx= A or (T—A)x =0, (7.17)
where ) is a real number and we introduced the unit matrix to give meaning to
the subtraction of A from T. In Equation (7.17), x is called the eigenvector
and A\ the eigenvalue of the linear transformation. Since the zero vector triv-
ially satisfies (7.17), we demand that eigenvectors always be nonzero. Equation
(7.17) itself is called an eigenvalue equation; its solution involves calculat-
ing both the eigenvalues and the eigenvectors. It is clear from (7.17) that a
multiple of an eigenvector is also an eigenvector (see Problem 7.6). There-
fore, an eigenvalue equation (7.17) has no unique solution. By convention, we
normalize eigenvectors so that their length is unity.

To find the solution to (7.17), we note that the matrix (T — A1) must have
no inverse, because if it did, then we could multiply both sides of the equation
by (T — A1)~! and obtain

(T-AD)"HT - A)x=(T-A1)"'0 = x=0

~ ~ - ~ ~ -
-1 =0

which is not an acceptable solution. So, we must demand that the matrix

(T — A1) have no inverse. This will happen only if the determinant of this

matrix vanishes. So, the problem is reduced to finding those A’s which make

the determinant of the matrix vanish. In other words, the eigenvalues are the

solutions of the equation

det(T — A1) = 0. (7.18)

Once the eigenvalues are determined, we substitute them one by one in the
matrix equation (7.17) and find the corresponding eigenvectors by solving the
resulting n linear equations in n unknowns. The best way to explain this is
through an example.

Example 7.4.1. Let T be a linear transformation of space (or R?) represented by

the matrix
1 0 O
T=10 1 2].
0 2 1
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The eigenvalue equation is

1 0 0 1 0 O T 0
(T—=Al)x=0 or 0 1 2]—-X]0 1 0 zo | =0
0 2 1 0 0 1 T3 0
This can also be written as
1-—A 0 0 T 0
0 11— 2 2| =10 (7.19)
0 2 1-—A T3 0

whose nontrivial solution is obtained by setting the determinant of the matrix equal
to zero:
1-A 0 0
det 0 1—-A 2 =0
0 2 1—-A
or

(1—)\)det<1;)\ 1EA) —(1-N[1-N2—4] =0

This equation has the solutions
1-A=0 or (1-A’=4 = 1-\=+2

It follows that there are three eigenvalues: A1 = 1, Ao = —1, and A3 = 3. We now
find the eigenvectors corresponding to each eigenvalue.
Substituting A1 = 1 for A in Equation (7.19) yields

0 0 0 T 0 0 0
0 0 2 xo | = [0 or 2031 = | 0
0 2 0 T3 0 212 0

It follows that x2 = 0 = x3. Therefore, the first eigenvector is

X1 1
ar — 0 =T 0
0 0

with z; an arbitrary real number. This arbitrariness comes from the fact that a
multiple of an eigenvector is also an eigenvector. We choose 1 = 1 to normalize the
eigenvector to unit length. Denoting this eigenvector by e;, we have

1
e = 0
0

To find the second eigenvector, we substitute A2 = —1 for A in Equation (7.19).
This gives

2 0 0 T1 0 2x1 0
0 2 2 2| =0 or 200 +2x3 | = |0
0 2 2 €3 0 2xo + 2x3 0
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It follows that 1 = 0, and 2z2 + 2x3 = 0 or s = —x2. Therefore, the second
eigenvector is
0 0
az — T2 = T2 1
—x3 -1

with z2 arbitrary. To normalize the eigenvector, we divide it by its length.* This
amounts to choosing z2 = 1/v/2 (see Problem 7.7). We thus have

For the third eigenvector, we substitute A3 = 3 in Equation (7.19) to obtain
0 —2x1 0
0 -2 2 x2 | =10 or —2x0+2x3 | = |0
0 2 —2 x3 0 2xo — 213 0

or x1 = 0, and x3 = x2. Therefore, the third eigenvector is

0 0
as=|x2| =22 | 1
X2 1

The unit eigenvectors €1, €2, and €3 of the preceding example are mutually
perpendicular as the reader may easily verify. This is no accident! The matrix
of that example happens to be symmetric, and for such matrices, we have the
following general property:

Box 7.4.1. FEigenvectors of a symmetric matriz corresponding to different
etgenvalues are orthogonal.

To show this, let x and y be eigenvectors of a symmetric matrix T correspond-
ing to eigenvalues A and ), respectively:

Tx = Ax, Ty = Ny.
Multiply both sides of the first equation by y and the second by X to get

yTx = \yx, XTy = N'Xy. (7.20)

4Here we are assuming that the inner product for the calculation of length is the usual
Euclidean one.
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Now take the transpose of both sides of the first equation in (7.20). This
gives® L B
YT =Ayx)" = XTy=Xy.

But double transposing y gives back y. Furthermore, T= T, because T is
symmetric. So,
X Ty = AXy.

Subtracting both sides of this equation from those of the second equation in
(7.20), we obtain
0=(\—\)xy.

By assumption, A # X; so, we must have Xy = 0, i.e., that x and y are
orthogonal.

7.5 Orthogonal Polynomials

The last section generalized the two- and three-dimensional “arrows” and
polynomials to higher dimensions in which many of the original properties of
vectors—such as the inner product—were retained. In this section, we want to
make two more generalizations which are necessary for many physical applica-
tions. The first is the introduction of a weight function in the definition of
inner product. A weight function is a function that is positive definite® in the
interval (a,b) of integration of the inner product. More specifically, let p =
p(t) and q = ¢(t) be polynomials in P, [t]. We define their inner product as

b
p-q= / p(Ha(tyw(t) dt, (7.21)

where w(t) is a function that is never zero or negative for a < t < b, and its
form is usually dictated by the physical application. The reader may verify
that Equation (7.21) defines a positive definite inner product.

The second generalization is to consider the collection of all polynomials
of arbitrary degree. In other words, instead of confining ourselves to P, [t] for
some fixed n, we shall allow all polynomials without any restriction on their
degree. Clearly, such a collection is indeed a vector space; however it does
not have a finite basis. We denote this infinite-dimensional space by P{,  [t],
in which notation both the weight function and the interval of integration are
included.

Given any basis for TPE“‘;’ b) [t], we can apply the Gram—Schmidt process on it
to turn it into an orthonormal basis. Due to historical reasons, the normality
is not a desirable property for the basis vectors. So, one seeks polynomials
that are orthogonal, but not necessarily of unit length. Instead of normalizing
the vectors, one standardizes them. Standardization is a rule—dictated by
tradition—that fixes some of the coefficients of the polynomials. The proce-
dure for finding these orthogonal polynomials is to start from the constant

5Recall that“and ! mean the same thing.
6This just means that the function is positive and never zero.
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polynomial (of degree zero) and standardize it to get the first polynomial.
Next apply the standardization to the polynomial of degree one (with two
unknown coefficients), and make sure that it is perpendicular to the first
polynomial, where the inner product is defined by (7.21). These two require-
ments (standardization and perpendicularity) provide two equations and two
unknowns which can be solved to find the coefficients of the second polyno-
mial. The next polynomial has degree two with three unknown coefficients.
Standardization and orthogonality to the first two polynomials provide three
equations in three unknowns, the solution of which equations determines the
third polynomial. This process can be continued indefinitely determining the
coefficients of orthogonal polynomials up to any desired degree.

Example 7.5.1. The procedure above is best illustrated by a concrete example.
The Legendre polynomial of degree n, denoted by P,(t), is characterized by
the standardization P,(1) = 1. We denote the collection of these polynomials by
T%flyl)[t], indicating that the interval of integration for them is from —1 to +1
and that the weight function is unity. Because of standardization, we must choose
Py(t) = 1. The first degree polynomial is generally written as Pi(t) = ao + aut.
Standardization gives o + a1 = 1. Orthogonality to Po(t) gives

0= /1 Po(t)Pl(t)w(t) dt = /1 1- (Oéo + Oélt) -1dt = 2apg.

So, ap = 0 and a1 = 1. Therefore, Pi(t) = t.
For Ps(t) = a + a1t + aot? we have (reader please verify!)

ag+ar+as=1 (by standardization),
200 +0 - a1 + gozz =0 (by orthogonality to FPp),
0- a0+ g a1 +0-a2=0 (by orthogonality to Pi).
The solution to these equations is ap = —;7 a1 =0, and az = —27 so that P(t) =
3(3t* — 1). Other Legendre polynomials can be found analogously. [ |

By their very construction, orthogonal polynomials, which are denoted by
F,(t), satisfy the following orthogonality condition:

0 if m#n,

7.22
h, if m=n, ( )

/ () () di {

where h,, is just a positive number (depending on n, of course) which is
different for different types of F,,.” As before, let us treat these polynomials
as vectors and write F,, for F,(¢). Then using the Kronecker delta of (7.9),
Equation (7.22) can be written as

F, .F, — 0 if m;«én:hnamn.
h, if m=n

"There are many different types of orthogonal polynomials, distinguished from each other
by different intervals, and different w(¢). Different symbols—such as Py (t), Hn(t), Tn(t),
etc., are used for different types. We have used Fy,(t) to represent any one of these types
in our general discussion.
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In particular, F,, - F,, = hy,, or |[F,,|?> = hy,,. So, the “length” of F,, is v/h,,.

Now consider the set of all functions defined in the interval (a,b) any two
of which give a finite result when integrated as in Equation (7.22). The reader
may easily verify that this set is indeed a vector space. If f = f(t) and g = g(t)
are two vectors in this space, then we define their inner product as

b
fg= [ fgOu()

It is clear that the F,, belong to this space. Furthermore, it can be shown
that they form a convenient basis for the vector space. In fact, any function of
the space can be written as a (infinite) linear combination of the orthogonal

polynomials
o0
f= Z anFna
n=0

whose coefficients can be determined by taking the inner product of both sides
with F,,:

f-F,, = <§: anFn>
n=0

because in the last infinite sum all the terms are zero except one. We can
solve this equation for a,, to obtain a,, = f- F,/h,,. Thus,
f-F,

hn

(7.23)

= ZanFn ‘Fp, =anFn - Foy = han,

n=0

f= Z anF, where a, = (7.24)
n=0

In terms of functions and polynomials, we have the important result:

Theorem 7.5.2. A function f(t), defined in the interval (a,b), can be repre-
sented as an infinite sum in orthogonal polynomials given by

0 b
&)= anFu(t), where anzhl / F(OF(Hw(t)dt.  (7.25)
n=0 n Ja

There are a number of so-called classical orthogonal polynomials used
in mathematical physics a number of whose properties we simply cite here.
We have already mentioned Legendre polynomials for which the interval is
(—1,+1) and w(z) = 1.8 For Legendre polynomials, h,, = 2/(2n + 2), i.e.,

0 if m#n
2

9 Tont1
if m=n

(7.26)

5mn .

/ PPt di
-1

If the interval is (—o0, 00) and w(t) = e~**, then the resulting polynomials,
denoted by H,(t), are called Hermite polynomials. For Hermite polynomi-
als, we have

8 A detailed discussion of Legendre polynomials and their origin can be found in Chapter
26.
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0 if m#n
= /72" Sy

/ Hy () Hop (£)e " dt =
- if m=n

(7.27)
V2!

If the interval is (0,00) and w(t) = t™e~! with m a positive integer,’
then the resulting polynomials, denoted by L"(t), are called Laguerre poly-
nomials. For Laguerre polynomials, we have

0 if k#n
Vrn+m)l/n!l if k=n

_ Jr (n —lT—L!m)!

/OO L)L (Ot™ et dt = {
0

Skon- (7.28)

There are other (classical) orthogonal polynomials which we shall not inves-
tigate here.!?

7.6 Systems of Linear Equations

Our discussion of determinants in Section 6.3 started with a system of two
linear equations in two unknowns and led to the result that if the determinant
of the matrix of coefficients is nonzero, then the inverse of this matrix exists,
and the unknowns can be found conveniently using this inverse [see Equation
(6.52) and Theorem 6.3.1]. This was further generalized to the case of three
linear equations in three unknowns and stated in Equation (6.59). A system
of n linear equations in n unknowns can be handled in the same way. We
write such a system as

Z1 ailr a2 A1n b1
€2 az1 a2 ... QA2n b2

=\ . . . .| = x=Ab (7.29)
Tn anl aAn2 Ann bn

and note that, if det A # 0, we can calculate A~! according to Box 7.3.1,
and multiply both sides of (7.29) by this inverse and obtain x = A='b. The
case of the vanishing determinant is best treated in the context of a system
of equations for which the number of unknowns is not equal to the number of
equations.

The process that led to Equations (6.49) and (6.51) is called elimination,
and can be extended to m linear equations in n unknowns of the form

9 Actually m need not be an integer. However, the space and scope of this book does
not permit us to consider the general case.

10The interested reader may find Hassani, S. Mathematical Physics: A Modern Intro-
duction to Its Foundations, Springer-Verlag, 1999, Chapter 7, a useful reference for all
orthogonal polynomials including many derivations and proofs that we have skipped here.
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a1121 + a12@2+ - + a1p Ty = by,

2121 + A22T2+ - - - + G2pTy = bo,

(7.30)

Am1T1 + Qoo+t -+ + AmnTyn = by

We will now describe a general process known as Gauss elimination,
for finding all solutions of the given system of linear equations. The idea
is to replace the given system by a simpler system, which is equivalent to
the original system in the sense that it has precisely the same solutions. For
example, the degenerate equation

O-214+0-224+---+0-2, =b;

is equivalent to 0 = b;, which cannot be satisfied unless b; is zero.

In a more compact notation, we write only the ith equation, indicating
its form by a sample term a;;x; and the statement that the equation is to be
summed over j from 1 to n by writing!!

> aiy=b;  for i=1,2,...,m. (7.31)
j=1

We distinguish two cases:

1. Every a;1 = 0, i.e., all coefficients of the unknown x; vanish. Then, triv-
ially, the system (7.31) is equivalent to a smaller system of m equations
in the n — 1 unknowns xs, ..., z, with x; arbitrary for any solution of
the smaller system.

2. Some a;; # 0. By interchanging the first equation with another if nec-
essary, we get an equivalent system with a;; # 0. Dividing the first
equation by aj1, we then get an equivalent system in which a1 = 1.
Then subtracting a;; times the new first equation from each ith equa-
tion for ¢ = 2,...,m, we get an equivalent system of the form

/! /! /! /
T1 + A19T2 + A13T3+ -+ - + a1,y = b7,

i i i /
Qo2 + Ay3%3+ -+ + Gy, Ty = b,

(7.32)

/! / /! /
G2 + Q3T+ -+ 4 Ay T = by,

Now we apply the same procedure to the system of equations in (7.32) in-
volving only zo through x, so that zo will appear only in the first of these
equations. If case 2 always arises, the given system is said to be compatible.
If case 1 arises once in a while, then we may get degenerate equations of the
form 0 = di. If all di turn out to be zero, these can be ignored; if one dy # 0,
the original system (7.30) is incompatible (has no solutions). We summarize
these findings as

1 The reader may find an adequate discussion of summations and “dummy” indices in

Section 9.2.
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Theorem 7.6.1. Any system (7.30) of m linear equations in n unknowns can
be reduced to an equivalent system of v linear equations whose ith equation has
the form

Ti + Ciip1Tiv1 + CiipoTipe + -+ CinTn = d; (7.33)

plus m — r equations of the form 0 = dj.

Written out in full, Equation (7.33) looks like

T1 + 122 + 1373 + c14T4+ - - - + CraTy, = dy,
To + C23%3 + Co4Ty - - - F ConTy = da,
T3 + €34T4 - + C3n Ty = d3, (7.34)

Tyt Crny = dy (T‘Sm),

which is said to be in echelon form.

Solutions of any system of the echelon form (7.34) are easily described.
Consider the succession of the unknowns starting with x,, and going down to
x1. If a given x; appears as the first variable in an equation of (7.34), then it
can be written in terms of all preceding unknowns:'?

Ty = d; — Ciit1Tit1 — Ciiq2Tit2 — =+ — CinTp- (7.35)

If x; does not appear as the first variable in an equation of (7.34), then it can
be chosen arbitrarily. We thus have

Box 7.6.1. In the compatible case of Theorem 7.6.1, the set of all solu-
tions of Equation (7.30) are determined as follows. The m — r unknowns
x not occurring in (7.34) can be chosen arbitrarily (they are free param-

eters). For any choice of these xy’s, the remaining x; can be computed by
substituting in (7.35).

Example 7.6.2. Consider the following four linear equations in three unknowns
(som=4and n =3):

—x2 4+ 2x3 =1,
T1 + 2 — 3x3 = 0,
—T1+ T2 + T3 = —2, (7.36)
xr1 + 209 — x3 = —1.

The coefficient of z1 in the first equation is zero. So, we switch this equation with
one of the other equations, say the second. Then we multiply the new first equation
by the negative of the coefficient of 1 in each remaining equation and add the result

12If r = n, then the last equation of (7.34) will be , = dn, and (if the set of equations
is compatible) all unknowns will be determined.
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to that equation to eliminate x1. Thus, we add the new first equation to the third
equation of (7.36), and subtract the new first equation from the last equation of

(7.36). The result is

T1 + x2 — 3x3 = 0,

—22 +2z3 =1,
2z — 223 = =2, (7.37)
xo + 223 = —1.

To eliminate z2 from the last two equations, multiply the second equation of (7.37)
by 2 (or 1 for the last) and add it to the third (or last) equation. This will yield

T1 4+ x2 — 3x3 = 0,

—x2 +2x3 =1,
dzs =0, (7.38)
4x3 =0.

Multiply the second equation by —1, divide the third equation in (7.38) by 4, and
finally subtract the result from the last equation. The final result is the following
echelon form:

T1 4+ x2 — 3x3 = 0,

T2 — 203 = —1,
z3 =0, (7.39)
0=0,

which corresponds to Equation (7.34) with » = n = 3. Thus, we have one equation
of the form 0 = dj for which di is zero. So, the system has a solution. To find
this solution, start with the third equation of (7.39) which gives x3 = 0. Substitute
in the equation above it to get x2 = —1, and these values in the first equation to
obtain z; = 1. m

Example 7.6.3. As another example, consider the following:

r1+x2 + 23 =0,
2x1 —x2 +x3 = —2,
—x1 +2x2 + 23 = —1, (740)

xr1 — 222 + x3 = 2.

Multiply the first equation successively by —2, 1, and —1 and add it to the second,
third and fourth equations. The result will be

z1+x2+23 =0,
—3T0 — 3 = —2,
3x2 + 2x3 = —1,

—3x2 +0-x3 = 2.
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Now divide the second equation by —3,

1 +x2 + 23 =0,
T2 + éws = §,
3x2 + 2x3 = —1, (741)

—3x2 +0-x3 = 2.

Multiply the second equation of (7.41) successively by —3 and +3 and add it to the
third and last equations. This will yield

r1+x2 +23 =0,
T2 + é$3 = 3,
x5 = —3, (7.42)
xr3 = 4.
Subtract the third equation from the last to get

r1+x2 +23 =0,
T2 + é$3 = 3,
T3 = —3, (7.43)

0=7.

In this case, we have an equation of the form 0 = dj for which d, = 7. So, the
system is incompatible, i.e., it has no solution. ]

A system of linear equations (7.30) is homogeneous if the constants b;
on the RHS are all zero. Such a system always has a trivial solution with
all the unknowns equal to zero. There may be no further solutions, but if
the number of variables exceeds the number of equations, the last equation
of (7.32) will always contain more than one variable at least one of which can
be chosen at will. Furthermore, the inconsistent equations 0 = dj can never
arise for such homogeneous equations. Hence,

Box 7.6.2. A system of m homogeneous linear equations in n unknowns,
with n > m, always has a solution in which not all the unknowns are zero.

7.7 Problems

7.1. Show that Equation (7.4) is a linear transformation.

7.2. Verify that the operation of differentiation of any order is a linear trans-
formation on P, [t].

7.3. Show that )

dax?

is a linear operator on the space of differentiable functions.

L = ps(x) + p1(x) dci + po(x)
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7.4. Show that the coefficients in P [¢] of the second derivative of an arbitrary
polynomial f(t) = ag + a1t + ast? + azt® can be obtained by the product of
the matrix of the second derivative obtained in Example 7.1.1, and the 4 x 1
column vector representing f ().

7.5. Express the element in the ith row and jth column of a unit matrix in
terms of the Kronecker delta.

7.6. Suppose x is an eigenvector of T with eigenvalue A\. Show that, for any
constant «, ax is also an eigenvector of T with the same eigenvalue.

7.7. Find the length of as of Example 7.4.1 in terms of x2. Now show that
a2/|a2| = ég.

7.8. Show that the rotation of the plane affects all vectors in the plane. Hint:
Try to find an eigenvector of the 2 x 2 rotation matrix (6.24).

7.9. Find the eigenvalues and normalized (unit length) eigenvectors of the
following matrices. In cases where the matrix is symmetric, verify directly
that its eigenvectors corresponding to different eigenvalues are orthogonal.

w(y %) o () @ (5 3):

110 2 0 0 11 1
@ (1 0 1]. e o 1 1]. |1 1 1
01 1 01 1 11 1

7.10. Show that Box 7.4.1 is not necessarily true for a general inner product
with matrix G. However, if G and T commute (i.e., if GT = TG), then Box
7.4.1 holds. Hint: Follow the argument after Box 7.4.1 and see how far you
can proceed.

7.11. Show that the inner product defined in Equation (7.21) is indeed a
positive definite inner product.

7.12. Find the fourth Legendre polynomial using the results of Example 7.5.1.

7.13. Find the first three Hermite polynomials using the standardization (or
normalization) Equation (7.27).

7.14. The volume element of a four-dimensional Euclidean space with Carte-
sian coordinates x, y, z, and w is drdydzdw. In any other coordinate system,
it is given by a 4-dimensional generalization of the Jacobian (6.66)

(a) Write this Jacobian for a general transformation to coordinates s, t, u,
and v where x, y, z, and w are functions of these new coordinates.

(b) Now consider the 4-dimensional spherical coordinates:

& = rsin usin 6 cos ¢
y =rsinpusindsinp
z = rsin ycos 6

W = T COS |4
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and calculate the 4-dimensional Jacobian to find the volume element of a 4-
dimensional sphere.

() With 0 < o <27, 0< 60 <7, 0<pu<m, find the volume of a 4-sphere of
radius a.

7.15. Determine the r of Equation (7.34) for each of the following systems of

linear equations and whether or not the system is compatible. If the system
is compatible, find a solution for it.

20 —y —4z =1,

rH+y+z=-1,

(a) x+4+2y+22=0, (b) 2z —y+2z= -5,
—x —y—+6z=3. 3r+3y+z=1
T+y+z=2, 2v 4y — 2z =2,

(¢) 2x—y+2z=-2, (d) 3z—y—4z=-1,
3r+y—z=4. 3x4+4y —22=T.
3xr+2y =17, T+5y —2z=2,

r+y+z=0, 20 +y+ 3z = —1,

or + 4y + 2z =19,

T — 2y = —5.

—x+ 3y + 2z = -3,
3 +2y —z=4.



Chapter 8

Vectors in Relativity

One of the most rewarding applications of vectors is to relativity. The special
theory of relativity (STR) was a direct consequence of Maxwell’s equations,
which summarize the entire theory of electromagnetism (see Section 15.4).
These equations predict mathematically that there must exist electromagnetic
(EM) waves which travel at the speed of light in empty space. This speed c is
found in terms of purely electric and magnetic measurements:

1 1

c= = =2.998 x 10® m/s,
VHoeo /(47 x 1077) (8.854 x 10-12) /

where €9 = 1/47k. and po = 4nk,,, with k. and k,, the electric and magnetic
constants introduced in Chapter 1.

Imagine two laboratories on two spaceships, S; and S5, with S; behind
(and moving towards) Sa at 0.9¢ relative to Sa. The physicists on Sy perform
electric and magnetic experiments, measure ¢y and pg, and conclude that
EM waves travel at 300,000 km/s in empty space. The physicists on So
also perform electric and magnetic experiments, measure €y and pg, and also
conclude that EM waves travel at 300,000 km/s in empty space. Now a
physicist on S; takes a flashlight and sends a beam of light in the forward
direction in empty space. The consequence of Maxwell’s equations is that the
physicists on Sy, although seeing S7 moving towards them at 0.9¢ and the
light beam moving away from S; at ¢, conclude that the speed of the light
beam is ¢ and not 1.9¢, as expected from the Newtonian law of addition of
velocities.

To appreciate the strange consequence of Maxwell’s equations, consider
the following example: A train moving at 30 m/s and a passenger throwing
a ball in the forward direction with a speed of 20 m/s. A ground observer
measures the speed of the ball to be 304+ 20 = 50 m/s: velocities add. Here is
another familiar example: A car moves at 75 mph on a highway on which your
car is moving at 50 mph. The speed of the fast car relative to you is 25 mph.
You speed up to 70 mph. Then the other car appears to have “slowed down,”
because, now you measure its speed relative to you to be only 5 mph. Go to

law of addition
of velocities



238

the
Michelson—Morley
clock

Vectors in Relativity

outer space, let someone in your spaceship fire a bullet moving at 500 mph.
Increase your speed to 450 mph, the bullet appears to be moving at 50 mph
away from you. Increase your speed by another 100 mph. You catch up with
the bullet, and if you decrease your speed by 50 mph, the bullet appears
stationary relative to you.

Now shoot a beam of light forward, and once the beam leaves your flash-
light, accelerate your spaceship to a speed of 299,000 km/s. Measure the
speed of the light beam. It is still 300,000 km/s, and not 1000 km/s, as in-
tuitively expected! Maxwell’s equations defy intuition, and the (STR), which
is entirely based on these equations is extremely counter-intuitive. Let us
summarize these observations:

Box 8.0.1. (Principle of Relativity) Fvery time you detect an electro-
magnetic wave, it moves at the rate of 300,000 km per second in vacuum,
regardless of the motion of its source or its detector. Speed of light in
vacuum is a universal constant.

An immediate consequence of the principle of relativity is the fact that time
is observer-dependent. As Einstein said “Time is something that is measured
by clocks.” So, let us look at the effect of motion on clocks. The clock best
suited for this investigation is the “arm” of the Michelson—Morley apparatus
shown in Figure 8.1. It consists of a source S of light, or electromagnetic
waves, and a mirror M. The distance between S and M is L. Therefore, it
takes light A7 = 2L/c to go from S to M and back. If we place a light
sensitive “ticker” at S, the clock will tick every Ay second. We call such
a clock a Michelson—Morley clock, or an MM clock, and ATk the proper
tick of the MM clock. Arick is the tick measured by an observer for whom
the clock is at rest, or for whom the beginning and the end of a tick occur at
the same location.

- - -

Figure 8.1: A Michelson—Morley clock. A “tick” of this clock occurs when the light
signal makes a round trip along the length L.
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8.1 Proper and Coordinate Time

An MM clock is placed on a train and observed by two observers, O (on the
ground) and O’ (on the train) moving to the right of O. Consider three events:
The emission of a light beam at S, its reflection at M, and its reception at
S. These three events constitute one tick. Let us denote them by FE;, Es,
and Ej3, respectively. How does O’ see the ticking of the clock? The clock
is sitting right beside her, and she observes the whole process of ticking as
the light going straight up and coming straight down. She concludes that her
clock’s ticks are Atijcx long.

Now, let us see how O perceives the succession of these three events. Since
the clock is moving to the right, the light signal that leaves S will reach M
only after M has moved to the right. Thus, to O, the events F; and E5 are
separated not only by a vertical distance, but also by a horizontal distance (see
Figure 8.2). Since the speed of light is the same for all observers, O concludes
that it takes light more than 2L/c to travel EyE2 and EsFE3. Therefore, he
concludes that the clock on the train must tick slower!

We can quantify the above statement by referring to the triangle Fy AF,
of Figure 8.2. Pythagoras’ theorem implies

(E\E)° = (B1A)” + (AB,)” .

Let the speed of the train be v and the light beam’s travel time from S to M
be dt according to O. Then Ey A = vét and E7 Fy = ¢dt with ¢ the (universal)
speed of light. Putting all of this in the above equation gives

(c6t)? = (vot)? + L? = 2(0t)* = v*(5t)* + L2, (8.1)
or
v? L? v? L?
(6t)* — 2 (6t)% = 2 = (6t)* <1 — c2> = 2
| ] = M w | | s—]
E,

El/ A E3

) 2 [ (G (G

Figure 8.2: A moving Michelson—-Morley clock. The path of light (represented by a
black dot) is not a vertical line but a slanted one due to the motion of M.

moving clocks
slow down.
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This yields
L?/c? L
/ ; , = 0t= /e .
L/ V1= /ey

Let us denote by Atk the duration of the light’s round trip as seen by O.
Then

(01)? =

2L/C o ATtick
V1I= (/)2 /1= (vfe)
In deriving this equation, we have tacitly assumed that motion does not affect
transverse lengths. Thus the length of the MM clock does not change because it
is perpendicular to the direction of motion. To see this, consider the distance
between two wheels of a train, and suppose that this distance shrinks!' due to
its motion as seen by a ground observer. This means that the wheels will fall
between the rails. On the other hand, the engineer of the train sees the rail
moving and concludes that the distance between the rails shrink; i.e., that the
wheels fall outside the rails. This contradicts the previous conclusion. Thus,
the length perpendicular to the direction of motion must not change.

Although Equation (8.2) is derived for a single tick, it really applies to all
time intervals, because any such interval is a multiple of a single tick. We now
rewrite Equation (8.2) without the subscript “tick,” realizing that At is the
proper time between any two events, i.e., the time interval between the two
events measured by a clock that is present at both events:

Aty = (8.2)

_ AT
V1= (v/c)*

AT can also be defined as the time measured by an observer for whom the two
events occur at the same spatial point. At, called the coordinate time, is
the time measured by another observer, moving relative to the first one with
speed v, for whom the two events occur at two different spatial points.

At (8.3)

8.2 Spacetime Distance

The most elegant way of relating an event’s space and time properties as
described by two observers is to use geometry. We start with the description
of the event itself. An event has a position and an instant of time. Therefore,
it can be represented by a set of four coordinates: three for position and
one for time. It is common to multiply the time ¢ by ¢ (to make a distance
out of it) and put it as the first coordinate. Thus in Cartesian coordinate
system, an event is described by (ct,z,y, z). Geometrically, we have added
the extra “dimension” of time to the three-dimensional space to create the
four-dimensional spacetime.

At the heart of any geometry is the distance between two nearby points,
and how it is written in terms of the coordinates of the points. Fuclidean

IThe same argument applies to the case where the distance expands.
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geometry started without coordinates, with the notion of the distance be-
tween two points being “evident.” In fact, we use the properties of Euclidean
distance (such as the Pythagoras’ theorem involving three distances corre-
sponding to the three sides of a right triangle) to show that the distance
between two points whose Cartesian coordinates differ by (Az, Ay, Az) is
V(Az)? + (Ay)? + (Az)2

In the case of the spacetime geometry, we have started with coordinates.
Now we have to find a distance formula in terms of the difference between
coordinates of two events. We get some clues from Euclidean distance as
expressed in terms of coordinates. The first clue is that distance is observer-
independent: If observer O uses his Cartesian coordinate system to label point
Py by (z1,11,21) and Py by (22, Y2, 22), and finds

(PiPy)o = Ar = /(22 — 1)> + (g2 — 11)? + (22 — 21)?,

and if observer O’ uses her Cartesian coordinate system to label point P; by
(@},y], 21) and Py by (x5, y5, 25), and finds

(PiPo)or = Ar' = \/(wh — )2 + (s — )% + (24 — 4)2,

then Ar’ = Ar. The second clue is that if P; and P, lie along a single axis of
an observer, then the distance is the (absolute value of the) difference between
the coordinates of P, and P».

Now consider two events E; and FEs, which occur at the same spatial
location according to O’, with F5 happening after Fy. This means that O’
(his clock) is present at both events, i.e., that Fq and Es lie along the time
axis of O, and that O is measuring the proper time interval between the
two events: A7 = t§, — ¢}. By the second clue above, cAT = ¢(t} — t}) is
the distance we are looking for (again we multiply by ¢ to make a distance
out of it). We introduce the notation As = ¢Ar and call As the spacetime
distance or the invariant interval between the two events.

Another observer O assigns spacetime coordinates (ct1,21,y1,21) to Ey
and (cto,x2,y2,22) to Ea. Now the spatial separation between E; and FEs
according to O is

V(@2 —21)2 + (y2 — y1)% + (22 — 21)2,

and since O’ is at F; when it happens and at Es when 4t happens, this
equation is precisely the distance that O’ travels in time t5 — t; with respect
to O. Therefore, the speed of O’ relative to O is

v — V(s —21)2 + (Y2 — y1)? + (22 — 21)2
to —t ’

or
o2 = (2 —x1)? + (y2 — Y1) + (22 — 21)?
(t2 —t1)? '
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Up to this point, we have not used any physics (except for the definition
of speed). Now comes the crucial final step. Equation (8.3) (which is a direct
result of Box 8.0.1) can now be used to find the expression of As in terms of

coordinate differences. Equation (8.3) implies that
AL — cAT _ As 7
VI= (/e /1-(v]e)?

or

As = cAt\/1 — (v/c)? = c(ty — t1)\/1 — v2/c?
\/02(t2 — t1)2 — U2(t2 — tl)z.
Substituting the expression for v? above, we get

AS = \/02(t2 — t1)2 — ({EQ — x1)2 — (y2 — y1)2 — (22 — 21)2.

We rewrite this important formula as

(As)? = (cAT)? = E(AL)? — (Ax)? — (Ay)? — (Az)2. (8.4)

Let’s emphasize the significance of this equation: If observer O uses his
Cartesian coordinate system to label event Ey by (ct1,21,y1,21) and Es by
(cta, 2, Y2, 22), and finds

(As)? =c(ta —t1)> — (z2 —21)® — (y2 — y1)® — (22 — 21)?,

and if observer O’ uses her Cartesian coordinate system to label event E; by
(cth, 2,91, 21) and Es by (cth, xh, yb, 22), and finds

(As")? = 2(th —11)* — (2h — 21)* = (vh — 91)* — (25 — 21)%,

then (As’)? = (As)?. Thus, although events are coordinatized differently by
different observers, the spacetime distance between two events is universal.
In contrast to Newtonian physics, neither the time interval nor the spatial
distance between two events is universal in relativity.

Example 8.2.1. Observer O spots a light beam (event F1) at (z1,y1,21) at time
t1. A little later he finds the beam (event E2) at (z2,y2, 22) at time ¢t2. What is the
spacetime interval for this light beam (i.e., for the two events E; and FEs)?

Since light travels from (z1,y1,21) to (z2,y2, 22) with speed ¢, we have

\/(I2 —21)2+ (y2 —91)2 + (22 — 21)2 = c(t2 — ).
Therefore,
(As)? = (ta —t1)* = (w2 —21)” = (y2 —11)” — (22 — 21)* = 0,

which holds for any light signal, as the two events above are quite general. Thus the
spacetime distance between two different events which can be connected by a light
signal is zero. This is in contrast to the Euclidean case where two different points
always have a nonzero distance between them. [ |
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8.3 Lorentz Transformation

Because of the intuitiveness of the concept of distance in Euclidean geometry,
it is not essential to know how the coordinates of a point in one coordinate
system (CS) are related to the coordinates of that same point in another
CS. This transformation was found long after the maturity of the Euclidean
geometry [see Section 6.1.3 and especially Equation (6.22) for a discussion of
the two-dimensional version of coordinate transformation], and it was based
entirely on the expression for the distance between two points in terms of the
coordinates of those points.

In spacetime geometry such a transformation is indispensable due to the
counter-intuitive properties of the invariant interval (see Example 8.2.1 above).
And while in Euclidean geometry, one can picture different coordinate systems
and how they relate to one another (see Figure 6.7, for example), spacetime
geometry does not readily allow such a direct pictorial representation without
some preliminary algebraic discussion.

Let r1 = (ct1,x1,y1,21) and ro = (ct2, x2,y2,22) be the spacetime “po-
sition vectors” of two events E; and FEs relative to a coordinate system O.
Construct the difference

Ar =1y — 11 = (cto — ct1, 22 — T1,Y2 — Y1, 22 — 21),

and define the square of the “length” of this vector to be (As)?. In fact,
this is generalized for any four-dimensional vector. But first, let’s introduce a
notation.

A spacetime vector has the form a = (ag,a1,a2,as), which is usually
called a four-vector or a 4-vector.? It is also denoted by (ag,a@) where
d = (a1, az2,a3) is the space part (or the 3-vector part) of the 4-vector. A pri-
mary example of a four-vector is r = (ct, z,y, z) = (ct, 7). The generalization
mentioned above defines the square of the length of a (or the inner product
of a with itself) as

ara=al—al—al—di=al—a-da=ad—|a*> (8.5)

Then it is easy (see Problem 8.1) to show that the inner product of any two
vectors must be given by

a-b= aobo - a1b1 - azbg — agbg = aob() —da- 5 (86)

In matrix form this can be written as

1 0 0 0 bo
0 -1 0 0 b

a.b:(ao a,  as ag) 0 0 -1 0 b; , (8.7)
0 0 0 -1 b3

?Note that the first component of a has zero as an index, and is called the time compo-
nent. This is common in relativity.

four-vectors
introduced
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or
1 0 0 0
~ 0 -1 0 0
a-b=anb where 7= o 0 -1 ol (8.8)

0o 0 0 -1

and a and b are the row and column vectors in Equation (8.7).

A linear transformation that leaves the inner product of Equation (8.8)—
and therefore the spacetime length As—invariant is called a Lorentz trans-
formation. By Equation (7.11), such a transformation A—which is a 4 x 4
matrix—satisfies

A = 1. (8.9)

The study of the general structure of Lorentz transformations is beyond
the scope of this book. Here we shall confine ourselves to the Lorentz trans-
formations in two dimensions, in which the third and fourth components of
vectors are ignored. This means that vectors are of the form a = (ag,a1),
b = (bg,b1), the inner product is of the form a - b = agbg — a1b1, and the

matrix n reduces to
(1 0
=10 -1)
In addition, the Lorentz transformations become 2 x 2 matrices.
a1 a2

acts on 2-vectors in O to give the corresponding 2-vectors in O’. Then A must
satisfy Equation (8.9) or

a1 a2\ (1 O ain a2 _ (1 O
(o )G S E o) =6 5) ew

which is equivalent to the following three equations [see (6.21) for a guide]:

Let A = (all au) be a two-dimensional Lorentz transformation that

a%l - (131 =1, ajiaiz — azazz =0, a%z - a§2 =1 (8.11)
As in the case of rotations (see Section 6.1.3), we can conclude that
2 2 2 2 2 2
(oo = 77, (12 = Q21, ayy = aj; — L. (8.12)

So, all parameters are once again given in terms of aj;.

To determine a1, consider the 2-vector (cAt, Ax), the difference between
the time and position of two events in O. This 2-vector is represented by
(cAt', Az’) in O', and, by the definition of the Lorentz transformations,

CAtl (a1 a2 cAt
(AQJ/) o <CL21 ao9 A$ ’ (813)

Now suppose that Az = 0, i.e., that the two events occur at the same location.
Then O is measuring the proper time, so that At = Ar. From Equation (8.13),
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we also have cAt’ = aj1¢At or At' = a;; Ar. Comparison with Equation (8.3)

yields
1

ap; = .
YV (/e
Introducing the two symbols 8 = v/c and v = 1/4/1 — (v/c)2, we obtain

1
=1.
V15
The rest of the matrix elements can now be found. The first equation in
(8.12) gives aga = £7. To choose the correct sign for ass, note that if O and
O’ are not moving relative to one another, the coordinates do not change.
Therefore A must be the unit matrix. So, ass = 1 when v = 0. This can
happen only if ass = +v. The second equation in (8.12) now gives a2 = a21;
and the third equation yields
1 32
2 2
12 =7 1— 32 1- 2
The ambiguity in the sign comes from the choice we have for the direction of
motion. We absorb this choice of sign in 3, and write

A= <7’Vﬁ ’Vf) . (8.15)

(8.14)

a1 =

=67 = ap = 6.

For the important case of spacetime “position” vector (ct, x), this yields

ct' =~ (ct + pz),
' =~(x + Bet). (8.16)

3 is positive (negative) when observer O—who uses (ct, z) for events—travels
in the positive (negative) direction of O’—who uses primed coordinates. Equa-
tion (8.16) displays the celebrated Lorentz transformations in two spacetime
dimensions.

Example 8.3.1. Emmy (observer O) is riding a train and she is standing in the
middle of one of the cars of length L at the two ends of which are two firecrackers that
explode simultaneously. Karl (observer O') is standing on the platform watching
Emmy go by with speed 3. Time zero for both coincides with the moment that Emmy
passes by Karl. Suppose that the simultaneous explosion of the two forecrackers
(according to Emmy) also takes place at ¢ = 0. We want to see how all this appears
to Karl.

Assume that Emmy and Karl are located at their respective origins. Let the front
firecracker be labeled as 1 and the back as 2. Then the front and back firecrackers
have coordinates (0, L/2) and (0, —L/2), respectively, in Emmy’s RF. Karl, on the
other hand, measures the coordinates of the firecrackers as

cty =yBL/2, z1 =~L/2 cty=~(—-BL/2), x5=~(—L/2)
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from Equation (8.16). This shows that, for Karl, the back firecracker occurs first.
In fact, it occurs before Emmy reaches him (at time ¢' = 0). The time difference
between the two events is

At =t] —ty =~yBL/c.

Take L to be 30 m. Then, for the time difference to be a mere one second, we must
have
B

3073 =3 x10° or =107,
3 V1 e
giving 8 = 0.999999999999995, awfully close to the speed of light!
On the other hand, if L is a typical interstellar distance of say 10 light years,

then
At
VB = 10

with At’ measured in years. For a time difference of one hour, we have v3 =
1.14 x 107°, yielding 8 = 1.14 x 1075, or v = 3425 m/s, an easily attainable
speed. m

Example 8.3.2. Observer O moves in the positive space direction of observer O’
at speed v (or B = v/c). A particle moves at speed (3, in the positive space direction
of O. What is 3, the speed of the particle relative to O'?

The definition of speed is distance between two events divided by time interval
between those events: spotting of the particle at a point in space and an instant in
time (first event), and spotting the particle at a nearby point a little later (second
event). For example, observer O assigns the coordinates (ct,z) to the first event
and (ct + cAt,z + Ax) to the second event, and concludes that the (dimensionless)
speed of the particle is 8, = Az/(cAt).

Similarly, observer O’ assigns the coordinates (ct’,z’) to the first event and
(ct' + cAt', 2’ + Az’) to the second event, and concludes that the speed of the
particle is 8, = Axz’/(cAt’), where Az’ and cAt’ are related to Az and cAt via the
Lorentz transformation. Using Equation (8.16), we find

Az’ y(Az + BeAt)

/o
by = At Ty (cAt + BAz)’

dividing the numerator and denominator by cAt, we get

By +

By = : 8.17

b= 15 s, (547

which is called the relativistic law of addition of velocities.

One can show that if 0 < 8, < 1 and 0 < 8 < 1, then 0 < 3, < 1. So, it is

impossible to add two velocities close to light speed and get a velocity larger than

light speed. Furthermore, if the particle happens to be a photon (or a light beam),
then 3, =1 and

r_1+8

b= 1457

verifying the universality of the speed of light, the starting point of relativity

theory! -

L
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In many situations, an observer in three dimensions moves along the x-
axis. Then, the y and z coordinates of events—being perpendicular to the
direction of motion—do not change. This suggests a slightly more general
Lorentz transformation than (8.16):

ct' = (ct + px),
' =~v(x + Bct),
y =1, (8.18)

l
zZ =z

If an object moves in the zy-plane of an observer O with a velocity whose
components are (vg,vy), then the same object moves in the z'y’-plane of
another observer O' with a velocity whose components are

o de’  ~(de+ fedt) vy + fe
Todt! y(dt+ Bdx/e) 1+ Pug/c]
dy’ dy vy
— = ) N 8.19
At ~y(dt+ Bdx/c) (1 + Bug/c) (8.19)

’Uy/ =
where (3 is the velocity of O relative to O’. In particular, if the object is light
and the angle it makes with the z-axis is «, then v, = ccosa, vy, = csina,
vy = ccosa’ and vy = csina/, and the equations above yield

cosal — cosa+ 3
1+ Bcosa
sino/ = o0 (8.20)

Now suppose that an observer O carries an EM radiation source which
radiates uniformly in all directions. If 3 is very close to 1, then (8.20) im-
plies that cosa’ — 1 (and of course, sina’ — 0), regardless of «. Thus,
an ultrarelativistic source of EM wave radiates (almost) only in the forward
direction.

8.4 Four-Velocity and Four-Momentum

In Newtonian mechanics velocity is defined as the derivative of the position
vector with respect to time. In terms of (Cartesian) coordinates, an observer
O locates the object in motion by assigning it the coordinates (x,y, z), and
differentiates these coordinates with respect to (the universal) time ¢ to get
the velocity of the object: ¥ = (&, 7, 2).

In relativity, the “position vector” is r = (ct, x,y, z) = (ct,7), and there is
no universal time. However, each moving object has a proper time (measured
by a clock carried by the object), which s universal in the sense that all
observers measure it to be the same [see Equation (8.4) and the comments

247

an ultrarelativistic
source radiates
only in the
forward direction.



248

4-velocity has
constant length

4-velocity is
perpendicular to
4-acceleration

Vectors in Relativity

after it]. Therefore, it is natural to define the dimensionless four-velocity as

dr ldr (dt 1dr 1dy 1dz) B (1 ARy z) o (1,7/0)
ds cdr \dr'cdr’cdr’ cdr) reete) T T ’
(8.21)
where a dot represents differentiation with respect to the coordinate time t,
and we used dt = yd7 [see Equation (8.3)].
An interesting property of the four-velocity is that its spacetime length is
one:

uu=uj—ui—uj—ui=7*[1—(F/c) (F/c)) =+ (1 —v*/c?) =1, (8.22)

u=

from the definition of y in (8.14). The four-velocity of an object in the object’s
rest frame is (1, 0,0, 0), i.e., it is a unit vector in the time direction. If we define
the four-acceleration as the rate of change of the four-velocity with respect
to proper time, then the inner product of the 4-velocity and the 4-acceleration
of any object is zero, i.e., because of (8.22), the 4-acceleration is n-orthogonal
to the 4-velocity. Summarizing these two properties of the 4-velocity, we get

u-u=1, u-a=0. (8.23)

Example 8.4.1. A particle is moving in the two-dimentional spacetime of an
inertial frame on a path given parametrically as

t(o) = bsinh(o), (o) = cbcosh(o),
where o is a dimensionless parameter. The differential of the particle’s proper time
is
(cdr)? = (cdt)® — (dz)? = (cb)? cosh®(0) (do)? — (cb)? sinh? (o) (do)?

= (cb)? (do)?® = do = Z1)d7'7

and o = 7/b. Thus, as a function of the proper time, the path becomes
t(7) = bsinh(7/b), x(7) = cbcosh(7/b).

The components of the (dimensionless) 4-velocity are

t d .
uo= = cosh(7/b), w1 = cdﬁi' = sinh(7/b),
which satisfy u2 — u? = 1 as they should.
The acceleration of the particle has components
ap = a;i) = ll)sinh(T/b), a1 = CZ:} = 2cosh(7'/b).

It is easily verified that a-u = 0 and that

a.a_ag_af__(l)z
1)

So, the particle has a uniform acceleration of 1/b. The negative sign in the last
equation is due to the fact that the magnitude of the acceleration has to be defined
as —a-a = d° — a2, with the space part appearing as positive (so that when ao is
absent, we get back the Newtonian acceleration). u
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The (kinematic) 4-velocity leads to the (dynamic) 4-momentum: just mul-
tiply u by mc—the ¢ is to give dimension to the 4-velocity. In a reference
frame in which an object of mass m moves with velocity ¥, the 4-momentum
p is given by

P = (Po, P1,P2,p3) = (po, P) = meu = yme (1,7/c) = (yme,ym¥).  (8.24)
The space part of the 4-momentum is

V1= (v/e)*

and gives ordinary Newtonian momentum when |0] << ¢, because in that
limit, v & 1. Therefore, we call p the relativistic momentum.

What about pp? How are we to interpret that? If we set v ~ 1, we get
po = me which does not correspond to any Newtonian quantity.®> However, if
we make the next best approximation to v (see Example 10.2.1 and Problem
10.8), i.e.,

—

p=ymv= (8.25)

1

o V1= (v/e)? ~ 15 (/e)?,

then

po =mey =~ me (1+ %vz/cz) = poc~ mc? + émUQ.

The second term gives us the clue that poc must be the relativistic energy
E. So we write

mc2

V1= (v/e)?

An important special case of this is the 4-momentum p of a particle in its rest
frame:

—»
3

p = (po,P) = (E/c,p) = (yme,ym¥), E =~ymc* = (8.26)

p = (me, 6) = (mc,0,0,0). (8.27)

The definition of the relativistic energy allows objects to have rest energy:
when v = 0, we get
E =mdc?, (8.28)

which states the equivalence of mass and energy and allows their conversion
into one another.

The invariance of the length of a 4-vector tells us that p - p is a quantity
that is independent of observers. From Equation (8.26), we get

p-p=(E/c)? — |2 = ?*m2 — 4*m?0? = v2m23(1 — v?/c?) = m2e,
which we rewrite for future reference
p-p=m?c? or E?—|p*c® =m2ch (8.29)
30ne may interpret mc as the momentum of an object moving at the speed of light.

However, while objects moving at light speed are possible in Newtonian physics, relativity
does not allow a massive object to go at the speed of light [see (8.25)].
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Thus, although different observers measure different values for the energy
and 3-momentum of an object, when they subtract the square of their value
of momentum (times ¢) from their corresponding value of energy squared, all
get the same numerical value, namely the square of the mass of the object
(time c*).

Equation (8.29) allows particles with zero mass to have energy and mo-
mentum. For such particles,

E?—|pl’c?=0 or FE=|plc (8.30)

Since p/E = /c? [see Equation (8.26)], we conclude from (8.29) and (8.30)
that

Box 8.4.1. A particle is massless if and only if it moves at light speed.

The particle (quantum) of electromagnetic waves is photon. It travels at the
speed of light (obviously!). Therefore, it must be massless.

Example 8.4.2. A particle has 4-momentum p relative to an observer O" whose 4-
velocity is u’. In the rest frame of this observer u’ = (1,0,0,0), and if p = (E'/c, p”)
in this frame, then

p-u=FE/c

Now consider another observer O with respect to whom the 4-momentum of the
particle is p = (E/c, ') and the 4-velocity of O’ is u’ = (v,v7/c). In the frame of O,

p-u =yE/c—p-i/c
The invariance of the inner product now gives
E' =~(E —p-9). (8.31)

In the special case in which the particle is at rest with respect to O, p = 0 and
E = mc?. This leads to

E' =~ymc® = me
V1= (v/e)?
which is the expected expression for the relativistic energy of a particle moving with
velocity @ relative to O’. "]

8.4.1 Relativistic Collisions

Conservation of energy and momentum in relativistic collisions is stated suc-
cinctly in terms of the total four-momenta before and after: pPef = paft,
where in each case, p;, is the sum of the 4-momenta of all particles involved.

As a first example, consider two particles that collide and form a single
third particle. Let the masses of the first two particles be m; and mo. We can

immediately find the mass M of the third particle. Before doing so, we set



8.4 Four-Velocity and Four-Momentum

¢ =1 to avoid the cluttering of calculations. This is common in high energy
physics, in which energy, momentum, and mass are all measured in the same
unit (usually electron volt, eV). If desired, we can easily restore the factors of
c at the end by a simple dimensional analysis. With this convention, Equation
(8.29) becomes p - p = m?.

The conservation of 4-momentum in the present situation is p; + py = P,
where P is the four-momentum of the final particle. Since this is a vector
equation, all components must equal. In particulare, separating the time and

the space parts, we get

po1 +po2=F, or Ei+FE;=FL,
P+ pa=P, (8.32)

which are the conservation of energy and momentum.
Squaring both sides of p; + p, = P gives

(py +p2) - (py +p2) =P P,

or
P1 P1tP2 P2 +2p;-p, =P P,
or
mi +m3 + 2p; - py = M2 (8.33)

Because of the invariance of the dot product, this equation holds in any in-
ertial frame.

Let us evaluate (8.33) in the rest frame of the second particle, where
P, = (m2,0) by (8.27), and the energy of the first particle is assumed to be
El. Then

P1 - Py = (E1, 1) - (m2,0) = Eymy,

and Equation (8.33) immediately gives the mass of the final particle:
M? =m? +m3+2maoEr, or  M?=m?+m3+2meE/c®,  (8.34)

where the second equation restores the necessary powers of c¢. Note how the
initial energy E; on the right-hand side has turned into (part of) the final mass
M on the left-hand side. This is how large accelerators create new particles
out of the energy of collision.

We can also find the momentum of the final particle from the second
equation in (8.32). This easily gives P=p, indicating that, in the rest frame
of particle 2, the final particle moves in the initial direction of particle 1. The
magnitude of P can be calculated in terms of energies and masses:

1P| = || = /B2 - m3. (8.35)
The first equation in (8.32) gives the energy of the final particle

E = FE{ + ms. (836)

251



252

Compton
scattering

Vectors in Relativity

Combining Equations (8.35) and (8.36), we can obtain the speed of the final
particle:

Bl _ VB -
E Ei+ms
A more common collision has two particles initially and two finally. So

the conservation of 4-momentum becomes p; + p, = ps + P4- Separating the
time and the space parts yields the conservation of energy and momentum:

V= (8.37)

Ey+ Ey = B3+ Ey,
p1+ P2 = P3 + pa. (8.38)

Squaring both sides of p; + py, = ps + P, gives
m? +m3 +2p, - Py = m3 +m’ +2p; - Pa, (8.39)

which holds in any inertial frame. Evaluating this equation in the rest frame
of the second particle, yields

m3 +m3 + 2moFy = m3 +m3 + 2(EsEy — Ps - Pa). (8.40)

In this frame, Equation (8.38) becomes Fy +mq = E3 + E; and p) = p3 + Da.
Solving for F4 and py from these equations and substituting the results in
(8.40) yields (after some algebra and using E3 — |p3|? = m3)

m3 +m3 + 2moEy = m3 —m3 + 2E3(Ey +ma) — 27 - P,
or
mi +m3 + 2maFy = mj — m3 + 2E3(E1 +ma) — 2|pi||ps] cosb13,  (8.41)

where 613 is the scattering angle of the third particle. Once the energy E;
of the initial incident particle is known, Equation (8.41) gives the scattering
angle as a function of the energy of the third particle (|py| and |p5] are related
to Fy and Es, respectively).

Example 8.4.3. The particle nature of light, which had been proposed by Einstein
in his explanation of the photoelectric effect, was demonstrated by Compton in what
is now called the Compton scattering. In this scattering, a photon of energy E
is scattered off a stationary electron of mass m.. The scattered photon is detected
at an angle 6 from the direction of the incident photon. What is the change in the
wavelength of the photon as a function of 67

In (8.41), let 1 denote the incident photon, 2 the stationary electron, 3 the
scattered photon, and 4 the scattered electron. Let E’ denote the energy of the
scatterd photon, then, with m1 = ms = 0, Equation (8.41) becomes

mg +2m.E = mg + 2E'(E +me) — 2FEFE' cosé,

or
meE = E'(E+m.) — EE cosf = m.(E—E') = EE'(1 — cos?).
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Restoring the factors of ¢ and noting that E = hc/A, we obtain

5 (he  he he he
. _ = 1-— 0),
nee (5 =50) = (%) () 0 =m0
which can be simplified to

A=)\ —-)\= h 1—cosf) = Ac(1 —cosb), 8.42
m

e

where A\c = h/mec is called the Compton wavelength of the electron. By mea-
suring the difference between the wavelengths of scattered and incident photons,
Compton could verify Equation (8.42) and demonstrate that light had particle
property. [ ]

8.4.2 Second Law of Motion

The Newtonian mechanics defines force as the rate of change of momentum.
We generalize this to relativity and define

f= gr = Mgy =M (8.43)

where 7 is the proper time of the moving object with mass m, four-velocity u,
and four-momentum p. Let us explore the meaning of the components of f.
In a particular inertial frame, we assume that Newton’s second law holds:

dp

=F 8.44
& , (8.44)

where p'is the space part of the 4-momentum. The space part of f can now

be written as . .
» dp  dpdt 7

1= = arar =7
The time part of f is a little trickier. First note that
_dpp  1dE
dr cdr’
Next differentiate (8.29) with respect to 7 to obtain E(dE/dr) = ¢2p-(dp/dr).
Finally use p/E = #/c? to arrive at

(8.45)

fo

1dE 125 df 1 _ = o =
— — . - NG F = B
fo= o e E g REARE

where = #/c. Thus,
£=(fo,f) = (15 F,7F). (8.46)
The fact that fy = *yﬁ . F could also be obtained by using f- u = 0, which

is a result of Equation (8.43) and the orthogonality of the 4-velocity and
4-acceleration (see Problem 8.13).
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Example 8.4.4. Let a constant force act on a particle of mass m in some inertial
frame. What is the speed of the particle at time ¢ if it starts from rest?

Equation (8.44) can be trivially integrated to give 5 = Ft. Since the force is
constant, the motion takes place in one dimension. So, we can ignore the vector
sign and (remembering that 8 = v/c) write

myv=Ft, or myB= Ft7 or A = Ft

c \/ 1—-82 mc
Squaring both sides and solving for 8 gives

_ Ft/mc or  v— Ft/m
V14 (Ft/me)?’ V14 (Ft/me)?

Note that for large ¢ (i.e., when F't >> mc), f ~ 1 or v ~ c¢. However, the particle
can never attain the speed of light no matter how long we wait. On the other hand,
if Ft << mec, then v = (F/m)t, which is the Newtonian speed of a particle moving
with constant acceleration.

It is interesting to consider a particle having a constant acceleration of 10 m/s?
(approximately Earth’s gravitational acceleration). How long does it take to attain a
speed of 0.999¢? Over 21 years! (See Problem 8.14). On the other hand, Newtonian
mechanics requires under one year to achieve the same speed! ]

B (8.47)

8.5 Problems

8.1. Show that Equation (8.6) follows from Equation (8.5). Hint: Consider
the three vectors a, b, and ¢ = a + c.

8.2. Multiply the matrices in Equation (8.10) to obtain the three equations
of (8.11). Solve these equations to find all matrix elements in terms of a;;.

8.3. In Example 8.3.1, Emmy receives the two signals from the explosions at
the same time.

(a) Show that this time is L/(2c) according to Emmy, and vL/(2¢) according
to Karl.

(b) Let Ty and Tj denote the times that Karl receives the signal from the
front and back firecrackers, respectively. Show that

o L 18 L 15
7 oc\l1=p" "2 2\ 145

(¢) How is AT’ = T} — T} related to At calculated in Example 8.3.17 Discuss
your answer.

8.4. Show that the relativistic law of addition of velocities (8.17) prohibits
the sum of two large velocities to be larger than the speed of light. Hint:
Multiply both sides of 3, < 1 by 1 — 8.

8.5. Show that the 4-acceleration is n-orthogonal to the 4-velocity.



8.5 Problems

8.6. Provide the details of the proof of the statement: a particle is massless
if and only if it moves at light speed.

8.7. Apply (8.31) to a photon moving in the z-direction and use |p] = E/c

to show that
1-p
E = E.
\/1 +

Now use E = he/) to find a formula for the relativistic Doppler shift.

8.8. Two identical particles of mass m approach each other along a straight
line with speed v = (B¢ as measured in the lab frame. Show that the energy
of one particle as measured in the rest frame of the other is

1+ﬂ2m62
11—

8.9. A particle of mass m and relativistic energy 4mc? collides with another
stationary particle of mass 2m and sticks to it. What is the mass of the
resulting composite particle.

8.10. An electron of kinetic energy 1 GeV (109 eV) strikes a positron (anti-
electron) at rest and the two particles annihilate each other and produce two
photons, one moving in the forward direction (the direction that electron had
before collision) and the other in the backward direction. What are the ener-
gies of the two photons. The mass (times ¢?) of electron and positron are the
same and equal to 0.511 MeV (106 eV).

8.11. A particle of mass m and energy E collides with an identical particle
at rest. The collision results in the formation of a single particle. Show that
the mass and the speed of the formed particle are, respectively, \/ 2m(E + m)

and \/(E —m)/(E +m), assuming that ¢ = 1.

8.12. A photon of energy E is absorbed by a stationary nucleus of mass m.
The collision results in an excitation of the nucleus. Show that the mass and
the speed of the excited nucleus are, respectively, \/m(2F +m) and E/(F +
m), assuming that ¢ = 1.

8.13. Use Equations (8.21), (8.43), (8.45), and the orthogonality of the 4-
velocity and 4-acceleration to show that fo =0 - F.

8.14. How long does it take a particle to attain a speed of 0.999¢, if its
acceleration is 10 m/s?? What is the answer based on Newtonian mechanics?
How do the answers change if the ultimate speed of the particle is 0.99999¢?
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Chapter 9

Infinite Series

Physics is an exact science of approximation. Although this statement sounds
like an oximoron, it does summarize the nature of physics. All the laws we deal
with in physics are mathematical laws, and as such, they are exact. However,
once we try to apply them to Nature, they become only approximations.
Therefore, methods of approximation play a central role in physics. One such
method is infinite series which we study in this chapter.

9.1 Infinite Sequences

An infinite sequence is an association between the set of natural numbers
(often zero is also included) and the real numbers, so that for every natural
number k there is a real number si. Instead of the association, one calls the
collection of real numbers the infinite sequence. Two common notations for
a sequence are an indicated list, and enclosure in a pair of braces, as given
below:
{s1,82,. . Sky o} ={Sk ey -

Instead of k, one can use any other symbol usually used for natural numbers
such as i, j, n, m, etc. We call s,, the nth term of the sequence.

In practice, elements of a sequence are given by a rule or formula. The
following are examples of sequences:

U S L A AR e\
274787"' - 27’L n:17 ) 2 ) 3 PR - k )
k=1
11 11~ 1 23 L
L, oy insep =2, JS = b=~ } .
I L T RR PIar b B (o i) B

(9.1)

An important sequence is the sequence of partial sums in which each
term is a sum. Examples of such sequences are the following:

infinite sequence

sequence of partial
sums



260

convention:
0'=1.

convergence and
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1 1 1 1 11
1,1 1 1,1 1
{7 +27 +2+47 }7 {7 +27 +2+37 }7
1 11 1
{1,1+23,1+23+33,...}, {1,1+1,1+1+2!,...}.

The nth term of the sequences above are, respectively,

B

1 1 1 LB |
n=1 = ,
s oyt Tt g 22

k=

1 1 1 "1
n=1 = ’
s to gt E

11 1 &
e =>

1 1 "1
8":1+1+2!+"'+n!zzk!’
k=0

so that the sequences can be written, respectively, as

PIRA MR SH SR 9% BRD S IS
n=0 n=1 ne1 k=0 n=0

k=0 i=1 j=1

In the last sequence, we have used the usual definition, 0! = 1. A sequence is
said to converge to the number s or to have limit s if for every positive (usu-
ally very small) real number e there exists a (usually large) natural number
N such that |s, — s| < € whenever n > N. We then write

lim s, = lim s, = lim sg = lim sy = s. (9.3)
n— o0 V—00 &— 00 Q—o0

Note the freedom of choice in using the symbol of the limit. A sequence that
does not converge is said to diverge. The first three sequences in Equation
(9.1) are convergent and their limits are

1 n
lim —0,  am (MY e wm (L) =o
n—oo \ 21 n—00 n n—oo \ n3

The last sequence diverges because there is no single number to which the
terms get closer and closer.

There are many ways that a sequence can converge to its limit. For in-
stance, the terms s, may steadily increase toward s after some large integer
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A B
@ o R
A S 83 S5 S Sy S B
®) 1 |-
A S 2 S3 84 S5 S B
© | W | |-
S S5 Sy S3 S) S
@ — | -
S1 S5 S$5 A M S5 B
© | ——
S5 S| 83 Ss Sy
® | | H——t
Sy S| S5S3  Sg $7 84 Sg

Figure 9.1: Types of sequences and modes of their convergence: (a) convergent, (b)
convergent monotone increasing, (c) convergent monotone decreasing, (d) divergent
monotone increasing, (e) divergent bounded, (f) divergent unbounded.

N, so that for all n > N, s, < Spy1 < Spp2 < Spgg < - L In this case
we say that the sequence is monotone increasing. If the terms s, steadily
decrease toward s after some large integer IV, the sequence is called mono-
tone decreasing. A sequence may bounce back and forth on either side of
its limit, getting closer and closer to it. A sequence is called bounded if there
exist two numbers A and B such that

A<s,<B for all n.

A sequence may be bounded but divergent. Various forms of convergence and
divergence are depicted in Figure 9.1.

A sequence may have an upper and/or a lower limit. The upper limit is
a number s such that there are infinitely many n’s with the property that s,
is very close to s if n is large enough, and there is no other number larger
than s with the same property. Similarly, the lower limit is a number s such
that there are infinitely many n’s with the property that s, is very close to
s if n is large enough, and there is no other number smaller than s with the
same property. The last sequence of Equation (9.1) has an upper limit of 1
and a lower limit of —1. It is intuitively obvious that a sequence converges if
and only if its upper and lower limits are finite and equal. For instance, the
sequence {(—1)"/n}5% ; converges to the single limit 0 after bouncing left and
right of it infinitely many times.

One can decide whether a sequence converges or not without knowing its
limit:

We often use the loose phrase: “For large enough n, ....” The precise statement would
be: There exists an N such that for allm > N, ....
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monotone
increasing,
monotone
decreasing, and
bounded
sequences

Cauchy criterion



262

dummy
summation index
can be any symbol
you want it to be!

Infinite Series

Box 9.1.1. (Cauchy Criterion). The sequence {s,}52; converges if
the difference s, — s, approaches zero as both m and n approach infinity.

We can add, subtract, multiply, and divide two convergent sequences term
by term and obtain a new sequence. The limit of the new sequence is obtained
by the corresponding operation of the limits. Thus, if

lim z, =z, lim y, =y,
n—oo

n—oo

then

lim (z, +y,) =cty, lim(x, y,) =z -y, lim xn:x’

provided, of course, that y # 0 when it is in the denominator.

9.2 Summations

We have been using summation signs on a number of occasions, and we shall
be making heavy use of them in this chapter as well. It is appropriate at
this point to study some of the properties associated with such sums. Every
summation has a dummy index which has a lower limit, usually written
under the summation symbol ), and an upper limit, usually written
above it. The limits are always fixed, but the dummy index can be any
symbol one wishes to use except the symbols used in the expression being
summed. Therefore, all the following sums are identical:

N
Z Z apa® Z anx Z agr® Z aga® (9.4)

It is not a good idea, however, to use a or x as the dummy index for the
summation above!

When adding or subtracting sums of equal length, it is better to use the
same symbol for the dummy index of the sum:

N N N N
Zai + Z bo = Z(ai +b;) = Z(ao +bo) = Z(ak + by).
i=1 0=1 i=1

However,

Box 9.2.1. When multiplying two sums (not necessarily of equal length),
it is essential to choose two different dummy indices for the two sums.
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Thus, to multiply Zfil a; by Zi\il b;, one writes

N M N M
aiij :ZZalbj

i=1  j=1 i=1 j=1

Failure to obey this simple rule can lead to catastrophe. For example, one
may end up with N a; 37, b = SN STM aib;, which is a sum of terms
of the form a1b; + asbs + - - -, excluding terms such as a1bs or agbs, etc.

The freedom of choice for the symbol of dummy index can be used to ma-
nipulate sums and get results very quickly. As an example, suppose that {a;; }
is a set of (doubly indexed) numbers which are symmetric under interchange
of their indices, i.e., a;; = aj;. Similarly, suppose that b;; are antisymmet-
ric under interchange of their indices, i.e., b;; = —bj;. Furthermore, assume
that ¢ and j have the lower limit of 1 and the upper limit of n. What is
> ey > j—y @ijbi;? Call this sum S. Since the choice of the dummy symbol
is irrelevant, we have

§= Z Z aijbij = Z Z Gapbap = — Z Z agabga, (9.5)
i=1j=1

a=18=1 a=1p=1

where we used the symmetry of a;; and the antisymmetry of b;;. Since the
order of summation is irrelevant, we can write Sas S = — 35| >0 agabga-
Once again, change the dummy symbols: Choose i for 8 and j for . Then
Equation (9.5) becomes

S:—iiaijszz—S = 25=0 = S=0.

i=1 j=1

As another illustration, suppose we want to multiply Z?io a;t’ and Z?;O bit?,

and express the coefficient of a typical power of ¢ in the product in terms of
a; and b;. Call the product P. Then

M N M N
P= Z aiti Z bjtj = Z Z aibth_j.
i=0 7=0

i=0 j=0

We need to use a single symbol for the power of ¢ in the double sum. So, let
a =i+ j. Our goal is to write P = > ¢ot®, find ¢, in terms of a; and b;,
and determine the lower and upper limits of the summation on . The latter
is easy: « has a lower limit of 0 (when both 7 and j are zero), and an upper
limit of M + N.

For the second dummy index we choose one of the original indices, say i.
The limits of ¢ cannot be the original limits, because ¢ is now mixed up with
« and j through j = a—i. Because of the original bounds of ¢ and j, we have
0<i< M as well as

0<a—1<N or —a<—-1<N-«a or «a>i>«a—N.
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Since i is greater than both 0 and a— N, it must be greater than the maximum
of the two: ¢ > max(0,ac — N). This means that the lower limit of the i-
summation is max(0,« — N). Similarly, since 4 is smaller than both M and
«, it must be smaller than the minimum of the two: ¢ < min(M, o), making
the upper limit of the i-summation min(M, «). We therefore have

M+N  min(M,a) M+N min(M,a)
Z Z aiba_ito‘ = Z Z aiba_i ta. (96)
a=0 j=max(0,a—N) a=0 \i=max(0,a—N)
~ ~
=ca

Example 9.2.1. As further practice in working with the summation symbol, we
show that the torque on a collection of particles is caused by external forces only.
The torques due to the internal forces add up to zero. We have already illustrated
this for three particles in Example 1.3.5. Here, we generalize the result to any
number of particles.

We use the second formula in Equation (1.31) and separate the forces

T = ZrkXkazrkX F(CXE)—FZFM

i#k
p(exct) p(int)
-~ ~ -~ ~
N N
t
:Zrk X F](Cex)—‘rzzrk X Fpri.
k=1 k=1 izk

We need to show that the double sum is zero. To do so, we break the inner sum
into two parts, ¢ > k and 7 < k. This yields

N N N
T(int)E ZrkXFki: Z rp X Fri + Z rr X Fr

ik=1 ik=1 i k=1
i#k i>k i<k
N N
= E I‘kXFki— E I‘kXFik,
ik=1 ik=1
i>k i<k
because, by the third law of motion, F;x = —F;. Now, in the second sum, change

the dummy indices twice:

N N
T(int) = Z rr X Fr; — Z ra X Fﬁa

i k=1 a,B=1
i>k a>f3
N N N
= E T XFM— E Tr; XFki: E (I‘k—l‘i) XFki.
i k=1 ik=1 ik=1
i>k i>k i>k

As in Example 1.3.5, we assume that Fy; and ry —r; lie along the same line in which
case the cross products in the sum are all zero. m
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In the sequel, we shall have many occasions to use summations and ma-
nipulate them in ways similar to above. The reader is urged to go through
such manipulations with great care and diligence. The skill of summation
techniques is acquired only through such diligent pursuit.

9.2.1 Mathematical Induction

Many a time it is desirable to make a mathematical statement that is true
for all natural numbers. For example, we may want to establish a formula
involving an integer parameter that will hold for all positive integers. One
encounters this situation when, after experimenting with the first few positive
integers, one recognizes a pattern and discovers a formula, and wants to make
sure that the formula holds for all natural numbers. For this purpose, one
uses mathematical induction. The essence of mathematical induction is
stated in

Box 9.2.2. (Mathematical Induction). Suppose that there is asso-
ciated with a natural number (positive integer) n o statement S,. Then
Sy is true for every positive integer provided the following two conditions
hold:

1. Sy is true.

2. If Sy, is true for some given positive integer m, then S,,+1 is also
true.

We illustrate the use of mathematical induction by proving the binomial
theorem:

m_m m mfkk_m m! m—kpk

(a+0) _Z(k>a b _Zk!(m—k)!a b
k=0 k=0

(m—

1
o1 )am*2b2 +omab™ 0™ (9.7)

=a™ +ma™ b+ m

where we have used the shorthand notation

m m)!
i = m— B 9.
() = b sy %

The mathematical statement S,,, is Equation (9.7). We note that S is trivially
true: (a + b)' = a + b. Now we assume that S, is true and show that S, 1
is also true. This means starting with Equation (9.7) and showing that

m—+1
(@+b)mt =" (m: 1) a™ Rk,

k=0
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Then the induction principle ensures that the statement (equation) holds for
all positive integers.
Multiply both sides of Equation (9.7) by a + b to obtain

(a + b)erl _ i <T]:’) am7k+1bk + i (TZ) amfkkarl.
k=0 k=0

Now separate the k& = 0 term from the first sum and the £k = m term from
the second sum:

m m—1
m m m m— m m— m
(a+b)"*' =a +1+Z(k)a k+1b’“+2(k>a FpktL
k=1 k=0

~ -
let k = j — 1 in this sum

_ o m+l -~ (m m—k+1pk - m m—j+1pi 4 pm+1
a +Z(k) +§<j_1)a Ly

The second sum in the last line involves j. Since this is a dummy index, we
can substitute any symbol we please. The choice k is especially useful because
then we can unite the two summations. This gives

(CL+ b)erl _ CLerl + Z { <TIZ’) + (kTIL1> } amkarlbk + berl.
k=1

If we now use
m—+1 _(m n m
k T\ k k—1

which the reader can easily verify, we finally obtain

% 1
(@+b)" " =a™ 4> (m;—
k=1

m—+1
- Z (m+ l)am_k+lbk

k=0

)akarlbk + bm+1

Mathematical induction is also used in defining quantities involving inte-
gers. Such definitions are called inductive definitions. For example, induc-

tive definition is used in defining powers: a' = a and a™ = a™ la.

9.3 Infinite Series

An infinite series is an indicated sum of the members of a sequence {a},- ;.
This sum is written as

o0 o0 o0 o0
a1+a2+a3+---EZakEZajEZanEZa&,
k=1 j=1 n=1 =1
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where we have exploited the freedom of choice in using the dummy index as
emphasized in the previous section.

Box 9.3.1. Associated with an infinite series is the sequence of partial
sums {Sn}zozl with S, = a1 +as+---+a, = 22:1 ar. A series is con-
vergent (divergent) if its associated sequence of partial sums converges
(diverges).

For a convergent series the nth member of the sequence of partial sums will
be a good approximation to the series if n is large enough. This is a simple
but important property of the series that is very useful in practice. It should
be clear that the convergence property of a series is not affected by changing
a finite number of terms in the series. Convergent series can be added or
multiplied by a constant to obtain new convergent series. In other words, if
S jan=Aand Y " b, = B, then

ian:l:b =A+B, rian:rA,

for any real number 7.

9.3.1 Tests for Convergence

When adding, subtracting, or multiplying finite sums, no problem occurs
because these operations are all well defined for a finite number of terms.
However, when adding an infinite number of terms, no operation on the infinite
sum will be defined unless the series converges. It is therefore important to
have criteria to test whether a series converges or not. We list various tests
which are helpful in determining whether an infinite series is convergent or
not.

The nth Term Test

If lim,, o a,, # 0, then Y7 | a,, diverges. This is easily shown by looking at
the difference S,, — S, _1 and noting that it is simply a,,, and that if the series
converges, then this difference must approach zero by the Cauchy criterion.
Thus none of the following series converges:

= n = p k=1 > = m?—10
;n+1’ ;(_1) 5k—1 ;(_1)3’ mZ:l8m2+1'

On the other hand, the series

o0

n = 1 =
;nz—l—l’ Z(_l)kk’ Z
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may or may not converge: The approach of a, to zero does not guarantee
the convergence of the series. In fact, the first and third of the series above
diverge while the second and last converge.

Box 9.3.2. Do not confuse the convergence of an infinite series with the
convergence of its nth term. If the nth term converges to anything but
zero, the series will not converge!

Absolute Convergence

If 77 | |an| converges, so does Y | a,,. The series is then said to be abso-
lutely convergent. For example, the series > 7o (—1)¥ /2% converges because
> re, 1/2% converges. However, although the series > p-; 1/k can be shown
to diverge, Y p-,(—1)*/k is known to converge.

Comparison Test

If lan| < b, for large enough values of n and )~ | b, converges, then > >~ | a,
is absolutely convergent and > 7 a, < Y 2 b,. On the other hand, if
an > b, > 0 for large values of n and 2211 b,, diverges, then so does Z;;O:l Ay,-

Integral Test

This is probably the most powerful test of convergence for infinite series.
Assume that lim, .. a, = 0, so that the series is at least a candidate for
convergence. Now find a function f which expresses a,, i.e., such that f(n) =
an, and assume that f(n) decreases monotonically for large values of n. Then

Theorem 9.3.1. The series > -, a, converges if and only if the integral
fcoo f(t)dt exists and is finite for some real number ¢ > 1.

To see this, refer to Figure 9.2 and suppose that ¢ lies between two con-
secutive positive integers m and m + 1. Since the convergence or divergence
of a series is not affected by the removal of a finite number of terms of the
series, we are allowed to consider either the series Y ;- aj or > ;- 41 Ok
Figure 9.2(a) compares the area under the curve f(¢) with the shaded area
which is the sum of the areas of an infinite number of rectangles each of height
f(k) = ax for some positive integer k larger than (or equal to) m + 1. The
width of all rectangles is unity. The shaded area A is therefore

A= i f(k)AtZ i ap -1 = i ag.

N
k=m+1 :\a’k k=m+1 k=m+1

It is clear from Figure 9.2(a) that

A</Oof(t)dt = i ak</oof(t)dt.

k=m-+1
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JO s

/&t=m+l
= t=m t=c
t=m 1=c

(a) (b)

Figure 9.2: The area under the curve (a) bounds, and (b) is bounded by, the infinite
sum obtained from the series by removing a finite number of terms. This finite number
of terms is the first m terms for (a) and the first m — 1 terms for (b).

Similarly, Figure 9.2(b) shows that > .- ay is larger than the area under the
curve. We thus can write

Z ak</oof(t)dt< Zak.
¢ k=m

k=m-+1

Hence, if the integral is finite > o 41 @k (being smaller than the integral)
is also finite and the series converges. If, on the other hand, the integral is
infinite then >"77 ai (being larger than the integral) diverges.

The integral test leads directly to the observation that the Riemann zeta

function, also called the harmonic series of order p defined by Riemann zeta
function or
o0 . .
1 1 1 harmonic series of
C(p)Eka:1+2p+3p+'” (9-9) order p
k=1

converges for p > 1 and diverges for p < 1. In particular,

=1 1 1
CW=D =l +
k=1

called simply the harmonic series, diverges. harmonic series

Ratio Test

Consider the series Y7 | a,. If a,, # 0 for large enough n and

Ap+1
Qan,

lim =R,

n—oo

then the series is absolutely convergent if R < 1 and is divergent if R > 1.
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The terms that we choose for the ratio test need not be consecutive. To

see this, note that
2
= < lim )
n—oo

In going to the last equality, we have used the following:
An+41

Qn

Ap+1
Qan,

Ap+1
Qan

Ap+2 Ap+2

425

= lim

n—oo

- lim

n—oo

lim

n—oo

An+41

An+42 Am+41

am

Am+41
am

= lim

m— 00

= lim

n—oo

lim
(m—1)—oc

lim
n—oo

)

Ap+1

where we have substituted m = n + 1 and used Equation (9.3) and the fact
that m — oo if and only if (m — 1) — oo. It now follows that

:\/lim

and the LHS will be less than or greater than one if the term inside the square
root sign is. In fact, one can generalize the above argument and state that
the series is convergent (divergent) if

= ( lim
n—oo
is less than (greater than) one for any finite j.
The Riemann zeta function can sharpen the ratio test of convergence to
allow for certain cases in which the ratio is one. Instead of taking the complete

limit, we approximate the ratio of consecutive terms for the Riemann zeta
function to first order in 1/n. This yields

" p 1 -p 1 -p
a+1:( n > :(n—|—> :(1+ > %1_]37
A, n+1 n n n

where we used the binomial expansion formula, to which we shall come back
[see Equation (10.15)]. We know that such a ratio leads to a convergent series
if p > 1 and to a divergent series if p < 1. Therefore, we obtain

Ap+2
Gn,

Ap+1
Qan,

lim

n—oo

An41
Qnp

An4j
Qnp

lim

n—oo

)j (9.10)

Theorem 9.3.2. (Generalized Ratio Test). If the ratio of consecutive

. . Ap41
terms of a series satisfies

—1-— p’ then the series converges if p > 1
n n

and diverges if p < 1.

Alternating Series Test

An alternating series
o0
a1—a2+a3—a4+---ZZ(—l)j“aj, CLj>0,
j=1
converges if lim;j_.o, a; = 0, and if there exists a positive integer N such that
ay, > ap4q for all k > N.
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Example 9.3.3. A useful series is the geometric series: geometric series
bt bu+bu’ +bu’ 4= bul,
k=0

We claim that this series converges to /(1 — u) if |u| < 1, and diverges if |u| > 1.
To show this, let S, represent the sum of the first n terms, so that {S,}n>¢ is the
sequence of partial sums. We calculate S, as follows. First note that

Sp=> bu* = uS,=> bu"t"
k=0 k=0
Next separate the zeroth term from the rest of S,, and rewrite it as
n n—1 n—1
Sp=b+> bu* =b+ Y b =b+ ) but,
k=1 m=0 k=0

where in the second equality, we changed k to m = k — 1 and in the last equality
we changed the dummy index back to k. Subtracting .S, from S,,, we obtain

n—1 n
Sp—uSy = (1—u)Sn =b+ Y bu"t =S b
k=0 k=0

n—1 n—1
=b+y buttt - (Z bu* 4 bu"+1> =b—bu""!
k=0

k=0
or _
S, — b—bu
1—u
It is now clear that v™™* — 0 for n — oo only if |u| < 1. For |u| > 1, the series
clearly diverges. For |u| = 1 the partial sum is either S, = nb (when u = 1), which
diverges for any nonzero b, or S, = by > (—1)", which bounces back and forth
between +b and —b, and never converges. So the series diverges for |u| > 1
For example, if b = 0.3 and u = 0.1, then the series gives

0.3 1
. . 1 . Ol+---=0. = = .
0.34+0.3 x0.1+0.3 x0.01 + 0.33333 1-01=3
For b = 1 the series gives
1+u+u2+...:11 —(1-wY (9.11)
—u

which can be thought of as the binomial expansion when the power is —1. As we
shall see in Section 10.1, there is a generalization of binomial expansion for any real
power. |

The result of Example 9.3.3 is important enough to be summarized:

Box 9.3.3. The series b+bu+bu?+bu® +--- = > 72 bu” is called the
geometric series. It converges to b/(1 —u) if |u| < 1, and diverges if
lul > 1.
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Example 9.3.4. Another example of a series used often is

1 1 =1
Ll g b=
k=0

The ratio test shows only that the series converges, but the comparison test gives
us more information. In fact, since 1/n! < 1/2"7! for n > 1, we conclude that

1 11 1
T B Al

1
1
+2!+3 2 22 23

But the RHS is the geometric series with u = 1/2 which is known to converge to 2.
We thus obtain the upper bound to our series:

.
k=0

It is well known that the series converges to e = 2.718281828 - - - . ]

!§3.

T =

Example 9.3.5. If one alternates the sign of the terms in the harmonic series,

one obtains the series
1— 1 . 1 1 .
2 3 4
which is convergent by the alternating series test. In fact, we shall show in Example
9.4.4 that the series converges to In 2. Note that the series is not absolutely conver-
gent. A convergent series that does not converge absolutely is called conditionally

convergent. ]

Historical Notes

The invention of calculus motivated several other areas of investigation in math-
ematics. One of these areas was infinite series. For example, it was not always
possible to find a closed formula for the integral of a function. So, it was common to
expand the integrand in powers of the variable and integrate the resulting infinite
series. No question was asked as to the legitimacy of the operations performed.
In fact, Newton, Leibniz, and Euler regarded infinite series as an extension of the
algebra of polynomials, and they did not realize that new problems would arise if
a finite sum were extended to an infinite series. However the apparent difficulties
that did arise caused them occasionally to bring up the question of convergence and
divergence.

Some mathematicians of the seventeenth century had observed the difference
between convergence and divergence. In 1668 Lord Brouncker, while studying the
relation between Inx and the area under y = 1/z, demonstrated the convergence
of the series for In2 and ln(i) by comparison with a geometric series. Newton and
James Gregory, who made much use of the numerical values of series to calculate
logarithmic and other function tables and to evaluate integrals, were aware that the
sum of a series can be finite or infinite. The terms “convergent” and “divergent”
were actually used by Gregory in 1668, but he did not develop the ideas.

Leibniz, too, felt some concern about convergence and noted in a letter of Oc-
tober 25, 1713 to John Bernoulli what is now a theorem that we call the alternating
series test. Maclaurin used series as a regular method for integration. He recognized



9.3 Infinite Series

that the terms of a convergent series must continually decrease and become less than
any given quantity no matter how small.

D’Alembert also distinguished convergent from divergent series. In his article
“Série” in the Encyclopédie he describes a convergent series as that which approaches
a finite value and consequently has terms that keep diminishing. In this same
volume, d’Alembert gave a test for the absolute convergence of the series > 72 ; ax,
namely, if for all k& > N, the ratio |ar+1/ar| < r where r is a positive number
independent of k and less than 1, the series converges absolutely.

Edward Waring (1734-1798), Lucasian professor of mathematics at Cambridge
University, held advanced views on convergence. He showed that the harmonic series
of order p converges if p > 1 and diverges if p < 1. He also gave the well-known test
for convergence and divergence, now known as the ratio test.

9.3.2 Operations on Series

It has already been mentioned that convergent series can be added, subtracted,
and multiplied by a constant. There are other important operations one can
perform on convergent series. These operations may be “obvious” for finite
sums, but they have to be justified for infinite series. In fact, performing such
obvious operations on divergent series leads to contradictory results.

One such operation is grouping:

Box 9.3.4. One can group the terms of a finite sum or a convergent
infinite series in any way one desires, and the sum will not change.

The operation of grouping is essentially putting parentheses around a collec-
tion of terms of the series (or the sum), adding the terms inside each parenthe-
ses first, and then adding the results. This is simply the associative property
of addition. It turns out that this associative property of addition does not
apply to divergent infinite series.? For example, > °_ (—1)™ gives an infinite
number of zeros if every +1 is grouped with one —1. On the other hand, the
same series can be grouped such that the first +1 is set aside and the rest of
the terms are paired. The result would then be a +1 with an infinite number
of zeros.If a series is divergent and not bounded, so that the sum is infinite,
then any grouping of terms gives infinity.

Another operation is the rearrangement of terms of a series. This is the
commutative property of addition:

Box 9.3.5. If a series is absolutely convergent then the rearrangement
of terms does not change either the nature of convergence or the limit of
the series. A conditionally convergent series does not share this property.

2Caution is to be exercised not to move the terms around, as this will, in general, affect
the sum as explained in the property of rearrangement described below.
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To see the importance of absolute convergence, consider the alternating series
ooy (—1)**+1 /k—which converges conditionally to In 2-—and rearrange terms
as follows:

Oo(_l)k+l 1 1 1 1 1
> e R R A O T R
k=1
1 1 1 1 1 1 1
=lty,tgty st —o—y -5
(1)
=l+,+s+i4+i+—(Q+5+5+-)=0,

where in the second line, terms with even denominators have been added
and subtracted with the positive ones interspersed among terms with odd
denominators.

The third operation is multiplication of two series. As for rearrange-
ment,

Box 9.3.6. Multiplication is defined only for absolutely convergent series:
If the two series Y - | ar and Zjil bj are absolutely convergent, then

their product (3°,7, ag) - (3272, bj) = D2-p2, Y52y axby = 302 ¢ ds also
absolutely convergent.

The last series is a rearrangement of the terms axb; into a single term c;.
This rearrangement makes it necessary for the original series to be absolutely
convergent.

9.4 Sequences and Series of Functions

The infinite series of the last section are useful when we want to approximate
a number, such as e or In 2 by a (large) sum of other (rational, decimal) num-
bers. Physics, however, deals with functions as well as numbers. It is therefore
useful to know how to approximate functions in terms of “elementary” func-
tions. In this section we shall investigate the possibility of expressing a given
function in terms of a series of functions. Since functions give numbers once
their arguments are assigned a value, many of the ideas developed in the
preceding two sections will be employed.

Suppose for each natural number n there is a function f,(x). Then, the
set {fn(x)}22, is called a sequence of functions. Just as in the case of
sequences of numbers, we need to address the question of the convergence
of the sequence of functions. This reduces to the question of convergence of
ordinary numbers once we substitute values for x. Variation of f,(x) with x
opens up the possibility of convergence for some values of = and divergence
for others. For instance, the sequence {z™}5° ; converges for —1 < z < 1 and
diverges for all other values of x.
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More interesting than sequences of functions are series of functions:
o0
fr(@) + fa(@) + fa(@) + - =) fle).
k=1

The nth partial sum of such a series is

n

Su(@) = fi(@) + fo@) + - + fulx) = fi(2).

J=1

The convergence of a series of functions > -, fix(z) depends on z. For ex-
ample, the series may converge for z = 0.35. This means that the series of
numbers Y, | fr(0.35) converges, i.e., there exists a real number s such that
for every € there exists an N with the property that | Y, _; fx(0.35) — s| <€
whenever n > N. It should be clear that an N that works for one value of
r—here 0.35—and €, may not work for other values of z and e. Thus, N
depends on z and ¢, and this dependence is denoted by N(z,€).

We can imagine making a table with one column consisting of the values
of z and a second column consisting of the corresponding limits of the series
of numbers whose terms are f, evaluated at the value of x. The table then
defines a real-valued function, say S(x), which is called the limit of the series
of functions, and one writes

S(z) = lim Sp(z) =Y fr(x). (9.12)

We have already seen examples of series of functions: the geometric series
oo yu™ —convergent for |u| < 1-—in which the terms are functions of u
with f(u) = u™, and the Riemann zeta function (or harmonic series of degree
p)—convergent for |p| > 1—in which the terms were functions of p with
fn(p) = 1/nP.

In general, the sum in Equation (9.12) may converge only for a limited
range of values of x. To find this range, we impose the ratio test on the terms
of the series. This yields

frr1()
fr(z)

which is an inequality in x that can be solved to find the values of  for which
the series converges.

r(z) = klggo

‘ <1, (9.13)

Example 9.4.1. As an example of the application of Equation (9.13), let us find
the values of x for which the series

o [In(z + 1))
>

k=1
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converges. The ratio in (9.13) is

[ln(w+1)]’““/(k+1>‘ — Iim
In(z 4+ 1)) /k T koo
k
k+1

[In(z + 1))+ k
In(z+1)* k41

lim
k— o0

r(z)

[In(z + 1)| klim ‘ ‘ = |ln(z 4+ 1)|.

So, the condition for convergence is
In(z+1)|<1 = -1<h(z+1)<1

or
el<rtl<e = el-l<az<e—1

and the series converges for —0.632 < =z < 1.718.

Let us now check the convergence of the series for the two end points. The left
end point corresponds to In(x+1) = —1 for which the series becomes >~ ,(=1)"/n
which is convergent (see Example 9.3.5). On the other hand, for the right end point,
In(xz + 1) = 1, and the series becomes > > | 1/n which is the divergent harmonic
series. Thus, the interval of convergence is —0.632 < x < 1.718. n

An important notion is uniform convergence:

Box 9.4.1. If, for a given €, it is possible to find an N such that |S,(x)—
S(x)| < € whenever n > N for all values of = in some interval (a,b)—so
that N is independent of x—then the series is said to converge uniformly
on (a,b).

Clearly, for uniform convergence to have any meaning, there must exist a range
of values of x for which the series converges uniformly because a series may
converge for all values of x on the real line without converging uniformly for
any interval of the real line. A pictorial representation of uniform convergence
is shown in Figure 9.3. Basically, we say that a series is uniformly convergent
if the graphs of partial sums S, (x), after a certain large N, all lie within a
(narrow) strip of width e containing the graph of the limit function f(x).

There is a useful test for the uniform convergence which works for a large
number of familiar series and goes by the name of the Weierstrass M-test:
Let Y72, fe(z) be a series of functions all defined in an interval® (a,b). If
there is a convergent series of positive numbers -, My, such that |fj(z)] <
My, for all z in (a,b), then >~ fx(x) converges absolutely for each such z,
and is uniformly convergent in (a, b).

Example 9.4.2. Consider the series > - | & /n?, which is a generalization of the
geometric series (for which p = 0). We want to see for what values of p and in what

3Instead of an interval, one may use the union of many intervals. In fact, the statement
is true even when the interval (a, b) is replaced with a general subset of the real line.
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S, (x) —

Figure 9.3: Uniform convergence.

interval of x is the series convergent. One way to get the answer is to apply the
ratio test:

n+1 np

(n41)p z»

P
=zl lim [ ") =]

It follows that, regardless of the value of p, the series converges for |z| < 1, and
diverges for |z| > 1. For z = 1, the series becomes Y > | 1/n” which converges for
p > 1 and diverges for p < 1 as pointed out in the integral test of convergence.
Finally if x = —1, the alternating series test of convergence tells us that the series
converges for all p > 0. What about the uniformity of convergence? We note that
for M, = 1/nP, and for |z| < 1, we have

xSIEMn

npP

npP

and the series of M, converges as long as p > 1. Thus, for p > 1, the series
Yoo & /nP is uniformly convergent. [

9.4.1 Properties of Uniformly Convergent Series

The importance of uniformly convergent series lies in the nice properties such
series possess. For instance, if u;(z) is continuous in the interval a < z < b,
and if the series Y .- u;(x) is uniformly convergent in that interval, then the
function defined by f(z) = .2, u;i(x) is also continuous in the interval. This
statement is equivalent to saying that for x and zo in the interval (a,b), one
has

r—xo Ln—00 n—oo |r—xo

lim [hm Sn(:c)} = lim [lim Sn(x)} .

Accordingly, uniform convergence permits the interchange of the two limit
processes.
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Another property, which is extremely useful in physical applications, is the
fact that

Theorem 9.4.3. If f(z) = Yo, u;(x) is uniformly convergent, and each
u;(x) is continuous for a < x < b, then the series can be integrated term by

term, i.e.,
/ab f(x)dx = /ab <§:Ui($)> dr = i/abui(x) dz,

i.e., integration and summation can be interchanged.

Example 9.4.4. Consider the geometric series 1; =370 t*, which, by Example
9.4.2, converges uniformly for —1 < ¢ < 1. Changing ¢ to —t does not change either
the interval or the nature of convergence of the series. We thus have

b i(—t)i _ i(—niti. (9.14)
1+t - ‘

Because of the uniform convergence of the series, we can integrate both sides from
0 to x with —1 < = < 1 to obtain

x dt o0 ; x i e iI'H—l
/0 - In(1+ ) ;( 1) /0 t'dt ;( 1) I
With z = 1, we obtain the result alluded to in Example 9.3.5.
Note that the integral of a series may be convergent for a bigger range of values
of its argument than the original series. Here, the original series was divergent (for
t = 1) while its integral converges (for z = 1). -

The property stated in Theorem 9.4.3 is a useful tool for the expansion
of physical quantities in terms of some more “elementary” quantities. For
example, one can expand the electric potential—usually given in terms of an
integral—as a sum of the potentials of a single charge, a dipole, a quadrupole,
etc. (see Section 10.5). In many physical situations only the first few terms
of the series expansion will be of importance. Thus, for instance, in atomic
transitions, it is only the dipole term that participates significantly.

One can also differentiate a uniformly convergent series. To be specific,

Theorem 9.4.5. Suppose that u, (x) = du,/dx is continuous for a < x <b,
that the series > - un(x) converges to f(x) for a < x < b, and that the
series Y - ul(x) converges uniformly for a < x <b. Then

flz) = dczlv Zun(x) = Zu;(x), a<xz<b,
n=1 n=1

i.e., one can change the order of differentiation and summation.
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Other operations defined on uniformly convergent series are addition, sub-
traction, and multiplication by a continuous function: If Y >° wu;(z) and
> oo, vi(z) are uniformly convergent for @ < z < b and h(x) is continuous
in the same interval, then the series

> fui() £ vi(@)] Z h(z)ui(z),

i=1

are also uniformly convergent for a < x <b.

Historical Notes

The mathematicians of the seventeenth and eighteenth centuries used series indis-
criminately. By the beginning of the nineteenth century some absurd results from
manipulating infinite series stirred up some interest in questioning the validity of
operations performed on them. Around 1810 a number of mathematicians began
the exact handling of infinite series.

In his 1811 paper and his Analytical Theory of Heat, Fourier gave a satisfactory
definition of convergence, though in general he worked freely with divergent series.
His definition of convergence was essentially in terms of the sequence of partial sums.
Moreover, he recognized that the convergence of a series of functions of the variable
x may be achieved only in an interval of x values. Although Fourier stressed that
a necessary condition for convergence is that the terms of the series approach zero,
he was fooled by the series 332 ((—1)*, and thought that its sum was | [substitute
t =1 on both sides of (9.14)].

The first important and strictly rigorous investigation of convergence was made
by Gauss in his 1812 paper Disquisitiones Generales Clirca Seriem Infinitam wherein
he studied the hypergeometric series (see Section 11.2.1). Though Gauss is often
mentioned as one of the first to recognize the need for restricting the series to their
interval of convergence, he avoided any decisive position. He was so much concerned
to solve concrete problems by numerical calculations that he used a divergent ex-
pansion of the gamma function. When he did investigate the convergence of the
hypergeometric series, he remarked that he did so to please those who favored the
rigor of the ancient geometers.

Cauchy’s work on the convergence of series is the first extensive treatment of
the subject. In his Cours d “Analyse Cauchy clearly defines the sequence of partial
sums and gives a rigorous definition of the convergence and divergence of the series
in terms of this sequence. It is also in this work that he gives what is now called
the Cauchy criterion for convergence of a sequence (see Box 9.1.1). He proves this
to be a necessary condition, but merely remarks that if the condition holds, the
convergence of the series is assured. He lacked the knowledge of the properties of
real numbers to provide a proof. Cauchy then goes on to state and prove many of
the results that we have outlined in our discussion of the tests for convergence.

9.5 Problems
9.1. Show that

(a) Yoy k2t = R Tg(k + 1) (b) a2 Yop_g ana® = 3355 ayoa*,
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9.2. Use some small values of M and N (say M = 2, N = 3) and verify the
validity of Equation (9.6).

9.3. Use Equation (9.8) to show that

("= () ()

9.4. Use mathematical induction to prove the following relations:

_ n gt
(a) 4o (2™) =na"". (b) Yhoo® =", 1"

9.5. Use the integral test to show that the harmonic series of order p is
convergent for p > 1 and divergent for p < 1.

9.6. Test the following series for convergence or divergence:
—1)" —1)"si 2
(a) Zi’f:l (nzzdn- (b) Zi’f:l ( )nilf . (c) 220:1 125-
1 1 1
(d) E;:OZI 3ngi3n' (e) 220:1 3n2<1:5rn710' (f> Z;:OZZ nlnn’

where « is some real number. For (c¢), consider the three cases p > 1, p < 1,
and p = 1.

9.7. Prove convergence or divergence by the comparison test:
o0 . o0 o0 o0
sinn 1 n+5 1
PO DIFEETID DI D DR
n=1 n=2 n=1 n=2

9.8. Prove convergence or divergence by the integral test:

= 1 = n > 1 s 1
n; n?+1’ ; n?+1’ ;n In®n’ 1;271 Innlnlnn’
9.9. Prove convergence or divergence by the ratio test:

N R W G DL

9.10. Use the ratio test to find the range of values of « for which the following
series converge. Make sure to investigate the end points.

a) Yoo, b) Yo 1<4§f3‘35$
d) Yooz, e ¢) Yol 4o
g) oo na™. h) > 1n'a:
B Yoy k) Yoo, D
m S, () e () 0 S w
p) Yoo (3)" (a) Sozi ()" (1) Yool 50, -[60p]

( (
( (
( (h)
( (k)
( )
( )
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9.11. Write the first four terms of the following series:

oo o0

- n/! = (=) 1 1
7;2~4-~-2n’ nz::lln(n—l—l)’ Zl{)/n&" Z\g/nlo'

n=1 n=1

Test for convergence or divergence of these series.
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Chapter 10

Application of Common
Series

The preceding chapter concerned itself with the formal properties of infinite
sequences and series, especially the sequences and series of functions. One
of the useful properties of the infinite series of functions is that they can be
approximated by finite sums. In this approximation, two important features
of the series play crucial roles: the simplicity of the functions used in the series
and the convergence of the series. This chapter deals with some of the series
of functions most commonly used in mathematical physics.

10.1 Power Series

One of the most common series of functions is the power series where the
nth term of the series is ¢, (x — a)™ with ¢, a real number. To be specific, a
power series in powers of (z — a) is of the form

ch(x—a)":co+cl(x—a)+02(x—a)2+--- . (10.1)

n=0

An important special case is when a = 0, so that we have

o
Z ent™ = co+ 1+ o + - (10.2)

n=0

Sometimes negative powers are also included, but by power series we usually
mean Equation (10.1).

We note that Equation (10.1) converges for 2z = a. The question is whether
it converges for any other values of x, and if so, what these values are. It turns
out that:

radius of
convergence of a
power series
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Theorem 10.1.1. Every power series Y .. cn(z — a)” has a radius of
convergence r* such that the series converges absolutely and uniformly when
|x — a| < r* and diverges for |x —a| > r*. If r* # 0 and r1 is a number such
that 0 < r1 < 7%, then the series converges absolutely and uniformly for
|z —al < 7.

The number r* can be 0 (in which case the series converges only for x = a),
a finite positive number, or co (in which case the series converges for all x).

The radius of convergence can be evaluated by using the ratio test. Con-
sider the ratio

cnt1(T — a)n+1
en(x —a)n

Cn+41

= |z — a] lim
Cn

n—oo

r(z) = lim

n—oo

and note that the series converges if r(x) < 1, or

|z —a| < lim n

n—oo

Cn+41

The RHS is naturally defined to be the radius of convergence

r* = lim
n—oo

if the limit exists. (10.3)

Cn+1
It can be shown that the radius of convergence can also be found from the

following formula:

r* = lim

1
n—oo 7</|Cn|

Example 10.1.2. Consider the exponential function e” which, as we shall see,
has a power series expansion

if the limit exists. (10.4)

n

o0 oo T
xr __ n
e = C. = .
Dt =3,
n=0 n=0
By the ratio test, we have

n+1 |
r(z) = lim |* /(n+1)" = lim |z = |z| lim
x"/n!

n— oo

n!
(n+1)! ‘

=0
n+1 ‘

for all values of x. So, regardless of x, the series representation of e* converges, i.e.,
the radius of convergence is infinite. We can also use Equation (10.3) to calculate
the radius of convergence

Cn

|
= lim 1/n!

r* = lim

n— oo

‘ = lim |n+ 1] = cc.
Cn+1 n— oo

Example 10.1.3. Let us find the interval of convergence of

S
EZ: 4k (k+1)

k=0
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The ratio test gives

r(z) = Tim |Tr1(®)] ’( DFFLR /AR () + 2)]
koo | frlw) | wmee]  (=1)kak/[Ak(k+ 1))
_ lim Z(k+1)’7‘ ‘ ’k:+1 |x|_
k—oo | 4(k + 2) 41H>o k+2 4

—1

So, the series converges if r(z) < 1, i.e., if || <4, or —4 < z < 4.
What about the end points? For x = 4, the series becomes

500
pre k41
which is the alternating series and it converges. On the other hand, if x = —4, the
series becomes
DR SR IRIES W
— 4’vk+1 P k+1 kE+1’

which is the divergent harmonic series. So, the interval of convergence of the series
is —4 < x < 4, and its radius of convergence is r* = 4. [

Because of the uniform convergence of power series, we can perform all
the common operations used for ordinary functions on the power series. We
list all these properties in the following:

» Continuity. A power series represents a continuous function within its
radius of convergence; i.e., if 7* is the radius of convergence, then the
series

o0
fl@) =) cnl@—a)
n=0
is continuous.

for a—r*<z<a+r’ (10.5)

» Integration. The power series (10.5) can be integrated term by term
within its radius of convergence; i.e., fora —r* < p < g < a+r*,
n+1

! -~ [ ny N, (@) = (p—a)" !
dt = Cn —a)"dt = Cn .
/pf(t)tgo/p(t rai=3 o
(10.6)

» Differentiation. The power series (10.5) can be differentiated term by
term within its radius of convergence; that is,

o0
= Z nep(z —a)" 1,
n=1

» Zero Power Series. If a power series has nonzero radius of convergence
and has a sum which is identically zero, then every coefficient of the
series must be zero. This leads to the following

a—r*<zr<a+r’ (10.7)
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. 0o n 00
Theorem 10.1.4. If two power series Y~ cn(x —a)™” and > " by
(x — a)™ have nonzero convergence radii and have equal sums whenever
both series converge, then the two series are identical, i.e.,

Cp=bn, n=0,1,2,....

This property is very effectively used to find solutions of differential
equations in terms of infinite power series.

10.1.1 Taylor Series

A power series whose coeflicients are derivatives of the function representing
the sum is called Taylor series. More precisely, let

f(x):ch(a:—a)", a—r" <z <a+r’. (10.8)
n=0

This series is called the Taylor series of f(x) at x = a if the coefficients ¢,, are
given by the rule:

4 " (k)
CO:f(CL), 1 = fl('a)a Cy = f2('a),, Cr = f kl(a)’
so that
(k)
fz) = )+ (x_a)+"'+fkk'(a)(x—a)k+...

f'(a)
fla)+°
> fk)(q

:Z% !( )

k (x — a)* where  fO(a) = f(a), 0! = 1. (10.9)

From Theorem 10.1.4 and the equality of (10.8) and (10.9), we conclude that
every power series with nonzero convergence radius is the Taylor series of the
function denoting its sum, and conversely every infinitely differentiable func-
tion can be represented by a Taylor series within the interval of convergence
of the series.

An alternative way of writing the Taylor series which suggests approxima-

tion is to let Az =« — a. Then Equation (10.9) becomes
_ f'(a) M@
flat Aw) = fla)+7 | Ax—i—---—kzzo (A

Since a is an arbitrary real number, we can replace it with = which is more
suggestive of the generality of this formula:

"(z = 0 (x
flz+ Az) = f(x) + f1(| )Ax+---zzf k'( )(Ax)k. (10.10)
! — K

With Az interpreted as the increment in x, Equation (10.10) states that the
function at the incremented value of z is f(z) plus a “correction” involving
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all powers of Az. The smaller the increment, the smaller the number of terms
of the correction we need to keep to achieve a given accuracy.

A convenient value for a is 0, in which case the series is called Maclaurin
series:

/ < p(h)
f(z) = £(0) + fl(?)x+---: > d k|(0)xk. (10.11)
' k=0 '

10.2 Series for Some Familiar Functions

In this subsection, we give the Maclaurin series representation of a few familiar
functions. These representations are so useful that the reader is urged to
commit them to memory.

The Exponential Function

For e*, the derivatives of all orders are e* implying that f(™)(0) = 1 for all n.
Therefore,

z r 2’ N
e :1+1!+2!+"':an' (10.12)
n=0

This series converges uniformly for all z as we saw in Example 10.1.2.

The Trigonometric Functions
The sine function has the following derivatives:

fl(x)=cosz, f'(x) = —sinaz, f"(x)=—cosz, fO(z)=sinz, ....
This can be summarized as

£ () = (—1)"/?sinx if n is even,
(=)D 2cosz if nis odd.

Evaluating at « = 0 for the Maclaurin series yields

0 if n is even
() () = ’
F7(0) {(—1)("_1)/2 if n is odd,
so that
,133 $5 o0 ka—i—l
. —0 00— 0 = —1)k . 10.13

The combination 2k + 1 ensures that only odd terms are included even though
there is no restriction on the sum over k. The radius of convergence is
—1)k ! !
o — lim (=1)%/(2k 4+ 1)! ~ lim (2k + 3)! e
k—oo | (—1)k+1/(2k + 3)! k—oo (2k + 1)!

287

Maclaurin series of
exponential
function

Maclaurin series of
trigonometric
function



288 Application of Common Series

Thus the Taylor series representation of the sine function is convergent for
all .

The Maclaurin series representation of the cosine function can be obtained
similarly. We leave the details to the reader, and simply quote the result:

00 2k
_ kT
cosx = E (-1) (21" —00 < T < 0. (10.14)
k=0
The Binomial Function

Another useful function which is used extensively in physics is the binomial
function with arbitrary exponent, i.e., (1 + )® with a an arbitrary real num-
ber. It is easy to find the nth derivative of this function:

M) =a(a—1)(a—2) - (a—n+1)(1+z)*", n>1.
Evaluating this at o = 0 gives

Cn:f(”)(()):a(a—l)---(a—n—l—l)’ N>
n! n!

From this, we can immediately find the radius of convergence:

1) (o — |
T N . ala=1)--(a—n+1) (n+1)!
n—oo |Cpyq| m—oo n! ala—=1)---(a—n)
1
—am " =1
n—oo | —n

Maclaurin series of Thus, the series is convergent for —1 < x < 1, and we can write
binomial function

o0
ala—1)- - (a—n+1
I+az)* =1+ ( )l + )x", —1<z<1. (10.15)
n!
n=1
Example 10.2.1. Because of the frequent occurrence of the square root, we work
through the calculation of (10.15) for a = +}. For o = +., we have

o 11_1...1_ 1
\/1+m:(1+w)1/2:1+22(2 )G mnAl)

n!

n=1
o no11-3:5---(2n—3) ,
:1+;x+2(—1) ! an(ln )x
n=2 ’

Now let n = m + 1 and rewrite the sum as

_ 1
Vide=l4aot 3 0" i 1)

m=1
:1+éx_éx2+438x3_..._ (1016)
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1

> can be handled in exactly the same way. We simply quote

The case of « = —

the result
= 2m=1) .
=1+ T
\/1 +x mE::l 2m m)!
=1-lo+ 32— 13a2% (10.17)
and urge the reader to fill in the details. ]

It is important to note the limitations of the power series representation
of a function: Although (1 + x)® is defined for all positive! values of x, the
power series representation of it is good only for a limited region of the real
line.

In many applications, the binomial function appears in the form (u + v)®
where |v] < |u| and one is interested in the power series expansion in v/u.
This is easily done:

{ (1+

W)
:ua+uaia(a_l)”'(a_"+1)(“)n (10.18)

n! u

(u+v)*

1
© 1) — 1
:ua+z Oé(O[ ) (O[ n+ )ua—nvn

al , —lul < v < |ul.

n=1

In practice, v is usually much smaller than u, and the requirement of conver-
gence is overwhelmingly met.

The Hyperbolic Functions

The exponential function and the trigonometric functions have very similar
power series: Except for (the crucial) coefficient (—1)*, sinz appears to be
the odd part of the expansion of e” and cos  its even part. The (—1)* factor
makes the trigonometric functions periodic. What if we take this factor away,
and simply collect the even powers of e” together and do the same to the
odd powers? The resulting series will of course be (absolutely and uniformly)
convergent because the exponential is so. So, let us introduce the following
functions:

oo
$2k+1 3 5

x X
sinh x ,;(2k+1)! a:+3!+5!+ )
e Q:Zk 3:2 334
cosha::kzz;) (20! =Lty oy, T (10.19)

11t is really defined for more than just positive values. For instance, if o is an integer,
the function is defined for all values of z. For fractional powers such as a = 1/2, 1 + =z
cannot be negative, so that we must restrict the values of  to x > —1.
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sinhz (pronounced “sinch”) is called the hyperbolic sine function. Similarly,
coshz (pronounced “kahsh”) is called the hyperbolic cosine function. By
their very definition, we have

e” = coshx + sinh .

If we change x to —z, and note that sinh z is odd and cosh x is even, we can
also write
e~ " = cosh(—x) + sinh(—z) = coshz — sinh z.
Adding and subtracting the last two equations yields
et + e * . et —e™*

coshz = g sinhx = 5 (10.20)
This is how the hyperbolic functions are usually defined. From these defini-
tions, one can obtain a host of relations for the sinh and cosh that look similar
to the relations satisfied by sine and cosine. For example, it is easy to show
that

2 ) . d .
cosh®xz —sinh“z =1, coshz = sinhz, d sinh z = cosh z,
x

dz
cosh(z £ y) = coshz coshy £ sinh x sinh y, (10.21)
sinh(z 4+ y) = sinh x coshy & cosh x sinh y,

cosh(2z) = cosh? z + sinh® z, sinh(2z) = 2sinh x cosh z.

We give the derivation for the hyperbolic cosine of the sum, leaving the rest
of them as problems for the reader. We start with the RHS:

cosh x cosh ¢y + sinh x sinh y

N [ R

_ (e*+e ™) (eV+e V) +(e*—e*)(e¥ —e V)

4
B eery + eT™Y + ewary + e T7Y + eery —eTTY ewary + e T7Y
B 4
2 T+y 2 T~Y z+y —r—y
= —Z ¢ = —;e = cosh(z + y).

We can also define the analogs of other trigonometric functions:

x

sinh x et —e” coshr e*+e™®

tanhx = = , cothzx = | = ,  (10.22)
coshx eT+4e 7 sinh x er —e~®
1 2 1 2
sechx = = , cosechz = | = .
coshx e*+4e® sinhz e —e %

These functions have such properties as
sech?z = 1 — tanh?® z, cosech? z = coth® x — 1,
and

d
tanh z = sech® z, cothz = — cosech? z.

dx dx
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The Logarithmic Function

Finally, we state the Maclaurin series for In(1 + x), which occurs frequently
in physics, and which the reader can verify:

o0

n(l+a)=> (-1 "“x “l<z<l. (10.23)

n=1

10.3 Helmholtz Coil

Power series are very useful tools for approximating functions, and the closer
one gets to the point of expansion, the better the approximation. The essence
of this approximation is replacing the infinite series with a finite sum, i.e.,
approximating the function with a polynomial.

In general, to get a very good approximation, one has to retain very large
powers of the power series. So, the approximating polynomial will have to
be of a high degree. However, suppose that a function f(z) has the following
expansion

f(x):Co+61(x—a)+-~-+cm($—a)m+cm(g;—a)m+k_|_... ,
where £ is a fairly large number. Then the polynomial
p(r)=co+eci(x—a)+ - +cnlz—a)™

approximates the function very accurately because, as long as we are “close”
enough to the point of expansion a, the next term in the series will not affect
the polynomial much. In particular, if the series looks like

f@)=cotcu(r—a)lf+---, (10.24)

then the constant “polynomial” ¢j is an extremely good approximation to the
function for values of x close to a.

The argument above can be used to design devices to produce physical
quantities that are constant for a fairly large values of the variable on which the
outcome of the device depends. A case in point is the Helmholtz coil, which
is used frequently in laboratory situations in which homogeneous magnetic
fields are desirable.

Figure 10.1 shows two loops of current-carrying wires of radii a and b
separated by a distance L. We are interested in the z-component of the
magnetic field midway between the two loops, which, to simplify expressions,
we have chosen to be the origin. Example 4.1.4 gives the expression for the
magnetic field of a loop at a point on its axis at a distance z from its center.
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[ S ——

Figure 10.1: Two circular loops with different radii producing a magnetic field.

Let us denote the magnetic field of the loop of radius a by B; and that of the
loop of radius b by Bs. Then Example 4.1.4 gives

_ 27k, I a? 27k 150
BEA=BE B = 100 4 oy gy T e 4 (- L2
1 ka 2 1 km.[ b2
_ 6mkmI1a n 6k 1 (10.25)

[4&2 + (22’ + L)Q]S/Z [4b2 + (22 _ L)Z]B/Q :

We want to adjust the parameters of the two loops in such a way that the
magnetic field at the origin is maximally homogeneous. This can be accom-
plished by setting as many derivatives of B(z) equal to zero at the origin as
possible, so that the Maclaurin expansion of B(z) will have a maximum num-
ber of consecutive terms equal to zero, i.e., we will have an expression of the
form (10.24).

The first derivative of B(z) is

dB 967k l1a?(2z + L) 967k, [2b*(22 — L)

dz —  [4a?+ (22 + L)2]5/2  [4b2 4 (22 — L)2]5/2°
Setting this equal to zero at z = 0 gives

he® &Y (10.26)
(4a2 + L2)5/2  (4b2 + L2)5/2 '

The second derivative of B(z) is

d*B B 7687k I1a’[a® — (22 + L)?] B 7687k, I2b2[b* — (22 — L)?]

d=2 [4a2 + (22 + L)2]7/2 [4b2 + (22 — L)2]7/2
Setting this equal to zero at z = 0 gives

Lia?(a? — L?) LV (V2 - L?)

=0. 10.2
(a? +22)72 T (ap2 4 1272 = ° (1027)

Since both terms are positive, the only way that we can get zero in (10.27)
is if each term on the LHS vanishes. It follows that a = L = b. Substituting
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this in Equation (10.26) gives I; = I which we denote by I. Therefore, we
can now write the magnetic field as

1 1

B =1 A 2
(2) = 16mkmla { a2 4 (22 + )2 T [da? + (22 — )29/

} . (10.28)

The reader may verify that not only are the first and the second derivatives
of B(z) of Equation (10.28) zero, but also its third derivative. In fact, we have

_ B2mkp I 46087kn I,

B(z) = 5/5a 625+/505 z (10.29)

That only even powers appear in the expansion (10.29) could have been antic-
ipated, because (10.28) is even in z as the reader may easily verify. It follows
from Equation (10.29) that B(z) should be fairly insensitive to the variation
of z at points close to the origin. Physically, this means that the magnetic
field is fairly homogeneous at the midpoint between the two loops as long as
the loops are equal and separated by a distance equal to their common radius,
and as long as they carry the same current. Figure 10.2 shows the plot of the
magnetic field as a function of z. Note how flat the function is for even fairly
large values of z.

-1 -0.5 0.5 1

Figure 10.2: Magnetic field of a Helmholtz coil as a function of z. The horizontal axis
is z in units of a.

Historical Notes

One of the problems faced by mathematicians of the late seventeenth and early eigh-
teenth centuries was interpolation (the word was coined by Wallis) of tables of values.
Greater accuracy of the interpolated values of the trigonometric, logarithmic, and
nautical tables was necessary to keep pace with progress in navigation, astronomy,
and geography. The common method of interpolation, whereby one takes the aver-
age of the two consecutive entries of a table, is called linear interpolation because
it gives the exact result for a linear function. This gives a crude approximation for
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functions that are not linear, and mathematicians realized that a better method of
interpolation was needed.

The general method which can give interpolations that are more and more accu-
rate was given by Gregory and independently by Newton. Suppose f(z) is a function
whose values are given at a, a + h, a + 2h, ..., and we are interested in the value
of the function at an x that lies between two table entries. The Gregory—Newton
formula states that

fla+n = f@+ T as@+ » G arpay e n 6D G gy

where

Af(a) = f(a+h) = f(a), A’f(a) = Af(a+h) — Af(a),
A’fla) = A’fla+h) — A*f(a), A*f(a) = A*f(a+h)—A%f(a),...

To calculate f at any value y between the known values, one simply substitutes y—a
for r.

Brook Taylor’s Methodus incrementorum directa et inversa, published in 1715,
added to mathematics a new branch now called the calculus of finite differences, and
he invented integration by parts. It also contained the celebrated formula known
as Taylor’s expansion, the importance of which remained unrecognized until 1772
when Lagrange proclaimed it the basic principle of the differential calculus.

To arrive at the series that bears his name, Taylor let h in the Gregory—Newton
formula be Az and took the limit of smaller and smaller Az. Thus, the third term,
for example, gave ) ,

r(r ;Aw) AAf(Qa) T (@)
! T 2!
which is the familiar third term in the Taylor series.

In 1708 Taylor produced a solution to the problem of the center of oscillation
which, since it went unpublished until 1714, resulted in a priority dispute with
Johann Bernoulls.

Taylor also devised the basic principles of perspective in Linear Perspective
(1715). Together with New Principles of Linear Perspective the first general treat-
ment of the vanishing points are given.

Taylor gives an account of an experiment to discover the law of magnetic attrac-
tion (1715) and an improved method for approximating the roots of an equation by
giving a new method for computing logarithms (1717).

Taylor was elected a Fellow of the Royal Society in 1712 and was appointed in
that year to the committee for adjudicating the claims of Newton and of Leibniz to
have invented the calculus.

10.4 Indeterminate Forms and L’Hoépital’s Rule

It is good practice to approximate functions with their power series repre-
sentations, keeping as many terms as is necessary for a given accuracy. This
practice is especially useful when encountering indeterminate expressions of
the form J. Although L'Hopital’s rule (discussed below) can be used to find
the ratio, on many occasions the substitution of the series leads directly to
the answer, saving us the labor of multiple differentiation.
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Example 10.4.1. Let us look at some examples of the ratios mentioned above.
In all cases treated in this example, the substitution =z = 0 gives 8, which is inde-
terminate. Using the Maclaurin series (10.12) and (10.13), we get

. 2e" —2— 2z — 2?

lim .

20 sin x —x
_hm2(1+1’—|—3:2/2+x3/6+a:4/24+~-~)—2—236—362
20 x—x3/6+x5/120+ - —

3 4 ... ...
~ fim z°/34+x%/12 + ~ lim 1/34+xz/12 + _ o
e—0 —x3/6 +2°/120 — .-+ 2—0 —1/6 +22/120 — - --

The series (10.14) and (10.23) can be used to evaluate the following limit:

In(l1+z)—=z
z—0 cosx—1
—_— 2 3 —_—. e e —
— i © x°/24+x°/3 x
_2 3 —_— e —_— —_—. e .
_lim % /2HE/3 ~lim M2 HE/3 =1.
e—0 —x2/2 +x4/24 — -+ 2—0 —1/2+422/24 — -

With (10.12) and (10.15), we have

Vi+2z—2—1

;% er® — 1
1,01 _ 11 __ 1_
G e e
= lim : |
x—0 1+$2+($2)2/2'+—1
—_ 2 3 .. —_ e
~ fim x2/2+w/2+ ~ fim 1/2+z/2+ :_1.

The method of expanding the numerator and denominator of a ratio as
a Taylor series is extremely useful in applications in which mere substitution
results in the indeterminate expression? of the form 8. However, there are
many other indeterminate forms that occur in applications. For example, a
mere substitution of z = 0 in (14z)'/% yields 1°° which is also indeterminate.
Other examples of indeterminate expressions are 0 x co, %, 0°, and co”. Most
of these expressions can be reduced to indeterminate ratios for which one can

use I’Hopital’s rule:

Box 10.4.1. (L’Hépital’s Rule). If f(a)/g(a) is indeterminate, then

- fle) ()
lim = lim , 10.30
M gla) o g (a) 10:30)
where f' and g’ are derivatives of f and g, respectively.

2An expression is indeterminate if it involves two parts each of which gives a result that

is contradictory to the other. Thus the numerator of the ratio 8 says that the ratio should

be zero, while the denominator says that the ratio should be infinite.
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In practice, one converts the indeterminate form into a ratio and differen-
tiates the numerator and denominator as many times as necessary until one
obtains a definite result or infinity. The following general rules can be of help:

o If f(a) = 0 and g(a) = oo, then to find lim,_., f(x)g(z), rewrite the

limit as

i (@) = b T or i f@g@) = im0
g oo g o]

the first of which gives 8 and the second 7. In either case, one can
apply L'Ho6pital’s rule.

e If f(a) = 1 and g(a) = oo, first define h(x) = [f(z)]9®). Then to find
lim h(z) = lim [f(z)]?®,

r—a r—a

take the natural logarithm of h(x) and convert the result into the ratio

tim Infh(2)] = lim g(a) n[(@)] = tim VO
g(x)

Then use Equation (10.30).
o If f(a) =00 (or f(a) =0) and g(a) = 0, then to find
lim A(x) = lim [f(x)]9),

r—a r—a

take the natural logarithm of h(x) and convert the result into the ratio

lim In[h(z)] = lim g(z) In[f ()] = lim 1n[fl($)].
{g(x)}

Then use Equation (10.30).
Example 10.4.2. To find the lim, _o(142x)"/®, we write h(z) = (1+2z)"/* and

note that (1 42
lim In[A(x)] = lim (1/) In(1 + 22) = lim n(1+2z)
T— xr— r— €T
is indeterminate. Using Equation (10.30) yields
2
. oo Im(IT422) . 1422 . _
pmmp@l= = T T, =2

Therefore, limy—.o h(z) = e?.

To find the limy— z°, we write h(xz) = 2® and note that
Inz

ili“% Infh(z)] = ilir%)wlnw = ;13%) I
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is indeterminate. Using Equation (10.30) yields

. . 1/x .
I = e = =) =0

Therefore, limy—.o h(z) = e’ = 1. So, we have the interesting result lim,_.o z* = 1.
The limit of 2%/(1 — cos x) as x goes to zero is obtained as follows:

2
x 2x 2
lim = lim . = lim = 2.
x—01—cosx x—0sinx x—0cosT
Here we had to differentiate twice because the ratio of the first derivatives was also
indeterminate. -

It is instructive for the reader to verify all limits in Example 10.4.1 using
L’Hopital’s rule to appreciate the ease of the Taylor expansion method.

10.5 Multipole Expansion

One extremely useful application of the power series representation of func-
tions is in potential theory. The electrostatic or gravitational potential can

be written as
B(r) = K/Q Q") (10.31)

r—r|’

where K is k. for electrostatics and —G for gravity. Similarly, Q) represents
either electric charge or mass. In some applications, especially for electrostatic
potential, the distance of the field point P from the origin is much larger than
the distance of the source point P’ from the origin. This means that r >> r’/
and we can expand in the powers of the ratio v/ /r which we denote by e. The
key to this expansion is a power series expansion of 1/|r — r’|. First write

1 1 1

e —v/|  r2402 20 /14 €2 — 28, - e,
1 _
= (1+e&-2e-6.) """,

r

Next use the binomial expansion (10.15) with = = €2 — 2¢é,.-&,» and a = —}

2
Up to second order in ¢, this yields
1 1
e i ) s 2 )
1 A A ~ ~
:,r.{1+€er'er/+€2 (243 &)+ }
1 e -r r? 1 3 A . 2
:7“+ r2 +7“3 [_2+2(er'er/)]+"'- (10.32)
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Substituting this in Equation (10.31), we obtain
K K
o) =" [aouw+ e [ iow)
T Ja r Q
K PO
+ TS/QT’Q [+ 3 -&)%]dQ) + - (10.33)

KQ K. K o
- r +r2er.pQ+r3/g‘lT/2[_%4—g(er'ew)z]dQ(r/)_""'v

where

Q= /Q Q)

is the total @ (charge, or mass)—also called the zeroth @ moment—and

Po E/Q r dQ(r') (10.34)

is the first @@ moment, which in the case of charge is also called the electric
dipole moment. One can also define higher moments.

If the source of the potential is discrete, the integral in Equation (10.31)
becomes a sum. The steps leading to (10.33) will not change except for switch-
ing all the integrals to summations. In particular, the dipole moment of NV
point sources {Qy 5, located at {ry}#_,, turns out to be

N
Po =Y Qiry. (10.35)

k=1
For the special case of two electric charges ¢; = +¢q and ¢ = —¢, we obtain®
p =qri —qra = q(r; —12). (10.36)

Thus, the dipole moment of a pair of equal charges of opposite sign is the
magnitude of the charge times the displacement vector from the negative to
the positive charge.

Example 10.5.1. Electric dipoles are fairly abundant in Nature. For example,
an antenna is approximated as a dipole at distances far away from it; and in atomic
transitions one uses the so-called dipole approximation to calculate the rate of
transition and the lifetime of a state.

Let us write the explicit form of the potential of a dipole, i.e., the second term on
the RHS of Equation (10.33). In Cartesian coordinates, in which the dipole moment
is in the z-direction (so that p = pé.), the potential can be written as

31t is customary to denote the electric dipole moment by p with no subscript.
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ke . ke kepz
Paip(,9,2) = p2 P T s TP g2 oy soyase

More important is the expression for potential in spherical coordinates:

cos 6

~
Paip(r, 0, ) = kef & 6. = kef cos . (10.37)
T T

The azimuthal symmetry (independence of ¢) comes about because we chose p to
lie along the z-axis. -

10.6 Fourier Series

Power series are special cases of the series of functions in which the nth func-
tion is (z — a)™—or simply z"—multiplied by a constant. These functions,
simple and powerful as they are, cannot be used in all physical applica-
tions. More general functions are needed for many problems in theoretical
physics.

The most widely used series of functions in applications are Fourier series
in which the functions are sines and cosines. These are especially suitable for
periodic functions which repeat themselves with a certain period. Suppose
that a function f(z) is defined in the interval (a,b). Can we write it as a
series in sines and cosines, as we did in terms of orthogonal polynomials [see
Theorem 7.5.2]? Let L = b— a denote the length of the interval, and consider
the functions

. 2nmx o 2nmx
sin S
L’ L
Let us try the series expansion
f(x)=ao+ OOE ap, COS 2nm + by, sin 2nm (10.38)
— Qo P n L n L ) .

where we have separated the n = 0 term. Now the sine and cosine terms have
the following easily obtainable useful properties:

b b b
2 2 2 2
/a sin n;mc dx = /a cos n;x dx = /a sin n;mc cos nzmc dr =0,
/b . 2nmx . 2mTz {0 if m#n,
sin dx =

LMoL L/2 if m=n#0,

/b 2nmx 2mrx 0 if m #n,
cos cos dx = ]
a L L L/2 if m=n#0.
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These properties suggest a way of determining the coefficients of the series
for a given function as in the case of orthogonal polynomials. If we integrate
both sides of Equation (10.38) from a to b, we get?

b b b o
2nmx . 2nrwx
/Gf(x)dx:ao/ dx—f—/a Z(ancos I + by, sin I >dx

b
2
= —aao+Zan/ cos d$+Zb/bln mm:da:
~ -

—O =0

or f: f(z)dx = apL. This yields

b
= i/ f(x)de. (10.40)

Multiplying Equation (10.38) by cos(2mmz/ L) and integrating both sides from
a to b, we obtain

b
2
/f(a:)cos nzmc dx

b
2 2 2
= ao/a cos nzmc dr + / Z <an cos Iir + b,, sin ngrx) cos Tr];mc dx

2 2 b2 2
_O+Zan/ cos nmc mmcd —|—Zb/ i nmvcos nzmcdgc

=anL/2,

where we used Equation (10.39). This yields

/ f(z 2"” da. (10.41)

Similarly, multiplying both sides of Equation (10.38) by sin(2mmz/L) and
integrating from a to b, yields

/f i 2"” da. (10.42)

Equations (10.38), (10.40), (10.41), and (10.42) provide a procedure for
representing a function f(x) as a Fourier series. However, the RHS of Equation
(10.38) is periodic. This means that for values of x outside the interval (a, b),
f(z) is also periodic. In fact, from Equation (10.38), we have

4Here we are assuming that the series converges uniformly so that we can switch the
order of integration and summation. This assumption turns out to be correct, but we shall
forego its (difficult) proof.
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= 2nm(x + L) . 2nm(x+ L)
f(x—i—L):ao—i—Z{ancos I + by, sin I

n=1

= 2 2
_a0+2{ancos( n;/m: +2mr> —l—bnsin( n;x +2n7r>}
n=1

> 2 2
ao+z (ancos n]jm: + by, sin ang) = f(x).
n=1

Thus, f(x) repeats itself at the end of each interval of length L, i.e., it is pe-
riodic with period L. Fourier series is especially suited for representing such
functions. In fact, any periodic function has a Fourier series expansion, and
the simplicity of sine and cosine functions makes this expansion particularly
useful in applications such as electrical engineering and acoustics where peri-
odic functions in the form of waves and voltages are daily occurrences. Let
us look at some examples.®

Example 10.6.1. In the study of electrical circuitry, periodic voltage signals of
different shapes are encountered. An example is the so-called square wave of height
Vo, and duration and “rest duration” T [see Figure 10.3(top)]. The potential as a
function of time, V (¢), can be expanded as a Fourier series. The interval is (0,27T),
because that is one whole cycle of potential variation. We thus write

= 2nmt 2nmt
V(t) =ao+ nz::l (an cos ;L; + by, sin ;L; ) (10.43)
1
0.8
0.6
0.4
0.2
-0.2 1 2 3 4 5 6

Figure 10.3: Top: The periodic square-wave potential with Vo = 1 and T = 2.
Bottom: Various approximations to the Fourier series of the square-wave potential. The
dashed plot is that of the first term of the series, the thick gray plot keeps 3 terms, and
the solid plot 15 terms.

5While Taylor series expansion demands that the function be (infinitely) differentiable,
the orthogonal polynomial and Fourier series expansion require only piecewise continuity.
This means that the function can have any (finite) number of discontinuities in the interval
(a,b). Thus, the expanded function can not only be nondifferentiable, it can even be
discontinuous.

square wave
potential
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with
1 [2T
ap = QT/) V(t) dt,
2 2T 2nmt 1 [T nmt
an = 2T/o V() cos oT dt = T/o V() cos T dt, (10.44)
1 [2T
by, = T/o V(t)sin "
Substituting

1 T
= Vodt = SV
ao o1 J, 0 5 Vo,
1 /T
an:T ; Vocosn dt =0,
and
Vo T nat |7
bn = /Vosm 7_Tn7rCOSTO

(1 —cosnm) = 7‘1/# 1-(-1)"].

nm

Thus, there is no contribution from the cosine sum, and in the sine sum only the
odd terms contribute (b, = 0 if n is even). Therefore, let n = 2k + 1, where k now
takes all values even and odd, and substitute all the above information in Equation
(10.43), to obtain

V(t) =1V +Z (2k‘f1)7r [1 - (a2 s R DT

_ sin[(2k + 1)7t/T)
B {1+ Z 2k +1 }

The plots of the sum truncated at the first, third, and fifteenth terms are shown
in Figure 10.3(bottom). Note how the Fourier approximation overshoots the value
of the function at discontinuities. This is a general feature of all discontinuous

functions and is called the Gibb’s phenomenon.® m

Example 10.6.2. Another frequently used potential is the sawtooth potential.
The interval is (0,7") and the equation for the potential is

V(t):Vo,} for 0<t<T.

6 A discussion of Gibb’s phenomenon can be found in Hassani, S. Mathematical Physics:
A Modern Introduction to Its Foundations, Springer-Verlag, 1999, Chapter 8.
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The coefficients of expansion can be obtained as usual:

w-" [ wla—1v
O*T o OT — 9 0,
2 (T t 2nmt 2Vo T 2nmt
an:T ; VOTCOS T dt = T2/o t cos dt
W [ T onrt|” T /T, It
= t — dt » =0
T {2 T, omr )y TUT ’

and

AR R

2Vo T omnt|Y T 4T onmt Vo
= — t dtp =— .
T2 { omr’ T o * 2nm /0 s nmw

Substituting the coefficients in the sum, we get

Vo . 2nwt % 2 X sin(2nwt/T
V(t):;vo—zn;sm r = 20{1_7TZ (n / )}.

n=1 n=1

T T
b, — 2 / Vo t . 2nmt gt — 2o / tin 2nmt gt
T J 0 T

The plot of the sawtooth wave as well as those of the sum truncated at the first,

third, and fifteenth term are shown in Figure 10.4. [ ]
1 F
08
0.6
04t
02¢F
1 2 3 4 5 6

Figure 10.4: Top: The periodic sawtooth potential with V; = 1 and T' = 2. Bottom:
Various approximations to the Fourier series of the sawtooth potential. The dashed plot
is that of the first term of the series, the thick gray plot keeps 3 terms, and the solid
plot 15 terms.

Historical Notes

Although Euler made use of the trigonometric series as early as 1729, and d'Alembert
considered the problem of the expansion of the reciprocal of the distance between
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Application of Common Series

two planets in a series of cosines of the multiples of the angle between the rays from
the origin to the two planets, it was Fourier who gave a systematic account of the
trigonometric series.

Joseph Fourier did very well as a young student of mathematics but had set
his heart on becoming an army officer. Denied a commission because he was the son
of a tailor, he went to a Benedictine school with the hope that he could continue
studying mathematics at its seminary in Paris. The French Revolution changed
those plans and set the stage for many of the personal circumstances of Fourier’s
later years, due in part to his courageous defense of some of its victims, an action
that led to his arrest in 1794. He was released later that year, and he enrolled
as a student in the Ecole Normale, which opened and closed within a year. His
performance there, however, was enough to earn him a position as assistant lec-
turer (under Lagrange and Monge) in the Ecole Polytechnique. He was an excellent
mathematical physicist, was a friend of Napoleon, and accompanied him in 1798 to
Egypt, where Fourier held various diplomatic and administrative posts while also
conducting research. Napoleon took note of his accomplishments and, on Fourier’s
return to France in 1801, appointed him prefect of the district of Isere, in south-
eastern France, and in this capacity built the first real road from Grenoble to Turin.
He also befriended the boy Champollion, who later deciphered the Rosetta stone
as the first long step toward understanding the hieroglyphic writing of the ancient
Egyptians.

Like other scientists of his time, Fourier took up the flow of heat. The flow was
of interest as a practical problem in the handling of metals in industry and as a
scientific problem in attempts to determine the temperature at the interior of the
Earth, the variation of that temperature with time, and other such questions. He
submitted a basic paper on heat conduction to the Academy of Sciences of Paris
in 1807. The paper was judged by Lagrange, Laplace, and Legendre, and was not
published, mainly due to the objections of Lagrange, who had earlier rejected the
use of trigonometric series. But the Academy did wish to encourage Fourier to
develop his ideas, and so made the problem of the propagation of heat the subject
of a grand prize to be awarded in 1812. Fourier submitted a revised paper in 1811,
which was judged by the men already mentioned, and others. It won the prize but
was criticized for its lack of rigor and so was not published at that time in the
Mémoires of the Academy.

He developed a mastery of clear notation, some of which is still in use today. (The
placement of the limits of integration near the top and bottom of the integral sign was
introduced by Fourier.) It was also his habit to maintain close association between
mathematical relations and physically measurable quantities, especially in limiting
or asymptotic cases, even performing some of the experiments himself. He was
one of the first to begin full incorporation of physical constants into his equations,
and made considerable strides toward the modern ideas of units and dimensional
analysis.

Fourier continued to work on the subject of heat and, in 1822, published one of
the classics of mathematics, Théorie Analytique de la Chaleur, in which he made
extensive use of the series that now bears his name and incorporated the first part
of his 1811 paper practically without change. Two years later he became secretary
of the Academy and was able to have his 1811 paper published in its original form
in the Mémoires.
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10.7 Multivariable Taylor Series

The approximation to which we alluded at the beginning of this chapter is
just as important when we are dealing with functions depending on several
variables as those depending on a single variable. After all, most functions
encountered in physics depend on space coordinates and time. We begin with
two variables because the generalization to several variables will be trivial
once we understand the two-variable case.

A direct—and obvious—generalization of the power series to the case of a
function f(u,v) of two variables about the point (ug,vo) gives

fu,v) = ago + aro(u — ug) + ap1 (v — vo) + ago(u — ug)?
+ ap2(v — U0)2 + a1 (u — ug)(v — vo) + aso(u — u0)3
+ ag1 (u — ug)* (v — vo) + a12(u — ug) (v — vg)?
+agz(v —vg)® 4+ . (10.45)

The notation used above needs some explanation. All the a’s are constants
with two indices such that the first index indicates the power of (u —ug) and
the second that of (v — vp). To obtain a Taylor series, we need to relate a’s
to derivatives of f. This is straightforward: To find ay;, differentiate both
sides of Equation (10.45) k times with respect to u and j times with respect
to v and evaluate the result at (ug, vg). Thus, to evaluate ago, we differentiate
zero times with respect to v and zero times with respect to v and substitute
ug for u and vy for v on both sides. We then obtain

fluo,v0) =app+0+0+---4+0+--- = apo.

By differentiating with respect to u and evaluating both sides at (ug, vo), we
obtain

O1f(uo,v0) =04+a10+0+---+0+4+--- = aj.
Similarly,
02 f(uo,v0) =0+0+ap1 +0+---+0+ - =ao,
0101 f (ug,vo) = 97 f (ug, vo) = 2a20,
0205 f (ug,v0) = 05 f(uo, vo) = 2ap2,
0201 f (ug,vo) = an

We want to write Equation (10.45) in a succinct form to be able to extract
a general formula for the coefficients. An inspection of that equation suggests
that
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It is more useful to collect terms of equal total power together. Thus, writing
m = k + 7, and noting that j cannot be larger than m, we rewrite the above
equation as

oo m

flu,v) = Z Z ajom—j(u —ug)! (v —vg)™ 7.

m=0 j=0
Let us introduce the notation 0y, i, for k differentiations with respect to the
first variable, and n — k differentiations with respect to the second:”

o f
Oukdyn—Fk
and apply it to both sides of the sum above. Evaluating the result at (ug, vg),
we obtain

8k7n7kf =

oo m

Ok n—r f (uo,v0) = Zzajm iOkm—k {(u —up)? (v —vg)™ 7}

m=0 j=0

(uo,v0)

If j <k or m — j <n — k then the corresponding terms differentiate to zero.

On the other hand, if j > k or m — 5 > n — k then some powers of u — ug or

v — vo will survive and evaluation at (ug,vg) will also give zero. So, the only

term in the sum that survives the differentiation is the term with j = k and
— j =n — k which gives kl(n — k)!. We thus have

Okm—k f(uo, vo)

-k f(uo,v0) = kNn — k)lakn—k = akn—k = Kl(n—k)

and the Taylor series can finally be written as

Z Z " i z;f_uo,'vo) (u— ug)* (v —v9)" " (10.46)

n=0 k=0

Sometimes this is written in terms of increments to suggest approximation as
in the single-variable case:

Flu+ Au, v+ Av) Z Z O (u “) (Auw)F(Av)"F, (10.47)

(n—%k
n=0 k=0 k’fl

where we used (u,v) instead of (ug,vp). Once again, the first term in the
expansion is f(u,v) and the rest is a correction.

The three-dimensional formula should now be easy to construct. We write
this as®

z f anUOawO)
(u, v, w) Z Z jk i1k (u—up)" (U vo)’ (U} wo)k. (10.48)
n=0i+j+k=n

"This notation is not universal. Sometimes agj is used with the understanding that
k+j=n.

8The symbol QZ.k represents the nth derivative with ¢ differentiations with respect to the
first variable, j differentiations with respect to the second variable, and k differentiations
with respect to the third variable, such that i + j + k = n.
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For a given value of n, suggested by the outer sum, the inner sum describes a
procedure whereby all terms whose ¢, 7, and k indices add up to n are grouped
together. As a comparison, we also write Equation (10.46) in this notation:

Sy Byt 0
n=0 j+k=n

The three-dimensional Taylor series in terms of increments becomes

flu+ Au, v+ Av,w + Aw)
u, v, W . ,
= Z 3 ”kf' | )(Au)z(Av)J (Aw)*, (10.50)
i1k
n=0i+j+k=n
where again (ug, v, wo) has been replaced by (u, v, w).

Example 10.7.1. As an example we expand e® sin y about the origin.® Using the
notation in Equation (10.49), the coefficients, within a factor of j!k!, can be written
as

95, (€” siny) = 8n (e” siny) ‘ = aj_ (e*) o (siny)
J (0,00 Ozxidy* (0,0) Oz w=0 Oy* y=0
1
or .
= oy (siny) o

The first few terms of the Taylor expansion of this function can now be written

down: ) 5 5 5
T _ ry Yy Ty ry
e'siny =y +xy + 9 6 6 + 6 + .

One could also obtain this result by multiplying the Taylor expansions of e¢* and

siny term by term. ]

10.8 Application to Differential Equations

One of the most powerful methods of solving an ordinary differential equation
(ODE) is the power series method, and we shall use this method to solve some
of the most recurring differential equations of mathematical physics in Chap-
ters 25 through 27. Power series are uniformly and absolutely convergent, and
can be differentiated term by term. This makes them a good candidate for
representing the (unknown) solutions of differential equations. The relation
among the derivatives, expressed in a differential equation, becomes a relation
among coefficients of the power series, the so-called recursion relation, which
is enough to determine all the relevant coefficients of the series, leaving only
those coeflicients which require initial conditions for their determination. The
best way to understand the method is to look at an example.

9The use of z and y in place of u and v should not cause any confusion.
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Example 10.8.1. The differential equation

dzx
=b
a =

can be assumed to have a power series solution of the form

z(t) = i cnt”.
n=0

This power series will be uniformly and absolutely convergent for some interval
on the real line, and as such, can be differentiated. Differentiating the foregoing
equation and substituting the result in the differential equation, we get

oo oo
Z neat" ' =0 Z cnt”.
n=1 n=0

The essential property of power series is the equality of the corresponding coefficients
when two such series are equal (see Theorem 10.1.4). Before using this property in
the above equation, however, we need to reexpress the LHS so that the power of ¢
is the same on both sides. We thus change the dummy index from n to m =n — 1,
so that all n’s are replaced by m + 1. We then get

LHS = Z (m+1)cmprt™ = Z (m+1)emert™.
m—+1=1 m=0

Since we are free to use any dummy index we please, let us change m to n so that
we can compare the two sides of the equation. This gives

Z(n + Depyit" = Z bent™ = (n 4 1)cnt1 = ben. (10.51)
n=0 n=0

We can immediately test for the convergence of the series using the ratio test:

gttt bt

n+1

Cn+1
cnpt™

= lim

n— oo

lim

n— oo

then/(n + 1)‘

n— oo ’ Cn

-

for all b and ¢t. Thus, regardless of the value of b and ¢, the series converges.

We have established the convergence of the series representation of the solution
of our differential equation. We now have to find the coefficients. This is done by
rewriting Equation (10.51) as

b

n 10.52
nt 1€ (10.52)

Cn+1 =

which is called the recursion relation of the series. By iterating this relation we
can obtain all the coefficients in terms of the first one as follows:

Cny1 = b Cn = b bc _v c
T 1™ T a1\ ! T (n+1)n ot
v b B v
= (n+ l)n n— 1Cn_2 = (n + l)n(n _ 1) Cn—2.
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Since we are interested in finding c,, we can rewrite this equation as

b3
nn—1)(n—2)

Cn = Cn—3,

where we have lowered all n’s on both sides by one unit. This relation can easily be
generalized to an arbitrary positive integer j:

bl
T nn—1)-(n—j+ 1)
In particular, if we set j = n, we obtain

b" b"

o - 10.53
¢ n(n—l)-~~2-1co nt © ( )

which upon substitution in the original series, yields

— b, — (bt)"
x(t) = ZCOn't :COZ (n? 2006bt7
n=0 : n=0 :

where we have used Equation (10.12). The unknown cg is determined by the value
of z(t) at a given t, usually ¢t = 0. ]

There are of course much easier ways of solving the simple differential
equation above, and the method used may appear to “kill a fly with a sledge-
hammer.” Nevertheless, it illustrates the almost mechanical way of obtaining
the solution without resorting to any “tricks” used so often in arriving at the
closed-form solutions of differential equations.

Example 10.8.2. Let us look at another familiar example. The motion of a mass
m driven by a spring with spring constant k is governed by the differential equation

md2mf—kav:> d2x+kI*0
2 a2 m~

Once again we assume a solution of the form

2(t) =3 ant” = a0+ art +ast® + -+ anl™ + -

n=0

and differentiate it twice to get
dx =
= Znantn_l =ai+2ast+ -+ nant" 4o,

n—2

2 o0
dw :Zn(n—l)ant"ﬂ:2a2+3~2a3t+~~~+n(n—1)ant 4.

Substitute 7 = n — 2 to bring the power of ¢ into a form that can be compared with
the RHS. This amounts to substituting j + 2 for all n’s:

[e'e]

= Z(j +2)(j + ajat’ = Z(n +2)(n + Dans2t".

7=0 n=0
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In the last step we simply changed the dummy index. Substituting this and the
series for z(t) in the differential equation, we obtain

i(n+2 n+ Dantat”™ + Zant
n=0

which gives the recursion relation

k/m

k
2 1an n — n = -
(n+2)(n+1)a +2+ma 0 = ant2 (n+2)(n+1)

(10.54)

Application of the ratio test [as given by Equation (9.10) with j = 2] immediately
yields that the series is convergent for all values of k/m and all values of ¢. If we
lower the value of n by two units on both sides, we get

__ k/m Gy — k/m B k/m s
T Tt - 1) n(n—l){ (n—2)(n — 3) ”‘}
(—k/m)?

= An—4

n(n —1)(n —2)(n —3)
S v S SO LY
n(n —1)(n —2)(n — 3) (n—4)(n —5)
(—k/m)?

~ n(n—1)(n—2)(n—3)(n—4)(n—5)"""°

_ (—k/m)’

T nn—1)--(n—2i+1) "

where i is some positive integer. Because of the form of this equation, we should
consider two cases: For even n, we let ¢ = n/2 or n = 2i to obtain

(=k/m) - (=k/m)’
2i(2% —1)---2-1°° (20)!

a2; = ao

and for odd n we let ¢ = (n — 1)/2 or n = 2i + 1 to get

(—k/m)’ _ (=k/m)"

T iy 12621 T (2041

Thus all even coefficients are given in terms of ao, and all odd ones in terms of a;.
Absolute convergence of the series now allows us to rearrange terms and separate
even and odd terms to write

f: ant” + f: ant" = f: agjt2j + f: a2j+1t2j+1
iz s

n=even n=odd

:Z /‘m aot? + i k/m L2

J:0

—o 3 gy (Vo) i 3 g (V)
= Acos (\/k/m t) + Bsin (\/k/m t) ,
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where A = ag and B = al/\/k/m are arbitrary constants to be determined by the
initial conditions of the problem. The Maclaurin series for sine and cosine used
above are given in Equations (10.13) and (10.14). ™

The examples above, although illustrating the utility of the power series
method of solving differential equations, should not give the impression that
one needs no other methods. The closed-form solutions are sometimes essen-
tial for interpreting the physical properties of the system under consideration.
For example, if the mass of the preceding example is in a fluid, so that a
damping force retards the motion, the closed-form solution will turn out to
be

i _ \/k

z(t) = Ae™ 7" cos(wt + ), w= ,

m

where v is the damping factor and « is an arbitrary phase. Deciphering this

closed form from its power series expansion, obtained by solving the differ-

ential equation by the series method, is next to impossible. The closed-form

solution shows clearly, for instance, how the amplitude of the oscillation de-

creases with time, an information that may not be evident from the series

solution of the problem. Nevertheless, on many occasions, a closed-form so-

lution may not be available, in which case the power series solution will be

the only alternative. In fact, many of the functions of mathematical physics

were invented in the last century as the power series solutions of differential
equations.

10.9 Problems

10.1. Write the first five terms of the expansion of the binomial function
(10.15) for (a) a = 3, (b) a =1, and (c) a = 3.

27 4

10.2. Find the rational number of which each of the following decimal num-
bers is a representation:

(a) 0.5555 .. .. (b) 0.676767 .. .. (c) 0.123123.. ..
(d) 1.1111 ... (e) 2.727272.. .. (f) 1.108108. . ..

10.3. Find the interval of convergence of the Maclaurin series for each of the
familiar functions discussed in Section 10.2.

10.4. Using the series representation of the familiar functions evaluate the
following series:

00 (_1)k 2k+1 00 2k+1 00 k+1
(@) Dopeq zz : (b) >rzo 1(2;.;)! : () Xrzo <2+1>!-

_q1)nt2,8n+1 RS

CID SN O it s
n=1 n3n . e) Zn:() 33n+1(2n)! - () Zm:() (2m—+1)!"

10.5. Derive Equation (10.17).
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10.6. Use the Maclaurin series to find the limits of the following ratios as
z — 0:
2¢/1 — 22 4 2% — 2 sinz — In(1 4 z)

2cosx — 2+ 22 et —x —cosT

10.7. (a) Use the Maclaurin series expansion up to x2 to find the following
limit:
. 2Y1—6x —2cosx + 4sinz + Tz?
lim
=0 In(l—xz)+e*—1

(b) Use the Maclaurin series expansion up to x* to find the following limit:

i e” —In(1 +2?) — cosz + sinz — 2z

im .

z—0 24+ a2 +cosz—5

10.8. In the special theory of relativity the energy F of a particle of mass m
and speed v is given by

ch

E= ,
V1= (/o

where ¢ is the speed of light. Show that for ordinary speeds (v << ¢), one
obtains the classical expression for the kinetic energy, defined to be E minus
the rest energy.

10.9. The gravitational potential energy for a particle of mass m at a distance
r from the center of a planet of radius R and mass M is given by

O(r)=— + C, r > R.

(a) Find C so that the potential at the surface of the planet is zero.

(b) Show that at a height h << R above the surface of the planet, the potential
energy can be written as mgh. Find g in terms of M and R and calculate
the numerical value of g for the Earth, the Moon, and Jupiter. Look up the
data you need in a table usually found in introductory physics or astronomy
books.

10.10. Prove the hyperbolic identities of Equation (10.21).

10.11. Show that

sech? z = 1 — tanh® z, cosech’? z = coth®z — 1,
and
2 d 2
tanh x = sech” z, cothx = — cosech” .
x x

10.12. Derive Equation (10.23).
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10.13. Use L’Hopital’s rule to obtain the following limits:

(a) lim,_o G100, (b) Tim, e wln (24]).

(c) lim,_, V2Z Ve (d) lim,—o ", .

(e) im 1 (tanx)®os*. (f) limg—o(Inx) tan .
1}—?271'

10.14. Use L’Hopital’s rule to obtain the limits of Example 10.4.1.

10.15. Show that the following sequences converge and find their limits:

1 2 1
nn’ " , nln <1—|— ), P(n)e™",
np = 2" n

where p is a positive number and P(n) is a polynomial in n.

10.16. The Yukawa potential of a charge distribution is given by

—k|r—r’| /
B(r) :/ kee dq(r )7
Q

v — /|

where £ is a constant. By expanding |[r —r’| up to the first order in 7' /r, show
that ) —_— Ry

e Kr+1)e™™"
RO Rl e e

®(r)

where p is the dipole moment of the charge distribution.

r

10.17. A conic surface has an opening angle of 2« and a lateral length a as
shown in Figure 10.5. It carries a uniform charge density o.

(a) Show that the electrostatic potential ® at a distance r from the vertex on
the axis of the cone is

O(r) = 2mkeo sina (\/7"2 +a? —2arcosa — 7“)

. a—rcosa—+ 1?2+ a2 — 2arcosa
+ (2mkeosinacos a)r In .
r —TCos

Figure 10.5: The cone of Problem 10.17.
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(b) Now suppose that r > a, expand the square roots and the log up to the
second power of the ratio a/r, and show that

2
a”

\/7"2 + a2 —2arcosa ~r —acosa + ) sin® o

r

and

a?

02 (14 cosa).

a
Inla—rcosa+ Vr2+a2 —2arcosa| ~In|r —rcosal +  +
r
(¢) Put (a) and (b) together to show that the potential can be approximated
by
nkeoa? sina
b(r)y~ "¢ .
T

Write this expression in terms of the total charge in the cone. Do you get
what you expect?

10.18. Recall from your introductory physics courses that the electric field at
a distance p from a long uniformly charged rod has only a radial component
which is given by E = \/2megp, where A is the linear charge density. Show
this result by setting a = —L/2 (why?) and taking the limit of infinite L in
Equation (4.13).

10.19. After calculating the potentials of Problems 4.11 and 4.12 for finite
L, find their limits when L — oo.

10.20. The potential of a certain charge distribution with total charge @ is
given by

o= Fe /[1n|r_r'| ~lnb] dg(r'),
ao

where k., ag, and b are constants.
(a) Show that for ’ < r, one can use the approximation

,,,,/
Injr —1r'|~Inr— &, -&..
r

(b) Use (a) to show that the multipole expansion of ® only up to the dipole
moment is ) L
b ~ eQ In r eP T

ag b an r2 '

10.21. Find the dipole moment of a uniformly charged sphere about its center.

10.22. A voltage is given by the graph shown in Figure 10.6.

(a) Write the function V(¢) describing the voltage for 0 < ¢ < 27T

(b) If this voltage repeats itself periodically, find the Fourier series expansion
of V(¢).
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V(1)

T 2T

Figure 10.6: The voltage of Problem 10.22.

10.23. A periodic voltage with period 27 is given by

Vit) = Vo cos(mt/T) if —T/2<t<T/2,
o it T/2< [ <T.

(a) Sketch this function for the interval —37 < ¢ < 3T.

(b) Find ag and aq, the first two cosine coefficients of the Fourier series ex-
pansion of V(¢).

(¢) Find a, and all b, the sine coefficients.

(d) Write down the Fourier series of V(). Evaluate both sides at ¢t = 0 to

show that
m — (="
=1-2 .

This is one of the many series representations of .

10.24. An electric voltage V (¢) is given by

V(t):%sin<;;>, 0<t<T

and repeats itself with period T'.
(a) Sketch V (¢) for values of ¢ from t =0 to t = 3T.
(b) Find the Fourier series expansion of V (t).

10.25. A periodic voltage is given by the formula

V() = Vosin(rt/2T)  if 0<t<T,
0 if T<t<oT.

(a) Sketch the voltage for the interval (—4T,4T).
(b) Find the Fourier series representation of this voltage.

10.26. A periodic voltage with period 47 is given by

t2
Voll— if —T<t<T
V() = ( T?) 1 ==
0 if T <|t| <2T.
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(a) Sketch this function for the interval —67 < ¢ < 67.

(b) Find ag, an, and b,, the coefficients of the Fourier series expansion of
V(t).
(¢) Write down the Fourier series of V (t).

(d) Evaluate both sides at ¢t = T'. Do you obtain an identity? If not, what
sort of relationship is obtained if we demand the equality of both sides?

10.27. Write out Equation (10.50) up to the second power in the A’s.
10.28. Find the Taylor series expansion of e In(1 + y) about (0, 0).

10.29. (a) Find the multivariable Taylor series expansion of ¥ about (0, 0).
(b) Now let z = zy, expand the function e*, and substitute zy for z in the
expansion. Show that the results of (a) and (b) agree.

10.30. Determine all the solutions of the differential equation

dx
2tx =0
dt + 2tx

using infinite power series. From the power series solution guess the closed-
form solution. Now suppose that (0) = 1. What is the specific solution with
this property?

10.31. Consider the differential equation

dz
3t2x = 0.
dt + T

(a) Use a solution of the form Y j ant™ and find a; and as.

(b) Find a recursion relation relating coefficients.

(c) From the recursion relation determine the radius of convergence of the
infinite series.

(d) Find all coefficients in terms of only one.

(e) Guess the closed-form solution from the series. Now suppose that z(0) = 2.
What is the specific solution with this property? What is the numerical value
of z(—2)?



Chapter 11

Integrals and Series as
Functions

The notion of a function as a mathematical entity has a long history as rich as
the history of mathematics itself. With the invention of the coordinate plane in
the seventeenth century, functions started to acquire graphical representations
which, in turn, facilitated the connection between algebra and geometry. It
was really calculus that triggered an explosion in function theory, and indeed,
in all mathematics. With calculus came not only the concept of differentiation
and integration, but also—in the hands of Newton and his contemporaries,
as they were studying no smaller an object than the universe itself—that
of differential equations. All these concepts, in particular integration and
differential equation, had a dramatic influence on the notion of functions. The
aim of this chapter is to give the reader a flavor of the variety of functions
made possible by integration and differential equations.!

11.1 Integrals as Functions

Integrals are one of the most convenient media in which new functions can be
defined. As we saw in Chapter 3, if the integrand or the limits of integration
include parameters, those parameters can be treated as variables and the
integral itself as a function of those parameters. In this section, we list some
of the most important functions that are normally defined in terms of integrals.

1We shall not solve any differential equations in this chapter, but simply quote solutions
to some of them in the form of power series. We shall come back to differential equations
later in the book.
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11.1.1 Gamma Function
Consider the integral

[(z) = / t* e tdt, (11.1)
0

where x is a real number.? Integrate Equation (11.1) by parts with u = ¢t*~!
and dv = e~ dt to obtain

=uv 77vdu
~ 7SN
[(z) = t””il[—eft (x—1) / (A 2 -t dt
~ ~ / \O ~ -
=0 =I'(z—1)
or
I(z) = (z — )Tz — 1), (11.2)

In particular, if x is a positive integer n, then repeated use of Equation (11.2)
gives
'n)=n—-1)I'n-1)=(n-1)(n—-2)T(n-2)
=n-1)n-2)---1-I(1) = (n— 1)

where we used the fact that I'(1) = 1 as the reader may easily verify using
Equation (11.1). This equation is written as

I'(n+1)=n! for positive integer n. (11.3)
Let us rewrite (11.2) as I'(z — 1) =T'(z)/(x — 1). Then,

r
lim1 I(z—1)=lim (x)l — 00

rx—1 1 —

because I'(1) = 1. Thus, I'(0) = oco. Similarly,

r o
lim I'(z — 1) = lim (=) — ( )—>oo,
x—0 z—0x — 1 —1
ie, I'(—1) = oo. It is clear that I'(n) = oo for any negative integer n or zero.
It turns out that these are the only points at which I'(x) is not defined.

Definition 11.1.1. The function defined by Equation (11.1) is called the
gamma function, which, because it satisfies Equation (11.3), is the gener-
alization of the factorials to noninteger values. We sometimes write

INz+1)=2a! for any real x (11.4)

and call T' the factorial function. The gamma function is defined for all
values of its argument except zero and negative integers, for which the gamma
function becomes infinite.

2The most complete analytic discussion of I'(z) allows z to be complex and uses the
full machinery of complex calculus. Here, we shall avoid such completeness and refer the
reader to Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, where a full discussion of I'(z) can be found in Section 11.4.
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It follows from Equation (11.2) that by repeatedly subtracting 1 from the
argument of the gamma function, we can reduce the evaluation of I'(z) to the
case where z lies between 0 and 1. Such an evaluation can be done numerically
and the results tabulated.

Example 11.1.1. In this example, we evaluate I'(}). Equation (11.1) gives
)= / 2t at.
0
Change the variable of integration to u = v/t with du = (1/2+/t) dt. Then
F(é):2/ e_uzdu:2(é\/7r):\/7r,
0

where we used the result of Example 3.3.1.
With I'(}) at our disposal, we can evaluate the gamma function at any half-
integer value by the remarks above. For example,

1"(7) — 5F(5) _ (5)(3)F(3) _ (5)(3)(1)F(1) _ 15\/71'.

22 )t g CACIACYLR) 8
Similarly, with I'(}) = —1I'(— ), we obtain
[(—3) =—2I(}) = =2/ m

It is instructive to generalize the result of the example above and find a
general formula for the gamma function of any half-integer. Such a formula
is related to the notion of the double factorial:

Definition 11.1.2. The double factorial (2n)!! [or (2n — )11 is defined as
the product of all even (or odd) integers up to 2n (or 2n —1).

Problem 11.1 gives the detail of the derivation of the following formulas:
@en)ll=2"nl =2"T(n+1),  (2n— D =D(n+ 2"z /2 (11.5)

An extremely useful approximation to the gamma function is the so-called
Stirling approximation which is valid for large arguments of the gamma
function and which we present without derivation?

ol =T(z +1) ~ V2re 2z +1/2, (11.6)

The Stirling formula works best when z is large. However, even for z = 10,
it gives v/2me 1010105 = 3598696, which is surprisingly close to the exact
value of 10! = 3628800. For z = 20, the Stirling formula yields 2.42 x 10'8
to three significant figures as opposed to the calculator result, which to the
same number of significant figures is 2.43 x 10'8. For larger and larger values
of x, the two results get closer and closer.

3For a derivation, see Hassani, S. Mathematical Physics: A Modern Introduction to Its
Foundations, Springer-Verlag, 1999, Chapter 11.
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11.1.2 The Beta Function

A function that sometimes shows up in applications is the beta function.
Consider

F(g;)F(y):/ tmfleftdt/ syflefst:/ / 7Ly Le=(H9) gt ds.
0 0 o Jo

Introduce the new variable u = t+ s and use it to rewrite the s integral. Since
the lower limits of both s and t are 0, the lower limit of the u integral will
also be 0. Similarly, the upper limit of w will be infinity. However, since s
and t are positive and their sum is u, the upper limit of £ cannot exceed wu.
Therefore,

I'(z)l(y) = /000 du /Ou dtt* N u—t)V e

Now introduce another variable w by t = uw. Since in the ¢ integration, u is
held constant, we have dt = udw, and the limits of integration for w are 0
and 1. This will allow us to write

o0 1
[(x)C(y) =/ due*“uwﬂ’*l/ dww* (1 —w)r L.
0 - o
=I(z+y)

The last integral defines the beta function. So,

B(z,y) = E((?i(z)) :/O dit" (1) (11.7)

where we changed the (dummy) variable of integration from w to t.
We can find another representation of the beta function by substituting
t =sin?@. Then

dt = 2sin 6 cos¥, 1—t=1-sin?6 = cos?¥,

and the limits of integration become 0 and /2. So,

/2
Bla.y) = 2 / (1 6)> " (cos )2 de. (11.8)
0

Historical Notes

Integration and differentiation and the whole machinery of calculus opened up en-
tirely new ways of defining functions. Of these, one of the most important is the
gamma function, which arose from work on two problems, interpolation theory and
antidifferentiation. The problem of interpolation had been considered by James Stir-
ling (1692-1770), Daniel Bernoulli (1700-1782), and Christian Goldbach. It was posed
to Euler and he announced his solution in a letter of October 13, 1729, to Goldbach.
A second letter, of January 8, 1730, brought in the integration problem.
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The interpolation problem had to do with giving meaning to n! for nonintegral
values of n, and the integration problem was the evaluation of an integral already
considered by Wallis, namely

1
/ (1 — )Y dt.
0

Euler showed that this integral led to our integral (11.1).

Leonhard Euler was Switzerland’s foremost scientist and one of the three
greatest mathematicians of modern times (Gauss and Riemann being the other two).
He was perhaps the most prolific author of all time in any field. From 1727 to 1783
his writings poured out in a seemingly endless flood, constantly adding knowledge
to every known branch of pure and applied mathematics, and also to many that
were not known until he created them. He averaged about 800 printed pages a
year throughout his long life, and yet he almost always had something worthwhile
to say. The publication of his complete works was started in 1911, and the end
is not in sight. This edition was planned to include 887 titles in 72 volumes, but
since that time extensive new deposits of previously unknown manuscripts have been
unearthed, and it is now estimated that more than 100 large volumes will be required
for completion of the project. Euler evidently wrote mathematics with the ease and
fluency of a skilled speaker discoursing on subjects with which he is intimately
familiar. His writings are models of relaxed clarity. He never condensed, and he
reveled in the rich abundance of his ideas and the vast scope of his interests. The
French physicist Arago, in speaking of Euler’s incomparable mathematical facility,
remarked that “He calculated without apparent effort, as men breathe, or as eagles
sustain themselves in the wind.” He suffered total blindness during the last 17 years
of his life, but with the aid of his powerful memory and fertile imagination, and
with assistants to write his books and scientific papers from dictation, he actually
increased his already prodigious output of work.

Euler was a native of Basel and a student of Johann Bernoulli at the University,
but he soon outstripped his teacher. He was also a man of broad culture, well
versed in the classical languages and literatures (he knew the Aeneid by heart),
many modern languages, physiology, medicine, botany, geography, and the entire
body of physical science as it was known in his time. His personal life was as placid
and uneventful as is possible for a man with 13 children.

Though he was not himself a teacher, Euler has had a deeper influence on the
teaching of mathematics than any other person. This came about chiefly through
his three great treatises: Introductio in Analysin Infinitorum (1748); Institutiones
Calculi Differentialis (1755); and Institutiones Calculi Integralis (1768-1794). There
is considerable truth in the old saying that all elementary and advanced calculus
textbooks since 1748 are essentially copies of Euler or copies of copies of Euler.
These works summed up and codified the discoveries of his predecessors, and are
full of Euler’s own ideas. He extended and perfected plane and solid analytic geom-
etry, introduced the analytic approach to trigonometry, and was responsible for the
modern treatment of the functions Inx and e®. He created a consistent theory of
logarithms of negative and imaginary numbers, and discovered that In z has an infi-
nite number of values. It was through his work that the symbols e, 7, and i = /—1
became common currency for all mathematicians, and it was he who linked them
together in the astonishing relation e = —1. Among his other contributions to
standard mathematical notation were sin x, cos z, the use of f(z) for an unspecified
function, and the use of > for summation.

321

Leonhard Euler
1707-1783



322

Integrals and Series as Functions

His work in all departments of analysis strongly influenced the further develop-
ment of this subject through the next two centuries. He contributed many important
ideas to differential equations, including substantial parts of the theory of second-
order linear equations and the method of solution by power series. He gave the first
systematic discussion of the calculus of variations, which he founded on his basic
differential equation for a minimizing curve. He discovered the integral defining the
gamma function and developed many of its applications and special properties. He
also worked with Fourier series, encountered the Bessel functions in his study of the
vibrations of a stretched circular membrane, and applied Laplace transforms to solve
differential equations—all before Fourier, Bessel, and Laplace were born.

E. T. Bell, the well-known historian of mathematics, observed that “One of the
most remarkable features of Euler’s universal genius was its equal strength in both
of the main currents of mathematics, the continuous and the discrete.” In the realm
of the discrete, he was one of the originators of number theory and made many far-
reaching contributions to this subject throughout his life. In addition, the origins
of topology—one of the dominant forces in modern mathematics—lie in his solution
of the Konigsberg bridge problem and his formula V' — E 4+ F' = 2 connecting the
numbers of vertices, edges, and faces of a simple polyhedron.

The distinction between pure and applied mathematics did not exist in Euler’s
day, and for him the entire physical universe was a convenient object whose diverse
phenomena offered scope for his methods of analysis. The foundations of classical
mechanics had been laid down by Newton, but Euler was the principal architect. In
his treatise of 1736 he was the first to explicitly introduce the concept of a mass-
point, or particle, and he was also the first to study the acceleration of a particle
moving along any curve and to use the notion of a vector in connection with velocity
and acceleration. His continued successes in mathematical physics were so numerous,
and his influence was so pervasive, that most of his discoveries are not credited to
him at all and are taken for granted in the physics community as part of the natural
order of things. However, we do have Euler’s angles for the rotation of a rigid body,
and the all-important Fuler—Lagrange equation of variational dynamics.

11.1.3 The Error Function

The error function, used extensively in statistics, is defined as

1 ® 2 2 /z 2
= e Vdt = e " dt (11.9)
\/ﬂ- —x \/7'(' 0

and has the property that erf(co) = 1. The error function erf(z) gives the
area under the bell-shaped (normal) probability distribution located between
—x and +z.

erf(z)

11.1.4 Elliptic Functions

Recall from calculus* that the element of length of a curve parameterized by

x=f@t), y=g), z=h(), 1 <t <ty

40r from our discussion of the parametric equation of curves in Chapter 4.
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in Cartesian coordinates is
L= /do® + dy? +dz2 = /[J/(OF + g/ (O + (0 dt,

where prime indicates the derivative. So, the length L of the curve connecting
the initial point (f(t1),g(t1), h(t1)) to the final point (f(t2),g(t2), h(t2)) is

L= t 2 VIF O+ [g' ()2 + [h/(1)]? dt. (11.10)

The length of many curves, some very complicated-looking, can be found
analytically using Equation (11.10). However, that of a simple curve such
as an ellipse turns out to be impossible! Let us see what we get when we
try to calculate the circumference of an ellipse. The parametric equation of
an ellipse of respective semi-major and semi-minor axes a and b lying in the
zy-plane is conveniently written as

xr =asint, y=bcost, z=0, 0<t<2m. (11.11)

Substitution of these equations in (11.10) yields

2m 2
L= V]acost]2 + [~bsint]? 4 [0]2 dt = Va2 cos2t + b2 sin®t dt
0 0

27 2m
= / \/aQ(l —sin?t) + b2sin’tdt = a V1 — k2 sin? tdt, (11.12)
0 0
where k? = (a? — b?)/a®. This innocent-looking integral does not succumb
to any technique of integration. It was this resistance to analytical solution
that prompted the nineteenth century mathematicians to study this and other

related integrals as functions in their own right.
The elliptic integral of the first kind is defined as

F k)z/w dt (11.13)
o= 0 \/l—kQSinzt '

with F' a function of two variables because the integral involves two parame-
ters, one appearing in the integrand and the other appearing as a limit.
The elliptic integral of the second kind is defined as

o]
E((p,k)z/o V1 - k2sin?t dt. (11.14)

The elliptic integral of the second kind can be interpreted as the length of
partial arcs of an ellipse. The circumference L of an ellipse with respective
semi-major and semi-minor axes a and b is simply

\/aQ —p2

L =aE(2m,k) where k= u
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It is common to define the complete elliptic integral of the first and
second kinds:

_ T /2 dt
K(k):F(27k):~/0 V1= k2sin®t
w/2
Bt =E (. 1) :/0 V1 - K2 sin® ¢ d. (11.15)

The reader may easily verify (Problem 11.10) that the total circumference of
an ellipse can be given in terms of complete elliptic integrals.

The parameterization given in Equation (11.11) is that of a horizontal
ellipse (a > b). However, one may wish to start with a vertical ellipse (a < b).
Then, as the reader may verify, one ends up with an integral similar to (11.14),
except that the coefficient of sin?t is +k2. Would this be a new elliptic
integral? Problem 11.9 shows that the new integral can be written as a sum
of the existing elliptic integrals.

Example 11.1.2. Elliptic integrals show up in areas of physics totally unrelated
to the circumference of an ellipse. Consider a pendulum of mass m and length [
displaced by an angle 6 from its equilibrium position as shown in Figure 11.1. When
the angle is 0, the velocity of the pendulum is 10 and its height is h. Conservation
of energy leads to

E=KE + PE = 'm(10)* + mgh = }mi*? + mg(l — l cos 0),
where E is the total mechanical energy of the pendulum. If 6,, is the maximum
angular displacement, then the total energy at this angle will be just the potential
energy.® It then follows that

1m(10)® + mgh = tml*0* + mg(l — lcos 0) = mg(l — L cos O),

or, after dividing both sides by ml,

;lé2 — gcosf = —gcosOp,. (11.16)

!

h

'

Figure 11.1: The pendulum displaced by an arbitrary angle 0.

5The KE is zero at 0., because the pendulum comes to a momentary stop there.
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The elementary treatment of the pendulum problem differentiates Equation
(11.16) with respect to time, assumes that the maximum angle—and therefore any
angle—is small, and approximates sin # with 6 in radians. This leads to
=0 bd+9% =0,

1266 + glfsind =0 or é—l—‘(l}sinG:O .

which is the equation of a simple harmonic oscillator® with w? = g/lorT = 27T\/l/g.
This is the famous result—known even to Galileo—that, for small angles, the period
of oscillation is independent of the angle.

A more advanced treatment makes no approximation for the angle and simply
integrates (11.16). Assuming that 6 > 0, Equation (11.16) gives

g [2g B _ g [.afOm) . o(0
dt 7\/l\/cos9 cos9m2\/l\/sm 9 sin® ( ,, |, (11.17)

where we used the trigonometric identity cos @ = 1 — 2sin?(6/2). Introducing a new

variable s given by
sin 4 = sin Om sin
2) = 2 *

differentiating this equation with respect to ¢, and using Equation (11.17) yields
O\ .
f; - \/?w ~ sin? ( ; ) sin? s. (11.18)

\/g gt — ds
! V1 —sin?(0,,/2) sin? s

which can be integrated to yield

L[ du ]l 0,
= \/9/0 V1= sin?(6m/2) sinu \/gF (S(H)vsm ) ) , (11.19)

where s = sin™![sin(6/2)/ sin(#:m/2)], and we have assumed that at ¢ = 0, the angle
0 is zero and therefore s = 0 as well.

Of particular interest is the period of the oscillation which is four times the time
it takes the pendulum to go from 6 = 0 to 8 = 0,,,. These values correspond to s = 0
and s = w/2. It follows that

/2
T—4 l/ du
9Jo  \/1—sin?(0,,/2)sin*u

_ l T . Om\ l . Om
:4\/gF(2,sm 2)4\/9K (sm 9 ) (11.20)

6Recall that the equation of a simple harmonic oscillator (SHO)—such as a spring-mass
system with mass m and spring constant k—is m& + kx = 0 or &+ (k/m)z = 0. It is shown
in elementary physics that the angular frequency of this SHO is w = \/k/m Thus, in
any SHO equation in which the second derivative appears with no coefficient, the coefficient
of the undifferentiated quantity is the square of the angular frequency.

This leads to

325

period of a
pendulum depends
on the amplitude
of oscillation.



326

Niels Henrik Abel
1802-1829

Integrals and Series as Functions

This shows clearly that for large maximum angles, the period does depend on the
amplitude. By expanding the integrand in a power series as developed in Chapter
10, one can obtain the deviation from constant period as powers of sin?(6,,/2). We
quote the result of such an expansion

l 1 .2 Gm 9 .4 Gm
T=2 1 e 11.21
ﬂ'\/g< +4sm 2—|—64sm 2—|— ) ( )
The reader is urged to verify this result (see Problems 11.11 and 11.12). ]

Historical Notes

The study of elliptical integrals can be said to have started in 1655 when Wallis
began to study the arc length of an ellipse. In fact he considered the arc lengths of
various cycloids and related these arc lengths to that of the ellipse. Both Wallis and
Newton published an infinite series expansion for the arc length of the ellipse.

In 1679 Jacob Bernoulli attempted to find the arc length of a spiral and encoun-
tered an example of an elliptic integral. He made an important step in the theory
of elliptic integrals in 1694. He examined the shape that an elastic rod will take if
compressed at the ends. He showed that the curve could be expressed in terms of
an integral, which was very similar to the one obtained by Wallis.

There is no doubt that Gauss obtained a number of key results in the theory
of elliptic functions, because many of these were found after his death in papers he
had never published. However, the acknowledged founders of the theory of elliptic
functions were Abel and Jacobi.

Niels Henrik Abel was the son of a poor pastor. As a student in Christiania
(Oslo), Norway, he had the luck to have Berndt Holmbde (1795-1850) as a teacher.
Holmbde recognized Abel’s genius and predicted when Abel was seventeen that he
would become the greatest mathematician in the world. After studying at Christia-
nia and at Copenhagen, Abel received a scholarship that permitted him to travel.
In Paris, he was presented to Legendre, Laplace, and Cauchy, but they ignored him.
Having exhausted his funds, he departed for Berlin and spent the years 1825-1827
with Crelle.

He returned to Christiania so exhausted that he found it necessary, he wrote, to
hold on to the gates of a church. To earn money he gave lessons to young students.
He began to receive attention through his published works, and Crelle thought he
might be able to secure him a professorship at the University of Berlin. But Abel
became ill with tuberculosis and died in 1829 when he was only twenty-seven years
old.

Abel knew of the work of Euler, Lagrange, and Legendre on elliptic integrals, and
may have gotten ideas for his own work from the work of Gauss. Abel started to
write papers in 1825. He presented his major paper to the Academy of Sciences in
Paris in 1826. The paper was given to Cauchy to review it. But partly because of the
length and the difficulty of the paper and partly to favor his own work, Cauchy laid
it aside. After Abel’s death, when his fame was established, the academy searched
for the paper, found it, and published it in 1841.

The other discoverer of elliptic functions was Carl Gustav Jacob Jacobi.
Unlike Abel, he lived a quiet life. Born in Potsdam to a Jewish family, he studied at
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the University of Berlin and in 1827 became a professor at Koénigsberg. In 1842 he
had to give up his post because of ill health. He was given a pension by the Prussian
government and retired to Berlin, where he died in 1851. His fame was great even
during his lifetime, and his students spread his ideas to many centers.

Jacobi taught the subject of elliptic functions for many years. His approach be-
came the model according to which the theory of functions itself was developed. He
also worked in functional determinants (Jacobians), ordinary and partial differential
equations, dynamics, celestial mechanics, and fluid dynamics.

Jacobi’s work on elliptic functions started in 1827 when he submitted a paper for
publication without proof. Almost simultaneously, Abel wrote his research paper on
elliptic functions. Both had arrived at the key idea of working with inverse functions
of the elliptic integrals, an idea that Abel had had since 1823. Thereafter, they both
published on the subject. But whereas Abel died in 1829, Jacobi lived to publish
much more. In particular, his Fundamenta Nova Theoriae Functionum FEllipticarum
of 1829 became a leading work on the subject.

11.2 Power Series as Functions

Differential equations have found their way into all areas of physics from the
motion of planets around the Sun to standing waves on a rope or a drum,
to electrical properties of conductors, and the behavior of electromagnetic
fields and beyond. As is always the case, no mathematics can draw more
attention than that which deals directly with Nature. The urgency of finding
solutions to these differential equations prompted many mathematicians of the
latter part of the eighteenth and the beginning of the nineteenth centuries to
concentrate heavily on certain specific differential equations. It appeared that
every differential equation dictated by Nature gave rise to a new function. The
most common scheme for solving these differential equations was to assume
a power series solution, substitute the assumed solution in the differential
equation, and determine the (unknown) coefficients from the resulting equality
of power series. We shall come back to this powerful method in Chapters 24
and 25 through 27. At this point, we want to simply give examples of solutions
(functions) of certain differential equations that were discovered in the form
of a power series.

Chapter 10 showed how known functions (such as trigonometric and log-
arithmic functions) can be represented as power series. These functions had
been known prior to the popularity of infinite series, and the origin of their
discovery lay in areas of mathematics outside calculus. One does not need a
power series to calculate sin(35°); an appropriate right triangle and careful
measurement of its sides and hypotenuse will do the job. The functions we are
discussing here are defined in terms of power series and do not have indepen-
dent existence. With some mathematical manipulation they may be written
as a definite integral—which cannot be evaluated analytically. But that is
just as abstract as an infinite series because in the latter case, the integrals
become their definition.
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11.2.1 Hypergeometric Functions

In their studies of second-order differential equations (DE), mathematicians,
always in search of generalities, came up with the most general form of a
second-order linear DE which appeared to encompass all known DEs of phys-
ical interest. This DE, called the hypergeometric differential equation,
turned out to be”

r(1—2)y" +[y—(a+B+1)zly —afy =0, (11.22)

where «, 3, and 7 are constants.® The series solution of this DE, called
the hypergeometric function can be written in terms of the gamma func-
tion as”

= L) e T(@+n)l(@E+n)
F(a’@%x)_P(a)F(ﬁ);P('y+n)F(n+l) . (11.23)

From this series representation, we immediately note that the hyperge-
ometric function is symmetric under interchange of o and 3. Furthermore,
if either o or 3 is a megative integer, say —m, then the denominator of the
constant outside becomes infinite by Definition 11.1.1. However, the gamma
function in the numerator of the first m terms of the sum will also be infinite.
The cancellation of these infinities [see Problem 11.4(c)] gives a nonzero sum
up to m, but the rest of the series will be zero. Therefore,

Box 11.2.1. The hypergeometric function is symmetric under interchange
of a and B: F(a,B;v;z) = F(B,a;v;x). Furthermore, F(—m,[3;v;x)
[and therefore F (o, —m;y; x)] s a polynomial if m is a positive integer.

As mentioned before, many a time, the infinite series can be “integrated”

and the resulting function written in terms of an integral. In this case, we
start by multiplying and dividing the series of Equation (11.23) by T'(y — 5)
to obtain
() o~ D(a+n) T(y—pAL(B+n)
Fla,B;v;x) = 2"
(o, B57;2) ZI‘(n—l—l) L(y+n)
~ ~

=B(y—8,8+n) by (11.7)

"For a comprehensive treatment of this differential equation, see Hassani, S. Mathemati-
cal Physics: A Modern Introduction to Its Foundations, Springer-Verlag, 1999, Chapter 14.

8Some authors use a, b, and ¢ instead of «, 8, and ~.

9Some authors use 2 F} instead of F. Our use of F' to represent both the elliptic integral
of the first kind and the hypergeometric function should not cause any confusion because
the two functions have different numbers of arguments (independent variables).
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Now use I'(n + 1) = n! and the integral representation of the beta function to
get

L(y) — [ CA—1,pen— a”
F(a, B;7y;z) = dt(1—t)Y=P=1¢ftn=1p
(@575 = L arr-0) 2 / (1-1) (a+n)”)

L'(~) / IN(e + n) tx

= dt(1 — )P~ 1pt

ALy —5) Z

Using the result of Problem 11.4, we can now write integral
) representation of
e I'(v) —B-1,6-1 —a the
F(a,B;v;2) = FET(y - ) /o dt(1 —t)Y P (1 —tx)” . (11.24) hypergeometric
function

This is the integral representation of the hypergeometric function.

The generality of the hypergeometric DE results in the ability to express
many functions—both elementary and the so-called special functions of math-
ematical physics—in terms of the hypergeometric function. For example, con-
sider the complete elliptic integral of the second kind E(k). The two factors of
double factorials in both the numerator and denominator of its series expan-
sion (see Problem 11.13), together with Equation (11.5) and the hypergeomet-
ric series (11.23), hint at the possibility of writing E(k) as a hypergeometric
function. This is indeed the case. Substituting (11.5) in the expansion of
E(k) as given in Problem 11.13 yields

K 2 T(n+ )0+ Hrt k2

- + 0 =3) 5,
Z n—l—l n—|—f)(kz)7

where we used I'(n + 3) = (n — 5)I'(n — }). The sum starts with n = 1. To

make it look like a hypergeometric series, we need to include the zero term as
well. Adding and subtracting this term gives

1T+ D=1 PGT(=3) 0
Ek) =, — 4 2= T(n+1)0(n+1) (B + T'(1)I(1) (K)°
LT+ )0 —3) 50,
Ty 2 T(n+ 21)I‘(n—|— f) (k)

because I'(—}) = —2I'(3) = —2y/7 by Example 11.1.1. We now note that

except for a multiplicative constant, the sum is that of the hypergeometric
1

function with a = ; = —f and v = 1. Inserting the multiplicative constant

(1) 1

P(0=3) ~ (~2m)
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we obtain .

E(k) = 4F(1,—;;1;k2). (11.25)
The reader may verify that

K(k)=ZF(§,§;1;k2). (11.26)

Historical Notes

Johann Carl Friedrich Gauss was the greatest of all mathematicians and perhaps
the most richly gifted genius of whom there is any record. He was born in the city of
Brunswick in northern Germany. His exceptional skill with numbers was clear at a
very early age, and in later life he joked that he knew how to count before he could
talk. It is said that Goethe wrote and directed little plays for a puppet theater when
he was six and that Mozart composed his first childish minuets when he was five,
but Gauss corrected an error in his father’s payroll accounts at the age of three. At
the age of seven, when he started elementary school, his teacher was amazed when
Gauss summed the integers from 1 to 100 instantly by spotting that the sum was
50 pairs of numbers each pair summing to 101.

His long professional life is so filled with accomplishments that it is impossible
to give a full account of them in the short space available here. All we can do is
simply give a chronology of his almost uncountable discoveries.

1792-1794: Gauss reads the works of Newton, Euler, and Lagrange; discovers the
prime number theorem (at the age of 14 or 15); invents the method of least squares;
conceives the Gaussian law of distribution in the theory of probability.

1795: (only 18 years old!) Proves that a regular polygon with n sides is constructible
(by ruler and compass) if and only if n is the product of a power of 2 and distinct

prime numbers of the form p, = 92" + 1, and completely solves the 2000-year old
problem of ruler-and-compass construction of regular polygons. He also discovers
the law of quadratic reciprocity.

1799: Proves the fundamental theorem of algebra in his doctoral dissertation
using the then-mysterious complex numbers with complete confidence.

1801: Gauss publishes his Disquisitiones Arithmeticae in which he creates the mod-
ern rigorous approach to mathematics; predicts the exact location of the asteroid
Ceres.

1807: Becomes professor of astronomy and the director of the new observatory at
Gottingen.

1809: Publishes his second book, Theoria motus corporum coelestium, a major
two-volume treatise on the motion of celestial bodies and the bible of planetary as-
tronomers for the next 100 years.

1812: Publishes Disquisitiones generales circa seriem infinitam, a rigorous treat-
ment of infinite series, and introduces the hypergeometric function for the first
time, for which he uses the notation F(«, 3;7;2); an essay on approximate integra-
tion.

1820-1830: Publishes over 70 papers, including Disquisitiones generales circa su-
perficies curvas, in which he creates the intrinsic differential geometry of general
curved surfaces, the forerunner of Riemannian geometry and the general theory of
relativity.
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From the 1830s on, Gauss was increasingly occupied with physics, and he en-
riched every branch of the subject he touched. In the theory of surface tension,
he developed the fundamental idea of conservation of energy and solved the earli-
est problem in the calculus of variations. In optics, he introduced the concept
of the focal length of a system of lenses. He virtually created the science of geo-
magnetism, and in collaboration with his friend and colleague Wilhelm Weber he
invented the electromagnetic telegraph. In 1839 Gauss published his fundamental
paper on the general theory of inverse square forces, which established potential
theory as a coherent branch of mathematics and in which he established the di-
vergence theorem.

Gauss had many opportunities to leave Gottingen, but he refused all offers and
remained there for the rest of his life, living quietly and simply, traveling rarely, and
working with immense energy on a wide variety of problems in mathematics and
its applications. Apart from science and his family—he married twice and had six
children, two of whom emigrated to America—his main interests were history and
world literature, international politics, and public finance. He owned a large library
of about 6000 volumes in many languages, including Greek, Latin, English, French,
Russian, Danish, and of course German. His acuteness in handling his own financial
affairs is shown by the fact that although he started with virtually nothing, he left
an estate over a hundred times as great as his average annual income during the last
half of his life.

The foregoing list is the published portion of Gauss’s total achievement; the un-

published and private part is almost equally impressive. His scientific diary, a little
booklet of 19 pages, discovered in 1898, extends from 1796 to 1814 and consists of 146
very concise statements of the results of his investigations, which often occupied him
for weeks or months. These ideas were so abundant and so frequent that he physi-
cally did not have time to publish them. Some of the ideas recorded in this diary:
Cauchy Integral Formula: Gauss discovers it in 1811, 16 years before Cauchy.
Non-Euclidean Geometry: After failing to prove Euclid’s fifth postulate at the
age of 15, Gauss came to the conclusion that the Euclidean form of geometry cannot
be the only one possible.
Elliptic Functions: Gauss had found many of the results of Abel and Jacobi (the
two main contributors to the subject) before these men were born. The facts became
known partly through Jacobi himself. His attention was caught by a cryptic passage
in the Disquisitiones, whose meaning can only be understood if one knows some-
thing about elliptic functions. He visited Gauss on several occasions to verify his
suspicions and tell him about his own most recent discoveries, and each time Gauss
pulled 30-year-old manuscripts out of his desk and showed Jacobi what Jacobi had
just shown him. After a week’s visit with Gauss in 1840, Jacobi wrote to his brother,
“Mathematics would be in a very different position if practical astronomy had not
diverted this colossal genius from his glorious career.”

A possible explanation for not publishing such important ideas is suggested by
his comments in a letter to Bolyai: “It is not knowledge but the act of learning, not
possession but the act of getting there, which grants the greatest enjoyment. When
I have clarified and exhausted a subject, then I turn away from it in order to go into
darkness again.” His was the temperament of an explorer who is reluctant to take the
time to write an account of his last expedition when he could be starting another. As
it was, Gauss wrote a great deal, but to have published every fundamental discovery
he made in a form satisfactory to himself would have required several long lifetimes.
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11.2.2 Confluent Hypergeometric Functions

The parameters «, (3, and v determine the behavior of the hypergeometric
function completely. A great number of differential equations in mathematical
physics correspond to the case where only two parameters are involved. The
most effective way of accommodating this arises from the confluence 8 — oc.
Let us see how this works.

Substitute = u/8 in the hypergeometric DE using the—very simple—
chain rule to transform the z-derivatives to the u-derivatives. This leads to

[7 —(a+B+1)

the DE
2
U w\ od°y
1- +
5 5) 5
Dividing the entire equation by 3, taking the limit § — co—thus neglecting

u/f and 1/3—yields the so-called confluent hypergeometric differential
equation:

dy

ﬂdu

—afy =0.

2y + (y—2)y —ay =0, (11.27)

where we restored x as the independent variable.

The infinite series solution of this DE is called the confluent hypergeo-
metric function. This solution, as well as its integral representation, can be
obtained by taking the appropriate limit of the corresponding expression for
the hypergeometric function. The limit of Equation (11.23) yields

. _ 7 a+n "
losyie) = lim FloBviz/B) = p ) ZF"/—}—n P 1) (1129)
where we used
P(B+n) _ (B+n—1)(3+n—2)-Br(5)
prr(B) prr(B)
_ <ﬂ+n—1> <ﬂ+n—2) <ﬂ> ooy
B B B '
Similarly, we have
O y;7) = Blim F(B,c;7;1/3)
— F(’Y) ! _ —a—1,a—1 ( _ t$>_5
= B gm0 ')

~
—etr (Prob. 11.3)

where we have used the symmetry of the hypergeometric function under inter-
change of its first two parameters. It follows that the integral representation
of the confluent hypergeometric function is

]:\ 1
(7) / dt(l _ t)'y—a—lta—letr'
—a) Jo

P(o;y;w) = I(a)T(y

(11.29)
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We note that

oo 1 o0 n

T
@ N N p— n p— p— T
(5.05.2) ngor(rw 1" n;) nt €
and Problem 11.20 shows that
2
erf(z) = v ®(3;3;—2?).

i

Many other functions encountered in mathematical physics can also be ex-
pressed in terms of confluent hypergeometric functions, and we shall point
this out as we come across these functions in the sequel. We note in passing
that, as in the case of hypergeometric function,

Box 11.2.2. If « happens to be a negative integer, then ®(«;v; x) becomes
a polynomial, i.e., the infinite series truncates.

11.2.3 Bessel Functions

Bessel functions are arguably among the most utilized functions of mathe-
matical physics. We shall come back to them when we consider solutions of
Laplace’s equation in cylindrical coordinates and discover their connection
with other functions treated in this chapter. At this point, we simply intro-
duce them as power series. The Bessel function J, () of order v is a solution
of the Bessel differential equation:

>y dy V2
— =0. 11.
xdg;2+dx+<x x)y 0 (11.30)

Chapter 27 shows how to obtain the power series expansion of J, (x):

T\ Y — —1)k x
Tu(@) = (2) kz_(Jk!F(z(/ +1)k+1) (2)%' (11.31)

The point to emphasize is that

Box 11.2.3. Bessel functions are always given in terms of their expan-
ston in power series (or as an integral involving parameters). It is gener-
ally impossible to reduce Bessel functions to any functional combination
of more elementary functions such as polynomials, or trigonometric and
exponential functions.
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Properties and applications of Bessel functions are treated in some detail in
Chapter 27.1° However, some relations are elementary enough to be included
here, as they also illustrate the use of summation symbols. First note that if
v is an integer —m, then

T\ "M — —1)k T\ 2k
Jom(@) = (2) kz_%klf(—(ml—zk—i—l) (2)2
T\~ —1)k T\ 2
(2) k_zmk!r(—(mljkjtl) (2) k

because the first m terms of the first series have gamma functions in the
denominator with negative integer (or zero) arguments. Now in the second
series, replace k by n = k — m. This yields

N —m X —1)mtn 7\ 2m+2n
Jom (@) = (2) Zo (m—l(—nl)?F(n—Fl) (2) ' (11.32)

=" (;)mg r(m(_;)i 1)n! (32;)% = (=1)"Im (@),

where we used I'(j + 1) = j! for positive integer j.

Example 11.2.1. Bessel functions of half-integer order are related to trigonomet-
ric functions. To see this, note that

N\ 1/2 & —_1)k 1\ 2k
Jij2 = <2) / Zk'lE(kl—)kg) (2)

k=0

x\~1/2 Zoo (—1)* 2k+1
= €T .
<2) = kT (k + 3)22k+1

Now substitute for I'(k+ 3) in terms of factorials as given in Problem 11.1 to obtain

-2 1 & (=1)F s 2\? .
1/2 2 I ;) (2k + 1)!x . sin x
~ ~ -~

=sinx

9\ 1/2
J_1/0= <7m> cos x

Similarly,

as the reader may verify. -

10See also Hassani, S. Mathematical Physics: A Modern Introduction to Its Foundations,
Springer-Verlag, 1999, Section 14.5.
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Another formula of interest is a recursion relation connecting Bessel func-
tions of different integer orders. Write J,,—1(x) as

)= ()" S oy () 13

oyl = (=1)k x\ 2k

=(5) [F(m) + ; KIT(m + k) (5) ] !
where we separated the k = 0 term from the rest of the sum. Similarly, write
Jmt1(x) as

M+l = —1)k "
Imt1(z) = (2) sz_ok!l“(( i)k+2) (2)%
() e G

j=1

z\ml —1)k 2k
:_(2) 1};(k—1)!§“(2+k+1)(2)2’

where in the second line, we substituted j = k + 1 for k, and in the last line,

we used (—1)7! = —1, factored (z/2)~2 out of the summation, and changed
the dummy index back to k. Now add Equations (11.33) and (11.34) and use
1 1 m

EC(m+k)  (k—1D)ID(m+k+1)  kT(m+k+1)
and 1/T(m) = m/T'(m + 1) to obtain

m - (—1)Fm x\ 2k
r(m+1)+;klr(m+k+1)(z) ]

AN T\ —1)k x\ 2k
:m(2) 1[(2) kz_;)kll“(ézi)k—i—l)(2)2]

Tna@) @) = (5)

~ ~
=Jm (z)
or, finally,
2m
Im—1(z) + Jmt1(z) = . I (). (11.35)
The straightforward details are left as Problem 11.22. One can also show that
Jm—1(2) = Jmi1(z) = 2J) (), (11.36)

where prime indicates differentiation. Equations (11.35) and (11.36) lead to
Tnoi(@) =" Tn(@) + T (@),

T (@) =" Jon(2) = T, (@), (11.37)

38

These plus the results of Example 11.2.1 give all Bessel functions of half-
integer order.
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11.3 Problems

11.1. (a) Show that (see Definition 11.1.2 for the definition of the following
notation):
n (2n)!
(2n)ll = 2"n! and (2n -1 = ol
Hint: For the second relation, supply the missing even factors in the “numer-
ator” and the “denominator” of (2n — 1)!!
(b) Using (a) and Example 11.1.1, show that

1 @Cn=1)t (2n)!
Lin+,)= on V= 22”n!\/7r'
(c) Now use (b) to obtain the following result:
3 (2n+1)!
Fn+3)= o2n 1) V.

11.2. Using the result of Problem 11.1, show that

1 1
WMT@+m+QPn+m+ .
s 2 2

Hint: Consider the two cases of even m (with m = 2k) and odd m (with
m = 2k + 1) separately, and show at the end that both can be written as a

single formula.
1 n
lim <1—|— ) =e
n— oo n

lim <1— t) =e L.
n—0o0 n

11.4. (a) By using Equation (11.2) repeatedly, show that

(2n+m)! =

11.3. Using the result

show that

Hint: Let n = —tm.

Ta+n)=(a+n—-1)(a+n—-2)---(a+n—Ek)I(a+n—Ek).

(b) Let k = n in the above equation to show that

ot —1) = I'(a+n)
ala+1)---(a+ 1) )
(¢) Using (b) show that
I'(n—a)

ala=1)--(a=n+1)=(-1)" M(—a) -
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11.5. Show that -
I'(z) = 2/ et 2L gt
0

o= [ (O

11.6. Find the following integrals in terms of the gamma function:

(a) [ot2Hle=at gt (b) [ t%et dt.

and

11.7. Using only its integral representation, show that beta function is sym-
metric under interchange of its arguments.

11.8. Using the definition of the gamma function, show the justification for
the frequently used equality 0! = 1.

11.9. Show that

@ T
/ V14 k2sin?t dt = /1 + k2 [E(k’) _E (2 —go,k/)] ,
0
where k' = k/v/1+ k2. Hint: Change t to s = 7/2 — ¢ and break up the
interval of integration of the resulting integral into two.

11.10. Show that the circumference of an ellipse of respective semi-major and
semi-minor axes a and b is 4aE(k) where k = v/a2 — b2/a. Verify that you
get the expected result when a = b.

11.11. (a) Expand the square roots in the definition of the elliptic integrals
of the first and second kinds in powers of k?sin¢, and keep the first three
terms.

(b) Now integrate those terms to find an approximation to elliptic integrals
for small k.

(¢) Substitute 7/2 for ¢ to obtain approximation for the complete elliptic
integrals.

11.12. Use the result of Problem 11.11 to obtain Equation (11.21).
11.13. Use the integral

/2 —_ 1\
/ Sin2n ¢ df — (2n— Dl

to show that

T 2 [@2n—1)17 k2"
E(k):2{1_z[ (2n)! ] 2n—1}’
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11.14. Show that E(0) = K(0) = 7/2, and that E(1) =1, K(1) = cc.

11.15. Use the ratio test on the hypergeometric series to determine its radius
of convergence.

11.16. Verify that the complete elliptic integral of the first kind is related to
the hypergeometric function as follows:

K(k) =" F (3, 5:1:%%).

11.17. Show that In(1 4+ ) = zF(1,1;2; —x).

11.18. Use the result of Problem 11.4 to express Equation (10.15) of Chapter
10 in terms of the gamma function; then show that

I'n — ) "
(1+2)° ZP o 1) )" = Foo 56 -2)

for arbitrary .

11.19. By using integral representations:
(a) Show that

L'(@)T'(b+r)

Bla,b) = Tla+b+r)

F(a,r;a+b+1;1),

where B is the beta function and r is any real number. Choose r appropriately
and show that

1
B(a,b) = F(a,1—0b;a+1;1).
a
(b) Also prove that

L)Ly —a—p)
L(y—a)l(y=5)

11.20. Expand the integrand of erf(x) in its Maclaurin series and use

F(a,B;v;1) =

r(3)
2n+1=2(n+13)=_2
2T
to show that
£ _25”(1, 1.3._.2
er (ZII)—\/W (2727_33 )

11.21. Using the same procedure as in Example 11.2.1, show that

9\ 1/2
Jl/z:(wx) COS .



11.3 Problems

11.22. Show that

1 1 m
ED(m+k)  (k—1)T(m+k+1)  kT(m+k+1)

and use it to derive Equation (11.35).
11.23. Derive Equation (11.36).
11.24. Find Js/5(2) and J_3/5(x). Hint: Use Equation (11.37).
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Chapter 12

Vectors and Derivatives

One of the basic tools of physics is the calculus of vectors. A great variety
of physical quantities are vectors which are functions of several variables such
as space coordinates and time, and, as such, are good candidates for mathe-
matical analysis. We have already encountered examples of such analyses in
our treatment of the integration of vectors as in calculating electric, magnetic,
and gravitational fields. However, vector analysis goes beyond simple vector
integration. Vectors have a far richer structure than ordinary numbers, and,
therefore, allow a much broader range of concepts.

Fundamental to the study of vector analysis is the notion of field, with
which we have some familiarity based on our study of Chapters 1 and 4.
Fields play a key role in many areas of physics: In the motion of fluids, in the
conduction of heat, in electromagnetic theory, in gravitation, and so forth. All
these situations involve a physical quantity that varies from point to point as
well as from time to time,! i.e., it is a function of space coordinates and time.
This physical quantity can be either a scalar, in which case we speak of a
scalar field, or a vector, in which case we speak of a vector field. There are
also tensor fields, which we shall discuss briefly in Chapter 17, and spinor
fields, which are beyond the scope of this book.

The temperature of the atmosphere is a scalar field because it is a function
of space coordinates—equator versus the poles—and time (summer versus
winter), and because temperature has no direction associated with it. On the
other hand, wind velocity is a vector field because (a) it is a vector and (b) its
magnitude and direction depend on space coordinates and time. In general,
when we talk of a vector field, we are dealing with three functions of space
and time, corresponding to the three components of the vector.

1In many instances fields are independent of time in which case we call them static
fields.

scalar and vector
fields
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12.1 Solid Angle

Before discussing the calculus of vectors, we want to introduce the concept of
a solid angle which is an important and recurrent concept in mathematical
physics, especially in the discussion of vector calculus.

12.1.1 Ordinary Angle Revisited

We start with the concept of angle from a new perspective which easily gener-
alizes to solid angle. Consider a curve and a point P in a plane. The point P
is taken to lie off the curve [Figure 12.1(a)]. An arbitrary segment of the curve
defines an angle which is obtained by joining the two ends of the segment to
P. In particular, an element of length along the curve defines an infinitesimal
angle. We want to relate the length of this element to the size of its angle
measured in radians.

Connect P to the midpoint of the infinitesimal line element of length Al,
and call the resulting vector R with the corresponding unit vector €z as shown
in Figure 12.1(a).2 Let the angle between ép and the unit normal® to the
length element &, be a. As shown in the magnified diagram of Figure 12.1(b),
« is also the angle between the line element Q@' and the line segment obtained
by dropping a perpendicular QH onto the ray PQ’. It is clear from the
diagram that

QH =QQ'cosa = QH = Al cosa=Alég-é,.

Now recall that the measure of an angle in radians is given by the ratio of
the length of the arc of a circle subtended by the angle to the radius of the
circle, and this measure is independent of the size of the circle chosen. To
find the measure of Af in radians, let us choose a circle of radius R = |R|,

Figure 12.1: Defining angles as ratios of lengths.

2In actual calculations, it is convenient to denote the position vector of P by r, say, and
that of the midpoint by r’. Then R =1’ —r.

3There are two possible directions for this unit normal: one as shown in Figure 12.1,
and the other in the opposite direction. As long as we deal with open curves (no loops)
this arbitrariness persists.
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the distance from P to the midpoint of the line element. The arc of this circle
subtended by Af is CC’, and the figure shows that the length of this arc is
very nearly equal to QH. One can think of C'C’ as the projection of the line
element onto the circle. Thus,

_QH _ Alég-é,

Af
R R

If we denote the location of P by r and that of Al by r’, then

I_
R=r—r, éR:r r,
It/ —rf

and we obtain
Al(r') e, - (r' — 1)

A=

, (12.1)
where we have emphasized the dependence of Al on r'.
For a finite segment of the curve, we integrate to obtain the angle. This

yields
b ~ ~ b ~
dlégr- e, di(r')é, - (r' —r)
"= / R / o (122

where a and b are the beginning and the end of the finite segment. There is a
way of calculating this finite angle which, although extremely simple-minded,
is useful when we generalize to solid angle. Since the size of the circle used to
measure the angle is irrelevant, let us choose a single fiducial circle of radius a
centered at P (see Figure 12.2). Then, as we project elements of length from
the curve, we obtain infinitesimal arcs of this circle with the property that

dlég-é, dl.

do
R a’

where dl. is the element of arc of the fiducial circle. From this equation, we

obtain
b’ b
c 1
0:/ dle _ /(m:? (12.3)
a’ a a a’ a

where a’ and b are projections of a and b on the circle, and s is the length of
the arc from a’ to b’. This last relation is, of course, our starting point where
we defined the measure of an angle in radians!

Of special interest is the case where the curve loops back on itself. For
such a case, the direction of &,, is predetermined by

Box 12.1.1. (Convention). We agree that for angle calculations, the
unit normal shall always point out of a closed loop.

345

angle as integral



346

total angle at a
point subtended
by a closed curve

Vectors and Derivatives

(a)

Figure 12.2: Total angle subtended by a closed curve about a point (a) inside and (b)
outside.

If P happens to be inside the loop [Figure 12.2(a)], the total angle, corre-
sponding to a complete traversal of the loop, is

When P is outside, we get @ = 0. This can be seen in Figure 12.2(b) where the
projection of the closed curve covers only a portion of the fiducial circle and it
does so twice, once with a positive sign—when ér and &,, are separated by an
acute angle—and once with a negative sign—when ér and é,, are separated
by an obtuse angle. Let us denote by 6% the total angle subtended by the
closed curve C' about a point P and by U the region enclosed by C. Then,
we have

= 12.4
P 0 if Pisnotin U. ( )

e {277 if Pis in U,
Example 12.1.1. Point P is located outside a rectangle of sides 2a and 2b as
shown in Figure 12.3. We want to verify Equation (12.4). The integration is nat-
urally divided into four regions: right, top, left, and bottom. We shall do the

y
P
N T
R
A Yo
D|, T
"
2b
o x J
C B
k 2a i

Figure 12.3: Total angle subtended by a rectangle about a point outside.
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right-hand-side integration in detail, leaving the rest for the reader to verify. For
the right side we have r = yoéy, r’ = aé, + y'&,, and

dl=+dy, R=1"—r = (a,y — o), & = &,.

Therefore,
o _dlér-é, dyR-é; ady’
TR TR T @ty -w?
and the total integrated angle for the right side is

=ZCBP =ZDAP
-~ -~

b , - ~ r ~
d _ b _ —-b

07-:a/ ) ?,J zztanl(y0+ )—tanl(yo )

—» @®+ (¥ — o) a a

T T
T YT (2 _B> =f-a

Similarly, one can easily show that 6, = —20, 6, =  — «, and 0, = 2, where ¢
stands for “top,” [ for “left,” and b for “bottom.” The total subtended angle is,
therefore zero, as expected. Note that only for the top side is the angle between &,
and égr obtuse, and this fact results in the negative value for 6;. n

The purpose of the whole discussion of the ordinary angle in such a high-
brow fashion and detail has been to lay the ground work for the introduction
of the solid angle. As we shall see shortly, a good understanding of the new
properties of the ordinary angle discussed above makes the transition to the
solid angle almost trivial.

12.1.2 Solid Angle

We are now ready to generalize the notion of the angle to one dimension
higher. Instead of a curve we have a surface, instead of a line element we have
an area element, and instead of dividing by R we need to divide by R%. This
last requirement is necessary to render the “angle” dimensionless. Referring
to Figure 12.4, solid angle defined

Figure 12.4: Solid angle as the ratio of area to distance squared.
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Box 12.1.2. We define the solid angle subtended by the element of area

Aa as
Aaé,-ér ér-Aa (r—r)-Aa

AQ =~ = =
R2 R2 |I" _ I'|3 ’

where &, is the unit normal to the surface and Aa = &,Aa(r’).
The numerator is simply the projection of Aa onto a sphere of radius R
as Figure 12.5 shows. This projection is obtained by the intersection of the
fiducial sphere and the rays drawn from P to the boundary of Aa. As in the

case of the angle, the choice of fiducial sphere is arbitrary. The integral form
of the above equation is

//eR da_/ R- da // r’ —rr_r|3 r’)7 (12.5)

where S is the surface subtended by the solid angle €.

Box 12.1.3. (Convention). For any closed surface S, we take &, to be
pointing outward.

If we use a single fiducial sphere of radius b for all points of S, we obtain

da 1 A
Q://b2:b2//da:b2’ (12.6)
Sb Sb

where S} is the projection of S onto the fiducial sphere and A its area. This
equation is the analog of Equation (12.3) and can be used to define the measure

Figure 12.5: The relation between the ér - Aa and its projection on a fiducial sphere.
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of solid angles. In particular, if the surface S is closed and P is inside, then
A will be the total area of the fiducial sphere and we get Q = 47b?/b* = 4.
When P is outside, we get equal amounts of positive and negative contribu-
tions with the net result of zero. total solid angle at
a point subtended

Theorem 12.1.2. Denote by Q3 the total solid angle subtended by the closed by a closed surface

surface S about a point P and by V the region enclosed by S. Then,

05 _ {477 if P isin V, 127

7o if P is not in V.

Example 12.1.3. As an example of the calculation of the solid angle, consider a
square of side 2a with the point P located a distance zo from its center as shown in
Figure 12.6. Withr = (0,0, 20) and v’ = (z’,3’,0), wehave R = ' —r = (2, ¢, —20),
and assuming that &, points in the negative z-direction,* we have
46 = daé,-ér da'dy (—é.)-R zodz' dy’
R2 R3 (x/2 + y/2 + z )3/2

The solid angle is obtained by integrating this:

Q:zo[adx/ a:’2—|—y’2—|—z)3/2

2
:2az0/ da’ = 4tan"! a .
Va2 4 a? 4 23 (272 + 22) 204/2a2 + 22

An interesting special case is when zp = a. Then

Q= 4tan! (aj;Q) — dtan! (\}3) — A(r/6) = 2 /3.

The last result can also be derived in a simpler way. When 2o = a, the point P will
be at the center of a cube of side 2a. Since the total solid angle subtended about P
is 47, and all six sides contribute equally, the solid angle subtended by one side is
47 /6. [ ]

Figure 12.6: The solid angle subtended by a square of side 2a.

4This assumption is not forced by any convention. It is chosen to make the final result
positive.
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Example 12.1.4. Let us replace the square of the last example with a circle of
radius a. We can proceed along the same lines as before. However, in this particular
case, we note that the solid angle is in the shape of a cone which is one of the
primary surfaces of the spherical coordinate system. Placing the origin at P and
projecting the area on a fiducial sphere, of radius b say, we may write

Ay 27b*(1 —cos )

b2 b2
where A, = 27b?(1 — cos ) is the area of the projection of the circle on the fiducial
sphere. The half-angle of the cone is denoted by a with

=27(1 — cos ),

a 20
tano = = cosa = .
20 Va2 + 22
The final result is
Q=2r(1- % . (12.8)
Va2 + 23
It is instructive to obtain this result directly as in the previous example. u

12.2 Time Derivative of Vectors

Scalar and vector fields can be subjected to such analytic operations as differ-
entiation and integration to obtain new scalar and vector fields. The deriva-
tive of a vector with respect to a variable (say time) in Cartesian coordinates
amounts to differentiating each component:

0A  0A, 0A 0A., .

Y A
or ~ o T o 0t g o (12.9)

In other coordinate systems, one needs to differentiate the unit vectors as well.

In general, the derivative of a vector is defined in exactly the same manner
as for ordinary functions. We have to keep in mind that a vector physical
quantity, such as an electric field, is a function of space and time, i.e., its
components are real-valued functions of space and time. So, consider a vector

A which is a function of a number of independent variables (t1,t2,...,tn).
Then, we define the partial derivative as before:
0A
(‘% (al,ag, e ,an)
k A N A (12.10)
EliII(l) (a1y...,a+€,...,a,) (al,..wak,...,an)'
€E— €

As immediate consequences of this definition, we list the following useful
relations:

0 _of 0A
Oty (fA)= 8tkA + fam’
0 0A 0B
Ot (A-B)= Ot B+ A- ot (12.11)
0A 0B
Ot (A xB)= Ot x B+ A X Oty



12.2 Time Derivative of Vectors

These relations can be used to calculate the derivatives of vectors when written
in terms of unit vectors, keeping in mind that the derivative of a unit vector
is not necessarily zero! Only Cartesian unit vectors are constant vectors, and
for purposes of differentiation, it is convenient to write vectors in terms of
these unit vectors, perform the derivative operation, and then substitute for
€, €y, and €, in terms of other—spherical or cylindrical—unit vectors.

Example 12.2.1. A vector whose magnitude is constant is always perpendicular
to its derivative. This can be easily proved as follows:

A - A =const. = 531@ (A-A)= aik (const.) = 0.
On the other hand, the LHS can be evaluated using the second relation in Equation

(12.11). This gives

0 0A 0A 0A

o, AR = gy AT S22
These two equations together imply that A and (9/0tx)(A) are perpendicular to
one another. |

An important consequence of the example above is that

Box 12.2.1. A unit vector is always perpendicular to its derivative.

Example 12.2.2. Newton’s second law for a collection of particles leads directly
to the corresponding law for rotational motion. Differentiating the total angular

momentum
N
L= § Ty X Pg,
k=1

with respect to time and using the second law, Fj = dp, /dt, for the kth particle,
we get

JL N N N

dt :kzldt(rk X py) = kzl(l"k X Pg + Tk X Py) :kzl(O‘H‘k xF) =T,

where an overdot indicates the derivative with respect to time and in the last line
we used the definition of torque and the fact that velocity r, and momentum p,
have the same direction. |

As a special case of the example above, we obtain the law of angular
momentum conservation:

Box 12.2.2. When the total torque on a system of particles vanishes, the
total angular momentum will be a constant of motion. This means that
its components in a Cartesian coordinate system are constant.

Since the unit vectors in other coordinate systems are not, in general, constant,
a constant vector has variable components in these systems.
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12.2.1 Equations of Motion in a Central Force Field

When one discusses the central-force problems in mechanics, for instance in
the study of planetary motion, one uses spherical coordinates to locate the
moving object. Thus, the position vector of the object, say a planet, is given
in terms of spherical unit vectors. Newton’s second law, on the other hand,
requires a knowledge of the second time-derivative of the position vector.

In this subsection we find the second derivative of the position vector of
a moving point particle P with respect to time in spherical coordinates. The
coordinates (r,0,¢) of P are clearly functions of time. First we calculate
velocity and write it in terms of the spherical unit vectors

dr d(r)— d(ré)—é dr_'_rdér
dt — dey’ dey T TTdt dt

VvV =

We thus have to find the time-derivative of the unit vector €,. The most
straightforward way of taking such a derivative is to use the chain rule:

de, _ e dr | 06, db D& dp _ 00, , 08,
At~ ordt 9 dt | dp dt 90 oy’

where we have used the fact that the spherical unit vectors are independent
of r [see Equation (1.39)]. We now evaluate the partial derivatives using (1.39)
and noting that the Cartesian unit vectors are constant:

0é,
00

:eI

0
Pys Pye (cos @)

= &, cosfcosp + €, cosflsing — €,sind. (12.12)

sinf cos ) + & 0 sinfsiny) + €,
Y00

We are interested in writing all vectors in terms of spherical coordinates. A
straightforward way is to substitute for the above Cartesian unit vectors, their
expressions in terms of spherical unit vectors. We can easily calculate such
expressions using the method introduced at the end of Chapter 1. We leave
the details for the reader and merely state the results:

€, = €,sinf cos p + &y cosf cos p — &, sinp,
€, = €, sinfsin ¢ + &g cos O sin ¢ + €, cos ¢, (12.13)
é, = ¢&,cosl —éysind.
Substituting these expressions in the previous equation, we get
oe, .. . .
90 = (&, sinf cos p + €4 cos f cos p — €, sin ) cos B cos ¢
+ (é,sinfsinp + €y cosfsin g + &, cos ) cos O sin ¢
— (&.cosf — épsinf)sin b,
which simplifies to
0é,

09 = & (12.14)
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We could have immediately obtained this result by comparing Equation (12.12)
with the expression for &y in Equation (1.39). The other partial derivative is
obtained the same way:

oe,
Oy

. . .0 .0
=&, 9 (sinfcos p) + &, a0 (sinfsinp) + &, a0 (cos )

—&é,sinfsiny + &, sinf cos ¢

— (é,sinfcosy + &g cosfcosp — &, sin p) sinf sin ¢

+ (é,sinfsinp + €y cosfsin g + &, cos ) sinf cos ¢

= é,sinf. (12.15)

Substituting this and Equation (12.14) in the expression for velocity, we obtain
1 8Ar aAr P ~ A N .« .

v==8&.r+r <9 (’996‘ —I—gb;;D) = &,7 + &910 + é,rpsind. (12.16)

To write the equations of motion, we need to calculate the acceleration
which involves the differentiation of other unit vectors. The procedure out-
lined for €, can be used to obtain the partial derivatives of the other unit vec-
tors. We collect the result of such calculations, including Equations (12.14)
and (12.15) in the following:

oe, =0 oe, =é oe, =¢é,sinf
or 00 dp P
0€g 0éy R 0&p .

= = —€,, = S N 121
o 0, 50 é 9 é,cosf (12.17)
oe, oe, oe, . . R
or =0, 90 =0, 9o €,sinf — &g cosb.

Similarly the time-derivatives of the unit vectors are given as follows:

de,

;t = f&y + psin bé,,

dé )

;f = —f6, + (cosbé,, (12.18)
d;t@ — —psinfé, — ¢ cosBéy.

Differentiating Equation (12.16) with respect to ¢, inserting (12.18) in the
result, and collecting the components, we get

2 .
illt;‘ = CZ; =é, (r —r6? — r¢? sin® 9)
+ &9 <¢9' + jt(ré‘) — r¢? sin 6 cos 9) (12.19)

+eé, <7’"¢) sin @ + rp cos  + i(rg’) sin 0)) .
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One can use these expressions to write Newton’s second law in spherical
coordinates.

Now suppose that a particle (a planet) is under the influence of a central
force, i.e., a force that always points toward, or away from, an origin (the
Sun), and has a magnitude that is a function of the distance between the
particle and the origin. This means that, in spherical coordinates, the force
is of the form F = &, F(r). The second law of motion now yields

d*r d*r F(r)
m
dt?
which, together with Equation (12.19), gives
i —rf? —rp?sin? 0 = f(r),

0 + jt(ré) — r¢? sinf cosf = 0, (12.20)

Fpsin @ + rfp cos O + jt(rgbsinﬁ) =0.

These equations are the starting point of the study of planetary motion.
We shall not pursue their solution at this point, but consider some of their
general properties, using angular momentum conservation. Since the force
has only an €, component, its torque vanishes:

T=rxF=ré x (F(r)é,) =rF(r)é, xé&. =0.

Therefore, by Box 12.2.2, the angular momentum of the particle relative to
the origin is a constant vector. Equation (12.16) now yields

L=rx (mv)=mré. x (éﬂ" +ép7f + é,r¢sin 0)
= mr? &, x (&6 + é,psinf) = mr?(é,60 — &y sin )
= mr?f(—é, sinp + &, cos p)
— mr?psin (e, cosfcos ¢ + &, cosfsinp — &, sin6)

=L,é,+L,é,+ L.ée,,
where L., Ly, and L, are the constant Cartesian components of angular
momentum and m is the mass of the particle. Equating the components of
this vectorial relation gives

Ly = —mr?(0sin ¢ + ¢ sin  cos 0 cos p),

L, = mr?(f cos p — psin 6 cos O sin ), (12.21)

L. = mr?psin® 6.
The last equation gives

L
o= N (12.22)

mr2sin 6
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From all of these relations, we obtain

L2224 12— iy L 12.23
=he iy T Lr=mo +sin29' (12.23)
Now suppose that we choose our coordinate axes so that initially, i.e., at
t = 0, both the position and the velocity vectors of the particle lie in the xy-
plane. Since L is perpendicular to both r and v, it must be initially entirely
in the z-direction. Conservation of angular momentum implies that L will
always be in the z-direction. In particular, L? = L2. Substituting this in

Equation (12.23) yields

2 2, 442 L? 2, 442 L?

L =m=r"0 +sin26‘ = 0=m"r"0 +sin26‘_
or 0 = m2r46% + L2cot? 6. Neither of the two terms on the RHS of this
equation is negative. Thus, for their sum to be zero, each term must be zero.
It follows that

L2

m*r*0? =0 = 6=0 = 0 = const.,
L?cot?’0 =0 = cot’0=0 = 0=r1/2,

assuming that r # 0 and L # 0. These relations hold for all times. Thus,
the particle is confined to a plane, our xy-plane, for eternity! This is why the
planets do not wobble “up and down” out of their orbital planes.®

If we substitute 7/2 for 6 and use (12.22) for ¢ in Equation (12.20), then
the second and third relations are satisfied identically, and the first relation

becomes

. L?

P 3= f(r) (12.24)
which is a single differential equation in one variable. The general problem
of a particle’s motion in three dimensions has reduced to a one-dimensional

problem.

12.3 The Gradient

Analysis of vectors deals with the derivatives and integrals of vector fields.
Because of its simplicity, we shall work in a Cartesian coordinate system at
the beginning, and later generalize to other coordinates.

In many situations arising in physics, rates of change of certain scalar
functions with distance are of importance. For instance, the way potential
energy changes as we move in space is directly related to the force producing
the potential energy. Similarly, the rate of change—derivative—of the elec-
trostatic potential with respect to distance gives the electrostatic field. The
concept of gradient makes precise the vague notion of a derivative with respect
to distance.

5Actually, the planets, due to the influence of other planets, do wobble out of their
orbits. But this is a very small effect.
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Figure 12.7: “Gradient” or differentiation with respect to distance in one dimension.

Let us analyze the notion of differentiation with respect to distance, start-
ing with one variable. In Figure 12.7, a function f(z) has an increment, Af,
corresponding to a change Ax in z. If Az is small enough, we can write

Af ~ (fl{c) B Azx.

This shows that (df /dx)z—, is a measure of how fast the function f is chang-
ing at the point xg.

With one variable, there is no ambiguity in defining the derivative, because
there is only one line along which we can change x, the only coordinate. With
two or more variables, the situation is completely different, as illustrated
in Figure 12.8. A point Py = (zo,y0) in the zy-plane is shown with the
corresponding value of the function, f(zg,yo) = 2. Out of the infinitude of
points that are close to Py and cause a change in the function, only three are
shown. These indicate how the change in f(x,y) depends on the direction
in which the neighboring point is located in relation to Py. For example, if
we move in the direction PyP;, there is very little change in f(z,y), but if
we move in the direction PyP,, we notice more change in the function, and
if we move in the direction of PyPs, the change seems to be maximum. This
maximum change, and the direction associated with it, is called the gradient.

P
&
P |
X 1 P

Figure 12.8: Gradient or differentiation with respect to distance is shown in two di-
mensions. The gradient is a vector in the xy-plane. Do not think of the surface as a

variation in height! It could represent, for instance, the temperature at various points
of the zy-plane.
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Let us use dr to denote the infinitesimal displacement vector® connecting
Py to a neighboring point in the xy-plane. If f(x,y) is differentiable, Equation

(2.12) gives
_(9f of
7= (or), 2+ (@),

where dr and dy are the components of the displacement from Py and df is
(approximately) the change in f corresponding to the increments dz and dy.
We can rewrite this equation as

df = (Vf)p, - dr = |V f||dr|cos¥, (12.25)
where, by definition,

of (9f> (12.26)
Po

“nn= (oo

is a vector in the zy-plane and 6 is the angle between this vector and dr. It
is clear that df will be maximum when cosf = 1, that is, when dr is in the
direction of V f. We conclude, therefore, that V f gives the direction along
which f changes most rapidly. The vector in Equation (12.26) is the gradient
of f at Py.

The notion of gradient can be generalized to three variables although it is
harder to visualize than the two-variable case. In three dimensions we deal
with a function f(z,y,z)—which cannot be plotted as in Figure 12.8—and
ask which dr = (dz,dy,dz) maximizes the change in f. Once again, the
three-dimensional version of Equation (12.25) shows that dr and

_/of of of
Vi= <ax’ oy’ az> (12.27)

should be in the same direction for df to have a maximum.

Definition 12.3.1. The gradient of a function f(z,y,z) is defined as

of 8f+é of

szefaﬁeyay 0z

For the same small displacement |Ar|, the change in [ is mazimum when Ar
is in the direction of V f.

Example 12.3.1. As an example, let us find the gradient of the function
Vz,y.2) = f(r) = f (Va? + 47 +2?)

(which depends on r alone) at a point P with Cartesian coordinates (z,y, z). Using
the chain rule, we have

6A better notation is Ar. However, since there is no difference between differential
and increment of an independent variable, and since eventually we will be interested in
differentials, we use the latter notation.
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VV:ézav +éy8V+é28V :<
x dy

oV oV oV
0 0z

Oz’ Oy’ Oz

,, or ., .Or .,6 . Or
(Fmg sy reg,
_ wyZ>7f'(T) Nt
=re (50 = Vs = o).
The last equality shows that, for functions that depend on r alone, the gradient is
proportional to the position vector of the point P, i.e., it is radial. ]

Given a scalar function f(x,y,2), we can consider surfaces on which this
function maintains a constant value. If that constant value is C, the surface
will be described by f(z,y,z) = C. One can, in principle, solve for z as a
function of x and y to find the explicit dependence of the function. However,
we are interested in the implicit dependence given above. Now consider two
points P; and P, on the surface with coordinates (x,y, z) and (v + Az, y +
Ay, z + Az), respectively. We have

f@,y,2) = fla+ Dz, y+ Ay, 2+ Az) = [f(x,y,2) = f(z,y,2) + Af

or 0 = Af = g£ Az + g’; Ay + ‘g’; Az, if the increments of coordinates are
small. This relation shows that V f is perpendicular to the displacement
from P; to P». The same argument applies to a curve g(z,y) = C; i.e., the
two-dimensional gradient is perpendicular to the displacement from P; to Ps,
both being points on the curve. Since P; and P are completely arbitrary, we
conclude that

Theorem 12.3.2. The gradient V f is perpendicular to all surfaces f(x,y, z) =
C for different C’s. Similarly, Vg is perpendicular to all curves g(x,y) = C.

For example, as we shall see later, the electrostatic field is the gradient of
the electrostatic potential. Therefore, the electrostatic field is perpendicular
to surfaces of constant potential such as conductors.

Example 12.3.3. The perpendicularity property of the gradient can be used to
find the equation of the tangent plane to a surface z = g(z,y) at a point P with
coordinates (zo, Yo, 2z0). This surface can be written as

f(l‘,y,Z) EZ—Q($7y) =0.

Then, the normal to the surface at P—which is the same as the normal to the
tangent plane at P—is the gradient of f at P:

of of of dg 0y
\v4 = =(— — 1 .
( f)P <8x73y782 P oz’ Oy’ /p
A point of the tangent plane at P is completely determined by the property that
its displacement vector Ar from P should be perpendicular to the gradient at P (see
Figure 12.9). If we denote the position vector of P by ro and that of the point on
the plane by r = (z,y, z), then the equation of the tangent plane is given by

(=10)- (VN =0 = ~w=m) (57) ~=w) (57) +(=2)=0
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Figure 12.9: The plane tangent to the surface z = g(z,y) at P.

or Z_zo:(w—fo)(gi)P“y_yO)(gZ)P u

It is convenient to introduce a differentiation operator which we shall use
later.

Definition 12.3.2. The symbol V can be thought of as a vector operator,
called del or nabla, whose components are 0/0x,0/dy, and 0/0z. Thus, we
can write

0 0 0

Ox +ey8y +ez8z'

This vector operator V operates on differentiable functions and produces vec-
tor fields.

V=2é, (12.28)

12.3.1 Gradient and Extremum Problems

The gradient is very nicely used to find the maxima and minima of functions
of several variables. A function f(x) of n variables x = (x1,x2,...,x,) has a
local extremum (maximum or minimum) at a point a if its differential vanishes
at that point for arbitrary dx:

_of of
- 5:61 8$2

of

dxq1 + oz,

a

dro+ -+

a

dz, = (Vf(a)) - dx=0

a

df

where

o= (2

d dx = (dx1,dxs, ..., dx,).
8331783327 78$n> an X <$17 X2, 5 .’K>

If the dot product of V f(a) and dx is to vanish for arbitrary dx, then V f(a)
must be zero. Thus for f to have an extremum at a, we must have

of

Vf(a)=0 or O,

=0, i=12,...,n. (12.29)

a
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This is the generalization to n variables the familiar condition known from
calculus.

In many situations, there are auxiliary conditions or constraints imposed
on the independent variables. For example, let P;, ), and P, be three points
in space, with P; and P fixed but @ being allowed to move. Consider the
path P;@QP; consisting of straight line segments P; @ and QP,. What choice
of @ gives the shortest path? If we denote the coordinates of @ by (z,y, 2)
and those of P; and P, with obvious subscripts, then we have to find the
extremum of

fay,z)=V(@—21)2+ (y— 1)+ (z — 21)?
V(@ = 22)2 + (y — 92)2 + (2 — 22)2.

So we set partial derivatives equal to zero and solve for (x,y, z). The answer,
as expected, turns out to be the path for which @ lies on the line segment
P, P> between P; and Ps.

Now suppose we demand that @ lie on a sphere of radius a centered at the
origin. Then the problem becomes extremizing f(z,y, z) with the constraint
condition that

gy, 2) =2 +y*+ 22 —a* =0.

To solve this problem, we could solve for one of the variables of the constraint
equation in terms of the other two, substitute in f(x,y, z), and solve the re-
sulting two-variable problem. But there is a much more elegant way involving
gradients, which we discuss now.

Suppose that we want to find the extremum of a function f(x) of n vari-
ables x = (z1,x2,...,2,) subject to the condition that x must lie on the
hypersurface g(x) = 0. We cannot set V f equal to zero because dx is no
longer arbitrary.

With constraint, dx is confined to the surface g(x) = 0. Now, the only
n-dimensional vector which has a vanishing dot product with any dx on the
constrained surface is (a multiple of) the normal to the surface. Therefore, if
(Vf)-dx is to be zero for dx lying on the surface, then V f must be a multiple
of the normal to the surface g(x) = 0. But this normal is nothing but Vg.
Therefore, if f is to have an extremum subject to the constraint g(x) = 0,
then it must obey the following equation

Vf=-AVg or Vf+AVg=0,
where A is an arbitrary constant called the Lagrange multiplier. This
equation shows that to find the extremum of the function f with constraint

g(x) = 0, one can define the function F of n + 1 variables

F(zi,z9,..., 203 N) = f(x1,22,...,20) + Ag(z1, T2, ..., Tp),
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and extremize it without constraint. Then we have

oF _ af dg B -
Ox;  Oz; +)\83;i =0, i=12,...,n,

oF

P =g(z1,22,...,2,) = 0. (12.30)

The last equation is just the constraint condition, but it comes out conve-
niently as one of the extremal equations of F.

Example 12.3.4. A rectangular box is to be made out of a given amount A of
material to have the largest volume. What dimensions should the box have? Here
f(z,y,z) = zyz, the volume, and g(z,y,z) = 2zy + 2xz + 2yz — A. Setting the
components of the gradient of

F(z,y,z;\) = zyz + 2\ (zy + xz + yz — A/2)
equal to zero yields four equations

yz+2A(y +2) =0,
zz 42Xz +2) =0,
zy+2X(z +y) =0,
2(xy+xz+yz) —A=0.

Multiplying the first equation by x and the second equation by y and subtracting
yields
2 x(y+2) =2 y(x+2) =0, or x=y.

Similarly, from the second and third equations we get y = z. So, the box should be
a cube. The last equation then gives

A

62> —A=0, or x:y:z:\/G.

Substituting this in any of the above equations involving A yields A = — }1 \/ A/6.1
The extremal problems may have several constraint equations such as
gi(z1,22,...,2n) =9;(x) =0, j=1,2,...,m. (12.31)
We can “eliminate” the first constraint by replacing f(z1,22,...,2,) with
Fi(x; A1) = f(x) + Mg(x),

where F} has only m — 1 constraint equations. Now eliminate the second
constraint by defining

Fy(x; 01, A2) = F1(x3 A1) 4 Aaga(x) = f(x) + A1g1(X) + A2g2(x).

Continuing, we can eliminate all constraints by defining
F(x; A1, A2y Am) = F(x) + D Ajg;(x), (12.32)
j=1

whose unconstrained extremization yields the extremal equations.
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12.4 Problems

12.1. Find directly the solid angle subtended by a disk of radius a at a point
P on its perpendicular axis located a distance b from the center.

12.2. A closed curve p = 3a + acosp in cylindrical coordinates bounds a
region in the zy-plane. Find the solid angle subtended by this region at a
point P on the z-axis a distance 2a above the xy-plane.

12.3. Derive Equation (12.11).

12.4. Show that when a moving particle is confined to a circle, its velocity is
always perpendicular to its radius. If, furthermore, the speed of the particle
is constant, then its acceleration is radial.

12.5. Derive Equations (12.17) and (12.18).

12.6. The vectors a and b are given by

a=ué; + veé,, b =vé, — ue,.
(a) Write &, and €, in terms of Cartesian unit vectors.
(b) Find the four vectors dé,/du, 9é,/0v, 0€,/0u, and 9é,/Ov in terms of
Cartesian unit vectors.
(c) Express &, and €, in terms of &, and &.
(d) Express the four vectors 9é,/0u, 0é,/0v, 0é,/0u, and 9é,/dv in terms
of &, and ¢&,.
(e) If uw and v are functions of time, find dé,/dt and dé,/dt in terms of &,
and éb.

12.7. Derive Equation (12.19).
12.8. Derive Equation (12.23).

12.9. Show that (12.22) and the assumption § = 7/2 solve the last two
equations of (12.20) and reduce the first one to (12.24).

12.10. (a) Obtain the time derivatives of the cylindrical unit vectors:

deé, . de.
= —pe,, =0.
at —Fo dt
(b) Use the result of (a) to show that if A is a vector written in terms of
cylindrical unit vectors, then

dA dA, dA dA
= —Ayp | € A,¢ “ e “e..
dt <dt “¢>ep+(”<p+ dt)e“”L dt ©
22 4P 22
12.11. A surface is given by + + = 1. Find the unit normal to
a?  4a® 242

the surface and the equation of the tangent plane at (a/2,a,a).



12.4 Problems
12.12. The potential of a certain charge distribution is given by

2 2
) =24+ 4
(r,y,2) =2+ 4 + 9

(a) Find the electric field E = —V® at (3/v/2,1,1/2) and show that it is

normal to the surface ) )

2, Y €
=1.
z5+ 4 + 9
(b) Show that the electric field is normal at every point of this surface.
(¢) Show that the electric field is normal at every point of the surface obtained
by replacing 1 on the RHS of the last equation by any arbitrary constant.

12.13. Show that V(fg) = (Vf)g+ f(Vg) for any two (differentiable) func-
tions f and g of (z,y, 2).

12.14. Consider the plane ax 4+ by + ¢z = d and a point P = (xo,yo, 20)
not lying in the plane. Use Lagrange multipliers to show that the parametric
equation of the line passing through P that gives the minimum distance to
the plane is

r=r0+tn, where r = <$,y,Z>, rog = <x07y0720>7 n= <CL7b,C>-
(12.33)
From this deduce that the distance from P to the plane is

|d — axo — byo — c20|
Va2 + b2 + 2
Hint: Take the dot product of (12.33) with n and use the fact that n-r =d

when the tip of r is in the plane.

12.15. Consider the sphere (z — a)? + (y — b)? + (2 — ¢)* = d? and a point
P = (x0, Yo, z0) not lying on the sphere. Use Lagrange multipliers to show that
the shortest line segment connecting P to the sphere is that which extends
through the center of the sphere.

12.16. For a vector A(r,t) that is a function of position and time, show that

dA = (dr- V)A + 88? dt.

12.17. Find the gradient of
u(xvya 2 Z‘/, y/a Z/) = u(r - I‘/) = |I' — r/|m’

first with respect to the components of r and then with respect to the com-
ponents of r’, and write the answer completely in terms of r and r’. What is
the answer when m = —17
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Chapter 13

Flux and Divergence

A vector field is a function with direction, and because of this directional
property, many new kinds of differentiation and integration can be performed
on it. For instance, a vector field can be made to pierce a surface or an element
thereof, and as it pierces that surface its variation from point to point can be
monitored. This leads to one kind of differentiation and integration which we
discuss next. The integration leads to the concept of the flux of a vector field,
and the associated differentiation to the notion of divergence.

13.1 Flux of a Vector Field

The paradigm of the concept of flux is that of the velocity field of a fluid (see
Figure 13.1). A small ring of area Aa is situated in the flow. How much fluid
is passing through the ring per unit time? It is clear that the answer depends
on the density of the fluid,' the speed of the fluid, the size of the area Aa, and
also on the relative orientation of the direction of the flow and the unit normal
to the area, denoted by €,,. A little contemplation reveals that the amount of
fluid of constant unit density passing through Aa is proportional to?

Ap=v-e,Aa=v-Aa, (13.1)

where A¢ is called the flux of v through Aa, and Aa is defined to be &,Aa.
If the ring is replaced by a large surface S then we have to divide the surface
into small areas—not necessarily in the shape of a ring—and sum up the con-
tribution of each area to the flux. In the limit of smaller and smaller areas
and larger and larger numbers of such areas, we obtain an integral:

= AllllIEOZV,L €, Aa; = hm Zvl Aa; = //v da, (13.2)

N—o0 i=1 N*)OO =1
where ¢ is the total flux through S.

1For simplicity we assume that density is constant and we take it to be 1.
2We shall come back to a rigorous derivation of the flow of a substance through a small
loop later (see the discussion after Theorem 13.2.2).

flux of flow
velocity through a
small area

total flux of flow
velocity through a
large area
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Figure 13.1: Flux of velocity vector through a small area Aa.

There is an arbitrariness in the direction of the unit vector normal to an
element of area, because for any unit normal, there is another which points in
the opposite direction. The flux for these two unit normals will have opposite
signs. This may appear as if one could arbitrarily choose every one of the
unit normals é,, in the sum (13.2) to have either one of the two opposite
orientations, leading to an arbitrary result for the integral. This is not the case,
because the direction of the unit normal to an element of area is determined
by the neighboring unit normals and the requirement of continuity. So, once
the choice is made between the two possibilities of the unit normal for one
element of area of the surface S, say the first one €,,, the second one can
differ only slightly from é,,—in particular, it cannot be of opposite sign. The
third one should point in almost the same direction as the second one, and
so on. This requirement of continuity will uniquely determine the remaining
unit normals. However, the initial choice remains arbitrary, and since the
two orientations of the initial choice differ by a sign, the two total fluxes
corresponding to these two orientations will also differ by a sign. We shall see
shortly, however, that for closed surfaces, such an arbitrariness in sign can be
overcome by convention.

The discussion above works for orientable surfaces. This means that on
any closed loop entirely on the surface, the direction of a normal vector will
not change when one displaces it on the loop continuously one complete orbit.
It is clear that the lateral surface of a cylinder is orientable.

A cylinder is obtained by glueing the two edges of a rectangle. Now take
the same rectangle and twist one of the (smaller) edges before glueing it to the
opposite edge. The result—which the reader may want to construct—is a very
famous mathematical surface called the M6bius band. A Mobius band is not
orientable, because if one starts at the midpoint of the glued edges and moves
perpendicular to it along the large circle (length of the original rectangle),
then a unit normal displaced continuously and completely along the circle
will be flipped.? In this book we shall never encounter nonorientable surfaces.

3The reader is urged to perform this surprising experiment using a (portion of a) tooth-
pick as a unit normal.



13.1 Flux of a Vector Field

Example 13.1.1. Consider the flow of a river and assume that the velocity of the

water is given by
< 4x2) ;
v=w |1l—- . |é
w

where x is the distance from the midpoint of the river and w is the width of the
river. Let us find the flux of the velocity, assuming that the cross section of the river
is a rectangle with depth equal to h, as shown in Figure 13.2.

The normal to the area da is perpendicular to the xy-plane and is in the same
direction as the velocity. Thus, we have v - da = vda = vdx dy, and

h/2 w/2 Az
QS://vdxdy:/ dy vo<1— 2>dm
< —h/2 —w/2 w

w/2 2
:hvo/ (1—436 ) dx = hvo (w — Lw) = 2 Avo,

2
—w/2 w

where S is the cross section of the river and A is its area. ]

The concept of flux, although indicative of a flow, is not limited to the
velocity vector field. We can define the flux of any vector field A in exactly

the same way:
¢ = //A - da. (13.3)
s

Whether such a definition is useful or not should be determined by experi-
ment. It turns out that the flux of every physically relevant vector field is
not only useful, but essential for the theoretical—as well as experimental—
investigation of that field. For example, the flux of a gravitational field
through a closed surface is related to the amount of mass in the volume
enclosed in the surface. Similarly, the rate of change of the flux of a magnetic
field through a surface gives the electric field produced at the boundary of the
surface.

y

~\\ da =dx dy
N

/

Figure 13.2: The river with its cross section.
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Figure 13.3: The flux of the electric field through a circle. The normal unit vector &,
could be chosen to be either up or down. We choose (quite arbitrarily) the up direction
to make the flux positive for positive g.

Example 13.1.2. Consider the flux of the electric field of a point charge located
at a distance d from the center of a circle of radius a as shown in Figure 13.3. The
element of flux is given by

kqd
(@ + p2)3/2 pdpdp,
where &, is chosen to point up. The polar coordinates (p, ¢) are used to specify a
point in the plane of the circle at which point the element of area is p dp dp. To find
the total flux, we integrate the last expression above:

k}qd 27 a pdp
= =k
o= [[ o Sppnotote =had [ [ V0
S

E - da = |E|cos 8da = |E| cos 0pdpdp = ig fpdpdga =

_ a d
:27rk:d{—d2+2 1/2‘}:%1@ (1— )
qdy—(d” +p7) . q S 4 0
Note that since d represents a distance, as opposed to a coordinate, it is always
positive and d = Vd2 = |d|. [ ]

It is often necessary to calculate the flux of a vector field through a closed
surface bounding a volume. Intuitively, such a flux gives a measure of the
strength of the source of the vector field in the volume. For instance, the flux
of the velocity field of water through a closed surface bounding a fountain
measures the rate of the water output of the fountain. If the surface does
not enclose the fountain, the net flux will be zero because the flux through
one “side” of the closed surface will be positive and that of the other “side”
will be negative with the total flux vanishing. In the case of an electrostatic
field, the flux through a closed surface measures the amount of charge in the
volume bounded by that surface. The sign of the flux requires an orientation
of the bounding surface which is equivalent to the assignment of a positive
direction to the unit normal to the surface at each of its points. We agree to
adhere to the convention of Box 12.1.3.*

40nly orientable surfaces can have a well defined orientation. Since we are excluding
nonorientable surfaces from this book, all our surfaces respect Box 12.1.3.
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Example 13.1.3. Let us consider the flux through a sphere of radius a centered
at the origin of a vector field A given by A = kQr™e, with k£ a proportionality
constant and @ the strength of the source. Assuming that the outward normal is
considered positive (see Box 12.1.3) the total flux through the sphere is calculated

as
bq ://A~da://k:QaméT~(éra2sin9d9d<p)
S S

27 I I
=kQ / deo / a™a?sin0df = 2rkQa™ > / sin@df = 4rkQa™ 2.
0 0 0
It is important to keep in mind that when calculating the flux of a vector field, one
has to evaluate the field at the surface. That is why a appears in the integral rather
than r. Notice how the flux depends on the radius of the sphere. If m 42 > 0, then
the farther away one moves from the origin, the more total flux passes through the
sphere. On the other hand, if m + 2 < 0, although the size of the sphere increases,
and therefore, more area is available for the field to cross, the field decreases too
rapidly to give enough flux to the large sphere, so the flux decreases. The important

case of m = —2 eliminates the dependence on a: The total flux through spheres of
different sizes is constant. This last statement is a special case of the content of the
celebrated Gauss’s law. ]

Historical Notes

Space vectors were conceived as three-dimensional generalizations of complex num-
bers. The primary candidates for such a generalization however turned out to be
quaternions—discovered by Hamilton—which had four components. One could nat-
urally divide a quaternion into its “scalar” component and its vector component,
the latter itself consisting of three components. The product of two quaternions,
being itself a quaternion, can also be divided into scalar and vector parts. It turns
out that the scalar part of the product contains the dot product of the vector parts,
and the vector part of the product contains the cross product of the vector parts.
However, the full product contains some extra terms.

Physicists, on the other hand, were seeking a concept that was more closely
associated with Cartesian coordinates than quaternions were. The first step in this
direction was taken by James Clerk Maxwell. Maxwell singled out the scalar and the
vector parts of Hamilton’s quaternion and put the emphasis on these separate parts.
In his celebrated A Treatise on Electricity and Magnetism (1873) he does speak of
quaternions but treats the scalar and the vector parts separately.

Hamilton also developed a calculus of quaternions. In fact, the gradient operator
introduced in Definition 12.3.2 and its name “nabla” were both Hamilton’s inven-
tion.® Hamilton showed that if V acts on the wvector part v of a quaternion, the
result will be a quaternion. Maxwell recognized the scalar part of this quaternion
to be the divergence (to be discussed in the next section) of the vector v, and the
vector part to be the curl (to be discussed in the Section 14.2) of v.

Maxwell often used quaternions as the basic mathematical entity or he at least
made frequent reference to quaternions, perhaps to help his readers. Nevertheless,
his work made it clear that vectors were the real tool for physical thinking and not
just an abbreviated scheme of writing, as some mathematicians maintained. Thus

5He used the word “nabla” because V looks like an ancient Hebrew instrument of that
name.
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by Maxwell’s time a great deal of vector analysis was created by treating the scalar
and vector parts of quaternions separately.

The formal break with quaternions and the inauguration of a new independent
subject, vector analysis, was made independently by Josiah Willard Gibbs and Oliver
Heaviside in the early 1880s.

13.1.1 Flux Through an Arbitrary Surface

It may be useful to have a general formula for calculating the flux through
an arbitrary surface whose equation is given in parametric form in Cartesian
coordinates. Let

x = f(u,v), y=gu,v), z=h(u,v), (13.4)

be the parametric equation of a surface. When v is held fixed and u is allowed
to vary, a curve is traced on the surface whose infinitesimal displacement can
be written as [see Equation (6.63)]

- Of . Og . Oh
dli = é, o du + eyau du + ezc‘?u du.
Similarly infinitesimal displacement along curves of constant u is
-~ of . Og . Oh
dlo = €, Py dv +ey3v dv —|—ezav dv.

The cross product of these two displacements is the element of area of the
surface:

€, €y e, € €y €,
da=dhy xdiy=det | 5 97 Ol qugv=aet | 3% Y 92 | dudo.
of 9dg oh or 0y 0z
dv Ov Ov ov Ov Ov
Using this in (13.3) we get
A, A, A,
6= // det | 92 0V 920 0 ay, (13.5)
n oz Oy 0z
ov Ov Ov

where A, Ay, and A, are considered functions of u and v obtained by substi-
tuting (13.4) for their arguments. Equation (13.5) is an integral over a region
R in the uv-plane determined by the range of the variables u and v sufficient
to describe the surface S.

The special, but important case, of a surface given by z = f(z,y) deserves
special attention. In this case the parametrization is

xZu? 7y:U7 Z:f(u7v)
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and (13.5) yields

A, 4, A
(bz//det 10 92 | dud
R 0z
1 Gy

or, writing (z,y) for (u,v)

0z 0z
- A4, %% A A, : 13.
R

where R is the projection of the surface S onto the xy-plane.

13.2 Flux Density = Divergence

The connection between flux and the strength of the source of a vector field
was mentioned above. We now analyze this connection further. The variation
in the strength of the source of a vector field is measured by the density of
the source. For example, the variation in the strength-—concentration—of
the source of electrostatic (gravitational) field is measured by charge (mass)
density. We expect this variation to influence the intensity of flux at various
points in space.

13.2.1 Flux Density

Densities are physical quantities treated locally. A local consideration of flux,
therefore, requires the introduction of the notion of flux density:

Box 13.2.1. Take a small volume around a point P, evaluate the total flux
of a vector field through the bounding surface of the volume, and divide
the result by the volume to get the flux density or divergence of the
vector field at P.

We denote the flux density by pgs for the moment. Later we shall introduce
another notation which is more commonly used.

Let us quantify the discussion above for a vector field A. Consider a small
rectangular ® volume AV centered at P with coordinates (z,y,z). Let the
sides of the box be Az, Ay, and Az as in Figure 13.4. We are interested in

6The rectangular shape of the volume is not a restriction because it will be made smaller
and smaller at the end. In such a limit, any volume can be built from—a large number of—
these small rectangular boxes. Compare this with the rectangular strips used in calculating
the area under a curve.
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Figure 13.4: The flux of the vector field A through a closed infinitesimal rectangular
surface.

the net outward” flux of the vector field, A(z,y, z). The six faces of the box
are assumed to be so small that the angle between the normal to each face
and the vector field A is constant over the area of the face. Since we are
calculating the outward flux, we must assume that &, is always pointing out
of the volume.

The total flux A¢ through the surface can be written as

Ap = (A1 + Aga) + (Ad3 + Ads) + (Ags + Ady),

where each pair of parentheses indicates one coordinate axis. For instance,
A¢; is the flux through the face having a normal component along the positive
z-axis, A¢q is the flux through the face having a normal component along the
negative x-axis, and so on. Let us first look at A¢, which can be written as

Apr = Aq-e,,Aan
or, since €,, is the same as &,
A¢1 = A1 -éwAal = AlmAal.

This requires some explanation. The subscript 1 in A;, indicates the evalu-
ation of the vector field at the midpoint® of the first face. The subscript z
in Ay, of course, means the z-component. So, A1, means the z-component
of A evaluated at the midpoint of the first face; Aa; is the area of face 1
which is simply AyAz (see Figure 13.4). The center of the box—point P—
has coordinates (z,y,z) by assumption. Thus, the midpoint of face 1 will
have coordinates (z + Ax/2,y, z). Therefore,

Az

Y, z> AyAz. (13.7)

"The choice of outward direction is dictated by Box 12.1.3.
8The restriction to midpoint is only for convenience. Since the area is small, any other
point of the face can be used.
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The flux density that we are evaluating will be the density at P. Thus,
as a function of the three coordinates, the result will have to be given at the
coordinates of P, namely at (z,y,z). This means that in Equation (13.7),
all quantities must have (x,y, z) as their arguments. This suggests expanding
the function on the RHS of Equation (13.7) as a Taylor series about the point
(z,y,2). Recall from Chapter 10 that

z]kf € y7 )

(B B0y (82

fla+Az,y+ Ay, z+ Az) = Z Z

n=0i+j+k=n

We are interested only in the first power because the size of the box will
eventually tend to zero. Therefore, we write this in the following abbreviated
form:

fla+ Az,y+ Ay, z+ Az)

of

of
A
+ y@y

+ A (13.8)

=f($,y72)+Axaf 9z

ox

where it is understood that all derivatives are evaluated at (z,y, z). Applying
this result to the function on the RHS of Equation (13.7), for which Ay and
Az are zero, yields

Az Ax 0A,
and
Ax 0A,

Similarly, for the second face we obtain

A(bg = A2 . énzAaQ = AQ . (—éz) ACLQ = —AQIAyAZ

A

Az dA,
:—{Ar(x,y,z)— ; P + --}AyAz.

Adding the expressions for A¢; and Ag¢s, we obtain

Ag1 + Ao

Az 0A, Az 0A,
:{Ar(x,y,z)+ 9 Oz — Ay (z,y,2) + 9 O +---}AyAz

or

0A,

A
P V+

0A,
Ay + Ags = P AxAyAz +--- =
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The reader may check that
0A

Ags + Apy = 8yyAV+"',
OA,
Ags + Ags = 95 AV - (13.9)

so that the total flux through the small box is

0A, 0A 0A,
Ap = < + ¥+

A
Ox Oy 82) Vo

The flux density, or divergence as it is more often called, can now be obtained
by dividing both sides by AV and taking the limit as AV — 0. Since all the
terms represented by dots are of at least the fourth order, they vanish in the
limit and we obtain

Theorem 13.2.1. The relation between the flur density of a vector field and
the derivatives of its components is

o  Ap 04, 04, 0A,
po=divA =V A_AIXI/IEOAV_ Ox dy o

The term “divergence,” whose abbreviation is used as a symbol of flux
density, is reminiscent of water flowing away from its source, a fountain. In
this context, the flux density measures how quickly or intensely water “di-
verges” away from the fountain. The third notation V - A combines the
dot product in terms of components with the definition of V as given in
Equation (12.28).%

13.2.2 Divergence Theorem

The use of the word (volume) density for divergence suggests that the total
flux through a (large) surface should be the (volume) integral of divergence.
However, any calculation of flux—even locally—requires a surface, as we saw
in the derivation of flux density. What are the “small” surfaces used in the
calculation of flux density, and how is the large surface related to them? The
answer to this question will come out of a treatment of an important theorem
in vector calculus which we investigate now.

First consider two boxes with one face in common (Figure 13.5) and index
quantities related to the volume on the left by a and those related to the one
on the right by b. The total flux is, of course, the sum of the fluxes through
all sixz faces of the composite bozx:

Ap = (Ap1 + Aga) + (Aps + Ads) + (Ags + Ady),

9This notation is misleading because, as we shall see later, in non-Cartesian coordinate
systems, the expression of divergence in terms of derivatives will not be equal to simply
the dot product of V with the vector field. One should really think of V - A as a symbol,
equivalent to pg or div A and not as an operation involving two vectors.
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Figure 13.5: The common boundaries contribute no net flux.

y

where, as before, A¢; is the total flux through the face having a normal in
the positive x-direction, and A¢s that through the face having a normal in
the negative z-direction, and so on. It is evident from Figure 13.5 that

A(bl = A¢a1 + A¢b17

where Ag,, is the flux through the positive x face of box a and A¢y, is the
flux through the positive = face of box b. Using a similar notation, we can
write
Ago = Aga, + Ady,,
Aps + Aps = Apa; + Adp; + Adag + Agy,.

However, for the y faces we have A¢s = A¢yp, and Apy = Ad,,, because the
face of the composite box in the positive y-direction belongs to box b and that
in the negative y-direction to box a. Now note that the outward flux through

the left face of box b is the negative of the outward flux through the right face
of box a; that is,

Adp, = —A¢ay, = Adp, + Agg, = 0.
Thus, we obtain
Aps + Aoy = Ady, + Ada, = Ada; + Ay, + Ao, + Ay,
Using all the above relations yields
A¢ = (Ada, + Aday) + (Aday + Ada,) + (Adas + Ada)
+ (Adp, + A¢p,) + (Adpy + Adp, ) + (A, + Adbg)

or Ap = Agy + Adyp, or Agp = (V- A), AV, + (V- A)pAV},. These equations
say that

Box 13.2.2. The total flux through the outer surface of a composite box
consisting of two adjacent boxes is equal to the sum of the total fluzes
through the bounding surfaces of the two boxes, including the common
boundary. Stated differently, in summing the total outward flux of adjacent
bozes, the contributions of the common boundary cancel.

375



376

the very
important
divergence
theorem

Flux and Divergence

It is now clear how to generalize to a large surface bounding a volume: Di-
vide up the volume into N rectangular boxes and write ¢ ~ Efil (V-A);AV;.
The LHS of this equation is the outward flux through the bounding surface
only. Contributions from the sides of all inner bores cancel out because
each face of a typical inner box is shared by another box whose outward
flux through that face is the negative of the outward flux of the original box.
However, boxes at the boundary cannot find enough boxes to cancel all their
flux contributions, leaving precisely the flux through the original surface. The
use of the approximation sign here reflects the fact that IV, although large, is
not infinite, and that the boxes are not small enough. To attain equality we
must make the boxes smaller and smaller and their number larger and larger,
in which case we approach the integral:

¢:/V//V.Adv (13.10)

Then, using Equation (13.2), we can state the important

Theorem 13.2.2. (Divergence Theorem). The surface integral (flux) of
any vector field A through a closed surface S bounding a volume V is equal
to the volume integral of the divergence (or flux density) of A:

//A~da:/V/ V-AdV. (13.11)

S

Let A = cf where c is an arbitrary constant vector and f a function.
Applying the divergence theorem to this A and using the readily verifiable
identity V - (cf) = c- Vf, we get

//fc-da:/v//o(Vf)dV or e /S/fda —e /V//(Vf)dv

S

Since this holds for any c, we must have

[[ria= [ V/ viav (13.12)

S

Example 13.2.3. In this example we derive Gauss’s law for fields which vary
as the inverse of distance squared, specifically, gravitational and electrostatic fields.
Let @ be a source point (a point charge or a point mass) located at Py with position
vector ro and S a closed surface bounding a volume V. Let A(r) denote the field
produced by @ at the field point P with position vector r as shown in Figure 13.6(a).
We know that

A= f“i)lS (r — ro). (13.13)
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S

(b)

Figure 13.6: Derivation of Gauss's law for (a) a single point source, and (b) a number
of point sources.

The flux of A through S can be written immediately:
[[ A= [[ KO =R
Ir— rof®
s s

But the RHS is—apart from a constant—the solid angle subtended by S about Fj.
Using Equation (12.7), we have

AnKQ if Py is i
/ A.da_{” Q i RisinV, (13.14)

0 if Pyis notin V.
s

If there are N point sources @1, Q2,...,Qn, then A will be the sum of individual
contributions, and we have

[ & KQu(rk —ro) - da
/S/A.da./s./§Ak-dakZ_l/s. Ire — rol3
al " [ (rp —ro) - da al
:KZQ;C././ 1, — xo? :KkZ:leQky

where Q is zero if Qy is outside V| and 4 if it is inside [see Figure 13.6(b)]. Thus,
only the sources enclosed in the volume will contribute to the sum and we have

global (integral)
/ A - da = 47K Qenc, (13.15)  form of Gauss's
S law

where Qenc is the amount of source enclosed in S.

For electrostatics, K = ke = 1/4meo, Q = q, and A = E, so that

//E . (13.16)
S

For gravitation, K = —G, Q = M, and A = g, so that

//g cda = —47G Mene. (13.17)
s
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The minus sign appears in the gravitational case because of the permanent attraction
of gravity. Gauss’s law is very useful in calculating the fields of very symmetric source
distributions, and it is put to good use in introductory electromagnetic discussions.
The derivation above shows that it is just as useful in gravitational calculations. W

Equation (13.15) is the integral or global form of Gauss’s law. We can also
derive the differential or local form of Gauss’s law by invoking the divergence
theorem and assigning a volume density pg to Qenc:

LHS:///V-AdV, RHS:47rK///deV.
v v

Since these relations are true for arbitrary V', we obtain

Theorem 13.2.4. (Differential Form of Gauss’s Law). If a point source
produces a vector field A that obeys Equation (13.13), then for any volume
distribution pg of the source we have V - A = 41K pg.

This can easily be specialized to the two cases of interest, electrostatics
and gravity.

13.2.3 Continuity Equation

To improve our physical intuition of divergence, let us consider the flow of a
fluid of density p(x,y, z,t) and velocity v(z,y, z,t). The arguments to follow
are more general. They can be applied to the flow (bulk motion) of many
physical quantities such as charge, mass, energy, momentum, etc. All that
needs to be done is to replace p—which is the mass density for the fluid
flow—with the density of the physical quantity.

We are interested in the amount of matter crossing a surface area Aa
per unit time. We denote this quantity momentarily by AM, and because
of its importance and wide use in various areas of physics, we shall derive
it in some detail. Take a small volume AV of the fluid in the shape of a
slanted cylinder. The lateral side of this volume is chosen to be instantaneously
in the same direction as the velocity v of the particles in the volume. For
large volumes this may not be possible, because the macroscopic motion of
particles is, in general, not smooth, with different parts having completely
different velocities. However, if the volume AV (as well as the time interval
of observation) is taken small enough, the variation in the velocity of the
enclosed particles will be negligible. This situation is shown in Figure 13.7.
The lateral length of the cylinder is vAt where At is the time it takes the
particles inside to go from the base to the top, so that all particles inside will
have crossed the top of the cylinder in this time interval. Thus, we have

amount crossing top = amount in AV = pAV.

But AV = (vAt) - Aa = v - AaAt, where the dot product has been used
because the base and the top are not perpendicular to the lateral surface.
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Figure 13.7: The flux through a small area is related to the current density.

Therefore,

amount crossing top  pv-AaAt
At At

The RHS of this equation is the fluz of the vector field pv which is called the current density
mass current density, and usually denoted as J.
As indicated earlier, this result is general and applies to any physical
quantity in motion. We can therefore rewrite the equation in its most general
form as

AM = (pv) - Aa.

A(bQ = (pQV) -Aa = JQ - Aa. (1318)

This is so important that we state it in words:

Box 13.2.3. The amount of a flowing physical quantity @ crossing an
area Aa per unit time is the flur Jo - Aa. The current density Jo at each

point is simply the product of volume density and velocity vector at that relation between
point. flux and current
density

For a (large) surface S we need to integrate the above relation:

PqQ =// (pqv) -da = //JQ-da (13.19)
S S

and if S is closed, the divergence theorem gives

QSQ://JQ-da:// V- Jgav. (13.20)
S \4

Let @, which may change with time, denote the total amount of physical
quantity in the volume V. Then, clearly

o0 = [ [[roav=[[] satr.aver),
1% 1%
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where in the last integral we have emphasized the dependence of various quan-
tities on location and time. Now, if @ is a conserved quantity such as energy,
momentum, charge, or mass,'? the amount of Q that crosses S outward (i.e.,
the flux through S) must precisely equal the rate of depletion of @ in the
volume V.

Theorem 13.2.5. In mathematical symbols, the conservation of a conserved

physical quantity Q is written as
—//JQ-da, (13.21)
s

which is the global or integral form of the continuity equation.

The minus sign ensures that positive flux gives rise to a depletion, and
vice versa. The local or differential form of the continuity equation can be
obtained as follows: The LHS of Equation (13.21) can be written as

W] [rewvav // P9 (1, 1) av (r),
1%

while the RHS, with the help of the divergence theorem, becomes

—//JQ-da:—// V. JgdV.
s %
Together they give

///adev_ /V/ V- JodV
///{8”Q+V~JQ} dv = 0.

This relation is true for all volumes V. In particular, we can make the volume
as small as we please. Then, the integral will be approximately the integrand
times the volume. Since the volume is nonzero (but small), the only way that
the product can be zero is for the integrand to vanish.

or

Box 13.2.4. The differential form of the continuity equation is

Ipq
o TV Jo=0. (13.22)

10Tn the theory of relativity mass by itself is not a conserved quantity, but mass in
combination with energy is.
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Both integral and differential forms of the continuity equation have a wide
range of applications in many areas of physics.

Equation (13.22) is sometimes written in terms of pg and the velocity.
This is achieved by substituting pgv for Jg:

Ipq _
iy +V . (pgv)=0
or 5
th +(Vpq) - v+poV - -v=0.

However, using Cartesian coordinates, we write the sum of the first two terms
as a total derivative:

Ipq _ Opq dpq 9pq Ipq de dy dz
or T(VPa)v=5 "+ ox’ Oy’ Oz dt’ dt’ dt

_Opq | Opqdr  Opody  Opqdz _ dpg
ot Ox dt Oy dt = 0z dt dt -

=total derivative=dpq /dt

Thus the continuity equation can also be written as

d
;Q +poV v =0. (13.23)

Historical Notes

Aside from Maxwell, two names are associated with vector analysis (completely
detached from their quaternionic ancestors): Willard Gibbs and Oliver Heaviside.

Josiah Willard Gibbs’s father, also called Josiah Willard Gibbs, was profes-
sor of sacred literature at Yale University. In fact the Gibbs family originated in
Warwickshire, England, and moved from there to Boston in 1658.

Gibbs was educated at the local Hopkins Grammar School where he was de-
scribed as friendly but withdrawn. His total commitment to academic work together
with rather delicate health meant that he was little involved with the social life of
the school. In 1854 he entered Yale College where he won prizes for excellence in
Latin and mathematics.

Remaining at Yale, Gibbs began to undertake research in engineering, writing a Josiah Willard
thesis in which he used geometrical methods to study the design of gears. When he Gibbs 1839-1903
was awarded a doctorate from Yale in 1863 it was the first doctorate of engineering
to be conferred in the United States. After this he served as a tutor at Yale for
three years, teaching Latin for the first two years and then Natural Philosophy in
the third year. He was not short of money however since his father had died in
1861 and, since his mother had also died, Gibbs and his two sisters inherited a fair
amount of money.

From 1866 to 1869 Gibbs studied in Europe. He went with his sisters and spent
the winter of 1866—67 in Paris, followed by a year in Berlin and, finally spending
1868—69 in Heidelberg. In Heidelberg he was influenced by Kirchhoff and Helmholtz.

Gibbs returned to Yale in June 1869, where two years later he was appointed
professor of mathematical physics. Rather surprisingly his appointment to the pro-
fessorship at Yale came before he had published any work. Gibbs was actually
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a physical chemist and his major publications were in chemical equilibrium and
thermodynamics. From 1873 to 1878, he wrote several important papers on ther-
modynamics including the notion of what is now called the Gibbs potential.

Gibbs’s work on vector analysis was in the form of printed notes for the use of
his own students written in 1881 and 1884. It was not until 1901 that a properly
published version appeared, prepared for publication by one of his students. Using
ideas of Grassmann, a high school teacher who also worked on the generalization of
complex numbers to three dimensions and invented what is now called Grassmann
algebra, Gibbs produced a system much more easily applied to physics than that of
Hamilton.

His work on statistical mechanics was also important, providing a mathematical
framework for the earlier work of Maxwell on the same subject. In fact his last
publication was Elementary Principles in Statistical Mechanics, which is a beautiful
account putting statistical mechanics on a firm mathematical foundation.

Except for his early years and the three years in Europe, Gibbs spent his whole
life living in the same house which his father had built only a short distance from the
school Gibbs had attended, the college at which he had studied, and the university
where he worked all his life.

Oliver Heaviside caught scarlet fever when he was a young child and this
affected his hearing. This was to have a major effect on his life making his childhood
unhappy, and his relations with other children difficult. However his school results
were rather good and in 1865 he was placed fifth from 500 pupils.

Academic subjects seemed to hold little attraction for Heaviside, however, and
at age 16 he left school. Perhaps he was more disillusioned with school than with
learning since he continued to study after leaving school, in particular he learnt the
Morse code, and studied electricity and foreign languages, in particular Danish and
German. He was aiming at a career as a telegrapher and in this he was advised
and helped by his uncle Charles Wheatstone (the piece of electrical apparatus the
Wheatstone bridge is named after him).

In 1868 Heaviside went to Denmark and became a telegrapher. He progressed
quickly in his profession and returned to England in 1871 to take up a post in
Newcastle upon Tyne in the office of the Great Northern Telegraph Company which
dealt with overseas traffic.

Heaviside became increasingly deaf but he worked on his own researches into
electricity. While still working as chief operator in Newcastle he began to publish
papers on electricity. One of these was of sufficient interest to Maxwell that he men-
tioned the results in the second edition of his Treatise on Electricity and Magnetism.
Maxwell’s treatise fascinated Heaviside and he gave up his job as a telegrapher and
devoted his time to the study of the work. Although his interest and understanding
of this work was deep, Heaviside was not interested in rigor. Nevertheless, he was
able to develop important methods in vector analysis in his investigations.

His operational calculus, developed between 1880 and 1887, caused much con-
troversy. Burnside rejected one of Heaviside’s papers on the operational calculus,
which he had submitted to the Proceedings of the Royal Society, on the grounds that
it “contained errors of substance and had irredeemable inadequacies in proof.” Tait
championed quaternions against the vector methods of Heaviside and Gibbs and
sent frequent letters to Nature attacking Heaviside’s methods. Eventually, however,
his work was recognized, and in 1891 he was elected a Fellow of the Royal Society.
Whittaker rated Heaviside’s operational calculus as one of the three most important
discoveries of the late nineteenth Century.
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Heaviside seemed to become more and more bitter as the years went by. In 1908
he moved to Torquay where he showed increasing evidence of a persecution complex.
His neighbors related stories of Heaviside as a strange and embittered hermit who
replaced his furniture with granite blocks which stood about in the bare rooms like
the furnishings of some Neolithic giant. Through those fantastic rooms he wandered,
growing dirtier and dirtier, with one exception: His nails were always exquisitely
manicured, and painted a glistening cherry pink.

13.3 Problems

13.1. Using (13.6) find the flux of the vector field A = kz?é, through the
portion of the sphere of radius a centered at the origin lying in the first octant
of a Cartesian coordinate system.

13.2. Using (13.6) find the flux of the vector field A = yé, + 3z¢, — 2zé,
through the portion of the plane = + 2y — 3z = 5 lying in the first octant of a
Cartesian coordinate system.

13.3. A vector field is given by A = r. Using (13.6) find the flux of this
vector field through the upper hemisphere centered at the origin. Verify your
answer by calculating the flux using (the much easier) spherical coordinates.

13.4. Find the flux of the vector field A = z2é, + y?&, + z?é, through the
portion of the plane = + y + z = 1 lying in the first octant of a Cartesian
coordinate system.

13.5. Using (13.6), find the flux of the vector field A = kr/r® through the
upper hemisphere centered at the origin. Verify your answer by calculating
the flux using spherical coordinates.

13.6. Find the flux of the vector field A = yé, 4 aé, through the portion of
the paraboloid z = b2 — 22 — y? above the zy-plane.

13.7. Derive Equation (13.9).
13.8. Find the flux of the vector
6ka’y R 3ka’z R 2ka’x
e, ey + e,
V2 +y2 +a? VY2 + 22 4 4a? Va2 + 22 4 9a?
through the surface of the box shown in Figure 13.8:
(a) by integrating over the surface of the box; and

(b) by using the divergence theorem and integrating over the volume of the
box.

A:

13.9. The gravitational field of a certain mass distribution is given by
g(x,y.2) = —kG {(z°y?2)e, + (2%y°2°)e, + (2?y?2°)e.

where k is a constant and G is the universal gravitational constant:
(a) Find the mass density of the source of this field.
(b) What is the total mass in a cube of side 2a centered about the origin?
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Figure 13.8: The box of Problem 13.8.

13.10. The gravitational field of a certain mass distribution in the first octant
of a Cartesian coordinate system is given by

GM

re—(@tytz)/a
a3

g(xa Y, Z) = - )

where r is the position vector, M and a are constants, and G is the universal
gravitational constant.

(a) Find the mass density of the source of this field.

(b) What is the total mass in a cube of side a with one corner at the origin
and sides parallel to the axes?

13.11. The electrostatic potential of a certain charge distribution in Cartesian
coordinates is given by

y
B(a,y,2) = Sayze e,

where Vy and a are constants.

(a) Find the electric field E = —V & of this potential.

(b) Calculate the charge density of the source of this field.

(c) What is the total charge in a cube of side a with one corner at the origin
and sides parallel to the axes? Write your answer as a numerical multiple of
60V0a.

13.12. The electric field of a charge distribution is given by

E= Ej xyze_(r"'y"'z)/ar.
a

(a) Write the Cartesian components of this electric field completely in Carte-
sian coordinates.

(b) Calculate the volume charge density giving rise to this field.

(c) Find the total charge in a cube of side a whose sides are parallel to the axes
and one of whose corners is at the origin. Write your answer as a numerical
multiple of egFoa?.



13.3 Problems

13.13. The velocity of a physical quantity @ is radial and given by v = kr
where k is a constant. Show that if the density p¢g is independent of position,
then it is given by

po(t) = poge M

where poq is the initial density of Q.
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Chapter 14

Line Integral and Curl

Last chapter introduced the concept of flux and the surface integral associated
with it. Flux uses the directional property of a vector field to have it pierce an
element of area. The directional property can also naturally assign a varying
direction along a line. One can consider how a vector field changes direction
as it moves along a curve in space. This change can also lead to a new kind of
integration and differentiation of vector fields. The integration leads to the no-
tion of a line integral and the associated differentiation to the concept of curl.

14.1 The Line Integral

The prime example of a line integral is the work done by a force. Consider
the force field F(r) acting on an object and imagine the object being moved
by a small displacement Ar. Then the work done by the force in effecting this
displacement is defined as

AW =F(r) - Ar,

where it is assumed that F(r) is (approximately) constant during the displace-
ment.

To calculate the work for a finite displacement, such as the one shown
in Figure 14.1, we break up the displacement into N small segments, cal-
culate the work for each segment, and add all contributions to obtain W =
Zil F(r;) - Ar;. The approximation sign can be removed by taking Ar; as
small as possible and N as large as possible. Then we have

Py
W = F(r)-dr = / F - dr, (14.1)
Py c
where C' stands for the particular curve on which the force is displaced. This
equation is, by definition, the line integral of the force field F. In this partic-
ular case it is the work done by F in moving from P; to P». Of course, we can
apply the line integral to any vector field, not just force. In electromagnetic

line integral
defined
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F(x,-, Yis Z,-)

Figure 14.1: The line integral of a vector field F from P; to P».

theory, for example, the line integrals of the electric and magnetic fields play
a central role.

The most general way to calculate a line integral is through parametric
equation of the curve. Thus, if the Cartesian set of parametric equations of
the curve is

e=[ft), y=g), z=h(),

then the components of the vector field A will be functions of a single variable
t obtained by substitution:

Ay (2,y,2) = Az (f(t),9(t), h()) = F(1),
Ay(@,y,2) = Ay (£(t), 9(t), h(t)) = S(t)
H

and the components of dr are
dr = f'(t)dt, dy = ¢'(t) dt, dz = h'(t)dt.

Then the line integral of A can be written as
/ A-dr:/(AIda:—l—Aydy—FAzdz)
c c

b
= / {F@)F(t) + S(t)g (t) + H(B)R (t)} dt, (14.2)

where ¢ = a and t = b designate the initial and final points of the curve,
respectively. Other coordinate systems can be handled similarly. Instead of
giving a general formula for these coordinate systems, we present an example
using cylindrical coordinates.

Example 14.1.1. Consider the vector field given by
A = crzp€, + capzé, + ca3ppés,

where c1, c2, and cs are constants. We want to calculate the line integral of this
field, starting at z = 0, along one turn of a uniformly wound helix of radius a whose
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'\
AN
o

Figure 14.2: The helical path for calculating the line integral.

windings are separated by a constant value b (see Figure 14.2 ). The parametric

equation of this helix in cylindrical coordinates is
b
= f(t) = = =t z=h(t)= _ t.
p=fl)=a ¢=gt)=t z=ht)=

Notice that as ¢ = t changes by 2w, the height (i.e., z) changes by b as required.
Substituting for the three coordinates in terms of ¢ in the expression for A, we obtain

A= (F@®),50),H(@) = <cl ;;_tQ,CQan;_t, 03at>.

Similarly,

dr = (dp, pdip, d=) = (f'(0), F(D)g' (1), 1 (8))dt = <o, 0l >dt7

so that
b
/CA~dr:/ (5@ (8) + S(0)g (1) + H(OK (1)) dt
_ [T 0 2 by b at\ dt = mab
,/0 { + coa o —|—632ﬂ_a} = mab(c2a + c3). -

Example 14.1.2. Consider the vector field A = K(zy?é, + zyé,). We want
to evaluate the line integral of this field from the origin to the point (a,a) in the
zy-plane along three different paths (i), (ii), and (iii), as shown in Figure 14.3. Since
the vector field is independent of z and the paths are all in the zy-plane, we ignore
z completely.

The first path is the straight line y = x. A convenient parameterization is z = at,
y = at with 0 < ¢ < 1. Along this path the components of A become

Ap = Kzy® = K(at)(at)® = Ka®t?, Ay = Ko’y = K(at)*(at) = Ka*t®.

Furthermore, taking the differentials of x and y, we obtain dr = adt and dy = a dt.
Thus,

(a,a) 1
/A.dr:/ (Amdm—i—Aydy):K/ [(a*) adt + (a*?) a di]
c ( 0

0,0)

1 4
:2Ka4/ Bar = K9
) 2
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L

(a, a)

" i
WA

Figure 14.3: The three paths joining the origin to the point (a,a). Path (iv) is to
illustrate the importance of parameterization.

Although parameterization is very useful, systematic, and highly recommended,
it is not always necessary. We calculate the line integral along path (ii)—given by
y = mQ/a—without using parameterization. All we have to notice is that all the y’s
are to be replaced by 2 /a [and therefore, dy by (2z/a) dz]. Thus,

4

5 T

2\ 2 2
Az:nyzsz(I) =K",, Ay:Kny:KzZ(I):K .
a a a a

The line integral can now be evaluated easily:

(a,a) a 5 4
[ () (7))
(0,0) 0 a a a

a .5 4
:31{/ v =10
0 @ 2

Finally, we calculate the line integral along the quarter of a circle. For this calcu-
lation, we return to the parameterization technique, because it eases the integration.
A simple parameterization is

r=a—acost, y=asint, ogtgg,
with dx = asintdt and dy = acostdt. This yields
Agpdy + Ayd, = K[(a — acost)a®sin® t]asin t dt + K[(a — a cost)’asint]acost dt
= Ka'[(1 — cost)(1 — cos® t) + (1 — cost)® cos t] sin t dt
= Ka*(1 — 3cos” t 4+ 2cos® t) sin ¢ dt.

This is now integrated to give the line integral:

(a,a) /2 .
/ (Azdg + Aydy) :Ka4/ (1 —3cos®t + 2cos’ t)sint dt
(0,0) 0

/2

/2 .
= Ka* {—cost‘ + cos® ¢ Lcost
0 0

—5cos't

2

/2 _ K(I4
o = .

The fact that the three line integrals yield the same result may seem surprising.
However, as we shall see shortly, it is a property shared by a special group of vector
fields of which A is a member. ]
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Many a time parameterization makes life a lot easier! Suppose we want
to calculate the line integral of a vector field along path (iv) of Figure 14.3.
First let us attempt to calculate the line integral using the coordinates. Along
path (iv) dr = —é, dz; so A - dr = —A, dx. Then

(0,a) 0 a
/ A-dr:—/ Amdx:/ A, dx.
(a,a) a 0

Thus, if A, > 0 (try A, = 2?), the integral will be positive. But this is wrong:
A positive A, should yield a negative A - dr because the two vectors are in
opposite directions!

With parameterization, this problem is alleviated. A parameterization
that represents path (iv) is

z=a(l—1t), y=a, 0<t<I1.

Clearly, ¢ = 0 corresponds to the beginning of path (iv) and ¢ = 1 to its
endpoint. The parameterization automatically gives dv = —a dt and dy = 0.
For instance, the vector field of Example 14.1.2 yields

(0,a) 1 1
/ A-dr:/ a(l—t)aQ(—adt):—a4/ (1—t)dt:—%a4.
( 0 0

a,a)

This has the correct sign because A, is positive and the direction of integration
negative. The other method would have given a positive result!

14.2 Curl of a Vector Field and Stokes’
Theorem

Line integrals around a closed path are of special interest. For example, if
the velocity vector of a fluid has a nonzero integral around a closed path, the
fluid must be turning around that path and a whirlpool must reside inside
the closed path. It is remarkable that such a mundanely concrete idea can be
applied verbatim to much more abstract and sophisticated concepts such as
electromagnetic fields with proven success and relevance. Thus, for a vector
field, A, and a closed path, C, we denote the line integral as

7{A-dr
c

where the circle on the integral sign indicates that the path is closed and C
denotes the particular path taken.

In our discussion of divergence and flux, we encountered Equation (13.11)
where an integral (over volume V') was related to an integral over its boundary
(surface S). This remarkable property has an analog in one lower dimension:
Any closed curve bounds a surface inside it. Is it possible to connect the
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Figure 14.4: There is no “the” surface having C' as its boundary. Both S; and So—as
well as a multitude of others—are such surfaces.

line integral over the closed curve to a surface integral over the surface? The
answer is yes, but we have to be careful here. What do we mean by “the” sur-
face? A given closed curve may bound many different surfaces, as Figure 14.4
shows. It turns out that this freedom, which was absent in the divergence
case,! is irrelevant and the relation holds for any surface whose boundary is
the given curve.

Let us now develop the analog of the divergence theorem for closed line
integrals. To begin, we consider a small closed rectangular path with a unit
normal €,, which is related to the direction of traversing the path by the
right-hand rule (RHR):

Box 14.2.1. (The Right-Hand Rule). Curl the fingers of your right
hand in the direction of integration along the curve, your thumb should
then point in the direction of &, .

Without loss of generality we assume that the rectangle is parallel to the zy-
plane with sides parallel to the z-axis and the y-axis and that &, is parallel
to the z-axis (see Figure 14.5). The line integral can be written as

b c d a
%A-dr:/A~dr+/A-dr+/ A-dr+/ A -dr.
C a b c d

We do the first integral in detail; the rest are similar. Along ab the element
of displacement dr is always in the positive z-direction and has magnitude dz,

11t should be clear that we cannot change the shape of the volume enclosed in S without
changing S itself. This rigidity is due to the maximality of the dimension of the enclosed
region: A volume is a three-dimensional object, and three is the maximum dimension we
have. Theories with higher dimension than three will allow a deformability similar to the
one discussed above.
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Figure 14.5: A closed rectangular path parallel to the zy-plane with center at (z,y, 2).

so it can be written as dr = &, dz. Thus, the first integral on the RHS above

becomes
b b b b
/ A-drz/ Ay -dry :/ Al-(émdx):/ A, dx,

where, as before, the subscript 1 indicates that we have to evaluate A at the
midpoint of ab and the subscript x denotes the z-component. Now, since ab
is small and the angle between A and dr does not change appreciably on ab,?
we can approximate the integral with A;,ab and write

b A
/ A -dr~ Ajzab= A1, Ax = A, (x,y— 2y,z> Az
e ~ ~ -
coordinates of
midpoint of ab

~{ At -0 an

where in the last line we used the Taylor expansion of A,. Similarly, we can

write
/A dr—/ A, - drz—/ Ay (—é,dx) = /Azzdx

—Agped = —Agy, A = — A, <x y+ 2y7 ) Az

coordinates of
midpoint of ed

Ay 0A,
_{Aw(x,y,z)—i— 5 oy }Ax.

Adding the contributions from sides ab and cd yields

b d
/A-dr—|—/ A-dr%—aaA‘TAxAy.
a c y

2This condition is essential, because a rapidly changing angle implies a rapidly changing
component Aj, which is not suitable for the approximation to follow.

Q

Q
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The contributions from the other two sides of the rectangle can also be
calculated:

b d

=A, (:Jc—i— A;,y,z) Ay — A, <x— Agc,y,z) Ay

2
Az 04, Az 0Ay
Ao+ G0t s {amnn - 500 a
0A,
= Ax Ay.
or ~F0Y
The sum of these two equations gives the total contribution:
0A 0A
A-dr= YT Az Ay. 14.3
?{c ! ( Ox dy ) ey (14.3)

Let us look at Equation (14.3) more closely. The expression in parentheses
can be interpreted as the z-component of the cross product of the gradient
operator V with A. In fact, using the mnemonic determinant form of the
vector product, we can write

o o0 0
V x A = det or oy 02
A, A, Al

_ (04, 04, o+ 0A;  0A. 6+ 04y  0A, o

oy oz ) * 0z or )Y ox oy ) 7
This cross product is called the curl of A and is an important quantity in
vector analysis. We will look more closely at it later. At this point, however,

we are interested only in its definition as applied in Equation (14.3). The
RHS of that equation can be written as

(8Ay o4,

P oy ) Arx Ay =(V x A), Az Ay = (V x A) - é,Aa,

where Aa = Ax Ay is the area of the rectangle. Noting that €, is in the
direction normal to the area, we can replace it with &,. Therefore, we can
write Equation (14.3) as

74A-drz(VxA)-énAa:(VxA)-Aa. (14.4)
c

Equation (14.4) states that for a small rectangular path C' the closed line
integral is equal to the normal component of the curl of A evaluated at the
center of the rectangle times the area of the rectangle. This statement does
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not depend on the choice of coordinate system. In fact, any rectangle (or any
closed planar loop) defines a plane and we are at liberty to designate that
plane the zy-plane. Thus, we can define the curl of a vector field this way:

Definition 14.2.1. Given a small closed curve C, calculate the line integral
of A around it and divide the result by the area enclosed by C. The component
of the curl of A along the unit normal to the area is given by

A-d
Curld -8, =V x A&, = lim Jo A dr

Aa—0 Aa (145)

The direction of €, is related to the sense of integration via the right-hand
rule.

In Equation (14.5) we are assuming that the area is flat. This is always
possible by taking the curve small enough. Definition 14.2.1 is completely
independent of the coordinate system and we shall use it to derive expressions
for the curl of vector fields in spherical and cylindrical coordinates as well.
The reader should be aware that the notation V x A is just that, a notation,
and—except in Cartesian coordinates—should not be considered as a cross
product.

What happens with a large closed path? Figure 14.6 shows a closed path C
with an arbitrary surface S, whose boundary is the given curve. We divide S
into small rectangular areas and assign a direction to their contours dictated
by the direction of integration around C.? If we sum all the contributions
from the small rectangular paths, we will be left with the integration around
C because the contributions from the common sides of adjacent rectangles
cancel.* This is because the sense of integration along their common side is

Figure 14.6: An arbitrary surface with the curve C as its boundary. The sum of the
line integrals around the rectangular paths shown is equal to the line integral around C.

3The direction of the contour with one side on the curve C' is determined by the direction
of the integration of C'. The direction of a distant contour is determined by working one’s
way to it one (small) rectangle at a time.

4This situation is completely analogous to the calculation of the total flux in the deriva-
tion of the divergence theorem.
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opposite for two adjacent rectangles (see Figure 14.6). Thus, the macroscopic
version of Equation (14.4) is

N N
]{ Acdrm) (VxA)-é,00 =) (VxA) Aa,
C

i=1 i=1

where (V x A); is the curl of A evaluated at the center of the ith rectangle,
which has area Aa; and normal &,,, and N is the number of rectangles on
the surface S. If the areas become smaller and smaller as N gets larger and
the most larger, we can replace the summation by an integral and obtain
important Stokes'

theorem Theorem 14.2.1. (Stokes’ Theorem). The line integral of a vector field

A around a closed path C' is equal to the surface integral of the curl of A on
any surface whose only edge is C. In mathematical symbols, we have

jiAwlr://VxA-da. (14.6)
s

The direction of the normal to the infinitesimal area da of the surface S is
related to the direction of integration around C by the right-hand rule.

Example 14.2.2. In this example we apply the concepts of closed line integral
and the Stokes’ theorem to a concrete vector field. Consider the vector field

A = K(2*yé, + zy°8,)

obtained from the vector field of Example 14.1.2 by switching the z- and y-components.
We want to calculate the line integral around the two closed loops (the circle and
the rectangle) of Figure 14.7 and verify the Stokes’ theorem.

A convenient parameterization for the circle is

r=acost, y=asint, 0<t< 2m,
with dx = —asintdt and dy = acostdt. Thus,

A -dr = K(acost)*(asint)(—asintdt) + K (acost)(asint)’(acostdt) =0,

Zbﬁ

Figure 14.7: Two loops around which the vector field of Example 14.2.2 is calculated.
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and the LHS of the Stokes’ theorem is zero. For the RHS, we need the curl of the
vector.

_ 0 0 o _ 2 2\a
VXxA=K|g. dy 0z =K(y" —z%)é..
22y zy? 0
It is convenient to use cylindrical coordinates for integration over the area of the

circle. Moreover, the right-hand rule determines the unit normal to the area of the
circle to be é,. Thus,

a 27

//VXA~da:K/ / (p°sin® p — p° cos® p)pdpdp = 0
o Jo

s

by the ¢ integration. Thus the two sides of the Stokes’ theorem agree.

The two sides of the rectangular loop sitting on the axes will give zero because
A = 0 there. The contribution of the side parallel to the y-axis can be obtained by
noting that x = 2b and dx = 0, so that

A-dr=A,dc+ A, dy =0+ 20Ky> dy

(2b,b) b
/ A~dr:2bK/ y?dy = 2Kb*.
(2b,0) 0

and

To avoid ambiguity,® we employ parameterization for the last line integral. A con-
venient parametric equation would be

=2(1—t), y=b, 0<t<I,

which gives dr = —2bdt, dy = 0, and for which the line integral yields

(2b,0) 1 1
/ A - dr = K/ [2b(1 — ))?(b)(—2bdt) = —864K/ (1—1t)%dt = —SKb*.
(2b,b) 0 0

So, the line integral for the entire loop (the LHS of the Stokes’ theorem) is
}{ A - dr=2Kb' - SKb' = —2Kb".
c

We have already calculated the curl of A. Thus, the RHS of the Stokes’ theorem
becomes

//VxA~da:K//(y2—x2)dxdy
s
2b 2b
—K/ d:r/ydy K/ xd:r/ dy——QKb

=2b( Re /3) b3 /3)b
and the two sides agree. [

5See the discussion following Example 14.1.2.
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Historical Notes

George Gabriel Stokes published papers on the motion of incompressible fluids in
1842-43 and on the friction of fluids in motion, and on the equilibrium and motion
of elastic solids in 1845.

In 1849 Stokes was appointed Lucasian Professor of Mathematics at Cambridge,
and in 1851 he was elected to the Royal Society and was secretary of the society
from 1854 to 1884 when he was elected president.

He investigated the wave theory of light, named and explained the phenomenon
of fluorescence in 1852, and in 1854 theorized an explanation of the Fraunhofer lines
in the solar spectrum. He suggested these were caused by atoms in the outer layers
of the Sun absorbing certain wavelengths. However, when Kirchhoff later published
this explanation, Stokes disclaimed any prior discovery.

Stokes developed mathematical techniques for application to physical problems
including the most important theorem which bears his name. He founded the science
of geodesy, and greatly advanced the study of mathematical physics in England. His
mathematical and physical papers were published in five volumes, the first three of
which Stokes edited himself in 1880, 1883, and 1891. The last two were edited by
Sir Joseph Larmor in 1887 and 1891.

14.3 Conservative Vector Fields

Of great importance are conservative vector fields, which are those vec-
tor fields that have vanishing line integrals around every closed path. An
immediate result of this property is that

Box 14.3.1. The line integral of a conservative vector field between two
arbitrary points in space is independent of the path taken.

To see this, take any two points P; and P, connected by two different directed
paths C7 and C5 as shown in Figure 14.8(a). The combination of C; and the
negative of Cy forms a closed loop [Figure 14.8(b)] for which we can write

A -dr + A-dr=0
01 —02
because A is conservative by assumption. The second integral is the negative
of the integral along C5. Thus, the above equation is equivalent to

A-dr—/ A-dr=0 = A .dr = A -dr
C Co Cy Ca
which proves the above claim.
Now take an arbitrary reference point Py and connect it via arbitrary paths
to all points in space. At each point P with Cartesian coordinates (z,y, z),
define the function ®(x,y, z) by
P

ey =~ | A-drz—/cA~dr, (14.7)
0
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G _c,

P, Py
G C,

@ (b)

Figure 14.8: (a) Two paths from P; to P», and (b) the loop formed by them.

where C' is any path from Py to P and the minus sign is introduced for
historical reasons only. ® is a well-defined function because its value does not
depend on C and is called the potential associated with the vector field A.
We note that the potential at P is zero. That is why F, is called the potential
reference point.

Now consider two arbitrary points P; and Ps, with Cartesian coordinates
(z1,41,21) and (x2,ys, 22), connected by some path C. We can also connect
these two points by a path that goes from P; to Py and then to P (see
Figure 14.9). Since A is conservative, we have

Py Py Py
A - dr = A -dr+ A - dr = ®(x1,y1,21) — P(x2, Y2, 22)
Py Py Py
or
Py
(2, Y2, 22) — P(21,91,21) = — A - dr, (14.8)
P

which expresses the potential difference between the two points.
If P, and P are displaced infinitesimally by dr, then their infinitesimal
potential difference will be
d® = —A -dr.

On the other hand, ®, being a scalar differentiable function of x,y, and z, has
infinitesimal increment

o0d 0P 0P
dd = O dx + oy dy + 92 dz = (V®) - dr,
C P,

Py

Figure 14.9: Any path C from P; to P, is equivalent to the path P, — Py — P».
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so we have

—A  dr = (V). dr.

But this is true for an arbitrary dr. Taking dr to be €, dz,é,dy, and &, dz
in turn, we obtain the equality of the three components of V& and —A.
Therefore, we have

A=-V0, (14.9)

which states that

Theorem 14.3.1. A conservative vector field can be written as the negative
gradient of a potential function defined as

P
(I)(xayvz):_ A'drv
Po

where (x,y,z) are the coordinates of P, and the integral is taken along any
path connecting Py and P.

Another property of a conservative vector field can be obtained by rewrit-
ing Equation (14.4), which is true for an arbitrary infinitesimal closed path:

%A-drm(VxA)-éHAa.
c

However, the LHS is zero because A is conservative. Thus we have
(VxA) -é,Aa=0.

This is true for arbitrary Aa and é,. Therefore, we have the important
conclusion that V x A = 0 for a conservative vector field. It is important to
note that although fc A - dr is zero and C is small, we cannot deduce that
A - dr = 0 and, therefore, A = 0. (Why?)

A conservative vector field demands the vanishing of the curl. But is
V x A = 0 sufficient for A to be conservative? The answer, in general, is
no! (See Example 14.3.3 below.) If the vector field is well defined and well
behaved (smoothly varying, differentiable, etc.) in a region of space U, then
V x A = 0in U implies that fo A -dr = 0 for all closed curves C' lying entirely
in U. In modern mathematical jargon such a region is said to be contractible
to zero, which means that any closed curve in U can be contracted to a point
(or “zero” closed curve) without encountering any singular point of the vector
field (where it is not defined or well behaved). We state this result as follows:

Box 14.3.2. Let the region U in space be contractible to zero for the vector
field A. Then for any closed curve C' in U, the two relations V x A =0
and fc A - dr =0 are equivalent.



14.3 Conservative Vector Fields

Example 14.3.2. The line integral of the vector field of Example 14.1.2 was
independent of the three paths examined there. Could it be that the vector field is
conservative? The vector field is clearly well behaved everywhere. Therefore, the
vanishing of its curl proves that it is conservative. But

vxa=k|Z aay 2| = (06 + (00, + (2zy — 22y)é. = 0.

zy? 2%y 0

So, A is indeed conservative.

Next we find the potential of A at a point (xo,y0) in the zy-plane.® Let the
reference point be the origin. Since it does not matter what path we take, we choose
a straight line joining the origin and (zo,yo). A convenient parametric equation is

T = xot, Y = yot, 0<t<1,

which gives dx = xo dt and dy = yo dt. We now have

(z0,y0)
D(x0,y0) = —/ A -dr
(0,0)

1
= —K/ [(zot) (yot)? (o dt) + (zot)* (yot) (yo dt)]
0
1
= —2Kx3y§/ t3dt = —éngyg.
0

We can now substitute (z,y) for (zo,yo) to obtain
O(z,y) = —éKx2y2.
The reader may verify that A = -V &. ]

It should be clear that V x A # 0 always implies that A is not conservative.
However, V x A = 0 implies that A is conservative only if the region in
question is contractible to zero.

Example 14.3.3. Consider the vector field
ky kx

A= &, — &,
x2+y2 x2+y2 Y

where k is a constant. Since the components of this vector are independent of z, the
curl of the vector can have only a z-component:

€ €&, €

1o o 8| _ (0Ay, O0A:)\ .
VXA=l5; 8y az*(am—ay é:.

A, A, 0

6We completely ignore the z-coordinate because A has no component in that direction.
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The reader may easily verify that

04, k 22 0A, k 212
= +k 7 = +k 7
o z2 + 42 (22 4 y2)2 Ay 22 4 42 (22 + y2)2
so that
Ay,  0A, _ 2k 2(2° +y°)
ox oy~ x2+92 (22 4 y?)?
and V x A =0.

Now take a circle of radius a about the origin and calculate the line integral of
A on this circle. For integration, use the parameterization

r=acost, y=asint, 0<t< 2m,
with do = —asintdt and dy = acostdt. Then

k(asint)(—asintdt)  k(acost)(acostdt)
A.-dr= A, A = — =
dr du + Aydy (acost)? + (asint)?  (acost)? + (asint)? kdi

and, therefore
27

A.-dr=—k dt = —2mk.

circ 0
This is an example of a vector field whose curl vanishes but yields a nonzero
result for a closed line integral. The reason is, of course, that the region inside the
circle is not contractable to zero: At the origin the vector is infinite. [ |

If the vector field is conservative, in principle we can determine its potential
either by direct antidifferentiation or by integration. The following example
illustrates the former procedure.

Example 14.3.4. Consider the vector field
A = (2zy + 32°)é, + (2° + 4yz)é, + (20° + 622)é..

The reader may check that V x A = 0. Thus, since A is well defined everywhere,
it is conservative. To find its potential ¢, we note that

oP
ox

where we have simply antidifferentiated A, with respect to r—assuming that y
and z are merely constants—and added a “constant” of integration: As far as z
differentiation is concerned, any function of y and z is a constant. Now differentiate
® obtained this way with respect to y and set it equal to —Ay:

=—A, = 2zy— 32 = &= —x2y —32%z + q9(y, 2),

o 0 0
_Ay = _(xQ + 4Zy) = ay = ay (_Izy - 322I +g(y,z)) = _1,2 + az
This gives
o = —tyz = g(0.) = 2% + ()

Note that our second “constant” of integration has no z-dependence because g(y, 2)
does not depend on x. Substituting this back in the expression for ®, we obtain

b = —zy— 3%z + g(y,z) = —2y —32%r — 22 + h(z).
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Finally, differentiating this with respect to z and setting it equal to —A., we obtain

_ 2 _ 3@‘ _ (9 2 2 2 _ dh,
—A, = —(2y" +6xz2) = 9s = 8Z(—x y—3z"x—2y "z + h(z)) = —6zz—2y° + A
This gives

dh -~
de = 0 = h(z) =const. =C.

The final answer is therefore
O(z,y,2) = —z?y — 32%z — 2%z + C.
The arbitrary constant depends on the potential reference point, and is zero if we

choose the origin as that point. It is easy to verify that —V & is indeed the vector
field we started with. n

There are various vector identities which connect gradient, divergence,
and curl. Most of these identities can be obtained by direct substitution. For
example, by substituting the Cartesian components of A x B in the Cartesian
expression for divergence, one can show that

V.- (AxB)=B-VxA-A -V xB. (14.10)
Similarly, one can show that

V- (fA)=A-Vf+fV- A
Vx(fA)=fVxA+(Vf)xA (14.11)
x (VxA)=1VIAP - (A-V)A
We can use Equation (14.10) to derive an important vector integral relation

akin to the divergence theorem. Let B be a constant vector. Then the second
term on the RHS vanishes. Now apply the divergence theorem to the vector

field A x B:
//AwaM:// V(A x B)dV.
S 14

Using Equation (14.10), the RHS can be written as

RHS:///B-VxAdV:B-// V x AdV.
v v

Moreover, the use of the cyclic property of the mixed triple product (see
Problem 1.15) will enable us to write the LHS as

LHS = //daxA ‘B = //B (da x A) //daxA
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Equating the new versions of the two sides, we obtain

B-/V//VxAdV:B-/S/daxA
B /V//VXAdv_/S/daxA 0.

Since the last relation is true of arbitrary B, the vector inside the parentheses
must be zero. This gives the result we are after:

///VxAdV://daxA. (14.12)
\% S

14.4 Problems

or

14.1. Evaluate the line integral of

A(z,y,z) = 22e, + yzéy — 2%,

along the path given parametrically by
x=at?, y=>bt, z=csin(nt/2)
from the origin to (a, b, c).

14.2. Evaluate the line integral of

2 2

A(z,y,2z) = zé, + y &y — i e,
c

b
along the path given parametrically by

x =acos(wt/2), y=bsin(rt/2), z=ct
from (a,0,0) to (0,b,c).

14.3. Evaluate the line integral of

2

Ale,y) =ze, +°)

€y
along the closed ellipse given parametrically by
x =acost, y=bsint.

14.4. Show that V x (A x r) = 2A.



14.4 Problems

14.5. Let

A(z,y) = Az(z,y)es + Ay(z,y)&y
B(z,y) = By(2,y)é, + By(r,y)e,

be vectors in two-dimensions.

(a) Apply the divergence theorem to A using a volume V enclosed by a cylin-
der whose bottom base is an arbitrary closed curve C in the xy-plane and
whose top base is the same curve in a plane parallel to the xy-plane, and
whose lateral side is parallel to the z-axis. Now conclude that

B 0A, 04,
j{C(Ardy—Aydx) —//R< P + ay )da:dy

where R is the region enclosed by C in the zy-plane. This is the divergence
theorem in two dimensions.

(b) Apply Stokes’ theorem to B with C' as above and S the region R defined
above. Show that

B 0B, 0B,
ﬁ(dex + Bydy) = //R < P oy >dxdy

This is the Stokes’ theorem in two dimensions.
(¢) Show that in two dimensions the Stokes’ theorem and divergence theorem
are the same.

14.6. Evaluate the line integral of
A(z,y) = (x2 + 3y) €, + (y2 + 2;10) é,

from the origin to the point (1,2):

(a) along the straight line joining the two points; and

(b) along the parabola passing through the two points as well as the point
(—1,2).

(¢) Is A conservative?

14.7. Is the vector field A(z,y) = ze®” cosy e, — ;ewz siny &, conservative?
If so, find its potential.

14.8. A vector field is given by
P
where ®y and b are constants.

(a) Determine whether or not A is conservative.
(b) Find the potential of A if it is conservative.

14.9. The components of a vector field are given by
A, = Vokgyzekzry, A, = VokgxzekQ””y + Vok sin ky, A, = Vokekzry.

(a) Determine whether A is conservative or not.
(b) If it is conservative, find its potential.

405
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14.10. The Cartesian components of a vector are given by
A, = 2aze", A, = 2ayeF*, A, = ka(2® 4+ y?)e**,

where a and k are constants.
(a) Test whether A is conservative or not.
(b) If A is conservative, find its potential.

14.11. Prove Equations (14.10) and (14.11).
14.12. Show that
V(A-B)=(B-V)A+(A-V)B+Bx (VxA)+Ax(V xB)

and that
Ax(VxB)=V(A-B)—(A-V)B

14.13. Verify the vector identity
Vx(AxB)=(B-V)A-(A-V)B-B(V-A)+A(V-B)
14.14. Verify that for constant A and B

VIA-(Bxr)=AxB



Chapter 15

Applied Vector Analysis

In the last three chapters, we introduced the operator V and used it to make
vectors out of scalars (gradient), scalars out of vectors (divergence), and new
vector out of old vectors (curl). It is obvious that all these processes can
be combined to form new scalars and vectors. For instance one can create
a vector out of a scalar by the operation of gradient and use the resulting
vector as an input for the operation of divergence. Since almost all equations
of physics involve derivatives of at most second order, we shall confine our
treatment to “double del operations” in this chapter.

15.1 Double Del Operations

We can make different combinations of the vector operator V with itself. By
direct differentiation we can easily verify that

V x (Vf)=0. (15.1)

Equation (14.9) states that a conservative vector field is the gradient of its
potential. Equation (15.1) says, on the other hand, that if a field is the
gradient of a function then it is conservative.! We can combine these two
statements into one by saying that

Box 15.1.1. A wvector field is conservative (i.e., its curl vanishes) if and
only if it can be written as the gradient of a scalar function, in which case
the scalar function is the field’s potential.

Example 15.1.1. The electrostatic and gravitational fields, which we denote
generically by A, are given by an equation of the form

A(r) = K/S; |rdc;2(1:/)|3 (r—r').

I Assuming that the region in which the gradient of the function is defined is contractable
to zero, i.e., the region has no point at which the gradient is infinite.
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Furthermore, the reader may show that (see Problem 12.17)

r—r’ 1
E— X 15.2
e s V(|r—r'|) (15.2)

Substitution in the above integral then yields
/
Alr) = K [ dQ")V < r ) - v ( dQ(r,))
Q v — 1/ o |r—r'|
= —Vo(r), (15.3)

where @, the potential of A, is given by
/
B(r) = K/ dQ(r'). (15.4)
olr—r/|
Equation (15.3), in conjunction with Equation (15.1), automatically implies that
both the electrostatic and gravitational fields are conservative. [ ]
In a similar fashion, we can directly verify the following identity:

V- (VxA)=0. (15.5)

Example 15.1.2. Magnetic fields can also be written in terms of the so-called
vector potentials. To find the expression for the vector potential, we substitute
Equation (15.2) in the magnetic field integral:

B :/Q kmdq(r’)lxr/(i’lllxg( r—r’) _ km/@ dq(r')v( r') x {—V (|r—1r’|) }

We want to take the V out of the integral. However, the cross product prevents a
direct “pull out.” So, we need to get around this by manipulating the integrand.
Using the second relation in Equation (14.11), we can write

=0

V><<V(r,)) ! /V/;;—VXV( ! )

|r — 1’| :|r—r’| |r — /|

— _v(r) xv<|r_1r,|>.

We note that V x v = 0 because V differentiates with respect to (z,y, z) of which
v(r’) is independent. Substituting this last relation in the expression for B, we

obtain
N P O Kt
_ VXA, (15.6)

where we have taken V x out of the integral since it differentiates with respect to
the parameters of integration and €2 is assumed independent of (z,y, z). The vector
potential A is defined by the last line, which we rewrite as

A= km/ dq(r')v(x’) (15.7)
Q

v — |
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If the charges are confined to one dimension, so that we have a current loop, then
dgq(r')v(r") = I dr’ and Equation (15.7) reduces to

/
A= ka]{ e (15.8)
v —r/|
An important consequence of Equations (15.6) and (15.5) is Vanishing of
divergence of
V-B=0. (15.9)  magnetic field

implies absence of
Since the divergence of a vector field is related to the density of its source, we magnetic charges.

conclude that there are no magnetic charges.

This statement is within the context of classical electromagnetic theory. Re-
cently, with the advent of the unification of electromagnetic and weak nuclear inter-
actions, there have been theoretical arguments for the existence of magnetic charges
(or monopoles). However, although the theory predicts—very rare—occurrences
of such monopoles, no experimental confirmation of their existence has been
made. m

15.2 Magnetic Multipoles

The similarity between the vector potential [Equation (15.8)] and the electro-
static potential motivates the expansion of the former in terms of multipoles
as was done in (10.33). We carry this expansion only up to the dipole term.
Substituting Equation (10.32) in Equation (15.8), we obtain

1 Ar' ! mI mI ~
A:kmlj{ oL dr’:l€ j{dr’+k j{er-r’dr’.
r r2 r r2
\V/
=0

The reader can easily show that the first integral vanishes (Problem 15.5).

To facilitate calculating the second integral, choose Cartesian coordinates
and orient your axes so that €, is in the z-direction. Denote the integral by
V. Then

V= ]{ér rdr’ = j{ér rdr’ = ?{x’dr’ = ]{x’(éz di' +e,dy' +e,dz").
We evaluate each component of V separately.
Ve = %az'da}' = ;]{d (33'2) = ;a:'2

because the beginning and end points of a loop coincide.
Now consider the identity

end
=0

beginning

end
=0 (15.10)

beginning

Fay + i) = §ay) = @y)
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with an analogous identity involving ' and 2’. For the y-component of V,
we have

Vy, = ?{x’dy’ =1 j{x’dy’ + 3 j{x’dy’ + 3 j{y’da}’ — ;j{y’da}’
N~ -

~
These add up to nothing!

=1 (]{ 2'dy’ + fy’dx’) +3 (7{ o'dy’ — fy’dx’)
~ -~

~
=0 by Equation (15.10)

= ;]{(xldy/ —y'da’) = %7{(1" x dr'), =} <7§r' X dr') &,

It follows that
k1 k1 . km R
Ay: r2 Vy: 22 (%rlx dr/) € = T2H'eza

where we have defined the magnetic dipole moment p as

1
p=, 7{1" X dr’. (15.11)

A similar calculation will yield
ko, I ko, I - km
A, = 2 V,=-— 02 (%r'x dr’) €y == L n-éy
Therefore,

T o(ypls — e pu-ey)
’r‘zxy'ul zv s y/-

A= Ae, + A8, +Ae, =
=px(é,xé.) by bac cab rule

Recalling that €, x &, = &, and that by our choice of orientation of the axes
€, = €., we finally obtain

kmp X €, kpp XT
A= RO BT (15.12)

There is a striking resemblance between the vector potential of a magnetic
dipole [Equation (15.12)] and the scalar potential of an electric dipole [the
second term in the last line of Equation (10.33)]: The scalar potential is
given in terms of the scalar (dot) product of the electric dipole moment and
the position vector, the vector potential is given in terms of the vector product

of the magnetic dipole moment and the position vector.

Example 15.2.1. Let us calculate the magnetic dipole moment of a circular
current of radius a. Placing the circle in the zy-plane with its center at the origin,
we have

I I I 2 27
= r' x dr’ = (a8y) X (adp'ey) = N do'e, = Ima’e,.
2 2 2 /o
So, the magnitude of the magnetic dipole moment of a circular loop of current is

the product of the current and the area of the loop. Its direction is related to the
direction of the current by the right-hand rule. u
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15.3 Laplacian

The divergence of the gradient is an important and frequently occurring op-
erator called the Laplacian: Laplacian of a
function

V. (V) =Vf= OF L O O

o2 * o2 T 0n (15.13)

Laplacian occurs throughout physics, in situations ranging from the waves on Laplacian is found
a drum to the diffusion of matter in space, the propagation of electromagnetic everywhere!
waves, and even the most basic behavior of matter on a subatomic scale, as
governed by the Schrodinger equation of quantum mechanics.
We discuss one situation in which the Laplacian occurs naturally. The
result of the example above and Theorem 13.2.4 can be combined to obtain
an important equation in electrostatics and gravity called the Poisson equa-
tion: V- (=V®) =47 Kpg, or Poisson equation

V20(r) = —4nKpg(r). (15.14)

This is a partial differential equation whose solution determines the potential
at various points in space.? In many situations the density in the region of
interest is zero. Then the RHS vanishes and we obtain an important special
case of the above equation called Laplace’s equation: Laplace's equation

V20(r) = 0. (15.15)

Consider a fixed point P in space with Cartesian coordinates (xo,yo, z0)
and position vector ro. Take another (variable) point with Cartesian coordi-
nates (x,y, z) and position vector r. By direct differentiation, one can verify

that
r—r
v ’)=0
|r — rol3
at all points of space except at r = rg for which the vector is not defined.
Moreover, if S is any closed surface bounding a volume V', we have

// r—ro da=QS _ 4 if Pisin 'V,
v — o3 “"P 70 ifPisnotinV,
S

by Theorem 12.1.2. On the other hand, the divergence theorem relates the
LHS of this equation with the volume integral of divergence. Thus,

///V( r—r03) JV — 47 %fP?smV., (15.16)
|r — 1o 0 if PisnotinV.
v

2The reader should consider this, and any other differential equation, as a local equation,
meaning that the derivatives on the LHS and the quantities on the RHS are to be evaluated
at the same point.
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This shows that V - [(r —r)/|r — ro|?] has the property that it is zero every-
where except at P, but whose volume integral is not zero. This is reminiscent
of the three-dimensional Dirac delta function. In fact, it follows from Equation
(15.16) that

r—17ry
. =47(r — ro). 15.17
v <|r— r0|3) mo(r — o) (15.17)
Using Equation (15.2) and the definition of Laplacian, we also get
1
2
= —47é(r — rp). 15.1
\Y (|r— I‘0|> mo(r —ro) (15.18)
The last double-del operation we consider is

Vx(VxA)=V(V-A)-V?A (15.19)

which holds only in Cartesian coordinates and can be verified component by
component.

Example 15.3.1. Angular Momentum Operator In quantum mechanics,
the angular momentum L = r X p becomes the differential operator L = —ifir X V,
where h is the reduced Planck constant, which we set equal to 1 in the following
discussion. The quantity L? = |L|* appears frequently in applications of quantum
mechanics. It is therefore instructive to compute this quantity.

Since L? is a differential operator, we let it act on some function f and carry
out the differentiation until we get a simple result. Since

L*=Li+L,+ L2,

we let each component act on f separately. First note that

. _ (o af
Lif=—i(xrxVf), = z(yaz Z@y)
Lyf=—i(rxVf), =i (zgic - xg’;) (15.20)
. [ 0 0
L.f=—i(xrxVf), =—i (Iai —yai)
Therefore,
2, 17} 0 of af
—Lef= (yaz _Zay) (yaz _Zay)
O°f | 20°f _ Of _ Of o°f
_ 2 2 . _ _
- 07* T Ay? yay oz Qyzayaz
. Similarly,
*f  L0°f _of  of 0% f
2, 2 2 _ _ _
—-Lyf=x2 952 + z 92 x@x Zaz 2362(91’82’
and 2 2 2
g2, 20°f  20°f Of Of o°f
Lif=x oy +y 0.2 Tor Yoy Qxyaxay‘
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Adding the three components and using a little algebra, we get

20°F | 20°f +2282f)

L2 f = 292 _( i
f=r f * 92> 4 Ay? 822

2 2 2
—2r~(Vf)—2(yz8f+ o7 +xyaamgy).

Y2 P (15.21)

Let A denote the sum of the two expressions in the large parentheses. We can write
A in a compact form by expanding (r- V)(r- V f):

7] 7] 7] 7] 7] 7]
(- V?Pf=@ -V)r -Vf)= (x8m+y8y+zaz) (xai—&-yai—i—zai)
of

O’f *f *f

_ 2

a Iax ta 82 + Iy@zay + Iz@zaz
~ ~ -

comes from x differentiation

Adding the terms from z, y, and z differentiations we obtain
(r-V)?f=r-(Vf)+A or A=(r-V)’f—r- (V).
Substituting this in (15.21) yields
L’f=—rV?f4r-(Vf)+ (r-V)*f. (15.22)
As a differential operator, L? is written as
L’= V41 - V+(r V). (15.23)

We shall come back to this discussion in Chapter 17 to show how index manipulation
eases the calculation (see Example 17.3.3). [

15.3.1 A Primer of Fluid Dynamics

We have already talked about the flow of a fluid in Section 13.2.3, where
we derived the continuity equation, which states the conservation of mass in
mathematical terms. We now want to take up the dynamics of a fluid, i.e.,
the motion of various parts of the fluid due to the forces acting on them.

Consider a volume V of the fluid bounded by a surface S. The pressure p
exerted from outside at any point of .S in the element of area da is normal to
S at that point and pointing into the volume V. Thus, the element of force
due to pressure is —pda. If pressure is the only source of force on the volume
V of the fluid, then the total force on V is

F:—/S/pda.

Using Equation (13.12), we rewrite this as

F:—/S/pdaz—/v/ Vpadv.

+terms from y and z differentiation.
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This shows that Vp is a force density, whose volume integral gives the force.
If the density of the fluid is p and the mass element dm in V' has velocity v,
then the “mass time acceleration” is dm dv/dt = pdV (dv/dt), and the total
“mass time acceleration” is the volume integral of this quantity. If there are
other forces acting on the fluid described by a force density f, we can add it
to the right-hand side. Thus, Newton’s second law of motion gives

/V//p(dv/dt)dvz—/v/ Vpdv+/v/ £dv,

and this holds for any volume V', in particular for an infinitesimal volume for
which the integrals become the integrand. Hence, the second law of motion
for the fluid is

p(dv/dt) = —Vp+£. (15.24)

The total time derivative of velocity is

dv_8v+8de+8vdy+8de_8v+( v)
dt ~ ot drdt  oydt  xdt ot vV

Substituting this in (15.24) and dividing by p yields

— f
av+(v~V)v: Vot .

15.2
o ] (15.25)

This is Euler’s equation and is one of the fundamental equations of fluid
dynamics.

The force density f in Euler’s equation is usually that of the gravitational
force. Since the gravitational force on an element pdV is gpdV, where g is
the gravitational acceleration (or field), the gravitational force density is pg
and (15.25) becomes

ov —-Vp
+(v-V)v= +g. 15.26
oy = (15.26)
Example 15.3.2. In hydrostatic situations with a uniform gravitational field the
fluid is not moving and Equation (15.26) becomes

Vp= rg;
and if g is in the negative z-direction, then

op Op _ 0 op _
or Oy 9. P¥
Thus the pressure is independent of x and y, and depends only on height z. We

assume that the fluid (really the liquid) is incompressible, meaning that its density
does not depend on the pressure. Then, integrating the z equation gives

p=—pgz+C.

If the liquid has a free surface at z = h where the pressure is po, then C' = po + pgh,
and

p=po+ pg(h — z). u



15.4 Maxwell’s Equations

Example 15.3.3. Stellar equilibrium A star is a large mass of fluid held
together by gravitational attraction. If the star is in equilibrium, its fluid has no
motion and (15.26) becomes

Vp=pg or Vp=-—-pVo

where @ is the gravitational potential. Dividing this equation by p, and taking the
divergence of both sides, we obtain

V~<Vpp>:—V2<I> or V~<Vpp>:47er

where we used the Poisson equation (15.14). For a spherically symmetric star, only
the radial coordinate enters in the equation above, and borrowing from the next
chapter the expressions (16.7) for gradient and (16.12) for divergence in spherical
coordinates, the equation above takes the form

1d (rdp
= 4G
r2 dr ( P dr) TP
This is one of the fundamental equations of astrophysics. ]

15.4 Maxwell’s Equations

No treatment of vector analysis is complete without a discussion of Maxwell’s
equations. FElectromagnetism was both the producer and the consumer of
vector analysis. It started with the accidental discovery by Orsted in 1820
that an electric current produced a magnetic field. Subsequently, an intense
search was undertaken by many physicists such as Ampere and Faraday to
find a connection between electric and magnetic phenomena. By the mid-
1800s, a fairly good theory of electromagnetism was attained which, in the
contemporary language of vectors is translated in the following four equations:

(1) /S/E-dazg; (2) é/B-dazO;

(3) ch dr = —djtm; (4) ﬁB dr = pol. (15.27)

The first integral, Gauss’s law (or Coulomb’s law in disguise), states that the
electric flux through the closed surface S is essentially the total charge @ in
the volume surrounded by S. The second integral says that the correspond-
ing flux for a magnetic field is zero. The fact that this holds for an arbitrary
surface implies that there are no magnetic charges. The third equation, Fara-
day’s law, connects the electric field to the rate of change of magnetic flux
¢m- Finally, the last equation, Ampere’s law, states that the source of the
magnetic field is the electric current I. The constant €y and g arise from a
particular set of units used for charges and currents.
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15.4.1 Maxwell’s Contribution

Equations (15.27) can be cast in differential form as well. The differential
form of the equations is important because it places particular emphasis on
the fields which are the primary objects. The differential form of the equations
above are:

HVv-E=",
€0

0B
I VXE=—_;
3 VxB=-""
We have already derived the first two equations in Theorem 13.2.4 and Equa-
tion (15.9). Here we derive the third equation and leave the derivation of
the last equation—which is very similar to that of the third—to the reader.
Stokes’ theorem turns the LHS of the third equation of (15.27) into

LHSZ//VXE-da.
S
dpw  d [ ( 0B\
Tar dt//B da_//( 8t> .
S S

where we have assumed that the change in the flux comes about solely due
to a change in the magnetic field. This makes it possible to push the time
differentiation inside the integral, upon which it becomes a partial derivative
because B is a function of position as well. Since the last two equations hold
for arbitrary S, the integrands must be equal. This proves the third equation
in (15.28).

Maxwell inherited the four equations in (15.28), and started pondering
about them in the 1860s. He noticed that while the second and third are
consistent with other aspects of electromagnetism, the other two equations
lead to a contradiction. Let us retrace his argument. By Equation (15.5),
the divergence of the LHS of the last equation of (15.28) vanishes. Therefore,
taking the divergence of both sides, we get V -J = 0. This contradicts the
differential form of the continuity equation (13.22) for charges which expresses
the conservation of electric charge. Because of the firm establishment of the
charge conservation, Maxwell decided to try altering the four equations to
make them compatible with charge conservation. The clue is in the first
equation. If we differentiate that equation with respect to time, we obtain

0 1 9p OE 1 90p OE dp
V. .-E= = V- = = V. —

< ot ) €0 Ot <€° ot ) ot
This suggested to Maxwell that, if the four equations are to be consistent

ot e Ot
with charge conservation, the fourth equation had to be modified to include
eoOE/0t. With this modification, the four equations in (15.28) become

(2) V-B =0;

(4) V x B = poJ. (15.28)

The RHS is
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Hv-E=", (2) V-B = 0;
€0

3)VxE=_9B

OE
ot (4) V x B = poJ + poco

o (15.29)

It was a great moment in the history of physics and mathematics when
Maxwell, prompted solely by the forces of logic and pure deduction, intro-
duced the second term in the last equation. Such moments were rare prior mathematics and
to Maxwell, and with the exception of Copernicus’s introduction of the he- the force of logic
liocentric theory of the solar system and Descartes’s introduction of analytic ~and human
geometry, deductive reasoning was the exception rather than the rule. The- reasoning unravel
ories and laws were empirical (or inductive); they were introduced to fit the ~©ne of the greatest
data and summarize, more or less directly, the numerous observations made. secrets of Naturel
Maxwell broke this tradition and set the stage for deductive reasoning which,
after a great deal of struggle to abandon the inductive tradition, became the
norm for modern physics.

Today, we aptly call all four equations in (15.29) Maxwell’s equations,
although his contribution to those equations was a “mere” introduction of
the second term on the RHS of the last equation. However, no other “small”
contribution has ever affected humankind so enormously. This very “small”
contribution was responsible for Maxwell’s prediction of the electromagnetic
waves which were subsequently produced in the laboratory in 1887—only eight
years after Maxwell’s premature death—and put to technological use in 1901
in the form of the first radio. Today, Maxwell’s equations are at the heart of
every electronic device. Without them, our entire civilization, as we know it,
would be nonexistent.

15.4.2 Electromagnetic Waves in Empty Space

Let us look at some of the implications of Maxwell equations. Taking the curl from Maxwell's
of the third Maxwell’s equation and using (15.19) and the first and fourth equations to wave
equations of (15.29), we obtain for the LHS equation

1
LHS=V x(VxE)=V(V-E)-V?E= Vp-V’E,
€0

and for the RHS

0B 0 0 0E
RHS__VX(8t>__8t(VXB)__8t (/LQJ-i-/J,QGOat).

In particular, in free space, where p = 0 = J, these equations give

O*E

V2E —
Ho€o 8t2

=0. (15.30)
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This is a three-dimensional wave equation.? Recall that the inverse of the co-
efficient of the second time derivative is the square of the speed of propagation
of the wave. It follows that

v 1 1 —2.998 x 10° m/s,
VHoeo /(41 x 10-7) (8.854 x 10-12)

i.e., that the electric field propagates in empty space with the speed of light,
c. The reader may check that the magnetic field also satisfies the same wave
equation, and that it too propagates with the same speed. In fact, it can be
shown that the so-called plane wave solutions of Maxwell’s equations consist
of an electric and a magnetic component which are coupled to one another
and, therefore do not propagate independently (see Problem 15.9).

Sometimes it is more convenient to work with potentials than the fields
themselves. The vanishing of the divergence of magnetic fields suggests that
B = V x A where A is the vector potential [see also Equation (15.6)]. The
vector potential, as its scalar counterpart, has some degree of arbitrariness,
because adding the gradient of an arbitrary function does not change its curl.
This is an example of gauge transformation whereby a measurable physical
quantity—the magnetic field, here—does not change when another (nonmea-
surable) physical quantity is changed. Using this expression for B in the third
Maxwell equation, we obtain

0A
ot

A
>:0 = E+8 =-Vo,

0
VXE=-— ot

8t(VXA) = V x <E+

where we switched the order of differentiation with respect to position and
time, and used the fact that if the curl of a vector vanishes, that vector is the
gradient of a function (Box 15.1.1). We therefore write

E=-, ~V® and B=VxA (15.31)

Substituting these two expressions in the fourth Maxwell equation, we obtain

2ot \ ot

Expanding the LHS using the double curl identity of Equation (15.19), and
switching time and space partial derivatives yields

V % (V x A) = pod + © a( 8A—ch>.

1 0@ 1 9°A
V(V-A - V2A = uoJ.
< t 875) T oz 1o
Because of the gauge freedom, we can choose A and ¢ to satisfy
100
V-A =0. 15.32
+ 2 ot ( )

3The reader may be familiar with the one-dimensional wave equation in which only one
second partial derivative with respect to a single space coordinate appears.
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This choice is called the Lorentz gauge, from which it follows that
VZA — = —pod. (15.33)

Similarly, by taking the divergence of the first equation in (15.31) and using
the first Maxwell equation and the Lorentz gauge, we obtain

1 0%® p
Vi — =-". 15.34
e ot? €0 ( )
Equations (15.32), (15.33), and (15.34) are the fundamental equations of elec-
tromagnetic theory. They not only give the solutions in empty space, where
p =J =0, but also when the sources are not zero, i.e., when the mechanism
of wave production becomes of interest, as in radiation and antenna theory.

Historical Notes

James Clerk Maxwell attended Edinburgh Academy where he had the nickname
“Dafty.” While still at school he had two papers published by the Royal Society of
Edinburgh. Maxwell then went to Peterhouse, Cambridge, but moved to Trinity,
where it was easier to obtain a fellowship. Maxwell graduated with a degree in
mathematics from Trinity College in 1854.

He held chairs at Marischal College in Aberdeen (1856) and married the daughter
of the Principal. However in 1860 Marischal College and King’s College combined
and Maxwell, as the junior of the department, had to seek another post. After failing
to gain an appointment to a vacant chair at Edinburgh he was appointed to King’s
College in London (1860) and became the first Cavendish Professor of Physics at
Cambridge in 1871.

Maxwell’s first major contribution to science was a study of the planet Sat-
urn’s rings, and won him the Adams Prize at Cambridge. He showed that stability
could be achieved only if the rings consisted of numerous small solid particles, an
explanation now confirmed by the Voyager spacecraft.

Maxwell next considered the kinetic theory of gases. By treating gases statis-
tically in 1866 he formulated, independently of Ludwig Boltzmann, the Maxwell-
Boltzmann kinetic theory of gases. This theory showed that temperatures and heat
involved only molecular movement.

This theory meant a change from a concept of certainty, heat viewed as flowing
from hot to cold, to one of statistics, molecules at high temperature have only a
high probability of moving toward those at low temperature. Maxwell’s approach
did not reject the earlier studies of thermodynamics but used a better theory of the
basis to explain the observations and experiments.

Maxwell’s most important achievement was his extension and mathematical for-
mulation of Michael Faraday’s theories of electricity and magnetic lines of force. His
paper On Faraday’s lines of force was read to the Cambridge Philosophical Society
in two parts, 1855 and 1856. Maxwell showed that a few relatively simple math-
ematical equations could express the behavior of electric and magnetic fields and
their interrelation.

The four partial differential equations, now known as Maxwell’s equations,
first appeared in fully developed form in Treatise on Electricity and Magnetism
(1873). They are one of the great achievements of nineteenth-century mathematical
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physics. Solving these equations Maxwell predicted the existence of electromagnetic
waves and the fact that these waves propagate at the speed of light (1862). He
proposed that the phenomenon of light is therefore an electromagnetic phenomenon.

Maxwell left King’s College, London, in the spring of 1865 and returned to
his Scottish estate. He made periodic trips to Cambridge and, rather reluctantly,
accepted an offer from Cambridge to be the first Cavendish Professor of Physics in
1871. He designed the Cavendish laboratory and helped set it up.

15.5 Problems

15.1. Show that the curl of the gradient of a function is always zero.
15.2. Show that the divergence of the curl of a vector is always zero.
15.3. Verify Equation (15.19) component by component.

15.4. Provide the details of Example 15.3.1:

(a) Compute the three components of L and verify Equation (15.20).

(b) Calculate L2 f, Lz f, L2 f and show that you obtain the expressions given
in the example.

(c) Verify that L2f is as given in Equation (15.21).

(d) Show that A = (r-V)2f —r- (Vf) and obtain (15.22). Here A is defined
by the sum of the expressions in the two pairs of parentheses in Equation
(15.21)

15.5. By taking each component of dr’ separately in a convenient coordinate
system show that its integral round any closed loop vanishes.

15.6. Recall that the total magnetic force on a current loop is given by
F=1 j{ dr x B.

Show that the total force on a current loop located in a homogeneous magnetic
field is zero.

15.7. Derive the differential form of Maxwell’s last equation from the corre-
sponding integral form.

15.8. Starting with Maxwell’s equations, show that the magnetic field satis-
fies the same wave equation as the electric field. In particular, that it, too,
propagates with the same speed.

15.9. Consider E = Ege’“t=%1) and B = Bye!“!~k1) where i = v/—1, Eo,
By, k, and w are constants. The E and the B so defined represent plane waves
moving in the direction of the vector k.

(a) Show that they satisfy Maxwell’s equations in free space if:

(1)k-E0:0; (Q)k-BOZO;

(3) kx Eg =wBg; (4) kxBg=—"

Eo.
c2
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(b) In particular, show that k, the propagation direction, and E and B form
a mutually perpendicular set of vectors.

(¢) By taking the cross product of k with an appropriate equation, show that
k| =w/ec.

15.10. Derive Equation (15.34).






Chapter 16

Curvilinear Vector
Analysis

All the vector analytical quantities discussed in the previous chapters can
also be calculated in other coordinate systems. The general procedure is to
start with definitions of quantities in a coordinate-free way and substitute the
known quantities in terms of the particular coordinates we are interested in
and “read off” the vector analytic quantity. Instead of treating cylindrical and
spherical coordinate systems separately, we lump them together and derive re-
lations that hold not only in the three familiar coordinate systems, but also in
all coordinate systems whose unit vectors form a set of right-handed mutually
perpendicular vectors. Since the geometric definitions of all vector-analytic
quantities involve elements of length, we start with the length elements.

16.1 Elements of Length

Consider curvilinear coordinates! (qi,¢2,q3) in which the primary line
elements are given by

dly = hi(q1, 92, 93) dgv, dla = ha(q1, g2, q3) dgz, dls = h3(q1, g2, q3) dgs,

where hi, ha, and hs are some functions of coordinates. By examining the
primary line elements in Cartesian, spherical, and cylindrical coordinates, we
can come up with Table 16.1.

Denoting the unit vectors in curvilinear coordinate systems by €1, €2, and
€3, we can combine all the equations for the elements of length and write
them as a single vector equation:

dr = dl = éydly + éydly + ésdls = é1hydqy + éshadgs + éshsdgs.  (16.1)

1As will be seen shortly, Cartesian coordinates are also included in such curvilinear
coordinates. The former have lines (and planes) as their primary lengths and surfaces, thus
the word “linear” in the name of the latter.

curvilinear
coordinates
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Curvilinear Cartesian  Spherical Cylindrical

Q1 T r P
02 Yy 0 ©
a3 z ¥ z
hi 1 1 1
ho 1 r p
hs 1 rsin 6 1

Table 16.1: The specifications of the three coordinate systems in terms of curvilinear
coordinates.

This equation is useful in its own right. For example, we can obtain the curvi-
linear unit vectors as follows. Rewrite Equation (16.1) in terms of increments:

Ar ~ é1h1Aqp + éshaAgs + é3h3zAgs.

Keeping g2 and g3 constant (so that Aga = 0 = Ags), divide both sides by

Agq; to obtain
Ar

Aqy

In the limit, the LHS becomes a partial derivative and we get

~ élhl.

1 Or

. 16.2
hi Oqq (16:2)

€ =

The other two unit vectors can be obtained similarly. We thus have

Box 16.1.1. The ith unit vector of a curvilinear coordinate system is
given by
1 Or
é; = , 1=1,2,3. 16.3
Y hi Ogg (16:3)

This is a useful formula for obtaining the Cartesian components of curvilinear
unit vectors, when the Cartesian components of the position vector are given
in terms of curvilinear coordinates.

Example 16.1.1. As an illustration of the above procedure, we calculate the unit
vectors in spherical coordinates. First we write

r =16, + yéy + 2&, = €,rsinf cos p + €yrsinfsin p + €.7cos .

Now we differentiate with respect to r to get

. or . . . . .
e, = = €, sinfcos ¢ + €, sinfsin p + €, cos .

or

&1
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Similarly,
. R 10 R . . .
€y =¢€p = r:ewcos@cosc,o—&—eycosﬁsmc,o—ezsm97
r 00
. R 1 0 . .
€3 =e, = . r:—ersmcp—&—eycosgo,
rsinf g

where we have used Table 16.1. These are the results we obtained in Chapter 1 from
purely geometric arguments. [}

We are now in a position to find the gradient, divergence, and curl of
a vector field in general curvilinear coordinates. Once these are obtained,
finding their specific forms in cylindrical and spherical coordinates entails
simply substituting the appropriate expressions for ¢, g2, and g3 and hy, ho,
and hg.

16.2 The Gradient
The gradient is found by equating

of

d
g q3

of of
df = dq + dgs +
If q1 dqs q2 g

to the differential of f in terms of the gradient:
df =V f.dr= (Vf)lhl dq + (Vf)zhg dgs + (Vf)ghg dqs.

The last two equations yield

of
oq ’

of
0q3 ’

of

(Viih = 9go’

(Vf)2he = (Vf)shs =

which gives gradient in
curvilinear
coordinates
Box 16.2.1. The gradient of a function f in a curvilinear coordinate
system is given by

1aof _1af _ 10f

v & .
f e ha Oqo e hs Oqs3

— 16.4
° h1 0qq (16.4)

This result, in conjunction with Table 16.1, agrees with the expression ob-
tained for the gradient in the Cartesian coordinate system. In cylindrical
coordinates, we obtain

of 1o0f . Of

=& e z ) 16.
V-f epap+e@pa(p+e az (65)
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so that the operator V in cylindrical coordinates is given by

0 10 0
V=e C C. . - 16.6
epap+e¢p5g0+e az ( )
Similarly, in spherical coordinates, we get
. of 10f . 1 of
= €r . 16.
vi=e 8r+e0r89+e‘prsm6‘&p (16.7)
with the operator V given by
0 10 1 0
=é, ¢ ¢ . 16.
v=e 8r+eer89+e‘prsin98g0 (16:8)

Example 16.2.1. The electrostatic potential of an electric dipole was given in
Example 10.5.1 in spherical coordinates. With the expression for the gradient given

above, we can find the electric field E = —V ® of a dipole in spherical coordinates:
B — _8<I>dip _ 0 (kepCOSG) _ 2kep cos
" ar or 72 r3 ’
E0:_1a¢>dip :_1 0 (kepcosﬁ) _ kepsin 0
r 00 r 00 r2 r3
B - 1 8¢dip:_ 1 0 <k:epcost9> —0
¢ rsinf Op rsinf dp r2 '

Summarizing, we have

Eaip = ]ief (2é, cos O + égsin0). (16.9)

This is the characteristic field of a dipole. [ ]

Example 16.2.2. Just as electric charges can produce electric dipoles, electric
currents can produce magnetic dipoles. We saw this in Subsection 15.2. In this
example, we will calculate the magnetic field of a dipole directly. Consider the
magnetic field of a circular loop of current as given in Equations (4.24) and (4.26).
We change the coordinates of the field point P to spherical and assume that P is far
away from the loop, i.e., that a is very small compared to r. Writing 72 for p* + 22
and rsiné for p, we expand the integrands of (4.24) and (4.26) in powers of a/r
keeping only the first nonzero power. Thus,

1 1 a2 a —-3/2
(r24-a2—2rasinfcost)3/2 = r3 {1+ (r) —Q(T)sinﬁcost}
= r13 [1+3 <j> sin9cost] +
. -3/2
e Lot ) 1+ (2) 2 (s
= r12 <s1n9cost— ) [1—}-3( )sin9cost] + -
1

3a
= (sm 6 cost — —|— sin? 0 cos? t) .
'



16.3 The Divergence 427

Substituting these in the integrals of (4.24) and (4.26) yields

27 2 .
B, = km{az/ cost (1+ 3a sin@cost) gt — 3k Ima® cos @ sin 0
o r

r3 r3 '

where we substituted r cosf for z. In an analogous way, we also obtain

ka 27
B, =— @ / (sin@ cost — j + 3;1 sin? 6 cos? t) dt
0

2
_ _km21a (_Qﬂ'a . 3am sin? 9> .
r r r

We are interested in the spherical components of the magnetic field. To find
these components, we first write

B = Bpép + Bzéz
and take the dot product with appropriate unit vectors:

B, =B-é.=DB,é,-é-+ B.é. &= B,sinf + B cosf

3kmIma®cosfsinb . kmla (2ma  3am . o
= sin @ + — sin“ @ | cos 6
r3 r2 r r
e [Tra>
= 3 cos 6.

Similarly,

By =B -&y = B,&, & + B.é.-& = B,cos — B.sinf

_kmla <27ra 3am

3k Ima® cosOsin @ . 2 .
= C — sin” @ | sin 6

= ) 0s 6

r3 r? r r
kmIma®
= ;m sin 6.
r
Summarizing, we write magnetic field of a
magnetic dipole
kmIma® . L
B= (2&, cos O + épsinf). (16.10)
r

This has a striking resemblance to Equation (16.9). In fact once we identify Ima?
as the magnetic dipole of the loop, and change all magnetic labels to electric ones,
we recover Equation (16.9). n

16.3 The Divergence

To find the divergence of a vector A, we consider the volume element of
Figure 16.1 and find the outward flux through the sides of the volume. For
the front face we have

A(bf = Af -élACLf,
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P(q1, 42, 93)
Al

A,

Figure 16.1: Point P and the surrounding volume element in curvilinear coordinates.
Note that the midpoints of the front and back faces are Aq;/2 away from P in the
positive and negative €; directions, respectively. Similarly for the other four faces.

where Ay means the value of A at the center of the front face and Aay is the
area of the front face. Following the arguments presented for the Cartesian
case, we write

A(bf ~ Af . élAaf = AlfAlnglgf
= A1 (haAq)f(hsAqz)s = A1phaphsp AgaAgs

The subscript 1 in A;, for example, means component of A in the direction
of the first coordinate. The subscript f implies evaluation—at the midpoint—
on the front side whose second and third coordinates are the same as P, and
whose first coordinate is ¢1 + Agp /2. Thus, we have

A A
App = Ay <Q1+ 2ql,qz7q$> ha (L]1+ 2ql,Q27q$>

A
x hs (ql + gl,qg,qa) AgaAqgs

because, unlike the Cartesian case, hi, ho, and hs are functions of the co-
ordinates. Using Taylor series expansion for the functions A;, hs, and hg
yields

B Aql 5141 Aq1 8h2
A(bf =~ {Al(qlaq27q3) + 2 3(]1 }{hz(q1’q27q3) + 2 8Q1 }

Agy Ohs

9 O }Aquq3.

X {h3((J1,(I27Q3)+
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Multiplying out and keeping terms up to the third order (corresponding to
the order of a volume element by which we shall divide shortly), we obtain

oh

0A
> 4 hohg
oq

oq

oh
A¢f =~ {A1h2h3 + A1h2 8(]3 + A1h3
1

A
} 2(11 AgaAqgs

0 A
=< Aihohs + (h2h3A1) a AQQA(];),,
8(]1 2

where we left out the explicit dependence of the functions on their independent
coordinate variables. For the back face we have

Agp = Ay - (—e1Aap) = —A1p Al Alsy, = —A1p(haAga)y(hsAgs)s

A A
=—-4A; (Lh— 2(]1,Q2,Q3) ho <Q1— ;1792,%)

A
X hs <q1 - qu,qg,qa) AqaAgs.

Taylor expanding the three functions Ay, he, and h3 as above, and multiplying
out yields

0 Aq
A¢b ~ —{Alhghg, — 8(]1 (thBAl)} 9 Aq2A(J3-

Adding the front and back contributions, we obtain

0
(hah3 A1) AqiAgaAgs.

Ad; = A Aoy ~
o1 br + Agy o

Similarly, the fluxes through the faces perpendicular to €5 and €3 are

0
P (h1hsAz) AqiAgaAgs,
q2

0
A3 ~ 945 (h1h2As) AqiAgaAgs. (16.11)

Agy ~

Adding the three contributions and dividing by the volume
AV = AllAlelg = hlhzthqlAquq:g

and finally taking the limit of smaller and smaller volumes—which turns all
approximations into equalities—we get

Theorem 16.3.1. The divergence of a vector field A in a curvilinear coordi-
nate system is given by

1 0 0 0
V-A= hohsAq) + hi1hsAs) + hiho A .
hlhzhs{&h( 2hs 1) 3Q2( thsAs) 31]3( 1 3)}

divergence in
curvilinear
coordinates

429
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Now that we have a general formula for the divergence, we can use Table
16.1 to write the divergence in a specific coordinate system. For instance,
substituting the entries of the second column gives the formula in Theorem
13.2.1, and the third column yields

1 9 , 5 . 0 . 0
V- A= 2 in 0 {37‘ (7“ bln@AT) + Py (rsinfAy) + 9 (TA@)}
_ Lo 1 9 . A,
- r20r (r#Ar) + Tsin0{80 (sin6As) + Oy } (16.12)

To obtain the divergence in cylindrical coordinates, we use the last column
and obtain

V-A 1{ 0 (pA,) + 0 (A¢)+§Z(pAz)}

T o) op dp
10 10A 0A
= A s =, 16.1

Example 16.3.2. Consider the vector field defined by
A =kr%e,,

where k and « are constants. Let us verify the divergence theorem for a spherical
surface of radius R (see Figure 16.2). The total flux is obtained by integrating over
the surface of the sphere:

b= /A- da://kRaér~énR2sin9d0d<p
S S

= kR / / sin@df dp = AwrkRT2.
S

Figure 16.2: The element of area and its unit normal for a sphere.
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On the other hand, using the expression for divergence in the spherical coordinate
system and noting that Ay = 0 = A,, we obtain

10 ., 1d
V'Air28r(r AT)iﬁdr

where we have assumed that o # —2. Therefore,

R I 27
///V~AdV:/ (o + 2)kr*1s? dr/ sin 6 df dp = 4nkR*"?
0 0 0
v

which agrees with the surface integration.

For a = —2 the divergence appears to vanish everywhere. However, a closer
examination reveals that the statement is true only if r # 0. In fact, as we discussed
before, the divergence of A is proportional to the Dirac delta function, §(r) in this
case [see Equation (15.2)]. u

(kro*?) = (a+2)kr* 7,

16.4 The Curl

To calculate the curl, we choose a closed path perpendicular to one of the unit
vectors, say €; and calculate the line integral of A around it. The situation is
depicted in Figure 16.3. We calculate the contribution to the line integral from
path (1) in detail and leave calculation of contributions from the remaining
three paths to the reader. In all calculations, terms of higher order than the
second will be omitted

A drx~ Al . AI‘[ = Al . (—égAll) = —AglAll = —AglhglAQ3

(1)
A A
= —A3 <Q17QQ_ 2(]2,%) h3 (QLQQ_ ;2,%) Ags

Agz 0A3 Ags Ohs
{as= S o Hs = o s

Aqa
2

Q

—AshsAgs + (hsAs) Ags.

g2

P(qy, 95 93)

3)
e, hyp day

Figure 16.3: Path of integration for the first component of the curl of A in curvilinear
coordinates.
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Following similar steps, the reader may check that

0 A
/ A dr~ AshsAgs + .0 (hads) © 2 Ags,
(2) 9q2 2
A
A drx~ AQhQA(]Q — g (hQAQ) . AQQ, (1614)
(3) 8q3 2

0 A
(thz) 2% AQ2-

/ A drx —AQhQAqQ -
(4) Jqs3

Summing up all these contributions, we obtain

0 0
A dr~ h3As) — ho A AgaAgs.
7{ r {aq2( 3A3) 5(]3( 2 2)} 02 Ag3

Dividing this by the area enclosed by the path
Aa = AlgAl:; = hgh3A(]2A(]3

we obtain the first component, the component along the unit normal to the
area:
1 0 0
VXAlz { thg — h2A2 }
( ) hahs | Og2 ( ) 9q3 ( )
Corresponding expressions for the other two components of the curl can
be found by proceeding as above. We can put all of the components together
curl in curvilinear  in a mnemonic determinant form:
coordinates
Theorem 16.4.1. The curl of a vector field A in a curvilinear coordinate
system is given by

€h1 éxhy éshs

1 0 0 0
A= . 16.1
VX hihohg Iq1 g2 Jq3 ( 6 5)
hl Al h2A2 h3A3
warning! V x A is Note that V x A is not a cross product (except in Cartesian coordinates),
not a cross but a vector defined by the determinant on the RHS of (16.15).
PrOd.U.Ct in general If we substitute the appropriate values for h’s and ¢’s in spherical coordi-
curvilinear nates, we obtain
coordinates!
é. &yr é,rsind
_ 1 0 0 0
VxA= r2ging |Or 00 de |- (16.16)

A, 1Ay rsinfA,
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In cylindrical coordinates we get
€, &,p e,
_1llo o o
V x A= ) dp 8o 0z (16.17)

A, pA, A,

Example 16.4.2. We have already calculated the magnetic field of a dipole in
Example 16.2.2. Here we want to obtain the same result using the vector potential
of a dipole given in Equation (15.12). We take p to be along the z-axis. Then

pn= e, = u(é,cosf — &psinf)

and
X & = p(—sinféy X &) = psinfé,.
Therefore,
B:VXA:VX<kmuzxe7l)zv>((km’u512noe(p>
r r
ér &or  é,rsind €. &or eé,rsinf
kmp |9 0 1o} Kt 0 o) 0
= = 17} o0 0
72 sin § or 90 ¢ r2sin 6 " s
. o
0 o0 rsmen’ 0o o S0
r r
it [ (2sin6cos6 R in” 0 K, A
= rfsigﬁ {er ( S TCOS ) — réy (—SII;Q )} = TS‘M (2cos &, + sin féy),
which is the expression obtained in Example 16.2.2. ]

Example 16.4.3. Consider the vector field B described in cylindrical coordinates

as L
B="é,,
p

where k is a constant. The curl of B is easily found to be zero:

_1io ad 0| _

0 p(k/p) O

However, for any circle (of radius a, for example) centered at the origin and located
in the zy-plane, we get?

27
}{B~dr:/ kéw~(é¢ad4p):27rk#0.
c o @

2See also Example 14.3.3 which discusses this same vector field in Cartesian coordinates.
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The reason for this result is that the circle is mot contractible to zero: At the
origin—which is inside the circle and at which p = 0—B is not defined.

This vector field should look familiar. It is the magnetic field due to a long
straight wire carrying a current along the z-axis. According to Ampére’s circuital
law, the line integral of B along any closed curve encircling the wire, such as the
above circle, gives, up to a multiplicative constant, the current in the wire, and this
current is not zero. |

Example 16.4.4. A vector field that can be written as
F = f(r)r,

where r is the displacement vector from the origin, is conservative. It is instructive
to show this using both Cartesian and spherical coordinate systems.
First, in Cartesian coordinates

F=uaf(r)é: +yf(r)é, +zf(r)e.
and the curl is

€, €& €

vxr=|f & &l=ed g en- 2 un}
of e
vad gwn- genhred S wn- g an).

Concentrating on the xz-component first and using the chain rule, we have

0 _of _ dfor __o0r
By(zf) - Z@y =~ dr Oy ==/ Ay’
But 5 5
r_ 24,24 ,2_Y
8y_8y\/w Tyt = r
Thus,
o .
ay(Zf)—ny.
Similarly,

a /
9, W) =vzf.
Therefore, the z-component of V x F is zero. The y- and z-components can also be

shown to be zero, and we get V x F = 0.
On the other hand, using spherical coordinates, we easily obtain

e, €gr €,rsind
1 0 1o} 0 _
VXF= ogng| or 80 oy |=0
rf(r) 0 0

Obviously, the use of spherical coordinates simplifies the calculation consi-
derably. |
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The preceding example shows that

Box 16.4.1. Any well-behaved wvector field whose magnitude is only a
function of radial distance, r, and whose direction is along r is conserva-
tive. Such vector fields are generally known as central vector fields.

16.4.1 The Laplacian

Combining divergence and the gradient gives the Laplacian. Using Equation
(16.4) in Theorem 16.3.1, we get Laplacian in
curvilinear

Theorem 16.4.5. The Laplacian of a function f is the divergence of gradient —_, dinates

of f and—in a curvilinear coordinate system—is given by

v2f_ 1 {(9 (h2h3 (9f)+ 0 (h1h3 (9f)+ 0 (h1h2 8f)}
hihahs | 01 h1 Oq1 0g2 \ ha Ogo dgs \ hs 9q3) |

For cylindrical coordinates the Laplacian is

2 2
;gp <pg£)+ Lof o (16.18)

20 _
Vif = p2 0?2 922

and for spherical coordinates it is

2, L0 (,0f 1 o (. ,0f 1 0%f
vf_r28r " or +r251n9 00 bm089 +sin98g02 - (16.19)

Equations (16.7) and (16.19) allow us to write the angular momentum
differential operator derived in Example 15.3.1 in spherical coordinates, which
is the most common way of writing it. We note that

9 (20f\ _, 0f  ,0f
or (T 8r> _2T8r T g
and of
e (V)=o)
and )
0 (O0f of o°f
. 2 = = 2
(r-V)=f r8r<37“> Tar—i—r 92
Substituting these plus (16.19) in (15.22) yields
o, 1 o (. Of 1 0°f
Lr==gno100 "% ) T sno o |- (16.20)

Therefore, the angular momentum operator depends only on angles in spher-
ical coordinates.
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16.5 Problems

16.1. The divergence of a vector can be obtained in any coordinate system
by brute force calculation. In this problem you are asked to find V - A in
cylindrical coordinates.

(a) Express A, in terms of cylindrical coordinates and components. Hint:
Write A in cylindrical ccordinates and take the dot product with €, expressing
everything in terms of cylindrical ccordinates.

(b) Use the chain rule

0A, 0A, dp N 0A, Do n 0A, 0z
dr  Op 0r Oy Oz 0z Ox

where A, is what you found in (a).
(¢) Do the same with A, and A, and add the three terms to obtain the
divergence in cylindrical coordinates.

16.2. Find the divergence of a vector in spherical coordinates following the
procedure outlined in Problem 16.1.

16.3. Find the gradient of a function in cylindrical and spherical coordinates
following a procedure similar to the one outlined in Problem 16.1.

16.4. Find the curl of a vector in cylindrical and spherical coordinates fol-
lowing a procedure similar to the one outlined in Problem 16.1.

16.5. Start with the Laplacian in Cartesian coordinates.

(a) By using the chain rule and expressing the second derivatives in cylindrical
coordinates, find the Laplacian in cylindrical coordinates.

(b) Do the same for spherical coordinates.

16.6. The elliptic cylindrical coordinates (u, 0, z)are given by

x = acoshwucosf
y = asinhusin§

zZ=Zz

where a is a constant.

(a) What is the expression for the gradient of a function f in elliptic cylindri-
cal coordinates?

(b) What is the expression for the divergence of a vector A in elliptic cylin-
drical coordinates?

(¢c) What is the expression for the curl of a vector A in elliptic cylindrical
coordinates?

(d) What is the expression for the Laplacian of a function f in elliptic cylin-
drical coordinates?
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16.7. The prolate spheroidal coordinates (u, 0, ¢) are given by

x = asinh usin 6 cos ¢

asinhusinfsin ¢

= acoshu cosf

w
|

where a is a constant.

(a) What is the expression for the gradient of a function f in prolate spheroidal
coordinates?

(b) What is the expression for the divergence of a vector A in prolate spheroidal
coordinates?

(¢c) What is the expression for the curl of a vector A in prolate spheroidal
coordinates?

(d) What is the expression for the Laplacian of a function f in prolate
spheroidal coordinates?

16.8. The toroidal coordinates (u, 6, p) are given by

asinh u cos ¢

coshu — cosf
asinhusin ¢

cosh @ — cos 6
asinu

coshu — cos

(a) What is the expression for the gradient of a function f in toroidal coordi-
nates?

(b) What is the expression for the divergence of a vector A in toroidal coor-
dinates?

(c) What is the expression for the curl of a vector A in toroidal coordinates?
(d) What is the expression for the Laplacian of a function f in toroidal coor-
dinates?

16.9. The paraboloidal coordinates (u,v, ) are given by

T = 2auv cos @
Yy = 2auvsin ¢

2z =a(u® —v?)

where a is a constant.

(a) What is the expression for the gradient of a function f in paraboloidal
coordinates?

(b) What is the expression for the divergence of a vector A in paraboloidal
coordinates?

(¢c) What is the expression for the curl of a vector A in paraboloidal coordi-
nates?

(d) What is the expression for the Laplacian of a function f in paraboloidal
coordinates?
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16.10. The three-dimensional bipolar coordinates (u, §, ) are given by

asin @ cos @

xr =
coshu — cosf
a sin fsin ¢

coshu — cos 6
asinhu

z =
coshu — cosf

(a) What is the expression for the gradient of a function f in three-dimensional

bipolar coordinates?
(b) What is the expression for the divergence of a vector A in three-dimensional

bipolar coordinates?
(c) What is the expression for the curl of a vector A in three-dimensional

bipolar coordinates?
(d) What is the expression for the Laplacian of a function f in three-dimensional

bipolar coordinates?



Chapter 17

Tensor Analysis

Our study of vectors in this part of the book has been limited to their anal-
ysis in specific coordinate systems, and although we touched on the general
curvilinear coordinate system, our treatment aimed at orthogonal coordinates,
and specifically at only three-dimensional spherical and cylindrical coordinate
systems. Many situations in physics demand a three-fold generalization: non-
orthogonal coordinate systems, higher-dimensional spaces, and objects, called
tensors, whose components have more subscripts than one. This chapter is
devoted to an analysis of tensors.

17.1 Vectors and Indices

Vector manipulations will be greatly simplified if equations are written in
terms of a general component. How do we accomplish this? Start with a
generic vector equation, which can be written as

U=V,

where U and V are, in general, vector expressions. Examples of such an
equation are

b

B=VxA, E=-VOo, A:/ f(r)e, dr.

a
You can also write each of these vector equations as three equations involving
components. Thus, the foregoing generic equation becomes

Uy, =V, Uy, =V,, U,=1V..

It is very helpful to convert letter indices into number indices. Let x — 1,
y — 2, and z — 3, and write!

U=V, Us = Vs, Uz = V3.

INote that the replacements here refer to indices not the Cartesian coordinates. The
latter will have somewhat different symbols in the sequel.
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These equations are abbreviated as
U, =V, 1=1,2,3. (17.1)

This is what we mean by an equation in terms of a general component: The
index ¢ refers to any one of the components of the vectors on either side of
the equation. It is called a free index because it is free to take any one of the
values between 1 and 3. An important property of a free index is that

Box 17.1.1. A free index appears once and only once on both sides of
a vector equation.

One can use any symbol to represent a free index, although the most common
symbols used are i, j, k,l,m, and n. Thus, Equation (17.1) can be written in
any one of the following alternative ways:

U;=V; ji=1,2,3,
U, =Vp, p=1,2,3,
Uo = Vo, 0=1,2,3.

Of special interest are the components of the position vector r. These are
denoted by x; rather than r;. Thus, the vector relation R = r — r’ is written
as

)
Xj=uz; —a;

L =123

An abbreviation used for derivatives with respect to Cartesian coordinates
(which coincide with the components of the position vector) is given as follows.
First 9/0z is replaced by 9/0z1, and the latter by the much shorter notation,
01. Similarly, 9/0y becomes 02, and 9/9z becomes 5. In particular, the
general component of the gradient of a function f will be written as dx f, k =
1,2,3.

All operations on vectors can be translated into the language of indexed
relations. For example, A+ B = C is equivalent to Ay + B = Cx, k=1,2,3,
and A = aB becomes Ay = aBy, k = 1,2,3, etc. The two operations of
vector multiplication are a little more involved and we treat them separately
in the following.

First let us consider the dot product. In terms of components, the dot
product of A and B can be written as

A-B=A,B,+A,B, + A.B..

Converting to number indices, we get

3
A -B=A B+ AyBy + A3 B3 = ZAiBl-.
=1
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We now introduce a further simplification in notation due to Einstein, which
gets rid of the clumsy summation sign:

Box 17.1.2. (Einstein Summation Convention). Whenever an in-
dex is repeated, it is a dummy index and is summed from 1 to 3.

Using this convention we write the dot product as
A -B=A;B,. (17.2)

No summation sign is needed as long as we remember that the repeated index
1 is summed over. Since the repeated index is a dummy index, we can change
it to any other symbol. Thus,

Example 17.1.1. In this example, we write some of the familiar vector relations
in both vector form and component form:

E=-Vo < Er = —8k(19,

V-A — BjAj7

//Ada:// V- -AdV < //Akdak:// BjAjdV,
S Vv S v

VA = OmOn®,

V- (fA)=A -Vf+ fV-A <— 0i(fA:) = Aids f + fO: As.

The reader is urged to verify all these relations, remembering the Einstein summa-
tion convention. |

17.1.1 Transformation Properties of Vectors

Section 6.2.1 discussed the transformation of vectors, i.e., the way the compo-
nents of a vector change when they are expressed in term of a new basis. To
initiate the transformations relevant to the present chapter, let us begin with
the position vector r, which in one Cartesian coordinate system (with basis
{&1,82, é3}) is represented by (z!, 22, 23), and in another by (z!, 22, 2). Here
we are beginning to introduce new notation and terminology : instead of “vec-
tor space,” we use “Cartesian coordinate system,” and instead of subscripts,
we use superscripts to label the coodinates.

Since both (zt,z2,23), and (2!, 22, 23) are components of the same posi-
tion vector, they are related via Equation (6.29):

—1 1 2 3

T =a1xr +apr” +aze’,

-2 1 2

72 = anzt + asex? + aszx®, (17.3)

=3 1 2 3
T° = as31x + aszax” + aszzx”.
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In terms of a free index, we can rewrite this as
Tt = CLZ'1$1 + CLZ'2{E2 + ai3x3, 1 =1,2,3,

and using the summation notation
3
T = E aijxj, 1 =1,2,3.
Jj=1

Finally, using the Einstein summation convention and always keeping in mind
that the free index i takes the values 1, 2, or 3, we come up with the following
very succinct replacement for 17.3

= aijxj. (174)

Equations (17.3) and (17.4) are identical despite the enormous brevity of the
latter.

As an application of the use of indices and summation convention, we
conveniently express the rule of matrix multiplication, which we shall use
frequently. Box 6.1.3 gives this rule. Let C = AB be the product of A and B.
Then the rule in Box 6.1.3 can be written as

Cij = aikbkj. (17.5)

Notice that here we have two free indices ¢ and j. The index k is being
summed over on the right.

Of particular importance are transformations that leave the dot product
intact. We called these transformations orthogonal (see Section 6.1.3). These
orthogonal transformations satisfy Equation (6.20), which could be written in
terms of indices. Noting that the ij-th element of the unit matrix is d;;, the
familiar Kronecker delta, which as the reader may recall, is defined as

1 ifie
dij = L (17.6)
0 ifi#j,
we rewrite (6.20) as
(A)ik (A)g; = (1);; or  apag; = by (17.7)

Now multiply both sides of (17.4) by a;; and sum over i to get
aipT = ik Qg 2l =k,
~ -~ -
=5k,

where in the last step we used the most important property of the Kronecker
delta:
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Box 17.1.3. When an indexed quantity shares a common repeated index
with the Kronecker delta (thus a sum over that index understood), the
result is an expression in which both the sum and the Kronecker delta are
removed and the repeated index of the indexed quantity is replaced by the
other index of the Kronecker delta.

Thus the inverse of Equation (17.4) is
= aijii. (178)

Note the difference in the position of the dummy index between this equation
and (17.4).

Equations (17.4) and (17.8) give the transformation rules for the compo-
nents of the position vector when one goes from one Cartesian coordinate
system to another. It should be clear that the same transformation rules
apply to the components of any vector, as long as one adheres to Cartesian
coordinate systems. Thus if V; and V; represent the components of a vector
V in two Cartesian coordinate systems, then

Vi = ai;V; and V= ay;Vi. (17.9)

In fact, it is customary to define vectors in terms of their transformation
properties:

Box 17.1.4. A set of quantities V; is said to be the components of a
Cartesian vector V if, under the orthogonal transformation (17.4), the
transformed quantities V; and the original quantities are related by (17.9).

Section 1.3 introduced the idea of expressing vectors in different coordinate
systems, mainly Cartesian, cylindrical, and spherical. In all cases, care was
taken to use orthogonal unit vectors. In fact, this has been the sole practice
throughout the book so far, and for good reason: the dot product of two
vectors—and hence length of a vector, defined as the square root of the dot
product of the vector with itself—does not change when their components in
one set of orthogonal unit vectors are written in terms of their components in
another set of orthogonal unit vectors. This actually defines the orthogonal
transformation of Section 6.1.3, and Equation (6.20) or (17.7) guarantees the
invariance of the length of a vector.

Orthogonal transformations are not always the most suitable. As an exam-
ple, consider a curve in space parametrized in a Cartesian coordinate system
by 2° = fi(t), where fi(t), f2(t), and f3(t) are some smooth functions. The
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tangent to this curve—a vector—has components ' = dx’/dt = f!(t). Now
consider a new coordinate system, not necessarily Cartesian, given by

= gi(a', 2%, 23). (17.10)

The curve can be written in terms of the new coordinates by substituting f;(¢)

for each z*: )
z' = gi(f1(t), f2(t), f2(t)) = ha(t),

where the last identity defines the function h;(t). The components of the
tangent to the curve in the new coordinate system are given by the chain
rule:

o d d d )
T = h;(t) = 8lgi C{tl +3ggi C{; +83g1- C{: = 8lgi3'c1 +8zgi$.2+8ggiii3 = 8jgl-3'cj.

Recalling that 8;g; = dg; /027 and that g; = ', this is usually written as
. 0z .
L iy
T =i (17.11)

It is instructive to see what happens if Z° is given by (17.4). In that case,
we have

ot 0 . Dk

O = O (aikx ) = QL O = Q4j, (17.12)
N
=8k

where we have used an obvious property of partial derivative which is so useful
that it is worth boxing it:

Box 17.1.5. If{y1,y2, ..., Ym} are independent variables, then 0y;/dy; =
5@'.

Equation (17.12) shows that, when applied to Cartesian coordinate transfor-
mations, (17.11) is consistent with the definition of a vector as given in Box
17.1.4.

What about the inverse of (17.11)? Equation (17.10) can be treated as
three equations in the three unknowns {z!, 2% 23}. One can then solve these
unknowns as functions of the independent variables {551,552,153}. Whether
or not one can actually solve (17.10) for {2’} depends on the form of the
functions {g1, g2, gs}. If these functions satisfy certain (mild) mathematical
properties, then Equation (17.10) is said to be invertible and each x/ can
be written as a function of the independent variables {5:1} We assume that
(17.10) is indeed invertible.

Treating 27 as dependent and {;EZ} as independent variables, using the
chain rule, and employing obvious notation, we can write

ded  Oad dz! n Ozt dz? n dx7 dz® Qa7 dz*  Oad . (17.13)
dt — ox' dt  0x* dt  Oxd dt  oxk dt  9F '

¥ =
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Is this consistent with Equation (17.11)? In other words, if we substitute i
from this equation into the right-hand side of (17.11), do we get z'? Let’s
try it!

ozt ., 0x' 9l ., O .,
0wt T owiozk” T ozk”

where in the third equality we used the chain rule (2.16), in the fourth equality
we used Box 17.1.5 as applied to the independent variables z°, and in the last
equality we used Box 17.1.3. Thus, Equation (17.13) is indeed consistent with
(17.11). Tt is tempting to call objects which transform according to (17.11)
components of a vector. But before jumping to conclusions, let’s look at
another vector with which we are familiar.

=k

RHS of (17.11) = O

=z,

17.1.2 Covariant and Contravariant Vectors

The gradient of a function was first defined in Section 12.3. It is a vector
whose components are essentially derivatives of the function with respect to
the coordinates. Because we are interested in the transformation properties of
objects, we first have to clarify the notion of a function. A scalar function is
a physical quantity, such as temperature, which takes on a single value at each
point of space. Now, a point has an existence independent of any coordinate
systems. Nevertheless, coordinates are useful for calculations. And if the point
is described by (z!, 2%, 2%) in a coordinate system, and ¢ denotes the scalar
function, then we write ¢(z!, 22, 23) for the value of the scalar function at
that point. The same point is described by (#!, 72, 7%) in another coordinate
system, and the value of the scalar function in terms of the new coordinates is
é(z', 2%, 73). Tt should be obvious that the form of the scalar function changes
when one changes the coordinates. Thus the notation ¢ instead of ¢. Clearly,

o(zt, 7%, 7)) = o(at, 22, 2?). (17.14)

Now differentiate both sides with respect to Z'. The left side gives the ith
component of the gradient of ¢; and using the chain rule on the right side, we
get
dp  0¢ ozt 0¢ 0>  0¢ 0x3 09 Ox?
ozt Ox' 0zt Ox2 Ozt Ox® 9x'  Oad Ozt
We thus obtain _ ]
dp  0x? 0¢
0zt 0zt 0xd’
which is a different transformation than (17.11).

It appears that we have two kinds of vectors: those whose components
transform according to (17.11) and those transforming according to (17.15).
To further elucidate the discussion, let’s look at the dot product. Let A and
B be vectors which transform according to (17.11):

(17.15)

scalar function
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The dot product in the Z coordinate system is A; B; (sum over repeated indices
understood!). Write this in terms of the = coordinates:
- or  ox ozt 0z’
A;Bi= | A Br,=_ .
T 0w Y ok TF T 90 0ab
The right-hand side does not reduce to a dot product.
Now consider one vector U that transforms according to (17.11) and an-
other V that transforms according to (17.15)

A;By.

_ oz’ _ Ok
Ui = ; Ulv Vi= .,
J ozt

and take the dot product of these two vectors:

Vka

ox'  dxk ok ozt oz
Oxi oz F T 9z oa UjVi = oxJ UjVi = (Ekj Ujvi,: Uj‘/i'

~ -
by the chain rule by Box 17.1.3
(17.16)

This is the magic of a general coordinate transformation! Although the func-
tions {g1, 92, g3} of (17.10) are completely arbitrary (except for invertibility),
they respect the dot product, as long as one vector transforms according to
(17.11) and the other according to (17.15).

So far we have been considering coordinates in a three-dimensional space.
However, as this section’s discussion easily points out, nothing prevents us
from generalizing to n-dimensions: the only change we have to make is that
the sums (and the repeated indices that imply them) should go from 1 to n.
For example, (17.10) becomes

U;V; =

' =gi(at 2% 2", i=1,2,...,n. (17.17)

And this generalization is not purely academic, because, as we saw in Chapter
8, relativity demands a four-dimensional spacetime. Having this generaliza-
tion in mind, we make the following definition of the two kinds of vector
discussed above:

Box 17.1.6. The quantities {A', A%, ... A"} and {B1, Ba, ... B, } are said
to constitute the components of a contravariant and a covariant vector,
respectively, if, under a coordinate transformation (17.17) they transform
according to

i (17.18)

Note the placement of the indices on the two types of vector. Only when
an “upper” index appears with a “lower” index in a sum is the result (the dot
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product) independent of the coordinate system used. Now the question arises:
If one needs an upper and a lower index in the sum to get a quantity that is
invariant, how does one define the length of a contravariant vector (which has
only an upper index) or a covariant vector (which has only a lower index)?
For this, we need to wait until we have introduced tensors and, in particular,
the metric tensor.

17.2 From Vectors to Tensors

We have already discussed one kind of multiplication of vectors, the dot prod-
uct [see Equation (17.2)]. Now we consider the cross product as a prototype
of objects that have more than one index. The cross product of two vec-
tors involves different components of those vectors (as opposed to the same
components involved in the inner product). In terms of the index labels intro-
duced above, this means that the cross product carries two indices. In fact,
consider two (covariant) vectors A; and B;. The components of their cross
product are of the form A;B; — A;B;. In another coordinate system related
to the first by (17.10), the components are A;B; — A;B;. Using (17.18) in
Box 17.1.6 for A and B, we get

oxk oz oxF ozl

A;B: = A By, = . A.By,
I oz ez Th T agi ggi TR
and
_ o Qxk ol oxk ozl oz dxk
AP = o A s P = oz o NP = i g P

where in the last step we just changed the dummy indices [see Equation (9.4)].
Subtracting the last two equations, we get

o OzF ozl
AiBj = A Bi= i g

Ath — Ath).
Thus, if we define Cy, = ApBp — Ap By as the components of A x B, the last
equation gives their transformation property:

oz Ozt
= gzi gzi Or (17.19)
Cross products are special cases of a more general category of mathemat-
ical objects called tensors which carry multiple indices. Some of the indices
may be upper, some lower. The most general tensor carries multiple upper
and multiple lower indices.
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Box 17.2.1. A set of n" % quantities TZl J“ 1s said to constitute the com-
ponents of a tensor T of type (r, s) if, under a coordinate transformation
(17.17) they transform according to

o ~i =i 9ok ks

it 0T 0T O 08 s (17.20)
wds o Qaha Oxhr Oz OFJs ~ N1

{i1...4r} and {j1...Js} are called the contravariant and covariant

indices, respectively. The rank of the tensor is defined as r + s.

Note that for every index on the left there is an identical index on the right,
and that only an upper index and its lower partner are repeated on the right.
Here we are using the obvious convention that in the partial derivatives of the
form Ox* /0z7 or Oz*/0x7, k is considered an upper index and j a lower one.

Example 17.2.1. When we introduced multipoles in Chapter 10, we were able to
write the potential of a source distribution as an infinite sum of moments of source of
higher and higher order. Although Cartesian coordinates are extremely clumsy for
higher moments, the third moment can be handled neatly in Cartesian coordinates
once we use the machinery of indices developed in this section.

Recall that the integrand of the third term in the expansion of potential is [see
Equation (10.33)]

1 3. ”? 3 )
IntegraundEr'2 —2+2(er'97-’)2 :_T2 +2Tl2 <rr:ll> ’

Writing the position vectors in terms of their Cartesian components and rearranging
terms yields
Integrand = 2 (2’ + yf; + ZZ,)2 - r;
= 2; {32 (32" — ) + % (3y"* — ) + 22(32% — ")
+6zyx’y’ + 6z22’2 + 6yzy'z'} . (17.21)
We want to express (17.21) in terms of indices. First let us concentrate on the terms

involving 22, 3%, and 2z%. Since these diagonal terms involve 2% = z1x1, etc., it is
natural to define a two-indezed quantity, say V;;, such that

2 2 2\ __ /
"3z —r7) = zx1 Vi,
2 2 12\ __ /
Yy (By” —17) = z2m2Vag,
2 2 2\ /
27(32"" = 1"%) = x3w3 Vi3,
with
’ W 2 ’ o 2 ’ ’ 2
‘/11 = 3215111)1 -r ‘/22 = 31’21’2 -r , V33 = 321531’3 - T .

Next, we note that the off-diagonal terms such as 6zyz’y’ can be written as 6z;z;z;z}
(no summation!). It appears as if we can write all terms in the last line of Equation
(17.21) a Z?’ _1 Zix; Vi if we can define V;; properly. The off-diagonal sum sug-
gests defining V as V] = 3IZI The reader may wonder why we did not include
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the factor of 6 in the definition. The reason is that when summed over indices, the
symmetry of V;; under interchange of its indices automatically introduces a factor
of 2. The problem with this definition is that when i = j, i.e., when evaluating the
diagonal terms, the r'? term is absent. To remedy this, we change the definition to

_ 2
Vi; = 3wixy — r'? 8. (17.22)
Then, the Kronecker delta contributes only to the diagonal terms as it should. The

reader is urged to show that

3
1 '
Integrand = o2 E xix;Vi; =

4,j=1

1 /
22 l‘il‘]"/;-j, (17.23)
where in the last equality the summation convention is implied.

Now we substitute this in Equation (10.33) and denote the third term as ®3(r).
This yields

K 1 ’ K
@3(1‘) = 5 T |:2 /Q ‘/ij dQ(r,):| = 5 xiijZ—j. (1724)
The last equation defines the components of the quadrupole moment:
1 1
Qi = ) / Vi dQ(r') = ) /(33:;35; —7"28,;) dQ(r)). (17.25)
Q Q

One can use (17.25) to calculate the quadrupole moment of any source distribution.
The quadrupole moment of electric charge distributions plays a significant role in
nuclear physics. |

A scalar (function) is a tensor of type (0,0); a contravariant vector is a
tensor of type (1,0); a covariant vector is a tensor of type (0,1). Similarly, the
cross product, the transformation of whose components is given in (17.19), is
a tensor of type (0,2). Of special interest is the zero tensor, which can be of
any type. Box 17.2.1 shows clearly that

Box 17.2.2. If a tensor has zero components in one coordinate system,
it has zero components in all coordinate systems.

We have also encountered another two-indexed quantity, the Kronecker
delta. Is it a tensor? If so, what type? We may think—since we have chosen
both of its indices to be covariant—that it is of type (0,2). However, that
is not the case, for the following reason. Equation (17.6), which defines the
Kronecker delta, must hold in all coordinate systems. If Kronecker delta were
of type (0,2), then it would transform according to

02k ot o Oxk OaP
T op ow ™ T oz 0w’
and the right-hand side does not satisfy Equation (17.6). For the same reason

the Kronecker delta cannot be a tensor of type (2,0). What if we define it to
be a tensor of type (1,1)? Then
o 0zt oz . 0zt 0ak  OF

5t = k= = =t
77 9k 8z M T gxk ozi T omi Y
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This shows that the proper way of indexing the Kronecker delta is to give it
one covariant and one contravariant index, i.e., to treat it as a tensor of type

(1,1).

Example 17.2.2. Chapter 8 introduced the idea of a four-vector, which is a
vector with four components labeled 0, 1,2, 3, with 0 being the time component and
the rest the space components. It is common to label 4-vectors by Greek indices.
For example, % represents the coordinates, u® = dx®/dr represents the 4-velocity,
p® = mu® represents the 4-momentum, etc. The matrix n can be naturally assumed
to be a tensor 7,3, and the inner product of two 4-vectors a® and b® can be written
as mmao‘bﬁ7 with the summation over 0, 1, 2, 3 of a repeated index (one up, one
down) understood. Because we have used i, j, k, etc., for the space part, we shall
stick to this and write, for example v = (u°,u"), and

3 3
aby = Z a%bo = a’bo + a'b; = a’bo + Z a'b;. .
i—0 i—1

The notation of the example above is very commonly used in relativity
theory:

Box 17.2.3. Greek indices, representing the four-dimensional spacetime,
run from 0 to 4, while Roman indices, representing the space part, run
from 1 to 3.

17.2.1 Algebraic Properties of Tensors

In our treatment of vectors, we saw that there were some formal operations
which they obeyed. For instance, we could multiply a vector by a number,
we could add two vectors, and we could multiply two vectors to get a third
vector. Tensors also have some important properties which we summarize in
the following.

Addition

If T and S are tensors of type (r,s), then their sum U = T + S, defined
componentwise as o o o
UL eeily 1 eelp U1 eilp
Upl 3l = T3 50 550050
is also a tensor of type (r,s). To show this, one simply has to demonstrate

that UZl j“ transform according to (17.20) in Box 17.2.1.
Moreover if we define V = aT componentwise as

Q1 eeily 01l
‘/j1~~js - aT]l]s ’

where « is a real number, then V is also a tensor of type (r,s). The combi-
nation of these two operations makes the collection of tensors of type (r,s) a
vector space.
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Multiplication

If T is a tensor of type (r1,s1) and S is a tensor of type (ra, s2), then their
tensor product U =T ® S, defined componentwise as

i1eiry by ey @i 1eeirg 4 17.9
edartay L dteday Dy 41edey+a (17.26)

is a tensor of type (r1 + 72,51 + s2). For example, if T is a tensor of type
(2,1) with components T;” and S is a tensor of type (0,2) with components

Sim, then the components of their tensor product U are U,] = T}’ Siy,, and
they transform according to the following rule:

ij i B 0z 0% Ol pp 0" O0x®

Utim =15 Stm = 5o g g+ 10" gzt ggm
_Ox' 9x) Oz Pa” Oz Thrg oz 0% dx9 ™ dx® .
~ Ozh Oxr Ozk 0zt 9z 1 U7 9ah Oxr Ozk 0T Oz I

which shows that U is a tensor of rank (2, 3).

Example 17.2.3. One can obtain a tensor of any type by multiplying contravari-
ant and covariant vectors: take r contavariant vectors and s covariant vectors and
multiply them to get a tensor of type (r,s). For example, if A is a contravariant
vector with components A* and B a covariant vector with components B;, then
T = A'A is a tensor of type (2,0), Si;r = B;B;jBy is a tensor of type (0,3), and
U} = A"ATBy, is a tensor of type (2,1). -

Contraction

Given a tensor of type (r,s), take a covariant index and set it equal to a
contravariant index, i.e., sum over those two indices. The process is called
contraction and the end result is a tensor of type (r —1,s—1). For example,
take the tensor of type (2,1) whose components are T}’ and set k = j. How
do the components T;j transform?

i _ oz 0% dx ., B ozt 9z 0% _ B ozt Tha
J Oxh Oxp Oz 1 dxh Oz Oxr "1 dxh 1
S ~ -
=54

This shows that T transform as components of a contravariant vector [see
Equation (17.18)], i.e., a tensor of type (1,0).

Of special interest is a tensor of type (1,1). When you contract this
tensor, you get a tensor of type (0,0), i.e., a scalar. For example, let A be
a contravariant vector with components A? and B a covariant vector with
components B;. Then Tj? = AiBj is a tensor of type (1,1). When you
contract it, you get T} = A'B;, which is the dot product of the two vectors,
i.e., a scalar [see Equation (17.16)].
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Symmetrization

Some important tensors in physics have the property that when two of its
indices are interchanged the tensor does not change or it changes sign. In the
first case, we say that the tensor is symmetric, in the second case, antisym-
metric. For example, if T is a tensor of type (2,0) and U of type (0, 2), and if

Tij = Tji and Ul'j = —Uji,

then T is symmetric and U is antisymmetric.

Given any tensor, one can always construct from it a tensor which is
symmetric or antisymmetric in the interchange of any pair of its indices. In
particular, if T is any tensor of type (2,0), then the tensors S and A with
components

SY=3(TY+T7) and  AY = }(TY —T7)
are called the symmetric and antisymmetric parts of T, and
TY = J(TY + 17 + }(T7 — T7") = 57 + AY. (17.27)
The symmetric part S% is sometimes denoted by 707) and the antisymmetric
part A% by Tl
17.2.2 Numerical Tensors

There are certain “constant” tensors which play important roles in tensor
analysis. We have seen one such tensor already: the (1,1)-type Kronecker
delta. In fact, all the so-called numerical tensors are built form this funda-
mental tensor. The generalized Kronecker delta 5;1:”?7‘ is defined as

11 11 i1

5 g 5t

12 12 . ?2

pi=des | VT (17.28)
O O Oy

The determinant of an r X r matrix is a sum of terms each consisting
of the product of r matrix elements. In (17.28), each term is a product of
r Kronecker deltas. Since the Kronecker delta is a (1,1)-type tensor, each
term, thus the determinant, and thus the generalized Kronecker delta, is an
(r,7)-type tensor.

It is clear from (17.28) that the upper indices label the rows and the lower
indices the columns of the matrix. Thus interchanging any two of the upper
indices is equivalent to interchanging two rows of the matrix. This changes
the sign of the determinant. Similarly for the interchange of two columns.



17.2 From Vectors to Tensors

Box 17.2.4. The generalized Kronecker delta is a completely antisym-
metric tensor in its upper and lower indices: interchanging any two of its
upper indices or any two of its lower indices changes its sign.

Example 17.2.4. In this example, we demonstrate a useful property of the gen-
eralized Kronecker delta. We illustrate the property for r = 3 and n = 3,2 but the
result can easily be generalized. Expand the determinant of 5;3:1, about the last row
starting from the right:
T R ) . . ) . )
ijk i s ; k 6 Om k 6 Oy k Om Oy
Oipmp = det | 6] 87, 0y | =0, det <6j 5 ) — 0y, det (5j 5? + 6, det 5 5?
6lk 67kn 55 l m 1 P m P
— oka, — ki + otai,
Now contract over the indices k£ and p to obtain

51Tk = Gpoi 6k 8 4601 =360 — 8 464 =260 4§19 =681 =515, —5n67,

where in the next to the last step we used the antisymmetry of the generalized Kro-
necker delta. Note that because of the antisymmetry of the generalized Kronecker
delta in both upper and lower indices, we can move both the upper and the lower
last indices to the beginning:
ipeeip _ glpiiecipog
Ogyedr = Ogrgrgy
In particular, B By o o
Ot = Oipur. = 0100 — 8,67 u

The procedure of the example above can be generalized to arbitrary r and
n. Furthermore, one can contract over more than one pair of indices. The
result is the following useful identity:
gt _ (178 iy, (17.29)

jl"'jsi8+1”'i7‘ - (n_/"l)! jl”'jS.

From the generalized Kronecker delta two other important numerical ten-
sors are built. These are called the Levi-Civita symbols. They are defined
as follows: o o
=620 and €1 =415 (17.30)

€j 1 gn

1 Jn
Note that both Levi-Civita symbols are antisymmetric in all their indices and
will thus vanish if any two of their indices are equal. Moreover,

€12.m = 012" =1 and M =4120 =1, (17.31)

so that we have

+1 if ¢y ---4, is an even permutation of 1,2,...n,
=i = 1 ifiy---iy, is an odd permutation of 1,2,.. .1,
0 otherwise.
(17.32)

2Recall that n is the dimension of the space.

Levi-Civita
symbols

453



454

Tensor Analysis

Now consider the quantity

iein _ iyeein i
Ajl"'jn =€ €1 g 5]1 “Jn’?

which is clearly antisymmetric in all its upper as well as lower indices. This

means that the only nonzero elements of A;lllj’; are those obtained from
AlZn But this is zero by (17.31) and the definition of A;llz’; We have just

shown the following important result

iyeed

€ "E€jy gy = 5“ (1733)

Ji- ]n

17.3 Metric Tensor

Let {2*} denote a set of Cartesian coordinates, and {2’} some other coordi-
nates of which {2} are functions. We then have

11 ax/i ] .. .
dz" = _ . dz? (sum over j implied as usual).

oxd

The element of length (squared)—which is customarily denoted by ds?—in
the Cartesian coordinate system is

d52 — (d$/1)2 + (d$l2)2 4ot (dmln)2 _ Z(d$li)2-

=1

In terms of the other coordinates, this can be written as
Z dm/z Z dm/zdxll
i=1 i=1

n ax/z aCC” d

— 3333 Oxk

ax/z 83}” .
_ J Jok
= (; 9 896’“) dx?dz”.

The expression in parentheses on the last line, denoted by g;x(x), is a sym-
metric tensor of type (0,2), which as indicated, is a function of the {z7}:

M

ax/i 8:5”'

j = . . 17.34
gjk(m) ra o1 Oxk (17.34)
That g;i(z) is symmetric should be obvious. To show that it is a tensor

of type (0,2), let {z*¥} be some new set of coordinates of which {2/'} are
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functions. We assume that all functional dependences are invertible. This
means that {Z*} can be thought of as functions of {z'*}, and through {z'*},
as functions of {z7}. In terms of the # variables,

- o n 833” ax/i
9 (T) = 20 o ok
=1

Using the chain rule, this can be written as

=02 02P 02 0x [~ 02 02’ Q2P Q2 P Ot
9in(@) = £ v Qi Ot Ok \ &= ap xt | Oxd Ozt 0xd Ozk 9pa();
=gpq(®)

which shows that g,, transforms as a (0,2)-type tensor. In terms of this
tensor, ds? is written as

ds® = Z(daz”)2 = gjk(x)dxjda:k. (17.35)
i=1

The matrix whose elements are g, is invertible. In fact, consider

" 9k 9™

km _
() = f ox'? Ox'P’
p:

which the reader can show to be a tensor of type (2,0). Then

n ; ; n
()R () ox" Oz’ oxF gz™
ik\X xXr) = .
97 L~ Oxd Oxk Ox'P Oz'P
i=1 p=1
"\ 02" 9x" 9k 9x™ (s 0™ o2
, OxJ Oxk Ox'® Oz’ £~ Qx't Oz 77
i,p=1 N~ N 7 i=1
_oali _gi ~ ~ i
= 9u'p —Op _ozm

T 8ad

where on the second line use was made of the chain rule and Box 17.1.5.
This equation shows that the matrix whose elements are h*™(x) is inverse
to the matrix whose elements are g;r(z). It is common to use the same
symbol for the inverse as for the original tensor. Thus, instead of h*™(z), we
use g™ (z).

The (0, 2)-tensor g;x(x) was defined in terms of the transformation rule
between a Cartesian and a second coordinate system. It turns out that one
can abstract the properties of g;i(z) and define the metric tensor:
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Box 17.3.1. A metric tensor g with components g;; is a symmetric
type-(0,2) tensor whose matriz has an inverse g ' with components gF™.
Every metric tensor defines a geometry in which the (square of the)
element of length ds? is given by

ds? = g;j(z)dz'dx?

where {a:l} are some appropriate coordinates in that geometry.

The word “geometry” in this Box is used rather loosely. A precise defini-
tion of “geometry” is beyond the scope of this book. Nevertheless, we mention
that the notion of geometry starts with the concept of a manifold, which is a
“space” that locally looks like a Euclidean space. For example, the surface of
a sphere is a two-dimensional manifold, because a very small area of a sphere
looks like a two-dimensional Euclidean space, i.e., a flat plane. Mathemati-
cians study manifolds that have no metric tensors defined on them. However,
in physics, almost all manifolds have a metric, and this metric defines the
geometry of that manifold.

In our discussion of the inner product in Section 6.1.2, we also encountered
the metric tensor, although we called it the metric matrix. There, we defined
the notion of positive definiteness. In the context of the discussion here, this
property becomes the cornerstone of a special kind of geometry: if ds? of
Box 17.3.1 is always strictly greater than zero for nonzero dz® and dz7, then
the manifold on which g;; is defined is a called a Riemannian manifold.
Relativity requires manifolds that are not Riemannian, i.e., for which ds? can
be zero or negative.

Geometry is an intrinsic property of a space, while g;;(z) depends on the
coordinates used. This is evident in Equation (17.35) where ds? is given in
terms of Cartesian coordinates as well as the other general coordinates. De-
spite this coordinate dependence, the metric tensor does define the geometry
of a manifold. In fact, there are some quantities obtained from the metric
which characterize the intrinsic geometry of the manifold. We shall return to
this discussion later.

Example 17.3.1. Let us find the metric tensor in spherical coordinates. Use
spherical coordinate symbols as indices with r, 8, and ¢ as first, second, and third
coordinates, respectively. Recalling that z'! = z, /> = y, and 2’ = 2, with

x=rsinfcosy, y=rsinfsinp, z=rcosb,
and using Equation (17.34), we get

az\?  (oy\* (927
gr,«(r,ﬁ,@):(ar) +(8Z1{) +(8r) = (sinf cos ¢)> + (sin Osin ¢)* 4 (cos 0)® = 1

_Ox0x  Oyody , 0z0z
9ro(r0:9)= 5. 90 * or 00 T or 09

= (sin @ cos p)(r cos b cos @) + (sin O sin ¢)(r cos @ sin ) + (cos ) (—rsin @)

= rsinfcosfcos® o+ rsinfcosfsin® ¢ — rcosfsind = 0.
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Similarly, the reader can show that g,, = 0, and in fact all the off-diagonal elements
vanish. On the other hand,

oz \ 2 oy \ 2 92\?
969(7“70,4,0):(83) +(8Z> +<8Z)

= (rcos @ cos )* + (rcosBsin )’ + (—rsinf)* =r

ax\?  [(oy\? [0z\°
sectr)=(50) + (50) +(50)

= (—rsinfsin)® + (rsinf cos ¢)* = r*sin” .

2

Therefore,
ds® = (dr)? + r%(d0)? + r*sin® 0(dy)* = dr® + r*d6” + r* sin® 0dp?,

which agrees with Equation (2.25). Note how the parentheses have been removed
from around the differentials. This is a very common (albeit inaccurate)
practice. |

17.3.1 Index Raising and Lowering

After Box 17.1.6, we mentioned that the length of a covariant or contravari-
ant vector cannot be defined without a metric tensor. Now that we have a
metric tensor, we define them. In fact, we can do better! We can define the
dot product of any two vectors. If one vector is covariant and the other con-
travariant, their dot product is the usual one: the sum of the product of their
components as shown in (17.16). If both vectors A and B are contravariant,
define the dot product as

and if both vectors are covariant, define the dot product as
A -B=g¢"A;B;. (17.37)

The reader can routinely show that A - B = A - B in both cases.

Equations (17.36) and (17.37) have an interesting interpretation. Take the
first equation and recall from Equation (17.26) that the product gijAk is a
tensor of type (1,2). Contracting the indices i and k turns that into a tensor
of type (0,1), i.e., a covariant vector, say C with components C;. But now
note that

It is therefore natural to denote g;; A*—which is equal to g;; A’ because of the
symmetry of the metric tensor—by A;. Thus, the metric tensor g;; provides
us with a way of changing contravariant vectors to covariant vectors, i.e.,
lowering their indices. Similar arguments show that the inverse of the metric
tensor g™ can be used to raise indices; and these two processes are consistent,
in the sense that if we lower the index of a contravariant vector with g;; and
then raise the index of the resulting covariant vector with ¢/, we get the
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original contravariant vector. Here is a proof! Let CF = g*J Aj, where A; is
the covariant vector obtained from A’. Then,

Cr=gMA;=gMgiA" = gMg; A" = 67 A" = AP,

and the original contravariant vector is restored. The process of raising and
lowering of indices works for arbitrary tensors:

Box 17.3.2. Any contravariant index i of a general tensor can be made
into a covariant index 5 by multiplying the component that includes i by
gij. Any covariant index i of a general tensor can be made into a con-
travariant index j by multiplying the component that includes i by g".

In Cartesian coordinates the (Euclidean) metric tensor is just the Kronecker
delta. Therefore

Al =gl A = 5§Ai = A;, in Cartesian coordinates with Euclidean metric,
(17.38)
and the distinction between covariant and contravariant vectors (and indices)
disappears.
In special relativity and in Cartesian coordinates, the metric tensor is 7,3,
whose matrix is given in Equation (8.8). This tensor has components

Moo =1, m1 =122 =133 = —1, 1o =0if a # B in special relativity.

The inverse of 1,4 is itself: n*# = 7,45. In raising and lowering of an index,
the time component does not change, while the space components change sign
(see Box 17.2.3 for the meaning of Greek and Roman indices in relativity):

A =nP A5 = A" = Ay, A" = —A; (17.39)

Example 17.3.2. The Levi-Civita symbols are conveniently used to express the
components of the cross product of two vectors in Cartesian coordinate systems.
Since there is no difference between covariant and contravariant indices in Cartesian
coordinate system, we use only covariant indices.

(A X B)Z = éz‘jkA]'Bk, = 1, 2,3, (1740)

where a sum over j and k is understood. As a practice in index manipulation, the
reader is urged to verify the above relation. The order of the two vectors on both
sides of the equation is important!

Using Equation (17.40) and some properties of the Levi-Civita symbol, we can
derive the bac cab rule:

Ax(BxC)=B(A C)-C(A B).
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Start with a general component of the LHS and work through index manipulations
until you reach the corresponding component of the RHS:
{A X (B X C)}Z = ei]-kAj(B X C)k = EijkAjEkmanCn
= ekiijmnAijCn = (5im6jn - 5in6jm) AijCn
= 0im0jnAj BmChn — 6indjmAj BmCn = A;B;C; — A;B;C;
= Bi(A;Cj) — Ci(A;B;) = Bi(A-C) — C;(A - B).

On the second line we used (17.33) and the result obtained in Example 17.2.4. The
last expression above is the ith component of the RHS of the bac cab rule. [ ]

Example 17.3.3. Example 15.3.1 calculated the angular momentum differential
operator using Cartesian coordinates. To illustrate the power of indices and the
ease with which they allow some complex manipulations, we redo the calculation of
Example 15.3.1 using indices.

We have —L?f = (r x V) - (r x V)f. Letting d; stand for the partial derivative
with respect to x;, using Einstein summation convention, and recalling that no
raising or lowering of indices is necessary for Euclidean space, we write

—L*f = (r x V)i(r x V)if = (cijut;00) (€itm@10m) | = €ijncitm;0k (@10m f)
where we used (17.40). Continuing, refer to (17.33) and write the above equation as
—L*f = (8j10km — 8jmit) @Ok (210m f) = 20k (20 f) — 20k (210, f)

= l’j(skjakf + 2200k f — xj0kk05 f — x2,0K0; f (17.41)
=2;0;,f +r°V2f — 32,0, f — x;21000; f = 1°V2f —2(r - V) f — 22,010, f,
because Oyx; = Ox;, T;x; = 72, Ok = 3, £;0; = v -V, and 9x0, = V2. The last
term in (17.41) above can be found from the following relation:
2pOk(2;0;f) = T0k;05 f + xp2;0k0; f = 205 f + xkx ;0,05 f,
or
2k2;0k0;f = (r- V)’ f — (r- V)f.

Substituting in (17.41) yields Equation (15.22). Compare this derivation with the
laborious calculation of Example 15.3.1! [ |

17.3.2 Tensors and Electrodynamics

Relativity was a logical outcome of the electromagnetic theory. It should
therefore come as no surprise if the equations of electromagnetism found their
most natural form in the language of relativity and tensors associated with
it. In the discussion that follows, it is convenient and common practice to set
the speed of light equal to 1; then since ¢ = 1/,/eopio, we have

1
c=1, = Ho-
€0

Consider the Lorentz force law

f=qgE+v=xB) or fi=q(E;+e¢€jrvjBi), (17.42)
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where as in Example 17.3.2, we used covariant indices for all tensors in the
second equation. Since this is the fundamental force of electromagnetism, we
expect it to have a natural expression in relativity.

As a starting point, we note that the magnetic part is of the form v; Fj;,
where Fj; = ¢, B is an antisymmetric tensor of rank two. The obvious
generalization that might lead to a connection with relativity is to consider
an expression of the form u”F,, 5, where u? is the velocity 4-vector and F,z is
an antisymmetric tensor of rank two which reduces to F;; when both a and
3 are nonzero. Let us look at u’F,5 when « is i:

u’Fig = u’Fio + v Fy,

where we used the convention of Example 17.2.2. Equation (8.21) now gives
u% =, and u’ = yv’. Then the equation above gives

u’Fig = yFio + 1/ Fij = 7 (Fio + v Fij) = v (Fio + vjeiuBi) ,

where in the last step, we disregarded the difference between covariant and
contravariant indices. Comparison with Equation (17.42) shows that it is
natural to set Fo = E;. The second rank antisymmetric tensor F,g is called
the electromagnetic field tensor.

Maxwell’s equations (15.29) take a specially simple form when written in
terms of the electromagnetic field tensor. The first equation can be written
as OF

0;Fyo = 8:1;'0 = :J = [op- (17.43)
The obvious generalization of the left-hand side to relativity is 0F,z/0x%. But
there is something wrong with this! Both o’s are lower indices—recall that the
superscript of a coordinate in the denominator leads to a subscript—and you
cannot sum over them. In the Euclidean case, this causes no problem because
by (17.38), there is no difference between lower and upper indices and we can
simply raise one of the i’s. In relativity, however, there is a difference. So, we
have to introduce the (inverse) n tensor. The left-hand side now becomes

av 8F0¢ﬁ
Oz

Since [ is a free index, we expect the right-hand side to have a free index as
well. So, we write the generalization of Maxwell’s first equation as

0F .3
o = 1o Vg, 17.44
333” Ho B ( )
with V3 to be determined. For 8 = 0, we get
0F, . OF; OF;
w0 — Vo, or Y =V, o — % = oV,
oxv oxv oz’

where we used the fact that Fi,g is antisymmetric, so all its “diagonal” com-
ponents are zero. We also used the fact that n is diagonal with the space
elements being —1. Comparing with (17.43), we see that Vo = —p.
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Now let § =i in (17.44). Then

OF ;i 0Fp; L OF;
av ar V;, (1% 7 Jv Jv _ V;,
g T HO or M ow +7 opv - HO
or
0Fy; OFy; 0F;
835% - 8ij‘ =poVi, or = o + €ijx0; By = poVi.
This is the ith component of the vector equation
OE
— V x B =puyV.
ot +V X Ho

Comparing this with the fourth Maxwell’s equation, we identify V as J. Thus, Maxwell's 1st and
the first and fourth equations, the inhomogeneous Maxwell’s equations 4th equations and
are combined into four-current
0F,p
v = poJs, 17.45
8331/ Ho3 ( )
where Jg = (—p,J) is the 4-current. We leave it to the reader to verify that Maxwell's 2nd and
3rd equations
0F .3 n 0F, o n 0Fpg,

P P ope 0 (17.46)

combines the second and third equations, the homogeneous Maxwell’s
equations.

Equation (17.46) is satisfied if Fi,g3 = 0o Ag — 0gAq for any 4-vector A,
as the reader can easily verify. For a = ¢ and § = 0, this gives

A
EO = 81140 — 80141', or Ez = 8ZA0 — 80Ai, or E = VAO — g ot

Comparing this with (15.31) identifies Ay with the negative of the scalar
potential ® and A with the vector potential. We can thus write

Fop = 0aAp — 03Aa, Ao =(—®, A). (17.47)

Now that we have solved the homogeneous Maxwell’s equations by in-
troducing the 4-potential, we can insert the result in (17.45) to write the
inhomogeneous Maxwell’s equations in terms of the 4-potential as well. We
then have

n* 0y (0o Ap — 03Aa) = 10Js,

or
100,00 A — 05 (11°7 0y Aa) = pioJ5. (17.48)

The expression in parentheses—when set equal to zero—gives the Lorentz
gauge condition [see Equation (15.32)]. The remaining part of the equation
gives the wave equation for A and ®.
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17.4 Differentiation of Tensors

Tensors represent many quantities, whose variation with coordinates (points
in space) has physical significance. Therefore, the notion of a derivative of a
tensor becomes important. Although we can always differentiate components
of a tensor (they are just functions), the resulting derivative is not necessarily
a tensor. To obtain a tensor, one needs to generalize the concept of the
derivative, as we do in this section.

17.4.1 Covariant Differential and Affine Connection

Let us begin by noting that the differentials of coordinates form the com-
ponents of a contravariant vector. In fact, when the new coordinates z* are
written as functions of the old coordinates 27 and one takes the differential
of the new coordinates, one obtains
dz' = 7 da?, (17.49)

which is precisely the way a contravariant vector transforms. In fact, this
is the archetypal example of a contravariant vector, and can be a guide in
helping the reader remember the rule of transformation of the contravariant
components of a tensor.

The differential of a scalar—a tensor of type (0,0)—is again a scalar,
because

o

do = , da',

and the first term is the components of a covariant vector [see Equation
(17.15)], and the second term the components of a covariant vector (as shown
above).

Next take the differential of a contravariant vector A*. How does it trans-
form? By taking the differential of the transformation rule

N
A" = A7 17.
oxi™ "’ (17.50)
one obtains
s A oz’ .ozt 0%zt ,
dA'= 7 dAT +d ) AT =T Al dak AT 17.51
O’ + (aaﬂ) O’ + Dk dzi (17:51)

If the second term on the right were absent, dA7 would transform as a con-
travariant vector. It turns out that one can add something to dA? whose effect
is to cancel the unwanted term.

Consider quantities I‘{np, which transform according to

oo 077 Ozl o2, 0?77 QM Ox*

mp T g9l 9zm 9zp M 9xhOxk OFm Ozp (17.52)
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Any set of three-indexed symbols I‘{np which transform according to this equa-
tion is said to constitute the components of an affine connection. An affine
connection is not a tensor because of the second term on the right-hand side
of (17.52). Since this term is the same for all affine connections, the difference
between two affine connections is a tensor of type (1,2). If I‘{np and A{np are
any two affine connections then

I‘j _Aj _ oz dxh ok

l l
" mP T gl 9Fm HTP (Phk - Ahk) 5 (17.53)

showing that I‘%k — A%k transform as components of a tensor of type (1,2).
In particular, if A%k = I‘%Ch, then the difference I‘ﬁlk — I‘feh is essentially the
antisymmetric part of the affine connection I':

P _ 1 l l 1 l l
Uik = 5 (Dhe + D) + 5 (T — Ti) -
~ ~ -~ ~ -
symmetric part antisymmetric part

The antisymmetric part of an affine connection is called its torsion ten-
sor. Clearly if it vanishes in one coordinate system then it vanishes in all
coordinates (the zero tensor is zero in all coordinate systems). Thus, the
torsion tensor of an affine connection is zero, if an only if the connection is
symmetric.

Lack of tensorial character of the affine connection is precisely what is
needed to make dA7, as well as dA; a tensor:

Box 17.4.1. For any affine connection I‘{Cl, the quantities DA7 and DA,
defined by

DA = dA’ + T}, A¥dz'  and  DA; = dA; — T Apda!

are, respectively, the components of a contravariant and a covariant vec-
tor. They are called the covariant or absolute differential of the vectors.

We show that DA7 is a contravariant vector, leaving the proof of the second
claim to the reader. In the bar coordinates, we have

DA} = dA7 + 1), Ak dz'.

torsion tensor
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Using Equations (17.49), (17.50), (17.51), and (17.52), we obtain

_. o7 9%z
J— k k 4l
DA = " dAb 7 datA
077 x4 3xrl_‘p B 0%z 9z Ox” oz* qm 3£ld R
dzr Ok 97 T 9xadzr Ozk 97 ) \ dzm T 9t
o, o2zl
T 9zk dA” + ozxkox! du”A
0z Oz 0z* Oz 07 0%z Oz OzF Ox" OF!
I‘P Am s _ Am S
dar 9k . 9t ows L T gager grk g ot ows
oz’ 92zd oz’ 02z7
= Ak k Al TP Aldx" — Aldx".
(%ckd +8xk8xldm +(’9x1’ arAtde 0x10x" du

The second term cancels the last term (remember that you can use any symbol
for the dummy indices that are summed over). Therefore,

oz ., oxd om0 .
Lo Atda” = O dAR 4 TG ATda

oz’
DA
oxk ’

_ 0wl
= (%de +8

7
- gj;k (dA¥ 4+ T A%der) =

DA’

which is the transformation rule of a contravariant vector.

Absolute differential can be defined for any tensor. For a scalar ¢, D¢ =
d¢. In the case of other tensors, for each contravariant index an affine con-
nection term with a positive sign, and for each covariant index an affine con-
nection term with a negative sign is introduced. For example, the covariant
differential of T}’ is a tensor of type (2,1) given by

DT =ty + (Th, TP + T3, T = T, T}7) da.

Covariant differential has all the properties of ordinary differential when ap-
plied to tensors. For example, the covariant differential of the sum of two
tensors of type (r,s) is a tensor of type (r,s), and D(aT) = aDT for any
constant a and any tensor T. Covariant differential also obeys the Leibniz
rule:

DT®S)=DT®S+Tx DS. (17.54)

17.4.2 Covariant Derivative

In the first equation of Box 17.4.1, write dA’ in terms of partial derivatives.
Then, the equation becomes

oA
ox!

QAT

DA =
ox!

dz' + 17, Ak da! = ( + rf;lAk) dx!
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Since the left-hand side and dz! are contravariant vectors, we suspect that the
expression in parentheses is a tensor of type (1,1). This can in fact be shown
directly. It is called the covariant derivative of A7 with respect to z! and
denoted by A’. Thus,

0A7
ox!
This is the generalization of ordinary derivative to situations in which the
affine connection is nonzero. Covariant derivative can similarly be defined
for covariant vectors as well as arbitrary tensors. For example, the covariant
derivative of T}’ is a tensor of type (2,2) given by

A + T4, Ak, (17.55)

i pJ j P P i
ka = gpa TI1pali T TpeTe" — Tig Ty’

kq~p

Consider a curve in Euclidean space parametrized by t. Let A%(t) be the
value of a vector field at a point on the curve. If dA?/dt = 0, then the vector is
constant along the curve, and we say that the vector is parallel translated
along the curve. When the affine connection is nonzero, we divide both
sides of the first equation in Box 17.4.1 by dt (which on the left we denote by
Dt for aesthetic reasons), and say that a contravariant vector field is parallel
translated along a curve if

DA dA7 I
=0 AR =0 17.56
Dt R ’ ( )
with a similar definition for a covariant vector field. Since A7 depends on ¢ only
through the coordinates, we use the chain rule dA’ /dt = (0A7 /0z!)dx'/dt to
rewrite the equation above as

) da! - dat
+r;jAk> vo=an

= Ahil =0. (17.57)

Dt \ 9zl dt Lt

DA <8Aj

A curve whose tangent vector is parallel translated along that curve is
called a geodesic. The components of the vector tangent to a curve is
do'/dt = i'. If we substitute this in (17.56) we obtain the following sec-
ond order differential equation called the geodesic equation:

Did A2l J dak dat

=0, or oy AT g g =0 o il 4+ Ty,a%3 =0, (17.58)

where each super dot represents a differentiation with respect to ¢. Solving
this differential equation yields the parametric equation of a geodesic.

17.4.3 Metric Connection

The affine connection, which is defined by its transformation property of
(17.52) is completely arbitrary. Omne can define covariant differentials and
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covariant derivatives in terms of any set of quantities that transform accord-
ing to Equation (17.52). With a metric tensor, however, one can define a
unique symmetric (therefore, torsion-free) affine connection called metric
connection given by

L oim (3gmk +39ml Ogri

Jo_1I —
Da=Tn=,9 9! oxk — dxm

9 > = gjmrmkl, (1759)

where

Tt = (17.60)

2\ ox! dxk  Qxm
with all lower indices, is easier to remember. Note that it is the first index
of I'yypy that is raised to give the components of the metric connection, and
for this reason the metric connection is sometimes denoted by I'V,;,. The
verification that (17.59) is indeed an affine connection—i.e., that it transforms
according to (17.52)—is straightforward but tedious.

1 /9gm AGm 0
<gk+gl gkl),

Example 17.4.1. If all components of a metric tensor are constant in some coor-
dinate system, then all the components of the metric connection vanish. Note that
this is true only in that particular coordinate system. Changing coordinates changes
the affine connection, and in general, the components of a metric connection will
not be zero even if they are zero in some coordinate system. If we use Cartesian
coordinates, then the Euclidean metric is just the Kronecker delta. Therefore, all
components of the metric connection are zero. Similarly, the metric of special rel-
ativity in Cartesian coordinates in 7.3, whose components are either 0 or 1 or —1.
Hence, all components of the metric connection of special relativity in Cartesian
coordinates vanish. ]

The metric connection has some special properties which are of physical
importance. The first property which could be easily verified is that

agij

Gijik =0 or Ok

— F?kgip —T? g5 = 0. (17.61)
The second property is that between any two points passes a single geodesic
of the metric connection, and this geodesic extremizes the distance between
the two points. If the geometry is Riemannian (i.e., if the metric is positive
definite) then the geodesic gives the shortest distance. In relativity, where the
metric is not Riemannian, the geodesics give the longest distance.

Example 17.4.2. In this example, we find the geodesics of a sphere. The spherical
angular coordinates 6 and ¢ can be used on the surface of a sphere of radius a. From
the element of length ds? = a?df* + a”sin? dp? on this sphere, and using # and ¢
to label components, we deduce that

— 2 _ 2 .2 _ —
gi1 =g = a4 , 22 = GJpp = a SN 9, 912:.9050:,921:9@0:0,

and similarly,
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Substituting these in (17.59), we can calculate the components of the affine connec-
tion. The nonzero components turn out to be

r’, = —sinfcosb, Iy, =17, =coto.

Using these in the geodesic equation (17.58), we obtain the following two differential
equations:

2 2
0 — sin 6 cos 6 (d@) =0,

dt? dt
d*p dy do
g2 + 2cot 0 dtdi = 0. (17.62)
The second equation can be solved to give
dy C C
= dp = dt 17.63
dt sin? 4 v sin?6 "’ ( )

where C is a constant of integration. Substituting this in the first equation of (17.62)
gives
d*9  C?cosf
— =0. 17.64
dt? sin® 0 ( )

To find the geodesic, it is more convenient to express 6 as a function of ¢. This
means changing the independent variable in Equation (17.64) from ¢ to ¢. This is
done formally by using the second equation of (17.63) to substitute for dt in (17.62).
Thus, the first tem of (17.62) can be written as

d (d9\  Cd cdo \  C* d 1 do
dt \dt )~ sin?0dp \sin?0dp ) sin?0 dp \sin>0dp )’

Substituting this in (17.64) yields

d [ 1 df
~cotf = 0.
dy (sin29 dcp) 0

Differentiating the first term, we get

cosf [ do\’ 1 d*
— —cotf =0,
sin® 0 (dcp) sin?9 dp2
which can be simplified to the following differential equation:

2 2
siHGiOZ —2cos (ii) —sin® 6 cos 6 = 0. (17.65)

If we could solve this equation, we would find € as a function of ¢, and this
should be the equation of a geodesic on a sphere. Instead, let us use our knowledge
of the geodesics (curves giving the shortest distance) on a sphere, write it with 6 as
a function of ¢ and see if it satisfies (17.65). Our sphere is parametrized as

x =asinfcosp, y=asinfsiny, z = acosh.

The great circles—curves of shortest distance—are the intersection of a plane passing
through the origin and the sphere. Such a plane has an equation of the form Az +
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By + Cz = 0. The intersection with the sphere is obtained by substituting for x, y,
and z from the above equations:

Aasin 0 cos ¢ + Basinfsin p + Cacos = 0.
Dividing by Casin @ and redefining A to be —A/C and B to be —B/C, we get
cot @ = Acos g + Bsiny,

as the equation of geodesic on a sphere. It is straightforward to show that this
equation indeed satisfies (17.65). ]

17.5 Riemann Curvature Tensor

Consider a closed loop, such as a rectangle, on a flat surface. Start a vector
at one point of the rectangle (the lower left corner) and carry it parallel to
itself to the point diagonally opposite the initial point [Figure 17.1(a)]. In one
case carry the vector to the right and then up. In the second case carry the
vector up and then to the right. Compare the vector at the end of the two
cases. They are equal. Do the same on a curved space such as the surface of a
sphere. The two vectors at the end do not coincide [see Figure 17.1(b)]! The
degree to which they are different is a measure of the curvature of the space.

Let us quantify the notion of the curvature. Suppose that the lower and
upper curves of the “rectangle” are parametrized by ¢ and the right and the
left curves by s. Moving along a curve parametrized by ¢ does not change s,
and vice versa. Using a Taylor expansion, in which derivatives are replaced
by covariant derivatives, parallel translate a contravariant vector A’ first to
the right and then upward [see Figure 17.1(b) for clarification]. Assume that
the lower left corner has (¢, s) as the parameter values. As you move along
the lower curve, the parameters change from (¢, s) to (¢t + At, s). So, to first
order in At, we have

dx!

, . DAY , -
Al(t+Ats) = Al(ts) + ) At = Al (t,s) + Al (t,5) At

(a) (b)

Figure 17.1: (a) In a flat space, the direction of the vector does not change when
carried along two different paths. (b) In a curved space, the two vectors are different.
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Now parallel translate this vector upward, the direction in which ¢ is constant
but s changes:

Al (t+ At, s+ As) = AI(t + At,s) + 5 (A7 (t + At, s))As
S

} DA D [ . o dat
— AJ J J
Al(t,s) + Dt At + Ds (A (t,s) + A (t,s) it At) As
, DA DAJ D ; da!
= Al A A Al At) A
Bs)+ py AF g S+Ds( ts) t) §
, DA DA : dz™ da!
— AJ J
Al(t,s) + Dt At + Ds As+ A, (L, s) ds dt AtAs.

Since A7 is assumed to be parallel translated on both curves, DA/ /Dt = 0 =
DA /Ds, and

Al(t+ Aty s+ As)y = Al (t,s) + A (£, s)Aa' Az,
where we used Az! ~ (dz!/dt)At and Az™ ~ (dz™/ds)As. The subscript 1
on the left hand side stands for the “first route.” The “second route” is going

up first and then to the right. It should be clear that the only difference in
the final result is the interchange of [ and m. We therefore have

AT (t+ At s+ As)y = Al (t,5) + AL (t,s) Azl Aa™.
Thus, using A{lm for the second covariant derivative, we have
AV (t4+At, s+ As)y — AT (t+ At, s+ As)y = (A{lm - A{ml) Azl Az™. (17.66)

The difference in parentheses should be related to the curvature of the space
(manifold) under consideration.
Finding this difference is straightforward. Using the rule of covariant dif-
ferentiation for general tensors, we get
A, ,
; k
AJ = + F?cmA;l - F;leA‘?P

im 8$m
9 oA VL J 9AF k gr D j
= ogm <8xl +1,A ) +1,, Ol +In A" ) =T, AL
_ o oy A, O g O phar e
-~ Ozmoxl T Qam FLgm km 9l fom =l tm =5
In the last line switch [ and m to get A?mI:
; &2A7 oy o 0AF aAF :
J _ km Ak J J J 1k r D
sml oxtdx™ Ol A% + ka Ol + Fkl oxm + Fklrf’mA - leA;Jp'
Subtracting, and changing the dummy indices when necessary, we obtain
; , ory, ors . ,
A?lm - A»Jml = <8x1krf - 8£[ + Fz”m kl — Filr‘km> Ak - (Ffm - Fﬁzl) A,jp

(17.67)
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It is straightforward but tedious to show that the expression in the first
pair of parentheses transforms as a component of a tensor of type (1,3). This
tensor is denoted by Ry, and is called Riemann curvature tensor:

rs,  ory
0 e RE K A S (17.68)

Rklm N axm Ozt

The expression in the second pair of parentheses in (17.67) is the torsion tensor
introduced earlier [see Equation (17.53) and the discussion after it].

Example 17.5.1. Example 17.4.1 showed that the metric connection of Euclidean
space and special relativistic spacetime in Cartesian coordinates are both zero.
Equation (17.68) shows that for these spaces, the Riemannian curvature tensor
expressed in Cartesian coordinates is zero. Since Riemannian curvature tensor is a
tensor, it must be zero in all coordinates, as expressed in Box 17.2.2. Spaces that
have zero Riemannian curvature tensor are called flat. We thus see that flatness
is an intrinsic property of a space, independent of any coordinates used in that
space. ]

The curvature tensor has some important properties which we state with-
out proof. One property that is evident from (17.68) is

Rklm = _Rimz (17.69)

The second property, which is true only if the torsion tensor vanishes, i.e.,
when the affine connection is symmetric, is

Rklm + lek + Rmkl 0. (17.70)

The third property, which involves the covariant derivative of the curvature
tensor and is true only for torsion-free connections, is

Ry i+ Ry + Rl = 0. (17.71)

klm;i kil;m

This is also called the Bianchi identity. The last property, which holds for
Riemannian tensor of the metric connection, is that Ry, ~has n?(n? —1)/12
components.

Various other tensors can be obtained from the Riemann curvature tensor
by contraction. For example, by contracting the contravariant index with the
last covariant index one obtains the so-called Ricci tensor:

. J 81“3 .

Ry = Rjy; = Rjy; = (?91;7 — opl Tk~ ThT, (17.72)
and by raising one of the Ricci tensor’s indices and contracting, we obtain the
scalar curvature:

R =Rl = ¢"Ry. (17.73)

Einstein’s general theory of relativity explains gravity as a manifestation
of the curvature of spacetime. Since gravity is caused by mass, and since
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mass and energy are equivalent, the source of curvature is energy. Pursuing
this idea, Einstein came up with an equation, the Einstein equation, that
describes all (large scale) gravitational interactions. Defining the Einstein
curvature tensor as

Gij = Rij - ;gin, (1774)

the Einstein equation is written as
Gij = 87TGTij, (17.75)

where G is the universal gravitational constant and Tj; is the energy momen-
tum tensor.

Example 17.5.2. For the sphere of Example 17.4.2, the Ricci curvature tensor
can be written as

ore, oryg
Ru =", 0“ ~ ot t Iy T —Trf, —TirL, — T4,
Using this, it is easy to show that Re, = 0 = R,e, while
Rop =1, Ryp = sin’ 6
Furthermore, since g% = 1/a? and g¥¥ = 1/(a”sin” ), the scalar curvature becomes

2

R=g"R;j = 9% Roo + 9¥¥ Ry = 2

showing that a sphere is a space of constant (and positive) curvature, as we
expect. |

17.6 Problems

17.1. Write 0;z; in a form that includes the Kronecker delta. Now show that
V.r=3.

17.2. Recall that a homogeneous function f of n variable of degree ¢ satisfies
qf (1,2, ... ,x,) = i%@f
i=1
(a) Differentiate both sides with respect to x; and show that
(¢ —1)0if(x1,22,...,20) = ixiaiajf.
i=1
(b) Multiply this equation by z; and sum over j to obtain

qlg— 1) f(z1,29,...,25) = Z ;20,05 f.

4,j=1
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17.3. Verity Equation (17.23).

17.4. Let the scalar function ¢ be given by ¢(x,y,2) = 22 + y3 + z and

T =sinZ +cosy+z, y =y +z, z=z°

What is the functional form of ¢?

17.5. Show that the sum of two tensors of type (7, s) is a tensor of the same
type.

17.6. Derive Equation (17.29). Show that §13:" = 1.

17.7. Show that the inverse of a metric tensor given by

n
oxF oz™

km —
9" (@) = Z; ox'P 0x'P
p=

is a tensor of type (2,0). Here {2''} are as defined in the beginning of Section
17.3.

17.8. Following Example 17.3.1, find the metric tensor for cylindrical coordi-
nates.

17.9. Show that the dot products of Equations (17.36) and (17.37) do not
change in a general coordinate transformation.

17.10. Verify Equation (17.40) component by component.

17.11. Using indices, show that the divergence of a curl and the curl of a
gradient are both zero.

17.12. Using indices, prove the following “derivative” identities:

V- (fA)=(Vf)-A+ V- A,
Vx(fA)=(Vf)x A+ fV x A,
V(fg)=9Vf+fVy.

17.13. Using indices, prove the Green’s identity:
V- (gVf~[fVg) =gV’f— V.
17.14. Prove the following vector identities using index notation for vectors:

V. (AxB)=B-VxA-A-VxB,
Vx(VxA)=V(V-A) - V?A.

17.15. Show that the difference between any two affine connections is a tensor
of type (1,2).
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17.16. Verify that Equation (17.46) combines the second and third Maxwell’s
equations.

17.17. Verify that F,g = d3An — 0. Ap satisfies Equation (17.46).

17.18. Differentiate both sides of Equation (17.45) with respect to 2 and
raise the index (8 to be able to sum over it; use the symmetry of second
derivative and the antisymmetry of Fi,g to show that the left-hand side is
zero. On the right-hand side, you should have something like 107”78, J5.
Show that 7°?9,.J = 0 expresses charge conservation or continuity equation
of Box 13.2.4.

17.19. With ¢ = 1 and po = 1/€p, show that n**9, A, = 0 is the Lorentz
gauge condition [Equation (15.32)]

0P
A=
8t+v 0,

and that 7n*70,0,As = poJs combines the two wave equations [Equations
(15.33) and (15.34)]

D?A

o2 - V2A = pod,
FoRti

02 V20 = pigp

17.20. Show that DA; of Box 17.4.1 is a covariant vector.

17.21. Show that oA
J .
L
P +1y,A
is a tensor of type (1,1).

17.22. Show that F{k given in Equation (17.59) is an affine connection, i.e.,
that it transforms according to Equation (17.52).

17.23. Show that the metric connection satisfies Equation (17.61).

17.24. (a) Find all the components of the affine metric connection on the
surface of the sphere of Example 17.4.2.

(b) Derive Equation (17.62) from Equation (17.58).

(¢) Show that (17.63) satisfies the second equation of (17.62).

(d) Show that cot @ = Acosp + Bsing is a solution of (17.65).

17.25. Show that the Riemann curvature tensor of Equation (17.68) is a
tensor of type (1,3).

17.26. Example 17.5.1 showed that the Riemannian curvature tensor of the
Euclidean space, when expressed in Cartesian coordinates is zero. Since Rie-
mannian curvature tensor is a tensor it should be zero when expressed in
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any coordinate system. Starting with the spherical components of the Eu-
clidean metric obtained in Example 17.3.1, find the components of the metric
connection in spherical coordinates. From these calculate the components of
Riemannian curvature tensor and show that they all vanish.

17.27. Derive the expression for the Ricci curvature tensor of Example 17.5.2
and show that

Ro, =0= Ry, Rgp=1, R, =sin?0.
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Chapter 18

Complex Arithmetic

Complex numbers were developed because there was a need to expand the
notion of numbers to include solutions of algebraic equations whose proto-
type is 22 + 1 = 0. Such developments are not atypical in the history of
mathematics. The invention of irrational numbers occurred because of a need
for a number that could solve an equation of the form x? — 2 = 0. Similarly,
rational numbers were the offspring of the operations of multiplication and
division and the quest for a number that gives, for example, 4 when multiplied
by 3, or, equivalently, a number that solves the equation 3x — 4 = 0.

There is a crucial difference between complex numbers and all the num-
bers mentioned above: All rational, irrational, and, in general, real numbers
correspond to measurable physical quantities. However, there is no single
measurable physical quantity that can be described by a complex number.

A natural question then is this: What need is there for complex numbers
if no physical quantity can be measured in terms of them? The answer is that
although no single physical quantity can be expressed in terms of complex
numbers, a pair of physical quantities can be neatly described by a single
complex number. For example, a wave with a given amplitude and phase can
be concisely described by a complex number. Another, more fundamental,
reason is that equations that describe the behavior of subatomic particles are
inherently complex.

18.1 Cartesian Form of Complex Numbers

We demand a number system broad enough to include solutions to the
equation
?+1=0 or z? = —1.

Clearly the solution(s) cannot be real because a real number raised to the
second power gives a positive real number, and we want x2 to be negative.
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So we broaden the concept of numbers by considering complex numbers.
Such numbers are of the form

z=x+4+1dy with i=+v-1 and = —1. (18.1)

It turns out that we don’t need to introduce any other numbers to solve all
algebraic equations—equations of the form p(x) = 0 with p(z) a polynomial.
In fact, the fundamental theorem of algebra, to which we shall return,
states that all roots of any algebraic equation

AnxZ™ + ap1— 2" P4 Fax+ag=0

with arbitrary real or complex coefficients ag, a1, ..., a,, are in the complex
number system. In this sense, then, the complex number system is the most
complete system.

A complex number can be conveniently represented as a point (or equiv-
alently, as a vector) in the zy-plane, called the complex plane, as shown
in Figure 18.1. In Equation (18.1), x is called the real part of z, written
Re(z), and y is called the imaginary part of z, written Im(z). Similarly, the
horizontal axis in Figure 18.1 is named the real axis, and the vertical axis is
named the imaginary axis. The set of all complex numbers—or the set of
points in the complex plane—is denoted by C.

We can define various operations on C that are extensions of similar oper-
ations on the real number system, R. The only proviso is that i2 = —1, and
that the final form of an equation must be written as Equation (18.1)—with
real and imaginary parts. For instance, the sum of two complex numbers,
z1 = x1 + 1y and zo = 19 + 1Yo, is

21+ 2z = (z1 + x2) +i(y1 + y2)-

This sum can be represented in the complex plane as the vector sum of z; and
Z2, as shown in Figure 18.2. The product of z; and z3 can also be obtained:

2122 = (21 +iy1) (w2 + iy2) = X122 + 21 (4y2) + iy122 + iy1(iy2)
= 2122 + i(@T1Y2 + Y1%2) — Y1y2 = T1T2 — Y1y2 + i(z1Y2 + Y122).

Thus,

Re(leg) = T1T2 — Y1Y2,

Im(leg) = T1Y2 + T2Y1. (182)

| Re

Figure 18.1: Complex numbers as points or vectors in a plane.
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Im Ut

// /

Zl/ ;

2

Re

Figure 18.2: Addition of complex numbers as addition of vectors.

To obtain this equation, we have implicitly used the fact that two complex
numbers are equal if and only if their real parts are equal and their imaginary
parts are equal.

The factor i in z allows new operations for complex numbers that do not
exist for real numbers. One such operation is complex conjugation. The
complexr conjugate, z* or z, of z is defined as

*

ZF=z=(x+iy) =z—1y (18.3)
which is obtained from z by replacing ¢ with —i. We note immediately that
22% = (x +iy)(z —iy) = 2> + > = 2%z

which is a positive real number. The positive square root of zz* is called the
absolute value of z and denoted by |z|. It is simply the length of the vector
representing z in the xy-plane. Thus, we have

2] = Vzzr = Varz = a2 + 2 = \/(Re(z))2 + (Im(2))>. (18.4)

We can also define the division of two complex numbers using complex
conjugation.

Box 18.1.1. To find the real and imaginary parts of a quotient, multiply
the numerator and denominator by the complex conjugate of the demomi-
nator.

So, for the ratio of z1/z2, we get

21 zzy (e tiy) (e —iye) _ zis +yiye +i(yiae — 21y)
zo 227} | 22)2 |z2|2
_ T1T2 +y1y2 | Y1T2 — T1Y2

|22|2 |22|2

) R I G B LRI
x3 + 3 22 5+ Y3

complex
conjugation

absolute value
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In particular,
1 z* T —1y 1 .
= = and .= —1.
z |22 x?+y? i

Some useful properties of absolute values are as follows:

z z
a2l = faal 22l |2 [= P2
|22
[ 1211 = J2af | < Iz + 22] < Jza] + J2a). (18.6)

This last inequality is called the triangle inequality and it comes directly
from the vector property of complex numbers. The right half of it can be
generalized to more than two complex numbers:

n
>
k=1

Example 18.1.1. Here we present some sample manipulations with complex num-
bers:

<>zl (18.7)
k=1

14+ =1+ (@) +2i=1-1+2i=2i,

L1 _14i-(-e) 2 %

1—i 1+4i (=90 +d) |1+4d2 2 7
1 1 1 1
14474 = = = = —
(1+3) (1+40)2(1+4)2  (20)(20) -4 4
240 _2+9@+i) _ 5445 1
3—i [3—d2 324+ (=12 2 2

2 -1  |—1+i2]  (-1)2+22

1 —2

=244 (=22 412

The equation |z — a| = b, where a is a fixed complex number and b is real and
positive, describes a circle of radius b with center at a = a, + ia,. This is easily
seen because

b* = |z —af® = |(z + iy) — (az + iay)[®
= (2 —as) +ily —ay)]* = (& = az)” + (y —ay)”.

We note that |z — a| is the distance between the two complex numbers z and a.
Therefore, |z — a] = b—with a a constant and z a variable—is the collection of all
points z that are at a distance b from a. [ ]

Complex conjugation satisfies some nice properties that we list below:

2\ &

(21 4+ 22)" = 27 + 23, (z122)" = 2725, ( 1) = i,
) 29

Re(z) = j(z+2%), Im(z) = _ (2 —2%), (18.8)
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The complex conjugate of a function of z is easily obtained by substituting
z* for z in that function.! This can be summarized as

(f(2))" = f(z") (18.9)
which is equivalent to replacing every ¢ with —i in the expression for f(z).

Historical Notes

In the first half of the sixteenth century there was hardly any change from the
attitude or spirit of Arabs, whose work had put practical arithmetical calculations
in the forefront of mathematics, but merely an increase in the kind of activity
Furopeans had learned from Arabs. Moreover, the technological advances spurred by
the Renaissance demanded further refinement in magnitudes such as trigonometric
tables and astronomical observations.

By 1500 or so, zero was accepted as a number and irrational numbers were used
more freely in calculations. However, the problem of whether irrationals were really
numbers still troubled people. Michael Stifel (14867—1567), the German mathemati-
cian, argued that

Since, in proving geometrical figures, when rational numbers fail us irrational
numbers . . . prove exactly those things which rational numbers could not prove
... we are compelled to assert that they truly are numbers .... On the other
hand, ...that cannot be called a true number which is of such a nature that

it lacks precision [decimal representation].

He then argues that only whole numbers or fractions can be called true numbers, and
since irrationals are neither, they are not real numbers. Even a century later, Pascal,
Barrow, and Newton thought of irrational numbers as being understood in terms of
geometric magnitude; they were mere symbols that had no existence independent
of continuous geometrical magnitude.

Negative numbers were treated with equal suspicion by the sixteenth- and
seventeenth-century mathematicians. They were considered “absurd.” Jerome
Cardan (1501-1576), the great Italian mathematician of the Renaissance, was will-
ing to accept the negative numbers as roots of equations, but considered them as
“fictitious,” while he called the positive roots real. Francois Vieta (1540-1603), a
lawyer by profession but recognized far more as the foremost mathematician of the
sixteenth century, discarded negative numbers entirely. Descartes accepted them in
part, but called negative roots of equations false, on the grounds that they repre-
sented numbers less than nothing.

An interesting argument against negative numbers was given by Antoine Arnauld
(1612-1694), a theologian and mathematician who was a close friend of Pascal.
Arnauld questioned the equality —1: 1 =1: (—1) because, he said, —1 is less than
+1; hence, How could a smaller number be to a greater as a greater is to a smaller?

Without having fully overcome their difficulties with irrational and negative
numbers, the Europeans were hit by another problem: the complex numbers! They
obtained these new numbers by extending the arithmetic operation of square root

1This statement is not strictly true for all functions. However, only a mild restriction
is to be imposed on them for the statement to be true. We shall not go into details of
such restrictions because they require certain complex analytic tools which go beyond the
scope of this book. See Hassani, S. Mathematical Physics: A Modern Introduction to Its
Foundations, Springer-Verlag, 1999, Chapter 11 for details.
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to whatever numbers appeared in solving quadratic equations. Thus Cardan sets
up and solves the problem of dividing 10 into two parts whose product is 40. The
equation is (10— x) = 40, for which he obtains the roots 5++/—15 and then he says
“Putting aside the mental torture involved,” multiply these two roots and note that
the product is 25 — (—15) or 40. He then states, “So progresses arithmetic subtlety
the end of which, as is said, is as refined as it is useless.”

Descartes also rejected complex roots and coined them “imaginary.” Even New-
ton did not regard complex roots as significant, most likely because in his day they
lacked physical meaning. The confusion surrounding complex numbers is illustrated
by the oft-quoted statement by Leibniz, “The Divine Spirit found a sublime outlet
in that wonder of analysis, that portent of the ideal world, that amphibian between
being and not being, which we call the imaginary root of negative unity.”

18.2 Polar Form of Complex Numbers

The introduction of polar coordinates in the complex plane makes available
a powerful tool with which to facilitate complex manipulations. Figure 18.3
shows a complex number and its polar coordinates. In terms of these polar
coordinates, z can be written as

z=x+1y=rcosf+irsinf = r(cosd +isind). (18.10)

Assuming that series of complex numbers can be manipulated as those of real
numbers,? we obtain the useful relation between imaginary exponentials and
trigonometric functions.

In Chapter 10 we presented the Maclaurin series for the exponential and
trigonometric functions. Let us assume that those functions are valid for
complex numbers as well. Then, we have

Z P VR P :,;)(2k)!+,§(2k+1)!

n=0 n=even n=odd
& 92k k 92k+1
:kZ:O (2k)! —|—zz (2 +1)! =cosf + isinf (18.11)
Im

rsin 6

Re

Figure 18.3: Complex numbers in polar coordinates.

2This assumption turns out to be correct. In particular, the power series expansion used
in the following example plays a central role in complex analysis.
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because i?F = (i?)¥ = (—1)*. This is probably the most important relation in
complex number theory.

Box 18.2.1. The trigonometric and imaginary exponential functions are
related by the Euler equation: ¢ = cos® + isiné.

The use of Equation (18.11) in (18.10) leads to another way of representing
complex numbers:
z=re", r= /a2 +y2,

6 = tan~! (Z) . (18.12)

Note that

Box 18.2.2. The angle 0 is not uniquely determined: Any multiple of 2w
can be added to it without affecting z.

We can use Equation (18.12) together with x = rcos6, y = rsinf to con-
vert from Cartesian coordinates to polar coordinates, and vice versa. The
coordinate 6 is called the argument of z and written 6 = arg(z).

Example 18.2.1. Let us look at some numerical examples of polar-Cartesian
conversion. In many cases, a diagram can be very helpful. For instance, take ¢
whose real part is obviously zero and whose imaginary part is 1. If we were to use
the formula, we would have tan f = 1/0 which is not defined. However, Figure 18.4
shows that z = i lies on the positive imaginary axis, and, thus, § = 7/2. Since we
can always add a multiple of 27 to the angle, we have

i /2412
ewr/ +1 n7r7

i= n=0,+1, £2,....

Similarly, the same figure makes it clear that

= 67i7r/2+i2n7r — 62'37r/2+i2'n7\'7 n= 07 :t]., :l:27 o
Im Im
i
T Re
\9:1'(/2 Re —
' e=-mn2
—i

Figure 18.4: Cartesian and polar coordinates for ¢ and —i.
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Im 2443 1+i2Im

Im Im| 1+ 1

0= T 0
~1 T Re 0 =m/4 | Re 8 | Re | \ Re
r=1 6=—n/4| ) ) )

— 1-i

Figure 18.5: Cartesian and polar coordinates for some other complex numbers.

Referring to Figure 18.5, the reader may verify the following polar representa-
tions of complex numbers:

_1 = gimtiznT
144 = \/2e'm/4tiznT
1= i = V2T Ty T/,
2443 =1/13 eican*1(3/z)+¢2m — V13 6i04983+i2n7r7
14+i2= \/5 eitan_l(72)+i2n7r _ \/5 i2:03+i2nm

In all cases, n is an integer and angles are in radians. [ ]

The complex conjugate of z in polar coordinates is

2* =z —iy=rcosf —irsin® = rcos(—0) + irsin(—0) = re”?.

This equation confirms the earlier statement that complex conjugation is
equivalent to replacing ¢ with —q.
Generally speaking, polar coordinates are useful for operations of multipli-

cation, division, and exponentiation, and Cartesian coordinates for addition
and subtraction.

Example 18.2.2. We can use the polar representation of complex numbers to
find some trigonometric identities. In all of the following, we set r = 1:

1=¢""" = (cosf +isin6)(cos O — isin ) = cos” 6 + sin” 6.
Now consider the identity
eH01+02) _ cos(01 + 02) +isin(6y + 02)
which can also be written as
e 1402) — 1010102 — (o5 6; + isin 6y )(cos Oz + i sin 62)

= cos 01 cos 02 — sin 01 sin O + i(sin 61 cos Oz + sin O3 cos 61).
Equating the real and imaginary parts of the last two equations, we obtain

cos(01 + 02) = cos 01 cos U2 — sin 01 sin 02,

sin(61 + 62) = sin 61 cos 02 + sin 62 cos 1.
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Similarly, equating the real and imaginary parts of
360 .
e’ = cos 30 + isin 30
and
e = (ele) = (cos 0 4 isin0)® = cos® 6 + 3i cos® @sin O — 3sin” O cos § — isin® O
gives the following trigonometric identity:

cos 30 = 4cos® 6 — 3cos,

sin360 = 3sin 6 — 4sin® 6. ]
From
e™? = cosnb + isinnf and e = (e!)" = (cosf +isinh)"
we obtain the so-called de Moivre theorem: de Moivre theorem
(cos@ +isin®)™ = cosnb + isinnb. (18.13)
Equation (18.11) and its complex conjugate lead to the following useful
results: two important
_ ] relations
cosf = % (ew + e_ze) ,
1. .
sinf = (e —e ™). (18.14)
i

As mentioned earlier, the exponential nature of polar coordinates makes
them especially useful in multiplication, division, and exponentiation. For
instance,

i0
Z1 7"167’ 1 T1 ei(91702)
2o ez gy

z1%29 = (Tleiel) (T26i92) = ryroet(f1762) (18.15)

Vz = Vreif = (rei0)1/2 =rl/? (ew)l/2 = /ret?/?,

3

and so forth.

All of these relations have interesting geometric interpretations. For ex-
ample, the second equation says that when you multiply a complex number z;
by another complex number z5, you dilate the magnitude of z; by a factor ro
and increase its angle by 6. That is, multiplication involves both a dilation
and a rotation. In particular, if we multiply a complex number by e** where
t is time, we get a vector of constant length in the zy-plane that is rotating
with angular velocity w.

Example 18.2.3. A plane wave is represented by a periodic function such as

Acos(kz — wt) or Bsin(kx — wt).



486

complex amplitude

roots of complex
numbers

Complex Arithmetic

On the other hand, sine and cosine are related by

sin(kx — wt) = — cos (/cx —wt+ 721') .

Therefore, one can concentrate solely on the cosine function with a phase an-
gle added to its argument. Thus a typical periodic plane wave is represented as
Acos (kx — wt + «). To make connection with the material of this section, we note
that

Acos (kx —wt+a) = A Re (ei(’””*‘*’“ro‘)) — Re (Aei(krfwﬂra))
— Re <A€ia€i(kI7Wt)) — Re (Zei(kI7Wt)) 7

where Z is a complex number—called complex amplitude—of magnitude A and
argument a. It is therefore convenient to represent plane waves by the complex
function Ze!*®*~“Y which includes the phase of the wave as the argument of Z. B

Another interesting application of these ideas is finding roots of complex
numbers. Suppose we are interested in all the nth roots of Z; i.e., all 2’s
satisfying 2" = Z. To find the roots of a complex number Z, write it in polar
form in the most general way:

Z = Re'®ti2mk, k=0, +1, +2,...,

Thus, -
2" = ReOT2mk with k=0, +1, £2,....

Taking the nth root of both sides, we obtain
z = ZV/" = RY/nei®/nti2rk/n k=0, +1, +2,...

and

Box 18.2.3. The distinct nth roots {z} of Z = Re'® are
2 = RY/nei®/ntizmk/n, k=0,1,2,...,n—1. (18.16)

We see that the number of nth roots of a complexr number is exactly n.

It is clear that zj of Equation (18.16) repeats itself for k > n.

Example 18.2.4. Let us find the three cube roots of unity. With n = 3 and

Z = €% we have

ze=e2™3 k=0,1,2,

or

0
zo=e =1,

z1:e’2/3zcos ?:r—{—zsm ;:—24—1\2,
2’2:64/3:COS ;+zsm ;:—2—1\2.
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It is instructive to show directly that

3 3
1 V3 1 V3
<—2+22> =1 and (—2—12) =1.

Here are some more examples of finding roots:

1/2

\/1 b= <\/2 6i7r/4+i2n7r)
20 = 2'/4eim/8 — 1/4 {cos (g) +isin (g)} — 1.1 + 0.456,

2y = oV Ain/¥im __ol/4im/8 1 1 _40.456.

_ 21/4€i7r/8+in7r n — O7 17

The equation z® = ¢ has the roots

i — <ei‘rr/2+i2n7r>l/3 _ gim/6+i2nm/3 n—0.1.9
or
i 3 1
zo:e”/‘s:cos(g)—&—isin(g):\é —1—1'2,
i ; 5 5 3 1
2 :ezﬂ'/6+z27r/3 :COS< Gﬂ-) +151n< Gﬂ-) = —\é +127

L 3 3
zzze”/(’“‘”/s:cos( ;) —|—isin( 271-) = —i.

The reader is urged to show that z5 =i for k =0, 1, 2.
Note how careful we were to include the factor of e when taking roots of
complex numbers. [

2nm

All nth roots of Z = Re'® are equally spaced on a circle of radius R'/™ in
the complex plane. Figure 18.6 shows two circles on which the sixth and the
eighth roots of unity are located.

Im

Re

() (b)

Figure 18.6: The (a) sixth and (b) eighth roots of unity.

Example 18.2.5. In certain applications of electromagnetic wave propagation (as
in conductors) it becomes necessary to find an analytic expression for the Cartesian
representation of the square root of a complex number. In this example, we derive
such an expression.
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We are trying to calculate the Cartesian representation of the square root of
z = x + iy. First we express z in polar form; next we take its square root, and
finally reexpress the result in Cartesian form. Thus,

i(0+2nm)

z=re where r:\/x2+y27 tan@zy, n=0,+1,£2,....
x

Taking the square root of both sides yields
\/Z — Zl/ _ 1/2 7,(9+2n7r)/2 (x +y )1/46i9/2+in7r
; 0 [%
= +(a? 4+ )V = £ (2% + y2)1/4 (cos 9 +isin 2)

because €™ = 1 if n is even and "™ = —1 if n is odd. All that is left now is to
express the trigonometric functions in terms of z and y:

0 1 1/2 1 ( 1 )1/2
cos = 1+ cos@ = 1+
2 Bl ) V2 V1 + tan?6

) . L . 1/2: . L » 1/2.
val Vi) T Ve U ety

1/2
snl = 1 (1=
2 V2 Va2 +y? .

Collecting all these formulas together and simplifying, we obtain

/s {(\/m—i—y +|x|) +i(\/x2+y2_|x|)1/2:|. (18.17)

The complexity of the expression for the square root rests on our insistence on
an analytic form. The process of converting the Cartesian form of a complex number
to polar, taking the square root, and converting the result back to Cartesian form
is a far easier process than the one leading to Equation (18.17). u

Similarly,

\/w+iy—

18.3 Fourier Series Revisited

The connection between the trigonometric and exponential functions can be
utilized to write the Fourier series expansion of periodic functions more suc-
cinctly. If we substitute

InTr eQinrrz/L + e—Qinrrz/L
cos T = 5 ,
_ onmx eQinrrz/L _ e—Qinrrz/L
Sin I = % y

in Equation (10.38) and collect the similar exponential terms, we obtain

f( =aqag + 5 Z |: _ Zb 21n7‘rr/L + (an + an) e—Qinrrz/L
n=1

= iby) €T/ L 4 Z (an + iby) e~ 2™ /L (18.18)
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In the second sum, let n = —m to obtain

2nd sum = ; Z (CL,m +Zb,m) e2im7rw/L _ ; Z (CL,n +Zb,n) 621'1171'1/[/7
m=—1 n=-—1
(18.19)
where in the last step, we switched the dummy index back to n. If we now
introduce new coefficients A,, defined as

3 (an —iby) if 1<n<oo,
A, = ; (a—p +ib_p) If —oc0<n<-—1,
ag if n=0,

and use Equation (18.19) in (18.18), we obtain

+oo
fl@)y= A/l where L=b-—a, (18.20)

n=—oo

which is the equation we are after. To find A, directly from this equation,
multiply both sides by e~2**7*/L integrate from a to b, and use the readily
obtainable relation

b .
/ p2iln—k)ma/L _ {2 li n# Z = Lk, (18.21)
a 1 n =

where 6, is the Kronecker delta. It follows that

1 o . I ;
Ak:L/ f(x)e—szﬂ-z/de or A, = L/ f(x)e—Qmﬂ-z/de. (18.22)

It is customary to redefine the coefficients in the summation of Equation
(18.20) in such a way that the summation giving f(z) and the integral giving
A, are more symmetric, i.e., have the same constant in front of them. To this
end, define f, = v/LA,. Then (18.20) and (18.22) become

1 +oo ‘ 1 b ‘
f(a:):\/L Z foe?imme/ L fn:\/L/ f(x)e=2mme/Lgy  (18.23)

n=—oo

Note that the coefficients f,, are complex; however, when f(z) is a real
function, the exponentials and their complex coefficients add up in such a
way that the final result can be expressed as an infinite sum of trigonometric
functions with real coefficients. In fact, we can show this generally using
Equations (18.23). First, we note that, for real f(z),

b b
f; — \/]'L / f(x)e+2in7rw/de _ \/]'L / f($)672i(7n)ﬂw/l/d$ _ ffn'
’ ’ (18.24)
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Next, we split the sum in (18.23) into positive integers, negative integers, and
ZEro:

flx) = \/L Z foe®nme/ L g jOL \/sz" e2inme/L, (18.25)

n=—oo

Changing the dummy index n to —m, the first sum can be rewritten as

1 E :
1st sum = Z f_me—leTrz/L Z f_me—szTrz/L

—m=—0o0

oo

\/L Z f ef2zm7rw/L \/1L Zf* 7211171'1/[/

where we used Equation (18.24) and changed m back to n at the end. Sub-
stituting the last equation in (18.25) yields

o0

f 1 *—'Lnﬂ'r mMmmTT
F@) = Gyt gy 2 (el futneett)

jL VI & Z Re (f ne 2mm/L)

showing that f(x) is indeed real. Equation (18.23) implies that fj is also real
when f(z) is. It is not hard to show that the expression in the parentheses of
the first line is the sum of a sine and a cosine with real coefficients.

Example 18.3.1. Let us redo the square potential—whose Fourier series was

calculated in Example 10.6.1—using exponentials. From Equation (18.23), for n # 0,
we obtain

1 2T sinmt /(2T 1 T —
fn:\/QT/ V(t)e 2t/ )dt:\/QT/ Voe T gy
0 0
T
T Vo n
. —\/Qim[l—(—l) ]

because €™ = (¢'™)" = (—1)". Similarly, fo = Vo+/T/2. We now substitute these
in the Fourier series expansion

_ Vo T e—inwt/T
V2T —inm

Vt 2inwt/2T
“ \/2T Z Jne

n=-—oo

o Vo Vo n 21n7rt/2T - ny_2inwt/2T
Vi) = 2 * Z 2in71'[1_(_ +Z 2m71' ~1)e '



18.4 A Representation of Delta Function

If we change the dummy index of the first sum from n to —m, and back to n again,
and put the two sums together, we obtain

t _ n <in‘rrt/T_ —in‘rrt/T)
+Z 2m7r —Ui (e c
_ Vo 2% i (ZTLﬂ't/T e*i'rwrt/T)
~ -

=2isin(nwt/T)

N i 2k:+1 '

which is the expansion we obtained in Example 10.6.1 using trigonometric
functions. |

18.4 A Representation of Delta Function

Consider the function Dp(z — x) defined as

1T
Dr(x —x0) = %/ el@=zo)t . (18.26)
-T

The integral is easily evaluated, with the result

1 ei(mfmo)t T

1sinT(x — xo)

Dr(@ —m0) = T X — X
-T

27 i(x — xo)

The graph of Dy(x) as a function of x for various values of T is shown in
Figure 18.7. Note that the width of the curve decreases as T" increases. The
area under the curve can be calculated:

%0 1 [ sinT(z — 1 [ si
/ Dy(x — xp) dax = / sin Tz = o) dr = / i dy =
oo T

oo T — Xo T ) Y
~ ~ -
=7

Figure 18.7 shows that Dr(x — o) becomes more and more like the Dirac
delta function as T gets larger and larger. In fact, we have

1 3 T —
o) = i Drle—z0)= i T

(18.27)

To see this, we note that for any finite 7' we can write

TsinT(z — xo)

Dr(z = o) = 7 T(x—x0)

Furthermore, for values of = that are very close to x,

sinT'(xz — )

T(x—x9) —0 and (o — x0)
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Figure 18.7: The function sin Txz/x also approaches the Dirac delta function
as the width of the curve approaches zero. The value of T is 0.5 for the dashed
curve, 2 for the heavy curve, and 15 for the light curve.

Thus, for such values of x and z(, we have Dr(x — zg) ~ (T'/n), which is
large when T is large. This is as expected of a delta function: 6(0) = co. On
the other hand, the width of Dy (z — x¢) around z¢ is given, roughly, by the
distance between the points at which Dp(z — ) drops to zero: T'(x — xg) =
47, or x — x¢9 = +x/T. This width is roughly Az = 27/T, which goes to
zero as T' grows. Again, this is as expected of the delta function. Therefore,
from (18.26) and (18.27), we have the following important representation of
the Dirac delta function:

T[>,
§(x — xo) = 27r/ ell@=wolt gy, (18.28)

Equation (18.28) can be generalized to higher dimensions, because (at least
in Cartesian coordinates) the multi-dimensional Dirac delta function is just
the product of the one-dimenstional delta functions. Using the more common
k instead of ¢ as the variable of integration, the two-dimensional Dirac delta
function can be represented as

1 .
S(r — (r=xo) dk, dk, = e lemro) g2,
(r ro / / (27'()2/9 € )

b (18.29)
where Q. means over all k ky-plane and in the last integral we substituted
d?k for dk,dk,.

Similarly, the three dimensional Dirac delta function has the following
representation:

1 .
5(r—rp) = (%)3/ etk (r=ro) 31, (18.30)

where d®k means a triple integral over k and )., means over all k-space.



18.5 Problems
18.5 Problems

18.1. Find the real and imaginary parts of the following complex numbers:

(a) (2= 0)(3 +2i). () (2= 30)(1+4). () (aib)(20 -+ 2i)
F T

(2) ;J_rgz (h) 1_23i. (i) ;z

. 5 142 2—i

D ane-ne-i ®s_ut 5

18.2. Convert the following complex numbers to polar form and find all cube
roots of each:

(a) 2 —i. (b)2-3i.  ()3-2. (d)i.
©-i O, @, m o
O1+iv3 () ;fzz (k) 27i. (1) — 64.

(m) 2 — 5i. (n) 1+. (o) 1 —1i. (p) 5+ 2i.

18.3. Using polar coordinates, show that:
(a) (=1 40)" = —8(1 +1). (b) (1 +iV3)710 =2711(—1 4+ iV3).

18.4. Find the real and imaginary parts of the following:

(a) (1+iv3)%. (b) (2+0)°%.  (c) Vi. (d) f/l +iv/3.
.\ 81
() (1+iva) (1) G;z) D@ Vi WVt

1443 o
(i) <¢3+i> o G) (102 (k) V1 —i. 1) (1 —i)*

18.5. Find the Cartesian form of all complex numbers z which satisfy (a)
22+ 1=0, and (b) 2* — 16i = 0.

3+ 41 and a—+1b
3 —4i a—1ib’

18.7. Derive the following trigonometric identities:

18.6. Find the absolute value of

cos 30 = 4cos® 0 — 3 cosb,

sin30 = 3sin 6 — 4sin> 6.

18.8. Show that Equation (18.11) leads to Equation (18.14).
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18.9. Show that z is real if and only if z = z*.
18.10. Show that |Re(z)| + |Im(z)| > |z| > (| Re(2)| + | Im(2)])/V/2.

18.11. Let 21 = 21 + iy1 and 29 = x5 + iys represent two planar vectors z;
and zs. Show that
2125 =21 - 2o — 1€, - Z1 X Zo.

18.12. Sketch the set of points determined by each of the following conditions:
(a) |z —2+1] =2. (b) |24 2i| < 4. (¢) |z +i] = |z —1il.
(d) Im(z*41) = 2. (e) 22+ 3z" =1. (f) 22+ (z*)* = 2.
Hint: Find a relation between x and y.
18.13. Show that the equation of a circle of radius r centered at zy can be
written as |2]? — 2Re(z2) = 2 — |20/
18.14. Given that 2129 # 0, show that
(a) Re(z123) = |z1]]22l, and |21 + 22| = |21] + |22, if and only if arg(z1) —
arg(ze) = 2nm, for n =0,4+1,£2,....
(b) What does the second equality mean geometrically?
18.15. Assume that z # 1 and 2" = 1. Show that 1 +z+22+---4+2""1 = 0.

18.16. Substitute x + iy for z in 22 + 2z + 1 = 0 and solve the resulting
equations for z and y. Compare these with the roots obtained by solving the
equation in z directly.

18.17. Find the roots of z* + 4 = 0 and use them to factor z* + 4 into a
product of quadratic polynomials with real coefficients. Hint: First factor
2% + 4 into linear terms.

18.18. Evaluate the following roots and plot them on the complex plane:
(a) V1 +i. (b) vV—=1.  (c) V1. (d) v/—32.
(e) V3+4i.  (f) V-1 (g) V—=16i.  (h) V/—1.

18.19. Use binomial expansion to show directly that

3 3
1 _\/3 1 .\/3
<—2+22> =1 and <—2—z2> = 1.

18.20. Use [ % = €% /a to find the indefinite integral of sin® z. Verify that
the derivative of your answer is indeed sin® z.

18.21. Use [ e = % /q and €?* = cos(bz)+isin(bz) to verify the following
relations by integrating a certain complex exponential:

ax

/e‘” cos(bx) dx = a26+ 52 [a cos(bx) 4 bsin(bx)],

ax

ax - € .
/e sin(bz) dez = 242 [asin(bx) — bcos(bx)],

where a and b are assumed to be real constants.



18.5 Problems

18.22. (a) Using ZkN:1 rk = (rN+1—7)/(r—1), evaluate the sum ZkN:1 ek,
In particular, show that

N i
3 eia=ph) _ gila=p)© N -1
k=1 - eT