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Tension Test
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Volume Change
• A unit cube of material is subject to the principal stress !!.

• Volume of the cube: 

• Change in volume: 

• For # = 1/3, and !! = ), Δ+ = )/3,.

• Thus for typical elastic stress conditions, changes in volume are 
certainly very small—less than 0.001

• Measurements show that in the tensile test, the more 
plastic does the specimen become the more nearly does #
approach 0.5.
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Volume Change
• So, for an incompressible material,

• For a solid cylinder:

• Annulus cylinder:
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Upper Yield Point: Luder’s Bands
• If annealed mild steel strip is strained just to the upper 

yield point, then across particular sections, yielding will 
occur and Luder’s bands appear. 

• These are visible as grey-black bands inclined at a 
particular angle to the direction of the tensile stress. 

• The material inside a Luder’s band is plastic and that on 
either side of it, elastic. 

• The plastic flow is constrained by the two elastic regions 
and does not allow plastic strain in the direction of the 
length of the band. 

• Thus the direction along which bands lie is that of zero 
extension in the plane of the strip.
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Luder’s Bands
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Luder’s Bands
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Luder’s Bands
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Luder’s Bands
• If the principal strain in the direction of the tensile stress is 
-, that −-/2 is the strain in each of the transverse 
directions.

• Thus, if an element of the strip, OP, is of unit length, then 
in straining P moves to P', and the condition for zero 
extension is OP' = OP, so that we have,

• Terms in !! are neglected. 

• The Luder bands thus form at , ~ ± 55° to the specimen 
axis.
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Luder’s Bands
• Material inside the bands undergoes a finite amount of 

strain of about 0.01 whilst neighboring material remains 
elastic.

• The mixture of elastic and plastic zones alters with 
increase in extension until eventually the whole specimen 
becomes plastic.

• As more and more Luder bands form, each to have a 
strain of about 0.01, the total measured extension of the 
strip increases.

• On either side of an individual Luder’s band is a very thin 
wave-front of thickness 4 which advances at an extremely 
low speed 5, and as material is encompassed by it, an 
increment of strain Δ- is undergone.
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Luder’s Bands
• Effectively there is a strain discontinuity at the wave-front 

or at the head of this plastic wave.

• The strain rate -̇ is given by

• If 5 = 178/4, Δ- = 0.01 and 4 = 0.01 78 (i.e. a magnitude 
typically a grain size in diameter) then the strain rate -̇ = 1
/4 which is relatively high for a standard tensile test.

• The difference in magnitude between the upper and lower 
yield point stress is sensitive to the rate of loading and 
depends on moving dislocations from ‘pinning’ nitrogen 
atoms.

14

Temperature Effect
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Temperature Effect
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Strain Rate Effect
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Cold/hot Working
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Recrystallisation
• Above a somewhat indefinite temperature called the 

recrystallisation temperature :", a metal may be worked 
and after a certain small strain, cease to harden with 
increasing strain.

• A balance would have been established between the 
tendency to strain-harden and the tendency to soften due 
to thermal activation.

• These two competing tendencies are first seriously concurrent 
over a narrow range of temperature near ""; below this range the 
material perceptibly hardens during straining, but above it the 
yield stress is constant, though highly strain-rate dependent.

• The softening processes are recovery, recrystallisation 
and grain growth, and they are all thermally activated.
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Recrystallisation
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Recrystallisation
• The homologous temperature, :#:

• The recrystallisation temperature is usually found to be 
between 0.4 and 0.55 but is dependent on the strain and 
strain-rate.

• Hardness testing is fundamentally related to the stress-
strain properties of a material, and thus indentation tests 
may be conducted for the purpose of illuminating material 
behavior generally.
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Recrystallisation
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Recrystallisation
• It is observed that in (a) there is a discontinuity of slope, or 

as in (b) a hiatus at about the recrystallisation temperature.

• The pivotal role thus played by the recrystallisation 
temperature is clearly evident.

• A distinction between cold and hot working can be 
usefully based on the recrystallisation temperature, :" .

• Cold working occurring if the temperature at which it 
starts is less than :".

• If the temperature of working exceeds :"; it is hot working.
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Dynamic vs. Static Flow Stress
• It is very useful to consider how the ratio of the dynamic, 
!$, to the static, !%, simple compressive flow stress of a 
metal at a specified strain varies with temperature. 

• Static flow stress is referred to the strain rate 0.001/4–a  
typical slow speed compression test.

• Dynamic flow stress is associated with an impact test, e.g. 
that due to a falling hammer, which is likely to be about 
100/4.

• Thus !$/!% refers to a strain-rate ratio of about 10&.
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Dynamic vs. Static Flow Stress
• When strains imposed are large, 

say between 0.05 and 0.5,

• (i) strain-rate effects below the 
recrystallisation temperature are not 
pronounced and approximately, 
1<##/#$<2;

• (ii) above "", ##/#$ is very sensitive 
to strain rate; when "%~0.6 or 0.7. 
For many metals the ratio is 10, 
more or less.
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Yield Stress
• From the work of Hopkinson in 1905 to that by Taylor, 

Campbell and others in the 1950’s, the conclusion which 
seems to emerge fairly clearly from quasi-static and 
impact tension tests (strain rates 10'( to 10) or 10( /sec) 
is, that the ratio of dynamic to static yield stress in mild 
steel is in excess of unity, is usually about two and 
sometimes as high as three.

• The time to yield is the shorter the higher the load; the 
maximum delay period at 25°; is of order 1 sec ; for a 
delay period of only 10'* sec the yield stress may have to 
be 2-5 times as great as its normal value.

Constitutive Material Models
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Constitutive Relations
• Ludwik (1909) proposed a semi-logarithmic dependence 

of tensile yield strength on strain-rate,

• Manjoine and Nadai (1940) found that tensile strength at 
elevated temperature varied nearly linearly with the 
logarithm of strain-rate.

• Alder and Phillips (1954) in work on copper at up to 600 
°C, on aluminum at up to 500°C and on steel at up to 930 
to 1200°C, were best able to summarize their results in the 
strain-rate range 1 to 40/sec by
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Constitutive Relations
• Macgregor and Fisher (1946) introduced the idea of a 

“velocity modified temperature”, :+, so that,

• This form gives the expected qualitative result that an increase 
in strain-rate is equivalent to a decrease in temperature.

• Inouye has used the expression,

• Malvern (1965) introduced an equation of the forms,
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Constitutive Relations
• Ripperberger (1965) has maintained and shown that his 

experimental data in plastic wave propagation work can 
be best summarized by adapting Malvern’s equation to,

• Where * is the relaxation time of the material, #&(,) the static 
stress at strain ,, and thus # − #&(,) is the ‘over stress’, or the 
‘excess stress’ to which the material is subject at the given 
strain-rate.

• For Armco iron (99.85% Fe) * ~1.2 12 and 1~1.18.
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Constitutive Relations
• Bell claims to have demonstrated the “wide and 

remarkable generality” of the following stress-strain 
function,

• where µ(0) is the zero-point isotropic linear elastic shear 
modulus; 5& is a dimensionless universal constant having the 
value 5& = 0.0280 and 6 is an integral index, 1, 2 ... etc.

• This equation is said to be applicable over the entire 
temperature scale from 4 °K to within 20° of the melting point of 
crystalline solids and is known experimentally to apply for strain 
rates !̇ = 10'(/2 to !̇ = 10)/2
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Constitutive Relations
• Bell determines the stress-strain function from,

• where 9& denotes density and :*(!) is the plastic wave speed.

• Tests carried out in which, after a given amount of strain @
at a rate of ̇@!, there is a sudden change in rate of strain to 
̇@), show the flow stress to be immediately changed also.
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Strain-rate vs. Recrystallisation
• Alder and Phillips have shown that the logarithm of 

compressive stress for up to 50% compression in the 
range 1 to 40/sec varies with logarithmic strain-rate at 
specific temperatures, for aluminum, copper and mild 
steel.

• The experimental data for compressive strains up to 0.5, 
shows the exponent A to vary with homologous 
temperature, thus, 

• For "% < 0.55, > ≅ 0.055

• For "% > 0.55, > ≅ 0.43
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Power-law Isotropic Plasticity
• This model provides the dynamic yield strength !, of the 

material (Hallquist, 2005) as:

• where ,+* is the elastic strain to yield; C is a constitutive 
coefficient; > is the hardening index, ,* is the effective 
(logarithmic) plastic strain; ε̇ is the strain rate; and D and E are 
the Cowper–Symonds strain rate parameters.

• This model can be used for thick, and soft metals and alloy steel 
targets impacted by projectiles at ordnance velocities where 
thermal softening is small and both elastic and plastic strains 
and strain rate effects are considerable.
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Johnson–Cook Material Model
• The Johnson-Cook (J-C) model was introduced in 1983 

and was primarily intended for computational work.

• The yield stress is given by the following expression:

• where

• in which F is the initial yield stress, 5 is the strain hardening 
coefficient and > is the strain hardening exponent, Gε* is the 
effective plastic strain, Ġε* is the effective plastic strain rate, ε̇& is 
the user defined reference strain rate (normally taken as 1.0 2–-) 
and D is the strain rate coefficient.
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Determination of Parameters
• The first step in this process is to determine the constants 

in the first set of brackets.

• At room temperature and for the strain rate of interest, 
̇@∗ = 1.0, the J-C material model can be written as:

• The flow stress at zero plastic strain i.e., B = !. = !, can 
now be obtained from an experimental data.

• The quantity !, − !. is plotted against plastic strain ̅@/ on 
a log-log plot, and applying least squares fit of the 
experimental data to the power law equation provides the 
other two material constants D and A.
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Determination of Parameters
• In the second step, the J-C’s strain rate parameter ; is 

determined from data of !, and Ėε/.

• The constitutive equation at a constant temperature and 
for a constant strain, can be written as:

• where #. is the stress at a given strain rate, ̇,∗ = 1.0. 

• For a constant strain, the value of #. can be calculated, and 
[#+/#.-1] can be plotted against Ġε* on a semi-log plot.

• A least squares fit to the data gives us the value of J-C’s strain 
rate parameter D.
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Determination of Parameters
• In the third step, the J-C’s thermal parameter 8 is 

determined from the stress-temperature response of the 
material. 

• At constant strain rate, the constitutive equation can be 
written as:

• where #0 is the stress at room temperature. 

• For a constant strain and constant strain rate, the value of 
!0 can be calculated.

• The quantity (#+/#0) is plotted against "∗. The thermal parameter 
1 is determined after applying least squares fit of the plotted 
data.

38

J-C Parameters
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Zerilli-Armstrong Material Model
• The Zerilli-Armstrong (Z-A) constitutive model was 

proposed in 1987 and is based on thermally activated 
dislocation mechanics.

• They proposed two microstructurally based constitutive 
equations that show a very good match with experimental 
results.

• Two models were developed, one for face-centered cubic 
(FCC) materials and another for body-centered cubic 
(BCC) materials.

• This material model treats the FCC and BCC materials 
differently, because the strain rate and temperature 
sensitivities are totally different for these two class of 
materials.
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Zerilli-Armstrong Material Model
• These constitutive material models are given by,

• BCC:

• FCC:

• where D&, D-, D!, D1 and D) are fit parameters, D2 is the strain 
hardening coefficient and > is the strain-hardening exponent.

• The primary difference between the two material models 
provided respectively for BCC and FCC metals is that the 
plastic strain is uncoupled from strain rate and 
temperature in BCC metals unlike that in FCC metals.
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Modified Zerilli-Armstrong
• The modified material model enhances the thermal 

softening behavior of materials. 

• This modified Zerilli-Amstrong material model (Hallquist, 
2005) is a strain rate and temperature sensitive model and 
is given by,

• BCC:

• FCC:
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Modified Zerilli-Armstrong
• Materials which are sensitive for changes in temperature 

and strain rate are better described by the Zerilli-
Armstrong model since the temperature and strain rate 
terms are in the exponent. 

• Due to the coupled dependency of temperature and strain 
rate, determination of the fit parameters is more difficult in 
comparison to the Johnson and Cook model.
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Combined J-C and Z-A
• This material model combines the yield and strain 

hardening portion of the J-C model with temperature and 
strain rate portion of Z-A model.

• According to Holmquist and Johnson (1991), the flow 
stress can be expressed as:

• This combination has been proven to be accurate for most 
metals and obtaining the constitutive parameters is relatively 
easy compared to Z-A material model. 

• However, its implementation in hydrocodes is limited and its 
application is not common other than few special cases.
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Steinberg-Guinan Material Model
• A constitutive model for metals applicable at high-strain 

rates (10& 4–!) was originally proposed by Steinberg and 
Guinan in 1978 and later enhanced by Steinberg, Cochran 
and Guinan in 1980.

• Experiments proved that at high pressure (> 5 HIJ), the 
rate dependency becomes insignificant.

• The Steinberg-Guinan model for the flow stress is written 
as:

• H = I/I& is the volume ratio; F is the initial yield stress; 5 and >
are work-hardening parameters; ,& is the initial equivalent plastic 
strain, normally zero; and J- and J! are model parameters.
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Steinberg-Guinan Material Model
• This material model is used for lead (Richards et al, 1999).

• It is also used for copper in the software of the CTH 
computer code developed at Sandia National Laboratory 
(Zerilli and Armstrong, 1987).
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Strain-softening
• During the working of a metal, work is done on the 

specimen which manifests itself as a temperature 
increase.

• Over a substantial range of temperature, any temperature 
increase, and hence softening tendency due to working 
seems not to be too influentive.

• However it is evident that a point will be reached when the 
contribution of the latter to the softening tendency will be 
decisive. 

• It may be expected that a region of behavior will exist in 
which the effects of the softening rate will predominate 
over the effects of the hardening rate. 
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Strain-softening
• Experiments using a cam plastometer show that after 

sufficient high constant rate of strain, at a sufficiently 
elevated temperature, the flow stress of metal may 
decrease with increasing strain.

• As the temperatures move closer to the melting 
temperature, resistance to deformation also becomes 
increasingly dependent on the inertia of the metal.

48

Strain-rate Independent Behavior
• a. Linear Elastic

• b. rigid-perfectly 
plastic

• c. rigid-linear 
hardening

• d. elastic-perfectly 
plastic

• e. elastic-linear 
hardening

• f. bi-linear locking



Perforation of a Thin Plate
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Perforation

• Each element of the lip attains its final position by the 
simple process of ‘hoop’ stretching and rotation from its 
initial position in the plate.

• All bending and shear force effects are neglected.
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Perforation
• Each element in the plate at initial radius L, is conceived 

as being subject to circumferential stress only—as in a 
tensile test—whilst being stretched to final radius M., and 
the element thickness changes from N. to ℎ and the radial 
length from PL to PQ.

• For the volume of the element to remain constant,

• Since only hoop stress prevails, then the thinning strains 
in the two transverse directions are equal, i.e. @" = @2

52

Perforation
• Thus,

• If the drift creates a lip starting from a hole in the plate of 
radius M!,

• Thus that the lip height is 
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Perforation
• An assumption on which this analysis is based is that the 

plate material is sufficiently ductile for the mode of 
deformation assumed to be possible.

• We assume that plate material initially located along the 
drift axis undergoes infinite hoop strain, or if perforation 
starts from a hole of radius M!, that the maximum hoop 
strain is ln M./M!.

• Punch-displacement/load diagrams for a perforation are 
nearly triangular in shape.

• There is considerable (experimental) evidence of bending 
even some distance away from the lip and out into the 
plate.

54

Perforation
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Empirical Equations
• Many authors have given equations relating uniaxial stress 

and strain for a strain-hardening material:

• Empirical equations can only be made to describe the real 
stress-strain curve of a material over a limited range of 
strain.

• D is typically of the order of 10& TU/VA) (103 W/8) ) and A
is about 0.25; A~0.5 for stainless steel and this is 
unusually large.
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Tensile Instability
• At the maximum load when a prismatic bar is subject to 

an axial force X, PX = 0, so that because ! = 4 !56
7!

, 

• Note that for incompressible plastic deformation, FK = F&K&, thus 
# = ⁄M F = ⁄M (F&K&/K) = ⁄M F&× ⁄K K& = #&(1 + !)

• since , = ln K/K& = ln(1 + !) → S, = S!/(1 + !),

• If the first empirical equation is given, then,

58

Tensile Instability
• Thus, at the maximum load, the strain is,

• In physical terms, as extension of a bar proceeds, its 
capacity to carry load is reduced in as far as its cross-
section reduces.

• However, the act of stretching the bar strengthens or 
hardens it, so that up the maximum load an equilibrium is 
maintained. Two competing factors are:

• Geometrical—the reducing area, a feature which depends on 
the specimen shape and how it is load,

• Metallurgical—the  multiplication of interacting dislocations.
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Tensile Instability
• At maximum load, a further slight extension causes a 

reduction in area and hence a reduced capacity to carry 
load.

• Thus, equilibrium is not maintained and depending upon 
the manner of loading or unloading the specimen, a 
concentrated or localized straining occurs, soon followed 
by fracture.

• These maximum loads are often referred to as loads 
causing tensile instability.

• The argument just presented applies qualitatively to the 
radial expansion of spheres and cylinders, and to sheet 
metal in equal biaxial tension.
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Tensile Instability
• When a thin ring is expanded with a sufficiently high radial 

speed, a neck will form somewhere around the 
circumference, so that the hoop force there begins to fall 
and in the un-necked portion of the ring the stress begins 
to decrease.

• This reduction is communicated circumferentially in 
opposite directions from the neck at the elastic wave 
speed:
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Tensile Instability
• It is possible, if the radial speed is large enough for a 

second (or third, etc.) neck to form in the un-necked 
portion of the ring, because the release wave from the first 
neck has not yet passed through it.

• From the second neck, new elastic release waves are 
propagated.

• Reductions in area in necks, impart both circumferential 
speed and acceleration to the material at each side of the 
neck and thus give rise to inertia forces.

• Inertia thus provides a stabilizing influence and hence in the high 
speed expansion of a ring, there is reason to expect multiple 
necks and stable straining to a higher degree than in the 
corresponding quasi-static process.
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Homogeneous Compression
• A cylindrical block whose height is 

less than about twice its diameter if 
plastically compressed between 
rigid, parallel and substantially 
frictionless plates is a case of 
homogeneous compression.

• When the height of the block is 
reduced to ℎ, the cross-sectional 
area is B.ℎ./ℎ and the force to 
cause further deformation is
B.ℎ.)/ℎ; this compressive force 
thus increases hyperbolically.
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Homogeneous Compression
• If the current height of the block is ℎ and it is compressed 

a further amount −Pℎ, then the axial compressive 
logarithmic strain increment P@8 is,

• Thus, 

• To compress the block an amount −Pℎ, an amount of 
plastic work PY must be performed:
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Homogeneous Compression
• The work done per unit volume of the material is

• It follows that the alteration in shape of the block is achieved 
with maximum efficiency.

• Homogeneous straining, or shape-changing, is the most 
efficient method of securing deformation and is the criterion by 
which all other methods of securing the same final shape are 
judged.

• Homogeneous deformation is an idea of great value in the study 
of metal deformation processes.
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Homogeneous Compression
• A bar of non-hardening material of length T.

homogeneously stretched in tension to length T, i.e. on 
which a logarithmic strain @2 = ln T/T. is imposed, has an 
amount of work done on it per unit volume of

• Similarly, for a thin ring of non-hardening material given a 
simple principal hoop strain @9, the plastic energy required 
is Z = ). @9 per unit volume.
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Temperature Rise
• The work done in frictionlessly and homogeneously 

compressing a cylindrical block from height ℎ. to ℎ, when 
its true stress-strain curve is ! = D@:, is

• So, 
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Temperature Rise
• Experimentally it is found that about 90% of the energy 

supplied to effect plastic compression reappears as heat
and causes a rise in temperature of the material.

• If there is no change in the material properties of the metal 
with increase in temperature, then,

• H is the mechanical equivalent of heat, : is the specific heat.

• A bar of mild steel, which at an ultimate strength of about 692 
MPa had a strain of 0.3 would, if adiabatically stretched, 
undergo a uniform temperature rise of about 57 °C.
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Penetration: Energy Calculations
• Each element of circumferential length 2[L and cross-

sectional area N.. PL, is subject to hoop strain @9 = ln M./L

• So, if the plate is of non-hardening material, the total work 
done is,

• If the material of the plate is linear strain-hardening,
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Penetration: Energy Calculations
• If, instead of a drift we consider a projectile, and assume 

that all dynamical effects may be neglected, we may 
estimate the change in speed of the projectile in order to 
achieve penetration by equating the kinetic energy loss of 
the projectile to the plastic work done in perforating the 
plate.

• Thus, if the projectile weight is Y, if its initial speed is 5.
and its speed on emerging from the plate is 5, then
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Explosive Forming
• By detonating a charge of explosive in a tank of water, a 

radially moving pressure wave is generated which, with 
various reflections, acts on a given circular ring causing 
each element of it to acquire a radial speed 5..
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Explosive Forming
• The magnitude of 5. in order that the ring be expanded 

from diameter \. to \ is easily estimated by assuming 
that all the plastic work which is required to be done on 
the ring is acquired initially as kinetic energy.

• Where ,& = lnT/T&.

• The kinetic energy acquired per unit volume is ]5.)/2. 
Thus, 
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Explosive Forming
• If \. = 36 VA and \ = 42 VA, then for a ring of killed 

(deoxidized) steel for which D = 91000 @..), and 
]` = 0.283 TU/VA), it is found that 5. ≅ 500 cN/4.

• The maximum engineering hoop strain rate occurs at the 
beginning of the process and is 

• The ring would contract in length as well as thin, the 
strains in the radial and axial directions being equal to 
about one half the final hoop strain.



Yield Criteria 
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Tresca Criterion
• If each of the principal 

stresses is known, then 
when the greatest 
difference between any 
pair of them reaches a 
specific quantity, yield 
occurs.
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von-Mises Criterion
• This condition for plastic yield is,
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von-Mises Criterion 
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von-Mises Criterion 
• The Mises 

criterion when 
plotted appears 
as a right 
circular cylinder 
whose axis, is 
equally inclined 
to all three 
coordinate axes 
and whose 
radius is ) 2/3.
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Yield Criteria
• If a thin-wall tube of mean radius J and thickness N, is 

loaded by an axial force I and a torque :, the mean axial 
stress ! = I/(2[JN) and the mean shear stress 
d = :/(2[J)N)

• The principal stresses are, 2!! = ! + !) + 4d) !/), 
2!( = ! − !) + 4d) !/), and !) = 0.

• Tresca:

• Mises:
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Yield Criteria
• Tresca and Mises ellipses on the (!, d) plane together with 

the experimental results of Taylor and Quinney.
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The Plastic Potential
• The equation of the yield surface, may be written in the 

form,

• For von-Mises, U = H!, and for Tresca, U = #- − #1.

• The plastic strain increment, regarded as a vector in a 
nine-dimensional space, is directed along the outward 
normal to the yield surface at the considered stress point.

• where SV is a positive scalar representing the magnitude of the 
plastic strain increment vector.

• The condition >34S#34 = 0 implies that the stress point must 
remain on the yield surface during an increment of plastic strain.
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Levy-Mises
• In elasticity the strain is only dependent on state, in 

plasticity it is dependent on stress history.

• The final or total strain undergone by a body which has been 
plastic is found by summing the increments of strain in 
accordance with change, or history, of stress development.

• When circumstances are such that the elastic components 
of strain are negligible by comparison with plastic 
components, it is usual to employ the Levy-Mises 
equation,

• #3
5 are principal stress deviators, SV is just a constant of 

proportionality which may change as #3 change. 
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Levy-Mises
• Instead of the previous equation, we may write,

• This form is intimately related to the Mises’ yield criterion in 
conjunction with which it should be used. 

• The corresponding form for the Tresca yield criterion is
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Plane-strain Bending
• Consider a plate bent by end couples which render it 

plastic through its entire thickness.
• Strain in the O2-direction will be zero.
• So, d@) = 0. since d@!+ d@)+ d@(=0, then d@! + d@(=0.
• Using the Levy-Mises equation, we have d@!: d@( = σ!= : σ(=

• So, σ!= + σ(= = 0, σ!= = !! − E! = (2!! − !))/3
and σ(= = !( − E! = −(!! + !))/3 with 
E! = "

# !! + !) + 0 ,

• Gives !) = !!/2.
• Substituting in the Mises yield criterion,

Compression of Cylinders and 
Spherical Shells
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Compression of a Short Cylinder
• We consider a short circular cylinder of rigid-perfectly 

plastic material whose height to radius ratio, ℎ/J is less 
than about 3, compressed between rigid parallel dies at a 
relatively constant slow speed.

• Equation of equilibrium:
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Compression of a Short Cylinder
• Referring to no volume change of a cylinder (slide 6), we 

have d@9 = d@". Using Levy-Mises equation, !9 = !".

• Thus, ⁄P!" PL = − ⁄2j ℎ k !>.

• Using Tresca’s yield criterion, !" − !> = ) → P!" = P!>.

• So, ln !> = − ⁄2jL ℎ + 7.

• At L = J, !" = 0, and !> = −). So the above becomes,

• If j is small,
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Compression of a Short Cylinder
• The total force over a compression die is I,

• This pressure distribution is known as a friction-hill.

• If W/ℎ = 3 and µ = 0.12, then the load to effect compression of 
the cylinder is increased by 24% because of end interfacial 
friction.
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Fast Compression of a Cylinder
• When a short, uniform circular cylinder is rapidly 

compressed between rigid parallel plates or dies, inertia
stresses and forces are generated which modify those 
ordinarily required to bring about plastic yield and 
compression in the quasi-static process.

• In the range of about 100 to 1000 ft/sec (30 to 300 m/s).

• For speeds in excess of about 1000 ft/sec (30 m/s), stress wave 
effects will assume importance.

• It is possible for any elastic or plastic stress waves initiated to 
travel up and down any cylindrical block many times during the 
course of compression.
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Fast Compression of a Cylinder
• First, the load ‘felt’ by each of the upper and lower dies 

will be different; the upper die is subject to a load in 
excess of the quasi-static load in the early part of the 
compressive process whilst it is accelerating material.

• The load will be reduced in the last stages of the compression 
since the inertia so acts as to assist the compression sought.
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Fast Compression of a Cylinder
• The equation for constancy of volume is,

• Where Y is the speed of die, Z" , [" are the radial speed and 
acceleration of cylinder.

• Also,

• So,
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Fast Compression of a Cylinder
• Thus the radial acceleration c" is just 3L5)/4ℎ) for a 

constant speed upper die.

• The equation of radial motion of an element is,

• Which reduces to

• Assuming !" = !9 and recalling that c" = 3L5)/4ℎ),
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Fast Compression of a Cylinder
• Noting that !" = 0 when L = J,

• In the absence of acceleration parallel to the axis of the 
cylinder,

• For the compressive stress on the dies m,

• The load on the dies is I and,

• The second term on the right hand side, for steel, and with 
W/ℎ = 1/2 and using \ = 246 ]EW would only contribute 1% of 
the total load if the velocity was 100 ft/sec.
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Thick-walled Cylinders
• For a thick-wall uniform cylinder of inner radius J and 

outer radius U, subjected to an internal pressure −m? and 
an external pressure −m@, under conditions of plane strain,
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Thick-walled Cylinders
• For m. = 0, the greatest principal stress difference is
!9 − !",

• where 8 = U/J. Thus, plastic yield first occurs at the bore 
if we assume the Tresca yield criterion to apply,

• If the Mises’ criterion is used, plastic yield still occurs first 
at the bore but now,
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Thick-walled Cylinders
• When the applied pressure exceeds m?∗, a cylindrically 

symmetric zone of yielded material extends outwards from 
the bore, part way through the cylinder wall.

• Now the radial equilibrium equation for an element of the 
cylinder wall is,

• and if the Tresca criterion applies, 
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Thick-walled Cylinders
• At L = J, !" = −m? and if the zone of plastic yield extends 

out to radius 7, the radial stress is !8,

• For L > 7, the cylinder is elastic but at L = 7, i.e. the 
elastic-plastic interface it is just on the point of yield so 
that recalling ⁄m?∗ ) = ⁄(8) − 1) 28),

• Eliminating !8,

• When 7 = U,
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Thick Spherical Shells
• For a spherical shell of inner radius J and outer radius U, 

subjected to an internal pressure −m? and an external 
pressure −m@, 
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Thick Spherical Shells
• For m. = 0, the principal stress difference is,

• and this is greatest when 6 = W.

• Thus, plastic yielding commences at the inner surface of a 
spherical shell at pressure m?∗, and for either a Tresca or a 
Mises criterion, is given by,

• where 1 = ^/W.

• When the applied pressure exceeds −_3∗, a symmetric zone of 
plastically-yielded material surrounds the inner surface out to 
radius :, which locates the elastic-plastic interface.



99

Thick Spherical Shells
• Now, for the plastic spherical shell, the equation of radial 

equilibrium is,

• Putting !9 − !" = ) → P!" = 2). ⁄PL L → !" = 2) ln L + 7.

• At L = J, !" = −m? → !" = −m? + 2) ln L/J.

• At L = 7, the outer elastic shell is on the point of yielding 
and hence the radial pressure, !8,

• But, !8 = −m? + 2) ln 7/J.

• And hence eliminating !8,  ⁄m? ) = ln( ⁄7 J) + "
#(1 − ⁄7( U().
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Thick Spherical Shells
• When 7 = U, the shell is wholly plastic and the internal 

pressure is given by,

• The radial expansion ∆U∗∗ when pressure m?∗∗ is reached is 
obtained by realizing that the outermost element of the 
shell is stressed just to the point of yielding.

• We have at L = U, ,-9 = !9 − #(!9 + !"), but !" = 0, so,

• Similarly, the radial expansion ∆J∗ at the inner surface for 
pressure m?∗ is,
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Thick Spherical Shells
• Or,

• If the material of the sphere is incompressible,

• Since U( − J( = U∗( − J∗( = U∗∗( − J∗∗(,

Expansion of Cylinders and 
Spherical Shells
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Deformation
• The calculations took no account of geometry changes or 

the expansion of the shell during the application of the 
pressure.

• It was assumed that at the moment the whole shell 
became plastic that the internal and external radii had 
exactly the same values as they did when there was no 
pressure at all applied.

• When the pressure m∗∗ is reached,

• Typically, ⁄\ ` = 0.001, so that for 1 = 10, 1∗∗ = 7.37 which is 
very significantly different from the initial ratio.
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Deformation
• Thus if account is taken of the radial displacements 

undergone by the spherical shell wall in the act of straining 
and becoming fully plastic, then for the elastic-perfectly 
plastic incompressible material,

• Clearly, for large values of 8, ⁄m∗∗ ) → $
# ln( ⁄2, 3)).
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Deformation
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Linear Hardening
• The analysis* of the ‘infinite radius ratio’ spherical shell (i.e. 

spherical cavity expanding in an infinite medium) 
possessing a linear strain-hardening law of the form,
! = ) + I. @, leads to a pressure for m∗∗, to bring the whole 
shell to a plastic state, of

• If ⁄, ) = 0.001, ⁄I ) = ⁄1 3 → ⁄m∗∗ ) = 4.58.

Hill, R. Mathematical Theory of Plasticity, Oxford University Press, 1950.



107

Work to Expand
• The work required to plastically expand a spherical shell of 

incompressible non-hardening material from internal initial 
radius J. to some current radius J by quasi-static internal 
pressure, is given by

• Neglecting the work required to be done in order to bring 
the shell up to full plastic yield, (recall ⁄m?∗∗ 2) = ln U/J),

• since ^&1 − W&1 = ^1 − W1, where ^& in the initial external radius.
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Radial Speed of Inner Surface
• A spherical shell when packed with explosive and 

detonated, causes the shell to rapidly expand, the inner 
surface acquiring some initial radial speed 5..

• If all stress wave effects are neglected, then the speed to 
achieve a specified expansion to radius J, or U which is 
considerably in excess of U∗∗, may be estimated for the 
incompressible material as follows.

• The speed of an element of the shell at radius L is J.)5./L)
and hence, the total kinetic energy of the shell wall is,

• By equating the work to expand to the above, Y& is found.
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Infinitely Small Cavity
• Application of internal pressure, m∗∗∗, over the inner 

surface of radius J creates,

• (i) a spherically symmetric, fully 
plastic shell of radius W∗∗, out to 
radius :∗∗, and 

• (ii) from :∗∗ to the outer radius 
^∗, an outer shell which is 
entirely elastic, apart from being 
in a state of plastic yield on its 
inner surface of radius :∗∗.
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Infinitely Small Cavity
• The spherical shell in its expanded state may thus be 

considered as consisting of two concentric spherical 
shells,

• (i)

• #6∗∗ denotes the radial pressure at radius :∗∗.

• (ii) from slide 98:

• Hence,

• The elastic-plastic interface extends to :∗∗ and :∗∗/ W∗∗ → !7
18

-/1



111

Quasi-static Approach
• Let a pressure m′,which is a function of time and radius be 

applied to the inside surface of a cavity such that initially, 
i.e. at N = 0, the cavity radius is infinitely small.

• When the current cavity radius is J and its radial speed J̇, 
the kinetic energy , of the whole shell is

• The incompressibility condition gives 4[J). J̇ = 4[L). L̇,
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Quasi-static Approach
• At time N, pressure m′ is doing work at a rate m=. 4[J). J̇

• Since ,̇ = 2[](3J). J̇( + 2J(. J̇. J̈), 

• If when J̈ = 0, J̇ = +.,
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Bombs
• Bombs are usually constructed from suitably corrugated 

iron or steel casings packed with high explosive.

• At detonation, the high pressure of the explosion products 
drives the wall of the bomb outwards at high speed such that 
multi-fractures are initiated, and as expansion proceeds further, 
complete fragmentation occurs.

• The onset of the latter is detected from the appearance of 
smoke when high speed cine-films are taken of bomb 
explosions.
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Bombs
• Taylor in a paper in 1948 presented a simple and elegant 

analysis that, with the help of a few assumptions, 
accounted for the radius of fracture at complete 
fragmentation in the explosion of a thin tubular bomb.

• This analysis makes use of the fact that when very high 
pressure acts on the inside of the casing, compressive
hoop stresses exist over an inner region of the casing, and 
the depth of this region is governed predominantly by the 
magnitude of this applied pressure.

• Taylor's assumption is that radial cracks are initiated only 
in the region of tensile stress and cannot propagate 
through and into the compressive zone.
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Bombs
• Taylor concluded that complete fragmentation takes place 

only when the compressive region completely disappears, 
hence allowing cracks to propagate right up to the inside 
surface.
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Bombs
• His analysis predicts that the depth, q, to which the tensile 

hoop stress region extends at any time during the 
expansion process, measured from the outside surface, is 
approximately )ℎ/mA.

• where ℎ is the current cylinder wall thickness, \ is the uniaxial 
yield stress of the material and _: is the current internal radial 
pressure.

• Thus, if the condition for complete fragmentation is given 
by q = ℎ, this occurs when mA = ).

• Hence if mA can be calculated as a function of radius J, 
the fracture radius may be deduced.



117

Bombs
• The approach below is essentially the same as that of 

Taylor; it is however more complete and pertains more 
generally to thick-walled cylinders.

• The idealized equation of radial 
motion of an element is

• No volume change:

• The symbol 6 denotes the current radial distance of the element 
from the center line of the bomb, 6& is its original location and W&
and W are its original and the current internal radius; ^& is the 
original external radius of the bomb.

118

Bombs
• Hence

• Differentiating again, but writing rJ/rN=5A

• Using the Tresca yield criterion as,

• Substituting 
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Bombs
• After integration gives,

• At L = J, !" = −mA,

• Eliminating C,

• So,
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Bombs
• Two different regions of 

stress distribution may 
be distinguished within 
the tube wall:

• the boundary between 
them being defined by 
!9 = 0, i.e. at the depth 
q = U − L. 

• Using this definition in 
the previous equation, 
the value of q is given by,
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Bombs
• The region of compressive stress i.e. !9 < 0 and !" < 0, 

will just disappear when q = U − J = ℎ. Then, mA = ).
• This is the same condition as that originally obtained by Taylor.

• However, to determine when complete fracture takes 
place, an expression for the pressure exerted by the 
gaseous explosion products on the inner wall of the 
casing as a function of internal wall radius is required. 

• This expression can be approximated reasonably well by 
assuming an isentropic expansion of the explosion 
products. Thus,

• where _& is the effective detonation pressure acting on the 
inside surface when W = W& and a is the adiabatic exponent.
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Bombs
• Typically, for TNT, t has an initial value of about 3.4 when 

the pressure m. is about 15.8×10B IJ and, when the 
density is reduced to about one quarter of its initial value, 
t is about 1.9.

• For a moderate expansion to fracture, the fixed value a = 3 is a 
satisfactory approximation.

• The criterion for complete fracture of the casing when
mA = ),

• Note that the higher the yield stress, \, of the casing material, 
the smaller the resistance to crack propagation as measured by 
the expansion radius at complete fracture.
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Bombs
• The procedure for analyzing the fragmentation of spherical 

bombs may be carried out in a similar manner to that used 
above for cylindrical shells. 

• The casing radius of fracture is now given by,
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Initial Speed for Expansion
• The permanent plastic straining of a spherical or 

cylindrical shell of initial radius L. of strain-hardening 
material by imparting a radial initial velocity, 5., to give a 
radius of L, is considered in order to find the radius to 
which the (thin) sphere or cylinder is expanded.

• For an element of the
spherical shell, the 
equation of radial 
motion is,
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Initial Speed for Expansion
• Throughout the expansion process !9 = !C and !" = 0, so 

the von-Mises stress is E! = !9 and since in this 
circumstance of uniform expansion it is permissible to use 
total strains for which, @9 = @C = −@0/2, so ̅@ = 2@9.

• Adapting strain-hardening model, E! = D ; + ̅@ :

⇒ !9 = D ; + 2@9 :. Hence noting P)L/PN)=5. P5/PL,

• Thus,

• Where ,; = ln 6 /6&
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Initial Speed for Expansion
• For the element of the cylindrical shell shown, the 

equation of radial motion is,

• Proceeding as previously, it is easily shown that for plane 
strain expansion,
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Initial Speed for Expansion
• Expressions for 5. to cause the shells to reach the tensile 

instability strain may now easily be arrived at.

• These strains are those prevailing when some slowly 
applied hydrostatic pressure reaches its greatest value.

• For the spherical shell at instability, the hoop strain,
ln L /L. is equal to (2A − 3;)/6. The initial velocity 5.∗
required to produce strain equal to the instability strain is

• The initial velocity 5.∗∗ required to produce strains equal to 
the static instability strain in a long cylindrical shell is
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Initial Speed for Expansion
• Some representative values of 5.∗ and 5.∗∗ given in this 

Table, can be arrived at for stainless steel, half-hard 
copper and half-hard brass by selecting suitable values of 
B, C and n.
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Internal Blast Loading
• Consider a thin spherical shell of radius a subjected to an 

internal blast load which evokes only an elastic response, 
or vibration of the shell.

• If m(N) denotes the variation of pulse pressure with time, N, 
and w, is the (small) radial displacement of the shell of 
thickness ℎ,

• Using the elastic stress-strain equation !9 = ,-9(1 − #), 
where -9 = w"/J,
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Internal Blast Loading
• The simple fundamental radial mode of vibration found by 

letting m(N) = 0 shows the shell to have a period of 
vibration of [J 2](1 − #)/, !/).

• Suppose the blast pulse is defined by m(N) = I(T − N/:) for 
0 < N < : and that m(N) = 0 for N > :.



131

Internal Blast Loading
• With the constants # = 0.3, ]` = 2.21×10(W/8),
, = 82.5 HIJ and ℎ/J = 0.0435, the computed value of 
the frequency x is 2680 Hz. 

• The maximum displacement B) + D) !/) is 1.475×10'(
in, and -9%&' = 1.23×10'D.

• Experimental data:

Elementary Theory
of Plastic Bending
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Plastic Bending
• A straight beam of rectangular cross-section U×ℎ, of 

elastic-perfectly plastic material, when subjected to an 
elastic bending moment z, is bent into the arc of a circle 
of radius M.

• The stress distribution across the section is linear and 
elastic for z ≤ zE = Uℎ))/6; when z = zE the normal 
stress on a section in the extreme fibers is just the yield 
stress.

• For zE ≤ z ≤ z/ = Uℎ))/4, the stress distribution is 
elastic-plastic.

• In the limit, the whole section becomes plastic, z = z/
= [Uℎ/2. )]. ℎ/2 = Uℎ))/4. z/ is called the full plastic 
bending moment for the section.
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Plastic Bending
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Plastic Bending
• The ratio z//zE is called the shape factor for the section 

and for the rectangle it is 1.5. For a circular section it is 
16/3[.

• The stress distribution across the section of a fully plastic 
rectangular beam which is subject to an axial force, X, and 
a bending moment, z, is shown. 

• The force, X, obviously affects the
distribution of normal stress in a 
section and it may easily be verified 
that, if X/ = Uℎ), then
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Plastic Hinges in Beams
• The maximum bending moment occurs at the built-in end 

and when plastic collapse occurs, the tendency is for the 
bean to rotate about its root as a rigid body. 

• The whole section at the root is plastic an the moment 
prevailing is z/.

• At the instant collapse occurs, work will be done by load I
moving downwards with speed ~x, where x is the angular 
speed of the beam about the root;

• The fully plastic section at the root
of the beam is called a plastic hinge.
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Plastic Hinges in Beams
• For a simply supported beam, I = 2z//~. For a beam 

clamped at both ends, four hinges arise, and I = 4z//~.

• If a mass z moving with speed 5. impinges on the end of 
a rigid-perfectly plastic cantilever of mass 8, then it may 
be supposed that the end deflection ∆ may simply be 
estimated by equating the plastic work done in the hinge 
at the root, to the initial kinetic energy of z.
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Plastic Hinges in Beams
• If a cantilever rotates as a rigid bar about its root, the tip 

having a downward speed of w., its total kinetic energy is 
½Äx) where Ä is the moment of inertia of the cantilever 
about the root, i.e. U~(ℎ]/3 and angular velocity x = w./~.

• The end deflection ∆ for deflections which are not too 
large is given by,
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Plastic Hinges in Circular Rings
• A circular ring which is neither too thin nor too flexible, of 

mean radius M when subjected to diametral loads I can 
only collapse plastically when four hinges have been 
formed to permit it to behave as a mechanism.
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Plastic Hinges in Circular Rings
• It is easy to see that, if the center of the ring, O, remains 

stationary, then at collapse the four rigid portions of the 
ring between the hinges rotate with angular speed, Ω, 
about instantaneous center, Ä, and the forces I, move 
towards the center of the ring with speed R. Ω.

• The work input rate is therefore 2P. R. Ω and the plastic 
work dissipation rate is 8MFΩ. Thus,
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Plastic Hinges in Circular Rings
• When a large mass, z, impinges with low speed, 5., on a 

supported, circular ring of diameter \ and small mass, 
then if all inertia effects in the ring can be neglected, and 
all the kinetic energy in the mass is used up in enforcing 
plastic deformation on the ring, 
the diametral compression ∆\,
provided ∆\/\ is small, is very 
approximately given by,
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Plastic Hinges in Circular Rings
• Experiments show that in order to allow for stress wave 

transmission and other forms of energy loss, it is useful to 
assume that about 85% of the kinetic energy available is 
used in doing plastic work.

• When continued quasi-static 
crushing of a ring occurs between
rigid, parallel surfaces, it is evident
that the crushing force increases 
with reduction in vertical diameter 
of the ring. 
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Plastic Hinges in Circular Rings
• The original four plastic hinges are maintained but the 

point(s) of application of the compressing force(s) moves 
away the center line, splitting into two equal components, 
I/2.

• Applying the same work approach,

• If U denotes the total ring deflection, WÄ) = (\) − Ö))/4
and thus,
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Plastic Hinges in Circular Rings

• The form of this I/(Ö/\) curve is shown. This solution 
holds for 0 ≤ Ü ≤ [/4.

• A frictional force of µI/2 would modify to,



Axial Crushing of Thin Tubes
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Crushing a Thin Cylinder
• It is arranged that the dropped component falls on to a 

thin, uniform cylinder that will buckle lengthwise; it is 
necessary to be able to estimate the energy absorbing 
capacity of the cylinder.

• (i) the energy dissipated due to plastic bending, b<, in the four 
circular hinges and 

• (ii) the energy dissipated in stretching, b$, under uniform tensile 
yield hoop stress in the metal between the hinges.

• Assuming the material of the cylinder is rigid-perfectly 
plastic,
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Crushing a Thin Cylinder
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Crushing a Thin Cylinder
• Using the Mises criterion, z/ = 2)N.)/4 3 and

• The energy for plastic dissipation is supplied by the axial 
compressive force, I, and is I. 2ℎ. Thus, 
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Crushing a Thin Cylinder
• The value of ℎ is now determined by minimizing (I/)) with 

respect to ℎ and thus,

• Substituting ℎ, 

• If the buckling convolutions had been entirely internal, 
rather than wholly external as treated above,
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Crushing a Thin Cylinder
• Denoting the crushed length by à, then if a steady force I

applies during the process and assuming all the initial 
kinetic energy is dissipated in plastic deformation, we 
have,

• where ] is the mass of the structure. 

• Putting z = ][\N.~ where ~ is the structure length,

• This equation could be useful in connection with vehicle design.
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Inversion Tubes
• A simple expendable energy absorber which possesses a 

rectangular force displacement characteristic and a high 
energy absorption capacity is the ‘lnver’ tube device.
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Inversion Tubes
• Of course inversion is not the only mode of deformation 

possible for an inver-tube device; alternative modes are

• (i) column or Euler buckling

• (ii) concertinaing or axisymmetric buckling, 

• (iii) diamond buckling, 

• (iv) tearing of the tube, 

• (v) brittle fracture, or shattering, and 

• (vi) uniform compression.
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Inversion Tubes
• An approximate analytical expression for the steady 

compressive load necessary to maintain an inside-out 
inversion is easily arrived at by assuming that the tube 
material is perfectly plastic, that no tube length or 
thickness changes occur during bending, that the energy 
dissipation consists solely in
• (i) bending and unbending the tube and

• (ii) in increasing its radius.

• If the radius of inversion is 7 and the tube thickness is N., 
the work done per unit time in bending a straight element 
of tube, YG, at the entrance to the bending zone is,
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Inversion Tubes
• The amount of work done per unit time in 

extending tube elements YE is, 

• The rate at which work is done by the 
compressing force I,

• The work done in unbending at exit from the 
curved zone is assumed equal to that done 
in bending at the entrance to it. 

• : is found by supposing it to acquire a value 
which makes M a minimum.
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Inversion Tubes
• So,

• The energy, ,, dissipated by plastically inverting the tube, 
per unit weight, Z, of the tube, is,

• The mean strain @+ imparted to each element of the tube 
following the above equation is the work done on the tube 
per unit time, divided by the volume deformed times ).
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Inversion Tubes
• For a material described by ! = D@:,

• Tubes with low strain hardening rates buckle rather than 
invert.

• The axisymmetric buckling load IG for a tube whose 
reduced modulus is ,H is approximately IG = 4[N.),H/3. 

• Thus, inversion would occur only if I < IG or
,H/) > 3 \/2N. !/)



Plastic Bending of 
Thin Flat Plates
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Plastic Bending of Plates
• Annular plate position fixed (zero fixing moment) at its 

outer periphery and free at its inner boundary.

• The rate at which work is done by the externally applied 
load is 2[U. I. w. and hence,

• The total applied load is,
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Plastic Bending of Plates
• If the annulus was subjected to a uniformly distributed 

pressure, m,

• For the circular disc, U = 0, and,

• Obviously, this situation is basically similar to that in which 
the initial condition prescribed for the plate is, that it is 
position-fixed at its inner radius, U. If it carries a uniform 
load I′ at its outer edge, then I′ = I(U/J).
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Plastic Bending of Plates

• If the annulus is line-loaded along its outer boundary,

• If the annulus is loaded with a uniform transverse 
pressure, m, then the plastic collapse pressure is,


