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PREFACE TO THE THIRD EDITION

This edition is a revision of the 2003 edition of the book. Considerable attention has been
given here to improve the second edition. As far as possible efforts were made to keep the
book free from typographic and others errors. Many changes have been made in this edition.

A chapter on Regression Analysis has been added in which Scalar diagrams, correlation,
linear regression, multiple linear regression, curvilinear regression were briefly discussed. A
large number of problems have been added in order to enable students develop better
understanding of the theory. Most of these changes were made at the suggestion of individuals
who had used my book and who were kind enough to send in their comments. One of the
effects of these changes is to place greater emphasis on theory.

I wish to take this opportunity to thank all those who have used my book.

The author would like to express his appreciation to Shri Saumya Gupta, Managing
Director, New Age International (P) Ltd., Publishers for the interest and cooperation he has
taken in the production of this book.

Finally, I wish to express my sincere thanks to my Publishers, New Age International
(P) Ltd., Publishers.

G. SHANKER RAO
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PREFACE TO THE FIRST EDITION

The present book on Numerical Analysis is intended to cover the syllabi of different Indian
Universities in Mathematics. It meets the continued and persistent demand of the students
for a book which could be followed easily.

This book is meant for the students appearing for B.Sc., M.Sc. and B.E. examinations
of Indian Universities. The basic aim of this book is to give as far as possible, a systematic
and modern presentation of the most important methods and techniques of Numerical Analysis.
This book contains large number of solved problems followed by sets of well-graded problems.

I am much indebted to Shri A. Sree Ram Murthy and Shri S. Gangadhar whose inspiration
and help had enabled me to write this book.

I am greatly thankful to Shri Govindan, Divisional Manager, New Age International. I
am grateful to Smt Supriya Bhale Rao, Publisher, who advised me through all its stages,
showing great patience at all times and whose efficient and painstaking help made it possible
to bring out this book in a record time of three months.

Nizamabad, 1997 G. SHANKER RAO
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1.1 INTRODUCTION

There are two kinds of numbers—exact and approximate numbers.

An approximate number x is a number that differs, but slightly, from an exact number X and
is used in place of the latter in calculations.

The numbers 1, 2, 3, …, 
3

4
,

3

5
,  …, etc., are all exact, and π, 2 , ,e  …, etc., written in this

manner are also exact.

1.41 is an approximate value of 2 ,  and 1.414 is also an approximate value of 2.  Similarly

3.14, 3.141, 3.14159, …, etc., are all approximate values of π.

1.2 SIGNIFICANT DIGITS

The digits that are used to express a number are called significant digits. Figure is synonymous with
digit.

Definition 1 A significant digit of an approximate number is any non-zero digit in its decimal
representation, or any zero lying between significant digits, or used as place holder to indicate a
retained place.

The digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are significant digits. ‘0’ is also a significant figure except
when it is used to fix the decimal point, or to fill the places of unknown or discarded digits.

For example, in the number 0.0005010, the first four ‘0’s’ are not significant digits, since they
serve only to fix the position of the decimal point and indicate the place values of the other digits.
The other two ‘0’s’ are significant.

Two notational conventions which make clear how many digits of a given number are signifi-
cant are given below.

1. The significant figure in a number in positional notation consists of:

(a) All non-zero digits and

(b) Zero digits which

1
ERRORS
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2 NUMERICAL ANALYSIS

(i) lie between significant digits

(ii) lie to the right of decimal point, and at the same time to the right of a non-zero
digit

(iii) are specifically indicated to be significant

2. The significant figure in a number written in scientific notation (M × 10n) consists of all
the digits explicitly in M.

Significant figures are counted from left to right starting with the left most non zero digit.

Example 1.1

Number Significant figures No. of Significant figures

37.89 3, 7, 8, 9 4

5090 5, 0, 9 3

7.00 7, 0, 0 3

0.00082 8, 2 2

0.000620 6, 2, 0 3

5.2 × 104 5, 2 2

3.506 × 10 3, 5, 0, 6 4

8 × 10–3 8 1

1.3 ROUNDING OFF NUMBERS

With a computer it is easy to input a vast number of data and perform an immense number of
calculations. Sometimes it may be necessary to cut the numbers with large numbers of digits. This
process of cutting the numbers is called rounding off numbers. In rounding off a number after a
computation, the number is chosen which has the required number of significant figures and which
is closest to the number to be rounded off. Usually numbers are rounded off according to the
following rule.

Rounding-off rule In order to round-off a number to n significant digits drop all the digits to the
right of the nth significant digit or replace them by ‘0’s’ if the ‘0’s’ are needed as place holders,
and if this discarded digit is

1. Less than 5, leave the remaining digits unchanged

2. Greater than 5, add 1 to the last retained digit

3. Exactly 5 and there are non-zero digits among those discarded, add unity to the last retained
digit

However, if the first discarded digit is exactly 5 and all the other discarded digits are ‘0’s’, the
last retained digit is left unchanged if even and is increased by unity if odd.

In other words, if the discarded number is less than half a unit in the nth place, the nth digit
is unaltered. But if the discarded number is greater than half a unit in the nth place, the nth digit is
increased by unity.

And if the discarded number is exactly half a unit in the nth place, the even digit rule is applied.
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Example 1.2

Number Rounded-off to

Three figures Four figures Five figures

00.522341 00.522 00.5223 00.52234

93.2155 93.2 93.22 93.216

00.66666 00.667 00.6667 00.66667

Example 1.3

Number Rounded-off to
Four significant figures

9.6782 9.678

29.1568 29.16

8.24159 3.142

30.0567 30.06

1.4 ERRORS

One of the most important aspects of numerical analysis is the error analysis. Errors may occur at
any stage of the process of solving a problem.

By the error we mean the difference between the true value and the approximate value.

∴  Error = True value – Approximate value.

1.4.1 Types of Errors

Usually we come across the following types of errors in numerical analysis.

(i) Inherent Errors. These are the errors involved in the statement of a problem. When a problem
is first presented to the numerical analyst it may contain certain data or parameters. If the data or
parameters are in some way determined by physical measurement, they will probably differ from the
exact values. Errors inherent in the statement of the problem are called inherent errors.

(ii) Analytic Errors. These are the errors introduced due to transforming a physical or math-
ematical problem into a computational problem. Once a problem has been carefully stated, it is time
to begin the analysis of the problem which involves certain simplifying assumptions. The functions
involved in mathematical formulas are frequently specified in the form of infinite sequences or series.
For example, consider

sin
! ! !

...x x
x x x= − + − +

3 5 7

3 5 7

If we compute sin x by the formula

sin
! !

,x x
x x= − +

3 5

3 5

then it leads to an error. Similarly the transformation ex –x = 0 into the equation
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1
2 3

0
2 3

− + −
�

��
�

��
− =x

x x
x

! !
,

involves an analytical error.

The magnitude of the error in the value of the function due to cutting (truncation) of its series
is equal to the sum of all the discarded terms. It may be large and may even exceed the sum of the
terms retained, thus making the calculated result meaningless.

(iii) Round-off errors. When depicting even rational numbers in decimal system or some other
positional system, there may be an infinity of digits to the right of the decimal point, and it may not
be possible for us to use an infinity of digits, in a computational problem. Therefore it is obvious
that we can only use a finite number of digits in our computations. This is the source of the so-
called rounding errors. Each of the FORTRAN Operations +, –, *, /, **, is subject to possible round-
off error.

To denote the cumulative effect of round-off error in the computation of a solution to a given
computational problem, we use the computational error and the computational error can be made
arbitrarily small by carrying all the calculations to a sufficiently high degree of precision.

Definition 2 By the error of an approximate number we mean the difference between the exact
number X, and the given approximate number x.

It is denoted by E (or by ∆)

E = = X x .∆ –

Note An exact number may be regarded as an approximate number with error zero.

Definition 3 The absolute error of an approximate number x is the absolute value of the difference
between the corresponding exact number X and the number x. It is denoted by EA. Thus

E = X xA −

Definition 4 The limiting error of an approximate number denoted by ∆x is any number not less
than the absolute error of that number.

Note From the definition we have

E = X x x .A − ≤ ∆

Therefore X lies within the range

x x X x x– ∆ ∆≤ ≤ +

Thus we can write X = x x± ∆

Definition 5 The relative error of an approximate number x is the ratio of the absolute error of
the number to the absolute value of the corresponding exact number X, where X 0≠� � . It is denoted
by ER (or by δ)

E
E

XR
A= =δ .
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Definition 6 The limiting relative error δx of a given approximate number x, is any number not
less than the relative error of that number.

From the definition it is clear that

E x ,R ≤ δ

i.e.,
E

X
xA ≤ δ ,

     ⇒ ≤E X xA δ

In practical situations X ≈  x. Therefore we may use ∆x = x x .δ

If ∆x denotes the limiting absolute error of x then

E =
E

X

x

x xR
A ≤ ∆

∆–
, (where x > 0, x > 0 and ∆x < x).

Thus we can write δx =
x

x x
,

∆
∆–

 for the limiting error of the number x.

Definition 7 The percentage error is 100 times the relative error. It is denoted by Ep.

∴ Ep = ER × 100.

1.5 RELATIVE ERROR AND THE NUMBER OF CORRECT DIGITS

The relationship between the relative error of an approximate error and the number of correct digits:

Any positive number x can be represented as a terminating or non-terminating decimal as
follows:

         x = m
m

m
m

m n
m nα α α10 10 101

1
1

1+ + + +−
−

− +
− +... ... (1)

where αi are the digits of the number x, i.e., (αi = 0, 1, 2, 3, …, 9) and αm ≠ 0  (m is an integer).

For example: 1734.58 = 1.103 + 7.102 + 3.101 + 4.100 + 5.10–1 + 8.10–2 + …

Now we introduce the notation of correct digits of an approximate number.

Definition 8 If the absolute error of an approximate number does not exceed one half unit in the
nth place, counting from left to right then we say that the first n significant digits of the approximate
number are correct.

If x denotes an approximate number as represented by (1) taking the place of an exact number
X, we can write

E X xA
m n= − ≤ �

��
�
��

− +| |
1
2

10 1

then by definition the first digits α α α αm m m m n, , , ...,− − − +1 2 1  of this number are correct.

For example if X = 73.97 and the number x = 74.00 is an approximation correct to three digits,
since



6 NUMERICAL ANALYSIS

X x− = < − +0 03
1

2
10 1 3 1. ( ) ,

i.e.,     E A = <0 03
1

2
01. . .� �

Note 1. All the indicated significant digits in mathematical tables are correct.

2. Sometimes it may be convenient to say that the number x is the approximation to an exact number
X to n correct digits. In the broad sense this means that the absolute error EA does not exceed
one unit in the nth significant digit of the approximate number.

Theorem If a positive number x has n correct digits in the narrow sense, the relative error ER of

this number does not exceed 
1

10

n 1
�
��
�
��

−

 divided by the first significant digit of the given number or

E
1 1

10R
m

n

≤ �
��
�
��

−

α

1

, where αm  is first significant digit of number x.

Proof Let

x = m
m

m
m

m – n
m – n+α α α10 10 101

1
1

1+ + + ++–
– ... ...,

( )where mα ≥ 1

denote an approximate value of the exact number X and let it be correct to n digits.

Then by definition we have

    E X xA
m n= − ≤ − +1

2
10

1
� � ,

Therefore      X x – m n≤ − +1

2
10 1( ) .

If x is replaced by a definitely smaller number αm10m we get

     X m
m m n≥ − − +α 10

1

2
10 1,

 ⇒ ≥ −�
��

�
��−X m

n

1

2
10 2

1

10 1αm ,

  ∴ ≥ −X
m

m
1

2
10 2 1� � � �α .
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Since

2 1 1α α α αm m m m− = + − ≥( )

we get X m
m≥ 1

2
10 α .

∴ = ≤
− +

E
E

XR
A

1
2

1

1
2

10

10

m n

m
mα

.

⇒ ≤ �
��
�
��

−

ER
m

n
1 1

10

1

α
,

proving the theorem.

Corollary 1 The limiting relating error of the number x is δ
α

x
m

n

= �
��
�
��

−
1 1

10

1

,  where δm  is the

significant digit of the number x.

Corollary 2 If the number x has more than two correct digits that is n ≥ 2 , then for all practical

purpose the formula

    E RR
m

n

= = �
��
�
��

−

δ
α

� �
1

2

1

10

1

 holds.

1.5.1 Important Rules

Rule 1 If x is the approximate value of X correctly rounded to m decimal places then

X x m− ≤ × −1

2
10

Rule 2 If x is the approximate value of X, after truncating to k digits, then

X x

X
k−

< − +10 1

Rule 3 If x is the approximate value of X, after rounding-off to k digit, then

X x

X
k−

< × − +1

2
10 1

Rule 4 If x is the approximate value of X correct to m significant digits, then

X x

X
m−

< −10
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Rule 5 If a number is correct to n significant figures, and the first. Significant digit of the number

is αm , then the relative error ER
m

n
< −

1

10 1α
.

Example 1.4 How many digits are to be taken in computing 20  so that the error does not exceed 0.1%?

Solution The first digit of 20  is 4.

∴ = =αm RE4 0 001, .

∴ �
��
�
��

= ≤
−

−
1

αm

n
1

10

1

4 10
0 001

1

4 1.
.

     ⇒ ≥10 1n– 250

 ∴ ≥n 4.

Example 1.5 If X
8

9
=  and the exact decimal representation of X is 0.888 …, verify rule 1, numerically when X is

rounded-off to three decimal digits.

Solution We have    X =
8

9
, k = 3

The decimal representation of X rounded-off to three decimal digits is x = 0.889

Then

 E A =
8

9
0 889

8

9

889

1000
− = −.

    =
8000 8001

9 10

1

9 103 3

−
×

= −
×

    = × < ×− −1

9
10

1

2
103 3

      ∴ < × −E A
1

2
10 3

Hence, rule 1 is verified.

1.5.2  Tables for Determining the Limiting Relative Error from the
 Number of Correct Digits and vice-versa

It is easy to compute the limiting relative error of an approximate number when it is written with
indicated correct digits. The table given below indicates the relative error as a percentage of the
approximate number depending upon the number of correct digits (in the broad sense) and on the
first two significant digits of the number, counting from left to right.
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Contd.

Relative error (in %) of numbers correct to n digits.

First two significant n

digits 2 3 4

10–11 10 1 0.1

12–13 8.3 0.83 0.083

14, …, 16 7.1 0.71 0.071

17, …, 19 5.9 0.59 0.059

20, …, 22 5 0.5 0.05

23, …, 25 4.3 0.43 0.043

26, …, 29 3.8 0.38 0.038

30, …, 34 3.3 0.33 0.033

35, …, 39 2.9 0.29 0.029

40, …, 44 2.5 0.25 0.025

45, …, 49 2.2 0.22 0.022

50, …, 59 2 0.2 0.02

60, …, 69 1.7 0.17 0.017

70, …, 79 1.4 0.14 0.14

80, …, 89 1.2 0.12 0.012

90, …, 99 1.1 0.11 0.011

The table below gives upper bounds for relative errors (in %) that ensure a given approximate value,
a certain number of correct digits in the broad sense depending on its first two digits.

Number of correct digits of an approximate number depending on the limiting relative error (in %).

First two significant n

digits 2 3 4

10–11 4.2 0.42 0.042

12–13 3.6 0.36 0.036

14, …, 16 2.9 0.29 0.029

17, …, 19 2.5 0.25 0.025

20, …, 22 1.9 0.19 0.019

23, …, 25 1.9 0.19 0.019

26, …, 29 1.7 0.17 0.017

30, …, 34 1.4 0.14 0.014

35, …, 39 1.2 0.12 0.012

40, …, 44 1.1 0.11 0.011

45, …, 49 1 0.1 0.01

50, …, 54 0.9 0.09 0.009
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First two significant n

digits 2 3 4

55, …, 59 0.8 0.08 0.008

60, …, 69 0.7 0.07 0.007

70, …, 79 0.6 0.06 0.006

80, …, 99 0.5 0.05 0.005

1.6 GENERAL ERROR FORMULA

Let u be a function of several independent quantities x1, x2, …, xn which are subject to errors of
magnitudes ∆x1, ..., ∆xn respectively. If ∆u denotes the error in u then

u f x x xn= 1 2, , ...,� �

   u u f x x x x x xn n+ = + + +∆ ∆ ∆ ∆1 1 2, , ..., .2� �

Using Taylor’s theorem for a function of several variables and expanding the right hand side
we get

   u u f x x x x
f

x
x

f

x
x

f

xn n
n

+ = + + + + +∆ ∆ ∆1 2 1 2, , ..., ...� �
∂
∂

∂
∂

∂ ∂
∂1 2

terms involving ∆xi� �
2 , etc.,

  u u + x
f

x
x

f

x
xn+ = + + + +∆ ∆ ∆ ∆u

f

x

∂
∂

∂
∂

∂
∂1

1 2
2

�

terms involving ∆xi� �
2 , etc.

The errors ∆ ∆ ∆x x xn1 2, , ..., ,  are very small quantities. Therefore, neglecting the squares and

higher powers of ∆xi ,  we can write

                ∆ ∆ ∆ ∆u
f

x
x

f

x
x

x

x
x

n
n≈ ∂

∂
+ ∂

∂
+ + ∂

∂1
1

2
2 ... . (1)

The relative error in u is

                       E
u

u

u

x
x

u

x
x

u

x
xR

n
n= = + + +

�

��
�

��
∆ ∆ ∆ ∆1

1 2u

∂
∂

∂
∂

∂
∂1 2

... . (2)

�

∂
∂

∂
∂

f

x

u

xi i

=
�

��
�

��

(i = 1, 2, ..., n)
Formula (2) is called general error formula.
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1.7 APPLICATION OF ERRORS TO THE FUNDAMENTAL OPERATIONS
OF ARITHMETIC

(i) Addition

Let  u x x xn= + + +1 2 ...

then ∆ ∆ ∆ ∆u E x x xA n= = + + +1 2 ...

Thus the absolute error of an algebraic sum of several approximate numbers does not exceed
the sum of the absolute errors of the numbers.

Note To add numbers of different absolute accuracies the following rules are useful:

(a) Find the numbers with the least number of decimal places and leave them unchanged.

(b) Round-off the remaining numbers retaining one or two more decimal places than those with the smallest
number of decimals.

(c) Add the numbers, taking into account all retained decimals.

(d) Round-off the result obtained by reducing it by one decimal.

(ii) Subtraction

Let  u = x x1 − 2

and ∆ ∆x x1, 2  denote the errors in x1 and x2 respectively then

∆ ∆ ∆u = x x1 − 2 .

∆ ∆x x1, 2  may be positive or negative therefore to obtain the maximum error we take

ER ≈ +∆ ∆x x1 2

Note When the numbers are nearly equal most of the significant numbers from the left may disappear which may
lead to serious types of errors. Therefore following ways are found useful to lessen the inaccuracy.

1. Each of the numbers may be approximated with sufficient accuracy before subtraction.

2. The given expression may transformed.

(iii) Multiplication

(a) A simple formula for the absolute error in a product of two numbers is given below.
Let X = x

1 
x

2
, and E

A
 denotes the absolute error in the product of the given numbers then

         E x x x x x xA = + + −1 1 2 2 1 2∆ ∆� � � �

     = + + ⋅x x x x x x1 2 2 1 1 2∆ ∆ ∆ ∆ ,

     ⇒ = +E x x x xA 1 2 2 1∆ ∆ ( ).approximately

and the relative error in X is given by

   E
E

X

X

X

x

x

x

xR
A= = = +∆ ∆ ∆1

1

2

2

(b) The relative error in the product of n numbers is given below:

Let X = x1, x2, …, xn and ∆ ∆ ∆x x xn1 2, , ..., ,  denote the absolute errors in x1, x2, …, xn

respectively. Then the relative error in X is given by
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E
X

X

x

x

x

x

x

xR
n

n

= = + + +∆ ∆ ∆ ∆1

1

2

2

...

(iv) Division

For formula for the absolute error of a quotient can be found as shown under:

Let EA denote the absolute error in 
x

x
1

2

 the

E
x x

x x

x

xA = +
+

−1 1

2 2

1

2

∆
∆

    = + − −
+

x x x x x x x x

x x x
1 2 2 1 1 2 1 2

2 2 2

. .
( )

∆ ∆
∆

= −
+

x x x x

x x x
2 1 1 2

2 2 2

∆ ∆
∆� �  =

−�
��

�
��

+

x
x x x x

x x

x x

1
2 1 1 2

1 2

2 2

∆ ∆

∆� �

=
−

�
��

�
��

+

x
x

x
x

x

x x

1
1

1

2

2

2 2

∆ ∆

∆
 =

−
	



�

�



�

+
�
��

�
��

x

x

x

x

x

x

x

x

1

2

1

1

2

2

2

2

1

∆ ∆

∆

    = −
	



�

�



�

x

x

x

x

x

x
1

2

1

1

2

2

∆ ∆
, .approximately

Example 1.6 Round-off  27.8793 correct to four significant figures.

Solution The number 27.8793 rounded-off to four significant figures is 27.88.

Example 1.7 Round-off the number 0.00243468 to four significant figures.

Solution The rounded-off number is 0.002435.

Example 1.8 Find the sum of the approximate numbers 0.348, 0.1834, 345.4, 235.2, 11.75, 0.0849, 0.0214, 0.000354
each correct to the indicated significant digits.

Solution 345.4 and 235.4 are numbers with the least accuracy whose absolute error may attain 0.1. Rounding the
remaining numbers to 0.01 and adding we get

345.4 + 235.2 + 11.75 + 9.27 + 0.35 + 0.18 + 0.08 + 0.02 + 0.00 = 602.25.

Applying the even-digit rule for rounding the result we get the sum to be equal to 602.2.

∴ The sum of the given numbers = 602.2.

Example 1.9 Find the number of significant figures in the approximate number 11.2461 given its absolute error as
0.25 × 10–2.

Solution Given that absolute error = 0.25 × 10–2 = 0.0025.

∴ The number of significant figure is 4.
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Example 1.10  Find the product 349.1 × 863.4 and state how many figures of the result are trust worthy, assuming
that each number is correct to four decimals.

Solution    Let x1 = 349.1. |∆x1| < 0.05

x2 = 863.4, |∆x2| < 0.05

and u = x1 x2

then u = x1x2 = 349.1 × 863.4 = 301412.94

now      
∆ ∆ ∆u

u

x

x

x

x x x
≤ + ≤ +1

1

2

2 1 2

0 05 0 05. .

⇒      
| |
| |

( . )
| | | |

( . )
| | | |

| | | |
∆u

u x x

x x

x x
≤ +

�
�
�

�
�
�

= +	



�

�



�0 05

1 1
0 05

1 2

1 2

1 2

⇒       | | ( . ) | |
| | | |

| |
. | | | |∆u u

x x

u
x x≤ +	



�

�



� = +0 05 0 051 2

1 2� �

⇒       | | ( . ) . . .∆u ≤ + =0 05 349 1 863 47 60 6285 ~ 60.63

Therefore; the true value of u lies between

301412.94 – 60.63 and 301412.94 + 60.63

i.e.,          301352.31 and 301473.559

i.e.,         3014 × 102 and 3015 × 102

We infer that; only the first three figures are reliable.

Example 1.11 Find the difference 2.01 2−  to three correct digits.

Solution We know that 2 01 141774469. . ...=  and 2 141421356= . ...

Let X denote the difference

  ∴ = −X 2 01 2.

= (1.41774469 ...) – (1.41421356 ...)

= 0.00353

= 3.53 × 10–3.

Example 1.12 If ∆ ∆x 0.005 y 0.001= =,  be the absolute errors in x = 2.11 and y = 4.15, find the relative error in
the computation of x + y.

Solution x = 2.11, y = 4.15

∴      x + y = 2.11 + 4.15 = 6.26,

and        ∆ ∆x y= =0 005 0 001. , .

       ⇒ + = + =∆ ∆x y 0 005 0 001 0 006. . . .

∴ The relative error in (x + y) is

       E
x y

x yR =
+
+

=
∆ ∆
� �

0 006

6 26

.

.

       = 0.000958.

The relative error in (x + y) = 0.001 (approximately).
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Example 1.13 Given that u =
5xy

z
x y

2

3
∆ ∆,  and ∆z  denote the errors in x, y and z respectively such that x = y

= z = 1 and ∆ ∆ ∆x y = z= = 0.001, find the relative maximum error in u.

Solution We have

      
∂
∂

∂
∂

∂
∂

u

x

y

z

u

y

xy

z

u

z

xy

z
= = =

−5 10 152

3 3

2

4
, ,

   ∴ = +∆ ∆ ∆ ∆u
u

x
x +

u

y
y

u

z
z

∂
∂

∂
∂

∂
∂

      ⇒ = +∆ ∆ ∆ ∆u
u

x
x +

u

y
y

u

z
z� �max

∂
∂

∂
∂

∂
∂

                = + + −5 10 152

3 3

2

4

y

z
x

xy

z
y

xy

z
z∆ ∆ ∆ (1)

Substituting the given values in (1) and using the formula to find the relative maximum error we get

E
u

R� �
� �

max
max .

. .= = =
∆

u

0 03

5
0 006

Example 1.14 If X = 2.536, find the absolute error and relative error when

(i) X is rounded and

(ii) X is truncated to two decimal digits.

Solution

(i) Here X = 2.536

Rounded-off value of X  is x = 2.54

The Absolute Error in X is

EA = |2.536 – 2.54|

   = |– 0.004| = 0.004

Relative Error = ER = 
0 004

2 536

.

.
 = 0.0015772

= 1.5772 × 10–3.

(ii) Truncated Value of X is x = 2.53

 Absolute Error EA = |2.536 – 2.53| = |0.006| = 0.006

∴     Relative Error = ER = 
E

X
A

 = 
0 006

2 536

.

.
 = 0.0023659

= 2.3659 × 10–3.

Example 1.15 If π = 22

7
 is approximated as 3.14, find the absolute error, relative error and relative percentage error.

Solution  Absolute Error = EA = −22

7
314.  = −22 2198

7

.
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      = 0 02

7

.
  = 0.002857.

       Relative Error ER = =0 002857

22 7
0 0009

.

/
.

Relative Percentage Error EP = ER × 100 = 0.0009 × 100

      = 0.09

        ∴      EP = 0.09%.

Example 1.16   The number x = 37.46235 is rounded off to four significant figures. Compute the absolute error, relative
error and the percentage error.

Solution    We have     X = 37.46235; x = 37.46000

          
Absolute error = X x

EA

− = −
=

37 46235 37 46000

0 00235

. .

.

  E
X x

xr = − = = −0 00235
37 46235

6 27 10 5.
.

. ×

  E EP r= = −× . ×100 6 27 10 3

Exercise 1.1

1. Round-off the following numbers to two decimal places.

(a) 52.275 (b) 2.375 (c) 2.385 (d) 81.255 (e) 2.375

2. Round-off the following numbers to three decimal places.

(a) 0.4699 (b) 1.0532 (c) 0.0004555 (d) 0.0028561 (e) 0.0015

3. Round-off the following numbers to four decimal places.

(a) 0.235082 (b) 0.0022218 (c) 4.50089 (d) 2.36425 (e) 1.3456

4. The following numbers are correct to the last digit, find the sum.

(a) 2.56, 4.5627, 1.253, 1.0534

(b) 0.532, 7.46571, 1.501, 3.62102

(c) 1.3526, 2.00462, 1.532, 28.201, 31.0012

(d) 5.2146, 20.12, 11.2356, 1.8948

5. Find the relative error in computation of

x – y for x = 12.05 and y = 8.02 having absolute errors ∆x = 0.005 and ∆y = 0.001.

6. Find the relative error in computation of x – y for x = 9.05 and y = 6.56 having absolute errors ∆x = 0.001
and ∆y = 0.003 respectively.

7. Find the relative error in computation of x + y for x = 11.75 and y = 7.23 having absolute errors ∆x = 0.002
and ∆y = 0.005.

8. If y = 4x6 – 5x, find the percentage error in y at x = 1, if the error is x = 0.04.



16 NUMERICAL ANALYSIS

9. If 
5

6
 be represented approximately by 0.8333, find (a) relative error and (b) percentage error.

10. If f (x) = 4 cos x – 6x, find the relative percentage error in f (x) for x = 0 if the error in x = 0.005.

11. Find the relative percentage error in the approximate representation of 
4

3
 by 1.33.

12. Determine the number of correct digits in the number x given its relative error ER.

(a) x = 386.4, ER = 0.3

(b) x = 86.34, ER = 0.1

(c) x = 0.4785, ER = 0.2 × 10–2

13. Determine the number of correct digits in the number x, given its absolute error EA.

(a) x = 0.00985, EA = 0.1 × 10–4

(b) x = –33.783, EA = 0.3 × 10–2

(c) x = 48.2461, EA = 0.21 × 10–2

(d) x = 841.256, EA = 0.1

(e) x = 0.4942, EA = 0.24 × 10–2

14. Evaluate X = −5 01 5.  correct to three significant figures.

15. If 
2

3
 is approximated to 0.6667. Find

(a) absolute error

(b) relative error and

(c) percentage error

16. Given X = 66.888. If x is rounded to 66.89 find the absolute error.

17. If 
1

3
 is approximated by 0.333 find

(a) absolute error

(b) relative error and

(c) relative percentage error

18. If u
xy

z
= 5 2

3
 and error in x, y, z be 0.001, 0.002, and 0.003, compute the relative error in u. Where x = y =

z = 1.

19. If the true value of a number is 2.546282 and 2.5463 is its approximate value; find the absolute error, relative
error and the percentage error in the number.

20. If a = 10 00 0 05. .±

b = ±0 0356 0 002. .

c = ±15300 100

d = ±62000 500

Find the maximum value of the absolute error in
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(i) a + b + c + d

(ii) a + 5c – d

(iii) c3

21. If ( . . ) / ( . )0 31 2 73 0 35x x+ +

where the coefficients are rounded off find the absolute and relative in y when x = 0 5 0 1. .± .

22. If u = 4x2y3/z4 and errors in x, y, z be 0.001 compute the relative maximum error in u when x y z= = = 1.

23. If x = 865 250 is rounded off to four significant figures compute the absolute error, relative error and the
percentage error in x.

24. Find the relative error in the function

y = k x x xm m
n

mn
1 2

1 2 ...

25. If y = 3 26x x( )−  find the percentage error in y at x = 1, if the percentage error in x is 5.

26. If u x y z= 10 3 2 2  and errors in x, y, z are 0.03, 0.01, 0.02 respectively at x = 3, y = 1, z = 2. Calculate the

asolute error and relative error and percentage erro in u.

27. If the number X = 3.1416 is correct to 4 decimal places; then find the error in X.

28. If u
xy

z
= 5 2

2  and ∆x = ∆y = ∆z = 0.1, compute the maximum relative error in u where x = y = z = 1.

29. Find the relative error in the evaluation of x + y where x = 13.24, y = 14.32, ∆x = 0.004 and ∆y = 0.002.

30. If u = xy + yz + zx, find the relative percentage error in the evaluation of u for x = 2.104, y = 1.935, z = 0.845,
which are the approximate values of the last digit.

31. If u = 4x6 + 3x – 9, find the relative, percentage errors in computing x = 1.1 given that error in x is 0.05%.

32. If a = 5.43 m and b = 3.82 m, where a and b denote the length and breadth of a rectangular plate, measured
accurate upto 1 cm, find error in computing its area.

33. Find the percentage error in computing y = 3x6 – 6x at x = 1, given that ∆x = 0.05.

34. Find the percentage error in computing u x=  at x = 4.44, when x is corrected to its last digit.

35. Define the terms : (a) Absolute error

(b) Relative error

(c) Percentage error.

36. Explain the rules of round off.

Answers

1. (a) 52.28 (b) 2.38 (c) 2.38 (d) 81.26 (e) 2.37

2. (a) 0.470 (b) 1.05 (c) 0.000456 (d) 0.00286 (e) 0.002

3. (a) 0.2351 (b) 0.002222 (c) 4.501 (d) 2.364 (e) 1.346

4. (a) 9.43 (b) 13.120 (c) 64.091 (d) 38.46

5. 0.00029  6. 0.00034  7. 0.00037  8. 76%

9. ER = 0.00004, Ep = 0.004% 10. 0.75% 11. Ep = 0.25%
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12. (a) 1 (b) 0 (c) 2

13. (a) 2 (b) 4 (c) 4 (d) 3 (e) 2

14. 2.235 × 10–3 15. (a) 0.000033  (b) 0.00005 (c) 0.005 16. 0.002

17. (a) 0.00033 (b) 0.001 (c) 0.1% 18. 0.0141

19. 1.8 × 10–5, 7.07 × 10–6, 7.07 × 10–4%

20. (i) 600.05 (ii) 1000.05 (iii) 5.766 × 1012

25. 0.075 26. 0.036 27. EA = 50, EP = 6.71 × 10–5 EP = 6.71 × 10–3

28. 0.5 29. 0.000217 30. 0.062% 31. 0.55% 32. 0.0925 ~ 0.1 m2

33. 0% 34. 0.05%



2.1 INTRODUCTION

In this chapter we shall discuss some numerical methods for solving algebraic and transcendental
equations. The equation f (x) = 0 is said to be algebraic if f (x) is purely a polynomial in x. If f (x)
contains some other functions, namely, Trigonometric, Logarithmic, Exponential, etc., then the
equation f (x) = 0 is called a Transcendental Equation.

The equations

x3 – 7x + 8 = 0

and x4 + 4x3 + 7x2 + 6x + 3 = 0

are algebraic.

The equations

3 tan 3x = 3x + 1,

x –2 sin x = 0

and ex = 4x

are transcendental.

Algebraically, the real number α  is called the real root (or zero of the function f (x)) of the
equation f (x) = 0 if and only if f ( )α = 0  and geometrically the real root of an equation f (x) = 0
is the value of x where the graph of f (x) meets the x-axis in rectangular coordinate system.

We will assume that the equation

f (x) = 0 (1)

has only isolated roots, that is for each root of the equation there is a neighbourhood which does
not contain any other roots of the equation.

Approximately the isolated roots of the equation (1) has two stages.

1. Isolating the roots that is finding the smallest possible interval (a, b) containing one and only
one root of the equation (1).

2. Improving the values of the approximate roots to the specified degree of accuracy. Now
we state a very useful theorem of mathematical analysis without proof.

2
SOLUTION OF ALGEBRAIC AND

TRANSCENDENTAL EQUATIONS

19
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Theorem 2.1 If a function f (x) assumes values of opposite sign at the end points of interval
(a, b), i.e., f (a) f (b) < 0 then the interval will contain at least one root of the equation f (x) = 0,
in other words, there will be at least one number c ∈ (a, b) such that f (c) = 0. Throughout our
discussion in this chapter we assume that

1. f (x) is continuous and continuously differentiable up to sufficient number of times.

2. f (x) = 0 has no multiple root, that is, if c is a real root f (x) = 0 then f (c) = 0 and
′ <f x( ) 0  f x′ >( ) 0  in (a, b), (see Fig. 2.1).

Y

X
x a = 

x c = 

y f x = ( )

x = b

f b( )

f a( )

O
X´

Y´

Fig. 2.1

2.2 GRAPHICAL SOLUTION OF EQUATIONS

The real root of the equation

f (x) = 0, refer (1)

can be determined approximately as the abscissas of the points of intersection of the graph of the
function y = f (x) with the x-axis. If f (x) is simple, we shall draw the graph of y = f (x) with respect
to a rectangular axis X´OX and Y´OY. The points at which the graph meets the x-axis are the location
of the roots of (1). If f (x) is not simple we replace equation (1) by an equivalent equation say
φ ψ( ) ( ),x x=  where the functions φ ( )x  and ψ ( )x  are simpler than f(x). Then we construct the
graphs of y x= φ ( )  and y x= ψ ( ).  Then the x-coordinate of the point of intersection of the graphs
gives the crude approximation of the real roots of the equation (1).

Example 2.1 Solve the equation x log10x = 1, graphically.

Solution The given equation

x log10x = 1

can be written as

log10x =
1

x
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where log10x and 
1

x
 simpler than xlog10x, constructing the curves y = log10x and y

x
= 1

, we get x-coordinate of the

point of intersection as 2.5 (see Fig. 2.2).

∴ The approximate value of the root of x log10x = 0.1, is c = 2.5.

Y

y x = log10

0
1 2 3

X

y = 1
x

Fig. 2.2

Exercise 2.1

1. Solve x2 + x – 1 = 0 graphically.

2. Solve – e2x + 2x + 0.1 = 0 graphically.

3. Solve the cubic equation x3 – 1.75x + 0.75 = 0 graphically.

4. Solve x3 + 2x + 7.8 = 0.

5. Solve graphically the real root of x3 –3.6 log10x – 2.7 = 0 correct to two decimal places.

6. Solve graphically the equation 2x3 – x2 – 7x + 6 = 0.

7. Draw the graph of y = x3 and y + 2x = 20 and find an approximate solution of the equation x3 + 2x
– 20 = 0.

8. Solve x3 + 10x – 15 = 0 graphically.

9. Solve graphically the following equations in the range (0, π/2) ; (i) x = cos x (ii) ex = 4x (iii) x = tan
x.

Answers

1. 0.6 and –1.6 (approximately) 2. 0.3 (approximately) 3. –1.5, 0.5 and 1

4. –1.65 5. 1.93 6. 1, 1.5, –2

7. 2.47 8. 1.297 9. (i) 0.74 (ii) 0.36, 2.15 (iii) 4.49
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2.3 METHOD OF BISECTION

Consider the equation

f(x) = 0, refer (1)

where f(x) is continuous on (a, b) and f(a) f(b) < 0. In order to find a root of (1) lying in the interval
(a, b). We shall determine a very small interval (a0, b0) (by graphical method) in which f(a0) f(b0)
< 0 and f x′ ( )  maintains the same sign in (a0, b0), so that there is only one real root of the equation
f(x) = 0.

Divide the interval in half and let

                              x
a b

1 2
= +0 0

If f(x) = 0 then x1 is a root of the equation. If f(x1) ≠  0 then either f(a0) f(x1) < 0 of f(b0)
f(x1) < 0. If f(a0) f(x1) < 0 then the root of the equation lies in (a0, x1) otherwise the root of the
equation lies in (x1, b0). We rename the interval in which the root lies as (a1, b1) so that

                         b a b a1
1

2
– ,1 0 0= −� �

now we take

                             x
a b

2 2
= +1 1

If f(x2) = 0 then x2 is the root of f(x) = 0. If f(x2) ≠  0 and f(x2) f(a1) < 0, then the root lies
in (a1, x2). In which case we rename the interval as (a2, b2), otherwise (x2, b1) is renamed as (a2,
b2) where

                        a b b a2 2 2 0 0
1

2
− = −� �.

Proceeding in this manner, we find

                            x
a b

n
n n

+ = +
1 2

which gives us the (n + 1)th approximation of the root of f(x) = 0, and the root lies (an, bn) where

                         
b a b an n n

− = −1

2
0 0� � ,

since the left end points a1, a2, …, an, … form a monotonic non-decreasing bounded sequence, and
the right end points b1, b2, b2, …, bn, … form a monotonic non-increasing bounded sequence, then
there is a common limit

                              
c =

n
lim
→ ∞ → ∞

=a bn
n

nlim

such that f(c) = 0 which means that c is a root of equation (1).

The bisection method is well suited to electronic computers. The method may be conveniently
used in rough approximations of the root of the given equation. The bisection method is a simple
but slowly convergent method.
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Example 2.2 Solve the equation x3 – 9x + 1 = 0 for the root lying between 2 and 3, correct to three significant figures.

Solution We have

f(x) = x3 – 9x + 1,

f(2) = –9, f(3) = 1

∴  f(2) f(3) < 0.

Let a0 = 2, b0 = 3

n an bn
x

a b
n

n n
+ =

+�
��

�
��1

2
f(xn + 1)

0 2 3 2.5 –5.8

1 2.5 3 2.75 –2.9

2 2.75 3 2.88 –1.03

3 2.88 3 2.94 –0.05

4 2.94 3 2.97 0.47

5 2.94 2.97 2.955 0.21

6 2.94 2.955 2.9475 0.08

7 2.94 2.9475 2.9438 0.017

8 2.94 2.9438 2.9419 0.016

check 9 2.9419 2.9438 2.9428 0.003

In the 8th step an, bn and xn + 1 are equal up to three significant figures. We can take 2.94 as a root up to three
significant figures.

∴  The root of x3 – 9x + 1 = 0 is 2.94.

Example 2.3 Compute one root of ex – 3x = 0 correct to two decimal places.

Solution Let

f(x) = ex – 3x

f(1.5) = –0.02, f(1.6) = 0.15

′f x� �   = ex – 3 > 0 for x ∈ [1.5, 1.6], only one root of f(x) = 0 lies between 1.5 and 1.6, here a0 = 1.5,

b0 = 1.6.

n an bn
x

a b
n

n n
+ =

+�
��

�
��1

2
f(xn + 1)

0 1.5 1.6 1.55 0.06

1 1.5 1.55 1.525 0.02

2 1.5 1.525 1.5125 0.00056

3 1.5 1.5125 1.5062 –0.00904

4 1.5062 1.5125 1.50935 –0.00426

check 5 1.50935 1.5125 1.51092 –0.00184
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In the 4th step an, bn and xn + 1 are equal up to two decimal places. Thus, x = 1.51 is the root of f(x) = 0,
correct up to two decimal places.

Example 2.4 Find the root of tan x + x = 0 up to two decimal places, which lies between 2 and 2.1.

Solution Let f(x) = tan x + x

Here f(2) = –0.18, f(2.1) = 0.39

Thus, the root lies between 2.0 and 2.1

∴ a0 = 2, b0 = 2.1

n an bn
x

a b
n

n n
+ =

+�
��

�
��1

2
f(xn + 1)

0 2.0 2.1 2.05 0.12

1 2.0 2.05 2.025 –0.023

2 2.025 2.05 2.0375 0.053

3 2.025 2.0375 2.03125 –0.0152

4 2.025 2.03125 2.02812 –0.0039

5 2.02812 2.03125 2.02968 0.0056

check 6 2.02813 2.02968 2.02890 0.00087

In the 5th step, an, bn and xn + 1 are equal up to two decimal places.

∴  x = 2.03 is a root of f(x) = 0, correct up to two decimal places.

Exercise 2.2

1. Find a root of the equation x3 – 4x – 9 = 0 correct to three decimal places by using bisection method.

2. Find the positive roots of the equation x3 – 3x + 1.06 = 0, by method of bisection, correct to three
decimal places.

3. Compute one positive root of 2x – 3 sin x – 5 = 0, by bisection method, correct to three significant
figures.

4. Compute one root of x + log x – 2 = 0 correct to two decimal places which lies between 1 and 2.

5. Compute one root of sin x = 10(x – 1) correct to three significant figures.

6. Compute the root of log x = cos x correct to two decimal places.

7. Find the interval in which the smallest positive root of the following equation lies. Also find the root
correct to two decimal places. Use bisection method

(a) tan x + tan hx = 0

(b) x3 – x – 4 = 0

8. Find the root of the equation x3 – x – 11 = 0, using bisection method correct to three decimal places
(which lies between 2 and 3).

9. Find the root of the equation x4 – x – 10 = 0, using bisection method.
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10. Solve the equation x – exp 
1

x
�
��
�
��  = 0, by bisection method

Answers

1. 2.6875 2. 0.370 3. 2.88

4. 1.56 5. 1.09 6. 1.30

7. (a) (2.3625, 2.36875); 2.37 (b) (1.795898, 1.796875), 1.80 8. 2.375

9. 1.8556 10. 0.567

2.4 THE ITERATION METHOD

Suppose we have an equation

f(x) = 0 refer (1)

whose roots are to be determined. The equation (1) can be expressed as

x = f(x), (2)

putting x = x0 in R.H.S. of (2) we get the first approximation

                             x xo1 = φ� �.
The successive approximations are then given by

                             

x x

x x

x x

x xn n

2 1

3 2

4 3

1

=
=
=

= −

φ
φ
φ

φ

� �
� �
� �

	 

�

where the sequence of approximations x1, x2, …, xn always converge to the root of x x= φ� �  and

it can be shown that if ′ <φ x� � 1  when x is sufficiently close to the exact value c of the root and

x cn →  as n → ∞ .

Theorem 2.2 Let x = α  be a root of f(x) = 0, which is equivalent to x x= φ� �  and I be an

interval containing α.  If | ( )|φ′ <x 1 for all x in I, then the sequence of approximations x0, x1, …,

xn will converge to the root α,  provided that the initial approximation x0 is chosen in I.

Proof α  is a root of f(x) = 0

           ⇒ α  is a root of x x= φ� �

                          ⇒ =α φ α� �. (3)
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Let xn – 1 and xn denote two successive approximations to α,  then we have

                             x xn n= −φ 1	 
 ,

                      ∴ − = −−x xn nα φ φ α1	 
 � �.

By mean value theorem we have

                 
φ φ α

α
φ β

x

x

n

n

−

−

−

−
= ′

1

1

	 
 � �
� � ,

where                           xn− < <1 β α

             ⇒ − = − ′− −φ φ α α φ βx xn n1 1	 
 � � 	 
 � �. (4)

Let λ  be the maximum absolute value of ′φ x� �  over I, then from (4) we have

                        x xn n− ≤ −−α λ α1 (5)

                   ⇒ − ≤ −− −x xn n1 2α λ α

                     ∴ − ≤ −−x xn nα λ α2
2 (6)

proceeding in this way, we get

                        x xn
n− ≤ −α λ α0 . (7)

If λ < 1  over I, then the RHS of (7) becomes small (as n increases) such that

                      Lt xn − =α 0

                          Lt xn = α .

∴ The sequence of approximations will converge to the root α  if λ < 1 , i.e., ′ <φ x� � 1 .

If λ > 1,  then

                          ′ >φ x� � 1

⇒ −xn α  will become indefinitely large, as n increases and the sequence approximations

does not converge.

Note
1. The smaller the value of φ′(x) the more rapid will be the convergence.

2. From (1) we have the relation
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x xn n− ≤ −−α λ α1 ,  ( λ  is a constant).

Hence the error at any stage is proportional to the error in the previous stage. Therefore the iteration method
has a linear convergence.

3. Iteration method is more useful for finding the real roots of an equation which is in the form of an infinite
series.

Example 2.5 Find the root of x3 + x –1 = 0 by iteration method, given that root lies near 1.

Solution Given x = 1 is the approximate value of the root

x3 + x – 1 = 0

can be put in the form                   x
x

=
+
1

1 2

such that                               φ x
x

� � =
+
1

1 2
and x0 = 1

                           
′ =

−

+
φ x

x

x
� �

	 

2

1 2 2

at x = 1; we have                   ′ = ′ = −

+
<φ φx� � � �

	 

1

21

1 1
1

2 2

.

so the iteration method can be applied.

                           ∴ = =
+

=
+

=x x
x

1 0
0
2 2

1

1

1

1 1
0 5φ� � .

                              
x x

x
2 1

1
2 2

1

1

1

1 05
08= =

+
=

+
=φ� �

� �.
. ,

                              
x x

x
3 2

2
2 2

1

1

1

1 08
0 61= =

+
=

+
=φ� �

� �.
. .

∴  The root of the given equation is 0.61 after three iterations.

Note: We can write the equation x3 + x – 1 = 0 in different forms as

                               x
x

x x= − = −1
1 1

1 3
, .

/
and � �

Example 2.6 Find a real root of cos x = 3x – 1, correct to three decimal places.

Solution We have

                            f x x x� � = − + =cos 3 1 0

                            f 0 0 0 1 2 0� � = − + = >cos
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                           f
π π π π
2 2

3
2

1
3

2
1 0

�
��
�
�� = − + = − + <cos

                     ⇒ ⋅���
�
�� <f 0

2
0� � π

∴  A root of f(x) = 0 lies between 0 and 
π
2

.

The given equation can be written as x x= +1

3
1 cos .

Here                             φ x x� � = +1

3
1 cos

                         ∴ ′ = −φ x
x� � sin

3

                       ⇒ ′ = < �
��

�
��φ π

x
x� � sin

,
3

1 0
2

in

Iteration method can be applied

Let x0 = 0

be the initial approximation.

∴  We get                         x x1 0
1

3
1 0 0 66667= = + =φ� � cos .

     x x2 1
1

3
1 0 66667 0 595295 0 59530= = + = ≈φ� � cos . . .

     x x3 2
1

3
1 0 59530 0 6093267 0 60933= = + = ≈φ� � cos . . .

     x x4 3
1

3
1 0 60933 0 6066772 0 60668= = + = ≈φ� � cos . . .

     x x5 4
1

3
1 0 60668 0 6071818 0 60718= = + = ≈φ� � cos . . .

     x x6 5
1

3
1 0 60718 0 6070867 0 60709= = + = ≈φ� � cos . . .

    x x7 6
1

3
1 0 60709 0 6071039 0 60710= = + = ≈φ� � cos . . .

     x x8 7
1

3
1 0 60710 0 60710= = + =φ� � cos . .

The correct root of the equation is 0.607 correct to three decimal places.
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Example 2.7 Find by the iteration method, the root near 3.8, of the equation 2x – log10 x = 7 correct to four decimal
places.

Solution The given equation can be written as

                              x x= +1

2
710log

clearly ′ <φ x� � 1  when x is near 3.8

we have x0 = 3.8

                              x x1 0 10
1

2
38 7 3 79= = + =φ� � log . . ,

                              x x2 1 10
1

2
3 79 7 3 7893= = + =φ� � log . . ,

                              x x3 2 10
1

2
3 7893 7 3 7893= = + =φ� � log . . ,

                              x x2 3 37893= = .

∴  We can take 3.7893 as the root of the given equation.

Example 2.8  Find the smallest root of the equation

1 x
x

( 2! )

x

(3! )

x

(4! )

x

(5! )
...

2

2

3

2

4

2

5

2
− + − + − +  = 0 ...(1)

Solution. The given equation can be written as

x = 1
2 3 4 5

2

2

3

2

4

2

5

2
+ − + − + =x x x x

x
( !) ( !) ( !) ( !)

... ( )φ (say)

omitting x2 and the other higher powers of x we get

x = 1

Taking x0 = 1, we obtain

x1 = φ(x0) = 1
1

2

1

3

1

4

1

52 2 2 2
+ − + + +

( !) ( !) ( !) ( !)
...

= 1.2239

x2 = φ( )
( . )

( !)

( . )

( !)

( . )

( !)

( . )

( !)
...x1

2

2

3

2

4

2

5

2
1

1 2239

2

1 2239

3

1 2239

4

1 2239

5
= + − + − +

= 1.3263

x3 = φ( )
( . )

( !)

( . )

( !)

( . )

( !)

( . )

( !)
...x2

2

2

3

2

4

2

5

2
1

1 3263

2

1 3263

3

1 3263

4

1 3263

5
= + − + − +

= 1.3800

x4 = φ( )
( . )

( !)

( . )

( !)

( . )

( !)

( . )

( !)
...x3

2

2

3

2

4

2

5

2
1

1 3800

2

1 3800

3

1 3800

4

1 3800

5
= + − + − +

= 1.409
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Similarly, x5 = 1.4250

x6 = 1.4340

x7 = 1.4390

x8 = 1.442

Correct to 2 decimal places, we get

x7 = 1.44 and x8 = 1.44

∴ The root of (1) is 1.44 (approximately).

2.4.1 Aitken’s ∆ 2  Method

Let x = α  be a root of the equation

f(x) = 0 (1)

and let I be an interval containing the point x = α . The equation (1) can be written as

                              x x= φ� �

such that φ x� �  and ′φ x� �  are continuous in I and ′ <φ x� � 1  for all x in I. Let

xi – 1, xi and xi + 1 be three successive approximations of the desired root α.  Then we know that

                         α λ α− = − −x xi i 1	 


and                          α λ α− = −+x xi i1 � �

( λ  is a constant such that ′ ≤ <φ λxi� � 1 for all i )

dividing we get             
α

α
α
α

−
−

=
−
−+

−x

x

x

x
i

i

i

i1

1

                          ⇒ = −
−

− −
+

+

+ −

α x
x x

x x x
i

i i

i i i

1
1

2

1 12

	 

	 


(2)

Since                       ∆ x x xi i i= −+1

and                           ∆2
1

2
11x E xi i− −= −� �

= − + −E E xi
2

12 1	 


= − ++ −x x xi i i1 12

(2) can be written as

                              α = −+
−

x
x

x
i

i

i
1

2

2
1

∆
∆
� �

(3)
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formula (3) yields successive approximation to the root α  and the method is called Aitken’s ∆2

method.

Note: We know that iteration method is linearly convergent. The slow rate of convergence can be accelerated by
using Aitken’s method. And for any numerical application the values of the under-mentioned quantities, must be
computed.

∆ ∆2

xi −1

∆ xi −1

xi ∆2
1xi −

∆ xi

xi +1

Example 2.9 Find the root of the equation

3x = 1 + cos x

correct to three decimal places.

Solution We have f(x) = cos x – 3x + 1.

                                 f f0 1
2 2

3
2

1� � = �
��
�
�� = − �

��
�
�� +and

π π
cos

Π

= – 8.42857

                               ∴ > �
��
�
�� <f f0 0

2
0� � and

π

                      ⇒ �
��
�
�� <f f0 0� � π

2
,  therefore a root lies between 0 and 

π
2

.

The given equation can be written as

                                     x x x= + =1

3
1 cos� � � �φ  (say)

                            ′ =
−

⇒ ′ =
−

< − ∈ ���
�
��φ φ π

x
x

x
x

x� � � �sin sin
,

3 3
1 0

2

Hence, iteration method can be applied.

Let x0 = 0 be the initial approximation of the root

∴                            x x1 0
1

3
1 0 0 6667= = + =φ� � � �cos .

                              x x2 1
1

3
1 0 6667 0 5953= = + =φ� � � �� �cos . .

                              x x3 2
1

3
1 0 5953 0 6093= = + =φ� � � �cos . .
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constructing the table, we have

x ∆x ∆2

x1 = 0.667
−0 0714

1

.
∆x

x2 = 0.5953
0 0854

2
1

.

∆ x

x3 = 0.6093
0 014

2

.

∆ x

Hence                         x x
x

x
4 3

2
2

2
1

2

0 6093
0 014

0 0854
= − = −

∆
∆
� � � �

� �
.

.

.

= 0.607

∴ The required root is 0.607.

Exercise 2.3

1. Find the real root of the equation x3 + x – 1 = 0 by the iteration method.

2. Solve the equation x3 – 2x2 – 5 = 0 by the method of iteration.

3. Find a real root of the equation, x3 + x2 – 100 = 0 by the method of successive approximations (the
iteration method).

4. Find the negative root of the equation x3 – 2x + 5 = 0.

5. Find the real root of the equation x – sin x = 0.25 to three significant digits.

6. Find the root of x2 = sin x, which lies between 0.5 and 1 correct to four decimals.

7. Find the real root of the equation x3 – 5x – 11 = 0.

8. Find the real root of the equation

x
x x x x x− + − + − + +

3 5 7 9 11

3 10 42 216 1320
...  −

− −
+ =− −

1
1 2 1

0 4431135
1

2 1

� �n
nx

n n( )! ( )
... .

9. Find the smallest root of the equation by iteration method

1
2 3 4 5

0
2

2

3

2

4

2

5

2
− + − + − + =x

x x x x

( !) ( !) ( !) ( !)
...

10. Use iteration method to find a root of the equations to four decimal places.

(i) x3 + x2 – 1 = 0

(ii) x = 1/2 + sin x  and

(iii) ex – 3x = 0, lying between 0 and 1.

(iv) x3 – 3x + 1 = 0

(v) 3x – log10 x – 16 = 0
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11. Evaluate 30  by iteration method.

12. (a) Show that the equation loge x = x2 – 1, has exactly two real roots α1 0 45= .  and α2 1= .

(b) Determine for which initial approximation x0, the iteration

x xn e n+ = +1 1 log

converges to α1 or α2.

13. Using Aitken’s ∆2 process find the root of

x x x= + =1

2
10sin ,

14. Apply Aitken’s ∆2 method and show that 1.524 is a root of 2x = cos x + 3.

Answers

 1. 0.68  2. 2.69  3. 4.3311
 4. –2.09455  5. 1.172  6. 0.8767
 7. 2.95  8. 0.47693  9. 1.442
10. (i) 0.7548 (ii) 1.4973 (iii) 0.671 (iv) 1.532 (v) 2.108 11. 5.4772 13. 1.4973

2.5 NEWTON–RAPHSON METHOD OR NEWTON ITERATION METHOD

This is also an iteration method and is used to find the isolated roots of an equation f(x) = 0, when
the derivative of f(x) is a simple expression. It is derived as follows:

Let x = x0 be an approximate value of one root of the equation f(x) = 0. If x = x1, is the exact
root then

f(x1) = 0 (8)

where the difference between x0 and x1 is very small and if h denotes the difference then

x1 = x0 + h (9)

Substituting in (8) we get

f(x1) = f(x0 + h) = 0

Expanding by Taylor’s theorem we get

f x
h

f x
h

f x0 0

2

01 2
0� � � � � �+ ′ + ′′ + =

! !
... (10)

Since h is small, neglecting all the powers of h above the first from (10) we get

               f x
h

f x0 01
0� � � �+ ′ =

!
, approximately

                           
⇒ =

−
′

h
f x

f x
0

0

� �
� �

∴  From (9) we get         x x h x
f x

f x1 0 0
0

0

= + = −
′
� �
� �

(11)
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The above value of x1 is a closer approximation to the root of f(x) = 0 than x0. Similarly if x2
denotes a better approximation, starting with x1, we get

                              
x x

f x

f x2 1
1

1

= −
′
� �
� �

.

Proceeding in this way we get

                            x x
f x

f xn n
n

n
+ = −

′1

� �
� �

. (12)

The above is a general formula, known as Newton–Raphson formula. Geometrically, Newton’s
method is equivalent to replacing a small arc of the curve y = f(x) by a tangent line drawn to a point
of the curve. For definition sake, let us suppose ′′ >f x� � 0,  for a x b≤ ≤  and f(b) > 0 (see Fig.
2.3) whose x0 = b, for which f x f x0 0 0� � � �′′ > .

Draw the tangent line to the curve y = f(x) at the point B0 [x0, f(x0)].

Let us take the abscissa of the point of intersection of this tangent with the
x-axis, as the first approximation x1 of the root of c. Again draw a tangent line through B [x1, f(x1)],
whose abscissa of the intersection point with the x-axis gives us the second approximation x2 of the root
c and so on. The equation of the tangent at the point Bx [xn, f(xn)] [n = 0, 1, 2, …, n] is given by

                      y f x f x x xn n n− = ′ −� � � �� �.
Putting y = 0, x = xn + 1' we get

                            x x
f x

f xn n
n

n
+ = −

′1

� �
� �

.

Y

O f a( )

A

a C

B2

x2 x1 xn

b x = n

x´

B1

X

B0

Fig. 2.3
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Note :

1. If we put x0 = b, (where f x f x( ) ( ) )0 0 0′ ′ <  then the tangent drawn to the curve y = f(x) at the point

A [a, f(a)], would give us a point x1 which lies outside the interval [a, b] from which it is clear that

the method is impractical for such a choice. Thus the good choice of initial approximation for which

f x f x( ) ( )0 0 0′ ′ >  yields better results. Newton’s method is applicable to the solution of equation

involving algebraic functions as well as transcendental functions. At any stage of the iteration, if

f x

f x
i

i

( )

( )′

has n zeros, after decimal point then the result is taken to be correct to 2n decimal places.

2. Criterion for ending the iteration: The decision of stopping the iteration depends on the accuracy

desired by the user. If ε  denotes the tolerable error, then the process of iteration should be terminated
when

                      x xn n+ − ≤1 ε.

In the case of linearly convergent methods the process of iteration should be terminated when f xn( ) ≤ ε

where ε  is tolerable error.

Example 2.10 Using Newton–Raphson method, find correct to four decimals the root between 0 and 1 of the equation
x3 – 6x + 4 = 0

Solution We have

f(x) = x3 – 6x + 4

f(0) = 4 and f(1) = –1

f(0) f(1) = – 4 < 0.

∴  A root of f(x) = 0 lies between 0 and 1. The value of the root is nearer to 1.

Let x0 = 0.7 be an approximate value of the root

Now

f(x) = x3 – 6x + 4

                            ⇒ ′ = −f x x� � 3 62

∴ = = − + =f x f0
3

0 7 0 7 6 0 7 4 0143� � � � � � � �. . . .

       f x f′ ′ = − = −( ) ( . ) ( . ) . .0
20 7 3 0 7 6 4 53

Then by Newton’s iteration formula, we get

                                    x x
f x

f x1 0
0

0

= −
′
� �
� �  = −

−
0 7

0143

4 53
.

.

.

� �
� �

= 0.7 + 0.0316 = 0.7316

                                f x1
3

0 7316 6 0 7316 4 0 0019805� � � � � �= − × + =. . .

f x′ ( )1 = 3 0 7316 6 4 394282× ( . ) . .− = −
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The second approximation of the root is

                              x x
f x

f x2 1
1

1

0 7316
0 0019805

4 39428
= −

′
= +

� �
� �

.
.

.

∴ = ≈x2 0 73250699 0 7321. .  (correct to four decimal places).

The root of the equation = 0.7321 (approximately).

Example 2.11 By applying Newton’s method twice, find the real root near 2 of the equation x4 – 12x + 7 = 0.

Solution Let

                                 f x x x1
4 12 7� � = − +

                             ∴ ′ = −f x x� � 4 123

Here x0 = 2

     ∴ = = − + = −f x f0
42 2 12 2 7 1� � � � .

         ′ = ′ = − =f x f0
3

2 4 2 12 20� � � � � �

                                 ∴ = −
′

x x
f x

f x1 0
0

0

� �
� �  = −

−
= =2

1

20

41

20
2 05

� �
.

and                                       x x
f x

f x2 1
1

1

= −
′
� �
� �

= −
− +

−
2 05

2 05 12 2 05 7

4 2 05 12

4

2
.

. .

.

� � � �
� �  = 2 6706.

∴  The root of the equation is 2.6706.

Example 2.12 Find the Newton’s method, the root of the ex = 4x, which is approximately 2, correct to three places
of decimals.

Solution Here

f(x) = ex – 4x

f(2) = e2 – 8 = 7.389056 – 8 = – 0.610944 = – ve

f(3) = e3 – 12 = 20.085537 – 12 = 8.085537 = + ve

∴  f(2) f(3) < 0

∴  f(x) = 0 has a root between 2 and 3.

Let x0 = 2.1 be the approximate value of the root

f(x) = ex – 4x

                             ⇒ ′ = −f x ex� � 4

              ∴ = − = − = −f x e0
2 1 4 21 816617 8 4 0 23383� � � �. . . . .

                                ′ = − =f x e0
2 1 4 416617� � . . .
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Let x1 be the first approximation of the root

                                 
∴ = −

′
x x

f x

f x1 0
0

0

� �
� �  

= −
−

21
0 23383

416617
.

.

.

� �

= 2.1 + 0.0561258 = 2.1561 (approximately).

If x2 denotes the second approximation, then

                                    
x x

f x

f x2 1
1

1

= −
′
� �
� �

= −
−

−
21561

4 21561

4

2 561

2 561
.

..

.

e

e

� �
 

= −2 1561
0 0129861

4 6373861
.

.

.

= 2.1561 – 0.0028003 = 2.1533 approximately

                                f x f2 21533 0 0013484� � � �= = −. .

                               ′ = ′ =f x f2 21533 4 6106516� � � �. . .

If x3 denotes the third approximation to the root, then

                                    
x x

f x

f x3 2
2

2

= −
′
� �
� �  

= −
−

21533
0 0013484

4 6106516
.

.

.

� �
� �

= 2.1532

∴  The value of the root correct to three decimal places is 2.1532.

Example  2.13  Find the root of the equation

sin x = 1 + x3, between –2 and –1 correct to 3 decimal place by Newton
Rappon method.

Solution  Given sin x = 1 + x3

i.e., x3 – sin x + 1 = 0

Let f(x) = x x3 1− +sin

then; we have f ′(x) = 3x2 – cos x

f(–1) = –1 + 0.8415 + 1 = 0.8415

and f(–2) = –8 + 0.9091 + 1 = –6.0907

⇒ f(–1) f (–2) < 0

∴ f(x) = 0 has a root between –2 and –1.

Let x0 = –1 : be the initial approximation of the root.

The first approximation to the root is given by

x1 = x
f x

f x0
0

0
−

′
( )

( )
 = − −

− − − +

− − −
1

1 1 1

3 1 1

3

2

( ) sin ( )

( ) cos ( )

= − −1
0 8415

2 4597

.

.
 = –1.3421
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The second approximation to the root is

x2 = x
f x

f x1
1

1
−

′
( )

( )

= − − − − − +
− − −

1 3421
1 3421 1 3421 1

3 1 3421 1 3421

3

2.
( . ) sin ( . )

( . ) cos ( . )

= –1.2565

The third approximation is

x3 = x
f x

f x2
2

2
−

′
( )

( )

= − − − − − +
− − −

1 2565
1 2565 1 2565 1

3 1 2565 1 2565

3

2.
( . ) sin ( . )

( . ) cos ( . )

= –1.249 (correct to three decimal places)

Hence the root is –1.249.

Example 2.14 Solve x4 – 5x3 + 20x2 – 40x + 60 = 0, by Newton–Raphson method given that all the roots of the
given equation are complex.

Solution Let

f(x) = x4 – 5x3 + 20x2 – 40x + 60

∴  So that                    ′ = − + −f x x x x� � 4 15 40 403 2

The given equation is f(x) = 0 (1)

Using Newton–Raphson Method. We obtain

                                  x x
f x

f xn n
n

n
+ = −

′1

� �
� �

= −
− + − +

− + −
x

x x x x

x x x
n

n n n n

n n n

4 3 2

3 2

5 20 40 60

4 15 40 40

= − + −
− + −

3 10 20 60

4 15 40 40

4 3 2

3 2

x x x

x x x
n n n

n n n
(2)

Putting n = 0 and,

Taking x0 = 2(1 + i) by trial, we get

                                    x
x x x

x x x
1

0
4

0
3

0
2

0
3

0
2

0

3 10 20 60

4 15 40 40
= − + −

− + −

=
+ − + + + −

+ − + + + −

3 2 2 10 2 2 20 2 2 60

4 2 2 15 2 2 40 2 2 40

4 3 2

3 2

i i i

i i i

� � � � � �
� � � � � �

= +192 1. i� �  = +192 192. . i
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Similarly,                           x
i i i

i i i
2

4 3

3 2

3 192 192 10 192 192 20 192 192 60

4 192 192 15 192 192 40 192 192 40
=

+ − + + + −

+ − + + + −

. . . . . .

. . . . . .

� � � � � �
� � � � � �

= +1915 1908. . i

∴  1.915 + 1.908i is a root of the given equation

Imaginary roots appear in pairs, therefore 1.915 – 1.908i is also a root of the equation.

Since, f(x) = 0 is a biquadratic equation, the number of roots of the equation is four. Let us assume that α β+ i

and α β− i  is the other pair of roots of the given equation.

From (1), we get

∴ Sum of the roots = 5

⇒ + + − + + + − =1915 1908 1915 1908 5. . . .i i i i� � � � � � � �α β α β

                        ⇒ + =2 383 5α .

⇒ = − =α
5 383

3
0 585

.
.

∴  the product of roots of (1) is 60.

⇒ + − + − =α β α βi i i i� �� �� �� �1915 1908 1915 1908 60. . . .

⇒ + + =α β2 2 2 2
1915 1908 60	 
 � � � �. . i

⇒ + =0585 7 307689 60
2 2. .� �
 �� �β

⇒ + =0 342225 8 210532. .β

⇒ =β2 7 8703.

                                     β = =7 8703045 2 805. .

∴  The other two roots are 0.585 ±  2.805i

Hence the roots of the given equation are 1.915 ±  1.908i and 0.585 ±  2.805i.

Example 2.15   Find the positive root of the equation

ex = 1 x
x

2

x

6
e

2 3
0.3x+ + +

Solution. Given ex = 1
2 6

2 3
0 3+ + +x

x x
e x.

⇒ e x
x x

ex x− − − −1
2 6

2 3
0 3. = 0

Let f(x) = e x
x x

ex x− − − −1
2 6

2 3
0 3.
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then f ′(x) = e x
x

e
x

ex x x− − − −1
2

0 3
6

2
0 3

3
0 3. .. .

= e x e
x xx x− − − −���

�
��1

2
1

10
0 3

2
. .

We have f(2) = –0.0404, f(3) = 0.5173

∴ f(2) f(3) < 0

Hence: the root of f(x) = 0, lies between 2 and 3

let x0 = 2.5 (Initial approximation)

using, the Newton-Raphson formula

xn+1 = x
f x

f x
nn

n

n
−

′
=( )

( )
; ,0  1,  2,....

we obtain x1 = x
f x

f x0
0

0
−

′
( )

( )
 = 2 5

1 2 5
2 5

2
2 5

6

1 2 5
2 5

2
1

2 5
10

2 5
2 3

0 75

2 5 0 75
2

.

.
( . ) ( . )

.
( . ) .

. .

. .

−
− − − −

�
�
�
�

�
�
�
�

− − − −���
�
��

�
�
�
�

�
�
�
�

e e

e e

= 2.461326

x2 = x
f x

f x1
1

1
−

′
( )

( )

⇒ x2 = 2 461326

1 2 461326
2 461326

2
2 461326

6

1 2 461326 1
2 461326

10

2 461326
2 3

0 7383978

2 461326 0 7383978
.

.
( . ) ( . )

.
.

. ( . )

. .
−

− − − −
�
�
�
�

�
�
�
�

− − − −���
�
��

�
��

�
��

e e

e e

⇒ x2 = 2.379358

∴ x3 = x
f x

f x2
2

1
−

′
( )

( )

                          = 2 379358

1 2 379358
2 379358

2
2 379358

6

1 2 379358 1
2 379358

10

2 379358
2 3

0 7138074

2 379358 0 713874
.

.
( . ) ( . )

.
.

. ( . )

. .
−

− − − −
�
�
�
�

�
�
�
�

− − − −���
�
��

�
��

�
��

e e

e e

⇒ x3 = 2.363884

x4 = x3 – 
f x

f x

( )

( )
3

3′

= −
− − − −

�
�
�
�

�
�
�
�

− − − −���
�
��

�
��

�
��

2 363884

1 2 363884
2 363884

2
2 363884

6

1 2 363884 1
2 363884

10

2 363884
2 3

0 7091652

2 363884 0 7091652
.

.
( . ) ( . )

.
.

. .

. .

e e

e e

⇒ x4 = 2.363377

∴ x5 = x
f x

f x4
4

4
−

′
( )

( )
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= −
− − − −

�
�
�
�

�
�
�
�

− − − −���
�
��

�
��

�
��

2 363377

1 2 363377
2 363377

2
2 363377

6

1 2 363377 1
2 363377

10

2 363377
2 3

0 709131

2 363377 0 7090131
.

.
( . ) ( . )

.
.

. .

. .

e e

e e

= 2.363376

Hence, the required root is 2.363376.

Exercise 2.4

1. Apply Newton’s method to find the real root of x3 + x – 1 = 0.

2. Find the positive root of the equation x = 2 sin x.

3. The equation 3 tan 3x = 3x + 1 is found to have a root near x = 0.9, x being in radians.

4. Find the root of x3 – 8x – 4 = 0, which lies between 3 and 4, by Newton–Raphson method, correct
to four decimal places.

5. Find a positive root of x2 + 2x – 2 = 0, by Newton–Raphson method, correct to two significant figures.

6. Find a positive root of x + log x – 2 = 0, by Newton–Raphson method, correct to six decimal figures.

7. Find by Newton–Raphson method the real root of 3x – cos x – 1 = 0.

8. Find a real root of x4 – x – 10 = 0 by Newton–Raphson method.

9. Find a positive root of x – e–x = 0, by Newton–Raphson method.

10. Compute the positive root of x3 – x – 0.1 = 0, by Newton–Raphson method, correct to six decimal
figures.

11. Using Newton’s method, compute a negative root of the equation f(x) x4 – 3x2 + 75x – 10000 = 0,
correct to five places.

12. Use Newton’s method to find the smallest positive root of the equation tan x = x.

13. Apply Newton’s method to find a pair of complex roots of the equation x4 + x3 + 5x2 + 4x + 4 = 0
starting with x0 = i.

14. Solve f(z) = z3 – 3z2 – z + 9 using Newton’s method (z is a complex variable) starting with z0 = 1 +
i.

15. Perform three iterations of Newton–Raphson method for solving

1 0
1

2
2

0+ = = +
z z

i
,

Answers

 1. 0.68  2. 1.895  3. 0.8831

 4. 3.0514  5. 0.73  6. 1.55714

 7. 0.60710  8. 1.8556  9. 0.5671

10. 1.046681 11. –10.261 12. 4.4934 13. –0.573 ±  0.89i

14. 
13

7

2

7
± i 15. –0.00172 ±  0.9973i
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Example 2.16 Using Newton–Raphson formula, establish the iterative formula x
1

2
x

N

xn 1 n
n

+ = +
�
�
�

�
�
�  to calculate the

square root of N.

Solution Let x N= ⇒ =x N2

⇒ − =x N2 0

Let f(x) = x2 – N

then                                   ′ =f x x� � 2

By Newton–Raphson rule, if xn denotes the nth iterate

                                  x x
f x

f xn n
n

n
+ = −

′1

� �
� �  = −

−
x

x N

xn

n

n

2

2

= +x N

x
n

n

2

2
 = +

�
�
�

�
�
� =1

2
0 1 2 3x

N

x
nn

n

, , , , , ...

                               ∴ = +
�
�
�

�
�
� =+x x

N

x
nn n

n
1

1

2
0 1 2, , , , ...

Example 2.17 Find the square root of 8.

Solution Let N = 8

Clearly 2 8 3< <  taking x0 = 2.5, we get

                                    x x
N

x1 0
0

1

2
= +
�
�
�

�
�
�  = +�

��
�
��

=1

2
2 5

8

2 5
2 85.

.
.

                                    x x
N

x2 1
1

1

2
= +
�
�
�

�
�
�  = +�

��
�
��

=1

2
2 85

8

2 85
2 8285.

.
.

                                    x x
N

x3 2
2

1

2
= +
�
�
�

�
�
�  = +�

��
�
��

=1

2
2 8285

8

2 8285
2 8284271.

.
.

                                    x x
N

x4 3
3

1

2
= +
�
�
�

�
�
�  = +�

��
�
��

=1

2
2 8284271

8

2 8284271
2 8284271.

.
.

                                ∴ =8 2 828427. .

Example 2.18 Using Newtons iterative formula establish the iterative formula x
1

3
2x

N

x
n 1 n

n
2+ = +

�

�
�
�

�

�
�
�

 to calculate the

cube root of N.

Solution Let                            x N= 3  ⇒ =x N3
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                          ⇒ − =x N3 0

we have                               f x x N� � = −3

such that                             ′ =f x x� � 3 2

By Newton–Raphson rule if xn denotes the nth iterate then

                                  x x
f x

f xn n
n

n
+ = −

′
�
�
�
�

�
�
�
�1

� �
� �

                              ⇒ = −
−

+x x
x N

x
n n

n

n
1

3

23
 =

− +3

3

3 3

2

x x N

x
n n

n

= +2

3

3

2

x N

x
n

n

 = +
�
�
�

�
�
� =1

3
2 0 1 2

2
x

N

x
nn

n

, , , , ...

The iterative formula for the cube root of N is

                                  x x
N

x
nn n

n
+ = +

�
�
�

�
�
� =1 2

1

3
2 0 1 2, , , , ...

Example 2.19 Find the cube root of 12 applying the Newton–Raphson formula twice.

Solution Clearly 8 < 12 < 27

                                 ⇒ < <8 12 271 3 1 3 1 3/ / /

                                 ⇒ < <2 12 33

Let                                 x0
2 3

2
2 5= + = .

∴  we have N = 12, x0 = 2.5.

By Newton–Raphson’s formula

                                    x1 2

1

3
2 2 5

12

2 5
= +
�

�
�
�

�

�
�
�

.
.

� �
� �

 = +�
��

�
��

=1

3
5

12

6 25
2 3066

.
.

and                                       x2 2

1

3
2 2 3066

12

2 3066
= +
�

�
�
�

�

�
�
�

.
.

� �
� �

 = 2.2901

                               ∴ =12 2 29013 . .

Exercise 2.5

1. Find the square root of 5.

2. Compute (a) 27  (b) 12 .
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3. From the equation x5 – N = 0, deduce the Newtonian iterative formula x x
N

x
n n

n
+ = +

�
�
�
�

�
�
�
�1 4

1
5

4 .

4. Show that the iterative formula for finding the reciprocal of N is xn + 1 = xn [2 – Nxn] and hence find

the value of 
1
31

.

5. Evaluate (a) 133  (b) 1257 .

Answers

1. 2.2361 2. (a) 5.196154 (b) 3.46412  4. 0.03226  5. (a) 2.351 (b) 1.993

2.5.1 Convergence of Newton’s Method

The Newton–Raphson formula is

                            x x
f x

f xn n
n

n
+ = −

′1

� �
� �  = φ xn� � ( ).say (13)

The general form of (13) is

                              x x= φ� � , (14)

we know that the iteration method given by (14) converges if ′ <φ x� � 1 .

Here                       φ x x
f x

f x
n

n

� � � �
� �

= −
′

,

                        ∴ ′ = −
′ − ′′

′

�

�
�
�

�

�
�
�φ x

f x f x f x

f x
� �

� � � � � �
� �

1

2

2  =
′′

′

f x f x

f x

� � � �
� � 2

                          ′ =
′′

′
φ x

f x f x

f x
� � � � � �

� � 2 ,

hence Newton’s formula converges if 
f x f x

f x

� � � �
� �

′′

′
<

2 1

i.e.,                      f x f x f x� � � � � �′′ < ′
2
. (15)

If α  denotes the actual root of f(x) = 0, then we can select a small interval in which f(x),
′f x( ),  and ′′f x( )  are all continuous and the condition (15) is satisfied. Hence Newton’s formula

always converges provided the initial approximation x0 is taken very close to the actual root α.
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2.5.2 Rate of Convergence of Newton’s Method

Let α  denote the exact value of the root of f(x) = 0, and let xn, xn + 1, be two successive

approximations to the actual root α . If εn  and εn+1  are the corresponding errors, we have

                             x xn n n n= + = ++ +α ε α εand 1 1

by Newton’s iterative formula

                       α ε α ε
α ε
α ε

+ = + −
+

′ ++n n
n

n

f

f1

� �
� �

                   ⇒ − = −
+

′ ++ε ε
α ε
α εn n

n

n

f

f1

� �
� �

                        ⇒ = −
+ ′ +

�
��
�
��

′′ +

′ + ′′ ++ε ε
α ε α ε α

α ε αn n

n
n

n

f f f

f f1

2

2
� � � � � �

� � � �

...

...

= −
′ + ′′ +

′ + ′′ +
ε

ε α ε α

α ε αn

n
n

n

f f

f f

� � � �
� � � �

2

2
...

...
� f α� �� �= 0

= −
′ + ′′ +�

��
�
��

′ + ′′ +
ε

ε α ε α

α ε αn

n
n

n

f f

f f

� � � �

� � � �
2

...

...

≈ ′′
′ + ′′ +

�
�
�

�
�
�

1
2

2ε α
α ε α

n

n

f

f f

( )
( ) ( ) ...

≈ ′ ′

′ + ′ ′
′

�
��

�
�� +

�

�

�
�
�
�

�

�

�
�
�
�

1
2

1

2ε α

α ε α
α

n

n

f

f
f
f

( )

( )
( )
( )

...

                        ⇒ ≈
′′
′+ε
α
αn

f

f1 2

� �
� �

. (16)

From (16) it is clear that the error at each stage is proportional to the sequence of the error
in the previous stage. Therefore Newton–Raphson method has a quadratic convergence.

Example 2.20 Obtain the Newton–Raphson’s extended formula

                                          x x
f x

f x

f x f x

f x
1 0

0

0

0

2

0

0

3

1

2
= −

′
−

⋅ ′′

′

� �
� �

� �� � � �
� �� �

for the root of the equation f(x) = 0.
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Solution Expanding  f(x) by Taylor’s series in the neighbourhood of x0, we get

     0 0 0 0= = + − ′f x f x x x f x� � � � � � � � ,

  ∴ = −
′

x x
f x

f x0
0

0

� �
� �

.

This is the first approximation to the root of f(x) = 0,

∴ = −
′

x x
f x

f x1 0
0

0

� �
� �

.

Again by Taylor’s series we have

  f x f x x x f x x x f x� � � � � � � � � � � �= + − ′ + − ′′0 0 0 0
2

0
1

2
,

 f x f x x x f x x x f x1 0 1 0 0 1 0
2

0
1

2
� � � � � � � � � � � �= + − ′ + − ′′ ,

but f(x1) = 0 as x1 is an approximation to the root.

 ∴ + − ′ + − ′′ =f x x x f x x x f x0 0 0 0
2

0
1

2
0� � � � � � � � � � ,

or f x x x f x
f x f x

f x
0 0 0

0

2

0

0

3

1

2
0� � � � � �

� �� � � �
� �� �

+ − ′ +
⋅ ′′

′
= ,

or     x x
f x

f x

f x f x

f x
1 0

0

0

0

2

0

0

3

1

2
= −

′
−

⋅ ′′

′

� �
� �

� �� � � �
� �� �

.

Note: The formula can be used iteratively.

2.6 GENERALISED NEWTONS’ METHOD FOR MULTIPLE ROOTS

Let α  be a root of the equation

f(x) = 0

which is repeated p times, then

                            x x p
f x

f xn n
n

n
+ = −

′1

� �
� �

The above formula is called the generalised Newton’s formula for multiple roots. It reduces to
Newton–Raphson formula for p = 1.

If α  is a root of f(x) = 0 with multiplicity p, then it is also a root of ′ =f x( ) ,0  with
multiplicity p – 1, of ′′ =f x( ) ,0  with multiplicity (p – 2), of ′′′ =f x( ) ,0  with multiplicity (p – 3)
and so on. If the initial approximation x0 is chosen sufficiently close to the root α  then the
expressions

x p
f x

f x
x p

f x

f x
x p

f x

f x0
0

0
0

0

0
0

0

0

1 2−
′

− −
′
′′

− −
′′
′′′

� �
� � � � � �

� � � � � �
� �

, , , ...

will have the same value.
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Example 2.21   Apply Newton-Raphson method with x0 = 0.8 to the equation

f(x) = x x x3 2 1 0− − + =

and verify that the convergtence is only of first order in each case.

Solution. We have f(x) = x x x3 2 1− − + ;

f′(x) = 3 2 12x x− −

and x0 = 0.8

using Newton-Raphson formula : we obtain

x1 = x
f x

f x0
0

0
−

′
( )

( )

= 0 8
0 8 0 8 0 8 1

3 0 8 2 0 8 1

3 2

2.
( . ) ( . ) .

( . ) ( . )
− − − +

− −
 = 0.905882

x2 = x
f x

f x1
1

1
−

′
( )

( )

= 0 905882
0 905882 0 905882 0 905882 1

3 0 905882 2 0 905882 1

3 2

2
.

( . ) ( . ) .

( . ) ( . )
−

− − +

− −


 �

= 0.9554132

x3 = x
f x

f x2
2

2
−

′
( )

( )

= 0 954132
0 954132 0 954132 0 954132 1

3 0 954132 2 0 954132 1

3 2

2
.

( . ) ( . ) ( . )

( . ) ( . )
− − − +

− −

= 0.97738

Exact root of the given equation is 1, therefore, we get

∈0 = ε1 0
01 0 8 0 2 0 2 10− = − = =x . . . ×

∈1 = ε1 1
11 0 9054132 0 094118 0 94 10− = − = = −x . . . ×

∈2 = ε1 2
11 0 954132 0 045868 0 46 10− = − = = −x . . . ×

∈3 = ε1 3
11 0 977381 0 022662 0 22 10− = − = = −x . . . ×

from the above it is clear that; the error at each stage is of first order.

Hence, verified.

Example 2.22 Find the double root of the equation

x3 – x2 – x + 1 = 0

Solution Let

f x� � = x3 – x2 + x + 1

then ′f x� � = 3x2 – 2x + 1
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and ′′f x� � = 6x – 2

The actual root f(x) is x = 1

Starting with x0 = 0.9, we get

f x0� � = f(0.9) = (0.9)3 – (0.9)2 + (0.9) + 1 = 0.019

′ = ′f x f0 0 9� � � �. = 3 (0.9)2 – 2 (0.9) + 1 = – 0.37

and ′′ = ′′f x f0 0 9� � � �. = 6 (0.9) – 2 = 5.4 – 2 = 3.4

                       
x p

f x

f x0
0

0

0 9 2
0 019

0 37
0 9 01027− ⋅

′
= − ⋅

−
= +

� �
� �

� �
� �

.
.

.
. .

= 1.0027

                 
x p

f x

f x0
0

0

1 0 9 2 1
0 37

34
0 9 01088− −

′
′′

= − − ⋅
−

= +� � � �
� � � � � �

.
.

.
. .

= 1.0088.

The closeness of these values indicate that there is double root near x = 1.

For the next approximation we choose x1 = 1.01

                     ∴ −
′

= − × =x
f x

f x1
1

1

2 101 2
0 0002

0 0403
10001

� �
� �

.
.

.
.

and                      x
f x

f x1
1

1

2 1 101
0 0403

4 06
10001− −

′
′′

= − =� � � �
� �

� �
.

.

.
.

The values obtained are equal. This shows that there is a double root at x = 1.0001. Which is close to the actual
root unity.

2.6.1 Newton’s Method for System of two non-linear Equations

Now we consider the solution of simultaneous non-linear equations by Newton’s method.

Consider the system

f(x, y) = 0

f(x, y) = 0 (1)

involving two non-linear equations.

Let (x0, y0) be an initial approximation to the root of the system, and (x0 + h, y0 + k) be the
root of the system given by (1). Then we must have

f(x0 + h, y0 + k) = 0

and g(x0 + h, y0 + k) = 0 (2)

Let us assume that f and g are differentiable expanding (2) by Taylor’s series, we obtain

               f x h y k f h
f

x
k

f

y0 0 0
0 0

0+ + = + + + =, ...� � ∂
∂

∂
∂
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and                 g x h y k g h
g

x
k

g

y0 0 0
0 0

0+ + = + + + =, ...� � ∂
∂

∂
∂

(3)

neglecting, the second and higher order terms and retaining only the linear terms of (3), we obtain

                  h
f

x
k

f

y
f

∂
∂

∂
∂0 0

0+ = −

and                    h
g

x
k

g

y
g

∂
∂

∂
∂0 0

0+ = − (4)

where         f0 = f x y
f

x

f

x

f

y

f

yx x y y
0 0

0 00 0

, , ; ,� � ∂
∂

∂
∂

∂
∂

∂
∂

= ���
�
�� =

�
��
�
��= =

etc.

solving (4) for h and k, the next approximation of the root is given by

x1 = x0 + h

and y1 = y0 + k

The above process is repeated to desired degree of accuracy.

Example 2.23 Solve

x2 – y2 = 4

and x2 + y2 = 16

By Newton–Raphson Method.

Solution To obtain the initial approximation we replace the first equation by its asymptote y = x, which gives

                                  2 16 2 22x x= ⇒ =

let x y0 02 2 2 2= =, ,  and (x0, y0) be the initial approximation to the root of the system.

We have f = x2 – y2 – 4 ⇒ f0 = – 4

and g = x2 + y2 – 16 ⇒ g0 = 0

differentiating partially, we obtain

                                   
∂
∂

∂
∂

f

x
x

f

y
y= = −2 2,

                                   
∂
∂

∂
∂

g

x
x

g

y
y= =2 2,

so that                                 
∂
∂

∂
∂

f

x
x

f

y
y

0
0

0
02 4 2 2 4 2= = = =,

                                        
∂
∂

∂
∂

g

x
x

g

y
y

0
0

0
02 4 2 2 4 2= = = − = −,

The system of linear equations can be written as

                       h
f

x
k

f

y
f

∂
∂

∂
∂0 0

0+ = − ⇒ − = − −h k4 2 4 2 4
 � 
 � ( )

   ⇒ − =h k 0 7072.
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and                        h
g

x
k

g

y
g

∂
∂

∂
∂0 0

0+ = − ⇒ + =h k4 2 4 2 0
 � 
 �

    ⇒ + =h k 0

so that h – k = 0.7072 (i)

h + k = 0 (ii)

solving we get h = 0.3536, k = – 0.3536

The second approximation to the root is given by

x1 = x0 + h = 2 2  + 0.3536 = 3.1820

y1 = y0 + k = 2 2  – 0.3536 = 2.4748

The process can be repeated.

Example 2.24 Solve

f(x, y) = x2 + y – 20x + 40 = 0

g(x, y) = x + y2 – 20y + 20 = 0

Solution Let x0 = 0, y0 = 0 be the initial approximation to the root

f = x2 + y – 20x + 40 ⇒ = − =∂
∂

∂
∂

f

x
x

f

y
2 20 1,

g = x + y2 – y + 20   ⇒ = = −∂
∂

∂
∂

g

x

g

y
y1 2 20,

and f0 = 40, g0 = 20

So that                           
∂
∂

∂
∂

f

x

f

y0 0

20 1= − =,

                            
∂
∂

∂
∂

g

x

g

y0 0

1 20= = −,

the linear equations are

                       h
f

x
k

f

y
f

∂
∂

∂
∂0 0

0+ = −    ⇒ + = −20 40h k (i)

                     h
g

x
k

g

y
g

∂
∂

∂
∂0 0

0+ = −    ⇒ − = −h k20 20 (ii)

Solving, we get

h = 2.055, k = 1.103

The next approximation is given by

x1 = x0 + h = 2.055

y1 = y0 + k = 1.103.
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Exercise 2.6

1. Show the Newton’s square root formula has a quadratic convergence.

2. Show that the order of convergence of Newton’s inverse formula is two.

3. Show that the modified Newton–Raphson’s method x x
f x

f xn n
n

n
+ = −

′1
2 ( )

( )
 gives a quadratic conver-

gence when the equation f(x) = 0 has a pair of double roots in the neighbourhood of x = xn.

4. (i) Show that both of the following two sequences have convergence of the second order with the

same limit a

x x
a

x
x x

x

an n
n

n n
n

+ += +
�
��

�
��

= −
�
��

�
��1 2 1

21
2

1
1
2

3, . and 

(ii) If xn is suitable close approximation to a , show that error in the first formula for xn + 1 is about

one-third that in the second formula, and deduce that the formula x
x a

x

x

an
n

n

n
+ = ���

�
�� + −
�
��

�
��1

2

2

2

8
6

3
 given

a sequence with third order convergence.

5. Use Newton-Raphson method to find a solution of the following simultaneous equations

x2 + y – 11 = 0

 x + y2 – 7 = 0

given the approximate values of the roots : x0 = 3, y0 = –2. Ans. 3.585, –1.8485

6. Solve x2 = 3xy – 7

        y = 2(x + 1) Ans. –1.9266, –1.8533

7. Solve x2 + y = 5,

       y2 + x = 3 Ans. x = 2, y = 1

x = –1.683, y = 2.164

8. Solve x = 2(y + 1)

  y2 = 3xy – 7 Ans. –1853, –1.927

9. Solve x = x2 + y2

    y = x2 – y2

Correct to two decimals, starting with the approximation (0.8, 0.4).

Ans. x = 0.7974, y = 0.4006

10. Solve sin xy + x – y = 0

        y cos xy + 1 = 0

with x0 = 1, y0 = 2, by Newton-Raphson method. Ans. x = 1.0828, y = 1.9461

11. Given x = x2 + y2, y = x2 – y2. Solve the equations,  by using Newton-Raphson method with the initial
approximation as (0.8, 0.4).    Ans. x = 0.7719, y = 0.4196

12. Solve x2 + y = 11, y2 + x = 7 with x0 = 3.5, y0 = –1.8. Ans. x = 3.5844, y = –1.8481
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2.7 REGULA-FALSI METHOD

Consider the equation f(x) = 0 and let a, b be two values of x such that f(a) and f(b) are of opposite
signs. Also let a < b. The graph of y = f(x)will meet the x-axis at the same point between a and
b. The equation of the chord joining the two points [a, f(a)] and [b, f(b)] is

                       
y f a

x a

f b f a

b a

−
−

=
−
−

� � � � � �
(17)

In the small interval (a, b) the graph of the function can be considered as a straight line. So
that x-coordinate of the point of intersection of the chord joining [a, f(a)] and [b, f(b)] with the x-
axis will give an approximate value of the root. So putting y = 0 in (17) we get

                        −
−

=
−
−

f a

x x

f b f a

b a

� � � � � �
1

or                                  x a
f a

f a f a
b a= −

−
−

� �
� � � � � � ,

or                                  x
af b b f a

f b f a
x=

−
−

=
� � � �� �
� � � � 0 (say).

If f(a) and f(x0) are of apposite signs then the root lies between a and x0 otherwise it lies
between x0 and b.

If the root lies between a and x0 then the next approximation

                              x
af x x f a

f x f a1
0 0

0

=
−
−

� � � �
� � � �

otherwise                           x
x f b bf x

f b f x1
0 0

0

=
−

−
� � � �
� � � �

.

The above method is applied repeatedly till the desired accuracy is obtained.

The Geometrical interpretation of the method is as follows In Fig. 2.4, the curve y = f(x)
between A(x = a) and B(x = b) cuts OX at Q. The chord AB cuts OX at P. It is clear that x = OQ
is the actual value of the root whereas x = OP = x0 is the first approximation to the root f(x0) and
f(a) are of opposite signs. So we apply the false position method to the interval (a, x0) and get OP1
the next approximation to the root. The procedure is continued till the root is obtained to the desired
degree of accuracy. The points of intersection of the successive chords with x-axis, namely P1,
P2, … tend to coincide with Q the point where the curve y = f(x) cuts the x-axis and so we get
successive approximate values of the root of the equation.
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Y

A
y f x = ( )
[ , ( )]a f a

X
DbPx0P

QC
a

x1

P2

B

[ , ( )]b f b

O

Fig. 2.4

Example 2.25 Find an approximate value of the root of the equation x3 + x – 1 = 0 near x = 1, by the method of
Falsi using the formula twice.

Solution Here f(x) = x3 + x – 1

f(0.5) = – 0.375,  f(x) = 1

Hence the root lies between 0.5 and 1.

We take a = 0.5, b = 1

                                    x
af b bf a

f b f a0

05 1 1 0 375

1 0 375
0 64=

−
−

=
− −

− −
=

� � � �
� � � �

� �� � � �
� �

. .

.
. .

Now f(0.64) = – 0.0979 < 0

∴  The root lies between 0.64 and 1,

applying the formula again we get

                                 ∴ =
− −

− −
= =x1

0 64 1 1 0 0979

1 0 0979

0 7379

10979
0 672

. .

.

.

.
. .

� �� � � �� �
� �

Example 2.26 Find the real root of the equation x log10 x – 1.2 = 0 correct to five decimal places by Regula–Falsi
method using the formula four times.

Solution Here f(x) = x log10 x – 1.2

f(2) = –0.6,  f(3) = 0.23.

Thus the root lies between a and 3 and it is nearer to 3.
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We take a = 2, b = 3.

Let x0 denote the first approximation

                                 ∴ =
−
−

=
− −

− −
= =x

af b bf a

f b f a0

2 0 23 3 0 6

0 23 0 6

2 26

083
2 72

� � � �
� � � �

� � � �
� �

. .

. .

.

.
. .

Now f(2.7) = – 0.04

The root lies between 2.7 and 3.

We note that f(2.8) = 0.05

                           ∴ =
− −

− −
= =x1

2 7 0 05 2 8 0 04

0 05 0 04

0 247

0 09
2 74

. . . .

. .

.

.
. ,

� �� � � �
� �

since f(2.74) = –0.0006

∴  Root lies between 2.74 and 2.8.

But f(2.75) = 0.0081

                                 ∴ =
− −

− −
= =x2

2 84 0 0081 2 75 0 0006

0 0081 0 0009

0 023844

0 0087
2 7407

. . . .

. .

.

.
. ,

� �� � � �� �
� �

since f(2.7407) = 0.000045, the root is < 2.7407,

but f(2.7407) = –0.000039

                                ∴ =
− −

−
=x3

2 7406 0 000045 2 7407 0 000039

0 000045 0 000039

0 0002301

0 000084

. . . .

. – .

.

.

� �� � � �� �
� �

= 2.7392

is the required value.

Example 2.27  Solve the equation x tan x = –1, by Regula falsi method starting with 2.5 and 3.0 as the initial
approximations to the root.

Solution.  We have f(x) = x tan x + 1

f(a) = f(2.5) = 2.5 tan (2.5) + 1 = – 0.8675

f(b) = f(3) = 3 tan 3 + 1 = 0.5724

By regula falsi method, the first approximation is given by

x1 =
af b bf a

f b f a

( ) ( )

( ) ( )

−
−

=
3 2 5 2 5 3

2 5 3

3 0 8675 2 5 0 5724

0 8675 0 5724

f f

f f

( . ) . ( )

( . ) ( )

( . ) . ( . )

. .

−
−

= − −
− −

= 2.8012

Now, f(x1) = f(2.8012) = 2.8012 tan (2.8012) + 1 = 0.00787

f(2.5)  f(2.8012) < 0

therefore, the root lies between 2.5 and 2.8012.

The second approximation to the root is given by

x2 =
2 8012 2 5 2 5 2 8012

2 5 2 8012

. ( . ) . ( . )

( . ) ( . )

f f

f f

−
−
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=
( . ) ( . ) ( . ) ( . )

. .

2 8012 0 8675 2 5 0 00787

0 8675 0 00787

− −
− −

= 2.7984

⇒ f(x2) = f(2.7984) = 2.7984 tan (2.7984) + 1

= 0.000039

⇒ f(2.5) f(2.7984) < 0

The root lies between 2.5 and 2.79 84

∴ The third approximation to the root is given by

x3 =
2 7984 2 5 2 5 2 7984

2 5 2 7984

. ( . ) . ( . )

( . ) ( . )

f f

f f

−
−

=
( . ) ( . ) ( . ) ( . )

. .

2 7984 0 8675 2 5 0 000039

0 8675 0 000039

− −
− −

= 2.7982

The required root is 2.798.

2.8 MULLER’S METHOD

Muller’s method is an iterative method. It requires three starting points. (x0, f(x0)), (x1, f(x1)) and
(x2, f(x2)). A parabola is constructed that passes through these points then the quadratic formula is
used to find a root of the quadratic for the next approximation.

Without loss of generality we assume that x2 is the best approximation to the root and consider
the parabola through the three starting values as shown in Fig. 2.5.

Make the change of variable using the differences

t = x – x2 (18)

using the differences h0 = x0 – x2 and h1 = x1 – x2. (19)

Consider the quadratic polynomial involving t

y = at2 + bt + c (20)

each point is used to obtain an equation involving a, b and c

                           at t h ah bh c f= + + =0 0
2

0 0; (21)

                           at t h ah bh c f= + + =1 1
2

1 1; (22)

                           at t a b c f= + + =0 0 02
2; (23)

from equation (23) we get c = f2. Substituting c = f2 in (21) and (22) and using

e0 = f0 – c, e1 = f1 – c,

we get                      ah bh f c e0
2

0 0 0+ = − = , (24)

                      ah bh f c e1
2

1 1 1+ = − = (25)
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1

Fig. 2.5

Solving (24) and (25) by using Cramer’s rule we get

                              a
e h e h

h h h h
b

e h e h

h h h h
= −

−
= −

−
0 1 1 0

0 1 0 1

1 0
2

0 1
2

0 1 0 1

,

The Quadratic formula is used to find the roots of t = z1, z2 of (20)

                              z
c

b b ac
= −

± −

2

42 1 2
	 


/ (26)

The formula (26) is equivalent to the standard formula for the roots of a quadratic equation
since c = f2 is known to give better results.

Note: If b > 0, we use the positive sign with the square root and if b < 0, we use the negative sign. We choose
the root of (26) that has the smallest absolute value. x3 is given by

x3 = x2 + z (27)

(see Fig. 2.5). For the next iteration choose x0 and x1 to be the two values selected from (x0, x1, x2) that lie closest
to x3 then replace x2 with x3.

Example 2.28 Find the root of the equation

f(x) = x3 – 3x – 5 = 0,

which lies between 2 and 3 by using Muller’s Method.

Solution We choose x0 = 1, x1 = 2, x2 = 3

∴  we obtain                      f x x0 0
3

03 5 1 3 5 7= − − = − − = −

                                          f x x1 1
3

13 5 8 6 5 3= − − = − − = −

and                                      f x x2 2
3

23 5 27 9 5 13= − − = − − =

Let h0 = x0 – x2 = 1 – 3 = –2 and h1 = x1 – x2 = 2 – 3 = –1

Consider the quadratic polynomial y = at2 + bt + c

(x1, f(x1))









3.1 INTRODUCTION

Numerical Analysis is a branch of mathematics which leads to approximate solution by repeated
application of four basic operations of Algebra. The knowledge of finite differences is essential for
the study of Numerical Analysis. In this section we introduce few basic operators.

3.2 FORWARD DIFFERENCE OPERATOR

Let y = f(x) be any function given by the values y0, y1, y2, …, yn, which it takes for the equidistant
values x0, x1, x2, …, xn, of the independent variable x, then y1 – y0, y2 – y1, …, yn – yn – 1 are called

the first differences of the function y. They are denoted by ∆y0 ,  ∆y1,  …, etc.

∴  We have ∆
∆

∆

y y y
y y y

y y yn n n

0 1 0

1 2 1

1

= −
= −

= − −

...

The symbol ∆  is called the difference operator. The differences of the first differences denoted
by ∆ ∆ ∆2

0
2

1
2y y yn, , ...,  are called second differences, where

∆ ∆ ∆2
0 0y y=

= −∆ y y1 0

= −∆ ∆y y1 0

= −∆ ∆y y1 0  = (y
2
 – y

1
) – (y

1
 – y

0
)

= − +y y y2 1 02

...

∆ ∆ ∆2
1 1y y=

= − +y y y3 2 12

...

3
FINITE DIFFERENCES

60
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∆2  is called the second difference operator.

Similarly ∆ ∆ ∆3
0

2
1

2
0y y y= −

= − + −y y y y3 2 1 03 3

...

∆ ∆ ∆r
n

r
n

r
ny y y= −−

+
−1

1
1

= − +
−

+ + −+ + − + −y
r

y
r r

y yn r n r n r
r

n1

1

2
11 2! !

...
� � � �

                               ∴ = −−
+

−∆ ∆ ∆r
n

r
n

r
ny y y1

1
1

    = − +
−

+ + −+ + − + −y
r

y
r n

y yn r n r n r
r

n1

1

2
11 2! !

...
� � � �

3.2.1 Difference Table

It is a convenient method for displaying the successive differences of a function. The following table
is an example to show how the differences are formed.

x y ∆y ∆2 y ∆3 y ∆4 y ∆5y

x0 y0

∆y0

x1 y1 ∆2
0y

∆y1 ∆3
0y

x2 y2 ∆2
1y ∆4

0y

∆y2 ∆3
1y ∆5

0y

x3 y3 ∆2
2y ∆4

1y

∆y3 ∆3
2y

x4 y4 ∆2
3y

∆y4

x5 y5

The above table is called a diagonal difference table. The first term in the table is y0. It is called
the leading term.

The differences ∆ ∆ ∆y y y0
2

0
3

0, , , ...,  are called the leading differences. The differences ∆n
ny

with a fixed subscript are called forward differences. In forming such a difference table care must
be taken to maintain correct sign.
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A convenient check may be obtained by noting the sum of the entries in any column equals
the differences between the first and the last entries in preceding column.

Another type of difference table called horizontal difference table which is more compact and
convenient is not discussed here as it is beyond the scope of this book.

3.2.2 Alternative Notation

Let the functions y = f(x) be given at equal spaces of the independent variable x, say at x = a,
a + h, a + 2h, …, etc., and the corresponding values of f(a), f(a + h), f(a + 2h), …, etc.

The independent variable x is often called the argument and the corresponding value of the
dependent variable is of the function at x = a, and is denoted by ∆f a� �.

Thus we have ∆f a f a h f a� � � � � �= + − ,

writing the above definition we can write

        ∆f a h f a h h f a h f a h f a h+ = + + − + = + − +� � � � � � � � � �2

Similarly                    ∆ ∆ ∆2 f a f a� � � �=

= + −∆ f a h f a� � � �
= + −∆ ∆f a h f a� � � �
= + − + − + −f a h f a h f a h f a2� � � � � � � �
= + − + +f a h f a h f a2 2� � � � � � ,

∆2 is called the second difference of f(x) at x = a.

Note: The operator ∆ is called forward difference operator and in general it is defined as

                             ∆f x f x h f x( ) ( ) ( ),= + −

where h is called the interval of differencing. Using the above definition we can write

                                   ∆ ∆ ∆2 f x f x( ) ( ) ,=

 = + −∆ f x h f x( ) ( )

 = + −∆f x h f x( ) ( )

 = + − + − + −f x h f x h f x h f x( ) ( ) ( ) ( )2

= + − + −f x h f x h f x( ) ( ) ( ).2 2

Similarly we can write the other higher order differences as ∆ ∆3 4, , ...,  etc., and ∆ ∆ ∆ ∆, , , ..., , ...,2 3 n  etc., are

called the forward differences.

The difference table called the forward difference table in the new notation is given below.
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x f(x)

∆f x� �
x h+ f x h+� � ∆2 f x� �

∆f x h+� � ∆3 f x� �
x h+ 2 f x h+ 2� � ∆2 f x h+� �

∆f x h+ 2� �
x h+ 3 f x h+ 3� �

3.2.3 Properties of the Operator ∆∆∆∆∆

1. If c is a constant then ∆c  = 0.

Proof Let f(x) = c

∴ f(x + h) = c,

(where h is the interval of differencing)

     ∴ = + − = − =∆f x f x h f x c c� � � � � � 0

                         ⇒ =∆c 0

2. ∆  is distributive, i.e., ∆ ∆ ∆f x g x f x g x� � � � � � � �± = ± .

Proof ∆ f x g x f x h g x h f x g x� � � � � � � � � � � �+ = + + + − +

= + − + + −f x h f x g x h g x� � � � � � � �

= +∆ ∆f x g x� � � �.

Similarly we can show that ∆ f x g x� � � �−

= −∆ ∆f x g x� � � �

3. If c is a constant then ∆ ∆cf x c f x� � � �= .

Proof                     ∆ cf x cf x h cf x� � � � � �= + −

= + −c f x h f x� � � �  = c f x∆ � �

                     ∴ =∆ ∆cf x c f x� � � �.

4. If m and n are positive integers then ∆ ∆ ∆m n m nf x f x� � � �= + .
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Proof ∆ ∆ ∆ ∆ ∆ ∆ ∆m n f x m n f x� � � � � � � �= × × ×... ...times times

= +∆ ∆ ∆ ... m n f x� �� � � �times

= +∆m n f x� �.
Similarly we can prove the following

5.       ∆ ∆ ∆ ∆f x f x f x f x f x f xn n1 2 1 2� � � � � � � � � � � �+ + + = + + +... ... .

6.                       ∆ ∆ ∆f x g x f x g x g x f x� � � � � � � � � � � �= + .

7.                           ∆
∆ ∆f x

g x

g x f x f x g x

g x g x h

� �
� �

� � � � � � � �
� � � �

�
�
��

�
	




=
−

+
.

Note:

1. From the properties (2) and (3) it is clear that ∆ is a linear operator.

2. If n is a positive integer ∆n.[∆–n f (x)] = f (x)] = f (x) and in particular when n = 1, ∆n.[∆–1 f (x)] = f (x)] = f (x).

Example 3.1 Find (a) ∆eax  (b) ∆2 xe  (c) ∆ sin x (d) ∆ log x (e) ∆ tan–1 x.

Solution

(a)                                     ∆e e eax a x h ax= −+� �

= −+e eax ah ax  = −e eax ah 1� �

                                    ∆e e eax ax ah= − 1� �.

(b)                                    ∆ ∆ ∆2e ex x=  = −+∆ e ex h x

= −∆ e ex h 1� �  = −e eh x1� � ∆

= − −+e e eh x h x1� � � �  = −e eh x1
2

� �

                               ∴ = −∆2 2
1e e ex h x� � .

(c)                                   ∆ sin sin sinx x h x= + −� �

= + +

��

�
��

+ −

��

�
��2

2 2
cos sin

x h x x h x

= +

��

�
��2

2 2
cos sinx

h h

                             ∴ = +

��

�
��∆ sin cos sin .x x

h h
2

2 2
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(d)                                   ∆ log log logx x h x= + −� �

= +
log

x h

x
 = +�

��
�
	


log 1
h

x

                            ∴ = +�
��

�
	


∆ log log .x
h

x
1

(e)                                 ∆ tan tan tan− − −= + −1 1 1x x h x� �

=
+ −

+ +
�
�
�
�

�
	





−tan 1

1

x h x

x h x� �  =
+ +

�
�
�

�
	

−tan .1

21

h

hx x

Example 3.2 Construct a forward difference table for the following data

x 0 10 20 30

y 0 0.174 0.347 0.518

Solution

x y ∆y ∆2 y ∆3 y

0 0

0.174

10 0.174 –0.001

0.173 –0.001

20 0.347 –0.002

0.171

30 0.518

Example 3.3 Construct a difference table for y = f(x) = x3 + 2x + 1 for x = 1, 2, 3, 4, 5.

Solution

x y = f(x) ∆y ∆2 y ∆3 y

1 4

9

2 13 12

21 6

3 34 18

39 6

4 73 24

63

5 136

Theorem 3.1 The nth differences of a polynomial of the nth degree are constant when the values
of independent variable are at equal intervals.
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Proof Let the polynomial be

f(x) = a0x
n + a1x

n – 1 + … + an – 1 x + an,

where a0, a1, a2, …, an are constants and a0 ≠  0.

∴ f(x + h) = a0(x + h)n + a1(x + h)n – 1 + … + an– 1(x + h) + an,

where h is the interval of differencing.

∴∆f(x) = f(x + h) – f(x)

= a0(x + h)n + a1(x + h)n – 1 + … + an(x + h) + an – a0x
n – a1x

n – 1 – … an – 1 x – an

= a0 [(x + h)n – xn] + a1 [(x + h)n – 1 – xn– 1] + … + an – 1 [x + h – x]

= a0 [xn + nc1x
n – 1 h + nc2x

n – 2 h2 + … + hn – xn] + a1 [xn – 1 + n – 1c1x
n – 2h + …

+ hn – 1 – xn – 1] + … + an – 1h

= a0nhxn – 1 + [a0
nc2h

2 + a1h(n – 1)]xn – 2 + … + an – 1h

= a0nhxn – 1 + b2x
n – 2 + b3x

n – 3 + … + bn – 1x + bm (1)

where b2, b3, …, bm are constants.

From (1) it is clear that the first difference of f(x) is a polynomial of (n – 1)th degree.

Similarly                 ∆ ∆ ∆2 f x f x� � � �=

= + −∆ f x h f x� � � �

= + −∆ ∆f x h f x� � � �

= + − + + − + +− − − −a nh x h x b x h x
n n n n

0
1 1

2
2 2� � � � ...

b x h xn − + −1

= − + + + + +− − −
−a n n h x c a c x c xn n n

n0
2 2

3
3

4
4

11� � ... cl ,

where c3, c4, …, cl – 1 are constants.

Therefore the second differences of f(x) reduces to a polynomial of (n – 2)th degree. Proceed-
ing as above and differencing for n times we get

                         ∆n x n nf x a n n h x� � � �= − × × −
0 1 3 2 1... = a n hn

0 ! ,

which is a constant.

and                         ∆ ∆ ∆n nf x f x+ =1 � � � �
= −a n h a n hn

n n! !0 = 0

which completes the proof of the theorem.

Note: The converse of the above theorem is true, i.e., if the nth differences of a tabulated function and the values
of the independent variable are equally spaced then the function is a polynomial of degree n.
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Example 3.4 By constructing a difference table and taking the second order differences as constant find the sixth term
of the series 8, 12, 19, 29, 42, ….

Solution Let K be the sixth term of the series. The difference table is

x y ∆ ∆2

1 8
4

2 12 3
7

3 19 3

10

4 29 3

13
5 42 K – 55

K – 4
6 K

The second differences are constant.

∴ K – 55 = 3

⇒ K = 58.

The sixth term of the series is 58.

Example 3.5 Find (a) ∆10 (1 – ax) (1 – bx2) (1 – cx3) (1 – dx4) (b) ∆3 (1 – x) (1 – 2x)
(1 – 3x)

Solution (a) Let

                                        f x ax a bx cx dx� � � �� �� �� �= − − − −1 1 12 3 4

f(x) is a polynomial of degree 10 and the coefficient of x10 is abcd,

                              ∆ ∆10 10 10f x abcd x� � � �=

= abcd x∆10 10

= abcd 10!.

(b) Let

f(x) = (1 – x) (1 – 2x) (1 – 3x)

= – 6x3 + 11x2 – 6x + 1

f(x) is a polynomial of degree 3 and the coefficient of x3 is (– 6).

                           ∴ = − = −∆3 6 3 36f x� � � � ! .

Example 3.6 Evaluate (a) ∆ 5x 12

x 5x 62

+
+ +

�

�
�
�

�

	





 (b) ∆n 1

x
,


��
�
��  taking 1 as the interval of differencing.

Solution

(a)  ∆
5 12

5 62

x

x x

+
+ +

�
�
�

�
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=
+ + +
+ +

�
�
�
�

�
	





∆
2 3 3 2

2 3

x x

x x

� � � �
� �� �

 =
+

+
+

�
�
�

�
	

∆ 2

2

3

3x x

=
+

�
�
�

�
	

 +

+
�
�
�

�
	

∆ ∆2

2

3

3x x

=
+ +

−
+

�
�
�

�
	

 +

+ +
−

+
�
�
�

�
	



2

1 2

2

2

3

1 3

3

3x x x x

=
+ +

−
+ +

–2
.

x x x x2 3

3

3 4� �� � � �� �

(b)                                   ∆ ∆ ∆n n

x x

1 11�
��
�
	


= �
��
�
	


−

Now                           ∆ 1 1

1

1

x x x


��
�
�� =

+
−  = −

+
1

1x x� �
,

Similarly                       ∆2
2

1 1

1 2x x x x


��
�
�� =

−
+ +
� �

� �� �
and so on.

Proceeding as above we get

                               ∆n
n

x x x x x n

1 1

1 2
�
��
�
	


=
−

+ + +
� �

� �� � � �...
.

Example 3.7 Show that ∆n
n

sin ax b 2
a

2
sin ax b n

a

2
( ) sin ,+ = 
��

�
�� + + +


��
�
��

�
��

�
	


π
 1 being the interval of differencing.

Solution         ∆ sin sin sinax b a x b ax b+ = + + − +� � � � � �1

= + +

��

�
��

�
��

�
	



��
�
��2

2 2
cos sinax b

a a

= + + +

��

�
��



��

�
��2

2 2 2
sin sin

a
ax b

aπ

= + +
+�

��
�
	


2
2 2

sin sin ,
a

ax b
a� � π

            ∆2 2
2

1
2

sin sin sinax b
a

a x b
a+ = + + + +


��
�
�� −� � � � π

2
2 2

sin sin
a

ax b
a+ + +


��
�
��� � π

= 
��
�
�� + + +


��
�
��2

2
2

2

2 2
sin cos sin

a
ax b

a aπ
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= 
��
�
�� + + +

+

��

�
��2

2 2

2

2

2

sin sin
a

ax b
aπ π

                     ∴ + = 
��
�
�� + + +


��
�
��



��

�
��∆2

2

2
2

2
2

sin sin sin .ax b
a

ax b
a� � π

Proceeding as above and applying the principle of mathematical induction, we get

                        ∆n
n

ax b
a

ax b n
a

sin sin sin .+ = 
��
�
�� + + +


��
�
��



��

�
��� � 2

2 2

π

3.3 THE OPERATOR E
Let y = f(x) be function of x and x, x + h, x + 2h, x + 3h, …, etc., be the consecutive values of
x, then the operator E is defined as

Ef(x) = f(x + h),

E is called shift operator. It is also called displacement operator.

Note: E is only a symbol but not an algebraic sum.

E2f(x) means the operator E is applied twice on f(x), i.e.,

E2f(x) = E[Ef(x)]

= Ef(x + h)

= f(x + 2h)

…

Similarly Enf(x) = f(x + nh)

and E–nf(x) = f(x – nh).

The operator E has the following properties:

1. E(f1(x) + f2(x) + … + fn(x)) = Ef1(x) + Ef2(x) + … + Efn(x)

2. E(cf(x)) = cEf(x) (where c is constant)

3. Em(Enf(x)) = En(Emf(x)) = Em + nf(x) where m, n are positive integers

4. If n is positive integer En[E–nf(x)] = f(x)

Alternative notation If y0, y1, y2, …, yn, …, etc., are consecutive values of the function y = f(x)
corresponding to equally spaced values x0, x1, x2, …, xn, etc., of x then in alternative notation

E y0 = y1

E y1 = y2

…

E2y0 = y2

…

and in general Eny0 = yn.

Theorem 3.2 If n is a positive integer then yn = y0 + nc1 ∆ y0 + nc2 ∆2 y0 + … + ∆n y0.

Proof From the definition

y Ey y y y1 0 0 0 01= = + = +∆ ∆� �
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y E y y c y2
2

0
2

0
2

1
2

01 1= = + = + +∆ ∆ ∆� � � �

= + +y c y y0
2

1 0
2

0∆ ∆

�

Similarly we get y E y yn
n n= = +0 01 ∆� �

= + + +1 1 0
n nc y∆ ∆...� �

= + + +y c y yn n
0 1 0 0∆ ∆... ,

hence proved.

3.3.1 Relation between the Operator E and ∆

From the definition of ∆,  we know that

                              ∆f x f x h f x� � � � � �= + − ,

where h is the interval of differencing. Using the operator E we can write

                             ∆f x Ef x f x� � � � � �= −

                          ⇒ = −∆f x E f x� � � � � �1 .

The above relation can be expressed as an identity

 ∆ = −E 1

i.e.,  E = +1 ∆ .

3.3.2 E E∆ ≡ ∆

Proof                           E f x E f x h f x∆ � � � � � �� �= + −

= + −Ef x h Ef x� � � �

= + − +f x h f x h2� � � �

= +∆f x h� �

= ∆Ef x� �

                                 ∴ ≡E E∆ ∆ .

Example 3.8 Prove that ∆ ∆
log f ( x ) log 1

f ( x )

f ( x )
= +

�
�
�

�
	

.

Solution Let h be the interval of differencing

                             f x h E f x+ =� � � �  = +∆ 1� � � �f x  = +∆ f x f x� � � �
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⇒

+
= +

f x h

f x

f x

f x

� �
� �

� �
� �

∆
1,

applying logarithms on both sides we get

                       
log log

f x h

f x

f x

f x

+�
�
��

�
	




= +
�
�
��

�
	




� �
� �

� �
� �

1
∆

          
⇒ + − = +

�
�
��

�
	




log log logf x h f x
f x

f x
� � � � � �

� �
1

∆

                        
⇒ = +

�
�
��

�
	




∆
∆

log log .f x
f x

f x
� � � �

� �
1

Example 3.9 Evaluate 
∆2

3

E
x



��
�
��

.

Solution Let h be the interval of differencing

                         
∆ ∆

2
3 2 1 3

E
x E x



��
�
��

= −� �

= (E – 1)2 E–1 x3

= (E2 – 2E + 1) E–1 x3

= (E – 2 + E–1) x3

= Ex3 – 2x3 + E–1 x3

= (x + h)3 – 2x3 + (x – h)3

= 6xh.

Note If h = 1, then 
∆2

3 6
E

x x


��
�
��

= .

Example 3.10 Prove that e
E

e
Ee

e
x

2
x

x

2 x
= ∆

∆
. ,  the interval of differencing being h.

Solution We know that

                               E f x f x h� � � �= +

                              ∴ = +E e ex x h ,

again ∆ex = ex+h – ex = ex (eh – 1)

                                   ⇒ = −∆2 2
1e e ex x h. � �

                                 
∴


��
�
��

= =− −∆ ∆ ∆
2

2 1 2

E
e E e ex x x h� �

= = −− −e e e e eh x h x h∆2 2
1� � � �

        ∴ −
−

=−
+

 R.H.S. =  e e e
e

e e
eh x h

x h

x h
x( )

( )
.1

1
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Example 3.11 Prove that f(4) = f(3) + ∆ f(2) + ∆2 f(1) + ∆3 f(1).

Solution                       f f f4 3 3� � � � � �− = ∆

= + − =∆ ∆ ∆f f f f f2 2 3 2 2� � � � � � � � � �� �since

= +∆ ∆f f2 22� � � �

= + +∆ ∆ ∆f f f2 1 12� � � � � �

= + +∆ ∆ ∆f f f2 1 12 3� � � � � �

                               ∴ = + + +f f f f f4 3 2 1 12 3� � � � � � � � � �∆ ∆ ∆ .

Example 3.12 Given u0 = 1, u1 = 11, u2 = 21, u3 = 28 and u4 = 29, find ∆4u0.

Solution ∆4
0u = (E – 1)4u0

= (E4 – 4c1E
3 + 4c2 E2 – 4c3 E + 1) u0

= E4y0 – 4E3u0 + 6 E2 u0 – 4Eu0 + u0

= u4 – 4u3 + 6u2 – 4u1 + u0

= 29 – 112 + 126 – 44 + 1

= 0.

Example 3.13 Given u0 = 3, u1 = 12, u2 = 81, u3 = 200, u4 = 100, and u5 = 8, find ∆5
0u .

Solution ∆5
0u = (E –1)5u0

= (E5 – 5E4 + 10E3 – 10E2 + 5E – 1)u0

= u5 – 5u4 + 10u3 – 10u2 + 5u1 – u0

= 8 – 500 + 2000 – 810 + 60 – 3

= 755.

Example 3.14 Find the first term of the series whose second and subsequent terms are 8, 3, 0, –1, 0, …

Solution Given f(2) = 8, f(3) = 3, f(3) = 0, f(4) = –1, f(5) = 0, we are to find f(1).

We construct the difference table with the given values.

x f x� � ∆f x� � ∆2 f x� � ∆3 f x� � ∆4 f x� �

2 8

–5

3 3 2

–3 0

4 0 2 0

–1 0

5 –1 2

1

6 0

We have                       ∆ ∆3 4 0f x f x� � � �= = =... .
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Using the displacement operator

                               f E f1 21� � � �= −
 = + −

1 2
1∆� � � �f

= − + − +1 22 3∆ ∆ ∆ ...� � � �f

= − + − +f f f f2 2 2 22 3� � � � � � � �∆ ∆ ∆ ...

= − − +8 5 2� �  = 15

                              ∴ =f 1 15� � .

3.4 THE OPERATOR D

Dy denotes the differential coefficient of y with respect to x where D
d

dx
= .  We have Dy

dy

dx
= .  The

nth derivative of y with respect to x is denoted by D y
d y

dx
n

n

n
= .

Relation between the operators ∆ ,  D and E We know that

                          Df x
d

dx
f x f x� � � � � �= = ′

                         D f x
d

dx
f x f x2

2

2� � � � � �= = ′′  etc.

From the definition we have

Ef(x) = f(x + h) (h being the interval of differencing)

= + ′ + ′′ +f x
h

f x
h

f x� � � � � �
1 2

2

! !
...

= + + +f x
h

Df x
h

D f x� � � � � �
1 2

2
2

! !
...

(expanding by Taylor’s series method)

= + + +


��

�
��

1
1 2

2
2h

D
h

D f x
! !

... � �

= + + +


��

�
��

=1
1 2

2 2hD h D
f x e f xhD

! !
... � � � �

                             ∴ =Ef x e f xhD� � � � ,

hence the identity                   E ehD≡ .
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We have already proved that E ≡ +1 ∆  and E ehD≡ .

Now consider E ehD= .  Applying logarithms, we get

                          ⇒ =hD Elog  = +log 1 ∆

= − + − +∆ ∆ ∆ ∆2 3 4

2 3 4
...

                          
⇒ = − + − +

�
�
�

�
	

D

h

1

2 3 4

2 3 4

∆ ∆ ∆ ∆
... .

3.5 BACKWARD DIFFERENCES

Let y = f(x) be a function given by the values y0, y1, … yn which it takes for the equally spaced

values x0, x1, …, xn of the independent variable x. Then y – y0, y2 – y1, …, yn – yn– 1 are called the

first backward differences of y = f(x). They are denoted by ∇ ∇ ∇y y yn0 1, , ..., ,  respectively. Thus

we have

                        

y y y
y y y

y y yn n n

1 0 1

2 1 2

1

− = ∇
− = ∇

− = ∇−

�

,

where ∇  is called the backward difference operator.

x y ∇y ∇2 y ∇3 y ∇4 y

x0 y0

∇y1

x1 y1 ∇2
2y

∇y2 ∇3
3y

x2 y2 ∇2
3y ∇4

4y

∇y3 ∇3
4y

x3 y3 ∇2
4y

∇y4

x4 y4

Note: In the above table the differences ∇n y  with a fixed subscript i, lie along the diagonal upward sloping.

Alternative notation Let the function y = f(x) be given at equal spaces of the independent variable
x at x = a, a + h, a + 2h, … then we define

                          ∇ = − −f a f a f a h� � � � � �
where ∇  is called the backward difference operator, h is called the interval of differencing.
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In general we can define

                          ∇ = − −f x f x f x h� � � � � �.

We observe that       ∇ + = + − =f x h f x h f x f x� � � � � � � �∆

                     ∇ + = + − + = +f x h f x h f x h f x h2 2� � � � � � � �∆

�

                     ∇ + = + − + −f x nh f x nh f x n h� � � � � �� �1

= + −∆f x n h1� �� �.

Similarly we get    ∇ + = ∇ ∇ +2 2 2f x h f x h� � � �

= ∇ +∆f x h� �

= ∆ ∆f x� �

= ∆2 f x� �

�

                   ∇ + =n nf x nh f x� � � �∆ .

Relation between E and ∇ :

                          ∇ = − − = − −f x f x f x h f x E f x� � � � � � � � � �1

                          ⇒ ∇ = − −1 1E

or                                 ∇ =
−E

E

1
.

Example 3.15 Prove the following (a) 1 1 1+ − =∆ ∆� �� �  (b) ∆ ∆∇ = − ∇  (c) ∇ = −E 1∆.

Solution

(a)                      1 1 1+ − ∇ = −∆� �� � � � � �f x E E f x

= −Ef x h� �  = f x� �  = 1. ( )f x

                           ∴ + − ∇ ≡1 1 1∆� �� � .

(b)                                ∇∆ = − − −f x E E f x� � � �� � � �1 1 1

= − − −E f x f x h1� � � � � �
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= − − − + −Ef x f x Ef x h f x h� � � � � � � �

= + − − + −f x h f x f x f x h� � � � � � � �

= − − − −Ef x f x f x f x h� � � � � � � �

= − − − −E f x E f x1 1 1� � � � � � � �

= − − − −E E f x1 1 1� � � � � �

= − ∇∆� � � �f x

                                  ∴ = − ∇∆∇ ∆f x f x� � � � � �

                                ∴ = − ∇∆∇ ∆ .

(c)                                    ∇ = − −f x E f x� � � � � �1 1  = − −f x f x h� � � �

and                               E f x E f x h f x− −= + −1 1∆ � � � � � �

= − − ∇f x f x h� � � �

                             ∴ ∇ = −E 1 ∆ .

3.6 FACTORIAL POLYNOMIAL

A factorial polynomial denoted by xr is the product of r consecutive factors of which the first factor
is x and successive factors are decreased by a constant h > 0. Thus

xr = x(x – h) (x – 2h) ... [x – (r – 1)h].

When h = 1                 x x x x x rr = − − − +1 2 1� �� � � �...

and in particular          x0 1=

                     x x1 =

                   ∆x x h xr r r= + −� �

= + − + − − − −x h x x h x h x h x x� � � � � �� � � �... ...1 1  x x h− − 1� �� �

= −rhx r 1� � .

In general we can write

                  ∆r r rx r r h= − ×1 1� � ...  = h rr !.
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Note:

1. ∆r rx+ =1 0

2. If the interval of differencing is unity then the successive differences of xr, can be obtained by ordinary
successive differentiation of xr.

3. If r is a positive integer then

x
x h x h x rh

r( )

( ) ( )...( )
− =

+ + +
1
2

and if r = 1 x
x x x r

r( )

( ) ( ) ...( )
.− =

+ + +
1

1 2

3.6.1 To Express a given Polynomial in Factorial Notation

A polynomial of degree r can be expressed as a fractional polynomial of the same degree.

Let f(x) be a polynomial of degree which is to be expressed in factorial notation and let

f x( ) = a a x a x a xr
r

0 1
1

2
2+ + + +.... (2)

where a0, a1, …, ar are constants and a0 ≠  0 then

                         ∆f x( ) = ∆ a a x a xr
r

0 1
1+ + +...

                      ⇒ = + + + −∆f x a a x ra xr
r� � � �

1 2
1 12 ...

                      ∴ = + + + −∆ ∆2
1 2

1 12f x a a x ra xr
r� � � �...

                     ⇒ = + × + + − −∆2
2 3

1 22 2 3 1f x a a x r r x r� � � � � �...

�

                         ∆r
rf x a r r x� � � � � �= − ×1 2 1 0...

= a rr !.

Substituting x = 0 in the above we get

                           f a
f

a
f

a
f

r
a

r

r0
0

1

0

2

0
0 1

2

2� � � � � � � �
= = = =,

!
,

!
, ...,

!
.

∆ ∆ ∆

Putting the values of a0, a1, a2, …, ar in (2) we get

                            f x f
f

x
f

x
f

r
x

r
r� � � � � � � � � �

= + + + +0
0

1

0

2

01
2

2∆ ∆ ∆
! !

...
!

.

Example 3.16 If m is a positive integer and interval of differencing is 1, prove that

(a) ∆2 x mx m m 1 x( ) ( )( )= − −2  (b) ∆2 m mx m m 1 x( ) ( )( )− − −= + 2

Solution

(a) x x x x mm� � � � � �= − − −1 1...
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                                      ∆x x x x x m x x x mm� � � � � � � �� � � � � �= + + + − − − − − −1 2 1 1 1 1... ...

= −mx m 1� �

                                      ∆ ∆ ∆2 x xm m� � � �=  = −m x m∆ 1� �  = − −m m xm1 2� � .

(b) x
x x x m

m− =
+ + +

� �
� �� � � �

1

1 2 ...
,

                                    ∆ x
x x x m x x m

m− =
+ + + +

−
+ +

� �
� �� � � � � � � �

1

2 1 1

1

1... ...

=
+ + + +

−
+

�
�
�
�

�
	





1

2

1

1

1

1x x m x m x� � � � � � � �...

=
−

+ + + +
m

x x x m

1

1 2 1

� �
� �� � � �...  = − − −m x m� � � �1

                             ∆2 21x m m xm m− − −= − − −� � � �� � � �� �  = + − −m m x m1 2� � � � .

3.6.2 Differences of Zero

If n and r are two positive integers and the interval of differencing is 1, then

                           ∆n r r n r n r n r
o n c n c n c= − − + − − + −1 2 41 2 1� � � � � �... .

Proof ∆n rx = (E – 1)nxr

= [En – nc1E
n – 1 + nc2E

n – 2 + … + (–1)n]xr

= Enxr – nc1E
n – 1xr + nc2E

n – 2 + … + (–1)\xr

= (x + n)r – nc1(x + n – 1)r + nc2(x + n – 2)r + … +

 nc1(–1)n – 1(x + 1)r + (–1)nxr.

Substituting x = 0, we get

∆n ro = nr – nc1 (n – 1)r + nc2(n – 2)r + … + ncn(–1)r.

∆3 4o = 34 – 3c1(3 – 1)4 + 3c2(3 – 2)4 + 3c3(3 – 3)4

= 81 –3c1 × 16 + 3 + 0

= 36.

Note:

1. When n r on r. , ∆ = 0

2. ∆n no n= !

3. ∆or r= =1 1
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Example 3.17 Prove that (a) ∆ ∆2 3 3 3o 6 b o 6= =( )

Solution

(a) ∆2 3 3 32 21 6o = − =. .

(b) ∆3 3 3 3 33 32 31 6o = − + =. . .

Example 3.18 Calculate (a) ∆ ∆ ∆3 6 5 6 6 6o 6 b o c o= ( ) ( )

Solution

(a)                                     ∆3 6 6 6 63 32 31o = − +. .

= 729 – 192 + 3 = 540.

(b)                                     ∆5 6 6 6 6 6 65 54 10 3 10 2 51o = − + − +. . . .

= 15625 – 20480 + 7290 – 640 + 5 = 1800.

(c)                                     ∆6 6 6o = !.

Example 3.19 Express f(x) = 3x3 + x2 + x + 1, in the factorial notation, interval of differencing being unity.

Solution f(x) is a polynomial of degree 3.

∴  We can write

                                 f x f
f

x
f

x
f

x� � � � � � � � � �� � � � � �= + + +0
0

1

0

2

0

3
1

2
2

3
3∆ ∆ ∆

! ! !
. (3)

The interval of differencing is unit and finding the values of the function at x = 0, 1, 2 and 3, we get

∴  f(0) = 1, f(1) = 6, f(2) = 31, f(3) = 94.

The difference table for the above values is

x f x� � ∆f x� � ∆2 f x� � ∆3 f x� �

0 1

5

1 6 20

25 16

2 31 38

63

3 94

From the table we have f f f f0 1 0 5 0 20 0 182 3� � � � � � � �= = = =, , , .∆ ∆ ∆

Substituting the above values in (3) we get

f x x x x� � � � � � � �= + + +1 5
20

2

18

3
1 2 3

! !
,

∴ = + + +f x x x x� � � � � � � �3 10 5 13 2 1 .
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Alternative method

Let 3 13 2 3 2 1x x x ax bx cx d+ + + = + + +� � � � � �

= − − + − + +ax x x bx x cx d1 2 1� �� � � � (4)

Putting x = 0 in (4) we get 1 = d.

Putting x = 1 in (4) we get c = 5.

Putting x = 2 in (4) we get 31 = 2b + 11

⇒   b = 10.
Comparing the coefficients of x3 on both sides of (4) we get

a = 3

3x3 + x2 + x + 1 = 3x(3) + 10x(2) + 5x(1) + 1.

Note:
1. Unless stated the interval of differencing is taken to be unity (i.e., h = 1).

2. We can also use another method known as synthetic division to express given polynomial in its factorial notation.

Example 3.20 Express 3x3 – 4x2 + 3x – 11, in factorial notation.

Solution Here we apply the method of synthetic division as follows:

Omit the coefficients of x3, x2, x the signs of constant terms in (x – 1), (x – 2),
(x – 3), are changed so that addition takes the place of subtraction and the remainders are obtained. Thus

1 3 –4 3 –11 = D

0 3 –1

2 3 –1 2 = C

0 6

3 –3 5 = B

0

3 = A

∴ − + − = + + −3 4 3 11 3 5 2 113 2 3 2 1x x x x x x� � � � � � .

Note While applying the methods of synthetic division the coefficients of powers of x should be arranged in descending
order, counting zero for the coefficient of missing term.

Example 3.21 Express f(x) = x4 – 5x3 + 3x + 4 in terms of factorial polynomials (by using the method of detached
coefficients).

Solution By the method of synthetic division (method of detached coefficients) we get

1 1 –5 0 3 4 = E

0 1 –4 –4

2 1 –4 –4 –1 = D

0 2 –4

3 1 –2 –8 = C

0 3

4 1 1 = B

0

1 = A

∴ = + − − +f x x x x x� � � � � � � � � �4 3 2 18 4.
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Example 3.22 Obtain a function whose first difference is 6x2 + 10x + 11.

Solution Expressing the function in factorial notation, we get

                      6 10 11 6 16 112 2 1x x x x+ + = + +� � � �

                               ∆f (x) = 6x(2) + 16x(1) + 11

Integrating we get               f x
x x x

K� �
� � � � � �

= + + +6

3

16

2

11

1

3 2 1

.

                              ∴ = + + +f x x x x K� � � � � � � �2 8 113 2 1 ,

which is the required function.

3.6.3 Recurrence Relation

If n and r are positive integers. Then ∆ ∆ ∆n r n r n ro n o o= +− − −1 1 1 .

Proof

 ∆n r r
r r

r
o n n

n n n
= −

−
+

− −
+ + −

�

�
�
�

�

	





−1 1

1

1 2

2
1

� � � �� � � �
! !

...

    = −
− −

+
− − −

+ + −
�

�
�
�

�

	





−
− −

n n
n n n n nr

r r
r1

1 1
1 1

1

1 2 2

2
1

� �� � � �� �� � � �
! !

...

= + − − − + − + −− − − − −
n n c n c n

r n r n r r
1 1 1 2 1

1 1
1

1 1
2

1� � � � � � � �� � � � ...

= + − − + − + + −− −
n n c nn r r

1 1 1 2 11
1

1� � � � � �� � ...

= − + + −− − − − − − − −
n E c E c En r n n r n n r r1 1 1

1
2 1 1

2
3 1

1 1 1 1� � � �� � � � � �...

= − − −
n E

n r
1 1

1 1� �

= − −
n n r∆ 1 1

1� �

= =− −
n E o E on r∆ 1 1

1� � � �� �since

= +− −n on r∆ ∆1 11� �

= +− − −n o on r n r∆ ∆1 1 1

which is the required relation.

Example 3.23 Prove that ∆ ∆n n n no
n n

o+ =
+1 1

2

� �
.

Solution We know that ∆ ∆ ∆n m n m n mo n o o= +− − −1 1 1 .

Using this relation, we get
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                               ∆ ∆ ∆n n n n n no n o o+ −= +1 1

                               ∆ ∆ ∆n n n n n no n o o− − − − −= − +1 2 1 1 11� �

                             ∆ ∆ ∆n n n n n no n o o− − − − − −= − +2 1 3 2 2 22� �
�

                                 ∆ ∆ ∆2 3 2 2 22o o o= +

                                 ∆ ∆ ∆o o o3 0 1 1 11= × + .

By back substituting of the above values we have

                               ∆ ∆ ∆ ∆n n n n n n n no n o n n o n n n o+ − − − −= + − + − − +1 1 1 2 21 1 2� � � �� �
... ...+ − − ×n n n o1 2 2 1 1 1� �� � ∆

= + − + − + + +n n n n! ...1 2 2 1� � � �

=
+

n
n n

!
1

2

� �
 =

+n n
on n1

2

� �
∆ .

3.7 ERROR PROPAGATION IN A DIFFERENCE TABLE

Let y0, y1, y2, …, yn be the values of the function y = f(x) and the value y5 be effected with an error
∈,  such that the erroneous value of y5 is y5 + ∈. In this case the error ∈ effects the successive
differences and spreads out facewise as higher orders are formed in the table. The table given below
shows us the effect of the error.

y ∆y ∆2 y ∆3 y

y0

∆y0

y1 ∆2
0y

∆y1 ∆3
0y

y2 ∆2
0y

∆y2 ∆3
1y

y3 ∆2
1y

∆y3 ∆3
2y + ∈

y4 ∆2
3y + ∈

∆y4 + ∈ ∆3
3 3y − ∈

y5 + ∈ ∆2
4 2y − ∈

∆y5 − ∈ ∆3
4 3y + ∈

y6 ∆2
5y + ∈

∆y6 ∆3
5y − ∈

y7 ∆2
6y

∆y7 ∆3
6y

y8 ∆2
7y

∆y8

y9
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Example 3.24 The following is a table of values of a polynomial of degree 5. It is given that f(3) is in error. Correct
the error.

x 0 1 2 3 4 5 6

y 1 2 33 254 1054 3126 7777

Solution It is given that y = f(x) is a polynomial of degree 5.

∴ ∆5 y  must be constant, f(3) is in error.

Let 254 + ∈ be the true value, now we form the difference table

x y ∆y ∆2 y ∆3 y ∆4 y ∆5y

0 1

1

1 2 30

31 160 + ∈

2 33 190 + ∈ 200 4− ∈

221 + ∈ 360 3− ∈ 220 10+ ∈

3 254 + ∈ 550 2− ∈ 420 6+ ∈

1771 − ∈ 1780 3+ ∈ 20 10− ∈

4 1.50 1330 + ∈ 440 4− ∈

2101 1220 − ∈

5 3126 12550

4651

6 7777

Since the fifth differences of y are constant

                  220 10 20 10+ ∈= − ∈

⇒ ∈= −20 220

⇒ ∈= − 10

                      ∴ = + ∈f 3 254� �

⇒ f 3 244� � = .

3.8 CENTRAL DIFFERENCES

The operator δ : We now introduce another operator known as the central difference operator to
represent the successive differences of a function in a more convenient way.

The central difference operator, denoted by the symbol δ  is defined by

                         y y y1 0 1 2− = δ /
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                         y y y2 1 3 2− = δ /

                             �

                       y y yn n n− =− −1 1 2δ / .

For higher order differences

                     δ δ δy y y3 2 1 2
2

1/ /− =

                        δ δ δy y y2 1
2

3 2− = /

                               �

           δ δ δn
r

n
r

n
r

n

ry y y E E y−
+

−
−

−− = = −1
1 2

1
1 2

1 2 1 2
/ /

/ /� �
In its alternative notation

                           δ f x f x h f x h� � = +

��

�
�� − −


��
�
��

1

2

1

2
,

where h is the interval of differencing. The central difference table can be formed as follows.

x y δ δ2 δ3 δ4 δ5 δ6

x0 y0

δy1 2/

x1 y1 δ2
1y

δy3 2/ δ3
3 2y /

x2 y2 δ2
2y δ4

2y

δy5 2/ δ3
5 2y / δ5

5 2y /

x3 y3 δ2
3y δ4

3y δ6
3y

δy7 2/ δ3
7 2y / δ5

7 2y /

x4 y4 δ2
4y δ4

4y

δy9 2/ δ3
9 2y /

x5 y5 δ2
5y

δy11 2/

x6 y6

3.9 MEAN OPERATOR

In addition to the operator ∆, ,∇ E  and δ,  we define the mean operator (averaging operator) µ  as

µ f x f x h f x h� � = +

��

�
�� + −


��
�
��

�
��

�
	


1

2

1

2

1

2
.
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Alternative notation If y = f(x) is a functional notation between the variable x and y then it can
also denoted by y = fx or by y = yx.

Let yx, yx + h, yx + 2h, …, etc., denote the values of the dependent variable y = yx, corresponding
to the values x, x + h, x + 2h, …, etc, of the independent variables then the operators ∆, , ,∇ δ  and
µ  are defined as

                            ∆y y yx x h x= −+

                            ∇ = − −y y yx x x h

                             δy y yx x h x h
= −

+ −1
2

1
2

,

                               µ = +


��

�
��+ −

1

2 1
2

1
2

y y
x h x h

,

where h is the interval of differencing.

Relation between the operators From the definition we know that

δ f x( ) = f x h+

��

�
��

1
2

 − −

��

�
��f x h

1
2

(i)                             δ f x f x h f x h� � = +

��

�
�� − −


��
�
��

1

2

1

2

= − −E f x E f x1 2 1 2/ /� � � �

= − −E E f x1 2 1 2/ /� � � �

                         ∴ ≡ − −δ E E1 2 1 2/ /� �

Further                   δ f x E E f x� � � � � �= −−1 2 1/  = −E f x1 2/ ∆ � �

                          ∴ = −δ E 1 2/ .∆

Note: From the above result we get

                                 E1 2/ δ = ∆

(ii)                            µ f x f x h f x h� � = +

��

�
�� + −


��
�
��

�
��

�
	


1

2

1

2

1

2

= + −1

2
1 2 1 2E E f x/ / � �

                          ∴ ≡ + −µ 1

2
1 2 1 2E E/ / .
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(iii)                          E f x E f x f x h∇ = − −� � � � � �

= − −Ef x Ef x h� � � �
= + − =f x h f x f x� � � � � �∆

                             ∴ ∇ ≡E ∆

and                          ∇ = ∇ +Ef x f x h� � � �

= + −f x h f x� � � �  = ∆ f x� �

                              ⇒ ∇ =E ∆

                              ∴ ∇ = ∇E E .

Note: From the above it is clear that operators E and ∇ commute and ∆, , ,∇ δ E  and µ  also commute.

3.10 SEPARATION OF SYMBOLS

The symbolic relation between the operators can be used to prove a number of identities. The method
used is known as the method of separation of symbols. Few examples based on this method are given
below.

Example 3.25 Use the method of separation of symbols to prove the following identities:

(a) u u u
1

2
u

1

4
u

1

8
u0 1 2 0 0

2
0− + − = − + −... ...∆ ∆

(b) u
u

1!
x

u

2!
x e u

u

1!
x

u

2!0
1 2 2 x

0
0 2

2
0+ + + = + + +

�

�
�
�

�

	





... ...
∆ ∆

(c) ( u u ) x( u u ) x ( u u ) ...
u

1 x
x

u

(1 x )
x

u

(1 x )
...1 0 2 1

2
3 2

0
2

0
2

2
2

0
3

− − − + − − =
+

−
+

+
+

∆ ∆ ∆

(d) u u u u u n ux x 1 x 2 x 3
n 1

x n 1
n

x n= + + + − +− − −
−

− + −∆ ∆ ∆ ∆2 ...

Solution

(a)                              u u u u Eu E u0 1 2 0 1
2

0− + = − + − ...

= − + −1 2
0E E u...� �

= + −
1

1
0E u� �

= + + −
1 1

1
0∆� � u  = + −

2
1

0∆� � u

= +
��
�
��

−
−

2 1
2

1
1

0
∆

u

= − + − +
�
�
�

�
	



1

2
1

2 2 2

2

2

3

3 0
∆ ∆ ∆

... u
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= − + − +
�
�
�

�
	



1

2 2 4 80
0

2
0

3
0u

u u u∆ ∆ ∆
...

                     ∴ − + − + = − + − +
�
�
�

�
	

u u u u u

u u u
0 1 2 3 0

0
2

0
3

01

2 2 4 8
... ...

∆ ∆ ∆

(b)           u
u x u x u x

u
xEu x E u x E u

0
1 2

2
3

3

0
0

2 2
0

3 3
0

1 2 3 1 2 3
+ + + + = + + + +

! ! !
...

! ! !
...

= − + + +
�
�
�

�
	

1

1 2 3

2 2 3 3

0
xE x E x E

u
! ! !

...

= e Eux
0  = +e ux 1

0
∆� �  = ⋅e e ux x ∆

0 .

= + + +
�
�
�

�
	

e

x x
ux 1

1 2

2 2

0
∆ ∆
! !

...

= + + +
�
�
�

�
	

e u

x u x ux
0

0
2 2

0

1 2

∆ ∆
! !

... .

(c)                                     LHS = − − − + − −u u x u u x u u0 2 0 2 3 2� � � � � � ...

= − + − +∆ ∆ ∆ ∆u x u x u x u0 1
2

2
3

3 ...

= − + − + = + −∆ ∆ ∆ ∆ ∆u x Eu x Eu x Eu xE u0 0
2

0
3

0
1

01... � �

                                       RHS =
+

−
+

+
+

−∆ ∆ ∆u

x
x

u

x
x

u

x

0
2

0
2

2
3

0
31 1 1� � � �

...

=
+

−
+

+
+

−
�

�
�
�

�

	





1

1 1 1

2 2

2

3 3

3 0x

x

x

x

x

x

x
u

∆ ∆ ∆

� � � �
...  = +

+
+

�

�

�
�
�
�

�

	










1 1

1
1

0x

x
x

x
x

u

∆

∆

=
+ +



��

�
��

=
+ +



��

�
��

∆
∆

∆
∆1 1 10 0x x

u
x

u
� �

=
+



��

�
��

= + −∆ ∆
1

10
1

0xE
u xE u� �  = L.H.S.

Example 3.26  Use the method of seperation of symbols and prove the following

(a) ux = ux–1 + ∆ux–2 + ∆2ux–3 + ... + ∆nux–n

(b) ux = u ( n x ) u ( n x ) u ...n c n 1 c
2

n 21 2
− − + − −− −∆ ∆

+ − − −
− −( 1) un x n x

n ( n x )∆
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Solution. (a) Consider R.H.S.

u u u ux x x
n

x n− − − −+ + + +1 2
2

3∆ ∆ ∆...

= E E E− −
−

− −
−+ + + +1 2

2
1u u u ux x

n n
x

n
x n∆ ∆ ∆...

= E E E E− − − − − −
−+ + + + +1 1 2 2 1 11[ ... ]( )∆ ∆ ∆ ∆n n

x
n

x nu u

= E
E

E 1
−

−

− −
−
−

�

�
�
�

�

	





+1 1

1

∆
∆

∆
n n

x
n

x nu u  = 
1 1

1 1E

E

E

−
−

�

�
�
�

�

	





+
−

− −
∆
∆

∆
n n

x
n

x nu u

=
1 −

−
�

�
�
�

�

	





+
−

−
∆

∆
∆

n n

x
n

x nu u
E

E  = 
1

1

−�

�
�
�

�

	





+
−

−
∆ ∆

n n

x
n

x nu u
E

( )�E = 1 + E∆ ∆⇒ − = 1

= u u ux
n

x n
n

x n− +− −∆ ∆ ( )�E−
−=n

n n xu u

= ux = L.H.S.

(b) R.H.S. = u n x u n x un c n c n− − + − +− −( ) ( ) ...
1 21

2
2∆ ∆  + − − −

− −( ) ( )1 n x n x
n n xu∆

= ( ( ) ( ) ...1
1 2

1 2 2− − + − +− −n x n xc c∆ ∆E E  + − − − − −( ) )( )1 n x n x n x
nu∆ E

= 1 11− = −�
��

�
	


− − −
∆Ε ∆n x

n

n x

nu u
E

=
E

E E
E

−�
��

�
	


= 
��
�
�� =

− −
− −∆ n x

n

n x

n
n x

nu u u
1 ( )

= u un n x x− − = =( ) L.H.S.

Example 3.27 If ux = ax2 + bx + c, then show that

u2n – nc12u2n – 1 + nc22
2u2n – 2 – … + (–2)nun = (–1)n (c – 2an).

Solution Given that                    u ax bx cx = + +2

                                     ⇒ = + +u an bn cn
2 .

∴ un  is a polynomial of degree 2 in n

                         ∴ = = =∆ ∆3 4 0u un n ... .

Let the interval of differencing be equal to 1. Now

                              u an bn cn = + +2

⇒ = + + + + − − −∆u a n b n c an bn cn 1 1
2 2� � � �  = + +2an a b

and ∆ ∆ ∆2u un n= = + + + − − −2 1 2a n a b an a b� �  = 2a
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LHS = − + −− −u c u c un
n

n
n

n2 1 2 1 2
2

2 22 2 ...

= − + −− −E c E c E un n n n n
n1

1
2

2 22 2 ...

= −E u
n

n2� �  = − −E u
n

n1 1� �

= − = −( )∆ ∆1 1n
nu � E

= − −1 1� � � �n n
nu∆  = − − + +1 1 1 2

2� �n n n
nc c u∆ ∆ ...

= − − +
−

+
�
�
�

�
	

1

1

2
2� � � �n

n n nu n u
n n

u∆ ∆ ...

= − + + − + + +
−�

�
�

�
	

1 2

2
22

2

� � � �n
an bn c n an a b

n n
a

� ∆ ∆3 4 0y yn n= = =...� �

= − −1 2� � � �n
c an  = R.H.S.

Example 3.28 Given that u ex
ax b= + ,  find ∆n

xu .

Solution Let h be the interval of differencing

∆ ∆ ∆n
x

n ax bu e= − +1 = −∆ ∆n ax be e1

= −∆ ∆n b axe e1

= −− +e e eb n ax h ax∆ 1

= −−e e eb n ah ax∆ 1 1� � .

= − −e e eb ah n ax1 1� �∆

= − −e e eb ah n ax1
2 2� � ∆

�

= −e e eb ah n ax1� � .

Example 3.29 If ∆, ,∇ δ  denote the forward, backward and central difference operators, and E, µ are respectively

the shift and averaging operators in the analysis of data with equal spacing. Prove the following.

(a) ∆ − ∇ = δ2  (b) E
1

2
E

1

2
1/ 2 1/ 2= + = −−µ δ µ δ,  (c) ∆ = + +1

2
12

2
δ δ δ

4

(d) µ δ2 21
1

4
= + (e) µδ = +−1

2
E

1

2
1∆ ∆
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Solution

(a)                                    ∆ − ∇ = − −δ δE E1 2 1 2/ /

= − −δ E E1 2 1 2/ /� �  = ⋅ =δ δ δ2

                          ∴ − ∇ =∆ δ2 .

(b)                                  µ δ+ = + + −− −1

2

1

2

1

2
1 2 1 2 1 2 1 2E E E E/ / / /� � � �  = =1

2
2 1 2 1 2E E/ /� �

                                    µ δ− = + − −− −1

2

1

2

1

2
1 2 1 2 1 2 1 2E E E E/ / / /� � � �  = −E 1 2/ .

(c)                        
1

2
1

4

1

2
1

4
2

2
1 2 1 2 2

1 2 1 2 2

δ δ δ δ+ + = − + +
−

−
−

E E
E E

/ /

/ /

� �
� �

= − + −
+ + −− −

−1

2

4 2

4
1 2 1 2 2 1 2 1 2

1

E E E E
E E/ / / /� � � �

= + − + −
−

− −
−

1

2
2

4
1 1 2 1 2

1 2 1 2 2

E E E E
E E

� � � �
� �/ /

/ /

= + − +
− +

−
− −

1

2
2

2
1

1 2 1 2 1 2 1 2

E E
E E E E

� �
� �� �/ / / /

= + − + −− −1

2
2

1

2
1 1E E E E� � � �

= − =E 1 ∆ .

(d)                                  µ2
2

1 2 1 2 21

2
= 
��

�
�� + −E E/ /� �

= + +−1

4
21E E� �  = − +


�
�
�

−1

4
41 2 1 2 2

E E/ /� �

= + = +1

4
4 1

1

4
2 2δ δ� �

                                    ∴ = +µ δ2 21
1

4
.

(e)                                        µδ = + −− −1

2
1 2 1 2 1 2 1 2E E E E/ / / /� �� �

= − −1

2
1E E� �  = − + − −1

2
1 1 1E e
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= + − −1

2

1

2
1 1∆� � � �E  = + −1

2

1

2

1
∆

E

E

= + −1

2

1

2
1∆ ∆E .

Example 3.30 If D, E, δ  and µ  be the operators with usual meaning and if hD = U where h is the interval of
differencing. Prove the following relations between the operators:

(i) E eU= (ii) δ = 2sinh
U

2
(iii) µ = 2cosh

U

2
(iv) ( ) ( )E 1 2 E 1+ = −δ µ

Solution

(i) By definition                          E ehD=

                                        ∴ = =E E hD UU
�� �

(ii) Consider R.H.S.

                             
2

2
2

2

2 2
sinh

U e e
U U

= −



�

�
�
�

�

�

�
�
�

−

= −
−

E EU U� � � �
1

2

1

2

= − =−E E E EU1 2 1 2/ /
�� �

= δ by definition� �  = L.H.S.

(iii) Consider R.H.S.                    R.H.S. = cosh
U

E E
U U

2

1

2
2 2= +




�
��

�

�
��

−

=
+

=
+

−
−E E E E

U U� � � �
1 2 1 2

1 2 1 2

2 2

/ /
/ /

= µ by definition� �  = L.H.S.

(iv) L.H.S. = (E + 1)δ

= + − −E E E1 1 2 1 2� �� �/ /

= ⋅ + ⋅ −− −E E E E E E1 2 1 2 1 2 1 2 1 2 1 2/ / / / / /� � � �

= + −− −E E E E E1 2 1 2 1 2 1 2 1 2/ / / / /� � � �

= − ⋅ +− −E E E E E1 2 1 2 1 2 1 2 1 2/ / / / /� � � �
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= − ⋅ ⋅
+


��
�
��

−

E
E E

1 2
2

1 2 1 2

� �
/ /

= −2 1E� �µ  = R.H.S.

Example 3.31 If  ∇ = − −f ( x ) f ( x ) f ( x 1) show that

                             ∇ = − − + − − + − −n n n
2

nf ( x ) f ( x ) f ( x 1) c ( x 2 ) ... ( 1) f ( x n )

Solution                            ∇ = − −f x f x f x� � � � � �1 ( )given

                           ⇒ ∇ = − −f x f x E f x� � � � � �1

                           ⇒ ∇ = − −f x E f x� � � � � �1 1

                           ∴ ∇ = − −n f x E f x� � � � � �1 1

= − + + + −

�

�
�

− − −1 11
1

2
1 2 1n n n n

c E c E E f x� � � � � � � �...

= − + + + −− − −1 11
1

2
2n n n nc E c E E f x... � �� � � �

= − − + − + + − −f x c f x c f x f x nn n n� � � � � � � � � �1 21 2 1...

3.11 HERCHEL’S THEOREM

Theorem 3.3 If f x� �  is a polynomial with constant coefficients and E o n hnh m m m= ,  then

                         f ( e ) f (1 )
t

1!
f ( E )o

t

2!
f ( E )o

t

3!
f ( E )o ...ht

2
2

2
3= + + + +

Proof Let                     f x a xn
n

n

� � =
=

∑ ,
0

α

(5)

where an (n = 0, 1, 2, …) is real.

We know that           e
t y nh t y nh t y nhy nh t+ = +

+
+

+
+

+
+� � � � � � � �

1
1 2 3

2 2 3 3

! ! !
...

                     ⇒ = + + + ++e
t

E y
t

E y
t

E yy nh t nh nh nh� � 1
1 2 3

2
2

3
3

! ! !
... (6)

Substituting (6) we get

                         e e
t

E o
t

E o
t

E oo nh t nht nh nh nh+ = = + + + +� � 1
1 2 3

2
2

3
3

! ! !
...
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∴  From (5), we get

                   f e a e a eht
n

ht n

n
nht

nn

� � � �= =
=

∞

=

∞

∑∑
00

= + + + +
�
�
�

�
	



=

∞

∑a
t

E o
t

E o
t

E on
nh nh nh

n

1
1 2 3

2
2

3
3

0 ! ! !
...

= + + +
=

∞

=

∞

=

∞

∑ ∑ ∑a
t

a E o
t

a E on
n

n
n

nh
n

n

nh

1 20 0

2

0

2

! !

t
a E on

n

nh
3

0

3

3!
...

=

∞

∑ +

= + + + +f
t

f E o
t

f E o
t

f E o1
1 2 3

2
2

3
3� � � � � � � �

! ! !
...

Exercise 3.1

1. Show that ∇ = − −1 e hD

2. Prove the following operator relations

(a) ∇ = − + −1 1 1( )∆ (b) δ = + −∆ ∆( ) /1 1 2

(c) ∆ ∆2 21= +( )δ (d)
∆

∆
∆

∇
− ∇ = + ∇

(e) µ δ δ δ− = − + − +1 2 2 61
1
8

3
128

5
1024

... (f) δ = 2 sinh
��
�
��2

hD

(g) ∆3
2

3
5y y= ∇ (h) ∇ = −

r
k

r
k rf f∆

(i) ∆ ∆f f f fk k k k
2

1� � � �= + +

3. Find the values of

(a) ∆2o (b) ∆5 5o (c) ∆6 5o
4. Prove the following

(a) u
u x u x u x

e u
x u x

ux
0

1 2
2

3
3

0
0

2
2

01 2 3 1 2
+ + + + = + + +

�
�
�

�
	



! ! !
...

! !
...

∆ ∆

(b) u u u un n n n− + + ++ + +1 2 3 ...

= − + 

��
�
�� +

�

�
�
�

�

	



− − −

1
2

1
8

1 3

2
1
81

2

2
3
2

3
4

5
2

u u u
n n n

∆ ∆×

!
...

(c) u c u x c u x x un n n
0 1 1 2 2

2
01+ + + = + + +... ( )

n n n nc x x u c x x u1
1

0 2
2 2 2

01 1( ) ( ) ...+ + + +− −∆ ∆
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(d) ∆2
0 3 2 1 03 3u u u u u= − + −

(e) If ux
n= 2  then ∆u un x=

(f) u u c u c ux h x
x

n
x

n+ −
+

−= + + +1 1
1

1
2

2∆ ∆ ...

5. Show that y y y y y4 3 2
2

1
3

1= + + +∆ ∆ ∆

6. Express the following functions in factorial notation

(a) x4 – 12x3 + 42x2 – 30x + 9

(b) 2x4 – 7x2 + 5x – 13

(c) 3x3 – 4x2 + 3x – 11

(d) 2x3 – 3x2 + 3x + 15

(e) x4 – 5x3 + 3x + 4

(f) x4 – 2x2 – x

7. Obtain the function whose first difference is

(a) ex

(b) 2x3 + 5x2 – 6x + 13

(c) x4 – 5x3 + 3x + 4

(d) cx

8. If f x x� � = sin ,  then show that ∆2
2

2
1

2
f x Ef x� � � �= − 
��

�
��sin .

9. If f x x x x� � = − + +2 3 13 2  then show that ∆2 12 10f x x� � = + .

10. If f x eax� � = ,  then show that f f f0 0 02� � � � � �, ,∆ ∆  are in G.P.

11. Taking 1 as the interval of differencing, prove that 
∆2 3

3 2
6

1

x

x xE
=

+( )
.

12. Taking 1 as the interval of differencing, prove the following
(i) ∆ tan ax

(ii) ∆2 2
1ab x a b bcxc c= −� �

(iii) ∆n x x n
ae ae e= − 1� �

(iv) ∆n
n

a bx
h

a bx
n b

cos sin cos
( )+ = 
��

�
�� + + +


��
�
��� � 2

2 2

π

13. Prove the following

(i) δ µ δ µ δf x g x f x g x g x f x( ) ( ) = +� � � � � � � �

(ii) δ
µ δ µ δf x

g x

g x f x f x g x

g x
h

g x
h

� �
� �

� � � � � � � ��
�
�
�

�
	





=
−

−
�
�
� +
�

�
�2 2
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(iii)
µ

µ µ δ δf x

g x

f x g x f x g x

g x
h

g x
h

� �
� �

� � � � � � � ��
�
�
�

�
	





=
−

−
�
�
� +
�

�
�

1
4

2 2

(iv) µ µ µ δ δf x g x f x g x f x g x� � � � � � � � � � � �= + 1
4

14. Prove

∆ ∆ ∆ ∆f x g x f x g x f x g x− − = ∇ = − ∇1 1 1� � � � � � � � � �( )

15. Prove

(i) y
h

y
y y y′ = − + − +

�
�
�

�
	

1

2 3 4

2 3 4

∆ ∆ ∆ ∆
...  and

(ii) ′′ = ∇ + ∇ + ∇ +�
��

�
	


y
h

y y y
1 11

122
2 3 4 ...

where the symbols have their usual meanings.

16. Given  y0 + y8 = 1.9243, y1 + y7 = 1.9540

y2 + y6 = 1.9823 and y3 + y5 = 1.9956

Show that y4 = 0.9999557.

Answers

5. (a) x(4) – 6x(3) + 13x(2) + x(1) + 9 (b) 2x(4) + 12x(3) + 7x(2) – 13

(c) 3x(3) + 5x(2) + 2x(1) – 11 (d) 2x(3) + 3x(2) + 2x(1) + 15

(e) x(4) + x(3) – 8x(2) – x(1) + 4 (f) x(4) + 4x(3) + x(2) – 21

6. (a)
e

e

n( )

− 1
(b)

x
x x x K

( )
( ) ( ) ( )

4
3 2 1

2

11

3

1

2
13+ + + +

(c)
x x x x

x K
( ) ( ) ( ) ( )

( )
5 4 3 2

1

5 4
8

3 2
4+ − − + − (d) 

c

c

x

− 1
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4.1 INTRODUCTION

The word interpolation denotes the method of computing the value of the function y = f(x) for any
given value of the independent variable x when a set of values of y = f(x) for certain values of x
are given.

Definition 4.1: Interpoltation is the estimation of a most likely estimate in given conditions. It
is the technique of estimating a Past figure (Hiral).

According to Theile: “Interpolation is the art of reading between the lines of a table”.

According to W.M. Harper: “Interpolation consists in reading a value which lies between two
extreme points”.

The study of interpoltation is based on the assumption that there are no sudden jumps in the
values of the dependent variable for the period under consideration. It is also assumed that the rate
of change of figures from one period to another is uniform.

Let y = f(x) be a function which takes the values y0, y1, y2, …, yn, corresponding to the values
x0, x1, x2, …, xn of the independent variable x. If the form of the function y = f(x) is known we
can very easily calculate the value of y correspondig to any value of x. But in most of the practical
problems, the exact form of the function is not known. In such cases the function f(x) is replaced
by a simpler function say φ( )x  which has the same values as f(x) for x0, x1, x2, ..., xn. The function
φ( )x  is called an interpolating function.

4.2 MISSING VALUES

Let a function y = f(x) be given for equally spaced values x0, x1, x2, ..., xn of the argument and y0,
y1, y2, …, yn denote the corresponding values of the function. If one or more values of y = f(x) are
missing we can find the missing values by using the relation between the operators E and ∆.

4.3 NEWTON’S BINOMIAL EXPANSION FORMULA

Let y0, y1, y2, …, yn denote the values of the function y = f(x) corresponding to the values x0, x0
+ h, x0 + 2h …, x0 + nh of x and let one of the values of y be missing since n values of the functions
are known. We have

4
INTERPOLATION WITH

EQUAL INTERVALS
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                          ∆n y0 0=

                 ⇒ − =E yn1 00� �

⇒ − + + + − =− −E c E c E yn n n n n n
1

1
2

2
01 0... � �

⇒ − +
−

×
+ + − =− −E y n E y

n n
E y yn n n n

0
1

0
2

0 0

1

1 2
1 0

� �
� �...

⇒ − +
−

+ + − =− −y n y
n n

y yn n n
n

1 2 0

1

2
1 0

� �
� �...

The above formula is called Newton’s binomial expansion formula and is useful in finding the
missing values without constructing the difference table.

Example 4.1 Find the missing entry in the following table

x 0 1 2 3 4

y
x

1 3 9 – 81

Solution Given y0 = 1, y1 = 3, y2 = 9, …, y3 = ?, y4 = 81 four values of y are given. Let y be polynomial of degree 3

                              ∴ =∆4
0 0y

                           E y− =1 0
4

0� �

  ⇒ − + − + =E E E E y4 3 2
04 6 4 1 0� �

⇒ − + − + =E y E y E y Ey y4
0

3
0

2
0 0 04 6 4 0

          y y y y y4 3 2 1 04 6 4 0− + − + =

      ∴ − + × − × + =81 4 6 9 4 3 1 03y

                                    y3 31= .

Example 4.2 Following are the population of a district

Year (x) 1881 1891 1901 1911 1921 1931

Population (y) 363 391 421 ? 467 501

Find the population of the year 1911.

Solution We have

y0 = 363, y1 = 391,  y2 = 421, y3 = ?, y4 = 467, y5 = 501

Five values of y are given. Let us assume that y is a polynomial in x of degree 4.

∆5y0 = 0 ⇒ − =E y1 0
5

0� �

E E E E E y5 4 3 2
05 10 10 5 1 0− + − + − =� �

⇒  y y y y y y5 4 3 2 1 05 10 10 5 0− + − + − =
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⇒ 501 5 461 10 10 421 5 391 363 03− × + − × + × − =y

                      ⇒ 10 4452 03y − =

                               ⇒  y3 4452= .

The population of the district in 1911 is 445.2 lakh.

Example 4.3 Interpolate the missing entries

x 0 1 2 3 4 5

y = f(x) 0 – 8 15 – 35

Solution Given y0 = 0, y1 = ?, y2 = 8, y3 = 15, y4 = ?, y5 = 35. Three values are known. Let us assume that
y = f(x) is a polynomial of degree 3.

                                 ∆4
0 0y =  ⇒ − =E y1 04

0� �

      E E E E y4 3 2
04 6 4 1 0− + − + =� �

       ∴ − + − + =y y y y y4 3 2 1 04 6 4 0

    ∴ − × + × − − =y y4 14 15 6 8 4 0 0

                         ∴ − =y y4 14 12 (1)

and                                    ∆5
0 0y =  ⇒ − =E y1 0

5
0� �

⇒ − + − + − =E E E E E y5 4 3 2
05 10 10 5 1 0� �

⇒  y y y y y y5 4 3 2 1 05 10 10 5 0− + − + − =

⇒ 35 5 10 15 10 8 5 0 04 1− + × − × + − =y y

                              ⇒ y y4 1 21− = (2)

Solving (1) and (2), we get

y y1 43 24= =, .

4.4 NEWTON’S FORWARD INTERPOLATION FORMULA

Let y = f(x) be a function which takes the values y0, y1, y2, …, yn corresponding to the (n + 1) values
x0, x1, x2, …, xn of the independent variable x. Let the values x be equally spaced, i.e.,

x x rh r hr = + =0 0 1 2, , , , ...,

where h is the interval of differencing. Let φ( )x  be a polynomial of the nth degree in x taking the
same values as y corresponding to x = x0, x1, …, xn, then, φ( )x  represents the continuous function
y = f(x) such that f(xr) = φ(xr) for r = 0, 1, 2, …, n and at all other points f x x R x( ) ( ) ( )= +φ  where
R(x) is called the error term (Remainder term) of the interpolation formula. Ignoring the error term
let us assume

f x x a a x x a x x x x� � � � � � � �� �≈ ≈ + − + − − + +φ 0 1 0 2 0 1 ... a x x x x x xn o n− − − −� �� � � �1 1...
(3)

the constants a0, a1, a2, …, an can be determine as follows.
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Putting x = x0 in (3) we get

                  f x x a0 0 0� � � �≈ =φ

                         ⇒ =y a0 0

putting x = x1 in (3) we get

     f x x a a x x y a h1 1 0 1 1 0 0 1� � � � � �≈ = + − = +φ

                          ∴ = +y y a h1 0 1

                         ⇒ =
−

=a
y y

h

y

h1
1 0 0∆

.

Putting x = x2 in (3) we get

                         f x x a a x x a x x x x2 2 0 1 2 0 2 2 0 2 1� � � � � � � �� �≈ = + − − −φ

                         ∴ = + +y y
y

h
h a h h2 0

0
22 2

∆ � � � �� �

                        ⇒ = + − +y y y y a h2 0 1 0 2
22 2� � � �

                        ⇒ = − + =a
y y y

h

y

h
2

2 1 0
2

2
0
2

2

2 2

∆
!

Similarly by putting x = x3, x = x4 ...,  x = xn in (3) we get

                            a
y

h
a

y

h
a

y

n h
n

n

n3

3
0
3 4

4
0
4

0

3 4
= = =∆ ∆ ∆

!
,

!
, ...,

!

putting the values of a0, a1, …, an in (3) we get

                          f x x y
y

h
x x

y

h
x x x x� � � � � � � �� �≈ = + − + − − +φ 0

0
0

2
0
2 0 1

2

∆ ∆
!

∆3
0
3 0 1 2

3

y

h
x x x x x x

!
...− − − + +� �� �� �

∆n

n n
y

n h
x x x x x x0

0 1 1
!

− − − −� �� �� � (4)

Writing u
x x

h
= − 0 ,  we get x x uh− =0

                          x x x x x x− = − + −1 0 0 1

= − − −x x x x0 1 0� � � �  = − = −uh h u h1� �
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Similarly                  x x u h− = −2 2� �

                          x x u h− = −3 3� �
                              

�

                        x x u n hn− = − +−1 1� �

Equation (4) can be written as

φ x y u
y u u

y� �
� �

= + +
−

+ +0
0 2

01

1

2

∆ ∆
! !

...
u u u n

n
yn

o

− − +1 1� � � �...

!
.∆

The above formula is called Newton’s forward interpolation formula.

Note:

1. Newton forward interpolation formula is used to interpolate the values of y near the beginning of a set of
tabular values.

2. y0 may be taken as any point of the table, but the formula contains only those values of y which come
after the value chosen as y0.

Example 4.4 Given that

125 0 111.8034, 12510 111.84810 = =

12520 111.8 , 125 0 111.9375= =928 3

find the value of 12516 .

Solution The difference table is

x y x= ∆y ∆2 y

12500 x0 111.8034 y0

0.0447 ∆y0

12510 111.8481 0 ∆2
0y

0.0447

12520 111.8928 0

0.0447

12530 111.9375

We have x0 = 12500, h = 10 and x = 12516

                                     u
x x

h
=

−
=

−
=0 12516 12510

10
16.

from Newton’s forward interpolation formula

                                        f x y u y
u u

y� �
� �

= + +
−

+0 0
2

0

1

2
∆ ∆

!
...

                               ⇒ = + × + +f 12516 1118034 16 0 0447 0� � . . . ...
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= +1118034 0 07152. .  = 11187492.

                               ∴ =12516 11187492. .

Example 4.5 Evaluate y = e2x for x = 0.05 using the following table

x 0.00 0.10 0.20 0.30 0.40

y = e2x 1.000 1.2214 1.4918 1.8221 2.255

Solution The difference table is

x y e x= 2 ∆y ∆2 y ∆3 y ∆4 y

0.000 1.0000

0.2214

0.10 1.2214 0.0490

0.2704 0.0109

0.20 1.4918 0.0599 0.0023

0.3303 0.0132

0.30 1.8221 0.0731

0.4034

0.40 2.2255

We have x0 = 0.00, x = 0.05, h = 0.1.

                                  ∴ = − = − =u
x x

h
0 0 05 0 00

01
0 5

. .

.
.

Using Newton’s forward formula

f x y u y
u u

y
u u u

y� �
� � � �� �

= + +
−

+
− −

+0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

! !

u u u u
y

− − −
+

1 2 3

4
4

0
� �� �� �

!
...∆

f 0 05 10000 05 0 2214
05 05 1

2
0 0490. . . .

. .
.� �

� �
� �= + × +

−
+

05 05 1 0 5 2

6
0 0109

. . .
.

− −
+

� �� �
� �

05 05 1 05 2 05 3

24
0 0023

. . . .
.

− − −� �� �� �
� �

 = + − + −1000 01107 0 006125 0 000681 0 000090. . . . .  = 1105166.

∴ ≈f 0 05 1052. . .� �

Example 4.6 The values of sin x are given below for different values of x. Find the value of sin 32°

x 30° 35° 40° 45° 50°

y = sin x 0.5000 0.5736 0.6428 0.7071 0.7660

Solution x = 32° is very near to the starting value xo = 30°. We compute sin 32° by using Newton’s forward
interpolation formula.
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The difference table is

x y x= sin ∆y ∆2 y ∆3 y ∆4 y

30° 0.5000

0.0736

35° 0.5736 –0.0044

0.0692 –0.005

40° 0.6428 –0.0049 0

0.0643 –0.005

45° 0.7071 –0.0054

0.0589

50° 0.7660

                                           u
x x

h
= − = ° − ° =0 32 30

5
0 4. .

We have y y y y0 0
2

0
3

005000 0 0736 0 0044 0 005= = = − = −. , . , . , .∆ ∆ ∆

putting these values in Newton’s forward interpolation formula we get

     f x y u y
u u

y
u u u

y� �
� � � �� �

= + +
−

+
− −

+0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

! !
...

⇒  f(32°) = 0 5000 0 4 0 0736
0 4 0 4 1

2
0 0044. . × .

. .
.+ +

−
− +

� � � �
� �  

0 4 0 4 1 0 4 2

6
0 0005

. . .
.

� �� �� �
� �

− −
−

    f(32°) = 0.5000 + 0.02944 + 0.000528 – 0.00032 = 0.529936 = 0.299.

Example 4.7 In an examination the number of candidates who obtained marks between certain limits were as follows:

Marks 30–40 40–50 50–60 60–70 70–80

No. of Students 31 42 51 35 31

Find the number of candidates whose scores lie between 45 and 50.

Solution Fist of all we construct a cumulative frequency table for the given data.

Upper limits of the class intervals 40 50 60 70 80

Cumulative frequency 31 73 124 159 190

The difference table is

x y ∆y ∆2 y ∆3 y ∆4 y

marks         cumulative

        frequencies

40 31

42

50 73 9

51 –25
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60 124 –16 37

35 12

70 159 –4

31

80 190

we have                                  x x h0 40 45 10= = =, ,

                                     u
x x

h
= − = − =0 45 40

10
0 5.

and                                       y y y y y0 0
2

0
3

0
4

073 42 9 25 37= = = = − =, , , , .∆ ∆ ∆ ∆

From Newton’s forward interpolation formula

    f x y u y
u u

y
u u u

y� �
� � � �� �

= + +
−

+
− −

+0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

! !

u u u u
y

− − −
+

1 2 3

4
2

0
� �� �� �

!
...∆

∴ = + +
−

× +f 45 31 05 42
05 05

2
9� � � �� �

� �� �
.

. . 05 05 1 05 2

6
25

. . .� �� �� �
� �

− −
− +

05 05 1 05 2 05 3

24
37

. . . .� �� �� �� �
� �

− − −
×

  = + − − −31 21 1125 15625 14452. . . = 47 8673.

  = 48 approximately� �
∴The number of students who obtained marks less than 45 = 48, and the number of students who scored marks
between 45 and 50 = 73 – 48 = 25.

Example 4.8 A second degree polynomial passes through the points (1, –1), (2, –1), (3, 1), (4, 5). Find the
polynomial.

Solution We construct difference table with the given values of x and y

x y ∆y ∆2 y ∆3y

1 –1

0

2 –1 2

2 0

3 1 2

4

4 5

We have                            x h y y y0 0 0
2

01 1 1 0 2= = = − = =, , , , ,∆ ∆

                                     u
x x

h
x= − = −0 1� �.



104 NUMERICAL ANALYSIS

From Newton’s forward interpolation we get

                                     y f x y u y
u u

y= = + +
−

+� �
� �

0 0
2

0

1

2
∆ ∆

!
...

                             ⇒ = − + − ⋅ +
− − −

⋅f x x
x x

� � � �
� �� �

1 1 0
1 1 1

2
2

                              ∴ = − +f x x x� � 2 3 1.

Note: There may be polynomials of higher degree which also fit the data, but Newton’s formula gives us the
polynomial of least degree which fits the data.

4.5 NEWTON–GREGORY BACKWARD INTERPOLATION FORMULA

Newton’s forward interpolation formula cannot be used for interpolating a value of y near the end
of a table of values. For this purpose, we use another formula known as Newton–Gregory backward
interpolation formula. It can be derived as follows.

Let y = f(x) be a function which takes the values y0, y1, y2, …, yn corresponding to the values
x0, x1, x2, …, xn of the independent variable x. Let the values of x be equally spaced with h as the
interval of differencing, i.e.,

Let xr = x0 + rh, r = 0, 1, 2, …, n

Let φ x� �  be a polynomial of the nth degree in x taking the same values as y corresponding to

x = x0, x1, …, xn, i.e., φ x� �  represents y = f(x) such that f xr� �  = φ xr� �,  r = 0, 1, 2, ..., we may

write φ x� �  as

                           f x x a a x x a x x x xn n n� � � � � � � �� �≈ = + − + − − +−φ 0 1 2 1

... ...+ − − −−a x x x x x xn n n� �� � � �1 1 (5)

Putting x = xn is (5) we get

                               f x x an n� � � �≈ =φ 0 .

                               ⇒ =y an 0 .

Putting x = xn – 1 in (5) we get

                        f x x a a x xn n n n− − −≈ = + −1 1 0 1 1� � � � � �φ

                        ⇒ = + −−y y a hn n1 1 � �

                        ⇒ = − =−a h y y yn n n1 1 ∆

                          ⇒ = ∇
a

y

h
n

1 1!

Putting x = xn – 2, we get
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f x x a a x xn n n n− − −≈ = + − +2 2 0 1 2� � � � � �φ a x x x xn n n n2 2 2 1− − −− −� �� �

⇒ = +
−�

��
�
	


− + − −−
−

y y
y y

h
h a h hn n

n n
2

1
22 2� � � �� �

⇒ = − + +− −y y y y h an n n n2 1
2

22 2 2� �

⇒ =
− +

= ∇− −
a

y y y

h

y

h

n n n n
2

1 2

2

2

2

2

2 2!

similarly putting x x x x x xn n n= = =− − −3 4 5, , ..., , ...  we get

                              a
y

h
a

y

h
a

y

n h
n n

n

n
n
n3

3

3 4

4

33 4
= ∇ = ∇ ∇ = ∇

!
,

!
, ...,

!

substituting these values in (5)

f x n y
y

h
x x

y

h
x x x xn

n
n

n
n n� � � � � � � �� �≈ = = ∇ − + ∇ − − +−φ

2

2 1
2!

∇ − − − +− −

3

3 1 2
3

y

h
x x x x x xn

n n n
!
� �� �� � ...

!
...+ ∇ − − −−

n
n
n n n

y

n h
x x x x x x� �� � � �1 1

(6)

writing u
x x

h
n= −

 we get    x x uhn− =

                     ∴ − = − + − = + = +− −x x x x x x uh h u hn n n n1 1 1� � � �

                    ⇒ − = + − = + −−x x u h x x u x hn 2 12 1� � � � � �, ...,

∴  The equation (6) may be written as

f x x y
u y u u

yn
n

n� � � �
� �

≈ = + ∇ +
+

∇ +φ
1

1

2
2

! !

u u u
yn

+ +
∇ +

1 2

2
3� �� �

!

...
...

!
.+

+ + + −
∇

u u u u n

n
yn

n

1 2 1� �� � � �

The above formula is known as Newton’s backward interpolation formula.

Example 4.9 The following data gives the melting point of an alloy of lead and zinc, where t is the temperature in
degrees c and P is the percentage of lead in the alloy.

P 40 50 60 70 80 90

t 180 204 226 250 276 304

Find the melting point of the alloy containing 84 per cent lead.

Solution The value of 84 is near the end of the table, therefore we use the Newton’s backward interpolation formula.
The difference table is
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P t ∇ ∇2 ∇3 ∇4 ∇5

40 184

20

50 204 2

22 0

60 226 2 0

24 0 0

70 250 2 0

26 0

80 276 2

28

90 304

We have x x h t y t y yn n n n n n= = = = = ∇ = ∇ = ∇90 84 10 304 28 2, , , , ,  = 2, and

fh = fh

                                 ∇ = ∇ = ∇ =3 4 5 0y y yn n n ,

u =
x x

h
n− = − = −84 90

10
0 6. .

From Newton’s backward formula

                                f t u t
u u

tn n n84
1

2
2� �

� �
= + ∇ +

+
∇ + ...

                                f 84 304 0 6 28
0 6 0 6 1

2
2� �

� �� �
= − × +

− − +
.

. .

= − −304 168 0 24. .  = 286 96. .

Example 4.10 Calculate the value of f 7 5.� �  for the table

x 1 2 3 4 5 6 7 8

f(x) 1 8 27 64 125 216 343 512

Solution 7.5 is near to the end of the table, we use Newton’s backward formula to find f(7.5).

x y ∇y ∇2 y ∇3 y ∇4 y ∇5y

1 1

7

2 8 12

19 6

3 27 18 0

37 6 0

4 64 24 0

(Contd.)
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61 6 0

5 125 30 0

91 6 0

6 216 36 0

127 6

7 343 42

169

8 512

We have x x h y y y yn n n n n= = = = ∇ = ∇ = ∇ =8 7 5 1 512 169 42 62 3, . , , , , , ,

∇ = ∇ = =4 5 0y yn n ...              u
x x

h
n= − = − = −

7 5 8

1
0 5

.
. .

∴  we get

 f x y u y
u u

y
u u u

yn n n n� �
� � � �� �

= + ∇ +
+

∇ +
+ +

∇
1

2

1 2

3
2 3

! !
+ ...

f 7 5 512 05 165
05 05 1

2
42. .

. .
� � � �� �

� �� �
� �= + − +

− − +
+

− − + − +05 05 1 05 2

6
6

. . .� �� �� �
� �

  = − − −512 84 5 525 0 375. . .

  = 42187. .

4.6 ERROR IN THE INTERPOLATION FORMULA

Let the function f(x) be continuous and possess continuous derivatives of all orders with in the

interval [x0, xn] and let f(x) denote the interpolating polynomial. Define the auxiliary function F(t) as

given below

F t f t t f x x
t x t x t x

x x x x x x
n

n

� � � � � � � � � �� �
� �� � � �
� �� � � �

= − − −
− − −
− − −

φ φ 0 1

0 1

...

...

The function F(t) is continuous in [x0, xn]. F(t) possesses continuous derivatives of all orders

in [x0, xn] and variables for the values t = x, x0, …, xn. Therefore F(t) satisfies all the conditions

of Rolle’s Theorem in each of the subintervals (x0, x1), (x1, x2) … (xn – 1, xn). Hence FI(t) vanishes

at least once in each of the subintervals. Therefore ′f t( )  vanishes at least (n + 1) times in (x0, xn),

′′f t( )  vanishes at least n times in the interval (x0, xn), …, Fn + 1(t) vanishes at least once in (x0,

xn) say at ξ, where x0 < ξ1 < xn.

The expression (t – x0) (t – x1) … (t – xn) is a polynomial of degree (n + 1) in t and the

coefficient of t = 1.

∴  The (n + 1) the derivative of polynomial is (n + 1)!

∴ = − −+ +F f f x xn n1 1ξ ξ φ� � � � � � � �� �
n

x x x x x xn

+
− − −

=
1

0
0 1

� �
� �� � � �

!

...
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                ⇒ − =
+

− − −
+

f x x
f

n
x x x x x x

n

n� � � �
� �

� �
� �� � � �φ

ξ1

0 11 !
...

If R x� �  denotes the error in the formula then R x f x x� � � � � �= − φ

                        ∴ =
+

− − −
+

R x
f

n
x x x x x x

n

n� �
� �

� �
� �� � � �

1

0 11

ξ
!

...

But x – x0 = uh ⇒  x – x1 = (u – 1)h, … (x – xh) = (u – n)h where h is the interval of

differencing therefore we can write

                     Error R x
h f

n
u u u u n

n n

� �
� �

� �
� �� � � �=

+
− − −

+ +1 1

1
1 2

ξ
!

... .

Using the relation D
h

= 1 ∆

we get                         D
h

n
n

n+
+

+≈1
1

11 ∆

                    ⇒ ≈
+

+
+

f
f x

n
n

n
1

1
0

1
ξ� �

� �∆

The error in the forward interpolation formula is

                           R x
y

n
u u u u n

n

� �
� �

� �� � � �=
+

− − −
+∆ 1

0

1
1 2

!
...

Similarly by taking the auxiliary function F(t) in the form

F t f t t f x x� � � � � � � � � �� �= − − −φ φ
t x t x t x

x x x x x x

n n

n n

− − −

− − −
−

−

� �� � � �

� �� � � �
1 0

1 0

...

...
,

and proceeding as above we get the error in the Newton backward interpolation formula as

                           R x
y

n
u u u n uh x x

n
n

n� �
� �

� � � �= ∇
+

+ + = −
+1

1
1

!
... .where

Example 4.11 Use Newton’s forward interpolation formula and find the value of sin 52° from the following data.
Estimate the error.

x 45° 50° 55° 60°

y = sin x 0.7071 0.7660 0.8192 0.8660
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Solution The difference table is

x y x= sin ∆y ∆2 y ∆3 y

45° 0.7071

0.0589

50° 0.7660 –0.0057

0.0532 –0.0007

55° 0.8192 –0.0064

0.0468

60° 0.8660

∴  We have x x y y y0 1 0 0
2

045 52 0 7071 0 0589= ° = ° = =, , . , . ,∆ ∆  = − 0 0057.  and ∆3
0 0 0007y = − . ,

                                     u
x x

h
= − = ° − °

°
=0 52 45

5
14. .

From Newton’s formula

        y u u y
u u

y
u u u

y= + +
−

+
− −

+0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

� � � �� �
! !

...

∴ = + × +
−

× − +f 52 0 7071 14 0 0589
14 14 1

2
0 0057� �

� �� �
� �. . .

. .
.

14 14 1 14 2

6
0 0007

. . .
.

� �� �� �
� �

− −
−

 = + − +0 7071 08246 0 001596 0 0000392. . . .  = 0 7880032.

∴ ° =sin .52 0 7880032

    Error =
− − −

+
+u u u u n

n
yn1 2

1
1

0
� �� � � �

� �
...

∆

taking n = 2 we get

   Error =
− −u u u

y
1 2

3
3

0
� �� �

!
∆  =

− −
− =

14 14 1 14 2

6
0 0007 0 0000392

. . .
. . .

� �� �� �
� �

Exercise 4.1

1. Find the missing figures in the following table

x 0 5 10 15 20 25

y 7 11 – 18 – 32

2. Estimate the production of cotton in the year 1985 from the data given below

Year (x) 1981 1982 1983 1984 1985 1986 1987

Production (y) 17.1 13.0 14.0 9.6 – 12.4 18.2
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3. Complete the table

x 2 3 4 5 6 7 8

f(x) 0.135 – 0.111 0.100 – 0.082 0.074

4. Find the missing figure in the frequency table

x 15–19 20–24 25–29 30–34 35–39 40–44

f 7 21 35 ? 57 58

5. Find the missing term in the following table

x 1 2 3 4 5 6 7

f(x) 2 4 8 – 32 64 128

6. Find the missing term

x 1 2 3 4 5

y 7 – 13 21 37

7. Estimate the missing figure in the following table

x 1 2 3 4 5

f(x) 2 5 7 – 32

8. Find the missing term in the following data

x 0 1 2 3 4

y 1 3 9 – 81

9. Find f(1.1) from the table

x 1 2 3 4 5

f(x) 7 12 29 64 123

10. The following are data from the steam table

Temperature °C 140 150 160 17 180

Pressure kgt/cm2 3.685 4.84 6.302 8.076 10.225

Using the Newton’s formula, find the pressure of the steam for a temperature of 142°C.

11. The area A of circle of diameter d is given for the following values

d 80 85 90 95 100

A 5026 5674 6362 7088 7854

Find approximate values for the areas of circles of diameter 82 and 91 respectively.
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12. Compute (1) f(1.38) from the table

x 1.1 1.2 1.3 1.4

f(x) 7.831 8.728 9.627 10.744

13. Find the value of y when x = 0.37, using the given values

x 0.000 0.10 0.20 0.30 0.40

y = e2x 1.000 1.2214 1.4918 1.8221 2.2255

14. Find the value of log10 2.91, using table given below

x 2.0 2.2 2.4 2.6 2.8 3.0

y = log
10 

x 0.30103 0.34242 0.38021 0.41497 0.44716 0.47721

15. Find f(2.8) from the following table

x 0 1 2 3

f(x) 1 2 11 34

16. Find the polynomial which takes on the following values

x 0 1 2 3 4 5

f(x) 41 43 47 53 61 71

17. Find a polynomial y which satisfies the following table

x 0 1 2 3 4 5

y 0 5 34 111 260 505

18. Given the following table find f(x) and hence find f(4.5)

x 0 2 4 6 8

f(x) –1 13 43 89 151

19. A second degree polynomial passes through (0,1) (1,3) (2, 7) (3, 13), find the polynomial.

20. Find a cubic polynomial which takes the following values

x 0 1 2 3

f(x) 1 0 1 10

21. u0 = 560, u1 =556, u2 = 520, u4 = 385 show that u3 = 465.

22. In an examination the number of candidates who secured marks between certain limit were as
follows:

Marks 0–19 20–39 40–59 60–79 80–99

No. of candidates 41 62 65 50 17

Estimate the number of candidates whose marks are less than 70.
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23. Given the following score distribution of statistics

Marks 30–40 40–50 50–60 60–70

No. of students 52 36 21 14

Find

(i) the number of students who secured below 35.

(ii) the number of students who secured above 65.

(iii) the number of students who secured between 35–45.

24. Assuming that the following values of y belong to a polynomial of degree 4, compute the next three
values:

x 0 1 2 3 4 5 6 7

y 1 –1 1 –1 1 – – –

25. The table gives the distance in nautical miles of the visible horizon for the given heights above the
earth’s surface:

x = height 100 150 200 250 300 350 400

y = distance 10.63 13.03 15.04 16.81 18.42 19.90 21.27

find the values of y when (i) x = 218 ft (ii) x = 410 ft.

26. Find a cubic polynomial which takes the following values

x 0 1 2 3

f(x) 1 2 1 10

Hence or otherwise evaluate f(4).

27. Using Newton’s forward formula, find the value of f(1.6), if;

x 1 1.4 1.8 2.2

f(x) 3.49 4.82 5.96 6.5

28. Using Newton’s Interpolation formulae find the value of y when x = 1.85 and x = 2.4, if

x 1.7 1.8 1.9 2.0 2.1 2.2 2.3

y = ex 5.474 6.050 6.686 7.389 8.166 9.025 9.974

29. From the following table:

x 0.1 0.2 0.3 0.4 0.5 0.6

f(x) 2.68 3.04 3.38 3.68 3.96 4.21

find f(0.7) approximately.

30. Apply Newton’s backward difference formula to the data below, to obtain a polynomial of degree y
is x:

x 1 2 3 4 5

y 1 –1 1 –1 1
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31. The following data give the melting point of an alloy of lead and zinc, where t is the temperature in
°C and p, the percentage of lead in the alloy:

p 60 70 80 90

t 226 250 276 304

Find the melting point of the alloy containing 84 per cent lead, using Newton’s interpolation formula.

32. Find a polynomial of degree 4, passing through the points (0, 1) (1, 5) (2, 31), (3, 121), (4, 341), (5,
781)

33. Find the form of the function, given

x 0 1 2 3 4

f(x) 3 6 11 18 27

34. Find and correct any error that may be present in the following table:

x 0 1 2 3 4 5 6 7 8 9 10

y 2 5 8 17 38 75 140 233 362 533 752

35. The following table gives the population of Bengal during the period from 1881 to 1931. Estimate the
population of Bengal in 1911:

Year 1881 1891 1901 1911 1921 1931

Population (in lakh) 363 391 421 – 467 501

36. Find the index number of exports in 1922, from the table:

Year (x) 1920 1921 1922 1923 1924

Index No. of exports (y) 72 57 – 81 103

37. In the table of values given below the values of y are consecutive terms of a series of which the
number 21.6 in the 6th term. Find the first and the tenth terms of the series.

x 3 4 5 6 7 8 9

y 2.7 6.4 12.5 21.6 34.3 51.2 72.9

38. Find the missing figure, in the frequency table:

x 15–19 20–24 25–29 30–34 35–39 40–44

y 7 21 35 – 57 58

39. The table below gives the values of tan x for 0.10 ≤  x ≤  0.30:

x 0.10 0.15 0.20 0.25 0.30

y = tan x 0.1003 0.1511 0.2027 0.2553 0.3093

find tan (0.12) and tan (0.26).
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40. The following data are part of a table for g x
x

x
� � = sin

:
2

x 0.1 0.2 0.3 0.4 0.5

g(x) 9.9833 4.9667 3.2836 2.4339 1.9177

Calculate g(0.25) as accurately as possible, by using Newton’s forward interpolation formula.

41. Find the value of e1.85 give e1.7 = 5.4739, e1.8 = 6.0496, e1.9 = 6.6859, e2.0 = 7.3891, e2.1 = 8.1662,
e2.2 = 9.0250, e2.3 = 9.9742.

42. Using Newton’s formula find sin (θ – 1604) from the table

x 0.160 0.161 0.162

sin x 0.1593182066 0.160305341 0.1612923412

43. Use Newton’s forward interpoltation formula and find y at x = 2.5.

x 0 1 2 3 4

y 7 10 13 22 43

44. Applying Newton’s interpolation formula, compute 5 5.  given that 5 2 236 2 449= =. , . , 6

7  8= =2 646 2 828. , . .

45. In the bending of an elastic beam, the normal stress y at a distance x from the middle section is given
by the following table

x 0.0 0.25 0.50 0.75 1.0

y 0.46 0.39 0.25 0.12 0.04

find the pressure of the steam for a temperature of 142°C.

46. A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod
has turned for various values of time t seconds.

t 0 0.2 0.4 0.6 0.8 1.0 1.2

θ 0 0.12 0.49 1.12 2.02 3. 20 4.67

obtain the value of θ when t = 0.5.

47. From the table given below compute the value of sin 38°.

x° 0 10 20 30° 40°

sin x° 0 0.17365 0.34202 0.50000 0.64279

48. Given the table

x 0 0.1 0.2 0.3 0.4

y = ix 1 1.1052 0.2214 1.3499 1.4918

Find the value of y = ex when x = 0.38.
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49. Apply Newton’s backward difference formula, to the data below and find y when x = 10.

x 5 6 9 11

y 12 13 14 16

50. Find the expectation of life at age 32 from the following data :

Age 10 15 20 25 30 35

Expectation 35.3 32.4 29.2 26.1 23.2 20.5

of life

Answers

1. 17 2. 6.60 3. 48

4. 23.5, 14.25 5. f(3) = 0.123, f(6) = 0.090 6. 9.5

7. 14 8. 31 9. 7.13

10. 3.899 11. 5281, 6504 12. 10.963

13. 2.0959 14. 0.46389 15. 27.992

16. x2 + x + 41 17. 4x3 + x 18. 2x3 + 3x – 1

19. x2 + x + 1 20. x3 – 2x2 + 1 21.

22. 197 23. (i) 26 (ii) 7 (iii) 46 24. 31, 129, 351

25. 15.7 nautical miles, 21.53 nautical miles

26. 2x3 – 7x2 + 6x + 1, 41 27. 5.54 28. 6.36, 11.02

29. 4.43 30. y x x x x= − + − +2

3
8

100

3
56 314 3 2

31. 286.96 32. x4 + x3 + x2 + x + 1 33. x2 + 2x + 3

34. The true value of y at x = 5 is 77 35. 445.2 lakh 36. 62.8

37. 0.1, 100 38. 47.9 39. 0.1205, 0.2662

40. 3.8647 41. 6.3598 42. 0.1597130489

43. 16.375 44. 2.344 45. 0.308384

46. 0.8 47. 0.61566 48. 1.4623

49. 14.666 50. 22.0948
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5.1 INTRODUCTION

The Newton’s forward and backward interpolation formulae which were derived in the previous
section are applicable only when the values of n are given at equal intervals. In this section we study
the problem of interpolation when the values of the independent variable x are given at unequal
intervals.

The concept of divided differences: Let the function y = f(x) be given at the point x0, x1, x2, …,
xn (which need not be equally spaced) f(x0), f(x1), f(x2), …, f(xn) denote the (n + 1) values the
function at the points x0, x2, …, xn. Then the first divided differences of f(x) for the arguments x0,
x1, is defined as

f x f x

x x
0 1

0 1

� � � �−
−

.

It is denoted by f(x0, x1) or by 
x1

 f (x) or by [x0, x1]

                    ∴ =
−
−

f x x
f x f x

x x0 1
0 1

0 1

, .� � � � � �

Similarly we can define

                       f x x
f x f x

x x1 2
1 2

1 2

, ,� � � � � �
=

−
−

                       f x x
f x f x

x x2 3
2 3

2 3

, ,� � � � � �
=

−
−

The second divided differences for the arguments x0, x1, x2, … is defined as

                    f x x x
f x x f x x

x x0 1 2
0 1 1 2

0 1

, ,
, ,

,� � � � � �
=

−
−

similarly the third differences for the arguments x0, x1, x2, x3 … is defined as

5
INTERPOLATION WITH
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                f x x x x
f x x x f x x x

x x0 1 2 3
0 1 2 1 2 3

0 3

, , ,
, , , ,

.� � � � � �
=

−
−

The first divided differences are called the divided differences of order one, the second divided
differences are called the divided differences of order two, etc.

The divided difference table:

Argument Entry f(x) 2f(x) 3f(x)

x f(x)

x
0

f(x
0
)

f(x
0
, x

1
)

x
1

f(x
1
) f(x

0
, x

1
, x

2
)

f(x
1
, x

2
) f(x

0
, x

1
, x

2
, x

3
)

x
2

f(x
2
) f(x

1
, x

2
, x

3
)

f(x
2
, x

3
)

x
3

f(x
3
)

Example 5.1 If f x
1

x
( ) ,=  then find f(a, b) and f(a, b, c)

Solution                               f x
x

� � = 1
,

                           ⇒ =
−
−

f a b
f a f b

a b
,� � � � � �

 =
−

−
=

−
−

= −

1 1
1a b

a b

b a

ab a b ab� � � �

and                               f a b c
f a b f b c

a c
, ,

, ,
� � � � � �

=
−
−

=

− − −���
�
��

−

1 1
ab bc

a c
 = − +�

��
�
�� −

=1 1 1

b

c a

ac a c abc

                                  ∴ = − =f a b
ab

f a b c
abc

, , , , .� � � �1 1

Example 5.2 Prepare the divided difference table for the following data

x 1 3 4 6 10

f(x) 0 18 58 190 920

x f(x) f(x) 2f(x) 3f(x)

1 0
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0 18

1 3
9

−
−

=

3 18
9 40

1 4
10 33

−
−

= .

18 58

3 4
40

−
−

=
10 33 7

1 6
0 6660

.
.

−
−

=

4 58
40 61

3 6
7

−
−

=
− −

−
=

6 660 0 4643

1 60
01248

. .
.

58 190

4 6
61

−
−

=
7 10 25

3 10
0 4643

−
−

=
.

.

6 190
61 182 5

4 10
10 25

−
−

=
.

.

190 920

6 10
182 5

−
−

= .

10 920

Properties of divided differences: The divided differences are symmetric functions of their arguments:

                f x x
f x f x

x x0 1
0 1

0 1

,� � � � � �
=

−
−

=
−

−
=

f x x

x x
f x x1 0

1 0
1 0

� � � � � �,

also            f x x
f x

x x

f x

x x

f x

x x

f x

x x0 1
0

0 1

1

0 1

0

0 1

1

1 0

,� � � � � � � � � �
=

−
−

−
=

−
+

−
(1)

and         f x x x
f x x f x x

x x0 1 2
0 1 1 2

0 2

, ,
, ,

� � � � � �
=

−
−

=
− −

+
−

−
−

−
−

	


�

�


�

1

0 2

0

0 1

1

1 0

1

1 2

2

2 1x x

f x

x x

f x

x x

f x

x x

f x

x x

� � � � � � � �

=
− −

+
− − −

− −
−

−
	


�
�

�


�
�

1

0 2

0

0 1

1 2 1 0

1 0 1 2
1

2

2 1x x

f x

x x

x x x x

x x x x
f x

f x

x x

� � � � � �
� �� � � � � �

=
− −

+
−

− −
−

−
	


�
�

�


�
�

1

0 2

0

0 1

0 2

1 0 1 2
1

2

2 1x x

f x

x x

x x

x x x x
f x

f x

x x

� � � �
� �� � � �

� �

=
− −

+
− −

+
f x

x x x x

f x

x x x x
0

0 1 0 2

1

1 0 1 2

� �
� �� �

� �
� �� �

f x

x x x x
2

2 0 2 1

� �
� �� �− −

.

(2)
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Similarly

f x x x x
f x

x x x x x x0 1 2 3
0

0 1 0 2 0 3

, , ,� � � �
� �� �� �

=
− − −

+
f x

x x x x x x
1

1 0 1 2 1 3

� �
� �� �� �− − −

+

f x

x x x x x x
2

2 0 2 1 2 3

� �
� �� �� �− − −

+
f x

x x x x x x
3

3 0 3 1 3 2

� �
� �� �� �− − −

, (3)

�

From (1), (2), (3) it is clear that a divided difference will remain unchanged regardless how
much its arguments are interchanged.

By mathematical induction it can be shown that

f x x x x
f x

x x x x x xn
n

0 1 2
0

0 1 0 2 0

, , , ...,
...

� � � �
� �� � � �

=
− − −

+

f x

x x x x x xn

1

1 0 1 2 1

� �
� �� � � �− − −

+
...

... +
− − − −

f x

x x x x x x

n

n n n n

� �
� �� �� �0 1 1

which prove that f(x0, x1, …, xn) is a symmetrical function of x0, x1, …, xn.

Theorem 5.1 The divided differences of the product of a constant and a function is equal to the
product of the constant and the divided difference of the function is k f(x) = k f(x), where k
is a constant.

Proof By definition

                       k f x
kf x kf x

x x
� � � � � �

=
−
−

0 1

0 1

=
−
−

	


�

�


�k

f x f x

x x
0 1

0 1

� � � �
 = k f x� �.

Theorem 5.2 The divided difference of the sum (or difference) of two functions is equal to the
sum (or difference) of the corresponding separate divided differences.

Proof Let f(x) = g(x) + h(x), then

                       f x x
f x f x

x x0 1
0 1

0 1

,� � � � � �
=

−
−

=
+ − +

−
g x h x g x h x

x x
0 0 1 1

0 1

� � � � � � � �

=
−
−

+
−
−

g x g x

x x

h x h x

x x
0 1

0 1

0 1

0 1

� � � � � � � �

= +g x x h x x0 1 0 1, , ,� � � �
similarly we can show that f(x0, x1) = g(x0, x1) – h(x0, x1) where f(x) = g(x) – h(x)
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Theorem 5.3 The nth order divided differences of a polynomial of degree in n and x are constants.

Proof let f(x) = xn, where n is a positive integer. Then

                       f x x
f x f x

x x

x x

x x

n n

0 1
0 1

0 1

0 1

0 1

,� � � � � �
=

−
−

= −
−

= + + +− − −x x x xn n n
0

1
1 0

2
1

1... .

∴  f(x0, x1) is a polynomial of degree (n – 1) symmetrical in x0, x1 with leading coefficient 1.

∴  The first order divided difference of f(x) for the arguments x0, x1 a polynomial of degree
(n – 1).

Now f x x x
f x x f x x

x x0 1 2
0 1 1 2

0 2

, ,
, ,

� � � � � �
=

−
−

=
+ + + − + + +

−

− − − − − −x x x x x x x x

x x

n n n n n n
0

1
1 0

2
1

1
1

1
2 1

2
2

1

0 2

... ...� � � �

=
−
−

+
−

−
+ +

−
−

− − − − −
x x

x x

x x x

x x

x x x

x x

n n n n n
0

1
2

1

0 2

1 0
2

1
2

0 2

1
2

0 2

0 2

� � � �
...

= + + + +− − −x x x xn n n
0

2
2 0

1
2

2...� � x x x x x xn n n n
1 0

3
2 0

4
2

3
1

2− − − −+ + + +... ...� �
∴  f(x0, x1, x2) is a polynomial of degree (n – 2) symmetrical in x0, x1, x2, …, xn with leading

coefficient 1.

∴  The nth divided differences of a polynomial xn are constant. Similarly when F(x) = a0x
n

+ a1x
n –1 + a2x

n – 2 + an where a ≠  0.

F(x) is a polynomial of degree of n in x.

The nth divided differences of

F(x) = a0 [nth divided differences of xn]

+ [a1 (nth divided differences of xn –1)]

+ … + (nth divided differences of an)

= a0 × 1 + 0 + 0 …

= a0, is a constant.

Note: The (n + 1)th order divided differences will be zero.

5.2 NEWTON’S GENERAL DIVIDED DIFFERENCES FORMULA

Let a function f(x) be given for the (n + 1) values x0, x1, x2 …, xn as f(x0), f(x1), f(x2), …, f(xn)
where x0, x1, x2, …, xn are not necessarily equispaced. From the definition of divided difference

                       f x x
f x f x

x x
, 0

0

0

� � � � � �
=

−
−
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                       ⇒ = + −f x f x x x f x x� � � � � � � �0 0 0, (4)

                    f x x x
f x x f x x

x x
, ,

, ,
0 1

1 0 0 1

1

� � � � � �
=

−
−

                    ∴ = + −f x x f x x x x f x x x, , , , .0 0 1 1 0 1� � � � � � � �
Substituting in (4) we get

                           f x f x f x x f x x� � � � � � � �= + − +0 0 0 1,

x x x x f x x x− −0 1 0 1� �� � � �, , . (5)

Proceeding in this way we get

f x f x x x f x x x x x x f x x x� � � � � � � � � � � � � �= + − + − −0 0 0 0 1 0 1, , ,

+ ... + (x – x0) (x – x1) .. (x – xn–1) f (x, x0, x1, ..., xn–1)

+ (x – x0) (x – x1) ... (x – xn) f (x, x0, x1, ..., xn) (6)

If f(x) is a polynomial of degree n, then the (n + 1)th divided differences of f(x) will be zero.

           ∴ =f x x x xn, , , ..., .0 1 0� �
∴  Equation (6) can be written as

                           f x f x x x f x x� � � � � � � �= + − − + +0 0 0 1 ...

x x x x x x f x x xn n− − − −0 1 1 0 1� �� � � � � �... , , ..., (7)

∴  Equation (7) is called Newton’s General divided difference formula.

Example 5.3 Use Newton divided difference formula and evaluate f(6), given

x 5 7 11 13 21

f(x) 150 392 1452 2366 9702

Solution

x f(x) f(x) 2f(x) 3f(x) 4f(x)

5 150

121

7 392 24

265 1

11 1452 32 0

457 1

13 2366 46

917

21 9702

We have f(x0) = 150 f(x0, x1) = 121, f(x0, x1, x2) = 24, f(x0, x1, x2, x3) = 1
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f(x) = f(x0) + (x – x0) f(x0, x1) + (x – x0), (x – x1) f(x0, x1, x2) +

(x – x0) (x – x1) (x – x2) f(x0, x1, x2, x3) +

(x – x0) (x – x1) (x – x2) (x – x3) (x – x3) f(x0, x1, x2, x3, x4) + …

∴ f(6) = 150 + (6 – 5) (121) + (6 – 5) j(6 – 7) (24) +

(6 – 5) (6 – 7) (6 – 11) 1 + 0 + …

⇒  f(6) = 150 + 121 – 24 + 5

∴ f(x) = 252.

Example 5.4 Find the form of the function f(x) under suitable assumption from the following data.

x 0 1 2 5

f(x) 2 3 12 147

Solution The divided difference table is given as under:

x f(x) 2 3

0 2

1

1 3 4

9 1

2 12 9

45

5 147

We have x0 = 0, f(x0) = 2 f(x0, x1) = 1, f(x0, x1, x2) = 4, f(x0, x1, x2, x3) = 1.

The Newton’s divided difference interpolation formula is

f(x) = f(x0) + (x – x0) f(x0, x1) + (x – x0) (x – x1) f(x0, x1, x2) +

(x – x0) (x – x1) (x – x2) f(x0, x1, x2, x3).

Substituting we get

∴ f(x) = 2 + (x – 0)1 + (x – 0) (x – 1)4 + (x – 0) (x – 1) (x – 2)1

f(x) = x3 + x2 – x + 2.

Exercise 5.1

1. If f x
x

( ) = 1
 then show that f a b c d

abcd
, , , .� � = −1

2. If f x
x

� � = 1
2  then show that f a b

a b

a b
,� � � �

= −
+
2 2  and f a b c

ab bc ca

a b c
, ,� � = + +

2 2 2 .

3. If f(0) = 8, f(1) = 11, f(4) = 68, f(15) = 123, then find the form of the function which satisfies the above

values.

4. If u5 = 150, u7 = 392, u11 = 1452, u13 = 2366, u21 = 9702, then show that u6.417 = 305.417.
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5. Using the table given below find the value of f(8)

x 4 5 7 10 11 12

f(x) 48 100 294 900 1210 2028

6. Given the data

x 0 1 2 5

f(x) 2 3 12 147

find the cubic function of x.

7. Using the following table, find f(x) as a polynomial in powers of (x – 6).

x –1 0 2 3 7 10

f(x) –11 1 1 1 141 561

8. Given the following data find f(x) as a polynomial in powers of (x –5).

x 0 2 3 4 7 9

f(x) 4 26 58 112 466 922

9. If f x
x

� � = 1
 then show that f x x x x

x x xn

n

n
0 1 2

0 1

1
, , , ...,

, , ...,
.� � � �=

−

10. Find the polynomial of the lowest degree which assumes the values 3, 12, 15, –21 when x has the
values 3, 2, 1, –1 respectively.

Answers

3. 448 5. x3 – x2 3x + 8  6. x3 + x2 – x + 2

7. x3 – 9x2 + 17x + 6 8. (x – 6)3 + 13 (x – 6)2 + 54 (x – 6) + 73

9. (x – 5)3 + 17 (x – 5)2 + 98 (x – 5) + 194

5.3 LAGRANGE’S INTERPOLATION FORMULA

Let y = f(x) be a function which assumes the values f(x0), f(x1), f(x2), …, f(xn) corresponding to
the values x = x0, x1, x2, …, xn, where the values of x are not equispaced. Since (n + 1) values of
the function are given corresponding to the (n + 1) values of the independent variable x, we can
represent the function y = f(x) be a polynomial in x of degree n.

Let the polynomial be

f x a x x x x x xn� � � �� � � �= − − − +0 1 2 ... a x x x x x xn1 0 2− − − +� �� � � �...

a x x x x x x x xn2 0 1 3− − − − + +� �� �� � � �... ... a x x x x x xn n− − − −0 1 1� �� � � �...

(8)
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Each term in equation (8) being a product of n factors in x of degree n, putting x = x0 is (8)
we get

                           f x a x x x x x xn� � � �� � � �= − − −0 0 1 0 2 0...

                          ⇒ =
− − −

a
f x

x x x x x xn
0

0

0 1 0 2 0

� �
� �� � � �...

Putting x = x2 in (8) we get

                           f x a x x x x x xn1 1 1 0 1 2 1� � � �� � � �= − − −...

                          ⇒ =
− − −

a
f x

x x x x x xn
1

1

1 0 1 2 1

� �
� �� � � �...

,

similarly putting x = x2, x = x3, x = xn in (8) we get

                          ⇒ =
− − −

a
f x

x x x x x xn
2

2

2 0 2 1 2

� �
� �� � � �...

,

�

                         ⇒ =
− − − −

a
f x

x x x x x x
n

n

n n n n

� �
� �� � � �0 1 1...

.

Substituting the values of a0, a1, …, an in (8) we get

y f x
x x x x x x

x x x x x x
f xn

n

= =
− − −
− − −

+� � � �� � � �
� �� � � � � �

1 2

0 1 0 2 0
0

...

...

x x x x x x

x x x x x x
f xn

n

− − −
− − −

+ +0 2

1 0 1 2 1
1

� �� � � �
� �� � � � � �

...

...
...

x x x x x x

x x x x x x
f x

n

n n n n
n

− − −

− − −
−

−

0 1 1

0 1 1

� �� � � �
� �� � � �

� �
...

...
... (9)

The formula given by (9) is called Lagrange’s interpolation formula. It is simple and easy to
remember but the calculations in the formula are more complicated than in Newton’s divided difference
formula. The application of the formula is not speedy and there is always a chance of committing
some error due to the number of positive and negative signs in the numerator and denominator of
each term.

Example 5.5 Using Lagrange’s interpolation formula find a polynomial which passes the points (0, –12), (1, 0),
(3, 6), (4, 12).

Solution We have x0 = 0, x1 = 1, x2 = 3, x3 = 4, y0 = f(x0) = –12, y1 = f(x1) = 0,
y2 =  f(x2) = 6, y3 = f(x3) = 12.

Using Lagrange’s interpolation formula we can write

f x
x x x x x x

x x x x x x
f x� � � �� � � �

� �� � � � � �
=

− − −
− − −

+1 2 3

0 1 0 2 0 3
0...

x x x x x x

x x x x x x
f x

− − −
− − −

+0 2 3

1 0 1 2 1 3
1

� �� � � �
� �� � � � � �
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2. Compute f(0.4) using the table

x 0.3 0.5 0.6

f(x) 0.61 0.69 0.72

3. Compute sin 39° form the table

x° 0 10 20 30 40

sin x° 0 1.1736 0.3420 0.5000 0.6428

4. Use Lagrange’s interpolation formula and find f(0.35)

x 0.0 0.1 0.2 0.3 0.4

f(x) 1.0000 1.1052 1.2214 1.3499 1.4918

5. Use Lagrange’s interpolation formula to find the value of f(x) for x = 0 given the following table

x –1 –2 2 4

f(x) –1 –9 11 69

6. Use Lagrange’s formula and compute

x 0.20 0.22 0.24 0.26 0.28 0.30

f(x) 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139

7. Find by Lagrange’s formula the interpolation polynomial which corresponds to the following data

x –1 0 2 5

f(x) 9 5 3 15

8. Find log 5.15 from the table

x 5.1 5.2 5.3 5.4 5.5

log
10 

x 0.7076 0.7160 0.7243 0.7324 0.7404

9. The following table gives the sales of a concern for the five years. Estimate the sales for the year
(a) 1986 (b) 1992

Year 1985 1987 1989 1991 1993

Sales 40 43 48 52 57

(in thousands)

10. Find the polynomial of the least degree which attains the prescribed values at the given points

x –2 1 2 4

f(x) 25 –8 –15 –25

11. Use Lagrange’s interpolation formula to find y when x = 5 from the following data

x 0 1 3 8

y 1 3 13 123
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12. Given

x 0 1 4 5

f(x) 4 3 24 39

Find the form of the function f(x); by Lagranges formula.

13. Using Lagrange’s interpolation formula find y at x = 10, given

x 5 6 9 11

y 12 13 14 16

14. Use Lagrange’s formula to find f(2); given

x 0 1 3 4

y = f(x) 5 6 50 105

15. Use Lagrange’s interpolation formula and find f(0), given the following table

x – 1 –2 2 4

y = f(x) – 1 –9 11 69

Answers

1. x2 –3x + 5 2. –x3 + x + 1  3. x2 – 10x + 1

4. 0.65 5. (a) 41.02 (b) 54.46  6. 0.6293

7. 0.7118 8. 1.4191 9. 1.6751

10. 1 11. 38.143 12. 2x2 – 3x + 4

13. 14.7 14. 19 15. 1

5.4 INVERSE INTERPOLATION

In interpolation we have discussed various methods of estimating the missing value of the function
y = f(x) corresponding to a value x intermediate between two given values. Now we discuss inverse
interpolation in which we interpolate the value of argument x corresponding to an intermediate value
y of the entry.

Use of Lagrange’s interpolation formula for inverse interpolation In Lagrange’s Interpolation
formula y is expressed as a function of x as given below

y f x
x x x x x x

x x x x x x
yn

n

= =
− − −
− − −

+� � � �� � � �
� �� � � �

1 2

0 1 0 2 0
0

...

...

x x x x x x

x x x x x x
yn

n

− − −
− − −

+0 2

1 0 1 2 1
1

� �� � � �
� �� � � �

...

...
...

+ 
x x x x x x

x x x x x x
y

n

n n n n
n

− − −

− − −
−

−

0 1 1

0 1 1

� �� � � �
� �� � � �

...

...
.
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By interchanging x and y we can express x as a function of y as follows

x
y y y y y y

y y y y y y
xn

n

=
− − −
− − −

+1 2

0 1 0 2 0
0

� �� � � �
� �� � � �

...

...

y y y y y y

y y y y y y
xn

n

− − −
− − −

+0 2

1 0 1 2 1
1

� �� � � �
� �� � � �

...

...
...

+ 
y y y y y y

y y y y y y
x

n

n n n n
n

− − −

− − −
−

−

0 1 1

0 1 1

� �� � � �
� �� � � �

...

...
.

The above formula may be used for inverse interpolation.

Example 5.7 The following table gives the value of the elliptical integral

                                        
F

d

1
1
2

sin2
0

( )φ φ

φ

φ

=
−�

for certain values of φ.  Find the values of φ  if F(φ) = 0.3887

φ 21° 23° 25°

F( f ) 0.3706 0.4068 0.4433

Solution We have φ φ φ= ° = ° = °21 23 251 2, , ,  F = 0.3887, F0 = 0.3706, F1 = 0.4068 and F2 = 0.4433.

Using the inverse interpolation formula we can write

    φ φ φ=
− −
− −

+
− −
− −

+
F F F F

F F F F

F F F F

F F F F
1 2

0 1 0 2
0

0 2

1 0 1 2
1

� �� �
� �� �

� �� �
� �� �

F F F F

F F F F

− −
− −

0 1

2 0 2 2
2

� �� �
� �� �

φ ,

⇒ =
− −
− −

× +φ
0 3887 0 4068 0 3887 0 4433

0 3706 0 4068 0 3706 0 4433
21

. . . .

. . . .

� �� �
� �� �

0 3887 0 3706 0 3887 0 4433

0 4068 0 3706 0 4068 0 4433
23

. . . .

. . . .

− −
− −

× +
� �� �
� �� �

 
0 3887 0 3706 0 3887 0 4068

0 4433 0 3706 0 4433 0 4068
25

. . . .

. . . .

− −
− −

×
� �� �
� �� �

 = + −7 884 17 20 3087. . . = 21999 22.

∴ = °φ 22 .

Example 5.8 Find the value of x when y = 0.3 by applying Lagrange’s formula inversely

x 0.4 0.6 0.8

y 0.3683 0.3332 0.2897

Solution From Lagrange’s inverse interpolation formula we get

   x
y y y y

y y y y
x

y y y y

y y y y
x=

− −
− −

+
− −
− −

+1 2

0 1 0 2
0

0 2

1 0 1 2
1

� �� �
� �� �

� �� �
� �� �

y y y y

y y y y
x

− −
− −

0 1

2 0 2 1
2

� �� �
� �� �

.

Substituting x0 = 0.4, x1 = 0.6, x2 = 0.8, y0 = 0.3683, y1 = 0.3332, y2 = 0.2899 in the above formula, we get
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x =
− −
− −

× +
0 3 0 3332 0 3 0 2897

0 3683 0 3332 0 3683 0 2897
0 4

. . . .

. . . .
.

� �� �
� �� � � �

0 3 0 3683 0 3 0 2897

0 3332 0 3683 0 3332 0 2897
0 6

. . . .

. . . .
.

− −
− −

× +
� �� �

� �� � � �

     
0 3 0 3683 0 3 0 3332

0 2897 0 3683 0 2897 0 3332
08

. . . .

. . . .
.

− −
− −

×
� �� �

� �� � � �

  = 0.757358.

Example 5.9 The following table gives the values of the probability integral y
2

e dxx
n

2

= �π
0

 corresponding to certain

values of x. For what value of x is this integral equal to 
1

2
 ?

x 0.46 0.47 0.48 0.49

y
2

e dxx
n

2

= �π
0

0.484655 0.4937452 0.5027498 0.5116683

Solution Here x0 = 0.46, x1 = 0.47, x2 = 0.48, x3 = 0.48, y0 = 0.484655, y1 = 0.4937452, y2 = 0.5027498,

y3 = 0.5116683 and y = 1

2
.

From Lagrange’s inverse interpolation formula

x
y y y y y y

y y y y y y
x=

− − −
− − −

+1 2 3

0 1 0 2 0 3
0

� �� �� �
� �� �� �

y y y y y y

y y y y y y
x

− − −
− − −

+0 2 3

1 0 1 2 1 3
1

� �� �� �
� �� �� �

     
y y y y y y

y y y y y y
x

− − −
− − −

+0 1 3

2 0 2 1 2 3
2

� �� �� �
� �� �� �

y y y y y y

y y y y y y
x

− − −
− − −

0 1 2

3 0 3 1 3 2
3

� �� �� �
� �� �� �

.

∴ = − − −
− − −

+x
( . . ) ( . . ) ( . . )

( . . ) ( . . ) ( . . )
× .

0 5 0 4937452 0 5 0 50274498 0 5 0 5116683

0 4846555 0 4937452 0 484655 0 5027498 0 4846555 0 5116683
0 46

( . . ) ( . . . ) ( . . )

( . . ) ( . . ) ( . . )
× .

0 5 0 4846555 0 5 0 5 0 5027498 0 5 0 5116683

0 493752 0 4846555 0 4937452 0 5027498 0 4937452 0 5116683
0 47

− − −
− − −

+

( . . ) ( . . ) ( . . )

( . . ) ( . . ) ( . . )
× .

0 5 0 486555 0 5 0 4937452 0 5 0 5116683

0 5027498 0 484655 0 5027498 0 4937452 0 5027498 0 5116683
0 48

− − −
− − −

+

( . . ) ( . . ) ( . . )

( . . ) ( . . ) ( . . )
× .

0 5 0 484655 0 5 0 4937452 0 5 0 5027498

0 5116683 0 484655 0 5116683 0 4937452 0 5 0 5027498
0 49

− − −
− − −

= − + + − =0 0207787 0 157737 0 369928 0 0299495 0 476937. . . . . .

Example 5.10 Show that Lagrange’s interpolation formula can be written in the form

                              f x
x

x x x
r

r rr

r n

� � � �
� � � �

=
−=

=

∑ φ
φI

0

where φ x x x x x x xn� � � �� � � �= − − −0 1 ...

and φ φI atx
d

dx
x x xr r� � � �= =
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Solution We have                   φ x x x x x x xn� � � �� � � �= − − −0 1 ...

                                       ′ = − − − +φ x x x x x x xn� � � �� � � �1 2 ...

x x x x x xn− − − + +0 2� �� � � �... ...

x x x x x x x x x xr r n− − − − − +− +0 1 1 1� �� � � �� � � �... ...

... ...+ − − − −x x x x x xn0 1 1� �� � � �

                                   ∴ ′ = − − − − −− +φ x x x x x x x x x x xr r r r r r r r n� � � �� � � �� � � �0 1 1 1... ...

                                    ∴ =
−=

=

∑f x
x

x x x
f x

r r
r

r

r n

� � � �
� � � �

� �φ
φI

0

.

Example 5.11 By means of Lagrange’s formula prove that

(i) y y 0.3 y y 0.2 y y1 3 5 3 3 5= − − + −− − −

(ii) y
1

2
y y

1

8

1

2
( y y )

1

2
( y y )0 1 1 3 1 1 3= + − − − −	


�
�

�− − −� �

Solution (i) y–5, y–3, y3 and y5 are given, therefore the values of the arguments are –5, –3, 3, and 5, y1 is to be obtained.
By Lagrange’s formula

y
x x x

yx =
− − − −

− − − − − − −
+−

3 3 5

5 3 5 3 5 5
5

� � � �� �
� � � �� �

 
x x x

y
− − − −

− − − − − − −
+−

5 3 5

3 5 3 3 3 5
3

� � � �� �
� � � �� �

      
x x x

y
− − − − −

− − − − −
+

5 3 5

3 5 3 3 3 5
3

� � � � � �
� � � � � �

 
x x x

y
− − − − −

− − − − −

5 3 3

5 5 5 3 5 3
5

� � � � � �
� � � � � �

Taking x = 1, we get

y y y1 5 3

1 3 1 3 1 5

5 3 5 3 5 5

1 5 1 3 1 5

3 5 3 3 3 5
=

+ − −
− + − − − −

+
+ − −

− + − − − −
+− −

� �� �� �
� �� �� �

� �� �� �
� �� �� �

      
1 5 1 3 1 5

3 5 3 3 3 5

1 5 1 3 1 3

5 5 5 3 5 33 5

+ + −
+ + −

+
+ + −
+ + −

� �� �� �
� �� �� �

� �� �� �
� �� �� �

y y

   ⇒ =
− −

− − −
+

− −
− −

+− −y y y1 5 3

4 2 4

2 8 10

6 2 4

2 6 8

� �� �� �
� �� �� �

� �� �� �
� �� �� �

 
6 4 4

8 6 2

6 4 2

10 8 23 5
� �� �� �
� �� �� �

� �� �� �
� �� �� �

−
−

+
−

y y

                                    = − + + −− −y y
y y

5 3
3 55 2

3

10

                                    = − + −− −y y y y3 5 3 50 2 05 0 3. . .

                                    = − + + −− − −y y y y y3 5 3 3 50 2 0 2 0 3 0 3. . . .

                                 y y y y y y1 3 5 3 3 50 3 0 2= − − + −− − −. .� � � �
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(ii) y–3, y–1, y1, and y3 are given, y0 is to be obtained. By Lagrange’s formula

                                    y y y0 3 1

0 1 0 1 0 3

3 1 3 1 3 3

0 3 0 1 0 3

1 3 1 1 1 3
=

+ − −
− + − − − −

+
+ − −

− + − − − −
+− −

� �� �� �
� �� �� �

� �� �� �
� �� �� �

0 3 0 1 0 3

1 3 1 1 1 3

0 3 0 1 0 1

3 3 3 1 3 11 3

+ + −
+ + −

+
+ + −
+ + −

� �� �� �
� �� �� �

� �� �� �
� �� �� �

y y

= − + + −− −
1

16

9

16

9

16

1

163 1 1 3y y y y

= + − − − −− − −
1

2

1

161 1 3 1 1 3y y y y y y� � � � � �

                               ∴ = + − − − −	

�

�

�− − −y y y y y y y0 1 1 3 1 1 3

1

2

1

8

1

2

1

2
� � � � � �

Example 5.12 The values of f(x) are given at a, b, and c. Show that the maximum is obtained by

                                     x
f a b c f b c a f c a b

f a b c f b c a f c a b
=

⋅ − + ⋅ − + ⋅ −

⋅ − + ⋅ − + ⋅ −

� � � � � � � � � � � �
� � � � � � � � � � � �

2 2 2 2 2 2

2

Solution By Lagrange’s formula f(x) for the arguments a, b, and c is given by

f x
x b x c

a b a c
f a

x a x c

b a b c
f b

x a x b

c a c b
f c� � � �� �

� �� � � �
� �� �
� �� � � �

� �� �
� �� � � �

=
− −
− −

+
− −
− −

+
− −
− −

     =
− + +

− −
+

− + +
− −

+
x b c x bc

a b a c
f a

x c a x ca

b c b a
f a

2 2� �
� �� � � � � �

� �� � � �  
x a b x ab

c a c b
f c

2 − + +
− −
� �

� �� � � �

for maximum or minimum we have ′ =f x� � 0

∴ −
− +

− −
−

− +
− −

−
− +

− −
=

2 2 2
0

x b c

a b c a
f a

x a c

a b b c
f b

x a b

b c c a
f c

� �
� �� � � �

� �
� �� � � �

� �
� �� � � �

⇒ − + − + − −2x b c f a c a f b a b f c� � � � � � � � � � � �

b c f a c a f b a b f c2 2 2 2 2 2 0− + − + − =� � � � � � � � � � � �

 ∴ =
− + − + −

− + − + −
x

b c f a c a f b a b f c

b c f a c a f b a b f c

2 2 2 2 2 2

2

� � � � � � � � � � � �
� � � � � � � � � � � �

.

Example 5.13 Given log10 654 = 2.8156, log10 658 = 2.8182, log10 659 = 2.8189, log10 661 = 2.8202, find log10 656.

Solution Here x0 = 654, x1 = 658, x2 = 659, x3 = 661 and f(x) = log10 656.

By Lagrange’s formula we have

f x
x x x x x x

x x x x x x
y

x x x x x x

x x x x x x
y� � � �� �� �

� �� �� �
� �� �� �
� �� �� �

=
− − −
− − −

+
− − −
− − −

+1 2 3

0 1 0 2 0 3
0

0 2 3

1 0 1 2 1 3
1

        
x x x x x x

x x x x x x
y

− − −
− − −

+0 1 3

2 0 2 1 2 3
2

� �� �� �
� �� �� �

x x x x x x

x x x x x x
y

− − −
− − −

0 1 2

3 0 3 1 3 2
3

� �� �� �
� �� �� �
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2. If all terms except y5 of the sequence y1, y2, y3, …, y9 be given, show that the value of y5 is

156 28 8

70
4 6 3 7 2 8 1 9y y y y y y y y+ − + + + − +	



��

�


��

� � � � � � � �

3. If y0, y1, y2, …, y6 are the consecutive terms of a series then prove that

y3 = 0.05(y0 + y6) – 0.3(y1 + y5) + 0.75(y2 + y4).

4. Show that the sum of coefficients of yi’s in the Lagrange’s interpolation formula is unity.

5. The following values of the function f(x) for values of x are given: f(1) = 4, f(2) = 5, f(7) = 5, f(8) =
4. Find the values of f(6) and also the value of x for which f(x) is maximum or minimum.

6. The following table is given

x 0 1 2 5

f(x) 2 3 12 147

show that the form of f(x) is x3 + x2 – x + 2.

7. Using Lagrange’s formula show that

(a)
x x

x x x x x x

3 10 13

1 2 3
2

1
3

2
4

3

− +
− − −

=
−

+
−

−
−� � � � � � � � � � � �

(b)
x x

x x x

2

2

6 1

1 4 6

+ +
− − +� � � � � �

 = −
+

−
−

+
−

−
+

2
25 1

4
21 1

41
150 4

1
350 6x x x x� � � � � � � �

8. Express the function 
x x

x x x x

2 6 1

1 1 4 6

+ +
− + − −� � � � � � � �  as sum of partial functions.

9. Using Lagrange’s interpolation formula, express the function x x

x x x

2

3 2
3

2 2

+ −
− − +

 as sum of partial

fractions.

Answers

6. 
1

2 1

1

2

1

2 1x x x−
−

−
−

+� � � � � �

7. 
2

35 1

4

15 1

41

30 4

73

70 6x x x x+
+

−
−

−
+

−� � � � � � � �
9. f(6) = 5.66, maximum at x = 4.5.



6.1 INTRODUCTION

In the preceding sections we have derived and discussed a few interpolation formulae which were
suited for interpolation near the beginning and end values of the tabulated data. For interpolation near
the middle of a difference table, central difference formulae are preferable. In this section we study
some central difference formulae which are used for interpolation near the middle values of the
given data.

Let the function y = yx = f(x)

be given for (2n + 1) equispaced values of argument x0, x0 ± h1, x0 ± 2h, ..., xo, xh.

The corresponding values of y be yr (r = 0, ±1, ±2, ..., ±n).

Let y = y0

denote the central ordinate corresponding to x = x0. We can form the difference table as given below.

x y ∆y ∆2 y ∆3y ∆4 y ∆5y ∆6 y

x h0 3− y−3

∆y−3

x h0 2− y−2 ∆2
3y−

∆y−2 ∆3
3y−

x h0 − y−1 ∆2
2y− ∆4

3y−

∆y−1 ∆3
2y− ∆5

3y−

x0 y0 ∆2
1y− ∆4

2y− ∆6
3y−

∆y0 ∆3
1y− ∆5

2y−

x h0 + y1 ∆2
0y ∆4

1y−

∆y1 ∆3
0y

x h0 2+ y2 ∆2
1y

∆y2

x h0 3+ y3

6
CENTRAL DIFFERENCE

INTERPOLATION FORMULAE

134
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The above table can also be written in terms of central differences using the Sheppard’s operator

δ  as follows:

x y δy δ2 y δ3y δ4 y δ5 y δ6 y

x h0 3− y−3

δy−5 2/

x h0 2− y−2 δ2
2y−

δy−3 2/ δ3
3 2y− /

x h0 − y−1 δ2
1y− δ4

1y−

δy−1 2/ δ3
1 2y− / δ5

1 2y− /

x0 y0 δ2
0y δ4

0y δ6
0y

δy1 2/ δ3
1 2y / δ5

1 2y /

x h0 + y1 δ2
1y δ4

1y

δy3 2/ δ3
3 2y /

x h0 2+ y2 δ2
2y

δy5 2/

x h0 3+ y3

In constructing above table the relation

δ = −∆E 1 2/

is used. Both the tables given above are called central difference tables. One can very easily observe
that the differences given in both the tables are same in corresponding positions.

6.2 GAUSS FORWARD INTERPOLATION FORMULA

The Newton forward interpolation formula is

y f x y u y
u u

y= = + +
−

×
+� � � �

0 0
2

0

1

1 2
∆ ∆

u u u
y

− −
× ×

+
1 2

1 2 3
3

0
� �� �

∆ ..., (1)

where u
x x

h
= − 0  and x = x0 is the origin.

From the central difference table we have

                           ∆ ∆ ∆2
0

2
1

3
1y y y= +− −

                           ∆ ∆ ∆3
0

3
1

4
1y y y= +− −

                           ∆ ∆ ∆4
0

4
1

5
1y y y= +− − ...

                          ∆ ∆ ∆3
1

3
2

4
2y y y− − −= +

                          ∆ ∆ ∆4
1

4
2

5
2y y y− − −= +

      �
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Substituting the values in (1) we get

y f x y u y
u u

y y= = + +
−

+ +− −� � � �
� �0 0

2
1

3
1

1

2
∆ ∆ ∆

!

u u u
y y

− −
+ +− −

1 2

3
3

1
4

1
� �� �

� �
!

∆ ∆

u u u u
y y

− − −
+ +− −

1 2 3

4
4

1
5

1
� �� �� �

� �
!

...∆ ∆

The above formula may be written as

y f x y u y
u u

y4 0 0
2

1

1

2
= = + +

−
+−� � � �

∆ ∆
!

u u u
y

+ −
+−

1 1

3
3

1
� � � �

!
∆

u u u u
y

+ − −
+−

1 1 2

4
4

2
� � � �� �

!
...∆ (2)

Equation (2) is called Gauss’s forward interpolation formula.

6.3 GAUSS BACKWARD INTERPOLATION FORMULA

Substituting

                            ∆ ∆ ∆y y y0 0
2

1= + −

                           ∆ ∆ ∆2
0

2
1

3
1y y y= +− −

                           ∆ ∆ ∆3
0

3
1

4
1y y y= +− −

   �

and                             ∆ ∆ ∆3
1

3
2

2
2y y y− − −= +

                                ∆ ∆ ∆4
1

4
2

5
2y y y− − −= +

In Newton’s forward interpolation formula we see

y f x y
u

y y
u u

y y= = + + +
−

+ +− − − −� � � �
� �

� �0 1
2

1
2

1
3

11

1

2! !
...∆ ∆ ∆ ∆

⇒ = +
+

+
+ −

+− − −y y
u

y
u u

y
u u u

y4 0 1
2

1
3

21

1

2

1 1

3! ! !
∆ ∆ ∆

� � � � � �

u u u u
y

+ + −
+−

2 1 1

4
4

2
� � � � � �

!
...∆

This is called Gauss’s Backward Interpolation formula.

Note: The Gauss’s forward interpolation formula employs odd differences above the central line through y0 and even
differences on the central line whereas Gauss’s backward formula employs odd differences below the central line
through y0 and even differences on the central line as shown in the table given below.
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x y ∆y ∆2 y ∆3 y ∆4 y ∆5y ∆6 y

x−4 y−4

∆y−4

x−3 y−3 ∆2
4y−

∆y−3 ∆3
4y−

x−2 y−2 ∆2
3y− ∆4

4y−

∆y−2 ∆3
3y− ∆5

4y−

x−1 y−1 ∆2
2y− ∆4

3y− ∆6
4y−

∆y−1 ∆3
2y− ∆5

3y−

x0 y0 ∆2
1y− ∆4

2y− ∆6
3y−

∆y0 ∆3
1y− ∆5

2y−

x1 y1 ∆2
0y ∆4

1y− ∆6
2y−

∆y1 ∆3
0y ∆5

1y−

x2 y2 ∆2
1y ∆4

0y

∆y2

x3 y3 ∆2
2y

∆y3

x4 y4

Gauss’s forward formula is used to interpolate the values of the function for the value of u such
that 0 < u < 1, and Gauss’s backward formula is used to interpolate line value of the function for
a negative value of u which lies between –1 and 0 (i.e., –1 < u < 0).

6.4 BESSEL’S FORMULA

Changing the origin in the Gauss’s backward interpolation formula from 0 to 1, we have

 y y u y
u u

y
u u u

y= + − +
−

+
− −

+−1 0
3

0
3

11
1

2

1 2

3
� � � � � �� �

∆ ∆ ∆
! !

...

Taking the mean of the above formula and the Gauss’s forward interpolation formula, we obtain

y y y u y
u u

y y4 0 1 0
2

1
2

0
1

2

1

2

1

2

1

2
= + + −���

�
	
 +

−
+ +−∆ ∆ ∆

� �
!

u u u
y

−���
�
	
 −

+−

1
2

1

3
3

1

� �

!
...∆

This is called Bessel’s formula.

Note: Bessel’s formula involves odd differences below the central line and means of the even differences on and below
the line as shown in the table below.
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x y

x−3 y−3

∆y−3

x−2 y−2 ∆2
3y−

∆y−2 ∆3
3y−

x−1 y−1 ∆2
2y− ∆4

3y−

∆y−1 ∆3
2y− ∆5

3y−

x0 y0 ∆2
1y− ∆4

2y− ∆6
3y−

∆y0 ∆3
1y− ∆5

2y−

x1 y1 ∆2
0y ∆4

1y− ∆6
2y−

∆y1 ∆3
0y ∆5

1y−

x2 y2 ∆2
1y ∆4

0y

∆y2 ∆3
1y

x3 y3 ∆2
2y

∆y3

x4 y4

The brackets mean that the average of the values has to be taken Bessel’s formula is most efficient for

1

4

3

4
≤ ≤u .

6.5 STIRLING’S FORMULA

Gauss’s forward interpolation formula is

y y
u

y
u u

y
u u u

yu = + +
−

+
+ −

+−0 0
2

0
3

11

1

2

1 1

3! ! !
∆ ∆ ∆

� � � � � �

     
u u u u

y
+ + −

+−
1 1 2

4
4

2
� � � �� �

!
∆ u u u u u

y
+ + − −

+−
2 1 1 2

5
5

2
� �� � � �� �

!
...∆ (3)

Gauss’s backward interpolation formula is

y y
u

y
u u

y
u u u

yu = + +
−

+
+ −

+− − −0 1
2

1
3

21

1

2

1 1

3! ! !
∆ ∆ ∆

� � � � � �

    
u u u u

y
+ + −

+−
2 1 1

4
4

2
� � � �� �

!
...∆ (4)

Taking the mean of the two Gauss’s formulae, we get

�
�


�


�
�


�


�
�


�
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y y u
y y u

yu = + +�
��

�
��

+ +−
−0

0 1
2

2
12 2

∆ ∆ ∆

     
u u y y u u

y
2 3

1
3

2
2 2

4
2

1

3 2

1

4

− +
+

−
+

− −
−

� � � � � �
! !

∆ ∆
∆

u u u
y y

2 2
5

2
5

3

1 4

5

− −
+ +− −

� �� �
� �

!
...∆ ∆

The above is called Stirling’s formula. Stirling’s formula gives the most accurate result for
− ≤ ≤0 25 0 25. . .u  Therefore, we have to choose x0 such that u satisfies this inequality.

6.6 LAPLACE–EVERETT FORMULA

Eliminating odd differences in Gauss’s forward formula by using the relation

                            ∆y y y0 1 0= −

                           ∆ ∆ ∆3
1

2
0

2
1y y y− −= −

                           ∆ ∆ ∆5
2

4
1

4
2y y y− − −= − ...,

we get y f x y
u

y y
u u

y= + − +
−

+−� � � � � �
0 1 0

2
11

1

2! !
∆

u u u
y y

+ −
− +−

1 1

3
2

0
2

1
� � � �

� �
!

∆ ∆

      
u u u u

y
+ − −

+−
1 1 2

4
4

2
� � � �� �

!
∆

u u u u u
y y

+ + − −
− +− −

2 1 1 2

5
4

1
4

2
� �� � � �� �

� �
!

...∆ ∆

    = − + + −
×

− +
× ×

�
�
�

�
�
� +−1 1

1

1 2

1

1 2 30 1
2

1u y uy u u
u

y� � � � ∆ u u u
y

+ −
+

1 1

3
2

0
� � � �

!
∆

      u u u u
u

y+ − −
× × ×

− +�
�
�

�
�
� +−1 1 2

1

1 2 3 4

2

5
2

2� � � �� � ∆

      
u u u u u

y
+ + − −

+−
2 1 1 2

5
4

1
� �� � � �� �

!
...∆

  = − + −
− −

+−1
1

1 2

30
1 2

1u y
uy u u u

y� � � �� �
! !

∆
u u u

y
+ −

−
1 1

3
2

0
� � � �

!
∆

    
u u u u u

y
+ − − −

+−
1 1 2 3

3
4

2
� � � �� �� �

!
∆ u u u u u

y
+ + − −

+−
2 1 1 2

5
4

1
� �� � � �� �

!
...∆ (5)

Writing v = 1 – u, i.e., u = 1 – v and changing the terms (5) with a negative sign we get

y vy
u

y
v v v

y= + +
+ −

+−0 1
2

11

1 1

3! !

� � � �
∆

u u u
y

+ −
+

1 1

3
2

0
� � � �

!
∆

    
v v v v v

y
+ + − −

+−
2 1 1 2

5
4

2
� �� � � �� �

!
∆

u u u u u
y

+ + − −
+−

2 1 1 2

5
4

1
� �� � � �� �

!
...∆ (6)
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The above formula may be written

y f x vy
v v

y4 0

2 2
2

1

1

3
= = +

−
+−� �

� �
!

∆
v v u

y uy
( ) ( )

!
...

2 2 2 2
4

2 1
1 2

5

− − + +−∆

     + − +u u
y

( )

!

2 2
2

0
1

3
∆  

u u u
y

2 2 2 2
2

1

1 2

5

− −
+−

� �� �
!

...∆ (7)

Equation (7) is known as Laplace–Everett’s formula. The formula uses only even differences
of the function, hence for a rapidly converging series of differences of the function we will have
only a few number of terms in both the u series and v series.

Note: Laplace–Everett’s formula can be used in sub-tabulation.

Example 6.1 Use Gauss forward formula to find y for x = 30 given that

x 21 25 29 33 37

y 18.4708 17.8144 17.1070 16.3432 15.5154

Solution We construct the difference table by taking as

x y ∆y ∆2 y ∆3 y ∆4 y

x0 – 2h = 21 18.4708

–0.6564

x0 – h = 25 17.8144 –0.0510

–0.7074 –0.0054

x0 = 29 17.1070 –0.0564 –0.002

–0.7638 –0.0076

x + h + 33 16.3432 –0.0640

–0.8278

x0 + 2h = 37 15.5154

Here h u= = − = =4
30 29

4

1

4
0 25, . .

u = 0.25 lies between 0 and 1.

∴  Gauss’s forward formula is suitable. Substituting in the Gauss’s interpolation formula

y y
u

y
u u

y
u u u

y= + +
−

+
+ −

+− −0 0
2

1
3

11

1

2

1 1

3! ! !
∆ ∆ ∆

� � � � � � u u u u
y

+ − −
+−

1 1 2

4
4

2
� � � �� �

!
...∆

we get

y f0 25 0 25 171070 0 25 0 7638. . . . .= = + − +� � � �� � ( . ) ( . )
× ( . )

0 25 0 75

2
0 0564

− − +

        
( . ) ( . ) ( . )

×
1 25 0 25 0 75

6

−
 − +

− −
−0 0076

125 0 25 0 75 175

24
0 0022.

. . . .
.� � � �� �� �� � � �

     = 16 9216. .
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Example 6.2 Use Gauss’s backward formula and find the sales for the year 1966, given that

Year 1931 1941 1951 1961 1971 1981

Sales 12 15 20 27 39 52

(in lakhs)

Solution We have h = 10, we take 1971 as the origin. The central difference table with origin at 1971 is

u y ∆y ∆2 y ∆3y ∆4 y ∆5y

–4 12

3

–3 15 2

5 0

–2 20 2 3

7 3 –10

–1 27 5 –7

12 –4

0 39 1

13

1 –52

u at 1996 is                         u = − = − = −
1966 1971

10

5

10
0 5. .

Gauss’s backward formula is        y y
u

y
u u

y
u u u

y= + +
+

+
+ −

+− − −0 1
2

1
3

21

1

2

1 1

3! ! !
...∆ ∆ ∆

� � � � � �

substituting we get                                      y− = + +
−

× +
× − × −

× − +0 5 39 05 12
05 05

2
1

05 05 15

6
4. .

. . . . .
...� �� � � �� � � � � � � �

= − − −39 6 0125 0 25. .

                                 y1966 32 625= . .

∴  The sales in the year 1966 is 32.625 lakh of rupees.

Example 6.3 Apply Gauss’s forward formula to find the value of u9 if u0 = 14, u4 = 24, u8 = 32, u16 = 40.

Solution Taking origin at 8, we construct the difference table as follows

x f x� � ∆f x� � ∆2 f x� � ∆3 f x� � ∆4 f x� �

–2 14

10

–1 24 –2

8 –3

0 32 –5 10

3 7

1 35 2

5

2 40
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We have                           y y y y y0 0
2

1
3

3
4

232 3 5 3 7= = = − = =− − −, , , ,∆ ∆ ∆ ∆

and                                        u
x x

h
= − = − =0 9 8

4

1

4
.

From Gauss’s forward formula

f x y u y
u u

y
u u u

y� � � � � � � �
= + +

−
+

+ −
+− −0 0

2
1

3
1

1

2

1 1

3
∆ ∆ ∆

! !

u u u u
y

+ − −
+−

1 1 2

4
4

2
� � � �� �

!
...∆

y0 25 32
1

4
3

1
4

1
4

1

1 2
5

1
4

1
1
4

1
4

1

1 2 3
7. = + × +

�
��
�
	
 −�
��

�
	


×
− +

+�
��

�
	

�
��
�
	
 −�
��

�
	


× ×
+� � � �

1
4

1
1
4

1
4

1
1
4

2

1 2 3 4
10

+�
��

�
	

�
��
�
	
 −�
��

�
	
 −�
��

�
	


× × ×
×

     = + + + + =32
3

4

15

32

35

128

175

1024
331162.

    ∴ =u9 33 approximately� �.
Example 6.4 Apply Gauss’s backward interpolation formula and find the population of a town in 1946, with the help
of following data

Year 1931 1941 1951 1961 1971

Population 15 20 27 39 52

(in thousands)

Solution We have h = 10 taking origin at 1951

                                     u = − = −
1946 1951

10
0 5. .

The difference table is

x y ∆y ∆2 y ∆3 y ∆4 y

–2 15

5

–1 20 2

7 3

0 27 5 –7

12 –4

2 39 1

13

2 52

Using Gauss’s backward formula

f x y u y
u u

y
u u

y( )
( ) ( )

!
...= + + + + − +− − −0 1

2
1

2
3

2
1

2

1

3
∆ ∆ ∆

y− = + − × +
− ×

+
− −

× +0 5 27 05 7
05 05 5

2

05 05 15

6
3. .

. . . . .� � � �� � � �� �� � 15 05 05 15 7

24

. . . .
...

� �� �� �� �� �− − −
+
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     = − − + −27 35
125

2

0 25 15

2

15 0 25 105

24
.

. . . . . .� �� � � �� �� �

     = − − + −27 35 0 625 01875 01640625. . . .

     y1946 22 898438= . .

∴  The population of the town in the year 1946 is 22.898 thousand, i.e., 22898.

Example 6.5 Compute the value of 
2

e x

0

x

π
−� 2

 dx when x = 0.6538 by using

(a) Gauss’s forward formula

(b) Gauss’s backward formula

(c) Stirling’s formula

x 0.62 0.63 0.64 0.65 0.66 0.67 0.68

y 0.6194114 0.6270463 0.634857 0.6420292 0.6493765 0.6566275 0.6637820

Solution The difference table is

x y ∆y ∆2 y ∆3 y ∆4 y ∆5y ∆6 y

0.62 0.6194114

0.007649

0.63 0.6270463 –0.0000955

0.0075394 –0.0000004

0.64 0.6345857 –0.0000959 0.0000001

0.0074435 –0.0000003 0.0000001

0.65 0.6420292 –0.0000962 0.0000002 –0.0000004

0.0073473 –0.0000001 –0.0000003

0.66 0.6493765 –0.0000963 –0.0000001

0.0072510 –0.0000002

0.67 0.66275 –0.0000965

0.0071545

0.68 0.6637820

we have                                    h = 0.01, x = 0.6538, x0 = 0.65

                                      u =
−

=
0 6538 0 65

0 01
0 38

. .

.
. .

(a) Using Gauss’s forward interpolation formula

  y y uy
u u

y
u u u

y4 0 0
2

1
3

1

1

2

1 1

3
= + +

−
+

+ −
+− −

� � � � � �
! !

...∆ ∆

y0 38 0 6420292 0 3 0 0073473. . . .= + × +
0 38 0 38 1

2
0 0000962

. .
. ...

� �� � � �
−

× − +

     = 0 6448325. .
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(b) Using Gauss’s backward interpolation formula

                                        y y u y
u u

y
u u u

y= + +
+

+
+ −

+− − −0 1
2

1
3

2

1

2

1 1

3
∆ ∆ ∆

� � � � � �
! !

...

                                  y0 38 0 6420292 0 00282853 0 0000252. . . .= + −

= 0 6448325. .

(c) Using Stirling’s formula

The arithmetic mean of Gauss’s forward and Gauss’s backward formulae is

                                        y0 38
0 6448325 0 6448325

2.
. .= +

                                        ∴ =y 0 6448325. .

Example 6.6 Apply Bessel’s formula to obtain Y25 given that Y20 = 2854, Y24 = 3162, Y28 = 3544 and Y32 = 3992.

Solution Taking 24 as the origin we get

                                     u = − =
25 24

4

1

4
.

The difference table is

X u
X

= − 24

4
Yu ∆Yu ∆2Yu ∆3Yu

20 –1 2854

308

24 0 3162 74

382 –8

28 1 3544 66

448

32 2 3992

The Bessel’s formula is given by

      Y Y Y u Y
u u Y Y

n = + + −���
�
	
 +

− +
+

−1

2

1

2

1

2 20 1 0

2
1

2
0� � � � � �

∆
∆ ∆

!
 

u u u
Y

−���
�
	
 −

+−

1
2

1

3
3

1

� �

!
...∆

⇒ = + + −�
��

�
	
 ⋅ +Y0 25

1

2
3162 3544

1

4

1

2
382. � � � �  

1

4

1

4
1

2

74 66

2

1

4

1

2

1

4

1

4
1

3
8

�
��
�
	
 −�
��

�
	
 +

+
−�

��
�
	
 −�
��

�
	


⋅ −
! !

� � � �

= − − −3353 955 65625 0 0625. . .

                              ⇒ =Y0 25 3250 875. . ,

                                  ∴ =y 3250875. .

at                                         x = 25

                                ∴ =y25 3250875. .
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Example 6.7 If third difference are constant, prove that

                           Y
1

2
Y Y

1

16
Y Y

X
1
2

X X 1
2

X 1
2

X− + −= + − +( ) .∆ ∆� �

Solution Bessel’s formula is

Y
Y Y

X Y
X X Y Y

X = + + −�
��

�
	
 +

−
⋅ + +−0 1

0

2
1

2
0

2

1

2

1

2 2
∆ ∆ ∆� �

!

X X X
Y

−�
��

�
	
 −

+−

1
2

1

3
3

1

� �

!
...∆ (8)

Given that the third difference are constant and taking the formula up to third differences and putting X = 1

2
in (8) we get

                       Y
Y Y

Y Y1

2

0 1 2
1

2
02

1

16
=

+
− +−∆ ∆� � , (9)

shifting the origin to X, (9) reduces to

                                 Y Y Y Y Y
X

X X X X+ + −= + − +1

2

1
2

1
21

2

1

16
� � � �∆ ∆ .

Example 6.8 Use Stirling’s formula to find Y28, given that Y20 = 49225, Y25 = 48316, Y30 = 47236, Y35 = 45926, Y40

= 44306.

Solution Taking X = 30 as origin and h = 5 we get

                               u = − = −
28 30

5
0 4. .

The difference table is

X u
X

= − 30

5
Yu ∆Yu ∆2Yu ∆3Yu ∆3Yu

20 –2 49225

–909

25 –1 48316 –171

–1080 –59

30 0 47236 –230 –21

–1310 –60

35 1 45926 –310

–1620

40 2 44306

The Stirling’s formula is

                              Y y u
Y Y u Y

u = +
+

+ +
− −

0

2
0

2
1

2 2
1

2 2

∆ ∆ ∆� �

    
u u Y Y u u

Y
2 3

1
3

2
2 2

4
2

1

6 2

1

24

− +
+

−
⋅ +

− −
−

� � � � � �∆ ∆
∆ ...,
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putting u = –0.4 and the values of various differences in the formula we get

                                  Y− = + −
− −

+ − +0 4 47236 0 4
1310 1080

2

016

2
230. .

.� � � � � � � �

− −
⋅

− −
+

−
⋅ −

0 4 016 1

6

80 59

2

016 016 1

24
21

. . . .� �� � � � � �� � � �
= + − − +47236 478 18 4 38920 01176. . .

= 47692

                               ⇒ =Y28 47692.

Example 6.9 Use Stirling’s formula to compute u12.2 from the following table

x0 10 11 12 13 14

105log x 23967 28060 31788 35209 38368

Solution The difference table is

x0 105ux 105 ∆ux 105 2∆ ux 105 3∆ ux 105 4∆ ux

10 23967
4093

11 28060 –365
3728 58

12 31788 –307 –13
3421 45

13 35209 –262
3159

14 38368

We have                             u
x x

h
= − = − =0 12 2 12

1
0 2

.
. ,

where x0 = 12 is the origin.

The Stirling’s formula is

y y u
y y u y

u = +
+

+ +
− −

0

2
0

2
1

2 2
1

2 2

∆ ∆ ∆� � u u y y u u
y

2 3
1

3
2

2 2
4

2

1

6 2

1

24

− +
+

−
⋅ +

− −
−

� � � � � �∆ ∆
∆ ...

⇒ = +
+�

��
�
	
 + − −10 31788 0 2

3421 3728

2
0 02 3075

12 2u . . .� � � �� � 0 016 45 58 0 0016 13. .� �� � � �� �+ − −

 = + − − +31788 714 9 61 16 0 000. . . .

⇒ =10 324955
12 2u .

⇒     u12 2 0 32495. . .=

Example 6.10 Apply Everett’s formula to obtain y25, given that y20 = 2854, y24 = 3162, y28 = 3544, y32 = 3992.

Solution Taking origin at x = 24, and h = 4 we get

                                     u = − =
25 24

4

1

4
,
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                                 ∴ = − = − =V u1 1
1

4

3

4
.

The difference table is

x u
x

= − 24

4
yu ∆yu ∆2 yu ∆3 yu

20 –1 2854

308

24 0 3162 74

382 –8

28 1 3544 66

448

32 2 3992

The Everett’s formula is given by

y u y
u u

y
u u u

yu = ⋅ +
−

+
− −

+ +−1

2
2

0

2 2
4

1

1

3

1 4

5

� � � �� �
! !

...∆ ∆ Vy
V V

y0

2
2

0

1

3
+

−
+

� �
!

...∆

   = ⋅ +
−�

��
�
	


+ ⋅ +
−�

��
�
	
1

4
3544

1

4

1

16
1

6
66

3

4
3162

3

4

9

16
1

6
74� � � � � � � �

= − + −886 2 5781 23715 4 0469. . .

= 3254 875.

                                ∴ =y25 3254 875. .

Exercise 6.1

1. Apply Gauss’s forward formula to find the value of f(x) at x = 3.75 from the table

x 2.5 3.0 3.5 4.0 4.5 5.0

f(x) 24.145 22.043 20.225 18.644 17.262 16.047

2. Find the value of f(x), by applying Gauss’s forward formula from the following data

x 30 35 40 45 50

f(x) 3678.2 29995.1 2400.1 1876.2 1416.3

3. Find the value of cos 51° 42´ by Gauss backward formula given that

x 50° 51° 52° 53° 54°

cos x 0.6428 0.6293 0.6157 0.6018 0.5878
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4. Given that

x 50° 51° 52° 53° 54°

f(x) 1.1918 1.2349 1.2799 1.3270 1.3764

using Gauss’s backward formula find the value of tan 51° 42'.

5. f(x) is a polynomial of degree for a and given that f(4) = 270, f(5) = 648, ∆ ∆f f( ) , ( )5 682 4 1323= =
= 132 find the value of f(5.8).

6. Use Stirling’s formula to find the value of f(1.22) from the table

x 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

f(x) 0.84147 0.89121 0.93204 0.96356 0.98545 0.99749 0.999570 0.99385 0.9385

7. Apply Stirling’s formula to find the value of f(1.22) from the following table which give the values

of f x e dx
xx

� � =
−�1

2

2

2

0
π

 at intervals of x = 0.5 from x = 0 to 2

x 0 0.5 1.0 1.5 2.0

f(x) 0 191 0.341 0.433 0.477

8. Apply Bessel’s formula to find the value of f(27.4) from the table

x 25 26 27 28 29 30

f(x) 4.000 3.846 3.704 3.571 3.448 3.333

9. Apply Bessel’s formula to find the value of y = f(x) at x = 3.75 given that

x 2.5 3.0 3.5 4.0 4.5 5.0

f(x) 24.145 22.043 20.2250 18.644 17.262 16.047

10. Find the value of y15 using Bessel’s formula if y10 = 2854, y14 = 3162, y18 = 3544, y22 = 3992.

11. Apply Laplace–Everett’s formula to find the value of log 23.75, from the table

x 21 22 23 24 25 26

log x 1.3222 1.3424 1.3617 1.3802 1.919 1.4150

12. Find the value of e–x when x = 1.748 form the following

x 1.72 1.73 1.74 1.75 1.76 1.77

f(x) = e–x 0.1790 0.1773 0.1755 0.1738 0.1720 0.1703

13. Interpolate by means of Gauss’s backward formula the population of a town for the year 1974, given
that

Year 1939 1949 1959 1969 1979 1989

Population 12 15 20 27 39 52

(in thousands)
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14. Given that

12500 111 803399= .

12510 111 848111= .

12520 111 892806= .

12530 111 937483= .

find the value of 12516  by means of Gauss’s backward formula.

15. u20 = 51203, u30 = 43931, u40 = 34563, u50 = 24348.Find the value of u35, by using Gauss forward
interpolation formula.

16. Use Gauss’s backward formula to find the population in the year 1936, given the following table

Year 1901 1911 1921 1931 1941 1951

Population 12 15 20 27 39 52

(in thousands)

17. Use (i) Stirling’s and (ii) Bessel’s formulae to find the value of sin 25° 40´ 30´´, given that

θ 25°40´0´´ 25°40´20´´ 25°40´40´´ 25°41´0´´ 25°41´20´´

sinθ 0.43313479 0.43322218 0.4330956 0.43339695 0.43348433

18. Compute the value of ex when x = 0.644, by using

(i) Bessel’s formula

(ii) Everett’s formula, given that

x 0.61 0.62 0.63 0.64 0.65 0.66 0.67

y = ex 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

19. f(20) = 51203, f(30) = 43931, f(40) = 34563, f(50) = 24348 find f(35) using, Bessel’s formula.

20. Employ Bessel’s formula to find the value of F at x = 1.95 given that

x 1.7 1.8 1.9 2.0 2.1 2.2 2.3

F 2.979 3.144 3.283 3.391 3.463 3.997 4.491

21. Given that    f(1) = 1.0000, f(1.10) = 1.049

f(1.20) = 1.096, f(1.30) = 1.40

Use Everet’s formula and find f(1.15).

22. Using Bessel’s formula find f(25) given that f(20) = 24, f(24) = 32, f(28) = 35 and f(32) = 40.

23. Prove that

(i) y K yn
K

K

n n
K

−
=

= −
�
��
�
	
 ∇∑ 1

0

� �

(ii) ∆r
i

r

i
r

r
i r

r
i i i rf f f r h f x x x= = ∇ =

+ + + +δ
2

1! , , ...,� � � �



150 NUMERICAL ANALYSIS

Answers

1. 19.407  2. 2290  3. 06198

4. 1.2662  5. 0.1163  6. 0.93910

 7. 0.389 8. 3.6497 9. 19.407

10. 3251 11. 3.3756 12. 0.1741

13.  32.345 thousands 14. 111.874930 15. 39431

16. 32.3437 17. (i) 0.43322218 (ii) 0.43326587 18. (i) 1.904082 (ii) 1.904082

19. 39431 20. 3.347 21. 1.0728

22. 32.95



7.1 INTRODUCTION

Inverse interpolation by using Lagrange’s interpolation formula was already discussed in the previous
chapter in which the roles of x and y were interchanged and x was expressed as a function of y.
Now we study two more methods namely

(a) Successive approximations and

(b) Reversion of series.

7.2 METHOD OF SUCCESSIVE APPROXIMATIONS

Let the values of independent variable x be given as x0, x1, x2, …, xn where xi are equispaced with
h as the interval of differencing (i.e., xi = x0 + ih, h = 0, 1, …, n). If we are required to find x
for a given value of y near the beginning of the tabulated value of y, we make use of Newton’s
forward interpolation formula as follows. From Newton’s forward interpolation we have

y y u y
u u

y
u u u

y= + +
−

+
− −

+ +0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

� � � �� �
! !

...
u u u n

n
yn− − +1 1

0
� � � �...

!
,∆ ...

(1)

where                              u
x x

h
=

− 0 .

Expression (1) may be written as

y y u y
u u

y
u u u

y− = +
−

+
− −

+ +0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

� � � �� �
! !

... u u u n

n
yn− − +1 1

0
� � � �...

!
.∆

Dividing both sides by ∆y0  we get

y y

y
u

u y

y

u u u y

y

−
= +

−
+

− −
+ +0

0

2
0

0

3
0

0

1

2

1 2

3∆
∆
∆

∆
∆

� � � �� �
! !

...
u u u u n

n

y

y

n− − − +1 2 1 0

0

� �� � � �...

!
.

∆
∆

(2)

7
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Neglecting all the higher order differences other than the first we get

                              u
y y

y
= − 0

0∆
,

we denote it by u1,

                           ∴ = −
u

y y

y1
0

0∆
.

Expression (2) may be written as

u
y y

y

u u y

y

u u u y

y1
0

0

2
0

0

3
0

0

1

2

1 2

3
= − −

−
−

− −
− −

∆
∆
∆

∆
∆

� � � �� �
! !

...
u u u u n

n

y

y

n− − − +1 2 1 0

0

� �� � � �...

!
,

∆
∆

(3)

and the subsequent approximations u2, u3, …, un of u are obtained from (3) as follows

u
y y

y

u u y

y

u u u y

y2
0

0

1
2

0

0

1 1 1
3

0

0

1

2

1 2

3
=

−
−

−
−

− −
− −

∆
∆
∆

∆
∆

� � � �� �
! !

...

     
u u u u n

n

y

y

n
1 1 1 1 0

0

1 2 1− − − +� �� � � �...

!
,

∆
∆

�
�
�

u
y y

y

u u y

yn
n n

= − −
−

− −
− −0

0

1 1
2

0

0

1

2∆
∆
∆

� �� �
!

...
u u u n

n

y

y

n n n
n

− − −− − +1 1 1 0

0

1 1� � � �...

!
.

∆
∆

The process of finding the approximations of u is continued till two successive approximations
of u agree with each other to the required accuracy.

If un denotes the interpolated value of u, then x = x0 + h un gives the required value of x for
a given value of y.

Similarly we use same technique with Newton’s backward formula and Central difference
interpolation formulae and interpolate x for a given y. As an example we consider the Stirling’s
interpolation formula.

Stirling’s interpolation formula is

y y u
y y u

y= +
+�

��
�
	


+ +−
−0

0 1
2

2
12 2

∆ ∆
∆

!

u u y y
2 3

1
3

2
1

3 2

− +�
�
�

�
	

 +− −� �

!
...

∆ ∆
(4)

We construct the difference table, substitute the values of the differences in (4), and write it
in the form

y = y0 + ua1 + u2 a2 + u(u2 – 1) a3 + … (5)



INVERSE INTERPOLATION 153

where a1, a2, an, … are constants.

Expression (5) may be written as

u a1 = (y – y0) – u2 a2 – u(u2 – 1) a3 …

which gives                        u
y u

a

u a

a

u u a

a
= − − − − −0

1

2
2

1

2
3

1

1( )
...

To get the first approximation of u, we neglect all differences higher than the first and write

                              u
y y

a1
0

1

= −
,

where u1 denotes the first approximation of u.

Substituting u1 in (2) we get u2, i.e., the second approximation of u. Similarly we can obtain
the approximations of u3, u4, …, un of u.

Example 7.1 Given table of values of the probability integral 
2

e dxx

0

x

π
−� 2

 corresponding to certain values of x, for

what values of x in this integral equal to 0.5?

x 0.46 0.47 0.48 0.49

y = f(x) 0.4846555 0.4937452 0.5027498 0.5116683

Solution

x y ∆y ∆2 y ∆3 y

0.46 0.4846555

0.0090897

0.47 0.4937452 –0.0000851

0.0090046 0.0000345

0.48 0.5027498 0.0001196

0.0088850

0.49 0.5116683

Taking x0 = 0.47, we get x–1 = 0.46, x1 = 0.48, x2 = 0.49 and h = 0.01. Correspondingly we have y0 = 0.4937452,

y–1 = 0.4846555, y1 = 0.5027498, y2 = 0.5116683.

∴  Using Gauss’s formula we write

                                     y y u y
u u

y
u u u

y= + +
−

+
+ −

+− −0 0
2

1
3

1

1

2

1 1

3
∆ ∆ ∆

� � � � � �
! !

...

                               
y y

y
u

u u y

y

u u y

y

−
= +

−
+

−
− −0

0

2
1

0

2 3
1

0

1

2

1

3∆
∆
∆

∆
∆

� � � �
! !

. (6)
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The first approximation of u be u1

                                 ∴ =
−

=
−

=u
y y

y1
0

0

05 0 4937452

0 0090046

0 0062548

0 0090046∆
. .

.

.

.

                                 ∴ =u1 0 694623. .

Expression (6) can be written as

                                     u
y u

y

u u y

y

u u y

y
=

−
−

−
−

−
− −0

0

2
1

0

2 3
1

0

1

2

1

3∆
∆
∆

∆
∆

� � � �
! !

, (7)

and for the second approximation of u we have

                                    u
y u

y

u u y

y

u u y

y2
0

0

1 1
2

1

0

1 1
2 3

1

0

1

2 3
=

−
−

−
−

−
− −

∆
∆
∆

∆
∆

� � � �
! !

                                 ∴ = −
× −

×
−

−u2 0 694623
0 694623 0 305377

2

0 0000851

0 0090046
.

. . .

.

� � � �
� �

0 694623 0 694623 1

6

0 0000345

0 0090046

2
. . .

.

× −
×

−� �� 
 � �
� �

= − − =0 694623 0 0010024 0 0002295 0 693391. . . . .

Similarly

                                    u
y y

y

u u y

y

u u y

y3
0

0

2 2
2

1

0

2 2
2 3

1

0

1

2

1

3
=

−
−

−
−

−
− −

∆
∆
∆

∆
∆

� � � �
! !

,

∴ = −
− −

−u3 0 694623
0 693391 0 693391 1

2

0 0000851

0 0090046
.

. . .

.

� � � �
� �

0 693391 0 693391 1

6

0 0000345

0 0090046

2
. . .

.

� �� 
 � �
� �

− −

                                    u3 0 694623 0 0010046 0 0002299= − −. . .

                                 ∴ =u3 0 693389. .

Taking u = 0.693389, we get

x = x0 + hu

x = 0.47 + 0.01 × 0.693389

x = 0.47693389.

Example 7.2 Given f(0) = 16.35, f(5) = 14.88, f(10) = 13.59, f(15) = 12.46 and f(x) = 14.00, find x.

Solution Let x0 = 5, such that x–1 = 0, x1 = 10, x2 = 15, then the difference table is

x y ∆ ∆2 ∆3

–1 16.35 = y–1

–1.47 = ∆y−1

0 14.88 0.18 = ∆2
1y−

–1.29 –0.02 = ∆3
1y−

1 13.59 0.16

–1.13

2 12.46
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∴  Using Stirling’s formula, we write

                                     y f x y u
y y u

y= = +
+�

��
�
	


+ +−
−� � 0

0 1
2

2
12 2

∆ ∆
∆

!
...

                                    14 14 88
129 147

2 2
018

2

= + − −�
��

�
	


+.
. .

.u
u

                                 138 088 0 09 2. . .u u= +

                                 u
u

= +088

138

0 09

138

2.

.

.

.
. (8)

The first approximation u1 of u is

                                    u1
088

138
0 6232= =.

.
. ,

form (8) second approximation

                                    u
u

u2

2

1
2088

138

0 09

138
= +.

.

.

.

= +0 6232
0 09

138
0 6232

2
.

.

.
.� �

= +0 6232 0 0056. .  = 0 6288. .

Taking u = 0 0.6288, we get

 x x hu= +0  = +5 5 0 6288.� �

= +5 31440.  = 814440.

∴ = =x y81440 14 00. . .at

Note: When the second and higher order differences are very small (i.e., negligible) we form a quadratic equation and
solve it for inverse interpolation. This method is clearly explained with an example as follows.

Example 7.3 Given

x 4.80 4.81 4.82 4.83 4.84

y = sinh x 60.7511 61.3617 61.9785 62.6015 63.2307

in sinh x = 62, find x.

Solution. Taking x0 = 4.82 we get

h = 1, x0 – 2h = 4.80, x0 – h = 4.81, x0 + h = 4.83, x0 + 2h = 4.84 and y0 = 61.9785,
y–1 = 61.3617, y–2 = 60.7511, y1 = 62.6015 y2 = 63.2307 and y = 62.

The difference table is

x y ∆ ∆2 ∆3 ∆4

x h0 2 4 80− = . 60 7511 2. = −y

0 6106 2. = −∆y

x h0 4 81− = . 613617 1. = −y 0 0062.

0 6168 1. = −∆y 0
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x0 4 82= . 619785 0. = y 0 0062 2
1. = −∆ y 0

0 6230 0. = ∆y 0 3
1= −∆ y

x h0 4 83+ = . 62 6015. 0 0062.

0 6292 1. = ∆y

x h0 2 4 84− = . 632307.

From the table we have ∆ ∆ ∆y y y0 1
2

10 6230 0 6168 0 0062= = =− −. , . , .  and using Stirling’s formula we may

write

                                     y y u
y y u

u= +
+�

��
�
	


+ +−
−0

0 1
2

12 2

∆ ∆
!

...,

                                    62 619785
0 6230 0 6168

2 2
0 0062

2

= +
+�

��
�
	


+.
. .

. ,u
u

simplifying we get

31u2 + 6199u – 215 = 0,

neglecting the negative roots

u = 0.0347

∴ x = x0 + hu

= 4.82 + 0.0347 × 0.01

= 4.82 + 0.000347

= 4.820347

∴ x = 4.820347.

7.3 METHOD OF REVERSION SERIES

Let y = a0 + a1x + a2x
2 + a3x

3 + … (9)

represent any given interpolations formula where u
x x

h
= − 0 .

The above power series may be reverted and written as

                               x
y a

a
c

y a

a
c

y a= − + −�
�
�

�
	

 + −�

��
�
	


+ +0

1
1

0

1

2

2
0

3

3
...

c
y a

an

n

−
−�

�
�

�
	

 +1

0

1

... (10)

where c1, c2, c3, …, cn – 1, … are constants to be determined.

Let 
y a

a
c

− =0

1
1  then from (10) we get

x = u + c1u
2 + c2u

3 + … + cn – 1u
n + … (11)



INVERSE INTERPOLATION 157

Expression (9) may be written as

y – a0 = a1x + a2x
2 + … + anx

n + … (12)

Substituting y – a0 = a1c1

in (12) using the expression given in (10) for n and then comparing the coefficients of u2, u3,
u4, … on both sides we get

                           c
a

a1
2

1

= −
,

                           c
a

a

a

a2
3

1

2

1

2

2= − +
�
��
�
��

,

                           c
a

a

a a

a

a

a3
4

1

2 3

1

2

1

3

5 5= − +
�
��

�
��

−
�
��
�
��

,

                           c
a

a

a a

a

a

a

a a

a

a

a4
5

1

2 4

1
2

3

1

2

2
2

3

1
3

2

1

4

6 3
2

14=
−

+
�
��

�
��

+
�
��
�
��

− +
�
��
�
��

,

                           c
a

a

a a a a

a

a a a a

a
5

6

1

2 5 3 4

1
2

2
2

4 2 3
2

1
3

7 28= − + +�
��

�
��

− +�
��

�
��

+ 84 422
3

3

1
4

2

1

2
a a

a

a

a
−
�
��
�
��

(13)

�

The values of c’s are computed by using (5) and then substituted when reverting the series with
numerical coefficients. We shall now write Newton’s forward interpolation formula, Gauss forward,
Gauss backward, Stirling’s and Bessel’s formula in the form of power series and then write down
the values of a0, a2, a3, a4, … in each case. Since the higher order difference are usually very small,
we shall stop computations with forth differences.

(a) Newton’s forward interpolation formula

y y u y
u u

y
u u u

y= + +
−

+
− −

+0 0
2

0
3

0

1

2

1 2

3
∆ ∆ ∆

� � � �� �
! !

u u u u
y

− − −1 2 3

4
4

0
� �� �� �

!
∆

= + − + −
�
��

�
��

+y y
y y y

u0 0

2
0

3
0

4
0

2 3 4
∆ ∆ ∆ ∆ ∆ ∆ ∆2

0
3

0
4

0 2

2 3

11

24

y y y
u− +

�
��

�
��

+

∆ ∆ ∆3
0

4
0 3

4
0 4

6 4 24

y y
u

y
u−

�
��

�
��

+ .

Hence a y0 0= ,

                              a y
y y y

1 0

2
0

3
0

4
0

2 3 4
= − + −∆ ∆ ∆ ∆

,
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                              a
y y y

2

2
0

3
0

4
0

2 2

11

24
= − +∆ ∆ ∆

,

                              a
y y

3

2
0

4
0

6 4
= −∆ ∆

,

                              a
y

4

4
0

24
= ∆

.

Using equations of (13) we compute the values of c1, c2, c3, c4 and the interpolate inversely.

(b) Gauss’s forward formula

y y u y
u u

y
u u

y= + + − + − +− −0 0

2
2

1

3
3

12 6
∆ ∆ ∆ u u u

y
2 3 2

4
2

2 24

24

− − + +−∆ ...

  = + − − +�
��

�
�� +− − −y y y y y u0 0

2
1

3
1

4
12

1

2

1

6

1

12
∆ ∆ ∆ ∆ 1

2

1

24
2

1
4

2
2∆ ∆y y u− −−�

��
�
�� +

    
1

6

1

12

1

24
3

1
4

2
3 4

1
4∆ ∆ ∆y y u y u− − −−�

��
�
�� + ���

�
�� + ...

Here a y0 0= ,                 a y y y y1 0
2

1
3

1
4

2
1

2

1

6

1

12
= − − +− − −∆ ∆ ∆ ∆ ,

                              a y y2
2

1
4

2
1

2

1

24
= −− −∆ ∆ ,

                              a y y3
3

1
4

2
1

6

1

12
= −− −∆ ∆ ,

                              a y4
4

2
1

24
= −∆ .

(c) Gauss’s backward formula

y y u y
u u

y
u u

y= + + − + − +− − −0 1

2
2

1

3
3

26 6
∆ ∆ ∆ u u u

y
4 3 2

4
2

2 24

24

+ − − +−∆ ...

  = + + − −�
��

�
�� +− − − −y y y y y u0 1

2
1

3
2

4
2

1

2

1

6

1

12
∆ ∆ ∆ ∆ 1

2

1

24
2

1
4

2
2∆ ∆y y u− −−�

��
�
�� +

    
1

6

1

12

1

24
3

2
4

2
3 4

2
4∆ ∆ ∆y y u y u− − −+�

��
�
�� + ���

�
�� + ...

Here a y0 0= ,
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                             a y y y y1 1
2

1
3

2
4

2
1

2

1

6

1

12
= + − −− − − −∆ ∆ ∆ ∆ ,

                              a y y3
3

2
4

2
1

6

1

12
= +− −∆ ∆ ,

                              a y4
4

2
1

24
= −∆ .

(d) Stirling’s formula

y y u
y y u

y= +
+�

��
�
	


+ +−
−0

1 0
2

2
12 2

∆ ∆
∆

u u y y u u
y

2 3
2

3
3

2 2
4

2

1

6 2

1

24

− +�
�
�

�
	

 +

−
+− −

−
� � � �∆ ∆ ∆ ...

y y
y y y y

u= + + − +�
��

�
��

+− − −
0

1 0
3

2
3

1

2 12

∆ ∆ ∆ ∆

    
∆ ∆ ∆ ∆ ∆2

1
4

2 2
3

2
3

1 3
4

2 4

2 24 12 24

y y
u

y y
u

y
u− − − − −−

�
��

�
��

+ +�
��

�
��

+ .

Here a y0 0= ,

                              a y y y y1 1 0
3

2
3

1
1

2

1

2
= + − +− − −∆ ∆ ∆ ∆ ,

                              a y y2
2

1
4

2
1

2

1

24
= −− −∆ ∆ ,

                              a y y3
3

2
3

1
1

12
= +− −∆ ∆� � ,

                              a y4
4

2
1

24
= −∆ .

(e) Bessel’s formula

y
y y

u y
u u y y= + + −���

�
�� +

− +�
�
�

�
	

 +−0 1

0

2
0

2
1

2

1

2

1

2 2
∆ ∆ ∆� �

!

u u u
y

−���
�
�� −

+−

1
2

1

3
3

1

� �

!
∆

    
u u u u y y+ − − +− −1 1 2

4 2

4
1

4
2� � � �� � � �

!
.

∆ ∆

Taking u v− =1

2
 we get

y
y y

v y
v

y y
=

+
+ +

−�
��

�
�� +

+−0 1
0

2
2

1
2

0

2

1
4

2 2
∆

∆ ∆

    
v v

y
v v

y y
2

2
1

2 2
4

2
4

1

1
4

6

1
4

9
4

24 2

−�
��

�
��

+
−�

��
�
�� −�
��

�
�� +

−
− −∆

∆ ∆
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  = + − + + + +−
− −

y y y y
y y0 1

2
1

2
0 4

2
4

12 16

3

256

∆ ∆ ∆ ∆ ∆ ∆y y v0
3

1
1

24
−�

��
�
	


+−

    
1

4

5

96
2

1
2

0
4

2
4

1
2∆ ∆ ∆ ∆y y y y v− − −+ − +�

��
�
	


+� � � � 1

6

1

48
3

1
3 4

2
4

1
4∆ ∆ ∆y v y y v− − −+ +� � .

Here                          a y y y y y y0 0 1
2

1
2

0
4

2
4

1
1

2

1

18

3

256
= + − + + +− − −� � � � � �∆ ∆ ∆ ∆ ,

                              a y y1 0
3

1
1

24
= − −∆ ∆ ,

                             a y y y y2
2

1
2

0
4

2
4

1
1

4

5

96
= + − +− − −∆ ∆ ∆ ∆� � � � ,

                              a y3
3

1
1

6
= −∆ ,

                              a y y4
4

2
4

1
1

48
= +− −∆ ∆ .

We find the values of c1, c2, c3, c4 by using equations of (13) and interpolate inversely.

Example 7.4 If sinh x = 62, find x using the following data

x 4.80 4.81 4.82 4.83 4.84

sinh x 60.7511 61.3617 61.9785 62.6015 63.2307

Solution

x y = sin x ∆ ∆2 ∆3 ∆4

x h0 2 4 80− = . 0 75111 2. = −y

∆y− =2 0 6106.

x h0 4 81− = . 613617 1. = −y ∆2
2 0 0062y− = .

∆y− =1 0 6168. 0

x0 4 82= . 619785 0. = y ∆2
1 0 0062y− = . 0

∆y0 0 6230= . 0

x h0 4 83+ = . 62 6015 1. = y ∆2
0 0 0062y = .

∆y1 0 6292= .

x h0 2 4 84+ = . 62 2307 2. = y

Using Stirling’s formula we can write

                                     y u u= +
+

−
+�

��
�
	


+ −�
��

�
	


+619785
0 6168 0 6230

2

0 0

2

0 0062

2
0 2.

. . .
...

                                  ∴ = + +y u u619785 0 6199 0 0031 2. . . .



INVERSE INTERPOLATION 161

We have

∴ a0 = 61.9785, a1 = 0.6199, a2 = 0.0031, a3 = 0, a4 = 0, and y = 62,

⇒ y – a0 = 62 – 61.9785 = 0.215.

                                  ∴ =
−

= =u
y a

a
0

1

0 0215

0 6199
0 034683

.

.
. .

                                   
a

a

a

a
2

2

2

1

0 0031

0 6199
0 005001= = =.

.
. ,

                                 ∴ = −c1 0 005001. ,

                                    c2
2

0 2 0 00501 0 0000502= + =. .� �

                                  c3 3=

                                  ∴ = − + +u 0 034683 0 005001 0 0000502 0 034683 3. . . .� �

                                   u = 0 0347. .

                                  ∴ = + = + +x x h0 4 82 0 01 0 0347. . .

= 4 8203. .

Example 7.5 Find by the method of inverse interpolation the real root of the equation x3 + x – 3 = 0 which lies
between 1.2 and 1.3.

Solution Let

f(x) = x3 + x – 3

We construct a difference table for values of x starting from 1 with 0.1 as the step length. The table is given
below

x f x� � u
x

= −12

1

.
∆y ∆2 y ∆3 y ∆4 y

1.0 –1 –2

0.431

1.1 –0.569 –1 0.066

0.497 0.006

1.2 –0.072 0 0.072 0

0.569 0.006

1.3 –0.497 1 0.078

0.647

1.4 1.144 2

From the table it is clear that f(x) changes its between x = 1.2 and x = 1.3. Hence the root of f(x) = 0 should
lie between 1.2 and 1.3 to find the value of x we use Stirling’s formula (taking 1.2 as the origin). We have

                                     y y u
y y u

y
u u y y

= + ⋅
+

+ +
−

⋅
+

+−
−

− −
0

0 1
2

2
1

2 3
1

3
2

2 2

1

6 2

∆ ∆
∆

∆ ∆� �
...
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                                     0 0 072
0 569 0 497

2 2
0 072

1

2
0 006

2 2

= − + ⋅
+

+ +
−

.
. .

. .u
u u u
� �

� �
� �

                                 ⇒ = − + + +0 0 072 0531 0 0036 0 0012 3. . . .u u u

                                 ⇒ = − −u u u
0 072

0 531

0 0036

0 531

0 001

0 531
2 3.

.

.

.

.

.
. (14)

The first approximation u1 of u is

                                    u1
0 072

0 531
01353= =.

.
. .

Putting u = 0.1353 in RHS of (14) we get

                                     u = − −01353
0 0036

0 531
01353

0 001

0 531
01353

2 2
.

.

.
.

.

.
.� � � � = 0134. .

Taking u = 0.134, we get

x = x0 + hu

= 1.2 + (0.1) (0.134)

= 1.2 + 0.0134

= 1.2134

∴  The required root is 1.2134.

Exercise 7.1

1. The equation x3 – 15x + 4 = 0 has a root close to 0.3. Obtain this root up to 6 decimal places, using
inverse interpolation with Bessel’s Interpolation formula.

2. Given f(0) = 16.35, f(5) = 14.88, f(10) = 13.5, f(15) = 12.46. Find x for which f(x) = 14.00.

3. Given u10 = 544, u15 = 1227, u20 = 1775 find correct to one decimal place, the value of x for which
ux =100.

4. The following values of f(x) are given

x 10 15 20

f(x) 1754 2648 3564

Find the value of x for which f(x) = 3000, by successive approximation method.

5. Use Lagrange’s formula to find the number whose Logarithm is 0.30500 having given

log 1 = 0, log 2 = 0.30103, log 3 = 0.47712 and log 4 = 0.060206

6. Given a table of values of the probability integral 
2 2

0
π

e dxx
x

−�

For what value of x is this integral equal to 
1
2
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x 0.45 0.46 0.47 0.48 0.49 0.50

f(x) 0.4754818 0.484655 0.4937452 0.5027498 0.4116583 0.5304999

7. For the function y = x3 construct a forward difference table when x takes the values x = 2, 3, 4, 5,
and find the cube root of 10.

8. Find the value of x for y = cos x = 1.285 by the method of inverse interpolation using difference up
to second order only given

x 0.736 0.737 0.738 0.739 0.740 0.741

y = cos x 1.2832974 1.2841023 1.2849085 1.2857159 1.2865247 1.2873348

9. The equation x3 –6x –11 = 0 has a root between 3 and 4. Find the root.

10. Find by the method of inverse interpolation the real root of the equation x3 + x – 3 = 0 which lies
between 1.2 and 1.3.

Answers

1. 0.267949 2. 8.34 3. 13.3

4. 16.896 5. 2.018 6. 0.47693612

7. 2.154 8. 0.738110 9. 3.091

10. 1.2314
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8.1 INTRODUCTION

The process of computing the value of the derivative 
dy

dx
 for some particular value of x from the

given data when the actual form of the function is not known is called Numerical differentiation.
When the values of the argument are equally spaced and we are to find the derivative for some given
x lying near the beginning of the table, we can represent the function by Newton–Gregory forward

interpolation formula. When the value of 
dy

dx
 is required at a point near the end of the table, we use

Newton’s backward interpolation formula and we may use suitable Central difference interpolation
formula when the derivative is to be found at some point lying near the middle of the tabulated values.
If the values of argument x are not equally spaced, we should use Newton’s divided difference
formula to approximate the function y = f(x).

8.2 DERIVATIVES USING NEWTON’S FORWARD INTERPOLATION
FORMULA

Consider Newton’s forward interpolation formula

                         y y u y
u u

y
u u u

y= + +
−

×
+

− −
× ×

+0 0
2

0
3

0

1

1 2

1 2

1 2 3
∆ ∆ ∆

� � � �� �
... (1)

where                        u
x x

h
=

− 0 (2)

differentiating (1) w.r.t. u we get

                        
dy

du
y

u
y

u u
y= +

−
×

+
− +

× ×
+∆ ∆ ∆0

2
0

2
3

0
2 1

1 2

3 6 2

1 2 3
... (3)

differentiating (2) w.r.t. x we get

8
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du

dx h
= 1

. (4)

Now from equations (3) and (4)

                             
dy

dx

dy

du

du

dx
= ⋅

                         ⇒ = + −
×

+ − +
× ×

+
�

�
�

�

�
�

dy

dx h
y

u
y

u u
y

1 2 1

1 2

3 6 2

1 2 30
2

0

2
3

0∆ ∆ ∆ ... (5)

Expression (5) gives the value of 
dy

dx
 at any x which is not tabulated. The formula (5) becomes

simple for tabulated values of x, in particular when x = x0 and u = 0.

Putting u = 0 in (5) we get

                      
dy

dx h
y y y y

x x

	

�
�

� = − + − +�

��
�
��= 0

1 1

2

1

3

1

40
2

0
3

0
4

0∆ ∆ ∆ ∆ ... , (6)

differentiating (5) w.r.t. x

                           
d y

dx

d

dx

dy

dx

dy

dx

2

2
= 	


�
�

�

= + − + − + +
�

�
�

�

�
�

1
1

6 18 11

122
2

0
3

0

2
4

0
h

y u y
u u

y∆ ∆ ∆� � ... ,   (7)

putting u = 0 in (7) we have

                     
d y

dx h
y y y

x x

2

2 2
2

0
3

0
4

0

0

1 11

12

	

�

�

�

= − + −�
��

�
��=

∆ ∆ ∆ ... ,

similarly we get

                     
d y

dx h
y y

x x

3

3 3
3

0
4

0

0

1 3

2

	

�

�

�

= − +�
��

�
��=

∆ ∆ ... ,  and so on. (8)

Aliter:

We know that                     E ehD=

                       ⇒ + =1 ∆ ehD

                         ⇒ = +hD log 1 ∆� �
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                         ⇒ = − + − +hD ∆ ∆ ∆ ∆1

2

1

3

1

4
2 3 4 ...

                          ⇒ = − + − +�
��

�
��

D
h

1 1

2

1

3

1

4
2 3 4∆ ∆ ∆ ∆ ...

                            D
h

2
2

2 3 4
2

1 1

2

1

3

1

4
= − + − +�

��
�
��

∆ ∆ ∆ ∆ ...

                         ⇒ = − + − +�
��

�
��

D
h

2
2

2 3 4 51 11

12

5

6
∆ ∆ ∆ ∆ ...

�

Applying the above identities to y0, we have

                            Dy
dy

dx h
y y y y

x x
0 0

2
0

3
0

4
0

0

1 1

2

1

3

1

4
= 	
�

�

� = − + − +�

��
�
��=

∆ ∆ ∆ ∆ ...

                          D y
d y

dx h
y y y

x x

2
0

2

2 2
2

0
3

0
4

0

0

1 11

12
=
	

�

�

�

= − + +�
��

�
��=

∆ ∆ ∆ ...

�

8.3 DERIVATIVES USING NEWTON’S BACKWARD INTERPOLATION
FORMULA

Consider the Newton’s backward interpolation formula

                             y y u y
u u

y
u u u

yn n n n= + ∇ +
+

∇ +
+ +

∇ +
1

2

1 2

3
2 3� � � �� �

! !
...  (9)

where                       u
x x

h
n= −

(10)

(h being the interval of differencing).

Differentiating (9) w.r.t. u we get

                             
dy

du
y

u
y

u u
yn n n= ∇ +

+
×

∇ +
+ +

× ×
∇ +

2 1

1 2

3 6 2

1 2 3
2

2

3� � � �
... (11)

and differentiating (10) w.r.t. x we get

                           
d u

d x h
= 1

. (12)



NUMERICAL DIFFERENTIATION 167

Now                        
dy

dx

dy

du

du

dx
= ⋅ ,

using (11) and (12) we can write

                                  dy

dx h
y

u
y

u u
yn n n= ∇ +

+
×

∇ +
+ +

× ×
∇ +

�

�
�
�

�

�
�
�

1 2 1

1 2

3 6 2

1 2 3
2

2

3� � � �
... .  (13)

Expression (13) gives us the value of 
dy

dx
 at any x which is not tabulated.

At x = xn we have            u
x x

n
n n= − = 0.

Putting u = 0 in (13) we get

                       
dy

dx x xn

	

�
�

� =

= ∇ + ∇ + ∇ + ∇ + ∇ +�
��

�
��

1 1

2

1

3

1

3

1

4
2 3 3 4

h
y y y y yn n n n n ... ,  (14)

differentiating (13) w.r.t. x we get

                                 d y

dx

d

du

dy

dx

du

dx

2

2
= 	


�
�

�

                           = ∇ + + ∇ +
+ +

∇ +
�

�
�
�

�

�
�
�

1
1

6 18 11

122
2 3

2

4

h
y u y

u u
yn n n� �

� �
... (15)

putting u = 0 in (15), we have

                     
d y

dx h
y y y

x x

n n n

n

2

2 2
2 3 41 11

12

	

�

�

�

= ∇ + ∇ + ∇ +�
��

�
��=

... .

In a similar manner we can find the derivatives of higher order at x = xn.

8.4 DERIVATIVES USING STIRLING’S FORMULA

Consider the Stirling’s formula

                                    y y
u y y u

y= +
+

+ +−
−0

0 1 2 2
11 2 2! !

∆ ∆
∆

� �

u u y y u u
y

2 2 3
1

3
2

2 2 2
4

2

1

3 2

1

4

− ∇ + ∇
+

−
+

− −
−

� � � � � �
! !

∆

u u u y y2 2 2 2 5
2

5
31 2

5 2

− − +
+

− −� �� �
!

...
∆ ∆

(16)
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where                         u
x x

h
= − 0 . (17)

Differentiating (16) w.r.t. u we have

dy

du

y y u
y

u y y= + +
×

+
−

× ×
+	


�
�

�

+−
−

− −∆ ∆ ∆ ∆ ∆0 1 2
1

2 3
1

3
2

2

2

1 2

3 1

1 2 3 2

� �

       4 2

1 2 3 4

3
4

2
u u

y
−

× × ×
+−∆

5 15

1 2 3 4 5 2

4 2 5
2

5
3

u u u y y− +

× × × ×
+	


�
�

�

+− −� � ∆ ∆
..., (18)

Differentiating (17) w.r.t. x

                             
dy

dx h
= 1

(19)

                             
dy

dx

dy

du

du

dx
= ⋅

                         ⇒ = ⋅dy

dx h

dy

du

1

                          ∴ =
+�

��
�
��

+
×

+−
−

dy

dx h

y y u
y

1

2

2

1 2
0 1 2

1
∆ ∆

∆

3 1

1 2 3 2

4 2

1 2 3 4

2 3
1

3
2

3

4
2

u y y u u
y

−

× ×

+
+

−

× × ×
+

− −
−

� � � � � �∆ ∆
∆

5 15

1 2 3 4 5 2

4 2 5
2

5
3u u u y y− +

× × × ×

+
+

− −� � � �∆ ∆
... (20)

u = 0 at x = x0.

Putting u = 0 in (20) we get

dy

dx x x

	

�
�

� = 0

=
+

−
+

+
�

�
�
�

− − −1

2

1

6 2
0 1

3
1

3
2

h

y y y y∆ ∆ ∆ ∆� � 1

30 2

5
2

5
3∆ ∆y y− −+

+
�

�
�
�

� �
... (21)

Differentiating (20) w.r.t. x and putting x = x0 we get

                     d y

dx h
y y

x x

2

2 2
2

1
4

2

0

1 1

12

	

�

�

�

= − +�
��

�
��=

− −∆ ∆ ... . (22)
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Example 8.1 From the table of values below compute 
dy

dx
 and 

d y

dx

2

2  for x = 1

x 1 2 3 4 5 6

y 1 8 27 64 125 216

Solution The difference table is

x y ∆y ∆2 y ∆3 y ∆4 y

1 1

7

2 8 12

19 6

3 27 18 0

37 6

4 64 24 0

61 6

5 125 30

91

6 216

We have x0 = 1, h = 1. x = 1 is at the beginning of the table.

∴  We use Newtons forward formula

                             
dy

dx h
y y y y

x x

	

�
�

� = − + − +�

��
�
��= 0

1 1

2

1

3

1

40
2

0
3

0
4

0∆ ∆ ∆ ∆ ...

                          ⇒ 	

�
�

� = − + − +�

��
�
��=

dy

dx hx 1

1
7

1

2
12

1

3
6 0 ...

= − +7 6 2  = 3

and                              
d y

dx h
y y y

x x

2

2 2
2

0
3

0
4

0

0

1 11

12

	

�

�

�

= − + −�
��

�
��=

∆ ∆ ∆ ...

                               ⇒
	

�

�

�

= − =
=

d y

dx
x

2

2
1

2

1

1
12 6 6

                           ∴ 	

�
�

� =

	

�

�

�

=
= =

dy

dx

d y

dxx x1

2

2
1

3 6, .

Example 8.2 From the following table of values of x and y find 
dy

dx
 and 

d y

dx

2

2  for x = 1.05.

x 1.00 1.05 1.10 1.15 1.20 1.25 1.30

y 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017
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Solution The difference table is as follows

x y ∆ ∆2 ∆3 ∆4 ∆5

1.00 1.00000

0.02470

1.05 1.02470 –0.00059

0.002411 –0.00002

1.10 1.04881 –0.00054 0.00003

0.02357 –0.00001 –0.00006

1.15 1.07238 –0.00051 –0.00003

0.02306 –0.00002

1.20 1.09544 –0.00047

0.02259

1.25 1.11803 –0.00045

0.02214

1.30 1.14017

Taking x0 = 1.05, h = 0.05 we have

                                  ∆y0 0 02411= . ,

                                 ∆2
0 0 00054y = – . ,

                                 ∆3
0 0 00003y = . ,

                                 ∆4
0 0 00001y = – . ,

                                 ∆5
0 0 00003y = – . ,

from Newton’s formula

                             
dy

dx h
y y y y

x x

	

�
�

� = − − − +�

��
�
��= 0

1 1

2

1

3

1

40
2

0
3

0
4

0∆ ∆ ∆ ∆ ...

∴ 	

�
�

� = − +�

��
�
��

+
=

dy

dx x 1 05

1

0 05
0 02411

0 00054

2

1

3
0 00003

. .
.

.
.� � 1

0 05

1

4
0 00001

1

5
0 00003

.
. .− +�

��
�
��

� � � �

∴ 	

�
�

� =

=

dy

dx x 1 05

0 48763
.

.

and     
d y

dx h
y y y y

x x

2

2 2
2

0
3

0
4

0
5

0

0

1 11

12

5

6

	

�

�

�

= − + − +�
��

�
��=

∆ ∆ ∆ ∆ ...

   ⇒
	

�

�

�

= − − + −�
��=

d y

dx
x

2

2
1 05

2

1

105
0 00054 0 0003

11

12
0 00001

. .
. . .

� �
� � 5

6
0 00003− �

��
.� �

d y

dx
x

2

2
1 05

0 2144
	

�

�

�

= −
= .

. .
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Example 8.3 A rod is rotating in a plane about one of its ends. If the following table gives the angle θ radians through
which the rod has turned for different values of time t seconds, find its angular velocity at t = 7 secs.

t seconds 0.0 0.2 0.4 0.6 0.8 1.0

θ  radians 0.0 0.12 0.48 0.10 2.0 3.20

Solution The difference table is given below

                  t             θ              ∇θ            ∇2θ          ∇3θ         ∇4θ

0.0 0.0

0.12

0.2 0.12 0.24

0.36 0.02

0.4 0.48 0.26 0

0.62 0.02

0.6 1.10 0.28 0

0.90 0.02

0.8 2.0 0.30

1.20

1.0 3.20

Here xn = tn = 1.0, h = 0.2, x = t = 0.7

                                     u
x x

h
n= − = − = −

0 7 10

0 2
15

. .

.
. .

From the Newton’s backward interpolation formula, we have

                              
d

dt h

u u u

n
n

θ
θ θ	


�
�

� = ∇θ +

+
∇ +

+ +
∇

�

�
�

�

�
�

=0 7
0

2
0

2
21 2 1

2

3 6 2

6.

= − +
− − − +�

�
�
�

�

�
�
�

1

0 2
120 0 30

3 15 6 15 2

6
0 02

2

.
. .

. .
.

� � � �
� �

= − −5 120 0 30 0 0008. . .� �  = 4 496. radian / sec

                              ∴ =
d

dt

θ
4 496. radian / sec

and                                
d

dt h
u

t

2

2
0 7

2
2

0
2

0
1

1
θ θ θ

	

�

�

�

= ∇ + + ∇
= .

� �

= − ×1

0 2
0 30 05 0 02

2
.

. . .
� �

= ×25 0 29. = 7 25 2. .radian / sec

∴  Angular velocity = 4.496 radian/sec and

 Angular acceleration = 7.25 radian/sec2.
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Example 8.4 Find 
dy

dx
 at x = 0.6 of the function y = f(x), tabulated below

x 0.4 0.5 0.6 0.7 0.8

y 1.5836494 1.7974426 2.0442376 2.3275054 2.6510818

Solution The difference table

x y ∆y ∆2 y ∆3 ∆4

0.4 1.5836494

0.2137932

0.5 1.7974426 0.0330018

0.2467950 0.0034710

0.6 2.0442376 0.0364728 0.0003648

0.2832678 0.0038358

0.7 2.3275054 0.0403084

0.3235764

0.8 2.6510818

substituting these values in the Stirling’s formula, i.e., in

                             
dy

dx h

y y y y

x x

	

�
�

� =

+
−

+
+

�

�
�

�

�
�

=

− − −

0

1

2

1

6 2
0 1

3
1

3
2∆ ∆ ∆ ∆

...

we get                        ⇒ 	

�
�

� = + −�

��=

dy

dx x 0 6

1

01

1

2
0 2832678 0 2467950

. .
. .� �

1

12
0 0038358 0 0034710. .+ �

��
� �

= −10 0 2650314 0 0006089. .� �  = 2 644225.

                        ∴ 	

�
�

� =

=

dy

dx x 0 6

2 644225
.

. .

Example 8.5 From the following table find x correct to two decimal places, for which y is maximum and find this
value of y

x 1.2 1.3 1.4 1.5 1.6

y 0.9320 0.9636 0.9855 0.9975 0.996

Solution

The forward difference table is

x y ∆y ∆2 y ∆3 y

1.2 0.9320

0.0316

1.3 0.9636 –0.0097

0.0219 –0.0002

1.4 0.9855 –0.0099
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0.0120 –0.0002

1.5 0.9975 –0.0099

0.0021

1.6 0.9996

we have x0 = 1.2. For maximum value of y we take 
dy

dx
= 0.

Differentiating Newton’s forward interpolation formula w.r.t. u and neglecting terms of second differences we
get

                                     0 0 0316
2 1

2
0 0097= + − −. .

u
� �

                                 ⇒ = − −0 0 0712 2 1 0 0097. .u� �� �

                 ⇒ − =2 1 0 0097 0 0712u� �� �. .

                                ⇒ =u 38. .

Substituting in x = x0 + uh,

we get x = 1.2 (3.8 ) (0.1) = 1.58.

The value 1.58 is closer to x = 1.6, hence we use Newton’s backward difference formula

                              f 158 0 9996 0 2 0 0021
0 2 0 2 1

2
0 0099. . . .

. .
.� � � �� �

� �� �
� �= − +

− − +
−

= − +0 9996 0 0004 0 0008. . .  = 1000.

The maximum value occurs at x = 1.58 and the maximum value is 1.000.

Example 8.6 Find the maximum and the minimum values of the function y = f(x) from the following data

x 0 1 2 3 4 5

f(x) 0 0.25 0 2.25 16.00 56.25

Solution The forward difference table is

x y ∆ ∆2 ∆3 ∆4 ∆5

0 = x0 0 = y0

0.25 = ∆y0

1 0.25 –0.50 = ∆2
0y

–0.25 3.00 = ∆3
0y

2 0 2.50 6 = ∆4
0y

2.25 9.00 0 = ∆5
0y

3 2.25 11.50 6

13.75 15.00

4 16.00 26.50

40.25

5 56.25

We have x0 = 0, h = 1, differentiating Newton–Gregory forward interpolation formula we get
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    ′ = +
−

+
− +

+
�

�
�f x

h
y

u
y

u u
y� � 1 2 1

2

3 6 2

30
2

0

2
3

0∆ ∆ ∆
! !

4 18 22 6

4

3 2
4

0
u u u

y
− + −

+
�

�
�

!
...∆

⇒ ′ = = = − − +f x
dy

dx

u
� � � �0 25

2 1

2
0 50. .

1

6
3 6 2 3 00

1

24
4 18 22 6 6 002 3 2u u u u u− + + − + −� �� � � �� �. .

⇒ = − +dy

dx
u u3 23 24.

At a maximum point or at a minimum point we have 
dy

dx
= 0

                    ∴ − + =u u u3 23 2 0

                  ⇒ − − =u u u1 2 0� �� �  ⇒ = = =u u u0 1 2, , ,

                                 
d y

dx
f x

h
y u y

u u
y

2

2 2
2

0
3

0

2
4

0
1

1
6 18 1

12
= ′′ = + − +

− +
+
�

�
�

�

�
�
�

� � � �∆ ∆ ∆ ...

= − + − + − + ×
�

�
�

�

�
�

1

1
05 1 300

6 18 11

12
6

2

2

. . ,u
u u� �� �

clearly                                  ′′ =
	

�

�

�

>
=

f
d y

dx
x

0

2

2
0

0� �

and                                     ′′ =
	

�

�

�

>
=

f
d y

dx
x

2

2

2
2

0� �

∴  f(x) is minimum at x = 0 and x = 2. The minimum values are f(0) = 0, f(2) = 0.

Since

′′ =
	

�

�

�

<
=

f
d y

dx
x

1

2

2
1

0� �

f(x) has a maximum at x = 1. The maximum value is f(1) = 0.25.

Exercise 8.1

1. Find the first and second derivatives of the function tabulated below at the point x = 1.5

x 1.5 2.0 2.5 3.0 3.5 4.0

y = f(x) 3.375 7.0 13.625 240 38.875 59.0

2. Find f ′(1.1), f ′′(1.1) from the following table

x 1.1 1.2 1.3 1.4 1.5

f(x) 2.0091 2.0333 2.0692 2.1143 2.1667
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3. Find 
dy

dx
 at x = 1

x 1 2 3 4 5 6

y = f(x) 1 8 27 64 125 216

also find 
d y

dx

2

2  at x = 1.

4. Find 
dy

dx
 at x = 3.0 of the function tabulated below

x 3.0 3.2 3.4 3.6 3.8 4.0

y –14.000 –10.032 –5.296 0.256 6.672 14.000

5. Find f ′(0.4) from the following table

x 0.1 0.2 0.3 0.4

f(x) 1.10517 1.22140 1.34986 1.49182

6. Find f′(0.96) and f′′(0.96) from the following table

x 0.96 0.98 1.00 1.02 1.04

f(x) 0.7825 0.7739 0.7651 0.7563 0.7473

7. Compute the values of 
dy

dx
 and 

d y

dx

2

2  at x = 0 from the following table

x 0 2 4 6 8 10

f(x) 0 12 248 1284 4080 9980

8. The elevations above a datum line of seven points of roads 300 units apart are 135, 149, 157, 183,
201, 205, 193 unit. Find the gradient of the road at the middle point.

9. From the following table, calculate 
dy

dx
 and 

d y

dx

2

2  at x = 1.35

x 1.1 1.2 1.3 1.4 1.5 1.6

y –1.62628 0.15584 2.45256 5.39168 9.125001 3.83072

10. In a machine a slider moves along a fixed straight rod. Its distance x units along the rod is given below
for various values of the time t seconds.

Find (a) the velocity of the slider and

(b) its acceleration when t = 0.3 sec

t (time in sec) 0 0.1 0.2 0.3 0.4 0.5 0.6

x (distance in units) 3.013 3.162 3.207 3.364 3.395 3.381 3.324
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11. Using Bessel’s formula find f ′(x) at x = 0.04 from the following table

x 0.01 0.02 0.03 0.04 0.05 0.06

f(x) 0.1023 0.1047 0.1071 0.1096 0.1122 0.1148

12. From the following table, find the value of x for which y is minimum and find this value of y

x 0.60 0.65 0.70 0.75

f(x) 0.6221 0.6155 0.6138 0.6170

13. From the following data, evaluate 
dy

dx
 at x = 0.00

x 0.00 0.05 0.10 0.15 0.20 0.25

y 0.00000 0.10017 0.20134 0.30452 0.41075 0.52110

14. A rod is rotating in a place the following table gives the angle θ (radians) through with the rod has
turned for various values of the time t seconds find (i) the angular velocity of the rod, (ii) its angular
acceleration when t = 0.6 sec

t 0 0.2 0.4 0.6 0.8 1.0 1.2

θ 0 0.122 0.493 1.123 2.022 3.200 4.666

15. Find the first and second derivatives of at x = 15 from the table

x 15 17 19 21 23 25

x 3.873 4.123 4.359 4.583 4.796 5.000

16. From the table below, for what value of x, y is minimum? Also find this value of y?

x 3 4 5 6 7 8

y 0.205 0.240 0.259 0.262 0.250 0.224

17. Find the first and second derivatives of the function y = f(x), tabulated below at the point x = 1.1

x 1 1.2 1.4 1.6 1.8 2.0

y 0.00 0.1280 0.5440 1.2960 2.4320 4.0000

18. Find the Force of Mortality u
l

dl

dxx
x

x= − 1
 at x = 50 yrs, using the table below

x 50 51 52 53

lx 73499 72724 71753 70599

19. Use Stirling’s formula to find the first derivative of the function y = 2ex – x – 1, tabulated below at
x = 0.6

x 0.4 0.5 0.6 0.7 0.8

y 1.5836494 1.7974426 2.0442376 2.3275054 2.6510818

also find the error.
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20. Deduce from Bessel’s formula the following approximations

(i)
d

dx
y y yx

x x
( ) = −

− −
∆ ∆1

2

3
3
2

1
24

(ii)
d

dx
y y yx

x x

2

2
2

3
2

2
1
2

1
2

( ) = +
�

�
�
�

�

�
�
�− −

∆ ∆

21. A function is according to the table given below

x 0.35 0.40 0.45 0.50 0.55 0.60 0.65

f(x) 1.521 1.506 1.488 1.467 1.444 1.418 1.389

Use Stirlings formula and find the value of f ′′ (0.5)

22. Estimate the annual rate of cloth sales of 1935 from the following data

year : 1920 1925 1930 1940

Sales of cloth : 250 285 328 444
in lakhs of metres

23. The elevation above a datum line of seven points of a road are given below

x 0 300 600 900 1200 1500 1800

y 135 149 157 183 201 205 193

Find the gradient of the road at the middle point.

Answers

1. 4.75, 9.0 2. 0.1737, 1.4750 3. 3, 6

4. 18 5. 1.4913  6. –0.425, –0.500

7. –2, 0 8. 0.085222 9. 29.32975, 71.33

10. 0.5333 units/sec, –4.56 units/sec2 11. 0.2563 12. 0.6137

13. 2.0034 14. 3.814 radian/sec, 6.725 radian/sec2

15. 0.12915, –0.0046 16. x = 5.6875, y = 0.2628 17. 0.630, 6.60

18. 0.099154 19. 2.644225, 0.000013. 20. –0.44

21. 11.55 22. 0.08522



9.1 INTRODUCTION

Numerical integration is used to obtain approximate answers for definite integrals that cannot be
solved analytically.

Numerical integration is a process of finding the numerical value of a definite integral

                              I f x dx
a

b

= � � � ,

when a function y = f (x) is not known explicitly. But we give only a set of values of the function
y = f (x) corresponding to the same values of x.

To evaluate the integral, we fit up a suitable interpolation polynomial to the given set of values
of f (x) and then integrate it within the desired limits. Here we integrate an approximate interpolation
formula instead of f (x). When this technique is applied on a function of single variable, the process
is called Quadrature.

Suppose we are required to evaluate the definite integral I f x dx
a

b

= � � � ,  firstly we have to

approximate f (x) by a polynomial φ( )x  of suitable degree.

Then we integrate f(x) within limits [a, b],

i.e.,                         f x dx x dx
a

b

a

b

� � � �≈ �� φ ,

the difference

                            f x dx x dx
a

b

a

b

� � � �−
�

�
�
�

�

�
	
	�� φ , ,

is called the Error of approximation.

9
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9.2 GENERAL QUADRATURE FORMULA FOR EQUIDISTANT ORDINATES

Consider an integral

                               I f x dx
a

b

= � � � (1)

Let f (x) take the values f (x0) = y0, f (x0 + h) = y1, …, f (x + nh) = yn, when x = x0, x = x0

+ h, …, x = x0 + nh respectively.

To evaluate I, we replace f (x) by a suitable interpolation formula. Let the interval [a, b] be
divided into n subintervals with the division points a = x0 < x0 + h < … < x0 + xh = b where the
h is the width of each subinterval. Approximating f (x) by Newton’s forward interpolation formula
we can write the integral (1) as

                               I f x dx
x

x nh

=
+

� � �
0

0

 = + +
−

+


��



��

+

� y u y
u u

y dx
x

x nh

0 0
2

0

1

2
0

0

∆ ∆
� �

!
... ,

(2)

since                               u
x x

h
= − 0 ,

i.e.,                                x x uh= +0

                               ⇒ =dx hdu

and                                 x x= 0

                                ⇒ =u 0

                                    x x nh= +0

                                ⇒ =u n .

Expression (2) can be written as

                             I h y u y
u u

y
u u u

y dx
n

= + +
−

+
− +


��


��

+� 0 0

2
2

0

3 2
3

0

0
2

3 2

6
∆ ∆ ∆

h
u u u u

y dx
n

+
− + +

+


��



���

4 3 2
4

0

0

6 11 6

24
∆ ...

                            ∴ = + + −


��



��

�

�
�
�

+I h ny
n

y
n n y

0

2

0

3 2 3
0

2 3 2 2
∆

∆
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n
n n

y4
3 2

3
0

4 6
− +



��



��

+∆ n
n

n
n

y5
4

3
2

4
0

5

3

2

11

3
3

24
− + −



��



��

+
�

�
	
	

∆
... . (3)

The equation (3) is called General Gauss Legendre Quadrature formula, for equidistant ordinates
from which we can generate any Numerical integration formula by assigning suitable positive integral
value to n. Now we deduce four quadrature formulae, namely

(a) Trapezoidal rule (b) Simpson’s one-third rule (c) Simpson’s three-eighths rule and (d)
Weddle’s rule from the general quadrature formula (3).

9.3 TRAPEZOIDAL RULE

Substituting n = 1 in the relation (3) and neglecting all differences greater than the first we get

                              I f x dx h y y
x

x h

1 0 0
1

2
0

0

= = +�
��

�
�	

+

� � � ∆

= + − = +h
y y y

h
y y

2
2

20 1 0 0 1� � � � ,

for the first subinterval [x0, x0 + h],

similarly, we get

                               l f x dx
h

y y
x h

x h

2

2

1 2

0

0

2
= = +

+

+

� � � � � ,

                               l f x dx
h

y y
x h

x h

3

2

3

2 3

0

0

2
= = +

+

+

� � � � � ,

�

�

�

                              I f x dx
h

y yn

x n h

x nh

n n= = +
+ −

+

−� � � � �
� �0

0

1

12
,

for the other integrals.

Adding I1, I2, ..., In

we get I I In1 2+ + +...

                              = f x dx f x dx f x dx f x dx
x

x h

x h

x h

x h

x h

x n h

x nh

( ) ( ) ( ) ... ( )
( )0

0

0

0

0

0

0

02

2

3

1

+

+

+

+

+

+ −

+

� � � �+ + + +
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                              = + + + + + + + +−
h

y y
h

y y
h

y y
h

y yn n2 2 2 20 1 1 2 2 3 1... ,

               ⇒ = + + + + +
+

−� f x dx
h

y y y y y
x

x nh

n n� � � � � �
0

0

2
20 1 2 1... ,

                            I f x dx
h

y y y y yn n

a

b

= = + + + + + −� � � � � � �
2

20 1 2 1... . (4)

The formula (4) is called Trapezoidal rule for numerical integration. The error committed in this
formula is given by

                           E
h

f
b a

n
f≈ − ′′ =

− −
′′

3 3

212 12
ξ ξ� � � � � � ,

where                           a x x bn= < < =0 ξ .

Note: Trapezoidal rule can be applied to any number of subintervals odd or even.

9.4 SIMPSON’S ONE-THIRD RULE

Substituting n = 2 in the General quadrature formula given by (3) and neglecting the third and other
higher order differences

we get

                       I f x dx h y y y
x

x h

1 0 0
2

0

2

2 2
8

3
2

0

0

= = + + −

��



��

�
��

�
�	

+

� � � ∆ ∆

                             = + − + − +�
��

�
�	

h y y y y y y2 2
1

3
20 1 0 2 1 0� � � �

                       = + +h
y y y

3
40 1 2

                        ∴ = + +I
h

y y y1 0 1 23
4 ,

Similarly                   I f x dx
h

y y y
x

x h

h

2 2 3 4

2

3
4

0 2

0

= = + +
+

+

� � � ,

�

�

�
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I f x dx

h
y y yn n n n

x

x nh

n h

/ .2 2 13
4

0 2

0

= = + +− −

+

+ −

� � �
� �

Adding I I In1 2 2, , /  we get

I I I f x dx f x dx f x dxn

x

x h

x h

x h

x

x nh

n h

1 2 2

2

2

2

0

0

0

0

0 2

0

+ + + = + + +
+

+

+ +

� � �
+ −

... .../ � � � � � �
� �

                  = + + + + + + +h
y y y

h
y y y

3
4

3
40 1 2 2 3 4 ...

h
y y yn n n3

42 1− −+ + ,

                  = + + + + + + −
h

y y y y y yn n3
40 1 3 5 1( ) ( ... )  + + + + −2 2 4 2( ... )y y yn

                  = + +h
y yn3

40 × (sum of odd ordinates) + 2 × (sum of even ordinates)

                  = + + × +h
y yn3

40� � � �sum of the odd ordinates

                  = ×h

3
2 sum of the even ordinates� �

The above rule is known as Simpson’s one-third rule. The error committed in Simpson’s one-
third rule is given by

                              E
nh

f
b a

n
fiv iv≈ − = −

−5 5

4180 2880
ξ ξ� � � � � �

where a x x bn= < < =0 ξ  (for n subintervals of lengths h).

Note:

1. The above formula may written as

      I f x dx

x

x nh

=
+

� ( )

0

0

2. Simpson’s one-third rule can be applied only when the given interval [a, b] is subdivided into even number

of subintervals each of width h and within any two consecutive subintervals the interpolating polynomial

φ(x) is of degree 2.

9.5 SIMPSON’S THREE-EIGHTH’S RULE

We assume that within any three consecutive subintervals of width h, the interpolating polynomial
φ x� �  approximating f (x) is of degree 3. Hence substituting n = 3, i.e., the General quadrature formula
and neglecting all the differences above ∆3 , we get
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I f x dx h y y y
x

x h

1 0 0
2

0

3

3
9

2
9

9

2
0

0

= = + + −
��


�� +

�
��

+

� � � ∆ ∆ 81

4
27 9

6

3
0− +


��


��

�
�
	

∆ y

  = + − + − +�
��

+h y y y y y y3 9
9

4
20 1 0 2 1 0� � � � 3

8
3 33 2 1 0y y y y− + + �

�	
� �

  = + + +3

8
3 30 1 2 3

h
y y y y ,

Similarly                      I f x dx
h

y y y y
x h

x h

2 3 4 5 6

3

6
3

8
3 3

0

0

= = + + +
+

+

� � � ,

                              I f x dx
h

y y y y
x h

x h

3 6 7 8 9

6

9
3

8
3 3

0

0

= = + + +
+

+

� � � ,

�

�

�

                             I f x dx
h

y y y yn n n n n

x n h

x nh

/ .3 3 2 1

3

3

8
3 3

0

0

= = + + +− − −
+ −

+

� � �
� �

Adding I I In1 2 3, , ..., /  we get

               I I I f x dx f x dx f x dxn

x

x h

x h

x h

x n h

x nh

1 2 3

3

3

6

30

0

0

0

0

0

+ + + = + + +
+

+

+

+ −

+

� � �... ... ,/ � � � � � �
� �

                            ⇒ = + + + + + + + +I
h

y y y y
h

y y y y
3

8
3 3

3

8
3 30 1 2 3 3 4 5 6

... ,+ + + +− − −
3

8
3 33 2 1

h
y y y yn n n n

                             ∴ = + + + + + + + +−I
h

y y y y y y yn n
3

8
30 1 2 4 5 1� � � �...

2 3 6 3y y yn+ + + −... .� �
Note:

1. Simpson’s three-eighths rule can be applied when the range [a, b] is divided into a number of subintervals,
which must be a multiple of 3.
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2. The error in Simpson’s three-eighths rule

    E
nh

f iv≈ − 5

80
( ),ξ

where x xn0 , ,ξ  (for n subintervals of length h).

9.6 WEDDLE’S RULE

Here we assume that within any six consecutive subintervals of width h each, the interpolating
polynomial approximating f (x) will be of degree 6. Substituting n = 6 in the General quadrature
formula given by expression (3) and neglecting all differences above ∆6 ,  we get

I f x dx h y y y y
x

x h

1 0 0
2

0
3

0

6

6 18 27 24

0

0

= = + + + +�
��

+

� � � ∆ ∆ ∆ 123

10

33

10

41

140
4

0
5

0
6

0∆ ∆ ∆y y y+ + �
�	
.

Since                   
3

10

41

140

1

140
− = ,

we take the coefficient of ∆6
0y  as 

3

10
,  so that the error committed is 

1

140
 and we write

                 I f x dx
h

y y y y y y y
x

x h

1 0 1 2 3 4 5 6

6
3

10
5 6 5

0

0

= = + + + + + +
+

� � � ,

Similarly         I f x dx
h

y y y y y y y
x h

x h

2 6 1 8 9 10 11 12

6

12
3

10
5 6 5

0

0

= = + + + + + +
+

+

� � � ,

�

�

�

                                   I f x dx
h

y y y yn n n n n

x n h

x nh

/6 6 1 4 3

6

3

10
5 6

0

0

= = + + + +− − − −
+ −

+

� � �
� �

y y yn n n− −+ +2 15 .

Adding I I In1 2 6, , ,/  we get

                                I f x dx
x

x nh

=
+

� � �
0

0

 = + + + + + + + + +3

10
5 6 5 2 50 1 2 3 4 5 6 7 8

h
y y y y y y y y y

   6 6 2 2 59 10 11 12 6 5 4y y y y y y yn n n+ + + + + + + +− − −...

   6 53 2 1y y y yn n n n− − −+ + +
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 = + + + + + + + + +3

10 0 2 4 8 10 14 16
h

y y y y y y y yn� � � ...

 y y y y y y y yn n n n− − − −+ + + + + + + + +4 2 1 5 7 11 5 15� � �...

 6 23 9 15 3 6 12 6y y y y y y yn n+ + + + + + + +− −... ... .� � � �
Note:

1. Weddle’s rule requires at least seven consecutive equispaced ordinates with in the given interval (a, b).

2. It is more accurate than the Trapezoidal and Simpson’s rules.

3. If f (x) is a polynomial of degree 5 or lower, Weddle’s rule gives an exact result.

Example 9.1 Calculate the value 
x

1 x
dx

0

x

+�  correct up to three significant figures taking six intervals by Trapezoidal

rule.

Solution Here we have

                                 f x
x

x
� � =

+1
,

a = 0, b = 1 and n = 6,

                                  ∴ = − = − =h
b a

n

1 0

6

1

6
.

x 0 1/6 2/6 3/6 4/6 5/6 6/6 = 1

y = f (x) 0.00000 0.14286 0.25000 0.33333 0.40000 0.45454 0.50000

y0 y1 y2 y3 y4 y5 y6

The Trapezoidal rule can be written as

I
h

y y y y y y y= + + + + + +
2

20 6 1 2 3 4 5� � � �

  = + +1

12
0 00000 0 50000( . . 2 014286 0 25000 0 3333 0 40000 0 45454. . . . .+ + + +� �

  = 0 30512. .

∴ =I 0 0305. ,  correct to three significant figures.

Example 9.2 Find the value of 
dx

x1 2
0

1

+� ,  taking 5 subinterval by Trapezoidal rule, correct to five significant figures.

Also compare it with its exact value.

Solution Here

                                 f x
x

� � =
+
1

1 2
,
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a = 0, b = 1 and n = 5,

                                  ∴ = − = +h
1 0

5

1

5
0 2. .

x 0.0 0.2 0.4 0.6 0.8 1

y = f (x) 1.000000 0.961538 0.832069 0.735294 0.609756 0.500000

y0 y1 y2 y3 y4 y5

Using trapezoidal rule we get

I
dx

x

h
y y y y y y=

+
= + + + + +� 1 2

2
2 0 5 1 2 3 4

0

1

� � � �

  = + +0 2

2
1000000 0 500000

.
. .� � 2 0 961538 0862069 0 735294 0 609756. . . .+ + +� �

  = 0 783714. ,

∴ =I 0 78373. ,  correct to five significant figures.

The exact value

=
+

= −� 1

1 2
1

0

1

0

1

x
dx xtan

= −− −tan tan1 11 0  = =π
4

0 7853981.

                           
1

1
0 78540

2
0

1

+
=� x

dx . ,

correct to five significant figures.

∴ The error is = 0.78540 – 0.78373 = 0.00167

∴ Absolute error = 0.00167.

Example 9.3 Find the value of log xdx,10

1

5

�  taking 8 subintervals correct to four decimal places by Trapezoidal rule.

Solution Here

                                 f x x� � = log ,10

a = 1, b = 5 and n = 8,

                                  ∴ = − = − =h
b a

n

5 1

8
0 5. .

x 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

f (x) 0.00000 0.17609 0.30103 0.39794 0.47712 0.54407 0.60206 0.65321 0.69897

y0 y1 y2 y3 y4 y5 y6 y7 y8
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Using Trapezoidal rule we can write

                                     I
h

y y y y y y y y y= + + + + + + + +
2

20 8 1 2 3 4 5 6 7� � � �

= + + + + +0 5

2
0 00000 0 69897 2 017609 0 30103 0 39794

.
. . . . .� � � �

0 5

2
2 0 47712 0 54407 0 60206 0 65321

.
. . . .+ + +� �

= 17505025.

                                  ∴ = =�I xdxlog . .10

1

5

175050

Example 9.4 Find the value e dx,x

0

0.6

�  taking n = 6, correct to five significant figures by Simpson’s one-third rule.

Solution We have

                                        f x ex� � = ,

a = 0, b = 0.6, n = 6.

                                  ∴ = − = − =h
b a

n

0 6 0

6
01

.
. .

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6

y = f (x) 1.0000 1.10517 1.22140 1.34986 1.49182 1.64872 1.82212

y0 y1 y2 y3 y4 y5 y6

The Simpson’s rule is

I
h

y y y y y y y= + + + + + +
3

4 20 6 1 3 5 2 4� � � � � �

  = + + + + +01

3
100000 182212 4 110517 134986 164872

.
. . . . .� � � �  2 122140 149182. .+� �

  = + +01

3
2 82212 4 4 10375 2 2 71322

.
. . .� � � � � �

  = ≈08221186 082212. .

   ∴ =I 082212. .

Example 9.5 The velocity of a train which starts from rest is given by the following table, the time being reckoned
in minutes from the start and the speed in km/hour.

t (minutes) 2 4 6 8 10 12 14 16 18 20

v (km/hr) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0
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Estimate approximately the total distance run in 20 minutes.

Solution                                  v
ds

dt
ds v dt= ⇒ = .

                              ⇒ = �� ds v dt.

                                     s v dt= � . .
0

20

The train starts from rest, ∴ the velocity v = 0 when t = 0.

The given table of velocities can be written

t 0 2 4 6 8 10 12 14 16 18 20

v 0 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

                                     h = =2

60

1

30
hrs hrs.

The Simpson’s rule is

s v dt
h

y y y y y y y= = + + + + + + +� .
3

40 10 1 3 5 7 9

0

20

� � � � 2 2 4 6 8y y y y+ + +� �

  =
×

+ + + + + + +1

30 3
0 0 4 16 40 512 17 6 32� � � �. . . 2 288 46 4 32 0 8. . .+ + +� �

  = + × + ×1

90
0 4 128 2 1152.  = 8 25. km.

∴  The distance run by the train in 20 minutes = 8.25 km.

Example 9.6 A tank in discharging water through an orifice at a depth of x meter below the surface of the water
whose area is Am2. The following are the values of x for the corresponding values of A.

A 1.257 1.39 1.52 1.65 1.809 1.962 2.123 2.295 2.462 2.650 2.827

x 1.50 1.65 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 3.00

Using the formula (0.018) T
A

x
dx

1.5

3.0

= � ,  calculate T the time in seconds for the level of the water to drop from

3.0 m to 15 m above the orifice.

Solution We have h = 0.15,

The table of values of x and the corresponding values of 
A

x
 is
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x 1.50 1.65 1.80 1.95 2.10 2.25 2.40 2.55 2.70 2.85 3.00

y
A

x
= 1.025 1.081 1.132 1.182 1.249 1.308 1.375 1.438 1.498 1.571 1.632

Using Simpson’s rule, we get

   
A

x
dx

h
y y y y y y y

1 5

3 0

0 10 1 3 5 7 93
4

.

.

� = + + + + + + +� � � � 2 2 4 6 8y y y y+ + +� �

   = + +015

3
1025 1632

.
. .� � 4 1081 1182 1308 1438 1571. . . . .+ + + + +� �

     
015

3
2 1132 1249 1375 1498

.
. . . .+ + +� �

   = 19743.

∴ =� A

x
dx 19743

1 5

3

. .
.

Using the formula           0 018
1 5

3

. ,
.

� �T A

x
dx= �

we get                             0 018 19743. .� �T =

                                       ⇒ = =T
19743

0 018
110

.

.
sec approximately� �

                                       ∴ =T 110 sec.

Example 9.7 Evaluate 
1

1 x
dx,

2

0

1

+�  by taking seven ordinates.

Solution We have

                                       n + 1 = 7 ⇒ n = 6

The points of division are

0
1

6

2

6

3

6

4

6

5

6
1, , , , , , .

x 0 1/6 2/6 3/6 4/6 5/6 1

y
x

=
+
1

1 2 1.0000000 0.9729730 0.9000000 0.8000000 0.6923077 0.5901639 0.5000000

Here h = 1

6
,  the Simpson’s three-eighths rule is
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I
h

y y y y y y y= + + + + + +3

8
3 20 6 1 2 4 5 3� � � � � �

  =
×

+ + + +3

6 8
1 05000000 3 0 9729730 0 9000000. . .� � � �

 
3

6 8
3 0 6923077 05901639 2 08000000

×
+ +. . .� � � �

  = + +1

16
15000000 9 4663338 16000000. . .

  = 0 7853959. .

Example 9.8 Calculate e dx,sinx

0

π/2

�  correct to four decimal places.

Solution We divide the range in three equal points with the division points

                                    x x x x0 1 2 30
6 3 2

= = = =, , ,
π π π

where                                     h = π
6

.

The table of values of the function is

x 0
π
6

π
3

π
2

y e x= sin 1 1.64872 2.36320 2.71828

y0 y1 y2 y3

By Simpson’s three-eighths rule we get

                                     I e dx
h

y y y yx= = + + +� sin
/

3

8
30 3 1 2

0

2

� � � �
π

= + + +3

8 6
1 2 71828 3 164872 2 36320

π
. . .� � � �

= +π
16

3 71828 12 03576. .� �  = 0.091111

                                     I e dxx= =� sin
/

. .0 091111

0

2π
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Example 9.9 Compute the integral 1 0.162sin d2

0

2

−� φ φ
π/

 by Weddle’s rule.

Solution Here we have

                                           y f= = −φ φ� � 1 0162 2. sin ,

                                           a b= =0
2

, ,
π

taking n = 12 we get

                                            h
b a

n
=

−
=

−
=

π
π2

0

12 24
.

f y = f (f) f y = f (f)

0 1.000000 y0

6

24

π
0.958645 y6

π
24

0.998619 y1

7

24

π
0.947647 y7

2

24

π
0.994559 y2

8

24

π
0.937283 y8

3

24

π
0.988067 y3

9

24

π
0.928291 y9

4

24

π
0.979541 y4

10

24

π
0.921332 y10

5

24

π
0.969518 y5

11

24

π
0.916930 y11

12

24 2

π π= 0.915423 y12

By Weddle’s rule we have

I = 1 0 162 2

0

2

−� . f df

p

sin

/

  = + + + + + +3

10
50 12 1 5 7 11

h
y y y y y y� � � � 3

10
6 22 4 8 10 3 9 6

h
y y y y y y y+ + + + + +� � � �

  = + +3

240
11000000 0 915423

π
. .� � 5 0 998619 0 969518 0 947647 0 916930. . . .+ + + +� �

    
3

240
0 994559 0 979541 0 937283 0 9213322

π
. . . .+ + + +� � 3

240
6 0 988067 0 928291 2 0 958645

π
. . .+ +� � � �

   ∴ =I 1505103504. .

π/2
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Example 9.10 Find the value of log xdxe

4

5.2

�  by Weddle’s rule.

Solution Here f(x) = logen, a = x0 = 4, b = xn = 5.2 taking n = 6 (a multiple of six) we have

                                           h = − =
5 2 4

6
0 2

.
. ,

x 4.0 4.2 4.4 4.6 4.8 5.0 5.2

y = f(x) 1.3863 1.4351 1.4816 1.5261 1.5686 1.6094 1.6457

Weddle’s rule is

       I x dx
h

y y y y y y ye= = + + + + + +� log
.

4

5 2

0 1 2 3 4 5 6
3

10
5 6 5

         =
×

+ + +
3 0 2

10
13863 71755 14816

.
. . .

� �
91566 15686 8 0470 16487. . . .+ + +

         = 0 06 30 4643. .

         = 1827858.

log . .
.

e x =� 1827858
4

5 2

Exercise 9.1

1. Evaluate x dx3

0

1

�  by Trapezoidal rule.

2. Evaluate 4 3 2

0

1

x x dx−� � �  taking 10 intervals by Trapezoidal rule.

3. Given that e0 = 1, e1 = 2.72, e2 = 7.39, e3 = 20.09, e4 = 54.60, find an approximation value of ex

0

4

�  by

Trapezoidal rule.

4. Evaluate 1 3

0

1

−� x dx  by (i) Simpson’s rule and (ii) Trapezoidal rule, taking six interval correct to two

decimal places.

5. Evaluate sinx dx

0

2
π

�  taking x = 6, correct to four significant figures by (i) Simpson’s one-third rule

and (ii) Trapezoidal rule.
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6. Evaluate 
dx

x
0

2

�  taking 4 subintervals, correct to five decimal places (i) Simpson’s one-third rule (ii)

Trapezoidal rule.

7. Compute by Simpson’s one-third rule, the integral x x dx2

0

1

1 −� � �  correct to three places of decimal,

taking step length equal to 0.1.

8. Evaluate sinx dx2

0

1

�  by (i) Trapezoidal rule and (ii) Simpson’s one-third rule, correct to four decimals

taking x = 10.

9. Calculate approximate value of sinx dx4

3

3

−
�  by using (i) Trapezoidal rule and (ii) Simpson’s rule, taking

n = 6.

10. Find the value of cos x dx

0

2
π

�  by (i) Trapezoidal rule and (ii) Simpson’s one-third rule taking x = 6.

11. Compute e dxx

1

15

�  by (i) Trapezoidal rule and (ii) Simpson’s one-third rule taking x = 10.

12. Evaluate 
x

x
dx

cos

.

0

0 5

�  taking n = 10, by (i) Trapezoidal rule and (ii) Simpson’s one-third rule.

13. Evaluate cos

.

x dx

0

0 4

�  taking four equal intervals by (i) Trapezoidal rule and (ii) Simpson’s one-third rule.

14. Evaluate cos x dx

0

2
π

�  by Weddle’s rule taking n = 6.

15. Evaluate 
x

x
dx

2

2
0

1
2

1

+
+�  by Weddle’s rule, correct to four decimals taking n = 12.

16. Evaluate 
1

1 2
0

2

+� x
dx by using Weddle’s rule taking twelve intervals.
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17. Evaluate 
x

hx
dx

sin
.0 4

16

�  taking thirteen ordinates by Weddle’s rule correct to five decimals.

18. Using Simpson’s rule evaluate 2

0

2

+� sin x dx

π

 with seven ordinates.

19. Using Simpson’s rule evaluate x x dx−� 1

1

2

/  with five ordinates.

20. Using Simpson’s rule evaluate 
1

2

6

loge x
dx�  taking n = 4.

21. A river is 80 unit wide. The depth at a distance x unit from one bank d is given by the following
table

x 0 10 20 30 40 50 60 70 80

d 0 4 7 9 12 15 14 8 3

find the area of cross-section of the river.

22. Find the approximate value of cosθ θ

π

d

0

2

�  using Simpson’s rule with six intervals.

23. Evaluate x e dxx
1
2

0 5

0 7
−�

.

.

 approximately by using a suitable formula for at least 5 points.

24. Evaluate sin cos ,x x dx+�
0

1

 correct to two decimal places using seven ordinates.

25. Use Simpson’s three-eighths rule to obtain an approximate value of ( ) .

.

1 8 3
1
2

0

0 3

−� x dx

26. Find the value of 
dx

x1 2
0

1 2

−� ,

/

 using Weddle’s rule.

27. Prove that

f x dx f f f( ) ( ) ( ) ( )= − − −
−
� 1

12
13 1 3 3

1

1

28. If ux = a + bx + cx2, prove that



NUMERICAL INTEGRATION 195

u dx u u u ux

1

3

2 0 2 42
1

12
2� = + − +� �

and hence approximate the value for

e dx
x−

−
�

2

10

1 2

1 2

/

/

29. If f (x) is a polynomial in x of degree 2 and u f x dx u f x dx u f x dx−
−

−

−

= = =� � �1

3

1

0

1

1

1

1

3

� � � � � �, ,  then show

that f u
u

u
0

1
2 20

2
1

1

� � = −
�
�
�
�

�
�
	
	

−
−

∆
.

Answers

1. 0.260 2. 0.995 3. 58.00

4. 0.83 5. 1.187, 1.170 6. 0.69326, 0.69702

7. 0.083 8. 0.3112, 0.3103 9. 115, 98

10. 1.170, 1.187 11. 1.764, 1.763 12. 0.133494, 0.133400

13. 0.3891, 0.3894 14. 1.18916 15. 1.7854

16. 1.1071 17. 1.1020 18. 2.545

19. 1.007 20. 3.1832 21. 710 Sq units

22. 1.1872 23. 0.08409 24. 1.14

25. 0.2899 26. 0.52359895

9.7 NEWTON–COTES FORMULA

Consider the Lagrange’s interpolation formula

f x
x x x x x x

x x x x x x
f xn

n

� � � �� � � �
� �� � � � � �

=
− − −
− − −

+1 2

0 1 0 2 0
0

...

...

x x x x x x

x x x x x x
f xn

n

− − −
− − −

+ +0 2

1 0 1 2 1
1

� �� � � �
� �� � � � � �

...

...
...

x x x x x x

x x x x x x
f x

n

n n n n
n

− − −

− − −
−

−

0 1 1

0 1 1

� �� � � �
� �� � � �

� �
...

...
,

Integrating between the limits x0 and x0 + nh we get

f x dx H f x H f x
x

x h

� � � � � �= + + +
+

� 0 0 1 1

0

0

... H f x H f xr r n n� � � �+ +... . (5)
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Expression (5) is known as Newton–Cotes formula. Taking

                       x x hr r+ − =1

for all r such that                x x rhr = +0

and substituting u
x x

h
= − 0

we get hdu = dx

and                            H h
uh u h u r h u r h u n h

rh r h r h h h n r h
dur

n

=
− − + − − −

− − − − −� 1 1 1

1 2 1 1
0

� � � � � � � �
� � � � � � � �� � � �

... ...

... ...

                         =
− − − + − − −

− −− −�h h
u u u u r u r u n

h r h n r
dun

n n r n r

n
1 2 1 1

10

� �� � � �� � � �
� � � �

... ...

! !

                         =
−

−
− − −

−

−

�1 1 2

0

� �
� �

� �� � � �
� �

n r n

r n r
h

u u u u n

u r
du

! !

...
, (6)

expression (6) gives the values of Hr.

To obtain the error in the Newton–Cotes formula. We integrate the error term of the Lagrange’s
interpolation formula over the range x0 to xn = x0 + nh.

The error term in Lagrange’s formula is

                           Error =
+

− − −
+f

n
x x x x x x

n

n

1

0 11

� � � �
� � � �� � � �

ξ
!

... ,

where x xn0 < <ξ .

∴  The error in the Newton–Cotes formula is

                              E
f

n
x x x x x x dx

n

n

x

x nh

=
+

− − −
++

�
1

0 11
0

0 � � � �
� � � �� � � �

ξ
!

...

=
+

− − −+
+

�h h
f

n
u u u u n dun

n n
1

0

1

1
1 2

� � � �
� � � �� � � �

ξ
!

...

where x xn0 < <ξ .

Since                    ∆n

n
ny

h
f

+

+
+≈

1
0

1
1� � � �ξ ,

we can write                       E h
y

n
u u u u n du

nn

=
+

− − −
+

� ∆ 1
0

0
1

1 2
� � � �� � � �... .
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Note: Replacing Hr by nh ncr in the Newton–Cotes formula we get

                                     I f x dx nh f x

x

x nh

r

r

n

= =
+

=
� ∑( ) ( )

0

0

0

ncr

= − ∑( ) ( )x x f xn r

n

0

0

ncr.

The numbers ncr, 0 < r < n are called Cotes numbers.

Corollary The coefficients of the Newton–Cotes formula are symmetric from both the ends.

Proof Putting n – v = u, in (6) we get,  u – n = – v

du = – dv

and                               H h
n v n v v

n v
dur

n r

n

= − −
− − + −

− +
−� 1

1

1

0

� � � �� � � �
� �

...

=
−

−
− − + − +

− − +

−

�h r n r

v v v n

v n
dv

n rn
1 1

1
0

� �
� �

� �� � � �
� �! !

...

=
−

−
−

− −
− − +

−
+�h r n r

v v v n

v n
dv

n r
n

n
1

1
1

1 1
1

0

� �
� � � �

� �� � � �
� �� �! !

...

=
−

−
− −

− − +

−

�h r n r

v v v n

v n
dv

n rn
1 1

1 1

2

0

� �
� �

� �� � � �
� �� �! !

...

=
− −

−
− −

− − +�h r n r

v v v n

v n
dv

n rn
1 1 1

1 1

2

0

� � � �
� �

� �� � � �
� �� �! !

...

=
−

−
− −

− − +�h r n r

v v v n

v n
dv

rn
1 1

1 1
0

� �
� �

� �� � � �
� �� �! !

...

=
−

−
− −

− − +�1 1

1 1
0

� �
� �

� �� � � �
� �� �

r n

r n r
h

v v v n

v n
dv

! !

...
= −Hn r

                          ∴ = −H Hr n r proved.

9.8 DERIVATION OF TRAPEZOIDAL RULE, AND SIMPSON’S RULE
FORM NEWTON–COTES FORMULA

1. Trapezoidal rule

Putting n = 1 in (5), we get
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                               I f x dx H f x H f x
x

x h

= = +
+

� � � � � � �0 0 1 1

0

0

where n1 = n0 + h

and                               H h u du0

1 0

0

1
1

0 1
1=

−
−

−

�� � � �
! !

= − −
�
�
�

�
�
	1

2

2

� �h u
u = h

2

                                  H h udu
h

1

0

1

2
= =� ,

                                  I f x dx
h

f x f x
x

x h

= = +
+

� � � � � � �
2 0 1

0

0

.

2. Simpson’s one-third rule

Putting n = 2 in (5) we get

                             I f x dx H f x H f x H f x
x

x h

= = + +
+

� � � � � � � � �0 0 1 1 2 2

2

0

0

                             H h
u u u

u
du0

2 0

0

2
1

2 0

1 2
=

− − −−

�� � � �� �
! !

= − +�1

2
3 22h u u du� � = − +

�
�
�

�
�
	

h u u
u

2 3

3

2
2

3 2

0

2

= − +�
��

�
�	

h

2

8

3
6 4 = h

3
,

                                H h u u du1

2 1

0

2
1

1 1
2=

−
−

−

�� � � �
! !

= − −
�
�
�

�
�
	h

u
u

3
2

0

2

3

= − −�
��

�
�	

h
8

3
4 = 4

3

h
,

since                                H Hr n r= −

we get                              H H
h

2 0 3
= =
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                                      I f x dx
h

f x
h

f x
h

f x
x

x h

= = + +
+

� � � � � � � � �
3

4

3 30 1 2

2

0

0

                       ⇒ = + +
+

� f x dx
h

f x f x f x
x

x h

� � � � � � � �
3

40 1 2

2

0

0

.

Note: Similarly by putting n = 3, and n = 6 in respectively (5) we can derive Simpson’s three-eighths rule and
Weddle’s rule.

Example 9.11 If yx is a polynomial in x of the third degree, find an expression for y dxx

0

2

�  in terms of y0, y1, y2 and

y3. Use this results to show that:

                                       y dx y y y yx

1

2

0 1 2 3
1

24
13 13� = − + + − .

Solution We have

y
x x x

y
x x x

yx =
− − −

− − −
+

− −
− −

+
1 2 3

1 2 3

2 3

1 2 30 1

� �� �� �
� �� �� �

� �� �
� �� �� �

x x x
y

x x x
y

− −
−

+
− −1 3

2 1 1

1 2

3 2 12 3

� �� �
� �� �� �

� �� �
� �� �� �

   =
− + −

−
+

− +
+

x x x
y

x x x
y

3 2

0

3 2

1
6 11 6

6

5 6

2

x x x
y

x x x
y

3 2

2

3 2

3
4 3

2

3 2

6

− +
−

+
− +

.

∴  We get                     y dx
x

x
x

x y
x

x x yx = − − + −


��



��

+
�

�
�
�

− +


��



��
�

�
	
	

+� 1

6 4
2

11

2
6

1

2 4

5

3
3

4
3

2

0

0

1 4
3 2

1

0

1

− − +


��



��

+ − +


��



��

�

�
�
�

�

�
	
	

1

2 4

4

3

3

2

1

6 4

4
3

2

2

4
3 2

0

0

1
x

x
x

y
x

x x y

= −
��


�� −
��



�� + 
��



��


��


�� − 
��



��


��


�� + 


��


��

1

6

9

4

1

2

19

12

1

2

5

12

1

6

1

40 1 2 3y y y y ,

similarly                             y dx y y y yx

0

2

0 1 2 3
1

6
2

1

2

8

3

1

2

8

3

1

6
0� = −
��



�� − + 
��



��


��


�� ⋅ 
��



��


��


�� + 
��



��−� � � �

subtracting we get                   y dx y y y yx

1

2

0 1 2 3
1

24
13 13� = − + + − .

Example 9.12 Show that

                                y dx
1

12
( 5u 8u u )x 1 0 1

0

1

= + − −�
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Solution We have

x –1 0 1

ux u–1 u0 u1

Using Lagrange’s formula, we get

                                    u
x x

u
x x

u
x x

ux =
− −

− − − −
+

+ −
+ −

+
+ −
+ −−

0 1

1 0 1 1

1 1

0 1 0 1

1 0

1 1 1 01 0 1

� �� �
� �� �

� �� �
� �� �

� �� �
� �� �

=
−

− − + +−
x x

u x u x x u
2

1
2

0
2

12
1� � � �

                               u dx u x x dx u x dx u x x dxx = − − − + +−� �� �1

2
1

1

21

0

1
2

0
2

1

0

1

0

1
2

0

1

� � � � � �

= − + +−
1

12

2

3

5

121 0 1u u u

= + − −
1

12
5 81 0 1u u u� � .

9.9 BOOLE’S RULE

Retaining differences up to those of the fourth order in the general formula and integrating between
x0 and x4 we get

                              I f x dx f x dx
x

x uh

x

x

1

0

0

0

4

= =
+

�� � � � �

= + + + +�
��

�
�	

4 2
5

3

2

3

7

900 0
2

0
3

0
4

0h u y y y y∆ ∆ ∆ ∆

= + − + − + +�
��

4 2
5

3
20 1 0 2 1 0h y y y y y y� � � �

2

3
3 3

7

90
4 6 43 2 1 0 4 3 2 1 0y y y y y y y y y− + − + − + − + �

�	
� � � �

= + + + +2

45
7 32 12 32 70 1 2 3 4

h
y y y y y
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Similarly                      I f x dx
h

y y y y y
x h

x h

2

4

8

4 5 6 7 8

0

0
2

45
7 32 12 32 7= = + + + +

+

+

� � �
�

�

�

           I f x dx
h

y y y y yn

x n h

x nh

n n n n n/4

4

4 3 2 1

0

0
2

45
7 32 12 32 7= = + + + +

+ −

+

− − − −� � �
� �

Adding I I In1 2 4, , ..., /  we get

         I I I I I f x dx f x dxn

x

x nh

a

b

1 2 3 4

0

0

+ + + + = = =
+

� �... / � � � �

= + + + + + + + +2

45
7 32 12 32 14 32 12 320 1 2 3 4 5 6 7

h
y y y y y y y y  14 14 328 4 3y y yn n+ + +− −...

  12 32 72 1y y yn n n− −+ +

The above formula is known as Boole’s rule. The leading term in the error of the formula is

−8

945

7h
f VI ξ� �.

Example 9.13 Evaluate the integral of f(x) = 1 + e–x sin 4x over the interval [0, 1] using exactly five functional
evaluations.

Solution Taking h = 1

4
 and applying Boole’s rule we get

f x dx f f f f f
0

1
1

4

2

45
7 0 32

1

4
12

1

2
32

3

4
7 1� = × + 


��


�� + 


��


�� + 


��


�� +

�
��

�
�	

� � � � � �

= × + × + × +1

90
7 10000 32 165534 12 155152. . .  

1

90
32 106666 7 0 72159× + ×. .

= 130859. .

9.10 ROMBERG INTERGRATION

We modify the Trapezoidal rule to find a better approximation to the value of an integral. We know
that the truncation error in the trapezoidal rule is nearly proportional to h2 an interval of size h. The
error in the Trapezoidal rule

                              E
b a

y h= −
−

′′
� � � �

12
2ξ

where a b< <ξ� �.

If we put                     c
b a

y= −
−

′′
� � � �

12
ξ

then the error in the Trapezoidal rule = ch2.
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If ′′y ξ� � ,  the second derivative, is reasonably constant c may be taken to be constant. Consider

the valuation of the integral

                              I y dx
a

b

= �
by the Trapezoidal rule with two different intervals say h1, h2. Let I1 and I2 denote the approximate
values with the corresponding errors E1 and E2 respectively.

Then                          I I ch= +1 1
2

and                                I I ch= +2 2
2

∴  We get            I ch I ch1 1
2

2 2
2+ = +

or                                  c
I I

h h
= −

−
1 2

2
2

1
2 .

                                 ∴ = + −
−



��



��

I I
I I

h h
h1

1 2

2
2

1
2 1

2

                           ⇒ = −
−

I
I h I h

h h
1 2

2
2 1

2

2
2

1
2

. (7)

This will be a better approximation to I than I1 or I2. The above method is called Richardson’s
method.

If we take h = h1 and h h2
1

2
=  in (7)

we get                              I
I

h
I h

h
h

=
−

−

1

2

2
2

2
2

4

4

 =
−

− = −
1
4

3
4

4

3

1 2
2 1

I I I I

                           ∴ = + −
I I

I I
2

2 1

3
. (8)

If we apply the Trapezoidal rule several times successively halving h, every time the error is

reduced by a factor 1

4
.  Let A1, A2, A3, … denote the results. Let the formula (8) be applied to each

pair of Ais’ and denote the results by B1, B2, B3, …, etc.

Applying formula (8) to each pair of Bis’ we get next results C1, C2, … in this process the
following array of results is obtained.
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A1 A2 A3 A4 …

B1 B2 B3 …

C1 C2 …

The above computation is continued with two successive values are very close to each other.
This refinement of Richardson’s method is known as Romberg integration.

The values of the integral, in Romberg integration can be tabulated as follows.

I(h)

I(h, h/2)
I(h/2) I(h, h/2, h/4)

I(h/2, h/4) I(h, h/2, h/4, h/8)
I(h/4) I(h/2, h/4, h/8)

I(h/4, h/8)

I(h/8)

where                       I h h I h I h, / /2
1

3
4 2� � � � � �= −

                         I h h I h I h/ , / / /2 4
1

3
4 4 2� � � � � �= −

�

                      I h h h I h h I h h, / , / / , / , /2 4
1

3
4 2 4 2� � � � � �= −

                    I h h h I h h I h h/ , / , / / , / / , /2 4 8
1

3
4 4 8 2 4� � � � � �= −

                 I h h h h I h h h I h h h, / , / , / / , / , / , / , /2 4 8
1

3
4 2 4 8 2 4� � � � � �= −

Example 9.14 Using Romberg’s method compute I
1

1 x
dx

0

1.2

=
+�  correct to 4 decimal places.

Solution Here                        f x
x

� � =
+
1

1

We can take h = 0.6, 0.3, 0.15

i.e.,                                  h
h h= = =0 6
2

0 3
4

015. , . , .

x 0 0.15 0.30 0.40 0.60 0.75 0.90 1.05 1.20

f(x) 1 0.8695 0.7692 0.6896 0.6250 0.5714 0.5263 0.48780 0.4545
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Using Trapezoidal rule with h = 0.6 we get

                                  I h I I� � � � � �= = = + + × =0 6
0 6

2
1 0 4545 2 0 6256 0 81131.

.
. . . ,

with h = =0 6

2
0 3

.
.  we get

                               I h I I/ .2 0 3 2� � � �= =

= + + × + +0 3

2
1 0 4545 2 0 7692 0 625 0 5263

.
. . . .� � � �

= 0 7943. ,

with h = =0 6

4
015

.
.  we get

                                      I h I I/ .4 015 3� � � �= =

= + + × + + +015

2
1 0 4545 2 0 8695 0 7692 0 6896

.
. . . .� � � � 015

2
2 0 6250 0 5714 0 5263 0 4878

.
. . . .× + + +� �

= 0 7899. .

Now                        I h h I, / . , .2 0 6 0 3� � � �=

                         ∴ = × −I I I0 6 0 3
1

3
4 0 3 0 6. , . . .� � � � � �

= × − =1

3
4 0 7943 0 8113 0 7886. . . ,

Similarly                       I h h I/ , / . , .2 4 0 3 015� � � �=

                        ∴ = × −I I I0 3 015
1

3
4 015 0 3. , . . .� � � � � �

= × − =1

3
4 0 7899 0 7943 0 7884. . . .

∴ We get             I h h h I, / , / . , . , .2 4 0 6 0 3 015� � � �=

                    ∴ = × −I I I0 6 0 3 015
1

3
4 015 0 3 0 3 0 6. , . , . . , . . , .� � � � � �

= × −1

3
4 0 7884 0 7886. .  = 0 7883.

The table of these values is

0.8113

0.7886

0.7948 0.7883

0.7884

0.7899

                                  ∴ =
+

=�I
x

dx
1

1
0 7883

0

1 2.

.
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Exercise 9.2

1. If H0, H1, H2, …, Hn are Cotes coefficients, show that

(a) H0 + h1 + H2 + … + Hn = nh

(b) Hr = Hn – r

2. Using Cotes formula, show that f x dx x x y y y

x

x

� � � �
0

2

2 0 0 1 2
1

6

4

6

1

6� = − + +

��



��  and also show that

C C C0
2

1
2

2
21

6
1
2

1
6

= = =, ,  where C C C0
2

1
2

2
2, ,  are Cotes numbers.

3. Using Romberg’s method prove that 1
1

0 6931

0

1

+
=� x

dx . .

4. Apply Romberg’s method to show that sin .x dx

0

2

1

π

� =

5. Apply Romberg’s method to evaluate log

.

xk dx

4

5 2

�  given that

    x 4.0 4.2 4.4 4.6 4.8 5.0 5.2

  log e x 1.3863 1.4351 1.4816 1.526 1.5686 1.6094 1.6486

6. Use Romberg’s method and show that dx

x1
0 7855

2
0

1

+
=� . .

9.11  DOUBLE INTEGRATION

In this section we obtain double integration formulae by shifting the single integration formulae.

Trapezoidal rule Consider the integral of the form

                                    I f x y dx dy
a

b

c

d

=



�
�




�
��� , ,� � (9)

over the rectangles x = a, x = b, and y = c, y = d.

Evaluating the inner integral by the Trapezoidal rule we get

                                    I
b a

f a y f b y dy
c

d

=
−

+�2
, , ,� � � � (10)

applying Trapezoidal rule again to evaluate the integral on the right hand side of (10) we get
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                          I
b a d c

f a c f a d f b c f b d=
− −

+ + +
� �� � � � � � � � � �

4
, , , , . (11)

If discrete value are given we can use the composite Trapezoidal rule by dividing the interval
[a, b] into n equal subintervals each of length h and the interval [c, d ] into m equal subintervals each
of length k.

We have

xi = x0 + ih, x0 = a, xn = b

yj = y0 + jk, y0 = c, ym = d

applying composite Trapezoidal rule in both the directions we get

                           I
hk

f x y f x y f x y f x ym= + + + + +−4
20 0 0 1 0 2 0 1, , , ... ,� � � �� � �� � ��

2 20 1 2
1

1

f x y f x y f x yi i i
i

n

, , , ...� � � � � ��+ + + +
=

−

∑

f x y f x y f x yi m i m n, , ,− + + +1 0� �� � � � �

                           2 1 2 1f x y f x y f x y f x yn n n m n m( , ) ( , ) ... ( , ) ( , ) .+ + + +−� � �     (12)

Simpson’s method Taking h
b a

k
d c= − = −

2 2
,  and applying Simpson’s rule to evaluate (9) we get

                             I
hk

f a c f a d f b c f b d= + + + +
9

, , , ,� � � � � � � ��

4 f a c k f a h c f a h d f b c k, , , , ,+ + + + + + +� � � � � � � �

16 f a h c k+ +, .� �� (13)

Example 9.15 Evaluate the integral I
dx dy

x y
,

1

2

1

2

=
+��  using Trapezoidal rule with h = k = 0.5.

Solution Using Trapezoidal rule, we get

I
dx dy

x y
=

+��
1

2

1

2

  = + + + +1

16
1 1 2 1 1 2 2 2f f f f, , , ,� � � � � � � � 1

16
2

3

2
1 1

3

2
2

3

2

3

2
2 4

3

2

3

2
f f f f f, , , , ,

��



�� + 


��


�� + 


��


�� + 


��


��

�
��

�
�	

+ 

��



��

�
�
�

�
�
	

  = + + + + + + +�
��

�
�	

+�
��

�
�	

1

16
05

1

3

1

3
0 25 2 0 4 0 4

2

7

2

7

4

3
. . . .

  = 0 343304. .
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Example 9.16 Using the table of values given below evaluate the integral of f(x, y) = ey sin x over the
interval 0 0 2 0 0 2≤ ≤ ≤ <x y. , .

(a) by the Trapezoidal rule with h = k = 0.2 and

(b) by Simpson’s one-third rule with h = k = 0.1

y   x 0.0 0.1 0.2

0.0 0.0 0.998 0.1987

0.1 0.0 0.1103 0.2196

0.2 0.0 0.1219 0.2427

Solution

(a) Applying Trapezoidal rule we get

                                     I = + + = =
0 2

4
0 0 01987 0 2427 0 004414

2
.

. . . .
� �

(b) By Simpson’s rule we get

I = + + + + +
01

9
10 4 0 998 1 01987 4 0 16 01103

2
.

. . . . .
� � � � � � � �

01

9
4 0 2196 10 4 01219 1 0 2427

2
.

. . . .
� � � � � � � �+ + +

  = 0 004413. .

Example 9.17  Evaluate 
xy

1 xy
dx dy

0

0.5

0

0.5

+��  using Simpson’s rule for double integrals with both step sizes

equal to 0.25.

Solution  Taking n = k = 0.25,

we have x0 = 0, x1 = 0.25, x2 = 0.5

y0 = 0, y1 = 0.25, y2 = 0.5

f (0, 0) = 0,  f (0, 0.25) = 0,  f (0, 0.5) = 0

f (0.25, 0) = 0, f (0.25, 0.25) = 0.05878525, f (0.25, 0.5) = 0.110822

f (0.5, 0) = 0, f (0.5, 0.25) = 0.110822, f (0.5, 0.5) = 0.197923

Applying, Trapezoidal rule we get

I = 
1

9 44
0 0 4

1
4

0
1
2

0
.

( , ) , ,f f f+ 

��



�� + 


��


��

�
��

�
�	  

+ 

��



�� + 


��


�� + 


��


��

�
�
�

�
�
�

4 0
1
4

4
1
4

1
4

1
2

1
4

f f f, , ,

+ 

��



�� + 


��


�� + 


��


��f f f0

1

2
4

1

4

1

2

1

2

1

2
, , ,

  = 
1

144
0 0 0 4 0 0 235141 0 110822 0 0 443288 0 197923+ + + + + + + +( . . ) . .

  = 0.014063
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9.12 EULER-MACLAURIN SUMMATION FORMULA

Consider the function F(x), such that

∆F(x) = f(x) ...(1)

let x0, x1, x2, ..., xn, be equi-spaced values of x, with difference.

From (1), we get ∆F(x) = f(x0)

⇒ F(x1) – F(x0) = f(x0)

Similarly, F(x2) – F(x1) = f(x1)

...

F(xn) – F(xn–1) = f(xn–1)

Adding, these we get

F(xn) – F(x0) = f xi

i

n

� �
=

−

∑
0

1

...(2)

from (1) we have

F(x) = ∆–1 f(x)

= (E – 1)–1 f (x)

= (ehD – 1)–1 f (x)

= 1
2 3

1
2 2 3 3

1

+ + + +


��



��

−
�
�
�
�

�
�
	
	

−

hD
h D h D

f x
! !

... ( )

= ( )
( )

!
( )

!
... ( )hD

hD hD
f x+ + +

�
�
�

�
�
	

−2 3 1

2 3

= ( )
! !

... ( )hD
hD h D

f x−
−

+ + +
�
�
�

�
�
	1

2 2 1

1
2 3

=
1

1
2 12 720

1
2 2 4 4

h
D

hD h D h D
f x− − + − +

�
�
�

�
�
	... ( )

=
1

1
2 12 720

1
2 2 4 4

h
D

hD h D h D
f x− − + − +

�
�
�

�
�
	... ( )

=
1 1

2 12 720

3

h
f x dx f x

h
f x

h
f x( ) ( ) ( ) ( )− + ′ − ′′′�

=
1 1

2 12 720

3

h
f x dx f x

h
f x

h
f x( ) ( ) ( ) ( ) ...− + ′ − ′′′ +�

...(3)
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Putting x = xn, and x = x0 in (3) and then subtracting we get

F(xn) – F(x0) =
1 1

2 0

0

h
f x dx f x f xn

x

xn

( ) ( ) ( )− −�
+ ′ − ′ − ′′′ − ′′′ +h

f x f x
h

f x f xn n12 7200

3

0( ) ( ) ( ) ( ) ...

 ...(4)

⇒ f xi
i

n

( )
=

−

∑
0

1

=
1 1

2 0

0

h
f x dx f x f xn

x

xn

( ) ( ) ( )− − +�
h

f x f x
h

f x f xn n12 7200

3

0′ − ′ − ′′′ − ′′′ +( ) ( ) ( ) ( ) ...

⇒
1

0

h
f x dx

x

xn

( )� = f x f x f xi
i

n

n( ) ( ) ( )+ −
=

−

∑ 1
20

1

0

− ′ − ′ + ′′′ − ′′′h
f x f x

h
f x f xn n12 7200

3

0( ) ( ) ( ) ( ) ...

Hence, we obtain

f x dx
x

xn

( )

0

� = y dx
x

x nh

0

0+

�
=

h
y y y y yn n2

2 2 20 1 2 1+ + + + +−...

− ′ − ′ + ′′′− ′′′ +h
y y

h
y yn n

2

0

4

012 720
( ) ( ) ... ...(5)

(5) is called the Euler-Maclaurin formula.

Example 9.18  Find the value of loge2 from 
1

1 x
dx,

0

1

+�  using Euler-Maclaurin formula.

Solution  Taking y =
1

1 + x
,  and n = 10

We have x0 = 0, xn = 1, h = 0.1

y′ =
−
+

′′ =
+

′′′ = −
+

1

1

2

1

6

12 3 4( )
,

( )
,

( )x
y

x
y

x

y0 =
1

1
1

1 0
1

1
1

1
1 0 1

1
1 1

1
1 1

1
20

1
1+

=
+

= =
+

=
+

= =
+

=
x

y
x

xn,
. .

, ...,

from Euler-Maclaurin Summation formula.
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1

1
0

1

+� x
dx =

0 1
2

1
2

1 1
2

1 2
2

1 9
1
2

.
. .

...
.

+ + + +

��



�� +

�
��

�
�	

− − − −�
�
�
�

�
�
	
	

+ − − −

��



��

( . ) ( ) ( . ) ( )0 1
12

1

2

1

1

0 1
720

6

2

8

1

2

2

2

2

4

4 4

= 0.693773 – 0.000625 + 0.000001

= 0.693149 ...(1)

Now
1

1
0

1

+� x
dx = log | | loge ex1 0

1
2+ = ...(2)

Hence from (2) we get

loge2 ~ 0.693149

Example 9.19  Use the Euler-Maclaurin expansion to prove

x2

x 1

n

=
∑ =

n (n 1) ( 2n 1)

6

+ +

Solution  We have y = f (x) = x2

y′ = f ′(x) = 2x

y ′′ = 2,  y ′′′ = 0, ...

Taking h = 1, we get x0 = 1, xn = n, y0 = 1, yn = n2.

From Euler-Maclaurin formula we have

y0 + y1 + ... yn = x
x

n
2

1=
∑

=
1 1

2

1

120

0

h
f x dx y y y yn n n

x

xn

( ) ( ) ( ) ...+ + + ′ − ′ +�

= x dx n n

n
2 2

1

1

2
1

1

12
2 2+ + + −� ( ) ( )

=
1

3
1

1

2
1

1

6
12 2( ) ( ) ( )n n n− + + + −

=
1

6
2 2 3 3 13 2n n n− + + + −� �

=
2 3

6
1
6

1 2 1
3 2n n n

n n n
+ + = + +( ) ( )

Hence Proved.
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Exercise 9.3

1. Evaluate 
dx dy

x y+��
1

2

1

2

 using the Trapezoidal rule with h = k = 0.25.

2. Evaluate the double integral 
2

1 12 2
0

2

0

1
xy

x y
dy dx

+ +




�
�
�




�
�
��� � � � �

 using (i) the Trapezoidal rule with

h = k = 0.25 (ii) the Simpson’s rule h = k = 0.25.

3. Evaluate the double integral 
dx

x y

dy
2 2

1
21

5

1

5

+




�

�
�
�




�

�
�
���

� �
 using the Trapezoidal rule with two and four subintervals.

4. Using the table of values given below evaluate the integral of f (x, y) = ey sin x over the interval
0 < x < 0.2, 0 < y < 0.2

(a) by the Trapezoidal rule with h = k = 0.1

(b) by Simpson’s one-third rule with h = k = 0.1

yx 0.0 0.1 0.2

0 0.0 0.0998 0.1987

0.1 0.0 0.1103 0.2196

0.2 0.0 0.1219 0.2427

5. Integrate the following functions over the given domains by the Trapezoidal formula, using the
indicated spacing.

(a) f x y xy x y, ; , ,� � = − ≤ ≤ ≤ ≤1 0 1 0 1  with h = k = 0.5

(b) f x y x y x, sin cos ;� � = ≤ ≤0
2
π

 with h k= = π
4

6. Find the value of the double integral I
x y

dy dx=
+�� 1

1

3 6

2

3 2 ..

.

7. Use Euler-Macleurin formula to prove that

x
n n

x

n
3

1

2 21

4
=

∑ = +( )

8. Use Euler-Maclaurin formula to show that

1

51

1

53

1

99
0 00499

2 2 2
+ + + =... .

Answers

1. 0.340668 2. (i) 0.31233 (ii) 0.31772 3. n = 2, I = 4.134; n = 4, I = 3.997

4. 0.004413 5. (a) 0.8308  (b) 0.8988 6. 0.48997
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10.1 INTRODUCTION

The most general form of an ordinary differential equation of nth order is given by

                     φ x y
dy

dx

d y

dx

d y

dx

n

n, , , , ,
2

2 0�
�
��

�
��

= (1)

A general solution of an ordinary differential equation such as (1) is a relation between y, x and
n arbitrary constants which satisfies the equation and it is of the form

                          f x y c c cn, , , , ..., .1 2 0� � = (2)

If particular values are given to the constants c1, c2, …, cn, then the resulting solution is called
a Particular solution. To obtain a particular solution from the general solution given by (2), we must
be given n conditions so that the constants can be determined. If all the n conditions are specified
at the same value of x, then the problem is termed as initial value problem. Though there are many
analytical methods for finding the solution of the equation form given by (1), there exist large number
of ordinary differential equations, whose solution cannot be obtained by the known analytical methods.
In such cases we use numerical methods to get an approximate solution of a given differential
equation under the prescribed initial condition.

In this chapter we restrict ourselves and develop the numerical methods for findings a solution
of an ordinary differential equation of first order and first degree which is of the form

                             
dy

dx
f x y= , ,	 


with the initial condition y(x0) = y0, which is called initial value problem.

The general solutions of equation (3) will be obtained in two forms: (1) the values of y as a
power series in independent variable x and (2) as a set of tabulated values of x and y.

We shall now develop numerical methods for solution of the initial value problem of the form
given by (3). We partition the interval [a, b] on which the solution is derived in finite number of sub-
intervals by the points

10
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212
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 a x x x x bn= < < < =0 1 2, , .�

The points are called Mesh Points. We assume that the points are spaced uniformly with the
relation

x x nhn = +0 .

The existence of uniqueness of the solution of an initial value problem in [x0, b] depends on
the theorem due to Lipschitz, which states that:

(1) If f (x, y) is a real function defined and continuous in [x0, b], y ∈ ∞ + ∞– , ,	 
  where x0, and b

are finite.

(2) There exists a constant L > 0 called Lipschitz’s constant such that for any two values y = y1 and
y = y2

f x y f x y L L L( , ) ( , )1 2 1 2− < −

where x x b∈ 0 , ,  then for any y(x0) = y0, the initial value problem (3), has unique solution for

x x b∈ 0 , .

Now we shall discuss the Taylor’s series method and the Euler’s method.

10.2 TAYLOR’S SERIES METHOD

Let y = f (x), be a solution of the equation

dy

dx
f x y= ,	 
 refer (3)

with y(x0) = y0.

Expanding it by Taylor’s series about the point x0, we get

                               f x f x
x x

f x
x x

f x	 
 � � � � � � � � � �= + ′ + ′ +0
0

0
0

2

01 2

–

!

–

!
,�

this may be written as

 y f x y
x x

y
x x

y= = + ′ + ′′ +	 
 � � � �
0

0
0

0
2

01 2

–

!

–

!
�

Putting x = x1 = x0 + h, we get

                              f x y y
h

y
h

y
h

y1 1 0 0

2

0
3

01 2 3!
� � = = + ′ + ′′ + ′′′+

! !
� (4)

Similarly we obtain

                                y y
h

y
h

y
h

yn n n n n+ = + ′ + ′′ + ′′′+1

2

1 2 3!! !
� (5)

Equation (5) may be written as
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y y
h

y
h

y O hn n n n+ = + ′ + ′′ +1

2
3

1 2! !
,� � (6)

where O(h3) means that all the succeeding terms containing the third and higher powers of h. If the
terms containing the third and higher powers of h are neglected then the local truncation error in the
solution is kh3 where k is a constant. For a better approximation terms containing higher powers of
h are considered.

Note: Taylor’s series method is applicable only when the various derivatives of f(x, y) exist and the value of (x –
x0) in the expansion of y = f(x) near x0 must be very small so that the series converge.

Example 10.1 Solve dy

dx
x y, y(1) 0,= + =  numerically up to x = 1.2, with h = 0.1.

Solution We have x0 = 1, y0 = 1 and

                                   
dy

dx
y x y y= ′ = + ⇒ ′ = + +0 1 0 1,

                                  
d y

dx
y y y

2

2 01 1 1 2= ′′ = + ′ ⇒ ′′ = + = ,

                                  
d y

dx
y y y

3

3 0 2= ′′′ = ′′ ⇒ ′′′= ,

                                 
d y

dx
y y yv v

4

4 0 2= ′ = ′′′ ⇒ ′ = ,

                                 
d y

dx
y y yv v v

5

5 0 2= = ′ ⇒ = ,

�

Substituting the above values in

                                  y y
h

y
h

y
h

y
h

y
h

yv v
1 0 0

2

0

3

0

4

0

5

01 2 3! 4 5
= + ′ + ′′ + ′′′+ ′ + +

! ! ! !
�

we get                                 y1

2 3 4 5

0 01
01

2
2

01

6
2

01

24
2

01

120
2= + + + + + +.

. . . .� � � � � � � � � �
�

                             ⇒ =y1 011033847.

                              ∴ = ≈y y1 01 0110. . .� �
Now                             x x h1 0 1 0 1 11= + = + =. . ,

we have                                ′ = + = + =y x y1 1 1 11 0 110 1 21. . . ,

                                 ′′ = + ′ = + =y y1 11 1 1 21 2 21. . ,

                                 ′′′= ′′ =y y1 1 2 21. ,

                               ′ =y v
1 2 21. ,
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                               y v
1 2 21= . ,

�

Substituting the above values in (1), we get

                                y2

2 3

0 110 0 1 1 21
0 1

2
2 21

0 1

6
2 21= + + + +. . .

.
.

.
.	 
	 
 	 
 	 
 	 
 	 


0 1

24
2 21

0 5

120
2 21

4 5.
.

.
. ,

	 
 	 
 	 
 	 
+

                            ∴ =y2 0 24205.

                         ∴ =y 0 2 0 242. .� �

Example 10.2 Given 
dy

dx
1 xy= +  with the initial condition that y = 1, x = 0. Compute y (0.1) correct to four places

of decimal by using Taylor’s series method.

Solution Given                    
dy

dx
xy= +1  and y (0) = 1,

                                ∴ = + × =y1 0 1 0 1 1� � .

Differentiating the given equation w.r.t. x, we get

                              
d y

dx
y x

dy

dx

2

2 = + ,

                                ′′ = + × = + =y0 1 0 1 1 0 1

similarly                            
d y

dx
x

d y

dx

dy

dx

3

3

2

2 2= + ,

                           ⇒ ′′′=y0 2,

and                                
d y

dx
x

d y

dx

d y

dx

4

4

3

3

2

23= + ,

                          ⇒ ′ =y v
0 3,

from Taylor’s series method, we have

                                y hy
h

y
h

y
h

y v
1 0

2

0

3

0

4

01
2 3 24

= + ′ + ′′ + ′′′+ ′ + �

                         ∴ = + + + + +y 01 1 01 1
01

2
1

01

6
2

01

24
3

2 3 4

. .
. . .� � � �� � � � � � � �

�

                                   = 11053425.

                             ∴ =y 01 11053. .� �
correct to four decimal places.



216 NUMERICAL ANALYSIS

Example 10.3 Apply the Taylor’s series method to find the value of y (1.1) and y (1.2) correct to three decimal places

given that dy

dx
xy , y(1)

1
3=  =  y(1) = 1 taking the first three terms of the Taylor’s series expansion.

Solution Given                        
dy

dx
xy y x h= = = =

1
3

0 01 1 01, , , .

                              ′ = = =y x y0 0 0

1
3

1
311 1. ,

differentiating the given equation w.r.t. x we get

                            
d y

dx
xy

dy

dx
y

2

2

1

31

3
3= +
–2

=
�
��

�
��

+1

3
3

1

3

1

3xy xy y
–2

 = +1

3
2

1

3

1

3x y y
–

                          ⇒ ′′ = + =y0
1

3
11 1

4

3
. .

Taking the first three terms of the Taylor’s formula we get

                                    y y hy
h

y1 0 0

2

2
= = ′ + ′′ (7)

substituting the values in (7)

                                    y y1

2

11 1 01 1
01

2

4

3
11066= = + × + × =. .

.
.� � � �

� �

                            ∴ =y1 11 11066. . ,� �
                                    x x h1 0 1 0 1 11= + = + =. .

                                    ′ = ×
�
��

�
��

y x y1 1 1

1

3
 = 11 11066

1

3. .� �� �  = 1138. ,

                                    ′′ = +y x y y1 1
2

1

1
3

1

1
31

3

= +
−1

3
11 11066 11066

2
1

3

1

3. . .� � � � � �

= 14249. .

Substituting in                      y y hy
h

y2 1 1

2

12
= + ′ + ′′,

we get                                   y y2

2

12 11066 01 1138
01

2
14249= = + × + ×. . . .

.
.� � � �
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= ≈12275245 1228. .

                                 ∴ = =y y2 12 1228. . .� �

10.3 EULER’S METHOD

Consider the first order and first degree differential equation

                             
dy

dx
f x y= ,� � refer (3)

with the condition that y(x0) = y0. Suppose we want to find the approximate value of y say yn when
x = xn. We divide the interval [x0, xn] into n–subintervals of equal length say h, with the division point
x0, x1, …, xn, where xr = x0 + rh, (r – 1, 2, …, n).

Let us assume that

                         f x y f x yr r, ,� � � �≈ − −1 1

in [xr–1, xr]. Integrating (3) in [xr–1, xr], we get

                           dy f x y dx
x

x

x

x

r

r

r

r

=
− −


 

1 1

,� �

                  ⇒ − =−

−


y y f x y dxr r

x

x

r

r

1

1

,� �

                          ⇒ ≈ +− − −

−


y y f x y dxr r r r

x

x

r

r

1 1 1

1

,� �

                          ⇒ ≈ + −− − − −y y f x y x xr r r r r r1 1 1 1,� � � �

                           ∴ ≈ +− − −y y hf x yr r r r1 1 1, .� � (8)

Equation (8) is called Euler’s iteration formula.

Taking r = 1, 2, …, n in (8), we get the successive approximately of y as follows

                              y y x y hf x y1 1 0 0 0= = +� � � �,

                              y y x y hf x y2 2 1 1 1= = +� � � �,

�

                              y y x y hf x yn n n n n= = +− − −� � � �1 1 1,
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Note: Euler’s method has limited usage because of the large error that is accumulated as the process proceeds. The
process is very slow and to obtain reasonable accuracy with Euler’s method we have to take a smaller value of h.
Further, the method should not be used for a larger range of x as the values found by this method go on becoming
farther and farther away from the true values. To avoid this difficulty one can choose Euler’s modified method to
solve the equation (3).

10.4 MODIFIED EULER’S METHOD

From Euler’s iteration formula we h known that

                              y y hf x yr r r r≈ +− − −1 1 1,� � (9)

Let y(xr) = yr denote the initial value using (9) an approximate value of yr
0  can be calculated

as

                             y y f x y dxr r

x

x

r

r

( ) ,0
1

1

= +−

−


 � �

                         ⇒ ≈ +− − −y y hf x yr r r r
( ) ,0

1 1 1� � (10)

replacing f (x, y) by f (xr–1, yr–1) in xr–1 ≤  x < xr using Trapezoidal rule in [xr–1, rx], we can write

                            y y
h

f x y f x yr r r r r r
( ) , , .0

1 1 12
= + +− − −� � � �

Replacing f (xr, yr) by its approximate value f x yr r, ( )0� �  at the end point of the interval

[xr–1, xr], we get

                             y y
h

f x y f x yr r r r r r
( ) ( ), , ,1

1 1 1
0

2
= + +− − −� � � �

where yr
( )1  is the first approximation to yr = y(xr) proceeding as above we get the iteration formula

                             y y
h

f x y f x yr
n

r r r r r
n( ) (, , ,= + +− − −

−
1 1 1

1

2
� � � � (11)

where yr
n  denoted the nth approximation to yr

∴  we have

                               y y y
h

f x y f x yr r
n

r r r r r
n≈ = + +− − −

−( ) (, , .1 1 1
1

2
� � � �

Example 10.4 Solve the equation 
dy

dx
y= −1 ,  with the initial condition x = 0, y = 0, using Euler’s algorithm and

tabulate the solutions at x = 0.1, 0.2, 0.3.
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Solution Given 
dy

dx
y= −1 ,  with the initial condition x = 0, y = 0

                             ∴ = −f x y y,� � 1

we have                                     h = 01.

                                        ∴ = =x y0 00 0,

                                            x x h1 0 0 01 01= + = + =. .

                                            x x2 30 2 0 3= =. , . .

Taking n = 0 in                   y y hf x yn n n n+ = +1 ,� �

we get                                   y y hf x y1 0 0 0= + ,� �  = + − =0 01 1 0 01. .� �� �

                                   ∴ = =y i e y1 0 1 0 1 0 1. , . ., ( . ) . ,

                                    y y hf x y2 1 1 1= + ,� �

                                  y y2 101 01 1= + −. .� �� �

 = + −01 01 1 01. . .� �� �  = 019.

                                  ∴ = =y y2 0 2 019. . ,� �

                                     y y hf x y3 2 2 2= + ,� �

                                  ∴ = + −y y3 2019 01 1. .� �� �  = + −019 01 1 019. . .� �� �

 = +019 01 081. . .� �� �  = 0 271.

                             ∴ = =y y3 0 3 0 271( . ) . .

x Solution by Euler’s method

0 0

0.1 0.1

0.2 0.19

0.3 0.271

Example 10.5 Given dy

dx
x y y= + =3 0 1, ( ) ,  compute y(0.2) by Euler’s method taking h = 0.01.

Solution Given

                                    
dy

dx
x y= +3 ,

with the initial condition y(0) = 1.
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∴  We have                   f x y x y,� � = +3

                                     x y h0 00 1 0 01= = =, , .

                                     x x h1 0 0 0 01 0 01= + = + =. . ,

                          x x h2 0 2 0 2 0 01 0 02+ + = + =. . .� �
Applying Euler’s formula we get

                                  y y hf x y1 0 0 0= + ,� �

                                  ∴ = + +y x y1 0
3

01 0 01.� �� �

 = + +1 0 01 0 13.� �� �  = 101.

                                  ∴ = =y y1 0 01 101. . ,� �

                                    y y hf x y2 1 1 1= + ,� �

 = + +101 0 01 1
3

1. .� � x y

 = + + =101 0 01 0 01 101 10201
3

. . . . .� � � �

                                  ∴ = =y y2 0 02 10201. . .� �
Example 10.6 Solve by Euler’s method the following differential equation x = 0.1 correct to four decimal places

dy

dx

y x

y x
=

−
+

 with the initial condition y(0) = 1.

Solution Here                          
dy

dx

y x

y x
=

−
+

                           ⇒ =
−
+

f x y
y x

y x
, ,� �

the initial condition is y(0) = 1.

Taking h = 0.02, we get

                         x1 = 0.02,

x2 = 0.04,

x3 = 0.06,

x4 = 0.08,

x5 = 0.1.

Using Euler’s formula we get

                                    y y y hf x y1 0 0 00 02= = +. ,� � � �
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= +
−
+

�
��

�
��

y h
y x

y x0
0 0

0 0

 = +
−
+

�
��

�
��

1 0 02
1 0

1 0
.� �  = 10200.

                            ∴ =y 0 02 10200. . ,� �

                            y y y hf x y2 1 1 10 04= = +. ,� � � �  = +
−
+

�
��

�
��

y h
y x

y x1
1 1

1 1

= +
−
+

�
��

�
��

10200 0 02
10200 0 02

10200 0 02
. .

. .

. .
� �  = 10392.

                             y y2 0 04 10392= =. . ,� �

                                    y y y h
y x

y x3 2
2 2

2 2

0 06= = +
−
+

�
��

�
��

.� �

= + −
+

�
��

�
��

10392 0 02
10392 0 04

10392 0 04
. .

. .

. .
� �

                             ∴ = =y y3 0 06 10577. . ,� �

                                    y y y hf x y4 3 3 30 08= = +. ,� � � �  = +
−
+

�
��

�
��

y h
y x

y x3
3 3

3 3

= +
−
+

�
�
�

�
�
�10577 0 02

10577 0 06

10577 0 06
. .

. .

. .
� �  = 10756.

                                  ∴ = =y y4 0 08 10756. . ,� �

                                    y y y hf x y5 4 4 401= = +. ,� � � �

= +
−
+

�
��

�
��

y h
y x

y x4
4 4

4 4

= +
−
+

�
�
�

�
�
�10756 0 02

10756 0 08

10756 0 08
. .

. .

. .
� �  = 10928.

                             ∴ =y 01 10928. . .� �
Example 10.7 Solve the Euler’s modified method the following differential equation for x = 0.02 by taking h = 0.01

given 
dy

dx
x y, y 1,2= + =  when x = 0.

Solution Here we have

                               f x y x y,� � = +2
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                          h x y y= = = =0 01 0 0 10 0. , , � �

                                    x x1 20 01 0 02= =. , .

we get                              ∴ = +y y hf x y1
0

0 0 0
( ) ,� �

= + +1 0 01 0
2

0.� �� �x y  = + + =1 0 01 0 1 1012. .� �� �

                              ∴ =y1
0 101( ) . .

Applying Euler’s modified formula we get

                                   y y
h

f x y f x y1
1

0 0 0 1 1
0

2
( ) ( ), ,= + +� � � �

= + + + +1
0 01

2
0 1 0 01 1012 2.

. .� �  = 101005.

                               ∴ =y1
1 101005( ) . ,

                                  y y
h

f x y f x y1
2

0 0 0 1 1
1

2
( ) ( ), ,= + +� � � �

= + + + +1
0 01

2
0 1 0 01 110052 2.

. .� �  = 101005.

                                  y1
2 101005( ) . ,=

                               ∴ = =y y1
1

1
2 101005( ) ( ) . ,

                               ∴ = +y y hf x y2
0

1 1 1
( ) ,� �

= + +101005 0 01 1
2

1. .� �� �x y

= + +101005 0 01 0 01 101005
2

. . . .� � � �� �  = 102015. ,

                                  y y
h

f x y f x y2
1

1 1 1 2 2
0

2
( ) ( )( , ) ( , )= + +

= + + + +101005
0 01

2
0 01 101005 0 02 102015

2 2
.

.
. . . .� � � � � � � �

= 1020204. ,

                                  y y
h

f x y f x y2
2

1 1 1 2 2
1

2
( ) ( ), ,= + +� � � �

= + + + +101
0 01

2
0 01 101005 0 02 1020204

2 2
.

.
. . . .� � � � � � � �

                                 ∴ =y2 1020204.

                                 ∴ = =y y2 0 02 1020204. . .� �
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Exercise 10.1

1. Given 
dy

dx x y
y=

+
=1

4 42 , ( )  find y(4.2) by Taylor’s series method, taking h = 0.1.

2. Given that 
dy

dx
x y y= + =2 0 1, � �  find y(0.2).

3. Solve 
dy

dx
x y y= + =3 12, ,  when x = 0, numerically up to x = 0.1 by Taylor’s series method.

4. Apply Taylor’s algorithm to y1 = x2 + y2, y(0) = 1. Take h = 0.5 and determine approximations to y(0.5).
Carry the calculations up to 3 decimals.

5. Find y(1) by Euler’s method from the differential equation 
dy

dx

y

x
= − −

+1
,  when y(0.3) = 2. Convert up

to four decimal places taking step length h = 0.1.

6. Find y(4.4), by Euler’s modified method taking h = 0.2 from the differential equation 
dy

dx

y

x
y= − =2

5
1

2

,

when x = 4.

7. Given 
dy

dx
x y= +2 ,  with y(0) = 1, evaluate y(0.02), y(0.04) by Euler’s method.

8. Given 
dy

dx
y x= − ,  where y(0) = 2, find y(0.1) and y(0.2) by Euler’s method up to two decimal places.

9. Given dy

dx

y x

x
= − −

+1
, with boundary condition y(0) = 1, find approximately y for x = 0.1, by Euler’s

method (five steps).

10. Use modified Euler’s method with one step to find the value of y at x = 0.1 to five significant figures,

where 
dy

dx
x y y= + =2 0 94, . , when x = 0.

11. Solve y′ = x – y2, by Euler’s method for x = 0.2 to 0.6 with h = 0.2 initially x = 0, y = 1.

12. Solve the differential equation

dy

dx
y ex= +2 3

with x0 = 0, y0 = 0, using Taylor’s series method to obtain and check the value of y for x = 0.1, 0.2.

13. Solve y1 = y sin x + cos x, subject to x = 0, y = 0 by Taylor’s series method.

14. Using Euler’s modified method, solve numerically the equation

dy

dx
x y= +

with boundary condition y = 1 at x = 0 for the range 0 < x < 0.4 in steps of 0.2.

15. Solve 
dy

dx
y= −1  with y = 0 when x = 0 in the range 0 < x < 0.2 by taking h = 0.1 (apply Euler’s modified

formula).



224 NUMERICAL ANALYSIS

Answers

1. 4.0098 2. 1.2375  3. 1.12725

4. 1.052 5. 1.2632 6. 1.01871

7. 1.0202, 1.0408, 1.0619 8. 2.42, 2.89 9. 1.0928

10. 1.039474 11. y(0.2) = 0.8512, y(0.4) = 0.7798, y(0.6) = 0.7260

12.

x Calculated Exact
values of y values

0.1 0.3488 0.3486

0.2 0.8112 0.8112

13. y x x x= + + +1

6

1

120
3 5

�

 14. x y

0.0 1

0.2 1.2309

0.4 1.5253

15.

x y

0.0 0.0000

0.1 0.09524

0.2 0.1814076

10.5 PREDICTOR–CORRECTOR METHODS

Predictor–corrector formulae are easily derived but require the previous evaluation of y and y1 =
f (x, y) at a certain number of evenly spaced pivotal point (discrete points of xi of x-axis) in the
neighbourhood of x0.

In general the Predictor–corrector methods are the methods which require the values of y at
xn, xn–1, xn–2, … for computing the value of y at xn+1. A Predictor formula is used to predict the value
of yn+1. Now we discuss Milne’s method and Adams–Bashforth–Moulton methods which are known
as Predictor–corrector methods.

10.6 MILNE’S METHOD

This method is a simple and reasonable accurate method of solving the ordinary first order differential
equation numerically. To solve the differential equation

                             
dy

dx
y f x y= ′ = , ,� �
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by this method we first obtain the approximate value of yn+1 by predictor formula and then improve
the value of yn+1 by means of a corrector formula. Both these formulas can be derived from the
Newton forward interpolation formula as follows:

From Newton’s formula, we have

f x f x uh f x u f x
u u

f x� � � � � � � � � � � �= + = + +
−

×
+0 0 0

21

1 2
∆ ∆ u u u

f x
− −
× ×

+
1 2

1 2 3
3

0
� �� � � �∆ �

(14)

where u
x x

h
= − 0 ,  or x = x0 + uh.

Putting ′ =y f x� �  and ′ =y f x0 0� �  in the above formula we get

′ = ′ + ′ +
−

×
′ +

− −
× ×

′ +y y u y
u u

y
u u u

y0 0
2

0
3

0

1

1 2

1 2

1 2 3
∆ ∆ ∆

� � � �� � u u u u
y

− − −
× × ×

+
1 2 3

1 2 3 4
4

0
1� �� �� �

∆ ...

(15)

Integrating (15) from x0 + x0 + 4h, i.e., from u = 0 to u = 4, we get

                       ′ = ′ + ′ +
−

′ +
�
�
�



+

y dx h y u y
u u

y
x

x h

0 0
2

0

0

44
1

2
0

0

∆ ∆
� �

                           
u u u

y
u u u u

y du
− −

′ +
− − −

′ +
�
�
�

1 2

6

1 2 3

24
3

0
4

0
� �� � � �� �� �

∆ ∆ ...

(�  hdu = dx) which gives

                    y y h y y y y yx h x0 04 0 0
2

0
3

0
4

04
20

3

8

3

28

90+ − = ′ + ′ + ′ + ′ + ′�
��

�
��

∆ ∆ ∆ ∆

[considering up to fourth differences only].

Using ∆ = −E 1

y y h y E y E y4 0 0 0
2

04 8 1
20

3
1− = ′ + − ′ + − ′ +�

��
� � � � 8

3
1

14

45
3

0
4

0E y y− ′ + ′ �
��

� � ∆

                    ⇒ − = ′ − ′ + ′ + ′y y
h

y y y y4 0 1 2 3
4

0
4

3
2 2

14

45
∆ . (16)

This is known as Milne’s predictor formula. The corrector formula is obtained by integrating
(15) from x0 to x0 + 2h, i.e., from u = 0 to u = z

                       y dx h y u y
u u

y duI I I

x

x h

= + +
−

+
�
��

�
��



+

0 0
2

0

0

22
1

2
0

0

∆ ∆
� �

...
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                        y y h y y y y2 0 0 0
2

0
4

02 2
1

3

1

90
− = ′ + ′ + ′ − ′�

��
�
��

∆ ∆ ∆

using ∆ = −E 1,  and simplifying we get

                             y y
h

y y y
h

y2 0 0 1 2
4

03
4

90
= + ′ + ′ + ′ − ′∆ (17)

Expression (17) is called Milne’s corrector formula.

The general forms of Equations (16) and (17) are

                           y y
h

y y yn n n n n+ − − −= + ′ + ′ + ′1 3 2 1
4

3
2 2 , (18)

and                             y y
h

y y yn n n n n+ − − += + ′ + ′ + ′1 1 1 13
4 , (19)

i.e.,                      y y
h

y y yn n n n n+ − − −− = ′ + ′ + ′1 3 2 1
4

3
2 2 , (20)

and                              y y
h

y y yn n n n n+ − − += + ′ + ′ + ′1 1 1 13
4 . (21)

In terms of f the Predictor formula is

                            y y
h

f f fn n n n n+ − − −= + − +1 3 2 1
4
3

2 2 , (22)

the corrector formula is

                                 y y
h

f f fn n n n n+ − − += + + +1 1 1 13
4 .

Note: In deriving the formula we have considered the differences up to third order because we fit up with a

polynomial of degree four. To solve the first order differential equation, we first find the three consecutive values of

y and x in addition to the initial values and then we find the next value of y by (18) or (22). The value of y thus

obtained is then substituted in ′ =y f x y,� �  to get ′y .  The value is then substituted in (19), to get the corrected

value of the new y. If the corrected value of y agrees closely with the predicted value then we proceed to the next

interval and if the corrected value of y differs with the predicted value, we then compute the value of

                                    δ = −+ +
1

29 1 1( ).y yn n

If the value of δ  is very small we proceed to the next interval otherwise value of δ  is made small.

Example 10.8 Given 
dy

dx

1

2
(1 x )y2 2= +  and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21. Evaluate y(0.4)

by Milne’s Predictor–Corrector method.

Solution Milne’s predictor formula is

                                  y y
h

y y yn n n n n+ − − −= + ′ − ′ + ′1 3 2 1
4

3
2 2( ).
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Putting n = 3 in the above formula we get

                                    y y
h

y y y4 0 1 2 3
4

3
2 2= + ′ − ′ + ′ . (23)

We have                            y y y y h0 1 2 31 106 112 121 01= = = = =, . , . , . . .and

The given differential equation is

                                    ′ = +y x y
1

2
1 2 2� �

                                    ′ = + = +�
��

�
�� ⋅y x y1 1

2
1
2 2 21

2
1

1

2
1 01 106� � � �� � � �. .

= ×0505 106
2

. .� � = 0.5674,

                                   ′ = + = +�
��

�
�� ⋅y x y2 2

2
2
2 2 21

2
1

1

2
1 0 2 112� � � �� � � �. .

= ×052 112
2

. .� �  = 0 6522. ,

                                    ′ = + = +�
��

�
�� ⋅y x y3 2

3
3
2 2 21

2
1

1

2
1 0 3 121� � � �� � � �. .

= ×0545 121
2

. .� �  = 0 7980. .

Substituting these values in (23) that is in the predictors formula, we get

                                    y4 1
4 01

3
2 05674 0 6522 2 0 7980= +

×
× − + ×

.
. . .

� �

= 127715.  = 12772. (24)

(correct to 4 decimal places).

∴  We get                         ′ = +y x y4 4
2

4
21

2
1� �

= +�
��

�
�� ⋅1

2
1 0 4 12772

2 2
. .� �� � � �  = 0 9458. .

Milne’s corrector formula is

                                  y y
h

y y yn n n n n+ − − += + ′ + ′ + ′1 1 1 13
4 , (25)

putting n = 3 in (25) we get

                                    y y
h

y y y4 2 2 3 43
4= + ′ + ′ + ′

= + + × +112
01

3
0 6522 4 0 798 0 9458.

.
. . .

= 12797.

(correct to 4 decimal places)

                             ∴ =y 0 4 12797. . .� �
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Example 10.9 Tabulate by Milne’s method the numerical solution of 
dy

dx
x y= +  with initial conditions x0 = 0, y0

= 1, from x = 0.20 to x = 0.30 with y1 = 1.1026, y2 = 1.2104, y3 = 1.3237.

Solution Here ′y1  = x + y

                                    ′′ = + ′ ′′′ = ′′ ′′′ = ′ = ′y y y y y y y yv v v1 , , , , ...

Hence                               ′ = + = + =y x y0 0 0 0 1 1

                                    ′′ = + ′ = + =y y0 01 1 1 2

                                    ′′′= ′′ =y y0 0 2

                                   ′ = =y yv v
0 02 2,

Now taking h = 0.05, we get x4 = 0.20, x5 = 0.25, x6 = 0.30

and y y y1 2 311026 12104 13237= = =. , . , . .

Using Milne’s predictor formula we get

                                    y y
h

y y y4 0 1 2 3
4

3
2 2= + ′ − ′ + ′

= + − +1
4 0 05

3
2 2052 12104 2 6474

.
. . .

� �
 = 12428.

                                    ′ = + = + =y x y4 4 4 0 2 1 2428 1 4428. . .

using corrector formula we get

                                    y y
h

y y y4 2 2 3 42
4= + ′ + ′ + ′

= + + +11104
0 05

3
12104 52948 14428.

.
. . .

� �
 = 12428.

which is the same as the predicted value,

                                 ∴ = =y y4 0 20 12428. .

and                                       ′ =y4 14428. .

Again putting n = 4, h = 0.05 we get

                                    y y
h

y y y5 1 2 3 4
4

3
2 2= + ′ − ′ + ′

= + − +10526
4 0 05

3
2 4208 13237 2 8856.

.
. . .

� �

= 13181.

                                    ′ = + = + =y x y5 5 5 0 25 13181 15681. . . .

Using Milne’s corrector formula we get

                                 y y
h

y y y5 3 3 4 53
4= + ′ + ′ + ′

                                 ∴ = + + +y5 11737
0 05

3
13237 57712 15681.

.
. . .

� �
= 13181.
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which is same as the predicted value

                                 ∴ = =y y5 0 25 13181.  and ′ =y5 15681. .

Again putting n = 5, h = 0.05 and using Milne’s predictor formula we get

                                    y y
h

y y y6 2 3 4 5
4

3
2 2= + ′ − ′ + ′

= +
×

− +11104
4 0 05

3
2 6474 14428 31362.

.
. . .

� �

                                    ′ =y6 13997.

                                    ′ = + =y6 0 3 139972 16997. . .

which is corrected by

                                    y y
h

y y y6 4 4 5 63
4= + ′ + ′ + ′

= + + +12428
0 05

3
14428 6 2724 16997.

.
. . .

� �

= 13997.

which is same as the predicted value

                                 ∴ = =y y6 0 30 13997. .

and                                       ′ =y6 16997. .

x y ′y

0.20 1.2428 1.4428

0.25 1.3181 1.5681

0.30 1.3997 1.6997

Example 10.10 Part of a numerical solution of difference equation

dy

dx
0.2x 0.1y= =

is shown in the following table.

x 0.00 0.05 0.10 0.15

y 2.0000 2.0103 2.0211 2.0323

use Milne’s method to find the next entry in the table.

Solution We have x0= 0.00, x1 = 0.05, x2 = 0.10, x3 = 0.15, x4 = 0.20, and u = 0.05

The corresponding values of y are

y0 = 2, y1 = 2.0103, y2 = 2.0211, y3 = 2.0323 and y4 = ?

y1
1 = 0.2x1 + 0.1y1 = 0.2 × 0.05 + 0.1 × 2.0103

= 0.21103
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y2
1 = 0.2x2 + 0.1y2 = 0.2 × 0.10 + 0.1 × 2.0211

= 0.22211

y3
1 = 0.2x3 + 0.1y3 = 0.2 × 0.15 + 0.1 × 2.0323

= 0.23323

Using Milne’s Predictors’ formula,

                                   y4 = y
h

y y y0 1 2 3
4

4
2 2+ ′ − ′ − ′

= +
×

× + ×2 0
4 0 05

3
2 0 21103 0 22211 2 0 23323.

.
. – . .

= + +2 0
0 2

3
0 42206 0 22211 0 46646.

.
. – . .

= 2 044427.

                                    y x y4
1

4 40 2 0 1= +. .

= × + ×0 2 0 2 0 1 2 044427. . . .

= 0 2444427.

By the corrector formula, we have

y4 = y
h

y y y2 2 3 43
4+ ′ + ′ + ′[ ]

= + + × +2 0211
0 05

3
0 22211 4 0 23323 0 2444427.

.
. . .

= +2 0211 0 0233245. .

= 2 0444245.

∴  the next entry in the table is 2.0444.

10.7 ADAMS–BASHFORTH–MOULTON METHOD

We give below another Predictor–corrector method known as the Adams–Bashforth–Moulton method.
This method is a multistep method based on the fundamental theorem of calculus.

                 y x y x f x y x dxk k

x

x

k

k

+ = +
+


1

1

� � � � 	 
� �,

where y f x y1 = ,	 
  is given with boundary condition y = y0 at x = x0. The predictor uses the

Lagrange’s polynomial approximation for f(x, y(x)) based on the points x yk k– –, ,3 3′� �
x y x yk k k k– –, , ,2 2 1 1′ ′− −� � � �  and x yk k, .′� � It is integrated over the interval x xk k, +1 . This produces the

predictor known as Adams–Bashforth predictor.

                            y y
h

y y y yk k k k k k+ − − −= + ′ − ′ + ′ ′1 1 2 324
55 59 37 9
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The corrector can be developed by using yk+1. A second Lagrange’s polynomial for

f(x, y(x)) is constructed which is based on the points x y x yk k k k– –, , ,2 2 1 1′ ′− −� � � �  and new point

x y x f x yx k k k k k+ + + + +′ =, , .1 1 1 1� � � �� �

It is integrated over x xk k, −1  to produce the Adams–Moulton corrector

                            y y
h

y y y yk k k k k k+ + − += + ′ − ′ + ′ + ′1 2 1 124
5 19 9� �.

Example 10.11 Obtain the solution of the initial value problem 
dy

dx
 = x x y, y(1) 12 2+ =  at x = 1(0.1) 1.3, by any

numerical method you know and at x = 1.4 by Adams–Bashforth method.

Solution The given differential equation is

                                   
dy

dx
x x y x y= + = +2 2 2 1	 


                                    ′ = +y x y2 1( )

and we have x0 = 1 y0 = 1.

Computing the values of y(1.1), y(1.2), y(1.3) by Taylor’s algorithm we get

                                y y y y( . ) . , . , .1 1 1 233 1 548488 1 97891 2 3= = = =

and                                      ′ = ′ = ′ = ′ =y y y y0 1 2 32 2 702 3669 5035. , . , . .

Using Adams–Bashforth predictor formula we get

                                    y y
h

y y y y4 3 3 2 1 024
55 59 37 9= + ′ − ′ + ′ − ′

= + × − × − × − ×1 9789
0 1

24
55 5 035 59 3 669 37 2 702 9 2.

.
. . .

	 


= 2 5762.

                                    ′ = + + = × =y x y x y4 4
2

4 4
2

4
21 1 1 4 3 5726 7 004. . . .	 
 	 


By Adam–Moulton corrector formula

                                    y y
h

y y y y4 3 4 3 2 124
9 19 5= + ′ + ′ − ′ + ′

= + × + × − × +1 9789
0 1

24
9 7 004 19 5 035 5 3 669 2 702.

.
. . . .

	 


= + + − +1 9789
0 1

24
63 036 95 665 18 345 2 702.

.
. . . .

	 
 	 


= +1 9879 0 5962. .  = 2 5751.

                             ∴ =y 14 2 5751. . .� �
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Exercise 10.2

1. Solve numerically the equation ′ = +y x y  with the initial conditions x0 = 0, y0 = 1 by Milne’s method

from (1) x = 0, x = 0.4.

2. Solve the differential equation y′ = x3 – y2 – 2 using Milne’s method for x = 0.3 (0.1) (0.6). Initial value

x = 0, y = 1. The values of y for x = – 0.1, 0.1, and 0.2 are two be computed by series expansion.

3. Solve the differential equation y′ = x2 + y2 – 2 using Milne’s predictor-corrector method for x = 0.3

given the initial value x = 0, y = 1. The values of y for x = – 0.1, 0.1 and 0.2 should be computed

by Taylor’s expansion.

4. Use Milne’s method to solve 
dy

dx
y x= + ,  with initial condition y(0) = 1, from x = 0.20 to x = 0.30.

5. Solve numerically at x = 0.4, 0.5 by Milne’s predictor-corrector method given their values at the four

points x = 0, 0.1, 0.2, 0.3, 
dy

dx
e yx= −2 , given y0 = 2, y1 = 2.010, y2 = 2.040, y3 = 2.09.

6. Using the Adams-Bashforth-Moulton predictor-corrector formulas, evaluate y(1.4), if y satisfies

dy

dx

y

x x
+ = 1

2  and y(1) = 1, y(1.1) = 0.996, y(1.2) = 0.986, y(1.3) = 0.972.

7. Find y(2) if y(x) is the solution of

dy

dx
x y= +1

2
( )

assuming y(0) = 2, y(0.5) = 2.636.

y(1.0) = 3.595 and y(1.5) = 4.968.

8. Given y xy1 22= −  and y(0) = 10. Show by Milne’s method, that y(1) = 1.6505 taking h = 0.2.

9. Solve y1 = – y with y(0) = 1 by using Milne’s method from x = 0.5 to x = 0.8 with h = 0.1

10. Solve the initial value problem 
dy

dx
x y= − 2 ,  y(0) = 1 to find y(0.4) by Adam’s method. With y(0.1) =

0.9117, y(0.2) = 0.8494, y(0.3) = 0.8061.

11. Using Adams–Bashforth formula, determine y(0.4) given the differential equation 
dy

dx
xy= 1

2
, and the

data

x 0 0.1 0.2 0.3

y 1 1.0025 1.0101 1.0228

12. Using Adams-Bashforth formula, determine y (0.4) given the differential equation 
dy

dx
xy= 1

2
 and the

data

x 0 0.1 0.2 0.3

y 1 1.0025 1.0101 1.0228
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13. Given the differential equation 
dy

dx
x y x= +2 2

 and the data

x 1 1.1 1.2 1.3

y 1 1.233 1.548488 1.978921

determine y(1.1) by Adams-Bashforth formula.

14. Using Adams-Bashforth method, obtain the solution of 
dy

dx
x y= − 2

 at x = 0.8, given

x 9 0.2 0.4 0.6

y 0 0.0200 0.0795 0.1762

Answers

1. ′ = =y4 1 583627 1 5703. , .

2.

x 0.3 0.4 0.5 0.6

y 0.061493 0.45625 0.29078 0.12566

3. y(0.3) = 0.6148 4. y0.2 = 12428, y0.3 = 1.3997 5. y4 = 2.162, y5 = 2.256

6. y(1.4) = 0949 7. 6.8733

9. y(0.5) = 0.6065, y(0.6) = 0.5490, y(0.7) = 0.4965, y(0.8) = 4495

10. y(0.4) = 0.7785 11. 1.1749

10.8 RUNGE-KUTTA METHOD

The method is very simple. It is named after two German mathematicians Carl Runge (1856–1927)
and Wilhelm Kutta (1867–1944). It was developed to avoid the computation of higher order derivations
which the Taylor’s method may involve. In the place of these derivatives extra values of the given
function f(x, y) are used.

The Runge-Kutta formulas for several types of differential equations are given below.

Fourthorder Runge-Kutta Method:

Let

                             
dy

dx
f x y= ,	 


represent any first order differential equation and let h denote the step length. If x0, y0 denote the
initial values, then the first increment ∆y  in y is computed from the formulae

                              k h f x y1 0 0= , ,� �

                              k h f x
h

y
k

2 0 0
1

2 2
= + +�

��
�
��, ,
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                              k h f x
h

y
k

3 0 0
3

2 2
= + +�

��
�
��, ,

                              k h f x h y k4 0 0 3= + +, ,� �

and                               ∆y k k k k= + + +1

6
2 21 2 3 4� �.

Thus we can write

                              x x h y y y1 0 1 0= + = +, .∆

Similarly the increments for the other intervals are computed. It will be noted that if f(x, y) is
independent of y then the method reduces to Simpson’s formula. Though approximately the same as
Taylor’s polynomial of degree four. Runge-Kutta formulae do not require prior calculations of higher
derivatives of y(x), as the Taylor’s method does. These formulae involve computation of f (x, y) of
various position. This method known as Runge-Kutta fourth order method is very popular and
extensively used but the errors in method are not easy to watch. The error in the Runge-Kutta method
is of the order h5. Runge-Kutta methods agree with Taylor’s series solution up to the term hm where
m differs from the method and is called the order of that method.

First order Runge-Kutta method:

Consider the first order equation

                              dy

dx
f x y y x y= =, ,	 
 � �0 0 � (1)

We have seen that Euler’s method gives

                              y y h f x y y hy1 0 0 0 0 0= + = + ′,� � � (2)

Expanding by Taylor’s series, we get

                              y y x h y hy
h

y1 0 0 0

2

02
= + = + ′ + ′′ +� � � (3)

Comparing (2) and (3), it follows that, Euler’s method agrees with Taylor’s series solution up
to the term in h.

Hence Euler’s method is the Runge-Kutta method of the first order.

Second order Runge-Kutta method:

The modified Euler’s method gives

                              y y
h

f x y f x h y1 0 0 0 0 12
= + + +, ,� � � � (4)

Taking f0 = f (x0, y0) and substituting y1 = y0 + h f0 the RHS of (4), we obtain

                 y y x h y
h

f f x h y h f1 0 0 0 0 0 02
= + = + + + +� � � �, (5)

Expanding LHS by Taylor’s series, we get

                  y y x h y hy
h

y
h

y1 0 0 0

2

0

3

02 3!
= + = + ′ + ′′ + ′′′+� �

!
� (6)
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Expanding f (x0 + h, y0 + h f0) by Taylor’s series for a function of the variables, we obtain

f (x0 + h, y0 + h f0) = f x y h
f

x
h f

f

y0 0
0

0
0

,� � + �
��
�
�� +

�
��
�
��

∂
∂

∂
∂

   + terms containing second and other higher powers of h.

                          f h
f

x
h f

f

y
O h0

0
0

0

2+ = ���
�
�� +

�
��
�
�� +∂

∂
∂
∂ � �

∴  (5) can be written as

                              y y hf hf h
f

x
f

f

y
O h1 0 0 0

2

0
0

0

31

2
= + + + �

��
�
�� +

�
��
�
��

�

�
�
�

�

�
�
�

+
�

�
�
�

�

�
�
�

∂
∂

∂
∂ � �

= + + ′ +y hf
h

f O h0 0

2

0
3

2
� �

�
df

dx

f

x
f

f

y
f f x y= + =

�
��

�
��

∂
∂

∂
∂

where ,� �

= + ′ + ′′ +y hy
h

y O h0 0

2

0
3

2!
.� � (7)

Comparing (6) and (7), it follows that the modified Euler’s method agrees with Taylor’s series
solution up to the term in h2.

Hence the modified Euler’s method is the Runge-Kutta method of second order.

The second order Runge-Kutta formula is as follows:

                              k h f x yn n1 = ,� �

                              k h f x h y kn n2 1= + +,� �

                            y y yn n n+ = +1 ∆

where                            ∆y k kn = +1

2 1 2� �

which gives                        k h f x y1 0 0= ,� �

                              k h f x h y k2 0 0 1= + +,� �

and                                y y k k y y1 0 1 2 0 0
1

2
= + + = +� � ∆ .
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Third order Runge-Kutta method

This method agrees with Taylor’s series solution up to the term in h3. The formula is as follows:

                              y y k k k1 0 1 2 3
1

6
4= + + +� �

where                              k h f x y1 0 0= ,� �

                                    k h f x
h

y
k

2 0 0
1

2 2
= + +�

��
�
��,

                                   k h f x h y k k3 0 0 2 12= + + −,� �
The general formula is

                            y y yn n+ = +1 ∆

where                              k h f x yn n1 = +� �

                                    k hf x h y kn n2 1
1
2

1
2

= + +�
��

�
��,

                                    k hf x h y k kn n3 2 12= + + −,� �

and                                ∆y k k k= + +1

6
41 2 3� �

Runge-Kutta methods are one-step methods and are widely used. Fourth order R-K method is
most commonly used and is known as Runge-Kutta method only. We can increase the accuracy of
Runge-Kutta method by taking higher order terms.

Example 10.12 Use Runge–Kutta method to approximate y when x = 0.1, given that y = 1, when

                                     x 0 and
dy

dx
x y.= = +

Solution We have

                                    x y0 00 1= =,

                              f x y x y h, , . .� � = + =and 01

                         ∴ = + = + =f x y x y0 0 0 0 0 1 1, ,� �

we get                                   k h f x y1 0 0= ,� �  = ×01 1. = 01. ,

                                          k h f x
h

y
k

2 0 0
1

2 2
= + +�

��
�
��,  = + +01 0 0 05 1 0 05. . , .� � � �� �f

= 01 0 05 105. . , .� � � �f  = +01 0 05 105. . .� �� � = 011. ,
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                                          k h f x
h

y
k

3 0 0
2

2 2
= + +�

��
�
��,

= + +01 0 0 05 1 0 055. . , .� � � �� �f  = +01 0 05 1055. . .� �� �

= 01 1105. .� �� �  = 01105. ,

                                          k f x h y k4 0 0 3= + +,� �

= + +01 0 0 01 1 01105. . , .� � � �f  = 01 01 11105. . , .� � � �f

= 01 12105. .� �� �  = 012105. ,

                                       ∴ = + + +∆y k k k k
1

6
2 21 2 3 4� �

= + + +1

6
01 0 22 0 2210 012105. . . .� �  = 011034. .

We get                              x x h1 0 0 01 01= + = + =. .

                                    y y y1 0 1 011034= + = +∆ .  = 111034. .

Example 10.13 Using Runge–Kutta method, find an approximate value of y for x = 0.2, if 
dy

dx
x y= + 2 ,  gives that

y = 1 when x = 0.

Solution Taking step-length h = 0.1, we have

                                    x y
dy

dx
f x y x y0 0

20 1= = = = +, , , .� �

Now                                k h f x y1 0 0 01 0 1 01= = + −, . . ,� � � �� �

                                    k h f x
h

y
k

2 0 0
1

2 2
= + +�

��
�
��,  = +01 0 05 11025. . .� �� �

= 01 11525. .� �� �  = 011525. ,

                                    k h f x
h

y
k

3 0 0
2

2 2
= + +�

��
�
��,  = +01 0 05 11185. . .� �� �

= 01 11685. .� �� �  = 011685. ,

                                    k h f x h y k4 0 0 3= + +,� �

= +01 0 01 12474. . .� �� �  = 01 13474. .� �� �  = 013474. ,

                                ∴ = + + +∆y k k k k
1

6
2 21 2 3 4� �
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= + + +1

6
01 2 011525 2 011685 013474. . . .� � � �� �

= =1

6
0 6991 01165. . .� �

We get                              y y y1 0 1 01165= + = +∆ .

                             ∴ =y 01 11165. . .� �
For the second step, we have

                                    x y0 001 11165= =. , . ,

                                    k1 01 01 12466 01347= + =. . . . ,� �� �

                                    k2 01 015 14014 01 15514= + =. . . . .� �� � � �� �  = 01551. ,

                                    k3 01 015 14259 01 15759= + =. . . . .� �� � � �� �  = 01576. ,

                                    k4 01 0 2 16233 01 18233= + =. . . . .� �� � � �� �  = 01823. ,

                                    ∆y = =1

6
0 9424 01571. . ,� �

                             ∴ = + =y 0 2 11165 01571 12736. . . .� �

                              ∴ = =y y01 11165 0 2 12736. . . . .� � � �and

Example 10.14  Using Runge-Kutta method of order 4, find y for x = 0.1, 0.2, 0.3, given that

dy

dx
xy y , y(0 ) 1.2= + = . Continue the solution at x = 0.4 using Milne’s method.

Solution. We have f(x, y) = xy + y2

x0 = 0, y0 = 1

x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.4, and h = 0.1

To find y1 = y (0.1):

k1 = hf (x0, y0) = (0.1) (0 × 1 + 12) = 0.1000

k2 = hf x
h

y
k

0 0
1

2 2
+ +�

��
�
��,  = (0.1) f (0.05, 1.05)

= 0.1155

k3 = hf x
h

y
k

f0 0
2

2 2
0 1 0 05 1 0577+ +�

��
�
�� =, ( . ) ( . , . )

= 0.1172

k4 = hf (x0 + h, y0 + k3) = (0.1) f (0.1, 1.1172)

= 0.13598

and k =
1

6
21 2 3 4k k k k+ + +� �
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=
1

6
0 1000 2 0 1155 2 0 1172 0 13598. × . × . .+ + +� �

= 0.11687

∴ y1 = y(0.1) = y0 + k = 1 + 0.11687 = 1.11687 ~ 1.1169

⇒ y1 = 1.1169

To find y2 = y(0.2)

Here we have

k1 = hf (x1, y1) = (0.1) f (1, 1.1169) = 0.1359

k2 = hf x
h

y
k

f1 1
1

2 2
0 1 0 15 11848+ +�

��
�
�� =, ( . ) ( . , . )

= 0.1581

k3 = hf x
h

y
k

f1 1
2

2 2
0 1 0 15 1 0959+ +�

��
�
�� =, ( . ) ( . , . )

= 0.1609

k4 = hf ( , ) ( . ) ( . , . )x h y k f1 1 3 0 1 0 2 1 2778+ + =

= 0.1888

k =
1

6
2 21 2 3 4k k k k+ + +� �

=
1

6
0 1359 2 0 1581 2 0 1609 0 1888. × . × . .+ + +� �

= 0.1605

y2 = y(0.2) = y1 + k = 1.1169 + 0.1605 = 1.2774

To find y3 = y(0.3)

Here we have k1 = hf (x2, y2) = (0.1) f (0.2, 1.2774)

= 0.1887

k2 = hf x
h

y
k

f2 2
1

2 2
0 1 0 25 1 3716+ +�

��
�
�� =, ( . ) ( . , . )

= 0.2224

k3 = hf x
h

y
k

f2 2
2

2 2
0 1 0 25 1 3885+ +�

��
�
�� =, ( . ) ( . , . )

= 0.2275

k4 = hf x h y k f2 2 3 0 1 0 3 1 5048+ + =, ( . ) ( . , . )� �
= 0.2716

k =
1

6
2 21 2 3 4k k k k+ + +� �

= + + +1

6
0 1887 2 0 2224 2 0 2275 0 2716. × . × . .� �

= 0.2267
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∴ y3 = y(0.3) = y2 + k = 1.2774 + 0.2267

= 1.5041

we have x0 = 0.0, x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.4

y0 = 1, y1 = 1.1169, y2 = 1.2774, y3 = 1.5041

y′0 = 1.000, y′1 = 1.3591, y′2 = 1.8869, y′3 = 2.7132

Using Milne’s predictor:

y4 = y
h

y y y0 1 2 3
4

3
2 2+ ′ − ′ − ′

= 1
4 0 1

3
2 1 3591 1 8869 2 2 7132+ − +× .

× . . × . ]

= 1.8344

⇒ y′4 = 4.0988

and the corrector is y4 = y
h

y y y2 2 3 43
4+ ′ + ′ + ′

= 12773
0 1

3
1 8869 4 2 7132 4 0988+ + +.
. × . .  = 1.8366

∴ y(0.4) = 1.8366

Exercise 10.3

1. Solve the equation dy

dx
x y y= − =2 0 1, � �  for x = 0.2 and x = 0.4 to 3 decimal places by Runge-Kutta

fourth order method.

2. Use the Runge-Kutta method to approximate y at x = 0.1 and x = 0.2 for the equation 
dy

dx
x y y= + =, .0 1� �

3. For the equation 
dy

dx
x

y
y= + =3

2
0 1, .� �  Find y at the following points with the given step-length.

4. Use Runge-Kutta method to solve y′ = xy for x = 1.4, initially x = 1, y = 2 (by taking step-length
h = 0.2).

5.
dy

dx

y x

y x
= −

+

2

2
2

,  use Runge–Kutta method to find y at x = 0.1, 0.2, 0.3 and 0.4, given that y = 1 when

x = 0.

6. Use Runge-Kutta method to obtain y when x = 1.1 given that y = 1.2 when x = 1 and y satisfies the

equation 
dy

dx
x y= +3 2.

7. Solve the differential equation 
dy

dx x y
=

+
1

 for x = 2.0 by using Runge-Kutta method. Initial values

x = 0, y = 1, interval length h = 0.5.
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8. Use Runge-Kutta method to calculate the value of y at x = 0.1, to five decimal places after a single
step of 0.1, if

dy

dx
y x= + +0 31 0 25 0 3 2. . .

and y = 0.72 when x = 0

9. Using Runge-Kutta method of fourth order solve 
dy

dx
 = −

+
y x

y x

2 2

2 2 ,  with y(0) = 1 at x = 0.2, 0.4.

10. Using Runge-Kutta method of order, 4 compute y(0.2) and y(0.4) from 10 0 12 2dy

dx
x y y= + =, ( ) ,  taking

x = 0.1.

11. Find by Runge-Kutta method an approximate value of y for x = 0.8, given that y = 0.41 when x = 0.4
and

dy

dx
x y= + .

12. The unique solution of the problem

dy

dx
xy y= − =, 0 1� �

is y e x= − 2 3/ ,  find approximate value of y(0.2) using one application of R-K method.

Answers

1. 0851, 0.780 2. 1.1103, 1.2428

3.

x h y

0.1 0.1 1.0665242

0.2 0.2 1.1672208

0.4 0.4 1.4782

4. 2.99485866 5.  y(0.1) = 1.0874, y(0.2) = 1.1557, y(0.3) = 1.2104, y(0.4) = 1.2544

6. y(1.1) = 1.7271

7.

x 0.5 1.0 1.5 2.0

y 1.3571 1.5837 1.7555 1.8957

8. 0.76972 9. 1.196, 1.3752 10. 1.0207, 1.038

11. 1.1678 12. 0.9802
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10.9 PICARD’S METHOD OF SUCCESSIVE APPROXIMATION

Consider the initial value problem 
dy

dx
f x y= , ,� �  with the initial condition y(x0) = y. Integrating the

differential equation between x0 and x, we can write

                            dy f x y dx
x

x

x

x

0 0


 
= ,� �

                      ⇒ − = 
y y f x y dx
x

x

0

0

,� �

                           ⇒ = + 
y y f x y dx
x

x

0

0

, ,� � (26)

satisfying the initial condition y(x0) = y0. Equation (26) is known as an integral equation, because
the dependent variable y in the function f(x, y) on the right hand side occurs under the sign of
integration.

The first approximation y1 of y is obtained by replacing y by y0 in f (x, y0) in equation (26).
This gives

                              y y f x y dx
x

x

1 0 0

0

= + 
 , .� � (27)

The value of y1 obtained from equation (27) is substituted for y in the integral equation (26)
to get second approximation y2, such that

                              y y f x y dx
x

x

2 0 1

0

= + 
 , .� � (28)

The successive approximation of y may be written as

                              y y f x y dx
x

x

3 0 2

0

= + 
 ,� �

�

                              y y f x y dxn n

x

x

= + −
0 1

0

, .� �

The process of iteration is stopped when the values of yn – 1 and yn are approximately the same.

Example 10.14 Solve 
dy

dx
y y= + =1 0 02 , � �  by Picard’s method.

Solution Here we have

                                    x y f x y y0 0
20 0 1= = = +, , , .� �
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By Picard’s iterative formula,

                                    y y f x y dxn n

x

x

= + −
0 1

0

, ,� �

                                ⇒ = + −
y y dxn n

x

1 1
2

0

,

                                ⇒ = + −
y x y dxn n

x

1
2

0

.

Now taking n = 1, 2, 3 …, we get the following successive approximations to y

                                     y x y dx x dx x
xx

1 0
2

00

0= + = + =

 � � ,

                                    y x y dx x x dx x
x

xx

2 1
2 2

3

00
3

= + = + = +

 ,

                                    y x y dx x x
x

dx
xx

3 2
2

3 2

00
3

= + = + +
�
��

�
��

 ,

                                    y x x
x x

dx
x

3
2

4 6

0

2

3 9
= + + +

�
��

�
��


                                ⇒ = + + +y x
x x x

3

3 5 7

3

2

15 63
.

The solution can successively be improved further.

Example 10.15 Use Picard’s method to approximate y when x = 0.1, x = 0.2, for 
dy

dx
x y= + 2 ,  where y = 0, when

x = 0.

Solution The first approximation be y1

                                    y x dx
x

x

1

2

0

0 0
2

= + + =
 � � ,

the second approximation be y2. Then

                                    y x
x

dx
x

x
x

2

4

0

2
50

4 2

1

20
= + +

�
��

�
��

= +
 ,

the third approximation be y3. Then

                                     y x
x

x dx
x

3

2
5

2

0

0
2

1

20
= + + +

�
��

�
��

�

�
�
�

�

�
�
�
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= + + +
�
��

�
��
 x

x
x x dx

x 4
10 7

0
4

1

400

1

20

= + + +
x

x x x
2

5 11 8

2

1

20

1

4400

1

1600

= + + +1

2

1

20

1

160

1

4400
2 5 8 11x x x x .

For x = 0.1

                                    y2
0 01

2

0 00001

20
0 005 0 0000005 0 00500= + = + =. .
. . . ,

                                    y3
0 01

2

0 00001

20

0 00000001

160
0 00500= + + + =. . .
. .�

There is no difference between y2 and y3 (up to 5 decimal places)

∴ y = 0.00500 for x = 0.1.

For x = 0.2, we may take x = 0.1, y1 = 0.005 as the initial values, we may write the first approximation y1
as

                                     y x dx
x

1

0 1

0 005 0 000025= + +
. .
.

	 


= +
�
�
�

�
�
�0 005

2
0 000025

2

0 1

. .
.

x
x

= − − + +0 005 0 005 0 0000025
1

2

25

10
2

6. . . .x x

For x = 0.2

                                    y1 6

0 04

2

25

10
0 2 0 02 0 000005 0 0200= + × = + ≈.
. . . . ,

                                    y x dx
x

2

0 1

0 005 0 0004= + +
. .
.

	 


= + +
�
�
�

�
�
�0 005

2
0 0004

2

0 1

. .
.

x
x

x

  = + −
x

x
2

4 52

4

10

4

10
.

∴ For x = 0.2

y2 = 0.02 + 0.00008 – 0.00004 = 0.02004.

y1 and y2 are approximately the same up to the 4 decimal places

x y
dy

dx

0.0 0 0

0.1 0.0050 0.100025

0.2 0.0200 0.200400
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Example 10.16 Given the differential equation 
dy

dx
x y= − , with the condition y = 1 when x = 0, use Picard’s method

to obtain y for x = 0.2 correct to five decimal places.

Solution Here f(x, y) = x – y, x0 = 0, y0 = 1. The successive approximations are given by

                                    y x dx x
x

x

1

0

2

1 1 1
2

= + − = − +
 	 
 ,

                                    y x x
x

dx x x
x

x

2

2

0

2
3

1 1
2

1
6

= + − + −
�
��

�
��

= − + −
 ,

                                    y x x x
x

dx x x
x x

x

3
2

3

0

2
3 4

1 1
6

1
3 24

= + − + − +
�
��

�
��

= − + − +
 ,

                                    y x x
x x x

4
2

3 4 5

1
3 12 120

= + − − + − ,

                                    y x x
x x x x5 2

3 4 5 6

1
3 12 60 720

= − + − + − + .

When x = 0.2, the successive approximation of y are given by y0 = 1, y1 = 0.82, y2 = 0.83867, y3 = 0.43740,
y4 = 0.83746, y5 = 0.83746

∴ The value of y is given by

y = 0.83746.

Example 10.17 Solve 
dy

dx
y= ,  y(0) = 1 by Picard’s method and compare the solution with the exact solution.

Solution We have f(x, y) = y, x0 = 0, y0 = 1, Picard’s formula takes the form

                                    y y dx nn n

x

= + =−
1 1 2 31

0

, , , , ...

Therefore taking n = 1, 2, 3, …, we get

                                    y y dx dx x
x x

1 0

0 0

1 1 1 1= + = + = +
 
 	 
 ,

                                    y y dx x dx
x x

2 1

0 0

1 1 1= + = + +
 
 	 
 ,

                                ⇒ = + +
�
�
�

�
�
� = + +

�
��
�
��

y x
x

x
x

x

2

2

0

2

1
2

1
2

,

                                    y x
x

dx
x

3

2

0

1 1
2

= + + +
�
��
�
��

�
�
�
�

�
�
�
�
  = + +

�
��
�
��

+1
2 3 2

2 2

x
x x

.
,

                                    y x
x x

dx
x

4

2 3

0

1 1
2 3!

= + + + +
�
��

�
��
 ,
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                                ⇒ = + + + + +y x
x x x

4

2 3 4

1
2 3! 4! !

� (29)

Analytical Solution The given differential equation is 
dy

dx
y= , by separating the variables, we have

dy

y
dx= , on integrating, we get log y = x + k,

or y= ex + k = cex (30)

where c = ek is an arbitrary constant. Substituting the initial values x = 0, y = 1 in (2) we get c =
1.

The exact solution is y = ex which has the expansion

                               y e
x x x xx= = + + + + +1
1 2 3! 4

2 3 4

! ! !
� (31)

The Picard solution is given by (29) is the same as the first five terms of (31).

Exercise 10.4

1. Solve  
dy

dx
xy= +1 ,  given that the integral curve passes through the point (0,1) tabulate the values

of y is 0(0.1) 0.5.

2. Solve 
dy

dx
x y x y= + = =2 0 1, , .

3. Use Picard’s method, to obtain the second approximation to the solution of 
d y

dx
x

dy

dx
x y

2

2
3 3 0− + =

given that y = 1, 
dy

dx
= 1

2
 at x = 0.

4. Solve 
dy

dx
x y= + ,  with the initial conditions x y0 00 1= =, .

5. Find the value of y for x = 0.1 by Picard’s Method given that

dy

dx

y x

y x
y= −

+
=, ( )0 1.

6. Obtain Picard’s Second approximate solution of the initial value problem

y
x

y
y′ =

+
=

2

2 1
0 0; ( )
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Answers

1. y x
x x x x x

3

2 3 4 5 6

1
2 3 8 15 48

= + + + + + + + �

2. y x
x x x x

2

2 3 4 5

1
3

2

2

3 4 20
= + + + + + + .

3. y
x x

2

5

1
2

3

40
= + + + �

4. For x = 0.1, y = 1.1103, for x = 0.2, y = 1.2427.

5. 0.9828 6. y x x= − +1
3

1
8

3 9

π
...
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11.1 MATRIX INVERSION METHOD

System of linear equations arise frequently and if n equations in n unknowns are given, we write

                     

a x a x a x b
a x a x a x b
a x a x a x b

a x a x a x b

n n

n n

n n

n n nn n n

11 1 12 2 1 1

21 1 22 2 2 2

31 1 32 2 3 3

1 1 2 2

+ + =
+ + + =
+ + + =

+ + + =

�

�
�
�

�
�
�

...
...
...

...
�

(1)

The set of numbers x1, x2, x3, … xn which reduces (1) to an identity is called the solution set
of the system. If we denote the matrix of coefficients by

A

a a a
a a a

a a a

n

n

n n nn

=

�

�

�
�
�
�

�

	










11 12 1

21 22 2

1 2

�

�

� � � �
� � � �

�

,

the column of its constant terms by

                              
B

b
b

bn

=
�

�

�
�
�

�

	








1

2
�

,

and the column of the unknowns by

                                   
X

x
x

xn

=
�

�

�
�
�

�

	








1

2
�

,

11
SOLUTION OF

LINEAR EQUATIONS

248
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then the system (1) can be compactly written in the form of a matrix equation

AX = B (2)

If the matrix A is non-singular, that is if

                           
det ,A

a a a
a a a

a a a

n

n

n n nn

= =

�

�

�
�
�
�

�

	










≠∆

11 12 1

21 22 2

1 2

0

�

�

� � � �
� � � �

�

then (1) has a unique solution.

If det A ≠ 0,  there is an inverse matrix A–1. Pre multiplying both sides of (2) by the matrix

A–1, we obtain

A–1 AX = A–1 B

or X = A–1 B. (3)

Formula (3) yields a solution of (2) and the solution is unique.

Example 11.1 Solve the system of equations by matrix inversion method.

x1 + x2 + x3 = 1

x1 + 2x2 + 3x3 = 6

x1 + 3x2 + 4x3 = 6,

Solution The given equation can be put in the form

AX = B

where                                     A X
x
x
x

B=
�

�
�
�

�

	





=
�

�

�
�

�

	






=
�

�
�
�

�

	





1 1 1
1 2 3
1 3 4

1
6
6

1

2

3

, , .

                                       det A =
�

�
�
�

�

	





= −
1 1 1
1 2 3
1 3 4

1

                                   ⇒ = − ≠det A 1 0

                                      ∴ −A 1 exists.

                                      ∴ =−A
A

A1 1

det
Adj

=
−

− − −
− −

−

�

�
�
�

�

	





=
−

−
− −

�

�
�
�

�

	





1

1

1 1 1
1 3 2

1 2 1

1 1 1
1 3 2
1 2 1

.

From (3) X = A–1 B
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⇒
�

�

�
�

�

	






=
−

−
− −

�

�
�
�

�

	





�

�
�
�

�

	





= −
�

�
�
�

�

	





x
x
x

1

2

3

1 1 1
1 3 2
1 2 1

1
6
6

1
5

5

⇒   x1 = 1, x2 = –5, x3 = 5.

Exercise 11.1

Solve the following system of equations by matrix inversion method

1. 3x1 – x2 = 5

–2x1 + x2 + x3 = 0

2x1 – x2 = 4x3 = 15

2. 2x – 3y – 5z = 11

5x + 2y – 7z = –12

–4x + 3y + z = 5

3. x + y + z = 7

x + 2y + 3z = 16

x + 3y + 4z = 22

4. 7x1 + 7x2 – 7x3 = 2

–x1 + 11x2 + 7x3 = 1

11x1 + 5x2 + 7x3 = 0

5. x1 + x2 + x3 = 6

x1 + 2x2 + 3x3 = 14

–x1 + x2 – x3 = –2

Answers

1. x1 = 2, x2 = 1, x3 = 3  2. x = 1, y = 2, z = 3 3. x = 1, y = 3, z = 3

4. x1 = 0, x2 = 16, x3 = –105/882 5. x1 = 1, x2 = 2, x3 = 3

11.2 GAUSS–ELIMINATION METHOD

The system equations given by (1) may also be written the tabular form as
x1 x2 x3 � xn bi

a11 a12 a13 � a1n b1

a21 a22 a23 � a2n b2

a31 a32 a33 � a3n b3

�

an1 an2 an3 � ann bn
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The above system is first reduced to triangular form by eliminating one of the unknowns at a
time. The unknown x1 is first eliminated from (n–1) equations by dividing the first equation by a11
and by subtracting this equation multiplied by aii(i = 2, 3, .., n) from the remaining (n–1) equations.
The unknown x2 is then eliminated from the (n–2) equations of (n–1) equations not containing x1.
The Process of elimination is continued until appears only in the last equation as shown in the table
below.

x1 x2 x3� xn bi

1 c12 c13� c1n d1

0 1 c22� czn d2

� � � � �

� � � � �

� � � 1 dn

The unknowns x1, x2, …, xn are then evaluated by backward substitutions.

The value of xn is obtained from the nth equation the value of x2 is then substituted in (n–1)th
equation which gives xn–1.

The values of xn and xn–1 are then substituted in (n–2)nd equation to get the value of xn–2, etc.

The computations are checked at each row by means of an additional column. The additional
column of such checks is denoted by s. The Process described above is called Gauss–Elimination.

If aii ≠ 0,  the ith row cannot be used to eliminate the element in ith column and row r must
be changed with some row below the diagonal to obtained a zero element which is used eliminate
x2.

The example given below is an illustrations of the method.

Example 11.2 Solve by Gauss–Elimination method

2x + 2y + 4z = 18

x + 3y + 2z = 13

3x + y + 3z = 14

Row No. x y z d s Explanation

I 2 2 4 18 26

II 1 3 2 13 19

III 3 1 1 14 21

IV 1 1 2 9 13 I/a11 = I/2

V 0 2 0 4 6 II – 1 × (III)

VI 0 –2 –3 –13 –18 III –3 × (IV)

VII – 1 0 2 3 V/a22 = V/2

VIII – 0 –3 –9 –12 VI + 2 × VII

IX – – 1 3 4 VIII/a33 = VIII/(–3)
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From row IX, we get

z = 3,

From VII, we have

y + 0 = 2

⇒ y = 2

From IV,

x + y + 2z = 9

⇒ x = 9 – y – 2z = 9 – 2 – 2 × 3

∴ x = 1, y = 2, z = 3.

Exercise 11.2

Solve the following by Gauss–Elimination method

1. x1 + 2x2 + 3x3 = 7

2x1 + 7x2 + 15x3 = 26

3x1 + 15x2 + 41x3 = 26

2. 2x1 + 6x2 – x3 = 23

4x1 – x2 + 3x3 = 9

3x1 + x2 + 2x3 = 13

3. 2x + 2y + 4z = 14

3x – y + 2z = 13

5x + 2y – 2z = 2

4. 4x – y + 2z = 15

–x + 2y + 3z = 5

5x – 7y + 9z = 8

5. 2x + y + 4z = 12

8x – 3y + 2z = 20

4x + 11y – z =33

Answers

1. x1 = 2, x2 = 1, x3 = 1 2. x1 = 1, x2 = 4, x3 = 3 3. x = 2, y = –1, z = 3

4. x = 4, y = 3, z = 1 5. x = 3, y = 2, z = 1
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11.3 ITERATION METHODS

The Matrix inversion method and Gauss elimination methods are called Direct methods (or exact
methods) they are based on the elimination of variables in order to reduce the given system of
equations to a triangular form. When a linear system has a large number of unknowns, the Gaussian
scheme becomes very unwieldily. Under such conditions it is more convenient to use indirect or
iterative methods. The iterative methods are not applicable to all systems of equations. In order that
the iteration may succeed, each equation of the system must contain one large coefficient and the
large coefficient must be attached to a different unknown in that equation. Successful use of the
iteration process requires that the moduli of the diagonal coefficients of the given systems be large
in comparison with the moduli of the non-diagonal coefficients. We shall discuss two particular
methods of iteration.

11.3.1 Jacobi’s Method

Consider the system of equations

a11 x1 + a12 x2 + a13 x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2

a31 x1 + a32 x2 + a33 x3 = b3, (4)

assume that the diagonal coefficients, a11, a22 and a33 are large, compared to other coefficients
solving for x1, x2 and x3 respectively. We get

                              x
a

b a x a x1
11

1 12 2 13 3
1= − − ,

                              x
a

b a x a x2
22

2 21 1 23 3
1= − − , (5)

                              x
a

b a x a x3
33

3 3 1 32 2
1= − − ,

let x x x1
0

2
0

3
0( ) ( ) ( ), , ,  denote the initial estimates for the values of the unknowns x1, x2, x3. Substituting

these values in the right sides of (5) we get the first iterative values x1, x2, x3 as follows:

                            x
a

b a x a x1
1

11
1 12 2

0
13 3

01( ) ( ) ( ) ,= − −

                            x
a

b a x a x2
1

22
2 21 1

0
23 3

01( ) ( ) ( ) ,= − −

                            x
a

b a x a x3
1

33
3 31 1

0
32 2

01( ) ( ) ( ) .= − −

Substituting the values x x x1
1

2
1

3
1( ) ( ) ( ), ,  the right sides of (5), we get

                            x
a

b a x a x1
2

11
1 12 2

1
13 3

11( ) ( ) ( ) ,= − −
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                            x
a

b a x a x2
2

22
2 21 1

1
23 3

11( ) ( ) ( ) ,= − −

                            x
a

b a x a x3
2

33
3 31 1

1
32 2

11( ) ( ) ( ) .= − −

If x x xn n n
1 2 3
( ) ( ) ( ), ,  denote the nth iterates then

                          x
a

b a x a xn n n
1

1

11
1 12 2 13 3

1( ) ( ) ( ) ,+ = − −

                          x
a

b a x a xn n n
2

1

22
2 21 1 23 3

1( ) ( ) ( ) ,+ = − −

                          x
a

b a x a xn n n
3

1

33
3 31 1 32 2

1( ) ( ) ( ) .+ = − −

The process is continued till convergence is secured.

Note: In the absence of any better estimates, the initial estimates for the values of x1, x2, x3, are taken as

x x x1
0

2
0

3
00 0 0( ) ( ) ( ), , .= = =

Example 11.3 Solve by Gauss–Jacobi’s method

5x + 2y + z = 12,

x + 4y + 2z = 15,

x + 2y + 5z = 20.

Solution The above system is diagonally dominant, i.e., in each equation the absolute value of the largest coefficient
is greater than the sum of the remaining coefficients. The given equations can be written as

                                           x y= − −1

5
12 2 3 ,

                                           y x z= − −1

4
15 2 ,

                                            z x y= − −1

5
20 2 .

We start the iteration by putting x = 0, y = 0, z = 0

∴  For the first iteration we get

                                   x ( ) . ,1 1

5
12 0 0 2 40= − − =

                                  y ( ) . ,1 1

4
15 0 0 3 75= − − =

                                   z ( ) . ,1 1

5
20 0 0 4 00= − − =
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putting the values y(1), z(1) in the right side of (1), we get

                                  x ( ) . . . ,2 1

5
12 2 3 75 4 00 010= − − =� �

similarly putting the values of z(1) and x(1) in (2) we get

                                         y ( ) . . . ,2 1

4
15 2 40 2 40 115= − − =

and putting the values of x(1) and y(1) in the right side of (3) we get

                                         z ( ) . . . .2 1

5
20 2 40 3 75 2 02= − − =

The iteration process is continued and the results are tabulated as follows

Iterations 1 2 3 4 5 6 7 8

x 2.40 0.10 1.54 0.61 1.41 0.80 1.08 1.084

y 3.75 1.15 1.72 1.17 2.29 1.69 1.95 1.95

z 4.00 2.02 3.57 2.60 3.41 3.20 3.16 3.164

The values of x, y, z, at the end of the 8th iteration are x = 1.084, y = 1.95, and z = 3.164.

Exercise 11.3

Solve by Gauss–Jacobi’s method of iteration:

1. 27x1 + 6x2 – x3 = 85

6x1 + 5x2 + 2x3 = 72

x1 + x2 + 54x3 = 110

2. x + 10y + 3 = 6

10x + y + z = 6

x + y + 10z = 6

3. 13x1 + 5x2 – 3x3 + x4 = 18

2x1 + 12x2 + x3 – 4x4 = 13

3x1 – 4x2 + 10x3 + x4 = 29

2x1 + x2 – 3x3 + 9x4 = 31

4. 4x1 + 0.24x2 – 0.08x3 = 8

0.09x1 + 3x2 – 0.15x3 = 9

0.04x1 – 0.08x2 + 4x3 = 20

Answers

1. x1 = 2.4255, x2 = 3.5730, x3 = 1.9260 2. x = 0.5, y = 0.5, z = 0.5

3. x1 = 1, x2 = 2, x3 = 3, x4 = 4 4. x1 = 1.90923, x2 = 3.19495, x3 = 5.04485



256 NUMERICAL ANALYSIS

11.3.2 Gauss–Seidel Method

Consider the system of equations

a11 x1 + a12 x2 + a13 x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2 refer (4)

a31 x1 + a32 x2 + a33 x3 = b3

Suppose in the above system, the coefficients of the diagonal terms are large in each equation
compared to other coefficients, solving for x1, x2, x3 respectively

                             

x
a

b a x a x

x
a

b a x a x

x
a

b a x a x

1
11

1 12 2 13 3

2
22

2 21 1 23 3

3
33

3 3 1 32 2

1

1

1

= − −

= − −

= − −

�

�

�
�
�

�

�
�
�

,

,

.

(6)

Let x x x1
0

2
0

3
0( ) ( ) ( ), , ,  denote the initial approximations of x1, x2, x3 respectively. Substituting x2

0( ) ,

and x3
0( ) ,  in the first equation of (6) we get

                            x
a

b a x a x1
1

11
1 12 2

0
13 3

01( ) ( ) ( ) .= − −

Then we substitute x1
1( ) ,  and x1 and x3

0( )  for x3 in second equation of (6) which gives

                            x
a

b a x a x2
1

22
2 21 1

1
23 3

01( ) ( ) ( ) .= − −

We substitute x1
1( )  for x, and x2

1( )  for x2 in the third equation of (6) which gives

                            x
a

b a x a x3
1

33
3 31 1

1
32 2

11( ) ( ) ( ) .= − −

In the above process, we observe that the new value when found is immediately used in the
following equations:

                          x
a

b a x a xn n n
1

1

11
1 12 2 13 3

1( ) ( ) ( ) ,+ = − −

                          x
a

b a x a xn n n
2

1

22
2 21 1

1
23 3

1( ) ( ) ( ) ,+ += − −

                          x
a

b a x a xn n n
3

1

33
3 31 1

1
32 2

11( ) ( ) ( ) .+ + += − −

The above process is continued till convergency is secured.

Note: Gauss–Seidel method is a modification of Gauss–Jacobi method. The convergence is Gauss–Seidel method is
more rapid than in Gauss–Jacobi Method.
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Example 11.4 Solve by Gauss–Seidel method of iteration the equations

10x1 + x2 + x3 = 12

2x1 + 10x2 + x3 = 13

2x1 + 2x2 + 10x3 = 14

Solution From the given equations we have

                                    x x x1 1 2
1

10
12= − − , (7)

                                    x x x2 1 3
1

10
13 2= − − , (8)

                                    x x x3 1 2
1

10
14 2 2= − − . (9)

Putting x = 0 in right side of (7) we get

                                   x1
1 12

10
12( ) . ,=

putting x x x1 1
1

312 0= = =( ) . ,  in (8), we get

                                   x2
1 1

10
13 2 4 0

10 6

10
106( ) .

.
. ,= − − = =

putting x x1 1
1 12= =( ) .  and x x2 2

1 16= =( ) .  in (9), we get

                                   x3
1 1

10
14 2 4 2 12 0 948( ) . . . ,= − − =

For second iteration we have

                                  x1
2 1

10
12 106 0 948 0 9992( ) . . . ,= − − =

                                  x2
2 1

10
13 2 0 9992 0 948 100536( ) . . . ,= − − =� �

                                  x3
2 1

10
14 2 0 9992 2 100536 0 999098( ) . . . .= − − =� � � �

Thus the iteration process is continued. The results are tabulated as follows correcting to four decimal places

i x i
1
( ) x i

2
( ) x i

3
( )

0 1.2000 0.000 0.0000

1 1.2000 1.0600 0.9480

2 0.9992 1.0054 0.9991

3 0.9996 1.001 1.001

4 1.0000 1.0000 1.00

5 1.000 1.000 1.000
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∴  The exact values of the roots are

x1 = 1, x2 = 1, x3 = 1.

Exercise 11.4

Solve by Gauss–Seidel method, the equations:

1. 27x + 6y – z = 85

6x + 15y + 2z = 72

x + y + 54z = 110

2. 10x1 – x2 – x3 = 13

x1 + 10x2 + x3 = 36

–x1 – x2 + 10x3 = 35

3. x1 + 10x2 + x3 = 6

10x1 + x2 + x3 = 6

x1 + x2 + 10x3 = 6

4. 13x1 + 5x2 – 3x3 + x4 = 18

2x1 + 12x2 + x3 – 4x4 = 13

3x1 – 4x2 + 10x3 – x4 = 29

2x1 + x2 – 3x3 + 9x4 = 31

5. 5x + 2y + z = 12

x + 4y + 2z = 15

x + 2y + 5z = 20

Answers

1.  x = 2.4255, y = 3.5730, z = 1.9260 2. x1 = 2, x2 = 3, x3 = 4 3. x1 = 0.5, x2 = 0.5, x3 = 0.5

4. x1 = 1, x2 = 2, x3 = 3, x4= 4 5. x = 0.996, y = 2, z = 3.

11.4 CROUT’S TRIANGULARISATION METHOD (METHOD OF
FACTORISATION)

Basic Definitions

Consider the square matrix

A = [aij]n × n

(i) If aij = 0 for i > j. Then A is called an upper triangular matrix.

(ii) If aij = 0 for i < j. Then the matrix A is called a lower triangular matrix.

                                   A
a a a

a a
a

=
�

�

�
�

�

	






11 12 13

22 23

33

0
0 0

 is an upper triangular matrix
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and                               A
a
a a
a a a

=
�

�

�
�

�

	






11

21 22

31 32 33

0 0
0  is a lower triangular matrix

from the above; it is clear that; A is an upper triangular matrix if all the elements below the main
diagonal are zero, and A is lower triangular if A has all elements above the principal diagonal as zero.

Triangularization Method

Consider the system

a11 x1 + a12 x2 + a13 x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2

a31 x1 + a32 x2 + a33 x3 = b3

The above system can be written as

AX = B  ... (1)

where                             A
a a a
a a a
a a a

X
x
x
x

B
b
b
b

=
�

�

�
�

�

	






=
�

�

�
�

�

	






=
�

�

�
�

�

	






11 12 13

21 22 23

31 32 33

1

2

3

1

2

3

, ,

Let A = LU... (2)

where                             L l
l l

U
u u u

u u
u

=
�

�

�
�

�

	






=
�

�

�
�

�

	






1 0 0
1 0

1
0
0 0

21

31 32

11 12 13

22 23

33

and

Hence the equation (1) becomes

LUX = B... (3)

If we write UX = V... (4)

Equation (3) becomes

LV = B ... (5)

Which is equivalent to the system

v1 = b1

l21 v1 + v2 = b2

l31 v1 + l32 v2 + v3 = b3

the above system can be solved to know the values of v1, v2 and v3 which give us the matrix V.
When V is known the system.

UX = V, becomes

u11 x1 + u12 x2 + u13 x3 = v1

u22 x2 + u23 x3 = v2

u33 x3 = v3

which can be solved for x3, x2 and x1 by the backward substitution

To compute the Matrices L and U, we write (2) as
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1 0 0

1 0
1

0
0 0

21

31 32

11 12 13

22 23

33

11 12 13

21 22 23

31 32 33

l
l l

u u u
u u

u

a a a
a a a
a a a

�

�

�
�

�

	






�

�

�
�

�

	






=
�

�

�
�

�

	






multiplying the matrices on the left and equating the corresponding elements of both sides, we obtain

u11 = a11, u12 = a12, u13 = a13 (i)

                          

l u a l
a

a

l u a l
a

a

21 11 21 21
21

11

31 11 31 31
31

11

= ⇒ =

= ⇒ =

�

�
��

�
�
�

(ii)

                    
l u u a u a

a

a
a

l u u a u a
a

a
a

21 12 22 22 22 22
21

11
12

21 13 23 23 23 23
21

11
13

+ = ⇒ = −

+ = ⇒ = −

�

�
��

�
�
�

(iii)

                 l u l u a l
u

a
a

a
a31 12 32 22 32 32

22
32

31

11
12

1+ = ⇒ = −
�

�
�

�

	

 ... (iv)

and l31 u13 + l32 u23 + u33 = a33 (v)

The value of u33 can be computed from (v)

To evaluate the elements of L and U, we first find the first row of U and the first column of
L: then we determine the second row of U and the second column of L: and finally, we compute
the third row of U. The procedure can be generalised.

Example 11.5 Apply Triangularization (factorization) method to solve the equation

2x + 3y + z = 9

x + 2y + 3z = 6

3x + y + 2z = 8

Solution We have                       A X
x
y
z

B=
�

�
�
�

�

	





=
�

�
�
�

�

	





=
�

�
�
�

�

	





2 3 1
1 2 3
3 1 2

9
6
8

, ,

Let     
l

l
l l

u u u
u u

u

0 0
1 0

1
0
0 0

2 3 1
1 2 3
3 1 2

21

31 32

11 12 13

22 23

33

�

�

�
�

�

	






�

�

�
�

�

	






=
�

�
�
�

�

	





multiplying and equating we get

u11 = 2, u12 = 3, u13 = 1... (i)
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l u l l

l u l l

21 11 21 21

31 11 31 31

1 2 1
1

2

3 2 3
3

2

= ⇒ = ⇒ =

= ⇒ = ⇒ =

�

�
�

�
�

... (ii)

                          
l u u u u

l u u u u

21 12 22 22 22

21 13 23 23 23

2
1

2
3 2

1

2

3
1

2
3

5

2

+ = ⇒ ⋅ + = ⇒ =

+ = ⇒ + = ⇒ =

�

�
�

�
�

... (iii)

                      l u l u l l31 12 32 22 32 321
3

2
3

1

2
1 7+ = ⇒ ⋅ + 


��
�
��

= ⇒ = − (iv)

Finally, l31 u13 + l32 u23 + u33 = 2

            ⇒ ⋅ + − ⋅ + = ⇒ =3

2
1 7

5

2
2 1833 33� � u u (v)

Thus, we get                       A =

−

�

�

�
�
�
�
�
�
�

�

	
















�

�

�
�
�
�

�

	










1 0 0
1

2
1 0

3

2
7 1

2 3 1

0
1

2

5

2
0 0 18

and the given system can be written as

     

1 0 0
1

2
1 0

3

2
7 1

2 3 1

0
1

2

5

2
0 0 18

9
6
8

−

�

�

�
�
�
�
�
�
�

�

	
















�

�

�
�
�
�

�

	










�

�
�
�

�

	





=
�

�
�
�

�

	





x
y
z

Writing; LV = B we get

                  

1 0 0
1

2
1 0

3

2
7 1

9
6
8

1

2

3

−

�

�

�
�
�
�
�
�
�

�

	
















�

�

�
�

�

	






=
�

�
�
�

�

	





v
v
v

which gives
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                                    v1 9=

                  
v

v v1
2 22

6
3

2
+ + =or

and              
3

2
7 8 51 2 3 3v v v v− + = ⇒ =

∴  The solution to the original system; is given by; UX = V; i.e.,

                    

2 3 1

0
1

2

5

2
0 0 18

9
3

2
8

�

�

�
�
�
�

�

	










�

�
�
�

�

	





=

�

�

�
�
�
�

�

	










x
y
z

i.e., 2x + 3y + z = 9

                              
y z

2

5

2

3

2
+ =

                  18z = 5

by back substituting, we have

                                    x y z= = =35

18

29

18

5

18
, , .

Crout’s Method

Consider the system

a11 x1 + a12 x2 + a13 x3 = b1

a21 x1 + a22 x2 + a23 x3 = b2 ...(1)

a31 x1 + a32 x2 + a33 x3 = b3

The above system can be written as

AX = B ...(2)

Let A = LU ...(3)

where L =

l

l l

l l l

U

u u

u
11

21 22

31 32 33

12 13

23

0 0

0 0 1

0 0 1

�

�

�
�
�

�

	








�

�

�
�
�

�

	








and    =

1

L is a lower triangular matrix and u is an upper triangular matrix with diagonal elements unity.

A = LU ⇒ A–1 = U–1L–1 ...(4)

Now A = LU ⇒ 

a a a

a a a

a a a

l

l l

l l l

11 12 13

21 22 23

31 32 33

11

21 22

31 32 33

0 0

0

�

�

�
�
�

�

	








=
�

�

�
�
�

�

	








 

1 u u

u
12 13

230 1

0 0 1

�

�

�
�
�

�
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⇒

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

�

�

�
�
�

�

	








=

l l u l u

l l u l l u l u

l l u l l u l u l

11 11 12 11 13

21 21 12 22 21 13 22 23

31 31 12 32 31 13 32 23 33

+ +
+ + +

�

�

�
�
�

�

	








Equating the corresponding elements, we get

l11 = a11 l21 = a21 l31 = a31 ...(i)

l11u12 = a12 l11u13 = a13 ...(ii)

l21 u12 + l22 = a22 l31 u12 + l32 = a32 ...(iii)

l21 u13 + l22 u23 = a23 ...(iv)

and l31 u13 + l32 u23 + l33 = a33 ...(v)

from (ii) we get u12 = a12/l11 (using (i))

= a12/a11

from (iii) we get l22 = a22 – l21 u12 ...(vi)

l32 = a32 – l31 u12 ...(vii)

(iv) gives u23 = (a23 – l21 u23)/l22 ...(viii)

from the relation (v) we get

l33 = a33 – l31 u13 – l32 u23 ...(ix)

Thus, we have determined all the elements of L and U.

From (2) and (3) we have

LUX = B ...(5)

Let UX = V where V = 

v

v

vn

1

2

�

�

�

�
�
�
�

�

	










From (5) we have LV = B, which on forward substitution gives V.

From UX = V, we find X (by backward substitution)

Note: Using (4) we can also find the in case of A.

Example 1. Solve 2x + y = 7

x + 2y = 5

Solution. The given system can be written as AX = B ...(1)

where A =
2 1

1 2

7

5

�

�
�

�

	

 =

�

�
�
�

	

 =

�

�
�
�

	

, ,X

x

y
B

Let A = LU where L =
l

l l
U

u11

21 22

120 1

0 1

�

�
�

�

	

 =

�

�
�

�

	

,
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∴ A = LU ⇒ 
2 1

1 2

�

�
�

�

	

 =

l

l l

u11

21 22

120 1

0 1

�

�
�

�

	


�

�
�

�

	



=
l l u

l l u l
11 11 12

21 21 12 22+
�

�
�

�

	



Equating the corresponding elements we get

l11 = 2, l11 u12 = 1 ⇒ u12 = 1/2

l21 = 1, l21 u12 + l22 = 2

⇒ 1.u12 + l22 = 2

⇒
1

2 22+ l = 2 ⇒ l22
3

2
=

∴ L =
2 0

1
3

2

1 1 2

0 1

�

�
�
�

�

	





=
�

�
�

�

	

,

/
U

∴ From (1) we get LUX = B ...(2)

Let UX = V, than from we have

LV = B

⇒
2 0

1
3

2

1

2

�

�
�
�

�

	





�

�
�
�

	



u

u =
7

5

�

�
�
�

	



⇒ 2v1 = 7, v1 + 
3

2 2v  = 5

v1 =
7

2
 and 

7

2

3

2
5 12 2+ = ⇒ =v u

∴ v1 =
7

2
, v2 = 1 ⇒ U = 

7

2
1

�

�

�
�
�

�

	








Now UX = V ⇒
1 1 2

0 1
7 2

1

/ /�

�
�

�

	


�

�
�
�

	

 = �
��

�
	


x

y

⇒ x y+ 1

2
=

7

2
1, y =

⇒ x + 1

2
=

7

2

⇒ x =
7

2

1

2

6

2
3− = =

∴ x = 3, y = 1 is the required solution.

Example 2.  Solve the equation by Crout’s method.

x + y + z = 9
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2x – 3y + 4z = 13

3x + 4y + 5z = 40

Solution. We have A =

1 1 1

2 3 4

3 4 5

9

13

40

−
�

�

�
�
�

�

	








=
�

�

�
�
�

�

	








=
�

�

�
�
�

�

	








, ,X

x

y

z

B

The given system of equation is AX = B ...(1)

Let A = LU ...(2)

where L =

l

l l

l l l

U

u u

u
11

21 22

31 32 33

12 13

23

0 0

0

1

0 1

0 0 1

�

�

�
�
�

�

	








=
�

�

�
�
�

�

	








;

A = LU

⇒

1 1 1

2 3 4

3 4 5

−
�

�

�
�
�

�

	








=

l

l l

l l l

u u

u
11

21 22

31 32 33

12 13

23

0 0

0

1

0 1

0 0 1

�

�

�
�
�

�

	








�

�

�
�
�

�

	








⇒

1 1 1

2 3 4

3 4 5

−
�

�

�
�
�

�

	








=

l l u l u

l l u l l u l u

l l u l l u l u l

11 11 12 11 13

21 22 12 22 21 13 22 23

31 31 12 32 33 13 32 23 33

+ +
+ + +

�

�

�
�
�

�

	








Equating the corresponding elements, we have

l11 = 1, l11 u12 = 1 ⇒ 1.u12 = 1  ⇒ u12 = 1; l11u13 = 1 ⇒ u13 = 1

l21 = 2, l21 u12 + l22 = –3 ⇒ 2 + l22 = –3;  l21u13 + l22u23 = 4

 ⇒ l22 = –5;  ⇒ 2 –5u23 = 4

 ⇒ u23 = − 2

5
.

l31 = 3, l31u12 + l32 = 4; l31 u13 + l32 u23 + l33 = 5

⇒ 3 + l32 = 4; ⇒ 3 − + =2

5
533l

⇒ l32 = 1; ⇒ l33
12

5
=

∴ L =

1 0 0

2 5 0

3 1
12
5

1 1 1

0 1
2
5

0 0 1

−

�

�

�
�
�
�

�

	










= −

�

�

�
�
�

�

	








and   U

Substituting A = LU in (1) we get

LUX = B ...(3)

Let UX = V where V = 

v

v

v

1

2

3

�

�

�
�
�

�
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∴ LV = B ⇒ −

�

�

�
�
�
�

�

	










�

�

�
�
�

�

	








=
�

�

�
�
�

�

	








1 0 0

2 5 0

3 1
12
5

9

13

40

1

2

3

v

v

v

∴

v

v v

v v v

1

1 2

1 2 3

2 5

3
12
5

−

+ +

�

�

�
�
�
�
�

�

	












=

9

13

40

�

�

�
�
�

�

	








∴ v1 = 9, 2v1 – 5v2 = 13 ; 3v1 + v2 + 
12

5
403v =

⇒ 18 – 5v2 = 13 ; 27 + 1 + 
12

5
403v =

⇒ v2 = 1  ; v3 = 5

∴ V =

9

1

5

�

�

�
�
�

�

	








Now UX = V

⇒

1 1 1

0 1
2

5
0 0 1

−
�

�

�
�
�

�

	








�

�

�
�
�

�

	








x

y

z
=

9

1

5

�

�

�
�
�

�

	








⇒ x + y + z = 9

y – 
2

5
z = 1

z = 5

By back substitution, we get

y – 
2

5
z = 1 ⇒ y – 

2

5
5.  = 1 ⇒ y – 2 = 1 ⇒ y = 3

and x + y + z = 9 ⇒ x + 3 + 5 = 9 ⇒ x = 1

∴ The required solution is x = 1, y = 2, z = 3

Exercise 11.5

Applying (a) Crouts’ method (b) triangularization method solve the equations

1. 3x + 2y + 7z = 4

2x + 3y + z = 5

3x + 4y + z = 7
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2. 10x + y + z = 12

2x + 10y + z = 13

2x + 2y + 10z = 14

3. 5x + 2y + z = –12

–x + 4y + 2z = 20

2x – 3y + 10z = 3

4. 2x – 6y + 8z = 24

5x + 4y – 3z = 2

3x + y + 2z = 16

5. 10x1 + 7x2 + 8x3 + 7x4 = 32

7x1 + 5x2 + 6x3 + 5x4 = 23

8x1 + 6x2 + 10x3 + 9x4 = 33

7x1 + 5x2 + 9x3 + 10x4 = 31

6. 2x1 – x2 + x3 = –1, 2x2 – x3 + x4 = 1

x1 + 2x3 – x4 = –1, x1 + x2 + 2x4 = 3

Answers

1. x = 7/8, y = 9/8, z = –1/8 2. x = y = z = 1 3. z = 2, y = 3, x = –4

4. x = 1, y = 3, z = 5 5. x1 = x2 = x3 = x4 = 1 6. x1 = –1, x2 = 0, x3 = 1, x4 = 2.
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12.1 INTRODUCTION

In this chapter we are concerned with the problem of fitting an equation or a curve to data involving
paired values. An approximate non-mathematical relationship between the two variables, can be
established by a diagram called scatter diagram. The exact mathematical relationship between the two
variables is given by simple algebraic expression called curve fitting. Though there are infinite variety
of curves in mathematics, the curves used for the purpose of curve fitting are relatively limited in
type. The straight line is the simplest and one of the most important curves used.

12.2 THE STRAIGHT LINE

The equation

y = a + bx (1)

is an equation of the first degree in x and y. It represents a straight line.

The difference

yi – (a + bxi) (2)

is zero if and only if the point (xi, yi) lies on the line given by (1).

12.3 FITTING A STRAIGHT LINE

Usually fitting a straight line means finding the values of the parameters a and b of the straight line
given by (1), as well as actually constructing the line itself. The Graphic methods and the Method
of least squares are two useful methods for fitting a straight line.

12.3.1 The Graphical Method

This method can be used whenever the given formula can be plotted as a straight line either directly
or after suitable transformation. The straight line drawn after a careful visual estimate of its position
has been made with the aid of a ruler. The co-ordinates of any two points on the line, not too near
together are then measures and substituted in equation (1). The resulting equations in a and b are
then solved for their parameters. Graphical method, whatever its theoretical attractions, suffers from
the disadvantage that it is difficult to apply in practice except for the straight line. This method will
give fairly good results when finely divided co-ordinate paper is used, but in general it is not
recommended.

12
CURVE FITTING

268
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y P yr r r (x , )

er

Q  (x , a + bx )

r
r

r

x0 xr

Yr

a + bxr

y =   a + bx  .  .  
.  .  .  

.  .  . 
 .

.  .  . 
 .  .  . 

 .  .  . 
 .  .  .

An alternative method, which is in almost universal use at present time, is known as the method
of Least Squares and we proceed to discuss it at length.

12.3.2 The Method of Least Squares

This method of curve fitting was suggested early in the nineteenth century by the French mathema-
tician Adrien Legendre. The method of least squares assumes that the best fitting line in the curve
for which the sum of the squares of the vertical distances of the points (xr, yr) from the line is
minimum. This method is more accurate than the graphical method.

Let y = a + bx refer (1)

be the equation of the line. The ordinate of any point Qr on the line vertically above or below a given
point Pr, can be found by substituting the abscissa xr, in the right-hand side of (1). The two co-
ordinates of Qr, will be (xr, a + bxr) (see in the above figure). The vertical distance er from the line
of any point, Pr with co-ordinates (xr, yr), will therefore be given by the equation

er = yr – (a + xr). (3)

We may say that er represents the difference between the actual ordinate yr, of a point and its
theoretical ordinate a + bxr.

Let                              q e y a bxr r r
r

n

r

n

= = − +
==

∑∑ 2 2

11

� �� � . (4)

The best fitting line is that line for which the sum of the squares, q er= ∑ 2  is a minimum. We
find the values of a and b which make q minimum as follows:
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Differentiating q partially with respect to a and b and equally these partially to zero, we obtain

                          ∴ = − − + =
=

∑∂
∂
q

a
y a bxr r

r

n

2 0
1

� � � � ,

and                               
∂
∂
q

b
x y a bxr r r

r

n

= − − + =
=

∑ 2 0
1

� � � � ,

which yield the so-called system of normal equations,

                          y an b xr
r

n

r
r

n

= +
= =

∑ ∑
1 1

, (5)

and                         y y a x b xr r
r

n

r
r

n

r
r

n

= +
= = =

∑ ∑ ∑
1 1

2

1

. (6)

Solving this system of equations we get

                             a

x y x x y

n x x

r

n

r

n

r

n

r r

r r

nn
=

−

−
�
��

�
	


∑ ∑ ∑ ∑

∑∑

2

1 1 1

2

1

2

1

, (7)

                             b
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r r
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r
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r
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 −
�

�
�

�

	



= = =

= =

∑ ∑ ∑

∑ ∑
1 1

2

1

2

1 1

, (8)

where n is the number of points (xr, yr).

To simplify the formulae, we let

                            t
x x

hr
r= −

, (9)

where h is the interval between successive values of x assumed to be equally spaced. Shifting the
origin to the mean x  and compressing the intervals to unity we get the transformed equation of (2)
referred to the new (t, y) axes as

                            y a b t= + , (10)

where a  and b  are the parameters in the new equation. In terms of the new co-ordinate formulae
(7) and (8) become
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                              a

t y t t y

n t t

r

n

r

n

r

n

r r

r r

=

−

−

∑ ∑ ∑ ∑

∑ ∑

2

1 1 1

2
2

� �
, (11)

                              b

n t y t y

n t t

r r

n

r

n

r

r

n

r

n
=

−

−
�
��

�
	


∑ ∑ ∑

∑ ∑
1 1

2

1 1

2
. (12)

Transformation (9) replace the xrs’ by unit deviations tr from the mean x .

Since

                           tr

n

=∑ 0
1

,

the formulae (11) and (12) reduce to

                              a

t y

n t

r r

nn

r

=
−

−

∑∑
∑

2

11
2

0

0
,

and                                b

n t y

n t

r r

n

r

n
=

−

−

∑

∑

0

0

1

2

1

,

which further simplify to the form

                              a
n

y yr

n

= =∑1

1

, (13)

                              b

t y

t

r r

n

r

n
=

∑

∑
1

2

1

. (14)
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12.4 FITTING A PARABOLA

When a set of points exhibits a parabolic trend, the fitting of a quadratic function

y = a + bx + cx2,

to the data may be carried out by the method of least squares, which leads to the three equations

          na b x c x yr

n

r r

n

+ + =∑ ∑ ∑
1

2

1

,

      a x b x c x x yr r

n

r

n

r r

nn

+ + =∑ ∑ ∑∑ 2

1

3

1 11

,

      a x b x c x x yr r

n

r

n

r r

nn
2 3

1

4

1

2

11

+ + =∑ ∑ ∑∑ .

The above equations can be solved for a, b, c.

12.5 EXPONENTIAL FUNCTION y = aebx

Transforming the exponential equation y = aebx by taking logarithms on both sides we get

log y = log a + bx log e.

If we replace log y by y and the constants log a and b log e by ′a  and ′b  respectively, we
obtain

                              Y a b x= ′ + ′ ,

which defines a straight line.

Example 12.1 Find the least square line y = a + bx for the data points (–1, 10), (0,9), (1,7), (2,5), (3,4), (4,3), (5,0)
and (6, –1).

Solution Here

xr yr xr
2 xryr

–1 10 1 –10

0 9 0 0

1 7 1 7

2 5 4 10

3 4 9 12

4 3 9 12

5 0 25 0

6 –1 36 –6

20 37 92 25

From the table we have

n = 8, ∑ =xr 20,  ∑ =yr 37,  ∑ =xr 2 92,  and ∑ =x yr r 25.
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The normal equations are

                          na b x yr r+ ∑ = ∑ ,

                      a x b x x yr r r r∑ + ∑ = ∑2 .

Putting the values in normal equations

                            8 20 37a b+ = ,

and                                    20 97 25a b= = ,

and solving these equations we get

a = 8.6428571,

b = –1.6071429.

Therefore the least square line is

y = 8.6428571 + (–1) 1.6071429x,

i.e., y = –1.6071429x + 8.6428571.

Example 12.2 Find the least square line y =a + bx for the data

xr –2 –1 0 1 2

yr 1 2 3 3 4

Solution

xr yr xr
2 xr yr

–2 1 4 –2

–1 2 1 –2

0 3 0 0

1 3 1 3

2 4 4 8

0 13 10 7

∴  In this case n = 5, ∑ =xr 0,  ∑ =yr 13,  ∑ =xr2 10,  and ∑ =x yr r 7.

The normal equations are

                          na b x yr r+ ∑ = ∑ ,

                      a x b x x yr r r r∑ + ∑ = ∑2 .

Putting the values of n x y xr r r, , ,∑ ∑ ∑ 2  and ∑ x yr r  in the above equation we get 5a = 13, 10b = 7.

Solving

a = 2.6, b = 0.7.

∴  The required line of fit is

y = 2.6 + (0.7)x.

Example 12.3 Find a formula for the line of the form y =a + bx +cx2 which will fit the following data

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

y 3.1950 3.2299 3.2532 3.2611 3.2516 3.2282 3.1807 3.1266 3.0594 2.9759



274 NUMERICAL ANALYSIS

Solution The normal equations are

                        na b x x x yr r r+ ∑ + ∑ = ∑2 ,

                             a x b x c y x yr r r r r∑ + ∑ = ∑ = ∑2 3 ,

                    a x b x c x y yr r r r r∑ + ∑ + ∑ = ∑2 3 4 2 .

Substituting the values of ∑ ∑ ∑ ∑ ∑ ∑x x x x y x y yr r r r r r r r, , , , , ,2 3 2  and n, we get

10a + 4.5b + 2.85c = 31.7616,

4.5a + 2.85b + 2.025c = 14.0896,

2.85a + 2.025b + 1.5333c = 8.82881,

and solving these equations we obtain

a = 3.1951, b = 0.44254, c = – 0.76531.

∴  The required equation is

y = 3.1951 + 0.44254x – 0.76531x2.

Example 12.4 Fit a second degree parabola to the following data

x 0 1 2 3 4

y 0 1.8 1.3 2.5 6.3

Solution The values of x are, 0, 1, 2, 3, 4

The number of values is odd. Shifting the origin to the middle value 2 of x, and making the substitution

u = x – 2, v = y,

the curve of fit as

v = a + bu + cu2,

we obtain

x v u v uv u2 u2v u3 u4

0 1 –1 1 –2 4 4 –8 16

1 1.8 –2 1.8 1.6 1 1.8 –1 1

2 1.2 0 1.3 0 0 0 0 0

3 2.5 1 2.5 2.5 1 2.5 1 1

4 6.3 2 6.3 12.6 4 25.2 8 16

– – 0 12.9 11.3 10 33.5 0 34

The normal equations are

                                   ∑ = + ∑ + ∑v na b u c u2 ,

                                  ∑ = ∑ + ∑ + ∑uv a u b u c u2 3 ,

                                ∑ = ∑ + ∑ + ∑u v a u b u c u2 2 3 4 .

Putting the values of n u v uv, , , , ...,∑ ∑ ∑  etc.,
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12.9 = 5a + 10c,

11.3 = 10b,

33.5 = 10a + 34c,

solving these normal equations we get

a = 1.48, b = 1.13, c = 0.550.

∴  The required equation is

v = 1.48 + 1.13u + 1.55u2,

substituting u = x – 2, v = y in the above equation we get,

y = 1.42 + 1.13(x – 2) + (0.55) (x – 2)2.

∴  The required curve of fit is the parabola

y = 1.42 – 1.07x + 0.55x2.

Example 12.5  Obtain normal equations for fitting a curve of the form

y = ax
b

x
+

for a point ( , ),x yr r r = 1, 2, ..., x

Solution  The curve y = ax
b

x
+ ...(1)

Passes through the points (xr , yr) r = 1, 2, ..., n

Therefore, we have

y = ax
b

x1
1

+

y2 = ax
b

x2
2

+ ...(2)

.

.

.

yn = ax
b

xn
n

+

putting
1

x
= z in (1) we get

y = ax + bz ...(3)

⇒ S = Σ ( )y ax bzr r r− − 2 ...(4)

differentiating (4); partially with respect a and b we get

∂
∂

s

a
= − − − = − − −2 2 2Σ Σx y ax bz x y ax bx zr r r r r r r r r( ) ( )

and
∂
∂

s

a
= − − − = − − −2 2 2Σ Σz y ax bz y z ax z bzr r r r r r r r r( ) ( )

for S to be minimum : we have

∂
∂

s

a
= 0 and

∂
∂

s

b
= 0
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∂
∂

s

a
= 0 ⇒ − − − =2 02Σ( , )x y ax bx zr r r r r

  ⇒ Σ Σ Σx y a x b x zr r r r r= +2 ...(5)

∂
∂

s

b
= 0 ⇒ − − − =2 02Σ ( )y z ax z bzr r r r r

  ⇒ Σ Σ Σy z a x z b zr r r r r= + 2 ...(6)

but z
x

= 1

∴ from (5) and (6) obtain the required normal equations can be written as

Σxr yr = a x b x
xr r

r
Σ Σ2 1+

i.e., nb a xr+ Σ 2 = Σx yr r ...(7)

and Σy zr r = a x z b yr r rΣ Σ+ 2

⇒ na b
xr

+ Σ 1
2 = Σ y

x
r

r
...(8)

Example 12.6  Given the following data

v (ft/min) : 350 400 500 600

t (min) : 61 26 7 2.6

If v and t an connected by the relation v = atb, find the best possible values of a and b.

Solution v = atb

⇒ log10 v = log log10 10a b t+ ...(1)

Substituting x = log10 t, y = log10 v, a′ = log10a in (1) we get

y = a′ + bx

The normal equations can be wirtten as

4a b xr′ + Σ = Σyr ...(2)

a x b xr r′ +Σ Σ 2 = Σx yr r ...(3)

v k x y xy x2

350 61 1.7858 2.5441 4.542 3.187

400 26 1.4150 2.6021 3.682 2.002

500 7 0.8451 2.6990 2.281 0.714

600 2.6 0.4150 2.7782 1.153 0.172

4.4604 10.6234 11.658 6.075

Substituting the above values in (2) and (3) we get

4a′ + 4.4604b = 10.623 ...(4)

4.4604a′ + 6.075b = 11.658 ...(5)



CURVE FITTING 277

Solving (4) and (5) we get

a′ = 2.845, b = –0.1697

∴ a = antilog a′ = antilog 2.845 = 699.8

Example 12.7  Using the method of least squares bit a curve of the form y = abx to the following data

x : 2 3 4 5 6

y : 8.3 15.4 33.1 65.2 127.4

Solution. Here we have n = 5 (number of observation)

Consider y = abx ...(1)

Applying logarithms on both sides we get

log18 y = log10a + x log10b ...(2)

taking log10 y = Y, the equaiton (2) can be written as

Y = a b x′ + ′ ...(3)

where a′ = log10a, b′ = log10b

Equation (3) is linear in X and Y, hence the normal equations are

na b x′ + ′ Σ = ΣY

a x b x′ + ′Σ Σ 2 = ΣXY

∴ we have

x y Y = log10 y XY x2

2 8.3 0.9191 1.8382 4

3 15.4 1.1875 3.5625 9

4 33.1 1.5198 6.0792 16

5 65.2 1.1842 9.0710 25

6 127.4 2.1052 12.6312 36

Total 20 – 7.5458 33.1821 90

The normal equations are

5 20a b′ + ′ = 7.5458 ...(4)

20 90a b′ + ′ = 33.1821 ...(5)

Solving (4) and (5) we get

a′ = 0.3096, b′ = 0.2995

Now a′ = 0.3096

⇒ log10a = 0.3096

⇒ a = 2.0399

b′ = 0.2999

⇒ log10b = 0.2999

⇒ b = 1.9948

∴ The required least square curve is

y = 2.0399 (1.9948)x
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Example 12.8  Fit a least square curve of the form y = aebx (a > 0) to the data given below

x : 1 2 3 4

y : 1.65 2.70 4.50 7.35

Solution. Consider y = aebx

Applying logarithms (with base 10) on both sides, we get

log10 y = log10a + bx log10e ...(1)

taking log10 y = Y, the equaiton (1) can be written as

Y = a′ + b′x ...(2)

where a′ = log10a, b′ = log10e

(2) is a linear equation in x and Y, the normal equations are

na b x′ + ′ Σ = ΣY

a x b x′ + ′Σ Σ 2 = ΣXY

x y Y = log10 y xY x2

1 1.65 0.2175 0.2175 1

2 2.70 0.4314 0.8628 4

3 4.50 0.6532 1.9596 9

4 7.35 0.8663 3.4652 16

Total 10 – 2.1684 6.5051 30

The normal equation can be written as

4 10a b′ + ′ = 2.1684 ...(3)

10 30a b′ + ′ = 6.5051 ...(4)

Solving the euqaitons (3) and (4), we get

a′ = 0.0001, b′ = 0.2168

Now a′ = 0.0001 ⇒ log10a = 0.0001 ⇒ a = 1.0002

b′ = 0.2168 ⇒   b log10e = 0.2168

⇒ b =
0 2168 0 2169

0 434310

.
log

.

.e
=

⇒ b = 0.4992

∴ The required curve is y = (1.0002).e0.4992x.

Exercise 12.1

1. Find the least square line y = a + bx for the data

xr –4 –2 0 2 4

yr 1.2 2.8 6.2 7.8 13.2
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2. Fit a straight line to the following data regarding x as the independent variable

x 0 1 2 3 4

y 1 1.8 3.3 4.5 6.3

3. Find the least square line y = a + bx

x –2 0 2 4 6

y 1 3 6 8 13

4. Find the least squares parabolic fit y = a + bx + cx2

x –3 –1 1 3

y 15 5 1 5

5. Find the least squares parabola for the points (–3, 3), (0, 1), (2, 1), (4, 3).

6. The profit of a certain company in the xth year of its life are given by

x 1 2 3 4

y 1250 1400 1950 2300

Taking u = x – 3 and V
y= − 1650

50
,  show that the parabola of the second degree of v on u is v +

0.086 = 5.30u + 0.643u2 and deduce that the parabola of the second degree of y on x is y = 114 +
72x + 32.15x2.

7. Find the least square line y = a0 + a1x for the data

x 1 2 3 4

y 0 1 1 2

8. Find the least square fit straight line (of the form y = a0 + a1x) for the data of fertilize application
and yield of a plant

Fertilizer applied 0 10 20 30 40 50
(gm/week/plant)

Yield (kg) 0.8 0.8 1.3 1.6 1.7 1.8

9. Find the normal equations that arise from filling by the least squares method, an equation of the form

y = a0a1sin x, to the set of points (0, 0), (π/6, 1), (π/2, 3), and (5π/6, 2) solve for a0 and a1.

10. The following data relates the percentage of alloying element to the compressive strength of an alloy:

% alloying element 10 15 20 25 30

Compressive strength 27.066 29.57 31.166 31.366 31.0

11. Find the least squares parabolic fit y = ax2 + bx + c, for the following data

x –3 –1 1 3

y 15 5 1 5



280 NUMERICAL ANALYSIS

12. Find the polynomial of degree two that best fits the following data in least square sense

x –2 –1 0 1 2

y –3.150 –1.390 0.620 2.880 5.378

13. If P is the Pull required to lift a load W by means of a pulley block, find a liner law of the form P
= mW + c, connecting P and W, using the data

P 12 15 21 25

W 50 70 100 120

where P and W are taken in kg-wt. Compute P when W = 150 kg.

14. In some determination of the volume v of carbondioxide dissolved in a given volume of water at

different temperatures θ,  the following pairs of values were obtained

θ 0 5 10 15

v 1.80 1.45 1.80 1.00

obtain by the method of least squares, a relation of the form v = a + b θ . Which best fits to these
observations.

15. The observations from an experiment are as given below

y 2 10 26 61

x 600 500 400 350

It is known that a relation of type y = aebx exists.

Find the best possible values of a and b.

Hint : The normal equations are

a b x yr r′ + =Σ Σ log

a x b x x yr r r r′ + =Σ Σ Σ2 log

where a a′ = log

i.e., 4 1850 4 501333a b′ + = .

1850 892500 1871 473a b′ + = .

Solving we get : a a′ = ⇒ =3 764167 43 1277. .

b = − 0 0057056.

and the curve is y = 43.12777 e–0.0057056x

16. Fit a least square geometric curve y = axb to the following data.

x 1 2 3 4 5

y 0.5 2 4.5 8 12.5

17. Using the method of least squares, fit a relation of the form y = abx to the following data

x 2 3 4 5 6

y 144 172.8 207.4 248.8 298.5
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18. Using the method of least squares fit a curve of the form y = abx to the following data

x 1 2 3 4

y 4 11 35 100

19. Fit a least square curve of the form y = axb for the following data where a and b are constants

x 61 26 7 2.6

y 350 400 500 600

20. The pressure and volume of a gas are related by the equation PVλ = k (λ an k are constants). Fit
this equation for the data given below:

p 0.5 1.0 1.5 2.0 2.5 3.0

v 1.62 1.00 0.75 0.62 0.52 .046

Answers

1. y = 6.24 + 1.45x  2. y = 0.72 + 1.33x 3. y = 3.3 + 1.45x

4. y = 2.125 – 1.70x + 0.875x2 5. y = 0.850519 – 0.192495x + 0.178462x2

 7. y x= − +1

2

3

5
8. 0.7575 + 0.0229x 9. a0 = 0, a1 = 3

10. y = 18.988 + 1.0125x – 0.02048x2 11. y x x= − +7

8

17

10

17

8
2

12. y = 0.621 + 2.1326x + 0.1233x2 13. 2.2759 + 0.1879 W, 30.4635 kg

14. v = 1.758 – 0.053 θ . 16. y = 0.5012 x1.9977

17. y = 9986 x1.2 18. y = (1.3268) . (2.9485)x

19. y = (701.94) x–0.1708 20. pv1.4225 = 0.997



13.1 Let A = [aij] be a square matrix of dimension n × n. The equation
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where λ  is a parameter called the characteristic equation of A. It is of degree n. The roots of this
characteristic equation are called the characteristic roots or the Eigen values of the matrix A. A
square matrix of order n has always n eigen values.

When the determinant in (1) is expanded it becomes a polynomial of degree n, which is called
characteristic polynomial.

From (1) we get

   λ λn
nn
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Consider the homogeneous equations
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where λ  is an undetermined parameter. The n values of λ  for which non-zero roots of the
homogeneous equations (2) exist, are called the Eigen values or Characteristic values of the parameter
λ . The non-zero column vector x satisfying (A— λI ) X = 0, is called Eigen vector of A. Corresponding
to each of the eigen value there is an eigen vector of A.

Consider the projection transformation in two dimensional space OX1X2 defined by the matrix

13
EIGEN VALUES AND EIGEN

VECTORS OF A MATRIX

282
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                              A = �
�	



��

1 0
0 0 .

Here the eigen vectors are:

(i) The non-zero vectors directed along the X1-axis with eigen value λ1 1=  and

(ii) The non-zero vectors directed along the X2-axis with eigen value λ2 1=  (see Fig. 1)

Fig. 1

We state below some important properties of eigen values and eigen vectors of a matrix:

1. For each distinct eigen value λ , there exists at least one eigen vector corresponding to λ .

2. If A is a square matrix and λ λ λ1 2, , ..., n  are distinct eigen values of A with associated eigen
vectors v1, v2, …, vn respectively, then {v1, v2, …, vn} is a set of linearly independent vectors.

3. If B is a non-singular matrix then A and B–1 AB have same eigen values.

4. The eigen values of a Hermitian matrix are real.

5. The eigen values and eigen vectors of a real symmetric matrix are real.

6. The number of linearly independent eigen vectors corresponding to one and the same root
of the characteristic equation does not exceed the multiplicity of that root.

Note: In this chapter, we write

| |A I= λ =

a a a

a a a

a a a

p p p

n

n

n n nn

n n
n

11 12 1

21 22 2

1 2

0 1
1

−
−

−

= + + +−

λ
λ

λ

λ λ

...

...

... ... ... ...

...

...  (say)

Example 13.1  Find the characteristic values (Eigen values) of the matrix

A =
3 1

2 0

−�

�
	




�
�

X1

X2

0

y

x
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Solution  The characteristic equation of A is

| A I− λ | = 0

i.e.,
3 1− −

−
λ

λx = 0

⇒ (–λ) (3 – λ) + 2 = 0

λ2 – 3 + 2 = 0

⇒ (λ – 1) (λ – 2) = 0 ...(1)

The roots of are λ = 1, λ = 2

∴ The characteristic roots of values of A are 1, 2.

Example 13.2  Find the characteristic values and the corresponding characteristic vectors of

A =
3 1

1 3

�

�
	




�
�

Solution  The characteristic equation of A is

|A –λI| = 0

i.e.,
3 1

1 3

−
−

λ
λ = 0 ⇒ (3 – λ)2 – 1 = 0

⇒ λ λ2 6 9 1− + − = 0 ⇒ − + =λ λ2 6 8 0

⇒ (λ – 2) (λ – 4) = 0

∴ λ = 2, λ = 4 are the characteristic values of A.

Let x =
x

x
1

2

�

�
	



�
�

denote the characteristic vector corresponding to the value λ = 2; then

( A I x− λ ) = 0

⇒
3 2 1

1 3 2

−
−

�

�
	




�
� =

x

x
1

2

�

�
	



�
�  

0

0

�

�
	



�
�

⇒
1 1

1 1
1

2

�

�
	




�
�
�

�
	



�
�

x

x =
0

0

�

�
	



�
�

⇒ x x1 2+ = 0,  x x1 2 0+ =

i.e., x1 + x2 = 0

⇒ x1 = –x2

⇒
x1

1
=

x
k2

1−
= (say)

∴ The characteristic vector corresponding to the value λ = z is

X1 =
k

k−
�

�
	



�
�
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or X1 =
1

1−
�

�
	



�
�

when λ = 4 : we have

(A – λI) X = 0 ⇒ 
3 4 1

1 3 4

0

0
1

2

−
−

�

�
	




�
�
�

�
	



�
� =
�

�
	



�
�

x

x

⇒ − +x x1 2 = 0, x x1 2 0− =

⇒ x1 = x2

⇒
x1

1
=

x
k2

1
= ′ (say)

∴ The characteristic vector corresponding to the value

λ = 4 is X
k

k
X2 2

1

1
=

′
′
�

�
	



�
� =

�

�
	



�
�  or  

The characteristic roots of A are λ = 2, λ = 4 and the characteristic vectors of A are X1
1

1
=

−
�

�
	



�
�,  X2

1

1
=
�

�
	



�
�

Note: The characteristic vectors may be normalized and expressed as

X1 =

1

2
1

2

1

2
1

2

2

−

�

�

	
	
	
	




�

�
�
�
�

=

�

�

	
	
	
	




�

�
�
�
�

, X

Example 13.3 Obtain the eigen values and eigen vectors of the symmetric matrix

                                    A

0 1 1

1 0 1

1 1 0

=
�

�

	
	
	




�

�
�
�

Solution The characteristic equation

                             
A I− = =λ

λ
λ

λ
0

1 1
1 1
1 1

0gives
–

–
–

,

                 ⇒ + − =λ λ1 2 0
2

� � � � ,

hence eigen values are λ  = –1, –1, 2.

Case 1 When λ  = 2

The corresponding eigen vector is given by

(A – 2I)X = 0

⇒   –2x + y + z = 0

x – 2y + z = 0

x + y – 2z = 0

solving we get x = y = z = k (say), thus

X1 = [k k k]T.
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Case 2 When λ  = –1, –1

The corresponding eigen vector is given by

(A – (–1)I ) X = 0, i.e., (A + I) X = 0,

⇒ x + y + z = 0

(all three equations are equivalent).

The trial solutions are

[1 0 –1]T and [1 + k –1 –k]T

since these are orthogonal, we have

1 + k + k = 0  ⇒   k = –1/2

hence                                   X X
T T

2 3
1

2
0

1

2

1

6

2

6

1

6
= −�

�
	




�
� = −�

�
	




�
�, .

Example 13.4 Determine the eigen values and the corresponding eigen vectors of the following system

10x1 + 2x2 + x3 = λx1

2x1 + 10x2 + x3 = λx2

2x1 + x2 + 10x3 = λx3

Solution We have

                                    A =
�

�

	
	
	




�

�
�
�

10 2 1

2 10 1

2 1 10

The characteristic equation

                              A I− =
−

−
−

=λ
λ

λ
λ

10 1 1
2 10 1
2 1 10

0

        ⇒ − − − + =10 7 10 6 0
3λ λ� � � �

                 ⇒ = = =λ λ λ13 9 8, ,

i.e.,                      λ λ λ1 2 313 9 8= = =, , .

Case 1 When λ1 13=

∴  We get

–3x1 + 2x2 + x3 = 0,

2x1 – 3x2 + x3 = 0,

2x1 + x2 + 3x3 = 0,

solving the first two equations with x3 = 1, we get

x1 = 1, x2 = 1

these values satisfies all the three equations. The first eigen vector is [1 1 1]T.
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Case 2 When λ2 9=

⇒   (A –9I)X = 0

⇒ x1 + 2x2 + x3 = 0

2x1 + x2 + x3 = 0

2x1 + x2 + x3 = 0

with x3 = 1, the second eigen vector becomes

−�
�	



��

1

3

1

3
1

T

.

Case 3 When λ3 8=

The corresponding eigen vector is given by

(A –8I)X = 0

⇒ 2x1 + 2x2 + x3 = 0

2x1 + 2x2 + x3 = 0

2x1 + x2 + 2x3 = 0

with x3 = 1, the third eigen vector becomes

                                    −�
�	



��

3

2
1 1

T

.

Example 13.5 Find the Eigen values and eigen vectors of the matrix

                                     A

2 1 1

1 2 1

1 1 2

=
�

�

	
	
	




�

�
�
�

Solution The characteristic equation of the matrix is

    A I− =
−

−
−

=λ
λ

λ
λ

2 1 1
2 2 1
2 1 2

0

                  ⇒ − − =λ λ1 4 0
2

� � � �

we get                              λ λ λ1 2 31 4= = =,

Case 1 λ1 1= ,  we get

                            A I X
x
x
x

− = ⇒
−

−
−

�

�

	
	




�

�
�

=λ� � 0
2 1 1 1

2 2 1 1
2 1 2 1

0
1

2

3

                       
⇒ + + =

+ + =
+ + =

�
�
�

��

x x x
x x x
x x x

1 2 3

1 2 3

1 2 3

0
0
0

(3)

The rank of the system (3) is one, therefore two of the equations are consequences of the third. It suffices to
solve the equation
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x1 + x2 + x3 = 0.

Putting

x1 = k1, x2 = k2,

we get x3 = –[k1 + k2],

where k1 and k2 are arbitrary scalars not simultaneously zero.

In particular choosing k1 = 1, k2 = 0, and then k1 = 0, k2 = 1, we get the solution consisting of two linearly

independent eigen vectors of matrix A

X1 = [1 0 –1]T, X2 = [0 1 –1]T.

All the other eigen vectors of A that correspond to the eigen value λ1 1=  are linear combinations of these basis

vectors and fill the plane spannel by the vectors X1 and X2.

Case 2 Now λ3 4= ,  gives

                  
−

−
−

�

�
	
	




�
�
�

�

�

	
	




�

�
�

=
2 1 1

1 2 1
1 1 2

0
1

2

3

x
x
x

,

or –2x1 + x2 + x3 = 0

x1 – 2x2 + x3 = 0

x1 + x2 – 2x3 = 0

The rank of the above system is 2. The third equation of the system is a consequence of the first two equations.

∴  Solving first two equations

–2x1 + x2 + x3 = 0

x1 – 2x2 + x3 = 0

we get                             
x x x1 2 3

3 3 3
= =

i.e., x1 = x2 = x3 = k

where k is a constant different from zero, putting k =1, we get the simplest solution that effects the eigen vector of
A.

                                ∴ =λ3 11 1
T

.

Example 13.6   If a + b + c = 0; find the characteristic roots of the matrix

A =

a c b

c b a

b a c

�

�

	
	
	




�

�
�
�

Solution  The characteristic matrix of A is

A – λI =

a c b

c b a

b a c

−
−

−

�

�

	
	
	




�

�
�
�

λ
λ

λ

applying c c c c1 1 2 3→ + +
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~

−
− −
− −

�

�

	
	
	




�

�
�
�

λ
λ λ
λ λ

c b

b a

a c

R R R2 2 1→ −

R R R3 3 1→ −

~

−
− − −
− − −

�

�

	
	
	




�

�
�
�

λ
λ

λ

c b

b c a b

a c c b

0

0

∴ The characteristic Equation of A is

|A I|− λ = 0 ⇒
−

− − −
− − −

=
λ

λ
λ

c b

b c a b

a c c b

0

0

0

⇒ ( ) ( ) ( ) ( ) ( )− − − − − − − − =λ λ λb c c b a b a c 0

⇒ λ λ λ− − − − + − + + − =( ) ( )b c b c a ac ab bc2 0

⇒ λ λ− − − − + + − =( )b c a ac ab bc2 2 2 0

⇒ λ λ2 2 2 22 0− − + − + + − =b c bc a ac ab bc

⇒ λ λ2 2 2 2 0− + + + + + =( )a b c ab bc ca ...(1)

but a + b + c = 0 ⇒ + + =( )a b c 2 0

⇒ a b c ab bc ca2 2 2 2 2 2+ + + + + = 0

⇒ (ab + bc + ca) = − + +( )a b c2 2 2

2
...(2)

from (1) and (2), we get

λ λ( ( )
( )2 2 2 2

2 2 2

2
− + + − + +

a b c
a b c

 = 0

⇒ λ λ2
2 2 23

2
− + +


��
�

��
( )a b c

= 0

∴ The characteristic roots of A are

λ = 0,  λ = ± + +3

2

2 2 2( )a b c
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13.2 METHOD FOR THE LARGEST EIGEN VALUE (POWER METHOD)

Let A be a given matrix whose (largest) eigen value is to be determined and X0 be an arbitrary
vector. We use X0 as the initial approximation to an eigen value of the matrix A.

Suppose we “normalize” the vector X0; by requiring that one component say the last by unity.
Compute the sequence

AX0 = λ1x1

AX1 = λ2x2

AX2 = λ3x3

... ...

AXi–1 = λi xi

... ...

In this sequence; all the vectors X1, X2, ... are to be normalized in whatever manner was chosen
originally. The iterative procedure converges, and we get a relation of this form

AX = λX

where X = lim xi, λ = lim λi

If the eigen value of A is real and unrepeated the above process will converge to give the largest
eigen value of the matrix A.

Example 1  Find the largest eigen value for the matrix

10 4 1

4 2 3

1 3 1

−

−

�

�

	
	
	




�

�
�
�

also find the eigen vector corresponding to the largest eigen vector.

Solution

Let A =

10 4 1

4 2 3

1 3 1

−

−

�

�

	
	
	




�

�
�
�

and X0 =

1

1

1

�

�

	
	
	




�

�
�
�

 (Initial approximation of the eigen vector)

AX0 =

10 4 1

4 2 3

1 3 1

1

1

1

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

 = 

13

9

3

�

�

	
	
	




�

�
�
�

= 13

1 0

0 62930

0 23076

13

.

.

.

�

�

	
	
	




�

�
�
�

= X1  where
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X1 =

1 0

0 62930

0 23076

.

.

.

�

�

	
	
	




�

�
�
�

AX1 =

10 4 1

4 2 3

1 3 1

1 0

0 62930

0 23076

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.

=

12 5384

6 07692

1 30796

12 5384

1 0

0 48466

0 10429

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 12 5384

1 0

0 48466

0 10429
2 2.

.

.

.

x x  where  =
�

�

	
	
	




�

�
�
�

AX2 =

10 4 1

4 2 3

1 3 1

1 0

0 48466

0 10429

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.

=

11 83436

5 28220

0 55828

11 834836

1 0

0 44634

0 04717

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 11 834836

1 0

0 44634

0 04717
3 3.

.

.

.

x xwhere =
�

�

	
	
	




�

�
�
�

AX3 =

10 4 1

4 2 3

1 3 1

1 0

0 44634

0 04717

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.

=

11 73821

5 03421

0 386210

11 73821

1 0

0 42887

0 032902

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 11.73821 x4

where X4 =

1 0

0 42887

0 032902

.

.

.

�

�

	
	
	




�

�
�
�

AX4 =

10 4 1

4 2 3

1 3 1

1 0

0 42887

0 032902

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.
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=

11 6826

4 95645

0 319524

11 6826

1 0

0 424259

0 027350

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 11 6826

1 0

0 424259

0 027350
5 5.

.

.

.

x x  where =
�

�

	
	
	




�

�
�
�

AX5 =

10 4 1

4 2 3

1 3 1

1 0

0 424259

0 027350

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.
 = 

11 66969

4 93057

0 300129

.

.

.

�

�

	
	
	




�

�
�
�

= 11 66969

1 0

0 422510

0 025718

.

.

.

.

�

�

	
	
	




�

�
�
�

= 11 66969

1 0

0 422510

0 025718
6 6.

.

.

.

x x  where  =
�

�

	
	
	




�

�
�
�

AX6 =

10 4 1

4 2 3

1 3 1

1 0

0 422510

0 025718

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.

=

11 6643

4 92217

0 29325

11 6643

1 0

0 42198

0 02514

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 11 6643

1 0

0 42198

0 02514
7 7.

.

.

.

x x  where  =
�

�

	
	
	




�

�
�
�

AX7 =

10 4 1

4 2 3

1 3 1

1 0

0 42198

0 02514

−

−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

.

.

.

=

11 6628

4 91939

0 291099

11 6628

1 0

0 42180

0 02495

.

.

.

.

.

.

.

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

= 11.6628 x7 where X8

1 0

0 42180

0 02495

=
�

�

	
	
	




�

�
�
�

.

.

.

∴  The largest eign value is 11.6628 and corresponding eigen vector is 

1 0

0 42180

0 02495

.

.

.

�

�

	
	
	




�

�
�
�

.
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Example 2  Find the largest eigen value and the corresponding eigen vector of the matrix.

A =

1 6 1

1 2 0

0 0 3

taking x

1

0

0
0

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

Solution We have AX0 =

1 6 1

1 2 0

0 0 3

1

0

0

1

1

0

1

1

1

0

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

.

= 1.X1, where X1 = 

1

1

0

�

�

	
	
	




�

�
�
�

∴ AX1 =

1 6 1

1 2 0

0 0 3

1

1

0

7

3

0

7

1

0 4

0

7

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=. X2

where X2 =

1

0 4

0

.

�

�

	
	
	




�

�
�
�

Then AX2 =

1 6 1

1 2 0

0 0 3

1

0 4

0

3 4

1 4

0

3 4

1

0 52

0

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

.

.

. . .

= 3.4X3, where X3 = 

1

0 52

0

.

�

�

	
	
	




�

�
�
�

∴ AX3 =

1 6 1

1 2 0

0 0 3

1

0 52

0

4 12

2 04

0

4 12

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=.

.

. . X4

where X4 =

1

0 49

0

.

�

�

	
	
	




�

�
�
�

Now AX4 =

1 6 1

1 2 0

0 0 3

1

0 49

0

3 94

1 98

0

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

.

.

.

= 3 94

1

0 5

0

3 94. . .

�

�

	
	
	




�

�
�
�

= X5



294 NUMERICAL ANALYSIS

where X5 =

1

0 5

0

.

�

�

	
	
	




�

�
�
�

AX5 =

1 6 1

1 2 0

0 0 3

1

0 5

0

4

2

0

4

1

0 5

0

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

. .

= 4X6, where X6 = 

1

0 5

0

.

�

�

	
	
	




�

�
�
�

∴ The largest eigen value is 4 and the corresponding eigen vector is 

1

0 5

0

.

�

�

	
	
	




�

�
�
�

.

13.3 CAYLEY-HAMILTON THEOREM
Theorem: Every square matrix A satisfies its own characteristic equation.

Proof: Let A = [aij]n×n

Then the characteristic matrix of A is A – λI and the cofactors of |A I|− λ  are of degree at most degree n–1.
Therefore the highest power of λ in the polynomial of Adj (A – λI) is n – 1.

We can write

Adj (A – λI) = B B B0 1λ λn n
n

− −
−+ + +1 2

1... ...(1)

where B0, B1, ..., Bn–1 are matrices of order n and whose elements are polynomials in the elements of A

∴ we have

( )A I Adj (A I)− −λ λ = |A I| I− λ ...(2)

or (A I) Adj (A I)− −λ λ = P P P P I0 1 2λ λ λn n n
n+ + + +− −1 2 ... ; say ...(3)

(where | |A I− λ = P P P10
1λ λn n

n+ + +− ... )

Using (1), we can write

( ... )A I) (B B B0 1− + + +− −
−λ λ λn n

n
1 2

1  = ( ... )P P P I0 1λ λn n
n+ + +−1 ...(4)

(4) is an identity in λ : therefore equating the coefficients of like powers of λ from both sides we obtain

–B0 = P0I

AB0 – B1 = P1I

AB1 – B2 = P2I ....(5)
. .
. .
. .

ABr–1 – Br = PrI
.
.
.

ABn–1 = PnI
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By pre-multiplying these equations with An, An–1, ..., A, I respectively and adding we have

0 = P0A
n + P1A

n–1 + ... + PnI ...(6)

The matrix A satisfies its own characteristic equation.

Hence Proved.

Computation of the inverse of a non-singular Matrix
Cayley-Hamilton theorem can be used to compute the inverse of a non-singular matrix;

Let A be non-singular matrix of order. Then by Cayley-Hamilton theorem; we have

                        P A P A P A P A + P I = 00 1 2
n n n

n n+ + + +− −
−

1 2
1... ...(i)

on multiplying (i) by A–1; we obtain

P A P A P A P A + P I = 0.A0 1 2
1n n n

n n
− − −

−
−+ + + +1 2 3

1... ...(ii)

or P A P A P A0 1
n n

n
− − −+ + +1 2 1... = 0

i.e., PnA–1 = − + + +− −
−(P A P A P I)0 1

n n
n

1 2
1...

⇒ A–1 = − + + +− −
−

1 1 2
1P

P A P A P I)0 1
n

n n
n( ... ...(iii)

Thus; inverse of A can be evaluated by putting the values of An–1; An–2, ... in (iii)

Remark : We can also apply cayley-Hamilton theorem to find A–2, A–3,...

Example 13.7  Verify cayley-Hamilton theorem for the matrix

5 6

1 2

�

�
	




�
�

Also; find the inverse of the matrix A.

Solution  Let A =
5 6

1 2

�

�
	




�
�

then the characteristic equation of A is

|A I|− λ = 0

i.e.,
5 6

1 2

−
−

λ
λ = 0

i.e., ( ) ( )5 2 6− − −λ λ = 0

⇒ λ λ2 7 4− + = 0 ...(1)

we have to show that A satisfies (1)

now A2 =
5 6

1 2

5 6

1 2

31 42

7 10

�

�
	




�
�
�

�
	




�
� =
�

�
	




�
�

∴ A2 – 7A + 4I

=
31 42

7 10
7

5 6

1 2
4

1 0

0 1

�

�
	




�
� −

�

�
	




�
� +

�

�
	




�
�
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=
31 35 4 42 42 0

7 7 0 10 14 4

0 0

0 0

− + − +
− + − +

�

�
	




�
� =
�

�
	




�
�

∴ A2 – 7A + 4I = 0 ...(2)

Hence, the matrix A satisfies its own characteristic equation.

Cayley-Hamilton theorem is verified

from (2), we have

A2 – 7A + 4I = 0

⇒ A A A + 4I)2− −1 7( = 0

⇒ A I + 4IA− −7 1 = 0

⇒ 4 1A− = 7
5 6

1 2
I A = 7

1 0

0 1
 −

�

�
	




�
� −
�

�
	




�
�

⇒ A–1 =
1
4

2 6

1 5

−
−
�

�
	




�
�

Example 13.8  Show that the matrix

A =

1 2 0

2 1 0

0 0 1

−
−

�

�

	
	
	




�

�
�
�

Satisfies its own characteristic equation and find A–1.

Solution  The characteristic equation of A is

A I− λ = 0 ⇒
−

− −
− −

=
1 2 0

2 1 0

0 0 1

0

λ
λ

λ

⇒ ( )1
1 0

0 1
2

2 0

0 1
0 0−

− −
− −

−
− −

+ =λ
λ

λ λ

⇒ ( ) ( ) ( )1 1 4 12− + + +λ λ λ = 0

⇒ − − + +λ λ λ3 2 5 5 = 0

⇒ x3 2 5 5+ − −λ λ = 0 ...(1)

We have to show that A satisfies the equation (1); i.e., A3 + A2 – 5A – 5I = 0

now A2 = A . A = 

1 2 0

2 1 0

0 0 1

1 2 0

2 1 0

0 0 1

−
−

�

�

	
	
	




�

�
�
�

−
−

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

5 0 0

0 5 0

0 0 1
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A3 = A2 . A = 

5 0 0

0 5 0

0 0 1

1 2 0

2 1 0

0 0 1

�

�

	
	
	




�

�
�
�

−
−

�

�

	
	
	




�

�
�
�

=

5 10 0

10 5 0

0 0 1

−
−

�

�

	
	
	




�

�
�
�

∴ A3 + A2 – 5A – 5I

= 

5 10 0

10 5 0

0 0 1

5 0 0

0 5 0

0 0 1

5

1 2 0

2 1 0

0 0 1

5

1 0 0

0 1 0

0 0 1

−
−

�

�

	
	
	




�

�
�
�

+
−

�

�

	
	
	




�

�
�
�

− −
−

�

�

	
	
	




�

�
�
�

−
−

�

�

	
	
	




�

�
�
�

=

5 5 5 5 10 0 10 0 0 0 0 0

10 0 10 0 5 5 5 5 0 0 0 0

0 0 0 0 0 0 0 0 1 1 5 5

+ − − + − + + + +
+ − + − + + − + + +

+ + + + + + − + + −

�

�

	
	
	




�

�
�
�

=

0 0 0

0 0 0

0 0 0

�

�

	
	
	




�

�
�
�

∴ A satisfies its own characteristic equation

i.e., A A A I3 2+ − −5 5 = 0

Consider A3 + A2 – 5A – 5I = 0

⇒ A A A A I)3 2− + − −1 5 5( = 0

⇒ A A I A2 + − − −5 5 1 = 0

⇒ 5A–1 = 5 – A – A2

∴ 5A–1 = 

5 0 0

0 5 0

0 0 5

1 2 0

2 1 0

0 0 1

5 0 0

0 5 0

0 0 1

�

�

	
	
	




�

�
�
�

− −
−

�

�

	
	
	




�

�
�
�

−
�

�

	
	
	




�

�
�
�

= 

1 2 0

2 1 0

0 0 1

−
−

�

�

	
	
	




�

�
�
�

⇒ A–1 =
1

5

1 2 0

2 1 0

0 0 5

−
−

�

�

	
	
	




�

�
�
�
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Exercise 13.1

1. Determine the eigen values and the corresponding eigen vectors for the matrices

(a) 
2 2

2 1

�

�
	
	




�
�
� (b) 

1 4

3 2

�

�
	




�
� (c) 

1 2

3 4

�

�
	




�
�

2. Find the characteristic roots and the corresponding characteristic vectors of the matrices

(a) 

8 6 2

6 7 4

2 4 3

−
− −

−

�

�

	
	
	




�

�
�
�

(b) 

1 2 3

0 4 2

0 0 7

−
�

�

	
	
	




�

�
�
�

(c) 

3 1 3

1 2 1

0 1 3

−
− −

−

�

�

	
	
	




�

�
�
�

3. Find the largest eigen values and the corresponding eigen vector of the matrix

A =
−

−
−

�

�

	
	
	




�

�
�
�

15 4 3

10 12 6

20 4 2

4. Determine the largest eigen value and the corresponding eigen vector of the matrix

A =
−

− −
−

�

�

	
	
	




�

�
�
�

2 1 0

1 2 1

0 1 2

5. Find the latent roots and the characteristic vectors of the matrices

(i) 
2 0 1

0 2 0

1 0 2

�

�

	
	
	




�

�
�
�

  ii) A =
−

− −
−

�

�

	
	
	




�

�
�
�

6 2 2

2 3 1

2 1 3

   (iii) 
1 2 3

0 2 3

0 0 2

�

�

	
	
	




�

�
�
�

6. Find the latent roots and latest vectors of the matrix

A

a h g

o b o

o o c

=
�

�

	
	
	




�

�
�
�

7. Verify Cayley-Hamilton’s theorem for the matrix

A =
−

�

�

	
	
	




�

�
�
�

0 0 1

3 1 0

2 1 4

8. Show that the matrix A, satisfies the matrix equation A A I2 4 5 0− − =

where A =
�

�

	
	
	




�

�
�
�

1 2 2

2 1 2

2 2 1
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9. Show that the matrix A =
�

�
	




�
�

1 2

1 1
 satisfies Cayley-Hamilton’s theorem

10. Verify that the matrix A =
�

�

	
	
	




�

�
�
�

1 1 2

3 1 1

2 3 1

 satisifies Cayley-Hamilton theorem.

Answers

1. (a) λ λ1 20 3
1

3

2
3 3

1

3
= = −�

�
	
	




�
�
�

�

�
	
	




�
�
�

, ,

T T

and
2

   (b) λ λ1 22 5
4

3
1 11= − = −�

�	


��

, ,
T

T
and

   (c) 5 38
0 46

1
. ,

.�

�
	




�
�

2. (a) λ λ λ1 2 30 3 15
1

2
1 1 1

1

2
1 2 2 1= = = �

�	


��

− −�
�	



��

−, , ,
T T

T

   (b) [1 –4 7]T

   (c) λ λ λ1 2 31 3 4 1 2 1 1 0 1 1 1 1= = = − −, , , , ,
T T T

3. [1 –0.5 –1]T

4. 3.41[0.74 –1 0.67]T

5. (i) 1, 2, 3, [1 0 –1]T, [0 1 0]T, [1 0 1]T

  (ii) 8, 2, 2, [2 –1 1]T, [1 0 –2]T, [1 2 0]T.

  (iii) [1 0 0]T, [2 10]T

6. [k, 0 0]T, [k2h k2(b – a)0]T

   [k3 g 0  k3(c – a)]T
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14.1 REGRESSION ANALYSIS

In this chapter we discuss regression which measures the nature and extent of correlation.
Regression methods are meant to determine the best functional relationship between a dependent
variable y with one or more related variable (or variables) x. The functional relationship of a
dependent variable with one or more independent variables is called a regression equation.

14.2 CORRELATION

Correlation is a statistical measure for finding out the degree of association between two
variables with the help of correlation we study the relationship between variables.

Definition 14.1. If two or more quantities varies in other sympathy so that movements in the
one tends to be accompanied by corresponding movements in the other, then they are said to be
correlated.

Types of correlation: Correlation may be

(i) Positive or negative

(ii) Simple or partial or multiple

(iii) Linear or non-linear.

14.3 COEFFICIENT OF CORRELATION (r)

Coefficient of correlation is a measure of degree or extent of linear relationship between two
variables x and y. It is denoted by r.

14.4 SCATTER DIAGRAM

When the pair of values (x1, y1), (x2, y2), (x3, y3),... (xn, yn) are plotted on a graph paper, the
points show the pattern in which they lie, such a diagram is called a scatter diagram.

Consider the points (x1, y1), (x2, y2),.... (xn, yn). In scatter diagram the variable x is shown
along the x-axis (horizontal axis) and the variable y is shown along the y-axis (vertical axis) and all
the pairs of values of x and y are shown by points (or dots) on the graph paper. The scatter diagram
of these points reveals the nature and strength of correlation between these variable x and y. We
observe the following.

14
REGRESSION ANALYSIS
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If the points plotted lie on a straight line rising from lower left to upper right, then there is
a perfect positive correlation between the variables x and y (Fig. 1(a)). If all the points do not lie
on a straight line, but their tendency is to rise from lower left to upper right then there is a positive
correlation between the variable x and y (Fig. 1(b)). In these cases the two variables x and y are
in the same direction and the association between the variables is direct.

0 x

y

( )a

0 x

y

( )b

Fig. 1. (a) Perfect positive correlation (r = 1) (b) Positive correlation.

If the movements of the variables x and y are opposite in direction and the scatter diagram is
a straight line, the correlation is said to be negative i.e., association between the variables is said
to be indirect.

0 x

y

0 x

y

( )c ( )d

Fig. 1. (c) Perfect negative correlation (d) Negative correlation.

Example. Draw a Scatter diagram for the following data

x 3 5 7 9 11 13 15

y 5 8 11 13 15 17 19
y

4 8 12 16 20

4

8

12

16

20

(3 , 5 )

(5 , 8 )

(7 , 11)

(11 , 15)
(9 , 13)
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14.5 CALCULATION OF r (CORRELATION COEFFICIENT) (KARL PEARSON’S
  FORMULA)

If (x1, y1), (x2, y2), ... (xn, yn) be n paired observation; then

r =
Σ[( ) ( )]x x y y

n
i i

x y

− −
σ σ

or simply r =
Σ

Σ Σ

[( ) ( )]

( ) ( )

x x y y

x x y y

i i− −

− −2 2

where σx = standard deviation of x1, x2, ..., xn

σy = standard deviation of y1, y2, ..., yn

x =
Σ Σx

n
y

y

n
i i, =

and σx =
Σ Σx

n

y

n
i

i
i

2 2

, σ =

If xi = xi – x  and yi = y yi −  then

r =
Σ 
 

x y

n
i i

x yσ σ

=
Σ

Σ Σ

 

  

x y

x y

i i

i i
2 2

If A and B denote the assumed means then

r =

Σ Σ Σ

Σ Σ Σ Σ

x y
x y

n

x
x
n

y
y
n

i i
i i

i
i

i
i

−

− −

( )( )

( ) ( )2
2

2
2

Karl Pearson’s formula; is a direct method of computing r. It can be proved mathematically
that –1≤  r ≤ 1. The Karl Pearson’s coefficient of correlation r; is also denoted by P (rho) and is
also called Karl Pearsons moment correlation coefficient.

14.6 REGRESSION

Correlation methods are used to know, how two or more variables are interrelated. Correlation;
cannot be used to estimate or predict the most likely values of one variable for specified values of
the other variable. The terms ‘Regression’ was coined by Sir Francis Galton (while studying the
linear relation between two variables).
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Definition: 14.2. Regression is the measure of the average relationship between two or more
variables in terms of the original units of data.

14.7 REGRESSION EQUATION

The functional relationship of a dependent variable with one or more independent variables is
called a regression equation: It is also called prediction equation (or estimating equation).

14.8 CURVE OF REGRESSION

The graph of the regression equation is called the curve of regression: If the curve is a straight
line; then it is called the line of regression.

14.9 TYPES OF REGRESSION

If there are only two variables under consideration; then the regression is called simply regres-
sion

Example. (i) Study of regression between heights and age for a group of persons (ii) The study
of regression between ‘income’ and expenditure for a group of persons.

In this case the relationship is linear.

If there are more than two variables under considerations then the regression is called multiple
regression.

If there are more than two variables under considerations and relation between only two
variables is established, after excluding the effect of the remaining variables, then the regression is
called partial regression.

If the relationship between x and y is nonlinear, then the regression is curvilinear regression.
In some cases polynomials are selected to predict or estimate; which is called polynomial regression.

14.10 REGRESSION EQUATIONS (LINEAR FIT)

14.10.1 Linear Regression Equation of y on x

In linear regression if we fit a straight line of the form y = a + bx to the given data by the
method of least squares, we obtain the regression of y on x:

Let (x1 y1), (x2, y2),...., (xn, yn) denote n pairs of observations and let the corresponding
straight line to be fitted, to these data points be

y = a + bx ...(1)

applying the method of least squares, we get the following normal equations:

na + b Σxi = Σyi ...(2)

a Σxi + b Σxi
2 = Σxi yi ...(3)

dividing equation (2) by n, we get

a b
x

n
i+ Σ

=
Σy

n
i
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or a + b. x = y ...(4)

Subtracting (4) from (1), we obtain

y – y = b(x – x) ...(5)

multiplying (2) by Σxi and (3) by n and then subtracting, we get

Σxi yi – n Σxi yi = b(Σxi)
2 – nbΣxi

2

or b[nΣxi
2 – (Σxi)

2] = nΣxi yi – (Σxi)(Σyi)

or b =
n x y x y

n x x
i i i i

i i

Σ Σ Σ
Σ Σ

−
−2 2( )

or b =

Σ Σ Σ

Σ Σ

x y
n

x
n

y
n

x
n

x
n

i i i i

i i

−

−

.

( )2 2 ...(6)

replacing b by byx in (5) we get

y – y = byx(x – x ) ...(7)

where byx =

Σ Σ Σ

Σ Σ

x y
n

x
n

y
n

x
n

x
n

i i i i

i i

−

−

.

( )2 2

Equation (7) is called regression equation of y on x, and is used to estimate the values of y
for given values of n.

byx is also given by

byx = r y

x

σ
σ

and it is called the regression coefficient of y or x.

14.10.2 Regression equation of x on y

It is the best equation of best filted straight line of the type

x = a′ + b′y
to the given data.

Applying the principle of least squares, we get the following two normal equations.

na′ + b′Σy = Σx ...(i)

a′Σy + b′Σy2 = Σxy ...(ii)

Solving (i) and (ii) for a′ and b′ and proceeding as before, we obtain the regression equation
of x on y as follows
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x – x = bxy(y – y )

where bxy = 

Σ Σ Σ

Σ Σ

x y
n

x
n

y
n

y
n

y
n

i i i i

i

−

−

.

( )2 2 ...(iii)

bxy is also given by byx = r x

y

σ
σ

and is called the regression coefficient of x on y.

Since byx = r y

x

σ
σ  and bxy = r x

y

σ
σ

we have byx . bxy = r2

Note.

(1) If xi = xi – x , yi = yi – y ; then

byx =

Σ

Σ

x y

n
x

n

i i

i
2  =

Σ
Σ
x y

x
i i

i
2 (�� Σxi = 0, Σyi = 0)

Similarly bxy =
Σ
Σ
x y

y
i i

i
2

The two regression equation lines

y – y = byx (x – x) ...(iv)

and x – x = bxy (y – y ) ...(v)

are identical if byx × bxy = 1

or byx =
1

bxy

 or r2 = 1

i.e. the lines (iv) and (v) are identical if

r2 = 1

i.e. r = ±1

(2) The two regression lines always intersect at ( , )x y
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14.11 ANGLE BETWEEN TWO LINES OF REGRESSION

Consider the regression lines

y – y = byx ( )x x− ...(1)

and ( )x x− = bxy ( )y y− ...(2)

equation (2) can be written as

y – y =
1

bxy
 ( )x x− ...(3)

Let θ be the angle between the regression lines, then, the slopes of the lines (1) and (3) are

m1 = byx = r y

x

σ
σ

and m2 =
1

b rxy

y

x

=
σ
σ

we have tan θ = ±
−

+
= ±

−

+

m m

m m

r

r

r

r

y

x

y

x

y

x

x

y

2 1

2 11
1

σ
σ

σ
σ

σ
σ

σ
σ

 = ± 

σ
σ

σ
σ

y

x

y

x

r
r

1

1
2

2

−�
�

�
�

+

= ± 
1 2 2

2 2

−�

��
�

�� +
r

r
y

x

x

x y

σ
σ

σ
σ σ

.  = ± 
1 2

2 2

−�
��

�

�� +

�

�
	
	




�
�
�

r

r
x y

x y

σ σ
σ σ

Since r2 1≤  and σx, σy are positive, the positive sign gives the acute angle between the lines

and the negative sign gives the obtuse angle between the lines.

If θ1 denotes acute angle and θ2 denotes the obtuse angle between the regression lines, then

θ1 = tan .− −
+

�

�
	
	




�
�
�

1
2

2 2

1 r

r
x y

x y

σ σ
σ σ

and θ2 = tan .− −
+

�

�
	
	




�
�
�

1
2

2 2

1r

r
x y

x y

σ σ
σ σ

If r = 0; then tan θ = ∞ and θ π=
2

 ∴ in this case x and y are uncorrelated and lines of

regression are perpendicular to each other.

If r = ±1, then tan θ = 0, and θ = 0 or π; in this case there is a perfect correlation (positive
or negative) between x and y. The two lines of regression coincide, but are not parallel since the

lines pass through the point ( , )x y .
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Note: If r = 0, then from the equation of lines of regression we have

( , )y y = r x xy

x

σ
σ

( )− = 0

i.e., ( , )y y = 0 or y y=

and x x− = r y yx

y

σ
σ

( )− = 0

i.e., x x− = 0 or x = x

∴ when r = 0, the equations of lines of regression are x = x  and y = y  which are the equations of the lines

parallel to the axis.

14.12 SOLVED EXAMPLES

Example. 14.1 For the following data, find the regression line (by applying the method of least squares)

x 5 10 15 20 25

y 20 40 30 60 50

Solution: We have

x y x2 y2 xy

5 20 25 400 100

10 40 100 1600 400

15 30 225 900 450

20 60 400 3600 1200

25 50 625 2500 1250

75 200 1375 9000 3400

∴ Σxi = 75, Σyi = 200, Σ xi
2  = 1375, Σ yi

2  = 9000, Σxi yi = 3400

Regression of y on x:
The normal equations are

na + bΣxi = Σyi

Σxi yi + bΣ xi
2 = Σxi yi

i.e., 5a + 75b = 200 ...(1)

75a + 1375b = 3400 ...(2)

Solving these equations we get

a = 16, and b = 1.6

∴ The regression equation of y or x is

y = 16 + 1.6x

Regression of equation x on y:

The normal equations are

na + bΣyi = Σxi

aΣyi + bΣ yi
2 = Σxi yi
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i.e., 5a + 200b = 75 ...(3)

200a + 9000b = 3400 ...(4)

Solving equations (3) and (4) we get

a = –1 and; b = 0.4

∴ The regression equation of x on y is

x = –1 + 0.4y

∴ The regression equations are

y = 16 + 1.6x

and x = –1 + 0.4y

Example 14.2 For the following data find the regression line of y on x

x 1 2 3 4 5 8 10

y 9 8 10 12 14 16 15

Solution. We have

xi yi xi yi xi
2

1 9 9 1

2 8 16 4

3 10 30 9

4 12 48 16

5 14 70 25

8 16 128 64

10 15 150 100

Total :  Σ xi = 33    Σyi = 84 Σxi yi = 451 Σ xi
2  = 219

n = 7

∴ x =
Σx

n
i = =33

7
4 714.

y =
Σy

n
i = =84

7
12

and byx =
n x y x y

n x x
i i i i

i i

Σ Σ Σ
Σ Σ

−
−

= −
−

( ) ( )

( )

.( ) ( ) ( )

( ) ( )2 2 2
7 451 33 84

7 2119 33

= 0.867

The regression equation of y on x is:

y – y = byx (x – x )

i.e., y – 12 = 0.867(x – 4.714)

or y = 0.867x + 7.9129

Example. 14.3 From the following data, fit two regression equations by find actual means (of x and y.) i.e.
by actual means method.

x 1 2 3 4 5 6 7

y 2 4 7 6 5 6 5
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Solution. We change the origin and find the regression equations as follows:

we have x =
Σx

n
i = + + + + + + = =1 2 3 4 5 6 7

7

28

7
4

y =
Σy

n
i = + + + + + + = =2 4 7 6 5 6 5

7

35

7
5

x y X = x – x Y = y – y X2 Y2 XY

1 2 –3 –3 9 9 9

2 4 –2 –1 4 1 2

3 7 –1 2 1 4 –2

4 6 0 1 0 1 0

5 5 1 0 1 0 0

6 6 2 1 4 1 2

7 5 3 0 9 0 0

 Totals 28 35 0 0 28 16 11

∴ we have Σxi = 28, Σyi = 35, ΣXi = 0, ΣYi = 0; ΣXi
2  = 28, ΣYi

2  = 16, ΣXiYi = 11

byx =
Σ
Σ
X Y

X
i i

i
2

11

28
0 3928 0 393= = =. .  (approximately)

and bxy =
Σ
Σ
X Y

X
i i

i
2

11

28
0 6875 0 688= = =. .  (approximately)

∴ The regression equation of y on x is

y – y = byx (x – x )

i.e. y – 5 = 0.393 (x – 4)

or y = 0.393x + 3.428

and the regression equation of x on y is

x – x = bxy (y – y )

i.e. x – 4 = 0.688 (y – 5)

or x = 0.688 y + 0.56

∴ The required regression equations are

y = 0.393x + 3.428

and x = 0.688y + 0.56

Example 14.4. From the following results obtain the two regression equations and estimate the yield of crops
when the rainfall is 29 cms. and the rainfall when the yield is 600 Kg.

Mean y (yield in kgs.) (Rainfall in cms.)

508.4 26.7

S.D. 36.8 4.6

Coefficient of correlation between yield and rain fall in 0.52.
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Solution. We have

x = 26.7, y = 508 4.

σx = 4.6, σ y = 36 8.

and r = 0.52

∴ byx = r y

x

σ
σ

= =( . )
.

.
.0 52

36 8

4 6
4 16

and bxy = r x

y

σ
σ

= =( . )
.

.
.0 52

4 6

36 8
0 065

Regression equation of y on x

y y− = b x xyx ( )−

i.e., y – 508.4 = 4.16 (x – 26.7)

or y = 397.328 + 4.16x

when x = 29, we have y = 397.328 + 4.16 (29) = 517.968 kgs.

Regression equation of x on y

x x− = b y yxy ( )−

or x – 26.7 = – 0.065 (y – 508.4)

or x = – 6.346 + 0.065x

when y = 600 kg, x = – 6.346 – 0.065 × 600

= 32.654 cms

∴ The regression equations are:

y = 397.328 + 4.16 x

and x = – 6.346 + 0.065 y

When the rain fall is 29 cms the yield of crops is 517.968 kg and when the yield is 600 kg the temperature
is 32.654 cms.

Example 14.5. Find the most likely price of a commodity in Bombay corresponding to the price of Rs.70. at
Calcutta from the following

Calcutta Bombay

Average price 65 67

Standard deviation 2.5 3.5

Correlation coefficient between the price of commodity in the two cities is 0.8.

Solution. We have x = 65, y = 67

σx = 2.5, σy = 3.5 and r = 0.8

∴ y y− = r
σ
σ

y

x
x x( )−

⇒ y – 67 = ( . ) .
.
.

( )0 8
3 5
2 5

65�
��
�
��

−x
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⇒ y = 67 + 1.12x – 72.8

⇒ y = – 1.12x

⇒ y = – 5.8 + 1.12x

When x = 70;

y = – 5.8 + 1.12 × 70 = –5.8 + 78.4

⇒ y = 72.60

∴ The price of the commodity in Bombay corresponding to Rs. 70 at Calcutta is 72.60.

Example 14.6. The regression equation calculated from a given set of observation

x = – 0.4y + 6.4

and y = – 0.6x + 4.6

Calculate x y and rxy, .

Solution. We have x = – 0.4y + 6.4 ...(1)

and y = – 0.6x + 4.6 ...(2)

From (2), we have y = − − + +0 6 0 4 6 4 4 6. ( . . ) .y (using (1))

⇒ y = 0.24y – 3.84 + 4.6

⇒ 0.76y = 0.76

⇒ y = 1

From (1) we have y = – 0.4 × 1 + 6.4 = 6.0

but ( , )x y  in the point of intersection of (1) and (2)

Hence ( , )x y = (1, 6)

∴ x = 1,

y = 6

Clearly, equation (1) in the regression equation x or y and equation (2) is the regression equation y on x.

∴ We have bxy = – 0.4 and byx = –0.6

and r2 = (– 0.4) (– 0.6) = 0.24

r = rxy = ± 0 24.

Since bxy and byx are both negative r = rxy is negative

rxy = − 0 24.

Example 14.7. Show that the coefficient of correlation is the Geometric mean (G.M.) of the coefficients of
regression.

Solution. The coefficients of regression are r rx

y

y

x

σ
σ

σ
σ

and

∴ Geometric mean of the regression coefficients is

r rx

y

y

x

σ
σ

σ
σ

. = r r2 =  = coefficient of correlation.
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Example 14.8. In a partially destroyed laboratory record of an analysis of correlation data; the following
results only are legible:

variance of x = 9

Regression equations: 8x – 10y + 66 = 0, 40x – 18y = 214

What were (a) the mean values of x and y

(b) the standard deviation of y

(c) the coefficient of correlation between x and y.

Solution. Variance of x = 9

i.e., σx
2 = 9 ⇒ σx = 3

Solving the regression equations

8x – 10y + 66 = 0 ...(1)

40x – 18y = 214 ...(2)

We obtain x = 13, y = 17.

Since the point of intersection of the regression lines is ( , )x y  we have

( , )x y = ( , ) ( , )x y = 13 17

∴ x = 13, y = 17

The regression (1) and (2) can written as

y = 0.8x + 6.6 ...(3)

and x = 0.45y + 5.35 ...(4)

∴ The regression coefficient of y on x is

r y

x

σ
σ = 0.8 ...(5)

and the regression coefficient of x on y is

r x

y

σ
σ = 0.45 ...(6)

Multiplying (5) and (6), we get

r2 = 0.45 × 0.8

⇒ r2 = 0.36

⇒ r = 0.6

∴ Putting the values of r and σx in (5), we get the value of σy as follows:

r y

x

σ
σ = 0.8

⇒ (0.6) 
σ y

3
= 0.8

⇒ σy =
0 8

0 2
4

.

.
=
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Example 14.9. If one of the regression coefficients is greater than unity. Show that the other regression
coefficient is less than unity.

Solution. Let one of regression coefficient; say byx > 1

Then byx > 1 ⇒
1

1
byx

<

Since, byx bxy = r2 < 1

We have bxy <
1

byx

⇒ bxy < 1 �
1

1
byx

<
�

�
�

�

�
�

Example 14.10. Show that the arithmetic mean of the regression coefficients is greater than the correlation
coefficient.

Solution.

We have to show that 
b b

r
yx xy+

>
2

Consider ( )σ σy x− 2

Clearly ( )σ σy x− 2 > 0

(∴ Since square of two real qualities is always > 0)

⇒ σ σ σ σy x y x
2 2 2+ − > 0

⇒
σ

σ σ
σ

σ σ
y

y x

x

y x

2 2
+ > 2

⇒
σ
σ

σ
σ

y

x

x

y
+ > 2

⇒ r r
y

x

x

y

σ
σ

σ
σ

+ > 2r

⇒ b byx xy+ > 2r

⇒
b byx xy+

2
> r

Hence proved.

Example 14.11. Given that x = 4y + 5 and y = kx + 4 are two lines of regression. Show that 0 k
1

4
.≤ ≤

If k
1

8
=  find the means of the variables, ratio of their variables.
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Solution. x = 4y + 5 ⇒ bxy = 4

y = kx + 4 ⇒ byx = k

∴ r2 = bxy . byx = 4.k

but –1 < r < 1

⇒ 0 < r2 < 1

⇒ 0 < 4k < 1

⇒ 0 < k < 
1
4

When k = 1

8
; r2 = 4

1

8

1

2
. = ⇒ r = 0.7071

∴ y = kx + 4

⇒ y =
1
8

4x +

⇒ 8y = x + 32

⇒ 8y = 4y + 5 + 32

⇒ 4y = 37 ⇒ y = 9.25

Now x = 4y + 5 ⇒ x = 4(9.25) + 5

⇒ x = 42

∴ (x, y) = ( , )x y (� the point of intersection is ( , )x y )

= (42, 9.25)

i.e., x = 42, y = 9 25.

∴
b

b
xy

yx
=

r

r

x

y

y

x

x x

y y

σ
σ
σ
σ

σ σ
σ σ

= =
�
��
�
��

=.

.
4
1
8

32

i.e.,
σ
σ

x

y

2

2 = 32

∴ The ratio of the variances is 32 : 1.

14.13 MULTILINEAR LINEAR REGRESSION

In some cases, the value of a variate may not depend only on a single variable. It may happen
that these are several variable; which when taken jointly, will serve as a satisfactory basis for
estimating the desired variable. If x1, x2, ..., xk represent the independent variables, y' is the variable
which is to be predicted, and represents the regression equation,

y' = a a x a x a xk k0 1 1 2 2+ + + +...

the unknown coefficients a a ak0 1, , ...,  will be estimateds by the method of least squares. To obtain
the values of the variables; we have n sets of values of (k + 1) variables. Geometrically, the problem
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is one of finding the equation of the plane which best fits in the sense of least squares a set of n
points in (k + 1) dimension. The normal equations are:

na a x a x a xk k0 1 1 2 2+ + + +Σ Σ Σ... = Σy

a x a x a x x a x x x yk k0 1 1 1
2

2 1 2 1 1Σ Σ Σ Σ Σ+ + + + =...

� � �

a x a x x a xk k k k0 1 1
2Σ Σ Σ+ + +... = Σx yk

If there are two independent variables say x1 and x2, the normal equations are

na a x a x0 1 1 2 2+ +Σ Σ = Σy

a x a x a x x0 1 1 1
2

2 1 2Σ Σ Σ+ + = Σx y1

a x a x x a x0 2 1 1 2 2 2
2Σ Σ Σ+ + = Σx y2

and the regression equation is

Σy = a y a x y a xy0 1 1 2 2+ +Σ Σ

y = a a x a x0 1 1 2 2+ +
Example. 1 From the table given below, find out

(a) the least square regression equation of x0 and x1 and

(b) determine x0 from the given values of x1 and x2 and

(c) find the values of x0 when x1 = 54 and x2 = 9

given

x0 64 71 53 67 55 58 77 57 56 51 76 68

x1 57 59 49 62 51 50 55 48 52 42 61 57

x2 8 10 6 11 8 7 10 9 6 6 12 9

Solution. (a) The regression equation of x0 on x1 and x2 is

x0 = a a x a x0 1 1 2 2+ +

The normal equations to determine a a a0 1 2, ,  are

na a x a x0 1 1 2 2+ +Σ Σ = Σx0

a x a x a x x0 1 1 1
2

2 1 2Σ Σ Σ+ + = Σx x0 1

a x a x x a x0 2 1 1 2 2 2
2Σ Σ Σ+ + = Σx x0 2

(b)

x0 x1 x2 x1
2 x2

2 x0x1 x0x2 x1x2

64 57 8 3249 64 3648 512 456

71 59 10 3481 100 4189 710 590

53 49 6 2401 36 2597 318 294�
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67 62 11 3844 121 4154 737 682

55 51 8 2601 64 2805 440 408

58 50 7 2500 49 2900 406 350

77 55 10 3025 100 4235 770 550

57 48 9 2304 81 2736 513 432

56 52 10 2704 100 2912 560 520

51 42 6 1764 36 2142 306 252

76 61 12 3721 144 4638 912 732

68 57 9 3249 81 3876 612 513

753 643 106 38,843 976 40,830 6,796 5,779

The normal equation are

12 643 1060 1 2a a a+ + = 753 ...(1)

643 34843 5770 1 2a a a+ + = 40,830 ...(2)

106 5779 9760 1 2a a a+ + = 6.796 ...(3)

Solving the equations (1), (2) and (3), we get

a0 = 3.6512, a1 = 0.8546, a2 = 1.5063

The regression equation is

x0 = 3.6512 + 0.8546x1 + 1.5063x2 ...(4)

(c) When x1 = 54, x2 = 9, from equation (4),

We get x0 = 3.6512 + (0.8546) (54) + (1.5063) (9)

⇒ x0 = 63.356

The regression equation is x0 = 3.6512 + 0.8546x1 + 1.5063x2

and the value of x0 = 63.356 at x1 = 54, x2 = 9

14.14 USES OF REGRESSION ANALYSIS

There are many uses of regression analysis. In many situation, the dependent variable y is such
that it cannot be measured directly. In such cases, with the help of some auxiliary variables are taken
as independent variable in a regression to estimate the value of y. Regression equation is often used
as a prediction equation. The effect of certain treatments can better be adjudged by estimating the
effect of concomitant variables. Regressional analysis is used in predicting yield of a crop, for
different doses of a fertilizer, and in predicting future demand of food. Regression analysis is also
used to estimate the height of a person at a given age, by finding the regression of height on age.

Exercise 4.1

1. Heights of fathers and sons are given below in inches

Height of father 65 66 67 67 68 69 71 73

Height of son 67 68 64 68 72 70 69 70
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form the lines of regression and calculate the expected average height of the son when the
height of the father is 67.5 inches.

Hint: let 69 = x  and 69 = y  (assumed means), then we have

x y u v u2 v2 uv

65 67 –4 –2 16 4 8

66 68 –3 –1 9 1 3

67 64 –2 –5 4 25 10

67 68 –2 –1 4 1 2

68 72 –1 3 1 9 –3

69 70 0 1 0 1 0

71 69 2 0 4 0 0

73 70 4 1 16 1 4

–6 –4 54 42 24

x = x
u

x
+ = − =Σ

69
6
8

68 25.

y = y
v

x
+ = − =Σ

69
4
8

68 5.

σx
2 =

54

8

6

8
6 1875 2 49

2

− −�
��
�
��

= ⇒ =. .σx

σ y
2 =

42

8

4

8

42

8

1

2
5 2 23

2 2

− −�
��
�
��

= − �
��
�
��

= ⇒ =σ y .

r =
24 3

54
9
2

42 2

0 47
−

−�
�

�
�

−
=

( )

.

 The regression equation are y = 0.421x + 39.77

x = 0.524y + 32.29

When fathers height is 67.5. The sons age is 68.19 inches.

2. For the following data, determine the regression lines.

x : 6 2 10 4 8

y : 9 11 5 8 7

3. Find the regression equations for the following data

Age of husband : 36 23 27 28 28 29 30 31 33 35
(x)

Age of wife (y) : 29 18 20 22 27 21 29 27 29 28
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4. By the method of least squares find the regression of y and x and find the value of y when
x = 4. Also find the regression equation x on y and find the value of x when y = 24: Use the
table given below

x : 1 3 5 7 9

y : 15 18 21 23 22

5. Using the method of least squares find the two regression equation for the data given below

x : 5 10 15 20 25

y : 20 40 30 60 50

6. Define regression and find the regression equation of y on x, given

x : 2 6 4 3 2 2 8 4

y : 7 2 1 1 2 3 2 6

7. From the following data, obtain the two regression equations

Sales (x) : 91 97 108 121 67 124 51

Purchase (y) : 71 75 69 97 70 91 39

8. Find the regression equations for the following data

Age of Husband : 36 23 27 28 28 29 30 31 33 35
(x)

Age of wife (y) : 29 18 20 22 27 21 29 27 29 28

9. Find the equation of regression lines for the following pairs (x, y) for the variables x and y.

(1, 2), (2, 5), (3, 3), (4, 8), (5, 7)

10. From the following data find the yield of wheat in kg per unit area when the rain fall is 9 inches

Means S.D.

Yield of Wheat per unit (in kg) 10  8

Annual rainfall (in inches)  8  2

11. Show that regression coefficients are independent of the change of origin but not the change
of scale.

12. Given Σxi = 60, Σyi = 40, Σxi yi = 1,150, Σxi
2 = 4,160, Σyi

2 = 1, 720, x = 10.

Find the regression equation of x or y also find r.

13. Using the data given below find the demand when the price of the quantity is Rs. 12.50

Price Demand

(Rs.) (000 units)

Means 10 35

Standard deviation 2 5

Coefficient of correlation (r) = 0.8.

14. Find the mean of xi and yi ; also find the coefficient of correlation: given

2y – x – 50 = 0

2y – 2x – 10 = 0
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15. From the following data obtain the two regression equations and calculate the correlation
coefficient:

x : 1 2 3 4 5 6 7 8 9

y : 9 8 10 12 11 13 14 16 15

16. From the information given below find

(a) the regression equation of y on x

(b) the regression equation of x on y

(c) the mostly likely value of y when x = 100

Answer

2. y = 11.9 – 0.65x

x = 16.4 – 1.3y

3. y = –1.739 + 0.8913x

x = 11.25 + 0.75y

4. y = 15.05 + 0.95x, the value of y when x = 4 is 18.85

x = –12.58 + 0.888y and the value of x when y = 24 is 8.73.

5. y = 16 + 1.6x and x = –1 + 0.4 y

6. y = 4.16 – 0.3x

7. y = 15.998 + 0.607x, x = 0.081 + 1.286y

8. y = –1.739 + 0.8913x

x = 11.25 + 0.75y

9. y = 1.1 + 1.3x

x = 0.5 + 0.5y

10. 12 kg

12. x = 3.68 + 0.58y, r = 0.37

13. y = 15 + 2x; demand = 40,000 units

14. x  = 130, y  = 90, r = 0.866

15. x = –6.4 + 0.95y ; y = 7.25 + 0.95 x

16. (a) y = –0.532 + 1.422x (b) x = 4.4 + 0.2y (c) 141.668



1. Ahlberg, J.H., Nilson, E.N., and Walsh, J.L., The Theory of Splines and their Applications,
Academic Press, N.Y., 1967.

2. Ames, W.F., Numerical Methods for Partial Differential Equations, second edn., Academic
Press, N.Y., 1977.

3. Atkinson, K.E., An Introduction to Numerical Analysis, John Wiley & Sons, N.Y., 1978.

4. Berndt, R. (Ed.), Ramanujan’s Note Books, Part I, Springer Verlag, N.Y., 1985.

5. Booth, A.D., Numerical Methods, Academic Press, N.Y., 1958.

6. Collatz, L., Numerical Treatment of Differential Equations, third edn., Springer Verlag, Berlin,
1966.

7. Conte, S.D., Elementary Numerical Analysis, McGraw Hill, 1965.

8. Datiquist, G., and A. Bjorek, Numerical Methods, Prentice-Hall, Englewood Cliffs, N.Y., 1974.

9. Davis, P.Y., Interpolation and Approximation, Blaisedell, N.Y., 1963.

10. Hildebrand, F.B., Introduction of Numerical Analysis, McGraw Hill, N.Y., London, 1956.

11. Householder, A.S., Principles of Numerical Analysis, McGraw Hill, N.Y., 1953.

12. Isascon, E., and H.B. Keller, Analysis of Numerical Methods, John Wiley, N.Y., 1966.

13. Jain, M.K., Numerical Solution of Differential Equations, second edn., John Wiley N.Y., 1977.

14. Mitchell, A.R., and D.F. Griffiths, The Finite Difference Method in Partial Differential Equations,
John Wiley, N.Y., 1980.

15. Todd, Y., Survey of Numerical Analysis, McGraw Hill, N.Y., 1962.

16. Traub, J.F., Iterative Methods for the Solutions of Nonlinear Equations, Prentice-Hall, Englewood
Cliffs, 1964.

17. Wachspress, E.L., Iterative Solution of Elliptic Systems, Prentice-Hall, Englewood Cliffs, N.Y.,
1966.

18. Wait, R., The Numerical Solution of Algebraic Equations, John Wiley, N.Y., 1979.

19. Young, D.M., Iterative Solution of Large Linear Systems, Academic Press, N.Y., 1971.

20. Young, D.M., and R.T. Gregory, A Survey of Numerical Mathematics, 1,2, Addison-Wesley,
Reading, Mass., 1972.

BIBLIOGRAPHY

320



INDEX 321

INDEX

321

Absolute error  4

Adams Bash–Moulton method  230

Approximate numbers  1

Argument  62

Backward interpolation formula

Newton’s  104

Bessel’s formula  137

Bisection method  22

Boole’s rule  200, 201

Central difference formulae

Table  134, 135

Characteristic equation  282

convergence

of Newton’s method  44

rate of  45

Cotes number  197

Diagonal difference table  61

Difference(s), finite  60

first  60

second  60, 62

table  61, 62

Divided difference  116

properties  118

table  117

Double (of higher order)

integration  205, 206

Differencing interval  60

Differentiation numerical  164

Differential equation  212

Eigen value(s)  282, 283

eigen vector(s)  282, 283

Everett’s formula  139

Even digit rule  3

Errors  3

absolute  5

error, limiting relative  5, 7

general formula  10

Factorial polynomial  76

Forward interpolation, Newton’s  98

Graphical solution  20

Gaussian interpolation formulae  134, 136

Gauss elimination method  250

Gauss–Jacobi’s method  253, 254

Gauss–Seidal method  256, 257

General error formula  10

Gaussain–Legendre quadrature

formula  1180



322 NUMERICAL ANALYSIS

Iteration method  25

Newton’s  33

Integration numerical  178

Inverse interpolation  151

Jacobi’s method  253, 254

Matrix inversion  248, 249

Milne’s method  224, 225

Newton binomial expansion formula  96

Newton–Cotes formula  195, 196, 197

Newton method 36

Newton–Raphson method  33

Numerical differentiation  164

Operator difference  60

backward  166

central difference  83

displacement (shift)  69

forward  60

Predictor corrector method  224-240

Picard method  242, 243

Regression analysis 300

Rounding off numbers  2

rule  2

Runge–Kutta method  233

Romberg integration  201-203

Separation of symbols  86

Significant digits  1

Simpson’s

one-third rule  181, 182

three-eighths rule  182, 183, 184

Stirling’s formula  138

Taylor’s series  213, 214

Trapezoidal rule  180, 181

Weddle’s rule  184, 185


	Cover
	Preface to the Third Edition

	Preface to the First Edition

	Contents
	Chapter 1. Errors
	1.1 Introduction
	1.2 Significant digits
	1.3 Rounding off numbers
	1.4 Errors
	1.5 Relative error and the number of correct digits
	1.6 General error formula
	1.7 Application of errors to the fundamental operations of arithmetic

	Exercise 1.1

	Chapter 2. Solution of Algebraic and Transcendental Equations
	2.1 Introduction
	2.2 Graphical solution of equations
	Exercise 2.1

	2.3 Method of bisection
	Exercise 2.2

	2.4 The Iteration Method
	Exercise 2.3

	2.5 Newton–Raphson method or Newton iteration method
	Exercise 2.4
	Exercise 2.5

	2.6 Generalised Newtons’ method for multiple roots
	Exercise 2.6

	2.7 Regula-Falsi method
	2.8 Muller’s Method
	Exercise 2.7


	Chapter 3. Finite Differences
	3.1 Introduction
	3.2 Forward difference operator
	3.3 The operator E
	3.4 The operator D
	3.5 Backward differences
	3.6 Factorial polynomial
	3.7 Error propagation in a difference table
	3.8 Central Differences

	3.9 Mean Operator

	3.10 Separation of Symbols

	3.11 Herchel’s Theorem

	Exercise 3.1


	Chapter 4 Interpolation with Equal Intervals

	4.1 Introduction

	4.2 Missing Values

	4.3 Newton’s Binomial Expansion Formula

	4.4 Newton’s Forward Interpolation Formula

	4.5 Newton–Gregory Backward Interpolation Formula

	4.6 Error in the Interpolation Formula 

	Exercise 4.1


	Chapter 5 Interpolation with Unequal Intervals

	5.1 Introduction
	5.2 Newton’s General Divided Differences Formula

	Exercise 5.1

	5.3 Lagrange’s Interpolation Formula
	Exercise 5.2

	5.4 Inverse Interpolation

	Exercise 5.3


	Chapter 6 Central Difference Interpolation Formulae 
	6.1 Introduction
	6.2 Gauss Forward Interpolation Formula

	6.3 Gauss Backward Interpolation Formula

	6.4 Bessel’s Formula

	6.5 Stirling’s Formula

	6.6 Laplace–Everett Formula

	Exercise 6.1


	Chapter 7 Inverse Interpolation 
	7.1 Introduction
	7.2 Method of Successive Approximations

	7.3 Method of Reversion Series

	Exercise 7.1


	Chapter 8 Numerical Differentiation 
	8.1 Introduction
	8.2 Derivatives Using Newton’s Forward Interpolation formula 

	8.3 Derivatives Using Newton’s Backward Interpolation formula

	8.4 Derivatives Using Stirling’s Formula

	Exercise 8.1


	Chapter 9 Numerical Integration 
	9.1 Introduction

	9.2 General Quadrature Formula for Equidistant Ordinates

	9.3 Trapezoidal Rule

	9.4 Simpson’s One-third Rule 

	9.5 Simpson’s Three-eighth’s Rule 

	9.6 Weddle’s Rule

	Exercise 9.1

	9.7 Newton–Cotes Formula

	9.8 Derivation of Trapezoidal Rule, and Simpson’s Rule from Newton–Cotes Formula

	9.9 Boole’s Rule

	9.10 Romberg Integration 

	Exercise 9.2

	9.11 Double Integration

	9.12 Euler-Maclaurin Summation Formula

	Exercise 9.3


	Chapter 10 Numerical Solution of Ordinary Differential Equations 
	10.1 Introduction

	10.2 Taylor’s Series Method

	10.3 Euler’s Method

	10.4 Modified Euler’s Method

	Exercise 10.1

	10.5 Predictor–Corrector Methods

	10.6 Milne’s Method

	10.7 Adams–Bashforth–Moulton Method

	Exercise 10.2

	10.8 Runge-Kutta Method

	Exercise 10.3

	10.9 Picard’s Method of Successive Approximation

	Exercise 10.4


	Chapter 11 Solution of Linear Equations 
	11.1 Matrix Inversion Method
	Exercise 11.1

	11.2 Gauss–Elimination method

	Exercise 11.2

	11.3 Iteration Methods 

	Exercise 11.3
	Exercise 11.4

	11.4 Crout’s Triangularisation Method (Method of Factorisation) 

	Exercise 11.5



	Chapter 12 Curve Fitting 
	12.1 Introduction
	12.2 The straight line 

	12.3 Fitting a straight line

	12.4 Fitting a parabola

	12.5 Exponential function y = aebx

	Exercise 12.1


	Chapter 13 Eigen Values and Eigen Vectors of a Matrix

	13.1 Introduction 

	13.2 Method for the largest Eigen value (Power Method)

	13.3 Cayley-Hamilton theorem

	Exercise 13.1



	Chapter 14 Regression Analysis 
	14.1 Regression Analysis

	14.2 Correlation

	14.3 Coefficient of Correlation (r)

	14.4 Scatter Diagram

	14.5 Calculation of r (Correlation Coefficient) (Karl Pearson’s formula) 

	14.6 Regression

	14.7 Regression Equation

	14.8 Curve of Regression

	14.9 Types of Regression

	14.10 Regression Equations (linear fit)

	14.11 Angle Between two lines of regression

	14.12 Solved Examples

	14.13 Multilinear Linear Regression

	14.14 Uses of Regression Analysis

	Exercise 4.1


	Bibliography
	Index



