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Inequalities are useful in all fields of Mathematics. The aifithis problem-orientecbook is to
present elementary techniques in the theory of inequslifibe readers will meet classical theorems

includingSchur’s inequalityMuirhead’s theoremthe Cauchy-Schwarz inequalithe Power Mean

inequality the AM-GM inequalityandHdlder’s theorem | would greatly appreciate hearing about
comments and corrections from my readers. You can send &mma# atultrametric@gmail.com
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To Students

My target readers are challenging high schools studentsuaddrgraduate students. The given
techniques in this book are just the tip of the inequalittebierg. Young students should find their
own methods to attack various problems. A great Hungariath&faatician Paul Erdds was fond
of saying that God has a transfinite book with all the theorems and their lpesofs | strongly
encourage readers to send me their own creative solutichg @giroblems in this bookdave fun!
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1 Geometric Inequalities

It gives me the same pleasure when someone else proves ehgooehh as when | do it myselE. Landau

1 Ravi Substitution

Many inequalities are simplified by some suitable substing. We begin with a classical inequality
in triangle geometry. What is the fitshontrivial geometric inequality ? In 1746, Chapple showed
that

Theorem 1.1. (Chapple 1746, Euler 1765)et R and r denote the radii of the circumcircle and
incircle of the triangle ABC. Then, we have>R2r and the equality holds if and only if ABC is
equilateral.

Proof. LetBC=a,CA=hb,AB=c,s= “Tb*c andS= [ABq.2 Recall the well-known identities :

S= 2% 5—rs, = s(s—a)(s—b)(s—c). HenceR > 2r is equivalent t& > 28 or abc> 85
orabc> 8(s—a)(s— b)(s— c). We need to prove the following. O

1The first geometric inequality is the Triangle InequalikB+ BC > AC
2In this book,[P] stands for the area of the polygén
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Theorem 1.2. (JAP], A. Padog Let a, b, c be the lengths of a triangle. Then, we have
abc> 8(s—a)(s—b)(s—c) or abc> (b+c—a)(c+a—b)(a+b—c)
and the equality holds if and only if-ab =c.

Proof. We use thé&kaviSubstitution : Since, b, care the lengths of a triangle, there are positive reals
XY, zsuch thae=y+z b=z+x, c=x+y. (Why?) Then, the inequality ig/+ 2)(z+ X)(x+y) >
8xyzfor x, y, z> 0. However, we get

(Y+2)(z+X)(x+Y) — 8xyz= X(y — 2%+ y(z— X)* + Z(x — y)? > 0.

Exercise 1. Let ABC be a right triangle. Show that
R> (1+V2)r.
When does the equality hold ?

It's natural to ask that the inequality in the theorem 2 hdtasarbitrary positive reals, b, c?
Yes ! It's possible to prove the inequality without the aduhial condition thag, b, ¢ are the lengths
of atriangle :

Theorem 1.3. Let X, y, z> 0. Then, we have xyz (y+z—Xx)(z+Xx—Y)(X+Y—2). The equality
holds if and only if = y = z.

Proof. Since the inequality is symmetric in the variables, withiogt of generality, we may assume
thatx >y >z Then, we havex+y > zandz+x >vy. If y+z> x, thenx, y, z are the lengths of
the sides of a triangle. In this case, by the theorem 2, wehgetesult. Now, we may assume that
y+z<x Thenxyz> 0> (y+2z—X)(z4+X—Y)(X+y—2). )

The inequality in the theorem 2 holds when some,of, zare zeros :
Theorem 1.4. Let x, y, > 0. Then, we have xyz (Y+z—X)(z+X—Yy)(X+Yy—2).

Proof. Sincex,y,z> 0, we can findositivesequence$xn}, {yn}, {zn} for which

Iim xp =X, iImy,=y,limz =z
n—oo n—oo

n—oo
Applying the theorem 2 yields
Xn¥nZn > (Yn =+ 2Zn — %n)(Zn +Xn — Yn) (Xn +Yn — Zn).

Now, taking the limits to both sides, we get the result.
o

Clearly, the equality holds when=y = z. Howeverxyz= (y+z—x)(z+x—Yy)(x+y—z) and
X, ¥, z> 0 does not guarantee that y = z In fact, forx,y,z > 0, the equalitiyz= (y+z—X)(z+
X—Y)(x+y—2)is equivalent to

X=y=z or x=y,z=0o0r y=zx=0 or z=x,y=0.
It's straightforward to verify the equality
Xyz— (Y+2=X)(2+X=Y)(X+Y—=2) =X(X=Y) (X=2) +Y(y = 2)(y = X) + Z(z—X)(z—Y).

Hence, the theorem 4 is a particular case of Schur’s ingguali
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Problem 1. (IMO 2000/2, Proposed by Titu Andreesgliet a b, c be positive numbers such that

abc= 1. Prove that L
<a_1+5) (b 141 )( _14d )

First Solution. Sinceabc= 1, we make the substltutlo&n_ X b= lz’ =Zforxy,z> 03 We
rewrite the given inequality in the terms xfy, z

‘< |

X z\ [y X\ [z y
<§/—1+§/> <E_1+ E) (;—1+;) <1 xyz> (Yy+z—X)(z+xX—y)(X+y—2).

O

TheRaviSubstitution is useful for inequalities for the length$, ¢ of a triangle. After theRavi
Substitution, we can remove the condition that they areghgths of the sides of a triangle.

Problem 2. (IMO 1983/6) Let a, b, ¢ be the lengths of the sides of a triangle. Prove tha
a’b(a—b) +b%c(b—c)+c%a(c—a) > 0.

First Solution. After settinga=y+2z b=z+x, c=x+yforx,y,z> 0, it becomes
Xy A
X3Z+ VX + 2y > X2yz+ xyPz+ XyZ or YTz x >xX+y+z

which follows from the Cauchy-Schwarz inequality
X2y 2
(Y+z+Xx) (Y ++ ;) > (X+y+2)°~

Exercise 2. Let a, b, ¢ be the lengths of a triangle. Show that

a+b+c
b+c c+a a+b

< 2.

Exercise 3. (Darij Grinberg) Let a, b, ¢ be the lengths of a triangle. Show the inequalitie
a®+ b®+ ¢+ 3abc— 2b%a— 2c?b — 2a’c > 0,

and
a’b + 3b%c + 3c?a— 3abc— 2b%a — 2¢%h — 2ac > 0.

We now discuss Weitzenbock’s inequality and related imdities.

Problem 3. (IMO 1961/2, Weitzenbck’s inequality) Let a, b, ¢ be the lengths of a triangle with
area S. Show that
a?+b?4c? > 4V/3S,

Solution.Writea=y+2z b=z+x,c=x+yforx,y,z> 0. It's equivalent to
(Y +2)%+ (2+X)2+ (x+Y)2)2 > 48(x+y + 2)xyz
which can be obtained as following :
((Y+2)?+ (2+X)2 4 (x+Y)?)2 > 16(yz+ zx+ xy)? > 16- 3(Xy- yz+ yz- ZX+ Xy y2).
Here, we used the well-known inequalitigd+ ¢? > 2pgand(p+q-+r)2> 3(pg+qr+rp). O

SFor example, take=1,y=1,z= 1.
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Theorem 1.5. (Hadwiger-Finsler inequality For any triangle ABC with sides a, b, ¢ and area F,
the following inequality holds.

2ab+ 2bc+ 2ca— (a®+b?+c?) > 4v/3F.
First Proof. After the substitutiolm=y+z b=z+ X, c=x+Y, wherex,y,z> 0, it becomes
Xy-+yz+2x> \/3xyAX+y + 2),
which follows from the identity

(xy—y2P + (y2— 207+ (25— xy)°

(Xy+Yz+2X)% — 3xyAX+y+2) = 5

O
Second ProofWe give a convexity proof. There are many ways to deduce tierfimg identity:

2ab+ 2bc+ 2ca— (a2Jr b?+ CZ) = tané + tanE + tan9
4F Sz 2 e

Since tarx is convex on(O, g) Jensen’s inequality shows that

(a2 p2 A,B,C
2ab+2bc+2c;a|: (a2+b?+c?) 23tan<2+§+ 2) -3

O

Tsintsifas proved a simultaneous generalization of Walibek’s inequality and Nesbitt's in-
equality.

Theorem 1.6. (Tsintsifas)Let p q,r be positive real numbers and lettac denote the sides of a
triangle with area F. Then, we have

P a2, 92y T 25003
q+r r+p p+qg

Proof. (V. Pambuccian) By Hadwiger-Finsler inequality, it sufde show that

p - 9 .., T

a4 b%+ czzz(a+b+c)2—(a2+b2+c2)
q+r r+p p+q 2
or L
(P+Q+r>a2+<P+Q+r>b2+<P+Q+V>C22_(a+b+c)2
gq+r r+p p+q 2
o 1 1 1
2 2 2 2
r r a b c°| >(a+b+c).
(@) + P+ (P 0) (et gt o) = (@b
However, this is a straightforward consequence of the Ca&aihwarz inequality. O

Theorem 1.7. (Neuberg-Pedoe inequali}yLet & ,b;,c; denote the sides of the triangle ByC;
with area F. Let &, b, c, denote the sides of the triangleByC, with area F,. Then, we have

a1?(02% + Co? — @p?) + b1 ?(Co% + ap® — %) + c1?(@% + b? — 6o%) > 16F; .

Notice that it's a generalization of Weitzenbodck’s ineliygWhy?) In [GC], G. Chang proved
Neuberg-Pedoe inequality by using complex numbers. Foriméeresting geometric observations
and proofs of Neuberg-Pedoe inequality, HeB] or [GI, pp.92-93]. Here, we offer three algebraic
proofs.
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Lemma 1.1.
a12(ax? + 2% — 62°) + b2 (bo? + 62 — @p?) + 61 2(Co? + a® — bp?) > 0.
Proof. Observe that it's equivalent to
(a1 + 012+ ¢12) (a0 + b + 6o?) > 2(ag%a® + by?hy? + ¢1°¢,2).

From Heron'’s formula, we find that, foe= 1,2,

16F% = (a%+b%+c?)?—2@*+b*+c*) >0 or a?+b?+c?>\/2(a%+b*+c4).

The Cauchy-Schwarz inequality implies that

(a2 + b2 +c?) (@R + b2 +0?) > 2y/(@rt+ by’ + cr) (gt + b + )

> 2(312322 + b12b22 + C12022).

o
First Proof. ([LC1], Carlitz) By the lemma, we obtain
L = ar?(0? + 2% — @?) + b1? (o + ap? — %) + cr? (@ + bp? — %) > 0,
Hence, we need to show that
L2 — (16F1?)(16F,?) > 0.
One may easily check the following identity
L2 — (16F12)(16F?) = —4(UV + VW +WU),
where
U = by%c? — by%ci?, V = c1?a — cp2a? and W = a3 %by? — ax2by 2.
Using the identity
2 2 2 a2 b2
a;“U+bV+c“W=0 orW:—QU _QV’
one may also deduce that
UV +VW+WU = —%12 (U Saa _;;fz_—blzv)z _ dar’y” _f;;llzzc_lf Ry
It follows that
UV +VW+WU = —%12 (u _o _2"’2122_ b12v>2— 4;?2;% <0.
o

Carlitz also observed that the Neuberg-Pedoe inequalitpealeduced from Aczél's inequality.

Theorem 1.8. (AcZl's inequality) Let &, --- ,an, b1, - - - , by be positive real numbers satisfying
a1? > a?+ - +an and b? > b2 + -+ bp?.

Then, the following inequality holds.

aihy — (agbz +-- - +apbn) > \/(312— (a2 + - +an?)) (0% — (0% + -+ + bn?))
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Proof. ([Al] ) The Cauchy-Schwarz inequality shows that

ab; > \/(a22+m+an2)(b22+~~+bn2) > &by + -+ anbn.
Then, the above inequality is equivalent to
(azhy — (agbp + - -+ @ghn))? > (a1 — (@2 + - +an?)) (b? — (0o® + - +bn?)).

In caseas® — (a2 +---+an?) = 0, it's trivial. Hence, we now assume thf — (a2 + - --+a?) > 0.
The main trick is to think of the following quadratic polynaah

P(x) = (alx—bl)z_ (ax— bI (al — Za. )x +2(a1b1— Za.b) X+ (bl — %bl ) .

SinceP(%) =-3L ( <g—) - b.) < 0 and since the coefficient &f in the quadratic polynomial
P is positive,P should have at least one real root. Therefétdias nonnegative discriminant. It

follows that
- ’ 2 - 2 2 - 2
21 atb1 — S ab; —4la1°— ) g bic =S b > 0.
2, 2, 2°

Second Proof of Neuberg-Pedoe inequal{ff.C2], Carlitz) We rewrite it in terms oy, by, ¢1, @y,
b2, Co:

=}

O

(a1 + b1? 4 ¢12) (ap® + 2% 4 02?) — 2(ag%a? + by ?byp? + ¢12C,%)

> \/((alz + b12 + 012) 2_ 2(&14 + b14 + 014)) <(3.22 + b22 + C22) Z_ 2(3.24 + b24 + C24)> .
We employ the following substitutions
X1 =a1%+ b’ + 1% %0 = V2au® 3 = V2bi? xa = V20,

y1 = @ + 2% + ¢ y2 = V2a2 y3 = V22 s = V2652

As in the proof of the lemma 5, we have
x1% > ¥? +y3? +xa° and yr® > yo? +y3? +ya’.

We now apply Aczél's inequality to get the inequality

X1Y1 — X2Y2 — X3Y3 — Xays > \/ (%12 = (%% + 3% +%4?)) (12 — (Y22 + Y32 + ¥a?)).
O
We close this section with a very simple proof by a former sttdn KMO* summer program.

Third Proof. Toss two triangleg\A;B;C; and AA;B,C, onR?Z:

A1(0, p1), B1(p2,0), C1(p3,0), A2(0,01), B2(ap,0), andCx(qs,0).

4Korean Mathematical Olympiads
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It therefore follows from the inequality” + y? > 2|xy| that

<’:112(b22 + 022 — 6122) + b12(022 + a22 — bzz) + C;LZ(az2 + bzz - sz)

(Ps— P2)2(202% + 2000) + (P1? + Pa?) (202° — 20203) + (P1® + P2°) (2013 — 202013)
2(p3 — P2)%th® + 2(d3 — G2)*p1® + 2( Ptz — P20is)?

2((ps— P2)a)®+2((d3 — 02) p1)?

4{(p3— p2)as| - [(az — 02) Py
= 16FF.

v v

2 Trigonometric Methods

In this section, we employ trigonometric methods to attae@rgetric inequalities.

Theorem 1.9. (Erdos-Mordell Theoren If from a point P inside a given triangle ABC perpendic-
ulars PH;, PH,, PHs are drawn to its sides, then PAPB+ PC > 2(PH; + PH, + PHs).

This was conjectured by Paul Erdos in 1935, and first prowedibrdell in the same year.
Several proofs of this inequality have been given, usindelrtg’'s theorem by André Avez, angular
computations with similar triangles by Leon Bankoff, areaduality by V. Komornik, or using
trigonometry by Mordell and Barrow.

Proof. ([MB], Mordell ) We transform it to a trigonometric inequality. Liet = PH;, h, = PH, and
hz = PH3. Apply the Since Law and the Cosine Law to obtain

PAsinA=HyH; = \/hzz + h32 — 2hohs COS( T— A),

PBsinB=HzH; = \/hgz + hy? — 2hzh; cog 11— B),

PCSINC=FiF; = \/hi2+hy?—2hhycogm—C).

So, we need to prove that

1
Cy%ic SinA
The main trouble is that the left hand side has beavyterms with square root expressions. Our

strategy is to find a lower bound without square roots. Toehid, we express the terms inside the
square root athe sum of two squares

/a2 +hg? — 2hgha cos(T— A) > 2(hy +hp+ o).

H2H32 = hgz + h32 — 2hshs COS( m— A)
hy? + hg? — 2hshscogB +C)
hy? 4 h3? — 2hyhs(cosBcosC — sinBsinC).

Using co€B+sir? B = 1 and co3C + sir’C = 1, one finds that

FoH3- = (hpsinC+ hgsinB)? + (hp cosC — hzcosB)?.
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Since(hycosC — hg,cosB)2 is clearly nonnegative, we gebH3z > h, sinC + hzsinB. It follows that

\/ ho? + hg? — 2hshs cogTT— A) N hySinC+ hssinB
oftic SinA - Cy%-lc SinA
sinB smC) hy

C}%C(smc sinB
> Z 5 /s?nB's!nCh1
oiidlic sinC sinB

= 2hy+2hy+2hs.

We use the same techniques to attack the following geomiegipiality.

Problem 4. (IMO Short-list 2005 In an acute triangle ABC, let D, E, F, P, Q, R be the feet of
perpendiculars from A, B, C, A, B, C to BC, CA, AB, EF, FD, DEpectively. Prove that

P(ABC)p(PQR) > p(DEF)?,
where gT) denotes the perimeter of triangle T .

Solution. Let’s euler this problem. Leto be the circumradius of the trianghBC. It is easy to
show thatBC = 2psinA andEF = 2psinAcosA. SinceDQ = 2p - sinCcosBcosA, DR = 2p -
sinBcosCcosA, and/FDE = m— 2A, the Cosine Law gives us
QR = DQ?’+DR?—2DQ-DRcogm—2A)
= 4p2cogA [(sinCcosB)2 + (sinBcosC)? + ZsinCcosBsinBcochos(ZA)}
or

QR=2pcosA/f(AB,C),

where
f(A,B,C) = (sinCcosB)? + (sinBcosC)?+ 2 sinC cosBsinBcosCcog 2A).

So, what we need to attack is the following inequality:

( 2psinA> ( 2pcosAy/ f(A, B,C)) > (
cyclic cyclic

2
2p sinAcosA)

cyclic

or

2
(C)%icsinA> (C%CCOSA\/W> > (ancsinAcosA) .

Our job is now to find a reasonable lower bound 6f (A, B,C). Once again, we expre$$A, B,C)
asthe sum of two squares We observe that

(sinCcosB)? + (sinBcosC)? + 2 sinC cosBsinBcosC cog 2A)
(sSinCcosB + sinBcosC)? + 2 sinC cosBsinBcosC [—1+ cog2A)]
= sin?(C+ B) — 2sinCcosBsinBcosC - 2sirf A

Si? A[1 — 4sinBsinCcosBcosC] .

f(A,B,C)

Seuler v. (in Mathematics) transform the problems in triangle getinto trigonometric ones
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So, we shall express-14 sinBsinCcosBcosC as the sum of two squares. The trick is to replace 1
with (sin? B+ cogB) (si?C + cogC). Indeed, we get

1-4sinBsinCcosBcosC = (Si’B+ cog B) (sinPC+ cog C) — 4sinBsinCcosBcosC
—  (sinBcosC — sinCcosB)? + (cosBcosC — sinBsinC)?
= si*(B—C)+cog(B+C)
= sir?(B—C)+cogA.

It therefore follows that
f(A,B,C) = sir?A[sir?(B—C) + co$A] > sirP Acog A

so that

Z cosA\/f(A,B,C) > Z SinAcoS A.
cyclic cyclic

So, we can complete the proof if we establish that

2
. . 2 . ‘
(cy%CsmA> (Cy%CsmAco A) > (C%C&nAcosA)

Indeed, one sees that it’s a direct consequence of the Ce&athwarz inequality

(P+A+1)(X+Y+2) > (VPX+ VAV + V12)%,
wherep, q,r,X,y andz are positive real numbers. O

Alternatively, one may obtain another lower boundf oA, B,C):

f(A,B,C) = (sinCcosB)?+ (sinBcosC)? -+ 2sinCcosBsinBcosCcog2A)
— (sinCcosB — sinBcosC)? + 2sinC cosBsinBcosC [1 + cog2A)]

sm(ZB) sin(ZC)
2

= sif(B—C)+2—— -2c0gA

Y

c0§Asin(ZB)S|n(2C).
Then, we can use this to offer a lower bound of the perimetéiariglePQR

p(PQR = ¥ 2pcosA\/f(A,B,C) > Z 2pcog AvV/sin BsinZC
cyclic

cyclic

So, one may consider the following inequality:

p(ABC) Z 2pco$ AV/sin Bsin X > p(DEF)?
cyclic

or

2
2p Z sinA Z 2pcofAVsinBsinX | > | 2p Z SinAcosA | .
cyclic cyclic cyclic

2
( Z sinA> ( Z co§Ax/sin233in2C> > ( Z sinAcosA) .
cyclic cyclic cyclic

However, it turned out that this doesn’t hold. Try to dispzdkis!

or
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Problem 5. Let | be the incenter of the triangle ABC with B€a, CA= b and AB= c. Prove that,
for all points X,

aX A+ bXB +cXC > abc
Proof. This geometric inequality follows from the following geotrie identity:
aX & +bXB +cXC = (a+b+c)XI2+abc

There are many ways to establish this identity. elder this, we toss the picture on the cartesian
plane so thaf\(ccosB, csinB), B(0,0) andC(a,0). Lettingr be the inradius oABCands = HTb*C,
we getl (s—b,r). It's well-known that

,_ (s-a)(s=b)(s=0)
S

SetX(p,q). On the one hand, we obtain

aX /X +bXB 4 cXC
- a {(p— ccosB)?+ (q— csinB)z} +b(p?+ ) +c[(p—a)®+ o]
= (a+b+c)p?—2acp1+cosB) + (a+b+c)g? - 2acgsinB -+ ac® + a’c

2 2_Rh2 AAB
= Zsp2—2acp<1+m>+25q2—2acq[ T 9
2ac 5ac

= 2sp?— p(a+c+b)(a+c—b)+2s¢ — 4q[AABC +ac® +a’c
2sp? — p(2s) (25— 2b) + 2s¢f — 4gsr+ac® + a’c
— 2sp?—4s(s—b) p+ 2sqf — 4rsq+ ac® + a’c.

+ac®+a’c

On the other hand, we obtain

(a+b+c)XI2+abc
= 2s[(p—(s—b))’+(a-r)?
= 2s[p?—2(s—b)p+ (s—b)?+q?—2qr+r?]
= 2spf —4s(s—b) p+2s(s—b)?+ 2scf — 4rsq+ 2sr° + abc

It follows that

aX & +bXB +cXC - (a+b+c)XI?—abc
= ac®+a’c—2s(s—b)?—2sr’—abc
ac(a+c) — 2s(s—b)?— 2(s—a)(s— b)(s—c) —abc
ac(a+c—b) — 2s(s—b)?—2(s—a)(s—b)(s—c¢)
2ac(s—b) — 2s(s—b)2— 2(s—a)(s— b)(s—c)
= 2(s—b)[ac—s(s—b)—2(s—a)(s—c0)].

However, we computac— s(s— b) — 2(s—a)(s—c¢) = —25°+ (a+b+c)s=0. O

Problem 6. (IMO 2001/1) Let ABC be an acute-angled triangle with O as its circumcenitet
P on line BC be the foot of the altitude from A. Assume tHBCA > ZABC+ 30°. Prove that
/CAB+ /COP< 90r.

6IMO Short-list 1988
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Proof. The angle inequality/ CAB+ ZCOP < 90° can be written a¥’COP < Z/PCQ. This can
be shown if we establish the length inequalp > PC. Since the power of P with respect to
the circumcircle ofABCis OP? = R? — BP- PC, whereR is the circumradius of the triangl&BC, it
becomeds? —BP-PC > PC? or R? > BC-PC. Weeulerthis. It's an easy job to g&C = 2RsinAand
PC = 2RsinBcosC. Hence, we show the inequali®f > 2RsinA- 2RsinBcosC or sinAsinBcosC <

‘—11. Since sirA < 1, it suffices to show that siksinBcosC < ‘—11. Finally, we use the angle condition
/C > /B+ 30 to obtain the trigonometric inequality

sin(B+C) —sin(C—B) < 1-sin(C—B) < 1-sin30 1

sinBcosC = > < > < 5 =7

O

We close this section with Barrows’ inequality strongentados-Mordell Theorem. We need
the following trigonometric inequality:

Proposition 1.1. Let xy,z 61, 6>, 65 be real numbers wit; + 6, + 63 = 1. Then,
X2 +y? + 27 > 2(yzcoshy + zxcosbs + xycoshs).
Proof. Using 65 = m— (61 + 6,), it's an easy job to check the following identity

X2 +y? + 2 — 2(yzc0s) 4 2xC0S6; + Xycoshs) = (z— (xc0s8, +ycosh; ))? + (xsin@, — ysind; ).

O

Corollary 1.1. Let p, g, and r be positive real numbers. 18gf 8,, and8s be real numbers satisfying
6, + 6, + 63 = 1. Then, the following inequality holds.

pcost; +qcosf, +rcosfs < = (qpr + (;) + pq>

Proof. Take(x,y,2) ([,\/7 \/>) and apply the above proposition. O

Theorem 1.10. (Barrow’s Inequality) Let P be an interior point of a triangle ABC and let U, V,
W be the points where the bisectors of angles BPC, CPA, APBesides BC,CA,AB respectively.
Prove that PA-PB+ PC> 2(PU + PV + PW).

Proof. ((MB] and [AK] ) Letd; = PA, d, = PB, d3 = PC, I, = PU, I, = PV, I3 = PW, 26, = /BPC,
26, = /CPA and B3 = Z/APB. We need to show that +dy+d3z > 2(I1 + 12+ 13). It's easy to
deduce the following identities

| 20d;
C datd3

d3d1 d1d2
cosl and I3
dz+d; %2, T di+dy

cosBs,

1, 2=
By the AM-GM inequality and the above corollary, this meamestt

l1 415413 < 1/da03c086; + 1/d3d; cosB, + 1/didycosts < = (d1+d2+d3)
O

As another application of the above trigonometric propasjtwe establish the following in-
equality
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Corollary 1.2. ([AK], Abi-Khuzam) Let x,--- ,X4 be positive real numbers. Lé4,---, 0, be real
numbers such th&; +---+ 6, = 1. Then,

X1 COSB; + X COSBy + X3 C0SB3 + X4 COSO, < \/ (XaX2 + XgXa) (X1X5 + XoXa) (X1 X4 + XoXs)
- X1 X2X3X4 '

2X1%2 2X3X4 a=
and6; + 0, + (61 + 6,) = m, the proposition implies that

X1C086; + X2€056>+ A cog 63+ 64) < pA =,/pq,

Proof. Let p = X% | X2 132 XX andA = \/g. In the view of0; + 6>+ (63 +04) = Tt

and
X3C0SHB3 +X4C0S04 + A 061 + 62) < )\ﬂ = /PG

Since coé6s + 64) + cog 6 + 8;) = 0, adding these two above inequalities yields

X1 X2 + X X1X3 + X X XoX
X1 C0SO; + X2 C0SO, + X3 C0SO3 + X4 €086, < 2,/pq = \/( 12 + XaXe) ( ;it( ;:4)( 14 +XoX3) .
1A2A3

O

3 Applications of Complex Numbers

In this section, we discuss some applications of complexbarmto geometric inequality. Every
complex number corresponds to a unique point in the compémep The standard symbol for the
set of all complex numbers i§, and we also refer to the complex plane(as The main tool is
applications of the following fundamental inequality.

Theorem 1.11.1f z3,--- ,zZ, € C, then|zy| + -+ |Za| > |22+ - - + Zn].

Proof. Induction onn. O

Theorem 1.12. (Ptolemy’s Inequality For any points AB,C, D in the plane, we have
AB-CD+BC-DA > AC-BD.

Proof. Leta, b, c and 0 be complex numbers that correspond,®,C, D in the complex plane. It

becomes
la—b|-[c[+|b—c|-|a| > a—c|-|b].

Applying the Triangle Inequality to the identifa—b)c+ (b—c)a= (a— c)b, we get the result. O

Problem 7. ([TD]) Let P be an arbitrary point in the plane of a triangle ABC witie centroid G.
Show the following inequalities

(1) BC-PB-PC+ AB- PA-PB+CA-PC-PA> BC-CA-AB and

(2)PA.BC+ PB’-CA+ PC’-AB > 3PG. BC-CA. AB.

Solution. We only check the first inequality. Rega#dB, C, P as complex numbers and assume that
P corresponds to 0. We're required to prove that

|(B—C)BC|+|(A—B)AB|+|(C—AICA > |(B—C)(C—A)(A—B)|.
It remains to apply the Triangle Inequality to the identity

(B—C)BC+ (A—B)AB+ (C— A)CA= —(B—C)(C—A)(A—B).
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Problem 8. (IMO Short-list 2002 Let ABC be a triangle for which there exists an interior @ddin
such that/ AFB= /BFC = ZCFA. Let the lines BF and CF meet the sides AC and AB at D and E,
respectively. Prove th&&B+ AC > 4DE.

Solution. Let AF = x,BF = y,CF = zand letw = cos& +isinZ. We can toss the pictures Gh
so that the pointE, A, B, C, D, andE are represented by the complex numbess 9¢, zw?, d, and

e. It's an easy exercise to establish thd = #Z andEF = % This means thad = — #£ w and
e= —%w. We're now required to prove that
—zX X
X yoo| + z0? — x| > 4| —Z o+ 2Y_o?|.
Z+X | X4y

Since|w| = 1 andw® = 1, we havejzw? — x| = |w(zw? — X)| = |z— xw|. Therefore, we need to
prove

4zx  4xy
[x—ye| +[z—xw| > | = —
Z+X  X+Yy
More strongly, we establish thik— yw) + (z— xw)| > % - %w‘ or |p—qw| > |r — sw|, where
P=z+Xq=Yy+XTr= % ands= ;%. It's clear thatp > r > 0 andq > s> 0. It follows that

Ip—qwP—lr—sw? = (p—qw)(p—qw)— (r —sw)(r —sw)
= (pP°—r%)+(pg-rs)+(g?—s) > 0.

It's easy to check that the equality holds if and oniNABCis equilateral. O

2 Four Basic Techniques

Differentiate! Shiing-shen Chern

1 Trigonometric Substitutions

If you are faced with an integral that contains square ropt@ssions such as
/vl—xzdx, /\/1+y2dy, /\/22—1dz

then trigonometric substitutions suchxas sint, y = tant, z= sed are very useful. We will learn
that making a suitabligonometricsubstitution simplifies the given inequality.

Problem 9. (APMO 2004/5 Prove that, for all positive real numberslac,
(a2 + 2)(b?+2)(c®+2) > 9(ab+ bc+ ca).
First Solution. ChooseA, B,C € (0, ) with a= v/2tanA, b= v/2tanB, andc = v2tanC. Using

the well-known trigonometric identity 4 tar? 6 = —%=, one may rewrite it as

4 L : : Lo
9 > cosAcosBcosC (cosAsinBsinC + sinAcosBsinC + sinAsinBcosC) .

One may easily check the following trigonometric identity

co§A+ B+ C) = cosAcosBcosC — cosAsinBsinC — sinAcosBsinC — sinAsinBcosC.
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Then, the above trigonometric inequality takes the form

4
9 > cosAcosBcosC (cosAcosBcosC — co§A+B+C)).

Let 6 = A:BC. Applying the AM-GM inequality and Jesen’s inequality, wavie

sA+cosB+coL\ 3
cosAcosBcoi:g(CO +C03 +co ) < cos 6.

We now need to show that
> cos’ 6(cos’ 0 —cosP).

Ol b

Using the trigonometric identity
cos¥P =4coS 6 —3cosh or cosH—cosP = 3cosh —3cos 0,

it becomes 4
52 cod' 0 (1—cos ),

which follows from the AM-GM inequality

(co§6 ' C0§9~(1—co§6))3 - % (cos’-9+co§6 +(1—co§6)) _ %

2 2 2 2

One find that the equality holds if and only if tAr= tanB = tanC = % ifandonlyifa=b=c=
1. o

Problem 10. (Latvia 2002 Let a, b, ¢, d be the positive real numbers such that

1 1 1 1

=1
1+a4Jr 1+b4+ 1+C4+ 14+d4

Prove that abcd> 3.

First Solution. We can writea? = tanA, b? =tanB, ¢ = tanC, d? = tanD, whereA,B,C,D € (0, J).
Then, the algebraic identity becomes the following trigmedric identity :

co€A+ cogB+cofC+cosD =1.

Applying the AM-GM inequality, we obtain

SiPA=1— co2A = co€B +co€C + coZD > 3(cosBcosCcosD)3 .

Similarly, we obtain

Si?B > 3(cosCcosD cosA) 3 , si?C > 3(cosD cosAcosB) 3 , and sif D > 3(cosACoSBCOC) 5 .
Multiplying these four inequalities, we get the result! O
Problem 11. (Korea 1998 Let X, y, z be the positive reals withpy + z= xyz. Show that
1 1 1 3
+ + <5
Viex®  J1+y2 V1427 2

Since the functiorf is not concave ofR™, we cannot apply Jensen’s inequality to the function
f(t) = —2. However, the functiorf (tan6) is concave or{0, J) !

\/ 1412
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First Solution. We can writex = tanA, y = tanB, z = tanC, whereA,B,C ¢ (0, g) Using the fact
that 1+tarf 6 = (L)2 we rewrite it in the terms oA, B, C:

cos6

NI w

CosA+ cosB+ coLC <
It follows from tar(T—C) = —z= 7 = tanA+B) and fromm—C,A+B e (0, ) thatm—C =
A+BorA+B+C = Hence, it suffices to show the following. O
Theorem 2.1. In any acute triangle ABC, we haeesA + cosB + coLC < %
Proof. Since cox is concave or{0, J), it's a direct consequence of Jensen’s inequality. O

We note that the function cass not concave orf0, 7). In fact, it's convex on(Z,m). One

may think that the inequality cé@s+ cosB + cosC < % doesn’t hold for any triangles. However, it’s
known that it holds for all triangles.

Theorem 2.2. In any triangle ABC, we haveosA + cosB+ cosC < %
First Proof. It follows from m—C = A+ B that cosC = — co§A+ B) = — cosAcosB + sinAsinB or
3—2(cosA+ cosB+ cosC) = (sinA — sinB)2 4 (cosA+ cosB— 1) > 0.
o

Second ProofLet BC = a, CA=b, AB=c. Use the Cosine Law to rewrite the given inequality in
the terms ok, b, c:

W+§—¥+§+¥—W+¥+W—é
2bc 2ca 2ab
Clearing denominators, this becomes

3
<=
-2

3abc> a(b?+ ¢® — a?) + b(c? + a? — b?) + c(a® 4 b? — ¢?),
which is equivalent tabc> (b+c—a)(c+a—b)(a+b—c)in the theorem 2. O

In the first chapter, we found that tigeometridnequalityR > 2r is equivalent to thalgebraic
inequalityabc> (b+c—a)(c+a—b)(a+b—c). We now find that, in the proof of the above
theoremabc> (b+c—a)(c+a—b)(a+b—c) is equivalent to thérigonometricinequality cof+
cosB + cosC < 3. One may ask that

In any trianglesABC, is there anatural relation between cds+ cosB + coC and ?,
whereR andr are the radii of the circumcircle and incircle ABC ?

Theorem 2.3. Let R and r denote the radii of the circumcircle and incircletioe triangle ABC.
Then, we haveosA+ cosB+cosC = 1+ £.

Proof. Use the identitya(b? + ¢ — a?) + b(c? + a2 — b?) + c(a® 4 b? — ¢?) = 2abc+ (b+c—a)(c+
a—b)(a+b—c). We leave the details for the readers. O

Exercise 4. (a) Let pg,r be the positive real numbers such th&t4pg? + r2+ 2pqr = 1. Show that
there exists an acute triangle ABC such that posA, g= cosB, r = cosC.

(b) Let pg,r > 0 with p?+q?+r2+ 2pqr = 1. Show that there are 8,C € [0, 5] with p= cosA,
g=cosB,r=cosC,and A+B+C=Tt.

Problem 12. (USA 200) Let a b, and ¢ be nonnegative real numbers such tRat b?+ c2+ abc=
4. Prove that < ab+ bc+ ca—abc< 2.
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Solution. Notice thata,b,c > 1 implies thata® + b? 4- ¢ + abc> 4. If a < 1, then we haveb+
bc+ca—abc> (1—a)bc> 0. We now prove thaab+ bc+ ca— abc< 2. Lettinga= 2p, b = 2q,
c=2r, we getp? + g?+r2+2pgr = 1. By the above exercise, we can write
o
a=2cosA, b=2coB, c=2coL for someA B,C c {0, E} withA+B+C=r.

We are required to prove

COSACOSB + cosBcosC + coCcosA — 2cosAcosBcosC <

NI =

One may assume that> I or 1—2cosA > 0. Note that

COSACOoSB + cosBcosC + coCcosA — 2cosAcosBcosC
= COSA(COSB+ coLC) + cosBcosC(1— 2CosA).

We apply Jensen’s inequality to deduce BascosC < % — cosA. Note that 2coBcosC = cogB—
C)+cogB+C) < 1-—cosA. These imply that

3 1—cosA
c0sA(cosB 4 cosC) 4 cosBcosC(1 — 2¢cosA) < cosA (5 - cosA) + (%) (1—2cosA).
However, it's easy to verify that cé§(3 — cosA) + (=2 (1- 2cosA) = 3. O

2 Algebraic Substitutions

We know that some inequalities in triangle geometry can eatéd by theéRavi substitution and
trigonometricsubstitutions. We can also transform the given inequalitiéo easier ones through
some cleverlgebraicsubstitutions.

Problem 13. (IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a b c
+ + >1
vaz+8bc b2+8ca +/c?2+8ab
First Solution. To remove the square roots, we make the following subgiituti

a b c
y—— = B Z = .
va2+8bc Y b2+ 8ca vc2+8ab
Clearly,x,y,z € (0,1). Our aim is to show that+y+z> 1. We notice that

& _ R By &2 1 (R NP2
8bc 1-x2" 8ac 1-y2’ 8ab 1-2Z 512 \1-x2)\1-y2/\1-22)"

Hence, we need to show that

X+y+2z> 1, where 0< x,y,z < 1 and(1 —x%)(1—y?)(1 - Z) = 512(xy2)%.
However, 1> x+ y+ zimplies that, by the AM-GM inequality,
1-x)1-y)1-2) > (x+y+2?=x)((x+y+2°=y)((x+y+2?~2)
= (X+x+y+2)(y+2
(Y +Y+2) 2+ X)Xy 242 (x+Y) = 4032 2(y2)? -4(P209* 2207 - 4(Zxy)* -2(xy)?
= 512(xy2)?. This is a contradiction ! O
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Problem 14. (IMO 1995/2) Let a b, ¢ be positive numbers such that abd.. Prove that

1 n 1 1
ad(b+c) b3c+a)

First Solution. After the substitutiora= %, b = )—1/ c= 1, we getxyz= 1. The inequality takes the
form
X2 y? 2 _ 3
2+ 2
y+z zZ+X X+y 2

It follows from the Cauchy-Schwarz inequality that

2 2
[(Y+2)+ (z4+X) + (x+Y)] (y):Lz+ z)—/kx+x+y

> > (x+y+2)?

so that, by the AM-GM inequality,
X2 y2 2 _ x+y+z_ 3(xy23 3
+ > > = —.
y+z zZ+X X4y 2 - 2 2

(Korea 1998 Let x, y, zbe the positive reals with+y+ z= xyz Show that
1 N 1 N 1
Vi J1+y? V142

Second SolutionThe starting point is letting = %, b= )—1/ c= 1. We find thata+ b+ c = abcis

equivalent to = xy+ yz+ zx The inequality becomes

3
<.
-2

X y z 3
+ + <=
V+1 241 V24172
or
X y z 3
+ + <=
VX2 XYy+yz+2zX Y24 Xy+yz+zx /2 +xy+yz+zx 2
or 3
X y z <z
-2

VX N0TD 0N | Jzrzy)
By the AM-GM inequality, we have
X X/ (X+Y)(X+2)

[(x+y)+(x+2)] _1 (L L)
x+y)(x+z)  (X+y)(x+2) 2 '

1x
<3 +
—2 (x+Yy)(x+2 X+z X+z

In a like manner, we obtain
y <1<y+ Y)and;<}<i+ Z>‘
(Y+2)(y+x) ~ 2\y+z y+X Z+x)(z+y) ~ 2\z+X  z+y

Adding these three yields the required result.

We now prove a classical theorem in various ways.
Theorem 2.4. (Nesbitt, 1903 For all positive real numbers.d, c, we have
a n b . c o 3
b+c c+a a+b™ 2
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Proof 1. After the substitution = b+c, y=c+a, z=a+Db, it becomes

Zty+z_xz§ or ZLXtEZG,
cyclic 2X 2 cyclic X

which follows from the AM-GM inequality as following:

S+
e X X X y 'y z z

ytz_y z z x X )_/>6<yzzxxy)é_6

Proof 2. We make the substitution

a b c

X= = Z= .
b+c’y c+a’ a+b

It follows that
a

t
f(x) = ——— =1, where fit)=—.
Cy%-lc cy%.lcaerJrc 1+t

Since f is concave of®, ), Jensen’s inequality shows that

1\ 1 1 X+y+z 1 X+y+z
— = = = — < ~ < .
1(3)-3 Scymf@f( 7)ot (3) < (5

Since f is monotone increasing, this implies that

1 x z a
—§7+y+ or —— =X+Yy+z>
2 3 cycicb—i_C

NI w

Proof 3. As in the previous proof, it suffices to show that

X+y+2z X

1
T> where T= and — =1
1+x

Ea

cyclic

One can easily check that the condition

X p—
cycic1+x

becomed = 2xyz+ xy+ yz+ zx. By the AM-GM inequality, we have

1= 2xyz+ Xy+yz4+2zx< 2T343T2 = 2T34+372-1>0 = (2T-1)(T+1)2>0 = T>

NI

(IMO 2000/2) Let a, b, c be positive numbers such thatic= 1. Prove that

(D) o) D)

Second Solution([IV], llan Vardi ) Sinceabc= 1, we may assume that> 1> b. It follows that
1- a—1+} b—1+} c—1+} = c+}—2 a+}—1 +w‘s

“Why? Note that the inequality is not symmetric in the thregaies. Check it!
8For a verification of the identity, see [IV].
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Third Solution. As in the first solution, after the substitutian= § b= % c=Zforxy,z>0,we

can rewrite it axyz> (y+z—X)(z+Xx—Yy)(x+y—z). Without loss of generality, we can assume
thatz>y > x. Sety—x= pandz— x= qwith p,q > 0. It's straightforward to verify that

Xyz— (y+2—X)(z+X—Y)(x+y—2) = (pP* — pg+ )x+ (p*+ o® — p?q— pdf).

Since p* — pg+q® > (p—a)? > 0 andp® + ¢* — p’q— pf = (p—g)*(p+9) > 0, we get the
result. O

Fourth Solution.(From the IMO 2000 Short List) Using the conditiombc= 1, it’s straightforward

to verify the equalities
1 1 1
2== (a—1+—> +c(b—1+—),
a b c

Zzl(b—l+}>+a<c—l+}),

b c a

Zzl(c—l+})+b(a—l+}).
c a C

In particular, they show that at most one of the numbersa—1+ ¢, v=b—1+%, w=c—-1+1
is negative. If there is such a number, we have

(a—1+}> <b—1+}) (c—1+}) =uvw< 0< 1.
b c a

And if u,v,w > 0, the AM-GM inequality yields

2:}u+cv22 Euv, 2:}v+aW22 i1vw, 2:}W+aW22\/EWU.
a \V a b V' b c c

Thus,uv< g, vw<2, wu<g, so(uvw)? < 2. g - £ = 1. Sinceu,v,w > 0, this completes the
proof. O

jW ey

Problem 15. Let a, b, ¢ be positive real numbers satisfying B+ c= 1. Show that

a b abc 3V3
<1 .
a+bc+b+ca+c+ab— + 4

Solution. We want to establish that

ab

1 1 < 3v/3
+ + <1+ .
b ca p =
1+% 1+9 142 4
Setx= /%, y= /%, z= /2. We need to prove that
1 1 z 3v3
<1
1+x2+1+y2+1+22_ T

wherex,y,z> 0 andxy+ yz+ zx= 1. It's not hard to show that there exi#sB,C < (0, 1) with
A B
X=tan-,y=tan—-,z= tang, andA+B+C=rt
2 2 2
The inequality becomes

1 1 tan$ 33
2__ < 1+i

+ + <
1+ (tand)® 1+ (tanB)® 1+ (tan$)? 4
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or

1 : 3v3
1+ > (cosA+cosB+sinC) < 1+T\/_

or

3v3

CcOSA+ cosB+sinC < —

Note that cod\+ cosB = 2 cos(258) cos(25B). Since| 258 | < Z, this means that

COSA+ cOsB < 2cos<ﬂ> = 2003( n;C) )

2

It will be enough to show that

C) 3V3

sinC < —
+ S5

7'[_
2 cos(

whereC € (0, ). This is a one-variable inequaliyit's left as an exercise for the reader.

Here, we give another solution of the problem 10.

(Latvia 2002) Let a, b, ¢, d be the positive real numbers such that

(SN S SR S
1+a*  1+4b* 1+4c¢* 1+4d4 ™

Prove thabibcd> 3.

Second Solution(given by Jeong Soo Sim at the KMO Weekend Program 2007) W toggrove
the inequalitya*b®c*d* > 81. After making the substitution

1 1 1 1
A= B= C= D=
1+a¥ 1+b#% 1+c4 1+d¥

we obtain
1-B 4, 1-C 1-D

c' =
B’ C D
The constraint becomés+ B+ C+ D = 1 and the inequality can be written as

d* =

1-A1-B 1-C 1-D

> 81
A B C p -°
or
B+C+D C+D+A D+A+B A+B+C_ o,
A B C D ~
or

(B+C+D)(C+D+A)(D+A+B)(A+B+C) > 81ABCD.
However, this is an immediate consequence of the AM-GM iaétyu
(B+C+D)(C+D+A)(D+A+B)(A+B+C)>3(BCD)3 -3(CDA)3 - 3(DAB)3 - 3(ABC)3.

O

9 Differentiate! Shiing-shen Chern
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Problem 16. (Iran 1998) Prove that, for all xy,z> 1 such thatk + 1+ 1 =2,

VXFYFz2> VX=14+y-14+vz—1
First Solution. We begin with the algebraic substitutiar= v/x— 1,b=\/y—1,c=+/z— 1. Then,
the condition becomes

1+1+1
1+a2 1+b2 1+4¢?

=2 & ab®+b’c?+cPa?+2a%h’ct =1

and the inequality is equivalent to

vaz+b2+c2+3>a+b+c & ab+bc+ca<

Let p=bc, q=ca, r = ab. Our job is to prove thap+q+r < 3 wherep? + q? +r2+ 2pqr= 1
By the exercise 7, we can make the trigonometric substiutio

NIl W

p=cosA, q=cosB, r = coC for someA,B,C ¢ (0, g) withA+B+C=rt.

What we need to show is how that do$ cosB+ cosC < % It follows from Jensen’s inequality. (]
Problem 17. (Belarus 1998 Prove that, for all ab,c > 0,

a b a+b b+c
—+= +—_——~w——+1
b b+c c+a

Solution. After writing x= & andy = ¢, we get

c_y atb x+1 b+c 14y

a x b+c 1+y c+a y+x

One may rewrite the inequality as
Y2 432+ X+ Y2+ y2 > X2y + 2xy+ 2xyP.
Apply the AM-GM inequality to obtain

2 3,2
%ZXZM w ZZXyz, X2+y222Xy
Adding these three inequalities, we get the result. The lagdeolds if and only ifx=y =1 or
a=b=c. 0

Problem 18. (IMO Short-list 2007 Let x, - - - , X, be arbitrary real numbers. Prove the inequality.

< /N

X1 n X2 T Xn
1+x2  14x2+x2 1+X2+ - +Xp?

First Solution. We only consider the case when- - - , x, are all nonnegative real numbers.(Wh*?)
Let xo = 1. After the substitutiory; = xg2 +--- +x2 forall i = 0,--- ,n, we obtainx = /yi — yi_1.
We need to prove the following inequality

; VYi— yl 1 NG

[Xn|
1% 2+ +xp2

10 _ X X < _bal %2
1+x2 + 1+x2+%2 Tt 1+><12+ +xn2 = 1+x2 + 1431 24%)2 et
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Sincey; >y;_4q foralli=1,---,n, we have an upper bound of the left hand side:

5 S g

We now apply the Cauchy-Schwarz inequality to give an uppenid of the last term:

LA )G

Sinceyp = 1 andy, > 0, this yields the desired upper boug.

O

Second SolutionWe may assume thag, - - - ,x, are all nonnegative real numbers. kgt=0. We
make the followingalgebraicsubstitution

ti =

. 1 t:
A’ C= —— ands — -
VX244 X2 V1+t2 V142

foralli =0,---,n. It's an easy exercise to show t =Cp---CS. Sinces =+/1—¢?,

the desired mequallty becomes

C1V 1—c124CoCi1Coy/ 1 — 2+ -+ +CoC1- - Cny/1—Cn2 < /N

Since0< ¢ <1foralli=1,---,n, we have

+ +x2

200~~~ci\/1—ci2<li<:o- ~1V1-¢ —Zi\/ +Gi-1)2—(Co- -~ Gi—1Gi)2.

Sincecy = 1, by the Cauchy-Schwarz inequality, we obtain

n

ZI\/ ~Gi1)? cO---cilci)2<\/n_Z[(00~~ci1)2—(00---ci1Ca)2]— n[1—(co---Cn)?.

O

3 Increasing Function Theorem

Theorem 2.5. (Increasing Function Theoren) Let f: (a,b) — R be a differentiable function. If
f’(x) > 0 for all x € (a,b), then f is monotone increasing d¢a,b). If f'(x) > 0 for all x € (a,b),
then f is strictly increasing ofa, b).

Proof. We first consider the case whéf(x) > 0 for all x € (a,b). Leta < x; < Xz < b. We want
to show thatf (x;) < f(x2). Applying the Mean Value Theorem, we find some (x1,x2) such that
f(x2) — f(x1) = f'(c)(x2—x1). Sincef’(c) > 0, this equation means thétxy) — f(x1) > 0. In case
whenf’(x) > 0 for all x € (a,b), we can also apply the Mean Value Theorem to get the resulil

Problem 19. (Ireland 2000 Let x y > 0 with x4y = 2. Prove that Ry?(x? 4 y?) < 2.

First Solution. After homogenizing it, we need to prove

2(%)6 > P02 +y?) or (x+Y)° > 32AP(E +17).
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(Now, forget the constraint+y = 2!) In casexy = 0, it clearly holds. We now assume that+ O.
Because of the homogeneity of the inequality, this meartsithanay normalize tay= 1. Then, it
becomes

N 6>32 2+=) or >32(p-2)
X) = X2 pr=sap—2).

wherep = (x+ )—1()2 > 4. Our job is now to minimize=(p) = p* —32(p—2) on [4,»). Since

F'(p) =3p*—32> 0, wherep > |/ 32, F is (monotone) increasing g4, ). So,F (p) > F(4) =0
forall p> 4. O

Second SolutionAs in the first solution, we prove théx+y)® > 32(x? +y?)(xy)? for all x,y > 0.
In casex =y =0, it's clear. Now, ifx*>+y? > 0, then we may normalize & + y* = 2. Setting

p = Xy, we have 0< p < @ =1 and(x+y)%2=x?+y?>+ 2xy= 2+ 2p. It now becomes
(24 2p)® > 64p? or p®—5p?+3p+1>0.

We want to minimizeF (p) = p® —5p?+3p+ 1 on[0,1]. We compute=’(p) = 3(p—13) (p—3).
We find thatF is monotone increasing df, %] and monotone decreasing {é] 1]. SinceF(0) =1
andF (1) =0, we conclude th&t (p) > F(1) =0 for all p € [0,1]. O

Third Solution. We show thatx-+Y)® > 32(x?+y?)(xy)? wherex >y > 0. We make the substitution
u=x+yandv=x-—y. Then, we havel > v > 0. It becomes

2
ué > 32(“2—2“/2) (UZZV2> or U8 > (U2 +v?)(u? —Vv?)2.

Note thatu* > u* —v* > 0 and that? > u? —v? > 0. So,u® > (u* — V) (1? —V?) = (P +V?) (L% —
v2)2, O

Problem 20. (IMO 1984/1) Let x y,z be nonnegative real numbers such thatx+ z= 1. Prove
that0 < Xy+yz+ zx— 2xyz< .

First Solution. Let f(x,y,2z) = xy+ yz+ zx— 2xyz We may assume thatOx <y <z<1. Since
X+Yy-+z=1, this implies thaix < % It follows that f(x,y,z) = (1 — 3Xx)yz+ xyz+ zx+ xy > 0.

Ahpplying the AM-GM inequality, we obtaiyz < (%2)2 = (1%‘)2 Since 1- 2x > 0, this implies
that

—234+x2+1

2
f(x,y,z):x(y+z)+yz(l—2x)§x(l—x)+(l%x> (1-2x)= 7

Our job is now to maximize a one-variable functibiix) = %(—2x+x?+ 1), wherex € [0, 3].
SinceF’(x) = 3x (3 —x) > 00n |0, 1], we conclude thaf (x) < F(}) = & forallxe [0,3]. O

(IMO 2000/2) Let a, b, c be positive numbers such thatic= 1. Prove that

rred) ot et =

Fifth Solution. (based on work by an IMO 2000 contestant from Japan) Sibce- 1, at least one
of a, b, cis greater than or equal to 1. Shy> 1. Puttingc = aib, it becomes

1 1 1
B - 14D <
(a 1+b)(b 1+ab)(ab 1+a)_1
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or
a’b® —a?b® —ab®— a?b? + 3ab? —ab+b>—b?—b+1>0.

Settingx = ab, it becomedf,(x) > 0, where
fo(t) =t34+b% —b’% —bt?>+ 3ot —t> —b? —t —b+ 1.

Fix a positive numbeb > 1. We need to show th&t(t) := f,(t) > 0 for allt > 0. It follows from
b > 1 that the cubic polynomid’(t) = 3t2 — 2(b+ 1)t — (b> — 3b+ 1) has two real roots

b+1-+v4b2—-7b+4 and A — b+1++v4b2—-7b+4
3 B 3 '

SinceF has a local minimum dt= A, we find that~ (t) > Min {F(0), F(A)} forallt > 0. We have
to prove that-(0) > 0 andF(A) > 0. We haveF (0) = b - b’ —b+1=(b—1)2(b+1) > 0. It
remains to show tha (1) > 0. Notice thath is a root ofF/ (t). After long division, we get

F(t) =F'(t) (%t - b%l) 45 (821 14— 8t +86° 76— 7b+ 8).

Puttingt = A, we have

F(A) = % ((—8b°+14b—8)A + 80— 7b* — 7h+ 8) .

Thus, our job is now to establish that, for ali> 0,

b+1++v4b2—7b+4
3

(—8b2+14b—8)< >+8b3—7b2—7b+8>0,

which is equivalent to

1603 — 1502 — 150+ 16> (802 — 14b+ 8)\/4b2 — 7Tb+ 4.
Since both 15% — 15b% — 15b+ 16 and ®2 — 14b+ 8 are positive;! it’s equivalent to
(160° — 15b% — 15b+ 16)% > (8b% — 14b+ 8)%(4b? — 7Tb+ 4)
or
8640° — 337%% + 502° — 337%H%+ 864 > 0 or 864" —337%%+ 502D — 3375+ 864> 0.

Let G(x) = 864x* — 3375 4 5022 — 3375+ 864. We prove thaB(x) > 0 for all x € R. We find
that

G/(x) = 3456¢ — 10125 4 10044 — 3375= (x— 1)(3456¢ — 666K+ 3375).

Since 34582 — 666X+ 3375> 0 for all x € R, we find thatG(x) andx — 1 have the same sign. It
follows thatG is monotone decreasing gr o, 1] and monotone increasing ¢h ). We conclude
thatG has the global minimum at= 1. HenceG(x) > G(1) = 0 for all x € R. O

11 1t's easy to check that 15 — 150% — 150+ 16 = 16(b° —b? —b+41) +b?>+b > 16(b? — 1)(b—1) > 0 and & — 14b+8 =
8(b—1)2+2b> 0.
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4  Establishing New Bounds

We first give two alternative ways to prove Nesbitt's inedpyal

(Neshitt) For all positive real numbeis b, c, we have

a n b . C >§
b+c c+a a+b™ 2
Proof 4. From (52 — ) > 0, we deduce that
a 1 px—-1 8a-b-c
b+c™ 4 ;2 +1 4@+b+c)
It follows that
a 8a—b-c 3

— > —— — =,
cy%ic +cC cy%ic 4(a+b+c) 2
Proof 5. We claim that

3
a S 3a2
b+c™ 2<a%+b§+c%>

or 2<a% +b? +c%) > Sa%(b+ C).

The AM-GM inequality gives%a+ b3 + b3 >3azb and @ +c3ycl > 3aic. Adding these two
inequalities yield® <a% +b?+ c%) > 3a? (b+c), as desired. Therefore, we have

Nl
w

a 3 a
b > E 3 3 3 2
cyclic +c cyclica2 + b2 +c2

Some cyclic inequalities can be proved by finding new bouBdgpose that we want to establish
that

F(x,y,z) >C.
cy%‘lc
If a functionG satisfies

(1) F(x,y,2) > G(x,y,z) for all x,y,z> 0, and
(2) Y eyelic G(%,y;,2) = Cfor all x,y,z> 0,

then, we deduce that
F(xy,2) > ) G(xY,2) =C.
cy%ic C)%‘lc

For example, if a functiofr satisfies

F(x,y,z) >
¥z

for all x,y,z> 0, then, taking the cyclic sum yields

Z F(xy,z) > 1.
cyclic

As we saw in the above two proofs of Nesbitt's inequalityyéhare various lower bounds.
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Problem 21. Let a, b, ¢ be the lengths of a triangle. Show that

a+b+c
b+c c+a a+b

< 2.

Proof. We don’t employ the Ravi substitution. It follows from thétngle inequality that

a < a
cyclcb""C CerIC %(a"‘b‘i‘c)

O

One day, | tried finding a new lower bound o€+ y+ z)? wherex,y,z > 0 . There are well-

known lower bounds such a$x&+ yz+zx) and 9(xyz)%. But | wanted to find quite different one. |
tried breaking the symmetry of the three variabtgsz. Note that

(X4 y+2)? = X2 + Y2+ 2+ Xy+ Xy+ yz+ yz+ zx+ 2x
| applied the AM-GM inequality to the right hand side excdp termx? :
V2 2 XY+ XY+ YZ+ Yz 2x+ ZX> 8x2yazd .

It follows that )

(X+y+2)2>x +8x2y7?i

JN(.O

% (xz + 8y4 z%)
(IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a n b . c >1
vaZz+8bc vb?+8ca +Vc2+8ab

Second SolutionWe find that the above inequality also gives another lowendafx+ y+ z, that
is,
1/.3 3_3
X+Yy+2z2> /X2 (xz +8y424).

It follows that .
X4 X

cy%lc :312% C}%Cx+y+z

After the substitutiorx = aé,y = bé, andz= c%, it now becomes

a
cidlic Va2 +8bc

Problem 22. (IMO 2005/3) Let x, y, and z be positive numbers such thatxyz Prove that
5 x2 Y —y2 2-7

X
>0
X5+y2+22 y5+22+X2+25+X2+y2_

First Solution. It's equivalent to the following inequality

X2 — X5 Y-y 25
Tz ) (Pt 1) (st <3
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or
ﬂ+f+£+ﬂ+f+£+%+f+f
X+y2 4272 YW+ P4y T
With the Cauchy-Schwarz inequality and the fact that> 1, we have

Rty 42yt Y42
Y+ D)2ty +2) 2 (C+y +2) of e <

Taking the cyclic sum angf +y? + 22 > xy+ yz+ zxgive us

X+ +72 XR+y+72 x2+y2+22< Xy+yz+2X _
WAy2+22 Y4+ 24+x2 P24y T R4y 42 T

Second SolutionThe main idea is to think of 1 as follows :

x5 Y 2 - X2 y? z

>1 :
Iy 2 PrAIR  BrRAY T Ty IR AR R By

We first show the left-hand. It follows fronf + 2* > y3z+ yZ = yz(y? + ) that
x> N x> B x*
XO+Y2 42 T X+ xB XAy A

Taking the cyclic sum, we have the required inequality. mhains to show the right-hand.
[First Way] As in the first solution, the Cauchy-Schwarz inequality apz> 1 imply that

X(y'+2') > xyay’ +Z) > y*+ 7 or

X2(yz+y? 4+ 2 X
C+Y+2)yz+ Y +2) > (¢ +y +7Z)% or (x(2y+y2y+22)2) = X4y + 72

Taking the cyclic sum, we have

R(yz+y +2) X2
C}%ic (X2 +y2+272)2 —Cycicx5+y2+22'

Our job is now to establish the following homogeneous inétyua

X (yz+y*+7)
i (X2+y2+22)2

e R+ +2)2%2>2 5 B+ Z Xyze § x> Z X2yz
cycl cyclic cyclic Cy Cy

However, by the AM-GM inequality, we obtain

B X' +y < + 7 > )
A 2
cyclic cyZ‘ - cyclic yz cyZ‘lc - cy%‘lcx vz

[Second Way]We claim that

24 Ly 2 Axy? 47 - X2

We do this by proving

2 Ly 2 Axy? - A7 - X2yz
A(x2 +y2+22)2 T x4 y3ztyA

27
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becauseyz> 1 implies that
x?yz X2 X2

= > .
x4 +y3z+yZ? ;_;+y2+zz X4y 47

Hence, we need to show the homogeneous inequality
(2 YA+ 2+ P+ 432) (X yPz 4 yP) > By + P+ P)2.
However, this is a straightforward consequence of the AM-iGé&gjuality.

(2 4y 4+ 2+ A2+ 4322 (X + Y2+ yP) — By + P + P)?
= X382 X8 1y 74 yv3P) + (@ + X + X822 + X822 + yZ +y°D)
+208y2 +x62) — 6x*y’z— 6xyZ — 2yz
6v/x8 - x4y xBy2 . xBy2 . yT7. 375 1+ 6v/x8. X424 - X622 - X622 - y7 - Yo7
+21/58y2. X622 — 6x*y3z— 6x'y B — 2x8yz
= 0

v

Taking the cyclic sum, we obtain

24 Ly 24 Ay A7 X2
1= Z_ 2 1 \2 1 72\2 2 Z 5 1 \2 72
cyclic 4(X t+y +Z) cycicX ty +z

o
Third Solution. (by an IMO 2005 contestant lurie Borefédrom Moldova) We establish that

X2 —x2 N X2 —x2
XC+y2+22 = 3R +y2+2)

It follows immediately from the identity

X — X2 - (@12 +7)

Taking the cyclic sum and usingyz> 1, we have

X5 — X2 N 1 (XZ 1) > 1 (XZ yz) >0

Here is a brilliant solution of
Problem 23. (KMO Weekend Program 20QProve that, for all ab,c,x,y,z> 0,

ax N by N €z _ (a+b+c)(x+y+2)
a+x b+y c+z- at+b+ctx+y+z’

Solution. (by Sanghoon) We need the following lemma:
Lemma. For all p,q, w1, e, > 0, we have

P _ w@’p+wiq
P+A™ (wn+aw)?

12He received the special prize for this solution.
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Proof of lemma. It's equivalent to

(P+0) (w?p+ wp?q) — (w1 + wp)?pg>0

or
(w1p— @) > 0.
Taking(p,q, w1, wp) = (a,%,X+y+za+ b+ c) in the lemma, we get

ax <(x+y+zfa+(a+b+cfx
a+x~  (x+y+z+a+b+c?

Similarly, we obtain
by <(X+y+2)2b+(a+b+c)2y
b+y ™  (x+y+z+atb+cl

and

cz _ (x+y+ 2)’c+ (a+b+c)’z
C+Z~  (x+y+z+a+b+c?
Adding the above three inequalities, we get

ax by ez _ (x+y+2%(@+b+c)+ (@+b+cP2(x+y+2)
at+x bty c+z™ (x+y+z+a+b+cP

or
ax by cz _ (a+b+c)(x+y+2)

+ + < :
a+Xx b+y c+z7 a+b+c+x+y+z

O

Exercise 5. (USAMO Summer Program 2002_et a, b, ¢ be positive real numbers. Prove that

2a \3 [ 2b\3 [ 2¢\3
— ) + + >3
b+c c+a a+b
2
(Hint. [TIM]) Establish the inequality)3 > 3 (2-).
Exercise 6. (APMO 2005 (abc= 8, a,b,c > 0)
a2 b? c? 4
+ + > =
V(@+a3)(1+b3)  /(1+Db3)(1+cd)

V(@+c3)(1+a3) 3
(Hint.) Use the inequality\/% > 2+—2X2 to give a lower bound of the left hand side.
X

3 Homogenizations and Normalizations

Every Mathematician Has Only a Few Tricks. A long time ago an older and well-known number theorist
made some disparaging remarks about Paul Efsliggork. You admire Erdds contributions to mathematics
as much as | do, and | felt annoyed when the older mathematftaly and definitively stated that all of
Erdoss work could be reduced to a few tricks which Erdos repegteslied on in his proofs. What the number
theorist did not realize is that other mathematicians, etrenvery best, also rely on a few tricks which they
use over and over. Take Hilbert. The second volume of Hilbedllected papers contains Hilbé&stpapers in
invariant theory. | have made a point of reading some of thegeers with care. It is sad to note that some of
Hilbert’s beautiful results have been completely forgotten. Bukading the proofs of Hilbelt striking and
deep theorems in invariant theory, it was surprising to fyetfat Hilberts proofs relied on the same few tricks.
Even Hilbert had only a few tricks! Gian-Carlo RotaTen Lessons | Wish | Had Been TaudHbtices of the
AMS, January 1997
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1 Homogenizations

Many inequality problems come with constraints suctabs- 1, xyz=1, x+y+z=1. A non-
homogeneousymmetrigdnequality can be transformed into a homogeneous one. Thapply two
powerful theorems : Shur's inequality and Muirhead’s tle@or We begin with a simple example.

Problem 24. (Hungary 1996 Let a and b be positive real numbers with-& = 1. Prove that
a b2 1
———> .
a+1 b+173
Solution. Using the conditiora+ b = 1, we can reduce the given inequality to homogeneous one, i.
e,

1 a2 b2
3= (atb)a+(atb)  (a+b)(b+(ath)

which follows from(a® + b®) — (ab+ ab?) = (a— b)?(a+b) > 0. The equality holds if and only if
a=b=1. O

or a’b+abk’ < a3+ b,

The above inequality?b + ab? < a3+ b can be generalized as following :

Theorem 3.1. Let &, ay, by, by be positive real numbers such thataa, = b, + by and maxas, ap)
> maxby,by). Let x and y be nonnegative real numbers. Then, we hy8x- x22y® > xPryP2 4

XP2yP1,

Proof. Without loss of generality, we can assume that> ay,b; > by,a; > by. If x ory is zero,
then it clearly holds. So, we assume that bo#ndy are nonzero. It follows frora; +a, = by + by
thatay —ap = (b1 — a2) + (b — ap). It's easy to check

Xay22 4 xBoyA Xblybz _ szybl = xy® (Xal 4y bl—azybz—az _ Xb2—32yb1—az)
= Xy (Xbl a _ 1 az) <Xb2—az _ybz—az>

- b))

Remark 3.1. When does the equality hold in the theorem 87

We now introduce two summation notatiofig,cic andy sym- Let P(x,y,z) be a three variables
function ofx, y, z. Let us define :

Z P(x,Y,2) = P(x,y,2) + P(y,2X) + P(z x.y),
cycli

> P(xY,2) =P(xy,2) +P(x,2y) + P(y,X,.2) + P(y,2X) + P(z X.y) + P(2.y,X).

sym
For example, we know that

Z Ry =Xy +yz+2% $ X =20C+y*+7)
cyclic

Sym
> X2y = X2y + X2z + Y22+ yPX+ X+ 2y, Y xyz=6xyz
sym sym

Problem 25. (IMO 1984/1) Let xy,z be nonnegative real numbers such thatx+z= 1. Prove
that0 < Xy+yz+ zx— 2xyz<
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Second SolutionUsing the conditiox+y+z= 1, we reduce the given inequality to homogeneous
one,i. e,

7
0 < (Xy+yz+zX) (X+y+2) — 2xyz< 2—7(x+y+ z)

The left hand side inequality is trivial because it's eqlewato

0<xyz+ y X2y.

Sym

The right hand side inequality simplifies to

7 Z x*+ 15xyz— 6 3 X’y > 0.
cyclic

Sym

In the view of

7Zx3+15xyz—62x2y: <ZZX3—Zx2y>+5<3xyz+ x3—2x2y>,
cyclic sym cyclic sym cyclic sym

it's enough to show that

25 > 5 ¥yand 3yz+ 5 > 5y

cyclic sym cyclic sym

We note that

25 -3 %y=35 C+y¥) - F y+x)= 5 (C+Y’ - Xy—xy) >0
cyclic Z cy%‘lc C)%ic cy%‘lc

sym

The second inequality can be rewritten as

Z X(X—y)(x—2) >0,
cyclic

which is a particular case of Schur’s theorem in the nexiect O
After homogenizing, sometimes we can find tight approach to see the inequalities:

(Iran 1998) Prove that, for alk,y,z> 1 such thag + 1+ 1 =2,

VXFYF+Z> VX—14+/y—-1+vz—1

Second SolutionAfter the algebraic substitutica= ;1( b= % c= % we are required to prove that

T R R 2

wherea, b,c e (0,1) anda+ b+ c = 2. Using the constrairg+ b+ c = 2, we obtain a homogeneous

inequality
1 1 1 1 atbtc a atbtc b atbtc c
S(@a+bto)(Z+-+=) >/ —2 +1/ —2 +1)—2
2 a b ¢ a b c

1 1 1 b+c—a c+a—-b at+b-c
(a+b+c)(=4+-+=] > + + ,
a b c¢ a b c

or
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which immediately follows from the Cauchy-Schwarz inedpyal

\/[(b+c—a)+(c+a—b)+(a+b—c)} (§+}+%>

b
\/b+c—a \/c+a—b \/a+b—c
> + + .
a b c

2 Schur’s Inequality and Muirhead’s Theorem

Theorem 3.2. (Schur) Let x y,z be nonnegative real numbers. For any 0, we have

Z X' (x—y)(x—2) > 0.
cyclic

Proof. Since the inequality is symmetric in the three variables,may assume without loss of
generality thak >y > z. Then the given inequality may be rewritten as

(X=X (x—2) =Y (y—2)] +Z (x—2)(y—2) > 0,
and every term on the left-hand side is clearly nonnegative. O
Remark 3.2. When does the equality hold in Schur’s Inequality?
Exercise 7. Disprove the following proposition: For all.&,c,d > 0 and r> 0, we have

a'(a—b)(a—c)(a—d)+b'(b—c)(b—d)(b—a)+
c'(c—a)(c—c)(a—d)+d'(d—a)(d—b)(d—c) > O.

The following special case of Schur’s inequality is useful :

Z X(x—y)(x—2) >0 & Xxyz+ § x> szy s Y xyz+ Zx3 > Zszy.
cyclic

cyclic sym Sym sym Sym

Corollary 3.1. Let xYy,z be nonnegative real numbers. Then, we have
3 3 3
AXyz+ X +y + 2> 2((xy)2 +(y2)2 + (zx)i) .
Proof. By Schur’s inequality and the AM-GM inequality, we have

Axyz+ § x> Z X2y + xy? > Z 2(xy)?.
cyclic cyclic cyclic

We now use Schur’s inequality to give an alternative sotutib

(APMO 2004/5) Prove that, for all positive real numbexsh, c,

(a4 2)(b?+2)(c®+ 2) > 9(ab+bc+ca).
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Second SolutionAfter expanding, it becomes

8+(abg?+2 Y a®h?+4§ &2>9 § ab

cyclic cyclic cyclic
From the inequalityab— 1)?+ (bc— 1)+ (ca— 1)? > 0, we obtain

6+2 Y ab’>4 Y ah

cyclic cyclic
Hence, it will be enough to show that

2+(abg?+4 Y a®>5F ab

cyclic cyclic
Since 3a2 4 b?4-¢?) > 3(ab+ bc+ ca), it will be enough to show that

2+ (abo? + Z a2>2y ab,
cyclic cyclic

which is a particular case of the following result foe 1. O

Corollary 3.2. Lette (0,3]. For all a,b,c > 0, we have

3-t)+t@abgf+ § a2>2 ¥ ab

cyclic cyclic
In particular, we obtain non-homogeneous inequalities

g + %(abC)4+ a’+b?+¢? > 2(ab-+ be+ ca),

2+ (abg)? +a® +b?+ ¢ > 2(ab+ be+ ca),

1+ 2abc+ a? 4 b?+ c2 > 2(ab+ bc+ ca).

Proof. After settingx = as Y= bg, z= c%, it becomes
3—t+t(xyz)t§+ Z X >2 (xy)%.
cyclic cyclic

By the corollary 1, it will be enough to show that

3—t+t(xyz)1§ > 3xyz
which is a straightforward consequence of the weighted AM-iGequality :

3-—t t 3 3.t 3\ 3
—_— - t > T f—
3 1+ 3(xyz)t >173 ((xyz) t) 3xyz

One may check that the equality holds if and onlg i b=c = 1. O

(IMO 2000/2) Let a, b, c be positive numbers such thatic= 1. Prove that

(raed) rre ) err)
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Second Solutionlt is equivalent to the following homogeneous inequafity

2/3 2/3 2/3
(a— (abo)/3+ %) (b— (abo)/3+ %) (c— (abo)3+ %) < abc
After the substitutiora = x3,b = y3,c = 2 with x,y,z > 0, it becomes

(x3 xyz+( ;/Z)Z) (y3 xyz+( yz)2) ( (xy > < X337,

which simplifies to

(Xy —y?z+2X) (Y'z— X+ X%y) (Zx— X2y +¥?z) < X3y°Z

or
S22+ § > § Xzt § OOy2
c;%ic c;%ic cy%ic
or
30¢Y)(Y*2)(Zx) + Z (> S (%y)*(y*2)
cyclic sym
which is a special case of Schur’s inequality. O

Here is another inequality problem with the constraint= 1.

Problem 26. (Tournament of Towns 199)/Let a b, c be positive numbers such that abd.. Prove

that
1 1 1

atbrl brcillcrario "
Solution. We can rewrite the given inequality as following :
1 1 1 1
atb+ (@93 brct (@bl crat (@bl (abgie’
We make the substitution= x3,b = y3,c = Z2 with x,y,z > 0. Then, it becomes
1 1 1 1
x3+y3+xyz+ y3+z3+xyz+ z3+x3+xyzS Xyz
which is equivalent to

Xyz Z O+ Y2 +xy2 (Y + 2+ xy2 < (@ + Y2 +xy2) (Y2 + 2+ xy2) (2 + X3+ xy2)

cyc

or

SO > 582 |
Sym

sym
We apply the theorem 9 to obtain

S =5 e

sym cyclic

> Z Yty
cyclic
= Y X+

cyclic

> (7 +y7)
cyclic

— Y2

sym

13For an alternative homogenization, see the problem 1 intiapter 2.
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Exercise 8. ([TZ], pp.142 Prove that for any acute triangle ABC,
cot? A+ cof B+ cof’ C + 6 cotAcotBcotC > cotA -+ cotB + cotC.
Exercise 9. (Korea 1998 Let | be the incenter of a triangle ABC. Prove that

BC? + CA? + AB?
3 .
Exercise 10. ([IN], pp.103) Let a b,c be the lengths of a triangle. Prove that

IA2+1B2+1C2 >

a’b+ a’c+b?c+b%a+ cZa+ c?b > a3+ b* + 3+ 2abe
Exercise 11.(Suranyi’s inequality)) Show that, for all x,--- ,x, > 0,
(N=1) (%" + - Xa") + X X0 > (Xg+ - %n) (X4 %)
Theorem 3.3. (Muirhead) Let &, ay,az, b1, by, bz be real numbers such that
ar>ay>az3>0,by >bp>b3>0,a0 > by, a1 +ax> by +bp,a1 +ax+ag = by + by + bs.
Let x y,z be positive real numbers. Then, we hgyg,x2y2z%8 > 5 ¢ xP1yP2zs,

Proof. Case 1b; > ay : It follows froma; > a3 +az —b; and fromay > by thatag > maxa; +az —
b1,b1) so thatmaxa;,ax) = &y > maxa; +az — bs,bs). Froma; +a,— by > by +az—b; =azand
a; +ay — by > by > b, we havemaxa; + ap — by, az) > maxby, bs). Apply the theorem 8 twice to
obtain

Z Xalyazzas — 73 (Xalya2 + Xazyal)
Sym cyclic
> 3 (Xal+az—b1yb1 + Xb1y31+az—b1)
cyclic

= Z Xbl(yal""aZ—blzaS +)/a3zal+a2_bl)
cyclic

> Z Xbl(ybzzba +yb3£)2)
cyclic

_ sy

Sym

Case 2by < ay: Itfollows from3b; > b+ by + b3 =a;+ay+azg > by +a+ag thatby > a+
ag—bj and thaty > ap > by > ap+az—bs. Therefore, we havmaxay, az) > maxby,ax+az—by)
andmaxaz,az + az — by) > maxby,bs). Apply the theorem 8 twice to obtain

z Xalyazza3 — x4 (yazza3 _|_ya3zaz)

sym cyclic

> ¥ (ybl Aetaz—by + yaz+a3*blzbl)

cyclic

— Z ybl (Xalza2+33*b1 + Xaz+a3*blzal)
cyclic

> Z ybl(xb22b3 + Xbazbz)
cyclic

_ z Xblybz L3

sym
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Remark 3.3. The equality holds if and only if x y = z. However, if we allow x 0 ory=0 or
z= 0, then one may easily check that the equality holds whemaa; > 0 and by, by, bz > 0if and
only if

X=y=zor x=Yy,z=0o0ry=z x=0o0r z=x,y=0.

We can use Muirhead’s theorem to prove Nesbitt’s inequality

(Neshitt) For all positive real numbeis b, c, we have

a n b . c >§
b+c c+a a+b™ 2

Proof 6. Clearing the denominators of the inequality, it becomes

2 S a@+b)(atc)>3@+b)b+c)ct+a) or yai>y ah

cyclic Sym sym

(IMO 1995) Leta, b, c be positive numbers such trettic= 1. Prove that

1 n 1 n 1 S 3
ad(b+c) bic+a) cd(a+b) ~ 2

Second Solutionlt’s equivalent to
1 1 1 3

a3(b+c) * b3(c+a) * c3(a+b) = 2(abg#/3”

Seta=x3,b =y3 c = Z with x,y,z> 0. Then, it becomeicyclicig(?]?’{) > Miﬁ. Clearing
denominators, this becomes

Y25 KR 3 PP 23S X 60

sym sym sym
or
xlL2y12 11,85 12095 _ 11,85 0N9A _ ¥ 8y8A | >
X +2 X X + X >0,
(s;n s;m ) (s;m s;m s;m s;m
and every term on the left hand side is nonnegative by Mudiseheorem. O

Problem 27. (Iran 1996) Let x y, z be positive real numbers. Prove that

1 1 1 S 9
Gyyz+-2 (<x+y>2 Tyt <z+x>2) =

Proof. It's equivalent to

4y Xy + ZC}%icx"’yu— 6x2y?Z — > N GC%icx"%f -2y xXy?z > 0.

sym sym sym
We rewrite this as following
Xy— 5 x| +3 XXy — 5%y | + 2xyz| 3xyz+ x3 - > 0.

By Muirhead’s theorem and Schur’s inequality, it's a sumhoée nonnegative terms. O
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Problem 28. Let xy,z be nonnegative real numbers with-xyz+ zx= 1. Prove that

1 1 1
X+y y+z 27X =

I'\)IU'I

Proof. Usingxy+ yz+ zx= 1, we homogenize the given inequality as following :
(xy+yz+2zx) 1 + L + Ly’ > (2 2
yTy X+y y+z z+x) T \2

4% xy+ Y Kyz+ 142 Xy’ 24387 > 3 Xy 435 Py

Sym Sym sym Sym

or

or
(szy Zx4y2>+3<2x5y Zx3y3> +xyz<2x3+142xy+38xyz>>0
sym sym sym sym sym

By Muirhead’s theorem, we get the result. In the above inbtyuavithout the conditionxy+
yz+zx= 1, the equality holds if and only k=y,z=0 or y=2zx=0 or z=x,y= 0. Since
Xy—+Yyz+zx= 1, the equality occurs whex,y,z) = (1,1,0),(1,0,1),(0,1,1). O

3 Normalizations

In the previous sections, we transformed non-homogenemagialities into homogeneous ones.
On the other hand, homogeneous inequalities also can beatipehinvariousways. We offer two
alternative solutions of the problem 8 by normalizations :

(IMO 2001/2) Let a, b, ¢ be positive real numbers. Prove that

a n b n c -1
vaZz+8bc vb?+8ca +Vc2+8ab

a __b __¢c 14 ;
abre' Y= atbre 2= atbie- | The problem s

Third Solution. We make the substitution=
xf(x2 +8y2) + yf(y?+82xX) + zf(Z + 8xy) > 1,

where f(t) = % Sincef is convex onR* andx+y+z= 1, we apply (the weighted) Jensen’s
inequality to obtain

xf(x% 4 8yz) + yf(y? + 82X + 2 (2 + 8xy) > f(X(x? + 8y2) +y(y* + 82X) + z(Z + 8xy)).
Note thatf (1) = 1. Since the functior is strictly decreasing, it suffices to show that
1> X(x +8y2) +y(y* + 82X) +2(Z + 8xy).

Usingx+y+z= 1, we homogenize it a&+y+2)3 > x(x? + 8yz) + y(y? + 82X) + z(Z + 8xy).
However, this is easily seen from

(x+y+2)% =X +8y2) — y(y* + 82X — 2(Z + 8xy) = 3X(y — 2%+ y(z— X)? + z(x—y)?] > 0

a
1“Dividing by a+ b+ c gives the equivalent inequalitycycic ———22——— E*CSb >1
a C
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In the above solution, we normalizedxe-y+z= 1. We now prove it by normalizing teyz= 1.

Fourth Solution.We make thesubstitution = 2%, y = &, z= 2. Then, we gekyz= 1 and the

b2’
inequality becomes
1 1 1

+ + >1
Vi+8x V1I+8y 1+8z~

which is equivalent to

Z V(14 8x)(148y) > +/(1+8x)(1+8y)(1+82).
cyclic

After squaring both sides, it's equivalent to

8(X+y+2) +2y/(1+8x)(1+8y)(1+82 y V1+8x>510
cyclic

Recall thatxyz= 1. The AM-GM inequality gives ug+y+z> 3,

(1+8%)(1+8y)(1+82) > 98 - 9y8 .98 =729 and § vI+8x> T \/9x8 > 9(xy2 2 = 0.
cyclic
Using these three inequalities, we get the result. O
(IMO 1983/6) Let a, b, c be the lengths of the sides of a triangle. Prove that
ab(a—b) + b%c(b—c) +c?a(c—a) > 0.
Second SolutionAfter settinga=y+z b=z+x, c=x+yforxy,z> 0, it becomes
2

2
XCz+ VX + 2y > XPyz+ XyPz+ XyZ or Xy+y7+§ >X+y+z

Since it's homogeneous, we can restrict our attention tadisex+y+ z= 1. Then, it becomes

G)(2) )

wheref (t) = t2. Sincef is convex orR, we apply (the weighted) Jensen’s inequality to obtain
X y X y z
—_ > . —_ B . — = =
yf(y> +zf( )+xf( ) > f <y y+z Z+x x> f(1)

Problem 29. (KMO Winter Program Test 200)Prove that, for all ab,c > O,

\/(82b -+ b2c + %) (alP + b2 + o) > abe+ {/ (a3 -+ abg) (b3 -+ abo) (63 + ab)

First Solution. Dividing by abg it becomes

e 2eg) (Eepet) zaer f(Fe0) (B0) (S+9)

b 5
c

After the substitutiox= 8,y = 2, z= £, we obtain the constraimlyz= 1. It takes the form

V(X+y+2) (xy+yz+2zx) > 1+\3/<)—Z(+1) (¥+1) ()E/-i-l).
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From the constraintyz= 1, we find two identities

()2 G2)- (2 52) () wovmeonn

(X+Y+2) (Xy+yz+2X) = (X+Y)(Y+2)(2+X) +Xyz= (X+Y)(y+2)(z+X) + 1.

Letting p = &/(x+Y)(y+2)(z+Xx), the inequality now becomeg/'p3+1 > 1+ p. Applying the
AM-GM inequality, we havep > §/2,/xy- 2,/yz-2,/zx= 2. It follows that(p>+1) — (1+ p)? =
p(p+1)(p—2)>0. O

Problem 30. (IMO 1999/2) Let n be an integer with i 2.

(a) Determine the least constant C such that the inequality

4
Y (¢ +x) <C X;
1<i<)<n 1<i<n

holds for all real numbers--- ,x, > 0.
(b) For this constant C, determine when equality holds.

First Solution. (Marcin E. Kuczma®) Forx; = --- = x, = 0, it holds for anyC > 0. Hence, we
consider the case whea + - - - + X, > 0. Since the inequality is homogeneous, we may normalize
toXxy+ -+ X, = 1. We denote

F(Xg, %) = XiXj (XF +X5).
From the assumptioxy + - - - + X, = 1, we have

3 3 3 3
Fix, %)= 5 XX+ 3 xx°= Y x°yx= % % (1-x)
1<i<j<n 1<i<)<n 1<i<n J#I 1<i<n

= Xi(Xiz—XiS).

Lemma3.1.0<x<y< % implies ¥ —x3 <y?—y3.

Proof. Sincex+y < 1, we getx+y > (x+Y)2 > x>+ xy+y2 Sincey —x > 0, this implies that
y?—x2 >y —x3ory? —y® > x? — x5, as desired. O

Casel.3>X >Xp > > X,

o< ( (- () 385

151 slightly modified his solution in [Au99].
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Case2.x; >3 >x > - >x Letxy =xandy=1— X=X+ - +Xn. SINCE V> X, , X,
n n
F (X1, - Xn) =X3Y+szi(xi2—xi3) < XSY#ZZXi(YZ—YS) =Xy+y(yY —y?).
1= 1=

Since Ry +y(y? —y°) =y +y3(1 —y) = xy(x* +y?), it remains to show that

X +y?) < :—é

Using x4+ y = 1, we homogeniztihe above inequality as following.

0C+y?) < x+y
However, we immediately find that+ y)* — 8xy(x? +y?) = (x—y)* > 0.
(]

Exercise 12. (IMO unused 199} Let n be a given integer with 1 2. Find the maximum value of

XiXj (% +Xj),
1<i<j<n

where X,--- ,Xp > 0and ¥ +---+x, = 1.
We close this section with another proofs of Nesbitt's iredijy

(Nesbitt) For all positive real numbeis b, c, we have

a n b . c >§
b+c c+a a+b™ 2

Proof 7. We may normalize to-ab+c = 1. Note thatD < a,b,c < 1. The problem is now to prove

a 3 X
— = (a) > =, where f(x)=-——.
cycu:tH—C C)%‘lc 2 1-x

Since f is convex of0, 1), Jensen’s inequality shows that

1 a+b+c 1 1 3
= f(a)>f( )—f(—)—— or f(a) > <.
30y0|c 3 3 2 cy%‘lc 2

Proof 8. (Cao Minh Quang) Assume thateb+ ¢ = 1. Note that ab- bc+ca< $(a+b+c)?= 1.
More strongly, we establish that

a b c 9
>3- =(ab+bc+ca
b+c+c+a+a+b— 2( +be+ca)

a 9ab+c) b  9b(c+a) c 9c(a+b)
> 3.
<b+cJr 4 >+<c+aJr 4 * a+bJr 4 23

The AM-GM inequality shows that

or

a (b+c b+c

il 3a:3.
yCICb+c b+c

clic
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Proof 9. We now break the symmetry by a suitable normalization. Sircmequality is symmetric

in the three variables, we may assume that b > c. After the substitution x 8,y = % we have
x>y>1 Itbecomes
€ ¢ 1 .3 x oy 3 1
by1 &+1 24072 7 y41l x+172 x+y
We apply the AM-GM inequality to obtain
1 1 1 1
i izz ori—i—LzZ———k—.
y+1 x+1 y+1 x+1 y+1 x+1
It's enough to show that
1+1>3 1 .1 1 1 1o, oy-1 o oyt
y+1 X+172 x+y 2 y+17x+1 x+y 2(1+y) = (x+1)(x+y)

However, the last inequality clearly holds fopxy > 1.

Proof 10. As in the previous proof, we may normalize te-d with the assumption a b > 1. We
prove

v

a n b n 1 §
b+1 a+1 a+b—2
Let A= a+ b and B= ab. It becomes

or 2A3 - A2 A+2>B(7A-2).

a2+b2+a+b+ 1 >§or A2_2B+A 1 3
(a+1)(b+1) a+b~2 A+B+1 A~ 2

Since7A—2> 2(a+b—1) > 0and A = (a+b)? > 4ab= 4B, it's enough to show that
42A3 — A2 —A+2) > AX(TA-2) < A*—2A2_4A+8>0.

However, it's easy to check thaf A 2A2 — 4A+ 8= (A—2)2(A+2) > 0.

4  Cauchy-Schwarz Inequality and Holder’s Inequality
We begin with the following famous theorem:

Theorem 3.4. (The Cauchy-Schwarz inequalijyLet aj,--- ,an, b1, --- , by be real numbers. Then,
(8% + - +an?) (b1 ® + - +bn?) > (aghy + -+ + anbn)®.

Proof. LetA= \/a12+---+ap2 andB = /b1?+ - -- + by?. In the case wheA = 0, we geta; =
---=ap = 0. Thus, the given inequality clearly holds. So, we may asstimtA,B > 0. We may
normalize to

l=a?+ - +a®=b®+ - +b?
Hence, we need to to show that
laghy + - +anbn| < 1.
We now apply the AM-GM inequality to deduce

2 2 2 2
X1“+Y1 Xn®+
|X1y1+~~~+xnyn|<\X1y1\+~~~+|xnyn\<7y+~~+7y”

=1
2 2


hamid
Highlight
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Exercise 13. Prove the Lagrange identity :

(éaﬂ) (i:ibi2> - <i§1a‘b‘>2 - K%Sn(a@bj —ajbi).

Exercise 14.(Darij Grinberg) Supposethdd < a; < --- <apand0< by <--- <h, be real numbers.

Show that ) ) )
(22) (8 - (22 (2] (B)

Exercise 15.([PF], S. S. WagneyLetay, - - - ,an,b1,--- ,by be real numbers. Suppose that 0, 1].
Show that

(iiaa2+2xi;a4aj> (iibinrZX% bibj> > <iiabi+xi;abj>2'

Exercise 16.Let a,---,an,b1,--- , by be positive real numbers. Show that

V(@1 + -+ an) (b + -+ bn) > /atby + - + \/anbn.

Exercise 17.Let a,--- ,an, b1, -+ , by be positive real numbers. Show that

al L& (&t tan)?
b1 b = bi+---+by

Exercise 18.Let a,--- ,an, b1, -+ , by be positive real numbers. Show that

2
a an 1 ap an
> = (=443
b12 bn2 T Attt an (bl bn>

Exercise 19.Let a,--- ,an, b1, - - , by be positive real numbers. Show that

2
& A (@atota)?
by bn — aibi+ -+ anbn

As an application of the Cauchy-Schwarz inequality, we gigéferent solution of the following
problem.

(Iran 1998) Prove that, for alk,y,z> 1 such that +§ +1 =2,

VXFYF+z> VX—14+y-1+vz-1

. . - 1 - . .
Third Solution. We note thatt + Y= + %% = 1. Apply the Cauchy-Schwarz inequality to deduce

-1 y-1 z-1
x+y+z—\/(x+y+z)(xx +yy +ZZ )>\/X—1+\/y—1+\/z—1.

We now apply the Cauchy-Schwarz inequality to prove Néshitequality.

(Neshitt) For all positive real numbeis b, c, we have

a+b+c
b+c c+a a+b

3
> -
-2
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Proof 11. Applying the Cauchy-Schwarz inequality, we have

((b+c)+(c+a)+(a+b))(biCJrCJlraJraib) > 32

It follows that

a+b+c a+b+c a+b+c
+ +
b+c c+a a+b

>9or 3+ —>g
-2 -2

Proof 12. The Cauchy-Schwarz inequality yields

2

a a (a+b+c)?
— Yy ab+c)> al or > >
yclic b+c cy%?c (cy%‘lc ) cydlic b+c ~ 2(ab+bc+ca)

Problem 31. (Gazeta Matemati&) Prove that, for all ab,c > O,

3
>

Vat+a2b2 + bt 4 /b* + b2 + A + /¢t + c?a? + a
> ay/2a?+bc+by/2b2+ ca+cy/2¢2 +ab.

Solution. We obtain the chain of equalities and inequalities

22
Z\/ a4+— <b4+ﬂ>
cyclic 2

Z Va*+a?b? + b
cyclic

4, ab? ., a2h?
> — at+ ——+4/b*+ — (Cauchy-Schwarz)
\/zcy%‘lc 2 2
1 \/ a2h? \/ a2c2
_ = at Y e
ﬁcych( t +—
2h2 202
> V2 > 4\/ bt ﬂ) <a4+ ﬁ) (AM-GM)
cyclic 2 2
> V2§ y/a 4+a_bc (Cauchy-Schwarz)

cyclic

= Z v/ 2a% +a2bc.
cyclic

Here is an ingenious solution of

(KMO Winter Program Test 2001) Prove that, for alp,b,c > 0,

/(@b -+ bct- c2a) (al? + b2 + ca?) > abe+ {/ (% + abo) (b3 + abe) (¢* + abo)
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Second Solution(based on work by a winter program participant) We obtain

/(8201 b2 + c2a) (al? + b2 + ca?)

= % \/[b(a2 +bc) 4 c(b2+ ca) + a(c? + ab)] [c(a2 + be) + a(b2+ ca) + b(c? + ab)]

> %<\/b_c(a2+bc)+\/c—a(b2+ca)+\/a_b(02+ab)) (Cauchy-Schwarz)

> g{’/ Vbo(@2 + be) - v/ca(b? + ca) - v/ab(c? + ab) (AM-GM)

- %\3/ (83 +abo) (b3 + abg) (¢ + abo) + (8% + abo) (b3 + ab) (¢3 + abg

> % \3/2\/a3 -abc- 2vb3 - abc- 2v/c3- abc+ \3/(a3 +abc) (b3 +abg) (c3+abc)  (AM-GM)

— e+ /(% +abg) (b3 + abo) 3+ abo).

Problem 32. (Andrei Ciupan) Let a, b, ¢ be positive real numbers such that
1 1 1
a+b+1+ b+C+l+C+a+l 21
Show that &b+ c> ab+ bc+ca.

First Solution. (by Andrei Ciupan) By applying the Cauchy-Schwarz inegyalve obtain
(a+b+1)(a+b+c? > (a+b+c)?

or
1 c2+a+b
a+b+1~ (a+b+c)?
Now by summing cyclically, we obtain

1 1 1 a®+b?+c?+2(a+b+c)
a+b+1 b+c+1 c+a+l— (a+b+c)?

But from the condition, we can see that
a2+ b*+c2+2(@+b+c)> (atb+c)?

and therefore
a+b+c>ab+bc+ca

We see that the equality occurs if and onlpi= b=c=1. O
Second Solution(by Cezar Lupu) We first observe that

1 a+b (a+b)?
2> (1_ ) _ _y _(@+b”
oic a+b+1 Cy%ica-l-b-i-l Cy%ic (a+b)2+a+b

Apply the Cauchy-Schwarz inequality to get

(@+b? _ (sath®  4ya’+8yab
- (a+b)2+a+b~ y(a+b)?>+a+b 2ya?+2yab+2ya’

cyclic

or
a+b+c>ab+bc+ca
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We now illustrate normalization techniques to establistssical theorems. Using the same idea
in the proof of the Cauchy-Schwarz inequality, we find a retgeneralization :

Theorem 3.5. Let g; (i, j = 1,--- ,n) be positive real numbers. Then, we have
(2" + -+ +aun") - (@m"+ - +amn") > (411821 @na + -~ + 81020+ 3nn)"-

Proof. Since the inequality is homogeneous, as in the proof of tterdhm 11, we can normalize to

1
n

(@"+-+an" )t =1 oray"+--+an" =1 (i=1-,n).
Then, the inequality takes the foreaiaps---am + -+ amazn---anm <1 or Y a1 --an < 1.
Hence, it suffices to show that, for ak=1,--- .n,

, whereagj1"+---+an" =1.

B an < -
]_"'aqni n

To finish the proof, it remains to show the followihgmogeneoduisequality : O

Theorem 3.6. (AM-GM inequality) Let &, - - - ,an be positive real numbers. Then, we have

% > yag---an.
Proof. Since it's homogeneous, we may rescale: - - ,a, so thata; - --a, = 1. 16 We want to show
that

=1 = ag+---+a>n.

The proof is by induction om. If n=1, it's trivial. If n=2, then we gety +a,—2=a; +
a — 2/ = (y/ar — /@)% > 0. Now, we assume that it holds for some positive integer2.
And letay, ---, an1 be positive numbers such that- - - anan1=1. We may assume that > 1 >
a. (Why?) It follows thatajap +1—a;—ay = (a1 —1)(ax — 1) < 0 so thatayay + 1 < a1 + ap.
Since(aiaz)az---a, = 1, by the induction hypothesis, we haag, +az+--- +a,1 > n. Hence,
y+a—1+az+---+ap>n O

The following simple observation is not tricky :

Leta,b>0andmne N. Takex; = -+ = Xm=aantXmy1 = - - - = Xxn,n, = 0. APplying
the AM-GM inequality toxy, - - - ,Xm+n > 0, we obtain

ma-+ nb S

m n m . _n_
a+ ——>b>ammpmmn,
m+n - -

1
(@™p")ymn or
m+n m+n
Hence, for all positiveationals w, andw, with «; + wp = 1, we get

w a+wpb>a®ph,

We immediately have

Theorem 3.7. Let wy, wp > 0 with wy + wp, = 1. For all x, y > 0, we have

W1 X+ wpy > Xy 2,

gety = —3— (i=1,---,n). Then, we gek; --- %, = 1 and it becomesy +--- +x, > n.
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Proof. We can choose a positivational sequences, ay,ag,--- such that

rI]im an= w.
And lettingb; = 1— &, we get
lim by =y
n—oo
From the previous observation, we have
anX+bpy> xa”yb”
By taking the limits to both sides, we get the result. O

Modifying slightly the above arguments, we see that the AM-iBequality implies that

Theorem 3.8. (Weighted AM-GM inequality Let ey, - -+, > 0 with ey + -+ 4+ aw, = 1. For all
X1, -+, %1 > 0, we have
W1 X+ Gh X > Xg X

Alternatively, we find that it is a straightforward consegoe of the concavity of Ir. Indeed,
the weighted Jensen’s inequality says thatdinx; + - 4+ th Xn) > wiln(Xy) + -+~ + whin(xy) =
In(X]_ w ... Xn OJn)

Recall that the AM-GM inequality is used to deduce the theot8, which is a generalization of
the Cauchy-Schwarz inequality. Since we now getvlegghtedversion of the AM-GM inequality,
we establistweightedversion of the Cauchy-Schwarz inequality.

Theorem 3.9. (Holder) Let %j (i=1,---,m,j =1,---n) be positive real numbers. Suppose that
w, -+, Wy are positive real numbers satisfying + - - - + w, = 1. Then, we have

5] =50

Proof. Because of the homogeneity of the inequality, as in the pobdiie theorem 12, we may
rescalexj, - - - ,Xmj SO thatxyj + - -- +Xmj = 1 for eachj € {1,--- ,n}. Then, we need to show that

n m n m n
I_Lle > Zierij“’i or 1> erinj“’i
= i=1]= i=1]=

The weighted AM-GM inequality provides that

E]
3

n n
Y o =[x (e{l---m) = 3 Y wxj > Xij .
=1 j=1 i=1j=1 i

However, we immediately have

3

H 3
M%E
A

£
TN
I 3

X
N———

I
Y% E
M

£

I

H

= J:]_

4 Convexity

Any good idea can be stated in fifty words or Ié8sM. Ulam
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1 Jensen’s Inequality

In the previous chapter, we deduced the weighted AM-GM iaétyufrom the AM-GM inequality.
We use the same idea to study the following functional inéties

Proposition 4.1. Let f: [a,b] — R be acontinuousfunction. Then, the followings are equivalent.

(1) For all n € N, the following inequality holds.
W f (X)) + -+ ahf(xn) > Flar X+ + o Xn)

forall x1,--- , X, € [a,b] andwy, -+ ,an > 0with ey + -+ -+ wn = 1.
(2) For all n € N, the following inequality holds.

rof(xa)+--+rmf(xa) > fraxa+---+rnxa)

forall xq,--- ,xp € [a,b]and ry, -~ ,rn € Q" withry +---+rp=1.
(3) For all N € N, the following inequality holds.

FyD +-+fl) o ¢ (Yat-+ N
N - N

forallyq,---,yn € [a,D].
(4) Forallk € {0,1,2,---}, the following inequality holds.

Flyn) +- 4+ Ty) o ¢ (Yot + v
2 = 2

forallyyq,---,yx € [a,b].
(5) We havel f(x) + 3 f(y) > f (X5) for all x,y € [a,b].
(6) We havel f(x)+ (1—A)f(y) > f (Ax+ (1—A)y) forall x,y € [a,b] andA € (0,1).

Proof. (1) = (2) = (3) = (4) = (5) is obvious.
(2)= (1) : Letxq,--- %, € [a,b] anday, - ,tn > 0 with wy + - + wn = 1. One may see that
there exist positive rational sequendeg(1) ke, - -+, {rk(n) }ken Satisfying

llim n(j)=wj (1<j<n)andrg(l)+---+re(n)=1 forall ke N.

By the hypothesis ir(2), we obtainry(1)f(x1) +--- 4+ re(n) f(xn) > f(re(1) X2 + - - + re(n) Xn).

Sincef is continuous, takingg — o to both sides yields the inequality
W f(Xa)+ -+ ahf(xn) = floXa+ -+ wh Xn).

(3)=(2) : Letxy, - ,%n € [@,b] andry, -+ ,rp € Q" withry +---+rp,=1. We can find a
positive integeN € N so thatNry, -, Nrp € N. For eachi € {1,---,n}, we can writer; = {, where
pi € N. Itfollows fromry+---4+ry=1thatN = p1+---+ ps. Then, (3) implies that

rlf(Xl)-I-‘”-i-I’nf(Xn)

p1 terms pn terms
B f(X1)+~~~—|—f(X1)+---—|—f(Xn)+---+f(Xn)
o N
p1 terms pn terms
; Xi 4 X+ Xn o+ Xn
- N

- f(r1X1++ran)
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(4)= (3) : Letyy,--,yn € [a,b]. Take a largk € N so that & > N. Leta= XM Then,
(4) implies that

flyD) 4+ fyw) +(2=n)f(a)
2k

(2—N) terms
—_—~
fly)+--+fyn)+f@+---+f(@)
2k
(2—N) terms

—
yitootyn+ at--+a
2k

f

Y

= f(a)

so that

f(y1)+~~-+f(yN)sz(a)sz(w>.

(5) = (4) : We use induction of. In casek=0,1,2, it clearly holds. Suppose that (4) holds for
somek > 2. Letyy, -+ ,Yoki1 € [a, b]. By the induction hypothesis, we obtain

1)+ T (Yok) + F (Vo) + -+ F(Yoken)
(Y1+ -+ ka> Y (Y2k+1+ 2k+ Y2k+1)

Y1+t y2k> + f <y2k+1+'2';<+ y2k+l>

IV

2k+1 f (

2

Yit-+ Yok + Yok 1t Yokt
okt1g 2K *

IV

2
 oktlg [ Y1t Yokt

Hence, (4) holds fok + 1. This completes the induction.
So far, we've established that (1), (2), (3), (4), (5) areesallivalent. Sincél) = (6) = (5) is
obvious, this completes the proof. O

Definition 4.1. A real valued function f is said to be convex[arb] if
A0+ (L= 2)F(y) > f (Ax+ (1 A)y)
forallx,y € [a,b] andA € (0,1).
The above proposition says that

Corollary 4.1. (Jensen'’s inequality Let f: [a,b] — R be a continuous convex function. For all
X1, , %0 € [a,b], we have

f(xe)+--+ f(Xn) S f <X1+~~+ Xn)
n = n '

Corollary 4.2. (Weighted Jensen’s inequalijyet f: [a,b] — R be a continuous convex function.
Letws, -+ ,h>0withowy + -+ wh=1. Forall x,--- ,Xn € [a,b], we have

W f(Xa)+ -+ ahf(xn) = floXa+ -+ wh Xn).
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In fact, we can almost drop the continuity 6f As an exercise, show that every convex func-
tion on[a,b] is continuous or(a,b). So, every convex function oR is continuous orR. By the
proposition again, we get

Corollary 4.3. (Convexity Criterion |) Let f: [a,b] — R be a continuous function. Suppose that

f(x)+ f(y) - (x+y)

2 2
for all X,y € [a,b]. Then, f is a convex function ¢a, b].

Exercise 20.(Convexity Criterion Il) Let f: [a,b] — R be a continuous function which are differ-
entiable twice in(a,b). Show that the followings are equivalent.

(1) f”(x) > Oforall x € (a,b).
(2) f is convex orfa, b).

When we deducés) = (4) = (3) = (2) in the proposition, we didn’t use the continuity bf

Corollary 4.4. Let f: [a,b] — R be a function. Suppose that

[210) ¢ (x4)

for all X,y € [a,b]. Then, we have
rif(xe)+--+rmf(xn) > f(rixa+---+rnXn)
forall xq,--- ,xp € [a,bland r, -+ ,rp € QT withry +-+-+rp = 1.

We close this section by presenting an well-known inducgiveof of the weighted Jensen’s
inequality. It turns out that we can completely drop the ouuity of f.

Second Prooflt clearly holds forn=1,2. We now assume that it holds for somes N. Let
X1, Xn, Xni1 € [, 0] and @y, -+, th1 > 0 with @y + -+ + owhyg = 1. Sincel_LaJh+l + o+
17&%“ =1, it follows from the induction hypothesis that

w f(xe) + -+ whirF(Xng1)

(] Wh
= (1- f(xg)+-+ f(xn) | + f(x
( mm)(l_aml (x1) T-wn (n)) whi1f(Xnt1)
> (1—wh+1)f( @ X1+ + Xn>+wn+1f(xn+1)
1-thi1 1-wha
>

Wy Wh
f ((1 — Ghy1) {1_ (Ah+1X1 +--+ mxn} + wn+1xn+1)

= fwxi+ -+ WhitXns1)-

2 Power Means

Convexity is one of the most important concepts in analyl@asen’s inequality is the most powerful
tool in theory of inequalities. In this section, we shalladdish the Power Mean inequality by
applying Jensen’s inequality in two ways. We begin with two@e lemmas.
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Lemma 4.1. Let a, b, and ¢ be positive real numbers. Let us define a fumdtidR — R by
X X
(o= (32

where x€ R. Then, we obtain’f0) = In (abc)%.

Proof. We computef’(x) = &Inaibinbicin Then f/(0) = Inathbine _ |y (ghg)3, O

Lemma 4.2. Let f: R — R be a continuous function. Suppose that f is monotone incrg@s
(0,0) and monotone increasing dr-«,0). Then, f is monotone increasing &n

Proof. We first show thaf is monotone increasing df,«). By the hypothesis, it remains to show
that f(x) > f(0) for all x> 0. For alle € (0,x), we havef(x) > f(¢g). Sincef is continuous at 0,
we obtain

f(x) > lim f(g)= f(0).

(x) > lim_f(e) = 1(0)

Similarly, we find thatf is monotone increasing of+-«,0]. We now show thaff is monotone
increasing orR. Letx andy be real numbers witlx > y. We want to show thaf(x) > f(y). In
case (O (x,y), we get the result by the hypothesis. In case0 > vy, it follows that f (x) > f(0) >

f(y). O

Theorem 4.1. (Power Mean inequality for three variablesLet a, b, and ¢ be positive real numbers.
We define a function Mp¢) : R — R by

1
ar+br+cr T
Miab)0) = 9386, Mano(n) = (S5575)" (20

Then, Ma ) is @ monotone increasing continuous function.

First Proof. Write M(r) = M) (r). We first establish tha¥l is continuous. Sinck is continuous
atr for all r #£ 0, it's enough to show that

lim M(r) = vabc
r—0
Let f(x) =1In (W) , Wherex € R. Sincef(0) = 0, the lemma 2 implies that

jim 10 _ i fO=1O) _ f/(0) = Inv/abc.
r—0 r r—0 r—20

SinceeX is a continuous function, this means that

@ —dn 3abc:

lim M(r) = lime Vabc

r—0 r—

Now, we show thaM is monotone increasing. By the lemma 3, it will be enough taldish that
M is monotone increasing ai®, ) and monotone increasing @gr,0). We first show thaM is
monotone increasing o, «). Letx >y > 0. We want to show that

(aX+bX+cx>% . (aV+by+cy>%
3 - 3 ’

After the substitutionn = a¥, v = a¥, w = a?, it becomes

X x X\ % 1
uy + vy +wy > Uu+v4+wy\y
() = ()
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Since it is homogeneous, we may normalizeitov+w = 3. We are now required to show that

G(u) 4+ G(v) + G(w) -1
3 =1

whereG(t) = t§, wheret > 0. Sincely‘ > 1, we find thaiG is convex. Jensen’s inequality shows that

SORISURISURS G(u+é+W) —G(1)=1

Similarly, we may deduce th is monotone increasing dr-, 0). O

We've learned that the convexity 6fx) = x* (A > 1) implies the monotonicity of the power
means. Now, we shall show that the convexitxtifx also implies the power mean inequality.

Second Proof of the MonotonicitVrite f(x) = Mgy ¢)(X). We use the increasing function theo-
rem. By the lemma 3, it's enough to show tHatx) > 0 for all x # 0. Letx € R — {0}. We compute

! X 4 bX 1 (@Ina+b*Inb+c*Inc
f(x):g(lnf(x)):—iln a* 4 b* 4 c* 15( + + )
f(x) dx X2 3 X %(ax+bx+cx)
or
X2 £/ (x) o a+b*+cX\  alna+b*Inb*+ cXInc*
f(x) 3 a4 bX+cx
To establishf’(x) > 0, we now need to establish that
X X
a‘Ina* +b*Inb* + c*Inc* > (a* +b*+ ) In (W) )

Let us introduce a functioffi : (0,00) — R by f(t) = tInt, wheret > 0. After the substitution
p=aX g=a,r=a? it becomes

r

f(p)+ f(q)+ £(r) > 3f <p+g+ ) .

Sincef is convex on(0,«), it follows immediately from Jensen'’s inequality. O
As a corollary, we obtain the RMS-AM-GM-HM inequality forrée variables.

Corollary 4.5. For all positive real numbers a, b, and ¢, we have

la2+b%2+c2 _ a+b+c 3
ot > o+ > \/abc> T T
3 3 atsT

Proof. The Power Mean inequality states théi ) (2) > Mab,c)(1) > Mab,c)(0) > M(gpe) (—1).
O

OIH

Using the convexity okInx or the convexity oik* (A > 1), we can also establish the mono-
tonicity of the power means far positive real numbers.

Theorem 4.2. (Power Mean inequalityLet x, - - - , X, > 0. The power mean of order r is defined by

n

1
X4 X\ T
M(XL'":Xn)(O) = X1 Xn, M(X1,~-~,Xn)(r) = (17n) (I’ 7& 0).

Then, My, ... x,) : R — R is continuous and monotone increasing.
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We conclude that

Corollary 4.6. (Geometric Mean as a LimjtLet x,--- ,x5 > 0. Then,

1
. le_|_..._|_xn|’ T
i Xn=IlM[ ——
1 *n rHO( n )

Theorem 4.3. (RMS-AM-GM-HM inequality) For all x4, --- ,x, > 0, we have

X124+ %2 Xp+- 4 Xn n
\/ > > XX >
n n +...+%

3 Majorization Inequality

X

We say that a vector¢ (xi,---,Xn) majorizesanother vector y= (y1,---,Yn) if

DX > >Xn, Y12+ 2> Yn,
@)1+ +x>y1+--+yforallL<k<n-1,
@)X+ +Xn=Y1 -+ +Vn.

Theorem 4.4. (Majorization Inequality) Let f: [a,b] — R be a convex function. Suppose that
(X1, ,Xn) Majorizes(ys,---,Yyn), Where X, -+ ,Xn,¥1,- - ,¥n € [,b]. Then, we obtain

fxa) 44 (%) = Fya) +---+ f(yn).

For example, we can minimize cAs- cosB+ cosC, whereABCis an acute triangle. Recall that
—cosxis convex on(0, J). Since(Z,%,0) majorize(A,B,C), the majorization inequality implies
that

CosA+ cosB+ coC > cos( 2) +cos( 2) +cos0=1.

Also, in a triangle ABC, the convexity of tér( ) on [0, 7] and the majorization inequality show
that

A B C
21-12V/3=3tar? (1—7;) < tan? <Z> +tan? <Z> +tan? <Z> < tan? (g) +tan0+tan0 = 1.

(IMO 1999/2) Let n be an integer witm > 2.
Determine the least constadtuch that the inequality
4
XiXj (X +X5) <C > %
1<i<)<n 1<i<n

holds for all real numberns,--- ,x, > 0.

Second Solution(Kin Y. Li *7) As in the first solution, after normalizing + - - - + X, = 1, we max-

imize
Z XiX;j ( x +x Zif
1<i<]<n

wheref (x) = x3 —x* is a convex function of0, z]. Since the inequality is symmetric, we can restrict
our attention to the case > X, > -+ > Xn. If 1 > x;, then we see that3, 3,0, ---0) majorizes
(x1,-+-,%n). Hence, the convexity of on [0, %] and the Majorization inequality show that

ZifxI <f< >+f< )+f(0)+---+f(0)::—é.

17 slightly modified his solution in [KYL].
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We now consider the case when> x;. Write x; = 3 — & for somee € [0,3]. We find that
(1—x1,0,---0) majorizes(xy, - - - ,Xn). By the Majorization inequality, we find that

n

> 1)< f (1) + F0) -+ F(0)= F(1-x1)

so that

;f(xi) < Fxa) 4+ F(1—x) = xg(1—x0)[}22+ (1 —x1)?]
< () () ol 5

4  Supporting Line Inequality

There is a simple way to find new bounds for given differefédbnctions. We begin to show that
every supporting lines are tangent lines in the followingsse

Proposition 4.2. (Characterization of Supporting LingsLet f be a real valued function. Let
m,n € R. Suppose that

(1) f(a) = ma +n for somex € R,
(2) f(x) > mx+n for all x in some intervalez, £2) includinga, and
(3) f is differentiable atr.

Then, the supporting lines mx+ n of f is the tangent line of f atx a.

Proof. Let us define a functioR : (£1,&) — R by F(x) = f(x) —mx—nfor all x € (&1,&2). Then,
F is differentiable atr and we obtairF’(a) = f/(a) — m. By the assumption (1) and (2), we see
thatF has a local minimum adr. So, the first derivative theorem for local extreme valueglies
that 0=F'(a) = f'(a) —mso thatm= f'(a) and than= f(a) —ma = f(a) — f'(a)a. It follows
thaty = mx+n= f'(a)(x—a)+ f(a). O

(Nesbitt, 1903 For all positive real numbeig b, c, we have

a+b+c
b+c c+a a+b

3
> .
-2
Proof 13. We may normalize to-ab+ c= 1. Note tha0 < a,b,c < 1. The problem is now to prove

cyclic

The equation of the tangent line of f atx} is given by y= 1. We claim that {x) > 252 for
all x € (0,1). It follows from the identity

X—1 (3x—1)2
M0 === =41

Now, we conclude that

a 9a—-1 9 3 3
el g 4 A 4 2
cyclic 1-a cyclic 4 4cyc ic 4 2




54 Olympiad Training Materials/TIN, www.imomath.com, ultnetric.googlepages.com

The above argument can be generalized. If a functitias a supporting line at some point on
the graph off, thenf satisfies Jensen’s inequality in the following sense.

Theorem 4.5. (Supporting Line Inequality Let f: [a,b] — R be a function. Suppose thate
[a,b] and me R satisfy
f(x) >mx—a)+ f(a)

forall x € [a,b]. Letcy, - -+, wh > Owith wy + - - -4+ wh = 1. Then, the following inequality holds
w1 (X)) + -+ anf(xq) > f(a)

for all x1,--- , X, € [@,b] such thato = cyx1 + - - - + anXs. In particular, we obtain

f(x1)+~r~]~+f(xn) > f G;)’

where X, --- , X, € [a,b] with X + - - - + Xy = s for some & [na, nb).

Proof. It follows that cwi f(x) + -+ + ahf(xn) > wr[m(xy — a) + f(a)] + -+ w[m(xa — a) +
fa)] = f(a). O

We can apply the supporting line inequality to deduce Jeésgmerjuality for differentiable func-
tions.

Lemma 4.3. Let f: (a,b) — R be a convex function which is differentiable twice (@nb). Let
y =lq(x) be the tangent line ar € (a,b). Then, {x) > I4(x) for all x € (a,b).

Proof. Leta € (a,b). We want to show that the tangent lipe- 14 (x) = f'(a)(x—a) + f(a) is the
supporting line off atx= a such thatf (x) > 14(x) for all x € (a,b). However, by Taylor's theorem,
we can find &y betweenn andx such that

f”(ex)
2

f(x)=f(a)+f'(a)(x—a)+ (x—a)?> f(a)+ f'(a)(x—a).

O

(Weighted Jensen’s inequality Let f : [a,b] — R be a continuous convex function
which is differentiable twice oifa,b). Let wy,---, wh > 0 with c + - - + w, = 1. For
all x3,--- ,Xn € [&,b],

W f(Xa)+ -+ ahf(xn) = floXa+ -+ wh Xn).

Third Proof. By the continuity off, we may assume thai,--- ,x, € (a,b). Now, lety = wy x1 +
-+ th Xn. Then,u € (a,b). By the above lemmaf has the tangent ling=1,(x) = f'(u)(x—
u)+ f(u) atx = p satisfying f(x) > 1,,(x) for all x € (a,b). Hence, the supporting line inequality
shows that

Wi f(x1) + -+ anf(Xa) > wnf() +- - +onf(u) = f(u) = fw X+ + th X).
O

We note that the cosine function is concave[on7| and convex o 7, |. Non-convex func-
tions can be locally convex and have supporting lines at quoitgs. This means that the supporting
line inequality is a powerful tool because we can also prediensen-type inequalities for non-
convex functions.

(Theorem 6) In any triangleABC, we have co8 + cosB+ coLC < %



Hojoo Lee : Topics in Inequalities 55

Third Proof. Let f(x) = —cosx. Our goal is to establish a three-variables inequality

f(A)+f(B)+ f(C) > f (7'[)’

3 3

whereA,B,C € (0, m) with A+ B+ C = . We computef’(x) = sinx. The equation of the tangent
line of f atx = % is given byy = \/7§ (x— %) — 3. To apply the supporting line inequality, we need
to show that

V3 m, 1
— > - —_ )=
cosc> *- (x—3) ~ 3
for all x e (0, ). This is a one-variable inequality! We omit the proof. O

Problem 33. (Japan 1997 Let a, b, and ¢ be positive real numbers. Prove that

(b+c—a)® (c+a-b)? (at+b-c)? .3
(b+c)2+a?  (c+a)?+b? (a+b)24+c?~ 5

Proof. Because of the homogeneity of the inequality, we may nomedba+ b+ c = 1. It takes
the form

(1-2a)? (1—2b)? (1—-2¢c)? .3
(1-a?+a (1-b2+p2  (1-02+2~ 5

- 1 N 1 N 1 2
2a2-2a+1 202-2b+1 2c2-2c+1~ 5°

1
2@-2x+1

_1\2
. (X)_<54 27> 2(3x—1)X(6x+1) _

We find that the equation of the tangent linefdk) =
and that

atx = % is given byy = %X"' %_g

T 25(22—2x+1) —

255" 25

for all x> 0. It follows that
27 27

f(a) < 54a+ =
c;%ic - cyclic 25 25 5

5 Problems, Problems, Problems

Each problem that | solved became a rule, which served aftelsvto solve other problemBRene Descartes

1 Multivariable Inequalities

M 1. (IMO short-list 2003 Let (x1,X2,- -+ ,%n) and(y1, Yz, -- ,Yn) be two sequences of positive real
numbers. Suppose thi@, 2, --- ,z,) is a sequence of positive real numbers such that

7% > %y

forall 1<i,j <n.LetM=maxz,--,zn}. Prove that

Mtzot 420\ *_ (X% (Yat - +¥n
2n - n n '
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M 2. (Bosnia and Herzegovina 20Q2.et &, -- ,an, b1, - ,bn,C1,-- -, Cy be positive real numbers.
Prove the following inequality :

(8) (307) (8) = (o)

M 3. (C182113, Marcin E. Kuczmj Prove that inequality

for any positive real numbersa-- ,an, by, -, by

M 4. (Yogoslavia 1998Let n> 1 be a positive integer andia -- ,an, by, -+, b, be positive real
numbers. Prove the following inequality.

aib; 2 ajaj ) bibj.

M 5. (C2176, Sefket Arslanag)dProve that

Sl

1
n

Sl

((@a+b1) -~ (an+bn))" > (ag---an)" + (br---bn)

where a,---,ap,by,--- ,bh >0

M 6. (Korea 200) Letx,---,X, and y,---,yn be real numbers satisfying
X2+ Xl =y1P eyt =1

Show that

> (X1y2 — XzY1)

and determine when equality holds.

M 7. (Singapore 200)Let &, ---,an,b1,---, by be real numbers betwed®01and2002inclusive.

Suppose that
n n
2 2
2 a“= 2 bi“.
i= i= |

.3 17 0

Zb. <1023

Prove that

Determine when equality holds.

M 8. (Abel's inequality) Let &,---,an, X1, -+, Xy be real numbers withpx> x,,1 > 0 for all n.
Show that

lagxg + - +anxn| < Axg

where
A=maxXlay|,|a1+az|, - ,|las+---+an|}-

18CRUX with MAYHEM
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M 9. (China 1992 For every integer n> 2 find the smallest positive numbr= A (n) such that if

1
0<a, ,an< > Py, ,bn >0, @14---+an=by+--+bn=

then
by---by < A(aghy + -+ anbn).

M 10. (C2551, Panos E. Tsaoussoglp&uppose that@--- ,a, are positive real numbers. Let
gjk=n—1if j =kand g x=n—2otherwise. Let g =0if j =k and d x = 1 otherwise. Prove
that

2
n n n n
&) a’ > dj ax
1211!]1 . B(kzl I )

M 11. (C2627, Walther JanougLet x, - - - ,x,(n > 2) be positive real numbers and let% - - - 4 Xn.
Leta,---,an be non-negative real numbers. Determine the optimum coh€f@) such that

i 3 (% — XJ >C(n)<|£|aj>ﬁ.

=1

M 12. (Hungary-Israel Binational Mathematical Competition 20Q0Suppose that k and | are
two given positive integers angjél <i < k,1 < j <I) are given positive numbers. Prove that if
gq>p>0,then

p

5(500)) < (3(50) )

M 13. (Kantorovich inequality Supposex< --- < X, are given positive numbers. L&f,--- , A,
OandAi+---+ A, = 1. Prove that

(82 (32) =5

M 14. (Czech-Slovak-Polish Match 20Q1et n> 2 be an integer. Show that

Y

where A= X3 and G= /X %n.

(a®+1)(a®+1) - (an°+1) > (ar®az + 1)(az”az+ 1)+~ (an“ay + 1)
for all nonnegative realsg- - - ,an
M 15. (C1868, De-jun ZhapLetn>3,a; > apx > --- > a, > 0, and p> g > 0. Show that
arPad + aPagd + - +an_1Pand + anPagd > ag%apP + ad%agP + - -+ an_19anP + a.da; P
M 16. (Baltic Way 1996 For which positive real numbers b does the inequality
X1 + XoX3 4 -+ X 1Xn -+ XnX1 > X1 ¥X"Xa® + Xo¥XaPXa® 4 -+ - 4 Xn X1 PXo?
holds for all integers n> 2 and positive real numberg x - - , Xy

M 17. (IMO short List 2000 Let x, X2, - - - , X be arbitrary real numbers. Prove the inequality

X1 X2 Xn
5+t <4/Nn.
Tix? 112+ %2 14 X2+ -+ Xn2 Vi
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M 18. (MM1°1479, Donald E. Knuth Let My be the maximum value of the quantity

Xn I X2 N X1
(T+xe+-+%)2  (T+X+ - +Xn)? (

1+ Xy)2

over all nonnegative real numbefz,, - - - ,xn). At what point(s) does the maximum occur ? Express
Mp in terms of M_1, and findlimn_,. M.

M 19. (IMO 1971) Prove the following assertion is true for-a 3 and n= 5 and false for every
other natural number n- 2: if ay,-- - ,a, are arbitrary real numbers, then

S M(a—ay) > 0.
i;ga aj)

M 20. (IMO 2003) Let x < xp < --- < Xp be real numbers.
(a) Prove that

2
2(n—1) )
X—xj| | <——F— (% —xj)°
<1<§<n 3 1§§§n

(b) Show that the equality holds if and only {f %o, - - - , X, is an arithmetic sequence.
M 21. (Bulgaria 1995 Let n> 2 and0 < xp,--- , X, < 1. Show that
(X1 4+ X244+ Xn) — (XaX2 + XXz + - - - + XnX1) < [r_ﬂ )

and determine when there is equality.
M 22. (MM1407, M. S. Klamkin) Determine the maximum value of the sum

X1+ xoP 4+ %P — X1 %" — xoIx3" — - Xy Ixq
where pq,r are given numbers with p g>r > 0and0 < x; < 1for all .
M 23. (IMO Short List 1998 Let &, ay, - - ,a, be positive real numbers such that

aytat--t+an<l

Prove that

aap---an(l— (g +ax+---+an)) 1
(antap+-+an)(l—a)(l—ap)---(1—ay) — nn+1-

M 24. (IMO Short List 1998 Let r,rp,--- ,rn be real numbers greater than or equal1o Prove

that
1 1 n

et > .
ri+1 m+1 " (rpor)f 41

M 25. (Baltic Way 199) Prove that, for any real numberga- - ,ap,

ai
S %4 o
1§|,J<n|+ -1

M 26. (India 1995) Let X, X2, - - -, Xn be positive real numbers whose sun.isrove that

X]_ + + Xn > n
1-x1 1—-%,  \\n=1

9\Mathematics Magazine
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M 27. (Turkey 1997 Given an integer r» 2, Find the minimal value of

5 5 5

X1 I X2 T Xn
X2 +X3+--+Xn X3+ +Xn+ X1 X1+X3+ - +Xn-1

for positive real numbers;x: - - , X, subject to the conditiom£ + - - - + X,2 = 1.
M 28. (China 1996 Suppose & N, Xp =0, Xg,--- ,X5 > 0, and % + - - - + x5 = 1. Prove that

1<% X
_i;\/1+X0+"'+Xi—1\/xi+"'+xn

I
2

M 29. (Vietnam 1998 Let x, - - - , X, be positive real numbers satisfying

LSS S |
X+ 1998 X,+1998 1998

Prove that )
n

(Xl“‘xn)

>1998

M 30. (C2768 Mohammed Aassi)d_et x, - - - , X be n positive real numbers. Prove that

X X n
1 2 Xn >

+ tot =2
\/ X1X2 + Xo2 \/ XoX3 + X2 V XnX1 + Xq2 V2

M 31. (C2842, George Tsintsifad et x, - - - , X, be positive real numbers. Prove that

X" X" N n(Xl"'Xn)%

>2
NXp---Xn X1+---+Xn

(@)

1
X"+ X" n (X1 Xn)n 1
X1+ Xn X1+-+Xn

(b)

M 32. (C2423, Walther JanouslLet x, - -- ,Xn(n > 2) be positive real numbers such thatx: - -

Xn = 1. Prove that

1_;’_3 1+£ > n-—x N~
X1 Xn 1-x1 1-—Xq
Determine the cases of equality.
M 33. (C1851, Walther JanousLet x, - - - ,xn(Nn > 2) be positive real numbers such that
X124 X2 =1
Prove that
2y/n-1 1 2+x 2yn+1
< < .
5/n—-1" 455+4+x ~ 5/n+1
M 34. (C1429, D. S. Mitirinovic, J. E. PecaricShow that

n :
Xi
v ERvasvan L 1
51 X+ XipaXiq-2

where x,--- , %, are n> 3 positive real numbers. Of coursg, = X1, X2 = X. 2°

Xi
%2 41% 42

20 Original version is to show thaupy ! ;

59

+



60 Olympiad Training Materials/TIN, www.imomath.com, ultnetric.googlepages.com

M 35. (Belarus 1998 S. Sobolevskiet & < ay < --- < ay be positive real numbers. Prove the
inequalities

n ar ait+---+an
(a) 1+'”+1 Za n 9
a an
n 2k a;+---
(b) i+...+i21+k2' 1+n+an,
a1 an

where k= %1.
M 36. (Hong Kong 2000 Let g < a < --- < a, be n real numbers such that
atat---+an=0.

Show that
a1’ +ag?+ - +an’>+naga, < 0.

M 37. (Poland 200} Let n> 2 be an integer. Show that

for all nonnegative realssx- - - , Xn.
M 38. (Korea 1997 Let &,-- - ,a, be positive numbers, and define

At tan
- 2T T

1 n
n

A G=(ai--n)n,H=

(a) If nis even, show that .
A A
—<-1+2(=] .
7=2(g)

A n—-2 2(n-1) /A\"
—<——4 = .
H~ n n G

M 39. (Romania 199¢Let x,--- ,Xn, Xn 1 be positive reals such that

(b) If nis odd, show that

Xnt1 = X1+ -+ Xn.

Prove that

i \/Xi (Xnt1—X%) < \/Xn+1(Xn+1 —X)

M 40. (C2730, Peter Y. WodLet AM(X1, - -+ ,Xn) and GM(xq, - - - ,Xn) denote the arithmetic mean
and the geometric mean of the positive real numbers: X, x, respectively. Given positive real
numbers @,--- ,an,by,---, by, () prove that

GM(a1 + by, ;an+bn) > GM(ag, - ,an) + GM(by, - ,bp).
For each real number & 0, define
f(t) =GM(t+bg,t+by,--- ,t+by) —t
(b) Prove that f is a monotonic increasing function, and that

lim f(t) = AM(by, - ,br)
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M 41. (C1578, O. Johnson, C. S. GoodlpBor each fixed positive real numbeg,anaximize
aiar---an
(1+a1)(as +az)(az+as) - (an-1+an)

over all positive real numbersia - - ,an_1.
M 42. (C1630, Isao AshibaMaximize

aiax +agag+ -+ azx—182n
over all permutationsa- - - ,a, of the set{1,2,--- . 2n}

M 43. (C1662, M. S. Klamkin Prove that

X12r+1 X22r+1 Xn2r+1 4"

>
S—X1 * S—X2 * S—X, — (n—1)nZ-

7 (X1 + XX+ -+ + XnXa)'
where n> 3, r > % X > 0foralli, and s= X1 + - -- +Xn. Also, Find some values of n and r such
that the inequality is sharp.

M 44. (C1674, M. S. Klamkin Given positive real numberssand an integer n- £, find positive
real numbers x - - - , X SO as to minimize

1 1 1

<X—1, T T X—n,) (L4+x1)%(1+%2)% - (1+%n)*.

M 45. (C1691, Walther JanousLet n> 2. Determine the best upper bound of
X1 X2 Xn

+ T LI —
XoX3+++Xn+1  XiXz---Xn+1 X1Xo- - Xp_1+1

over all x,--- ,%n € [0,1].

M 46. (C1892, Marcin E. KuczmaLet n> 4 be an integer. Find the exact upper and lower bounds

for the cyclic sum
n

Xi

i; Xi—1+Xi +Xi+1
over all n-tuples of nonnegative numbejs-x- , X, such that x_1 +X; + X1 > Ofor all i. Of course,
Xn+1 = X1, Xo = Xn. Characterize all cases in which either one of these bousid#tained.

M 47. (C1953, M. S. Klamkin Determine a necessary and sucient condition on real consta
ry,---,rn such that
X124 X% 4 +Xn2 > (FXg + FoXo + - -+ InXn)?

holds for all real numberss- - - , Xn.

M 48. (C2018, Marcin E. KuczmatHow many permutation&s, - - ,X,) of {1,2,--- .n} are there
such that the cyclic sum

X1 — Xo| + [X2 = X3| 4 - - + [Xn—1 — Xn| + [Xn — X4
is (&) a minimum, (b) a maximum ?

M 49. (C2214, Walther JanousLet n> 2 be a natural number. Show that there exists a constant
C =C(n) such that for all x, - - - ,x, > 0 we have

_i\/YiS ,/ﬂ(xiJrC)

Determine the minimum(@) for some values of n. (For examplgZ3 = 1.)
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M 50. (C2615, M. S. Klamkin Suppose thatsx- - - , X, are non-negative numbers such that

> %%y (6%i41)* = @

where e the sums here and subsequently are symmetric ovartikeripts{1,--- ,n}. (a) Determine
the maximum of x;. (b) Prove or disprove that the minimumpk; is 4/ % .
M 51. (Turkey 1996 Given real number® = x; < X < -++ < Xon,Xont1 = 1 with %1 — X < h for
1 <i <n, show that

1-h 2 1+h

—5 < i;XZi (Xoig1—Xoi—1) < —

M 52. (Poland 2002 Prove that for every integer i 3 and every sequence of positive numbers
X1, -+ ,Xn at least one of the two inequalities is satsified :

n Xi _n n Xi n
i;Xi+1+Xi+2 -2 i;Xi—lJrXi—z 2
Here, 11 = X1,Xn12 = X2, X0 = Xn,X_1 = Xn_1.

M 53. (China 1997 Let x4, - - - , X1997 be real numbers satisfying the following conditions:

v

1
~ 7 < X1, 1 X1997 < V3, X1 + - + X1997= —318V/3
Determine the maximum value Qf%+ - - - + X1997'2.
M 54. (C2673, George Baloglou_et n> 1 be an integer. (a) Show that

(1+ag--an)">ar--an(l+a" ?)- (L+a"?)

forallag,---,a, € [1,00) if and only if n> 4.
(b) Show that

1 1 1 n
+ +oet >
a(l+a"2)  ap(l+ag"?) an(l+a"?2) ~ 1+a---an

forallay,---,ap > Oifand only if n< 3.
(c) Show that

1 1 1 n
+ ot >
a(l+a"?)  a(l+a"?) an(l+a"?) = 14+a;---an

forallay,---,ay > Oifand only if n< 8.
M 55. (C2557, Gord Sinnamon,Hans Heinjga) Show that for all positive sequences}

nok o n /k \%1
S3ome3 (hn) &
(b) Does the above inequality remain true without the fa@®xc) What is the minimum constant ¢
that can replace the factdt in the above inequality?
M 56. (C1472, Walther JanousFor each integer r> 2, Find the largest constant{Such that
n
Cni;|a| < K%Sn\a —aj

for all real numbers @, --- ,a, satisfyingy ., a = 0.
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M 57. (China 2002 Given ce (%,1). Find the smallest constant M such that, for any integer 2
andrealnumberd <a; <ap <--- <ap, If

n n

1
- kak <c a,
n k; k;

then
n

m
> <M kag
k=1 =1

where m is the largest integer not greater than cn.

M 58. (Serbia 1998 Let x,Xo, - - - , Xy be positive numbers such that
X1 +Xo+ -+ X = 1.

Prove the inequality
QL% Q%3 aXn—x1 n2
X1+X2  X2+X3 Xn+X1 — 2

holds true for every positive real number a. Determine albemthe equality holds.

M 59. (MM1488, Heinz-Jurgen SeiffeftLet n be a positive integer. Show thafik x; < xo < Xp,

then
n noj
|_l (1+4x) (Z |_| > >2"(n+1)

with equality ifand only if x="--- =x, = 1.

M 60. (Leningrad Mathematical Olympiads 1968 et &, ay,--- ,ap be real numbers. Let M=
max S and m= minS. Show that

L <P
(P—1H(M—m) ZJ & —aj| < - (M—m)

M 61. (Leningrad Mathematical Olympiads 193 Establish the following inequality
1

§cos( 1) (1o ) <

M 62. (Leningrad Mathematical Olympiads 200®how that, for alD < x; < x> <... < X,

M 63. (Mongolia 199 Show that, foralD<a; <ay < ... < ay,

apt+ap ax+ag an+ag < a1 t+ax+as at+azt+ay antart+a
2 2 2 - 3 3 3 '

2 Problems for Putham Seminar

P 1. | Putnam 04A6 Suppose that (k,y) is a continuous real-valued function on the unit square
0<x<1,0<y<1 Show that

/01</0 (xy)dx) dy+/ (/ xy)dy) dx
g(/o /0 f(x,y)dxdy) +/O /0 (f(xy))2dxdy
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P 2. | Putham 04B2 Let m and n be positive integers. Show that

(m+n)! - m! n!
(M+4n)mn = mmnn’

P 3. Leta,ap,...,an and by, by, ..., by be nonnegative real numbers. Show that
(182 @n) /" + (babz--bn)'/" < [(ag +by) (82 +b2) -+~ (@ + bn)|/".
P 4. Find the minimum value of
| Sinx+ cosx+ tanx + cotx+ sexx+ CScX|
for real numbers x.
P5. Suppose that,#®,c,A,B,C are real numbers, & 0 and A# 0, such that
|22 + bx+¢| < |A¢ + Bx+C|
for all real numbers x. Show that
Ib? — 4ad < |B? — 4AC|.

P 6. | Putham 03Bf Let f(x) be a continuous real-valued function defined on the intej@al].

Show that
//|f |dxdy>/ I (x

P 7. | Putham 02B3 Show that, for all integers i+ 1,
1 1 ( 1) S |
— <= (1-=) <=
2ne e n ne
P 8. | Putnam 01A6 Can an arc of a parabola inside a circle of radius 1 have a léngseater than
4?

P 9. | Putnam 99A5 Prove that there is a constant C such that, {kpis a polynomial of degree
1999, then

p0) <C [ p0o]dx

P 10. Let f be a real function with a continuous third derivativeesithat f(x),
f'(x), f’(x), f”"(x) are positive for all x. Suppose that’{x) < f(x) for all x. Show that f(x) <
2f(x) for all x.

P 11. | Putnam 98B4 Let ay,, denote the coefficient of in the expansion ofl + x4 x?)™. Prove
that for all integers k> 0,
0< Zf) ak i s

P 12. | Putnam 98B1] Find the minimum value of

()" (€4 5) -2
(x+ 3%+ (¢+ 3)

for x > 0.
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P 13. | Putnam 96B2 Show that for every positive integer n,

on—1\7 ont 1)\ 7
< ”e_ ) <1.3-5..-(2n—1)<< ”: )

P 14.| Putnam 96B3|Given that{x1,Xo,...,Xn} ={1,2,...,n}, find, with proof, the largest possible
value, as a function of n (with n 2), of

X1X2 + XoX3 + - - - + Xn—1X%n + XnX1.

P 15.| Putnam 91B6 Let a and b be positive numbers. Find the largest number ering of a and
b, such that

bl < aS|.nhux smhg(l—x)
sinhu sinhu
for allu with 0 < |u] < c and for all x,0 < x < 1.

P 16. (CMJ?'416, Joanne Harrig For what real values of ¢ is

e+ e X < ecx2
— < .
for all real x?

P 17. (CMJ420, Edward T. H. Wanylt is known [Daniell A. Cohen, Basic Techniques of Combi-
natorial Theory, p.56] and easy to show tt@it< (") < 22" for all integers n> 1. Prove that the

Stl’onger |nequal|t|es
22n71 _ 2n _ 22n
va n/ ~Vn

P 18. (CMJ379, Mohammad K. AzariajplLet x be any real number. Prove that

P 19. (CMJ392 Robert JonesProve that

1 1
<1+ ﬁ) <xsm;) > 1 for x 7

P 20. (CMJ431R. S. Luthaj Let0 < ¢ < 6 < 7. Prove that

hold for all n> 4.

l COS(

i cogkx)| <

[(1+tarf ) (1+sir? )] ? < [(1-+ tar? 0)(1-+ sir? )] 5¢°.
P 21. (CMJ451, Mohammad K. AzariapProve that
¢4 cofa + ¢ st a > 1,

provided0 < a <

P 22. (CMJ446, Norman Schaumbergif X, y, and z are the radian measures of the angles in a
(non-degenerate) triangle, prove that

.3 .1 .1 .1
mIsin— > xsin= +ysin= + zsin=-.
m X y z

21The College Mathematics Journal
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P 23. (CMJ461, Alex NecocheplLet0 < x < J and0 <y < 1. Prove that

: 1—y2—cosx
Xx—arcsiy< ——————
y
with equality holding if and only if y= sinx.
P 24. (CMJ485 Norman SchaumbergezlProve that
(1)ifa>b>1orl>a>b>0,then &b > a’p?; and
(2)ifa>1>b> 0, then &b? < a*p?.

P 25. (CMJ524 Norman SchaumberggiLet a, b, and ¢ be positive real numbers. Show that

b c
abc. (a+b\?/b+c\’/c+a ab.c
> > .
a’b°c® > ( > ) > > > bc’a
P 26. (CMJ567 H.-J. Seiffery Show that for all ditinct positive real numbers x and y,

<ﬁ+ﬂ)2< X=y _xty

X
2 ZsmhX+y 2

P 27. (CMJ572, George Baloglou and Robert Underwoderove or disprove that fofl € (—’ZT, ’ZT)
coshg < ——1L

Vi1-tark@’

P 28. (CMJ603, Juan-Bosco Romero Marqugket a and b be distinct positive real numbers and
let n be a positive integer. Prove that

a+ b bn+1 an+1 an +bn
< <1/
2 (n+1
P 29. (MM?22904, Norman SchaumberggFor x > 2, prove that
X 21 x—1
In[— ] < <In{——=|.
(1) < 3w < (5=2)

P 30. (MM1590, Constantin P. NiculescuFor given a,0 < a < Z, determine the minimum value
of a > 0 and the maximum value @8f> 0 for which

(B <)

(This generalize the well-known inequality due to Jorddnicivasserts tha% <sinx<1lon[0,7].)

P 31. (MM1597, Constantin P. NiculescuFor every xy € (0, \/7) with x#y, prove that

1— sinxy 2 1—sinx?, 1—siny?
INn=———=1 >In —In —.
1+ sinxy 1+sinx2 14+ siny?

P 32. (MM1599, Ice B. RisteskiGivena > > 0and f(x) =x%(1-x)B. If0<a<b< 1and
f(a) = f(b), show that f(a) < —f'(B).

)’

P 33. (MM Q197, Norman SchaumbergéProve that if b> a > 0, then(%)a > g > (

ol
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P 34. (MM1618, Michael GolomB Prove that0 < x < T,

T—X . X\ TT—X
X—— < sinx < <3— —) X——.
T+ X m/ Tm+X

P 35. (MM1634, Constantin P. NiculescuFind the smallest constantk 0 such that

ab n bc n ca
at+b+2c b+c+2a c+a+2b

<k(a+b+c)

for every ab,c > 0.
P 36. (MM1233, Robert E. ShaférProve that if x> —1 and x+ 0, then

X2 X2
<A+ <

1x+ S %2

i

2
1oxt @ _ __m
TX+S Lxt X2

2
1+x+%
P 37. (MM1236, Mihaly Benczg Let the functions f and g be defined by

X 8x

"= Zzge 3 90 = gz e

for all real x. Prove that if A, B, and C are the angles of an adsangle triangle, and R is its
circumradius then

at+b+c

f(A)+1(B)+1(C) < =

<9g(A)+9(B)+9(C).

P 38. (MM1245, Fouad Nakhl) For each number x in open intervél,e) it is easy to show that

there is a unique number y ife o) such that'”Ty = '“7" For such an x and y, show thatixy >
xIny+yinx.

P 39. (MM Q725, S. Kung Show thaisinx)y < sin(xy), where0 < x < mand0 <y < 1.
P 40. (MM Q771, Norman Schaumberg@iShow that i0 < 8 < J, thensin20 > (tan@)°os?
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