2013 ASME Boiler and Pressure Vessel Code AN INTERNATIONAL CODE

β

IX Welding, Brazing, and Fusing Qualifications

Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators

110

INTENTIONALLY LEFT BLANK

AN INTERNATIONAL CODE 2013 ASME Boiler & Pressure Vessel Code

2013 Edition

July 1, 2013

IX Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators

ASME Boiler and Pressure Vessel Committee on Welding, Brazing, and Fusing

The American Society of Mechanical Engineers

Two Park Avenue • New York, NY • 10016 USA

Date of Issuance: July 1, 2013

This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the publicat-large.

ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes in this document (if any) are part of this American National Standard.

ASME collective membership mark

Certification Mark

The above ASME symbol is registered in the U.S. Patent Office.

"ASME" is the trademark of The American Society of Mechanical Engineers.

No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number: 56-3934 Printed in the United States of America

Adopted by the Council of The American Society of Mechanical Engineers, 1914; latest edition 2013.

The American Society of Mechanical Engineers Two Park Avenue, New York, NY 10016-5990

Copyright © 2013 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved

TABLE OF CONTENTS

List of Sections	
Foreword	
Statement of Policy or	n the Use of the Certification Mark and Code Authorization in Advertising
Statement of Policy or	n the Use of ASME Marking to Identify Manufactured Items
Submittal of Technical	l Inquiries to the Boiler and Pressure Vessel Standards Committees
Personnel	-
Introduction	х
Summary of Changes	х
	Order xx
Cross-Referencing and	d Stylistic Changes in the Boiler and Pressure Vessel Code
Part QG	General Requirements
QG-100	Scope
QG-109	Definitions
Qu-109	Definitions
Part QW	Welding
Article I	Welding General Requirements
QW-100	Scope
QW-110	Weld Orientation
QW-120	Test Positions for Groove Welds
QW-130	Test Positions for Fillet Welds
QW-140	Types and Purposes of Tests and Examinations
QW-150	Tension Tests
QW-160	Guided-Bend Tests
QW-170	Notch-Toughness Tests
QW-180	Fillet-Weld Tests
QW-190	Other Tests and Examinations
Article II	Welding Procedure Qualifications
QW-200	General
QW-210	Preparation of Test Coupon
QW-220	Hybrid Laser-GMAW Welding
QW-250	Welding Variables
QW-290	Temper Bead Welding
Article III	Welding Performance Qualifications
QW-300	General
QW-310	Qualification Test Coupons
QW-320	Retests and Renewal of Qualification
QW-350	Welding Variables for Welders
QW-360	Welding Variables for Welding Operators
QW-380	Special Processes
Article IV	Welding Data
QW-400	Variables
QW-410	Technique
QW-420	Base Metal Groupings
QW-430	F-Numbers
QW-440	Weld Metal Chemical Composition
QW-450	Specimens

QW-460	Graphics	183
QW-470	Etching — Processes and Reagents	228
QW-490	redesignated as QG-109	229
Article V	Standard Welding Procedure Specifications (SWPSs)	230
QW-500	General	230
QW-510	Adoption of SWPSs	230
QW-520	Use of SWPSs Without Discrete Demonstration	230
QW-530	Forms	231
QW-540	Production Use of SWPSs	231
Part QB	Brazing	232
Article XI	Brazing General Requirements	232
QB-100	Scope	232
QB-110	Braze Orientation	232
QB-120	Test Positions for Lap, Butt, Scarf, or Rabbet Joints	232
QB-140	Types and Purposes of Tests and Examinations	233
QB-150	Tension Tests	233
QB-160	Guided-Bend Tests	234
QB-170	Peel Tests	235
QB-180	Sectioning Tests and Workmanship Coupons	235
Article XII	Brazing Procedure Qualifications	236
QB-200	General	236
QB-210	Preparation of Test Coupon	237
QB-250	Brazing Variables	238
Article XIII	Brazing Performance Qualifications	242
QB-300	General	242
QB-310	Qualification Test Coupons	243
QB-320	Retests and Renewal of Qualification	243
QB-350	Brazing Variables for Brazers and Brazing Operators	243
Article XIV	Brazing Data	244
QB-400	Variables	244
QB-410	Technique	245
QB-420	P-Numbers	245
QB-430	F-Numbers	245
QB-450	Specimens	248
QB-460	Graphics	252
-	-	
Part QF	Plastic Fusing	271
Article XXI	Plastic Fusing General Requirements	271
QF-100	Scope	271
QF-110	Fused Joint Orientation	271
QF-120	Test Positions	271
QF-130	Data Acquisition and Evaluation	271
QF-140	Examinations and Tests	272
Article XXII	Fusing Procedure Qualifications	274
QF-200	General	274
QF-220	Standard Fusing Procedure Specification (SFPS)	275
QF-250	Fusing Variables	277
Article XXIII	Plastic Fusing Performance Qualifications	279
QF-300	General	279
QF-301	Tests	279
QF-302	Type of Test Required	279
QF-303	Limits of Qualified Positions and Diameters (See QF-461)	279

QF-305		Fusing Machine Operators	279
QF-310		Qualification Test Coupons	280
QF-311		Test Coupons	280
QF-320		Retests and Renewal of Qualification	280
QF-321		Retests	280
QF-322		Expiration and Renewal of Qualification	280
QF-360		Essential Variables for Performance Qualification of Fusing Machine Opera-	
		tors	280
QF-361		General	280
Article XXIV		Plastic Fusing Data	281
QF-400		Variables	281
QF-401		General	281
QF-402		Ioints	281
QF-403		Material	281
QF-404		Position	281
QF-405		Thermal Conditions	281
QF-406		Equipment	281
QF-407		Technique	281
QF-420		Material Groupings	281
QF-450		Pipe Fusing Limits	282
QF-460		Graphics	282
QF-461		Positions	282
QF-480		Forms	289
QF-490		Definitions	293
QF-491		General	293
QF-492		Definitions	293
Nonmandatory Appendix B		Welding and Brazing Forms	295
Nonmandatory Appe	endix D	P-Number Listing	306
Mandatory Appendix	κE	Permitted SWPSs	324
Mandatory Appendix F		Standard Units for Use in Equations 32	
Nonmandatory Appe	endix G	Guidance for the Use of U.S. Customary and SI Units in the ASME Boiler and Pressure Vessel Code	328
Nonmandatory Appe	endix H	Waveform Controlled Welding	331
Mandatory Appendix J		Guideline for Requesting P-Number Assignments for Base Metals not Listed in Table QW/QB-422	333
Nonmandatory Appe	endix K	Guidance on Invoking Section IX Requirements in Other Codes, Stan- dards, Specifications, and Contract Documents	334
FIGURES			
QG-109.2.1	Trustaal	Single and Multibead Layers	13
QG-109.2.2	Typical 3	Single and Multiplau Layers	
Qu 107.2.2			13
QW-191.1.2.2(b)(4)	Typical S	Single Bead Layers	13 21
•	Typical S Rounded	Single Bead Layers	
QW-191.1.2.2(b)(4)	Typical S Rounded Positions	Single Bead Layers	21
QW-191.1.2.2(b)(4) QW-461.1	Typical S Rounded Positions Positions	Single Bead Layers	21 183
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2	Typical S Rounded Positions Groove V	Single Bead Layers	21 183 184
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2 QW-461.3	Typical S Rounded Positions Positions Groove V Groove V	Single Bead Layers	21 183 184 185
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2 QW-461.3 QW-461.4	Typical S Rounded Positions Groove V Groove V Fillet We Fillet We	Single Bead Layers I Indication Charts s of Welds — Groove Welds s of Welds — Fillet Welds Welds in Plate — Test Positions Welds in Pipe — Test Positions elds in Plate — Test Positions elds in Pipe — Test Positions	21 183 184 185 185
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2 QW-461.3 QW-461.4 QW-461.5	Typical S Rounded Positions Groove V Groove V Fillet We Fillet We	Single Bead Layers	21 183 184 185 185 185
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2 QW-461.3 QW-461.4 QW-461.5 QW-461.6	Typical S Rounded Positions Groove V Groove V Fillet We Fillet We Stud We Stud We	Single Bead Layers I Indication Charts s of Welds — Groove Welds s of Welds — Fillet Welds Welds in Plate — Test Positions Welds in Pipe — Test Positions elds in Plate — Test Positions elds in Pipe — Test Positions elds — Welding Positions	21 183 184 185 185 186 187
QW-191.1.2.2(b)(4) QW-461.1 QW-461.2 QW-461.3 QW-461.4 QW-461.5 QW-461.6 QW-461.7	Typical S Rounded Positions Groove V Groove V Fillet We Fillet We Stud We Stud We Rotating	Single Bead Layers Indication Charts s of Welds — Groove Welds s of Welds — Fillet Welds Welds in Plate — Test Positions Welds in Pipe — Test Positions elds in Plate — Test Positions elds in Pipe — Test Positions	21 183 184 185 185 186 187 188

QW-462.1(b)	Tension — Reduced Section — Pipe	191
QW-462.1(c)	Tension — Reduced Section Alternate for Pipe	192
QW-462.1(d)	Tension — Reduced Section — Turned Specimens	192
QW-462.1(e)	Tension — Full Section — Small Diameter Pipe	193
QW-462.2	Side Bend	194
QW-462.3(a)	Face and Root Bends — Transverse	195
QW-462.3(b)	Face and Root Bends — Longitudinal	196
QW-462.4(a)	Fillet Welds in Plate — Procedure	196
QW-462.4(b)	Fillet Welds in Plate — Performance	197
QW-462.4(c)	Fillet Welds in Pipe — Performance	197
QW-462.4(d)	Fillet Welds in Pipe — Procedure	198
QW-462.5(a)	Chemical Analysis and Hardness Specimen Corrosion-Resistant and Hard-Facing Weld Metal Overlay	199
QW-462.5(b)	Chemical Analysis Specimen, Hard-Facing Overlay Hardness, and Macro Test Location	
c ()	(s) for Corrosion-Resistant and Hard-Facing Weld Metal Overlay	200
QW-462.5(c)	Pipe Bend Specimen — Corrosion-Resistant Weld Metal Overlay	201
QW-462.5(d)	Plate Bend Specimens — Corrosion-Resistant Weld Metal Overlay	202
QW-462.5(e)	Plate Macro, Hardness, and Chemical Analysis Specimens — Corrosion-Resistant and	
	Hard-Facing Weld Metal Overlay	203
QW-462.7.1	Resistance Seam Weld Test Coupon	203
QW-462.7.2	Seam Weld Section Specimen Removal	204
QW-462.7.3	Resistance Weld Nugget Section Test Specimens	204
QW-462.8.1	Spot Welds in Sheets	205
QW-462.8.2	Seam Weld Peel Test Specimen and Method	206
QW-462.9	Spot Welds in Sheet	207
QW-462.12	Nomenclature for Temper Bead Welding	211
QW-462.13	Measurement of Temper Bead Overlap	212
QW-463.1(a)	Plates — Less Than $\frac{3}{4}$ in. (19 mm) Thickness Procedure Qualification	212
QW-463.1(b)	Plates $-\frac{3}{4}$ in. (19 mm) and Over Thickness and Alternate From $\frac{3}{8}$ in. (10 mm) but	212
OW A(2.1(a))	Less Than $\frac{3}{4}$ in. (19 mm) Thickness Procedure Qualification	
QW-463.1(c) QW-463.1(d)	Plates — Longitudinal Procedure Qualification	213 213
	Procedure Qualification	
QW-463.1(e)	Procedure Qualification	214
QW-463.1(f)	Notch-Toughness Test Specimen Location	214
QW-463.2(a)	Plates — Less Than $\frac{3}{4}$ in. (19 mm) Thickness Performance Qualification Plates — $\frac{3}{4}$ in. (19 mm) and Over Thickness and Alternate From $\frac{3}{8}$ in. (10 mm) but	215
QW-463.2(b)	Less Than $\frac{3}{4}$ in. (19 mm) Thickness Performance Qualification	215
QW463.2(c)	Plates — Longitudinal Performance Qualification	216
QW-463.2(d)	Performance Qualification	216
QW-463.2(e)	Performance Qualification	217
QW-463.2(f)	Pipe — NPS 10 (DN 250) Assembly Performance Qualification	217
QW-463.2(g)	NPS 6 (DN 150) or NPS 8 (DN 200) Assembly Performance Qualification	218
QW-463.2(h)	Performance Qualification	219
QW-464.1	Procedure Qualification Test Coupon and Test Specimens	220
QW-464.2	Performance Qualification Test Coupons and Test Specimens	221
QW-466.1	Test Jig Dimensions	222
QW-466.2	Guided-Bend Roller Jig	224
QW-466.3	Guided-Bend Wrap Around Jig	224
QW-466.4	Stud-Weld Bend Jig	225
QW-466.5	Torque Testing Arrangement for Stud Welds	226
QW-466.6	Suggested Type Tensile Test Figure for Stud Welds	227
QW-469.1	Butt Joint	227
QW-469.2	Alternative Butt Joint	227
QB-461.1	Flow Positions	252
QB-461.2	Test Flow Positions	252
QB-462.1(a)	Tension — Reduced Section for Butt and Scarf Joints — Plate	254
· · · · · · · · · · · · · · · · · · ·		

QB-462.1(b)	Tension — Reduced Section for Butt, Lap, and Scarf Joints — Pipe	255
QB-462.1(c)	Tension — Reduced Section for Lap and Rabbet Joints — Plate	256
QB-462.1(e)	Tension — Full Section for Lap, Scarf, and Butt Joints — Small Diameter Pipe	257
QB-462.1(f)	Support Fixture for Reduced-Section Tension Specimens	258
QB-462.2(a)	Transverse First and Second Surface Bends — Plate and Pipe	259
QB-462.2(b)	Longitudinal First and Second Surface Bends — Plate	259
QB-462.3	Lap Joint Peel Specimen	260
QB-462.4	Lap Joint Section Specimen (see QB-181)	260
QB-462.5	Workmanship Coupons	261
QB-463.1(a)	Plates Procedure Qualification	262
QB-463.1(b)	Plates Procedure Qualification	262
QB-463.1(c)	Plates Procedure Qualification	263
QB-463.1(d)	Plates Procedure Qualification	264
QB-463.1(e)	Pipe — Procedure Qualification	265
QB-463.2(a)	Plates Performance Qualification	266
QB-463.2(b)	Plates Performance Qualification	267
QB-463.2(c)	Pipe Performance Qualification	268
QB-466.1	Guided-Bend Jig	269
QB-466.2	Guided-Bend Roller Jig	270
QB-466.3	Guided-Bend Wrap Around Jig	270
QF-221.1	Required Minimum Melt Bead Size	276
QF-461.1	Fusing Positions	282
QF-461.2	Fusing Test Positions	283
QF-462	Cross Section of Upset Beads for Butt-Fused PE Pipe	284
QF-463	Bend Test Specimen Removal, Configuration, and Testing	285
QF-464	HSTIT Specimen Configuration and Dimensions	287
QF-465	HSTIT Specimen Failure Examples	288
-	· ·	
TABLES		
QW-252	Welding Variables Procedure Specifications (WPS) — Oxyfuel Gas Welding (OFW)	33
QW-252.1	Welding Variables Procedure Specifications (WPS) — Oxyfuel Gas Welding (OFW)	34
QW-253	Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)	35
QW-253.1	Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)	36
QW-253.1 QW-254	Welding Variables Procedure Specifications (WPS) — Submerged-Arc Welding (SAW)	37
QW-254.1		39
e	Welding Variables Procedure Specifications (WPS) — Submerged-Arc Welding (SAW)	39
QW-255	Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and	40
	FCAW)	40
QW-255.1	Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and	
	FCAW)	42
QW-256	Welding Variables Procedure Specifications (WPS) — Gas Tungsten-Arc Welding (GTAW)	43
QW-256.1	Welding Variables Procedure Specifications (WPS) — Gas Tungsten-Arc Welding (GTAW)	45
QW-257	Welding Variables Procedure Specifications (WPS) — Plasma-Arc Welding (PAW)	46
QW-257.1	Welding Variables Procedure Specifications (WPS) — Plasma-Arc Welding (PAW)	48
QW-258	Welding Variables Procedure Specifications (WPS) — Electroslag Welding (ESW)	50
QW-258.1	Welding Variables Procedure Specifications (WPS) — Electroslag Welding (ESW)	51
QW-259	Welding Variables Procedure Specifications (WPS) — Electrogas Welding (EGW)	52
QW-260	Welding Variables Procedure Specifications (WPS) — Electron Beam Welding (EBW)	53
QW-261	Welding Variables Procedure Specifications (WPS) — Stud Welding	54
QW-262	Welding Variables Procedure Specifications (WPS) — Inertia and Continuous Drive Friction	
-	Welding	55
QW-263	Welding Variables Procedure Specifications (WPS) — Resistance Welding	56
QW-264	Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW)	57
QW-264.1	Welding Variables Procedure Specifications (WPS) — Laser Beam Welding (LBW)	58
QW-265	Welding Variables Procedure Specifications (WPS) — Flash Welding	59
QW-265 QW-266	Welding Variables Procedure Specifications (WPS) — Diffusion Welding (DFW)	60
QW-267	Welding Variables Procedure Specifications — Friction Stir Welding (FSW)	61

QW-268	Welding Variables Procedure Specifications (WPS) — Hybrid Laser-GMAW	62
QW-269	Welding Variables Procedure Specifications (WPS) — Hybrid Plasma-GMAW	64
QW-269.1	Welding Variables Procedure Specifications (WPS) — Hybrid Plasma-GMAW	66
QW-290.4	Welding Variables for Temper Bead Procedure Qualification	71
QW-352	Oxyfuel Gas Welding (OFW)	78
QW-353	Shielded Metal-Arc Welding (SMAW)	78
QW-354	Semiautomatic Submerged-Arc Welding (SAW)	78
QW-355	Semiautomatic Gas Metal-Arc Welding (GMAW)	78
QW-356	Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)	78
QW-357	Manual and Semiautomatic Plasma-Arc Welding (PAW)	79
QW-416	Welding Variables	95
QW/QB-422	Ferrous/Nonferrous P-Numbers	97
QW-432	F-Numbers	167
QW-442	A-Numbers	176
QW-451.1	Groove-Weld Tension Tests and Transverse-Bend Tests	177
QW-451.2	Groove-Weld Tension Tests and Longitudinal-Bend Tests	178
QW-451.3	Fillet-Weld Tests	178
QW-451.4	Fillet Welds Qualified by Groove-Weld Tests	178
QW-452.1(a)	Test Specimens	179
QW-452.1(b)	Thickness of Weld Metal Qualified	179
QW-452.3	Groove-Weld Diameter Limits	180
QW-452.4	Small Diameter Fillet-Weld Test	180
QW-452.5	Fillet-Weld Test	180
QW-452.6	Fillet Qualification by Groove-Weld Tests	181
QW-453	Procedure/Performance Qualification Thickness Limits and Test Specimens for Hard-Facing	
	(Wear-Resistant) and Corrosion-Resistant Overlays	181
QW-461.9	Performance Qualification — Position and Diameter Limitations	189
QW-462.10(a)	Shear Strength Requirements for Spot or Projection Weld Specimens	208
QW-462.10(b)	Shear Strength Requirements for Spot or Projection Weld Specimens	209
QW-462.10(c)	Shear Strength Requirements for Spot or Projection Weld Specimens	210
QW-473.3-1	Makeup of Equations for Aqua Regia and Lepito's Etch	228
QB-252	Torch Brazing (TB)	238
QB-253	Furnace Brazing (FB)	239
QB-254	Induction Brazing (IB)	239
QB-255	Resistance Brazing (RB)	240
QB-256	Dip Brazing — Salt or Flux Bath (DB)	240
QB-257	Dip Brazing — Molten Metal Bath (DB)	241
QB-432	F-Numbers	246
QB-451.1	Tension Tests and Transverse-Bend Tests — Butt and Scarf Joints	248
QB-451.2	Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints	248
QB-451.3	Tension Tests and Peel Tests — LAP Joints	249
QB-451.4	Tension Tests and Section Tests — Rabbet Joints	249
QB-451.5	Section Tests — Workmanship Coupon Joints	250
QB-452.1	Peel or Section Tests — Butt, Scarf, Lap, Rabbet Joints	251
QB-452.2	Section Tests — Workmanship Specimen Joints	251
QF-144.2	Testing Speed Requirements	273
QF-221.2	Maximum Heater Plate Removal Time for Pipe-to-Pipe Fusing	277
QF-254	Fusing Variables Procedure Specification	278
QF-362	Essential Variables Applicable to Fusing Machine Operators	280
QF-422	Material Grouping	281
QF-452.3	Pipe Fusing Diameter Limits	282
F-100	Standard Units for Use in Equations	327
FORMS		
QF-482		289
QF-483		290

QF-483	 291
QF-484	 292
QF-485	 293
QW-482	 296
QW-483	 298
QW-484A	 300
QW-484B	 301
QW-485	 302
QB-482	 303
QB-483	 304
QB-484	 305

INDEX .	······	336
---------	--------	-----

LIST OF SECTIONS

(**13**)

I

SECTIONS

- Rules for Construction of Power Boilers
- II Materials
 - Part A Ferrous Material Specifications
 - Part B Nonferrous Material Specifications
 - Part C Specifications for Welding Rods, Electrodes, and Filler Metals
 - Part D Properties (Customary)
 - Part D Properties (Metric)
- III Rules for Construction of Nuclear Facility Components
 - Subsection NCA General Requirements for Division 1 and Division 2
 - Appendices
 - Division 1
 - Subsection NB Class 1 Components
 - Subsection NC Class 2 Components
 - Subsection ND Class 3 Components
 - Subsection NE Class MC Components
 - Subsection NF Supports
 - Subsection NG Core Support Structures
 - Subsection NH Class 1 Components in Elevated Temperature Service
 - Division 2 Code for Concrete Containments
 - Division 3 Containments for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste
 - Division 5 High Temperature Reactors
- IV Rules for Construction of Heating Boilers
- V Nondestructive Examination
- VI Recommended Rules for the Care and Operation of Heating Boilers
- VII Recommended Guidelines for the Care of Power Boilers
- VIII Rules for Construction of Pressure Vessels
 - Division 1
 - Division 2 Alternative Rules
 - Division 3 Alternative Rules for Construction of High Pressure Vessels
- IX Welding, Brazing, and Fusing Qualifications
- X Fiber-Reinforced Plastic Pressure Vessels
- XI Rules for Inservice Inspection of Nuclear Power Plant Components
- XII Rules for Construction and Continued Service of Transport Tanks

INTERPRETATIONS

ASME issues written replies to inquiries concerning interpretation of technical aspects of the Code. Interpretations of the Code are posted in January and July at http://cstools.asme.org/interpretations.cfm. Any Interpretations issued during the previous two calendar years are included with the publication of the applicable Section of the Code. Interpretations of Section III, Divisions 1 and 2 and Section III Appendices are included with Subsection NCA.

CODE CASES

The Boiler and Pressure Vessel Code committees meet regularly to consider proposed additions and revisions to the Code and to formulate Cases to clarify the intent of existing requirements or provide, when the need is urgent, rules for materials or constructions not covered by existing Code rules. Those Cases that have been adopted will appear in the appropriate 2013 Code Cases book: "Boilers and Pressure Vessels" or "Nuclear Components." Supplements will be sent automatically to the purchasers of the Code Cases books up to the publication of the 2015 Code.

FOREWORD

(This Foreword is provided as an aid to the user and is not part of the rules of this Code.)

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

- (a) Committee on Power Boilers (I)
- (b) Committee on Materials (II)
- (c) Committee on Construction of Nuclear Facility Components (III)
- (d) Committee on Heating Boilers (IV)
- (e) Committee on Nondestructive Examination (V)
- (f) Committee on Pressure Vessels (VIII)
- (q) Committee on Welding, Brazing, and Fusing (IX)
- (h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
- (i) Committee on Nuclear Inservice Inspection (XI)
- (*j*) Committee on Transport Tanks (XII)

Where reference is made to "the Committee" in this Foreword, each of these committees is included individually and collectively.

The Committee's function is to establish rules of safety relating only to pressure integrity, which govern the construction^{*} of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase engineering judgement refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the requirements of the Code. However, designers and engineers using computer programs for design or analysis are cautioned that they are responsible for all technical assumptions inherent in the programs they use and the application of these programs to their design.

(**13**)

Construction, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and pressure relief.

The rules established by the Committee are not to be interpreted as approving, recommending, or endorsing any proprietary or specific design, or as limiting in any way the manufacturer's freedom to choose any method of design or any form of construction that conforms to the Code rules.

The Committee meets regularly to consider revisions of the rules, new rules as dictated by technological development, Code Cases, and requests for interpretations. Only the Committee has the authority to provide official interpretations of this Code. Requests for revisions, new rules, Code Cases, or interpretations shall be addressed to the Secretary in writing and shall give full particulars in order to receive consideration and action (see Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees). Proposed revisions to the Code resulting from inquiries will be presented to the Committee for appropriate action. The action of the Committee becomes effective only after confirmation by ballot of the Committee and approval by ASME. Proposed revisions to the Code approved by the Committee are submitted to the American National Standards Institute (ANSI) and published at http://cstools.asme.org/csconnect/public/index.cfm?PublicReview=Revisions to invite comments from all interested persons. After public review and final approval by ASME, revisions are published at regular intervals in Editions of the Code.

The Committee does not rule on whether a component shall or shall not be constructed to the provisions of the Code. The scope of each Section has been established to identify the components and parameters considered by the Committee in formulating the Code rules.

Questions or issues regarding compliance of a specific component with the Code rules are to be directed to the ASME Certificate Holder (Manufacturer). Inquiries concerning the interpretation of the Code are to be directed to the Committee. ASME is to be notified should questions arise concerning improper use of an ASME Certification Mark.

When required by context in this Section, the singular shall be interpreted as the plural, and vice versa, and the feminine, masculine, or neuter gender shall be treated as such other gender as appropriate.

STATEMENT OF POLICY ON THE USE OF THE CERTIFICATION MARK AND CODE AUTHORIZATION IN ADVERTISING

ASME has established procedures to authorize qualified organizations to perform various activities in accordance with the requirements of the ASME Boiler and Pressure Vessel Code. It is the aim of the Society to provide recognition of organizations so authorized. An organization holding authorization to perform various activities in accordance with the requirements of the Code may state this capability in its advertising literature.

Organizations that are authorized to use the Certification Mark for marking items or constructions that have been constructed and inspected in compliance with the ASME Boiler and Pressure Vessel Code are issued Certificates of Authorization. It is the aim of the Society to maintain the standing of the Certification Mark for the benefit of the users, the enforcement jurisdictions, and the holders of the Certification Mark who comply with all requirements.

Based on these objectives, the following policy has been established on the usage in advertising of facsimiles of the Certification Mark, Certificates of Authorization, and reference to Code construction. The American Society of Mechanical Engineers does not "approve," "certify," "rate," or "endorse" any item, construction, or activity and there shall be no statements or implications that might so indicate. An organization holding the Certification Mark and/or a Certificate of Authorization may state in advertising literature that items, constructions, or activities "are built (produced or performed) or activities conducted in accordance with the requirements of the ASME Boiler and Pressure Vessel Code." An ASME corporate logo shall not be used by any organization other than ASME.

The Certification Mark shall be used only for stamping and nameplates as specifically provided in the Code. However, facsimiles may be used for the purpose of fostering the use of such construction. Such usage may be by an association or a society, or by a holder of the Certification Mark who may also use the facsimile in advertising to show that clearly specified items will carry the Certification Mark. General usage is permitted only when all of a manufacturer's items are constructed under the rules.

STATEMENT OF POLICY ON THE USE OF ASME MARKING TO IDENTIFY MANUFACTURED ITEMS

The ASME Boiler and Pressure Vessel Code provides rules for the construction of boilers, pressure vessels, and nuclear components. This includes requirements for materials, design, fabrication, examination, inspection, and stamping. Items constructed in accordance with all of the applicable rules of the Code are identified with the official Certification Mark described in the governing Section of the Code.

Markings such as "ASME," "ASME Standard," or any other marking including "ASME" or the Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code.

Items shall not be described on ASME Data Report Forms nor on similar forms referring to ASME that tend to imply that all Code requirements have been met when, in fact, they have not been. Data Report Forms covering items not fully complying with ASME requirements should not refer to ASME or they should clearly identify all exceptions to the ASME requirements.

(13) SUBMITTAL OF TECHNICAL INQUIRIES TO THE BOILER AND PRESSURE VESSEL STANDARDS COMMITTEES

1 INTRODUCTION

(*a*) The following information provides guidance to Code users for submitting technical inquiries to the committees. See Guideline on the Approval of New Materials Under the ASME Boiler and Pressure Vessel Code in Section II, Parts C and D for additional requirements for requests involving adding new materials to the Code. Technical inquiries include requests for revisions or additions to the Code rules, requests for Code Cases, and requests for Code Interpretations, as described below.

(1) *Code Revisions.* Code revisions are considered to accommodate technological developments, address administrative requirements, incorporate Code Cases, or to clarify Code intent.

(2) Code Cases. Code Cases represent alternatives or additions to existing Code rules. Code Cases are written as a question and reply, and are usually intended to be incorporated into the Code at a later date. When used, Code Cases prescribe mandatory requirements in the same sense as the text of the Code. However, users are cautioned that not all jurisdictions or owners automatically accept Code Cases. The most common applications for Code Cases are:

(-a) to permit early implementation of an approved Code revision based on an urgent need

- (-b) to permit the use of a new material for Code construction
- (-c) to gain experience with new materials or alternative rules prior to incorporation directly into the Code

(3) Code Interpretations. Code Interpretations provide clarification of the meaning of existing rules in the Code, and are also presented in question and reply format. Interpretations do not introduce new requirements. In cases where existing Code text does not fully convey the meaning that was intended, and revision of the rules is required to support an interpretation, an Intent Interpretation will be issued and the Code will be revised.

(*b*) The Code rules, Code Cases, and Code Interpretations established by the committees are not to be considered as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that conforms to the Code rules.

(c) Inquiries that do not comply with these provisions or that do not provide sufficient information for a committee's full understanding may result in the request being returned to the inquirer with no action.

2 INQUIRY FORMAT

Submittals to a committee shall include:

(a) Purpose. Specify one of the following:

- (1) revision of present Code rules
- (2) new or additional Code rules
- (3) Code Case
- (4) Code Interpretation

(b) Background. Provide the information needed for the committee's understanding of the inquiry, being sure to include reference to the applicable Code Section, Division, Edition, Addenda (if applicable), paragraphs, figures, and tables. Preferably, provide a copy of the specific referenced portions of the Code.

(c) Presentations. The inquirer may desire or be asked to attend a meeting of the committee to make a formal presentation or to answer questions from the committee members with regard to the inquiry. Attendance at a committee meeting shall be at the expense of the inquirer. The inquirer's attendance or lack of attendance at a meeting shall not be a basis for acceptance or rejection of the inquiry by the committee.

3 CODE REVISIONS OR ADDITIONS

Requests for Code revisions or additions shall provide the following:

(a) Proposed Revisions or Additions. For revisions, identify the rules of the Code that require revision and submit a copy of the appropriate rules as they appear in the Code, marked up with the proposed revision. For additions, provide the recommended wording referenced to the existing Code rules.

(b) Statement of Need. Provide a brief explanation of the need for the revision or addition.

(c) Background Information. Provide background information to support the revision or addition, including any data or changes in technology that form the basis for the request that will allow the committee to adequately evaluate the proposed revision or addition. Sketches, tables, figures, and graphs should be submitted as appropriate. When applicable, identify any pertinent paragraph in the Code that would be affected by the revision or addition and identify paragraphs in the Code that reference the paragraphs that are to be revised or added.

4 CODE CASES

Requests for Code Cases shall provide a Statement of Need and Background Information similar to that defined in 3(b) and 3(c), respectively, for Code revisions or additions. The urgency of the Code Case (e.g., project underway or imminent, new procedure, etc.) must be defined and it must be confirmed that the request is in connection with equipment that will bear the Certification Mark, with the exception of Section XI applications. The proposed Code Case should identify the Code Section and Division, and be written as a *Question* and a *Reply* in the same format as existing Code Cases. Requests for Code Cases should also indicate the applicable Code Editions and Addenda (if applicable) to which the proposed Code Case applies.

5 CODE INTERPRETATIONS

(a) Requests for Code Interpretations shall provide the following:

(1) Inquiry. Provide a condensed and precise question, omitting superfluous background information and, when possible, composed in such a way that a "yes" or a "no" *Reply*, with brief provisos if needed, is acceptable. The question should be technically and editorially correct.

(2) *Reply.* Provide a proposed *Reply* that will clearly and concisely answer the *Inquiry* question. Preferably, the *Reply* should be "yes" or "no," with brief provisos if needed.

(3) Background Information. Provide any background information that will assist the committee in understanding the proposed *Inquiry* and *Reply*.

(*b*) Requests for Code Interpretations must be limited to an interpretation of a particular requirement in the Code or a Code Case. The committee cannot consider consulting type requests such as the following:

(1) a review of calculations, design drawings, welding qualifications, or descriptions of equipment or parts to determine compliance with Code requirements;

(2) a request for assistance in performing any Code-prescribed functions relating to, but not limited to, material selection, designs, calculations, fabrication, inspection, pressure testing, or installation;

(3) a request seeking the rationale for Code requirements.

6 SUBMITTALS

Submittals to and responses from the committees shall meet the following:

(a) Submittal. Inquiries from Code users shall be in English and preferably be submitted in typewritten form; however, legible handwritten inquiries will also be considered. They shall include the name, address, telephone number, fax number, and e-mail address, if available, of the inquirer and be mailed to the following address:

Secretary

ASME Boiler and Pressure Vessel Committee

Two Park Avenue

New York, NY 10016-5990

As an alternative, inquiries may be submitted via e-mail to: SecretaryBPV@asme.org.

(b) Response. The Secretary of the appropriate committee shall acknowledge receipt of each properly prepared inquiry and shall provide a written response to the inquirer upon completion of the requested action by the committee.

(**13**)

PERSONNEL **ASME Boiler and Pressure Vessel Standards Committees,** Subgroups, and Working Groups

January 1, 2013

TECHNICAL OVERSIGHT MANAGEMENT COMMITTEE (TOMC)

J. G. Feldstein, Chair	J. F. Henry
T. P. Pastor, Vice Chair	G. G. Karcher
J. S. Brzuszkiewicz, Staff Secretary	W. M. Lundy
R. W. Barnes	J. R. Mackay
R. J. Basile	U. R. Miller
J. E. Batey	W. E. Norris
T. L. Bedeaux	G. C. Park
D. L. Berger	M. D. Rana
D. A. Canonico	B. W. Roberts
A. Chaudouet	S. C. Roberts
R. P. Deubler	F. J. Schaaf, Jr.
D. A. Douin	A. Selz
R. E. Gimple	B. F. Shelley
M. Gold	W. J. Sperko
T. E. Hansen	R. W. Swayne

HONORARY MEMBERS (MAIN COMMITTEE)

F. P. Barton	M. H. Jawad
R. J. Cepluch	A. J. Justin
T. M. Cullen	W. G. Knecht
W. D. Doty	J. LeCoff
J. R. Farr	T. G. McCarty
G. E. Feigel	G. C. Millman
R. C. Griffin	R. A. Moen
O. F. Hedden	R. F. Reedy, Sr.

ADMINISTRATIVE COMMITTEE

J. G. Feldstein, Chair	J. F. Henry
T. P. Pastor, Vice Chair	U. R. Miller
J. S. Brzuszkiewicz, Staff Secretary	G. C. Park
R. W. Barnes	M. D. Rana
J. E. Batey	M. D. Kana
T. L. Bedeaux	B. F. Shelley
D. L. Berger	W. J. Sperko

MARINE CONFERENCE GROUP

H. N. Patel, Chair	G. Nair
J. S. Brzuszkiewicz, Staff Secretary	J. D. Reynolds
J. G. Hungerbuhler, Jr.	

CONFERENCE COMMITTEE

D. A. Douin — Ohio, Secretary K. T. Lau — Alberta, Canada J. T. Amato — Minnesota B. E. Logan — Massachusetts B. P. Anthony — Rhode Island W. McGivney — New York R. D. Austin — Arizona S. V. Nelson — Colorado G. Baumgardner — Michigan C. C. Novak — Illinois W. K. Brigham — New Hampshire T. Oda — Washington C. W. Bryan — Tennessee W. R. Owens — Louisiana M. A. Burns — Florida R. P. Pate — Alabama J. H. Burpee — Maine R. L. Perry - Nevada C. B. Cantrell — Nebraska J. F. Porcella — West Virginia D. C. Cook — California D. C. Price — Yukon Territories, B. J. Crawford — Georgia Canada E. L. Creaser — New Brunswick, D. Pringnitz — Oklahoma Canada R. S. Pucek — Wisconsin W. E. Crider, Jr. - Vermont R. D. Reetz — North Dakota P. L. Dodge — Nova Scotia, Canada C. F. Reyes — California S. Donovan — Northwest T. W. Rieger — Manitoba, Canada Territories, Canada K. A. Rudolph — Hawaii D. Eastman — Newfoundland and M. J. Ryan — Illinois Labrador, Canada M. H. Sansone — New York B. Fierheller — Manitoba, Canada T. S. Scholl — Ontario. Canada C. Fulton — Alaska G. Scribner — Missouri G. M. Given, Jr. — North Carolina C. S. Selinger - Saskatchewan, M. Graham — Oregon R. J. Handy — Kentucky Canada R. Spiker — North Carolina D. R. Hannon — Arkansas T. Stewart — Montana E. G. Hilton — Virginia R. K. Sturm — Utah I. M. Hinkle — South Dakota S. R. Townsend — Prince Edward E. Hurd — British Colombia, Island, Canada Canada W. Vallance — Michigan D. T. Jagger — Ohio M. J. Verhagen — Wisconsin D. J. Jenkins — Kansas M. Washington - New Jersey A. P. Jones — Texas L. R. Kline — Pennsylvania K. L. Watson — Mississippi M. R. Klosterman — Iowa R. W. Whitman, Jr. — Delaware K. J. Kraft — Maryland D. J. Willis — Indiana

INTERNATIONAL INTEREST REVIEW GROUP

V. Felix	C. Minu
YG. Kim	T. S. G. Narayannen
S. H. Leong	YW. Park
W. Lin	R. Reynaga
O. F. Manafa	P. Williamson

V. Felix

PROJECT TEAM ON HYDROGEN TANKS

A. P. Amato, Staff Secretary
F. L. Brown
D. A. Canonico
D. C. Cook
J. Coursen
J. W. Felbaum
N. L. Newhouse
A. S. Olivares
G. B. Rawls, Jr.
B. F. Shelley
J. R. Sims, Jr.
N. Sirosh
J. H. Smith
S. Staniszewski
T. Tahara
D. W. Treadwell

- E. Upitis C. T. I. Webster W. Yoru R. C. Biel, Contributing Member M. Duncan, Contributing Member D. R. Frikken, Contributing Member L. E. Hayden, Jr., Contributing Member K. T. Lau, Contributing Member K. Nibur, Contributing Member K. Oyamada, Contributing Member
- C. H. Rivkin, Contributing Member
- C. San Marchi, Contributing
- Member B. Somerday, Contributing Member

Subgroup on General Requirements (BPV I)

R. E. McLaughlin, Chair T. E. Hansen, Vice Chair F. Massi, Secretary P. D. Edwards W. L. Lowry E. M. Ortman J. T. Pillow

D. Tompkins S. V. Torkildson D. E. Tuttle M. Wadkinson R. V. Wielgoszinski D. J. Willis C. F. Jeerings, Contributing Member

Subgroup on Heat Recovery Steam Generators (BPV I)

T. E. Hansen, Chair C. T. McDaris S. V. Torkildson, Secretary B. W. Moore J. L. Arnold Y. Oishi J. P. Bell E. M. Ortman B. G. Carson R. D. Schueler, Jr. L. R. Douglas D. Tompkins J. Gertz B. C. Turczynski G. B. Komora

COMMITTEE ON POWER BOILERS (BPV I)

D. L. Berger, Chair F. Massi R. E. McLaughlin, Vice Chair P. A. Molvie U. D'Urso, Staff Secretary Y. Oishi E. M. Ortman J. L. Arnold S. W. Cameron J. T. Pillow D. A. Canonico B. W. Roberts K. K. Coleman R. D. Schueler, Jr. P. D. Edwards J. M. Tanzosh P. Fallouey D. E. Tuttle J. G. Feldstein R. V. Wielgoszinski G. W. Galanes D. J. Willis T. E. Hansen G. Ardizzoia, Delegate J. F. Henry H. Michael, Delegate J. S. Hunter D. N. French, Honorary Member T. C. McGough, Honorary Member W. L. Lowry J. R. MacKay R. L. Williams, Honorary Member

Subgroup on Design (BPV I)

P. A. Molvie, Chair J. Vattappilly, Secretary D. I. Anderson P. Dhorajia J. P. Glaspie G. B. Komora J. C. Light

B. W. Moore D. A. Olson R. D. Schueler, Jr. S. V. Torkildson M. Wadkinson C. F. Jeerings, Contributing Member

Subgroup on Locomotive Boilers (BPV I)

L. Moedinger, Chair S. M. Butler, Secretary P. Boschan J. Braun R. C. Franzen, Jr. D. W. Griner S. D. Jackson M. A. Janssen S. A. Lee

G. M. Ray J. E. Rimmasch R. D. Schueler, Jr. R. B. Stone M. W. Westland W. L. Withuhn R. Yuill R. D. Reetz, Contributing Member

Subgroup on Materials (BPV I)

G. W. Galanes, Chair 0. X. Li K. K. Coleman, Vice Chair J. R. MacKay J. S. Hunter, Secretary F. Masuyama S. H. Bowes D. W. Rahoi D. A. Canonico B. W. Roberts P. Fallouey J. M. Tanzosh K. L. Hayes J. F. Henry J. Vattappilly

Subgroup on Piping (BPV I)

D. Tompkins, Chair B. Mollitor, Secretary D. L. Berger J. A. Byers P. D. Edwards

G. W. Galanes T. E. Hansen T. G. Kosmatka W. L. Lowry F. Massi

Subgroup on Solar Boilers (BPV I)

J. S. Hunter, Chair J. C. Light S. V. Torkildson, Secretary Y. Magen G. W. Galanes F. Massi M. J. Slater R. E. Hearne D. J. Koza J. T. Trimble, Jr.

Subgroup on Fabrication and Examination (BPV I)

J. Hainsworth T. E. Hansen

C. T. McDaris

R. J. Newell

Y. Oishi

R. E. McLaughlin

R. V. Wielgoszinski

J. T. Pillow, Chair
J. L. Arnold, Secretary
G. W. Galanes, Secretary
D. L. Berger
S. W. Cameron
K. Craver
G. T. Dunker
P. F. Gilston

Task Group on Modernization of BPVC Section I

R. E. McLaughlin P. A. Molvie E. M. Ortman J. T. Pillow B. W. Roberts D. E. Tuttle

Subgroup on International Material Specifications (BPV II)

A. Chaudouet, Chair M. Ishikawa O. X. Li. Vice Chair W. M. Lundy T. F. Miskell, Secretary A. R. Nywening S. W. Cameron R. D. Schueler, Jr. D. A. Canonico E. Upitis P. Fallouey O. Oldani, Delegate A. F. Garbolevsky D. O. Henry H. Lorenz, Contributing Member

Subgroup on Nonferrous Alloys (BPV II)

R. C. Sutherlin, Chair L. Paul D. W. Rahoi H. Anada J. Calland W. Ren D. Denis E. Shapiro M. H. Gilkey M. H. Skillingberg J. F. Grubb D. Tyler A. Heino R. Zawierucha M. Katcher W. R. Apblett, Jr., Contributing J. Kissell Member T. M. Malota H. D. Bushfield, Contributing J. A. McMaster Member

Subgroup on Physical Properties (BPV II)

J. F. Grubb <i>, Chair</i>	P. Fallouey
H. D. Bushfield	E. Shapiro
D. Denis	

Subgroup on Strength, Ferrous Alloys (BPV II)

K. Kimura
F. Masuyama
D. W. Rahoi
B. W. Roberts
J. P. Shingledecker
R. W. Swindeman
T. P. Vassallo, Jr.
W. R. Apblett, Jr., Contributing
Member
H. Murakami, Contributing Member

Subgroup on Strength of Weldments (BPV II & BPV IX)

W. F. Newell, Jr., Chair J. F. Henry S. H. Bowes D. W. Rahoi K. K. Coleman B. W. Roberts P. D. Flenner J. P. Shingledecker J. R. Foulds W. J. Sperko D. W. Gandy J. P. Swezy, Jr. M. Gold K. L. Hayes J. M. Tanzosh

Working Group on Materials Database (BPV II)

R. W. Swindeman, Chair B. W. Roberts N. Lobo, Staff Secretary R. C. Sutherlin F. Abe D. Andrei, Contributing Member J. R. Foulds W. Hoffelner, Contributing Member M. Gold T. Lazar, Contributing Member J. F. Henry D. T. Peters, Contributing Member M. Katcher W. Ren, Contributing Member

COMMITTEE ON MATERIALS (BPV II)		
J. F. Henry, Chair	M. J. Slater	
D. W. Rahoi, Vice Chair	R. C. Sutherlin	
N. Lobo, Staff Secretary	R. W. Swindeman	
F. Abe	J. M. Tanzosh	
A. Appleton	D. Tyler	
J. Cameron	D. Kwon, Delegate	
D. A. Canonico	O. Oldani, Delegate	
A. Chaudouet	W. R. Apblett, Jr., Contributing	
P. Fallouey	Member	
J. R. Foulds	H. D. Bushfield, Contributing	
D. W. Gandy	Member	
M. H. Gilkey	M. L. Nayyar, Contributing Member	
M. Gold	E. G. Nisbett, Contributing Member	
J. F. Grubb	E. Upitis, Contributing Member	
J. A. Hall	T. M. Cullen, Honorary Member	
M. Katcher	W. D. Doty, Honorary Member	
F. Masuyama	W. D. Edsall, Honorary Member	
R. K. Nanstad	G. C. Hsu, Honorary Member	
B. W. Roberts	R. A. Moen, Honorary Member	
E. Shapiro	C. E. Spaeder, Jr., Honorary Member	
M. H. Skillingberg	A. W. Zeuthen, Honorary Member	

Subgroup on External Pressure (BPV II)

M. H. Jawad

R. W. Mikitka, Chair D. L. Kurle, Vice Chair J. A. A. Morrow, Secretary L. F. Campbell D. S. Griffin J. F. Grubb J. R. Harris III

C. R. Thomas M. Wadkinson M. Katcher, Contributing Member C. H. Sturgeon, Contributing Member

Subgroup on Ferrous Specifications (BPV II)

W. C. Mack

A. Appleton, Chair
S. Hochreiter, Secretary
B. M. Dingman
M. J. Dosdourian
P. Fallouey
J. D. Fritz
T. Graham
J. M. Grocki
J. F. Grubb
K. M. Hottle
D. S. Janikowski
L. J. Lavezzi

> J. K. Mahaney A. S. Melilli E. G. Nisbett K. E. Orie J. Shick E. Upitis J. D. Wilson P. Wittenbach R. Zawierucha R. M. Davison, Contributing Member

China International Working Group (BPV II)

T. Xu, Secretary
W. Fang
S. Huo
S. Li
M. Lu
B. Shou
S. Tan
C. Wang
X. Wang
Z. Wu
F. Yang

G. Yang R. Ye L. Yin H. Zhang X.-H Zhang Yingkai Zhang Yong Zhang Q. Zhao S. Zhao R. Zhou J. Zou

Subgroup on Component Design (BPV III)

R. S. Hill III, Chair	R. J. Masterson
T. M. Adams, Vice Chair	D. E. Matthews
S. Pellet, Secretary	W. N. McLean
G. A. Antaki	J. C. Minichiello
S. Asada	T. Nagata
C. W. Bruny	A. N. Nguyen
J. R. Cole	E. L. Pleins
A. A. Dermenjian	I. Saito
R. P. Deubler	G. C. Slagis
P. Hirschberg	J. D. Stevenson
R. I. Jetter	J. P. Tucker
R. B. Keating	K. R. Wichman
H. Kobayashi	C. Wilson
R. A. Ladefian	J. Yang
K. A. Manoly	D. F. Landers, Contributing Member

Working Group on Supports (SG-D) (BPV III)

R. J. Masterson, *Chair* U. S. Bandyopadhyay, *Secretary* K. Avrithi T. H. Baker F. J. Birch R. P. Deubler

A. N. Nguyen I. Saito J. R. Stinson T. G. Terryah G. Z. Tokarski C.-I. Wu

Working Group on Core Support Structures (SG-D) (BPV III)

J. Yang, *Chair* J. F. Kielb, *Secretary* F. G. Al-Chammas D. Keck H. S. Mehta M. D. Snyder A. Tsirigotis J. T. Land, *Contributing Member*

Working Group on Design Methodology (SG-D) (BPV III)

R. B. Keating, Chair D. H. Roarty S. D. Snow, Secretary E. A. Rodriguez K. Avrithi P. K. Shah R. D. Blevins J. D. Stevenson M. R. Breach A. Tsirigotis D. L. Caldwell S. Wang H. T. Harrison III T. M. Wiger P. Hirschberg K. Wright M. Kassar J. Yang J. Kim M. K. Au-Yang, Contributing H. Kobayashi Member J. F. McCabe D. F. Landers, Contributing Member A. N. Nguyen W. D. Reinhardt W. S. Lapay, Contributing Member

Working Group on Design of Division 3 Containments (SG-D) (BPV III)

D. K. Morton
C. J. Temus
I. D. McInnes, Contributing Member
R. E. Nickell, Contributing Member
H. P. Shrivastava, Contributing
Member

COMMITTEE ON CONSTRUCTION OF NUCLEAR FACILITY COMPONENTS (III)

M. N. Mitchell

M. Morishita

D. K. Morton

R. W. Barnes, Chair
J. R. Cole, Vice Chair
A. Byk, Staff Secretary
T. Adams
A. Appleton
W. H. Borter
T. D. Burchell
R. P. Deubler
A. C. Eberhardt
B. A. Erler
G. M. Foster
R. S. Hill III
W. Hoffelner
R. M. Jessee
R. I. Jetter
R. B. Keating
G. H. Koo
V. Kostarev
W. C. LaRochelle
K. A. Manoly
D. E. Matthews
W. N. McLean
J. C. Minichiello
,

T. Nagata R. F. Reedy, Sr. I. Saito C. T. Smith W. K. Sowder, Jr. W. J. Sperko J. D. Stevenson K. R. Wichman C. S. Withers Y. H. Choi, Delegate T. Ius, Delegate H.-T. Wang, Delegate C. C. Kim, Contributing Member E. B. Branch, Honorary Member G. D. Cooper. Honorary Member W. D. Doty, Honorary Member D. F. Landers, Honorary Member R. A. Moen, Honorary Member C. J. Pieper, Honorary Member

Subgroup on Containment Systems for Spent Fuel and High-Level Waste Transport Packagings (BPV III)

G. M. Foster, Chair
G. J. Solovey, Vice Chair
D. K. Morton, Secretary
G. Abramczyk
D. J. Ammerman
G. Bjorkman
W. H. Borter
G. R. Cannell
R. S. Hill III
S. Horowitz

P. E. McConnell A. B. Meichler R. E. Nickell E. L. Pleins T. Saegusa N. M. Simpson R. H. Smith J. D. Stevenson C. J. Temus

D. W. Lewis

E. L. Pleins, Chair

D. J. Ammerman

G. Bjorkman

S. Horowitz

D. W. Lewis

J. C. Minichiello

Working Group on Piping (SG-D) (BPV III)

G. A. Antaki, <i>Chair</i>	J. F. McCabe
G. Z. Tokarski, Secretary	J. C. Minichiello
T. M. Adams	IK. Nam
C. Basavaraju	E. R. Nelson
J. Catalano	A. N. Nguyen
F. Claeys	M. S. Sills
J. R. Cole	G. C. Slagis
R. G. Gilada	N. C. Sutherland
M. A. Gray	E. A. Wais
R. W. Haupt	CI. Wu
P. Hirschberg	D. F. Landers, Contributing Member
M. Kassar	J. J. Martinez, Contributing Member
J. Kawahata	R. D. Patel, <i>Contributing Member</i>
R. B. Keating	, 0
V. Kostarev	N. J. Shah, Contributing Member
Y. Liu	E. C. Rodabaugh, Honorary Member

Special Working Group on Environmental Effects (SG-D) (BPV III)

W. Culp, Chair B. D. Frew, Secretary K. Avrithi W. J. Heilker R. S. Hill III

J. E. Nestell W. Z. Novak M. S. Shelton Y. H. Choi, Delegate

Subgroup on General Requirements (BPV III & 3C)

R. P. McIntyre, Chair W. C. LaRochelle M. R. Minick L. M. Plante, Secretary V. Apostolescu E. C. Renaud A. Appleton D. J. Roszman J. R. Berry C. T. Smith J. V. Gardiner W. K. Sowder, Jr. G. Gratti G. E. Szabatura J. W. Highlands T. G. Terryah G. L. Hollinger D. M. Vickery C. S. Withers G. V. Imbro K. A. Kavanagh H. Michael, Delegate

Working Group on Probabilistic Methods in Design (SG-D) (BPV III)

.

R. S. Hill III <i>, Chair</i>	A. McNeill III		
N. A. Palm, Secretary	M. Morishita	Working Group on Duties a	nd Responsibilities (SG-GR) (BPV III)
T. Asayama K. Asayithi	P. J. O'Regan	J. V. Gardiner, Chair	K. A. Kavanagh
K. Avrithi B. M. Ayyub	I. Saito	G. L. Hollinger, Secretary	L. M. Plante
M. R. Graybeal	A. Tsirigotis	J. R. Berry	D. J. Roszman
D. O. Henry	R. M. Wilson	Y. Diaz-Castillo E. L. Farrow	S. Scardigno
S. D. Kulat	D. Hofer, Contributing Member	G. Gratti	T. G. Terryah

Working Group on Pumps (SG-D) (BPV III)

R. A. Ladefian, Chair P. W. Behnke R. E. Cornman, Jr. M. D. Eftychiou A. Fraser M. A. Gaydon R. Ghanbari

- - ---- -- --

M. Higuchi J. W. Leavitt S. Mauvais R. A. Patrick J. Sulley R. Udo A. G. Washburn

Working Group on Valves (SG-D) (BPV III)

C. A. Mizer
K. E. Reid II
S. N. Shields
H. R. Sonderegger
P. Vock

Working Group on Quality Assurance, Certification, and Stamping (SG-GR) (BPV III)

M. R. Minick C. T. Smith. Chair C. S. Withers, Secretary R. B. Patel E. C. Renaud V. Apostolescu A. Appleton J. Rogers W. K. Sowder, Jr. S. Bell B. K. Bobo J. F. Strunk S. M. Goodwin M. F. Sullivan J. W. Highlands G. E. Szabatura R. P. McIntyre D. M. Vickery

Special Working Group on Regulatory Interface (BPV III)

G. V. Imbro, Chair J. A. Schulz S. Bell, Secretary R. R. Stevenson A. Cardillo D. Terao A. A. Dermenjian M. L. Wilson K. Matsunaga R. A. Yonekawa D. E. Matthews

Subgroup on Materials, Fabrication, and Examination (BPV III)

R. M. Jessee, Chair M. Lau S. Hunter, Secretary H. Murakami W. H. Borter J. Ossmann G. R. Cannell C. Pearce R. H. Davis N. M. Simpson G. M. Foster W. J. Sperko B. D. Frew J. R. Stinson G. B. Georgiev J. F. Strunk S. E. Gingrich K. B. Stuckey C. C. Kim H. Michael, Delegate

Working Group on Vessels (SG-D) (BPV III)

D. E. Matthews, Chair	D. Keck
R. M. Wilson, Secretary	OS. Kim
C. Basavaraju	K. Matsunaga
C. W. Bruny	P. K. Shah
J. V. Gregg, Jr. W. J. Heilker	C. Turylo
W. J. Jessup, Jr.	D. Vlaicu
A. Kalnins	W. F. Weitze
R. B. Keating	T. Yamazaki

Subgroup on Pressure Relief (BPV III)

J. F. Ball, Chair A. L. Szeglin

D. G. Thibault

Executive Committee on Strategy and Project Management (BPV III, Divisions 1 and 2)

J. R. Cole, <i>Chair</i>	G. H. Koo
C. A. Sanna, Staff Secretary	K. A. Manoly
T. Adams	D. K. Morton
R. W. Barnes	J. Ramirez
B. K. Bobo	R. F. Reedy, Sr.
N. Broom	C. T. Smith
B. A. Erler	W. K. Sowder, Jr.
C. M. Faidy	Y. Urabe
R. S. Hill III	C. S. Withers
E. V. Imbro	C. Yan
R. M. Jessee	M. F. Sullivan, Contributing
R. B. Keating	Member

Special Working Group for New Advanced Light Water Reactor Plant Construction Issues (BPV III)

E. L. Pleins, Chair M. C. Scott, Secretary A. Cardillo B. Gilligan J. Honcharik G. V. Imbro Y. Katsura 0.-S Kim M. Kris

J. C. Minichiello D. W. Sandusky C. A. Sanna R. R. Stevenson E. R. Willis M. L. Wilson J. Yan J. A. Schulz, Contributing Member

Subgroup on Editing and Review (BPV III)

D. K. Morton, Chair	L. M. Plante
R. L. Bratton	R. F. Reedy, Sr.
R. P. Deubler	W. K. Sowder, Jr.
A. C. Eberhardt	
R. I. Jetter	J. D. Stevenson
J. C. Minichiello	C. Wilson

Subgroup on Management Resources (BPV III)

R. M. Jessee, Chair	J. M. Lyons
J. F. Bernardo	B. McGlone
L. C. Cadwallader	A. A. Mostala
J. B. Carr	M. Osterfoss
M. Cusick	J. D. Pasek
H. S. Farrow	C. Pearce
S. Fincher	J. Rogers
J. Fink	B. S. Sandhu
L. Hartless	V. Suri
M. A. Hayes, Jr.	Z. Taylor
M. Hokazono	J. Webb, Jr.
B. N. Juarez	R. A. West
Y. S. Kim	R. Z. Ziegler

Working Group on International Meetings (BPV III)

R. S. Hill III, Chair	G. M. Foster
A. Byk, Staff Secretary	M. N. Mitchell
T. D. Burchell	R. F. Reedy, Sr.
J. R. Cole	C. A. Sanna
R. L. Crane	C. T. Smith

Subgroup on Polyethylene Pipe (BPV III)

	Subgroup on re	nyeuryiene ripe (bi v m)
orking Group (BPV III)	T. M. Adams, Chair	K. Lively
B. Lee	D. Burwell, Secretary	M. Martin
D. Lee	W. I. Adams	E. W. McElroy
S. Lee	C. Basavaraju	D. P. Munson
D. I. Lim	S. J. Boros	T. M. Musto
,	J. M. Craig	J. E. O'Sullivan
	E. L. Farrow	F. J. Schaaf, Jr.
	E. M. Focht	H. E. Svetlik
	M. Golliet	M. Troughton
	A. N. Haddad	D. M. Vickery
,	P. Krishnaswamy	Z. J. Zhou
S. Song	M. Lashley	L. J. Petroff, Alternate
0. Yoo	E. Lever	S. Sandstrum, Alternate
	D. Lee S. Lee D. J. Lim IK. Nam B. Noh CK. Oh C. Park JS. Park S. Song	orking Group (BPV III)T. M. Adams, ChairB. LeeD. Burwell, SecretaryD. LeeW. I. AdamsS. LeeC. BasavarajuD. J. LimS. J. BorosIK. NamJ. M. CraigB. NohE. L. FarrowCK. OhM. GollietC. ParkA. N. HaddadJS. ParkP. KrishnaswamyS. SongM. Lashley

China International Working Group (BPV III)

J. Yan, <i>Chair</i> W. Tang, <i>Vice Chair</i>	G. Sun G. Tang
0	0
C. A. Sanna, Staff Secretary	Y. Tu
Y. He, Secretary	Y. Wang
H. Ge	H. Wu
Z. Han	X. Wu
J. Jian	Z. Wu
Y. Jing	S. Xue
F. Kai	Z. Yan
D. Kang	C. Ye
Y. Lee	Z. Yin
X. Li	S. Zaozhan
B. Liang	G. Zhang
H. Lin	K. Zhang
S. Lin	W. Zhang
J. Liu	G. Zhao
S. Liu	W. Zhao
W. Liu	Y. Zhong
К. Мао	Z. Zhong

Working Group on Research and Development

A. N. Haddad <i>, Chair</i>	K. Lively
W. I. Adams	K. A. Manoly
A. Amato	L. Mizell
S. J. Boros	D. P. Munson
J. M. Craig E. M. Focht R. M. Jessee D. Keller M. Lamborn S. Lefler E. Lever	T. M. Musto F. J. Schaaf, Jr. M. Troughton Z. J. Zhou L. J. Petroff, <i>Alternate</i> S. Sandstrum, <i>Alternate</i>

Working Group on Nondestructive Examination and Fusion of HDPE (BPV III)

M. Lashley, *Chair* W. H. Borter J. M. Craig N. Y. Faransso N. A. Finney J. F. Halley R. M. Jessee M. D. Moles F. J. Schaaf, Jr. J. C. Spanner, Jr. Z. J. Zhou D. K. Zimmerman

Working Group on High Temperature Gas-Cooled Reactors (BPV III)

J. E. Nestell, Chair	T. R. Lupold
N. Broom	S. N. Malik
T. D. Burchell	D. L. Marriott
R. S. Hill III	D. K. Morton
W. Hoffelner	TL. Sham
E. V. Imbro	
R. I. Jetter	Y. Tachibana
Y. W. Kim	T. Yuhara

Subgroup on Graphite Core Components (BPV III)

T. D. Burchell, Chair	S. T. Gonczy
M. N. Mitchell, Vice Chair	M. P. Hindley
C. A. Sanna, Staff Secretary	Y. Katoh
R. L. Bratton, Secretary	N. N. Nemeth
T. Albers	T. Oku
A. Appleton	J. Ossmann
SH. Chi	M. Roemmler
A. Covac	N. Salstrom
M. W. Davies	T. Shibata
S. W. Doms	M. Srinivasan
S. F. Duffy	A. G. Steer
B. D. Frew	S. Wendel
O. Gelineau	S. Yu

Subgroup on Industry Experience for New Plants (BPV III & BPV XI)

0.-S. Kim

G. M. Foster, Chair
J. T. Lindberg, <i>Chair</i>
H. L. Gustin, Secretary
V. L. Armentrout
T. L. Chan
D. R. Graham
P. J. Hennessey
D. O. Henry
J. Honcharik
E. V. Imbro
C. G. Kim

K. Matsunaga D. E. Matthews R. E. McLaughlin J. Ossmann E. L. Pleins D. W. Sandusky D. M. Swann T. Tsuruta E. R. Willis S. M. Yee

Subgroup on Fusion Energy Devices (BPV III)

W. K. Sowder, Jr., Chair	S. Lee
D. Andrei, Staff Secretary	G. Li
D. J. Roszman, Secretary	X. Li
R. W. Barnes	P. Mokaria
M. Higuchi	S. J. Salvador
G. Holtmeier	
K. A. Kavanagh	M. Trosen
H. J. Kim	I. J. Zatz

Subgroup on High-Temperature Reactors (BPV III)

M. Morishita, <i>Chair</i>	W. Hoffelner
R. I. Jetter, Vice Chair	G. H. Koo
TL. Sham, Secretary	D. K. Morton
N. Broom	J. E. Nestell
T. D. Burchell	N. N. Ray

Working Group on High Temperature Liquid-Cooled Reactors (BPV III)

T.-L. Sham, ChairR. I. JetterT. Asayama, SecretaryG. H. KooR. W. BarnesM. LiP. CarterS. MajumdarC. M. FaidyM. MorishitaW. HoffelnerJ. E. NestellA. B. HullD. K. Williams

Subgroup on Elevated Temperature Design (BPV III)

R. I. Jetter, *Chair* T.-L. Sham, *Secretary* J. J. Abou-Hanna T. Asayama C. Becht IV F. W. Brust P. Carter J. F. Cervenka D. S. Griffin B. F. Hantz W. Hoffelner

G. H. Koo W. J. Koves M. Li S. Majumdar D. L. Marriott T. E. McGreevy J. E. Nestell W. J. O'Donnell R. W. Swindeman

A. B. Hull

M. H. Jawad

Working Group on High Temperature Flaw Evaluation (BPV III)

F. W. Brust, Chair	D. L. Rudland
N. Broom	P. J. Rush
P. Carter	DJ. Shim
W. Hoffelner	S. X. Xu
S. N. Malik	

Working Group on Allowable Stress Criteria (BPV III)

R. W. Swindeman, Chair	J. E. Nestel
M. Li, Secretary	W. Ren
J. R. Foulds	B. W. Roberts
K. Kimura	TI Sham
S. N. Malik	

Working Group on Analysis Methods (BPV III)

P. Carter, Chair	S. Krishnamurthy
M. R. Beach	TI Sham
R. I. Jetter	D. K. Williams

Working Group on Creep-Fatigue and Negligible Creep (BPV III)

T. Asayama, Chair	G. H. Koo
M. Li, Secretary	S. N. Malik
F. W. Brust	TI Sham
R. I. Jetter	

Subgroup on Fatigue Strength (BPV III)

W. J. O'Donnell, Chair	G. Kharshafdjian
S. A. Adams	S. Majumdar
G. S. Chakrabarti	S. N. Malik
T. M. Damiani	R. Nayal
P. R. Donavin	D. H. Roarty
S. R. Gosselin	M. S. Shelton
R. J. Gurdal	G. Taxacher
C. F. Heberling II	A. Tsirigotis
C. E. Hinnant	K. Wright
D. P. Jones	H. H. Ziada

Working Group on Environmental Fatigue Evaluation Methods (BPV III)

T. M. Adams	H. S. Mehta
S. Asada	JS. Park
K. Avrithi	V. S. Ready
J. R. Cole	D. H. Roarty
C. M. Faidy	L Saito
T. D. Gilman	D. Vlaicu
S. R. Gosselin	
M. A. Gray	W. F. Weitze
Y. He	K. Wright

Subcommittee on Design (BPV III)

R. P. Deubler, Chair	R. A. Ladefian
G. L. Hollinger, Secretary	K. A. Manoly
T. M. Adams	R. J. Masterson
G. A. Antaki	D. E. Matthews
R. L. Bratton	M. N. Mitchell
R. S. Hill III	W. J. O'Donnell
P. Hirschberg	,
M. H. Jawad	E. L. Pleins
R. I. Jetter	J. P. Tucker
R. B. Keating	J. Yang

Special Working Group on HDPE Design of Components (BPV III)

T. M. Adams, Chair T. M. Musto, Secretary W. I. Adams T. A. Bacon C. Basavaraju D. Burwell P. Krishnaswamy M. Martin

E. W. McElroy J. C. Minichiello D. P. Munson J. Ossmann L. J. Petroff H. E. Svetlik K. Lively L. Mizell

Special Working Group on Computational Modeling for Explicit **Dynamics (BPV III)**

P. YK. Shih
S. D. Snow
CF Tso
M. C. Yaksh
U. Zencker

Subgroup on Elevated Temperature Construction (BPV III)

M. H. Jawad, Chair	R. I. Jetter
B. Mollitor, Secretary	S. Krishnamurthy
D. I. Anderson	D. L. Marriott
R. G. Brown	M. N. Mitchell
J. P. Glaspie	D. K. Morton
B. F. Hantz	C. Nadarajah

Subcommittee on General Requirements (BPV III)

W. C. LaRochelle, Chair A. Appleton, Secretary J. V. Gardiner R. P. McIntyre

L. M. Plante C. T. Smith D. M. Vickery

JOINT ACI-ASME COMMITTEE ON CONCRETE COMPONENTS FOR NUCLEAR SERVICE (BPV 3C)

N. Orbovic A. C. Eberhardt, Chair B. B. Scott C. T. Smith, Vice Chair A. Byk, Staff Secretary J. D. Stevenson N. Alchaar J. F. Strunk J. F. Artuso T. Tonyan C. J. Bang T. J. Ahl, Contributing Member F. Farzam T. D. Al-Shawaf, Contributing P. S. Ghosal Member M. F. Hessheimer B. A. Erler, Contributing Member J. Gutierrez, Contributing Member B. D. Hovis T. C. Inman T. E. Johnson, Contributing Member 0. Iovall T. Muraki, Contributing Member N.-H. Lee M. R. Senecal, Contributing Member J. McLean M. K. Thumm, Contributing J. Munshi Member

Working Group on Design (BPV 3C)

T. C. Inman

J. Munshi, Chair N. Alchaar S. Bae L. J. Colarusso J. Colinares A. C. Eberhardt F. Farzam P. S. Ghosal M. F. Hessheimer B. D. Hovis

0. Jovall N.-H Lee J. D. Stevenson T. E. Johnson, Contributing Member B. R. Laskewitz, Contributing Member M. K. Thumm, Contributing Member

Working Group on Materials, Fabrication, and Examination (BPV 3C)

B. B. Scott

C. T. Smith

J. F. Strunk

T. Tonyan

J. F. Artuso, Chair P. S. Ghosal, Vice Chair M. Allam A. C. Eberhardt J. Gutierrez

Working Group on Modernization (BPV 3C)

O. Jovall, Chair J.-B Domage J. McLean, Secretary N. Orbovic A. Adediran C. T. Smith N. Alchaar M. A. Ugalde J. F. Artuso S. Wang J. J. Braun J. Colinares U. Ricklefs, Contributing Member

COMMITTEE ON HEATING BOILERS (BPV IV)

T. L. Bedeaux, Chair	P. A. Molvie
J. A. Hall, Vice Chair	B. W. Moore
G. Moino, Staff Secretary	R. E. Olson
J. Calland	T. M. Parks
J. P. Chicoine	M. Wadkinson
C. M. Dove	R. V. Wielgoszinski
B. G. French	H. Michael, <i>Delegate</i>
A. Heino	D. Picart, <i>Delegate</i>
B. J. Iske	J. L. Kleiss, Alternate
D. J. Jenkins M. R. Klosterman	M. T. Roby, <i>Alternate</i>
	5,
K. M. McTague	W. L. Haag, Jr., Honorary Member

COMMITTEE ON NONDESTRUCTIVE EXAMINATION (BPV V)

J. E. Batey, Chair	R. W. Kruzic
F. B. Kovacs, Vice Chair	J. R. McGimpsey
J. S. Brzuszkiewicz, Staff Secretary	M. D. Moles
S. J. Akrin	A. B. Nagel
C. A. Anderson	T. L. Plasek
A. S. Birks	F. J. Sattler
P. L. Brown	G. M. Gatti, <i>Delegate</i>
M. A. Burns	X. Guiping, Delegate
B. Caccamise	100
N. Y. Faransso	B. D. Laite, Alternate
N. A. Finney	H. C. Graber, Honorary Member
A. F. Garbolevsky	O. F. Hedden, Honorary Member
G. W. Hembree	J. R. MacKay, Honorary Member
J. W. Houf	T. G. McCarty, Honorary Member

Subgroup on General Requirements/Personnel Qualifications and Inquiries (BPV V)

N. A. Finney F. B. Kovacs, Chair S. J. Akrin G. W. Hembree C. A. Anderson J. W. Houf J. E. Batey J. P. Swezy, Jr., Contributing A. S. Birks Member N. Y. Faransso

Subgroup on Surface Examination Methods (BPV V)

S. J. Akrin, Chair	S. Johnson
A. S. Birks	R. W. Kruzic
P. L. Brown	B. D. Laite
B. Caccamise	L. E. Mullins
N. Y. Faransso	
N. Farenbaugh	A. B. Nagel
N. A. Finney	F. J. Sattler
G. W. Hembree	G. M. Gatti, Delegate

Subgroup on Volumetric Methods (BPV V)

G. W. Hembree, Chair	S. Johnson
S. J. Akrin	F. B. Kovacs
J. E. Batey	R. W. Kruzic
P. L. Brown	J. R. McGimpsey
B. Caccamise	M. D. Moles
N. Y. Faransso	L. E. Mullins
N. A. Finney	A. B. Nagel
A. F. Garbolevsky	T. L. Plasek
J. F. Halley	F. J. Sattler
R. W. Hardy	G. M. Gatti, Delegate

Working Group on Acoustic Emissions (SG-VM) (BPV V)

N. Y. Faransso, Chair	S. R. Doctor
J. E. Batey, Vice Chair	R. K. Miller

Working Group on Radiography (SG-VM) (BPV V)

F. B. Kovacs, Chair	S. Johnson
S. J. Akrin	R. W. Kruzic
J. E. Batey	B. D. Laite
P. L. Brown	S. Mango
B. Caccamise	J. R. McGimpsey
N. Y. Faransso	, 15
A. F. Garbolevsky	R. J. Mills
R. W. Hardy	A. B. Nagel
G. W. Hembree	T. L. Plasek

Subgroup on Care and Operation of Heating Boilers (BPV IV)

M. R. Klosterman

P. A. Molvie

B. W. Moore

T. M. Parks

M. Wadkinson, Chair
T. L. Bedeaux
J. Calland
I. A. Hall

Subgroup on Cast Iron Boilers (BPV IV)

K. M. McTague, Chair	B. G. French
T. L. Bedeaux, Vice Chair	J. A. Hall
J. P. Chicoine	J. L. Kleiss
C. M. Dove	M. R. Klosterman
J. M. Downs	M. T. Roby, Alternate

Subgroup on Materials (BPV IV)

B. J. Iske J. L. Kleiss E. Rightmier

J. A. Hall, Chair
M. Wadkinson, Vice Chair
J. Calland
J. M. Downs

Subgroup on Water Heaters (BPV IV)

J. Calland, <i>Chair</i>	K. M. McTague
J. P. Chicoine	R. E. Olson
B. G. French	T. E. Trant
B. J. Iske	M. T. Roby, Alternate

Subgroup on Welded Boilers (BPV IV)

J. Calland <i>, Chair</i>
T. L. Bedeaux
B. G. French
J. L. Kleiss
M. R. Klosterman

P. A. Molvie R. E. Olson M. Wadkinson R. V. Wielgoszinski J.-M. Andre, Contributing Member

Working Group on Ultrasonics (SG-VM) (BPV V)

N. A. Finney, Chair
J. F. Halley, Vice Chair
B. Caccamise
K. J. Chizen
N. Y. Faransso
O. F. Hedden
S. Johnson

R. W. Kruzic B. D. Laite M. D. Moles L. E. Mullins A. B. Nagel F. J. Sattler

G. M. Light

M. J. Quarry

J. Vanvelsor

Working Group on Design-By-Analysis (BPV III)

B. F. Hantz, Chair	A. Mann
T. W. Norton, Secretary	G. A. Miller
R. G. Brown	C. Nadarajah
R. D. Dixon	M. D. Rana
C. E. Hinnant	
M. H. Jawad	T. G. Seipp
S. Krishnamurthy	S. Terada

Subgroup on Fabrication and Inspection (BPV VIII)

C. D. Rodery, Chair P. L. Sturgill J. P. Swezy, Jr., Vice Chair T. Tahara B. R. Morelock, Secretary E. A. Whittle J. L. Arnold K. Oyamada, Delegate L. F. Campbell R. Uebel, Delegate H. E. Gordon W. J. Bees, Corresponding Member D. I. Morris E. Upitis, Corresponding Member M. J. Pischke W. S. Jacobs, Contributing Member M. J. Rice B. F. Shelley J. Lee, Contributing Member

Subgroup on General Requirements (BPV VIII)

S. C. Roberts, Chair C. C. Neely D. B. DeMichael, Vice Chair A. S. Olivares F. L. Richter, Secretary J. C. Sowinski R. I. Basile P. Speranza V. Bogosian D. B. Stewart D. T. Davis D. A. Swanson J. P. Glaspie R. Uebel L. E. Hayden, Jr. K. T. Lau A. H. Gibbs, Delegate M. D. Lower K. Oyamada, Delegate

Taskgroup on U-2(g) (BPV VIII)

S. R. BabkaR. F. Reedy, Sr.R. J. BasileS. C. RobertsD. K. ChandiramaniJ. R. Sims, Jr.R. MahadeenD. SrnicU. R. MillerD. A. SwansonT. W. NortonR. UebelT. P. PastorK. K. Tam

Subgroup on Heat Transfer Equipment (BPV VIII)

O. A. Barsky	D. A. Swanson	R. Mahadeen, Chair	P. Matkovics
M. R. Breach	J. Vattappilly	G. Aurioles, Sr., Vice Chair	S. Mayeux
F. L. Brown	R. A. Whipple	F. E. Jehrio, Secretary	U. R. Miller
J. R. Farr	A. A. Gibbs, Delegate	S. R. Babka	T. W. Norton
B. F. Hantz	K. Oyamada, Delegate	J. H. Barbee	K. Oyamada
C. E. Hinnant	M. E. Papponetti, Delegate	O. A. Barsky	D. Srnic
M. H. Jawad	M. Faulkner, Corresponding	I. G. Campbell	A. M. Voytko
D. L. Kurle	Member	A. Chaudouet	•
R. W. Mikitka	C. S. Hinson, Corresponding	M. D. Clark	R. P. Wiberg
U. R. Miller	Member	J. I. Gordon	F. Osweiller, Corresponding
K. Mokhtarian	W. S. Jacobs, Corresponding	M. J. Holtz	Member
T. P. Pastor	Member	G. G. Karcher	S. Yokell, Corresponding Member
M. D. Rana	A. Selz, Corresponding Member	D. L. Kurle	R. Tiwari, Contributing Member
G. B. Rawls, Jr.	K. K. Tam, Corresponding Member	B. J. Lerch	S. M. Caldwell, Honorary Member

J. E. Batey, *Vice Chair* M. D. Moles D. Alleyne P. Mudge

Working Group on Guided Wave Ultrasonic Testing (SG-VM) (BPV V)

D. Alleyne J. F. Halley S. Johnson

N. Y. Faransso. Chair

R. J. Basile, *Chair* J. C. Sowinski, *Vice Chair*

M. D. Lower, Secretary

COMMITTEE ON PRESSURE VESSELS (VIII)

U. R. Miller, <i>Chair</i> R. J. Basile, <i>Vice Chair</i> S. J. Rossi, <i>Staff Secretary</i> T. Schellens, <i>Staff Secretary</i> V. Bogosian J. Cameron A. Chaudouet D. B. DeMichael J. P. Glaspie M. Gold J. F. Grubb L. E. Hayden, Jr. G. G. Karcher K. T. Lau R. Mahadeen R. W. Mikitka K. Mokhtarian C. C. Neely T. W. Norton T. P. Pastor	M. J. Pischke M. D. Rana G. B. Rawls, Jr. F. L. Richter S. C. Roberts C. D. Rodery A. Selz J. R. Sims, Jr. E. Soltow D. A. Swanson J. P. Swezy, Jr. S. Terada E. Upitis P. A. McGowan, Delegate H. Michael, Delegate K. Oyamada, Delegate M. E. Papponetti, Delegate D. Rui, Delegate T. Tahara, Delegate
D. T. Peters	W. S. Jacobs, <i>Contributing Member</i>

Subgroup on Design (BPV VIII)

S. C. Roberts

C. D. Rodery

S. C. Shah

Subgroup on High Pressure Vessels (BPV VIII)

D. T. Peters, Chair	G. T. Nelson
R. T. Hallman, Vice Chair	E. A. Rodriguez
A. P. Maslowski, Staff Secretary	E. D. Roll
L. P. Antalffy	J. R. Sims, Jr.
R. C. Biel	D. L. Stang
P. N. Chaku	F. W. Tatar
R. Cordes	S. Terada
R. D. Dixon	J. L. Traud
L. Fridlund	R. Wink
D. M. Fryer	K. J. Young
A. H. Honza	K. Oyamada, <i>Delegate</i>
M. M. James	R. M. Hoshman, Contributing
J. A. Kapp	Member
J. Keltjens	G. J. Mraz, Contributing Member
A. K. Khare	D. J. Burns, Honorary Member
S. C. Mordre	E. H. Perez, Honorary Member

Task Group on Design (BPV VIII)

J. Keltjens, Chair	E. H. Perez
R. C. Biel	D. T. Peters
D. J. Burns	E. D. Roll
R. Cordes	K. C. Simpson
R. D. Dixon	J. R. Sims, Jr.
L. Fridlund	, ,,
D. M. Fryer	D. L. Stang
R. T. Hallman	S. Terada
S. C. Mordre	J. L. Traud
G. T. Nelson	R. Wink

Task Group on Materials (BPV VIII)

F. W. Tatar <i>, Chair</i>	M. M. James
L. P. Antalffy	J. A. Kapp
P. N. Chaku	A. K. Khare

Task Group on Impulsively Loaded Vessels (BPV VIII)

E. A. Rodriguez, Chair K. W. King P. O. Leslie, Secretary R. Kitamura G. A. Antaki R. A. Leishear J. K. Asahina R. E. Nickell D. D. Barker F. Ohlson D. W. Bowman C. Romero A. M. Clayton N. Rushton J. E. Didlake, Jr. J. E. Shepherd T. A. Duffey Q. Dong, Corresponding Member B. L. Haroldsen M. Yip, Corresponding Member H. L. Heaton D. Hilding C. R. Vaught, Alternate

COMMITTEE ON WELDING, BRAZING, AND FUSING (BPV IX)

A. S. Olivares
M. J. Pischke
M. J. Rice
M. B. Sims
M. J. Stanko
J. P. Swezy, Jr.
P. L. Van Fosson
R. R. Young
A. Roza, Delegate
M. Consonni, Contributing Member
S. A. Jones, Contributing Member
W. D. Doty, Honorary Member
S. D. Reynolds, Jr., Honorary
Member

Subgroup on Brazing (BPV IX)

M. J. Pischke, Chair	M. L. Carpenter
E. W. Beckman	A. F. Garbolevsky
L. F. Campbell	J. P. Swezy, Jr.

Subgroup on General Requirements (BPV IX)

B. R. Newmark, Chair	D. K. Peetz
E. W. Beckman	H. B. Porter
G. Chandler	P. L. Sturgill
P. R. Evans	K. R. Willens
A. Howard	
R. M. Jessee	E. W. Woelfel
A. S. Olivares	E. Molina, Delegate

Subgroup on Materials (BPV VIII)

J. F. Grubb <i>, Chair</i>	R. C. Sutherlin
J. Cameron, Vice Chair	E. Upitis
P. G. Wittenbach, Secretary	K. Xu
A. Di Rienzo	K. Oyamada, Delegate
J. D. Fritz	E. G. Nisbett, Corresponding
M. Gold	Member
M. Katcher	G. S. Dixit, Contributing Member
W. M. Lundy	J. A. McMaster, Contributing
D. W. Rahoi	Member

Subgroup on Toughness (BPV II & BPV VIII)

D. A. Swanson, Chair
J. P. Swezy, Jr., Vice Chair
J. L. Arnold
R. J. Basile
J. Cameron
H. E. Gordon
W. S. Jacobs
D. L. Kurle

K. Mokhtarian C. C. Neely M. D. Rana F. L. Richter E. Upitis J. Vattappilly K. Xu K. Oyamada, *Delegate*

Special Working Group on Graphite Pressure Equipment (BPV VIII)

E. Soltow, *Chair* G. C. Becherer T. F. Bonn F. L. Brown

S. Malone M. R. Minick A. A. Stupica

R. W. Dickerson

Special Working Group on Bolted Flanged Joints (BPV VIII)

R. W. Mikitka, Chair
G. D. Bibel
W. Brown
W. J. Koves

M. Morishita J. R. Payne G. B. Rawls, Jr. M. S. Shelton

Subgroup on Materials (BPV IX)

M. Bernasek, Chair	T. Melfi
T. Anderson	M. J. Pischke
J. L. Arnold	C. E. Sainz
M. L. Carpenter	W. J. Sperko
E. Cutlip	M. J. Stanko
S. S. Fiore	,
S. E. Gingrich	P. L. Sturgill
R. M. Jessee	R. R. Young
C. C. Kim	V. G. V. Giunto, Delegate

Subgroup on Performance Qualification (BPV IX)

D. A. Bowers, Chair	K. L. Hayes
M. J. Rice, Secretary	J. S. Lee
V. A. Bell	W. M. Lundy
M. A. Boring R. B. Corbit	E. G. Reichelt
P. D. Flenner	M. B. Sims

Subgroup on Plastic Fusing (BPV IX)

J. E. O'Sullivan

E. G. Reichelt

P. L. Sturgill

J. P. Swezy, Jr.

E. W. Woelfel J. C. Minichiello C. W. Rowley

M. J. Rice

M. L. Carpenter, Chair
D. Burwell
J. M. Craig
A. N. Haddad
K. L. Hayes
R. M. Jessee
E. Lever
E. W. McElroy

Subgroup on Procedure Qualification (BPV IX)

D. A. Bowers, Chair
M. J. Rice, Secretary
M. Bernasek
M. A. Boring
R. K. Brown, Jr.
W. M. Lundy
J. R. McGimpsey
W. F. Newell, Jr.

A. S. Olivares S. Raghunathan M. B. Sims W. J. Sperko S. A. Sprague J. P. Swezy, Jr. P. L. Van Fosson T. C. Wiesner

COMMITTEE ON FIBER-REINFORCED PLASTIC PRESSURE VESSELS (BPV X)

D. Eisberg, Chair
P. D. Stumpf, Staff Secretary
F. L. Brown
J. L. Bustillos
T. W. Cowley
I. L. Dinovo
T. J. Fowler
M. R. Gorman
D. H. Hodgkinson
L. E. Hunt

D. L. Keeler B. M. Linnemann N. L. Newhouse D. J. Painter G. Ramirez J. R. Richter B. F. Shelley F. W. Van Name D. O. Yancey, Jr. P. H. Ziehl

COMMITTEE ON NUCLEAR INSERVICE INSPECTION (BPV XI)

G. C. Park, Chair	D. W. Lamond
R. W. Swayne, Vice Chair	G. A. Lofthus
R. A. Yonekawa, Vice Chair	J. E. O'Sullivan
R. L. Crane, Staff Secretary	R. K. Rhyne
J. M. Agold	D. A. Scarth
V. L. Armentrout	F. J. Schaaf, Jr.
W. H. Bamford	J. C. Spanner, Jr.
T. L. Chan	G. L. Stevens
R. C. Cipolla	D. E. Waskey
D. D. Davis	J. G. Weicks
G. H. DeBoo	C. J. Wirtz
R. L. Dyle	T. Yuhara
E. V. Farrell, Jr.	H. D. Chung, Delegate
E. L. Farrow	C. Ye, Delegate
E. B. Gerlach	R. A. West, Contributing Member
R. E. Gimple	J. Hakii, Alternate
T. J. Griesbach	J. T. Lindberg, Alternate
K. Hasegawa	W. E. Norris, Alternate
D. O. Henry	C. D. Cowfer, Honorary Member
R. D. Kerr	F. E. Gregor, Honorary Member
S. D. Kulat	O. F. Hedden, Honorary Member
G. L. Lagleder	P. C. Riccardella, Honorary Member

Executive Committee (BPV XI)

R. A. Yonekawa, Chair S. D. Kulat G. C. Park, Vice Chair R. L. Crane, Staff Secretary W. H. Bamford R. L. Dyle M. J. Ferlisi E. B. Gerlach R. E. Gimple

J. T. Lindberg W. E. Norris R. K. Rhyne J. C. Spanner, Jr. G. L. Stevens R. W. Swayne

Subgroup on Evaluation Standards (SG-ES) (BPV XI)

W. H. Bamford, Chair D. R. Lee G. L. Stevens, Secretary R. O. McGill H. D. Chung H. S. Mehta R. C. Cipolla M. A. Mitchell G. H. DeBoo K. Miyazaki R. L. Dyle R. Pace B. R. Ganta S. Ranganath T. J. Griesbach D. A. Scarth K. Hasegawa T. V. Vo K. Hojo K. R. Wichman D. N. Hopkins K. Koyama S. X. Xu

Working Group on Flaw Evaluation (SG-ES) (BPV XI)

R. C. Cipolla, Chair	H. S. Mehta
S. X. Xu, Secretary	G. A. Miessi
W. H. Bamford	K. Miyazaki
B. Bezensek	R. K. Qashu
H. D. Chung	S. Ranganath
G. H. DeBoo	H. Rathbun
B. R. Ganta	
R. G. Gilada	P. J. Rush
H. L. Gustin	D. A. Scarth
F. D. Hayes	W. L. Server
P. H. Hoang	N. J. Shah
K. Hojo	T. V. Vo
D. N. Hopkins	K. R. Wichman
•	G. M. Wilkowski
K. Koyama	
D. R. Lee	D. L. Rudland, Alternate

Working Group on Operating Plant Criteria (SG-ES) (BPV XI)

H. S. Mehta M. A. Mitchell R. Pace N. A. Palm S. Ranganath W. L. Server D. P. Weakland T. Hardin, *Alternate*

T. J. Griesbach, Chair
D. V. Sommerville, Secretary
W. H. Bamford
H. Behnke
T. L. Dickson
R. L. Dyle
S. R. Gosselin
M. Havashi

Working Group on Pipe Flaw Evaluation (SG-ES) (BPV XI)

D. A. Scarth, Chair	D. N. Hopkins
G. M. Wilkowski, Secretary	E. J. Houston
T. A. Bacon	K. Kashima
W. H. Bamford	R. O. McGill
B. Bezensek	H. S. Mehta
H. D. Chung	G. A. A. Miessi
R. C. Cipolla	K. Miyazaki
N. G. Cofie	D. L. Rudland
J. M. Davis	P. J. Rush
G. H. DeBoo	,
B. R. Ganta	DJ. Shim
L. F. Goyette	T. V. Vo
K. Hasegawa	B. Wasiluk
P. H. Hoang	S. X. Xu
K. Hojo	H. Rathbun, Alternate

Subgroup on Nondestructive Examination (SG-NDE) (BPV XI)

J. C. Spanner, Jr., *Chair* G. A. Lofthus, *Secretary* T. L. Chan C. B. Cheezem D. R. Cordes F. E. Dohmen M. E. Gothard D. O. Henry

J. T. Lindberg T. R. Lupold G. R. Perkins S. A. Sabo F. J. Schaaf, Jr. R. V. Swain G. Tang C. J. Wirtz

Working Group on Personnel Qualification and Surface Visual and Eddy Current Examination (SG-NDE) (BPV XI)

J. T. Lindberg, Chair	J. C. Spanner, Jr.
D. R. Cordes, Secretary	J. T. Timm
S. E. Cumblidge	M. C. Weatherly
N. Farenbaugh	5
D. O. Henry	M. L. Whytsell
J. W. Houf	C. J. Wirtz

Working Group on Procedure Qualification and Volumetric Examination (SG-NDE) (BPV XI)

G. A. Lofthus, Chair	K. J. Hacker
G. R. Perkins, Secretary	D. B. King
M. T. Anderson	D. A. Kull
M. Briley	C. A. Nove
C. B. Cheezem	S. A. Sabo
A. D. Chockie	
M. Dennis	R. V. Swain
S. R. Doctor	B. A. Thigpen
F. E. Dohmen	S. J. Todd
M. E. Gothard	D. K. Zimmerman

Subgroup on Repair/Replacement Activities (SG-RRA) (BPV XI)

R. D. Kerr
S. L. McCracken
B. R. Newton
J. E. O'Sullivan
R. R. Stevenson
R. W. Swayne
D. L. Tilly
D. E. Waskey
J. G. Weicks
R. A. Yonekawa
E. G. Reichelt, Alternate

Working Group on Welding and Special Repair Processes (SG-RRA) (BPV XI)

D. E. Waskey, Chair	C. C. Kim
D. J. Tilly, Secretary	M. Lau
R. E. Cantrell	S. L. McCracken
S. J. Findlan	D. B. Meredith
P. D. Fisher	B. R. Newton
M. L. Hall	J. E. O'Sullivan
R. A. Hermann	R. E. Smith
K. J. Karwoski	J. G. Weicks

Working Group on Nonmetals Repair/Replacement Activities (SG-RRA) (BPV XI)

J. E. O'Sullivan, *Chair* B. B. Raji S. Schuessler, *Secretary* E. G. Reichelt E. W. McElroy F. J. Schaaf, Jr. T. M. Musto Z. J. Zhou

Task Group on Repair by Carbon Fiber Composites

- (WGN-MRR) (BPV XI) J. E. O'Sullivan, *Chair* B. B. Raji
- M. Golliet F. J. Schaaf, Jr. E. W. McElroy

Working Group on Design and Programs (SG-RRA) (BPV XI)

G. G. Elder, <i>Chair</i>	E. B. Gerlach
S. B. Brown, Secretary	D. R. Graham
O. Bhatty	G. F. Harttraft
R. Clow	T. E. Hiss
J. W. Collins	H. Malikowski
R. R. Croft	M. A. Pyne
E. V. Farrell, Jr.	R. R. Stevenson
S. K. Fisher	R. W. Swayne
J. M. Gamber	R. A. Yonekawa

Subgroup on Water-Cooled Systems (SG-WCS) (BPV XI)

S. D. Kulat, Chair	P. J. Hennessey
N. A. Palm, Secretary	D. W. Lamond
J. M. Agold	A. McNeill III
V. L. Armentrout	T. Nomura
J. M. Boughman	W. E. Norris
S. T. Chesworth	G. C. Park
D. D. Davis	J. E. Staffiera
H. Q. Do	H. M. Stephens, Jr.
E. L. Farrow	R. Turner
M. J. Ferlisi	H. L. Graves III, Alternate

Task Group on High Strength Nickel Alloys Issues (SG-WCS) (BPV XI)

K. Koyama

M. Lashley G. C. Park J. M. Shuping J. C. Spanner, Jr. K. B. Stuckey E. J. Sullivan, Jr.

D. P. Weakland

V. L. Armentrout, Chair
B. L. Montgomery, Secretary
W. H. Bamford
P. R. Donavin
R. L. Dyle
G. G. Elder
R. E. Gimple
R. Hardies

Working Group on Containment (SG-WCS) (BPV XI)

H. L. Graves IIII. T. HoungeeH. T. HillG. ThomasR. D. HoughS. G. Brown, AlternateC. N. KrishnaswamyW. E. Norris, Alternate	J. E. Staffiera, <i>Chair</i> H. M. Stephens, Jr., <i>Secretary</i> P. S. Ghosal D. H. Goche	D. J. Naus F. Poteet III A. A. Reyes-Cruz E. A. Rodriguez
in Di Hough		G. Thomas
C. N. Krishnaswamy W. E. Norris, Alternate	R. D. Hough	S. G. Brown, Alternate
	C. N. Krishnaswamy	W. E. Norris, Alternate

Working Group on Inspection of Systems and Components (SG-WCS) (BPV XI)

J. M. Agold, Chair	K. W. Hall
H. Q. Do, Secretary	K. M. Hoffman
V. L. Armentrout	S. D. Kulat
C. Cueto-Felgueroso	T. Nomura
R. E. Day	J. C. Nygaard
M. J. Ferlisi	R. Rishel
R. Fougerousse	C. M. Ross

Working Group on Pressure Testing (SG-WCS) (BPV XI)

D. W. Lamond, Chair
J. M. Boughman, Secretary
YK. Chung
T. Coste
J. A. Doughty
R. E. Hall

T. R. Lupold J. K. McClanahan B. L. Montgomery S. A. Norman P. N. Passalugo J. A. Stevenson

Task Group on Buried Components Inspection and Testing (WG-PT) (BPV XI)

A. Lee

E. J. Maloney

M. Moenssens

P. N. Passalugo

J. Ossmann

J. H. Riley

K. W. Hall

S. D. Kulat D. W. Lamond R. K. Mattu A. McNeill III P. J. O'Regan N. A. Palm D. Vetter J. C. Younger

D. M. Swann

D. W. Lamond, Chair
J. M. Boughman, Secretary
C. Blackwelder
B. Clark III
G. C. Coker
R. E. Day
R. Hardies
T. Ivy

Working Group on Risk-Informed Activities (SGW-CS) (BPV XI)

M. A. Pyne, Chair
S. T. Chesworth, Secretary
J. M. Agold
C. Cueto-Felgueroso
H. Q. Do
R. Fougerousse
M. R. Graybeal
R. Haessler
J. Hakii

Special Working Group on Editing and Review (BPV XI)

R. W. Swayne, Chair	J. E. Staffiera
C. E. Moyer	D. J. Tilly
K. R. Rao	C. J. Wirtz

Special Working Group on Nuclear Plant Aging Management (BPV XI)

T. A. Meyer, *Chair* B. R. Snyder, *Secretary* S. Asada D. V. Burgess Y.-K. Chung D. D. Davis R. L. Dyle A. L. Hiser , Jr.

R. E. Nickell K. Sakamoto W. L. Server R. L. Turner G. G. Young Z. Zhong C. E. Carpenter, *Alternate*

A. B. Meichler

Working Group on General Requirements (BPV XI)

R. K. Rhyne, ChairK. M. HermanE. J. Maloney, SecretaryR. K. MattuT. L. ChanC. E. MoyerE. L. FarrowD. J. PotterP. J. HennesseyR. L. Williams

Special Working Group on Reliability and Integrity Management Program (BPV XI)

F. J. Schaaf, Jr., *Chair* M. A. Lockwood, *Secretary* N. Broom S. R. Doctor J. Fletcher M. R. Graybeal J. Grimm A. B. Hull D. R. Lee R. K. Miller P. M. Mills M. N. Mitchell A. T. Roberts III T. Roney R. W. Swayne

COMMITTEE ON TRANSPORT TANKS (BPV XII)

M. D. Rana, *Chair* N. J. Paulick, *Vice Chair* T. Schellens, *Staff Secretary* A. N. Antoniou J. A. Byers W. L. Garfield C. H. Hochman G. G. Karcher J. R. McGimpsey M. Pitts T. A. Rogers A. Selz S. Staniszewski A. P. Varghese M. R. Ward M. D. Pham, *Contributing Member*

Subgroup on Design and Materials (BPV XII)

A. P. Varghese, Chair	N. J. Paulick
R. C. Sallash, Secretary	M. D. Rana
D. K. Chandiramani	T. A. Rogers
P. Chilukuri	A. Selz
T. Hitchcock	M. R. Ward
G. G. Karcher	K. Xu
T. P. Lokey	J. Zheng, Corresponding Member
S. L. McWilliams	M. D. Pham, Contributing Member

Subgroup on Fabrication, Inspection, and Continued Service (BPV XII)

M. Pitts, Chair P. Chilukuri, Secretary S. E. Benet J. A. Byers W. L. Garfield T. P. Lokey

K. Mansker J. R. McGimpsey A. S. Olivares R. C. Sallash S. Staniszewski L. H. Strouse, Contributing Member

COMMITTEE ON NUCLEAR CERTIFICATION (CNC)

W. C. LaRochelle, Chair	M. F. Sullivan, Contributing
R. R. Stevenson, Vice Chair	Member
E. Suarez, Staff Secretary	S. Andrews, Alternate
J. DeKleine	V. Bogosian, Alternate
G. Gobbi	P. D. Edwards, Alternate
S. M. Goodwin	D. P. Gobbi, Alternate
J. W. Highlands	K. M. Hottle, Alternate
K. A. Huber	K. A. Kavanagh, Alternate
J. C. Krane	B. G. Kovarik, Alternate
R. P. McIntyre	M. A. Lockwood, Alternate
M. R. Minick	R. J. Luymes, Alternate
L. M. Plante	J. Oyler, Alternate
H. B. Prasse	M. Paris, Alternate
T. E. Quaka	D. W. Stepp, Alternate
C. T. Smith	A. Torosyan, Alternate
D. M. Vickery	5
C. S. Withers	E. A. Whittle, Alternate
S. Yang	H. L. Wiger, Alternate

COMMITTEE ON SAFETY VALVE REQUIREMENTS (BPV-SVR)

J. A. West, Chair R. J. Doelling D. B. DeMichael, Vice Chair J. P. Glaspie C. E. O'Brien, Staff Secretary S. F. Harrison, Jr. J. F. Ball W. F. Hart S. Cammeresi D. Miller J. A. Cox T. Patel R. D. Danzy Z. Wang

Subgroup on Design (BPV-SVR)

R. D. Danzy, Chair	D. Miller
C. E. Beair	T. Patel
J. A. Conley	J. A. West
R. J. Doelling	

Subgroup on General Requirements (BPV-SVR)

D. B. DeMichael, Chair	S. T. French
J. F. Ball	J. P. Glaspie
G. Brazier	J. W. Richardson
J. Burgess	D. E. Tuttle

COMMITTEE ON BOILER AND PRESSURE VESSEL CONFORMITY ASSESSMENT (CBPVCA)

P. D. Edwards, Chair	R. V. Wielgoszinski
K. I. Baron, Staff Secretary	S. F. Harrison, Jr., Contributing
S. W. Cameron	Member
M. A. DeVries	V. Bogosian, Alternate
T. E. Hansen	D. C. Cook, Alternate
D. J. Jenkins	D. W. King, Alternate
K. T. Lau	B. L. Krasiun, Alternate
L. E. McDonald	W. C. LaRochelle, Alternate
K. M. McTague	P. F. Martin, Alternate
D. Miller	K. McPhie, Alternate
B. R. Morelock	M. R. Minick, Alternate
J. D. O'Leary	I. Powell, Alternate
T. M. Parks	R. Pulliam, Alternate
B. C. Turczynski	M. T. Roby, Alternate
D. E. Tuttle	J. A. West, Alternate
E. A. Whittle	A. J. Spencer, Honorary Member

Subgroup on Testing (BPV-SVR)

J. A. Cox, Chair	W. F. Hart
J. E. Britt	B. K. Nutter
S. Cammeresi	C. Sharpe
J. W. Dickson	Z. Wang
G. D. Goodson	A. Wilson

U.S. Technical Advisory Group ISO/TC 185 Safety Relief Valves

T. J. Bevilacqua, Chair	D. B. DeMichael
C. E. O'Brien, Staff Secretary	D. Miller
J. F. Ball	B. K. Nutter
G. Brazier	J. A. West

Subgroup on General Requirements (BPV XII) M. Pitts

- W. L. Garfield, Chair S. E. Benet, Secretary T. W. Alexander A. N. Antoniou J. L. Freiler C. H. Hochman J. R. McGimpsey
- T. Rummel R. C. Sallash S. Staniszewski K. L. Gilmore, Contributing Member L. H. Strouse, Contributing Member

D. G. Shelton

M. R. Ward

Member

Member

D. D. Brusewitz, Contributing

A. P. Varghese, Contributing

J. L. Conley, Contributing Member

T. Eubanks, Contributing Member

T. Hitchcock, Contributing Member A. Selz, Contributing Member

Subgroup on Nonmandatory Appendices (BPV XII)

- T. A. Rogers, Chair S. Staniszewski, Secretary
- S. E. Benet
- P. Chilukuri
- R. Hayworth
- K. Mansker
- S. L. McWilliams
- N. J. Paulick
- M. Pitts
- R. C. Sallash

INTRODUCTION

The following is provided as a brief introduction to Section IX, and cannot be considered as a substitute for the actual review of the document. However, this introduction is intended to give the reader a better understanding of the purpose and organization of Section IX.

Section IX of the ASME Boiler and Pressure Vessel Code relates to the qualification of welders, welding operators, brazers, brazing operators, and fusing machine operators, and the procedures employed in welding, brazing, or plastic fusing in accordance with the ASME Boiler and Pressure Vessel Code and the ASME B31 Code for Pressure Piping. As such, this is an active document subject to constant review, interpretation, and improvement to recognize new developments and research data. Section IX is a document referenced for the qualification of material joining processes by various construction codes such as Section I, III, IV, VIII, XII, etc. These particular construction codes apply to specific types of fabrication and may impose additional requirements or exemptions to Section IX qualifications. Qualification in accordance with Section IX is not a guarantee that procedures and performance qualifications will be acceptable to a particular construction code.

Section IX does not contain rules for production joining, nor does it contain rules to cover all factors affecting production material joining properties under all circumstances. Where such factors are determined by the organization to affect material joining properties, the organization shall address those factors in the Procedure Specification to ensure that the required properties are achieved in the production material joining process.

The purpose of the Procedure Specification and the Procedure Qualification Record (PQR) is to ensure the material joining process proposed for construction is capable of producing joints having the required mechanical properties for the intended application. Personnel performing the material joining procedure qualification test shall be sufficiently skilled. The purpose of the procedure qualification test is to establish the mechanical properties of the joint produced by the material joining process and not the skill of the personnel using the material joining process. In addition, special consideration is given when toughness testing is required by other Sections of the Code. The toughness supplementary essential variables do not apply unless referenced by the construction codes.

The purpose of Performance Qualification is to determine the ability of the person using a material joining process to produce a sound joint. In Operator Performance Qualification, the basic criterion is to determine the ability of the operator to properly operate the equipment to produce a sound joint.

In developing Section IX, each material joining process that is included was reviewed with regard to those factors (called variables) which have an effect upon the material joining operations as applied to procedure or performance criteria.

The user of Section IX should be aware of how Section IX is organized. It is divided into four Parts: general requirements, welding, brazing, and plastic fusing. Each Part addressing a material joining process is then divided into Articles. The Articles for each material joining process deal with the following:

(a) general requirements specifically applicable to the material joining process (Article I Welding, Article XI Brazing, and Article XXI Plastic Fusing)

- (b) procedure qualifications (Article II Welding, Article XII Brazing, and Article XXII Plastic Fusing)
- (c) performance qualifications (Article III Welding, Article XIII Brazing, and Article XXIII Plastic Fusing)
- (d) data (Article IV Welding, Article XIV Brazing, and Article XXIV Plastic Fusing)
- (e) standard welding procedure specifications (Article V Welding)

These articles contain general references and guides that apply to procedure and performance qualifications such as positions, type and purpose of various mechanical tests, acceptance criteria, and the applicability of Section IX, which previously appeared in the Preamble of the 1980 Edition of Section IX (the Preamble has since been deleted). The general requirement articles reference the data articles for specific details of the testing equipment and removal of the mechanical test specimens.

PROCEDURE QUALIFICATIONS

Each material joining process that has been evaluated and adopted by Section IX is listed separately with the essential and nonessential variables as they apply to that particular process. In general, the Procedure Specifications are required to list all essential and nonessential variables for each process that is included under that particular procedure specification. When an essential variable must be changed beyond the range qualified and the change is not an editorial revision to correct an error, requalification of the procedure specification is required. If a change is made in a nonessential variable, the procedure need only be revised or amended to address the nonessential variable change. When toughness testing is required for Welding Procedure Specification (WPS) qualification by the construction code, the supplementary essential variables become additional essential variables, and a change in these variables requires requalification of the procedure specification.

In addition to covering various processes, there are also rules for procedure qualification of corrosion-resistant weld metal overlay and hard-facing weld metal overlay.

Beginning with the 2000 Addenda, the use of Standard Welding Procedure Specifications (SWPSs) was permitted. Article V provides the requirements and limitations that govern the use of these documents. The SWPSs approved for use are listed in Mandatory Appendix E.

In the 2004 Edition, rules for temper bead welding were added.

With the incorporation of the new Creep-Strength Enhanced Ferritic (CSEF) alloys in the 1986 Edition, using the existing P-Number groupings to specify PWHT parameters can lead to variations in heat treatments that may significantly degrade the mechanical properties of these alloys. CSEF alloys are a family of ferritic steels whose creep strength is enhanced by the creation of a precise condition of microstructure, specifically martensite or bainite, which is stabilized during tempering by controlled precipitation of temper-resistant carbides, carbo-nitrides, or other stable phases.

In the 2007 Edition of the Code, only P-No. 5B, Group 2 base metals met this definition and were approved for Code construction. Looking forward, a number of CSEF alloys are already in use in Code Cases and drawing near to incorporation. To facilitate addressing their special requirements, P-No. 15A through P-No. 15F have been established for CSEF alloys.

In the 2013 Edition, Part QG General Requirements and Part QF Plastic Fusing were added.

PERFORMANCE QUALIFICATIONS

These articles list separately the various processes with the essential variables that apply to the performance qualifications of each process. The performance qualifications are limited by essential variables.

The performance qualification articles have numerous paragraphs describing general applicable variables for all processes. QW-350, QB-350, and QF-360 list additional essential variables that are applicable for specific processes. The QW-350 variables do not apply to welding operators. QW-360 lists the additional essential variables for welding operators.

Generally, a welder or welding operator may be qualified by mechanical bending tests, or volumetric NDE of a test coupon, or the initial production weld. Brazers or brazing operators and fusing machine operators may not be qualified by volumetric NDE.

WELDING, BRAZING, AND FUSING DATA

The data articles include the variables grouped into categories such as joints, base materials and filler materials, positions, preheat/postweld heat treatment, gas, electrical characteristics, and technique. They are referenced from other articles as they apply to each process.

These articles are frequently misused by selecting variables that do not apply to a particular process. Variables only apply as referenced for the applicable process in Article II or III for welding, Article XII or XIII for brazing, and Article XXII or XXIII for plastic fusing. The user of Section IX should not apply any variable that is not referenced for that process.

These articles also include assignments of welding and brazing P-Numbers to particular base materials and F-Numbers to filler materials. Article IV also includes A-Number tables for reference by the Code user.

Beginning with the 1994 Addenda, welding P-Numbers, brazing P-Numbers, and nonmandatory S-Numbers were consolidated into one table identified as QW/QB-422. Both the QB-422 table (brazing P-Numbers) and Appendix C table (S-Numbers) were deleted. The new Table QW/QB-422 was divided into ferrous and nonferrous sections. Metals were listed in numerical order by material specification number to aid users in locating the appropriate grouping number. An abbreviated listing of metals grouped by P-Numbers, Nonmandatory Appendix D, has been included for users still wishing to locate groupings of metals by welding P-Number.

In the 2009 Addenda, S-Number base metals listed in the QW/QB-422 table were reassigned as P-Numbers and the S-Number listings and references were deleted.

The QW-451 and QB-451 tables for procedure qualification thickness requirements and the QW-452 and QB-452 tables for performance qualification thickness are given and may be used only as referenced by other paragraphs. Generally, the appropriate essential variables reference these tables.

Revisions to the 1980 Edition of Section IX introduced new definitions for position and added a fillet-weld orientation sketch to complement the groove-weld orientation sketch. The new revision to position indicates that a welder qualifies in the 1G, 2G, 3G, etc., position and is then qualified to weld, in production, in the F, V, H, or O positions as appropriate. QW-461.9 is a revised table that summarizes these new qualifications.

The data articles also give sketches of coupon orientations, removal of test specimens, and test jig dimensions. These are referenced by Articles I, XI, and XXI.

QW-470 describes etching processes and reagents.

Within Part QG is a list of general definitions applicable to Section IX–adopted material joining processes. These may differ slightly from other welding documents.

Nonmandatory Forms for documenting procedure and performance qualifications are provided for the aid of those who do not wish to design their own forms. Any form(s) that address all applicable requirements of Section IX may be used.

SUMMARY OF CHANGES

The 2013 Edition of this Code contains revisions in addition to the 2010 Edition with 2011 Addenda.

After publication of the 2013 Edition, Errata to the BPV Code may be posted on the ASME Web site to provide corrections to incorrectly published items, or to correct typographical or grammatical errors in the BPV Code. Such Errata shall be used on the date posted.

Information regarding Special Notices and Errata is published on the ASME Web site under the BPVC Resources page at http://www.asme.org/kb/standards/publications/bpvc-resources.

Changes given below are identified on the pages by a margin note, (13), placed next to the affected area.

The Record Numbers listed below are explained in more detail in "List of Changes in Record Number Order" following this Summary of Changes.

Page	Location	Change (Record Number)
	Cover and Title Page	Section title and subtitle revised (12-1134)
Х	List of Sections	Revised (12-749)
xii	Foreword	Revised in its entirety (09-760)
XV	Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees	Revised (12-1641)
xvii	Personnel	Updated
xxxii	Introduction	Revised in its entirety (12-383)
xlii	Cross-Referencing and Stylistic Changes in the Boiler and Pressure Vessel Code	Added
1	Part QG	Added (12-383, 12-1956)
14	QW-100	Revised (12-159, 12-383)
20	QW-191.1.2.2	(1) Subparagraph (b)(3) revised (11-1697) (2) Figure QW-192.2.2.2(b)(4) added (formerly, in Appendix I)
21	QW-191.2.1	Subparagraph (b) revised (12-383)
22	QW-191.2.2	Subparagraph (a) revised (12-383)
23	QW-193.1	Revised (11-2142)
24	QW-194	Revised (11-1145)
26	Appendix I	Illustration designated as Figure QW-191.1.2.2(b)(4) and placed after QW-191.1.2.2(b)(3) <i>(11-1697)</i>
27	QW-200.1	First paragraph, second paragraph of subpara. (b), and subpara. (d) revised <i>(12-383)</i>
27	QW-200.2	Revised (12-383)
28	QW-201	Revised in its entirety (12-383)

Page	Location	Change (Record Number)
29	QW-202.1	Fifth paragraph revised (12-383)
31	QW-220	Added (09-298)
31	QW-221	Added (11-996)
54	Table QW-261	Rows for QW-403 revised (11-507)
57	Table QW-264	Revised (12-404, 11-2028)
58	Table QW-264.1	Revised (11-2028)
61	Table QW-267	Added (08-265)
62	Table QW-268	Added (09-298)
64	Table QW-269	Added (11-996)
66	Table QW-269.1	Added (11-996)
72	QW-290.5	Subparagraph (c) revised (10-33, 11-2062)
74	QW-300	 (1) QW-300.2 and QW-300.3 redesignated as QG-106.2 and QG-106.3, respectively (12-383) (2) In QW-301.2, first sentence revised and last paragraph deleted (12-383) (3) QW-301.3 revised (12-383) (4) In QW-302.2, seventh line revised (11-1008) (5) In QW-303.3, first line revised (12-383) (6) QW-304.1(b) and QW-305.1(b) revised (11-1008)
76	QW-310	In QW-310.2 and QW-310.3, "manufacturer" revised to read "organization" (12-383, 12-1903)
77	QW-321.3	(1) Third line of subpara. (a) revised (11-1008) (2) In suparas. (b) and (c), "manufacturer" revised to read "organization" (12-383, 12-1903)
77	QW-322.1	Subparagraphs (a)(1) and (a)(2) revised (12-383, 12-1903)
78	Table QW-356	Entry for "Brief of Variables" revised for QW-404.23 and Legend added editorially (12-338)
79	Table QW-357	Entry for "Brief of Variables" revised for QW-404.23 (12-338)
79	QW-361	(1) QW-361.1(d) revised (09-298) (2) QW-361.2(h) revised (11-996)
79	QW-362	Title revised (09-298)
82	QW-402	QW-402.27 through QW-402.30 added (08-265, 09-298)
85	QW-403.30	Added (08-265)
85	QW-403.31	Added (09-298)
87	QW-404.23	Revised (10-1589)
87	QW-404.30	Revised (11-1469)
88	QW-404.54	Added (09-298)
88	QW-405.4	First line of subpara. (b) revised <i>(12-383)</i>
90	QW-408.13	Deleted (11-2028)
90	QW-408.26	Added (08-265)

Page	Location	Change (Record Number)
92	QW-410	(1) QW-410.69 deleted (11-2028) (2) QW-410.73 through QW-410.76 added (08-265) (3) QW-410.77 through QW-410.80 added (09-298) (4) QW-410.81 through QW-410.84 added (11-996)
95	Table QW-416	Entry under "Brief of Variables" revised for QW-404.23 (12-338)
96	QW-420	Seventh paragraph revised (12-1794)
	Table QW/QB-422	 (1) Revised (09-237, 09-1775, 10-1926, 11-191, 11-622, 11-653, 11-677, 11-876, 11-998, 11-999, 11-1122, 11-1151, 11-1275, 11-1572, 11-1943, 11-2027, 12-481, 12-713, 12-740, 12-1367, 12-1393, 12-1774, 12-1954, 12-1955) (2) Corrected by errata (11-130, 11-729, 12-1305, 12-1506, 12-2090)
166	QW-423.1	In-text table revised (12-2167)
166	QW-424.2	Added (10-1463)
167	Table QW-432	 (1) F-No. 23, SFA-5.10, rows for AWS Classification ER4943 UNS No. A94943 and AWS Classification R4943 UNS No. A94943 added (12-1352) (2) For F-No. 43, SFA-5.14, AWS Classification ERNiCrFe-14 UNS N06043 row added (12-152)
176	Table QW-442	Revised (10-1741)
177	Table QW-451.1	Note (6) added (11-1146)
178	Table QW-451.4	General Note added (12-65)
190	Figure QW-461.10	Added (08-265)
190	QW-462	First sentence revised (12-383)
192	Figure QW-462.1(d)	General Note (e) added (12-224)
208	Table QW-462.10(a)	Revised (10-1774)
209	Table QW-462.10(b)	Revised (10-1774)
210	Table QW-462.10(c)	Revised (10-1774)
222	Figure QW-466.1	For both Customary and SI Units tables, second row of Material column revised (10-2021)
228	QW-471	Revised (12-1569)
229	QW-490	 Redesignated as QG-109 (12-383) Definitions for control method (FSW); control method, force (FSW); control method, position (FSW); control method, travel (FSW); metal transfer mode (gas metal-arc welding); organization; welding, hybrid; welding, hybrid, process separation; and welding, hybrid, process sequence added (08-265, 09-298, 10-2104, 11-2031, 12-383) Figures QW/QB-492.1 and QW/QB-492.2 redesignated as QG-109.2.1 and QG-109.2.2, respectively (12-383)
230	QW-510	Revised (12-383)
231	QW-540	Revised (12-383)
232	QB-100	Revised in its entirety (12-159, 12-383)
233	QB-141.4	Revised (11-1175)

Page	Location	Change (Record Number)
236	QB-200	 (1) In QB-200.1 and QB-200.2, "manufacturer or contractor" revised to read "organization" (12-383) (2) First line of QB-200.2 revised (12-383) (3) QB-201 revised in its entirety (12-383) (4) In QB-202.1, last sentence of last paragraph revised (12-383)
242	QB-300	(1) QB-300.2 and QB-300.3 deleted (12-383) (2) QB-301.2, QB-301.3, and QB-303.4 revised (12-383)
245	QB-410.5	Revised (11-1537)
260	Figure QB-462.4	General Note revised (11-1175)
271	Part QF	Added (11-568, 11-569, 11-570, 11-571, 12-159, 12-383, 12-1904, 12-2292)
294	Mandatory Appendix A	Deleted (12-1643)
296	Form QW-482	Revised (12-383, 11-1469)
298	Form QW-483	Revised (12-383)
300	Form QW-484A	Revised (12-383)
301	Form QW-484B	Revised (12-383)
302	Form QW-485	Revised (12-383)
304	Form QB-483	Revised (12-383)
305	Form QB-484	Revised (12-383)
306	Nonmandatory Appendix D	 (1) Revised (09-237, 09-1775, 10-1926, 11-191, 11-622, 11-677, 11-876, 11-998, 11-999, 11-1122, 11-1151, 11-1275, 11-1572, 11-1943, 11-2027, 12-481, 12-713, 12-1367, 12-1393, 12-1506, 12-1774, 12-1954) (2) Corrected by errata (11-2201, 12-1506)
324	Mandatory Appendix E	WPS replaced with SWPS throughout (11-1249)
332	H-500	First paragraph revised (12-383)
334	Nonmandatory Appendix K	Added (12-564)

NOTE: Volume 62 of the Interpretations to Section IX of the ASME Boiler and Pressure Vessel Code follows the last page of Section IX.

LIST OF CHANGES IN BC ORDER

Record Number	Change
08-265	Added new Table QW-266 and paras. QW-402.27, QW-402.28, QW-402.29, QW-403.30, QW-410.73, QW-410.74, QW-410.75, and QW-410.76; added new definitions for <i>control method</i> (<i>FSW</i>), <i>control method</i> , <i>force</i> (<i>FSW</i>), <i>control method</i> , <i>position</i> (<i>FSW</i>), <i>control method</i> , <i>travel</i> (<i>FSW</i>), and <i>welding</i> , <i>friction stir</i> (<i>FSW</i>) in QW-492.
09-237	Added SA-387 9Cr-1Mo plate as Grade 9 Cl. 1 and Grade 9 Cl. 2 to Table QW/QB 422 and Appendix D.
09-298	Added QW-220, QW-267, and QW-360 to incorporate hybrid laser welding.
09-760	Added an introductory subtitle clarifying the purpose and limitations of the Foreword. Revised history paragraph to recognize the realignment of the BPV into several BPV's. Deleted the paragraph on tolerances. Made editorial changes to recognize the new committee structure. Deleted words addressing governing code editions. Deleted paragraph concerning materials. Deleted the paragraph dealing with what the committee considers in the formulation of these rules.
09-1775	Revised QW/QB-422 and Nonmandatory Appendix D.
10-33	Revised QW-290.5 and figures in QW-462.12.
10-1463	Revised QW-424 to add a new para. QW-424.2 as shown in the proposal.
10-1589	Revised QW-404.23 to add clarification.
10-1741	Replaced ellipses with numeric values. Reduced significant figures to three for most elements,
	and to two for Si. Added Note (2) to clarify intent of nonlisted elements.
10-1774	Revised Tables QW-462.10(a), (b), and (c) to change the units from "kg" to "N."
10-1926	Revised SA/CSA-G40.21 Grades 44W and 50W material in QW/QB-422 and Appendix D.
10-2021	Revised Table QW-466.1 to update P-Numbers.
10-2104	Added the definition of "transfer mode" for GMAW to QW-492.
11-130	Errata correction. See Summary of Changes for details.
11-191	Assigned P-Numbers to SA-494 in QW/QB-422 and Appendix D.
11-507	Revised QW-409.8 and QW-409.10.
11-568	Incorporated new Article QF-100.
11-569	Incorporated new Article QF-200.
11-570	Incorporated new Article QF-300. Revised proposal includes QF-300 - Article redesignated from QX to QF, rewrote QF-300.2 to be the same as QW-300.2 (welding requirements), revised QF-302.2(a)(1) - changed QX-463 to QF-463(a), revised QF-302.2(a)(2) - changed QX-46X to QF-463(b), revised QF-302.2 - deleted QF-302.2(b) and removed FTT. Added QF-403.1 (2nd Column) and Ø Pipe Material (3rd Column) in Table QF-360.
11-571	Incorporated new Article QF-400.
11-622	Assigned welding and brazing P-Numbers (P-8, Grp. 4 and 102) along with ISO 15608 Group (8.2) (QW/QB-422 and Appendix D) to (10) of the specifications referenced by Table 3 of the Code Case. P-Numbers were not assigned for SA-193 (Bolting) and SA-194 (Nuts).
11-653	Deleted current reference to SA-240 UNS 31050 Type 310MoLN from QW/QB 422 as shown in the proposal file and added the dual reference for SA-240 UNS 31050 Type 310MoLN with ultimate tensile strengths of 78 and 84 ksi to QW/QB 422 as shown in the proposal file.
11-677	Assigned welding and brazing P-Numbers (P-10H, Grp. 1, and 102) along with ISO 15608 Group (10.1) (QW/QB-422 and Appendix D) to the (6) specifications referenced by the Code Case.
11-729	Errata correction. See Summary of Changes for details.
11-876	Deleted SA-695 from Table QW/QB-422 and Appendix D.
11-996	Added QW-221 and Table QW-468 to incorporate hybrid plasma GMAW. Revised text and tables to incorporate ballot comments and input from Nashville 2012 meetings.Observed that paragraph QW-251.1 should be revised (see Project Manager notes, below).
11-998	Revised QW/QB-422 and Nonmandatory Appendix D.
11-999	Assigned proposed Welding and brazing P-Numbers (P-10H, Grp. 1 and 102) along with ISO 15608 Group (10.1) (QW/QB-422 and Appendix D) to the (3) specifications referenced by the Code Case.

Record Number	Change
11-1008	Revised QW-302.2, QW-304.1, QW-305.1, and QW-321.3(a) to improve consistency and apply
	more logical requirements for volumetric examination when used for welder and welding opera-
	tor performance qualification.
11-1122	Added GB 713 Grades Q370R and 15CrMoR to QW/QB-422 and Appendix D.
11-1145	Proposed additional acceptance criteria for visual examination of performance coupons.
11-1146	Revised QW-451.1.
11-1151	Revised A-213 and A-312 tube and pipe alloys P-numbers in Table QW/QB-422 and Appendix D.
11-1175	Revised QB-141.4 and Figure QB-462.4.
11-1249	Revised Appendix E to updated references.
11-1275	Modified Table QW/QB-422 and Nonmandatory Appendix D.
11-1469	Revised QW-404.30 and QW-482.
11-1537	Revised QB-410.5.
11-1572	Revised Table QW/QB-422 and Nonmandatory Appendix D.
11-1697	Errata correction. See Summary of Changes for details.
11-1943	Added ASTM A859 as SA-859 and assigned a P-No. to Table QW/QB-422 and Appendix D.
11-2027	Added SA/NF A 36-215 Grade P440 NJ4 to QW/QB-422 and Appendix D.
11-2028	Revised QW-264 and QW-264.1, and deleted QW-408.13 and QW-410.69.
11-2031	Added definitions to QW/QB-492.
11-2062	Added paragraph to QW-209.5(c).
11-2142	Revised QW-193.1.
11-2201	Errata correction. See Summary of Changes for details.
12-65	Added General Note to Table QW-451.4.
12-152	Added ERNiCrFe-14 to QW-432.
12-159	Revised Scope paragraphs QW-101, QB-101, and QF-101.
12-224	Added Note (e) to QW-462.1(d).
12-338	Revised QW-356, QW-357, and QW-416.
12-383	Added Part QG, General Requirements. Revised the Introduction, Part QW, and Part QB to elim-
	inate redundancy with Part QG. Added a definition for the term <i>organization</i> . Globally revised
	Section IX to replace the terms manufacturer, contractor, assembler, installer, and fabricator with
	the term <i>organization</i> .
12-404	Errata correction. See Summary of Changes for details.
12-481	Added SA 533 Type E Cl 1 & 2 to Appendix D, and added SA 533 Type E Cl 1 & 2 to Table QW/
	QB-422.
12-564	Added Nonmandatory Appendix on Guidance on Invoking SC IX Requirements.
12-713	Revised Table QW/QB-422 and Appendix D to include a number of ASTM specifications. The
	changes to be voted on in the recirculation ballot are as follows:
	 changed "N08637" to "N08367" on pages 10, 12, 16, 17, 23, 24, and 35
	 changed "pipe" to "tube" for A789 S32205 on page 21
	• deleted the addition of "10H1A182S32205" on page 32 because it is already listed
	as F60
12-740	Added ISO 15608 Group numbers for SA/GB713 Q370R and SA/GB713 15CrMoR materials to
	Table QW/QB-422
12-1134	Added "Fusing" to title of Section IX Code Book.
12-1305	Errata correction. See Summary of Changes for details
12-1352	Adopted AWS A5.10/A5.10M:2012 (ISO 18273:2004 MOD) in Modification to QW-432 to add
	alloys to the F-number table.
12-1367	Added and revised API 5L grades in QW/QB-422 and Appendix D.
12-1393	Revised entire Table QW/QB-422 and Appendix D. Replaced all "SA-" with "A/SA-" and all "SB-"
	with "B/SB-". Deleted redundant ASTM A and B spec no.'s. Replaced ASTM A and B spec no's with
	"A/SA-" and "B/SB-" for materials listed in Section II Part A and Part B.
12-1506	Errata correction. See Summary of Changes for details.
12-1569	Revised QW-471.
12-1643	Deleted Appendix A and added the requirements to the front matter.
12-1774	Added A/SA 350 LF6 Cl 2 material to Table QW/QB-422 and Appendix D as a P-No 1 Group 3
	material.

Record Number	Change	
12-1794	Revised 7th paragraph of QW-420.	
12-1903	Revised QW-322.1(a)(1) and (a)(2).	
12-1904	Revised Part QF to incorporate Part QG.	
12-1954	Added UNS numbers in Table QW/QB 422 to SA-53 Type F, SA-134 (SA283GrA) and	
	(SA283GrB), SA-135 A and B, A139 A, SA-178 D, SA-182 F3VCb and F92, SA-336 F3VCb,	
	A351 CE20N, SA-369 FP92, A451 CPE20N, SA-508 3VCb, SA-541 3VCb, SA-542 E, Cl. 4a, B361	
	WP Alclad 3003, and B547 Alclad 3003. Deleted and replaced material grades with UNS num-	
	bers in Appendix D for B361 and B547.	
12-1955	Revised Table QW/QB-422 by deleting tensile strengths from A519.	
12-1956	Revise QG-106.3 and QG-106.3(f).	
12-2090	Errata correction. See Summary of Changes for details.	
12-2167	Errata correction. See Summary of Changes for details.	
12-2292	Errata correction. See Summary of Changes for details.	

(13) CROSS-REFERENCING AND STYLISTIC CHANGES IN THE BOILER AND PRESSURE VESSEL CODE

There have been structural and stylistic changes to BPVC, starting with the 2011 Addenda, that should be noted to aid navigating the contents. The following is an overview of the changes:

Subparagraph Breakdowns/Nested Lists Hierarchy

- First-level breakdowns are designated as (a), (b), (c), etc., as in the past.
- Second-level breakdowns are designated as (1), (2), (3), etc., as in the past.
- Third-level breakdowns are now designated as (-a), (-b), (-c), etc.
- Fourth-level breakdowns are now designated as (-1), (-2), (-3), etc.
- Fifth-level breakdowns are now designated as (+a), (+b), (+c), etc.
- Sixth-level breakdowns are now designated as (+1), (+2), etc.

Footnotes

With the exception of those included in the front matter (roman-numbered pages), all footnotes are treated as endnotes. The endnotes are referenced in numeric order and appear at the end of each BPVC section/subsection.

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees

Submittal of Technical Inquiries to the Boiler and Pressure Vessel Standards Committees has been moved to the front matter. This information now appears in all Boiler Code Sections (except for Code Case books).

Cross-References

It is our intention to establish cross-reference link functionality in the current edition and moving forward. To facilitate this, cross-reference style has changed. Cross-references within a subsection or subarticle will not include the designator/ identifier of that subsection/subarticle. Examples follow:

- (Sub-)Paragraph Cross-References. The cross-references to subparagraph breakdowns will follow the hierarchy of the designators under which the breakdown appears.
 - If subparagraph (-a) appears in X.1(c)(1) and is referenced in X.1(c)(1), it will be referenced as (-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(c)(2), it will be referenced as (1)(-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.1(e)(1), it will be referenced as (c)(1)(-a).
 - If subparagraph (-a) appears in X.1(c)(1) but is referenced in X.2(c)(2), it will be referenced as X.1(c)(1)(-a).
- *Equation Cross-References.* The cross-references to equations will follow the same logic. For example, if eq. (1) appears in X.1(a)(1) but is referenced in X.1(b), it will be referenced as eq. (a)(1)(1). If eq. (1) appears in X.1(a) (1) but is referenced in a different subsection/subarticle/paragraph, it will be referenced as eq. X.1(a)(1)(1).

PART QG GENERAL REQUIREMENTS

QG-100 SCOPE

(*a*) This Section contains requirements for the qualification of welders, welding operators, brazers, brazing operators, plastic fusing machine operators, and the material joining processes they use during welding, brazing, and fusing operations for the construction of components under the rules of the ASME Boiler and Pressure Vessel Code, the ASME B31 Codes for Pressure Piping, and other Codes, standards, and specifications that reference this Section. This Section is divided into four parts.

(1) Part QG contains general requirements for all material-joining processes.

(2) Part QW contains requirements for welding.

(3) Part QB contains requirements for brazing.

(4) Part QF contains requirements for plastic fusing.

(b) Whenever the referencing Code, standard, or specification imposes requirements different than those given in this Section, the requirements of the referencing Code, standard, or specification shall take precedence over the requirements of this Section.

(c) Some of the more common terms relating to material joining processes are defined in QG-109. Whenever the word "pipe" is used, "tube" shall also be applicable.

QG-101 PROCEDURE SPECIFICATION

A procedure specification is a written document providing direction to the person applying the material joining process. Details for the preparation and qualification of procedure specifications for welding (WPS), brazing (BPS), and fusing (FPS) are given in the respective Parts addressing those processes. Procedure specifications used by an *organization* (see QG-109.2) having responsibility for operational control of material joining processes shall have been qualified by that organization, or shall be a standard procedure specification acceptable under the rules of the applicable Part for the joining process to be used.

Procedure specifications address the conditions (including ranges, if any) under which the material joining process must be performed. These conditions are referred to in this Section as "variables." When a procedure specification is prepared by the organization, it shall address, as a minimum, the specific essential and nonessential variables that are applicable to the material joining process to be used in production. When the referencing Code, standard, or specification requires toughness qualification of the material joining procedure, the applicable supplementary essential variables shall also be addressed in the procedure specification.

Procedure specifications written and qualified in accordance with the rules of this Section and personnel whose performance has been qualified to use the procedure specification in accordance with these rules may be used to construct components that comply with the requirements of the ASME Boiler and Pressure Vessel Code or the ASME B31 Codes for Pressure Piping.

However, other Sections of the Code state the rules under which Section IX requirements are mandatory, in whole or in part, and may give additional requirements. The reader is advised to take these provisions into consideration when using this Section.

QG-102 PROCEDURE QUALIFICATION RECORD

The purpose of qualifying the procedure specification is to demonstrate that the joining process proposed for construction is capable of producing joints having the required mechanical properties for the intended application. Qualification of the procedure specification demonstrates the mechanical properties of the joint made using a joining process, and not the skill of the person using the joining process.

The procedure qualification record (PQR) documents what occurred during the production of a procedure qualification test coupon and the results of testing that coupon. As a minimum, the PQR shall document the essential procedure qualification test variables applied during production of the test joint, and the results of the required tests. When toughness testing is required for qualification of the procedure specification, the applicable supplementary essential variables shall be recorded for each process. The organization shall certify the PQR by a signature or other means as described in the organization's Quality Control System. The PQR shall be accessible to the Authorized Inspector. A procedure specification may be supported by one or more PQR(s), and one PQR may be used to support one or more procedure specification(s).

QG-103 PERFORMANCE QUALIFICATION

The purpose of qualifying the person who will use a joining process is to demonstrate that person's ability to produce a sound joint when using a procedure specification.

QG-104 PERFORMANCE QUALIFICATION RECORD

The performance qualification record documents what occurred during the production of a test coupon by a person using one or more joining processes following an organization's procedure specification. As a minimum, the record shall document the essential variables for each process used to produce the test coupon, the ranges of variables qualified, and the results of the required testing and/or nondestructive examinations. The organization shall certify a performance qualification record by a signature or other means as described in the organization's Quality Control System and shall make the performance qualification record accessible to the Authorized Inspector.

QG-105 VARIABLES

QG-105.1 Essential Variables. Essential variables are conditions in which a change, as described in the specific variables, is considered to affect the mechanical properties of the joint. Before using a procedure specification whose essential variables have been revised and fall outside their qualified range, the procedure specification must be requalified. Procedure qualification records may be changed when a procedure qualification test supporting the change has been completed, or when an editorial revision is necessary to correct an error, as permitted by the rules of the Part applicable to the material-joining process.

QG-105.2 Supplementary Essential Variables. Supplementary essential variables are conditions in which a change will affect the toughness properties of the joint, heat-affected zone, or base material. Supplementary essential variables become additional essential variables in situations where procedure qualifications require toughness testing. When procedure qualification does not require the addition of toughness testing, supplementary essential variables are not applicable. See QW-401.3.

QG-105.3 Nonessential Variables. Nonessential variables are conditions in which a change, as described in the specific variables, is not considered to affect the mechanical properties of the joint. A procedure specification may be editorially revised to change a nonessential variable to fall outside of its previously listed range, but does not require requalification of the procedure specification.

QG-105.4 Special Process Variables. Special process variables are conditions that apply only to special processes that are described in the Part that addresses those processes. When these special processes are used,

only the applicable special process variables shall apply. A change in these process variables shall require requalification of the procedure specification.

QG-105.5 Applicability. The applicable essential, supplementary essential, nonessential, and special process variables for a specific joining process are given in the Part addressing that joining process.

QG-106 ORGANIZATIONAL RESPONSIBILITY

QG-106.1 Procedure Qualifications. Each organization is responsible for conducting the tests required by this Section to qualify the procedures that are used in the construction of components under the rules of the Codes, standards, and specifications that reference this Section.

(*a*) Each organization is responsible for the supervision and control of persons using material-joining processes for the production of test joints for procedure qualification. The persons producing test joints for the qualification of procedures shall be either direct employees or shall be personally engaged by contract for material-joining services.

(b) Production of qualification test joints under the supervision and control of another organization is not permitted. However, it is permitted to subcontract any or all of the work necessary for preparing the materials to be joined, the subsequent work for preparing test specimens from the completed test joint, and the performance of nondestructive examination and mechanical tests, provided the organization accepts full responsibility for any such work.

(c) If the effective operational control of procedure qualifications for two or more companies of different names exists under the same corporate ownership, the companies involved shall describe in their Quality Control System/Quality Assurance Program the operational control of procedure qualifications. In this case, separate procedure qualifications are not required, provided all other requirements of this Section are met.

QG-106.2 Performance Qualifications. Each organization is responsible for the supervision and control of material joining performed by persons for whom they have operational responsibility and control. The organization shall conduct the tests required by this Section to qualify the performance of those persons with each joining process they will use for the construction of components under the rules of the Codes, standards, and specifications that reference this Section. This responsibility cannot be delegated to another organization.

(a) Each organization is responsible for the supervision and control of persons using material-joining processes for the production of test joints for performance qualification.

(b) The performance qualification test shall be performed following either a qualified procedure specification or a standard procedure specification acceptable under the rules of the applicable Part for the joining process. The Part addressing any specific joining process may exempt a portion of the procedure specification from being followed during production of the performance qualification test coupon.

(c) Production of test joints under the supervision and control of another organization is not permitted. It is permitted to subcontract any or all of the work necessary for preparing the materials to be joined in the test joint, and the subsequent work for preparing test specimens from the completed test joint, and the performance of nondestructive examination and mechanical tests, provided the organization accepts full responsibility for any such work.

(*d*) The performance qualification test may be terminated at any stage, whenever it becomes apparent to the supervisor conducting the tests that the person being tested does not have the required skill to produce satisfactory results.

(e) When a procedure qualification test coupon has been tested and found acceptable, the person who prepared the test coupon is also qualified for the joining process used, within the ranges specified for performance qualification for the applicable process(es).

(f) Persons who are successfully qualified shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify their work.

(g) If effective operational control of performance qualifications for two or more companies of different names exists under the same corporate ownership, the companies involved shall describe in their Quality Control System/Quality Assurance Program, the operational control of performance qualifications. In this case, requalification of persons working within the companies of such an organization are not required, provided all other requirements of this Section are met.

QG-106.3 Simultaneous Performance Qualifica-tions. Organizations may participate in an association to collectively qualify the performance of one or more persons for material-joining processes simultaneously. When simultaneous performance qualifications are conducted, each participating organization shall be represented during the preparation of the joint test by an employee with designated responsibility for performance qualifications.

(*a*) The procedure specifications to be followed during simultaneous performance qualifications shall be compared by the participating organizations, and shall be identical for all the essential variables, except as otherwise provided in the Part addressing the specific joining method. The qualified thickness ranges need not be identical but shall be adequate to permit the completion of the test.

(b) Alternatively, the participating organizations shall agree upon the use of a single procedure specification, for which each participating organization has a supporting PQR or has accepted responsibility for using a standard procedure specification in accordance with applicable Part for the joining method, whose acceptable range of variables is consistent with those to be followed during the performance qualification. When a single procedure specification is to be followed, each participating organization shall review and accept that procedure specification.

(c) Each participating organization's representative shall positively identify the person whose performance is to be tested, and shall verify the markings on the test coupon correspond to the person's identification; and shall also verify that the positional orientation markings on the test coupon reflect the test position of the coupon as required to identify the location of test specimen removal.

(d) Each organization's representative shall perform a visual examination of each completed test coupon and each test specimen to determine its acceptability. Alternatively, after visual examination, when the test coupon(s) is prepared and tested by an independent laboratory, that laboratory's report may be used as the basis for accepting the test results. When the test coupon(s) is examined by volumetric examination, the examining organization's report may be used as the basis for acceptance of the test coupon.

(e) Each organizational representative shall prepare and certify a performance qualification record for each person qualified.

(f) When the person changes employers between participating organizations, the employing organization shall verify the continuity of the person's qualifications has been maintained by previous employers since his qualification date, as required by the applicable Part for the joining method. Evidence of activities supporting performance qualification continuity may be obtained from any member of the association, even if the member was not a participant in the simultaneous welder qualifications.

(g) If a person has had their performance qualification withdrawn for specific reasons, the employing organization shall notify all other participating organizations that the person's qualification(s) has been revoked. The remaining participating organizations shall determine whether or not they will uphold or withdraw the performance qualifications for that person in accordance with this Section.

(*h*) When a person's performance qualifications are renewed in accordance with the provisions of the applicable Part for the joining method, the testing procedures shall follow the rules of this paragraph. Each renewing organization shall be represented by an employee with designated responsibility for performance qualification.

QG-107 OWNERSHIP TRANSFERS

Organizations may maintain effective operational control of PQRs, procedure specifications, and performance qualification records under different ownership than existed during the original procedure qualification. When an organization or some part thereof is acquired by a new owner(s), the PQRs, procedure specifications, and performance qualification records may remain valid for use by the new owner(s) without requalification; and the new owner(s) PQRs, procedure specifications, and performance qualification records become valid for use by the acquired organization, provided all of the following requirements have been met:

(*a*) The new owner(s) takes responsibility for the procedure specifications and performance qualification records.

(*b*) The procedure specifications and performance qualification records have been revised to reflect the name of the new owner(s).

(c) The Quality Control System/Quality Assurance Program documents the original source of the PQRs, procedure specifications, and performance qualification records as being from the original qualifying organization.

QG-108 QUALIFICATIONS MADE TO PREVIOUS EDITIONS

Joining procedures, procedure qualifications, and performance qualifications that were made in accordance with Editions and Addenda of this Section as far back as the 1962 Edition may be used in any construction for which the current Edition has been specified.

Joining procedures, procedure qualifications, and performance qualifications that were made in accordance with Editions and Addenda of this Section prior to the 1962 Edition may be used in any construction for which the current Edition has been specified provided the requirements of the 1962 Edition or any later edition have been met.

Procedure specifications, PQRs, and performance qualification records meeting the above requirements do not require amendment to include any variables required by later Editions and Addenda, except as specified in QW-420. Qualification of new procedure specifications for joining processes, and performance qualifications for persons applying them, shall be in accordance with the current Edition of Section IX.

QG-109 DEFINITIONS

QG-109.1 GENERAL

Definitions of the more common terms relating to material-joining processes are defined in QG-109.2. There are terms listed that are specific to ASME Section IX and are not presently defined in AWS A3.0. Several definitions have been modified slightly from AWS A3.0 so as to better define the context/intent as used in ASME Section IX.

QG-109.2 DEFINITIONS

arc seam weld: a seam weld made by an arc welding process.

arc spot weld: a spot weld made by an arc welding process.

arc strike: any inadvertent discontinuity resulting from an arc, consisting of any localized remelted metal, heat-affected metal, or change in the surface profile of any metal object. The arc may be caused by arc welding electrodes, magnetic inspection prods, or frayed electrical cable.

arc welding: a group of welding processes wherein coalescence is produced by heating with an arc or arcs, with or without the application of pressure, and with or without the use of filler metal.

as-brazed: adj. pertaining to the condition of brazements after brazing, prior to any subsequent thermal, mechanical, or chemical treatments.

as-welded: adj. pertaining to the condition of weld metal, welded joints, and weldments after welding but prior to any subsequent thermal, mechanical, or chemical treatments.

backgouging: the removal of weld metal and base metal from the weld root side of a welded joint to facilitate complete fusion and complete joint penetration upon subsequent welding from that side.

backhand welding: a welding technique in which the welding torch or gun is directed opposite to the progress of welding.

backing: a material placed at the root of a weld joint for the purpose of supporting molten weld metal so as to facilitate complete joint penetration. The material may or may not fuse into the joint. See also *retainer*.

backing gas: a gas, such as argon, helium, nitrogen, or reactive gas, which is employed to exclude oxygen from the root side (opposite from the welding side) of weld joints.

base metal: the metal or alloy that is welded, brazed, or cut.

bead-up cycle: part of the butt-fusing process to ensure complete contact between the heater surface and the pipe ends. The bead-up cycle begins when initial contact of the pipe ends to the heater is made at butt-fusing pressure until an indication of melt is observed around the pipe circumference.

bond line (brazing and thermal spraying): the cross section of the interface between a braze or thermal spray deposit and the substrate.

braze: a joint produced by heating an assembly to suitable temperatures and by using a filler metal having a liquidus above 840°F (450°C) and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.

brazer: one who performs a manual or semiautomatic brazing operation.

brazing: a group of metal joining processes which produces coalescence of materials by heating them to a suitable temperature, and by using a filler metal having a liquidus above 840°F (450°C) and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary action.

brazing operator: one who operates machine or automatic brazing equipment.

brazing temperature: the temperature to which the base metal(s) is heated to enable the filler metal to wet the base metal(s) and form a brazed joint.

brazing temperature range: the temperature range within which brazing can be conducted.

brazing, automatic: brazing with equipment which performs the brazing operation without constant observation and adjustment by a brazing operator. The equipment may or may not perform the loading and unloading of the work.

brazing, block (BB): a brazing process that uses heat from heated blocks applied to the joint. This is an obsolete or seldom used process.

brazing, dip (DB): a brazing process in which the heat required is furnished by a molten chemical or metal bath. When a molten chemical bath is used, the bath may act as a flux; when a molten metal bath is used, the bath provides the filler metal.

brazing, furnace (FB): a brazing process in which the workpieces are placed in a furnace and heated to the brazing temperature.

brazing, induction (IB): a brazing process that uses heat from the resistance of the workpieces to induced electric current.

brazing, machine: brazing with equipment which performs the brazing operation under the constant observation and control of a brazing operator. The equipment may or may not perform the loading and unloading of the work.

brazing, manual: a brazing operation performed and controlled completely by hand. See also *automatic brazing* and *machine brazing*.

brazing, resistance (RB): a brazing process that uses heat from the resistance to electric current flow in a circuit of which the workpieces are a part.

brazing, semiautomatic: brazing with equipment which controls only the brazing filler metal feed. The advance of the brazing is manually controlled.

brazing, torch (TB): a brazing process that uses heat from a fuel gas flame.

build-up of base metal/restoration of base metal thickness: this is the application of a weld material to a base metal so as to restore the design thickness and/or structural integrity. This build-up may be with a chemistry different from the base metal chemistry which has been qualified via a standard butt welded test coupon. Also, may be called base metal repair or buildup.

butt joint: a joint between two members aligned approximately in the same plane.

butt-fusing cycle: pressure-time diagram for a defined fusing temperature, representing the entire butt-fusing operation.

butt-fusing pressure: the sum of the theoretical butt-fusing pressure plus the drag pressure. This is the gauge pressure used by the butt-fusing operator on the butt-fusing machine to join the pipe ends.

buttering: the addition of material, by welding, on one or both faces of a joint, prior to the preparation of the joint for final welding, for the purpose of providing a suitable transition weld deposit for the subsequent completion of the joint.

clad brazing sheet: a metal sheet on which one or both sides are clad with brazing filler metal.

coalescence: the growing together or growth into one body of the materials being joined.

complete fusion: fusion which has occurred over the entire base material surfaces intended for welding, and between all layers and beads.

composite: a material consisting of two or more discrete materials with each material retaining its physical identity.

consumable insert: filler metal that is placed at the joint root before welding, and is intended to be completely fused into the root to become part of the weld.

contact tube: a device which transfers current to a continuous electrode.

control method (FSW): the manner of monitoring and controlling the position of the rotating tool with respect to the weld joint during the friction stir welding process.

control method, force (FSW): a control method that uses a force set point, such as plunge force or travel force, to control the tool position. Under the force control method, the plunge depth or travel speed can vary, within a specified range, during welding.

control method, position (FSW): a control method that uses a set plunge position relative to the plate surface to control the tool position. Under the position control method, the plunge force can vary, within a specified range, during welding.

control method, travel (FSW): a control method that uses a set travel speed to control the tool position. Under the travel control method, the travel force can vary, within a specified range, during welding.

control specimen: a section from the base material tested to determine its tensile strength for the purpose of comparing to the tensile strength of the butt-fused joint.

cool time at butt-fusing pressure: the minimum time that the butt-fusing pressure shall be maintained between the pipe faces while the pipe joint cools. This is a function of the wall thickness.

corner joint: a joint between two members located approximately at right angles to each other in the form of an L.

coupon: see test coupon.

crack: a fracture-type discontinuity characterized by a sharp tip and high ratio of length and width to opening displacement.

creep strength enhanced ferritic alloys (CSEF's): a family of ferritic steels whose creep temperature strength is enhanced by the creation of a precise condition of microstructure, specifically martensite or bainite, which is stabilized during tempering by controlled precipitation of temper-resistant carbides, carbo-nitrides, or other stable and/or meta-stable phases.

data acquisition record: a detailed, permanent record of the times and pressures used in the fusing process along with the heater surface temperature, employee information, fusing machine information, pipe information, date, and time for each joint made.

defect: a discontinuity or discontinuities that by nature or accumulated effect (for example, total crack length) render a part or product unable to meet minimum applicable acceptance standards or specifications. This term designates rejectability. See also *discontinuity* and *flaw*.

direct current electrode negative (DCEN): the arrangement of direct current arc welding leads in which the electrode is the negative pole and the workpiece is the positive pole of the welding arc.

direct current electrode positive (DCEP): the arrangement of direct current arc welding leads in which the electrode is the positive pole and the workpiece is the negative pole of the welding arc.

discontinuity: an interruption of the typical structure of a material, such as a lack of homogeneity in its mechanical, metallurgical, or physical characteristics. A discontinuity is not necessarily a defect. See also *defect* and *flaw*.

double-welded joint: a joint that is welded from both sides.

double-welded lap joint: a lap joint in which the overlapped edges of the members to be joined are welded along the edges of both members.

drag pressure: the pressure required to overcome the drag resistance and frictional resistance in the butt-fusing machine and keep the carriage moving at its slowest speed.

drag resistance: force-opposing movement of the movable clamp due to the weight of the pipe.

dwell: the time during which the energy source pauses at any point in each oscillation.

electrode, arc welding: a component of the welding circuit through which current is conducted.

electrode, bare: a filler metal electrode that has been produced as a wire, strip, or bar with no coating or covering other than that incidental to its manufacture or preservation.

electrode, carbon: a nonfiller material electrode used in arc welding and cutting, consisting of a carbon or graphite rod, which may be coated with copper or other materials.

electrode, composite: a generic term of multicomponent filler metal electrodes in various physical forms, such as stranded wires, tubes, and covered electrodes.

electrode, covered: a composite filler metal electrode consisting of a core of a bare electrode or metal-cored electrode to which a covering sufficient to provide a slag layer on the weld metal has been applied. The covering may contain materials providing such functions as shielding from the atmosphere, deoxidation, and arc stabilization, and can serve as a source of metallic additions to the weld.

electrode, electroslag welding: a filler metal component of the welding circuit through which current is conducted between the electrode guiding member and the molten slag.

NOTE: Bare electrodes and composite electrodes as defined under arc welding electrode are used for electroslag welding. A consumable guide may also be used as part of the electroslag welding electrode system.

electrode, emissive: a filler metal electrode consisting of a core of a bare electrode or a composite electrode to which a very light coating has been applied to produce a stable arc.

electrode, flux-cored: a composite filler metal electrode consisting of a metal tube or other hollow configuration containing ingredients to provide such functions as shielding atmosphere, deoxidation, arc stabilization, and slag formation. Alloying materials may be included in the core. External shielding may or may not be used.

electrode, lightly coated: a filler metal electrode consisting of a metal wire with a light coating applied subsequent to the drawing operation, primarily for stabilizing the arc.

electrode, metal: a filler or nonfiller metal electrode used in arc welding and cutting that consists of a metal wire or rod that has been manufactured by any method and that is either bare or covered.

electrode, metal-cored: a composite filler metal electrode consisting of a metal tube or other hollow configuration containing alloying ingredients. Minor amounts of ingredients providing such functions as arc stabilization and fluxing of oxides may be included. External shielding gas may or may not be used.

electrode, resistance welding: the part of a resistance welding machine through which the welding current and, in most cases, force are applied directly to the workpiece. The electrode may be in the form of a rotating wheel, rotating roll, bar, cylinder, plate, clamp, chuck, or modification thereof.

electrode, stranded: a composite filler metal electrode consisting of stranded wires which may mechanically enclose materials to improve properties, stabilize the arc, or provide shielding.

electrode, tungsten: a nonfiller metal electrode used in arc welding, arc cutting, and plasma spraying, made principally of tungsten.

face feed: the application of filler metal to the face side of a joint.

ferrite number: an arbitrary, standardized value designating the ferrite content of an austenitic stainless steel weld metal. It should be used in place of percent ferrite or volume percent ferrite on a direct one-to-one replacement basis. See the latest edition of AWS A4.2, Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic Stainless Steel Weld Metal.

filler metal: the metal or alloy to be added in making a welded, brazed, or soldered joint.

filler metal, brazing: the metal or alloy used as a filler metal in brazing, which has a liquidus above 840°F (450°C) and below the solidus of the base metal.

filler metal, powder: filler metal in particle form.

filler metal, supplemental: in electroslag welding or in a welding process in which there is an arc between one or more consumable electrodes and the workpiece, a powder, solid, or composite material that is introduced into the weld other than the consumable electrode(s).

fillet weld: a weld of approximately triangular cross section joining two surfaces approximately at right angles to each other in a lap joint, tee joint, or corner joint.

flaw: an undesirable discontinuity. See also defect.

flux (welding/brazing): a material used to dissolve, prevent, or facilitate the removal of oxides or other undesirable surface substances. It may act to stabilize the arc, shield the molten pool, and may or may not evolve shield-ing gas by decomposition.

flux cover: metal bath dip brazing and dip soldering. A layer of molten flux over the molten filler metal bath.

flux, active (SAW): a flux from which the amount of elements deposited in the weld metal is dependent upon the welding parameters, primarily arc voltage.

flux, alloy (SAW): a flux which provides alloying elements in the weld metal deposit.

flux, neutral (SAW): a flux which will not cause a significant change in the weld metal composition when there is a large change in the arc voltage.

forehand welding: a welding technique in which the welding torch or gun is directed toward the progress of welding.

frequency: the completed number of cycles which the oscillating head makes in 1 min or other specified time increment.

frictional resistance in the butt-fusing machine: force-opposing movement due to friction in the mechanism of the fusing machine.

fuel gas: a gas such as acetylene, natural gas, hydrogen, propane, stabilized methylacetylene propadiene, and other fuels normally used with oxygen in one of the oxyfuel processes and for heating.

fused spray deposit (thermal spraying): a self-fluxing thermal spray deposit which is subsequently heated to coalescence within itself and with the substrate.

fusing: the coalescence of two plastic members by the combination of controlled heating and the application of pressure approximately normal to the interface between them.

fusing gauge pressure: the hydraulic gauge pressure to be observed by the fusing machine operator when fusing PE pipe ends. This is the sum of the theoretical fusing pressure plus the drag pressure.

fusing machine operator: person trained and qualified to carry out fusing of polyethylene (PE) pipes and/or fittings using a fusing procedure.

fusing procedure: a document providing in detail the required variables for the butt-fusing process to assure repeatability in the butt-fusing procedure (FPS or SFPS).

fusion (fusion welding): the melting together of filler metal and base metal, or of base metal only, to produce a weld.

fusion face: a surface of the base metal that will be melted during welding.

fusion line: a non-standard term for weld interface.

gas backing: see backing gas.

globular transfer (arc welding): a type of metal transfer in which molten filler metal is transferred across the arc in large droplets.

groove weld: a weld made in a groove formed within a single member or in the groove between two members to be joined. The standard types of groove weld are as follows:

- (a) square groove weld
- (b) single-Vee groove weld
- (c) single-bevel groove weld
- (d) single-U groove weld
- (e) single-J groove weld
- (f) single-flare-bevel groove weld
- (g) single-flare-Vee groove weld
- (*h*) double-Vee groove weld
- (i) double-bevel groove weld
- (j) double-U groove weld
- (k) double-J groove weld
- *(l)* double-flare-bevel groove weld
- (m) double-flare-Vee groove weld

heat soak cycle: the portion of the procedure where heat is allowed to soak into the pipes or fittings after the bead-up cycle is complete. The heat soak cycle begins by reducing the pressure to that required to maintain contact with the heater surfaces without force. The pipe ends continue heating until the minimum heat soak time is completed for the pipe wall being joined and the minimum bead size is attained per the standard procedure.

heat soak time: the time required to complete the heat soak cycle.

heater removal (dwell) time: period of time from the separation of the pipe or fitting ends from the heater surface, removal of the heater, and closure of the carriage to bring the molten pipe or fitting ends together.

heater temperature: measured temperature on the surface of the heater where the pipe or fitting cross section makes contact.

heat-affected zone: that portion of the base metal which has not been melted, but whose mechanical properties or microstructures have been altered by the heat of welding or cutting.

Instantaneous power or energy: As used for waveform controlled welding, the determination of power or energy using the product of current and voltage measurements made at rapid intervals which capture brief changes in the welding waveform.

interfacial pressure: the amount of force per pipe joint area required to make an approved butt-fusing joint. This is used to calculate the fusing machine gauge pressure. The interfacial pressure is often expressed as a range [example: 60 psi to 90 psi (400 kPa to 600 kPa)], and the common practice is to use the mid-range [example: 75 psi (505 kPa) when making these calculations.

interpass temperature: the highest temperature in the weld joint immediately prior to welding, or in the case of multiple pass welds, the highest temperature in the section of the previously deposited weld metal, immediately before the next pass is started.

joint: the junction of members or the edges of members which are to be joined or have been joined.

joint penetration: the distance the weld metal extends from the weld face into a joint, exclusive of weld reinforcement.

keyhole welding: a technique in which a concentrated heat source penetrates partially or completely through a workpiece, forming a hole (keyhole) at the leading edge of the weld pool. As the heat source progresses, the molten metal fills in behind the hole to form the weld bead.

lap joint: a joint between two overlapping members in parallel planes.

lap or overlap: the distance measured between the edges of two plates when overlapping to form the joint.

layer: a stratum of weld metal consisting of one or more beads. See Figures QG-109.2.1 and QG-109.2.2.

lower transformation temperature: the temperature at which austenite begins to form during heating.

macro-examination: the process of observing a specimen cross-section by the unaided eye, or at a specified low magnification, with or without the use of smoothing and etching.

melt bead size: the width of a bead formed at the interface between the pipe end and the heater surface during the heating cycle.

melt-in: a technique of welding in which the intensity of a concentrated heat source is so adjusted that a weld pass can be produced from filler metal added to the leading edge of the molten weld metal.

metal transfer mode (gas metal-arc welding): the manner in which molten metal travels from the end of a consumable electrode to the workpiece. See also short-circuiting transfer (gas metal-arc welding); pulsed power welding; globular transfer (arc welding); pulsed spray welding; and spray transfer (arc welding).

nugget: the volume of weld metal formed in a spot, seam, or projection weld.

organization: as used in this Section, an organization is a manufacturer, contractor, assembler, installer, or some other single or combined entity having responsibility for operational control of the material-joining methods used in the construction of components in accordance with the codes, standards, and specifications which reference this Section.

oscillation: for a machine or automatic process, an alternating motion relative to the direction of travel of welding, brazing, or thermal spray device. See also *weave bead*.

overlay: a non-standard term, used in Section IX, for surfacing. See also *hard-facing* and *corrosion-resistant overlay*.

overlay, corrosion-resistant weld metal: deposition of one or more layers of weld metal to the surface of a base material in an effort to improve the corrosion resistance properties of the surface. This would be applied at a level above the minimum design thickness as a nonstructural component of the overall wall thickness.

overlay, hard-facing weld metal: deposition of one or more layers of weld metal to the surface of a material in an effort to improve the wear resistance properties of the surface. This would be applied at a level above the minimum design thickness as a nonstructural component of the overall wall thickness.

pass: a single progression of a welding or surfacing operation along a joint, weld deposit, or substrate. The result of a pass is a weld bead or layer.

pass, cover: a final or cap pass(es) on the face of a weld.

pass, wash: pass to correct minor surface aberrations and/ or prepare the surface for nondestructive testing.

peel test: a destructive method of testing that mechanically separates a lap joint by peeling.

peening: the mechanical working of metals using impact blows.

performance qualification: the demonstration of a welder's or welding operator's ability to produce welds meeting prescribed standards.

plastics:: those materials listed in Table QF-422.

plug weld: a weld made in a circular, or other geometrically shaped hole (like a slot weld) in one member of a lap or tee joint, joining that member to the other. The walls of the hole may or may not be parallel, and the hole may be partially or completely filled with weld metal. (A filletwelded hole or spot weld should not be construed as conforming to this definition.)

polarity, reverse: the arrangement of direct current arc welding leads with the work as the negative pole and the electrode as the positive pole of the welding arc; a synonym for direct current electrode positive.

polarity, straight: the arrangement of direct current arc welding leads in which the work is the positive pole and the electrode is the negative pole of the welding arc; a synonym for direct current electrode negative.

polyethylene (PE): a polyolefin composed of polymers of ethylene.

postbraze heat treatment: any heat treatment subsequent to brazing.

postheating: the application of heat to an assembly after welding, brazing, soldering, thermal spraying, or thermal cutting.

postweld heat treatment: any heat treatment subsequent to welding.

postweld hydrogen bakeout: holding a completed or partially completed weld at elevated temperature below 800°F (425°C) for the purpose of allowing hydrogen diffusion from the weld.

powder: see filler metal, powder.

preheat current: an impulse or series of impulses that occurs prior to and is separated from the welding current.

preheat maintenance: practice of maintaining the minimum specified preheat temperature, or some specified higher temperature for some required time interval after welding or thermal spraying is finished or until post weld heat treatment is initiated.

preheat temperature: the minimum temperature in the weld joint preparation immediately prior to the welding; or in the case of multiple pass welds, the minimum temperature in the section of the previously deposited weld metal, immediately prior to welding.

preheating: the application of heat to the base metal immediately before a welding or cutting operation to achieve a specified minimum preheat temperature.

pulsed power welding: an arc welding process variation in which the welding power source is programmed to cycle between low and high power levels.

rabbet joint: typical design is indicated in Figures QB-462.1(c), QB-462.4, QB-463.1(c), and QB-463.2(a).

retainer: nonconsumable material, metallic or nonmetallic, which is used to contain or shape molten weld metal. See also *backing*.

seal weld: any weld designed primarily to provide a specific degree of tightness against leakage.

seam weld: a continuous weld made between or upon overlapping members in which coalescence may start and occur on the faying surfaces, or may have proceeded from the surface of one member. The continuous weld may consist of a single weld bead or a series of overlapping spot welds. See also *resistance welding*. short-circuiting transfer (gas metal-arc welding): metal transfer in which molten metal from a consumable electrode is deposited during repeated short circuits. See also globular transfer and spray transfer.

single-welded joint: a joint welded from one side only.

single-welded lap joint: a lap joint in which the overlapped edges of the members to be joined are welded along the edge of one member only.

slag inclusion: nonmetallic solid material entrapped in weld metal or between weld metal and base metal.

specimen: see test specimen.

spot weld: a weld made between or upon overlapping members in which coalescence may start and occur on the faying surfaces or may proceed from the outer surface of one member. The weld cross section (plan view) is approximately circular.

spray transfer (arc welding): metal transfer in which molten metal from a consumable electrode is propelled axially across the arc in small droplets.

spray-fuse: a thermal spraying technique in which the deposit is reheated to fuse the particles and form a metallurgical bond with the substrate.

Standard Welding Procedure Specification (SWPS): a welding procedure specification, published by the American Welding Society, that is made available for production welding by companies or individuals without further qualification, and that may be used in Code applications in accordance with the restrictions and limitations of Article V.

stringer bead: a weld bead formed without appreciable weaving.

surface temper bead reinforcing layer: a subset of temper bead welding in which one or more layers of weld metal are applied on or above the surface layers of a component and are used to modify the properties of previously deposited weld metal or the heat-affected zone. Surface layer may cover a surface or only the perimeter of the weld.

surfacing: the application by welding, brazing, or thermal spraying of a layer(s) of material to a surface to obtain desired properties or dimensions, as opposed to making a joint.

tee joint (T): a joint between two members located approximately at right angles to each other in the form of a T.

temper bead welding: a weld bead placed at a specific location in or at the surface of a weld for the purpose of affecting the metallurgical properties of the heat-affected zone or previously deposited weld metal. The bead may be above, flush with, or below the surrounding base metal surface. If above the base metal surface, the beads may cover all or only part of the weld deposit and may or may not be removed following welding. *test coupon*: a weld or braze assembly for procedure or performance qualification testing. The coupon may be any product from plate, pipe, tube, etc., and may be a fillet weld, overlay, deposited weld metal, etc.

test coupon, fusing: a butt-fused plastic test joint that is made to qualify a butt-fusing procedure or operator.

test specimen: a sample of a test coupon for specific test. The specimen may be a bend test, tension test, impact test, chemical analysis, macrotest, etc. A specimen may be a complete test coupon, for example, in radiographic testing or small diameter pipe tension testing.

theoretical fusing pressure: the pipe area multiplied by the interfacial pressure and divided by the total effective piston area of the butt-fusing machine.

thermal cutting (TC): a group of cutting processes that severs or removes metal by localized melting, burning, or vaporizing of the workpieces.

throat, actual (of fillet): the shortest distance from the root of a fillet weld to its face.

throat, effective (of fillet): the minimum distance from the fillet face, minus any convexity, to the weld root. In the case of fillet welds combined with a groove weld, the weld root of the groove weld shall be used.

throat, theoretical (of fillet): the distance from the beginning of the joint root perpendicular to the hypotenuse of the largest right triangle that can be inscribed within the cross-section of a fillet weld. This dimension is based on the assumption that the root opening is equal to zero.

undercut: a groove melted into the base metal adjacent to the weld toe or weld root and left unfilled by weld metal.

upper transformation temperature: the temperature at which transformation of the ferrite to austenite is completed during heating.

usability: a measure of the relative ease of application of a filler metal to make a sound weld or braze joint.

waveform controlled welding: A welding process modification of the voltage and/or current wave shape to control characteristics such as droplet shape, penetration, wetting, bead shape or transfer mode(s).

weave bead: for a manual or semiautomatic process, a weld bead formed using weaving. See also *oscillation*.

weaving: a welding technique in which the energy source is oscillated transversely as it progresses along the weld path.

weld: a localized coalescence of metals or nonmetals produced either by heating the materials to the welding temperature, with or without the application of pressure, or by the application of pressure alone and with or without the use of filler material. weld bead: a weld deposit resulting from a pass. See also *stringer bead* and *weave bead*.

weld face: the exposed surface of a weld on the side from which welding was done.

weld interface: the interface between the weld metal and base metal in a fusion weld.

weld metal: metal in a fusion weld consisting of that portion of the base metal and filler metal melted during welding.

weld reinforcement: weld metal on the face or root of a groove weld in excess of the metal necessary for the specified weld size.

weld size: for equal leg fillet welds: the leg lengths of the largest isosceles right triangle which can be inscribed within the fillet weld cross section.

weld size: for unequal leg fillet welds: the leg lengths of the largest right triangle which can be inscribed within the fillet weld cross section.

weld size: groove welds: the depth of chamfering plus any penetration beyond the chamfering, resulting in the strength carrying dimension of the weld.

weld, autogenous: a fusion weld made without filler metal.

welder: one who performs manual or semiautomatic welding.

welding operator: one who operates machine or automatic welding equipment.

welding, arc stud (SW): an arc welding process that uses an arc between a metal stud, or similar part, and the other workpiece. The process is used without filler metal, with or without shielding gas or flux, with or without partial shielding from a ceramic or graphite ferrule surrounding the stud, and with the application of pressure after the faying surfaces are sufficiently heated.

welding, automatic: welding with equipment which performs the welding operation without adjustment of the controls by a welding operator. The equipment may or may not perform the loading and unloading of the work. See also *machine welding*.

welding, consumable guide electroslag: an electroslag welding process variation in which filler metal is supplied by an electrode and its guiding member.

welding, diffusion (DFW): a solid-state welding process producing a weld between multiple layers of sheet or plate by the application of mechanical pressure at elevated temperature with no macroscopic deformation or relative motion of the work pieces. A solid filler metal may be inserted between the faying surfaces. welding, electrogas (EGW): an arc welding process that uses an arc between a continuous filler metal electrode and the weld pool, employing approximately vertical welding progression with retainers to confine the weld metal. The process is used with or without an externally supplied shielding gas and without the application of pressure. Shielding for use with solid or metal-cored electrodes is obtained from a gas or gas mixture. Shielding for use with flux-cored electrodes may or may not be obtained from an externally supplied gas or gas mixture.

welding, electron beam (EBW): a welding process that produces coalescence with a concentrated beam composed primarily of high velocity electrons, impinging on the joint. The process is used without shielding gas and without the application of pressure.

welding, electroslag (ESW): a welding process producing coalescence of metals with molten slag which melts the filler metal and the surfaces of the work to be welded. The molten weld pool is shielded by this slag which moves along the full cross section of the joint as welding progresses. The process is initiated by an arc which heats the slag. The arc is then extinguished and the conductive slag is maintained in a molten condition by its resistance to electric current passing between the electrode and the work. See electroslag welding electrode and consumable guide electroslag welding.

welding, flux-cored arc (FCAW): a gas metal-arc welding process that uses an arc between a continuous filler metal electrode and the weld pool. The process is used with shielding gas from a flux contained within the tubular electrode, with or without additional shielding from an externally supplied gas, and without the application of pressure.

welding, friction (FRW): a solid state welding process that produces a weld under compressive force contact of workpieces rotating or moving relative to one another to produce heat and plastically displace material from the faying surfaces.

welding, friction stir (FSW): a variation of friction welding producing a weld by the friction heating and plastic material displacement caused by a rapidly rotating tool traversing the weld joint.

welding, friction, inertia and continuous drive: processes and types of friction welding (solid state welding process) wherein coalescence is produced after heating is obtained from mechanically induced sliding motion between rubbing surfaces held together under pressure. Inertia welding utilizes all of the kinetic energy stored in a revolving flywheel spindle system. Continuous drive friction welding utilizes the energy provided by a continuous drive source such as an electric or hydraulic motor.

2013 SECTION IX

welding, gas metal-arc (GMAW): an arc welding process that uses an arc between a continuous filler metal electrode and the weld pool. The process is used with shielding from an externally supplied gas and without the application of pressure.

welding, gas metal-arc, pulsed spray (GMAW-P): a variation of the gas metal-arc welding process in which the power is pulsed resulting in transfer of the metal across the arc in spray mode. See also *pulsed power welding*.

welding, gas metal-arc, short-circuiting arc (GMAW-S): a variation of the gas metal-arc welding process in which the consumable electrode is deposited during repeated short circuits. See also short-circuiting transfer.

welding, gas tungsten-arc (GTAW): an arc welding process which produces coalescence of metals by heating them with an arc between a tungsten (nonconsumable) electrode and the work. Shielding is obtained from a gas or gas mixture. Pressure may or may not be used and filler metal may or may not be used. (This process has sometimes been called TIG welding, a nonpreferred term.)

welding, gas tungsten-arc, pulsed arc (GTAW-P): a variation of the gas tungsten-arc welding process in which the current is pulsed. See also *pulsed power welding*.

welding, hybrid: welding in which two or more welding processes are used in the same weld pool.

welding, hybrid, process separation: the distance between each welding process as specified in the WPS.

welding, hybrid, process sequence: the order of each welding process with respect to the direction of travel.

welding, induction (*IW*): a welding process that produces coalescence of metals by the heat obtained from resistance of the workpieces to the flow of induced high frequency welding current with or without the application of pressure. The effect of the high-frequency welding current is to concentrate the welding heat at the desired location.

welding, laser beam (LBW): a welding process which produces coalescence of materials with the heat obtained from the application of a concentrated coherent light beam impinging upon the members to be joined.

welding, machine: welding with equipment that has controls that can be adjusted by the welding operator, or adjusted under the welding operator's direction, in response to changes in the welding conditions. The torch, gun, or electrode holder is held by a mechanical device. See also *welding, automatic*.

welding, manual: welding wherein the entire welding operation is performed and controlled by hand.

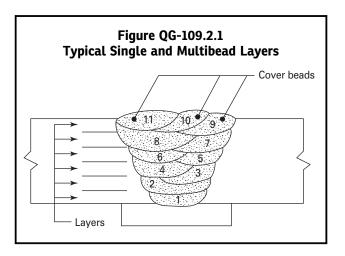
welding, oxyfuel gas (OFW): a group of welding processes which produces coalescence by heating materials with an oxyfuel gas flame or flames, with or without the application of pressure, and with or without the use of filler metal. welding, plasma-arc (PAW): an arc welding process which produces coalescence of metals by heating them with a constricted arc between an electrode and the workpiece (transferred arc), or the electrode and the constricting nozzle (nontransferred arc). Shielding is obtained from the hot, ionized gas issuing from the torch orifice which may be supplemented by an auxiliary source of shielding gas. Shielding gas may be an inert gas or a mixture of gases. Pressure may or may not be used, and filler metal may or may not be supplied.

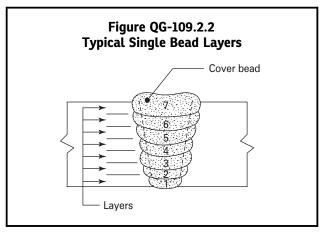
welding, projection (PW): a resistance welding process that produces coalescence by the heat obtained from the resistance of the flow of welding current. The resulting welds are localized at predetermined points by projections, embossments, or intersections. The metals to be joined lap over each other.

welding, resistance (*RW*): a group of welding processes that produces coalescence of the faying surfaces with the heat obtained from resistance of the workpieces to the flow of the welding current in a circuit of which the workpieces are a part, and by the application of pressure.

welding, resistance seam (RSEW): a resistance welding process that produces a weld at the faying surfaces of overlapped parts progressively along a length of a joint. The weld may be made with overlapping weld nuggets, a continuous weld nugget, or by forging the joint as it is heated to the welding temperature by resistance to the flow of the welding current.

welding, resistance spot (*RSW*): a resistance welding process that produces a weld at the faying surfaces of a joint by the heat obtained from resistance to the flow of welding current through the workpieces from electrodes that serve to concentrate the welding current and pressure at the weld area.


welding, resistance stud: a resistance welding process wherein coalescence is produced by the heat obtained from resistance to electric current at the interface between the stud and the workpiece, until the surfaces to be joined are properly heated, when they are brought together under pressure.


welding, semiautomatic arc: arc welding with equipment which controls only the filler metal feed. The advance of the welding is manually controlled.

welding, shielded metal-arc (SMAW): an arc welding process with an arc between a covered electrode and the weld pool. The process is used with shielding from the decomposition of the electrode covering, without the application of pressure, and with filler metal from the electrode.

welding, stud: a general term for the joining of a metal stud or similar part to a workpiece. Welding may be accomplished by arc, resistance, friction, or other suitable process with or without external gas shielding. welding, submerged-arc (SAW): an arc welding process that uses an arc or arcs between a bare metal electrode or electrodes and the weld pool. The arc and molten metal are shielded by a blanket of granular flux on the workpieces. The process is used without pressure and with filler metal from the electrode and sometimes from a supplemental source (welding rod, flux, or metal granules).

weldment: an assembly whose constituent parts are joined by welding, or parts which contain weld metal overlay.

PART QW WELDING

ARTICLE I WELDING GENERAL REQUIREMENTS

(13) **QW-100 SCOPE**

The rules in this Part apply to the preparation of Welding Procedure Specifications (WPS) and the qualification of welding procedures, welders, and welding operators for all types of manual and machine welding processes permitted in this Part. These rules may also be applied, insofar as they are applicable, to other manual or machine welding processes permitted in other Sections.

QW-101

A WPS used by an organization that will have responsible operational control of production welding shall be a WPS that has been qualified by that organization in accordance with Article II, or it shall be an AWS Standard Welding Procedure Specification (SWPS) listed in Mandatory Appendix E and adopted by that organization in accordance with Article V.

Both WPSs and SWPSs specify the variables (including ranges, if any) under which welding must be performed. These conditions include the base metals that are permitted, the filler metals that must be used (if any), preheat and postweld heat treatment requirements, etc.

When a WPS is to be prepared by the organization, it must address, as a minimum, the specific variables, both essential and nonessential, as provided in Article II for each process to be used in production welding. In addition, when other Sections of the Code require notch toughness qualification of the WPS, the supplementary essential variables must be addressed in the WPS.

QW-102

In performance qualification, the basic criterion established for welder qualification is to determine the welder's ability to deposit sound weld metal. The purpose of the performance qualification test for the welding operator is to determine the welding operator's mechanical ability to operate the welding equipment.

QW-103 RESPONSIBILITY

QW-103.1 Welding. Each organization shall conduct the tests required in this Section to qualify the welding procedures used in the construction of the weldments built under this Code and the performance of welders and welding operators who apply these procedures.

QW-103.2 Records. Each organization shall maintain a record of the results obtained in welding procedure and welder and welding operator performance qualifications. Refer to recommended Forms in Nonmandatory Appendix B.

QW-110 WELD ORIENTATION

The orientations of welds are illustrated in Figure QW-461.1 or Figure QW-461.2.

QW-120 TEST POSITIONS FOR GROOVE WELDS

Groove welds may be made in test coupons oriented in any of the positions in Figure QW-461.3 or Figure QW-461.4 and as described in the following paragraphs, except that an angular deviation of ± 15 deg from the specified horizontal and vertical planes, and an angular deviation of ± 5 deg from the specified inclined plane are permitted during welding.

QW-121 PLATE POSITIONS

QW-121.1 Flat Position 1G. Plate in a horizontal plane with the weld metal deposited from above. Refer to Figure QW-461.3, illustration (a).

QW-121.2 Horizontal Position 2G. Plate in a vertical plane with the axis of the weld horizontal. Refer to Figure QW-461.3, illustration (b).

QW-121.3 Vertical Position 3G. Plate in a vertical plane with the axis of the weld vertical. Refer to Figure QW-461.3, illustration (c).

QW-121.4 Overhead Position 4G. Plate in a horizontal plane with the weld metal deposited from underneath. Refer to Figure QW-461.3, illustration (d).

QW-122 PIPE POSITIONS

QW-122.1 Flat Position 1G. Pipe with its axis horizontal and rolled during welding so that the weld metal is deposited from above. Refer to Figure QW-461.4, illustration (a).

QW-122.2 Horizontal Position 2G. Pipe with its axis vertical and the axis of the weld in a horizontal plane. Pipe shall not be rotated during welding. Refer to Figure QW-461.4, illustration (b).

QW-122.3 Multiple Position 5G. Pipe with its axis horizontal and with the welding groove in a vertical plane. Welding shall be done without rotating the pipe. Refer to Figure QW-461.4, illustration (c).

QW-122.4 Multiple Position 6G. Pipe with its axis inclined at 45 deg to horizontal. Welding shall be done without rotating the pipe. Refer to Figure QW-461.4, illustration (d).

QW-123 TEST POSITIONS FOR STUD WELDS

QW-123.1 Stud Welding. Stud welds may be made in test coupons oriented in any of the positions as described in QW-121 for plate and QW-122 for pipe (excluding QW-122.1). In all cases, the stud shall be perpendicular to the surface of the plate or pipe. See Figures QW-461.7 and QW-461.8.

QW-130 TEST POSITIONS FOR FILLET WELDS

Fillet welds may be made in test coupons oriented in any of the positions of Figure QW-461.5 or Figure QW-461.6, and as described in the following paragraphs, except that an angular deviation of ± 15 deg from the specified horizontal and vertical planes is permitted during welding.

QW-131 PLATE POSITIONS

QW-131.1 Flat Position 1F. Plates so placed that the weld is deposited with its axis horizontal and its throat vertical. Refer to Figure QW-461.5, illustration (a).

QW-131.2 Horizontal Position 2F. Plates so placed that the weld is deposited with its axis horizontal on the upper side of the horizontal surface and against the vertical surface. Refer to Figure QW-461.5, illustration (b).

QW-131.3 Vertical Position 3F. Plates so placed that the weld is deposited with its axis vertical. Refer to Figure QW-461.5, illustration (c).

QW-131.4 Overhead Position 4F. Plates so placed that the weld is deposited with its axis horizontal on the underside of the horizontal surface and against the vertical surface. Refer to Figure QW-461.5, illustration (d).

QW-132 PIPE POSITIONS

QW-132.1 Flat Position 1F. Pipe with its axis inclined at 45 deg to horizontal and rotated during welding so that the weld metal is deposited from above and at the point of deposition the axis of the weld is horizontal and the throat vertical. Refer to Figure QW-461.6, illustration (a).

QW-132.2 Horizontal Positions 2F and 2FR.

(*a*) *Position 2F*. Pipe with its axis vertical so that the weld is deposited on the upper side of the horizontal surface and against the vertical surface. The axis of the weld will be horizontal and the pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (b).

(b) Position 2FR. Pipe with its axis horizontal and the axis of the deposited weld in the vertical plane. The pipe is rotated during welding. Refer to Figure QW-461.6, illustration (c).

QW-132.3 Overhead Position 4F. Pipe with its axis vertical so that the weld is deposited on the underside of the horizontal surface and against the vertical surface. The axis of the weld will be horizontal and the pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (d).

QW-132.4 Multiple Position 5F. Pipe with its axis horizontal and the axis of the deposited weld in the vertical plane. The pipe is not to be rotated during welding. Refer to Figure QW-461.6, illustration (e).

QW-140 TYPES AND PURPOSES OF TESTS AND EXAMINATIONS

QW-141 MECHANICAL TESTS

Mechanical tests used in procedure or performance qualification are specified in QW-141.1 through QW-141.5.

QW-141.1 Tension Tests. Tension tests as described in QW-150 are used to determine the ultimate strength of groove-weld joints.

QW-141.2 Guided-Bend Tests. Guided-bend tests as described in QW-160 are used to determine the degree of soundness and ductility of groove-weld joints.

QW-141.3 Fillet-Weld Tests. Tests as described in QW-180 are used to determine the size, contour, and degree of soundness of fillet welds.

QW-141.4 Notch-Toughness Tests. Tests as described in QW-171 and QW-172 are used to determine the notch toughness of the weldment.

QW-141.5 Stud-Weld Test. Deflection bend, hammering, torque, or tension tests as shown in Figures QW-466.4, QW-466.5, and QW-466.6, and a macro-examination performed in accordance with QW-202.5, respectively, are used to determine acceptability of stud welds.

QW-142 SPECIAL EXAMINATIONS FOR WELDERS

Radiographic or Ultrasonic examination per QW-191 may be substituted for mechanical testing of QW-141 for groove-weld performance qualification as permitted in QW-304 to prove the ability of welders to make sound welds.

QW-143 EXAMINATION FOR WELDING OPERATORS

Radiographic or Ultrasonic examination per QW-191 may be substituted for mechanical testing of QW-141 for groove weld performance qualification as permitted in QW-305 to prove the ability of welding operators to make sound welds.

QW-144 VISUAL EXAMINATION

Visual examination as described in QW-194 is used to determine that the final weld surfaces meet specified quality standards.

QW-150 TENSION TESTS

QW-151 SPECIMENS

Tension test specimens shall conform to one of the types illustrated in Figures QW-462.1(a) through QW-462.1(e) and shall meet the requirements of QW-153.

QW-151.1 Reduced Section — **Plate.** Reduced-section specimens conforming to the requirements given in Figure QW-462.1(a) may be used for tension tests on all thicknesses of plate.

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(*b*) For plate thickness greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used, in lieu of full thickness specimens, each set shall represent a single tension test of the full plate thickness. Collectively, all of the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QW-153.

QW-151.2 Reduced Section — **Pipe.** Reduced-section specimens conforming to the requirements given in Figure QW-462.1(b) may be used for tension tests on all thicknesses of pipe having an outside diameter greater than 3 in. (75 mm).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(*b*) For pipe thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used, in lieu of full thickness specimens, each set shall represent a single tension test of the full pipe thickness. Collectively, all of the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QW-153.

For pipe having an outside diameter of 3 in. (75 mm) or less, reduced-section specimens conforming to the requirements given in Figure QW-462.1(c) may be used for tension tests.

QW-151.3 Turned Specimens. Turned specimens conforming to the requirements given in Figure QW-462.1(d) may be used for tension tests.

(a) For thicknesses up to and including 1 in. (25 mm), a single turned specimen may be used for each required tension test, which shall be a specimen of the largest diameter D of Figure QW-462.1(d) possible for test coupon thickness [per Note (a) of Figure QW-462.1(d)].

(b) For thicknesses over 1 in. (25 mm), multiple specimens shall be cut through the full thickness of the weld with their centers parallel to the metal surface and not over 1 in. (25 mm) apart. The centers of the specimens adjacent to the metal surfaces shall not exceed $\frac{5}{8}$ in. (16 mm) from the surface.

(c) When multiple specimens are used, each set shall represent a single required tension test. Collectively, all the specimens required to represent the full thickness of the weld at one location shall comprise a set.

(*d*) Each specimen of the set shall be tested and meet the requirements of QW-153.

QW-151.4 Full-Section Specimens for Pipe. Tension specimens conforming to the dimensions given in Figure QW-462.1(e) may be used for testing pipe with an outside diameter of 3 in. (75 mm) or less.

QW-152 TENSION TEST PROCEDURE

The tension test specimen shall be ruptured under tensile load. The tensile strength shall be computed by dividing the ultimate total load by the least cross-sectional area of the specimen as calculated from actual measurements made before the load is applied.

QW-153 ACCEPTANCE CRITERIA — TENSION TESTS

QW-153.1 Tensile Strength. Minimum values for procedure qualification are provided under the column heading "Minimum Specified Tensile, ksi" of Table QW/QB-422. In order to pass the tension test, the specimen shall have a tensile strength that is not less than

(a) the minimum specified tensile strength of the base metal; or

(*b*) the minimum specified tensile strength of the weaker of the two, if base metals of different minimum tensile strengths are used; or

(*c*) the minimum specified tensile strength of the weld metal when the applicable Section provides for the use of weld metal having lower room temperature strength than the base metal;

(*d*) if the specimen breaks in the base metal outside of the weld or weld interface, the test shall be accepted as meeting the requirements, provided the strength is not more than 5% below the minimum specified tensile strength of the base metal.

(e) the specified minimum tensile strength is for full thickness specimens including cladding for Aluminum Alclad materials (P-No. 21 through P-No. 23) less than $\frac{1}{2}$ in. (13 mm). For Aluminum Alclad materials $\frac{1}{2}$ in. (13 mm) and greater, the specified minimum tensile strength is for both full thickness specimens that include cladding and specimens taken from the core.

QW-160 GUIDED-BEND TESTS

QW-161 SPECIMENS

Guided-bend test specimens shall be prepared by cutting the test plate or pipe to form specimens of approximately rectangular cross section. The cut surfaces shall be designated the sides of the specimen. The other two surfaces shall be called the face and root surfaces, the face surface having the greater width of weld. The specimen thickness and bend radius are shown in Figures QW-466.1, QW-466.2, and QW-466.3. Guided-bend specimens are of five types, depending on whether the axis of the weld is transverse or parallel to the longitudinal axis of the specimen, and which surface (side, face, or root) is on the convex (outer) side of bent specimen. The five types are defined as follows.

QW-161.1 Transverse Side Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that one of the side surfaces becomes the convex surface of the bent specimen. Transverse side-bend test specimens shall conform to the dimensions shown in Figure QW-462.2.

Specimens of base metal thickness equal to or greater than $1^{1}/_{2}$ in. (38 mm) may be cut into approximately equal strips between ${}^{3}/_{4}$ in. (19 mm) and $1^{1}/_{2}$ in. (38 mm) wide for testing, or the specimens may be bent at full width (see requirements on jig width in QW-466). When the

width of the weld is so large that a bend specimen cannot be bent so that the entire weld and heat affected zones are within the bent portion, multiple specimens across the entire weld and heat affected zones shall be used.

If multiple specimens are used in either situation above, one complete set shall be made for each required test. Each specimen shall be tested and meet the requirements in QW-163.

QW-161.2 Transverse Face Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that the face surface becomes the convex surface of the bent specimen. Transverse face-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(a). For subsize transverse face bends, see QW-161.4.

QW-161.3 Transverse Root Bend. The weld is transverse to the longitudinal axis of the specimen, which is bent so that the root surface becomes the convex surface of the bent specimen. Transverse root-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(a). For subsize transverse root bends, see QW-161.4.

QW-161.4 Subsize Transverse Face and Root Bends. Bend specimens taken from small diameter pipe coupons may be subsized in accordance with General Note (b) of Figure QW-462.3(a).

QW-161.5 Longitudinal-Bend Tests. Longitudinalbend tests may be used in lieu of the transverse side-bend, face-bend, and root-bend tests for testing weld metal or base metal combinations, which differ markedly in bending properties between

(a) the two base metals, or

(*b*) the weld metal and the base metal

QW-161.6 Longitudinal Face Bend. The weld is parallel to the longitudinal axis of the specimen, which is bent so that the face surface becomes the convex surface of the bent specimen. Longitudinal face-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(b).

QW-161.7 Longitudinal Root Bend. The weld is parallel to the longitudinal axis of the specimen, which is bent so that the root surface becomes the convex side of the bent specimen. Longitudinal root-bend test specimens shall conform to the dimensions shown in Figure QW-462.3(b).

QW-162 GUIDED-BEND TEST PROCEDURE

QW-162.1 Jigs. Guided-bend specimens shall be bent in test jigs that are in substantial accordance with QW-466. When using the jigs illustrated in Figure QW-466.1 or Figure QW-466.2, the side of the specimen turned toward the gap of the jig shall be the face for facebend specimens, the root for root-bend specimens, and the side with the greater discontinuities, if any, for side-bend specimens. The specimen shall be forced into the die by

applying load on the plunger until the curvature of the specimen is such that a $\frac{1}{8}$ in. (3 mm) diameter wire cannot be inserted between the specimen and the die of Figure QW-466.1, or the specimen is bottom ejected if the roller type of jig (Figure QW-466.2) is used.

When using the wrap around jig (Figure QW-466.3), the side of the specimen turned toward the roller shall be the face for face-bend specimens, the root for root-bend specimens, and the side with the greater discontinuities, if any, for side-bend specimens.

When specimens wider than $1^{1}/_{2}$ in. (38 mm) are to be bent as permitted in Figure QW-462.2, the test jig mandrel must be at least $1^{1}/_{4}$ in. (6 mm) wider than the specimen width.

QW-163 ACCEPTANCE CRITERIA — BEND TESTS

The weld and heat-affected zone of a transverse weldbend specimen shall be completely within the bent portion of the specimen after testing.

The guided-bend specimens shall have no open discontinuity in the weld or heat-affected zone exceeding $\frac{1}{8}$ in. (3 mm), measured in any direction on the convex surface of the specimen after bending. Open discontinuities occurring on the corners of the specimen during testing shall not be considered unless there is definite evidence that they result from lack of fusion, slag inclusions, or other internal discontinuities. For corrosion-resistant weld overlay cladding, no open discontinuity exceeding $\frac{1}{16}$ in. (1.5 mm), measured in any direction, shall be permitted in the cladding, and no open discontinuity exceeding $\frac{1}{8}$ in. (3 mm) shall be permitted along the approximate weld interface.

QW-170 NOTCH-TOUGHNESS TESTS

QW-171 NOTCH-TOUGHNESS TESTS — CHARPY V-NOTCH

QW-171.1 General. Charpy V-notch impact tests shall be made when required by other Sections.

Test procedures and apparatus shall conform to the requirements of SA-370.

QW-171.2 Acceptance. The acceptance criteria shall be in accordance with that Section specifying impact requirements.

QW-171.3 Location and Orientation of Test Specimen. The impact test specimen and notch location and orientation shall be as given in the Section requiring such tests.

When qualifying pipe in the 5G or 6G position, the notch-toughness specimens shall be removed from the shaded portion of Figure QW-463.1(f).

QW-172 NOTCH-TOUGHNESS TESTS — DROP WEIGHT

QW-172.1 General. Drop weight tests shall be made when required by other Sections.

Test procedures and apparatus shall conform to the requirements of ASTM Specification E208.

QW-172.2 Acceptance. The acceptance criteria shall be in accordance with that Section requiring drop weight tests.

QW-172.3 Location and Orientation of Test Specimen. The drop weight test specimen, the crack starter location, and the orientation shall be as given in the Section requiring such tests.

When qualifying pipe in the 5G or 6G position, the notch-toughness specimens shall be removed from the shaded portion of Figure QW-463.1(f).

QW-180 FILLET-WELD TESTS

QW-181 PROCEDURE AND PERFORMANCE QUALIFICATION SPECIMENS

QW-181.1 Procedure. The dimensions and preparation of the fillet-weld test coupon for procedure qualification as required in QW-202 shall conform to the requirements in Figure QW-462.4(a) or Figure QW-462.4(d). The test coupon for plate-to-plate shall be cut transversely to provide five test specimen sections, each approximately 2 in. (50 mm) long. For pipe-to-plate or pipe-to-pipe, the test coupon shall be cut transversely to provide four approximately equal test specimen sections. The test specimens shall be macro-examined to the requirements of QW-183.

QW-181.1.1 Production Assembly Mockups. Production assembly mockups may be used in lieu of QW-181.1. The mockups for plate-to-shape shall be cut transversely to provide five approximately equal test specimens not to exceed approximately 2 in. (50 mm) in length. For pipe-to-shape mockups, the mockup shall be cut transversely to provide four approximately equal test specimens. For small mockups, multiple mockups may be required to obtain the required number of test specimens. The test specimens shall be macro-examined to the requirements of QW-183.

QW-181.2 Performance. The dimensions and the preparation of the fillet-weld test coupon for performance qualification shall conform to the requirements in Figure QW-462.4(b) or Figure QW-462.4(c). The test coupon for plate-to-plate shall be cut transversely to provide a center section approximately 4 in. (100 mm) long and two end sections, each approximately 1 in. (25 mm) long. For pipe-to-plate or pipe-to-pipe, the test coupon shall be cut to provide two quarter sections test specimens opposite to each other. One of the test specimens shall be fracture tested in accordance with QW-182 and the other macro-examined to the requirements of QW-184. When

qualifying pipe-to-plate or pipe-to-pipe in the 5F position, the test specimens shall be removed as indicated in Figure QW-463.2(h).

QW-181.2.1 Production Assembly Mockups. Production assembly mockups may be used in lieu of the fillet-weld test coupon requirements of QW-181.2.

(a) Plate-to-Shape

(1) The mockup for plate-to-shape shall be cut transversely to provide three approximately equal test specimens not to exceed approximately 2 in. (50 mm) in length. The test specimen that contains the start and stop of the weld shall be fracture tested in accordance with QW-182. A cut end of one of the remaining test specimens shall be macro-examined in accordance with QW-184.

(b) Pipe-to-Shape

(1) The mockup for pipe-to-shape shall be cut transversely to provide two quarter sections approximately opposite to each other. The test specimen that contains the start and stop of the weld shall be fracture tested in accordance with QW-182. A cut end of the other quarter section shall be macro-examined in accordance with QW-184. When qualifying pipe-to-shape in the 5F position, the fracture specimen shall be removed from the lower 90 deg section of the mockup.

QW-182 FRACTURE TESTS

The stem of the 4 in. (100 mm) performance specimen center section in Figure QW-462.4(b) or the stem of the quarter section in Figure QW-462.4(c), as applicable, shall be loaded laterally in such a way that the root of the weld is in tension. The load shall be steadily increased until the specimen fractures or bends flat upon itself.

If the specimen fractures, the fractured surface shall show no evidence of cracks or incomplete root fusion, and the sum of the lengths of inclusions and porosity visible on the fractured surface shall not exceed $\frac{3}{8}$ in. (10 mm) in Figure QW-462.4(b) or 10% of the quarter section in Figure QW-462.4(c).

QW-183 MACRO-EXAMINATION — PROCEDURE SPECIMENS

One face of each cross section of the five test specimens in Figure QW-462.4(a) or four test specimens in Figure QW-462.4(d), as applicable shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition to the weld metal and heat affected zone. The examination of the cross sections shall include only one side of the test specimen at the area where the plate or pipe is divided into sections i.e., adjacent faces at the cut shall not be used. In order to pass the test

(*a*) visual examination of the cross sections of the weld metal and heat-affected zone shall show complete fusion and freedom from cracks

(b) there shall be not more than $\frac{1}{8}$ in. (3 mm) difference in the length of the legs of the fillet

QW-184 MACRO-EXAMINATION — PERFORMANCE SPECIMENS

The cut end of one of the end plate sections, approximately 1 in. (25 mm) long, in Figure QW-462.4(b) or the cut end of one of the pipe quarter sections in Figure QW-462.4(c), as applicable, shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld metal and heat affected zone. In order to pass the test

(a) visual examination of the cross section of the weld metal and heat-affected zone shall show complete fusion and freedom from cracks, except that linear indications at the root not exceeding 1/32 in. (0.8 mm) shall be acceptable

(b) the weld shall not have a concavity or convexity greater than $\frac{1}{1_{16}}$ in. (1.5 mm)

(c) there shall be not more than $\frac{1}{8}$ in. (3 mm) difference in the lengths of the legs of the fillet

QW-185 DIFFUSION WELDING — PROCEDURE AND PERFORMANCE QUALIFICATION SPECIMENS

QW-185.1 The test block shall be a minimum of 8 in. x 8 in. (200 mm x 200 mm) and of a thickness such that there are at least 50 interface planes being welded.

QW-185.2 A minimum of three tension test specimens in accordance with the requirements of SA-370 shall be taken perpendicular to the interface planes and three parallel to the interface planes. The tension test results shall comply with QW-153.

QW-185.3 Microstructural evaluation shall be conducted in accordance with the requirements of ASTM E3 on a minimum of three cross-sections, one each from the top, center, and bottom one-third of the test coupon. The samples shall be polished, etched, and shall be free from cracks and shall show no incomplete bond or porosity on or adjacent to the bond lines. Size of each sample shall be that which can be mounted and polished to allow examination with an optical microscope at 50x to 100x magnification.

QW-190 OTHER TESTS AND EXAMINATIONS

QW-191 VOLUMETRIC NDE

QW-191.1 Radiographic Examination QW-191.1.1 Method

The radiographic examination in QW-142 for welders and in QW-143 for welding operators shall meet the requirements of Article 2, Section V, except as follows:

(*a*) A written radiographic examination procedure is not required. Demonstration of density and image quality requirements on production or technique radiographs shall be considered satisfactory evidence of compliance with Article 2 of Section V. (*b*) Final acceptance of radiographs shall be based on the ability to see the prescribed image and the specified hole of a hole-type image quality indicator (IQI) or the designated wire of a wire-type IQI. The acceptance standards of QW-191.1.2 shall be met.

QW-191.1.2 Acceptance Criteria. QW-191.1.2.1 Terminology.

(a) Linear Indications. Cracks, incomplete fusion, inadequate penetration, and slag are represented on the radiograph as linear indications in which the length is more than three times the width.

(b) Rounded Indications. Porosity and inclusions such as slag or tungsten are represented on the radiograph as rounded indications with a length three times the width or less. These indications may be circular, elliptical, or irregular in shape; may have tails; and may vary in density.

(13) **QW-191.1.2.2 Qualification Test Welds.** Welder and welding operator performance tests by radiography of welds in test assemblies shall be judged unacceptable when the radiograph exhibits any imperfections in excess of the limits specified below

(a) Linear Indications

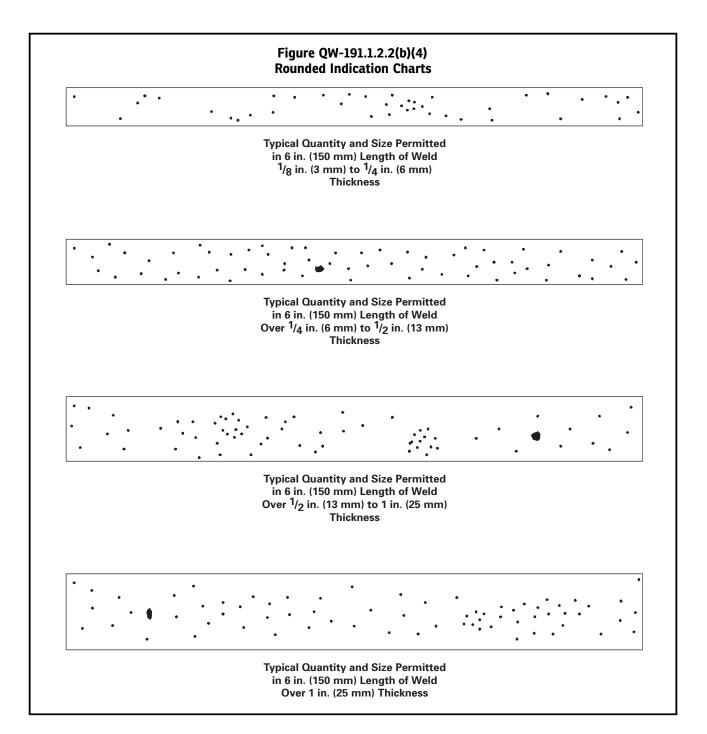
(1) any type of crack or zone of incomplete fusion or penetration

(2) any elongated slag inclusion which has a length greater than

(-a) $\frac{1}{8}$ in. (3 mm) for t up to $\frac{3}{8}$ in. (10 mm), inclusive

(-b) $\frac{1}{3}t$ for t over $\frac{3}{8}$ in. (10 mm) to $2\frac{1}{4}$ in. (57 mm), inclusive

(-c) $\frac{3}{4}$ in. (19 mm) for t over $2\frac{1}{4}$ in. (57 mm)


(3) any group of slag inclusions in line that have an aggregate length greater than t in a length of 12t, except when the distance between the successive imperfections exceeds 6L where L is the length of the longest imperfection in the group

(b) Rounded Indications

(1) The maximum permissible dimension for rounded indications shall be 20% of t or $\frac{1}{8}$ in. (3 mm), whichever is smaller.

(2) For welds in material less than $\frac{1}{8}$ in. (3 mm) in thickness, the maximum number of acceptable rounded indications shall not exceed 12 in a 6 in. (150 mm) length of weld. A proportionately fewer number of rounded indications shall be permitted in welds less than 6 in. (150 mm) in length.

(3) For welds in material $\frac{1}{8}$ in. (3 mm) or greater in thickness, the charts in Figure QW-191.1.2.2(b)(4) represent the maximum acceptable types of rounded indications illustrated in typically clustered, assorted, and randomly dispersed configurations. Rounded indications less than $\frac{1}{32}$ in. (0.8 mm) in maximum diameter shall not be considered in the radiographic acceptance tests of welders and welding operators in these ranges of material thicknesses.

QW-191.1.2.3 Production Welds. The acceptance criteria for welders or welding operators who qualify on production welds by radiography as permitted in QW-304.1 or QW-305.1 shall be per QW-191.1.2.2

QW-191.2 Ultrasonic Examination

(13) **QW-191.2.1** Method

(a) The ultrasonic examination in QW-142 for welders and in QW-143 for welding operators may be conducted on test welds in material $\frac{1}{2}$ in. (13 mm) thick or greater.

(*b*) Ultrasonic examinations shall be performed using a written procedure in compliance with paragraph T-150, Article 1, Section V and the requirements of Article 4, Section V for methods, procedures, and qualifications.

(c) Ultrasonic examination personnel shall meet the requirements of QW-191.2.2.

Personnel Qualifications and Certifica-(**13**) QW-191.2.2 tions.

(a) All personnel performing ultrasonic examinations for welder and welding operator qualifications shall be qualified and certified in accordance with their employer's written practice.

(b) The employer's written practice for qualification and certification of examination personnel shall meet all applicable requirements of SNT-TC-1A1 for the examination method and technique.

(c) Alternatively, the ASNT Central Certification Program (ACCP) or CP-1891 may be used to fulfill the examination and demonstration requirements of SNT-TC-1A and the employer's written practice.

(d) Provisions for the training, experience, qualification, and certification of NDE personnel shall be described in the Manufacturer's Quality Control System.

QW-191.2.3 **Acceptance Criteria for Qualification** Test Welds. Indications shall be sized using the applicable technique(s) provided in the written procedure for the examination method. Indications shall be evaluated for acceptance as follows:

(a) All indications characterized as cracks, lack of fusion, or incomplete penetration are unacceptable regardless of length.

(b) Indications exceeding $\frac{1}{8}$ in. (3 mm) in length are considered relevant, and are unacceptable when their lengths exceed

(1) $\frac{1}{8}$ in. (3 mm) for t up to $\frac{3}{8}$ in. (10 mm). (2) $\frac{1}{3}t$ for t from $\frac{3}{8}$ in. to $2\frac{1}{4}$ in. (10 mm to 57 mm). (3) $\frac{3}{4}$ in. (19 mm) for t over $2\frac{1}{4}$ in. (57 mm), where t is the thickness of the weld excluding any allowable reinforcement. For a butt weld joining two members having different thicknesses at the weld, t is the thinner of these two thicknesses. If a full penetration weld includes a fillet weld, the thickness of the throat of the fillet shall be included in t.

Acceptance Criteria for Production QW-191.2.4 Welds. The acceptance criteria for welders or welding operators who qualify on production welds by ultrasonic examination as permitted in QW-304.1 or QW-305.1 shall be per QW-191.2.3.

QW-191.3 Record of Tests. The results of welder and welding operator performance tests evaluated by volumetric NDE shall be recorded in accordance with QW-301.4.

QW-192 STUD-WELD TESTS

QW-192.1 Procedure Qualification Specimens.

QW-192.1.1 Required Tests. Ten stud-weld tests are required to qualify each procedure. The equipment used for stud welding shall be completely automatic except for manual starting.

Every other welding stud (five joints) shall be tested either by hammering over until one-fourth of its length is flat on the test piece, or by bending the stud to an angle of at least 15 deg and returning it to its original position using a test jig and an adapter location dimension that are in accordance with Figure QW-466.4.

The remaining five welded stud joints shall be tested in torque using a torque testing arrangement that is substantially in accordance with Figure QW-466.5. Alternatively, where torquing is not feasible, tensile testing may be used, and the fixture for tensile testing shall be similar to that shown in Figure QW-466.6, except that studs without heads may be gripped on the unwelded end in the jaws of the tensile testing machine.

QW-192.1.2 Acceptance Criteria — Bend and Hammer Tests. In order to pass the test(s), each of the five stud welds and heat-affected zones shall be free of visible separation or fracture after bending and return bending or after hammering.

QW-192.1.3 Acceptance Criteria — Torque Tests. In order to pass the test(s), each of the five stud welds shall be subjected to the required torque shown in the following table before failure occurs.

Required Torque for Testing Threaded Carbon Steel Studs			
Nominal Diameter	Threads/in. and	Testing Torque,	
of Studs, in. (mm)	Series Designated	ft-lb (J)	
$\frac{1}{4}$ (6.4)	28 UNF	5.0 (6.8)	
$\frac{1}{4}$ (6.4)	20 UNC	4.2 (5.7)	
⁵ / ₁₆ (7.9)	24 UNF	9.5 (12.9)	
⁵ / ₁₆ (7.9)	18 UNC	8.6 (11.7)	
³ / ₈ (9.5)	24 UNF	17 (23.0)	
³ / ₈ (9.5)	16 UNC	15 (20.3)	
⁷ / ₁₆ (11.1)	20 UNF	27 (36.6)	
⁷ / ₁₆ (11.1)	14 UNC	24 (32.5)	
¹ / ₂ (12.7)	20 UNF	42 (57.0)	
¹ / ₂ (12.7)	13 UNC	37 (50.2)	
⁹ / ₁₆ (14.3)	18 UNF	60 (81.4)	
⁹ / ₁₆ (14.3)	12 UNC	54 (73.2)	
⁵ ⁄/ ₈ (15.9)	18 UNF	84 (114.0)	
⁵ ∕/ ₈ (15.9)	11 UNC	74 (100.0)	
³ / ₄ (19.0)	16 UNF	147 (200.0)	
³ / ₄ (19.0)	10 UNC	132 (180.0)	
⁷ / ₈ (22.2)	14 UNF	234 (320.0)	
⁷ / ₈ (22.2)	9 UNC	212 (285.0)	
1 (25.4)	12 UNF	348 (470.0)	
1 (25.4)	8 UNC	318 (430.0)	

Required Torque for Testing Threaded Austenitic Stainless Steel Studs			
Nominal Diameter	Threads/in. and	Testing Torque,	
of Studs, in. (mm)	Series Designated	ft-lb (J)	
$\frac{1}{4}$ (6.4)	28 UNF	4.5 (6.1)	
$\frac{1}{4}$ (6.4)	20 UNC	4.0 (5.4)	
⁵ / ₁₆ (7.9)	24 UNF	9.0 (12.2)	
⁵ / ₁₆ (7.9)	18 UNC	8.0 (10.8)	
³ / ₈ (9.5)	24 UNF	16.5 (22.4)	
³ / ₈ (9.5)	16 UNC	14.5 (19.7)	
⁷ / ₁₆ (11.1)	20 UNF	26.0 (35.3)	
⁷ / ₁₆ (11.1)	14 UNC	23.0 (31.2)	
¹ / ₂ (12.7)	20 UNF	40.0 (54.2)	
¹ / ₂ (12.7)	13 UNC	35.5 (48.1)	
5⁄/₃ (15.9)	18 UNF	80.00 (108.5)	
5∕⁄₃ (15.9)	11 UNC	71.00 (96.3)	
³ / ₄ (19.0)	16 UNF	140.00 (189.8)	
³ / ₄ (19.0)	10 UNC	125.00 (169.5)	
⁷ / ₈ (22.2)	14 UNF	223.00 (302.3)	
⁷ / ₈ (22.2)	9 UNC	202.00 (273.9)	
1 (25.4)	14 UNF	339.00 (459.6)	
1 (25.4)	8 UNC	303.00 (410.8)	

Alternatively, where torquing to destruction is not feasible, tensile testing may be used. For carbon and austenitic stainless steel studs, the failure strength shall be not less than 35,000 psi (240 MPa) and 30,000 psi (210 MPa), respectively. For other metals, the failure strength shall not be less than half of the minimum specified tensile strength of the stud material. The failure strength shall be based on the minor diameter of the threaded section of externally threaded studs, except where the shank diameter is less than the minor diameter, or on the original cross-sectional area where failure occurs in a nonthreaded, internally threaded, or reduceddiameter stud.

QW-192.1.4 Acceptance Criteria — Macro-**Examination.** In order to pass the macro-examination, each of five sectioned stud welds and the heat-affected zone shall be free of cracks when examined at 10X magnification, which is required by QW-202.5 when studs are welded to metals other than P-No. 1.

QW-192.2 Performance Qualification Specimens.

QW-192.2.1 Required Tests. Five stud-weld tests are required to qualify each stud-welding operator. The equipment used for stud welding shall be completely automatic except for manual starting. The performance test shall be welded in accordance with a qualified WPS per QW-301.2.

Each stud (five joints) shall be tested either by hammering over until one-fourth of its length is flat on the test piece or by bending the stud to an angle of at least 15 deg and returning it to its original position using a test jig and an adapter location dimension that are in accordance with Figure QW-466.4.

QW-192.2.2 Acceptance Criteria — Bend and Hammer Tests. In order to pass the test(s), each of the five stud welds and heat affected zones shall be free of visible separation or fracture after bending and return bending or after hammering.

QW-193 TUBE-TO-TUBESHEET TESTS

When the applicable Code Section requires the use of this paragraph for tube-to-tubesheet demonstration mockup qualification, QW-193.1 through QW-193.1.3 shall apply.

QW-193.1 Procedure Qualification Specimens. Ten (13) mockup welds are required to qualify each procedure. The mockup assembly shall essentially duplicate the tube hole configuration and tube-to-tubesheet joint design within the limits of the essential variables of QW-288. The thickness of the tubesheet in the mockup test assembly shall be at least as thick as the production tubesheet, except it is not required to be thicker than 2 in. (50 mm). The cladding may be represented by the base material of essentially equivalent chemical composition to the cladding composition. The mockup welds shall be submitted to the following tests sequentially and must meet the applicable acceptance criteria.

QW-193.1.1 Acceptance Criteria — Visual Examination. The accessible surfaces of the welds shall be examined visually with no magnification required. The welds shall show complete fusion and no evidence of burning through the tube wall, and shall be free from cracking or porosity.

QW-193.1.2 Acceptance Criteria — Liquid Penetrant. The liquid penetrant examination shall meet the requirements of Section V, Article 6. The weld surfaces shall meet the requirements of QW-195.2.

QW-193.1.3 Acceptance Criteria — Macro-Examination. The mockup welds shall be sectioned through the center of the tube for macro-examination. The four exposed surfaces shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld and heat-affected zone. Using a magnification of 10X to 20X, the exposed cross sections of the weld shall confirm

(a) minimum leak path dimension required by the design

(b) no cracking

(c) complete fusion of the weld deposit into the tubesheet and tube wall face

(*d*) complete penetration of the weld deposit to within $\frac{1}{64}$ in. (0.4 mm) of the root of the joint

(e) porosity shall not reduce the weld throat below the required minimum leak path thickness

QW-193.2 Performance Qualification Specimens. Five mockup welds are required to qualify each welder or welding operator. The same rules as that for procedure qualification (QW-193.1) shall be followed. Only one mockup weld is required to renew a welder's or welding operator's qualification when that qualification has expired or been revoked per the requirements of QW-322.1.

(13) QW-194 VISUAL EXAMINATION — PERFORMANCE

Performance test coupons shall show no cracks and complete joint penetration with complete fusion of weld metal and base metal.

QW-195 LIQUID PENETRANT EXAMINATION

QW-195.1 The liquid penetrant examination in QW-214 for corrosion-resistant weld metal overlay shall meet the requirements of Section V, Article 6. The acceptance standards of QW-195.2 shall be met.

QW-195.2 Liquid Penetrant Acceptance Criteria. QW-195.2.1 Terminology.

relevant indications: indications with major dimensions greater than $\frac{1}{16}$ in. (1.5 mm)

linear indications: an indication having a length greater than three times the width.

rounded indications: an indication of circular or elliptical shape with the length equal to or less than three times the width.

QW-195.2.2 Acceptance Standards. Procedure and performance tests examined by liquid penetrant techniques shall be judged unacceptable when the examination exhibits any indication in excess of the limits specified in the following:

(a) relevant linear indications

(b) relevant rounded indications greater than $\frac{3}{16}$ in. (5 mm)

(c) four or more relevant rounded indications in a line separated by $\frac{1}{16}$ in. (1.5 mm) or less (edge-to-edge)

QW-196 RESISTANCE WELD TESTING

QW-196.1 Macro-Examination.

QW-196.1.1 Welds shall be cross-sectioned, polished, and etched to reveal the weld metal. The section shall be examined at 10X magnification. Seam welding specimens shall be prepared as shown in Figure QW-462.7.3. The sectioned weldment shall be free of cracks, incomplete penetration, expulsions, and inclusions. Porosity shall not exceed one void in the transverse cross section or three voids in the longitudinal cross section of a specimen. The maximum dimension of any void shall not exceed 10% of the thickness of the weld bead.

QW-196.1.2 For spot and seam welds, the minimum width of the weld nugget shall be as follows in relation to thickness, *t*, of the thinner member.

Material Thickness, in. (mm)	Weld Nugget Width
< 0.010 (0.25)	6 <i>t</i>
≥ 0.010 (0.25) and < 0.020 (0.50)	5 <i>t</i>
≥ 0.020 (0.50) and < 0.040 (1.00)	4 <i>t</i>
≥ 0.040 (1.00) and < 0.069 (1.75)	3 <i>t</i>
≥ 0.069 (1.75) and < 0.100 (2.54)	2.50 <i>t</i>
≥ 0.100 (2.54) and < 0.118 (3.00)	2.25 <i>t</i>
≥ 0.118 (3.00) and < 0.157 (4.00)	2 <i>t</i>
≥ 0.157 (4.00)	1.80 <i>t</i>

The weld depth (extent of fusion) shall be a minimum of 20% of the thickness of the thinner ply (in each member) and a maximum of 80% of the total thickness of all plies.

QW-196.1.3 For projection welds, the width of the nugget shall be not less than 80% of the width of the projection.

QW-196.2 Mechanical Testing.

QW-196.2.1 Shear test specimens shall be prepared as shown on Figure QW-462.9. For spot and projection welds, each test specimen shall equal or exceed the minimum strength, and the average strength specified in Tables QW-462.10(a) through QW-462.10(c) for the appropriate material. Further, for each set, 90% shall have shear strength values between 0.9 and 1.1 times the set average value. The remaining 10% shall lie between 0.8 and 1.2 times the set average value.

QW-196.2.2 Peel test specimens shall be prepared as shown in Figure QW-462.8.1 for spot and projection welding and per Figure QW-462.8.2 for seam welding. The specimens shall be peeled or separated mechanically, and fracture shall occur in the base metal by tearing out of the weld in order for the specimen to be acceptable.

QW-197 LASER BEAM WELDING (LBW) LAP JOINT TESTS

QW-197.1 Procedure Qualification Specimens.

QW-197.1.1 Required Tests. Six tension shear specimens and eight macro specimens are required to qualify each procedure. The qualification test coupon shall be prepared in accordance with Figure QW-464.1. The tension shear specimens shall conform to the dimensions indicated in the table of Figure QW-464.1. The longitudinal and transverse sections indicated in Figure OW-464.1 shall be cross-sectioned as closely as possible through the centerline of the weld. A minimum of 1 in. (25 mm) shall be provided for examination of each longitudinal specimen. The transverse specimens shall be of sufficient length to include weld, the heat-affected zone, and portions of the unaffected base material. Cross-sections shall be smoothed and etched with a suitable etchant (see QW-470), and examined at a minimum magnification of 25X. The dimensions of the fusion zone and penetration of each weld of the transverse specimens shall be measured to the nearest hundredth of an inch and recorded.

QW-197.1.2 Acceptance Criteria — Tension Shear Tests. In order to pass the tension shear test(s), the requirements of QW-153 shall apply.

QW-197.1.3 Acceptance Criteria — Macro-Examination. In order to pass the macro-examination, each of the eight specimens shall meet the following criteria:

(a) The outline of the fusion zone shall be generally consistent in size and regular in shape and uniformity of penetration.

(b) The examination of the weld area shall reveal sound weld metal, complete fusion along the bond line, and complete freedom from cracks in the weld metal and heat-affected zone.

QW-197.2 Performance Qualification Specimens.

QW-197.2.1 Required Tests. A peel test specimen at least 6 in. (150 mm) long shall be prepared as shown in Figure QW-464.2 illustration (a) and macro specimens as shown in Figure QW-464.2 illustration (b). The peel test specimens shall be peeled apart to destruction and the fusion zone and penetration measured to the nearest hundredth of an inch. The end of each strip of the macro coupon shall be polished and etched to clearly reveal the weld metal. The width and depth of penetration of each weld shall be measured to the nearest hundredth of an inch. Each specimen shall be examined in accordance with QW-197.1.

QW-197.2.2 Acceptance Criteria — Peel Test and Macro-Examination. In order to pass the peel test and macro-examination, the dimensions of the fusion zone (averaged) and the penetration (averaged) shall be within the range of dimensions of those specified on the WPS that was used to make the test coupon.

QW-199 FLASH WELDING

QW-199.1 Procedure Qualification Test Coupons and Testing.

QW-199.1.1 Test Coupon Preparation. For coupons NPS 1 (DN 25) and smaller, four test welds shall be made, and for pipes over NPS 1 (DN 25), three test coupons shall be made using one set of welding parameters (i.e., the same equipment, base metals, joint preparation, and other essential variables to be utilized for production welding.) These variables shall be recorded on the qualification record.

QW-199.1.2 Tensile Tests. For pipes NPS 1 (DN 25) and smaller, and nontubular cross sections, two full-section tensile specimens shall be prepared in accordance with Figure QW-462.1(e). For pipes greater than NPS 1 (DN 25), two reduced section tension specimens shall be prepared in accordance with

Figure QW-462.1(b) or Figure QW-462.1(c) from one coupon. For nontubular cross sections, two reduced section tension specimens shall be prepared in accordance with Figure QW-462.1(a) or Figure QW-462.1(d) from two of the coupons. The specimens shall be tested in accordance with QW-150.

QW-199.1.3 Section and Bend Testing. The entire circumference of each remaining pipe coupon shall be cut along the axis of the pipe into an even number of strips of a length sufficient to perform bend tests. The maximum width of each strip shall be $1^{1}/_{2}$ in. (38 mm) and the minimum width

w = t + D/4 for pipes NPS 2 (DN 50) and smaller

w = t + D/8 for pipes greater than NPS 2 (DN 50)

where

D = OD of the tube

t = nominal wall thickness

w = width of the specimen

One edge of one strip from each coupon shall be polished to a 600 grit finish with the final grinding parallel to the long axis of the strip. The polished surface shall be examined at 5X magnification. No incomplete fusion or other open flaws on the polished surface are acceptable. Defects occurring in the base metal not associated with the weld may be disregarded. For nontubular cross sections, four side-bend specimens shall be prepared from the two remaining coupons as specified in Figure QW-462.2 and polished for examination.

All flash shall be removed from the strips and the welds shall be visually examined per QW-194. Half of the strips from each pipe specimen shall then be prepared as root bend specimens and the remaining strips shall be prepared as face bend specimens in accordance with QW-160. The specimens shall be tested in accordance with QW-160, except for the following:

(*a*) For P-No. 1, Groups 2 through 4 materials, the minimum bend radius (dimension *B* in Figure QW-466.1) shall be three times the thickness of the specimen.

(*b*) In lieu of QW-163, the sum of lengths of individual open flaws on the convex surface of all the bend test specimens taken from each pipe individually shall not exceed 5% of the outside circumference of that test pipe.

QW-199.2 Flash Welding — Performance Qualification Test Coupons and Testing. One test coupon shall be welded, cut into strips, visually examined, and bend tested in accordance with QW-199.1.3. Polishing and examination of a cross-section is not required.

APPENDIX I ROUNDED INDICATION CHARTS

Illustration that appeared in this Appendix in the previous edition and addenda has been designated as QW-191.1.2.2(b)(4) and follows QW-191.1.2.2(b)(3).

ARTICLE II WELDING PROCEDURE QUALIFICATIONS

QW-200 GENERAL

QW-200.1 Each organization shall prepare written (**13**) Welding Procedure Specifications that are defined as follows:

(a) Welding Procedure Specification (WPS). A WPS is a written qualified welding procedure prepared to provide direction for making production welds to Code requirements. The WPS or other documents may be used to provide direction to the welder or welding operator to assure compliance with the Code requirements.

(b) Contents of the WPS. The completed WPS shall describe all of the essential, nonessential, and, when required, supplementary essential variables for each welding process used in the WPS. These variables are listed in QW-250 through QW-280 and are defined in Article IV, Welding Data.

The WPS shall reference the supporting Procedure Qualification Record(s) (POR) described in OW-200.2. The organization may include any other information in the WPS that may be helpful in making a Code weldment.

(c) Changes to the WPS. Changes may be made in the nonessential variables of a WPS to suit production requirements without requalification provided such changes are documented with respect to the essential, nonessential, and, when required, supplementary essential variables for each process. This may be by amendment to the WPS or by use of a new WPS.

Changes in essential or supplementary essential (when required) variables require requalification of the WPS (new or additional PQRs to support the change in essential or supplementary essential variables).

(d) Format of the WPS. The information required to be in the WPS may be in any format, written or tabular, to fit the needs of each organization, as long as every essential, nonessential, and, when required, supplementary essential variables outlined in QW-250 through QW-280 is included or referenced.

Form QW-482 (see Nonmandatory Appendix B) has been provided as a guide for the WPS. This Form includes the required data for the SMAW, SAW, GMAW, and GTAW processes. It is only a guide and does not list all required data for other processes. It also lists some variables that do not apply to all processes (e.g., listing shielding gas which is not required for SAW). The guide does not easily lend itself to multiple process procedure specification (e.g., GTAW root with SMAW fill).

(e) Availability of the WPS. A WPS used for Code production welding shall be available for reference and review by the Authorized Inspector (AI) at the fabrication site.

QW-200.2 Each organization shall be required to (13) prepare a procedure qualification record which is defined as follows:

(a) Procedure Qualification Record (PQR). The PQR is a record of variables recorded during the welding of the test coupons. It also contains the test results of the tested specimens. Recorded variables normally fall within a small range of the actual variables that will be used in production welding.

(b) Contents of the PQR. The completed PQR shall document all essential and, when required, supplementary essential variables of QW-250 through QW-280 for each welding process used during the welding of the test coupon. Nonessential or other variables used during the welding of the test coupon may be recorded at the organization's option. All variables, if recorded, shall be the actual variables (including ranges) used during the welding of the test coupon. If variables are not monitored during welding, they shall not be recorded. It is not intended that the full range or the extreme of a given range of variables to be used in production be used during qualification unless required due to a specific essential or, when required, supplementary essential variable.

The PQR shall be certified accurate by the organization. The organization may not subcontract the certification function. This certification is intended to be the organization's verification that the information in the PQR is a true record of the variables that were used during the welding of the test coupon and that the resulting tensile, bend, or macro (as required) test results are in compliance with Section IX.

One or more combinations of welding processes, filler metal, and other variables may be used when welding a test coupon. The approximate thickness of weld metal deposited shall be recorded for each set of essential and, when required, supplementary essential variables. Weld metal deposited using each set of variables shall be included in the tension, bend, notch toughness, and other mechanical test specimens that are required.

(c) Changes to the PQR. Changes to the PQR are not permitted except as described below. Editorial corrections or addenda to the PQR are permitted. An example of an editorial correction is an incorrect P-Number, F-Number, or A-Number that was assigned to a particular base metal

or filler metal. An example of an addendum would be a change resulting from a Code change. For example, Section IX may assign a new F-Number to a filler metal or adopt a new filler metal under an established F-Number. This may permit, depending on the particular construction Code requirements, an organization to use other filler metals that fall within that particular F-Number where, prior to the Code revision, the organization was limited to the particular electrode classification that was used during qualification. Additional information can be incorporated into a PQR at a later date provided the information is substantiated as having been part of the original qualification condition by lab record or similar data.

All changes to a PQR require recertification (including date) by the organization.

(d) Format of the PQR. Form QW-483 (see Nonmandatory Appendix B) has been provided as a guide for the PQR. The information required to be in the PQR may be in any format to fit the needs of each organization, as long as every essential and, when required, supplementary essential variable, required by QW-250 through QW-280, is included. Also the type of tests, number of tests, and test results shall be listed in the PQR.

Form QW-483 does not easily lend itself to cover combinations of welding processes or more than one F-Number filler metal in one test coupon. Additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. PQRs used to support WPSs shall be available, upon request, for review by the Authorized Inspector (AI). The PQR need not be available to the welder or welding operator.

(f) Multiple WPSs With One PQR/Multiple PQRs With One WPS. Several WPSs may be prepared from the data on a single PQR (e.g., a 1G plate PQR may support WPSs for the F, V, H, and O positions on plate or pipe within all other essential variables). A single WPS may cover several sets of essential variable ranges as long as a supporting PQR exists for each essential and, when required, supplementary essential variable [e.g., a single WPS may cover a thickness range from $\frac{1}{16}$ in. (1.5 mm) through $1\frac{1}{4}$ in. (32 mm) if PQRs exist for both the $\frac{1}{16}$ in. (1.5 mm) through $\frac{3}{16}$ in. (5 mm) and $\frac{3}{16}$ in. (5 mm) through $1\frac{1}{4}$ in. (32 mm) thickness ranges].

QW-200.3 To reduce the number of welding procedure qualifications required, P-Numbers are assigned to base metals dependent on characteristics such as composition, weldability, and mechanical properties, where this can logically be done; and for steel and steel alloys (Table QW/QB-422) Group Numbers are assigned additionally to P-Numbers. These Group Numbers classify the metals within P-Numbers for the purpose of procedure qualification where notch-toughness requirements are specified. The assignments do not imply that base metals may be indiscriminately substituted for a base metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, postweld heat treatment, design, mechanical properties, and service requirements. Where notch toughness is a consideration, it is presupposed that the base metals meet the specific requirements.

In general, notch-toughness requirements are mandatory for all P-No. 11 quenched and tempered metals, for low temperature applications of other metals as applied to Section VIII, and for various classes of construction required by Section III. Acceptance criteria for the notchtoughness tests are as established in the other Sections of the Code.

QW-200.4 Combination of Welding Procedures.

(*a*) More than one WPS having different essential, supplementary essential, or nonessential variables may be used in a single production joint. Each WPS may include one or a combination of processes, filler metals, or other variables.

Where more than one WPS specifying different processes, filler metals, or other essential or supplementary essential variables is used in a joint, QW-451 shall be used to determine the range of base metal thickness and maximum weld metal thickness qualified for each process, filler metal, or set of variables, and those limits shall be observed. Alternatively, qualification of WPSs for root deposits only may be made in accordance with (b).

When following a WPS that has more than one welding process, filler metal, or set of variables, each process, filler metal, or set of variables may be used individually or in different combinations, provided

(1) the essential, nonessential, and required supplementary essential variables associated with the process, filler metal, or set of variables are applied

(2) the base metal and deposited weld metal thickness limits of QW-451 for each process, filler metal, or set of variables are applied

(b) For GTAW, SMAW, GMAW, PAW, and SAW, or combinations of these processes, a PQR for a process recording a test coupon that was at least $\frac{1}{2}$ in. (13 mm) thick may be combined with one or more other PQRs recording another welding process and any greater base metal thickness. In this case, the process recorded on the first PQR may be used to deposit the root layers using the process(es) recorded on that PQR up to 2*t* (for short-circuiting type of GMAW, see QW-404.32) in thickness on base metal of the maximum thickness qualified by the other PQR(s) used to support the WPS. The requirements of Note (1) of Tables QW-451.1 and QW-451.2 shall apply.

QW-201 Organizational Responsibility

The organization shall certify that they have qualified each Welding Procedure Specification, performed the procedure qualification test, and documented it with the necessary Procedure Qualification Record (PQR). **(13)**

QW-202 TYPE OF TESTS REQUIRED

(13) QW-202.1 Mechanical Tests. The type and number of test specimens that shall be tested to qualify a groove weld procedure are given in QW-451, and shall be removed in a manner similar to that shown in QW-463. If any test specimen required by QW-451 fails to meet the applicable acceptance criteria, the test coupon shall be considered as failed.

When it can be determined that the cause of failure is not related to welding parameters, another test coupon may be welded using identical welding parameters.

Alternatively, if adequate material of the original test coupon exists, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens.

When it has been determined that the test failure was caused by an essential or supplementary essential variable, a new test coupon may be welded with appropriate changes to the variable(s) that was determined to cause the test failure. If the new test passes, the essential and supplementary variables shall be documented on the PQR.

When it is determined that the test failure was caused by one or more welding related factors other than essential or supplementary essential variables, a new test coupon may be welded with the appropriate changes to the welding related factors that were determined to cause the test failure. If the new test passes, the welding related factors that were determined to cause the previous test failure shall be addressed by the organization to ensure that the required properties are achieved in the production weldment.

Where qualification is for fillet welds only, the requirements are given in QW-202.2(c); and where qualification is for stud welds only, the requirements are given in QW-202.5.

QW-202.2 Groove and Fillet Welds

(a) Qualification for Groove Full Penetration Welds. Groove-weld test coupons shall qualify the thickness ranges of both base metal and deposited weld metal to be used in production. Limits of qualification shall be in accordance with QW-451. WPS qualification for groove welds shall be made on groove welds using tension and guided-bend specimens. Notch-toughness tests shall be made when required by other Section(s) of the Code. The WPS shall be qualified for use with groove welds within the range of essential variables listed.

(b) Qualification for Partial Penetration Groove Welds. Partial penetration groove welds shall be qualified in accordance with the requirements of QW-451 for both base metal and deposited weld metal thickness, except there need be no upper limit on the base metal thickness provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more.

(c) Qualification for Fillet Welds. WPS qualification for fillet welds may be made on groove-weld test coupons using test specimens specified in (a) or (b). Fillet-weld procedures so qualified may be used for welding all thicknesses of base metal for all sizes of fillet welds, and all diameters of pipe or tube in accordance with Table QW-451.4. Nonpressure-retaining fillet welds, as defined in other Sections of the Code, may as an alternate be qualified with fillet welds only. Tests shall be made in accordance with QW-180. Limits of qualification shall be in accordance with Table QW-451.3.

QW-202.3 Weld Repair and Buildup. WPS qualified on groove welds shall be applicable for weld repairs to groove and fillet welds and for weld buildup under the following provisions:

(*a*) There is no limitation on the thickness of base metal or deposited weld metal for fillet welds.

(b) For other than fillet welds, the thickness range for base metal and deposited weld metal for each welding process shall be in accordance with QW-451, except there need be no upper limit on the base metal thickness provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more.

QW-202.4 Dissimilar Base Metal Thicknesses. WPS qualified on groove welds shall be applicable for production welds between dissimilar base metal thicknesses provided:

(*a*) the thickness of the thinner member shall be within the range permitted by QW-451

(*b*) the thickness of the thicker member shall be as follows:

(1) For P-No. 8, P-No. 41, P-No. 42, P-No. 43, P-No. 44, P-No. 45, P-No. 46, P-No. 49, P-No. 51, P-No. 52, P-No. 53, P-No. 61, and P-No. 62 metal, there shall be no limitation on the maximum thickness of the thicker production member in joints of similar P-Number materials provided qualification was made on base metal having a thickness of $\frac{1}{4}$ in. (6 mm) or greater.

(2) For all other metal, the thickness of the thicker member shall be within the range permitted by QW-451, except there need be no limitation on the maximum thickness of the thicker production member provided qualification was made on base metal having a thickness of $1^{1}/_{2}$ in. (38 mm) or more.

More than one procedure qualification may be required to qualify for some dissimilar thickness combinations.

QW-202.5 Stud Welding. Procedure qualification tests for stud welds shall be made in accordance with QW-192. The procedure qualification tests shall qualify the welding procedures for use within the range of the essential variables of QW-261. For studs welded to other than P-No. 1 metals, five additional welds shall be made and subjected to a macro-test, except that this is not required for studs used for extended heating surfaces.

QW-202.6 Tube-to-Tubesheet Qualification. When the applicable Code Section requires the use of QW-193 for tube-to-tubesheet demonstration mockup qualification tests, QW-193.1 shall apply. If specific qualification test requirements are not specified by the applicable Code Section, tube-to-tubesheet welds shall be qualified with one of the following methods:

(*a*) groove welds per the requirements of QW-202.2 and QW-202.4

(b) a demonstration mockup per the requirements of QW-193.1

(c) fillet welds per the requirements of QW-202.2(c) (for nonpressure retaining tube-to-tubesheet welds only)

QW-203 LIMITS OF QUALIFIED POSITIONS FOR PROCEDURES

Unless specifically required otherwise by the welding variables (QW-250), a qualification in any position qualifies the procedure for all positions. The welding process and electrodes must be suitable for use in the positions permitted by the WPS. A welder or welding operator making and passing the WPS qualification test is qualified for the position tested. see QW-301.2.

QW-210 PREPARATION OF TEST COUPON

QW-211 BASE METAL

The base metals may consist of either plate, pipe, or other product forms. Qualification in plate also qualifies for pipe welding and vice versa. The dimensions of the test coupon shall be sufficient to provide the required test specimens.

QW-212 TYPE AND DIMENSIONS OF GROOVE WELDS

Except as otherwise provided in QW-250, the type and dimensions of the welding groove are not essential variables.

QW-214 CORROSION-RESISTANT WELD METAL OVERLAY

QW-214.1 The size of test coupons, limits of qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453.

QW-214.2 Essential variables shall be as specified in QW-250 for the applicable welding process.

QW-215 ELECTRON BEAM WELDING AND LASER BEAM WELDING

QW-215.1 The WPS qualification test coupon shall be prepared with the joint geometry duplicating that to be used in production. If the production weld is to include a lap-over (completing the weld by rewelding over the starting area of the weld, as for a girth weld), such lap-over shall be included in the WPS qualification test coupon.

QW-215.2 The mechanical testing requirements of QW-451 shall apply.

QW-215.3 Essential variables shall be as specified in Tables QW-260 and QW-264 for the applicable welding process.

QW-216 HARD-FACING WELD METAL OVERLAY

Hard-Facing Weld Metal Overlay refers to weld deposits made, using a variety of processes, to deter the effects of wear and/or abrasion. The requirements specified in QW-216.1 through QW-216.4 apply regardless of which hard-facing process is used.

QW-216.1 The size of test coupons, limits of qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453.

QW-216.2 Welding variables shall be as specified in QW-250 for the applicable process.

QW-216.3 Where Spray Fuse methods of hard-facing (e.g., Oxyfuel and Plasma Arc) are to be used, the coupons for these methods shall be prepared and welding variables applied in accordance with QW-216.1 and QW-216.2, respectively.

QW-216.4 If a weld deposit is to be used under a hard-facing weld metal overlay, a base metal with an assigned P-Number and a chemical analysis nominally matching the weld deposit chemical analysis may be substituted to qualify the PQR.

QW-217 JOINING OF COMPOSITE (CLAD METALS)

The WPS for groove welds in clad metal shall be qualified as provided in (a) when any part of the cladding thickness, as permitted by the referencing Code Section, is included in the design calculations. Either (a) or (b) may be used when the cladding thickness is not included in the design calculations.

(a) The essential and nonessential variables of QW-250 shall apply for each welding process used in production. The procedure qualification test coupon shall be made using the same P-Number base metal, cladding, and welding process, and filler metal combination to be used in production welding. For metal not included in Table OW/OB-422, the metal used in the composite test plate shall be within the range of chemical composition of that to be used in production. The qualified thickness range for the base metal and filler metal(s) shall be based on the actual test coupon thickness for each as applied to QW-451, except that the minimum thickness of filler metal joining the cladding portion of the weldment shall be based on a chemical analysis performed in accordance with Table QW-453. Tensile and bend tests required in QW-451 for groove welds shall be made, and they shall contain the full thickness of cladding through the reduced section of the specimen. The bond line between the

original cladding and the base metal may be disregarded when evaluating side-bend tests if the cladding was applied by a process other than fusion welding.

(b) The essential and nonessential variables of QW-250 shall apply for each welding process used in production for joining the base metal portion of the weldment. The PQRs that support this portion of the WPS need not be based on test coupons made with clad metal. For the corrosion-resistant overlay portion of the weld, the essential variables of QW-251.4 shall apply and the test coupon and testing shall be in accordance with Table QW-453. The WPS shall limit the depth of the groove, which will receive the corrosion-resistant overlay in order to ensure development of the full strength of the underlying weld in the base metal.

QW-218 APPLIED LININGS

QW-218.1 WPSs for attaching applied linings shall be qualified in accordance with QW-202.2(a), QW-202.2(b), or QW-202.2(c).

QW-218.2 As an alternative to the above, each process to be used in attaching applied linings to base metal shall be qualified on a test coupon welded into the form and arrangement to be used in construction using materials that are within the range of chemical composition of the metal to be used for the base plate, the lining, and the weld metal. The welding variables of QW-250 shall apply except for those regarding base metal or weld metal thickness. Qualification tests shall be made for each position to be used in production welding in accordance with Table QW-461.9, except that qualification in the vertical position, uphill progression shall qualify for all positions. One cross-section for each position tested shall be sectioned, polished, and etched to clearly show the demarcation between the base metal and the weld metal. In order to be acceptable, each specimen shall exhibit complete fusion of the weld metal with the base metal and freedom from cracks.

QW-218.3 When chemical analysis of the weld deposit for any elements is required, a chemical analysis shall be performed per Table QW-453, Note 9 for those elements.

QW-219 FLASH WELDING

Flash welding shall be limited to automatic electrical resistance flash welding. Procedure qualification tests shall be conducted in accordance with QW-199.1.

QW-219.1 Tolerances on Variables. Flash welding variables that may require adjustment during production welding are synergistically related. Accordingly, even though the variables shown in Table QW-265 provide tolerances on many welding variables, the WPS shall specify the same specific variables shown on the PQR with tolerance shown for no more than one variable (e.g., if it is desired to provide a tolerance on the upset current, all other variables shown on the PQR). If it is desired to provide tolerances in

the WPS for two variables, the first variable with a tolerance shall be set at the midpoint of its tolerance and two test coupons shall be welded with each of the upper and lower extremes of the tolerance for the second variable (i.e., four coupons must be welded). These coupons shall be examined and tested in accordance with QW-199.1.3.

If it is desired to provide tolerance for a third variable, the first two variables shall be set at the midpoint of their tolerance, and two test coupons shall be welded with each of the upper and lower extremes of the new tolerances for the third variable (i.e., four coupons must be welded). These coupons shall be examined and tested in accordance with QW-199.1.3.

No more than three essential variables on a WPS may show tolerances.

Production tests conducted in accordance with the requirements of other Sections may be used to satisfy this requirement.

QW-220 HYBRID LASER-GMAW WELDING (13)

Hybrid laser-GMAW is limited to the combination of automatic LBW and automatic GMAW. The GMAW process shall not be applied using the short-circuiting arc transfer mode.

All hybrid laser-GMAW procedures for welding groove and fillet welds shall be qualified in accordance with the rules in QW-202. Table QW-268 lists the essential, supplementary essential, and nonessential variables that apply for hybrid laser-GMAW qualification.

QW-221 HYBRID PLASMA-GMAW

(**13**)

When the applicable Code Section specifies the use of this paragraph for utilizing the hybrid plasma-GMAW process, QW-221.1 through QW-221.3 shall apply.

QW-221.1 Qualification. All hybrid plasma-GMAW procedures for groove and fillet welds shall be qualified in accordance with the rules outlined in QW-202. All hybrid plasma-GMAW procedures for corrosion-resistant overlay shall be qualified in accordance with the rules outlined in QW-214. All hybrid plasma-GMAW procedures for hard-facing overlay shall be qualified in accordance with the rules outlined in QW-216.

QW-221.2 Welding Process Restriction. Hybrid plasma-GMAW is limited to the combination of PAW and GMAW. The hybrid process is limited to machine welding only.

QW-221.3 Variables for Hybrid Plasma-GMAW. Table QW-269 lists the essential, supplementary essential, and nonessential variables that apply when hybrid plasma-GMAW qualification is required for groove and fillet welds. Table QW-269.1 lists the special process essential and nonessential variables associated with hardfacing and corrosion resistant overlay (CRO).

QW-250 WELDING VARIABLES

QW-251 GENERAL

QW-251.1 Types of Variables for Welding Procedure Specifications (WPS). These variables (listed for each welding process in Tables QW-252 through QW-266) are subdivided into essential variables, supplementary essential variables, and nonessential variables (QW-401). The "Brief of Variables" listed in the tables are for reference *only*. See the complete variable in Welding Data of Article IV.

QW-251.2 Essential Variables. Essential variables are those in which a change, as described in the specific variables, is considered to affect the mechanical properties of the weldment, and shall require requalification of the WPS.

Supplementary essential variables are required for metals for which other Sections specify notch-toughness tests and are in addition to the essential variables for each welding process. **QW-251.3 Nonessential Variables.** Nonessential variables are those in which a change, as described in the specific variables, may be made in the WPS without requalification.

QW-251.4 Special Processes.

(a) The special process essential variables for corrosion-resistant and hard-surfacing weld metal overlays are as indicated in the following tables for the specified process. Only the variables specified for special processes shall apply. A change in the corrosionresistant or hard-surfacing welding process shall require requalification.

(b) WPS qualified for corrosion-resistant and hardsurfacing overlay welding, in accordance with other Sections when such qualification rules were included in those Sections, may be used with the same provisions as provided in QG-101.

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	ϕ Groove design			Х
QW-402 Joints	.2	± Backing			Х
	.3	ϕ Backing comp.			Х
	.10	ϕ Root spacing			Х
QW-403	.1	ϕ P-Number	Х		
Base Metals	.2	Max. T Qualified	Х		
	.3	ϕ Size			Х
QW-404	.4	ϕ F-Number	Х		
Filler Metals	.5	ϕ A-Number	Х		
	.12	ϕ Classification	X		
QW-405 Positions	.1	+ Position			Х
QW-406 Preheat	.1	Decrease > 100°F (55°C)			Х
QW-407 PWHT	.1	ϕ PWHT	х		
QW-408 Gas	.7	ϕ Type fuel gas	х		
	.1	ϕ String/weave			Х
	.2	ϕ Flame characteristics			Х
OW-410	.4	$\phi \leftarrow$ Technique			Х
Technique	.5	ϕ Method cleaning			Х
	.26	± Peening			Х
	.64	Use of thermal processes	х		

		Special Process Ess	ential Variables	
			Corrosion-Resistant Overlay	Hard-Facing Spray Fuse
Paragrap	h	Hard-Facing Overlay (QW-216)	(QW-214)	(QW-216)
QW-402	.16	< Finished t		
Joint	.17			> Finished <i>t</i>
QW-403	.20	ϕ P-Number		ϕ P-Number
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	ϕ T Qualified
	.12	ϕ Classification		ϕ Classification
QW-404 Filler Metals	.42			> 5% Particle size range
Filler Metals	.46			ϕ Powder feed rate
QW-405 Positions	.4	+ Position		+ Position
QW-406	.4	Dec. > 100°F (55°C) preheat > Interpass		Dec. > 100°F (55°C) preheat > Interpass
Preheat	.5			ϕ Preheat maint.
OW-407	.6	ϕ PWHT		ϕ PWHT
PWHT	.7	ϕ PWHT ϕ PWHT ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ		
	.7	ϕ Type of fuel gas		
QW-408	.14	ϕ Oxyfuel gas pressure		
Gas	.16			ϕ > 5% Gas feed rate
	.19			ϕ Plasma/feed gas comp.
	.38	ϕ Multiple to single layer		ϕ Multiple to single layer
	.39	ϕ Torch type, tip sizer		
	.44			ϕ > 15% Torch to workpiece
QW-410 Technique	.45			ϕ Surface prep.
rechnique	.46			ϕ Spray torch
	.47			ϕ > 10% Fusing temp. or method
Legend: + Addition		Increase/greater than 1		, , , , , , , , , , , , , , , , , , , ,

Paragraph	ı	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402	.4	– Backing			Х
Joints	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
	.5	ϕ Group Number		Х	
	.6	T Limits impact		Х	
QW-403 Base Metals	.8	ϕ T Qualified	Х		
Dase Metals	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х		
	.11	ϕ P-No. qualified	Х		
	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			Х
QW-404 Filler Metals	.7	ϕ Diameter > $\frac{1}{4}$ in. (6 mm)		Х	
Filler Metals	.12	ϕ Classification		Х	
	.30	ϕ t	Х		
	.33	ϕ Classification			Х
	.1	+ Position			Х
QW-405 Positions	.2	ϕ Position		Х	
FOSICIONS	.3	ϕ 1 Vertical welding			Х
	.1	Decrease > 100°F (55°C)	Х		
QW-406 Preheat	.2	ϕ Preheat maint.			Х
Trelleat	.3	Increase > 100°F (55°C) (IP)		Х	
	.1	ϕ PWHT	X		
QW-407 PWHT	.2	ϕ PWHT (T & T range)		Х	
1 *****	.4	T Limits	Х		
QW-409	.1	> Heat input		Х	
Electrical	.4	ϕ Current or polarity		Х	Х
Characteristics	.8	ϕ I & E range			Х
	.1	ϕ String/weave			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
QW-410 Technique	.9	ϕ Multiple to single pass/side		Х	Х
rechnique	.25	ϕ Manual or automatic			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		

Essential Hard-Facing Overlay (HFO) (QW-216) < Finished t \$\phi\$ P-Number \$\phi\$ T Qualified \$\phi\$ Classification + Position Dec. > 100°F (55°C) preheat	Variables Corrosion-Resistant Overlay (CRO) (QW-214) < Finished t φ P-Number φ T Qualified φ A-Number + Position Dec. > 100°F (55°C) preheat	Nonessential Variables for HFO and CRO φ Diameter (1st layer)
(QW-216) < Finished t \$\phi\$ P-Number \$\phi\$ T Qualified \$\phi\$ Classification + Position Dec. > 100°F (55°C) preheat	(CRO) (QW-214) < Finished t φ P-Number φ T Qualified φ A-Number + Position	HFO and CRO
φ P-Number φ T Qualified φ Classification + Position Dec. > 100°F (55°C) preheat	 φ P-Number φ T Qualified φ A-Number + Position 	φ Diameter (1st layer)
 φ T Qualified φ Classification + Position Dec. > 100°F (55°C) preheat 	 φ T Qualified φ A-Number + Position 	φ Diameter (1st layer)
 φ Classification + Position Dec. > 100°F (55°C) preheat 	 φ A-Number + Position 	φ Diameter (1st layer)
+ Position Dec. > 100°F (55°C) preheat	+ Position	φ Diameter (1st layer)
Dec. > 100°F (55°C) preheat	+ Position	φ Diameter (1st layer)
Dec. > 100°F (55°C) preheat		φ Diameter (1st layer)
Dec. > 100°F (55°C) preheat		
	Dec. > 100°F (55°C) preheat	
> Interpass	> Interpass	
ϕ PWHT		
	ϕ PWHT	
ϕ Current or polarity	ϕ Current or polarity	
Inc. > 10% 1st layer	Inc. > 10% 1st layer	
		ϕ String/weave
		ϕ Method of cleaning
		± Peening
ϕ Multiple to single layer	ϕ Multiple to single layer	
	φ Current or polarity Inc. > 10% 1st layer	ϕ PWHT ϕ Current or polarity ϕ Current or polarity Inc. > 10% 1st layer Inc. > 10% 1st layer ϕ Multiple to single layer ϕ Multiple to single layer > Increase/greater than

Table QW-253.1 Welding Variables Procedure Specifications (WPS) — Shielded Metal-Arc Welding (SMAW)

				Supplementary	
Paragrap	h	Brief of Variables	Essential	Essential	Nonessentia
QW-402	.1	ϕ Groove design			Х
Joints	.4	– Backing			Х
	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
QW-403	.5	ϕ Group Number		Х	
Base Metals	.6	T Limits		Х	
	.8	ϕ T Qualified	Х		
	.9	<i>t</i> Pass $\frac{1}{2}$ in. (13 mm)	Х		
	.11	ϕ P-No. qualified	Х		
QW-404	.4	ϕ F-Number	Х		
Filler Metals	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			Х
	.9	ϕ Flux/wire class.	Х		
	.10	ϕ Alloy flux	Х		
	.24	± Supplemental	Х		
		ϕ			
	.27	ϕ Alloy elements	Х		
	.29	ϕ Flux designation			Х
	.30	φ t	Х		
	.33	ϕ Classification			Х
	.34	ϕ Flux type	Х		
	.35	ϕ Flux/wire class.		Х	Х
	.36	Recrushed slag	Х		
QW-405 Positions	.1	+ Position			X
QW-406	.1	Decrease > 100°F (55°C)	Х		
Preheat	.2	ϕ Preheat maint.			Х
	.3	Increase > 100°F (55°C) (IP)		Х	
QW-407	.1	ϕ PWHT	х		
PWHT	.2	ϕ PWHT (T & T range)		х	
	.4	T Limits	х		
QW-409	.1	> Heat input		х	
Electrical	.4	ϕ Current or polarity		х	Х
Characteris-	.8	ϕ I & E range			X

Paragra	ph	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ String/weave			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
	.7	ϕ Oscillation			Х
	.8	ϕ Tube-work distance			х
	.9	ϕ Multi to single pass/side		Х	Х
	.10	ϕ Single to multi electrodes		Х	Х
	.15	ϕ Electrode spacing			Х
	.25	ϕ Manual or automatic			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		

		Special Pro	ocess Variables	
		Essential	Variables	
Danagnan	h	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO)	Nonessential Variables for HFO and CRO
Paragrap QW-402 Joints	.16	< Finished <i>t</i>	(QW-214) < Finished t	
0W-403	.20	φ P-Number	φ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.6			ϕ Nominal size of electrod
	.12	ϕ Classification		•
QW-404	.24	\pm or $\phi > 10\%$ in supplemental filler metal	\pm or $\phi > 10\%$ in supplemental filler metal	
Filler Metals	.27	ϕ Alloy elements		
	.37		ϕ A-Number	
	.39	ϕ Nominal flux comp.	ϕ Nominal flux comp.	
QW-405 Positions	.4	+ Position	+ Position	
<mark>QW-406</mark> Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical Characteris- tics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.1			ϕ String/weave
	.5			ϕ Method of cleaning
	.7			ϕ Oscillation
	.8			ϕ Tube to work distance
QW-410	.15			ϕ Electrode spacing
Technique	.25			ϕ Manual or automatic
	.26			± Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
	.40		 Supplemental device 	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	
Legend: + Addition - Deletion		 Increase/greater than Decrease/less than 	↑ Uphill ← Forehand	ϕ Change

				Supplementary	
Paragrap	<u>h</u>	Brief of Variables	Essential	Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402	.4	– Backing			Х
Joints	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
	.5	ϕ Group Number		X	
	.6	T Limits		Х	
QW-403	.8	ϕ T Qualified	X		
Base Metals	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	X		
	.10	T limits (S. cir. arc)	X		
	.11	ϕ P-No. qualified	X		
	.4	ϕ F-Number	X		
	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			X
	.12	ϕ Classification		X	
QW-404	.23	ϕ Filler metal product form	Х		
Filler Metals	.24	\pm or ϕ Supplemental	Х		
	.27	ϕ Alloy elements	Х		
	.30	φ t	X		
	.32	t Limits (S. cir. arc)	X		
	.33	ϕ Classification			Х
	.1	+ Position			Х
QW-405 Positions	.2	ϕ Position		Х	
FOSICIONS	.3	ϕ \uparrow \downarrow Vertical welding			Х
	.1	Decrease > 100°F (55°C)	Х		
QW-406	.2	ϕ Preheat maint.			Х
Preheat	.3	Increase > 100°F (55°C) (IP)		X	
	.1	ϕ PWHT	Х		
2W-407	.2	ϕ PWHT (T & T range)		X	
PWHT	.4	T Limits	Х		
	.1	± Trail or ϕ comp.			Х
	.2	ϕ Single, mixture, or %	Х		
OW-408	.3	ϕ Flow rate			Х
Gas	.5	\pm or ϕ Backing flow			Х
	.9	- Backing or ϕ comp.	Х		
	.10	ϕ Shielding or trailing	X		
	.1	> Heat input		X	
QW-409	.2	ϕ Transfer mode	X		
Electrical	.4	ϕ Current or polarity		X	X
Characteristics	.8	ϕ I & E range		~	X

		(Cont'd)	-	s Metal-Arc Welding (GMAW and FCA				
Paragra	ph	Brief of Variables	Essential	Supplementary Essential	Nonessential			
	.1	ϕ String/weave			Х			
	.3	ϕ Orifice, cup, or nozzle size			Х			
	.5	ϕ Method cleaning			Х			
	.6	ϕ Method back gouge			Х			
	.7	ϕ Oscillation			Х			
W-410	.8	ϕ Tube-work distance			Х			
Technique	.9	ϕ Multiple to single pass/side		Х	Х			
	.10	ϕ Single to multiple electrodes		Х	Х			
	.15	ϕ Electrode spacing			Х			
	.25	ϕ Manual or automatic			Х			
	.26	± Peening			Х			
	.64	Use of thermal processes	Х					

		Special Pro	cess Variables		
		Essential	Variables		
Paragraph	1	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	No	nessential Variables for HFO and CRO
QW-402 Joints	.16	< Finished t	< Finished <i>t</i>		
QW-403	.20	ϕ P-Number	ϕ P-Number		
Base Metals	.23	ϕ T Qualified	ϕ T Qualified		
	.6			φ	Nominal size of electrode
	.12	ϕ Classification			
0111 404	.23	ϕ Filler metal product form	ϕ Filler metal product form		
QW-404 Filler Metals	.24	t or $\phi > 10\%$ in supplemental filler metal	t or $\phi > 10\%$ in supplemental filler metal		
	.27	ϕ Alloy elements			
	.37		ϕ A-Number		
<mark>QW-405</mark> Positions	.4	+ Position	+ Position		
<mark>QW-406</mark> Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass		
QW-407	.6	ϕ PWHT			
PWHT	.9		ϕ PWHT		
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %		
Gas	.3			φ	Flow rate
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity		
Electrical Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%		
	.1			φ	String/weave
	.3			φ	Orifice/cup or nozzle size
	.5			φ	Method of cleaning
OW-410	.7			φ	Oscillation
Technique	.8			φ	Tube to work distance
	.25			φ	Manual or automatic
	.26			±	Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer		
	.50	ϕ No. of electrodes	ϕ No. of electrodes		
Legend: + Addition		> Increase/greater than	↑ Uphill ← Foreha	nd	ϕ Change

Table QW-255.1 Welding Variables Procedure Specifications (WPS) — Gas Metal-Arc Welding (GMAW and FCAW)

Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessentia
QW-402	.1	ϕ Groove design			Х
Joints	.5	+ Backing			Х
	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
QW-403	.5	ϕ Group Number		Х	
Base Metals	.6	T Limits		Х	
	.8	T Qualified	Х		
	.11	ϕ P-No. qualified	Х		
QW-404	.3	ϕ Size			Х
Filler Metals	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	Х		
	.12	ϕ Classification		Х	
	.14	± Filler	Х		
	.22	± Consum. insert			Х
	.23	ϕ Filler metal product form	Х		
	.30	φ t	Х		
	.33	ϕ Classification			Х
	.50	± Flux			Х
QW-405	.1	+ Position			Х
Positions	.2	ϕ Position		Х	
	.3	$\phi \uparrow \downarrow$ Vertical welding			Х
QW-406	.1	Decrease > 100°F (55°C)	Х		
Preheat	.3	Increase > 100°F (55°C) (IP)		Х	
QW-407	.1	ϕ PWHT	Х		
PWHT	.2	ϕ PWHT (T &T range)		х	
	.4	T Limits	х		
QW-408	.1	± Trail or ϕ comp.			Х
Gas	.2	ϕ Single, mixture, or %	х		
	.3	ϕ Flow rate			Х
	.5	± or ϕ Backing flow			Х
	.9	– Backing or ϕ comp.	х		
	.10	ϕ Shielding or trailing	х		
	.1	> Heat input		х	
QW-409	.3	± Pulsing I			Х
Electrical Characteris-	.4	ϕ Current or polarity		Х	Х
tics	.8	φ I & E range			Х
	.12	ϕ Tungsten electrode			Х

Paragraph		Brief of Variables Essentia		Supplementary Essential	Nonessential
	.1	ϕ String/weave			Х
QW-410	.3	ϕ Orifice, cup, or nozzle size			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
	.7	ϕ Oscillation			Х
	.9	ϕ Multi to single pass/side		Х	Х
Technique	.10	ϕ Single to multi electrodes		Х	Х
	.11	ϕ Closed to out chamber	Х		
	.15	ϕ Electrode spacing			Х
	.25	ϕ Manual or automatic			Х
	.26	± Peening			Х
	.64	Use of thermal processes	X		

		Special Pr	ocess Variables	
		Essential	Variables	
Paragrap	h	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables for HFC and CRO
QW-402 Joints	.16	< Finished <i>t</i>	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.3			ϕ Wire size
	.12	ϕ Classification		
QW-404 Filler Metals	.14	± Filler metal	r (HFO) (QW-216)(QW-214)and CRO $<$ Finished t $\phi P-Number//\phi Wire size\phi T Qualified//\phi Wire size\pm Filler metal//\phi Wire size\pm Filler metal product form//\phi A-Number\phi A-Number//\phi A-Number+ Position//\phi A-Number\circ Or preheatDec. > 100°F (55°C) preheat> Interpass//\phi PWHT//\phi Flow rate//\phi Single, mixture, or %//\phi Flow rate//\phi Current or polarity//\phi Tungsten electrode//\phi Ist layer — Heat input > 10%//\phi String/weave//\phi Orifice/cup or nozzle size//\phi Method of cleaning//\phi Method of cleaning//\phi Scillation//\phi Multiple to single layer//\phi Manual or automatic$	
Filler Metals	.23	ϕ Filler metal product form	ϕ Filler metal product form	
	.37		ϕ A-Number	
QW-405 Positions	.4	+ Position	+ Position	
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass		
OW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %	
Gas	.3			ϕ Flow rate
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical	.12			ϕ Tungsten electrode
Characteris- tics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.1			ϕ String/weave
	.3			ϕ Orifice/cup or nozzle size
	.5			ϕ Method of cleaning
	.7			ϕ Oscillation
OW-410	.15			ϕ Electrode spacing
Technique	.25			
	.26			± Peening
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	
	.52			ϕ Filler metal delivery
Legend: + Addition	.52	> Increase/greater than ↑ U _F	hill ← Forehand wynhill → Backhand	ϕ Filler metal delivery ϕ Change

Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design		Х	
QW-402	.5	+ Backing			Х
Joints	.10	ϕ Root spacing			Х
	.11	± Retainers			Х
	.5	ϕ Group Number		Х	
QW-403	.6	T Limits		Х	
Base Metals	.8	ϕ T Qualified	Х		
	.12	ϕ P-Number/melt-in	Х		
	.3	ϕ Size			Х
	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	X		
	.12	ϕ Classification		Х	
OW-404	.14	± Filler metal	X		
Filler Metals	.22	± Consum. insert			Х
	.23	ϕ Filler metal product form	Х		
	.27	ϕ Alloy elements	х		
	.30	ϕ t	X		
	.33	ϕ Classification			Х
	.1	+ Position			Х
QW-405	.2	ϕ Position		Х	
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding			Х
QW-406	.1	Decrease > 100°F (55°C)	х		
Preheat	.3	Increase > 100°F (55°C) (IP)		Х	
	.1	ϕ PWHT	Х		
QW-407	.2	ϕ PWHT (T & T range)		х	
PWHT	.4	ϕ Limits	x		
	.1	± Trail or ϕ comp.			Х
	.4	ϕ Composition	х		
OW-408	.5	\pm Or ϕ backing flow			Х
Gas	.9	- Backing or ϕ comp.	х		
	.10	ϕ Shielding or trailing	х		
	.21	ϕ Flow rate			Х
OW 400	.1	> Heat input		х	
QW-409 Electrical	.4	ϕ Current or polarity		х	х
Characteris-	.8	ϕ I & E range			х
tics	.12	ϕ Tungsten electrode			X

Paragraph		Brief of Variables Essent		Supplementary Essential	Nonessential
	.1	ϕ String/weave			Х
	.3	ϕ Orifice, cup, or nozzle size			Х
	.5	ϕ Method cleaning			Х
	.6	ϕ Method back gouge			Х
	.7	ϕ Oscillation			Х
QW-410	.9	ϕ Multiple to single pass/side		Х	Х
Technique	.10	ϕ Single to multiple electrodes		Х	Х
	.11	ϕ Closed to out chamber	Х		
	.12	ϕ Melt-in to keyhole		Х	
	.15	ϕ Electrode spacing			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		

Γ

	wetui	lig variables Flocedure	Specifications (WPS) –	- Flasina-Aic Welding	(PAW)	
		1	Special Process Variables			
			Essential Variables			
Paragrag	oh	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Hard-Facing Spray Fuse (HFSF) (QW-216)	Nonessential Variabl for HFO, CRO, and HF	
QW-402	.16	< Finished t	< Finished t			
Joints	.17			> Finished t		
QW-403	.20	ϕ P-Number	ϕ P-Number	ϕ P-Number		
Base Metals	.23	ϕ T Qualified	ϕ T Qualified			
	.12	ϕ Classification		ϕ Classification		
	.14	± Filler metal	± Filler metal			
	.37		ϕ A-Number			
	.41	ϕ > 10% Powder feed rate	ϕ > 10% Powder feed rate			
QW-404 Filler Metals	.42			ϕ > 5% Particle size		
Filler Metals	.43	ϕ Particle size	ϕ Particle size			
	.44	ϕ Powder type	ϕ Powder type			
	.45	ϕ Filler metal form	ϕ Filler metal form			
	.46			ϕ Powder feed rate		
QW-405 Positions	.4	+ Position	+ Position	+ Position		
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass		
	.5			ϕ Preheat maintenance		
QW-407	.6	φ PWHT		ϕ PWHT		
PWHT	.7			ϕ PWHT after fusing		
	.9		ϕ PWHT			
QW-408	.1				± Trail or π comp.	
Gas	.16	ϕ > 5% Arc or metal feed gas	ϕ > 5% Arc or metal feed gas	ϕ > 5% Arc or metal feed gas		
	.17	ϕ Type or mixture	ϕ Type or mixture			
	.18	ϕ > 10% Mix. comp.	ϕ > 10% Mix. comp.			
	.19			ϕ Plasma/feed gas comp.		
	.20			ϕ Plasma gas flow-rate range		
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity			
Electrical	.12			ϕ Type or size of electrode		
Characteris-	.23			$\phi > 10\%$ I & E		
tics	.24	ϕ > 10% Filler wire watt.	ϕ > 10% Filler wire watt.			
	.25	$\phi > 10\%$ I & E	$\phi > 10\%$ I & E			

			Special Process Variables		
			Essential Variables		
Paragrap	h	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Hard-Facing Spray Fuse (HFSF) (QW-216)	Nonessential Variable for HFO, CRO, and HF
	.1				ϕ String/weave (HF and CRO only)
	.3				ϕ Orifice/cup or nozzle size
	.5				ϕ Method of cleaning
	.7				ϕ Oscillation
	.25				ϕ Manual or automatic
	.26				± Peening
)W-410	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	ϕ Multiple to single layer	
Technique	.41	ϕ > 15% Travel speed	ϕ > 15% Travel speed		
	.43			ϕ > 10% Travel speed range	
	.44			ϕ > 15% Torch to workplace	
	.45			ϕ Surface preparation	
	.46			ϕ Spray torch	
	.47			ϕ > 10% Fusing temp. or method	
	.48	ϕ Transfer mode	ϕ Transfer mode	ϕ Transfer mode	
	.49	ϕ Torch orifice diameter	ϕ Torch orifice diameter		
	.52	ϕ Filler metal del.	ϕ Filler metal del.		

Paragrap	h	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design			Х
QW-402 Joints	.10	ϕ Root spacing			Х
Joints	.11	± Retainers	Х		
	.1	ϕ P-Number	Х		
QW-403 Base Metals	.4	ϕ Group Number		Х	
Base Metals	.9	$t \text{ Pass} > \frac{1}{2}$ in. (13 mm)	Х		
	.4	ϕ F-Number	Х		
	.5	ϕ A-Number	Х		
	.6	ϕ Diameter			Х
QW-404	.12	ϕ Classification		Х	
Filler Metals	.17	ϕ Flux type or comp.	Х		
	.18	ϕ Wire to plate	Х		
	.19	ϕ Consum. guide	Х		
	.33	ϕ Classification			Х
	.1	ϕ PWHT	Х		
QW-407 PWHT	.2	ϕ PWHT (T & T range)		Х	
PWHI	.4	T Limits	Х		
QW-409 Electrical Characteris- tics	.5	φ ± 15% I & E range	х		
	.5	ϕ Method cleaning			Х
	.7	ϕ Oscillation	Х		
QW-410	.10	ϕ Single to multiple electrodes	Х		
Technique	.15	ϕ Electrode spacing			Х
	.26	± Peening			Х
	.64	Use of thermal processes	Х		
Legend:					

		Special Pr	ocess Variables	•
		Essential	Variables	
Paragraph	1	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables for HFC and CRO
QW-402 Joints	.16	< Finished t	< Finished t	
QW-403	.20	ϕ P-Number	ϕ P-Number	
Base Metals	.23	ϕ T Qualified	ϕ T Qualified	
	.6			ϕ Nominal size of electrode
	.12	ϕ Classification		
QW-404 Filler Metals	.24	\pm or $\phi > 10\%$ in supplemental filler metal	\pm or $\phi > 10\%$ in supplemental filler metal	
	.37		ϕ A-Number	
	.39	ϕ Nominal flux comp.	ϕ Nominal flux comp.	
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass	
QW-407	.6	ϕ PWHT		
PWHT	.9		ϕ PWHT	
QW-409	.4	ϕ Current or polarity	ϕ Current or polarity	
Electrical Characteristics	.26	1st layer — Heat input > 10%	1st layer — Heat input > 10%	
	.5			ϕ Method of cleaning
0W-410	.7			ϕ Oscillation (CRO only)
Technique	.38	ϕ Multiple to single layer	ϕ Multiple to single layer	
	.40	 Supplemental device 	 Supplemental device 	
	.50	ϕ No. of electrodes	ϕ No. of electrodes	
Legend: + Addition – Deletion		10	lphill ← Forehand Downhill → Backhand	ϕ Change

Paragrap	h	Brief of Variables		Essential	Supplementary Essential	Nonessential
	.1	ϕ Groove design				X
QW-402	.10	ϕ Root spacing				Х
Joints	.11	± Retainers		Х		
	.1	ϕ P-Number		Х		
	.5	ϕ Group Number			х	
QW-403	.6	T Limits			Х	
Base Metals	.8	ϕ T Qualified		Х		
	.9	$t \text{ Pass} > \frac{1}{2} \text{ in. (13 mm)}$		Х		
	.4	ϕ F-Number		Х		
	.5	ϕ A-Number		Х		
QW-404	.6	ϕ Diameter				Х
Filler Metals	.12	ϕ Classification			Х	
	.23	ϕ Filler metal product form		Х		
	.33	ϕ Classification				Х
QW-406 Preheat	.1	Decrease > 100°F (55°C)				х
	.1	ϕ PWHT		Х		
QW-407 PWHT	.2	ϕ PWHT (T & T range)			Х	
PWNI	.4	T Limits		Х		
QW-408	.2	ϕ Single, mixture, or %		Х		
Gas	.3	ϕ Flow rate				Х
QW-409	.1	> Heat input			Х	
Electrical	.4	ϕ Current or polarity			Х	Х
Characteris- tics	.8	ϕ I & E range				х
	.5	ϕ Method cleaning				Х
	.7	ϕ Oscillation				Х
	.8	ϕ Tube-work distance				Х
QW-410	.9	ϕ Multiple to single pass/side			Х	Х
Technique	.10	ϕ Single to multiple electrodes		Х		
	.15	ϕ Electrode spacing				Х
	.26	± Peening				Х
	.64	Use of thermal processes		Х		
Legend: + Addition – Deletion		 Increase/greater than Decrease/less than 	↑ Uphill ↓ Downhi		← Forehand → Backhand	ϕ Change

				Supplementary	
Paragraph		Brief of Variables	Essential	Essential	Nonessential
QW-402	.1	ϕ Groove design	X		
Joints	.2	– Backing	X		
	.6	> Fit-up gap	X		
QW-403	.1	φ P-Number	X		
Base Metals	.3	ϕ Penetration	X		
	.15	ϕ P-Number	X		
	.1	ϕ Cross section or speed	X		
	.2	$< t \text{ or } \phi \text{ comp.}$	X		
QW-404	.8	\pm or ϕ Chem. comp.	X		
Filler Metals	.14	± Filler	X		
	.20	ϕ Method of addition	X		
	.21	ϕ Analysis	X		
	.33	ϕ Classification	v		Х
QW-406 Preheat	.1	Decrease > 100°F (55°C)	Х		
QW-407 PWHT	.1	ϕ PWHT	Х		
QW-408 Gas	.6	ϕ Environment	Х		
QW-409	.6	ϕ I, E, speed, distance, osc.	X		
Electrical Characteristics	.7	ϕ Pulsing frequency	Х		
	.5	ϕ Method cleansing			X
	.7	ϕ Oscillation	Х		
	.14	ϕ Angle of beam axis	Х		
0144 44 0	.17	ϕ Type equip.	X		
QW-410 Technique	.18	> Pressure of vacuum	Х		
reeninque	.19	ϕ Filament type, size, etc.	X		
	.20	+ Wash pass	X		
	.21	1 vs. 2 side welding	Х		
	.64	Use of thermal processes	Х		

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
QW-402	.8	ϕ Stud shape size	Х		
Joints	.9	– Flux or ferrule	Х		
<mark>QW-403</mark> Base Metal	.17	ϕ Base metal or stud metal P-No.	Х		
QW-405 Positions	.1	+ Position	Х		
<mark>QW-406</mark> Preheat	.1	Decrease > 100°F (55°C)	Х		
QW-407 PWHT	.1	ϕ PWHT	Х		
QW-408 Gas	.2	ϕ Single, mixture, or %	Х		
	.4	ϕ Current or polarity	Х		
QW-409 Electrical	.9	ϕ Arc timing	Х		
Characteristics	.10	ϕ Amperage	Х		
	.11	ϕ Power source	Х		
QW-410	.22	ϕ Gun model or lift	Х		
Technique	.64	Use of thermal processes	Х		

Paragrap	oh	Brief of Variables	Essential	Supplementary Essential	Nonessential
	.12	ϕ ± 10 deg	Х		
QW-402		ϕ Cross section > 10%	X		
Joints		ϕ O.D. > ± 10%	X		
		ϕ Solid-to-tube	Х		
QW-403 Base Metals	.19	ϕ Base metal	Х		
QW-406 Preheat	.1	ϕ Decrease > 100°F (55°C)	Х		
QW-407 PWHT	.1	ϕ PWHT	Х		
QW-408 Gas	.6	ϕ Environment	Х		
	.27	ϕ Spp. > ± 10%	Х		
	.28	ϕ Load > ± 10%	Х		
QW-410 Technique	.29	ϕ Energy > ± 10%	Х		
Technique	.30	ϕ Upset > ± 10%	Х		
	.64	Use of thermal processes	Х		

Paragrap	ph	Brief of Variables		Nonessential
	.13	ϕ Spot, projection, seam	Х	
QW-402 Joints	.14	ϕ Overlap, spacing	Х	
	.15	ϕ Projection, shape, size	Х	
	.1	ϕ P-No.	Х	
QW-403 Base Metals	.21	± Coating, plating	Х	
	.22	± <i>T</i>	Х	
<mark>QW-407</mark> PWHT	.1	ϕ PWHT	Х	
QW-408 Gas	.23	– Gases	Х	
	.13	ϕ RWMA class	X	
	.14	$\pm \phi$ Slope	Х	
QW-409 Electrical	.15	ϕ Pressure, current, time	Х	
Electrical	.17	ϕ Power supply		х
	.18	Tip cleaning		х
	.31	ϕ Cleaning method	Х	
	.32	ϕ Pressure, time	Х	
QW-410	.33	ϕ Equipment	Х	
Technique	.34	ϕ Cooling medium		Х
	.35	ϕ Throat		Х
	.64	Use of thermal processes	Х	

Paragraph		Brief of Variables		Essential	Supplementary Essential	Nonessentia
	.2	± Backing		Х		
	.6	> Fit-up gap		Х		
[.18	ϕ Lap joint config.		Х		
QW-402	.25	ϕ Lap to groove		Х		
Joints	.26	< Bevel angle > 5 deg		Х		
QW-403	.1	ϕ P-Number		Х		
Base Metals	.3	ϕ Penetration		Х		
	.1	ϕ Cross section or speed		Х		
[.2	< t or ϕ comp.		Х		
[.4	ϕ F-No.		Х		
QW-404	.5	ϕ A-No.		Х		
Filler Metals	.8	\pm or ϕ chem. comp.		Х		
	.14	± Filler metal		Х		
[.20	ϕ Method of addition		Х		
QW-406 Preheat	.1	Decrease > 100°F (55°C)		Х		
QW-407 PWHT	.1	ϕ PWHT		Х		
	.2	ϕ Single, mixture, or %		Х		
QW-408	.6	ϕ Environment		Х		
Gas	.11	± Gases		Х		
	.12	Decrease > 10% flow rate		Х		
QW-409	.19	ϕ Pulse		Х		
Electrical	.20	ϕ Mode, energy		Х		
Characteris- tics	.21	Decrease > 10% power		Х		
QW-410	.5	ϕ Method cleaning				X
Technique	.7	ϕ Oscillation		Х		
[.14	ϕ Angle of beam axis		Х		
	.20	+ Wash pass		Х		
[.21	1 vs. 2 side welding		Х		
[.37	ϕ Single to multiple pass		Х		
[.64	Use of thermal processes		Х		
[.66	ϕ Travel, Beam factors		Х		
[.67	ϕ Optical technique		Х		
[.68	ϕ Type of equipment		Х		
	.77	ϕ Wavelength		Х		
	.80	ϕ Spot size		Х		
Legend: + Addition		> Increase/greater than	↑ Uphill		← Forehand	ϕ Chai

ſ	12)
ſ	13)

		Special Pro	cess Variables			
		Essential	Variables			
Paragrapl	1	Hard-Facing Overlay (HFO) (QW-216)	Corrosion-Resistant Overlay (CRO) (QW-214)	Nonessential Variables for and CRO		
QW-402 Joints	.16	< Finished t	< Finished t			
QW-403 Base Metals	.20	ϕ P-Number	φ P-Number			
QW-404	.12	ϕ Classification	ϕ Classification			
Filler Metals	.27	ϕ Alloy elements	ϕ Alloy elements			
	.44	ϕ Particle type	ϕ Particle type			
	.47	ϕ Filler/powder metal size	ϕ Filler/powder metal size			
	.48	ϕ Powder metal density	ϕ Powder metal density			
	.49	ϕ Filler metal powder feed rate	ϕ Filler metal powder feed rate			
QW-405 Positions	.1	+ Position	+ Position			
QW-406 Preheat	.4	Dec. > 100°F (55°C) preheat > Interpass	Dec. > 100°F (55°C) preheat > Interpass			
QW-407	.6	ϕ PWHT				
PWHT	.9		ϕ PWHT			
QW-408	.2	ϕ Single, mixture, or %	ϕ Single, mixture, or %			
Gas	.6	ϕ Environment	ϕ Environment			
	.11	± Gases	± Gases			
	.12	Decrease > 10% flow rate	Decrease > 10% flow rate			
QW-409	.19	ϕ Pulse	ϕ Pulse			
Electrical	.20	ϕ Mode, energy	ϕ Mode, energy			
Characteristics	.21	Decrease > 10% power	Decrease > 10% power			
QW-410	.5			ϕ Method of cleaning		
Technique	.7	ϕ Oscillation	ϕ Oscillation			
	.14	ϕ Angle of beam axis	ϕ Angle of beam axis			
	.17	ϕ Type/model of equipment	ϕ Type/model of equipment			
	.38	ϕ Multiple to single layer	ϕ Multiple to single layer			
	.45	ϕ Method of surface prep.	ϕ Method of surface prep.			
	.52	ϕ Filler metal delivery	ϕ Filler metal delivery			
	.53	ϕ Overlap, spacing	ϕ Overlap, spacing			
	.77	ϕ Wavelength	ϕ Wavelength			
	.80	ϕ Spot size	ϕ Spot size			

Le

Legend:				
+ Addition	> Increase/greater than	↑ Uphill	\leftarrow Forehand	ϕ Change
- Deletion	< Decrease/less than	↓ Downhill	\rightarrow Backhand	

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
1 al agi api	.19	ϕ Diameter or thickness	X	LSSential	Nonessentia
0W-402	.20	ϕ Joint configuration	X		
Joints	.21	ϕ Method or equip. used to minimize ID flash	Х		
	.22	ϕ End preparation method	Х		
QW-403 Base Metals	.24	ϕ Spec., type, or grade	Х		
<mark>QW-406</mark> Preheat	.7	ϕ > 10% Amperage or number of preheat cycles, or method, or > 25°F temperature	Х		
<mark>QW-407</mark> PWHT	.8	ϕ PWHT, PWHT cycles, or separate PWHT time or temperature	Х		
QW-408 Gas	.22	ϕ Shielding gas composition, pressure, or purge time	Х		
QW-409	.27	ϕ > 10% Flashing time	Х		
Electrical Characteristics	.28	ϕ > 10% Upset current time	Х		
	.17	ϕ Type/model of equipment	Х		
	.54	ϕ > 10% Upset length or force	Х		
QW-410 Technique	.55	ϕ > 10% Distance between clamping dies or preparation of clamping area	Х		
Technique	.56	ϕ Clamping force	Х		
	.57	ϕ 10% Forward or reverse speed	Х		ļ
	.64	Use of thermal processes	Х		

Paragraph		Brief of Variables	Essential	Supplementary Essential	Nonessential
QW-403	.28	Base metal grade	Х		
Base Metals	.29	ϕ Surface finish	Х		
QW-404 Filler Metal	.53	± Filler metal and composition	Х		
QW-407 PWHT	.10	± PWHT temperature, time, cooling rate	Х		
QW-408 Gas	.25	ϕ Furnace Atmosphere	Х		
	.70	ϕ Preassembly Cleaning	Х		
QW-410	.71	< Block Compression	Х		
Technique	.72	< Welding time or temperature	Х		

Table QW-267 Welding Variables Procedure Specifications — Friction Stir Welding (FSW)								
Paragraph		Brief of Variables	;	Essential	Supplementary Essential	Nonessential		
QW-402	.27	ϕ Fixed backing		Х				
Joints	.28	ϕ Joint design		Х				
	.29	ϕ Joint spacing > 10%		Х				
	.19	ϕ Type/grade		Х				
	.30	ϕ T qualified > 20%		Х				
QW-407 PWHT	.1	φ PWHT		Х				
QW-408 Gas	.26	ϕ Shielding gas		х				
QW-410	.21	1-side vs. 2-side welding		Х				
Technique	.73	ϕ Joint restraint		Х				
	.74	ϕ Control method		Х				
	.75	ϕ Tool design		Х				
	.76	ϕ Tool operation		Х				
Legend: + Addition	>	• Increase/greater than ↑	Uphill	← Forehand	ϕ Change			

Joints QW-403 Base Materials QW-404 Filler Metals QW-405 Positions QW-406	.30 .1 .5 .31 .4	Brief of Variables φ Weld joint design φ P-No. φ Group number	Essential X	GMAW Supple- mentary Essential	Nonessential		LBW Supple-	
QW-402 . Joints . QW-403 . Base . Materials . QW-404 . Filler Metals . QW-405 . Positions . QW-406 .	.1 .5 .31	φ P-No.	Х			Essential	mentary Essential	Nonessential
Base Materials QW-404 Filler Metals QW-405 Positions QW-406	.5 .31					x		
Materials . QW-404 . Filler Metals . QW-405 . Positions . QW-406 .	.31	φ Group number	Х			Х		
QW-404 . Filler Metals . QW-405 . Positions . QW-406 .		φ σισαμπαπισει		Х		Х		
Filler Metals	4	φ Τ	Х			Х		
QW-405		ϕ F-Number	Х					
QW-405 . Positions . QW-406 .	.5	ϕ A-Number	Х					
QW-405 . Positions . QW-406 .	.6	ϕ Diameter	Х					
QW-405 . Positions . QW-406 .	.33	ϕ Classification	Х					
Positions . QW-406 .	.54	> t	Х			Х		
QW-406	.1	+ Position	Х					
·	.3	ϕ $\uparrow\downarrow$ Vertical welding	Х					
Preheat	.1	Decrease > 100°F	Х			Х		
	.2	ϕ Preheat maintenance			Х			
	.3	Increase > 100°F (IP)		Х		Х		
QW-407 .	.1	ϕ PWHT	Х			Х		
PWHT .	.2	ϕ PWHT (T & T range)		Х		Х		
QW-408 .	.2	ϕ Single, mixture, or %	Х			Х		
Gas .	.3	ϕ Flow rate			Х			
	.9	– Backing or ϕ composition	Х			Х		
	.10	ϕ Shielding or trailing	Х			Х		
	.12	ϕ > 5% gases				Х		
QW-409 .	.1	> Heat input		Х				
	.2	ϕ Transfer mode			Х			
Characteris- tics	.4	ϕ Current or polarity		Х				
	.8	ϕ I & E range			Х			
	.19	ϕ Pulse				Х		
	.20	ϕ Mode, energy				Х		

			GMAW			LBW		
Paragrap	h	Brief of Variables	Essential	Supple- mentary Essential	Nonessential	Essential	Supple- mentary Essential	Nonessentia
QW-410	.3	ϕ Orifice, cup, or nozzle size			х			
Technique	.5	ϕ Method of cleaning			Х			Х
	.6	ϕ Method of back gouging			х			
	.7	ϕ Oscillation	Х			х		
	.8	ϕ Tube-to-work distance			х			
	.10	ϕ Single or multiple electrodes		Х				
	.14	ϕ Angle or beam axis				х		
	.15	ϕ Electrode spacing		Х				
	.21	1-side vs. 2-side welding	Х			х		
	.26	± Peening			х			
	.37	ϕ Single to multiple pass	Х			Х		
	.64	Use of thermal processes	Х			х		
	.66	ϕ Travel, beam factors				Х		
	.67	ϕ Optical technique				Х		
	.68	ϕ Type/model of equipment				х		
	.77	ϕ Wavelength				х		
	.78	ϕ Process sequence	Х			Х		
	.79	ϕ Process separation	Х			х		
	.80	ϕ Spot size				Х		

				PAW		GMAW		
Paragraph		Brief of Variables	Essential	Supple- mentary	Nonessential	Essential	Supple- mentary Essential	Nonessential
QW-402	.1	Groove design		Х			Х	
Joints	.5	+ Backing			х			Х
	.10	Root spacing			х			Х
	.11	± Retainers			х			Х
QW-403	.5	Group number		Х				
Base Metals	.6	T limits		Х				
	.8	T qualified	Х			х		
	.9	<i>T</i> pass > $\frac{1}{2}$ in. (13 mm)	Х			X		
	.11	P-No. qualified				Х		
	.12	P-Number/melt-in	Х					
QW-404	.3	Size			Х			
Filler Metals	.4	F-Number	Х			Х		
	.5	A-Number	Х			Х		
	.6	Diameter			Х			Х
	.12	Classification		Х			Х	
	.14	± Filler metal	X					
	.22	± Consum. insert			Х			
	.23	Filler metal form	Х			Х		
	.24	± Supplemental				X		
	.27	Alloy elements	Х					
	.30	t			Х	Х		
	.33	Classification				Х		
QW-405	.1	+ Position			Х			Х
Positions	.2	Position		Х			Х	
	.3	Vertical welding			Х			Х
QW-406	.1	Decrease > 100°F (55°C)	Х			Х		
Preheat	.2	Preheat maint.			Х			Х
	.3	Increase > 100°F (55°C)		Х			Х	
QW-407	.1	PWHT	Х			Х		
PWHT	.2	PWHT (T & T range)		Х			Х	
	.4	T limits	X			X		
QW-408	.1	+ Trail or comp.			Х			Х
Gas	.2	Single, mixture, or %				X		
	.3	Flow rate						Х
	.4	Composition	X					
	.5	+ Or backing flow			Х			Х
	.9	 Backing or comp. 	X					Х
	.10	Shielding or trailing	X			X		
	.21	Flow rate	_		Х			
QW-409	.1	> Heat input	Х			X		
Electrical	.4	Current or polarity	Х			X		
Characteris-	.8	I & E		Х				Х
tics	.12	Tungsten electrode		Х				

				PAW		GMAW		
Paragrap	h	Brief of Variables	Essential	Supple- mentary	Nonessential	Essential	Supple- mentary Essential	Nonessentia
QW-410	.1	Stinger/weave			Х			Х
Technique	.3	Orifice, cup, or nozzle size			Х			Х
	.5	Method of cleaning			Х			Х
	.6	Method of backgouge			Х			Х
	.7	Oscillation			Х			Х
	.8	Tube-to-work distance						Х
	.9	Single to multiple pass/side		Х	Х		Х	Х
	.10	Single to multiple electrodes		Х	Х		Х	Х
	.11	Closed to out chamber	Х					
	.12	Melt-in to keyhole		Х				
	.15	Electrode spacing			х			Х
	.26	Peening			Х			Х
	.64	Use of thermal processes	Х			Х		
	.77	ϕ Orientation or #	Х			Х		
	.78	ϕ Process spacing	Х			Х		
	.79	ϕ Height differential	Х			Х		
	.80	ϕ Angle of plasma	Х			Х		

		Special Process Van	riables			
Paragraph			Hardfacing		Corrosion Resistant Overlay (CRO)	
		Brief of Variables	Essential Nonessentia		Essential	Nonessential
QW-402 Joints	.16	< Finished t	Х		Х	
QW-403	.20	P Number	Х		Х	
Base Metals	.23	T qualified	Х		Х	
QW-404	.6	Nominal size of electrode		Х		Х
Filler Metals	.12	Classification	х			Х
	.14	± Filler metal	Х		Х	
	.23	Product form	Х		Х	
	.24	Supplemental filler	х		Х	
	.27	Alloy elements	х			
	.37	A Number			Х	
	.41	Powder feed rate	х		Х	
	.43	Particle size	х		Х	
	.44	Powder type	Х		Х	
QW-405 Positions	.4	+ Position	Х		Х	
<mark>QW-406</mark> Preheat	.4	Decrease > 100°F (55°C) in preheat/ increase of interpass	Х		Х	
QW-407	.6	Change in PWHT	Х			
PWHT	.9	Change in PWHT			Х	
QW-408	.2	Single, mixture, or %	Х		Х	
Gas	.3	Flow rate		Х		Х
	.16	> 5% arc or metal feed gas	Х		Х	
	.17	Type or mixture	Х		Х	
	.18	> 10% mix comp.	Х			
QW-409	.4	Current or polarity	Х		Х	
Electrical	.24	> 10% change in filler wire watts	Х		Х	
Characteris-	.25	> 10% I & E	Х		Х	
tics	.26	1st layer heat input > 10%	х		Х	

(**13**)

Table QW-269.1 Welding Variables Procedure Specifications (WPS) — Hybrid Plasma-GMAW

		Special Process	s Variables			
		Hard	Hardfacing		Corrosion Resistant Overlay (CRO)	
Paragraj	oh	Brief of Variables	Essential	Nonessential	Essential	Nonessentia
QW-410	.1	Stinger/weave		Х		Х
Technique	.3	Orifice/cup or nozzle size		Х		Х
	.5	Method of cleaning		Х		Х
	.7	Oscillation		х		Х
	.8	Contact tip to work dist.		Х		Х
	.15	Electrode spacing	Х		Х	
	.26	Peening		х		Х
	.38	Multiple or single layer	Х		Х	
	.41	> 15% travel speed	Х		Х	
	.48	Transfer mode	Х		Х	
	.49	Torch orifice diameter	X		Х	
	.50	No. of electrodes	X		Х	
	.52	Method of filler delivery	X		Х	
	.77	ϕ Orientation or #	X		Х	
	.78	ϕ Process spacing	X		Х	
	.79	ϕ Height differential	X		Х	
	.80	ϕ Angle of plasma	Х		Х	
Legend: + Addition - Deletion		 > Increase/greater than ↑ U < Decrease/less than ↓ D 		 Forehand Backhand 	ϕ Cha	ange

QW-283 WELDS WITH BUTTERING

QW-283.1 Scope. This paragraph only applies when the essential variables for the buttering process are different than the essential variables for the process used for subsequent completion of the joint. Common examples are

(a) the buttered member is heat treated and the completed weld is not heat treated after welding

(b) the filler metal used for buttering has a different F-Number from that used for the subsequent completion of the weld

QW-283.2 Tests Required. The procedure shall be qualified by buttering the test coupon (including heat treating of the buttered member when this will be done in production welding) and then making the subsequent weld joining the members. The variables for the buttering and for the subsequent weld shall be in accordance with QW-250, except that QW-409.1 shall be an essential variable for the welding process(es) used to complete the weld when the minimum buttering thickness is less than $\frac{3}{16}$ in. (5 mm). Mechanical testing of the completed weldment shall be in accordance with QW-202.2(a).

If the buttering is done with filler metal of the same composition as the filler metal used to complete the weld, one weld test coupon may be used to qualify the dissimilar metal joint by welding the first member directly to the second member in accordance with Section IX.

QW-283.3 Buttering Thickness. The thickness of buttering which shall remain on the production buttered member after all machining and grinding is completed and before subsequent completion of the joint shall be required by the WPS. When this thickness is less than ${}^{3}\!/_{16}$ in. (5 mm), the thickness of buttering on the test coupon shall be measured before the buttered member is welded to the second member. This thickness shall become the minimum qualified thickness of buttering.

QW-283.4 Qualification Alternative. When an essential variable is changed in the portion of the weld to be made after buttering or when a different organization is performing the portion of the weld to be made after buttering, a new qualification shall be performed in accordance with one of the following methods:

(a) Qualify in accordance with QW-283.2 and QW-283.3. When the original qualification buttering thickness is less than $\frac{3}{16}$ in. (5 mm), the buttering thickness shall not be greater, nor the heat input higher than was used on the original qualification.

(b) When the original qualification buttering thickness is ${}^{3}\!/_{16}$ in. (5 mm) or greater, qualify the portion of the weld to be made after buttering using any P-Number material that nominally matches the chemical analysis of the buttering weld metal for the buttered base metal of the test coupon.

QW-284 RESISTANCE WELDING MACHINE QUALIFICATION

Each resistance welding machine shall be tested to determine its ability to make welds consistently and reproducibly. A machine shall be requalified whenever it is rebuilt, moved to a new location requiring a change in power supply, when the power supply is changed, or any other significant change is made to the equipment. Spot and projection welding machine qualification testing shall consist of making a set of 100 consecutive welds. Every fifth of these welds shall be subjected to mechanical shear tests. Five welds, which shall include one of the first five and one of the last five of the set shall be metallographically examined. Seam welding machine qualification testing shall be the same as procedure qualification testing required per QW-286. Maintenance or adjustment of the welding machine shall not be permitted during welding of a set of test welds. Qualification testing on any P-No. 21 through P-No. 26 aluminum allov shall qualify the machine for all materials. Qualification on P-No. 1 through P-No. 15F iron-base alloys and any P-No. 41 through P-No. 49 nickel-base alloys shall qualify the machine for all P-No. 1 through P-No. 15F and P-No. 41 through P-No. 49 metals. Qualification testing of the machine using base metals assigned to P-No. 51 through P-No. 53, P-No. 61, or P-No. 62 qualifies the welding machine to weld all base metals assigned to P-No. 51 through P-No. 53, P-No. 61, and P-No. 62. Testing and acceptance criteria shall be in accordance with QW-196.

QW-285 RESISTANCE SPOT AND PROJECTION WELD PROCEDURE QUALIFICATION

Procedure qualification testing for spot or projection welds shall be done following a Welding Procedure Specification, and it shall consist of making a set of ten consecutive welds. Five of these welds shall be subjected to mechanical shear tests and five to metallographic examination. Examination, testing, and acceptance criteria shall be in accordance with QW-196.

QW-286 RESISTANCE SEAM WELD PROCEDURE QUALIFICATION

QW-286.1 Test coupons described below shall consist of the same number of members, orientation, material grades/types, and thicknesses to be used in production welding.

QW-286.2 A test coupon as shown in Figure QW-462.7.1 shall be prepared by drilling a hole in the center of one of the outer coupon members. In the case of a test coupon containing more than two members, a hole shall be drilled in each member except for one of the outer members. A pipe nipple shall be welded or brazed to the outer member at the hole. The test coupon shall then be welded around the edges, sealing the space between the members as shown in Figure QW-462.7.1. The coupon

shall be pressurized hydrostatically until failure occurs. The procedure qualification is acceptable if failure occurs in the base metal.

QW-286.3 A test coupon at least 10 in. (250 mm) long shall be made per Figure QW-462.7.2. This test coupon shall be cut transverse to the length of the weld into ten pieces, each approximately 1 in. (25 mm) long. Four transverse weld specimens and four longitudinal weld cross section specimens shall be cut and prepared as detailed in Figure QW-462.7.2. The specimens shall be metallographically examined for compliance with the requirements of QW-196.

QW-287 VARIATION OF SETTINGS FOR ELECTRIC RESISTANCE WELDING

Settings for preheating cycles, electrode pressure, welding current, welding time cycle, or postheating cycles may be varied by $\pm 5\%$ from the values recorded on the PQR, or by $\pm 10\%$ when only one of the above settings is changed.

QW-288 TUBE-TO-TUBESHEET QUALIFICATION ESSENTIAL VARIABLES

The following shall be considered essential variables for tube-to-tubesheet welding qualifications in accordance with QW-193.

QW-288.1 All Processes.

(a) A change in the welding process used.

(*b*) A change in the weld joint configuration (beyond the manufacturing tolerance) such as the addition or deletion of preplaced filler metal, an increase in the depth of the groove, a decrease in the groove angle, or a change in the groove type.

(c) For tubes of specified wall thickness of 0.100 in. (2.5 mm) or less, an increase or decrease of 10% of the specified wall thickness. For tubes of specified wall thickness greater than 0.100 in. (2.5 mm), only one qualification test is required.

(d) For tubes of specified diameter of 2 in. (50 mm) or less and a specified wall thickness of 0.100 in. (2.5 mm) or less, a decrease greater than 10% of the specified tube diameter. For tubes of specified diameter greater than 2 in. (50 mm), the minimum diameter qualified is 2 in. (50 mm). For tubes of specified wall thickness greater than 0.100 in. (2.5 mm), diameter is not an essential variable.

(e) A decrease of 10% or more in the specified width of the ligament between tube holes when the specified width of the ligament is less than the greater of $\frac{3}{8}$ in. (10 mm) or 3 times the specified tube wall thickness.

(f) A change from multiple passes to a single pass or vice versa.

(g) A change in the welding position of the tube-totubesheet joint from that qualified (see QW-461.1).

(*h*) A change in the progression of a vertical position weld from that qualified.

(*i*) A change in the P-No. of the tube or tubesheet material (if the tubesheet material is part of the weld), a change in the P-No. or A-No. of the tubesheet cladding material (if the cladding material is part of the weld), or a change in a material not assigned a P-No. or A-No.

(*j*) If filler metal is added, a change in the A-No. of the weld deposit or a change in the nominal composition of the weld deposit if there is no A-No.

(k) A decrease of more than 100° F (55°C) in the preheat temperature or an increase of more than 100° F (55°C) in the interpass temperature from that qualified.

(*l*) The addition or deletion of PWHT.

(*m*) A change of more than 10% in the current level from that qualified.

(*n*) A change in the polarity or current type (AC or DC) from that qualified.

(*o*) A change between manual, semiautomatic, machine, or automatic methods of application.

(*p*) The addition of tube expansion prior to welding.

(q) A change in the method of cleaning prior to welding.

QW-288.2 Shielded Metal Arc Welding.

(a) An increase in the electrode diameter.

(b) A change in the F-No. of the electrode.

QW-288.3 Gas Tungsten Arc, Plasma Arc, and Gas Metal Arc Welding.

(*a*) A change in the size or shape of preplaced metal inserts.

(*b*) A change from one shielding gas to another shielding gas or to a mixture of shielding gases.

(c) When using a mixed shielding gas, a change of $\pm 25\%$ or 5 ft³/hr (2.5 L/min), whichever is the larger, in the rate of flow of the minor gas constituent.

(*d*) For GTAW or PAW, the addition or deletion of filler metal.

(e) For GTAW or PAW, a change in the nominal diameter of the filler metal or electrode.

(f) The elimination of an auxiliary gas shield system if used during qualification.

(g) A change in the F-No. of the electrode or filler metal.

QW-288.4 Explosion Welding.

(*a*) A 10% change in the specified tube wall thickness or diameter for all diameters and wall thicknesses.

(b) A change in the method of pressure application.

(c) A change in the type of explosive or a change in the energy content of $\pm 10\%$.

(d) A change of $\pm 10\%$ in the distance between the charge and the tubesheet face.

(e) A change of $\pm 10\%$ in the specified clearance between the tube and the tubesheet.

NOTE: QW-288.1 (f), (h), (j), (k), (m), (n), and (o) do not apply for this process.

QW-290 TEMPER BEAD WELDING

When the applicable Code Section specifies the use of this paragraph for temper bead welding, QW-290.1 through QW-290.6 shall apply.

QW-290.1 Basic Qualification and Upgrading Existing WPSs. All WPSs for temper bead welding of groove and fillet weld shall be qualified for groove welding in accordance with the rules in OW-202 for qualification by groove welding or the rules in QW-283 for welds with buttering. WPSs for overlay shall be qualified in accordance with QW-214 or QW-216. Once these requirements and any additional qualification requirements of the applicable construction code have been satisfied, then it is necessary only to prepare an additional test coupon using the same procedure with the same essential and, if applicable, the supplementary essential variables with the coupon long enough to obtain the required temper bead test specimens. Qualification for groove welding, welding with buttering or cladding, and temper bead welding may also be done in a single test coupon.

When a procedure has been previously qualified to satisfy all requirements including temper bead welding, but one or more temper bead welding variables is changed, then it is necessary only to prepare an additional test coupon using the same procedure with the same essential and, if applicable, the supplementary essential variables and the new temper bead welding essential variable(s) with the coupon long enough to obtain the required test specimens. **QW-290.2** Welding Process Restrictions. Temper bead welding is limited to SMAW, GTAW, SAW, GMAW (including FCAW), and PAW. Manual and semiautomatic GTAW and PAW are prohibited, except for the root pass of groove welds made from one side and as described for making repairs to temper bead welds in QW-290.6. The essential variables listed in Table QW-290.4 apply in addition to the variables applicable for the process(es) qualified as given in QW-250. When impact testing is the basis for acceptance, the supplementary essential variables of QW-250 applicable to the process being qualified shall apply. When these variables conflict with or provide more stringent limitations than those of QW-250, these variables shall govern.

QW-290.3 Variables for Temper Bead Welding Qualifications. Table QW-290.4 lists the essential and nonessential variables that apply when temper bead qualification is required. The column "Hardness Test Essential Variables" shall apply, except that when the applicable Construction Code or Design Specification specifies acceptance based on impact testing, the column "Impact Test Essential Variables" shall apply. The column "Nonessential Variables" applies in all cases.

Paragraph		Brief of Variables	Hardness Test Essential Variables	Impact Test Essential Variables	Nonessential Variables
	.23	+ Fluid backing	Х		
QW-402	.24	+ Fluid backing		Х	
	.25	ϕ P-No. or Gr. No.		X	
QW-403	.26	> Carbon equivalent	Х		
	.27	> T	Х		
	.51	Storage			Х
QW-404	.52	Diffusible hydrogen			Х
	.8	> Interpass temperature		Х	
QW-406	.9	< Preheat temperature	Х		
	.10	Preheat soak time			Х
	.11	Postweld bakeout			Х
QW-408	.24	Gas moisture			Х
QW-409	.29	ϕ Heat input ratio	Х	Х	
	.10	ϕ Single to multiple electrode	Х	Х	
	.58	- Surface temper beads	Х	Х	
	.59	ϕ Type of welding	Х	Х	
OW-410	.60	+ Thermal preparation	Х	Х	
200-410	.61	Surface bead placement	Х	Х	
	.62	Surface bead removal method			Х
	.63	Bead overlap	Х	X	
	.65	± Grinding	Х	Х	

(13) QW-290.5 Test Coupon Preparation and Testing.

(*a*) The test coupon may be any geometry that is suitable for removal of the required specimens. It shall consist of a groove weld, a cavity in a plate, overlay, or other suitable geometry. The distance from each edge of the weld preparation to the edge of the test coupon shall be at least 3 in. measured transverse to the direction of welding. The depth of preparation shall be such that at least two layers of weld metal are deposited, one of which may be the surface temper bead layer and deep enough to remove the required test specimens.

(b) The test coupon shall be bend-tested in accordance with QW-451.

(c) When hardness testing is specified by a Construction Code or Design Specification or no specific testing is required, measurements shall be taken across the weld metal, heat-affected zone, and base metal using the Vickers method with a 10-kg load. Increments between measurements shall be as specified in ASTM E384. As an alternative to the Vickers method, Instrumented Indentation Testing in accordance with ASTM E2546 may be used with test forces in the macro range of 2.2 lbf to 265 lbf (1 kgf to 120 kgf) and increments between measurements as determined in accordance with ASTM E2546.

(1) Measurements shall be taken along a line at approximately mid-plane of the thickness of the test coupon weld metal. Along this line, there shall be

(-a) a minimum of two measurements in the weld metal fill layers.

(-b) at least one measurement on each: the weld beads against base metal, first-layer tempering beads, and the second-layer tempering beads.

(-c) a minimum of three measurements in the heat-affected zone. These measurements may be taken in a line approximately parallel to the HAZ when spacing between impressions does not allow for three measurements to be taken in a single line transverse to the HAZ.

(-*d*) a minimum of two measurements in the unaffected base metal.

(2) Additional measurements shall be taken along a line approximately 0.04 in. (1 mm) below the original base metal surface. Along this line, there shall be

(-a) a minimum of two measurements in the weld metal fill layers

(-b) at least one measurement on each: the weld beads against base metal, first-layer tempering beads, and the second-layer tempering beads

(-c) one measurement located immediately below the toe of the weld bead and at least one measurement on each side of that impression

(3) When the coupon is a full-penetration groove weld made from one side, additional measurements shall be taken along a line approximately 0.04 in. (1 mm) above the root side surface. Along this line, there shall be a minimum of two measurements in the weld metal, two in the heat-affected zone, and two in the unaffected base metal.

Full-penetration groove weld test coupons qualify full and partial penetration groove welds, fillet welds, and weld build-up. Partial penetration groove weld test coupons only qualify partial penetration groove welds, fillet welds, and build-up. Overlay test coupons only qualify overlay welds.

Hardness readings shall not exceed the hardness limits specified by the Construction Code or Design Specification. Where hardness is not specified, the data shall be reported.

(d) When specified by the applicable Construction Code or Design Specification, the test coupon shall be Charpy V-notch impact tested. The extent of testing (i.e., weld metal, HAZ, unaffected base metal), the testing temperature, and the acceptance criteria shall be as provided in the applicable Construction Code or Design Specification. Impact test specimens shall be removed from the coupon in the weld metal and HAZ as near as practical to a depth of onehalf the thickness of the weld metal for each process. For HAZ specimens, the specimen shall be oriented so as to include as much of the HAZ as possible at the notch. The impact specimens and testing shall be in accordance with SA-370 using the largest size specimen that can be removed from the test coupon with the notch cut approximately normal to the test coupon surface. More than one set of impact test specimens shall be removed and tested when weld metal and heat-affected zone material from each process or set of variables cannot be included in a single set of test specimens.

QW-290.6 In-Process Repair Welding.

(*a*) In-process repairs to welds made using temper bead welding are permitted. In-process repairs are defined as repairs in which a flaw is mechanically removed and a repair weld is made before welding of a joint is presented for final visual inspection. Examples of such repairs are areas of removal of porosity, incomplete fusion, etc., where sufficient metal has been mechanically removed that localized addition of weld metal is necessary in order to make the surface geometry suitable for continuation of normal welding.

(b) Surfaces to be repaired shall be prepared by mechanical removal of flaws and preparation of the surface to a suitable geometry.

(c) For processes other than manual and semiautomatic GTAW and PAW, repairs shall be made using the parameters given in the WPS for production temper bead welding. The approximate location of beads to be deposited relative to the original base metal surface shall be identified, and the applicable parameters shall be used for the layers to be deposited as specified by the WPS.

(*d*) When it is necessary to make repairs using manual or semiautomatic GTAW or PAW, a WPS shall be prepared based on PQRs developed for temper bead welding using machine or automatic GTAW or PAW, respectively. This WPS shall describe the size of the beads to be deposited and the volts, amps, and travel speed to be used for the

beads against the base metal, for each temper bead layer and for the fill and surface temper bead layers corresponding to the locations where repair welding is to be done. These shall be within the equivalent power ratio for machine or automatic welding for the respective layers given in QW-409.29.

(e) Welders who will use manual and semiautomatic GTAW or PAW shall be qualified to use these welding processes as required by QW-300. In addition, each welder shall complete a proficiency demonstration. For this demonstration, each welder shall deposit two or more weld beads using WPS parameters for each deposit layer. The test coupon size shall be sufficiently large to make the required weld bead passes. The minimum pass length

shall be 4 in. (100 mm). The heat input used by the welder shall be measured for each pass, and the size of each weld bead shall be measured for each pass, and they shall be as required by the WPS. The following essential variables shall apply for this demonstration:

(1) a change from one welding procedure to another

(2) a change from manual to semiautomatic welding and vice versa

(3) a change in position based on a groove weld in either plate or pipe as shown in Table QW-461.9

(4) continuity of qualification in accordance with QW-322 shall be based on following the WPS that was demonstrated in addition to using the process as required by QW-322

ARTICLE III WELDING PERFORMANCE QUALIFICATIONS

(13) QW-300 GENERAL

QW-300.1 This Article lists the welding processes separately, with the essential variables that apply to welder and welding operator performance qualifications.

The welder qualification is limited by the essential variables given for each welding process. These variables are listed in QW-350, and are defined in Article IV Welding Data. The welding operator qualification is limited by the essential variables given in QW-360 for each type of weld.

A welder or welding operator may be qualified by volumetric NDE of a test coupon or their initial production welding within the limitations of QW-304 and QW-305 or by bend tests taken from a test coupon.

QW-301 TESTS

QW-301.1 Intent of Tests. The performance qualification tests are intended to determine the ability of welders and welding operators to make sound welds.

QW-301.2 Qualification Tests. Each organization shall qualify each welder or welding operator for each welding process to be used in production welding. The performance qualification test shall be welded in accordance with qualified Welding Procedure Specifications (WPS), or Standard Welding Procedure Specifications (SWPS) listed in Mandatory Appendix E, except that when performance qualification is done in accordance with a WPS or SWPS that requires a preheat or postweld heat treatment, these may be omitted. Changes beyond which requalification is required are given in QW-350 for welders and in QW-360 for welding operators. Allowable visual, mechanical, and radiographic examination requirements are described in QW-304 and QW-305. Retests and renewal of qualification are given in QW-320.

The welder or welding operator who prepares the WPS qualification test coupons meeting the requirements of QW-200 is also qualified within the limits of the performance qualifications, listed in QW-304 for welders and in QW-305 for welding operators. He is qualified only within the limits for positions specified in QW-303.

QW-301.3 Identification of Welders and Welding Operators. Each qualified welder and welding operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify the work of that welder or welding operator.

QW-301.4 Record of Tests. The record of Welder/ Welding Operator Performance Qualification (WPQ) tests shall include the essential variables (QW-350 or QW-360), the type of test and test results, and the ranges qualified in accordance with QW-452 for each welder and welding operator. Suggested forms for these records are given in Forms QW-484A/QW-484B (see Nonmandatory Appendix B).

QW-302 TYPE OF TEST REQUIRED

QW-302.1 Mechanical Tests. Except as may be specified for special processes (QW-380), the type and number of test specimens required for mechanical testing shall be in accordance with QW-452. Groove weld test specimens shall be removed in a manner similar to that shown in Figures QW-463.2(a) through QW-463.2(g). Fillet weld test specimens shall be removed in a manner similar to that shown in Figures QW-462.4(a) through QW-462.4(d) and Figure QW-463.2(h).

All mechanical tests shall meet the requirements prescribed in QW-160 or QW-180, as applicable.

QW-302.2 Volumetric NDE. When the welder or welding operator is qualified by volumetric NDE, as permitted in QW-304 for welders and QW-305 for welding operators, the minimum length of coupon(s) to be examined shall be 6 in. (150 mm) and shall include the entire weld circumference for pipe(s), except that for small diameter pipe, multiple coupons of the same diameter pipe may be required, but the number need not exceed four consecutively made test coupons. The examination technique and acceptance criteria shall be in accordance with QW-191.

QW-302.3 Test Coupons in Pipe. For test coupons made on pipe in position 1G or 2G of Figure QW-461.4, two specimens shall be removed as shown for bend specimens in Figure QW-463.2(d) or Figure QW-463.2(e), omitting the specimens in the upper-right and lower-left quadrants, and replacing the root-bend specimen in the upper-left quadrant of Figure QW-463.2(d) with a facebend specimen. For test coupons made on pipe in position 5G or 6G of Figure QW-461.4, specimens shall be removed in accordance with Figure QW-463.2(d) or Figure QW-463.2(e) and all four specimens shall pass the test. For test coupons made in both positions 2G and 5G on a single pipe test coupon, specimens shall be removed in accordance with Figure QW-463.2(f) or Figure QW-463.2(g).

QW-302.4 Visual Examination. For plate coupons all surfaces (except areas designated "discard") shall be examined visually per QW-194 before cutting of bend specimens. Pipe coupons shall be visually examined per QW-194 over the entire circumference, inside and outside.

QW-303 LIMITS OF QUALIFIED POSITIONS AND DIAMETERS (SEE QW-461)

QW-303.1 Groove Welds — **General.** Welders and welding operators who pass the required tests for groove welds in the test positions of Table QW-461.9 shall be qualified for the positions of groove welds and fillet welds shown in Table QW-461.9. In addition, welders and welding operators who pass the required tests for groove welds shall also be qualified to make fillet welds in all thicknesses and pipe diameters of any size within the limits of the welding variables of QW-350 or QW-360, as applicable.

QW-303.2 Fillet Welds — **General.** Welders and welding operators who pass the required tests for fillet welds in the test positions of Table QW-461.9 shall be qualified for the positions of fillet welds shown in Table QW-461.9. Welders and welding operators who pass the tests for fillet welds shall be qualified to make fillet welds only in the thicknesses of material, sizes of fillet welds, and diameters of pipe and tube $2^7/_8$ in. (73 mm) O.D. and over, as shown in Table QW-452.5, within the applicable essential variables. Welders and welding operators who make fillet welds on pipe or tube less than $2^7/_8$ in. (73 mm) O.D. must pass the pipe fillet weld test per Table QW-452.4 or the required mechanical tests in QW-304 and QW-305 as applicable.

QW-303.3 Special Positions. An organization who does production welding in a special orientation may make the tests for performance qualification in this specific orientation. Such qualifications are valid only for the flat position and for the special positions actually tested, except that an angular deviation of ±15 deg is permitted in the inclination of the weld axis and the rotation of the weld face, as defined in Figures QW-461.1 and QW-461.2.

QW-303.4 Stud-Weld Positions. Qualification in the 4S position also qualifies for the 1S position. Qualification in the 4S and 2S positions qualifies for all positions.

QW-303.5 Tube-to-Tubesheet Welder and Welding Operator Qualification. When the applicable Code Section requires the use of QW-193 for tube-to-tubesheet demonstration mockup qualification tests, QW-193.2 shall apply. If specific qualification test requirements are not specified by the applicable Code Section, welders and welding operators shall be qualified with one of the following methods:

(a) groove welds per the requirements of QW-303.1(b) a demonstration mockup per the requirements of QW-193.2

QW-304 WELDERS

Except for the special requirements of QW-380, each welder who welds under the rules of the Code shall have passed the mechanical and visual examinations prescribed in QW-302.1 and QW-302.4 respectively. Alternatively, welders may be qualified by volumetric NDE per QW-191 When making a groove weld using SMAW, SAW, GTAW, PAW, and GMAW (except short-circuiting mode for radiographic examination) or a combination of these processes, except for P-No. 21 through P-No. 26, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals. Welders making groove welds in P-No. 21 through P-No. 26 and P-No. 51 through P-No. 53 metals with the GTAW process may also be qualified by volumetric NDE per QW-191. The Volumetric NDE shall be in accordance with QW-302.2.

A welder qualified to weld in accordance with one qualified WPS is also qualified to weld in accordance with other qualified WPSs, using the same welding process, within the limits of the essential variables of QW-350.

QW-304.1 Examination. Welds made in test coupons for performance qualification may be examined by visual and mechanical examinations (QW-302.1, QW-302.4) or by volumetric NDE (QW-302.2) for the process(es) and mode of arc transfer specified in QW-304. Alternatively, a minimum 6 in. (150 mm) length of the first production weld(s) made by a welder using the process(es) and/or mode of arc transfer specified in QW-304 may be examined by volumetric NDE.

(*a*) For pipe(s) welded in the 5G, 6G, or special positions, the entire production weld circumference made by the welder shall be examined.

(b) For small diameter pipe where the required minimum length of weld cannot be obtained from a single production pipe circumference, additional consecutive circumferences of the same pipe diameter made by the welder shall be examined, except that the total number of circumferences need not exceed four.

(c) The examination technique and acceptance criteria for production welds shall be in accordance with QW-191.

QW-304.2 Failure to Meet Examination Standards. If a production weld is selected for welder performance qualification and it does not meet the examination standards, the welder has failed the test. In this event, the entire production weld made by this welder shall be examined and repaired by a qualified welder or welding operator. Alternatively, retests may be made as permitted in QW-320.

QW-305 WELDING OPERATORS

Except for the special requirements of QW-380, each welding operator who welds under the rules of this Code shall have passed the mechanical and visual examinations prescribed in QW-302.1 and QW-302.4, respectively. Alternatively, welding operators may be qualified by volumetric NDE per QW-191 when making a groove weld

using SMAW, SAW, GTAW, PAW, EGW, and GMAW (except short-circuiting mode for radiographic examination) or a combination of these processes, except for P-No. 21 through P-No. 26, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals. Welding operators making groove welds in P-No. 21 through P-No. 26 and P-No. 51 through P-No. 53 metals with the GTAW process may also be qualified by volumetric NDE. The volumetric NDE shall be in accordance with QW-302.2.

A welding operator qualified to weld in accordance with one qualified WPS is also qualified to weld in accordance with other qualified WPSs within the limits of the essential variables of QW-360.

QW-305.1 Examination. Welds made in test coupons may be examined by volumetric NDE (QW-302.2) or by visual and mechanical examinations (QW-302.1, QW-302.4). Alternatively, a minimum 3 ft (1 m) length of the first production weld(s) made entirely by the welding operator in accordance with a qualified WPS may be examined by volumetric NDE.

(*a*) For pipe(s) welded in the 5G, 6G, or special positions, the entire production weld circumference made by the welding operator shall be examined.

(b) For small diameter pipe where the required minimum length of weld cannot be obtained from a single production pipe circumference, additional consecutive circumferences of the same pipe diameter made by the welding operator shall be examined except that the total number of circumferences need not exceed four.

(c) The examination technique and acceptance criteria for production welds shall be in accordance with QW-191.

QW-305.2 Failure to Meet Examination Standards. If a portion of a production weld is selected for welding operator performance qualification, and it does not meet the examination standards, the welding operator has failed the test. In this event, the entire production weld made by this welding operator shall be examined completely and repaired by a qualified welder or welding operator. Alternatively, retests may be made as permitted in QW-320.

QW-306 COMBINATION OF WELDING PROCESSES

Each welder or welding operator shall be qualified within the limits given in QW-301 for the specific welding process(es) he will be required to use in production welding. A welder or welding operator may be qualified by making tests with each individual welding process in separate test coupons, or with a combination of welding processes in a single test coupon. Two or more welders or welding operators, each using the same or a different welding process, may be qualified in combination in a single test coupon. For combination qualifications in a single test coupon, the limits for thicknesses of deposited weld metal, and bend and fillet testing are given in QW-452 and shall be considered individually for each welder or welding operator for each welding process or whenever there is a change in an essential variable. A welder or welding operator qualified in combination on a single test coupon is qualified to weld in production using any of his processes individually or in different combinations, provided he welds within his limits of qualification with each specific process.

Failure of any portion of a combination test in a single test coupon constitutes failure of the entire combination.

QW-310 QUALIFICATION TEST COUPONS (13)

QW-310.1 Test Coupons. The test coupons may be plate, pipe, or other product forms. When all position qualifications for pipe are accomplished by welding one pipe assembly in both the 2G and 5G positions (Figure QW-461.4), NPS 6 (DN 150), NPS 8 (DN 200), NPS 10 (DN 250), or larger diameter pipe shall be employed to make up the test coupon as shown in Figure QW-463.2(f) for NPS 10 (DN 250) or larger pipe and in Figure QW-463.2(g) for NPS 6 (DN 150) or NPS 8 (DN 200) diameter pipe.

QW-310.2 Welding Groove With Backing. The dimensions of the welding groove on the test coupon used in making qualification tests for double-welded groove welds or single-welded groove welds with backing shall be the same as those for any Welding Procedure Specification (WPS) qualified by the organization, or shall be as shown in Figure QW-469.1.

A single-welded groove-weld test coupon with backing or a double-welded groove-weld test coupon shall be considered welding with backing. Partial penetration groove welds and fillet welds are considered welding with backing.

QW-310.3 Welding Groove Without Backing. The dimensions of the welding groove of the test coupon used in making qualification tests for single-welded groove welds without backing shall be the same as those for any WPS qualified by the organization, or as shown in Figure QW-469.2.

QW-320 RETESTS AND RENEWAL OF QUALIFICATION

QW-321 RETESTS

A welder or welding operator who fails one or more of the tests prescribed in QW-304 or QW-305, as applicable, may be retested under the following provisions.

QW-321.1 Immediate Retest Using Visual Examina-tion. When the qualification coupon has failed the visual examination of QW-302.4, retesting shall be by visual examination before conducting the mechanical testing.

When an immediate retest is made, the welder or welding operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the visual examination requirements.

The examiner may select one of the successful test coupons from each set of retest coupons which pass the visual examination for conducting the mechanical testing.

QW-321.2 Immediate Retest Using Mechanical Testing. When the qualification coupon has failed the mechanical testing of QW-302.1, retesting shall be by mechanical testing.

When an immediate retest is made, the welder or welding operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the test requirements.

(13) **QW-321.3 Immediate Retest Using Volumetric NDE.** When the qualification coupon has failed the volumetric NDE of QW-302.2, the immediate retest shall be by the same examination method.

(*a*) For welders and welding operators the retest shall be to examine two 6 in. (150 mm) plate coupons; for pipe, to examine two or more pipe coupons of the same diameter for a total of 12 in. (300 mm) of weld, which shall include the entire weld circumference for pipe or pipes (for small diameter pipe the total number of consecutively made test coupons need not exceed eight).

(b) At the option of the organization, the welder who has failed the production weld alternative test may be retested by examining additional weld areas equal to twice the required length or number of pipe circumferences of the same or consecutively made production weld(s) specified in QW-304.1. If this length of weld passes the test, the welder is qualified and the area of weld on which he had previously failed the test shall be repaired by him or another qualified welder. If this length does not meet the examination standards, the welder has failed the retest and all of the production welds made by this welder shall be examined completely and repaired by a qualified welder or welding operator.

(c) At the option of the organization, the welding operator who has failed the production weld alternative test may be retested by examining additional weld areas equal to twice the required length or number of pipe circumferences of the same or consecutively made production weld (s) specified in QW-305.1. If this length of weld passes the test, the welding operator is qualified and the area of weld on which he had previously failed the test shall be repaired by him or another qualified welder or welding operator. If this length does not meet the examination standards, the welding operator has failed the retest and all of the production welds made by this welding operator shall be examined completely and repaired by a qualified welder or welding operator. **QW-321.4 Further Training.** When the welder or the welding operator has had further training or practice, a new test shall be made for each position on which he failed to meet the requirements.

QW-322 EXPIRATION AND RENEWAL OF QUALIFICATION

QW-322.1 Expiration of Qualification. The perfor- (13) mance qualification of a welder or welding operator shall be affected when one of the following occurs:

(*a*) When he has not welded with a process during a period of 6 months or more, his qualifications for that process shall expire; unless, within the 6 month period, prior to his expiration of qualification

(1) the welder has welded with that process using manual or semiautomatic welding, under the supervision and control of the qualifying organization(s) that will extend his qualification for an additional 6 months

(2) the welding operator has welded with that process using machine or automatic welding, under the supervision and control of the qualifying organization(s) that will extend his qualification for an additional 6 months

(b) When there is a specific reason to question his ability to make welds that meet the specification, the qualifications that support the welding he is doing shall be revoked. All other qualifications not questioned remain in effect.

QW-322.2 Renewal of Qualification.

(a) Renewal of qualification expired under QW-322.1(a) may be made for any process by welding a single test coupon of either plate or pipe, of any material, thickness or diameter, in any position, and by testing of that coupon as required by QW-301 and QW-302. A successful test renews the welder or welding operator's previous qualifications for that process for those materials, thicknesses, diameters, positions, and other variables for which he was previously qualified.

Providing the requirements of QW-304 and QW-305 are satisfied, renewal of qualification under QW-322.1(a) may be done on production work.

(*b*) Welders and welding operators whose qualifications have been revoked under QW-322.1(b) above shall requalify. Qualification shall utilize a test coupon appropriate to the planned production work. The coupon shall be welded and tested as required by QW-301 and QW-302. Successful test restores the qualification.

QW-350 WELDING VARIABLES FOR WELDERS

QW-351 GENERAL

A welder shall be requalified whenever a change is made in one or more of the essential variables listed for each welding process. Where a combination of welding processes is required to make a weldment, each welder shall be qualified for the particular welding process or processes he will be required to use in production welding. A welder may be qualified by making tests with each individual welding process, or with a combination of welding processes in a single test coupon.

The limits of weld metal thickness for which he will be qualified are dependent upon the approximate thickness of the weld metal he deposits with each welding process, exclusive of any weld reinforcement, this thickness shall be considered the test coupon thickness as given in QW-452.

In any given production weldment, welders may not deposit a thickness greater than that permitted by QW-452 for each welding process in which they are qualified.

Table QW-352 Oxyfuel Gas Welding (OFW) Essential Variables						
Paragrap	h	Brief of Variables				
QW-402 Joints	.7	+ Backing				
QW-403	.2	Maximum qualified				
Base Metals	.18	ϕ P-Number				
	.14	± Filler				
QW-404 Filler Metals	.15	ϕ F-Number				
	.31	ϕ t Weld deposit				
QW-405 Positions	.1	+ Position				
QW-408 Gas	.7	ϕ Type fuel gas				

Table QW-353						
Shielded Metal-Arc Welding (SMAW)						

Essential Variables

Paragrapl	h	Brief of Variables		
QW-402 Joints	.4	– Backing		
OW 402 Deer Matala	.16	ϕ Pipe diameter		
QW-403 Base Metals	.18	ϕ P-Number		
QW-404	.15	ϕ F-Number		
Filler Metals	.30	ϕ t Weld deposit		
QW-405	.1	+ Position		
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding		

Table QW-354 Semiautomatic Submerged-Arc Welding (SAW)

Essential Variables

Paragrap	h	Brief of Variables
QW-403	.16	ϕ Pipe diameter
Base Metals	.18	ϕ P-Number
QW-404	.15	ϕ F-Number
Filler Metals	.30	t Weld deposit
QW-405 Positions	.1	+ Position

Table QW-355 Semiautomatic Gas Metal-Arc Welding (GMAW)

[This Includes Flux-Cored Arc Welding (FCAW)] Essential Variables

Paragrap	h	Brief of Variables
QW-402 Joints	.4	– Backing
QW-403	.16	ϕ Pipe diameter
Base Metals	.18	ϕ P-Number
	.15	ϕ F-Number
QW-404 Filler Metals	.30	ϕ t Weld deposit
Filler Metals	.32	t Limit (S. Cir. Arc.)
QW-405	.1	+ Position
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding
2W-408 Gas	.8	– Inert backing
<mark>)W-409</mark> Electrical	.2	ϕ Transfer mode

Table QW-356 Manual and Semiautomatic Gas Tungsten-Arc Welding (GTAW)

Essential Variables

Paragrap	h	Brief of Variables
QW-402 Joints	.4	– Backing
QW-403	.16	ϕ Pipe diameter
Base Metals	.18	ϕ P-Number
	.14	± Filler
	.15	ϕ F-Number
QW-404 Filler Metals	.22	± Inserts
Filler Metals	.23	ϕ Filler metal product form
	.30	ϕ t Weld deposit

Та	able QW-356
Manual an	d Semiautomatic Gas
Tungsten-	Arc Welding (GTAW)
Essentia	l Variables (Cont'd)

	_			
Paragrap	h	Brief of Variables		
QW-405	.1	+ Position		
Positions	.3	ϕ $\uparrow\downarrow$ Vertical welding		
QW-408 Gas	.8	– Inert backing		
QW-409 Electrical	.4	ϕ Current or polarity		
Legend: φ Change + Addition – Deletion		↑ Uphill ↓ Downhill		

(**13**)

Table QW-357 Manual and Semiautomatic Plasma-Arc Welding (PAW)

Essential Variables Paragraph **Brief of Variables** QW-402 - Backing .4 Joints .16 **QW-403** ϕ Pipe diameter Base Metals ϕ P-Number .18 .14 + Filler .15 ϕ F-Number **0W-404** .22 ± Inserts Filler Metals .23 ϕ Filler metal product form .30 ϕ *t* Weld deposit .1 Position QW-405 + Positions $\phi \uparrow \downarrow$ Vertical welding .3 **QW-408** .8 Inert backing Gas Legend: ϕ Change ↑ Uphill + Addition ↓ Downhill Deletion

QW-360 WELDING VARIABLES FOR WELDING OPERATORS

(13) **QW-361 GENERAL**

A welding operator shall be requalified whenever a change is made in one of the following essential variables (QW-361.1 and QW-361.2). There may be exceptions or additional requirements for the processes of QW-362, QW-363, and the special processes of QW-380.

QW-361.1 Essential Variables — Automatic Welding.

(a) A change from automatic to machine welding.

(b) A change in the welding process.

(c) For electron beam and laser welding, the addition or deletion of filler metal.

(*d*) For laser welding and hybrid laser-GMAW, a change in laser type (e.g., a change from CO_2 to YAG).

(e) For friction welding, a change from continuous drive to inertia welding or vice versa.

(f) For electron beam welding, a change from vacuum to out-of-vacuum equipment, and vice versa.

QW-361.2 Essential Variables — Machine Welding.

(a) A change in the welding process.

(*b*) A change from direct visual control to remote visual control and vice-versa.

(c) The deletion of an automatic arc voltage control system for GTAW.

(*d*) The deletion of automatic joint tracking.

(e) The addition of welding positions other than those already qualified (see QW-120, QW-130, and QW-303).

(f) The deletion of consumable inserts, except that qualification with consumable inserts shall also qualify for fillet welds and welds with backing.

(g) The deletion of backing. Double-welded groove welds are considered welding with backing.

(*h*) A change from single pass per side to multiple passes per side but not the reverse.

(i) For hybrid plasma-GMAW welding, the essential variable for welding operator qualification shall be in accordance with Table QW-357.

QW-362 ELECTRON BEAM WELDING (EBW), LASER BEAM WELDING (LBW), HYBRID WELDING, AND FRICTION WELDING (FRW)

(13)

The performance qualification test coupon shall be production parts or test coupons that have joint designs permitted by any qualified WPS. The coupon shall be mechanically tested in accordance with QW-452. Alternatively, when the part or coupon does not readily lend itself to the preparation of bend test specimens, the part may be cut so that at least two full-thickness weld cross sections are exposed. Those cross sections shall be smoothed and etched with a suitable etchant (see QW-470) to give a clear definition of the weld metal and heat affected zone. The weld metal and heat affected zone shall exhibit complete fusion and freedom from cracks. The essential variables for welding operator qualification shall be in accordance with QW-361.

QW-363 STUD WELDING

Stud welding operators shall be performance qualified in accordance with the test requirements of QW-192.2 and the position requirements of QW-303.4.

QW-380 SPECIAL PROCESSES

QW-381 CORROSION-RESISTANT WELD METAL OVERLAY

QW-381.1 Qualification Test.

(*a*) The size of test coupons, limits of base metal thickness qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453.

(b) Welders or welding operators who pass the tests for corrosion-resistant weld metal overlay cladding shall only be qualified to apply corrosion-resistant weld metal overlay portion of a groove weld joining composite clad or lined materials.

(c) The essential variables of QW-350 and QW-360 shall apply for welders and welding operators, respectively, except there is no limit on the maximum thickness of corrosion-resistant overlay that may be applied in production. When specified as essential variables, the limitations of position and diameter qualified for groove welds shall apply to overlay welds, except the limitations on diameter qualified shall apply only to welds deposited in the circumferential direction.

QW-381.2 Qualification on Composite Welds. A welder or welding operator who has qualified on composite welds in clad or lined material, as provided in QW-383.1(b) is also qualified to deposit corrosion-resistant weld metal overlay.

QW-381.3 Alternative Qualification With Groove Weld Tests. When a chemical composition is not specified in the WPS, welders or welding operators who successfully complete a groove weld performance qualification test meeting the corrosion-resistant overlay bend test requirements of QW-163 may be considered qualified for corrosion-resistant overlay welding within the ranges defined in QW-350 or QW-360.

QW-382 HARD-FACING WELD METAL OVERLAY (WEAR RESISTANT)

(a) The size of the test coupons, limits of base metal thickness qualification, required examinations and tests, and test specimens shall be as specified in Table QW-453. Base material test coupons may be as permitted in QW-423.

(*b*) Welders and welding operators who pass the tests for hard-facing weld metal overlay are qualified for hard-facing overlay only.

(c) The essential variable, of QW-350 and QW-360, shall apply for welders and welding operators, respectively, except there is no limit on the maximum thickness of hard-facing overlay that may be applied in production. When specified as essential variables, the limitations of position and diameter qualified for groove welds shall apply to overlay welds except the limitations on diameter qualified shall apply only to welds deposited in the circumferential direction.

(*d*) Qualification with one AWS classification within an SFA specification qualifies for all other AWS classifications in that SFA specification.

(e) A change in welding process shall require welder and welding operator requalification.

QW-383 JOINING OF CLAD MATERIALS AND APPLIED LININGS

QW-383.1 Clad Materials.

(*a*) Welders and welding operators who will join the base material portion of clad materials shall be qualified for groove welding in accordance with QW-301. Welders and welding operators who will apply the cladding portion of a weld between clad materials shall be qualified in accordance with QW-381. Welders and welding operators need only be qualified for the portions of composite welds that they will make in production.

(b) As an alternative to (a), welders and welding operators may be qualified using composite test coupons. The test coupon shall be at least $\frac{3}{8}$ in. (10 mm) thick and of dimensions such that a groove weld can be made to join the base materials and the corrosion-resistant weld metal overlay can be applied to the completed groove weld. Four side bend test specimens shall be removed from the completed test coupon and tested. The groove weld portion and the corrosion-resistant weld metal overlay portion of the test coupon shall be evaluated using the respective criteria in QW-163. Welders and welding operators qualified using composite test coupons are qualified to join base materials as provided by QW-301, and they are qualified to apply corrosion-resistant weld metal overlay as provided by QW-381.

QW-383.2 Applied Linings.

(*a*) Welders and welding operators shall be qualified following the rules for making groove or fillet welds in accordance with QW-301. Plug welds for attaching applied linings shall be considered equivalent to fillet welds for the purpose of performance qualification.

(b) An alternate test coupon shall consist of the geometry to be welded, except the base material need not exceed 1 in. (25 mm) in thickness. The welded test coupon shall be sectioned and etched to reveal the weld and heat-affected zone. The weld shall show penetration into the base metal.

QW-384 RESISTANCE WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested on each machine type which he will use. Qualification testing on any P-No. 21 through P-No. 26 metal shall qualify the operator for all metals. Qualification on any P-No. 1 through P-No. 15F or any P-No. 41 through P-No. 49 metals shall qualify the operator for all P-No. 1 through P-No. 15F and P-No. 41 through P-No. 49 metals. Qualification testing on any P-No. 51 through P-No. 53, P-No. 61, or P-No. 62 metal shall qualify the operator for all P-No. 51 through P-No. 53, P-No. 61, and P-No. 62 metals.

(*a*) Qualification for spot and projection welding shall consist of making a set of ten consecutive welds, five of which shall be subjected to mechanical shear tests or peel tests, and five to macro-examination. Examination, testing, and acceptance criteria shall be in accordance with QW-196.

(*b*) Qualification for seam welding shall consist of that testing specified in QW-286.3, except that only one transverse cross section and one longitudinal cross section are required.

QW-385 FLASH WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested by welding a test coupon following any WPS. The test coupon shall be welded and tested in accordance with QW-199. Qualification following any flash welding WPS qualifies the operator to follow all flash welding WPSs.

Production weld sampling tests required by other Sections may be used to qualify welding operators. The test method, extent of tests, and acceptance criteria of the other Sections and QW-199.2 shall be met when this is done.

QW-386 DIFFUSION WELDING OPERATOR QUALIFICATION

Each welding operator shall be tested by welding a procedure qualification test coupon in accordance with QW-185.1. The coupon shall be metallographically examined in accordance with QW-185.3.

ARTICLE IV WELDING DATA

QW-400 VARIABLES

QW-401 GENERAL

Each welding variable described in this Article is applicable as an essential, supplementary essential, or nonessential variable for procedure qualification when referenced in QW-250 for each specific welding process. Essential variables for performance qualification are referenced in QW-350 for each specific welding process. A change from one welding process to another welding process is an essential variable and requires requalification.

QW-401.1 Essential Variable (Procedure). A change in a welding condition which will affect the mechanical properties (other than notch toughness) of the weldment (e.g., change in P-Number, welding process, filler metal, electrode, preheat or postweld heat treatment).

QW-401.2 Essential Variable (Performance). A change in a welding condition which will affect the ability of a welder to deposit sound weld metal (such as a change in welding process, deletion of backing, electrode, F-Number, technique, etc.).

QW-401.3 Supplementary Essential Variable (Procedure). A change in a welding condition which will affect the notch-toughness properties of a weldment (for example, change in welding process, uphill or down vertical welding, heat input, preheat or PWHT, etc.). Supplementary essential variables are in addition to the essential variables for each welding process.

When a procedure has been previously qualified to satisfy all requirements other than notch toughness, it is then necessary only to prepare an additional test coupon using the same procedure with the same essential variables, but additionally with all of the required supplementary essential variables, with the coupon long enough to provide the necessary notch-toughness specimens.

When a procedure has been previously qualified to satisfy all requirements including notch toughness, but one or more supplementary essential variable is changed, then it is only necessary to prepare an additional test coupon using the same welding procedure and the new supplementary essential variable(s), with the coupon long enough to provide the necessary notch-toughness specimens. If a previously qualified weld procedure has satisfactory notch-toughness values in the weld metal, then it is necessary only to test notch-toughness specimens from the heat affected zone when such are required. When essential variables are qualified by one or more PQRs and supplementary essential variables are qualified by other PQRs, the ranges of essential variables established by the former PQRs are only affected by the latter to the extent specified in the applicable supplementary essential variable (e.g., essential variable QW-403.8 governs the minimum and maximum thickness of base metal qualified. When supplementary essential variable QW-403.6 applies, it modifies only the minimum thickness qualified, not the maximum).

QW-401.4 Nonessential Variable (Procedure). A change in a welding condition which will *not* affect the mechanical properties of a weldment (such as joint design, method of back gouging or cleaning, etc.)

QW-401.5 The welding data includes the welding variables grouped as joints, base metals, filler metals, position, preheat, postweld heat treatment, gas, electrical characteristics, and technique. For convenience, variables for each welding process are summarized in Table QW-416 for performance qualification.

QW-402 JOINTS

QW-402.1 A change in the type of groove (Vee-groove, U-groove, single-bevel, double-bevel, etc.).

QW-402.2 The addition or deletion of a backing.

QW-402.3 A change in the nominal composition of the backing.

QW-402.4 The deletion of the backing in single-welded groove welds. Double-welded groove welds are considered welding with backing.

QW-402.5 The addition of a backing or a change in its nominal composition.

QW-402.6 An increase in the fit-up gap, beyond that initially qualified.

QW-402.7 The addition of backing.

QW-402.8 A change in nominal size or shape of the stud at the section to be welded.

QW-402.9 In stud welding, a change in shielding as a result of ferrule or flux type.

QW-402.10 A change in the specified root spacing.

QW-402.11 The addition or deletion of nonmetallic retainers or nonfusing metal retainers.

QW-402.12 The welding procedure qualification test shall duplicate the joint configuration to be used in production within the limits listed, except that pipe or tube to pipe or tube may be used for qualification of a pipe or tube to other shapes, and solid round to solid round may be used for qualification of a solid round to other shapes

(a) any change exceeding ± 10 deg in the angle measured for the plane of either face to be joined, to the axis of rotation

(*b*) a change in cross-sectional area of the weld joint greater than 10%

(*c*) a change in the outside diameter of the cylindrical weld interface of the assembly greater than $\pm 10\%$

(*d*) a change from solid to tubular cross section at the joint or vice versa regardless of (b)

QW-402.13 A change in the method of joining from spot to projection to seam or vice versa.

QW-402.14 An increase or decrease of more than 10% in the spacing of the welds when they are within two diameters of each other.

QW-402.15 A change in the size or shape of the projection in projection welding.

QW-402.16 A decrease in the distance between the approximate weld interface and the final surface of the production corrosion-resistant or hard-facing weld metal overlay below the minimum thickness qualified as shown in Figures QW-462.5(a) through QW-462.5(e). There is no limit on the maximum thickness for corrosion-resistant or hard-facing weld metal overlay that may be used in production.

QW-402.17 An increase in the thickness of the production spray fuse hard-facing deposit above the thickness deposited on the procedure qualification test coupon.

QW-402.18 For lap joints,

(*a*) a decrease of more than 10% in the distance to the edge of the material

(b) an increase in the number of layers of material

(c) a change in surface preparation or finish from that qualified

QW-402.19 A change in the nominal diameter or nominal thickness for tubular cross sections, or an increase in the total cross section area beyond that qualified for all nontubular cross sections.

QW-402.20 A change in the joint configuration.

QW-402.21 A change in the method or equipment used to minimize internal flash.

QW-402.22 A change in the end preparation method.

QW-402.23 For test coupons less than $1^{1}/_{2}$ in. (38 mm) thick, the addition of a cooling medium (water, flowing gas, etc.) to the back side of the weld. Qualification on test coupons less than $1^{1}/_{2}$ in. (38 mm) thick with a

cooling medium on the back side of the weld qualifies base metal thickness equal to or greater than the test coupon thickness with and without coolant.

QW-402.24 Qualification with a cooling medium (water, flowing gas, etc.) on the root side of a test coupon weld that is welded from one side qualifies all thicknesses of base metal with cooling medium down to the thickness of the test coupon at the root or $\frac{1}{2}$ in. (13 mm), whichever is less.

QW-402.25 A change from lap joint to groove weld-ing, and vice versa.

QW-402.26 A reduction of more than 5 deg in the edge preparation bevel angle for groove welds.

QW-402.27 A change in material of fixed backing anvils (when used). A change in backing anvil design that affects the weld cooling rate (e.g., a change from air-cooled to water-cooled, and vice versa). This variable is not applicable to tube-to-tubesheet or double-sided welds with overlapping fusion zones, or welds completed using self-reacting pins.

QW-402.28 A change in joint design from that qualified, including edge preparation geometry (e.g., a change from square butt edge to beveled edge), reductions in the smallest joint path radius to less than the shoulder radius, or joint paths crossing themselves or another HAZ.

QW-402.29 A change in joint spacing greater than $\pm 10\%$ of the qualification test coupon thickness. For WPSs qualified using intimate edge contact, the maximum allowable joint spacing is $\frac{1}{16}$ in. (1.5 mm).

QW-402.30 A change from a groove weld to a fillet weld, or vice versa, from that qualified. For groove welds, a change in any of the following variables:

(a) backing to no backing, or vice versa

(b) a change of $\pm 10\%$ in the root face thickness

(c) a change of $\pm 10\%$ in the root gap

(*d*) a change in bevel angle > 5%

QW-403 BASE METALS

QW-403.1 A change from a base metal listed under one P-Number in Table QW/QB-422 to a metal listed under another P-Number or to any other base metal. When joints are made between two base metals that have different P-Numbers, a procedure qualification shall be made for the applicable combination of P-Numbers, even though qualification tests have been made for each of the two base metals welded to itself.

QW-403.2 The maximum thickness qualified is the thickness of the test coupon.

QW-403.3 For full penetration single-sided welds without backing, where the measurement of penetration can be made by visual or mechanical means, requalification is required when the base metal thickness is more than 20% thicker than that qualified when the test coupon thickness is 1 in. (25 mm) and under, and more than 10%

thicker when the test coupon thickness is over 1 in. (25 mm). Where the measurement of penetration cannot be made, requalification is required when the base metal thickness is more than 10% thicker than that qualified when the test coupon thickness is 1 in. (25 mm) and under, and more than 5% thicker when the test coupon thickness is over 1 in. (25 mm).

QW-403.4 Welding procedure qualifications shall be made using a base metal of the same type or grade or another base metal listed in the same group (see Table QW/QB-422) as the base metal to be used in production welding. When joints are to be made between base metals from two different groups, a procedure qualification must be made for the applicable combination of base metals, even though procedure qualification tests have been made for each of the two base metals welded to itself.

QW-403.5 Welding procedure specifications shall be qualified using one of the following:

(*a*) the same base metal (including type or grade) to be used in production welding

(*b*) for ferrous materials, a base metal listed in the same P-Number Group Number in Table QW/QB-422 as the base metal to be used in production welding

(c) for nonferrous materials, a base metal listed with the same P-Number UNS Number in Table QW/QB-422 as the base metal to be used in production welding

For ferrous materials in Table QW/QB-422, a procedure qualification shall be made for each P-Number Group Number combination of base metals, even though procedure qualification tests have been made for each of the two base metals welded to itself. If, however, two or more qualification records have the same essential and supplementary essential variables, except that the base metals are assigned to different Group Numbers within the same P-Number, then the combination of base metals is also qualified. In addition, when base metals of two different P-Number Group Number combinations are qualified using a single test coupon, that coupon qualifies the welding of those two P-Number Group Numbers to themselves as well as to each other using the variables qualified.

This variable does not apply when impact testing of the heat-affected zone is not required by other Sections.

QW-403.6 The minimum base metal thickness qualified is the thickness of the test coupon *T* or ${}^{5}\!/_{8}$ in. (16 mm), whichever is less. However, where *T* is less than ${}^{1}\!/_{4}$ in. (6 mm), the minimum thickness qualified is ${}^{1}\!/_{2}T$. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-403.8 A change in base metal thickness beyond the range qualified in QW-451, except as otherwise permitted by QW-202.4(b).

QW-403.9 For single-pass or multipass welding in which any pass is greater than $\frac{1}{2}$ in. (13 mm) thick, an increase in base metal thickness beyond 1.1 times that of the qualification test coupon.

QW-403.10 For the short-circuiting transfer mode of the gas metal-arc process, when the qualification test coupon thickness is less than $\frac{1}{2}$ in. (13 mm), an increase in thickness beyond 1.1 times that of the qualification test coupon. For thicknesses of $\frac{1}{2}$ in. (13 mm) and greater, use Table QW-451.1 or Table QW-451.2, as applicable.

QW-403.11 Base metals specified in the WPS shall be qualified by a procedure qualification test that was made using base metals in accordance with QW-424.

QW-403.12 A change from a base metal listed under one P-Number of Table QW/QB-422 to a base metal listed under another P-Number. When joints are made between two base metals that have different P-Numbers, requalification is required even though the two base metals have been independently qualified using the same procedure. When the melt-in technique is used for joining P-No. 1, P-No. 3, P-No. 4, and P-No. 5A, a procedure qualification test with one P-Number metal shall also qualify for that P-Number metal welded to each of the lower P-Number metals, but not vice versa.

QW-403.15 Welding procedure qualifications for electron beam welding shall be made using a base metal of the same type or grade or another base metal listed in the same P-Number (and the same group where given — see Table QW/QB-422) as the base metal to be used in production welding. When joints are to be made between base metals from two different P-Numbers (or two different groups), a procedure qualification must be made for the applicable combination of base metals even though procedure qualification tests have been made for each of the two base metals welded to itself.

QW-403.16 A change in the pipe diameter beyond the range qualified in QW-452, except as otherwise permitted in QW-303.1, QW-303.2, QW-381.1(c), or QW-382(c).

QW-403.17 In stud welding, a change in combination of base metal listed under one P-Number in Table QW/QB-422 and stud metal P-Number (as defined in the following Note), or to any other base metal/stud metal combination.

NOTE: Stud metal shall be classified by nominal chemical composition and can be assigned a P-Number when it meets the nominal composition of any one of the P-Number metals.

QW-403.18 A change from one P-Number to any other P-Number or to a base metal not listed in Table QW/QB-422, except as permitted in QW-423, and in QW-420.

QW-403.19 A change to another base material type or grade (type or grade are materials of the same nominal chemical analysis and mechanical property range, even though of different product form), or to any other base

material type or grade. When joints are made between two different types or grades of base material, a procedure qualification must be made for the applicable combinations of materials, even though procedure qualification tests have been made for each of the two base materials welded to itself.

QW-403.20 A change from a base metal, listed under one P-Number in Table QW/QB-422, to a metal listed under another P-Number or to any other base metal; from a base metal of one subgroup to any other grouping in P-No. 10 or 11.

QW-403.21 The addition or deletion of a coating, plating or cladding, or a change in the nominal chemical analysis or thickness range of the plating or cladding, or a change in type of coating as specified in the WPS.

QW-403.22 A change in the base metal thickness exceeding 10% of the thickness of the total joint from that qualified.

QW-403.23 A change in base metal thickness beyond the range qualified in Table QW-453.

QW-403.24 A change in the specification, type, or grade of the base metal. When joints are to be made between two different base metals, a procedure qualification must be made for the applicable combination even though procedure qualifications have been made for each of the two base metals welded to themselves.

QW-403.25 Welding procedure qualifications shall be made using a base metal of the same P-Number and Group Number as the base metal to be temper bead welded. When joints are to be made between base metals from two different P-Number/Group Number combinations, a temper bead procedure qualification must be made for each base metal P-Number/Group Number to be used in production; this may be done in separate test coupons or in combination on a single test coupon. When base metals of different P-Number/Group Numbers are tested in the same coupon, the welding variables utilized and test results on each side of the coupon shall be documented independently but may be reported on the same qualification record. Where temper bead welding is to be applied to only one side of a joint (e.g., on the P-No. 1 side of a joint between P-No. 1 and P-No. 8 metals) or where cladding is being applied or repaired using temper bead techniques, qualification in accordance with QW-290 is required only for the portion of the WPS that applies to welding on the material to be temper bead welded.

QW-403.26 An increase in the base metal carbon equivalent using the following equation:

$$CE = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

QW-403.27 The maximum thickness qualified is the thickness of the test coupon, *T*, or it is unlimited if the test coupon is $1\frac{1}{2}$ in. (38 mm) thick or thicker. However,

where T is $\frac{1}{4}$ in. (6 mm) or less, the maximum thickness qualified is 2T. This limitation applies to fillet welds as well as to groove welds.

QW-403.28 A change to another base metal type, grade, or UNS number.

QW-403.29 A change in the surface finish as defined by the material specification or established surface roughness range as measured in accordance with ASME B46.1–2006.

QW-403.30 A change in base metal thickness greater ~(13) than 20%

(a) of the test coupon thickness for fixed-pin and retracting-pin rotating tools

(b) beyond the minimum and maximum thickness or thickness transition slopes of the test coupon for selfreacting rotating tools

QW-403.31

(*a*) For full penetration groove welds made without backing, the base metal thickness qualified is $\pm 10\%$ from that of the test coupon when the test coupon thickness is less than or equal to 1 in. (25 mm) and $\pm 5\%$ when the test coupon thickness is greater than 1 in. (25 mm).

(b) For full penetration groove welds made with backing, partial penetration groove welds, and fillet welds, the minimum base metal thickness qualified shall be equal to that used for the PQR test coupon and the maximum thickness is unlimited.

QW-404 FILLER METALS

QW-404.1 An increase of greater than 10% in the cross-sectional area of the filler metal added (excluding buttering) or in the wire-feed speed beyond that qualified.

QW-404.2 A decrease in the thickness or change in nominal specified chemical analysis of weld metal buttering beyond that qualified. (Buttering or surfacing is the deposition of weld metal on one or both faces of the joint prior to preparation of the joint for final electron beam welding.)

QW-404.3 A change in the size of the filler metal.

QW-404.4 A change from one F-Number in Table QW-432 to any other F-Number or to any other filler metal not listed in Table QW-432.

QW-404.5 (Applicable only to ferrous metals.) A change in the chemical composition of the weld deposit from one A-Number to any other A-Number in Table QW-442. Qualification with A-No. 1 shall qualify for A-No. 2 and vice versa.

The weld metal chemical composition may be determined by any of the following:

(a) For all welding processes — from the chemical analysis of the weld deposit taken from the procedure qualification test coupon.

(b) For SMAW, GTAW, LBW, and PAW — from the chemical analysis of the weld deposit prepared according to the filler metal specification, or from the chemical composition as reported either in the filler metal specification or the manufacturer's or supplier's certificate of compliance.

(c) For GMAW and EGW — from the chemical analysis of the weld deposit prepared according to the filler metal specification or the manufacturer's or supplier's certificate of compliance when the shielding gas used was the same as that used to weld the procedure qualification test coupon.

(*d*) For SAW — from the chemical analysis of the weld deposit prepared according to the filler metal specification or the manufacturer's or supplier's certificate of compliance when the flux used was the same as that used to weld the procedure qualification test coupon.

In lieu of an A-Number designation, the nominal chemical composition of the weld deposit shall be indicated on the WPS and on the PQR. Designation of nominal chemical composition may also be by reference to the AWS classification except for the "G" suffix classification, the manufacturer's trade designation, or other established procurement documents.

QW-404.6 A change in the nominal size of the electrode or electrodes specified in the WPS.

QW-404.7 A change in the nominal diameter of the electrode to over $\frac{1}{4}$ in. (6 mm). This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic material is solution annealed after welding.

QW-404.8 Addition or deletion, or a change of more than 10% in the nominal amount or composition of supplementary deoxidation material (in addition to filler metal) beyond that qualified.

QW-404.9

(a) A change in the indicator for minimum tensile strength (e.g., the 7 in F7A2-EM12K) when the flux wire combination is classified in Section II, Part C.

(*b*) A change in either the flux trade name or wire trade name when neither the flux nor the wire is classified in Section II, Part C.

(c) A change in the flux trade name when the wire is classified in Section II, Part C but the flux is not classified. A change in the wire classification within the requirements of QW-404.5 does not require requalification.

(d) A change in the flux trade name for A-No. 8 deposits.

QW-404.10 Where the alloy content of the weld metal is largely dependent upon the composition of the flux used, any change in any part of the welding procedure which would result in the important alloying elements in the weld metal being outside of the specification range of chemistry given in the Welding Procedure Specification. If there is evidence that the production welds are not being made in accordance with the procedure

specification, the authorized inspector may require that a check be made on the chemical composition of the weld metal. Such a check shall preferably be made on a production weld.

QW-404.12 A change in the filler metal classification within an SFA specification, or for a filler metal not covered by an SFA specification or a filler metal with a "G" suffix within an SFA specification, a change in the trade designation of the filler metal.

When a filler metal conforms to a filler metal classification, within an SFA specification, except for the "G" suffix classification, requalification is not required if a change is made in any of the following:

(a) from a filler metal that is designated as moisture-resistant to one that is not designated as moisture-resistant and vice versa (i.e., from E7018R to E7018)

(b) from one diffusible hydrogen level to another (i.e., from E7018-H8 to E7018-H16)

(c) for carbon, low alloy, and stainless steel filler metals having the same minimum tensile strength and the same nominal chemical composition, a change from one low hydrogen coating type to another low hydrogen coating type (i.e., a change among EXX15, 16, or 18 or EXXX15, 16, or 17 classifications)

(*d*) from one position-usability designation to another for flux-cored electrodes (i.e., a change from E70T-1 to E71T-1 or vice versa)

(e) from a classification that requires impact testing to the same classification which has a suffix which indicates that impact testing was performed at a lower temperature or exhibited greater toughness at the required temperature or both, as compared to the classification which was used during procedure qualification (i.e., a change from E7018 to E7018-1)

(f) from the classification qualified to another filler metal within the same SFA specification when the weld metal is exempt from Impact Testing by other Sections

This exemption does not apply to hard-facing and corrosion-resistant overlays

QW-404.14 The deletion or addition of filler metal.

QW-404.15 A change from one F-Number in Table QW-432 to any other F-Number or to any other filler metal, except as permitted in QW-433.

QW-404.17 A change in the type of flux or composition of the flux.

QW-404.18 A change from wire to plate electrodes, and vice versa.

QW-404.19 A change from consumable guide to nonconsumable guide, and vice versa.

QW-404.20 Any change in the method by which filler metal is added, such as preplaced shim, top strip, wire, wire feed, or prior weld metal buttering of one or both joint faces.

QW-404.21 For filler metal additions, any change from the nominal specified analysis of the filler metal qualified.

QW-404.22 The omission or addition of consumable inserts. Qualification in a single-welded butt joint, with or without consumable inserts, qualifies for fillet welds and single-welded butt joints with backing or double-welded butt joints. Consumable inserts that conform to SFA-5.30, except that the chemical analysis of the insert conforms to an analysis for any bare wire given in any SFA specification or AWS Classification, shall be considered as having the same F-Number as that bare wire as given in Table QW-432.

- (13) **QW-404.23** A change from one of the following filler metal product forms to another:
 - (*a*) bare (solid or metal cored)
 - (b) flux cored
 - (c) flux coated (solid or metal cored)
 - (d) powder

QW-404.24 The addition, deletion, or change of more than 10% in the volume of supplemental filler metal.

QW-404.27 Where the alloy content of the weld metal is largely dependent upon the composition of the supplemental filler metal (including powder filler metal for PAW), any change in any part of the welding procedure that would result in the important alloying elements in the weld metal being outside of the specification range of chemistry given in the Welding Procedure Specification.

QW-404.29 A change in the flux trade name and designation.

(13) QW-404.30 A change in deposited weld metal thickness beyond that qualified in accordance with QW-451 for procedure qualification or QW-452 for performance qualification, except as otherwise permitted in QW-303.1 and QW-303.2. When a welder is qualified using volumetric examination, the maximum thickness stated in Table QW-452.1(b) applies.

QW-404.31 The maximum thickness qualified is the thickness of the test coupon.

QW-404.32 For the low voltage short-circuiting type of gas metal-arc process when the deposited weld metal thickness is less than $\frac{1}{2}$ in. (13 mm), an increase in deposited weld metal thickness beyond 1.1 times that of the qualification test deposited weld metal thickness. For weld metal thicknesses of $\frac{1}{2}$ in. (13 mm) and greater, use Table QW-451.1, Table QW-451.2, or Tables QW-452.1(a) and QW-452.1(b), as applicable.

QW-404.33 A change in the filler metal classification within an SFA specification, or, if not conforming to a filler metal classification within an SFA specification, a change in the manufacturer's trade name for the filler metal. When optional supplemental designators, such as those which indicate moisture resistance (i.e., XXXXR), diffusible hydrogen (i.e., XXXX H16, H8, etc.), and supplemental

impact testing (i.e., XXXX-1 or EXXXXM), are specified on the WPS, only filler metals which conform to the classification with the optional supplemental designator(s) specified on the WPS shall be used.

QW-404.34 A change in flux type (i.e., neutral to active or vice versa) for multilayer deposits in P-No. 1 materials.

QW-404.35 A change in the flux/wire classification or a change in either the electrode or flux trade name when not classified in an SFA specification. Requalification is not required when a wire/flux combination conforms to an SFA specification and a change is made from one diffusible hydrogen level to another (i.e., a change from F7A2-EA1-A1H4 to F7A2-EA1-A1H16). This variable does not apply when the weld metal is exempt from impact testing by other Sections. This exemption does not apply to hard facing and corrosion-resistant overlays.

QW-404.36 When flux from recrushed slag is used, each batch or blend, as defined in SFA-5.01, shall be tested in accordance with Section II, Part C by either the manufacturer or user, or qualified as an unclassified flux in accordance with QW-404.9.

QW-404.37 A change in the composition of the deposited weld metal from one A-Number in Table QW-442 to any other A-Number, or to an analysis not listed in the table. A change in the UNS number for each AWS classification of A-No. 8 or A-No. 9 analysis of Table QW-442, or each nonferrous alloy in Table QW-432, shall require separate WPS qualification. A-Numbers may be determined in accordance with QW-404.5.

QW-404.38 A change in the nominal electrode diameter used for the first layer of deposit.

QW-404.39 For submerged-arc welding and electroslag welding, a change in the nominal composition or type of flux used. Requalification is not required for a change in flux particle size.

QW-404.41 A change of more than 10% in the powdered metal feed rate recorded on the PQR.

QW-404.42 A change of more than 5% in the particle size range of the powder.

QW-404.43 A change in the powdered metal particle size range recorded on the PQR.

QW-404.44 A change from a homogeneous powdered metal to a mechanical mixed powdered metal or vice versa.

QW-404.45 A change in the form of filler metal from solid to fabricated wire, flux-cored wire, powdered metal, or vice versa.

QW-404.46 A change in the powder feed rate range qualified.

QW-404.47 A change of more than 10% in the filler metal size and/or powder metal particle size.

QW-404.48 A change of more than 10% in the powder metal density.

QW-404.49 A change of more than 10% in the filler metal or powder metal feed rate.

QW-404.50 The addition or deletion of flux to the face of a weld joint for the purpose of affecting weld penetration.

QW-404.51 The method of control of moisture pickup during storage and distribution for SMAW and GMAW-FC electrodes and flux for SAW (e.g., purchasing in hermetically sealed containers and storage in heated ovens, controlled distribution time, high-temperature baking prior to use).

QW-404.52 A change in the diffusible hydrogen level (e.g., from E7018-H8 to E7018-H16 or to no controlled diffusible hydrogen).

QW-404.53 The addition or deletion of filler metal and, when used, a change in the filler metal nominal composition.

(13) **QW-404.54** An increase in the deposited weld metal thickness qualified.

QW-405 POSITIONS

QW-405.1 The addition of other welding positions than those already qualified. see QW-120, QW-130, QW-203, and QW-303.

QW-405.2 A change from any position to the vertical position uphill progression. Vertical-uphill progression (e.g., 3G, 5G, or 6G position) qualifies for all positions. In uphill progression, a change from stringer bead to weave bead. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic material is solution annealed after welding.

QW-405.3 A change from upward to downward, or from downward to upward, in the progression specified for any pass of a vertical weld, except that the cover or wash pass may be up or down. The root pass may also be run either up or down when the root pass is removed to sound weld metal in the preparation for welding the second side.

(13) **QW-405.4** Except as specified below, the addition of other welding positions than already qualified.

(*a*) Qualification in the horizontal, vertical, or overhead position shall also qualify for the flat position. Qualification in the horizontal fixed position, 5G, shall qualify for the flat, vertical, and overhead positions. Qualification in the horizontal, vertical, and overhead positions shall qualify for all positions. Qualification in the inclined fixed position, 6G, shall qualify for all positions.

(*b*) An organization who does production welding in a particular orientation may make the tests for procedure qualification in this particular orientation. Such qualifications are valid only for the positions actually tested, except

that an angular deviation of ± 15 deg is permitted in the inclination of the weld axis and the rotation of the weld face as defined in Figure QW-461.1. A test specimen shall be taken from the test coupon in each special orientation.

(c) For hard-facing and corrosion-resistant weld metal overlay, qualification in the 3G, 5G, or 6G positions, where 5G or 6G pipe coupons include at least one vertical segment completed utilizing the up-hill progression or a 3G plate coupon is completed utilizing the up-hill progression, shall qualify for all positions. Chemical analysis, hardness, macro-etch, and at least two of the bend tests, as required in Table QW-453, shall be removed from the vertical uphill overlaid segment as shown in Figure QW-462.5(b).

(*d*) A change from the vertical down to vertical up-hill progression shall require requalification.

QW-406 PREHEAT

QW-406.1 A decrease of more than 100°F (55°C) in the preheat temperature qualified. The minimum temperature for welding shall be specified in the WPS.

QW-406.2 A change in the maintenance or reduction of preheat upon completion of welding prior to any required postweld heat treatment.

QW-406.3 An increase of more than 100°F (55°C) in the maximum interpass temperature recorded on the PQR. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-406.4 A decrease of more than 100°F (55°C) in the preheat temperature qualified or an increase in the maximum interpass temperature recorded on the PQR. The minimum temperature for welding shall be specifed in the WPS.

QW-406.5 A change in the maintenance or reduction of preheat upon completion of spraying and prior to fusing.

QW-406.7 A change of more than 10% in the amplitude or number of preheating cycles from that qualified, or if other preheating methods are employed, a change in the preheating temperature of more than 25°F (15°C).

QW-406.8 An increase in the maximum interpass temperature of more than 100°F (56°C) from that achieved on the test coupon and recorded on the PQR. The interpass temperature shall be measured and recorded separately for each tempering weld bead layer and, if any, for the surface weld bead layer(s). The WPS shall specify the maximum interpass temperature limits for each tempering bead layer separately and for the surfacing weld bead layer(s), if any.

QW-406.9 A decrease in the preheat temperature from that achieved on the test coupon and recorded on the PQR. The preheat temperature shall be measured

and recorded separately for each tempering weld bead layer and, if any, for the surface weld bead layer(s). The WPS shall specify the minimum preheat temperature limits for each tempering bead layer separately and for the surfacing weld bead layer(s), if any.

QW-406.10 The minimum preheating soaking time prior to the start of welding.

QW-406.11 The addition or deletion of a postweld hydrogen bakeout. When specified, the minimum soaking temperature and time shall be specified.

QW-407 POSTWELD HEAT TREATMENT

QW-407.1 A separate procedure qualification is required for each of the following:

(*a*) For P-Numbers 1 through 6 and 9 through 15F materials, the following postweld heat treatment conditions apply:

(1) no PWHT

(2) PWHT below the lower transformation temperature

(3) PWHT above the upper transformation temperature (e.g., normalizing)

(4) PWHT above the upper transformation temperature followed by heat treatment below the lower transformation temperature (e.g., normalizing or quenching followed by tempering)

(5) PWHT between the upper and lower transformation temperatures

(*b*) For all other materials, the following postweld heat treatment conditions apply:

(1) no PWHT

(2) PWHT within a specified temperature range

QW-407.2 A change in the postweld heat treatment (see QW-407.1) temperature and time range

The procedure qualification test shall be subjected to PWHT essentially equivalent to that encountered in the fabrication of production welds, including at least 80% of the aggregate times at temperature(s). The PWHT total time(s) at temperature(s) may be applied in one heating cycle.

QW-407.4 For ferrous base metals other than P-No. 7, P-No. 8, and P-No. 45, when a procedure qualification test coupon receives a postweld heat treatment exceeding the upper transformation temperature or a solution heat treatment for P-No. 10H materials, the maximum qualified base metal thickness, *T*, shall not exceed 1.1 times the thickness of the test coupon.

QW-407.6 A change in postweld heat treatment condition in QW-407.1 or an increase of 25% or more in total time at postweld heat treating temperature.

QW-407.7 A change in the heat treatment temperature range qualified if heat treatment is applied after fusing.

QW-407.8 A separate PQR is required for each of the following:

(a) no PWHT

(*b*) a change of more than 10% in the number of PWHT heating current cycles following the welding cycle

(c) PWHT within a specified temperature and time range if heat treatment is performed separately from the welding operation

QW-407.9 A separate procedure qualification is required for each of the following:

(*a*) For weld corrosion-resistant overlay of A-No. 8 on all base materials, a change in postweld heat treatment condition in QW-407.1, or when the total time at postweld heat treatment encountered in fabrication exceeds 20 hr, an increase of 25% or more in total time at postweld heat treating temperature.

(*b*) For weld corrosion-resistant overlay of A-No. 9 on all base materials, a change in postweld heat treatment condition in QW-407.1, or an increase of 25% or more in total time at postweld heat treating temperature.

(c) For all other weld corrosion-resistant overlays on all base materials, a change in postweld heat treatment condition in QW-407.1.

QW-407.10 The addition or deletion of PWHT, or a change of $\pm 45^{\circ}$ F ($\pm 25^{\circ}$ C) in PWHT temperature or an increase in the holding time by more than 25% or change in the method of cooling (e.g., furnace, air, quench).

QW-408 GAS

QW-408.1 The addition or deletion of trailing shield-ing gas and/or a change in its composition.

QW-408.2 A separate procedure qualification is required for each of the following:

(*a*) a change from a single shielding gas to any other single shielding gas

(*b*) a change from a single shielding gas to a mixture of shielding gasses, and vice versa

(c) a change in the specified percentage composition of a shielding gas mixture

(d) the addition or omission of shielding gas

The AWS classification of SFA-5.32 may be used to specify the shielding gas composition.

QW-408.3 A change in the specified flow rate range of the shielding gas or mixture of gases.

QW-408.4 A change in the composition of the orifice or shielding gas.

QW-408.5 The addition or deletion of gas backing, a change in backing gas composition, or a change in the specified flow rate range of the backing gas.

QW-408.6 A change of environment shielding such as from vacuum to an inert gas, or vice versa.

QW-408.7 A change in the type of fuel gas.

QW-408.8 The omission of inert gas backing except that requalification is not required when welding a single-welded butt joint with a backing strip or a double-welded butt joint or a fillet weld. This exception does not apply to P-No. 51 through P-No. 53, P-No. 61 through P-No. 62, and P-No. 10I metals.

QW-408.9 For groove welds in P-No. 41 through P-No. 49 and all welds of P-No. 10I, P-No. 10J, P-No. 10K, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals, the deletion of backing gas or a change in the nominal composition of the backing gas from an inert gas to a mixture including non-inert gas(es).

QW-408.10 For P-No. 10I, P-No. 10J, P-No. 10K, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62 metals, the deletion of trailing shielding gas, or a change in the nominal composition of the trailing gas from an inert gas to a mixture including non-inert gas(es), or a decrease of 10% or more in the trailing gas flow rate.

QW-408.11 The addition or deletion of one or more of the following:

- (a) shielding gas
- (b) trailing shielding gas
- (c) backing gas
- (d) plasma-removing gas

QW-408.12 A decrease of more than 10% in the flow rate of one or more of the following: shielding gas, trailing shielding gas, backing gas, and plasma-removing gas.

(13) **QW-408.13**

DELETED

QW-408.14 A change in the oxygen or fuel gas pressure beyond the range qualified.

QW-408.16 A change of more than 5% in the flow rate of the plasma-arc gas or powdered metal feed gas recorded on the PQR.

QW-408.17 A change in the plasma-arc gas, shielding gas, or powdered metal feed gas from a single gas to any other single gas, or to a mixture of gases, or vice versa.

QW-408.18 A change of more than 10% in the gas mixture composition of the plasma-arc gas, shielding gas, or powdered metal feed gas recorded on the PQR.

QW-408.19 A change in the nominal composition of the powder feed gas or (plasma-arc spray) plasma gas qualified.

QW-408.20 A change of more than 5% in the plasma gas flow rate range qualified.

QW-408.21 A change in the flow rate of the orifice or shielding gas.

QW-408.22 A change in the shielding gas type, gas pressure, or purging time.

QW-408.23 For titanium, zirconium, and their alloys, the deletion of one or more of the following:

- (a) shielding gas
- (b) trailing shielding gas
- (c) backing gas

QW-408.24 For gas-shielded processes, the maximum moisture content (dew point) of the shielding gas. Moisture control may be by specification of shielding gas classifications in SFA-5.32.

QW-408.25 A change in the furnace atmosphere from that qualified.

QW-408.26 For friction stir welding of P-No. 6, P-No. (13) 7, P-No. 8, P-No. 10H, P-No. 10I, P-No. 41 through P-No. 47, P-No. 51 through P-No. 53, and P-No. 61 through P-No. 62, the addition or deletion of trailing or tool shielding gas, or a change in gas composition or flow rate.

QW-409 ELECTRICAL CHARACTERISTICS

QW-409.1 An increase in heat input, or an increase in volume of weld metal deposited per unit length of weld, over that qualified. The increase shall be determined by (a), (b), or (c) for nonwaveform controlled welding, or by (b) or (c) for waveform controlled welding. See Nonmandatory Appendix H.

(a) Heat input [J/in. (J/mm)]

 Voltage × Amperage × 60

 Travel Speed [in/min (mm/min)]

(b) Volume of weld metal measured by

(1) an increase in bead size (width × thickness), or(2) a decrease in length of weld bead per unit length of electrode

(c) Heat input determined using instantaneous energy or power by

(1) for instantaneous energy measurements in joules(J) *Heat input [J/in. (J/mm)]*

$$= \frac{\text{Energy}(J)}{\text{Weld Bead Length [in. (mm)]}}$$

(2) for instantaneous power measurements in joules per second (J/s) or Watts (W) *Heat input [J/in. (J/mm)]*

$$= \frac{Power(J/s \text{ or } W) \times arc \text{ time } (s)}{Weld \text{ Bead Length } [in. (mm)]}$$

The requirement for measuring the heat input or volume of deposited weld metal does not apply when the WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-409.2 A change from globular, spray or pulsed spray transfer welding to short circuiting transfer welding or vice versa.

QW-409.3 The addition or deletion of pulsing current to dc power source.

QW-409.4 A change from AC to DC, or vice versa; and in DC welding, a change from electrode negative (straight polarity) to electrode positive (reverse polarity), or vice versa.

QW-409.5 A change of ±15% from the amperage or voltage ranges in the qualified WPS.

QW-409.6 A change in the beam current of more than $\pm 5\%$, voltage of more than $\pm 2\%$, welding speed of more than $\pm 2\%$, beam focus current of more than $\pm 5\%$, gun-to-work distance of more than $\pm 5\%$, or a change in oscillation length or width of more than $\pm 20\%$ from those previously qualified.

QW-409.7 Any change in the beam pulsing frequency duration from that qualified.

QW-409.8 A change in the range of amperage, or except for SMAW, GTAW, or waveform controlled welding, a change in the range of voltage. A change in the range of electrode wire feed speed may be used as an alternative to amperage. See Nonmandatory Appendix H:

QW-409.9 A change in the arc timing of more than $\pm \frac{1}{10}$ sec.

QW-409.10 A change in amperage of more than ±10%.

QW-409.11 A change in the power source from one model to another.

QW-409.12 A change in type or size of tungsten electrode.

QW-409.13 A change from one Resistance Welding Manufacturer's Association (RWMA) electrode class to another. In addition, a change in the following:

(a) for spot and projection welding, a change in the nominal shape or more than 10% of the contact area of the welding electrode

(*b*) for seam welding, a change of thickness, profile, orientation, or diameter of electrodes exceeding 10%

QW-409.14 Addition or deletion of upslope or downslope current control, or a change of more than 10% in the slope current time or amplitude.

QW-409.15

(*a*) A change of more than 5% in any of the following from that qualified:

- (1) preheating current
- (2) preheating current amplitude
- (3) preheating current time duration
- *(4)* electrode pressure
- (5) welding current
- (6) welding current time duration
- (b) A change from AC to DC or vice versa.

(c) The addition or deletion of pulsing current to a DC power source.

(*d*) When using pulsing DC current, a change of more than 5% in the pulse amplitude, frequency, or number of pulses per cycle from that qualified.

(e) A change of more than 5% in the post-heating current time duration from that qualified.

QW-409.17 A change in the power supply primary voltage or frequency, or in the transformer turns ratio, tap setting, choke position, secondary open circuit voltage or phase control setting.

QW-409.18 A change in the procedure or frequency of tip cleaning.

QW-409.19 Any change of more than ±10% in the beam pulsing frequency and pulse duration from that qualified.

QW-409.20 Any change in the following variables: mode of operation (from pulsed to continuous and vice versa), energy distribution across the beam (i.e., multimode or gaussian).

QW-409.21 A decrease of more than 10% in the power delivered to the work surface as measured by calorimeter or other suitable methods.

QW-409.22 An increase of more than 10% in the amperage used in application for the first layer.

QW-409.23 A change of more than 10% in the ranges of amperage or voltage qualified.

QW-409.24 A change of more than 10% in the filler wire wattage recorded on the PQR. Wattage is a function of current voltage, and stickout dimension.

QW-409.25 A change of more than 10% in the plasma-arc current or voltage recorded on the PQR.

QW-409.26 For the first layer only, an increase in heat input of more than 10% or an increase in volume of weld metal deposited per unit length of weld of more than 10% over that qualified. The increase shall be determined by the methods of QW-409.1.

QW-409.27 A change in the flashing time of more than 10%.

QW-409.28 A change in the upset current time by more than 10%.

QW-409.29

(*a*) A change in heat input beyond the following (see Figure QW-462.12):

(1) An increase or decrease in the ratio of heat input between the first tempering bead layer and the weld beads deposited against the base metal of more than 20% for P-No. 1 and P-No. 3 metals and 10% for all other P-Number metals.

(2) An increase or decrease in the ratio of heat input between the second tempering bead layer and the first tempering bead layer of more than 20% for P-No. 1 and P-No. 3 metals and 10% for all other P-Number metals. (3) The ratio of heat input between subsequent layers shall be maintained until a minimum of ${}^{3}\!/_{16}$ in. (5 mm) of weld metal has been deposited over the base metal.

(4) For qualifications where the basis for acceptance is impact testing and the filler metal is exempt from temper bead qualification, the heat input may not exceed 50% above the heat input qualified for the remaining fill passes.

(5) For qualifications where the basis for acceptance is hardness testing, a decrease of more than 20% in heat input for the remainder of the fill passes.

(b) Heat input shall be determined using the following methods:

(1) For machine or automatic GTAW or PAW, an increase or decrease of 10% in the power ratio measured as:

Power Ratio =
$$\frac{\text{Amperage } \times \text{Voltage}}{\left[\left(\text{WFS } / \text{TS}\right) \times A_{f}\right]}$$

where

 A_f = the cross-section area of the filler metal wire TS = the welding travel speed

WFS = the filler metal wire feed speed

(2) For processes other than machine or automatic GTAW or PAW, heat input shall be determined by the method of QW-409.1.

(3) If manual GTAW or PAW is used for making inprocess repairs in accordance with QW-290.5, a record of bead size shall be made.

(13) QW-410 TECHNIQUE

QW-410.1 For manual or semiautomatic welding, a change from the stringer bead technique to the weave bead technique, or vice versa.

QW-410.2 A change in the nature of the flame, oxidizing to reducing, or vice versa.

QW-410.3 A change in the orifice, cup, or nozzle size.

QW-410.4 A change in the welding technique, fore-hand to backhand, or vice versa.

QW-410.5 A change in the method of initial and interpass cleaning (brushing, grinding, etc.).

QW-410.6 A change in the method of back gouging.

QW-410.7 For the machine or automatic welding process, a change of more than $\pm 10\%$ in width, frequency, or dwell time of oscillation technique.

QW-410.8 A change in the contact tube to work distance.

QW-410.9 A change from multipass per side to single pass per side. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-410.10 A change from single electrode to multiple electrode, or vice versa, for machine or automatic welding only. This variable does not apply when a WPS is qualified with a PWHT above the upper transformation temperature or when an austenitic or P-No. 10H material is solution annealed after welding.

QW-410.11 A change from closed chamber to out-ofchamber conventional torch welding in P-No. 51 through P-No. 53 metals, but not vice versa.

QW-410.12 A change from the melt-in technique to the keyhole technique of welding, or vice versa, or the inclusion of both techniques though each has been individually qualified.

QW-410.14 For full penetration groove welds, a change of more than ±10 deg in the relative angle between the axis of the beam and the workpiece.

QW-410.15 A change in the spacing of multiple electrodes for machine or automatic welding.

QW-410.17 A change in the type or model of the weld-ing equipment.

QW-410.18 An increase in the absolute pressure of the vacuum welding environment beyond that qualified.

QW-410.19 Any change in filament type, size, or shape.

QW-410.20 The addition of a wash pass.

QW-410.21 For full penetration groove welds, a change of welding from both sides to welding from one side only, but not vice versa.

QW-410.22 A change in either of the following stud welding parameters: a change of stud gun model; a change in the lift more than $\pm \frac{1}{32}$ in. (0.8 mm).

QW-410.25 A change from manual or semiautomatic to machine or automatic welding and vice versa.

QW-410.26 The addition or deletion of peening.

QW-410.27 A change in the rotational speed producing a change in the outside surface velocity [ft/min (m/min)] greater than ±10% of the outside surface velocity qualified.

QW-410.28 A change in the thrust load greater than ±10% of the thrust load qualified.

QW-410.29 A change in the rotational energy greater than $\pm 10\%$ of the rotational energy qualified.

QW-410.30 Any change in upset dimension (overall loss in length of parts being joined) greater than $\pm 10\%$ of the upset qualified.

QW-410.31 A change in the method of preparing the base metal prior to welding (e.g., changing from mechanical cleaning to chemical cleaning or to abrasive cleaning, or vice versa).

QW-410.32 A change of more than 10% in the holding (forging) pressure prior to or after welding. A change of more than 10% in the electrode holding time (electrode duration sequence).

QW-410.33 A change from one welding type to another, or modification of equipment, including Manufacturer, control panel, model number, electrical rating or capacity, type of electrical energy source, or method of applying pressure.

QW-410.34 Addition or deletion of an electrode cooling medium and where it is used.

QW-410.35 A change in the distance between arms or a change in the throat depth.

QW-410.37 A change from single to multiple pass or vice versa.

QW-410.38 A change from multiple-layer to single layer cladding/hardsurfacing, or vice versa.

QW-410.39 A change in the torch type or tip size.

QW-410.40 For submerged-arc welding and electroslag welding, the deletion of a supplementary device for controlling the magnetic field acting on the weld puddle.

QW-410.41 A change of more than 15% in the travel speed range recorded on the PQR.

QW-410.43 For the torch or workpiece, a change of more than 10% in the travel speed range qualified.

QW-410.44 A change of more than 15% in the spraytorch to workpiece distance qualified.

QW-410.45 A change in the method of surface preparation of the base metal to be hard-faced (example: sandblasting versus chemical cleaning).

QW-410.46 A change in the spray-torch model or tip orifice size.

QW-410.47 A change of more than 10% in the fusing temperature range qualified. A change in the rate of cooling from the fusing temperature of more than 50° F/hr (28° C/hr), a change in the fusing method (e.g., torch, furnace, induction).

QW-410.48 A change in the constricted arc from transferable to nontransferable or vice versa.

QW-410.49 A change in the diameter of the plasma torch-arc constricting orifice.

QW-410.50 A change in the number of electrodes acting on the same welding puddle.

QW-410.52 A change in the method of delivering the filler metal to the molten pool, such as from the leading or trailing edge of the torch, the sides of the torch, or through the torch.

QW-410.53 A change of more than 20% in the center-to-center weld bead distance.

QW-410.54 A change in the upset length or force of more than 10%.

QW-410.55 A change in the distance between the clamping dies of more than 10% or a change in the surface preparation of the clamping area.

QW-410.56 A change in the clamping force by more than 10%.

QW-410.57 A change in more than 10% of the forward or reverse speed.

QW-410.58 The deletion of surface temper beads (see Figure QW-462.12) or a change from surface temper beads that cover the weld surface to beads that are only deposited along the toes of the weld.

QW-410.59 A change from machine or automatic welding to manual or semiautomatic welding.

QW-410.60 The addition of thermal methods to prepare the surface to be welded unless the WPS requires that the metal be ground to bright metal before welding.

QW-410.61 The distance, *S*, from the toe of the weld to the edge of any tempering bead shall be limited to the distance measured on the test coupon $\pm 1/_{16}$ in. (± 1.5 mm)(see Figure QW-462.12). Alternatively, a range for *S* may be established by locating temper beads at various distances from the toe of the weld followed by hardness traverses or impact testing, as applicable. Temper reinforcing beads shall not be permitted to touch the toe of the weld. In addition, the ratios of heat input described in QW-409.29 shall apply to temper beads.

QW-410.62 The method of removal of surface temper bead reinforcing layer when it will be removed, including provisions to prevent overheating of the weld surface.

QW-410.63 For weld beads against the base metal and for each tempering bead layer, the range of bead width, b, relative to overlap of the previous bead width, a, as shown in Figure QW-462.13, shall be specified on the WPS. Overlap between 25% and 75% does not require qualification.

(*a*) Overlap greater than 75% shall be qualified by welding a test coupon using the desired overlap. The overlap qualified shall be the maximum overlap permitted and the minimum overlap shall be 50%.

(*b*) Overlap less than 25% shall be qualified by welding a test coupon using the desired overlap. The overlap qualified shall be the minimum overlap permitted and the maximum overlap shall be 50%.

QW-410.64 For vessels or parts of vessels constructed with P-No. 11A and P-No. 11B base metals, weld grooves for thickness less than $\frac{5}{8}$ in. (16 mm) shall be prepared by thermal processes when such processes are to be employed during fabrication. This groove

preparation shall also include back gouging, back grooving, or removal of unsound weld metal by thermal processes when these processes are to be employed during fabrication.

QW-410.65 The addition or deletion of grinding beyond that required to clean the surface or remove minor surface flaws (i.e., use or nonuse of half-bead technique or similar technique).

QW-410.66 A change of more than $\pm 10\%$ in the travel speed, the ratio of the beam diameter to focal length, or the lens to work distance.

QW-410.67 A change in the optical technique used to focus the welding energy from that qualified.

QW-410.68 A change in welding equipment type (e.g., YAG, TAG, etc.).

QW-410.70 A change in the method of preparing the base metal surface prior to insertion into the furnace.

QW-410.71 A decrease in the percentage of block compression (original stack height compared to height after welding) from that of the test coupon.

QW-410.72 A decrease in the welding temperature or time from that used on the procedure qualification test coupon.

QW-410.73 A change in joint restraint fixtures from that qualified (e.g., fixed anvil to self-reacting, and vice versa) or from single-sided to two-sided welding, and vice versa.

QW-410.74 A change in the welding control method from that qualified (e.g., force control method to position control method, or vice versa, in the plunge direction; and force control method to travel control method, or vice versa, in the travel direction).

QW-410.75 A change in the rotating tool

(*a*) type or design from the qualified "family" to another (i.e., threaded pin, smooth pin, fluted, self-reacting, retracting-pin, or other tool types)

(*b*) configuration or dimensions from that qualified beyond the following limits (as applicable):

(1) shoulder diameter greater than 10%

(2) shoulder scroll pitch greater than 10%

(3) shoulder profile (e.g., addition or deletion of shoulder feature)

(4) pin diameter greater than 5%

(5) pin length greater than the lesser of 5% of qualified pin length or 1% of base metal thickness (not minimum pin length for retracting-pin tools, and not applicable for self-reacting rotating tools)

(6) pin taper angle greater than 5 deg

(7) flute pitch greater than 5%

(8) pin tip geometry/shape

(9) thread pitch greater than 10% (as applicable)

(10) flat design resulting in a change of the total flat surface area greater than 20%

(11) number of flats

(12) cooling characteristics of the rotating pin (e.g., change from water-cooled to air-cooled, and vice versa)

(*c*) pin material specification, nominal chemical composition, and minimum hardness

QW-410.76 A change in the rotating tool operation from that qualified beyond the following limits (as applicable):

(a) decrease in rotation speed, or increase greater than 10%

(b) direction of rotation

(c) plunge force greater than 10% or plunge position set point greater than 5% when controlling the plunge direction (except during ramp-up and ramp-down when starting and stopping)

(d) angular tilt greater than 1 deg in any direction

(e) travel force or travel speed greater than 10% when controlling travel direction (except during ramp-up and ramp-down when starting and stopping)

(f) range of relative motion between tool components when using self-reacting or retractable-pin tools

(g) reduction in the smallest radius of travel path curvature that results in reversing the travel direction of the pin or the shoulder

(*h*) manner or angle of intersection, or number of coincident intersections, within the same weld or between the weld and the HAZ of other welds

QW-410.77 A change in the laser wavelength (e.g., CO₂, Nd:YAG, fiber, disk, diode) from that qualified.

QW-410.78 A change in the process sequence from that qualified.

QW-410.79 A change in the distance between the laser beam and the welding arc of more than 10%.

QW-410.80 A change of ±5% in the diameter of the focused spot size.

QW-410.81 A change in the alignment of the plasma torch and GMAW torch with respect to travel direction by more than 10 deg, or a change from a leading or lagging plasma or the addition/deletion of a leading or lagging plasma.

QW-410.82 A change in the distance between the plasma and the GMAW torches by more than 10%.

QW-410.83 A change in the height differential of the plasma contact tip to the GMAW contact tip by more than 10%.

QW-410.84 A change in the angle between the leading and/or trailing plasma and GMAW torches by more than 10 deg.

Table QW-416
Welding Variables
Welder Performance

Brief of Variables - Backing + Backing Maximum qualified φ Pipe diameter φ P-Number ± Filler φ F-Number	OFW QW-352 X X X	SMAW QW-353 X	SAW QW-354	GMAW [Note (2)] QW-355 X	GTAW QW-356 X	PAW QW-357 X
+ Backing Maximum qualified φ Pipe diameter φ P-Number ± Filler	X			X	Х	Х
Maximum qualified φ Pipe diameter φ P-Number ± Filler	X					
φ Pipe diameter φ P-Number ± Filler						
φ P-Number ± Filler	x					
± Filler	v	Х	Х	Х	Х	Х
	А	Х	Х	Х	Х	Х
6 E Number	X				Х	Х
φ i-nullibel	Х	Х	Х	Х	Х	Х
± Inserts					Х	Х
ϕ Filler metal product form					Х	Х
ϕ t Weld deposit		Х	Х	Х	Х	Х
ϕ t Weld deposit	Х					
t Limit (s. cir. arc)				Х		
+ Position	Х	Х	Х	Х	Х	Х
ϕ $\uparrow\downarrow$ Vert. welding		Х		Х	Х	Х
ϕ Type fuel gas	Х					
– Inert backing				Х	Х	Х
ϕ Transfer mode				Х		
ϕ Current or polarity					Х	
Oxyfuel gas welding Shielded metal-arc welding Submerged-arc welding Gas metal-arc welding Gas tungsten-arc welding Plasma-arc welding						
	1	Uphill				
	φ t Weld deposit t Limit (s. cir. arc) + Position φ ↑↓ Vert. welding φ Type fuel gas - Inert backing φ Transfer mode φ Current or polarity Oxyfuel gas welding Shielded metal-arc welding Gas metal-arc welding Gas tungsten-arc welding		φ t Weld deposit X t Limit (s. cir. arc)	ϕ t Weld depositXIt Limit (s. cir. arc)III+PositionXXX ϕ 14 Vert. weldingXI ϕ 14 Vert. weldingXI ϕ Type fuel gasXI ϕ Type fuel gasXI ϕ Transfer modeII ϕ Current or polarityIIOxyfuel gas welding Shielded metal-arc welding Gas metal-arc welding Gas tungsten-arc welding Plasma-arc welding f Thickness TUphill JIIDownhill	φ t Weld deposit X Image: State of the state	ϕ t Weld deposit X Image: Second sec

95

(**13**)

(13) QW-420 BASE METAL GROUPINGS

P-Numbers are assigned to base metals for the purpose of reducing the number of welding and brazing procedure qualifications required.

P-Numbers are alphanumeric designations: accordingly, each P-Number shall be considered a separate P-Number (e.g., base metals assigned P-No. 5A are considered a separate P-Number from those assigned P-No. 5B or P-No. 5C).

In addition, ferrous base metals have been assigned Group Numbers creating subsets of P-Numbers that are used when WPSs are required to be qualified by impact testing by other Sections or Codes. These assignments are based essentially on comparable base metal characteristics, such as composition, weldability, brazeability, and mechanical properties, where this can logically be done. These assignments do not imply that base metals may be indiscriminately substituted for a base metal that was used in the qualification test without consideration of compatibility from the standpoint of metallurgical properties, postweld heat treatment, design, mechanical properties, and service requirements. The following table shows the assignment groups for various alloy systems:

Base Metal	Welding	Brazing
Steel and steel alloys	P-No. 1 through P-No. 15F	P-No. 101 through P-No. 103
Aluminum and aluminum-base alloys	P-No. 21 through P-No. 26	P-No. 104 and P-No. 105
Copper and copper- base alloys	P-No. 31 through P-No. 35	P-No. 107 and P-No. 108
Nickel and nickel- base alloys	P-No. 41 through P-No. 49	P-No. 110 through P-No. 112
Titanium and titanium- base alloys	P-No. 51 through P-No. 53	P-No. 115
Zirconium and zirconium-base alloys	P-No. 61 and P-No. 62	P-No. 117

The values given in the column heading "Minimum Specified Tensile" of Table QW/QB-422 are the acceptance values for the tensile tests of the welding or brazing procedure qualification, except as otherwise allowed in QW-153 or QB-153. Only base metals listed in Table QW/QB-422 with minimum tensile strength values may be used for procedure qualification except as modified by the following paragraph.

If an unlisted base metal has the same UNS number designation as a base metal listed in Table QW/QB-422, that base metal is also assigned that P-Number or P-Number plus Group Number. If the unlisted base metal is used for procedure qualification, the minimum tensile value of the listed base metal shall apply for the tension test specimens.

Materials listed in Table QW/QB-422 without a minimum specified tensile value shall not be used for the purpose of groove weld procedure qualification.

Material produced under an ASTM specification shall have the same P-Number or P-Number plus Group Number and minimum specified tensile strength value as that of the corresponding ASME specification listed in Table QW/QB-422 with prefix A/SA- or B/SB- (e.g., listed under A/SA-240, SA-240 Type 304 is assigned P-No. 8, Group No. 1; and A240 Type 304 is also P-No. 8, Group No. 1).

The column "ISO/TR 15608 Group" in Table QW/QB-422 is a listing of the assignments of materials in accordance with the grouping criteria of ISO/TR 15608:2005, Welding — Guidelines for a metallic materials grouping system, and it is consistent with the assignments found in ISO/TR 20173:2008, Grouping systems for materials — American materials. While this listing is provided as a convenience to users worldwide, it is provided for information only. Section IX does not refer to this grouping as a basis for establishing the range of base metals qualified for either procedure or performance qualification.

In 2009, S-Numbers were removed from Table QW/QB-422. S-Numbers were assigned to materials that were acceptable for use by the ASME B31 Code for Pressure Piping, or by selected Boiler and Pressure Vessel Code Cases, but which were not included within ASME Boiler and Pressure Vessel Code Material Specifications (Section II). Base metals previously assigned S-Numbers were reassigned the corresponding P-Numbers or P-Numbers plus Group Numbers.

There are instances where materials assigned to one Por S-Number or Group Number have been reassigned to a different P- or S-Number or Group Number in later editions. Procedure and performance qualifications that were qualified under the previous P- or S-Numbers or Group Number assignment may continue to be used under the new P-Number or Group Number assignment, see QW-200.2(c), provided the WPS is revised to limit the materials qualified for welding to those assigned to the new P- or S-number(s) and Group number(s) for the specific material(s) originally used for the procedure qualification test coupon. Other materials from the original P- or S-Number and Group Number must be reassigned to the same P- or S-Number or Group Number to be considered qualified for welding under the revised WPS. (**13**)

				Minimum	We	lding	Brazing			
pec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form	
1	J1					Ferrous				
/SA-36		K02600	58 (400)	1	1	101	11.1	C-Mn-Si	Plate, bar & shapes	
/SA-53	Type F	K03005	48 (330)	1	1	101	11.1	С	Furnace welded pipe	
, A/SA-53	Type S, Gr. A	K02504	48 (330)	1	1	101	1.1	С	Smls. pipe	
, /SA-53	Type E, Gr. A	K02504	48 (330)	1	1	101	1.1	С	Resistance welded pipe	
/SA-53	Type E, Gr. B	K03005	60 (415)	1	1	101	11.1	C–Mn	Resistance welded pipe	
/SA-53	Type S, Gr. B	K03005	60 (415)	1	1	101	11.1	C-Mn	Smls. pipe	
/SA-105		K03504	70 (485)	1	2	101	11.1	С	Flanges & fittings	
/SA-106	А	K02501	48 (330)	1	1	101	1.1	C-Si	Smls. pipe	
/SA-106	В	K03006	60 (415)	1	1	101	11.1	C-Mn-Si	Smls. pipe	
, /SA-106	С	K03501	70 (485)	1	2	101	11.1	C-Mn-Si	Smls. pipe	
108	1015 CW	G10150		1	1	101	1.1	С	Bar	
108	1018 CW	G10180		1	1	101	1.1	С	Bar	
108	1020 CW	G10200		1	1	101	1.1	С	Bar	
108	8620 CW	G86200		3	3	102	4.1	0.5Ni-0.5Cr-Mo	Bar	
/SA-134	SA283 Gr. A	K01400	45 (310)	1	1	101	1.1	С	Welded pipe	
/SA-134	SA283 Gr. B	K01702	50 (345)	1	1	101	1.1	С	Welded pipe	
/SA-134	SA283 Gr. C	K02401	55 (380)	1	1	101	1.1	С	Welded pipe	
/SA-134	SA283 Gr. D	K02702	60 (415)	1	1	101	11.1	С	Welded pipe	
/SA-134	SA285 Gr. A	K01700	45 (310)	1	1	101	1.1	С	Welded pipe	
/SA-134	SA285 Gr. B	K02200	50 (345)	1	1	101	1.1	С	Welded pipe	
/SA-134	SA285 Gr. C	K02801	55 (380)	1	1	101	11.1	С	Welded pipe	
/SA-135	А	K02509	48 (330)	1	1	101	1.1	С	E.R.W. pipe	
/SA-135	В	K03018	60 (415)	1	1	101	11.1	С	E.R.W. pipe	
139	А	K02508	48 (330)	1	1	101	1.1	С	Welded pipe	
139	В	K03003	60 (415)	1	1	101	11.1	C	Welded pipe	
139	С	K03004	60 (415)	1	1	101	11.1	С	Welded pipe	
139	D	K03010	60 (415)	1	1	101	11.1	С	Welded pipe	
139	Е	K03012	66 (455)	1	1	101	11.1	С	Welded pipe	
167	Type 302B	S30215	75 (515)	8	1	102	8.1	18Cr-8Ni-2Si	Plate, sheet & strip	
167	Type 308	S30800	75 (515)	8	2	102	8.2	20Cr-10Ni	Plate, sheet & strip	
167	Type 309	S30900	75 (515)	8	2	102	8.2	23Cr-12Ni	Plate, sheet & strip	

97

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
			Minimum	Wel	ding	Brazing					
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form		
					Fe	rrous (Con	 t'd)	·			
A167	Туре 310	S31000	75 (515)	8	2	102	8.2	25Cr-20Ni	Plate, sheet & strip		
A/SA-178	А	K01200	47 (325)	1	1	101	1.1	С	E.R.W. tube		
A/SA-178	С	K03503	60 (415)	1	1	101	11.1	С	E.R.W. tube		
A/SA-178	D	K02709	70 (485)	1	2	101	11.1	C-Mn-Si	E.R.W. tube		
A/SA-179		K01200	47 (325)	1	1	101	1.1	С	Smls. tube		
A/SA-181	Cl. 60	K03502	60 (415)	1	1	101	11.1	C-Si	Pipe flange & fittings		
A/SA-181	Cl. 70	K03502	70 (485)	1	2	101	11.1	C-Si	Pipe flange & fittings		
A/SA-182	F12, Cl. 1	K11562	60 (415)	4	1	102	5.1	1Cr-0.5Mo	Forgings		
A/SA-182	F12, Cl. 2	K11564	70 (485)	4	1	102	5.1	1Cr-0.5Mo	Forgings		
A/SA-182	F11, Cl. 2	K11572	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings		
A/SA-182	F11, Cl. 3	K11572	75 (515)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings		
A/SA-182	F11, Cl. 1	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings		
A/SA-182	F2	K12122	70 (485)	3	2	101	4.2	0.5Cr-0.5Mo	Forgings		
A/SA-182	F1	K12822	70 (485)	3	2	101	1.1	C-0.5Mo	Forgings		
A/SA-182	F22, Cl. 1	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Forgings		
A/SA-182	F22, Cl. 3	K21590	75 (515)	5A	1	102	5.2	2.25Cr-1Mo	Forgings		
A/SA-182	FR	K22035	63 (435)	9A	1	101	9.1	2Ni-1Cu	Forgings		
A/SA-182	F21	K31545	75 (515)	5A	1	102	5.2	3Cr-1Mo	Forgings		
A/SA-182	F3V	K31830	85 (585)	5C	1	102	6.2	3Cr-1Mo-V-Ti-B	Forgings		
A/SA-182	F3VCb	K31390	85 (585)	5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings		
A/SA-182	F22V	K31835	85 (585)	5C	1	102	6.2	2.25Cr-1Mo-V	Forgings		
A/SA-182	F5	K41545	70 (485)	5B	1	102	5.3	5Cr-0.5Mo	Forgings		
A/SA-182	F5a	K42544	90 (620)	5B	1	102	5.3	5Cr-0.5Mo	Forgings		
A/SA-182	F9	K90941	85 (585)	5B	1	102	5.4	9Cr-1Mo	Forgings		
A/SA-182	F91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Forgings		
A/SA-182	F92	K92460	90 (620)	15E	1	102	6.4	9Cr-2W	Forgings		
A/SA-182	F904L	N08904	71 (490)	45		111	8.2	44Fe-25Ni-21Cr-Mo	Forgings		
A/SA-182	F6a, Cl. 1	S41000	70 (485)	6	1	102	7.2	13Cr	Forgings		
A/SA-182	F6a, Cl. 2	S41000	85 (585)	6	3	102	7.2	13Cr	Forgings		
A/SA-182	FXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Forgings		
A/SA-182	FXM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Forgings		
A/SA-182	F304	S30400	70 (485)	8	1	102	8.1	18Cr–8Ni	Forgings > 5 in. (127 mm)		

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	Wel	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
opeernor	Type of didde		(I NOI		rrous (Con	• • •		Froudet Form
A/SA-182	F304	S30400	75 (515)	8	1	102	8.1	18Cr-8Ni	Forgings
									0.0
A/SA-182	F304L	S30403	65 (450)	8	1	102	8.1	18Cr-8Ni	Forgings > 5 in. (127 mm)
A/SA-182	F304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Forgings
A/SA-182	F304H	S30409	70 (485)	8	1	102	8.1	18Cr-8Ni	Forgings > 5 in. (127 mm)
A/SA-182	F304H	S30409	75 (515)	8	1	102	8.1	18Cr-8Ni	Forgings
A/SA-182	F304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Forgings
A/SA-182	F304LN	S30453	70 (485)	8	1	102	8.1	18Cr–8Ni–N	Forgings > 5 in. (127 mm)
A/SA-182	F304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Forgings
, A/SA-182	F46	S30600	78 (540)	8	1	102	8.1	18Cr–15Ni–4Si	Forgings
Á/SA-182	F45	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Forgings
, A/SA-182	F310	S31000	70 (485)	8	2	102	8.2	25Cr-20Ni	Forgings > 5 in. (127 mm)
A/SA-182	F310	S31000	75 (515)	8	2	102	8.2	25Cr-20Ni	Forgings
A/SA-182	F310MoLN	S31050	78 (540)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Forgings
A/SA-182	F50	S31200	100 (690)	10H	1	102	10.2	25Cr-6Ni-Mo-N	Forgings
A/SA-182	F44	S31254	94 (650)	8	4	102	8.2	20Cr-18Ni-6Mo	Forgings
A/SA-182	F316	S31600	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)
A/SA-182	F316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-182	F316L	S31603	65 (450)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)
A/SA-182	F316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-182	F316H	S31609	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings > 5 in. (127 mm)
A/SA-182	F316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-182	F316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-182	F316LN	S31653	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Forgings > 5 in. (127 mm)
A/SA-182	F316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-182	F317	S31700	70 (485)	8	1	102	8.1	18Cr-13Ni-3Mo	Forgings > 5 in. (127 mm)
A/SA-182	F317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Forgings
A/SA-182	F317L	S31703	65 (450)	8	1	102	8.1	18Cr-13Ni-3Mo	Forgings > 5 in. (127 mm)
A/SA-182	F317L	S31703	70 (485)	8	1	102	8.1	18Cr-13Ni-3Mo	Forgings
A/SA-182	F51	S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Forgings
A/SA-182		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Forgings
A/SA-182		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Forgings
A/SA-182	F321	S32100	70 (485)	8	1	102	8.1	18Cr-10Ni-Ti	Forgings > 5 in. (127 mm)
A/SA-182	F321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Forgings

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
			Minimum Specified Tensile, ksi	We	lding Group	Brazing	ISO 15608				
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form		
					Fe	rrous (Con	t'd)				
A/SA-182	F321H	S32109	70 (485)	8	1	102	8.1	18Cr–10Ni–Ti	Forgings > 5 in. (127 mm)		
A/SA-182	F321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Forgings		
A/SA-182	F55	S32760	109 (750)	10H	1	102	10.1	25Cr-8Ni-3Mo-W-Cu-N	Forgings		
,	F35 F10	S33100	. ,	8	1			20Ni-8Cr	0 0		
A/SA-182 A/SA-182	F10 F49	S33100 S34565	80 (550) 115 (795)	8	2 4	102 102	8.1 8.3	20N1-8Cr 24Cr-17Ni-6Mn-4.5Mo-N	Forgings		
,			. ,						Forgings		
A/SA-182	F347	S34700	70 (485)	8	1	102	8.1	18Cr-10Ni-Cb	Forgings > 5 in. (127 mm)		
A/SA-182	F347	S34700	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Forgings		
A/SA-182	F347H	S34709	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings > 5 in. (127 mm)		
A/SA-182	F347H	S34709	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings		
A/SA-182	F348	S34800	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings > 5 in. (127 mm)		
A/SA-182	F348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings		
A/SA-182	F348H	S34809	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings > 5 in. (127 mm)		
A/SA-182	F348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings		
A/SA-182	F6b	S41026	110 (760)	6	3	102	7.2	13Cr-0.5Mo	Forgings		
, A/SA-182	F6NM	S41500	115 (795)	6	4	102	7.2	13Cr-4.5Ni-Mo	Forgings		
A/SA-182	F429	S42900	60 (415)	6	2	102	7.2	15Cr	Forgings		
A/SA-182	F430	S43000	60 (415)	7	2	102	7.1	17Cr	Forgings		
A/SA-182	FXM-27Cb	S44627	60 (415)	101	1	102	7.1	27Cr–1Mo	Forgings		
A/SA-182	F53	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Forgings		
A/SA-182	F54	S39274	116 (800)	10H	1	102	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Forgings		
A/SA-182	F60	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Forgings		
A/SA-182	F6a, Cl. 3	S41000	110 (760)	6	3	102	7.2	13Cr	Forgings		
A/SA-182	F6a, Cl. 4	S41000	130 (895)	6	3	102	7.2	13Cr	Forgings		
A/SA-192		K01201	47 (325)	1	1	101	1.1	C–Si	Smls. tube		
A/3A-192 A199	 T11	K01201 K11597	60 (415)	4	1	101	5.1	1.25Cr-0.5Mo-Si	Smls. tube		
A199 A199	T11 T22	K11597 K21590	60 (415)	4 5A	1	102	5.1	2.25Cr-1Mo	Smis. tube		
A199 A199	T22 T21	K21590 K31545	. ,		1	102		2.25Cr-1Mo 3Cr-1Mo			
			60 (415)	5A			 E 2		Smls. tube		
A199	T5 T9	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Smls. tube		
A199	19	K81590	60 (415)	5B	1	102	5.4	9Cr-1Mo	Smls. tube		
A/SA-202	А	K11742	75 (515)	4	1	101	4.2	0.5Cr-1.25Mn-Si	Plate		
A/SA-202	В	K12542	85 (585)	4	1	101	4.2	0.5Cr-1.25Mn-Si	Plate		
A/SA-203	А	K21703	65 (450)	9A	1	101	9.1	2.5Ni	Plate		
A/SA-203	В	K22103	70 (485)	9A	1	101	9.1	2.5Ni	Plate		

			Groupi		ous/No		s P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
Speel No.		0115 110.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 10.	-	errous (Con		Nominal Composition	riouuct rorm
A/SA-203	D	K31718	65 (450)	9B	1	101	9.2	3.5Ni	Plate
A/SA-203	Е	K32018	70 (485)	9B	1	101	9.2	3.5Ni	Plate
A/SA-203	F		75 (515)	9B	1	101	9.2	3.5Ni	Plate > 2 in. (51 mm)
A/SA-203	F		80 (550)	9B	1	101	9.2	3.5Ni	Plate, 2 in. (51 mm) & under
A/SA-204	А	K11820	65 (450)	3	1	101	1.1	C-0.5Mo	Plate
A/SA-204	В	K12020	70 (485)	3	2	101	1.1	C-0.5Mo	Plate
A/SA-204	С	K12320	75 (515)	3	2	101	1.2	C-0.5Mo	Plate
A/SA-209	T1b	K11422	53 (365)	3	1	101	1.1	C-0.5Mo	Smls. tube
A/SA-209	T1	K11522	55 (380)	3	1	101	1.1	C-0.5Mo	Smls. tube
A/SA-209	T1a	K12023	60 (415)	3	1	101	1.1	C-0.5Mo	Smls. tube
A/SA-210	A-1	K02707	60 (415)	1	1	101	11.1	C-Si	Smls. tube
A/SA-210	С	K03501	70 (485)	1	2	101	11.1	C-Mn-Si	Smls. tube
A211	A570-30	K02502	49 (340)	1	1	101	1.1	С	Welded pipe
A211	A570-33	K02502	52 (360)	1	1	101	1.1	С	Welded pipe
A211	A570-40	K02502	55 (380)	1	1	101	1.1	С	Welded pipe
A/SA-213	T2	K11547	60 (415)	3	1	101	4.2	0.5Cr-0.5Mo	Smls. tube
A/SA-213	T12	K11562	60 (415)	4	1	102	5.1	1Cr-0.5Mo	Smls. tube
A/SA-213	T11	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Smls. tube
A/SA-213	T17	K12047	60 (415)	10B	1	102	4.1	1Cr-V	Smls. tube
A/SA-213	T22	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Smls. tube
A/SA-213	T21	K31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Smls. tube
A/SA-213	T5c	K41245	60 (415)	5B	1	102	5.3	5Cr-0.5Mo-Ti	Smls. tube
A/SA-213	Τ5	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Smls. tube
A/SA-213	T5b	K51545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo-Si	Smls. tube
A/SA-213	Т9	K90941	60 (415)	5B	1	102	5.4	9Cr-1Mo	Smls. tube
A/SA-213	T91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Smls. tube
A/SA-213	T92	K92460	90 (620)	15E	1	102	6.4	9Cr–2W	Smls. tube
A/SA-213	TP201	S20100	95 (655)	8	3	102	8.3	17Cr-4Ni-6Mn	Smls. tube
A/SA-213	TP202	S20200	90 (620)	8	3	102	8.3	18Cr–5Ni–9Mn	Smls. tube
A/SA-213	XM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Smls. tube
A/SA-213	TP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. tube
A/SA-213	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Smls. tube
A/SA-213	TP304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. tube

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	We	lding	Brazing							
Spag No	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form				
Spec. No.	Type of Grade	UNS NO.	(Mra)	F-NO.	-			Nominal Composition					
				-		rrous (Con							
A/SA-213	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Smls. tube				
A/SA-213	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Smls. tube				
A/SA-213	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Smls. tube				
A/SA-213	TP309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Smls. tube				
A/SA-213	ТР309Н	S30909	75 (515)	8	2	102	8.2	23Cr-12Ni	Smls. tube				
A/SA-213	TP309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Smls. tube				
A/SA-213	TP309HCb	S30941	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Smls. tube				
A/SA-213	TP310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Smls. tube				
A/SA-213	TP310H	S31009	75 (515)	8	2	102	8.2	25Cr-20Ni	Smls. tube				
A/SA-213	TP310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Smls. tube				
A/SA-213	TP310HCb	S31041	75 (515)	8	2	102	8.2	25Cr–20Ni–Cb	Smls. tube				
, A/SA-213	TP310HCbN	S31042	95 (655)	8	3	102	8.2	25Cr–20Ni–Cb–N	Smls. tube				
A/SA-213	TP310MoLN	S31050	78 (540)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Smls. tube, $t > \frac{1}{4}$ in. (6 mm)				
A/SA-213	TP310MoLN	S31050	84 (580)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Smls. tube, $t \leq \frac{1}{4}$ in. (6 mm)				
A/SA-213	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. tube				
A/SA-213	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. tube				
A/SA-213	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. tube				
A/SA-213	TP316Ti	S31635	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Ti	Smls. tube				
A/SA-213	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. tube				
A/SA-213	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. tube				
A/SA-213	TP317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Smls. tube				
A/SA-213	TP317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Smls. tube				
A/SA-213	TP317LM	S31725	75 (515)	8	4	102	8.1	19Cr-15Ni-4Mo	Smls. tube				
A/SA-213	TP317LMN	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Smls. tube				
A/SA-213	TP321	S32100	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Smls. tube				
A/SA-213	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. tube				
A/SA-213	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. tube				
A/SA-213	TP347	S34700	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Smls. tube				
A/SA-213	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Smls. tube				
A/SA-213	TP347HFG	S34710	80 (550)	8	1	102	8.1	18Cr-10Ni-Cb	Smls. tube				
A/SA-213	TP347LN	S34751	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb-N	Smls. tube				
A/SA-213	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. tube				
A/SA-213	TP348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. tube				

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified Tensile, ksi	We	lding Group	Brazing	ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
	51					errous (Con	· ·		
A/SA-213	XM-15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Smls. tube
A/SA-213	S32615	S32615	80 (550)	8	1	102	8.1	18Cr-20Ni-5.5Si	Smls. tube
A/SA-214		K01807	47 (325)	1	1	101	1.1	С	E.R.W. tube
A/SA-216	WCA	J02502	60 (415)	1	1	101	1.1	C-Si	Castings
A/SA-216	WCC	J02503	70 (485)	1	2	101	1.1	C-Mn-Si	Castings
A/SA-216	WCB	J03002	70 (485)	1	2	101	1.1	C–Si	Castings
A/SA-217	WC6	J12072	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo	Castings
A/SA-217	WC4	J12082	70 (485)	4	1	101	9.1	1Ni-0.5Cr-0.5Mo	Castings
A/SA-217	WC1	J12524	65 (450)	3	1	101	1.1	C-0.5Mo	Castings
A/SA-217	WC9	J21890	70 (485)	5A	1	102	5.2	2.25Cr-1Mo	Castings
A/SA-217	WC5	J22000	70 (485)	4	1	101	4.2	0.75Ni-1Mo-0.75Cr	Castings
A/SA-217	C5	J42045	90 (620)	5B	1	102	5.3	5Cr-0.5Mo	Castings
A/SA-217	C12	J82090	90 (620)	5B	1	102	5.4	9Cr-1Mo	Castings
A/SA-217	CA15	J91150	90 (620)	6	3	102	7.2	13Cr	Castings
A/SA-217	C12A	J84090	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Castings
A/SA-225	D	K12004	75 (515)	10A	1	101	2.1	Mn-0.5Ni-V	Plate > 3 in. (76 mm)
A/SA-225	D	K12004	80 (550)	10A	1	101	2.1	Mn-0.5Ni-V	Plate, 3 in. (76 mm) & under
A/SA-225	С	K12524	105 (725)	10A	1	101	4.1	Mn-0.5Ni-V	Plate
A/SA-234	WPB	K03006	60 (415)	1	1	101	11.1	C-Mn-Si	Piping fittings
A/SA-234	WPC	K03501	70 (485)	1	2	101	11.1	C-Mn-Si	Piping fittings
A/SA-234	WP11, Cl. 1		60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Piping fittings
A/SA-234	WP12, Cl. 1	K12062	60 (415)	4	1	101	5.1	1Cr-0.5Mo	Piping fittings
A/SA-234	WP1	K12821	55 (380)	3	1	101	11.2	C-0.5Mo	Piping fittings
A/SA-234	WP22, Cl. 1	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Piping fittings
A/SA-234	WPR	K22035	63 (435)	9A	1	101	9.1	2Ni-1Cu	Piping fittings
A/SA-234	WP5, Cl. 1	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Piping fittings
A/SA-234	WP9, Cl. 1	K90941	60 (415)	5B	1	102	5.4	9Cr–1Mo	Piping fittings
A/SA-234	WP91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Piping fittings
A/SA-234	WP11, Cl.3		75 (515)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Piping fittings
A/SA-234	WP12, Cl.2	K12062	70 (485)	4	1	101	5.1	1Cr-0.5Mo	Piping fittings
A/SA-234	WP22, Cl.3	K21590	75 (515)	5A	1	102	5.2	2.25Cr-1Mo	Piping fittings
A/SA-234	WP5, Cl.3	K41545	75 (515)	5B	1	102	5.3	5Cr-0.5Mo	Piping fittings

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum Specified Tensile, ksi		elding Group	Brazing	ISO 15608						
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form				
					Fe	errous (Con	ťd)						
A/SA-234	WP9, Cl.3	K90941	75 (515)	5B	1	102	5.4	9Cr-1Mo	Piping fittings				
A/SA-240		N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Plate \geq 0.1875 in. (5 mm)				
A/SA-240		N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Sheet & strip < 0.1875 in. (5 mm)				
A/SA-240	Type 904L	N08904	71 (490)	45		111	8.2	44Fe-25Ni-21Cr-Mo	Plate, sheet & strip				
A/SA-240	Туре 201-1	S20100	75 (515)	8	3	102	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip				
A/SA-240	Type 201-2	S20100	95 (655)	8	3	102	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip				
A/SA-240	Type 201LN	S20153	95 (655)	8	3		8.3	16Cr-4Ni-6Mn	Plate, sheet & strip				
A/SA-240	Type 202	S20200	90 (620)	8	3	102	8.3	18Cr-5Ni-9Mn	Plate, sheet & strip				
A/SA-240		S20400	95 (655)	8	3	102	8.3	16Cr-9Mn-2Ni-N	Plate, sheet & strip				
A/SA-240	Type XM–19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Plate				
A/SA-240	Type XM–19	S20910	105 (725)	8	3	102	8.3	22Cr-13Ni-5Mn	Sheet & strip				
A/SA-240	Type XM-17	S21600	90 (620)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Plate				
A/SA-240	Type XM-17	S21600	100 (690)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Sheet & strip				
A/SA-240	Type XM-18	S21603	90 (620)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Plate				
A/SA-240	Type XM–18	S21603	100 (690)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Sheet & strip				
A/SA-240	S21800	S21800	95 (655)	8	3	102	8.1	18Cr-8Ni-4Si-N	Plate, sheet & strip				
A/SA-240	Type XM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Plate, sheet & strip				
A/SA-240	Type 301	S30100	75 (515)	8	1	102	8.1	17Cr-7Ni	Plate, sheet & strip				
A/SA-240	Type 302	S30200	75 (515)	8	1	102	8.1	18Cr–8Ni	Plate, sheet & strip				
A/SA-240	Type 304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Plate, sheet & strip				
A/SA-240	Type 304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Plate, sheet & strip				
A/SA-240	Type 304H	S30409	75 (515)	8	1	102	8.1	18Cr-8Ni	Plate, sheet & strip				
A/SA-240	Type 304N	S30451	80 (550)	8	1	102	8.1	18Cr–8Ni–N	Plate, sheet & strip				
A/SA-240	Type XM–21	S30452	85 (585)	8	1	102	8.1	18Cr–8Ni–N	Plate				
A/SA-240	Type XM–21	S30452	90 (620)	8	1	102	8.1	18Cr-8Ni-N	Sheet & strip				
A/SA-240	Type 304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Plate, sheet & strip				
A/SA-240	Type 305	S30500	70 (485)	8	1	102	8.1	18Cr-11Ni	Plate, sheet & strip				
A/SA-240	S30600	S30600	78 (540)	8	1	102	8.1	18Cr-15Ni-4Si	Plate, sheet & strip				
A/SA-240	S30601	S30601	78 (540)	8	1	102	8.1	17.5Cr-17.5Ni-5.3Si	Plate, sheet & strip				
A/SA-240	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Plate, sheet & strip				
A/SA-240	S32615	S32615	80 (550)	8	1	102	8.1	18Cr-20Ni-5.5Si	Plate, sheet & strip				
A/SA-240	Type 309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Plate, sheet & strip				
A/SA-240	Type 309H	S30909	75 (515)	8	2	102	8.2	23Cr-12Ni	Plate, sheet & strip				

2013 SECTION IX

			Groupi		us/No		P-Numb	ers tion (Cont'd)	
			Minimum	Weld	ing	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u></u>			()			rrous (Con	· ·	[· · · · · · · · · · · · · · · · · · ·	
A/SA-240	Type 309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Plate, sheet & strip
A/SA-240	Type 309HCb	S30941	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Plate, sheet & strip
A/SA-240	Type 310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Plate, sheet & strip
A/SA-240	Type 310H	S31009	75 (515)	8	2	102	8.2	25Cr-20Ni	Plate, sheet & strip
A/SA-240	Type 310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Plate, sheet & strip
A/SA-240	Type 310HCb	S31041	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Plate, sheet & strip
A/SA-240	TP310MoLN	S31050	78 (540)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Plate, sheet & strip, $t > \frac{1}{4}$ in. (6 mm)
A/SA-240	TP310MoLN	S31050	84 (580)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Plate, sheet & strip, $t \leq \frac{1}{4}$ in. (6 mm)
A/SA-240	S31200	S31200	100 (690)	10H	1	102	10.2	25Cr-6Ni-Mo-N	Plate, sheet & strip
A/SA-240	S31254	S31254	95 (655)	8	4	102	8.2	20Cr-18Ni-6Mo	Plate
A/SA-240	S31254	S31254	100 (690)	8	4	102	8.2	20Cr-18Ni-6Mo	Sheet & strip
A/SA-240	S31260	S31260	100 (690)	10H	1	102	10.2	25Cr-6.5Ni-3Mo-N	Plate, sheet & strip
A/SA-240	S31277	S31277	112 (770)	45		111	8.2	27Ni-22Cr-7Mo-Mn-Cu	Plate, sheet & strip
A/SA-240	Type 316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-240	Type 316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-240	Туре 316Н	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-240	Type 316Ti	S31635	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Ti	Plate, sheet & strip
A/SA-240	Type 316Cb	S31640	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Cb	Plate, sheet & strip
A/SA-240	Type 316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip
A/SA-240	Type 316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip
A/SA-240	Type 317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Plate, sheet & strip
A/SA-240	Type 317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Plate, sheet & strip
A/SA-240	S31725	S31725	75 (515)	8	4	102	8.1	19Cr-15Ni-4Mo	Plate, sheet & strip
A/SA-240	S31726	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Plate, sheet & strip
A/SA-240	S31753	S31753	80 (550)	8	1	102	8.1	18Cr-13Ni-3Mo-N	Plate, sheet & strip
A/SA-240	S31803	S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Plate, sheet & strip
A/SA-240		S32003	90 (620)	10H	1	102	10.1	21Cr-3.5Ni-Mo-N	Plate, sheet & strip
A/SA-240		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Plate, sheet & strip
A/SA-240		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Plate, sheet & strip
A/SA-240	Type 321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Plate, sheet & strip
A/SA-240		S32101	95 (655)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Plate, sheet & strip > 0.25 in. (6 mm)
A/SA-240		S32101	101 (700)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Plate, sheet & strip ≤ 0.25 in. (6 mm)
A/SA-240	Type 321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Plate, sheet & strip
A/SA-240	2205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Plate, sheet & strip

2013 SECTION IX

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
spee. No.	Type of didde	0110 110.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 10.		rrous (Con	•	Nominal Composition	Troduct Form
A/SA-240	S32550	S32550	110 (760)	10H	1	102	10.2	25Cr-5Ni-3Mo-2Cu	Plate, sheet & strip
A/SA-240	S32750	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Plate, sheet & strip
A/SA-240	S32760	S32760	108 (745)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Plate, sheet & strip
A/SA-240	Type 329	S32900	90 (620)	10H	1	102	10.2	26Cr-4Ni-Mo	Plate, sheet & strip
A/SA-240	S32906	S32906	109 (750)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Plate, sheet & strip \geq 0.40 in. (10 mm)
A/SA-240	S32906	S32906	116 (800)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Plate, sheet & strip < 0.40 in. (10 mm)
A/SA-240	S32950	S32950	100 (690)	10H	1	102	10.2	26Cr-4Ni-Mo-N	Plate, sheet & strip
A/SA-240	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Plate, sheet & strip
A/SA-240	Type 347	S34700	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Plate, sheet & strip
A/SA-240	Type 347H	S34709	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Plate, sheet & strip
A/SA-240	Type 348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Plate, sheet & strip
A/SA-240	Type 348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Plate, sheet & strip
A/SA-240	Type XM–15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Plate, sheet & strip
A/SA-240	Type 405	S40500	60 (415)	7	1	102	7.1	12Cr-1Al	Plate, sheet & strip
A/SA-240	Type 409	S40910	55 (380)	7	1	102	7.1	11Cr-Ti	Plate, sheet & strip
A/SA-240	Type 409	S40920	55 (380)	7	1	102	7.1	11Cr-Ti	Plate, sheet & strip
A/SA-240	Type 409	S40930	55 (380)	7	1	102	7.1	11Cr–Ti	Plate, sheet & strip
A/SA-240	Type 410	S41000	65 (450)	6	1	102	7.2	13Cr	Plate, sheet & strip
A/SA-240	Type 410S	S41008	60 (415)	7	1	102	7.2	13Cr	Plate, sheet & strip
A/SA-240	S41500	S41500	115 (795)	6	4	102	7.2	13Cr-4.5Ni-Mo	Plate, sheet & strip
A/SA-240	Type 429	S42900	65 (450)	6	2	102	7.2	15Cr	Plate, sheet & strip
A/SA-240	Type 430	S43000	65 (450)	7	2	102	7.1	17Cr	Plate, sheet & strip
A/SA-240	Type 439	S43035	60 (415)	7	2	102	7.1	18Cr–Ti	Plate, sheet & strip
A/SA-240	S44400	S44400	60 (415)	7	2	102	7.1	18Cr-2Mo	Plate, sheet & strip
A/SA-240	Type XM–33	S44626	68 (470)	10I	1	102	7.1	27Cr-1Mo-Ti	Plate, sheet & strip
A/SA-240	Type XM–27	S44627	65 (450)	10I	1	102	7.1	27Cr-1Mo	Plate, sheet & strip
A/SA-240	S43932	S43932	60 (415)	7	2	102		18Cr–Ti–Cb	Plate, sheet & strip
A/SA-240	S44635	S44635	90 (620)	10I	1	102	7.1	25Cr-4Ni-4Mo-Ti	Plate, sheet & strip
A/SA-240	S44660	S44660	85 (585)	10K	1	102	7.1	26Cr-3Ni-3Mo	Plate, sheet & strip
A/SA-240	S44700	S44700	80 (550)	10J	1	102	7.1	29Cr-4Mo	Plate, sheet & strip
A/SA-240	S44800	S44800	80 (550)	10K	1	102	7.1	29Cr-4Mo-2Ni	Plate, sheet & strip
A/SA-249		N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Welded tube > 0.1875 in. (5 mm)
A/SA-249		N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Welded tube \leq 0.1875 in. (5 mm)

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
			Specified Tensile, ksi		Group		ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	errous (Con	t'd)		
A/SA-249		N08904	71 (490)	45		111	8.2	44Fe-25Ni-21Cr-Mo	Welded tube
A/SA-249	 TP201	S20100	95 (655)	8	 3	102	8.3	17Cr-4Ni-6Mn	Welded tube
A/SA-249	TP202	S20100	90 (620)	8	3	102	8.3	18Cr-5Ni-9Mn	Welded tube
A/SA-249	TPXM-19	S20200	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Welded tube
A/SA-249	TPXM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Welded tube
A/SA-249	TP304	S30400	75 (515)	8	1	102	8.1	18Cr-8Ni	Welded tube
A/SA-249	TP304L	S30403	70 (485)	8	1 1	102	8.1	18Cr-8Ni	Welded tube
A/SA-249	TP304H	S30409	75 (515)	8 8	1	102 102	8.1 8.1	18Cr–8Ni 18Cr–8Ni–N	Welded tube
A/SA-249 A/SA-249	TP304N TP304LN	S30451 S30453	80 (550) 75 (515)	8	1	102	8.1 8.1	18Cr-8Ni-N	Welded tube Welded tube
A/SA-249	S30815	S30455	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Welded tube
A/3A-249	330013	330013	87 (000)	0	2	102	0.2	2101-1111-1	Welded tube
A/SA-249	TP309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Welded tube
A/SA-249	TP309H	S30909	75 (515)	8	2	102	8.2	23Cr-12Ni	Welded tube
A/SA-249	TP309Cb	S30940	75 (515)	8	2	102	8.2	23Cr–12Ni–Cb	Welded tube
A/SA-249	TP309HCb	S30941	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Welded tube
A/SA-249	TP310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Welded tube
A/SA-249	TP310H	S31009	75 (515)	8	2	102	8.2	25Cr-20Ni	Welded tube
A/SA-249	TP310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Welded tube
A/SA-249	TP310HCb	S31041	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Welded tube
A/SA-249	TP310MoLN	S31050	78 (540)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Welded tube, $t > \frac{1}{4}$ in. (6 mm)
A/SA-249	TP310MoLN	S31050	84 (580)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Welded tube, $t \leq \frac{1}{4}$ in. (6 mm)
A/SA-249	S31254	S31254	95 (655)	8	4	102	8.2	20Cr-18Ni-6Mo	Welded tube, $t > \frac{3}{16}$ in. (5 mm)
, A/SA-249	S31254	S31254	98 (675)	8	4	102	8.2	20Cr-18Ni-6Mo	Welded tube, $t \leq \frac{3}{16}$ in. (5 mm)
A/SA-249	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded tube
, A/SA-249	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded tube
A/SA-249	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded tube
A/SA-249	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded tube
A/SA-249	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded tube
A/SA-249	TP317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Welded tube
A/SA-249	TP317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Welded tube
A/SA-249	S31725	S31725	75 (515)	8	4	102	8.1	19Cr-15Ni-4Mo	Welded tube
A/SA-249	S31726	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Welded tube
, A/SA-249		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Welded tube

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified	We	lding	Brazing	-		
Spec. No.	Type or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u>-</u>			()	1		errous (Con	· ·	F	
A/SA-249	TP321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Welded tube
A/SA-249	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Welded tube
A/SA-249	TP347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded tube
A/SA-249	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Welded tube
A/SA-249	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded tube
A/SA-249	TP348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded tube
A/SA-249	TPXM-15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Welded tube
A/SA-250	T1b	K11422	53 (365)	3	1	101	1.1	C-0.5Mo	E.R.W. tube
Á/SA-250	T1	K11522	55 (380)	3	1	101	1.1	C-0.5Mo	E.R.W. tube
A/SA-250	Т2	K11547	60 (415)	3	1	101	4.2	0.5Cr-0.5Mo	E.R.W. tube
Á/SA-250	T11	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	E.R.W. tube
A/SA-250	T1a	K12023	60 (415)	3	1	101	1.1	C-0.5Mo	E.R.W. tube
A/SA-250	T12	K11562	60 (415)	4	1	102	5.1	1Cr-0.5Mo	E.R.W. tube
A/SA-250	T22	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	E.R.W. tube
A254	Cl.1	K01001	42 (290)			101	NA	С	Cu brazed tube
A254	Cl.2	K01001	42 (290)			101	NA	C	Cu brazed tube
A/SA-266	4	K03017	70 (485)	1	2	101	11.1	C-Mn-Si	Forgings
A/SA-266	1	K03506	60 (415)	1	1	101	11.1	C–Si	Forgings
A/SA-266	2	K03506	70 (485)	1	2	101	11.1	C–Si	Forgings
A/SA-266	3	K05001	75 (515)	1	2	101	11.2	C-Si	Forgings
A/SA-268	TP405	S40500	60 (415)	7	1	102	7.1	12Cr-1Al	Smls. & welded tube
A/SA-268	S40800	S40800	55 (380)	7	1	102	7.1	12Cr-Ti	Smls. & welded tube
A/SA-268	TP409	S40900	55 (380)	7	1	102	7.1	11Cr–Ti	Smls. & welded tube
A/SA-268	TP410	S41000	60 (415)	6	1	102	7.2	13Cr	Smls. & welded tube
A/SA-268	S41500	S41500	115 (795)	6	4	102	7.2	13Cr-4.5Ni-Mo	Smls. & welded tube
A/SA-268	TP429	S42900	60 (415)	6	2	102	7.2	15Cr	Smls. & welded tube
A/SA-268	TP430	S43000	60 (415)	7	2	102	7.1	17Cr	Smls. & welded tube
A/SA-268	TP439	S43035	60 (415)	7	2	102	7.1	18Cr–Ti	Smls. & welded tube
A/SA-268	TP430Ti	S43036	60 (415)	7	2	102	7.1	18Cr–Ti	Smls. & welded tube
A/SA-268	18Cr-2Mo	S44400	60 (415)	7	2	102	7.1	18Cr-2Mo	Smls. & welded tube
A/SA-268	TP446-2	S44600	65 (450)	10I	1	102	7.1	27Cr	Smls. & welded tube
A/SA-268	TP446-1	S44600	70 (485)	10I	1	102	7.1	27Cr	Smls. & welded tube
A/SA-268	TPXM-33	S44626	68 (470)	10I	1	102	7.1	27Cr-1Mo-Ti	Smls. & welded tube

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	Wel	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
Speel No.		010 10.	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 110.		rrous (Con	· ·	Nominal Composition	rioudet rorm
)		
A/SA-268	TPXM-27	S44627	65 (450)	10I	1	102	7.1	27Cr-1Mo	Smls. & welded tube
A/SA-268	25-4-4	S44635	90 (620)	10I	1	102	7.1	25Cr-4Ni-4Mo-Ti	Smls. & welded tube
A/SA-268	26-3-3	S44660	85 (585)	10K	1	102	7.1	26Cr-3Ni-3Mo	Smls. & welded tube
A/SA-268	29-4	S44700	80 (550)	10J	1	102	7.1	29Cr-4Mo	Smls. & welded tube
A/SA-268	S44735	S44735	75 (515)	10J	1	102	7.1	29Cr-4Mo-Ti	Smls. & welded tube
A/SA-268	29-4-2	S44800	80 (550)	10K	1	102	7.1	29Cr-4Mo-2Ni	Smls. & welded tube
A269	TP316	S31600		8	1	102	8.1	16Cr-12Ni-2Mo	Smls. & welded tube
A269	TP316L	S31603		8	1	102	8.1	16Cr-12Ni-2Mo	Smls. & welded tube
A269	TP304	S30400		8	1	102	8.1	18Cr-8Ni	Smls. & welded tube
A269	TP304L	S30403		8	1	102	8.1	18Cr-8Ni	Smls. & welded tube
A/SA-276	TP304	S30400	75 (515)	8	1	102	8.1	18Cr-8Ni	Bar
A/SA-276	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Bar
A/SA-276	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Bar
A/SA-276	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Bar
A/SA-276	S32205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Bar
A/SA-276	TP410	S41000	70 (485)	6	1	102	7.2	13Cr	Bar
A/SA-283	А	K01400	45 (310)	1	1	101	1.1	С	Plate
A/SA-283	В	K01702	50 (345)	1	1	101	1.1	С	Plate
A/SA-283	С	K02401	55 (380)	1	1	101	1.1	С	Plate
A/SA-283	D	K02702	60 (415)	1	1	101	1.1	С	Plate
A/SA-285	А	K01700	45 (310)	1	1	101	1.1	С	Plate
A/SA-285	В	K02200	50 (345)	1	1	101	1.1	С	Plate
A/SA-285	С	K02801	55 (380)	1	1	101	11.1	С	Plate
A/SA-299	А	K02803	75 (515)	1	2	101	11.1	C-Mn-Si	Plate
A/SA-299	В	K02803	80 (550)	1	3	101	11.1	C-Mn-Si	Plate
A/SA-302	А	K12021	75 (515)	3	2	101	1.1	Mn-0.5Mo	Plate
A/SA-302	В	K12022	80 (550)	3	3	101	1.2	Mn-0.5Mo	Plate
A/SA-302	C	K12039	80 (550)	3	3	101		Mn-0.5Mo-0.5Ni	Plate
A/SA-302	D	K12054	80 (550)	3	3	101		Mn-0.5Mo-0.75Ni	Plate
A/SA-312	N08367	N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Smls. & welded pipe > 0.1875 in. (5 mm)
A/SA-312	N08367	N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	(5 mm) Smls. & welded pipe ≤ 0.1875 in. (5 mm)

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	We	lding	Brazing							
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form				
					Fe	rrous (Con	t'd)						
A/SA-312		N08904	71 (490)	45		111	8.2	44Fe-25Ni-21Cr-Mo	Smls. & welded pipe				
A/SA-312	TPXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Smls. & welded pipe				
A/SA-312	TPXM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Smls. & welded pipe				
A/SA-312	TPXM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Smls. & welded pipe				
A/SA-312	TP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. & welded pipe				
A/SA-312	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Smls. & welded pipe				
A/SA-312	TP304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. & welded pipe				
A/SA-312	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr–8Ni–N	Smls. & welded pipe				
A/SA-312	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Smls. & welded pipe				
A/SA-312	S30600	S30600	78 (540)	8	1	102	8.1	18Cr-15Ni-4Si	Smls. & welded pipe				
A/SA-312	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Smls. & welded pipe				
A/SA-312	S32615	S32615	80 (550)	8	1	102	8.1	18Cr-20Ni-5.5Si	Smls. & welded pipe				
A/SA-312	TP309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Smls. & welded pipe				
A/SA-312	ТР309Н	S30909	75 (515)	8	2	102	8.2	23Cr-12Ni	Smls. & welded pipe				
A/SA-312	TP309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Smls. & welded pipe				
A/SA-312	TP309HCb	S30941	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Smls. & welded pipe				
A/SA-312	TP310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Smls. & welded pipe				
A/SA-312	TP310H	S31009	75 (515)	8	2	102	8.2	25Cr-20Ni	Smls. & welded pipe				
A/SA-312	TP310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Smls. & welded pipe				
A/SA-312	TP310HCb	S31041	75 (515)	8	2	102	8.2	25Cr–20Ni–Cb	Smls. & welded pipe				
A/SA-312	TP310MoLN	S31050	78 (540)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Smls. & welded pipe, $t > \frac{1}{4}$ in. (6 mm)				
A/SA-312	TP310MoLN	S31050	84 (580)	8	2	102	8.2	25Cr-22Ni-2Mo-N	Smls. & welded pipe, $t \leq \frac{1}{4}$ in. (6 mm)				
A/SA-312	S31254	S31254	95 (655)	8	4	102	8.2	20Cr-18Ni-6Mo	Smls. & welded pipe, $t > \frac{3}{16}$ in. (5 mm)				
A/SA-312	S31254	S31254	98 (675)	8	4	102	8.2	20Cr-18Ni-6Mo	Smls. & welded pipe, $t \leq \frac{3}{16}$ in. (5 mm)				
A/SA-312	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe				
A/SA-312	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe				
A/SA-312	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. & welded pipe				
A/SA-312	TP316Ti	S31635	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Ti	Smls. & welded pipe				
A/SA-312	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. & welded pipe				
A/SA-312	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. & welded pipe				
A/SA-312	TP317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Smls. & welded pipe				
A/SA-312	TP317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Smls. & welded pipe				
A/SA-312	S31725	S31725	75 (515)	8	4	102	8.1	19Cr-15Ni-4Mo	Smls. & welded pipe				

			Groupii		us/No		P-Numb	ers tion (Cont'd)	
			Minimum	Weld	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
-					Fe	rrous (Con		-	
A/SA-312	S31726	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Smls. & welded pipe
A/SA-312		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Smls. & welded pipe
A/SA-312	TP321	S32100	70 (485)	8	1	102	8.1	18Cr-10Ni-Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)
A/SA-312	TP321	S32100	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)
A/SA-312	TP321	S32100	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Welded pipe
A/SA-312	TP321H	S32109	70 (485)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)
A/SA-312	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)
A/SA-312	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Welded pipe
A/SA-312	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. & welded pipe
A/SA-312	TP347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. & welded pipe
A/SA-312	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. & welded pipe
A/SA-312	TP347LN	S34751	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb-N	Smls. & welded pipe
A/SA-312	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. & welded pipe
A/SA-312	TP348H	S34809	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Smls. & welded pipe
A/SA-312	TPXM-15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Smls. & welded pipe
A/SA-333	6	K03006	60 (415)	1	1	101	11.1	C-Mn-Si	Smls. & welded pipe
A/SA-333	1	K03008	55 (380)	1	1	101	11.1	C-Mn	Smls. & welded pipe
A/SA-333	10		80 (550)	1	3	101	11.1	C-Mn-Si	Smls. & welded pipe
A/SA-333	4	K11267	60 (415)	4	2	102	4.1	0.75Cr-0.75Ni-Cu-Al	Smls. & welded pipe
A/SA-333	7	K21903	65 (450)	9A	1	101	9.1	2.5Ni	Smls. & welded pipe
A/SA-333	9	K22035	63 (435)	9A	1	101	9.1	2Ni-1Cu	Smls. & welded pipe
A/SA-333	3	K31918	65 (450)	9B	1	101	9.2	3.5Ni	Smls. & welded pipe
A/SA-333	8	K81340	100 (690)	11A	1	101	9.3	9Ni	Smls. & welded pipe
A/SA-334	6	K03006	60 (415)	1	1	101	11.1	C-Mn-Si	Welded tube
A/SA-334	1	K03008	55 (380)	1	1	101	11.1	C–Mn	Welded tube
A/SA-334	7	K21903	65 (450)	9A	1	101	9.1	2.5Ni	Welded tube
A/SA-334	9	K22035	63 (435)	9A	1	101	9.1	2Ni-1Cu	Welded tube
A/SA-334	3	K31918	65 (450)	9B	1	101	9.2	3.5Ni	Welded tube
A/SA-334	8	K81340	100 (690)	11A	1	101	9.3	9Ni	Welded tube
A/SA-335	P1	K11522	55 (380)	3	1	101	1.1	C-0.5Mo	Smls. pipe
A/SA-335 A/SA-335	P1 P2	K11522 K11547	55 (380) 55 (380)	3	1	101	4.2	0.5Cr-0.5Mo	Smls. pipe
A/SA-335 A/SA-335	P2 P12	K11547 K11562	55 (380) 60 (415)	3 4	1	101	4.2 5.1	1Cr-0.5Mo	Smis. pipe Smls. pipe
A/SA-335 A/SA-335	P15	K11502 K11578	60 (415) 60 (415)	3	1	102	5.1	1.5Si-0.5Mo	Smls. pipe

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	We	lding	Brazing							
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form				
					Fe	errous (Con	t'd)						
A/SA-335	P11	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Smls. pipe				
A/SA-335	P22	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Smls. pipe				
, A/SA-335	P21	K31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Smls. pipe				
Á/SA-335	P5c	K41245	60 (415)	5B	1	102	5.3	5Cr-0.5Mo-Ti	Smls. pipe				
A/SA-335	P5	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Smls. pipe				
A/SA-335	P5b	K51545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo-Si	Smls. pipe				
A/SA-335	Р9	K90941	60 (415)	5B	1	102	5.4	9Cr-1Mo	Smls. pipe				
A/SA-335	P91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Smls. pipe				
A/SA-335	P92	K92460	90 (620)	15E	1	102	6.4	9Cr-2W	Smls. pipe				
A/SA-336	F3VCb	K31390	85 (585)	5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings				
A/SA-336	F6	S41000	85 (585)	6	3	102	7.2	13Cr	Forgings				
A/SA-336	F12	K11564	70 (485)	4	1	102	5.1	1Cr-0.5Mo	Forgings				
A/SA-336	F11, Cl. 1	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings				
A/SA-336	F11, Cl. 2	K11572	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings				
A/SA-336	F11, Cl. 3	K11572	75 (515)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forgings				
A/SA-336	F1	K12520	70 (485)	3	2	101	1.1	C-0.5Mo	Forgings				
A/SA-336	F22, Cl. 1	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Forgings				
A/SA-336	F22, Cl. 3	K21590	75 (515)	5A	1	102	5.2	2.25Cr-1Mo	Forgings				
A/SA-336	F21, Cl. 1	K31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Forgings				
A/SA-336	F21, Cl. 3	K31545	75 (515)	5A	1	102	5.2	3Cr-1Mo	Forgings				
A/SA-336	F3V	K31830	85 (585)	5C	1	102	6.2	3Cr–1Mo–V–Ti–B	Forgings				
A/SA-336	F22V	K31835	85 (585)	5C	1	102	6.2	2.25Cr-1Mo-V	Forgings				
A/SA-336	F5	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Forgings				
A/SA-336	F5A	K42544	80 (550)	5B	1	102	5.3	5Cr-0.5Mo	Forgings				
A/SA-336	F9	K90941	85 (585)	5B	1	102	5.4	9Cr-1Mo	Forgings				
A/SA-336	F91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Forgings				
A/SA-350	LF1	K03009	60 (415)	1	1	101	11.1	C-Mn-Si	Forgings				
A/SA-350	LF2	K03011	70 (485)	1	2	101	11.1	C-Mn-Si	Forgings				
A/SA-350	LF6, Cl. 2	K12202	75 (515)	1	3	101	4.1	C-Mn-Si-V	Forgings				
A/SA-350	LF5, Cl. 1	K13050	60 (415)	9A	1	101	9.1	1.5Ni	Forgings				
A/SA-350	LF5, Cl. 2	K13050	70 (485)	9A	1	101	9.1	1.5Ni	Forgings				
A/SA-350	LF9	K22036	63 (435)	9A	1	101	9.1	2Ni–1Cu	Forgings				
A/SA-350	LF3	K32025	70 (485)	9B	1	101	9.2	3.5Ni	Forgings				

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
			Specified Tensile, ksi		Group		ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	errous (Con	t'd)		
A/SA-351	CF3	192500	70 (485)	8	1	102	8.1	18Cr-8Ni	Castings
A/SA-351	CF3A	192500	77 (530)	8	1	102	8.1	18Cr-8Ni	Castings
A/SA-351	CF8	J92500 J92600	70 (485)	8	1	102	8.1	18Cr-8Ni	Castings
A/SA-351 A/SA-351	CF8A	J92600 J92600	70 (483)	о 8	1	102	8.1 8.1	18Cr-8Ni	Castings
A/SA-351 A/SA-351	CF8C	J92800 J92710	70 (485)	о 8	1	102	8.1 8.1	18Cr–10Ni–Cb	Castings
		,			T				Ũ
A/SA-351	CF3M	J92800	70 (485)	8	1	102	8.1	18Cr-12Ni-2Mo	Castings
A/SA-351	CF8M	J92900	70 (485)	8	1	102	8.1	18Cr-12Ni-2Mo	Castings
A/SA-351	CF10	J92590	70 (485)	8	1	102	8.1	19Cr-9Ni-0.5Mo	Castings
A/SA-351	CF10M	J92901	70 (485)	8	1	102	8.1	19Cr–9Ni–2Mo	Castings
A/SA-351	CG8M	J93000	75 (515)	8	1	102	8.1	19Cr-10Ni-3Mo	Castings
A/SA-351	CK3MCuN	J93254	80 (550)	8	4	102	8.2	20Cr-18Ni-6Mo	Castings
A/SA-351	CD3MWCuN	J93380	100 (690)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings
A/SA-351	CH8	J93400	65 (450)	8	2	102	8.2	25Cr-12Ni	Castings
A/SA-351	CH20	J93402	70 (485)	8	2	102	8.2	25Cr-12Ni	Castings
A/SA-351	CG6MMN	J93790	85 (585)	8	3	102	8.3	22Cr-12Ni-5Mn	Castings
A/SA-351	CK20	J 94202	65 (450)	8	2	102	8.2	25Cr-20Ni	Castings
A/SA-351	CN7M	N08007	62 (425)	45		111	8.2	28Ni-19Cr-Cu-Mo	Castings
A/SA-351	CT15C	N08151	63 (435)	45		111	45	32Ni-45Fe-20Cr-Cb	Castings
A/SA-351	CN3MN	J94651	80 (550)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Castings
A/SA-351	CE20N	J92802	80 (550)	8	2	102	8.2	25Cr-8Ni-N	Castings
A/SA-351	CF10MC	J92971	70 (485)	8	1	102	8.1	16Cr-14Ni-2Mo	Castings
A/SA-351	CH10	J93401	70 (485)	8	2	102	8.2	25Cr-12Ni	Castings
A/SA-351	НК30	J94203	65 (450)	8	2	102	8.2	25Cr-20Ni-0.5Mo	Castings
A/SA-351	HK40	J94204	62 (425)	8	2	102	8.2	25Cr-20Ni-0.5Mo	Castings
A/SA-351	HT30	N08603	65 (450)	45		102	45	35Ni-15Cr-0.5Mo	Castings
									Ũ
A/SA-352	LCA	J02504	60 (415)	1	1	101	11.1	C–Si	Castings
A/SA-352	LCC	J02505	70 (485)	1	2	101	11.1	C-Mn-Si	Castings
A/SA-352	LCB	J03003	65 (450)	1	1	101	1.1	C-Si	Castings
A/SA-352	LC1	J12522	65 (450)	3	1	101	1.1	C-0.5Mo	Castings
A/SA-352	LC2	J22500	70 (485)	9A	1	101	9.1	2.5Ni	Castings
A/SA-352	LC3	J31550	70 (485)	9B	1	101	9.3	3.5Ni	Castings
A/SA-352	LC4	J41500	70 (485)	9C	1	101	9.3	4.5Ni	Castings

			Minimum	Weld	ding	Brazing	-		
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	
Spec. No.		UNS NO.	(Mra)	F-NO.		rrous (Con	•	Nominal Composition	Product Form
A/SA-352	LC2-1	J42215	105 (725)	11A	5	102	9.2	3Ni-1.5Cr-0.5Mo	Castings
A/SA-352 A/SA-352	CA6NM	J42215 J91540	105 (725) 110 (760)	6	5 4	102	9.2 7.2	13Cr-4Ni	Castings
A/SA-352 A/SA-353		K81340	100 (690)	0 11A	4	102	9.3	9Ni	Plate
n/3n-333		K01340	100 [090]	11A	1	101	7.5	2111	i late
A356	1	J03502	70 (485)	1	2	101	11.1	C–Si	Castings
A356	2	J12523	65 (450)	3	1	101		C-0.5Mo	Castings
A356	6	J12073	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo	Castings
A356	8	J11697	80 (550)	4	1	102		1Cr-1Mo-V	Castings
A356	9	J21610	85 (585)	4	1	102		1Cr-1Mo-V	Castings
A356	10	[22090	85 (585)	5A	1	102	5.2	2.25Cr-1Mo	Castings
A356	12A	J84090	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Castings
A/SA-358	N08367	N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Fusion welded pipe > 0.1875 in (5 mm)
A/SA-358	N08367	N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Fusion welded pipe ≤ 0.1875 in (5 mm)
A/SA-358	XM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Fusion welded pipe
A/SA-358	XM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Fusion welded pipe
A/SA-358	304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Fusion welded pipe
A/SA-358	304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Fusion welded pipe
A/SA-358	304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Fusion welded pipe
A/SA-358	304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Fusion welded pipe
A/SA-358	304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Fusion welded pipe
A/SA-358	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Fusion welded pipe
A/SA-358	3095	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Fusion welded pipe
A/SA-358	309Cb	S30940	75 (515)	8	2	102	8.2	23Cr–12Ni–Cb	Fusion welded pipe
A/SA-358	310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Fusion welded pipe
, A/SA-358	310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Fusion welded pipe
, A/SA-358	S31254	S31254	94 (650)	8	4	102	8.2	20Cr-18Ni-6Mo	Fusion welded pipe
A/SA-358	316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Fusion welded pipe
A/SA-358	316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Fusion welded pipe
A/SA-358	316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Fusion welded pipe
A/SA-358	S31725	S31725	75 (515)	8	4	102	8.1	19Cr–15Ni–4Mo	Fusion welded pipe

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u>spec. No.</u>	Type of Grade	UNS NO.	(Mra)	r-no.		errous (Con	· ·	Nominal Composition	Flouter Form
					ге	ittous (con	t uj		
A/SA-358	S31726	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Fusion welded pipe
A/SA-358		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Fusion welded pipe
A/SA-358	321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Fusion welded pipe
A/SA-358	347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Fusion welded pipe
A/SA-358	348	S34800	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Fusion welded pipe
A/SA-369	FPA	K02501	48 (330)	1	1	101	1.1	C-Si	Forged pipe
A/SA-369	FPB	K03006	60 (415)	1	1	101	1.1	C–Mn–Si	Forged pipe
A/SA-369	FP1	K11522	55 (380)	3	1	101	1.1	C-0.5Mo	Forged pipe
A/SA-369	FP2	K11547	55 (380)	3	1	101	4.2	0.5Cr-0.5Mo	Forged pipe
A/SA-369	FP12	K11562	60 (415)	4	1	102	5.1	1Cr-0.5Mo	Forged pipe
A/SA-369	FP11	K11597	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Forged pipe
A/SA-369	FP22	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Forged pipe
A/SA-369	FP21	K31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Forged pipe
A/SA-369	FP5	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Forged pipe
A/SA-369	FP9	K90941	60 (415)	5B	1	102	5.4	9Cr-1Mo	Forged pipe
A/SA-369	FP91	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Forged pipe
A/SA-369	FP92	K92460	90 (620)	15E	1	102	6.4	9Cr-2W	Forged pipe
A/SA-372	А	K03002	60 (415)	1	1	101	11.1	C-Si	Forgings
A/SA-372	В	K04001	75 (515)	1	2	101	11.1	C-Mn-Si	Forgings
A/SA-376	16-8-2H	S16800	75 (515)	8	1	102	8.1	16Cr-8Ni-2Mo	Smls. pipe
A/SA-376	TP304	S30400	70 (485)	8	1	102	8.1	18Cr–8Ni	Smls. pipe ≥ 0.812 in. (21 mm)
A/SA-376	TP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. pipe < 0.812 in. (21 mm)
A/SA-376	TP304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Smls. pipe
A/SA-376	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Smls. pipe
A/SA-376	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Smls. pipe
A/SA-376	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. pipe
A/SA-376	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Smls. pipe
A/SA-376	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. pipe
A/SA-376	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Smls. pipe
A/SA-376	S31725	S31725	75 (515)	8	4	102	8.1	19Cr-15Ni-4Mo	Smls. pipe
A/SA-376	S31726	S31726	80 (550)	8	4	102	8.1	19Cr–15.5Ni–4Mo	Smls. pipe
A/SA-376	TP321	S32100	70 (485)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)
A/SA-376	TP321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum Specified	Wel	ding	Brazing							
Spec No.	Tumo on Crodo	UNS No.	Tensile, ksi	P-No.	Group No.	P-No.	ISO 15608	Nominal Composition	Product Form				
Spec. No.	Type or Grade	UNS NO.	(MPa)	P-NO.		rrous (Con	Group	Nominal Composition	Product Form				
					re		i uj						
A/SA-376	TP321H	S32109	70 (485)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe > $\frac{3}{8}$ in. (10 mm)				
A/SA-376	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Smls. pipe $\leq \frac{3}{8}$ in. (10 mm)				
A/SA-376	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Smls. pipe				
A/SA-376	TP347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. pipe				
A/SA-376	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. pipe				
A/SA-376	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Smls. pipe				
A381	Y35		60 (415)	1	1	101	11.1	С	Welded pipe				
A381	Y42		60 (415)	1	1	101	11.1	С	Welded pipe				
A381	Y48		62 (425)	1	1	101	11.1	С	Welded pipe				
A381	Y46		63 (435)	1	1	101	11.1	С	Welded pipe				
A381	Y50		64 (440)	1	1	101	11.1	С	Welded pipe				
A381	Y52		66 (455)	1	2	101	11.1	С	Welded pipe				
A381	Y56		71 (490)	1	2	101	11.1	С	Welded pipe				
A381	Y60		75 (515)	1	2	101	11.1	С	Welded pipe				
A/SA-387	12, Cl. 1	K11757	55 (380)	4	1	102	5.1	1Cr-0.5Mo	Plate				
, A/SA-387	12, Cl. 2	K11757	65 (450)	4	1	102	5.1	1Cr-0.5Mo	Plate				
A/SA-387	11, Cl. 1	K11789	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Plate				
A/SA-387	11, Cl. 2	K11789	75 (515)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Plate				
A/SA-387	2, Cl. 1	K12143	55 (380)	3	1	101	4.2	0.5Cr-0.5Mo	Plate				
A/SA-387	2, Cl. 2	K12143	70 (485)	3	2	101	4.2	0.5Cr-0.5Mo	Plate				
A/SA-387	22, Cl. 1	K21590	60 (415)	5A	1	102	5.2	2.25Cr-1Mo	Plate				
A/SA-387	22, Cl. 2	K21590	75 (515)	5A	1	102	5.2	2.25Cr-1Mo	Plate				
A/SA-387	21, Cl. 1	K31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Plate				
A/SA-387	21, Cl. 2	K31545	75 (515)	5A	1	102	5.2	3Cr-1Mo	Plate				
A/SA-387	5, Cl. 1	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Plate				
A/SA-387	5, Cl. 2	K41545	75 (515)	5B	1	102	5.3	5Cr-0.5Mo	Plate				
A/SA-387	9, Cl. 1	K90941	60 (415)	5B	1	102	5.4	9Cr-1Mo	Plate				
A/SA-387	9, Cl. 2	K90941	75 (515)	5B	1	102	5.4	9Cr-1Mo	Plate				
A/SA-387	91, Cl. 2	K90901	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Plate				
A/SA-403	WPXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Wrought piping fittings				
A/SA-403	WP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Wrought piping fittings				
A/SA-403	WP304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Wrought piping fittings				
A/SA-403	WP304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Wrought piping fittings				

			Groupir	Ferrous,	ble QW/Q Nonferrou Metals for	s P-Numb	ers tion (Cont'd)	
			Minimum	Welding	Brazing			
Succ. No.	Tumo on Crodo	UNC No.	Specified Tensile, ksi	Gro P-No. N	· I	ISO 15608		Product Form
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No. N		Group	Nominal Composition	Product Form
					Ferrous (Co	,		
A/SA-403	WP304N	S30451	80 (550)	8		8.1	18Cr-8Ni-N	Wrought piping fittings
A/SA-403	WP304LN	S30453	75 (515)	8		8.1	18Cr–8Ni–N	Wrought piping fittings
A/SA-403	WP309	S30900	75 (515)	8 2	102	8.2	23Cr-12Ni	Wrought piping fittings
A/SA-403	WP310S	S31008	75 (515)	8 2	102	8.2	25Cr-20Ni	Wrought piping fittings
A/SA-403	WP316	S31600	75 (515)	8 3	102	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
A/SA-403	WP316L	S31603	70 (485)	8	102	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
A/SA-403		S31254	94 (650)	8 4	102	8.2	20Cr-18Ni-6Mo	Wrought piping fittings
A/SA-403	WP316H	S31609	75 (515)	8	102	8.1	16Cr-12Ni-2Mo	Wrought piping fittings
A/SA-403	WP316N	S31651	80 (550)	8	102	8.1	16Cr-12Ni-2Mo-N	Wrought piping fittings
A/SA-403	WP316LN	S31653	75 (515)	8		8.1	16Cr-12Ni-2Mo-N	Wrought piping fittings
A/SA-403	WP317	S31700	75 (515)	8		8.1	18Cr-13Ni-3Mo	Wrought piping fittings
A/SA-403	WP317L	S31703	75 (515)	8		8.1	18Cr-13Ni-3Mo	Wrought piping fittings
A/SA-403		S32053	93 (640)	8 4		8.2	23Cr-25Ni-5.5Mo-N	Wrought piping fittings
A/SA-403	 WP321	S32100	75 (515)	8 1		8.1	18Cr-10Ni-Ti	Wrought piping fittings
A/SA-403	WP321H	S32109	75 (515)	8	102	8.1	18Cr-10Ni-Ti	Wrought piping fittings
A/SA-403	S34565	S34565	115 (795)	8 4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Wrought piping fittings
A/SA-403	WP347	S34700	75 (515)	8	102	8.1	18Cr–10Ni–Cb	Wrought piping fittings
A/SA-403	WP347H	S34709	75 (515)	8	102	8.1	18Cr–10Ni–Cb	Wrought piping fittings
A/SA-403	WP348	S34800	75 (515)	8	102	8.1	18Cr–10Ni–Cb	Wrought piping fittings
A/SA-403	WP348H	S34809	75 (515)	8		8.1	18Cr-10Ni-Cb	Wrought piping fittings
A/SA-409	TP304	S30400	75 (515)	8	102	8.1	18Cr–8Ni	Welded pipe
, A/SA-409	TP304L	S30403	70 (485)	8	102	8.1	18Cr–8Ni	Welded pipe
A/SA-409	S30815	S30815	87 (600)	8 2		8.2	21Cr-11Ni-N	Welded pipe
, A/SA-409	TP309S	S30908	75 (515)	8 2		8.2	23Cr-12Ni	Welded pipe
A/SA-409	TP309Cb	S30940	75 (515)	8 2	102	8.2	23Cr-12Ni-Cb	Welded pipe
A/SA-409	TP310S	S31008	75 (515)	8 2	102	8.2	25Cr-20Ni	Welded pipe
, A/SA-409	TP310Cb	S31040	75 (515)	8 2		8.2	25Cr-20Ni-Cb	Welded pipe
, A/SA-409	S31254	S31254	94 (650)	8 4	102	8.2	20Cr-18Ni-6Mo	Welded pipe
, A/SA-409	TP316	S31600	75 (515)	8	102	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-409	TP316L	S31603	70 (485)	8	102	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-409	TP317	S31700	75 (515)	8	102	8.1	18Cr-13Ni-3Mo	Welded pipe
A/SA-409	S31725	S31725	75 (515)	8 4		8.1	19Cr-15Ni-4Mo	Welded pipe
A/SA-409	S31726	S31726	80 (550)	8 4		8.1	19Cr-15.5Ni-4Mo	Welded pipe

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified	Wel	ding	Brazing	-		
			Tensile, ksi		Group		ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	rrous (Con	t'd)		
A/SA-409		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Welded pipe
A/SA-409	TP321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Welded pipe
A/SA-409	TP347	S34700	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Welded pipe
A/SA-409	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Welded pipe
A/SA-409	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded pipe
A/SA-414	А	K01501	45 (310)	1	1	101	1.1	С	Sheet
A/SA-414	В	K02201	50 (345)	1	1	101	1.1	С	Sheet
A/SA-414	С	K02503	55 (380)	1	1	101	1.1	C	Sheet
A/SA-414	D	K02505	60 (415)	1	1	101	1.1	C–Mn	Sheet
A/SA-414	Е	K02704	65 (450)	1	1	101	11.1	C-Mn	Sheet
A/SA-414	F	K03102	70 (485)	1	2	101	11.1	C-Mn	Sheet
A/SA-414	G	K03103	75 (515)	1	2	101	11.1	C-Mn	Sheet
A/SA-420	WPL6	K03006	60 (415)	1	1	101	11.1	C-Mn-Si	Piping fitting
A/SA-420	WPL9	K22035	63 (435)	9A	1	101	9.1	2Ni-1Cu	Piping fitting
A/SA-420	WPL3	K31918	65 (450)	9B	1	101	9.2	3.5Ni	Piping fitting
A/SA-420	WPL8	K81340	100 (690)	11A	1	101	9.3	9Ni	Piping fitting
A/SA-423	1	K11535	60 (415)	4	2	102	5.1	0.75Cr-0.5Ni-Cu	Smls. & welded tube
A/SA-423	2	K11540	60 (415)	4	2	102	5.1	0.75Ni-0.5Cu-Mo	Smls. & welded tube
A/SA-426	CP15	J11522	60 (415)	3	1	101	1.1	C-0.5Mo-Si	Centrifugal cast pipe
A/SA-426	CP2	J11547	60 (415)	3	1	101	4.2	0.5Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP12	J11562	60 (415)	4	1	102	5.1	1Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP11	J12072	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP1	J12521	65 (450)	3	1	101	1.1	C-0.5Mo	Centrifugal cast pipe
A/SA-426	CP22	J21890	70 (485)	5A	1	102	5.2	2.25Cr-1Mo	Centrifugal cast pipe
A/SA-426	CP21	J31545	60 (415)	5A	1	102	5.2	3Cr-1Mo	Centrifugal cast pipe
A/SA-426	CP5	J42045	90 (620)	5B	1	102	5.3	5Cr-0.5Mo	Centrifugal cast pipe
A/SA-426	CP5b	J51545	60 (415)	5B	1	102	5.3	5Cr-1.5Si-0.5Mo	Centrifugal cast pipe
A/SA-426	CP9	J82090	90 (620)	5B	1	102	5.4	9Cr-1Mo	Centrifugal cast pipe
A/SA-426	CPCA15	J91150	90 (620)	6	3	102	7.2	13Cr	Centrifugal cast pipe
A/SA-451	CPF8	J92600	70 (485)	8	1	102	8.1	18Cr–8Ni	Centrifugal cast pipe
A/SA-451	CPF8A	192600	77 (530)	8	1	102	8.1	18Cr-8Ni	Centrifugal cast pipe
A/SA-451	CPF8C	J92710	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Centrifugal cast pipe
A/SA-451	CPF8M	192900	70 (485)	8	1	102	8.1	18Cr-12Ni-2Mo	Centrifugal cast pipe

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified Tensile, ksi	We	lding Group	Brazing	ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	errous (Con	t'd)		
A/SA-451	CPF3	J92500	70 (485)	8	1	102	8.1	18Cr-8Ni	Centrifugal cast pipe
A/SA-451	CPF3M	192800	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Centrifugal cast pipe
A/SA-451	CPF3A	J92500	77 (530)	8	1	102	8.1	18Cr-8Ni	Centrifugal cast pipe
A/SA-451	CPH8	J93400	65 (450)	8	2	102	8.2	25Cr-12Ni	Centrifugal cast pipe
A/SA-451	CPH20	J93402	70 (485)	8	2	102	8.2	25Cr-12Ni	Centrifugal cast pipe
A/SA-451	CPK20	J94202	65 (450)	8	2	102	8.2	25Cr-20Ni	Centrifugal cast pipe
A/SA-451	CPF10MC	J92971	70 (485)	8	1	102	8.1	16Cr-14Ni-2Mo	Centrifugal cast pipe
A/SA-451	CPE20N	J92802	80 (550)	8	2	102	8.2	25Cr-8Ni-N	Centrifugal cast pipe
A/SA-455		K03300	70 (485)	1	2	101	11.2	C-Mn-Si	Plate > 0.580 in. – 0.750 in. (15 mm – 19 mm)
A/SA-455		K03300	73 (505)	1	2	101	11.2	C-Mn-Si	Plate > 0.375 in. – 0.580 in. (10 mm – 15 mm)
A/SA-455		K03300	75 (515)	1	2	101	11.2	C-Mn-Si	Plate, up to 0.375 in. (10 mm)
A479	904L	N08904	71 (490)	45		111	8.2	44Fe-25Ni-21Cr-Mo	Bars & shapes
A/SA-479	XM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Bars & shapes
A/SA-479	XM-17	S21600	90 (620)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Bars & shapes
A/SA-479	XM-18	S21603	90 (620)	8	3	102	8.3	19Cr-8Mn-6Ni-Mo-N	Bars & shapes
A/SA-479	S21800	S21800	95 (655)	8	3	102	8.1	18Cr-8Ni-4Si-N	Bars & shapes
A/SA-479	XM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Bars & shapes
A/SA-479	XM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Bars & shapes
A/SA-479	302	S30200	75 (515)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
A/SA-479	304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
A/SA-479	304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
A/SA-479	304H	S30409	75 (515)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
A/SA-479	304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Bars & shapes
A/SA-479	304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Bars & shapes
A/SA-479	S30600	S30600	78 (540)	8	1	102	8.1	18Cr-15Ni-4Si	Bars & shapes
A/SA-479	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Bars & shapes
A/SA-479	309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Bars & shapes
A/SA-479	309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Bars & shapes
A/SA-479	310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Bars & shapes

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified	We	lding	Brazing	-		
	m		Tensile, ksi	DN	Group	D.V.	ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
						rrous (Con			
A/SA-479	310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Bars & shapes
A/SA-479	S31254	S31254	95 (655)	8	4	102	8.2	20Cr-18Ni-6Mo	Bars & shapes
A/SA-479	316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Bars & shapes
A/SA-479	316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Bars & shapes
A/SA-479	316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Bars & shapes
A/SA-479	316Ti	S31635	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Ti	Bars & shapes
A/SA-479	316Cb	S31640	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-Cb	Bars & shapes
A/SA-479	316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Bars & shapes
A/SA-479	316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Bars & shapes
A/SA-479	\$31725	S31725	75 (515)	8	4	102	8.1	19Cr–15Ni–4Mo	Bars & shapes
A/SA-479	S31726	S31726	80 (550)	8	4	102	8.1	19Cr-15.5Ni-4Mo	Bars & shapes
A/SA-479		S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Bars & shapes
A/SA-479		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Bars & shapes
A/SA-479		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Bars & shapes
A/SA-479	321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Bars & shapes
A/SA-479		S32101	94 (650)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Bars & shapes
A/SA-479	321H	S32109	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Bars & shapes
A/SA-479	2205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Bars & shapes
, A/SA-479	S32550	S32550	110 (760)	10H	1	102	10.2	25Cr-5Ni-3Mo-2Cu	Bars & shapes
, A/SA-479	S32615	S32615	80 (550)	8	1	102	8.1	18Cr–20Ni–5.5Si	Bars & shapes
A/SA-479	S32750	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Bars & shapes
A/SA-479	S32906	S32906	109 (750)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Bars & shapes
A/SA-479	S34565	S34565	115 (795)	8	4	102	8.3	24Cr-17Ni-6Mn-4.5Mo-N	Bars & shapes
A/SA-479	347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Bars & shapes
A/SA-479	347H	S34709	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Bars & shapes
A/SA-479	348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Bars & shapes
A/SA-479	348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Bars & shapes
A/SA-479	403	S40300	70 (485)	6	1	102	7.1	12Cr	Bars & shapes
A /CA 470	405	640500		-	4	100	- 4	120- 141	- Deurs (), els en els
A/SA-479	405	S40500	60 (415)	7	1	102	7.1	12Cr-1Al	Bars & shapes
A/SA-479	410	S41000	70 (485)	6	1	102	7.2	13Cr	Bars & shapes
A/SA-479	414	S41400	115 (795)	6	4	102	7.2	12.5Cr-2Ni-Si	Bars & shapes
A/SA-479	S41500	S41500	115 (795)	6 7	4	102	7.2	13Cr-4.5Ni-Mo	Bars & shapes
A/SA-479	430	S43000	70 (485)	/	2	102	7.1	17Cr	Bars & shapes
A/SA-479	439	S43035	70 (485)	7	2	102	7.1	18Cr-Ti	Bars & shapes

2013 SECTION IX

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u>spec. No.</u>		0113 110.	(Mra)	F-NO.	-	rrous (Con		Nominal Composition	Flouter Form
A/SA-479	S44400	S44400	60 (415)	7	2	102	7.1	18Cr-2Mo	Bars & shapes
A/SA-479	XM-27	S44627	65 (450)	, 10I	1	102	7.1	27Cr-1Mo	Bars & shapes
A/SA-479	S44700	S44700	70 (485)	101	1	102	7.1	29Cr-4Mo	Bars & shapes
A/SA-479	S44800	S44800	70 (485)	10K	1	102	7.1	29Cr-4Mo-2Ni	Bars & shapes
A/SA-487	Gr. 16, Cl. A	J31200	70 (485)	1	2	101	1.1	Low C-Mn-Ni	Castings
A/SA-487	Gr. 1, Cl. A	J13002	85 (585)	10A	1	101	2.1	Mn-V	Castings
A/SA-487	Gr. 1, Cl. B	J13002	90 (620)	10A	1	101	2.1	Mn-V	Castings
A/SA-487	Gr. 2, Cl. A	J13005	85 (585)	3	3	101	2.1	Mn-0.25Mo-V	Castings
A/SA-487	Gr. 2, Cl. B	J13005	90 (620)	3	3	101	2.1	Mn-0.25Mo-V	Castings
A/SA-487	Gr. 4, Cl. A	J13047	90 (620)	3	3	101	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	Gr. 4, Cl. B	J13047	105 (725)	11A	3	101	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	Gr. 4, Cl. E	J13047	115 (795)	11A	3	101	3.1	0.5Ni-0.5Cr-0.25Mo-V	Castings
A/SA-487	Gr. 8, Cl. A	J22091	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Castings
A/SA-487	Gr. 8, Cl. C	J22091	100 (690)	5C	4	102	5.2	2.25Cr-1Mo	Castings
A/SA-487	Gr. 8, Cl. B	J22091	105 (725)	5C	4	102	5.2	2.25Cr-1Mo	Castings
A/SA-487	CA15M Cl. A	J91151	90 (620)	6	3	102	7.2	13Cr-Mo	Castings
A/SA-487	CA15 Cl. C	J91150	90 (620)	6	3	102	7.2	13Cr	Castings
A/SA-487	CA15 Cl. B	J91171	90 (620)	6	3	102	7.2	13Cr	Castings
A/SA-487	CA15 Cl. D	J91171	100 (690)	6	3	102	7.2	13Cr	Castings
A/SA-487	CA6NM Cl. B	J91540	100 (690)	6	4	102	7.2	13Cr-4Ni	Castings
A/SA-487	CA6NM Cl. A	J91540	110 (760)	6	4	102	7.2	13Cr-4Ni	Castings
A/SA-494	M35-2	N04020	65 (450)	42		110	42	67Ni-30Cu-Fe-Si	Castings
A/SA-494	CY40	N06040	70 (485)	43		111	43	72Ni-15Cr-8Fe-Si	Castings
A/SA-494	CU5MCuC	N08826	75 (515)	45		111	45	42Ni-21.5Cr-3Mo-2.3Cu	Castings
A/SA-494	M30C	N24130	65 (450)	42		110	42	67Ni-30Cu-2Fe-Cb	Castings
A/SA-494	M35-1	N24135	65 (450)	42		110	42	67Ni-30Cu-2Fe-Cb	Castings
A/SA-494	CX2MW	N26022	80 (550)	43		111	44	59Ni-22Cr-14Mo-4Fe-3W	Castings
A/SA-494	CW2M	N26455	72 (495)	43		111	43	66Ni-16Mo-16Cr-Fe-W	Castings
A/SA-494	CW6MC	N26625	70 (485)	43		111	43	60Ni-21.5Cr-9Mo-4Cb-Fe	Castings
A/SA-494 A/SA-494	N7M CW6M	N30007 N30107	76 (525) 72 (495)	44 44		112 112	44 44	65Ni–31.5Mo–1.5Fe–Cr 56Ni–19Mo–18Cr–2Fe	Castings Castings
									C C
A500	С	K02705	62 (425)	1	1	101	1.2	C	Smls. & welded tube
A500	В	K03000	58 (400)	1	1	101	11.1	С	Smls. & welded tube

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum Specified	We	lding	Brazing							
Spec. No.	Type or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form				
<u></u>			(···· v)	1		rrous (Con	· ·						
A501 A501	A B	K03000 K03000	58 (400) 70 (485)	1 1	1 2	101 101	11.1 1.2	C C	Smls. & welded tube Smls. & welded tube				
A501		K03000	70 (485)	1	Z	101	1.2	L	Smis. & weided tube				
A/SA-508	3, Cl. 1	K12042	80 (550)	3	3	101	3.1	0.75Ni-0.5Mo-Cr-V	Forgings				
A/SA-508	3, Cl. 2	K12042	90 (620)	3	3	102	3.1	0.75Ni-0.5Mo-Cr-V	Forgings				
A/SA-508	2, Cl. 1	K12766	80 (550)	3	3	101	3.1	0.75Ni-0.5Mo-0.3Cr-V	Forgings				
A/SA-508	2, Cl. 2	K12766	90 (620)	3	3	101	3.1	0.75Ni-0.5Mo-0.3Cr-V	Forgings				
A/SA-508	1	K13502	70 (485)	1	2	101	11.1	С	Forgings				
A/SA-508	1A	K13502	70 (485)	1	2	101	11.1	С	Forgings				
, A/SA-508	22, Cl. 3	K21590	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Forgings				
A/SA-508	4N, Cl. 3	K22375	90 (620)	3	3	102	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings				
A/SA-508	4N, Cl. 1	K22375	105 (725)	11A	5	102	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings				
A/SA-508	4N, Cl. 2	K22375	115 (795)	11B	10	102	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings				
A/SA-508	3V	K31830	85 (585)	5C	1	102	6.2	3Cr-1Mo-V-Ti-B	Forgings				
A/SA-508	3VCb	K31390	85 (585)	5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings				
A/SA-508	5, Cl. 1	K42365	105 (725)	11A	5	102	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings				
A/SA-508	5, Cl. 2	K42365	115 (795)	11B	10	102	3.1	3.5Ni-1.75Cr-0.5Mo-V	Forgings				
A/SA-513	1008	G10080	42 (290)	1	1	101	1.1	С	Tube				
A/SA-513	1010	G10100	45 (310)	1	1	101	1.1	С	Tube				
A/SA-513	1015	G10150	48 (330)	1	1	101	1.1	С	Tube				
A513	1015 CW	G10150		1	1	101	1.1	С	Tube				
A513	1020 CW	G10200		1	2	101	1.1	С	Tube				
A513	1025 CW	G10250		1	2	101	1.2	С	Tube				
A513	1026 CW	G10260		1	3	101	11.1	С	Tube				
A514	F	K11576	110 (760)	11B	3	101	3.1	0.75Ni-0.5Cr-0.5Mo-V	Plate, $2\frac{1}{2}$ in. (64 mm) max.				
A514	В	K11630	110 (760)	11B	4	101	3.1	0.5Cr-0.2Mo-V	Plate, $1\frac{1}{4}$ in. (32 mm) max.				
A514	А	K11856	110 (760)	11B	1	101	3.1	0.5Cr-0.25Mo-Si	Plate, $1^{1}/_{4}$ in. (32 mm) max.				
A514	Е	K21604	100 (690)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Plate > $2\frac{1}{2}$ in. – 6 in. (64 mm – 152 mm), incl.				
A514	Е	K21604	110 (760)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Plate, $2\frac{1}{2}$ in. (64 mm) max.				
A514	Р	K21650	100 (690)	11B	8	102	3.1	1.25Ni-1Cr-0.5Mo	Plate > 2 ¹ / ₂ in. – 6 in. (64 mm – 152 mm), incl.				
A514	Р	K21650	110 (760)	11B	8	102	3.1	1.25Ni-1Cr-0.5Mo	Plate, $2^{1}/_{2}$ in. (64 mm) max.				

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	Wel	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
					Fe	rrous (Con	t'd)		
A514	Q		100 (690)	11B	9	102	3.1	1.3Ni-1.3Cr-0.5Mo-V	Plate > 2 ¹ / ₂ in. – 6 in. (64 mm – 152 mm), incl.
A514	Q		110 (760)	11B	9	102	3.1	1.3Ni-1.3Cr-0.5Mo-V	Plate, $2\frac{1}{2}$ in. (64 mm) max.
A/SA-515	60	K02401	60 (415)	1	1	101	1.1	С	Plate \leq 1 in. (25 mm)
A/SA-515	60		60 (415)	1	1	101	11.1	C–Si	Plate > 1 in. (25 mm)
A/SA-515	65	K02800	65 (450)	1	1	101	11.1	C–Si	Plate
A/SA-515	70	K03101	70 (485)	1	2	101	11.1	C-Si	Plate
A/SA-516	55	K01800	55 (380)	1	1	101	1.1	C–Si	Plate
A/SA-516	60	K02100	60 (415)	1	1	101	1.1	C-Mn-Si	Plate
A/SA-516	65	K02403	65 (450)	1	1	101	1.1	C-Mn-Si	Plate
A/SA-516	70	K02700	70 (485)	1	2	101	11.1	C-Mn-Si	Plate
A/SA-517	F	K11576	115 (795)	11B	3	101	3.1	0.75Ni-0.5Cr-0.5Mo-V	Plate $\le 2^{1/2}$ in. (64 mm)
, A/SA-517	В	K11630	115 (795)	11B	4	101	3.1	0.5Cr-0.2Mo-V	Plate ≤ $1^{1/4}$ in. (32 mm)
A/SA-517	А	K11856	115 (795)	11B	1	101	3.1	0.5Cr-0.25Mo-Si	Plate $\leq 1^{1}/_{4}$ in. (32 mm)
A/SA-517	Е	K21604	105 (725)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Plate > $2\frac{1}{2}$ in 6 in. (64 mm - 152 mm), incl.
A/SA-517	Е	K21604	115 (795)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Plate ≤ $2^{1}/_{2}$ in. (64 mm)
A/SA-517	Р	K21650	105 (725)	11B	8	102	3.1	1.25Ni-1Cr-0.5Mo	Plate > $2\frac{1}{2}$ in 4 in. (64 mm - 102 mm), incl.
A/SA-517	Р	K21650	115 (795)	11B	8	102	3.1	1.25Ni-1Cr-0.5Mo	Plate $\leq 2^{1}/_{2}$ in. (64 mm)
A519	1018 HR	G10180		1	1	101	1.1	С	Tube
A519	1018 CW	G10180		1	2	101	1.1	С	Tube
A519	1020 HR	G10200		1	1	101	1.1	С	Tube
A519	1020 CW	G10200		1	2	101	1.1	С	Tube
A519	1022 HR	G10220		1	1	101	1.1	С	Tube
A519	1022 CW	G10220		1	2	101	1.1	С	Tube
A519	1025 HR	G10250		1	1	101	1.1	С	Tube
A519	1025 CW	G10250		1	2	101	1.2	С	Tube
A519	1026 HR	G10260		1	1	101	11.1	С	Tube
A519	1026 CW	G10260		1	2	101	11.1	С	Tube
A/SA-522	Type II	K71340	100 (690)	11A	1	101	9.3	8Ni	Forgings

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	We	lding	Brazing							
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form				
					Fe	rrous (Con	t'd)	•					
A/SA-522	Туре І	K81340	100 (690)	11A	1	101	9.3	9Ni	Forgings				
A/SA-524	II	K02104	55 (380)	1	1	101	1.1	C-Mn-Si	Smls. pipe				
A/SA-524	Ι	K02104	60 (415)	1	1	101	1.1	C-Mn-Si	Smls. pipe				
A/SA-533	Type A, Cl. 1	K12521	80 (550)	3	3	101	3.1	Mn-0.5Mo	Plate				
A/SA-533	Type A, Cl. 2	K12521	90 (620)	3	3	101	3.1	Mn-0.5Mo	Plate				
A/SA-533	Type A, Cl. 3	K12521	100 (690)	11A	4	101	3.1	Mn-0.5Mo	Plate				
A/SA-533	Type D, Cl. 1	K12529	80 (550)	3	3	101	3.1	Mn-0.5Mo-0.25Ni	Plate				
A/SA-533	Type D, Cl. 2	K12529	90 (620)	3	3	101	3.1	Mn-0.5Mo-0.25Ni	Plate				
A/SA-533	Type D, Cl. 3	K12529	100 (690)	11A	4	101	3.1	Mn-0.5Mo-0.25Ni	Plate				
A/SA-533	Type B, Cl. 1	K12539	80 (550)	3	3	101	3.1	Mn-0.5Mo-0.5Ni	Plate				
A/SA-533	Type B, Cl. 2	K12539	90 (620)	3	3	101	3.1	Mn-0.5Mo-0.5Ni	Plate				
A/SA-533	Type B, Cl. 3	K12539	100 (690)	11A	4	101	3.2	Mn-0.5Mo-0.5Ni	Plate				
A/SA-533	Type C, Cl. 1	K12554	80 (550)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Plate				
A/SA-533	Type C, Cl. 2	K12554	90 (620)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Plate				
A/SA-533	Type E, Cl. 1	K12554	80 (550)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Plate				
A/SA-533	Type E, Cl. 2	K12554	90 (620)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Plate				
A/SA-533	Type C, Cl. 3	K12554	100 (690)	11A	4	101	3.2	Mn-0.5Mo-0.75Ni	Plate				
A/SA-537	Cl. 1	K12437	65 (450)	1	2	101	1.2	C-Mn-Si	Plate > 2 ¹ / ₂ in. – 4 in. (64 mm – 102 mm), incl.				
A/SA-537	Cl. 1	K12437	70 (485)	1	2	101	1.2	C-Mn-Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under				
A/SA-537	Cl. 2	K12437	70 (485)	1	3	101	1.2	C-Mn-Si	Plate > 4 in. – 6 in. (102 mm – 152 mm), incl.				
A/SA-537	Cl. 2	K12437	75 (515)	1	3	101	1.2	C-Mn-Si	Plate > 2 ¹ / ₂ in. – 4 in. (64 mm – 102 mm), incl.				
A/SA-537	Cl. 2	K12437	80 (550)	1	3	101	1.2	C-Mn-Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under				
A/SA-537	Cl. 3	K12437	70 (485)	1	3	101	1.2	C-Mn-Si	Plate > 4 in. (102 mm)				
A/SA-537	Cl. 3	K12437	75 (515)	1	3	101	1.2	C-Mn-Si	Plate, 2½ in. < <i>t</i> ≤ 4 in. (64 mm) < <i>t</i> ≤ 102 mm)				
A/SA-537	Cl. 3	K12437	80 (550)	1	3	101	1.2	C-Mn-Si	Plate ≤ $2^{1}/_{2}$ in. (64 mm)				
A/SA-541	1	K03506	70 (485)	1	2	101	11.1	C–Si	Forgings				
A/SA-541	1A	K03020	70 (485)	1	2	101	11.1	C-Mn-Si	Forgings				
A/SA-541	11, Cl. 4	K11572	80 (550)	4	1	102	5.2	1.25Cr-0.5Mo-Si	Forgings				
A/SA-541	3, Cl. 1	K12045	80 (550)	3	3	101	4.1	0.5Ni-0.5Mo-V	Forgings				

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	Wel	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
spec. No.	Type of drade	0113 110.	(Mi a)	1-10.	-	rrous (Con		Nominal composition	Trouter Form
A/SA-541	3, Cl. 2	K12045	90 (620)	3	3	101	4.1	0.5Ni-0.5Mo-V	Forgings
									0.0
A/SA-541	2, Cl. 1	K12765	80 (550)	3	3	101	4.2	0.75Ni-0.5Mo-0.3Cr-V	Forgings
A/SA-541	2, Cl. 2	K12765	90 (620)	3	3	101	4.2	0.75Ni-0.5Mo-0.3Cr-V	Forgings
A/SA-541	22, Cl. 3	K21390	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Forgings
A/SA-541	22, Cl. 4	K21390	105 (725)	5C	4	102	5.2	2.25Cr-1Mo	Forgings
A/SA-541	22, Cl. 5	K21390	115 (795)	5C	5	102	5.2	2.25Cr-1Mo	Forgings
A/SA-541	3V	K31830	85 (585)	5C	1	102	6.2	3Cr-1Mo-V-Ti-B	Forgings
A/SA-541	3VCb	K31390	85 (585)	5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Forgings
A/SA-541	22V	K31835	85 (585)	5C	1	102	5.2	2.25Cr-1Mo-V	Forgings
A/SA-542	B, Cl. 4a	K21590	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	B, Cl. 4	K21590	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	A, Cl. 4	K21590	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	A, Cl. 4a	K21590	85 (585)	5C	1	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	A, Cl. 3	K21590	95 (655)	5C	3	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	B, Cl. 3	K21590	95 (655)	5C	3	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	A, Cl. 1	K21590	105 (725)	5C	4	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	B, Cl. 1	K21590	105 (725)	5C	4	102	5.2	2.25Cr-1Mo	Plate
, A/SA-542	B, Cl. 2	K21590	115 (795)	5C	5	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	A, Cl. 2	K21590	115 (795)	5C	5	102	5.2	2.25Cr-1Mo	Plate
A/SA-542	C, Cl. 4	K31830	85 (585)	5C	1	102	6.2	3Cr-1Mo-V-Ti-B	Plate
A/SA-542	C, Cl. 4a	K31830	85 (585)	5C	1	102	6.2	3Cr–1Mo–V–Ti–B	Plate
A/SA-542	C, Cl. 3	K31830	95 (655)	5C	3	102	6.2	3Cr-1Mo-V-Ti-B	Plate
A/SA-542	C, Cl. 1	K31830	105 (725)	5C	4	102	6.2	3Cr-1Mo-V-Ti-B	Plate
A/SA-542	C, Cl. 2	K31830	115 (795)	5C	5	102	6.2	3Cr-1Mo-V-Ti-B	Plate
A/SA-542	D, Cl. 4a	K31835	85 (585)	5C	1	102	6.3	2.25Cr-1Mo-V	Plate
A/SA-542	E, Cl. 4a	K31390	85 (585)	5C 5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Plate
, A/SA-543	B, Cl. 3	K42339	90 (620)	3	3	102	3.1	3Ni-1.75Cr-0.5Mo	Plate
A/SA-543 A/SA-543	B, Cl. 3 B, Cl. 1	K42339 K42339	90 (620) 105 (725)		3 5	102	3.1 3.1		Plate
,	B, Cl. 1 B, Cl. 2	K42339 K42339	105 (725) 115 (795)	11A 11B	5 10	102 102	3.1 3.1	3Ni–1.75Cr–0.5Mo 3Ni–1.75Cr–0.5Mo	Plate Plate
A/SA-543	B, Cl. 2 C, Cl. 3		. ,	3	10 3	102	3.1 3.1		Plate
A/SA-543	,		90 (620) 105 (725)		3 5			2.75Ni-1.5Cr-0.5Mo	
A/SA-543 A/SA-543	C, Cl. 1 C, Cl. 2		105 (725) 115 (795)	11A 11B	5 10	102 102	3.1 3.1	2.75Ni-1.5Cr-0.5Mo 2.75Ni-1.5Cr-0.5Mo	Plate Plate
r/3r-343	G, GI. Z		113 [/33]	11D	10	102	3.1	2.7 3141-1.301-0.31410	r late
A/SA-553	II	K71340	100 (690)	11A	1	101	9.3	8Ni	Plate

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
					Fe	errous (Con	t'd)		
A/SA-553	Ι	K81340	100 (690)	11A	1	101	9.3	9Ni	Plate
A/SA-556	A2	K01807	47 (325)	1	1	101	1.1	С	Smls. tube
A/SA-556	B2	K02707	60 (415)	1	1	101	11.1	C–Si	Smls. tube
A/SA-556	C2	K03006	70 (485)	1	2	101	11.1	C-Mn-Si	Smls. tube
A/SA-557	A2	K01807	47 (325)	1	1	101	1.1	С	E.R.W. tube
A/SA-557	B2	K03007	60 (415)	1	1	101	11.1	C	E.R.W. tube
A/SA-557	C2	K03505	70 (485)	1	2	101	11.1	C-Mn	E.R.W. tube
	62								
A/SA-562		K11224	55 (380)	1	1	101	1.1	C-Mn-Ti	Plate
A/SA-572	42		60 (415)	1	1	101	1.2	C-Mn-Si	Plate & shapes
A/SA-572	50		65 (450)	1	1	101	1.2	C-Mn-Si	Plate & shapes
A/SA-572	60		75 (515)	1	2	101	11.1	C-Mn-Si	Plate & shapes
A573	58		58 (400)	1	1	101	11.1	С	Plate
A573	65		65 (450)	1	1	101	11.1	С	Plate
A573	70		70 (485)	1	2	101	11.1	C	Plate
A575	M 1008			1	1	101	1.1	С	Bar
A575	M 1010			1	1	101	1.1	С	Bar
A575	M 1012			1	1	101	1.1	С	Bar
A575	M 1015			1	1	101	1.1	С	Bar
A575	M 1017			1	1	101	1.1	С	Bar
A575	M 1020			1	1	101	11.1	С	Bar
A575	M 1023			1	1	101	11.1	C	Bar
A575	M 1025			1	1	101	11.1	C	Bar
A576	G10080			1	1	101	1.1	С	Bar
A576	G10100			1	1	101	1.1	C	Bar
A576	G10120			1	1	101	1.1	C	Bar
A576	G10120			1	1	101	1.1	C	Bar
A576	G10160			1	1	101	1.1	C	Bar
A576	G10170			1	1	101	1.1	С	Bar
A576	G10170			1	1	101	1.1	C	Bar
A576	G10190			1	1	101	1.1	C	Bar
A576	G10200			1	1	101	1.1	C	Bar
A576	G10210			1	1	101	11.1	C	Bar

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified Tensile, ksi	Wel	ding Group	Brazing	ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	rrous (Con	t'd)	•	
1576	610220			1	1	101	11.1	G	Der
A576 A576	G10220 G10230			1 1	1	101 101	11.1 11.1	C C	Bar Bar
A576 A576	G10250 G10250			1	1	101	11.1	C	Bar
A570	010250			1	1	101	11.1		Dai
A/SA-587		K11500	48 (330)	1	1	101	1.1	С	E.R.W. pipe
A588	А	K11430	63 (435)	3	1	101	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar > 5 in. – 8 in. (125 mm – 200 mm) incl.
A588	А	K11430	67 (460)	3	1	101	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar > 4 in. – 5 in. (100 mm – 125 mm) incl.
A588	А	K11430	70 (485)	3	1	101	1.4	Mn-0.5Cr-0.3Cu-Si-V	Plate & bar \leq 4 in. (100 mm)
A588	А	K11430	70 (485)	3	1	101	1.4	Mn-0.5Cr-0.3Cu-Si-V	Shapes
A588	В	K12043	63 (435)	3	1	101	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar > 5 in 8 in. (125 mm - 200 mm) incl.
A588	В	K12043	67 (460)	3	1	101	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar > 4 in. – 5 in. (100 mm – 125 mm) incl.
A588	В	K12043	70 (485)	3	1	101	1.4	Mn-0.6Cr-0.3Cu-Si-V	Plate & bar ≤ 4 in. (100 mm)
A588	В	K12043	70 (485)	3	1	101	1.4	Mn-0.6Cr-0.3Cu-Si-V	Shapes
A/SA-592	F	K11576	105 (725)	11B	3	101	3.1	0.75Ni-0.5Cr-0.5Mo-V	Forgings, $2\frac{1}{2}$ in. – 4 in. (64 mm – 102 mm), incl.
A/SA-592	F	K11576	115 (795)	11B	3	101	3.1	0.75Ni-0.5Cr-0.5Mo-V	Forgings, $2^{1/2}$ in. (64 mm) & under
A/SA-592	Е	K11695	105 (725)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Forgings, 2 ¹ / ₂ in. – 4 in. (64 mm – 102 mm), incl.
A/SA-592	Е	K11695	115 (795)	11B	2	102	3.1	1.75Cr-0.5Mo-Cu	Forgings, $2\frac{1}{2}$ in. (64 mm) & under
A/SA-592	А	K11856	115 (795)	11B	1	101	3.1	0.5Cr-0.25Mo-Si	Forgings, $1^{1}/_{2}$ in. (38 mm) & under
A/SA-612		K02900	81 (560)	10C	1	101	1.3	C-Mn-Si	Plate > ½ in. – 1 in. (13 mm – 25 mm
A/SA-612		K02900	83 (570)	10C	1	101	1.3	C-Mn-Si	Plate, $\frac{1}{2}$ in. (13 mm) & under
A618	Ia		67 (460)	1	2	101		Mn-Cu-V	Tube > $\frac{3}{4}$ in. – $1\frac{1}{2}$ in. (19 mm – 38 mm
A618	Ia		70 (485)	1	2	101		Mn-Cu-V	Tube $\leq \frac{3}{4}$ in. (19 mm)
A618	Ib	K02601	67 (460)	1	2	101		Mn-Cu-V	Tube > $\frac{3}{4}$ in $1\frac{1}{2}$ in. (19 mm - 38 mm
A618	Ib	K02601	70 (485)	1	2	101		Mn-Cu-V	Tube $\leq \frac{3}{4}$ in. (19 mm)
A618	II	K12609	67 (460)	1	2	101	1.2	Mn-Cu-V	Tube > $\frac{3}{4}$ in. – $1\frac{1}{2}$ in. (19 mm – 38 mm
A618	II	K12609	70 (485)	1	2	101	1.2	Mn-Cu-V	Tube, $\frac{3}{4}$ in. (19 mm) & under
A618	III	K12700	65 (450)	1	1	101	1.2	Mn-V	Tube

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
spec. No.	Type of drade	UNS NO.	(Mr a)	r-no.		rrous (Con	· ·	Nominal Composition	Floudet Form
)		
A633 A633	A C	K01802 K12000	63 (435) 65 (450)	1 1	1 1	101 101	1.1 1.1	Mn-Cb Mn-Cb	Plate & shapes Plate > 2 ¹ / ₂ in 4 in. (64 mm - 102 mm) incl., shapes
A633	С	K12000	70 (485)	1	2	101	1.1	Mn-Cb	Plate to $2\frac{1}{2}$ in. (64 mm), shapes
A633	D	K12037	65 (450)	1	1	101	1.1	C–Mn–Si	Plate > $2^{1/2}$ in 4 in. (64 mm - 102 mm) incl., shapes
A633	D	K12037	70 (485)	1	2	101	1.1	C-Mn-Si	Plate to $2^{1}/_{2}$ in. (64 mm), shapes
A633	Е	K12202	80 (550)	1	3	101	4.1	C-Mn-Si-V	Plate & shapes
A/SA-645	А	K41583	95 (655)	11A	2	101	9.2	5Ni-0.25Mo	Plate
A/SA-656	T3, Gr. 50		60 (345)	1	1	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T3, Gr. 60		70 (415)	1	2	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T3, Gr. 70		80 (485)	1	3	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T3, Gr. 80		90 (550)	1	4	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T7, Gr. 50		60 (345)	1	1	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T7, Gr. 60		70 (415)	1	2	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T7, Gr. 70		80 (485)	1	3	101		C-Mn-Si-V-Cb	Plate
A/SA-656	T7, Gr. 80		90 (550)	1	4	101		C-Mn-Si-V-Cb	Plate
A/SA-660	WCA	J02504	60 (415)	1	1	101	11.1	C-Si	Centrifugal cast pipe
A/SA-660	WCC	J02505	70 (485)	1	2	101	11.1	C-Mn-Si	Centrifugal cast pipe
A/SA-660	WCB	J03003	70 (485)	1	2	101	1.1	C-Si	Centrifugal cast pipe
A/SA-662	А	K01701	58 (400)	1	1	101	1.1	C-Mn-Si	Plate
A/SA-662	С	K02007	70 (485)	1	2	101	1.1	C-Mn-Si	Plate
A/SA-662	В	K02203	65 (450)	1	1	101	1.1	C-Mn-Si	Plate
A663				1	1	101		С	Bar
A/SA-666	201-1	S20100	75 (515)	8	3	102	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip
A/SA-666	201-2	S20100	95 (655)	8	3	102	8.3	17Cr-4Ni-6Mn	Plate, sheet & strip
A/SA-666	XM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Plate, sheet & strip
A/SA-666	302	S30200	75 (515)	8	1	102	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-666	304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-666	304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Plate, sheet & strip
A/SA-666	304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Plate, sheet & strip

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
Spec. No.	Type of drade	0113 110.	(MI d)	1-110.		rrous (Con		Nominal Composition	Trouter Form
A/SA-666	304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Plate, sheet & strip
A/SA-666	316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-666	316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate, sheet & strip
A/SA-666	316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Plate, sheet & strip
A/SA-671	CC60	K02100	60 (415)	1	1	101	1.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CE55	K02202	55 (380)	1	1	101	11.1	С	Fusion welded pipe
A/SA-671	CD70	K12437	70 (485)	1	2	101	1.2	C-Mn-Si	Fusion welded pipe
A/SA-671	CD80	K12437	80 (550)	1	3	101	1.2	C-Mn-Si	Fusion welded pipe
A/SA-671	CB60	K02401	60 (415)	1	1	101	1.1	С	Fusion welded pipe
A/SA-671	CE60	K02402	60 (415)	1	1	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CC65	K02403	65 (450)	1	1	101	1.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CC70	K02700	70 (485)	1	2	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CB65	K02800	65 (450)	1	1	101	11.1	C-Si	Fusion welded pipe
A/SA-671	CA55	K02801	55 (380)	1	1	101	11.1	С	Fusion welded pipe
A/SA-671	CK75	K02803	75 (515)	1	2	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-671	CB70	K03101	70 (485)	1	2	101	11.1	C-Si	Fusion welded pipe
A/SA-672	A45	K01700	45 (310)	1	1	101	1.1	С	Fusion welded pipe
A/SA-672	C55	K01800	55 (380)	1	1	101	1.1	C-Si	Fusion welded pipe
A/SA-672	B55	K02001	55 (380)	1	1	101	1.1	C-Si	Fusion welded pipe
A/SA-672	C60	K02100	60 (415)	1	1	101	1.1	C-Mn-Si	Fusion welded pipe
A/SA-672	A50	K02200	50 (345)	1	1	101	1.1	С	Fusion welded pipe
A/SA-672	E55	K02202	55 (380)	1	1	101	11.1	С	Fusion welded pipe
A/SA-672	D70	K12437	70 (485)	1	2	101	1.2	C-Mn-Si	Fusion welded pipe
A/SA-672	D80	K12437	80 (550)	1	3	101	1.2	C-Mn-Si	Fusion welded pipe
A/SA-672	B60	K02401	60 (415)	1	1	101	1.1	C	Fusion welded pipe
A/SA-672	E60	K02402	60 (415)	1	1	101	11.1	C–Mn–Si	Fusion welded pipe
A/SA-672	C65	K02403	65 (450)	1	1	101	1.1	C-Mn-Si	Fusion welded pipe
A/SA-672	C70	K02700	70 (485)	1	2	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-672	B65	K02800	65 (450)	1	1	101	11.1	C-Si	Fusion welded pipe
A/SA-672	A55	K02801	55 (380)	1	1	101	11.1	С	Fusion welded pipe
A/SA-672	N75	K02803	75 (515)	1	2	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-672	B70	K03101	70 (485)	1	2	101	11.1	C-Si	Fusion welded pipe
A/SA-672	L65	K11820	65 (450)	3	1	101	1.1	C-0.5Mo	Fusion welded pipe

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
opeciator	Type of drude		(1 10		rrous (Con	· ·		Trouter form
A/SA-672	L70	K12020	70 (485)	3	2	101	1.2	C-0.5Mo	Fusion welded pipe
A/SA-672	H75	K12021	75 (515)	3	2	101	1.1	Mn-0.5Mo	Fusion welded pipe
A/SA-672	H80	K12022	80 (550)	3	3	101	1.2	Mn-0.5Mo	Fusion welded pipe
A/SA-672	L75	K12320	75 (515)	3	2	101	1.2	C-0.5Mo	Fusion welded pipe
A/SA-672	J100	K12521	100 (690)	11A	4	101	3.2	Mn-0.5Mo	Fusion welded pipe
A/SA-672	J80		80 (550)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Fusion welded pipe
A/SA-672	J90		90 (620)	3	3	101	3.1	Mn-0.5Mo-0.75Ni	Fusion welded pipe
A/SA-675	45		45 (310)	1	1	101	11.1	С	Bar
A/SA-675	50		50 (345)	1	1	101	11.1	С	Bar
A/SA-675	55		55 (380)	1	1	101	11.1	С	Bar
A/SA-675	60		60 (415)	1	1	101	11.1	С	Bar
A/SA-675	65		65 (450)	1	1	101	11.1	С	Bar
A/SA-675	70		70 (485)	1	2	101	11.1	С	Bar
A/SA-688	XM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Welded tube
A/SA-688	TP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Welded tube
A/SA-688	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr–8Ni	Welded tube
A/SA-688	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Welded tube
A/SA-688	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Welded tube
A/SA-688	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded tube
A/SA-688	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded tube
A/SA-688	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded tube
A/SA-688	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded tube
A/SA-691	CMSH-70	K12437	65 (450)	1	2	101	1.2	C-Mn-Si	Fusion welded pipe > $2\frac{1}{2}$ in. – 4 in. (64 mm – 102 mm)
A/SA-691	CMSH-70	K12437	70 (485)	1	2	101	1.2	C-Mn-Si	Fusion welded pipe $\leq 2^{1/2}$ in. (64 mm)
A/SA-691	CMSH-80	K12437	75 (515)	1	3	101	1.2	C-Mn-Si	Fusion welded pipe > $2\frac{1}{2}$ in 4 in. (64 mm - 102 mm)
A/SA-691	CMSH-80	K12437	80 (550)	1	3	101	1.2	C-Mn-Si	Fusion welded pipe $\leq 2^{1}/_{2}$ in. (64 mm)
A/SA-691	CMS-75	K02803	75 (515)	1	2	101	11.1	C-Mn-Si	Fusion welded pipe
A/SA-691	1CR, Cl. 1	K11757	55 (380)	4	1	102	5.1	1Cr-0.5Mo	Fusion welded pipe
A/SA-691	1CR, Cl. 2	K11757	65 (450)	4	1	102	5.1	1Cr-0.5Mo	Fusion welded pipe
A/SA-691	1.25CR, Cl. 1	K11789	60 (415)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Fusion welded pipe
A/SA-691	1.25CR, Cl. 2	K11789	75 (515)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Fusion welded pipe

			Groupi		ıs/No		P-Numb	ers tion (Cont'd)	
			Minimum	Weld	ing	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
speel No.		010 10	(MI d)	1 10.		rrous (Con	•	Nominal composition	fibult form
A/SA-691	CM-65	K11820	65 (450)	3	1	101	1.1	C-0.5Mo	Fusion welded pipe
A/SA-691	CM-70	K12020	70 (485)	3	2	101	1.2	C-0.5Mo	Fusion welded pipe
A/SA-691	0.5CR, Cl. 1	K12143	55 (380)	3	1	101	4.2	0.5Cr-0.5Mo	Fusion welded pipe
A/SA-691	0.5CR, Cl. 2	K12143	70 (485)	3	2	101	4.2	0.5Cr-0.5Mo	Fusion welded pipe
A/SA-691	CM-75	K12320	75 (515)	3	2	101	1.2	C-0.5Mo	Fusion welded pipe
A/SA-691 A/SA-691	2.25CR, Cl. 1	K12520 K21590	60 (415)	5 5A	1	101	1.2 5.2	2.25Cr-1Mo	Fusion welded pipe
A/SA-691 A/SA-691	2.25CR, Cl. 1 2.25CR, Cl. 2	K21590 K21590	75 (515)	5A 5A	1	102	5.2	2.25Cr-1Mo	Fusion welded pipe
A/SA-691 A/SA-691	3CR, Cl. 1	K21590 K31545	60 (415)	5A 5A	1	102	5.2	3Cr-1Mo	Fusion welded pipe
A/SA-691	3CR, Cl. 2	K31545 K31545	75 (515)	5A	1	102	5.2	3Cr-1Mo	Fusion welded pipe
	,								
A/SA-691	5CR, Cl. 1	K41545	60 (415)	5B	1	102	5.3	5Cr-0.5Mo	Fusion welded pipe
A/SA-691	5CR, Cl. 2	K41545	75 (515)	5B	1	102	5.3	5Cr-0.5Mo	Fusion welded pipe
A/SA-691	91	K91560	85 (585)	15E	1	102	6.4	9Cr-1Mo-V	Fusion welded pipe
A694	F42	K03014	60 (415)	1	1	101	11.1	C-Mn	Forgings
A694	F46	K03014	60 (415)	1	1	101	11.1	C-Mn	Forgings
A694	F52	K03014	66 (455)	1	1	101	11.1	C-Mn	Forgings
A694	F56	K03014	68 (470)	1	2	101	11.1	C-Mn	Forgings
A694	F60	K03014	75 (515)	1	2	101	11.1	C-Mn	Forgings
A694	F65	K03014	77 (530)	1	2	101	11.1	C-Mn	Forgings
A694	F70	K03014	82 (565)	1	3	101	11.1	C-Mn	Forgings
A/SA-696	В	K03200	60 (415)	1	1	101	11.1	C-Mn-Si	Bar
A/SA-696	С	K03200	70 (485)	1	2	101	11.1	C-Mn-Si	Bar
A707	L1, Cl. 1	K02302		1	1	101	1.2	C–Mn	Forgings
A707	L1, Cl. 2	K02302		1	1	101	1.2	C-Mn	Forgings
A707	L2, Cl. 1	K03301		1	1	101	11.1	C-Mn	Forgings
A707	L2, Cl. 2	K03301		1	1	101	11.1	C-Mn	Forgings
A707	L2, Cl. 3	K03301		1	2	101	11.1	C-Mn	Forgings
A707	L3, Cl. 1	K12510		1	1	101	1.2	C-Mn-V-N	Forgings
A707	L3, Cl. 2	K12510		1	1	101	1.2	C-Mn-V-N	Forgings
A707	L3, Cl. 3	K12510		1	2	101	1.3	C-Mn-V-N	Forgings
A714	Gr. V, Tp. E	K22035	65 (450)	9A	1	102	9.1	2Ni–1Cu	Smls. & welded pipe
A714	Gr. V	K22035	65 (450)	9A	1	102	9.1	2Ni-1Cu	Smls. & welded pipe
A/SA-724	А	K11831	90 (620)	1	4	101	3.1	C-Mn-Si	Plate

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
-					Fe	errous (Con	t'd)	· ·	
A/SA-724	В	K12031	95 (655)	1	4	101	3.1	C-Mn-Si	Plate
A/SA-724	С	K12037	90 (620)	1	4	101	1.1	C-Mn-Si	Plate
A/SA-727		K02506	60 (415)	1	1	101	11.1	C-Mn-Si	Forgings
A/SA-731	S41500	S41500	115 (795)	6	4	102	7.2	13Cr-4.5Ni-Mo	Smls. & welded pipe
A/SA-731	TP439	S43035	60 (415)	7	2	102	7.1	18Cr–Ti	Smls. & welded pipe
A/SA-731	18Cr-2Mo	S44400	60 (415)	7	2	102	7.1	18Cr-2Mo	Smls. & welded pipe
A/SA-731	TPXM-33	S44626	65 (450)	10I	1	102	7.1	27Cr-1Mo-Ti	Smls. & welded pipe
A/SA-731	TPXM-27	S44627	65 (450)	10I	1	102	7.1	27Cr-1Mo	Smls. & welded pipe
A/SA-731	S44660	S44660	85 (585)	10K	1	102	7.1	26Cr-3Ni-3Mo	Smls. & welded pipe
A/SA-731	S44700	S44700	80 (550)	10J	1	102	7.1	29Cr-4Mo	Smls. & welded pipe
A/SA-731	S44800	S44800	80 (550)	10K	1	102	7.1	29Cr-4Mo-2Ni	Smls. & welded pipe
A/SA-737	В	K12001	70 (485)	1	2	101	11.1	C–Mn–Si–Cb	Plate
A/SA-737	С	K12202	80 (550)	1	3	101	4.1	C-Mn-Si-V	Plate
A/SA-738	А	K12447	75 (515)	1	2	101	11.1	C-Mn-Si	Plate
A/SA-738	В	K12007	85 (585)	1	3	101	11.1	C-Mn-Si-Cb	Plate
A/SA-738	С	K02008	70 (485)	1	3	101	11.1	C-Mn-Si	Plate > 4 in. – 6 in. (102 mm – 152 mm), incl.
A/SA-738	C	K02008	75 (515)	1	3	101	11.1	C-Mn-Si	Plate > $2\frac{1}{2}$ in. – 4 in. (64 mm – 102 mm), incl.
A/SA-738	С	K02008	80 (550)	1	3	101	11.1	C-Mn-Si	Plate, $2\frac{1}{2}$ in. (64 mm) & under
A/SA-739	B11	K11797	70 (485)	4	1	102	5.1	1.25Cr-0.5Mo	Bar
A/SA-739	B22	K21390	75 (515)	5A	1	102	5.2	2.25Cr-1Mo	Bar
A/SA-765	Ι	K03046	60 (415)	1	1	101	11.1	C-Mn-Si	Forgings
A/SA-765	II	K03047	70 (485)	1	2	101	11.1	C-Mn-Si	Forgings
A/SA-765	III	K32026	70 (485)	9B	1	101	9.2	3.5Ni	Forgings
A/SA-765	IV	K02009	80 (550)	1	3	101	1.1	C-Mn-Si	Forgings
A/SA-789	S31200	S31200	100 (690)	10H	1	102	10.2	25Cr-6Ni-Mo-N	Smls. & welded tube
A/SA-789	S31260	S31260	100 (690)	10H	1	102	10.2	25Cr-6.5Ni-3Mo-N	Smls. & welded tube
A/SA-789	S31500	S31500	92 (635)	10H	1	102	10.1	18Cr-5Ni-3Mo-N	Smls. & welded tube
A/SA-789	S31803	S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Smls. & welded tube
A/SA-789		S32003	100 (690)	10H	1	102	10.1	21Cr-3.5Ni-Mo-N	Smls. & welded tube
A/SA-789		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Smls. & welded tube

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u></u>			()	1		rrous (Con	· ·		
A/SA-789		S32101	94 (650)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded tube > 0.187 in. (5 mm)
A/SA-789		S32101	101 (700)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded tube ≤ 0.187 in. (5 mm)
A/SA-789	S32205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Smls. & welded tube
A/SA-789	S32304	S32304	87 (600)	10H	1	102	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded tube > 1 in. (25 mm)
A/SA-789	S32304	S32304	100 (690)	10H	1	102	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded tube ≤ 1 in. (25 mm)
A/SA-789	S32550	S32550	110 (760)	10H	1	102	10.2	25Cr–5Ni–3Mo–2Cu	Smls. & welded tube
A/SA-789	S32750	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Smls. & welded tube
A/SA-789	S32900	S32900	90 (620)	10H	1	102	10.2	26Cr-4Ni-Mo	Smls. & welded tube
A/SA-789	S32906	S32906	109 (750)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded tube \geq 0.40 in. (10 mm)
A/SA-789	S32906	S32906	116 (800)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded tube < 0.40 in. (10 mm)
A/SA-789	S32950	S32950	100 (690)	10H	1	102	10.2	26Cr-4Ni-Mo-N	Smls. & welded tube
A/SA-789	S32760	S32760	109 (750)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Smls. & welded tube
A/SA-789	S39274	S39274	116 (800)	10H	1	102	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Smls. & welded tube
A/SA-790	S31200	S31200	100 (690)	10H	1	102	10.2	25Cr-6Ni-Mo-N	Smls. & welded pipe
A/SA-790	S31260	S31260	100 (690)	10H	1	102	10.2	25Cr-6.5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S31500	S31500	92 (635)	10H	1	102	10.1	18Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S31803	S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790		S32003	90 (620)	10H	1	102	10.1	21Cr-3.5Ni-Mo-N	Smls. & welded pipe
A/SA-790		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Smls. & welded pipe
A/SA-790		S32101	94 (650)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded pipe > 0.187 in. (5 mm)
A/SA-790		S32101	101 (700)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Smls. & welded pipe ≤ 0.187 in. (5 mm)
A/SA-790	S32205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Smls. & welded pipe
A/SA-790	S32304	S32304	87 (600)	10H	1	102	10.1	23Cr-4Ni-Mo-Cu-N	Smls. & welded pipe
A/SA-790	S32550	S32550	110 (760)	10H	1	102	10.2	25Cr-5Ni-3Mo-2Cu	Smls. & welded pipe
A/SA-790	S32750	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Smls. & welded tube
A/SA-790	S32900	S32900	90 (620)	10H	1	102	10.2	26Cr-4Ni-Mo	Smls. & welded pipe
A/SA-790	S32906	S32906	109 (750)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded pipe ≥ 0.40 in. (10 mm)
A/SA-790	S32906	S32906	116 (800)	10H	1	102	10.2	29Cr-6.5Ni-2Mo-N	Smls. & welded pipe < 0.40 in. (10 mm)
A/SA-790	S32950	S32950	100 (690)	10H	1	102	10.2	26Cr-4Ni-Mo-N	Smls. & welded pipe
A/SA-790	S32760	S32760	109 (750)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Smls. & welded pipe
A/SA-790	S39274	S39274	116 (800)	10H	1	102	10.2	25Cr-7Ni-3Mo-2W-Cu-N	Smls. & welded pipe
A/SA-803	TP439	S43035	60 (415)	7	2	102	7.1	18Cr–Ti	Welded tube
A/SA-803	26-3-3	S44660	85 (585)	10K	1	102	7.1	26Cr-3Ni-3Mo	Welded tube
A/SA-813	N08367	N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Welded pipe > 0.1875 in. (5 mm)

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum Specified	We	lding	Brazing			
			Tensile, ksi		Group		ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
					Fe	errous (Con	t'd)		
A/SA-813	N08367	N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Welded pipe \leq 0.1875 in. (5 mm)
A/SA-813	TPXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Welded pipe
A/SA-813	TPXM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Welded pipe
A/SA-813	TPXM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Welded pipe
A/SA-813	TP304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Welded pipe
A/SA-813	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Welded pipe
A/SA-813	TP304H	S30409	75 (515)	8	1	102	8.1	18Cr-8Ni	Welded pipe
A/SA-813	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr–8Ni–N	Welded pipe
A/SA-813	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr–8Ni–N	Welded pipe
A/SA-813	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Welded pipe
A/SA-813	TP309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Welded pipe
A/SA-813	TP309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Welded pipe
A/SA-813	TP310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Welded pipe
A/SA-813	TP310Cb	S31040	75 (515)	8	2	102	8.2	25Cr–20Ni–Cb	Welded pipe
A/SA-813	S31254	S31254	94 (650)	8	4	102	8.2	20Cr-18Ni-6Mo	Welded pipe
A/SA-813	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-813	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-813	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Welded pipe
A/SA-813	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded pipe
A/SA-813	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Welded pipe
A/SA-813	TP317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Welded pipe
A/SA-813	TP317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Welded pipe
A/SA-813		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Welded pipe
A/SA-813	TP321	S32100	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Welded pipe
A/SA-813	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Welded pipe
A/SA-813	TP347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded pipe
A/SA-813	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Welded pipe
A/SA-813	TP348	S34800	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Welded pipe
A/SA-813	TP348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Welded pipe
A/SA-813	TPXM-15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Welded pipe
A/SA-814	N08367	N08367	95 (655)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Cold worked welded pipe > 0.1875 in. (5 mm)
A/SA-814	N08367	N08367	100 (690)	45		111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Cold worked welded pipe ≤ 0.1875 in. (5 mm)

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
Spec. No.		0113 110.	(MI a)	1 -NO.		rrous (Con		Nominal Composition	riouterorm
)		
A/SA-814	TPXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Cold worked welded pipe
A/SA-814	TPXM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Cold worked welded pipe
A/SA-814	TPXM-29	S24000	100 (690)	8	3	102	8.3	18Cr-3Ni-12Mn	Cold worked welded pipe
A/SA-814	TP304	S30400	75 (515)	8	1	102	8.1	18Cr-8Ni	Cold worked welded pipe
A/SA-814	TP304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Cold worked welded pipe
A/SA-814	TP304H	S30409	75 (515)	8	1	102	8.1	18Cr-8Ni	Cold worked welded pipe
A/SA-814	TP304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Cold worked welded pipe
A/SA-814	TP304LN	S30453	75 (515)	8	1	102	8.1	18Cr-8Ni-N	Cold worked welded pipe
A/SA-814	S30815	S30815	87 (600)	8	2	102	8.2	21Cr-11Ni-N	Cold worked welded pipe
A/SA-814	TP309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Cold worked welded pipe
A/SA-814	TP309Cb	S30940	75 (515)	8	2	102	8.2	23Cr-12Ni-Cb	Cold worked welded pipe
A/SA-814	TP310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Cold worked welded pipe
A/SA-814	TP310Cb	S31040	75 (515)	8	2	102	8.2	25Cr-20Ni-Cb	Cold worked welded pipe
A/SA-814	S31254	S31254	94 (650)	8	4	102	8.2	20Cr-18Ni-6Mo	Cold worked welded pipe
A/SA-814	TP316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	TP316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	TP316H	S31609	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Cold worked welded pipe
A/SA-814	TP316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Cold worked welded pipe
A/SA-814	TP316LN	S31653	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Cold worked welded pipe
A/SA-814	TP317	S31700	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Cold worked welded pipe
A/SA-814	TP317L	S31703	75 (515)	8	1	102	8.1	18Cr-13Ni-3Mo	Cold worked welded pipe
A/SA-814		S32053	93 (640)	8	4	102	8.2	23Cr-25Ni-5.5Mo-N	Cold worked welded pipe
A/SA-814	TP321	S32100	75 (515)	8	1	102	8.1	18Cr–10Ni–Ti	Cold worked welded pipe
A/SA-814	TP321H	S32109	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Cold worked welded pipe
A/SA-814	TP347	S34700	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Cold worked welded pipe
, A/SA-814	TP347H	S34709	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Cold worked welded pipe
, A/SA-814	TP348	S34800	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Cold worked welded pipe
A/SA-814	TP348H	S34809	75 (515)	8	1	102	8.1	18Cr–10Ni–Cb	Cold worked welded pipe
A/SA-814	TPXM-15	S38100	75 (515)	8	1	102	8.1	18Cr-18Ni-2Si	Cold worked welded pipe
A/SA-815	S31803	S31803	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Fittings
A/SA-815		S32202	94 (650)	10H	1	102	10.1	22Cr-2Ni-Mo-N	Fittings
A/SA-815		S32101	94 (650)	10H	1	102	10.1	21Cr-5Mn-1.5Ni-Cu-N	Fittings
A/SA-815	S41500	S41500	110 (760)	6	4	102	7.2	13Cr-4.5Ni-Mo	Fittings

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	lding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
spec. No.	Type of drade	0113 110.	(MI a)	1 -NO.		rrous (Con		Nominal composition	Trouter Form
A/SA-815	S32760	S32760	109 (750)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Fittings
A/SA-815	S32205	S32205	95 (655)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Fittings
A815	2507	S32750	116 (800)	10H	1	102	10.2	25Cr-7Ni-4Mo-N	Fittings
A/SA-832	21V	K31830	85 (585)	5C	1	102	6.2	3Cr-1Mo-V-Ti-B	Plate
A/SA-832	22V	K31835	85 (585)	5C	1	102	6.2	2.25Cr-1Mo-V	Plate
A/SA-832	23V		85 (585)	5C	1	102	6.2	3Cr-1Mo-0.25V-Cb-Ca	Plate
A/SA-836			55 (380)	1	1	101	1.1	C–Si–Ti	Forgings
A/SA-841	A, Cl. 1		65 (450)	1	2	101	1.2	C–Mn–Si	Plate > 2.5 in. (65 mm)
A/SA-841	A, Cl. 1		70 (485)	1	2	101	1.2	C–Mn–Si	Plate ≤ 2.5 in. (65 mm)
A/SA-841	B, Cl. 2		75 (515)	1	3	101	1.3	C–Mn–Si	Plate > 2.5 in. (65 mm)
, A/SA-841	B, Cl. 2		80 (550)	1	3	101	1.3	C–Mn–Si	Plate ≤ 2.5 in. (65 mm)
A/SA-859	A, Cl. 1		65 (450)	11C	1	101	3.4	1Ni-1Cu-0.75Cr-Mo-Nb	Forgings
A/SA-859	A, Cl. 2		75 (515)	11C	1	101	3.4	1Ni-1Cu-0.75Cr-Mo-Nb	Forgings
A890	6A	J93380	100 (690)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings
A890	4A	J92205	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Castings
A928		S32760	108 (745)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Welded pipe
A928	2205	S32205	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Welded pipe
A/SA-965	F46	S30600	78 (540)	8	1	102	8.1	18Cr-15Ni-4Si	Forgings
A/SA-965	FXM-19	S20910	100 (690)	8	3	102	8.3	22Cr-13Ni-5Mn	Forgings
A/SA-965	FXM-11	S21904	90 (620)	8	3	102	8.3	21Cr-6Ni-9Mn	Forgings
A/SA-965	F304	S30400	70 (485)	8	1	102	8.1	18Cr–8Ni	Forgings
A/SA-965	F304L	S30403	65 (450)	8	1	102	8.1	18Cr-8Ni	Forgings
A/SA-965	F304H	S30409	70 (485)	8	1	102	8.1	18Cr–8Ni	Forgings
A/SA-965	F304N	S30451	80 (550)	8	1	102	8.1	18Cr-8Ni-N	Forgings
A/SA-965	F304LN	S30453	70 (485)	8	1	102	8.1	18Cr-8Ni-N	Forgings
A/SA-965	F310	S31000	75 (515)	8	2	102	8.2	25Cr-20Ni	Forgings
A/SA-965	F316	S31600	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316L	S31603	65 (450)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316H	S31609	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Forgings
A/SA-965	F316N	S31651	80 (550)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-965	F316LN	S31653	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Forgings
A/SA-965	F321	S32100	70 (485)	8	1	102	8.1	18Cr-10Ni-Ti	Forgings
A/SA-965	F321H	S32109	70 (485)	8	1	102	8.1	18Cr–10Ni–Ti	Forgings
A/SA-965	F347	S34700	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings

			Groupi		ous/No		P-Numb	ers tion (Cont'd)		
			Minimum	Wel	ding	Brazing				
Succ. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form	
Spec. No.	Type of Grade	UNS NO.	(Mra)	r-no.		rrous (Con				
A/SA-965	F347H	S34709	70 (485)	8	1	102	8.1	18Cr-10Ni-Cb	Forgings	
A/SA-965	F348	S34800	70 (485)	8	1	102	8.1	18Cr-10Ni-Cb	Forgings	
,									0.0	
A/SA-965	F348H	S34809	70 (485)	8	1	102	8.1	18Cr–10Ni–Cb	Forgings	
A992			65 (450)	1	1	101	1.1	C-Mn-Si	Shapes	
A/SA-995	2A	J93345	95 (655)	10H	1	102	10.2	24Cr-10Ni-4Mo-N	Castings	
A/SA-995	1B	J93372	100 (690)	10H	1	102	10.2	25Cr-5Ni-3Mo-2Cu	Castings	
A/SA-995	6A	J93380	100 (690)	10H	1	102	10.2	25Cr-8Ni-3Mo-W-Cu-N	Castings	
A/SA-995	4A	J92205	90 (620)	10H	1	102	10.1	22Cr-5Ni-3Mo-N	Castings	
A/SA-1008	CS Type A		40 (275)	1	1	101	1.1	С	Sheet	
A/SA-1008	CS Type B		40 (275)	1	1	101	1.1	С	Sheet	
A/SA-1008	DS Type B		40 (275)	1	1	101	1.1	С	Sheet	
				7		102				
A/SA-1010 A/SA-1010	40 50	S41003 S41003	66 (455) 70 (485)	7 7	1 1	102 102		12Cr–1Ni 12Cr–1Ni	Plate, sheet & strip Plate, sheet & strip	
A/3A-1010	50	341003	70 (465)	/	1	102			Flate, slieet & strip	
A/SA-1011	CS Type B		40 (275)	1	1	101	1.1	С	Sheet & strip	
A/SA-1011	DS Type B		40 (275)	1	1	101	1.1	C	Sheet & strip	
API 5L	А		49 (330)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	A25		45 (310)	1	1	101	1.1	C–Mn	Smls. & welded pipe	
API 5L	A25P		45 (310)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	В		60 (415)	1	1	101	11.1	C-Mn	Smls. & welded pipe	
API 5L	BM		60 (415)	1	1	101	1.1	C-Mn	Welded pipe	
API 5L	BMO		60 (415)	1	1	101	1.1	C-Mn	Welded pipe	
API 5L	BMS		60 (415)	1	1	101	1.1	C-Mn	Welded pipe	
API 5L	BN		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BNO		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BNS		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BQ		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BQO		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BQS		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	BR		60 (415)	1	1	101	1.1	C-Mn	Smls. & welded pipe	
API 5L	X42		60 (415)	1	1	101	11.1	C-Mn	Smls. & welded pipe	
API 5L	X42M		60 (415)	1	1	101	1.2	C-Mn	Welded pipe	
API 5L	X42M0		60 (415)	1	1	101	1.2	C-Mn	Welded pipe	
API 5L	X42MS		60 (415)	1	1	101	1.2	C-Mn	Welded pipe	

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum Specified	We	lding	Brazing						
Spec. No.	Type or Grade	UNS No.	Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form			
					Fe	rrous (Con	t'd)					
API 5L	X42N		60 (415)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X42N0		60 (415)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X42NS		60 (415)	1	1	101	1.2	C–Mn	Smls. & welded pipe			
API 5L	X42Q		60 (415)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X42Q0		60 (415)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X42QS		60 (415)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X42R		60 (415)	1	1	101	1.2	C–Mn	Smls. & welded pipe			
API 5L	X46		63 (435)	1	1	101	11.1	C-Mn	Smls. & welded pipe			
API 5L	X46M		63 (435)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X46MO		63 (435)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X46MS		63 (435)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X46N		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X46N0		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X46NS		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X46Q		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X46Q0		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X46QS		63 (435)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52		67 (455)	1	1	101	11.1	C-Mn	Smls. & welded pipe			
API 5L	X52M		67 (455)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X52M0		67 (455)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X52MS		67 (455)	1	1	101	1.2	C-Mn	Welded pipe			
API 5L	X52N		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52NO		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52NS		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52Q		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52Q0		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X52QS		67 (455)	1	1	101	1.2	C-Mn	Smls. & welded pipe			
API 5L	X56		71 (490)	1	2	101	11.1	C-Mn	Smls. & welded pipe			
API 5L	X56M		71 (490)	1	2	101	2.1	C-Mn	Welded pipe			
API 5L	X56M0		71 (490)	1	2	101	2.1	C-Mn	Welded pipe			
API 5L	X56MS		71 (490)	1	2	101	2.1	C-Mn	Welded pipe			
API 5L	X56N		71 (490)	1	2	101	1.3	C-Mn	Smls. & welded pipe			
API 5L	X56Q		71 (490)	1	2	101	3.1	C-Mn	Smls. & welded pipe			
API 5L	X56Q0		71 (490)	1	2	101	3.1	C-Mn	Smls. & welded pipe			
API 5L	X56QS		71 (490)	1	2	101	3.1	C-Mn	Smls. & welded pipe			
API 5L	X60		75 (515)	1	2	101	11.1	C-Mn	Smls. & welded pipe			
API 5L	X60M		75 (515)	1	2	101	2.1	C–Mn	Welded pipe			

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	We	ding	Brazing			
			Specified Tensile, ksi		Group		ISO 15608		
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form
						rrous (Con	t'd)		
API 5L	X60M0		75 (515)	1	2	101	2.1	C-Mn	Welded pipe
API 5L	X60MS		75 (515)	1	2	101	2.1	C-Mn	Welded pipe
API 5L	X60N		75 (515)	1	2	101	1.3	C-Mn	Smls. & welded pipe
API 5L	X60Q		75 (515)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X60Q0		75 (515)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X60QS		75 (515)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X65		78 (530)	1	2	101	11.1	C-Mn	Smls. & welded pipe
API 5L	X65M		78 (530)	1	2	101	2.1	C-Mn	Welded pipe
API 5L	X65MO		78 (530)	1	2	101	2.1	C-Mn	Welded pipe
API 5L	X65MS		78 (530)	1	2	101	2.1	C-Mn	Welded pipe
API 5L	X65Q		78 (530)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X65Q0		78 (530)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X65QS		78 (530)	1	2	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X70		83 (565)	1	3	101	11.1	C-Mn	Smls. & welded pipe
API 5L	X70M		83 (565)	1	3	101	2.2	C-Mn	Welded pipe
API 5L	X70M0		83 (565)	1	3	101	2.2	C-Mn	Welded pipe
API 5L	X70MS		83 (565)	1	3	101	2.2	C-Mn	Welded pipe
API 5L	X70Q		83 (565)	1	3	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X70QO		83 (565)	1	3	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X70QS		83 (565)	1	3	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X80M		91 (620)	1	4	101	2.2	C-Mn	Welded pipe
API 5L	X80MO		91 (620)	1	4	101	2.2	C-Mn	Welded pipe
API 5L	X80Q		91 (620)	1	4	101	3.1	C-Mn	Smls. & welded pipe
API 5L	X80QO		91 (620)	1	4	101	3.1	C-Mn	Smls. & welded pipe
MSS SP-75	WPHY-42		60 (415)	1	1	101	11.1	C-Mn	Smls./welded fittings
MSS SP-75	WPHY-46		63 (435)	1	1	101	11.1	C-Mn	Smls./welded fittings
MSS SP-75	WPHY-52		66 (455)	1	1	101	11.1	C-Mn	Smls./welded fittings
MSS SP-75	WPHY-56		71 (490)	1	2	101	11.1	C–Mn	Smls./welded fittings
MSS SP-75	WPHY-60		75 (515)	1	2	101	11.1	C-Mn	Smls./welded fittings
MSS SP-75	WPHY-65		77 (530)	1	2	101	11.1	C-Mn	Smls./welded fittings
MSS SP-75	WPHY-70		82 (565)	1	3	101		C-Mn	Smls./welded fittings
SA/AS 1548	PT430		62.5 (430)	1	1	101	1.1	C	Plate
SA/AS 1548	PT430		66.5 (460)	1	1	101	1.1	C	Plate
SA/AS 1548	PT430		71 (490)	1	2	101	1.1	C	Plate
SA/CSA-G40.21	Gr. 38W		60 (415)	1	1	101	1.1	C-Mn-Si	Plate, bar & shapes

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	Wel	ding	Brazing						
Strag Na	Trans on Cardo	UNC N-	Specified Tensile, ksi	D.N.	Group	D.N.	ISO 15608		Dura da est Da una			
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No.	Group	Nominal Composition	Product Form			
						rrous (Con	,					
SA/CSA-G40.21	Gr. 44W		65 (450)	1	1	101	1.2	C-Mn-Si	Plate, bar & shapes			
SA/CSA-G40.21	Gr. 50W		65 (450)	1	1	101	1.2	C-Mn-Si	Plate, bar & shapes			
SA/EN 10025-2	S235JR		52 (360)	1	1		1.1	C	Plate			
SA/EN 10028-2	10CrMo9-10		69.5 (480)	5A	1	102	5.2	2.25Cr-1Mo	Plate \leq 2.4 in. (60 mm)			
SA/EN 10028-2	10CrMo9-10		68.0 (470)	5A	1	102	5.2	2.25Cr-1Mo	Plate > 2.4 in. ≤ 4 in. (60 mm – 100 mm)			
SA/EN 10028-2	10CrMo9-10		66.5 (460)	5A	1	102	5.2	2.25Cr-1Mo	Plate > 4 in. ≤ 6 in. (100 mm – 150 mm)			
SA/EN 10028-2	10CrMo9-10		65.5 (450)	5A	1	102	5.2	2.25Cr-1Mo	Plate > 6 in. ≤ 10 in. (150 mm – 250 mm)			
SA/EN 10028-2	13CrMo4-5		61 (420)	4	1	102	5.1	1Cr-0.5Mo	Plate > 6 in. ≤ 10 in. (150 mm - 250 mm)			
SA/EN 10028-2	13CrMo4-5		62.5 (430)	4	1	102	5.1	1Cr-0.5Mo	Plate > 4 in. ≤ 6 in. (100 mm – 150 mm)			
SA/EN 10028-2	13CrMo4-5		64 (440)	4	1	102	5.1	1Cr-0.5Mo	Plate > 2.4 in. ≤ 4 in. (60 mm -100 mm)			
SA/EN 10028-2	13CrMo4-5		65.5 (450)	4	1	102	5.1	1Cr-0.5Mo	Plate ≤ 2.4 in. (60 mm)			
, SA/EN 10028-2	13CrMoSi5-5+QT		71 (490)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Plate >4-10 in. (100mm-250mm) incl.			
SA/EN 10028-2	13CrMoSi5-5+QT		72.5 (500)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Plate >2.4-4 in. (60mm-100mm) incl.			
SA/EN 10028-2	13CrMoSi5-5+QT		74 (510)	4	1	102	5.1	1.25Cr-0.5Mo-Si	Plate ≤ 2.4 in. (60 mm) incl.			
SA/EN 10028-2	P235GH		52 (360)	1	1	101	1.1	C-Mn	Plate ≤ 2.4 in. (60 mm)			
SA/EN 10028-2	P265GH		59.5 (410)	1	1	101	1.1	C-Mn	Plate ≤ 2.4 in. (60 mm)			
SA/EN 10028-2	P295GH		64 (440)	1	1	101	1.2	C-Mn-Si	Plate > 4 in. \le 6 in. (> 100 mm \le 150 mm)			
SA/EN 10028-2	P295GH		66.5 (460)	1	1	101	1.2	C–Mn–Si	Plate \leq 4 in. (100 mm)			
SA/EN 10028-2	P295GH		62.5 (430)	1	1	101	1.2	C-Mn-Si	Plate > 6 in. ≤ 10 in. (> 150 mm ≤ 250 mm)			
SA/EN 10028-2	P355GH		68 (470)	1	2	101	1.2	C-Mn-Si	Plate > 6 in. ≤ 10 in. (150 mm–250 mm)			
SA/EN 10028-2	P355GH		69.5 (480)	1	2	101	1.2	C-Mn-Si	Plate > 4 in. ≤ 6 in. (100 mm–150 mm)			
SA/EN 10028-2	P355GH		71 (490)	1	2	101	1.2	C-Mn-Si	Plate > 2.4 in. ≤ 4 in. (60 mm–100 mm)			
SA/EN 10028-2	P355GH		74 (510)	1	2	101	1.2	C-Mn-Si	Plate ≤ 2.4 in. (60 mm)			
SA/EN 10028-3	P275NH		51 (350)	1	1	101	1.1	С	Plate > 6 in. ≤ 10 in. (150 mm–250 mm)			
SA/EN 10028-3	P275NH		52 (360)	1	2	101	1.1	C-Mn-Si	Plate > 4 in. ≤ 6 in. (100 mm-150 mm)			
SA/EN 10028-3	P275NH		53.5 (370)	1	1	101	1.1	С	Plate > 2 in. ≤ 4 in. (50 mm – 100 mm)			
SA/EN 10028-3	P275NH		56.5 (390)	1	1	101	1.1	С	Plate ≤ 2 in. (50 mm)			
SA/EN 10028-4	X8Ni9		93 (640)	11A	1		9.3	9Ni	Plate			
SA/EN 10028-4	X7Ni9		98.5 (680)	11A	1		9.3	9Ni	Plate			
SA/EN 10028-7	X2CrNi18-9		72.5 (500)	8	1	102	8.1	18Cr–8Ni	Plate			

			Groupi		ous/No		P-Numb	ers tion (Cont'd)	
			Minimum	Wel	ding	Brazing			
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksi (MPa)	P-No.	Group No.	P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u>opeci noi</u>	Type of drude		(011 u)	1 1101	-	rrous (Con	· ·		Trouver Form
SA/EN 10028-7	X2CrNiN18-10		80 (550)	8	1	102	8.1	18Cr-8Ni-N	Plate
,	X2CrNiMo17-12-2		75.5 (520)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate
	X2CrNiMoN17-11-2		84 (580)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Plate
,	X2CrNiMoN17-13-3		84 (580)	8	1	102	8.1	16Cr-12Ni-2Mo-N	Plate
SA/EN 10028-7	X5CrNi18-10		75.5 (520)	8	1	102	8.1	18Cr-8Ni	Plate
SA/EN 10028-7			75.5 (520)	8	1	102	8.1	16Cr-12Ni-2Mo	Plate
SA/EN 10028-7	X5CrNiN19-9		80 (550)	8	1	102	8.1	18Cr–8Ni–N	Plate
SA/EN 10028-7	X6CrNiTi18-10		72.5 (500)	8	1	102	8.1	18Cr-10Ni-Ti	Plate
,	X6CrNiMoTi17-12-2		78.5 (540)	8	1		8.1	16Cr-12Ni-2Mo-Ti	Plate, sheet, and strip
, SA/EN 10216-2	P235GH		52 (360)	1	1		1.1	С	Smls. tube
SA/EN 10216-2	P265GH		59.5 (410)	1	1		1.1	С	Smls. tube
SA/EN 10216-2	16Mo3		65.5 (450)	3	1		1.1	C-0.5Mo	Smls. tube
SA/EN 10216-2	13CrMo4-5		64 (440)	4	1		5.1	1Cr-0.5Mo	Smls. tube
SA/EN 10216-2	10CrMo9-10		69.5 (480)	5A	1		5.2	2.25Cr-1Mo	Smls. tube
SA/EN 10216-2	X10CrMoVNb9-1		91.5 (630)	15E	1		6.4	9Cr-1Mo-V	Smls. tube
SA/EN 10217-1	P235TR2		52 (360)	1	1		1.1	С	E.R.W. tube
SA/EN 10222-2	P280GH		66.5 (460)	1	1	101	1.2	C-Mn-Si	Forgings
SA/EN 10222-2	P305GH		71 (490)	1	2	101	1.2	C-Mn-Si	Forgings
SA/EN 10222-2	13CrMo4-5		64 (440)	4	1	102	5.1	1Cr-0.5Mo	Forgings ≤ 10 in. (≤ 250 mm)
SA/EN 10222-2	13CrMo4-5		61 (420)	4	1	102	5.1	1Cr-0.5Mo	Forgings > 10 in. ≤ 20 in. (> 250 mm ≤ 500 mm)
SA/EN 10222-2	11CrMo9-10		75.5 (520)	5A	1	102	5.2	2.25Cr-1Mo	Forgings ≤ 8 in. (≤ 200 mm)
SA/EN 10222-2	11CrMo9-10		65.5 (450)	5A	1	102	5.2	2.25Cr-1Mo	Forgings > 8 in. ≤ 20 in. (> 200 mm ≤ 500 mm)
SA/EN 10222-2	X10CrMoVNb9-1		91.5 (630)	15E	1	102	6.4	9Cr-1Mo-V	Forgings
SA/GB 713	Q345R		68 (470)	1	1	101	1.1	C-Mn	Plate > 6 in. (150 mm) ≤ 10 in. (250 mm)
SA/GB 713	Q345R		69.5 (480)	1	1	101	1.2	C-Mn	Plate > 4 in. (100 mm) \leq 6 in. (150 mm)
SA/GB 713	Q345R		71 (490)	1	2	101	1.2	C-Mn	Plate > 2.4 in. (60 mm) \leq 4 in. (100 mm)
SA/GB 713	Q345R		71 (490)	1	2	101	1.2	C-Mn	Plate > 1.5 in. (36 mm) \leq 2.4 in. (60 mm)
SA/GB 713	Q345R		72.5 (500)	1	2	101	1.2	C-Mn	Plate > 0.65 in. (16 mm) \leq 1.5 in. (36 mm)

			Minimum	Weld	ding	Brazing			
6 N		UNG N	Specified Tensile, ksi	DN	Group	DN	ISO 15608		D 1 - D
Spec. No.	Type or Grade	UNS No.	(MPa)	P-No.	No.	P-No. Prrous (Con	Group	Nominal Composition	Product Form
	02450		54 (540)	4		-	-	6 N	
SA/GB 713	Q345R		74 (510)	1	2	101	1.2	C-Mn	Plate > 0.125 in. (3 mm) ≤ 0.65 in. (16 mm)
SA/GB 713	Q370R		75.5 (520)	1	2	101	1.2	С	Plate > 1.4 in. (36 mm) ≤ 2.4 in. (60 mm)
SA/GB 713	Q370R		77 (530)	1	2	101	1.2	С	Plate > 0.65 in. (16 mm) ≤ 1.4 in. (36 mm)
SA/GB 713	Q370R		77 (530)	1	2	101	1.3	С	(36 mm) Plate > 0.375 in. (10 mm) \leq 0.65 ir (16 mm)
SA/GB 713	15CrMoR		64 (440)	4	1	101	5.1	1Cr-0.5Mo	(10 mm) Plate > 4 in. (100 mm) ≤ 6 in. (150 mm)
SA/GB 713	15CrMoR		65 (450)	4	1	101	5.1	1Cr-0.5Mo	(100 mm) Plate > 2.4 in. (60 mm) \leq 4 in. (100 mm)
SA/GB 713	15CrMoR		65 (450)	4	1	101	5.1	1Cr-0.5Mo	Plate > 0.25 in. (6 mm) \leq 2.4 in. (60 mm)
SA/IS 2062	E250 A		59.5 (410)	1	1	101	1.3	C-Mn-Si	Plate, bars & shapes
SA/IS 2062	E250 B		59.5 (410)	1	1	101	1.3	C-Mn-Si	Plate, bars & shapes
SA/IS 2062	E250 C		59.5 (410)	1	1	101	1.3	C-Mn-Si	Plate, bars & shapes
SA/JIS G3118	SGV480		70 (485)	1	2	101	1.2	C-Mn-Si	Plate
SA/JIS G4303	SUS 302	S30200	75 (515)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
SA/JIS G4303	SUS 304	S30400	75 (515)	8	1	102	8.1	18Cr–8Ni	Bars & shapes
SA/JIS G4303	SUS 304L	S30403	70 (485)	8	1	102	8.1	18Cr-8Ni	Bars & shapes
SA/JIS G4303	SUS 309S	S30908	75 (515)	8	2	102	8.2	23Cr-12Ni	Bars & shapes
SA/JIS G4303	SUS 310S	S31008	75 (515)	8	2	102	8.2	25Cr-20Ni	Bars & shapes
SA/JIS G4303	SUS 316	S31600	75 (515)	8	1	102	8.1	16Cr-12Ni-2Mo	Bars & shapes
SA/JIS G4303	SUS 316L	S31603	70 (485)	8	1	102	8.1	16Cr-12Ni-2Mo	Bars & shapes
SA/JIS G4303	SUS 321	S32100	75 (515)	8	1	102	8.1	18Cr-10Ni-Ti	Bars & shapes
SA/JIS G4303	SUS 347	S34700	75 (515)	8	1	102	8.1	18Cr-10Ni-Cb	Bars & shapes
SA/JIS G4303	SUS 405	S40500	60 (415)	7	1	102	7.1	12Cr–1Al	Bars & shapes
SA/NF A 36-215	P440 NJ4		91.5 (630)	10A	1	101	4.1	Mn-0.5Ni-V	Plate

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)												
			Minimum	Welding	Brazing	ISO						
		Alloy, Type, or	Specified Tensile, ksi			15608						
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form				
					· · · · ·	Nonferrous						
B16	C36000		48 (330)		107	NA	65Cu–Zn–3Pb	Rod ≤ 1 in. (25 mm)				
B16	C36000		44 (305)		107	NA	65Cu–Zn–3Pb	Rod > 1 in 2 in. (25 mm - 51 mm), incl.				
B16	C36000		40 (275)		107	NA	65Cu–Zn–3Pb	Rod > 2 in. (51 mm)				
B16	C36000		44 (305)		107	NA	65Cu–Zn–3Pb	Bar ≤ 1 in. (25 mm)				
B16	C36000		40 (275)		107	NA	65Cu–Zn–3Pb	Bar > 1 in. (25 mm)				
B/SB-26	A24430		17 (115)	26		24.1	Al-Si	Castings				
B/SB-26	A03560	T71	25 (170)	26		24.2	Al-Si-Mg	Castings				
B/SB-26	A03560	T6	30 (205)	26		24.2	Al-Si-Mg	Castings				
B/SB-42	C10200		30 (205)	31	107	31	99.95Cu-P	Smls. pipe				
, B/SB-42	C12000		30 (205)	31	107	31	99.9Cu-P	Smls. pipe				
B/SB-42	C12200		30 (205)	31	107	31	99.9Cu-P	Smls. pipe				
B/SB-43	C23000		40 (275)	32	107	32.1	85Cu-15Zn	Smls. pipe				
B/SB-61	C92200		30 (205)		107	NA	88Cu-Sn-Zn-Pb	Castings				
B/SB-62	C83600		30 (205)		107	NA	85Cu-5Sn-5Zn-5Pb	Castings				
, B68	C10200		30 (205)	31	107	31	99.95Cu-P	Tube				
B68	C12000		30 (205)	31	107	31	99.9Cu-P	Tube				
B68	C12200		30 (205)	31	107	31	99.9Cu-P	Tube				
B/SB-75	C10200		30 (205)	31	107	31	99.95Cu-P	Smls. tube				
B/SB-75	C12000		30 (205)	31	107	31	99.9Cu-P	Smls. tube				
B/SB-75	C12200		30 (205)	31	107	31	99.9Cu-P	Smls. tube				
B88	C10200		30 (205)	31	107	31	99.95Cu-P	Tube				
B88	C12000		30 (205)	31	107	31	99.9Cu-P	Tube				
B88	C12200		30 (205)	31	107	31	99.9Cu-P	Tube				
B/SB-96	C65500		50 (345)	33	107	37	97Cu-3Si	Plate, sht, strip & bar				
B/SB-98	C65100		40 (275)	33	107	37	98.5Cu-1.5Si	Rod, bar & shapes				
B/SB-98	C65500		52 (360)	33	107	37	97Cu-3Si	Rod, bar & shapes				
B/SB-98	C66100		52 (360)	33	107	37	94Cu-3Si	Rod, bar & shapes				
3/SB-111	C10200		30 (205)	31	107	31	99.95Cu-P	Smls. tube				
B/SB-111 B/SB-111	C12000		30 (205)	31	107	31	99.9Cu-P	Smls. tube				
B/SB-111 B/SB-111	C12200		30 (205)	31	107	31	99.9Cu-P	Smls. tube				
SB-111 B/SB-111	C14200		30 (205)	31	107	31	99.4Cu-As-P	Smls. tube				
3/SB-111 3/SB-111	C19200		38 (260)	31	107	31	99.7Cu-Fe-P	Smls. tube				
B/SB-111 B/SB-111	C23000		40 (275)	32	107	32.1	85Cu-15Zn	Smls. tube				

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
Sec. No.	UNG N-	Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608	Newinel Competition	Due do et Farme				
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form				
			50 (0 (5)			errous (Cont'						
B/SB-111	C28000		50 (345)	32	107	32.1	60Cu-40Zn	Smls. tube				
B/SB-111	C44300		45 (310) 45 (210)	32	107	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube				
B/SB-111	C44400		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube				
B/SB-111	C44500		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube				
B/SB-111	C60800		50 (345)	35	108	35 32.2	95Cu-5Al 78Cu-20Zn-2Al	Smls. tube				
B/SB-111	C68700		50 (345)	32	108	32.2	70Uu-2020-2AI	Smls. tube				
B/SB-111	C70400		38 (260)	34	107	34	95Cu-5Ni	Smls. tube				
B/SB-111	C70600		40 (275)	34	107	34	90Cu-10Ni	Smls. tube				
B/SB-111	C71000		45 (310)	34	107	34	80Cu-20Ni	Smls. tube				
B/SB-111	C71500		52 (360)	34	107	34	70Cu-30Ni	Smls. tube				
B/SB-111	C72200		45 (310)	34	107	34	80Cu-16Ni-0.75Fe-0.5Cr	Smls. tube				
B/SB-127	N04400		70 (485)	42	110	42	67Ni-30Cu	Plate, sheet & strip				
B/SB-135	C23000		40 (275)	32	107	32.1	85Cu-15Zn	Smls. tube				
B/SB-148	C95200		65 (450)	35	108	35	88Cu-9Al-3Fe	Castings				
B/SB-148	C95400		75 (515)	35	108	35	85Cu-11Al-4Fe	Castings				
B/SB-148	C95300		65 (450)	35	108	35	89Cu-10Al-1Fe	Castings				
B/SB-148	C95500		90 (620)	35	108	35	82Cu-11Al-4Fe-3Mn	Castings				
B/SB-148	C95600		60 (415)	35	100	35	90Cu-7Al-3Si	Castings				
								-				
B/SB-150	C61400		70 (485)	35	108	35	90Cu-7Al-3Fe	Rod & bar				
B/SB-150	C62300		75 (515)	35	108	35	88Cu-9Al-3Fe	Rod (round)				
B/SB-150	C63000		85 (585)	35	108	35	81Cu-10Al-5Ni-3Fe	Rod & bar				
B/SB-150	C64200		70 (485)	35	108	35	91Cu-7Al-2Si	Rod & bar				
B/SB-151	C70600		38 (260)	34	107	34	90Cu-10Ni	Rod & bar				
B/SB-152	C10200		30 (205)	31	107	31	99.95Cu-P	Plt, sht, strip & bar				
B/SB-152	C10400		30 (205)	31	107	31	99.95Cu + Ag	Plt, sht, strip & bar				
B/SB-152	C10500		30 (205)	31	107	31	99.95Cu + Ag	Plt, sht, strip & bar				
B/SB-152	C10700		30 (205)	31	107	31	99.95Cu + Ag	Plt, sht, strip & bar				
B/SB-152	C11000		30 (205)	31	107	31	99.90Cu	Plt, sht, strip & bar				
B/SB-152	C12200		30 (205)	31	107	31	99.9Cu-P	Plt, sht, strip & bar				
B/SB-152	C12300		30 (205)	31	107	31	99.9Cu-P	Plt, sht, strip & bar				
B/SB-152	C14200		30 (205)	31	107	31	99.4Cu-As-P	Plt, sht, strip & bar				

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608						
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form				
					Nonf	errous (Cont'd)					
D/CD 1/0	N02200		FF (200)	41	110	41	99.0Ni	Rod & bar				
B/SB-160 B/SB-160	N02200 N02201		55 (380) 50 (345)	41 41	110	41 41	99.0Ni-Low C	Rod & bar				
B/SB-161	N02200		55 (380)	41	110	41	99.0Ni	Smls. pipe & tube				
B/SB-161	N02201		50 (345)	41	110	41	99.0Ni-Low C	Smls. pipe & tube				
B/SB-162	N02200		55 (380)	41	110	41	99.0Ni	Plate, sheet & strip				
B/SB-162	N02201		50 (345)	41	110	41	99.0Ni-Low C	Plate, sheet & strip				
B/SB-163	N02200		55 (380)	41	110	41	99.0Ni	Smls. tube				
B/SB-163	N02200		50 (345)	41	110	41	99.0Ni-Low C	Smls. tube				
B/SB-163	N04400		70 (485)	42	110	42	67Ni-30Cu	Smls. tube				
B/SB-163	N06600		80 (550)	43	111	43	72Ni-15Cr-8Fe	Smls. tube				
B/SB-163	N06601		80 (550)	43	111	43	60Ni–23Cr–12Fe–Al	Smls. tube				
B/SB-163	N06690		85 (585)	43	111	43	58Ni-29Cr-9Fe	Smls. tube				
B/SB-163	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Smls. tube				
B/SB-163	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Smls. tube				
B/SB-163	N08801		65 (450)	45	111	45	32Ni-45Fe-20.5Cr-Ti	Smls. tube				
B/SB-163	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Smls. tube				
B/SB-163	N08811		65 (450)	45	111	45	33Ni-42Fe-21Cr-Al-Ti	Smls. tube				
B/SB-163	N08825		85 (585)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Smls. tube				
	No.4400			10	110	12						
B/SB-164	N04400		70 (485) 70 (485)	42	110	42	67Ni-30Cu	Rod, bar & wire				
B/SB-164	N04405		70 (485)	42	110	42	67Ni-30Cu	Rod, bar & wire				
B/SB-165	N04400		70 (485)	42	110	42	67Ni-30Cu	Smls. pipe & tube				
B/SB-166	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Rod, bar & wire				
B/SB-166	N06600		80 (550)	43	111	43	72Ni–15Cr–8Fe	Rod, bar & wire				
B/SB-166	N06601		80 (550)	43	111	43	60Ni-23Cr-12Fe-Al	Rod, bar & wire				
B/SB-166	N06617		95 (655)	43	111	46	52Ni-22Cr-13Co-9Mo	Rod, bar & wire				
B/SB-166	N06690		85 (585)	43	111	43	58Ni-29Cr-9Fe	Rod, bar & wire				
B/SB-167	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Smls. pipe & tube				
B/SB-167	N06600		75 (515)	43	111	43	72Ni–15Cr–8Fe	Smls. pipe & tube				
B/SB-167	N06601		80 (550)	43	111	43	60Ni-23Cr-12Fe-Al	Smls. pipe & tube				
B/SB-167	N06617		95 (655)	43	111	46	52Ni-22Cr-13Co-9Mo	Smls. pipe & tube				
B/SB-167	N06690		75 (515)	43	111	43	58Ni-29Cr-9Fe	Smls. pipe & tube				

			Gr		rrous/Nor	QW/QB-4 Iferrous P als for Qu		
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form
spec. No.	UNS NO.	Giaue	(Mraj	r-nu.		errous (Cont'	- ·	Floudt Form
						errous (cont	,	
B/SB-168	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Plate, sheet & strip
B/SB-168	N06600		80 (550)	43	111	43	72Ni–15Cr–8Fe	Plate, sheet & strip
B/SB-168	N06601		80 (550)	43	111	43	60Ni–23Cr–12Fe–Al	Plate, sheet & strip
B/SB-168	N06617		95 (655)	43	111	46	52Ni-22Cr-13Co-9Mo	Plate, sheet & strip
B/SB-168	N06690		85 (585)	43	111	43	58Ni-29Cr-9Fe	Plate, sheet & strip
B/SB-169	C61400		72 (495)	35	108	35	90Cu-7Al-3Fe	Plate, sheet, strip & bar $\leq \frac{1}{2}$ in (13 mm)
B/SB-169	C61400		70 (485)	35	108	35	90Cu-7Al-3Fe	Plate, sheet, strip & bar > $\frac{1}{2}$ in 2 in. (13 mm-51 mm) incl.
B/SB-169	C61400		65 (450)	35	108	35	90Cu-7Al-3Fe	Plate, sheet, strip & bar > 2 in 5 in. (51 mm-127 mm) incl.
B/SB-171	C36500		40 (275)	32	107	32.2	60Cu-39Zn-Pb	Plate & sheet
B/SB-171	C44300		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06As	Plate & sheet
B/SB-171	C44400		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06Sb	Plate & sheet
B/SB-171	C44500		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06P	Plate & sheet
B/SB-171	C46400		50 (345)	32	107	32.2	60Cu-39Zn-Sn	Plate & sheet
B/SB-171	C46500		50 (345)	32	107	32.2	60Cu-39Zn-As	Plate & sheet
B/SB-171	C61400		65 (450)	35	108	35	90Cu-7Al-3Fe	Plate & sheet > 2 in. – 5 in. (51 mm – 127 mm), incl.
B/SB-171	C61400		70 (485)	35	108	35	90Cu-7Al-3Fe	Plate & sheet ≤ 2 in. (51 mm)
B/SB-171	C63000		80 (550)	35	108	35	81Cu-10Al-5Ni-3Fe	Plate & sheet > $3\frac{1}{2}$ in. – 5 in. (89 mm – 127 mm), incl.
B/SB-171	C63000		85 (585)	35	108	35	81Cu-10Al-5Ni-3Fe	Plate & sheet > 2 in. – 3.5 in. (51 mm – 89 mm), incl.
B/SB-171	C63000		90 (620)	35	108	35	81Cu-10Al-5Ni-3Fe	Plate & sheet ≤ 2 in. (51 mm)
B/SB-171	C70600		40 (275)	34	107	34	90Cu-10Ni	Plate & sheet
B/SB-171	C71500		45 (310)	34	107	34	70Cu-30Ni	Plate & sheet > 2.5 in. – 5 in. (64 mm – 127 mm), incl.
B/SB-171	C71500		50 (345)	34	107	34	70Cu-30Ni	Plate & sheet ≤ 2.5 in. (64 mm)
B/SB-187	C10200	060	28 (195)	31	107	31	99.95Cu-P	Rod & bar
B/SB-187	C11000	060	28 (195)	31	107	31	99.9Cu	Rod & bar
B/SB-209	A91060	1060	8 (55)	21	104	21	99.60Al	Plate & sheet
B/SB-209	A91100	1100	11 (76)	21	104	21	99.0Al-Cu	Plate & sheet
B/SB-209	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Plate & sheet

			Gre		rrous/Nor	QW/QB-4 nferrous P tals for Qu		
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	d)	
B/SB-209	A93004	3004	22 (150)	22	104	22.2	Al-Mn-Mg	Plate & sheet
B/SB-209	A95052	5052	25 (170)	22	105	22.3	Al-2.5Mg	Plate & sheet
B/SB-209	A95083	5083	36 (250)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 7 in 8 in. (178 mm - 203 mm), incl.
B/SB-209	A95083	5083	37 (255)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 5 in. – 7 in. (127 mm – 178 mm), incl.
B/SB-209	A95083	5083	38 (260)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 3 in 5 in. (76 mm - 127 mm), incl.
B/SB-209	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 1.5 in 3 in. (38 mm - 76 mm), incl.
B/SB-209	A95083	5083	40 (275)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 0.05 in 1.5 in. (1.3 mm - 38 mm), incl.
B/SB-209	A95086 A95154	5086	35 (240) 30 (205)	25 22	105 105	22.4 22.4	Al-4.0Mg-Mn Al-3.5Mg	Plate & sheet Plate & sheet
B/SB-209 B/SB-209	A95154 A95254	5154 5254	30 (205) 30 (205)	22	105	22.4	Al-3.5Mg	Plate & sheet
B/SB-209	A95454	5454	31 (215)	22	105	22.3	Al-2.7Mg-Mn	Plate & sheet
B/SB-209	A95456	5456	38 (260)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 7 in. – 8 in. (178 mm – 203 mm), incl.
B/SB-209	A95456	5456	39 (270)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 5 in 7 in. (127 mm - 178 mm), incl.
B/SB-209	A95456	5456	40 (275)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 3 in. – 5 in. (76 mm – 127 mm), incl.
B/SB-209	A95456	5456	41 (285)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 1.5 in. – 3 in. (38 mm – 76 mm), incl.
B/SB-209	A95456	5456	42 (290)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 0.05 in. – 1.5 in. (1.3 mm – 38 mm), incl.
B/SB-209	A95652	5652	25 (170)	22	105	22.3	Al-2.5Mg	Plate & sheet
B/SB-209	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Plate & sheet
B/SB-209		Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Plate & sheet > 0.05 in. < 0.5 in. (> 1.3 mm < 13 mm)
B/SB-209		Alclad 3003	14 (97)	21	104		Al-Mn-Cu	Plate & sheet ≥ 0.5 in. – 3 in. (13 mm – 76 mm), incl.
B/SB-209		Alclad 3004	21 (145)	22	104		Al-Mn-Mg	Plate & sheet > 0.05 in. < 0.5 in. (> 1.3 mm < 13 mm)

			Gr		rrous/Nor	QW/QB-4 nferrous P tals for Qu		
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	d)	
B/SB-209		Alclad 3004	22 (150)	22	104		Al-Mn-Mg	Plate & sheet ≥ 0.5 in. – 3 in. (13 mm – 76 mm), incl.
B/SB-209		Alclad 6061	24 (165)	23	105		Al-Mg-Si-Cu	Plate & sheet
B/SB-209	A95050	5050	18 (125)	21	105	22.2	Al-1.5Mg	Plate & sheet
B/SB-210	A91060	1060	8.5 (59)	21	104	21	99.60Al	Smls. tube
B/SB-210		Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Smls. tube
B/SB-210	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Smls. tube
B/SB-210	A95052	5052	25 (170)	22	105	22.3	Al-2.5Mg	Smls. tube
B/SB-210	A95154	5154	30 (205)	22	105	22.4	Al-3.5Mg	Smls. tube
B/SB-210	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Smls. tube
B/SB-210	A96063	6063	17 (115)	23	105	23.1	Al-Mg-Si	Smls. tube
B210	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Smls. tube
B210	A95086	5086	35 (240)	25	105	22.4	Al-4.0Mg-Mn	Smls. tube
B210	A95456	5456	41 (285)	25	105	22.4	Al-5.1Mg-Mn	Smls. tube
B/SB-211	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Bar, rod & wire
B/SB-221	A91060	1060	8.5 (59)	21	104	21	99.60Al	Bar, rod & shapes
B/SB-221	A91100	1100	11 (76)	21	104	21	99.0Al-Cu	Bar, rod & shapes
B/SB-221	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Bar, rod & shapes
B/SB-221	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Bar, rod & shapes
B/SB-221	A95154	5154	30 (205)	22	105	22.4	Al-3.5Mg	Bar, rod & shapes
B/SB-221	A95454	5454	31 (215)	22	105	22.3	Al-2.7Mg-Mn	Bar, rod & shapes
B/SB-221	A95456	5456	41 (285)	25	105	22.4	Al-5.1Mg-Mn	Bar, rod & shapes
B/SB-221	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Bar, rod & shapes
B/SB-221	A96063	6063	17 (115)	23	105	23.1	Al-Mg-Si	Bar, rod & shapes
B/SB-234	A91060	1060	8.5 (59)	21	104	21	99.60Al	Smls. tube
B/SB-234		Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Smls. tube
B/SB-234	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Smls. tube
B/SB-234	A95052	5052	25 (170)	22	105	22.3	Al-2.5Mg	Smls. tube
B/SB-234	A95454	5454	31 (215)	22	105	22.3	Al-2.7Mg-Mn	Smls. tube
B/SB-234	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Smls. tube
A/SA-240	S31277		112 (770)	45	111	8.2	27Ni-22Cr-7Mo-Mn-Cu	Plate, sheet & strip

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)										
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608					
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form			
					Nonf	errous (Cont'o	d)				
B/SB-241	A91060	1060	8.5 (59)	21	104	21	99.60Al	Smls. pipe & tube			
B/SB-241	A91100	1100	11 (76)	21	104	21	99.0Al-Cu	Smls. pipe & tube			
B/SB-241		Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Smls. pipe & tube			
B/SB-241	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Smls. pipe & tube			
B/SB-241	A95052	5052	25 (170)	22	105	22.3	Al-2.5Mg	Smls. pipe & tube			
B/SB-241	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Smls. pipe & tube			
B/SB-241	A95086	5086	35 (240)	25	105	22.4	Al-4.0Mg-Mn	Smls. pipe & tube			
B/SB-241	A95454	5454	31 (215)	22	105	22.3	Al-2.7Mg-Mn	Smls. pipe & tube			
B/SB-241	A95456	5456	41 (285)	25	105	22.4	Al-5.1Mg-Mn	Smls. pipe & tube			
B/SB-241	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Smls. pipe & tube			
B/SB-241	A96063	6063	17 (115)	23	105	23.1	Al-Mg-Si	Smls. pipe & tube			
B/SB-247	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Forgings			
B/SB-247	A95083	5083	38 (260)	25	105	22.4	Al-4.4Mg-Mn	Forgings			
B/SB-247	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Forgings			
B/SB-265	R50250	1	35 (240)	51	115	51	Ti	Plate, sheet & strip			
B/SB-265	R50400	2	50 (345)	51	115	51	Ti	Plate, sheet & strip			
B/SB-265	R50400	2H	58 (400)	51	115		Ti	Plate, sheet & strip			
B/SB-265	R50550	3	65 (450)	52	115	52	Ti	Plate, sheet & strip			
B/SB-265	R52250	11	35 (240)	51	115	51	Ti–Pd	Plate, sheet & strip			
B/SB-265	R52252	17	35 (240)	51		51	Ti-Pd	Plate, sheet & strip			
B/SB-265	R52254	27	35 (240)	51	115	51	Ti–Ru	Plate, sheet & strip			
B/SB-265	R52400	7	50 (345)	51	115	51	Ti–Pd	Plate, sheet & strip			
B/SB-265	R52400	7H	58 (400)	51	115		Ti–Pd	Plate, sheet & strip			
B/SB-265	R52402	16	50 (345)	51	115	51	Ti–Pd	Plate, sheet & strip			
B/SB-265	R52402	16H	58 (400)	51	115		Ti-Pd	Plate, sheet & strip			
B/SB-265	R52404	26	50 (345)	51	115	51	Ti–Ru	Plate, sheet & strip			
B/SB-265	R52404	26H	58 (400)	51	115		Ti–Ru	Plate, sheet & strip			
B/SB-265	R53400	12	70 (485)	52	115	52	Ti-0.3Mo-0.8Ni	Plate, sheet & strip			
B/SB-265	R56320	9	90 (620)	53	115	53	Ti-3Al-2.5V	Plate, sheet & strip			
B/SB-265	R56323	28	90 (620)	53	115	53	Ti-3Al-2.5V-0.1Ru	Plate, sheet & strip			
B/SB-271	C95200		65 (450)	35	108	35	88Cu-9Al-3Fe	Castings			
B/SB-271	C95400		75 (515)	35	108	35	85Cu-11Al-4Fe	Castings			

			Gr		rrous/Nor		22 -Numbers ıalification (Cont'd)	
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	d)	
B280	C10200	102	30 (205)	31	107	31	99.95Cu-P	Smls. tube
B280	C12000	120	30 (205)	31	107	31	99.9Cu-P	Smls. tube
B280	C12200	122	30 (205)	31	107	31	99.9Cu-P	Smls. tube
B/SB-283	C11000	Cu	33 (230)	31	107	31	99.9Cu	Forgings
B/SB-283	C37700	Forging brass	46 (315)		107	NA	60Cu-38Zn-2Pb	Forgings > 1.5 in. (38 mm)
B/SB-283	C37700	Forging brass	50 (345)		107	NA	60Cu-38Zn-2Pb	Forgings ≤ 1.5 in. (38 mm)
B/SB-283	C46400	Naval brass	64 (440)	32	107	32.2	60Cu-39Zn-Sn	Forgings
B/SB-283	C65500	High Si bronze	52 (360)	33	107	31	97Cu-3Si	Forgings
B/SB-283	C67500	Mn bronze	72 (495)	32	107	32.2	59Cu-39Zn-Fe-Sn	Forgings
B302	C12000		30 (205)	31	107	31	99.9Cu-P	Pipe
B302	C12200		30 (205)	31	107	31	99.9Cu-P	Pipe
B/SB-308	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Shapes
B/SB-315	C65500		50 (345)	33	107	33	97Cu-3Si	Smls. pipe & tube
B/SB-333	N10001		100 (690)	44	112	44	62Ni-28Mo-5Fe	Plate, sheet & strip ≥ 0.1875 in. – 2.5 in. (5 mm – 64 mm), incl.
B/SB-333	N10001		115 (795)	44	112	44	62Ni-28Mo-5Fe	Plate, sheet & strip < 0.1875 in. (5 mm)
B/SB-333	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Plate, sheet & strip
B/SB-333	N10665		110 (760)	44	112	44	65Ni-28Mo-2Fe	Plate, sheet & strip
B/SB-333	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Plate, sheet & strip
B/SB-335	N10001		100 (690)	44	112	44	62Ni-28Mo-5Fe	Rod > 1.5 in 3.5 in. (38 mm - 89 mm), incl.
B/SB-335	N10001		115 (795)	44	112	44	62Ni-28Mo-5Fe	Rod \ge 0.3125 in. – 1.5 in. (8 mm – 38 mm), incl.
B/SB-335	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Rod
B/SB-335	N10665		110 (760)	44	112	44	65Ni-28Mo-2Fe	Rod
B/SB-335	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Rod
B/SB-338	R50250	1	35 (240)	51	115	51	Ti	Smls. & welded tube
B/SB-338	R50400	2	50 (345)	51	115	51	Ti	Smls. & welded tube
B/SB-338	R50400	2H	58 (400)	51	115		Ti	Smls. & welded tube
B/SB-338	R50550	3	65 (450)	52	115	52	Ti	Smls. & welded tube
B/SB-338	R52400	7	50 (345)	51	115	51	Ti–Pd	Smls. & welded tube
B/SB-338	R52400	7H	58 (400)	51	115		Ti–Pd	Smls. & welded tube
B/SB-338	R52402	16	50 (345)	51	115	51	Ti-Pd	Smls. & welded tube
B/SB-338	R52402	16H	58 (400)	51	115		Ti–Pd	Smls. & welded tube

			Gro		rrous/Noi	QW/QB-4 nferrous P tals for Qu		
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	d)	
B/SB-338	R52404	26	50 (345)	51	115	51	Ti–Ru	Smls. & welded tube
B/SB-338	R52404	26H	58 (400)	51	115		Ti–Ru	Smls. & welded tube
, B/SB-338	R53400	12	70 (485)	52	115	52	Ti-0.3Mo-0.8Ni	Smls. & welded tube
, B/SB-338	R56320	9	90 (620)	53	115	53	Ti-3Al-2.5V	Smls. & welded tube
B/SB-338	R56323	28	90 (620)	53	115	53	Ti-3Al-2.5V-0.1Ru	Smls. & welded tube
B345	A91060	1060	8.5 (59)	21	104	21	99.60Al	Smls. pipe & tube
B345	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Smls. pipe & tube
B345	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Smls. pipe & tube
B345	A95086	5086	35 (240)	25	105	22.4	Al-4.0Mg-Mn	Smls. pipe & tube
B345	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Smls. pipe & tube
B345	A96063	6063	17 (115)	23	105	23.1	Al–Mg–Si	Smls. pipe & tube
B/SB-348	R50250	1	35 (240)	51	115	51	Ti	Bars & billets
B/SB-348	R50400	2	50 (345)	51	115	51	Ti	Bars & billets
B/SB-348	R50400	2H	58 (400)	51	115		Ti	Bars & billets
B/SB-348	R50550	3	65 (450)	52	115	52	Ti	Bars & billets
B/SB-348	R52400	7	50 (345)	51	115	51	Ti–Pd	Bars & billets
B/SB-348	R52400	7H	58 (400)	51	115		Ti–Pd	Bars & billets
B/SB-348	R52402	16H	58 (400)	51	115		Ti–Pd	Bars & billets
B/SB-348	R52404	26	50 (345)	51	115	51	Ti–Ru	Bars & billets
B/SB-348	R52404	26H	58 (400)	51	115		Ti–Ru	Bars & billets
B/SB-348	R53400	12	70 (485)	52	115	52	Ti-0.3Mo-0.8Ni	Bars & billets
B/SB-348	R52402	16	50 (345)	51	115	51	Ti–Pd	Bars & billets
B/SB-348	R56320	9	90 (620)	53	115	53	Ti-3Al-2.5V	Bars & billets
B/SB-348	R56323	28	90 (620)	53	115	53	Ti-3Al-2.5V-0.1Ru	Bars & billets
A/SA-351	N08603	HT30	65 (450)	45	111	45	35Ni-15Cr-0.5Mo	Castings
A/SA-351	J94651	CN3MN	80 (550)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Castings
A/SA-351	N08007	CN7M	62 (425)	45	111	8.2	28Ni-19Cr-Cu-Mo	Castings
A/SA-351	N08151	CT15C	63 (435)	45	111	45	32Ni-45Fe-20Cr-Cb	Castings
B/SB-359	C12200		30 (205)	31	107	31	99.9Cu-P	Smls. tube
B/SB-359	C44300		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube
B/SB-359	C44400		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube
B/SB-359	C44500		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)										
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608					
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form			
					Nonfe	errous (Cont'	d)				
B/SB-359	C70600		40 (275)	34	107	34	90Cu-10Ni	Smls. tube			
B/SB-359	C71000		45 (310)	34	107	34	80Cu-20Ni	Smls. tube			
B/SB-359	C71500		52 (360)	34	107	34	70Cu-30Ni	Smls. tube			
B361	A91060	WP1060	8.5 (59)	21	104	21	99.60Al	Fittings			
B361	A91100	WP1100	11 (76)	21	104	21	99.0Al-Cu	Fittings			
B361	A83003	WP Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Fittings			
B361	A93003	WP3003	14 (97)	21	104	22.1	Al-Mn-Cu	Fittings			
B361	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Fittings			
B361	A95154	5154	30 (205)	22	105	22.3	Al-3.5Mg	Fittings			
B361	A96061	WP6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Fittings			
B361	A96063	WP6063	17 (115)	23	105	23.1	Al-Mg-Si	Fittings			
B/SB-363	R50250	WPT 1	35 (240)	51	115	51	Ti	Smls. & welded fittings			
B/SB-363	R50400	WPT 2	50 (345)	51	115	51	Ti	Smls. & welded fittings			
B/SB-363	R50550	WPT 3	65 (450)	52	115	52	Ti	Smls. & welded fittings			
B/SB-363	R52400	WPT 7	50 (345)	51	115	51	Ti–Pd	Smls. & welded fittings			
B/SB-363	R52400	WPT 7H	58 (400)	51	115		Ti–Pd	Smls. & welded fittings			
B/SB-363	R52402	WPT 16	50 (345)	51	115		Ti–Pd	Smls. & welded fittings			
B/SB-363	R52402	WPT 16H	58 (400)	51	115		Ti–Pd	Smls. & welded fittings			
B/SB-363	R52404	WPT 26	50 (345)	51	115	51	Ti–Ru	Smls. & welded fittings			
B/SB-363	R52404	WPT 26H	58 (400)	51	115		Ti–Ru	Smls. & welded fittings			
B/SB-363	R53400	WPT 12	70 (485)	52	115	52	Ti-0.3Mo-0.8Ni	Smls. & welded fittings			
B/SB-363	R56320	WPT 9	90 (620)	53	115	53	Ti-3Al-2.5V	Smls. & welded fittings			
B/SB-363	R56323	WPT28	90 (620)	53	115	53	Ti-3Al-2.5V-0.1Ru	Smls. & welded fittings			
B/SB-366	N02200		55 (380)	41	110	41	99.0Ni	Fittings			
B/SB-366	N02201		50 (345)	41	110	41	99.0Ni–Low C	Fittings			
B/SB-366	N04400		70 (485)	42	110	42	67Ni-30Cu	Fittings			
B/SB-366	N06002		100 (690)	43	111	43	47Ni-22Cr-18Fe-9Mo	Fittings			
B/SB-366	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Fittings			
B/SB-366	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Fittings			
B/SB-366	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Fittings			
B/SB-366	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Fittings			
B/SB-366	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Fittings			
B/SB-366	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Fittings			

			Gro		rous/Noi	QW/QB-4 nferrous P tals for Qu		
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form
						errous (Cont'o	· ·	
B/SB-366	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Fittings
B/SB-366	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Fittings
B/SB-366	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Fittings
B/SB-366	N06455		100 (690)	43	111	43	61Ni-15Mo-16Cr	Fittings
B/SB-366	N06600		80 (550)	43	111	43	72Ni-15Cr-8Fe	Fittings
B/SB-366	N06625		110 (760)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Fittings
B/SB-366	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Fittings
B/SB-366	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Fittings
B/SB-366	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Fittings
B/SB-366	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Fittings
B/SB-366	N08330		70 (485)	46	111	45	35Ni-19Cr-1.25Si	Fittings
B/SB-366	N08367		95 (655)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Fittings > $\frac{3}{16}$ in. (5 mm)
B/SB-366	N08367		100 (690)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Fittings $\leq \frac{3}{16}$ in. (5 mm)
B/SB-366	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Fittings
B/SB-366	N08825		85 (585)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Fittings
B/SB-366	N08925		87 (600)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Fittings
B/SB-366	N10001		100 (690)	44	112	44	62Ni-28Mo-5Fe	Fittings
B/SB-366	N10003		100 (690)	44	112	44	70Ni-16Mo-7Cr-5Fe	Fittings
B/SB-366	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Fittings
B/SB-366	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Fittings
B/SB-366	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Fittings
B/SB-366	N10665	•••	110 (760)	44	112	44	65Ni-28Mo-2Fe	Fittings
B/SB-366	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Fittings
B/SB-366	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Fittings
B/SB-366	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Fittings
B/SB-366	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Fittings
B/SB-366	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Fittings
B/SB-367	R50400	Gr. C-2	50 (345)	51	115	51	Ti	Castings
B/SB-367	R50550	Gr. C-3	65 (450)	52	115	52	Ti	Castings
B/SB-369	C96200		45 (310)	34	107	34	87.5Cu-10Ni-Fe-Mn	Castings
B/SB-381	R50250	F-1	35 (240)	51	115	51	Ti	Forgings

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)										
Succ. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form			
Spec. No.	UNS NO.	Glaue	(MFA)	r-no.		errous (Cont'	· · ·	Flouter Form			
B/SB-381	R50400	F-2	50 (345)	51	115	51	Ti	Forgings			
B/SB-381	R50400	F-2H	58 (400)	51	115		Ti	Forgings			
B/SB-381	R50550	F-3	65 (450)	52	115	52	Ti	Forgings			
B/SB-381	R52400	F-7	50 (345)	51	115	51	Ti–Pd	Forgings			
,								0.0			
B/SB-381	R52400	F-7H	58 (400)	51	115		Ti–Pd	Forgings			
B/SB-381	R52402	F-16	50 (345)	51	115	51	Ti-Pd	Forgings			
B/SB-381	R52402	F-16H	58 (400)	51	115		Ti-Pd	Forgings			
B/SB-381	R52404 R52404	F-26	50 (345)	51	115	51	Ti–Ru Ti–Ru	Forgings			
B/SB-381	K52404	F-26H	58 (400)	51	115		I I-RU	Forgings			
B/SB-381	R53400	F-12	70 (485)	52	115	52	Ti-0.3Mo-0.8Ni	Forgings			
B/SB-381	R56320	F-9	90 (620)	53	115	53	Ti-3Al-2.5V	Forgings			
B/SB-381	R56323	F-28	90 (620)	53	115	53	Ti-3Al-2.5V-0.1Ru	Forgings			
B/SB-395	C10200		30 (205)	31	107	31	99.95Cu-P	Smls. tube			
B/SB-395	C12000		30 (205)	31	107	31	99.9Cu-P	Smls. tube			
B/SB-395	C12200		30 (205)	31	107	31	99.9Cu-P	Smls. tube			
B/SB-395	C14200		30 (205)	31	107	31	99.4Cu-As-P	Smls. tube			
B/SB-395	C19200		38 (260)	31	107	31	99.7Cu-Fe-P	Smls. tube			
B/SB-395	C23000		40 (275)	32	107	32.1	85Cu-15Zn	Smls. tube			
B/SB-395	C44300		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06As	Smls. tube			
B/SB-395	C44400		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06Sb	Smls. tube			
B/SB-395	C44500		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06P	Smls. tube			
B/SB-395	C60800		50 (345)	35	108	35	95Cu-5Al	Smls. tube			
B/SB-395	C68700		50 (345)	32	108	32.2	78Cu-20Zn-2Al	Smls. tube			
B/SB-395	C70600		40 (275)	34	107	34	90Cu-10Ni	Smls. tube			
B/SB-395	C71000		45 (310)	34	107	34	80Cu-20Ni	Smls. tube			
B/SB-395	C71500		52 (360)	34	107	34	70Cu-30Ni	Smls. tube			
B/SB-407	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Smls. pipe & tube			
B/SB-407	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Smls. pipe & tube			
B/SB-407	N08801		65 (450)	45	111	45	32Ni-45Fe-20.5Cr-Ti	Smls. pipe & tube			
B/SB-407	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Smls. pipe & tube			
B/SB-407	N08811		65 (450)	45	111	45	33Ni-42Fe-21Cr-Al-Ti	Smls. pipe & tube			
B/SB-408	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Rod & bar			
B/SB-408	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Rod & bar			

_	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
Spog No	UNS No.	Alloy, Type, or Grade		Welding P-No.	Brazing P-No.	ISO 15608 Crown	Nominal Composition	Product Form				
Spec. No.	UNS NO.	Grade	(MPa)	P-NO.	· · · · ·	Group errous (Cont'o	· ·	Product Form				
B/SB-408	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Rod & bar				
B/SB-408	N08810 N08811		65 (450)	45	111	45	33Ni-42Fe-21Cr-Al-Ti	Rod & bar				
B/SB-409	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Plate, sheet & strip				
B/SB-409	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Plate, sheet & strip				
B/SB-409	N08810		65 (450)	45	111	45 45	33Ni-42Fe-21Cr	Plate, sheet & strip				
B/SB-409	N08811		65 (450)	45	111	45	33Ni-42Fe-21Cr-Al-Ti	Plate, sheet & strip				
B/SB-423	N08825		75 (515)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Smls. pipe & tube				
B/SB-424	N08825		85 (585)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Plate, sheet & strip				
B/SB-425	N08825		85 (585)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Rod & bar				
B/SB-434	N10003		100 (690)	44	112	44	70Ni-16Mo-7Cr-5Fe	Plate, sheet & strip				
B/SB-434	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Plate, sheet & strip				
B/SB-435	N06002		95 (655)	43	111	43	47Ni-22Cr-9Mo-18Fe	Plate, sheet & strip				
B/SB-435	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Plate, sheet & strip				
B/SB-435	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Plate, sheet, & strip				
B/SB-435	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Plate, sheet & strip				
B/SB-443	N06625	2	100 (690)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Plate, sheet & strip				
B/SB-443	N06625	1	110 (760)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Plate, sheet & strip				
B/SB-444	N06625	1	120 (825)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Smls. pipe & tube				
B/SB-444	N06625	2	100 (690)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Smls. pipe & tube				
B/SB-446	N06625	1	120 (825)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Rod & bar				
B/SB-446	N06625	2	100 (690)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Rod & bar				
B/SB-462	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Forgings				
B/SB-462	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Forgings				
B/SB-462	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Forgings				
B/SB-462	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Forgings				
B/SB-462	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Forgings				
B/SB-462	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Forgings				
B/SB-462	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5N	Forgings				
B/SB-462	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Forgings				
B/SB-462	N08031		94 (650)	45	111	45	31Ni-33Fe-22Cr-6.5Mo-Cu-N	Forgings				
B/SB-462	N08367		95 (655)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Forgings				

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)											
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form			
<u> </u>				<u>.</u>	Nonfe	errous (Cont'	- !				
B/SB-462	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Forgings			
B/SB-462	N10629		110 (760)	44	112	44	66Ni–28Mo–3Fe–1.3Cr–0.25Al	Forgings			
B/SB-462	N10665		110 (760)	44	112	44	65Ni–28Mo–2Fe	Forgings			
B/SB-462	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Forgings			
B/SB-462	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Forgings			
B/SB-463	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Plate, sheet & strip			
B/SB-463	N08024		80 (550)	45	111	45	37Ni-33Fe-23Cr-4Mo	Plate, sheet & strip			
B/SB-463	N08026		80 (550)	45	111	45	35Ni-30Fe-24Cr-6Mo-3Cu	Plate, sheet & strip			
B/SB-464	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Welded pipe			
B/SB-464	N08024		80 (550)	45	111	45	37Ni-33Fe-23Cr-4Mo	Welded pipe			
B/SB-464	N08026		80 (550)	45	111	45	35Ni-30Fe-24Cr-6Mo-3Cu	Welded pipe			
B/SB-466	C70600		38 (260)	34	107	34	90Cu-10Ni	Smls. pipe & tube			
B/SB-466	C71000		45 (310)	34	107	34	80Cu-20Ni	Smls. pipe & tube			
B/SB-466	C71500		52 (360)	34	107	34	70Cu-30Ni	Smls. pipe & tube			
B/SB-467	C70600		38 (260)	34	107	34	90Cu-10Ni	Welded pipe > 4.5 in. (114 mm) O.D.			
B/SB-467	C70600		40 (275)	34	107	34	90Cu-10Ni	Welded pipe \leq 4.5 in. (114 mm) O.D.			
B/SB-467	C71500		45 (310)	34	107	34	70Cu-30Ni	Welded pipe > 4.5 in. (114 mm) O.D.			
B/SB-467	C71500		50 (345)	34	107	34	70Cu-30Ni	Welded pipe ≤ 4.5 in. (114 mm) 0.D.			
B/SB-468	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Welded tube			
B/SB-468 B/SB-468	N08024 N08026		80 (550) 80 (550) 80 (550)	45 45	111 111 111	45 45	37Ni-33Fe-23Cr-4Mo 35Ni-30Fe-24Cr-6Mo-3Cu	Welded tube Welded tube			
B/SB-473	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Bar			
B491	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Extruded tubes			
B/SB-493	R60702	R60702	55 (380)	61	117	61	99.2Zr	Forgings			
B/SB-493	R60705	R60705	70 (485)	62	117	62	95.5Zr + 2.5Cb	Forgings			
A/SA-494	N04020	M35-2	65 (450)	42	110	42	67Ni-30Cu-Fe-Si	Castings			
A/SA-494	N06040	CY40	70 (485)	43	111	43	72Ni-15Cr-8Fe-Si	Castings			
A/SA-494	N08826	CU5MCuC	75 (515)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Castings			
A/SA-494	N24130	M30C	65 (450)	42	110	42	67Ni-30Cu-2Fe-Cb	Castings			
A/SA-494 A/SA-494	N24135 N26022	M35-1 CX2MW	65 (450) 80 (550)	42 43	110 110 111	42 44	67Ni-30Cu-2Fe-Cb 59Ni-22Cr-14Mo-4Fe-3W	Castings Castings			

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)										
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form			
Speel Hol		Graue	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I NOI		errous (Cont'	•	Flouret Form			
A/SA-494	N26455	CW2M	72 (495)	43	111	43	66Ni-16Mo-16Cr-Fe-W	Castings			
A/SA-494	N26625	CW6MC	70 (485)	43	111	43	60Ni-21.5Cr-9Mo-4Cb-Fe	Castings			
A/SA-494	N30007	N7M	76 (525)	44	112	44	65Ni-31.5Mo-1.5Fe-Cr	Castings			
A/SA-494	N30107	CW6M	72 (495)	44	112	44	56Ni-19Mo-18Cr-2Fe	Castings			
B/SB-505	C95200		68 (470)	35	108	35	88Cu-9Al-3Fe	Castings			
B/SB-511	N08330		70 (485)	46	111	45	35Ni-19Cr-1.25Si	Bars & shapes			
B/SB-514	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Welded pipe			
B/SB-514	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Welded pipe			
B/SB-514	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Welded pipe			
B/SB-515	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Welded tube			
B/SB-515	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Welded tube			
B/SB-515	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Welded tube			
B/SB-515	N08811		65 (450)	45	111	45	33Ni-42Fe-21Cr-Al-Ti	Welded tube			
B/SB-516	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Welded tube			
B/SB-516	N06600		80 (550)	43	111	43	72Ni–15Cr–8Fe	Welded tube			
B/SB-517	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Welded pipe			
B/SB-517	N06600		80 (550)	43	111	43	72Ni–15Cr–8Fe	Welded pipe			
B/SB-523	R60702	R60702	55 (380)	61	117	61	99.2Zr	Smls. & welded tube			
B/SB-523	R60705	R60705	80 (550)	62	117	62	95.5Zr + 2.5Cb	Smls. & welded tube			
B/SB-535	N08330		70 (485)	46	111	45	35Ni-19Cr-1.25Si	Smls. pipe & tube			
B/SB-536	N08330		70 (485)	46	111	45	35Ni-19Cr-1.25Si	Plate, sheet & strip			
B/SB-543	C12200		30 (205)	31	107	31	99.9Cu-P	Welded tube			
B/SB-543	C19400		45 (310)	31	107	31	97.5Cu-P	Welded tube			
B/SB-543	C23000		40 (275)	32	107	32.1	85Cu-15Zn	Welded tube			
B/SB-543	C44300		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06As	Welded tube			
B/SB-543	C44400		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06Sb	Welded tube			
B/SB-543	C44500		45 (310)	32	107	32.2	71Cu-28Zn-1Sn-0.06P	Welded tube			
B/SB-543	C68700		50 (345)	32	108	32.2	78Cu-20Zn-2Al	Welded tube			
B/SB-543	C70400		38 (260)	34	107	34	95Cu-5Ni	Welded tube			
B/SB-543	C70600		40 (275)	34	107	34	90Cu-10Ni	Welded tube			

			Gr		rrous/Noi	QW/QB-4 nferrous P tals for Qu		
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
- /22 - 2 /2						errous (Cont'o		
B/SB-543	C71500		52 (360)	34	107	34	70Cu-30Ni	Welded tube
B547	A83003	Alclad 3003	13 (90)	21	104		Al-Mn-Cu	Welded tube
B547	A93003	3003	14 (97)	21	104	22.1	Al-Mn-Cu	Welded tube
B547	A95083	5083	40 (275)	25	105	22.4	Al-4.4Mg-Mn	Welded tube
B547	A95454	5454	31 (215)	22	105	22.3	Al-2.7Mg-Mn	Welded tube
B547	A96061	6061	24 (165)	23	105	23.1	Al-Mg-Si-Cu	Welded tube
B/SB-550	R60702	R60702	55 (380)	61	117	61	99.2Zr	Bar & wire
B/SB-550	R60705	R60705	80 (550)	62	117	62	95.5Zr + 2.5Cb	Bar & wire
B/SB-551	R60702	R60702	55 (380)	61	117	61	99.2Zr	Plate, sheet & strip
B/SB-551	R60705	R60705	80 (550)	62	117	62	95.5Zr + 2.5Cb	Plate, sheet & strip
B/SB-564	N04400		70 (485)	42	110	42	67Ni-30Cu	Forgings
B/SB-564	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Forgings
B/SB-564	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Forgings
B/SB-564	N06045		90 (620)	46	111	45	46Ni-27Cr-23Fe-2.75Si	Forgings
B/SB-564	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Forgings
B/SB-564	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Forgings
B/SB-564	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Forgings
B/SB-564	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Forgings
B/SB-564	N06600		80 (550)	43	111	43	72Ni-15Cr-8Fe	Forgings
B/SB-564	N06617		95 (655)	43	111	46	52Ni-22Cr-13Co-9Mo	Forgings
B/SB-564	N06625		110 (760)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Forgings > 4 in. – 10 in. (102 mm – 254 mm), incl.
B/SB-564	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Forgings
B/SB-564	N06625		120 (825)	43	111	43	60Ni-22Cr-9Mo-3.5Cb	Forgings ≤ 4 in. (102 mm)
B/SB-564	N06690		85 (585)	43	111	43	58Ni-29Cr-9Fe	Forgings
B/SB-564	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Forgings
B/SB-564	N08120		90 (620)	45	111	45	37Ni-33Fe-25Cr	Forgings
B/SB-564	N08367		95 (655)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Forgings
B/SB-564	N08800		75 (515)	45	111	45	33Ni-42Fe-21Cr	Forgings
B/SB-564	N08810		65 (450)	45	111	45	33Ni-42Fe-21Cr	Forgings
B/SB-564	N08811		65 (450)	45	111	44	33Ni-42Fe-21Cr-Al-Ti	Forgings
B/SB-564	N08825		85 (585)	45	111	45	42Ni-21.5Cr-3Mo-2.3Cu	Forgings
B/SB-564	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Forgings
B/SB-564	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Forgings

			Gre		rrous/Nor		422 P-Numbers ualification (Cont'd)	
			Minimum	Welding	Brazing			
		Alloy, Type, or		DN	DN	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonfe	errous (Cont	'd)	
B/SB-564	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Forgings
B/SB-564	N10665		110 (760)	44	112		65Ni-28Mo-2Fe	Forgings
B/SB-564	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Forgings
B/SB-564	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Forgings
B/SB-564	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Forgings
B/SB-572	N06002		95 (655)	43	111	43	47Ni-22Cr-9Mo-18Fe	Rod
B/SB-572	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Rod
B/SB-572	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Rod
B/SB-572	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Rod
B/SB-573	N10003		100 (690)	44	112	44	70Ni-16Mo-7Cr-5Fe	Rod
B/SB-573	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Rod
B/SB-574	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Rod
, B/SB-574	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Rod
B/SB-574	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Rod
B/SB-574	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Rod
B/SB-574	N06210		100 (690)	43	111		60Ni–19Cr–19Mo–1.8Ta	Rod
B/SB-574	N06455		100 (690)	43	111	43	61Ni-16Mo-16Cr	Rod
B/SB-574	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Rod
B/SB-574	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Rod
B/SB-575	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Plate, sheet & strip
B/SB-575	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Plate, sheet & strip
B/SB-575	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Plate, sheet & strip
B/SB-575	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Plate, sheet & strip
B/SB-575	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Plate, sheet & strip
B/SB-575	N06455		100 (690)	43	111	43	61Ni-16Mo-16Cr	Plate, sheet & strip
B/SB-575	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Plate, sheet & strip
B/SB-575	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Plate, sheet & strip
B/SB-581	N06007		85 (585)	45	111	43	47Ni-22Cr-19Fe-6Mo	Rod > 0.75 in 3.5 in. (19 mm - 89 mm), incl.
B/SB-581	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Rod, 0.3125 in 0.75 in. (8 mm - 19 mm), incl
B/SB-581	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Rod
B/SB-581	N06975		85 (585)	45	111	45	49Ni-25Cr-18Fe-6Mo	Rod
B/SB-581	N06985		85 (585)	45	111	45	47Ni-22Cr-20Fe-7Mo	Rod > 0.75 in 3.5 in. (19 mm - 89 mm), incl.
B/SB-581	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Rod, 0.3125 in 0.75 in. (8 mm - 19 mm), incl

			Gre		rrous/Nor	QW/QB-4 nferrous P als for Qu		
		Alloy, Type, or		Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
			04 ((50)			errous (Cont'		
B/SB-581	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Rod
B/SB-582	N06007		85 (585)	45	111	43	47Ni-22Cr-19Fe-6Mo	Plate, sheet & strip > 0.75 in. – 2.5 in. (19 mm – 64 mm), incl.
B/SB-582	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Plate, sheet & strip ≤ 0.75 in. (19 mm)
B/SB-582	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Plate, sheet & strip
B/SB-582	N06975		85 (585)	45	111	45	49Ni-25Cr-18Fe-6Mo	Plate, sheet & strip
B/SB-582	N06985		85 (585)	45	111	45	47Ni-22Cr-20Fe-7Mo	Plate, sheet & strip > 0.75 in. – 2.5 in. (19 mm – 64 mm), incl.
B/SB-582	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Plate, sheet & strip \leq 0.75 in. (19 mm)
B/SB-599	N08700		80 (550)	45	111	8.2	25Ni-47Fe-21Cr-5Mo	Plate, sheet & strip
B/SB-619	N06002		100 (690)	43	111	43	47Ni-22Cr-9Mo-18Fe	Welded pipe
B/SB-619	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Welded pipe
B/SB-619	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Welded pipe
B/SB-619	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Welded pipe
B/SB-619	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Welded pipe
B/SB-619	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Welded pipe
B/SB-619	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Welded pipe
B/SB-619	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Welded pipe
B/SB-619	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Welded pipe
B/SB-619	N06455		100 (690)	43	111	43	61Ni-16Mo-16Cr	Welded pipe
B/SB-619	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Welded pipe
B/SB-619	N06975		85 (585)	45	111	45	49Ni-25Cr-18Fe-6Mo	Welded pipe
B/SB-619	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Welded pipe
B/SB-619	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Welded pipe
B/SB-619	N08320		75 (515)	45	111	8.2	26Ni-22Cr-5Mo-Ti	Welded pipe
B/SB-619 B/SB-619	N10001 N10242		100 (690) 105 (725)	44 44	112 112	44 44	62Ni–28Mo–5Fe 62Ni–25Mo–8Cr–2Fe	Welded pipe Welded pipe
B/SB-619	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Welded pipe
B/SB-619	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Welded pipe
B/SB-619	N10665		110 (760)	44	112	44	65Ni-28Mo-2Fe	Welded pipe
B/SB-619	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Welded pipe
B/SB-619	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Welded pipe
B/SB-619	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Welded pipe

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)							
		Alloy, Type, or	Minimum Specified Tensile, ksi	Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	· · · · · · · · · · · · · · · · · · ·	
B/SB-619	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Welded pipe
B/SB-620	N08320		75 (515)	45	111	8.2	26Ni-22Cr-5Mo-Ti	Plate, sheet & strip
B/SB-621	N08320		75 (515)	45	111	8.2	26Ni-22Cr-5Mo-Ti	Rod
B/SB-622	N06002		100 (690)	43	111	43	47Ni-22Cr-9Mo-18Fe	Smls. pipe & tube
B/SB-622	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Smls. pipe & tube
B/SB-622	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Smls. pipe & tube
B/SB-622	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Smls. pipe & tube
B/SB-622	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Smls. pipe & tube
B/SB-622	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Smls. pipe & tube
B/SB-622	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Smls. pipe & tube
B/SB-622	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Smls. pipe & tube
B/SB-622	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Smls. pipe & tube
B/SB-622	N06455		100 (690)	43	111	43	61Ni-16Mo-16Cr	Smls. pipe & tube
B/SB-622	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Smls. pipe & tube
B/SB-622	N06975		85 (585)	45	111	45	49Ni-25Cr-18Fe-6Mo	Smls. pipe & tube
B/SB-622	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Smls. pipe & tube
B/SB-622	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Smls. pipe & tube
B/SB-622	N08320		75 (515)	45	111	8.2	26Ni-22Cr-5Mo-Ti	Smls. pipe & tube
B/SB-622	N10001		100 (690)	44	112	44	62Ni-28Mo-5Fe	Smls. pipe & tube
B/SB-622	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Smls. pipe & tube
B/SB-622	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Smls. pipe & tube
B/SB-622	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Smls. pipe & tube
B/SB-622	N10665		110 (760)	44	112	44	65Ni-28Mo-2Fe	Smls. pipe & tube
B/SB-622	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Smls. pipe & tube
B/SB-622	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Smls. pipe & tube
B/SB-622	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Smls. pipe & tube
B/SB-622	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Smls. pipe & tube
B/SB-625	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Co-N	Plate, sheet & strip
B/SB-625	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Plate, sheet & strip
B/SB-625	N08904		71 (490)	45	111	8.2	44Fe-25Ni-21Cr-Mo	Plate, sheet & strip
B/SB-625	N08925		87 (600)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Plate, sheet & strip

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)							
		Alloy, Type, or		Welding	Brazing	ISO 15608		
Spec. No.	UNS No.	Grade	(MPa)	P-No.	P-No.	Group	Nominal Composition	Product Form
	Reason		100 (550)			errous (Cont'		
B/SB-625	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Plate, sheet & strip
B/SB-626	N06002		100 (690)	43	111	43	47Ni-22Cr-9Mo-18Fe	Welded tube
B/SB-626	N06007		90 (620)	45	111	43	47Ni-22Cr-19Fe-6Mo	Welded tube
B/SB-626	N06022		100 (690)	43	111	44	55Ni-21Cr-13.5Mo	Welded tube
B/SB-626	N06030		85 (585)	45	111	45	40Ni-29Cr-15Fe-5Mo	Welded tube
B/SB-626	N06035		85 (585)	43	111		58Ni-33Cr-8Mo	Welded tube
B/SB-626	N06059		100 (690)	43	111	43	59Ni-23Cr-16Mo	Welded tube
B/SB-626	N06200		100 (690)	43	111	43	59Ni-23Cr-16Mo-1.6Cu	Welded tube
B/SB-626	N06210		100 (690)	43	111		60Ni-19Cr-19Mo-1.8Ta	Welded tube
, B/SB-626	N06230		110 (760)	43	111	43	53Ni-22Cr-14W-Co-Fe-Mo	Welded tube
, B/SB-626	N06455		100 (690)	43	111	43	61Ni-16Mo-16Cr	Welded tube
B/SB-626	N06686		100 (690)	43	111	43	58Ni-21Cr-16Mo-3.5W	Welded tube
B/SB-626	N06975		85 (585)	45	111	45	49Ni-25Cr-18Fe-6Mo	Welded tube
B/SB-626	N06985		90 (620)	45	111	45	47Ni-22Cr-20Fe-7Mo	Welded tube
, B/SB-626	N08031		94 (650)	45	111	45	31Ni-31Fe-27Cr-7Mo	Welded tube
, B/SB-626	N08320		75 (515)	45	111	8.2	26Ni-22Cr-5Mo-Ti	Welded tube
, B/SB-626	N10001		100 (690)	44	112	44	62Ni–28Mo–5Fe	Welded tube
B/SB-626	N10242		105 (725)	44	112	44	62Ni-25Mo-8Cr-2Fe	Welded tube
B/SB-626	N10276		100 (690)	43	111	43	54Ni-16Mo-15Cr	Welded tube
B/SB-626	N10629		110 (760)	44	112	44	66Ni-28Mo-3Fe-1.3Cr-0.25Al	Welded tube
B/SB-626	N10665		110 (760)	44	112	44	65Ni-28Mo-2Fe	Welded tube
B/SB-626	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Welded tube
B/SB-626	R30556		100 (690)	45	111	45	21Ni-30Fe-22Cr-18Co-3Mo-3W	Welded tube
B/SB-626	N10675		110 (760)	44	112	44	65Ni-29.5Mo-2Fe-2Cr	Welded tube
B/SB-626	N12160		90 (620)	46		46	37Ni-30Co-28Cr-2.7Si	Welded tube
B/SB-649	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Bar & wire
B/SB-649	N08904		71 (490)	45	111	8.2	44Fe-25Ni-21Cr-Mo	Bar & wire
B/SB-649	N08925		87 (600)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Bar & wire
B/SB-649	R20033		109 (750)	45	111	45	33Cr-31Ni-32Fe-1.5Mo-0.6Cu-N	Bar & wire
B/SB-653	R60702	R60702	55 (380)	61	117		99.2Zr	Seamless & welded fittings
B/SB-658	R60702	R60702	55 (380)	61	117	61	99.2Zr	Smls. & welded pipe
B/SB-658	R60705	R60705	80 (550)	62	117	62	95.5Zr + 2.5Cb	Smls. & welded pipe

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)							
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form
<u></u>			()			errous (Cont'd	· · · · ·	
B/SB-668	N08028		73 (505)	45	111	45	31Ni-31Fe-29Cr-Mo	Smls. tube
B/SB-672	N08700		80 (550)	45	111	8.2	25Ni-47Fe-21Cr-5Mo	Bar & wire
B/SB-673	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Welded pipe
B/SB-673 B/SB-673	N08904 N08925		71 (490) 87 (600)	45 45	111 111	8.2 8.2	44Fe-25Ni-21Cr-Mo 25Ni-20Cr-6Mo-Cu-N	Welded pipe Welded pipe
B/SB-674 B/SB-674	N08904 N08925		71 (490) 87 (600)	45 45	111 111	8.2 8.2	44Fe-25Ni-21Cr-Mo 25Ni-20Cr-6Mo-Cu-N	Welded tube Welded tube
B/SB-674	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Welded tube
B/SB-675 B/SB-675	N08367 N08367		95 (655) 100 (690)	45 45	111 111	8.2 8.2	46Fe-24Ni-21Cr-6Mo-Cu-N 46Fe-24Ni-21Cr-6Mo-Cu-N	Welded pipe > $\frac{3}{16}$ in. (5 mm) Welded pipe $\leq \frac{3}{16}$ in. (5 mm)
B/SB-676 B/SB-676	N08367 N08367		95 (655) 100 (690)	45 45	111 111	8.2 8.2	46Fe-24Ni-21Cr-6Mo-Cu-N 46Fe-24Ni-21Cr-6Mo-Cu-N	Welded tube > $\frac{3}{16}$ in. (5 mm) Welded tube $\leq \frac{3}{16}$ in. (5 mm)
B/SB-677	N08926		94 (650)	45	111	8.2	25Ni-20Cr-6Mo-Cu-N	Smls. pipe & tube
B/SB-677 B/SB-677	N08904 N08925		71 (490) 87 (600)	45 45	111 111	8.2 8.2	44Fe-25Ni-21Cr-Mo 25Ni-20Cr-6Mo-Cu-N	Smls. pipe & tube Smls. pipe & tube
B/SB-688 B/SB-688	N08367 N08367		95 (655) 100 (690)	45 45	111 111	8.2 8.2	46Fe-24Ni-21Cr-6Mo-Cu-N 46Fe-24Ni-21Cr-6Mo-Cu-N	Plate, sheet & strip > $\frac{3}{16}$ in. (4.8 mm) Plate, sheet & strip $\leq \frac{3}{16}$ in. (4.8 mm)
B/SB-690 B/SB-690	N08367 N08367		95 (655) 100 (690)	45 45	111 111	8.2 8.2	46Fe-24Ni-21Cr-6Mo-Cu-N 46Fe-24Ni-21Cr-6Mo-Cu-N	Smls. pipe & tube > $\frac{3}{16}$ in. (4.8 mm) Smls. pipe & tube < $\frac{3}{16}$ in. (4.8 mm)
B/SB-691	N08367		95 (655)	45	111	8.2	46Fe-24Ni-21Cr-6Mo-Cu-N	Rod, bar & wire
B/SB-704 B/SB-704	N06625 N08825		120 (825) 85 (585)	43 45	111 111	43 45	60Ni-22Cr-9Mo-3.5Cb 42Ni-21.5Cr-3Mo-2.3Cu	Welded tube Welded tube
B/SB-705 B/SB-705	N06625 N08825		120 (825) 85 (585)	43 45	111 111	43 45	60Ni-22Cr-9Mo-3.5Cb 42Ni-21.5Cr-3Mo-2.3Cu	Welded pipe Welded pipe
B/SB-709	N08028		73 (505)	45	111	45	31Ni-31Fe-29Cr-Mo	Plate, sheet & strip
B/SB-710	N08330		70 (485)	46	111	45	35Ni-19Cr-1.25Si	Welded pipe

Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)								
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form
		Grade	(!*!1 U)	I NOI		errous (Cont	•	House Form
B/SB-729	N08020		80 (550)	45	111	45	35Ni-35Fe-20Cr-Cb	Smls. pipe & tube
B725	N02200		55 (380)	41	110	41	99.0Ni	Welded pipe
B/SB-815	R31233		120 (825)	49			Co-26Cr-9Ni-5Mo-3Fe-2W	Rod
B/SB-818	R31233		120 (825)	49			Co-26Cr-9Ni-5Mo-3Fe-2W	Plate, sheet & strip
3819	C12200	C12200	30 (205)		107	NA	99.9Cu-P	Wrought pipe
B/SB-861 B/SB-861 B/SB-861 B/SB-861 B/SB-861 B/SB-861 B/SB-861 B/SB-861 B/SB-861	R50250 R50400 R50500 R52400 R52400 R52402 R52402 R52402	1 2 2H 3 7 7H 16 16H	35 (240) 50 (345) 58 (400) 65 (450) 50 (345) 58 (400) 50 (345) 58 (400)	51 51 52 51 51 51 51 51	115 115 115 115 115 115 115 115	51 51 52 51 	Ti Ti Ti Ti-Pd Ti-Pd Ti-Pd Ti-Pd	Smls. pipe Smls. pipe Smls. pipe Smls. pipe Smls. pipe Smls. pipe Smls. pipe Smls. pipe
B/SB-861 B/SB-861	R52404 R52404	26 26H	50 (345) 58 (400)	51 51	115 115	51 	Ti–Ru Ti–Ru	Smls. pipe Smls. pipe
B/SB-861 B/SB-861 B/SB-861	R53400 R56320 R56323	12 9 28	70 (485) 90 (620) 90 (620)	52 53 53	115 115 115	52 53 53	Ti-0.3Mo-0.8Ni Ti-3Al-2.5V Ti-3Al-2.5V-0.1Ru	Smls. pipe Smls. pipe Smls. pipe
B/SB-862 B/SB-862 B/SB-862 B/SB-862	R50250 R50400 R50400 R50550	1 2 2H 3	35 (240) 50 (345) 58 (400) 65 (450)	51 51 51 52	115 115 115 115	51 51 52	Tì Tì Tì Tì	Welded pipe Welded pipe Welded pipe Welded pipe
B/SB-862 B/SB-862 B/SB-862 B/SB-862 B/SB-862	R52400 R52400 R52402 R52402 R52402	7 7H 16 16H 26	50 (345) 58 (400) 50 (345) 58 (400) 50 (345)	51 51 51 51 51 51	115 115 115 115 115 115	51 51	Ti-Pd Ti-Pd Ti-Pd Ti-Pd Ti-Pd Ti-Ru	Welded pipe Welded pipe Welded pipe Welded pipe Welded pipe
B/SB-862 B/SB-862 B/SB-862 B/SB-862 B/SB-862	R52404 R53400 R56320 R56323	26H 12 9 28	58 (400) 70 (485) 90 (620) 90 (620)	51 52 53 53	115 115 115 115	52 53 53	Ti-Ru Ti-0.3Mo-0.8Ni Ti-3Al-2.5V Ti-3Al-2.5V-0.1Ru	Welded pipe Welded pipe Welded pipe Welded pipe Welded pipe

	Table QW/QB-422 Ferrous/Nonferrous P-Numbers Grouping of Base Metals for Qualification (Cont'd)							
Spec. No.	UNS No.	Alloy, Type, or Grade	Minimum Specified Tensile, ksi (MPa)	Welding P-No.	Brazing P-No.	ISO 15608 Group	Nominal Composition	Product Form
					Nonf	errous (Cont'	d)	
B/SB-928	A95083	5083	39 (270)	25	105	22.4	Al-4.4Mg-Mn	Plate & sheet > 1.5 in. – 3 in. (38 mm – 76 mm), incl.
B/SB-928	A95086	5086	35 (240)	25	105	22.4	Al-4.0Mg-Mn	Plate & sheet > 0.05 in. – 2 in. (1.3 mm – 51 mm), incl.
B/SB-928	A95456	5456	41 (285)	25	105	22.4	Al-5.1Mg-Mn	Plate & sheet > 1.5 in 3 in. (38 mm - 76 mm), incl.
B/SB-956	C70600		40 (275)	34	107		90Cu-10Ni	Finned welded tube
B/SB-956	C71500		52 (360)	34	107		70Cu-30Ni	Finned welded tube
SB/EN 1706		EN AC 43000	22 (150)	26	104		Al-10Si-Mg	Casting
B16.18	C83600		30 (205)		107	NA	5Sn-5Zn-5Pb	Cast fittings
B16.18	C83800		30 (205)		107	NA	4Sn-6.5Zn-6Pb	Cast fittings
B16.18	C84400		29 (200)		107	NA	2.5Sn-8.5Zn-7Pb	Cast fittings
B16.22	C10200		30 (205)		107	NA	99.95Cu-P	Wrought pipe fittings
B16.22	C12000		30 (205)		107	NA	99.9Cu-P	Wrought pipe fittings
B16.22	C12200		30 (205)		107	NA	99.9Cu-P	Wrought pipe fittings
B16.22	C23000		40 (275)	•••	107	NA	85Cu-15Zn	Wrought pipe fittings
B16.50	C10200		30 (205)		107		99.95Cu-P	Wrought pipe fittings
B16.50	C12000		30 (205)		107		99.9Cu-P	Wrought pipe fittings
B16.50	C12200		30 (205)		107		99.9Cu-P	Wrought pipe fittings
B16.50	C23000		40 (275)		107		85Cu-15Zn	Wrought pipe fittings

QW-423 ALTERNATE BASE MATERIALS FOR WELDER QUALIFICATION

(13) **QW-423.1** Base metal used for welder qualification may be substituted for the metal specified in the WPS in accordance with the following table. When a base metal shown in the left column is used for welder qualification, the welder is qualified to weld all combinations of base metals shown in the right column, including unassigned metals of similar chemical composition to these metals.

Base Metals for Welder	Qualified Production Base
Qualification	Metals
P-No. 1 through P-No. 15F,	P-No. 1 through P-No. 15F,
P-No. 34, or P-No. 41	P-No. 34, and P-No. 41
through P-No. 49	through P-No. 49
P-No. 21 through P-No. 26	P-No. 21 through P-No. 26
P-No. 51 through P-No. 53 or	P-No. 51 through P-No. 53 and
P-No. 61 or P-No. 62	P-No. 61 and P-No. 62

QW-423.2 Metals used for welder qualification conforming to national or international standards or specifications may be considered as having the same P-Number as an assigned metal provided it meets the mechanical and chemical requirements of the assigned metal. The base metal specification and corresponding P-Number shall be recorded on the qualification record.

QW-424 BASE METALS USED FOR PROCEDURE QUALIFICATION

QW-424.1 Base metals are assigned P-Numbers in Table QW/QB-422; metals that do not appear in Table QW/QB-422 are considered to be unassigned metals except as otherwise defined for base metals having the same UNS numbers. Unassigned metals shall be identified in the WPS and on the PQR by specification, type and grade, or by chemical analysis and mechanical properties. The minimum tensile strength shall be defined by the organization that specified the unassigned metal if the tensile strength of that metal is not defined by the material specification.

Base Metal(s) Used for Procedure Qualification Coupon	Base Metals Qualified
One metal from a P-Number to any metal from the same P-Number	Any metals assigned that P-Number
One metal from P-No. 15E to any metal from P-No. 15E	Any P-No. 15E or 5B metal to any metal assigned P-No. 15E or 5B
One metal from a P-Number to any metal from any other P- Number	Any metal assigned the first P-Number to any metal assigned the second P-Number

Table continued

Base Metal(s) Used for Procedure Qualification Coupon	Base Metals Qualified
One metal from P-No. 15E to any metal from any other P-Number	Any P-No. 15E or 5B metal to any metal assigned the second P-Number
One metal from P-No. 3 to any metal from P-No. 3	Any P-No. 3 metal to any metal assigned P-No. 3 or 1
One metal from P-No. 4 to any metal from P-No. 4	Any P-No. 4 metal to any metal assigned P-No. 4, 3, or 1
One metal from P-No. 5A to any metal from P-No. 5A	Any P-No. 5A metal to any metal assigned P-No. 5A, 4, 3, or 1
One metal from P-No. 5A to a metal from P-No. 4, or P-No. 3, or P-No. 1	Any P-No. 5A metal to any metal assigned to P-No. 4, 3, or 1
One metal from P-No. 4 to a metal from P-No. 3 or P-No. 1	Any P-No. 4 metal to any metal assigned to P-No. 3 or 1
Any unassigned metal to the same unassigned metal	The unassigned metal to itself
Any unassigned metal to any P-Number metal	The unassigned metal to any metal assigned to the same P-Number as the qualified metal
Any unassigned metal to any metal from P-No. 15E	The unassigned metal to any metal assigned P-No. 15E or 5B
Any unassigned metal to any other unassigned metal	The first unassigned metal to the second unassigned metal

QW-424.2 For welds joining base metals to weld metal buildup or corrosion-resistant weld metal overlay, the buildup or overlay portion of the joint may be substituted in the test coupon by any P-Number base material that nominally matches the chemical analysis of the buildup or overlay.

QW-430 F-NUMBERS

QW-431 GENERAL

The following F-Number grouping of electrodes and welding rods in Table QW-432 is based essentially on their usability characteristics, which fundamentally determine the ability of welders to make satisfactory welds with a given filler metal. This grouping is made to reduce the number of welding procedure and performance qualifications, where this can logically be done. The grouping does not imply that base metals or filler metals within a group may be indiscriminately substituted for a metal that was used in the qualification test without consideration of the compatibility of the base and filler metals from the standpoint of metallurgical properties, postweld heat treatment design and service requirements, and mechanical properties.

F-Numbers Grouping of Electrodes and Welding Rods for Qualification					
F-No.	ASME Specification	AWS Classification	UNS No.		
	Steel and St	eel Alloys			
1	SFA-5.1	EXX20			
1	SFA-5.1	EXX22			
1	SFA-5.1	EXX24			
1	SFA-5.1	EXX27			
1	SFA-5.1	EXX28			
1	SFA-5.4	EXXX(X)-26			
1	SFA-5.5	EXX20-X			
1	SFA-5.5	EXX27-X			
r		EVV10			
2	SFA-5.1	EXX12			
2	SFA-5.1	EXX13			
2	SFA-5.1	EXX14			
2	SFA-5.1	EXX19			
2	SFA-5.5	E(X)XX13-X			
3	SFA-5.1	EXX10			
3	SFA-5.1	EXX11			
3	SFA-5.5	E(X)XX10-X			
3	SFA-5.5	E(X)XX11-X			
4	SFA-5.1	EXX15			
4	SFA-5.1	EXX16			
4	SFA-5.1	EXX18			
4	SFA-5.1	EXX18M			
4	SFA-5.1	EXX48			
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-15			
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-16			
4	SFA-5.4 other than austenitic and duplex	EXXX(X)-17			
4	SFA-5.5	E(X)XX15-X			
4	SFA-5.5	E(X)XX16-X			
4	SFA-5.5	E(X)XX18-X			
4	SFA-5.5	E(X)XX18M			
4 4	SFA-5.5 SFA-5.5	E(X)XX18M1 E(X)XX45			
5	SFA-5.4 austenitic and duplex	EXXX(X)-15			
5	SFA-5.4 austenitic and duplex	EXXX(X)-16			
5	SFA-5.4 austenitic and duplex	EXXX(X)-17			
6	SFA-5.2	All classifications			
6	SFA-5.9	All classifications			
6	SFA-5.17	All classifications			
6	SFA-5.18	All classifications			
6	SFA-5.20	All classifications			
6	SFA-5.22	All classifications			
6	SFA-5.23	All classifications			
6	SFA-5.25	All classifications			
6	SFA-5.26	All classifications			
6	SFA-5.28	All classifications			
6	SFA-5.29	All classifications			
6	SFA-5.29 SFA-5.30	INMs-X			
6	SFA-5.30 SFA-5.30	INDIS-X IN5XX			
6	SFA-5.30 SFA-5.30	IN3XX(X)			

(**13**)

	F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)					
F-No.	ASME Specification	AWS Classification	UNS No.			
	Alumin	um and Aluminum Alloys				
21	SFA-5.3	E1100	A91100			
21	SFA-5.3	E3003	A93003			
21	SFA-5.10	ER1100	A91100			
21	SFA-5.10	ER1188	A91188			
21	SFA-5.10	R1100	A91100			
21	SFA-5.10	R1188	A91188			
22	SFA-5.10	ER5183	A95183			
22	SFA-5.10	ER5356	A95356			
22	SFA-5.10	ER5554	A95554			
22	SFA-5.10	ER5556	A95556			
22	SFA-5.10	ER5654	A95654			
22	SFA-5.10	R5183	A95183			
22	SFA-5.10 SFA-5.10	R5356	A95356			
22	SFA-5.10 SFA-5.10	R5556	A95554			
22	SFA-5.10 SFA-5.10	R5556	A95554 A95556			
22	SFA-5.10 SFA-5.10	R5556 R5654	A95556 A95654			
23	SFA-5.3	E4043	A94043			
23 23		E4043 ER4009				
	SFA-5.10		A94009			
23 23	SFA-5.10	ER4010	A94010			
23 23	SFA-5.10 SFA-5.10	ER4043 ER4047	A94043 A94047			
23	SFA-5.10	ER4145	A94145			
23	SFA-5.10	ER4643	A94643			
23	SFA-5.10	ER4943	A94943			
23	SFA-5.10	R4009	A94009			
23	SFA-5.10	R4010	A94010			
23	SFA-5.10	R4011	A94011			
23	SFA-5.10	R4043	A94043			
23	SFA-5.10	R4047	A94047			
23	SFA-5.10	R4145	A94145			
23	SFA-5.10	R4643	A94643			
23	SFA-5.10	R4943	A94943			
24	SFA-5.10	R-A356.0	A13560			
24	SFA-5.10	R-A357.0	A13570			
24	SFA-5.10	R-C355.0	A33550			
24	SFA-5.10	R206.0	A02060			
24	SFA-5.10	R357.0	A03570			
25	SFA-5.10	ER2319	A92319			
25	SFA-5.10	R2319	A92319			
		per and Copper Alloys				
21			W60189			
31 21	SFA-5.6	ECu				
31	SFA-5.7	ERCu	C18980			
32	SFA-5.6	ECuSi	W60656			
32	SFA-5.7	ERCuSi-A	C65600			
33	SFA-5.6	ECuSn-A	W60518			
33	SFA-5.6	ECuSn-C	W60521			
33	SFA-5.7	ERCuSn-A	WC51800			
33	SFA-5.7	ERCuSn-C	C52100			

F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)					
F-No.	ASME Specification	AWS Classification	UNS No.		
	Copper a	and Copper Alloys (Cont'd)			
34	SFA-5.6	ECuNi	W60715		
34 34	SFA-5.7	ERCuNi	C71580		
34 34	SFA-5.7 SFA-5.30	IN67	C71580		
35	SFA-5.8	RBCuZn-A	C47000		
35	SFA-5.8	RBCuZn-B	C68000		
35	SFA-5.8	RBCuZn-C	C68100		
35	SFA-5.8	RBCuZn-D	C77300		
36	SFA-5.6	ECuAl-A2	W60614		
36	SFA-5.6	ECuAl-B	W60619		
36	SFA-5.7	ERCuAl-A1	C61000		
36	SFA-5.7	ERCuAl-A2	C61800		
36	SFA-5.7 SFA-5.7	ERCuAl-A2 ERCuAl-A3	C62400		
30	5FA-5.7	ERCUAI-A3	C62400		
37	SFA-5.6	ECuMnNiAl	C60633		
37	SFA-5.6	ECuNiAl	C60632		
37	SFA-5.7	ERCuMnNiAl	C63380		
37	SFA-5.7	ERCuNiAl	C63280		
	Nic	ckel and Nickel Alloys			
41	SFA-5.11	ENi-1	W82141		
41	SFA-5.14	ERNi-1	N02061		
41	SFA-5.30	ING1	N02061		
41	5FA-5.30	1101	N02061		
42	SFA-5.11	ENiCu-7	W84190		
42	SFA-5.14	ERNiCu-7	N04060		
42	SFA-5.14	ERNiCu-8	N05504		
42	SFA-5.30	IN60	N04060		
43	SFA-5.11	ENiCr-4	W86172		
43	SFA-5.11	ENiCrCoMo-1	W86117		
43	SFA-5.11	ENiCrFe-1	W86132		
43	SFA-5.11	ENiCrFe-2	W86132 W86133		
43 43					
45	SFA-5.11	ENiCrFe-3	W86182		
43	SFA-5.11	ENiCrFe-4	W86134		
43	SFA-5.11	ENiCrFe-7	W86152		
43	SFA-5.11	ENiCrFe-9	W86094		
43	SFA-5.11	ENiCrFe-10	W86095		
43	SFA-5.11	ENiCrFe-12	W86025		
43	SFA-5.11	ENiCrMo-2	W86002		
43	SFA-5.11	ENiCrMo-3	W86112		
43	SFA-5.11	ENiCrMo-4	W80276		
43	SFA-5.11	ENiCrMo-5	W80002		
43	SFA-5.11	ENiCrMo-6	W86620		
43	SFA-5.11	ENICIMO-0 ENICrMo-7	W86625		
	5FA-5.11	EIVICI MU-7	W00433		
43	SFA-5.11	ENiCrMo-10	W86022		
43	SFA-5.11	ENiCrMo-12	W86032		
43	SFA-5.11	ENiCrMo-13	W86059		
43	SFA-5.11	ENiCrMo-14	W86026		
43	SFA-5.11	ENiCrMo-17	W86200		
43	SFA-5.11	ENiCrMo-18	W86650		
43	SFA-5.11	ENiCrMo-19	W86058		
43	SFA-5.11	ENICIMO-19 ENICrWMo-1	W86038 W86231		
43	SFA-5.14	ERNiCr-3	N06082		

	Table QW-432 F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)					
F-No.	ASME Specification	AWS Classification	UNS No.			
	Nicke	el and Nickel Alloys (Cont'd)				
43	SFA-5.14	ERNiCr-4	N06072			
43	SFA-5.14	ERNiCr-6	N06076			
43	SFA-5.14	ERNiCr-7	N06073			
43	SFA-5.14	ERNiCrCoMo-1	N06617			
43	SFA-5.14	ERNiCrFe-5	N06062			
43	SFA-5.14	ERNiCrFe-6	N07092			
43	SFA-5.14	ERNiCrFe-7	N06052			
43	SFA-5.14	ERNiCrFe-7A	N06054			
43	SFA-5.14	ERNiCrFe-8	N07069			
43	SFA-5.14	ERNiCrFe-11	N06601			
43	SFA-5.14	ERNiCrFe-12	N06025			
43	SFA-5.14	ERNiCrFe-13	N06055			
43	SFA-5.14	ERNiCrFe-14	N06043			
43	SFA-5.14	ERNiCrFeAl-1	N06693			
43	SFA-5.14	ERNiCrMo-2	N06002			
43	SFA-5.14	ERNiCrMo-3	N06625			
43	SFA-5.14	ERNiCrMo-4	N10276			
43	SFA-5.14	ERNiCrMo-7	N06455			
43	SFA-5.14	ERNiCrMo-10	N06022			
43	SFA-5.14	ERNiCrMo-13	N06059			
43	SFA-5.14	ERNiCrMo-14	N06686			
43	SFA-5.14	ERNiCrMo-16	N06057			
43	SFA-5.14	ERNiCrMo-17	N06200			
43	SFA-5.14	ERNiCrMo-18	N06650			
43	SFA-5.14	ERNiCrMo-19	N07058			
43	SFA-5.14	ERNiCrMo-20	N06660			
43	SFA-5.14	ERNiCrMo-21	N06205			
43	SFA-5.14	ERNiCrMo-22	N06035			
43	SFA-5.14	ERNiCrWMo-1	N06231			
43	SFA-5.30	IN52	N06052			
43 43	SFA-5.30 SFA-5.30	IN62 IN6A	N06062 N07092			
43 43	SFA-5.30 SFA-5.30	INDA IN82	N07092 N06082			
43 43	SFA-5.30 SFA-5.34	All classifications	NUUUUZ			
44	SFA-5.11	ENiMo-1	W80001			
44	SFA-5.11	ENiMo-3	W80004			
44	SFA-5.11	ENiMo-7	W80665			
44	SFA-5.11	ENiMo-8	W80008			
44	SFA-5.11	ENiMo-9	W80009			
44	SFA-5.11	ENiMo-10	W80675			
44	SFA-5.11	ENiMo-11	W80675			
44	SFA-5.14	ERNiMo-1	N10001			
44	SFA-5.14	ERNiMo-2	N10003			
44	SFA-5.14	ERNiMo-3	N10004			
44	SFA-5.14	ERNiMo-7	N10665			
44	SFA-5.14	ERNiMo-8	N10008			
44	SFA-5.14	ERNiMo-9	N10009			
44	SFA-5.14	ERNiMo-10	N10675			
44	SFA-5.14	ERNiMo-11	N10629			
44	SFA-5.14	ERNiMo-12	N10242			

F-No.	ASME Specification	AWS Classification	UNS No.
		Nickel and Nickel Alloys (Cont'd)	
45	SFA-5.11	ENiCrMo-1	W86007
45	SFA-5.11	ENiCrMo-9	W86985
45	SFA-5.11	ENiCrMo-11	W86030
45	SFA-5.14	ERNiCrMo-1	N06007
45	SFA-5.14	ERNiCrMo-8	N06975
45	SFA-5.14	ERNiCrMo-9	N06985
45	SFA-5.14	ERNiCrMo-11	N06030
45	SFA-5.14	ERNiFeCr-1	N08065
46	SFA-5.11	ENiCrFeSi-1	W86045
46	SFA-5.14	ERNiCrFeSi-1	N06045
46	SFA-5.14	ERNiCoCrSi-1	N12160
		Titanium and Titanium Alloys	
51	SFA-5.16	ERTi-1	R50100
51	SFA-5.16	ERTI-11	R50100 R52251
51	SFA-5.16	ERTi-13	R52231 R53423
51	SFA-5.16	ERTI-17	R53425 R52253
51	SFA-5.16	ERTI-27	R52255 R52255
51	SFA-5.16	ERTi-2	R50120
51	SFA-5.16	ERTi-7	R52401
51	SFA-5.16	ERTi-14	R53424
51	SFA-5.16	ERTi-16	R52403
51	SFA-5.16	ERTi-26	R52405
51	SFA-5.16	ERTi-30	R53531
51	SFA-5.16	ERTi-33	R53443
51	SFA-5.16	ERTi-3	R50125
51	SFA-5.16	ERTi-15A	R53416
51	SFA-5.16	ERTi-31	R53533
51	SFA-5.16	ERTi-34	R53444
52	SFA-5.16	ERTi-4	R50130
53	SFA-5.16	ERTi-9	R56320
53	SFA-5.16	ERTi-9ELI	R56321
53	SFA-5.16	ERTi-18	R56326
53	SFA-5.16	ERTi-28	R56324
54	SFA-5.16	ERTi-12	R53400
55	SFA-5.16	ERTi-5	R56400
55	SFA-5.16	ERTI-23	R56408
55	SFA-5.16	ERTI-29	R56414
55	SFA-5.16	ERTi-24	R56415
55	SFA-5.16	ERTI-24 ERTi-25	R56413
56	SFA-5.16	ERTi-32	R55112
		Zirconium and Zirconium Alloys	
61	SFA-5.24	ERZr2	R60702
61	SFA-5.24	ERZr3	R60704
61	SFA-5.24	ERZr4	R60705
		Hard-Facing Weld Metal Overlay	
71	SFA-5.13	ECoCr-A	W73006
71	SFA-5.13 SFA-5.13	ECOCI-A ECOCI-B	W73008 W73012

	Table QW-432 F-Numbers Grouping of Electrodes and Welding Rods for Qualification (Cont'd)					
F-No.	ASME Specification	AWS Classification	UNS No.			
	Hard-Facin	g Weld Metal Overlay (Cont'd)				
71	SFA-5.13	ECoCr-C	W73001			
71	SFA-5.13	ECoCr-E	W73021			
71	SFA-5.13	ECuAl-A2	W60617			
, 1	511 5.15					
71	SFA-5.13	ECuAl-B	W60619			
71	SFA-5.13	ECuAl-C	W60625			
71	SFA-5.13	ECuAl-D	W61625			
71	SFA-5.13	ECuAl-E	W62625			
71	SFA-5.13	ECuMnNiAl	W60633			
71	SFA-5.13	ECuNi	W60715			
71	SFA-5.13	ECuNiAl	W60632			
71	SFA-5.13	ECuSi	W60656			
71	SFA-5.13	ECuSn-A	W60518			
71	SFA-5.13	ECuSn-C	W60521			
71	SFA-5.13	EFe1	W74001			
71	SFA-5.13	EFe2	W74002			
71	SFA-5.13	EFe3	W74003			
71	SFA-5.13	EFe4	W74004			
71	SFA-5.13	EFe5	W75110			
71	SFA-5.13	EFe6	W77510			
71	SFA-5.13	EFe7	W77610			
71	SFA-5.13	EFeCr-A1A	W74011			
71	SFA-5.13	EFeCr-A2	W74012			
71	SFA-5.13	EFeCr-A3	W74013			
71	SFA-5.13	EFeCr-A4	W74014			
71	SFA-5.13	EFeCr-A5	W74014 W74015			
71	SFA-5.13 SFA-5.13	EFeCr-A6	W74015 W74016			
71	SFA-5.13	EFeCr-A0	W74018 W74017			
71	SFA-5.13	EFeCr-A8	W74017 W74018			
/1	511 5.15		W7 1010			
71	SFA-5.13	EFeCr-E1	W74211			
71	SFA-5.13	EFeCr-E2	W74212			
71	SFA-5.13	EFeCr-E3	W74213			
71	SFA-5.13	EFeCr-E4	W74214			
71	SFA-5.13	EFeMn-A	W79110			
71	SFA-5.13	EFeMn-B	W79310			
71	SFA-5.13	EFeMn-C	W79210			
71	SFA-5.13	EFeMn-D	W79210 W79410			
71	SFA-5.13	EFeMn-E	W79510			
71	SFA-5.13	EFeMn-F	W79610			
71	SFA-5.13	EFeMnCr	W79710			
71 71	SFA-5.13	ENiCr-C	W89606			
71 71	SFA-5.13	ENiCrFeCo	W83002			
71 71	SFA-5.13	ENICRM0-5A	W80002			
71	SFA-5.13	EWCX-12/30				
71	SFA-5.13	EWCX-20/30				
71	SFA-5.13	EWCX-30/40				
71	SFA-5.13	EWCX-40				
71	SFA-5.13	EWCX-40/120				
72	SFA-5.21	ERCCoCr-A	W73036			
72	SFA-5.21	ERCCoCr-B	W73042			
72	SFA-5.21	ERCCoCr-C	W73031			

F-No.	ASME Specification	AWS Classification	UNS No.
-		Hard-Facing Weld Metal Overlay (Cont'd)	
72	SFA-5.21	ERCCoCr-E	W73041
72	SFA-5.21	ERCCoCr-G	W73032
72	SFA-5.21	ERCCuAl-A2	W60618
72	SFA-5.21	ERCCuAl-A3	W60624
72	SFA-5.21	ERCCuAl-C	W60626
72	SFA-5.21	ERCCuAl-D	W61626
72	SFA-5.21	ERCCuAl-E	W62626
72	SFA-5.21	ERCCuSi-A	W60657
72	SFA-5.21	ERCCuSn-A	W60518
72	SFA-5.21	ERCCuSn-D	W60524
72	SFA-5.21	ERCFe-1	W74030
72	SFA-5.21 SFA-5.21	ERCFe-1A	W74030 W74031
72	SFA-5.21	ERCFe-2	W74032
72	SFA-5.21	ERCFe-3	W74033
72	SFA-5.21	ERCFe-5	W74035
72	SFA-5.21	ERCFe-6	W77530
72	SFA-5.21	ERCFe-8	W77538
72	SFA-5.21	ERCFeCr-A	W74531
72	SFA-5.21	ERCFeCr-A1A	W74530
72	SFA-5.21	ERCFeCr-A3A	W74533
72	SFA-5.21	ERCFeCr-A4	W74534
72	SFA-5.21	ERCFeCr-A5	W74535
72	SFA-5.21	ERCFeCr-A9	W74539
72	SFA-5.21	ERCFeCr-A10	W74540
72	SFA-5.21	ERCFeMn-C	W79230
72	SFA-5.21	ERCFeMn-F	W79630
72	SFA-5.21	ERCFeMn-G	W79231
72	SFA-5.21	EDCE_Mn H	W70222
72 72		ERCFeMn-H	W79232
72 72	SFA-5.21	ERCFeMnCr	W79730
72	SFA-5.21 SFA-5.21	ERCNICT-A	W89634
72	SFA-5.21 SFA-5.21	ERCNiCr-B ERCNiCr-C	W89635 W89636
72	SFA-5.21	ERCNiCrFeCo	W83032
72	SFA-5.21	ERCNiCrMo-5A	W80036
72	SFA-5.21	ERCoCr-A	R30006
72	SFA-5.21	ERCoCr-B	R30012
72	SFA-5.21	ERCoCr-C	R30001
72	SFA-5.21	ERCoCr-E	R30021
72	SFA-5.21	ERCoCr-F	R30002
72	SFA-5.21	ERCoCr-G	R30014
72	SFA-5.21	ERCuAl-A2	C61800
72	SFA-5.21	ERCuAl-A3	C62400
72	SFA-5.21	ERCuAl-C	C62580
72	SFA-5.21	ERCuAl-D	C62581
72	SFA-5.21	ERCUAI-D ERCUAI-E	C62582
72	SFA-5.21	ERCuSi-A	C65600
72	SFA-5.21 SFA-5.21	ERCUSI-A	C51800
72 72	SFA-5.21	ERCuSn-D	C52400
72	SFA-5.21 SFA-5.21	ERFe-1 ERFe-1A	T74000 T74001

		Table QW-432 F-Numbers	
F-No.	Grouping of Elect	rodes and Welding Rods for Qualification (AWS Classification	Cont'd) UNS No.
		Hard-Facing Weld Metal Overlay (Cont'd)	
72	SFA-5.21	ERFe-2	T74002
72	SFA-5.21	ERFe-3	T74002
12	SI'A-5.21	ERI/E-3	174003
72	SFA-5.21	ERFe-5	T74005
72	SFA-5.21	ERFe-6	T74006
72	SFA-5.21	ERFe-8	T74008
72	SFA-5.21	ERFeCr-A	
72	SFA-5.21	ERFeCr-A1A	
72	SFA-5.21	ERFeCr-A3A	
72	SFA-5.21	ERFeCr-A4	
72	SFA-5.21	ERFeCr-A5	
72	SFA-5.21	ERFeCr-A9	
72	SFA-5.21 SFA-5.21	ERFeCr-A10	
72	3FA-3.21	ERFect-A10	
72	SFA-5.21	ERFeMn-C	
72	SFA-5.21	ERFeMn-F	
72	SFA-5.21	ERFeMn-G	
72	SFA-5.21	ERFeMn-H	
72	SFA-5.21	ERFeMnCr	
72	SFA-5.21	ERNiCr-A	N99644
72	SFA-5.21	ERNiCr-B	N99645
72	SFA-5.21	ERNiCr-C	N99646
72	SFA-5.21	ERNiCr-D	N99647
72	SFA-5.21	ERNiCr-E	N99648
72	SFA-5.21	ERNiCrFeCo	F46100
72	SFA-5.21	ERNiCrMo-5A	N10006
72	SFA-5.21	ERWCX-20/30	
72	SFA-5.21	ERWCX-30/40	
72	SFA-5.21	ERWCX-40	
72	SFA-5.21	EDWCV 40/120	
		ERWCX-40/120	
72	SFA-5.21	RWCX-20/30	
72	SFA-5.21	RWCX-30/40	
72 72	SFA-5.21	RWCX-40	
72	SFA-5.21	RWCX-40/120	

QW-433 ALTERNATE F-NUMBERS FOR WELDER PERFORMANCE QUALIFICATION

The following tables identify the filler metal or electrode that the welder used during qualification testing as "Qualified With," and the electrodes or filler metals that the welder is qualified to use in production welding as "Qualified For." See Table QW-432 for the F-Number assignments.

Qualified With → Qualified For↓	F-No. 1 With Backing	F-No. 1 Without Backing	F-No. 2 With Backing	F-No. 2 Without Backing	F-No. 3 With Backing	F-No. 3 Without Backing	F-No. 4 With Backing	F-No. 4 Without Backing	F-No. 5 With Backing	F-No. 5 Without Backing
F-No. 1 With Backing	X	X	X	X	X	X	X	X	X	X
F-No. 1 Without Backing		х								
F-No. 2 With Backing			Х	Х	Х	Х	Х	Х		
F-No. 2 Without Backing				Х						
F-No. 3 With Backing					Х	Х	Х	Х		
F-No. 3 Without Backing						х				
F-No. 4 With Backing							Х	Х		
F-No. 4 Without Backing								х		
F-No. 5 With Backing									Х	Х
F-No. 5 Without Backing	_									х
	_	Qua	lified With			Qualified	For			
	A	ny F-No. 6			All F-No	o. 6 <mark>[Note (1</mark>	.)]			
	A	ny F-No. 21	through F-	No. 25	All F-No	. 21 throug	h F-No. 25			
	A	5	, F-No. 32, I -No. 36, or		5	e same F-Nu during the o				
	F-	No. 34 or a F-No. 46	ny F-No. 41	through	F-No. 34 F-No.	and all F-N 46	o. 41 throu	gh		
	A	ny F-No. 51	through F-	No. 55	All F-No	. 51 throug	h F-No. 55			
	A	ny F-No. 61			All F-No	. 61				
	A	ny F-No. 71	through F-	No. 72	-	e same F-Nu during the o				
		SFA Spe	ed weld me cification shall be c	but which	conforms		ysis listed			

QW-440 WELD METAL CHEMICAL COMPOSITION

QW-441 GENERAL

Identification of weld metal chemical composition designated on the PQR and WPS shall be as given in QW-404.5.

	Classification of Ferro	Classification of Ferrous Weld Metal Analysis for Procedure Qualification							
		Analysis, % [Note (1)] and [Note (2)]							
A-No.	Types of Weld Deposit	С	Cr	Мо	Ni	Mn	Si		
1	Mild Steel	0.20	0.20	0.30	0.50	1.60	1.00		
2	Carbon-Molybdenum	0.15	0.50	0.40-0.65	0.50	1.60	1.00		
3	Chrome (0.4% to 2%)-Molybdenum	0.15	0.40-2.00	0.40-0.65	0.50	1.60	1.00		
4	Chrome (2% to 4%)-Molybdenum	0.15	2.00-4.00	0.40-1.50	0.50	1.60	2.00		
5	Chrome (4% to 10.5%)-Molybdenum	0.15	4.00-10.50	0.40-1.50	0.80	1.20	2.00		
6	Chrome-Martensitic	0.15	11.00-15.00	0.70	0.80	2.00	1.00		
7	Chrome-Ferritic	0.15	11.00-30.00	1.00	0.80	1.00	3.00		
8	Chromium-Nickel	0.15	14.50-30.00	4.00	7.50-15.00	2.50	1.00		
9	Chromium-Nickel	0.30	19.00-30.00	6.00	15.00-37.00	2.50	1.00		
10	Nickel to 4%	0.15	0.50	0.55	0.80-4.00	1.70	1.00		
11	Manganese-Molybdenum	0.17	0.50	0.25-0.75	0.85	1.25-2.25	1.00		
12	Nickel-Chrome—Molybdenum	0.15	1.50	0.25-0.80	1.25-2.80	0.75-2.25	1.00		

Single values shown above are maximum.
 Only listed elements are used to determine A-numbers.

	Base Meta	Thickness <i>T</i> of al, Qualified, in. (mm) and [Note (2)]	. Maximum Thickness t of			ests Require Tests) <mark>[Not</mark> e	•
Thickness <i>T</i> of Test Coupon, Welded, in. (mm)	Min.	Max.	Deposited Weld Metal, Qualified, in. (mm) [Note (1)] and [Note (2)]	Tension, QW-150	Side Bend, <mark>QW-160</mark>	Face Bend, QW-160	Root Bend, <mark>QW-160</mark>
Less than $\frac{1}{16}$ (1.5)	Т	27	2 <i>t</i>	2		2	2
$\frac{1}{16}$ to $\frac{3}{8}$ (1.5 to 10), incl.	¹ / ₁₆ (1.5)	2T	2 <i>t</i>	2	[Note (5)]	2	2
Over ³ ⁄ ₈ (10), but less than ³ ⁄ ₄ (19)	³ / ₁₆ (5)	2T	2t	2	[Note (5)]	2	2
³ / ₄ (19) to less than 1 ¹ / ₂ (38)	³ / ₁₆ (5)	27	$2t$ when $t < \frac{3}{4}$ (19)	2 [Note (4)]	4		
³ / ₄ (19) to less than 1 ¹ / ₂ (38)	³ / ₁₆ (5)	2T	$2T$ when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		
1^{1}_{2} (38) to 6 (150), incl.	³ / ₁₆ (5)	8 (200) [Note (3)]	$2t$ when $t < \frac{3}{4}$ (19)	2 [Note (4)]	4		
1½ (38) to 6 (150), incl.	³ / ₁₆ (5)	8 (200) [Note (3)]	8 (200) [Note (3)] when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		
Over 6 (150) [Note (6)]	³ / ₁₆ (5)	1.33 <i>T</i>	$2t$ when $t < \frac{3}{4}(19)$	2 [Note (4)]	4		
Over 6 (150) [Note (6)]	³ / ₁₆ (5)	1.33 <i>T</i>	1.33 <i>T</i> when $t \ge \frac{3}{4}$ (19)	2 [Note (4)]	4		

QW-450 SPECIMENS QW-451 PROCEDURE QUALIFICATION THICKNESS LIMITS AND TEST SPECIMENS

NOTES:

(1) The following variables further restrict the limits shown in this table when they are referenced in QW-250 for the process under consideration: QW-403.9, QW-403.10, QW-404.32, and QW-407.4. Also, QW-202.2, QW-202.3, and QW-202.4 provide exemptions that supersede the limits of this table.

(2) For combination of welding procedures, see QW-200.4.

(3) For the SMAW, SAW, GMAW, PAW, and GTAW welding processes only; otherwise per Note (1) or 2*T*, or 2*t*, whichever is applicable.

(4) see QW-151.1, QW-151.2, and QW-151.3 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

(5) Four side-bend tests may be substituted for the required face- and root-bend tests, when thickness T is $\frac{3}{8}$ in. (10 mm) and over.

(6) For test coupons over 6 in. (150 mm) thick, the full thickness of the test coupon shall be welded.

(**13**)

	Table QW-451.2 Groove-Weld Tension Tests and Longitudinal-Bend Tests					
	Base Metal (mm) [No	iickness <i>T</i> of Qualified, in. te (1)] and e (2)]	Thickness t of Deposited Weld Metal Qualified, in. (mm) [Note (1)] and [Note (2)]	51	per of Tests Requined Bend Tests) [No	
Thickness <i>T</i> of Test Coupon Welded, in. (mm)	Min.	Max.	Max.	Tension, <mark>QW-150</mark>	Face Bend, QW-160	Root Bend, QW-160
Less than $\frac{1}{16}$ (1.5)	Т	27	2 <i>t</i>	2	2	2
$\frac{1}{16}$ to $\frac{3}{8}$ (1.5 to 10), incl.	¹ / ₁₆ (1.5)	2T	2t	2	2	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	2t	2	2	2

NOTES:

(1) The following variables further restrict the limits shown in this table when they are referenced in QW-250 for the process under consideration: QW-403.9, QW-403.10, QW-404.32, and QW-407.4. Also, QW-202.2, QW-202.3, and QW-202.4 provide exemptions that supersede the limits of this table.

(2) For combination of welding procedures, see QW-200.4.

Table QW-451.3 Fillet-Weld Tests

Type of Joint	Thickness of Test Coupons as Welded, in.	Range Qualified	Type and Number of Tests Required [QW-462.4(a) or QW-462.4(d)] Macro
Fillet	Per QW-462.4(a)	All fillet sizes on all base metal thicknesses and all diameters	5
Fillet	Per QW-462.4(d)		4

GENERAL NOTE: A production assembly mockup may be substituted in accordance with QW-181.1.1. When a production assembly mockup is used, the range qualified shall be limited to the fillet weld size, base metal thickness, and configuration of the mockup. Alternatively, multiple production assembly mockups may be qualified. The range of thickness of the base metal qualified shall be no less than the thickness of the thinner member tested and no greater than the thickness of the thicker member tested. The range for fillet weld sizes qualified shall be limited to no less than the smallest fillet weld tested and no greater than the largest fillet weld tested. The configuration of production assemblies shall be the same as that used in the production assembly mockup.

Table QW-451.4 Fillet Welds Qualified by Groove-Weld Tests					
Thickness <i>T</i> of Test Coupon (Plate or Pipe) as Welded	Range Qualified	Type and Number of Tests Required			
All groove tests	All fillet sizes on all base metal thicknesses and all diameters	Fillet welds are qualified when the groove weld is qualified in accordance with either QW-451.1 or QW-451.2 (see QW-202.2)			

(**13**)

QW-452 PERFORMANCE QUALIFICATION THICKNESS LIMITS AND TEST SPECIMENS

QW-452.1 Groove-Weld Test. The following tables identify the required type and number of tests and the thickness of weld metal qualified.

		QW-452.1(a) Specimens		
	Type and N	umber of Examina	tions and Test Specim	ens Required
Thickness of Weld Metal, in. (mm)	Visual Examination per QW-302.4	Side Bend QW-462.2 [Note (1)]	Face Bend QW-462.3(a) or QW-462.3(b) [Note (1)], [Note (2)]	Root Bend QW-462.3(a) or QW-462.3(b) [Note (1)], [Note (2)]
Less than $\frac{3}{8}$ (10)	Х		1	1
$\frac{3}{8}$ (10) to less than $\frac{3}{4}$ (19)	Х	2 [Note (3)]	[Note (3)]	[Note (3)]
³ / ₄ (19) and over	Х	2		

GENERAL NOTE: The "Thickness of Weld Metal" is the total weld metal thickness deposited by all welders and all processes in the test coupon exclusive of the weld reinforcement.

NOTES:

(1) To qualify using positions 5G or 6G, a total of four bend specimens are required. To qualify using a combination of 2G and 5G in a single test coupon, a total of six bend specimens are required. see QW-302.3. The type of bend test shall be based on weld metal thickness.

(2) Coupons tested by face and root bends shall be limited to weld deposit made by one welder with one or two processes or two welders with one process each. Weld deposit by each welder and each process shall be present on the convex surface of the appropriate bent specimen.

(3) One face and root bend may be substituted for the two side bends.

Table QW-452.1(b) Thickness of Weld Metal Qualified			
Thickness, t, of Weld Metal in the Coupon, in. (mm) [Note (1)] and [Note (2)]	Thickness of Web Metal Qualified [Note (3)]		
All	2 <i>t</i>		
$\frac{1}{2}$ (13) and over with a	Maximum to be		
minimum of three layers	welded		
 When more than one welder and/more than one filler metal F-Nur metal in a coupon, the thickness, <i>t</i> pon deposited by each welder wit metal F-Number in accordance wunder QW-404 shall be determine the "Thickness, <i>t</i>, of Weld Metal i termine the "Thickness of Weld M Two or more pipe test coupons with the second second	nber is used to deposit weld , of the weld metal in the cou- h each process and each filler with the applicable variables ned and used individually in n the Coupon" column to de- Metal Qualified."		
(2) Two or more pipe test coupons winness may be used to determine the fied and that thickness may be ap the smallest diameter for which the dance with QW-452.3.	e weld metal thickness quali- pplied to production welds to		
(3) Thickness of test coupon of ³ / ₄ in. (for qualifying a combination of th whom may use the same or a diff			

	e QW-452.3 d Diameter Lim	its		
Outside Diameter of Test		Outside Diameter Qualified, in. (mm)		
Coupon, in. (mm)	Min.	Max.		
Less than 1 (25)	Size welded	Unlimited		
1 (25) to 2 ⁷ / ₈ (73)	1 (25)	Unlimited		
Over $2^{7}/_{8}$ (73)	$2^{7}/_{8}$ (73)	Unlimited		

Table QW-452.4 Small Diameter Fillet-Weld Test					
Outside Diameter of Test Coupon, in. (mm)	Minimum Outside Diameter, Qualified, in. (mm)	Qualified Thick- ness			
Less than 1 (25)	Size welded	All			
1 (25) to $2^{7}/_{8}$ (73)	1 (25)	All			
Over $2^{7}/_{8}$ (73)	2 ⁷ / ₈ (73)	All			

Table QW-452.5 Fillet-Weld Test						
	Thickness of Test Coupon as Welded,		Type and Number of Tests Required [QW-462.4(b) or QW-462.4(c)]			
Type of Joint	in. (mm)	Qualified Range	Macro	Fracture		
Tee fillet [Note (1)]	$^{3}/_{16}$ (5) or greater	All base material thicknesses, fillet sizes, and diameters $2^{7}/_{8}$ (73) 0.D. and over [Note (1)]	1	1		
	Less than $\frac{3}{16}$ (5)	<i>T</i> to 2 <i>T</i> base material thickness, <i>T</i> maximum fillet size, and all diameters $2^{7}/_{8}$ (73) O.D. and over [Note (1)]	1	1		

GENERAL NOTE: Production assembly mockups may be substituted in accordance with QW-181.2.1. When production assembly mockups are used, range qualified shall be limited to the fillet sizes, base metal thicknesses, and configuration of the mockup.

NOTES:

Test coupon prepared as shown in QW-462.4(b) for plate or QW-462.4(c) for pipe.
 2⁷/₈ in. (73 mm) 0.D. is considered the equivalent of NPS 2¹/₂ (DN 65). For smaller diameter qualifications, refer to QW-452.4 or QW-452.6.

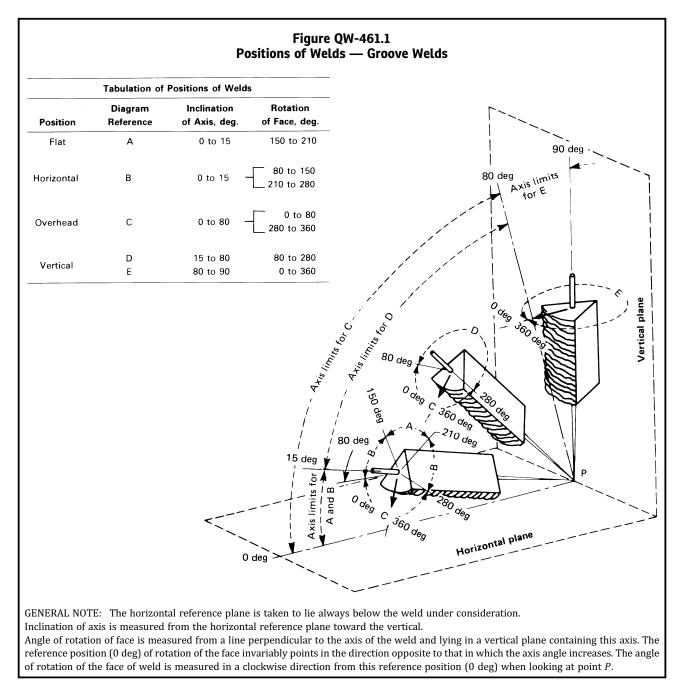
Table QW-452.6Fillet Qualification by Groove-Weld Tests							
Type of Joint	Thickness of Test Coupon as Welded, in. (mm)	Qualified Range	Type and Number of Tests Required				
Any groove	All thicknesses	All base material thicknesses, fillet sizes, and diameters	Fillet welds are qualified when a welder/welding operator qualifies on a groove weld test				

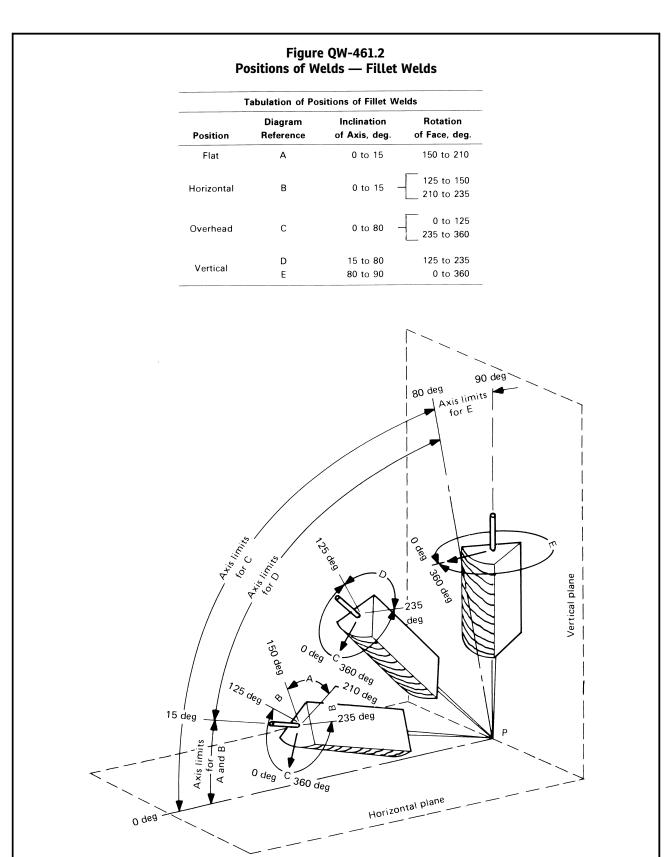
Table QW-453 Procedure/Performance Qualification Thickness Limits and Test Specimens for Hard-Facing (Wear-Resistant) and Corrosion-Resistant Overlays						
	Corrosion-Resistant	: Overlay [Note (1)]	Hard-facing Overlay (Wear-Resistant) [Note (2)]			
Thickness of Test Coupon (T)	Nominal Base Metal Thickness Qualified (<i>T</i>)	Type and Number of Tests Required	Nominal Base Metal Thickness Qualified (<i>T</i>)	Type and Number of Tests Required		
Procedure Qualification Tes	sting					
Less than 1 in. (25 mm) T	T qualified to unlimited	Notes [Note (4)], [Note (5)],	T qualified up to 1 in. (25 mm)	Notes [Note (3)], [Note (7)],		
1 in. (25 mm) and over T	1 in. (25 mm) to unlimited	and [Note (9)]	1 in. (25 mm) to unlimited	[Note (8)], and [Note (9)]		
Performance Qualification	Festing					
	<i>T</i> qualified to unlimited		T qualified to unlimited	Notes [Note (8)] and [Note		

NOTES:

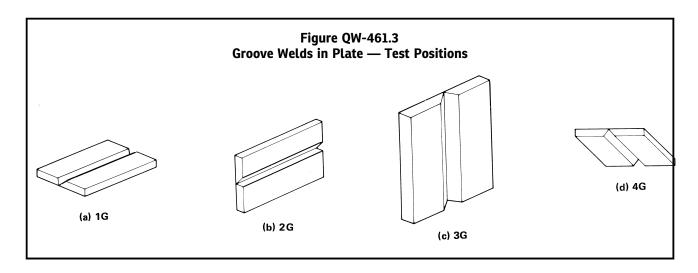
- (1) The qualification test coupon shall consist of base metal not less than 6 in. (150 mm) × 6 in. (150 mm). The weld overlay cladding shall be a minimum of $1\frac{1}{2}$ in. (38 mm) wide by approximately 6 in. (150 mm) long. For qualification on pipe, the pipe length shall be a minimum of 6 in. (150 mm), and a minimum diameter to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon. For processes (performance qualification only) depositing a weld bead width greater than $\frac{1}{2}$ in. (13 mm) wide, the weld overlay shall consist of a minimum of three weld beads in the first layer.
- (2) The test base metal coupon shall have minimum dimensions of 6 in. (150 mm) wide × approximately 6 in. (150 mm) long with a hard-faced layer a minimum of 1¹/₂ in. (38 mm) wide × 6 in. (150 mm) long. The minimum hard-faced thickness shall be as specified in the Welding Procedures Specification. Alternatively, the qualification may be performed on a test base metal coupon that represents the size of the production part. For qualification on pipe, the pipe lenth shall be 6 in. (150 mm) minimum, and of a minimum diameter to allow the required number of test specimens. The weld overlay shall be continuous around the circumference of the test coupon.
- (3) The hard-facing surface shall be examined by the liquid penetrant method and shall meet the acceptance standards in QW-195.2 or as specified in the WPS. Surface conditioning prior to liquid penetrant examination is permitted.
- (4) The corrosion-resistant surface shall be examined by the liquid penetrant method and shall meet the acceptance standards as specified in QW-195.
- (5) Following the liquid penetrant examination, four guided side-bend tests shall be made from the test coupon in accordance with QW-161. The test specimens shall be cut so that there are either two specimens parallel and two specimens perpendicular to the direction of the welding, or four specimens perpendicular to the direction of the welding. For coupons that are less than $\frac{3}{16}$ in. (10 mm) thick, the width of the side-bend specimens may be reduced to the thickness of the test coupon. The side-bend specimens shall be removed from locations specified in QW-462.5(c) or QW-462.5(d).
- (6) The test coupon shall be sectioned to make side-bend test specimens perpendicular to the direction of the welding in accordance with QW-161. Test specimens shall be removed at locations specified in QW-462.5(c) or QW-462.5(d).
- (7) After surface conditioning to the minimum thickness specified in the WPS, a minimum of three hardness readings shall be made on each of the specimens from the locations shown in QW-462.5(b) or QW-462.5(c). All readings shall meet the requirements of the WPS.
- (8) The base metal shall be sectioned transversely to the direction of the hard-facing overlay. The two faces of the hard-facing exposed by sectioning shall be polished and etched with a suitable etchant and shall be visually examined with × 5 magnification for cracks in the base metal or the heat-affected zone, lack of fusion, or other linear defects. The overlay and the base metal shall meet the requirements specified in the WPS. All exposed faces shall be examined. See QW-462.5(b) for pipe and QW-462.5(e) for plate.
- (9) When a chemical composition is specified in thw WPS, chemical analysis specimens shall be removed at locations specified in QW-462.5 (b) or QW-462.5(e). The chemical analysis shall be performed in accordance with QW-462.5(a) and shall be within the range specified in the WPS. This chemical analysis is not required when a chemical composition is not specified on the WPS.

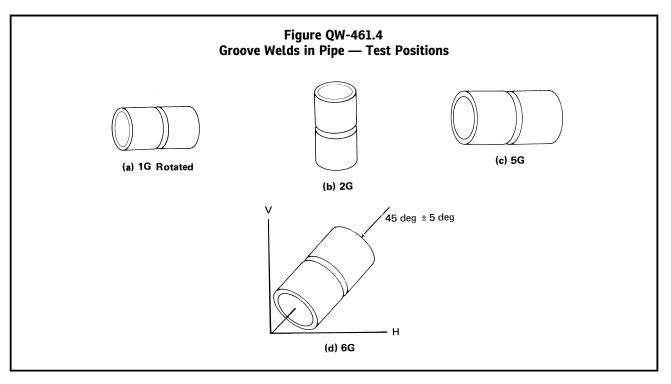
Table QW-453

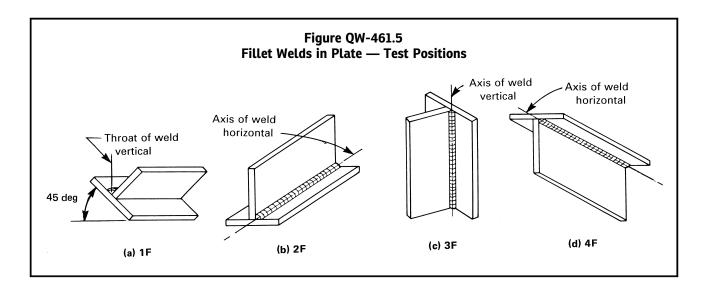

Procedure/Performance Qualification Thickness Limits and Test Specimens for Hard-Facing (Wear-Resistant) and Corrosion-Resistant Overlays (Cont'd)

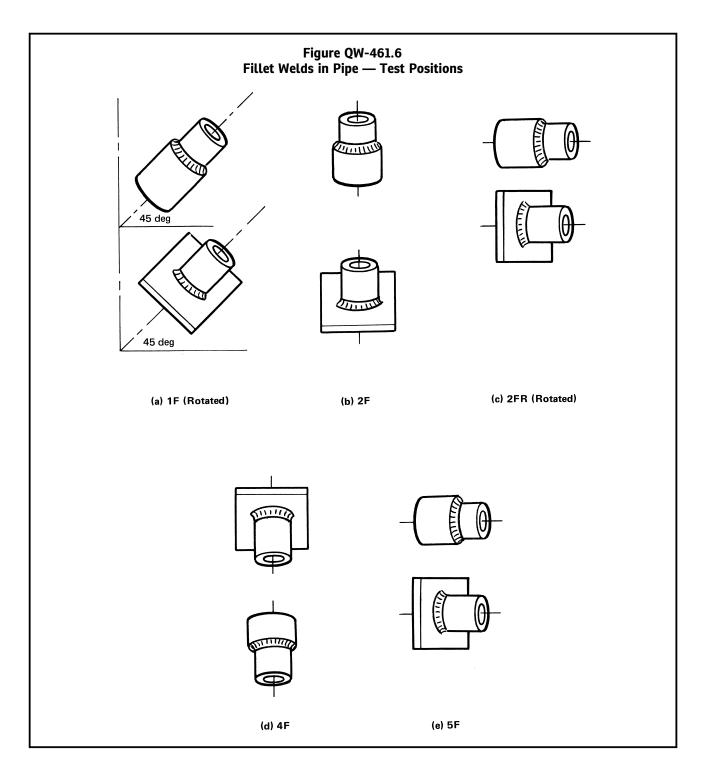

NOTES (CONT'D):

(10) At a thickness greater than or equal to the minimum thickness specified in the WPS, the weld surface shall be examined by the liquid penetrant method and shall meet the acceptance standards in QW-195.2 or as specified in the WPS. Surface conditioning prior to liquid penetrant examination is permitted.

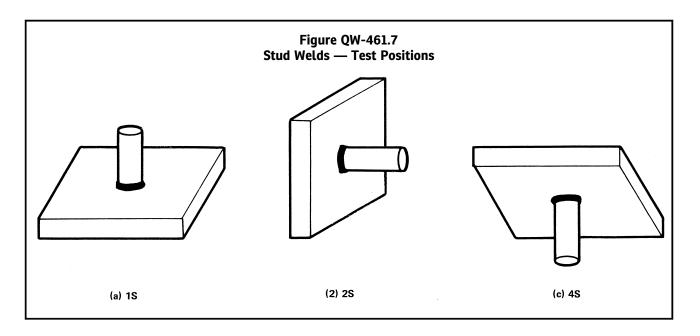

QW-460 GRAPHICS

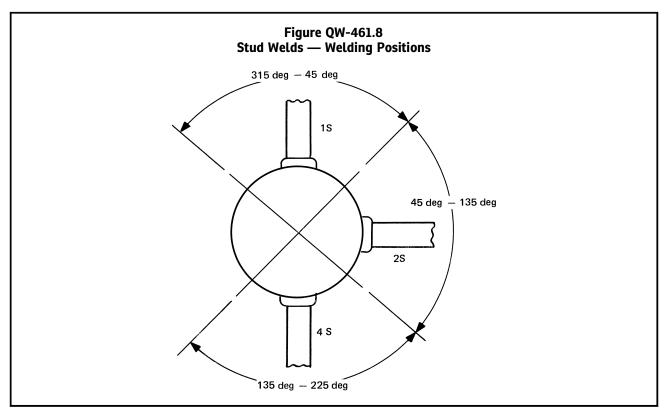

QW-461 POSITIONS



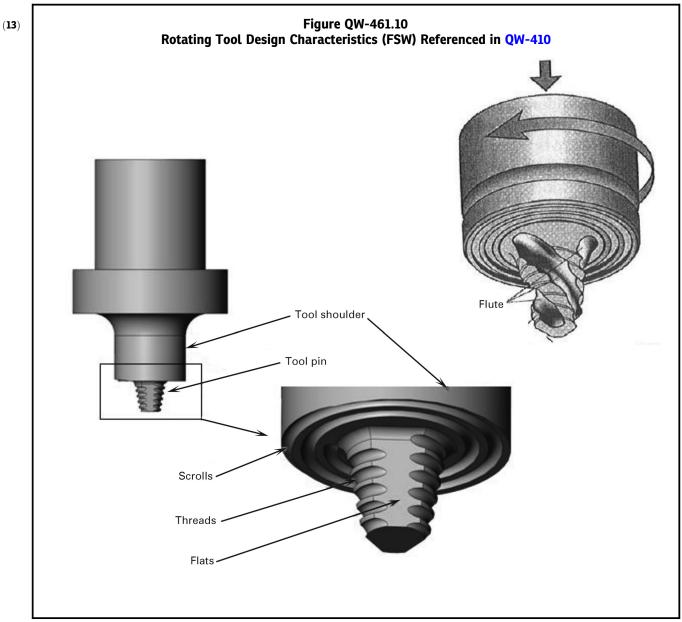


2013 SECTION IX



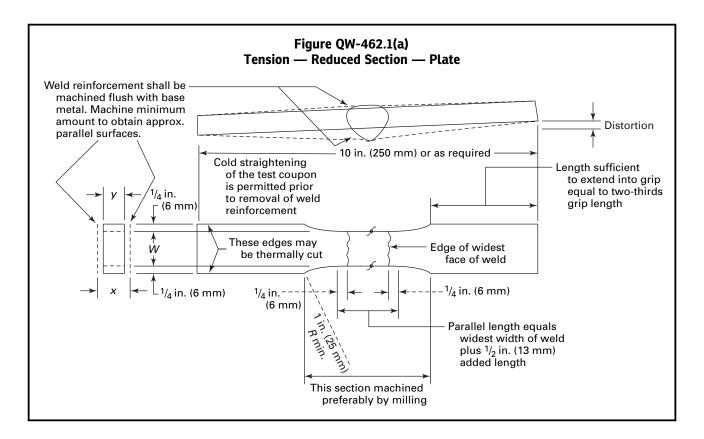


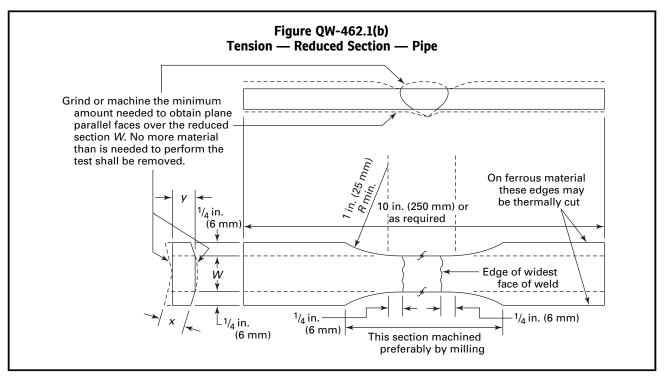
2013 SECTION IX

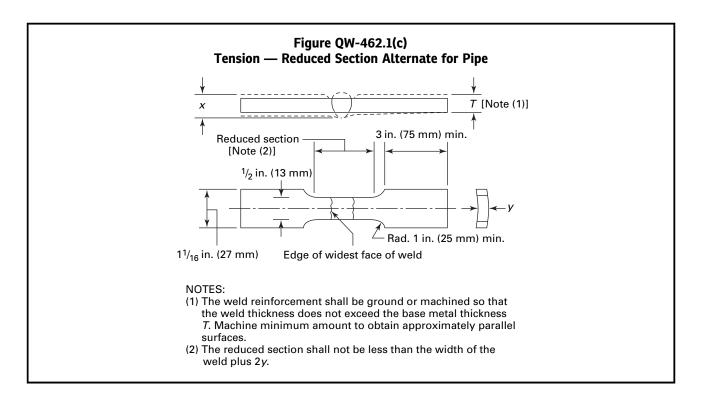


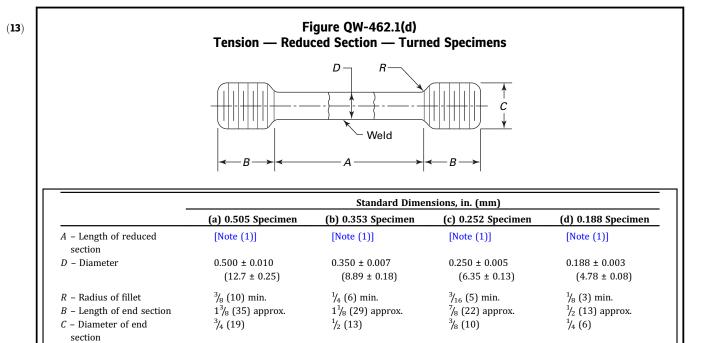
0.110		Position and Type Weld Qualified [Note (1)]				
Qualification Test		Gro	Fillet			
Weld	Position	Plate and Pipe Over 24 in. (610 mm) O.D.	Pipe ≤ 24 in. (610 mm) O.D.	Plate and Pipe		
	1G	F	F [Note (2)]	F		
	2G	F,H	F,H [Note (2)]	F,H		
	3G	F,V	F [Note (2)]	F,H,V		
Plate — Groove	4G	F,O	F [Note (2)]	F,H,O		
	3G and 4G	F,V,O	F [Note (2)]	All		
	2G, 3G, and 4G	All	F,H [Note (2)]	All		
	Special Positions (SP)	SP,F	SP,F	SP,F		
	1F			F [Note (2)]		
	2F			F,H [Note (2)]		
	3F			F,H,V [Note (2)]		
Plate — Fillet	4F			F,H,O [Note (2)]		
	3F and 4F			All [Note (2)]		
	Special Positions (SP)			SP,F [Note (2)]		
	1G	F	F	F		
	2G	F,H	F,H	F,H		
	5G	F,V,O	F,V,O	All		
Pipe — Groove [Note (3)]	6G	All	All	All		
	2G and 5G	All	All	All		
	Special Positions (SP)	SP,F	SP,F	SP,F		
	1F			F		
	2F			F,H		
	2FR			F,H		
Pipe — Fillet [Note (3)]	4F			F,H,O		
	5F			All		
	Special Positions (SP)			SP,F		

Table QW-461.9


(2) Pipe 2⁷/₈ in. (73 mm) O.D. and over.
(3) See diameter restrictions in QW-452.3, QW-452.4, and QW-452.6.




(13) QW-462 TEST SPECIMENS

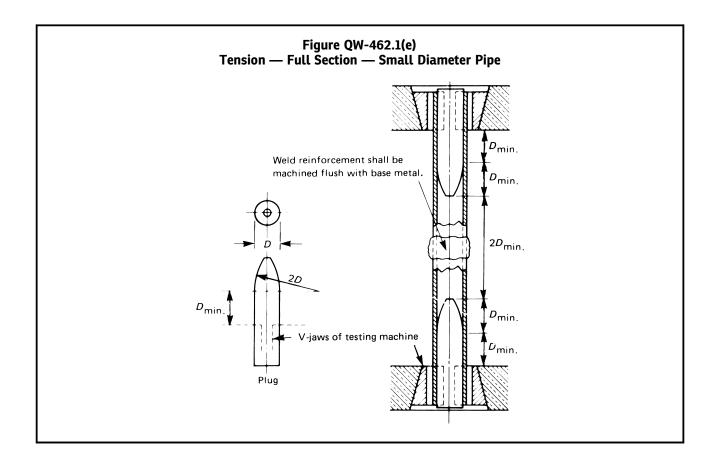

The purpose of the QW-462 figures is to give the organization guidance in dimensioning test specimens for tests required for procedure and performance qualifications. Unless a minimum, maximum, or tolerance is given in the figures (or as QW-150, QW-160, or QW-180 requires), the dimensions are to be considered approximate. All welding processes and filler material to be qualified must be included in the test specimen.

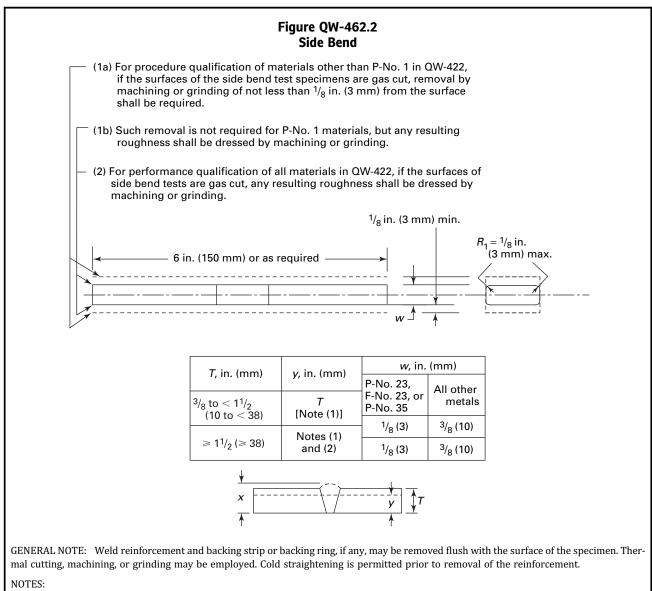
- T = coupon thickness excluding reinforcement
- W = specimen width, $\frac{3}{4}$ in. (19 mm)
- x = coupon thickness including reinforcement
- y = specimen thickness

GENERAL NOTES:

(a) Use maximum diameter specimen (a), (b), (c), or (d) that can be cut from the section.

(b) Weld should be in center of reduced section.

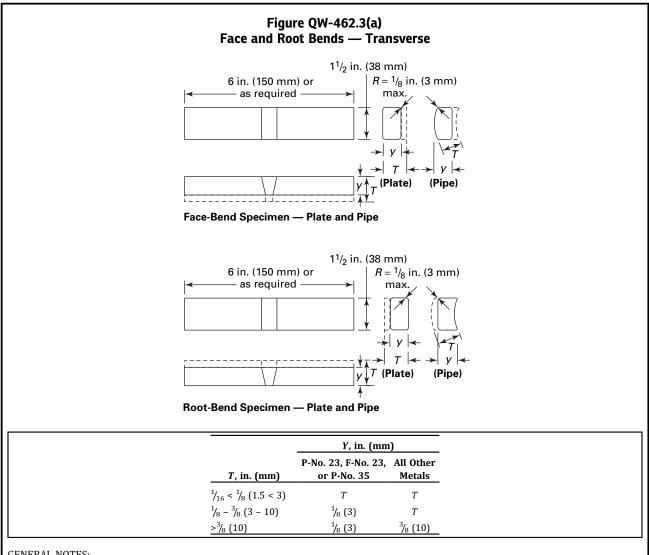

(c) Where only a single coupon is required, the center of the specimen should be midway between the surfaces.


(d) The ends may be of any shape to fit the holders of the testing machine in such a way that the load is applied axially.

(e) When the diameter, *D*, of the reduced section is measured and the actual value is used to calculate the tensile stress, specimens of nominal diameters other than those shown above may be used.

NOTE:

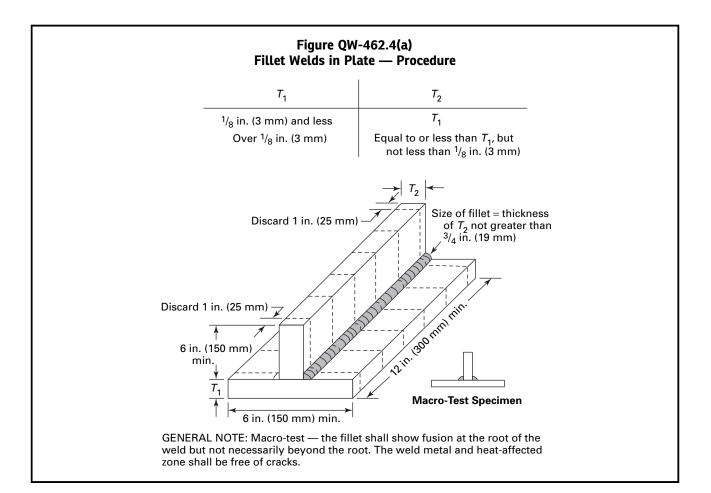
(1) Reduced section A should not be less than width of weld plus 2D.

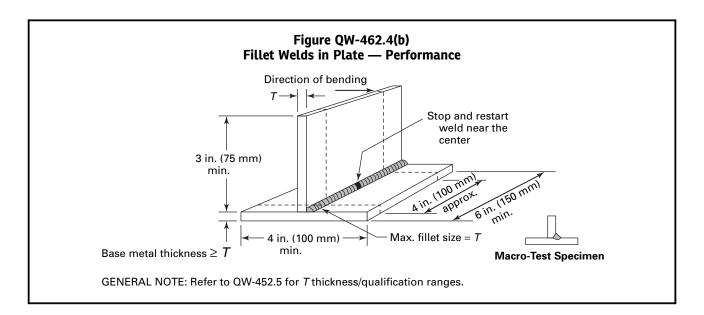


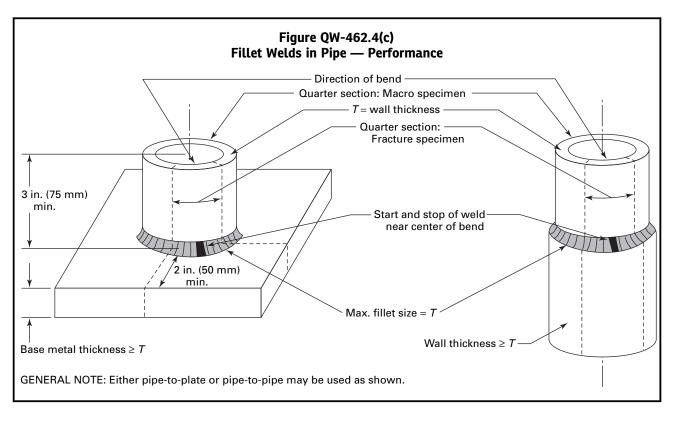
- (1) When weld deposit t is less than coupon thickness T, side-bend specimen thickness may be t.
- (2) When coupon thickness T equals or exceeds 1¹/₂ in. (38 mm), use one of the following:
 (a) Cut specimen into multiple test specimens of thickness y of approximately equal dimensions ³/₄ in. to 1¹/₂ in. (19 mm to 38 mm).

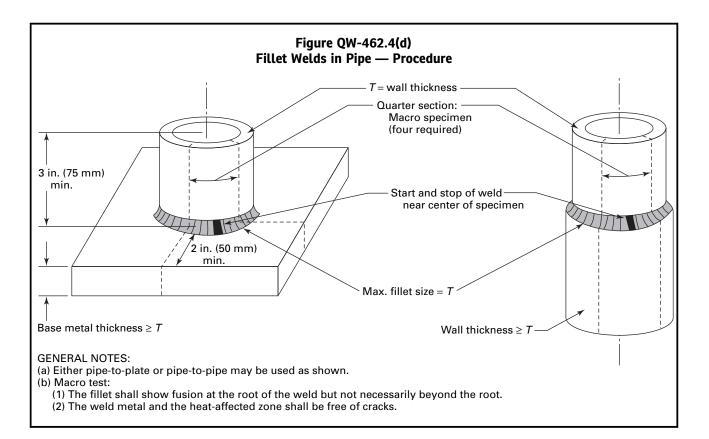
y = tested specimen thickness when multiple specimens are taken from one coupon.

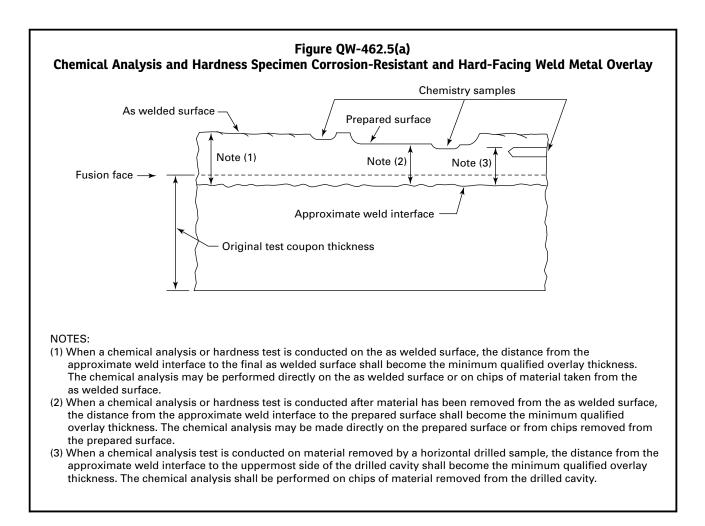

(b) The specimen may be bent at full width. See requirements on jig width in QW-466.1.

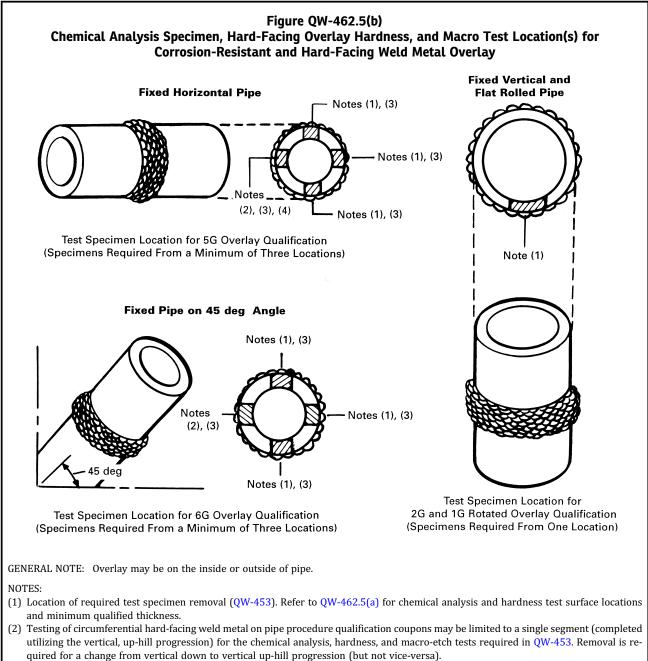

GENERAL NOTES:

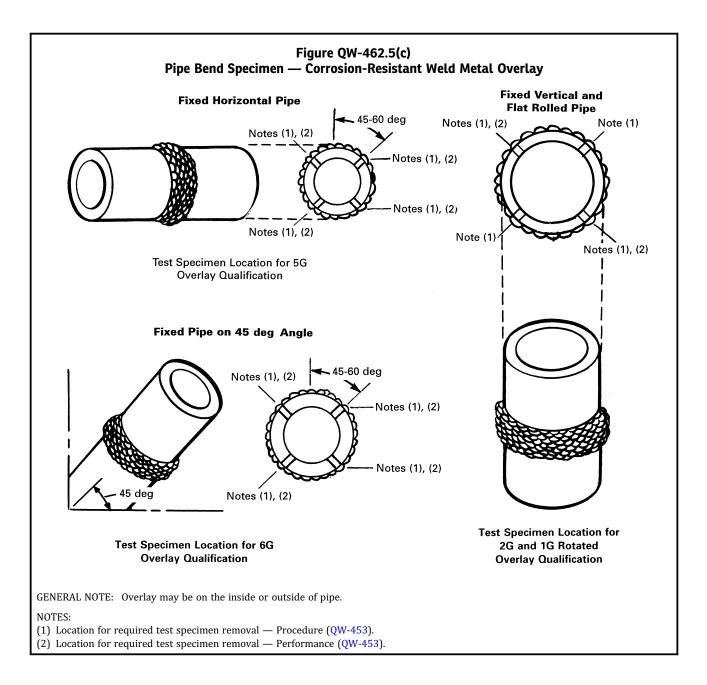

(a) Weld reinforcement and backing strip or backing ring, if any, may be removed flush with the surface of the specimen. If a recessed ring is used, this surface of the specimen may be machined to a depth not exceeding the depth of the recess to remove the ring, except that in such cases the thickness of the finished specimen shall be that specified above. Do not flame-cut nonferrous material.

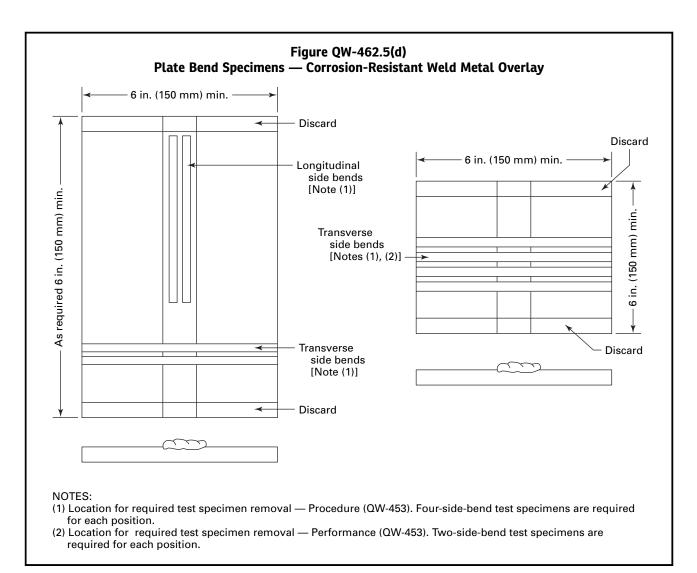

(b) If the pipe being tested has a diameter of NPS 4 (DN 100) or less, the width of the bend specimen may be $\frac{3}{4}$ in. (19 mm) for pipe diameters NPS 2 (DN 50) to and including NPS 4 (DN 100). The bend specimen width may be $\frac{3}{16}$ in. (10 mm) for pipe diameters less than NPS 2 (DN 50) down to and including NPS $\frac{3}{16}$ (DN 10) and as an alternative, if the pipe being tested is equal to or less than NPS 1 (DN 25) pipe size, the width of the bend specimens may be that obtained by cutting the pipe into quarter sections, less an allowance for saw cuts or machine cutting. These specimens cut into quarter sections are not required to have one surface machined flat as shown in QW-462.3(a). Bend specimens taken from tubing of comparable sizes may be handled in a similar manner.

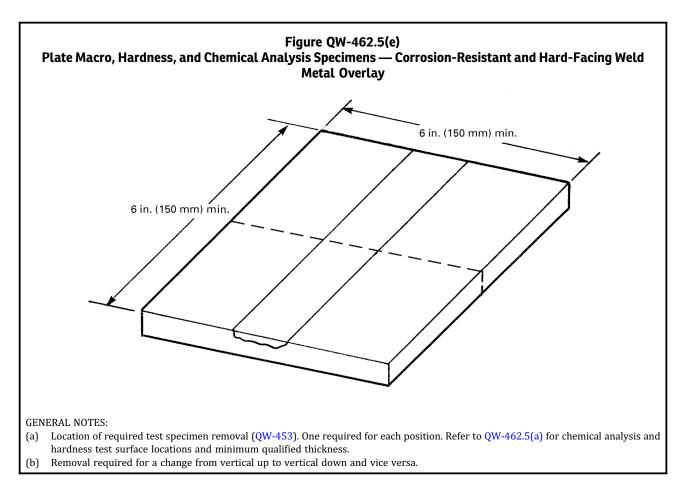


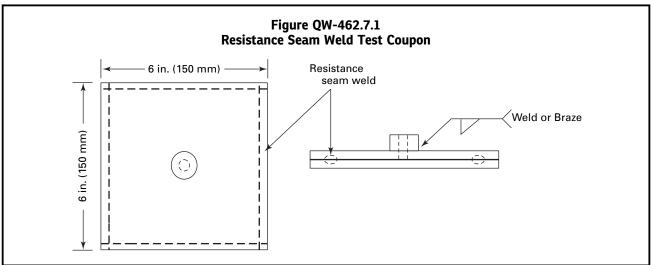

GENERAL NOTE: Weld reinforcements and backing strip or backing ring, if any, shall be removed essentially flush with the undisturbed surface of the base material. If a recessed strip is used, this surface of the specimen may be machined to a depth not exceeding the depth of the recess to remove the strip, except that in such cases the thickness of the finished specimen shall be that specified above.

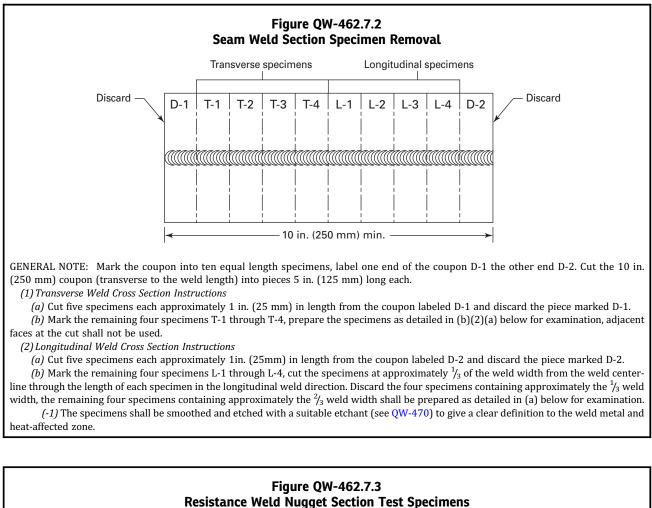


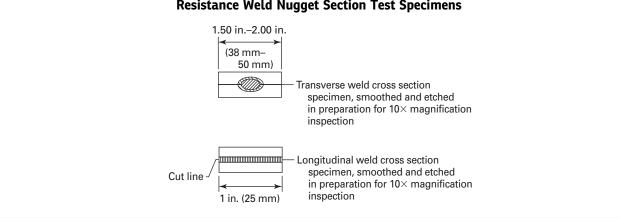


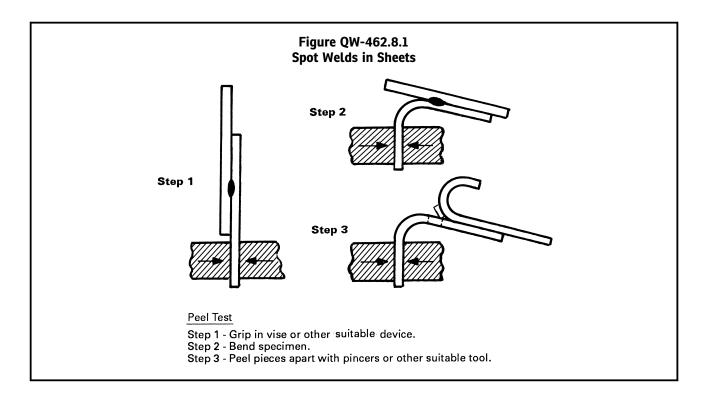


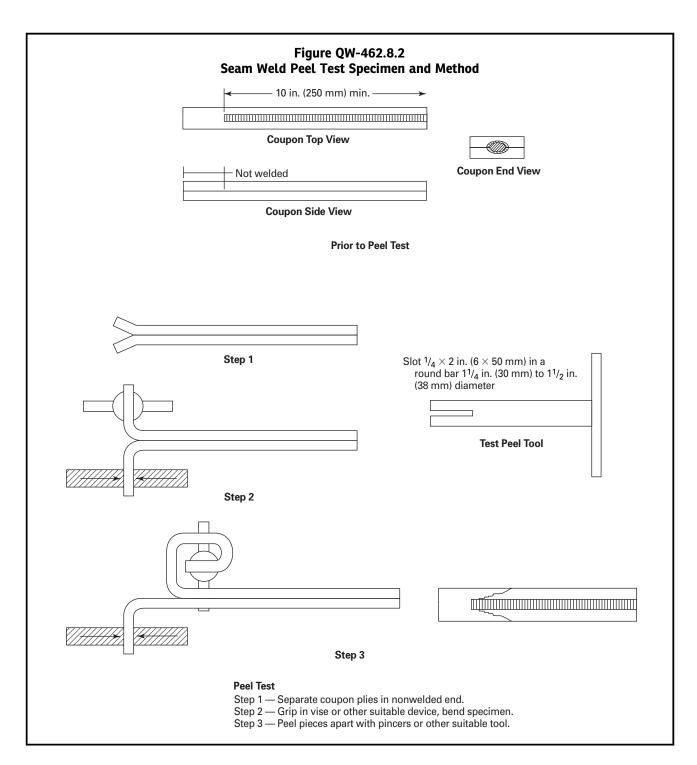


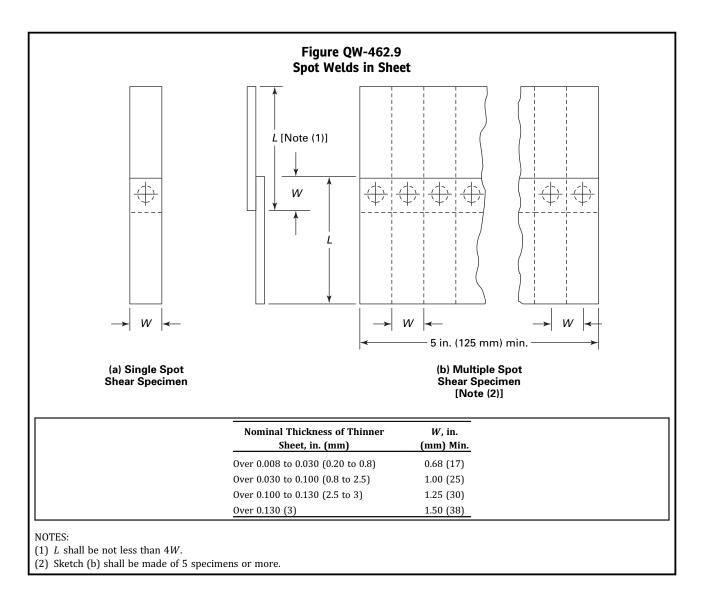



- (3) Location of test specimens shall be in accordance with the angular position limitations of QW-120.
- (4) When overlay welding is performed using machine or automatic welding and the vertical travel direction of adjacent weld beads is reversed on alternate passes, only one chemical analysis or hardness specimen is required to represent the vertical portion. Qualification is then restricted in production to require alternate pass reversal of rotation direction method.





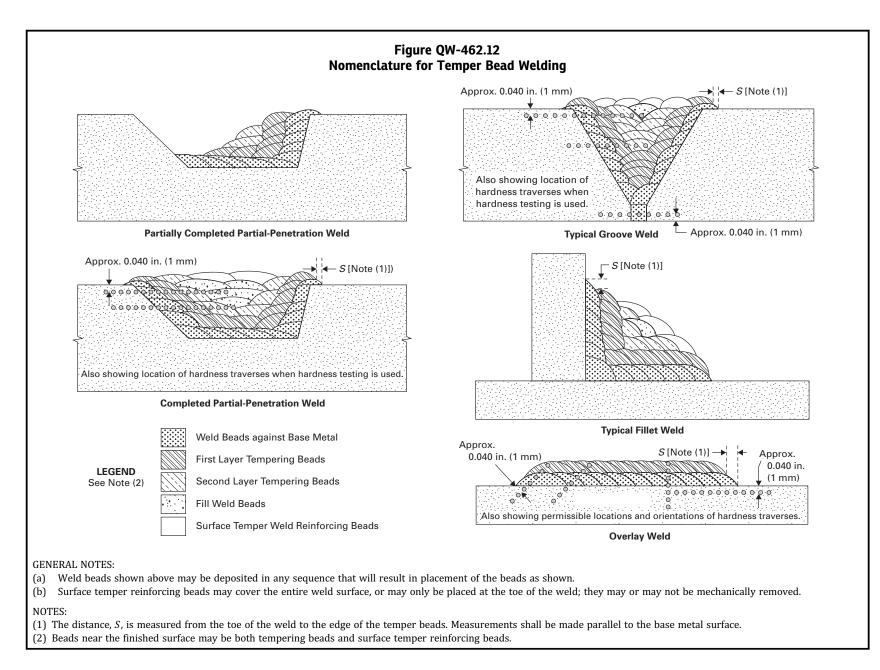


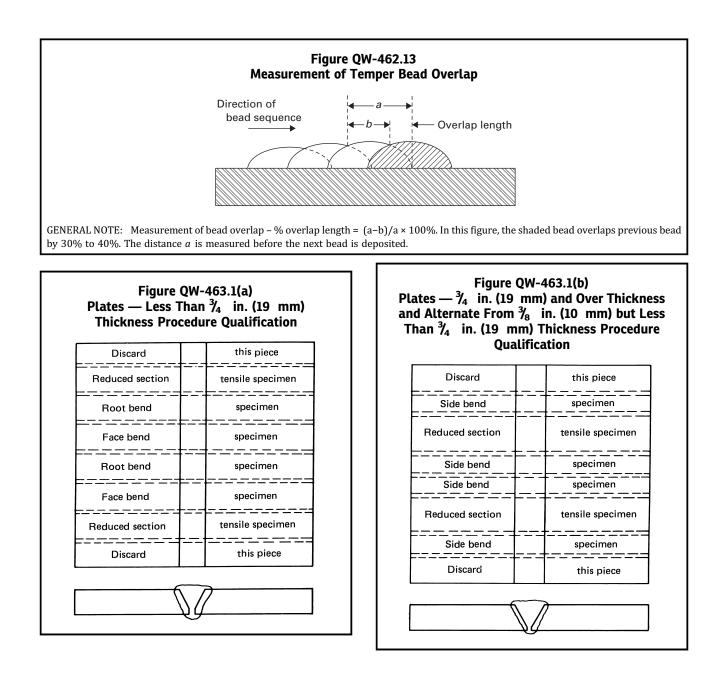


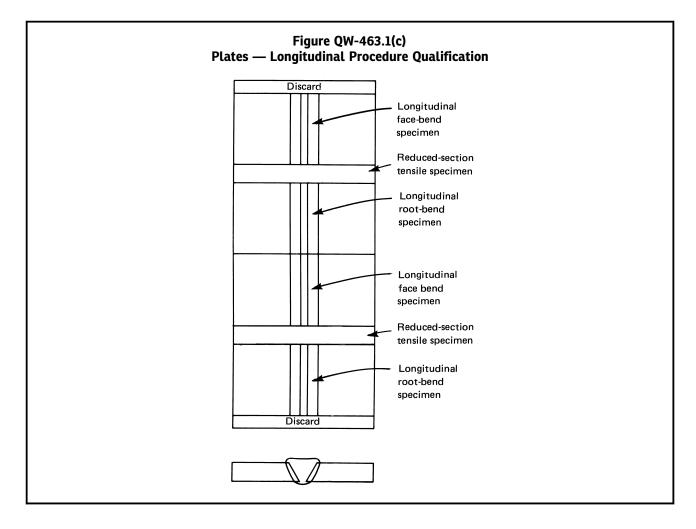
	Shear Strength Requirements for Spot or Projection Weld Specimens								
Customary Units							SI Units		
P-No. 1 Thr	P-No. 1 Through P-No. 11 and P-No. 41 Through P-No. 49 Metals				P-No. 1 Through P-No. 15F and P-No. 41 Through P-No. 49 Metals				
Nominal	Ultimate Strength 90,000 to 149,000 psi lbf per Spot		Ultimate Strength Below 90,000 psi Ibf per Spot		Nominal Thickness of Thinner Sheet,	Ultimate Strength 620 MPa to 1 027 MPa N per Spot		Ultimate Strength Below 620 MPa N per Spot	
Thickness of									
Thinner Sheet, in.	Min.	Min. Avg.	Min.	Min. Avg.	mm	Min.	Min. Avg.	Min.	Min. Avg.
0.009	130	160	100	125	0.23	580	710	440	560
0.010	160	195	115	140	0.25	710	870	510	620
0.012	200	245	150	185	0.30	890	1 090	670	820
0.016	295	365	215	260	0.41	1 310	1 620	960	1 160
0.018	340	415	250	305	0.46	1 510	1 850	1 1 1 0	1 360
0.020	390	480	280	345	0.51	1 730	2 1 4 0	1 250	1 530
0.022	450	550	330	405	0.56	2 000	2 450	1 470	1 800
0.025	530	655	400	495	0.64	2 360	2 910	1 780	2 200
0.028	635	785	465	575	0.71	2 820	3 490	2 070	2 560
0.032	775	955	565	695	0.81	3 450	4 250	2 510	3 090
0.036	920	1,140	690	860	0.91	4 0 9 0	5 070	3 070	3 830
0.040	1,065	1,310	815	1,000	1.02	4 7 4 0	5 830	3 630	4 450
0.045	1,285	1,585	1,005	1,240	1.14	5 720	7 050	4 470	5 520
0.050	1,505	1,855	1,195	1,475	1.27	6 690	8 250	5 320	6 560
0.056	1,770	2,185	1,460	1,800	1.42	7 870	9 720	6 490	8 0 1 0
0.063	2,110	2,595	1,760	2,170	1.60	9 390	11 540	7 830	9 650
0.071	2,535	3,125	2,080	2,560	1.80	11 280	13 900	9 250	11 390
0.080	3,005	3,705	2,455	3,025	2.03	13 370	16 480	10 920	13 460
0.090	3,515	4,335	2,885	3,560	2.29	15 640	19 280	12 830	15 840
0.100	4,000	4,935	3,300	4,070	2.54	17 790	21 950	14 680	18 100
0.112	4,545	5,610	3,795	4,675	2.84	20 220	24 950	16 880	20 800
0.125	5,065	6,250	4,300	5,310	3.18	22 530	27 800	19 130	23 620

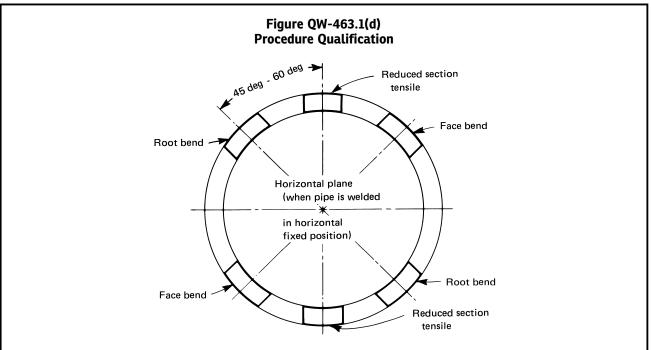
Table QW-462.10(a) Shear Strength Requirements for Spot or Projection Weld Specimens

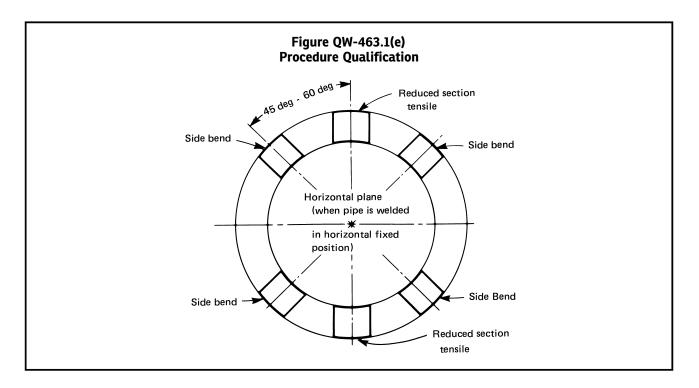
(**13**)

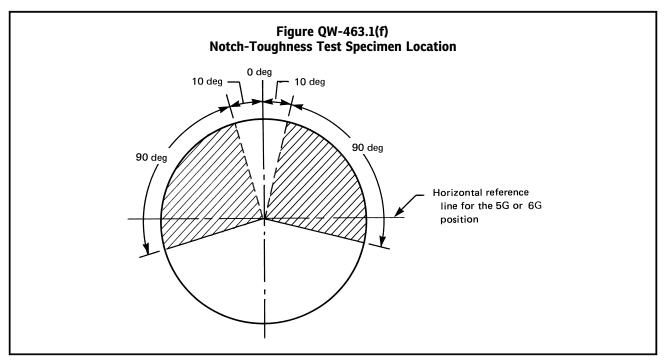

208

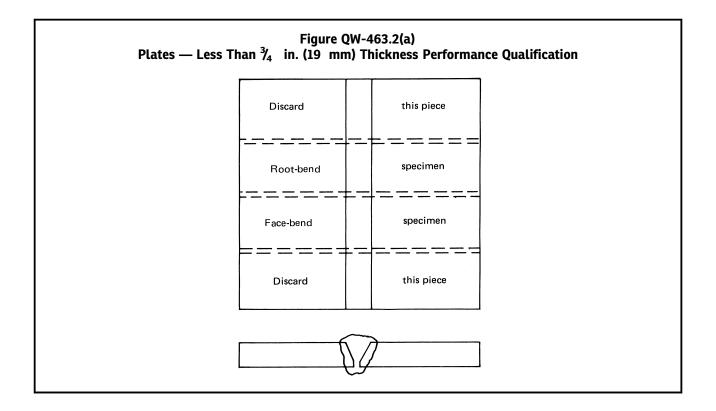

2013 SECTION IX

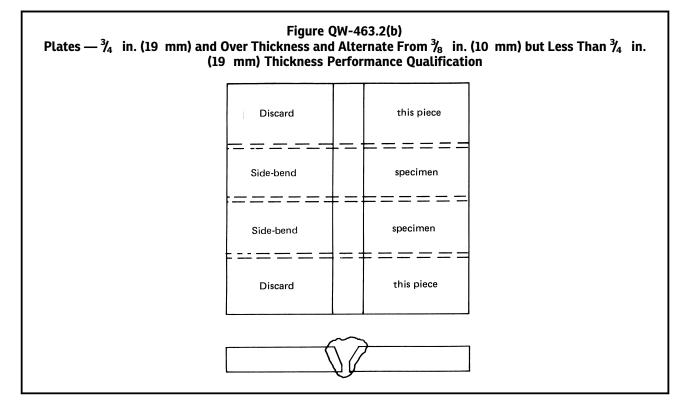

			Shear S	trength Re		ble QW-4 nts for Sp	162.10(b) oot or Projection	Weld Spe	cimens				
		U.S. Custo	omary Units						SI U	nits			
	P-No. 21	Through P-I	No. 25 Alumii	num Alloys				P-No. 21 7	Through P-No	o. 26 Alumii	num Alloys		
Nominal Thickness of		o 55,999 per Spot		o 34,999 per Spot	Strengt 19,500	mate h Below psi, lbf Spot	Nominal Thickness of		a to 386 per Spot	Streng MPa	mate gth 134 to 241 per Spot	Strengt 134 Mi	mate h Below Pa, N per pot
Thinner Sheet, in.	Min.	Min. Avg.	Min.	Min. Avg.	Min.	Min. Avg.	Thinner Sheet, mm	Min.	Min. Avg.	Min.	Min. Avg.	Min.	Min.
			IVIIII.		MIII.	Avg.			0		Avg.		Avg.
0.010 0.012	50 65	65 85	 30	 40	 20	 25	0.25 0.30	220 290	290 380	 130	 180	 90	 110
0.012	100	125	30 70	40 90	20 50	25 65	0.30	290 440	560	130 310	400	220	290
0.018	100	125	85	90 110	50 65	85	0.41	510	500 640	310	400	220	380
0.010	115	115	05	110	05	05		510	010	500	170	290	500
0.020	135	170	100	125	80	100	0.51	600	760	440	560	360	440
0.022	155	195	120	150	95	120	0.56	690	870	530	670	420	530
0.025	175	200	145	185	110	140	0.64	780	890	640	820	490	620
0.028	205	260	175	220	135	170	0.71	910	1 160	780	980	600	760
0.032	235	295	210	265	165	210	0.81	1 050	1 310	930	1 180	730	930
0.036	275	345	255	320	195	245	0.91	1 2 2 0	1 530	1 1 3 0	1 420	870	1 0 9 0
0.040	310	390	300	375	225	285	1.02	1 380	1 730	1 330	1670	1 000	1 270
0.045	370	465	350	440	260	325	1.14	1 650	2 070	1 560	1 960	1 160	1 450
0.050	430	540	400	500	295	370	1.27	1 910	2 400	1 780	2 2 2 2 0	1 310	1 650
0.057	515	645	475	595	340	425	1.45	2 290	2 870	2 1 1 0	2 650	1 510	1 890
0.063	610	765	570	715	395	495	1.60	2 710	3 400	2 540	3 180	1 760	2 200
0.071	720	900	645	810	450	565	1.80	3 200	4 000	2870	3 600	2 000	2 510
0.080	855	1,070	765	960	525	660	2.03	3 800	4 760	3 400	4 270	2 340	2 94(
0.090	1,000	1,250	870	1,090	595	745	2.29	4 450	5 560	3 870	4 850	2 650	3 3 1 0
0.100	1,170	1,465	940	1,175	675	845	2.54	5 200	6 5 2 0	4 180	5 2 3 0	3 000	3 760
0.112	1,340	1,675	1,000	1,255	735	920	2.84	5 960	7 450	4 4 5 0	5 580	3 270	4 0 9 0
0.125	1,625	2,035	1,050	1,315	785	985	3.18	7 230	9 0 5 0	4 670	5 850	3 490	4 380
0.140	1,920	2,035	1,050	1,515			3.56	8 5 4 0	10 680				4 500
0.160	2,440	3,050					4.06	10 850	13 570				
0.180	3,000	3,750					4.57	13 340	16 680				
0.190	3,240	4,050					4.83	14 410	18 020				
0.250	6,400	8.000					6.35	28 470	35 590				

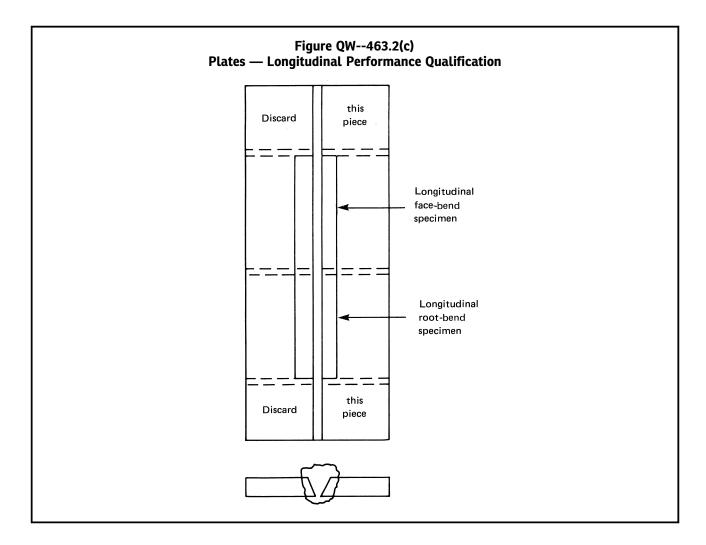

		Shear St	rength Req	Table QW uirements for S	-462.10(c) Spot or Projection W	leld Specime	ens		
	U.S. (Customary Units					SI Units		
	Tit	tanium Alloys				Tit	anium Alloys		
Nominal	Ultimate Strength Above Nominal 100,000 psi Thickness of 10f per Spot		Ultimate Strength 100,000 psi and Below lbf per Spot		Nominal Thickness of	Ultimate Strength 690 MPa and Above N per Spot		Ultimate Strength Below 690 MPa N per Spot	
Thickness of					Thinner Sheet,				
Thinner Sheet, in.	Min.	Min. Avg.	Min.	Min. Avg.	mm	Min.	Min. Avg.	Min.	Min. Avg.
0.01	205	265	160	210	0.25	910	1 180	710	930
0.012	275	360	200	260	0.30	1 2 2 0	1 600	890	1 1 6 0
0.016	400	520	295	385	0.41	1 780	2 3 1 0	1 310	1710
0.018	490	635	340	445	0.46	2 180	2820	1 510	1 980
0.02	530	690	390	510	0.51	2 360	3 0 7 0	1 730	2 270
0.022	610	795	450	585	0.56	2 710	3 540	2 000	2 600
0.025	725	945	530	690	0.64	3 2 2 0	4 200	2 360	3 070
0.028	855	1,110	635	825	0.71	3 800	4 940	2 820	3 670
0.032	1,045	1,360	775	1,000	0.81	4 650	6 0 5 0	3 450	4 4 5 0
0.036	1,255	1,630	920	1,200	0.91	5 580	7 250	4 090	5 3 4 0
0.04	1,460	1,900	1,065	1,385	1.02	6 490	8 4 5 0	4 7 4 0	6 160
0.045	1,795	2,340	1,285	1,670	1.14	7 980	10 410	5 720	7 430
0.05	2,125	2,760	1,505	1,910	1.27	9 450	12 280	6 690	8 500
0.056	2,550	3,320	1,770	2,300	1.42	11 340	14 770	7870	10 230
0.063	3,000	3,900	2,110	2,730	1.60	13 340	17 350	9 390	12 140
0.071	3,380	4,400	2,395	3,115	1.80	15 030	19 570	10 650	13 860
0.08	3,810	4,960	2,700	3,510	2.03	16 950	22 060	12 010	15 610
0.09	4,290	5,570	3,040	3,955	2.29	19 080	24 780	13 520	17 590
0.1	4,760	6,170	3,380	4,395	2.54	21 170	27 450	15 030	19 550
0.112	5,320	6,800	3,785	4,925	2.84	23 660	30 250	16 840	21 910
0.125	5,950	7,700	4,220	5,490	3.18	26 470	34 250	18 770	24 420

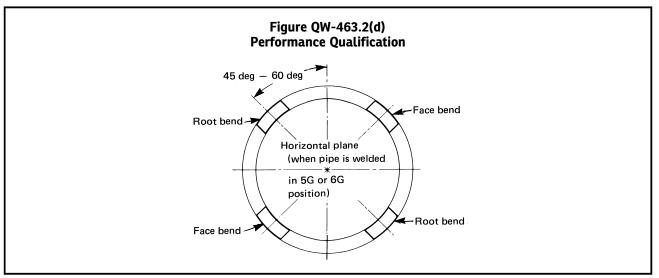

210

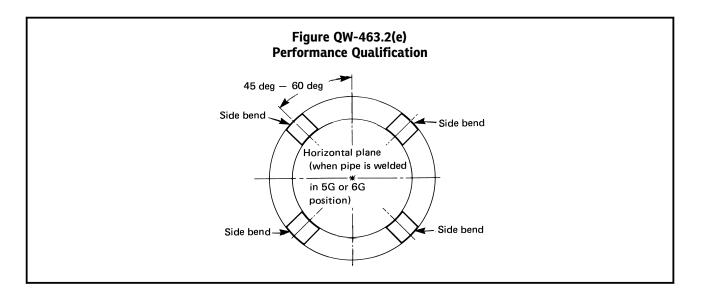


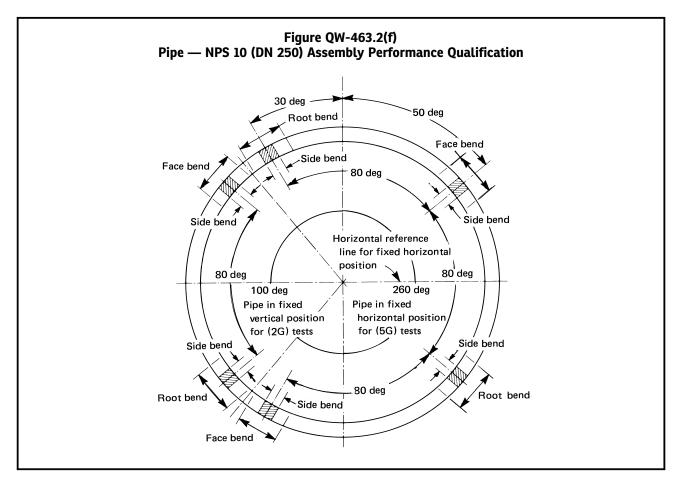


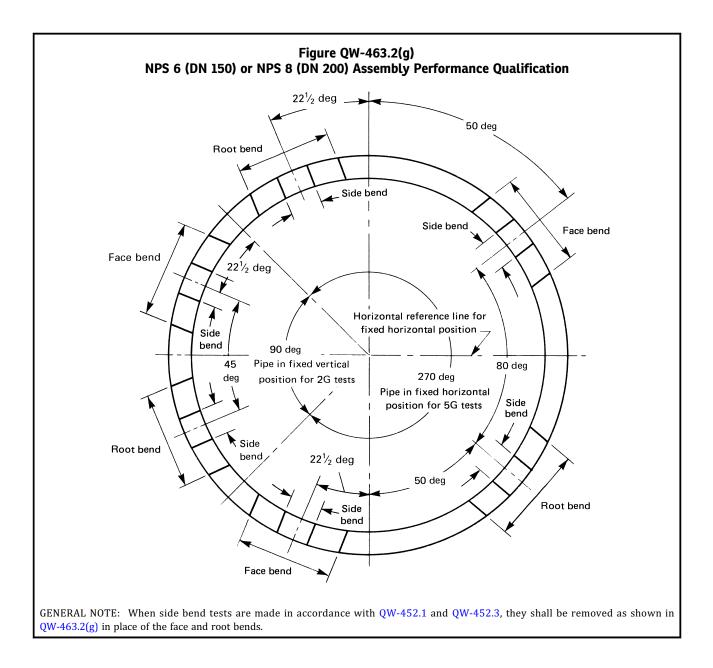


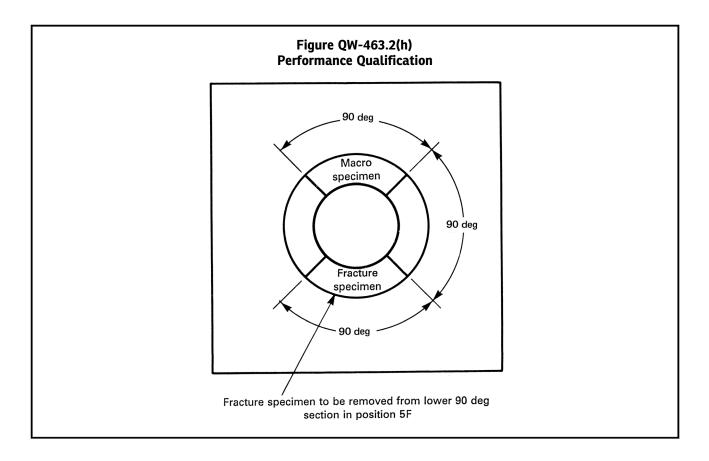


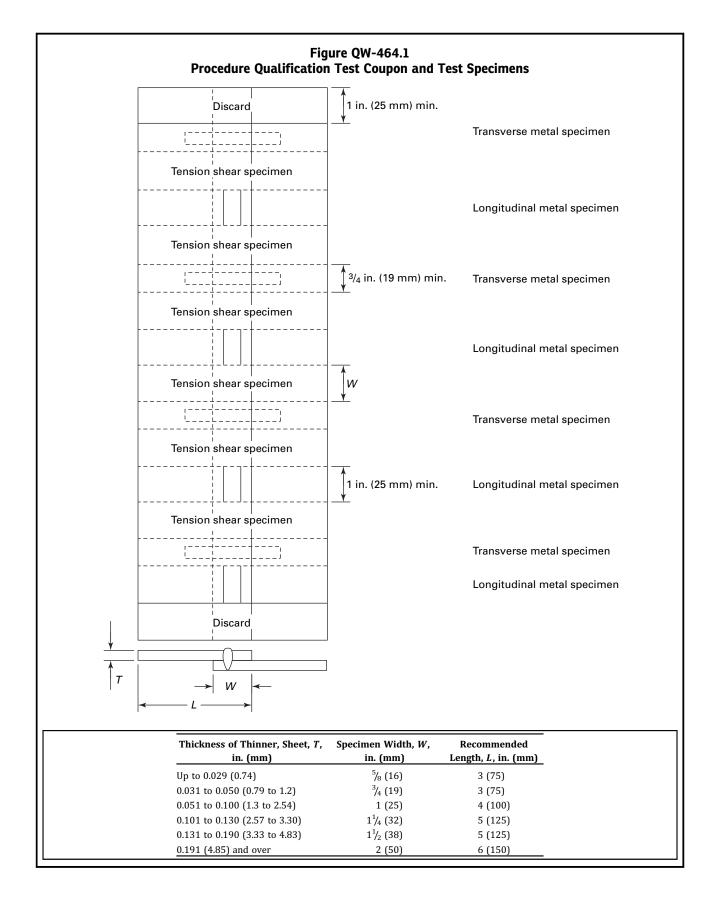


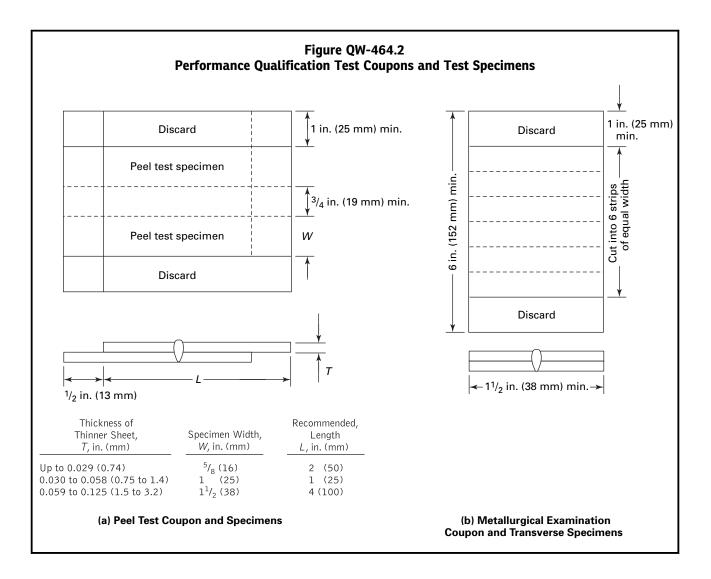












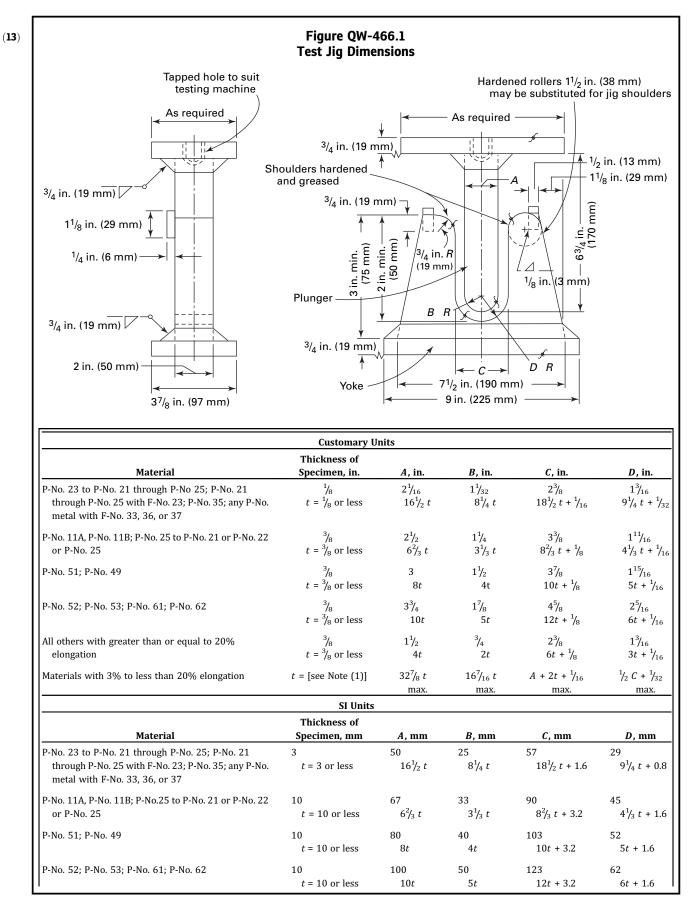


Figure QW-466.1 Test Jig Dimensions (Cont'd)

Table continued

Table continued					
	SI Units				
	Thickness of				
Material	Specimen, mm	A, mm	B, mm	C, mm	<i>D</i> , mm
All others with greater than or equal to 20%	10	40	20	63	32
elongation	t = 10 or less	4 <i>t</i>	2t	6t + 3.2	3t + 1.6
Materials with 3% to less than 20% elongation	t = [see Note (1)]	32 ⁷ /8	$16^{7}/_{16} t$	A + 2t + 1.6	$\frac{1}{2}C + 0.8$
		t max.	max.	max.	max.

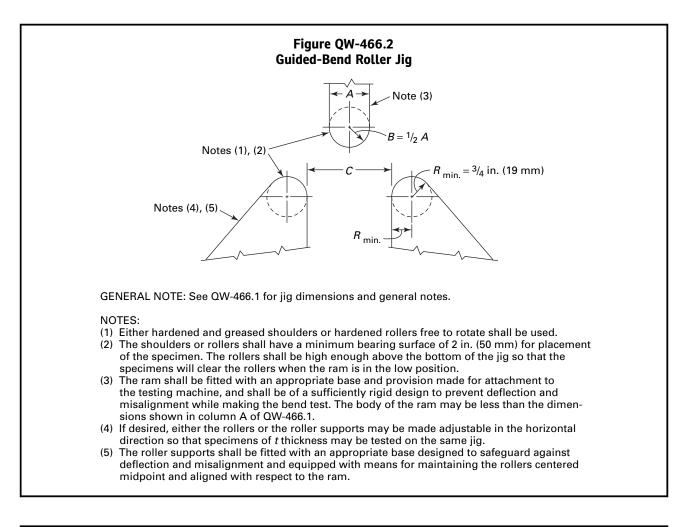
GENERAL NOTES:

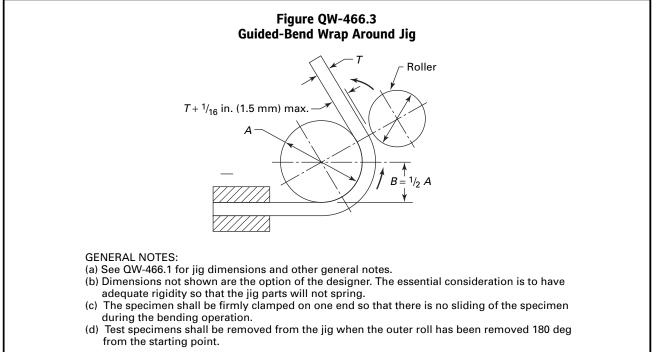
(a) For P-Numbers, see QW/QB-422; for F-Numbers, see QW-432.

(b) For guided-bend jig configuration, see QW-466.2, QW-466.3, and QW-466.4.

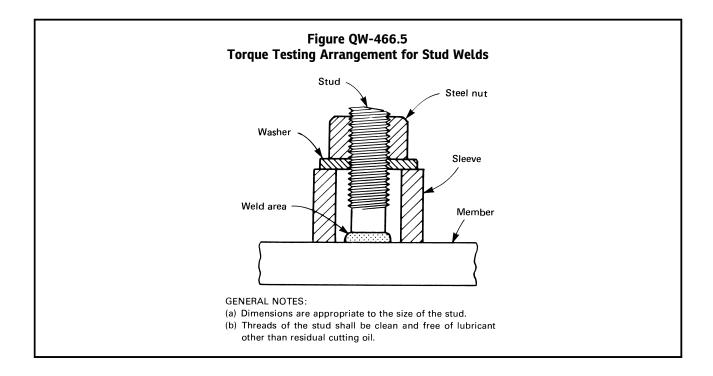
(c) The weld and heat-affected zone, in the case of a transverse weld bend specimen, shall be completely within the bend portion of the specimen after testing.

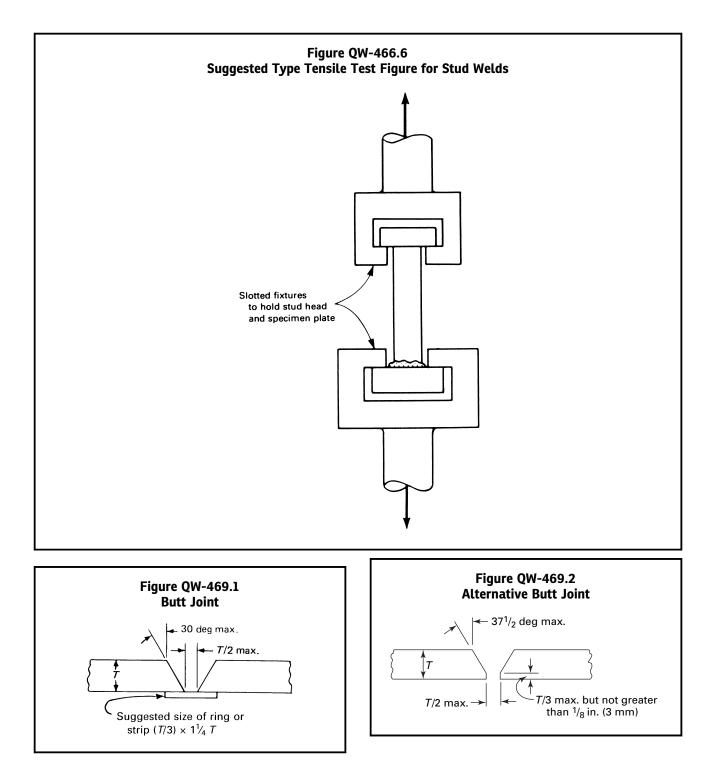
(d) For materials with less than 3% elongation, a macro-etch specimen shall be used in lieu of bend test at each bend test location. Acceptance criteria shall be in accordance with QW-183(a).


NOTE:


(1) The dimensions of the test jig shall be such as to give the bend test specimen a calculated percent outer fiber elongation equal to at least that of the base material with the lower minimum elongation as specified in the base material specification.

percent outer fiber elongation =
$$\frac{100t}{A + t}$$


The following equation is provided for convenience in calculating the bend specimen thickness:


thickness of specimen
$$(t) = \frac{A \times \text{percent elongation}}{\left[100 - (\text{percent elongation})\right]}$$

QW-470 ETCHING — PROCESSES AND REAGENTS

(13) **QW-471 GENERAL**

The surfaces to be etched should be prepared by filing, machining, grinding, or polishing to delineate the macrofeatures of the specimen's weld and HAZ after etching. With different alloys and tempers, the etching period will vary from a few seconds to several minutes, and should be continued until the desired contrast is obtained. As a protection from the fumes liberated during the etching process, this work should be done under a hood. After etching, the specimens should be thoroughly rinsed and then dried with a blast of warm air. Coating the surface with a thin clear lacquer will preserve the appearance. (Reference ASTM E340, Standard Test Method for Macroetching Metals and Alloys, or other industry-accepted standards.)

QW-472 FOR FERROUS METALS

Etching solutions suitable for carbon and low alloy steels, together with directions for their use, are suggested in QW-472.1 through QW-472.4.

QW-472.1 Hydrochloric Acid. Hydrochloric (muriatic) acid and water, equal parts, by volume. The solution should be kept at or near the boiling temperature during the etching process. The specimens are to be immersed in the solution for a sufficient period of time to reveal all lack of soundness that might exist at their cross-sectional surfaces.

QW-472.2 Ammonium Persulfate. One part of ammonium persulfate to nine parts of water, by weight. The solution should be used at room temperature, and should be applied by vigorously rubbing the surface to be etched with a piece of cotton saturated with the solution. The etching process should be continued until there is a clear definition of the structure in the weld.

QW-472.3 lodine and Potassium lodide. One part of powdered iodine (solid form), two parts of powdered potassium iodide, and ten parts of water, all by weight. The solution should be used at room temperature, and brushed on the surface to be etched until there is a clear definition or outline of the weld

QW-472.4 Nitric Acid. One part of nitric acid and three parts of water, by volume.

CAUTION: Always pour the acid into the water. Nitric acid causes bad stains and severe burns.

The solution may be used at room temperature and applied to the surface to be etched with a glass stirring rod. The specimens may also be placed in a boiling solution of the acid, but the work should be done in a well-ventilated room. The etching process should be continued for a sufficient period of time to reveal all lack of soundness that might exist at the cross-sectional surfaces of the weld.

QW-473 FOR NONFERROUS METALS

The following etching reagents and directions for their use are suggested for revealing the macrostructure.

QW-473.1 Aluminum and Aluminum-Base Alloys.

Solution	Volume
Hydrochloric acid (concentrated)	15 ml
Hydrofluoric acid (48%)	10 ml
Water	85 ml

This solution is to be used at room temperature, and etching is accomplished by either swabbing or immersing the specimen.

QW-473.2 For Copper and Copper-Base Alloys: Cold Concentrated Nitric Acid. Etching is accomplished by either flooding or immersing the specimen for several seconds under a hood. After rinsing with a flood of water, the process is repeated with a 50-50 solution of concentrated nitric acid and water.

In the case of the silicon bronze alloys, it may be necessary to swab the surface to remove a white (SiO_2) deposit.

QW-473.3 For Nickel and Nickel-Base Alloys.

Material	Formula
Nickel	Nitric Acid or Lepito's Etch
Low Carbon Nickel	Nitric Acid or Lepito's Etch
Nickel-Copper (400)	Nitric Acid or Lepito's Etch
Nickel–Chromium–Iron (600 and 800)	Aqua Regia or Lepito's Etch

Table QW-473.3-1 Makeup of Equations for Aqua Regia and Lepito's Etch

Solution	Aqua Regia [Note (1)], [Note (2)]	Lepito's Etch [Note (2)], [Note (3)]
Nitric Acid, Concentrated — HNO_3	1 part	3 ml
Hydrochloric Acid, Concentrated — HCL	2 parts	10 ml
Ammonium Sulfate - (NH ₄) ₂ (SO ₄)		1.5 g
Ferric Chloride – FeCl ₃		2.5 g
Water		7.5 ml

NOTES:

(1) Warm the parts for faster action.

- (2) Etching is accomplished by either swabbing or immersing the specimen.
- (3) Mix solution as follows:
 - (a) Dissolve $(NH_4)_2$ (SO_4) in H_2O .
 - (b) Dissolve powdered $FeCl_3$ in warm HCl.
 - (c) Mix (a) and (b) above and add HNO₃.

QW-473.4	For Titanium.	
----------	---------------	--

Solution	Kroll's Etch	Keller's Etch
Hydrofluoric acid (48%)	1 to 3 ml	$^{1}/_{2}$ ml
Nitric acid		
(concentrated)	2 to 6 ml	$2^{1}/_{2}$ ml
Hydrochloric Acid		
(concentrated)		$1^{1}/_{2}$ ml
Water	To make 100 ml	To make 100 ml

QW-473.5 For Zirconium.

Solution	Volume
Hydrofluoric acid	3 ml
Nitric acid (concentrated)	22 ml
Water	22 ml

Apply by swab and rinse in cold water.

These are general purpose etchants which are applied at room temperature by swabbing or immersion of the specimen.

QW-490 REDESIGNATED AS QG-109 (13)

ARTICLE V STANDARD WELDING PROCEDURE SPECIFICATIONS (SWPSS)

QW-500 GENERAL

The SWPSs listed in Mandatory Appendix E are acceptable for construction in which the requirements of the ASME Boiler and Pressure Vessel Code, Section IX are specified. Any requirements of the applicable Construction Code Section regarding SWPS take precedence over the requirements of Section IX. These SWPSs are not permitted for construction where impact testing of the WPS is required by the Construction Code.

Only SWPSs (including edition) that have been accepted in Mandatory Appendix E within the 1998 Edition or any later edition of Section IX may be used in accordance with this Article. Adoption of SWPSs (including edition) shall be in accordance with the current edition (see Foreword) and addenda of Section IX.

(13) QW-510 ADOPTION OF SWPSS

Prior to use, the organization that will be responsible for and provide operational control over production welding shall comply with the following for each SWPS that it intends to use, except as noted in QW-520.

(a) Enter the name of the organization on the SWPS.

(*b*) An employee of that organization shall sign and date the SWPS.

(c) The applicable Code Section(s) (Section VIII, B31.1, etc.) and/or any other fabrication document (contract, specification, etc.) that must be followed during welding shall be listed on the SWPS.

(*d*) The organization shall weld and test one groove weld test coupon following that SWPS. The following information shall be recorded:

(1) the specification, type, and grade of the base metal welded

(2) groove design

(3) initial cleaning method

(4) presence or absence of backing

(5) The ASME or AWS specification and AWS classification of electrode or filler metal used and manufacturer's trade name

(6) size and classification of tungsten electrode for GTAW

(7) size of consumable electrode or filler metal

(8) shielding gas and flow rate for GTAW and GMAW

(9) preheat temperature

(10) position of the groove weld and, if applicable, the progression

(11) if more than one process or electrode type is used, the approximate weld metal deposit thickness for each process or electrode type

(12) maximum interpass temperature

(13) post weld heat treatment used, including holding time and temperature range

(14) visual inspection and mechanical testing results

(15) the results of volumetric examination when permitted as an alternative to mechanical testing by QW-304

(e) The coupon shall be visually examined in accordance with QW-302.4 and mechanically tested in accordance with QW-302.1 or volumetrically examined in accordance with QW-302.2. If visual examination, volumetric examination, or any test specimen fails to meet the required acceptance criteria, the test coupon shall be considered as failed and a new test coupon shall be welded before the organization may use the SWPS.

QW-511 USE OF DEMONSTRATED SWPSS

Code Sections or fabrication documents that are required to be referenced by QW-510(c) may be added or deleted from a demonstrated SWPS without further demonstrations.

QW-520 USE OF SWPSS WITHOUT DISCRETE DEMONSTRATION

Once an SWPS has been demonstrated, additional SWPSs that are similar to the SWPS that was demonstrated may be used without further demonstration. Such additional SWPSs shall be compared to the SWPS that was used for the demonstration, and the following limitations shall not be exceeded:

(a) a change in the welding process.

(b) a change in the P-Number.

(c) a change from the as-welded condition to the heattreated condition. This limitation also applies for SWPSs that allow use in both conditions (e.g., SWPS B2.1-021 allows production welding with or without heat treatment; if the demonstration was performed without heat treatment, production welding with heat treatment is not permitted). Once heat treatment has been demonstrated for any SWPS, this limitation no longer applies.

(*d*) a change from a gas-shielded flux-cored wire or solid wire to a self-shielded flux-cored wire or vice versa.

(e) a change from globular, spray or pulsed spray transfer welding to short circuiting transfer welding or vice versa. (f) a change in the F-Number of the welding electrode.

(g) the addition of preheat above ambient temperature.

(*h*) a change from an SWPS that is identified as for sheet metal to one that is not and vice versa.

QW-530 FORMS

A suggested Form QW-485 for documenting the welding variables and test results of the demonstration is provided in Nonmandatory Appendix B.

(13) QW-540 PRODUCTION USE OF SWPSS

As with any WPS, welding that is done following an SWPS shall be done in strict accordance with the SWPS. In addition, the following requirements apply to the use of SWPSs:

(*a*) The organization may not deviate from the welding conditions specified on the SWPS.

(*b*) SWPSs may not be supplemented with PQRs or revised in any manner except for reference to the applicable Code Section or other fabrication documents as provided by QW-511.

(c) Only the welding processes shown on an SWPS shall be used in given production joint. When a multi-process SWPS is selected, the processes shown on the SWPS shall be used in the order and manner specified on the SWPS.

(*d*) SWPSs shall not be used in the same production joint together with WPSs qualified by the organization.

(e) The organization may supplement an SWPS by attaching additional instructions to provide the welder with further direction for making production welds to Code or other requirements. When SWPSs are supplemented with instructions that address any condition shown on the SWPS, such instructions shall be within the limits of the SWPS. For example, when an SWPS permits use of several electrode sizes, supplemental instructions may direct the welder to use only one electrode size out of those permitted by the SWPS; however, the supplemental instructions may not permit the welder to use a size other than one or more of those permitted by the SWPS.

(f) SWPSs may not be used until the demonstration of QW-510 has been satisfactorily welded, tested, and certified.

(g) The identification number of the Supporting Demonstration shall be noted on each SWPS that it supports prior to using the SWPS.

(*h*) The certified Supporting Demonstration Record shall be available for review by Authorized Inspector.

PART QB BRAZING

ARTICLE XI BRAZING GENERAL REQUIREMENTS

(13) **QB-100** SCOPE

The rules in this Part apply to the preparation of brazing procedure specifications, and the qualification of brazing procedures, brazers, and brazing operators for all types of manual and machine brazing processes permitted in this Section. These rules may also be applied, insofar as they are applicable, to other manual or machine brazing processes, permitted in other Sections.

QB-101

In performance qualification, the basic criterion established for brazer qualification is to determine the brazer's ability to make a sound brazed joint. The purpose of the performance qualification test for the brazing operator is to determine the operator's mechanical ability to operate the brazing equipment to make a sound braze joint.

QB-103 RESPONSIBILITY

QB-103.1 Brazing. Each organization shall conduct the tests required in this Section to qualify the brazing procedures used in the construction of the brazed assemblies built under this Code and the performance of brazers and brazing operators who apply these procedures.

QB-103.2 Records. Each organization shall maintain a record of the results obtained in brazing procedure and brazer or brazing operator performance qualifications. Refer to recommended Forms in Nonmandatory Appendix B.

QB-110 BRAZE ORIENTATION

NOTE: In the following paragraphs the word *position* is synonymous with *flow position*.

The orientations of brazes with respect to planes of reference are classified in accordance with Figure QB-461.1 into four positions (A, B, C, and D in column 1), based on the basic flow of brazing filler metal through joints. These positions are flat flow, vertical downflow, vertical upflow, and horizontal flow. The maximum permitted angular deviation from the specified flow plane is ± 45 deg.

QB-120 TEST POSITIONS FOR LAP, BUTT, SCARF, OR RABBET JOINTS

Brazed joints may be made in test coupons oriented in any of the positions in Figure QB-461.2 and as described in the following paragraphs, except that angular deviation from the specified horizontal and vertical flow planes in accordance with column 1 of Figure QB-461.2 is permitted during brazing.

QB-121 FLAT-FLOW POSITION

The test coupon joints in position suitable for applying brazing filler metal in rod, strip, or other suitable form under the flat-flow conditions are shown in illustrations (1) through (5) of Line A in Figure QB-461.2. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-122 VERTICAL-DOWNFLOW POSITION

The test coupon joints in a position suitable for applying brazing filler metal in rod, strip, or other suitable form under the vertical-downflow conditions are shown in illustrations (1) through (4) of Line B in Figure QB-461.2. The brazing filler metal flows by capillary action with the aid of gravity downward into the joint. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-123 VERTICAL-UPFLOW POSITION

The test coupon joints in position suitable for applying brazing filler metal in rod, strip, or other suitable form under the vertical-upflow conditions are shown in illustrations (1) through (4) of Line C in Figure QB-461.2. The brazing filler metal flows by capillary action through the joint. The maximum permitted angular deviation from the specified flow plane is ±15 deg.

QB-124 HORIZONTAL-FLOW POSITION

The test coupon joints in a position suitable for applying brazing filler metal in rod, strip, or other suitable form under the horizontal-flow conditions are shown in illustrations (1) and (2) of Line D of Figure QB-461.2. The brazing filler metal flows horizontally by capillary action through the joint. The maximum permitted angular deviation from the specified flow plane is ± 15 deg.

QB-140 TYPES AND PURPOSES OF TESTS AND EXAMINATIONS

QB-141 TESTS

Tests used in brazing procedure and performance qualifications are specified in QB-141.1 through QB-141.6.

QB-141.1 Tension Tests. Tension tests, as described in QB-150, are used to determine the ultimate strength of brazed butt, scarf, lap, and rabbet joints.

QB-141.2 Guided-Bend Tests. Guided-bend tests, as described in QB-160, are used to determine the degree of soundness and ductility of butt and scarf joints.

QB-141.3 Peel Tests. Peel tests, as described in QB-170, are used to determine the quality of the bond and the amount of defects in lap joints.

(13) **QB-141.4 Sectioning Tests.** Sectioning tests, i.e., the sectioning of test coupons, as described in QB-180, are used to determine the soundness of workmanship coupons or test specimens. Sectioning tests are also a substitute for the peel test when the peel test is impractical to perform.

QB-141.5 Workmanship Coupons. Workmanship coupons, as described in QB-182, are used to determine the soundness of joints other than the standard butt, scarf, lap, and rabbet joints.

QB-141.6 Visual Examination. Visual examination of brazed joints is used for estimating the soundness by external appearance, such as continuity of the brazing filler metal, size, contour, and wetting of fillet along the joint and, where appropriate, to determine if filler metal flowed through the joint from the side of application to the opposite side.

QB-150 TENSION TESTS

QB-151 SPECIMENS

Tension test specimens shall conform to one of the types illustrated in Figures QB-462.1(a) through QB-462.1(f), and shall meet the requirements of QB-153.

QB-151.1 Reduced Section — **Plate.** Reduced-section specimens conforming to the requirements given in Figures QB-462.1(a) and QB-462.1(c) may be used for

tension tests on all thicknesses of plate. The specimens may be tested in a support fixture in substantial accordance with Figure QB-462.1(f).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(b) For plate thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used in lieu of full thickness specimens, each set shall represent a single tension test of the full plate thickness. Collectively, all of the specimens required to represent the full thickness of the brazed joint at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QB-153.

QB-151.2 Reduced Section — **Pipe.** Reduced-section specimens conforming to the requirements given in Figure QB-462.1(b) may be used for tension tests on all thicknesses of pipe or tube having an outside diameter greater than 3 in. (75 mm). The specimens may be tested in a support fixture in substantial accordance with Figure QB-462.1(f).

(*a*) For thicknesses up to and including 1 in. (25 mm), a full thickness specimen shall be used for each required tension test.

(b) For pipe thicknesses greater than 1 in. (25 mm), full thickness specimens or multiple specimens may be used, provided (c) and (d) are complied with.

(c) When multiple specimens are used in lieu of full thickness specimens, each set shall represent a single tension test of the full pipe thickness. Collectively, all of the specimens required to represent the full thickness of the brazed joint at one location shall comprise a set.

(*d*) When multiple specimens are necessary, the entire thickness shall be mechanically cut into a minimum number of approximately equal strips of a size that can be tested in the available equipment. Each specimen of the set shall be tested and meet the requirements of QB-153.

QB-151.3 Full-Section Specimens for Pipe. Tension specimens conforming to the dimensions given in Figure QB-462.1(e) may be used for testing pipe with an outside diameter of 3 in. (75 mm) or less.

QB-152 TENSION TEST PROCEDURE

The tension test specimen shall be ruptured under tensile load. The tensile strength shall be computed by dividing the ultimate total load by the least cross-sectional area of the specimen as measured before the load is applied.

QB-153 ACCEPTANCE CRITERIA — TENSION TESTS

QB-153.1 Tensile Strength. Minimum values for procedure qualification are provided under the column heading "Minimum Specified Tensile" of Table QW/QB-422. In order to pass the tension test, the specimen shall have a tensile strength that is not less than

(*a*) the specified minimum tensile strength of the base metal in the annealed condition; or

(*b*) the specified minimum tensile strength of the weaker of the two in the annealed condition, if base metals of different specified minimum tensile strengths are used; or

(c) if the specimen breaks in the base metal outside of the braze, the test shall be accepted as meeting the requirements, provided the strength is not more than 5% below the minimum specified tensile strength of the base metal in the annealed condition.

(d) the specified minimum tensile strength is for full thickness specimens including cladding for Aluminum Alclad materials (P-No. 104 and P-No. 105) less than $\frac{1}{2}$ in. (13 mm). For Aluminum Alclad materials $\frac{1}{2}$ in. (13 mm) and greater, the specified minimum tensile strength is for both full thickness specimens that include cladding and specimens taken from the core.

QB-160 GUIDED-BEND TESTS

QB-161 SPECIMENS

Guided-bend test specimens shall be prepared by cutting the test plate or pipe to form specimens of approximately rectangular cross section. The cut surfaces shall be designated the sides of the specimen. The other two surfaces shall be designated the first and second surfaces. The specimen thickness and bend radius are shown in Figures QB-466.1, QB-466.2, and QB-466.3. Guided-bend specimens are of five types, depending on whether the axis of the joint is transverse or parallel to the longitudinal axis of the specimen, and which surface (first or second) is on the convex (outer) side of the bent specimen. The five types are defined as follows (QB-161.1 through QB-161.6).

QB-161.1 Transverse First Surface Bend. The joint is transverse to the longitudinal axis of the specimen, which is bent so that the first surface becomes the convex surface of the bent specimen. In general, the *first surface* is defined as that surface from which the brazing filler metal is applied and is fed by capillary attraction into the joint. Transverse first surface bend specimens shall conform to the dimensions shown in Figure QB-462.2(a). For subsize first surface bends, see QB-161.3.

QB-161.2 Transverse Second Surface Bend. The joint is transverse to the longitudinal axis of the specimen, which is bent so that the second surface becomes the convex surface of the bent specimen. In general, the *second surface* is defined as the surface opposite to that from

which the brazing filler metal is placed or fed, but definitely is the surface opposite to that designated as the first surface, irrespective of how the brazing filler metal is fed. Transverse second surface bend specimens shall conform to the dimensions shown in Figure QB-462.2(a). For subsize first surface bends, see QB-161.3.

QB-161.3 Subsize Transverse Bend. In those cases where the wall thickness of the tube or pipe is less than $\frac{3}{8}$ in. (10 mm) and the diameter-to-thickness ratio does not permit the preparation of full-size rectangular guided-bend specimens, the $\frac{1}{2}$ in. (38 mm) wide standard guided-bend specimen shown in Figure QB-462.2(a) may be replaced by three subsize specimens having a width of $\frac{3}{8}$ in. (10 mm) or 4*t*, whichever is less.

QB-161.4 Longitudinal-Bend Tests. Longitudinalbend tests may be used in lieu of the transverse-bend tests for testing braze metal or base metal combinations, which differ markedly in bending properties between

- (a) the two base metals; or
- (*b*) the braze metal and the base metal.

QB-161.5 Longitudinal First Surface Bend. The joint is parallel to the longitudinal axis of the specimen, which is bent so that the first surface becomes the convex surface of the bent specimen. The definition of first surface is as given in QB-161.1. Longitudinal first surface bend specimens shall conform to the dimensions given in Figure QB-462.2(b).

QB-161.6 Longitudinal Second Surface Bend. The joint is parallel to the longitudinal axis of the specimen, which is bent so that the second surface becomes the convex surface of the specimen. The definition of the second surface is given in QB-161.2. Longitudinal second surface bend specimens shall conform to the dimensions given in Figure QB-462.2(b).

QB-162 GUIDED-BEND TEST PROCEDURE

QB-162.1 Jigs. Guided-bend specimens shall be bent in test jigs that are in substantial accordance with QB-466. When using the jigs in accordance with Figure QB-466.1 or Figure QB-466.2, the side of the specimen turned toward the gap of the jig shall be the first surface for first surface bend specimens (defined in QB-161.1), and the second surface for second surface bend specimens (defined in QB-161.2). The specimen shall be forced into the die by applying load on the plunger until the curvature of the specimen is such that a $\frac{1}{6}$ in. (3 mm) diameter wire cannot be inserted between the specimen and the die of Figure QB-466.1, or the specimen is bottom ejected, if the roller type of jig (Figure QB-466.2) is used.

When using the wrap around jig (Figure QB-466.3) the side of the specimen turned toward the roller shall be the first surface for first surface bend specimens, and the second surface for second surface bend specimens.

QB-163 ACCEPTANCE CRITERIA — BEND TESTS

The joint of a transverse-bend specimen shall be completely within the bent portion of the specimen after testing.

The guided-bend specimens shall have no open discontinuities exceeding $\frac{1}{8}$ in. (3 mm), measured in any direction on the convex surface of the specimen after bending. Cracks occurring on the corners of the specimen during testing shall not be considered, unless there is definite evidence that they result from flux inclusions, voids, or other internal discontinuities.

QB-170 PEEL TESTS

QB-171 SPECIMENS

The dimensions and preparation of the peel test specimen shall conform to the requirements of Figure QB-462.3.

QB-172 ACCEPTANCE CRITERIA — PEEL TEST

In order to pass the peel test, the specimens shall show evidence of brazing filler metal along each edge of the joint. Specimens shall be separated or peeled either by clamping Section A and striking Section B with a suitable tool such that the bending occurs at the fulcrum point (see Figure QB-462.3), or by clamping Section A and Section B in a machine suitable for separating the sections under tension. The separated faying surfaces of joints shall meet the following criteria: (*a*) The total area of discontinuities (unbrazed areas, flux inclusions, etc.) shall not exceed 25% of the total area of any individual faying surface.

(b) The sum of the lengths of the discontinuities measured on any one line in the direction of the lap shall not exceed 25% of the lap.

(c) No discontinuity shall extend continuously from one edge of the joint to the other edge, irrespective of its direction.

QB-180 SECTIONING TESTS AND WORKMANSHIP COUPONS

QB-181 SECTIONING TEST SPECIMENS

The dimensions and configuration of the sectioning test specimens shall conform to the requirements of Figure QB-462.4. Each side of the specimen shall be polished and examined with at least a four-power magnifying glass. The sum of the length of unbrazed areas on either side, considered individually, shall not exceed 20% of the length of the joint overlap.

QB-182 WORKMANSHIP COUPONS

The dimensions and configuration of the workmanship coupon shall conform to the nearest approximation of the actual application. Some typical workmanship coupons are shown in Figure QB-462.5. Each side of the specimen shall be polished and examined with at least a four-power magnifying glass. The sum of the length of unbrazed areas on either side, considered individually, shall not exceed 20% of the length of the joint overlap.

ARTICLE XII BRAZING PROCEDURE QUALIFICATIONS

(13) QB-200 GENERAL

QB-200.1 Each organization shall prepare written Brazing Procedure Specifications, which are defined as follows.

(a) Brazing Procedure Specification (BPS). A BPS is a written qualified brazing procedure prepared to provide direction for making production brazes to Code requirements. The BPS or other documents [see (e)] may be used to provide direction to the brazer or brazing operator to assure compliance with the Code requirements.

(b) Contents of the BPS. The completed BPS shall describe all of the essential and nonessential variables for each brazing process used in the BPS. These variables are listed in QB-250 and are defined in Article XIV, Brazing Data.

The BPS shall reference the supporting Procedure Qualification Record(s) (PQR) described in QB-200.2. The organization may include any other information in the BPS that may be helpful in making a Code braze.

(c) Changes to the BPS. Changes may be made in the nonessential variables of a BPS to suit production requirements without requalification provided such changes are documented with respect to the essential and nonessential variables for each process. This may be by amendment to the BPS or by use of a new BPS.

Changes in essential variables require requalification of the BPS [new or additional PQRs to support the change in essential variable(s)].

(*d*) Format of the BPS. The information required to be in the BPS may be in any format, written or tabular, to fit the needs of each organization, as long as every essential and nonessential variable outlined in QB-250 is included or referenced.

Form QB-482 (see Nonmandatory Appendix B) has been provided as a guide for the BPS. It is only a guide and does not list all required data for all brazing processes.

(e) Availability of the BPS. A BPS used for Code production brazing shall be available for reference and review by the Authorized Inspector (AI) at the fabrication site.

QB-200.2 Each organization shall be required to prepare a procedure qualification record, which is defined as follows.

(a) Procedure Qualification Record (PQR). The PQR is a record of variables recorded during the brazing of the test coupons. It also contains the test results of the tested

specimens. Recorded variables normally fall within a small range of the actual variables that will be used in production brazing.

(b) Contents of the PQR. The completed PQR shall document all essential variables of QB-250 for each brazing process used during the brazing of the test coupon. Nonessential or other variables used during the brazing of the test coupon may be recorded at the organization's option. All variables, if recorded, shall be the actual variables (including ranges) used during the brazing of the test coupon. If variables are not monitored during brazing, they shall not be recorded. It is not intended that the full range or the extreme of a given range of variables to be used in production be used during qualification unless required due to a specific essential variable.

The PQR shall be certified accurate by the organization. The organization may not subcontract the certification function. This certification is intended to be the organization's verification that the information in the PQR is a true record of the variables that were used during the brazing of the test coupon and that the resulting tensile, bend, peel, or section (as required) test results are in compliance with Section IX.

(c) Changes to the PQR. Changes to the PQR are not permitted, except as described below. It is a record of what happened during a particular brazing test. Editorial corrections or addenda to the PQR are permitted. An example of an editorial correction is an incorrect P-Number or F-Number that was assigned to a particular base material or filler metal. An example of an addendum would be a change resulting from a Code change. For example, Section IX may assign a new F-Number to a filler material or adopt a new filler material under an established F-Number. This may permit, depending on the particular construction Code requirements, an organization to use other filler metals that fall within that particular F-Number where, prior to the Code revision, the organization was limited to the particular filler metal classification that was used during qualification. Additional information can be incorporated into a PQR at a later date provided the information is substantiated as having been part of the original qualification condition by lab record or similar data.

All changes to a PQR require recertification (including date) by the organization.

(d) Format of the PQR. Form QB-483 (see Nonmandatory Appendix B) has been provided as a guide for the PQR. The information required to be in the PQR may be in any format, to fit the needs of each organization, as long as every essential variable, required by QB-250, is included. Also the type of tests, number of tests, and test results shall be listed in the PQR. Additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. PQRs used to support BPSs shall be available, upon request, for review by the Authorized Inspector (AI). The PQR need not be available to the brazer or brazing operator.

(f) Multiple BPSs With One PQR/Multiple PQRs With One BPS. Several BPSs may be prepared from the data on a single PQR (e.g., a vertical-upflow pipe PQR may support BPSs for the vertical-upflow and downflow positions on pipe within all other essential variables). A single BPS may cover several essential variable changes as long as a supporting PQR exists for each essential variable.

QB-200.3 To reduce the number of brazing procedure qualifications required, P-Numbers are assigned to base metals dependent on characteristics such as composition, brazability, and mechanical properties, where this can logically be done, and for ferrous and nonferrous metals.

The assignments do not imply that base metals may be indiscriminately substituted for a base metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, postbraze heat treatment, design, mechanical properties, and service requirements.

QB-200.4 Dissimilar Base Metal Thicknesses. A BPS qualified on test coupons of equal thickness shall be applicable for production brazements between dissimilar base metal thicknesses provided the thickness of both base metals are within the qualified thickness range permitted by QB-451. A BPS qualified on test coupons of different thicknesses shall be applicable for production brazements between dissimilar base metal thicknesses provided the thicknesses provided the thickness of each base metal is within the qualified range of thickness (based on each test coupon thickness) permitted by QB-451.

QB-201 ORGANIZATIONAL RESPONSIBILITY

The organization shall certify that they have qualified each Brazing Procedure Specification, performed the procedure qualification test, and documented it with the necessary Procedure Qualification Record (PQR).

QB-202 TYPE OF TESTS REQUIRED

QB-202.1 Tests. The type and number of test specimens which shall be tested to qualify a brazing procedure are given in QB-451, and shall be removed in a manner similar to that shown in QB-463. If any test specimen required by QB-451 fails to meet the applicable acceptance criteria, the test coupon shall be considered as failed.

When it can be determined that the cause of failure is not related to brazing parameters, another test coupon may be brazed using identical brazing parameters. Alternatively, if adequate material of the original test coupon exists, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens.

When it has been determined that the test failure was caused by an essential variable, a new test coupon may be brazed with appropriate changes to the variable(s) that were determined to cause the test failure. If the new test passes, the essential variables shall be documented on the PQR.

When it is determined that the test failure was caused by one or more brazing related factors other than essential variables, a new test coupon may be brazed with the appropriate changes to brazing related factors that were determined to cause the test failure. If the new test passes, the brazing related factors that were determined to cause the previous test failure shall be addressed by the organization to assure that the required properties are achieved in the production brazement.

QB-202.2 Base Metals. The procedure qualification shall encompass the thickness ranges to be used in production for the base metals to be joined or repaired. The range of thickness qualified is given in QB-451.

QB-203 LIMITS OF QUALIFIED FLOW POSITIONS FOR PROCEDURES (SEE FIGURES QB-461.1 AND QB-461.2)

QB-203.1 For plate, qualification in the flat-flow, vertical-upflow, or horizontal-flow position shall qualify for the vertical-downflow position. For pipe, qualification in the horizontal-flow or vertical-upflow position shall qualify for the vertical-downflow position.

Qualification in pipe shall qualify for plate, but not vice versa. Horizontal-flow in pipe shall also qualify for flatflow in plate.

QB-203.2 Special Flow Positions. An organization who does production brazing in a special orientation may make the tests for procedure qualification in this specific orientation. Such qualifications are valid only for the flow positions actually tested, except that an angular deviation of ±15 deg is permitted in the inclination of the braze plane, as defined in Figures QB-461.1 and QB-461.2.

QB-203.3 The brazing process must be compatible, and the brazing filler metals, such as defined in the specifications of Section II, Part C, must be suitable for their use in specific flow positions. A brazer or brazing operator making and passing the BPS qualification test is thereby qualified for the flow position tested (see QB-301.2).

QB-210 PREPARATION OF TEST COUPON

QB-211 BASE METAL AND FILLER METAL

The base metals and filler metals shall be one or more of those listed in the BPS. The dimensions of the test assembly shall be sufficient to provide the required test specimens. The base metals may consist of either plate, pipe, or other product forms. Qualification in pipe also qualifies for plate brazing, but not vice versa.

QB-212 TYPE AND DIMENSION OF JOINTS

The test coupon shall be brazed using a type of joint design proposed in the BPS for use in construction.

QB-250 BRAZING VARIABLES

QB-251 GENERAL

QB-251.1 Types of Variables for Brazing Procedure Specification (BPS). Brazing variables (listed for each brazing process in Tables QB-252 through QB-257) are subdivided into essential and nonessential variables (QB-401). **QB-251.2 Essential Variables.** Essential variables are those in which a change, as described in the specific variables, is considered to affect the mechanical properties of the brazement, and shall require requalification of the BPS.

QB-251.3 Nonessential Variables. Nonessential variables are those in which a change, as described in the specific variables, may be made in the BPS without requalification.

	Table QB-252 Torch Brazing (TB)	
Paragraph	252.1 Essential Variables	252.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	QB-406.3
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
	QB-409.2	
	QB-409.3	
QB-410 Technique		QB-410.1
		QB-410.2
		QB-410.3
		QB-410.4
		QB-410.5

	Table QB-253 Furnace Brazing (FB)	
Paragraph	253.1 Essential Variables	253.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
QB-404 Brazing Temperature	QB-404.1	
QB-406 Brazing Flux, Gas, or	QB-406.1	
Atmosphere	QB-406.2	
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
	QB-409.2	
	QB-409.3	
QB-410 Technique		QB-410.1
		QB-410.2

	Table QB-254 Induction Brazing (IB)	
Paragraph	254.1 Essential Variables	254.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
QB-404 Brazing Temperature	QB-404.1	
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
	QB-409.2	
	QB-409.3	
QB-410 Technique		QB-410.1
		QB-410.2

Table QB-255 Resistance Brazing (RB)				
Paragraph	255.1 Essential Variables	255.2 Nonessential Variables		
QB-402 Base Metal	QB-402.1			
	QB-402.3			
QB-403 Brazing Filler Metal	QB-403.1			
	QB-403.2			
QB-404 Brazing Temperature	QB-404.1			
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1			
QB-407 Flow Position	QB-407.1			
QB-408 Joint Design	QB-408.2			
	QB-408.4			
QB-409 Postbraze Heat Treatment	QB-409.1			
	QB-409.2			
	QB-409.3			
QB-410 Technique		QB-410.1		
		QB-410.2		

Dip Brazing — Salt or Flux Bath (DB)				
Paragraph	256.1 Essential Variables	256.2 Nonessential Variables		
QB-402 Base Metal	QB-402.1			
	QB-402.3			
QB-403 Brazing Filler Metal	QB-403.1			
	QB-403.2			
QB-404 Brazing Temperature	QB-404.1			
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1			
QB-407 Flow Position	QB-407.1			
QB-408 Joint Design	QB-408.2			
	QB-408.4			
QB-409 Postbraze Heat Treatment	QB-409.1			
	QB-409.2			
	QB-409.3			

Paragraph	257.1 Essential Variables	257.2 Nonessential Variables
QB-402 Base Metal	QB-402.1	
	QB-402.3	
QB-403 Brazing Filler Metal	QB-403.1	
	QB-403.2	
QB-404 Brazing Temperature	QB-404.1	
QB-406 Brazing Flux, Gas, or Atmosphere	QB-406.1	
QB-407 Flow Position	QB-407.1	
QB-408 Joint Design	QB-408.2	
	QB-408.4	
QB-409 Postbraze Heat Treatment	QB-409.1	
	QB-409.2	
	QB-409.3	
QB-410 Technique		QB-410.1
		QB-410.2

ARTICLE XIII BRAZING PERFORMANCE QUALIFICATIONS

(13) QB-300 GENERAL

QB-300.1 This Article lists the brazing processes separately, with the essential variables which apply to brazer and brazing operator performance qualifications.

The brazer qualification is limited by the essential variables given for each brazing process. These variables are listed in QB-350, and are defined in Article XIV, Brazing Data. The brazing operator qualification is limited by the essential variables given in QB-350 for each brazing process.

QB-301 TESTS

QB-301.1 Intent of Tests. The performance qualification tests are intended to determine the ability of brazers and brazing operators to make sound braze joints.

QB-301.2 Qualification Tests. Each organization shall qualify each brazer or brazing operator for each brazing process to be used in production brazing. The performance qualification test shall be brazed in accordance with one of any of his qualified Brazing Procedure Specifications (BPS).

The brazer or brazing operator who prepares the BPS qualification test coupons is also qualified within the limits of the performance qualifications, listed in QB-304 for brazers and in QB-305 for brazing operators. He is qualified only for the positions tested in the procedure qualification in accordance with QB-407.

QB-301.3 Identification of Brazers and Brazing Operators. Each qualified brazer and brazing operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify the work of that brazer or brazing operator.

QB-301.4 Record of Tests. The record of Brazer or Brazing Operator Performance Qualification (BPQ) tests shall include the essential variables (QB-350), the type of tests and the test results, and the ranges qualified in accordance with QB-452 for each brazer and brazing operator. A suggested form for these records is given in Form QB-484 (see Nonmandatory Appendix B).

QB-302 TYPE OF TEST REQUIRED

QB-302.1 Test Specimens. The type and number of test specimens required shall be in accordance with QB-452, and shall be removed in a manner similar to that shown in QB-463.

All test specimens shall meet the requirements prescribed in QB-170 or QB-180, as applicable. Tests for brazing operators shall meet the requirements of QB-305.

QB-302.2 Test Coupons in Pipe. For test coupons made in pipe, specimens shall be removed as shown in Figure QB-463.2(c) at approximately 180 deg apart.

QB-302.3 Combination of Base Metal Thicknesses. When joints are brazed between two base metals of different thicknesses, a performance qualification shall be made for the applicable combination of thicknesses, even though qualification tests have been made for each of the individual base metals brazed to itself. The range of thickness of each of the base metals shall be determined individually per QB-452.

QB-303 LIMITS OF QUALIFIED POSITIONS

(See Figures QB-461.1 and QB-461.2)

QB-303.1 For plate, qualification in the flat-flow, vertical-upflow, or horizontal-flow positions shall qualify for the vertical-downflow position.

QB-303.2 For pipe, qualification in either the horizontal-flow or vertical-upflow position shall qualify for the vertical-downflow position.

QB-303.3 Qualification in pipe shall qualify for plate, but not vice versa. Horizontal-flow in pipe shall qualify for flat-flow in plate.

QB-303.4 Special Positions. An organization who does production brazing in a special orientation may make the tests for performance qualification in this specific orientation. Such qualifications are valid only for the flow positions actually tested, except that an angular deviation of ±15 deg is permitted in the inclination of the braze plane, as defined in Figures QB-461.1 and QB-461.2.

QB-304 BRAZERS

Each brazer who brazes under the rules of this Code shall have passed the tests prescribed in QB-302 for performance qualifications.

A brazer qualified to braze in accordance with one qualified BPS is also qualified to braze in accordance with other qualified BPSs, using the same brazing process, within the limits of the essential variables of QB-350.

QB-305 BRAZING OPERATORS

The brazing operator who prepares brazing procedure qualification test specimens meeting requirements of QB-451 is thereby qualified. Alternatively, each brazing operator who brazes on vessels constructed under the rules of this Code shall be qualified for each combination of essential variables under which brazing is performed using semiautomatic or automatic processes (such as the resistance, induction, or furnace processes) as follows:

(*a*) A typical joint or workmanship coupon embodying the requirements of a qualified brazing procedure shall be brazed and sectioned. Typical joints are shown in Figure QB-462.5.

(b) In order to ensure that the operator can carry out the provisions of the brazing procedure, the test sections required in (a) shall meet the requirements of QB-452.

QB-310 QUALIFICATION TEST COUPONS

QB-310.1 Test Coupons. The test coupons may be plate, pipe, or other product forms. The dimensions of the test coupon and length of braze shall be sufficient to provide the required test specimens.

QB-310.2 Braze Joint. The dimensions of the braze joint at the test coupon used in making qualification tests shall be the same as those in the Brazing Procedure Specification (BPS).

QB-310.3 Base Metals. When a brazer or brazing operator is to be qualified, the test coupon shall be base metal of the P-Number or P-Numbers to be joined in production brazing.

QB-320 RETESTS AND RENEWAL OF QUALIFICATION

QB-321 RETESTS

A brazer or brazing operator who fails to meet the requirements for one or more of the test specimens prescribed in QB-452 may be retested under the following conditions.

QB-321.1 Immediate Retest. When an immediate retest is made, the brazer or brazing operator shall make two consecutive test coupons for each position which he has failed, all of which shall pass the test requirements.

QB-321.2 Further Training. When the brazer or brazing operator has had further training or practice, a complete retest shall be made for each position on which he failed to meet the requirements.

QB-322 RENEWAL OF QUALIFICATION

Renewal of qualification of a performance qualification is required

(*a*) when a brazer or brazing operator has not used the specific brazing process for a period of 6 months or more, or

(b) when there is a specific reason to question his ability to make brazes that meet the specification. Renewal of qualification for a specific brazing process under (a) may be made with specific brazing process by making only one test joint (plate or pipe) with all the essential variables used on any one of the brazer's or brazing operator's previous qualification test joints. This will reestablish the brazer's or brazing operator's qualification for all variables for which he had previously qualified with the specific brazing process.

QB-350 BRAZING VARIABLES FOR BRAZERS AND BRAZING OPERATORS

QB-351 GENERAL

A brazer or brazing operator shall be requalified whenever a change is made in one or more of the essential variables for each brazing process, as follows:

- (*a*) Torch Brazing (TB)
- (b) Furnace Brazing (FB)
- (c) Induction Brazing (IB)
- (d) Resistance Brazing (RB)
- (e) Dip Brazing (DB)

QB-351.1 Essential Variables — Manual, Semiautomatic, and Machine Brazing.

- (a) QB-402 Base Metal
 - (1) QB-402.2
 - (2) QB-402.3
- (b) QB-403 Brazing Filler Metal
 - (1) QB-403.1
 - (2) QB-403.2
- (c) QB-407 Flow Position
- (1) QB-407.1
- (d) QB-408 Joint Design
- (1) QB-408.1
- (2) QB-408.3
- (e) QB-410 Technique
 - (1) QB-410.5

QB-351.2 Essential Variables — Automatic.

- (a) A change from automatic to machine brazing.
- (b) A change in brazing process.

ARTICLE XIV BRAZING DATA

QB-400 VARIABLES

QB-401 GENERAL

QB-401.1 Each brazing variable described in this Article is applicable as an essential or nonessential variable for procedure qualification when referenced in QB-250 for each specific process. Essential variables for performance qualification are referenced in QB-350 for each specific brazing process. A change from one brazing process to another brazing process is an essential variable and requires requalification.

QB-402 BASE METAL

QB-402.1 A change from a base metal listed under one P-Number in Table QW/QB-422 to any of the following:

(a) a metal listed under another P-Number

(b) any other base metal not listed in Table QW/QB-422

The brazing of dissimilar metals need not be requalified if each base metal involved is qualified individually for the same brazing filler metal, flux, atmosphere, and process. Similarly, the brazing of dissimilar metals qualifies for the individual base metal brazed to itself and for the same brazing filler metal, flux, atmosphere, and process, provided the requirements of QB-153.1(a) are met.

QB-402.2 A change from a base metal listed under one P-Number in Table QW/QB-422 to any of the following:

(*a*) a metal listed under another P-Number

(b) any other metal not listed in Table QW/QB-422

The brazing of dissimilar metals need not be requalified if each base metal involved is qualified individually for the same brazing filler metal, flux, atmosphere, and process. Similarly, the brazing of dissimilar metals qualifies for the individual base metal brazed to itself and for the same brazing filler metal, flux, atmosphere, and process.

QB-402.3 A change in base metal thickness beyond the range qualified in QB-451 for procedure qualification, or QB-452 for performance qualification.

QB-403 BRAZING FILLER METAL

QB-403.1 A change from one F-Number in Table QB-432 to any other F-Number, or to any other filler metal not listed in Table QB-432.

QB-403.2 A change in filler metal from one product form to another (for example, from preformed ring to paste).

QB-404 BRAZING TEMPERATURE

QB-404.1 A change in brazing temperature to a value outside the range specified in the BPS.

QB-406 BRAZING FLUX, FUEL GAS, OR ATMOSPHERE

QB-406.1 The addition or deletion of brazing flux or a change in AWS classification of the flux. Nominal chemical composition or the trade name of the flux may be used as an alternative to the AWS classification.

QB-406.2 A change in the furnace atmosphere from one basic type to another type. For example

(*a*) reducing to inert

- (b) carburizing to decarburizing
- (c) hydrogen to disassociated ammonia
- **QB-406.3** A change in the type of fuel gas(es).

QB-407 FLOW POSITION

QB-407.1 The addition of other brazing positions than those already qualified (see QB-120 through QB-124, QB-203 for procedure, and QB-303 for performance).

(*a*) If the brazing filler metal is preplaced or facefed from outside the joint, then requalification is required in accordance with the positions defined in Figures QB-461.1 and QB-461.2 under the conditions of QB-120 through QB-124.

(*b*) If the brazing filler metal is preplaced in a joint in a manner that major flow does occur, then requalification is required in accordance with the positions defined in Figures QB-461.1 and QB-461.2 under the conditions of QB-120 through QB-124.

(c) If the brazing filler metal is preplaced in a joint so that there is no major flow, then the joint may be brazed in any position without requalification.

QB-408 JOINT DESIGN

QB-408.1 A change in the joint type, i.e., from a butt to a lap or socket, from that qualified. For lap or socket joints, an increase in lap length of more than 25% from the overlap used on the brazer performance qualification test coupon (a decrease in overlap is permitted without requalification).

QB-408.2 A change in the joint clearances to a value outside the range specified in the BPS and as recorded in the PQR.

QB-408.3 A change in the joint clearances to a value outside the range specified in the BPS.

QB-408.4 A change in the joint type, e.g., from a butt to a lap or socket, from that qualified. For lap and socket joints, a decrease in overlap length from the overlap used on the procedure qualification test coupon (an increase in overlap is permitted without requalification).

QB-409 POSTBRAZE HEAT TREATMENT

QB-409.1 A separate procedure qualification is required for each of the following:

(*a*) For P-Nos. 101 and 102 materials, the following postbraze heat treatment conditions apply:

(1) no postbraze heat treatment

(2) postbraze heat treatment below the lower transformation temperature

(3) postbraze heat treatment above the upper transformation temperature (e.g., normalizing)

(4) postbraze heat treatment above the upper transformation temperature followed by heat treatment below the lower transformation temperature (e.g., normalizing or quenching followed by tempering)

(5) postbraze heat treatment between the upper and lower transformation temperatures

(*b*) For all other materials, the following post weld heat treatment conditions apply:

(1) no postbraze heat treatment

(2) postbraze heat treatment within a specified temperature range

QB-409.2 A change in the postbraze heat treatment (see QB-409.1) temperature and time range requires a PQR.

The procedure qualification test shall be subjected to postbraze heat treatment essentially equivalent to that encountered in the fabrication of production brazements, including at least 80% of the aggregate time at temperature (s). The postbraze heat treatment total time(s) at temperature(s) may be applied in one heating cycle. **QB-409.3** For a procedure qualification test coupon receiving a postbraze heat treatment in which the upper transformation temperature is exceeded, the maximum qualified thickness for production brazements is 1.1 times the thickness of the test coupon.

QB-410 TECHNIQUE

QB-410.1 A change in the method of preparing the base metal, i.e., method of precleaning the joints (for example, from chemical cleaning to cleaning by abrasive or mechanical means).

QB-410.2 A change in the method of postbraze cleaning (for example, from chemical cleaning to cleaning by wire brushing or wiping with a wet rag).

QB-410.3 A change in the nature of the flame (for example, a change from neutral or slightly reducing).

QB-410.4 A change in the brazing tip sizes.

QB-410.5 A change from manual to machine or semi- (13) automatic torch brazing, and vice versa.

QB-420 P-NUMBERS

(See Part QW, Welding — QW-420)

QB-430 F-NUMBERS

QB-431 GENERAL

The following F-Number grouping of brazing filler metals in Table QB-432 is based essentially on their usability characteristics, which fundamentally determine the ability of brazers and brazing operators to make satisfactory brazements with a given filler metal. This grouping is made to reduce the number of brazing procedure and performance qualifications, where this can logically be done. The grouping does not imply that filler metals within a group may be indiscriminately substituted for a filler metal which was used in the qualification test without consideration of the compatibility from the standpoint of metallurgical properties, design, mechanical properties, postbraze heat treatment, and service requirements.

F-Numbers Grouping of Brazing Filler Metals for Procedure and Performance Qualification SFA-5.8				
	F-No.	AWS Classification No.		
432.1	101	BAg-1		
432.1	101	BAg-1a		
		BAg-1a BAg-8		
		BAg-8a		
		BAg-22		
		BAg-23		
		BVAg-0		
		BVAg-8		
		BVAg-8b		
		BVAg-30		
432.2	102	BAg-2		
		BAg-2a		
		BAg-3		
		BAg-4		
		BAg-5		
		BAg-6		
		BAg-7		
		BAg-9		
		BAg-10		
		BAg-13		
		BAg-13a BAg-18		
		BAg-10 BAg-19		
		BAg-20		
		BAg-21		
		BAg-24		
		BAg-26		
		BAg-27		
		BAg-28		
		BAg-33		
		BAg-34		
		BAg-35		
		BAg-36		
		BAg-37		
		BVAg-6b		
		BVAg-8		
		BVAg-8a		
		BVAg-18		
		BVAg-29		
		BVAg-31		
		BVAg-32		
432.3	103	BCuP-2		
	100	BCuP-3		
		BCuP-4		
		BCuP-5		
		BCuP-6		
		BCuP-7		
		BCuP-8		
		BCuP-9		
432.4	104	BAlSi-2		
432.4	104	BAISI-2 BAISi-3		
		BAISI-3 BAISi-4		
		BAISI-4 BAISi-5		
		BAISI-5 BAISi-7		
		BAISI-7 BAISi-9		
		BAISI-9 BAISi-11		

			nance Qualification SFA-5.8 (Cont'd
QB		F-No.	AWS Classification No.
432.5		105	BCu-1
			BCu-1a
			BCu-2
			BCu-3
			BVCu-1a
			BVCu-1b
432.6		106	RBCuZn-A
			RBCuZn-B
			RBCuZn-C
			RBCuZn-D
432.7		107	BNi-1
			BNi-1a
			BNi-2
			BNi-3
			BNi-4
			BNi-5
			BNi-5a
			BNi-5b
			BNi-6
			BNi-7
			BNi-8
			BNi-9
			BNi-10
			BNi-11
			BNi-12 BNi-13
422.0		100	
432.8		108	BAu-1 BAu-2
			BAu-2 BAu-3
			BAu-4
			BAu-5
			BAu-6
			BVAu-2
			BVAu-3
			BVAu-4
			BVAu-7
			BVAu-8
			BVAu-9
			BVAu-10
432.9		109	BMg-1
432.1)	110	BCo-1
432.1	1	111	BVPd-1

QB-450 SPECIMENS QB-451 PROCEDURE QUALIFICATION SPECIMENS

Tension Tests ar		e QB-451.1 Bend Test		Scarf Joints	
	Range of Thi Materials Qu		Type and Nu	umber of Test S Required	pecimens
	Test Plate or (mm		-	First Surface Bend	Second Surface Bend
Thickness T of Test Coupon as Brazed, in. (mm)	Min.	Max.	Tension [Note (1)]	[Note [Not	[Note (2)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2	2	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2	2	2
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2T	2 [Note (3)]	2	2

NOTES:

Г

(1) For specimen dimensions, see Figure QB-462.1(a) for plate specimens, or Figure QB-462.1(b) for pipe specimens. For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(2) For specimen dimensions, see Figure QB-462.2(a). For specimen removal, see Figure QB-463.1(a) for plate coupons, or Figure QB-463.1(e) for pipe coupons.

(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

Table QB-451.2 Tension Tests and Longitudinal Bend Tests — Butt and Scarf Joints							
	Range of Thi Materials Qu		Type and Number of Test Specimens Required				
	Test Plate or (mm	• •	-	First Surface	Second Surface		
Thickness <i>T</i> of Test Coupon as Brazed, in. (mm)	Min.	Max.	Tension [Note (1)]	[Note []	Bend [Note (2)]		
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	27	2	2	2		
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2	2	2		
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2T	2 [Note (3)]	2	2		

NOTES:

 For specimen dimensions, see Figure QB-462.1(a) for plate specimens, or Figure QB-462.1(b) for pipe specimens. For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(2) For specimen dimensions, see Figures QB-462.2(b) and QB-463.1(b) for specimen removal.

(3) See QB-151 for details on multiple specimens when coupon thicknesses are over 1 in. (25 mm).

	Range of Tl Materials Qua		51	umber of Test quired <mark>[Note (1)]</mark>
Thickness T of Test	Plate or Pipe, in. (mm)			Peel [Note
Coupon as Brazed, in. (mm)	Min.	Max.	Tension [Note (2)]	(3)] and [Noto (4)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	27	2	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2T	2	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	2	2

NOTES:

(1) When materials of a representative geometry and thickness are not available to prepare butt or lap joint test coupons, workmanship coupons may be prepared and examined per QB-451.5 to establish the range of thickness of base metal qualified. When this is done, the properties of the joint shall be validated using butt or lap joint test coupons of any thickness.

(2) For specimen dimensions, see Figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

(3) For peel specimens, see Figure QB-462.3 for specimen dimensions, and Figure QB-463.1(d) for specimen removal.

(4) Sectioning tests may be substituted for peel tests. For section specimens, see Figure QB-462.4 for specimen dimensions, and Figure QB-463.1(c) for specimen removal.

Tension	Tests and Sec	tion Tests —	Rabbet Joints		
Thickness T of Test	Range of Thickness of Materials Qualified by Test Plate or Pipe, in. (mm)			Number of Test ens Required	
Coupon as Brazed, in.			Tension	Tension [Note	
(mm)	Min.	Max.	[Note (1)]	(2)]	
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2	2	
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2	2	
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	2T	2	2	

For specimen dimensions, see Figure QB-462.1(c). For pipe specimens not greater than NPS 3 (DN 75), full section testing may be substituted; see Figure QB-462.1(e).

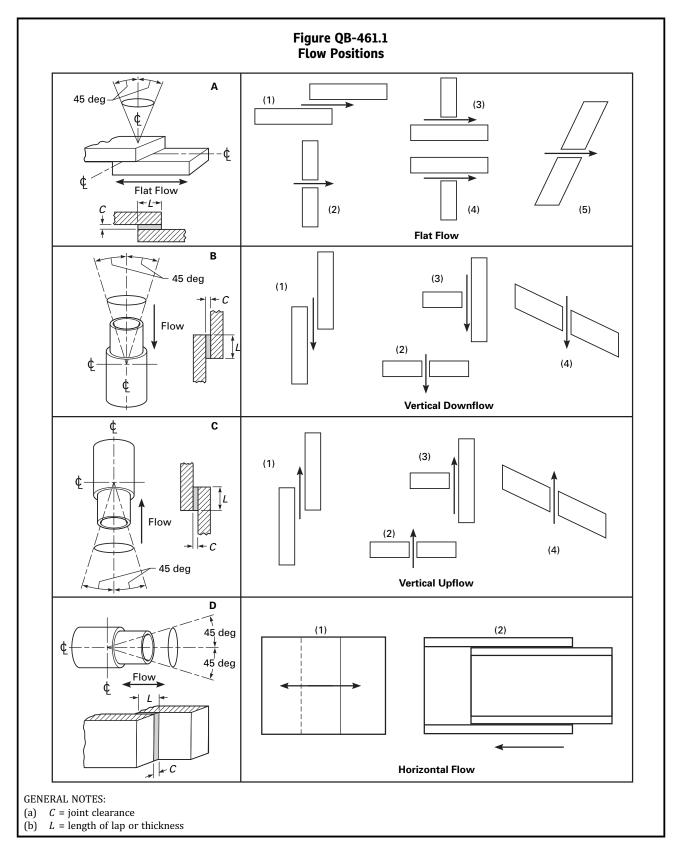
(2) For specimen dimensions, see Figures QB-462.4 and QB-463.1(c) for specimen removal.

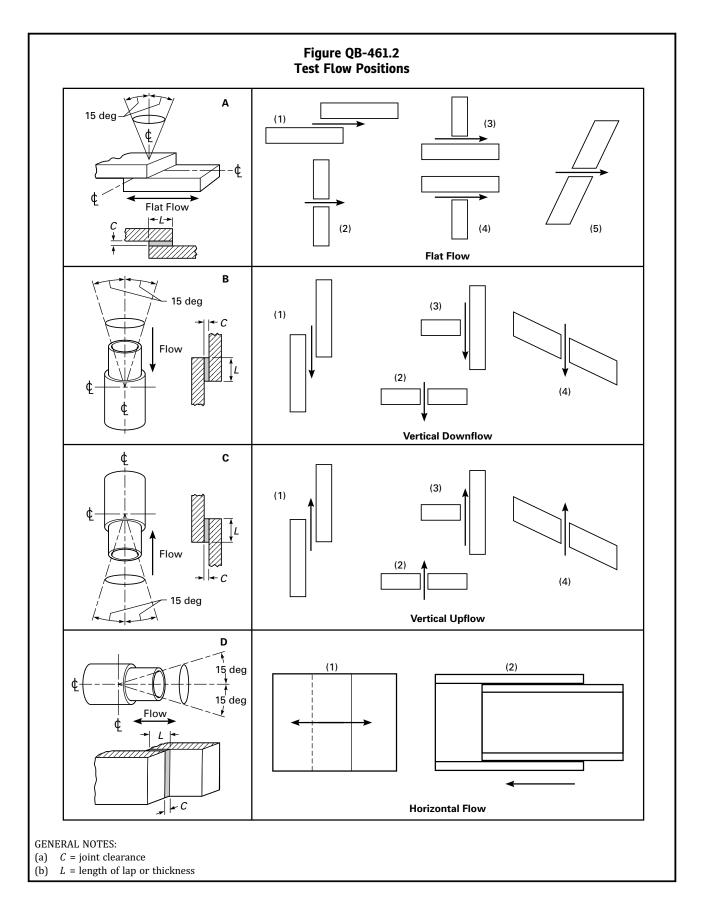
Thickness <i>T</i> of Test Coupon as Brazed, in. (mm)	Range of Thick Qualified by Tes (n	Type and Number of Test Specimens Required	
	Min.	Max.	Section, QB-462.5 [Note (1)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	2
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	27	2

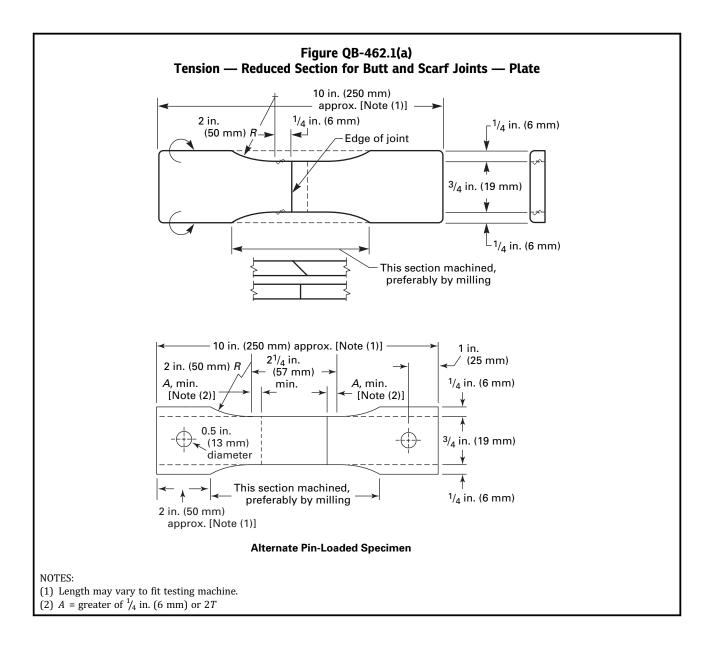
(1) This test in itself does not constitute procedure qualification but must be validated by conductance of tests of butt or lap joints as appropriate. For joints connecting tension members, such as the stay or partition type in QB-462.5, the validation data may be based upon butt joints; for joints connecting members in shear, such as saddle or spud joints, the validation data may be based on lap joints.

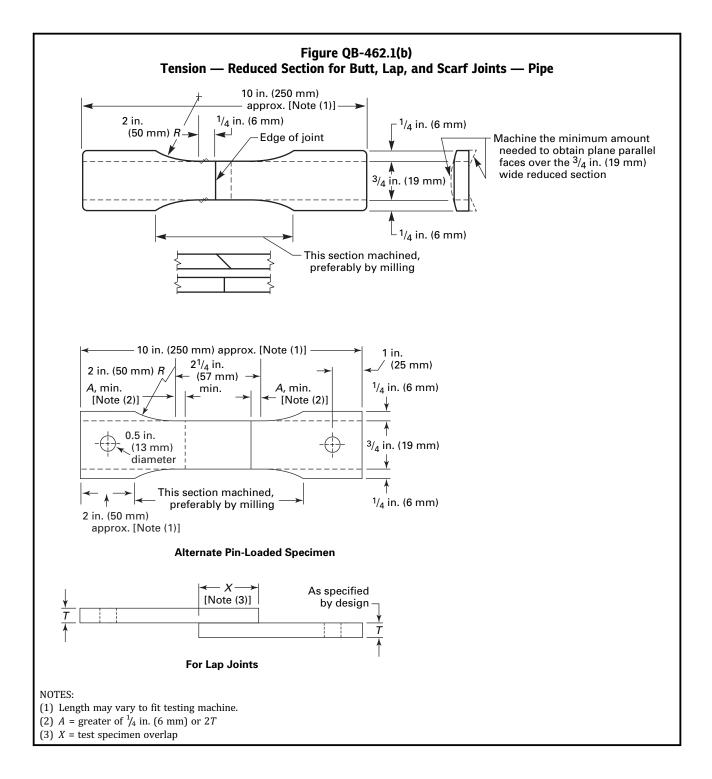
	Qualified by Tes	ness of Materials : Plate or Pipe, in. m)	Type and Number of Test Specimens Required
Thickness <i>T</i> of Test Coupon as Brazed, in. (mm)	Min.	Max.	Peel, QB-462.3 or section, QB-462.4 [Not (1)], [Note (2)], and [Note (3)]
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	2
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	¹ / ₁₆ (1.5)	2 <i>T</i>	2
Over $\frac{3}{8}$ (10)	³ / ₁₆ (5)	27	2

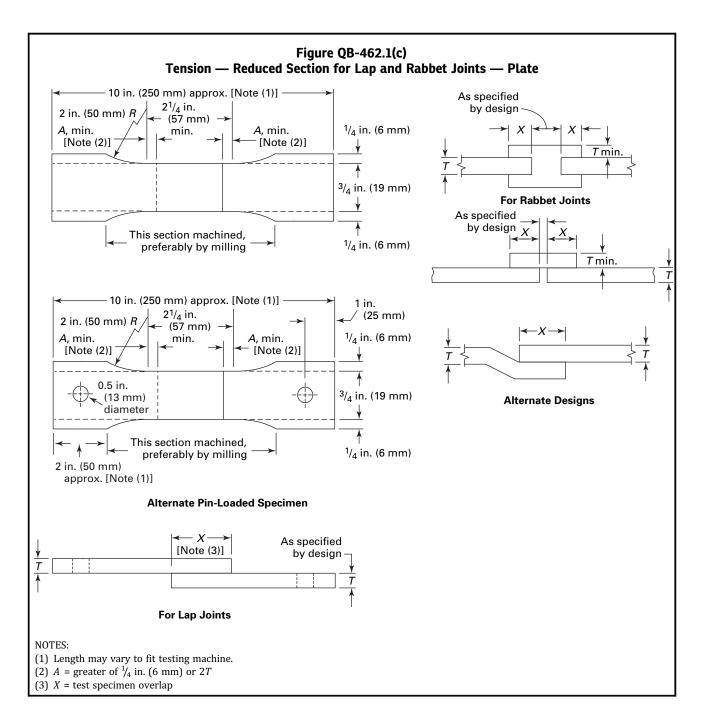
QB-452 PERFORMANCE QUALIFICATION SPECIMENS

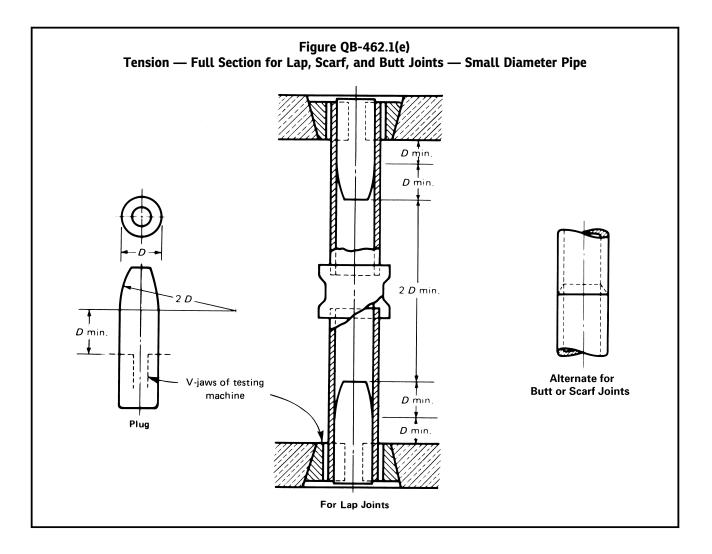

when the strength of the brazing filler metal is equal to or greater than the strength of the base metals).(2) For specimen dimensions, see Figure QB-462.3 for peel test specimens or Figure QB-462.4 for section

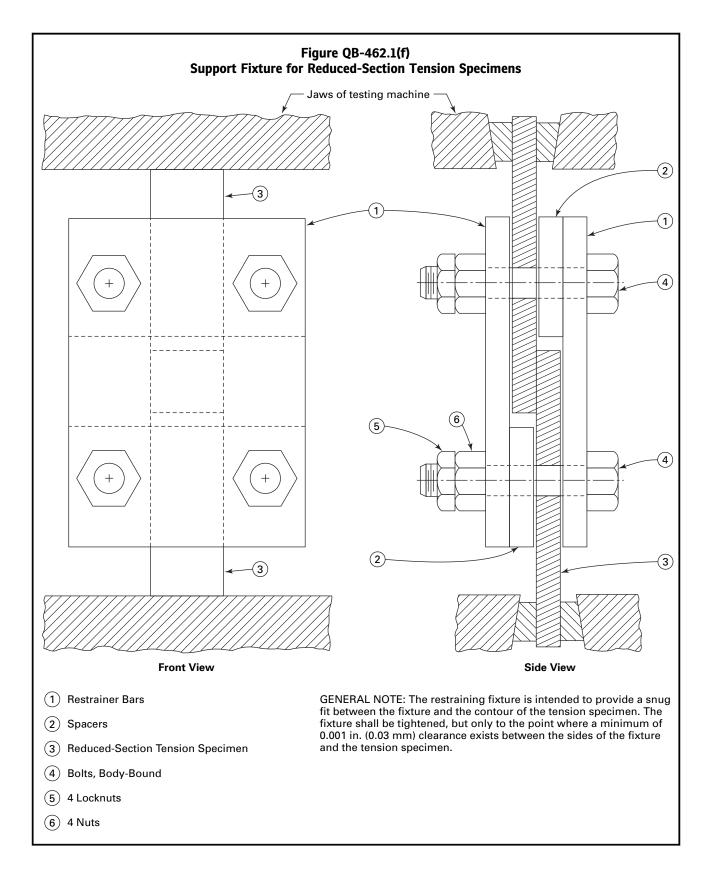

specimens.

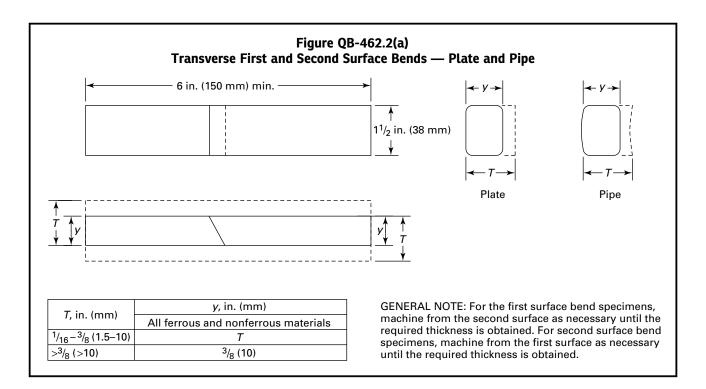

(3) For specimen removal, see Figure QB-463.2(a) for section specimens or Figure QB-463.2(b) for peel specimens from plate coupons, or Figure QB-463.2(c) for pipe coupons.

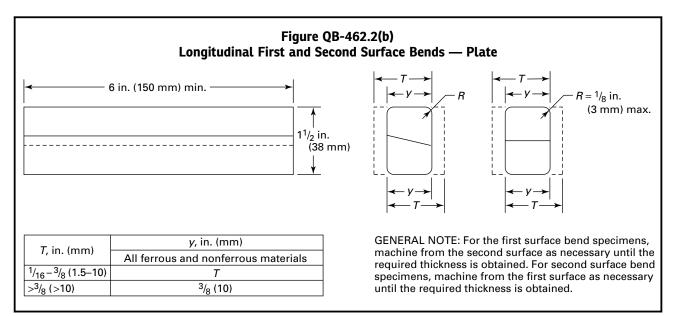

Sectio	Table Q on Tests — Workm	B-452.2 Ianship Specimen	Joints	
Thickness T of Test Coupon as Brazed, in.	Qualified by Tes	ness of Materials t Plate or Pipe, in. nm)	Type and Number of Test Specimens Required	
(mm)	Min.	Max.	Section, QB-462.5	
Less than $\frac{1}{8}$ (3)	0.5 <i>T</i>	2T	1	
$\frac{1}{8}$ to $\frac{3}{8}$ (3 to 10), incl.	$\frac{1}{16}$ (1.5)	2T	1	
Over $\frac{3}{8}$ (10)	$\frac{3}{16}(5)$	2T	1	

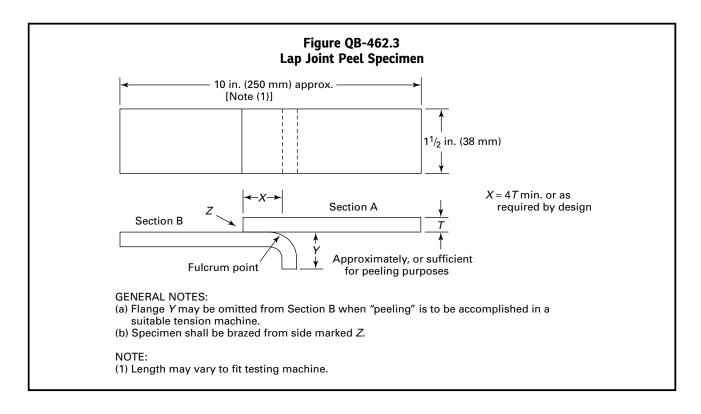

QB-460 GRAPHICS

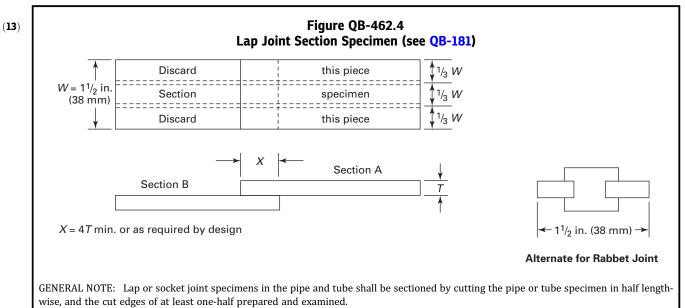


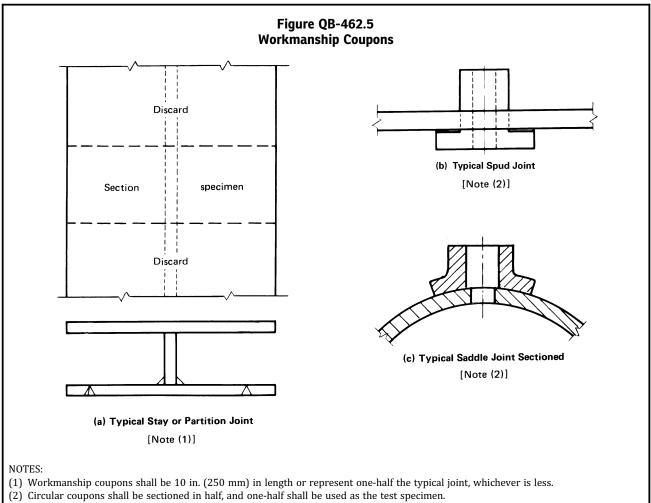


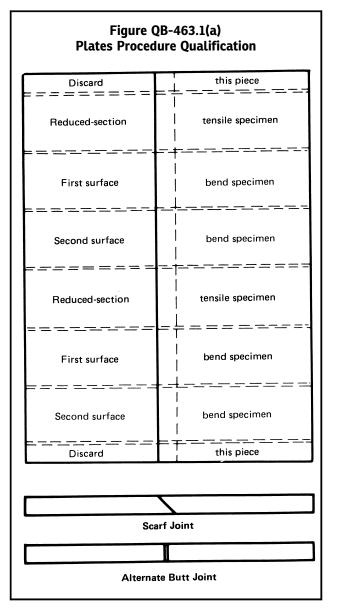


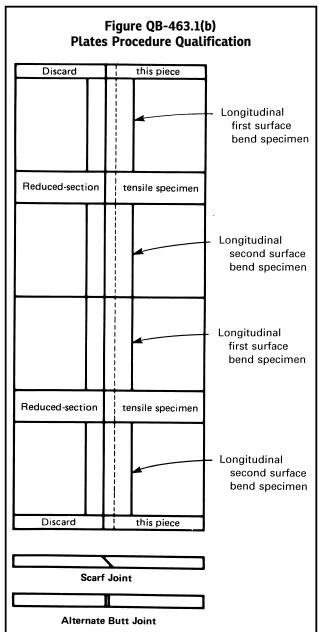


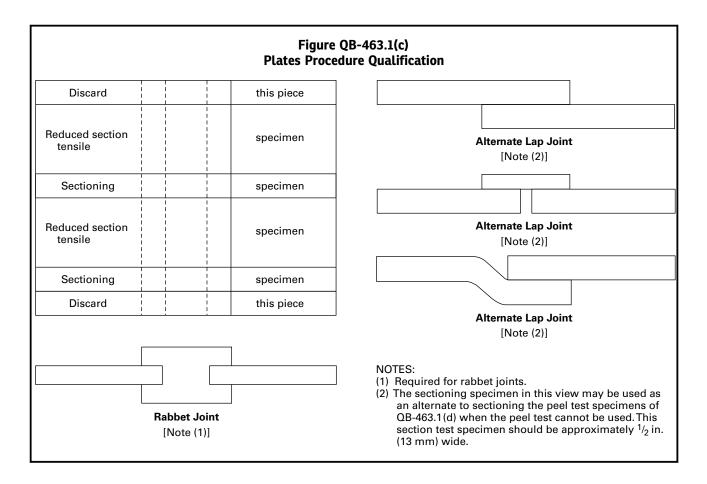


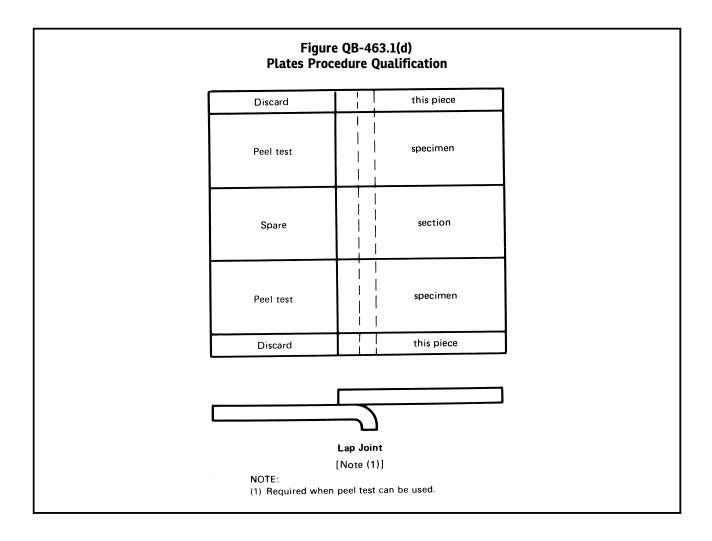




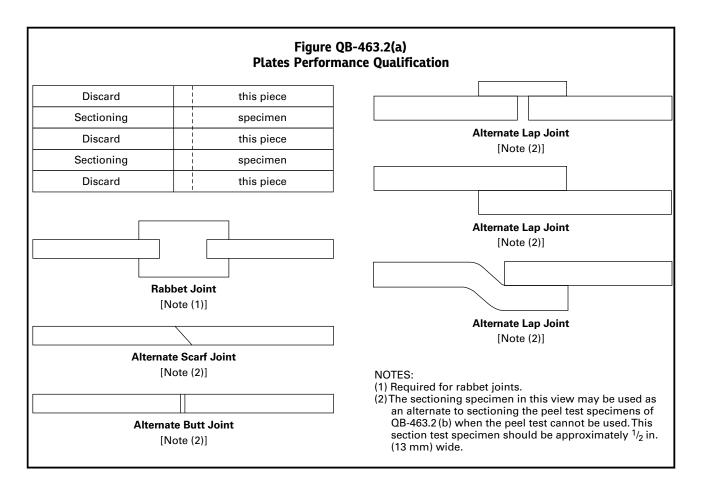


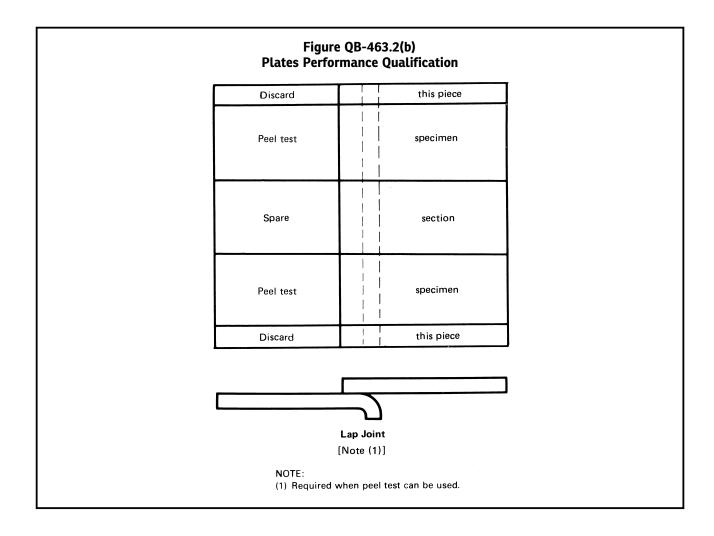


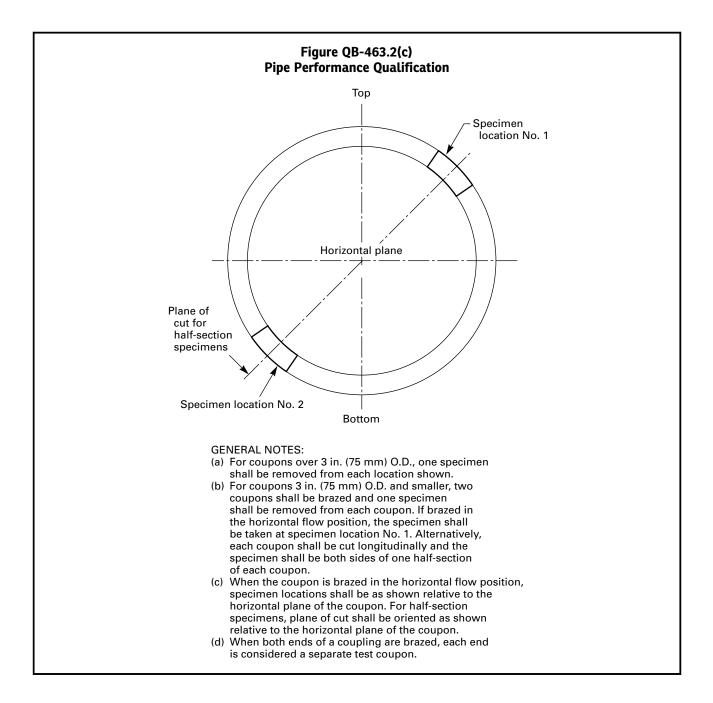


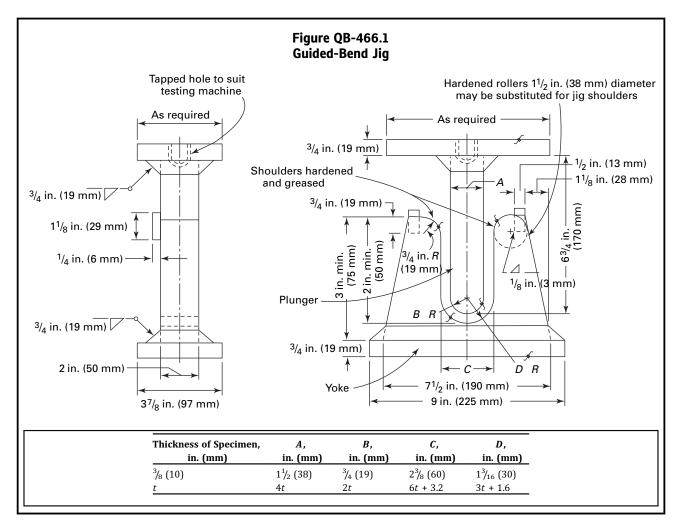


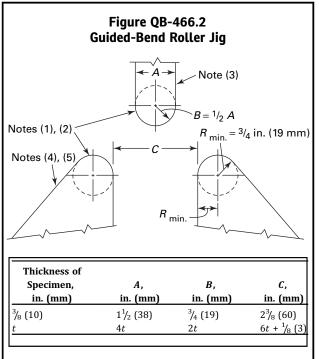

QB-463 ORDER OF REMOVAL



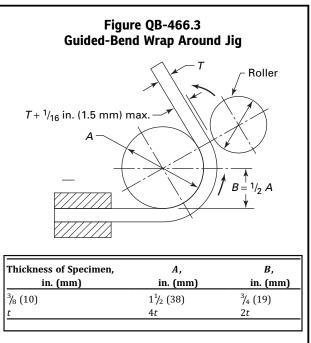








QB-466 TEST JIGS



GENERAL NOTE: The braze joint in the case of a transverse bend specimen shall be completely within the bend portion of the specimen after testing.

NOTES:

- (1) Either hardened and greased shoulders or hardened rollers free to rotate shall be used.
- (2) The shoulders of rollers shall have a minimum bearing surface of 2 in. (50 mm) for placement of the specimen. The rollers shall be high enough above the bottom of the jig so that the specimens will clear the rollers when the ram is in the low position.
- (3) The ram shall be fitted with an appropriate base and provision made for attachment to the testing machine, and shall be of a sufficiently rigid design to prevent deflection and misalignment while making the bend test. The body of the ram may be less than the dimensions shown in column *A*.
- (4) If desired, either the rollers or the roller supports may be made adjustable in the horizontal direction so that specimens of *t* thickness may be tested on the same jig.
- (5) The roller supports shall be fitted with an appropriate base designed to safeguard against deflection or misalignment and equipped with means for maintaining the rollers centered midpoint and aligned with respect to the ram.

GENERAL NOTES:

- (a) Dimensions not shown are the option of the designer. The essential consideration is to have adequate rigidity so that the jig parts will not spring.
- (b) The specimen shall be firmly clamped on one end so that there is no sliding of the specimen during the bending operation.
- (c) Test specimens shall be removed from the jig when the outer roll has been removed 180 deg from the starting point.

PART QF PLASTIC FUSING

ARTICLE XXI PLASTIC FUSING GENERAL REQUIREMENTS

QF-100 SCOPE

The rules in this Part apply to the preparation and qualification of the fusing procedure specification (FPS), and the performance qualification of fusing machine operators.

QF-101 FUSING PROCEDURE SPECIFICATION (FPS)

A fusing procedure specification (FPS) used by an organization that will have responsible operational control of production fusing shall be an FPS that has been qualified by that organization in accordance with Article XXII, or it shall be a standard fusing procedure specification (SFPS) as defined in QF-201.2.

The FPS or SFPS specify the "variables" (including ranges, if any) under which fusing must be performed. The FPS prepared by the organization and the SFPS shall address the applicable fusing process variables, both essential and nonessential, as provided in Article XXII for production fusing.

QF-102 FUSING PERFORMANCE QUALIFICATION (FPQ)

Fusing machine operator performance qualification is intended to verify the ability of the fusing machine operator to produce a soundly fused joint when following a qualified FPS. The fusing machine operator performance qualification record (FPQ) documents the performance test of the fusing machine operator, and the results of the required mechanical tests.

QF-103 RESPONSIBILITY

QF-103.1 Fusing. Each organization shall conduct the tests required in this Section to qualify the FPS and the performance of the fusing machine operators who apply these procedures. Alternatively, an organization may use an SFPS under the provisions of QF-201.2. The

organization shall perform and document the tests required by this Article to qualify the performance of fusing machine operators for fusing operations.

QF-103.2 Records. Each organization shall maintain a record of the results of the mechanical testing performed to satisfy the requirements for FPS and fusing machine operator performance qualifications.

QF-110 FUSED JOINT ORIENTATION

Orientation categories for fused joints are illustrated in Figure QF-461.1.

QF-120 TEST POSITIONS

Fused joints may be made in test coupons oriented in any of the positions shown in Figure QF-461.2.

QF-130 DATA ACQUISITION AND EVALUATION

QF-131 DATA ACQUISITION RECORD REQUIREMENTS

The following fusing variables shall be recorded for each fused test joint:

(*a*) heater surface temperature immediately before inserting the heater plate

(b) gauge pressure during the initial heat cycle

(c) gauge pressure and elapsed time during the heatsoak cycle

- (d) heater removal (dwell) time
- *(e)* gauge pressure and elapsed time during the fusing/ cool cycle
 - (f) drag pressure
 - (q) joint configuration
 - (*h*) pipe diameter and wall thickness
 - (i) type of HDPE material (specification and classifica-
- tion) and manufacturer

(*j*) FPS used, operator identification, time, date, and fusing machine identification

QF-132 DATA ACQUISITION RECORD REVIEW

The data acquisition record for each fused test joint shall be compared to the FPS after completion. QF-485 provides a suggested format to document the data acquisition record review. The reviewer shall verify the following:

(*a*) all data required by QF-131 was recorded

(b) interfacial fusing pressure was within the FPS range

(*c*) heater surface temperature recorded was within the FPS range

(*d*) butt-fusing pressure applied during the fusing/cool cycle was correctly calculated to include the drag pressure, fell within the FPS range for the applicable size (e.g., pipe diameter), and agrees with the recorded hydraulic fusing pressure

(e) butt-fusing pressure was reduced to a value less than or equal to the drag pressure at the beginning of the heat soak cycle

(f) fusing machine was opened at the end of the heat soak cycle, the heater was removed, and the ends brought together at the fusing pressure within the time frame specified by the FPS

(g) cooling time at butt-fusing pressure met the minimum time specified by the FPS

If the recorded data is outside the limits of the FPS, the joint is unacceptable.

QF-140 EXAMINATIONS AND TESTS

QF-141 VISUAL EXAMINATION

(*a*) All fused joints shall receive a visual examination of all accessible surfaces of the fused joint.

(b) Acceptance Criteria (see Figure QF-462 for evaluation examples)

(1) There shall be no evidence of cracks or incomplete fusing.

(2) Joints shall exhibit proper fused bead configuration.

(3) Variations in upset bead heights on opposite sides of the cleavage and around the circumference of fused pipe joints are acceptable.

(4) The apex of the cleavage between the upset beads of the fused joint shall remain above the base material surface.

(5) The data record for the FPS or fusing machine operator performance qualification test shall be reviewed and compared to the FPS to verify observance of the specified variables applied when completing the fused test joint.

(6) Fused joints shall not display visible angular misalignment, and outside diameter mismatch shall be less than 10% of the nominal wall thickness. (c) Visual examination results shall be recorded on the PQR or FPQ.

QF-142 ELEVATED TEMPERATURE SUSTAINED PRESSURE TESTS FOR PIPE

Elevated temperature sustained pressure tests shall be performed in accordance with ASTM D3035-08.

QF-143 BEND TESTS

These tests are designed to impart bending stresses to a butt-fused plastic specimen to evaluate the soundness of the fused joint.

QF-143.1 Reverse-Bend Test (RBT)

(*a*) Reverse-bend test specimens shall be cut to a minimum width of 1.5 times the test coupon thickness for testing and removed as shown in Figure QF-463(a).

(b) One test specimen shall be bent to place the inside surface of the joint in tension, and the other test specimen shall be bent to place the outside surface of the joint in tension.

(c) The bending process shall ensure the ends of the specimens are brought into contact with one another.

(*d*) Testing shall be in accordance with ASTM F2620-09, Appendix X4.

(e) Test results shall be recorded on the PQR.

QF-143.2 Guided Side-Bend Test (GSBT)

QF-143.2.1 Significance and Use. This test is designed to impart a bending load on a specimen from a butt fusion joint to evaluate its soundness. It is intended for butt fusion joints of HDPE pipe with a wall thickness greater than 1.0 in. (25 mm).

QF-143.2.2 Test Specimens

(*a*) Test specimens shall be removed from the fused test coupon with the upset bead remaining on the outside and inside surfaces. A strip having the full thickness of the test coupon and measuring approximately 1 in. (25 mm) wide and 18 in. (450 mm) long shall be removed along the long-itudinal axis of the test coupon, with the joint located in the approximate center of the strip. See Figure QF-463(b).

(b) Plane or machine the width down to 0.50 in. \pm 03 in. (13 mm \pm 0.75 mm) with a smooth finish on both sides. See Figure QF-463(c).

QF-143.2.3 Test Conditions

(a) Test Temperature. Conduct the GSBT at a temperature 60°F to 80°F (16°C to 27°C).

(b) Test speed. The elapsed time of the test shall be between 30 sec and 60 sec.

QF-143.2.4 Guided Side-Bend Test Procedure

QF-143.2.4.1 Jigs. Test specimens shall be bent in a test jig consisting of a fixed member with two cross bars to support the specimen while force is applied. The

hydraulic ram, used to supply the bending force, is also attached to the jig and has a ram attached to the end of the cylinder. See Figure QF-463(d).

QF-143.2.4.2 Bend Procedure. Position the side-bend test specimen with the butt fusion joint in the center of the jig between the support mandrels. Position the ram in the center of the fusion bead on the test specimen. Move the ram slowly until it makes contact with the test specimen and is positioned in line with the fusion bead. Begin to apply the bending force and deflect the side-bend test specimen. The test is complete when the test specimen is bent to an angle of 60 deg ± 10 deg between the inside surfaces of the specimen or until failure occurs. See Figure QF-463(d).

QF-143.3 Acceptance Criteria. The test specimen shall not break or exhibit cracking or fractures on the convex (outer) surface at the fusion interface during this test.

QF-144 HIGH-SPEED TENSILE IMPACT TEST (HSTIT)

This test method is designed to impart tensile impact energy to a butt-fused PE pipe specimen to evaluate its ductility.

QF-144.1 Test Specimens

(*a*) Test specimens shall be removed from the fused test coupon with the upset bead remaining on the outside diameter and inside diameter surfaces. Specimens for test coupon thicknesses less than or equal to 2 in. (50 mm) shall include the full wall thickness of the fused joint. Specimens for test coupon thicknesses 2 in. (50 mm) and greater may be cut into approximately equal strips between 1 in. (25 mm) and 2.5 in. (64 mm) wide for testing with each segment tested individually such that the full cross section is tested.

(*b*) Test specimens shall be prepared by machining to achieve the dimensions given in Figure QF-464, with the upset beads remaining intact.

(c) A smooth surface free of visible flaws, scratches, or imperfections shall remain on all faces of the reduced area with no notches, gouges, or undercuts exceeding the dimensional tolerances given in ASTM F2634-07. Marks left by coarse machining operations shall be removed, and the surfaces shall be smoothed with abrasive paper (600 grit or finer) with the sanding strokes applied parallel to the longitudinal axis of the test specimen.

(*d*) Mark the test specimens in the area outside the hole with the applicable specimen identification using a permanent indelible marker of a contrasting color, or an etching tool.

(e) Condition the test specimens at $73^{\circ}F \pm 4^{\circ}F$ (23°C \pm 2°C) for not less than 1 hr just prior to conducting the test.

QF-144.2 Test Conditions

(a) Test Temperature. Conduct the high speed impact test at a temperature of $73^{\circ}F \pm 4^{\circ}F$ ($23^{\circ}C \pm 2^{\circ}C$) unless otherwise specified.

(b) Test Speed. The speed of testing shall be in accordance with Table QF-144.2 with a testing speed tolerance of +0.5 in./sec to -1 in./sec (+13 mm/sec to -25 mm/sec).

	QF-144.2 I Requirements
Wall Thickness	Testing Speed
≤ 1.25 in. (32 mm)	6 in./sec (150 mm/sec)
> 1.25 in. (32 mm)	4 in./sec (100 mm/sec)

QF-144.3 Test Procedure

(*a*) Set up the machine and set the speed of testing to the rate specified in QF-144.2(b).

(*b*) Pin each specimen in the clevis tooling of the testing machine, aligning the long axis of the specimen and the tooling with the pulling direction of the test machine.

(c) Testing shall be performed in accordance with ASTM F2634.

(*d*) Evaluate the test specimen fracture to determine the mode of failure, and note the results in the test record and on the PQR.

QF-144.4 Test Record. The HSTIT shall be documented by preparing a test record that includes the following information:

- (a) testing speed applied
- (b) testing temperature observed
- (c) specimen dimension verification
- (d) test machine calibration data
- (e) test specimen identification
- (f) test date
- (g) test operator identification
- (*h*) testing failure mode and acceptance/rejection
- (i) test equipment identification

QF-144.5 Acceptance Criteria. Failure mode shall be ductile, with no evidence of brittle failure at the fusion interface. See Figure QF-465, illustrations (a) through (d), for evaluation examples.

ARTICLE XXII FUSING PROCEDURE QUALIFICATIONS

QF-200 GENERAL

Each organization shall prepare a written FPS as defined in QF-201.1, or assume responsibility for an SFPS as defined in QF-201.2.

QF-201 PROCEDURE QUALIFICATION

QF-201.1 Fusing Procedure Specification (FPS)

(a) Fusing Procedure Specification (FPS). A FPS is a written qualified fusing procedure prepared to provide direction to the fusing machine operator for making production fused joints.

(b) Contents of the FPS. The completed FPS shall address all of the essential and nonessential variables for each fusing process used in the FPS. The essential and nonessential variables for fusing are listed in Table QF-254. The organization may include any other information in the FPS that may be helpful in making a fused joint.

(c) Changes in the documented essential variables require requalification of the FPS.

QF-201.2 Standard Fusing Procedure Specification (SFPS)

(a) Standard Fusing Procedure Specification (SFPS). A fusing procedure specification that contains acceptable polyethylene fusing variables based on standard industry practice and testing as reported in the Plastic Pipe Institute (PPI), Report TR-33-06, or ASTM F2620-09, Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings. A SFPS may be used for production fusing by organizations without further qualification.

(*b*) *Contents of the SFPS.* The SFPS shall address all of the essential and nonessential variables listed in QF-220. The organization may include any additional information in the SFPS that may be helpful in making a fused joint.

(c) Changes in the documented parameters of a SFPS beyond the limits specified in QF-220 shall require the qualification of an FPS.

QF-201.3 Format of the FPS or SFPS. The information required to be included in the FPS or SFPS may be in any format, written or tabular, to fit the needs of each organization, provided all essential and nonessential variables outlined in QF-250, or the parameters specified in QF-220 as applicable, are addressed. Form QF-482 has been provided as a guide for preparing the FPS or SFPS.

QF-201.4 Availability of the FPS or SFPS. The FPS or SFPS used for production fusing shall be available for reference and reviewed by the Inspector when fused joints are made.

QF-201.5 Each organization who qualifies a FPS shall prepare a procedure qualification record (PQR) that is defined as follows:

(*a*) *Procedure Qualification Record (PQR).* A record of the range of essential variables documented during the fusing of the test coupon(s) and the results of the required visual and mechanical tests performed.

(b) Contents of the PQR. The completed PQR shall document the ranges for all essential variables listed in QF-250 during the fusing of the test coupon(s). Nonessential variables observed during the fusing of the test coupon may be recorded at the organization's option.

The PQR shall be certified by the organization to be a true and accurate record of the variables recorded during the fusing of the test coupon(s) and the required examinations and tests specified in QF-140.

(c) Changes to the PQR. Changes to the PQR are not permitted except for documented editorial corrections or those utilizing addenda. An organization may be permitted to fuse materials other than those used in the FPS qualification, when the alternative materials are assigned to a material grouping in QF-420 whose fusing properties are considered essentially identical. Additional information may be incorporated into a PQR at a later date, provided the information is substantiated as having been associated with the original qualification conditions by lab records or similar documented evidence. All changes to a PQR require recertification (including date) by the organization.

(*d*) Format of the PQR. The information required to be in the PQR may be in any format, written or tabular, to fit the needs of each organization, provided all essential variables outlined in QF-250 are included. The types and number of tests, and their results shall be reported on the PQR. Form QF-483 has been provided as a guide for preparing the PQR. When required, additional sketches or information may be attached or referenced to record the required variables.

(e) Availability of the PQR. PQRs supporting an FPS to be used in production fusing operations shall be available for review by the inspector.

(f) Multiple FPSs with One PQR/Multiple PQRs with One FPS. Several FPSs may be prepared from the qualification test data recorded on a single PQR. A single FPS may

encompass the range of qualified essential variables represented by multiple PQRs supporting the qualified combination and range of essential variables.

QF-202 TYPE OF TESTS REQUIRED

QF-202.1 Mechanical Tests

QF-202.1.1 High-speed tensile impact test specimens (HSTIT) shall be prepared in accordance with Figure QF-464 and tested in accordance with QF-144.1. The minimum number of specimens required to be tested shall be as follows:

(*a*) for pipe specimens less than 4 NPS (100 mm): not less than two specimens removed from fused pipe test coupons at intervals of approximately 180 deg apart

(b) for pipe specimens 4 NPS (100 mm) and greater: not less than four specimens removed from fused pipe test coupons at intervals approximately 90 deg apart

(c) other product forms: not less than two specimens removed from fused test coupons

QF-202.1.2 Elevated temperature sustained pressure tests shall be conducted in accordance with QF-142.

QF-202.1.3 If any test specimen required by QF-202.1 fails to meet the applicable acceptance criteria, the test coupon shall be considered unacceptable.

(*a*) When it can be determined that the cause of failure is not related to incorrectly selected or applied fusing variables, additional test specimens may be removed as close as practicable to the original specimen location to replace the failed test specimens. If sufficient material is not available, another test coupon may be fused utilizing the original fusing parameters.

(b) When it has been determined that the test failure was caused by one or more incorrectly selected or applied essential variable(s), a new test coupon may be fused with appropriate changes to the variable(s) that were determined to be the cause for test failure.

(c) When it is determined that the test failure was caused by one or more fusing conditions other than essential variables, a new set of test coupons may be fused with the appropriate changes to the fusing conditions that were determined to be the cause for test failure. If the new test passes, the fusing conditions that were determined to be the cause for test failure shall be addressed by the organization to ensure that the required properties are achieved in all fused production joints.

QF-202.2 Testing Procedure to Qualify the FPS QF-202.2.1 Polyethylene Pipe Butt Fusing

(a) For pipe having a wall thickness less than or equal to 2 in. (50 mm), one set of test coupons shall be prepared using any thickness of pipe less than or equal to 2 in. (50 mm) but not less than one-half the thickness of the pipe to be fused in production.

(*b*) For pipe having wall thickness greater than 2 in. (50 mm), one set of test coupons shall be prepared using pipe of at least 2 in. (50 mm) thickness but not less than one-half the maximum thickness to be fused in production.

(c) Butt-fusing joint coupons shall be prepared in accordance with the FPS using the following combinations of heater temperature ranges and interfacial pressure ranges:

(1) high heater surface temperature and high interfacial pressure, five joints

(2) high heater surface temperature and low interfacial pressure, five joints

(3) low heater surface temperature and high interfacial pressure, five joints

(4) low heater surface temperature and low interfacial pressure, five joints

(*d*) Each fused joint shall be subject to visual examination per QF-141.

(e) Two fused joints of each combination shall be evaluated using the elevated temperature sustained pressure tests for pipe specified in QF-142.

(*f*) Three fused joints of each combination described in (c) shall be evaluated using the high speed tensile impact test (HSTIT) specified in QF-144.

QF-203 LIMITS OF QUALIFIED POSITIONS FOR PROCEDURES

Unless otherwise specified by the fusing variables (QF-250), a procedure qualified in any position shown in Figure QF-461.2 qualifies for all positions. A fusing machine operator making and passing the FPS qualification test is qualified only for the position tested (See QF-301.2).

QF-220 STANDARD FUSING PROCEDURE SPECIFICATION (SFPS)

QF-221 SFPS FOR POLYETHYLENE FUSING

QF-221.1 Pipe Butt Fusing of Polyethylene. When the fusing procedure is limited to the following parameters, procedure qualification testing is not required. If the organization deviates from the conditions listed below, procedure qualification testing in accordance with QF-202.2 is required.

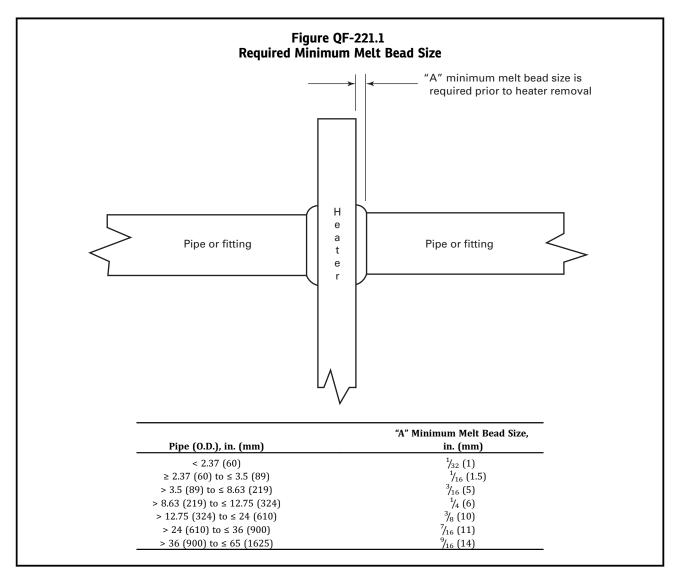
(*a*) The pipe material is limited to PE 2708, PE 3608, and PE 4710.

(*b*) The axis of the pipe is limited to the horizontal position ±45 deg.

(c) The pipe ends shall be faced to establish clean, parallel mating surfaces that are perpendicular to the pipe centerline on each pipe end, except for mitered joints. When the ends are brought together at the drag pressure, there shall be no visible gap. (*d*) For mitered butt fusion joints, the pipe faces shall be at the specific angle to produce the mitered joint. When the ends are brought together at the drag pressure, there shall be no visible gap.

(e) The external surfaces of the pipe are aligned to within 10% of the pipe wall thickness.

(f) The drag pressure shall be measured and recorded. The theoretical fusing pressure shall be calculated so that an interfacial pressure of 60 psi to 90 psi (0.41 MPa to 0.62 MPa) is applied to the pipe ends. The butt-fusing gauge pressure set on the fusing machine shall be the theoretical fusing pressure plus drag pressure.


(g) The heater surface temperature shall be 400° F to 450° F (200° C to 230° C).

(*h*) The initial heating shall begin by inserting the heater into the gap between the pipe ends and applying the buttfusing pressure until an indication of melt is observed around the circumference of the pipe. When observed, the pressure shall be reduced to drag pressure and the fixture shall be locked in position so that no outside force is applied to the joint during the heat soak cycle. (*i*) The ends shall be held in place until the minimum bead size is formed between the heater faces and the pipe ends, as shown in Figure QF-221.1. For 14 NPS (350 mm) and larger pipe sizes, the minimum heat soak time of 4.5 min per inch (25 mm) of pipe wall thickness shall be obtained.

(*j*) After the proper bead size is formed, the machine shall be opened and the heater removed. The pipe end surfaces shall be smooth, flat, and free of contamination. The pipe ends shall be brought together and the butt-fusing pressure reapplied.

(*k*) The maximum time from separating the pipe ends from the heater until the pipe ends are pushed together shall not exceed the time given in Table QF-221.2.

(1) The butt-fusing pressure shall be maintained until the joint has cooled, after which the pipe may be removed from the joining machine. The minimum cool time at the butt-fusing pressure shall be 11 min per inch (26 sec per millimeter) of pipe wall thickness of the thicker member.

Field Applications		
Pipe Wall Thickness, in. (mm)	Maximum Heater Plat Removal Time, sec	
0.17 to 0.36 (4 to 9)	8	
> 0.36 to 0.55 (> 9 to 14)	10	
> 0.55 to 1.18 (> 14 to 30)	15	
> 1.18 to 2.5 (> 30 to 64)	20	
> 2.5 to 4.5 (> 64 to 114)	25	
> 4.5 (> 114)	30	
Fabrication	ı Shop	
1.18 to 2.5 (30 to 64)	40	
> 2.5 to 4.5 (> 64 to 114)	50	
> 4.5 (> 114)	60	

QF-250 FUSING VARIABLES

QF-251 TYPES OF VARIABLES FOR FUSING PROCEDURE SPECIFICATIONS (FPS)

These variables (listed for each fusing process starting in Table QF-254) are categorized as essential or nonessential variables. The "Brief of Variables" listed in the tables are for reference only. See the complete variable description in Article XXIV, QF-400.

QF-252 ESSENTIAL VARIABLES

Essential variables are those that will affect the mechanical properties of the fused joint, if changed, and require requalification of the FPS when any change exceeds the specified limits of the values recorded in the FPS for that variable.

QF-253 NONESSENTIAL VARIABLES

Nonessential variables are those that will not affect the mechanical properties of the fused joint, if changed, and do not require requalification of the FPS when changed.

		Fusing Variables Procedure Spe Polyethylene Pipe Butt Fu	ecification sing	
Paragra	ph	Brief of Variables	Essential	Nonessential
QF-402	.1	ϕ Joint type	Х	
Joints	.2	ϕ Pipe surface alignment	Х	
0.7.400	.1	<i>φ</i> ΡΕ	Х	
QF-403 Material	.3	ϕ Wall thickness	Х	
	.4	ϕ Cross-sectional area		X
QF-404 Position	.1	ϕ Position	х	
	.1	ϕ Heater surface temperature	Х	
QF-405	.2	ϕ Interfacial pressure	Х	
Thermal	.3	Decrease in melt bead width	Х	
Conditions	.4	Increase in heater removal time	Х	
	.5	Decrease in cool-down time	Х	
QF-406 Equipment	.1	ϕ Fusing machine manufacturer		x
QF-407 Technique	.1	ϕ Shop to field, or vice versa		х

ARTICLE XXIII PLASTIC FUSING PERFORMANCE QUALIFICATIONS

QF-300 GENERAL

This Article lists the essential variables that apply to fusing machine operator performance qualifications. The fusing machine operator qualification is limited by the essential variables given for the fusing process. These variables are listed in Table QF-362.

QF-301 TESTS

QF-301.1 Intent of Tests. The fusing machine operator performance qualification tests are intended to determine the ability of fusing machine operators to make sound fused joints when following a qualified FPS or SFPS.

QF-301.2 Qualification Tests. Each organization shall qualify each fusing machine operator for the fusing process(es) to be used in production. The performance qualification tests shall be completed using a qualified FPS. A fusing machine operator qualified for fusing in accordance with one qualified FPS or SFPS is also qualified for fusing in accordance with other qualified FPSs or SFPSs within the limits of the fusing operator essential performance variables given in Table QF-362. Visual and mechanical examination requirements are described in QF-302. Retests and renewal of qualification are given in QF-320.

The fusing machine operator responsible for fusing FPS qualification test coupons successfully qualifying the FPS is also qualified as a fusing machine operator within the limits of the essential performance qualification variables given in Table QF-362.

QF-301.3 Identification of Fusing Machine Opera-tors. Each qualified fusing machine operator shall be assigned an identifying number, letter, or symbol by the organization, which shall be used to identify production fused joints completed by the fusing machine operator.

QF-301.4 Record of Tests. The record of fusing machine operator performance qualification (FPQ) tests shall include the qualified ranges of essential performance variables, the type of tests performed, and test results for each fusing machine operator. Suggested forms for these records are given in Form QF-484.

QF-302 TYPE OF TEST REQUIRED

QF-302.1 Visual Examination. For pipe coupons, all surfaces shall be examined visually per QF-141 before cutting specimens. Pipe test coupons shall be visually examined per QF-141 over the entire circumference.

QF-302.2 Mechanical Tests. For pipe coupons, two bend test specimens shall be removed from the fused test joint at intervals of approximately 180 deg. Each specimen shall be tested by one of the following methods:

(*a*) *Reverse-Bend Test.* The specimens shall be removed as shown in Figure QF-463, illustration (a), and tested in accordance with QF-143.1.

(b) Guided Side-Bend Test. Each specimen shall be removed as shown in Figure QF-463, illustration (b), and prepared and tested in accordance with QF-143.2.

QF-303 LIMITS OF QUALIFIED POSITIONS AND DIAMETERS (SEE QF-461)

QF-303.1 Pipe Positions. Fusing machine operators who pass the required tests for fusing in the test positions shown in Figures QF-461.1 and QF-461.2 shall be qualified for fusing within the following limits:

(a) The 5G test position qualifies for the horizontal position ± 45 deg.

(b) Test positions other than 5G qualify for the orientation tested ± 20 deg.

QF-303.2 Pipe Diameters. Pipe sizes within the ranges listed in Table QF-452.3 shall be used for test coupons to qualify within the ranges listed in Table QF-452.3.

QF-305 FUSING MACHINE OPERATORS

Each fusing machine operator shall have passed the mechanical and visual examinations prescribed in QF-301 and QF-302.

QF-305.1 Testing. Qualification testing shall be performed on test coupons in accordance with QF-311 and the following requirements:

(*a*) The data required by QF-130 shall be recorded for each fusing machine operator.

(*b*) The supervisor conducting the test shall observe the making of the fused joint and verify that the FPS or SFPS was followed.

QF-305.2 Examination. Test coupons fused in accordance with QF-305.1 shall be evaluated as follows:

(*a*) The completed joint shall be visually examined in accordance with QF-302.1.

(*b*) After the joint is complete, the data required by QF-130 shall be reviewed for compliance with the requirements of the FPS or SFPS used for the qualification test.

(c) Bend test specimens shall be removed and tested and in accordance with OF-302.2.

QF-310 QUALIFICATION TEST COUPONS

QF-311 TEST COUPONS

The test coupons shall consist of fusing one pipe joint assembly in at least one of the positions shown in Figure QF-461.2.

QF-320 RETESTS AND RENEWAL OF QUALIFICATION

QF-321 RETESTS

A fusing machine operator who fails one or more of the tests prescribed in QF-302, as applicable, may be retested under the following conditions.

QF-321.1 Immediate Retest Using Visual Examination. When the qualification coupon has failed the visual examination of QF-302.1, retests shall be accepted by visual examination before conducting the mechanical testing.

When an immediate retest is made, the fusing machine operator shall make two consecutive test coupons. If both additional coupons pass the visual examination requirements, the examiner shall select one of the acceptable test coupons for specimen removal to facilitate conducting the required mechanical testing.

QF-321.2 Immediate Retest Using Mechanical Testing. When the qualification coupon has failed the mechanical testing of QF-302.2, and an immediate retest is conducted, the fusing machine operator shall make two consecutive test coupons. If both additional coupons pass the mechanical test requirements, the fusing machine operator is qualified.

QF-321.3 Further Training. When the fusing machine operator has undergone additional training or completed additional fusing practice joints, a new test shall be made for each fusion test joint that failed to meet the requirements.

QF-322 EXPIRATION AND RENEWAL OF QUALIFICATION

QF-322.1 Expiration of Qualification. The performance qualification of a fusing machine operator shall be affected when one of the following conditions occurs:

(*a*) When a fusing machine operator has not completed a fused joint using a qualified FPS or SFPS for a time period of 6 months or more, their qualification shall expire. (b) When there is a specific reason to question the ability of the fusing machine operator to make fused joints meeting the requirements of this Section, the qualifications of the fusing machine operator shall be revoked.

QF-322.2 Renewal of Qualification

(*a*) Performance qualifications that have expired under the provisions of QF-322.1(a) may be renewed by having the fusing machine operator fuse a single test coupon and subjecting the test coupon to the testing required by QF-302. A successful test shall renew all of the fusing machine operator's previous qualifications.

(b) Fusing machine operators whose qualifications have been revoked under the provisions of QF-322.1(b) may be requalified by fusing a test coupon representative of the planned production work. The fused test coupon shall be tested as required by QF-302. A successful test shall restore the fusing machine operator's qualification within the qualified range of essential performance variables listed in Table QF-362.

QF-360 ESSENTIAL VARIABLES FOR PERFORMANCE QUALIFICATION OF FUSING MACHINE OPERATORS

QF-361 GENERAL

A fusing machine operator shall be requalified whenever a change is made in one or more of the essential variables listed in Table QF-362.

Table QF-362 Essential Variables Applicable to Fusing Machine Operators		
Paragraph		Brief of Variables
QF-403 Material	.1	ϕ Pipe material
	.2	ϕ Pipe diameter
QF-404 Position	.1	+ Position
QF-406 Equipment	.1	ϕ Equipment manufacturer

ARTICLE XXIV PLASTIC FUSING DATA

QF-400 VARIABLES

QF-401 GENERAL

Each fusing variable described in this Article is applicable for procedure qualification when referenced in QF-250 for each specific fusing process. Essential variables for performance qualification are referenced in QF-360 for each specific fusing process. A change from one fusing process to another fusing process requires requalification (e.g., a change from butt-fusing to electro-fusing).

QF-401.1 Essential Variable (Procedure). A fusing condition that, if changed, will affect the mechanical properties of the joint (e.g., a change in pipe wall thickness).

QF-401.2 Essential Variable (Performance). A fusing condition that, if changed, will affect the ability of a fusing machine operator to make a sound fused joint [e.g., a change in pipe size (diameter) or pipe position].

QF-401.3 Nonessential Variable (Procedure). A fusing condition that, if changed, will *not* affect the mechanical properties of a fused joint [e.g., a change in pipe size (diameter)].

QF-401.4 Fusing Data. The fusing data includes the fusing variables grouped as joints, pipe material, position, thermal conditions, equipment, and technique.

QF-402 JOINTS

QF-402.1 A change in the type of joint from that qualified, except that a square butt joint qualifies a mitered joint.

QF-402.2 A change in the pipe O.D. surface misalignment of more than 10% of the wall thickness of the thinner member to be fused.

QF-403 MATERIAL

QF-403.1 A change to any pipe material other than those listed in Table QF-422.

QF-403.2 A change in the pipe diameter beyond the range qualified in Table QF-452.3.

QF-403.3 A change in the pipe wall thickness beyond the range qualified. See <u>QF-202.2.1</u>.

QF-403.4 A change in the cross-sectional area to be fused beyond the range specified.

QF-404 POSITION

QF-404.1 The addition of other fusing positions beyond that qualified. See QF-303.1.

QF-405 THERMAL CONDITIONS

QF-405.1 A change in the heater surface temperature to a value beyond the range qualified.

QF-405.2 A change in the interfacial pressure to a value beyond the range qualified.

QF-405.3 A decrease in melt bead size from that qualified.

QF-405.4 An increase in heater plate removal time from that qualified.

QF-405.5 A decrease in the cool time at butt-fusing pressure from that qualified.

QF-406 EQUIPMENT

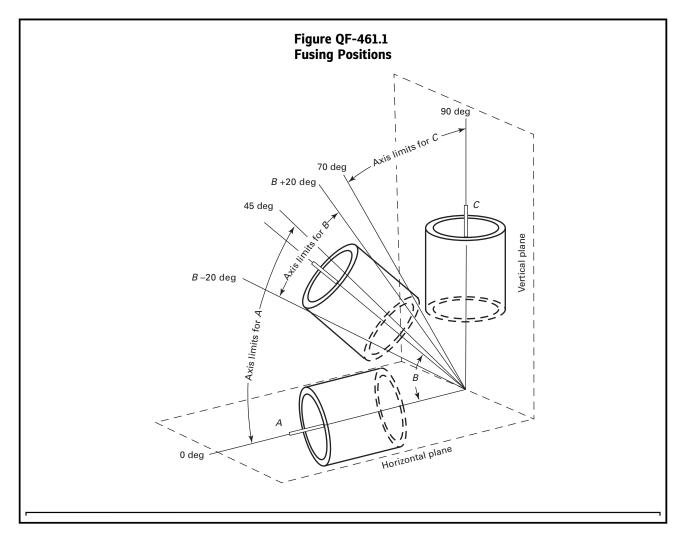
QF-406.1 A change in the fusing machine manufacturer.

QF-407 TECHNIQUE

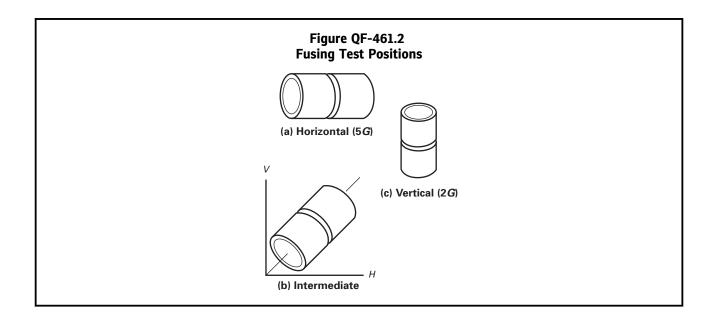
QF-407.1 A change in fabrication location from the fabrication shop to field applications or vice versa.

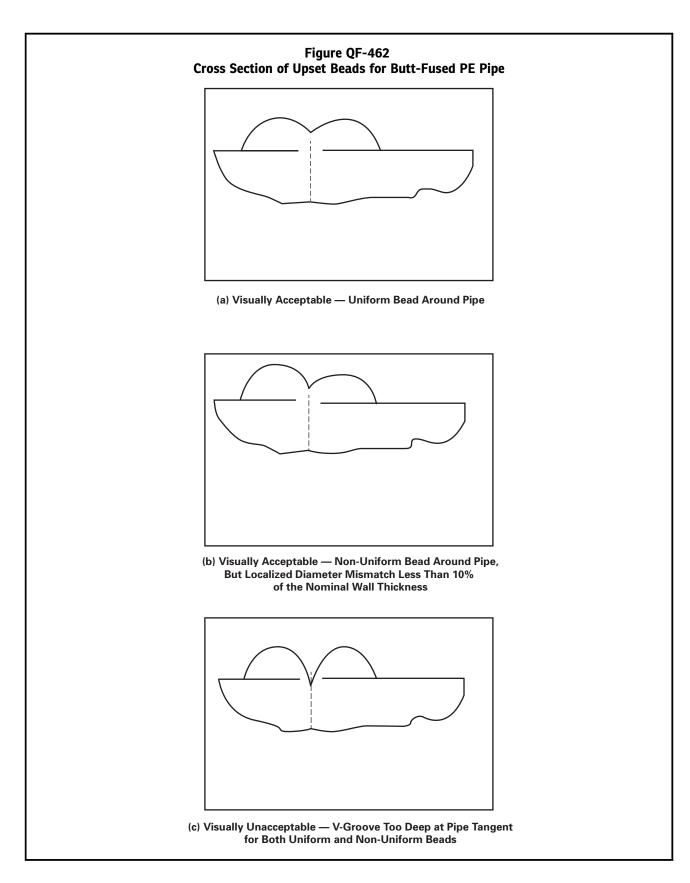
QF-420 MATERIAL GROUPINGS

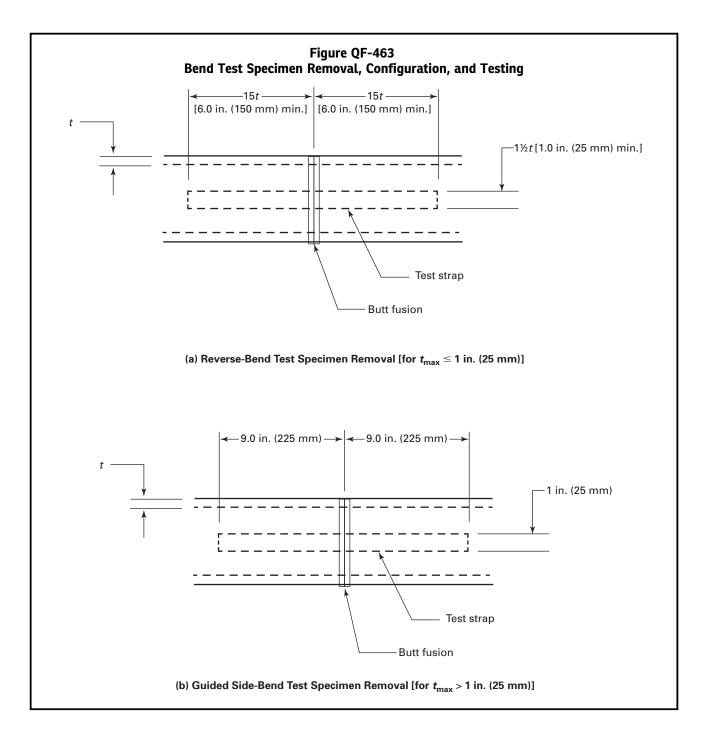
High-density polyethylene pipe listed in Table QF-422 may be fused in accordance with Section IX.

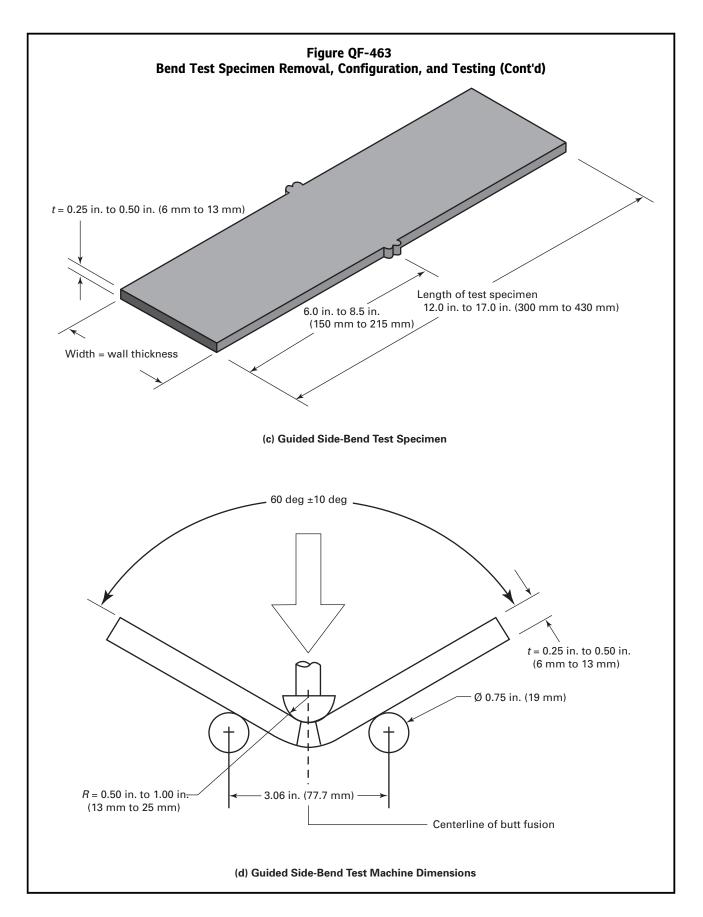

	Table QF-422 aterial Groupi	
Specification	Classification	Product Form
D3035	PE 2708	
	PE 3608	Pipe
F714	PE 4710	
	PE 2708	
D3261	PE 3608	Fittings
	PE 4710]

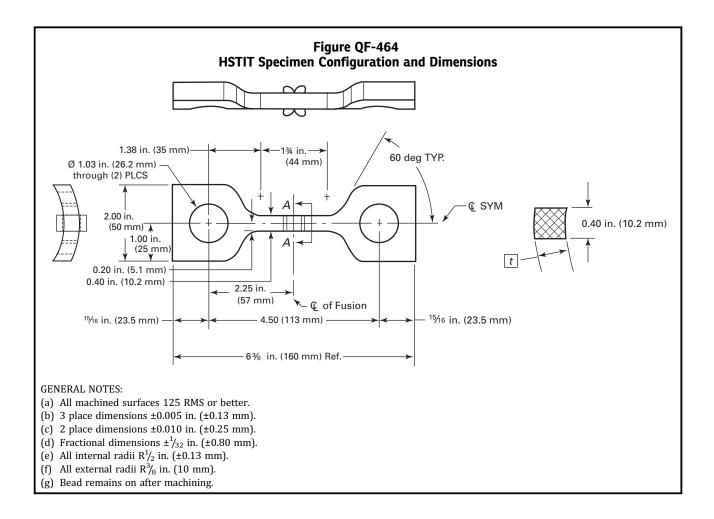
QF-450 PIPE FUSING LIMITS

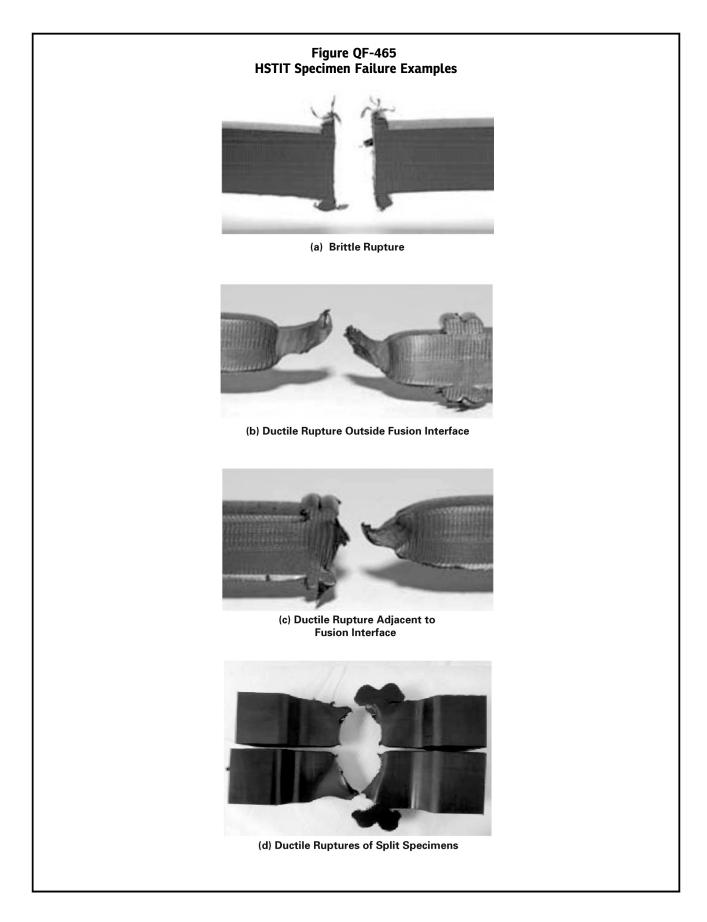

	able QF-452.3 sing Diameter Limi	ts
	Size Qualifie	ed — IPS [in. (mm)]
Size of Test Coupon — IPS [in. (mm)]	Minimum	Maximum
Less than 6 [6.625 (168)]	None	Size tested
6 to less than 8 [6.625 (168) to less than 8.625 (219)]	None	Less than 8 [less than 8.625 (219)]
8 to 20 [8.625 (219) to 20 (508)]	8 [8.625 (219)]	20 [20 (508)]
Greater than 20 [greater than 20 (508)]	Greater than 20 [greater than 20 (508)]	Unlimited


QF-460 GRAPHICS


QF-461 POSITIONS




	F	Figure QF-461.1 using Positions (Cor	ıt'd)	
Table continued				
	T;	abulation of Positions in J	oints	
	Position	Diagram Reference	Inclination of Axis, deg	
	Horizontal	А	0 ± 45	
	Intermediate	В	B ± 20	
	Vertical	С	90 ± 20	



QF-480 FORMS

FORM QF-482 Suggested Format for Fus (See QF-201.3, Section IX, ASME Bo	
Company Name	Ву
Fusing Procedure Specification No	Date
Revision No Date	
FPS Qualification 🗌 By testing 🗌 SFPS If qualified	ed by testing, supporting PQR No.(s)
Fusing Process Type	
Joints (QF-402)	Details
Joint Type	_
Pipe End Preparation	_
Miter Joint Angle	_
Pipe Surface Alignment	_
Sketches, production drawings, weld symbols, or written desc should show the general arrangement of the parts to be fused applicable, the details of the joint groove may be specified. Sketches may be attached to illustrate joint design.	•
Materials (QF-403)	
Specification Classification to	Specification Classification
Pipe Size (Diameter) Pipe Wall Thickness Pip	
Other Other	
Position (QF-404)	
Pipe Position	
Other	
Thermal Conditions (QF-405)	
Heater Surface Temperature Range	
Fusing Interfacial Pressure Range	
Drag Pressure Range E	3utt-Fusing Pressure Range
Melt Bead Size Range H	Heater Plate Removal Time Range
Cool-Down Time at Butt-Fusing Pressure Range	
Equipment (QF-406)	
Fusing Machine Manufacturer	
Data Acquisition Used 🗌 Yes 🗌 No Data Acqui	sition Machine Manufacturer
Hydraulic Hose Length	
Technique (QF-407)	
Location 🗌 Fabrication Shop 🗌 Fi	eld

Г

rocedure Qualification Record No	Date
PS No	
using Process(es)	
Joints (QF-402)	
	nment paration of Test Coupon
Material (QF-403)	Equipment (QF-406)
SpecificationClassification	
to SpecificationClassification	
Pipe Size (Diameter)	
Pipe Wall Thickness	
Other	Hydraulic Hose Length
Position (QF-404)	Technique (QF-407)
Position of Pipe	Location 🗌 Fabrication Shop 🗌 Field
Other	
Thermal Conditions (QF-405)	
Heater Surface Temperature	
Fusing Interfacial Pressure	
Drag Pressure	Other
Butt-Fusing Pressure	
Melt Bead Size	
Heater Plate Removal Time	

FORM QF-483 (Back)

PQR No. ____

Visual Examination (QF-141)

Elevated Temperature Sustained Pressure Tests (QF-142)

Joint No.	Heater Temperature	Interfacial Pressure	Result

Joint No.	Heater Temperature	Interfacial Pressure	Result

High-Speed Tensile Impact Tests (QF-144)

1											
Joint	Spec.	Heater	Interfacial	1		Joir		Heater	Interfacial	1	
No.	No.	Temperature	Pressure	Failure	of Failure	No	No.	Temperature	Pressure	Failure	of Failur
	ng Mac	hine Operator'	s Name	· ·		lo	lentificatio	or pipe larger t	Stamp	No	
Test	s Condu	icted By				L	aboratory 1	Test No			
								its were prepar ressure Vessel		nd teste	d
						Organiz	ation				

using Machine Opera	itor's Name		Identification	No	
		Test Description	n (Information Only)		
ype of Test:	Original qualificat	tion 🗌 Req	ualification		
dentification of FPS F	ollowed				
Pipe Specification	Classifica	tion	to Specification	Classif	ication
Pipe Size (Diameter) _		Pipe Wall Th	ickness		
	Tes	ting Conditions	and Qualification Limit	s	
Fusi	ng Variables (QF-360))	Actual Value	s Ra	nge Qualified
Pipe Materia	ıl				
Pipe Size (Di	ameter)				
Pipe Position	ı				
Fusing Mach	nine Manufacturer				
		nt [QF-305.2(a)]	SULTS		
		nt [QF-305.2(a)] put [QF-305.2(b)]			
		nt [QF-305.2(a)] put [QF-305.2(b)]			Result
Examination of I	Data Acquisition Outp	nt [QF-305.2(a)] out [QF-305.2(b)] Bend Tes	ets (QF-302.2)	 	Result
Examination of I Specimen No.	Type of Bend	nt [QF-305.2(a)] out [QF-305.2(b)] Bend Tes Result	ets (QF-302.2)	Type of Bend	
Examination of I Specimen No.	Type of Bend	nt [QF-305.2(a)] but [QF-305.2(b)] Bend Tes Result	Specimen No.	Type of Bend	
Examination of I Specimen No. Bend Specim Mechanical T	Type of Bend	nt [QF-305.2(a)] out [QF-305.2(b)] Bend Tes Result	Specimen No.	Type of Bend	
Examination of I Specimen No. Bend Specim Mechanical T Fusing Super	Type of Bend	nt [QF-305.2(a)] but [QF-305.2(b)] Bend Tes Result	sts (QF-302.2) Specimen No	Type of Bend	
Examination of I Specimen No. Bend Specim Mechanical T Fusing Super Data Acquisit We certify th	Type of Bend Type of Bend ens Evaluated By ests Conducted By rvised By tion Output Examined	nt [QF-305.2(a)] but [QF-305.2(b)] Bend Tes Result	Specimen No.	Type of Bend	pared, fused, and
Examination of I Specimen No. Bend Specim Mechanical T Fusing Super Data Acquisit We certify th	Type of Bend Type of Bend ens Evaluated By ests Conducted By rvised By tion Output Examined	nt [QF-305.2(a)] put [QF-305.2(b)] Bend Tes Result	sts (QF-302.2) Specimen No. Comparison Compa	Type of Bend	pared, fused, and /essel Code.

	or Plastic Pipe Fusing Data Acquisition Log Review ASME Boiler and Pressure Vessel Code)
Job Information	Job Number
Fusing Machine Operator Name	Fusing Machine Operator Identification
FPS or SFPS Used	Date Time
Fusing Machine Identification Fusing	g Machine ManufacturerJoint Number
Pipe SpecificationClassification	to Specification Classification
Pipe Size (Diameter) Pipe Wall Thicknes	ss Joint Configuration
	SING VARIABLES
Heater Surface Temperature With	hin Qualification Range 🗌 Yes 🗌 No
Interfacial Fusing Pressure Within C	Qualification Range 🗌 Yes 🗌 No
Drag Pressure	
Butt-Fusing Pressure: Within Qualifica	tion Range 🗌 Yes 🗌 No
Calculated Value Recorded Hydra	ulic-Fusing Pressure Acceptable 🗌 Yes 🗌 No
Butt-Fusing Pressure Drop to Less Than Drag Pressure	? 🗌 Yes 🔹 No
Gauge Pressure During Initial Heat Cycle	Elapsed Time During Initial Heat Cycle
Gauge Pressure During Heat-Soak Cycle	Elapsed Time During Heat-Soak Cycle
Gauge Pressure During Fusing/Cool Cycle	
Elapsed Time During Fusing/Cool CycleW	/ithin Qualification Range 🗌 Yes 🗌 No
Melt Bead Size Within Qualifie	5
Heater Plate Removal Time Within Qual	-
Data Logger ProbeExtern	al Probe
Data Acquisition System Manufacturer	
Review of the Recorded Pressure/Time Diagram Acceptable 🗌 Yes 🗌 No	
Data Acquisition Acceptable 🛛 Yes 🗌 N	0
Examiner name	Examiner signature
Date	

QF-490 DEFINITIONS

QF-492 DEFINITIONS

QF-491 GENERAL

Terms relating to fusing used in Section IX are listed in QG-109. Other common terms relating to fusing are defined in ASTM F 412, Standard Terminology Relating to Plastic Piping Systems.

Definitions relocated to QG-109.

MANDATORY APPENDIX A

(**13**)

DELETED

294

NONMANDATORY APPENDIX B WELDING AND BRAZING FORMS

B-100 FORMS

This Nonmandatory Appendix illustrates sample formats for Welding and Brazing Procedure Specifications, Procedure Qualification Records, and Performance Qualification.

B-101 WELDING

Form QW-482 is a suggested format for Welding Procedure Specifications (WPS); Form QW-483 is a suggested format for Procedure Qualification Records (PQR). These forms are for the shielded metal-arc (SMAW), submerged-arc (SAW), gas metal-arc (GMAW), and gas tungsten-arc (GTAW) welding processes, or a combination of these processes.

Forms for other welding processes may follow the general format of Forms QW-482 and QW-483, as applicable.

Form QW-484 is a suggested format for Welder/Welding Operator/Performance Qualification (WPQ) for groove or fillet welds.

Form QW-485 is a suggested format for Demonstration of Standard Welding Procedure Specifications.

B-102 BRAZING

Form QB-482 is a suggested format for Brazing Procedure Specifications (BPS); Form QB-483 is a suggested format for Procedure Qualifications Records (PQR). These forms are for torch brazing (TB), furnace brazing (FB), induction brazing (IB), resistance brazing (RB), and dip brazing (DB) processes.

Forms for other brazing processes may follow the general format of Forms QB-482 and QB-483, as applicable.

Form QB-484 is a suggested format for Brazer/Brazing Operator/Performance Qualification (BPQ).

	By	
Velding Procedure Specification No Date		Supporting PQR No.(s)
Revision No Date		
/elding Process(es)	Type(s)	(Automatic, Manual, Machine, or Semi-Automatic)
JOINTS (QW-402)		Details
Joint Design		
Root Spacing		
Backing: Yes No		
Backing Material (Type)		
Metal Nonfusing Metal		
□ Nonmetallic □ Other		
Sketches, Production Drawings, Weld Symbols, or Written Description		
should show the general arrangement of the parts to be welded. Where		
applicable, the details of weld groove may be specified.		
Sketches may be attached to illustrate joint design, weld layers, and bead		
sequence (e.g., for notch toughness procedures, for multiple process		
procedures, etc.)]		
*BASE METALS (QW-403)		
	DN	
P-No Group No to	0 P-INO	Group No
OR		
Specification and type/grade or UNS Number		
to Specification and type/grade or UNS Number		
OR		
Chem. Analysis and Mech. Prop		
to Chem. Analysis and Mech. Prop		
Thickness Range:		
Base Metal: Groove		
Maximum Pass Thickness $\leq 1/2$ in. (13 mm) (Yes)	(No)	
Other		
*FILLER METALS (QW-404) 1		2
Spec. No. (SFA)		1
AWS No. (Class)		
AWS No. (Class)		

(**13**)

POCITIO										Rev	
	NS (QW-405							ATMENT (Q	W-407)		
							-				
						Other					
Other _						GAS (QW-4	408)				
	r (QW-406)					0/10/01/-	4007	F	ercent Com	position	
		o Minimum					C	Gas(es)	(Mixtur		ate
			n						(-,	
						Shielding					
Other _						Trailing					
(Continu	lous or spec	ial heating, w	here applical	ble, should b	e recorded)	Backing					
						Other					
ELECTRI	CAL CHARA	CTERISTICS	(QW-409)								
										Other	
		Filler	Metal							(e.g., Remarks,	Com-
				Current		Wire Feed	Energy or		Travel	ments, Hot W	
Weld Pass(es)	Process	Classifi- cation	Diameter	Type and Polarity	Amps (Range)	Speed (Range)	Power (Range)	Volts (Range)	Speed (Range)	Addition, Techn Torch Angle, e	
1 033(63)	1100033	Guilon	Diameter	Totanty	(nange/	(nange)	(nange)	(mange)	(nunge,	Toron , angle, e	
		1									
Amps	s and volts, c	or power or e	energy range,	, should be re	ecorded for e	each electrod	e size, posit	ion, and thic	kness, etc.		
Amps	s and volts, c	or power or e	energy range,	, should be re	ecorded for e	each electrod	e size, posit	ion, and thic	kness, etc.		
Pulsing	Current										
Pulsing	Current					Heat Input (n					
Pulsing Tungste	Current	Size and Typ	0e			Heat Input (n (Pure Tun	nax.)				
Pulsing Tungste	Current	Size and Typ				Heat Input (n (Pure Tun	nax.)	iated, etc.)			
Pulsing Tungste	Current en Electrode f Metal Trans	Size and Typ	0e			Heat Input (n (Pure Tun	nax.)	iated, etc.)			
Pulsing Tungste Mode o Other	Current on Electrode f Metal Tran:	Size and Typ sfer for GMA	0e			Heat Input (n (Pure Tun	nax.)	iated, etc.)			
Pulsing Tungste Mode o Other TECHNIC	Current en Electrode f Metal Tran: QUE (QW-410	Size and Typ sfer for GMA	w (FCAW) _			Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) 1g Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String o	Current en Electrode f Metal Tran: QUE (QW-410 or Weave Bea	Size and Typ sfer for GMA	0e			Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) 1g Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice,	Current en Electrode f Metal Trans QUE (QW-410 or Weave Bea Nozzle, or G	Size and Typ sfer for GMA	w (FCAW) _			Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice,	Current en Electrode f Metal Trans QUE (QW-410 or Weave Bea Nozzle, or G	Size and Typ sfer for GMA	w (FCAW) _			Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au	Current en Electrode f Metal Tran: QUE (QW-410 or Weave Bea Nozzle, or G nd Interpass	Size and Typ sfer for GMA)) ad Cleaning (Br	w (FCAW) _	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method	Current en Electrode f Metal Tran: QUE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou	Size and Typ sfer for GMA)) ad Cleaning (Br	w (FCAW) _	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat	Current en Electrode f Metal Trans DUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact	Current en Electrode f Metal Trans DUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo	Size and Typ sfer for GMA)) ad Cleaning (Br uging rk Distance _	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple	Current en Electrode f Metal Trans 2UE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo e or Single P	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple	Current en Electrode f Metal Tran: QUE (QW-410 or Weave Bea Nozzle, or G nd Interpass of Back Gou ion Tube to Wo e or Single P e or Single E	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side lectrodes	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple Electroo	Current en Electrode f Metal Tran: QUE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou ion Tube to Wo e or Single P e or Single E de Spacing	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side lectrodes	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple Electroc Peening	Current en Electrode f Metal Tran: DUE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou ion Tube to Wo e or Single P e or Single E de Spacing	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side lectrodes	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple Electroo	Current en Electrode f Metal Tran: DUE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou ion Tube to Wo e or Single P e or Single E de Spacing	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side lectrodes	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			
Pulsing Tungste Mode o Other TECHNIC String c Orifice, Initial au Method Oscillat Contact Multiple Blectroo Peening	Current en Electrode f Metal Tran: DUE (QW-410 or Weave Bea Nozzle, or G and Interpass of Back Gou ion Tube to Wo e or Single P e or Single E de Spacing	Size and Typ sfer for GMA)) ad as Cup Size Cleaning (Br uging rk Distance _ ass (Per Side lectrodes	W (FCAW)	ding, etc.)		Heat Input (n (Pure Tun (Spray Arc	nax.)	iated, etc.) ng Arc, etc.)			

(1	2	١
l	-		J

FORM QW-483	SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR)
(See	e QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code)
	Record Actual Variables Used to Weld Test Coupon

Procedure Qualification Record No.	
WPS No.	
Welding Process(es)	
Types (Manual, Automatic, Semi-Automatic)	
JOINTS (QW-402)	
	esign of Test Coupon
(For combination qualifications, the deposited weld metal	I thickness shall be recorded for each filler metal and process used.)
BASE METALS (QW-403)	POSTWELD HEAT TREATMENT (QW-407)
Material Spec.	_ Temperature
Type/Grade, or UNS Number	Time
P-No Group No to P-No Group No	_ Other
Thickness of Test Coupon	_
Diameter of Test Coupon Maximum Pass Thickness	
Maximum Pass Thickness Other	
otter	GAS (QW-408)
	Percent Composition
	Gas(es) (Mixture) Flow Rate
	Shielding
FILLER METALS (QW-404) 1 2	Trailing
SFA Specification	Backing
AWS Classification	- Other
Filler Metal F-No.	-
Weld Metal Analysis A-No.	 ELECTRICAL CHARACTERISTICS (QW-409)
Size of Filler Metal	- Current
Filler Metal Product Form	Polarity
	_ Amps Volts
Electrode Flux Classification	Tungsten Electrode Size
Flux Type	 Mode of Metal Transfer for GMAW (FCAW) Heat Input
Hux Trade Name	Other
Other	
POSITION (QW-405)	TECHNIQUE (QW-410)
Position of Groove	Travel Speed
Weld Progression (Uphill, Downhill)	_ String or Weave Bead
Other	_ Oscillation
	Single or Multiple Electrodes
PREHEAT (QW-406)	Other
Preheat Temperature	
Interpass Temperature	
Other	

			Tensile	e Test (Q	2W-1!	50)	PQR N	lo
Specimen No.	Width	Thickr	ness	Area		Ultimate Total Load	Ultimate Unit Stress, (psi or MPa)	
					—			
					+			
			Guided-Be	and Test		W-160)		
	Type and F	 Figure No.					Result	
			Toughnes	ss Tests	(QW	/-170)		
Specimen	Notch	Specimen	Test			Impact Values		
No.	Location	Size	Temperature	ft-lb or	r J	% Shear	Mils (in.) or mm	Drop Weight Break (Y/N
		<u> </u>		<u> </u>				
		<u> </u>						
		+		<u> </u>				
Comments								
			Fillet-We	Id Test	(QW-	-180)		
Result — Satisfactor	y: Yes	No		P	'enetra	ition into Parent	Metal: Yes	No
Macro — Results —								
				ther Tes	sts			
Type of Test Deposit Analysis								
Other								
								Stamp No
We certify that the st requirements of Sect	tatements in this I	record are corre	ect and that the	test welds				
				Organi	zation			
Date								
(Detail of record of t	ests are illustrativ	/e only and may	v be modified to	conform ·	to the	type and numbe	r of tests required b	by the Code.)

()	13)
	- /

		Identific	ation no			
		Test	Description			
	llowed					on 🛛 Production we
Specification and type/	grade or UNS Number of	base metal(s)		٦	Thickness	
		Testing Variables	and Qualification Li	mite		
v	Valding Variables (OW 2E)	-				Panga Qualified
	Velding Variables (QW-35	0)	AC	tual Values		Range Qualified
Welding process(es)	emi-automatic) used					
Backing (with/without						
	iter diameter if pipe or tub					
Base metal P-Numb		Je)				
	ode specification(s) (SFA)	(info only)				
	ode classification(s) (info.					
Filler metal F-Numbe		Ully)				
Consumable insert (
	Form (solid/metal or flux)	cored/powder) (GTAM	(or PA\W)			
Deposit thickness fo			011AW/			
	3 layers minimun	n 🗆 Yes 🗆 No				
Process 2	3 layers minimum	n ⊡Yes ⊡No				
Position qualified (2)			·			
Vertical progression						
Type of fuel gas (OF						
	TAW PAW GMAW)					
Inert gas backing (G		rt circuit-GMAW)				
Inert gas backing (G Transfer mode (spra	y/globular or pulse to sho					
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c	y/globular or pulse to sho oolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)]	4) Longi	ESULTS			s (QW-462.2)
Inert gas backing (G Transfer mode (spra GTAW current type/p /isual examination of c] Transverse face and	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec	A) Longi J Longi Limen, corrosion-resis cimen, corrosion-resis	tudinal bends [QW- tant weld metal ove stant weld metal ove	erlay [QW-462.5(erlay [QW-462.5	c)]	
Inert gas backing (G Transfer mode (spra GTAW current type/p /isual examination of c] Transverse face and	y/globular or pulse to sho oolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spe	A) Longi J Longi Limen, corrosion-resis cimen, corrosion-resis	tudinal bends [QW- tant weld metal ove stant weld metal ove	erlay [QW-462.5(erlay [QW-462.5	c)] (d)]	
Inert gas backing (G Transfer mode (spra GTAW current type/f isual examination of c Transverse face and	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec specimen, macro test for	R 4) Longi imen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)]	tudinal bends [QW- tant weld metal ove stant weld metal ove I Plate specin	erlay [QW-462.5(erlay [QW-462.5	(d)] for fusion [QW-40	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/f isual examination of c Transverse face and	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec specimen, macro test for	R 4) Longi imen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)]	tudinal bends [QW- tant weld metal ove stant weld metal ove I Plate specin	erlay [QW-462.5(erlay [QW-462.5	(d)] for fusion [QW-40	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of d Transverse face and Pipe Type	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result	R 4) Congi imen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)] Type	tudinal bends [QW- tant weld metal ove stant weld metal ov Plate specin Result	rlay [QW-462.5(erlay [QW-462.5 nen, macro test	c)] (d)] for fusion [QW-40 Type	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/f isual examination of c Transverse face and Pipe Type	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW	R 4) Longi imen, corrosion-resis fusion [QW-462.5(b)] Type /-191):	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result	rlay [QW-462.5(erlay [QW-462.5 nen, macro test	c)] (d)] for fusion [QW-4(Type one)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c Transverse face and Pipe Type	y/globular or pulse to sho bolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2)	R 4) Longi imen, corrosion-resis cimen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)] Type /-191): Le	tudinal bends (QW- tant weld metal ove stant weld metal ove Plate specin Result Result Result	rlay [QW-462.5(erlay [QW-462.5] nen, macro test	c)] (d)] for fusion [QW-4(Type one)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c Transverse face and Pipe Type Iternative Volumetric illet weld — fracture tw Fillet wel	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2)	R 4) Longi imen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)] Type /-191): Le Fillet welds	tudinal bends (QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe (QW-462.4(c	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check defects ;)]	c)] (d)] for fusion [QW-44 Type one)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/f isual examination of c] Transverse face and	y/globular or pulse to sho bolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW- ast (QW-181.2) ds in plate [QW-462.4(b)] W-184)	R 4) Longi imen, corrosion-resis cimen, corrosion-resis fusion [QW-462.5(b)] Type /-191): Le Fillet welds	tudinal bends (QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe (QW-462.4(c	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check defects ;)]	c)] (d)] for fusion [QW-44 Type one)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p fisual examination of d Transverse face and Pipe Type Juternative Volumetric illet weld — fracture to Fillet wel Aacro examination (QU	y/globular or pulse to sho bolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) ds in plate [QW-462.4(b)]	R 4) Congi cimen, corrosion-resis fusion [QW-462.5(b)] Type /-191): Le Fillet welds Fillet size (in.)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c _ × Concar	rlay [QW-462.5(erlay [QW-462.5) nen, macro test pr UT (check c defects;)] vity/convexity (in	c)] (d)] for fusion [QW-40 Type one) n.)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p fisual examination of c Transverse face and Pipe Type Uternative Volumetric illet weld — fracture to Fillet weld Macro examination (QU ther tests ilm or specimens eval	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spe Plate bend spe specimen, macro test for Result Examination Results (QW set (QW-181.2) set (QW-181.2) w-184) uted by	R 4) imen, corrosion-resis iscimen, corrosion-resis fusion [QW-462.5(b)] Type /-191): /-191): E Fillet welds Fillet size (in.)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c _ × Concar	rlay [QW-462.5(erlay [QW-462.5) nen, macro test pr UT (check defects city/convexity (in Company	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p fisual examination of c Transverse face and Pipe Type Uternative Volumetric illet weld — fracture tr Fillet weld Macro examin (QU ther tests ilm or specimens eval Mechanical tests condu	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spe Plate bend spe specimen, macro test for Result Examination Results (QW set (QW-181.2) set (QW-181.2) wether and the set of the set o	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c _ × Concar Concar	rlay [QW-462.5(erlay [QW-462.5) nen, macro test pr UT (check defects city/convexity (in Company	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)] Result
Inert gas backing (G Transfer mode (spra GTAW current type/p fisual examination of c Transverse face and Pipe Type Type Ulternative Volumetric illet weld — fracture to Fillet weld Macro examination (QU Vher tests ilm or specimens eval Acchanical tests condu	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) dds in plate [QW-462.4(b)] W-184) uated by	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c Conca Conca	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check c defects) vity/convexity (in Company tory test no	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c Transverse face and Pipe Type Uternative Volumetric Illet weld — fracture to Fillet weld Macro examination (Q) ther tests Im or specimens eval fechanical tests condu- Velding supervised by Ve certify that the state	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) dds in plate [QW-462.4(b)] N-184) uated by cted by ements in this record are of	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c Conca Conca Labora st coupons were pro-	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check c defects) vity/convexity (in Company tory test no	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c] Transverse face and	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) dds in plate [QW-462.4(b)] W-184) uated by	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c Conca Conca Labora st coupons were pro-	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check c defects) vity/convexity (in Company tory test no	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/p isual examination of c Transverse face and Pipe Type Uternative Volumetric Illet weld — fracture to Fillet weld Macro examination (Q) ther tests Im or specimens eval fechanical tests condu- Velding supervised by Ve certify that the state	y/globular or pulse to sho polarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) dds in plate [QW-462.4(b)] N-184) uated by cted by ements in this record are of	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove Plate specin Result Result RT C ngth and percent of in pipe [QW-462.4(c Conca Conca Labora st coupons were pro-	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check c defects) vity/convexity (in Company tory test no	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)]
Inert gas backing (G Transfer mode (spra GTAW current type/p /isual examination of c] Transverse face and	y/globular or pulse to sho bolarity (AC, DCEP, DCEN) completed weld (QW-302. root bends [QW-462.3(a)] Pipe bend spec Plate bend spec specimen, macro test for Result Examination Results (QW est (QW-181.2) clds in plate [QW-462.4(b)] N-184) uated by cred by ments in this record are in n IX of the ASME BOILER	R 4)	tudinal bends [QW- tant weld metal ove stant weld metal ove generation of the specin Result Result Result RT C C ngth and percent of in pipe [QW-462.4(c X Concar Concar Laborat st coupons were prosect SEL CODE. rganization	rlay [QW-462.5(erlay [QW-462.5) nen, macro test or UT (check c defects) vity/convexity (in Company tory test no	c)] (d)] for fusion [QW-44 Type one) n.)	62.5(e)]

Welding operator's name	e	1	dentification no		
for any operator of harm	·		Information Only)		
Identification of WPS fol	lowed			Test of	
Specification and type/gr	rade or UNS Number	of base metal(s)		Thickness	
		P-Number	Position (2G, 6	6G, 3F, etc.)	
Plate Pipe (enter of the second seco	diameter, if pipe or tub	be)			
Filler metal (SFA) specifi	cation Fille	er metal or electrode classif	ication		
	Testing Variable	es and Qualification Limits V	When Using Automat	tic Welding Equipment	
	Welding Variables	s (QW-361.1)		Actual Values	Range Qualified
Type of welding (auto	omatic)				
Welding process					
Filler metal used (Yes/	/No) (EBW or LBW)				
Type of laser for LBW	(CO ₂ to YAG, etc.)				
Continuous drive or ir	nertia welding (FW)				
Vacuum or out of vac	uum (EBW)				
	Testing Variabl	es and Qualification Limits	When Using Machine	e Welding Equipment	
	Welding Variables	s (QW-361.2)		Actual Values	Range Qualified
Type of welding (Mac	hine)				
Welding process					
Direct or remote visua	al control				
Automatic arc voltage	e control (GTAW)				
Automatic joint tracki	-				
Position qualified (2G					
Consumable inserts (
Backing (with/without	t)				
	t)				
Backing (with/without	t)				
Backing (with/without	t)	RESU			
Backing (with/without Single or multiple pas 	t) sses per side pmpleted weld (QW-30	02.4)			
Backing (with/without Single or multiple pas	t) sses per side pmpleted weld (QW-30	02.4)	JLTS	8(b)]	
Backing (with/without Single or multiple pas 	t) sses per side ompleted weld (QW-30 root bends [QW-462.30	02.4)	inal bends [QW-462.3		nds (QW-462.2)
Backing (with/without Single or multiple pas 	t) sses per side ompleted weld (QW-30 root bends [QW-462.30 □ Pipe I	02.4) (a)] Longitud	inal bends [QW-462.3 esistant weld metal c	overlay [QW-462.5(c)]	nds (QW-462.2)
Backing (with/without Single or multiple pas Visual examination of co	t) sses per side ompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Plate)2.4) Longitud (a)] Longitud bend specimen, corrosion-r	inal bends [QW-462.3 esistant weld metal c resistant weld metal d	overlay [QW-462.5(c)]	
Backing (with/without Single or multiple pas Visual examination of co	t) sses per side ompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Plate	12.4) (a)] bend specimen, corrosion-r bend specimen, corrosion-	inal bends [QW-462.3 esistant weld metal c resistant weld metal d	overlay [QW-462.5(c)] overlay [QW-462.5(d)]	
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r	t) sses per side ompleted weld (QW-30 root bends [QW-462.30 Pipe I Pipe I Plate specimen, macro test f	12.4) Congitud	inal bends [QW-462.3 esistant weld metal c resistant weld metal o Plate specimen,	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s	t) sses per side ompleted weld (QW-30 root bends [QW-462.3 □ Pipe I □ Plate specimen, macro test f Result	D2.4) Congitud (a)] Congitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type Type	inal bends [QW-462.3 esistant weld metal c resistant weld metal o Plate specimen, Result	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type	t) sses per side pompleted weld (QW-36 root bends [QW-462.3] Pipe I Pipe I Plate specimen, macro test f Result 	D2.4) Constant Consta	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type Context for	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type	t) sses per side pompleted weld (QW-36 root bends [QW-462.3] Pipe I Pipe I Plate specimen, macro test f Result 	D2.4) Congitud (a)] Congitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type Type	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type Context for	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type	i) sses per side propleted weld (QW-30 root bends [QW-462.30 Pipe I Pipe I Plate specimen, macro test f Result fixamination Results (C st (QW-181.2)	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW	i) sses per side propleted weld (QW-30 root bends [QW-462.30 Pipe I Pipe I Plate specimen, macro test f Result Cartion Results (C st (QW-181.2)	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result RT or UT ngth and percent of o Fillet welds in pip	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type [] c (check one) defects e [QW-462.4(c)]	V-462.5(e)] Result
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	i) sses per side propleted weld (QW-30 root bends [QW-462.30 Pipe I Pipe I Plate specimen, macro test f Result fixamination Results (C st (QW-181.2) Fillet welds in r-184) F	D2.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result Result RT or UT angth and percent of o Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	t) sses per side pompleted weld (QW-36 root bends [QW-462.3] Pipe I Plate specimen, macro test f Result 	D2.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result RT or UT ngth and percent of o Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Company	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	t) sses per side pompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Pipe I Result fillet welds in r-184)F ated by	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result RT RT or UT ength and percent of o Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Company	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	t) sses per side pompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Pipe I Result fillet welds in random results (C st (QW-181.2) Fillet welds in random results (C st (QW-181.2) sted by	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result RT or UT ength and percent of o Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Company Laboratory test no.	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	i) sses per side pompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Pipe I Result issection Results (C st (QW-181.2) Fillet welds in -184) cted by ements in this record	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal o Plate specimen, Result RT RT or UT ength and percent of o Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Company Laboratory test no.	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	i) sses per side pompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Pipe I Result issection Results (C st (QW-181.2) Fillet welds in -184) cted by ements in this record	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal of resistant weld metal of Plate specimen, Result RT or UT or UT or UT right and percent of of Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Laboratory test no. epared, welded, and tes	V-462.5(e)]
Backing (with/without Single or multiple pas Visual examination of co Transverse face and r Pipe s Type Alternative Volumetric E Fillet weld — fracture tes Macro examination (QW Other tests	i) sses per side pompleted weld (QW-30 root bends [QW-462.3 Pipe I Pipe I Pipe I Result issection Results (C st (QW-181.2) Fillet welds in -184)F ated by ements in this record	22.4) Longitud bend specimen, corrosion-r bend specimen, corrosion-r for fusion [QW-462.5(b)] Type 	inal bends [QW-462.3 esistant weld metal of resistant weld metal of Plate specimen, Result RT or UT or UT or UT right and percent of of Fillet welds in pip Concavity/co	overlay [QW-462.5(c)] overlay [QW-462.5(d)] macro test for fusion [QV Type (check one) defects e [QW-462.4(c)] nvexity (in.) Company Laboratory test no.	V-462.5(e)]

(**13**)

(**13**)

FORM QW-485 SUGGESTED FORMAT FOR DEMONSTRATION OF STANDARD WELDING PROCEDURE SPECIFICATIONS (SWPS) (See Article V)

Specification and type/grade or UNS Number of Base Metal(s)	
to Specification and type/grade or UNS Number of Base Metal(s)	
Aase Metal P-Number	
Velding Process(es) used	
Plate Pipe (Enter Diameter of Pipe or Tube) Groove Design (Single V, Double V, Single U, etc.)	
Plate Pipe (Enter Diameter of Pipe or Tube) iroove Design (Single V, Double V, Single U, etc.) initial Cleaning Method acking (with/without) iller Metal Specification iller Metal or Electrode Classification iller Metal or Electrode Classification iller Metal or Electrode Classification iller Metal or Electrode or Filler Metal ungsten Electrode or Filler Metal ungsten Electrode Classification and Size for GTAW onsumable Insert Class and Size for GTAW reheat Temperature osition (1G, 2G, etc.) of Weld rogression (Uphill or Downhill)	
Series Stroke Design (Single V, Double V, Single U, etc.) initial Cleaning Method initial Cleaning Method initial Cleaning Method initial Specification in	
acking (with/without) iller Metal Specification iller Metal or Electrode Classification iller Metal or Electrode or Filler Metal ize of Consumable Electrode or Filler Metal ize of Consumable Electrode or Filler Metal iconsumable Insert Class and Size for GTAW ionsumable Insert Class and Size for GTAW inhelding Gas Composition and Flow Rate for GTAW or GMAW (FCAW) inhelding Gas Composition and Flow Rate for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW interbeat Specification and Size for GTAW inhelding Gas Composition and Flow Rate for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class and Size for GTAW or GMAW (FCAW) iconsumable Insert Class and Size for GTAW or GMAW (FCAW) interbeat Temperature iconsumable Insert Class Insert I	
iller Metal Specification	
iller Metal or Electrode Classification	
iller Metal or Electrode Trade Name	
ize of Consumable Electrode or Filler Metal	
ungsten Electrode Classification and Size for GTAW	
onsumable Insert Class and Size for GTAW	
hielding Gas Composition and Flow Rate for GTAW or GMAW (FCAW)	
reheat Temperature	
osition (1G, 2G, etc.) of Weld	
Progression (Uphill or Downhill)	
nterpass Cleaning Method	
Aeasured Maximum Interpass Temperature	
Approximate Deposit Thickness for Each Process or Electrode Type	
Current Type/Polarity (AC, DCEP, DCEN)	
ostweld Heat Treatment Time and Temperature	
tend Test (QW-302.1)	
Type Result Type Result Type	Result
Specimens Evaluated By Title Title	
Specimens Evaluated By Company Velding Supervised By Company	
Specimens Evaluated By Company Welding Supervised By Company Welder's Name Stamp No.	
Specimens Evaluated By Company Velding Supervised By Company Velder's Name Stamp No. Velder's Name Stamp No. Ve certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in a	
Specimens Evaluated By Company Velding Supervised By Company Velder's Name Stamp No. Velder's Name Stamp No. Ve certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in a	
Specimens Evaluated By Title Company Velding Supervised By Title Company Velder's Name Stamp No Stamp No Ve certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in a he requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE. Pressure Vessel Code.	
Specimens Evaluated By Title Company Welding Supervised By Title Company Welder's Name Stamp No Stamp No We certify that the statements in this record are correct and that the weld described above was prepared, welded, and tested in a he requirements of Section IX of the ASME BOILER AND PRESSURE VESSEL CODE. Company	
Alternative Radiographic Examination Results (QW-302.2)	accordance wit

Organization Name		Bv	
			Date Issued
Supporting PQRs			
Brazing Process(es)			Type(s)
			(Automatic, Manual, Machine, or Semi-Automatic)
	Joint Design (QB	-408)	
	-		
Joint Design: Type			
Overlap: Minimum	Maximum		
Base Metal (QB-402)		Brazing Fi	ller Metal (QB-403)
P-Number	Specification Number	er	
to P-Number	AWS Classification _		
Other	F-Number		
	Filler Metal Product I	Form	
Base Metal Thickness			
Minimum			
Maximum	_	-	nperature (QB-404)
Postbraze Heat Treatment (QB-409)	Brazing Temperature		
	B	razing Flux, Fuel G	as, or Atmosphere (ΩB-406)
Temperature Range	 Flux (AWS Class, Cor 	mposition, or Trad	e Name)
Time Range	— Fuel Gas		
	Furnace Temperature	e	
Flow Position (QB-407)	Atmosphere Type		
Positions Permitted			
Flow Direction			
	Technique (QB-410) and Otl	her Information	
Initial Cleaning	-		
Flux Application			
Nature of Flame (Oxidizing, Neutral, Reducing)			
Torch Tip Sizes			
Postbraze Cleaning			
Inspection			

(**13**)

FORM QB-483 SUGGESTED FORMAT FOR A BRAZING PROCEDURE QUALIFICATION RECORD (PQR) (See QB-200.2, Section IX, ASME Boiler and Pressure Vessel Code) Record of Actual Variables Used to Braze Test Coupon

Organization Nar		0						
	es) Used	Coupon		pon Was Brazed				
-								
Base Metal (OB-4 Base Metal Spec			to Base Metal Sp	ecification				
-Number								
ase Metal Thick	mess			ickness				
Plate or Pipe/Tub	ie							
Frazing Filler Me iller Metal Spec		ification	F-No	Filler Metal Prod	luct Form			
oint Design (QB)verlap		it Type		Joint Clearance				
Brazing Tempera	ture (QB-404)							
	el Gas, or Atmosphe							
lux (AWS Class. uel Gas		Name, or None) Furnace Temperature	A	tmosphere Type Other				
How Position (Q Position		Flow Direction						
ostbraze Heat T	Γreatment (QB-409)	Time						
Postbraze Cleani Nature of Flame Other Tensile Tests (QE	Oxidizing, Neutral, I	Reducing)						
	Width/							
Specimen	Diameter	Thickness	Area	Ultimate Load	UTS (psi or MPa)	Failure Location		
end Tests (QB-	160)				•			
	ype	Results		Туре	Resu	lts		
Paal Tasts (OB-1	I70) or Section Tests	(OB-180)						
	ype	Results		Туре	Resu	lts		
	/			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Other Tests					•			
		У		lo				
	Evaluated by			ny				
		s in this record are correct and t	hat the test coupons	were prepared, braze	ed, and tested in acco	ordance with the		
		ME BOILER AND PRESSURE VE						
		ME BOILER AND PRESSURE VE	SSEL CODE.					
		ME BOILER AND PRESSURE VE			Date			

(07/13)

Brazer's/Brazing Operat	tor's Name			_ Identification No	
		ng Variables and I			
Identification of BPS Fo	llowed During Brazing of Test Coup	on			
•	est Coupon Base Metal d Test Coupon Base Metal				
Brazing	Variables (QB-350)	Ac	tual Values	F	ange Qualified
Brazing Process(es)					
Machine)	nual, Semi-Automatic, Automatic,				
Torch Brazing: Manu					
	er to P-Number Pipe (enter diameter if pipe or tube)				
Base Metal Thicknes					
to Base Metal Thic					
Joint Type (Butt, Lap	o, Scarf, Socket, etc.)				
If Lap or Socket, Ove	erlap Length				
Joint Clearance	notification(a) (info anti-)				
Filler Metal (SFA) Sp Filler Metal Classific	ecification(s) (info. only) ation(s) (info. only)				
Filler Metal/F-Numbe					
Filler Metal Product	Form				
Brazing Flow Positio	ns				
		.			
		Testing and F		Date of Test	
	Completed Joint (QB-141.6)				
Mechanical Test	Peel (QB-462.3) Transverse Bends		on (QB-462.4)	ngitudinal Bends [QB-46	n (QB-462.1) 2.2(b)]
Position	Result Po	sition	Result	Position	Result
Mechanical Tests Cond	ucted by		Company		
Specimens Evaluated b	ру		Company		
Lab Test No					
	ements in this record are correct and n IX of the ASME BOILER AND PRES			d, brazed, and tested in a	accordance with the
Organization					
Certified by			Date		

(**13**)

NONMANDATORY APPENDIX D P-NUMBER LISTING

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
		-	N0.				NO.
	Steel Allo			Steel and	l Steel All	oys (Cont'd)	
1	1	A/SA-36	 Turno E. Crr. A	1	1	A/SA-369	FPA
1 1	1 1	A/SA-53	Type E, Gr. A Type E, Gr. B	1	1	A/SA-369	FPB
1	1	A/SA-53		1	1	A/SA-372	A
1	1	A/SA-53 A/SA-53	Type F Type S, Gr. A	1	1		
1	1	A/SA-53 A/SA-53	Type S, Gr. B	1	1	A381	Y35
1	1	A/3A-33	Type 3, GL B	1	1	A381	Y42
1	1	A/SA-106	А	1	1	A381	Y46
1	1	A/SA-106	В	1	1	AJOI	140
1	1	A108	1015CW	1	1	A381	Y48
1	1	A108	1018CW	4	4	4201	1/50
1	1	A108	1020CW	1	1	A381	Y50
1	1	A/SA-134		1	1	A/SA-414	А
1	1	A/SA-135	А	1	1	A/SA-414	В
1	1	A/SA-135	В	1	1	A/SA-414	С
	4	4420		1	1	A/SA-414	D
1	1	A139	A				
1	1	A139	В	1	1	A/SA-414	Е
1	1	A139	С	1	1	A/SA-420	WPL6
1	1	A139	D	1	1	A500	В
1	1	A139	Е	1	1	A500	C
1	1	A/SA-178	А	1	1	11500	G
1	1	A/SA-178	С	1	1	A501	А
1	1	A/SA-179		1	1		1000
1	1	A/SA-181	Cl. 60	1	1	A/SA-513	1008
1	1	A/SA-192		1	1	A/SA-513	1010
				1	1	A/SA-513	1015
1	1	A/SA-210	A-1	1	1	A513	1015CW
1	1	A211	A570-30	1	1	A/SA-515	60
1	1	A211	A570-33	1	1	A/SA-515	65
1	1	A211	A570-40	1	1	A/SA-516	55
1	1	A/SA-214		1	1	A/SA-516	60
1	1	A/SA-216	 WCA	1	1	A/SA-516	65
1	1	A/SA-234	WPB	1	1	, A519	1018 HR
1	1	A/SA-266	1	1	1	A519	1020 HR
1	1	A/SA-283	A	1	1	A519	1022 HR
1	1	11/511 205	21	1	1	A519	1025 HR
1	1	A/SA-283	В	1	1	A519	1026 HR
1	1	A/SA-283	С				
1	1	A/SA-283	D	1	1	A/SA-524	Ι
1	1	A/SA-285	А	1	1	A/SA-524	II
1	1	A/SA-285	В	1	1	A/SA-556	A2
	4	A (6A 205	6	1	1	A/SA-556	B2
1	1	A/SA-285	C	1	1	A/SA-557	A2
1	1	A/SA-333	1	1	1	A/SA-557	B2
1	1	A/SA-333	6	1	1	A/SA-557 A/SA-562	
1	1	A/SA-334	1	1	T	A/ 3A-302	
1	1	A/SA-334	6	1	1	A/SA-572	42
1	1	A/SA-350	LF1	1	1	A/SA-572	50
1	1	A/SA-352	LCA	1	1	A573	58
1	1	A/SA-352	LCB	1	1	A573	65
-	-		235				

(**13**)

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.
			110,	-			110.
		oys (Cont'd)				oys (Cont'd)	
1	1	A575	M1010	1	1	A/SA-675	65
1	1	A575	M1012	1	1	A694	F42
1	1	A575	M1015	1	1	A694	F46
1	1	A575	M1017				
1	1	A575	M1020	1	1	A694	F52
1	1	A575	M1023	1	1	A/SA-696	В
1	1	A575	M1025				
1	1	A576	G10080	1	1	A707	L1, Cl. 1
1 1	1 1	A576 A576	G10080 G10100	1	1	A707	L1, Cl. 2
1	1	A576	G10100 G10120	1	1	A707	L2, Cl. 1
1	1	A576	G10120 G10150	1	1	A707	L2, Cl. 2
1	1	A576	G10150 G10160	1	1	A707	L3, Cl. 1
1	1	A576	G10100	1	1	A707	L3, Cl. 2
1	1	11570		1	1	A/SA-727	
1	1	A576	G10180	1	1	A/SA-765	Ι
1	1	A576	G10190	1	1	A/SA-836	
1	1	A576	G10200	1	1	A992	
1	1	A576	G10210	1	1	A/SA-1008	CS Type A
1	1	A576	G10220	1	1	A/SA-1008	CS Type B
1	1	A576	G10230	1	1	A/SA-1008	DS Type B
1	1	A576	G10250	1	1	A/SA-1011	CS Type B
1	1	A/SA-587		1	1	A/SA-1011	DS Type B
1	1	A/SA-618	 III		4		
1	1	A633	A	1	1	API 5L	A (all grades)
1	1	A633	C	1	1	API 5L	A25 (all grades)
1	1	A633	D	1	1	API 5L	A25P (all grades)
1	1	A/SA-656	Type 3, Gr. 50	1	1	API 5L	B (all grades)
1	1	A/SA-656	Type 7, Gr. 50	1	1	API 5L	X42 (all grades)
1	1	A/SA-660	WCA	1 1	1 1	API 5L API 5L	X46 (all grades)
-	-	11,011,000	i di	1	1	AFI JL	X52 (all grades)
1	1	A/SA-662	А	1	1	MSS SP-75	WPHY-42
1	1	A/SA-662	В	1	1	MSS SP-75	WPHY-46
1	1	A/SA-663		1	1	MSS SP-75	WPHY-52
1	1	A/SA-668	Cl. B			04 (40 A F 40	57 400
1	1	A/SA-668	Cl. C	1	1	SA/AS 1548	PT430
1	1	A/SA-671	CA55	1	1	SA/AS 1548	PT460
1	1	A/SA-671	CB60	1	1	SA/CSA G40.21	Gr. 38W
1	1	A/SA-671	CB65	1	1	SA/CSA G40.21	Gr. 44W
1	1	A/SA-671	CC60	1	1	SA/CSA G40.21	Gr. 50W
1	1	11/01/07/1	6666	1	1	SA/EN 10028-2	P235GH
1	1	A/SA-671	CC65	1	1 1	SA/EN 10028-2 SA/EN 10028-2	P265GH P295GH
1	1	A/SA-671	CE55	1 1	1	SA/EN 10028-2 SA/EN 10028-3	P2950H P275NH
1	1	A/SA-671	CE60	1	1	SA/EN 10020-3 SA/EN 10216-2	P235GH
1	1	A/SA-672	A45	1	1	SA/EN 10216-2 SA/EN 10216-2	
1	1	A/SA-672	A50	1	1	SA/EN 10210-2 SA/EN 10222-2	P265GH P280GH
1	1	A/SA-672	A55	1	1	SA/EN 10222-2 SA/EN 10025-2	S235JR
1	1	A/SA-672	B55	1	1	SA/EN 10023-2 SA/EN 10217-1	P235TR2
1	1	A/SA-672	B55 B60	1	1	SA/GB 713	Q345R
1	1	A/SA-672	B65	1	1	SA/IS 2062	E250 A
1	1	A/SA-672	C55	1	1	SA/IS 2062 SA/IS 2062	E250 A E250 B
T	1	11 31-012	633	1	1	SA/IS 2062 SA/IS 2062	E250 B
1	1	A/SA-672	C60	Ŧ	T	511/15 2002	1230 G
1	1	A/SA-672	C65	1	2	A/SA-105	
1	1	A/SA-672	E55	1	2	A/SA-106	С
1	1	A/SA-672	E60	1	2	A/SA-178	D
1	1	A/SA-675	45	1	2	A/SA-181	Cl. 70
1	1	A /SA 67E	EO	1	2	A/SA-210	С
1 1	1 1	A/SA-675	50 55	1	2	A/SA 216	WCB
	1	A/SA-675		1	2	A/SA-216	WCB
1	T	A/SA-675	60	1	2	A/SA-216	WUL

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
Steel and	Steel Allo	ys (Cont'd)		Steel and	l Steel Allo	ys (Cont'd)	
1	2	A/SA-234	WPC				
-	_			1	2	A/SA-691	CMS-75
1	2	A/SA-266	2	1	2	A/SA-691	CMSH-70
1	2	A/SA-266	3	1	2	A694	F56
				1	2	A694	F60
1	2	A/SA-266	4	1	2	A694	F65
1	2	A/SA-299	А				
1	2	A/SA-350	LF2	1	2	A/SA-696	С
1	2	A/SA-350	LCC	1	2	A707	L2, Cl. 3
1	2	A356	1	1	2	A707	L3, Cl. 3
1	2	A/SA-372	B	1	2	A/SA-737	В
1	2	A/3A-372	В	1	2	A /CA 720	А
1	2	A381	Y52		2	A/SA-738	
1	2	A381	Y56	1	2	A/SA-765	II
1	2	A381	Y60	1	2	API 5L	X56 (all grades)
				1	2	API 5L	X60 (all grades)
1	2	A/SA-414	F	1	2	API 5L	X65 (all grades)
1	2	A/SA-414	G	1	2	MSS SP-75	WPHY-56
1	2	A/SA-455		1	2	MSS SP-75	WPHY-60
1	2	A/SA-487	Gr. 16, Cl. A	1	2		
1	2	A501	В	1	2	MSS SP-75	WPHY-65
1	2	A/SA-508	1	1	2	SA/AS 1548	PT490
				1	2	, SA/EN 10028-2	P355GH
1	2	A/SA-508	1A	1	2	SA/EN 10222-2	P305GH
1	2	A513	1020 CW	1	2	SA/GB 713	Q345R
1				1	2	SA/GB 713	Q370R
1	2	A513	1025 CW	1	2	SA/JIS G3118	SGV480
1	2	A/SA-515	70	1	4	54/)15 05110	507400
1	2	A/SA-516	70	1	2	A/SA-841	A, Cl. 1
1	2	A519	1018 CW	1	3	A/SA-299	В
1	2	A519	1020 CW	1	3	A/SA-333	10
1	2	A519	1020 CW	1	3	A/SA-350	LF6, Cl. 2
1	2	A519	1022 CW	1	3	, A513	1026 CW
1	2	A519 A519	1025 CW 1026 CW	1	3	A/SA-537	Cl. 2
				1	3	A/SA-537	Cl. 3
1	2	A521	Cl. CE	-	5	11,011,007	
1	2	A/SA-537	Cl. 1	1	3	A633	Е
1	2	A/SA-541	1				— — — — — —
1	2	A/SA-541	1A	1	3	A/SA-656	Type 3, Gr. 70
1	2	A/SA-556	C2	1	3	A/SA-656	Type 7, Gr. 70
1	2	A/SA-557	C2	1	3	A/SA-671	CD80
1	2	11/5/1/557	62	1	3	A/SA-672	D80
1	2	A/SA-572	60	1	3	A/SA-691	CMSH-80
1	2	A573	70	1	3	A694	
1	2	A618	11				F70
1	2	A633	С	1	3	A/SA-737	С
1	2	A633	D	1	3	A/SA-738	В
				1	3	A/SA-738	С
1	2	A/SA-656	Type 3, Gr. 60	1	3	A/SA-765	IV
1	2	A/SA-656	Type 7, Gr. 60	1	3	A/SA-812	65
1	2	A/SA-660	WCB	1	3	A/SA-841	B, Cl. 2
1	2	A/SA-660	WCC	1	3	A/3A-041	D, Ul. 2
	_		_	1	3	API 5L	X70 (all grades)
1	2	A/SA-662	С	1	3	MSS SP-75	WPHY-70
1	2	A/SA-671	CB70	1	4	A/SA-656	Type 3, Gr. 80
1	2	A/SA-671	CC70	1	4	A/SA-656	Type 7, Gr. 80
1	2	A/SA-671	CD70				
1	2	A/SA-671	CK75	1	4	A/SA-724	А
1	2	A /CA (72)	D70	1	4	A/SA-724	В
1	2	A/SA-672	B70	1	4	A/SA-724	С
1	2	A/SA-672	C70	1	4	A/SA-812	80
1	2	A/SA-672	D70	1	4	API 5L	X80 (all grades)
1	2	A/SA-672	N75	-			
1	2	A/SA-675	70	3 3	1	A/SA-204	А

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		ys (Cont'd)				oys (Cont'd)	
3	1	A/SA-209	T1a	bibbi an		,,;; (come a)	
3	1	A/SA-209	T1b	3	3	A/SA-533	Type C, Cl. 1
3	1	A/SA-213	T2	3	3	A/SA-533	Type C, Cl. 2
5	1	A/3A-213	12	3	3	A/SA-533	Type D, Cl. 1
3	1	A/SA-217	WC1	3	3	A/SA-533	Type D, Cl. 2
3	1	A/SA-234	WP1	3	3	A/SA-533	Type E, Cl. 1
3	1	A/SA-250	T1	3	3	A/SA-533	Type E, Cl. 2
3	1	A/SA-250	T1a	3	3	A/SA-541	2, Cl. 1
3	1	A/SA-250	T1b	5	5	A/3A-341	
	1			3	3	A/SA-541	2, Cl. 2
3	1	A/SA-250	T2	3	3	A/SA-541	3, Cl. 1
3	1	A/SA-335	P1	3	3	A/SA-541	3, Cl. 2
3	1	A/SA-335	P2	3	3	A/SA-543	B Cl. 3
3	1	A/SA-335	P15	3	3	A/SA-543	C Cl. 3
3	1	A/SA-352	LC1				
3	1	A356	2	3	3	A/SA-672	H80
5	-	1000	_	3	3	A/SA-672	J80
3	1	A/SA-369	FP1	3	3	A/SA-672	J90
3	1	A/SA-369	FP2				
3	1	A/SA-387	Gr. 2, Cl. 1	4	1	A/SA-182	F11, Cl. 1
3	1	A/SA-426	CP1	4	1	A/SA-182	F11, Cl. 2
3	1	A/SA-426	CP2	4	1	A/SA-182	F11, Cl. 3
5	1	11/011 120		4	1	A/SA-182	F12, Cl. 1
3	1	A/SA-426	CP15	4	1	A/SA-182	F12, Cl. 2
2	1	4500	V11420	4	1	4100	TT 1 1
3	1	A588	K11430	4	1	A199	T11
3	1	A588	K12043	4	1	A/SA-202	А
3	1	A/SA-672	L65			•	
3	1	A/SA-691	¹ / ₂ CR	4	1	A/SA-202	B
3	1	A/SA-691	CM-65	4	1	A/SA-213	T11
3	1	SA/EN 10216-2	16Mo3	4	1	A/SA-213	T12
2	2	A (CA 102	F1	4	1	A/SA-217	WC4
3	2	A/SA-182	F1	4	1	A/SA-217	WC5
3	2	A/SA-182	F2	4	1	A/SA-217	WC6
3	2	A/SA-204	В	4	1	A/SA-234	WP11, Cl. 1
3	2	A/SA-204	С	4	1	A/SA-234	WP12, Cl. 1
3	2	A/SA-302	А			•	
			74	4	1	A/SA-234	WP11, Cl. 3
3	2	A/SA-336	F1	4	1	A/SA-234	WP12, Cl. 2
3	2	A/SA-387	Gr. 2, Cl. 2	4	1	A/SA-250	T11
3	2	A/SA-672	H75	4	1	A/SA-250	T12
3	2	A/SA-672	L70	4	1	A /CA 22E	D11
3	2	A/SA-672	L75	4	1	A/SA-335	P11
			1	4	1	A/SA-335	P12
3	2	A/SA-691	¹ / ₂ CR, Cl. 2	4	1	A/SA-336	F11, Cl. 2
3	2	A/SA-691	CM-70	4	1	A/SA-336	F11, Cl. 3
3	2	A/SA-691	CM-75	4	1	A/SA-336	F11, Cl. 1
3	3	A108	8620 CW	4	1	A/SA-336	F12
	3	A/SA-302	B	т	1	N/3N-330	112
3				4	1	A356	6
3	3	A/SA-302	С	4	1	A356	8
3	3	A/SA-302	D	4	1	A356	9
3	3	A/SA-487	Gr. 2, Cl. A	1	1	11550	,
3	3	A/SA-487	Gr. 2, Cl. B	4	1	A/SA-369	FP11
2	2	A /CA 407		4	1	A/SA-369	FP12
3	3	A/SA-487	Gr. 4, Cl. A	4	1	A/SA-387	11, Cl. 1
3	3	A/SA-508	2, Cl. 1	4	1	A/SA-387	11, Cl. 2
3	3	A/SA-508	2, Cl. 2	т	Ŧ	11 011 007	11, Ul. 2
3	3	A/SA-508	3, Cl. 1	4	1	A/SA-387	12, Cl. 1
3	3	A/SA-508	3, Cl. 2	4	1	A/SA-387	12, Cl. 2
	~			4	1	A/SA-426	CP11
3	3	A/SA-508	4N, Cl. 3	4	1	A/SA-426	CP12
3	3	A/SA-533	Type A, Cl. 1	4	1		
3	3	A/SA-533	Type A, Cl. 2	4	T	A/SA-541	11, Cl. 4
3	3	A/SA-533	Type B, Cl. 1	4	1	A/SA-691	1CR
	3	A/SA-533	Type B, Cl. 2	-	1	A/SA-691	$1^{1}/_{4}$ CR

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		oys (Cont'd)				oys (Cont'd)	
4	1	A/SA-739	B11	Steer and	a Steel All	oys (concu)	
4	1	SA/EN 10028-2	13CrMo4-5	5B	1	A/SA-234	WP9
4	1	SA/EN 10028-2	13CrMoSi5-5+QT	5B	1	A/SA-234	WP5, cl.3
4	1	SA/EN 10020-2 SA/EN 10216-2		5B	1	A/SA-234	WP9, cl.3
			13CrMo4-5	5B	1	A/SA-335	P5
4	1	SA/EN 10222-2	13CrMo4-5	5B	1	A/SA-335	P5b
4	1	SA/GB 713	15CrMoR	5B	1	A/SA-335	P5c
4	2	A/SA-333	4	5B	1	A/SA-335	P9
4	2	A/SA-423	1	50	1	A/3A-333	17
4	2	A/SA-423	2	5B	1	A/SA-336	F5
F 4	4	A /CA 402	524	5B	1	A/SA-336	F5A
5A	1	A/SA-182	F21	5B	1	A/SA-336	F9
5A	1	A/SA-182	F22, Cl. 1	5B	1	A/SA-369	FP5
5A	1	A/SA-182	F22, Cl. 3	5B	1	A/SA-369	FP9
5A	1	A199	T21	50	1	A/3A-307	11.7
ЪA	1	A199	121	5B	1	A/SA-387	5, Cl. 1
5A	1	A199	T22	5B	1	A/SA-387	5, Cl. 2
5A	1	A/SA-213	T21	5B	1	A/SA-387	9, Cl. 1
5A	1	A/SA-213	T22	5B	1	A/SA-387	9, Cl. 2
JA	1	H/3H-213	122	5B	1	A/SA-426	CP5
5A	1	A/SA-217	WC9			•	
5A	1	A/SA-234	WP22, Cl. 1	5B	1	A/SA-426	CP5b
				5B	1	A/SA-426	CP9
5A	1	A/SA-234	WP22, Cl. 3	5B	1	A/SA-691	5CR
5A	1	A/SA-250	T22	5C	1	A/SA-182	F3V
5A	1	A/SA-335	P21			•	
5A	1	A/SA-335	P22	5C	1	A/SA-182	F3VCb
	-			5C	1	A/SA-182	F22V
5A	1	A/SA-336	F21, Cl. 3	5C	1	A/SA-336	F3V
5A	1	A/SA-336	F21, Cl. 1	5C	1	A/SA-336	F3VCb
5A	1	A/SA-336	F22, Cl. 3	5C	1	A/SA-336	F22V
5A	1	A/SA-336	F22, Cl. 1	5C	1	A/SA-487	Gr. 8 Cl. A
5A	1	A356	10				
5A	1	A/SA-369	FP21	5C	1	A/SA-508	3V
ЪA	1	A/3A-309	FF21	5C	1	A/SA-508	3VCb
5A	1	A/SA-369	FP22	5C	1	A/SA-508	22, Cl. 3
5A	1	A/SA-387	21, Cl. 1	5C	1	A/SA-541	3V
5A	1	A/SA-387	21, Cl. 2	5C	1	A/SA-541	3VCb
5A	1	A/SA-387	22, Cl. 1	5C	1	A/SA-541	22V
		,		5C	1	A/SA-541	22, Cl. 3
5A	1	A/SA-387	22, Cl. 2	54	1	11/011011	22, 01. 5
5A	1	A/SA-426	CP21	5C	1	A/SA-542	A, Cl. 4
5A	1	A/SA-426	CP22	5C	1	A/SA-542	A, Cl. 4a
5A	1	A/SA-691	$2^{1}/_{4}$ CR	5C	1	A/SA-542	B, Cl. 4
				5C	1	A/SA-542	B, Cl. 4a
5A	1	A/SA-691	3CR	5C	1	A/SA-542	C, Cl. 4
5A	1	A/SA-739	B22	30	1	A/3A-342	G, GI. 4
5A	1	SA/EN 10028-2	10CrMo9-10	5C	1	A/SA-542	C, Cl. 4a
5A	1	SA/EN 10216-2	10CrMo9-10	5C	1	A/SA-542	D, Cl. 4a
ЪA	1	5A/EN 10210-2	1001009-10	5C	1	A/SA-542	E, Cl. 4a
5A	1	SA/EN 10222-2	11CrMo9-10	5C	1	A/SA-832	21V
011	-	511/211 10222 2					
5B	1	A/SA-182	F5	5C	1	A/SA-832	22V
5B	1	A/SA-182	F5a	5C	1	A/SA-832	23V
5B	1	A/SA-182	F9	5C	3	A/SA-542	A, Cl. 3
				5C	3	A/SA-542	B, Cl. 3
5B	1	A199	T5			•	
		44.00	-	5C	3	A/SA-542	C, Cl. 3
5B	1	A199	Т9	5C	4	A/SA-487	Gr. 8 Cl. B
5B	1	A/SA-213	T5	5C	4	A/SA-487	Gr. 8 Cl. C
5B	1	A/SA-213	T5b	5C	4	A/SA-541	22, Cl. 4
5B	1	A/SA-213	T5c	5C	4	A/SA-542	A, Cl. 1
5B	1	A/SA-213	Т9	5C	4	A/SA-542	B, Cl. 1
5B	1	A/SA-217	C5	5C	4	A/SA-542	C, Cl. 1
5B	1	A/SA-217	C12				
5B	1	A/SA-234	WP5	5C	5	A/SA-541	22, Cl. 5
50	T	11/011 201	VVI J	5C	5	A/SA-542	A, Cl. 2

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		ys (Cont'd)				ys (Cont'd)	
5C	5	A/SA-542	B, Cl. 2	7	2 2	A/SA-731	TP439
5C	5	A/SA-542	C, Cl. 2	7	2	A/SA-803	TP439
50	5			8	1	A167	Type 302B
6	1	A/SA-182	F6a, Cl. 1				
6	1	A/SA-240	410	8	1	A/SA-182	S30600
6	1	A/SA-268	TP410	8	1	A/SA-182	F304
6	1	A/SA-276	TP410	8	1	A/SA-182	F304H
6	1	A/SA-479	403	8	1	A/SA-182	F304L
6	1	A/SA-479	410	8	1	A/SA-182	F304LN
6	2	A/SA-182	F429	8	1	A/SA-182	F304N
6	2	A/SA-240	429	8	1	A/SA-182	F316
6	2	A/SA-268	TP429	8	1	A/SA-182	F316H
0	2	11/511 200	11 12)	8	1	A/SA-182	F316L
6	3	A/SA-182	F6a, Cl. 2	8	1	A/SA-182	F316LN
6	3	A/SA-182	F6b	8	1	A/SA-182	F316N
6	3	A/SA-182	F6a, Cl. 3	0	1	11/5/1102	15101
6	3	A/SA-182	F6a, Cl. 4	8	1	A/SA-182	F317
6	3	A/SA-217	CA15	0	1	A /CA 100	F047I
6	3	A/SA-336	F6	8	1	A/SA-182	F317L
6	3	A/SA-426	CPCA15	8	1	A/SA-182	F321
6	2	A /CA 407	CA15 Cl. B	8	1	A/SA-182	F321H
6	3	A/SA-487		8	1	A/SA-182	F347
6	3	A/SA-487	CA15 CL C	8	1	A/SA-182	F347H
6	3	A/SA-487	CA15 Cl. D	8	1	A/SA-182	F348
6	3	A/SA-487	CA15M Cl. A	8	1	A/SA-182	F348H
6	4	A/SA-182	F6NM	8	1	A/SA-213	TP304
				8	1	A/SA-213	TP304H
6	4	A/SA-240	S41500				
6	4	A/SA-268	S41500	8	1	A/SA-213	TP304L
6	4	A/SA-352	CA6NM	8	1	A/SA-213	TP304LN
6	4	A/SA-479	414	8	1	A/SA-213	TP304N
6	4	A/SA-479	S41500	8	1	A/SA-213	S32615
6	4	A/SA-487	CA6NM Cl. A	8	1	A/SA-213	TP316
6	4	A/SA-487	CA6NM Cl. B	8	1	A/SA-213	ТР316Н
6	4	A/SA-731	S41500	8	1	A/SA-213	TP316Ti
6	4	A/SA-815	S41500	8	1	A/SA-213	TP316L
7	1	A/SA-240	Type 405	8	1	A/SA-213	TP316LN
7	1	A/SA-240	Type 409	8	1	A/SA-213	TP316N
7	1	A/SA-240	Type 410S				
7	1	A/SA-268	S40800	8	1	A/SA-213	TP321
7	1	A/SA-268	TP405	8	1	A/SA-213	TP321H
	-		11 100	8	1	A/SA-213	TP347
7	1	A/SA-268	TP409	8	1	A/SA-213	TP347H
7	1	A/SA-479	405	8	1	A/SA-213	TP347HFG
7	1	A/SA-1010	40	8	1	A/SA-213	TP347LN
7	1	A/SA-1010	50	8	1	A/SA-213	TP317
7	1	SA/JIS G4303	SUS405	8	1	A/SA-213	TP317L
7	2	A/SA-182	F430	8	1	A/SA-213	TP348
7	2	A/SA-182 A/SA-240	S44400	8	1	A/SA-213 A/SA-213	TP348 TP348H
7	2	A/SA-240 A/SA-240	544400 Type 430	8 8	1	A/SA-213 A/SA-213	XM-15
7	2	A/SA-240 A/SA-240	Type 430 Type 439	0	T	11/30-213	AM-13
7	2	A/SA-240 A/SA-240	S43932	8	1	A269	TP304
7	2	A/SA-240 A/SA-268	18Cr-2Mo	8	1	A269	TP304L
'	2	n 3n-200	1001-2140	8	1	A269	TP316
7	2	A/SA-268	TP430Ti	8	1	A269	TP316L
7	2	A/SA-268	TP430	_			
7	2	A/SA-268	TP439	8	1	A/SA-276	TP304
7	2	A/SA-479	430	8	1	A/SA-276	TP304L
7	2	A/SA-479	439	8	1	A/SA-276	TP316
7	2	A/SA-479	S44400	8	1	A/SA-276	TP316L
				8	1	A/SA-240	S30500
7	2	A/SA-731	18Cr-2Mo	8	1	A/SA-240	S30600

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		oys (Cont'd)				oys (Cont'd)	
Steel and				8	1 1	A/SA-312	S32615
8	1	A/SA-240	S30601	8	1	A/SA-312	TP304
8	1	A/SA-240	S31753	8	1	A/SA-312	ТР304Н
8	1	A/SA-240	S32615	0	1	11/011/01/2	1150111
8	1	A/SA-240	Type 301	8	1	A/SA-312	TP304L
8	1	A/SA-240	Type 302	8	1	A/SA-312	TP304LN
			m 201	8	1	A/SA-312	TP304N
8	1	A/SA-240	Type 304	8	1	A/SA-312	TP316
8	1	A/SA-240	Type 304H	8	1	A/SA-312	TP316H
8	1	A/SA-240	Type 304L	8	1	A312	S31635
8	1	A/SA-240	Type 304LN				
8	1	A/SA-240	Type 304N	8	1	A/SA-312	TP316L
8	1	A/SA-240	Type 316	8	1	A/SA-312	TP316LN
8	1	A/SA-240	Type 316Cb	8	1	A/SA-312	TP316N
8	1	A/SA-240	Type 316H	8	1	A/SA-312	TP317
8	1	A/SA-240	Type 316L	8	1	A/SA-312	TP317L
8	1	A/SA-240	Type 316LN	0	1	A (CA 212	TD221
0	1	A (CA 240	T	8	1	A/SA-312	TP321
8	1	A/SA-240	Type 316N	8	1	A/SA-312	TP321H
8	1	A/SA-240	Type 316Ti	8	1	A/SA-312	TP347
8	1	A/SA-240	Type 317	8	1	A/SA-312	TP347H
8	1	A/SA-240	Type 317L	8	1	A/SA-312	TP347LN
8	1	A/SA-240	Type 321	8	1	A/SA-312	TP348
8	1	A/SA-240	Type 321H	8	1	A/SA-312	TP348H
8	1	A/SA-240	Type 347	8	1	A/SA-312	TP XM-15
		•		8	1	A/SA-351	CF3
8	1	A/SA-240	Type 347H	8	1	A/SA-351	CF3A
8	1	A/SA-240	Type 348	0	1	A (CA 251	CEOM
8	1	A/SA-240	Type 348H	8	1	A/SA-351	CF3M
8	1	A/SA-240	Type XM-15	8	1	A/SA-351	CF8
8	1	A/SA-240	Type XM-21	8	1	A/SA-351	CF8A
8	1	A/SA-249	TP304	8	1	A/SA-351	CF8C
8	1	A/SA-249	ТРЗО4Н	8	1	A/SA-351	CF8M
8	1	A/SA-249	TP304L	8	1	A/SA-351	CF10
-	-	,		8	1	A/SA-351	CF10M
8	1	A/SA-249	TP304LN	8	1	A/SA-351	CG8M
8	1	A/SA-249	TP304N	8	1	A/SA-351	CF10MC
8	1	A/SA-249	TP316	0	1	11/011/001	Gritting
8	1	A/SA-249	TP316H	8	1	A/SA-358	304
8	1	A/SA-249	TP316L	8	1	A/SA-358	304H
				0			22.17
8	1	A/SA-249	TP316LN	8	1	A/SA-358	304L
8	1	A/SA-249	TP316N	8	1	A/SA-358	304LN
8	1	A/SA-249	TP317	8	1	A/SA-358	304N
8	1	A/SA-249	TP317L	8	1	A/SA-358	316
8	1	A/SA-249	TP321	8	1	A/SA-358	316H
8	1	A/SA-249	TP321H	8	1	A/SA-358	316L
8	1	A/SA-249	TP347	8	1	A/SA-358	316LN
		•		8	1	•	
8	1	A/SA-249	TP347H			A/SA-358	316N
8	1	A/SA-249	TP348	8	1	A/SA-358	321
8	1	A/SA-249	TP348H	8	1	A/SA-358	347
8	1	A/SA-249	TP XM-15	8	1	A/SA-358	348
8	1	A269	TP304	8	1	A/SA-376	16-8-2H
8	1	A269	TP304L	8	1	A/SA-376	TP304
8	1	A269	TP316	8	1	A/SA-376	TP304H
8	1	A269	TP316L	8	1	A/SA-376	TP304H TP304LN
8	1	A276	TP304	U	T	M 24-270	11 20411
		A276 A276		8	1	A/SA-376	TP304N
8	1		TP304L	8	1	A/SA-376	TP316
8	1	A276	TP316	8	1	A/SA-376	ТР316Н
8	1	A276	TP316L	8	1	A/SA-376	TP316LN
				0			

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		bys (Cont'd)				oys (Cont'd)	
				8	1	A/SA-479	348H
8	1	A/SA-376	TP321	8	1	A/SA-479	S30600
8	1	A/SA-376	TP321H	8	1	A/SA-479	S32615
8	1	A/SA-376	TP347	8	1	A/SA-666	302
8	1	A/SA-376	TP347H	8	1	A/SA-666	304
8	1	A/SA-376	TP348	8	1	A/SA-666	304L
				8	1	A/SA-666	304LN
8	1	A/SA-376	16-8-2H			,	
8	1	A/SA-403	WP304	8	1	A/SA-666	304N
8	1	A/SA-403	WP304H	8	1	A/SA-666	316
8	1	A/SA-403	WP304L	8	1	A/SA-666	316L
8	1	A/SA-403	WP304LN	8	1	A/SA-666	316N
0		A (CA 402		8	1	A/SA-688	TP304
8	1	A/SA-403	WP304N	8	1	A/SA-688	TP304L
8	1	A/SA-403	WP316	8	1	A/SA-688	TP304LN
8	1	A/SA-403	WP316H	8	1	A/SA-688	TP304N
8	1	A/SA-403	WP316L	8	1	A/SA-688	TP316
8	1	A/SA-403	WP316LN	8	1	A/SA-688	TP316L
8	1	A/SA-403	WP316N	8	1	A/SA-688	TP316LN
0	1	A (CA 402	WD217	8	1	A/SA-688	TP316N
8	1	A/SA-403	WP317	8	1	A/SA-813	TP304
8	1	A/SA-403	WP317L				
8	1	A/SA-403	WP321	8	1	A/SA-813	TP304H
8	1	A/SA-403	WP321H	8	1	A/SA-813	TP304L
8	1	A/SA-403	WP347	8	1	A/SA-813	TP304LN
8	1	A/SA-403	WP347H	8	1	A/SA-813	TP304N
8	1	A/SA-403	WP348	8	1	A/SA-813	TP316
8	1	A/SA-403	WP348H				
8	1	A/SA-409	TP304	8	1	A/SA-813	TP316H
8	1	A/SA-409	TP304L	8	1	A/SA-813	TP316L
8	1	A/SA-409	TP316	8	1	A/SA-813	TP316LN
8	1	A/SA-409	TP316L	8	1	A/SA-813	TP316N
8	1	A/SA-409	TP317	8	1	A/SA-813	TP317
8	1	A/SA-409	TP321	0			
8	1	A/SA-409	TP347	8	1	A/SA-813	TP317L
8	1	A/SA-409	TP348	8	1	A/SA-813	TP321
8	1	A/SA-451	CPF3	8	1	A/SA-813	TP321H
8	1	A/SA-451	CPF3A	8	1	A/SA-813	TP347
8	1	A/SA-451	CPF3M	8	1	A/SA-813	TP347H
			CPF8	0	1	A /CA 012	TD240
8	1	A/SA-451		8	1	A/SA-813	TP348
8	1	A/SA-451	CPF8A	8	1	A/SA-813	TP348H
8	1	A/SA-451	CPF8C	8	1	A/SA-813	TPXM-15
8	1	A/SA-451	CPF8M	8	1	A/SA-814	TP304
8	1	A/SA-451	CPF10MC	8	1	A/SA-814	TP304H
8	1	A/SA-479	302	8	1	A/SA-814	TP304L
8	1	A/SA-479	304	8	1	A/SA-814	TP304LN
8	1	A/SA-479	304H	8	1	A/SA-814	TP304N
8	1	, A/SA-479	304L	8	1	A/SA-814	TP316
8	1	A/SA-479	304LN	8	1	A/SA-814	ТР316Н
8	1	A/SA-479	304N	0	-		1101011
8	1	A/SA-479	316	8	1	A/SA-814	TP316L
8		A/SA-479	316Cb	8	1	A/SA-814	TP316LN
	1	,		8	1	A/SA-814	TP316N
8	1	A/SA-479	316H	8	1	A/SA-814	TP317
8	1	A/SA-479	316L	8	1	A/SA-814	TP317L
8	1	A/SA-479	316LN			,	
8	1	A/SA-479	316N	8	1	A/SA-814	TP321
8	1	A/SA-479	316Ti	8	1	A/SA-814	TP321H
8	1	A/SA-479	321	8	1	A/SA-814	TP347
8	1	A/SA-479	321H	8	1	A/SA-814	TP347H
8	1	A/SA-479	347	8	1	A/SA-814	TP348
8	1	A/SA-479	347H				
8	1	A/SA-479	348	8	1	A/SA-814	TP348H
				8	1	A/SA-814	TPXM-15

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
Steel and	Steel Allo	ys (Cont'd)		Steel and	Steel Allo	oys (Cont'd)	
8	1	A/SA-965	F304	8	2	A/SA-240	Type 310Cb
8	1	A/SA-965	F304H	8	2	A/SA-240	Type 310HCb
8	1	A/SA-965	F304L	8	2	A/SA-240	Type 310MoLN
	-			8	2	A/SA-240	Type 310S
8	1	A/SA-965	F304LN	0	-	11,011 = 10	1900 0100
8	1	A/SA-965	F304N	8	2	A/SA-249	S30815
8	1	A/SA-965	F316	8	2	A/SA-249	TP309Cb
8	1	A/SA-965	F316H	8	2	A/SA-249	TP309H
8	1	A/SA-965	F316L	8	2	A/SA-249	TP309HCb
0	1		ED1 CLNI	8	2	A/SA-249	TP309S
8	1	A/SA-965	F316LN	0			TTD0 4 0 Cl
8	1	A/SA-965	F316N	8	2	A/SA-249	TP310Cb
8	1	A/SA-965	F321	8	2	A/SA-249	TP310H
8	1	A/SA-965	F321H	8	2	A/SA-249	TP310S
8	1	A/SA-965	F347	8	2	A/SA-249	TP310MoLN
8	1	A/SA-965	F347H	8	2	A/SA-312	S30815
8	1	A/SA-965	F348	8	2	A/SA-312	TP309Cb
8	1	A/SA-965	F348H	8	2	A/SA-312	ТР309Н
8	1	SA/EN 10028-7	X5CrNi18-10	8	2	A/SA-312	ТРЗО9НСЬ
8	1	SA/EN 10028-7	X5CrNiMo17-12-2	8	2	A/SA-312	TP309S
8	1	SA/EN 10028-7	X2CrNi18-9	8	2	A/SA-312	TP310Cb
о 8	1	SA/EN 10028-7 SA/EN 10028-7		0	2	A/3A-312	IFSIUCD
8	1	SA/EN 10028-7 SA/EN 10028-7	X5CrNiN19-9	8	2	A/SA-312	TP310H
			X2CrNiN18-10	8	2	A/SA-312	TP310HCb
8	1	SA/EN 10028-7	X2CrNiMo17-12-2	8	2	A/SA-312	TP310S
8	1	SA/EN 10028-7	X2CrNiMoN17-11-2	8	2	A/SA-312	TP310MoLN
8	1	SA/EN 10028-7	X2CrNiMoN17-13-3				
8	1	SA/EN 10028-7	X6CrNiTi18-10	8	2	A/SA-351	CH8
8	1	SA/EN 10088-2	X6CrNiMoTi17-12-2	8	2	A/SA-351	CH20
8	1	SA/JIS G4303	SUS302	8	2	A/SA-351	CK20
8	1	SA/JIS G4303	SUS304	8	2	A/SA-351	CE20N
8	1	SA/JIS G4303	SUS304L		2	•	
8	1	SA/JIS G4303	SUS316	8		A/SA-351	CH10
8	1	SA/JIS G4303	SUS316L	8	2	A/SA-351	HK30
8	1	SA/JIS G4303	SUS321	8	2	A/SA-351	HK40
8	1	SA/JIS G4303	SUS347	8	2	A/SA-358	309
0	1	54/315 04505	303347	8	2	A/SA-358	309Cb
8	2	A167	Type 308				
8	2	A167	Type 309	8	2	A/SA-358	309S
8	2	A167	Type 310	8	2	A/SA-358	310Cb
				8	2	A/SA-358	310S
8	2	A/SA-182	F10	8	2	A/SA-358	S30815
8	2	A/SA-182	F45	8	2	A/SA-403	WP309
8	2	A/SA-182	F310	8	2	A/SA-403	WP310S
8	2	A/SA-182	F310MoLN	8	2	A/SA-409	S30815
8	2	A/SA-213	S30815	8	2	A/SA-409	TP309Cb
8	2	A/SA-213 A/SA-213	TP309Cb	8	2	A/SA-409	TP309S
8	2	A/SA-213 A/SA-213	ТР309Н	8	2	A/SA-409	TP310Cb
8	2	A/SA-213 A/SA-213	TP309S				
0	2	A/3A=213	11 30 93	8	2	A/SA-409	TP310S
8	2	A/SA-213	TP310Cb	8	2	A/SA-451	CPH8
8	2	A/SA-213	TP310S	8	2	A/SA-451	CPH20
8	2	A/SA-213	TP309HCb	8	2	A/SA-451	CPK20
8	2	A/SA-213	ТР310Н	8	2	A/SA-451	CPE20N
8	2	A/SA-213	TP310MoLN	8	2	SA-479	309Cb
8	2	A/SA-213	TP310HCb	8	2	A/SA-479	309S
8	2	A/SA-240	S30815	8	2	SA/JIS G4303	SUS3095
8	2	A/SA-240	Type 309Cb	8	2	A/SA-479	310Cb
8	2	A/SA-240	Type 309H	8	2	A/SA-479	31005
8	2	A/SA-240	Type 309HCb	8	2	SA/JIS G4303	SUS3105
		,	J		2		
8	2	A/SA-240	Type 309S	8		A/SA-479	S30815

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		oys (Cont'd)		Steel and		oys (Cont'd)	
8	2	A/SA-813	TP309Cb	8	4	A/SA-182	S34565
8	2	A/SA-813	TP309S	8	4	A/SA-213	S31725
8	2	A/SA-813	TP310Cb	8	4	A/SA-213 A/SA-213	S31725
8	2	A/SA-813	TP310CD	0	4	A/ 3A-213	331720
8	2	A/SA-815 A/SA-814	S30815	8	4	A/SA-213	S34565
8	2	A/SA-814	TP309Cb	8	4	A/SA-240	S31254
о 8	2	A/SA-814 A/SA-814	TP309Cb	8	4	A/SA-240	S31725
o 8	2	•					
8 8	2	A/SA-814 A/SA-814	TP310Cb TP310S	8	4	A/SA-240	S31726
8	2	A/SA-965	F310	8	4	A/SA-240	S32053
0	2	A/3A-903	1310	8	4	A/SA-240	S34565
8	3	A/SA-182	FXM-11				
8	3	A/SA-182	FXM-19	8	4	A/SA-249	S31254
8	3	A/SA-213	TP201	8	4	A/SA-249	S31725
8	3	A/SA-213	TP202	8	4	A/SA-249	S31726
8	3	A/SA-213	XM-19	8	4	A/SA-249	S32053
8	3	A/SA-213	S31042	8	4	A /CA 240	524F(F
				8	4	A/SA-249	S34565
8	3	A/SA-240	S20100	8	4	A/SA-312	S31254
8	3	A/SA-240	S21800	8	4	A/SA-312	S31725
8	3	A/SA-240	S20153	8	4	A/SA-312	S31726
8	3	A/SA-240	Type 202	8	4	A/SA-312	S32053
8	3	A/SA-240	S20400	8	4	A/SA-312	S34565
8	3	A/SA-240	Type XM-17				
8	3	A/SA-240	Type XM-17 Type XM-18	8	4	A/SA-351	J93254
8	3	A/SA-240	Type XM-10 Type XM-19	8	4	A/SA-358	S31254
8	3	A/SA-240	Type XM-29	8	4	A/SA-358	S31725
8	3	A/SA-249	TP201	8	4	A/SA-358	S31726
8	3	A/SA-249	TP202	8	4	A/SA-358	S32053
8	3	A/SA-249	TPXM-19	8	4	A/SA-376	S31725
8	3	A/SA-249	TPXM-29	8	4	A/SA-376	S31726
8	3	A/SA-312	TPXM-11	8	4	A/SA-376	S34565
0	5	11/011/0112		8	4	A/SA-403	S31254
8	3	A/SA-312	TPXM-19	8	4	A/SA-403	S32053
8	3	A/SA-312	TPXM-29	8	4	A/SA-403	S34565
8	3	A/SA-351	CG6MMN	8	4	A/SA-409	S31254
0	2	A /CA 250	VM 10	8	4	A/SA-409	S31725
8	3	A/SA-358	XM-19	8	4	A/SA-409	S31726
8	3	A/SA-358	XM-29	8	4	A/SA-409	S32053
8	3	A/SA-403	WPXM-19	8	4	A/SA-409	S34565
8	3	A/SA-479	S21800	8	4	A/SA-479	S31254
8	3	A/SA-479	XM-11	8	4	A/SA-479	S31725
8	3	A/SA-479	XM-17	0	1		551725
8	3	A/SA-479	XM-18	8	4	A/SA-479	S31726
8	3	A/SA-479	XM-19	8	4	A/SA-479	S32053
8	3	A/SA-479	XM-29	8	4	A/SA-479	S34565
8	3	A/SA-666	201	8	4	A/SA-813	S31254
8	3	A/SA-666	XM-11	8	4	A/SA-813	S32053
8	3	A/SA-688	XM-29	8	4	A/SA-814	S31254
8	3	A/SA-813	TPXM-11	8	4	A/SA-814	S32053
8	3	A/SA-813	TPXM-19	8	4	SA-965	F46
8	3	A/SA-813	TPXM-29	9A	1	A/SA-182	FR
8	3	A/SA-814	TPXM-11	9A	1	A/SA-203	A
8 8	3	A/SA-814 A/SA-814	TPXM-11 TPXM-19	9A	1	A/SA-203	В
	3	•		9A	1	A/SA-234	WPR
8 8	3	A/SA-814	TPXM-29	9A	1	A/SA-333	7
8 8	3	A/SA-965 A/SA-965	FXM-11 FXM-19				
				9A	1	A/SA-333	9
8	4	A/SA-182	F44	9A	1	A/SA-334	7
8	4	A/SA-182	S32053	9A	1	A/SA-334	9

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or U No.
Steel and	Steel Alle	oys (Cont'd)		Steel and	Stool All	oys (Cont'd)	
9A	1	A/SA-350	LF5, Cl. 1	10H	1	A/SA-789	S31260
9A	1	A/SA-350	LF5, Cl. 2	10H	1	A/SA-789	S31200
JA	1	A/3A-330	EF5, CI. 2	10H	1	A/SA-789	S31803
9A	1	A/SA-350	LF9			,	
9A	1	A/SA-352	LC2	10H	1	A/SA-789	S32003
9A	1	A/SA-420	WPL9	10H	1	A/SA-789	S32101
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	11/011 120		10H	1	A/SA-789	S32202
9A	1	A714	Gr. V	10H	1	A/SA-789	S32205
9A	1	A714	Gr. V, Tp. E	10H	1	A/SA-789	S32304
9B	1	A/SA-203	D	10H	1	A/SA-789	S32550
9B	1	A/SA-203	Е	10H	1	A/SA-789	S32750
9B	1	A/SA-203	F	10H	1	A/SA-789	S32760
9B	1	A/SA-333	3	10H	1	A/SA-789	S32900
9B	1	A/SA-334	3	10H	1	A/SA-789	S32906
75	1	11/011/00/1	5	10H	1	A/SA-789	S32950
9B	1	A/SA-350	LF3, Cl. 2	10H	1	A/SA-789	S39274
9B	1	A/SA-352	LC3		-	,	
9B	1	A/SA-420	WPL3	10H	1	A/SA-790	S31200
9B	1	A/SA-765	III	10H	1	A/SA-790	S31260
70	1	11/011/00	***	10H	1	A/SA-790	S31500
9C	1	A/SA-352	LC4	10H	1	A/SA-790	S31803
				10H	1	A/SA-790	S32003
10A	1	A/SA-225	С	10H	1	A/SA-790	S32101
10A	1	A/SA-225	D		1	•	S32202
10A	1	A/SA-487	Gr. 1, Cl. A	10H		A/SA-790	
10A	1	A/SA-487	Gr. 1, Cl. B	10H	1	A/SA-790	S32205
10A	1	SA/NF A 36-215	NJ4	10H	1	A/SA-790	S32304
10B	1	A/SA-213	T17	10H	1	A/SA-790	S32550
				10H	1	A/SA-790	S32750
10C	1	A/SA-612		10H	1	A/SA-790	S32760
10H	1	A/SA-182	F53	10H	1	A/SA-790	S32900
				10H	1	A/SA-790	S32906
10H	1	A/SA-182	F50	10H	1	A/SA-790	S32950
10H	1	A/SA-182	F51	10H	1	A/SA-790	S39274
10H	1	A/SA-182	F54				
10H	1	A/SA-182	F55	10H	1	A/SA-815	S31803
10H	1	A/SA-182	S32202	10H	1	A/SA-815	S32202
10H	1	A/SA-182	F60	10H	1	A/SA-815	S32101
1.011			224.222	10H	1	A/SA-815	S32205
10H	1	A/SA-240	S31200	10H	1	A815	S32750
10H	1	A/SA-240	S31260	10H	1	A/SA-815	S32760
10H	1	A/SA-240	S31803	10H	1	A890	J93380
10H	1	A/SA-240	S32003	10H	1	A890	J92205
10H	1	A/SA-240	S32101	1011	-	11050) 2200
10H	1	A/SA-240	S32202	10H	1	A928	S32760
10H	1	A/SA-240	S32205	10H	1	A928	S32205
10H	1	A/SA-240	S32550	10H	1	A/SA-995	J93345
10H	1	A/SA-240	S32750	10H	1	A/SA-995	J93372
1011	1		002,00	10H	1	A/SA-995	J93380
10H	1	A/SA-240	S32760	10H 10H	1	A/SA-995 A/SA-995	J93380 J92205
10H	1	A/SA-240	S32906	1011	T	n 3n-773	J92203
10H	1	A/SA-240	S32950	10I	1	A/SA-182	FXM-27Cb
10H	1	A/SA-240	Type 329	101	1	A/SA-240	S44635
	-	,	-Jr- 022	101	1	A/SA-240	Type XM-27
10H	1	A/SA-276	S32205	101	1	A/SA-240	Type XM-27 Type XM-33
10H	1	A/SA-351	CD3MWCuN	10I 10I	1	A/SA-240 A/SA-268	25-4-4
10H	1	A/SA-479	S31803	101	T	A/ 3A-200	20-4-4
10H	1	A/SA-479	S32202	10I	1	A/SA-268	TP446-1
10H	1	A/SA-479	S32202	101	1	A/SA-268	TP446-2
10H 10H							
	1	A/SA-479	S32205	10I	1	A/SA-268	TPXM-27
	1	A/SA-479	S32550	10I	1	A/SA-268	TPXM-33
10H		1 (01 := 0					
10H 10H	1	A/SA-479	S32750	10I	1	A/SA-336	FXM-27Cb
10H		A/SA-479 A/SA-479	S32750 S32906	10I 10I	1 1	A/SA-336 A/SA-479	FXM-27Cb XM-27

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
		ys (Cont'd)				oys (Cont'd)	
10I	1	A/SA-731	TPXM-33	11B	10	A/SA-508	5, Cl. 2
101	1	11/511/51	11 AM 55	11B 11B	10	A/SA-543	B Cl. 2
10J	1	A/SA-240	S44700	11B 11B	10	A/SA-543	C Cl. 2
10J	1	A/SA-268	S44700	110	1	A/SA-859	A
10J	1	A/SA-268	S44735	110	1	11/5/1 05 7	11
10J	1	A/SA-479	S44700	15E	1	A/SA-182	F91
10J	1	A/SA-731	S44700	450	4	A /GA 400	502
4.017	4	A /6A 240	844669	15E	1	A/SA-182	F92
10K	1	A/SA-240	S44660	15E	1	A/SA-213	T91
10K	1	A/SA-240	S44800	15E	1	A/SA-213	T92
10K	1	A/SA-268	S44660	15E	1	A/SA-217	C12A
10K	1	A/SA-268	S44800	15E	1	A/SA-234	WP91
10K	1	A/SA-479	S44800	15E	1	A/SA-335	P91
10K	1	A/SA-731	S44660	15E	1	A/SA-335	P92
10K	1	A/SA-731	S44800	15E	1	A/SA-336	F91
		•		15E	1	A356	12A
10K	1	A/SA-803	S44660	15E	1	A/SA-369	FP91
11A	1	A/SA-333	8	15E	1	A/SA-369	FP92
11A	1	A/SA-334	8	15E	1	A/SA-691	91
11A	1	A/SA-353		15E	1	A/SA-387	Gr. 91, Cl. 2
11A	1	A/SA-420	 WPL8	15E	1	, SA/EN 10222-2	X10CrMoVNb9-1
11A 11A	1	A/SA-522	Type I	15E	1	SA/EN 10216-2	X10CrMoVNb9-1
IIA	1	A/3A-322	Type I				
11A	1	A/SA-522	Type II	Aluminur	m and Alu	minum-Base Alloys	
11A	1	A/SA-553	Type I	21		D/CD 26	1025(0
11A	1	A/SA-553	Type II	21		B/SB-26	A03560
				21		B/SB-26	A24430
11A	2	A/SA-645	А	21		B/SB-209	A91060
114	2	A /CA 407	Cr. A. CL. D.	21		B/SB-209	A91100
11A	3	A/SA-487	Gr. 4, Cl. B	21		B/SB-209	A93003
11A	3	A/SA-487	Gr. 4, Cl. E	21		B/SB-209	A95050
11A	4	A/SA-533	Type A, Cl. 3	21		B/SB-210	A91060
11A	4	A/SA-533	Type B, Cl. 3	21		B/SB-210 B/SB-210	A93003
11A	4	A/SA-533	Type C, Cl. 3	21		D/3D-210	A95005
11A	4	A/SA-533	Type D, Cl. 3	21		B/SB-221	A91060
11A	4	A/SA-672	J100	21		B/SB-221	A91100
1111	1	1,011072	jioo	21		B/SB-221	A93003
11A	5	A/SA-352	LC2-1	21		B/SB-234	A91060
11A	5	A/SA-508	4N, Cl. 1	21		B/SB-234	A93003
11A	5	A/SA-508	5, Cl. 1			5/05 201	
11A	5	A/SA-543	B Cl. 1	21		B/SB-241	A91060
11A	5	A/SA-543	C Cl. 1	21		B/SB-241	A91100
11A	1	SA/EN 10028-4	X8Ni9	21		B/SB-241	A93003
11A	1	SA/EN 10028-4	X7Ni9	21		B/SB-247	A93003
1111	1	511/11/10010 1					
11B	1	A514	А	21		B345	A91060
11B	1	A/SA-517	А	21		B345	A93003
11B	1	A/SA-592	А	21		B361	A83003
				21		B361	A91060
11B	2	A514	E	21		B361	A91100
11B	2	A/SA-517	E	21		B361	A93003
11B	2	A/SA-592	E				
110	2	4514	F	21		B491	A93003
11B	3	A514	F	21		B547	A93003
11B	3	A/SA-517	F	21		B547	A83003
11B	3	A/SA-592	F	22		B /CB 200	102004
11B	4	A514	В	22		B/SB-209	A93004
11B 11B	4	A/SA-517	В	22		B/SB-209	A95052
TTD	ч	11 21-211	D	22		B/SB-209	A95154
11B	8	A514	Р	22		B/SB-209	A95254
11B	8	A/SA-517	P	22		B/SB-209	A95454
				22		B/SB-209	A95652
11B	9	A514	Q			•	
11B	10	A /CA FOC		22		B/SB-210	A95052
	10	A/SA-508	4N, Cl. 2	22		B/SB-210	A95154

	No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or U No.
			·	-		D All (Control)	
		minum-Base Alloys (C				r-Base Alloys (Cont'd	-
22		B/SB-221	A95154	31		B68	C12200
22		B/SB-221	A95454	31		B/SB-75	C10200
22		D/CD 224	405052	31		B/SB-75	C12000
22		B/SB-234	A95052	24			010000
22		B/SB-234	A95454	31		B/SB-75	C12200
22		B/SB-241	A95052	31		B/SB-75	C14200
22		B/SB-241	A95454	31		B88	C10200
22		B361	A95154	31			
22		B547	A95454			B88	C12000
22		D (CD 200	100001	31		B88	C12200
23		B/SB-209	A96061	31		B/SB-111	C10200
23		B/SB-210	A96061	31		B/SB-111	C12000
23		B/SB-210	A96063	31		B/SB-111	C12200
23		B/SB-211	A96061	31		B/SB-111	C14200
		•				•	
23		B/SB-221	A96061	31		B/SB-111	C19200
23		B/SB-221	A96063	31		B/SB-152	C10200
23		B/SB-234	A96061	31		B/SB-152	C10400
23		B/SB-241	A96061	31		B/SB-152	C10500
23		B/SB-241	A96063			•	
23		B/SB-247	A96061	31		B/SB-152	C10700
				31		B/SB-152	C11000
23		B/SB-308	A96061	31		B/SB-152	C12200
23		D24F	406061	31		B/SB-152	C12300
		B345	A96061	21		D/CD 150	C1 4200
23		B345	A96063	31		B/SB-152	C14200
23		B361	A96061	31		B/SB-187	C10200
23		B361	A96063	31		B/SB-187	C11000
23		B547	A96061	31		B280	C10200
25		D/CD 200	405082	31		B280	C12000
25		B/SB-209	A95083	31		B280	C12200
25		B/SB-209	A95086	31		B/SB-283	C11000
25		B/SB-209	A95456	31		B302	C12000
25		B210	A95083				
25		B210	A95086	31		B/SB-359	C10200
25				31		B/SB-359	C12000
25		B210	A95456	31		B/SB-359	C12200
25		B/SB-221	A95083	31		B/SB-359	C14200
		_/					
25		B/SB-221	A95456	31		B/SB-359	C19200
25		B/SB-241	A95083	31		B/SB-395	C10200
25		B/SB-241	A95086	31		B/SB-395	C12000
25		B/SB-241	A95456	31		B/SB-395	C12200
25		B/SB-247	A95083	31		B/SB-395	C14200
20		5,05 21,	1175005				
25		B345	A95083	31		B/SB-395	C19200
25		B345	A95086	31		B/SB-543	C12200
25		B361	A95083	31		B/SB-543	C19400
25		B547	A95083				
25		5517	1175005	32		B/SB-43	C23000
25		B/SB-928	A95083	32		B/SB-111	C23000
25		B/SB-928	A95086	32		B/SB-111	C28000
25		B/SB-928	A95456	32		B/SB-111	C44300
		_/ 55 / 25		32		B/SB-111	C44400
26		B/SB-26	A24430				
26		B/SB-26	A03560	32		B/SB-111	C44500
26		SB/EN 1706	EN AC 43000	32		B/SB-111	C68700
		,		32		B/SB-135	C23000
Copper a	ind Coppei	r-Base Alloys		32		, B/SB-171	C36500
		D (0D 10	21.05.5.5	32		B/SB-171	C44300
<i>c</i> ·		B/SB-42	C10200	32		B/SB-171	C44400
31		B/SB-42	C12000	32		B/SB-171 B/SB-171	C44400 C44500
31							
		B/SB-42	C12200	52		D/3D-1/1	C44500
31 31							C44300 C46400
31		B/SB-42 B68 B68	C12200 C10200 C12000	32 32 32		B/SB-171 B/SB-171 B/SB-171	

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or UN No.
Coppor a	ad Conno	r-Base Alloys <i>(Cont'd)</i>		Connor a	nd Conno	r-Base Alloys <i>(Cont'd)</i>)
copper ai	iu coppe	I-Dase Alloys (Cont u)					
32		B/SB-283	C67500	35		B/SB-148	C95400
32		B/SB-283	C46400	35		B/SB-148	C95300
52		B/3B 203	010100	35		B/SB-148	C95500
32		B/SB-359	C23000	35		B/SB-148	C95600
32		B/SB-359	C44300	35		B/SB-150	C61400
32		B/SB-359	C44400	35		B/SB-150	C62300
32		B/SB-359	C44500	35		B/SB-150	C63000
32		B/SB-359	C68700	35		B/SB-150	C64200
32		B/SB-395	C23000	35		B/SB-169	C61400
32		B/SB-395	C44300	35		B/SB-171	C61400
32		B/SB-395	C44400	35		B/SB-171	C63000
32		B/SB-395	C44500	35		B/SB-271	C95200
32		B/SB-395	C68700	35		B/SB-271	C95400
32		B/SB-543	C23000	35		B/SB-359	C60800
				35		B/SB-395	C60800
32		B/SB-543	C44300				
32		B/SB-543	C44400	35		B/SB-505	C95200
32		B/SB-543	C44500	Nickel an	d Nickel-	Base Alloys	
32		B/SB-543	C68700	i i i i i i i i i i i i i i i i i i i	u mener i	Juse milleys	
		D (0D 0)	265500	41		B/SB-160	N02200
33		B/SB-96	C65500	41		B/SB-160	N02201
33		B/SB-98	C65100	41		B/SB-161	N02200
33		B/SB-98	C65500	41		B/SB-161	N02201
33		B/SB-98	C66100	41		B/SB-162	N02200
33		B/SB-283	C65500			5,05 102	
33		B/SB-315	C65500	41		B/SB-162	N02201
				41		B/SB-163	N02200
34		B/SB-111	C70400	41		B/SB-163	N02201
34		B/SB-111	C70600	41		B/SB-366	N02200
34		B/SB-111	C71000	41		, B/SB-366	N02201
34		B/SB-111	C71500			,	
34		B/SB-111	C71640	41		B725	N02200
		D (0D 111	670000	42		B/SB-127	N04400
34		B/SB-111	C72200	42		B/SB-163	N04400
34		B/SB-151	C70600	42		B/SB-164	N04400
34		B/SB-171	C70600	42		B/SB-164	N04405
34		B/SB-171	C71500	42		B/SB-165	N04400
34		B/SB-359	C70400	42		B/SB-366	N04400
		D (0D 050		42		A/SA-494	N04020
34		B/SB-359	C70600			,	N04020 N24130
34		B/SB-359	C71000	42		A/SA-494	
34		B/SB-359	C71500	42		A/SA-494	N24135
34		B/SB-369	C96200	42		B/SB-564	N04400
		•		43		B/SB-163	N06600
34		B/SB-395	C70600	43		B/SB-163	N06601
34		B/SB-395	C71000			B/SB-163	
34		B/SB-395	C71500	43		,	N06690
34		B/SB-466	C70600	43		B/SB-166	N06600
34		B/SB-466	C71000	43		B/SB-166	N06601
34		B/SB-466	C71500	43		B/SB-166	N06617
			270 (00	43		B/SB-166	N06690
34		B/SB-467	C70600	12		D/CD 167	N06600
34		B/SB-467	C71500	43		B/SB-167	
34		B/SB-543	C70400	43		B/SB-167	N06601
34		B/SB-543	C70600	43		B/SB-167	N06617
34		B/SB-543	C71500	43		B/SB-167	N06690
34		B/SB-543	C71640	43		B/SB-168	N06600
				43		B/SB-168	N06601
34		B/SB-956	C70600	43		B/SB-168	N06617
34		B/SB-956	C71500	43		B/SB-168	N06690
		D/CD 111	CC0000				
35		B/SB-111	C60800	43		B/SB-366	N06002

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or U No.
	1	a All (Comt'd)		NT: 1 1	1 87. 1 1 1	a All (Comt/d)	
		Base Alloys (Cont'd)				Base Alloys (Cont'd)	
43		B/SB-366	N06022	43		B/SB-575	N06686
43		B/SB-366	N06035	43		B/SB-575	N10276
43		B/SB-366	N06059	42		D/CD (10	N0(002
43		B/SB-366	N06200	43		B/SB-619	N06002
43		B/SB-366	N06210	43		B/SB-619	N06022
43		B/SB-366	N06230	43		B/SB-619	N06035
43		B/SB-366	N06455	43		B/SB-619	N06059
				43		B/SB-619	N06200
43		B/SB-366	N06600	43		B/SB-619	N06210
43		B/SB-366	N06625	42		D/0D (10	Nocooo
43		B/SB-366	N10276	43		B/SB-619	N06230
43		B/SB-435	N06002	43		B/SB-619	N06455
43		B/SB-435	N06230	43		B/SB-619	N06686
		,		43		B/SB-619	N10276
43		B/SB-443	N06625	40		D/CD (22)	Nocooo
43		B/SB-444	N06625	43		B/SB-622	N06002
43		B/SB-446	N06625	43		B/SB-622	N06022
				43		B/SB-622	N06035
43		B/SB-462	N06022	43		B/SB-622	N06059
43		B/SB-462	N06035	43		B/SB-622	N06200
43		B/SB-462	N06059	43		B/SB-622	N06210
43		B/SB-462	N06200				
43		B/SB-462	N06686	43		B/SB-622	N06230
43		B/SB-462	N10276	43		B/SB-622	N06455
43		A/SA-494	N06040	43		B/SB-622	N06686
15		ny on 191	100010	43		B/SB-622	N10276
43		A/SA-494	N26022	42		D (0D (0))	Nacaaa
43		A/SA-494	N26455	43	•••	B/SB-626	N06002
43		A/SA-494	N26625	43		B/SB-626	N06022
43		, B/SB-516	N06600	43		B/SB-626	N06035
43		B/SB-517	N06600	43		B/SB-626	N06059
10		<i>b</i> / <i>bb b</i> 1/	100000	43		B/SB-626	N06200
43		B/SB-564	N06022				
43		B/SB-564	N06035	43		B/SB-626	N06210
43		B/SB-564	N06059	43		B/SB-626	N06230
43		, B/SB-564	N06200	43		B/SB-626	N06455
43		B/SB-564	N06210			•	
43		B/SB-564	N06230	43		B/SB-626	N06686
43		B/SB-564	N06230	43		B/SB-626	N10276
45		D/3D-304	100000	43		B/SB-704	N06625
43		B/SB-564	N06617	43		B/SB-705	N06625
43		B/SB-564	N06625	4.4		D/CD 222	N10001
43		B/SB-564	N06686	44		B/SB-333	N10001
		•		44		B/SB-333	N10629
43		B/SB-564	N06690	44		B/SB-333	N10665
43		B/SB-564	N10276	44		B/SB-333	N10675
43		B/SB-572	N06002	4.4		D/CD 225	N10001
43		B/SB-572	N06230	44		B/SB-335	N10001
45		D/3D-372	N00230	44		B/SB-335	N10629
43		B/SB-574	N06022	44		B/SB-335	N10665
43		B/SB-574	N06035	44		B/SB-335	N10675
43		B/SB-574	N06059	4.4		D/CD 266	N10001
43		B/SB-574	N06200	44		B/SB-366	N10001
43		B/SB-574	N06200	44		B/SB-366	N10003
		•		44		B/SB-366	N10242
43		B/SB-574	N06455	44		B/SB-366	N10629
43		B/SB-574	N06686	44		B/SB-366	N10665
43		B/SB-574	N10276	44		B/SB-366	N10675
43		B/SB-575	N06022			D (0D 101	
				44		B/SB-434	N10003
43		B/SB-575	N06035	44		B/SB-434	N10242
43		B/SB-575	N06059	A A		D/CD 162	NIACOO
43		B/SB-575	N06200	44		B/SB-462	N10629
43		B/SB-575	N06210	44		B/SB-462	N10665
43		B/SB-575	N06455	44		B/SB-462	N10675
				44		A/SA-494	N30007

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or U No.
Nielsel en	d Nielrol I	Base Alloys <i>(Cont'd)</i>		Nielsel en	d Nielvel I	Base Alloys <i>(Cont'd)</i>	
			N20107				NOODO
44		A/SA-494	N30107	45		B/SB-408	N08800
44		B/SB-564	N10242	45		B/SB-408	N08810
44		B/SB-564	N10629	45		B/SB-408	N08811
44		B/SB-564	N10665	45		B/SB-409	N08120
		B/SB-564	N10675	45		B/SB-409	N08120
44		D/3D-304	N10875			,	
44		B/SB-573	N10003	45		B/SB-409	N08810
44		B/SB-573	N10242	45		B/SB-409	N08811
44		B/SB-619	N10001	45		B/SB-423	N08825
44		B/SB-619	N10242	45		B/SB-424	N08825
44		B/SB-619	N10629	45		B/SB-425	N08825
44		B/SB-619	N10665	45		B/SB-435	R30556
				45		B/SB-462	N06020
44		B/SB-619	N10675			•	N06030
44		B/SB-622	N10001	45		B/SB-462	N08020
44		B/SB-622	N10242	45		B/SB-462	N08031
44		B/SB-622	N10629	45		A/SA-182	N08904
44		B/SB-622	N10665	45		A/SA-240	N08367
		B/SB-622		45		A/SA-240	N08904
44		B/SB-022	N10675	45		A/SA-249	N08367
44		B/SB-626	N10001	45		A/SA-312	N08367
44		B/SB-626	N10242	45		A/SA-312	N08904
44		B/SB-626	N10629	45		A/SA-358	N08367
				45		A479	N08904
44		B/SB-626	N10665	45		A/SA-813	N08367
44		B/SB-626	N10675	45		A/SA-814	N08367
45		A/SA-240	S31277				
				45 45		B/SB-462 B/SB-462	N08367 R20033
45		A/SA-249	N08904				
45		B/SB-163	N08120	45		B/SB-463	N08020
45		B/SB-163	N08800	45		B/SB-463	N08024
45		B/SB-163	N08801	45		B/SB-463	N08026
45		B/SB-163	N08810	45		B/SB-464	N08020
45		B/SB-163	N08811	45		B/SB-464	N08020
45		B/SB-163	N08825	45		B/SB-464	N08024 N08026
45		A/SA-351	CN3MN			D (0D 1 (0	100000
		,		45		B/SB-468	N08020
45		A/SA-351	N08007	45		B/SB-468	N08024
45		A/SA-351	N08151	45		B/SB-468	N08026
45		A/SA-351	N08603	45		D/CD 472	NOODOO
45		B/SB-366	N06007	45		B/SB-473	N08020
45		B/SB-366	N06030	45		A/SA-494	N08826
		•		45		B/SB-514	N08120
45		B/SB-366	N06985	45		B/SB-514	N08800
45		B/SB-366	N08020	45		B/SB-514	N08810
45		B/SB-366	N08031	45		D (CD 515	N00420
45		B/SB-366	N08120	45		B/SB-515	N08120
4 5		D/CD 266	N00267	45		B/SB-515	N08800
45		B/SB-366	N08367	45		B/SB-515	N08810
45		B/SB-366	N08800	45		B/SB-515	N08811
45		B/SB-366	N08825	45		B/SB-564	N08031
45		B/SB-366	N08925			•	
45		B/SB-366	R20033	45		B/SB-564	N08120
45		B/SB-366	R30556	45		B/SB-564	N08367
45		B/SB-366	N08926	45		B/SB-564	N08800
45		B/SB-407	N08120	45		B/SB-564	N08810
45		B/SB-407	N08800	45		B/SB-564	N08811
45 45		B/SB-407	N08801	45		B/SB-564	N08825
тЈ				45		B/SB-564	R20033
15		B/SB-407	N08810	15		2,02 001	1120035
45 45		D/CD 407	N00011				
45 45		B/SB-407	N08811	45		B/SB-572	R30556

P-No.	Grp. No.	Spec. No.	Type, Grade, or UNS No.	P-No.	Grp. No.	Spec. No.	Type, Grade, or U No.
Nickel an	d Nickel-I	Base Alloys <i>(Cont'd)</i>		Nickel ar	nd Nickel-F	Base Alloys (Cont'd)	
45		B/SB-581	N06030	45		B/SB-677	N08904
45				45			
		B/SB-581	N06975			B/SB-677	N08925
45		B/SB-581	N06985	45		B/SB-677	N08926
45		B/SB-581	N08031	45		B/SB-688	N08367
45		B/SB-582	N06007	45		B/SB-690	N08367
45		B/SB-582	N06030	45		B/SB-691	N08367
45		B/SB-582	N06975	45		B/SB-704	N08825
45		B/SB-582	N06985	45		B/SB-705	N08825
45		B/SB-599	N08700	45 45		B/SB-709 B/SB-729	N08028 N08020
45		B/SB-619	N06007				100020
45		B/SB-619	N06030	46		B/SB-166	N06045
45		B/SB-619	N06975	46		B/SB-167	N06045
45		B/SB-619	N06985	46		B/SB-168	N06045
45		B/SB-619	N08031	46		B/SB-366	N06045
45		B/SB-619	N08320	46		B/SB-366	N08330
45		B/SB-619	R20033	46		B/SB-366	N12160
45		B/SB-619	R30556	10			
45		D/CD (20	Noo220	46		B/SB-435	N12160
45		B/SB-620	N08320	46		B/SB-462	N06045
45		B/SB-621	N08320	46		B/SB-511	N08330
45		B/SB-622	N06007	46		B/SB-516	N06045
45		B/SB-622	N06030	46		B/SB-517	N06045
45		B/SB-622	N06975	46		B/SB-535	N08330
45		B/SB-622		40		B/SB-536	
45		B/SB-022	N06985				N08330
45		B/SB-622	N08031	46		B/SB-564	N06045
45		B/SB-622	N08320	46		B/SB-564	N12160
45		B/SB-622	R20033	46		B/SB-572	N12160
45		B/SB-622	R30556	46		B/SB-619	N12160
45		B/SB-625	N08031	46		B/SB-622	N12160
45		B/SB-625	N08904	46		B/SB-626	N12160
45		B/SB-625	N08925	46		B/SB-710	N08330
45		B/SB-625	R20033	49		B/SB-815	R31233
45		B/SB-625	N08926	49		B/SB-818	R31233
45		B/SB-626	N06007	Itanium	and -Base	Alloys	
45		B/SB-626	N06030	51		B/SB-265	R50250
45		B/SB-626	N06975	51		B/SB-265	R50400
45		B/SB-626	N06985	51		B/SB-265	R52250
45		B/SB-626	N08031	51		B/SB-265	R52252
45		B/SB-626	N08320	51		B/SB-265	R52254
45		B/SB-626	R20033				
45		B/SB-626	R30556	51		B/SB-265	R52400
15		5/55 620	100000	51		B/SB-265	R52402
45		B/SB-649	N08904	51		B/SB-265	R52404
45		B/SB-649	N08925	F 1		D/CD 220	R50250
45		B/SB-649	R20033	51		B/SB-338	
45		B/SB-649	N08926	51		B/SB-338	R50400
45		B/SB-668	N08028	51		B/SB-338	R52400
		D (0D (==		51		B/SB-338	R52402
45		B/SB-672	N08700	51		B/SB-338	R52404
45		B/SB-673	N08904	51		B/SB-348	R50250
45		B/SB-673	N08925	51		B/SB-348	R50250
45		B/SB-673	N08926			•	
45		B/SB-674	N08904	51		B/SB-348	R50402
		B/SB-674	N08925	51		B/SB-348	R52400
45			NOODOC	51		B/SB-348	R52404
45 45		B/SB-674	N08926				
		B/SB-674 B/SB-675	N08926 N08367	51		B/SB-363	R50250

	Grp.		Type, Grade, or UNS
P-No.	No.	Spec. No.	No.
Titonium	and Dee	Allow (Cont'd)	
		e Alloys (Cont'd)	DE2400
51		B/SB-363	R52400
51		B/SB-363	R52404
51		B/SB-367	R50400
51		B/SB-381	R50250
51		B/SB-381	R50400
51		B/SB-381	R50402
51		B/SB-381	R52400
51		B/SB-381	R52404
51		B/SB-861	R50250
51		B/SB-861	R50400
51		B/SB-861	R52400
51		B/SB-861	R52404
51		B/SB-862	R50250
51		B/SB-862	R50400
51		B/SB-862	R52400
51		B/SB-862	R52404
52		B/SB-265	R50550
52		B/SB-265	R53400
52		B/SB-338	R50550
52		B/SB-338	R53400
52		B/SB-348	R50550
52		B/SB-348	R53400
52		B/SB-363	R50550
52		B/SB-363	R53400
52		B/SB-367	R50550
52		B/SB-381	R50550
52		B/SB-381	R53400
52		B/SB-861	R50550
52		B/SB-861	R53400

	Grp.		Type, Grade, or UNS
P-No.	No.	Spec. No.	No.
Titanium	and -Bas	e Alloys <i>(Cont'd)</i>	
52		B/SB-862	R50550
52		B/SB-862	R53400
53		B/SB-265	R56320
53		B/SB-338	R56320
53		B/SB-348	R56320
53		B/SB-363	R56320
53		B/SB-381	R56320
53		B/SB-861	R56320
53		B/SB-862	R56320
53		B/SB-265	R56323
53		B/SB-338	R56323
53		B/SB-348	R56323
53		B/SB-363	R56323
53		B/SB-381	R56323
53		B/SB-861	R56323
53		B/SB-862	R56323
Zirconiun	n and Ziro	conium-Base Alloys	
61		B/SB-493	R60702
61		B/SB-523	R60702
61		B/SB-550	R60702
61		B/SB-551	R60702
61		B/SB-653	R60702
61		B/SB-658	R60702
62		B/SB-493	R60705
62		B/SB-523	R60705
62		B/SB-550	R60705
62		B/SB-551	R60705
62		B/SB-658	R60705

MANDATORY APPENDIX E PERMITTED SWPSS

The following AWS Standard Welding Procedure Specifications may be used under the requirements given in Article V.

Specification	Designation
Carbon Steel	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E7018, As-Welded or PWHT Condition	B2.1-1-016-94 (R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{18}$ through 1^{1}_{22} inch Thick, E6010, As-Welded or PWHT Condition	B2.1-1-017-94 (R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E6010 (Vertical Uphill) Followed by E7018, As-Welded or PWHT Condition	B2.1-1-022-94 (R05)
Standard Welding Procedure Specification for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E6010 (Vertical Downhill) Followed by E7018, As-Welded or PWHT Condition	B2.1-1-026-94 (R05)
Combination GTAW and SMAW	
Standard Welding Procedure Specification for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, ER70S-2 and E7018, As-Welded or PWHT Condition	B2.1-1-021-94 (R05)
Flux Cored Arc Welding	
Standard Welding Procedure Specification (WPS) for CO ₂ Shielded Flux Cored Arc Welding of Carbon Steel (M-1/ P-1/S-1, Group 1 or 2), $\frac{1}{6}$ through $\frac{1}{2}$ inch Thick, E70T-1 and E71T-1, As-Welded Condition	B2.1-1-019-94 (R05)
Standard Welding Procedure Specification (WPS) for 75% Ar/25% CO ₂ Shielded Flux Cored Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E70T-1 and E71T-1, As-Welded or PWHT Condition	B2.1-1-020-94 (R05)
Carbon Steel — Primarily Pipe Applications	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through ³ / ₄ inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As- Welded Condition, Primarily Pipe Applications	B2.1-1-201-96 (R07)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{4}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As- Welded Condition, Primarily Pipe Applications	B2.1-1-202-96 (R07)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{16}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Uphill), As-Welded Condition, Primarily Pipe Applications	B2.1-1-203-96 (R07)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $\frac{3}{4}$ inch Thick, E6010 (Vertical Downhill Root with the Balance Vertical Uphill), As- Welded Condition,	B2.1-1-204-96 (R07)
Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E6010 (Vertical Uphill) Followed by E7018 (Vertical Uphill), As- Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-205-96 (R07)
 Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹/₈ through 1¹/₂ inch Thick, E6010 (Vertical Downhill) Followed by E7018 (Vertical Uphill), As- Welded or PWHT Condition, Primarily Pipe Applications 	B2.1-1-206-96 (R07)
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, E7018, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-208-96 (R07)
Gas Tungsten Arc Welding	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2),	B2.1-1-207-96
¹ / ₈ through 1 ¹ / ₂ inch Thick, ER70S-2, As-Welded or PWHT Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, INMs-1 and ER70S-2, As-Welded or PWHT Condition, Primarily Pipe Applications	(R07) B2.1-1-210: 2001 (R11)

Specification	Designation
Carbon Steel — Primarily Pipe Applications (Cont'd)	
Flux Cored Arc Welding	
Standard Welding Procedure Specification (SWPS) for Argon plus 25% Carbon Dioxide Shielded Flux Cored Arc Welding of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), ¼ through 1½ inch Thick, E7XT-X, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-234: 2006
Gas Metal Arc Welding — Spray Transfer	
Standard Welding Procedure Specification (SWPS) for Argon plus 2% Oxygen Shielded Gas Metal Arc Welding (Spray Transfer Mode) of Carbon Steel (M-1/P-1/S-1, Groups 1 and 2), ½ through 1½ inch Thick, E70S-3, Flat Position Only, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-235: 2006
Combination GTAW and SMAW	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ½ through 1½ inch Thick, ER70S-2 and E7018, As- Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-209-90 (R07)
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1/S-1, Group 1 or 2), ¹ / ₈ through 1 ¹ / ₂ inch Thick, INMs-1, ER70S-2, and E7018, As-Welded or PWHT Condition, Primarily Pipe Applications	B2.1-1-211: 2001 (R11)
Austenitic Stainless Steel Plate and Pipe	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), $\frac{1}{8}$ through $1\frac{1}{2}$ inch Thick, As-Welded Condition	B2.1-8-023-94 (R05)
Gas Tungsten Arc Welding	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), $\frac{1}{16}$ through $1\frac{1}{2}$ inch Thick, ER3XX, As-Welded Condition, Primarily Plate and Structural Applications	B2.1-8-024: 2001 (R11)
Combination GTAW and SMAW	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ½ through 1½ inch Thick, ER3XX and 3XX-XX, As-Welded Condition, Primarily Plate and Structural Applications	B2.1-8-025: 2001 (R11)
Austenitic Stainless Steel Primarily Pipe Applications	
Shielded Metal Arc Welding	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E3XX-XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-213-92 (R11)
Gas Tungsten Arc Welding	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, ER3XX, As-Welded Condition, Primarily Pipe Applications Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, IN3XX and ER3XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-212: 2001 (R11) B2.1-8-215: 2001 (R11)
Combination GTAW and SMAW	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ½ through 1½ inch Thick, ER3XX and E3XX-XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-214: 2001 (R11)
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root followed by Shielded Metal Arc Welding of Austenitic Stainless Steel (M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, IN3XX, ER3XXX, and E3XX-XX, As-Welded Condition, Primarily Pipe Applications	B2.1-8-216: 2001 (R11)
Carbon Steel to Austenitic Stainless Steel	
Gas Tungsten Arc Welding	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, ER309(L), As-Welded Condition, Primarily Pipe Applications	B2.1-1/8- 227 2002

Specification	Designation
Carbon Steel to Austenitic Stainless Steel (Cont'd)	
Gas Tungsten Arc Welding (Cont'd) Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₁₆ through 1 ¹ / ₂ inch Thick, IN309 and R309(L), As-Welded Condition, Primarily Pipe Applications	B2.1-1/8- 230 2002
Shielded Metal Arc Welding	
Standard Welding Procedure Specification (SWPS) for Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1, Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, E309(L)-15, -16, or -17, As-Welded Condition, Primarily Pipe Applications	B2.1-1/8- 228 2002
Combination GTAW and SMAW	
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding Followed by Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 and 2 Welded to M-8/P-8/S-8, Group 1), ¹ / ₈ through 1 ¹ / ₂ inch Thick, ER309(L) and E309(L)-15, -16, or -17, As-Welded Condition, Primarily Pipe Applications	B2.1-1/8- 229 2002
Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root, Followed by Shielded Metal Arc Welding of Carbon Steel to Austenitic Stainless Steel (M-1/P-1/S-1 Groups 1 and 2 Welded to M-8/P-8/ S-8, Group 1) ¹ / ₈ through 1 ¹ / ₂ inch Thick, IN309, ER309(L), and E309(L)-15, -16, -17, As-Welded Condition, Primarily Pipe Applications	B2.1-1/8- 231 2002

MANDATORY APPENDIX F STANDARD UNITS FOR USE IN EQUATIONS

٦

Table F-100Standard Units for Use in Equations						
Quantity	U.S. Customary Units	SI Units				
Linear dimensions (e.g., length, height, thickness, radius, diameter)	inches (in.)	millimeters (mm)				
Area	square inches (in. ²)	square millimeters (mm ²)				
Volume	cubic inches (in. ³)	cubic millimeters (mm ³)				
Section modulus	cubic inches (in. ³)	cubic millimeters (mm ³)				
Moment of inertia of section	inches ⁴ (in. ⁴)	millimeters ⁴ (mm ⁴)				
Mass (weight)	pounds mass (lbm)	kilograms (kg)				
Force (load)	pounds force (lbf)	newtons (N)				
Bending moment	inch-pounds (inlb)	newton-millimeters (N·mm)				
Pressure, stress, stress intensity, and modulus of elasticity	pounds per square inch (psi)	megapascals (MPa)				
Energy (e.g., Charpy impact values)	foot-pounds (ft-lb)	joules (J)				
Гетреrature	degrees Fahrenheit (°F)	degrees Celsius (°C)				
Absolute temperature	Rankine (R)	kelvin (K)				
Fracture toughness	ksi square root inches $\left(ext{ksi}\sqrt{ ext{in.}} ight)$	MPa square root meters (MPa \sqrt{m})				
Angle	degrees or radians	degrees or radians				
Boiler capacity	Btu/hr	watts (W)				

NONMANDATORY APPENDIX G GUIDANCE FOR THE USE OF U.S. CUSTOMARY AND SI UNITS IN THE ASME BOILER AND PRESSURE VESSEL CODE

G-100 USE OF UNITS IN EQUATIONS

The equations in this Nonmandatory Appendix are suitable for use with either the U.S. Customary or the SI units provided in Mandatory Appendix F, or with the units provided in the nomenclature associated with that equation. It is the responsibility of the individual and organization performing the calculations to ensure that appropriate units are used. Either U.S. Customary or SI units may be used as a consistent set. When necessary to convert from one system of units to another, the units shall be converted to at least three significant figures for use in calculations and other aspects of construction.

G-200 GUIDELINES USED TO DEVELOP SI EQUIVALENTS

The following guidelines were used to develop SI equivalents:

(*a*) SI units are placed in parentheses after the U.S. Customary units in the text.

(b) In general, separate SI tables are provided if interpolation is expected. The table designation (e.g., table number) is the same for both the U.S. Customary and SI tables, with the addition of suffix "M" to the designator for the SI table, if a separate table is provided. In the text, references to a table use only the primary table number (i.e., without the "M"). For some small tables, where interpolation is not required, SI units are placed in parentheses after the U.S. Customary unit.

(c) Separate SI versions of graphical information (charts) are provided, except that if both axes are dimensionless, a single figure (chart) is used.

(*d*) In most cases, conversions of units in the text were done using hard SI conversion practices, with some soft conversions on a case-by-case basis, as appropriate. This was implemented by rounding the SI values to the number of significant figures of implied precision in the existing U.S. Customary units. For example, 3,000 psi has an implied precision of one significant figure. Therefore, the conversion to SI units would typically be to 20 000 kPa. This is a difference of about 3% from the "exact" or soft conversion of 20 684.27 kPa. However, the precision of the conversion was determined by the Committee on a case-by-case basis. More significant digits were included in the SI equivalent if there was any question. The values of allowable stress in Section II, Part D generally include three significant figures.

(e) Minimum thickness and radius values that are expressed in fractions of an inch were generally converted according to the following table:

Fraction, in.	Proposed SI Conversion, mm	Difference, %
1/32	0.8	- 0.8
3/64	1.2	- 0.8
1/16	1.5	5.5
³ /32	2.5	- 5.0
¹ /8	3	5.5
5/32	4	- 0.8
³ / ₁₆	5	- 5.0
7/32	5.5	1.0
1/4	6	5.5
5/16	8	- 0.8
3/8	10	- 5.0
7/16	11	1.0
¹ / ₂	13	- 2.4
9/16	14	2.0
5/8	16	- 0.8
¹¹ / ₁₆	17	2.6
3/4	19	0.3
⁷ /8	22	1.0
1	25	1.6

(f) For nominal sizes that are in even increments of inches, even multiples of 25 mm were generally used. Intermediate values were interpolated rather than converting and rounding to the nearest mm. See examples in the following table. [Note that this table does not apply to nominal pipe sizes (NPS), which are covered below.]

Size, in.	Size, mm
1	25
$1^{1}/_{8}$	29
$1^{1}/_{4}$	32
$1^{1}/_{2}$	38
2	50
$2^{1}/_{4}$	57
$2^{1}/_{2}$	64
3	75
$3^{1}/_{2}$	89
4	100
$4^{1}/_{2}$	114
5	125
6	150
8	200

Size, in.	Size, mm
12	300
18	450
20	500
24	600
36	900
40	1 000
54	1 350
60	1 500
72	1 800

Size or	Size or
Length, ft	Length, m
3	1
5	1.5
200	60

(g) For nominal pipe sizes, the following relationships were used:

U.S.		U.S.	
Customary	SI	Customary	SI
Practice	Practice	Practice	Practice
NPS ¹ / ₈	DN 6	NPS 20	DN 500
NPS ¹ / ₄	DN 8	NPS 22	DN 550
NPS ³ / ₈	DN 10	NPS 24	DN 600
NPS ¹ / ₂	DN 15	NPS 26	DN 650
NPS ³ / ₄	DN 20	NPS 28	DN 700
NPS 1	DN 25	NPS 30	DN 750
NPS $1^{1}/_{4}$	DN 32	NPS 32	DN 800
NPS 1 ¹ / ₂	DN 40	NPS 34	DN 850
NPS 2	DN 50	NPS 36	DN 900
NPS $2^{1}/_{2}$	DN 65	NPS 38	DN 950
NPS 3	DN 80	NPS 40	DN 1000
NPS 3 ¹ / ₂	DN 90	NPS 42	DN 1050
NPS 4	DN 100	NPS 44	DN 1100
NPS 5	DN 125	NPS 46	DN 1150
NPS 6	DN 150	NPS 48	DN 1200
NPS 8	DN 200	NPS 50	DN 1250
NPS 10	DN 250	NPS 52	DN 1300
NPS 12	DN 300	NPS 54	DN 1350
NPS 14	DN 350	NPS 56	DN 1400
NPS 16	DN 400	NPS 58	DN 1450
NPS 18	DN 450	NPS 60	DN 1500

(*h*) Areas in square inches $(in.^2)$ were converted to square mm (mm^2) and areas in square feet (ft^2) were converted to square meters (m^2) . See examples in the following table:

Area	Area
(U.S. Customary)	(SI)
1 in. ²	650 mm ²
6 in. ²	4 000 mm ²
10 in. ²	6 500 mm ²
5 ft^2	0.5 m ²

(i) Volumes in cubic inches (in.³) were converted to cubic mm (mm³) and volumes in cubic feet (ft³) were converted to cubic meters (m³). See examples in the following table:

Volume (U.S. Customary)	Volume (SI)
1 in. ³	16 000 mm ³
6 in. ³	100 000 mm ³
10 in. ³	160 000 mm ³
5 ft ³	0.14 m ³

(*j*) Although the pressure should always be in MPa for calculations, there are cases where other units are used in the text. For example, kPa is used for small pressures. Also, rounding was to one significant figure (two at the most) in most cases. See examples in the following table. (Note that 14.7 psi converts to 101 kPa, while 15 psi converts to 100 kPa. While this may seem at first glance to be an anomaly, it is consistent with the rounding philosophy.)

Pressure (U.S. Customary)	Pressure (SI)
0.5 psi	3 kPa
2 psi	15 kPa
3 psi	20 kPa
10 psi	70 kPa
14.7 psi	101 kPa
15 psi	100 kPa
30 psi	200 kPa
50 psi	350 kPa
100 psi	700 kPa
150 psi	1 MPa
200 psi	1.5 MPa
250 psi	1.7 MPa
300 psi	2 MPa
350 psi	2.5 MPa
400 psi	3 MPa
500 psi	3.5 MPa
600 psi	4 MPa
1,200 psi	8 MPa
1,500 psi	10 MPa

(*k*) Material properties that are expressed in psi or ksi (e.g., allowable stress, yield and tensile strength, elastic modulus) were generally converted to MPa to three significant figures. See example in the following table:

Strength	Strength	
(U.S. Customary)	(SI)	
95,000 psi	655 MPa	

(*l*) In most cases, temperatures (e.g., for PWHT) were rounded to the nearest 5°C. Depending on the implied precision of the temperature, some were rounded to the nearest 1° C or 10° C or even 25° C. Temperatures colder than

Temperature,	Temperature,
°F	°C
70	20
100	38
120	50
150	65
200	95
250	120
300	150
350	175
400	205
450	230
500	260
550	290
600	315
650	345
700	370
750	400
800	425
850	455
900	480
925	495
950	510
1,000	540
1,050	565
1,100	595
1,150	620
1,200	650
1,250	675
1,800	980
1,900	1 040
2,000	1 095
2,050	1 120

 0° F (negative values) were generally rounded to the nearest 1°C. The examples in the table below were created by rounding to the nearest 5°C, with one exception:

the SI value by the factor given to obtain the U.S. Customary value. In most cases it is appropriate to round the answer to three significant figures.

U.S. Customary	SI	Factor	Notes
in.	mm	25.4	notes
ft	m	0.3048	
in. ²	mm ²	645.16	
ft ²	m ²	0.09290304	
in. ³	mm ³		
ft ³	mm m ³	16,387.064	
	m ⁻ m ³	0.02831685	
U.S. gal		0.003785412	
U.S. gal	liters	3.785412	
psi	MPa (N/mm ²)	0.0068948	Used exclusively i
			equations
psi	kPa	6.894757	Used only in text
			and for
			nameplate
psi	bar	0.06894757	
ft-lb	J	1.355818	
°F	°C	⁵⁄ ₉ × (°F − 32)	Not for
			temperature
			difference
°F	°C	5/9	For temperature
			differences only
R	К	5/9	Absolute
		15	temperature
lbm	kg	0.4535924	
lbf	N	4.448222	
inlb	N∙mm	112.98484	Use exclusively in
			equations
ft-lb	N·m	1.3558181	Use only in text
ksi√in.	MPa√m	1.0988434	
Ksi√in. Btu/hr	W	0.2930711	 Use for boiler
Dlu/III	vv	0.2930/11	
			rating and heat
11. 16.3	13	16 010462	transfer
lb/ft ³	kg/m ³	16.018463	

G-300 SOFT CONVERSION FACTORS

The following table of "soft" conversion factors is provided for convenience. Multiply the U.S. Customary value by the factor given to obtain the SI value. Similarly, divide

NONMANDATORY APPENDIX H WAVEFORM CONTROLLED WELDING

H-100 BACKGROUND

Advances in microprocessor controls and welding power source technology have resulted in the ability to develop waveforms for welding that improve the control of droplet shape, penetration, bead shape and wetting. Some welding characteristics that were previously controlled by the welder or welding operator are controlled by software or firmware internal to the power source. It is recognized that the use of controlled waveforms in welding can result in improvements in productivity and quality. The intention of this Code is to enable their use with both new and existing procedure qualifications.

The ASME Section IX heat input measurement methods in QW-409.1(a) and QW-409.1(b), were developed at a time when welding power source output was relatively constant. The heat input of welds made using waveform controlled power sources is not accurately represented by QW-409.1(a) due to the rapidly-changing outputs, phase shifts, and synergic changes, but is correctly represented by QW-409.1(b) or QW-409.1(c). During waveform controlled welding, current and voltage and values observed on the equipment meters no longer are valid for heat input determination, and must be replaced by instantaneous energy (joules) or power (joules/second or watts) to correctly calculate heat input. QW-409.1(c) more accurately reflects heat input changes when performing waveform controlled welding, but is also suitable for nonwaveform controlled (conventional) welding.

H-200 WAVEFORM CONTROLLED WELDING AND HEAT INPUT DETERMINATION

Power sources that support rapidly pulsing processes (e.g., GMAW-P) are the most common waveform controlled power sources. Power sources that are marketed as synergic, programmable, or microprocessor controlled are generally capable of waveform controlled welding. In these cases, heat input is calculated by the methods outlined in either QW-409.1(b) or QW-409.1(c) when performing procedure qualification or to determine compliance with a qualified procedure. If any doubt exists on whether waveform controlled welding is being performed, the welding equipment manufacturer should be consulted. It is recognized that waveform controls may not be active for all of the welding processes or equipment settings for a particular power source. When the waveform control features of the equipment are not used, the heat input determination methods of either QW-409.1(a), QW-409.1(b), or QW-409.1(c) are used.

When the welding equipment does not display instantaneous energy or power, an external meter with high frequency sampling capable of displaying instantaneous energy or power is typically used, or the welding equipment is upgraded or modified to display instantaneous energy or power.

The equation shown in QW-409.1(c)(1) uses the unit of joules (J) for energy. Other conveniently obtained units of energy such as calories or British thermal units (Btu) may be used with the appropriate conversion factors. The equation shown in QW-409.1(c)(2) uses the unit of joules/second(J/s) or watts (W) for power. One J/s is equal to 1 W. Other conveniently obtained units of power, such as horsepower (HP or kilowatts (kW) may be used with the appropriate conversion factors.

H-300 NEW PROCEDURES QUALIFICATIONS

When qualifying a new procedure using waveform controlled welding, the instantaneous energy or power range is used in lieu of the current (amperage) and voltage ranges to determine the heat input per QW-409.1(c).

When qualifying a new procedure using nonwaveform controlled welding, either the current and voltage is recorded and heat input determined using the methods of QW-409.1(a) or QW-409.1(b), as previously required, or the instantaneous energy or power is recorded and the heat input determined by the method in QW-409.1(c).

H-400 EXISTING QUALIFIED PROCEDURES

Welding procedures previously qualified using nonwaveform controlled welding and heat input determined by QW-409.1(a) may continue to be used for waveform controlled welding, provided they are amended to require heat input determination for production welds using the methods of QW-409.1(c). Welding procedures previously qualified using nonwaveform controlled welding and heat input determined by QW-409.1(b) continue to be applicable for waveform controlled welding without changes to the heat input determination method. (a) To determine if the heat input of a waveform controlled production weld meets the heat input range of a welding procedure qualified with nonwaveform controlled welding with heat input determined using QW-409.1(a)

(1) the heat input of the production weld is determined using instantaneous power or energy per the method of QW-409.1(c)

(2) the heat input of the production weld is compared to the heat input range of the welding procedure specification

(b) to determine if the heat input of a nonwaveform controlled production weld meets the heat input range of a welding procedure qualified with waveform controlled welding with heat input determined using QW-409.1(c)

(1) the heat input of the production weld is determined using QW-409.1(a) or QW-409.1(c)

(2) the heat input of the production weld is compared to the heat input range of the welding procedure specification

H-500 PERFORMANCE QUALIFICATIONS (13)

Separate performance qualifications are not required for waveform controlled welding. However, it is recognized that a welder or welding operator may require instruction on proper use of the equipment. The extent of such instruction is best determined by the organization, as needed to understand how to properly set up and adjust the equipment for welding and conformance to the WPS requirements.

Power sources capable of waveform controlled welding often have additional operator settings that are typically not used during nonwaveform controlled welding. It is important for a welder to be familiar with other equipment parameters that can influence the overall welding performance. These can include the mode, arc control, program, cable length, wire feed speed, trim, and other machine and software settings.

MANDATORY APPENDIX J GUIDELINE FOR REQUESTING P-NUMBER ASSIGNMENTS FOR BASE METALS NOT LISTED IN TABLE QW/QB-422

J-100 INTRODUCTION

This Mandatory Appendix provides requirements to Code users for submitting requests for P-Number assignments to base metals not listed in Table QW/QB-422. Such requests shall be limited to base metals that are listed in ASME Code Section II, Parts A or B; ASTM; or other recognized national or international specifications. QW-420 should be referenced before requesting a P-Number, to see if the base metal can be considered a P-Number under existing rules. For new materials, users shall reference the Submittal of Technical Inquiries to the Boiler and Pressure Vessel Committee in this Section and the Guideline on the Approval of New Materials, under ASME Boiler and Pressure Vessel Code in Section II, Part D. P-Number assignment does not constitute approval of a base metal for ASME Code construction. The applicable Construction Code shall be consulted for base metals that are acceptable for use.

J-200 REQUEST FORMAT

A request for a P-Number shall include the following: *(a)* product application or use

(*b*) the material specification, grade, class, and type as applicable

(c) the mechanical properties and chemical analysis requirements

(d) welding or brazing data, such as comparable P-Numbers; published welding or brazing data; welding procedure specifications and procedure qualification data; or brazing procedure specifications and procedure qualification data

(e) properties of welded or brazed base metal joints, if less than the minimum specified in the applicable specification

J-300 SUBMITTALS

Submittals to and responses from the Committee shall meet the following:

(a) Submittal. Requests for P-Number assignments shall be in English and preferably in the type-written form. However, legible handwritten requests will also be considered. They shall include the name, address, telephone number, fax number, and e-mail address, if available, of the requester and be mailed to The American Society of Mechanical Engineers, Attn: Secretary, BPV IX Committee, Three Park Avenue, New York, NY 10016–5990. As an alternative, requests may be submitted via e-mail to secretaryBPV@asme.org.

(b) Response. The Secretary of the ASME BPV IX Committee shall acknowledge receipt of each properly prepared request and shall provide written response to the requester upon completion of the requested action by the Code Committee.

NONMANDATORY APPENDIX K GUIDANCE ON INVOKING SECTION IX REQUIREMENTS IN OTHER CODES, STANDARDS, SPECIFICATIONS, AND CONTRACT DOCUMENTS

K-100 BACKGROUND AND PURPOSE

ASME Section IX provides rules for the qualification of welding, brazing, and fusing personnel and the procedures that they follow in welding, brazing and fusing. While the historical application of Section IX has been in service to the ASME Boiler and Pressure Vessel Code and the ASME B31 Codes for Pressure Piping, Section IX is invoked by many other standards without the benefit of members of the Section IX Committee participating in those committees. In addition, Section IX is invoked in specifications and related contract documents. The purpose of this Nonmandatory Appendix is to provide guidance on invoking Section IX in other documents in a clear, concise, and accurate manner.

K-200 SCOPE OF SECTION IX AND WHAT REFERENCING DOCUMENTS MUST ADDRESS

Section IX addresses only the mandatory content of welding, brazing, and fusing procedures; the qualification of those procedures; and the qualification of personnel who follow those procedures in the manufacture, fabrication, assembly, and installation of welded and fused products. Accordingly, to ensure construction of suitable products, the requirements for the service conditions, materials used, the design of welds, preheating, postweld heat treatment, and metallurgical effects of welding; and the acceptance criteria for weld quality matters such as penetration, undercut, reinforcement, porosity, surface condition, and related examinations must be addressed in the codes, standards, specifications, or contract documents that invoke Section IX since Section IX is not a fabrication code and it does not contain requirements for welded, brazed, or fused products.

Further, construction codes may specify different requirements than those specified by Section IX; for example, ASME Section III has requirements for PWHT of procedure qualification test coupons that are more restrictive than those of Section IX, and ASME B31.1 allows fabricators and contractors to use WPSs qualified by a technically competent group or agency, whereas Section IX requires each fabricator or contractor to qualify WPSs themselves. When such requirements are specified in the referencing construction Codes that invoke Section IX, these requirements take precedence over those of Section IX, and the manufacturer or contractor is required to comply with them.

Specifications or contract documents that are required to follow Section IX may add additional requirements, and the manufacturer or contractor shall comply with both sets of requirements.

When the reference to Section IX is not the result of mandatory requirements, such as laws, but is a matter of choice, the specification or contract document may impose additional or different requirements than those in Section IX, and the manufacturer or contractor shall comply with them. Material specifications are an example of this.

Most standards that refer to Section IX consider the requirements of Section IX to be adequate to cover the basic needs for the content of welding, brazing, and fusing procedures and for qualification of those WPSs, as well as for the qualification of the personnel who use them. However, for some applications, additional information may be required from the invoking party, as noted in K-300.

K-300 RECOMMENDED WORDING — GENERAL

When invoking Section IX in general, the following wording is recommended:

"Welding, brazing, and fusing shall be performed using procedures and personnel qualified in accordance with the requirements of ASME BPVC Section IX."

When the above is specified, qualification for the following are automatically included:

(*a*) all welding processes that are listed in QW-250 for groove and fillet welding

(b) use of standard welding procedures specifications (SWPSs) listed in Mandatory Appendix E

(c) application of hard-facing weld metal overlay (hardness values shall be a matter of agreement between the supplier and the purchaser)

(*d*) application of corrosion-resistant weld metal overlay (chemical composition of the weld overlay surface shall be a matter of agreement between the supplier and the purchaser)

(e) laser beam lap joints

- *(f)* joining of composite (clad) materials
- (g) attachment of applied linings

K-301 RECOMMENDED WORDING FOR TOUGHNESS — QUALIFIED APPLICATIONS

When invoking Section IX and qualification of the WPS for toughness applications is required, the following wording is recommended:

"Welding procedures shall be qualified for toughness, and the supplementary essential variables of Section IX shall apply."

The referencing construction code shall also be specified.

K-302 RECOMMENDED WORDING — TUBE-TO-TUBESHEET WELDING

When invoking Section IX for qualification of tube-totubesheet welding procedures and personnel, and qualification by use of mock-ups is desired, the following wording is recommended: "Welding procedures, welders, and welding operators shall be qualified using mock-ups in accordance with Section IX."

Note that if qualification using mock-ups is not specified but qualification to Section IX is, tube-to-tubesheet welding procedures and personnel may also be qualified following the standard groove welding rules.

K-303 RECOMMENDED WORDING — TEMPER BEAD WELDING

When invoking Section IX for qualification of temper bead welding procedures, the following wording is recommended:

"Welding procedures shall be prepared and qualified in accordance with Section IX."

INDEX

procedure, QW-251.2, QW-401.1

PART OW

Essential variables (performance), QW-401.2 A-Numbers (listing), QW-442 Etching, QW-470 Acceptance criteria tension tests, QW-153 bend tests, QW-163 notch toughness, QW-171.2, QW-172.2 bend and hammer tests, QW-192.2 torque test. OW-192.3 Addenda (issuance of), QW-100.3 requalification of procedures, QW-100.3 Aluminum alloys, QW/QB-422 Austenitic stainless steels, QW/QB-422 AWS (reference to), QW-102 Backing (pertaining to performance qualification), QW-303.2, QW-303.3, QW-310.2, QW-310.3 Part IV — data, QW-402.2, QW-402.3, QW-402.4, QW-402.5, QW-402.7 definition, QW-492 Backing gas, QW-408.5, QW-408.8 Base metals (definition), QW-492 corrosion-resistance overlay cladding (pertaining to procedure qualification), QW-214.1 groove and fillet welds (pertaining to procedure qualification), QW-202.2, QW-211 stud welding, QW-202.3 variable, QW-403 Carbon steels, QW/QB-422 Combination of welding processes or procedures pertaining to performance qualification, QW-306 Consumable inserts, QW-404.22 Copper (copper-base alloys), QW/QB-422 Corrosion-resistant overlay cladding (pertaining to procedure qualification), OW-381 pertaining to performance qualification, QW-381 Definitions, QW-102, QW-490 Description of Section IX, QW-100 Dimensions of welding groove with backing for performance qualification, QW-310.2 of welding groove without backing for performance qualification, QW-310.3 of tension test specimen, QW-462.1 of bend test specimen, QW-462.2 of test jigs, QW-466 of groove welds for procedure qualification, QW-212 Drawings (see Graphics) Electrical characteristics, QW-409 Electrogas welding (definition), QW-492 variables for procedure qualifications, QW-259 Electron beaming (pertaining to procedure qualification), QW-215 definition, QW-492 variables for procedure qualification, QW-260 variables for performance qualification, QW-362 Electroslag welding (definition), QW-492 variables for procedure qualification, QW-258

Filler metals (pertaining to procedure qualification), QW-211, QW-404 Fillet-weld tests, QW-180 Flat position (definition), QW-121.1, QW-122.1, QW-131.1, QW-132.1 Flux. OW-404.9 F-Numbers (listing), QW-430 Forms (suggested), Appendix B Fracture tests, QW-182 Full-section specimens, QW-151.4 Gas, QW-408 Gas tungsten-arc welding (definition), QW-492 variables for procedure qualification, QW-256 variables for performance qualification, QW-356 Gas welding (definition), QW-492 variables for procedure qualification, QW-256 variables for performance qualification, QW-356 Graphics, QW-460 test positions, QW-461 groove welds in plate, QW-461.3 groove welds in pipe, QW-451.4 fillet welds in plate, QW-461.5 fillet welds in pipe, QW-461.6 stud welds, QW-461.7 test specimens, QW-462 tension - reduced section - plate, QW-462.1(a) tension — reduced section — pipe, QW-462.1(b) tension — reduced section — pipe alternate, QW-462.1(c) tension - reduced section - turned specimen, QW-462.1(d) tension — full section — small diameter pipe, QW-462.1(e) side bend, QW-462.2 face and root bends transverse, QW-462.3(a) face and root bends longitudinal, QW-462.3(b) fillet welds - procedure, QW-462.4(a) fillet welds - performance, QW-462.4(b) fillet welds in pipe - performance, QW-462.4(c) fillet welds in pipe — procedure, QW-462.4(d) corrosion-resistant overlay, QW-462.5

composite test plates, QW-462.6 spot welds, QW-462.8-QW-462.11 order of removal, QW-463 plates - procedure qualification, QW-463.1(a) plates — procedure qualification alternate, QW-463.1(b) plates — procedure qualification longitudinal, QW-463.1(c) pipe - procedure qualification, QW-463.1(d) pipe — procedure qualification alternate, QW-463.1(e) pipe — notch toughness specimen location, QW-463.1(f) plate — procedure qualification, QW-463.2(a) plate — procedure qualification alternate, QW-463.2(b) plate — procedure qualification longitudinal, QW-463.2(c) pipe — performance qualification, QW-463.2(d) pipe — performance qualification alternate, QW-463.2(e) pipe — performance qualification 10 in. diameter, QW-463.2(f) pipe — performance qualification 6 in. or 8 in. diameter, QW-463.2(g)

pipe — performance qualification fillet weld, QW-463.2(h) test jigs, QW-466 guided-bend, QW-466.1 guided-bend roller jig, QW-466.2 guided-bend wrap-around, QW-466.3 stud weld bend jig, QW-466.4 torque testing arrangement, QW-466.5 tensile test for studs, QW-466.6 typical test joints, QW-469 butt joint, QW-469.1 alternative butt joint, QW-469.2 Groove welds (pertaining to performance qualification), QW-303.1 with backing, QW-310.2 without backing, QW-310.3 Guided-bend jig, QW-466.1 Guided-bend roller jig, QW-466.2 Guided-bend test (see Tests) Guided-bend wrap-around jig, QW-466.3

Hard-facing overlay (pertaining to procedure qualification), QW-216 Horizontal position, QW-121.2, QW-122.2, QW-131.2, QW-132.2

Identification of welders and welding operators, QW-301.3

Joints, QW-402

Limits of qualified positions procedures, QW-203 performance, QW-303, QW-461.9 Longitudinal-bend tests, QW-161.5–QW-161.7

Macro-examination, QW-183, QW-184 Mechanical tests, QW-141, QW-202.1, QW-302.1 Multiple positions, QW-122.3, QW-122.4, QW-132.4

Nickel and nickel-base alloys, QW/QB-422 Nonessential variables, QW-251.3 Notch-toughness test, QW-170

Order of removal, QW-463 Orientation of welds, QW-110, QW-461.1 Overhead position, QW-121.4, QW-131.4, QW-132.3

Performance qualification, QW-300 Performance qualification specimens, QW-452 Performance variables, QW-405 Pipe, test welds in, QW-302.3 Pipe positions, QW-132 Plasma-arc welding variables for procedure, QW-257 variables for performance, QW-357 Plate and pipe performance, QW-303.1-QW-303.4 Plate and pipe procedure, QW-211 P-Numbers, QW-200.3, QW/QB-422, Appendix D Positions of welds plate and pipe groove welds descriptions, QW-120-QW-123 sketches and graphics, QW-460-QW-461 plate and pipe fillet welds descriptions, QW-130-QW-132 sketches and graphics, QW-460-QW-461 limits of qualified positions for procedures, QW-203 for performance, QW-303 Postweld heat treatment, QW-407

PQR, QW-201.2 Preheat, QW-406 Procedure qualification, QW-200 Procedure qualification record, QW-201, QW-483 Procedure qualification specimens, QW-451 Processes, combination of, QW-200.4, QW-306 Processes, special, QW-251.4 Radiography, QW-142, QW-143, QW-191 acceptance criteria, QW-191.1.2 for performance qualification, QW-302.2, QW-304 retests and renewal of qualification, QW-320 Records, QW-103.2 Record of welder or welding operator qualification tests, QW-301.4, QW-484 Reduced-section specimens, QW-151.1, QW-151.2 Renewal of qualification, QW-322 Requalification, QW-350 Responsibility of records, QW-103.2 Responsibility of welding, QW-103.1, QW-201 Retests, QW-321 Scope of Section IX, QW-101 Shielding gas, QW-408.1, QW-408.2, QW-408.3, QW-408.4, QW-408.6 Shielded metal-arc welding variables for procedure, QW-253 variables, QW-353 Sketches (see Graphics) S-Numbers, QW-420 Specimens, QW-450 Stud-weld bend jig, QW-466.4 Stud welding performance qualification specimens, QW-193 positions. OW-123.1. OW-461.6. OW-461.7. OW-461.8 procedure qualification specimens, QW-192 variables for procedure, QW-261 variables for performance, QW-361 Submerged-arc welding variables for procedure, QW-254 variables for performance, QW-354 Supplementary essential variables, QW-251.2, QW-401.3 Tables Welding variables, QW-415, QW-416 P-Numbers, QW/QB-422 F-Numbers, QW-432 A-Numbers, QW-442 Procedure qualification specimens, QW-451 Performance qualification specimens, QW-452 Performance qualification limitations, QW-461.9 Technique, QW-410 Tension test, QW-150 Terms and definitions, QW-102, QW-492 Test assemblies, QW-301.1 Test jigs, QW-466 Test joints, QW-469.1, QW-469.2 Tests acceptance criteria bend and hammer, QW-192.2 fracture tests, QW-182 guided bend, QW-163 macro-examination, QW-183, QW-184, QW-192.1.4 notch-toughness tests Charpy V-notch, QW-171.2 drop weight, QW-172.2 radiography, QW-191.1.2

tension, QW-153 torque test, QW-192.3 ultrasonic, QW-191.2.3 description and procedure fillet weld, QW-180 guided bend, QW-160 notch toughness, QW-170 Charpy V-notch, QW-171 drop weight, QW-172 radiographic, QW-191 stud weld, QW-192 tension, QW-150, QW-152 tensile strength, QW-153.1 for performance qualification, QW-100.2, QW-301 mechanical tests, QW-302.1 qualification tests, QW-301.2 for procedure qualification, QW-100.1, QW-202 mechanical tests, QW-202.1 test-joint preparation, QW-210 test positions for groove welds, QW-120 test positions for fillet welds, QW-130 test positions for stud welds, QW-123 types and purposes fillet weld, QW-141.3 guided bend, QW-141.2, QW-160, QW-162, QW-451, QW-452, QW-462 mechanical, QW-141 notch toughness, QW-141.4 drop weight, QW-172.1 radiographic, QW-142, QW-143 special examination for welders, QW-142 stud weld, QW-141.5 tension, QW-141.1, QW-451, QW-462 visual, QW-302.4 Thickness, QW-310.1, QW-351, QW-451, QW-452 Titanium, QW/QB-422 Torque testing for stud welds, QW-466.5 Transverse bend tests, QW-161.1-QW-161.4 Turned specimens, QW-151.3 Variables, QW-250, QW-350 base metals, QW-403 electrical characteristics, QW-409 electrogas welding (EGW), QW-259 electron beam welding (EBW), QW-260 electroslag welding (ESW), QW-258, QW-258.1 filler metals, QW-404 for welding operator, QW-360 gas, QW-408 gas metal-arc welding (GMAW) (MIG), QW-255, QW-255.1, QW-355 gas tungsten-arc welding (GTAW) (TIG), QW-256, QW-256.1, QW-356 general, QW-251, QW-351, QW-401 joints, QW-402 oxyfuel gas welding (OFW), QW-252, QW-252.1, QW-352 performance essential variable table, QW-416 plasma-arc welding (PAW), QW-257, QW-257.1, QW-359 positions, QW-405 postweld heat treatment (PWHT), QW-407 preheat, QW-406 procedure essential variable table, QW-415 shielded metal-arc welding (SMAW) (STICK), QW-253, QW-253.1, OW-353 stud welding, QW-261, QW-361 submerged-arc welding (SAW), QW-254, QW-254.1, QW-354 technique, QW-410

Vertical position, QW-121.3, QW-131.3 Welders and welding operators, QW-304, QW-305 Welding Procedure Specification, QW-200.1(a), QW-482 WPS qualification tests, QW-202.2

PART QB Acceptance criteria tension test, QB-153 bend tests, QB-163 peel test, QB-172 Addenda (issuance of), QB-100.3 requalification of procedures, QB-100.3 AWS, QB-102

Base metal, QB-211 Base metal — variables, QB-402 BPS, QB-482 Brazers, QB-304 Brazing operators, QB-305

Definitions, QB-102, QB-490

F-Numbers, QB-430 Filler flow position, QB-121 Filler metal — variable, QB-403 Flow direction — variables, QB-407 Flow positions, QB-461 Flux and atmospheres (variables), QB-406 Forms, Appendix B

Graphics, QB-460 Guided bend test, QB-141.2, QB-160

Horizontal flow position, QB-124

Jigs, QB-162.1 Jigs — graphics, QB-466 Joint design — variables, QB-408 Joints, QB-210, QB-310

Longitudinal-bend test, QB-161.3, QB-161.4

Manufacturer's responsibility, QB-201

Order of removal — graphics, QB-463 Orientation, QB-110, QB-461

P-Numbers, QB-420 Peel test, QB-141.3, QB-170 Performance qualifications, Article XIII, QB-100.2 Performance qualification tests, QB-301.1 Position, QB-120 Position — graphics, QB-460 PQR, QB-201.2, QB-483 Preparation of test joints, QB-210 Procedure qualifications, Article XII, QB-100.1

Records, QB-103.2, QB-301.4 Reduced section, QB-151.1, QB-151.2, QB-151.3 Renewal of qualification, QB-322 Responsibility, QB-103, QB-201

Scope, QB-101

Sectioning test, QB-141.4, QB-181 Shear test, QB-141.1 Specimens tension test, QB-151 guided-bend test, QB-161 peel test, QB-171 sectioning test, QB-181 workmanship sample, QB-182 for procedure qualification, QB-451 for performance qualification, QB-452 graphics, QB-462, QB-463

Temperature — variable, QB-404 Tension test, QB-141.1, QB-150 Test, QB-141 for procedure qualification, QB-202.1, QB-451 for performance qualification, QB-2-2.1, QB-451 positions, QB-120 flat-flow positions, QB-121 horizontal-flow positions, QB-124 vertical-downflow, QB-122 vertical-upflow, QB-123 Transverse bend tests, QB-161.1, QB-161.2

Variables

base metal, QB-402 brazing filler metal, QB-403 brazing flux, fuel gas or atmosphere, QB-406 brazing process, QB-405 brazing temperature, QB-404 data, QB-400 flow position, QB-407 joint design, QB-408 Vertical downfall position, QB-122 Vertical uphill position, QB-123

Workmanship samples, QB-141.5

INTENTIONALLY LEFT BLANK

ASME BOILER AND PRESSURE VESSEL CODE SECTION IX

INTERPRETATIONS Volume 62

Interpretations of the Code will be posted in January and July of 2014 and January of 2015 at http://cstools.asme.org/ interpretations.cfm. Interpretations of Section III, Divisions 1 and 2, are part of the update service to Section III, Subsection NCA.

Interpretations Volumes 60 and 61 were included with the update service to the 2010 Edition of the Code; Volume 62 is the first Interpretations volume to be included with the update service to the 2013 Edition.

Section	Vol. 62	
I	7/13	
II-A	7/13	
II-B		
II-C		
II-D (Customary)	7/13	
II-D (Metric)	7/13	
III-NCA	7/13	
III-3	7/13	
III-5	7/13	
IV	7/13	
V	7/13	
VI	, 	
VII		
VIII-1	7/13	
VIII-2	7/13	
VIII-3	7/13	
IX	7/13	
Х	7/13	
XI	7/13	
XII		

Copyright © 2013 by THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS All rights reserved

INTERPRETATIONS VOLUME 62 — SECTION IX

Replies to Technical Inquiries January 1, 2011 through December 31, 2012

FOREWORD

GENERAL INFORMATION

This publication includes all written interpretations issued between the indicated dates by the ASME Staff on behalf of the ASME Boiler and Pressure Vessel Committee in response to inquiries concerning interpretations of the ASME Boiler and Pressure Vessel Code. A contents is also included that lists subjects specific to the interpretations covered in the individual volume.

These interpretations are taken verbatim from the original letters, except for a few typographical and editorial corrections made for the purpose of improved clarity. In some instances, a review of the interpretation revealed a need for corrections of a technical nature. In these cases, a revised interpretation is presented bearing the original interpretation number with the suffix R and the original file number with an asterisk. Following these revised interpretations, new interpretations and revisions to them issued during the indicated dates are assigned interpretation numbers in chronological order. Interpretations applying to more than one Code Section appear with the interpretations for each affected Section.

ASME procedures provide for reconsideration of these interpretations when or if additional information is available that the inquirer believes might affect the interpretation. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME committee or subcommittee. As stated in the Statement of Policy in the Code documents, ASME does not "approve," "certify," "rate," or "endorse" any item, construction, proprietary device, or activity.

An interpretation applies either to the Edition and Addenda in effect on the date of issuance of the interpretation or the Edition and Addenda stated in the interpretation. Subsequent revisions to the Code may supersede the interpretation.

For detailed instructions, see "Submittal of Technical Inquiries to the ASME Boiler and Pressure Vessel Standards Committees" in the front matter.

SUBJECT AND NUMERICAL INDEXES

Subject and numerical indexes (if applicable) have been prepared to assist the user in locating interpretations by subject matter or by location in the Code. They cover interpretations issued from Volume 12 up to and including the present volume, and will be updated with each volume.

SECTION IX — INTERPRETATIONS VOL. 62

Subject

ubject	Interpretation	File No.
W-103.2, Records	IX-13-06	12-7
W-151.3, Tensile Tests — Turned Specimens	IX-10-37	11-2029
W-181.2, Sectioning of Pipe-to-Pipe Quarter Sections	IX-13-04	12-120
W-182, Fracture Tests	IX-10-32	11-939
W-193, Macro Examination for the Mockup Test of Tube-to-Tubesheet Joint	IX-13-05	12-1563
W-200.1(b)	IX-13-03	11-1476
W-200.2, Use of Preliminary WPS	IX-10-22	10-1158
W-200.4(b)	IX-10-34	10-1966
W-201, Manufacturer's or Contractor's Responsibility	IX-10-25	11-44
W-202.4, Dissimilar Base Metal Thicknesses	IX-13-09	12-1833
W-250	IX-10-28	09-558
W-288, Tube-to-Tubesheet Welder Qualification	IX-13-02	12-752
W-300.3, Simultaneous Performance Qualifications	IX-10-29	10-339
W-304, Volumetric Examination	IX-10-26	09-744
W-361.2	IX-13-08	12-1501
W-402 and QW-404 Through QW-410	IX-10-21	10-496
W-403.6	IX-13-01	12-635
W-404.23, Filler Metal Product Form	IX-10-38	12-47
W-404.5, A-Number	IX-10-31	11-918
W-404.5, A-Number Essential Variable for GMAW Weld Metal	IX-10-33	11-1339
W-407.1(b)	IX-13-07	12-1230
W-409.2, Combination of Processes	IX-10-24	11-216
W-420, ASTM Materials' P-Number Assignment	IX-10-30	10-1189
W-424.1, Base Metal Used for Procedure Qualification	IX-10-39	12-178
	IX-10-23	10-1918
W-452.1(b)	IX-10-35	11-2030
W-452.5	IX-10-27	08-210
W-462.4(a) and (b), Fillet Weld Test	IX-10-36	11-896

Subject: QW-402 and QW-404 Through QW-410 Date Issued: March 11, 2011 File: 10-496

Question: When impacts are waived by a book section for the base metal (HAZ notch toughness is not required), but are required for the weld metal, do the supplementary essential variables of QW-402 and QW-404 through QW-410 apply per the applicable tables QW-252 through QW-265?

Reply: Yes.

Interpretation: IX-10-22

Subject: QW-200.2, Use of Preliminary WPS Date Issued: March 14, 2011 File: 10-1158

Question: Does ASME Section IX require a preliminary WPS be used during procedure qualification testing, or that a WPS number be recorded on the PQR?

Reply: No.

Interpretation: IX-10-23

Subject: QW-433 and QW-452.1(b) Date Issued: March 14, 2011 File: 10-1918

Background: A welder tests on an NPS 6 Sch. 80 (0.432 in. wall) coupon, depositing 0.100 in. of E6010 and the balance of 0.332 in. using E7018.

Question (1): Using E6010, is the welder qualified to deposit 0.864 in. maximum of weld metal? Reply (1): Yes.

Question (2): Using E7018, is the welder qualified to deposit 0.664 in. maximum of weld metal?

Reply (2): Yes.

Question (3): Is the welder qualified to deposit 0.864 in. of weld metal using E6010 plus 0.664 in. of E7018 weld metal deposit thickness for a total of 1.528 in. in the same groove?

Reply (3): No. See QW-452.1(b).

Subject: QW-409.2, Combination of Processes Date Issued: March 14, 2011 File: 11-216

Background: A welder was tested on an SA-516 Gr. 70 plate, using the GMAW process. Short arc mode was used for depositing the root, and spray arc mode was used for depositing the balance of the weld in a single coupon.

Question: Is it permissible, according to ASME Section IX, QW-409.2, to use two modes of metal transfer in a single test coupon?

Reply: Yes; the deposit thickness for each transfer mode shall be recorded as required by QW-306.

Interpretation: IX-10-25

Subject: QW-201, Manufacturer's or Contractor's Responsibility Date Issued: May 23, 2011 File: 11-44

Question: May an organization with more than one ASME Certificate of Authorization, under different names and in different locations, describe in its quality assurance programs the operational control of procedure qualifications and the use of welding procedures properly qualified under one certificate holder, under another certificate holder within the organization, but without separate qualification, as permitted by Section IX, QW-201?

Reply: Yes.

Interpretation: IX-10-26

Subject: QW-304, Volumetric Examination Date Issued: June 13, 2011 File: 09-744

Question: Does Section IX require a welder to qualify for small diameter butt welds by preparing more than one small diameter pipe coupon to provide a minimum circumferential weld length when qualified by volumetric examination under the provisions of QW-304?

Reply: Yes.

Interpretation: IX-10-27

Subject: QW-452.5 Date Issued: August 1, 2011 File: 08-210

Question: Is it the intent of QW-452.5 to permit welder or welding operator fillet weld performance qualification testing to be conducted using test coupon thicknesses greater than $\frac{3}{8}$ in. thick?

Reply: Yes.

Subject: QW-250 Date Issued: August 1, 2011 File: 09-558

Question (1): Is it the intent of the Code that Variables QW-403.6, QW-406.3, QW-409.1, QW-410.9, and QW-410.10 apply when specified in QW-250 for P-No. 10H materials?

Reply (1): No.

Question (2): Is it the intent of the Code that Variable QW-407.4 apply when specified in QW-250 for P-No. 10H materials?

Reply (2): Yes.

Interpretation: IX-10-29

Subject: QW-300.3, Simultaneous Performance Qualifications Date Issued: August 1, 2011 File: 10-339

Question: Is it the intent of Section IX, QW-300.3 to permit an AWS standard welding procedure specification adopted by a contractor to be used in lieu of a PQR to support the range of variables for a single WPS proposed for use in conducting simultaneous welder performance qualification testing?

Reply: Yes.

Interpretation: IX-10-30

Subject: QW-420, ASTM Materials' P-Number Assignment Date Issued: August 1, 2011 File: 10-1189

Question: Is it the intent that material produced under an ASTM specification shall be considered to have the same P-Number or P-Number plus Group Number as that of the P-Number or P-Number plus Group Number assigned to the same grade or type material in the corresponding ASME specification (e.g., SA-240 Type 304 is assigned P-No. 8, Group No. 1; therefore, A 240 Type 304 is considered P-No. 8, Group No. 1)?

Reply: Yes.

Subject: QW-404.5, A-Number Date Issued: August 25, 2011 File: 11-918

A procedure qualification test coupon was prepared and tested, which included a chemical analysis of the weld metal. The chemical analysis results were as follows: C: 0.08%, Cr: 0.044%, Mo: 0.14%, Ni: 1.48%, Mn: 1.45%, Si: 0.19%.

Question (1): Does this chemistry meet an A-1 classification?Reply (1): No.Question (2): Does this chemistry meet an A-10 classification?

Reply (2): Yes.

Interpretation: IX-10-32

Subject: QW-182, Fracture Tests Date Issued: August 25, 2011 File: 11-939

Question (1): Is it required by QW-182 that the sum of all rounded indications (regardless of diameter) be considered in addition to the sum of the lengths of inclusions in determining the $\frac{3}{8}$ in. (10 mm) maximum allowed for acceptance?

Reply (1): Yes.

Question (2): Is it permissible to apply the porosity size limitation of $\frac{1}{32}$ in. or greater as specified in QW-191.1.2.2 (b) (3) to a $\frac{1}{2}$ in. (12 mm) welded coupon to the fracture test acceptance criteria of QW-182?

Reply (2): No.

Interpretation: IX-10-33

Subject: QW-404.5, A-Number Essential Variable for GMAW Weld Metal Date Issued: November 14, 2011 File: 11-1339

Question (1): According to QW-404.5, may the A-Number of GMAW weld metal be established from the chemical analysis of a weld deposit prepared according to the filler metal specification when the shielding gas used for the chemical analysis was different from that used in the procedure qualification?

Reply (1): No.

Question (2): According to QW-404.5, may the A-Number of GMAW weld metal be established from the chemical analysis of a weld deposit prepared according to the filler metal specification provided the shielding gas used for the chemical analysis was the same as that used in the procedure qualification?

Reply (2): Yes.

Question (3): Are the GMAW rules in QW-404.5 for establishing A-Numbers also applicable to FCAW? Reply (3): Yes.

Subject: QW-200.4(b) Date Issued: December 8, 2011 File: 10-1966

Background: PQR A is welded with SMAW to join $\frac{5}{8}$ in. (16 mm) thick plates with $\frac{5}{8}$ in. (16 mm) of SMAW deposit. PQR B is welded with GTAW and SMAW to join $\frac{5}{16}$ in. (8 mm) thick plates with $\frac{1}{8}$ in. (3 mm) of GTAW and $\frac{3}{16}$ in. (5 mm) of SMAW deposit. PQR C is welded with GTAW to join $\frac{3}{16}$ in. (5 mm) thick plates with $\frac{3}{16}$ in. (5 mm) of GTAW deposit.

Question (1): Do PQRs A and B qualify the combination WPS for a base metal thickness range of $\frac{1}{16}$ in. (1.5 mm) to $\frac{1}{4}$ in. (32 mm) when impact testing is not required?

Reply (1): No.

Question (2): Do PQRs A and B qualify the combination WPS for a base metal thickness range of $\frac{1}{16}$ in. (5 mm) to $\frac{1}{2}$ (38 mm) when impact testing is not required?

Reply (2): No.

Question (3): Do PQRs A and B qualify the combination WPS for a maximum deposit weld metal thickness range of $\frac{1}{4}$ in. (6 mm) for the GTAW process and $\frac{1}{4}$ in. (32 mm) for the SMAW process?

Reply (3): No.

Question (4): Do PQRs A and C qualify the combination WPS for a maximum deposit weld metal thickness range of $\frac{3}{8}$ in. (10 mm) for the GTAW process and $\frac{1}{4}$ in. (32 mm) for the SMAW process?

Reply (4): No.

Question (5): Do PQRs A and C qualify the combination WPS for a base metal thickness range of $\frac{1}{16}$ in. (1.5 mm) to $\frac{1}{4}$ in. (32 mm) when impact testing is not required?

Reply (5): No.

Question (6): Do PQRs A and C qualify the combination WPS for a base metal thickness range of $\frac{1}{16}$ in. (1.5 mm) to $\frac{1}{2}$ in. (38 mm) when impact testing is not required?

Reply (6): No.

Question (7): Do the provisions in QW-200.4(b) affect the responses to the above questions?

Reply (7): No.

Interpretation: IX-10-35

Subject: QW-452.1(b) Date Issued: December 8, 2011 File: 11-2030

Question: Regarding QW-452.1(b) for performance qualification, is "Maximum to be welded" equivalent to "Unlimited"? Reply: Yes.

Subject: QW-462.4(a) and (b), Fillet Weld Test Date Issued: February 16, 2012 File: 11-896

Question (1): May a WPS qualified with a fillet weld using a plate tee-joint configuration as shown in QW-462.4(a) be used to join a plate to a pipe with fillet welds made parallel to the axis of the pipe for nonpressure-retaining applications?

Reply (1): Yes.

Question (2): May a welder qualified with a fillet weld using a plate tee-joint configuration as shown in QW-462.4(b) be used to weld a plate to a pipe with fillet welds made parallel to the axis of the pipe?

Reply (2): Yes.

Interpretation: IX-10-37

Subject: QW-151.3, Tensile Tests — Turned Specimens Date Issued: February 16, 2012 File: 11-2029

Question: For a 1-in. (25-mm) deep groove weld deposited in a 2-in. (50-mm) thick plate test coupon, may a single-turned 0.505-tensile specimen conforming to QW-462.1(d) be used for each tension test required by QW-451?

Reply: Yes.

Interpretation: IX-10-38

Subject: QW-404.23, Filler Metal Product Form Date Issued: February 16, 2012 File: 12-47

Question: May stranded filler metal be considered the same as bare (solid or metal cored) filler metal in QW-404.23? Reply: Yes.

Interpretation: IX-10-39

Subject: QW-424.1, Base Metal Used for Procedure Qualification Date Issued: February 16, 2012 File: 12-178

Question: Does a PQR recording a P-No. 5B base metal welded to itself support a WPS for welding P-No. 5B metal to any metal assigned P-No. 4, 3, or 1?

Reply: No.

Subject: QW-403.6 Date Issued: July 2, 2012 File: 12-635

Question: Does QW-403.6 apply when the HAZ is not subject to impact testing such as when qualifying a P-8 material? Reply: Yes.

Interpretation: IX-13-02

Subject: QW-288, Tube-to-Tubesheet Welder Qualification Date Issued: August 23, 2012 File: 12-752

Question: When a demonstration mock-up for tube-to-tubesheet welder or welding operator qualification is required, are all of the variables specified in QW-288 required to be followed during the performance qualification test?

Reply: Yes, see QW-193.2.

Interpretation: IX-13-03

Subject: QW-200.1(b) Date Issued: September 13, 2012 File: 11-1476

Background: QW-200.1(b) says: "The completed WPS shall describe all of the essential, nonessential, and, when required, supplementary essential variables for each welding process used in the WPS."

Question (1): If a WPS is written and qualified for welding P-No.1 material to itself, is it necessary to specifically mention on the WPS or on the PQR anything regarding QW-410.64, which addresses the use of thermal processes for cutting or backgouging when welding on P-No.11A and P-No.11B materials?

Reply (1): No. The fact that the WPS and PQR are for welding on P-No.1 materials precludes the need to specifically describe the use of thermal cutting or backgouging for P-No.11A or P-No. 11B materials on either the WPS or the PQR.

Question (2): If a WPS specifies the use of ER70S-6 filler metal, is it necessary to specifically mention in the WPS anything regarding QW-404.23, which addresses filler metal product form by specifying that the filler metal has to be solid?

Reply (2): No. The designation ER70S-6 specifies that the filler metal be solid wire, and that is sufficient for describing the variable QW-404.23.

Question (3): If a WPS is written and qualified for welding P-No. 5A material to itself, is it necessary to specifically mention on a WPS or on the PQRs for submerged arc welding anything regarding QW-404.34 that addresses, when welding on P-No.1 materials, the use of active or neutral flux?

Reply (3): No. The use of active or neutral fluxes only needs to be specified on the WPS and documented on the PQR when the base metal is P-No.1.

Subject: QW-181.2, Sectioning of Pipe-to-Pipe Quarter Sections Date Issued: September 13, 2012 File: 12-120

Question: If the resultant size from a pipe-to-pipe quarter section, per QW-462.4(c), is too large to bend as specified in QW-181.2, can the fracture test quarter section specimen be cut into multiple specimens and tested in lieu of one full quarter specimen?

Reply: Yes.

Interpretation: IX-13-05

Subject: QW-193, Macro Examination for the Mockup Test of Tube-to-Tubesheet Joint Date Issued: November 14, 2012 File: 12-1563

Question: When performing a tube-to-tubesheet test in accordance with QW-193, is it required to section a total of 10 tubes and perform a macroetch of the 40 surfaces exposed by sectioning?

Reply: Yes.

Interpretation: IX-13-06

Subject: QW-103.2, Records Date Issued: December 6, 2012 File: 12-7

Background: In the 2006 Addenda to Section IX, it became mandatory to certify qualification records "by signature or other means as described in the manufacturer's or contractor's Quality Control System."

Question: Prior to the 2006 Addenda, is a typed signature or means other than a written signature on a procedure qualification or performance qualification record considered certified as required in QW/QB-103.2?

Reply: Prior to the 2006 Addenda, the method of certification for procedure and performance qualification records was not addressed by Section IX.

Interpretation: IX-13-07

Subject: QW-407.1(b) Date Issued: December 6, 2012 File: 12-1230

Background:

- (a) P-No. 8 plate is welded, heated to 780°C (1,436°F), then formed, followed by a solution heat treatment at 1 060°C (1,940°F).
- (b) P-No. 8 plate is welded, then cold formed, followed by a solution heat treatment at 1 060°C (1,940°F).

Question: Is WPS supported by a PQR with 1 060°C (1,940°F) solution heat treatment qualified to weld P-No. 8 base material as described in (a) and (b) of the Background?

Reply: Yes.

Interpretation: IX-13-08

Subject: QW-361.2 Date Issued: December 6, 2012 File: 12-1501

Question: A welding operator (machine) successfully qualifies in accordance with QW-300, using an open root, singlewelded, Vee-groove joint configuration, without backing and without a consumable insert. Is the welding operator (machine) qualified to perform machine welding with a consumable insert?

Reply: Yes.

Interpretation: IX-13-09

Subject: QW-202.4, Dissimilar Base Metal Thicknesses Date Issued: December 6, 2012 File: 12-1833

Question: Does QW-202.4 allow a WPS qualified on groove weld, with specified P-No. 1 base metal thickness range of $\frac{1}{2}$ in. (13 mm) through 1 in. (25 mm), to be used in production to weld a $\frac{1}{2}$ in. (13 mm) thick base metal to a $\frac{3}{8}$ in. (10 mm) thick base metal?

Reply: No.

INTENTIONALLY LEFT BLANK

NUMERIC INDEX

Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
Appendix C	IX-92-98	BC94-236	327	Part QB (Cont'd)			
Code Case 2141	IX-92-82	BC93-434	317	QB-484	IX-89-93	BC90-783	249
Code Case 2142-1	IX-01-16	BC01-338	433	Part QW			
Code Case 2143-1	IX-01-16	BC01-338	433	QW-100.1	IX-83-17	BC82-422	13
Q-11, 1971 Edition	IX-83-02	BC81-704	6		IX-89-03	BC88-166A	182
Q-11(b)(3), 1971 Edtion,				QW-100.3	IX-83-99	BC83-472	63
Winter 1973 Addenda	IX-83-41	BC82-796	28		IX-92-86	BC93-658	318
Q-11(5), 1971 Edition, Winte	r				IX-01-22	BC01-679	440
1973 Addenda	IX-83-40	BC82-794	27		IX-01-22R	BC01-679*,	
Section II, Part C	IX-89-97	BC90-873	250			BC04-600	481
	IX-92-27	BC91-471	273		IX-01-26	BC01-826	441
	IX-92-61	BC92-422	304		IX-04-10	BC04-601	464
	IX-92-94	BC93-754	326		IX-07-05	BC04-600	482
	IX-92-99	BC93-762,			IX-10-04	09-490	495
		BC93-769	327	QW-103	IX-92-09	BC91-260	265
	IX-01-25	BC01-815	441		IX-92-80	BC93-584	316
	IX-01-29	BC02-2692	445		IX-92-81	BC92-306	316
	IX-01-38	BC03-274	452	QW-103.1	IX-92-16	BC91-314	268
Part QB				QW-103.2	IX-92-55	BC92-307	295
Part QB	IX-86-73	BC86-332	159		IX-13-06	12-7	516
QB-121	IX-92-86	BC93-655	318	QW-144	IX-01-10	BC01-073	428
QB-123	IX-92-86	BC93-655	318	QW-150	IX-83-110	BC83-692	69
QB-141.4	IX-83-76	BC83-248	44	QW-151	IX-83-38	BC82-771	26
	IX-98-01	BC97-304	383		IX-92-19	BC91-390	269
QB-172	IX-89-74	BC90-429	234		IX-92-37	BC92-097	282
QB-181	IX-83-76	BC83-248	44	QW-151.1	IX-89-25	BC89-099	197
QB-200.4	IX-89-103	BC91-096	253		IX-89-83	BC90-532	243
QB-201.3	IX-86-21	BC86-058	126		IX-89-90	BC90-532	247
QB-203.1	IX-86-02	BC85-292	113		IX-92-79	BC93-583	315
	IX-01-34	BC02-3541	451	QW-151.1(d)	IX-83-119	BC84-253	79
QB-303.3	IX-01-34	BC02-3541	451		IX-01-21	BC01-035	439
QB-402.1	IX-92-74	BC93-474	313	QW-151.2	IX-83-120	BC83-474	79
	IX-92-93	BC93-752	325	QW-151.2(d)	IX-83-95	BC83-301	61
QB-402.2	IX-83-136	BC84-398	87	QW-151.3	IX-92-29	BC91-473	279
QB-402.3	IX-83-49	BC82-871	33		IX-92-63	BC92-452	304
QB-406.1	IX-83-118	BC84-183	78		IX-04-01	BC02-3586	457
QB-406.3	IX-83-118	BC84-183	78		IX-04-25	BC05-1404	474
QB-408.1	IX-01-34	BC02-3541	451		IX-10-37	11-2029	514
QB-408.2	IX-86-11	BC85-420	116	QW-153.1	IX-89-04	BC88-167	182
	IX-86-22	BC85-531	126		IX-95-06	BC94-542	336
QB-408.4	IX-01-34	BC02-3541	451		IX-01-18	BC01-772	435
QB-415	IX-92-83	BC93-527	317	QW-153.1(d)	IX-95-09	BC94-570	344
QB-451.3	IX-04-06	BC03-1664	459	QW-160	IX-83-156	BC84-697	98
	IX-10-09	09-883	501		IX-92-10	BC91-261	265
QB-451.3 [Note (1)]	IX-98-01	BC97-304	383		IX-95-15	BC95-094	346
QB-451.5	IX-10-09	09-883	501	QW-162.1	IX-83-115	BC83-279	77
QB-452.1 [Note (1)]	IX-83-76	BC83-248	44		IX-86-37	BC86-297	139
QB-461	IX-86-02	BC85-292	113	QW-163	IX-83-60	BC82-749	38
QB-462.1(a)	IX-89-49	BC89-372	218		IX-83-120	BC83-474	79
QB-462.1(b)	IX-89-49	BC89-372	218		IX-86-42	BC86-331	141
QB-462.1(c)	IX-89-81	BC90-537	237		IX-86-61	BC86-515	153
QB-462.1(e)	IX-04-06	BC03-1664	459		IX-10-10	09-2140	502
QB-463	IX-83-76	BC83-248	44	QW-180	IX-92-11	BC91-263	266
QB-466.3	IX-86-38	BC86-298	140	QW-181.1	IX-86-40	BC86-329	141
QB-482	IX-89-93	BC90-783	249		IX-10-12	10-13	502

Part QU (Contri)UP 4784 (200 510UP 420 (30 CP 420 50 CP 430UP 420 (30 CP 430 50 CP	Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
	Part QW (Cont'd)				Part QW (Cont'd)			
000000000000000000000000000000000000	• • •	IX-13-04	12-120	516		IX-92-42	BC92-011	291
	QW-181.2.1	IX-10-05	09-1956	495		IX-92-97	BC94-167	327
QW-194 KV-22-24 BC01-205 272 KV-104 BC01-035 439 QW-191 KR-12-1 BC03-520 472 KV-13-2 BC02-340 447 QW-191 KR-85-157 BC64-700 96 QW-201 KR-0-134 BC02-25 472 LK-83-157 BC64-700 96 QW-201 KR-0-34 BC02-25 472 QW-191.2.2 (b(1) KK-31-73 BC65-013 106 KR-83-26 BC03-702 26 QW-191.2.2 (b(1) KK-81-73 BC65-013 106 KR-83-68 BC03-702 26 QW-193 KK-31-73 BC65-013 106 KR-84-68 BC63-76 144 QW-194 K0-103 BC01-073 428 KR-94-78 BC93-377 BC9 QW-194 K0-103 BC01-873 428 KR-94-78 BC93-373 BC6 QW-200.1 KR-94-78 BC38-737 193 KR-94-78 BC39-373 BC6 QW-200.1 KR-94-88 BC38-166 192 KR	QW-182	IX-10-32	11-939	512	QW-200.4(a)(2)	IX-89-43	BC89-365	215
N. 04-21 BC05-328 473 N. 04-18 BC02-3449 447 QW-191 N.831-42 BC34-548 B9 N. 04-18 BC02-3449 57 N.831-42 BC34-578 BC7 N.831-74 BC34-578 57 QW-191.2.2 (b)(1) N.831-74 BC34-577 153 N.831-72 BC33-792 26 QW-191.2.2 (b)(1) N.831-73 BC55-013 106 N.833-73 BC38-792 26 QW-191.2.2 (b)(1) N.831-73 BC55-013 106 N.833-84 RC38-442 96 QW-194 N.1005 BC05-578 727 N.849-73 BC39-377 35 QW-194 N.1010 BC07-578 27 N.92-66 BC39-377 35 QW-200 N.86-17 BC38-737 13 N.92-26 BC39-370 35 QW-200 N.86-17 BC38-737 13 N.92-26 BC39-370 35 QW-200 N.86-17 BC38-73 13 N.92-26 BC39-391 36 <	QW-183	IX-92-24	BC91-280	272		IX-92-75	BC93-490	313
No.4-21BC0-S-28473Hx 01-28BC0-2-34.9447QW-191Nx 03-182BC34-548B9Nx 04-18BC02-34.951Nx 83-142BC34-548B9Nx 03-34ID-96653QW-191.2.2Nx 83-178BC34-517153Nx 83-12BC82-34.111QW-191.2.2(b(1)Nx 83-173BC55-113166Nx 83-33BC83-97226QW-191.2.2(b(1)Nx 43-173BC55-113106Nx 83-151BC38-46296QW-194Nx 10-05BC05-113106Nx 83-151BC38-46296QW-194Nx 10-05BC05-113106Nx 83-151BC38-46296QW-194Nx 10-03BC05-117420Nx 83-173BC38-36714QW-194Nx 10-10BC07-17827Nx 94-78BC33-377305QW-200Nx 86-42BC68-331141Nx 92-28BC93-393306QW-200Nx 86-42BC36-371141Nx 92-28BC93-364316QW-200.1Nx 80-43BC34-473132Nx 92-28BC93-364316QW-200.1Nx 80-43BC34-473132Nx 92-28BC93-584316QW-200.1Nx 80-43BC34-473132Nx 92-28BC93-584316QW-200.1Nx 80-43BC34-473132Nx 92-28BC93-584316QW-200.1Nx 80-43BC34-473132Nx 92-28BC93-584316QW-200.1Nx 80-43BC34-434132 <td>•</td> <td>IX-92-24</td> <td>BC91-280</td> <td></td> <td></td> <td>IX-01-21</td> <td>BC01-035</td> <td>439</td>	•	IX-92-24	BC91-280			IX-01-21	BC01-035	439
QW-191K-33-52BC33-00134SC33-061SC3SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-06SC33-07SC33-0								
N.83.142 BC84-548 89 N.83.157 BC84-700 99 QW-2011 N.83.136 BC32-056 7 W.43.157 BC84-557 107 N.83.12 BC32-056 7 QW-191.2.2(b)(1) N.83.173 BC85-013 106 N.83.33 BC33-02 26 QW-191.2.2(b)(1) N.83.173 BC85-013 106 N.83.83 BC34-00 41 QW-193 N.13.05 1.21563 516 N.83-168 BC33-07 23 QW-194 N.01.03 BC00-519 420 N.84-04 BC03-37 24 QW-194 N.01.01 BC01-073 428 N.89-73 BC0-337 305 QW-194 N.40-10 BC01-537 125 N.92-67 BC93-373 305 QW-200 N.86-42 BC8-631 141 N.92-261 BC93-373 305 QW-200.1 N.86-43 BC91-537 279 N.92-261 BC93-373 305 QW-200.1 N.86-73 BC91-537 279	OW-191							
N.83.157BC84-70098QW-201N.83.03BC32.3611QW-191.2.2N.84.747BC84-557153N.83.123BC32.3411QW-191.2.2N.84.7173BC85.013106N.83.23BC33.79226QW-191.2.2N.84.3473BC85.013106N.843.64BC33.40441QW-191.2.2N.843.473BC85.013106N.843.64BC33.40441QW-194N.41.30512.1563516N.843.64BC63.67144QW-194N.61.10BC01-517420N.864.54BC63.377356QW-194N.64.13BC01-517421N.92.27BC93.377356QW-194N.64.18BC8-38512N.92.66BC93.377356QW-200N.84-28BC91-58727N.92.66BC93.377356QW-200.1N.84-28BC91-58727N.92.66BC93.377356QW-200.1N.84-28BC91-58727N.92.66BC93.377356QW-200.1N.84-28BC91-58727N.92.66BC93.378356QW-200.1N.84-28BC91-58727N.92.67BC93.678326QW-200.1N.84-28BC91-58727N.94.52BC95.452356QW-200.1N.84-38BC94-671244N.95-27BC95.452356QW-200.1N.84-38BC94-671244N.94.62BC95.452359QW-200.1N.84-38BC84-0175N.94.6	LL							
Nx33.174 BCR4-557 107 Nx35.12 BCR3-12 BCR3-141 11 QW-191.2.(b)(1) Nx36-173 BCR5-117 15 Nx38-25 BCR3-170 26 QW-191.2.(b)(1) Nx38-173 BCR5-013 106 Nx83-25 BCR3-702 26 QW-193 Nx13-05 12-1563 516 Nx83-15 BCR3-607 14 QW-194 K01-10 BC00-173 420 Nx80-49 BCR0-371 325 QW-194 K01-10 BCR1-57 127 Nx92-66 BC9-337 325 QW-194.1 Nx66-2 BCR3-578 127 Nx92-67 BC93-371 305 QW-200 Nx64-2 BCR3-160 23 Nx92-76 BC93-373 305 QW-200.1 Nx86-28 BC91-578 279 Nx92-67 BC93-378 325 QW-200.1 Nx86-28 BC91-578 279 Nx92-78 BC93-572 335 QW-200.1 Nx86-48 BC91-578 279 RC93-428 360 <					OW-201			
QW-1912.2 QW-1912.2(b)(1)IX-86-62 IX-83-173BC68-5013106IX-83-258BC63-79226QW-1912.2(b)(1)IX-83-173BC68-5013106IX-83-66BC63-79226QW-193IX-13-0512-1563516IX-83-166BC68-567144QW-194IX-10-03BC00-519420IX-84-94BC68-567144QW-194IX-01-03BC61-520420IX-89-73BC90-31923QW-194.1IX-86-18BC68-537125IX-92-06BC93-367366QW-195IX-92-13BC91-278267IX-92-06BC93-367366QW-200.1IX-86-12BC68-331141IX-92-26BC93-367366IX-92-30BC81-66A122IX-92-28BC93-678355QW-200.1IX-93-33BC81-66A182IX-92-28BC93-562369IX-92-30BC91-587279IX-95-28BC93-363359QW-200.1(b)IX-93-36BC91-567IX-95-28C95-322376IX-93-30BC91-573279IX-95-28BC93-363359QW-200.1(b)IX-93-51BC91-504373IX-95-28BC93-363359QW-200.1(c)IX-83-54BC83-64235IX-94-62BC93-363369IX-85-74BC91-404373IX-94-62BC91-364453QW-200.2(c)IX-83-74BC83-6267IX-94-62BC91-364IX-85-74BC91-40475IX-94-62BC91-364 <td></td> <td></td> <td></td> <td></td> <td>Q</td> <td></td> <td></td> <td></td>					Q			
QV-191.22(b)(1)IX-83-73BC85-013106IX-83-39BC33-79226QW-191.22(b)(3)IX-83-173BC85-013106IX-83-68BC33-40041(W-193IX-13-0512.1563516IX-83-68BC33-40096QW-194IX-01-03BC00-579420IX-83-78BC90-510234(W-194IX-01-10BC01-073428IX-846-49BC66-367144(W-195IX-92-13BC91-278267IX-92-66BC93-377305QW-200IX-86-42BC68-331141IX-92-66BC93-378326QW-200IX-89-17BC82-1667IX-92-80BC93-584316QW-200.1IX-89-33BC91-580233IX-92-80BC93-583326QW-200.1IX-89-33BC91-587279IX-92-80BC93-583356QW-200.1IX-89-33BC91-587279IX-92-80BC93-303359QW-200.1IX-89-33BC91-587279IX-92-80BC93-303359QW-200.1IX-89-33BC91-587279IX-92-80BC93-303359QW-200.1(b)IX-89-35BC90-671244IX-95-29BC93-303359QW-200.1(b)IX-89-541BC91-501364IX-95-29BC93-303359QW-200.2(c)IX-83-74BC83-2667IX-94-25BC93-303359QW-200.2(c)IX-83-74BC83-2667IX-94-25BC93-303349QW-200.2(c)<	OW-191.2.2							
QV-191.22(b)(3)IX-83.73BC85.913106IX-83.66BC82.40441QV-193IX-10.53S16IX-83.64BC86.567144IX-01.01BC01.073420IX-86.49BC86.567144(QV-194)IX-86.18BC65.585IZ5IX-89.73BC90.319224QV-194IX-86.18BC66.331141IX-92.66BC93.377305(QV-200.11IX-86.17BC66.331141IX-92.66BC93.578325(QV-200.11IX-89.17BC88.166182IX-92.28BC93.678325(QV-200.11IX-89.13BC89.1660182IX-92.28BC93.572336(QV-200.11)IX-89.13BC99.252339S69.1587279IX-95.25BC95.252350(QV-200.16)IX-89.11BC99.4521279IX-95.25BC95.252350359(QV-200.16)IX-89.11BC91.457279IX-95.25BC95.252350(QV-200.16)IX-89.51BC90.65124IX-95.25BC95.323359(QV-200.16)IX-89.51BC90.65124IX-95.25BC95.323350(QV-200.16)IX-89.51BC92.42835IX-96.48RC97.309383(QV-200.21)IX-89.51BC82.4567IX-97.40BC92.4335(QV-200.21)IX-89.51BC82.4567IX-97.40BC92.52350(QV-200.21)IX-89.51BC87.40917IX-97.40BC92.52354	-							
QW-193 NX-13-05 12-1563 516 NX-83-151 BCR4-220 96 QW-194 IX-01-03 BC00-519 420 IX-86-49 BC60-57 144 QW-194 IX-01-10 BC01-073 428 IX-89-73 BC90-319 234 QW-195 IX-92-17 BC91-278 267 IX-92-66 BC93-391 306 QW-200 IX-86-42 BC66-331 141 IX-92-66 BC93-391 306 QW-200 IX-86-42 BC66-331 141 IX-92-68 BC93-584 316 QW-200.1 IX-83-03 BC91-630 283 IX-92-28 BC93-522 359 IX-92-30 BC91-537 279 IX-95-26 BC95-302 369 QW-200.1(b) IX-98-35 BC94-641 333 IX-95-26 BC93-321 360 QW-200.1(c) IX-83-54 BC94-620 IX-91-02 BC95-522 376 QW-200.1(c) IX-83-54 BC94-620 37 IX-91-02 BC95-302 383 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
QW-194 IX-01-03 BC00-1073 428 IX-86-49 BC36-367 144 W-194.1 IX-60-10 BC01-073 428 IX-89-73 BC90-319 234 QW-194.1 IX-86-18 BC35-585 125 IX-89-77 BC93-377 305 QW-200 IX-86-47 BC96-331 141 IX-92-66 BC93-378 305 QW-200 IX-86-47 BC86-367 IX-92-40 BC93-578 316 QW-200.1 IX-83-03 BC81-567 IX-92-30 BC93-573 355 QW-200.1 IX-83-03 BC91-587 Z77 IX-95-26 BC93-573 356 QW-200.1(b) IX-89-38 BC91-577 Z77 IX-95-26 BC93-572 360 QW-200.1(b) IX-89-51 BC94-104 333 IX-95-27 BC95-482 360 QW-200.1(c) IX-83-54 BC33-402 X5 IX-91-02 BC95-432 376 QW-200.2 IX-83-54 BC33-402 X5 IX-91-02 BC93-431 57<								
N. 0.1.0 RC 0.7.03 428 K. 89-73 BC 90-319 234 QW.194.1 IX. 86-618 BC 85-585 125 IX. 92.07 BC 91.156 264 QW-200 IX. 86-24 BC 66.331 141 IX. 92.66 BC 93.391 306 QW-200 IX. 864.42 BC 86.331 141 IX. 92.67 BC 93.391 306 QW-200.1 IX. 83.33 BC 91.630 283 IX. 92.61 BC 93.584 316 QW-200.1 IX. 83.33 BC 80.566 7 IX. 95.26 BC 95.522 359 IX. 92.30 BC 91.587 279 IX. 95.26 BC 95.522 360 QW-200.1(b) IX. 89.85 BC 90-671 244 IX. 95.40 BC 97.402 360 QW-200.1(c) IX. 83.54 BC 30.402 35 IX. 95.40 BC 97.309 383 QW-200.2 IX. 83.411 BC 40.40 7 IX. 90.40 BC 97.309 383 IX. 86.70 BC 97.490A 175 IX. 90.40 BC 97.491 <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	•							
QW-194.1 IX-96.18 BC91-278 227 IX-92.07 BC91-165 246 QW-105 IX-92.13 BC91-278 267 IX-92.66 BC93-377 305 QW-200 IX-86-42 BC86-331 141 IX-92.66 BC93-361 306 IX-92.01 IX-86-42 BC98-565 7 IX-92.66 BC93-367 326 QW-200.1 IX-89.03 BC88-166A 182 IX-92.25 BC95-572 359 IX-92.01 IX-89.03 BC98-369 396 IX-95-26 BC95-303 359 QW-200.1(b) IX-89.13 BC98-329 396 IX-95-27 BC95-322 360 IX-95.01 BC94-104 33 IX-95-29 BC95-322 360 IX-95.01 BC88-101 70 IX-95-20 BC95-322 360 QW-200.2 IX-83-73 BC82-360 37 IX-95-20 BC95-322 360 IX-85-70 BC93-327 BC9 IX-95-20 BC95-322 360 QW-20	QW-194							
QW-195 IX-92-63 BC91-278 C67 IX-92-67 BC93-371 305 QW-200 IX-86-42 BC86-331 141 IX-92-67 BC93-394 365 QW-200.1 IX-89-17 BC88-473 193 IX-92-67 BC93-584 316 QW-200.1 IX-89-38 BC91-630 283 IX-92-68 BC93-578 325 IX-92-30 BC91-587 279 IX-95-25 BC95-322 350 IX-92-30 BC91-587 279 IX-95-27 BC95-342 360 QW-200.1(b) IX-98-51 BC90-671 244 IX-95-20 BC93-431 T QW-200.1(c) IX-83-54 BC3-042 35 IX-95-40 BC93-431 T IX-95-01 BC93-538 430 IX-83-71 BC82-256 7 IX-94-60 BC07-379 333 QW-200.1(c) IX-83-71 BC82-056 7 IX-94-60 BC07-539 431 QW-200.2 IX-83-70 BC37-401 75 IX-94-60 <td< td=""><td>OW 194 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	OW 194 1							
QW-200 IX-86-42 BC63-331 141 IX-92-67 BC93-361 366 IX-92-18 BC91-50 283 IX-92-80 BC93-564 316 QW-200.1 IX-92-30 BC92-306 7 IX-92-80 BC93-564 316 QW-200.1 IX-89-03 BC88-166A 182 IX-92-52 BC93-578 325 QW-200.1(b) IX-89-03 BC98-1567 279 IX-95-26 BC95-303 359 QW-200.1(b) IX-99-30 BC94-104 333 IX-95-20 BC95-302 360 QW-200.1(c) IX-89-61 BC94-104 333 IX-95-40 BC97-309 383 QW-200.1(c) IX-83-54 BC93-471 366 7 IX-94-02 BC97-309 383 QW-200.2 IX-83-54 BC83-269 43 IX-01-02 BC03-740 453 IX-86-70 BC97-481 384 IX-01-22 BC03-1196 477 IX-86-77 BC97-481 384 IX-01-40 BC03-743 453	· ·							
N.89-17 BC88-473 193 N.92-80 BC93-584 316 QW-200.1 N.83-03 BC82-056 7 N.92-91 BC92-306 315 N.99-03 BC88-166A 182 N.92-52 BC95-525 359 N.99-03 BC91-507 279 N.95-25 BC95-303 359 N.99-13 BC92-399 396 N.95-27 BC95-482 360 QW-200.1(b) N.89-85 BC90-671 244 N.95-29 BC95-302 360 QW-200.1(c) N.89-85 BC90-671 244 N.95-29 BC97-309 383 QW-200.1(c) N.89-85 BC90-671 244 N.95-29 BC97-309 383 QW-200.2 N.83-54 BC80-056 7 N.01-02 BC97-309 383 QW-200.2 N.83-37 BC82-056 7 N.01-40 BC03-740 453 QW-200.2 N.84-70 BC97-461 318 QW-201.1 N.04-26 BC97-461 454 N.04-26 BC97-461 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							
N.92.38 BC91-630 283 N.92.41 BC92.306 316 QW-200.1 N.83.03 BC28.166A 182 N.99.23 BC93.162A 359 N.92.30 BC91-587 279 N.95.25 BC95.522 359 N.98.13 BC99-164 333 N.95.26 BC95.402 360 QW-200.1(b) N.83.85 BC90-671 244 N.95.29 BC95.302 360 N.83.51 BC95.621 234 N.95.29 BC95.302 360 N.83.31 11.1476 515 BC95.222 376 QW-200.2 N.83.54 BC80.422 35 N.01-40 BC03-740 453 QW-200.2 N.83.72 BC87.690 157 N.04.26 BC97.106 471 N.84.77 BC97.461 318 QW-201.1 N.94.81 BC99.025 431 N.90.44 BC97.461 384 N.01-40 BC03-740 435 N.84.77 BC87.490A 175 N.04.26 BC97.131 <t< td=""><td>Qvv-200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Qvv-200							
QW-200.1 IX-83-03 BC82-056 7 IX-92-32 BC33-678 325 IX-89-03 BC81-166A 182 IX-95-25 BC95-252 359 IX-92-03 BC91-587 279 IX-95-26 BC95-302 360 QW-200.1(b) IX-89-85 BC90-671 244 IX-95-27 BC95-422 360 QW-200.1(b) IX-89-85 BC90-671 244 IX-95-27 BC95-322 376 QW-200.1(c) IX-83-61 BC94-010 70 IX-95-27 BC95-322 376 QW-200.1(c) IX-83-74 BC82-056 7 IX-01-02 BC00-553 419 QW-200.2 IX-83-73 BC82-056 7 IX-01-02 BC00-553 419 QW-200.2 IX-83-70 BC87-4990 175 IX-01-02 BC00-554 453 IX-86-77 BC93-561 318 QW-201.1 IX-96-78 BC93-561 318 IX-92-78 BC93-562 433 IX-91-78 BC91-513 456								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0111 000 4							
NameNa	QW-200.1							
NA NS Sequence NS NS Sequence NS Sequence Sequence <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
QW-200.1(b)IX-89-85BC90-671244IX-95-29BC95-302360IX-95-01BC94-104333IX-95-40BC93-3431IX-95-028C95-322376QW-200.1(c)IX-83-54BC83-04235IX-98-02BC97-309383IX-83-111BC84-00170IX-01-02BC00-553419QW-200.2IX-83-30BC82-5667IX-01-02BC03-740453IX-86-70BC87-089157IX-01-02BC03-740453IX-86-70BC87-089157IX-07-020-6-912461IX-96-04BC97-490A175IX-01-26BC03-740453IX-91-05BC06-554318QW-201.1IX-98-18BC99-025403IX-01-05BC06-654420IX-01-40BC03-740453IX-01-10BC04-601464QW-202IX-92-17BC91-315268IX-01-10BC04-611464QW-202IX-92-17BC91-315268IX-01-10IX-01-158509IX-92-11BC91-263266IX-02-12IX-1158509IX-92-11BC91-263266IX-02-12IX-83-114BC85-023103IX-91-02H2-143343QW-200.2(c)IX-83-114BC85-132105QW-202.2(c)IX-89-67BC90-63252QW-200.2(f)IX-83-114BC85-132105QW-202.3IX-89-100BC90-663252QW-200.2(f)IX-83-171BC85-132105QW-202.3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$ \begin{array}{ c c c c c } & IX-95-01 & BC94-104 & 333 \\ & IX-95-01 & BC94-104 & 333 \\ & IX-13-03 & 11-1476 & 515 & BC93-222 & 376 \\ & C9X-200.1(c) & IX-83-54 & BC83-042 & 35 & IX-98-02 & BC97-309 & 383 \\ & IX-83-111 & BC84-001 & 70 & IX-01-02 & BC09-533 & 419 \\ & QW-200.2 & IX-83-03 & BC82-056 & 7 & IX-01-02 & BC09-519 & 477 \\ & IX-86-70 & BC87-089 & 157 & IX-01-26 & BC05-1196 & 477 \\ & IX-86-70 & BC87-089 & 157 & IX-10-25 & 11.44 & 510 \\ & IX-92-78 & BC97-304 & 175 & IX-10-25 & 11.44 & 510 \\ & IX-92-78 & BC97-4501 & 178 & QW-201.1 & IX-98-18 & BC99-025 & 403 \\ & IX-98-04 & BC97-481 & 318 & QW-201.1 & IX-98-18 & BC99-025 & 403 \\ & IX-98-04 & BC97-481 & 318 & IX-01-40 & BC03-740 & 453 \\ & IX-01-05 & BC00-654 & 420 & IX-07-10 & 08-1002 & 488 \\ & IX-04-10 & BC04-601 & 464 & QW-202.2 & IX-92-17 & BC91-315 & 266 \\ & IX-04-10 & BC04-601 & 464 & QW-202.2 & IX-92-17 & BC91-315 & 266 \\ & IX-04-14 & BC04-5152 & 466 & QW-202.2 & IX-92-17 & BC91-315 & 266 \\ & IX-04-14 & BC04-5152 & 466 & QW-202.2 & IX-92-17 & BC91-315 & 266 \\ & IX-04-16 & BC91-314 & 268 & QW-202.2 (b) & IX-95-03 & BC94-235 & 334 \\ & IX-92-25 & BC91-415 & 272 & IX-01-17 & BC01-615 & 434 \\ & QW-200.2 (c) & IX-83-171 & BC85-132 & 105 & QW-202.2 (c) & IX-89-87 & BC90-745 & 245 \\ & IX-92-25 & BC91-415 & 272 & IX-01-17 & BC01-615 & 434 \\ & QW-200.2 (c) & IX-83-171 & BC85-132 & 105 & QW-202.2 (c) & IX-89-87 & BC90-745 & 245 \\ & IX-97-08 & 08-209 & 488 & IX-89-1008 & BC90-663 & 252 \\ & QW-200.2 (f) & IX-86-06 & BC85-328 & 115 & IX-89-1008 & BC90-663 & 252 \\ & QW-200.2 (f) & IX-86-06 & BC85-328 & 115 & IX-89-1008 & BC90-663 & 252 \\ & QW-200.3 & IX-83-171 & BC8-279 & 77 & IX-83-163 & BC80-275 & 245 \\ & IX-80-66 & BC9-281 & 226 & IX-89-100 & IX-89-10 & IX-89-100 & IX-89-100 & IX-89-100 & IX-89-100 & IX-8$								
IX-13-0311-1476515BC95-222376QW-200.1(c)IX-83-54BC33-04235IX-96-02BC97-309333QW-200.2IX-83-11BC84-0167IX-01-02BC05-553419QW-200.2IX-83-72BC33-26943IX-01-40BC03-740453IX-86-70BC87-090157IX-01-02G-91-243IX-86-70BC87-0904175IX-01-2511-44510IX-98-04BC97-481384IX-01-2511-44510IX-91-05BC06-654420IX-01-02IX-91-0068-1002438IX-01-05BC04-611464QW-202IX-83-103BC87-314156QW-200.2(b)IX-81-48BC91-314268QW-202.2IX-83-103BC87-314156QW-200.2(b)IX-81-48BC91-314268QW-202.2(b)IX-96-48BC91-314268QW-200.2(c)IX-83-171BC85-132105QW-202.2(b)IX-96-36BC91-234245IX-02I0-1158572IX-01-15BC91-634245IX-90-06BC91-314268QW-202.2(c)IX-89-100BC90-663252QW-200.2(c)IX-83-171BC85-132115IX-89-100BC90-663252QW-200.2(f)IX-86-66BC85-328115IX-89-100BC90-663252QW-200.2(f)IX-86-66BC85-328115IX-89-100BC90-663252QW-200.4IX-83-37BC89-358212 <td>QW-200.1(b)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>360</td>	QW-200.1(b)							360
$ \begin{array}{ c c c c c } & K-83-54 & BC83-042 & 35 & K-98-02 & BC97-309 & 383 \\ K-83-111 & BC84-001 & 70 & K-01-02 & BC05-53 & 419 \\ K-83-72 & BC83-269 & 43 & K-01-02 & BC05-518 & 479 \\ K-86-70 & BC87-089 & 157 & K-04-26 & BC05-1196 & 477 \\ K-86-70 & BC87-089 & 157 & K-07-02 & 06-912 & 481 \\ K-86-87 & BC97-490 & 175 & K-07-02 & 06-912 & 481 \\ K-86-87 & BC97-481 & 384 & K-01-25 & 11.44 & 510 \\ K-92-78 & BC93-561 & 318 & QW-201.1 & K-98-18 & BC99-025 & 403 \\ K-98-04 & BC97-481 & 384 & K-01-10 & BC03-740 & 453 \\ K-01-05 & BC00-654 & 420 & K-07-10 & 08-1002 & 488 \\ K-04-10 & BC04-601 & 464 & QW-202 & K-92-17 & BC91-315 & 266 \\ K-04-14 & BC04-1592 & 466 & QW-202.2 & K-83-103 & BC83-237 & 65 \\ K-10-22 & 10-1158 & 509 & K-86-74 & BC87-134 & 165 \\ QW-200.2(b) & K-83-164 & BC85-023 & 103 & K-92-11 & BC91-263 & 266 \\ K-92-16 & BC91-314 & 268 & QW-202.2(b) & K-95-13 & BC91-253 & 334 \\ QW-200.2(c) & K-83-171 & BC85-132 & 105 & QW-202.2(c) & K-89-470 & BC91-253 & 344 \\ QW-200.2(c) & K-83-171 & BC85-132 & 105 & QW-202.2(c) & K-89-470 & BC90-745 & 425 \\ K-07-8 & 08-209 & 488 & QW-202.2(c) & K-89-100 & BC90-663 & 252 \\ QW-200.2(f) & K-86-66 & BC93-38 & 115 & K-89-100 & BC90-663 & 252 \\ QW-200.2(f) & K-86-66 & BC85-328 & 115 & K-89-100 & BC90-663 & 252 \\ QW-200.2(f) & K-86-66 & BC85-328 & 115 & K-89-100 & BC90-663 & 252 \\ QW-200.3 & K-86-66 & BC85-328 & 115 & K-89-100 & BC90-663 & 252 \\ QW-200.4 & K-86-66 & BC90-281 & 226 & K-86-56 & BC86-429 & 146 \\ QW-200.4 & K-83-38 & BC83-384 & 53 & K-88-160 & BC8-421 & 100 \\ K-86-66 & BC80-328 & 115 & K-88-160 & BC84-10 & 107 \\ K-83-83 & BC83-384 & 53 & K-88-160 & BC8-421 & 100 \\ K-86-66 & BC85-328 & 115 & K-86-56 & BC86-429 & 146 \\ QW-200.4 & K-83-86 & BC85-328 & 115 & K-88-160 & BC8-421 & 100 \\ K-86-66 & BC85-328 & 115 & K-86-56 & BC86-429 & 146 \\ R-86-86 & BC90-281 & 226 & K-86-56 & BC86-429 & 146 \\ R-86-86 & BC85-328 & 115 & K-86-56 & BC86-429 & 146 \\ R-86-86 & BC85-328 & 115 & K-86-56 & BC86-429 & 146 \\ R-86-86 & BC85-328 & 115 & K-86-56 & BC86-429 & 160 \\ R-86-86 & BC85-553 & 127 & QW-202.4$						IX-95-40		
IX-83-111 BC84-001 70 IX-01-02 BC00-553 419 QW-200.2 IX-83-03 BC82-056 7 IX-01-40 BC03-740 453 IX-83-72 BC83-269 43 IX-01-20 06-912 481 IX-86-70 BC37-049 175 IX-07-02 06-912 481 IX-86-70 BC37-490A 175 IX-10-25 11-44 510 IX-98-78 BC93-561 318 QW-201.1 IX-98-18 BC99-025 403 IX-98-04 BC97-481 384 IX-01-04 BC03-740 453 IX-01-05 BC00-654 420 IX-01-01 BC04-741 BC04-512 420 IX-01-01 863-237 65 QW-200.2(b) IX-81-14 BC04-601 464 QW-202.2(b) IX-83-73 BC32-376 55 QW-200.2(b) IX-81-14 BC04-1592 466 QW-202.2(c) IX-83-73 BC32-327 55 QW-200.2(c) IX-83-144 BC85-023 103 IX-92-11								
QW-200.2 IX-83-03 BC82-056 7 IX-01-40 BC03-740 453 IX-83-72 BC33-269 43 IX-04-26 BC05-1196 477 IX-86-70 BC67-099 157 IX-07-20 06-912 481 IX-86-70 BC03-561 318 QW-201.1 IX-98-18 BC99-025 403 IX-98-04 BC97-481 384 IX-01-40 BC03-740 453 IX-04-10 BC04-654 420 IX-01-40 BC03-740 453 IX-01-05 BC00-654 420 IX-01-40 BC03-740 453 IX-01-01 BC04-614 464 QW-202 IX-92-17 BC91-315 268 IX-01-10 BC04-1592 466 QW-202.2 IX-83-103 BC82-237 65 QW-200.2(b) IX-83-164 BC85-023 103 IX-92-11 BC91-263 364 IX-92-25 BC91-314 268 QW-202.2(b) IX-86-74 BC87-134 165 QW-200.2(c) IX-83-164 BC85-532 103 IX-92-11 BC91-263 344 QW-20	QW-200.1(c)							
N.83-72 BC83-269 43 N.04-26 BC05-1196 477 N.86-70 BC87-089 157 N.07-02 06-912 481 N.86-70 BC97-090 175 N.07-02 06-912 481 N.92-78 BC93-561 318 QW-201.1 N.09-818 BC99-025 403 N.92-78 BC03-664 420 N.01-40 BC03-740 453 N.04-10 BC04-601 464 QW-202 N.98-18 BC90-25 488 N.04-14 BC04-1592 466 QW-202.2 N.83-103 BC82-37 65 QW-200.2(b) N.83-164 BC91-314 268 QW-202.2(b) N.86-74 BC87-134 165 QW-200.2(c) N.83-171 BC85-132 103 N.92-11 BC91-263 264 QW-200.2(c) N.83-171 BC85-132 105 QW-202.2(b) N.49-50 BC90-745 245 N.92-25 BC91-314 268 QW-202.2(c) N.89-87 BC90-663 252								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	QW-200.2						BC03-740	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			BC83-269					
IX-92-78 BC93-561 318 QW-201.1 IX-98-18 BC99-025 403 IX-98-04 BC97-481 384 IX-01-40 BC03-740 453 IX-01-05 BC00-654 420 IX-01-40 BC03-740 453 IX-01-10 BC04-601 464 QW-202 IX-92-17 BC91-315 268 IX-04-14 BC04-1592 466 QW-202.2 IX-83-103 BC83-237 65 IX-04-14 BC04-1592 466 QW-202.2 IX-83-103 BC83-237 65 IX-04-16 BC91-314 268 QW-202.2(b) IX-95-03 BC91-263 266 IX-92-16 BC91-314 268 QW-202.2(b) IX-95-03 BC91-263 252 QW-200.2(c) IX-83-171 BC85-132 103 IX-95-03 BC91-263 252 QW-200.2(c) IX-83-171 BC85-132 103 IX-99-67 BC90-745 252 QW-200.2(c) IX-86-66 BC85-328 115 IX-89-100 BC90-663		IX-86-70	BC87-089			IX-07-02		
IX-98-04 BC97-481 384 IX-01-40 BC03-740 453 IX-01-05 BC00-654 420 IX-07-10 08-1002 488 IX-04-10 BC04-601 464 QW-202 IX-92-17 BC91-315 268 IX-01-12 BC04-1592 466 QW-202.2 IX-83-103 BC83-237 65 IX-10-22 10-1158 509 IX-86-74 BC87-134 165 QW-200.2(b) IX-83-164 BC85-023 103 IX-92-11 BC91-263 266 IX-92-25 BC91-415 272 IX-01-17 BC01-615 434 QW-200.2(c) IX-83-171 BC85-132 105 QW-202.2(c) IX-89-87 BC90-745 255 IX-07-08 08-209 488 IX-89-100 BC90-663 252 QW-200.2(f) IX-86-66 BC85-328 115 IX-89-100 BC90-663* 251 QW-200.3 IX-83-115 BC83-279 77 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-89-160 BC84-219 100 <		IX-86-87	BC87-490A			IX-10-25		510
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		IX-92-78	BC93-561		QW-201.1			
IX.04.10 BC04-601 464 QW-202 IX.92-17 BC91-315 268 IX.04.14 BC04-1592 466 QW-202.2 IX.83-103 BC83-237 65 QW-200.2(b) IX.43.164 BC85-023 103 IX.92.11 BC91-263 266 QW-200.2(b) IX.83.164 BC85-023 103 IX.92.11 BC91-263 266 IX.92.25 BC91-314 268 QW-202.2(b) IX.95.03 BC94-235 334 QW-200.2(c) IX.83.171 BC85.132 105 QW-202.2(c) IX.89.73 BC90-663 252 QW-200.2(f) IX.86.06 BC85-328 115 IX.89.100 BC90-663 252 QW-200.2(f) IX.86.76 BC83-279 77 IX.83.114 BC84-070 71 IX.89.37 BC83-388 212 IX.83.160 BC84-219 100 IX.89.46 BC90-281 226 IX.83.160 BC84-219 100 IX.89.46 BC83-384 53 IX.91.17 BC90-663		IX-98-04	BC97-481			IX-01-40	BC03-740	453
IX-04-14 BC04-1592 466 W-202.2 IX-83-103 BC83-237 65 W-200.2(b) IX-10-22 10-1158 509 IX-86-74 BC87-134 165 QW-200.2(b) IX-83-164 BC85-023 103 IX-92-11 BC91-263 266 IX-92-16 BC91-314 268 QW-202.2(b) IX-95-03 BC94-235 334 IX-92-25 BC91-415 272 IX-01-17 BC01-615 434 QW-200.2(c) IX-83-171 BC85-132 105 QW-202.2(c) IX-89-87 BC90-663 252 QW-200.2(c) IX-83-171 BC85-328 115 IX-89-100R BC90-663 252 QW-200.2(f) IX-86-06 BC85-328 115 IX-89-100R BC90-663 261 IX-04-05 BC03-1583 458 QW-202.3 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-114 BC84-070 71 IX-89-36 BC90-281 226 IX-86-56 BC86-429		IX-01-05	BC00-654			IX-07-10	08-1002	488
IX-10-2210-1158509IX-86-74BC87-134165QW-200.2(b)IX-83-164BC85-023103IX-92-11BC91-263266IX-92-16BC91-314268QW-202.2(b)IX-95-03BC94-235334IX-92-25BC91-415272IX-01-17BC01-615434QW-200.2(c)IX-83-171BC85-132105QW-202.2(c)IX-89-87BC90-745245IX-07-0808-209488IX-89-100BC90-663252QW-200.2(f)IX-86-06BC85-328115IX-89-100RBC90-663*261IX-04-05BC03-1583458QW-202.3IX-83-93BC83-53156QW-200.3IX-83-115BC83-27977IX-83-114BC84-07071IX-89-37BC90-281226IX-89-100BC84-219100IX-89-36BC90-281226IX-89-12BC88-401187QW-200.4IX-83-80BC83-38850IX-95-34BC96-060368IX-83-80BC83-38453IX-95-34BC96-060368IX-86-06BC85-328115IX-95-34BC96-060368IX-86-06BC85-328115IX-91-17BC01-615434IX-86-06BC85-328115IX-95-34BC96-060368IX-86-06BC85-328115IX-95-34BC96-060368IX-86-06BC85-328115IX-101510-359503IX-86-06BC85-328115IX-95-34 <td< td=""><td></td><td>IX-04-10</td><td>BC04-601</td><td>464</td><td>QW-202</td><td>IX-92-17</td><td>BC91-315</td><td>268</td></td<>		IX-04-10	BC04-601	464	QW-202	IX-92-17	BC91-315	268
QW-200.2(b) IX-83-164 BC85-023 103 IX-92-11 BC91-263 266 IX-92-16 BC91-314 268 QW-202.2(b) IX-95-03 BC94-235 334 QW-200.2(c) IX-83-171 BC85-132 105 QW-202.2(c) IX-89-87 BC90-745 245 IX-07-08 08-209 488 IX-89-100 BC90-663 252 QW-200.2(f) IX-86-06 BC85-328 115 IX-89-100R BC90-663* 266 QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-89-12 BC88-401 187 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-89-66 BC90-281 226 IX-89-13 BC96-660 368 QW-200.4 IX-83-80 BC85-328 115 IX-89-12 BC88-401 187 IX-86-66 BC85-328 115 IX-80-15 IX-80-165 503 </td <td></td> <td>IX-04-14</td> <td>BC04-1592</td> <td>466</td> <td>QW-202.2</td> <td>IX-83-103</td> <td>BC83-237</td> <td>65</td>		IX-04-14	BC04-1592	466	QW-202.2	IX-83-103	BC83-237	65
IX-92-16BC91-314268QW-202.2(b)IX-95-03BC94-235334IX-92-25BC91-415272IX-01-17BC01-615434QW-200.2(c)IX-83-171BC85-132105QW-202.2(c)IX-89-87BC90-745245IX-07-0808-209488IX-89-100BC90-663252QW-200.2(f)IX-86-06BC85-328115IX-89-100RBC90-663*261IX-04-05BC03-1583458QW-202.3IX-83-93BC83-53156QW-200.3IX-83-115BC83-27977IX-83-114BC84-07071IX-89-37BC89-358212IX-83-160BC84-219100IX-89-66BC90-281226IX-86-56BC86-429146QW-200.4IX-83-83BC83-39453IX-95-34BC90-600368IX-86-06BC85-328115IX-91-1510-359503IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC8-280139		IX-10-22	10-1158	509		IX-86-74	BC87-134	165
IX-92-25 BC91-415 272 IX-01-17 BC01-615 434 QW-200.2(c) IX-83-171 BC85-132 105 QW-202.2(c) IX-89-87 BC90-745 245 IX-07-08 08-209 488 IX-89-100 BC90-663 252 QW-200.2(f) IX-86-06 BC85-328 115 IX-89-100R BC90-663* 261 IX-04-05 BC03-1583 458 QW-202.3 IX-83-93 BC83-531 56 QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-46 BC90-281 226 IX-89-56 BC86-429 146 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC90-600 368 IX-86-06 BC85-328 115 IX-95-34 BC96-600 368 IX-86-08 BC85-533 127 QW-202.3(b) IX-01-17 BC01-615 434 <	QW-200.2(b)	IX-83-164	BC85-023	103		IX-92-11	BC91-263	266
QW-200.2(c) IX-83-171 BC85-132 105 QW-202.2(c) IX-89-87 BC90-745 245 IX-07-08 08-209 488 IX-89-100 BC90-663 252 QW-200.2(f) IX-86-06 BC85-328 115 IX-89-100R BC90-663* 261 IX-04-05 BC03-1583 458 QW-202.3 IX-83-93 BC83-531 56 QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-89-12 BC88-401 187 QW-200.4 IX-83-80 BC83-394 53 IX-89-12 BC88-401 187 IX-86-66 BC85-328 115 IX-95-34 BC90-606 368 IX-86-06 BC85-328 115 IX-95-34 BC96-060 368 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 344 IX-86-33 <td></td> <td>IX-92-16</td> <td>BC91-314</td> <td>268</td> <td>QW-202.2(b)</td> <td>IX-95-03</td> <td>BC94-235</td> <td>334</td>		IX-92-16	BC91-314	268	QW-202.2(b)	IX-95-03	BC94-235	334
IX-07-0808-209488IX-89-100BC90-663252QW-200.2(f)IX-86-06BC85-328115IX-89-100RBC90-663*261IX-04-05BC03-1583458QW-202.3IX-83-93BC83-53156QW-200.3IX-83-115BC83-27977IX-83-114BC84-07071IX-89-37BC89-358212IX-83-160BC84-219100IX-89-66BC90-281226IX-86-56BC86-429146QW-200.4IX-83-80BC83-38850IX-89-12BC88-401187IX-83-83BC83-39453IX-95-34BC90-600368IX-86-06BC85-328115IX-10-1510-359503IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC8-280139		IX-92-25	BC91-415	272		IX-01-17	BC01-615	434
IX-07-0808-209488IX-89-100BC90-663252QW-200.2(f)IX-86-06BC85-328115IX-89-100RBC90-663*261IX-04-05BC03-1583458QW-202.3IX-83-93BC83-53156QW-200.3IX-83-115BC83-27977IX-83-114BC84-07071IX-89-37BC89-358212IX-83-160BC84-219100IX-89-66BC90-281226IX-86-56BC86-429146QW-200.4IX-83-80BC83-38850IX-89-12BC88-401187IX-83-83BC83-39453IX-95-34BC90-600368IX-86-06BC85-328115IX-10-1510-359503IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC8-280139	QW-200.2(c)	IX-83-171	BC85-132	105	QW-202.2(c)	IX-89-87	BC90-745	245
IX-04-05 BC03-1583 458 QW-202.3 IX-83-93 BC83-531 56 QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-85-56 BC86-429 146 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC90-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC8-280 139		IX-07-08	08-209	488		IX-89-100	BC90-663	252
IX-04-05 BC03-1583 458 QW-202.3 IX-83-93 BC83-531 56 QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-86-56 BC86-429 146 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC90-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC8-280 139	QW-200.2(f)	IX-86-06					BC90-663*	
QW-200.3 IX-83-115 BC83-279 77 IX-83-114 BC84-070 71 IX-89-37 BC89-358 212 IX-83-160 BC84-219 100 IX-89-66 BC90-281 226 IX-85-56 BC86-429 146 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC96-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC8-280 139		IX-04-05	BC03-1583	458	QW-202.3	IX-83-93	BC83-531	56
IX-89-37BC89-358212IX-83-160BC84-219100IX-89-66BC90-281226IX-86-56BC86-429146QW-200.4IX-83-80BC83-38850IX-89-12BC88-401187IX-83-83BC83-39453IX-95-34BC96-060368IX-86-06BC85-328115IX-10-1510-359503IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC8-280139	QW-200.3	IX-83-115	BC83-279	77		IX-83-114	BC84-070	71
IX-89-66 BC90-281 226 IX-86-56 BC86-429 146 QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC96-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC86-280 139	C C	IX-89-37				IX-83-160		
QW-200.4 IX-83-80 BC83-388 50 IX-89-12 BC88-401 187 IX-83-83 BC83-394 53 IX-95-34 BC96-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC86-280 139		IX-89-66						
IX-83-83 BC83-394 53 IX-95-34 BC96-060 368 IX-86-06 BC85-328 115 IX-10-15 10-359 503 IX-86-08 BC85-134 116 QW-202.3(b) IX-01-17 BC01-615 434 IX-86-23 BC85-553 127 QW-202.4 IX-83-123 BC84-092 80 IX-86-33 BC86-262 138 IX-86-36 BC86-280 139	OW-200.4							
IX-86-06BC85-328115IX-10-1510-359503IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC86-280139	LL							
IX-86-08BC85-134116QW-202.3(b)IX-01-17BC01-615434IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC86-280139								
IX-86-23BC85-553127QW-202.4IX-83-123BC84-09280IX-86-33BC86-262138IX-86-36BC86-280139					OW-2023(h)			
IX-86-33 BC86-262 138 IX-86-36 BC86-280 139								
					QW-202.4			
IA-72-77 DU73-310 314 IA-80-43 BU80-337 142								
IX-95-10 BC94-662 344 IX-86-89 BC88-089 176								
IX-01-24 BC01-814 440 IX-92-11 BC91-263 266								
IX-04-08 BC03-1770 464 IX-95-12 BC95-027 345								
IX-10-14 09-2144 503 IX-01-23 BC01-789 440	OW 200 4(a)							
QW-200.4(a) IX-86-01 BC85-036 113 IX-04-11 BC04-599 465	Qw-200.4(a)	10-00-01	000-030	113		17-04-11	DUU4-399	400

Part QW (Cont'd)Non-94-14ROR-44737QW-2024(b)R-90-939426QW-300.1R-96-16ROR5-3061.14QW-203R-90-119ROR-101-81435R-96-237ROR5-1011.29QW-204R-96-17ROR-103ROR-103ROR-103ROR-103ROR-103ROR-1031.29QW-214R-86-15RO2-3881.3QW-30.2R-84.133ROR-103ROR-2071.66QW-214R-86-15RO3-744474ROR-207ROR-3031.521.52QW-214R-86-71RO3-000157ROR-102ROR-3031.521.52QW-214R-86-71RO3-000157ROR-102ROR-3031.521.52QW-214ROR-103ROR-104ROR-104ROR-3041.521.521.521.52QW-214ROR-534ROR-00ROR-204ROR-2041.621.621.621.62QW-214.ROR-104ROR-203ROR-203ROR-2041.621.621.621.62QW-216ROR-378ROR-203ROR-203ROR-203ROR-2041.521.621.621.621.62QW-216ROR-378ROR-203ROR-203ROR-203ROR-203ROR-2031.621.	Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
QW-2024(b)N-98.208RC99-139*426QW-300.1N-86-05RC80-336112QW-203IX 95-13RC94-035345IX 86-25RC60-18128QW-204IX 89-54RC90-335226IX 86-25RC60-18128QW-214IX 89-55RC91-19254IX 86-35RC64-2096QW-214IX 48-15RC67-90474IX 48-16RC68-398154QW-214IX 48-66RC91-951272IX 91-08RC91-951272QW-214IX 48-67RC91-951264IX 99-52RC91-012272IX 92-66RC91-951256IX 91-18RC10-103421QW-2141IX 48-78RC91-951256IX 91-18RC10-103421QW-2141IX 48-78RC91-92256IX 91-18RC91-92365366QW-2141IX 48-92RC90-192236IX 95-14RC95-940355QW-2161IX 99-34RC90-287262IX 95-14RC95-940356QW-2161IX 49-39RC90-287266QW-301IX 48-77RC90-192157QW-2161IX 49-39RC90-287266QW-301IX 48-77RC90-192157QW-2161IX 49-39RC90-287266QW-301IX 48-77RC90-192156QW-2161IX 49-39RC90-292266IX 49-77RC90-192156QW-2161IX 49-39RC90-292266IX 49-77166156 <td< th=""><th>Part QW (Cont'd)</th><th></th><th></th><th></th><th>Part QW (Cont'd)</th><th></th><th></th><th></th></td<>	Part QW (Cont'd)				Part QW (Cont'd)			
		IX-13-09	12-1833	517		IX-98-14	BC98-447	397
QW-203 QW-214IX-96-73 R69-67BC90-335 R60-335 R60-335345 226IX-86-55 R66-3368BC80-181 R68128 R68-470BC80-388 R68QW-214IX-83-15 R79-478BC91-544SC97-414 R67-10SC97-414 R67-10SC97-414 	QW-202.4(b)	IX-98-20R	BC99-539*		QW-300.1	IX-86-05	BC85-306	
QW-204 NR-96-77 BC90-335 226 NR-95-35 BC96-287 368 QW-211 NR-81-15 BC81-388 13 QW-300.2 NR-95-35 BC96-287 368 QW-214 NR-91-10 BC81-379 BC3		IX-01-19	BC01-811			IX-86-24	BC86-001	128
QW-211 N-83-15 BC32-388 13 QW-300.2 N-83-133 BC34-370 86 QW-214 K-89-105 BC91-119 254 K-83-151 BC34-620 96 QW-214 K-89-10 BC37-704 474 K-83-10 BC38-398 136 QW-214 K-82-60 BC91-524 264 K-83-22 BC91-154 272 K-92-60 BC92-421 303 K-95-32 BC91-303 473 QW-2141 O-95-34 BC96-960 368 K-90-138 BC91-921 323 QW-2141 K-83-74 BC92-421 366 QW-300.3 K-90-38 BC92-521 325 QW-216 K-89-74 BC92-432 262 QW-301.3 K-90-74 R93-212 233 QW-216 K-89-24 BC90-523 262 QW-301.3 K-83-71 BC3-327 65 QW-216 K-89-39 BC39-531 237 C5 C377 C6 QW-216 K-89-39 BC39-531 236	•	IX-95-13	BC94-035			IX-86-25	BC86-018	
	-							
NumberNumbe	QW-211				QW-300.2			
QW-214Nx-80-71BC87-900B77Nx-80-10BC88-398186Nx-92-60BC91-451264Nx-95-32BC91-451272Nx-95-34BC90-600368Nx-95-32BC01-501427Nx-10-10BC10-33506Nx-10-108BC01-641433QW-214.1IX-83-48BC82-87032Nx-10-2097-47493QW-214.3IX-99-77BC90-492236QW-30.3IX-92-39BC92-121223QW-216IX-92-98BC99-178204Nx-95-14BC95-302351QW-216IX-92-99BC99-178204Nx-83-103BC83-23765QW-216IX-92-99BC99-178204Nx-83-103BC83-23765QW-216IX-99-29BC99-482236Nx-86-69BC87-088156QW-216IX-99-77BC90-492236Nx-89-79BC90-531237QW-218IX-99-77BC90-492236Nx-89-79BC90-531237QW-218IX-99-79BC90-492236Nx-89-79BC90-531237QW-250IX-89-77BC90-492236Nx-81-43BC82-39819QW-250IX-89-79BC90-531237BC90-531237QW-251IX-92-79BC90-531237BC90-531237QW-251IX-89-79BC90-531237BC80-507138QW-251IX-89-79BC90-531237BC80-507138QW-251IX-89-79BC90-53								
No.No.92.66 N.95.23BC91-054 BC92-421 BC93-32264No.92.53 RC95-32BC91-415 S76272 RC95-32276 RC91-050367 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 RC91-050368 <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>								
N.92.60BC92-421303N.95-32BC95-30237N.95-34BC96-60368N.01-15BC01-641433QW-214.1N.81-87BC92-7032N.10-0209-747433QW-214.3N.89-77BC90-92236QW-300.3N.92-39BC92-121238QW-216N.89-78BC90-123262N.95-14BC95-240351351QW-216.1N.89-79BC90-600368QW-301N.81-03BC32-321652QW-216.1N.89-39BC99-361213N.92-39BC39-361213S60562QW-216.1N.89-39BC99-361213N.82-73BC69-60368QW-301N.83-133BC39-361213QW-216.1N.89-77BC90-492236N.92-274BC39-1315268269270QW-301.1N.83-153BC94-664971QW-218N.49-71BC91-396270QW-301.1N.83-153BC84-664971264271QW-250N.89-71BC83-35850N.63-143BC82-507118268268191N.63-153BC85-507118QW-251.2N.83-79BC32-158291N.86-13BC85-507118268268176QW-251.4N.92-24BC92-168291N.86-33BC82-507136268268176QW-251.4N.92-56BC32-169129QW-302.1N.86-34BC82-507136QW-251.4N.92-	QW-214							
N.95.34BC9-660368N.01-08BC01-030427W-214.1N.10-190.92143506N.01-029747493QW-214.3N.83.48BC32-207226N.10-020.9-747493QW-214.3N.49.77BC90-492236QW-300.3N.92-39BC92-121283QW-216N.492.54BC92-305295N.95-14BC95-221352QW-216N.92-03BC90-523262N.843-103BC33-23765QW-216.1N.89.39BC99-361213N.843-103BC33-23765QW-216.2(d)N.89.39BC99-361213N.89-77BC90-492236N.843-103BC32-33765QW-216.1N.89.31BC91-389204N.92-17RC91-315268271QW-218N.89.31BC91-78204N.92-13RC91-494271QW-218N.89.31BC91-78204N.83-11BC84-5895QW-218N.89.47BC38-5851QW-301.1N.83-31BC82-49519QW-251N.49.45BC90-671244N.83-149BC82-52819QW-251.2N.83.79BC33-35850N.84-13BC85-50718QW-251.4N.89.27BC92-354296N.84-13BC82-50718QW-254N.79-73GC9-242296N.84-13BC92-57493QW-254N.89-74BC92-534296N.84-13BC92-57493QW-255.1								
N1-01-9 QW-214.10.92,14.3 DK 63.48506N1-01-15 N2-01-150.01-641 9.433433 9.433QW-214.3 QW-214.3NX-80-378 N2-5240.20-30 BC 92-1251X-92-39 N2-5240.02-305 N2-5231X-92-39 N2-5240.02-302 N2-5241X-92-19 N2-5240.02-302 N2-5241X-92-19 N2-5240.02-302 N2-5241X-92-19 N2-5240.02-302 N2-5241X-92-19 N2-5240.02-302 N2-5241X-92-19 N2-5240.02-327 N2-5240.02-328 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-324 N2-5270.02-327 N2-5270.02-327 N2-5270.02-327 N2-5270.02-327 N2-5270.02-327 N2-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
QW-214.3 IX-89-77 BC90-492 236 QW-300.3 IX-92-39 BC92-121 283 W-216 IX-92-54 BC92-305 295 IX-95-14 BC95-040 345 QW-216 IX-92-39 BC90-523 262 IX-10-29 10-339 511 IX-95-34 BC96-060 368 QW-301 IX-83-103 BC82-237 65 QW-216.1 IX-95-34 BC96-060 368 QW-301 IX-89-79 BC90-781 237 W-89-79 BC90-492 236 IX-99-79 BC90-531 237 QW-218 IX-89-77 BC90-492 236 IX-92-38 BC90-494 271 QW-218 IX-89-79 BC30-531 237 IX-92-71 BC91-396 270 QW-301.1 IX-83-153 BC44-64 97 QW-250 IX-89-71 244 IX-91-71 BC93-585 19 IX-91-71 08-458 95 IX-10-70 09-588 496 IX-91-71 IX-84-588 95 IX-91-71 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
N.92-54 BC92-305 295 N.95-14 BC95-040 345 QW-216 N.89-29 BC89-178 204 N.95-19 BC95-221 352 N.92-16 N.89-29 BC90-532 262 N.10-29 1-339 511 N.95-34 BC96-060 368 QW-301 N.83-103 BC83-237 65 QW-216.1 N.89-39 BC89-361 213 N.89-79 BC90-491 236 QW-216.2(d) N.89-77 BC90-492 236 N.92-17 BC91-315 268 QW-218 N.89-31 BC89-178 204 N.92-23 BC90-494 271 QW-250 N.89-11 BC88-399 186 QW-301.1 N.83-13 BC82-395 19 N.402-21 N.89-85 BC90-671 244 N.83-149 BC82-521 102 QW-250 N.89-11 BC83-358 50 N.07.11 08-163-7 189 QW-251.2 N.83-79 BC83-358 50 N.89-30 BC82-921 <	•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QW-214.3				QW-300.3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0111 04 6							
$ \begin{array}{ c c c c c } & & & & & & & & & &$	QW-216							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					0111 004			
QW-216.2(d) IX-89-39 BC89-361 213 IX-89-79 BC90-432 236 QW-218 IX-89-71 BC90-492 236 IX-92-17 BC91-315 268 QW-218 IX-89-31 BC89-178 204 IX-92-23 BC90-494 271 QW-220 BC91-396 270 QW-301.1 IX-83-153 BC86-664 97 QW-250 IX-89-11 BC88-399 186 QW-301.2 IX-83-31 BC82-395 19 IX-89-85 BC90-671 244 IX-83-32 BC82-598 19 IX-10-07 09-588 496 IX-07.11 08-1607 489 QW-251.2 IX-83-79 BC3-358 50 IX-86-13 BC82-592 102 QW-251.4 IX-92-77 BC92-354 296 IX-86-13 BC82-507 118 QW-252 IX-95-16 BC92-505 346 IX-96-30 BC82-418 452 QW-256 IX-96-26 BC86-505 129 QW-302.1 IX-10-10 0-56	0111 04 64				QW-301			
IX-89-77 BC90-492 236 IX-92-17 BC91-315 268 QW-218 IX-89-31 BC89-178 204 IX-92-23 BC90-494 271 QW-250 BC91-396 270 QW-301.1 IX-83-133 BC84-664 97 QW-250 IX-89-11 BC88-399 186 QW-301.2 IX-83-131 BC82-395 19 IX-92-23 IX-99-268 BC90-671 244 IX-93-149 BC84-558 95 IX-10-07 09-588 496 IX-07-11 08-1607 489 QW-251.2 IX-83-79 BC83-358 50 IX-86-13 BC85-502 102 QW-251.4 IX-92-44 BC92-168 291 IX-86-13 BC85-507 118 QW-254 IX-83-27 BC82-713 17 IX-86-30 BC89-177 204 QW-255 IX-95-16 BC95-095 346 IX-10-01 09-567 493 QW-256 IX-95-7 BC92-354 296 IX-86-34 BC82-265 138 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QW-216.2(d)							
IX-92-20 BC91-396 270 QW-301.1 IX-83-153 BC84-664 97 QW-250 IX-89-11 BC88-399 186 QW-301.2 IX-83-31 BC82-395 19 IX-89-85 BC90-671 244 IX-83-149 BC84-558 95 IX-10-07 09-588 496 IX-0711 08-1607 489 QW-251.2 IX-83-79 BC83-358 50 IX-83-163 BC85-022 102 QW-251.4 IX-92-44 BC92-168 291 IX-86-13 BC89-177 204 QW-254 IX-83-79 BC82-354 296 IX-89-30 BC89-177 204 QW-255 IX-95-16 BC95-095 346 IX-01-36 BC02-4198 452 QW-256 IX-95-16 BC95-095 346 IX-10-01 09-567 493 QW-256 IX-95-16 BC95-095 346 IX-80-30 BC87-140 167 QW-256 IX-95-16 BC95-095 346 IX-10-01 09-567 493	0111 04 0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	QW-218				0111 004 4			
IX-89-85 BC90-671 244 IX-83-149 BC84-558 95 IX-10-07 09-588 496 IX-07-11 08-1607 489 IX-10-28 09-558 511 QW-301.4 IX-83-32 BC82-598 19 QW-251.2 IX-83-79 BC83-358 50 IX-86-31 BC85-022 102 QW-251.4 IX-92-44 BC92-168 291 IX-86-30 BC85-507 118 QW-253 IX-92-57 BC92-354 296 IX-86-30 BC89-177 204 QW-254 IX-85-16 BC95-095 346 IX-01-36 BC02-4198 452 QW-255 IX-95-16 BC95-095 346 IX-01-36 BC02-4198 452 QW-256 IX-96-26 BC86-059 129 QW-302.1 IX-10-10 09-567 493 QW-256 IX-66-26 BC86-059 129 QW-302.2 IX-86-34 BC62-265 138 IX-92-57 BC92-354 296 IX-06-10 09-567 493 <td>0111 050</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	0111 050				-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	QW-250				QW-301.2			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
QW-251.2IX-83-79BC83-35850IX-83-163BC85-022102QW-251.4IX-92-44BC92-168291IX-86-13BC85-507118QW-253IX-92-57BC92-354296IX-86-90BC88-091176QW-254IX-83-27BC82-71317IX-89-30BC89-177204QW-255IX-95-16BC95-095346IX-01-36BC02-4198452IX-07-0307-1041481QW-302.1IX-86-34BC86-265138QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-280IX-89-92BC90-681248IX-92-71BC93-365312QW-280IX-89-70BC92-168,227QW-303.1IX-89-98BC91-003251QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-65298QW-281.2(a)IX-85-19BC84-25184IX-86-74BC87-134165QW-281.2(a)IX-83-125BC84-25184IX-82-46BC92-238292QW-281.5(a)IX-83-125BC84-15181QW-303.3IX-92-46BC92-238292QW-282IX-83-125BC84-15184IX-83-125BC24-134 <td></td> <td></td> <td></td> <td></td> <td>014/ 201 4</td> <td></td> <td></td> <td></td>					014/ 201 4			
QW-251.4IX-92-44BC92-168291IX-86-13BC85-507118QW-253IX-92-57BC92-354296IX-86-90BC88-091176QW-254IX-83-27BC82-71317IX-86-90BC89-097204QW-255IX-95-16BC95-095346IX-01-36BC02-4198452IX-07-0307-1041481QW-302.1IX-10-0109-567493QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-280IX-80-92BC90-681248IX-95-17BC93-365312QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-89-98BC91-003251QW-281.2(c)IX-89-70BC90-430227QW-303.1IX-83-98BC34-45063QW-281.2(e)IX-89-70BC84-25184IX-83-155BC84-69298QW-281.2(e)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-281.5(a)IX-89-44BC89-366215QW-303.3IX-92-46BC92-238292QW-281.5(a)IX-89-44BC89-366215QW-303.3IX-92-46BC92-238292QW-281.5(a)IX-89-44BC89-366215QW-303.3IX-92-46BC92-238292QW-282IX-83-1	014 251 2				QW-301.4			
QW-253IX-92-57BC92-354296IX-86-90BC88-091176QW-254IX-83-27BC82-71317IX-89-30BC89-177204QW-255IX-95-16BC95-095346IX-01-36BC02-4198452IX-07-0307-1041481QW-302.1IX-10-0109-567493QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC93-365315QW-281.2(b)IX-89-70BC92-168,QW-303.1IX-83-98BC81-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(c)IX-83-129BC84-25184IX-83-155BC87-134165QW-281.2(c)IX-83-129BC84-25184IX-80-45BC92-238292QW-281.2(c)IX-83-125BC84-15181QW-303.3IX-92-45BC92-238292QW-281.2(a)IX-83-125BC84-15184IX-80-48BC92-2652	•							
QW-254IX-83-27BC82-71317IX-89-30BC89-177204QW-255IX-95-16BC95-095346IX-01-36BC02-4198452IX-07-0307-1041481QW-302.1IX-10-0109-567493QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-92-71BC93-365351IX-92-44BC92-168,QW-303IX-89-98BC91-003251BC90-261291297QW-303.1IX-83-98BC81-203267QW-281.2(b)IX-89-79BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-80-32IX-80-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	•							
W-255IX-95-16BC95-095346IX-01-36BC02-4198452IX-07-0307-1041481QW-302.1IX-10-0109-567493QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-288.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-86-74BC87-134165QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-265292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292								
IX-07-0307-1041481QW-302.1IX-10-0109-567493QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-86-74BC87-134165QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-265292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	•							
QW-256IX-86-26BC86-059129QW-302.2IX-86-34BC86-265138IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-86-74BC87-134165QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-265292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	QW-235				OW 202 1			
IX-92-57BC92-354296IX-86-79BC87-140167IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	OW-256							
IX-04-17BC05-24471IX-10-0109-567493QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303.1IX-89-98BC91-003251QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-265292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	QW-230				QW-302.2			
QW-256.1IX-10-1809-994505QW-302.3IX-89-64BC90-297225QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303.1IX-89-98BC91-003251PW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-265292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292								
QW-258.1IX-04-02BC03-1029457QW-302.4IX-92-71BC93-365312QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251BC90-691291IX-92-15BC91-293267QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	OW-256.1				OW-302 3			
QW-280IX-89-92BC90-681248IX-95-17BC95-035351IX-92-44BC92-168,QW-303IX-89-98BC91-003251BC90-691291IX-92-15BC91-293267QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	•				•			
IX-92-44 BC92-168, BC90-691 QW-303 IX-89-98 BC91-003 251 BC90-691 291 IX-92-15 BC91-293 267 QW-281.2(b) IX-89-70 BC90-430 227 QW-303.1 IX-83-98 BC83-450 63 QW-281.2(c) IX-86-59 BC86-458 152 IX-83-155 BC84-692 98 QW-281.2(e) IX-83-129 BC84-251 84 IX-86-74 BC87-134 165 QW-281.5(a) IX-89-44 BC89-366 215 QW-303.2 IX-92-45 BC92-238 292 QW-282 IX-83-125 BC84-151 81 QW-303.3 IX-92-46 BC92-265 292	-				Q.1 00211			
BC90-691291IX-92-15BC91-293267QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	Q11 200			210	OW-303			
QW-281.2(b)IX-89-70BC90-430227QW-303.1IX-83-98BC83-45063QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292				291	Q. 000			
QW-281.2(c)IX-86-59BC86-458152IX-83-155BC84-69298QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	OW-281.2(b)	IX-89-70			OW-303.1			
QW-281.2(e)IX-83-129BC84-25184IX-86-74BC87-134165QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	• • • • • • • • • • • • • • • • • • • •							
QW-281.5(a)IX-89-44BC89-366215QW-303.2IX-92-45BC92-238292QW-282IX-83-125BC84-15181QW-303.3IX-92-46BC92-265292	• ()							
QW-282 IX-83-125 BC84-151 81 QW-303.3 IX-92-46 BC92-265 292					QW-303.2			
IX-89-54 BC89-367 220 OW-304 IX-83-19 RC82-440 14				81	•			
	-	IX-89-54	BC89-367	220	QW-304	IX-83-19	BC82-440	14
QW-282.4(h) IX-89-59 BC90-250 222 IX-83-57 BC83-079 37	QW-282.4(h)	IX-89-59	BC90-250	222	-	IX-83-57	BC83-079	37
QW-282.6(m) IX-83-09 BC82-279 10 IX-83-91 BC83-528 56	QW-282.6(m)	IX-83-09	BC82-279	10		IX-83-91	BC83-528	56
QW-283 IX-89-22 BC89-094 195 IX-83-108 BC83-639 68								
IX-01-33 BC02-3896 447 IX-86-85 BC87-492 174		IX-01-33	BC02-3896	447		IX-86-85	BC87-492	174
QW-284 IX-95-42 BC97-044 377 IX-95-39 BC96-331 375	QW-284	IX-95-42	BC97-044	377		IX-95-39	BC96-331	375
QW-288 IX-13-02 12-752 515 IX-10-03 09-1012 494	QW-288	IX-13-02	12-752	515		IX-10-03	09-1012	494
QW-300 IX-83-21 BC82-499 15 IX-10-26 09-744 510	QW-300	IX-83-21	BC82-499			IX-10-26	09-744	510
IX-86-25 BC86-018 128 QW-304.1 IX-83-128 BC84-226 83		IX-86-25	BC86-018	128	QW-304.1	IX-83-128	BC84-226	
IX-89-48 BC89-360 217 IX-01-04 BC00-653 420		IX-89-48	BC89-360	217		IX-01-04	BC00-653	420
IX-92-91 BC93-755 324 QW-305 IX-89-108 BC91-157 256		IX-92-91	BC93-755	324	QW-305	IX-89-108	BC91-157	256
IX-92-95 BC94-008 326 QW-306 IX-83-83 BC83-394 53		IX-92-95	BC94-008	326	QW-306	IX-83-83	BC83-394	53
IX-95-20 BC95-302 352 IX-83-107 BC83-550 67			BC95-302	352		IX-83-107	BC83-550	67
IX-95-36 BC96-314 369 IX-86-23 BC85-553 127			BC96-314					
IX-98-11 BC98-133 395 IX-92-26 BC91-470 273		IX-98-11	BC98-133	395		IX-92-26	BC91-470	273

Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
Part QW (Cont'd)				Part QW (Cont'd)			
	IX-92-59	BC92-206	303	QW-355	IX-86-12	BC85-482	117
	IX-92-68	BC92-011A	306		IX-86-46	BC86-219	143
QW-310	IX-92-31	BC91-613	280		IX-10-03	09-1012	494
QW-310.1	IX-86-35	BC86-266	139	QW-356	IX-79-52R	BC79-046*	49
	IX-04-07	BC03-1686	459		IX-83-116	BC84-054	77
QW-310.2	IX-89-89	BC90-769	246		IX-86-68	BC87-039	156
	IX-04-23	BC05-784	474		IX-92-01	BC90-501	285
QW-310.4	IX-83-42	BC83-803	28		IX-89-51	BC90-038	219
QW-310.5(c)	IX-83-70	BC83-270	42		IX-01-09	BC01-032	428
	IX-83-101	BC83-529	64	QW-360	IX-86-68	BC87-039	156
QW-311	IX-83-121	BC84-134	80	QW-361.2	IX-95-31	BC96-141	361
(New QW-381)	IX-83-132	BC84-366	85		IX-98-14	BC98-447	397
	IX-83-162	BC84-663	102		IX-13-08	12-1501	517
	IX-86-27	BC86-061	129	QW-364	IX-92-58	BC92-357	296
QW-311(a)	IX-83-101	BC83-529	64	QW-380	IX-89-71	BC90-039	233
QW-312(a)	IX-83-134	BC84-396	86	-	IX-89-92	BC90-681,	
QW-320	IX-86-24	BC86-001	128			BC90-691	248
QW-321	IX-83-13	BC82-346	12	QW-381	IX-86-27	BC86-061	129
QW-321.2(a)	IX-86-79	BC87-140	167	c	IX-86-58	BC86-457	152
QW-321.3	IX-92-73	BC93-468	313		IX-86-66	BC87-036	155
QW-322	IX-83-58	BC83-086	37		IX-86-71	BC87-090	157
<u>.</u>	IX-83-113	BC84-055	71		IX-92-72	BC93-392	312
	IX-83-117	BC84-133	78		IX-98-14	BC98-447	397
	IX-83-124	BC84-149	81	QW-382	IX-92-02	BC90-518	262
	IX-83-128	BC84-226	83	Q	IX-92-04	BC90-530	263
	IX-83-154	BC84-689	97	QW-383	IX-86-32	BC86-222	138
	IX-83-166	BC85-030	104	Q.1 000	IX-89-101	BC91-085	252
	IX-83-167	BC85-031	104	QW-400	IX-83-82	BC83-303	52
	IX-83-170	BC85-091	105	QW-401.3	IX-01-39	BC03-469	453
	IX-86-07	BC85-560	115	Q.1. 10110	IX-04-04	BC03-1246	458
	IX-86-19	BC85-587	129		IX-07-09	08-576	488
	IX-86-50	BC86-389	144	QW-401.15	IX-89-28	BC89-174	203
	IX-89-38	BC89-359	213	QW-402	IX-89-53	BC90-045	219
	IX-89-54	BC89-367	220	Q11 102	IX-10-21	10-496	509
	IX-89-63	BC90-254	224	QW-402.3	IX-86-54	BC86-400	146
	IX-92-12	BC91-264	266	QW-402.4	IX-89-28	BC89-174	203
	IX-92-22	BC91-425	271	QW-402.5	IX-86-54	BC86-400	146
	IX-92-64	BC92-464	305	QW-402.6	IX-83-04	BC82-098	8
	IX-95-38	BC96-132	375	QW-402.10	IX-83-04	BC82-098	8
	IX-01-21	BC01-035	439	Q	IX-83-71	BC83-230	43
QW-322(a)	IX-83-150	BC84-617	96		IX-89-42	BC89-364	215
Q. (2)	IX-83-159	BC84-690	99	QW-402.11	IX-86-80	BC87-253	167
	IX-83-164	BC85-023	103	QW-402.12	IX-98-06	BC98-009	389
	IX-86-52	BC86-394	145	QW-402.14	IX-98-06	BC98-009	389
	IX-86-81	BC87-242	173	QW-403	IX-83-20	BC82-496	14
	IX-86-82	BC87-252	173		IX-83-116	BC84-054	77
	IX-89-27	BC89-100	203	QW-403.1	IX-83-45	BC82-385	30
	IX-89-38	BC89-359	213	Q11 100.1	IX-89-14	BC88-403	187
	IX-89-54	BC89-367	220		IX-95-24	BC95-194	359
QW-322.1	IX-04-21	BC05-528	473	QW-403.5	IX-83-92	BC83-530	56
QW-322.1(a)	IX-10-17	10-1161	504	Q11 100.0	IX-83-135	BC84-397	87
QW-322.1(a) QW-322.1(b)	IX-10-17 IX-95-19	BC95-221	352		IX-86-15	BC85-532	123
QW-322.2	IX-92-47	BC92-266	292		IX-86-75	BC87-136	123
	IX-04-13	BC04-1457	466		IX-86-78	BC87-130	166
QW-322.2(a)	IX-04-13 IX-01-12	BC01-201	430		IX-89-23	BC89-096	196
QW-350	IX-86-51	BC86-390	430 145		IX-89-25 IX-89-26	BC89-098 BC89-103	198
AM-220	IX-86-51 IX-95-30	BC86-390 BC96-073	145 361		IX-89-26 IX-89-75	BC89-103 BC90-443	235
QW-351	IX-95-50 IX-83-55	BC96-073 BC83-059	361		IX-89-75 IX-89-78	BC90-443 BC90-515	235 236
AM-221	IX-83-55 IX-83-77	BC83-059 BC83-253	30 49		IX-92-70	BC90-515 BC92-450	236 311
	IX-83-143 IX-89-02	BC84-581 BC88-090	89 181		IX-92-70R	BC00-470	425
	IX-89-02 IX-92-32	BC88-090 BC91-631	280		IX-95-21 IX-01-30	BC95-318 BC02-2693	353 446
	17-27-27	DC31-031	200		17-01-20	DC02-2093	770

Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
Part QW (Cont'd)				Part QW (Cont'd)			
	IX-04-16	BC04-1418	471		IX-83-100	BC83-563	63
QW-403.6	IX-83-148	BC84-417	95	QW-404.14	IX-83-89	BC83-402	55
	IX-89-07	BC88-171	184		IX-89-68	BC90-349	227
	IX-89-86	BC90-734	245	QW-404.15	IX-89-47	BC89-370	217
	IX-89-96	BC90-872	250	QW-404.22	IX-83-22	BC82-516	15
	IX-92-50	BC92-217	293		IX-89-91	BC90-680	247
	IX-92-87	BC93-151	323		IX-07-07E	08-40	497
	IX-04-04	BC03-1246	458	QW-404.23	IX-07-04	BC07-1343	482
	IX-04-15	BC04-1595	467		IX-10-38	12-47	514
	IX-07-09	08-576	488	QW-404.24	IX-10-16	10-1159	504
	IX-13-01	12-635	515	QW-404.25	IX-89-80	BC90-536	237
QW-403.8	IX-83-97	BC83-444	62	QW-404.26	IX-89-80	BC90-536	237
	IX-83-127	BC84-224	83	QW-404.27	IX-10-16	10-1159	504
QW-403.9	IX-83-152	BC84-648	96	QW-404.28	IX-83-100	BC83-563	63
	IX-04-09	BC04-065	464		IX-89-61	BC90-252	223
QW-403.10	IX-95-28	BC96-002	360	QW-404.30	IX-89-20	BC88-478	194
	IX-95-33	BC96-001	367		IX-89-24	BC89-097	196
	IX-01-01	BC00-514	419	QW-404.31	IX-89-56	BC90-036	221
QW-403.11	IX-83-11	BC82-300	11	QW-404.32	IX-83-112	BC84-038	70
	IX-83-35	BC82-599	25		IX-01-01	BC00-514	419
	IX-83-56	BC83-078	36	QW-404.33	IX-01-37	BC03-263	452
	IX-86-75	BC87-136	165	QW-404.36	IX-04-19	BC05-26	472
	IX-89-75	BC90-443	235	QW-405.1	IX-89-20	BC88-478	194
	IX-89-84	BC90-664	244		IX-89-24	BC89-097	196
	IX-89-88	BC90-768	246	QW-405.2	IX-83-50	BC82-872	33
QW-403.12	IX-89-61	BC90-252	223		IX-04-28	BC06-323	478
QW-403.16	IX-89-20	BC88-478	194	QW-405.3	IX-83-177	BC85-092	108
	IX-89-82	BC90-531	243		IX-86-86	BC87-494	175
	IX-89-91	BC90-680	247		IX-92-01	BC90-501	285
QW-403.18	IX-83-106	BC83-630	67		IX-98-15	BC98-448	397
	IX-83-137	BC84-399	87		IX-10-20	10-1487	506
	IX-86-41	BC86-330	141	QW-406.1	IX-83-161	BC84-618	101
QW-404	IX-83-37	BC82-770	26		IX-83-165	BC85-024	103
	IX-86-03	BC85-293	114	QW-406.2	IX-83-161	BC84-618	101
	IX-86-65	BC87-031A	155	QW-406.3	IX-92-57	BC92-354	296
	IX-86-76	BC87-137	166	QW-407	IX-83-130	BC84-252	84
	IX-89-105	BC91-119	254		IX-86-04	BC85-304	114
	IX-98-19	BC99-409	409		IX-86-20	BC86-010	125
	IX-10-21	10-496	509		IX-86-76	BC87-137	166
QW-404.4	IX-83-10	BC82-299	10	QW-407.1	IX-83-29	BC82-763	18
	IX-83-87	BC83-340	54		IX-83-30	BC82-243	18
QW-404.5	IX-83-176	BC85-088	107		IX-98-10	BC97-306,	
	IX-83-140R	BC84-250*	137			BC97-308	395
	IX-86-57	BC86-263	151		IX-01-20	BC01-813	435
	IX-86-84	BC87-491	174		IX-04-03	BC03-1212	458
	IX-89-34	BC89-172	211		IX-04-20	BC05-293	472
	IX-89-55	BC89-371	220		IX-07-06	BC07-1708	483
	IX-89-58	BC90-249	221	QW-407.1(b)	IX-81-31R	BC82-097*	5
	IX-10-31	11-918	512		IX-86-47	BC86-223	143
	IX-10-33	11-1339	512		IX-04-29	BC06-462	478
QW-404.5(b)	IX-10-13	09-1368	503		IX-07-01	BC06-285	481
QW-404.9	IX-83-46	BC82-751	31		IX-13-07	12-1230	517
	IX-83-59	BC82-614	37	QW-407.2	IX-83-29	BC82-763	18
	IX-83-61	BC82-831	39		IX-83-86	BC83-294	54
	IX-83-84	BC83-398	53		IX-83-145	BC84-584	90
	IX-83-96	BC83-442	62		IX-92-84	BC93-586	318
	IX-83-169	BC85-089	105		IX-04-15	BC04-1595	467
	IX-95-37	BC96-315	369		IX-07-06	BC07-1708	483
QW-404.12	IX-92-21	BC91-397	270		IX-10-08	09-513	501
QW-404.13	IX-83-06	BC82-245	9	QW-407.4	IX-83-11	BC82-300	11
	IX-83-47	BC82-790	32		IX-83-35	BC82-599	25
	IX-83-97	BC83-444	62		IX-86-23	BC85-553	127

Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
Part QW (Cont'd)				Part QW (Cont'd)			
	IX-92-33	BC91-614	280		IX-89-26	BC89-103	197
	IX-01-17	BC01-615	434		IX-89-41	BC89-363	214
	IX-04-22	BC04-1301	473		IX-89-75	BC90-443	235
QW-408	IX-89-16	BC88-405	188		IX-89-88	BC90-768	246
	IX-95-11	BC95-002	344		IX-95-22	BC95-251	353
QW-408.2	IX-92-62	BC92-425	304	QW-424.1	IX-89-58	BC90-249	221
	IX-95-16	BC95-095	346		IX-10-12	10-13	502
QW-408.3	IX-86-67	BC87-038	155		IX-10-39	12-178	514
QW-408.8	IX-83-168	BC85-059	104	QW-432	IX-83-24	BC82-588	16
QW-408.9	IX-83-146	BC84-619	90		IX-80-52R	BC80-435*	49
	IX-86-67	BC87-038	155		IX-92-99	BC93-762,	
QW-409	IX-83-26	BC82-182	17			BC93-769	327
QW-409.1	IX-83-33	BC82-617	19		IX-98-08	BC98-131	390
	IX-83-175	BC85-038	107	QW-433	IX-10-23	10-1918	509
	IX-92-40	BC92-110	284	QW-442	IX-89-46	BC89-369	216
	IX-92-87	BC93-151	323	QW-450	IX-83-14	BC82-302	12
	IX-92-88	BC93-593	323	QW-450 vs QW-461	IX-83-78	BC83-300	50
	IX-04-12	BC04-1013	466	QW-451	IX-83-01	BC81-702	5
	IX-04-14	BC04-1592	466		IX-83-05	BC82-237	8
QW-409.2	IX-07-03	BC07-1041	481		IX-83-08	BC82-265	10
	IX-10-24	11-216	510		IX-83-36	BC82-757	25
QW-409.4	IX-01-28	BC02-2691	445		IX-83-64	BC83-222	40
QW-409.8	IX-89-19	BC88-476	194		IX-83-104	BC83-349	66
	IX-89-36	BC89-357	212		IX-83-105	BC83-471	66
	IX-92-88	BC93-593	323		IX-83-141	BC84-434	89
	IX-95-18	BC95-220	351		IX-83-177	BC85-092	108
0111 440	IX-04-17	BC05-24	471		IX-86-31	BC86-101	137
QW-410	IX-10-21	10-496	509		IX-89-07	BC88-171	184
QW-410.7	IX-86-55	BC86-426	146		IX-89-62	BC90-253	224
QW-410.9	IX-86-60	BC86-514A	152		IX-89-83	BC90-532	243
QW-410.15	IX-86-44	BC86-365	142		IX-89-99	BC91-022	251
014/ 410 25	IX-86-63	BC86-520	154		IX-92-19	BC91-390	269
QW-410.25	IX-83-69	BC82-233	42		IX-92-34	BC91-586	281
QW-410.26	IX-86-26	BC86-059	129		IX-92-37	BC92-097	282
QW-410.38	IX-04-02 IX-98-07	BC03-1029 BC98-009	457 390		IX-92-68 IX-98-03	BC92-011A BC97-479	306 383
QW-410.42	IX-98-07 IX-01-06R	BC98-009 BC98-240*			IX-98-03 IX-98-12	BC97-479 BC98-237,	303
QW-410.51 QW-415	IX-01-06K IX-89-79	BC98-240* BC90-531	426 237		17-20-17	BC98-237, BC98-238	396
QW-415	IX-89-79 IX-89-82	BC90-531 BC90-531	237		IX-04-04	BC93-1246	390 458
QW-416	IX-89-82 IX-86-72	BC90-331 BC87-091	158		IX-04-04	BC03-1240	458
QW-418	IX-86-86	BC87-494	156	QW-451.1	IX-83-18	BC82-423	438 14
QW-420	IX-10-30	10-1189	511	Qw-451.1	IX-83-43	BC82-423 BC82-822	29
QW-420.1	IX-07-05	BC04-600	482		IX-83-81	BC83-395	51
QW-420.2	IX-95-07	BC94-522	343		IX-83-88	BC83-396	54
QW 120.2	IX-01-07	BC01-029	427		IX-83-94	BC83-284	61
QW-422	IX-83-34	BC82-514	25		IX-83-102	BC83-551	65
Q11 122	IX-83-131	BC84-365	85		IX-83-122	BC83-645	80
	IX-86-88	BC88-041	176		IX-86-36	BC86-280	139
	IX-89-14	BC88-403	187		IX-86-48	BC86-281	143
	IX-89-36	BC89-357	212		IX-89-18	BC88-474	193
	IX-89-88	BC90-768	246		IX-89-107	BC91-124	255
	IX-92-08	BC91-257	265		IX-01-35	BC02-4075	451
	IX-92-18	BC91-389	200		IX-04-11	BC04-599	465
	IX-95-05	BC94-365	336	QW-451.3	IX-86-40	BC86-329	141
	IX-07-14	09-486	493	·····	IX-92-51	BC92-276	294
QW-423	IX-86-17	BC85-554	124		IX-92-56	BC92-308	295
···	IX-89-15	BC88-404	183		IX-04-25	BC05-1404	474
	IX-92-18	BC91-389	297	QW-452	IX-83-07	BC82-246	9
	IX-01-31	BC02-2694	446	··· ··	IX-83-16	BC82-396	13
QW-423.1	IX-89-58	BC90-249	221		IX-83-67	BC83-123	41
	IX-92-65	BC93-148	305		IX-83-104	BC83-349	66
QW-424	IX-89-05	BC88-168	188		IX-86-30	BC86-104	131
-			-				-

Location	Interpreta- tion	File No.	Page No.	Location	Interpreta- tion	File No.	Page No.
Part QW (Cont'd)				Part QW (Cont'd)			
	IX-86-39	BC86-299	140		IX-92-72	BC93-392	312
	IX-89-02	BC88-090	181		IX-92-90	BC93-753	324
QW-452.1	IX-83-66	BC83-058	41		IX-04-07	BC03-1686	459
	IX-83-88	BC83-396	54		IX-04-24	BC05-1195	474
	IX-83-90	BC83-407	55	QW-462	IX-86-09	BC85-200	116
	IX-89-06	BC88-169	183		IX-89-102	BC91-086	253
	IX-89-21	BC89-031	195		IX-92-76	BC93-515	312
	IX-89-52	BC90-044	219		IX-95-02	BC94-181	333
	IX-89-64	BC90-297	225	QW-462.1	IX-83-110	BC83-692	69
	IX-89-95	BC90-869	250		IX-92-29	BC91-473	279
	IX-89-107	BC91-124	255		IX-98-09	BC97-302	395
	IX-92-35	BC91-277	281	QW-462.1(a)	IX-86-45	BC86-366	142
	IX-92-36	BC91-616	282		IX-89-25	BC89-099	197
	IX-92-53	BC92-254	294	QW-462.1(d)	IX-83-139	BC83-629	88
	IX-92-59	BC92-206	303		IX-89-89	BC90-769	246
	IX-92-89	BC93-653	324	QW-462.1(e)	IX-83-95	BC83-301	61
	IX-01-27	BC02-111	441	QW-462.3(a)	IX-83-144	BC84-583	90
QW-452.1(b)	IX-10-23	10-1918	509		IX-89-72	BC90-042	233
	IX-10-35	11-2030	513	QW-462.3(b)	IX-83-144	BC84-583	90
QW-452.3	IX-83-22	BC82-516	15	QW-462.4	IX-92-51	BC92-276	294
	IX-83-23	BC82-530	15	QW-462.4(a)	IX-95-08	BC94-543	343
	IX-83-66	BC83-058	41		IX-10-36	11-896	514
	IX-83-158	BC84-368	99	QW-462.4(b)	IX-89-45	BC89-368	216
	IX-86-29	BC86-103	130		IX-10-36	11-896	514
	IX-89-09	BC88-397	185	QW-462.5	IX-92-05	BC90-632	263
	IX-89-69	BC90-401	227		IX-92-52	BC92-252	294
	IX-89-94	BC90-785	249	QW-462.5(a)	IX-98-16	BC98-453	398
	IX-89-104	BC91-097	253	QW-463.1(b)	IX-83-15	BC82-388	13
	IX-89-106	BC91-120	254	QW-463.2(g)	IX-83-75	BC83-149	44
	IX-92-59	BC92-206	303	QW-466	IX-83-51	BC83-881	34
	IX-92-89	BC93-653	324		IX-92-48	BC92-267	293
	IX-95-04	BC94-296	335		IX-92-49	BC92-268	293
	IX-04-07	BC03-1686	459		IX-95-15	BC95-094	346
QW-452.4	IX-92-45	BC92-238	292	QW-466.1	IX-83-73	BC82-866	43
	IX-92-51	BC92-276	294		IX-83-74	BC82-867	44
QW-452.5	IX-10-06	08-210	496		IX-83-115	BC83-279	77
	IX-10-27	08-210	510		IX-89-37	BC89-358	212
QW-452.6	IX-89-57	BC90-040	221		IX-07-12	08-1161	489
QW-453	IX-92-05	BC90-632	263		IX-10-10	09-2140	502
	IX-92-72	BC93-392	312	QW-466.3	IX-83-109	BC83-689	68
	IX-95-23	BC95-428	353	-	IX-86-37	BC86-297	139
	IX-95-41	BC97-028	376	QW-482	IX-86-14	BC85-483	123
	IX-98-05	BC98-009	389	C C	IX-89-01	BC88-042	181
	IX-98-17	BC98-055	403	QW-483	IX-86-14	BC85-483	123
	IX-10-11	09-2141	502	-	IX-86-70	BC87-089	157
QW-461.1(a)	IX-83-65	BC83-225	40	QW-484	IX-83-53	BC83-002	35
QW-461.9	IX-83-28	BC82-748	18	-	IX-07-13	08-1464	489
-	IX-83-44	BC82-838	29	QW-492	IX-86-16	BC85-533	124
	IX-83-53	BC83-002	35	-	IX-89-62	BC90-253	224
	IX-83-134	BC84-396	86		IX-92-43	BC92-100	291
	IX-86-29	BC86-103	130		IX-98-15	BC98-448	397
	IX-89-98	BC91-003	251	QW-500	IX-01-14	BC01-332	433
	IX-92-15	BC91-293	267	QW-510	IX-01-11	BC01-089	429
	IX-92-41	BC92-035	284	QW-540	IX-01-11	BC01-089	429
	IX-92-46	BC92-265	292				
	-						

INTENTIONALLY LEFT BLANK

SUBJECT INDEX

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Base Metals				Brazing Procedure Specific	ation (Cont'd)		
P-Number reassignment	IX-01-22 IX-01-22R	BC01-679 01-679*,	440	recording information on BPS recording information on the		BC90-783	249
		04-600	481	Brazer or Brazing Operator	•		
	IX-07-05	04-600	482	Qualification Test	IX-89-94	BC90-785	249
	IX-10-04	09-490	495	requalification of	IX-86-22	BC85-531	126
P-Number substitution	IX-83-20	BC82-496	14				
	IX-83-56	BC83-078	36	Brazing Test Specimens			
	IX-83-96	BC83-442	62	butt and scarf joints	IX-89-49	BC89-372	218
	IX-86-17	BC85-554	124	positions	IX-92-85	BC93-655	318
	IX-86-18	BC85-585	125	tension tests	IX-04-06	BC03-1664	459
	IX-89-29	BC89-176	204		IX-10-09	09-883	501
	IX-89-61	BC90-252	223				
	IX-89-75	BC90-443	235	Certification			_
	IX-95-21	BC95-318	353	of the PQR	IX-83-03	BC82-056	7
	IX-95-22	BC95-251	353	of the WPS	IX-83-03	BC82-056	7
	IX-95-24	BC95-194	359				
qualifying for notch toughness		BC83-530	54	Clad Materials	W 40 40	00.004	505
	IX-86-48	BC86-281	143	joining of	IX-10-18	09-994	505
	IX-89-75	BC90-443	235	Concurrentle Inconte			
	IX-89-84 IX-89-96	BC90-664	244 250	Consumable Inserts addition/deletion	IV 90 01	PC00 690	247
	IX-89-96 IX-92-70	BC90-872 BC92-450	250 311	performance qualification	IX-89-91 IX-83-06	BC90-680 BC82-245	247 9
	IX-92-70 IX-92-70R	BC92-450 BC00-470	425	performance quantication	IX-83-00 IX-83-22	BC82-245 BC82-516	9 15
	IX-92-70K IX-92-87	BC00-470 BC93-151	323	qualifying viewing windows	IX-83-22 IX-83-104	BC82-310 BC83-349	15 66
qualifying for test specimens	IX-92-87 IX-89-37	BC89-358	212	qualitying viewing windows	17-02-104	DC03-349	00
qualitying for test specifiens	IX-89-88	BC90-768	246	Cover Pass			
	IX-01-30	BC02-2693	446	remelting of	IX-83-89	BC83-402	55
	IX-13-01	12-635	515	rementing of	IN 05 07	5005 102	55
thickness	IX-01-01	BC00-514	419	Diameters, Pipe			
	IX-01-19	BC01-811	435	performance qualification	IX-83-55	BC83-059	29
	IX-04-09	BC04-065	464	ranges listed on the WPS	IX-83-44	BC82-838	36
	IX-04-11	BC04-599	465	0	IX-89-82	BC90-531	243
	IX-13-01	12-635	515				
use of as filler metal	IX-83-87	BC83-340	56	Dust amount in powdered filler			
Brazing Base Metals				metal	IX-83-09	BC82-279	10
P-Number substitution	IX-92-74	BC93-474	313	metur	IN 05 07	D002 277	10
Brazing Performance Qualif		2010 111	010	Edition of Code the use of the referenced	IX-01-13	BC01-570	430
limits of qualified positions	IX-01-34	BC02-3541	451	edition of the Code	IX-01-26	BC01-826	441
mines of quantieu posicions	1X-01-54	DC02-3341	451	edition of the code	1X-01-20	DC01-020	771
Brazing Procedure Qualifica by Part QW welding	ation			Essential Variables (see Var	iables)		
qualification	IX-92-83	BC93-527	317	Filler Materials (see also SF	A Specification	c)	
electrode classification	IX-95-13	BC94-035	345	change in electrode	1 Specification	3)	
for attaching small	M 70 10	5071 055	515	classification	IX-83-84	BC83-303	53
penetrations	IX-86-73	BC86-332	159		IX-89-61	BC90-252	223
joint design	IX-01-34	BC02-3541	451		IX-92-21	BC91-397	270
qualification by proof test	IX-86-53	BC86-399	145		IX-98-19	BC99-409	409
S-Number substitution	IX-92-93	BC93-752	325	change in product forms	IX-07-04	07-1343	482
				change in wire classification	IX-83-84	BC83-398	53
Brazing Procedure Specifica	ation			.	IX-83-169	BC85-089	105
combination of thicknesses	IX-89-104	BC91-097	253		IX-95-37	BC96-315	369
qualification of hard-facing	IX-92-83	BC93-527	317		IX-98-19	BC99-409	409

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Filler Materials (see also SFA chemical analysis of weld	Specifications)	(Cont'd)		Nozzle Joint Design (Cont'd)			
deposit	IX-86-57	BC86-263	151	Operational Control			
electrode spacing	IX-86-44	BC86-365	142	change in company name	IX-83-25	BC81-160	16
flux-cored consumable	IX-89-105	BC00-305 BC91-119	254	contractor's associations	IX-83-68	BC81-160 BC83-040	41
nonferrous	IX-83-176	BC91-119 BC85-088	234 107	of welding procedures	IX-83-03	BC82-056	7
	14-03-170	DC03-000	107	of weiding procedures			7 96
qualifying as a welded	IV 02 114	DC04 070	71		IX-83-151	BC84-620	
buildup	IX-83-114	BC84-070	71 472		IX-86-64	BC86-395	154
recrushed slag	IX-04-19	BC05-26			IX-07-02	06-912	481
stranded	IX-10-38	12-47	514		IX-07-10	08-1002	488
supplementary powder, addition, deletion or				organizations not involved in Code applications	IX-83-39	BC82-792	26
increase	IX-89-80	BC90-536	237				
without SFA specification	IX-86-03	BC85-293	114	Peel Test, Brazing			
				acceptance criteria	IX-89-74	BC90-429	234
Flux					IX-98-01	BC97-304	383
active/neutral	IX-86-16	BC85-533	124				
flux-cored arc welding	IX-10-03	09-1012	494	Performance Qualification alternate base materials for			
F-Numbers				welder qualification	IX-92-18	BC91-389	297
change in	IX-83-10	BC82-299	10	werder quanteation	IX-92-65	BC93-148	305
enange m	IX-89-28	BC89-174	203		IX-01-31	BC02-2694	446
classification	IX-89-46	BC89-369	205	A-number substitution	IX-86-84	BC87-491	174
classification	IX-92-99	BC93-762	327	A number substitution	IX-89-29	BC89-176	204
	IX)2))	BC93-769	327		IX-92-18	BC91-389	297
classification of martensitic		DC/3-707	527	applied lining or clad plate	IX-89-101	BC91-085	252
materials	IX-83-24	BC82-588	16	by several contractors	IX-07-101	DC71-005	232
use of electrodes to conform	1X-03-24	DC02-300	10	simultaneously	IX-86-25	BC86-018	128
F-No.	IX-89-29	BC89-176	204	sinultaneously	IX-86-81	BC80-018 BC87-242	173
1 ⁻¹ 10.	IX-01-16	BC01-338	433		IX-95-32	BC95-302	367
	1X-01-10	DC01-330	433	change in angle groove	IX-86-69	BC87-088	156
Internase Temperatures							285
Interpass Temperatures listing of on the WPS	IX-83-41	BC82-796	28	change in vertical welding combination of welding	IX-92-01	BC90-501	285
listing of on the WFS			101	0	IV 02 01	BC90-501	285
qualification of	IX-83-161	BC84-618	28	processes	IX-92-01		285
quanneation of	IX-83-41	BC82-796	20 84	consumable inserts	IX-92-26	BC91-470	273 9
	IX-83-129	BC84-251	84	consumable inserts	IX-83-06	BC82-245	
M					IX-83-22	BC82-516	15
Machine Welding	IV 02 42	DC02 100	201		IX-07-07E	08-40	497
definition of	IX-92-43	BC92-100	291		IX-13-08	12-1501	517
No. 1.1 No. 1.1				continuity	IX-10-17	10-1161	504
Multiprocess Welds				corrosion-resistant weld		B <i>aac</i> aa <i>a</i>	100
qualified thickness range for			1.0	metal overlay	IV-86-32	BC86-222	138
performance qualification	IX-83-14	BC83-302	12		IX-86-58	BC86-457	152
1.6. 1.1.1	IX-89-35	BC89-307	211		IX-86-66	BC87-036	155
qualified thickness range for					IX-89-79	BC90-531	237
procedure qualification	IX-83-83	BC83-394	53		IX-89-71	BC90-039	233
	IX-95-33	BC96-001	367		IX-92-72	BC93-392	312
required test specimens for					IX-95-23	BC95-428	353
procedure qualification	IX-83-01	BC81-702	5		IX-95-30	BC96-073	361
root pass without backing	IX-89-01	BC88-042	181		IX-98-14	BC98-447	397
with notch-toughness				diameter limitation	IX-89-09	BC88-397	185
requirements	IX-83-33	BC82-617	19		IX-89-69	BC90-401	227
					IX-89-98	BC91-003	251
Nonessential Variables (see	also Variables)				IX-89-104	BC91-097	253
addressing	IX-98-13	BC98-239	396		IX-89-106	BC91-120	254
ranges for	IX-83-04	BC82-098	8		IX-92-15	BC91-263	267
					IX-92-41	BC92-035	284
Normalized Materials					IX-92-90	BC93-753	324
qualified by non-normalized					IX-95-04	BC94-296	335
materials	IX-83-86	BC83-294	54	editorial correction to WPQ	IX-92-96	BC93-755	326
				effective operational control	IX-89-10	BC88-398	186
Nozzle Joint Design				of	IX-95-20	BC95-302	352
base metal thickness	IX-86-31	BC86-101	137		IX-95-32	BC95-302	367

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Performance Qualification	(Cont'd)			Performance Qualification (Cont'd)		
electrodes	IX-95-30	BC96-073	361		IX-86-30	BC86-104	131
employer's responsibility	IX-01-15	BC01-641	433		IX-86-35	BC86-266	139
fillet welds	IX-83-04	BC82-098	8		IX-89-24	BC89-097	196
	IX-83-103	BC83-237	65		IX-89-40	BC89-362	214
	IX-86-28	BC86-062	130		IX-89-98	BC91-003	251
	IX-92-45	BC92-238	292		IX-92-15	BC91-263	267
	IX-10-06	08-210	496		IX-92-41	BC92-035	284
fillet welds qualified by					IX-92-46	BC92-265	292
groove welds	IX-83-16	BC82-396	13		IX-92-90	BC93-753	324
	IX-83-98	BC84-450	63		IX-04-24	BC05-1195	474
	IX-86-74	BC87-134	165	process substitution	IX-86-46	BC86-219	143
	IX-89-31	BC89-178	204	production assembly mock-up	IX-10-05	09-1596	495
	IX-89-87	BC90-745	245		IX-10-12	10-13	502
F-Number qualification	IX-79-52R	BC79-046*	49	qualification with and without			
	IX-80-52R	BC80-435*	49	backing	IX-92-96	BC94-102	326
	IX-98-08	BC98-131	390		IX-01-09	BC01-032	428
further training	IX-83-13	BC82-346	12	questioning of ability	IX-86-24	BC86-001	128
groove welds	IX-83-16	BC82-396	13	recording information on			
-	IX-89-20	BC88-478	194	WPQ	IX-86-13	BC85-507	118
	IX-89-89	BC90-769	246	-	IX-86-72	BC87-091	158
	IX-89-94	BC90-785	249		IX-89-30	BC89-177	204
	IX-95-04	BC94-296	335		IX-89-47	BC89-370	217
	IX-04-23	BC05-784	474	records	IX-95-38	BC96-132	375
hard facing weld metal					IX-01-36	BC02-4198	452
overlay	IX-92-02	BC90-518	262	renewal of	IX-83-154	BC84-689	97
o vor lay	IX-95-23	BC95-428	353		IX-83-159	BC84-690	99
machine welding	IX-95-31	BC96-141	361		IX-83-164	BC85-023	103
macro examination	IX-92-24	BC91-280	272		IX-83-166	BC85-030	104
maintenance of	IX-86-82	BC87-252	173		IX-83-167	BC85-031	101
manual/machine welding	M 00 01	D007 101	175		IX-86-07	BC85-560	115
substitution	IX-86-68	BC87-039	156		IX-86-19	BC85-587	125
Substitution	IX-89-38	BC89-359	213		IX-86-50	BC86-389	144
manual/semiautomatic	IX-07-30	DC07-337	215		IX-86-52	BC86-394	145
welding substitution	IX-95-36	BC96-314	369		IX-89-32	BC89-100	203
multiprocess	IX-83-14	BC82-302	12		IX-09-32 IX-92-12	BC91-264	266
multiprocess	IX-83-107	BC83-550	67		IX-92-12 IX-92-22	BC91-425	200
	IX-86-13	BC85-507	118		IX-92-22 IX-92-47	BC92-266	271
	IX-86-23		118		IX-92-47 IX-92-64		305
		BC85-553				BC92-464	
·····	IX-86-39	BC86-299	140		IX-01-21	BC01-035	439
operator variables	IX-83-163	BC85-022	102		IX-04-13	BC04-1457	466
	IX-86-05	BC85-306	114	requalification after failure	IX-92-56	BC92-308	295
partial-penetration groove		DC04 (02	00	requalification after failure	W 02 52	D000 460	24.2
welds	IX-83-155	BC84-692	98 27	and further training	IX-92-73	BC93-468	313
P-Number substitutions	IX-83-40	BC82-794	27	requalification for friction	W 02 50	D000.055	201
	IX-83-42	BC82-803	28	weld operator	IX-92-58	BC92-357	296
	IX-83-63	BC83-122	40	requalifying for Addenda		D <i>G</i> O 4 0000	-
	IX-83-70	BC83-270	42	changes	IX-83-112	BC84-038	70
	IX-83-116	BC84-054	77	responsibility of	IX-83-21	BC82-499	15
	IX-83-137	BC84-399	87		IX-83-100	BC83-563	63
	IX-86-17	BC85-554	124		IX-83-101	BC83-529	64
	IX-86-18	BC85-585	125		IX-83-106	BC83-630	67
	IX-86-41	BC86-330	141		IX-83-113	BC83-055	71
	IX-86-51	BC86-390	145		IX-83-117	BC84-133	78
	IX-86-72	BC87-091	158		IX-83-121	BC84-134	80
	IX-89-15	BC88-404	188		IX-83-124	BC84-149	81
	IX-89-33	BC89-175	205		IX-83-128	BC84-226	83
position	IX-83-28	BC82-748	18		IX-83-131	BC84-365	85
	IX-83-108	BC83-639	68		IX-83-132	BC84-366	85
	IX-83-162	BC84-663	102		IX-83-133	BC84-370	86
	IX-83-170	BC85-091	105		IX-83-134	BC84-396	86
	IX-83-177	BC85-092	108		IX-92-25	BC91-415	272
	IX-86-29	BC86-103	130		IX-98-14	BC98-447	397

Page No.

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.
Performance Qualification	(Cont'd)			Performance Qualification (Cont'd)	
	IX-10-02	09-747	493	welding of joint by more than		
revoking of qualification	IX-95-19	BC95-221	352	one welder	IX-89-06	BC88-169
	IX-04-21	BC05-528	473	when welding PQR coupon	IX-83-31	BC82-395
simultaneous qualification of					IX-86-90	BC88-091
welders	IX-92-39	BC92-121	283		IX-89-48	BC89-360
	IX-95-14	BC95-040	345		IX-10-01	09-567
	IX-10-29	10-339	511	with a tube end gun	IX-83-67	BC83-123
special process	IX-89-92	BC90-681,		with/without backing	IX-83-168	BC85-059
		BC90-691	248		IX-86-23	BC85-553
strip electrodes	IX-95-30	BC96-073	361			
test coupon qualification	IX-92-31	BC91-613	280	Plasma Arc Welding	IX-89-40	BC89-362
test specimen movement	IX-86-77	BC87-138	166			
thickness limitation	IX-83-90	BC83-407	55	P-Numbers		
	IX-83-158	BC84-368	99	assignments	IX-07-14	09-486
	IX-89-02	BC88-090	181		IX-10-30	10-1189
	IX-89-24	BC89-097	196	chemical analysis/mechanical		
	IX-89-32	BC89-287	205	properties of	IX-86-88	BC88-041
	IX-89-64	BC90-297	225	classification of	IX-83-156	BC84-697
	IX-89-83	BC90-532	243		IX-92-08	BC91-257
	IX-89-95	BC90-869	250		IX-95-05	BC94-365
	IX-89-96	BC90-872	250	welding of non-pressure		
	IX-92-36	BC91-616	282	retaining attachments	IX-89-05	BC88-168
	IX-92-35	BC91-277	281	-		
	IX-92-32	BC91-631	280	Positions, Brazing		
	IX-92-51	BC92-276	294	qualification of flow positions	IX-86-02	BC85-292
	IX-92-59	BC92-206	303			
	IX-95-23	BC95-428	353	Positions, Welding		
	IX-95-28	BC96-002	360	fillet welds in vertical-up		
	IX-98-05	BC98-009	389	progression	IX-83-82	BC83-303
	IX-98-17	BC98-055	403	listing on the WPS	IX-83-44	BC82-830
	IX-10-35	11-2030	513	qualification of 2G position	IX-83-75	BC83-149
type of tests required	IX-92-17	BC91-315	268	qualification of 6G position	IX-04-07	BC03-1686
	IX-92-23	BC90-494	270	recording welder qualification		
ultrasonic examination	IX-95-35	BC96-287	368	for	IX-83-53	BC83-002
units of measurement	IX-04-27	BC05-1215	477	stud welding	IX-04-28	BC06-323
using radiography	IX-83-19	BC82-440	14	vertical-down progression	IX-10-20	10-1489
0 0 1 1	IX-83-52	BC83-001	34	vertical-up progression	IX-83-50	BC82-872
	IX-83-57	BC83-079	36		IX-86-86	BC87-494
	IX-83-91	BC83-528	56			
	IX-83-142	BC84-548	89	Postweld Heat Treatment		
	IX-83-173	BC85-013	106	addition of	IX-86-47	BC86-223
	IX-83-174	BC84-557	107		IX-07-01	06-285
	IX-86-34	BC86-265	138	change in base metal		
	IX-86-79	BC87-140	167	thickness	IX-92-33	BC91-614
	IX-86-85	BC87-492	174		IX-04-15	BC04-1595
	IX-89-21	BC89-031	195	change in soaking time	IX-83-130	BC84-252
visual examination	IX-92-71	BC93-365	312	limit on maximum time	IX-83-145	BC84-584
	IX-95-17	BC95-035	351	P8 material	IX-04-03	BC03-1212
	IX-01-03	BC00-519	420		IX-13-07	12-1230
visual inspection	IX-89-50	BC90-035	218	reporting results	IX-98-10	BC97-306,
volumetric examination	IX-10-26	09-744	510			BC97-308
welder/operator	IX-89-48	BC89-360	217	temperature ranges	IX-81-30R	BC82-097*
Wolder, operator	IX-89-51	BC90-038	219	comportatat o rangeo	IX-83-30	BC82-243
	IX-89-57	BC90-040	221		IX-04-29	BC06-462
	IX-89-63	BC90-254	224	transformation temperatures	IX-83-11	BC82-300
	IX-89-108	BC90-234 BC91-157	256	dansior mation temperatures	IX-85-11 IX-86-23	BC82-500 BC85-553
	IX-89-108 IX-95-39	BC91-137 BC96-331	375		IX-86-76	BC85-555 BC87-137
	IX-95-59 IX-98-11	BC98-133	395		IX-00-70 IX-01-20	
	IX-98-11 IX-98-14	BC98-133 BC98-447	393 397		IX-01-20 IX-07-06	BC01-813 07-1708
			397 489	versus past hasting	IX-07-06 IX-83-29	BC82-763
welder/operator	IX-07-11	08-1607	407	versus post heating		
					IX-86-20	BC86-010
identification	IX-83-138	NI84-058	88			

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Postweld Heat Treatment ((Cont'd)			Procedure Qualification Rec	ord (Cont'd)		
when lower critical					IX-98-16	BC98-453	398
temperature has been					IX-10-11	09-2141	502
exceeded	IX-83-35	BC82-599	25	dissimilar base metal			
				thicknesses	IX-92-11	BC91-263	266
Preheat Temperature					IX-95-12	BC95-027	345
maintenance of	IX-83-82	BC83-303	52		IX-98-20R	BC99-539*	426
	IX-83-161	BC84-618	101		IX-01-23	BC01-789	440
					IX-04-11	BC04-599	465
Procedure Qualification					IX-04-16	BC04-1418	471
acceptance criteria	IX-01-18	BC01-772	435	electrical characteristics	IX-92-88	BC93-593	325
equipment	IX-95-42	BC97-044	377		IX-01-28	BC02-2691	445
essential variables	IX-89-54	BC89-367	220		IX-04-12	BC04-1013	466
	IX-89-59	BC90-250	222		IX-04-14	BC04-1592	466
	IX-01-06	BC98-240	421	groove and fillet welds	IX-92-11	BC91-263	266
impact testing	IX-89-23	BC89-096	196		IX-92-37	BC92-097	282
joints	IX-98-06	BC98-009	389		IX-92-34	BC91-586	281
limits of qualified positions					IX-95-28	BC96-002	360
for procedures	IX-95-13	BC94-035	345	hardfacing overlay,	IX-89-77	BC90-492	236
liquid penetrant examination	IX-92-13	BC91-278	267	examination	IX-92-03	BC90-523	262
	IX-95-23	BC95-428	353		IX-92-04	BC90-530	263
nonessential variables	IX-98-13	BC98-239	396		IX-95-23	BC95-428	353
	IX-01-05	BC00-654	420		IX-95-34	BC96-060	368
partial penetration groove					IX-98-16	BC98-453	398
welds	IX-89-62	BC90-253	224	information on	IX-86-70	BC87-089	157
	IX-95-03	BC94-235	334		IX-89-16	BC88-405	188
root pass	IX-01-32	BC02-3449	447	listing of backing	IX-86-33	BC82-262	138
seal welds	IX-98-15	BC98-448	397	listing of preheat temperature		BC85-024	103
solution annealing	IX-10-08	09-513	501	listing of shielding gas purity	IX-95-11	BC95-002	344
subcontracting	IX-92-78	BC93-561	315	macro examination	IX-92-24	BC91-280	272
substrate deposit	IX-95-34	BC96-060	368	manufacturer's or			
tension tests	IX-95-09	BC94-570	344	contractor's responsibility	IX-89-73	BC90-319	234
thickness limits	IX-01-35	BC02-4075	451		IX-92-07	BC91-156	264
variables	IX-89-79	BC90-531	237		IX-92-09	BC91-260	265
	IX-92-40	BC92-110	284		IX-92-16	BC91-314	268
weld repair and buildup tests	IX-95-03	BC94-235	334		IX-92-25	BC91-415	272
welds with buttering	IX-01-33	BC02-3896	447		IX-92-66	BC93-377	305
					IX-92-67	BC93-391	306
Procedure Qualification Rec	ord				IX-92-80	BC92-584	316
additions/corrections to	IX-83-171	BC85-132	105		IX-92-81	BC92-306	316
	IX-07-08	08-209	488		IX-92-92	BC93-678	325
applied lining	IX-92-20	BC91-396	270		IX-95-25	BC95-252	359
certification of	IX-83-03	BC82-056	7		IX-95-26	BC95-303	359
	IX-07-13	08-1464	489		IX-95-27	BC95-482	360
combining PQRs	IX-83-47	BC82-790	32		IX-95-29	BC95-302	360
	IX-86-15	BC85-532	123		IX-95-40	BC93-431,	
	IX-89-40	BC89-362	214			BC95-222	376
	IX-92-42	BC92-011	291		IX-98-18	BC99-025	403
	IX-92-59	BC92-206	303		IX-04-26	BC05-1196	477
	IX-92-68	BC92-011A	306		IX-07-02	06-912	481
	IX-92-95	BC94-008	326	meeting requirements of			
	IX-04-18	BC05-25	472	older editions	IX-83-99	BC83-472	63
	IX-10-34	10-1966	513		IX-83-148	BC84-417	95
corrosion-resistant weld					IX-92-86	BC93-658	318
metal overlay, chemical				notch toughness testing	IX-86-75	BC87-136	165
analysis	IX-89-77	BC90-492	233		IX-86-78	BC87-139	166
	IX-89-71	BC90-039	236		IX-92-50	BC92-217	293
	IX-92-05	BC90-632	263		IX-04-04	BC03-1246	458
	IX-92-06	BC91-054	264	oscillation	IX-98-07	BC98-009	390
	IX-92-28	BC91-472	273	P-Number reassignment	IX-01-22	BC01-679	440
	IX-92-52	BC92-252	294	recording test results	IX-83-26	BC82-182	12
	IX-92-54	BC92-305	295		IX-83-139	BC83-629	88
	IX-95-41	BC97-028	376		IX-83-172	BC85-135	106

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Procedure Qualification Record (Cont'd)				Qualified Thickness Range (Cont'd)		
	IX-83-175	BC85-038	107		IX-98-16	BC98-453	398
requalifying	IX-89-56	BC90-036	221	for dissimilar base metal			
	IX-89-58	BC90-249	221	thickness	IX-86-89	BC88-089	176
	IX-92-62	BC92-425	304	for double-bevel groove welds	IX-83-90	BC83-407	55
	IX-92-97	BC94-167	327				
revising WPSs	IX-92-57	BC92-354	296	for groove welds	IX-89-100	BC90-663	252
special process	IX-89-92	BC90-681,		-	IX-89-100R	BC90-663*	261
		BC90-691	248		IX-98-03	BC97-479	383
	IX-92-44	BC92-168	291	for hardfacing overlay	IX-92-05	BC90-632	263
Supplemental Filler Metal	IX-10-16	10-1159	504		IX-98-05	BC98-009	389
supporting WPSs	IX-92-84	BC93-586	318		IX-98-16	BC98-453	398
	IX-95-21	BC95-318	353	for multiprocess procedures	IX-83-83	BC83-394	53
	IX-95-22	BC95-251	353		IX-83-126	BC84-221	82
	IX-98-04	BC97-481	384	for notch toughness	IX-89-86	BC90-734	245
	IX-01-17	BC01-615	434	for weld repair	IX-83-93	BC83-531	56
	IX-04-10	BC04-601	464		IX-83-126	BC84-221	82
	IX-10-39	12-178	514		IX-83-141	BC84-434	89
thickness limits and test		12 1/0	011		IX-86-28	BC86-062	130
specimens	IX-92-19	BC91-390	269	impact testing	IX-83-81	BC83-395	51
specificits	IX-92-53	BC92-254	209	impact testing	IX-07-09	08-576	488
	IX-92-89	BC93-653	324	limitation when using	IX 07 05	00 570	100
	IX-92-09	BC95-428	353	GMAW-S	IX-83-18	BC82-423	14
	IX-93-23 IX-98-03	BC97-479	383	diffAW-5	IX-95-33	BC96-001	367
	IX-98-05	BC98-009	389		IX-95-28	BC96-001 BC96-002	360
	IX-98-05 IX-98-07	BC98-009	390	limitations for combined	17-92-70	BC90-002	300
	IX-98-07 IX-98-17	BC98-009	403	procedures	17 02 00	BC83-388	50
				procedures	IX-83-80		
	IX-01-01	BC00-514	419	limitations of OW 451	IX-95-33	BC96-001 BC83-551	367 65
	IX-04-11	BC04-599	465	limitations of QW-451	IX-83-102		
types of test required	IX-92-17	BC91-315	268		IX-83-152	BC84-648	96 120
visual examination	IX-01-10	BC01-073	428		IX-86-36	BC86-280	139
D.					IX-89-83	BC90-532	243
Process		D 200 007		minimum for weld metal	IX-83-81	BC83-395	51
definition of	IX-83-58	BC83-086	37		IX-89-39	BC89-361	213
performance qualification	IX-83-69	BC83-233	42	ranges qualified by PQR	IX-83-36	BC82-757	25
variables for	IX-86-12	BC85-482	117		IX-83-64	BC83-222	40
					IX-89-11	BC88-399	186
Production Welds					IX-01-12	BC01-201	430
liquid penetrant examination	IX-92-13	BC91-278	267	thickness for determining			
				weld reinforcement	IX-83-05	BC82-237	8
Qualified Thickness Range					IX-83-08	BC82-265	10
performance				thickness used to determine			
for different positions	IX-83-23	BC82-530	15	range	IX-83-94	BC83-284	61
	IX-86-30	BC86-104	131		IX-86-43	BC86-337	142
for dissimilar base metal					IX-89-18	BC88-474	193
thicknesses	IX-83-123	BC84-092	80		IX-01-27	BC02-111	441
	IX-89-37	BC89-358	212		IX-04-09	BC04-065	464
	IX-01-23	BC01-789	440				
for hardfacing overlay	IX-92-05	BC90-632	263	Records (see also Procedure	Qualification	Record)	
	IX-98-05	BC98-009	389	maintenance of performance			
for pipe	IX-83-66	BC83-058	41	qualification	IX-83-32	BC82-598	19
	IX-86-29	BC86-103	130		IX-92-55	BC92-307	295
for weld overlays	IX-83-101	BC83-529	64		IX-01-08	BC01-030	427
	IX-86-27	BC86-061	129		IX-13-06	12-7	516
weld reinforcement							
procedure	IX-83-07	BC82-246	9	Root Gap			
•	IX-83-143	BC84-581	89	qualification of	IX-83-71	BC83-230	43
changes in later editions	IX-83-88	BC83-396	54	use of term	IX-83-04	BC82-098	8
effect of PWHT	IX-03-00 IX-83-11	BC82-300	11			2002 000	5
	IX-03-11 IX-04-22	BC04-1301	473	SFA Specifications			
for brazed laps	IX-04-22 IX-83-49	BC04-1301 BC82-871	33	AWS classification change	IX-83-147	BC84-249	95
ioi biazeu iaps	IX-85-49 IX-86-21	BC82-871 BC86-058	33 126	change in SFA specification	14-03-14/	DC07-247	23
for cladding	IX-86-21 IX-83-48	BC86-058 BC82-870	32	filler metal classification	IX-01-37	BC03-263	452
ior clauding	11-03-40	DC02-070	32	inter metal tiassification	IN-01-37	0003-203	734

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
SFA Specifications (Cont'd) change of designations in a				Test Specimens (Cont'd) calibration of testing			
classification	IX-83-59	BC82-614	37	machines	IX-83-109	BC83-689	68
change of electrode	IX 05 57	DC02 011	57	cold straightening of	IX-83-60	BC82-749	38
classification	IX-83-61	BC82-831	39	corrosion-resistant overlay	IX-92-05	BC90-632	263
classification	IX-89-13	BC88-402	187	corrosion resistant overlay	IX-92-60	BC92-421	303
	IX-92-21	BC91-397	270	determining coupon thickness		BC83-253	303 49
chemistry deviation	IX-92-21 IX-89-08	BC91-397 BC88-172	185	deter minning coupon thickness	IX-83-78	BC83-300	50
classification listed in AWS	14-09-00	BC00-172	105		IX-83-143	BC83-500 BC84-581	30 89
specification	IX-92-94	PC02 7E4	326	dimensions recorded on PQR		BC82-182	17
		BC93-754		dimensions recorded on PQR	IX-83-26 IX-83-144	BC82-182 BC84-583	17 90
electrode characteristics	IX-04-17	BC05-24	471	for a second second hour da	14-03-144	BC04-303	90
electrode classification	IX-89-76	BC90-466	235	face and root bends,	IV 00 72	DC00 042	222
	IX-95-13	BC94-035	345	transverse	IX-89-72	BC90-042	233
electrode spacing	IX-86-63	BC86-520	154	6 N 6	IX-04-05	BC03-1583	458
heat treatment conditions	IX-83-46	BC82-751	31	failure of	IX-83-153	BC84-664	97
marking of packages	IX-01-29	BC02-2692	445		IX-86-09	BC85-200	116
mechanical tests	IX-89-97	BC90-873	251	fillet welds	IX-95-08	BC94-543	343
use of	IX-83-27	BC82-713	17		IX-10-27	08-210	510
	IX-01-25	BC01-815	441		IX-10-36	11-896	514
	IX-01-38	BC03-274	452	for impact testing for			
use of different electrode				multiprocess welds	IX-01-24	BC01-814	440
brands	IX-86-65	BC87-031A	155	for multiprocess welds	IX-83-43	BC82-822	29
	IX-01-38	BC03-274	452	for peel or section tests	IX-83-76	BC83-248	44
use of powdered filler metal	IX-92-61	BC92-422	304	grinding of overlay specimens	IX-83-60	BC82-749	38
				guided-bend tests	IX-92-10	BC91-261	265
Shielding Gases					IX-95-15	BC95-094	346
procedure qualification using	IX-83-02	BC81-704	6		IX-98-12	BC98-237,	
	IX-92-62	BC92-425	304			BC98-238	396
purity	IX-95-11	BC95-002	344	longitudinal bend	IX-89-107	BC91-124	255
				mandrel size	IX-83-74	BC82-867	44
SI Units					IX-86-71	BC87-090	157
use of	IX-83-85	BC83-003	53	method of restraint	IX-86-37	BC86-297	139
					IX-86-38	BC86-298	140
S-Numbers				minimum weld metal deposit			
qualification	IX-92-98	BC94-236	327	thickness	IX-92-68	BC92-011	306
-1	IX-95-07	BC94-522	343	nondestructive testing of	IX-86-83	BC87-489A	174
				number of tension test			
Standard Welding Procedur	e Specifications	(SWPSs)		specimens	IX-92-37	BC92-097	282
use of	IX-01-11	BC01-089	429	partial penetration	IX-89-99	BC91-022	251
	IX-01-14	BC01-332	433	product form	IX-86-40	BC86-329	141
	1X-01-14	DC01-552	455	production	IX-89-07	BC88-171	184
Supplementary Essential Va	riables (see also	Variables)		qualification of	IX-89-45	BC89-368	216
qualifying changes in	IX-83-79	BC83-358	50	quanneation of	IX-09-45 IX-92-29	BC91-473	279
qualitying changes in	IX-83-122	BC83-645	80	quarter costion		12-120	516
				quarter section reduced section	IX-13-04		
	IX-83-135	BC84-397	87	reduced section	IX-83-65	BC83-225	40
use of	IX-01-39	BC03-469	453		IX-89-25	BC89-099	197
	IX-10-21	10-496	509		IX-89-90	BC90-532	247
					IX-92-76	BC93-515	314
Test Specimens					IX-92-79	BC93-583	315
acceptance criteria for bend				_	IX-01-21	BC01-035	439
specimens	IX-83-60	BC82-749	38	removal	IX-83-15	BC82-388	13
	IX-83-115	BC83-279	77		IX-83-119	BC84-253	79
	IX-86-61	BC86-515	153		IX-92-79	BC93-583	315
	IX-89-52	BC90-044	219	roll planishing	IX-86-26	BC86-059	129
	IX-95-15	BC95-094	346	size of specimen required	IX-83-38	BC82-771	26
acceptance criteria for					IX-83-73	BC82-866	43
fracture test	IX-10-32	11-939	512		IX-86-45	BC86-366	142
acceptance criteria for section				tension, full section for small			
test	IX-83-76	BC83-248	44	diameter pipe	IX-89-103	BC91-096	253
	IX-83-120	BC83-474	79	tension, reduced section for			
bending of	IX-83-51	BC82-881	34	lap and rabbet joints, plate	IX-89-81	BC90-537	237
· · · · · · · · · · · · · · · · · · ·	IX-10-10	09-2140	502				
brazing joint clearance	IX-86-11	BC85-420	117				

Subject	Interpreta- tion	File No.	Page No.	Subject	Interpreta- tion	File No.	Page No.
Test Specimens (Cont'd)				Welding Procedure Specific	ation (Cont'd)		
tension test	IX-04-01	BC02-3586	457	0	IX-13-09	12-1833	517
	IX-04-25	BC05-1404	474	certification	IX-83-03	BC82-056	7
	IX-07-12	08-1161	489		IX-89-43	BC89-365	215
tension test results	IX-92-14	BC91-279	267	changes in	IX-83-37	BC82-770	26
	IX-92-63	BC92-452	304	-	IX-83-118	BC84-183	78
	IX-95-06	BC94-542	336		IX-83-125	BC84-151	81
	IX-95-09	BC94-570	344		IX-83-150	BC84-617	96
	IX-98-09	BC97-302	395		IX-86-67	BC87-038	155
test jig dimensions for bend					IX-92-30	BC91-587	279
tests	IX-92-48	BC92-267	293		IX-10-13	09-1368	503
	IX-92-49	BC92-268	293	combination of processes	IX-83-164	BC85-023	103
tolerances	IX-95-02	BC94-181	333		IX-86-01	BC85-036	113
transverse bend	IX-89-107	BC91-124	255		IX-86-06	BC85-328	115
tube-to-tubesheet	IX-13-02	12-752	515		IX-86-23	BC85-553	127
	IX-13-05	12-1563	516		IX-86-56	BC86-429	146
turned tensile specimen	IX-10-37	11-2029	514		IX-86-60	BC86-514A	152
using radiography	IX-83-157	BC84-700	98		IX-86-87	BC87-490A	175
	IX-86-62	BC86-517	153		IX-89-26	BC89-103	197
	IX-01-04	BC00-653	420		IX-89-67	BC90-335	226
visual requirements	IX-83-149	BC84-558	95		IX-95-10	BC94-662	344
-	IX-01-04	BC00-653	420		IX-04-08	BC03-1770	464
					IX-10-24	11-216	510
Unlisted Materials (Non-Cod	le Material)			combining of	IX-86-08	BC85-134	116
A-Number classification	IX-83-140R	BC84-250*	137	0	IX-92-75	BC93-490	313
	IX-89-46	BC89-369	216		IX-92-77	BC93-518	314
	IX-89-55	BC89-371	220	contents of	IX-13-03	11-1476	515
	IX-10-31	11-918	512	electrical characteristics	IX-95-18	BC95-220	351
	IX-10-33	11-1339	512		IX-07-03	07-1041	481
identifying welding electrodes				for corrosion-resistant weld			
in cartons	IX-89-65	BC90-289	225	metal overlay	IX-86-59	BC86-458	152
P-Numbers for	IX-83-34	BC82-514	25		IX-89-12	BC88-401	187
	IX-83-62	NI83-004	39		IX-95-41	BC97-028	376
	IX-83-115	BC83-279	77		IX-10-19	09-2143	506
	IX-83-131	BC84-365	85	for weld repair / buildup	IX-83-160	BC84-219	100
qualification of	IX-83-45	BC82-385	30	, , , , , , , , , , , , , , , , , , ,	IX-10-15	10-359	503
1	IX-83-136	BC84-398	87	information recorded on	IX-83-127	BC84-224	83
	IX-95-21	BC95-318	353		IX-86-04	BC85-304	114
	IX-95-22	BC95-251	353		IX-86-10	BC85-307	117
SAW flux/wire combinations		BC82-751	31		IX-86-14	BC85-483	123
use of filler metals	IX-83-25	BC81-160	16		IX-86-54	BC86-400	146
	IX-86-76	BC87-137	166		IX-89-03	BC88-166A	182
					IX-89-16	BC88-405	188
Variables					IX-89-19	BC88-476	194
changes to the WPS	IX-83-54	BC83-042	35		IX-95-11	BC95-002	344
-	IX-89-70	BC90-430	227	manufacturer's and			
flexible welding back-up tape		BC87-253	167	contractor's responsibility	IX-89-73	BC90-319	234
listing on the WPS	IX-83-03	BC82-056	7	· · · · · · · · · · · · · · · · · · ·	IX-92-07	BC91-156	264
5	IX-86-14	BC85-483	126		IX-92-80	BC93-584	316
	IX-89-82	BC90-531	243		IX-92-81	BC92-306	316
	IX-89-85	BC90-671	244		IX-95-25	BC95-252	359
	IX-10-07	09-588	496		IX-95-26	BC95-303	359
ranges demonstrated on the					IX-95-27	BC95-482	360
PQR	IX-83-40	BC82-794	27		IX-95-29	BC95-302	360
recording on the PQR	IX-83-26	BC82-182	17		IX-95-40	BC93-431,	
U N N N N	IX-10-28	09-558	511			BC95-222	376
	-	-			IX-01-02	BC00-553	419
Welder Qualification (see Pe	erformance Oual	lification)			IX-98-02	BC97-309	383
	iii quu				IX-01-40	BC03-740	453
Welding Operator Qualification (see Performance Qualification)					IX-07-02	06-912	481
					IX-10-25	11-44	510
Welding Procedure Specific	ation			meeting requirements of			
base metal thickness	IX-04-09	BC04-65	464	older editions	IX-92-86	BC93-158	318
						50	

Subject	Interpreta- tion	File No.	Page No.				
Welding Procedure Specification (Cont'd)							
multiple layers	IX-04-02	BC03-1029	457				
P-Number	IX-89-36	BC89-357	212				
	IX-89-58	BC90-249	221				
P-Number reassignment	IX-07-05	04-600	482				
preliminary	IX-10-22	10-1158	509				
qualification	IX-89-04	BC88-167	182				
	IX-89-35	BC89-307	211				
	IX-89-66	BC90-281	226				
	IX-95-01	BC94-104	333				
requalification of	IX-89-14	BC88-403	187				
	IX-89-42	BC89-364	215				
	IX-89-17	BC88-473	193				
	IX-89-41	BC89-363	214				
	IX-89-54	BC89-367	220				
	IX-92-38	BC91-630	283				
	IX-95-04	BC94-296	335				
	IX-95-16	BC95-095	346				
	IX-04-20	BC05-293	472				
	IX-07-05	04-600	482				
short circuiting mode	IX-95-28	BC96-002	360				

Subject	Interpreta-	File No.	Page				
	tion		No.				
Welding Procedure Specification (Cont'd)							
	IX-95-33	BC96-001	367				
supplemental filler metal	IX-10-16	10-1159	504				
supplied to welder	IX-83-17	BC82-422	13				
support of	IX-83-146	BC84-619	90				
	IX-86-42	BC86-331	141				
	IX-86-55	BC86-426	146				
	IX-89-26	BC89-103	197				
	IX-89-68	BC90-349	227				
transfer mode	IX-07-03	07-1041	481				
units of measurement	IX-04-27	BC05-1215	477				
use for an unassigned							
material	IX-89-41	BC89-363	214				
	IX-01-07	BC01-029	427				
	IX-10-14	09-2144	503				
use of at job sites	IX-83-12	BC82-341	11				
use of by subcontractor	IX-86-49	BC86-367	144				
weld joint	IX-89-53	BC90-045	219				
	IX-95-01	BC94-104	333				

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

2013 ASME Boiler and Pressure Vessel Code

The ASME Boiler and Pressure Vessel Code (BPVC) is "An International Historic Mechanical Engineering Landmark," widely recognized as a model for codes and standards worldwide. Its development process remains open and transparent throughout, yielding "living documents" that have improved public safety and facilitated trade across global markets and jurisdictions for nearly a century.

ASME also provides BPVC users with integrated suites of related offerings:

- referenced standards
- training and development courses
- related standards and guidelines
- ASME Press books and journals
- conformity assessment programs
- conferences and proceedings

You gain unrivaled insight direct from the BPVC source, along with the professional quality and real-world solutions you have come to expect from ASME.

For additional information and to order:Phone:1.800.THE.ASME (1.800.843.2763)Email:customercare@asme.orgWebsite:go.asme.org/bpvc13

