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ABSTRACT

Motivated by the need for fast computations demanded by wireless
sensor networks, the new F-Lipschitz optimization theory is intro-
duced for a novel class of optimization problems. These problems
are defined by simple qualifying properties specified in terms of in-
creasing objective function and contractive constraints. It is shown
that feasible F-Lipschitz problems have always a unique optimal
solution that satisfies the constraints at equality. The solution is
obtained quickly by asynchronous algorithms of certified conver-
gence. F-Lipschitz optimization can be applied to both centralized
and distributed optimization. Compared to traditional Lagrangian
methods, which often converge linearly, the convergence time of
centralized F-Lipschitz problems is at least superlinear. Distributed
F-Lipschitz algorithms converge fast, as opposed to traditional La-
grangian decomposition and parallelization methods, which gener-
ally converge slowly and at the price of many message passings. In
both cases, the computational complexity is much lower than tra-
ditional Lagrangian methods. Examples of application of the new
optimization method are given for distributed detection and radio
power control in wireless sensor networks. The drawback of the
F-Lipschitz optimization is that it might be difficult to check the
qualifying properties. For more general optimization problems, it
is suggested that it is convenient to have conditions ensuring that
the solution satisfies the constraints at equality.
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G.1.6 [Mathematics of Computing]: Optimization—Constrained

optimization
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1. INTRODUCTION
Numerous engineering applications have pushed a huge develop-

ment of mathematical optimization theory in recent years [1]. From
large scale systems, to smaller systems, optimization is a pervasive
tool to take decisions, improve efficiency, and reduce the develop-
ment costs. Wireless sensor networks, with their applications to
smart grids, water distribution, vehicular networks, are networked
systems in which decision variables must be quickly optimized by
algorithms of light computational cost. Unfortunately, many tra-
ditional optimization methods are difficult to use in wireless sen-
sor networks due to the complex operations or the high number of
messages that have to be exchanged among nodes to compute the
optimal solution.

Wireless sensor networks are characterized by small and cheap
hardware platforms. Thus they have limited computational capa-
bilities. It follows that there is the need of fast, simple, and robust
to errors and noises computations to solve optimization problems,
both in a centralized and in a distributed set-up [2] – [5]. In net-
worked systems, the computation of the solution to these problems
must be distributed when the dynamics of the communication chan-
nels or the topology may quickly change and the network is large.
There may be lack of central coordination, it could be difficult to
have such a coordination, or it could be simply impossible to have
a coordination point where solutions to problems that involve in-
formation from the overall network can be achieved. See the IPSN
paper [2] for an interesting discussion on optimization for wireless
sensor networks. In all these cases, the solution must be computed
by distributed algorithms, where the computation is split into sub
tasks that are distributed to the local nodes of the networks that
cooperate in parallel [6, 7].

Convex optimization has played a dominant role in many engi-
neering problems [8], both centralized and distributed. Problems
are often approximated as convex ones, given the availability of in-
terior point methods based on Lagrangian duality to compute the
optimal solution [1]. However, not all problems are convex and it
is well known that some convex problems can be solved by faster
methods, such as the iterative contraction mappings of the inter-
ference function optimization theory used in wireless communi-
cation [9]. The decomposition methods developed in the parallel
and distributed computation theory are the fundamental reference
mathematical tools to cope with distributed optimization [6]. How-
ever, these methods often converge slowly due to many message
exchanges among the nodes, and do not consider that the commu-
nication among nodes may be extremely expensive. This is the
typical case of wireless sensor networks, where transmitting infor-
mation demands about one hundred times the energy needed to per-
form computations [3]. In this case, it is important that the number
of messages exchanged among nodes to compute the optimal solu-
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Figure 1: F-Lipschitz optimization defines a class of optimiza-

tion problems for which all the constraints are satisfied at

equality when computed at the optimal solution, including the

inequality constraints. The solution to the set of equations

given by the projected constraints is the optimal solution, which

avoids using Lagrangian methods. These methods are com-

putationally much more expensive, particularly for distributed

optimization over wireless sensor networks. The challenging

part of F-Lipschitz optimization is the availability of conditions

ensuring that the constraints are active at the optimum with-

out knowing what is the optimal solution in advance. For this

reason, we restrict ourselves to problems in the form (3.1) pre-

sented in Section 3. However, the method can be used for prob-

lems in the more general form (3.3), as we see in Section 3.2.

tion be as limited as possible.
In this paper, we propose a new optimization approach particu-

larly suitable for wireless sensor networks. We define a new class of
problems that is characterized by the availability of fast and simple
algorithms for the computation of the optimal solution. We denote
it F-Lipschitz to evidence that it is fast, hence “F”, and based on
a Lipschitz property of the constraints. In particular, it is assumed
that the objective function is increasing, whereas the constraints
be transformed into contractive Lipschitz functions. However, we
show that in a number of cases problems in canonical form [8] can
be cast to F-Lipschitz ones. To compute the optimal solution to
centralized optimization problems, F-Lipschitz algorithms do not
require Lagrangian methods, but superlinear iterations based on
a solution of a system of equations given by the constraints, as
illustrated in Fig. 1. In distributed optimization, we propose an
algorithm that do not require Lagrangian decomposition and par-
allelization methods, but simple asynchronous iterative methods.
We show that the computation of the optimal solution of an F-
Lipschitz problem is robust to quantization errors and not sensi-
tive to perturbation of the constraints, which is quite important for
wireless sensor networks with nodes having low computational pre-
cision. We show that F-Lipschitz optimization solves much more
efficiently problems traditionally solved by Lagrangian methods.
The approach presented in this paper covers several problems in the
general interference function theory [9]–[11]. Fig. 2 illustrates the
intersection between the F-Lipschitz optimization and other classic
optimization areas.

The remainder of the paper is organized as follows: In Section 2,
two wireless sensor networks motivating examples are presented.
The definition of F-Lipschitz optimization is given in Section 3,
along with properties and algorithms to compute the optimal solu-
tion. In Section 4 we show that the motivating examples of Sec-
tion 2 are F-Lipschitz and we illustrate how they are solved. Fi-
nally, conclusions and future perspectives are given in Section 5.

1.1 Notation
We use the notation R

n
+ to denote the set of strictly positive val-

ued real vectors. By ·T we denote the transpose of a vector or of a
matrix. By | · | we denote the absolute value of a real number. For
x ∈ R

n we let

‖x‖1 =
n

∑

k=1

|xk| and ‖x‖∞ =
n

max
k=1

|xk| ,

and we will use the duality relation |xT y| ≤ ‖x‖1‖y‖∞. For a
matrix A ∈ R

n×n we use the induced ‖ · ‖∞ and induced ‖ · ‖1

norms defined as

‖A‖1 =
n

max
i=1

n
∑

j=1

|aij | and ‖A‖∞ =
n

max
j=1

n
∑

i=1

|aij |.

The spectral radius of a matrix is defined as ρ(A) = max{|λ| :
λ ∈ eig(A)}.

By a � b and a � b we denote the element-wise inequal-
ities between the vectors a and b. A matrix is called positive,
A � 0, if aij ≥ 0, ∀i, j. By I and 1 we denote the identity
matrix and the vector (1, . . . , 1)T , respectively, whose dimensions
are clear from the context. Given the set D = [x1,min, x1,max] ×
[x2,min, x2,max] . . . [xn,min, xn,max] ∈ R

n, with −∞ < xi,min <
xi,max < ∞, for i = 1, . . . , n, and the vector x ∈ D , we use the
notation [xi]

D to denote the orthogonal projection with respect to
the Euclidean norm of the i-th component of the vector x onto the
i-th component of the closed set D , namely [xi]

D = xi if xi ∈
[xi,min, xi,max], [xi]

D = xi,min if xi < xi,min, or [xi]
D = xi,max

if xi > xi,max.
∇ denotes the gradient operator. Given a scalar function f(x) :

R
n → R,

∇f(x) =

[

df1(x)

dx1
, . . . ,

dfn(x)

dxn

]T

.

Given a vector function F(x) : R
n → R

n, we use the gradient
matrix definition

∇F(x) =
[

∇F1(x) . . . ∇Fn(x)
]

,

which is the transpose of the Jacobian matrix.
When we study vector optimization problems, we consider al-

ways Pareto optimal solutions. Therefore, we use the notation “op-
timal solution” to mean “Pareto optimal solution”.

2. MOTIVATING EXAMPLES

In this section we describe some motivating examples where
there is a need of fast optimization for wireless sensor networks.
We argue that these problems cannot be solved efficiently with tra-
ditional approaches.

2.1 Distributed Detection

A classical problem in wireless sensor networks is the binary hy-
pothesis testing or detection [8, 13]. In distributed detection theory,
it is assumed that every node i of a network of n nodes wants to de-
cide if an event out of two happened. The event detection is usually
modelled by a Gaussian random variable that is associated to the
first event H0 or to the second event H1:

Γi(s) = wi(s) if H0 (2.1)

Γi(s) = E + wi(s) if H1 (2.2)
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Figure 2: F-Lipschitz optimization theory includes the interfer-

ence function optimization of type-I [9] for smooth functions,

and, for example, part of convex optimization and geometric

programming [12]. It follows that optimization problems pre-

viously solved by, e.g., convex solvers or geometric program-

ming solvers, that fall in the area of F-Lipschitz optimization

can now be solved much more efficiently by the methods pro-

posed in this paper.

where s denotes that Γi(s) is the outcome of a random variable
at sample s, and E is a signal level that appears when the event
H1 occurs. The term wi(s) is a Gaussian random variable of zero
mean and variance σ2 that models the detection uncertainty. To
overcome such an uncertainty, node i takes S samples and builds
the so-called Likelihood ratio test as

Ti =
1

S

S
∑

s=1

Γi(s) T xi .

If Ti ≤ xi, where xi is a detection threshold, then the node may
decide for hypothesis H0. If Ti > xi, then the node may de-
cide for hypothesis H1. The ratio test gives a probability of false
alarm, namely the probability that H0 happened but H1 was instead
detected. The ratio test gives also a probability of misdetection,
namely the probability that H1 happened but H0 was instead de-
tected. It is easy to show that these probabilities have the following
expressions [13]:

P
(i)
fa (xi) = Pr[Ti > xi|H0] = Q





xi
√

σ2

S



 ,

P
(i)
md(xi) = Pr[Ti ≤ xi|H1] = Q





E − xi
√

σ2

S



 ,

where

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt

is the complementary standard Gaussian distribution. Usually, the
threshold xi must be optimized so that to minimize the false alarm
probability and while keeping under control the probability of mis-
detection. However, a node i may improve the detection perfor-
mance by taking advantage of the probabilities communicated by
neighboring nodes. The node makes an optimal decision on which
event occurred by taking into account the opinions (the probabili-
ties) transmitted by neighbors. This is done by combination with
weighting factors, so that the final probability of misdetection at
node i is expressed as

n
∑

j=1

bi,jP
(j)
md(xj) .

Here, bi,j ≥ 0, ∀i, j,
∑n

j=1 bi,j = 1, where bi,i 6= 0 and bi,j = 0
if node i does not communicate its probability with j. The total
probability of false-alarm, which must be minimized in the net-
work, is expressed as

n
∑

i=1

P
(i)
fa (xi) .

A global optimization problem can be posed where the objective
is the minimization of the probabilities of false alarm while the
probabilities of misdetection are kept under control [14]:

min
x

n
∑

i=1

P
(i)
fa (xi) (2.3)

s.t.
n

∑

j=1

bi,jP
(j)
md(xj) ≤ ci, i = 1, . . . , n ,

0 � x � E1 .

The second set of constraints is because an unconstrained mini-
mization of the probabilities of false alarm would increase dramat-
ically the probability of misdetection. The third set of constraints
is introduced for physical reasons [14]. Due to the property of the
Q(·) function, it is easy to show that the problem is convex. In a
distributed set-up, this would allow the computation of the optimal
solution by the usual decomposition methods and the Lagrangian
message passing. However, this is prohibitive for wireless sensor
networks. We show in this paper that this problem can be trans-
formed into an F-Lipschitz one and can be solved much more effi-
ciently.

2.2 Radio Power Allocation with Intermodu-
lation Powers

In wireless systems, the problem of allocating the transmit ra-
dio powers is cast as an optimization problem. The radio power
used to transmit signals must be minimized to reduce the nodes
energy consumption and the interference caused to other wireless
transmissions. At the same time, the radio powers should be high
enough to allow the receivers detecting successfully the transmitted
signals. For illustrative purposes, we consider the basic problem of
radio power transmission that is of interest for sensor networks.
However, more advanced radio problems can be investigated, as
those listed in [9]. We consider a high data rate wireless sensor
network of n transmitter nodes, where node i transmits at a radio
power pi, i = 1, . . . , n. Since the data rate is high, it is meaning-
ful to make a radio power control to save energy and prolong the
lifetime of the sensor nodes. Let p ∈ R

n the vector that contains
the radio powers. In the network, there are n receiver nodes, where
node i receives the power Giipi of the signal from transmitter i.
Gii is the channel gain from transmitter node i to receiver node i.
Receiver node i is subject also to an interference from the signals
from other transmitters, which is

∑

k 6=i
Gikpk and from the ther-

mal noise σi. The signal to interference plus noise ratio of the i-th
transmitter-receiver pair is defined as

SINRi =
Giipi

σi +
∑

k 6=i
Gikpk +

∑

k 6=i
Mikp2

i p
2
k

,

where Gik models the wireless channel gain between the trans-
mitter i and the receiver j, and Mik is a intermodulation terms
introduced by the amplifier of the receiver. Typically, these inter-
modulation terms are present when the amplifiers are built out of
cheap and unreliable components, which may be typical for wire-
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less sensor nodes. Mik, k 6= i, assumes values smaller then Gik,
and can take on both positive and negative values.

The power optimization problem is usually written in the follow-
ing form

min
p

p (2.4)

s.t. SINRi ≥ Smin, i = 1, . . . , n ,

pmin1 � p � pmax1 ,

where Smin is the minimum required SINR and ensures that the
signal of transmitter i can be received with the desired quality. The
box constraints on the radio powers is naturally due to that trans-
mitters have a minimum and maximum power level that can be
used. Notice that the solution to this problem must be achieved in
a distributed fashion, namely every node must be able to compute
its own radio power because there is no time for node i to send
the wireless channel coefficients Gij , which is measured at node i,
to a central solver and wait back for the optimal power to use: in
the meantime Gij would have changed due to the dynamic of the
wireless channel and the optimal solution would be outdated [15].
Problem (2.4) is an unsolved optimization problem in communi-
cation theory. The interference function theory [9, 10], which is
based on the monotonic and scalable property of the interference,
is the fundamental reference to solve these problems. However, it
cannot be used here because the intermodulation coefficients can
be negative and this makes the interference term not monotonic
and scalable. By the same argument, the geometric programming
theory, which has also been widely employed to solve power al-
location problems [16], cannot be used. Moreover, the problem is
not convex. The classical approach would be to use parallelization
and decomposition methods [6], provided that strong duality holds.
Then, one would use iterative computation of the primal decision
variables and dual variables until convergence is achieved. This
makes it hard computing the solution of the problem (2.4), particu-
larly when such a solution has to be computed by nodes of reduced
computational capability. An alternative theory is needed. This
theory is developed in the following.

3. F-LIPSCHITZ OPTIMIZATION

In this section we give the definition of an F-Lipschitz optimiza-
tion problem, we characterize the existence and uniqueness of the
optimal solution, we give algorithms to compute such a solution
both in a closed form, when possible, and numerically. We charac-
terize several features of the new optimization, including sensitivity
analysis and robustness to quantization.

Definition 3.1 (F-Lipschitz optimization). An F-Lipschitz op-

timization problem is defined as

max
x

f0(x) (3.1a)

s.t. xi ≤ fi(x) , i = 1, . . . , l (3.1b)

xi = hi(x) , i = l + 1, . . . , n (3.1c)

x ∈ D , (3.1d)

where D ⊂ R
n is a non empty, convex, and compact set, l ≤

n, with objective and constraints being continuous differentiable

functions such that

f0(x) : D → R
m , m ≥ 1

fi(x) : D → R , i = 1, . . . , l

hi(x) : D → R , i = l + 1, . . . , n

Let f(x) = [f1(x), f2(x), . . . , fl(x)]T , h(x) = [hl+1(x), hl+2(x),
. . . , hn(x)]T , and F(x) = [Fi(x)] = [f(x)T h(x)T ]T . The fol-

lowing properties must be verified:

1.a ∇f0(x) ≻ 0 , i.e., f0(x) is strictly increasing, (3.2a)

1.b |∇F(x)|∞ < 1 , (3.2b)

and either

2.a ∇jFi(x) ≥ 0 ∀i, j , (3.2c)

or

3.a ∇if0(x) = ∇jf0(x) , (3.2d)

3.b ∇jFi(x) ≤ 0 ∀i, j , (3.2e)

3.c |∇F(x)|1 < 1 , (3.2f)

or

4.a f0(x) ∈ R , (3.2g)

4.b |∇F(x)|1 ≤ δ

δ + ∆
, (3.2h)

δ = min
i,x∈D

∇if0(x) , (3.2i)

∆ = max
i,x∈D

∇if0(x) . (3.2j)

Note the Lipschitz contractivity conditions in 1.b, 3.c and 4.b imply
that ∀x,y ∈ D ,

|Fi(x) − Fi(y)| ≤ αi||x − y||, i = 1, . . . , n,

with αi = maxx ‖∇Fi(x)‖ < 1 ∀i = 1, . . . n.
We call properties (3.2a) – (3.2h) the qualifying properties of an

F-Lipschitz optimization problem.
Note that it is possible that l = n, in which case there are no

equality constraints. It is also possible that l = 0, in which case
there are no inequality constraints. The objective function and the
constraints are allowed to be linear or non linear functions, as for
instance concave, convex, monomial, posynomial, etc. For exam-
ple, the functions fi(x) and hi(x) can be convex. This makes the
constraints x−F(x) � 0 non-convex in general, and therefore dif-
ficult to solve. The objective function (3.1a) is allowed to be both
a decomposable or a non-decomposable function of the decision
variables. Note that the objective function is allowed to be a vector
in R

m. When m = 1 we have a scalar optimization. In general,
the problem is a multi-objective optimization one with m criteria.
Examples of F-Lipschitz objective functions are

f0(x) = x ∈ R
n

f0(x) = c
T
x, c ∈ R

n, c ≻ 0 .

Given that an F-Lipschitz problem can be a multi-objective prob-
lem, we recall the concept of Pareto optimal solutions.

Consider the following set

A = {x ∈ D : xi ≤ fi(x), i = 1, . . . , l, xi = hi(x),

i = l + 1, . . . , n} ,

and let B ∈ R
m be the image set of f0(x),i.e., f0(x) : A → B.

Then, we consider that the set B is partially ordered in a natural
way, namely if x,y ∈ B then x � y if xi ≥ yi ∀i (e.g., Rm

+ is
the ordering cone).

Definition 3.2 (Pareto Optimal). A vector x∗ is called a Pareto

optimal (or an Edgeworth-Pareto optimal) point if there is no x ∈
A such that f0(x) � f0(x

∗), i.e., if f0(x
∗) is a maximal element

of the set B with respect to the natural partial ordering defined by

the cone R
m
+ [17].
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Figure 3: An optimization problem in the form (3.1) associ-

ated to a wireless sensor network. Every node has associated a

decision variable and a constraint, or a group of decision vari-

ables and associated constraints. The line between nodes i and

j denotes that the two nodes are able to communicate directly,

without the need of a routing protocol.

In practice, a Pareto optimal solution is a vector for which is impos-
sible to improve one component without decreasing another com-
ponent. The Pareto optimal solutions are derived by converting a
vector optimization problem into a scalar one via scalarization of
the objective function [17].

Problem (3.1) can be used in centralized setting and in distributed
settings. In this last case, a network of nodes needs to compute the
optimal solution. The decision variable xi is associated to a node
i of the network for which we need to solve problem (3.1). Anal-
ogously, constraint i is associated to node i. In this paper, we are
interested in the case in which every node needs primarily its own
decision variable xi, as it is common in wireless sensor network
applications. An illustrative example of such a network is given in
Fig. 3.

In the following subsection, we establish the existence of solu-
tions to F-Lipschitz problems.

3.1 Existence and Uniqueness of Solutions
Here we give one of the core contributions of this paper. We

show that for F-Lipschitz problems there is a unique optimal solu-
tion that is given by the (projected) system of constraints at equal-
ity. We have the following result:

Theorem 3.3. Let the F-Lipschitz optimization problem in (3.1)
be feasible. Then, the problem admits a unique Pareto optimum

x∗ ∈ D given by the solutions of the following set of equations:

x∗
i = [fi(x

∗)]D i = 1, . . . , l

x∗
i = hi(x

∗) i = l + 1, . . . , n .

PROOF. A proof is presented in Appendix A.1.

Remark 3.4. It follows from the proof that assumption (3.2f)
could be replaced by the assumption that ∇F(x)2 � 0.

The next example shows that the condition (3.2f) in general can-
not be relaxed.

Example 3.5. The following problem is not F-Lipschitz:

max 1
T
x

s.t. x1 ≤ 1

x2 ≤ −0.9x1

x3 ≤ −0.9x2

x ∈ D = {x : −10 ≤ xk ≤ 10; k = 1, 2, 3} .

It has contractive constraints but does not satisfy (3.2f). If the in-

equality constraints are active we get x∗ = (1,−0.9,−0.9) with

objective value 1T x∗ = −0.8. However, this is not an optimal

solution since the feasible point x = 0 has a larger objective value

1T x = 0. Hence the conclusion of Theorem 3.3 does not hold.

Example 3.6. The following problem is not F-Lipschitz:

max 1
T
x

s.t. x1 ≤ ǫx3 + 1

x2 ≤ −ax1

x3 ≤ −ax1 − ax2

x ∈ D = {x : −10 ≤ xk ≤ 10; k = 1, 2, 3}
where 0 < ǫ < 1 and 0 < a < 0.5 satisfies (3.2f) but not

our sign conventions on the coefficients in (3.2e). If the inequal-

ity constraints are active we get x∗ = (1− ǫa/∆,−a/∆,−a/∆),

where ∆ = 1/(1 + ǫa(1 − a)). This gives an objective value

1T x∗ = (1 − ǫa2 − 2a)/∆ which is negative if a ≈ 0.5 and

ǫ ≈ 1. This is not the maximal solution since the feasible point

x = 0 has a larger objective value 1T x = 0. Hence the conclu-

sion of Theorem 3.3 does not hold.

In the next subsection we establish an alternative form that will
be used in some of our examples.

3.2 Problems in Canonical Form
We have defined F-Lipschitz optimization problems by the spe-

cial form in problem (3.1). It is common in the optimization liter-
ature to have problems stated in the following form, which is often
referred to as canonical form [8]:

min
x

g0(x) (3.3a)

s.t. gi(x) ≤ 0 , i = 1, . . . , l (3.3b)

pi(x) = 0 , i = l + 1, . . . , n (3.3c)

x ∈ D ,

where

g0(x) : D → R
m , m ≤ n

gi(x) : D → R , i = 1, . . . , l

pi(x) : D → R , i = l + 1, . . . , n

Problem (3.3) can be converted into a F-Lipschitz-like problem (3.1)
by the following transformations

max
x

f0(x) (3.4a)

s.t. xi ≤ fi(x) , i = 1, . . . , l , (3.4b)

xi = hi(x) i = l + 1, . . . , n , (3.4c)

x ∈ D ,

where

f0(x) = −g0(x) , (3.5)

fi(x) = xi − γigi(x) , i = 1, . . . , l , (3.6)

hi(x) = xi − µipi(x) , i = l + 1, . . . , n , (3.7)

with γi > 0, i = 1, . . . , l and µi ∈ R, i = l + 1, . . . , n. We let

G(x) = [g1(x), . . . , gl(x), pl+1(x), . . . , pn(x)]T .

Problem (3.3) and problem (3.4) have the same optimal solution
because the constraints of problem (3.4) hold if and only if the con-
straints of problem (3.3) hold, since γi > 0 and µi 6= 0 ∀i.
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Clearly, problem (3.4) is in general not an F-Lipschitz one. It is
interesting to establish when problem (3.4) is F-Lipschitz, namely
when qualifying properties (3.2a) – (3.2h) are satisfied for (3.4).
We have the following result:

Theorem 3.7. Consider the optimization problems (3.3) and (3.4).
Suppose that ∀ x ∈ D

1.a ∇g0(x) ≺ 0 , (3.8a)

1.b ∇iGi(x) > 0 ∀i , (3.8b)

1.c ∇iGi(x) >
∑

j 6=i

|∇jGi(x)| ∀i , , (3.8c)

and either

2.a ∇jGi(x) ≤ 0 ∀j 6= i , (3.8d)

or

3.a ∇ig0(x) = ∇jg0(x) , (3.8e)

3.b ∇jGi(x) ≥ 0 ∀j 6= i ,

3.c ∇iGi(x) >
∑

j 6=i

|∇iGj(x)| ∀i , (3.8f)

or

4.a g0(x) ∈ R , (3.8g)

4.b
δ

δ + ∆
∇iGi(x) >

∑

j 6=i

|∇iGj(x)| ∀i , (3.8h)

where δ and ∆ are defined in Eqs. (3.2i) and (3.2j). Then, prob-

lem (3.4) is F-Lipschitz.

PROOF. A proof is provided in Appendix A.2.

Note that (3.8c) is a condition on the rows of the gradient of G(x),
whereas (3.8f) and (3.8h) are per-column conditions on the gradi-
ent.

This theorem can be used to show that some times convex opti-
mization problems can be cast to F-Lipschitz and thus solved effi-
ciently. By the same theorem, it is also possible to show that, for
example, a class of geometric and signomial programming prob-
lems [12] is solved by an F-Lipschitz approach.

3.3 Computation of the Optimal Solution
In subsection 3.1 we have proved that there is a unique optimal

solution to F-Lipschitz optimization problems, which is achieved
by solving the system of equations given by the projected con-
straints at equality. In this section, we show that the complexity
to solve F-Lipschitz optimization problems is quite low compared
to Lagrangian methods, which are the ones traditionally employed.

If the set of equations given by the projected constraints at equal-
ity can be solved in a closed form, then we have the optimal so-
lution in a closed form, otherwise we need numerical algorithms.
These algorithms to solve systems of equations are well known,
see [1, 18] as fundamental references. In the following, we sum-
marize a low-computational complexity technique for centralized
optimization problems, namely for problems that can be solved by
a central node. We then present a simple algorithm for distributed
optimization problems, where there is the lack of a central compu-
tational unit and every node cooperate to compute the solution in
a distributed fashion. For simplicity we focus on first order tech-
niques, though the convergence speed of numerical algorithms can
be increased by heavy ball methods [18].

3.3.1 Centralized Computation

Since the functions f(x) and h(x) of problem (3.1) are differen-
tiable within D , then the Newton’s method can be applied, which
consists of the iterations

x(k + 1) =
[

x(k) − β (I −∇F(x(k)))−1 (x(k) − F(x(k)))
]D

,

(3.9)

where β is a positive scalar that can be chosen so that the modulus
of the previous mapping is contractive and as small as possible so
to have the fastest convergence. The iterations can be initialized by
any x(0) ∈ D , and convergence is certified if the gradient matrix
I −∇F(x) is invertible:

Lemma 3.8. Consider the function F(x) = [f(x)T h(x)T ]T

of problem (3.1) and let qualifying property (3.2b) hold. Then the

matrix I −∇F(x) has full rank.

PROOF. The simple proof is based on that the matrix ∇F(x)
is contractive. Its spectral radius is ρ(∇F(x)) ≤ ‖∇F(x)‖ <
1 [19], thus the eigenvalues of I −∇F(x) are strictly positive and
the matrix is invertible.

It is well known that the convergence speed of the Newton’s al-
gorithm is quite fast, namely it is superlinear. As Bertsekas writes,
it is the most complex and also the fastest among the gradient meth-
ods [1]. It has however the drawback of requiring the computa-
tion of the inverse of a matrix at each step. To avoid this com-
putational burden, several other algorithms have been developed,
including gradient methods, conjugate direction methods, quasi-
Newton methods, and non-derivative methods [1]. These methods
are characterized by different convergence speeds and computa-
tional complexities. One can chose the most suitable according
to the nature of the F-Lipschitz constraints. For example, if these
constraints are quadratic, then gradient methods are good candi-
dates. See [1] for rules and recommendations on what method for
different kind of functions.

3.3.2 Distributed Computation

There are many algorithms to compute the solution to a system
of equations in a distributed set-up. See [6] as a fundamental ref-
erence. Here, we present a simple iterative and asynchronous dis-
tributed algorithm. Recall that in the distributed set-up we assume
that there is a global optimization problem that needs to be solved
by the wireless sensor network, where each decision variable is
associated to a node and every node cooperatively communicates
with other nodes to compute the optimal solution without central
coordination. Such a communication could be subject to delays
and losses due to the underlying communication channel. We have
the following result:

Proposition 3.9. Let x(0) ∈ be an initial guess of the opti-

mal solution to a feasible F-Lipschitz problem (3.1). Let xi(k) =
[x1(τ

i
1(k)), x2(τ

i
2(k)), . . . , xi

n(τn(k))] the vector of decision vari-

ables available at node i at time k ∈ N+, where τ i
j (k) is the delay

with which the decision variable of node j reaches node i. Then,

the following iterative algorithm converges to the optimal solution:

xi(k + 1) = [fi(x
i(k))]D i = 1, . . . , l (3.10)

xi(k + 1) = [hi(x
i(k))]D i = l + 1, . . . , n

where k ∈ N+ is an integer associated to the iterations.

PROOF. From Theorem 3.3 the unique optimal solution to a fea-
sible F-Lipschitz problem (3.1) is given by the constraints at equal-
ity. Since the right hand side of the constraints is contractive for
qualifying properties (3.2), the convergence of algorithm (3.10) to
the optimal solution is guaranteed as k → ∞ by applying the asyn-
chronous converge theorem in [6], which concludes the proof.
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According to previous proposition, every node i of the network
updates its decision variable by the iterative algorithm (3.10) and
by using the decision variables of other nodes that are available at
that time. Notice that when fi(x) depends only on the decision
variables of the neighboring nodes, the communications of these
variables is fast and practical. This is the case of the example we
discuss in Section 2.1. In other situations, fi(x) can be given by
an oracle locally at node i without any direct communication of
decision variables from the other nodes, as in the radio power opti-
mization problems we illustrate in the example in Section 2.2 (see
also, e.g., [11]).

Proposition 3.10. Consider the distributed algorithm for the

synchronous computation of the optimal solution, i.e., τ i
j (k) is con-

stant ∀i, j. Let

d = max
x,y∈D

‖x − y‖∞ .

Let ε be the desired precision with which the optimal solution x∗

must be known. Suppose ε < d. Then, an upper bound to the

number of iterations needed for the algorithm to converge is O(k̄),

where

k̄ =
| ln ε| − | ln d|

| ln α| ,

where α is the Lipshitz constant of F(x) for x ∈ D .

PROOF. From qualifying properties (3.2), the iterations of Al-
gorithm (3.10) are contractive. It follows that ‖x(k) − x∗‖ ≤
αk‖x(0)−x∗‖ ≤ αkd, whereby k̄ follows immediately by recall-
ing that α < 1 and ε < d.

The previous proposition is useful in that it allows us to upper
bound the number of iterations to compute the optimal solution
with a desired accuracy. Notice that the upper bound does not de-
pend on the number of variables, but on the Lipscitz constant of
the contraction mapping. This result is remarkable, because for F-
Lipschitz optimization the convergence speed of Algorithm (3.10)
may be arbitrarily high regardless of the number of decision vari-
ables or nodes of the network. However, note that this is possible
under the assumption that every nodes works in parallel at the same
pace and that the delay with which variables are communicated is
fixed.

We now compare the convergence speed of F-Lipschitz algo-
rithm to the one achieved by using the traditional decomposition
methods based on Lagrange multipliers. To do that, we need to
show that strong duality applies, as we see in the following subsec-
tion. Strong duality will be also very useful to study the sensitivity
and stability of the optimal solution to perturbations of the con-
straints.

3.4 Computational complexity
The results of this section are useful to compare the convergence

speed of the F-Lipschitz algorithms presented in subsection 3.3 to
the traditional Lagrangian algorithms that one would use for non-
linear optimization problems. In this section, we show that it is
possible to solve F-Lipschitz optimization problems by Lagrangian
iterative methods because strong duality applies. Moreover, strong
duality is useful to characterize the sensitivity to the optimal solu-
tion to perturbations of the constraints.

For analytical simplicity, we show that strong duality applies to
the optimization problem (3.1) in the case when there are only in-
equality constraints. We assume for simplicity that the box con-
straints, x ∈ D , can be held implicit. Note, however, that the
upper bound constraints xi ≤ xi,max poses no problem since they
satisfy the invexity inequality used in the proof.

Theorem 3.11. Consider the optimization problem (3.1) in the

case when there are no equality constraints and suppose the prob-

lem feasible. Then strong duality applies and the KKT conditions

are necessary and sufficient to compute the optimal solution of

problem (3.1).

PROOF. See Appendix A.3.

Given that we have strong duality, we can solve problem (3.1) by
the KKT conditions:

xi − fi(x
∗) ≤ 0 i = 1, . . . , n

λ∗
i ≥ 0 i = 1, . . . , n

λ∗
i (x

∗
i − fi(x

∗)) = 0 i = 1, . . . , n

∇xL(x∗, λ∗) = 0 ,

where λ = [λi] ∈ R
n is the vector of Lagrange multipliers and

L(x, λ) is the Lagrange function associated to the scalarized ver-
sion [8] of problem (3.1):

L(x, λ) = − µ
T f0(x) +

n
∑

i=1

λi(xi − fi(x))

where µ ≻ 0. Finding λ∗ and x∗ that solve these conditions is
much more expensive than solving the system of equations given
by the projected constraints at the equality as proposed in Subsec-
tion 3.3.

When the Lagrangian function gives closed form multipliers, one
would have to solve two systems of n equations in n variables and
recover the primal variables. Namely, 1) one would have to take
the derivative of the lagrangian with respect to x and solve for
x as function of λ the system of n equations ∇xL(x, λ) = 0,
thus achieving x∗(λ). Then, 2) one would have to plug in such
a solution in L(x, λ), and solve a further system of n equations
∇λL(x∗(λ), λ) = 0, thus achieving λ∗. Finally, 3) one would
have to recover the optimal solution by computing the function
x∗(λ∗).

When the Lagrangian function does not give closed form multi-
pliers, one would have to resort to numerical iterative Lagrangian
methods. There are several such methods to compute the optimal
solution to problem (3.1), such as barrier and interior point meth-
ods, penalty and augmented lagrangian methods, primal-dual inte-
rior point methods, etc., that we can use to solve an F-Lipschitz
optimization problem. These methods differ for the convergence
speed and computational complexity. Typically, at each iteration
of these methods some further optimization problem and/or ma-
trix inversions are required. To give an idea of convergence speed
comparison with the F-Lipschitz algorithms described in Subsec-
tion 3.3, we consider as reference a first order Lagrangian method
for optimization problems with equality constraints. By using this
method, the optimal solution to problem (3.1) is given by the itera-
tions

x(k + 1) = x(k) − β∇xL(x(k), λ(k)) (3.11)

λ(k + 1) = λ(k) − β∇λL(x(λ(k)), λ(k)) , (3.12)

where β is a positive scalar. It is clear that iterations (3.11) and (3.12)
are computationally much more expensive than the algorithms in
Subsection 3.3 because these iterations involve the computation of
the gradient of the Lagrangian function and the update of the de-
cision variables plus the Lagrangian multipliers. In a distributed
set-up, the situation is even worse, because every node needs to
send to all other nodes the Lagrange multipliers either directly or
by incremental techniques [2, 7].
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3.5 Sensitivity Analysis
It is interesting to establish the sensitivity of the optimal solution

to perturbations of the constraints. When an F-Lipschitz optimiza-
tion problem is implemented on hardware platforms having limited
computational capabilities, such as in wireless sensor networks, it
may happen that the constraints are altered by errors, noises, and
quantization. However, the optimal solution to F-Lipschitz prob-
lems is not sensitive to perturbations. We prove the result under the
simplifying assumptions that 1) there are no equality constraints, 2)
the box constraints are not active at the optimal solution. We have
the following result:

Claim 3.12. Consider the optimization problem (3.1) in the case

when there are no equality constraints and suppose the problem is

feasible. Then the unique global optimum is not sensitive to pertur-

bations to the constraints.

PROOF. See Appendix A.4

3.6 Robustness to Quantization Errors
When the computation of the optimal solution is performed by

resource constrained nodes that introduce quantization errors, such
as wireless sensor networks, it is important to study the robustness
of the computation of the optimal solution to these errors.

The quantization error is modelled as a random variable qi(k),
i = 1, . . . , n, having some distribution within the interval [−qmax,
qmax], where qmax is the maximum quantization error. We do not
assume any specific distribution, and we model the quantization
process for the synchronous distributed algorithm as

x̃i(k + 1) = fi(x̃(k)) + qi(k) i = 1, . . . , l

x̃i(k + 1) = hi(x̃(k)) + qi(k) i = l + 1, . . . , n

It follows that the decision variables at time k x̃i(k)’s are affected
by two quantization errors: the errors coming from the variables
that concur in the computation of x̃i(k + 1) in fi(x̃(k)), and the
error affecting the computation of fi(x̃(k)), which is qi(k). These
errors may hinder the convergence of the algorithm. We would like
to study the stability of iterations when there are these quantization
errors. We have the following result:

Proposition 3.13. Let x∗ be the optimal solution to (3.1). Let

αmax = maxi αi. Let qmax the maximum quantization error. Then

the optimal solution computed by the synchronous Algorithm (3.10)
with quantization errors satisfies

lim
k→∞

‖x̃(k) − x
∗‖∞ ≤ 1

1 − αmax
qmax .

PROOF. See Appendix A.5.

From this proposition we see that if we would like to minimize the
effect of the quantization error, than we should have αmax as small
as possible. This gives also a fast convergence speed of the iter-
ations. Therefore, the faster the convergence speed, the lower the
quantization error that will affect the computation of the optimal so-
lution. This is natural since at each iteration there is a quantization
error that keeps accumulating. Reducing these iterations, reduces
the entity of such an accumulation. We would like to mention that
the analysis developed in this section applies also to traditional La-
grangian methods in (3.11) and (3.12).

4. EXAMPLES OF APPLICATIONS
In this section, we show that the wireless sensor network moti-

vating examples of Section 2 are F-Lipschitz.

4.1 Distributed Detection
The distributed detection optimization problem (2.3) can be solved

by F-Lipschitz methods. We observe that the cost function is strictly
decreasing in the decision variables since the complementary Gaus-
sian distribution Q(·) is increasing in its argument. Analogously,
the constraints have strictly positive derivatives since they are given
by the positive combination of Q functions with negative argument,
thus condition (3.8b) of Theorem 3.7 applies. If (3.8c) and (3.8f)
also hold, the the problem is F-Lipschitz. This can be easily achieved
by imposing that the weighting coefficients are such that

biie
− E2

2 σ2
S ≥

∑

j 6=i

bij ∀i , (4.1)

and

δ

δ + ∆
biie

− E2

2 σ2
S ≥

∑

j 6=i

bji ∀i , (4.2)

where

δ = min
i,x∈D

∇if0(x) = min
i,x∈D

1
√

2π σ2

S

e
−

x2
i

2 σ2
S =

1
√

2π σ2

S

,

∆ = max
i,x∈D

∇if0(x) = max
i,x∈D

1
√

2π σ2

S

e
−

x2
i

2 σ2
S =

1
√

2π σ2

S

.

The assumptions (4.1) and (4.2) have a natural interpretation: the
weighting coefficients that node i uses for its own opinion should
be high enough so to trust more the own opinion than other node’s
opinions. By these assumptions, problem (2.3) has the optimal so-
lution satisfying all the constraints at equality. The solution may
be computed by algorithm (3.9) in a centralized set-up, or by algo-
rithm (3.10) in a distributed set-up.

We can transform the problem in the form (3.1) by positive scalars
γi, as shown in Section 3.2. In particular, we define

f0(x) = −
n

∑

i=1

P
(i)
fa (xi) ,

and fi(x) = xi − γigi(x) with

gi(x) =
n

∑

j=1

bi,jP
(j)
md(xj) − ci ∀i ,

where

γi ≤ min
0�x�E1

1

∇igi(x)

= min
0�x�E1

1

1
√

2π σ2

S

∑n

j=1 bi,je

−
(E−xj)2

√

σ2
S

=

√

2π
σ2

S
∀i ,

ensures contractivity of the mapping.
We performed numerical simulations by Matlab. We considered

a network of n = 5 nodes, where each node detected an event
as a Gaussian random variable of average 0 if the hypothesis H0

happened and of average E = 3 if the hypothesis H1 happened.
We set σ = 1 and S = 1. We chose that every node needs to
have at most a probability ci = 1/15 ∀i as a total probability of
miss detection. Moreover, we generated randomly bi,j ∀i, j with a
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uniform distribution in [0, 1] and then we normalized these coeffi-
cients so that (4.1) and (4.2) hold. Since optimization problem is
convex, we used the interior point method by the Matlab function
fminconwith the option “interior-point”, whereas the F-Lipschitz
solution was provided by solving the system of equations given by
the constraints at the equality by the Matlab function fsolve. We
observed a convergence of fsolve in about 5 iterations and 36
function evaluations, whereas fmincon converges in about 31 it-
erations and 231 function evaluations. Similar results hold for other
choices of the detection parameters. The reduction of number of it-
erations and computational complexity ensured by our method is
remarkable.

4.2 Radio Power Allocation
The power allocation problem of Section 2.2 is F-Lipschitz. We

can see this by making the variable substitution xi = −pi. Then,
problem (2.4) can be rewritten as

max
x

x (4.3)

s.t. Giixi + Smin(σi −
∑

k 6=i

Gikxk +
∑

k 6=i

Mikx2
i x

2
k) ≤ 0,

i = 1, . . . , n ,

− pmax1 � x � −pmin1 .

Since Mik is smaller than Gii and Gik ∀i, k, it is reasonable to
assume that for −1pmax � x � −1pmin the following conditions
hold: Gii > 2Smin

∑

k 6=i
Mikxix

2
k, Gik > 2Mikx2

i xk and

Gii + 2Smin

∑

k 6=i

Mikp3
min ≥ Smin

∑

k 6=i

Gik .

This assumption gives

∇igi(x) >
∑

i6=j

|∇jgi(x)| ,

for −1pmax � x � −1pmin. Therefore, Theorem 3.7 applies
(see conditions Eq. (3.8d) and Eq. (3.8c)) and problem (4.3) has
the optimal solution satisfying all the constraints at equality. The
solution could be centrally computed by algorithm (3.9), or by al-
gorithm (3.10) in a distributed set-up. In this last case, we have
to transform the problem in the form (3.1) by positive scalars γi,
as shown in Section 3.2, thus achieving the equivalent constraints
fi(x) = xi − γigi(x), where

gi(x) = Giixi + Smin(σi −
∑

k 6=i

Gikxk +
∑

k 6=i

Mikx2
i x

2
k) ∀i .

This function is contractive Lipschitz provided that one chooses

γi ≤ min
−1pmax�x�−1pmin

1

∇igi(x)

= min
−1pmax�x�−1pmin

1

Gii + 2Smin

∑

k 6=i
Mikxix2

k

=
1

Gii + 2Sminp3
max

∑

k 6=i
Mik

which ensures contractivity with respect to the infinity norm.
We performed numerical simulations by Matlab with 10 transmitter–

receiver pairs of nodes. We considered a wireless sensor network
where the figures for the wireless channel and noises are taken co-
herently with the Tmote Sky sensor nodes [20], which features the
CC2420 radio transceiver module by Chipcon [21]. The noise is
set to σi = −130 dBm ∀i, Smin = 1, ∀i, Gij = −90 dBm ∀i 6= j
and Mij = −120 dBm ∀i 6= j. Moreover, pmin = −25 dBm and

pmax = 0 dBm. See [22] for details. We observed a convergence
of algorithm (3.10) in less than 10 iterations, whereas a traditional
method based on the Lagrangian dual function converges in about
40 iterations. Once again, the reduction of number of iterations and
computational complexity ensured by our method is remarkable.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented the F-Lipschitz optimization, which
enables fast computations of the solution of a class of convex and
non-convex problems. The central idea was to show that the op-
timal solution is achieved when all the constraints hold at equal-
ity. We showed that this optimization method can solve problems
much more efficiently than traditional Lagrangian methods, includ-
ing convex problems. If an F-Lipschitz optimization problem must
be solved by distributed operations, then our optimization method
uses simple and fast distributed asynchronous algorithms, which
are very appealing for wireless sensor networks. We showed that
some typical optimization problems that arise in wireless sensor
networks are F-Lipschitz, such as distributed detection and radio
power control.

We believe that F-Lipschitz optimization may have many devel-
opments. There can be more qualifying properties for which this
optimization applies, such as when constraints have the Jacobian
always positive definite (which is sufficiently ensured by the qual-
ifying F-Lipschitz conditions). In many situations, it could be in-
teresting to approximate problems to F-Lipschitz ones, given the
numerous useful properties of this optimization. For example, if
the Jacobian of the constraints does not have all the off-diagonal
elements of the same sign, then one could set to zero these out-
liers and see how suboptimal is the solution by following a similar
approach proposed in [23]. Another interesting line of research is
about the extension of our method to more general objective func-
tions, e.g., non necessarily increasing functions. The introduction
of slack variables that make the constraints hold at equality might
be useful, even though it appears challenging to tie these variables
to the objective function and show that the technique is more con-
venient than Lagrangian methods. For problems with general ob-
jective functions and constraints, it could be computationally use-
ful to check the existence of conditions for which the constraints
hold at equality. If we know that strong duality holds, then strictly
positive Lagrangian multipliers associated to inequality constraints
are a sufficient (but not necessary) condition for the solution to
satisfy the constraints at equality. We are currently investigating
when these conditions hold. Finally, we are currently investigat-
ing whether knowing that some of the inequality constraints hold
at equality at the optimum is of help to reduce the computations
for the optimal solution. This might be done by not including these
constraints in the Lagrangian.
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APPENDIX

A.1 Proof of Theorem 3.3
Let

F(x) =

[

f(x)
h(x)

]D

.

It follows from that Banach fixed point theorem that there exists
a unique fixed point to x = F(x) in the compact set D . By our
assumption, the fixed point must be feasible to the F-Lipschitz op-
timization problem.

It remains to show that the fixed point, x∗, is optimal to prob-
lem (3.1). Take an arbitrary feasible point such that

Ψ(x) := x − F(x) = −b

for some nonzero b ≥ 0. Let us compare the solutions

Ψ(x) = −b Ψ(x∗) = 0.

Assuming that x + t(x∗ −x), t ∈ [0, 1] intersects the boundary of
D only at a finite number of points, we have

b = Ψ(x∗) − Ψ(x) =

∫ 1

0

JΨ(x + t(x∗ − x))(x∗ − x)dt

=

(

I −
∫ 1

0

JF(x + t(x∗ − x))dt

)

(x∗ − x) (A.1)

where JF(·) = ∇F(·)T denotes the Jacobian. Let us define

A = [aij ]
n
i,j=1, aij =

∫ 1

0

∇jFi(x + t(x∗ − x))dt.

Then (A.1) can be rewritten as y = Ay + b.
For any scalarization µT f0(x), where µ ≻ 0, the change in the

cost function from x to x∗ is

µ
T f0(x

∗) − µ
T f0(x) =

∫ 1

0

µ
T Jf0(x + t(x∗ − x))dt(x∗ − x)

=: cT (x∗ − x),

where c = [ci], ci > 0 and if in addition (3.2e) holds have c = c1
for some c > 0. We want to show that cT y > 0 when Ay = b.

We consider the two cases. In the case when (3.2c) and (3.2b)
hold we have aij ≥ 0 and

∑n

j=1 aij < 1 (or |A|1 < 1). Then

(I − A)−1 � 0 (positive matrix) with strictly positive diagonal
elements. It is easy to see that this implies cT (I − A)−1 ≻ 0 and
hence cT y = cT (I − A)−1b > 0.

In case when (3.2e) and (3.2f) hold we have aij ≤ 0,
∑n

i=1 aij <
1 (or |A|∞ < 1) and c = c1, for some c > 0. We need to show
that cT y > 0, where y = Ay + b. Since |A|∞ < 1 it follows
that ρ(A) < 1 and I − A is invertible so our desired condition is
1T (I − A)−1b = bT (I − AT )−11 > 0. It is thus equivalent to
show that bT z > 0 for z = AT z+1 = A2T z+(AT +I)1. Since
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by assumption A2T � 0 and ρ(A2T ) ≤ |A|2∞ < 1 it follows that
(I −A2T )−1 � 0 with strictly positive diagonal elements. Hence,

b
T
z = b

T (I − A
2T )−1(AT + I)1 > 0,

since (AT + I)1 > 0.
The case when the qualifying conditions (3.2h) hold can be treated

as in the proof of Claim 3.12 below.

A.2 Proof of Theorem 3.7
We show that by the conditions of the theorem, the F-Lipschitz

properties are satisfied for the optimization problem (3.4).
Conditions (3.8) imply that conditions (3.2a), (3.2c) and (3.2e)

of an F-Lipschitz optimization problem are verified. Therefore, we
need only to show contractivity of the right-hand side of the con-
straints of problem (3.4), namely that condition (3.8d) and (3.8c)
imply (3.2c) and (3.2b). We focus on the inequality functions fi(x),
i = 1 . . . , l. The arguments used to show that these functions
are contractive apply also to the equality functions hi(x), for i =
l + 1, . . . , n.

Consider the constraints of problem (3.4). The function fi(x) is
contractive with respect to the norm 1 if ∀x ∈ D , then ||∇fi(x)||∞
< 1, namely

|1 − γi∇igi(x)| + γi

∑

i6=j

|∇jgi(x)| < 1 . (A.2)

We show next that this holds if condition in (3.8c) holds. Let us
choose γi such that

1 − γi∇igi(x) ≥ 0 .

Inequality (A.2) holds if

γi(−∇igi(x) +
∑

i6=j

|∇jgi(x)|) < 0 ,

which is certainly verified since γi > 0. The other cases follow in
the same fashion.

Therefore, by the conditions of the theorem, problem (3.4) satis-
fies the F-Lipschitz qualifying properties. This concludes the proof.

A.3 Proof of Theorem 3.11
To give the proof, we need first a definition and two intermediate

technical results. We use some results in Hanson’s invex analy-
sis [24]:

Definition A.1. [24, 25] A continuously differentiable function

f(x) : D → R is invex if ∀ x ∈ D and y ∈ D there exists a

function η(x,y) : D × D → R
n such that

f(x) − f(y) ≥ η
T (x,y)∇f(x) .

Lemma A.2. Let qi(x) = xi − fi(x), i = 1, . . . , n, where

fi(x) : D → R is a Lipschitz function with modulus αi < 1.

Then, qi(x) is invex with respect to the function

ηi(x,y) = − (1 − αi)1

1T∇qi(x)
‖x − y‖ .

PROOF. Since the function fi(x) is Lipschitz contractive, qi(x)
is Lipschitz with constant 1 − αi and we have

|qi(x) − qi(y)| ≤ (1 − αi)‖x − y‖

= 1
T∇qi(x)

(1 − αi)

1T∇qi(x)
‖x − y‖ ,

where the last inequality is allowed by that 1T∇qi(x) = 1T (ei −
∇f(x)) > 0, where ei is the all zero vector with the exception of
the i-th element, which is 1. It follows that

qi(x) − qi(y) ≥ −1
T (1 − αi)∇qi(x)

1T∇qi(x)
‖x − y‖ ,

whereby the proposition follows by observing that

ηi(x,y) = − (1 − αi)1

1T∇qi(x)
‖x − y‖ . (A.3)

Lemma A.3. Let f(x) =
∑

j
µjf0j(x) the scalar objective

function associated to the vector optimization problem (3.1), where

0 < µj ≤ 1 ∀ j. Let Lj be the modulus of f0j(x) ∀ j. Then, f(x)
is invex with respect to the function η0(x,y) : D ×D → R

n, with

η0(x,y) = −
∑

j
µjLj1

1T∇f(x)
‖x − y‖ . (A.4)

PROOF. The proof follows the same steps of Lemma A.2.

We are now in the position to prove Theorem 3.11.

PROOF. Strong duality follows by showing that the KKT condi-
tions are necessary and sufficient. The necessary condition is given
by the Mangasarian-Fromowitz constraint qualification [26, pag.
25]. For this constraint qualification to hold, it is necessary that the
gradient of the inequality constraints is a full rank matrix, which
we know from Lemma 3.8.

Finally, the sufficiency of the KKT conditions is ensured by show-
ing that the objective function and the constraints have a common
invex function, see [24]: From Lemma A.2 and Lemma A.3, we
define the common invex function η(x,y) : D × D → R

n such
that

η(x,y) = min
i

ηi(x,y) i = 0, . . . , n ,

where η0(x,y) is given in (A.4) and ηi(x,y) is given in (A.3).
Note that −∞ < ηi(x,y) < 0 for i = 1, . . . , n, and that −∞ <
η0(x,y) < 0 because 1T∇f(x) > 0 ∀x ∈ D .

A.4 Proof of Claim 3.12
Since strong duality holds from Theorem 3.11, we use the La-

grange dual problem to establish the sensitivity. Consider the scalar-
ized problem associated to (3.1), where the vector objective func-
tion is converted into a scalar function by the Pareto coefficients
µ = [µi], with µ ≻ 0, and with 1T µ = 1 [8]. The scalarized
objective function of problem (3.1) is f0(x) = [f0i(x)] ∈ R

m,
with f0i(x) : D → R, i = 1, . . . , n, we have:

max
x

θ

maxx∈D ∇µT f0(x)
µ

T f0(x) (A.5a)

s.t. xi ≤ Fi(x) i = 1, . . . , n (A.5b)

x ∈ D .

Notice that we have normalized the scalarized objective function
of problem (3.1) by an arbitrary constant given by θ > 0 divided
by the maximum of the derivative. Clearly, this does not affect the
optimal solution as long as θ > 0. Let λ = [λi] ∈ R

n be the
vector of Lagrangian multipliers. We show next that 0 < λ < 1

provided that θ is small enough, which ensures a low sensitivity of
the optimization problem to perturbations of the constraints [1].

The Lagrange multipliers associated to this problem must satisfy
the following condition coming from the derivative of the Lagrange
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dual function:

(I −∇F(x))λ =
θ∇µT f0(x)

maxx∈D ∇µT f0(x)
, (A.6)

where F(x) = [F1(x), F2(x), . . . , Fn(x)]T . For simplicity of
notation, let

b(x) =
θ

maxx∈D ∇µT f0(x)
∇µ

T f0(x) .

Clearly, 0 < bi < θ, ∀i. Then, it trivially follows that (A.6) gives

λ = ∇F(x∗)λ + b(x∗) , (A.7)

at the optimal point x∗. Now, suppose that the first condition of
the second qualifying property (3.2c) holds, namely ∇jfi(x) ≥
0 ∀i 6= j. Then since ρ(∇F(x)) < ‖∇F(x)‖∞ < 1 it fol-
lows that (I − ∇F(x))−1 � 0 with strictly positive diagonal el-
ements. Hence at the optimal point x∗ we get 0 ≺ λ = (I −
∇F(x∗))−1b(x∗) ≺ 1 given that θ is small enough.

Suppose that the second condition of the second qualifying prop-
erty holds, namely ∇jfi(x) ≤ 0, ∀i, j. We may rewrite (A.7) as

λ = ∇F(x∗)λ + b(x∗) = ∇F(x∗)2λ + (∇F(x∗) + I)b(x∗)

Due to (3.2e) we have ∇F(x∗)2 � 0 and b(x) = c ·θ ·1, for some
positive constant c. Condition (3.2f) implies that ρ(∇F(x∗)2) ≤
‖∇F(x∗)‖2

1 < 1 and thus that (I−∇F(x∗)2)−1 � 0 with positive
diagonal elements and moreover that (∇F(x∗) + I)b(x∗) ≻ 0.
Hence, we have that 0 ≺ λ = (I − ∇F(x∗)2)−1(∇F(x∗) +
I)b(x∗) ≺ 1 given that θ is small enough.

Suppose that the qualifying condition (3.2h) holds. We have

λ∗
i = −

n
∑

j=1

∇iFj(x
∗)λ∗

j + bi(x
∗) , ∀i . (A.8)

where F(x) = [F1(x), F2(x), . . . , Fn(x)]T . It follows that

λmax ≤
n

∑

j=1

|∇iFj(x
∗)|λmax + bi(x

∗) , ∀i ,

where λmax = maxi λ∗
i . Thus

λmax ≤
n

∑

j=1

max
i

|∇iFj(x
∗)|λmax + max

i
bi(x

∗) ,

whereby

λmax ≤ maxi bi(x
∗)

1 − ∑n

j=1 maxi |∇iFj(x∗)| ∀i .

The denominator of the previous inequality is always positive by
the assumption that ‖∇F (x)‖1 < 1. We can compute a lower
bound for the lagrangians. Let λmin = mini λ∗

i , then

λmin ≥ −
n

∑

j=1

|∇iFj(x
∗)|λmax + bi(x

∗) , ∀i ,

Thus

λmin ≥−
n

∑

j=1

max
i

|∇iFj(x
∗)|λmax + min

i
bi(x

∗)

≥− −maxi bi(x
∗)

1 −
∑n

j=1 maxi |∇iFj(x∗)|

n
∑

j=1

max
i

|∇iFj(x
∗)|

+ min
i

bi(x
∗)

=
mini bi(x

∗)

1 − ∑n

j=1 maxi |∇iFj(x∗)|

−
(mini bi(x

∗) + maxi bi(x
∗))

∑n

j=1 maxi |∇iFj(x
∗)|

1 − ∑n

j=1 maxi |∇iFj(x∗)| .

We have that λmin is positive if the numerator and the denominator
of the previous inequality are positive, which happens if

n
∑

j=1

max
i

|∇iFj(x
∗)| < 1 ,

and

n
∑

j=1

max
i

|∇iFj(x
∗)| <

mini bi(x
∗)

mini bi(x∗) + maxi bi(x∗)
. (A.9)

Clearly, between the last two inequalities, (A.9) wins, which holds
true by the assumption of the theorem. But then, the qualifying
condition (3.2h) implies that the lagrangian are strictly positive and
less than 1 by tuning θ. This concludes the proof.

A.5 Proof of Proposition 3.13
Throughout the proof, we let the norm ‖·‖ be the max norm. Let

x(0) = x̃(0) the initial feasible vector used to compute the optimal
solution. It holds that limk→∞ x(k) = limk→∞ F(x(k − 1)) =
x∗ and x∗ = F(x∗). We have

x̃(1) = F(x̃(0)) + q(0) .

By using the Lipschitz condition we get

‖x̃(1) − x
∗‖ = ‖F(x̃(0)) − F(x∗) + q(0)‖

≤ αmax‖x̃(0) − x
∗‖ + αmax‖q(0)‖,

where we used that F(x) is Lipschitz. Similarly,

‖x̃(2) − x
∗‖ = ‖F(x̃(1)) − F(x∗) + q(1)‖

≤ αmax‖x̃(1) − x
∗‖ + ‖q(1)‖

= αmax‖F(x̃(0)) − F(x∗) + q(0)‖ + ‖q(1)‖
≤ α2

max‖x̃(0) − x
∗‖ + αmax‖q(0)‖ + ‖q(1)‖

and it is straightforward to generalize the iterations to

‖x̃(k) − x
∗‖ ≤ αk

max‖x̃(0) − x
∗‖ +

k−1
∑

j=0

αk−1−j
max ‖q(j)‖

≤ αk
max‖x̃(0) − x

∗‖ +

k−1
∑

j=0

αk−1−j
max qmax

≤ αk
max‖x̃(0) − x

∗‖ +
1 − αk−2

max

1 − αmax
qmax ,

where we used that ‖q(j)‖ ≤ qmax, and that ‖α‖ < 1. The result
follows by taking the limit as k → ∞.
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