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Preface

Topics related to modeling and simulation play an increasingly important role in building
an advanced engineering system in rapid and cost-effective ways. Since the invention by
Sir Thomas Harriet (1560–1621), people have been using the finite difference method
(FDM) to perform the task of modeling and simulating engineering systems, in particular
to solve partial differential equation systems. The FDM works very well for problems of
simple geometry. For the last half-century, we have been using techniques of finite element
methods (FEMs) to perform more challenging tasks arising from increasing demands on
flexibility, effectiveness, and accuracy in problems with complex geometries. I still remem-
ber doing a homework assignment during my university years using the FDM to calculate
the temperature distribution in a rectangular plate. This simple problem demonstrated the
power of numerical methods and left a profound impression on me. About a year later,
I created an FEM program to solve a nonlinear mechanics problem for a frame structural
system, as part of my final-year project. Since then, the FEM has been one of my major tools
in dealing with many engineering and academic problems. In the last three decades, I have
participated in and directed many projects involving engineering problems of very large
scales with millions of degrees of freedom (DOFs). I thought, and many of my colleagues
agreed, that with the advances made to the FEM and to the computer, there were very
few problems left to be resolved. However, I realized that I was wrong, and for a very
simple reason. When a class of problems is solved, people simply move on to solve a class
of problems that are more complex and to demand results that are more accurate. In
reality, problems can only be as complex as we make them to be; hence, we can never
claim that problems can be totally resolved. We solve problems that are idealized and
simplified by us. Once the simplification is relaxed, new challenges arise. The older
methods often cannot meet the demands of new problems of increasing complexity, and
newer and more advanced methods are constantly born.

I heard about meshfree methods around 1993, while I was working at Northwestern
University, but I was somehow reluctant to move into this new research area probably
because I was quite satisfied using FEM techniques. In 1995–1996, I handled a number of
practical engineering problems for the defense industry using FEM packages, and encoun-
tered difficulties in solving the problems related to mesh distortion. I struggled to use
remeshing techniques, but the solution was far from satisfactory. I then began to look for
methods that could solve the mesh-distortion problems encountered in my industrial
research work. I thus started to learn more about meshfree methods.

I worked alone for about a year, feeling as though I were walking in a maze of this new
research area. I wished that I had a book on meshfree methods to guide me. I was excited
with the small progress I made, and this motivated me to work hard to write a proposal for
a research grant from the NSTB (a research-funding agency of the Singapore government).
I was fortunate enough to secure the grant, which enabled me to form a research team
at the Centre for Advanced Computations in Engineering Science (ACES) working on
element-free methods. The research team at the ACES is still working very hard in the area
of meshfree methods. This book will cover many of the research outcomes from this
research group.

This book provides a systematic description of meshfree methods, analyzes how they
work, and explains how to use and develop a meshfree method, as well as the problems
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associated with the element-free methods. I experienced difficulties while learning about
meshfree methods because I did not have a single book to guide me. I therefore hope
my efforts in writing this book will help researchers, engineers, and students who are
interested in exploring this field.

Significant advances have been made since the first edition was published in 2002. In this
second edition, some of the important developments have been included, especially on the
advancement of fundamental theoretical issues.

My work in the area of meshfree methods has been profoundly influenced by the works
of Professors Belytschko, Atluri, W.K. Liu, J.S. Chen, late H. Noguchi, and many others
working in this area. Without their significant contributions, this book would not have
existed.

Many of my colleagues and students have supported and contributed to the writing and
preparation of this book. I express my sincere thanks to all of them. Special thanks go to
Y.T. Gu, X.L. Chen, L. Liu, V. Tan, L. Yan, K.Y. Yang, M.B. Liu, Y.L. Wu, Z.H. Tu,
J.G. Wang, X.M. Huang, Y.G. Wu, Z.P. Wu, K.Y. Dai, and X. Han. For this second
edition, special thanks also go to G.Y. Zhang, T. Nguyen-Thoi, Z.Q. Zhang, L. Chen,
Y. Li, X.Y. Cui, Q. Tang, and S.C. Wu. Many of these individuals have contributed
examples to this book in addition to their hard work in carrying out a number of projects
related to the meshfree methods covered in the book.

G. R. Liu
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1
Preliminaries

In building a modern and advanced engineering system, engineers must undertake a
very sophisticated process in modeling, simulation, visualization, analysis, designing,
prototyping, testing, fabrication, and construction. The process is illustrated in the flow-
chart shown in Figure 1.1. The process is often iterative in nature; that is, some of the
procedures are repeated based on the assessment of the results obtained at the current
stage to achieve optimal performance.

This book deals with topics related mainly to modeling and simulation, which are
underlined in Figure 1.1. The focus will be on mathematical, numerical and computational
modeling, and simulation. These topics play an increasingly important role in building
advanced engineering systems in rapid and cost-effective ways. Many computational
methods and numerical techniques can be employed to deal with these topics. This book
mainly focuses on the development and applications of the meshfree methods.

This chapter addresses the overall procedures of modeling and simulation using mesh-
free methods and the overall differences in key numerical techniques between the meshfree
methods and other existing methods, especially the well-known and widely used finite
element method (FEM) [1–3]. General procedure of meshfree methods is outlined,
and common preliminary techniques for different meshfree methods are discussed in
detail, including triangulation, determination of local support domains, influence domains,
estimation of nodal spacing, and local support node selection techniques.

Some of the discussions may be found too ‘‘heavy.’’ Readers are advised to skim
through these materials.

1.1 Physical Problems in Engineering

There are a large number of different physical phenomena in engineering systems, so many
that it is not possible to model and simulate them all. In fact, only major phenomena, which
significantly affect the performance of the system, need to be modeled and simulated
to provide a necessary and sufficient in-depth understanding of the system, in order to
further improve or optimize the design.

The physical problems covered in this book are in the areas of mechanics for solids,
structures, and fluid flows. Classical mathematic models have already been well estab-
lished for the phenomena in these areas, and different types of differential or partial
differential equations (PDEs) that ‘‘govern’’ these phenomena have also been derived.
These PDEs are in (obviously) differential form, and termed as strong form system governing
equations. It is required that the PDEs are satisfied at any point inside the problem domain:
a strong requirement. This kind of physical phenomena can be simulated using proper
numerical tools by solving these PDEs with a proper set of boundary and initial conditions.
We require, of course, the original physical problem to be well-posed.

1
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Remark 1.1: Well-Posed Problems
The original problem setting (PDEs with boundary and initial conditions) must be
well-posed in the Hadamard sense, by which we mean that there exists a unique solution
that depends continuously on the data. Some of the ill-posed problems in engineering are
treatable using special regularization techniques (resetting, reformulating, adding in new
information=assumptions, etc.), but it is beyond the scope of this book. Interested readers
are referred to books in the areas of ill-posed problems or inverse problems (see, e.g., [4]).
This book deals only numerical methods for solutions to well-posed problems.

If the problem is not well-posed, there is nothing much a numerical method can do,
except produce all sort of nonsense numerical numbers or simply breaks down, regardless
of how good the method is. For well-posed problems, the currently well-established and
often used numerical tools include the conventional FEM [1–3], the finite difference
method (FDM) [5], and the finite volume method (FVM) [6]. The meshfree method is one
very powerful tool still under rapid development.

1.2 Solid Mechanics: A Fundamental Engineering Problem

We brief now a typical case of engineering problem: solid mechanics is the default problem
studied in this book, because it is one of the most fundamental problems in all engineer-
ing applications. The strong forms for solid mechanics problems are the PDEs defined in
the problem domain governing the equilibrium state at any point in linear elastic solids,

FIGURE 1.1
Processes that lead to building
a complicated engineering system.

Conceptual design 

Modeling
(Physical, mathematical, numerical, operational, economical)

Simulation
(Experimental, analytical, and computational) 

Analysis
(Photography, visual-tape, and computer graphics, visual reality) 

Design 

Prototyping 

Testing 

Fabrication 
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known as equilibrium equations. Figure 1.2 shows a three-dimensional (3D) solid
constrained on a part of the boundary and subjected to body force distributed over
the volume and surface forces on another part of the boundary. Figure 1.3 shows a
two-dimensional (2D) solid that is very thin in the z-direction, and stress components
in the z-direction are all zero, known as plane stress problem. Figure 1.4 shows a 2D solid
that is very thick in the z-direction and the external forces and constraints are independ-
ent of z, resulting in zero strain components in the z-direction, known as plane strain
problem.

Consider, in general, a d-dimensional solid mechanics problem with a physical domain
of V 2 R

d bounded by G. The static equilibrium equation governing the solid can be written
in the differential form:

qsij

qxj
þ bi ¼ 0, i, j ¼ 1, . . . , d in V (1:1)

z(x3) 

x(x1) 

y(x2) 

Ω

t1

t2

b1 b2

Γt

Γu

Γt

FIGURE 1.2
A constrained 3D solid subjected to external
forces.

x 

y 
y 

z 

FIGURE 1.3
A 2D plane stress problem.
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where
bi are given external body force
sij is the (internal) stress which relates to the strains eij via the constitutive equation or the
generalized Hooke’s law:

sij ¼ Cijklekl (1:2)

where Cijkl is the elasticity tensor of the material that is symmetrical:

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij (1:3)

For isotropic Saint-Venant Kirchhoff elastic materials, we have

Cijkl ¼ ldjidkl þ m(dikdjl þ dildjk) (1:4)

where l and m are the Lame’s elastic constants. In the formulations of this book, we
consider general anisotropic materials, for which we do not necessarily have Equation 1.4.

The strain tensor eij relates to the displacements by the compatibility equation (also known
as the kinematic equations).

eij ¼ 1
2

qui
qxj

þ quj
qxi

� �
(1:5)

where ui, i¼ 1, . . . , d, is the displacement components in the xi-directions at a point in V.
Substituting Equations 1.2 and 1.5 into Equation 1.1, we shall have

q
qxj

Cijkl
quk
qxl

� �
þ bi ¼ 0, i, j ¼ 1, . . . , d in V (1:6)

where the displacement is the primary field variable. In matrix form often used in this
book, the equilibrium equation (Equation 1.1) becomes

LT
dsþ b ¼ 0 (1:7)

FIGURE 1.4
A 2D plane strain problem. y 

x
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where the body force vector becomes

b ¼ b1
b2

� �
for 2D, b ¼

b1
b2
b3

8<
:

9=
; for 3D (1:8)

The matrix of differential operators Ld is given by

Ld ¼
q=qx1 0
0 q=qx2

q=qx2 q=qx1

2
4

3
5
3�2

for 2D, Ld ¼

q=qx1 0 0
0 q=qx2 0
0 0 q=qx3
0 q=qx3 q=qx2

q=qx3 0 q=qx1
q=qx2 q=qx1 0

2
66666664

3
77777775
6�3

for 3D (1:9)

The constitutive equation becomes

s ¼ c« (1:10)

where s is a vector that collects stress components in the form of

s ¼
s11
s22
s12

8<
:

9=
; for 2D, s ¼

s11
s22
s33

s23

s13

s12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

for 3D (1:11)

and « is a vector that collects strain components:

« ¼
e11
e22
2e12

8<
:

9=
; ¼

e11
e22
g12

8<
:

9=
; for 2D, « ¼

e11
e22
e33
2e23
2e13
2e12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

e11
e22
e33
g23
g13
g12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

for 3D (1:12)

The matrix of material stiffness constants c can be written explicitly in more familiar
engineering notations as

c ¼

c11 c12 c13 c14 c15 c16
c22 c23 c24 c25 c26

c33 c34 c35 c36
c44 c45 c46

sy: c55 c56
c66

2
6666664

3
7777775

(1:13)

where ‘‘sy’’ stands for ‘‘symmetric.’’
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Note that the cij¼ cji for the symmetry. Thus, there are 21 independent material
constants cij. For isotropic materials, c can be greatly reduced to

c ¼

c11 c12 c12 0 0 0
c11 c12 0 0 0

c11 0 0 0
c11 � c12

2
0 0

sy:
c11 � c12

2
0

c11 � c12
2

2
666666666664

3
777777777775

(1:14)

where

c11 ¼ E(1� n)
(1� 2n)(1þ n)

; c12 ¼ En
(1� 2n)(1þ n)

;
c11 � c12

2
¼ m ¼ G (1:15)

in which E, n, and G are Young’s modulus, Poisson’s ratio, and shear modulus of the
material, respectively. There are only two independent constants among these three
constants. The relationship between these three constants is

G ¼ E
2(1þ n)

(1:16)

Given any two of these three constants, the other can then be calculated using the above
equation. For 2D plane stress problems we further have

c ¼ E
1� n2

1 n 0
n 1 0
0 0 (1� n)=2

2
4

3
5 (Plane stress) (1:17)

For 2D plane strain problems, the matrix of material stiffness constants c can be obtained
by simply replacing E and n, respectively, with E=(1� n2) and n=(1� n), which leads to

c ¼ E(1� n)
(1þ n)(1� 2n)

1
n

1� n
0

n

1� n
1 0

0 0
1� 2n
2(1� n)

2
666664

3
777775

(Plane strain) (1:18)

Remark 1.2: Stable Materials
In this book, unless specified, we consider solids and structures made of materials that are
physically stable: meaning that any amount of strains will result in stresses and hence some
positive strain energy. In other words, these material constants are positive definite or the
matrix of the material constants c is symmetric positive definite (SPD).

For stable materials, the stress–strain relation can also be written in the following
reverse form:

« ¼ ss (1:19)
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where s is a matrix of material flexibility constants that can be obtained from the experi-
ments. Because c is SPD, s must also be SPD, and hence both are invertible. We then have
the simple relations:

s ¼ c�1 or c ¼ s�1 (1:20)

Remark 1.3: Volumetric Locking
The denominator (1� 2n) in Equations 1.15 and 1.18 suggests a possible singularity
problem when n approaches 0.5, which can happen for the so-called incompressible solid
materials like rubber. This can have numerical implications for displacement methods,
known as volumetric locking. Special techniques have been developed in FEM to overcome
this numerical problem [1,2]. Techniques in meshfree methods that can deal with volumet-
ric locking problems will be presented in Chapter 8.

The compatibility equation (Equation 1.5) can also be written in the matrix form:

« ¼ Ldu (1:21)

where

u ¼ u1
u2

� �
for 2D, u ¼

u1
u2
u3

8<
:

9=
; for 3D (1:22)

is the displacement vector. Substituting Equation 1.21 into Equations 1.10 and 1.7 gives

LT
dcLduþ b ¼ 0 (1:23)

The boundary conditions can be of two types: Dirichlet (essential, displacement) boundary
condition and Neumann (natural, stress) boundary condition. Let Gu denote a part of G, on
which Dirichlet boundary condition is specified, we then have

ui ¼ uGi, on Gu 2 G (1:24)

where uGi is the specified displacement component on Gu. In this book, for simplicity, we
consider homogeneous essential boundary condition (uGi¼ 0) by default. This type of
problems is called force-driving problem. For nonhomogeneous essential boundary condi-
tions, simple treatments in the standard FEM shall apply. Let Gt denotes a part of G, on
which Neumann boundary condition is satisfied:

sijnj ¼ tGi, on Gt 2 G (1:25)

where
nj is the jth component of the unit outward normal
tGi is the specified boundary stress on Gt

Preliminaries 7
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The matrix form of Equation 1.25 is

LT
ns ¼ tG, on Gt 2 G (1:26)

where Ln is the matrix of the components of the unit outward normal arranged in the
form of

Ln ¼
n1 0
0 n2
n2 n1

2
4

3
5
3�2

for 2D, Ln ¼

n1 0 0
0 n2 0
0 0 n3
0 n3 n2
n3 0 n1
n2 n1 0

2
6666664

3
7777775
6�3

for 3D (1:27)

Equation 1.1 or 1.23 are the strong form system equations governing the mechanics
behavior of solids. The primary dependent field variables are the displacement functions.
They are required to have at least the same order of consistency in the entire problem
domain as the order of the differentiations in the PDEs. Such a requirement on consistency
for the displacement functions is said strong.

1.3 Numerical Techniques: Practical Solution Tools

1.3.1 An Overview

In this section, we provide an overview on the numerical methods=techniques for practical
solutions to the above-mentioned problems. The discussion is not meant to be rigorous, but
to project a simple and clear picture on this very completed subject to be covered by this
entire book.

There are largely two categories of numerical methods for solving these PDEs: direct
approach and indirect approach. The direct approach known as strong formmethods (such
as the FDM and collocation method, e.g., [9]) discretizes and solves the PDEs directly, and
the indirect approach known as weak form methods (such as FEM) establishes first an
alternative weak form system equation that governs the same physical phenomena and
then solves it. The weak form equations are usually in an integral form, implying that they
need to be satisfied only in an integral (averaged) sense: a weak requirement.* In meshfree
methods, both strong and weak forms are used. This book focuses on the weak form or
weakform-like meshfree methods that are generally more robust, stable, accurate, reliable,
efficient, and hence of more practical importance.

The essential idea of a weak form method is to assess a global behavior of the entire system
and then find a best possible solution to the problem that can strike a balance for the system
in terms of the global behavior. For a solid mechanics problem, for example, we look at the
energy potentials in the entire solid, and try to find a displacement field (solution) that
makes the total energy potential minimum. The total potential consists of strain energy
potential and the work done by all the external forces=loads for a given displacement field.

* Terms of strong and weak forms will be discussed in more detail from a different viewpoint in Chapter 5.
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At such a minimum (stationary) status, we know (from physics and the well-posedness)
that the solid will be stable, and hence in an equilibrium state. How to find out such a
displacement solution leading to the minimum potential energy? We just use our usual and
most robust engineering practice by ‘‘trial and error.’’ We essentially ‘‘try’’ to create or
assume a set of all possible and ‘‘legal’’ or ‘‘admissible’’ displacement fields, from which
the strain fields can be derived. We then evaluate the energy potentials for each of the
displacement fields. Whichever gives the lowest total energy potential is our best possible
solution in all these displacement fields we tried. It turns out that this trial and error
procedure can be formulated in a systematical manner of a minimization procedure based
on the so-called minimum potential energy principle, by which a set of discretized system
equations can be established and solved routinely. By ‘‘admissible’’ or ‘‘legal’’ we mean
that the displacement field has to make physical sense: It has to be continuous (in a
continuum portion of the solid) and satisfies boundary conditions. Otherwise, it can
‘‘upset’’ the energy potentials: a discontinuous displacement field can result in an energy
potential that cannot be properly evaluated! It is clear now that a weak formulation has a
very simple physical process. Why is it called weak formulation? This is because the
evaluation of energy requires only strains and stresses that can all be obtained by differ-
entiating the displacement function only once, and hence there is no need for the second-
order derivatives for the displacement functions as in the strong formulation: a weak
requirement.

Now, what has the functional analysis in mathematical community got to do with this
‘‘engineering’’ minimum potential energy principle? There is, in fact, a very simple
correspondence or equivalence (may not be exactly equal) listed in Table 1.1.

TABLE 1.1

Correspondence of Terminologies Used in the Engineering and Mathematical Communities

Item Engineering Terminology Mathematics Terminology

1. Displacement field (displacement function) Function

2. Strain field Derivatives of function

3. Set of displacement fields=functions Function space
4. A ‘‘legal’’ or ‘‘admissible’’ displacement field A function from a proper space

5. A virtual (arbitrary) displacement field Variation of a function

6. Energy potential, energy caused by a virtual displacement
field

Functional

7. Work done by the internal stresses in a deformed solid
resulted from an imposed virtual displacement field

Bilinear form

8. Virtual external work, external work Linear form

9. Balanced virtual energies Weak form equation

10. Minimization Variation of a functional

11. ‘‘Upset’’ Unbounded

12. Evaluable Bounded

13. Minimum potential energy principle Weak statement

14. Amplitudes of the displacement field Norm
15. (Virtual) strain energy Seminorm

16. Displacement boundary Dirichlet=essential boundary

17. Force=traction boundary Neumann=natural boundary
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Now, the mathematical (weak) statement for a problem can be generally stated as ‘‘the
solution to a problem should come from a proper space of functions and satisfying a
properly formulated weak equation for all the functions in that space.’’

Note that the ‘‘legality’’ for functions relates to the weak form equation. If we relax the
‘‘laws’’ for the function, we should establish another proper weak form equation. For
example, in the weakened-weak (W2) form we allow discontinuous functions by introducing
a new functional or energy potential (see Chapters 3 and 5 for details).

The above ‘‘rough’’ analysis and statements reveals that we need largely three key pieces
of numerical techniques in a weak form method:

1. The construction of the shape functions (for creating the displacement field or
functions)

2. The integration of over the problem domain (for the evaluation of the energy
potentials or functionals)

3. The weak form (equation) used for creating discrete algebraic system equations
that can be solved routinely

The procedure in FEM and the meshfree methods based on weak formulation can be
outlined in Figure 1.5: They all use these key techniques. The differences between the

Element mesh generation 

Shape function creation
based on element with

proper mapping  

Global matrix assembly

Support specification (SPC, MPC)

Solution for displacements

Computation of strains and
stresses from displacements  

Results assessment 

Nodal generation/triangulation 

Geometry generation 

Discretized equations using
weak forms integrated based

on elements  

Shape function creation based
selected local nodes   

Essential boundary
condition   

MeshfreeFEM 

Strain field construction

Discretized equations using
weak or weakened weak forms

integrated based on cells 

FIGURE 1.5
Flowchart for FEM and meshfree method procedures.
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FEM and meshfree methods can be found in these three key numerical techniques, which
are further elaborated in the following sections.

1.3.2 Shape Function Construction

In the FEM, the shape function construction is based on the element that acts as a basic
building block. Since the shape functions are constructed using individual elements in the
natural coordinate systems, the shape functions will be the same for the same type of
elements. Proper coordinate mapping is needed for complicated domains of general
orientations to ensure the compatibility (legality) of the shape functions between the
elements. These shape functions are usually predetermined for different types of elements
before the finite element analysis starts.

In meshfree methods, however, the shape functions constructed are usually only for the
current point or cell of interest using a small number of local support nodes selected in
the vicinity of the point or cell. The shape function generally changes with the location of
the point=cell. The construction of the meshfree shape function is performed during the
analysis, not before the analysis. The procedure to construct the shape functions is very
flexible; based on nodes; no coordinate mapping is needed; and the types of meshfree
shape functions are much more diversified compared to the FEM. We even allow displace-
ment functions to be discontinuous. Hence, we often need new ‘‘legal’’ frameworks for
such cases.

1.3.3 Integration of over the Problem Domain

The integration in the FEM is also, naturally, based on the element in the natural coordinate
system. The integral over the domain becomes a simple summation of all the integrals
over each of the elements that is performed using a numerical integration scheme, such as
the well-known Gauss quadrature.

The integration in meshfree methods is, in general, based on background cells. The cells
can be created by various means:

1. Using directly triangular background cells created for the problem domain, which
is quite similar as in FEM, and is used in the MFree2D� [7,8] for the element-free
Galerkin (EFG) [10] processor.

2. Using node-based smoothing domains created based upon the triangular back-
ground cells. This is used in the MFree2D for the node-based point interpolation
method (NS-PIM) [11–14] processor.

3. Using edge-based smoothing domains created based upon the triangular back-
ground cells. This is used in the MFree2D for the edge-based smoothed point
interpolation method (ES-PIM) [15,17] processor.

4. Using triangular subcells that are created by further dividing the background cells,
which is used in the cell-based smoothed point interpolation methods (CS-PIMs)
[66] and the constructed point interpolation method (SC-PIMs) [18–21,67].

The integral over the problem domain is then a simple summation of all the integrals over
each of the integration cells. The means of integration in meshfree methods are also very
diversified and can be sophisticated for desired performance and properties.
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1.3.4 Use of Weak Forms

Proper principles or weak forms must be followed to establish a set of algebraic equations.
These principles differ from types of problems. There are largely four principles:

1. The first principle is based on the variational or energy principles such as the
principle of virtual work, Hamilton’s principle, the minimum total potential
energy principle, and so on. These principles can lead to weak forms of which
the Galerkin weak form is the most popular and widely used. Traditional FEM for
mechanics problems of solids and structures is founded on these principles, in
particular the Galerkin weak form, and they are applicable also to some meshfree
methods. Meshfree methods based on weakened-weak formulation use in general
the strain-constructed Galerkin or SC-Galerkin weak forms.

2. The second principle is based on the weighted residual methods, and is, in fact, a
more general form that can be used for deriving FEM equations both for solids and
structures and for fluid flows, as long as the partial differential governing equa-
tions are available. In a special setting, it leads to a Galerkin weak form.

3. The third principle is based on the Taylor series, which has led to the formation of
the traditional FDM based on essentially regular grids. This book will not discuss
further meshfree method based on this formulation. Interested readers may refer
to [5]. We will, however, discuss in detail a new type of method called gradient
smoothing method (GSM) that works very well for irregular triangular mesh and
particularly efficient for fluid flow problems [58–61].

4. The fourth principle is based on the control of conservation laws on each finite
volume (element) in the domain. The FVM was established using this approach.

Engineering practice so far has shown that the first two principles are more often used for
solids and structures, and the other two principles are more often used for fluid flow
simulations. However, FEM has also been used to develop commercial packages for
fluid flow problems, and FDM can be used for solids and structures. The mathematical
foundation of all these approaches is the residual method. A proper choice of the test and trial
functions in the residual method can lead to a FEM or FDM or FVM formulation.

Meshfree methods can be formulated using all these four principles, and the first
two principles are used more often. Formulations based on the first two principles
can lead to a weak form formulation, and that based on the third principle belongs to
strong form. The strong form methods are usually less stable and require some special
treatments [22,23]. The discretized equation systems derived based on the weak
form are usually more stable and can give much more accurate results, because of
the well-structured error control measure built in the weak formulations. Therefore,
this book mainly covers meshfree methods of weak formulation. Meshfree methods
use the standard weak forms such as the Galerkin weak form, and the more general
W2 form of the SC-Galerkin [15] (including the generalized smoothed Galerkin or
GS-Galerkin, Galerkin-like weak forms). This is because operations (shape functions,
integration, and strain field construction) in meshfree methods are much more diversi-
fied. The principles and weak forms for meshfree methods will be discussed in great
detail in Chapter 5.

Finally, we note for the discretization in time, the Taylor series is often used in both
meshfree and FEM.
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1.3.5 On Approximation Techniques: The Characters

In any numerical method, we have to use some basic techniques or tools for the approxi-
mation of functions and their derivatives. The basic techniques are (1) interpolation, (2)
differentiation, and (3) integration. Understanding the ‘‘characters’’ of these essential
techniques is very important in the formulation of any numerical method, because many
stability, convergence, and accuracy issues are rooted in the use of these basic techniques.
Many years of the author’s struggle in using and manipulating these techniques have led to
some general understanding on the characters of these techniques, which are summarized
in Table 1.2. The interpolation is the most basic tool and is hard to avoid in any numerical
method, and hence we have to live with it and use it properly with caution. An improper
use of differentiation has been the source of my problems in numerical methods, and hence
should be avoided as much as possible. When the interpolation meets with the differenti-
ation, one needs to exercise extra caution. A typical example is the FDM that can be used
only with virtually very regular mesh=grids. The integration (with integration by parts) is
very useful in creating stable and efficient numerical methods. It is known as a smoothing
operator, and it works well with the (lower order) interpolations performed properly.
Good examples are the weak and W2 forms or the carefully designed GSM (Chapters 5,
8, and 9). One should, however, avoid too extensive use of smoothing operations, and
ensure capturing sufficient local details. This can be easily done by controlling the size
of the area of integration or ensuring the minimum number of smoothing domains. The
G space theory [15] is established with all these careful considerations for unified
formulations of a very wide class of stable, convergent, and efficient numerical methods
(Chapter 3).

TABLE 1.2

The Characters of Basic Approximation Techniques

Techniques
Application in Numerical

Methods Characters Remarks=Cautions

Interpolation
(extrapolation)

Shape function construction
(Chapter 2)

Sensitive to node
distribution

Avoid extrapolation
Avoid high order

Sampling of function values Source of singularity issues Use RBFs and least squares
FEM, meshfree, FVM, FDM,
etc.

Source of incompatibility Use with proper control
(Chapter 2)

Differentiation Evaluation of function
derivatives
FDM, FEM, meshfree, FVM

Sensitive to node
distribution
Sensitive to errors in the
function
Known as ‘‘harshening’’
operator [4]

Avoid as much as possible
Use weak and W2 forms or
GSM (Chapters 5, 8, and 9)
Use it to boost sensitivities
for inverse problems [4]

Amplification of local
details

Integration (with
integration by
parts)

Evaluation of ‘‘area’’ behavior
of functions, its derivatives
and even the entire PDEs
FEM, FVM, meshfree (SPH,
GSM, PIMs)

Insensitive to mesh
distortion
Insensitive to error
contamination
Known as ‘‘smoothing’’
operator [4]

Widely used in weak and
W2 forms or GSM
(Chapters 5, 8, and 9)
Avoid too extensive use by
controlling the size of the
integration area

Loss of local details
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1.4 Defining Meshfree Methods

In the traditional FEM [1,3], the FDM [5], and the FVM [6], the problem spatial domain is
discretized into meshes. A mesh is defined as any of the open spaces or interstices
between the strands of a net that is formed by connecting nodes in a predefined manner.
In FDM, the meshes used are also often called grids; in the FVM, the meshes are called
volumes or cells; and in FEM, the meshes are called elements. The terminologies of
grids, volumes, cells, and elements carry sometimes certain physical meanings as they are
defined for different physical problems. All these grids, volumes, cells, and elements can be
termed meshes according to the above definition of mesh. The mesh must be predefined
to provide a certain relationship between the nodes, which becomes the building blocks
of the formulation procedure of these conventional numerical methods.

By using a properly predefined mesh and by applying a suitable principle, complex,
differential, or partial differential governing equations can be discretized to a set of
algebraic equations with unknowns of filed variables at the nodes (or the center of the
cells) of the mesh. The system of algebraic equations for the whole problem domain can
be formed by assembling sets of algebraic equations for all the meshes.

The meshfree method is used to establish a system of algebraic equations for the
whole problem domain without the use of a predefined mesh, or uses easily generable
meshes in a much more flexible or ‘‘freer’’ manner. Meshfree methods essentially use a set
of nodes scattered within the problem domain as well as on the boundaries to represent the
problem domain and its boundaries. The field functions are then approximated locally
using these nodes.

There are a number of meshfree methods that use local nodes for field variable approxi-
mation, such as the smooth particle hydrodynamics (SPH) [24–28], EFGmethod [10,29], the
meshless local Petrov–Galerkin (MLPG) method [30], reproducing kernel particle method
(RKPM) [31], the point interpolation method (PIM) [11–21,32–35], the finite point method
[36], the FDM with arbitrary irregular grids [37–39], local point collocation methods
[22,23], and so forth.

Because the methodology is still in a rapid development stage, new methods and
techniques are constantly proposed. In the recent development, there are considerable
works in applying meshfree techniques back to the FEM or FDM settings. These kinds of
developments of ‘‘merging’’ or ‘‘fusing’’ different methods are very important in inventing
more effective computational methods for more complicated engineering problems. How-
ever, these developments make the definition of meshfree methods even more difficult.

In contrast to FEM, the term element free method is preferred, and in contrast to FDM, the
term finite difference method using arbitrary or irregular grids is preferred. Some of the meshfree
methods are often termedmeshless methods. The ideal requirement for a ‘‘meshless’’method is

. No mesh is necessary at all throughout the process of solving the problem of given
arbitrary geometry governed by partial differential system equations subject to all
kinds of boundary conditions.

The reality is that the meshfree methods developed so far are not entirely ‘‘meshless’’
and fall in one of the following categories:

. Methods that require background cells for the integration of system matrices
derived from the weak form over the problem domain. EFG methods may belong
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to this category. These methods are practical in many ways, as the creation of a
background mesh is generally more feasible and can be much more easily auto-
mated using a triangular mesh for 2D domains and a tetrahedral mesh for 3D
domains. We also use the background triangular mesh to assist in local nodes
selection to ensure robustness, reliability, and efficiency. The bottom line is that the
mesh used must be easily generable in automatic means, and the numerical
operations should be beyond the confinement of the ‘‘element’’ in the mesh.

. Methods that require background cells locally for the integration of system matri-
ces over the problem domain. MLPG methods belong to this category. These
methods require only a local mesh and are easier to generate.

. Methods that do not require a mesh at all, but that are less stable and less accurate.
Local point collocation methods and FDMs using irregular grids may belong to
this category. Selection of nodes based on the type of a physical problem can be
important for obtaining stable and accurate results. Automation of nodal selection
and improving the stability of the solution are still some of the challenges in these
kinds of methods. This type of method has a very significant advantage: It is very
easy to implement, because no integration is required. There are, however, vital
instability issues that require special treatments [22,23,36].

. Particle methods that require a predefinition of particles for their volumes or
masses. The algorithm will then carry out the analyses even if the problem domain
undergoes extremely large deformation and separation. SPHmethods belong to this
category. This type of method suffers from problems in the imposition of boundary
conditions. In addition, predefining the particles still technically requires some kind
of mesh. More details on SPH can be found in [26] and a recent review article [27].
SPH simulates well the overall behaviors of certain class of problems such as highly
nonlinear and momentum-driven problems.

This book uses the term meshfree method for the collection of all the different meshfree
methods in a loose sense: we permit the use of the mesh as long as the mesh can be
automatically generable; numerical operations (integration, interpolation, smoothing, etc.)
are beyond the ‘‘element’’ concept; and the solution should not too heavily depend on the
quality of the mesh. This loose definition of meshfree method recognizes the reality: (1) Many
meshfree methods (often more robust, reliable, and effective ones) do use some kind of mesh,
but themesh is used inmuchmoreflexible and ‘‘freer’’ways; (2)most importantmotivation of
developing meshfree methods was to reduce the reliance on the use of ‘‘quality’’meshes that
are difficult or expensive to create for practical problemsof complicatedgeometries; and (3) if a
type of mesh can be created automatically, and it does help in some ways in obtaining better
result or in more effective or reliable ways, there is really no reason not to use it.

1.5 Need for Meshfree Methods

FEM is robust and has been thoroughly developed for static and dynamic, linear
and nonlinear stress analysis of solids, structures, as well as fluid flows. Most practical
engineering problems related to solids and structures are currently solved using a large
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number of well-developed FEM packages that are now commercially available. However,
the following limitations of FEM are becoming increasingly evident:

1. Creation of a quality mesh for the problem domain is a prerequisite in using FEM
packages. Usually the analyst spends the majority of his or her time in creating the
mesh, and it becomes a major component of the cost of a simulation project
because the cost of central processing unit (CPU) time is drastically decreasing.
The concern is more the manpower time, and less the computer time. Therefore,
ideally the meshing process would be fully performed by the computer without
human intervention. However, when the ‘‘quality’’ of the mesh is demanded, the
automation of the meshing is very difficult, because meshes that can be easily
created are naturally not of good quality.

2. The compatible FEMmodel is usually ‘‘overly stiff,’’ and hence results in a number
of issues, such as locking and poor solution in gradient=derivatives. In stress
calculations, the stresses obtained using FEM packages are discontinuous and
often less accurate. The need for full compatibility in the assumed displacement
field in the FEM results in the loss of freedom in the shape function construction.

3. When handling large deformation, considerable accuracy can be lost and the
computation can even break down because of element distortions.

4. It is rather difficult to simulate both crack growth with arbitrary and complex
paths and phase transformations due to discontinuities that do not coincide with
the original nodal lines.

5. It is very difficult to simulate the breakage of material into a large number of
fragments as FEM is essentially based on continuum mechanics, in which the
elements formulated cannot be broken. The elements can either be totally
‘‘eroded’’ or stay as a whole piece. This usually leads to a misrepresentation of
the breakage path. Serious error can occur because the nature of the problem is
nonlinear, and therefore the results are highly path dependent.

6. Remesh approaches have been proposed for handling these types of problems in
FEM. In the remesh approach, the problem domain is remeshed at steps during the
simulation process to prevent the severe distortion of meshes and to allow the
nodal lines to remain coincident with the discontinuity boundaries. For this pur-
pose, complex, robust, and adaptive mesh generation processors have to be devel-
oped. However, these processors are only workable for 2D problems. There are no
reliable processors available for creating quality hexahedral meshes for 3D prob-
lems due to technical difficulty.

7. Adaptive processors require ‘‘mappings’’ of field variables between meshes in
successive stages in solving the problem. This mapping process often leads to
additional computation as well as a degradation of accuracy. In addition, for large
3D problems, the computational cost of remeshing at each step becomes very high,
even if an adaptive scheme is available.

8. FDM works very well for a large number of problems, especially for solving
fluid dynamics problems. It suffers from a major disadvantage in that it relies
on regularly distributed nodes. Therefore, studies have been conducted for a
long time to develop methods using irregular grids. Efforts in this direction are
still on [39].
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9. Last, but surely not least, solutions bound. We know that the fully compatible FEM
can produce a ‘‘lower bound’’ to the exact solution. Such a single-sided bound
has very limited use in engineering designs. What the engineers really need is
‘‘certified’’ solutions bounded from both sides. However, it is much more difficult
to provide an ‘‘upper bound’’ numerical solution for general complicated engin-
eering problems. Meshfree methods can offer such solutions, and we can now
bound the solution from both sides using a proper meshfree method together
with FEM, as long as a triangular types of meshes can be built for the problem
(see Chapter 8). Being able to provide a certified solution has a profound practical
significance also in numerical modeling: We know when to stop in refining our
models, and need not build an unnecessarily fine model, resulting in substantial
savings in resources and manpower as well as the increase of the confidence in the
numerical solution obtained.

1.6 The Ideas of Meshfree Methods

A close examination of these difficulties associated with FEM reveals the root of the
problem: the heavy and rigid reliance on the use of quality elements that are the building
blocks of FEM. Amesh with a predefined connectivity is required to form the elements that
are used for both field variable interpolation and energy integration. As long as elements
are used in such a rigid manner, the problems mentioned above will not be easy to solve.
Therefore, the idea of eliminating or reducing the reliance on the elements and more
flexible ways to make use of mesh has evolved naturally. The concept of element-free,
meshless, or meshfree method has been proposed, in which the domain of the problem is
represented, ideally, only by a set of arbitrarily distributed nodes.

The meshfree methods have shown great potential for solving the difficult problems
mentioned above. Adaptive schemes can be easily developed [7,8], as triangular types of
mesh that can be much more easily created automatically for complicated 2D and 3D
domains, as shown in Figures 1.6 and 1.7. These types of triangular background cells are
sufficient for necessary numerical operations in meshfree methods. This provides flexibility
in adding or deleting points=nodes whenever and wherever needed. For stress analysis of a
solid domain, for example, there are often areas of stress concentration, even singularity.
One can relatively freely add nodes in the stress concentration area without worrying too
much about their relationship with the other existing nodes. In crack growth problems,

FIGURE 1.6
A triangular mesh of elements or background
cells for a complicated 2D domain.
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nodes can be easily added around the crack tip to capture the stress concentration with
desired accuracy. This nodal refinement can be moved with a propagation crack through
background cells associated with the global geometry. Adaptive meshing for a large
variety of problems, 2D or 3D, including linear and nonlinear, static and dynamic stress
analysis, can be very effectively treated in meshfree methods in a relatively simple manner.

Because there is no need to create a quality mesh, and the nodes can be created by a
computer in a much more automated manner, much of the time an engineer would spend
on conventional mesh generation can be saved. This can translate to substantial cost and
time savings in modeling and simulation projects.

There have been a number of meshfree methods developed thus far. The major features
of these methods are listed in Table 1.3 that is definitely not exhaustive. A software
package MFree2D with pre- and postprocessor has also been developed [7,8]. Chapter 16
presents MFree2D in detail.

TABLE 1.3

Some Meshfree Methods Using Local Irregular Nodes for Approximation

Method References
Formulation
Procedure

Local Function
Approximation Chapters

Diffuse element
method

Nayroles et al. [40] Galerkin weak form MLS approximation 6

EFG method Belytschko et al. [10] Galerkin weak form MLS approximation 6, 11, 12, 14
through 16

MLPG method Atluri and Zhu [30] Local Petrov–
Galerkin

MLS approximation 7

PIMs Liu et al. [11–21,
32,44–47,66,67]

W2 forms
(GS-Galerkin,
SC-Galerkin); local
Petrov–Galerkin

Point interpolation
using polynomial
and radial basis
function (RBFs)

8, 10 through 16

SPH Lucy [24], Gingold
andMonaghan [25]

Weakform-like Integral
representation,
particle
approximation

9

GSM Liu et al. [58,61] Weakform-like Point interpolation
and gradient
smoothing

9

FIGURE 1.7
A tetrahedral mesh of elements or background
cells for a complicated 3D domain.
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1.7 Basic Techniques for Meshfree Methods

We now brief the general procedure and basic steps for meshfree methods. We use solid
mechanics problems as an example to describe these basic steps. Common techniques that
can be used in different meshfree methods, such as triangulation, determination of local
support domains, influence domains, node selection, estimation of nodal spacing, and
techniques for local support node selection for field function approximation are presented.

1.7.1 Basic Steps

Step 1: Domain representation=discretization

The geometry of the solid or structure is first reacted in a CAE code or preprocessor, and is
triangulated to produce a set of triangular type cells with a set of nodes scattered in the
problem domain and its boundary, as described in Section 1.7.2. Boundary conditions and
loading conditions are then specified for the model. The density of the nodes depends on
the presentation accuracy of the geometry, the accuracy requirement of the solution,
and the limits of the computer resources available. The nodal distribution is usually not

TABLE 1.3 (continued)

Some Meshfree Methods Using Local Irregular Nodes for Approximation

Method References
Formulation
Procedure

Local Function
Approximation Chapters

Finite point method Onate et al. [36] Strong form MLS approximation 1 (introduction
only)

FDM using irregular
grids

Liszka and Orkisz
[37], Jensen [38],
Liu et al. [39]

Strong form Differential
representation
(Taylor series)
and RBF

1 (introduction
only)

Stabilized local
collocation method

Liu and Kee [22],
Kee et al. [23]

Strong form with
regularization

Point interpolation
and RBF

1 (introduction
only)

RKPM Liu et al. [31] Strong or weak form Integral
representation
(RKPM)

1 (introduction
only)

hp-Clouds Oden and Abani
[41], Armando
and Oden [42]

Strong or weak form Partition of unity,
MLS

1 (introduction
only)

Partition of unity
FEM

Babuska and
Melenk [43]

Weak form Partition of unity,
MLS

1 (introduction
only)

Meshfree weak–
strong form (MWS)

Liu et al. [62,63] Combined weak
and strong forms

Point interpolation
RBF, MLS

Not discussed

Boundary node
methods (BNM)

Mukherjee and
Mukherjee [48,49]

Boundary integral
formulation

MLS approximation 13 (brief only)

BPIM Liu and Gu [53–57] Boundary integral
equation

Point interpolation
RBF

13

Combined domain
and boundary
methods

Liu and Gu [50–53] Weak form and
boundary integral
equation

Point interpolation
RBF

14

Note: This table is not exhaustive.
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uniform and a denser distribution of nodes is often used in the area where the displace-
ment gradient is larger. Because adaptive algorithms can be used in meshfree methods,
the density is eventually controlled automatically and adaptively in the code of the mesh-
free method [7,8]. Therefore, we do not have to worry too much about the distribution
quality of the initial nodes used in usual situations. In addition, as a meshfree method, it
should not demand too much for the pattern of nodal distribution. It should be workable
within reason for arbitrarily distributed nodes. Because the nodes will carry the values of the
field variables in a meshfree formulation, they are often called field nodes.

Step 2: Displacement interpolation

The field variable (say, a component of the displacement vector) u at any point at x¼ (x, y, z)
within the problem domain is approximated or interpolated using the displacements at its
nodes within the support domain of the point at x that is usually a quadrature point, i.e.,

uh(x) ¼
X
i2Sn

fi(x)ui ¼ F(x)ds (1:28)

where
Sn is the set of local nodes included in a ‘‘small local domain’’ of the point x, such a local
domain is called support domain, and the set of local nodes are called support nodes

ui is the nodal field variable at the ith node in the support domain
ds is the vector that collects all the nodal field variables at these support nodes
fi(x) is the shape function of the ith node created using all the support nodes in the
support domain and is often called nodal shape function

A support domain of a point x determines the number of nodes to be used to approxi-
mate the function value at x. A support domain can be weighted using functions that vanish
on the boundary of the support domain, as shown in Figure 1.8. It can have different
shapes and its dimension and shape can be different for different points of interest x, as
shown in Figure 1.9. The shapes most often used are circular or rectangular, or any shape
to include desired supporting nodes.

The concept of support domain works well if the nodal density does not vary too
drastically in the problem domain. However, in solving practical problems, such as

FIGURE 1.8
Domain representation of a 2D domain and
nodes in a local weighted support domain.

Nodes

20 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



problems with stress singularity, the nodal density can vary drastically. The use of a
support domain based on the current point of interest can lead to spatially biased selection
of nodes for the construction of shape functions. In extreme situations, all the nodes used
could be located on one side only, and the shape functions so constructed can result in
serious error, due to extrapolation. To prevent this kind of problem, the concept of
influence domain of a node should be used. MFree2D, introduced in Chapter 16, uses
the approach of influence domain to select nodes for constructing shape functions. The
concept of influence domain is explained in Section 1.7.5. A practical, robust, better
controlled, and more efficient way to select node with guaranteed success is the use of
T-schemes based on triangular cells to select the field nodes, as detailed in Section 1.7.6.
The T-schemes are implemented in the MFree2D, and used in the NS-PIMs [11–14],
ES-PIMs [15–17], SC-PIMs [21,67], and CS CS-PIMs [66].

Note also that the interpolation, defined in Equation 1.28, is generally performed for all
the components of all the field variables in the same support domain. Taking a 3D solid
mechanics problem as an example, the displacement is usually chosen as the field variable,
and the displacement should have three components: displacements in the x-, y-, and
z-directions. The same shape function is used for all three displacement components in
the support domain of the same point. There are, however, situations where different
shape functions are used for different field variables. For example, for bending problems of
beams, plates, and shells, it is of advantage to use different shape functions, respectively,
for deflection and rotation, in overcoming the so-called shear and membrane locking issues
(see Chapters 10 through 12).

Step 3: Formation of system equations

The discrete equations of a meshfree method can be formulated using the shape functi-
ons and weak or weakened-weak forms. These equations are often written in nodal
matrix form and are assembled into the global system matrices for the entire problem
domain.

The global system equations are a set of algebraic equations for static analysis, eigenvalue
equations for free-vibration analysis, and differential equations with respect to time for
general dynamic problems. The procedures for forming system equations are different
for different meshfree methods. Hence, we discuss them in later chapters.

Step 4: Solving the global meshfree equations

Solving the set of global meshfree equations, we obtain solutions for different types of
problems.

Support domain 

×x
×x

× x

FIGURE 1.9
Support domain determines nodes (marked by o) that are
used for approximation or interpolation of field variable
at point x. A support domain can have different shapes
and can be different from point to point. Most often used
shapes are circular or rectangular.
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1. For static problems, the displacements at all the nodes in the entire problem domain
are first obtained. The strain and stress can then be retrieved using strain–
displacement relations and constitutive equations. A standard linear algebraic
equation solver, such as a Gauss elimination method, LU decomposition method,
and iterative methods, can be used.

2. For free-vibration and buckling problems, eigenvalues and corresponding eigenvec-
tors can be obtained using the standard eigenvalue equation solvers. Some of the
commonly used methods are the following:
. Jacobi’s method
. Given’s method and Householder’s method
. The bisection method (using Sturm sequences)
. Inverse iteration
. QR method
. Subspace iteration
. Lanczos method

3. For dynamics problems, the time history of displacement, velocity, and acceleration
are to be obtained. The following standard methods of solving dynamics equation
systems can be used:
. The modal superposition method may be a good choice for vibration types of

problems and problems of far field response to low speed impact with many
load cases.

. For problems with a single load or few loads, the direct integration method can be
used, which uses the FDM for time stepping with implicit and explicit
approaches.

. The implicit method is more efficient for relatively slow phenomena of vibration
types of problems.

. The explicit method is more efficient for very fast phenomena, such as impact
and explosion.

For computational fluid dynamics problems, the discretized system equations are basically
nonlinear, and one needs an additional iteration loop to obtain the results.

1.7.2 Triangulation

Consider a d-dimensional problem domain of V 2 R
d bounded by G that is Lipschitzian. By

default in this book, we speak of ‘‘open’’ domain that does not include the boundary of the
domain. When we refer to a ‘‘closed’’ domain we will specifically use a box: V ¼ V [ G.

Triangulation is the most flexible way to create background triangular cells for meshfree
operations. The process can be almost fully automated for 2D and even 3D domains with
complicated geometry. Therefore, it is used in most commercial preprocessors using
processes such as the widely used Delaunay triangulation. For one-dimensional (1D)
problems, a cell is defined in R

1 and is simply a line segment, for 2D problems it is defined
in R

2 and it becomes a triangle, and for 3D problems it is a tetrahedron defined in R
3.

The triangulation is nonoverlapping and seamless: V ¼ [Nc
i¼1V

c
i and Vc

i \Vc
j ¼ 0, 8i 6¼ j

where Nc is the total number of cells. In such a triangulation process, Ncg straight line
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segments Lci called ‘‘edges of the cells’’will be produced. These cell edges are the interfaces
of the triangular cells.

We assume that a given problem domain can always, in one way or another, be divided
into Nc cells with Nn nodes (vertices of the triangles) and Ncg edges. In theory, any inner
angle u of the triangles should be strictly larger than 0 and strictly less than 1808, and in
practice we often require 15< u< 120. We also do not allow any ‘‘free’’ unconnected nodes
and any duplicated nodes. If there exists such a node, it should be removed. Under such
conditions, we shall have Ac

i > 0, i ¼ 1, 2, . . . ,Nc and hi > 0, i ¼ 1, 2, . . . ,Nc.
A characteristic dimension or length is then defined. For uniform discretization of isolateral

triangles, the edge length of any cell h is the characteristic dimension of cells. In the case of
nonuniform discretization of arbitrary triangles, we let

hmax ¼ max
i¼1,...,Ncg

(hi), hmin ¼ min
i¼1,...,Ncg

(hi) (1:29)

and we should assume that the ratio of the smallest and largest cell dimensions is bounded:

hmax=hmin ¼ crh < 1 (1:30)

In this case, the largest or the smallest edge length can be used as the characteristic dimension
of the cells

h ¼ hmax or h ¼ hmin (1:31)

The characteristic dimension of cells can also be defined as some kind of averaged cell
length, such as

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Ac=

ffiffiffi
3

pq
(1:32)

where Ac is the ‘‘average’’ area, the triangular cells defined as Ac¼A=Nc in which A is the
area of the entire problem domain. In Equation 1.32, we assume the cells are all isolateral
triangles. Alternatively, we can simply use

h ¼
ffiffiffiffiffiffiffiffi
2Ac

p
(1:33)

where we assume the cells are all right-isosceles triangles. Note that Equations 1.31 through
1.33 are ‘‘equivalent’’ in the sense of that ‘‘controlling h defined in any of these three ways
can put the entire mesh under control.’’ When we say h approaches 0, the dimensions of
all the cells in the entire problem domain approach 0. Therefore, in the convergence study
(solution approaches exact solution when h approaches 0), any of these equations can be
used, and they all should deliver the same convergence rate for the same set of meshes used to
examine the same problem.

The triangulation can be easily performed using standard algorithms such as the Delaunay
algorithm or the advanced front algorithm with proper ‘‘cosmetic’’ treatments to improve
mesh quality. Most commercial preprocesses offer such triangulation functions. An example
of triangulation of 2D domains to triangular elements=cells is given in Figure 1.6. For 3D
domains, the triangulation leads to tetrahedral elements=cells, as shown in Figure 1.7.
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Note that this book does not exclude any other types of mesh, as long as it does not
give problem in creating such a mesh for the problem to be solved. If other type of mesh is
used, we assume that similar controls on mesh as the triangulation defined above must
be in place.

1.7.3 Determination of the Dimension of a Support Domain

The accuracy of interpolation depends on the nodes in the support domain of the point of
interest (which is often a quadrature point xQ or the center of integration cells). Therefore, a
suitable support domain should be chosen to ensure a proper area of coverage for inter-
polation. To define the support domain for a point xQ, the dimension of the support
domain ds is determined by

ds ¼ asdc (1:34)

where
as is the dimensionless size of the support domain
dc is a characteristic length that relates to the nodal spacing near the point at xQ

If the nodes are uniformly distributed, dc is simply the spacing between two neighboring
nodes. In the case where the nodes are nonuniformly distributed, dc can be defined as an
‘‘average’’ nodal spacing in the support domain of xQ.

The physical meaning of the dimensionless size of the support domain as is the multiple
factor of the average nodal spacing. For example, as¼ 2.1 means a support domain whose
radius is 2.1 times the average nodal spacing. The actual number of nodes, n, can be
determined by counting all the nodes in the support domain. The dimensionless size of
the support domain as should be predetermined by the analyst, usually by carrying out
numerical experiments for the same class of problems for which solutions already exist.
Generally, an as¼ 2.0–3.0 leads to good results. It is, however, not possible to provide a
value of as for all the problems and node distributions, and the procedure can fail for
extremely irregularly distributed nodes. For reliable node selection, the T-schemes detailed
in Section 1.7.6 are recommended.

1.7.4 Determination of Local Nodal Spacing

For 1D cases, a simple method of defining an ‘‘averaged’’ nodal spacing is

dc ¼ Ds

(nDs � 1)
(1:35)

where
Ds is an estimated ds (the estimate does not have to be very accurate but should be
known and a reasonably good estimate of ds)

nDs is the number of nodes that are covered by a known domain with the dimension ofDs

By using Equation 1.35, it is very easy to determine the dimension of the support domain
ds for a point at xQ in a domain with nonuniformly distributed nodes. The procedure is as
follows:

1. Estimate ds for the point at xQ, which gives Ds.

2. Count nodes that are covered by Ds.
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3. Use Equation 1.35 to calculate dc.

4. Finally, calculate ds using Equation 1.34 for a given (desired) dimensionless size of
support domain as.

For 2D cases, a simple method of defining an ‘‘average’’ nodal spacing is

dc ¼
ffiffiffiffiffi
As

p
ffiffiffiffiffiffiffi
nAs

p � 1
(1:36)

where
As is an estimated area that is covered by the support domain of dimension ds (the
estimate does not have to be very accurate but should be known and a reasonably
good estimate)

nAs is the number of nodes that are covered by the estimated domain with the area of As

By using Equation 1.36 and the same procedure described for the 1D case, it is very easy to
determine the dimension of the support domain ds for a point at xQ in a 2D domain with
nonuniformly distributed nodes.

Similarly, for 3D cases, a simple method of defining an ‘‘average’’ nodal spacing is

dc ¼
ffiffiffiffiffi
Vs

3
p
ffiffiffiffiffiffiffi
nVs

3
p � 1

(1:37)

where
Vs is an estimated volume that is covered by the support domain of dimension ds
nAs is the number of nodes that is covered by the estimated domain with the volume ofVs

By using Equation 1.37, and the same procedure described for the 1D case, we can
determine the dimension of the support domain ds for point xQ in a 3D domain with
nonuniformly distributed nodes.

1.7.5 Concept of the Influence Domain

Note that this book distinguishes between support domain and influence domain. The support
domain is defined as a domain in the vicinity of a point of interest xQ that can be, but does
not have to be, at a node. It is used to include the nodes for shape function construction
for xQ. The extended concept of the support domain means a particular way to select those
nodes, not necessarily just by distance. T-schemes detailed in Section 1.7.6 is typical of such
an extension.

The influence domain in this book is defined as a domain that a node exerts an influence
upon. It goes with a node, and an alternative way to select nodes. It works well for very
irregularly distributed nodes. Influence domains are defined for each node in the problem
domain, and they can be different from node to node to represent the area of influence of
the node, as shown in Figure 1.10. Node 1 has an influence radius of r1, and node 2 has an
influence radius of r2, etc. The node will be involved in the shape function construction for
any point that is within its influence domain. For example, in constructing the shape
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functions for the point marked with x at point xQ (see Figure 1.10), nodes 1 and 2 will be
used, but node 3 will not be used. The fact is that the dimension of the influence domain,
which can be different from node to node, allows some nodes to have further influence
than others and prevents unbalanced nodal distribution for constructing shape functions.
As shown in Figure 1.10, node 1 is included for constructing shape functions for the point
at point xQ, but node 3 is not included, even though node 3 is closer to xQ compared with
node 1. The dimension of the influence domain can even evolve during the analysis
process, as in the SPH methods.

When a triangular background mesh is used, the influence radius of a node can be
estimated using Equation 15.1 that is used in the MFree2D for EFG processors.

1.7.6 T-Schemes for Node Selection

Since the background cells are needed for integration for weak or weakened-weak form
meshfree methods, background cells are often already made available. Therefore, it is
natural to make use of them also for the selection of supporting nodes for shape function
construction. Background cells of triangular type generated by triangulation detailed in
Section 1.7.2 have been found most practical, robust, reliable, and efficient for local
supporting node selection. It works particularly well for the family of PIMs. Triangular
cell-based node selection schemes are termed as T-schemes, and are listed in Table 1.4.

Figure 1.11 shows the background triangular cells for 2D domain. The node selection is
then performed as follows.

T3-Scheme

In the T3-scheme, we simply select three nodes of the home cell of the point of interest. As
illustrated in Figure 1.11a, no matter the point of interest x located in an interior home cell
(cell i) or a boundary home cell (cell j), only the three nodes of the home cell (i1�i3 or j1�j3)
are selected. T3-scheme is used only for creating linear PIM shape functions by using
polynomial basis functions. Note that the linear PIM shape functions so constructed are
exactly the same as those in FEM using linear triangular elements. The shape functions can
always be constructed (the moment matrix will never be singular), as long as the back-
ground cells of triangular type are generated by triangulation detailed in Section 1.7.2.

FIGURE 1.10
Influence domains of nodes. In con-
structing shape functions for point at xQ
(marked with x), nodes whose influence
domains covers x are to be used for con-
struction of shape functions. For
example, nodes 1 and 2 are included,
but node 3 is not included.

1 

2 
xQ

3 

Ω

r1

r3

r2

ΓNodes

×
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T4-Scheme

T4-scheme is the analogy of the T3-scheme, but of node selection for 3D domains with
tetrahedral background cells.

T6=3-Scheme

The T6=3-scheme selects six nodes to interpolate a point of interest located in an
interior cell and three nodes for those located in boundary home cells. As illustrated in
Figure 1.11b, when the point of interest (x) is located in an interior home cell (cell i), we
select six nodes: three nodes of the home cell (i1�i3) and another three nodes located at
the remote vertices of the three neighboring cells (i4�i6). When the point of interest at xQ
is located in a boundary home cell (cell j), we select only three nodes of the home cell,
i.e., j1�j3.

T6=3-scheme was purposely devised for creating high-order PIM shape functions, where
quadratic interpolations are performed for the interior home cells and linear interpolations
for boundary home cells. This scheme was first used in the NS-PIM [11]. It can not only
successfully overcome the singular problem but also improve the efficiency of the method.

TABLE 1.4

T-Schemes for Node Selection Based on Triangular Background Cells

Name
Node Selection for Interpolation at Any Point

in a Home Cell
Application=Types
of Shape Functions

T3-scheme Three nodes of the home cell 2D domain
3D domain surface
PIM

T6=3-scheme For an interior home cell, three nodes of the home cell
and three remote nodes of the three neighboring cells

2D domain
3D domain surface

For a boundary home cell, three nodes of the home cell PIM, RPIM

T6-scheme For an interior home cell, three nodes of the home cell
and three remote nodes of the three neighboring cells

2D domain
3D domain surface

For a boundary home cell, three nodes of the home cell,
two (or one) remote nodes of the neighboring cells plus
one (or two) field node which is nearest to the centroid
of the home cell

PIM, RPIM

T4-scheme Four nodes of the home tetrahedral cell 3D domain, PIM

T2L-scheme Nodes of the home cell plus one layer of nodes of the cells
connected to the home cell nodes (two layers of nodes
are selected)

2D domain
3D domain surface
3D domain

RPIM, MLS

Notes: In the definition of types of T-schemes, a home cell refers to the cell which hosts the point of
interest (usually the quadrature sampling point). An interior home cell is a home cell that has
no edge on the boundary of the problem domain and a boundary home cell is a home cell
which has at least one edge on the boundary. A neighboring cell of a home cell refers to the
cell which shares one edge with the home cell.

In case of CS-PIMs [66] and SC-PIMs [21,67], the quadrature point xQ can be on an edge
of a triangular cell. In such cases, the T-Schemes are associated with edges, and can have
T2-, T4-T2L-Schemes. The details can be found in [66].
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FIGURE 1.11
Background cells of triangles and the selection of support nodes based on these cells. (a) T3-scheme; (b) T6/3-
scheme; (c) T6-scheme; (d) T2L-scheme for interior home cell; and (e) T2L-scheme for boundary home cell. Cells i
and j are home cells that house the point of interest.
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In addition the use of three nodes for boundary home cells insures the pass of the standard
patch tests. Using the T6=3-scheme the shape functions can always be constructed, as long
as such six nodes can be found for all the interior home cells.

T6-Scheme

Similar to T6=3-scheme, T6-scheme, as shown in Figure 1.11c, also selects six nodes for an
interior home cell: three nodes of the home cell and three vertexes at the remote vertices of
the three neighboring cells (i1�i6 for cell i). However, for a boundary cell (cell j), T6-scheme
still selects six nodes: three nodes of the home cell ( j1�j3), two remote nodes of the
neighboring cells ( j4 and j5), and one field node ( j6) which is nearest to the centroid of
the home cell excepting the five nodes that have been selected.

T6-scheme is purposely devised for constructing radial PIM (RPIM) shape functions
on considering both accuracy and efficiency. Different from T6=3-scheme, this scheme
selects six nodes for all home cells containing the point of interest. The shape functions
can always be constructed because the radial moment matrix is always invertible for
arbitrary scattered nodes as long as to avoid using some specific shape parameters (see
Chapter 2).

T6-scheme can be used for creating RPIM shape functions with linear polynomial basis,
and the creation of these shape functions can be very efficient due to the use of very small
number of nodes.

T2L-Scheme

T2L-scheme selects two layers of nodes to perform interpolation based on triangular
meshes. As shown in Figure 1.11d and e, the first layer of nodes refers the three nodes
of the home cell, and the second layer contains those nodes which are directly connected to
the three nodes of the first layer.

This scheme usually selects much more nodes than the T6-scheme and leads to more
time consumption. The RPIM shape functions can always be constructed because the
radial moment matrix is always invertible for arbitrarily scattered nodes. We can use
this scheme to create RPIM shape functions with high order of consistence and for
extremely irregularly distributed nodes. Such RPIM shape functions can also be used
for strong form meshfree method methods where higher order of consistence is required
[15,23]. T2L-scheme can also be used for creating moving least squares (MLS) shape
functions.

1.8 Outline of the Book

This book provides an introduction to meshfree methods, and their applications to various
mechanics problems. This book covers the following types of problems:

. Mechanics for solids (1D, 2D, and 3D)

. Mechanics for structures (beams, plates, and shells)

. Fluid mechanics (fluid flow and hydrodynamics)
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The bulk of the material in the book is the result of the intensive research work by G. R. Liu
and his research team in the past 12 years. Works of other researchers are also introduced.
The significance of this book is as follows:

1. This was the first book published that comprehensively covers meshfree methods.

2. The book covers, in a systematic manner, basic and advanced theories, principles,
techniques, and procedures in solving mechanics problems using meshfree
methods. It will be very useful for researchers entering this new area of research
on meshfree methods, and for professionals and engineers developing computer
codes for the next generation of computational methods.

3. Readers will benefit from the research outcome of G. R. Liu’s research team and
their long-term research projects on meshfree methods founded by the Singapore
government and other organizations. Many materials in this book are the results of
ongoing projects, and have not been previously published.

4. A large number of examples with illustrations are provided for validating, bench-
marking, and demonstrating meshfree methods. These examples can be useful
reference materials for other researchers.

The book is written for senior university students, graduate students, researchers, and
professionals in engineering and science. Mechanical engineers and practitioners and
structural engineers and practitioners will also find the book useful. Knowledge of FEM
is not required but would help a great deal in understanding many concepts and proced-
ures of meshfree methods. Basic knowledge of mechanics is also helpful in reading this
book smoothly.

The meshfree method is a relatively new area of research. There exist many problems that
offer ample opportunities for research to develop the next generation of numerical methods.
The method is also in a rapidly developing and growing stage. Different techniques are
developed every day. This book addresses some of the current important issues, both positive
and negative, related to meshfree methods, which should prove beneficial to researchers,
engineers, and students who are interested in venturing into this area of research.

The chapter-by-chapter description of this book is as follows:

Chapter 1: Addresses the background, overall procedures, and common preliminary
techniques for different meshfree methods.

Chapter 2: Provides a detailed description of various methods for constructing meshfree
shape functions, which is one of the most important issues of meshfree methods. Detailed
discussions on the properties of various meshfree shape function and the issues related to
use of these shape functions are provided.

Chapter 3: Introduce functions spaces for meshfree methods. The standard spaces that are
widely used in FEM and meshfree are first briefed. We then provide a detailed discussion
on new G spaces that are the foundation of the weakened-weak formulation, are particu-
larly useful for both meshfree and FEM settings.

Chapter 4: Introduces some of the techniques used for strain field constructions, which
is particularly important for meshfree methods, including strain gradient scaling,
strain smoothing, generalized smoothing, point interpolation, and least square projection
techniques.
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Chapter 5: Introduces the principles and weak forms that will be used for creating discre-
tized system equations, including the standard weak forms such as Galerkin and the
weakened-weak forms such as the SC-Galerkin, GS-Galerkin, andGalerkin-likeweak forms.

Chapter 6: Introduces the EFG method, one of the widely used meshfree methods.
A number of techniques that are used for handling essential boundary conditions are
discussed in detail. Issues related to the background integration are also examined.

Chapter 7: Introduces the MLPG method, which requires only local cells of a background
mesh for integration. The MLPG method is formulated for both static and dynamic
problems. Issues on types of local domains, effects of the dimension of these domains,
handling local integration, and procedures in dealing with essential boundary conditions
are discussed.

Chapter 8: Introduces the PIMs, which are formulated based on both the GS-Galerkin and
SC-Galerkin formulations. Properties of various PIMs, such as the upper bound, free of
volumetric locking, superconvergence, and ultra-accuracy are discussed in detail.
A comparison study is also presented for PIMs and other methods in terms of efficiency.

Chapter 9: Introduces weakform-like meshfree methods for computational fluid dynamics
problems: SPH based on Lagrangian formulation, and GSM based on Eulerian formula-
tion. The SPH works particularly well for highly nonlinear and dynamic momentum-
driven problems using particles. The GSM, on the other hand, works well for general
fluid dynamics problems using triangular cells.

Chapter 10: Introduces PIM methods developed for analysis of beams governed by the
Euler–Bernoulli beam theory. The power of weakened-weak formulation is demonstrated
by using linear interpolation to solve fourth differential equations.

Chapter 11: Introduces meshfree methods developed for analysis of plates. Both thin plates
governed by the Mindlin plate theory and thick plates governed by the third-order shear
deformation theory are used to develop the meshfree methods. Two methods—EFG and
PIMs—are formulated. Shear-locking issues for plates and the remedies are also discussed
in great detail.

Chapter 12: Introduces meshfree methods developed for analysis of shells. Both thin shells
governed by the Kirchhoff–Love theory and thick shells are used to formulate the meshfree
methods. Two methods—EFG and PIM—are formulated for static and dynamic problems.
Advantages of using meshfree methods for shells are discussed.

Chapter 13: Formulates two boundary-type meshfree methods—boundary point interpol-
ation methods (BPIM) and radial BPIM. Procedures of using the meshfree concept for
solving boundary integral equations are provided. A number of examples are presented to
demonstrate the advantages of these methods in solving problems of infinite domain.

Chapter 14: Introduces methods that are formulated by coupling domain and
boundary types of meshfree methods. Meshfree methods that couple with the traditional
FEM and boundary element method (BEM) are also formulated and benchmarked.

Chapter 15: Meshfree methods for adaptive analysis are presented. A number of imple-
mentation issues have been discussed for adaptive analysis, such as error estimation and
adaptive procedures. The methods are demonstrated using examples of 2D for EFG, 2D
and 3D for PIMs.

Chapter 16: PresentsMFree2D 2.0,which has been developed byG.R. Liu and coworkerswith
pre- and postprocessors for adaptive analysis of 2D solids. A number of meshfree solvers are
now available in version 2.0. Its functions and usage are introduced.
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1.9 Some Notations and Default Conventions

1. We define some of the notations that are often used in this book (Table 1.5).

2. By default in this book, we speak of ‘‘open’’ domain. When a domain is denoted
as V (bounded by G), V does not include the boundary G. When we refer to a
‘‘closed’’ domain we will specifically use a box: V ¼ V [ G. We also in general
require the domain being Lipschitzian: it cannot be singular. For solids and
structures with cracks and sharp corners, special treatments or considerations
are needed.

3. The integration used in this book is the sense of Lebesgue integration: the value of
the integration will not change if we make changes to the value of the integrand
only on a set of ‘‘zero measures’’ such as a finite set of points. It is very forgiving
of occasional omissions.

4. This book uses both thematrix and the indicial notations from time to time formore
concise presentation. Therefore, we allow the vectors and matrix to have the
following forms for easy conversion between these two notations whenever it is
needed.

x ¼
x1
x2
x3

8><
>:

9>=
>; ¼

x

y

z

8><
>:

9>=
>;,u ¼

u1
u2
u3

8><
>:

9>=
>; ¼

ux
uy
uz

8><
>:

9>=
>; ¼

u

v

w

8><
>:

9>=
>;

Matrix notation

xi, i ¼ 1, 2, 3
ui, i ¼ 1, 2, 3

bi, i ¼ 1, 2, 3

ni, i ¼ 1, 2, 3

Indicial notation

b ¼
b1
b2
b3

8><
>:

9>=
>; ¼

bx
by
bz

8><
>:

9>=
>;,

n1
n2
n3

8><
>:

9>=
>; ¼

nx
ny
nz

8><
>:

9>=
>;

sT ¼ s11 s22 s33 s23 s13 s12f g sij, i, j ¼ 1, 2, 3

¼ sxx syy szz syz sxz sxy
� �

eij, i, j ¼ 1, 2, 3

«T ¼ e11 e22 e33 2e23 2e13 2e12f g
¼ exx eyy ezz gyz gxz gxy

� �

(1:38)

TABLE 1.5

Some Often Used Mathematic Notations

Notations In Words Notations In Words

� A subset (or space) of 8 For all

\ Union 9 There exists

[ Intersection j s.t. (subjected to) or restricted
within

n Set minus ! Map to

� Assembly (location matched
summation)

) If . . . then

, If and only if � Tensor product
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1.10 Remarks

The similarities and differences between FEM and meshfree methods are listed in Table 1.6.
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2
Meshfree Shape Function Construction

2.1 Basic Issues for Shape Function Construction

2.1.1 Requirements on Shape Functions

Creation of meshfree shape functions is one of the central and most important issues in
meshfreemethods.Development ofmore effectivemethods for constructing shape functions
has been one of the most active areas of research in meshfree methods. The challenge is how
to efficiently create shape functions of ‘‘good’’ properties using nodes scattered arbitrarily in
the problem domain. A good method of shape function construction should satisfy the
following requirements:

1. The nodal distribution can be arbitrary within reason, and at least more flexible
than that in the finite element method (FEM) (arbitrary nodal distribution).

2. The algorithm must be stable with respect to irregularity (within reason) of the
node distribution (stability).

3. The shape functions constructed should possess a certain order of consistency
that is the capability to locally reproduce exactly the polynomials of that order
(consistency).

4. The support (or influence or smoothing) domain for field variable approximation=
interpolation should be small to include a small number of nodes (compact
support).

5. The algorithm should be computationally efficient. It should be of the same order
of complexity as that of FEM (efficiency).

6. Ideally, the shape function should possess the Kronecker delta function property
(delta function property).

7. Preferably, the nodal shape functions should be compatible throughout the problem
domain (compatibility).

8. The set of the nodal shape functions of all the nodes in the problem domain must be
linearly independent and hence forms a basis for displacement field construction
(linear independence).

Satisfaction of the above requirements facilitates both easy implementation of the meshfree
method and accuracy of the numerical solutions. The first requirement is obvious. The
second stability requirement should always be checked, because there could be uncertainties
caused by the arbitrariness in the distribution of nodes. The consistency requirement is
essential for the convergence of the numerical results, when the nodal spacing is reduced.
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Therefore, it has to be examined. Satisfaction of the compact condition (requirement 4) leads
to a sparse=banded systemmatrix that can be handledwith high computational efficiency in
terms of both storage and central processing unit (CPU) time. Requirement 5 prevents
unacceptably expensive shape function constructions, because a too costly procedure will
eventually become impractical, no matter how good it is.

The consistency and the three requirements will be elaborated in detail in the following
sections.

2.1.2 Delta Function Property

The delta function property of shape functions is defined following the Kronecker delta:

fi(xj) ¼ 1 when i ¼ j
0 when i 6¼ j

�
(2:1)

The shape functions that satisfy the delta function property allow easy treatments for
essential boundary conditions. Shape functions created using the methods listed in Section
2.1.8 may or may not have the Kronecker delta property. The requirement on delta function
property is not rigid because one can use special measures to impose essential boundary
conditions, of course, at additional expense. Delta function property is also needed for shape
functions to be used to form an interpolant that is used in the error estimation procedures.

2.1.3 Consistency

Similar to conventional FEM, a meshfree method must converge, meaning that the
numerical solution obtained by the meshfree method must approach the exact solution
when the nodal spacing approaches zero. For a meshfree method to converge, the shape
functions used have to satisfy a certain degree of consistency. The degree of consistency of
shape functions is measured here by ‘‘the order of the polynomial functions that the
approximation using these shape functions is capable to exactly reproduce locally (in all
the elements or cells that forms the entire problem domain).’’ If the approximation is
capable of producing a constant field function exactly, the approximation is then said to
have zero-order consistency, or C0 consistency. In general, if the approximation can
produce a polynomial of up to kth order exactly, the approximation is said to have
kth-order consistency, or Ck consistency.

The term of completeness means that the approximation of Ck consistency has to be
completely consistent for all the lower orders from 0 to k� 1. In using polynomial shape
functions, the Ck completeness is guaranteed by the use of all the polynomial terms
completely up to the kth order. In this book, when we require Ck consistency, we imply
also all the consistencies from C0 to Ck. In addition, we require shape functions have at least
C1 consistency.

The requirement on consistency depends on the formulation procedures. For example, in
solving any partial differential equation (PDE) based on the Galerkin weak form, there is a
minimum consistency requirement for ensuring the convergence of the solution from the
discretized equation system. The minimum consistency requirement depends on the order
of the PDE. For a PDE of order 2k, the minimum requirement of the consistency is Ck

for Galerkin formulation. This is equivalent to the requirement of representing the polyno-
mial of all orders up to the kth order. An approximation that can exactly represent the
polynomial of all the orders up to the kth order can represent any smooth function with
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arbitrary accuracy as the nodal spacing approaches zero [28]. Note the consistency is
required only ‘‘locally’’within the elements, and we often allow lower order of consistency
on the interfaces of the elements, as long as the compatibility is observed. It is not to confuse
the Ck consistency of a function with the C

m(V) continuity of a function (to be discussed
in Chapter 3).

Representing a polynomial exactly is also said to reproduce the polynomial. Therefore,
the reproducing concept is directly related to the concept of consistency.

2.1.4 Compatibility

The term ‘‘compatibility’’ is very important in weak formulations, and hence we will
encounter it multiple times in this volume. It refers to the continuity of the field function
over the problem domain. In general, this can occur for any numerical model that uses local
approximation. In the FEM settings, for example, incompatibilities can occur on the
element interfaces of the elements. For meshfree setting, it could occur at locations when
the local support domain updates the support nodes.

The requirement on compatibility depends also on the formulation procedure. In the
standard Galerkin weak formulation, it is mandatory. When a strain-constructed Galerkin
(SC-Galerkin) weakened-weak (W2) formulation is used, it is not required. The global
compatibility is also not necessary if the local weighted residual weak form is employed
with the G space theory.

Consistency is usually much easier to achieve. The compatibility is often a ‘‘headache’’
for weak formulations with local approximations. Our hands have been very much tied
up, and the numerical maneuver has been confined in a very small ‘‘room,’’ until the
weakened-weak formulation is theoretically established.

2.1.5 Linear Independence

The linear independence of the nodal shape functions for all the nodes is needed in order to
form a nodal basis, so that the displacement functions constructed using the nodal basis are
linearly independent necessary for establishing a stable set of discretized system equations.
For a finite model with Nn nodes, we need Nn nodal shape functions for each field variable.
The linear independence of these nodal shape functions fn requires that

XNn

n¼1

anfn ¼ 0, ) an ¼ 0, n ¼ 1, 2, . . . ,Nn (2:2)

In the FEM, these linearly independent shape functions are created based on elements
using mostly polynomial basis functions, and the linear independence is ensured by
element-based interpolation, element topology, and properly controlled coordinate map-
ping. In the meshfree methods no mapping is generally needed, and the linear independence
is ensured by the (1) use of proper basis functions and (2) proper local nodes selection with
the help of a background cells or proper means to ensure a nonsingular moment matrix.

2.1.6 Basis: An Essential Role of Shape Functions

In any (discrete) numerical method, field functions have to be approximated over
the problem domain using a set of nodal values of the functions and the so-called
basis. Given a linear space S (see Chapter 3 for definition) of dimension Nn, a set
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of Nn members of functions fn 2 S, n¼ 1, 2, . . . ,Nn is a basis for S if and only if 8w 2 S,
9 unique an 2 R, such that

w ¼
XNn

n¼1

anfn (2:3)

Functions fn in the basis is often given in the form of nodal shape functions, and hence the
basis is also termed as nodal basis in the context of FEM and meshfree methods. Equation 2.3
implies that the nodal shape functions must be linearly independent. The dimension of the
space S created using fn (n¼ 1, 2, . . . ,Nn) is Nn or dim(S)¼Nn. For dD solids, the total
dimension of the spacewill be d�Nn, because each node carries d degrees of freedom (DOFs).

2.1.7 Interpolant

Given w 2 S where S is a linear space, the interpolant I hw creates a function that lives in a
finite subspace Sh \ S with Nn dimensions: I hw 2 Sh where

I hw(x) ¼
XNn

n¼1

w(xn)fn(x) (2:4)

that satisfies

Ihw(xn) ¼ w(xn), n ¼ 1, 2, . . . ,Nn (2:5)

where
x is any point inside the problem domain V
xn is the coordinate of the nth node
fn is the nodal shape function for the nth node

To satisfy Equation 2.5, we require the shape functions to satisfy the Kronecker delta
property Equation 2.1.

Note that a general interpolation defined in Equation 1.28 does not necessarily qualify as
an interpolant because (1) the function uh generated by an interpolation using a type
of shape functions may not be in a subspace of the function u to be interpolated; or
(2) the shape functions may not have the Kronecker delta property. Whether or not a
type of shape functions can form an interpolant of a space has implication in the error
estimation to relate the interpolation error to the solution error.

2.1.8 Types of Methods for Creating Shape Functions

A number of ways to construct shape functions have been proposed. This book classifies
these methods into three major categories:

1. Integral representation methods, which include

a. Smoothed particle hydrodynamics (SPH) method

b. Reproducing kernel particle method (RKPM)

c. General kernel reproduction (GKR) method
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2. Series representation methods, which include

a. Moving least squares (MLS) methods

i. MLS approximation

ii. Modified MLS approximation

b. Point interpolation methods (PIMs)

i. Polynomial PIM

ii. Radial PIM (RPIM)

c. Partition of unit (PU) methods

i. Partition of unity finite element (PUFE)

ii. hp-clouds

d. Least squares (LSs) methods

e. FEMs

i. Element-based interpolation with mapping

3. Differential representation methods, which include

i. Finite difference method (FDM—regular and irregular grids)

ii. Finite point method (FPM—irregular grids)

4. Gradient smoothing method (GSM)

Figure 2.1 shows the first three methods schematically. Integral representation methods
are relatively new, but have found a special place in meshfree methods with the
successful development of SPH [1,6]. The function is represented using its information
in a local domain (smoothing domain or influence domain) via an integral form, as
illustrated in Figure 2.1. Consistency is achieved by properly choosing the weight
function.

Series representation methods have a long history of development. They are well
developed in FEM, and are very actively studied now in the area of meshfree methods.
Consistency is ensured by the use of proper basis functions. The inclusion of special
terms in the basis can also improve the accuracy of the results for certain classes
of problems. One of the central issues has been the compatibility with this class of
methods.

Differential representation methods have also been used for a long time. Convergence of
the representation is ensured via the theory of the Taylor series. Differential representation
methods are usually used for establishing system equations based on strong formulation,
where we may, but usually do not, construct shape functions explicitly.

The GSM is not exactly a method for shape function construction, and hence will not be
discussed in detail in this chapter. It is a very powerful technique to approximate the
derivatives of the field variable at a point or in a local domain. It is essentially an integral
representation method applied to the gradient of field functions, and has various schemes
with different types of smoothing domains as presented by Liu et al. [7–10]. When regular
nodes are used, some of the GSM schemes become the FDM. The GSM has been applied in
strong form formulations for both solid mechanics problems [7] and fluid dynamics
problems [8–10], and these methods with proper smoothing domains are found as stable
as the weak form methods. It is a weak form-like method and well suited for fluid
dynamics problems.
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2.2 Smoothed Particle Hydrodynamics Approach

2.2.1 Integral Representation of a Function

The SPH method uses integral representation of a function. Consider an integrable (in the
sense of Lebesgue) function of u(x) at any point x¼ (x, y, z). Its integral representation can be
given by

u(x) ¼
ðþ1

�1
u(j)d(x� j)dj (2:6)

f
f

f

f (x)

x1 x2x x
(a) 

f(x) = ∫ dξ(x – ξ) f (ξ) W
x1

x

x

x

f (x )

f (x )

(b)   

f(x ) = a0 + a1 p1(x ) + a2 p2(x ) + . . . 

x
(c)  

 f(x) = f(x0) + f΄(x0) (x – a) + 1
2 ! f˝(x0) (x – a )2  + . . .

x2

FIGURE 2.1
Methods of function representation at x using the information in the vicinity of x. (a) Integral representation. W

_

,
weight or smoothing function. (b) Series representation. pi(x) are basis functions. (c) Differential representation,
where derivatives of function are used.
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where d(x) is the Dirac delta function. Note that this integral representation of a function is
exact, if u(j) is continuous. However, it is difficult to implement in numerical analyses,
where our discretization is always finite. In SPH [1–6], u(x) is approximated by the following
integral form of representation:

uh(x) ¼
ð
Vs

u(j)W
_

(x� j, h)dj (2:7)

where
uh(x) represents the approximation of function u(x)
W
_

(x – j, h) is a kernel or weight or smoothing function
h is termed the smoothing length in SPH

The smoothing length controls the size of the compact support domain Vs bounded by Gs

which is often termed the influence domain or smoothing domain in SPH. The presentation of
a function in the integral form of Equation 2.7 can be viewed as an approximation of the
integral function representation given in Equation 2.6 over a finite domain.

In contrast to the differential representation of a function, this approximated integral
presentation can be termed as integral representation. The integral representation is also
termed as kernel approximation. In an integral representation, the weight function is often
required to satisfy certain conditions [3,6]:

1. W
_

(x� j, h) > 0, 8j 2 V s, (Positivity) (2.8)

2. W
_

(x� j, h) ¼ 0, 8j 62 V s, (Compact) (2.9)

3.
Ð
V s
W
_

(x� j, h)dj ¼ 1 (Unity) (2.10)

4. W
_

is monotonically decreasing (Decay) (2.11)

5. W
_

(s, h) ! d(s) as h ! 0, (Delta function behavior) (2.12)

The first positivity condition is not necessary mathematically as a function representation
requirement, but is important to ensure a stable numerical scheme and a meaningful
presentation of some physical phenomena. For example, in fluid dynamics problems, one
of the field variables could be the density of the media, which can never be negative. There
are different versions of SPH that do not always satisfy this condition, such as the RKPM
[11], which ensures higher order reproduction of the function and the derivatives of the
function.

The second condition, compact, is important to the SPH method because it enables the
approximation to be generated from a local representation of nodes; i.e., uh(x) will depend
only on the values of u at nodes (particles) that are in the smoothing domain in which W

_

is
nonzero.

The third condition, unity, assures the zero-order consistency (C0) of the integral form
representation of the continuum function. Note that this does not necessarily guarantee the
C0 consistency of the discrete form of approximation.

Condition 4 is, again, not a mathematical requirement, but is imposed based on the
physical considerations for the SPH method that a force exerted by a particle on another
particle decreases with the increase of the distance between the two particles.

Condition 5 is redundant, as a function that satisfies conditions 1–4 would naturally
satisfy condition 5. In addition, the smoothing length h never goes to 0 in practical
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computation. Condition 5 exists to allow us to observe explicitly that the method is
converging to its exact form (Equation 2.6).

In summary, conditions 2 and 3 (compact and unity) are the minimum requirements for
constructing a weight function for meshfree methods based on integral representation.
When this type of approximation is used in a strong formulation as in SPH, we do not have
other means to control the stability and convergence of the solution. Therefore, we often
need to impose additional conditions to the weight functions for a viable numerical scheme
like SPH that works for certain types of problems.

Remark 2.1: Convergence Property
When W

_

satisfies Equation 2.12 the integral representation of continuous function will be
exact at h ! 0.

The discretized form of uh(x) is obtained when nodal quadrature or so-called particle
approximation is applied to evaluate the integral in Equation 2.7. The integral is approxi-
mated by the summation for all the particles in the support=smoothing domain:

uh(x) ¼
X
I2Sn

W
_

(x� xI)uIDVI (2:13)

where
Sn is the set of all the nodes (or particles) in the local support domain of x
DVI represents the volume of particle I

In solving problems of fluid flow, the volumes of particles are treated as field variables,
and updated automatically in the solution process. We need, however, an initial definition
for these particles that represents the continuummedia. The clear advantage of SPH is that,
once the initial particles are defined, the subsequent update is handled by the SPH
formulation, which can virtually simulate many extreme situations, such as explosion
and penetration [6]. Some applications are covered in Chapter 9.

Equation 2.13 can be written in the following form, which is similar (in form) to the finite
element formulation:

uh(x) ¼
X
I2Sn

fI(x)uI (2:14)

where fI(x) are the SPH shape functions given by

fI(x) ¼ W
_

(x� xI)DVI (2:15)

Note that, despite the similarity in form, the SPH shape function behaves very differently
from the finite element (FE) shape functions [14]. First, Equation 2.15 has low consistency
(see Section 2.2.3); second, the SPH shape functions do not satisfy the Kronecker delta
function defined by Equation 2.1. From Equation 2.15, it can be seen that the shape function
depends only on the weight function (assume the uniform particle distribution). It is very
difficult to construct a weight function that satisfies conditions 1–4 and the Kronecker delta
function property at the same time.
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Because of the lack of the delta function property, we have, in general, uI 6¼ uh(xI).
Therefore, uI is termed a nodal parameter at node I, which is, in general, not the nodal
value of the field variable at the node. The shape functions defined by Equation 2.15 cannot
be used to construct an interpolant. Equation 2.14 is not an interpolation of a function, and it
is an approximation of a function. Because of this special property of the SPH shape
function, the true value of the field variable should be retrieved using Equation 2.14
again, after obtaining the nodal parameters uI at all the field nodes (particles).

2.2.2 Choice of Weight Function

Weight functions play an important role in meshfree methods. They should be constructed
according to the reproducibility requirement. Most meshfree weight functions are bell-
shaped. The following is a list of commonly used weight functions.

The cubic spline weight function (W1):

W
_

(x� xI) � W
_

�d
� � ¼

2
3
� 4�d2 þ 4�d3 for �d � 1

2
4
3
� 4�dþ 4�d2 � 4

3
�d3 for

1
2
< �d � 1

0 for �d > 1

8>>>>><
>>>>>:

(2:16)

The quartic spline weight function (W2):

W
_

(x� xI) � W
_

�d
� � ¼ 1� 6�d2 þ 8�d3 � 3�d4 for �d � 1

0 for �d > 1

�
(2:17)

The exponential weight function (W3):

W
_

(x� xI) � W
_

(�d) ¼ e�(�d=a)2 �d � 1

0 �d > 1

�
(2:18)

where a is constant. We often use a¼ 0.3. In Equations 2.16 through 2.18

�d ¼ jx� xIj
dW

¼ d
dW

(2:19)

where dW is directly related to the smoothing length h that is a characteristic length for the
SPH. It defines the dimension of the domain where W

_ 6¼ 0. In general, dW can be different
from point to point.

Following a general procedure for constructing weight (smoothing) functions [11], a
relatively new quartic weight (smoothing) function is constructed (W4):

W
_

(x� xI) � W
_

(�d) ¼
2
3
� 9
2
�d2 þ 19

3
�d3 � 5

2
�d4 for �d � 1

0 for �d > 1

8<
: (2:20)

A parabolic weight function also exists but is used less frequently. The formulation is given
in Equation 9.30.

Figure 2.2 plots all four weight functions given by Equations 2.16 through 2.18, and 2.20.
It can be clearly seen that the quartic weight function (W4) given in Equation 2.20 has a shape
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very similar to the piecewise cubic spline weight function (W1) given in Equation 2.16, which
has been tested and works very well for many applications. The new quartic weight function
W4, however, has a simple form of one single piece, and possesses second-order reproducing
capacity. Figure 2.3 plots the first derivative of all four weight functions. It is shown that

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

W W2

W3

W1

W4

FIGURE 2.2
Weight functions. W1, cubic spline weight function; W2, quartic spline weight function; W3, exponential weight
function (a¼ 0.3); and W4, quartic weight function.
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W1dW dx

FIGURE 2.3
The first derivative of weight functions. W1, cubic spline weight function; W2, quartic spline weight function;
W3, exponential weight function (a¼ 0.3); and W4, quartic weight function.
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the first derivatives of all four are smooth. It can be clearly seen that the first derivative of W4
still behaves similarly to that of the piecewise cubic spline function (W1). Figure 2.4 plots
the second derivative of all four weight functions and shows that the second derivative of the
cubic spline (W1) is no longer smooth. The second derivative of the new quartic weight
function (W4) is still smooth but does not precisely equal zero on the boundary. W4 is
for readers who prefer the performance of W1 but want a simple one-piece formulation.

Note that the weight functions shown in Equations 2.16 through 2.18, and 2.20 need to be
scaled to satisfy the condition of unity defined by Equation 2.10 for problems of different
dimensions, if they are used in such integral representation methods as SPH. This is to
ensure the consistency of function representation, as is seen in Section 2.2.3. The scaling is
immaterial if the shape functions are used in the series representation methods such as
MLS to be discussed in Section 2.4.

In SPH methods, the following SPH weight function is often used (for one-dimensional
(1D) problems)

W
_

(x� xI, h) � W
_

(�d, h) ¼ 2
3h

1� 2
3
�d2 þ 3

4
�d3 for �d � 1

1
4
(2� �d)3 for 1 < �d < 2

0 for �d � 2

8>>><
>>>:

(2:21)

where �d ¼ d=h and h is the smoothing length. This SPH weight function is actually exactly
the same as the cubic spline function given in Equation 2.16, but different in form and in
the dimension of the smoothing domain.
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FIGURE 2.4
The second derivative of weight functions. W1, cubic spline weight function; W2, quartic spline weight function;
W3, exponential weight function (a¼ 0.3); and W4, quartic weight function.
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2.2.3 Consistency of SPH Shape Functions

Let us now examine the consistency of the SPH approximation. SPH approximation starts
from the integral approximation (Equation 2.7). If we want the approximation to be of C0

consistency, we need to require it to reproduce a constant c. Assume the field is given by
u(x)¼ c. Substituting it into Equation 2.7, we obtain

uh(x) ¼
ð
Vs

cW
_

(x� j, h)dj ¼ c (2:22)

or
ð
Vs

W
_

(x� j, h)dj ¼ 1 (2:23)

This is the condition of unity given in Equation 2.10 that a weight function has to satisfy. It
is now clear that the condition of unity (Equation 2.10) ensures the lowest C0 consistency
for the SPH approximation.

Let us examine now whether the SPH approximation possesses C1 consistency. Assume
a linear field given by

u(j) ¼ c0 þ cT1j (2:24)

where c1 and j are, respectively, a constant vector and the Cartesian coordinate vector. For
two-dimensional (2D) cases, they should be

c1 ¼ c1x
c1y

� �
(2:25)

and

j ¼ j
h

� �
(2:26)

For three-dimensional (3D) cases, they are

c1 ¼
c1x
c1y
c1z

8<
:

9=
; (2:27)

and

j ¼
j
h
z

( )
(2:28)

Substituting the above equation into Equation 2.7, we obtain

uh(x) ¼
ð
Vs

c0 þ cT1j
� �

W
_

(x� j, h)dj (2:29)
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If the approximation possesses C1 consistency, we should have

uh(x) ¼ c0 þ cT1x (2:30)

Equating the right-hand sides of the above two equations, we have

c0 þ cT1x ¼
ð
Vs

c0 þ cT1j
� �

W
_

(x� j, h)dj (2:31)

or

c0 þ cT1x ¼ c0

ð
Vs

W
_

(x� j, h)djþ cT1

ð
Vs

jW
_

(x� j, h)dj (2:32)

Using the condition equation (Equation 2.10), the above equation becomes

x ¼
ð
Vs

jW
_

(x� j, h)dj (2:33)

This gives the condition that the weight function has to satisfy for C1 consistency. There-
fore, in general, SPH does not possess C1 consistency, if the weight function satisfies only
the conditions given in Equations 2.8 through 2.12.

To examine further the conditions required for the weight function to achieve an
approximation of C1 consistency, we first multiply with x on both sides of Equation 2.23,
which gives

x ¼
ð
Vs

xW
_

(x� j, h)dj (2:34)

To show this more clearly, we then subtract Equation 2.33 from Equation 2.34 to obtain

0 ¼
ð
Vs

(x� j)W
_

(x� j, h)dj (2:35)

The above integral is the first moment of the weight function. Therefore, the condition that
the weight function must satisfy for C1 consistency is that the first moment of the weight
function has to vanish. This condition can be satisfied if the weight function is symmetric
about the origin. For an infinite problem domain, this symmetric condition is not very
difficult to meet, and all the weight functions listed in Section 2.2.2 satisfy this condition.
The problem occurs on and near the boundary, where it is not easy to construct a
symmetric weight function. Figure 2.5 shows an example of the 1D situation. Figure 2.5a
shows a weight function for an interior point, where a symmetric function can be easily
defined to have linear consistency. For points near the boundary (Figure 2.5b) and on the
boundary (Figure 2.5c and d), it is difficult to maintain the symmetry for linear consistency.
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Special treatments are required to enforce the linear consistency. This is discussed further
in the following section.

Following the same procedure, it is easy to prove that the two quartic weight functions
given by Equations 2.17 and 2.20 possess C2 consistency, when the entire smoothing
domain is located within the problem domain [6].

2.3 Reproducing the Kernel Particle Method

Liu et al. [13] have developed a method that ensures the certain degree of consistency of the
integral approximation and named it the RKPM. This is achieved by adding a correction
function to the kernel in Equation 2.7. This correction function is particularly useful in
improving the SPH approximation near the boundaries as well as making it linear or C1

consistent near the boundary. The integral representation of a function with the correction
function can be given by

uh(x) ¼
ð
Vs

u(j)C(x, j)W
_

(x� j, h)dj (2:36)

where C(x, j) is the correction function. An example of the correction function in 1D is

C(x, j) ¼ c1(x)þ c2(x)(j� x) (2:37)

x

(a)

x

(b)

Boundary

x

(c)

Boundary

x

(d)

Boundary

FIGURE 2.5
SPH weight functions for 1D case. (a) For an interior point, the weight function can be symmetric and the first
moment vanishes. For a point near the boundary (b), or on the boundaries (c, d), the weight functions are not
symmetrical.
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where c1(x) and c2(x) are coefficients. The coefficients are found by enforcing the corrected
kernel to reproduce the function [13]:

c1(x) ¼ m2(x)
m0(x) m2(x)�m2

1(x)
� � (2:38)

c2(x) ¼ �m1(x)
m0(x) m2(x)�m2

1(x)
� � (2:39)

where m0, m1, and m2 are the moments of W, defined by

m0(x) ¼
ð
Vs

W
_

(x� j)dj (2:40)

m1(x) ¼
ð
Vs

jW
_

(x� j)dj (2:41)

m2(x) ¼
ð
Vs

j2W
_

(x� j)dj (2:42)

If the integral in Equation 2.36 is discretized, then a function u(x) can be approximated
using the surrounding particles:

uh(x) ¼
X
I2Sn

C(x, xI)W
_

(x� xI)uIDVI ¼
X
I2Sn

fI(x)uI (2:43)

where fI(x) are the RKPM shape functions given by

fI(x) ¼ C(x, xI)W
_

(x� xI)DVI (2:44)

Note that the corrected weight function may not satisfy the conditions of Equations 2.8
and 2.11. The RKPM method has been applied successfully to solve many problems of
solids, structures, acoustics, fluids, etc. Readers are referred to publications by the group
led by Liu [12–19].

2.4 Moving Least Squares Approximation

MLS, originated by mathematicians for data fitting and surface construction, is often
termed local regression and loss [20,21]. It can be categorized as a method of series
representation of functions. A detailed description of the MLS method can be found in a
paper by Lancaster and Salkauskas [20]. The MLS method is now a widely used alternative
for constructing meshfree shape functions for approximation. Nayroles et al. [22] were the
first to use MLS approximation to construct shape functions for their diffuse element
method (DEM) for mechanics problems. DEM was modified by Belytschko et al. [23] to
become the element-free Galerkin (EFG) method, where the MLS approximation is also
employed. The invention of DEM and the advances in EFG have created great impact on
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the development of meshfree methods. The MLS approximation has two major features
that make it popular: (1) the approximated field function is continuous and smooth in the
entire problem domain when sufficient nodes are used, which suits well for the constrained
Galerkin weak form; and (2) it is capable of producing an approximation with the desired
order of consistency, which offers effective ways for field enrichment. The procedure of
constructing shape functions for meshfree methods using MLS approximation is detailed
in this section.

2.4.1 MLS Procedure

Let u(x) be the function of a field variable defined in the domain V. The approximation of
u(x) at point x is denoted as uh(x). The MLS approximates the field function in the form of
series representation:

uh(x) ¼
Xm
j

pj(x)aj(x) � pT(x)a(x) (2:45)

where
m is the number of terms of monomials (polynomial basis)
a(x) is a vector of coefficients given by

aT(x) ¼ a0(x) a1(x) � � � am(x)f g (2:46)

which are functions of x.

In Equation 2.45, p(x) is a vector of basis functions that consists most often of monomials
of the lowest orders to ensure minimum completeness. Enhancement functions can, how-
ever, be added to achieve better efficiency or to produce stress fields of special character-
istics, such as singularity at the crack tip and stress discontinuity at interfaces of different
types of materials. Here we discuss the use of the pure polynomial basis. In 1D space, a
complete polynomial basis of order m is given by

pT(x) ¼ fp0(x), p1(x), . . . , pm(x)g ¼ f1, x, x2, . . . , xmg (2:47)

and in 2D space,

pT(x) ¼ pT(x, y) ¼ f1, x, y, xy, x2, y2, . . . , xm, ymg (2:48)

In this case, the Pascal triangle shown in Figure 2.6 can be utilized to build pT(x), and the
number of nodes in the support domain can be chosen accordingly.

In 3D space, we have

pT(x) ¼ pT(x, y, z) ¼ f1, x, y, z, xy, yz, zx, x2, y2, z2, . . . , xm, ym, zmg (2:49)

In this case, the Pascal pyramid shown in Figure 2.7 can be employed to build pT(x). The
vector of coefficients a(x) in Equation 2.45 is determined using the function values at a set
of nodes that are included in the support domain of x. A support domain of a point x
determines the number of nodes that is used locally to approximate the function value at x,
as shown in Figure 1.9.
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Assuming the support domain of x contains a set of n local nodes x1, x2, . . . , xn,
Equation 2.45 is then used to calculate the approximated values of the field function at
these nodes:

uh(x, xI) ¼ pT(xI)a(x), I ¼ 1, 2, . . . ,n (2:50)

xy 
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FIGURE 2.6
Pascal triangle of monomials, 2D case.
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FIGURE 2.7
Pascal pyramid of monomials, 3D case.
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Note that a(x) here is an arbitrary function of x. A functional of weighted residual is then
constructed using the approximated values of the field function and the nodal parameters,
uI¼ u(xI):

J ¼
Xn
I

W
_

(x� xI) uh(x, xI)� u(xI)
� �2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

residual

¼
Xn
I

W
_

(x� xI) pT(xI)a(x)� uI
� �2

(2:51)

where W
_

(x� xI) is a weight function. The nodal parameter uI of the field variable at node I
is shown schematically in Figure 2.8. It is clear that the functional J so constructed is at least
semi-symmetric positive definite (semi-SPD).

Note that the weight function used in Equation 2.51 has a different mathematical mission
than that used for integral representation methods, such as that in Equation 2.7. The weight
function used in Equation 2.51 plays two important roles in constructing globally continu-
ous MLS shape functions. The first role is to provide favorable weightings for the residuals
at different nodes in the support domain: We usually prefer nodes farther from x to have
small weights, and to give more weighting to the nodes closer to x where the field variable
is to be approximated. The second role is to ensure that nodes leave or enter the support
domain in a gradual (smooth) manner when x moves. The second role of the weight
function is very important, because it makes sure that the MLS shape functions constructed
satisfy the compatibility condition. Note that the weight function can only play these two
roles effectively when sufficient nodes are used: n�m. Also, the weight function is not
responsible for the consistency of the shape functions created.

Theoretically, it can be any function as long as it satisfies the conditions of Equations 2.8,
2.9, and 2.11. Equation 2.9 also ensures a local support feature that leads to a sparse=
banded system matrix. Equation 2.11 allows the weight function to play the first role. Any
weight functions shown in Equations 2.16 through 2.18 and 2.20 can be and have been used
in MLS approximation. The scaling to meet the condition of unity that is required in SPH is
not necessary here for MLS approximations.

In the MLS approximation, at an arbitrary point x, a(x) is chosen to minimize the
weighted residual. The minimization condition requires

FIGURE 2.8
The approximation function uh(x) and the nodal
parameters uI in the MLS approximation. xi x

u

0

ui

uh(x)

uh(xi)
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qJ
qa

¼ 0 (2:52)

which results in the following linear equation system:

A(x)a(x) ¼ B(x)ds (2:53)

where A is called the MLS moment matrix given by

A(x) ¼
Xn
I

W
_

I(x)pT(xI)p(xI) (2:54)

where

W
_

I(x) � W
_

(x� xI) (2:55)

In Equation 2.53, matrix B has the form of

B(x) ¼ [B1 B2 . . . Bn] (2:56)

BI ¼ W
_

I(x)p(xI) (2:57)

and ds is the vector that collects the (discrete) nodal parameters of the field variables for all
the nodes in the support domain:

ds ¼ fu1 u2 . . . ungT (2:58)

Assuming that the MLS moment matrixA is invertible (see Section 2.4.4), Equation 2.53 can
then be solved for a(x):

a(x) ¼ A�1(x)B(x)ds (2:59)

Substituting the above equation back into Equation 2.50 leads to

uh(x) ¼
Xn
I

Xm
j

pj(x) A�1(x)B(x)
� �

jIuI (2:60)

or

uh(x) ¼
Xn
I

fI(x)uI (2:61)

where the MLS shape function f(x) is defined by

fI(x) ¼
Xm
j

pj(x) A�1(x)B(x)
� �

jI ¼ pTA�1BI (2:62)
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Equation 2.61 can also be written in the following matrix form:

uh(x) ¼ w(x)ds (2:63)

where w(x) is the matrix of MLS shape functions corresponding to n nodes in the support
domain:

w(x) ¼ f1(x) f2(x) � � � fn(x)½ 	 (2:64)

To determine the spatial derivatives of the function of the field variable, which are required
for deriving the discretized system equations, it is necessary to obtain the derivatives of the
MLS shape functions. For convenience, to obtain the partial derivatives of shape functions,
Equation 2.64 is first rewritten as follows using Equation 2.62:

w(x) ¼ gT(x)B(x) (2:65)

where g(x) is determined by

A(x)g(x) ¼ p(x) (2:66)

The partial derivatives of g(x) can be obtained as follows:

Ag,i ¼ p,i �A,ig (2:67)

Ag,ij ¼ p,ij � (A,ig,j þA,jg,i þA,ijg) (2:68)

Ag,ijk ¼ p,ijk � (A,ig,jk þA,jg,ik þA,kg,ij þA,ijg,k þA,ikg,j þA,jkg,i þA,ijkg) (2:69)

where i, j, and k denote coordinates x and y. A comma designates a partial derivative with
respect to the indicated spatial variable. The partial derivatives of shape function F can
then be obtained as follows:

w,i ¼gT
,iBþ gTB,i (2:70)

w,ij ¼ gT
,ijBþ gT

,iB,j þ gT
,jB,i þ gTB,ij (2:71)

w,ijk ¼ gT
,ijkBþ gT

,ijB,k þ gT
,ikB,j þ gT

,jkB,i þ gT
,iB,jk þ gT

,jB,ik þ gT
,kB,ij þ gTB,ijk (2:72)

It should be noted that MLS shape functions do not satisfy the Kronecker delta criterion
fI(xJ) 6¼ dIJ that results in uh(xI) 6¼ uI; i.e., the nodal parameters uI are not the nodal values of
uh(xI). Therefore, they cannot be used to construct an interpolant, but rather approximates
of a function. Figure 2.8 gives a 1D example of the MLS approximation. The approximation
of the displacement at the Ith node uh(xI) depends not only on the nodal parameter uI but
also on the nodal parameters u1 through un, parameters that correspond to all the nodes
within the support domain of node I. This is expressed in the sum given in Equation 2.61.
This property makes the imposition of essential boundary conditions more complicated
than that in the FEM.

A plot of a typical 1DMLS weight function and shape function is given in Figure 2.9. The
shape function is for the node at x¼ 0 and is obtained using five nodes evenly distributed
in the support domain of [�1, 1]. The quartic spline weight function (W2) is used. It can be
seen that the MLS shape function attains a maximum value that is considerably less than 1.
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For this plot, the quartic weight function (Equation 2.17) is used with dW¼ 0.45as,
where as¼ 2.5.

Note that the dimension of the support domain ds in MLS approximation is determined
by the dimension of the weight function dW. Therefore, dW¼ ds. The procedure for deter-
mining ds has already been covered in Sections 2.10.2 and 2.10.3. These methods can be
used here to determine dW for both uniformly and nonuniformly distributed nodes in 1D,
2D, and 3D domains.

2.4.2 Consistency of MLS Shape Functions

The consistency of the MLS approximation depends on the complete order of the monomial
employed in Equations 2.47 or 2.48. If the complete order of the monomial is k, the MLS
shape function will possess Ck consistency. To demonstrate, we follow the argument of [24].

Note that J in Equation 2.51 is positive definite, because the weight function is chosen
positive (Equation 2.8). Therefore, its minimum is nonnegative. Consider a field given by

u(x) ¼
Xk
j

pj(x)aj(x), k � m (2:73)

Such a given field can always be written in the form of

u(x) ¼
Xm
j

pj(x)aj(x) (2:74)

by simply assigning aj¼ 0 for j> k. Then, if we let aj(x)¼aj, J will vanish and it will
necessarily be a minimum, which leads to

uh(x) ¼
Xk
j

pj(x)aj(x) ¼ u(x) (2:75)
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FIGURE 2.9
MLS shape function in 1D space for the node at x¼ 0 obtained using five nodes evenly distributed in the support
domain of [�1, 1]. Quartic spline weight function (W2) is used. (a) MLS shape function; (b) derivative of the shape
function. Note that the MLS shape function does not possess the Kronecker delta function property.

Meshfree Shape Function Construction 57

© 2010 by Taylor and Francis Group, LLC



This proves that any field given by Equation 2.73 will be exactly represented or reproduced
by the MLS approximation. This proof procedure also implies that any function in the basis
is reproduced exactly. This feature of MLS approximation is, in fact, very easy to under-
stand by intuition: the MLS approximation seeks a set of coefficient a(x) that can produce a
function of u(x)¼Spj(x)aj(x) with a minimum distance norm to the actual function. If the
actual function is in the basis of pj(x), MLS approximation will simply produce the basis
because the distance norm is 0, which is, of course, the minimum.

The proof of the consistency of MLS approximation is valid for proving another import-
ant feature of MLS approximation: Any function that appears in the basis can be repro-
duced exactly. To have the MLS approximation to exhibit linear consistency, all one need to
do is include the constant and linear monomials into the basis. Making use of this feature
further, one can develop shape functions for simulating a singular stress field at a crack tip
by including singular functions into the basis [25–27]. However, one has to make sure that
the weighted moment matrix computed using Equation 2.54 is still invertible, when these
additional basis functions are included.

2.4.3 Continuous Moving Least Square Approximation

Belytschko et al. [28] have also shown the relation between the approximations of RKPM
and MLS. Their interesting procedure starts with the construction of the continuous form
of the MLS approximation. The continuous counterpart of Equation 2.51 can be written as

J(x) ¼
ð
Vs

W
_

(x� j) uh(x, j)� u(j)
� �2

dj (2:76)

where W
_

(x� j) is a weight function of compact support. The approximation of the
function has the form:

uh(x, j) ¼
Xm
i

pi(j)ai(x) (2:77)

The condition for minimizing J(x) leads to the following equation for solving aj(x):

J(x)
ai(x)

¼ 0 (2:78)

or

2
ð
Vs

W
_

(x� j)
Xm
i

pi(j)ai(x)� u(j)

 !Xm
j

pj(j)daj(x)

2
4

3
5dj ¼ 0 (2:79)

Because the foregoing equation has to be satisfied for all daj(x), we obtain the following
equation for solving aj(x):

Xm
j

�Aij(j)aj(x) ¼
ð
Vs

W
_

(x� j)pi(j)u(j)
h i

dj (2:80)
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where

�Aij(x) ¼
ð
Vs

W
_

(x� j)pi(j)pj(j)
h i

dj (2:81)

which is the continuous counterpart of the discrete moment matrix A(x) given in Equation
2.54. Solving Equation 2.80 for aj(x), we have

aj(x) ¼ �A�1
ij (x)

ð
Vs

W
_

(x� j)pi(j)u(j)
h i

dj (2:82)

Substituting the above equation into Equation 2.77, we obtain

uh(x, j) ¼ pj(j)�A�1
ij (x)

ð
Vs

W
_

(x� j0)pi(j0)u(j0)
h i

dj0 (2:83)

Note that in the above equation j0 is used for the integral variable. The approximation at x
is then obtained by letting x¼ j.

uh(x) ¼
ð
Vs

pj(x)�A�1
ij (x)pi(j0)W

_

(x� j0)u(j0)
h i

dj0 (2:84)

Comparison with Equation 2.7 reveals the similarity between the SPH and MLS approx-
imations. Defining

C(x, j0) ¼ pj(x)�A�1
ij (x)pi(j0) (2:85)

produces the additional term for ensuring consistency. This term is similar to the correction
function used by Liu et al. [11] for restoring the consistency in SPH. This is not a surprise,
because these two methods are essentially the same and the difference is in order of the
procedure of the shape function construction: MLS uses first the consistent basis to ensure
consistency and then using moving weight function to make sure that these consistent
shape functions can be successfully produced (invertible moment matrix); while the RKPM
constructs the inconsistent shape functions first using SPH weight functions, and then
restores consistency later.

2.4.4 Singularity Issues of the MLS Moment Matrix

In obtaining Equation 2.59, we assumed that the MLS moment matrix A is invertible.
In carefully examining A given in Equations 2.54, it is found that this assumption,
however, can fail. It depends on n, the number of the local nodes used in the support
domain; m, the number of terms in the polynomial basis p(x); and the locations of the
local nodes used.
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This is because in all these n vectors pT(xI), I¼ 1, 2, . . . , n in Equations 2.54, there can be
less than m independent vectors. To ensure an invertible A, we have to use a much large
number of local nodes, compared to the number of the polynomial bases so that n � m,
hoping there are at least m independent vectors in all these n vectors pT(xI), I¼ 1, 2, . . . , n.
This is in fact used in the practice of creating MLS shape functions. It works well for usual
situations, but it is not a foolproof: For given n andm, one can design extreme cases of node
distribution that can make A singular. One often needs to adjust the dimension of the
support domain to make sure that n is large enough.

On the other hand, however, one does not want to just blindly use a very large n for
(1) efficiency concerns in creating MLS shape function; (2) concerns on the sparsity=
bandwidth of the system matrix to be created later using the MLS shape functions: large
n reduces the sparsity and increases the bandwidth which can be a crucial factor affecting
the computational efficiency. When a bandwidth solver is used, the CPU time is approxi-
mately proportional to n2. (3) Concerns on the accuracy of the approximation: overly
smoothing can occur when too many nodes are used.

To effectively solve this problem and remove entirely the worries of possible invertibleA,
the T2L-scheme of node selection based on triangular type mesh (see Section 2.5.4)
is recommended, and that is implemented in the MFree2D� for MLS shape function
construction with an additional purpose of preventing too biased node selections.

In practice, n is often controlled by concerns of the continuity of the shape functions:
Using too small n can lead to incompatibility problems when Galerkin weak form is used.
Therefore, one prefers to use more nodes to lessen this concern by sacrificing efficiency.
There is no proven theoretical guidance on the optimal n, and it is often relied on in
numerical tests to determine a ‘‘good’’ n.

Remark 2.2: Property of MLS Shape Functions
Properly constructed MLS shape functions are compatible, consistent with the order
of polynomials included in the formulation. They do not have the Kronecker delta function
property. They do not form an interpolant.

2.5 Point Interpolation Method

As the name suggests, PIM obtains its approximation by letting the interpolation function
pass through the function values at each scattered node within the support domain. It can
be categorized as a series representation method. PIM using polynomial basis functions
and local scattered nodes was originally attempted in [29,30]. PIM using radial basis
functions (RBFs) and local scattered nodes was suggested in [31,41]. The basic procedure
for constructing polynomial PIM shape functions is given as follows.

Consider a function u(x) defined in the problem domain V with a number of scattered
field nodes. For a point of interest xQ, the field function u(x) is approximated using the
following series representation:

uh(x) ¼
Xn
i¼1

Bi(x)ai (2:86)
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where
Bi(x) is the basis function defined in the Cartesian coordinate space xT¼fx, y, zg
n is the number of support nodes selected in a local support domain
ai is the coefficient for the basis function Bi(x)

When polynomial basis functions are used, we have

uh(x) ¼
Xn
i¼1

pi(x)ai ¼ pT(x)a (2:87)

where
pi(x) is the basis function of monomials
ai is the coefficient for the monomial pi(x)

vector a has the form

a ¼ fa1, a2, . . . , angT (2:88)

Note that the ai are constants in the vicinity of point of interest xQ, and are updated only
when the support nodes associated with xQ are changed. Therefore, in any finite discreti-
zation of the problem domain with nonduplicated nodes, uh(x) is consistent in finite local
domains where these support nodes do not change. The order of the consistency depends
on the polynomial basis functions used.

The monomial pi(x) in Equation 2.87 is, in general, chosen in a top-down approach from
the Pascal triangle shown in Figures 2.6 and 2.7, so that the basis is complete to a desired
order. For 1D problems, we use

pT(x) ¼ f1, x, x2, x3, x4, . . . , xng (2:89)

For 2D problems we shall have

pT(x) ¼ pT(x, y) ¼ f1, x, y, xy, x2, y2, . . . , xn, yng (2:90)

For 3D problems, we may use

pT(x) ¼ pT(x, y, z) ¼ f1, x, y, z, xy, yz, zx, xyz, x2, y2, z2, . . . , xn, yn, zng (2:91)

The coefficients ai in Equation 2.87 can be determined by enforcing Equation 2.87 to be
satisfied at the n support nodes. At node i we can have

ui ¼ pT(xi)a i ¼ 1, 2, . . . ,n (2:92)

where ui is the nodal value of u at x¼ xi. Equation 2.92 can be rewritten in the following
matrix form:

ds ¼ PQa (2:93)
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where ds is the vector that collects the values of the field function at all the n nodes:

ds ¼ u1 u2 � � � unf gT (2:94)

and PQ is called the moment matrix given by

PQ ¼

pT(x1)

pT(x2)

..

.

pT(xn)

2
66664

3
77775 (2:95)

or in detail (for 2D cases):

PQ ¼

1 x1 y1 x1y1 x21 y21 x21y1 x1y21 x31 � � �
1 x2 y2 x2y2 x22 y22 x22y2 x2y22 x32 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

1 xn yn xnyn x2n y2n x2nyn xny2n x3n � � �

2
666664

3
777775

(2:96)

The moment matrix PQ is asymmetric. Assuming that the inverse of the moment matrix PQ

exists, and using Equation 2.93, we can then have

a ¼ P�1
Q ds (2:97)

Substituting Equation 2.97 into Equation 2.87, we obtain

uh(x) ¼
Xn
i¼1

fi(x)ui (2:98)

or in matrix form

uh(x) ¼ w(x)ds (2:99)

where w(x) is a matrix of PIM shape functions fi(x) defined by

w(x) ¼ pT(x)P�1
Q ¼ f1(x) f2(x) � � � fn(x)½ 	 (2:100)

Note that it is well possible that the moment matrix PQ is singular, which leads to a
breakdown of the PIM method, which will be discussed in detail in Section 2.5.4. For
now, we assume that the moment matrix is invertible.

Note that derivatives of the PIM shape functions can be obtained very easily when
needed, as all the functions involved are polynomials. The lth derivative of the shape
functions are simply given by

w(l)
i (x) ¼ [p(l)(x)]TP�1

Q (2:101)

Note also that no weight function is used in constructing PIM shape functions.
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2.5.1 Consistency of the PIM Shape Functions

The consistency of the PIM shape function depends on the complete orders of the mono-
mial pi(x) used in Equation 2.87, and hence also depends on the number of support nodes.
If the complete order of the monomial is n, the shape functions will possess Cn consistency.
To demonstrate, we consider a field given by

f (x) ¼
Xk
j

pj(x)aj, k � n (2:102)

where pj(x) are monomials that are included in Equation 2.87. Such a field can always be
written using Equation 2.87 using all the basis terms including those in Equation 2.102:

f (x) ¼
Xn
j

pj(x)aj ¼ pT(x)a (2:103)

where

aT ¼ [a1,a2, . . .ak, 0, . . . , 0] (2:104)

Using n nodes in a local support domain of x, we can obtain the vector of nodal function
values ds as

ds ¼

f1

f2

..

.

fk

fkþ1

..

.

fn

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

p1(x1)

p1(x2)

..

.

p1(xk)

p1(xkþ1)

..

.

p1(xn)

p2(x1)

p2(x2)

..

.

p2(xk)

p2(xkþ1)

..

.

p2(xn)

� � �
� � �
� � �
� � �
� � �
� � �
� � �

pk(x1)

pk(x2)

..

.

pk(xk)

pk(xkþ1)

..

.

pk(xn)

pkþ1(x1)

pkþ1(x2)

..

.

pkþ1(xk)

pkþ1(xkþ1)

..

.

pkþ1(xn)

pn(x1)

pn(x2)

..

.

pn(xk)

pn(xkþ1)

..

.

pn(xn)

2
666666666666666664

3
777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PQ

a1

a2

..

.

ak

0

..

.

0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

|fflfflfflffl{zfflfflfflffl}
a

¼ PQa

(2:105)

Substituting Equation 2.105 into Equation 2.99, we have the approximation:

uh(x) ¼ pT(x)P�1
Q ds ¼ pT(x)P�1

Q PQa ¼ pT(x)a ¼
Xk
j

pj(x)aj (2:106)

which is exactly Equation 2.102. This shows that PIM shape functions is capable of
reproducing exactly any field given by Equation 2.102, as long as the given function is
included in the basis functions used to construct these PIM shape functions. This feature of
PIM shape function is, in fact, very easy to understand by intuition: Any function given in
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the form of f (x) ¼Pk
j pj(x)aj can be produced exactly by letting aj¼aj ( j¼ 1, 2, . . . , k) and

aj¼ 0 ( j¼ kþ 1, . . . , n). This can always be done as long as the moment matrix PQ is
invertible so as to ensure the uniqueness of the solution for a.

The proof of the consistency of PIM is valid for proving another important feature of
PIM: that any function that appears in the basis can be reproduced exactly. This property
can be useful for creating fields of special features. For PIM to exhibit linear consistency, all
one need to do is to include the constant and linear monomials into the basis. This feature
of PIM can be used to compute accurate results for problems by including terms in the
basis of PIM that are good approximations of the solution of the problem.

2.5.2 Properties of the PIM Shape Functions

As long as the moment matrix is invertible, the PIM shape functions fi(x) can be uniquely
constructed and possess the following characteristics:

1. The shape functions are linearly independent. This is because the polynomial basis
functions are linearly independent and P�1

Q is assumed to exist. The existence of P�1
Q

implies that the shape functions are equivalent to the basis functions (monomials)
in function space, as shown in Equation 2.100, and hence are linearly independent.

2. The shape functions possess the Kronecker delta function property, that is,

fi(x ¼ xj) ¼
1 i ¼ j, j ¼ 1, 2, . . . , n

0 i 6¼ j, i, j ¼ 1, 2, . . . , n

�
(2:107)

This can be proved easily as follows. Because the PIM shape functions fi(x) are
linearly independent, any vector of length n should be uniquely produced by
linear combination of these n shape functions. Letting

ds ¼ f0, 0, . . . ,ui, . . . , 0gT (2:108)

and substituting the above equation into Equation 2.98, we have at x¼ xj

uh(xj) ¼
Xn
1

fi(xj)ui ¼ fi(xj)ui (2:109)

When i¼ j, we obtain

ui ¼ fi(xi)ui (2:110)

which leads to

fi(xi) ¼ 1 (2:111)

This proves the first row of Equation 2.107. When i 6¼ j, we have

uj ¼ 0 ¼ fi(xj)ui (2:112)
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which requires

fi(xj) ¼ 0 (2:113)

This proves that PIM shape functions possess the Kronecker delta function prop-
erty (Equation 2.107).

3. The shape functions are the partitions of unity

Xn
i¼1

fi(x) ¼ 1 (2:114)

if the constant is included in the basis. This can be proven easily from the
reproduction feature of PIM. Letting u(x)¼ c, where c is a constant, we should have

ds ¼ cf1, 1, . . . , 1gT (2:115)

Substituting the above equation into Equation 2.98, we obtain

u(x) ¼ c ¼
Xn
1

fi(x)ui ¼ c
Xn
1

fi(x) (2:116)

which gives Equation 2.114. This shows that the partition of unity of PIM shape
functions in the support domain allows a constant field or rigid body movement to
be reproduced. Note that Equation 2.114 does not require 0 � fi(x) � 1.

4. The shape functions possess linear reproducing property

Xn
i¼1

fi(x)xi ¼ x (2:117)

if the first-order monomial is included in the basis. This can be proven easily from
the reproduction feature of PIM in exactly the same manner used for proving
property 3. Letting u(x)¼ x, we should have

ds ¼ fx1, x2, . . . , xngT (2:118)

Substituting the above equation into Equation 2.98, we obtain

u(xj) ¼ x ¼
Xn
1

fi(xj)xi (2:119)

which is Equation 2.117.

5. The shape functions are of compact support as long as they are constructed using
the nodes in a compact support domain.

6. There is no need for weight functions in constructing PIM shape functions, or the
weight function used is a unit (Heaviside type).
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7. PIM shape function is not compatible. This is because the bell-shape weight
function is not used in constructing the PIM shape function, and the number of
nodes is the same as the terms of monomials. The PIM shape function for a node
changes suddenly when xQ moves to a point where the support domain updates
its nodes, resulting in discontinuity at that point. Functions created using these
PIM shape functions can be discontinuous, and hence lives in a G

1
h space (see

Chapter 3).

8. PIM shape functions can be used to construct an interpolant for functions in G
1
h

spaces. However, it may not be used to construct function in an H
1 space, because

I hw for a w in an H
1 space may not still be in any of the H

1 subspace due to the
incompatibility (see Section 2.1.7 for interpolant and Chapter 3 for space defin-
itions). For linear interpolations using T3-scheme, PIM shape functions can always
be created as an interpolant in an H

1 space. For arbitrary polygonal mesh, we can
use simple point interpolation techniques given in Refs. [55,56].

Property 2 is important for handling essential boundary conditions. Properties 3 and 4 are
essential for a PIM method to pass the standard patch test, which is a conventional test
used for decades in FEM for validation of elements. Property 5 leads to sparse=banded
discretized system matrices. Property 6 eliminates the question of how to choose a weight
function in constructing shape functions. Property 7 implies that a SC-Galerkin weak form
(see Chapter 5) should be used for deriving discrete system equations.

The PIM shape function is ideal for meshfree methods in many ways, as it possesses the
above excellent properties. Polynomial PIM formulation is the simplest and performs the
best. Figure 2.10a shows a PIM shape function in 1D space for a node at x¼ 0 obtained
using five nodes evenly distributed in the support domain of [�1, 1]. It is clearly seen
that the PIM shape function possesses the Kronecker delta function property. That is,
f(0.0)¼ 1.0, f(�1.0)¼f(�0.5)¼f(0.5)¼f(1.0)¼ 0.0. Figure 2.10b plots the first derivative
of the shape function.
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FIGURE 2.10
Polynomial PIM shape function in 1D space for the node at x¼ 0 obtained using five nodes evenly distributed in
the support domain of [�1, 1]. (a) Shape function; (b) derivative of the shape function. Note that the PIM shape
function possesses the Kronecker delta function property.
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2.5.3 Differences between the PIM Interpolation and the MLS Approximation

PIM interpolation and MLS approximation are compared in Table 2.1. As the table shows,
the main difference between PIM and MLS approximation is that the number of polyno-
mial terms used in PIM is the same as the number of the nodes used in the support domain.
The coefficients in PIM are constants, and those in MLS are functions of the coordinates.
Most importantly, the PIM shape functions possess the Kronecker delta function property.
The Kronecker delta function property allows essential boundary conditions to be easily
treated in the same way as in the standard FEM. However, PIM interpolation is not, in
general, compatible, while MLS approximation is compatible when sufficient nodes are
used. Therefore, PIM shape functions should work with an SC-Galerkin weak form, while
the MLS shape functions work with the Galerkin weak form more efficiently. When m¼ n
in MLS approximation, the MLS shape functions become the PIM shape functions: imply-
ing trying to reduce the number of local support nodes in a standard Galerkin formulation
using MLS shape functions can lead to an incompatible model.

2.5.4 Methods to Avoid a Singular Moment Matrix

As shown above, PIM shape functions possess many excellent properties that are very
useful for meshfree methods based on SC-Galerkin weak forms, local weak forms, and
strong forms (with a proper regularization technique). However, the process of construct-
ing PIM shape functions can break down as a result of the singularity of the moment
matrix PQ. Figure 2.11 shows a typical example of six nodes in the support domain of a
point of interest xQ. These six nodes sit in two lines parallel to the x axis. When these six
nodes are used, the polynomial basis can be of complete second order with respect to both
the x and y coordinates:

pT(x) ¼ f1, x, y, xy, x2, y2g (2:120)

However, these six nodes, as shown in Figure 2.11a, cannot possibly represent a second-
order polynomial in the y direction, as there are only two distinct y coordinate values in all
these six nodes. Therefore, the inverse of the moment matrix PQ using these six nodes
clearly does not exist: it has only a rank of 5.

After selection of nodes and basis functions, the matrix PQ is completely determined by
the position of the scattered nodes in a given coordinate system; i.e., the existence of the
inverse matrix P�1

Q depends on the node distribution as well as on the coordinate system.
Using polynomial basis functions is known to be difficult to guarantee the existence of P�1

Q

TABLE 2.1

Comparisons between PIM Interpolation and MLS Approximation

Basis Function

Number of Basis
Functions (m) and

Number of Nodes (n)
Interpolation
Coefficients

Delta Function
Property Compatibility

Point interpolation Polynomial
or radial
functions

m¼n Constant
locally

Yes No

MLS approximation Polynomial m 6¼ n Function No Yes
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for a set of arbitrarily scattered nodes. However, the excellent properties of PIM shape
functions warrant the effort needed to overcome the singular moment matrix problem.
A number of methods for handling the singular moment matrix have been attempted for
locally scattered nodes. These methods can be used to obtain an invertible moment matrix
and are briefed as follows:

1. The simplest method proposed to obtain a nonsingular moment matrix is to move
or shift the nodes in the support domain by a small distance randomly in terms of
both direction and the amount of shift, as shown in Figure 2.11b. The method is
simple and effective for many problems. However, there is still a chance that the
moment matrix will be singular, which may sometimes lead to a badly conditioned
PQ. In addition, there are cases in which we are not allowed to move the nodes.

2. Performing rotational coordinate transformation to produce an invertible moment
matrix PQ. This method makes the use of the fact that the rank of PQ depends also
on the coordinate system. It is not a full-proof, but has some practical applications.
It is quite effective, when a small number of nodes are used. The details are given
in Section 2.9.

3. The use of RBFs in constructing PIM shape functions is a method that always
works and that guarantees the existence of the inverse of the moment matrix, if the
guidelines for choosing shape parameters of the RBFs are followed. The drawback
is that it is more expensive as more nodes are required to obtain accurate results
comparable with those of polynomial PIM. The details are given in Section 2.6.

4. The use of RBFs with polynomial terms is an approach that restores the polyno-
mial consistency and improves the accuracy of the RPIM, especially for patch tests.
It can also reduce the sensitivity of the results on the shape parameters of RBFs.
The computational cost is still more expensive as compared with polynomial PIM.
The details are given in Section 2.7.

5. The matrix triangularization method is very efficient and works well for many
situations, when removal of nodes in the local support domain is permitted. It
opens a new window of opportunity to effectively solve the singularity problem of
the moment matrix. Details can be found in [47].

×
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y

(a) 

Support domain of xQ

xQ ×

x

y

(b) 

xQ

FIGURE 2.11
Node distribution in a domain of support of point xQ. (a) Six nodes in two parallel lines that lead to a singular
moment matrix. (b) Moving nodes by a small distance randomly results in a nonsingular moment matrix.
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6. Triangular-mesh-based node selection scheme (T-scheme). The T-scheme uses a
triangular type background mesh to select nodes (see Chapter 1). For 2D domains,
we use triangular mesh, and for 3D domains, we use tetrahedron mesh. The
T-scheme is practically effective and reliable and is expected to become the major
scheme for node selection for meshfree methods for practical problems of compli-
cated geometry with very irregularly distributed nodes. This is because (1) a
triangular type background mesh can always be generated easily and automatic-
ally for any given set of scattered nodes in 2D and 3D domains; (2) based on a
triangular background mesh, some simple node selection schemes can be easily
devised to ensure a nonsingular moment matrix; (3) nodes so selected ensure a
reasonably good pattern of nodes participation from all directions for even very
irregularly distributional nodes (for which the usual selection schemes based on
the support domain or influence domains can fail), and hence is most reliable;
(4) the number of nodes is very small (much smaller than that using the support
domain), and hence very efficient, which is vital for an eventual survival of a
numerical method. The T-scheme was used for node selection in the MFree2D code
that was launched in 1999 for both EFG and PIMs processors. For all the PIMs
discussed in this book, our default choice of node selection is T-schemes, unless
specified otherwise.

All the above methods have ample room for improvement, and other better alternatives are
also possible.

Remark 2.3: Property of PIM Shape Functions
Successfully constructed PIM shape functions are, in general, incompatible, consistent with
the order of polynomials included in the formulation. They have the Kronecker delta
function property.

2.6 Radial PIM

2.6.1 Rationale for Radial Basis Functions

The advantage of using a polynomial basis is its simplicity and high accuracy, as will be
evident in later chapters. The major drawback of polynomial PIM is that singular moment
matrix PQ may occur and the process breaks down. To create a nonsingular moment
matrix, RBFs are introduced in PIM formulation for constructing shape functions using
local nodes [31,41]. PIM using RBF is termed RPIM.

2.6.2 PIM Formation Using Radial Basis Functions

In RPIM, we choose radial functions as the basis in Equation 2.86, we thus have

uh(x) ¼
Xn
i¼1

Ri(x)ai ¼ RT(x)a (2:121)
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where vector a is a vector of unknown constants arranged in the form of Equation 2.88, and
Ri is a RBF with r being the distance between point x and xi defined as

r ¼ (x� xi)2 þ (y� yi)2
� �1=2

, for 2D

(x� xi)
2 þ (y� yi)

2 þ (z� zi)
2� �1=2

, for 3D

8<
: (2:122)

The vector R has the form

RT(x) ¼ [R1(x),R2(x), . . . , Rn(x)] (2:123)

There are a number of forms of RBFs used in the mathematics community. Table 2.2 lists
the four most often used forms of radial functions with some shape parameters that can be
tuned for better performance. A classical form is the multiquadric (MQ) basis proposed by
Hardy [32]. This form has been widely used in surface fitting and in constructing approxi-
mate solutions for PDEs [33–39]. The MQ basis function shown in Table 2.2 is a general
form of the original MQ RBF with arbitrary real shape parameters that was suggested by
[31,40,41]. When q¼
0.5, it reduces to the original MQ RBF proposed by Hardy. When
q¼ 0.5, it reduces to the reciprocal MQ RBF. The general form of the MQ radial function has
two shape parameters, C and q, which control the shape of the functions. These parameters
can be tuned for different problems for better performance. The second form of radial
function given in Table 2.2 is called the Gaussian radial function, or EXP, as it is an
exponential function of the distance [35]. The EXP RBF has only one shape parameter c,
which controls the decay rate of the function. The third radial function in Table 2.2 is called
the thin plate spline (TPS) function. The TPS is, in fact, a special case of the MQ radial
function. The fourth form of RBF is the logarithmic RBF. This book will use and test the first
three forms of radial functions, but will focus more on the first two forms of radial
functions (MQ and EXP) and will give preference to the general form of the MQ RBF for
reasons to be given in later chapters.

The vectors of coefficients a in Equation 2.121 are determined by enforcing interpolation
passing through all the n local support nodes selected by means of support domain or a
T-scheme. The interpolation at the kth point has the form:

uk ¼ u(xk, yk) ¼
Xn
i¼1

aiRi(xk, yk) k ¼ 1, 2, . . . ,n (2:124)

These n equations given in Equation 2.124 can be written in matrix form:

ds ¼ RQa (2:125)

TABLE 2.2

Typical RBFs

Item Name Expression Shape Parameters

1 MQ Ri(x, y) ¼ (r2i þ C2)q C, q
2 Gaussian (EXP) Ri(x, y) ¼ exp (�cr2i ) c

3 TPS Ri(x, y) ¼ rhi h

4 Logarithmic RBF Ri(ri) ¼ rhi log ri h
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where ds is the vector that collects all the field nodal variables at the n local nodes and RQ is
the moment matrix of RBF:

RQ ¼

R1(r1) R2(r1) � � � Rn(r1)

R1(r2) R2(r2) � � � Rn(r2)

..

. ..
. . .

. ..
.

R1(rn) R2(rn) � � � Rn(rn)

2
66664

3
77775 (2:126)

where

rk ¼
(xk � xi)

2 þ (yk � yi)
2� �1=2

, for 2D

(xk � xi)2 þ (yk � yi)2 þ (zk � zi)2
� �1=2

, for 3D

8<
: (2:127)

Because the distance is directionless, we should have

Ri(rj) ¼ Rj(ri) (2:128)

Therefore, the moment matrix RQ is symmetric. This symmetry property of RQ hints that
RQ will likely be SPD, and hence invertible: It is indeed proven true [35,39,42].* A unique
solution for vectors of coefficients a can then be obtained if the inverse of RQ exists:

a ¼ R�1
Q ds (2:129)

Substituting the foregoing equation into Equation 2.121 leads to

uh(x) ¼ RT(x)R�1
Q ds ¼ w(x)ds (2:130)

where the matrix of shape functions has the form

w(x) ¼ [R1(x),R2(x), . . . ,Rk(x), . . . ,Rn(x)]R�1
Q

¼ [f1(x),f2(x), . . . ,fk(x), . . . ,fn(x)] (2:131)

in which fk(x) is the shape function for the kth node given by

fk(x) ¼
Xn
i¼1

Ri(x)Saik (2:132)

where Saik is the (i, k) element of matrix R�1
Q , which is a constant matrix for given locations of

the n nodes in the support domain.

* Following this argument, any distance function can be hopefully used in lieu of the RBFs for scattered point
interpolation.
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The derivatives of shape functions, when needed, can be easily obtained as

qfk

qx
¼
Xn
i¼1

qRi

qx
Saik

qfk

qy
¼
Xn
i¼1

qRi

qy
Saik

(2:133)

For the MQ basis function shown in Table 2.2, the partial derivatives for the MQ radial
functions can be easily obtained using the following simple formulae:

qRi

qx
¼ 2q r2i þ C2� �q�1

(x� xi)

qRi

qy
¼ 2q r2i þ C2� �q�1

(y� yi)
(2:134)

For the EXP radial function, the partial derivatives can also be obtained easily as follows:

qRi

qx
¼ �2cRi(x, y)(x� xi)

qRi

qy
¼ �2cRi(x, y)(y� yi)

(2:135)

2.6.3 Nonsingular Moment Matrix

The only difference between polynomial PIM and RPIM is in the basis functions. Math-
ematicians have proved that the radial moment matrix RQ is always invertible for arbitrary
scattered nodes [35,39,42], as long as we avoid using some specific shape parameters,
which are known. Therefore, RQ can always be symmetric and invertible. The existence of
R�1

Q is the major advantage of using the radial basis over the polynomial basis.
Note that although RQ is invertible, but often found bad-conditioned, when too many

nodes are used. Fortunately, in creating RPIM shape functions for meshfree method using
compact local support domains, only a few local nodes are used that is much smaller
compared with those used by [33,34] where all the nodes in the problem domain are used.
Therefore, the conditioning in RQ in creating RPIM shape functions is much better for the
same shape parameters used.

2.6.4 Consistency of RPIM Shape Functions

The RPIM shape function is not consistent with the definition of consistency in this book
that is the capability of reproducing polynomials. Mathematicians have found that approx-
imations of any continuous function using RBFs converge. Thus, there is no concern about
the convergence issue.

It was found that the use of pure radial functions in the basis of PIM will not pass the
standard patch test [41], which has been widely used in the FEM community for testing
the performance of finite elements. This is because the radial function cannot produce the
linear polynomials exactly, although it can approach polynomials in desired accuracy
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when the nodes are refined. The consistency of the radial shape functions can be restored
by adding polynomial basis functions. For RPIM to pass the patch test, Wang and Liu [41]
suggested using radial functions with polynomial terms of up to linear orders so as to
construct shape functions with C1 consistency. Adding polynomial terms to RBFs was also
proposed by Powell [35] for function approximation.

2.6.5 Radial Functions with Dimensionless Shape Parameters

The conventional forms of radial functions listed in Table 2.2 have been used by many
researchers including the research group of the author. We found that it is very difficult to
standardize the shape parameters of the RBFs. We therefore proposed a set of RBFs that
has dimensionless parameters by performing some minor modification. Some of the new
forms of RBFs are listed in Table 2.3.

The MQ function with dimensionless shape parameters has the form:

Ri(x, y) ¼ r2i þ (aCdc)2
� �q

aC � 0 (2:136)

where
aC is the dimensionless shape parameter
dc is the characteristic length that is usually the average nodal spacing for all the n nodes
in the support domain

The first- and second-order partial derivatives are obtained as follows:

qRi

qx
¼ 2q r2i þ (aCdc)2

� �q�1
(x� xi) (2:137)

qRi

qy
¼ 2q r2i þ (aCdc)2

� �q�1
(y� yi) (2:138)

Ri,xx ¼ 2q r2i þ (aCdc)2
� �q�1þ4q(q� 1) r2i þ (aCdc)2

� �q�2
(x� xi)2 (2:139)

Ri,xy ¼ 4q(q� 1) r2i þ (aCdc)2
� �q�2

(x� xi)(y� yi) (2:140)

Ri,yy ¼ 2q r2i þ (aCdc)2
� �q�1þ4q(q� 1) r2i þ (aCdc)2

� �q�2
(y� yi)2 (2:141)

TABLE 2.3

RBFs with Dimensionless Shape Parameters

Item Name Expressiona
Shape

Parameters
Parameter
Relationsb

1 MQs Ri(x, y) ¼ r2i þ (aCdc)2
� �q

aC � 0, q aC¼C=dc
q¼ q

2 Gaussian (EXP) Ri(x, y) ¼ exp �ac( ridc )
2

h i
ac ac¼ c dc

a dc is a characteristic length that is related to the nodal spacing in the local domain of the
point of interest xQ. dc is usually the average nodal spacing for all the nodes in the local
domain (see Chapter 1 for a method to calculate dc).

b This column gives the relationship between the original parameters and the
dimensionless parameters.
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The EXP radial function with dimensionless shape parameters can be written as

Ri(x, y) ¼ exp �ac
ri
dc

	 
2
 !

(2:142)

where aC is the dimensionless shape parameter. The first- and second-order partial deriva-
tives of the EXP RBFs are obtained as follows:

qRi

qx
¼ � 2ac

d2c
Ri(x, y)(x� xi) (2:143)

qRi

qy
¼ � 2ac

d2c
Ri(x, y)(y� yi) (2:144)

Ri,xx ¼ �2
ac

d2c

	 

þ 4

ac

d2c

	 
2

(x� xi)
2

" #
Ri(x, y) (2:145)

Ri,xy ¼ 4
ac

d2c

	 
2

Ri(x, y)(x� xi)(y� yi) (2:146)

Ri,yy ¼ �2
ac

d2c

	 

þ 4

ac

d2c

	 
2

(y� yi)
2

" #
Ri(x, y) (2:147)

Both sets of RBRs listed in Tables 2.2 and 2.3 are used in the example problems in this
chapter and later chapters. It is found that the RBFs with dimensionless shape parameters
are much easier to use, because good shape parameters found are generally applicable.

2.6.6 On the Range of the Shape Parameters

Note that the shape parameters in RBFs used in a collocation method using all the nodes in
the problem domain for solving PDEs (e.g., [33,34]) are usually fixed at discrete values. For
example, in the MQ RBF, q¼
0.5. This maybe because the RBFs with fixed values come
from the fundamental solutions of typical PDEs, and hence when (global) collocation
methods are used it can produce accurate solution and the convergence property can be
proven.

In our local RPIM shape functions, however, the RBFs are merely used as a basis
function just like monomials used in the PIM shape functions. These shape functions will
be used only as a means of interpolation for field function approximation in the weak and
weakened-weak formulations. Whether or not the RBF satisfies a particular PDE is imma-
terial. This is because (1) we use only local nodes and hence the RBFs with fixed shape
parameters may not be able to satisfy the PDE anyway and there is no benefit of accuracy
improvement and (2) the stability and convergence of the weak form meshfree methods
using local RBFs are controlled also by the weak or weakened-weak forms used. Therefore,
we decided to allow the shape parameters to change freely as a real number [41]. The shape
parameters can then be tuned to control the incompatibility for better accuracy and
performance when a Galerkin weak form is used. Careful investigations on the effects of
these shape parameters on the solution accuracy have been conducted and proper guide-
lines for use of shape parameters for different types of problems have been provided in [41]
for Galerkin weak formulations. The reliance of accuracy on the shape parameters can be

74 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



significantly reduced by adding polynomial basis functions, which are discussed in Section
2.7. Such a reliance is also significantly reduced when a weakened-weak form such as the
smoothed Galerkin weak form is applied [43,44]. The major reason for a weak formulation
to use RBFs is the invertible moment matrix so that the shape functions can always be
constructed.

Remark 2.4: Property of RPIM Shape Functions
Successfully constructed RPIM shape functions are, in general, incompatible, not consist-
ent, and capable of producing RBFs used in the formulation. They have the Kronecker delta
function property.

2.7 Radial PIM with Polynomial Reproduction

2.7.1 Rationale for Polynomials

RPIM with pure radial functions is not (polynomial) consistent and has a problem passing
the standard patch tests, meaning that it fails to reconstruct the linear (polynomial) field
exactly. The purpose of adding polynomials into the basis functions is to restore the
consistency of RPIM shape functions. Adding polynomial terms up to the linear order
can ensure the reproduction of the linear field (C1 consistency) and hence help to pass the
standard patch tests. This was our original motivation for adding polynomials to the radial
basis for solving solid mechanics problems using local RBFs. Our study later found that, in
general, adding polynomials can also improve the accuracy of the results. Another add-
itional bonus of this formulation is that we have much more freedom in choosing shape
parameters, because the sensitivity of the shape parameters in RBFs on the solution
accuracy is reduced.

2.7.2 Formulation of Polynomial Augmented RPIM

By using the n local nodes, RPIM with polynomial basis functions approximates the field
variable in the form:

uh(x) ¼
Xn
i¼1

Ri(x)ai þ
Xm
j¼1

pi(x)bj ¼ RT(x)aþ pT(x)b (2:148)

where
ai is the coefficient for the radial basis Ri(x) that is listed in Table 2.2
bj is the coefficient for the polynomial basis pj(x) that has the same form as the basis used
in polynomial PIM

The number of RBFs n is determined by the number of the nodes in the support domain,
and the number of polynomial basis m can be chosen based on the reproduction
requirement. We often use a minimum number of terms of polynomial basis and more
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terms of radial basis (m< n) for better stability with respect to the irregularity of node
distribution. To pass the patch test for 2D cases, one needs only three terms of polyno-
mial basis.

The vector a in Equation 2.148 is defined as

aT ¼ a1 a2 � � � anf g (2:149)

and the vector b is defined as

bT ¼ b1 b2 � � � bmf g (2:150)

The radial basis vector R in Equation 2.148 is defined as

RT(x) ¼ R1(x),R2(x), . . . ,Rn(x)½ 	 (2:151)

and the polynomial basis vector is written as

pT(x) ¼ p1(x), p2(x), . . . , pm(x)½ 	 (2:152)

The coefficients ai and bj in Equation 2.148 are determined by enforcing that the interpol-
ation passes through all n local nodes. The interpolation at the kth point has the form:

uk ¼ u(xk, yk) ¼
Xn
i¼1

aiRi(xk, yk)þ
Xm
j¼1

bjpj(xk, yk), k ¼ 1, 2, . . . ,n (2:153)

or in matrix form:

ds ¼ RQaþ Pmb (2:154)

where ds is the vector that collects all the field nodal variables at the n local nodes. The
polynomial term has to satisfy an extra requirement that guarantees unique approximation
[45] of a function, and the following constraints are usually imposed:

Xn
i¼1

pj(xi, yi)ai ¼ 0 j ¼ 1, 2, . . . ,m (2:155)

or in matrix form:

PT
ma ¼ 0 (2:156)

which is a set of homogeneous equations. Combination of Equations 2.154 and 2.156
gives

RQ Pm

PT
m 0

" #
a

b

( )
¼ ds

0

( )
(2:157)
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or

G
a
b

� �
¼ ds

0

� �
(2:158)

The moment matrix corresponding to the radial function basis RQ has been given by
Equation 2.126, and the moment matrix Pm is an n�m matrix given by

Pm ¼

P1 x1, y1ð Þ P2(x1, y1) � � � Pm(x1, y1)

P1(x2, y2) P2(x2, y2) � � � Pm(x2, y2)

..

. ..
. ..

. ..
.

P1 xn, ynð Þ P2(xn, yn) � � � Pm(xn, yn)

2
66664

3
77775
n�m

(2:159)

Because matrix RQ is symmetric, matrix G will also be symmetric. A unique solution for
vectors of coefficients a and b is obtained if the inverse of G exists:

a
b

� �
¼ G�1 ds

0

� �
(2:160)

We choose not to directly prove the existence of the inverse of G. Instead, we will try to
change the equations in a more efficient form, and then take up the existence issue.

Making use of the fact that Equation 2.156 is homogeneous, Equation 2.157 can be solved
in the following more efficient procedure. Starting from Equations 2.154, and using the
nonsingular property of matrix RQ, we have

a ¼ R�1
Q Us � R�1

Q Pmb (2:161)

Substitution of the above expression into Equation 2.156 gives

b ¼ Sbds (2:162)

where

Sb ¼ PT
mR

�1
Q Pm

h i�1
PT
mR

�1
Q (2:163)

where PT
mR

�1
Q Pm is termed a transformed moment matrix. Note also that PT

mR
�1
Q needs to be

computed only once. Substituting Equation 2.162 back into Equation 2.161, we obtain

a ¼ Sads (2:164)

where

Sa ¼ R�1
Q [1� PmSb] ¼ R�1

Q � R�1
Q PmSb (2:165)

Note R�1
Q Pm can be obtained simply by transposing PT

mR
�1
Q , which has been already

computed.
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Finally, the interpolation (Equation 2.148) can be expressed as

u(x) ¼ RT(x)Sa þ pT(x)Sb
� �

ds ¼ w(x)ds (2:166)

where the matrix of shape functions F(x) with n shape functions:

w(x) ¼ RT(x)Sa þ pT(x)Sb
� � ¼ f1(x), f2(x), . . . fk(x), . . . fn(x)½ 	 (2:167)

in which fk(x) is the shape function for the ith node given by

fk(x) ¼
Xn
i¼1

Ri(x)Saik þ
Xm
j¼1

pj(x)Sbjk (2:168)

where
Saik is the (i, k) element of matrix Sa

Sbjk is the (j, k) element of matrix Sb, which are constant matrices for given locations of the
n nodes in the support domain

The derivatives of shape functions can be easily obtained as

qfk

qx
¼
Xn
i¼1

qRi

qx
Saikþ

Xm
j¼1

qpj
qx

Sbjk

qfk

qy
¼
Xn
i¼1

qRi

qy
Saikþ

Xm
j¼1

qpj
qy

Sbjk

(2:169)

For the MQ basis function shown in Table 2.2, the partial derivatives for the MQ radial
functions can be easily obtained using the following simple formulae:

qRi

qx
¼ 2q(r2i þ C2)q�1(x� xi)

qRi

qy
¼ 2q(r2i þ C2)q�1(y� yi)

(2:170)

For the EXP radial function, the partial derivatives can also be obtained easily as follows:

qRi

qx
¼ �2cRi(x, y)(x� xi)

qRi

qy
¼ �2cRi(x, y)(y� yi)

(2:171)

2.7.3 Singularity Issue of the Transformed Moment Matrix

We now examine the positivity of the transformed moment matrix PT
mR

�1
Q Pm in Equation

2.163. Because RQ is SPD (symmetric, invertible, with a full rank), the transformed
moment matrix PT

mR
�1
Q Pm in Equation 2.163 is at least symmetric. If the columns in Pm
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are independent (with a rank of m), we can easily prove that PT
mR

�1
Q Pm is invertible by

simply invoking the full rank property of RQ. To have all the columns of Pm to be
independent could be a problem in theory, but it is very easy to achieve in practice.
We simply try to use a minimum number of terms of polynomial bases, so that n � m.
This will ensure that Pm has a rank of m for practical situations. For example, when m¼ 3,
all we need is at least there are three support nodes in the support domain that are not
in-line.

Of course, if we deliberately arrange all the support nodes in one straight line (for 2D
and 3D interpolation), the method will break down. In such an event, all the methods
discussed in this chapter will break down. This kind of situation can happen in theory,
but it will not happen when the nodes are generated by triangulation defined in Chapter
1 and a T-scheme is used for support node selection. Our purpose of defining the
triangulation and T-schemes is to exclude these kinds of extreme situations. When the
T6- or T2L-schemes (see Section 1.6.6) are used with triangular background cells,
PT
mR

�1
Q Pm will always be invertible at least for RPIM augmented with linear polynomial

basis, and hence is recommended. The use of T6-scheme will be more efficient, and T2L-
scheme is relatively more robust to extremely irregular distribution nodes.

In a usual situation, it is very rare to have a case where the rank of Pm is less than m, even
when the T-scheme is not used. It is not a guarantee, but it is a workable practical strategy
for usual situations. Therefore, PT

mR
�1
Q Pm can be assumed invertible, in usual and in

practical cases, when general concept of support domain is used. Note that in the MLS
approximation, the singularity issue with the weight moment matrix given in Equation
2.54 is also avoided in using exactly the same strategy of having n � m.

2.7.4 Examples: RPIM Shape Functions and Shape Parameter Effects

We first give some examples of shape functions constructed using the RBFs. For conveni-
ence, notations of MQ-PIM, EXP-PIM, and TPS-PIM refer to RPIM using MQ, EXP, and
TPS radial bases, respectively.

Example 2.1: Sample RPIM Shape Functions

Examples of the RPIM shape functions are computed using the formulation given above. The RBFs
listed in Table 2.2 are used in the computation. Figure 2.12 shows a typical shape function of MQ-
PIM in 1D space. Shape parameters used in MQ-PIM are C¼ 1.0, q¼ 0.5. Five nodes evenly
distributed in the support domain of [�1, 1] are used for computing the shape function for the
node at x¼ 0. Figure 2.12a shows the shape function, and Figure 2.12b shows the derivative of the
shape function.
Figure 2.13 shows a typical shape function of EXP-PIM with a shape parameter of c¼ 0.3. All

the other conditions are the same as those used in computing Figure 2.12. Note that these shape
functions possess the Kronecker delta function property given in Equation 2.107. As long as the
polynomial basis f1, x, yg (m¼ 3) is included in the basis, the shape functions so developed also
satisfy Equation 2.117.
In using radial functions, one needs to investigate the effects of the shape parameters and to fine-

tune these parameters for better performance. This is more important when a weak form is used,
because the effect of the incompatibility is mitigated by proper choice of the shape parameters.
When weakened-weak form is used, tuning shape parameters are much less important, and a very
wide range of parameters can be used. In the following example we examine only how the shape
parameters affect the shape functions.
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Example 2.2: Effects of Shape Parameters of RBFs on Shape Function

This example examines how the shape parameters affect the shape functions. To isolate the effects
of the shape parameters of the radial functions, polynomial terms are not included in the basis
function; that is, pure RPIM shape functions are used. Figure 2.14 shows the shape function of
EXP-PIM at the seventh node computed using 16 nodes for a 1D interpolation. Different shape
parameters c are used in the computation. Figure 2.14 shows that c affects the decay rate of the
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FIGURE 2.12
MQ-PIM (C¼ 1.0, q¼ 0.5) shape function in 1D space for the node at x¼ 0 obtained using five nodes evenly
distributed in the support domain of [�1, 1]. (a) Shape function; and (b) derivative of the shape function. Note
that the RPIM shape function possesses the Kronecker delta function property.
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FIGURE 2.13
EXP-PIM (c¼ 0.3) shape function in 1D space for the node at x¼ 0 obtained using five nodes evenly distributed in
the support domain of [�1, 1]. (a) Shape function; and (b) derivative of the shape function. Note that the RPIM
shape function possesses the Kronecker delta function property.
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oscillations behind the first dominant peak. The larger the value of c becomes, the faster the decay.
Figure 2.15 shows the PIM shape function at the seventh node computed using 16 nodes for a 1D
interpolation using an MQ RBF. The shape parameter C is fixed at C¼ 1.42 and the shape
parameter q is investigated for two cases: 0.8 and 1.12. Figure 2.15 shows that q affects the
decay rate of the oscillations behind the first dominant peak. The smaller the value of q, the faster
the decay.

Remark 2.5: Property of RPIM Shape Functions Augmented with Polynomials
Successfully constructed RPIM shape functions are, in general, incompatible, consistent
with the order of polynomials used in the formulation. They have the Kronecker delta
function property, and form an interpolant in a G

1
h space (see Chapter 3).
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FIGURE 2.14
Effect of shape parameter c on PIM shape func-
tions with EXP radial function basis.
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FIGURE 2.15
Effect of shape parameter q on PIM shape func-
tions with MQ RBF (C¼ 1.42).
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2.8 Weighted Least Square Approximation

The weighted least square (WLS) approximation is a widely used technique for data fitting.
In the WLS, the number of basis,m, is usually predetermined according to the requirements
on the consistency for shape functions. Using Equation 2.86, we can approximate a field
function u(x) using the polynomial basis as follows:

uh(x) ¼
Xm
i¼1

pi(x)ai ¼ a1 þ a2xþ a3yþ � � � þ ampm(x)

¼ 1 x y � � � pm(x)f g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pT

a1

..

.

am

8><
>:

9>=
>;

|fflfflfflffl{zfflfflfflffl}
a

¼ pTa (2:172)

where ai (i¼ 1, 2, . . . ,m) are the coefficients to be determined, and p is the vector of basis
functions. To determine coefficients a in Equation 2.172, n (>m) nodes are selected in the
local support domain for the approximation. Using Equation 2.172 for all these n nodes, we
obtain

ds ¼ (Pm)(n�m)a(m�1) (2:173)

The moment matrix, Pm, is

Pm ¼

1 x1 y1 x1y1 . . . pm(x1)

1 x2 y2 x2y2 . . . pm(x2)

1 x3 y3 x3y3 . . . pm(x3)

..

. ..
. ..

. ..
. . .

. ..
.

1 xn yn xnyn . . . pm(xn)

2
66666664

3
77777775
(n�m)

(2:174)

Note that Pm is not a square matrix because n>m. Equation 2.173 is a set of overdeter-
mined system due to n>mmeaning that the number of equations is more than the number
of unknowns. We can solve Equation 2.173 for a using the standard WLS method by
minimizing the following weighted discrete L2 norm:

J ¼
Xn
i¼1

W
_

i uh(xi)� u(xi)
� �2

(2:175)

where
W
_

i (i ¼ 1, 2, . . . ,n) is the weight coefficient associated with the function value at the ith
node in the support domain

ui becomes the ‘‘nodal parameter’’ of u at x¼ xi
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The stationary condition gives

qJ
qa

¼ 0 (2:176)

which leads to the following relation between a and ds

PT
mW

_

Pma ¼ PT
mW

_

ds (2:177)

where W
_

is the diagonal matrix constructed from the weight constants, i.e.,

W
_

(n�n) ¼ W
_

1 W
_

2 � � � W
_

n

l k
(2:178)

Note that the weights used here are considered as constants (not functions of x) that
define the different influences of the nodes in the approximation. The further nodes
should have smaller influences while closer nodes have bigger influences, W

_

i can be
computed from any weight function with the bell shape that will be provided in Section
2.2.2. We now let

A ¼ PT
mW

_

Pm (2:179)

B ¼ PT
mW

_

(2:180)

Solving Equation 2.177 for a yields

a ¼ PT
mW

_

Pm

� ��1
PT
mW

_
� �

ds (2:181)

a ¼ A�1Bds (2:182)

Substituting Equation 2.182 back into Equation 2.172, we have

uh(x) ¼ pTa ¼ pTA�1Bds ¼ wds (2:183)

where the vector of shape functions w is

w ¼ pTA�1B ¼ f1 f2 � � � fnf g (2:184)

where fi (i¼ 1, 2, . . . , n) is the WLS shape function corresponding to the ith node in the
support domain.

Equation 2.183 is the approximation equation for the WLS. The weight functions used is
not ‘‘moving’’ as in the MLS, the shape functions constructed will not be continuous (not in
an H

1 space). When a (global) weak form is used, there will be incompatibility issues
similar to the PIM shape functions. It should, however, work for the weakened-weak
formulations. Because the weighted LSs method is used, the shape functions so constructed
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do not have the Kronecker delta function property and cautions are needed in imposing
essential boundary conditions. However, it is not a big issue in the meshfree methods
based on local weak forms, because the direct interpolation method can be used to enforce
the essential boundary conditions. When we use an identity matrix as the weight
matrix, the WLS shape function becomes the LS shape function. The formulation is exactly
the same by simply removing W

_

in the above equations. The WLS (or LS) shape functions
can be handily used with a SC-Galerkin weak form; it is also useful in the construction of
strain fields.

Remark 2.6: Property of WLS Shape Functions
Successfully constructed WLS shape functions are, in general, incompatible, consistent
with the order of polynomials used in the formulation. They do not have the Kronecker
delta function property, and do not form an interpolant.

2.9 Polynomial PIM with Rotational Coordinate Transformation

This section introduces a method of (rotational) coordinate transformation to produce an
invertible moment matrix PQ. The method is based on the following realizations: (1) the
linear dependence of the columns (or rows) in the moment matrix depends on the coord-
inates of the nodes used for a fixed set of monomials; (2) such a dependence can be altered
through a simple rotational coordinate transformation, and hence a nonsingular moment
matrix can be obtained when a proper rotation angle can be found; (3) for a given set of a
small number of nodes (except extreme cases), there are only a few rotation angles u that
make the moment matrix singular, and hence for a randomly chosen rotational angle u,
the moment matrix is unlikely to be singular. Therefore, it is generally (not always)
workable to produce a nonsingular moment matrix by performing a rotational transform-
ation. The method was originally attempted in [41].

2.9.1 Coordinate Transformation

We first introduce a general coordination transformation between the global coordinate
system (x, y) and the local coordinate system (j,h), as shown in Figure 2.16. This trans-
formation can be performed using

j ¼ (x� x0) cos uþ (y� y0) sin u

h ¼ �(x� x0) sin uþ (y� y0) cos u
(2:185)

where (x0, y0) is the origin of the local coordinate system (j, h), which is defined in a global
coordinate system (x, y), and u is the rotation angle for local coordination system (j, h) with
respect to the global coordinate system. The inverse transformation is expressed as

x ¼ x0 þ (j cos u� h sin u)

y ¼ y0 þ (j sin uþ h cos u)
(2:186)
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In the local coordinates with a proper rotation angle u, n polynomial basis terms pi(j)
(i¼ 0, 1, . . . , n � 1) are chosen, and polynomial interpolation is performed to produce a
nonsingular moment matrix P0 for point (0, 0), which corresponds to (x0, y0) in the global
coordinate system. It is then inverted to obtain P�1

0 , and the shape functions can now be
computed using (see Equation 2.100)

w(j) ¼ pT(j)P�1
0 ¼ [f1(j),f2(j), . . . ,fn(j)] (2:187)

Because the coordinate transformation is very simple, and in fact involves only rotation,
the derivatives of the shape functions (if needed) can be obtained efficiently using

qfi

qx


(x0, y0)

qfi

qy


(x0, y0)

8>>><
>>>:

9>>>=
>>>;

¼ cos u �sin u

sin u cos u

� � qfi

qj


(0,0)

qfi

qh


(0,0)

8>>><
>>>:

9>>>=
>>>;

(2:188)

where

qfi

qj


(0,0)

¼ (0, 1, 0 . . . , 0)P�1
0

qfi

qh


(0,0)

¼ (0, 0, 1, 0 . . . , 0)P�1
0

(2:189)

2.9.2 Choice of Rotation Angle

The choice of the rotation angle determines the success of the method of coordinate
transformation. A study was conducted to reveal the property of the moment matrix P0

in relation to the rotation angle. We define

f (u) ¼ jP0j (2:190)

x 

y 

(x0, y0)

η

ξ

θ

FIGURE 2.16
A local coordinate system (j, h) defined in a global
coordinate system (x, y). The origin of (j, h) is located
at (x0, y0).
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where jP0j denotes the determinant of P0. If any u is not a root of f(u), P�1
0 exists and the PIM

shape function can be constructed. An example of six nodes, shown in Figure 2.17, is then
analyzed. Without coordinate transformation, P�1

0 using these six nodes will not exist.
Figure 2.18 shows the function of the determinant of the moment matrix f(u) with respect to
rotation angle u. It is seen that the moment matrix is singular only at four rotation angles
marked with circles. Using any rotational angle other than these four leads to a nonsin-
gular moment matrix.

Note that how to choose the rotation angle is still an open question. One possible
method is to choose a random number. However, this will not give 100% proof for a
nonsingular moment matrix for more general cases. Note that the choice of the rotation
angle depends on the nodal arrangement in the support domain. It is possible to

FIGURE 2.17
Six nodes in a support domain distributed in two parallel
lines of x¼ 2.0 and 4.0. x

y

1(2, 2) 2(4, 2)

3(2, 4) 4(4, 4)

5(2, 6) 6(4, 6)

FIGURE 2.18
Determinant of the moment matrix
formed in the local coordinate system
via rotation. The moment matrix is singu-
lar at four rotation angles marked with
circles.

0 0.5 1 1.5 2 2.5 3 3.5
–2500

–2000

–1500

–1000

–500

0

500

Rotation angle

f(θ
)

86 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



purposely design a set of nodal arrangement (say all six nodes in one line); no such
rotational angle can be found for nonsingular moment matrix. This argument is true for
all the methods for shape function construction. When a triangulation defined in
Section 1.7.2 is used, there are only a few rotation angles u that make the moment matrix
singular, for a set of nodes selected using some kind of controlling schemes like
T-schemes to prevent extreme cases. Hence for a randomly chosen rotational angle u,
the moment matrix is unlikely to be singular, and the method of coordination transform
should work. Note that for the special case of using 4 nodes for interpolation as in the
CS-PIM, there is an ‘‘optimal’’ way to determine u, as shown in [58].

Note that the T-schemes are workable schemes by themselves that do not need this
coordinate transformation. We present this coordinate transformation for general cases
when T-scheme is not used for constructing PIM shape functions.

2.10 Comparison Study via Examples

Example 2.3: Shape Function Comparison Study (1D Case)

Figure 2.19a shows a comparison of shape functions in 1D space obtained using four different
methods: MLS, polynomial PIM, MQ-PIM, and EXP-PIM. The shape functions are obtained using
five nodes at x¼�1.0, �0.5, 0.0, 0.5, and 1.0 in the support domain of [�1.0, 1.0]. The shape
function shown in Figure 2.19 is for the node at x¼ 0.0. It is noted that the shape functions obtained
by the three PIM methods possess the Kronecker delta function property, that is, f(0.0)¼ 1.0,
f(�1.0)¼f(�0.5)¼f(0.5)¼f(1.0)¼ 0.0. The shape function obtained using MLS does not pos-
sess the Kronecker delta function property, that is, f(0.0) 6¼ 1.0, f(�0.5)¼f(0.5) 6¼ 0.0. The MLS
shape vanishes at x¼
1.0, because x¼
1.0 is on the boundary of the support domain. All the PIM
shape functions vary more frequently than the MLS shape functions.
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FIGURE 2.19
Comparison of shape functions obtained using four different methods: MLS, polynomial PIM, MQ-PIM, and
EXP-PIM. (a) Shape functions; and (b) derivatives of shape functions.
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Figure 2.19b shows the first derivatives of shape functions. It is found that the derivatives of the
MLS shape function vanish at two boundary points. This is because the quartic weight function is
used in the construction of the shape function, whose first derivative also vanishes on the
boundary (see Figure 2.4).

Example 2.4: Shape Function Comparison Study (2D Case)

Meshfree shape functions are constructed in a domain of (x, y) 2 [2� 2]� [2� 2] using 5� 5
evenly distributed nodes in the domain. Figure 2.20 shows the shape function and its first
derivative with respect to x computed using polynomial PIM. Figure 2.21 shows the shape
function and its first derivative with respect to x computed using RPIM (MQ, C¼ 1.0, q¼ 0.5)
with linear polynomials. It is shown that the PIM shape functions satisfy the Kronecker delta

(b)

2
1

–1
–2

0

Φ
΄

2
1

–1
–2

0xy

4

2

–2

–4

–6

0

1

0.5

0

2
21

(a)
1

–1
–2

–1
–2

0

Φ

0xy

–0.5

–1

FIGURE 2.20
Polynomial PIM shape function and its derivative with respect to x. (a) PIM shape function; and (b) derivative of
the PIM shape function.
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FIGURE 2.21
RPIM (MQ, C¼ 1.0, q¼ 0.5, with polynomial) shape function and its derivative with respect to x. (a) PIM shape
function; and (b) derivative of the PIM shape function.
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function. Figure 2.22 shows the MLS shape function. It is clear that the MLS shape functions do not
satisfy the Kronecker delta function.
Comparing Figures 2.20 and 2.21 with Figure 2.22 reveals that the PIM shape function and

its derivatives are much more complex compared with the MLS shape functions. This finding
needs to be considered when we perform numerical integrations in computing discrete system
equations.

2.11 Compatibility Issues: An Analysis

In using energy principles or the Galerkin weak form the assumed or approximated field
function has to be admissible that includes compatibility condition and the essential bound-
ary conditions. The compatibility condition requires the field function approximation
being continuous in the entire problem domain. In the conventional FEM, the field function
approximation in the problem domain is based on the element with proper mapping. The
continuity of the field function approximation is ensured by either properly choosing
shape functions of neighboring elements so that the order of the interpolation on the
common boundary of the elements is the same or using so-called multipoint constraint
equations (see, e.g., [48]) to enforce the compatibility. These types of elements are called
conforming elements. It often happens that discontinuity is allowed to formulate so-called
nonconforming finite elements. It has also been reported that some of the nonconforming
finite elements can perform better than conforming elements.

In meshfree methods, the field function approximation is often based on moving support
domain or background cells and the nodes used can be beyond the cells. The compatibility
of field function approximation using meshfree shape functions may or may not always be
satisfied. In using MLS approximation, the compatibility is ensured by choosing weight
functions that satisfy Equations 2.8, 2.9, and 2.11 with a sufficient number of nodes. The
compatibility of field function approximation using the MLS shape function depends on
the weight function used in Equation 2.51. Due to the use of the bell-shaped weight
functions, the nodes can enter or leave the support domain in a smooth manner, which
ensures continuity and hence the compatibility while the point of interest is moving.
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FIGURE 2.22
MLS shape function and its derivative with respect to x. (a) MLS shape function; and (b) derivative of the MLS
shape function.
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The order of compatibility is determined by the smoothness of the weight function used.
From Figures 2.2 through 2.4, it is seen that W1 and W2 provide at least second-order
compatibility, as their second derivatives are continuous in the support domain and vanish
on the boundary of the support domain. W4 provides first order compatibility, as its first
derivatives are continuous in the support domain and vanish on the boundary of the
support domain. Although the second derivative of W4 is continuous in the support
domain, it does not vanish on the boundary of the support domain (see Figure 2.4). As
for W3, its derivatives of all orders are continuous within the support domain, but they are
not exactly zero on the boundary of the support domain. Therefore, theoretically, W3
cannot provide compatibility of any order. However, the values of the function and its
derivatives are very small on the boundary of the support domain. In practical numerical
analyses, W3 provides very high order compatibility with a very small numerical error.

In using PIM shape functions that are constructed based on background cells, the field
function approximated could be discontinuous on the cell interfaces, because the nodes
used constructing shape functions for one cell can be different from those for the neighbor-
ing cells. Therefore, the function approximated using the PIM shape functions can jump
over the cell interface. The same situation can happen when moving support domain is
used for constructing shape functions. In such a case, the shape functions jump when the
nodes in the support domain is updated. Figure 2.23 shows an example of how a field
function is approximated using MLS with quartic spline weight function (W2), polynomial
PIM, and radial MQ-PIM shape functions, where we consider the approximation of a 1D
function using the function values at six nodes. Two functions are considered in this
investigation: one is the sine function (Figure 2.23a) that is nonpolynomial, and another
is a third-order polynomial function. The following points may be noted from this figure.

1. MLS approximation is continuous, but does not pass through the function values
at these nodes.

2. All the PIM approximations pass through the field function values at the nodes
due to the delta function property.

Exact

MLS

Radial PIM

Polynomial PIM

Jump

1 2 3 4 5 6 A 

(a)

Radial PIM
Polynomial PIM

Radial PIM

Jump

Exact

MLS1 2 3 4 5 

Polynomial PIM

MLS

A 

(b) 

FIGURE 2.23
Field function approximation using meshfree shape functions. Functions in the range of [0, 2.5] are approximated
using six nodes. MLS, moving polynomial PIM, and moving RPIM are used in function approximation. In MLS
approximation the support domain is defined by ds¼asdi, where as¼ 1.9, di is the space between two nodes. In
PIMs, the nearest four nodes are used for interpolation (equivalent to as¼ 2.0). (a) f(x)¼ sin[(x�0.2)p]; (b) f(x)¼
(x�0.2)(x�1.2)(x�2.2).
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3. In approximating the sine functions that are nonpolynomial, the PIM and RPIM
approximations are discontinuous at Point A (x¼ 1.25). This happens because,
when the function is approximated between Points 2 and A, field nodes 1, 2, 3,
4, and 5 are used, and when the function is approximated between Points A and 5,
field nodes 2, 3, 4, 5, and 6 are used for constructing the PIM shape functions. PIM
shape functions are incompatible.

Note that for 1D problems, the incompatibility problem can be avoided very easily by
simply using PIM shape functions constructed based on background cells. For the case
shown in Figure 2.23, for example, one can simply use nodes 2, 3, 4, and 5 to construct PIM
shape function for cell of 3–4, and 3, 4, 5, and 6 for cell of 4–5. There will be no discontinuity
at node 4, simply because the delta function property of PIM shape functions and the
interface of the cell 3–4 and cell 4–5 is just one point. For 2D or 3D domains, however, PIM
shape functions based on cells will still be discontinuous, because the interfaces will be line
segments (for 2D) and surface segments (3D). Figure 2.24 shows an example for 2D case
with triangular background cells, and Figure 2.25 shows that with rectangular background
cells. Therefore, when such PIM shape functions are used, the generalized smoothed
Galerkin (GS-Galerkin) (see Chapter 5) weak form needs to be used with nodal-based
or edge-based smoothing domains. The same analysis applies to RPIM shape functions.
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FIGURE 2.24
Compatibility of PIM shape functions on the interface of two neighboring background cells. The gap on the
interface 8–12 between cells 11 and 12 can occur when six nodes (T6=3-scheme) are used in computing PIM shape
functions for these two cells. For background cell 11, nodes 3, 7, 8, 11, 12, and 13 are used, and for cell 12, nodes 7,
8, 9, 12, 13, and 17 are used.
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Note also that when the local residual weak form is used to create the discretized system
equations, the global compatibility of the trial function is not a requirement. As long as the
field approximation is consistent at any point in the quadrature domain, trial function is
differentiable and the integrand is integrable. The PIM approximation satisfies all those
requirements. Therefore, PIM shape functions can be usedwith the local residualweak form.
The much better choice is a weakened-weak formulation, such as the GS-Galerkin, such
implementations will be detailed in Chapter 8.

Table 2.4 lists the features of meshfree shape functions discussed in this chapter.

Support
domains

Background mesh of cells 

4

1

3

2

Lines of possible incompatibility 

1 

2 

3 

FIGURE 2.25
PIM shape functions construction based on background rectangular cells: Possible incompatibility can occur
between the interfaces of neighboring cells.

TABLE 2.4

Features of Meshfree Shape Functions

Shape Functions Consistencya
Global

Compatibility
Delta Function

Property

SPH No, on the boundary;
yes, in the domain

Yes (for the continuous
form of SPH)

No

RKPM Yes Yes No

MLS Yes Yes No

Polynomial PIM Yes No Yes

RPIM No (but reproduces
RBFs)

No Yes

Radial PIM with
polynomial basis

Yes No Yes

WLS (LS) Yes No No

a Consistency is defined as the ability to produce complete order of polynomials.

92 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



2.12 Other Methods

There are a number of other useful methods for constructing shape functions, such as

. Kringing interpolation [51–53]

. Minimum length approximation [54]

. hp-clouds method and the partition of unity [49,50]

It has proven that the Kringing interpolation is essentially the same as the RPIM as long as
the same basis functions are used [52]. Therefore, properties found for RPIM should apply
to Kringing shape functions.

The minimum length approximation is an interesting idea, and may be worth to pursue
further. The shape functions created have the delta function property (passing through
nodes), but not all the basis terms can be reproduced (do not ‘‘pass through’’ basis terms).
This property is in contrast to the MLS shape functions that do not possess the delta
function property (do not pass through nodes), but all the basis terms can be reproduced
(‘‘pass through’’ basis terms).

This book will not provide the details on the hp-clouds method. This method can be very
useful, and readers are referred to [49,50].

Finally, we state that by combining these shape functions with the principles, weak
forms, and weakened-weak forms we can develop different types of meshfree methods.
Such a combination offers tremendous opportunities for us to develop more effective and
robust meshfree methods. Understanding the features of the shape functions in accordance
with these weak forms is of importance.
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3
Function Spaces for Meshfree Methods

Chapter 2 has shown various techniques to construct shape functions that can be used to
assume functions for field variables such as the displacements in meshfree settings.
Because of the diversity, functions assumed can have ‘‘unusual’’ behaviors that can
‘‘upset’’ usual functionals out of ‘‘control.’’ Therefore, directly using them in a standard
weak formulation can be problematic. To ensure a meshfree method stable and convergent
to the exact solution, the functions need to be first ‘‘managed’’ properly, adequate func-
tionals need to be defined/constructed, and then proper formulation procedures have to be
used accordingly. Types of weak forms will be discussed in Chapter 4. In this chapter we
‘‘manage’’ these functions by defining different spaces that host different types of functions.
We start with the standard spaces that are widely used in usual weak formulations such as
the finite element method (FEM) [1,2] and are familiar to many. We then provide a detailed
discussion on G spaces that are the foundation of one weakened-weak formulation, are
particularly useful for both meshfree and FEM settings, and much less familiar to many.

Terminologies related to spaces are quite difficult for an engineer to comprehend, but for
a reasonably accurate and concise presentation of a numerical procedure, it is hard to
avoid. The author, as an engineer, attempts to present these related terms in ‘‘engineering’’
languages for easier comprehension. The author has been trying hard to learn and study
the formulations in both engineering and mathematics communities, and hope to do
something to bridge the gap. If a reader can be patient in reading through this chapter,
we hope he=she can find that the gap is getting a little smaller.

In this chapter, we focus only on the minimum necessary terminologies, so as to facilitate
our discussions in later chapters without too much confusion and loss of accuracy in
presentation. Readers may refer to Tables 1.1 and 1.3, when get lost in the mathematical
terminologies and symbols.

3.1 Function Spaces

We first briefly introduce some of the important basic definitions and terminologies. For
more intensive and systematic descriptions, readers may refer to [3].

3.1.1 Linear Spaces

A space S of functions is said to be linear, if the summation of any two member functions
from the space still belongs to the same space, and any member function from the space still
belongs to the same space after it is scaled. Inmathematical expression, a linear space satisfies

8w, v 2 S, (wþ v) 2 S Addition
8a 2 R and 8v 2 S, av 2 S Scaling (3:1)

where R is the real (algebraic) field of all the real numbers.
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A group of (assumed) displacement functions for linear elasticity shall form a linear
space.

3.1.2 Functionals

A functional J takes a member from a space as input (or argument) and returns a scalar as
an output. It is noted as

J: S|{z}
space offers the input

! R|{z}
space hosts the output

(3:2)

meaning that J takes a member function from S as input, and then produces a real number
as output. An energy in a linear elastic solid or structure is a typical functional that takes in
a displacement function and returns a (nonnegative) number of energy.

3.1.3 Norms

A functional k � k
S
from a linear space S to R is called a norm if and only if it has the

following properties:

(a) 8v 2 R: kvk
S
� 0, kvk

S
¼ 0 , v ¼ 0 Positivity (3:3)

(b) kavk
S
¼ jajkvk

S
, 8a 2 R Scalar multiplication (3:4)

(c) kwþ vk
S
� kwk

S
þ kvk

S
, 8w, v 2 S Triangular inequality (3:5)

where ‘‘,’’ stands for ‘‘if and only if.’’ A norm is used to measure how ‘‘big’’ a function is.

3.1.4 Seminorms

If a functional satisfies conditions (Equations 3.4 and 3.5), and the semipositivity

kvk
S
� 0, 8v 2 R Semipositivity (3:6)

instead of the (full) positivity Equation 3.3, it is called a seminorm and denoted as j � j
S
.

A seminorm is often used to measure the strength of the variation (gradient/derivatives) of
a function. For solid mechanics problems, it is used to measure the strength of the strain
field resulted from a displacement field. The strain energy in a solid or structure is a typical
seminorm, and is known as energy norm. It is an overall or global measure on how much is
solid being stressed. Because any nonzero displacement field of a rigid motion in a solid
does not create any strain or stress in the solid, the strain energy is zero for such a nonzero
input. The strain energy is thus semipositive.

3.1.5 Linear Forms

A linear form L(v) is a functional if

L: S|{z}
space offers the input

! R|{z}
space hosts the output

(3:7)
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with the following linear property:

L(awþ v) ¼ aL(w)þ L(v), 8a 2 R, 8w, v 2 S (3:8)

Work done by external forces over a given displacement field in a linear elastic solid is a
typical linear form.

3.1.6 Bilinear Forms

A bilinear form a(w, v) is a functional that takes two inputs of member functions, respect-
ively, from two spaces and returns a scalar as an output:

a: S1|{z}
space offers w

� S2|{z}
space offers v

! R|{z}
space hosts the output

(3:9)

with the following bilinear property:

a(w,�v) is a linear form in w for a fixed v

a(�w, v) is a linear form in v for a fixed w
(3:10)

Work done by internal stresses in a deformed solid resulted from a virtual displacement
field in a typical bilinear form.

3.1.7 Inner Products

An inner product (w, v)S on S is a scalar valued functional on S� S that satisfies the
following conditions:

(a) (w, v)S ¼ (v,w)S, 8w, v 2 S Symmetry (3:11)

(b) (w,w)S � 0, 8w 2 S and (w,w)S ¼ 0 , w ¼ 0 Positive definite (3:12)

(c) (vþ w,u)S ¼ (v,u)S þ (w, u)S, 8v,w 2 S

(av,w)S ¼ a(v,w), 8v,w 2 S, 8a 2 R
Bilinear (3:13)

A linear space S on which an inner product can be defined is called an inner product space.
For such a space, a norm can be associated with the inner product in the form of

kvk
S
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
(v, v)S

p
(3:14)

A space of admissible displacement functions is an inner product space.

3.1.8 Cauchy–Schwarz Inequality

For a given inner product space S, we then have the often used Cauchy–Schwarz
inequality:

(w, v)S � kwk
S
� kvk

S
(3:15)
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Let a(w, v) be a semidefinite bilinear form. The Cauchy–Schwarz inequality can then be
expressed in a more general form:

ja(w, v)j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(w,w)

p ffiffiffiffiffiffiffiffiffiffiffiffi
a(v, v)

p
(3:16)

The Cauchy–Schwarz inequality is often used to derive bound properties of a bilinear form
(strain energy).

3.1.9 General Notation of Derivatives

For the convenience of space definitions, we first define the notation of differentiations:

Da ¼ qjaj

qxa1
1 � � � qxad

d
(3:17)

where
d is the dimension of the problem domain
a is n-tuple of nonnegative integers, a¼ (a1, . . . , ad)
jaj ¼Pd

i¼1 ai

3.2 Useful Spaces in Weak Formulations

In the development of FEM based on weak forms for stable and convergent solutions, we
had to be very ‘‘choosy’’: We cannot allow using anyhow created displacement functions.
Therefore, we have to classify ‘‘qualified’’ functions in groups called spaces. This section
lists some of the often used spaces in FEM formulation, because they are also used in
meshfree formulations. We will, however, give only minimum necessary elaboration.
Interested readers may refer to [4,5] for more systematic descriptions.

3.2.1 Lebesgue Spaces

The Lebesgue space L
p(V), p � 1 is defined as

L
p(V) ¼ vj

ð
V

jvjpdV < 1
8<
:

9=
; (3:18)

A Lebesgue space is a normed space with the norm defined as

kvkp
L
p(V) ¼

ð
V

vpdV (3:19)

This book uses only the L
2 space that is a Lebesgue space with p¼ 2. It is defined as

L
2(V) ¼ vj

ð
V

jvj2dV < 1
8<
:

9=
; (3:20)
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which means that any function v in L
2(V) is square integrable (integral is bounded) over V.

Essentially, it means that the function can be discontinuous, but it has to be bounded in the
integral sense defined in Equation 3.20: at least piecewise continuous over the problem
domain V. The norm of a function in an L

2 space is induced from the following inner
product:

(w, v)
L
2(V) ¼

ð
V

wvdV (3:21)

The induced L
2 norm of a function v is then defined as

kvk2
L
2(V) ¼

ð
V

v2dV

|fflfflffl{zfflfflffl}
(v, v)

L
2(V)

(3:22)

3.2.2 Hilbert Spaces

We now note the Hilbert space (for a nonnegative integer m) as

H
m(V) ¼ vjDav 2 L

2(V), 8jaj � m
� �

(3:23)

which hosts all functions whose derivatives up to mth order are all square integrable. The
associated inner product is given by

(w, v) ¼
X
jaj�m

ð
V

(Daw) � (Dav)dV (3:24)

and induced (full) norm

kvk
H

m(V) ¼
X
jaj�m

ð
V

jDavj2dV
0
@

1
A
1=2

(3:25)

as well as the seminorm (that includes only the mth derivative):

jvj
H

m(V) ¼
ð
V

jDavj2dV
0
@

1
A
1=2

(3:26)

Essentially, the H
m full norm measures the first m (including zero) derivatives of v in the

L
2 norm.
This book uses most often the H

1 space. It is defined for d-dimensional problem
domains as

H
1(V) ¼ vjv 2 L

2(V), qv=qxi 2 L
2(V), i ¼ 1, . . . , d

� �
(3:27)
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which means that any function in the space and its first derivatives of the function are all
square integrable. Clearly, we see the fact that H1 space is much smaller than the L2 space,
because the additional conditions are imposed on the derivatives of the functions. The
associated inner product is given as

(w, v)
H

1(V) ¼
ð
V

wvdV

|fflfflfflfflffl{zfflfflfflfflffl}
(w, v)

L
2(V)

þ
ð
V

(rw) � (rv)dV

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
(rw,rv)

L
2(V)

(3:28)

where

rv ¼ qv
qx1

qv
qx2

� �
(3:29)

The full norm of a function v in H
1 is defined as

kvk2
H

1(V) ¼
ð
V

v2dV

|fflfflffl{zfflfflffl}
kvk2

L
2(V)

þ
ð
V

(rv) � (rv)dV

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
jvj2

H
1(V)

(3:30)

The H
1(V) seminorm becomes

jvj2
H

1(V) ¼
ð
V

(rv) � (rv)dV (3:31)

Clearly, we can only expect semipositivity for the seminorm, because a nonzero constant v
in H

1 space will produce a zero seminorm.
Functions in H

1 that satisfy the essential (displacement) boundary conditions form
a space:

H
1
0(V) ¼ v 2 H

1(V)jv ¼ 0 on Gu
� �

(3:32)

where Gu stands for the boundary on which the displacement is constrained (essential-
boundary). A function in H

1
0(V) is not ‘‘floating’’: constrained for all possible rigid

motions.
Once the functions cannot float, the H

1 seminorm becomes (full) positive, and we have
the very important property of H1 space: the H1 seminorm is equivalent to the H1 full norm,
meaning that there exists a positive constant cPF such that

cPFkwk2H1(V) � jwj2
H

1(V), 8w 2 H
1
0 (3:33)

which is known as the Poincare–Friedrichs inequality and cPF is known as the Poincare–
Friedrichs constant. The Poincare–Friedrichs inequality is one of the most important
inequalities in weak formulation, because it ensures fundamentally the stability of the
weak form formulation.
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A subspace inH
1 space created using interpolation techniques that ensures compatibility

(see Chapter 2) can then be defined as

H
1
h(V) ¼ v 2 H

1(V)jv(x) ¼ wH(x)d,d 2 R
Nn

� �
(3:34)

where wH(x) is the matrix of all the (compatible) nodal shape functions constructed using
an FEM model, and can be written as

wH(x) ¼ fH
1 (x) fH

2 (x) � � � fH
Nn
(x)

h i
(3:35)

Because H
1
h(V) is a linear space, each of the nodal shape functions fH

i (x) must also be in
H

1
h(V). The linear independence of shape functions fH

i (x), (i ¼ 1, 2, . . . ,Nn) are ensured by a
standard FEM procedure (element-based and proper mapping). In Equation 3.34 d is the
vector of all the nodal functions values given in the form:

d ¼ v1 v2 � � � vNnf gT (3:36)

Since the values at each node can change independently, we have d 2 R
Nn where R

Nn

stands for a real field of Nn dimensions.
Because H

1
h is constructed in a discrete form with finite dimensions, it is marked with a

subscript ‘‘h.’’ Functions in H
1
h that satisfy the essential (displacement) boundary condi-

tions form a space:

H
1
h,0(V) ¼ v 2 H

1
h(V)jv ¼ 0 on Gu

� �
(3:37)

A very special subspace in H
1 space created using only linear interpolation with 3-node

triangular element mesh (or point interpolation method [PIM] with T3-scheme) can be
defined as

H
1
b(V) ¼ v 2 H

1(V)jv(x) ¼ wb(x)d,d 2 R
Nn

� �
(3:38)

where wb(x) is the matrix of all the nodal shape functions written as

wb(x) ¼ fb
1(x) fb

2(x) � � � fb
Nn
(x)

h i
(3:39)

inwhichfb
i (x) 2 H

1(V) are compatible and linear. In this book,we often useH1
b(V) to create a

base model that is often called linear FEM or FEM-T3 model. In such a case, the triangular
cells defined in Section 1.7.2 become the usual triangular elements. Similarly, functions inH

1
b

that satisfy the essential (displacement) boundary conditions form a space:

H
1
b,0(V) ¼ v 2 H

1
b(V)jv ¼ 0 on Gu

� �
(3:40)

It is clear that the nodal moving least squares (MLS) shape functions created using
sufficient local nodes (Chapter 2) are in a H

1
h space, and any function created using a linear

combination of these shape functions are also in the H
1
h space. An H

1
h space is indeed very

exclusive, and the methods that can be used to create functions in an H
1
h space are

very much limited: FEM technique and the MLS approximation.
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3.2.3 Sobolev Spaces

The Sobolev spaces Wm,p(V) for integer m � 0 and p � 1 is defined as

W
m,p(V) ¼ vjDav 2 L

p(V), 8jaj � mf g (3:41)

with norm

kvk
W

m,p(V) ¼
X
jaj�m

ð
V

jDavjpdV
0
@

1
A
1=2

(3:42)

Essentially, the W
m,p norm measures the first m derivatives of v in the L

p norm. We note
that Wm,2(V) ¼ H

m(V). When p 6¼ 2, Sobolev spaces are not Hilbert spaces. We also note
W

0,p(V) ¼ L
p(V).

3.2.4 Spaces of Continuous Functions

The spaces of continuous functions, Cm(V) for any integer m, is defined as

C
m(V) ¼ vjDav continuous and bounded over V, 8jaj � mf g (3:43)

For example, C0(V) is the space of functions that are continuous overV; C�1(V) is the space
of functions whose antiderivatives are continuous over V; C1(V) is the space of functions
whose first derivatives are continuous over V; C1(V) is the space of functions of which all
derivatives exist and are continuous over V.

There is an important theorem called the Sobolev embedding theorem that defines the
relationship between the C

0(V) and Sobolev spaces. For example, it says that for any
regular domain V � R

d, if v 2 H
m(V),m > d

2, then v 2 C
0(V), and

kvk
L
1(V) � Ckvk

H
m(V) (3:44)

where C is a general constant that does not depend on v. For example, if d ¼ 1, v 2 H
1(V)

implies that v is also continuous, since m¼ 1> d/2¼ 1=2. However, for d¼ 2 or 3, we can
find functions v 2 H

1(V) that are not continuous, because m ¼ 1 � d
2 ¼ 1 (or ¼ 3

2). This
implies that the geometry change has implications to the measures for functions.

3.3 G Spaces: Definition

G space theory was introduced recently in [6,7,22,23] as a foundation for a weakened-weak
(W2) formulation. Because it is very new, we provide more details and naturally with many
open questions to many of which we do not yet have answers. A G space is a space of finite
dimensions for discrete functions created based on background cells in FEM or meshfree
setting, over which a set of smoothing domain is also properly created [6]. It allows
functions to have certain order of discontinuity in V, and hence naturally it is larger than
the corresponding H space. For example, a G

1
h space allows functions being discontinuous

(more precisely, being not squarely integrable). It is therefore larger than the H
1
h space.
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It is not, however, as inclusive as the L2 space, because the discontinuity for functions in a
G

1
h space is properly controlled, and hence it is smaller than the L2 space. Since the member

function in a G
1
h space has certain order of discontinuity, we cannot measure the semi-

norms in the usual way for functions in an H
1
h space, because the necessary order of

derivative information is not accessible (even the distributional derivatives [4]) anywhere
in the domain V. The idea put forward in [6] was then to approximate the derivative
information by introducing the so-called generalized smoothing technique that works for
discontinuous functions [7]. To perform such smoothing operations, we need to divide the
problem domain into smoothing domains, in a proper manner.

3.3.1 Smoothing Domain Creation

Consider a domain V bounded by G discretized by, for example, triangulation defined in
Section 1.7.2 with number of on-overlapping and seamless (NOSL) subdomains cells, such
that V ¼ [Nc

i¼1V
c
i and Vc

i \Vc
j ¼ 0, 8i 6¼ j, Ac

i > 0, i ¼ 1, 2, . . . ,Nc, and hi> 0, i¼ 1, 2, . . . ,Nc.
Such an NOSL cell division results in a set of Nc cells, Nn nodes, and Ncg straight-line
segments Lci > 0, i ¼ 1, . . . ,Ncg in between the cells or on G. Lci is also called cell edge, as
shown in Figure 3.1.

We next divide, on top of the triangular cells, the domain V into Ns NOSL subdomains
called smoothing domains such that V ¼ [Ns

i¼1V
s
i and Vs

i \Vs
j ¼ 0, 8i 6¼ j. Figure 3.1 shows

a typical example of such a division, where node-based smoothing domains are created by
sequentially connecting the centroids of the triangular cells with the mid-edge-points on Lci
of the surrounding triangular cells of a node. These smoothing domains are formed by Nsg

line segments denoted as Lsi > 0, i ¼ 1, . . . ,Nsg, and As
i > 0, i ¼ 1, 2, . . . ,Ns.

For example, the smoothing domain Vs
n for node n is bounded by Gs

n that is formed by
segments AB, BC, CD, DE, EF, FG, GH, HI, and IJ, as shown in Figure 3.1. In this case, the
smoothing domain is supported by five cells. These five cells are called support cells for
the smoothing domain Vs

n. All the nodes of these support cells are called support nodes

A B
C

D

E
FG

H
I

J Ω s
n(Domain: ABCDEFGHIJ)

Inner node: n

Boundary node: m

L

m

NO
P

Q

S

V
Y U 

T 

W X

Line segments: AB, BC, 
CD, DE, EF, FG, GH, HI, IJΓ s

n

Γs
m

Ωs
m(Domain: LMNOPQRS)

L s
j+1 : UT

L s
j+1 : YU

L c
i+1: XV

L c
i : WV

Line segments: Lm,
mN, NO, OP, PQ, QR, RSR

Field nodes Centroid Mid-edge-point

FIGURE 3.1
Background triangular cells and the smoothing domains created by sequentially connecting the centroids with the
mid-edge-points of the surrounding triangular cells of a node.
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for the smoothing domain. In this particular case, we have six support nodes for smoothing
domain Vs

n, if the support nodes for each cell is three (linear interpolation). If higher order
interpolation is used, the number of support nodes for the support cells will increase, and
hence the support nodes for the smoothing domain will increase accordingly. For the node
m on the boundary, we have three support cells and five support nodes for the smoothing
domain Vs

m when the linear interpolation is used.
In the division of V into Vs

n, the important ‘‘no-sharing’’ rule applies: any Gs
i in V does

not share any finite portion of any Lci in V on which the function is not square integrable.
The Gs

i can go across Lci . Only when the function is continuous on Lci , the sharing of Gs
i and

Lci is permitted.
A typical division of domain is given in Figure 3.2 for one-dimensional (1D) domains,

where node-based smoothing domains are createdupon a set of line background cells. For an
interior node, the smoothing domain is supported by two cells and three nodes, and for a
boundary node, the smoothing domain is supported by one cell and two nodes. Figure 3.3

x
× × × × × × × × 

Ωs
1

Ωc
1 Ωc

2

Ωs
2 Ωs

n–1 Ωs
n+1 Ωs

Nn–1

Ωc
Nn–1

Ωs
Nn

xn+1 xNn–1
xNn

Ωs
n

Ωc
n–1 Ωc

n Ωc
n+1xn–1x1 xnx2

... ...

… …

FIGURE 3.2
Background line cells and line smoothing domains created by sequentially connecting the centers of the two
neighboring cells.

x

k6

k4

k1

k5
k7

k2

k3

k8

n

Cell O

x

Field node

Centroid of the
surface triangle

Centroid of the
tetrahedron

Interested node

Mid-edge-point

6

Cell I

FIGURE 3.3
Background tetrahedral cells and the constructions of node-based smoothing domain for nodes n.
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shows an example for 3D domains where node-based smoothing domains are created upon
a set of tetrahedral background cells. These types of node-based smoothing domains are
intertwined with the cells, and Ns¼Nn. The node-based smoothing domains were used in
the node-based point interpolation method (NS-PIM) [13–16,21] and node-based smoothed
finite element method (NS-FEM) [17]. Smoothing domains can also be cell=element based as
in the smoothed FEM or smoothed finite element method (SFEM) [10–12], cell-based as in
the cell-based smoothed point interpolation method (CS-PIM) [22], edge-based as in the
edge-based smoothed finite element method (ES-FEM) [18] and in edge-based point inter-
polation method (ES-PIM) [20], as well as face-based as in the face-based smoothed finite
element method (FS-FEM) [19].

We note these types of stationary smoothing domains are in fact tight-up together with
the background cells. When the node (hence the cells) gets refined, the smoothing domains
are refined accordingly. In other words, when h ! 0, we have Vs

k ! 0.

3.3.2 Linearly Independent Smoothing Domains

Linearly independent smoothing domains are defined as a set of smoothing domains that
ensure the full rank of the (global) smoothed gradient matrix. The detailed definition and
analysis is quite lengthy and can be found in [6]. The essential point to ensure such a linear
independence is to have the smoothing domains associated with the nodes, edges, or
cells of the mesh. Typical proven divisions that give sufficient number of independent
smoothing domains are cell/element based, edge based, as well as face based. The node-
based smoothing domains shown in Figure 3.1 through 3.3 have also been proven
linearly independent. We will use the node-based and edge-based smoothing domains in
Chapter 8.

3.3.3 Minimum Number of Smoothing Domains

To ensure the positivity of the seminorm of a function in a G1
h space, we have to use at least

the minimum number of smoothing domains Ns, based on the study in [7]. The consider-
ation is that the minimum number of smoothing domains should be at least the same as the
number of the unprescribed nodal unknowns Nu, and therefore it depends also on the type
of physical problems.

For 1D solid mechanics problem models with one node being fixed, we have immedi-
ately Nmin

s ¼ Nu ¼ (Nu � 1).
For 2D solid mechanics problem models with nt (unconstrained) nodes used for dis-

placement field construction, the total number of unknowns in the model should be
Nu¼ 2nt, because one node carries two unknowns (displacement components in x and y
directions). On the other hand, the total number of equations that can be sampled from all
the smoothing domains should be 3Nn, because one smoothing domain gives three inde-
pendent equations for measuring the strain energy norm (each of three strain components
produces strain energy independently). Therefore, we must have Nmin

s ¼ 2nt=3.
Exactly the same analysis can be done for 3D vector fields of mechanics problems. We

now summarize the discussions to Table 3.1.

3.3.4 Integral Representation of Function Derivatives

In Section 2.2 we introduced the integral representation of a function where the function
is approximated via a convolution performed for the function with a predefined local
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smoothing function. By the same token, the integral representation can also be done for the
derivatives of a function:

qwl
_

qxi
(x) ¼

ð
Vx

qwl(j)
qxi

W
_

(x� j)dj, l ¼ 1, 2, 3; i ¼ 1, 2, 3 (3:45)

where qwl
qxi

_
(x) denotes the smoothed first derivative of w and Vx defined for x is a local

smoothing domain bounded by Gx, and the smoothing function W
_

is continuously differ-
entiable in Vx. When wl(x) is continuous in Vx and hence at least piecewisely differentiable,
the usual integration-by-parts can be applied and Equation 3.45 becomes

qwl

qxi

_

(x) ¼
ð
Gx

wl(j)niW
_

(x� j)dG�
ð
Vx

wl(j)
qW

_

(x� j)
qxi

dj (3:46)

where ni is the ith component of the unit outwards normal on Gx.

3.3.5 Derivatives Approximation

When wl(x) is discontinuous in Vx, the integration-by-parts is no longer applicable,
and hence

qwl

qxi

_

(x) 6¼
ð
Gx

wl(j)niW
_

(x� j)dG�
ð
Vx

wl(j)
qW

_

(x� j)
qxi

dj (3:47)

We, however, still use Equation 3.46 to approximate the derivatives of w:

qwl

qxi

_

(x) �
ð
Gx

wl(j)niW
_

(x� j)dG�
ð
Vx

wl(j)
qW

_

(x� j)
qxi

dj (3:48)

This is the generalized gradient (or derivative or strain) smoothing operation [7]. This
generalization given in Equation 3.48 is not rigorous in theory, but it is fortunately
possible in implementation because no differentiation upon w is required on the right-
hand side of Equation 3.48. It was first applied in formulating the node-based smoothed

TABLE 3.1

Minimum Number of Smoothing Domains Nmin
s for Problems with nt

Total Nodal Unknowns

Dimension of the Problem
Minimum Number of Smoothing Domains

Vector Field (e.g., Solid Mechanics Problems)

1D Nmin
s ¼ nt

2D Nmin
s ¼ 2nt=3

3D Nmin
s ¼ 3nt=6 ¼ nt=2
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point interpolation methods (NS-PIMs) [13–16] and then in ES-PIM method [6,20] all
using incompatible shape functions. This generalization is useful and very important
for the establishment of the G space theory and hence the W2 formulation that use
incompatible functions.

For simplicity, we use in this book the following special smoothing function that is a
local constant:

W
_

(x� j) ¼ �W(x� j) ¼ 1=Ax j 2 V x

0 j =2 V x

(
(3:49)

where Ax ¼
Ð
Vx
dV is the area (or volume) of smoothing domain at point x. It is clear that

W
_

(x� j) given above satisfies the conditions of unity, positivity, and decay (defined in
Section 2.2). Using Equation 3.49, Equations 3.46 and 3.48 become

qwl

qxi
(x) ¼

1
Ax

Ð
Vx

qwl
qxi

dV ¼ 1
Ax

Ð
Gx

wl(s)nids, when wl(x) 2 C
0(Vx) (continuous)

1
Ax

Ð
Gx

wl(s)nids, when wl(x) 2 C
�1(Vx) (discontinuous)

8>><
>>:

(3:50)

Since the smoothing domain used in the above equations changes (or moves) with x, it is
termed as moving smoothing domain. In many numerical operations we use stationary
smoothing domains that are fixed in the problem domain. We also require the smoothing
domains being created in the way described in Section 3.3.1. In this case, for a smoothing
domain Vs

n, Equation 3.50 becomes

qwl

qxi
(xn) ¼

1
As

n

Ð
Vs

n

qwl
qxi

dV ¼ 1
As

n

Ð
Gs
n

wl(s)nids, when wl(x) 2 C
0(Vs

n) (continous)

1
As

n

Ð
Gs
n

wl(s)nids, when wl(x) 2 C
�1(Vs

n) (discontinous)

8>><
>>:

(3:51)

where As
n ¼

Ð
Vs

n
dV. We further assume

qwl

qxi
(x) ¼ qwl

qxi
(xn) ¼ 1

As
n

ð
Gs
n

wl(s)nids,

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�gl,i: constant in Vs

n

8x 2 Vs
n (3:52)

Therefore the approximated derivative is now constant in Vs
n.

The second derivatives of wl are defined (for 2D cases) as

q2wl

qxiqxj
¼ 1

2As
n

ð
Gs
n

qwl

qxi
nj þ qwl

qxj
ni

 !
ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�gl,ij: constant in Vs

n

, l ¼ 1, 2; i, j ¼ 1, 2 (3:53)

Here we assumed the first derivatives for the function exist.
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The third derivatives of wl can always be expressed as the second derivative of a first
derivative of wl, and hence it can be obtained easily using Equation 3.53 by treating the
second derivative of wl as a new function. For example,

q3wl

qx31
¼ q2

qx1qx1

qwl

qx1

� �
¼ 1

2As
n

ð
Gs
n

q
qx1

qwl

qx1

� �
n1 þ q

qx1

qwl

qx1

� �
n1

� �
ds

¼ 1
As

n

ð
Gs
n

q2wl

qx21
n1

� �
ds

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�gl,iii: constant in Vs

n

(3:54)

In this case we assumed that all the second derivatives for the function exist. The same
token can be used for defining any ath smoothed derivatives of wl, and we should have, in
general, a concise form of

Dawl ¼ qjajwl

qxa1
1 � � � qxad

d
, jaj ¼

Xd
i¼1

ai (3:55)

as long as all Da� 1wl exist.
We are now ready to define G spaces.

3.3.6 G Spaces

The G spaces are expressed for a nonnegative m:

G
m
h (V) ¼

vjv(x) ¼ w(x)d,

Dav 2 L
2(V), 8a:jaj � (m� 1),

PNs

n¼1

Ð
Gs
n

(Dav)nids

 !2

¼ 0, 8v 6¼ 0, i ¼ 1, . . . , d, 8a:jaj � (m� 1)

8d 2 R
Nn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(3:56)

where w(x) is the matrix of nodal shape functions constructed using a general PIM.
It is observed that the G space is a set of functions formed using a basis created using a

technique presented in Chapter 2. The derivatives of the functions up to the (m� 1)th
orders are square integrable in V. Because of the discretized nature of a G space, it
is marked with a subscript ‘‘h.’’ The major difference between a G space and the corre-
sponding discrete Hilbert space or Hh space is that the H space requires Dav 2 L2(V), for
jaj ¼m, but in the G space we require only Dav 2 L2(V), for jaj ¼ (m� 1). Therefore, the
requirement on function is now further weakened upon the already weakened requirement
for functions in an H space, and hence a G space can be viewed as a space of a set of
functions with weakened-weak (W2) requirements. It is therefore clear now that a H

m
h (V) is

also a G
m
h (V) space: any function in H

m
h (V) is surely qualified as a member in G

m
h (V).

The inner product associated with a G space is then defined as

(w, v)Gm(V) ¼
X

jaj�m�1

ð
V

Daw �DavdV

0
B@

1
CAþ

X
jaj¼m

XNs

n¼1

As
nDaw �Dav (3:57)
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The inner product-induced (full) norm is next defined as

kwk
G

m(V) ¼
X

jaj�m�1

ð
V

jDawj2dV

0
B@

1
CAþ

X
jaj¼m

XNs

n¼1

As
njDawj2

 !2
64

3
75
1=2

(3:58)

The G
m(V) seminorm is finally defined using only the smoothed ath derivatives:

jwj
G

m(V) ¼
X
jaj¼m

XNs

n¼1

As
njDawj2

 !2
4

3
5
1=2

(3:59)

In this book we use only the G
1
h spaces, and therefore more details are given in the

following sections.

3.3.7 G
1
h Space

A G
1
h space can be then defined as

G
1
h(V) ¼

vjv(x) ¼ w(x)d,

v 2 L
2(V),

PNs

n¼1

Ð
Gs
n

v(s)nids

 !2

> 0, 8v 6¼ 0, i ¼ 1, . . . , d,

8d 2 R
Nn

8>>>><
>>>>:

9>>>>=
>>>>;

(3:60)

where d ¼ d1 d2 � � � dNnf gT is the vector of nodal function values, and w(x) is the
matrix of nodal shape functions of arbitrary order constructed using any method discussed
in Chapter 2, and can be written as

w(x) ¼ f1(x) f2(x) � � � fNn
(x)

� 	
(3:61)

In creating functions in G
1
h spaces, we do not restrict the way in which shape functions are

created, as long as they satisfy the following conditions:

1. Linear independency condition: all these nodal shape functions are linearly independ-
ent over V and hence are capable to form a basis.

2. Bound condition: all the functions constructed using these shape function must be
square integrable over the problems domain. This is to ensure the convergence of a
numerical model to be created.

3. Positivity conditions: there exist a division of Vs
i such that

PNs
n¼1

Ð
Gs
n
v(s)nids


 �2
> 0,

for all v 6¼ 0, 8d 2 R
Nn , and i¼ 1, . . . , d. This (together with the linearly independent

condition) is to ensure the stability of a numerical model to be created.

When PIM or radial point interpolation method (RPIM) shape functions (see Chapter 2) are
used, the functions constructed will in general not be continuous over the entire problem
domain and hence are not compatible. Such an interpolant is not in an H

1
h space, but in a

G
1
h space, because all these three conditions can be satisfied, as shown in [6]. Note

that since fi(x), (i¼ 1, 2, . . . ,Nn) are constructed using nodes selected using a T-scheme
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(see Section 1.7.6), and at least the three nodes of any home cell are always used. Hence,
they always have an equal or higher order compared to the linear FEM base model, and we
shall have H

1
b 	 G

1
h for all PIM shape functions and RPIM shape functions with linear

polynomial basis constructed using a T-scheme.
The major difference between a G

1
h space and H

1
h space is that the H

1
h space requires the

first gradient of the function to be square integrable, but in the G
1
h space we require only

the function itself square integrable. Therefore, the requirement on function is now further
weakened upon the already weakened requirement for functions in an H

1
h space, and

hence a G
1
h space can be viewed as space of a set of functions with weakened-weak (W2)

requirements on continuity. In an H
1
h space, the bound condition is achieved by the

imposing the smoothness upon the first derivatives of the function to be square integrable,
while in the G

1
h space, it is controlled by imposing the smoothness only on the function to

be square integrable (with a proper construction of smoothing domains). The stability is
automatically ensured for functions in an H

1
h space as long as the smoothness is satisfied,

due to the Poincare–Friedrichs inequality. The stability in the G
1
h space, however, is

ensured by imposing the positivity condition.
Because a member in aG1

h space is also a member of the L2 space, therefore, a G1
h space is

a subspace of L2 space: G1
h(V) � L

2(V).
We note that any function created using as set of shape functions that satisfy the above-

mentioned three conditions are also in the G
1
h space. A G

1
h space is indeed very accommo-

dating and inclusive, and hence shall have much wider applications.

3.3.8 Normed or Unnormed G Spaces

G space is the foundation for the weakened-weak (W2) formulations, and they can either
be normed or unnormed. In this book, we use both normed and unnormed G spaces
for W2 formulations. Unnormed G spaces are used for the strain-constructed Galerkin (or
SC-Galerkin) models, where admissible conditions for the constructed strains are defined
properly in a separated manner. The normed G space is used for the generalized smoothed
Galerkin (or GS-Galerkin) models that are special cases of W2 formulations. Normed G

spaces require a proper construction of smoothing domains following the rules detailed in
Section 3.3.1.

Note that unnormed G spaces can also be used for establishing strong form meshfree
methods by, for example, simple collocation. In such cases, the stability is left ‘‘uncon-
trolled’’ when the assumed functions are used to create a discrete model, and we need
additional procedure such as the regularization techniques to restore the stability [8,9].

For normed G
1
h spaces, the norms are induced from the inner products defined as follows

for various cases.

3.3.9 G
1
h Norms for 1D Scalar Fields

For 1D scalar fields, the associated inner product is given by

(w, v)
G

1(V) ¼
ð
V

wvdVþ
XNs

n¼1

As
nw0 � v0 ¼

ð
V

wvdV

|fflfflfflffl{zfflfflfflffl}
(w, v)

L
2(V)

þ
XNs

n¼1

As
n�g(w)�g(v)

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
w0, v0
� 

L
2(V)

(3:62)
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In Equation 3.62 the (approximated) smoothed derivative for smoothing domain Vs
n is

denoted as

w0 ¼ qw
qx

¼ 1
As

n

ð
Gs
n

w(s)nxds ¼ 1
As

n
w

kþ1
2
� w

k�1
2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼�g, constant in Vs

n

¼ �g(w) (3:63)

where �g(w) denotes the smoothed derivatives of w with respect to x, and the smooth-
ing domains Vs

n is ‘‘centered’’ at xn bounded by x
n� 1

2
and x

nþ1
2
, as shown in Figure 3.2.

Since �g(w) is constant in Vs
n, w0 will be a piecewise constant function in V, and hence is

in the L
2 space.

It is easy to show (see Remark 3.4 below) that the G
1
h inner product defined in Equation

3.62 satisfies the definition given in Section 3.1.7.
The G

1
h seminorm is next defined as

jwj2
G

1(V) ¼
XNs

n¼1

As
n w0�� ��2¼XNs

n¼1

As
n�g

2(w)

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
w0,w0� 

(3:64)

and the G
1
h full norm becomes

kwk2
G

1(V) ¼
ð
V

w2dV

|fflfflfflffl{zfflfflfflffl}
(w,w)¼kwk2

L2

þ jwj2
G

1(V)|fflfflfflffl{zfflfflfflffl}
w0,w0ð Þ¼jwj2

G1(V)

¼ kwk2L2 þ jwj2
G

1(V) (3:65)

which is induced from the inner product Equation 3.62.

3.3.10 G
1
h Norms for 2D Scalar Fields

For 2D scalar fields, the associated inner product is given by

(w, v)
G

1(V) ¼
ð
V

wvdVþ
XNs

n¼1

As
nrw � rv ¼

ð
V

wvdV

|fflfflfflffl{zfflfflfflffl}
(w, v)

L
2(V)

þ
XNs

n¼1

As
n �g1(w)�g1(v)þ �g2(w)�g2(v)ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rw,rv
� 

L2(V)

(3:66)

Note that the summation is possible because the division of V into Vs
n is performed in

such a way that the interfaces Gs
i of V

s
n do not share any finite portion of any Lci on which

the function is not square integrable: no energy loss in the interface of the smoothing
domains.
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Equation 3.66, the (approximated) smoothed gradient for smoothing domain Vs
n is

denoted as

rw ¼ qw
qx1

qw
qx2

� �
¼

1
As

n

ð
Gs
n

w(s)n1ds

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼�g1, constant in Vs

n

1
As

n

ð
Gs
n

w(s)n2ds

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼�g2, constant in Vs

n

0
BBB@

1
CCCA ¼ ( �g1(w) �g2(w))

(3:67)

where �gi(w) denotes the smoothed derivatives of w with respect to xi.
The G

1
h inner product defined in Equation 3.66 is also qualified based on the definition

given in Section 3.1.7 for the same reason mentioned in Remark 3.4.
The G

1
h seminorm is next defined as

jwj2
G

1(V) ¼
XNs

n¼1

As
n rw
�� ��2¼XNs

n¼1

As
n �g21(w)þ �g22(w)
� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rw,rw
� 

(3:68)

and the G
1
h full norm becomes

kwk2
G

1(V) ¼
ð
V

w2dV

|fflfflfflffl{zfflfflfflffl}
(w,w)¼kwk2

L2

þ jwj2
G

1(V)|fflfflfflffl{zfflfflfflffl}
rw,rwð Þ

¼ kwk2L2 þ jwj2
G

1(V) (3:69)

which is induced from the inner product Equation 3.66. The definitions for 3D scalar fields
are a natural extension and hence are omitted here. We now move to the definitions for
more complicated vector fields.

3.3.11 G
1
h Norms for 2D Vector Fields

For vector fields, we need to use vectors of functions. For example, when the function has
two components, we should have w ¼ w1 w2f gT where w1,w2 2 G

1
h* are two-component

functions. In this case, we have the smoothed gradient for smoothing domain Vs
n in the

following form:

rw¼

qw1

qx1

qw1

qx2

qw2

qx1

qw2

qx2

0
BBBB@

1
CCCCA¼

1
As

n

ð
Gs
n

w1(s)n1ds

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼�g11, constant in Vs

1
As

n

ð
Gs
n

w1(s)n2ds

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼�g12, constant in Vs

1
As

n

ð
Gs
n

w2(s)n1ds

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼�g21, constant in Vs

n

1
As

n

ð
Gs
n

w2(s)n2ds

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼�g22, constant in Vs

n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼
�g11(w1) �g12(w1)

�g21(w2) �g22(w2)

 !

(3:70)

* In this book, when we require a vector is in a space, we require each of the component functions being
independently in the space, and the dimension of the space is expanded accordingly.
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where �gij(w) denotes the smoothed derivatives of wi with respect to xj. We notice here that
the (smoothed) gradient is now a matrix, and hence there can be many equivalent ways to
define the associated inner product. In this work, we decide to have the definition associ-
ated with the type of physical problems to be studied for convenience of proving necessary
theories for that type of the problems. Considering 2D solid mechanics problems, we
define the associated inner product in the form:

(w, v)
G

1(V) ¼
ð
V

(w1v1 þ w2v2)dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(w, v)

þ
XNs

n¼1

As
n

�g11(w1)�g11(v1)þ �g22(w2)�g22(v2)

þ �g12(w1)þ �g21(w2)ð Þ �g12(v1)þ �g21(v2)ð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rw,rv
� 

(3:71)

The induced G
1(V) seminorm is first defined as

jwj2
G

1(V) ¼
XNs

n¼1

As
n �g211(w1)þ �g222(w2)þ �g12(w1)þ �g21(w2)ð Þ2

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rw,rw
� 

(3:72)

It is clear that in our definition of the inner product and hence in the induced seminorm we
have intentionally related to the strain components, and hence the L2 norm of the vector of
strains.

The associated G
1
h full norm can now be defined as

kwk2
G

1(V) ¼
ð
V

(w2
1 þ w2

2)

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
(w,w)¼kwk2

L2

dVþ jwj2
G

1(V)|fflfflfflffl{zfflfflfflffl}
rw,rwð Þ

¼ kwk2L2 þ jwj2
G

1(V) (3:73)

3.3.12 G
1
h Norms for 3D Vector Fields

For vector fields with three-component functions in three-dimensions, such as the 3D solid
mechanics problems, we shall have w ¼ w1 w2 w3f gT where w1,w2,w3 2 G

1
h. In this

case we define, naturally, the associated inner product as

(w,v)
G

1(V) ¼
ð
V

(w1v1 þ w2v2 þ w3v3)dV

þ
XNs

n¼1

As
n

�g11(w1)�g11(v1)þ �g22(w2)�g22(v2)þ �g33(w3)�g3(v3)

þ (�g12(w1)þ �g21(w2))(�g12(v1)þ �g21(v2))

þ (�g13(w1)þ �g31(w3))(�g13(v1)þ �g31(v3))

þ (�g23(w2)þ �g32(w3))(�g23(v2)þ �g32(v3))

2
666664

3
777775

(3:74)
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The associated G
1
h seminorm is defined as

jwj2
G

1(V) ¼
XNs

n¼1

As
n

�g211(w1)þ �g222(w2)þ �g233(w3)

þ (�g12(w1)þ �g21(w2))2

þ (�g13(w1)þ �g31(w3))2

þ (�g23(w2)þ �g32(w3))2

0
BBB@

1
CCCA (3:75)

and the G
1
h full norm becomes

kwk2
G

1(V) ¼
ð
V

(w2
1 þ w2

2 þ w2
3)dVþ jwj2

G
1(V) (3:76)

We finally define a space for functions that are fixed on the Dirichlet boundaries and hence
the functions cannot ‘‘float.’’

G
1
h,0 ¼ fv 2 G

1
h(V)jv ¼ 0 on Gug (3:77)

The G
1
h spaces defined in this section are ‘‘unusual’’ in two ways: first, we do not use

derivatives of functions because we want to accommodate discontinuous functions that
can be generated much easily in both the meshfree or finite element settings; second, the
Frobenius or trace norms are not used as induced matrix norms, and we intentionally
define the inner product in such a way that the inner product-induced norms are related to
the L

2 norms of the vector of strains, which facilitates a smoother process in the later part
of the derivation of key inequalities.

3.4 G
1
h Spaces: Basic Properties

Because the normed G
1
h spaces are defined in the above-mentioned ‘‘unusual’’ manner, we

have to show that they possess all the necessary basic properties. Here we discuss only
normed G

1
h spaces.

3.4.1 Linearity

First, a normedG
1
h space is a linear space, meaning that conditions listed in Equation 3.1 can

be satisfied. To show this, consider any two functions w, v 2 G
1
h. From the definition

(Equation 3.60), we shall have

w(x) ¼ w(x)dw, dw 2 R
Nn

v(x) ¼ w(x)dv, dv 2 R
Nn

(3:78)
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The addition of w and v becomes

w(x)þ v(x) ¼ w(x) (dw þ dv)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2 R

Nn

(3:79)

which must also be in G
1
h, because R

Nn is a linear space that satisfies Equation 3.1:
(dw þ dv) 2 R

Nn . Following exactly the same argument, we shall have that for 8w 2 G
1
h

and 8a 2 R,aw 2 G
1
h. &

3.4.2 Positivity

From the definition, for example Equation 3.65, we have

kwk2
G

1(V) ¼ kwk2
L
2 þ jwj2

G
1(V), 8w 2 G

1
h (3:80)

Since the L
2 norm is positive and the G

1 seminorm is semipositive, we shall always have

kwk
G

1 > 0, 8w 2 G
1
h, w 6¼ 0 (3:81)

3.4.3 Scalar Mortification

From the definition, for example Equation 3.62, we have

kawk
G

1 ¼ jajkwk
G

1 , 8a 2 R, 8w 2 G
1
h (3:82)

3.4.4 Triangular Inequality

We now prove the triangular inequality for G1
h norm

kwþ vk
G

1 � kwk
G

1 þ kvk
G

1 , 8w 2 G
1
h, 8v 2 G

1
h (3:83)

We first prove this for 2D scalar functions:

kwþ vk
G

1 ¼
ð
V

(wþ v)2dVþ
XNs

n¼1

As
n r(wþ v)
�� ��2

2
4

3
5
1=2

¼
ð
V

w2dVþ
ð
V

v2dVþ 2
ð
V

wvdVþ
XNs

n¼1

As
n �g1(w)þ �g1(v)ð Þ2þ �g2(w)þ �g2(v)ð Þ2

 �2

4
3
5
1=2

¼
ð
V

w2dVþ
ð
V

v2dVþ 2
ð
V

wvdVþ
XNs

n¼1

As
n

�g21(w)þ 2�g1(w)�g1(v)þ �g21(v)

þ�g22(w)þ 2�g2(w)�g2(v)þ �g22(v)

 !2
4

3
5
1=2

(3:84)
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¼
ð
V

w2dVþ
XNs

n¼1

As
n(�g

2
1(w)þ �g22(w))

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kwk2G1

þ
ð
V

v2dVþ
XNs

n¼1

As
n(�g

2
1(v)þ �g22(v))

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kvk2G1

2
66666664

þ2
ð
V

wvdVþ
XNs

n¼1

As
n �g1(w)�g1(v)þ �g2(w)�g2(v)ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
w,vð ÞG1� kwkG1kvkG1

0
BBBBB@

1
CCCCCA

3
777775

1=2

� kwk2G1 þ 2kwkG1kvkG1 þ kvk2G1

h i1=2
¼ kwkG1 þ kvkG1 , 8w 2 G

1
h, 8v 2 G

1
h (3:85)

In the above proof, we used the Cauchy–Schwarz inequality for our inner product induced
norms.

The exact same procedure can applied to prove the triangular inequality for vector
functions, but it will be a little lengthy. We prove it here for the 2D case, by examining
first the seminorm of the sum of two functions w, v 2 G

1 based on the definition of
Equation 3.72:

jwþ vj2
G

1(V) ¼
XNs

n¼1

As
n �g211(w1 þ v1)þ �g222(w2 þ v2)þ �g12(w1 þ v1)þ �g21(w2 þ v2)ð Þ2

 �

¼
XNs

n¼1

As
n

�g211(w1)þ �g211(v1)þ 2�g11(w1)�g11(v1)þ �g222(w2)þ �g222(v2)

þ 2�g22(w2)�g22(v2)þ �g12(w1)þ �g21(w2)ð Þ þ �g12(v1)þ �g21(v2)ð Þð Þ2

 !

¼

XNs

n¼1

As
n �g211(w1)þ �g222(w2)þ �g12(w1)þ �g21(w2)ð Þ2

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jwj2

G
1(V)

þ
XNs

n¼1

As
n �g211(v1)þ �g222(v2)þ �g12(v1)þ �g21(v2)ð Þ2

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jvj2

G
1(V)

þ 2
XNs

n¼1

As
n

�g11(w1)�g11(v1)þ �g22(w2)�g22(v2)

þ �g12(w1)þ �g21(w2)ð Þ �g12(v1)þ �g21(v2)ð Þ

0
@

1
A

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

(3:86)

We then examine the full norm of the sum of two functions w, v 2 G
1
h based on the

definition of Equation 3.73:

118 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



kwþ vk2
G

1(V) ¼
ð
V

(w1 þ v1)2 þ (w2 þ v2)2
� 

dVþ jwþ vj2
G

1(V)

¼
ð
V

w2
1 þ v21 þw2

2 þ v22 þ 2w1v1 þ 2w2v2
� 

dVþ jwþ vj2
G

1(V)

¼
ð
V

w2
1 þ v21

� 
dVþ

ð
V

w2
2 þ v22

� 
dVþ 2

ð
V

w1v1 þw2v2ð ÞdVþ wþ vj j2
G

1(V) (3:87)

Substituting Equation 3.86 into Equation 3.87 gives

kwþ vk2
G

1 ¼
ð
V

w2
1 þ v21

� 
dVþ

ð
V

w2
2 þ v22

� 
dVþ 2

ð
V

w1v1 þ w2v2ð ÞdV

þ jwj2
G

1 þ jvj2
G

1 þ 2
XNs

n¼1

As
n

þ �g11(w1)�g11(v1)þ �g22(w2)�g22(v2)

þ �g12(w1)þ �g21(w2)ð Þ �g12(v1)þ �g21(v2)ð Þ

 !

¼ kwk2
G

1 þ kvk2
G

1 þ 2

ð
V

w1v1 þ w2v2ð ÞdV

þ
XNs

n¼1

As
n

�g11(w1)�g11(v1)þ �g22(w2)�g22(v2)

þ �g12(w1)þ �g21(w2)ð Þ �g12(v1)þ �g21(v2)ð Þ

 !

0
BBBBB@

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(w, v) � kwk

G
1(V)kvkG1(V)

� kwk2
G

1 þ kvk2
G

1 þ 2kwk
G

1kvk
G

1 ¼ kwk
G

1 þ kvk
G

1

� 2 (3:88)

which is Equation 3.83. Note here we used again the Cauchy–Schwarz inequality.
The other important basic property for a linear space is the completeness. We note here

that a G
1
h space is complete. A detailed discussion on this can be found in [22].

3.4.5 Key Inequalities

For a linear space being useful in constructing stable and convergent numerical methods
for well-posed problems, it has to have a set of key inequalities. We disscuss now these key
inequalities.

Comparing Equation 3.65 with Equation 3.64, we obtain

jwj
G

1(V) � kwk
G

1(V), 8w 2 G
1
h (3:89)

meaning that the G
1
h full norm is always larger than the G

1
h seminorm.

Remark 3.1: Functions in G
1
h Space: First Inequality

Functions in a G
1
h space satisfy the first inequality (Equations 3.90 and 3.91): The full G1

h
norm of a function is equivalent to the L

2 norm of the nodal values of the function.

kdk
L
2(V) � c f

dwkwkG1(V), 8w 2 G
1
h (3:90)
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or equivalently

kwk
G

1(V) � c f
wdkdkL2(V), 8w 2 G

1
h (3:91)

where c fdw and c fwd are nonzero positive constants independent of w and d. A proof for these
inequalities (Equations 3.90 and 3.91) is given in [6].

Remark 3.2: Functions in L
2 Space: Second Inequality

If at least a minimum number of linearly independent smoothing domains are used, we
should have the second inequality:

jwj
G

1(V) � cswdkdkL2(V), 8w 2 G
1
h,0(V) (3:92)

or equivalently

kdk
L
2(V) � csdwjwjG1(V), 8w 2 G

1
h,0(V) (3:93)

where csdw and cswd are nonzero positive constants independent of w and d. Equations 3.92
and 3.93 mean that the full G1

h norm of a function is equivalent to the L2 norm of the nodal
values of the function. A proof for these inequalities (Equations 3.92 and 3.93) has been
given in [6].

Remark 3.3: G1
h Norm Equivalency: Third Inequality

When a minimum number of independent node-based smoothing domains are used to
evaluate the G

1
h norms, there exists a positive nonzero constant cG such that

cGkwkG1(V) � jwj
G

1(V), 8w 2 G
1
h,0 (3:94)

meaning that the G
1
h full norm and the G

1
h seminorm of any function in a G

1
h space are

equivalent known as the third inequality [6]. It is a generalized Poincare–Friedrichs
inequality for G

1
h spaces. It is fundamentally important for stability of weakened-weak

formulation based on G spaces. A detailed proof on this norm equivalence theorem in G

space theory requires the first and second inequalities, and the details are given in [6] when
PIM shape functions are used.

Combining Equations 3.89 and 3.94, when a minimum number of independent
node-based smoothing domains are used to evaluate the G

1
h norms, we arrived at the

following chain inequalities:

cGkwkG1(V) � jwj
G

1(V) � kwk
G

1(V), 8w 2 G
1
h,0 (3:95)

These inequalities are fundamentally important to ensure the stability and convergence of
a weakened-weak formulation.
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Remark 3.4: G1
h Inner Product Space: Cauchy–Schwarz Inequality

The G1
h inner product defined in Equation 3.62 is qualified based on the definition given in

Section 3.1.7, and hence we shall have the Cauchy–Schwarz inequality:

(w, v)
G

1(V) � kwk
G

1(V) � kvkG1(V) (3:96)

To show this, we first observe the symmetric (Equation 3.11), because swapping places for
w and v will not change the value of the inner product. Second, it is positive definite
(Equation 3.12), because of the positivity of the (w, v)

L
2(V) and semipositivity of w0, v0

� 
L
2(V).

Finally, it is bilinear (Equation 3.13), because of the bilinear property of (w, v)
L
2(V) and

w0, v0
� 

L
2(V).

Equation 3.96 is fundamentally important for the continuity of the weakened-weak
formulation.

3.4.6 Relationship with Other Spaces

H
1
h � G

1
h (3:97)

G
1
h(V) � L

2(V) (3:98)

3.5 Error Estimation

This section briefs some basic error estimation issues for weak and weakened-weak
formulations, for the reference convenience in the discussions in the later chapters. We
will focus only on error bounds and convergence rates for methods using linear displace-
ment field, and will not give details of proofs for these inequalities but simply list them
with the reference sources. For error measures in G norms, there are still too many
unknown details, and hence we focus only on interpolation error. For simplicity, we
consider only 1D problems.

3.5.1 Interpolation Errors

Consider now the error when a ‘‘target’’ function w is to be interpolated using the
interpolant defined in Section 2.1.7. We first define such an interpolation error for the
given target function w as

eI(x) ¼ w(x)� Ihw(x), 8x 2 Vc
i (3:99)

where Vc
i is the domain of the ith cell defined in Section 1.7.2. In the standard Galerkin

weak formulation such as FEM, we should have the following bounds.
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3.5.2 Error in L
2 Norm

For w 2 H
1
0 and uniform mesh the interpolation error in L

2 norm [4,5] is

jeI(x)j
L
2 ¼ jw� IhwjL2 � h2 max

i¼1,...,Nc

max
j2Vc

i

jw00(j)j
� �

(3:100)

The proof of this bound in FEM was based on Rolle’s theorem. Equation 3.100 gives the
h-dependence of the error in L

2 norms in relation to the ‘‘strong’’ norm: the infinity norm of
the target function to be approximated by interpolation. In the weak formulation, the
h-dependence of the solution error in displacement norm is the same as that of the interpol-
ation error in L

2 norm [4,5]. Therefore, Equation 3.100 gives the essence of the h-dependence
of the solution errors.

3.5.3 Error in H
1 Norm

For w 2 H
1
0 and uniform mesh the interpolation error in H

1 norm [4,5] is

jeI(x)j
H

1 ¼ jw� I hwjH1 � h max
i¼1,...,Nc

max
j2Vc

i

jw00(j)j
� �

(3:101)

which gives the h-dependence of the error in H
1 norm. In the weak formulation, the

h-dependence of the solution error in energy norm is the same as that of the interpolation
error in H

1 norm. Therefore, Equation 3.101 reveals the essence of the h-dependence of the
solution error in energy norm. We note the following remark without proof.

Remark 3.5: The Rate of Convergence of Linear FEM Solution: A Proven Fact
The theoretical rate of convergence of the solution error in L

2 norm (error in displacement
norm) for a linear FEM (fully compatible) model is 2.0, and that in H

1 norm (error in strain
energy norm) is 1.0.

3.5.4 Error in G
1 Norm

Theorem 3.1: Interpolation Error in G
1
h Norm

If the target function w 2 G
1
h,0 and wjVc

i
2 C

2(Vc
i ), i ¼ 1, . . . ,Nc, the linear interpolation error

satisfies, in general

jeIj
G

1(V) ¼ jw� I hwjG1(V) � hmax
3crh
4

max
q¼1,...,Ne

max
j2Vq

jw00(j)j
� �

(3:102)

where crh¼ hmax=hmin. In particular, when uniform mesh is used, and when the second
derivative of w is constant in the cells sharing the smoothing domains we further have

jeIj
G

1(V) ¼ jw� I hwjG1(V) ¼ h1:5
1
4
jw00j (3:103)
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This rate of 1.5 is termed as ideal convergence rate for a model based on G
1
h space theory that

is achieved for uniform mesh and constant second derivative of w.

Proof Consider a target function w 2 G
1
h,0 and wjVc

i
2 C

2(Vc
i ), i ¼ 1, . . . ,Nc. Using the

Taylor’s expansion with respect to xn (see Figure 3.2), there exists a j 2 Vc
n such that

w(x) ¼ w(xn)þ w0(xn)(x� xn)þ 1
2
w00(j(x))(x� xn)2, 8x 2 Vc

n (3:104)

In Equation 3.104, we note the fact that j is in fact dependent on x. We also note that we do
not require the existence of w00 on the boundary of Vc

n meaning that the first derivative of w
can ‘‘jump’’ there. Using Equation 2.5, the linear interpolant has to pass through two nodes
at xn and xnþ1, and hence should be given as

I hw(x) ¼ w(xn)þ w0(xn)þ 1
2
w00 j(xnþ1)ð Þhn

� �
(x� xn), 8x 2 Vc

n (3:105)

Based on the definition of Equation 3.63, for our 1D problem and the nth smoothing cell,
we have

�g(wn) ¼ qw
qx

¼ 1
As

n

ð
Gs
n

w(s)n1ds ¼ 1
As

n
w

nþ1
2
� w

n�1
2

� �
¼ 2

hn þ hn�1
w

nþ1
2
� w

n�1
2

� �
(3:106)

where
wn¼w(xn)
h0 ¼ hNn ¼ 0

Substitute Equations 3.104 and 3.105 into Equation 3.106, we then have for the nth
smoothing cell:

�g(wn � I hwn|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
eI

) ¼ 2
hn þ hn�1

w00 j x
nþ1

2

� �� �
x
nþ1

2
� xn

� �2

� 1
2
w00(j(xnþ1))hn x

nþ1
2
� xn

� �

� 1
2
w00 j x

n�1
2

� �� �
x
n�1

2
� xn�1

� �2

þ 1
2
w00(j(xn))hn�1 x

n�1
2
� xn�1

� �

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ 2
hn þ hn�1

h2n
4

1
2
w00 j x

nþ1
2

� �� �
� w00(j(xnþ1))

� �

� h2n�1

4
1
2
w00 j x

n�1
2

� �� �
� w00(j(xn))

� �

8>>><
>>>:

9>>>=
>>>;

(3:107)

Let

w00
max ¼ max

i¼1,...,Ne

max
j2Vc

i

jw00(j)j (3:108)
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and hence we shall have w00
max 6¼ 0, otherwise the second derivative of w will be 0

everywhere in the problem domain, and the interpolation will be exact: no need for error
estimation. Using Equation 3.105 into Equation 3.106, Equation 3.107 becomes

�g(wn � I hwn|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
eI

)

������
������ ¼

h2max

4
2

hn þ hn�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
� 1

hmin

jw00
maxj

1
2

h2n
h2max|ffl{zffl}
�1

w00 j x
nþ1

2

� �� �

jw00
maxj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�1�,�1

� h2n
h2max|ffl{zffl}
�1

w00(j(xnþ1))
jw00

maxj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�1�,�1

�1
2
h2n�1

h2max|ffl{zffl}
�1

w00 j x
n�1

2

� �� �

jw00
maxj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�1�,�1

þ h2n�1

h2max|ffl{zffl}
�1

w00(j(xn))
jw00

maxj|fflfflfflfflffl{zfflfflfflfflffl}
�1�,�1

2
66666666666664

3
77777777777775

�������������������

�������������������|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
chw � 3

� 3h2max

4
hmax

hmin|ffl{zffl}
crh<1

jw00
maxj ¼ hmax

3crh
4

jw00
maxj (3:109)

The error defined in G
1
h norm in the global problem domain becomes

jw� I hwj2G ¼
XNs

n¼1

As
n �g(wn � I hwn)j j2 �

XNs

n¼1

hmax hmax
3crh
4

jw00
maxj

� �2

¼ Ns|{z}
� 1

hmax

hmax hmax
3crh
4

jw00
maxj

� �2

� hmax
3crh
4

jw00
maxj

� �2

(3:110)

Therefore, we have Equation 3.102.
In Equation 3.109, we needed to estimate chw and gave a very sloppy bound of 3. This is in

fact a very big overestimate in a usual situation. If a uniform mesh is used, and the target
function has a constant second derivative in the cells sharing a smoothing domain, chw
should be 0 for all the inner smoothing domains. In such a situation, Equation 3.109 becomes

j�g(wn � I hwn)j ¼
h
4 jw00

maxj, n ¼ 1,Nn

0, s ¼ 2, 3, . . . ,Nn � 1

(
(3:111)

and Equation 3.110 becomes

jw� Ihwj2G1 ¼
XNs

n¼1

As
nj�g(wn � Ihwn)j2

¼ A1j�g(w1 � I hw1)j2 þ ANn
�g(wNn � IhwNn )j j2

¼ h
2

h
4
jw00

maxj
� �2

þ h
2

h
4
jw00

maxj
� �2

¼ h
h
4
jw00

maxj
� �2

¼ h3

42
jw00

maxj2 (3:112)

which is Equation 3.103. This completes the proof. &
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Note in Equation 3.103 the bound is sharpest: strict equality. The proof on the above two
equations were originally given in [6].

In the W2 formulation based on G space theory, we may expect the rate of h-dependence
of the solution error to be the same as that of the interpolation error. However, this
has not been proven theoretically. We note the following remark of expectation without
proof.

Remark 3.6: The Rate of Convergence of W2 Solution Based on G
1 Space:

An Expectation
The theoretical rate of convergence of the solution error in L

2 norm (error in displacement
norm) for W2 model based on G

1
h space is expected to be 2.0, and that in G

1
h norm (error in

strain energy norm) is expected to be between 1.0 and the ideal rate of 1.5.

3.5.5 Comparison Errors in G
1 and H

1 Norms

An exact comparison is difficult, due to the space difference between H
1
h,0 and G

1
h,0 and

hence w will be different. But an indicative comparison can be useful. For errors in
seminorm measure, Equation 3.101 is quite close to Equation 3.102 for uniform mesh
(crh¼ 1.0): They all give a convergence rate h-dependence of 1.0. Equation 3.103 shows,
however, the W2 formulation can provide a convergence rate of 1.5 in seminorm measure
for cases of even division of node-based smoothing domains. Compared to Equation 3.101,
the convergence rate is 50% higher.

Equation 3.103 was obtained under the conditions of (1) uniform division of elements/
cells and (2) constant second derivative of w in the cells sharing a smoothing domain.
The first condition is essentially the same ‘‘symmetrical condition’’ of smoothing domains
for the integral representation to produce the first gradient of a function exactly (see
Section 2.2.3). When this condition is satisfied, all the interior smoothing domains become
symmetrical, and the smoothing operation will reproduce the first derivative exactly. The
only error will be on the boundary where the symmetry condition cannot be satisfied.
The second condition of constant second derivative of the target function seems to be
very strong, but it can be rather easy to be quite closely satisfied, because all we need is
the second derivative of the target function being constant locally in the cells sharing a
smoothing domain. When the mesh is refined, we can often expect the second derivative
being approximately constant locally. Therefore, the rate given in Equation 3.103 can be
expected when the mesh is reasonably fine. In practical applications, on the other hand,
the first condition is rather very difficult to meet, simply because it is rare to have
uniform division of element/cells for practical problems of complicated geometry. How-
ever, we can, in fact, expect the smoothing domains to be approximately ‘‘symmetric’’
locally (hn � hn�1 for node n for our 1D problems). In such cases, we can still expect
Equation 3.103 to hold approximately and hence a convergence rate of 1.5 in G

1
h semi-

norm. This has been confirmed in may numerical examples presented in [7,13–20], where
numerical rates of about 1.4 were often found. We will also see many examples in
Chapter 8.

Let us now further examine for a general problem with reasonably smoothing second
derivative. The coefficient chw in Equation 3.109 becomes
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chw ¼

1
2

h2n
h2max|ffl{zffl}
�1

w00 j x
nþ1

2

� �� �

jw00
maxj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�1�,�1

� h2n
h2max|ffl{zffl}
�1

w00(j(xnþ1))
jw00

maxj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�1�,�1

� 1
2
h2n�1

h2max|ffl{zffl}
�1

w00 j x
n�1

2

� �� �

jw00
maxj|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�1�,�1

þ h2n�1

h2max|ffl{zffl}
�1

w00(j(xn))
jw00

maxj|fflfflfflfflffl{zfflfflfflfflffl}
�1�,�1

2
66666666666664

3
77777777777775

�������������������

�������������������

� 1
2

1
h2max

jw00(j(xn))j
jw00

maxj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�1

jh2n � h2n�1j ¼
1
2
hn(hn þ hn�1)

h2max

jw00(j(xn))j
jw00

maxj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�1

1� hn�1

hn|ffl{zffl}
�1

���������

���������

� 1� hn�1

hn|ffl{zffl}
�1

���������

���������
(3:113)

If the lengths of the two neighboring cells of the interior nodes are different, the contribu-
tion of these nodes to the error norm can be in control (when mesh is refined), and thus the
convergence rate will be about 1.0 and not 1.5. However, chw in Equation 3.109 can be a
very small number. If, for example, there is a 20% length difference in the two neighboring
cells of all the interior nodes (hn�1=hn¼ 0.8), we shall have chw � j 1� hn�1=hnj ¼ 0.2. This
means that even the rate of convergence cannot be improved, the results will still be about
five times more accurate. This was also observed in the ES-PIM where the edge-based
smoothing domains are not quite symmetric, but were often found to be about 2–10 times
more accurate in energy norm compared to the FEM using the same mesh [18]. In extreme
cases, where all the smoothing domains are not symmetric at all, the results of the W2

formulation will still be better than the standard weak formulation, as shown in Equations
3.101 and 3.102.

Because a finite H
1
h space is a subspace of a corresponding G

1
h space, the convergence

rates found in G
1
h norm measures are applicable to functions in the H

1
h space. This means

that when a weakened-weak formulation is applied to a FEM setting, we will achieve
higher convergence rate and/or higher accuracy.

Finally, we note that for the weakened-weak formulation, the relation between the
interpolation error and the solution error is not yet clear. Similar relationships stated in
Sections 3.5.2 and 3.5.3 may exist, but are yet to be proved.

3.6 Concluding Remarks

Before closing up this chapter, we mention the following remarks.
The standard weak formulation used in FEM is applicable and has applied to meshfree

settings. As long as the meshfree shape functions is created in a properH space, the stability
and convergence of the meshfree methods is ensured for physically well-posed problems.
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Based on the G space theory presented in this chapter, a weakened-weak formulation is
applicable and has applied to meshfree settings as well as FEM settings (because an H

1
h

space is in aG1
h space). As long as the meshfree shape functions created is in a G1

h space, the
stability and convergence of the meshfree methods is ensured by these key inequalities for
physically well-posed problems.

With theG space theory, we can now claim that as long as a set of linearly independent shape
functions that satisfy the bound and positivity conditions can be created, a stable and convergence
method can always be established using a weakened-weak formulation. We do not have to worry
about the compatibility issue any more: a peace of mind. A W2 meshfree method produces
symmetric equations systems without any additional degrees of freedoms, much more
accurate, higher convergence rate, and hence much more efficient than FEM using the
same mesh as demonstrated in [6,7,13–20], and in Chapter 8. Therefore, G space theory is
indeed an important fundamental theory for meshfree, element-based, compatible and
incompatible methods.

With these theories on H and G spaces, we can now establish weak or weakened-weak
statements to formulate meshfree methods for various problems. In these processes, all we
need to do now is to form proper bilinear forms for the given type of problems, and then
use them in the weak or weakened-weak statement to establish algebraic equations. Details
will be given in Chapter 5.

We can also choose to follow physical energy principles (to be presented in Chapter 5) to
establish weak or weakened-weak forms for meshfree methods using function spaces
defined in this chapter. This physical approach is more preferred by engineers, as we can
easily obtain all sorts of weak forms for various types of structures. In addition, we can
have more freedom to introduce yet one more step, strain field construction, so as to
formulate an even wide class of important and efficient meshfree methods with desired
properties. The techniques on strain field construction will be detailed in Chapter 4.

References

1. Hughes, T. J. R., The Finite Element Method, Prentice-Hall, London, 1987.
2. Liu, G. R. and Quek, S. S., The Finite Element Method: A Practical Course, Butterworth Heinemann,

Oxford, 2002.
3. Naylor, A. W. and Sell, G. R., Linear Operator Theory in Engineering and Science, Springer-Verlag,

New York, 1982.
4. Peraire, J., Lecture Notes on Finite Element Methods for Elliptic Problems. MIT, Cambridge, MA, 1999.
5. Strang, G. and Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs,

NJ, 1973.
6. Liu, G. R., A G space theory and a weakened weak (W2) form for a unified formulation of

compatible and incompatible methods, Part I: Theory and Part II: Applications to solid mechanics
problems, Int. J. Numerical Methods Eng., 2008 (revised).

7. Liu, G. R., A generalized Gradient smoothing technique and the smoothed bilinear form for
Galerkin formulation of a wide class of computational methods, Int. J. Comput. Methods, 5(2), 199–
236, 2008.

8. Liu, G. R. and Kee, B. B. T., A stabilized least-squares radial point collocation method (LS-RPCM)
for adaptive analysis, Comput. Method Appl. Mech. Eng., 195, 4843–4861, 2006.

9. Kee, B. B. T., Liu, G. R., and Lu, C., A regularized least-squares radial point collocation method
(RLS-RPCM) for adaptive analysis, Comput. Mech., 40, 837–853, 2007.

Function Spaces for Meshfree Methods 127

© 2010 by Taylor and Francis Group, LLC



10. Liu, G. R., Dai, K. Y., and Nguyen, T. T., A smoothed finite element method for mechanics
problems, Comput. Mech., 39, 859–877, 2007.

11. Liu, G. R., Nguyen, T. T., Dai, K. Y., and Lam, K. Y., Theoretical aspects of the smoothed finite
element method (SFEM), Int. J. Numerical Methods Eng., 71, 902–930, 2007.

12. Dai, K. Y., Liu, G. R., and Nguyen, T. T., An n-sided polygonal smoothed finite element method
(nSFEM) for solid mechanics, Finite Elem. Anal. Des., 43, 847–860, 2007

13. Liu, G. R., Zhang, G. Y., Dai, K. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y., and Han, X., A linearly
conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int. J. Comput.
Methods, 2(4), 645–665, 2005.

14. Liu, G. R. and Zhang, G. Y., Upper bound solution to elasticity problems: A unique property of
the linearly conforming point interpolation method (LC-PIM), Int. J. Numerical Methods Eng.,
74, 1128–1161, 2008.

15. Li, Y., Liu, G. R., Luan, M. T., Dai, K. Y., Zhong, Z. H., Li, G. Y., and Han, X., Contact analysis
for solids based on linearly conforming radial point interpolation method, Comput. Mech.,
39, 537–554, 2007.

16. Zhang, G. Y., Liu, G. R., Nguyen, T. T., Song, C. X., Han, X., Zhong, Z. H., and Li, G. Y., The upper
bound property for solid mechanics of the linearly conforming radial point interpolation method
(LC-RPIM), Int. J. Comput. Methods, 4(3), 521–541, 2007.

17. Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., and Lam, K. Y., A node-based smoothed finite
element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput.
Struct., 87, 14–26, 2009.

18. Liu, G. R., Nguyen-Thoi, T., and Lam, K. Y., An edge-based smoothed finite element method
(ES-FEM) for static, free and forced vibration analyses in solids, J. Sound Vibration, 320, 1100–1130,
2009.

19. Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., and Zhang, G. Y., A face-based smoothed finite element
method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral
elements, Int. J. Numerical Methods Eng., 78, 324–353, 2009.

20. Liu, G. R. and Zhang, G. Y., Edge-based smoothed point interpolation method (ES-PIM),
Int. J. Comput. Methods, 5(4), 621–646, 2008.

21. Zhang, G. Y., Liu, G. R., Wang, Y. Y., Huang, H. T,. Zhong, Z. H., Li, G. Y., and Han, X., A linearly
conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems,
Int. J. Numerical Methods Eng., 72, 1524–1543, 2007.

22. Liu, G. R. and Zhang, G. Y., A normed G space and weakened weak (W2) formulation of a
cell-based smoothed point interpolation method, Int. J. Comput. Methods, 6(1), 147–179, 2009.

23. Liu, G. R., On G space theory, Int. J. Comput. Methods, 6(2), 1–33, 2009.

128 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



4
Strain Field Construction

Novel and more efficient numerical methods can be invented, only if we can always be
open-minded. The traditional procedure of three steps used in displacement methods is
very simple: (1) domain discretization, (2) displacement field construction (via shape
function creation), and (3) weak formulation to derive the discretized algebraic equations
system that can be solved using standard routines. The most popular finite element
method (FEM) follows this process and its effectiveness has been proven [1,2]. To further
advance, in meshfree methods we need to introduce an additional step after step 2: strain
field construction, so as to separate steps 2 and 3, in order to create a room for improving
significantly the solution accuracy, and for solving the compatibility issues in FEM so that
incompatible methods can be formulated properly based on the weakened-weak (W2)
formulation (see Chapter 5).

Because techniques for strain field construction are relatively less developed, we are able
to introduce only a few techniques, and even for these few there are still many theoretical
issues which need to be studied further. The author believes that the potential in this
direction of development should not be underestimated, and hence a lot more efforts are
needed. The success in this direction of development depends on two major issues: (1) the
addition step of strain field construction should be simple, cost-effective, and without
introducing addition degrees of freedom to the equations system; (2) it should show
sufficient improvement with respect to FEM, and=or offer attractive properties. This
chapter discusses some of the techniques used for strain field construction, which focus
only on the works for weakened-weak formulations, including the so-called strain-
constructed Galerkin (SC-Galerkin) formulations, which are discussed in Chapter 5.

4.1 Why Construct a Strain Field?

Once the displacement in a proper H space is assumed, the strain field is readily available
using simply the strain–displacement relation, known as the compatible strain field. Why
we want to construct another strain field? The reasons are described as follows.

In the FEM settings, because the assumed displacement field is compatible over the
entire problem domain, and the strain field is obtained using the strain–displacement
relation precisely, the Galerkin model or the standard FEM model is said to be fully
compatible. Such a standard FEM model is variationally consistent and works well for
many practical problems. However, there are three major issues associated with this type
of fully compatible Galerkin formulation. The first issue is the well known ‘‘overly stiff’’
phenomenon, which can have possible consequences of (1) the so-called ‘‘locking’’ behav-
ior for many problems, (2) inaccuracy in stress solutions, and (3) poor solutions when using
a triangular mesh. The second issue concerns mesh distortion-related problems also, such
as significant accuracy loss when the element mesh is heavily distorted. The third issue
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relates to the difficult task of generation of quality mesh. We, engineers, often prefer using
the triangular type of meshes as they can be created much more easily and even automat-
ically for complicated geometries. However, it is well known that a fully compatible FEM
model does not like such elements and often gives solutions of very poor accuracy
especially for stresses. It demands a good quality mesh of quadrilateral elements.

Many efforts have been made in resolving the overly stiff phenomenon, especially in the
area of hybrid or mixed FEM formulations based on two or three field principles [3,4].
Some kind of strain modifications have also been used in FEM settings. However, these
efforts are made within the framework of elements. It is clear that for more effective means,
more innovative uses of the variational principles or out-of-box approaches beyond the
standard variational principles or work beyond the elements (bringing in information from
neighboring elements) are necessary.

In meshfree settings, the compatible strain field may not be accessible on the discontinu-
ous lines (even in the distributive sense). We have to construct a new strain field. Even
when the compatible strain field is accessible, we often want to construct a better strain
field for more accurate solutions having desired properties.

The essential idea in this chapter is to construct a new strain field, hoping that a Galerkin
model using the constructed strain field can deliver some good properties. Such a con-
struction can be performed by (1) modifying the compatible strain field obtained from the
strain–displacement relation when the compatible strain field is available; and (2) con-
structing a strain field using only the displacement field without differentiations. The
construction works for both meshfree and FEM settings, but the operation is beyond the
element.

Since the strain field is constructed anew, we can further reduce the requirement on the
assumed displacement functions leading to various weakened-weak formulations, for
which the SC-Galerkin (Chapter 5) weak forms need to be used. Methods based on an
SC-Galerkin weak form are as simple as the standard Galerkin weak form, and very useful
for establishing numerical methods, which overcome some of the issues with the standard
FEM. They offer many important and attractive properties, such as upper bound, lower
bound, superconvergence, free of locking, and ultra-accuracy. In addition, incompatible
methods can be effectively formulated with ensured stability and convergence. The idea of
strain construction can open a new window of opportunity for a new class of numerical
methods outside the box of the Hu–Washizu principle.

4.2 Historical Notes

4.2.1 Strain Construction Models of FEM Settings

A typical strain-constructed model (SC-model) is the smoothed FEM (SFEM) [6] formu-
lated with special elements. Although the assumed displacement functions are still in an
H

1 space, the expression for the compatible strain field is not generally available. The
strain-smoothing operation is then used to construct the smoothed strain field (see Remark
4.1 for a precise definition). The SFEM works very effectively for solid mechanics problems
including dynamic problems [7,9]; it can produce much more accurate stress solutions and
solutions with attractive properties [6]. Because the smoothed strains are obtained via line
integrations along the smoothing domain boundary, and the derivatives of shape functions
are not used in the formulation, simple point interpolation techniques can be applied to
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obtain the shape function values needed in the formulation, for which n-sided polygonal
elements and very heavily distorted mesh can be used [8]. Detailed theoretical aspects,
including stability and convergence of SFEM, can be found in [9]. Since the SFEM uses the
smoothed Galerkin weak form and the assumed displacement functions can still be
regarded as in an H

1 space, it is variationally consistent.
The second SC-model is the node-based smoothed FEM or NS-FEM [10]. The NS-FEM

uses an FEM mesh that is further divided into a set of smoothing domains based on nodes,
and the elements and the smoothing domains are overlaid with each other. The strain field
is constructed by using strain smoothing over the node-based smoothing domains, and the
point interpolation for constructing displacement function values (only on the boundary of
the smoothing domain) in an H

1 space. The NS-FEM can have different shapes of elements,
including n-sided polygonal elements, using a simple average and point interpolation
method for computing the shape function values. It has the properties of upper bound,
weak superconvergence, insensitiveness to mesh distortion, and being overly soft. The
overly soft behavior leads to spurious modes at a higher energy level for dynamic
problems, and hence temporal stabilization techniques are needed. Note that when the
linear triangular type of elements are used, the NS-FEM produces the same results as the
method of node-based uniform strain elements [16].

The third variationally consistent SC-model is the edge-based smoothed FEM or ES-FEM
[11,12]. The ES-FEM is similar as the NS-FEM, and uses an FEM mesh and the point
interpolation for displacement function construction. They differ in the division of smooth-
ing domains based on edges of elements. The ES-FEM models are weakly stiff and quite
‘‘close-to-exact,’’ and hence have properties of strong superconvergence and ultra-
accuracy. No spurious modes are found in ES-FEM models and hence they work very
well for both static and dynamic problems.

Note that the NS-FEM and ES-FEM are in fact more like a meshfree method, because
their formulations are very much different from FEM. The only one that is in common is
that the displacement functions used are still in an H

1 space. The theory, interpolation
procedure, integration, solution property, and the use of mesh depart quite a lot from
the standard FEM procedure. They are in fact special cases of the node-based point
interpolation methods (NS-PIMs) and edge-based point interpolation methods (ES-PIMs)
discussed in Chapter 8 based on the generalized smoothed Galerkin (GS-Galerkin)
weak form.

We now introduce a variationally inconsistent SC-model, that uses elements: aFEM [17].
The strain field in aFEM is constructed by scaling the gradient of strains with a scaling
factor so as to provide some ‘‘softness’’ to the model. The aFEM can give not only much
more accurate solutions in stresses but also produce nearly exact solutions in the energy
norm for a class of problems. It also offers simple and practical ways to resolve some
locking problems. The aFEM is not variationally consistent, and yet it can always produce
much better solutions than the FEM that is perfectly variationally consistent! This finding
opens an important window for the development of a new class of SC-models via manipu-
lating the compatible strain field obtained directly from the assumed displacements using
the strain–displacement relation. We now can commit a variational ‘‘crime,’’ as long as we
have proper ways to control the assumed strain field so that the solution can be somehow
bounded and converges to the exact one [17].

Along with the idea of the aFEM of quadrilateral elements [17], a variationally consistent
aFEM (VCaFEM) [29] has also been formulated by scaling only the gradient of strain in the
physical coordinates, without scaling the Jacobian matrices. Because the Hellinger–Reissner
variational principle is used, it is thus variationally consistent. The VCaFEM can produce
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both lower and upper bounds to the exact solution in the energy norm for all problems of
elasticity by choosing properly the scaling factor a. The important bound property is then
used to devise an exact-a approach for ultra-accurate solutions that are very close to the
exact solution in the energy norm. Furthermore, VCaFEM performs well for problems with
volumetric locking using a stabilization technique [29].

An aFEM using triangular and tetrahedral elements for the exact solution to mechanics
problems has also proposed using a partially constructed strain field [25]. Following
this line of development, a superconvergent aFEM (SaFEM) using triangular meshes
was proposed [30]. A strain field is carefully constructed by combining the compatible
strains and the smoothed nodal strains with an adjustable factor a. A Galerkin-like weak
form was proposed for SaFEM to establish the discretized equation system, based on the
Hellinger–Reissner variational principle. Because of the particular way in which the strain
field is constructed, the new weak form is as simple as the Galerkin weak form and the
resultant stiffness matrix is symmetric. It was proven theoretically and shown numerically
that the results of SaFEM are much more accurate than those of FEM-T3 and even more
accurate than those of FEM-Q4 when the same sets of nodes are used. SaFEM can produce
both lower and upper bounds to the exact solution in the energy norm for elasticity
problems by properly choosing an a. In addition, a preferable a approach has also been
devised for SaFEM to produce very accurate and superconvergent solutions for both
displacement and energy norms. Furthermore, a model-based selective scheme is proposed
to formulate a combined SaFEM=NS-FEM model that handily overcomes the volumetric
locking problems. Intensive numerical studies have been conducted to confirm the theory
and properties of SaFEM.

Note that all these SC-Galerkin models are in fact quite different from the standard FEM
models, but combinations of meshfree and FEM techniques. Such a combination of the
standard FEM and meshfree techniques are found indeed very effective and fruitful.

4.2.2 Strain Construction Models of Meshfree Settings

A typical meshfree model is the method of stabilized conforming nodal integration or
SCNI proposed by Chen et al. [24]. The spatial instability in the nodal integrated meshfree
methods using MLS or RKPM shape functions is resolved effectively using the strain
smoothing technique based on the Voronoi nodal domains. It is found that the accuracy
in the nodal integrated meshfree methods is considerably improved. Since SCNI uses the
smoothed Galerkin weak form and the assumed displacement functions are in anH

1 space,
it is variationally consistent.

Based on the strain smoothing technique [24], a generalized strain smoothing technique
[23] has been developed for meshfree settings which forms the foundation for a number of
SC-models, including NS-PIM* [18–22] and ES-PIM [13]. These methods use a triangular
mesh, upon which a set of node- or edge-based smoothing cells are created that are
intertwined with the triangular mesh, but allow the use of incompatible shape functions.
The GS-Galerkin weak form was established and used in these formulations. These
methods are found to have the properties of upper bound, superconvergence, and insensi-
tiveness to mesh distortion. The NS-PIM is found overly soft (with spurious modes), but

* NS-PIM was termed initially LC-PIM (linearly conforming point interpolation method) due to the ability to
produce at least a linear displacement field exactly. For the same reason, NS-PIM was termed initially also
LC-RPIM.
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the stiffness of the ES-PIM is very close-to-exact, and hence has properties of strong
superconvergence and ultra-accuracy. No spurious modes are found in linear ES-PIM
models and hence it works very well for both static and dynamic problems. Note that
when linear shape functions are used, the NS-PIM or ES-PIM is the same as the NS-FEM
and ES-FEM using linear triangular elements.

Because the constructed strain is assumed constant in the smoothing domains=cells, it is
proven that the orthogonal condition is satisfied, and thus these methods are variationally
consistent if the assumed displacement functions are in an H

1 space [19]. However, when
the assumed displacement functions are in a G

1
h space, its stability and convergence is

ensured by the weakened-weak formulation [37].
Another variationally inconsistent meshfree SC-model is the recently formulated point

interpolation method with continuous piecewise linear strain field (PIM-CS) [26]. In PIM-
CS, both the displacement field and the strain field are constructed using point inter-
polation methods, and an SC-Galerkin weak form is used to derive the discrete system
equations. Displacement interpolation is performed based on nodal displacements, but
strain interpolation uses strains at points obtained using strain smoothing techniques. The
points are chosen properly so that the strain field is continuous in the entire problem
domain. Furthermore, a superconvergent point interpolation method has been developed
for superconvergent solutions as well as solution bounds using the triangular mesh only,
by constructing a piecewise constant strain field [27].

The point interpolation method with the strain field constructed using least squares
approximation (least square point interpolation method [LS-PIM]) [28] is another example
of SC-Galerkin models. This approach is similar to PIM-CS, but with strain fields of
different order constructed using the least squares (an orthogonal) projection that satisfies
the orthogonal condition. Therefore, LS-PIM is variationally consistent, when linear inter-
polations for displacement functions (in anH

1 space) are used. When higher order interpol-
ation (quadratic PIM or RPIM) for the displacement field is used, the so-called strain norm
equivalent condition and strain convergence conditions are used to ensure the stability and
convergence. It is thus another example of a nicely constructedweakened-weak formulation
[37]. By controlling the order of the least squares projection for the strain construction, we
can build various models with desired properties [28].

These models are often found with strong superconvergence and ultra-accuracy, and can
be tuned to produce both lower and upper bounds to the exact solution.

4.3 How to Construct?

4.3.1 Discrete Models: A Base for Strain Construction

Our strain construction techniques operate, in general, on a number of local cells, and
beyond the element confinement. To perform a well-controlled construction of a strain
field, we first choose a base model that can be any fully compatible FEM model of proven
stability and convergence to the exact solution. For easy implementation, robustness and
convenience in analysis, and proving important theories and properties of an SC-model,
we choose the linear FEM model of triangular elements (FEM-T3) as the base model. We
first divide the problem domain V with Nc nonoverlapping and seamless (NOSL) triangu-
lar back ground cells=elements: V ¼ SNc

i¼1 V
c
i and Vc

i \Vc
j ¼ 0, 8i 6¼ j, with a set of Nn
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nodes, using the triangulation procedure discussed in Section 1.7.2. Our strain construction
is then based on this discrete model of triangular cells.

4.3.2 General Procedure for Strain Construction

The strain field, «̂(uh) 2 L
2(V), is constructed using the assumed displacement functions,

uh 2 G
1
h.* In general, «̂(uh) at any point in the problem domain can be given a general

form of

«̂(uh) ¼ P ~«(uh)
�

) ¼ P(Lduh), when uh 2 H
1
h(V)

B(uh), when uh 2 G
1
h(V)

(
(4:1)

where the compatible strain ~«(uh) is defined using the strain–displacement relation of
linear deformation that can be written in the following matrix form [2]:

~«(uh) ¼ Lduh (4:2)

where
uh is the assumed displacement vector
Ld is a differential operator matrix given in Equation 1.9

In Equation 4.1, P stands for a general transformation operator over space for a given
input ~«(uh). When, uh 2 G

1
h, P is not used, because ~«(uh) is not generally available: uh may

be not differentiable on lines=surfaces where the displacement is discontinuous. We need
to construct somehow an approximated ‘‘strain matrix’’ B that is also a transformation
operator over space for a given input uh.

Because the constructed strain field «̂(uh) needs only to be in L
2(V), we can require «̂(uh)

being piecewise continuous in the problem domain V. Therefore, in actual practice in a
discrete model, the domain V in usually divided into a set of quadrature (integration)
domains, V ¼ SNq

i¼1 V
q
i and the strain construction is done piecewise in each V

q
i . In

addition, «̂q(uh) in V
q
i is made continuous (often constant or linear) for convenience and

efficiency in strain energy integration. We then try to construct strains at a number of
points in domain V

q
i . Once the strains at sufficient number of points in V

q
i are obtained,

the constructed strain field «̂q(uh) in V
q
i can be constructed using simply (again) the point

interpolation methods (or other approximation methods discussed in Chapter 3), as we do
for constructing the displacement field.

After the strain field is constructed, the strain potential energy needs to be evaluated.
For any uh 2 H

1
0, the potential energy for the compatible strain field becomes

~UPE(uh) ¼
ð
V

1
2
~«T(uh)c~«(uh)dV (4:3)

For any uh 2 G
1
h,0 the strain energy potential for the constructed strain field becomes

ÛPE(uh) ¼
ð
V

1
2
«̂T(uh)c«̂(uh)dV (4:4)

* In this book, when we require a vector is in a space, we require each of the component functions being
independently in the space, and the dimension of the space is expanded accordingly.
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Both Equations 4.3 and 4.4 are associated to a bilinear form. We further note the following:

. The potential energy computed using the constructed strain field using Equation
4.4 will surely be nonnegative but can be zero depending on how the construction
is performed. This means that the resultant stiffness matrix created can be semi-
symmetric positive definite (semi-SPD) even for stable materials. The semi-SPD
property implies that an SC-model can have zero energy modes, and hence can be
spatially instable. We need to impose some sort of admissible conditions upon the
constructed strain fields; we cannot expect an anyhow constructed strain field to
produce a stable and convergent solution.

. Since the constructed strain field depends entirely on the assumed displacement
field, there are no additional unknowns introduced.

4.4 Admissible Conditions for Constructed Strain Fields

The condition of «̂ 2 L
2 is only a minimum condition, ensuring the potential energy

defined in Equation 4.4 is bounded, and the stability is left uncontrolled. Here, we present
three additional admissible conditions for a constructed strain field for establishing stable
and convergent models.

4.4.1 Condition 1: Orthogonal Condition

For any v 2 H
1
h,0, when the constructed strain field «̂(v) and the compatible strain field

~«(v) ¼ Ldv satisfy the following condition

ð
V

«̂T(v)c«̂(v)dV ¼
ð
V

«̂T(v)c(Ldv)dV (4:5)

a strain-constructed Galerkin model can be derived directly from the single-field Hellinger–
Reisnner’s principle and hence is variationally consistent (see Chapter 5). Equation 4.5
is the so-called orthogonal condition [3]. This condition is used to construct hybrid FEM
models, and is frequently used in meshfree methods to examine whether an SC-model is
variationally consistent for assumed displacement functions in an H

1 space.

4.4.2 Condition 2a: Norm Equivalence Condition

For a two-dimensional (2D) and three-dimensional (3D) vector field v 2 G
1
h,0 with a vector

U of nodal function values arranged in the form of

U ¼
u1(1) u2(1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node(1)

u1(2) u2(2)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node(2)

� � � u1(n) u2(n)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node(n)

� � � u1(Nn) u2(Nn)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
node(Nn)

( )T

, for 2D

U ¼
u1(1) u2(1) u3(1)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

node(1)

u1(2) u2(2) u3(2)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
node(2)

� � � u1(Nn) u2(Nn) u3(Nn)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
node(Nn)

( )T

, for 3D

(4:6)
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the base (discrete and compatible) constant strain field ~«b(U) is given as

~«b(U) ¼ LdFeU|fflfflffl{zfflfflffl}
Bb

¼ BbU (4:7)

where Bb is the global strain matrix and has entries assembled from the element strain
matrix

Bb ¼ LdFe (4:8)

in which the matrix of shape functions have the form

Fe ¼
fb
1e 0

0 fb
1e|fflfflfflfflffl{zfflfflfflfflffl}

node 1 element e

fb
2e 0

0 fb
2e|fflfflfflfflffl{zfflfflfflfflffl}

node 2 element e

fb
3e 0

0 fb
3e|fflfflfflfflffl{zfflfflfflfflffl}

node 3 element e

2
664

3
775, for 2D

Fe ¼

fb
1e 0 0

0 fb
1e 0

0 0 fb
1e|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

node 1 element e

fb
2e 0 0

0 fb
2e 0

0 0 fb
2e|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

node 2 element e

fb
3e 0 0

0 fb
3e 0

0 0 fb
3e|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

node 3 element e

fb
4e 0 0

0 fb
4e 0

0 0 fb
4e|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

node 4 element e

2
666664

3
777775
, for 3D

(4:9)

The global strain matrix Bb is a very sparse matrix with dimensions of 3Nc� 2Nn for 2D and
6Nc� 3Nn for 3D models. Because all the nodal shape functions are linearly independent,
Bb has 2Nn linear independent columns for 2D, and 3Nn linear independent columns for 3D
models (we assume that the model is properly constrained for all rigid motions, and Nn is
the number of unconstrained nodes). The (global) strain vector ~eb(U) can be written in
the form

~«b(U) ¼ ~«Tb(1)|{z}
element 1

~«Tb(2)|{z}
element 2

� � �
~«Tb(Nc)|ffl{zffl}

element Nc

( )T

(4:10)

where Nc is the total number of triangular elements (same as the background cells for the
SC-model) for the base model, and

~«b(i) ¼ ~e11 ~e22 2~e12f gT(i), (i ¼ 1 , 2 , . . . ,Nc) for 2D

~«b(i) ¼ ~e11 ~e22 ~e33 2~e23 2~e13 2~e12f gT(i), (i ¼ 1, 2 , . . . ,Nc) for 3D
(4:11)

Because linear triangular elements are used for the base model, these strain components ~eij
are constant in any element.

The constructed strain field «̂(U) can also be written in a similar form as

«̂(U) ¼ «̂T(1)|{z}
cell 1

«̂T(2)|{z}
cell 2

� � �
«̂T(Nq)|ffl{zffl}
cell Nq

( )T

(4:12)
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where Nq is the total number of the quadrature or integration cells for the SC model, and

«̂(i) ¼ ê11 ê22 2ê12f gT(i) , (i ¼ 1, 2, . . . ,Nq) for 2D

«̂(i) ¼ ê11 ê22 ê33 2ê23 2ê13 2ê12f gT(i), (i ¼ 1, 2, . . . ,Nq) for 3D
(4:13)

These constructed strain components êij are, in general, not constant in an integration cell.
The constructed strain field «̂(U) needs to be equivalent in a norm to the base constant

strain field ~«b(U), meaning that there exist nonzero positive constants cac and cca such that

k«̂(U)k
L
2(V) � cack~«b(U)k

L
2(V) and k~«b(U)k

L
2(V) � ccak«̂(U)k

L
2(V) , 8U 2 R

dNn
0 (4:14)

where R
dNn
0 is a subspace of RdNn where the displacements at the nodes on the essential

boundary are imposed. Constants cac and cca should be independent of RdNn
0 . Since our

strain field is defined in a vector form, measuring in L
2 norm is handy and workable for

both ~«b(U) and «̂(U) (although they may be different in length). Clearly, to satisfy the
conditions in Equation 4.14, the minimum requirement should be

Nq � Nc (4:15)

which means that we should sample more locations for the (nonnegative) strain energy in
our SC model, as practiced in SFEM [6–9], and proved for general settings based on the
argument of ensuring positivity [37].

The norm equivalence ensures only the stability and hence convergence, but we do not
know where it converges to. To ensure the solution converges to the exact solution, we
need the strain convergence condition.

4.4.3 Condition 2b: Strain Convergence Condition

The convergence condition for the constructed strain is defined as

lim
h!0

Nn!1
«̂(x,U) ! ~«b(x,U), 8x 2 V, 8U 2 R

dNn
0 (4:16)

When both conditions in Equations 4.14 and 4.16 are satisfied, the SC-Galerkin model is
stable and converges to the exact solution of the original strong form, and it is a typical
weakened-weak formulation. In this case, it is not variationally consistent in the conven-
tional sense, because v is not, in general, in an H

1 space.

4.4.4 Condition 3: Zero-Sum Condition

For any v 2 H
1
h,0, we construct the strain in the following form:

«̂(v) ¼ ~«b(v)þ a«̂m(v) (4:17)

where
~«b is the (compatible) strain field of a base model
a 2 R is a finite adjustable parameter for regularizing the amount of modification
«̂m is the modified portion of the strain field
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The zero-sum condition is defined as

ð
V

«̂m(v)dV ¼ 0, 8v 2 H
1
h,0 (4:18)

When both Equations 4.17 and 4.18 can be found, the Galerkin-like weak form is applicable
(see Chapter 5), and the formulation is variationally consistent. The zero-sum condition is
similar to the orthogonal condition that is used in FEM for the stabilization formulation for
quadrilateral elements using reduced integration [14,15].

4.5 Strain Construction Techniques

We now present some of the possible and practical techniques for constructing strain fields.
Most of the techniques were proven or tested under specified settings, and hence causa-
tions are advised in attempting to extend these techniques to other applications.

4.5.1 At a Glance

Some Schemes for Construction and Modification of the Strain Fields

Item Schemes Brief Description Example=References

1. Strain gradient
scaling

Using a factor to scale-down or -up the gradient
of the compatible strain field.

aFEM [17]
VCaFEM [29]

2. Strain smoothing
(orthogonal
projection)

The compatible strain field is smoothed over
smoothing domains that can be element-based,
cell-based, node-based, and edge-based. The
constructed strain is assumed to be constant in the
smoothing domains.

SCNI [5]
NS-FEM [10]
ES-FEM [11,12]

3. Generalized
smoothing

The strain field is constructed by the generalized
smoothing technique over the smoothing domains
that can be element-based, cell-based, node-based,
and edge-based. The constructed strain is assumed
to be constant in the smoothing domains.

SFEM [6,23]
NS-PIM [18,19,23]
ES-PIM [13,23,37]

4. Point interpolation
method

At points in the problem domain, the strains are
assigned with smoothed strains over smoothing
domains. The constructed strain field is then
constructed via a point interpolation method using
these strains at these points.

SC-PIM [23,31]
PIM-CS [26,27]

5. Least squares
approximation
(orthogonal
projection)

At points in the problem domain, the strains are
assigned with smoothed strains over smoothing
domains. The constructed strain field is then
constructed via least squares approximation using
these strains at these locations.

LS-PIM [28]

Note: This table may not be exclusive.
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4.5.2 Scaling the Strain Gradient

Change the gradient of the compatible strain field obtained from an assumed displacement
field in anH

1 space. This was first used in the so-called aFEM presented in [17,29], based on
an FEM setting of quadrilateral elements. It was discovered that the compatible strain field
in a quadrilateral element can be divided into a constant portion and a portion varying with
the coordinates. The gradient of the varying portion can be modified by scaling without
affecting the ability to pass the standard patch tests. Therefore, the convenience of themodel
can be ensured, as long as the stability is maintained. A quadrilateral element was then
formulated to obtain the exact or best possible solution for a given problem by scaling
the gradient of strains in the natural coordinates and Jacobian matrices with a scaling factor
a2 (�1, þ1). It is shown that as long as a is not zero, the stability of the model can be
preserved, and will always converge to the exact solution of the original strong form of
partial differential equations (PDEs). The method is not necessarily variationally consistent
but stable and convergent. The aFEM can produce nearly exact solutions in the strain
energy for all overestimation problems, and the best possible solution for underestimation
problems. The general procedure of strain gradient scaling works as follows:

For any assumed uh 2 H
1
h,0, the compatible strain field within an element can be

obtained as

~«(x) ¼ Lduh(x) (4:19)

The compatible strain field is then split into two portions:

~«(x) ¼ ~«c(xc)|fflffl{zfflffl}
~«c

þ ~«v(x) (4:20)

where
~«c ¼ ~«(xc) is the constant portion evaluated at the origin of the natural coordinate xc
defined for the element

~«v(x) varies with the coordinate and should satisfy the zero-sum condition in
Equation 4.18

The strain field can then be constructed in the following form:

«̂(x) ¼ ~«c þ a~«v(x) (4:21)

where a2 (�1, þ1) is an adjustable parameter. The stability is ensured by using a small
a 6¼ 0. Note ~«c can be, in general, different from ~«b in Equation 4.17. It is only the constant
portion of the compatible strain field.

The strain gradient scaling technique described above has been tested for quadri-
lateral elements where the compatible strain field is linear (in the natural coordinate)
[25]. Extension of these techniques to other types of elements should be performed
with caution, as the proof for general settings for this technique has not yet been
determined.

Strain Field Construction 139

© 2010 by Taylor and Francis Group, LLC



4.5.3 Strain Construction by Smoothing

4.5.3.1 Strain Field Construction by Strain Smoothing for uh 2 H
1
h

A strain field can be constructed by smoothing the compatible strain field obtained from an
assumed displacement field in an H

1 space. Smoothing operation is an often used integral
technique to smooth a function. It has a general form of Equation 2.7. It has been used in
the nonlocal continuum mechanics [38] to obtain a smoother stress field. The smoothed
particle hydrodynamics [36,39–41] uses it for function approximation. The strain smooth-
ing was used as a means of resolving the material instabilities [42] and the special
instability in the nodal integrated meshfree methods [5]. It is used later in finite element
settings, such as NS-FEM [10] and ES-FEM [11,12], with a number of attractive properties.
It is also used with properly constructed smoothing domains for the derivative approxi-
mation to establish models of strong formulation for solids [32], compressible fluids [33,35],
and incompressible fluids [34].

Since this construction is done by modifying the strain field, it can only be done when
the strain field is available, meaning that the assumed displacement there must be at least
differentiable in the local smoothing domain Vs

x associated with the point of interest x.

4.5.3.2 Strain Field Construction by Generalized Smoothing for uh 2 G
1
h

When the assumed displacement function is discontinuous, we need to construct a strain
field. Based on the existing works on strain smoothing operations, Liu [23] proposed a
generalized smoothing technique for functions that are discontinuous, leading to the G

space theory. A strain field can then be constructed using the assumed displacement field
in a proper G space. A GS-Galerkin weak form was then established for models based on
elements [6–9,23] and PIM models [13,18,19,23]. The GS-Galerkin is a typical case of the
weakened-weak formulation and the stability and convergence have been proven in [37].
Since a function in an H

1
h space is also in the corresponding G

1
h space, the GS-Galerkin

formulation works also for models with assumed displacement functions in an H
1
h space.

It is variationally consistent if the solution is sought from an H
1
h space, and is stable and

convergent if the solution is sought from a G
1
h space. The GS-Galerkin offers a unified

theoretical foundation for this class of compatible and incompatible methods. The strain
modification is a special case of strain construction by generalized smoothing. The strain field
constructed and used in the GS-Galerkin is piecewise constant.

The numerical methods developed based on the GS-Galerkin form can possess four major
important properties: (1) the stiffness of the discretized model can be reduced compared to
compatible FEM models and the exact model, which allows us to obtain upper bound
solutions with respect to both the FEM solution and the exact solution; (2) the continuity of
the trial and test functions can be reduced as long as they are in a properG space,which allows
us to use many types of methods to create shape functions for a numerical model; (3) the
solution of a numericalmethoddevelopedusing the smoothed bilinear form is less sensitive to
the quality of the mesh, and triangular meshes can be well used for problems of complicated
domains; and (4) very accurate solutions can be obtained using a triangular mesh.

4.5.3.3 Smoothing over Moving Smoothing Domains

For any assumed displacement uh 2 G
1
h, the constructed strain field «̂ is the smoothed strain

field «
_ obtained, using the following integral representation:
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«
_(x) ¼

ð
Vs

x

~«(j)|{z}
Ld(uh(j))

W
_

(x� j)dj ¼
ð
Gs
x

Lnuh(j)W
_

(x� j)dG�
ð
Vs

x

uh(j)LT
d (W

_

(x� j))dj,

when uh(j) 2 C
0 Vs

x

� �
ð
Gs
x

Lnuh(j)W
_

(x� j)dG�
ð
Vs

x

uh(j)LT
d (W

_

(x� j))dj,

when uh(j) 2 C
�1 Vs

x

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

(4:22)

where
Ln is the outward normal matrix given by Equation 1.27
W
_

is a diagonal matrix of smoothing functionsW
_

for the strain components defined in the
smoothing domain Vs

x � V centered at x and bounded by Gs
x, as shown in Figure 4.1

The important ‘‘no-sharing’’ rule applies here: Gs
x does not share any finite portion of

discontinuous lines of the assumed displacement field. As long as this rule is observed,
the smoothing domain can be different for different x and they can overlap. Since the
smoothing domain Vs

x can move with x, this type of smoothing domain is termed the
moving smoothing domain.

We require here that W
_

be at least first-order differentiable in (open) Vs
x. In the first

equation of Equation 4.22 we used the Green’s divergence theorem. When uh is discon-
tinuous, the Green’s divergence theorem is not applicable, and hence the second equation
in Equation 4.22 is only an approximation.

Remark 4.1: Smoothed Strain by Boundary Flux Approximation:
An Overall Conservation

The smoothed strain defined in Equation 4.22 is a generalized concept. It is not ‘‘the strain
obtained by smoothing the compatible strain field,’’ because such a compatible strain field

Ωxi

Ω

Γ

x1

x2

x3
xi

Γxi

FIGURE 4.1
Moving smoothing domains Vx bounded by Gx for integral representation of a function at x, over which the
smoothing function is defined. The smoothing domain can be different for different x and they can overlap. The
smoothing function can also be different for different x.
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does not, in general, exist! Rigorously speaking, the smoothed strain is the outward flux of
the assumed displacement field through the smoothing domain boundary Gs

x. Such a
boundary flux approximation preserves the overall conservation of the strain–displacement
relation over the smoothing domain, which is important to ensure the energy balance in
energy principles using the (generalized) smoothed strains. In fact, it is the essential reason
why the GS-Galerkin weak forms work for all assumed functions in a G

1
h space.

Observing Equation 4.22, we note that the differentiation on the assumed displacement
has now been transferred onto the smoothing functions. Therefore, the continuity require-
ment on the assumed displacement is reduced by one order.

Generally, the choice of the smoothing function and the smoothing domain will affect
how the conservation is achieved internally in the smoothing domain, and hence the
property of the weak form. Therefore, how the problem domain is divided into smoothing
domains plays an important role. For moving smoothing domains, we have the following
remark.

Remark 4.2: Reproducing Property
When W

_

is of the unity property defined in Equation 2.10, and the compatible strain field
exists (uh 2 H

1), the moving-domain integral representation of strain field will be exact at
x:«_ ¼ ~«. In this case, the GS-Galerkin weak form reduces to the standard Galerkin weak
form, and hence is variationally consistent.

Moving smoothing domains can be used in Section 4.5.4 to obtain strains at desired
points in the problem domain.

4.5.3.4 Strain Average over Moving Smoothing Domains

If we use the following special smoothing function that is a local constant:

W
_

(x� j) ¼ �W(x� j) ¼ 1=As
x j 2 Vs

x

0 j =2 Vs
x

(
(4:23)

where As
x ¼

Ð
Vs

x
dV is the area (or volume for 3D) of the smoothing domain at the point x.

The smoothing function �W(x� j) given above satisfies the conditions of unity. The
smoothed strain becomes a smoothed (averaged) strain �« that can be obtained:

�«(uh(x)) ¼

1
As

x

Ð
Vs

x

~«(uh)dV ¼ 1
As

x

Ð
Vs

x

(Lduh)dV ¼ 1
As

x

Ð
Gs
x

LnuhdG, when uh(j) 2 C
0 Vs

x

� �

1
As

x

Ð
Gs
x

LnuhdG, when uh(j) 2 C
�1 Vs

x

� �
8>><
>>:

(4:24)

It can also be obtained by simply dropping the last domain integral term in Equation 4.22
because LT

d
�W(x� j)ð Þ vanishes for constant smoothing functions.

The potential energy of the smoothed (averaged) strain field becomes

�UPE(uh) ¼
ð
V

1
2
�«T(uh)c�«(uh)dV (4:25)
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4.5.3.5 Stationary Smoothing Domain Construction

In practical formulation of many numerical methods, we do not allow the smoothing
domains to overlap, and the smoothing domains are constructed in a fixed way such
that the union of them forms the problem domain V ¼ [Ns

i¼1V
s
i , as shown in Figure 4.2,

where the problem domain is divided into Ns smoothing domains. The smoothing domain
Vs

i bounded by Gs
i is for the point at xi. Since the problem domain is divided into a fixed set

of the smoothing domain, the smoothing domain is termed the stationary smoothing
domain. If the assumed displacement function is discontinuous on segments in V, we do
not allow Gs

i sharing any finite portion of these segments, and Gs
i can only go across these

segments. It is clear that the strain construction model using the stationary smoothing
domain is a typical GS-Galerkin model based on G space theory (see Chapter 3). In this
setting, the smoothing domains are also the integration domains, and hence we have
Vs

i ¼ V
q
i and Ns¼Nq.

The constructed strain in Vs
i is assigned to be constant «_i and equals the smoothed strain

obtained using

«
_

i ¼ «
_(xi), 8x 2 Vs

i (4:26)

where

«
_(xi) ¼

ð
Vs

i

~«(j)|{z}
Ld(uh(j))

W
_

(x� j)dj ¼
ð
Gs
i

Lnuh(j)W
_

(x� j)dG�
ð
Vs

i

uh(j)LT
d (W

_

(x� j))dj,

when uh(j) 2 C
0(Vs

i )ð
Gs
i

Lnuh(j)W
_

(x� j)dG�
ð
Vs

i

uh(j)LT
d (W

_

(x� j))dj,

when uh(j) 2 C
�1(Vs

i )

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(4:27)

where the smoothing functionW
_

satisfies the unity condition defined in Equation 2.10 over
the smoothing domain Vs

i .

Ω1
s

Ωi
s

Ω2
s

Ωs
Nn

Γi
s

... 

...

... 

ο x1 

ο x2  

ο xNs

ο xi

Γ

Ω

FIGURE 4.2
Division of the problem domain V into station-
ary smoothing domains Vs

i bounded by Gs
i for

the point at xi. The smoothing domain can be
different for different xi but they cannot overlap.
The smoothing function can also be different for
different Vs

i .
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Remark 4.3: Smoothed Strain: Convergence Property
For any, uh 2 H

1
h, when Vs

i approaches to zero, the smoothing function W
_

approaches the
delta function. At such a limit «_ ¼ ~«, and the constructed strain field is the compatible
strain field.

When stationary smoothing domains are used, the minimum number of smoothing
domains needs to be determined based on Table 3.1. On violation of the conditions given
in Table 3.1, the discretized system equations established using the GS-Gakerkin weak
form will be singular, and no unique solution will be obtained. The use of more smoothing
domains does not necessarily guarantee a nonsingular set of system equations, because it
depends also on how the division of the smoothing domains is performed. Generally, a
finer division of smoothing domains leads to a stiffer model (see Theorem 4.3).

When stationary smoothing domains are created based on Section 3.3.1, and the smooth-
ing function �W is constant within each smoothing domain Vs

i :

�W(xi � j) ¼ 1=As
i j 2 Vs

i

0 j =2 Vs
i

�
(4:28)

where As
i ¼

Ð
Vs

i
dV is the area of the smoothing domain associated with a point at xi,

we have

«(xi) ¼
1
As

i

Ð
Vs

i

~«(uh)dV ¼ 1
As

i

Ð
Vs

i

Lduh
� �

dV ¼ 1
As

i

Ð
Gs
i

LnuhdG, when uh(j) 2 C
0(Vs)

1
As

i

Ð
Gs
i

LnuhdG, when uh(j) 2 C
�1(Vs)

8>><
>>:

(4:29)

We further assume that the strain in the entire smoothing domain vs
i is constant:

�«i ¼ �«(xi), 8x 2 Vs
i (4:30)

When this is done for all the smoothing domains, the strain field is constructed. The
discretized form of the potential energy for the smoothed strain becomes

�UD
PE ¼

ð
V

1
2
�«Tc�«dj ¼ 1

2

XNs

i¼1

As
i �«

T
i c�«i (4:31)

4.5.3.6 Properties of the Smoothed Strain Field

We now briefly discuss the properties and the strain energy of the smoothed strain field.
A more detailed discussion and proofs on these properties can be found in [19–23].

Theorem 4.1: Smoothed Strain: Constructed by Orthogonal Projection

For any uh 2 H
1
h, the smoothed strain obtained using Equation 4.26 satisfies the orthogonal

condition in Equation 4.5, and the smoothed strain field is an orthogonal projection of the
compatible strain field onto the space of the smoothed strain fields.
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Proof Because the strain field is assumed constant in the stationary smoothing domains,
and uh 2 H

1
h, the integration over the entire problem domain becomes a summation of

integrations over each of the smoothing domains. Therefore, the orthogonal condition
(Equation 4.5) will be satisfied if the following condition is met for any smoothing domain:

ð
Vs

i

«
_T
i c Lduh� �

dV ¼
ð
Vs

i

«
_T
i c«

_

idV (4:32)

Using the fact that the smoothed strain is constant in the smoothing domain, we obtain
ð
Vs

i

«
_T
i c Lduh� �

dV ¼ «
_T
i c
ð
Vs

i

Lduh� �

|fflfflfflfflffl{zfflfflfflfflffl}
As

i«
_

i

dV ¼ As
i«
_T
i c«

_

i ¼
ð
Vs

i

«
_T
i c«

_

i dV (4:33)

Next, we need to show that Equation 4.26 is a projector, by which we mean that P defined
in Equation 4.1 must be an idempotent:

P 2 ¼ P (4:34)

which physically implies that any projections after the first projection are idle. In the case of
the strain smoothing operation, we know that when uh 2 H

1
h, Equation 4.26 is indeed a

projector that satisfies Equation 4.34, because our domains are stationary (fixed), and when
it is applied to «

_

i again, it is idle: a smoothing to an already smoothed smoothing has no
effect.

Now, to show the projector orthogonal, we use Equation 4.32:
ð
Vs

i

«
_T
i c Lduh� �

dV�
ð
Vs

i

«
_T
i c«

_

idV ¼
ð
Vs

i

«
_T
i c(~«i � «

_

i)dV ¼ 0 (4:35)

which means that the ‘‘distance vector’’ between the constructed and the compatible strain
fields is orthogonal (in the energy norm) to the space of the constructed strain fields. This
completes the proof. &

The discretized form of the potential energy of the smoothed strain becomes

U
_ D
PE ¼

ð
V

1
2
«
_Tc«_dj ¼ 1

2

XNs

i¼1

As
i«
_T
i c«

_

i (4:36)

Theorem 4.2: Smoothed Strain: Softening Effects

For any assumed admissible displacement function uh 2 H
1 and the smoothed strain is

obtained using Equation 4.26, we have for solids of stable materials

U
_D
PE(u

h) � ~UPE(uh) (4:37)
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meaning that the potential energy for the constructed strain field is always smaller than
that of the compatible strain field, for the same assumed displacement field in a proper
Hilbert space.

Proof We first examine the strain energy resulted from the difference of the compatible
and smoothed strain fields:

ð
V

1
2
(«_ � ~«)Tc(«_ � ~«)dV

¼
ð
V

1
2
«
_Tc«_dV�

ð
V

1
2
«
_Tc~«dV�

ð
V

1
2
~«Tc«_dVþ

ð
V

1
2
~«Tc~«dV

¼
ð
V

1
2
«
_Tc«_dV�

ð
V

e
_Tc~«dVþ

ð
V

1
2
~«Tc~«dV (4:38)

where ~« ¼ Lduh is the compatible strain field. From Theorem 4.1, we know that the
orthogonal condition in Equation 4.5 is satisfied, and c is the SPD for stable materials,
and hence, we have
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which gives Equation 4.37. &

Theorem 4.2 implies that a strain constructed model via smoothing is always softer than
the compatible model of the samemesh, known as the softening effect discovered in [19,23].

Theorem 4.3: Smoothed Strain: Monotonic Convergence Property

In a given division D1 of a domain V into a set of smoothing domains V ¼ SNs
i¼1 V

s
i , if a

new division D2 is created by subdividing a smoothing domain in D1 into nsd subsmooth-
ing domains, V s

i ¼
Snsd

j¼1 V
s
i,j, then the following inequality stands:

U
_ D1

PE(u
h) � U

_ D2

PE(u
h) (4:40)

This implies that the ‘‘softening’’ effect provided by the smoothing operation will be
monotonically reduced with the increase of the number of smoothing domains in a nested
manner. A simple proof can be given using the triangle inequality of norms: sum of the
energy norm of functions is no less than the norm of the summed functions [23].
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4.5.4 Strain Construction by Point Interpolation

In this case, the strain field «̂ is constructed using point interpolation by the following steps:

1. Select a set of points for strain interpolation based on the element mesh (in FEM
settings) or the background cells (in meshfree settings). The density of the points
should usually be higher than the field nodes to satisfy the norm equivalence condi-
tion. We should also try that these points coincide with the nodes so that the strain
convergence condition (Equation 4.16) can be easily satisfied. For example, when a
triangular mesh is used, we first choose all the field nodes as strain interpolation
points, and then add in the middle the points of edges and the centroidals of the
triangular cells=elements as the interpolation points. Such a selection of strain inter-
polation points is used in PIM-CS [26], SaFEM [30], and SC-PIM [27,31].

2. For any assumed admissible displacement uh, at a strain interpolation point,
the strain is assigned as either the compatible strain obtained using Equation 4.2
(if uh 2 H

1
h) or a smoothed strain of the compatible strain field over a proper local

domain for that point using Equation 4.27 or Equation 4.29. For example, when a
triangular mesh is used, we choose node-based smoothing domains for points
coinciding with nodes, and edge-based smoothing domains for points at the mid
edge points. For points at the centroidals, we may simple use the compatible
strains, as in PIM-CS [26], SC-PIM [27], and SaFEM [30].

3. A new set of (preferably triangular) cells for the set of strain interpolation points is
then created for strain interpolation. This set of cells is used also for integration of
the weak form, and is called quadrature or integration cells. For example, when
triangular cells are used, the new triangular quadrature cells are hosted by the
original triangles, and typically a triangular cell is divided into 1, 3, 4, or 6
integration cells, as in SC-PIM [31] (see Section 8.6).

4. The strain field in each of the quadrature cells is then constructed using point
interpolation, based on these strains at the set of points using shape functions
created, using the strain interpolation points and any interpolation technique
presented in Chapter 3. For example, when a triangular mesh is used, we simply
use linear shape functions created for each of the integration cells. In such a case,
the integration of the weak form can be performed analytically, using the area
coordinates, that is the same as the linear shape functions [2], and no numerical
integration is needed. In this case, the strain field within each integration cell is
obtained using the linear interpolation:

«̂(x) ¼
X3
i¼1

Fi(x)«
^

i (4:41)

where

«̂ is the vector of constructed strains over the triangular integration cell
«
^ is the vector of strains at each vertex, which are either the compatible strains ~«

or the smoothed strains «_ obtained, using a local smoothing domain

In practice, the linear interpolation is often used for the simple reason of easy
integration: the strain energy for a triangular integration cell can be obtained
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exactly so that no numerical integration is needed. In this case, Fi in Equation 4.41
is a diagonal matrix of linear PIM shape functions that has the following form:

Fi(x) ¼
Li(x) 0 0
0 Li(x) 0
0 0 Li(x)

2
4

3
5 (4:42)

where Li is the area coordinate for node i of the integration cell. Equation 4.41 can
be rewritten as
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5. The strain energy potential can be now given as
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Using now the Eisenberg–Malvern formula for a triangle with an area A [2].
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Equation 4.44 becomes
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It is clear that the strain energy potential for the constructed strain field is the average of the
all the six components of energy combinations of strains at these three vertices of the
integration cell.

The properties of an SC-model depend on how the strain field is constructed. We often
introduce some parameters controlling the constructed strain field for desired properties.
The above mentioned steps were used in PIM-CS [26], SC-PIM [27,31], and SaFEM [30].

4.5.5 Strain Construction by Least Squares Approximation

Least squares approximation is a kind of an orthogonal projection, found useful in the
strain field construction, and was implemented in LS-PIMs [28]. The constructed strain
field can easily satisfy the norm equivalence condition, and as long as the strain conver-
gence condition (Equation 4.16) can be satisfied, we have a convergent SC-model. The
procedure for constructing the strain field using least squares approximation is quite
similar to the method of interpolation. The four-step procedure given in Section 4.5.4
stands, except to replace the interpolation by a least squares approximation. When the
least squares approximation is used, we can have large integration cells, use more strain
points for approximation, and have a wider choice of polynomial basis terms for creating
models of desired properties. More details are given in [28].

4.6 Concluding Remarks

Remark 4.4: Convergence: Solution to Incompatibility
Strain construction is an effective way to solve the incompatibility problem that we often
encounter in the standard FEM formulation and modeling [2]. The essential issue for the
incompatibility problem is the possible unbounded potential energy using the incompat-
ible assumed displacement field. Our idea of constructing the strain field offers an effective
means to have the strain energy potential always bounded, ensuring the convergence of
the model.

Remark 4.5: Stability and Convergence to the Exact Solution
When we open the door to construct the strain field to resolve the convergence issue for
general assumed displacement functions in aG space, possible problems related to instabil-
ity are also invited, in addition to a possible problem that the solution may not converge to
the exact solution.We have given some admissible conditions for the constructed strain field
in Section 4.4 to prevent this from happening, butmany things are still not clear to the author

Strain Field Construction 149

© 2010 by Taylor and Francis Group, LLC



at this stage, especially when an assumed displacement function is discontinuous and in an
unnormed G space. Obviously, more thorough studies, and nonstandard theories and
principles such as the weakened-weak formulation [37] may be needed. It is quite clear
now that as long as a set of linearly independent nodal shape functions that satisfy the bound
and positivity conditions can be created, we can always establish a stable and convergence-
to-exact-solution model, with proper ways to construct the strain field: the assumed dis-
placement fields do not have to be continuous!

Remark 4.6: Efficiency
To construct the strain field, additional computational efforts or alternative computational
treatments are required. From the experience of the author’s group, such efforts=treatments
do not contribute significantly to the overall computation time. In addition, some of the
alternative operations are simpler compared to the models using directly compatible strain
fields. For example, in smoothed models, we do not need to compute the derivatives of the
shape functions; we do not need to perform domain Gauss integrations; energy integration
becomes simple summation; etc. In the strain interpolation models, we do not even need a
numerical integration for the weak form, etc. It is the author’s opinion that a strain
constructed model does not necessarily increase the computation cost compared to the
corresponding fully compatible model.

Remark 4.7: Accuracy
A properly constructed SC-model can improve the solution accuracy significantly, as
demonstrated in the models mentioned earlier. One can practically establish models that
give close-to-exact solutions (in a norm), as shown in PIM-CS [26], SC-PIM [27,31], and
SaFEM [30]. This is made possible by using a ‘‘knob’’ a to tune an SC-model for desired
properties.

Remark 4.8: Other Properties
Other attractive properties, such as the upper bound, the lower bound, and tight bounds
can also be achieved by devising properly a strain construction scheme, especially a model
with a knob, as shown in PIM-CS [26], SC-PIM [27], and SaFEM [30]. More discussions are
presented in Chapter 8.
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5
Weak and Weakened-Weak Formulations

Weak formulations are of fundamental importance for the finite element method (FEM),
and naturally, also for meshfree methods. In the FEM, we have basic building blocks of
elements, and hence, all the numerical operations including function approximation and
integration of the weak forms are all naturally based on the elements. In meshfree methods,
however, function approximation and integration are virtually independent, and hence it
offers many more innovative ways to use and even establish new weak forms such as the
weakened-weak (W2) forms that have unique and important properties, leading to
methods that are superior to the standard FEM in many aspects.

We first introduce the weak formulation based on the H-space theory and weakened-
weak formulations based on the G-space theory, and discuss some of their important
properties. Physical energy principles used for creating weak forms for the FEM and
meshfree methods are also outlined in this chapter with emphasis on the novel weakened
weak forms. Since both mathematical and physical approaches are used in the literature to
establish weak forms, it is sometimes quite confusing to many. This chapter tries to put
these two together aiming to show their connections and hence better understand these
formulations. Clarity and understanding are often achieved by comparisons.

This book gives high preference to the Galerkin weak form for reasons of simplicity,
symmetry, and hence efficiency, which is eventually a crucial factor for any successful
numerical method to survive. When we perform all sorts of advances and manipulations,
we always try to keep the form of Galerkin, even though our formulation has gone far
beyond the standard Galerkin weak form, in terms of implementation, solution=function
spaces, and properties. This preference is particularly important for partial differential
equations (PDEs) of symmetric operators: we want to preserve the symmetry.

We are aware that the contents of this chapter are quite heavy. Readers may skip the
proofs, if their interests are on the applications of these formulation procedures.

5.1 Introduction to Strong and Weak Forms

5.1.1 Strong Forms

Strong form equations are those given in the form of PDEs, as briefly discussed in Section
1.2 for solid mechanics problems. The displacement functions are required to have the
second order of consistency in the entire problem domain that is the same as the order of
the differentiations in PDEs. Such a requirement on consistency for the displacement
functions is said strong.

Obtaining the exact solution for such a strong form system equation is ideal but,
unfortunately, it is usually very difficult for practical engineering problems that are often
very complicated in both the problem setting and the geometry of the problem domain.
We, therefore, search for approximated solutions. The finite difference method (FDM),
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which uses the finite differential representation (Taylor series) of a function in a local
domain, can be used to solve system equations of a strong form to obtain an approximated
solution. However, FDM requires essentially a regular mesh of grids, and can usually work
only for problems with relatively regular geometry and simple boundary conditions. One
of the meshfree methods for solving strong form system equations to obtain an approxi-
mate solution is to use arbitrarily distributed grids based on the Taylor series expansions,
and least squares (LS) or moving least squares (MLS) approximations. The formulation is
very simple, and all one needs to do is to approximate the field functions using a method
described in Chapter 2 with sufficient number of local nodes for sufficient consistency so
that the function and its derivatives are expressed in terms of the nodal values of the
function. Substituting these expressions into the strong form equations directly results in a
set of algebraic equations. However, the solution to this set of algebraic equations is often
not very stable against the model setting and the node irregularity. The accuracy of the
result often depends on boundary condition treatments, node distribution in the problem
domain, and the selection of the nodes for the function approximation. This is because this
type of direct collocation approach has no means to control the stability of the resultant
algebraic equations. When the nodal distribution is arbitrary and only local nodes are used
for function approximation, practically many things can happen. Therefore, special tech-
niques are needed to stabilize the solution. Some of the detailed discussions on this can be
found in [1–3].

Note also that the discretized system equations are generally asymmetric for irregularly
distributed nodes, even for problems whose PDEs are associated with symmetric
operators.

5.1.2 Weak Forms

A weak form, in contrast to a strong form, requires weaker consistency on the assumed
field functions. The foundation is on the Sobolev (or H)-space theory (see Chapter 3). The
consistency requirement on the assumed functions for field variables is very different
from the strong form. For a 2kth-order differential governing system equation, the strong
formulation requires a consistency of the 2kth order, while the weak formulation requires a
consistency of only the kth order. For second-order PDEs for mechanics problems defined
in Section 1.2, the assumed displacements can be in an H

1 space and hence need only to be
first-order differentiable! This is made possible mathematically by introducing a so-called
test function into an integral form of a residual formulation to ‘‘absorb’’ one derivative, and
‘‘convert’’ the strong form equations to weak ones. Physically, we create equations that
evaluate the energy status for the stressed solid or the structures, instead of the equilibrium
status in stresses. When the total energy potential in the solid=structure is at a stationary
status, an equilibrium status is observed. When only the strain energy needs to be evalu-
ated, we need only strains and hence the first derivatives of the displacements.

There are basically two major categories of often-used principles for constructing weak
forms. They are the weighted residual methods (mathematical approach) and the energy
principles (physical approach). The Galerkin formulation can be derived from both the
weighted residual methods (by using test and trial functions from the same space) and the
energy principles. It is the most widely used approach for establishing system equations,
and is, of course, applicable to derive meshfree equations. Hamilton’s principle is often
employed to produce approximated system equations for dynamic problems, and is also
applicable to meshfree methods. The minimum potential energy principle has been a
convenient tool for deriving discrete system equations for FEM and also for many other
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types of approximation methods. The weighted residual method is a more general and a
powerful mathematical tool that can be used for creating discretized system equations for
many types of engineering problems. It has been and is still used for developing new
meshfree methods. All these approaches are adopted in this book for creating discretized
system equations for various types of meshfree methods.

Formulations based on weak forms can produce a stable set of algebraic system equa-
tions, because the positivity is ensured in the formulation process using energy (always
positive) principles essentially and functions from proper spaces. The discretized system
equations are symmetric for irregularly distributed nodes for problems of symmetric
operators. Therefore, it preserves the symmetry property and hence has good stability,
accuracy, and efficiency.

Remark 5.1: Solution Error Control: A Crucial Role of a Weakform
Because of the important stability offered by the weakform, the error in the weakform
solution can be properly bounded by the interpolation error (unavoidably) caused during
the function approximation using the nodal values for a discretized model. In other words,
the role of the weakform is essentially to ensure that the interpolation error will not be
uncontrollably amplified in the process of obtaining the numerical solution.

5.1.3 Weakened-Weak Forms

Built upon theweak formulation, weakened-weak (W2) forms [16,17] have been established.
The first W2 form was the generalized smoothed Galerkin or GS-Galerkin weak form built
using the gradient smoothing technique [15] and the generalized gradient smoothing
technique [16,17]. The foundation is on the normed G-space theory (see Chapter 3). The
second W2 form was the strain-constructed Galerkin or SC-Galerkin weak form that is a
more general W2 form [17] that uses functions from basically unnormed G

1
h spaces. The

weakened-weak formulations are relatively new but have been used for developing a
number of meshfree methods for important properties, including the upper-bound prop-
erty, ultra-accuracy, and superconvergence [16,17].

The requirement on the assumed functions for field variables is further reduced upon the
already reduced weak formulations. For the mechanic cs problem defined in Section 1.2,
the assumed displacements can be in a G

1
h space and hence discontinuous! When the

solution is sought from an H
1
h space (a subspace of a G

1
h space), the W2 model becomes

softer and the accuracy and the convergence rate of the solution is often found much higher
than that of the weak formulation. It offers a systematic and efficient way for both
compatible and incompatible displacement methods.

Similar to the weak formulation, the discrete system equations of a weakened-weak
formulation are symmetric for irregularly distributed nodes in problems of symmetric
operators. Therefore, one should always use a weakened-weak formulation for such
problems to preserve the symmetry property and hence achieve excellent stability, accur-
acy, and efficiency.

5.1.4 Weak-Form-Like Formulations

There are also meshfree methods for solving strong form system equations using an
integral representation of field variable functions, such as the smooth particle hydro-
dynamics (SPH) methods and the gradient smoothing method (GSM) [4–6].
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The SPH formulation can deal well with dynamic problems of infinite domain, such as
problems in astrophysics [7], and it has been found stable for arbitrarily distributed nodes
in these types of problems. This is due to the use of the integral representation of field
functions, which pass the differentiation operations on the field function to the weight
function. Therefore, it reduces the requirement on the order of consistency on the
approximated field functions, and is actually somewhat similar to that of weak formula-
tions, and hence is a weak-form-like formulation. The major problem with the SPH
methods is the treatment of boundaries of the problem domain and the boundary
conditions, when the problem domain is finite. SPH can provide solutions for the overall
behavior of a class of highly nonlinear dynamic problems, such as problems that are
largely momentum-driven.

The GSM has been found stable for virtually, arbitrarily distributed nodes and for
problems with finite domains. This is due to the use of the gradient smoothing technique
in proper ways that removes the differentiation upon the field function. Therefore, these
smoothing operations reduce the requirement on the order of consistency on the approxi-
mated field functions, and also are actually quite similar to that of weak formulations. The
difference is that the ‘‘weakening’’ operation is implemented in the stage of function
approximation, and not in the stage of creating the system equation. The GSM can handle
boundary conditions very easily; the solution is as stable as the weak form methods, and
works well even for adaptive analysis [6]. However, the discretized system equations are
generally asymmetric, and hence suit better for problems associated with asymmetric
operators, such as fluid dynamics problems [5,6]. In Chapter 9, we use these weak-form-
like formulations for problems of fluid flows.

Remark 5.2: Solution Error Control: A Crucial Role of Gradient Smoothing
It is well known that a smoothing operation on a function can ‘‘smear’’ the error of the
function [33]. Because of this important error-smearing feature, the error in the solution of a
GSM can also be properly bounded by the interpolation error caused during the function
approximation using the nodal values for a discretized model. In other words, the gradient
smoothing plays essentially a similar role as the weakform in terms of solution error
control, and hence such a formulation is termed as weak-form-like formulation. This
remark will be observed in Chapter 9 by the fact that only when the gradient smoothing
is used for the approximation of all the derivatives that are used in the strong form, and no
interpolation is used in the derivative approximation, the GSM scheme performs the best in
terms of accuracy.

This chapter discusses all these weak and weakened weak forms beginning with the
general weighted residual method.

5.2 Weighted Residual Method

5.2.1 General Form of the Weighted Residual Method

The weighted residual method is a classical, very simple, but a powerful mathematical tool
to obtain weak forms of approximated system equations. The concept of the weighted
residual method is straightforward and applicable, in principle, to most of the PDEs that
govern engineering problems, including mechanics of solids, structures, and fluids.
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Let us now consider the general form of the PDEs defined in V bounded by G that can be
rewritten in a concise functional form as

F(u(x, y, z)) ¼ 0 (5:1)

where u(x, y, z) is the unknown field variable. For example, for solid mechanics problems
defined in Section 1.2, we have

F(u(x, y, z)) ¼ LT
dcLduþ b� r€u (5:2)

In this case, u(x, y, z) is the displacement field, as discussed in Chapter 1.
In general, it is difficult to obtain the exact solution u(x, y, z) that satisfies Equation 5.1.

We therefore, somehow construct a set of trial functions of u(x, y, z). Any of these trial
functions does not, in general, satisfy Equation 5.1, and hence we have a residual for a given
trial function u(x, y, z):

F(u(x, y, z)|fflfflfflfflffl{zfflfflfflfflffl}
trial function

) ¼ R(x, y, z)|fflfflfflfflffl{zfflfflfflfflffl}
residual

6¼ 0 (5:3)

We then seek for one of these trial functions such that the residual becomes zero in a
weighted integral sense over the problem domain:

ð
V

W
_|{z}

test functions

R(x, y, z)|fflfflfflfflffl{zfflfflfflfflffl}
residual

dV ¼ 0 (5:4)

where W
_

is a vector or a diagonal matrix of the weight or test functions defined in V.
For solid mechanics problems, we have

ð
V

W
_

LT
dcLduþ b� r€u

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

residual

dV ¼
ð
V

W
_

LT
dcLdu

� �
dVþ

ð
V

W
_

bdV�
ð
V

W
_

r€udV ¼ 0 (5:5)

We hope that a particular trial function u(x, y, z) that satisfies the integral form of Equation
5.4 for a set of properly selected W

_

is a good approximation of the exact solution.
If the weight or test functions are so chosen to be differentiable, we then perform

integration-by-parts (or the Gauss divergence theorem) for the first term in Equation 5.5,
leading to

ð
V

LdW
_

� �T
c(Ldu)dV�

ð
G

LnW
_

� �T
(cLdu)dV�

ð
V

W
_ T

bdVþ
ð
V

W
_ T

r€udV ¼ 0 (5:6)

It is clear now we have only first-order derivatives for either the field function u or test
function W

_

, a weak form.
This is essentially the idea of the weighted residual approach. It is, indeed, very simple.

Either the primitive form of Equation 5.5 or the weak form (Equation 5.6) can be used. The
following are well-known versions of weighted residual method.
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. Collocation method. When the form of Equation 5.5 is used, the test function needs
only to be integrable. The collocation method is such an extreme case (not very
stable, in general), where the Dirac delta function is used as the test function.

. Subdomain method. The test function is a Heaviside type of a local constant
function. In this case both forms of Equations 5.5 and 5.6 are possible.

. Method of moments. Test functions are monomials and both forms of Equations
5.5 and 5.6 are possible.

. LS method. Test functions are the derivatives of the residuals.

. Petrov–Galerkin method. If the weight function constructed is different from the
shape functions used, the method is generally termed as the Petrov–Galerkin
method.

. Galerkin formulation. If the trial functions are also used as the weight functions in
the vector form of W

_

, the weighted residual method leads to a Galerkin formulation.

Note that in more general formulations, we can include the residuals of the equations
of boundary conditions. More details on those methods in meshfree settings can be
found in the book [1]. A detailed discussion on the Galerkin formulation is given in
Section 5.3.

Although the weighted residual method is simple and, in principle, applicable to most
PDEs, different ways of implementation will lead to solutions of different properties and
accuracies. The stability and convergence of such a formulation are not generally guaran-
teed; it offers only the possibilities of solutions but may not be the solution to a problem.
Therefore, a careful construction of numerical models for a type=class of problem is
required. Note also that to use the weighted residual method, the strong form of the
system equations needs to be known. In general, it is desirable to choose test functions in
accordance to the features of the strong form equations.

Note also that if the set of trial functions contains the exact solution, the weighted
residual method will produce the exact solutions as long as the weight functions are chosen
properly to ensure stability and convergence, and there is no numerical error in the
computation. This important feature is useful in testing meshfree methods developed
based on the weighted residual method.

5.2.2 Procedure of the Weighted Residual Method

The procedure to create a discrete numerical model for solving a problem using the
weighted residual method is as follows:

1. Construct trial functions or shape functions to approximate the field function using
the field variables at the nodes in the domain with a certain order of consistency.

2. Construct weight or test functions.

3. Substitute the trial and test functions into Equation 5.5 or Equation 5.6, which
leads to a set of differential equations with respect to only time.

4. Solve the set of differential equations with respect to time using standard proced-
ures to obtain the dynamic field.

5. For static problems, step 3 leads to a set of algebraic equations, which can be
solved using standard algebraic equation solvers for the static field.
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5.2.3 Local Weighted Residual Method

It is important to mention here that the quadrature domainV used in Equation 5.5 does not
have to be the entire problem domain. When local quadrature domains are used, the
weighted residual method can be termed a ‘‘local weighted residual method.’’ This
local weighted residual method is used (Chapter 7) where the test and trial functions are
chosen independently in a meshfree setting.

5.3 A Weak Formulation: Galerkin

5.3.1 Bilinear Form

We first brief the standard weak formulation derived from the weighted residual method.
We start with Equation 5.6 without the dynamic term. We choose test functions in the
vector form v ¼ fv1, v2gT 2 H

1
h 2 S � H

1
0(V);* we then have

ð
V

(Ldv)
Tc(Ldu)dV�

ð
Gu

(Lnv)T(cLdu)dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 0,

;

v ¼ 0 on Gu

�
ð
Gt

vT LT
n (cLdu)|fflfflffl{zfflfflffl}

s|fflfflfflfflfflffl{zfflfflfflfflfflffl}
tG

dV�
ð
V

vTbdV ¼ 0 (5:7)

Because v 2 H
1
h,0(V), we shall have v¼ 0 on Gu, and thus the second term in the foregoing

equation becomes zero. Using the natural (force) boundary condition on Gt, we shall have

ð
V

(Ldv)
Tc(Ldu)dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a(v,u)

¼
ð
Gt

vTtGdVþ
ð
V

vTbdV

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f (v)

(5:8)

We now have the well-known bilinear form for the solid mechanics problem defined in
Section 1.2:

a(w,v) ¼
ð
V

(Ldv)
T|fflfflffl{zfflfflffl}

«T(v)

c(Ldw)|fflffl{zfflffl}
«(w)

dV ¼
ð
V

«(v)Tc«(w)dV (5:9)

The basic properties of the bilinear form are symmetry, ellipticity (or coercivity), and
continuity:

a(w,v) ¼ a(v,w), 8w 2 H
1, 8v 2 H

1 symmetry (5:10a)

a(v, v) � Cpkvk2H1(V), 8v 2 H
1
0 ellipticity (5:10b)

a(w,v) � Cckwk2
H

1(V)kvk2H1(V), 8w 2 H
1, 8v 2 H

1 continuity (5:10c)

* In this book, when we require a vector is in a space, we require each of the component functions being
independently in the space, and the dimension of the space is expanded accordingly.
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where Cp and Cc are constants independent of v and u. The symmetry is obvious; the
ellipticity is the consequence of the second Korn’s inequality applied to solids of stable
materials (see Remark 1.1):

CKkvkH1(V) � k«(v)kL2 , 8 v 2 H
1
0 (5:11)

where CK is a general constant independent of v. The second Korn’s inequality is in turn
rooted at the Poincare–Friedrichs inequality (Equation 3.33). The continuity is resulted
from the Cauchy–Schwarz inequality (Equation 3.15) for stable materials.

Using Equation 5.9, we have

UPE(«(v)) ¼ 1
2

ð
V

«T(v)c«(v)dV ¼ 1
2
a(v,v) (5:12)

where UPE(«(v)) is the (strain) potential energy in the solid for a given displacement field
v 2 H

1
0. We see here the relationship between the mathematical term of a bilinear form and

the engineering term of strain energy.
The linear functional for the solid mechanics problem is defined as

f (v) ¼
ð
Gt

vTtGdVþ
ð
V

vTbdV (5:13)

This is clearly the work done by the external forces (body force b and forces on the natural
boundary tG) under displacement v.

Alternative formulations can be done using indicial notations, which can be found, for
example, in [12]. Here we simply list the bilinear and linear forms for later comparison and
reference purposes. The well-known bilinear form has the form

a(w, v) ¼
ð
V

qvi
qxj

Cijkl
qwk

qxl

� �
dV (5:14)

where v,w 2 S, and the linear functional can be written as

f (v) ¼
ð
GN

vitidGþ
ð
V

bividV (5:15)

Note when the indicial notations are used, v and w will have two components for two-
dimensional (2D) and three components for three-dimensional (3D) problems.

5.3.2 Weak Statement

Following Equation 5.7, we now have the weak statement: the exact solution of the displace-
ment u 2 S of the strong form equations given in Section 1.2 satisfies

a(u, v) ¼ f (v), 8v 2 S (5:16)

We now make the following remark for future reference.
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Remark 5.3: Galerkin Weak Formulation: Proven Facts
The statement for Equation 5.16 has a unique and stable solution. This is ensured by the
well-known Lax–Milgram theorem due to the ellipticity and continuity for the bilinear form
(Equation 5.10b and c). From Equation 5.8, we observe that we need only the first
derivatives for all functions involved in the formulation. This is because a part of the
second-order derivatives on u has been transferred to the so-called test function v. As a
result, the continuity requirements on both functions u and v are weakened: they all need to
be only first-order differentiable, compared with the requirement of being second-order
differentiable in the strong formulation (Equation 5.2). Both functions u and v live in a
proper Hilbert space. Therefore, Equation 5.16 is termed as the weak formulation, which is
the foundation for the well-known and widely used FEM.

5.3.3 Bilinear Form in an H
1
h Space: FEM Settings

In practice, it is generally very difficult to solve the governing equations either in strong or
weak forms by analytical means for the exact solution. We then often resort to numerical
methods to obtain approximate solutions. The most popular method is the traditional FEM
based on the weak formulation where the Galerkin projection is chosen to obtain an
approximate solution ~u from an H

1
h space of lower and finite dimension. The FEM

formulation can be conveniently done using the weak form statement, as long as we can
create a discrete (hence finite) H1

h � H space based on a mesh of elements. It is well known
that such an FEM solution is the best (in a-norm or energy norm) possible solution in the
discrete finite element space H

1
h � H, such that ~u ! u when H

1
h ! H, meaning that the

approximate FEM solution approaches the exact solution when the size of the element
approaches zero and the dimension of the FEM model Nn ! 1.

The finite element solution ~u 2 H
1
h,0 � H

1
0, as an approximation to the solution to the

problem defined in Section 1.2, satisfies the following weak statement

a(~u,v) ¼ f (v), 8 v 2 H
1
h,0 (5:17)

where the displacement field is ~u 2 H
1
h,0.

5.3.4 Discrete System Equations

Using nodal shape functions fH
i 2 H

1
h obtained, based on the elements with proper map-

ping, the displacement field ~u 2 H
1
h,0 in an element can be obtained for types of elements

and expressed in terms of the following interpretation form:

~u(x) ¼
X
i2Se

fH
i (x)~ui (5:18)

where
x¼fx1, x2gT
Se is the set of nodes in the element that hosts x
~ui is a nodal displacement of the element
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and

fH
i (x) ¼

fH
i (x) 0
0 fH

i (x)

	 

for 2D, fH

i (x) ¼
fH
i (x) 0 0
0 fH

i (x) 0
0 0 fH

i (x)

2
64

3
75 for 3D (5:19)

The nodal shape functions are the Kronecker delta functions: fH
i xj
� � ¼ dij.

We then substitute Equation 5.18 into Equation 5.17, and set fH
i , where i¼ 1, . . . , Nn, as

the test functions, we have the following discrete set of d�Nn equations

XNn

j¼1

a fH
j ,f

H
i

� �
~uj ¼ f fH

i

� �
, i ¼ 1, . . . ,Nn (5:20)

where Nn is the total number of (unconstrained) nodes. Equation 5.20 can be written in the
matrix form

~K~U ¼ ~F (5:21)

where
~K is the FEM stiffness matrix with entries of ~kij ¼ a fH

j ,f
H
i

� �
, 1 � i, j � Nn

~U is the vector of nodal displacements ~ui
~F is the vector with entries of ~fi ¼ f fH

i

� �

Remark 5.4: Full Compatibility
A fully compatible FEM model satisfies three conditions: (1) the strain–displacement
relation; (2) the essential (displacement) boundary conditions; and (3) the nodal shape
functions fH

i , are compatible. To ensure the shape functions are compatible in an FEM
setting, we practice mainly two tricks: (a) using only nodes of the element to create fH

i in
the natural coordinate system; and (b) use proper mapping for the element to ensure the
continuity of fH

i on the interfaces of the elements. ‘‘Of course, we require the integration to
be exact.’’

Remark 5.5: Lower-Bound Property
The strain energy related to the fully compatible FEM solution is a lower bound of the exact
strain energy

UPE ~«ð Þ ¼ 1
2
a ~u, ~uð Þ � 1

2
a u,uð Þ ¼ UPE(«) (5:22)

where
~« ¼ Ld~u are the strains obtained using the FEM displacements ~u 2 H

1
h,0 � H

1

«¼Ldu is the exact strain obtained using the exact displacements u 2 H
1
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For an FEM model, the strain energy can be evaluated using any of the following expres-
sions:

U ~«ð Þ ¼ 1
2

ð
V

~«TC~«dV ¼ 1
2
a ~u, ~uð Þ ¼ 1

2
~U
T ~K~U (5:23)

The proof of the lower-bound property can be found in a number of references, for example
in variational formulation [12] and in matrix formulation [18] based on the energy prin-
ciple. The lower-bound property implies the well-known fact that the FEM solution always
underestimates the strain potential energy. This is equivalent to saying that the FEM
solution overestimates the total potential energy. This property of FEM provides a good
global measure of the lower-bound solution with respect to the exact solution. We discuss
more in Chapter 8.

Remark 5.6: Monotonic Convergence Property
For a given sequence of nm nested element meshes M1,M2, . . . ,Mnm , such that the corre-
sponding solution spaces satisfy H

1
M1

� H
1
M2

� � � � H
1
Mnm

� H
1, the following inequalities

stand:

U ~«M1ð Þ � U ~«M2ð Þ � � � � � U ~«Mnm

� � � U(«) (5:24)

where ~«mi is the FEM-compatible solution of strains obtained using mesh mi. This property
can be shown easily using the arguments given by Oliveira [13].

Remark 5.7: Reproducibility of FEM
If u 2 H

1
h,0, then a fully compatible FEM model will reproduce the exact solution u.

This property can easily be proven [12,31,32], and can be understood intuitively. Because
an FEM model guarantees to produce a unique, stable, and the best possible solution from
the given H

1
h,0 (in energy norm), if the exact solution is in this space, the FEM model will

surely produce it as it must be the best one.
Note that the weak formulation is also applied in meshfree settings, as long as the

meshfree shape functions are in a proper H space. For example, the MLS shape functions
can be used in a weak formulation of meshfree methods.

5.4 A Weakened-Weak Formulation: GS-Galerkin

5.4.1 Bilinear Forms in G
1
h Spaces: A General Setting

For general meshfree and FEM settings, we need to form our bilinear form using functions
in a G

1
h space defined in Chapter 3. The bilinear form in G

1
h spaces is also called

the (generalized) smoothed bilinear form because of the use of (generalized) smoothing
operations [16].
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Consider again a solid mechanics problem governed by strong form PDEs given in
Section 1.2. The problem domain V is discretized with background cells using the triangu-
lation procedure defined in Section 1.7.2, over which stationary smoothing domains
are created following the rules detailed in Section 3.3.1. We require also that at least
the minimum number of linearly independent smoothing domains is used (see Section
3.3.3). Following Equation 5.14, the (generalized) smoothed bilinear form �aD(w, v) is then
defined as

�aD(w, v) ¼
XNs

i¼1

As
i

1
As

i

ð
Gs
i

winjds

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�gij(w)

0
BBBBBBB@

1
CCCCCCCA
Cijkl

1
As

i

ð
Gs
i

vknlds

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�gkl(v)

0
BBBBBBB@

1
CCCCCCCA

¼
XNs

i¼1

As
i�gij(w)Cijkl�gkl(v) (5:25)

where w, v 2 G
1
h. Note that the summation is made possible by the particular way of

creating the smoothing domains that ensures the continuity of the functions on Gs
i .

In terms of the (generalized) smoothed strain defined in Remark 4.1, �aD can be written in
the matrix form (see Equation 5.9)

�aD(w,v) ¼
XNs

i¼1

As
i �«

T
i (w)c�«i(v) (5:26)

where �«i is the vector of the smoothed strains in the smoothed domain Vs
i . For any given

vector field of displacement w ¼ fw1 w2 gT with w 2 G
1
h, �«i can be written as

�«i(w) ¼ 1
As

i

ð
Gs
i

Lnw(x)ds ¼ �e11 �e22 2�e12f gTi

¼ qw1

qx1|{z}
�g11

qw2

qx2|{z}
�g22

qw1

qx2|{z}
�g12

þ qw2

qx1|{z}
�g21

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

T

i

¼ �g11 �g22 �g12 þ �g21ð Þf gTi (5:27)

The L
2 norm of the strain vector �«k k2L2 can be written as

�«k k2L2¼
XNs

i¼1

As
i �e211þ�e222þ 4�e212
� �¼XNs

i¼1

As
i �g211(w1)þ �g222(w2)þ �g12(w1)þ �g21(w2)ð Þ2
� �

(5:28)

It is now clear that the L
2 norm of the strain vector is the same as the G

1
h seminorm (see

Equation 3.72)

jwj
G

1(V) ¼ k�«k
L
2 , 8w 2 G

1
h,0 (5:29)

which is useful in proving important properties in the following sections.
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Combining Equations 3.94 and 5.29, we obtain

Remark 5.8: Fourth Inequality

cGkwk
G

1(V) � k�«k
L
2 , 8w 2 G

1
h,0 (5:30)

which is equivalent to the second Korn’s inequality but for functions in an H
1
h space.

Combining Equations 3.89 and 5.29, we have the following chain inequality:

cGkwk
G

1(V) � k�«k
L
2 � kwk

G
1(V), 8w 2 G

1
h,0 (5:31)

5.4.2 Properties of the Smoothed Bilinear Form

Remark 5.9: Symmetry and Semipositivity
By simple observation, it is clear that the generalized smoothed bilinear form has basic
properties of symmetry

aD(w,v) ¼ aD(w, v), 8w,v 2 G
1
h (5:32)

for the symmetry property of the elastic material constants, and semipositive definite

aD(w,w) � 0, 8w 2 G
1
h (5:33)

because of the positivity of the material constants (see Chapter 1).

Remark 5.10: Convergence Property for Functions in an H Space
For w,v 2 H

1
h, when Ns ! 1 and all Vs

k ! 0, �W becomes a delta function and the integral
representation is exact (see Remark 2.1). At such a limit, �aD(w,v) ! a(w,v). Therefore,
based on the known property of a(w,w) (see Equation 5.10b), we should have the ellipticity
property, meaning there exists a nonzero positive constant c such that

lim
Ns!1
all Vs

k
!0

aD(w,w) � ckwk2
H

1(V), 8w 2 H
1
h,0 (5:34)

The ellipticity ensures the existence and uniqueness of the solution of the W2 formulation
when the smoothing domain is refined. When the H1

h space is enriched (element=cell mesh
is refined together with the smoothing domains) the solution approaches the exact
solution.

For finite discretization of domains and functions in G spaces, the smoothed bilinear
form has been found to have a number of important properties.
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Theorem 5.1: Ellipticity with Respect to the G Seminorm

For solids of stable materials, there exists a nonzero positive constant c f
aw such that

aD(w,w) � csawjwj2
G

1(V), 8w 2 G
1
h,0 (5:35)

Proof Because the material is stable, the matrix of the elastic constants c is symmetric
positive definite (SPD) and can always be decomposed into a unitary matrix Vm of eigen-
vectors and a diagonal matrix Lm of all positive eigenvalues:

c ¼ VT
mLmVm (5:36)

The proof starts from the definition (Equation 5.26). For w 2 G
1
h,0, we have

�aD(w,w) ¼
XNs

i¼1

As
i �«

T
i (w)c�«i(w) ¼

XNs

i¼1

As
i �«

T
i (w)VT

mLmVm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
c

�«i(w)

¼
XNs

i¼1

As
i Vm�«i(w)½ �TLm Vm�«i(w)½ � � lmin

XNs

i¼1

As
i �«

T
i (w)VT

mVm|fflfflffl{zfflfflffl}
I

�«i(w)

¼ lmink�«(w)k2
L
2 ¼ lmin|ffl{zffl}

csaw

jwj2
G

1(V) (5:37)

where lmin is the smallest eigenvalue of c. In the second line of the above equation, we used
the facts: (1) the L

2 norm definition by the inner product and (2) the L
2 norm of the strain

vector being the same as the seminorm (Equation 5.29). Finally, we have the inequality
(Equation 5.35), by letting csaw ¼ lmin that is independent of w. &

Theorem 5.2: Ellipticity (Coercivity): Fifth Inequality

For solids of stable materials, there exists a nonzero positive constant c f
aw such that

aD(w,w) � cfawkwk2
G

1(V), 8w 2 G
1
h,0 (5:38)

which implies the ellipticity or coercivity of bilinear forms.

Proof From Equations 3.94 and 5.35, we immediately have

aD(w,w) � csawjwj2
G

1 � Cs
awCG|fflfflffl{zfflfflffl}
c f
aw

kwk2
G

1 (5:39)

which is the fifth inequality (Equation 5.38). &

Theorem 5.2 is important because it ensures the existence (and hence the uniqueness), and
consequently, the stability of the solution of theW2 formulation based on theG space theory.
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Theorem 5.3: Continuity: Sixth Inequality

For solids of stable materials, there exists a nonzero positive constant c f
awv such that

aD(w,v) � cfawvkwk
G

1(V)kvkG1(V), 8w 2 G
1
h, 8v 2 G

1
h (5:40)

Proof We start again from the definition (Equation 5.26). For w, v 2 G
1
h, we have

�aD(w,v) ¼
XNs

i¼1

As
i �«

T
i (w)c�«i(v) ¼

XNs

i¼1

As
i �«

T
i (w)VT

mLmVm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
c

�«i(v) (5:41)

where the positivity of the material constants is again used to decompose c. Equation 5.41
becomes

aD(w,v) ¼
XNs

i¼1

As
i �«

T
i (w)VT

mLmVm|fflfflfflfflfflffl{zfflfflfflfflfflffl}
c

�«i(v) ¼
XNs

i¼1

As
i Vm�«i(w)½ �TLm Vm�«i(v)½ �

� lmax

XNs

i¼1

As
i kVm�«i(w)k

L
2 Vs

ið Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼k�«i(w)k

L
2 Vs

ið Þ

kVm�«i(v)kL2 Vs
ið Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼ k�«i(v)kL2 V2
ið Þ

¼ lmax

XNs

i¼1

As
ik�«i(w)k

L
2 Vs

ið Þk�«i(v)kL2 Vs
ið Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼k�«i(w)k

L
2 Vs

ið Þk�«i(v)kL2 Vs
ið Þ

¼ lmaxk�«i(w)k
L
2(V)k�«i(v)kL2(V) ¼ lmaxjwj

G
1(V)jvjG1(V) � lmax|ffl{zffl}

c f
awv

kwk
G

1(V)kvkG1(V)

¼ c f
awvkwk

G
1(V)kvkG1(V) (5:42)

where lmax is the largest eigenvalue of c. In the second line of the above equation, we used
these facts: (1) the Cauchy-Schwarz inequality for inner-produced induced L

2 norms, and
(2) the L

2 norm preservation property of the unitary matrix. In the third line, we used the
fact that the L2 norm of the strain vector equals the seminorm (see Equation 5.29), and the
fact that a seminorm is no larger than a full norm (see Equation 3.89). Finally, we have the
sixth inequality (Equation 5.40), by letting cfawv ¼ lmax. &

Theorem 5.3 is important because it ensures that our bilinear form is continuous.
Together with the ellipticity, it ensures the convergence of the solution of the W2 formu-
lation based on the G space theory.

Remark 5.11: Softened Model: Seventh Inequality
For stable materials and any w 2 H

1
h the smoothed bilinear form is smaller than the

bilinear form:

aD(w,w) � a(w,w), 8w 2 H
1
h (5:43)

Remark 5.9 is the same as Theorem 4.2 stated in terms of strain energy, and a proof is given
already in Chapter 4. A more general inequality than Equation 5.43 can be found in [16].
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Remark 5.9 implies that a model established based on the smoothed bilinear form is
‘‘softer’’ than that of the bilinear form which was discovered in [18].

Remark 5.12: Monotonic Convergence Property: Eighth Inequality
In a given division D1 of a domain V into a set of smoothing domains V ¼ [Ns

i¼1V
s
i where

the box stands for an enclosed domain, if a new division D2 is created by subdividing a
smoothing domain in D1 into nsd subsmoothing domains V

s
i ¼ [nsd

j¼1V
s
,j, then the following

inequality stands:

�aD1 (w,w) � �aD2 (w,w) (5:44)

which was found in [18]. Remark 5.10 is the same as the Theorem 4.3 stated in terms of
strain energy. It implies that the ‘‘softening’’ effect provided by the W2 formulation is
monotonically reduced with the increase of the number of smoothing domains in a nested
manner. One now has a theoretic base to reduce or increase the stiffness or softness of the
model.

5.4.3 A Weakened-Weak Form Statement: GS-Galerkin

For solid mechanics problems given in the strong statements in Section 1.2, our W2

statement becomes: An approximated solution �u 2 G
1
h,0 associated with the strong state-

ments in Section 1.2 satisfies

�aD(�u,v) ¼ f (v), 8v 2 G
1
h,0 (5:45)

Note here we make no changes to the linear functional f(v), and Equation 5.13 stands. We
now state

Theorem 5.4a: W2 Solution in H
1
h Spaces: Variationally Consistent

If the solution is sought from an H
1
h space, the W

2 statement (Equation 5.45) is variationally
consistent in the standard weak formulation, and hence the solution is stable, unique, and
converges to the exact solution of the strong statement when h ! 0 (and hence Vs

i ! 0).
The proof will be discussed based on the energy principle in Theorem 5.4b.

Theorem 5.5a: W2 Solution in G
1
h Spaces: Unique Solution

For solids of stable materials, the W2 statement (Equation 5.45) has a unique solution.

Proof To prove Theorem 5.5a, we need to show: (1) the bilinear form is of ellipticity to
ensure the existence of the solution and (2) the bilinear form is continuous to ensure that
the solution is bounded. Note the ellipticity has already been given by Theorem 5.2, and
the boundedness is given by Theorem 5.3. Based on the Lax–Milgram theorem, the W2

statement (Equation 5.45) has a unique solution. This completes the proof. &
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In Theorem 5.7, we will show (in a more general way) that the unique solution of the
W2 statement will converge to the exact solution of the original strong form (see also,
Theorem 5.5b ).

Theorem 5.6: Upper Bound to the Galerkin Weak Form Solution

The strain energy of the GS-Galerkin weak form solution u_ 2 H
1
h,0 is no less than that of the

Galerkin weak form solution ~u 2 H
1
h,0, when the same mesh is used for creating the

numerical model:

U ~uð Þ � U
_D(u_) (5:46)

The proof is a little lengthy and can be found in variational formulation [27] and in
energy principle formulation [18]. Therefore, it is omitted here. Instead, we provide an
intuitive physical explanation on Theorem 5.6: From Remark 5.9, we know that the GS-
Galerkin model is always softer than its Galerkin counterpart. Therefore, the displacement
field obtained from the GS-Galerkin model should be ‘‘larger’’ and so also the strain field.
The strain energy obtained using such a ‘‘larger’’ displacement field should also be larger
compared to that of the Galerkin model. In other words, Equation 5.46 is the consequence
of the fact that the GS-Galerkin model is always ‘‘softer’’ than the Galerkin model.

Remark 5.13: Upper Bound to the Exact Solution: Special Cases
The strain energy of the GS-Galerkin weak form solution u_ is no less than that of the exact
solution u, if u_ is found from an H

1 space that contains the exact solution:

U
_

(u) � U
_D(u_) (5:47)

This remark can be easily understood intuitively: the H
1 space contains the exact solution,

thus, Equation 5.46 becomes Equation 5.47.
Note that when the Galerkin weak form is used to search a solution from a space that

contains the exact solution, it will reproduce the exact solution. The GS-Galerkin weak
form, however, will not necessarily reproduce the exact solution, if a finite division of the
smoothing domain is used. It produces in general a approximated solution that approaches
the exact solution when the dimension of the smoothing domains approaches zero.

Note that Remark 5.11 has only a theoretical significance, because it is difficult to
assume a space that contains the exact solution, unless the exact solution has a very simple
polynomial form. Even this can be done; one can simply use the FEM to reproduce the
exact solution, and there is no need for any other form of the solution! Therefore,
the following two remarks are more of practical importance.

Remark 5.14: Upper Bound to the Exact Solution: Existence
If a discrete GS-Galerkin model is so large, that the ‘‘stiffness’’ of the model can change
reasonably smoothly with the change of the number of linearly independent smoothing
domains Ns � Nmin

s , the GS-Galerkin model can produce an upper-bound solution by
reducing Ns.
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Based on the study in [27], to ensure the positivity of the seminorm of a function in G
1
h

space, we have to use at least the minimum number of linearly independent smoothing
domains given in Table 3.1. This implies that if the number of smoothing domains Ns used
in a GS-Galerkin mode is less than the minimum number given in Table 3.1, the G

1
h

seminorm of a function in G
1
h space can be zero. In mechanics, this means that the strain

energy of such a GS-Galerkin model can be zero: there are finite displacement fields that
generate zero energy! In other words, the model has zero stiffness or is extremely soft. This
can be understood intuitively using a single degree of freedom (DOF) mechanics model
with a stiffness k whose strain energy is given by

Ue|{z}
zero

¼ 1
2
k u2|{z}
finite

(5:48)

When u is finite and Ue is zero, k must become zero.
The above analysis implies that we can, in theory, make a GS-Galerkin model as soft as

we want to by reducingNs, and thus always obtain an upper-bound solution, as long as the
stiffness of the model changes smoothly with the change of Ns.

Remark 5.12 is important because it ensures (with conditions) that a GS-Galerkin model
can always be built for an upper bound to the exact solution in the energy norm. This
provides a foundation for establishing practical numerical methods for upper-bound
solutions.

In actual discrete finite models, however, the stiffness of the model may not change very
smoothly with the change of Ns when the number of nodes in the model is too small. For
example, for 1D problems (truss) with only one linear element and two nodes of which one is
constrained, we have the only choice of using one smoothing domain (using more than one
smoothing domains has no effect on the strain energy). Note also that, in practice, the division
of smoothing domains is somehow always tied together with the element mesh for (1)
convenience in implementation, (2) efficiency in computation, (3) ensuring smoothing
domains are created properly, and (4) tighter upper bounds. Therefore, the element
mesh is refined, and the smoothing domains are also refined accordingly. In this case,
the smoothing effects are reduced with the element mesh refinement. Depending on how
they are tied together, the GS-Galerkin model may or may not be able to produce an
upper-bound solution.

Remark 5.15: Upper Bound to the Exact Solution: Usual Occurrences
The strain energy of the solution �u 2 G

1
h of a sufficiently large GS-Galerkin model is no less

than that of the exact solution u, when the smoothing domains are properly chosen for
sufficient smoothing effects:

U(u) � �UD(�u) (5:49)

A precise proof for Remark 5.13 is difficult due to the difficulty in quantifying the
exceptions. The inequality (Equation 5.49) is found mostly true when node-based smoothing
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domains are used as in the node-based point interpolation methods (NS-PIMs). An intui-
tive explanation and proof by numerical examples can be found in [18–21,27]. A discussion
on this is given in Chapter 8. Remark 5.13 is practically important because it implies that a
sufficiently large GS-Galerkin model can provide an upper bound to the exact solution in
the energy norm by choosing the smoothing domains properly. Here, we emphasis how
the smoothing domain is constructed rather than how many smoothing domains are used
in an actual GS-Galerkin model.

Remark 5.16: The ‘‘Form’’ of Galerkin
Equation 5.45 has the form of Galerkin. The trial and test functions are all from the same G
space that is a much more general setting for solution spaces. The W2 statement of
Equation 5.45 was termed the GS-Galerkin formulation [16]. With the G-space theory
established, we now have a very general framework, in a form as simple as the Galerkin
form, for establishing a wide class of meshfree methods. We also have plenty of freedom to
create smoothing domains and shape functions using FEM settings and meshfree settings.
Furthermore, even within the FEM setting, there are nowmany avenues to explore. Just for
an example, we can now conveniently formulate different shapes of elements and even
mixed shapes of elements [23–26]. The GS-Galerkin is in fact a special case of SC-Galerkin
to be discussed in Section 5.15.

5.4.4 Some Comments

It is seen that the above process for both weak and weakened-weak formulation is quite
mathematical. Such a mathematical approach is indeed very handy in proving the theories
and properties. It is also convenient for further examination of solution error, convergence
rate, solution regularities, and so forth. However, these topics are beyond the scope of this
book, hence we will not move any further in that direction.

On the other hand, in such mathematical manipulations one can very easily get lost
about the physics of the problem. Hence it is not really to the like of many engineers. In the
following we present the energy principles to establish weak forms for meshfree methods
using function spaces defined in Chapter 3. Using these energy principles, we can easily
establish many types of weak forms for different types of structures. In addition, we can
quite easily implement the strain construction techniques discussed in Chapter 4 in our
formulation. We start with the well-known Hu–Washizu (HW) principle.

5.5 The Hu–Washizu Principle

The HW principle [8] is a very general energy principle with three unknown fields:
displacement, strain, and stress. It is hence often called the three-field principle. It can be
stated as ‘‘of all the admissible fields of displacement, strain, and stress, the most accurate*
ones are registered at the stationary point of the HW functional.’’ It can be expressed as
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PHW(u,«,s) ¼
ð
V

1
2
«Tc«|fflfflffl{zfflfflffl}

Energy potential for the
assumed strain field

þ sT(Ldu� «)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Energy potential by the assumed stress field
over the strain fields difference between
the compatible and assumed strain fields

2
6666664

3
7777775
dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UHW: total strain potential

�
ð
V

bTudV

|fflfflfflfflffl{zfflfflfflfflffl}
Work done by the

body forces

þ
ð
Gt

tTGudG

|fflfflfflfflffl{zfflfflfflfflffl}
Work done by the

force on the boundary

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext: Work done by the external forces

�
ð
Gu

tT(u� uG)dG

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
UGu : Energy potential on the essential

boundary by the assumed stress over the
displacment difference between the assumed

and prescribed displacements

¼ Stationary (5:50)

wherePHW ¼ UHW �Wext þUGu is the HW functional in mathematical terminology, and is
the total potential energy in the system in engineering terminology. It is clear that the HW
principle simply counts for all energies and work done by the assumed fields and the given
force and boundary conditions. FunctionalPHW has three inputs of field functions: strain «,
stress s, and displacement u. The admissible conditions are: strain « 2 L

2, stress s 2 L
2,

and displacement u 2 H
1
0. Clearly, Equation 5.50 is a weak form requiring only the first-

order consistency. The most accurate fields will be our best possible solution, denoted here
as u, «, and s.

The HW principle is powerful in terms of the freedom offered to assume all these three
fields. In practice, it is often used to formulate mixed FEM. However, assuming all the
three fields in a model results in a large number of unknowns affecting the computational
efficiency, which is not usually preferred in practice. In theory, the HW principle forms a
foundation for many other practically useful principles.

For future references, we define the HW strain energy potential as

UHW(u,«,s) ¼
ð
V

1
2
«Tc«þ sT(Ldu� «)

	 

dV (5:51)

which is a functional of functions u, «, and s. The work done by the external forces is
defined as

Wext(u) ¼
ð
V

bTudVþ
ð
Gt

tTGudG (5:52)

* In energy principles, the accuracy of the solution is usually measured as the error in an energy norm.
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which is a linear functional of u. The potential on the constrained (essential) boundary is
defined as

UGu (u,s) ¼
ð
Gu

tT(u� uG)dG (5:53)

which is a functional of u and s.
The variational statement for the HW principle can now be written as

dPHW(u, «,s) ¼ d UHW �Wext þUGu½ � ¼ 0 (5:54)

which is simply the so-called stationary condition.

5.6 The Hellinger–Reissner Principle

The Hellinger–Reissner principle [9,10] is a principle with two unknown fields: displace-
ment and stress. It is hence often called the two-field principle. The removal of one field in
Equation 5.50 is achieved by expressing the strain in terms of stress via the stress–strain
relations (the generalized Hooke’s law). The Hellinger–Reissner principle can be math-
ematically expressed as

PHR(u,s) ¼
ð
V

� 1
2
sTssþ sT(Ldu)

	 

dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UHR

�
ð
V

bTudVþ
ð
Gt

tTGudG

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

�
ð
Gu

tT(u� uG)dG

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
UGu

¼ Stationary (5:55)

where the admissible conditions are s 2 L
2, u 2 H

1
0, and «¼ ss. For later reference, we

define the Hellinger–Reissner potential as

UHR(u,s) ¼
ð
V

� 1
2
sTssþ sT(Ldu)

	 

dV (5:56)

which is a functional of u and s.
The variational statement for the Hellinger–Reissner principle can now be given as

dPHR(u,s) ¼ d UHR �Wext þUGu½ � ¼ 0 (5:57)
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5.7 The Modified Hellinger–Reissner Principle

Start again from the three-field principle (Equation 5.50), express the stress in terms
of strain via the stress–strain relations; we then have the MHR principle. It is also a
principle with two unknown fields: displacement and strain. The MHR principle can be
expressed as

PMHR(«,u) ¼
ð
V

� 1
2
«Tc«þ «Tc(Ldu)

	 

dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UMHR

�
ð
V

bTudVþ
ð
Gt

tTGudG

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

¼ Stationary (5:58)

where « 2 L
2, u 2 H

1
0, and s¼ c«. The MHR potential is defined as

UMHR(«,u) ¼
ð
V

� 1
2
«Tc«þ «Tc(Ldu)

	 

dV (5:59)

which is a functional of u and «.
The variational statement for the MHR principle can now be written in the following

concise form:

dPMHR(«,u) ¼ d[UMHR(«,u)�Wext(u)] ¼ 0 (5:60)

5.8 The Single-Field Hellinger–Reissner Principle

Start now from the MHR principle (Equation 5.58); when the assumed strain field is fully
dependent on the assumed displacement, the Hellinger–Reissner functional relies solely on
the displacement field:

PSHR(u) ¼
ð
V

� 1
2
«
^T

(u)c«^(u)þ «
^T

(u)c(Ldu)
	 


dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
USHR

�
ð
V

bTudVþ
ð
Gt

tTGudG

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

¼ Stationary (5:61)

where, u 2 H
1
0, and «

^(u) is the strain field that is obtained using the assumed displacement
field in some manner. The single-field Hellinger–Reissner (SHR) potential is defined as

USHR(u) ¼
ð
V

� 1
2
«
^T

(u)c«^(u)þ «
^T

(u)c(Ldu)
	 


dV (5:62)

which is a functional of u.
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The variational statement for the single-field Hellinger–Reissner principle can now be
written as

dPSHR(u) ¼ d[USHR(u)�Wext(u)] ¼ 0 (5:63)

5.9 The Principle of Minimum Complementary Energy

When the assumed stress field satisfies the equilibrium equations, and the prescribed
tractions along the boundary of the domain are also satisfied, the Hellinger–Reissner
principle reduces to the well-known complementary energy principle. It can be expressed as

PCE(s) ¼
ð
V

1
2
sTssdV

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
UCE

�
ð
Gu

tTuGdG

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
WGu

¼ Minimum (5:64)

The admissible conditions are s 2 H
div ¼ tjt 2 L

2,LT
dt 2 L

2� �
, LT

ds ¼ b, and nTs

Gt
¼ tG.

We demand for the H
div space, because the stress field assumed has to satisfy the equilib-

rium equation LT
ds ¼ b where a divergence operator is applied to the stress. The so-called

equilibrium methods or the force methods, where we assume the stress field, are estab-
lished using this principle.

Although in the minimum complementary energy principle, only the stress field is
unknown, constructing a stress field that satisfies the equilibrium equations and the pre-
scribed tractions along the boundary is not an easy task for general problems. In addition,
computing displacements from given stresses can also be problematic (a kind of inverse
problem). This formulation can however provide upper-bound solutions (for homogenous
essential conditions).

The stress energy potential is defined as

UCE(s) ¼
ð
V

1
2
sTssdV (5:65)

which is a quadratic functional of s.
The variational statement for the principle of minimum complementary energy can now

be written as follows:

dPCE(s) ¼ d UCE(s)�WGu (s)½ � ¼ 0 (5:66)

which is simply the so-called minimization condition.

5.10 The Principle of Minimum Potential Energy

When the strain field is simply obtained from the assumed displacement via the strain–
displacement relation, and the assumed displacement field satisfies the essential boundary
conditions where the displacements are prescribed, Equation 5.50 reduces to the well-known
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principle of minimum potential energy. It can be stated as ‘‘of all the admissible fields of
displacement the most accurate one is registered at the minimum point of the functional
of total energy potential.’’Mathematically it can be expressed as

PPE(u) ¼
ð
V

1
2
«Tc«dV

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
UPE

�
ð
V

bTudVþ
ð
Gt

tTGudG

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

¼ Minimum (5:67)

where PPE ¼ UPE �Wext is a functional in mathematical terminology and is the total
potential energy in engineering terminology. The admissible conditions are u 2 H

1
0 and

«¼Ldu. We demand for the H
1 space, because the use of the strain–displacement relation,

«¼Ldu, and the strain energy potential is computed using

UPE(«) ¼
ð
V

1
2
«Tc«dV (5:68)

which is a quadratic functional of «.
The variational statement for the principle of minimum potential energy can now be

written as

dPPE(u) ¼ d[UPE(u)�Wext(u)] ¼ 0 (5:69)

which is the so-called minimization condition. The principle of minimum potential energy
is the foundation of the so-called displacement methods where we need to assume only a
single field of displacement. The well-known Raleigh–Ritz method that was widely used in
early years is essentially the principle of minimum potential energy. The FEM that dom-
inates today’s modeling and simulation area follows also this principle. Many meshfree
methods can also be established based on this principle.

Remark 5.17: Weak Form Statement vs. Minimization Statement
We now observe the equivalency of the weak form and minimization statements. The
minimization process in Equation 5.69 is, in fact, exactly the same as the weak statement
given in Equation 5.16:

1. The strain energy potential UPE corresponding to the bilinear form a in the form of
Equation 5.12.

2. The external work done Wext defined in Equation 5.52 being the same as the linear
form Equation 5.16.

3. The requirement of Equation 5.16 being satisfied for all functions inH
1
0 correspond-

ing to the search among all the admissible displacement fields for the one satisfy-
ing the stationary (minimization) condition.

176 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



4. The condition that v must be in H
1
0 corresponding to the admissible condition. The

admissible condition physically means that the displacement field assumed must
satisfy

The compatibility conditions within the domain (in-domain compatibility) (5:70)

The essential boundary conditions (on-boundary compatibility) (5:71)

5. The in-domain compatibility condition (Equation 5.70) implies that the assumed
displacement field that lives in the H

1
h space is at least continuous over the entire

problem domain, and the strain field is obtained using the assumed displacement
and the strain–displacement relation. The on-boundary compatibility condition
(Equation 5.71) requires the assumed displacement field satisfying the prescribed
displacement values at any point on the essential boundary, and hence lives in an
H

1
h,0 space. A displacement method that satisfies conditions (Equations 5.70 and

5.71) together with the kinematical condition (strain–displacement relation) is said
fully compatible, as stated in Remark 5.2.

6. When the displacement function is not in an H
1
h space (say, for example, is in a

G
1
h space), the bilinear form a may not be bounded, and the weak formulation can

fail. In engineering terms, when the displacement field has possible gaps or
overlaps (discontinuities), the total energy potential cannot be simply evaluated as
PPE¼UPE�Wext, because of the possible energy ‘‘leak’’ on these gaps or overlaps,
and hence Equation 5.69 may not be a correct reflection of the system. In such
cases, we need to construct a new strain field for proper energy evaluation,
leading to strain-constructed energy principles (or weakened-weak formulations).

With the presentation of Remark 5.15 and Table 1.1, we no longer need to distinguish so
precisely these two formulations and terminologies used in these two formulations. We
may use them in a mixed fashion for most convenience in the presentation.

The procedure for solving a problem using the principle of minimum potential energy,
for a numerical solution based on a finite discrete model is described as follows:

1. Construct shape functions (see Chapter 2) to approximate the displacement func-
tions uh using their values at the nodes in the problem domain. The approximated
displacement functions should be in an H

1
h,0 space, i.e., they should satisfy the

admissible conditions of Equations 5.70 and 5.71.

2. Calculate the potential energy PPE(u
h) defined in Equation 5.67 using the assumed

displacements uh and the strain–displacement relations, which leads to an expres-
sion PPE(U

h) in terms of nodal displacements Uh. Seek for a set of nodal displace-
ments ~U that makes PPE(~U) minimum over all possible nodal displacements,
which leads to a set of algebraic equations.

3. Solve the set of algebraic equations for nodal values ~U.

4. Recover the displacement field ~u using again the shape functions and the obtained
nodal values. The displacement field ~u is the approximated solution for the
discrete model.

5. Finally, recover the strains using strain–displacement relations, and the stress field
using the generalized Hooke’s law.
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In the FEM, the shape function is constructed using elements (with proper mapping), and
the integration of the energy is also based on these elements. In meshfree methods, MLS
shape functions discussed in Chapter 2 based on arbitrarily distributed nodes should be
used, and the integration is, in general, based on a set of background cells.

Note that in order to use the energy principles, energy functional has to be obtained,
which may not be possible for all problems. On the other hand, using energy principles
we do not have to know the strong forms of all the system equations. Our understanding
on the energy behavior is sufficient for us to obtain the solution (corresponding to a stable
state).

Remark 5.5 has stated that if u 2 H
1
h, then the FEM will reproduce the exact solution u.

It is not so difficult to give an ‘‘engineering’’ proof that the principle of minimum potential
energy gives the exact solution of the strong form system equations, if the exact solution
is in our assumed pool of displacements. Here, we attempt to give such an engineering
proof by an energy argument (with some mathematical support). The energy argument
is not mathematically rigorous, but should provide the essence on why the principle
indeed works.

Remark 5.18: Energy Argument
When a solid of a stable material is constrained for all the rigid body movements and it is
somehow (on surface and=or inside the solid) loaded, a displacement field will be gener-
ated over the solid. As a result, there will also be a strain field and hence the strain energy
potential is built up that is evaluated asUPE in Equation 5.67. TheUPE is a direct result from
the work of the loads that is evaluated asWext. BecauseWext is the causal, it should be with
a negative sign (when measured as a potential). Now, the total potential becomes PPE(u

h)
as a quadratic functional of a given displacement field uh.

Next, we can try to vary uh: feeding all sorts of uh from the space of H1
0 to PPE(u

h).
Because our uh is all from H

1
0, PPE(u

h) will always be bounded (see Chapter 3 for the
definition of an H

1 space). This should give us a ‘‘hyperparaboloid.’’ Therefore, there must
be one (and only one) stationary point. Because the quadratic term UPE in functional
PPE(u

h) is positive, the stationary point must be a minimum. This proves the existence of
the minimum point PPE(u

h).
Note UPE (energy) will never be negative. It will not be zero, because we take functions

only from H
1
0 where the functions are constraints for rigid motions. Therefore, any loading

will surely result in strain and strain energy in our stable solid.
At PPE(u), the solid settles down, because any variation from any direction away from

u results in a higher potential level, and hence it ‘‘falls back,’’which means that the solid is
in the equilibrium status with a displacement field u.

The same argument applies to any finite model where we seek for an approximated
solution from an H

1
h,0 space. In such a case, the principle of minimum potential energy

gives the best possible solution given in H
1
h,0 in terms of energy error measures. When the

mesh is refined, the H
1
h,0 space (of continuous functions) gets richer, and the solution (the

best in H
1
h,0) approaches closer to the exact solution.

Can we take functions from G
1
h,0? No, not directly, because UPE may not be bounded.

We need to construct a new strain field and use the strain-constructed energy principles or
weakened-weak forms, including the SC-Galerkin (Section 5.15), the GS-Galerkin (Section
5.15.1), or the Galerkin-like (Section 5.15.2) weak forms.
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5.11 Hamilton’s Principle

Hamilton’s principle is an energy principle applicable to dynamic problems. It is essen-
tially the same as the minimum potential energy principle, except for the inclusion of the
time variation. For dynamic problems, we need to assume the time-history of the displace-
ment field. Therefore, the admissible conditions for the assumed time-history of the
displacement field are second-order differentiable with respect to time and satisfy

(c) the conditions at the initial (t1) and final (t2) time (5:72)

in addition to the two conditions given in Equations 5.70 and 5.71. Hamilton’s principle
can then be stated, ‘‘of all the possible admissible time-histories of displacement fields the
most accurate is registered at the stationary point of the Lagrangian functional.’’ Math-
ematically, it is stated as

L(u) ¼
ð
V

1
2
r _uT _udV

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
T

�
ð
V

1
2
«Tc«dV

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
UPE

þ
ð
V

bTudVþ
ð
Gt

tTGudG

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

¼ Stationary (5:73)

where
L is known as the Lagrangian functional
u 2 H

1
0

«¼Ldu

The kinetic energy is defined by

T ¼
ð
V

1
2
r _uT _udV (5:74)

where the dot stands for differentiation with respect to time. The variational statement
becomes

d

ðt2
t1

L ¼ d

ðt2
t1

[T �UPE þWext]dt ¼ 0 (5:75)

The procedure for solving a problem using Hamilton’s principle is described as follows:

1. Construct shape functions to approximate the displacement functions using their
values at the nodes in the problem domain. The approximated field function in
space should be in an H

1
0 space, thus satisfying the admissible conditions of

Equations 5.70 through 5.72.

2. Calculate the kinetic energy T, the strain energy U, and the work done by the
external forces W in terms of the approximated displacement functions.
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3. Form the Lagrangian functional L using Equation 5.73, seeking for the stationary
point, which leads to a set of differential equations with respect only to time.

4. Solve the set of differential equations with respect to time, using standard proced-
ures to obtain the dynamic field.

5.12 Hamilton’s Principle with Constraints

In the displacement methods, there are cases often when the approximated displacement
functions do not satisfy some of the admissible conditions (Equation 5.70 or 5.71), or parts
of the problem domain, including parts of boundaries, discrete curves, and points at
locations. For such cases, we need to modify the principles. This section explains a
modification of the Hamilton’s principle with constraints.

Consider the following given set of k conditions that the approximated field function has
to satisfy:

C(u) ¼

C1(u)
C2(u)

..

.

Ck(u)

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 0 (5:76)

where C is a given matrix of coefficients.
Our purpose now is to seek the stationary point of the Lagrangian functional subjected

to the constraint of Equation 5.76. There are basically two methods often used to modify
the functional that accommodates these constraints: the method of Lagrange multipliers
and the penalty method.

5.12.1 Method of Lagrange Multipliers

In the method of Lagrange multipliers, the modified Lagrangian is written as follows:

~L ¼ Lþ
ð
V

lTC(u)dV (5:77)

where l is a vector of the Lagrange multipliers given by

lT ¼ l1 l2 � � � lkf g (5:78)

These Lagrange multipliers are unknown functions of independent coordinates in the
domain V. The variational statement of the modified Hamilton’s principle then seeks the
following stationary condition:

d

ðt2
t1

~Ldt ¼ 0 (5:79)
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Note that since the Lagrange multipliers are unknown functions, the total number of
unknown field functions of the whole system is then increased. In the process of seeking
discretized system equations, these Lagrange multipliers must also be approximated in a
manner similar to that of the field functions. Therefore, the total number of nodal unknowns
in the discretized system equation will also be increased. The method of Lagrange multi-
pliers will, however, rigorously enforce the constraints. The Lagrange multipliers l can be
viewed physically as smart forces enforcing the constraints. The penaltymethod, introduced
in the following subsection, does not increase the number of unknowns.

5.12.2 Penalty Method

In examining the constraint equations (Equation 5.76) we construct the following func-
tional:

CTaC ¼ a1C2
1 þ a2C2

2 þ � � � þ akC2
k (5:80)

where a is a diagonal matrix given by

a ¼
a1 0 0 0
0 a2 0 0

0 0 . .
.

0
0 0 0 ak

2
6664

3
7775 (5:81)

where a1,a2, . . . ,ak are penalty factors. They can be given as functions of the coordinates,
but usually they are assigned as positive constant numbers. In any case, CTaC will always
be nonnegative, and hence zero is the minimum of the functional CTaC. It would be only
zero if all the conditions in Equation 5.76 are fully satisfied. Therefore, the following
stationary condition of the functional CTaC guarantees the best satisfaction of the con-
straint equations (Equation 5.76):

d(CTaC) ¼ 0 (5:82)

Performing the variation using the chain rule, we have

d(CTaC) ¼ 2CTadC ¼ 2dCTaC ¼ 0 (5:83)

which leads to the following minimization condition:

aC(u) ¼

a1C1(u)
a2C2(u)

..

.

akCk(u)

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 0 (5:84)

If a¼ 0, the essential boundary condition is not enforced at all, because any Ci will still
satisfy the ith equation in Equation 5.84. If ai goes to infinity, the essential boundary
condition is fully enforced, because Ci must be zero in order to satisfy Equation 5.84. The
ai can be viewed physically as penalty forces that penalize the dissatisfaction of the
constraints.
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The above analysis shows that the potential energy related to the penalized constraints
should be CTaC, and hence the modified Lagrangian is then written as follows:

~L ¼ Lþ 1
2

ð
V

CT(u)aC(u)dV (5:85)

The 1=2 serves only to counter the 2 that will be produced in the later variational operation.
The important difference between the penalty factor ai and the Lagrange multiplier l is
that the penalty factor is a given constant (no variation is allowed), whereas the Lagrange
multiplier is a variable.

Because a is a known constant, there is no increase in the number of unknowns in the
system. The question is how to choose the penalty factor. To impose the constraint fully,
the penalty factor must be infinite, which is not possible in practical numerical analysis.
Therefore, in the penalty method these constraints cannot be satisfied exactly, but only
approximately. In general, the use of a larger penalty factor will enforce the constraint. The
problem is that if the penalty factor is too small, the constraints may not be properly
enforced, but if it is too large, numerical problems may be encountered. A compromise
should be reached. Some kind of formula that is universally applicable would be useful. To
find such a formula, one may need to determine the factors that affect the selection of the
penalty factor in the actual event of solving the discretized system equations.

Note that use of the penalty method is a routine operation even in the FEM for imposing
essential boundary conditions including single-point constraints (SPC) and multi-point
constraints (MPC).

5.12.3 Determination of the Penalty Factor

Because discretization errors can be comparable in magnitude to the errors due to the poor
satisfaction of the constraint, Zienkiewicz [11] has suggested using the following formula
for FEM analysis:

a ¼ constant(1=d)n (5:86)

where
d is the characteristic length, which can also be the ratio of the element size to the
dimension of the problem domain

n is the order of the elements

In extending this formula to meshfree methods, we suggest that d is the nodal spacing
divided by the dimension of the problem domain, and n¼ 1. The constant in Equation 5.86
should relate to the material property of the solid or the structure. It can be 1010 times the
Young’s modulus.

This book prefers the following simple method for determining the penalty factor:

a ¼ 1:0� 104	13 �max (diagonal elements in the stiffness matrix) (5:87)

In most of the examples reported in later chapters using penalty methods, the foregoing
equation is adopted.
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It has also been suggested to use

a ¼ 1:0� 105	8 � Young0s modulus (5:88)

which works well for some examples.
Note that trials may be needed to choose a proper penalty factor.

5.13 Galerkin Weak Form

5.13.1 Galerkin Weak Form for Static Problems

The Galerkin weak form for mechanics problems of solids and structures can be derived
directly from the weak form statement. It can also be easily derived from the principle of
the minimum potential energy given in Equation 5.69. The details of Equation 5.69 can be
rewritten as

d

ð
V

1
2
(«Tc«)dV�

ð
V

duTbdV�
ð
Gt

duTtGdG ¼ 0 (5:89)

We see two types of operations in the above equation: variational and integral operations.
Changing the order of these operations does not affect the results because these operations
operate with respect to different independent variables. The variational operation operates
with respect to the displacement field functions, but the integration operation operates with
respect to the coordinates of the problem domain. Therefore, it does not matter which one
operates first, and hence we can move the variational operation inside the integral in the first
term of Equation 5.89:

1
2

ð
V

d(«Tc«)dV�
ð
V

duTbdV�
ð
Gt

duTtGdG ¼ 0 (5:90)

The integrand in the first integral term can be written as follows using the chain rule of
variation:

d(«Tc«) ¼ d«Tc«þ «Td(c«) ¼ d«Tc«þ «Tcd« (5:91)

Because the two terms in the foregoing equation are all scalars, their transposes are still
themselves. For the last term in Equation 5.91, we should have

(«Tcd«)T ¼ d«Tc« (5:92)

In the derivation above, we used the symmetry property of the matrix of the material
constant c. Therefore, Equation 5.91 becomes

d(«Tc«) ¼ 2d«Tc« (5:93)

Weak and Weakened-Weak Formulations 183

© 2010 by Taylor and Francis Group, LLC



Substituting Equation 5.93 into Equation 5.90, we arrived at

ð
V

d«Tc«dV�
ð
V

duTbdVþ
ð
Gt

duTtGdG

0
B@

1
CA ¼ 0 (5:94)

Equation 5.94 is in fact the well-known and widely used Galerkin weak form. Using the
displacement strain relation «¼Ldu, Equation 5.94 can be further written explicitly in term
of the displacement:

ð
V

(Lddu)
Tc(Ldu)dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a(du,u)

�
ð
V

duTbdVþ
ð
Gt

duTtGdG

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f (du)

¼ 0 (5:95)

We now see clearly the relationship between the principle of minimum potential energy
and the weak form statement given in Equation 5.16. In Equation 5.16 we require the
equation to be satisfied for all v 2 H

1
0, while in Equation 5.95 we require the same for all

arbitrary variations of u.
A numerical method based on the Galerkin weak form therefore looks for a displace-

ment field in u 2 H
1
0 that satisfies Equation 5.95 for any arbitrary du 2 H

1
0. Physically, such

a displacement field makes the total potential energy in the entire system (solid or
structure) minimum, and hence the solid=structure stays stable there.

5.13.2 Galerkin Weak Form for Dynamic Problems

The Galerkin weak form for dynamic problems can be directly derived using Hamilton’s
principle. Using Equation 5.75, we have

d

ðt2
t1

� 1
2

ð
V

«Tc«dVþ
ð
V

uTbdVþ
ð
Gt

uTtGdGþ 1
2

ð
V

r _uT _udV

2
64

3
75dt ¼ 0 (5:96)

Moving the variation operation into the integral operations, we obtain

ðt2
t1

� 1
2

ð
V

d(«Tc«)dVþ
ð
V

duTbdVþ
ð
Gt

duTtGdGþ 1
2

ð
V

d(r _uT _u)dV

2
64

3
75dt ¼ 0 (5:97)

Using Equation 5.93, we have

ðt2
t1

�
ð
V

d«Tc«dVþ
ð
V

duTbdVþ
ð
Gt

duTtGdGþ 1
2

ð
V

d(r _uT _u)dV

2
64

3
75dt ¼ 0 (5:98)
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Let us now look at the last term in Equation 5.97, and we see two types of independent
integral operations: integral over time and over domain. Changing the order of these
two integrals should not affect the results, hence we move the time integration into the
spatial integration, and thus obtain

ðt2
t1

1
2

ð
V

d(r _uT _u)dV

2
4

3
5dt ¼ 1

2

ð
V

ðt2
t1

d(r _uT _u)dt

2
4

3
5dV (5:99)

Using the chain rule of variation and then the scalar property, the time integration in
Equation 5.99 can be changed as

ðt2
t1

d(r _uT _u)dt ¼ r

ðt2
t1

[d _uT _uþ _uTd _u]dt ¼ 2r
ðt2
t1

[d _uT _u]dt (5:100)

We again have two types of operations in the above equation: the variational operation and
the differential operation. Changing the order of these operations does not affect the results
because these operations are operating with respect to different variables. The variational
operation operates with respect to the displacement field, but the differential operation
operates with respect to time. Therefore, it does not matter which one operates first; we
thus have

ðt2
t1

d _uT _u
� �

dt ¼
ðt2
t1

dduT

dt
du
dt

	 

dt (5:101)

Integrating by parts with respect to time, we have

ðt2
t1

dduT

dt
du
dt

	 

dt ¼

ðt2
t1

�duT d
2u
dt2

" #
dtþ duTdu

dt


t2

t1

(5:102)

Invoking now the condition given in Equation 5.72, we know that u has already satisfied
the conditions at the initial time (t1) and the final time (t2). Therefore, du

T has to be zero at
t1 and t2 (no variation can exist for any given constant value). Therefore, the last term in
Equation 5.102 vanishes, which gives

ðt2
t1

dduT

dt
du
dt

	 

dt ¼

ðt2
t1

�duT d
2u
dt2

" #
dt (5:103)

Therefore, Equation 5.99 becomes

ðt2
t1

1
2

ð
V

d(r _uT _u)dV

2
4

3
5dt ¼

ð
V

ðt2
t1

�rduT d
2u
dt2

" #
dt

2
4

3
5dV (5:104)
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We now switch the order of integration to obtain

ðt2
t1

1
2

ð
V

d(r _uT _u)dV

2
4

3
5dt ¼ �

ðt2
t1

ð
V

[rduT€u]dV

2
4

3
5dt (5:105)

Equation 5.97 now becomes

ðt2
t1

�
ð
V

d«TsdVþ
ð
V

duTbdVþ
ð
Gt

duTtGdG�
ð
V

rduT€udV

2
64

3
75dt ¼ 0 (5:106)

To satisfy the above equation for all possible choices of u, the integrand of the time
integration has to vanish, which leads to

ð
V

d«TsdV�
ð
V

duTbdV�
ð
Gt

duTtGdGþ
ð
V

rduT€udV ¼ 0 (5:107)

This is the well-known Galerkin weak form for dynamic problems that is widely used for
solving mechanics problems of solids and structures. By removing the dynamic term
Equation 5.107 reduces to Equation 5.94.

By using the stress–strain relation, and then the strain–displacement relation, Equation
5.107 can be explicitly expressed as follows in terms of the displacement vector u:

ð
V

(Lddu)
Tc(Ldu)dV�

ð
V

duTbdV�
ð
Gt

duTtGdGþ
ð
V

rduT€udV ¼ 0 (5:108)

This is the Galerkin weak form for dynamic problems written in terms of displacement,
and therefore it is convenient to use, as the displacement is to be approximated in FEM or
meshfree methods. For static problems, Equation 5.108 reduces to Equation 5.95 by drop-
ping the dynamic term.

Remark 5.19: Virtual-Work Argument
Equation 5.107 can also be viewed simply as the principle of virtual work, which states that
if a solid is in (dynamically) equilibrium status, the total virtual work performed by all the
stresses in the solid and all the external forces applied on the solid should vanish when the
solid is subjected to an arbitrary virtual field of displacement. The virtual work can,
therefore, be viewed as an alternative statement of the equilibrium equations. In the
situation given in Equation 5.107, we can view that the solid is subjected to a virtual
displacement of du 2 H

1
0. In Equation 5.107, the first term is the virtual work done by the

internal stresses in the problem domain V; the second term is the virtual work done by
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the external body force; the third term is the virtual work done by the external tractions on
the natural boundaries; and the last term is the virtual work done by the inertial forces.
Therefore, using the principle of virtual work, we can actually write out Equation 5.107 or
Equation 5.94 straightaway. The principle of virtual work is powerful and can, in fact, be
used to derive all the weak forms that can be derived from an energy principle. However,
the virtual displacement field has to be in a proper H1 space, so that there are no ‘‘gaps,’’
and hence, no ‘‘energy leak.’’ If du 2 G

1
h,0, we need to evaluate the virtual work done by the

internal stresses in a proper manner, for example, by the generalized smoothing operations
[15], leading to the GS-Galerkin weak form [16].

Following the virtual work argument, we can now readily and easily write the Galerkin
weak form for dynamic problems with damping effects:

ð
V

(Lddu)
Tc(Ldu)dV�

ð
V

duT b� r€u� c _uð ÞdV�
ð
Gt

duTtGdG ¼ 0 (5:109)

where we simply treat the inertial and damping forces as body forces and then apply the
principle of virtual work.

The Galerkin weak forms are very handy in application to problems of solid mechanics,
because one does not need to perform integration-by-parts. The discretized system equa-
tions can be derived very easily using approximated displacements. The Galerkin proced-
ure used in meshfree methods is as follows:

1. Approximate the displacement at a point using meshfree shape functions and
nodal displacements at the nodes surrounding the point. The approximation
should satisfy Equations 5.70 through 5.72.

2. Substitute the approximated displacements into Equation 5.107, and factor out the
variations of the nodal displacements for their arbitrariness, leading to a set of
differential equations with respect only to time.

3. Solve the set of differential equations with respect to time, using standard proced-
ures to obtain the dynamic field.

4. For static problems, use Equation 5.129 instead, which leads to a set of algebraic
equations that can be solved using standard algebraic equation solvers to obtain
the static field.

This procedure is applied in the following chapters for mechanics problems of solids and
structures solved using meshfree methods based on the Galerkin weak form.

5.14 Galerkin Weak Form with Constraints

For cases when the approximated field function does not satisfy the condition (Equation
5.70 or Equation 5.71) on parts of the problem domain, including parts of the boundaries
and discrete points at locations, we should use the Galerkin weak form with constraints.
The procedure of obtaining the constrained Galerkin weak form is the same as in Section
5.12. The following presents the final expressions.
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5.14.1 Galerkin Weak Form with Lagrange Multipliers

For dynamic problems,

ð
V

d(Ldu)
Tc(Ldu)dV�

ð
V

duTbdV�
ð
Gt

duTtGdG

�
ð
V

dlTC(u) dV�
ð
V

lTdC(u) dVþ
ð
V

duTc _udVþ
ð
V

rduT€udV ¼ 0 (5:110)

For static problems, it simply reduces to

ð
V

d(Ldu)
Tc(Ldu) dV�

ð
V

duTbdV�
ð
Gt

0uTtGdG�
ð
V

dlTC(u)dV�
ð
V

lTdC(u)dV ¼ 0 (5:111)

When the constrainedGalerkinweak form is used, the assumeddisplacementfieldmaynot be
in anH

1
0 space, meaning that it may have discontinuities or the essential boundary conditions

may not be satisfied at locations. However, proper constraints at those locations need to be
established, and used in Equation 5.111. The Lagrangemultipliers l can be viewed physically
as smart forces that can force the essential boundary conditions.

5.14.2 Galerkin Weak Form with Penalty Factors

For dynamic problems,
ð
V

d(Ldu)
Tc(Ldu) dV�

ð
V

duTbdV�
ð
Gt

duTtGdG�
ð
V

dC(u)TaC(u) dV

þ
ð
V

duTc _udVþ
ð
V

rduT€udV ¼ 0 (5:112)

For static problems, it simply reduces to
ð
V

d(Ldu)
Tc(Ldu)dV�

ð
V

duTbdV�
ð
Gt

duTtGdG�
ð
V

dC(u)TaC(u)dV ¼ 0 (5:113)

The penalty factors a can be viewed physically as penalty forces that penalize the dissat-
isfaction of the constraints.

5.15 A Weakened-Weak Formulation: SC-Galerkin

The SC-Galerkin weak form is a more general W2 form that uses functions from basically
an unnormed G space, and has been applied to create SC-PIM models [22]. The stability
and convergence of an SC-Galerkin model are controlled by the admissible conditions
imposed on the constructed strain fields.
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For a vector displacement field v 2 G
1
h,0, we first construct a strain field «̂(v) in the form

(see Chapter 4)

«̂(uh) ¼ P(~«(uh)) ¼ P Lduh
�

) , when uh 2 H
1
h(V)

B(uh), when uh 2 G
1
h(V)

(
(5:114)

The strain energy potential for the constructed strain field becomes

ÛPE(v) ¼
ð
V

1
2
«̂T(v)c«̂(v) dV (5:115)

The solution satisfies the SC-Galerkin weak form
ð
V

d«̂T(u)c«̂(u)dV�
ð
V

duTbdV�
ð
Gt

duTtGdG ¼ 0 (5:116)

where u 2 G
1
h,0 and ê 2 L

2, and also satisfies (1) the norm equivalence condition (Equation
4.14) and (2) the strain convergence condition (Equation 4.16).

Theorem 5.7: SC-Galerkin: A Stable and Convergent W2 Formulation

The SC-Galerkin weak form defined in Equation 5.116, using constructed strain fields that
satisfy (1) the norm equivalence condition (Equation 4.14) and (2) the strain convergence
condition (Equation 4.16), produces a stable and unique solution that converges to the
exact solution for stable solids when h ! 0 (and hence Vs

i ! 0).

Proof For any v 2 G
1
h,0 with a vector U 2 R

dNn
0 of nodal unknown function values, because

the constructed strain field «̂(U) is equivalent in a norm to the base (compatible) constant
strain field ~«b(U), there exists a nonzero positive constant cac such that

k«̂(U)k
L
2(V) � cack~«b(U)k

L
2(V), 8U 2 R

dNn
0 (5:117)

where ~«b(U) ¼ BbU, and a nonzero positive constant cca such that

k~«b(U)k
L
2(V) � ccak«̂(U)k

L
2(V), 8U 2 R

dNn
0 (5:118)

This means that the L2 norm of the constructed strain field can be bounded from both sides
by the norm of the compatible base strain field k~«b(U)k

L
2 . Because we choose the linear

FEM model with triangular elements with the same nodal unknowns U 2 R
dNn
0 as the base

model, all the nodal shape functions of the base model are linearly independent. Since such
a base model has been proven stable, the corresponding strain matrix Bb is a constant
matrix, and the columns are all linearly independent. The norm of the strain field of the
base model can be expressed as

k~«b(U)k2
L
2(V) ¼ (~«b(U))T(~«b(U)) ¼ UT BT

bBb|ffl{zffl}
SPD

U, 8U 2 R
dNn
0 (5:119)
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Due to the linear independent columns in Bb, BT
bBb must be an SPD matrix, and can always

be decomposed into a unitary matrix Vb of eigenvectors and a diagonal matrix Lb of all the
positive eigenvalues:

BT
bBb ¼ VT

bLbVb (5:120)

Substituting Equation 5.120 into Equation 5.119, we have

k~«b(U)k2
L
2(V) ¼ UT VT

bLbVb|fflfflfflfflffl{zfflfflfflfflffl}
BT
bBb

U � lbmaxU
T VT

bVb|fflffl{zfflffl}
I

U ¼ lbmaxU
TU ¼ lbmaxkUk2

L
2 , 8U 2 R

dNn
0

(5:121)

where lbmax is the maximum eigenvalue of BT
bBb, and

k~«b(U)k2
L
2(V) ¼ UT VT

bLbVb|fflfflfflfflffl{zfflfflfflfflffl}
BT
bBb

U � lbminU
T VT

bVb|fflffl{zfflffl}
I

U ¼ lbminU
TU ¼ lbminkUk2

L
2 , 8U 2 R

dNn
0

(5:122)

where lbmin is the minimum eigenvalue of BT
bBb. This means that the L

2 norm of the
constructed strain field will be bounded from both sides by the norm of all U 2 R

dNn
0 .

Because the material is stable, we can use Equation 5.36, and the bilinear form â(w,v) for
the SC-Galerkin weak form can be given as

â(w, v) ¼
ð
V

«̂T(W)VT
mLmVm|fflfflfflfflfflffl{zfflfflfflfflfflffl}

c

«̂(U)dV ¼
ð
V

(Vm«̂(W))TLm(Vm«̂(U))dV

� lmmax

ð
V

kVm«̂(W)k
L
2kVm«̂(W)k

L
2dV ¼ lmmax

ð
V

k«̂(W)k
L
2k«̂(U)k

L
2 dV

¼ lmmaxk«̂(W)k
L
2(V)k«̂(U)k

L
2(V) � lmmaxc

2
ac|fflfflffl{zfflfflffl}

CSU

k~«b(W)k
L
2(V)k~«b(U)k

L
2(V)

� CSUk~«b(W)k
L
2(V)k~«b(U)k

L
2(V), 8W 2 R

dNn
0 , 8U 2 R

dNn
0 (5:123)

where
CSU is a constant independent of W and U
lmmax is the maximum eigenvalue of c

In the above derivation, we used the Cauchy–Schwarz inequality in the first line, the L
2

norm conservation property of the unitary matrix in the second line, and Equation 5.117 in
the third line. Using Equation 5.121 now, we have

â(w, v) � CSUl
b
max|fflfflfflfflffl{zfflfflfflfflffl}

CU

kWk
L
2kUk

L
2 , 8W 2 R

dNn
0 , 8U 2 R

dNn
0 (5:124)

where CU is a constant independent of W and U. Equation 5.124 shows the continuity
of â(w,v).
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On the other hand, we also have

â(v,v) ¼
ð
V

«T(U)VT
mLmVm|fflfflfflfflfflffl{zfflfflfflfflfflffl}

c

«̂(U)dV � lmmin

ð
V

«̂T(U)VT
mVm|fflfflffl{zfflfflffl}
I

«̂(U)dV

¼ lmmink«̂T(U)k2
L
2(V) �

lmmax

c2ca|{z}
CSL

k~«b(U)k2
L
2(V) ¼ CSLk~«b(U)k2

L
2(V), 8U 2 R

dNn
0 (5:125)

where
CSL is a constant independent of U
lmmin is the maximum eigenvalue of c

In the above derivation, we used Equation 5.118 in the second line. Using Equation 5.122
now, we have

â(v,v) � CSLk~«b(U)k2
L
2(V) � CSLl

b
min|fflfflfflffl{zfflfflfflffl}

CL

kUk2
L
2(V), 8U 2 R

dNn
0 (5:126)

where CL is a constant independent of U. Equation 5.124 shows the ellipticity of the SC
bilinear form.

With both continuity and ellipticity, we are sure that the solution will be stable and unique
by the well-known Lax–Milgram theorem.

Finally, we need to show that the solution will converge to the exact solution of the
strong form. This is ensured by the strain convergence condition given in Equation 4.16.
When the mesh is refined, the constructed strain field approaches the strain field of the
base model that is guaranteed to converge toward the exact solution. &

Remark 5.20: Alternative Base Models
The above proof implies that as long as the base model is stable and convergent, the
SC-model will also be stable and convergent, as long as the norm equivalence and strain
convergence conditions are satisfied. Therefore, any proven model can in fact be used as a
base model to create SC models.

Remark 5.21: Strain-Constructed Minimum Total Potential Energy Principle
The energy principle associated with the SC-Galerkin can be termed as strain-constructed
minimum total potential energy principle. Physically, it means that we are looking
for an approximated solution that makes strain-constructed total energy potential
minimum. Such a constructed strain energy potential should be equivalent to that of a
compatible model based on the standard total potential energy principle, and the con-
structed strain field should converge to that of the compatible model when the model is
refined.
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Remark 5.22: SC-Galerkin: Variational Consistence
An SC-Galerkin model may or may not be variationally consistent in the usual sense,
because it cannot be derived from the HW principle. It is a weakened-weak formulation as
the assumed displacement functions are from a properG1

h space, and can be discontinuous.
A variationally inconsistent SC-Galerkin model can perform better than variationally
consistent ones, which is demonstrated in Chapter 8.

Remark 5.23: SC-Galerkin: Temporal Stability
A spatially stable model (no zero energy modes) does not necessarily ensure a temporal
stability. The model can still have spurious modes at a higher energy level depending on
how the strain field is constructed, which can result in instability in dynamic analysis.*

Remark 5.24: SC-Galerkin: No Additional DOFs
In an SC-Galerkin model, there are no additional unknowns compared to the standard
Galerkin model.

5.15.1 GS-Galerkin Weak Form: A Special Case of SC-Galerkin

The GS-Galerkin weak form is a special case of the SC-Galerkin form when the strain is
constructed using Equation 4.29 with a minimum number of linearly independent smooth-
ing domains created in the way described in Section 3.3.3:

«̂(u) ¼ �«(u), u 2 G
1
h,0 (5:127)

The discretized form of the potential energy for the generalized smoothed strain becomes

�UD
PE ¼

ð
V

1
2
�«Tc�«dj ¼ 1

2

XNs

i¼1

As
i �«

T
i c�«i (5:128)

We then have the following so-called GS-Galerkin weak form:

ð
V

d�«T(u)c�«(u)dV�
ð
V

duTbdV�
ð
Gt

duTtdG ¼ 0 (5:129)

or

XNs

i¼1

As
id�«

T
i c�«i �

ð
V

duTbdV�
ð
Gt

duTtdG ¼ 0 (5:130)

* In this book, discussion on stability refers to spatial stability, unless specified.
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For dynamic problems, we have
ð
V

d�«T(u)c�«(u)dV�
ð
V

duTbdV�
ð
Gt

duTtdGþ
ð
V

rduT€udV ¼ 0 (5:131)

or

XNs

i¼1

As
id�«

T
i c�«i �

ð
V

duTbdV�
ð
Gt

duTtdGþ
ð
V

rduT€udV ¼ 0 (5:132)

Theorem 5.4b: GS-Galerkin: A Variationally Consistent W2 Formulation

If u 2 H
1
h,0, the GS-Galerkin weak form is variationally consistent; it can be derived from

the single-field Hellinger–Reissner principle.

Proof We substitute Equation 5.127 into Equation 5.62 to obtain

USHR(u) ¼
ð
V

� 1
2
�«T(u)c�«(u)þ �«T(u)c(Ldu)

	 

dV (5:133)

From Theorem 4.1, we now see that �« satisfies the orthogonal condition (Equation 4.5),
and hence Equation 5.133 becomes

USHR(u) ¼
ð
V

1
2
�«T(u)c�«(u) dV (5:134)

which means that the single-field Hellinger–Reissner principle will lead to the GS-Galerkin
weak form. &

Proving a GS-Galerkin is a workable model can also be done in a more simple, intuitive
way. When u 2 H

1
h,0, the displacement field is the same as in the standard Galerkin weak

form. When the smoothing domains are created in the way described in Section 3.3.1, they
are tied together with the element or the background cell mesh: when h ! 0, we have
Vs

i ! 0. Using the reproducing property (Remark 4.2), we know that �«(u) ! ~«(u) 
 Ldu.
This means that the GS-Galerkin model approaches the standard Galerkin model.

Theorem 5.5b: GS-Galerkin: A W2 Formulation in a G
1
h Space

If u 2 G
1
h,0, the GS-Galerkin weak form produces a stable and unique solution that conver-

gences to the exact solution.

Proof When u 2 G
1
h,0, Theorem 5.5b is an extended statement of Theorem 5.5a and has

already been proven mathematically. Here, we again attempt to give an engineering proof
by an energy argument (with some mathematical support), similar to what we have done
for Remark 5.16. The energy argument is not mathematically rigorous, but should provide
the essence on why the principle indeed works.
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For a given v 2 G
1
h,0 the strain energy potential is evaluated based on smoothing

domains Vs
i . On the interface of the smoothing domains Gs

i these displacements are
continuous (except at a few omissible points that the Lebesgue integration ‘‘forgives’’).
Therefore, there is no energy loss on Gs

i . Inside a smoothing domain Vs
i , the strain is

measured as the generalized smoothed strain based on the given displacements v on Gs
i

of the smoothing domain. Such a smoothed strain is overall conserving (see Remark 4.1). It
is surely bounded because the given v on Gs

i is bounded and hence �«(v) is obtained using
Equation 4.29. This ensures the continuity of �UD

PE(v): for any finite input of v 2 G
1
h,0 there is a

finite output of �UD
PE(v).

The next thing that we may worry is the possibility of �UD
PE ¼ 0 for some given

nonzero v 2 G
1
h,0. For �UD

PE ¼ 0 to happen, �«(v) in all the smoothing domains Vs
i has to

be zero (see Equation 5.128). Now, because the smoothing domains are created in the
way described in Section 3.3.1, and a minimum number of linearly independent smooth-
ing domains are used (Section 3.3.3), to have �«(v) ¼ 0 in all the smoothing domains will
surely lead to a zero U (the nodal value of v). Since our G1

h space is constructed using a
basis of linearly independent shape functions, v has to be zero everywhere in V if U¼ 0.
This contradicts our earlier nonzero v assumption. Therefore, for any nonzero v 2 G

1
h,0,

we always have �UD
PE > 0. This implies that �UD

PE(v) is an SPD (the symmetry is obvious
from Equation 5.128).

With both continuity and the SPD property, we are sure that the solution will be stable,
unique, and convergent by the well-known Lax–Milgram theorem.

Finally, we need to be sure that the solution will converge to the exact solution of the
strong form, for which we use the same argument given in the proof of Theorem 5.7,
because GS-Galerkin is a special case of SC-Galerkin. &

An Alternative Proof for Theorems 5.4 and 5.5

Using Theorem 5.7, we can quickly give an intuitive proof for Theorems 5.4 and 5.5. All we
need to show is that the smoothed strain field using stationary smoothing domains satisfies
(1) the norm equivalence condition (Equation 4.14) and (2) strain convergence condition
(Equation 4.16).

First, from the fourth inequality (Equation 5.31), we have for all w 2 G
1
h,0,

cGkwk
G

1(V) � k�«k
L
2 � kwk

G
1(V) (5:135)

meaning that k�«k
L
2 and kwk

G
1(V) are equivalent. Using the second inequality (Equations

3.92 and 3.93), we then have

cGc
f
wdkUk

L
2(V) � k�«(U)k

L
2 � 1

c fdw
kUk

L
2(V), 8U 2 R

dNn
0 (5:136)

Now, since fi(x), (i ¼ 1, 2, . . . ,Nn) used to form w 2 G
1
h,0 are constructed using nodes

selected using a T-scheme (see Section 1.7.6), they are always of an equal or higher order
compared to the linear FEM, and we shall have H

1
b � G

1
h (see Equation 3.97) for point

interpolation method (PIM) shape functions (including radial point interpolation method
[RPIM] shape functions with linear polynomial basis). Therefore, we shall also have

cGc
f
wdkUk

L
2(V) � k~«bkL2 � 1

c fdw
kUk

L
2(V), 8U 2 R

dNn
0 (5:137)
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Equations 5.136 and 5.137 show clearly that k�«(U)k
L
2 and k~«b(U)k

L
2 are equivalent, and

therefore «̂(U) ¼ �«(U) satisfies Equations 5.117 and 5.118, and hence the norm equivalence
condition (Equation 4.14).

Next, we need to show the convergence condition (Equation 4.16) for the smoothed
strain:

lim
h!0

Nn!1

�«(x,U) ! ~«b(x,U), 8x 2 V, 8U 2 R
dNn
0 (5:138)

Using Equation 4.29, for any U 2 R
dNn
0 , at any point x in Vs

i , we shall have

�«(x)� ~«b(x) ¼ 1
As

i

ð
Gs
i

LnuP(x)dG� 1
As

i

ð
Gs
i

Lnub(x)dG ¼ 1
As

i

ð
Gs
i

Ln(uP(x)� ub(x))dG (5:139)

where
uP 2 G

1
0 denotes the displacement functions constructed using PIM shape functions

based on a T-scheme
ub 2 H

1
0 denotes the displacement functions constructed using a linear FEM shape

function based on the same set of triangular mesh

Because of the way that the smoothing domain is constructed (Section 3.3.3), uP is always
continuous at any x on Gs

i . We know that ub is linear with respect to x, and uP is linear or of
a higher order with respect to x in the local coordinate system defined for Vs

i . If uP is linear,
we immediately have �«(x) ¼ ~«b(x) which completes the proof. If uP is of a higher order, we
invoke the consistency property of PIM shape functions (Section 2.5), and thus the linear
field ub is reproduced. Therefore the difference between uP (x) and ub (x) should be at least
of an order 2 with respect to x:

uP(x)� ub(x) ¼ O(x2) (5:140)

At the limit of h! 0 and Nn !1, we have Vs
i ! 0 and x! 0, leading to uP(x)! ub(x) and

finally �«(x) ! ~«b(x). This completes our proof. &

5.15.2 Galerkin-Like Weak Form

Galerkin-like weak form was formulated first in [14]. It is a special form resulted from the
single-field Hellinger–Reissner principle, where the constructed strain can be written in the
following form:

«̂(u) ¼ ~«b(u)þ a«̂m(u) (5:141)

where
u 2 H

1
h, ~«b(u) is a (compatible) strain field of a base model

a2 (�1, þ1) is an adjustable parameter for regularizing the amount of modification
«̂m(u) is the modified portion of the strain field that satisfies the zero-sum condition
defined in Section 4.4
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The weak form is written as

ð
V

d «̂b(u)þ a«̂m(u)ð ÞTc «̂b(u)� a«̂m(u)ð ÞdV�
ð
V

duTbdV�
ð
Gt

duTtdG ¼ 0 (5:142)

where the countersigns for the modified portion of the strain field play an important role in
softening the model, which offers a possibility to create a model as soft as desired for
upper-bound solutions. The variationally consistent aFEM (VCaFEM) [14] and the super-
convergent aFEM (SaFEM) [30] are typical models created using the Galerkin-like weak
form.

Theorem 5.8: Galerkin-Like: Variational Consistence

Equation 5.142 is variationally consistent and it can be derived from the single-field
Hellinger–Reissner principle, as proven in [30]. It is as simple as and has all the required
properties (symmetry, positivity, etc.) of the standard Galerkin weak form.

Remark 5.25: Galerkin-Like: Explicit Softening Effect
Equation 5.142 provides an important softening effect induced by the constructed strain,
and the mount of the softening effect can be adjusted by tuning the ‘‘knob’’ a. Therefore,
models can be created for both lower- and upper-bound solutions, and can also be tuned
for close-to-exact or superconvergent solutions [30].

5.16 Parameterized Mixed Weak Form

We now move one more step further to present another very useful and important weak
form that is, in general, also not variationally consistent: the parameterized mixed weak
form. It has the following form:

d a

ð
V

1
2
«̂T(u)c«̂(u)dV

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÛPE

þ(1� a)
ð
V

� 1
2
«̂T(u)c«̂(u)þ «̂T(u)c(Ldu)

� �
dV

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ÛMHR

2
66666664

3
77777775

�
ð
V

duTbdV�
ð
Gt

duTtdG

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wext

¼ 0 (5:143)
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where u 2 H
1
h, a is an adjustable parameter that is finite real in general: a2 (�1, þ1), and

«̂ is a constructed strain field using techniques discussed in Section 4.5. ÛPE is the strain
energy used in the variationally inconsistent SC-Galerkin weak form, and is given by

ÛPE ¼
ð
V

1
2
«̂T(u)c«̂(u)dV (5:144)

ÛMHR is the strain energy used in the MHR variational principle, and is given by

ÛMHR ¼
ð
V

� 1
2
«̂T(u)c«̂(u)þ «̂T(u)c(Ldu)

� �
dV (5:145)

It is clear that when a¼ 1, the mixed weak form becomes the variationally inconsistent SC-
Galerkin weak form, and when a¼ 0, it becomes the single-field Hellinger–Reissner weak
form that is variationally consistent.

Remark 5.26: Parameterized Mixed Weak Form: Variational Consistence
The parameterized mixed weak form Equation 5.143 is not, in general, variationally
consistent; it approaches to being variationally consistent when the mesh is refined.
However, it can produce stable and convergent models.

This can be understood intuitively: if the solutions of both the SC-Galerkin model and
the MHR model are all bounded and convergent, the solution of a model that is a linear
combination of these two models will surely be bounded and hence convergent! It simply
has no chance to go unbounded.

Use of the parameterized mixed weak form offers a very effective way to establish
methods of good properties: both lower and upper bounds, superconvergence, ultra-
accuracy in both displacement and stress, and good performance for triangular types of
mesh. There is also a bonus: by adjusting a, one can have chances to obtain numerical
solutions that are very close to the exact solution!

Application of the parameterized mixed weak form has produced a point interpolation
method with a continuous strain field (PIM-CS) [28].

Finally, we state that the treatment of the constraint equations for the SC-Galerkin weak
forms and the parameterized mixed weak form is largely the same as in the Galerkin weak
form discussed in Section 5.13, and hence requires no further discussion.

5.17 Concluding Remarks

We finally make the following four remarks:

. The procedures used in applying the weak forms in meshfree methods can be
different from those in FEM, because of the difference in the forms of the shape
functions. The integration domains are often not element-based. The integration
domains may no longer be the union of the element, and they may even overlap
depending on the meshfree method used.
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. The constrained principles or weak forms are used often for imposing additional
constraints and links, and enforcing compatibilities (see, e.g., [29]). The same is
applicable to meshfree methods.

. There still are a number theoretical issues related to W2 formulation, which have
not yet been resolved, such as the G dual spaces, regularity of the solution,
allowable linear functionals, convergence rate of the W2 solution, more sophisti-
cated smoothing functions, etc. In other words, we only know it works very well,
but do not yet know much of how well and to what extent. Help from mathemat-
icians in this kind of theoretical work is needed.

. The extension of the Galerkin-like formulation to functions in G spaces is possible,
but no much detailed work has been done so far. The same goes for the para-
meterized mixed weak forms.

In the following chapters, we use the Hamilton principle, the Galerkin weak form, the GS-
Galerkin weak form, the more general SC-Galerkin weak form, and the local Petrov–
Galerkin method to formulate various meshfree methods for mechanics problems of solids
and structures.
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6
Element-Free Galerkin Method

The element-free Galerkin (EFG) method is developed by Belytschko et al. [1] based on the
diffuse elements method (DEM) originated by Nayroles et al. [2]. The major features of the
DEM and the EFG method are as follows:

1. Moving least squares (MLS) approximation is employed for the construction of
shape functions.

2. Galerkin weak form with constraints is employed to develop the discrete system
equations.

3. Background cells are required to perform the numerical integration for computing
system matrices.

This chapter introduces the EFG method with detailed formulations, procedure, applica-
tions, and some discussions. Technical issues, especially related to background cell inte-
gration, will also be examined. A typical benchmark problem of a rectangular cantilever is
considered to illustrate the relationship between the density of the field nodes and the
density of the global background mesh, as well as the number of integration sampling
points. The findings and remarks are applicable to any meshfree method that requires
background integration for strain energy.

Note that the EFG is a standard weak formulation that is variationally consistent due to
the use of compatible MLS shape functions and the Galerkin approach with constraints to
impose the essential boundary conditions. This fact will be evidenced by the examples of
patch tests.

6.1 EFG Formulation with Lagrange Multipliers

6.1.1 Formulation

A two-dimensional (2D) linear solid mechanics problem is used to present the procedure of
the EFG method in formulating discrete system equations. The partial differential equation
and boundary conditions for a 2D solid mechanics problem can be written in the form:

LT
dsþ b ¼ 0 Equilibrium equation in problem domain (6:1)

u ¼ uG on essential boundary Gu (6:2)

LT
ns ¼ tG on natural boundary Gt (6:3)

where
Ld is the matrix differential operator defined by Equation 1.9
s is the vector of the stress components defined by Equation 1.11
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u is the vector of displacement components given by Equation 1.22
b is the body force vector containing force components
tG is the prescribed traction on the natural (stress) boundaries
uG is the prescribed displacement on the essential (displacement) boundaries
Ln is the matrix of the components of unit outward normal on the natural boundary
defined by Equation 1.27

In the EFG method, the problem domain V is discretized by a set of nodes scattered in
the problem domain and on the boundaries of the domain. The MLS approximation
procedure described in Section 2.4 is then used to approximate the displacement field u
at a point of interest within the problem domain using the nodal parameters of displacement
at the nodes in the support domain of the point. The concept of the nodal displacement
parameter comes from the fact that the displacement vector obtained by solving the
discretized EFG system equation is not the actual displacement at the nodes. This is due
to the lack of Kronecker delta function properties in the MLS shape function. We will
pursue this issue in more detail later.

As discussed in Chapter 2 the MLS approximation is both consistent and compatible
when sufficient number of local nodes is used; the Galerkin procedure can then be used to
establish a set of discretized system equations for solving the displacement parameters. The
displacement at any point (including the nodes) is retrieved using MLS approximation and
the computed nodal displacement parameters. The strains at any point are also retrieved
using the derivatives of the MLS shape functions and the nodal displacement parameters.

For the solid mechanics problem stated by Equations 6.1 through 6.3, the Galerkin weak
form with Lagrange multipliers for constraints can be given by
ð
V

d(Ldu)
T(cLdu)dV�

ð
V

duTbdV�
ð
Gt

duTtGdG�
ð
Gu

dlT(u� uG)dG�
ð
Gu

duTldG ¼ 0 (6:4)

where u 2 H
1. Equation 6.4 is formed using Equation 5.111, by changing the area integrals

for the constraint-related two terms into curve integrals because the constraints (essential
boundary conditions) given in Equation 6.2 are defined only on the boundary. The last two
terms in Equation 6.4 are produced by the method of Lagrange multipliers for handling
essential boundary conditions for cases when u�uG 6¼ 0. The Lagrange multipliers l here
can be viewed physically as smart forces that can force u�uG¼ 0. If the trial function u can
be chosen so that u�uG¼ 0, the last two terms will vanish.

The MLS approximation is now used to express both the trial and test functions at any
point of interest x using the nodes in the support domain of the point x. For displacement
component u, we have

uh(x) ¼
X
I2Sn

fH
I (x)uI (6:5)

where Sn is the set of the nodes in the support domain of the point x for constructing the
MLS shape function fH

I (x) 2 H
1
h(V). The procedure for constructing fH

I (x) is detailed in
Section 2.4, and the formulation of fH

I (x) is given in Equation 2.62.
For displacement component v, we should also have

vh(x) ¼
X
I2Sn

fH
I (x)vI (6:6)
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Combining Equations 6.5 and 6.6, we obtain

uh ¼ u

v

� �h

¼
X
I2Sn

fH
I 0

0 fH
I

" #

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
f

H

I

uI
vI

� �
|fflfflffl{zfflfflffl}
uI

¼
X
I2Sn

FH
I uI (6:7)

where FH
I is the matrix of shape functions.

By using Equation 6.7, the compatible strain Ldu
h becomes

Lduh ¼ Ld

X
I2Sn

FH
I uI ¼

X
I2Sn

LdF
H
I uI ¼

X
I2Sn

q
qx

0

0
q
qy

q
qy

q
qx

2
66666664

3
77777775

fH
I 0

0 fH
I

" #
uI

¼
X
I2Sn

fH
I,x 0

0 fH
I,y

fH
I,y fH

I,x

2
664

3
775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
BI

uI ¼
X
I2Sn

BIuI (6:8)

where
fH
I,x and fH

I,y represent the derivatives of the MLS shape function with respect to x and y,
respectively

BI is the strain matrix for node I

The use of MLS shape functions in Equations 6.5 and 6.6 leads to u�uG 6¼ 0 on the
essential boundary, and the last two terms in Equation 6.4 are hence needed. The following
equations explain why, using detailed formulation.

As described in Chapter 2, the use of MLS approximation produces shape functions
fH
I (x) that do not possess the Kronecker delta function property, i.e.,

fH
I (xJ) 6¼ dIJ (6:9)

This feature of the MLS shape function results in

uh(xI) ¼
X
I2Sn

fH
I (xI) uI 6¼ uI (6:10)

vh(xI) ¼
X
I2Sn

fH
I (xI) vI 6¼ vI (6:11)

This implies that the essential boundary condition (Equation 6.2) cannot be exactly satisfied
via enforcing

uI ¼ uGI for node I on Gu (6:12)

Element-Free Galerkin Method 203

© 2010 by Taylor and Francis Group, LLC



because what we really need to enforce is

u(xI) ¼ uGI for node I on Gu (6:13)

Therefore, the fourth and fifth terms in Equation 6.4 are required to enforce the boundary
conditions at the essential boundary Gu.

The Lagrange multiplier l in Equation 6.4 is an unknown function of the coordinates,
which needs also to be treated as a field variable and interpolated using the nodes on the
essential boundaries to obtain a set of discrete system equations, i.e.,

l(x) ¼
X
I2Sl

NI(s)lI x 2 Gu (6:14)

where
Sl is the set of nodes used for this interpolation
s is the curvilinear coordinate along the essential boundary
lI is the Lagrange multiplier at node I on the essential boundary
NI(s) can be a Lagrange interpolant used in the conventional finite element method
(FEM)

The Lagrange interpolant of order r can be given in a general form of

Nr
k(s) ¼

(s� s0)(s� s1) � � � (s� sk�1)(s� skþ1) � � � (s� sr)
(sk � s0)(sk � s1) � � � (sk � sk�1)(sk � skþ1) � � � (sk � sr)

(6:15)

If we choose a first-order Lagrange interpolant, we have r¼ 1 and the Lagrange interpo-
lants at point s¼ s0 and s¼ s1 will be

N0(s) ¼ (s� s1)
(s0 � s1)

, N1(s) ¼ (s� s0)
(s1 � s0)

(6:16)

In this case, the Lagrange multiplier at s is interpolated using two bound nodes of s.
A higher order Lagrange interpolant can also be used with more nodes on the boundary.
From Equation 6.14, the variation of Lagrange multiplier, dl, can be obtained as

dl(x) ¼
X
I2Sl

NI(s)dlI x 2 Gu (6:17)

The vector of Lagrange multipliers in Equation 6.4 can be written in the matrix form:

l ¼
X
I2Sl

NI

NI

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

NI

luI
lvI

� �
|fflfflfflffl{zfflfflfflffl}

lI

¼
X
I2Sl

NIlI (6:18)

where NI is the Lagrange interpolant for node I on the essential boundary.
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Substituting Equations 6.7 and 6.8 into Equation 6.4, we have

ð
V

d
X
I2Sn

BIuI

 !T

c
X
J2Sn

BJuJ

 !
dV�

ð
V

d
X
I2Sn

FH
I uI

 !T

bdV�
ð
Gt

d
X
I2Sn

FH
I uI

 !T

tGdG

�
ð
Gu

dlT
X
I2Sn

FH
I uI

 !
�uG

 !
dG�

ð
Gu

d
X
I2Sn

FH
I uI

 !T

ldG ¼ 0 (6:19)

Notice that we use a different summation index for the term in the second bracket in the
first integral term, to distinguish it from that in the first bracket. First, let us look at the first
term in the above equation.

ð
V

d
X
I2Sn

BIuI

 !T

c
X
J2Sn

BJuJ

 !
dV ¼

ð
V

d
X
I2Sn

uT
I B

T
I

 !
c
X
J2Sn

BJuJ

 !
dV (6:20)

Note that the summation, variation, and integration operate on different variables, and
therefore they are exchangeable (see the arguments given in Chapter 5.). Hence, we
can have

ð
V

d
X
I2Sn

uT
I B

T
I

 !
c
X
J2Sn

BJuJ

 !
dV ¼

X
I2Sn

X
J2Sn

duT
I

ð
V

BT
I cBJdV

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
KIJ

uJ

¼
Xnt
I

Xnt
J

duT
I KIJuJ (6:21)

In the above equation, we made two changes. The first is the substitution of KIJ, which is a
2� 2 matrix called as nodal stiffness matrix in this book. Note that the integration is over the
entire problem domain, and therefore the union of all the sets Sn becomes the total number
of nodes in the problem domain. Therefore, the summation limits have to be changed to nt,
which is the total number of nodes in the entire problem domain. Note also that the last
summation in Equation 6.21 is a matrix assembly. To view this, we expand the summation
and then group the components into matrix form as follows:

Xnt
I

Xnt
J

duT
I KIJuJ ¼ duT

1K11u1 þ duT
1K12u2 þ � � � þ duT

1K1ntunt

þ duT
2K21u1 þ duT

2K22u2 þ � � � þ duT
2K2ntunt

..

.

þ duT
ntKnt1u1 þ duT

ntKnt2u2 þ � � � þ duT
ntKntntunt

¼ dUTKU (6:22)
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where K is the global stiffness matrix assembled using the nodal stiffness matrices in
the form:

K ¼

K11 K12 � � � K1nt

K21 K22 � � � K2nt

..

. ..
. . .

. ..
.

Knt1 Knt2 � � � Kntnt

2
66664

3
77775 (6:23)

The dimension matrix K should be (2nt)� (2nt), because KIJ is 2� 2.
Vector U is the global displacement parameter vector that collects the nodal parameter

vectors of displacement at all nodes in the entire problem domain, which has the form:

U ¼
u1
u2

..

.

unt

8>><
>>:

9>>=
>>;

(6:24)

where uI is the nodal displacement parameter vector at node I, i.e.,

uI ¼ uI
vI

� �
(6:25)

The length of vector U should be (2nt).
Next, let us examine the second term in Equation 6.19.

ð
V

d
X
I2Sn

FH
I uI

 !T

bdV ¼
X
I2Sn

duT
I

ð
V

FH
I

� �T
bdV

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fI

¼
Xnt
I

duT
I fI (6:26)

In the above equation, we made two changes. The first is a substitution of

fI ¼
ð
V

FH
I

� �T
bdV (6:27)

where fI is called the nodal force vector. Note again that the integration is over the entire
problem domain, and therefore the summations have to be changed for all the nodes in the
problem domain, which is the second change in Equation 6.26. The last summation in
Equation 6.26 can be expanded and then form a product of matrices as follows:

Xnt
I

duT
I fI ¼ duT

1 f1 þ duT
2 f2 þ � � � þ duT

ntfnt ¼ dUTF (6:28)
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Vector F in Equation 6.28 is the global force vector, which collects force vectors at all the
nodes in the problem domain and has the form:

F ¼

f1
f2

..

.

fnt

8>>>><
>>>>:

9>>>>=
>>>>;

(6:29)

where fI is the nodal force vector at node I calculated by Equation 6.27, and consists of two
components arranged as

fI ¼
fxI
fyI

� �
(6:30)

where fxI and fyI are two components of nodal force in the x- and y-directions. The length of
vector F should be (2nt).

The treatment for the third term in Equation 6.19 is exactly the same as that for the
second term, except that the body force vector is replaced by the traction vector on the
natural boundary, and the area integration is accordingly changed to the curve integration.
Therefore, the additional nodal force vector can be given as

fI ¼
ð
Gt

FH
I

� �T
tGdG (6:31)

The force vector, therefore, receives contributions from both the external body force and
the external force applied on the natural boundaries.

Before we examine the fifth term, let us look at the last term in Equation 6.19.
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Xnt
I

Xnlt
J

duT
I GIJlJ ¼ �dUTGl (6:32)

where
nlt is the total number of nodes on the essential boundary
G is also a global matrix formed by assembling its nodal matrix GIJ

Note that the dimension of matrix GIJ is also 2� 2, but it concerns only the nodes on the
essential boundaries. The dimension of matrix G should be (2nt)� (2nlt).
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Finally, let us examine the fourth term in Equation 6.19. Using Equations 6.7 and 6.18,
we have
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X
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X
I2Sl
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NT
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�qI
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I

Xnt
J

dlTI G
T
IJuJ þ

Xnlt
I

dlTI qI

¼ �dlTGTUþ dlTq (6:33)

where matrix G is defined by Equations 6.32 and 6.40. The vector q in Equation 6.33 is of
the length (2nlt), and is assembled using nodal vector qI.

Finally, using Equations 6.22, 6.26, 6.28, 6.32, and 6.33, we obtain
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which is

dUT[KUþGl� F]þ dlT[GTU� q] ¼ 0 (6:35)

Because dU and dl are arbitrary, the above equation can be satisfied only if

KUþGl� F ¼ 0

GTU� q ¼ 0
(6:36)

The above two equations can be written in the following matrix form:

K G
GT 0

� �
U
l

� �
¼ F

q

� �
(6:37)

This is the final discrete system equation for the entire problem domain. We now sum-
marize all the nodal matrices and vectors that form Equation 6.37 for easy reference later.

KIJ ¼
ð
V

BT
I cBJdV (6:38)
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FI ¼
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FH
I

� �T
bdVþ
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FH
I

� �T
tGdG (6:43)

qI ¼ �
ð
Gu

NT
I uGdG (6:44)

The nodal stiffness matrix KIJ defined in Equation 6.38 is the basic component for assembling
the global stiffness matrix of EFG.

By using the symmetric property of c matrix, it is obvious that

[KIJ]T ¼
ð
V

BT
I cBJ

	 
T
dV ¼

ð
V

BT
J c

TBI

h i
dV ¼

ð
V

BT
J cBI

h i
dV ¼KJI (6:45)

Therefore K given in Equation 6.23 is symmetric.
From Equation 6.38, it is shown that the nodal stiffness matrix KIJ contains the stiffness

coefficients between nodes I and J evaluated at a point in the problem domain. It is a
function of coordinates, and needs to be integrated over the entire problem domain. It
needs to be assembled to the global stiffness matrix K, as long as the nodes I and J are
covered by the support domain of at least one quadrature point. If nodes I and J are far
apart and they do not share the same support domain of any quadrature point, KIJ

vanishes, and thus there is no need to compute. Therefore, as long as the support domain
is compact and does not cover too wide the problem domain, many KIJ in Equation 6.23
will be zero matrix, and the global stiffness matrix K will be sparse. If the nodes are
properly numbered, Kwill also be banded. We discuss briefly in Chapter 15 how to reduce
the bandwidth of K by optimizing the numbering of the nodes.

From Equations 6.31, 6.38, 6.40, and 6.44 it is evident that there is a need to perform the
integration over the problem domain and the curve integrations for both natural and
essential boundaries. These integrations have to be carried out via numerical quadrature
techniques, and the Gauss quadrature scheme is most often used. In using the numerical
quadrature scheme, a background mesh of cells is required for the integration. The back-
ground mesh is similar to the mesh used in FEM and no overlap or gap is permitted. It is
used merely for the integration of the system matrices, and not for field variable interpol-
ation. In principle, the background mesh can be totally independent of the arrangement of
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nodes. The only consideration in designing the cells of the backgroundmesh is to ensure the
accuracy of integration for the system matrices.

The matrices in Equation 6.37 can be much larger than the stiffness matrix in FEM,
because of the presence of matrix G produced by the essential boundary conditions.
Depending on the number of nodes on the essential boundaries in relation to the total
number of nodes in the problem domain, solution efficiency can be reduced significantly.
From Equation 6.37, it can also be clearly seen that the matrix of the enlarged system is still
symmetric but no longer positive definite, which further reduces computational efficiency
in solving the system equations.

In the later sections of this chapter, we introduce alternative methods for enforcing
essential boundary conditions, which lead to system equations with matrices of the same
size as in conventional FEM; the system matrix will also remain positive definite.

6.1.2 EFG Procedure

The solution procedure of the EFG method is similar to that in FEM. The geometry of the
problem domain is firstly modeled, and a set of nodes is generated to discretize the problem
domain, as shown in Figure 6.1. The systemmatrices are assembled via two loops. The outer
loop is for all the cells of the background mesh, and the inner loop is for all the Gauss
quadrature points in a cell. The flowchart of the algorithm for stress analysis using the EFG
method is presented in Figure 6.2.

6.1.3 Background Integration

This section deals with the domain integration issues in meshfree methods. The discussion
here on the integration issues is based on the work by Liu and Yan [3].

In either FEM or EFG, numerical integration is a time-consuming process required for
the computation of the stiffness matrix that is established based on the weak forms. The
problem domain is divided into cells to carry out numerical integrations. In FEM,
the integration cells are the same as the elements. The density of the element mesh controls
the accuracy of the field approximation, and the number of integration points in each

FIGURE 6.1
Meshfree model for EFG method with
background mesh of cells for integration.

xQ

xQ

xQDomain of support Integration cell

Node
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element controls the accuracy of the integration. In EFG, however, the background mesh is
required only in performing the integration of computing the stiffness matrix. Therefore, a
background mesh with proper density needs to be designed to evaluate the integrals for
the desired accuracy. This can only be done after performing a detailed investigation to
reveal the relationship between the density of the field nodes and the density of the
background mesh. The first thing that needs to be addressed is the minimum number of
integration points when numerical integration is adopted.

Zienkiewicz [4] has shown for FEM that if the number of independent relations provided
by all integration points is less than the number of unknowns (displacements at all points in
the element), the stiffness matrixKmust be singular. This concept should also be applicable,
in principle, to EFG. For a 2D problem, the number of unknown variables Nu should be

Nu ¼ 2� nt � nf (6:46)

Solve the system equation for nodal parameters of displacements 

Node and background mesh generation

Geometry generation

MLS shape function creation-based selected nodes

For all the cells in the background mesh

For all the quadrature points xQ in a cell

Search in the current cell and its surrounding cells of integration
for all the nodes that fall in the support domain of xQ

Calculate nodal matrices

Assemble the nodal matrix into the global matrix

Calculate displacements and the derivatives using MLS shape function

Calculate strain and stress 

FIGURE 6.2
Flowchart of EFG method.

Element-Free Galerkin Method 211

© 2010 by Taylor and Francis Group, LLC



where nt and nf are the node numbers in domain V and the number of constrained degrees
of freedoms, respectively.

In evaluating the integrand at each quadrature (integration) point, three independent
strain relations are used. Therefore, the number of independent equations used in all the
quadrature points, NQ, is

NQ ¼ 3� nQ (6:47)

where nQ is the number of total quadrature points in domain V. Therefore, NQ must be
larger than Nu to avoid the singularity in the solution, and the minimum number of
quadrature points must be greater than Nu=3. In other words, the total number of quad-
rature points nQ should be at least two-thirds of the total number of unconstrained field
nodes in the problem domain, i.e.,

NQ > Nu � 2nt or nQ >
2
3
nt for 2D problems (6:48)

Note also that this rule is only a necessary requirement, not necessarily a sufficient
requirement. In addition, this requirement is only about the singularity aspect of K. The
accuracy in the evaluation of K is a separate matter that requires more detailed analysis.
The following section presents an analysis on effects of the number of quadrature points on
the accuracy of the solution, using benchmark problems with known analytic solutions.

6.1.4 Numerical Examples

An EFG code has been developed based on the formulations provided above. Linear basis
functions are employed in analyzing the following examples. The examples presented in
this section are mainly designed for testing and benchmarking the EFG methods. In
computing the system equations, the Gauss integration scheme is used in the same way
as in the FEM.

Example 6.1: Patch Test

For a numerical method to work for solid mechanics problems, the sufficient condition is to pass
the standard patch test, which has been used frequently in developing finite elements. The first
numerical example, therefore, performs the standard patch test using the EFG method. The basic
requirements for a patch are that the patch must have at least one interior node and that a linear
displacement is imposed on all the edges of the patch in the absence of body force. Satisfaction of
the patch test then requires that the displacement at any interior node should be given by the same
linear function and that the strain and stress should be constant in the entire patch. In our patch
test, a square patch of dimension Lx¼ 2 by Ly¼ 2 is used. The displacements are prescribed on all
outside boundaries by a linear function of x and y:

uG(x, y) ¼ x
y

� �
(6:49)

The patch is represented using a set of scattered nodes with some nodes in the interior of the
patch. Both the regular and irregular nodal arrangements shown in Figure 6.3 are used for the test.

212 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



The patch with regular nodal arrangement has eight boundary nodes and one interior node, as
shown in Figure 6.3a, and the patch with irregular nodal arrangement has eight boundary nodes
and three arbitrarily distributed interior nodes, as shown in Figure 6.3b. The numerical results
show that the linear displacement field and the constant strain field have been reproduced within
the patch to machine accuracy, as long as the numerical integration is accurate. This confirms that
the EFG method ‘‘exactly’’ passes the patch test for both meshes, when an accurate numerical
integration is performed. The issue of accurate integration is discussed in great detail in the next
example.
Without the use of Lagrange multipliers, patch tests will fail, as reported in [1]. The test was

performed using the patch shown in Figure 6.3a for different locations of node 5. The relative
errors of stresses are listed in Table 6.1. When node 5 is located at the center of the patch, there is
no error in the results. This is, however, a very special case. When node 5 moves away from the
center of the patch, error appears. When node 5 is far from the center, meaning that the patch is
highly irregular, the error is as large as almost 200%. This test clearly shows that the results can be
very erroneous, if Lagrange multipliers are not used in enforcing the displacement (essential)
boundary conditions.
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FIGURE 6.3
Nodal arrangement for patches: (a) regular nodal arrangement; and (b) irregular nodal arrangement.

TABLE 6.1

Relative Error of Stresses at Node 5 in Patch Shown in Figure 6.3a

Coordinate of
Node 5 (x, y)

Error in
sxx (%)

Error in
syy (%)

Error in
sxy (%)

(1.0, 1.0) 0.00 0.00 0.00

(1.1, 1.1) �0.98 �0.77 �0.86

(1.9, 1.8) 194.59 142.13 164.46
(1.9, 0.1) 134.95 127.23 �130.43

Note: Lagrange multiplier is not used for imposing essential boundary
conditions on the patch edges.
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Remark 6.1: Requirements for Galerkin Methods to Pass the Patch Test
The requirements for all the methods based on the standard Galerkin weak form to pass
the patch test are as follows:

1. The shape functions are of at least linear consistency (see Chapter 2). This implies
that the shape function is of linear field reproduction.

2. The field function approximation using the shape functions must be compatible.

3. The essential boundary conditions (displacement constraints on the boundary of
the patch) have to be accurately imposed.

In addition, we require accurate numerical operations, such as integration, to form system
equations in the process of testing.

MLS shape functions can satisfy the first requirement very easily as long as linear
polynomial functions are included in the basis for constructing the shape functions. The
second can also be satisfied if sufficient numbers of nodes in the support domains are used.
To satisfy the third condition, the constrained Galerkin form is required for constructing
the system equations. We therefore conclude that the EFG method formulated in this
chapter can pass the standard patch test, if sufficient numbers of nodes in the support
domains are used. In its standard and accurate numerical implementation, the EFG is fully
compatible, and it should provide the lower bound of the solution (for force driving
problems), and the displacement should converge to the exact solution from below when
the nodal spacing approaches zero (Remark 5.2).

Example 6.2: Rectangular Cantilever: A Study on Numerical Integration

Numerical study is conducted for a rectangular cantilever, which is often used for benchmarking
numerical methods because the analytical solution for this problem is known. Our purpose here is
to investigate issues related to background integration in the EFG method. There are a number of
factors affecting the accuracy of the numerical results of the EFG method. These factors include
the number of field nodes n, the background mesh density, and the order of Gauss integration
or the number of Gauss sampling points. To provide a quantitative indication of how these factors
affect the accuracy of results, a rectangular cantilever subjected to a load at the free end, as shown
in Figure 6.4, is analyzed in detail using our in-house EFG code. The exact solution of this problem
is available as follows [5].

FIGURE 6.4
Rectangular cantilever loaded with an external
force P distributed in a parabolic fashion at the
end of the cantilever.

x
P

y

L

D0 A
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The displacement in the x-direction is

ux ¼ � Py
6EI

(6L� 3x)xþ (2þ n) y2 �D2

4

� �� �
(6:50)

where the moment of inertia I for a cantilever with rectangular cross section and unit thickness is
given by

I ¼ D3

12
(6:51)

The displacement in the y-direction is

uy ¼ P
6EI

3ny2(L� x)þ (4þ 5n)
D2x
4

þ (3L� x)x2
� �

(6:52)

The normal stress on the cross section of the cantilever is

sx ¼ � P(L� x)y
I

(6:53)

The normal stress in the y-direction is

sy ¼ 0 (6:54)

The shear stress on the cross section of the cantilever is

txy ¼ P
2I

D2

4
� y2

� �
(6:55)

In this example, the parameters for this rectangular cantilever are taken as follows:

Loading: P¼�1000 N

Young’s modulus: E¼ 3� 107 N=m2

Poisson’s ratio: n¼ 0.3

Height of the cantilever: D¼ 12 m

Length of the cantilever: L¼ 48 m

The force P is distributed in the form of parabola at the right end of the cantilever:

txy ¼ P
2I

D2

4
� y2

� �
(6:56)

Strain energy error e is employed as an indicator of accuracy of the EFG numerical results:

ee ¼ 1
2

ð
V

enum � eexact
� �TD enum � eexact

� �
dV

8<
:

9=
;

1
2

(6:57)
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At the left boundary (x¼ 0) the displacements are prescribed using the analytical solutions
(Equations 6.50 and 6.52):

ux ¼ �P(2þ n)y
6EI

y2 �D2

4

� �
(6:58)

uy ¼ PnL
2EI

y2 (6:59)

On the right boundary (x¼ L), the applied external traction force is computed from the
analytical solution in Equation 6.56.

For convenience of analysis, uniformly distributed nodes and background integration
cells, as schematically shown in Figure 6.5, are used in the computation. Nx and Ny are the
number of nodes with respect to the x- and y-directions. The density of the background
mesh of cells is defined by nx� ny, where nx and ny are, respectively, the number of
background cells along the x- and y-directions. Table 6.2 summarizes the results of the
error in energy norm defined by Equation 6.57 obtained by the EFG method using different
numbers of Gauss integration points and different densities of background mesh of cells. In
Table 6.2, ng is the number of Gauss sampling points within a cell. The total number of
quadrature points can be calculated using

nQ ¼ ng � nx � ny (6:60)

The total number of independent equations used in all the quadrature points, NQ, can then
be calculated using Equation 6.47, i.e.,

NQ ¼ 3� nQ ¼ 3� (ng � nx � ny) (6:61)

It is confirmed from Table 6.2 that, when NQ<Nu, no stable solutions are obtained and
even NQ>Nu does not necessarily guarantee an accurate or even a stable solution. It can
also be seen from Table 6.2 that an acceptably accurate result can be obtained using

NQ > 4Nu � 5Nu ffi 9nt (6:62)

or

nQ > 3nt (6:63)

Nx

N y n y

nx

(a) (b)

FIGURE 6.5
EFG model for the rectangular cantilever: (a) nodal arrangement; and (b) background mesh.
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Therefore, we may conclude as a rough rule-of-thumb that a sufficient number of all the
Gauss points should be at least about three times the total number of nodes. This finding is
more or less inline with those in FEM using quadrilateral elements [6].

Efforts have been made to develop the EFG method without using a background mesh.
Some of the so-called nodal integration approaches carry out the integration using only the
field nodes without the use of additional Gauss points, to avoid using a backgroundmesh of
cells. In such cases, nQ � nt, which satisfies the minimum requirement of Equation 6.48.
However, the above important finding of the nQ> 3nt rule implies that any attempt at such a
nodal integration schememay suffer significant loss in accuracy and even instability, unless
special measures, such as the use of stabilization terms [7–9], can be taken to prevent that
from happening. Note that the requirement of nQ> 2nt=3 is only the minimum requirement
for a nonsingular system matrix; it does not guarantee the accuracy of the solution.

Figure 6.6 plots the exact and numerical solutions of EFG for the deflection of the
cantilever along the x-axis. The plot shows the excellent agreement between the exact
solution and the numerical results for all the background meshes used. This fact reveals
that the displacement is less sensitive to the background integration. A very coarse mesh
can yield good displacement results. Figure 6.7 shows the distribution of stress sxx on the
cross section of x¼ L=2 of the rectangular cantilever. Errors in stress between the exact
solution and the numerical results are evident. This fact implies that the stresses that are
obtained using the derivatives of the displacement field are very sensitive to the way the
integration is performed. A much finer mesh and more Gauss points have to be used for an

TABLE 6.2

Strain Energy Error (�10�2) Resulting from Using Different Number of Gauss Sampling
Points and Number of Background Mesh (nt¼ 55, Nu¼ 100)

Gauss Points (ng)

Background Mesh (nx� ny)

1� 1 2� 1 4� 1 8� 2 12� 3

2� 2 e¼1 e¼1 e¼1 e¼ 8.10 e¼ 3.12

NQ¼ 12 NQ¼ 24 NQ¼ 48 NQ¼ 192 NQ¼ 432

3� 3 e¼1 e¼1 e¼1 e¼ 4.01 e¼ 2.95

NQ¼ 27 NQ¼ 54 NQ¼ 108 NQ¼ 432 NQ¼ 972

4� 4 e¼1 e¼1 e¼ 4.37 e¼ 3.62 e¼ 2.90

NQ¼ 48 NQ¼ 96 NQ¼ 192 NQ¼ 768 NQ¼ 1728

e¼1 e¼ 58.2 e¼ 4.63 e¼ 2.90 e¼ 2.89

5� 5 NQ¼ 75 NQ¼ 150 NQ¼ 300 NQ¼ 1200 NQ¼ 2700

6� 6 e¼1 e¼ 4.74 e¼ 3.74 e¼ 2.89 e¼ 2.89

NQ¼ 108 NQ¼ 216 NQ¼ 432 NQ¼ 1728 NQ¼ 3888
7� 7 e¼1 e¼ 4.92 e¼ 2.96 e¼ 2.89 e¼ 2.89

NQ¼ 147 NQ¼ 294 NQ¼ 588 NQ¼ 2352 NQ¼ 5292

8� 8 e¼1 e¼ 3.70 e¼ 2.99 e¼ 2.89 e¼ 2.89

NQ¼ 192 NQ¼ 384 NQ¼ 768 NQ¼ 3072 NQ¼ 6912

9� 9 e¼1 e¼ 6.55 e¼ 2.93 e¼ 2.89 e¼ 2.89

NQ¼ 243 NQ¼ 486 NQ¼ 972 NQ¼ 3888 NQ¼ 8748

10� 10 e¼ 41.5 e¼ 9.52 e¼ 2.90 e¼ 2.89 e ¼ 2.89

NQ¼ 300 NQ¼ 600 NQ¼ 1200 NQ¼ 4800 NQ¼ 10800

Note: NQ¼ 3�nQ¼ 3� (ng� nx�ny).
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accurate stress field. Figures 6.8 and 6.9 show, respectively, the stress components syy and
sxy. It is clearly shown again that the stresses are very sensitive to the cell density of the
background integration, especially the shear stress sxy.

The total number of Gauss points depends on both the density of the background cell
and the number of Gauss points used in each cell, and these two have to be balanced.
A finer background integral mesh can improve the accuracy, but there is a limit. On the

FIGURE 6.6
Deflection of the rectangular cantilever
along y¼ 0.
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FIGURE 6.7
Distribution of stress sxx on the section of
x¼L=2 of the rectangular cantilever.
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other hand, more Gauss integration points give, in general, higher accuracy, but the
background mesh should not be too coarse. By using different densities of background
mesh and different numbers of Gauss sampling points, the displacement field and stress
field are computed using EFG, and the accuracy is investigated. From Figures 6.7 through
6.9, it can be observed that the cell density of the background mesh and the number of the
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FIGURE 6.8
Distribution of stress syy on the section of
x¼ L=2 of the rectangular cantilever.
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FIGURE 6.9
Distribution of stress txy on the section of
x¼ L=2 of the rectangular cantilever.
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Gauss points have to be balanced in order to obtain good results. Too fine a mesh
without enough Gauss points or too many Gauss points with too coarse a mesh will not
give accurate results. One should always avoid biases to either the number of Gauss
points or the number of cells of the background mesh. The balance point should, in general,
depend on the complexity of the field to be analyzed, and the basis used in the
MLS approximation. Our study for solid mechanics problems has found that, when a
linear basis function is used, the proper number of Gauss sampling points should be
between ng¼ 2� 2 and ng¼ 6� 6. Once the number of the Gauss points is chosen,
the density of the background mesh should then be calculated using the guideline of
nQ> 3nt.

To investigate how the node number affects the accuracy of the result, the strain energy
error is calculated for the rectangular cantilever using different nodal densities along
the x- and y-directions. The background mesh is fixed at nx� ny¼ 12� 3, and Gauss
points of ng¼ 4� 4 are used for the integration. Results are presented in Figure 6.10.
It is clearly seen that increasing the number of nodes in the domain can improve the
accuracy. For this particular problem of rectangular cantilever, increasing the nodes along
the y-direction improves the accuracy more efficiently than increasing the nodes along the
x-direction. Generally, when Nx is greater than eight, the results are sufficiently accurate.
Further study on the effects of Gauss integration points is conducted by changing ng from
2� 2 to 10� 10, and no significant change in strain energy error is observed.

Because both nodal density and background mesh density affect the accuracy of the
stress field, the ratio of quadrature points to field nodes is defined as

an ¼ nQ
nt

(6:64)

FIGURE 6.10
Effects of the nodal density on the strain
energy error.
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Further investigation has been conducted on the relationship between strain energy error
and the ratio of quadrature points to nodes, an. The results are summarized in Figure 6.11.
It is clearly shown that when an is around 7.0–9.0, the result obtained is most accurate.
A reasonable result can be obtained using an> 3. This confirms the finding from Table 6.2.

In the application of EFG for practical problems, the density of the field nodes should be
determined by the gradient of the field variables. For most practical problems, the field
nodes are not evenly distributed. The sampling points should also be distributed accord-
ingly in an uneven manner with an around 3.0–9.0.

Note that the Gauss point number suggested by Belytschko et al. [1] is nQ ¼ nt
ffiffiffiffiffi
nc

p þ 2
� �2,

where nc is the number of nodes in a cell. When nc¼ 1, we have an¼ 9. For nc � 2, this
suggestion demands more Gauss points.

6.1.5 Concluding Remarks

The EFG method is based on global variational formulation—Galerkin variational prin-
ciple. Therefore, although an element mesh is not required for field variable approximation
over the problem domain, a global background mesh is still required to evaluate the
integrals for calculating stiffness and mass matrices. Our numerical examination of the
relationship between the density of field nodes and background mesh for 2D stress
analysis problems shows

a. The minimum number of integration points must be greater than two-thirds of the
total number of the unfixed field nodes, i.e., nQ> 2nt=3. This requirement of
nQ> 2nt=3 is only the minimum requirement to ensure a nonsingular system
matrix; it does not guarantee the accuracy of the solution.

b. The ratio of the integration points to the field nodes,an, is around 3–9, and economic
results with acceptable accuracy can be obtained using an¼ 3. This means that a
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FIGURE 6.11
Relation between strain energy error and
the ratio of quadrature points to field
nodes an.
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sufficient number of integration points should be about three times the number of
the field nodes.

c. The displacement field can be obtained rather accurately with a coarse background
mesh of integration cells, whereas a finer background mesh is necessary for
computing the stress field.

d. Accuracy of the stress field can be improved efficiently by increasing the density of
the field nodes, together with sufficient density of the background mesh.

e. Finally, from the experience of the author’s research group, triangular type of back
ground mesh is most flexible, robust, and efficient for problems with complicated
domain. We prefer also to have the field nodes coincide with the vertices of the
background triangular mesh, so that the nodal density and density of integral
sampling can be naturally tied together. In addition, the background mesh can also
be utilized in the selection of nodes for MLS shape function construction using the
T2L-Scheme (see Section 1.7.6). This approach is used in MFree2D�.

6.2 EFG with Penalty Method

As described in the previous chapters, the use of MLS approximation produces shape
functions that do not possess the Kronecker delta function property, i.e., fH

I (xJ) 6¼ dIJ .
This leads to uh(xJ) ¼

Pn
I f

H
I (xJ)uI 6¼ uJ , which implies that one cannot impose essential

boundary conditions in the same way as in conventional FEM. In the previous chapter, the
essential boundary conditions are imposed by introducing Lagrange multipliers in the
weak form. This method of Lagrange multipliers results in an enlarged nonpositive system
matrix, as shown in Equation 6.37. The bandedness of the system matrix is also distorted.
Therefore, it requires much more computational cost in solving such system equations as
Equation 6.37.

In this section, an alternative method—the penalty method—is introduced for the impos-
ition of essential boundary conditions. The use of the penalty method produces equation
systems of the same dimensions that conventional FEM produces with the same number of
nodes, and the modified stiffness matrix is still positive definite. The problem with the
penalty method lies in choosing a penalty factor that can be used universally for all
problems. The penalty method has been used by many researchers; this section follows
the formulation reported in [10].

6.2.1 Formulation

The penalty method has been frequently used in conventional FEM for enforcing single or
multipoint constraints (MPCs) [4]. In the EFG method, the essential boundary conditions
needed to be enforced have the form

Xn
I

fH
I (x)uI ¼ uG(x) on Gu (6:65)

where uG(x) is the prescribed displacement on the essential boundary. Note that Equation
6.65 is nothing but the continuous form of the so-called MPC equations that are used very
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often in FEM analyses. Therefore, the penalty method can, of course, be applied to impose
the essential boundary conditions in the meshfree methods that use MLS shape functions
for field variable approximation.

This section presents the formulation of the penalty method to impose essential bound-
ary conditions in the EFG method. System equations for boundary value problems of both
homogeneous and inhomogeneous materials are derived. The discrete system matrices
derived using the penalty method from the constrained Galerkin weak form are positive
definite (unless the essential boundary condition is improperly set) and banded, and the
treatment of boundary conditions is as simple as it is in conventional FEM. Numerical
examples are presented to demonstrate the procedure of enforcing the essential boundary
conditions.

The present approach is also applied to the problems with continuity conditions on the
interfaces of multimaterial bodies, such as composite materials. Numerical examples
demonstrate that the EFG method with penalty method is applicable in handling problems
for composite materials, where the continuity conditions between different types of mater-
ials need to be enforced.

6.2.2 Penalty Method for Essential Boundary Conditions

Consider again the problem stated in Equations 6.1 and 6.2. Instead of using Lagrange
multipliers, we introduce a penalty factor to penalize the difference between the displace-
ment of MLS approximation and the prescribed displacement on the essential boundary.
The constrained Galerkin weak form using the penalty method can then be proposed as
follows:

ð
V

d(Ldu)
Tc(Ldu)dV�

ð
V

duT � bdV�
ð
Gt

duT � tGdG

� d

ð
Gu

1
2
(u� uG)T � a � (u� uG) dG ¼ 0 (6:66)

Equation 6.66 is formed from Equation 5.113 by changing the area integrals for the
constraint-related terms into curve integrals because the constraints (essential boundary
conditions) given in Equation 6.2 are defined only on the boundary. Note that the
difference between Equation 6.66 and Equation 6.4 is that the fourth and fifth terms in
Equation 6.4 are replaced by the fourth term in Equation 6.66, where a¼ [a1, a2, . . . ,ak]

T

is a diagonal matrix of penalty factors, where k¼ 2 for 2D cases and k¼ 3 for 3D cases.
The penalty factors ai (i¼ 1, . . . , k) can be a function of coordinates and they can be
different from each other, but in practice we often assign them an identical constant of
a large positive number, which can be chosen by following the method described in
Section 5.12.2.

Substituting the expression of the MLS approximation for the displacement of Equation
6.7 into the weak form of Equation 6.66, and after similar manipulations given in Section
6.1.1, we can arrive at the final system equation of

[KþKa]U ¼ Fþ Fa (6:67)
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where
F is the global external force vector assembled using the nodal force matrix defined by
Equation 6.31

K is the global stiffness matrix assembled using the nodal stiffness matrix given in
Equation 6.38

The additional matrix Ka is the global penalty matrix assembled using the nodal matrix
defined by

Ka
IJ ¼

ð
Gu

FT
I aFJdG (6:68)

where FH
I is the matrix of MLS shape functions given by Equation 6.41.

The force vector Fa is caused by the essential boundary condition, and its nodal vector
has the form

FaI ¼
ð
Gu

FH
I

� �T
auGdG (6:69)

Note that the integration is performed along the essential boundary, and hence matrix Ka

will have entries only for the nodes near the essential boundaries Gu, which are covered by
the support domains of all the quadrature points on Gu.

Comparing Equation 6.67 with Equation 6.37, the advantages of the penalty method are
obvious:

. The dimension and positive definite property of the matrix are preserved, as long
as the penalty factors chosen are positive.

. The symmetry and the bandedness of the system matrix are preserved.

These advantages make the penalty method much more efficient and hence much more
attractive compared with the Lagrange multipliers method. Detailed studies on implemen-
tation of the penalty method and computation of actual application problems have indi-
cated the following disadvantages of the penalty method compared with the Lagrange
multipliers method:

. It is necessary to choose penalty factors that are universally applicable for all kinds
of problems. One hopes to use as large as possible penalty factors, but too large
penalty factors often result in the augmentation of condition number in the system
matrix leading to possible numerical problems, as we have experienced in the
imposition of multipoint boundary condition in FEM.

. The results obtained are, in general, less accurate, compared with the method of
Lagrange multipliers.

. An essential boundary condition can never be precisely imposed. It is imposed
only approximately.

Despite these disadvantages, the penalty method is often more favorable for many
researchers. It is also implemented in MFree2D (see Chapter 16). Below is another appli-
cation of the penalty method.
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6.2.3 Penalty Method for Continuity Conditions

The domain of a problem can be composed of subdomains with different materials. The
treatment of material discontinuity is straightforward in the conventional FEM, because we
have elements to use. All one need do is have the element edges coincide with the interface
of different materials. The properties of the material are used for elements that are located
in the corresponding subdomain of the material. There is no special treatment required.

In meshfree methods, however, there is no mesh of elements, and hence the material
interface cannot be defined based on elements. When EFG is used, all the stress compon-
ents will be continuous around the interface, which is not the case physically. Therefore,
special treatment is therefore needed. Cordes and Moran [11] dealt with material discon-
tinuity problems using the method of Lagrange multipliers. The conditions on the material
interfaces were treated as a special essential boundary condition, and the approaches in the
original EFG procedure discussed in Section 6.1 could then be followed to handle the
material discontinuity. Krongauz and Belytschko [12] have proposed a method to model
material discontinuities in the EFG method by adding special shape functions that contain
discontinuities in derivatives.

The penalty method introduced in this section can be an alternative for dealing with the
material discontinuity problem. The detailed procedure was suggested by Liu and Yan [3],
and is reported in detail in Yang’s master’s thesis. This section details the penalty method
for handling the material discontinuity problem.

MPCs enforced using the penalty method are often used in FEM for modeling different
kinds of connections between two subdomains of a structural system. The penalty method
is also applicable for modeling similar situations in mechanics problems (see, e.g., [6]).

The penalty method is presented in this section to model two subdomains of different
materials connected in a prescribed manner. A perfect connection is considered, but the
approach is applicable for all kinds of connections, including partial connections.

Consider first an inhomogeneous medium consisting of two homogeneous bodies. On
the boundary of the two homogeneous bodies, an interface is first defined by a set of nodes
that belong to both materials. We then impose a nonpenetration rule for the influence
domains of the nodes. The nonpenetration rule states that points contained in material 1
can only be influenced by the nodes in material 1 plus the interface nodes; points contained
in material 2 can only be influenced by the nodes contained in material 2 plus the interface
nodes. Our following treatment is based on this nonpenetration rule of influence domains.
This rule confines the influence domain of a node within the subdomain of the material of
the node.

Figure 6.12 illustrates the determination of the domains of influence for the nodes in
problem domains of homogeneous and inhomogeneous materials. In Figure 6.12, circular
domains of influence are employed. For the homogeneous case (Figure 6.12a), point a is
contained in the influence domains of both nodes 4 and 5. Therefore, nodes 4 and 5 are
considered as the neighbors of point a. Similarly, point b has neighbors of nodes 3 and 5,
and point c has neighbors of nodes 1 and 2. However, as the interface exists in the
inhomogeneous materials in Figure 6.12b, the neighbors of each of the points a, b, and c
may change, due to the blockage of the material interface. The influence domain for node 4
is the same as in homogeneous materials because the influence domain of node 4 does not
intersect the interface, and therefore, point a is still within its influence. The influence
domain for node 5 is also the same as in homogeneous materials because it lies on the
interface of both materials. Therefore, point a is still within the influence domain of node 5.
The neighbors of point b still include nodes 3 and 5 since each pertains to material 1.
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However, point c is not included in the support domain of node 2 due to the nonpenetra-
tion of the influence domain of node 2. In this case, point c has only one neighbor, that
is, node 1.

The connection of the subdomains is achieved by enforcing conditions of continuity. On
the interface of the two materials Gm, we enforce the following constraint:

uþ
G ¼ u�

G (6:70)

where uþ
G and u�

G correspond to the displacement in the two materials but on the interface
of Vþ and V�, respectively. This constraint is then imposed using the penalty method in
the constrained Galerkin weak form, i.e.,

ð
V

d(Ldu)
T(cLdu)dV�

ð
V

duTbdV�
ð
Gt

duTtGdG

� d
1
2

ð
Gu

(u� uG)Ta(u� uG) dG� d
1
2

ð
Gm

(uþ
G � u�

G )
Tb(uþ

G � u�
G ) dG ¼ 0 (6:71)

Note that the difference between Equations 6.71 and 6.66 is the additional term in
Equation 6.71, where b is a diagonal matrix of penalty factors that have the same form
of a, but the values in b may be different. The approximate values of uþh

G and u�h
G are

expressed using MLS approximation (see Equation 6.7).

uþh
G (x) ¼

X
I2Snþ

Fþ
I (x)u

þ
I (6:72)

and

u�h
G (x) ¼

X
I2Sn�

F�
I (x)u

�
I (6:73)
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FIGURE 6.12
Determination of domains of influence. (a) Domains of influence in a homogeneous body; and (b) domains of
influence in an inhomogeneous body.
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where Snþ and Sn� are the set of nodes that have influences on x inVþ andV�, respectively,
and Fþ

I and F�
I are the matrices of MLS shape functions created using these nodes.

Substituting Equations 6.5, 6.72, and 6.73 into Equation 6.71 leads to a set of discrete
system equations:

[KþKa þKb] U ¼ Fþ Fa (6:74)

where

Kb
IJ ¼

ð
Gm

Fþ
I �F�

I

	 
T
b Fþ

J �F�
J

h i
dG (6:75)

Matrix Kb is the stiffness matrix for connecting the two different materials. Note that the
integration is performed along the interfaces of two materials, and hence matrix Kb will
have entries for the nodes near (not only on) the interfaces, which have influence on the
quadrature points on the interface between different materials.

6.2.4 Numerical Examples

6.2.4.1 Numerical Examples for Treating Essential Boundary Conditions

Example 6.3: Patch Test

The first numerical example is the standard patch test. The same patch tests conducted in Example
6.1 are repeated here using the penalty method for imposing the linear displacement on the
boundaries of the patches shown in Figure 6.3. The EFG method with penalty method exactly
passes the test for both kinds of meshes to machine accuracy. In both cases, the maximum errors in
the displacement are of order 10�13; the stresses remain the same in the patch and the maximum
errors are of order 10�11. The displacements for the regular and irregular nodal arrangements are
given in Tables 6.3 and 6.4.

TABLE 6.3

Coordinates and Displacements Solved for the Patch Test with Regular
Nodal Arrangement Using EFG with the Penalty Method

Nodes Coordinates (x, y) Displacements Solved (ux, uy)

1 (0, 0) (0.00000000000000, 0.00000000000000)

2 (1, 0) (1.00000000000000, 0.00000000000000)

3 (2, 0) (1.99999999999999, 0.00000000000000)

4 (0, 1) (0.00000000000000, 1.00000000000000)

5 (1, 1) (1.00000000000007, 0.99999999999996)
6 (2, 1) (2.00000000000000, 1.00000000000000)

7 (0, 2) (0.00000000000000, 2.00000000000000)

8 (1, 2) (1.00000000000000, 2.00000000000000)

9 (2, 2) (2.00000000000000, 2.00000000000000)
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Example 6.4: Rectangular Cantilever

Consider a cantilever of characteristic length L and height D subjected to a parabolic traction at
the free end, as shown in Figure 6.4, which was examined in Example 6.2. The cantilever is of unit
thickness and the plane stress state is considered. The exact solution is given by Timoshenko and
Goodier [5], and is listed in Equations 6.50 through 6.55. The parameters used in this section are
as follows:

Loading: P¼ 100 N

Young’s modulus: E¼ 3� 106 N=m2

Poisson’s ratio: n¼ 0.3

Height of the cantilever: D¼ 1.2 m

Length of the cantilever: L¼ 4.8 m

Both a regular and irregular arrangement of nodes and a regular background mesh of cells are
used for numerical integrations to calculate the system equations, as shown in Figure 6.13. In each
integration cell, a 4� 4 Gauss quadrature scheme is used to evaluate the stiffness matrix. The
linear basis function and cubic spline weight function are used in the MLS approximation. The
dimension of the support domain as is chosen to be 3.5 so that the domain of support of each
quadrature point contains at least 40 nodes to avoid the singularity of the moment matrix in
constructing MLS shape functions.

Figure 6.14 plots the analytical solution based on 2D elasticity and the numerical solution
using the present EFG method for the deflection of the cantilever along the x-axis. The plot
shows excellent agreement between the analytical and present numerical results for both
regular and irregular nodal arrangements.

Figures 6.15 and 6.16 illustrate the comparisons between the stresses calculated using the
analytical solution and the EFG with penalty method. The normal stress sx at the section of
x¼ L=2 is shown in Figure 6.15, and the shear stress txy is shown in Figure 6.16. A very
good agreement is observed. It should be noted that the accuracy of the shear stress in the
case of the irregular nodal arrangement is lower than that in the regular arrangement.

TABLE 6.4

Coordinates and Displacements Solved for the Patch Test with Irregular
Nodal Arrangement Using EFG with the Penalty Method

Nodes Coordinates (x, y) Displacements Solved (ux, uy)

1 (0, 0) (0.00000000000000,� 0.00000000000001)

2 (1, 0) (1.00000000000000, 0.00000000000000)

3 (2, 0) (2.00000000000000, 0.00000000000000)

4 (0, 1) (0.00000000000000, 1.00000000000000)

5 (0.6, 0.8) (0.59999999999995, 0.80000000000009)

6 (1, 2) (1.00000000000000, 2.00000000000000)

7 (0, 2) (0.00000000000000, 2.00000000000000)

8 (1, 2) (1.00000000000000, 2.00000000000000)
9 (2, 2) (2.00000000000000, 2.00000000000000)

10 (1.5, 0.6) (1.49999999999997, 0.60000000000001)

11 (0.9, 1.5) (0.90000000000000, 1.50000000000004)
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 (c) Mesh used for integration (4 × 10) 

 (a) Regular node arrangement (55 nodes)  (b) Irregular node arrangement (55 nodes)  

FIGURE 6.13
Nodal arrangements and background mesh for the rectangular cantilever. (a) Regular node arrangement;
(b) irregular node arrangement; and (c) mesh used for integration.

0 1 2 3 4 5
–9

–8

–7

–6

–5

–4

–3

–2

–1

0

1
×10–3

X (m)

Numerical (regular nodes)
Numerical (irregular nodes)
Analytical solution

Be
am

 d
efl

ec
tio

n 
(m

)

FIGURE 6.14
Analytical and present numerical solu-
tions for the deflection of the rectangular
cantilever.

–6 –4 –2 0 2 4 6
–1500

–1000

–500

0

500

1000

1500

Y (m)

N
or

m
al

 st
re

ss
 (N

/m
2 )

×10–1

Numerical (regular)
Numerical (irregular)
Analytical FIGURE 6.15

Analytical and present numerical solutions for
the normal stress at the section x¼ L=2 of the
rectangular cantilever.

Element-Free Galerkin Method 229

© 2010 by Taylor and Francis Group, LLC



Table 6.5 compares the numerical result for the vertical displacement at point A on the
cantilever (see Figure 6.4) with the exact vertical displacement given in Equation 6.52.
The calculation was performed for models with 10, 18, 55, and 189 nodes. This table shows
that the numerical result approaches the exact solutions as the number of the nodes
increases.

Figure 6.17 is a plot of the rate of convergence in L2 energy error for the cantilever
problem. The rate of convergence in energy is calculated using Equation 6.57. The value h

FIGURE 6.16
Analytical and numerical solutions for the shear
stress at the section x¼L=2 of the rectangular
cantilever.
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TABLE 6.5

Comparison of Vertical Deflection uy(m) at End of Cantilever

Number of Nodes Exact EFG (Penalty) Error (%)

10 �0.0089 �0.008099 9

18 �0.0089 �0.008511 4.4

55 �0.0089 �0.008883 0.2

189 �0.0089 �0.008898 0.02

FIGURE 6.17
Rate of convergence in energy error tested on
the rectangular cantilever.
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was chosen to be the horizontal nodal spacing in the model. The dimensionless size of the
support domain is as¼ 3.5. The cubic spline weight function in Equation 2.16 is used.
The slope of the line plotted in Figure 6.17 is approximately 2.71, which is greater than the
theoretical rate of 2.0 for linear finite elements (Remark 3.5).

Computational time
Because the penalty method does not increase the size of the stiffness matrix, and the
stiffness matrix is still banded, computational efficiency can be improved greatly compared
with the use of Lagrange multipliers in EFG. Table 6.6 compares the central processing unit
(CPU) time of the penalty method vs. the method of Lagrange multipliers used in EFG for
the rectangular cantilever. The computation is performed on the same HP workstation
using the same half-bandwidth technique to store the system matrices and solve the system
equations. It can be seen that the penalty method is much faster than the method of
Lagrange multipliers, especially for large numbers of field nodes. Note that if a special
solver designed for Equation 6.37 is used, the efficiency for the method of Lagrange
multipliers can be improved.

6.2.4.2 Numerical Examples for Treating Continuity Conditions

Example 6.5: Rectangular Cantilever Composed of Two Parts

To further examine the present method, it is applied to the same cantilever but it is now treated as
two ‘‘different’’ parts connected at boundary Gm, as shown in Figure 6.18. We assume that these
two parts have the same material properties; therefore, this cantilever can be regarded as a
homogeneous cantilever and the analytical solutions can still be used to check our numerical
approach for the interface treatment. In the numerical analysis using EFG with penalty method, we
still view the cantilever as two different parts and do not allow the influence domains in both

TABLE 6.6

Computational Time Using EFG with Different Methods
for Imposing Essential Boundary Conditions

CPU Time (s)

Nodes EFG (Lagrange Multiplier) EFG (Penalty)

55 1.1 0.6

189 35.4 3.5

561 115.2 13.8

x

Гs

P

y

Part 1 Part 2

FIGURE 6.18
Rectangular cantilever made of two parts
of different materials.
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subdomains to go across the interface. The penalty method is applied on Gm to enforce the
connectivity of these two parts.
The parameters of the cantilever in this case are the same as those in Example 6.4. Figure 6.19

shows the comparison between the analytical and numerical results for the deflection of the
cantilever. The solution for the normal stress sx on the cantilever sections at the upper surface of
the cantilever is shown in Figure 6.20. These numerical solutions also exhibit a good agreement
between the meshfree and the analytical results, confirming that the interface treatment
works well.

FIGURE 6.19
Analytical and numerical solutions for
the deflection of the rectangular canti-
lever modeled as two connected parts.
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FIGURE 6.20
Analytical and numerical solutions for the normal stress at the upper surface (y¼D=2) of the cantilever treated as
two connected parts.
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Example 6.6: Sandwich Composite Cantilever

In this example, a sandwich composite cantilever consisting of three layers of two materials,
shown in Figure 6.21, is simulated. The two upper and lower surface layers are the same material
thickness tf and the thickness of the core material is denoted by tc. The surface layer is stiffer than
the core material, and all three layers are assumed to be perfectly connected together.
The connection is enforced using the penalty method formulated in the above section. The
parameters for this example are as follows:

Loading: P¼ 100 N

Young’s modulus for the material of two surface layers: 1.67� 109 N=m2

Young’s modulus for the core material: 1.67� 108 N=m2

Poisson’s ratios for two materials: n¼ 0.3

Thickness of the two surface layers: tf ¼ 3

Thickness of the core layer: tc¼ 6

Height of the cantilever: D¼ 1.2 m

Length of the cantilever: L¼ 4.8 m

The stresses calculated from the present method and PATRAN=FEA are compared in Figures 6.22
and 6.23. The normal stress sx at the section of x¼ L=2 is shown in Figure 6.22, and the shear stress
txy is shown in Figure 6.23. A very good agreement is observed. The discontinuity of the normal
stress at the interface is clearly captured.
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FIGURE 6.21
Sandwich composite cantilever.
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FIGURE 6.22
Numerical solutions for the normal
stress at the section x¼L=2 of the sand-
wich composite cantilever.
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6.2.5 Concluding Remarks

In this section, the penalty method is used to impose the essential boundary and continuity
conditions in the EFG method that uses MLS shape functions. It overcomes the drawbacks
in the method of Lagrange multipliers. The main advantage of the penalty method is that it
leads to a positive definite and banded stiffness matrix. The stiffness matrix also has a
smaller dimension than those using Lagrangian multipliers, which improves computa-
tional efficiency. Numerical examples have demonstrated the good performance of the
penalty method.

The penalty method was also applied for the treatment of problems with material
discontinuity. However, in treating the material discontinuity, the FEM is more straight-
forward.

6.3 Summary

This chapter presents the EFG method. Works by Nayroles and coworkers and Belytschko
and coworkers have, in fact, offered a direction in the development of meshfree methods.
Following their work, a large number of researchers have also contributed significantly to
the development of the EFG method. It is so far one of the most widely used meshfree
methods. It was included in the software package, MFree2D showcased in 1999. The
MFree2D is, to the best knowledge of the author, the first software package on meshfree
methods that is fully packaged with pre- and postprocessors that is capable of carrying out
adaptive analysis automatically.

The extended finite element method (XFEM) developed by Belytschko and coworkers
has further enhanced the capability in dealing with more complicated problems such as the
crack propagation problems. Readers are referred to publications by Belytschko and cow-
orkers for the recent developments.

FIGURE 6.23
Numerical solutions for the shear stress
at the section x¼L=2 of the sandwich
composite cantilever.

–6 –4 –2 0 2 4 6
–120

–100

–80

–60

–40

–20

0

Y (m)

Sh
ea

r s
tre

ss
 (N

/m
2 )

EFG      
PATRAN/FEA

×10–1

234 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



References

1. Belytschko, T., Lu, Y. Y., and Gu, L., Element-free Galerkin methods, Int. J. Numerical Methods
Eng., 37, 229–256, 1994.

2. Nayroles, B., Touzot, G., and Villon, P., Generalizing the finite element method: Diffuse approxi-
mation and diffuse elements, Comput. Mech., 10, 307–318, 1992.

3. Liu, G. R. and Yan, L., A study on numerical integrations in element free methods, in Proceedings
of APCOM’99, Singapore, 1999, pp. 979–984.

4. Zienkiewicz, O. C. and Taylor R. L., The Finite Element Method, 5th ed., Butterworth Heimemann,
Oxford, 2000.

5. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.
6. Liu, G. R. and Quek, S. S., The Finite Element Method: A Practical Course, Butterworth Heinemann,

Oxford, 2003.
7. Beissel, S. and Belytschko, T., Nodal integration of the element-free Galerkin method, Comput.

Methods Appl. Mech. Eng., 139, 49–74, 1996.
8. Chen, J. S., Wu, C. T., Yoon, S., and You, Y., A stabilized conforming nodal integration for

Galerkin mesh-free methods, Int. J. Numerical Methods Eng., 50, 435–466, 2001.
9. Liu, G. R., Zhang, G. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y., and Han X., A nodal integration

technique for meshfree radial point interpolation method (NI-RPCM), Int. J. Solids Struct., 44,
3840–3860, 2007.

10. Liu, G. R. and Yang, K. Y., A penalty method for enforce essential boundary conditions in element
free Galerkin method, in Proceedings of the 3rd HPC Asia’98, Singapore, 1998, pp. 715–721.

11. Cordes, L. W. and Moran, B., Treatment of material discontinuity in the element-free Galerkin
method, Comput. Methods Appl. Mech. Eng., 139, 75–89, 1996.

12. Krongauz, Y. and Belytschko, T., EFG approximation with discontinuous derivatives, Int.
J. Numerical Methods Eng., 41(7), 1215–1233, 1998.

Element-Free Galerkin Method 235

© 2010 by Taylor and Francis Group, LLC





7
Meshless Local Petrov–Galerkin Method

The element-free Galerkin (EFG) method requires a mesh of background cells for integra-
tion in computing the systemmatrices. The reason behind the need for background cells for
integration is the use of the Galerkin weak form for generating the discrete system
equations. Is it possible not to use the weak form? The answer is yes: meshfree methods
that operate on strong forms, such as the irregular finite difference method [1,2], finite
point method [3], and local point collocation methods [4–8] have been developed. How-
ever, these kinds of methods are generally not very stable against node irregularities, and
the results obtained can be less accurate. Efforts are still being made to stabilize these
methods, especially in the direction of using local radial functions with properly devised
regularization techniques [7,8].

In using the weighted residual method, if we try to satisfy the equation point-by-point
using information in a local domain of the point as we do in the point collocation methods,
the integration form can then be implemented locally by carrying out numerical integration
over the local domain. The meshless local Petrov–Galerkin (MLPG) method originated by
Atluri and Zhu [9] uses the so-called local weak form of the Petrov–Galerkin residual
formulation. MLPG has been fine-tuned, improved, and extended over the years [10–17].
This chapter details theMLPGmethod for two-dimensional (2D) solid mechanics problems.

In the MLPG implementation, moving least squares (MLS) approximation is employed
for constructing shape functions. Therefore, similar to the EFG method, there is an issue of
imposition of essential boundary conditions. The original MLPG proposed in [10,11] uses
the penalty method. In the formulation in [13], a method called direct interpolation is used.
This chapter formulates both methods, in addition to the orthogonal transformation
method for free-vibration problems.

A number of benchmark examples are presented to illustrate the procedure and effect-
iveness of the MLPG method. The effects of different parameters including the dimensions
of different domains of MLPG on the accuracy of the results are also investigated via these
examples.

Although the node-by-node procedure in MLPG is quite similar to that of the collocation
method, the MLPG is more stable against nodal irregularity due to the use of a local weak
form of locally integrated weighted residuals. Due to the use of the MLS shape functions in
the local Petrov–Galerkin formulation, the MLPG can reproduce the polynomials that are
included in the basis of MLS shape functions. This fact will be evidenced in the examples of
patch tests.

7.1 MLPG Formulation

We consider again a 2D solid mechanics problem, as shown in Figure 7.1, for illustrat-
ing the procedure for formulating the MLPG method. The problem domain is denoted
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by V, which is bounded by boundaries including essential (displacement) boundary Gu

and natural (force or free) boundary Gt. The strong form of the problem has been
given in Equations 6.1 through 6.3.

7.1.1 The Idea of MLPG

In the MLPG method, the problem domain is represented by a set of arbitrarily distributed
nodes, as shown in Figure 7.1. The weighted residual method is used to create the discrete
system equations. The weighted residual method is, of course, in integral form, and a
background mesh of cells is still required for the integration. The major idea in MLPG is
that the implementation of the integral form of theweighted residualmethod is confined to a
very small local subdomain of a node. This means that the weak form is satisfied at each
node in the problem domain in a local integral sense. Therefore, the weak form is integrated
over a ‘‘local quadrature domain’’ that is independent of other domains of other nodes. This
is made possible by the use of the Petrov–Galerkin formulation, in which one has the
freedom to choose the weight and trial functions independently. If the Galerkin formulation
is used, one has to use the weight and trial functions from the same space, which presents
difficulties in confining the integration to localized domains of desired simple shapes.

Because MLPG requires integrations only over localized quadrature domains, what
we need now is only a background mesh of cells for the local quadrature. The quadrature
domain can be arbitrary in theory, but very simple regularly shaped subdomains, such as
circles and rectangles for 2D problems and bricks and spheres for 3D problems, are often
used for ease of implementation (see Figure 7.1 for the 2D case). Because of the simplicity
of the quadrature domain, the creation of the local background mesh of cells is easier to
perform compared to the creation of the background mesh for the entire problem domain.

Note that the shape and dimensions of the quadrature domains do not have to be the
same for all the nodes. Therefore, one is free to choose a proper shape for the local
quadrature domain based on the local situation. This feature is important when the
local quadrature domain encounters the global boundary of the problem. In addition, as
long as the support domain is compact, MLPG will produce sparse system matrices.
The major drawback of MLPG is the asymmetry of the system matrices due to the use
of the Petrov–Galerkin formulation. The implications are the less efficiency in computa-
tion, the convergence and bound properties are less certain compared to the Galerkin

FIGURE 7.1
Domains and their boundaries. Problem
domain V with essential (displacement)
boundary Gu, natural (force or free)
boundary Gt, quadrature domain of VQ

with the interior boundary GQi that is
located within the problem domain, the
essential boundary GQu that intersects
with Gu, and the natural boundary GQt

that intersects with Gt.

Гt
Гt

Гu Гt

Гt

ГQu ГQt

ГQi Гu
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Гt
Ω

ΩQ

Nodes
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Nodes i

238 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



formulations. Therefore, MLPG may suit better for fluid dynamic problems. Another
drawback of MLPG is that the local background integration can be very tricky due to the
complexity of the integrand produced by the Petrov–Galerkin approach, especially
for quadrature domains that intersect with the boundary of the problem domain with
complicated geometry.

7.1.2 Formulation of MLPG

Following the formulation of [9], we use the strong form of Equations 6.1 through 6.3 in
indicial notations:

sij,j þ bi ¼ 0 (7:1)

The boundary conditions are

Essential boundary condition: ui ¼ uGi on Gu (7:2)

Natural boundary condition: sijnj ¼ tGi on Gt (7:3)

where
i, j¼ 1, . . . , d
nj is the jth component of the unit outward normal vector on the boundary

For node I, the local weighted residual method can be stated as (see Equation 5.4)

ð
VQ

(sij,j þ bi)W
_

IdV� a

ð
GQu

(ui � uGi)W
_

IdG ¼ 0 (7:4)

where W
_

is the weight or test function defined for the node, and we use the same weight
function for all the d equations. Here we require W

_ 2 C
0(VQ). VQ is the domain of

quadrature (integration) for node I, GQu is the part of the essential boundary that intersects
with the quadrature domain VQ (see Figure 7.1), and a is the penalty factor that we have
seen in Chapter 6. Here we use the same penalty factor for all the displacement constraint
equations (essential boundary conditions) [9]. The first term in Equation 7.4 is for the
equilibrium (in locally weighted average sense) requirement at node I, and the second term
is only for the case when the essential boundary of the problem domain is part of the
boundary of the local quadrature domain VQ. If VQ does not intersect with the essential
boundary of the problem domain, the second term should be dropped.

Using the divergence theorem, we obtain

ð
GQ

sijnjW
_

IdG�
ð
VQ

sijW
_

I,jdVþ
ð
VQ

biW
_

IdV� a

ð
GQu

(ui � uGi)W
_

IdG ¼ 0 (7:5)

where
GQ¼GQ0 [ GQu [ GQt

GQ0 is the internal boundary of the quadrature domain
GQt is the part of the natural boundary that intersects with the quadrature domain
GQu is the part of the essential boundary that intersects with the quadrature domain
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When the quadrature domain is located entirely within the global domain, GQt and GQu

vanish and GQ¼GQ0. Unlike the Galerkin method, the Petrov–Galerkin method chooses
the trial and test functions from different spaces. The weight function W

_

is purposely
selected in such a way that it vanishes on GQ0 (in this case, we cannot use Heaviside weight
functions). Note that the weight functions mentioned in Chapter 2, for example, the cubic
or quartic spline, can be chosen to equal zero along the boundary of the internal quadrature
domains; hence, they can be used as the weight functions for MLPG.

Equation 7.5 shows that the differentiation on the stresses is now ‘‘transferred’’ to the
weight function. This reduces the consistency requirement when we approximate the trial
displacement function that is used for obtaining the stresses.

Using a weight function W
_

that vanishes on GQ0, we can then change the expression of
Equation 7.5 to

ð
VQ

sijW
_

I,jdVþ a

ð
GQu

uiW
_

IdG�
ð
GQu

sijnjW
_

IdG ¼
ð
GQt

tGiW
_

IdGþ a

ð
GQu

uGiW
_

IdGþ
ð
VQ

biW
_

IdV

(7:6)

which is the local Petrov–Galerkin weak form. Here we require ui 2 C
0(VQ). When the

quadrature domain is located entirely in the domain, integrals related to GQu and GQt

vanish, and the Petrov–Galerkin form can be simplified as

ð
VQ

sijW
_

I,jdV ¼
ð
VQ

biW
_

IdV (7:7)

Equation 7.7 is used to establish the discrete equations for all the nodes whose quadrature
domain falls entirely within the problem domain. Equation 7.6 is used to establish the
discrete equations for all the boundary nodes or the nodes whose quadrature domain
intersects with the problem boundary.

Using Equation 7.6 or 7.7 and integrating over the quadrature domain, leads to
discretized system equations for each node in the problem domain. This gives a set
of algebraic equations for each node. By assembling all these sets of equations, a set of
discretized system equations for the entire problem domain can then be obtained. Note
that MLPG establishes algebraic equations based on nodes in the problem domain, which
is in fact very similar to the collocation or the finite difference procedure. It will be shown
later that this feature can be used for imposition of the essential boundary conditions.

Equation 7.6 or 7.7 suggests that instead of solving the strong form of the system
equation given in Equations 7.1 and 7.2, a ‘‘relaxed’’ weak form with integration over a
small local quadrature domain is employed. This integration operation can ‘‘smear’’ out
the numerical error and, therefore, make the discrete equation system more stable and
accurate compared to the meshfree procedures that operate directly on the strong forms of
system equations. MLPG guarantees satisfaction of the equilibrium equation at a node in
an integral sense over a quadrature domain, but it does not ensure satisfaction of the
system equation of strong form exactly at the node. The size of the quadrature domain
determines the ‘‘relaxing’’ extent to the strong form differential equation. It will be
shown later in the example problems that the quadrature domain needs to have sufficient
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dimension to produce an accurate and stable solution, and that too large a support domain
does not necessarily provide significantly better results.

In MLPG, Equation 7.6 or 7.7 is to be satisfied for all the local quadrature domains for
each and every node in the entire problem domain, including the boundaries. This implies
that the equilibrium equation and the boundary conditions are satisfied node by node in a
weak sense of the local weighted residual.

Note that if the delta function is used as the weight function, the method becomes a
collocation method that is known to be unstable. This fact implies also when the local
smoothing domain is too small the MLPG can become unstable.

Following the MLS approximation procedure, one can generate the shape function for
each node using the nodes in support domain Vs of a point (not necessarily a node).
The procedure is exactly the same as that in the EFG method, and for 2D problems, we
shall have

uh ¼ u1
u2

� �h

¼
X
i2Sn

fH
i 0
0 fH

i

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Fi

u1
u2

� �
i|fflfflffl{zfflfflffl}

ui

¼
X
i2Sn

FH
i ui (7:8)

where
Sn denotes the set of the nodes in the support domain Vs of point xQ
FH

i is the matrix of shape functions given by

FH
i ¼ fH

i 0

0 fH
i

" #
(7:9)

in which fH
i is the MLS shape function for node i that is created using nodes in the support

domain Vs of point xQ. In Equation 7.8, ui is the nodal displacement for node i:

ui ¼ u1
u2

� �
i

(7:10)

After using the divergence theorem that leads to Equation 7.6, we have the discrete system
equations in matrix form:

ð
VQ

V
_ T

I sdVþ a

ð
GQu

W
_

IudG�
ð
GQu

W
_

ItdG ¼
ð
GQt

W
_

ItGdGþ a

ð
GQu

W
_

IuGdGþ
ð
VQ

W
_

IbdV (7:11)

where V
_

I is a matrix that collects the derivatives of the weight functions in Equation 7.6,
which has the form:

V
_

I ¼
W
_

I,x 0

0 W
_

I,y

W
_

I,y W
_

I,x

2
664

3
775 (7:12)
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It is in fact the ‘‘strain’’ matrix caused by the weight (test) functions W
_

. In Equation 7.11,
s denotes the stress vector defined as

s ¼ ce ¼ cLnuh ¼ c

q
qx

0

0
q
qy

q
qy

q
qx

2
66666664

3
77777775
X
j2Sn

FH
j uj ¼ c

X
j2Sn

Bjuj (7:13)

where

Bj ¼
fH
j,x 0

0 fH
j,y

fH
j,y fH

j,x

2
6664

3
7775 (7:14)

W
_

is a matrix of weight functions given by

W
_

I ¼ W
_

I 0
0 W

_

I

" #
(7:15)

The tractions t of a point x can be written as

t ¼ nx 0 ny
0 ny nx

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

LT
n

s ¼ LT
nc

X
j2Sn

Bjuj (7:16)

in which (nx, ny) is the unit outward normal vector on the boundary:

LT
n ¼ nx 0 ny

0 ny nx

� �
(7:17)

Substitution of Equations 7.8 and 7.13 through 7.16 into Equation 7.11 leads to the
following discrete systems of linear equations for the Ith node:

ð
VQ

V
_ T
I c

X
j2Sn

BjujdVþ a

ð
GQ

W
_

I

X
j2Sn

fH
j ujdG�

ð
GQ

W
_

ILT
nc

X
j2Sn

BjujdG

¼
ð
GQ

W
_

ItGdGþ a

ð
GQ

W
_

IuGdGþ
ð
VQ

W
_

IbdV (7:18)

The matrix form of Equation 7.18 can be assembled as

X
j2Sn

KIjuj ¼ fI (7:19)
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where KIj is a 2� 2 matrix called a nodal stiffness matrix, given by

KIj ¼
ð
VQ

V̂
T
I cBjdVþ a

ð
GQ

ŴIF
H
j dG�

ð
GQ

ŴILT
ncBjdG (7:20)

and fI is the nodal force vector with contributions from body forces applied in the problem
domain, tractions applied on the natural boundary, as well as the penalty force terms.

fI ¼
ð
VQ

W
_

IbdVþ
ð
GQt

W
_

ItGdGþ a

ð
GQu

W
_

IuGdG (7:21)

Equation 7.19 presents two linear equations for node I. Using Equation 7.19 for all nt nodes
in the entire problem domain, two independent linear equations can be obtained for each
node. Assemble all these 2nt equations to obtain the final global system equations of

K2nt�2ntU2nt�1 ¼ F2nt�1 (7:22)

It can be easily seen that the system stiffness matrix K in the MLPG method is banded as
long as the support domain is compact, but it is usually asymmetric.

7.1.3 Types of Domains

A number of subdomains are involved in practical implementation of the MLPG method.
Each subdomain carries a different meaning, and some are similar to the domains used in
the EFG method. The names of these domains are in fact very confusing in the current
literature. Considering the terminology in the EFG method, we suggest the following
systems of names for these subdomains.

All the subdomains are schematically drawn in Figure 7.2. The quadrature domainVQ of
node i at xi is a domain for the integration in Equation 7.4. The weighted domain VW is the
domain where the weight (test) function is nonzero; i.e., W

_

I 6¼ 0. Theoretically, the quad-
rature domainVQ and the weighted domainVW do not have to be the same, andVW can be

Гt

Гu Гt

Гt

Ω

Ωw

XQ

ΩQ

Ωs

Node i

FIGURE 7.2
For node i, there are a number of subdo-
mains: weighted domainVW of a node at
xi is a domain in which W

_

I 6¼ 0; quadra-
ture domain VQ is in VW and often
VQ¼VW; and the support domain Vs

for a quadrature point xQ. (From Gu,
Y.T. and Liu, G.R., Comput. Mech., 27,
188, 2001. With permission.)
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larger than VQ. However, in practice we often use the same for both, i.e., VQ¼VW, so that
the curve integration along the interior boundary of VQ will vanish, which simplifies the
formulation and computation. Therefore, we always assume in this book that the quadra-
ture domain is the weighted domain, unless specifically mentioned. The quadrature
(or weight) domain can be theoretically arbitrary in shape. A circle or rectangular support
domain is often used in practice for convenience.

For the local integration over VQ, the Gauss quadrature may be used in the MLPG
method. Therefore, for a mesh of local integration cells over its quadrature domain VQ, a
node is needed to employ the Gauss quadrature scheme. Because the quadrature domain
is chosen to be simple, the creation of the local integral cells is not difficult. For each
quadrature point xQ in a cell, MLS interpolation is performed to compute the shape
function and to obtain the integrand. A subdomain is then needed to choose the nodes
for constructing the shape function. This subdomain noted as Vs carries exactly the same
physical meaning of the support domain defined in Chapter 1. The support domain Vs is
independent of the quadrature domain VQ (or VW).

The dimensions of these different domains will, of course, affect the results. These effects
are addressed in later sections of this chapter via numerical examples.

7.1.4 Procedures for Essential Boundary Conditions

Enforcement of essential boundary conditions by the penalty method involves the choice of
penalty factor a. If a is chosen improperly, instability or erroneous results will sometimes
occur. Alternatively, methods using an orthogonal transformation technique [11,12] have
been proposed for imposition of essential boundary conditions. This section introduces a
method of direction interpolation for the imposition of essential boundary conditions, which
makes use of the special feature of the MLPG. This method was used in [13] to simplify the
MLPG formulation.

As discussed above, the MLPG method establishes equations node by node, which
makes it possible to use different sets of equations for the interior and boundary nodes.
For node J located on the essential boundary, one can enforce the boundary condition using
the equation of MLS approximation in a collocation manner, i.e.,

uhJ (x) ¼
X
i2Sn

fi(x)ui ¼ uGJ (7:23)

where uGJ is the specified displacement at node J on the essential boundary. The foregoing
equation is basically a linear algebraic equation for node J on the essential boundary.
Therefore, for all the nodes on the essential boundary, there is no need to establish
Equation 7.19. The essential boundary condition of Equation 7.23 is directly assembled
into the global system equation. This treatment of the essential boundary condition is
straightforward and very effective. It simplifies significantly the procedure of imposing
essential boundary conditions, and the essential boundary conditions are satisfied exactly.
Moreover, computation for all the nodes on the essential boundary has been simplified.
This simple treatment is made possible because the MLPG method establishes discrete
equations node by node.

Note also that this direct approach of imposing essential boundary conditions destroys
the symmetry of the stiffness matrix. Fortunately, this does not create additional problems,
because the stiffness matrix created using MLPG is not symmetric originally. If it were
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possible to apply this method in the EFG method, which produces symmetric matrices, it
would not be used, because one probably loses more efficiency when the symmetry of the
matrix is destroyed.

7.1.5 Numerical Investigation

Equations 7.20 and 7.21 require integration over the local quadrature domain and on the
boundary that intersects with the quadrature domain. The integration has to be carried out
via numerical quadrature schemes. In practice, the quadrature domain often needs to be
further divided into cells, and the Gauss quadrature scheme is often used to evaluate the
integration for each cell. Therefore, there will be a number of issues involved in the process,
such as the number of cells and the number of the Gauss points to be used.

There exist, in general, difficulties in obtaining the exact (to machine accuracy) numerical
integration in meshfree methods [11,13]. Insufficiently accurate numerical integration may
cause deterioration in the numerical solution. In MLPG, the integration difficulty is more
severe, because of the complexity of the integrand that results from the Petrov–Galerkin
formulation. First, the shape functions constructed using MLS approximation have a
complex feature, the shape functions have different forms in each small integration region,
and the derivatives of the shape functions might have oscillations. Second, the overlapping
of interpolation domains makes the integrand in the overlapping domain very compli-
cated. To improve the accuracy of the numerical integration, the quadrature domain VQ

should be divided into small, regular partitions. In each small partition, more Gauss
quadrature points should be used [11].

In this section, several numerical examples are employed to illustrate the implementa-
tion issues in the MLPG method using MLS approximation. The work was originally
performed by Liu and Yan [13]. Rectangular quadrature domains VQ are used, and the
dimension of the quadrature domain for node I is defined as

(aQ � dxI)� (aQ � dyI) (7:24)

where
aQ is the dimensionless size of the rectangular quadrature domains
dxI is the average nodal spacing in the horizontal direction between two neighboring
nodes in the vicinity of node I

dyI is that in the vertical direction

The support domain Vs used for constructing MLS shape functions is also a rectangle.
The tensor product weight function for 2D problems is given by

W
_

(x� xI) ¼ W
_

(rx) �W
_

(ry) ¼ W
_

x �W
_

y (7:25)

where W
_

(rx) and W
_

(ry) are any of the weight functions listed in Chapter 2 where �d is
replaced by rx and ry, which are given by

rx ¼ kx� xIk
xmax

(7:26)

ry ¼ ky� yIk
ymax

(7:27)

Meshless Local Petrov–Galerkin Method 245

© 2010 by Taylor and Francis Group, LLC



where xmax and ymax are, respectively, the dimensions of the rectangle in the x and y
directions given by

xmax ¼ asdxI (7:28)

ymax ¼ asdyI (7:29)

where as is the dimensionless size of the support domain for computing the MLS shape
functions.

The quadrature domain VQ for constructing the weight (test) function is also a rectangle,
and the weight function given in Chapter 2 may be used, where �d is also replaced by rx and
ry, which are defined by Equations 7.26 and 7.27. However, xmax and ymax are given by

xmax ¼ aQdxI (7:30)

ymax ¼ aQdyI (7:31)

where aQ is the dimensionless size of the quadrature or weight domain. Note that in our
implementation of MLPG, the weighted domain VW coincides with the domain of quad-
rature VQ; hence, the dimension of the quadrature domain is also the same as that of the
weighted domain.

The quadrature domain is divided evenly by nc� nc cells, and 4� 4 Gauss sampling
points are used for each cell. To assess the accuracy, the relative error is defined as

re ¼ keexact � enumk
keexactk (7:32)

where the energy norm is defined as

kek ¼ 1
2

ð
V

«Tc«dV

0
@

1
A

1
2

(7:33)

7.1.6 Examples

An MLPG code has been developed based on the above-mentioned formulation, and is
used to conduct the following investigations. The direct approach is used for the impos-
ition of essential boundary conditions. In the examples presented in this section, a rect-
angular support domain is used, and the dimension of the support domain is fixed at
as¼ 3.5, unless specified otherwise.

Example 7.1: Patch Test

Consider a standard patch test in a domain of dimension [0, 2]� [0, 2] with a linear displacement
applied along its boundary: ux¼ x, uy¼ y. Satisfaction of the patch test requires that the value of ux,
uy at any interior node be given by the same linear displacement function and that the derivative of
the displacement be constant.
Three patterns of nodal arrangement shown in Figure 7.3 are considered: (a) 9 nodes with

regular arrangement, (b) 9 nodes with a randomly distributed internal node, and (c) 25 nodes
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with irregular arrangement. The computational results have confirmed that MLPG can pass all the
patch tests exactly (to machine accuracy) for both cubic and quartic spline weight functions with
the given linear displacement boundary, as long as the integration is carried out accurately. Issues
related to integration are discussed in detail in Example 7.2.

Example 7.2: High-Order Patch Test

A high-order patch of 3� 6 shown in Figure 7.4 is used to study the effect of the order of
polynomial basis used in MLS approximation and the quadrature domain on the numerical results
of MLPG. The dimensionless material properties for the patch are as follows:

Young’s modulus (dimensionless): E¼ 1

Poisson’s ratio: n¼ 0.25

The following two cases are examined.

CASE 1
A uniform axial stress with unit intensity is applied on the right end. The exact solution for this
problem should be

ux ¼ x

uy ¼ �y=4
(7:34)

(a)

5 

(b)

5

(c)

19

FIGURE 7.3
Nodal arrangement in patches for standard patch test: (a) 9 regular node patch; (b) 9 irregular node patch; and
(c) 25 irregular node patch.
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Case 1 Case 2

B3

6

FIGURE 7.4
Nodal arrangement for high-order patch test.
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CASE 2
A linearly variable normal stress is applied on the right end.
The exact solution for this problem should be

ux ¼ 2xy=3

uy ¼ �(x2 þ y2=4)=3
(7:35)

The linear basis is first used in MLS for creation of the shape functions. It is found that the MLPG
can produce an exact solution to machine accuracy for case 1 and hence pass the patch test
exactly. For case 2, however, it fails. Table 7.1 shows the relative error of displacement ux and uy
at point A when the linear basis and quartic spline are used for case 2. It is shown that the MLPG
results converge as the dimension of the quadrature domain aQ increases, although it cannot
produce the exact solution. Note that the exact solution of the displacement field for case 2 is
quadratic, as shown in Equation 7.35. For the MLS shape function to reproduce the quadratic
displacement field exactly, quadratic polynomial basis functions have to be used (see consistency
issues with MLS discussed in Chapter 2). The patch is then attempted again using the quadratic
basis, which confirms that MLPG has passed the patch test for case 2 as well.

Remark 7.1: Requirements for Local Petrov–Galerkin Methods
to Pass the Patch Test

1. The shape functions are of at least linear consistency (see Chapter 2). This implies
that the shape function is capable of producing at least linear field.

2. The essential boundary conditions (displacement constraints on the boundary of
the patch) have to be satisfied accurately.

In addition, we naturally require sufficiently large local quadrature domains with proper
weight functions and accurate numerical operations, such as integration to form system
equations.

Example 7.3: Rectangular Cantilever

The rectangular cantilever described in Chapter 6 (Example 6.2) is tested again using the MLPG
code. The cantilever is schematically drawn in Figure 6.4. The parameters for this example are as
follows:

Loading: P¼�1000 N

Young’s modulus for the material: E¼ 3.0� 107 N=m2

TABLE 7.1

Displacement at the Right End of the High-Order Patch

ux at Point A uy at Point B

aQ Exact Numerical Error (%) Exact Numerical Error (%)

1.0 �6.0 �6.418 6.97 �12.0 �13.65 13.8

1.5 �6.0 �5.942 �0.97 �12.0 �11.84 �1.33

2.0 �6.0 �5.959 �0.68 �12.0 �11.86 �1.17

Note: Number of nodes in the entire domain nt: 5� 7¼ 35; Gauss points: 4� 4. aQ, dimensionless size of the
quadrature domain.
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Poisson’s ratio for two materials: n¼ 0.3

Height of the cantilever: D¼ 12.0 m

Length of the cantilever: L¼ 48.0 m

Three patterns with 55(5� 11), 189(9� 21), and 697(17� 41) regularly distributed nodes are
employed to study the convergence of the MLPG method. Both linear basis and quartic spline
are used. The results are presented for different numbers of integration cells nc in each local
quadrature domain VQ (which is the same as the weighted domain VW) and different dimensions
of the quadrature domain.

Figures 7.5 and 7.6 plot the relationship between the relative error in strain defined in
Equation 7.32 and the cell number nc. Results in these two figures clearly show that accuracy
can be improved significantly by increasing the number of cells for local integration. These
findings suggest the importance of subdivisions of the quadrature domain. Both Figures 7.5
and 7.6 also indicate an important fact: too large (aQ¼ 3.0) or too small (aQ¼ 1.0) a quad-
rature domain will give less accurate results. When the quadrature domain is too small, the
area for the ‘‘smear’’ error is not large enough, and when the quadrature is too large,
the error in the numerical integration will affect the accuracy of the results. Both Figures
7.5 and 7.6 show that a quadrature domain of aQ¼ 1.5 gives the most accurate results. This
suggests that the dimension of the rectangular quadrature domain should be about 1.5 times
the local nodal distance. This rule of 1.5 times nodal distance is widely used in meshfree
methods based on local weak forms.

–2.0

–1.5

–1.0

–0.5

0.0

0.5

0 1 2 3 54

Lo
g(

r e)

αQ = 1.0
αQ = 1.5
αQ = 2.0
αQ = 2.5
αQ = 3.0

nc

FIGURE 7.5
Convergence in terms of relative error in strains
computed in the rectangular cantilever using
MLPG with MLS approximation (nc¼number
of subdivision of the rectangular quadrature
domain; aQ¼ the dimension parameter of the
rectangular quadrature domain; domain of sup-
port: as¼ 3.5; total number of nodes: nt¼ 55).
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FIGURE 7.6
Same as Figure 7.5, but the number of field
nodes nt¼ 189.

Meshless Local Petrov–Galerkin Method 249

© 2010 by Taylor and Francis Group, LLC



The effects of the spline and basis functions on the relative error have also been
investigated. The results are shown in Figure 7.7. It is found that there is no significant
difference in accuracy using cubic and quartic spline weighted functions for a sufficient
number of subdivisions of the quadrature domain. Using a quadratic basis function can
somewhat increase the accuracy of the results, but it is not a clear indication.

Irregularity of the nodal arrangement is also investigated. The irregularity of nodes is
created by changing the coordinates of the interior nodes in the cantilever in the following
manner:

xI ¼ xI � cndxI
yI ¼ yI � cndyI

(7:36)

where cn is the parameter that controls the irregularity of the nodes. For cn¼ 0.4, some of
the internal nodes are moved up to 0.4dxI in the horizontal direction and 0.4dyI in the
vertical direction from its regular position. Parameter cn is allowed to vary randomly in
the range of 0.0–0.4. Figure 7.8 shows a typical irregular nodal arrangement. Table 7.2
shows the relative error defined in Equation 7.32 obtained using irregular node arrange-
ments of different cn values. It is seen that the irregularity of nodes has very little effect on
the accuracy of the results. This fact reveals a very important feature of MLPG: it is stable
for irregular nodal arrangements. The results based on cn¼ 0.4 are obtained and plotted
in Figure 7.9a for deflection of the cantilever, and in Figure 7.9b for the shear stress
distribution at the central section of x¼ 24 m. Those results confirm that the effect of the
nodal irregularity is very small.

FIGURE 7.7
Convergence in terms of relative error in strains
computed in the rectangular cantilever using
MLPGwithMLS approximation. Effects of spline
weight functions (aQ¼ 1.5; nt¼ 189; as¼ 3.5).
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FIGURE 7.8
Irregular nodal arrangement for the rectangular cantilever (189 nodes).
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Example 7.4: Square Panel with a Circular Hole

A square panel of 2D solid with a circular hole subjected to a unidirectional tensile load in the
x-direction is considered, as shown in Figure 7.10a. The plane stress condition is assumed. Due to
symmetry, only the upper right quarter of the square panel is modeled, as shown in Figure 7.10b.
Corresponding symmetric boundary conditions are applied on x¼ 0 and y¼ 0, i.e.,

ux ¼ 0, sxy ¼ 0 when x ¼ 0 (7:37)

and

uy ¼ 0, sxy ¼ 0 when y ¼ 0 (7:38)

The boundary condition at the right edge is

sxx ¼ p, syy ¼ sxy ¼ 0 when x ¼ 5 (7:39)

and the boundary condition at the upper edge is

sxx ¼ 0, syy ¼ sxy ¼ 0 when y ¼ 5 (7:40)

The parameters are listed as follows:

Loading: p¼ 1 N=m

Young’s modulus: E¼ 1.0� 103 N=m2

Poisson’s ratio: n¼ 0.3

Diameter of the hole: a¼ 1.0 m

Length of the panel: b¼ 5 m
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FIGURE 7.9
Results for the cantilever computed using MLPG with 189 irregular nodes. Comparison with the exact solution.
(a) Deflection; (b) shear stress distribution at central section.

TABLE 7.2

Relative Error for Irregular Node Arrangement

cn 0.0 0.1 0.2 0.3 0.4

re (�10�2) 2.77 2.81 2.84 2.87 2.89
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The analytical solution of displacement and the stress fields within the panel are listed below in
the polar coordinates of (r, u).

The displacement in the radial direction is given by

ur ¼ p
4m

r
k� 1
2

þ cos 2u
� �

þ a2

r
[1þ (1þ k) cos 2u]� a4

r3
cos 2u

� �
(7:41)

and the displacement in the tangent direction can be calculated using

uu ¼ p
4m

(1� k)
a2

r
� r � a4

r3

� �
sin 2u (7:42)

where

m ¼ E
2(1þ n)

k ¼
3� 4n plane strain
3� n

1þ n
plane stress

8<
: (7:43)

The normal stress in the x-direction can be obtained using

sx(x, y) ¼ p 1� a2

r2
3
2
cos 2uþ cos 4u

� �
þ 3a4

2r 4
cos 4u

� �
(7:44)

The normal stress in the y-direction is

sy(x, y) ¼ � a2p
r2

1
2
cos 2u� cos 4u

� �
� 3a4

2r4
cos 4us (7:45)

and the shear stress is given by

sxy(x, y) ¼ � a2p
r2

1
2
sin 2uþ sin 4u

� �
þ 3a4

2r4
sin 4us (7:46)
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FIGURE 7.10
Square panel with a hole subjected to a tensile load in the horizontal direction. (a) Problem setting; (b) a quarter
model.
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where (r, u) are the polar coordinates and u is measured counterclockwise from the positive x axis.
When the condition b=a¼ 5 is satisfied, the solution of a finite square panel should be very close
to that of an infinite 2D solid. Therefore, the analytical results given in Equations 7.44 through 7.46
are employed as the reference results for comparison.
A total of 165 nodes are used to represent the domain. The stress components sxx obtained at

x¼ 0 for as¼ 3.0 are compared with the exact solution in Figure 7.11. Two types of cells of nc¼ 1
and nc¼ 2 are used. Figure 7.11 shows that finer cells (nc¼ 2) give a more accurate result than
coarse cells (nc¼ 1). The results suggest again the importance of subdivision in the local quadra-
ture domain. Figure 7.12 plots the results for different sizes of support domain aQ, which implies a
stable result with different aQ.

Example 7.5: Half-Plane Problem

Stress analysis is carried out for a half plane of elastic solid subjected to a concentrated force, as
shown in Figure 7.13. The results are compared with those obtained using the finite element
method (FEM) at the section S–S0 for the same distribution of nodes. We present the results of
comparison only for stress, as it is much more critical than displacement. Figure 7.14 shows the
distribution of the normal stress sx and the shear stress txy along section S–S0. The results are
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FIGURE 7.11
Comparison between the exact solution and
MLPG with MLS approximation for sxx at x¼ 0
(as¼ 3.5, aQ¼ 3.0).
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FIGURE 7.12
Comparison between the exact solution and
MLPG with MLS approximation for sxx at x¼ 0
(N¼ 165, as¼ 3.5, nc¼ 2).
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obtained using different integral cells nc and for given aQ¼ 1.5. Table 7.3 lists the normal
stress at point A compared with those obtained using FEM. The results indicate that a sufficiently
large dimension of quadrature domain together with a corresponding sufficient number of
subdivisions of the quadrature domain for integration is necessary to obtain an accurate
solution. Subdivision of the quadrature domain, however, leads to additional computation work.

FIGURE 7.13
Half plane of elastic solid subjected to a vertical
concentrated force P.
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FIGURE 7.14
Stress distribution at section of S�S0 (aQ¼ 1.5).

TABLE 7.3

Comparison of Normal Stress at Point A with FEM
Result (¼ 35.4)

Number of
Subdivision of
Quadrature Domain

Dimension of
Quadrature Domain (aQ)

1.0 2.0 3.0

1� 1 46.0 — —

2� 2 44.1 36.7 —

4� 4 44.2 36.7 35.7
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An acceptable combination of the number of subdivisions and the dimension of the quadrature
domain is quite complicated, not very clear at this stage, and needs to be further investigated.
The above examples seem to suggest that four subdivisions (nc¼ 2) work well for rectangular
quadrature domains of aQ¼ 2.0. It has been found for these examples that nc¼aQ seems to be
a necessary condition to obtain a reasonably accurate result. Because we find no reason to use a
quadrature domain larger than aQ¼ 2.0, four subdivisions should be a good and economic choice
for normal cases. If, for any reason, a large quadrature domain has to be used, our suggestion
would be

nc ¼ round-up-to-the-nearest-even-number (aQ) (7:47)

7.2 MLPG for Dynamic Problems

7.2.1 Statement of the Problem

Vibration analysis for structures is a very important field in computational mechanics. These
dynamics problems are classically described by a linear partial differential equation associated
with a set of boundary conditions and initial conditions. Exact analyses of these types of
boundary and initial value problems are usually very difficult. Analytical solutions are
available for very few problems with very simple geometry and boundary and initial condi-
tions. Therefore, numerical techniques with different discretization schemes, such as FEM,
have been widely used in solving practical vibration problems in science and engineering.

Examples presented in previous sections have demonstrated that the MLPG method
works well for static mechanics problems. It is, therefore, a natural extension to develop
further MLPG for dynamic mechanics problems of 2D solids for both free-vibration and
forced-vibration analyses [16].

This section introduces their formulation. First, the local weak forms are presented using
the weighted residual method locally and the strong form of partial differential dynamic
system equations. MLS approximation is used to obtain theMLS shape functions, which are
fed to the local Petrov–Galerkin formulation to derive a set of discretized dynamic system
equations. In free-vibration analysis, the essential boundary conditions are formulated
separately using the method of direct interpolation. The boundary conditions are then
imposed utilizing orthogonal transform techniques tomodify the discretized unconstrained
dynamic system equations to obtain the eigenvalue equation. Frequencies and eigenmodes
of free vibration are obtained by solving the eigenvalue equation. In forced-vibration analy-
sis, the penalty method is used to implement the essential conditions. Both the explicit time
integration method (the central difference method [CDM]) and the implicit time integration
method (the Newmark method) are used to solve the forced vibration system equations.

Programs of the MLPG method have been developed, and a number of numerical
examples of free-vibration and forced-vibration analyses are presented to demonstrate
the convergence, validity, and efficiency of the present methods. Some important param-
eters on the performance of the present MLPG method are also investigated in great detail.

The strong form of the initial=boundary value problem for small displacement elasto-
dynamics can be given as follows (see Chapter 3):

sij,j þ bi ¼ r€ui þ hc _ui (7:48)
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where
r is the mass density
hc is the damping coefficient
ui is the displacement
€ui ¼ q2ui=qt2 is the acceleration
_ui ¼ qui=qt is the velocity
sij is the stress tensor
bi is the body force tensor
(),j denotes the operation of q=qxj

The auxiliary conditions are given as follows:

Naural boundary condition: sijnj ¼ tGi on Gt (7:49)

Essential boundary condition: ui ¼ uGi on Gu (7:50)

Displacement initial condition: ui(x, t0) ¼ ~ui(x) x 2 V (7:51)

Velocity initial condition: _ui(x, t0) ¼ ~_ui(x) x 2 V (7:52)

in which the uGi, tGi, ~u0, and ~_ui denote the prescribed displacements, tractions, initial
displacements, and velocities, respectively. Note that the differences between the dynamic
system equations for static and dynamic problems are (1) the inertial and damping terms in
the equilibrium equations and (2) the additional equations of initial conditions.

7.2.2 Free-Vibration Analysis

The governing equation for an undamped free vibration can be written as follows:

sij,j ¼ m€u (7:53)

The boundary condition for the free vibration is reduced to only the essential boundary
condition, Equation 7.50. In free-vibration analysis, the system is assumed to undergo
harmonic motion, and the displacement u(x, t) can be written in the form:

u(x, t) ¼ u(x) sin(vtþ w) (7:54)

where v is the frequency of free vibration. Substituting Equation 7.54 into Equation 7.53
leads to the following equations of equilibrium for free vibration:

sij,j þ v2rui ¼ 0 (7:55)

It should be noted that the stresses, s, and displacements, u, in Equation 7.55 are only
functions of coordinate x for a given frequency v.

A local weak form of Equation 7.55, over a local quadrature domain VQ bounded by GQ,
can be obtained using the weighted residual method with integration over VQ for a node in
the problem domain.

ð
VQ

W
_

sij,j þ v2rui
� �

dV ¼ 0 (7:56)
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where W
_

is the weight (or test) function, and here we use the same weight function for all
the equations and nodes.

The first term on the left-hand side of Equation 7.56 can be integrated by parts to become

ð
GQ

W
_

sijnjdG�
ð
VQ

W
_

,jsij �W
_

v2mui
	 


dV ¼ 0 (7:57)

The choice of VQ is the same as that discussed in Section 7.1.2 for static problems. As
shown in Figure 7.1, the boundary GQ for the support domain VQ is usually composed of
three parts: the internal boundary GQ0 and the boundaries GQu and GQt, over which the
essential and natural boundary conditions are specified. Imposing the natural boundary
condition and noting that sijnj ¼ qu=qn � ti in Equation 7.57, and the fact that W

_

(x) ¼ 0 on
GQ0, we obtain

ð
GQu

W
_

tidGþ
ð
GQt

W
_

tGidG�
ð
VQ

W
_

,jsij �W
_

v2mui
	 


dV ¼ 0 (7:58)

For a support domain located entirely within the global domain, there is no intersection
between GQ and the global boundary G, and GQ0¼GQ. This leads to the vanishing of
integrals over GQu and GQt. Also note that for free vibration, we should have tGi¼ 0 on Gt;
the integrals over GQt vanish for all nodes in the free-vibration analysis. Equation 7.58 can
be further expressed as follows. For nodes whose support domains do not intersect with
the problem boundary:

ð
VQ

W
_

,jsij �W
_

v2rui
	 


dV ¼ 0 (7:59)

For nodes whose support domains intersect with the problem boundary:

ð
GQu

W
_

tidG�
ð
VQ

W
_

,jsij �W
_

v2rui
	 


dV ¼ 0 (7:60)

MLS approximation (Equation 7.8) is then used to approximate the field variables at any
point in the support domain Vs of a node. Substituting Equation 7.8 and a weight function
into the local weak form Equation 7.59 or 7.60 for each and every node in the problem
domain leads to the following discrete system equations. The procedure is exactly the same
as in Section 7.2.1, except that the inertial term needs to be treated, which leads to

KU� v2MU ¼ 0 (7:61)

where the global stiffness matrix K is assembled using the nodal stiffness matrix KIJ. For
nodes whose quadrature domains intersect with the problem boundary, we have

KIJ ¼
ð
VQ

V
_ T

I cBJdV�
ð
GQu

W
_

ILT
ncBJdG (7:62)
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where V
_

I, BI, W
_

I, and Ln are defined, respectively, by Equations 7.12, 7.14, 7.15, and 7.17.
For nodes whose quadrature domains do not intersect with the problem boundary, the
nodal stiffness matrix is simplified as

KIJ ¼
ð
VQ

V
_ T

I cBJdV (7:63)

The ‘‘mass’’ matrix M is obtained using

MIJ ¼
ð
VQ

rW
_

IFJdV (7:64)

where FJ is a matrix of the MLS shape function for node J, given by Equation 7.9.
For free-vibration analysis, Equation 7.61 can also be written in the following form of

eigenvalue equation:

(K� lM)q ¼ 0 (7:65)

where
q is the eigenvector
l is termed an eigenvalue that relates to the natural frequency in the form

l ¼ v2 (7:66)

Equation 7.65 is the unconstrained eigenvalue equation that contains the rigid move-
ment of the solid. To determine the frequencies, v, and free-vibration modes for a con-
strained system, it is necessary to impose the essential boundary condition defined by
Equation 7.50.

7.2.3 Imposition of Essential Boundary Conditions for Free Vibrations

In theMLPGmethod that usesMLS shape functions, special effort has to bemade to enforce
essential boundary conditions for dynamic problems, because the shape functions con-
structed by MLS approximation lack the delta function property. In previous sections we
have shown the penalty method [9] and the direct collocation method [13] for problems of
static stress analyses. Here, we introduce themethod using orthogonal transform techniques
[11,12,18,19] to establish a system equation of constrained free vibration.

Note the fact that for free-vibration analysis, the essential boundary conditions are
always homogeneous, meaning that uGi¼ 0 in Equation 7.50. Substituting Equation 7.8
into Equation 7.50, we find a set of algebraic linear equations of constraints

Cq ¼ 0 (7:67)

where C is a flat matrix of nc�Nt with many zero elements, nc is the total number of
constrained degrees of freedom, Nt is the total number of degrees of freedom of the entire
system, and nr is the rank of C, namely, the number of independent constraints. If the
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domain is represented by Nn nodes, Nt¼ 2Nn for 2D solid mechanics problems. Using
singular value decomposition [20], matrix C can be decomposed as

C ¼ Unc�nc
snr�nr 0

0 0

� �
nc�Nt

VT
Nt�Nt

(7:68)

where
U and V are orthogonal matrices
S is a diagonal matrix with singular values of C for its diagonal terms

The matrix V can be written as

VT ¼ VNt�nr ,VNt�(Nt�nr)
� �T (7:69)

Performing coordinate transformation of

q ¼ VNt�(Nt�nr)~q (7:70)

the change of coordinates satisfies the constraint equation of Equation 7.67. Substituting
Equation 7.71 into Equation 7.65 leads to

(~K� v2 ~M)~q ¼ 0 (7:71)

where the condensed stiffness matrix ~K given by

~K(Nt�nr)�(Nt�nr) ¼ VT
(Nt�nr)�Nt

KNt�NtVNt�(Nt�nr) (7:72)

and the condensed stiffness mass matrix ~M becomes

~M(Nt�nr)�(Nt�nr) ¼ VT
(Nt�nr)�Nt

MNt�NtVNt�(Nt�nr) (7:73)

Equation 7.72 is the eigenvalue equation for free vibration of a constrained solid.
It can be easily seen that the stiffness matrix K and the mass matrix M developed using

the Petrov–Galerkin approach will be asymmetric. They will be banded as long as the
support domain is compact.

A numerical integration is needed to evaluate the integration for computing both the
stiffness and mass matrices, and Gauss quadrature can be used. Here we investigate also
the effects of the dimensions of three local domains shown in Figure 7.2. In computing the
stiffness matrix, it should be noted that for nodes whose quadrature domain intersects with
the boundary of the problem domain, Equation 7.62 should be used. For interior nodes
whose quadrature domains do not intersect with the boundary of the problem domain,
Equation 7.63 should be used. In computing the mass matrix, Equation 7.64 is used for all
the nodes.

Because the problem domains in the following examples are rectangles, rectangular local
domains defined in Section 7.1.5 are used.
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7.2.4 Numerical Examples

The MLPG method is used for free-vibration analysis of structures made of 2D solids.

Example 7.6: Rectangular Cantilever

The MLPG method is applied to analyze the free vibration of a rectangular cantilever, as shown in
Figure 6.4. A plane stress problem is considered. The parameters for this example are as follows:

Young’s modulus for the material: E¼ 2.1� 104 kgf=mm2

Poisson’s ratio for two materials: n¼ 0.3

Mass density: r¼ 8.0� 10�10 kgfs2=mm4

Thickness of the cantilever: t¼ 1 mm

Height of the cantilever: D¼ 10 mm

Length of the cantilever: L¼ 100 mm

The problem has been analyzed in [21] using the node-by-node meshless (NBNM) method. The
cantilever is first represented using a number of field nodes. Figure 7.15 shows two kinds of nodal
arrangements: coarse (63 nodes) and fine (306 nodes). The effects of dimensions of the quadrature
domain are investigated using different aQ defined in Equations 7.30 and 7.31. It has been found
that aQ¼ 1.5 to 2.5 can yield almost identical results in free-vibration analysis. This finding agrees
well with that for static analyses presented in the previous section. From the static problems, we
found that the quadrature domain used should be as small as possible, to reduce the burden in
numerical integration. Therefore, aQ¼ 1.5 is used in the following free-vibration analysis.
Frequency results of these two nodal arrangements obtained by MLPG are listed in Table 7.4.

The results obtained by the FEM software ABAQUS and the NBNM method [21] are also listed in
the table. The mesh used in the FEM mode has the same nodal arrangement. From this table, one
can observe that the results by the present MLPG method are in a good agreement with those
obtained using FEM and the NBNM method. The convergence of the present method is also
demonstrated in this table. As the number of nodes increases, results obtained by the present
MLPG approach the FEM results (if we consider the FEM results as a reference). The lowest 10
vibration modes obtained by the MLPG method are plotted in Figure 7.16. Comparison of the FEM
results with [21] results reveals that they are almost identical.
For cantilevers with small slenderness ratios, the Euler–Bernoulli beam theory can be applied to

obtain an analytical solution for their natural frequencies. The slenderness of a cantilever is
expressed by the slenderness ratio, r=L, where r ¼ ffiffiffiffiffiffiffi

I=A
p

is the radius of gyration of the cross
section, I is the moment of inertia of the cross section of the cantilever, and L is the length of the
cantilever. To further benchmark the MLPG code developed, cantilevers with two slenderness
ratios, r=L¼ 0.029 (L¼ 100, D¼ 10, t¼ 1.0) and 0.144 (L¼ 100, D¼ 50, t¼ 1.0), are analyzed.

FIGURE 7.15
Nodal arrangement: (a) 63 nodes; (b) 306
nodes. (From Gu, Y.T. and Liu, G.R.,
Comput. Mech., 27, 188, 2001. With
permission.)

(a)

(b)

260 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



The frequency results are listed in Table 7.5. For a cantilever of small slenderness ratio, one
expects a very good prediction from the Euler–Bernoulli beam theory. Comparison with the Euler–
Bernoulli beam results reveals that, as the slenderness ratio r=L decreases, the natural frequencies
of this 2D cantilever approach the values for an Euler–Bernoulli model. For the slender case of
r=L¼ 0.029, the Euler–Bernoulli solution can be considered very close to the exact solution, and
should be used as the reference. Table 7.5 shows that MLPG gives more accurate results

TABLE 7.4

Natural Frequencies (Hz) of a Rectangular Cantilever Computed Using Meshfree
and FEM Models with Different Nodes (aQ¼ 1.5, as¼ 3.5 for MLPG)

Coarse Model (63 Nodes) Fine Model (306 Nodes)

Mode MLPG [21] FEM (ABAQUS) MLPG [21] FEM (ABAQUS)

1 919.47 926.10 870 824.44 844.19 830
2 5,732.42 5,484.11 5,199 5070.32 5,051.21 4979

3 12,983.25 12,831.88 12,830 12,894.73 12,827.60 12,826

4 14,808.64 14,201.32 13,640 13,188.12 13,258.21 13,111

5 26,681.81 25,290.04 24,685 24,044.43 23,992.82 23,818

6 38,961.74 37,350.18 37,477 36,596.15 36,432.15 36,308

7 40,216.58 38,320.59 38,378 38,723.90 38,436.43 38,436

8 55,060.24 50,818.64 51,322 50,389.01 49,937.19 49,958

9 64,738.59 63,283.70 63,584 64,413.89 63,901.16 63,917
10 68,681.87 63,994.48 65,731 64,937.83 64,085.90 64,348

Source: Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.

Mode 1

Mode 3

Mode 5

Mode 7

Mode 9 

Mode 2

Mode 4

Mode 6

Mode 8

Mode 10

FIGURE 7.16
The lowest 10 vibration modes of the
rectangular cantilever. (From Gu, Y.T.
and Liu, G.R., Comput. Mech., 27, 188,
2001. With permission.)
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compared with finite element results. It is well known that the fundamental (first) frequency of a
2D solid obtained by FEM should be larger than the exact value, meaning that the FEM results
always give the upper bound of the exact results in terms of eigenvalues, and approach the exact
results from the top. The MLPG result, however, does not guarantee an upper-bound solution.
It approaches the exact solution from both sides. This is caused by the use of the local residual
weak formulation.

Example 7.7: Cantilever with Variable Cross Section

In this example, the present MLPG method is used in the free-vibration analysis of a cantilever
with varying cross section, as shown in Figure 7.17. Results are obtained for the following
parameters:

Young’s modulus for the material: E¼ 3.0� 107 N=m2

Poisson’s ratio for two materials: n¼ 0.3

Mass density: r¼ 1 kg=m3

Thickness of the cantilever: t¼ 1 m

Length of the cantilever: L¼ 10 m

Height of the cantilever: D(0)¼ 5 m and D(10)¼ 3 m

TABLE 7.5

Natural Frequencies (Hz) of a Rectangular Cantilever with Different Slenderness

r=L ¼ 0.144 r=L ¼ 0.029

Modes MLPG FEM (ABAQUS) Euler Beam MLPG FEM (ABAQUS) Euler Beam

1 3,565.81 3,546.1 4,138.23 824.44 830.19 827.65

Error with
Euler beam (%)

�13.83 �14.31 — �0.39 0.31 —

2 13,025.06 12,864 25,933.86 5070.32 4979 5186.77

Error with
Euler beam (%)

18.56 20.6 — �2.24 �4.01 —

Source: Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.
Note: 306 nodes are used in MLPG and FEM; aQ¼ 1.5, ns¼ 3.5 are used for MLPG.

FIGURE 7.17
Cantilever of varying cross section. (From
Gu, Y.T. and Liu, G.R., Comput. Mech., 27,
188, 2001. With permission.)

x

y

L 
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The nodal arrangement is shown in Figure 7.17. Results obtained by the MLPG method and the
FEM software ABAQUS are listed in Table 7.6 for comparison. Results obtained by these two
methods are in a very good agreement.

Example 7.8: Shear Wall

MLPG is employed for free-vibration analysis of a shear wall with four openings, as shown in
Figure 7.18. The shear wall is fully clamped on the bottom, and all the rest of the boundaries are
free of external forces. The problem is considered a plane stress problem and a unit thickness is
used. This problem has been studied using the boundary element method (BEM) by some
researchers [23] with parameters of E¼ 1000, n¼ 0.2, and r¼ 1.0. A total of 574 nodes are
used to represent the problem domain shown in Figure 7.18. The problem is analyzed using
MLPG and compared with the BEM and the FEM software ABAQUS. The natural frequencies of
the lowest eight vibration modes are summarized and listed in Table 7.7. Results obtained by BEM
and FEM are listed in the same table. Results obtained by the MLPG method are in a very good
agreement with those obtained using BEM and FEM.

TABLE 7.6

Natural Frequencies of the Cantilever of Varying Cross Section
(aQ¼ 1.5, as¼ 3.5 for MLPG)

v (rad=s)

Modes 1 2 3 4 5

MLPG method 263.21 923.03 953.45 1855.14 2589.78
FEM (ABAQUS) 262.09 918.93 951.86 1850.92 2578.63

Source: Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.

3.0 3.0 4.8

3.0
1.8

1.8
3.0

1.8
1.8

3.0
3.0

FIGURE 7.18
Shear wall with four openings (dimensions: m). (From
Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001.
With permission.)
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7.2.5 Forced-Vibration Analysis

The strong form of governing equation for forced vibration of 2D solids is given by
Equation 7.48. The boundary conditions and initial conditions are given in Equations
7.49 through 7.52. The penalty method is used to enforce the essential boundary condi-
tions. A local weak form of the partial differential Equation 7.48, over a local quadrature
domain VQ bounded by GQ, can be obtained using the weighted residual method locally

ð
VQ

W
_

(sij,j þ bi �m€ui � hc _ui)dV� a

ð
GQu

W
_

(ui � uGi)dG ¼ 0 (7:74)

The first term on the left-hand side of Equation 7.75 can be integrated by parts. Using the
natural boundary condition defined by Equation 7.49, we obtain

ð
VQ

(W
_

m€uiþW
_

hc _uiþW
_

,jsij)dx�
ð
GQu

W
_

tidGþa

ð
GQu

W
_

uidG¼
ð
GQt

W
_

tGidGþa

ð
GQu

W
_

uGidGþ
ð
VQ

W
_

bidV

(7:75)

In the forced-vibration analysis, u is a function of both the spatial coordinates and time.
MLS approximation over the spatial domain is performed, and Equation 7.8 is rewritten as

uh(x, t) ¼
Xn
I

FI(x)uI(t) (7:76)

Substituting Equation 7.77 into the local weak form Equation 7.76 for all nodes leads to the
following set of discrete equations:

M€U(t)þ C _U(t)þKU(t) ¼ F(t) (7:77)

TABLE 7.7

Natural Frequencies of a Shear Wall (aQ¼ 1.5, as¼ 3.5 for MLPG)

v (rad=s)

Mode MLPG Method FEM (ABAQUS) BEM [23]

1 2.069 2.073 2.079

2 7.154 7.096 7.181

3 7.742 7.625 7.644

4 12.163 11.938 11.833

5 15.587 15.341 15.947

6 18.731 18.345 18.644

7 20.573 19.876 20.268
8 23.081 22.210 22.765

Source: Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.
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where the global mass matrix M is given by Equation 7.64. The global stiffness matrix K is
obtained by assembling the nodal stiffness matrix defined by

KIJ ¼
ð
VQ

V
_ T
I cBJdV�

ð
GQu

W
_

ILT
ncBJdGþ a

ð
GQu

W
_

IFJdG (7:78)

where V
_

I, BI, W
_

I and LT
n are defined, respectively, by Equations 7.12, 7.14, 7.15, and 7.17

and FI is a matrix of the MLS shape function for node I given by Equation 7.9.
The damping matrix C is obtained using

CIJ ¼
ð
VQ

hcW
_

IFJdV (7:79)

and the force vector f is defined as

fI(t) ¼
ð
GQt

W
_

ItG(t)dGþ a

ð
GQu

W
_

IuGdGþ
ð
VQ

W
_

Ib(t)dV (7:80)

Again, Equation 7.78 will be reduced to Equation 7.63 for interior nodes whose boundary
of quadrature domain does not intersect with the essential boundary.

7.2.6 Direct Analysis of Forced Vibrations

The procedure of solving the discrete dynamic equation (Equation 7.78) is very much the
same as that in standard FEM. There are two major approaches to solve Equation 7.78. One
is the modal analysis approach, in which the natural frequencies and the vibration modes
obtained in Section 7.2.2 are used to transform Equation 7.78 into a set of decoupled
differential equations of second order with respect to time. These second-order differential
equations can then be solved simply using the standard approach. The second approach is
the methods of direct integration operating on Equation 7.78. The direct integration
methods are utilized in this section. Several direct integration methods have been devel-
oped to solve the dynamic equation set similar to Equation 7.78, such as CDM and the
Newmark method (see, e.g., [24,25]). Both the central difference and the Newmark
methods are introduced here in a concise and easy-to-understand manner.

7.2.6.1 The Central Difference Method

The CDM consists of expressing the velocity and acceleration at time t in terms of the
displacement at time t�Dt, t, and tþDt using central finite difference formulation:

€u(t) ¼ 1
Dt2

(u(t� Dt)� 2u(t)þ u(tþ Dt)) (7:81)

_u(t) ¼ 1
2Dt

(�u(t� Dt)þ u(tþ Dt)) (7:82)

where Dt is a time step. The response at time tþDt is obtained by evaluating the equation
of motion at time t. CDM is, therefore, an explicit method and is widely used in finite
element packages for transient analysis.
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CDM is conditionally stable, meaning that the solution is stable when the time step is
sufficiently small. In FEM, the critical time step is calculated based on the size of the
smallest element. The principle to be followed in calculating the critical time step is that
the critical time should be smaller than the time the fastest wave propagates across the
element. In the meshfree method, there is no element, and there is a need for a new formula
to compute the critical time. The critical time step for CDM can be obtained from the
maximum frequencies based on the dispersion relation [22]:

Dtcrit ¼ max
i

2
vi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2i þ 1

q
� ji

� �
(7:83)

where
vi is the frequency
ji is the fraction of critical damping in this mode

For nonuniform arrangements of the nodes, the critical time step can be obtained by the
eigenvalue inequality. The formula is

Dtcrit ¼ min
2

(maxQ lQmax)
1=2 (7:84)

where lQmax is the maximum eigenvalue at the quadrature point xQ. The value of lQmax
depends on the size of local integration cells and the size of the interpolation domain.

7.2.6.2 The Newmark Method

The Newmark method is a generalization of the linear acceleration method. This latter
method assumes that the acceleration varies linearly within the time interval of (t, tþDt).
This gives

€u ¼ €ut þ 1
Dt

(€utþDt � €ut)t (7:85)

where 0 � t � Dt, and

_utþDt ¼ _ut þ [(1� d)€ut þ d€utþDt]Dt (7:86)

utþDt ¼ ut þ _uDtþ 1
2
� b

� �
€ut þ b€utþDt

� �
Dt2 (7:87)

The response at time tþDt is obtained by evaluating the equation of motion at time tþDt.
The Newmark method is, therefore, an implicit method.

The Newmark method is unconditionally stable, meaning that the solution will always
be stable regardless of the time step used, provided

d � 0:5 and b � 1
4
(dþ 0:5)2 (7:88)

It has been found that d¼ 0.5 and b¼ 0.25 lead to acceptable results for most problems.
Therefore, d¼ 0.5 and b¼ 0.25 are always used in this section for all the example problems.
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Note that although the Newmark method is unconditionally stable and any time step used
will produce stable results, the accuracy of the results is not guaranteed. A sufficiently
small time step still must be used for accurate results.

7.2.7 Numerical Examples

Example 7.9: Rectangular Cantilever

For forced-vibration analysis, a rectangular cantilever shown in Figure 6.4 is first examined using
MLPG for benchmarking purposes. A plane stress problem is considered, and a unit thickness is
used. The parameters used for this example are as follows:

Young’s modulus for the material: E¼ 3.0¼ 107 N=m2

Poisson’s ratio for two materials: n¼ 0.3

Mass density: r¼ 1 kg=m3

Length of the cantilever: L¼ 48 m

Height of the cantilever: D¼ 12 m

External excitation load: P¼�1000g(t)

where g(t) is a function of time. The external force is applied downward and distributed in a
parabolic fashion at the right end of the cantilever. A total of 55 uniformly distributed nodes are
used, as shown in Figure 7.19, to represent the problem domain. Displacements and stresses for all
nodes are obtained. Detailed results of vertical displacement, uy, on the middle node, A, of the free
end of the cantilever are presented. For comparison, solutions for this problem are also obtained
using the finite element software ABAQUS Explicit.

y

x

P = 1000g (t)
L = 48

D
=

12 A

FIGURE 7.19
Configuration and nodal arrangement for the rectangular cantilever fixed at the left end and subjected
to a dynamic force at the right end of the cantilever. (From Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001.
With permission.)
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Example 7.9a: Simple Harmonic Loading

Consider first an external load of sinusoidal time function, i.e.,

g(t) ¼ sin(vf t) (7:89)

where vf is the frequency of the dynamic load, and vf ¼ 27 is used in this example. First, the
effects of dimension parameter aQ of the quadrature domain on the performance of the method for
dynamic problems are investigated. Using Equation 7.85, the critical time is calculated to have
Dtcrit 	 1� 10�3.
The results of aQ¼ 0.5, 1.0, 1.5, and 2.0 are computed using the MLPG code. The displace-

ments uy at point A are plotted in Figures 7.20 and 7.21. These figures show that the results will be
unstable for both CDM and the Newmark method when aQ � 1.0. Increasing aQ is crucial to
improve the accuracy and the stability for both CDM and the Newmark method. However, if the
quadrature domain is too large, more subcells are needed to obtain accurate integrations, which
will be computationally more expensive. Our study has found that aQ ¼ 1.5–2.5 works for most
problems of transient analyses. This finding is the same as that found for static and free-vibration
analyses. In the following transient analyses aQ¼ 1.5 is employed.

To investigate the property of two different direct time integration methods, CDM and
the Newmark method, results of different time steps are obtained and plotted in Figure
7.22. It can be found that for Dt¼ 1� 10�4 both methods obtain results in a very good
agreement with FEM. When Dt>Dtcrit (Dtcrit 	 1� 10�3 according to Equation 7.85), the
results obtained using CDM becomes unstable. However, the Newmark method is always
stable for any time step used. It has been confirmed numerically that CDM is a conditionally
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FIGURE 7.20
Displacement in the y-direction at point A using CDM (g(t)¼ sin(vt)). Results are unstable when aQ � 1.0. (From
Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.)
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stable method and that the Newmark method is an unconditionally stable method.
A larger time step can be used in the Newmark method. A time step as large as Dt¼
1� 10�2 has been used, and very good results have been obtained using the Newmark
method. However, it should be noted that the computational error would increase with the
increase of time step in the Newmark method. For this example, it was found that the
accuracy of the Newmark method would become unacceptable when the time step is too
large, such as Dt¼ 5� 10�2.

Many time steps are calculated to check the stability of the presented MLPG formulation.
The Newmark method with Dt¼ 5� 10�3 is used, and the damping coefficient, c¼ 0.4, is
considered. Results for up to 20 s (about 100 natural vibration periods) are plotted in Figure
7.23. It can be found that a very stable result is obtained. After a long period of time, the
forced vibration under the action of the sinusoidal dynamic loading becomes a steady
sinusoidal vibration with the frequency of the external excitation vf. From the vibration
theory [24], a resonance will occur when vf ¼vi, where vi is the ith natural frequency.
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FIGURE 7.21
Displacement in the y-direction at point
A using the Newmark method (d¼ 0.5
and b¼ 0.25, with g(t)¼ sin(vt)). Results
are unstable when aQ � 1.0. (From Gu,
Y.T. and Liu, G.R., Comput. Mech., 27,
188, 2001. With permission.)
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FIGURE 7.22
Displacement in the y-direction at the
point A (g(t)¼ sin(vt)). (From Gu, Y.T.
and Liu, G.R., Comput. Mech., 27, 188,
2001. With permission.)
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Figure 7.23 shows that the amplitude of vibration is very large (i.e., about 15 times the
static displacement) because vf 	 vi. In addition, a beat vibration with the period Tb occurs
when vf 	 v1. Tb can be obtained from Figure 7.23 as Tb 	 4.3. From vibration theory,
T¼ 2=jvf – v1j, the first natural frequency of the system can be found as v1¼ 28.3, which is
nearly the same as the result obtained in the free-vibration analysis by FEM, vFEM

1 ¼ 28.

Example 7.9b: Transient Loading

The transient response of a cantilever subjected to a suddenly loaded and suddenly vanished force
P¼ 1000g(t) is considered. The time function g(t) is shown in Figure 7.24. The present MLPG
method is used to obtain the transient response with and without damping. The Newmark method
is utilized in this analysis. The result for a damping coefficient of hc¼ 0 is plotted in Figure 7.25.
For comparison, the result obtained by the finite element software ABAQUS=Explicit is shown in
the same figure. Results obtained by the present MLPG method are in a very good agreement with
those obtained using FEM. Many time steps are calculated to check the stability of the presented
MLPG formulation. The result for a damping coefficient hc¼ 0.4 is plotted in Figure 7.26; which
shows that the response declines with time because of damping. A very stable result is again
obtained.

FIGURE 7.23
Displacement in the y-direction at point
A (g(t)¼ sin(vt)). (From Gu, Y.T. and Liu,
G.R., Comput. Mech., 27, 188, 2001. With
permission.)
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FIGURE 7.24
Rectangular pulse as the time function of the external
force g(t). (From Gu, Y.T. and Liu, G.R., Comput. Mech.,
27, 188, 2001. With permission.)
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FIGURE 7.25
Transient displacement in the y-direction at point A using the Newmark method (d¼ 0.5 and b¼ 0.25, �hc is the
damping coefficient). (From Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.)
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FIGURE 7.26
Transient displacement in the y-direction at point A using the Newmark method (d¼ 0.5 and b¼ 0.25, �hc is the
damping coefficient). (From Gu, Y.T. and Liu, G.R., Comput. Mech., 27, 188, 2001. With permission.)
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7.3 Concluding Remarks

MLPG formulations for static, free-vibration, and forced-vibration analyses of 2D solids
have been presented in this chapter. Some important parameters affecting the performance
of the method have been investigated; the important findings are summarized as follows:

1. MLPG works well for static and dynamic analysis of 2D solids.

2. The dimension of the quadrature domain is very important to the accuracy as well
as the stability of the results. Larger aQ will in general give more accurate and
stable results, if the numerical integration can be carried out accurately. However,
too large an aQ often leads to difficulties in accurate numerical integration.
A choice of aQ¼ 1.5 to 2.5 works for most problems, and aQ¼ 1.5 is recommended
as an economic choice.

3. The dimension parameter of the support domain is also very important to the
accuracy as well as the stability of the results. A choice of as¼ 2.5 to 3.5 is good for
most problems.

4. For the numerical integration in the quadrature domain, four subdivisions (2� 2)
works well for rectangular quadrature domains of aQ¼ 2.0.

5. MLPG is not as efficient as FEM in terms of computation time, because the system
matrices produced are symmetric. For governing equations of symmetric oper-
ators, the Galerkin type of weak forms is clearly preferred. The process of com-
puting the MLS shape functions and their derivatives is more expensive than the
FEM shape functions, which are usually given analytically. Improvement on these
two issues for MLPG is very important.

6. One of the difficulties in MLPG is the integration for nodes near the boundaries of
the problem domain, because the local quadrature domains for these nodes may
intersect with the global boundary of the problem domain and create local quad-
rature domains of complex geometry. One method for solving this problem might
be the use of a triangular mesh. We have also tried a simple trick, using very
small regular quadrature domains for these nodes so that the boundary of their
quadrature domains just touches but does not intersect with the global boundary.
This simple trick works for some problems we have studied; however, we also
found that the accuracy of the results for many problems could be affected by
using this trick.

TheMLPGmethod is one of thewidely usedmeshfreemethods. Improvements and advance-
ments have been made during the past years by many, especially by Atluri’s group. Readers
are referred to publications by Atluri and coworkers for the recent developments.
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8
Point Interpolation Methods

In Chapters 6 and 7, we introduced the element-free Galerkin (EFG) method and the
meshless local Petrov–Galerkin (MLPG) method. Both methods use moving least squares
(MLS) approximation for constructing shape functions, and hence they are accompanied
by issues related to essential boundary conditions. We also discussed a number of ways to
tackle these issues, which require extra efforts both in formulation and computation.

The point interpolation method (PIM) was proposed by Liu et al. [1–6] to replace MLS
approximation for creating shape functions in meshfree settings. The major advantages of
the PIM, as shown in Chapter 2, are the excellent accuracy in function fitting and the
Kronecker delta function property, which allows simple imposition of essential boundary
conditions as in the standard finite element method (FEM) (e.g., [51]). In the lengthy
process of developing PIM, the battle has been on two fronts. The first front was on how
to overcome the problem related to the singular moment matrix using local irregularly
distributed nodes. The second one was on how to create weak forms that can always
ensure stable and convergent solutions. On the first battle front, two significant advances
have been made over the past years, after multiple attempts. The first is the use of RPIM
shape functions allowing the use of virtually randomly distributed nodes [7]. The second
approach is to use T-Schemes to create polynomial or radial PIM shape functions efficiently
with a small number of local nodes selected, based on triangular cells.

The second battle is essentially the restoration of the conformability of the PIM methods
caused by the incompatibility of the PIM (or RPIM) shape functions. This incompatibility
problem has been a very difficult one to overcome, and lots of efforts have been made
during the past years. It is now well resolved by the use of weakened-weak (W2) formu-
lations based on the G space theory [27,28,62]: the generalized smoothed Galerkin
(GS-Galerkin) weak form, and the strain-constructed Galerkin (SC-Galerkin) weak forms.
The W2 formulations not only solves the compatibility problem effectively, but also offers a
variety of ways to implement PIM models with excellent properties (upper bound, lower
bound, superconvergence, free of locking, works well with triangular types of mesh, etc.).
This chapter details a number of PIMs based on W2 formulations for stress analysis of
solids. For convenience and easy reference, we list various PIM methods in Table 8.1.

8.1 Node-Based Smoothed Point Interpolation Method

The node-based smoothed point interpolation method (NS-PIM) is a typical GS-Galerkin
model based on the normed G space theory. Therefore, theories discussed in Chapter 3
related to G spaces apply. This section details the NS-PIM formulations for mechanics
problems for two-dimensional (2D) and three-dimensional (3D) solids, based on these
theories. We first focus our discussion on the 2D case because it is much easier to describe
and follow. We can then extend it to the 3D case by simply highlighting the differences
between 2D and 3D cases.
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The NS-PIM [3] was formulated using the PIM shape functions created with T-Schemes
(Chapter 1) and the GS-Galerkin weak form (Chapter 5) that allows discontinuous func-
tions. It was termed as linearly conforming PIM (LC-PIM) initially because it is at least
linearly conforming. We now term it as NS-PIM because the smoothing operation is nodal
based. It is more convenient for the presentation and in distinguishing from other models
of PIMs, many of which are linearly conforming but use different types of smoothing
domains for different properties.

NS-PIM possesses the following novel features: (1) the T-Schemes based on triangular
background cells are used for node selection, which overcomes the singular moment
matrix issue, and ensures the efficiency in computing PIM shape functions; (2) shape
functions generated using polynomial basis functions and simple interpolation ensure
that the PIM shape functions possesses at least linearly consistent and delta function
property, which facilitates easy implementation of essential boundary conditions; and (3)
the use of the weakened-weak form allows the use of incompatible displacement functions.
Due to these excellent features, the present NS-PIM is easy to implement, guarantees

TABLE 8.1

Versions of Point Interpolation Methods (Triangular Background Cells, T-Scheme)

Abbreviation Full Name Formulation Features

NS-PIM
(2D and 3D)

Node-based smoothed
point interpolation
method

GS-Galerkin Linearly conforming

Polynomial PIM shape functions Volumetric locking free

Smoothing operation based on nodes Upper bound

Superconvergence

NS-RPIM
(2D and 3D)

Node-based smoothed
radial point
interpolation method

GS-Galerkin Linearly conforming

RPIM shape functions Volumetric locking freea

Smoothing operation based on nodes Upper bound

Superconvergence

ES-PIM (2D) Edge-based (Face-
based) smoothed point
interpolation method

GS-Galerkin Linearly conforming

FS-PIM (3D) Polynomial PIM shape functions Ultra-accuracy

Smoothing operation based on the
edges (faces) of the cells

Very efficient

Superconvergence

ES-RPIM (2D) Edge-based (Face-
based) smoothed
radial point
interpolation method

GS-Galerkin Linearly conforming

FS-RPIM (3D) RPIM shape functions Ultra-accuracy
Smoothing operation based on the
edges (faces) of the cells

Superconvergence

CS-PIM (2D) Cell-based smoothed
point interpolation
method

GS-Galerkin
PIM shape functions
Smoothing operation based
on the cells or subdivided cells

Linearly conforming
Ultra-accuracy
Superconvergence

CS-RPIM (2D) Cell-based smoothed
point interpolation
method

GS-Galerkin
RPIM shape functions
Smoothing operation based
on the cells or subdivided cells

Linearly conforming
Ultra-accuracy
Superconvergence

SC-PIM (2D) Strain-constructed
point interpolation
method

SC-Galerkin Linearly conforming

SC-PIM (3D)a Polynomial PIM shape functions Ultra-accuracy

Strain construction based on cells
using (node- or edge-based)
smoothed strains

Lower and upper bounds

Superconvergence

a Yet to confirm or under development.
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stability and faster convergence, can produce upper-bound solution with respect to the
exact solution, and computationally as efficient as the FEM using the same mesh.

8.1.1 Domain Discretization and Node Selection

In a PIM, the problem domain is first represented by properly scattered points as in
any meshfree method. It is then discretized by triangulation detailed in Section 1.7.2
with Ne triangular background cells and Nn nodes. A group of field nodes can then be
selected for constructing shape functions based on cells, using T3-Scheme for linear
NS-PIM and T6=3-Scheme for quadratic NS-PIM.

The T3-Scheme is the simplest and leads to a linear NS-PIM that uses the same
shape functions as the FEM using linear triangular elements; however, all the other numer-
ical operations and the solution for NS-PIM-T3 will be very much different from that of
FEM-T3 even when the same mesh is used. The FEM-T3 is known to behave ‘‘overly stiff’’
and this produces a lower-bound solution (for ‘‘force-driving’’ problems). The NS-PIM
model is much ‘‘softer’’ than the FEM model and can produce an upper-bound solution.
The NS-PIM is often found ‘‘overly soft,’’which will be discussed in detail in the Section 8.2.
Once the nodes are selected, techniques detailed in Section 2.5 are then used to compute

the PIM shape functions. Note that in the NS-PIM formulation, the derivatives of the shape
functions are not required as will be shown in the formulation below.

8.1.2 Construction of Node-Based Smoothing Domains

On top of the triangular cells created via triangulation, the domain is divided into Ns

smoothing domains associated with nodes following the rules given in Section 3.3.1.
Each smoothing domain contains a node and covers portions of elements sharing the
node. In this case, Ns¼Nn, the number of the smoothing domain is the same as that of
the nodes. The basic rule in the construction is that the boundaries of Vs

i should not share
any finite portion of the interfaces of the triangular cells, if the assumed displacements are
incompatible there; they come across each other (sharing only points). The smoothing
domains are also used as quadrature cells for the integration, leading to a simple summa-
tion over the smoothing domains.

8.1.2.1 Equally Shared Smoothing Domain

In the NS-PIM, the GS-Galerkin weak form that allows incompatible assumed displacement
functions will be used to create the discretized system equations. In this section, we use the
so-called node-based equally shared smoothing domains created based on the triangular
type background cells, as shown in Figure 3.1. The problem domain V is divided into Ns

smoothing domains each of which contains one node, for exampleVs
i bounded by Gs

i contains
node i, as shown in Figure 8.1. The subdomain Vs

i is constructed by connecting sequentially
the mid-edge-point to the centroids of the triangles. The union of all Vs

i forms exactly V: no
overlap or gap is allowed. Because the area of a triangular cell is equally shared by its three
vertices and the length of the edge of a cell is also equally shared by the two vertices of the
edge, the smoothing domain created is termed as equally shared smoothing domain.

8.1.2.2 Voronoi Smoothing Domains

In the NS-PIM, we can also use an alternative node-based smoothing domain called
the Voronoi smoothing domain that was used in [10] for stabilizing the nodal integrated
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meshfree method. The Voronoi smoothing domain is constructed in the same manner
but using the standard algorithm for Voronoi diagram construction, which results in
smoothing domains of different shapes. A typical Voronoi smoothing domain is shown
in Figure 8.2. It is clear that the Voronoi smoothing domain is convex, and the equally
shared smoothing domain is generally not. Note whether or not the smoothing domain
being convex is immaterial, as the formulation of NS-PIM or node-based smoothed radial
point interpolation method (NS-RPIM) does not require the convexity. The author’s group
uses mainly the equally shared smoothing domain, but we will use the Voronoi smoothing
domain in Section 8.2, just to demonstrate this alternative.

The equally shared smoothing domain is preferred in NS-PIM because of the use of the
PIM shape functions that are constructed based on the triangular cells, especially when
linear interpolation is used one does not even need to construct the shape functions
explicitly; and the displacements at any point on Gs

n can be interpolated using nodal
displacements very easily by simple inspection. Therefore, the equally shared smoothing
domain is used in this book by default, unless specified otherwise.

FIGURE 8.1
An equally shared smoothing domainVs

i bounded by Gs
i

for node i.
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Voronoi smoothing domain in a 2D domain. (a) Voronoi smoothing domains, and (b) one Voronoi smoothing
domain.
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8.1.3 Formulation for the NS-PIM

Consider a 2D problem of solid mechanics in domain V bounded by G. The strong form of
system equation is given by Equations 6.1 through 6.3. Because PIM shape functions are
used, we use the following GS-Galerkin weak form that allows incompatible functions
(see Equation 5.130).

XNs

i¼1

As
i (d�«i)

Tc�«i �
ð
V

duTbdV�
ð
Gt

duTtdG ¼ 0 (8:1)

The stability and convergence of a GS-Galerkin model is proven in Chapter 5.
Note that the difference between Equations 8.1 and 6.67 is that in the former there is no

need for a term dealing with the essential boundary condition at Gu, because the PIM shape
function possesses the Kronecker delta function property. The condition of Equation 6.2
will be satisfied on the entire essential boundary in the form of prescribed nodal displace-
ments, which can be done by a simple procedure of row and column removal or some
other methods as in FEM. In our formulation, we assume that the prescribed displacements
in between two neighboring nodes are linear, which can be imposed precisely by perform-
ing linear interpolation on all the Gs

i segments that are on the essential boundary of the
problem domain.

Using PIM shape functions, fI, for all the nodes, the assumed displacement at any point x
in the problem domain can be expressed as

uh(x) ¼ u(x)
v(x)

� �h

¼
X
I2Sn

fI(x) 0
0 fI(x)

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

FI(x)

uI
vI

� �
|fflfflffl{zfflfflffl}
uI

¼
X
I2Sn

FI(x)uI (8:2)

where
Sn is the set of local support nodes selected using a T-Scheme for a cell hosting x
FI is the matrix of PIM shape functions
uI is the vector of the nodal displacements for these local nodes

The smoothed strain �« in Equation 8.1 is obtained using the generalized smoothing
operation performed over the equally shared smoothing domains defined for each node in
the problem domain. Figure 8.1 shows such a smoothing domain for node i. The strain at
node i is obtained using

�«(xi) ¼

1
As

i

ð
Vs

i

~«(uh) dV ¼ 1
As

i

ð
Vs

i

Lduh� �
dV ¼ 1

As
i

ð
Gs
i

Lnuh dG, when uh(j) 2 C
0(Vs

i )

1
As

i

ð
Gs
i

Lnuh dG, when uh(j) 2 C
�1(Vs

i )

8>>>>>><
>>>>>>:

(8:3)

where
As

i ¼
Ð
Vs

i
dV is the area of smoothing domain for node i

Ld is the differential operator defined in Equation 1.9
Ln is the matrix of outward normal components
uh is the assumed displacement defined in Equation 8.2
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In our formulation, we will always use the more general second equation in Equation 8.3.
Substituting Equation 8.2 into Equation 8.3, the smoothed strain can be written in the
following matrix form:

�«h(xi) ¼
X
I2Ss

�BI(xi)uI (8:4)

where Ss is the support nodes for the smoothing domain that is a set of nodes involved in
the interpolation for all points on Gs

i . The smoothed strain matrix has the form

�BI(xi) ¼
�fI,x(xi) 0

0 �fI,y(xi)
�fI,y(xi) �fI,x(xi)

2
64

3
75 (8:5)

in which

�fI,l ¼
1
As

i

ð
Gs
i

fI(x)nl(x)dG, (l ¼ x, y) (8:6)

The integration in Equation 8.6 is a curve integration that can be performed easily using the
Gauss integration schemes, which can be written in a summation form of

�fI,l ¼
1
As

i

Xns
m¼1

Xng
n¼1

Wn(fI(xm,n)nl xm)ð Þ
" #

(8:7)

where
nl is the components of the unit outward normal on Gs

i
ns is the number of line-segments of the boundary Gs

i
ng is the number of Gauss points distributed in each segment
Wn is the corresponding Gauss weight

For example, for the node i shown in Figure 8.1, we have 10 line-segments on Gs
i : ns¼ 10.

If linear interpolation is used, the number of support nodes for each cell is 3. Each line-
segment needs only one Gauss point (ng¼ 1), and therefore, there are a total of 10
Gauss points (gp1–gp10) to be used for the entire smoothing domain. The number of
support nodes for the smoothing domain is 6. In this simple linear interpolation case,
the shape function values at all these 10 Gauss points can be tabulated in Table 8.2 by
simple inspection. Of course, when higher order PIM shape functions are used, we need to
compute the shape function values numerically, which can be programmed with ease.
We show the simple linear interpolation case in the tabulated form to reveal explicitly how
the line integration is performed in NS-PIM for computing the smoothed strains.

Note from Equation 8.6 that in computing the smoothed strain matrix and hence
the stiffness matrix, we do not need to perform differentiation for the shape functions.
This shows clearly that the consistence requirement of the shape functions is reduced:
a weakened-weak formulation. Whether or not the shape functions are continuous within
the smoothing domains is not a problem.
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We now further assume that the modified strain is the constant in the smoothing domain
and the same as that given in Equation 8.3:

�«i(x) ¼ �«(xi), 8x 2 Vs
i (8:8)

Now, substituting Equations 8.2 and 8.8 into Equation 8.1, following the similar procedure
given in Section 6.1.1, the discretized system equation can be obtained in the following
matrix form:

�K�U ¼ F (8:9)

where �U is the vector of nodal displacements for all nodes in the problem domain, the
stiffness matrix �K is assembled (in the same way discussed in Chapter 6) using the entries
of the submatrix of stiffness

�KIJ ¼
XNs

i¼1

As
i
�BT
I c�BJ (8:10)

TABLE 8.2

Shape Function Values at Different Sites on the Smoothing Domain Boundary for Node i

Site Node i Node 1 Node 2 Node 3 Node 4 Node 5 Description

i 1.0 0 0 0 0 0 Field node

1 0 1.0 0 0 0 0 Field node

2 0 0 1.0 0 0 0 Field node

3 0 0 0 1.0 0 0 Field node

4 0 0 0 0 1.0 0 Field node

5 0 0 0 0 0 1.0 Field node
A 1=3 1=3 0 0 0 1=3 Centroid of cell

B 1=2 1=2 0 0 0 0 Mid-edge

C 1=3 1=3 1=3 0 0 0 Centroid of cell

D 1=2 0 1=2 0 0 0 Mid-edge

E 1=3 0 1=3 1=3 0 0 Centroid of cell

F 1=2 0 0 1=2 0 0 Mid-edge

G 1=3 0 0 1=3 1=3 0 Centroid of cell

H 1=2 0 0 0
1
2

0 Mid-edge

I 1=3 0 0 0 1=3 1=3 Centroid of cell

J 1=2 0 0 0 0 1=2 Mid-edge

gp1 5=12 5=12 0 0 0 1=6 Mid-segment of Gs
i

gp2 5=12 5=12 1=6 0 0 0 Mid-segment of Gs
i

gp3 5=12 1=6 5=12 0 0 0 Mid-segment of Gs
i

gp4 5=12 0 5=12 1=6 0 0 Mid-segment of Gs
i

gp5 5=12 0 1=6 5=12 0 0 Mid-segment of Gs
i

gp6 5=12 0 0 5=12 1=6 0 Mid-segment of Gs
i

gp7 5=12 0 0 1=6 5=12 0 Mid-segment of Gs
i

gp8 5=12 0 0 0 5=12 1=6 Mid-segment of Gs
i

gp9 5=12 0 0 0 1=6 5=12 Mid-segment of Gs
i

gp10 5=12 1=6 0 0 0 5=12 Mid-segment of Gs
i
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where �BI is the smoothed strain matrix for node I defined in Equation 8.5. Note that �KIJ

needs to be computed only when nodes I and J share the same smoothing domain.
Otherwise, it is zero. Hence, �K will be very sparse for an NS-PIM model, in addition to
the obvious fact that it is symmetric. Based on the theorems presented in Chapter 5, �K is
symmetric positive definite (SPD).

In Equation 8.9, the force vector F has the following entries of vectors:

fI ¼
ð
Gt

fItdGþ
ð
V

fIbdV (8:11)

The force vectors are without bar-hat because no smoothing operation is applied to the
linear functional in NS-PIM formulation. The force vectors are computed in exactly the
same way as that in FEM or EFG.

Equation 8.9 can be solved using standard routines with ease because �K is SPD
and sparse.

Note that �K will also be banded if the nodes are properly numbered, as in the FEM. For
linear NS-PIM with T3-Scheme, the bandwidth of �K will be determined by the largest
difference of node numbers of the nodes of all the triangular cells connected directly to the
node. For 2D cases, a node-based smoothing domain is usually supported by four to eight
nodes. Therefore, it is clear that the bandwidth of a NS-PIM model will be larger (about
twice) than that of a linear FEM that is the smallest for the all possible numerical models
(a triangular element involves only three nodes). In the EFG, an integration cell is sup-
ported by about 15–40 nodes (for ensuring the compatibility), therefore the bandwidth of
an EFG model is roughly about two to four times that of an NS-PIM model. The efficiency
of the NS-PIM is quite obvious from this rough analysis. Of course, we have not yet taken
the solution accuracy and other properties into account.

8.1.4 Flowchart of the NS-PIM

A brief flowchart of NS-PIM is given below:

1. Loop over all the smoothing domains Vs
i .

2. Loop over surrounding cells directly connected to node i.

a. Select the nodes for construction of PIM shape functions for the cell using
T-Scheme.

b. Compute �fI,l using Equation 8.7.

c. Compute the nodal stiffness matrices and force vectors.

d. Assemble the nodal contributions to the global matrices and vectors.

4. End cell loop.

5. End the smoothing domain loop.

Note that the integral in Equation 8.11 for nodal force vectors is the same as that in FEM
and EFG, except for the way in which the shape function is computed. Note also that the
NS-PIM formulation is variationally consistent, if the assumed displacement function is
compatible (T3-Scheme) as proven in [13] and is stable and convergent if the assumed
displacement function is incompatible (T6=3-Scheme) as proven in [28].
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8.1.5 Comparison of NS-PIM, FEM, and NS-FEM

8.1.5.1 NS-PIM vs. FEM

When the same triangular mesh is used in the FEM and the NS-PIM, we have the following
points:

1. The interpolation procedure in NS-PIM is based on a group of support nodes
selected based on triangular cells. The support nodes can generally be selected
from more than one cell, which may overlap with the support domains of other
neighboring cells. The interpolation procedure in FEM is different from that in
PIM, it is based strictly on elements: only the nodes of the element that contains the
point of interest are used for the interpolation, and there is no overlapping in using
nodes for computing shape functions. In addition, a proper mapping in FEM is a
must (except for linear triangular elements) to ensure compatibility on the element
interfaces.

2. In both FEM and PIM, the number of monomials used in the basis functions, m, is
the same as the number of nodes, n. Therefore, the interpolation functions have the
property of the Kronecker delta function. This feature of NS-PIM allows simple
imposition of essential boundary conditions as in the standard FEM. No special
treatments like the ones used in EFG and MLPG are needed.

3. The FEM uses the ‘‘compatible’’ strains in the element obtained using the strain–
displacement relations, and hence it is a compatible mode. In the NS-PIM, how-
ever, the strains in the smoothing domains are constructed via the generalized
smoothing operations, and hence the NS-PIM will not be compatible within the
smoothing cells in terms of satisfying the displacement–strain relations.

4. Integration in the FEM is element based, while in the NS-PIM is, however, nodal
smoothing domain based.

5. Both FEM and NS-PIM can reproduce linear displacement field exactly and hence
pass the standard patch test (to machine accuracy).

6. The FEM solution does not in general satisfy the equilibrium conditions locally
(either at any point in the elements or element-wise). The NS-PIM solution, on the
other hand, satisfies the (homogeneous) equilibrium equations at any point
within the smoothing domain, for each of the smoothing domains, and hence at
any point in the entire problem domain, except on the interfaces of the smoothing
domains. Therefore, the NS-PIM behavior is somewhat like an equilibrium
model.

7. The standard FEMmodel is compatible everywhere (inside the elements and on the
element interfaces, on the essential boundary, and is said to be fully compatible).
The NS-PIM is compatible only on the interfaces of the smoothing domains and the
essential boundary, but not in the smoothing domains. Because the equilibrium
status is created inside the smoothing domains, a ‘‘complementary’’ situation
is been achieved: where the compatibility condition is violated the equilibrium is
ensured, and where the equilibrium is violated the compatibility is ensured. Such a
complementary situation prevents any energy loss in the NS-PIMmodel, and hence
can be said to be energy consistent.

8. The behavior of FEM model using triangular elements is very ‘‘stiff,’’ and stress
result is in general not very accurate; The behavior of the NS-PIM model using
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exactly the same triangular mesh is much softer, and stress result is generally
more accurate.

9. The linear FEM and linear NS-PIM models have the same set of nodes for nodal
displacements and the same size in the discrete system equations and the number
of unknowns. The stiffness matrices obtained using both FEM and NS-PIM are all
SPD, if sufficient constraints are applied to eliminate the rigid body movement and
the original problem is well posed. The proof of the SPD for FEM is based on the
theory of weak formulation and that for the NS-PIM is based on the weakened-
weak formulation [28].

10. The FEM provides the lower bound for the solution (in energy norm), and the
NS-PIM can provide the upper bound of the solution, which will be discussed
intensively in Section 8.3.

When quadratic polynomials are used in NS-PIM or RPIM shape functions are used, the
sparsity of the stiff matrix of NS-PIM will be smaller than the FEM model using the same
triangular mesh. We, however, still have the same number of unknowns.

8.1.5.2 NS-PIM vs. NS-FEM

The NS-PIM procedure can be extended for meshes of other types of elements including
the general n-sided polygonal elements. If the same set of shape functions are used
(the interpolation is confined using nodes only within the element containing the point
of interest), the formulation leads to the node-based smoothed FEM (NS-FEM). A detailed
formulation of NS-FEM was given in [14] for general n-sided polygonal elements, which
was extended from the element-based smoothed FEM (SFEM) [15,16]. When only triangu-
lar elements and linear interpolations are used, the NS-PIM is identical to the NS-FEM and
it gives the same results as the NIFEM proposed by Dohrmann et al. [17].

Note that the NS-PIM is more general than the NS-FEM and they are different in the
following ways. The NS-PIM was basically conceived from the meshfree procedures: shape
functions are constructed using nodes beyond the cells=elements, and they can be linear,
quadratic, or even higher order depending on the number of nodes used in the support
domain. In the case of NS-RPIM (see Section 8.2), the selection of nodes can practically be
entirely free and the consistency of the shape functions can be arbitrarily high. Therefore,
the NS-FEM can be considered as a special case of NS-PIM.

The NS-FEM is in turn more general formulation than the NIFEM. NS-FEM uses
the strain smoothing technique, which transforms the node-based domain integration
into the boundary integration. For 2D problems, the NS-FEM formulation can be applied
for triangular, quadrilateral, and n-sided polygonal elements of any order because it needs
only the shape function values and only on the boundaries of the smoothing domains.
Such shape function values can be obtained by simple point interpolations. The NIFEM
formulation is applicable only to uniform strain elements, and hence it can be only applied
to linear triangular=tetrahedron elements. In addition, the numerical procedure of the
NS-FEM and the NIFEM are also different. The NS-FEM uses only the value of shape
function at points on the boundary of the smoothing domains associated with nodes, and
no derivatives of the shape functions are needed. The NIFEM uses the derivative of shape
functions, and the integration of the weak form is based on whole domain of the cell.
Hence, the NIFEM can be viewed as a special case of the NS-FEM. Note also that, the
NS-FEM is evolved from the SFEM and they all use the strain smoothing operation and
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the smoothed Galerkin weak form. The difference between NS-FEM and SFEM is on how
the smoothing domains are created.

8.1.6 Numerical Examples for 2D Solids

Several numerical examples are studied in this section. The materials used are all linear
elastic with Young’s modulus E¼ 3.0� 107 and Poisson’s ratio n¼ 0.3. The error indicators
in displacement and energy are, respectively, defined as follows:

ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNn

i¼1 uexacti � unumi

� �2
Pn

i¼1 uexacti

� �2
vuut (8:12)

ee ¼ 1
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

XNs

k¼1
(«exact � �«numk )TD(«exact � �«numk )As

k

r
(8:13)

where the superscript ‘‘exact’’ denotes the exact or analytical solution, and ‘‘num’’ denotes
the numerical solution obtained using a numerical method. For 2D problems, A is the area
and for 3D problems, A becomes the volume of the problem domain. In Equation 8.12 the
exact solution is sampled at the nodes, and in Equation 8.13 the exact solution is sampled at
the center of the smoothing domains.

Example 8.1: 2D Patch Test

For a numerical method working for solid mechanics problems, the sufficient requirement for
convergence is to pass the standard patch test [18]. Therefore, the first example is the standard
patch test using the linear NS-PIM with T3-Scheme (Section 1.7.6). The patch is a square domain
with the dimension of 10� 10, and the patch is represented using regular and irregular nodes
shown in Figure 8.3. The displacements are prescribed on all outside boundaries by the following
linear function:

ux ¼ 0:6x

uy ¼ 0:6y

�
(8:14)

The errors in displacement defined in Equation 8.12 are found to be 2.35� 10�14 for the patch of
regular nodes and 4.77� 10�14 for the patch of irregular nodes.We also tested for quadratic NS-PIM
with T6=3-Scheme and confirmed that it also passes the patch test, as predicated by the weakened-
weak form theory [28]. This example demonstrates numerically, that theNS-PIMcan reproduce linear
fields exactly (to machine accuracy), which ensures second order convergence in displacement
norm. Together with the proven stability, the NS-PIM solution will converge to the exact solution.

Example 8.2: Rectangular Cantilever

The NS-PIM is then benchmarked using Example 6.2. The analytical solution is available; it can be
found in the textbook by Timoshenko and Goodier [19] and is listed in Equations 6.50 through
6.55. The beam is supported on the left edge by prescribing the displacements obtained using the
analytical formula with x¼ 0. The beam is subjected to a parabolic traction at the free end given in
Equation 6.56. The other properties are D ¼ 10, L¼ 50, and P¼�1000. To investigate the effect
of the irregularity of nodal distribution, three models of 420 distributed nodes with different
irregularity (shown in Figure 8.4) are used to examine the present method. The results of deflection
along the neutral line of the beam are plotted in Figure 8.5 together with the analytical solutions.
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FIGURE 8.3
Nodal arrangement for patch tests: (a) patch with 100 nodes regularly distributed; and (b) patch with 109 nodes
irregularly distributed.
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FIGURE 8.4
Three nodal distributions for the rectangular cantilever. Model-1: uniform distribution; Model-2: irregular distri-
bution; and Model-3: highly irregular distribution.
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It can be found that the numerical results of these three models obtained using the quadratic
NS-PIM are all in good agreement with the analytical ones, and the irregularity of the nodal
distribution has little effect on the numerical results. Figure 8.6 plots the results of the shear stress
along the line (x¼ L=2) of the beam. It can be found again that the NS-PIM results are all in good
agreement with the analytical ones, and the nodal irregularity has little effect on the numerical
results.
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FIGURE 8.5
Deflection of the rectangular cantilever subject to a vertical force distributed at the free end. Computed using
NS-PIM with three models of node distributions.
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FIGURE 8.6
Shear stress distribution along the line x¼L=2 on the rectangular cantilever subject to a vertical force distributed at
the free end. Computed using NS-PIM with three models of node distributions.
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To investigate the rate of convergence of the NS-PIM method to the exact solution, four
models with different numbers of irregularly distributed nodes are used to compute the
errors in both displacement and energy norms. For comparison, three methods—FEM-T3
linear, NS-PIM with T3-Scheme, and quadratic NS-PIM with T6=3-Scheme—are used for
the same problem with the same sets of nodes. Figure 8.7a plots in the logarithm
scale the solution error in displacement norm with different density of the mesh measured
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FIGURE 8.7
Comparison of convergence rates in displacement and energy norms for FEM-T3, linear NS-PIM, and quadratic
NS-PIM for the rectangular cantilever subject to a vertical force distributed at the free end.
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by the nodal spacing h. It is observed clearly for this case that the error decreases almost
linearly with the decrease of h. We also estimated the convergence rates r from the slope of
the plot in displacement norm for these three models. It is found the FEM achieved 1.97,
which is very close to the theoretical rate of 2.0 for linear displacement weak form methods
(see Section 3.5). The linear NS-PIM achieved a rate of 2.01 and the quadratic NS-PIM
achieved 2.16. The rates for the linear NS-PIM are above the theoretical value of 2.0
showing a weak superconvergence* even in displacement norm. In terms of accuracy, the
linear NS-PIM has almost exactly the same accuracy as the FEM in displacement norm
for this problem. The quadratic NS-PIM is about twice more accurate than the linear
NS-PIM (and hence FEM).

Figure 8.7b also plots the solution error in energy norm with different nodal spacing h in
the logarithm scale. It is observed again for this case that the error decreases almost linearly
with the decrease of h. The convergence rates r are also estimated numerically from the slope
of the plot for these three models. The FEM achieved a rate of 0.97 that is very close to the
theoretical rate of 1.0 (see Section 3.5) for linear displacementweak formmethods. The linear
NS-PIM achieved a rate of 1.25 that is above the theoretical value of 1.0 showing a noticeable
superconvergence in energy norm. It is smaller than the ideal theoretical convergence rate of
1.5 for a GS-Galerkin model (see Section 3.5). The rate of convergence for the quadratic
NS-PIM is about 1.29, slightly higher than the linear NS-PIM. In terms of accuracy, the
linear NS-PIM is about two to three times more accurate than the FEM in energy norm for
this problem. The quadratic NS-PIM is only a little more accurate than the linear NS-PIM.

Remark 8.1: Superconvergence in Both Displacement and Energy Norms
Note that the so-called superconvergence refers to a phenomenon in FEM, in which
solution in energy norm at some points in the elements converges faster than the predicted
theoretical value [18]. In a weak formulation, such a superconvergence will not be
observed in displacement norm. In a weakened-weak formulation (such as the NS-PIM),
however, it is observed in both displacement norm and energy norm (see more below).

Example 8.3: Hole in an Infinite Plate

Example 7.4, examined using the MLPG method, is now reexamined here using the NS-PIM.
The geometry of the plate is plotted in Figure 7.10. Because of the twofold symmetry, only a
quarter of the plate is modeled with symmetric boundary conditions applied on x¼ 0 and y¼ 0.
The parameters and the boundary conditions are exactly the same as those in Example 7.4.
The exact solution for the displacement and the stress field within the plate are provided by
Equations 7.41 through 7.46 in the polar coordinates (r, u). The dimensionlessy parameters used in
this example are listed as follows:

Loading: p¼ 10

Young’s modulus: E¼ 3.0� 107

Poisson’s ratio: n¼ 0.3

The radius of the hole: a¼ 10

Width of the plate: b¼ 50

* The term ‘‘superconvergence’’ is defined as a convergence that is faster then the theoretical convergence rate of
linear FEM model.

y This means that one may use any unit set as long as it is consistent.
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In this study, plane stress problem is considered and the domain is discretized using 411
irregularly distributed nodes. The computed displacements for nodes located along the bottom
and left edges of the one-quarter model are calculated and plotted in Figures 8.8 and 8.9,
respectively.

For precise error examination in the numerical solution, stresses-computed using Equa-
tions 7.44 through 7.46 on edges of x¼ 50 and y¼ 50 are used as the prescribed stress
boundary condition in our numerical models. This is to make sure that the exact and
numerical solutions are under the same conditions and hence compatible.

Figure 8.10 shows the distribution of normal stress sxx along the left edge of the quarter
model. These figures show again that all the numerical results agree well with the analyt-
ical ones.

We study the volumetric locking issue using Example 8.3 with exactly the same settings
except that a¼ 1, b¼ 5. Poisson’s ratio varies from 0.4 to 0.4999999, and plane strain
problem is considered. The NS-PIM is used to solve this problem together with the linear
FEM for comparison.

Figure 8.11 plots the error in solution in displacement norm against Poisson’s ratio
changing from 0.4 to 0.4999999. Table 8.3 gives the detailed numbers. It is clearly seen
that the FEM suffers from the volumetric locking: when Poisson’s ratio approaches 0.5, the
error in solution increases drastically starting from 0.4, as predicated in Remark 1.3. Special
treatments are needed in FEM for this type of problems. However, the results show that the
NS-PIM is naturally immune from the volumetric locking for nearly incompressible mater-
ials: we did not give any additional treatment for this problem, and accuracy has not been
affected by the increasing incompressibility.
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FIGURE 8.8
Distribution of ux along the bottom edge of the one-quarter model of the plate with a circular central hole subjected
to a unidirectional tensile load in the x-direction.
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Remark 8.2: Free from Volumetric Locking: A Property of NS-PIM
NS-PIM is naturally immune from the volumetric locking, and no special treatments are
needed for solids of nearly incompressible materials.
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FIGURE 8.9
Distribution of uy along the left edge of the one-quarter model of the plate with a circular central hole subjected to
a unidirectional tensile load in the x-direction.
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FIGURE 8.10
Distribution of stress along the left edge of the one-quarter model of the plate with a circular central hole subjected
to a unidirectional tensile load in the x-direction.
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Example 8.4: Internal Pressured Thin Cylindrical Disk

As another benchmark problem, a thin cylindrical disk subjected to internal pressure is analyzed, as
shown in Figure 8.12. The dimensionless* parameters used in this example are listed as follows:

Internal radius a¼ 10

Outer radius b¼ 25

Thickness t¼ 1

Internal pressure p¼ 100
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FIGURE 8.11
Error in solution in displacement norm against Poisson’s ratio changing from 0.4 to 0.4999999. FEM solution is
locked when Poisson’s ratio approaches to 0.5, but the NS-PIM is naturally immune from the volumetric locking.

TABLE 8.3

Error in Solution in Displacement Norm for 2D Plane Strain Problem
When Poisson’s Ratio Changes from 0.4 to 0.4999999

Value of Poisson’s
Ratio n

Displacement
Error of FEM

Displacement
Error of NS-PIM

0.4 0.27077147E�01 0.27917215E�01

0.49 0.56525782E�01 0.26611438E�01

0.499 0.87288403E�01 0.26621114E�01

0.4999 0.93841046E�01 0.26634752E�01

0.49999 0.94621628E�01 0.26636331E�01

0.499999 0.94701838E�01 0.26636492E�01
0.4999999 0.94709883E�01 0.26636508E�01

* This means that one may use any unit set as long as it is consistent.
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The analytical solution in polar coordinates is available for this plane stress problem [19] and is
listed below:

ur ¼ pa2

E(b2 � a2)r
[(1� v)r2 þ (1þ v)b2] (8:15)

sr ¼ a2p
b2 � a2

1� b2

r2


 �
(8:16)

su ¼ a2p
b2 � a2

1þ b2

r2


 �
(8:17)

In this study, the problem domain is represented with 441 irregularly distributed nodes and the
numerical solutions using NS-PIM are plotted in Figures 8.13 and 8.14 together with the analytical
solution. It can be observed that both the displacement and stress results are very accurate and
stable, and in good agreement with the analytical ones.

Example 8.5: A Mechanical Part: 2D Rim

As an application of NS-PIM to practical mechanical component design, a typical rim of automo-
tive component with a complicated shape is studied. As shown in Figure 8.15, the rim is fixed
at all the nodes around the inner circle and a pressure of 100 units is applied along the lower arc
edge of the rim. The rim is meshed triangular cells with 2608 nodes, as shown in Figure 8.15. As
no analytical solutions are available for this problem, a reference solution obtained using the FEM
with a very fine mesh of six-node triangular element (18,625 elements) is used. Displacement and
stress results at the nodes along the lower half circle of the rim (dash linem–n) are computed using
the quadratic NS-PIM and are plotted in Figures 8.16 through 8.20 together with the reference
solutions. It is found that the NS-PIM solution in both displacements and stresses are in a good
agreement with the reference solutions.

8.1.7 NS-PIM for 3D Solids

We now extend the NS-PIM for 3D solids by simply mentioning the major difference
between the 2D and 3D. More detailed formulation can be found in [23].
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FIGURE 8.12
A thin disk subjected to internal pressure and its quarter model.
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Theoretically, the NS-PIM for 3D is exactly the same as 2D, except that all the operations
have to be extended to one more dimension. Most of the formulae presented in Section
8.1.3 have the same forms, but the following major changes are needed:

. The primary known variables of displacement components become three: ux, uy,
and uz, and the stress and strain components become six. For example, the
smoothed strain matrix defined in Equation 8.4 should be changed to
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FIGURE 8.13
Displacement distribution along the left edge for the problem of internal pressurized thin disk.
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FIGURE 8.14
Stress distribution along the left edge for the problem of internal pressurized thin disk.
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�BI(xi) ¼

bIx(xi) 0 0

0 bIy(xi) 0

0 0 bIz(xi)

bIy(xi) bIx(xi) 0

0 bIz(xi) bIy(xi)

bIz(xi) 0 bIx(xi)

2
666666664

3
777777775

(8:18)

All the other equations needed for the computation are practically the same in form as
those given in Section 8.1.3.
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FIGURE 8.15
An automotive rim subjected to pressure along a portion of the lower arc edge. (a) problem setting; (b) nodes
distribution.
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Distribution of displacement ux along
the edge m–n of the automotive rim.
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FIGURE 8.17
Distribution of displacement uy along
the edge m–n of the automotive rim.
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FIGURE 8.18
Distribution of stress sxx along the edge
m–n of the automotive rim.
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Distribution of stress syy along the edge
m–n of the automotive rim.
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. The area in 2D becomes volume in 3D, the area integration in 2D now becomes
volume integration in 3D, and the curve integration in 2D now becomes surface
integration in 3D.

. The triangular cells for discretizing the domain now become tetrahedral cells.
Figure 8.21 shows the formation of the nodal smoothing domain for node i. The
smoothing domain consists of portions from all tetrahedral cells sharing the node.
Figure 8.22 shows the four portions of a four-node tetrahedron cell J (with four
nodes: i�k2�k3�k6) that contributes, respectively, to four smoothing domains
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FIGURE 8.20
Distribution of sxy along the edge m–n of
the automotive rim.
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FIGURE 8.21
Illustration of the formation of nodal smoothing domain for node i. The smoothing domain consists of portions
from all tetrahedral cells sharing the node. It looks quite complicated, but the formation can be programmed in a
quite straightforward manner, as we use only tetrahedrons.
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nodes i, k2, k3, and k6. The smoothing domains surface for the portion of the
smoothing domain for node i contributed from cell J, is also shown. The smoothing
domain is created by connecting the mid-edge-points, the centroids of the surface
triangles, and the centroid of the tetrahedron.

. In terms of node selection, four nodes of the tetrahedral cell containing the point of
interest (usually the quadrature point) and basis for the interpolation becomes 1 x y z
and is used for linear NS-PIM. For higher order NS-PIM, more nodes should
be selected, and it is a little tricky in node (or monomial basis term) selection, due
to the possible singular moment matrix. Therefore, we suggest the use of the
T2L-Scheme and RPIM shape functions (see Section 8.2), and that works for very
irregularly distributed nodes without much special treatments.

. The macro flowchart for 3D NS-PIM code also follows that given in Section 8.1.4,
with only the dimension changes in mind.

8.1.8 Numerical Examples for 3D Problems

A 3D code of linear NS-PIM has been developed, and it is examined using the following
examples.

Example 8.6: A 3D Patch Test

The first example is the standard patch test using our in-house 3D NS-PIM code. A cubic patch
with the dimension of 10� 10� 10 is used, and the displacements are prescribed on all outside
boundary surfaces by the following linear function:

Field node

Gauss point

Centroid of the
surface triangle

Centroid of the
tetrahedron

Mid-edge-point

Node i

Node i

Cell J

n1

n2

np

k6

k3

k2

FIGURE 8.22
Four portions of a four-node tetrahedron cell J (i�k2�k3�k6) that contributes, respectively, to four smoothing
domains for nodes i, k2, k3 and k6. The smoothing domains surface for the portion of the smoothing domain for
node i contributed from cell J, is also shown. The smoothing domain is created by connecting the mid-edge-points,
the centroids of the surface triangles and the centroid of the tetrahedron.
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ux ¼ 0:6x

uy ¼ 0:6y

uz ¼ 0:6z

8><
>: (8:19)

Two patches are represented using 125 regularly and 166 irregularly distributed nodes as shown in
Figure 8.23. The errors in displacement defined in Equation 8.12 are found to be 1.2837� 10�15 for
the regular and 1.2036� 10�15 for the irregular patch, which are almost the level of the machine
precision. The results show that the displacements of all the interior nodes follow ‘‘exactly’’ the
same function of the imposed displacement. This example demonstrates numerically that the 3D
NS-PIM solution will have second order convergence due to its ability to reproduce linear fields.

Example 8.7: A 3D Cantilever

The NS-PIM is first benchmarked using the 3D cantilever problem under traction on the right
surface, as shown in Figure 8.24. The parameters used in this example are listed as follows:

Loading: P¼�100.0 N

Young’s modulus: E¼ 3.0� 107 Pa
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FIGURE 8.23
Node distribution of a cube for the 3D standard patch test: (a) regularly distributed nodes; and (b) irregularly
distributed nodes.
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FIGURE 8.24
A 3D cantilever beam supported on the left surface (x¼ 0) and subjected to a traction on the right surface.
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Poisson’s ratio: n¼ 0.3

Height of the beam: H¼ 1.0 m

Length of the beam: L¼ 10.0 m

Width of the beam: B¼ 1.0 m

Since the beam is relatively thin, analytical solution listed in Equations 6.50 through 6.55 based on
the plane stress theory can be used approximately as a reference solution for comparison purpose.
The beam is supported on the left surface by prescribing the displacements using the analytical

solution. The traction applied on the right surface is also determined using the analytical formula
given in Equation 6.56. The problem domain is presented using 874 irregularly distributed nodes
as shown in Figure 8.25. The results of defection distribution along the neutral line (y¼ 0 and
z¼ 0) and shear stress along the midline (x¼ L=2 and z¼ 0) are plotted together with the reference
solutions in Figures 8.26 and 8.27, respectively. It can be found that the numerical results of the
NS-PIM are in very good agreement with the reference ones.

Example 8.8: 3D Lame Problem

The 3D Lame problem is a hollow sphere with inner radius a and outer radius b and subjected to
internal pressure P, as shown in Figure 8.28. For this benchmark problem, the analytical formulae
for the solution are available in spherical coordinate system [19]:

ur ¼ pa3r
E(b3 � a3)

(1� 2n)þ (1þ n)
b3

2r3

� �
(8:20)

sr ¼ pa3(b3 � r3)
r3(a3 � b3)

(8:21)

su ¼ pa3(b3 þ 2r3)
2r3(b3 � a3)

(8:22)
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FIGURE 8.25
Nodal distributions in the 3D cantilever beam.
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where r is the radial distance from the centroid of the sphere to the point of interest in the sphere.
As the problem is spherically symmetrical, only one-eighth of the sphere is modeled and symmetry
conditions are imposed on the three planes of symmetry. The parameters used in this example are
listed as follows:

Loading: p¼ 1.0 N=m2

Young’s modulus: E¼ 1.0 Pa

Poisson’s ratio: n¼ 0.3

Inner radius: a¼ 1.0 m

Outer radius: b¼ 2.0 m
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Shear stress distribution along the line (x¼ L=2 and z¼ 0) in the 3D cantilever beam.
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The problem domain is presented using 1304 irregularly distributed nodes. The computed
nodal displacements and stresses along the horizontal (u¼ 0) axis are plotted in Figures 8.29
and 8.30, respectively. It can be clearly seen that the numerical results agree well with the
analytical ones.
To investigate the properties of convergence and efficiency of the NS-PIM, four models of 173,

317, 729, and 1304 irregularly distributed nodes are employed. For each of these four models,
the error in energy norm of the numerical results is calculated according to the definition in
Equation 8.13. For comparison, the FEM using linear four-node tetrahedron element is also
employed to study the problem with the same nodes distributions. As shown in Figure 8.31,
the results of error in energy norm against the average nodal spacing h are plotted for both
the NS-PIM and the FEM. It is found that these two methods have similar rates of convergence,

FIGURE 8.28
3D Lame problem of a hollow sphere under internal pressure.

P 

z 

x 

a
b 

y 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

r

Ra
di

al
 d

isp
la

ce
m

en
t, 

U
r

Analytical solution
NS-PIM solution

FIGURE 8.29
Distribution of the radial displacement along the horizontal axis (u¼ 0) in the 3D Lame problem.
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but the NS-PIM produces more accurate results compared with the linear FEM. Figure 8.32 plots
the energy errors of the numerical results obtained using these two methods against the CPU time
consumed (full matrix solver), which shows performance of numerical methods. It can be found
that the NS-PIM is more efficient than the linear FEM.
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FIGURE 8.30
Distribution of radial and tangential stresses along the horizontal axis (x¼ 0) in the 3D Lame problem.
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Comparison of convergence of NS-PIM with the FEM with the same nodes distribution for the Lame problem.
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Example 8.9: 3D Kirsch Problem

The 3D Kirsch problem of an infinite cube subjected to far field uniform tension is considered as
shown in Figure 8.33. The NS-PIM code is used to compute the stress distribution in the vicinity of
a small cavity in an infinite cube. The analytical solution for the normal stress szz in the plane
z¼ 0 is given as [19]

szz ¼ s0 1þ 4� 5n
2(7� 5n)

a
r

� 3
þ 9
2(7� 5n)

a
r

� 5
� �

(8:23)

where r is the radial distance from the centroid of the cube to the point of interest. The parameters
used in this example are as follows:

Loading: s0¼ 1.0 N=m2

Young’s modulus: E¼ 3.0� 107Pa

Poisson’s ratio: n¼ 0.3

Radius of the hole: a¼ 1.0 m

Width of the cube: b¼ 10 m

The problem domain is presented as a set of tetrahedral cells with a total of 1256 nodes. Figure
8.34 shows the comparison between the analytical solution and the numerical solution of NS-PIM
for the normal stress szz along the x-axis. It can be clearly seen again that the NS-PIM solution is in
an excellent agreement with the analytical ones.
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FIGURE 8.32
Comparison of efficiency of NS-PIM with the FEM with the same nodes distribution for the Lame problem.
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FIGURE 8.33
3D Kirsch problem: a cube with a spherical cavity
subjected to a uniform tension.
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Example 8.10: A Mechanical Part: 3D Rim Component

A typical rim component shown in Figure 8.35 used in mechanical system is modeled and studied
using the NS-PIM method. The rim is constrained in three dimensions along the inner annulus and
a uniform pressure of P is applied on the outer annulus over a range of 608. Due to the complexity,
we omit the details of the model here, but show directly the numerical results obtained using
our 3D NS-PIM code in comparison with a reference solution obtained using FEM with very
fine mesh with 29,835 nodes. In the NS-PIM, 7972 nodes are used. The numerical solutions of
stress components at the nodes on the middle plane of z¼ 0 are plotted in the form of contour.
Figures 8.36 through 8.38 show the comparison of the stress contours between the reference FEM
solutions and the NS-PIM solutions for sxx, syy, and txy, respectively. It can be seen that the results
obtained using the NS-PIM agree well with the reference ones.
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FIGURE 8.35
A simplified model of an automotive rim component.
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Contour of stress sxx on the plane z¼ 0 in the rim component.
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Example 8.11: A 3D Riser Connector

The following example comes from a real offshore project of a Floating Production and Storage
Unit (FPSO). Fluid of oil–gas–water mixture is transferred between the FPSO and subsea pipeline
through a kind of flexible pipe called riser, which is attached to the FPSO shipside by a riser
connector. The simplified model of a riser connector is shown in Figure 8.39. The load is applied
on the top flange of the riser connector. The boundary conditions are defined at the end of I-beams
where riser connector is supported by other structures. Due to the complexity of the actual
structure, we omit the detailed specification of the model, but present the final results in com-
parison with the FEM solution.
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FIGURE 8.37
Contour of stress syy on the plane z¼ 0 in the rim component.
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FIGURE 8.38
Contour of stress sxy on the plane z¼ 0 in the rim component.
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Reference solution of this problem is obtained using the FEM model with very fine mesh (total
31,876 nodes), and the contour of elemental Von Mises stress is plotted in Figure 8.40 together
with the deformed shape of the riser connector. For the purpose of comparison, this problem is
studied using both the present NS-PIM and the linear FEM with the same nodes distribution (total
1718 nodes). The numerical results of the elemental Von Mises stress obtained using the fine
FEM model is plotted in the form of contour in Figures 8.41 and 8.42. It can be found that,
although the riser connector is presented with less than one-tenth of the number of nodes of
the reference model, the NS-PIM solution matches with the reference solution very well.
The NS-PIM solution is much closer to the reference solution compared to that of the linear
FEM of the same coarse mesh.
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FIGURE 8.39
Simplified model of the three-dimensional riser connector in an offshore platform.
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FIGURE 8.40
Reference solution of contour for elemental Von Mises stress obtained using FEM with fine mesh of 31,876
nodes.
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FIGURE 8.41
Contour of elemental Von Mises stress obtained using NS-PIM with a coarse mesh of 1718 nodes.
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FIGURE 8.42
Contour of elemental Von Mises stress obtained using FEM with a coarse mesh of 1718 nodes.
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8.2 NS-PIM Using Radial Basis Functions (NS-RPIM)

8.2.1 Considerations

Chapter 2 demonstrated that the use of radial functions as basis functions (with proper
shape parameters) can guarantee a nonsingular moment matrix, and shape functions with
delta function property can be created via simple point interpolation method for virtually
randomly distributed nodes. This section introduces a node-based meshfree method that
uses node-based smoothing operation and PIM shape functions constructed using radial
basis functions instead of polynomial basis functions, which is called node-based smooth-
ing radial point interpolation method or NS-RPIM in short. The material of this section
is largely based on the work of Refs. [4,11,12]. The method was called originally the
linearly conforming radial point interpolation method (LC-RPIM) because it is at
least linearly conforming. We need now rename it as NS-RPIM because the other methods
developed later, such as the ES-PIM, CS-PIM, etc. are all at least linear conforming but very
much different in the use of smoothing domains and properties.

The formulation of NS-RPIM is largely the same as the NS-PIM, except the procedure of
the node selection and shape function creation. In terms of smoothing domain, we can use
exactly the same used for NS-PIM, but this section uses the alternative Voronoi cells
detailed in Section 8.1.2.

8.2.2 Node Selection in NS-RPIM

NS-RPIM accommodates various schemes for node selection very flexibly, and the node
distribution can be very irregular and virtually randomly distributed. In this section, we
use RPIM shape function with linear polynomial basis for restoring the (polynomial)
reproducibility. The following node selection schemes can be used:

1. Use T3- or T6-Schemes detailed in Section 1.7.6. When T3-Scheme is used, the
NS-RPIM produces the same results as the linear NS-PIM, and hence we do not
usually use the T3-Scheme for NS-RPIM, except for debugging purposes. When
T6-Scheme is used, the NS-RPIMwill be different fromNS-PIM. T6-Scheme is quite
well controlled, and hence is very robust and most efficient. The equally shared
smoothing domain is preferred for this scheme, for efficiency and convenience in
implementation.

2. Use T2L-Scheme. In this scheme, the three vertices of the home triangular cell of
the point of interest (usually the quadrature point) and the nodes that are directly
connected to the three vertices are used. T2L-Scheme is also well controlled, and
can be used with a lot of freedom. This is a very robust scheme for node selection,
which works well for virtually randomly distributed nodes, but less efficient than
the T6-Scheme.

3. Use the support domain or influence domain method described in Chapter 1. This
selection scheme is a general meshfree procedure used in EFG or SPH [24].
This scheme offers total freedom in node selection. It works well with both equally
shared and Voronoi smoothing domains. It is used in this section. Theoretically,
however, there is a chance for biased node selection leading to extrapolation. We do
not recommend this scheme unless the nodal distribution can be well controlled.
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Once the nodes are selected, techniques detailed in Section 2.7 are then used to compute the
RPIM shape functions. Note again in the NS-PIM formulation, the derivatives of the shape
functions are not required as in the NS-PIM. Once the RPIM shape functions are created,
the rest of the procedure of NS-RPIM is the same as the NS-PIM, detailed in Section 8.1,
except that NS-RPIM usually uses more local nodes for shape function construction leading
to larger bandwidth in the discretized system equations.

8.2.3 Examples Solved Using NS-RPIM

A NS-RPIM code has been developed, and it is examined using the following examples. In
these examples, the RPIM shape function is constructed using MQ-RBF with ac¼ 4.0 and
q¼ 1.03 (see Chapter 2) and complete linear polynomial functions (m¼ 3) are included to
ensure the polynomial linear consistency in the local displacement approximation. The
numerical results are compared with those obtained using FEM with four-node isopara-
metric elements, and analytical solution whenever it is possible. For qualitative error
analysis, in this section we use the relative error indicator defined in Equation 8.12 for
displacement and the following relative error indicators for energy error:

ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNs

k¼1
(«exact � �«numk )TD(«exact � �«numk )As

k

.XNs

k¼1
(«exact)TD(«exact)As

k

r
(8:24)

Equation 8.24 is essentially the same as Equation 8.13 except the difference in scaling.
Therefore, when looking at the convergence rates, they are exactly the same.

Example 8.12: Patch Test

This numerical example is the standard patch test for NS-RPIM using the patch of a unit square
1� 1. The node distribution of both regularly and irregularly distributed 121 field nodes is shown
in Figure 8.43. The irregular nodes are created by altering the coordinates of the regular nodes
using the following equation:

(a) (b)

FIGURE 8.43
A patch with 121 field nodes: (a) regular nodal distribution and the Voronoi smoothing domains and (b) irregular
nodal distribution and the Voronoi diagrams (air¼ 0.4).
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x0 ¼ xþ Dx � rc � air

y0 ¼ y þ Dy � rc � air

�
(8:25)

where
Dx and Dy are, respectively, the initial nodal spacings in the x- and y-directions
rc is a computer-generated random number between �1.0 and 1.0
air is the irregularity factor controlling the degree of the irregularity

In this standard patch test, the linear displacements are prescribed on all four outside boundaries
by the linear functions of u¼ x and v¼ y. The material parameters of the patch are E¼ 1.0 and
n¼ 0.25, and the plane stress problem is considered. Satisfaction of the patch test requires that the
displacements obtained by a numerical method at any interior point match those calculated using
the same linear functions, the strains and stresses are constant in the entire patch.

8.2.3.1 Effect of Shape Parameters

As seen in Chapter 2, the radial basis functions have shape parameters that can affect the
performance of a numerical method. We therefore first investigate the effects of the shape
parameters ac and q in the MQ-RBF. In this investigation, regularly distributed nodes and
support domains of as¼ 2.5 are used. First, we fix the value of the parameter q at 0.5, 1.03,
and 1.3, and then have parameter ac, which varies from �100 to 10. The relative errors of
displacement and energy for the patch test example are computed and plotted in Figure 8.44.
It is observed that the errors in both displacement and energy are in the order of 10�14 and
is about the machine accuracy when the parameter ac< 1.0 for q¼ 0.5, 1.03, and 1.3.
We now fix ac at 0.1, 1.0, and 4.0, vary q from 0 to 2.0, and the relative errors of the
displacement and energy are computed and plotted in Figure 8.45. It is observed again
that the accuracy in displacement and energy is very stable except in the vicinity of the
singular point (where q is an integer). The accuracy is much higher and is in the order of
10�14 for smaller parameter ac¼ 0.1 and 1.0. However, it is of the order of 10�11 when
ac¼ 4.0 is used.

The results suggest that the shape parameter of the MQ-RBF should be: ac � 0.25
and 0.2< q< 0.8 and 1.2< q< 1.8. In the following computations, ac¼ 0.1 and q¼ 0.5 are
thus used.

FIGURE 8.44
The effect of shape parameter ac in MQ-RBF on
the relative error in the standard patch tests
using NS-RPIM with regular nodes. The dimen-
sion of the support domain is as¼ 2.5.
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8.2.3.2 Effect of the Dimension of the Support Domain

In this study, we computed relative displacement and energy errors in the patch test
and plotted in Figure 8.46 using regular nodes but different dimensions of the support
domain as from 1.5 to 4.0. It is shown that the relative displacement and energy accuracy
of the NS-RPIM is very stable with the order of 10�14, regardless of the size of the support
domains. This implies that passing the standard patch test does not depend on the size of
the support domain, and hence more nodes for interpolation does not necessarily help to
improve the accuracy because the results are already in the range of machine accuracy.
This finding implies, in a way, that the NS-RPIM is very stable.

8.2.3.3 Effect of the Irregularity of a Nodal Distribution

We now fix the nodal support domain at as¼ 2.5, and compute relative displacement and
energy errors for varying irregularity factor air for the interior nodes in the patch. The
results are plotted in Figure 8.47. It is clearly shown that the accuracy of both displacement
and energy of the NS-RPIM is very stable against the nodal irregularity. We in fact observe
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FIGURE 8.45
The effect of shape parameter q inMQ-RBF on
the relative error in the standard patch tests
using NS-RPIM with regular nodes. The
dimension of the support domain is as¼ 2.5.
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FIGURE 8.46
The effect of support domain size as on
the relative error in the standard patch
tests using NS-RPIM with regular nodes
(ac¼ 0.1, q¼ 0.5, air¼ 0).
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a drop in error when the nodes get more irregular. For irregular nodal distribution, the
displacement accuracy of the NS-RPIM is almost the same as its energy accuracy and of
the order of 10�15. This finding shows the robustness of the NS-RPIM against the nodal
irregularity.

Example 8.13: Rectangular Cantilever

The NS-RPIM is next benchmarked using Example 6.2 again. The material properties and
other parameters are taken as E¼ 3.0� 104 MPa, n¼ 0.25, D¼ 1 m, L¼ 8 m, and P¼�1000 kN.
Figure 8.48 shows the nodal distribution and its corresponding Voronoi diagrams for both regular
and irregular node distributions.

FIGURE 8.47
The effect of nodal irregularity factor air

on the relative error in the standard patch
tests using NS-RPIM with regular nodes
(ac¼ 0.1, q¼ 0.5, as¼ 2.5).
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FIGURE 8.48
A rectangular cantilever with 451 field nodes and Voronoi diagrams: (a) regular; and (b) irregular (air¼ 0.4).
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Figure 8.49 plots the solution error in displacement norm against the nodal spacing. Both
regular and irregular (air¼ 0.2) nodes are used with as¼ 2.5. It is found that the convergence
and rates in the displacement norm are not affected by the nodal irregularity, and a numerical rate
of 1.9 is achieved for both cases, which is very close to the theoretical value of 2.0 (see Section
3.5). Figure 8.50 plots the solution error in energy norm against the nodal spacing. A very high
convergence rate of 1.9 is obtained for the case of regular node distribution, which is even more
higher than the ideal theoretical rate of 1.5. For the case of irregular node distribution, the rate is
1.3 and still very close to the ideal theoretical rate. We observe clearly the superconvergence of
NS-RPIM. It is observed that the convergence and rates in energy norm are affected by the nodal
irregularity, which confirms the theoretical prediction given in Section 3.5.

Example 8.14: Hole in an Infinite Plate

Wenow revisit Example 8.3,withNS-RPIM. The parameters used in this example are listed as follows:

Loading: p¼ 1 MPa

Young’s modulus: E¼ 3.0� 104 MPa

Poisson’s ratio: n¼ 0.25

The radius of the hole: a¼ 0.2 m

Width of the plate: b¼ 1 m
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FIGURE 8.49
Convergence and rates in displacement
norm for the cantilever beam solved
using NS-RPIM with regular and irregu-
lar (air¼ 0.2) nodes (as¼ 2.5).
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FIGURE 8.50
Convergence and rates in energy norm for the
cantilever beam solved using NS-RPIM with
regular and irregular (air¼ 0.2) nodes (as¼ 2.5).
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The background cells, nodal locations, and their Voronoi smoothing domains are plotted in
Figure 8.51. To study the effects of the nodal irregularity, interior nodal coordinates for more
irregular distribution (Figure 8.51a) are computed using the following equation:

x0 ¼ xþ LminrR cos(pru) � air

y0 ¼ y þ LminrR cos(pru) � air

�
(8:26)

where
Lmin is the shortest distance of a node to its neighbor nodes
rR and ru are randomly generated numbers between �1.0 and 1.0 produced by computer
air is the irregularity factor that controls the irregularity

We consider for this problem, the node distributions given in Figure 8.51a (with air¼ 0) as
‘‘regular.’’
Figure 8.52 plots the solution error in displacement norm against the nodal spacing. Both

regular and irregular (air¼ 0.4) nodes are used with as¼ 2.5. It is found that the convergence
and rates in the displacement norm are affected a little by the nodal irregularity, and a numerical
rate of 1.9 is achieved for the regular node case, which is very close to the theoretical value of 2.0.
For the irregular node case a rate of 1.7 is achieved and is still quite close to the theoretical value.
Figure 8.53 plots the solution error in energy norm against the nodal spacing. A convergence rate
of 1.4 is obtained for the case of regular node distribution, which is very close to the ideal
theoretical rate of 1.5. For the case of irregular node distribution, the rate is 1.2, which still
quite close to the ideal theoretical rate. It is observed once again that (1) strong superconvergence
of NS-RPIM, and (2) the convergence and rates in energy norm are affected by the nodal
irregularity, which confirms the theoretical prediction given in Section 3.5.
Figure 8.54 plots the displacement u along x-axis and the displacement v along y-axis, both

obtained using NS-RPIM. In this investigation, two dimensions of the support domain of as¼ 2 and
as¼ 3 are used. It is found that the effects of the size of the support domain are very small, and the
numerical solution agrees well with the analytical one. Figure 8.55 shows the results for stress

(a) (b)

FIGURE 8.51
Node distribution and Voronoi smoothing domains for the quarter model of an infinite plate with a circular hole:
(a) regular (air¼ 0); and (b) irregular (air¼ 0.4).

316 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch8&iName=master.img-022.jpg&w=150&h=150
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch8&iName=master.img-023.jpg&w=149&h=149


–1.25 –1 –0.75
–3

–2.5

–2

–1.5
Regular [1.9]
Irregular [1.7]

Log10(Δx)

Lo
g 1

0(e
rr

or
d)

FIGURE 8.52
Convergence and rates in displacement norm
for the cantilever beam solved using NS-RPIM
with regular and irregular (air¼ 0.2) nodes
(as¼ 2.5).
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FIGURE 8.53
Convergence and rates in energy norm for the
cantilever beam solved using NS-RPIM with
regular and irregular (air¼ 0.2) nodes (as¼ 2.5).
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FIGURE 8.54
Displacement distribution in an infinite plate with a circular hole obtained using NS-RPIM (air¼ 0): (a) u along
x-axis; and (b) v along y-axis.
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components sx along y-axis and sy along x-axis. It is found again that the effects of the size of the
support domain on the stress solution are very small, and the numerical solution agrees well with
the analytical one.

Example 8.15: Semi-Infinite Plane

We next use the NS-RPIM to study the problem of a semi-infinite plane subjected to a uniform
pressure loading over [�a, a], as shown in Figure 8.56a. Plane strain problem is considered, and
the analytical solution of the stress is given by

sx ¼ p
2p

[2(u1 � u2)� sin 2u1 þ sin 2u2]

sy ¼ p
2p

[2(u1 � u2)þ sin 2u1 � sin 2u2]

txy ¼ p
2p

[cos 2u1 � cos 2u2]

(8:27)
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FIGURE 8.55
Stress distribution in an infinite plate with a circular hole obtained using NS-RPIM (air¼ 0): (a) sx along y-axis; and
(b) sy along x-axis.
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FIGURE 8.56
Semi-infinite plane subjected to a uniform pressure: (a) Coordinates and problem setting; and (b) half model
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The analytical solution of displacement for the plane stress is given by

u ¼ p(1� n2)
pE

1� 2n
1� v

[(xþ a)u1 � (x� a)u2]þ 2y ln
r1
r2

� �

v ¼ p(1� n2)
pE

1� 2n
1� v

y(u1 � u2)þ 2ca arctan
1
c


 �� �
þ 2(x� a) ln r2

�

�2(xþ a) ln r1 þ 2a ln [a2(1þ c2)]
�

(8:28)

where
c¼ 100
a¼ 0.2 m
ca is the distance from the origin to point O’ and is fixed at 5a

Due to the symmetry, we model only half of the domain with dimension of 5a� 5a. On the
boundary of symmetry (v¼ 0), the displacement in the x-direction is fixed. At the bottom of
the domain (y¼�1), the displacements are fixed with prescribed values obtained using Equation
8.28, as shown in Figure 8.56b. On the right boundary (x¼ 1) the tractions are specified
with values computed using Equation 8.27. Material parameters used in computation are
E¼ 100 MPa and n¼ 0.3. The Voronoi smoothing domains in semi-infinite plane are shown in
Figure 8.57. The dimensions of the support domain used are as¼ 2.0 and as¼ 3.0.

Figure 8.58a plots the solution error in displacement norm against the nodal spacing
with as¼ 2.0 and 3.0. In this investigation, the node distribution shown in Figure 8.57a is
used. It is found that the convergence and rates in the displacement norm are affected a
little by the nodal irregularity, and a numerical rates of 1.7 and 1.8 are achieved, respect-
ively, for as¼ 2.0 and 3.0, which are very close to the theoretical value of 2.0. Figure 8.58b
plots the solution error in energy norm against the nodal spacing. Convergence rates of 0.9
is obtained for both the cases. It is observed that the convergence and rates in energy norm
are affected by the size of the support domains.

(a) (b)

FIGURE 8.57
Voronoi smoothing domains for the semi-infinite plane: (a) air¼ 0; and (b) air¼ 0.4.
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Figure 8.59 plots the displacement distribution along the surface of the semi-infinite
plane obtained using NS-RPIM with node distribution shown in Figure 8.57a (air¼ 0) and
Figure 8.57b (air¼ 0.4). The dimension of the support domain is as¼ 2.5. It is found that the
effects of the nodal regularity are very small and almost indistinguishable, and the
numerical solution agrees well with the analytical one.

Figure 8.60 plots the results for stress components, and sxx and sxy are the diagonal line
(O–B) of the semi-infinite plane. It is found that the effects of the nodal regularity are very
small and almost negligible for this case, and the numerical solution agrees well with the
analytical solutions.

Example 8.16: Triangular 2D Solid with a Heart-Shaped Hole

Finally, to examine the capability of NS-RPIM for problems with very complicated geometry, we
artificially created a problem of a triangular 2D solid with a heart-shaped hole subjected to a
uniform pressure of p¼ 1.0MPa on the inclined right edge, as shown in Figure 8.61. Plane stress
problem is considered, and the material constants of E¼ 104MPa and n¼ 0.25 are used in
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Convergence and rates in displacement norm for the cantilever beam solved using NS-RPIM with regular (air¼ 0)
node distributions: (a) displacement norm; and (b) energy norm.
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computation. The nodal distribution (962 nodes) and Voronoi smoothing domains are shown
in Figure 8.62. Since there is no analytical solution for this problem, a reference solution is obtained
using FEM software ABAQUS1 with a large number of (8140) nodes for comparison purpose.

In this study, three dimensions of the support domain are used: as¼ 1.5, 2.5, and 3.5.
Figure 8.63 plots the effect of the dimension of the support domains on the distribution of
displacement u along free boundary (A–C) of the solid obtained using NS-RPIM together
with the FEM of very fine mesh. It is found that the results agree very well and are almost
indistinguishable from the figure. Figure 8.64 plots the same but for the displacement
component v, which confirms the same finding.

Figure 8.65 plots the distribution of stress sxx along the vertical line (D–C) of the solid
obtained using NS-RPIM together with the FEM of very fine mesh. The dimensions of the
support domain are as¼ 1.5, 2.5, and 3.5. Figure 8.66 plots the same but for stress syy. It is
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FIGURE 8.60
Stress distribution along the diagonal line (O–B) of the semi-infinite plane obtained using NS-RPIM with as¼ 2.5
and both regular (air¼ 0)and irregular (air¼ 0.4) node distributions: (a) sxx; (b) sxy.
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FIGURE 8.62
Voronoi smoothing domains for the triangular
2D solid with a heart-shaped hole.

FIGURE 8.63
Effect of the dimension of the support
domains on displacement u along free
boundary (A–C) of the triangular plate
with a heart-shaped hole obtained using
NS-RPIM and FEM with very fine mesh.
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FIGURE 8.64
Effect of the nodal spacing on displace-
ment v along free boundary (A–C) of the
triangular plate with a heart-shaped hole
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very fine mesh.
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found that the NS-RPIM results agree very well with that of FEM in areas away from the
singularity point D. Near the singularity point, significant differences are observed. For
NS-RPIM to obtain better results, more nodes are required. Note that the FEM model
uses about eight times more nodes than the NS-RPIM. For problems with singularity a
better approach is to use adaptive analysis, and even better together with shape functions
with singularity terms.

8.2.4 Concluding Remarks

In this section, we studied NS-RPIM and found it very stable with lot of freedom in
working with irregularly distributed nodes. The results are very accurate and supercon-
vergence have also been observed. Owing to this excellent stability and accuracy,
the NS-RPIM has also been applied to nonlinear problems such as contact problems.
Interested readers may refer to [11].
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FIGURE 8.65
Distribution of stress component sxx along the vertical
line (D–C)of the triangular platewith aheart-shapedhole
obtained using NS-RPIM and FEMwith very fine mesh.
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8.3 Upper-Bound Properties of NS-PIM and NS-RPIM

8.3.1 Background

It is well known that the FEM [18,25] provides a lower bound in energy norm for the exact
solution to elasticity (force driving) problems. It is, however, much more difficult to bound
the solution from above for complicated problems, and it has been a dream ofmany decades
to find a general systematical way to obtain an upper bound of the exact solution for
complicated practical problems. It has been discovered recently that NS-PIM and NS-RPIM
can provide an upper-bound solution in energy norm for elasticity problems, except a few
trivial cases. The theorem on this issue has been presented in Chapters 4 and 5. This section
discuss the upper-bound property of both NS-PIM and NS-RPIM, and demonstrates the
upper-bound property of NS-PIM and NS-RPIM through a number of numerical examples.
Using the NS-PIM or NS-RPIM together with the FEM, we now have a systematic way to
numerically obtain both upper and lower bounds of the exact solution to elasticity problems,
using the same mesh. The problem can be very complicated, as long as a FEM triangular
mesh can be built. As the theoretical fundamentals for both NS-PIM and NS-RPIM are
largely the same, our discussion will mainly focus on the NS-PIM.

8.3.2 Some Properties of FEM Model

Our discussion in this section is often conducted in comparison with the FEM model. For
the convenience of our discussions, we first list some of the related properties of the fully
compatible FEM models (see Remark 5.1).

Remark 8.3: Lower-Bound Property of FEM Model
The strain energy obtained from the FEM solution to a force driving problem based on
assumed displacements that are fully compatible is a lower bound of the exact strain
energy. This well-known property can be easily shown in the following.

The strain energy obtained from the FEM solution can be written as

~U(~d) ¼
ð
V

1
2
~«TD~«dV ¼ 1

2
~dT ~K~d (8:29)

Let the exact strain energy be defined as

U ¼
ð
V

1
2
«TD«dV (8:30)

where « is the exact solution of strains of the problem, which relates to the exact solution of
displacement u in the form of «¼Ldu. The exact solution satisfies the strong form equations
given in Section 1.2 and traction and homogenous displacement boundary conditions.

For an FEM solution based on assumed displacement that is fully compatible, the total
potential energy at the stationary point can be written as

~J(~d) ¼ 1
2
~dT ~K~d� ~dT ~f|{z}

~K~d

¼ � 1
2
~dT ~K~d ¼ � ~U(~d) (8:31)
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As the FEM solution of a compatible model is based on the minimum total potential energy
principle, we have

~J ¼ � ~U � J0 ¼ �U0 (8:32)

or

~U ~«ð Þ � U «ð Þ (8:33)

which means that the strain energy obtained from an FEM solution is a lower bound of the
exact solution of strain energy. &

Remark 8.3 implies that the strain energy obtained from the displacement-based fully
compatible FEM solution is always an underestimate of the exact strain energy, and the
displacement is always a lower bound of the exact solution in the ‘‘K norm’’ (or strain
energy). The lower-bound property of FEM is valid for all types of elements as long as the
model is fully compatible. In this section, however, we refer only linear triangular elements
(that is fully compatible) when FEM is used.

8.3.3 Properties of NS-PIM Model

Remark 8.4: Upper Bound to FEM Model
When the same mesh and shape functions are used, the strain energy obtained from the
NS-PIM solution is no less than that from the fully compatible FEM solution.

1
2
�UT �K�U|fflfflfflffl{zfflfflfflffl}
�U(�U)

� 1
2
~UT ~K~U|fflfflfflffl{zfflfflfflffl}
~U(~U)

(8:34)

This inequality is essentially the same as that given in Theorem 5.6, except that here it is
expressed in terms of a solution of nodal displacements U. It was first presented and
proven in [13]. An alternative proof based on variational formulation can be found in [27].

The equality is true when NS-PIM and FEM produce the exact solutions or the smooth-
ing operation is performed independently for each individual part of the elements con-
necting to the node and hence the node-based smoothing has no effect.

Remark 8.5: Upper Bound to Exact Solution
Liu and coworkers have found that for force driving problems, not only �U �Uð Þ � ~U ~U

� �
but also �U �Uð Þ � U(«) � ~U ~U

� �
is true except for a few trivial cases. This means that the

solution of an NS-PIM gives the upper bound of the exact solution in energy norm. This
is discussed in Remark 5.13. Here we further discuss these exceptional cases for NS-PIM
(or NS-RPIM) models, based on the argument of ‘‘the battle of softening and stiffening
effects’’ [13,27].
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Remark 8.6: The Battle of Softening and Stiffening Effects
The NS-PIM is a typical GS-Galerkin model based on G space theory. Remark 5.12 states
that a GS-Galerkin model can produce an upper-bound solution by performing a proper
smoothing operation. A NS-PIMmodel performs smoothing operation based on nodes and
is often found capable of producing sufficient effects.

Remark 5.11 shows that an NS-PIM model can always provide an upper bound for the
exact solution in energy norm, under the condition that the shape functions corresponding
to the exact solution are used. For a general problem, however, finding the exact shape
functions is not possible. Therefore, the NS-PIM can only use the usual PIM shape functions
(or FEM shape functions). The use of any (compatible) shape functions in the place of the
exact shape functions will cause, on the other hand, stiffening effects to themodel. The battle
between the softening and stiffening effects will determine whether a NS-PIMmodel can in
fact provide an upper-bound solution to the problem.

Remark 8.7: Factors Affecting the Softening Effect
a. The number of elements that are connected to a node of a smoothing domain: the

more the elements, the more the smoothing effects. In an extreme case, if the smooth-
ing domain is defined for each (linear) element to perform the smoothing operation,
therewill be no softening effect at all. In this case theNS-PIMand FEMgives the same
results, and the NS-PIM will not provide an upper-bound, but a lower-bound solu-
tion. Note that in an NS-PIM setting, the smoothing domains are tied together with
the nodes.

b. The number of nodes being smoothed in the problem domain. In theory, one does
not have to perform the smoothing operation for all the nodes. The softening effect
will proportionally depend on the number of nodes that participated in the
smoothing operation.

c. The dimension of the smoothing domain. In NS-PIM, the smoothing domains are
usually ‘‘seamless,’’ meaning that it is constructed in such a way that there is no
gap and overlap in between the neighboring smoothing domains. If, however,
one chooses to use a smaller or larger smoothing domain, the method will still
work (as a mixed model) but the bound properties will change. In general, the
softening effect will reduce, when the dimension of the smoothing domain is
reduced. Example 8.17 will demonstrate such changes in the smoothing effect
when the smoothing domain changes.

d. The number of nodes used in the problem domain. When a small number of
nodes are used, the displacements approximated using PIM shape functions in
a smoothing domain is far from the exact solution, resulting in a heavy smooth-
ing to the strain field, and hence a strong softening effect. On the other hand,
when a large number of nodes are used, the displacements approximated
using the PIM shape functions in a smoothing domain is closer to the exact
solution, resulting in less smoothing effects, and hence less softening effect. At
the extreme, if infinitely small elements are used, the smoothing effects will
diminish and the NS-PIM solution (also the FEM solution) will approach the
exact solution.
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Remark 8.8: Factors Affecting the Stiffening Effect
a. The stiffening effect depends on the order of the PIM shape functions used in the

displacement approximation. When high-order PIM shape functions are used, the
displacements approximated using the PIM shape functions in a smoothing
domain is usually closer to the exact solution, which reduces the stiffening effect,
and vice versa.

b. The stiffening effect depends on the number of nodes used in the problem domain.
When a small number of nodes are used, the displacements approximated using
the PIM shape functions in a smoothing domain is far from the exact solution, the
stiffening effect is therefore small, and vice versa. At the extreme of infinitely small
elements are used, the stiffening effects will diminish and the NS-PIM solution
(also the FEM solution) will approach the exact solution.

Generally, the softening effect provided by the smoothing operation is found more signifi-
cant than the stiffening effects in the NS-PIM setting. Therefore, the NS-PIM always
produces an upper-bound solution for 1D, 2D, and 3D solids, except the following few
special cases.

Remark 8.9: Upper Bound: A Few Exceptions
a. Too few cells are used. In an extreme case, when only one cell with linear

interpolation is used, only one cell with constant strain participates in smoothing.
In this case there should be no smoothing effects at all, and hence the solutions of
NS-PIM and FEM are the same, and NS-PIM gives a lower-bound solution. In
order to obtain sufficient smoothing effects to produce upper-bound solutions, the
number of cells should not be too small.

b. Hanging elements are used in a model with small number of elements. As shown
in Figure 8.67, there are three hanging triangular elements attached to the domain,
and hence at the corner nodes of these three elements only one element for each
node can participate in the smoothing. In such a case, there is no smoothing effect
at all for these three smoothing domains. Note that such hanging elements are not

1 2 

3 

FIGURE 8.67
Hanging elements in 2D domains: smoothing operation on
nodes 1, 2, and 3 has no effects.
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supposed to be used even in the FEM model, as the stress there is zero when the
nodes are free, which is equivalent to removing the entire corner elements!
A similar situation can occur for elements on the two ends of a 1D domain.

In our numerical study, we found that NS-PIM can produce upper-bound solutions for
all the problems we have studied, except the very special cases mentioned above.

Note that the discussions on NS-PIM are largely applicable to NS-RPIM, as they all share
the same theoretical background, and the difference is only in the shape function used.
Therefore, we will omit the detailed discussions on upper- bound properties of NS-RPIM,
and refer the reader to paper [12] for more discussions.

In the following pages we will present a number of examples that confirm the properties
of both the NS-PIM and NS-RPIM with a focus on the important upper- bound property.

8.3.4 Examples: Upper Bound and Convergence

Example 8.17: A 1D Bar Problem

Consider first a very simple problem of a bar with length l and of uniform cross-sectional area A.
As shown in Figure 8.68, the bar is fixed at the left end and subjected to a uniform body force b.
The parameters are taken as l¼ 1 m, A¼ 1 m2, B¼ 1 N=m, and E¼ 1 Pa. Governing equation
and boundary conditions are as follows:

E
d2u
dx2

þ 1 ¼ 0 (8:35)

u(x ¼ 0) ¼ 0

s(x ¼ 1) ¼ 0
(8:36)

The analytical solution that satisfies the above equations is obtained as

u(x) ¼ � 1
2E

x2 þ 1
E
x (8:37)

The exact strain energy of the problem can be calculated as follows:

U(u) ¼ 1
2

ð
l

«TE«dl ¼ 1
6E

(8:38)

Although the problem is very simple, probably the simplest, it is very useful to show some of the
important properties of NS-PIMs.

FIGURE 8.68
One-dimensional bar of uniform cross-sectional
area A subjected to a uniformly distributed
body force b along the x-axis.

x 
b 
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To start, the effect of the dimension of smoothing domain is studied using this simple 1D
problem. As shown in Figure 8.69, the problem domain of the bar is presented using
three nodes: node 1 located at the left end, node 2 located at the midpoint of the problem
domain, and node 3 located at the right end. Cells (1) and (2) are two background cells.
In usual NS-PIM settings, the smoothing (domain) length for node 2 is obtained by connect-
ing the midpoints of cell (1) and cell (2), which is l=2, and the lengths of the two smoothing
domains for two end-nodes is l=4. Since we use linear interpolation based on each of these
two cells, the strain is constant in each of the cells. Therefore, smoothing operations of nodes
1 and 3 have no effect and hence no need to perform. We now intentionally change the
dimension of the smoothing length for node 2 by allowing the smoothing domain to shrink
or stretch beyond the midpoints of the two cells, so that we can study the effect of the
smoothing domain length on the strain energy of the NS-PIM solution.

Figure 8.69 plots the strain energy of the solution of the NS-PIM model for different
smoothing domain length. It is found that the strain energy increases with the increase of
the smoothing length that is measured as the ratio between the smoothing domain
length of node 2 and the entire problem domain length l. When the smoothing length
reduces to zero, the NS-PIM model becomes the FEM model of two elements with three
nodes, which gives the lower-bound solution. When the ratio of the smoothing length
increases to about 0.43, the NS-PIM solution of strain energy is larger than that to the
exact solution: an upper-bound solution. Increase the smoothing domain further to 0.9, the
NS-PIM model becomes very soft and the strain energy is very much higher than the exact
one. This shows that one can in fact make the NS-PIM model as softer as we want by
reducing the number but increasing the dimension of smoothing domain, which confirms
Remark 5.12. The finding of this example also supports the discussions given in Remark 8.7.
If we stretch the smoothing domain even further to the entire problem (equivalent to using
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FIGURE 8.69
The effect of the length of the smoothing domain for 1D problem.
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only one smoothing cell), the system matrix will become singular and the model becomes
unstable, which confirms our theory on the minimum number of smoothing domains.
From Table 3.1, we know that we need at least two smoothing domains for this 1D problem
with two nodal degrees of freedoms (DOFs) for a stable GS-Galerkin model. In this book we
will not discuss further about the smoothing domain size effects, and focus our discussion
only on NS-PIM and NS-RPIM using seamless smoothing domains.

Next, for the same 1D problem we study the convergence issues, by increasing the
number of nodes and examine the properties of the solutions of NS-PIM, NS-RPIM
together with the FEM using exactly the same meshes. Six models of different numbers
of uniformly distributed nodes are used with usual smoothing domains. The computed
values of strain energy of the solution are plotted in Figure 8.70 against the number of
nodes used together with the exact solution. It can be found that, NS-PIM and NS-RPIM
produce the same results as FEM when only two nodes are used. In this case, two
smoothing domains are used for, respectively, the two field nodes at the two ends of the
bar, hence the smoothing has no effect at all to the problem, and the solution is the same as
the FEM giving a lower bound (see, Remark 8.9a). When the number of nodes is bigger
than 2, the smoothing takes effect, and the NS-PIM provides an upper-bound solution.
With the increase of the number of nodes, the FEM solution approaches from below to the
exact solution monotonically. NS-PIM and NS-RPIM solutions, however, approaches from
above to the exact solution monotonically, due to the fact that the smoothing effects in the
NS-PIM and NS-RPIM reduce as the displacement field approaches to the exact solution.
These findings confirm Remark 8.5 on NS-PIMs models. This simple 1D example showed
for the first time, clearly, the very important fact that we now can bound the exact solution
from both sides. It is also noted that the upper bound provided by the NS-RPIM is much
tighter than that provided by the NS-PIM. This is due to the higher order RPIM shape
functions used in the NS-RPIM that reduces both the softening and stiffening effects
pushing the solution closer to the exact one.
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FIGURE 8.70
Upper-bound solution obtained using the linear NS-PIM and linear NS-RPIM for the 1D bar problem. The lower-
bound solution is obtained using the FEM using linear elements of the same meshes.
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Example 8.18: A 2D Problem: Rectangular Cantilever

In this example, we revisit the rectangular cantilever problem but with the focus on the examination
of the upper-bound and convergence properties of the NS-PIM and NS-RPIM, in comparison
with the linear FEM model using the same meshes. The settings, parameters and error norm
definitions for this example problem are exactly the same as those given in Example 8.2. In this
study, we use equally shared smoothing domains for both NS-PIMs. For NS-PIMwe use T3-Scheme
(linear interpolation), and for NS-RPIM we use support domain of as¼ 3.0 and MQ-RBF with shape
parameters of q¼ 1.03 and ac¼ 4.0.
Figure 8.71 shows the convergence status of displacement and energy norm errors against the

average nodal spacing (h) for all the three methods used in this problem, i.e., NS-PIM, NS-RPIM

Log10(h)

Lo
g 1

0(
e e)

(b)
–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

–4.2

–4

–3.8

–3.6

–3.4

–3.2

–3

–2.8

–2.6

FEM (r = 0.94)
NS-PIM(T3) (r = 1.42)
NS-RPIM (r = 1.41)

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

–2.4

–2.2

–2

–1.8

–1.6

–1.4

-

–1.2

–1

–0.8

Lo
g 1

0(
e d

)

Log10(h)(a)

FEM (r = 1.91)
NS-PIM(T3) (r = 1.90)
NS-RPIM (r = 1.89)

FIGURE 8.71
Upper-bound solution obtained using the linear NS-RPIM and linear NS-PIM for the rectangular cantilever.
The lower-bound solution is obtained using the FEM with linear elements of the same meshes.
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and FEM, using uniformly distributed nodes. The exact value of strain energy is calculated using
the analytical solutions of stress components. We can observe the following: (1) both NS-PIM and
NS-RPIM are more accurate than the FEM in both displacement and energy norms; (2) the rate of
convergence in displacement norm is about 1.9 for all three models that is close to the theoretical
value of 2.0; (3) the accuracy of the NS-RPIM is about two times in displacement norm and six
times in energy norm of the FEM; (4) the accuracy of the NS-PIM is about the same in displacement
norm and three times in energy norm of the FEM; (5) convergence rates of about 1.4 are achieved
by both PIM models that is much higher than that of the FEM (0.94), even much higher than the
theoretical value of FEM model (1.0): superconvergence, and very close to the ideal theoretical
value (1.5) for G space theory (see, Section 3.5).
Comparing Figure 8.71 with Figures 8.49 and 8.50 where the Voronoi smoothing domains are

used, we observed for the NS-RPIM that the effects of types of smoothing domains are not very
significant, except very high (1.9) convergence rate for the NS-RPIM using regular Voronoi
smoothing domains. Note that the difference in the shape parameters for the MQ-RBFs may also
play a role.
Figure 8.72 plots the solution convergence process to the exact solution and the bound

properties with the increase of the number of nodes used (DOFs) in all these three models using
exactly the same mesh. It can be observed again that both the NS-RPIM and NS-PIM provide
upper-bound solutions in energy norm, while the FEM gives a lower-bound solution for this 2D
problem. Compared with the NS-PIM, the NS-RPIM provides again a tighter upper bound to the
exact solution.

This benchmark 2D problem has again confirmed the properties of the NS-PIMs based
on G space theory, which have been discussed in the previous sections.
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FIGURE 8.72
Upper-bound solution obtained using the linear NS-RPIM and linear NS-PIM for the rectangular cantilever. The
lower-bound solution is obtained using the FEM with linear elements with the same set of nodes.
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Example 8.19: Hole in an Infinite Plate

Wenow revisit the problemof a circular hole in an infinite plate butwith the focus on the examination
of the upper bound and convergence properties of the NS-PIM and NS-RPIM, in comparison with
the linear FEM. The settings and the parameters for this example problem are the same as those
given in Example 8.3, except the radius of the hole: a¼ 1 and the width of the plate: b¼ 5.
Four models of ‘‘regular’’ nodes distributions with 577, 1330, 2850, and 3578 nodes are used in

this investigation. The convergence rates in both displacement norm and energy norm are showed
in Figure 8.73. Similar conclusion can be drawn as the rectangular cantilever example: all the
three models achieve almost-equal numerical convergence rate of about 1.9 in displacement
norm, superconvergence is observed for both NS-PIMs, but this time NS-PIM outperforms in terms
of energy norm.

–1.1 –1.05 –1 –0.95 –0.9 –0.85 –0.8 –0.75 –0.7 –0.65 –0.6

–1.1 –1.05 –1 –0.95 –0.9 –0.85 –0.8 –0.75 –0.7 –0.65 –0.6

–3.2

–3

–2.8

–2.6

–2.4

–2.2

–2

–5.9

–5.8

–5.7

–5.6

–5.5

–5.4

–5.3

–5.2

–5.1

–5

Lo
g 1

0(
e d

)
Lo

g 1
0(

e e)

Log10(h)

Log10(h)

(a)

(b)

FEM (r = 1.92)
NS-PIM(T3) (r = 1.92)
NS-RPIM (r = 1.86)

FEM (r = 0.95)
NS-PIM(T3) (r = 1.40)
NS-RPIM (r = 1.22)

FIGURE 8.73
Comparison of convergence rates between the linear FEM, NS-PIM, and NS-RPIM for the problem of the 2D
infinite plate with hole: (a) displacement error norm; and (b) energy error norm.
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Figure 8.74 plots the convergence process of strain energy solution obtained using these three
models against the DOFs. It can be observed again that both NS-PIMs provide upper-bound
solutions in energy norm. The NS-RPIM bound is tighter than that of the NS-PIM to the exact
value of strain energy, while FEM gives a lower (and looser) solution bound.

Example 8.20: A 2D Square Solid Subjected to a Uniform Pressure and Body Force

A 2D square plate shown in Figure 8.75 subjected to uniform pressure and body force is now
studied, with the focus on the examination of the upper-bound properties of the NS-PIM
and NS-RPIM. This example is designed to show that the upper-bound properties of both
NS-PIM and NS-RPIM hold even for the presence of the body force in the solid (still force
driving). The plate is constrained on the left, the right, and the bottom edges, and subjected to
uniform unit pressure and a uniformly distributed unit body force of bT¼ {0 �1}. We consider
this problem as a plane stress problem with the following material constants: E¼ 3.0� 107

and n¼ 0.3.
The problem domain is discretized with four models of regular distributions of 41, 145, 545,

and 2113 nodes. As the analytical solution for this problem is not available, a reference solution
is obtained by using the FEM with a very fine mesh (8238 nodes). Figure 8.76 shows
the computed strain energies using three models of NS-PIM, NS-RPIM, and FEM against the
DOF, and it can be observed again that both the NS-PIM and the NS-RPIM give upper-
bound solutions. The upper bound of the NS-RPIM is tighter than that of the NS-PIM. This
example shows that the upper-bound properties hold for problems even when the body force is
present.
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FIGURE 8.74
Upper-bound solutions obtained using NS-PIM and NS-RPIM for the 2D infinite plate with hole. The lower-bound
solution is obtained using the FEM with linear elements with the same set of nodes.
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Example 8.21: A 3D Axletree Base

Finally, linear NS-PIM and FEM are used to solve a 3D practical problem of axletree base to
examine the solution bounds. As shown in Figure 8.77, the axletree base is symmetric about the
y� z plane, fixed in the locations of four lower cylindrical holes and subjected to a uniform
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FIGURE 8.75
A 2D square solid subjected to uniform pressure on
part of the top surface and a uniformly distributed
body force over the entire solid. The solid is con-
strained on left, right, and bottom edges.
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FIGURE 8.76
Upper-bound solutions obtained using NS-PIM and NS-RPIM for the 2D square solid problem; The lower-bound
solution is obtained using the FEM with linear elements of the same mesh.
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pressure of P¼ 100 N=m2 applied on the concave annulus. The material constants used are
E¼ 3.0� 107 Pa and n¼ 0.3.
Four models of 781, 1828, 2566, and 3675 nodes are used in the computation. Values of strain

energy for both FEM and NS-PIM are plotted against the increase of DOFs. As no analytical
solution is available for this problem, a reference solution is obtained using the FEM with a very
fine mesh of 9963 nodes. Figure 8.78 shows the strain energy solution convergence process for
this 3D practical problem with complicated shape. It is found that the NS-PIM has again produced
an upper-bound solution that convergences to the exact solution from above with the increase of
DOFs, while FEM solution converges from below.

FIGURE 8.77
A 3D axletree base.
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FIGURE 8.78
Upper-bound solution in strain energy obtained using the NS-PIM for the 3D axletree base problem; The
lower-bound solution is obtained using the FEM using linear element.
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Note in this example, the reference solution is obtained using FEM, and hence is itself in
fact a lower-bound solution to the exact solution that we do not know. Therefore, the exact
solution in Figure 8.78 should be higher than the reference solution, meaning that it should
be closer to the NS-PIM solution. Similar issues exist for all the problems using FEM with
very fine mesh as a reference solution.

8.3.5 Concluding Remarks

In this section, we studied the upper-bound property of the NS-PIMs for 1D, 2D, and 3D
problems. In summary, some concluding remarks may be made as follows:

. The smoothing operation provides softening effects, and the assumption of dis-
placement introduces stiffening effects to the numerical models.

. When node-based smoothing operations are performed on a numerical model of
assumed displacement, the softening effects are found sufficiently strong leading
to an upper-bound solution to the exact one.

. Both NS-PIM and NS-RPIM can provide upper-bound solutions in energy norm to
force driving elasticity problems with homogenous displacement boundary con-
ditions, except a few trivial cases.

. The upper bound of NS-RPIM solution is found tighter than that of NS-PIM.

Remark 8.10: NS-PIM: A Quasi-Equilibrium Model
The NS-PIM is not a fully compatible model, it is found free of volumetric locking,
produces upper-bound solutions, and there exist spurious modes (see Section 8.4.8) at
higher energy level. This behavior is a typical behavior of an equilibrium model. In fact, at
any point in all these smoothing (open) domains, the equilibrium equations are satisfied in
an NS-PIM model. It is however not an equilibrium model because the stresses right on
these interfaces of the smoothing domains are not in equilibrium. Therefore, it is called a
quasi-equilibrium model.

Remark 8.11: Solution Bounds for General Problems
In this section, we focus our discussion on force-driving problems. For displacement
driving problems (zero external forces but nonzero prescribed displacement on the
essential boundary), we expect the FEM and NS-PIM to swap their roles: NS-PIM gives
the lower bound and FEM gives the upper bound. For general problems with mixed
force and boundary conditions, we can still expect these two models to bound the
exact solution from both sides, although which model is on which side will be problem
dependent.

Remark 8.12: On Solution Bounds
Because we now have a practical means to obtain both upper and lower bounds, we do not
really worry too much about where the exact solution is and use the approximated solution
with confidence. In addition, how fine a mesh we should use can also be determined based
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on the gap (error) of these two bounds. As soon as the error is acceptable for our design
purpose, we stop further refining themodel. This know-where-to-stop requires ‘‘certifying’’
the solution. It is very important because it give us confidence for the solution as well as
prevents the use of unnecessarily large models in design and analysis, resulting in wastes of
computational and manpower resources. The development of practical numerical methods
for producing certified solutions will become more and more important to engineering
design and analysis, and hence techniques that can provide upper-bound solutions like
NS-PIMs are verymuch in demand. This is because of the simple argument that we can even
use hundreds ofmillions of DOFs to solve a problemwith extremely high accuracy, but if we
cannot quantify the error, it is practically useless! On the other hand, when one uses amodel
of only 1000 DOFs to solve the problemwith a certified solution of 10% error, it is in fact much
more useful.

Remark 8.13: Extension to General n-sided Polygonal Cells=Elements
In the above discussions on NS-PIM, we focused on the use of triangular background
cells=elements. However, the same idea can be applied for general n-sided cells=elements,
as shown in Figure 8.79 for FEM settings [14].

Node s 

Cell Ω(s)

Γ(s)

: Mid-edge point: Central point of n-sided polygonal element: Field node

FIGURE 8.79
An example of node-based smoothing domains for a mixed mesh of n-sided polygonal elements used in the
NS-FEM [14].
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8.4 Edge-Based Smoothed Point Interpolation Methods

8.4.1 Background

In the previous sections, we have presented node-based smoothed PIMs (NS-PIM and
NS-RPIM), and examined their properties. These methods are very stable spatially (no
zero-energy modes), work very well for static problems, and have very important upper-
bound and superconvergence property in the strain energy. However, when these methods
are applied to dynamic problems, temporal instability issues have been encountered. Such
an instability issue is often observed at higher energy level as spurious (nonphysical)
nonzero-energy modes in vibration analysis. The cause of such instability is the ‘‘overly
softness’’ introduced by the node-based smoothing operations. The author believes that
any method that has upper-bound property can have spurious modes at a higher energy
level and hence instability for dynamic problems. Therefore, for dynamic analysis of solid
and structures, we need alternatives or special treatments.

In this chapter, we introduce another important method called edge-based smoothed
point interpolation method (ES-PIM) that does not have spurious nonzero energy modes,
and is stable for even for dynamic problems. It is found also that the ES-PIM produce
much more accurate results for static problems compared to NS-PIM and FEM using the
same mesh.

8.4.2 The Idea of ES-PIM

In using the GS-Galerkin weak forms (see Chapter 5), we have additional instruments
to develop a method of desired property: change of the smoothing domains. The node-
based smoothing domain gives the NS-PIM a special upper bound property with a price of
instability for dynamic problems [32]. The ES-PIM overcomes this temporal instability by
simply changing a little in the construction of the smoothing domains. Instead of node-
based smoothing domain, ES-PIM constructs the smoothing domains and performs the
integration based on the edges of the elements=cells. The smoothing domain of an edge is
created by connecting the nodes at the two ends of the edge to the two centroids of the two
adjacent triangular cells. The edge-based smoothing domain provides some softening
effect that improves the accuracy of the solution, but not so much softening effect as to
avoid temporal instability. The detailed formulation is given in the following sections.

8.4.3 Approximation of Displacement Field

In an ES-PIM, the problem domainV is divided into a set of Ne background triangular cells
with a set of Ncg edges and Nn nodes at the vertices of the triangular cells using triangu-
lation described in Section 1.7.2, as in the NS-PIMs. The selection of nodes for displacement
field interpolation and the construction of the shape function are performed exactly in the
same way as in the NS-PIMs. We can also use either PIM or RPIM shape functions and
hence ES-PIM and ES-RPIM formulations.

8.4.4 Construction for Edge-Based Smoothing Domains

Based on these triangular cells, the problem domain V is further divided into Ns smoothing
domains associated with edges (sides) in a seamless and nonoverlapping manner, such
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that V ¼ [Ns
i¼1V

s
i and Vs

i \Vs
j ¼ 0, 8i 6¼ j. The total number of smoothing domain is the

total number of edges of triangular cells in the entire problem domain: Ns¼Ncg. The
smoothing domain Vs

i associated with the edge i is created by connecting the nodes at
the ends of the edge to the two centroids of the two adjacent elements as shown in Figure
8.80a. Clearly such a division of smoothing domains is ‘‘legal’’ and satisfies the conditions
given in Section 3.3.3. In an ES-PIMs, we assume also the strain is constant in each smoothing
domain and hence the smoothing domain is stationary, and the G space theory applies.

8.4.5 Evaluation of Smoothed Strains

The strain in a smoothing domain is constant and is obtained via Gauss integration along
these four segments ( jO, Om, mH, and Hj) of the smoothing domain boundary Gs

k, as
shown in Figure 8.80b. For linear interpolations, one gp sample at the middle of each
segment suffices. The shape function values at all these Gauss points can be written out
immediately using simple point interpolation, and are listed in Table 8.4. In this case there
is no need to even create the shape functions. These shape function values listed in
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FIGURE 8.80
Triangular background triangular cells and the smoothing domains associated with the edges of the cells.
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Table 8.4 are directly fed into Equation 8.7 to compute the entries for the smoothed strain
matrix. Finally the smoothed strains are computed using Equations 8.4 and 8.8. The
process is exactly the same as that in the NS-PIM. If quadratic PIM shape functions are
used, the smoothed strain can be obtained in exactly the same way, except that we need to
compute the shape function values numerically using Equation 8.3 with edge-based
smoothing domains. When the smoothing domain is on the boundary of problem domain,
we have only two segments to evaluate for the smoothed strains.

Once the smoothed strain is obtained, the GS-Galerkin can then be used to create the
discretized system equations for our ES-PIM model, in exactly the same ways as in the
NS-PIM. The ES-PIM model will always be spatially stable as long as the material is stable,
based on the theories of space and the weakened-weak formulation.

Note that the ES-PIM works also for meshes of general polygonal elements as shown in
Figure 8.81. The detailed procedure to evaluate the shape function values for such meshes
can be found in Ref. [49].

Remark 8.14: Small Support Nodes for a Smoothing Domain: Efficiency for ES-PIM
Note in the ES-PIM formulation, the nodalDOFs for all the nodes ‘‘supporting’’ the smoothing
domain of an edge will be related. For 2D cases, an edge-based smoothing domain is
supported by three to four nodes. Because the bandwidth of K will be determined by the
largest difference of node numbers of the nodes of all the triangular cells connected directly
to the edge, it is clear that the bandwidth of a ES-PIMmodel will be smaller (about two times)
than that of anNS-PIMmodel, but larger (about 1.5 times) than that of a linear FEM that is the
smallest for the all possible numericalmodels (a triangular element involves only three nodes).
In the EFG, an integration cell is supported by about 15–40 nodes (for ensuring the compati-
bility), therefore the bandwidth of an EFG model is roughly about 5–10 times that of an
ES-PIM model. The efficiency of the ES-PIM is quite obvious from this rough analysis.
Of course, we have not yet taken the solution accuracy into account.

We note that the idea of such an ES-PIM model can also be applied to general n-sided
polygonal cells as shown in Figure 8.81. In this section however we focus on triangular
background cells because (1) such cells can be generated much more easily in automatic
ways for complicated geometry, and (2) ES-PIM models based on triangular cells work
very well.

TABLE 8.4

Shape Function Values at Different Sites for Two Cells Sharing the Edge

Site Node i Node j Node m Node n Description

i 1.0 0 0 0 Field node

j 0 1.0 0 0 Field node

m 0 0 1.0 0 Field node

n 0 0 0 1.0 Field node

O 1=3 1=3 1=3 0 Centroid of cell

H 1=3 0 1=3 1=3 Centroid of cell
gp1 2=3 1=6 1=6 0 Mid-segment of Gs

k

gp2 1=6 1=6 2=3 0 Mid-segment of Gs
k

gp3 1=6 0 2=3 1=6 Mid-segment of Gs
k

gp4 2=3 0 1=6 1=6 Mid-segment of Gs
k
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8.4.6 ES-PIM Formulation for Dynamic Problems

After the smoothing domains are constructed, the rest of the formulation is exactly the same
as the NS-PIM. Using the GS-Galerkin weak form Equation 8.1, and invoking the arbitrari-
ness of virtual nodal displacements, yields the discretized algebraic system equation.

�K�Uþ C _�UþM€�U ¼ F (8:39)

where vector of nodal displacements �U and the stiffness matrix �K and force vector F have
the same form as those in Equation 8.9, but �U and F can be now a function of time. Matrix
M is mass matrix; C is the damping matrix that are assembled using the following entries:

mIJ ¼
ð
V

FT
I rFJdV (8:40)

cIJ ¼
ð
V

FT
I cFJdV (8:41)

where
r is the mass density
c is the damping parameter

Note that the computation of theM, C, and F are basically the same as we do in the FEM,
and no smoothing operation is applied.
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FIGURE 8.81
Possible edge-based smoothing domains for other meshes of n-sided polygonal cells [49].
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8.4.6.1 Static Analysis

For static problems, the equation can be obtained simply by removing the dynamic term in
Equation 8.39:

�K�d ¼ F (8:42)

The solution procedure is exactly the same as in NS-PIM or FEM.

8.4.6.2 Free Vibration Analysis

For free vibration analysis, we do not consider the damping and the force terms, and hence
Equation 8.39 reduces to

�K�UþM€�U ¼ 0 (8:43)

A general solution of such an equation can be written as

�U ¼ �UA exp ivtð Þ (8:44)

where
t indicates time
�UA is the amplitude of the nodal displacement or the eigenvector
v is the natural frequency that is found from

(�v2Mþ �K)�UA ¼ 0 (8:45)

8.4.6.3 Forced Vibration Analysis

For forced vibration analysis, Equation 8.39 can be solved by direct integration methods in
the same way as in the FEM. For simplicity, the Rayleigh damping is considered in this
chapter, and the damping matrix �C is assumed to be a linear combination of M and �K,

�C ¼ aMþ b�K (8:46)

where a and b are the Rayleigh damping coefficients.
Many direct integration schemes can be used to solve the second-order time-dependent

problems, Equation 8.39, such as the Newmark method, Crank–Nicholson method, etc.
[18,25]. In this chapter, the Newmark method is used (see Section 7.2.6).

8.4.7 Examples of Static Problems

A code of ES-PIMs using triangular cells has been developed, and it is examined
using the following examples. ES-PIM models include ES-PIM with T3-Scheme, ES-PIM
with T6=3-Scheme, ES-RPIM with T6-Scheme, and ES-RPIM with T2L-Scheme. Note
that the ES-PIM with T3-Scheme is essentially the same as the ES-FEM using triangular
elements [46].
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Example 8.22: 2D Patch Test

A square patch with dimension of 1� 1 discretized using 214 irregularly distributed nodes, as
shown in Figure 8.82, is studied using the ES-PIM with various point interpolation schemes:
The displacements are prescribed on all the boundaries using Equation 8.14.
Table 8.5 lists the displacement norm errors defined in Equation 8.12 of numerical results of the

standard patch tests obtained using the ES-PIM models. It is shown that all the four ES-PIM models
can pass the patch tests to machine accuracy, including the compatible and incompatible ones.
This implies all the models are capable of reproducing linear displacement fields ‘‘exactly.’’ This is
a numerical ‘‘proof’’ that the weakened-weak formulation based on the G space theory ensures
the second order convergence of both compatible and incompatible methods, as long as the
displacement function is from a G

I
h space. Note that to impose the linear essential boundary

conditions exactly along the problem boundaries, linear interpolations should always be used for
the points located on the patch boundaries.

FIGURE 8.82
Patch of unique square discretized with
214 irregularly distributed nodes for the
standard patch test. 0 0.2 0.4 0.6 0.8 1
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TABLE 8.5

Error in Displacement Norm for the Standard Patch
Using ES-PIM Models

ES-PIM Models Error in Displacement Norm

ES-PIM (T3); compatible 1.7690582E�15

ES-PIM (T6=3); incompatible 2.6089673E�14
ES-RPIM (T6); incompatible 1.6020897E�15

ES-RPIM (T2L); incompatible 2.1726750E�15
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Example 8.23: Rectangular Cantilever

We now revisit Example 8.2 with exactly the same settings with the ES-PIMs together with the
linear FEM using the same triangular background cells=elements. The FEM can serve as a base
model offering a ‘‘bottom line’’: any ES-PIM model that is established based on GS-Galerkin
form is softer than the standard FEM model, which is built based on the standard Galerkin form.
The NS-PIM is also included for comparison because we know it gives an upper-bound solution:
a ‘‘skyline.’’

Figure 8.83 plots the convergence of the solutions in displacement norm for the rectangular
cantilever solved using different methods. The ES-PIMs, together with FEM and NS-PIM, converge
with reducing average nodal spacing (h) at rates ranging from 1.65 to 2.09 which are around
the theoretical value of 2.0 for both the weak and weakened-weak formulations [28]. In terms of
accuracy, except NS-PIM using T3-Scheme obtaining almost the same results as the FEM, all the
other four ES-PIM models obtain about 4–10 times more accurate solutions than the FEM, with
the ES-PIM-T3 giving the best performance. The big solution difference between NS-PIM-T3 and
ES-PIM-T3 demonstrates clearly the significance in constructing different types of smoothing
domains.
Figure 8.84 plots the convergence of the solutions in energy norm for the cantilever problem

solved using these methods. It can be found that NS-PIM and ES-PIMs have better accuracy and
converge faster compared to the FEM. We know that the theoretical convergence rate in energy
norm of linear FEM is 1.0 and the W2 formulation can have an ideal theoretical rate of 1.5. For the
case of cantilever, the numerical convergence rate of FEM is 0.97, which is a little less than
the theoretical one for weak formulation. The convergence rates of all these PIM methods based
on W2 formulation are between 1.02 and 1.5. In terms of both accuracy and convergence rate,
ES-PIM-T6=3 performs better than ES-PIM-T3 and stands out together with ES-RPIM of T6-Scheme
and T2L-Scheme. The solutions of ES-PIM-T6=3, ES-RPIM-T6, and ES-RPIM-T2L are about four
times more accurate than that of the FEM.
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FIGURE 8.83
Convergence of the numerical results in displacement norm for the rectangular cantilever solved using different
methods and same set of irregular triangular mesh.
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A fair comparison should be in the form of computational efficiency. Figure 8.85 plots the errors
in displacement norm against the computational cost (seconds, full matrix solver), which gives
one, such as efficiency measure. Except NS-PIM-T3 that performs a little worse, all these ES-PIMs
are more efficient than the FEM. ES-RPIM-T6 outperforms the ES-RPIM-T2L, and the ES-PIM-T3
performance is the best.
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FIGURE 8.84
Convergence of the numerical results in energy norm for the rectangular cantilever solved using different methods
and the same set of irregular triangular mesh.
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FIGURE 8.85
Comparison of computational efficiency (CPU time in seconds vs. error in displacement norm) between different
methods solving the problem of rectangular cantilever.
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Figure 8.86 plots the computational efficiency in terms of energy norm for all these methods. It is
found that all these ES-PIMs and the NS-PIM are more efficient than the FEM in energy, and ES-RPIM-
T6 outperforms ES-RPIM-T2L. ES-PIM-T6=3 performed best in this energy error norm measure.
Figure 8.87 plots the process of the numerical solutions in strain energy converging to the exact

solution for the cantilever problem solved using different methods. As expected, FEM and NS-PIM
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FIGURE 8.86
Comparison of computational efficiency (CPU time in seconds vs. error in energy norm) between different
methods solving the problem of rectangular cantilever.
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FIGURE 8.87
Solutions in strain energy converging to the exact solution for the rectangular cantilever obtained using different
methods and same set of irregular triangular mesh.
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offer, respectively, the bottom-line and skyline: giving lower and upper bounds. The solutions of
these four ES-PIMmodels fall in between these two lines. ES-PIM of T3-Scheme performs softer than
the FEMbut stiffer than theNS-PIM, and gives lower-bound solution. Aswediscussed in Remark 8.7,
one issue that affects the softness of the model is the order of shape functions used in the displace-
ment approximation: when higher order shape functions are used, the displacements approximated
in a smoothing domain are closer to the exact solution, which reduces the stiffening effect and vice
versa. This argument is supported by the results shown in Figure 8.87 that ES-PIM-T6=3 behaves
softer than ES-PIM-T3, and ES-RPIM-T2L behaves softer than ES-RPIM-T6. This confirms numeric-
ally our analysis on softening effects. We found also that three models, ES-PIMT6=3, ES-RPIM-T6,
and ES-RPIM-T2L have produced upper-bound solutions for this problem.We cannot conclude that
this will be true for other problems, as will be seen in the next example problem.

ES-PIM-T3 produces a lower-bound solution that is very close to the exact solution. This
means that the ES-PIM-T3 is a weakly stiff model with very close-to-exact stiffness.

Example 8.24: Hole in an Infinite Plate

We now revisit Example 8.3 with exactly the same settings except that a¼ 1 and b¼ 5, using the
ES-PIMs together with the linear FEM and NS-PIM using the same meshes of triangular background
cells=elements. The FEM offers a ‘‘bottom line’’ and NS-PIM provides a ‘‘skyline.’’

Figure 8.88 plots the convergence of the solutions in displacement norm obtained using different
methods. For this example, the ES-PIMs converge much faster than the FEM and NS-PIM, and the
rates of convergence range from 2.18 to as high as 3.17 that is far above the theoretical value of 2.0
for both the weak and weakened-weak (W2) formulations. We clearly observe superconvergence
even in displacement norm (see Remark 8.1). In terms of accuracy, all the ES-PIMs are much more
accurate than the FEM andNS-PIM. ES-RPIM-T2L solution is about 10 timesmore accurate than that
of the FEM.
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FIGURE 8.88
Convergence of the numerical results in displacement norm for the problem of an infinite plate with a hole solved
using different methods with the same sets of triangular mesh.
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Figure 8.89 plots the convergence of the solutions in energy norm. It can be found that NS-PIM
and all ES-PIMs have much better accuracy and converge much faster compared to the FEM. Their
convergence rates range from 1.32 to 1.61, which are much higher than the theoretical rate of 1.0
of linear weak formulation, and around the ideal theoretical rate of 1.5 of W2 formulation. We
again observe superconvergence. In terms of accuracy, the ES-RPIM-T2L solution is about three
times more accurate than that of the FEM.
Figure 8.90 plots the computational efficiency in terms of displacement norm. Except NS-PIM-T3

that performs a little worse, all the ES-PIMs are much more efficient than the FEM. ES-RPIM-T2L
performed best followed by ES-RPIM-T6 and ES-PIM-T6=3.

Figure 8.91 plots the computational efficiency in terms of energy norm. It is found that all
ES-PIMs and the NS-PIM are more efficient than the FEM. ES-RPIM-T2L and ES-PIM-T3
performed best.
Figure 8.92 plots the process of the numerical solutions in strain energy converging to the exact

solution for different methods. As expected, FEM and NS-PIM offer, respectively, lower and upper
bounds. The solutions of these four ES-PIM models fall in between the exact solution and the FEM
solution. The ES-RPIM-T2L solution is most accurate for this problem.

Remark 8.15: ES-PIM-T3: An Ideal Candidate for Dynamic Problems
We found again from Example 8.24 that ES-PIM-T3 produces a lower-bound solution that
is very close to the exact solution, as we have already observed from the previous example
of rectangular beam. In fact, our group has not yet found a counter example for this
property of ES-PIM-T3 for all different kinds of problems studied so far. Even if we
found some counter examples in the future and possible existence of spurious modes, it
is likely that these spurious modes can only occur at very high energy level and hence
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FIGURE 8.89
Convergence of the numerical results in energy norm for the problem of an infinite plate with a hole solved using
different methods with the same sets of triangular mesh.
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FIGURE 8.90
Comparison of computational efficiency (CPU time in seconds vs. error in displacement norm) between different
methods solving the problem of an infinite plate with a hole.
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FIGURE 8.91
Comparison of computational efficiency (CPU time in seconds vs. error in energy norm) between different
methods solving the problem of the infinite plate.
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unlikely to lead to significant temporal instability affecting the solution procedure
for dynamic problems. These properties of weakly stiff and close-to-exact stiffness of
ES-PIM-T3 make it an ideal candidate for solving dynamic problems.

Example 8.25: A Mechanical Part: 2D Rim

Finally, we study again Example 8.5: a typical 2D rim of automotive component using the ES-PIMs
together with NS-PIM and FEM. As shown in Figure 8.15a, the rim is restricted along the inner
circle and a uniform pressure of 100 units is applied along the outer arc edge of 608. The rim is
simulated as a plane stress problem using triangular mesh of background cells=elements.

Figure 8.93 plots the process of strain energy solution converging to the reference one. It can be
found again that FEM provides lower bound; NS-PIM provides upper bound; and all these solutions
of ES-PIMs fall in between. All these ES-PIMs and the NS-PIM produce lower solution bounds.

We found again from this example of quite complicated geometry that ES-PIM-T3
produces a lower-bound solution, which is very close to the exact solution: the properties
of weakly stiff and close-to-exact stiffness. This reinforces Remark 8.15: ES-PIM-T3 is an
ideal candidate for solving dynamic problems. In the following examples it will be used to
solve dynamic problems.

8.4.8 Examples of Dynamic Problems

In this section, dynamic problems will be solved using ES-PIM-T3 together with FEM-T3,
FEM-Q4 (four-node quadrilateral elements), and NS-PIM-T3 for comparison purposes.
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FIGURE 8.92
Solutions in strain energy converging to the exact solution for the problem of the infinite plate with a hole obtained
using different methods with the same sets of triangular mesh.
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Example 8.26: A Slender Rectangular Cantilever: Free Vibration

In this example, free vibration analysis is performed for a slender cantilever beamwith L¼ 100mm,
D¼ 10mm, thickness t¼ 1.0mm, Young’smodulus E¼ 2.1� 104 kgf=mm4, Poisson’s ratio n¼ 0.3,
mass density r¼ 8.0� 10�10 kgf s2=mm4. A plane stress problem is considered. Because the
slenderness of the beam, we can use the Euler–Bernoulli beam theory to obtain the fundamental
frequency f1¼ 0.08276� 104 Hz as a reference. Three regular meshes are used in the analysis.
Numerical results using the FEM-Q4 with a very fine mesh (100� 10) for the same problem are
computed and used as reference solutions.
Eigenvalue Equation 8.45 is first established and solved using standard eigenvalue (symmetric)

solvers for eigenvalues that give natural frequencies and eigenvectors that lead to vibration modes.
Table 8.6 lists the first 12 natural frequencies of the cantilever. The first six corresponding vibration
modes obtained using the NS-PIM are plotted in Figure 8.94a together with those using ES-PIM are
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FIGURE 8.93
Solutions in strain energy converging to the exact solution for the 2D rim obtained using different methods with
the same sets of triangular mesh.

TABLE 8.6

First 12 Natural Frequencies (in 10 kHz) of the Slender Cantilever

Model NS-PIM ES-PIM FEM-T3 FEM-Q4 Reference

Mesh: 10� 1 0.0576 0.1048 0.1692 0.0992 0.0824

Nodes: 22 0.3243 0.6018 0.9163 0.5791 0.4944

Elements: 10 Q4 or 20 T3 0.7441 1.2833 1.2869 1.2834 1.2824

0.9875 1.5177 2.1843 1.4830 1.3022

1.0112 2.6362 3.5942 2.6183 2.3663
1.1346 3.7724 3.8338 3.8140 3.6085

1.2783 3.8559 5.0335 3.8824 3.8442

1.5712 5.0349 6.2421 5.1924 4.9674
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plotted in Figure 8.94b. The 7th–12th modes are plotted in Figure 8.95a and b. It is observed
that (1) four nonzero energy spurious modes have been found when coarse mesh is used for
NS-PIM, due to the overly soft behavior; (2) the natural frequencies obtained using FEM-T3 are
much larger than those using ES-PIM, due to the overly stiff behavior of FEM; (3) the ES-PIM
does not have any spurious modes; and (4) the ES-PIM results are, in general, the closest to the
reference solution, and they converge even faster than the FEM-Q4 using the same set of nodes.
Because the natural frequencies can be used as a good indicator for assessing the stiffness of a
model, the above findings confirm again that the ES-PIM model has a very close-to-exact stiffness.

Example 8.27: Free Vibration Analysis of a Shear Wall

We study again Example 7.8, but using ES-PIM, NS-PIM, and FEM models. Two types of meshes
of triangular and quadrilateral elements are used as shown in Figure 8.96. Since there is no

TABLE 8.6 (continued)

First 12 Natural Frequencies (in 10 kHz) of the Slender Cantilever

Model NS-PIM ES-PIM FEM-T3 FEM-Q4 Reference

2.3697 6.0827 6.4154 6.2345 6.3960

3.2685 6.1520 7.5940 6.4846 6.4023

3.7064 7.0519 8.4790 7.7039 7.8853

3.8642 7.7212 8.7033 8.4632 8.9290

Mesh: 20� 2 0.0675 0.0853 0.1117 0.0870 0.0824
Nodes: 63 0.4032 0.5078 0.6539 0.5199 0.4944

Elements: 40 Q4 or 80 T3 1.0518 1.2828 1.2843 1.2830 1.2824

1.2810 1.3246 1.6748 1.3640 1.3022

1.6467 2.3783 2.9554 2.4685 2.3663

1.8786 3.5784 3.8424 3.7477 3.6085

2.7823 3.8298 4.3866 3.8378 3.8442

3.0926 4.8533 5.8836 5.1322 4.9674

3.6783 6.1527 6.3751 6.3585 6.3960
3.8089 6.3182 7.4046 6.5731 6.4023

4.0543 7.4419 8.8210 8.0342 7.8853

4.1605 8.6776 8.9411 8.8187 8.9290

Mesh: 40� 4 0.0778 0.0827 0.0906 0.0835 0.0824

Nodes: 205 0.4654 0.4950 0.5409 0.5004 0.4944

Elements: 160 Q4 or 320 T3 1.2199 1.2826 1.2831 1.2827 1.2824

1.2818 1.3006 1.4161 1.3174 1.3022
1.6689 2.3554 2.5570 2.3926 2.3663

2.2012 3.5778 3.8433 3.6462 3.6085

3.2517 3.8408 3.8786 3.8431 3.8442

3.3270 4.9029 5.3087 5.0150 4.9674

3.8344 6.2867 6.3935 6.3883 6.3960

4.5248 6.3774 6.8093 6.4561 6.4023

4.6406 7.6987 8.3473 7.9398 7.8853

5.3275 8.8751 8.9183 8.9057 8.9290

Note: Underlined are spurious nonzero energy modes.
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exact solution for this problem, reference solutions are obtained using very fine and higher order
FEM-Q8 with 6104 nodes and 1922 elements for comparison.
Table 8.7 lists the first 12 natural frequencies obtained using these methods. Figure 8.97 plots

the first six corresponding vibration modes obtained using NS-PIM, together with those using
ES-PIM. Figure 8.98 plots 7th–12th modes. From this table and figures, it is found that (1) five
nonzero energy spurious modes and two like-hood spurious modes (modes 7 and 9) have been
found in NS-PIM solution, due to the overly soft behavior; (2) the natural frequencies obtained using

FIGURE 8.94
First six free vibration modes of the slen-
der cantilever. (a) NS-PIM, sixth mode is
spurious nonphysical mode; and (b) ES-
PIM, no spurious modes.
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FIGURE 8.95
First 7th–12th free vibration modes of the slender cantilever. (a) NS-PIM, 7th, 11th, and 12th modes are spurious
nonphysical modes; and (b) ES-PIM, no spurious modes.
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FIGURE 8.96
Meshes of three-node triangular and
four-node quadrilateral elements for
the shear wall with the same number
of nodes.

TABLE 8.7

First 12 Natural Frequencies (in rad=s) of the Shear Wall

Model NS-PIM ES-PIM FEM-T3 FEM-Q4
Reference
(FEM-Q8)

Reference
[43]

Nodes: 559 1.8271 2.0499 2.1444 2.0732 2.0107 2.079

Elements: 6.5113 7.0379 7.3185 7.0956 6.9517 7.181

476 Q4 or 952 T3 7.5146 7.6202 7.6506 7.6253 7.6001 7.644

10.1828 11.7432 12.5535 11.9378 11.4706 11.833

13.7334 15.1434 15.9434 15.3407 14.9716 15.947
14.7088 18.2136 18.7625 18.3446 18.0660 18.644

17.0319 19.7139 20.3822 19.8760 19.5809 20.268

17.1035 21.9939 22.6764 22.2099 21.8718 22.765

18.3597 22.7782 23.6401 23.0014 22.6358

18.8903 23.3486 24.1263 23.5515 23.2930

19.4495 25.0519 25.5337 25.1749 25.0178

19.5377 25.8374 26.8452 26.0713 25.8767

Nodes: 2072 1.9351 2.0220 2.0632 2.0318 2.0107 2.079

Elements: 6.7760 6.9762 7.0865 6.9990 6.9517 7.181

1904 Q4 or 3808 T3 7.5658 7.6062 7.6200 7.6089 7.6001 7.644

10.8946 11.5508 11.8795 11.6249 11.4706 11.833

14.4676 15.0190 15.3218 15.0923 14.9716 15.947

15.3242 18.1082 18.3171 18.1577 18.0660 18.644

17.5528 19.6186 19.8617 19.6772 19.5809 20.268

17.8336 21.9076 22.1972 21.9867 21.8718 22.765
19.1518 22.6812 23.0004 22.7590 22.6358

20.5110 23.3083 23.5692 23.3800 23.2930

21.0269 25.0298 25.2055 25.0732 25.0178

21.3027 25.8752 26.2157 25.9562 25.8767

Note: Underlined are spurious nonzero energy modes.

Point Interpolation Methods 355

© 2010 by Taylor and Francis Group, LLC



FEM-T3 are much larger than those using ES-PIM, due to the overly stiff behavior of FEM; (3) the
ES-PIM does not have any spurious modes; (4) the ES-PIM results are the closest to the reference
solution, and evenmore accurate than the FEM-Q4. Because the natural frequencies can be used as
a good indicator on assessing the stiffness of a model, the above findings confirm again that the
ES-PIM model has a very close-to-exact stiffness.

Example 8.28: Free Vibration Analysis of a Connecting Rod

A free vibration analysis of a connecting rod shown in Figure 8.99 is performed. Plane stress
problem is considered with E¼ 10 GPa, n¼ 0.3, r¼ 7.8� 103 kg=m3. The nodes on the left inner
circumference are fixed in two directions. Two types of meshes using triangular (for NS- PIM and
ES-PIM, FEM-T3) and quadrilateral elements (for FEM-Q4, FEM -Q8) are used as shown in Figure
8.100. Numerical results using the FEM-Q4 and FEM-Q8 for the same problem are computed and
used as reference solutions.
From the results given in Table 8.8, it is observed that the ES-PIM gives the comparable

results such as those of the FEM-Q4 using more nodes than the ES-PIM. The first six correspond-
ing vibration modes obtained using NS-PIM are shown in Figure 8.101a, together with those
using ES-PIM shown in Figure 8.101b. The 7th–12th modes are plotted in Figure 8.102. Four
spurious modes and two likelihood instable modes (modes 7 and 11) are found. No spurious
modes are found in the ES-PIM solution. This example of complicated geometry also confirms
that the ES-PIM model has very close-to-exact stiffness, and is expected to perform well in
dynamic analysis.

FIGURE 8.97
First six free vibration modes of the shear wall: (a) NS-PIM, sixth
mode is spurious nonphysical mode; and (b) ES-PIM, no spuri-
ous modes.
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FIGURE 8.98
7th–12th free vibration modes of the shear wall:
(a) NS-PIM, 8th, 10th–12th modes are spurious
nonphysical modes; (b) ES-PIM, no spurious
modes.
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FIGURE 8.99
Geometric, loading, and boundary con-
ditions of an automobile connecting bar.
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FIGURE 8.100
Meshes of three-node triangular and four-node
quadrilateral elements of the automobile con-
necting bar.
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TABLE 8.8

First 12 Natural Frequencies (Hz) of the Automobile Connecting Bar

Model NS-PIM ES-PIM FEM-T3

Reference
(FEM-Q4)
537 Nodes

429 Elements

Reference
(FEM-Q4)
1455 Nodes

1256 Elements

Reference
(FEM-Q8)

10,002 Nodes
3125 Elements

Nodes: 373 4.9420 5.1368 5.3174 5.1369 5.1222

Elements: 20.8051 22.0595 22.9448 22.050 21.840
574 T3 48.3890 49.3809 49.6982 49.299 49.115

48.4864 52.0420 54.0642 52.232 51.395

84.9250 92.7176 96.8632 93.609 91.787

97.6804 109.5887 114.3134 108.59 106.15

114.0340 132.6795 142.4456 134.64 130.14

123.3202 158.2376 163.9687 159.45 156.14

143.6428 158.9530 169.2762 160.59 157.70

144.6607 201.3746 204.5709 203.52 200.06
151.4276 204.8442 210.1202 208.68 204.41

161.9533 209.2773 210.7405 209.02 204.99

Nodes: 1321 5.0481 5.1246 5.2084 5.1244 5.1222

Elements: 21.4886 21.8805 22.2661 21.909 21.840

2296 T3 48.8798 49.1726 49.3544 49.211 49.115

50.4006 51.5181 52.4947 51.657 51.395

89.6102 91.9305 93.8422 92.390 91.787
92.6458 106.8473 109.2835 107.51 106.15
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TABLE 8.8 (continued)

First 12 Natural Frequencies (Hz) of the Automobile Connecting Bar

Model NS-PIM ES-PIM FEM-T3

Reference
(FEM-Q4)
537 Nodes

429 Elements

Reference
(FEM-Q4)
1455 Nodes

1256 Elements

Reference
(FEM-Q8)

10,002 Nodes
3125 Elements

103.4429 130.5546 134.5815 131.48 130.14

125.6500 156.3497 159.7354 157.51 156.14

151.6215 157.8486 159.9686 158.69 157.70

152.0064 200.9013 203.3543 201.69 200.06

155.5444 204.2601 207.5036 206.04 204.41

188.5849 206.5273 209.1795 209.92 204.99

Note: Underlined are spurious nonzero energy modes.
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FIGURE 8.101
First six free vibration modes of the connecting
bar. (a) NS-PIM, fifth and sixth modes are spurious
nonphysical modes; and (b) ES-PIM, no spurious
modes.
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Remark 8.16: ES-PIM: No Spurious Modes Found
In the above three examples, we have found no spurious modes for ES-PIM. This has been
true also for all the examples studied in our group so far. Although, we still cannot rule it
out completely because we could not yet prove this theoretically, it is unlikely that ES-PIM
will produce spurious modes. Therefore, ES-PIM is a very good method for dynamic
analysis.

Example 8.29: Forced Vibration Analysis of a Rectangular Cantilever

The Newmark method is implemented in these models to compute the transient response of the
cantilever subjected to a harmonic loading f(t)¼ Pcosvft in y-direction. Plane strain problem is
considered with parameters of L¼ 4.0, H¼ 1.0, t¼ 1.0, E¼ 1.0, n¼ 0.3, r¼ 1.0, a¼ 0.005,
b¼ 0.272, vf¼ 0.05, Dt¼ 1.57, and u¼ 0.5. Figure 8.103 plots the transient reposes in displace-

FIGURE 8.102
7th–12th free vibration modes of the connecting
bar. (a) NS-PIM, 9th, 10th, and 12th modes are
spurious nonphysical modes and (b) ES-PIM, no
spurious modes.
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ment computed using the ES-PIM together with FEM-T3, FEM-Q4, and FEM-Q8 using the
same mesh of 10� 4 elements. It is seen that the results of the ES-PIM performs far better than
the FEM-T3 and is closer to that of the FEM-Q8 even compared to the FEM-Q4.

Example 8.30: Forced Vibration Analysis of a Spherical Shell

A spherical shell shown in Figure 8.104 is now studied. The shell is subjected to a concentrated
loading at its apex, and is modeled as 2D solid. One half of the shell is modeled using two types of
meshes of triangular and quadrilateral elements as shown in Figure 8.105. The parameters used in
the computation are R¼ 12, t¼ 0.1, f¼ 10.98, u¼ 0.5, E¼ 1.0, n¼ 0.3, r¼ 1.0, and Dt¼ 5, and
no damping effect is included. The Figure 8.106 plots the time history of the deflection at the apex
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FIGURE 8.104
A schematic drawing of a spherical shell subjected to
point load at the apex.
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of the shell excited by a harmonic loading of f(t)¼ cos vftwith vf¼ 0.05. It is found that the ES-PIM
solution is much more accurate than that of FEM-T3, and comparable to that of the FEM-Q4.
Figure 8.107 plots the same response of the shell excited by a heavy side step load of f(t)¼ 1
starting from t¼ 0. The red dashed line is for the results without damping, and it is seen that the
amplitude of the deflection tends to a constant value with increasing time. When a Rayleigh
damping of a¼ 0.005 and b¼ 0.272 are considered, the response converges to constant.
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FIGURE 8.105
Meshes of three-node triangular and four-node quadrilateral elements for half a spherical shell.
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Solution of transient responses of the spherical shell subjected to a harmonic loading obtained using different
methods.
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8.5 A Combined ES=NS Point Interpolation Method (ES=NS-PIM)

8.5.1 Background

From Remark 8.2 we know that the NS-PIM-T3 is naturally (without any special treatment)
immune from volumetric locking for plane strain problems with Poisson’s ratio
approaches to 0.5. The ES-PIM formulated above is, however, subjected to volumetric
locking. In this section we will present a combined ES=NS-PIM that is also immune from
volumetric locking. The idea is originated from the selective formulations used in the
conventional FEM [50], where the integration is performed selectively for two different
material ‘‘parts’’ (m-part and l-part) to overcome such a locking. In our ES=NS-PIM, we
use two different types of smoothing domains selectively for these two different material
‘‘parts.’’ This is based on our finding that the node-based smoothing domains are effective
in overcoming volumetric locking [13], and the l-part is known as the culprit of the
volumetric locking. Naturally, we use node-based domains for the l-part and edge-based
domains for the m-part. The details are given below.

8.5.2 Formulation for ES=NS-PIM

In this section, we only use linear interpolation, PIMs with T3-Scheme. For 2D plane strain
problems, we know from Remark 1.3 that the matrix constants c can be nearly singular
when Poisson’s ratio n approaches 0.5. This is the root of the volumetric locking behavior
of a displacement method. Therefore, we decompose matrix c into two parts:

c ¼ cl þ cm (8:47)

where
cm relates to the shearing modulus m¼E=[2(1þ n)] and hence is termed as m-part of c
cl relates to Lame’s parameter l ¼ 2nm

1�2n and hence is termed as l-part of c
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FIGURE 8.107
Solutions of transient responses of the spherical shell subjected to a step loading using the ES-FEM.
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For plane strain cases, we have

c ¼
lþ 2m l 0

l lþ 2m 0
0 0 m

2
4

3
5 ¼ m

2 0 0
0 2 0
0 0 1

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
SPD

þ l
1 1 0
1 1 0
0 0 0

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
semi-SPD

¼ cl þ cm (8:48)

and for axis-symmetric problems:

c ¼ m

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
SPD

þ l

1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
semi-SPD

¼ cm þ cl (8:49)

In our ES=NS-PIM, we use the NS-PIM equations to calculate the stiffness matrix related to
l-part, following exactly the same procedure given in Section 8.1 but replacing c by cl. For
the m-part, we use ES-PIM following exactly the same procedure given in Section 8.4 but
replacing c by cm. The stiffness matrix of the combined ES=NS-PIM model becomes a
superimposition of these two parts:

�KES=NS�PIM ¼ �KES�PIM
m|fflfflfflfflffl{zfflfflfflfflffl}
SPD

þ �KNS�PIM
l|fflfflfflfflffl{zfflfflfflfflffl}

semi-SPD

(8:50)

Since �KES�PIM
m will be SPD (after the essential boundary condition is imposed), and

�KNS�PIM
l is semi-SPD, we can expect �KES=NS�PIM to be SPD, and therefore a unique

stable solution.
Equation 8.50 suggests that we need double the effort in computing the stiffness matrix

for an ES=NS-PIM model. This is the price we need to pay in dealing with 2D solids
of incompressible materials. The ES=NS-PIM is a smoothing domain-based selective
formulation.

8.5.3 Example for Volumetric Locking Problems

We now revisit Example 8.3 with exactly the same settings except that a¼ 1, b¼ 5, E¼ 1000,
and p¼ 1. Poisson’s ratio varies from 0.4 to 0.4999,999, and plane strain problem is
considered. The ES=NS-PIM is used to solve this problem together with the linear
NS-PIM and ES-PIM for comparison.

Figure 8.108 plots the error in solutions in displacement norm for nearly incompressible
material when Poisson’s ratio is changed from 0.4 to 0.4999,999. First, it is clearly seen that
the ES-PIM suffers from the volumetric locking: when Poisson’s ratio approaches 0.5, the
error in solution increase drastically starting from 0.49. Compared to FEM (see Figure 8.11)
it behaves better, due to the smoothing effect introduced in the ES-PIM, but still a quite
strong locking. Second, the results show that the domain-based selective ES=NS-PIM
model can overcome very successfully the volumetric locking for nearly incompressible
materials. It gives even more accurate results than those of the NS-PIM, thanks to the
superior accuracy of the ES-PIM used for the m-part.
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Remark 8.17: Free from Volumetric Locking: A Property of ES=NS-PIM
The combined ES=NS-PIM can efficiently overcome the volumetric locking issue for 2D
plane strain problems. The same trick still works well also for 3D problems. Readers are
referred to [47], where an 3D FS=NS-FEM model that is a special case of 3D FS-=NS-PIM
has been established.

Note that the ES=NS-PIM works, of course, also for compressible materials. The solution
should be in between the ES-PIM and NS-PIM model, due to the simple superimposition
nature. Therefore, the performance of the combined ES=NS-PIM model is expected to be
between the ES-PIM and the NS-PIM. Because of the close-to-exact stiffness property, the
ES-PIM usually performs very much better than the NS-PIM model. If Poisson’s ratio is
less than 0.4, using ES-PIM alone should give, in general, better accuracy. In addition,
using ES-PIM alone is more efficient.

8.6 Strain-Constructed Point Interpolation Method

8.6.1 Background

In the previous sections, we have seen weakened-weak models based on GS-Galerkin
formulation. It is in fact a special and the simplest strain-constructed model. In this section,
we present more general SC-modes using PIM shape functions known as strain-constructed
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FIGURE 8.108
Displacement error for the infinite plate with a hole subjected to unidirectional tension. Poisson’s ratio of the
material varies near and up to 0.5.
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point interpolation methods (SC-PIMs), based on the general SC-Galerkin form. We will
take much bolder approaches to construct the strain fields by simple means of point
interpolation using smoothed strains at critical points over the node-based, edge-based,
and=or cell-based smoothing domains.We propose and examine a total of six novel schemes
for constructing strain fields, based on a set of triangular integration cells. All these are
performed under conditions of (1) no additional DOFs are added in any way in the
SC-model; (2) the formulation procedure (hence the computation of the stiffness matrix)
should remain as simple as in the standard FEM; and (3) solutions converge to the exact
solution. All these schemes proposed will be studied in great detail, via mainly numerical
means, which leads to a number of SC-PIM formulations of excellent performance. The
theoretical proof on the stability and convergence of the SC-Galerkin models has been given
in Chapters 4 and 5.

An SC-PIM model, uses a triangular background cells, just as in the NS-PIM or ES-PIM.
In this section, we present SC-models using only linear PIM shape functions.

8.6.2 Strain Field Construction

Strain field construction in SC-PIM models discussed in the section largely follows the
steps discussed in Section 4.5.4

1. Creation of quadrature=integration cells

Based on the background cells, a set of triangular integration cells are then con-
structed. The integration cells are usually created by subdividing the background
cells into smaller cells in various ways. Such a nested division helps to make sure
the strain norm equivalence and strain convergence conditions.

2. Determine the strain «
^ at the points on the vertices of the integration cells

These strains are either the compatible strains ~« (from a continuous displacement
field) or the smoothed strains �« obtained using a local smoothing domain. Here we
need to make sure that the strain norm equivalence and strain convergence
conditions are satisfied.

3. Construct the strain field «̂ in the integration cell by interpolation

In this section, we use linear interpolation (Equation 4.42) and area coordinates for the
integration cell. This facilitates easy integration of energy over the cell: no numerical
integration is needed.

Based on the above steps we designed the following schemes for strain field construction.

Scheme A (1 to 1 division)

For Scheme A, each triangular cell is exactly an integration cell, as shown in Figure 8.109.
Thus the total number of the (quadrature) integration cellsNq equals the number of elements
Ne (1 to 1 division). In each triangular integration cell, these three strains at the vertices are
obtained using node-based smoothing domains that are the same as in the NS-PIM, except
that the strain obtained are only for the node. The strain fields are linearly interpolated using

«̂(x) ¼
X3
i¼1

Fi(x)«
^

i (8:51)
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with «
^

i ¼ �«ni, i ¼ 1, 2, 3. The subscript ‘‘n’’ stands for node-based smoothing strains. Then
the strain energy potential can be obtained using Equation 4.47. Note that the strain field
constructed in Scheme A is continuous in the entire problem domain.

Scheme B (1–3 division)

Figure 8.110 shows the construction of integration cells in Scheme B where a triangular
background cell is divided into three integration cells (1–3 division). Each integration cell is
formed by connecting two end-points of an edge and the centroid of the triangle, which
contains the edge.

ε̂q

εn3

εn1

εn2

Field node Integration cells 

FIGURE 8.109
Integration cell q over which the strain
field is constructed. Scheme A: entire
background cell is used as a single inte-
gration cell.

(
(

(

ε1

ε3

ε2

Field node Centroid Integration cells 

FIGURE 8.110
Integration cell q over which the strain
field is constructed. Scheme B: a triangu-
lar background cell is further divided into
three integration cells, and each integra-
tion cell is formed by connecting sequen-
tially two vertices and the centroid of the
background cell. Strain fields within an
integration cell is linearly interpolated.
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The strain fields within each integration cell are calculated using Equation 8.51. There are
three editions for Scheme B, as listed in Table 8.9, where �«e is smoothed strain obtained
for the mid-edge-point for the edge using the edge-based smoothing domains as in the
ES-PIM. Note that the strain field constructed in Scheme B is continuous in the entire
problem domain.

Scheme C (1 to 4 division)

For Scheme C, as shown in Figure 8.111, each triangular element is further divided into
four integration cells, thus NQ¼ 4Ne (1–4 division). For each integration cell, the modified
strain fields are constructed via linear interpolation using Equation 8.51 with node-based
smoothed strains and edge-based smoothed strains. The edge-based smoothed strains
are obtained using edge-based smoothing domains as in the ES-PIM, except that the
strain obtained are only for the midpoint of the edge. The assignments of strains at the
vertices points are listed in Table 8.10. Note that the strain field constructed in Scheme B is
also continuous in the entire problem domain.

Scheme D (1 to 6 division)

The construction of integration cells of Scheme D is illustrated in Figure 8.112, where a
triangular cell is further divided into six triangular integration cells (1–6 division). Each
of them is formed by connecting the field node, the centroid of the triangle and the
corresponding mid-edge-point. The strain field within each integration cell is linearly

TABLE 8.9

Strains Used for Constructing the Modified Strain Fields:
Scheme B (Strain Continuous in the Entire Problem Domain)

Schemes
Strain

at Vertex 1
Strain

at Vertex 2
Strain

at Vertex 3

Scheme B-1 «
^

1 ¼ ~« «
^

2 ¼ �«e «
^

3 ¼ �«e

Scheme B-2 «
^

1 ¼ ~« «
^

2 ¼ �«n2 «
^

3 ¼ �«n3

Scheme B-3 «
^

1 ¼ �«e «
^

2 ¼ �«n2 «
^

3 ¼ �«n3

FIGURE 8.111
Integration cell q over which the strain field is con-
structed. Scheme B: each triangular element is fur-
ther divided into four integration cells and the
strain fields in each integration cell are linearly
interpolated using the smoothed strains associated
with the nodes and edges.
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Integration cells 

368 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



interpolated using Equation 8.51 with the three strains at the three vertices, which are the
smoothed strain or compatible strains:

«
^

1 ¼ �«n1, «
^

2 ¼ ~«2, «
^

3 ¼ �«e3 (8:52)

Note that the strain field constructed in Scheme D is continuous in the entire problem
domain.

8.6.3 Example Problems

Example 8.31: 3D Patch Test

A square patch with dimension of 1� 1 discretized using 109 irregularly distributed nodes is
studied using the SC-PIM with various schemes for strain field construction. The displacements are
prescribed on all the boundaries using Equation 8.14. Errors of numerical results in displacements
norm are listed in Table 8.11. It is confirmed that all these SC-PIM schemes can pass the patch
tests, and therefore should be able to produce second order convergent solutions.

TABLE 8.10

Strains Used for Constructing Modified Strain Fields: Scheme C

Four Strain Fields within
Each Integration Cell

Node-Based and Edge-Based
Smoothed Strains Used for Strain

Fields Approximation

Integration cell (1) «
^

1 ¼ �«n1, «
^

2 ¼ �«e1, «
^

3 ¼ �«e3

Integration cell (2) «
^

1 ¼ �«n2, «
^

2 ¼ �«e2, «
^

3 ¼ �«e1

Integration cell (3) «
^

1 ¼ �«n3, «
^

2 ¼ �«e3, «
^

3 ¼ �«e2

Integration cell (4) «
^

1 ¼ �«e1, «
^

2 ¼ �«e2, «
^

3 ¼ �«e3

 
εe3

εn1

~ε2

Field node Centroid 
Integration cells 

Mid-edge-point 

FIGURE 8.112
Integration cell q over which the strain field
is constructed. Scheme D: a triangular back-
ground cell is further divided into six integration
cells and each one is formed by connecting the
field node, the centroid of the triangular element,
and the corresponding mid-end-point of the
edge. Strain fields within each integration cell
are linearly interpolated using the smoothed=
compatible strains associated with the three
vertices.
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Example 8.32: Rectangular Cantilever

We now revisit Example 8.2 with exactly the same settings as the SC-PIMs together with the linear
FEM, NS-PIM, and ES-PIM using the same triangular background cells=elements. The fully
compatible FEM can serve as a base model offering a ‘‘bottom line’’: any SC-PIM model that is
established based on SC-Galerkin form should be softer than the FEM model. The NS-PIM is also
included for comparison because we know it gives an upper-bound solution: a ‘‘skyline,’’ and we
have not yet found a more softer model than the NS-PIM. The ES-PIM is included because it is so
far a ‘‘star’’ performer. Finding a model that beats ES-PIM has been a challenge.

Figure 8.113 plots the convergence of the solutions in displacement norm for the cantilever
solved using different SC-PIM models presented in this section. The solutions of all these methods
converge with the reducing nodal spacing at about the same convergence rate that is close to the
theoretical value of 2.0 for both the weak and weakened-weak (W2) formulations. In terms of
accuracy, Scheme A is worse than the FEM measured in the displacement norm, Schemes B-2 and
B-3 are about the same as FEM and all other schemes, i.e., Scheme C, Scheme D, and Scheme B-1
give more accurate solution compared to the FEM. As expected, the ES-PIM performs the best, and

TABLE 8.11

Displacement Errors of Results for the Linear Patch Test on Different
Schemes of SC-PIM

Scheme
Error in

Displacement Norm Scheme
Error in

Displacement Norm

Scheme A 3.1402142E�14 Scheme B-1 6.8463314E�16

Scheme C 9.0198460E�16 Scheme B-2 1.2696312E�15

Scheme D 9.6829514E�16 Scheme B-3 1.9473419E�15
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FIGURE 8.113
Convergence of the numerical results in displacement norm for the cantilever solved using different methods and
same set of irregular triangular mesh.
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is about 10 times more accurate than the FEM. We note that Scheme D and B-1 are quite
compatible to the ES-PIM, followed by Scheme C.
Figure 8.114 plots the convergence of the solutions in energy norm for the same cantilever

solved using different methods. All these six SC-PIM models converge well and have much higher
accuracy compared to the FEM, when the error is measured in energy norm. All the SC-PIM
models achieve higher convergence rates, which are similar as linear NS-PIM and ES-PIM. In
terms of both accuracy and convergence, the NS-PIM stands out. In terms of convergence rate,
FEM achieved 0.97 that is a little less than the theoretical rate of 1.0. The rates of all the other
schemes have convergence rates between 1.0 and 1.5 that is the ideal theoretical rate for the
weakened-weak formulation based on G space theory. Again the NS-PIM stands out with a
convergence rate of 1.25. Scheme C performed equally good as the NS-PIM. Note the ES-PIM is
not the best performer in energy norm measure, but still among the best.
Figure 8.115 plots process of the solutions of strain energy converging to the exact solution for

the cantilever beam obtained using different methods. We found that

1. All the six SC-PIM models, together with linear NS-PIM and ES-PIM, give upper-bound
solution in energy norm with respect to the FEM solution: an SC-PIM model is always softer
than FEM.

2. FEM, Scheme B-1, and linear ES-PIM give lower-bound solution, and all the other five
schemes and NS-PIM provide upper-bound solution to the exact one.

3. Scheme D and ES-PIM give the best (tightest) pair of bounds to the exact solution.

4. The ‘‘softness-raking’’ of all these modes are Scheme A, Scheme B-3, NS-PIM, Scheme B-2,
Scheme C, Scheme D, ES-PIM, Scheme B-1, and FEM.

We note that Scheme A is found even softer than NS-PIM that is known so far as the softest
(spatially) stable model.
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FIGURE 8.114
Convergence of the numerical results in energy norm for the cantilever solved using different methods and same
set of irregular triangular mesh.
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Example 8.33: Hole in an Infinite Plate

We now revisit the Example 8.3 of a circular hole in an infinite plate with the same settings except
a¼ 1, b¼ 5. Figure 8.116 plots the convergence of the solutions in displacement norm for this
problem solved using different methods. Similar to the cantilever case, the solutions of all the
methods converge well and have about the same convergence rate in terms of displacement norm.
In terms of accuracy, Scheme A is again found to be worse than the FEM, and all other schemes
are at least better than the FEM. Schemes B-2 and B-3 are about the same as FEM and linear
NS-PIM, and Scheme C, Scheme D, and Scheme B-1 give much more accurate solution compared
to FEM. For this problem, we found Scheme D standing out clearly, followed by Scheme C and
then the ES-PIM. The accuracy of Scheme D is about 10 times more than the FEM.
Figure 8.117 plots the convergence of the solutions in energy norm for the problem of an infinite

solid with a hole, solved using different methods. All the six schemes are found converging well
and have much higher accuracy than the FEM. In terms of convergence rate, FEM gives a rate less
than 1.0. All the SC-PIM modes achieve higher convergence rates similar as the linear NS-PIM and
ES-PIM. Particularly, Scheme C and the linear ES-PIM outperform all the other schemes. The
convergence rates for Schemes A, C, ES-PIM, and NS-PIM are around 1.3 that is very close to the
theoretical rate of 1.5 for the W2 formulations based on G space theory.
Figure 8.118 plots process of the solutions of strain energy converging to the exact solution for

the problem of an infinite solid with a hole, obtained using different methods. We note the
following:

1. All the six schemes, together with linear NS-PIM and ES-PIM, give upper-bound solution in
energy norm with respect to the FEM solution.

2. FEM, Scheme B-1, linear ES-PIM, and Scheme D give lower-bound solution, and all the
other four schemes and NS-PIM provide upper bound solution to the exact one.
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FIGURE 8.115
Solutions in strain energy converging to the exact solution for the cantilever obtained using different methods and
same set of irregular triangular mesh.
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FIGURE 8.116
Convergence of the solution in displacement norm for the problem of an infinite solid with a hole solved using
different methods and same set of irregular triangular mesh.
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FIGURE 8.117
Convergence of the solution in energy norm for the problem of an infinite solid with a hole solved using different
methods and same set of irregular triangular mesh.
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3. Scheme C and Scheme D give the best (tightest) pair of bounds to the exact solution.

4. The ‘‘softness-raking’’ of all these modes are unchanged: Scheme A, Scheme B-3, NS-PIM,
Scheme B-2, Scheme C, Scheme D, ES-PIM, Scheme B-1, and FEM.

Scheme A is again found to be the softest (spatially) stable model that is even softer than
NS-PIM.

Remark 8.18: SC-PIM: A Number of Good Properties
It is very clear now that we can find very good SC-PIM models that perform even
better than ES-PIM. We can also use high-order PIM shape functions for SC-PIM, and
much more models of good properties can be found. More discussions and examples,
including using high-order PIM shape functions, can be found in a work very recently
reported in [33].

8.7 A Comparison Study

8.7.1 Overhead and Solver Time

To conduct a meaningful and fair test on computational efficiency on these methods, we
choose Example 8.3 of a square plate of 10� 10 m with a central circular hole of 1 m
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FIGURE 8.118
Solutions in strain energy converging to the exact solution for the problem of an infinite solid with a hole obtained
using different methods and same set of irregular triangular mesh.
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subjected to a unidirectional tensile load of 10.0 N=m2 in the x-direction. The material
constants are E¼ 1.0� 103, n¼ 0.3. We choose this problem because the exact solution is
not in a simple polynomial form and hence allow us to use many nodes without getting the
exact solution too fast. In addition, we have the exact solution to quantify the error
accurately.

The computational cost for a model consists of mainly two parts: ‘‘overhead’’ costs for
all operations until the stiffness matrix is formed, and the ‘‘solver time’’ to solve the
resultant system equations. For PIM models, the overhead time includes the smoothing
operations. On one hand, they require some computational cost that the FEM does not.
On the other hand it saves time for domain type Gauss integration and the computation
of the derivatives of the shape functions needed in the FEM. Therefore, overall it should
not have too much difference. To confirm this we conducted a detailed analysis for all
linear models. The results for the overhead costs are listed in Table 8.12. The tests were
conducted on a Dell PC of Intel1 Pentium(R) CPU 2.80 GHz, 1.00 GB of RAM. In the test,
FEM-T3, ES-PIM-T3, and NS-PIM-T3 all use exactly the same triangular mesh. It is clear
that there is not much difference in the overhead computations for all these three models.
Note that the linear FEM of triangular elements requires the least overhead time in all the
FEM models of all types of elements, because the computation of the derivatives of linear
shape functions are trivial (constant) and the integration is also very simple (elemental
summation). The linear ES-PIM and NS-PIM is as efficient as the linear FEM in terms of
overhead costs. Most meshfree methods, however, will surely lose out to FEM in this
regard.

Note that the major cost in a computation of a not-too-small model is solving the system
equations, and therefore we need to further examine the solver CPU time for these
methods. Such a test will depend on the type of solver used. In the PIM modes, there is
no increase in DOFs. If a full matrix solver is used the CPU time for PIMs should be the
same as the FEM model using the same mesh. Because the solutions of PIMs are more
accurate than that of the FEM, the computational efficiency of PIMs will be surely higher
than the FEM, as discussed in Examples 8.23 and 8.24.

In this study, we conduct a test using a very efficient bandwidth solver coded in
MFree2D�, and the results are also listed in Table 8.12. It is clear that the meshfree type
methods consume more CPU time: ES-PIM is about three times and NS-PIM is about four
times that of FEM. This is due to the larger bandwidth of the system matrix of meshfree
methods. Note that compared to many other meshfree methods, the PIMs are among the
ones with small bandwidth, and hence they are quite comparable to FEM methods, as
shown in Table 8.12. Many other meshfree methods need about 20–50 times CPU time

TABLE 8.12

Comparison of the Estimated CPU Time (s) for Different Methods
(Three-Node Triangular Mesh with 22,930 Nodes)

Methods FEM-T3 ES-PIM-T3 NS-PIM-T3

Overhead 2.19 2.33 2.20

Solver 24.64 77.82 103.6

Total 26.83 80.15 105.8

Ratio 1.0 2.99 3.94
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compared to linear FEM of same mesh. We also note that the solver time is much more
(10–50 times) than the overhead time: the overhead time is negligible and is a well-known
fact in FEM analysis, if the model size is not too small.

8.7.2 Efficiency Comparison

A fair comparison should be the computational efficiency: CPU time needed for obtaining the
results of the same accuracy. An efficiency test is therefore also conducted usingMFree2D�,
using FEM-T3, EFG(as¼ 2.5), ES-PIM-T3, NS-PIM-T3, ES-PIM-T6=3, and ES-RPIM-T6. The
results are plotted in Figure 8.119 in terms of displacement error norm and in Figure 8.120 in
terms of energy error norm. The detailed data is listed in Tables 8.13 and 8.14. In this study,
however, we neglected the insignificant overhead time and count only for the solver time.
For this particular test, it is found that the ES-PIM is about eight times in displacement norm
and 40 times in energy norm more efficient than the FEM model using the same mesh. The
NS-PIM is about three times less efficient in displacement norm and 20 times more efficient
in energy norm compared to the FEM model. This is in addition to many other important
properties of PIMs discussed earlier. In this particular test, we also found that the ES-PIM is
about 75 times in displacement norm and 25 times in energy norm more efficient than the
EFGmodel using the samemesh. Note that EFG implemented inMFree2D using the penalty
method for essential boundary conditions, because MFree2D uses bandwidth solver. It
may not be as accurate as the Lagrange multiplayer approach, and hence EFG could be
coded more efficiently.
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FIGURE 8.119
Comparison of the computational efficiency in terms of displacement error norm for the problem of an infinite
plate with a circular hole. The ES-PIM (linear) is found to be the most efficient computationally.
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FIGURE 8.120
Comparison of the computational efficiency in terms of energy norm for the problem of an infinite plate with a
circular hole. The ES-PIM (linear) is also found to be the most efficient computationally.

TABLE 8.13

Computational Efficiency: Estimated Solver CPU Time (s) Needed for Obtaining the Results
of the Same Accuracy in Energy Norm (for Error in Solutions at ed¼ 1.0E�004)

Methods FEM-T3 EFG(as¼ 2.5) ES-PIM-T3 NS-PIM-T3 ES-PIM-T6=3 ES-RPIM-T6

CPU time 92.358 873.57 11.09 270.59 19.021 28.923

Ratio=FEM 1 1=0.1057 1=8.328 1=0.3413 1=4.856 1=3.193

Ratio=EFG 0.1057 1 0.0127 0.3098 0.02177 0.03311
Ratio=ES-PIM 8.328 78.77 1 24.34 1.715 2.608

TABLE 8.14

Computational Efficiency: Estimated Solver CPU Time (s) Needed for Obtaining the Results
of the Same Accuracy in Energy Norm (for Error in Solutions at ee¼ 6.3096E�007)

Methods FEM-T3 EFG(as¼ 2.5) ES-PIM-T3 NS-PIM-T3 ES-PIM-T6=3 ES-RPIM-T6

CPU time 547.71 331.73 12.617 23.283 83.429 140.35

Ratio=FEM 1 1=1.651 1=43.41 1=23.53 1=6.565 1=3.902

Ratio=EFG 1.651 1 0.03803 0.07019 0.2515 0.4231

Ratio=ES-PIM 43.41 26.29 1 1.845 6.612 11.12
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8.8 Summary

A research group led by G. R. Liu invented the PIM, and has been working very hard on its
improvement over the past decade. We made lot of efforts, encountered lot of problems,
and now made some progress with various versions of PIMs that work very well for
various problems, as presented in this chapter. We are proud to say that our efforts have
been paid off. Here we summarize a few points.

1. The PIM shape functions possess the Kronecker delta function property, and
hence solve all the problems associated with the use of MLS approximation. The
imposition of essential boundary conditions is as simple as in the standard FEM.
They form, in general, an interpolant in a G space.

2. The weakened-weak (W2) formulations are a recent key development in numer-
ical analysis. In particular, the W2 formulation based on the G space theory
reveals very general and essential techniques on how to make a numerical
model always stable (spatially). It provides a unified theoretical framework
for both compatible and incompatible methods. The significance is that we
can now always formulate a proven spatially stable numerical model, as long
as a set of linearly independent shape functions with proper consistence (to
ensure the positivity condition) can be found for a set of node distrusted in the
problem domain: the compatibility is no more in question.

3. The SC-Galerkin (including GS-Galerkin) is used in the formulation of PIMs.
Clearly, PIMs formulated using SC-Galerkin (with T-schemes for node selec-
tion), such as NS-PIMs, ES-PIMs, CS-PIMs, SC-PIMs, etc. are very well estab-
lished under the general concept of W2 formulation. In general, they are as
stable as the FEM (weak form) models, all behave softer, much more accurate,
higher convergence rate, capable of producing upper bound (NS-PIMs), work
perfectly well with triangular types of meshes, and much more efficient. They
are not entirely ‘‘meshfree,’’ but need only triangular types of meshes that can be
easily generated automatically, and hence achieve the ultimate real purpose of
being meshfree perfectly well. They can all be easily made adaptive [28,52,53].

4. Using both the NS-PIM and FEM, we can now bound the exact solution from
both sides to provide the so-called certified solutions, for all the well-posed
linear elasticity problems as long as a triangular type of mesh can be built. This
was not possible until the birth of the NS-PIM. In this solution bound regard, the
NS-PIM is of unique importance for practical engineering applications.

5. The ES-PIM (with linear triangular mesh) is in general, to the best knowledge of
the author, the most efficient method so far among all the FEM and meshfree
models for 2D solid mechanics problems using linear triangular mesh. It is stable
both spatially and temporally, and therefore is recommended for all solid mech-
anics problems. In the efficiency and adaptivity regards, the ES-PIM is of unique
importance for practical engineering applications. The important role of edge-
based smoothing is quite clear, and the part of the reasons could be the disconti-
nous (or even non-existence) of the derivatives of the (assumed) field variable
along the edge of the cell for displacement assumed models. When the edge-
based smoothing is performed, such as discontinuity is right in the middle of
the smoothing domain and is being ‘‘smoothed’’ out, leading to good stability
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and accuracy. The edge-based smoothing seems to be right on the root of the
problem of a discretized model, and hence effective. It is a crucial piece of
numerical trick that are important for W2 formulations.

6. The recently developed CS-PIM [62] has been found quite competitive to the
ES-PIM. Interested readers are referred to [62] for more details.

7. SC-PIMs have opened a window of opportunity for all sorts of methods
with desired properties. It shows the power of modifying the strain field.
SC-PIMs have been further developed for producing ‘‘exact’’ solution in a
norm using a finite mesh. Examples of fine-designs of strain fields for methods
of ultra-accuracy and bound properties can be found in [29–31]. The room for
development in this direction is indeed huge.

8. When linear interpolation is used (using the T3-Schemes), the shape functions
used in PIMs are the same as the linear FEM using triangular types of meshes.
Therefore, such linear PIMs (NS-PIM and ES-PIM) have also been termed as
NS-FEM and ES-FEM with triangular elements. Note that all the key numerical
treatments in NS-FEM and ES-FEM are very much different from the standard
FEM, and the only thing in common is the use of linear shape functions created
using triangular types of meshes. NS-FEM and ES-FEM are special cases of
PIMs, and belong to the general W2 weak formulation (no gradient information
of the shape functions are used).

9. The PIMs are applicable to nonlinear problems. Techniques developed in FEM
for nonlinear problems can be implemented (with some modification) to PIMs
with ease. Examples of these applications are given in [11] for contact problems,
in [47] for 3D nonlinear problems, and in [48,63] for plates and shells.

10. The PIMs have also been applied to other types of problems, such as heat
transfer [54,55], thermal-elasticity problems [56], and acoustic problem [57,58].

11. The PIMs have already been made adaptive, and implemented in the MFree2D.
Chapter 15 will discuss issues related to adaptive analysis with a number of
examples. More examples of works in this direction are reported in [28,52,53].

12. Using the upper boundproperty ofNS-PIM,we candevelop the so-called real-time
computation models with error bounds using the reduced basis method [59,60].

13. For PDEs of asymmetric operators, the author prefers the GSM, which will be
discussed in Chapter 9.

In the opinion of the author, we now have at least one clear and straightforward path of
four steps for the development of more effective and practical numerical methods:

1. Create a set of triangular types ofmesh of triangular=tetrahedral cells (Chapter 1).

2. Using a T-Scheme to select nodes, and then construct PIM (or RPIM) shape
functions (Chapters 1 and 2).

3. Construct the strain field (Chapter 4).

4. Apply a SC-Galerkin weak form to establish a set of discrete system equations
(Chapters 3, 5, and 8).

Note that we often found some good features using PIMs with higher order interpol-
ation, such as better accuracy and tighter bounds, etc., as presented earlier. How-
ever, higher order PIMs do not always perform much better than those with the linear
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interpolation. We think there may be three reasons: (1) The linear PIMs are already very
good. (2) The quadratic interpolation performed in PIMs are obtained by simply using
more nodes, and the mesh density is not changed. Therefore, the improvement is not as
significant as in the quadratic FEM models. (3) The constant (Heaviside) smoothing
operations used have discounted some of the effects of higher order interpolation. More
studies may be needed to explore the benefits of the higher order interpolations. One way
could be the use of alternative smoothing functions with higher order of reproducibility,
such as the ones presented in Chapter 2.

Note that when the local Petrov–Galerkin weak form is used to formulate a PIM model,
there is no issue of compatibility, because the Petrov–Galerkin is basically a local weighted
residual method that does not demand assumed displacement fields with global continu-
ity. Therefore, both PIM and RPIM shape functions work well for the local Petrov–Galerkin
weak form. The drawback of this formulation is that the resultant discrete system matrix is
not symmetric even for PDEs of symmetric operators affecting the computational effi-
ciency. In addition, the bandwidth of such a model is much larger compared to the W2

models. Overall, it is about 50 times less efficient than the PIMs based on the SC-Galerkin.
Our preference is obvious.
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9
Meshfree Methods for Fluid Dynamics Problems

9.1 Introduction

Previous chapters have discussed a number of meshfree methods to solve the problems of
solid mechanics. Meshfree methods can also be applied to problems of fluid mechanics
because they basically provide a means of discretizing partial differential equations (PDEs)
in the spatial domain. This chapter discusses some of the meshfree methods that suit well
and have been applied to solve computational fluid mechanics problems.

Simulation and analysis of problems of fluid dynamics have been generally performed
using numerical methods such as the finite difference method (FDM), the finite volume
method (FVM), and the finite element method (FEM). These numerical methods have been
widely applied to practical problems and have dominated the subject of computational
fluid dynamics (CFD). An important feature of these methods is that a corresponding
Eulerian (for FDM and FVM) grid or a Lagrangian (for some FEM formulations) grid or
both are required as a computational frame to solve the governing equations. When
simulating some special problems with large distortions and moving material interfaces,
deformable boundaries, and free surfaces, these methods can encounter many difficulties.
Although many numerical schemes for the solution of fluid dynamics problems have
emerged, difficulties still exist for problems with the above-mentioned features. Attempts
have also been made to combine the good features of FDM, FVM, and FEM, and the two-
grid systems of Lagrangian grid and Eulerian grid have been used [1]. Computational
information is exchanged either bymapping or by special interface treatment between these
two grids. This approach is rather complicated and can also cause problems related to
stability and accuracy. The search for better methods and techniques is still going on.

Meshfree methods or techniques can offer some promising alternatives for solving
problems of CFD. The most attractive feature of the meshfree methods is that there is no
need for a mesh or that there is less reliance on the quality of the mesh. When mesh is used,
a triangular mesh will often suffice. This opens a new opportunity to solve the above-
mentioned problems and to conduct adaptive analyses, as it is demonstrated in this
chapter. There are basically four types of methods that have been explored for CFD
problems:

1. Integral representation methods such as the smoothed particle hydrodynamics
(SPH) method [2–8] and the reproducing kernel particle methods [9]. The SPH
method is a Lagrangian formulation and is one of the best choices for highly
nonlinear, fast dynamic, multiphase, and momentum-driven types of problems.
It uses particles and no mesh is needed during the computation.
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2. Gradient smoothing method (GSM) is an Eulerian formulation for general CFD
problems. It uses background triangular cells and hence is not entirely meshless. Its
numerical operations are beyond the cells and carefully designed for excellent
stability, efficiency, and accuracy. It works well with highly irregular triangular
cells for both compressible and incompressible fluids [12,13]. Because of its excellent
stability and efficiency, it has already been implemented for adaptive analysis [14].

3. Series representation methods including the meshless Petrov–Galerkin (MLPG)
method [10,11] and the meshfree weak–strong (MWS) form method [15].

4. Differential representation methods including the finite point method [16] and the
FDM with arbitrary irregular grids [17–20].

This chapter deals with the first two of these methods—SPH (Lagrangian) and GSM
(Eulerian). For other methods, readers are referred to the references given above.

9.2 Navier–Stokes Equations

The strong form of governing equations for fluid dynamics problems are the well-known
Navier–Stokes equations. They have two forms of expressions: Lagrangian and Eulerian
forms. The SPH formulation deals with the Lagrangian form and the GSM deals with those
of Eulerian form of Navier–Stokes equations. We now provide a brief description of these
two forms of Navier–Stokes equation, which will be used in this chapter.

9.2.1 Lagrangian Form of Navier–Stokes Equations

In the following expressions, the Greek superscripts a and b are used to denote the
coordinate directions. For fluid dynamics problems, the continuity equation for the fluid
media can be given as

Dr

Dt
¼ �rr � v (9:1)

where
v is the velocity vector
r is the density of the fluid, where D=Dt is the total time derivative (ormaterial derivative, or
global derivative)

r is the gradient operator
t is the time

The momentum equation is

Dva

Dt
¼ 1

r

qsab

qxb
þ Fa (9:2)

where
v is a component of velocity
F is the external body force per unit mass
s is the total internal stress
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The total internal stress is made up of two parts, one part comes from the isotropic
pressure p and the other part is the viscous stress t; i.e.,

sab ¼ �pdab þ tab (9:3)

where the Kronecker operator is denoted by d. The different definitions of the viscous
stress lead to different SPH applications. ForNewtonian fluids, the viscous stress is assumed
to be proportional to the strain rate denoted by e through the dynamic viscosity m; i.e.,

tab ¼ meab (9:4)

where the strain rate, with the use of Stokes’ hypothesis, takes the form

eab ¼ qvb

qxa
þ qva

qxb
� 2
3
(r � v)dab (9:5)

The time rate of change of the specific total energy e comes from three parts: the work done
by isotropic pressure multiplying the volumetric strain, the energy dissipation due to
viscous forces, and the rate of heat lost by conduction. The first law of thermodynamics
gives the energy equation as

De
Dt

¼ � p
r
r � vþ 1

r

qvb

qxa
tab þ 1

r

q
qxa

k
qT
qxa

� �
(9:6)

where T and k denote, respectively, the temperature in the fluid and the thermal conduct-
ivity coefficient of the fluid media.

To close the loop of these equations, the equation of state (EOS) needs to be included for
compressible flows. It relates the pressure and the temperature to the primitive variables of
density, velocity, and energy in the form of

p ¼ (g� 1)r e� 1
2
vava

� �

T ¼ g e� 1
2
vava

� ��
cp

(9:7)

where cp and g denote, respectively, the specific heat at constant pressure and the specific
heat coefficient of the fluid media.

9.2.2 Eulerian Form of Navier–Stokes Equations

The GSM uses the Eulerian form of the Navier–Stokes equations. They can be given using
the relationship between the total time derivative, the local derivative, and the convective
derivative:

D
Dt

¼ q
qt

þ va
q
qxa

(9:8)
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where
q=qt is the local derivative
va q=qxa is the convective derivative

In the Eulerian form, the continuity equation for the fluid media can be given as

qr
qt

þ va
qr
qxa

¼ �rr � v (9:9)

The momentum equation is

qva

qt
þ vb

qva

qxb
¼ 1

r

qsab

qxb
þ Fa (9:10)

The energy equation becomes

qe
qt

þ va
qe
qxa

¼ � p
r
r � vþ 1

r

qvb

qxa
tab þ 1

r

q
qxa

k
qT
qxa

� �
(9:11)

All the other equations are the same as those given in Section 9.2.1.
Navier–Stokes equations are quite general and hence complicated to solve. Proper

numerical methods are therefore needed to obtain approximated solutions. On the other
hand, simplification of these equations can be performed based on the types of physics
problems. For example, for inviscid fluid flows, the so-called Euler equations are used. They
have also both Lagrangian and Eulerian forms, but can be easily obtained by simply
removing the terms related to the dynamic viscosity (thus need not to be repeated here).
For problems that are fast dynamic in nature, the slow heat conduction may not be needed
to be included in these equations (or solved separately), and these equations can be further
simplified. This kind of simplification is applied across all engineering fields. It is import-
ant not only for better efficiency in obtaining the numerical solutions but also for the
accuracy of the solution. We generally do not want physical phenomena that are too much
different in scales to be mixed together in one set of coupled equations because it can often
lead to very bad conditioning in the discretized system equations. On the other hand, too
much simplification reduces the generality of the numerical methods. The numerical
methods discussed here are for the general Navier–Stokes equations as well as the Euler
equations. For fast dynamic problems, we may simply drop the heat conduction terms.

9.3 Smoothed Particle Hydrodynamics Method

SPH was developed and advanced by Lucy [2] and Gingold and Monaghan [3] to solve
astrophysical problems in three-dimensional (3D) open space. Since its invention, SPH has
been heavily studied and extended to dynamic response with material strength by Libersky
and Petscheck [21,22] and Johnson et al. [23,24], fracture simulation [25], impact simulation
[26,27], brittle solids [28], and metal-forming simulation [29]. SPH has also been explored
for simulating dynamic fluid flows with large distortions [30], explosion processes [31],
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underwater shock [32–34], as well as other CFD problems [31,34–43]. Many issues related to
SPH can be found in publications by Monaghan and coworkers [7,8,44–51]. A monograph
detailing many of the key SPH techniques is also available [5]. As a meshfree, particle
method of pure Lagrangian nature, SPH uses smoothed particles as interpolation points to
represent materials at discrete locations, so it can easily trace material interfaces, free
surfaces, and moving boundaries. The meshfree nature of SPH overcomes the difficulties
due to large deformations because SPH uses particles or points rather than a mesh as a
computational frame to perform approximation. These nice features of SPH make it fairly
attractive, as can be seen from the large literature that has emerged during the last decade.

This section presents an implementation of the SPH to solve the Navier–Stokes equations
for fluid dynamics applications. As the present SPH formulations are based on the Navier–
Stokes equations, physical viscosity needs to be modeled. Some modifications and
improvements in numerical techniques such as the smoothing kernel function, smoothing
length, nearest neighboring particle searching, treatment of solid boundaries, and artificial
compressibility are made to suit the needs of simulating dynamic fluid flows. The pre-
sented SPH implementation can simulate different flow scenarios such as inviscid or
viscous flows, compressible or incompressible flows. Our SPH code is then applied to
solve different fluid flow problems, including incompressible flows with solid boundaries,
free surface flows, and complex compressible flow in explosion. Numerical examples show
that the present SPH method can simulate these problems fairly well at reasonable
accuracy with less computational effort. It is an effective addition and alternative to
traditional numerical methods.

This chapter can only provide an abstracted version of SPH method. A much more
comprehensive description of SPH is given in [5].

9.3.1 SPH Basics

Fundamental to SPH is the theory of integral representation of functions, which is dis-
cussed in the first two sections of Chapter 2. In SPH convention, the integral representation
of function is often termed as kernel approximation.

In SPH implementation, the state of a system can be represented by a collection of
arbitrarily distributed particles while forces are calculated through interparticle inter-
actions in a smoothed fashion. These particles move freely in space, carry all the compu-
tational information, and thus can be regarded as interpolation points or field nodes, which
form the computational frame for spatial discretization in solving PDEs. There are basically
two steps in a SPH procedure:

1. Kernel approximation. Integration of the field variable functions multiplied by a
given smoothing kernel function gives the kernel approximation of the function.

2. Particle approximation. Summation of the function values of the neighboring par-
ticles associated with a particle yields the particle approximation of the function at
the particle.

As detailed in Chapter 2, a function f is approximated by multiplying f with a smoothing
kernel function and then integrated over the smoothing domain, which is known as the
integral representation or the kernel approximation of a function. Here we follow the
conventional SPH notation to derive the system questions for CFD problems. The kernel
approximation of f is denoted as <f> and written in the form
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h f (x)i ¼
ð
f (j)W

_

(x� j, h)dj (9:12)

where
x and j are the position vectors at different points
W
_

(x� j, h) is termed as the (locally supported) smoothing function or smoothing kernel
function in SPH or the weight function in general

The smoothing function is prescribed with the conditions listed in Equations 2.8 through
2.12. In Equation 9.12, h is the smoothing length representing the effective width of the
smoothing kernel function, which is equivalent to the dimension of the support domain in
the EFG (Chapter 6), MLPG (Chapter 7), and PIMs (Chapter 8). The determination and
updating of h during the computation in SPH settings will be discussed in detail later.

In the discrete form, the smoothing kernel function is given by

W
_

ij ¼ W
_

(xi � xj, h) ¼ W
_

(jxi � xjj, h) (9:13)

riW
_

ij ¼
xi � xj
rij

qW
_

ij

qrij
¼ xij

rij

qW
_

ij

qrij
(9:14)

where rij is the distance between particles i and j. Equation 9.12 is then discretized into a
form of summation over all the nearest neighboring particles that are within the smoothing
length h for a given particle i. In such a particle approximation, we shall have (locally)

h fii ¼
XN
j¼1

mj

rj

 !
� fj �W

_

ij (9:15)

where
fj¼ f(xj)
mj and rj are the mass and density of particle j
mj=rj is the volume associated with particle j
N is the total number of the neighboring particles in the local support=smoothing
domain of particle i

The approximation of spatial derivatives of the function of field variable can also be
obtained in the same way in terms of the function values at particles, and is derived simply
through the integration by parts to transform the differential operation on function f into
the given smoothing kernel function. To this end, we have

hrfii ¼
XN
j¼1

mj

rj

 !
fjriW

_

ij (9:16)

From Equations 9.12, 9.15, and 9.16, the values of a function f and its spatial derivatives can
be approximated over a collection of smoothed particles rather than over a mesh. This is
the essence of the SPH method and the difference between the SPH method and the
traditional numerical methods of FDM, FVM, and FEM.

The above equations have shown that the SPH is a very simple and straightforward
numerical procedure to represent a function and its derivatives in a discrete form.
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The following will introduce its applications to fluid dynamics problems governed by the
Lagrangian form of Navier–Stokes equations.

9.3.2 SPH Formulation for Navier–Stokes Equations

The standard SPHmethodwas generally used to solve the Euler equations for inviscidflows,
since it is not easy to obtain the SPH expressions of the second derivatives for the physical
viscous term in the general Navier–Stokes equations. Many techniques have been proposed
in recent years to treat the physical viscosity. Monaghan [50] employed an SPH approxima-
tion of the viscous term tomodel heat conduction, which seems toworkwell for low velocity
flows. Takeda et al. [52] directly used the second-order derivative of the smoothing kernel,
which seems to work well for constant viscosity. Flebbe et al. [53] obtained an SPH expres-
sion for the physical viscosity, using a nested sum over concerned particles. Although the
density evolutionmany be questionable [54], this approach in treating the physical viscosity
is quite straightforward. In the present SPH implementation, we retain this simplicity merit
in treating physical viscosity and try to improve the density evolution.

9.3.2.1 Density Evolution

There are two methods to evolve density in the standard SPH. The first one is the density
summation method, which directly approximates the density of a given particle by simply
substituting f in Equation 9.15 with r, and then summing over the neighboring particles
within the effective width of the smoothing kernel; i.e.,

hrii ¼
XN
j¼1

mjW
_

ij (9:17)

This implies that the density at particle i is approximated by a weighted average of those of
the neighboring particles.

The second approach is to evolve the density from the continuity Equation 9.1, and after
some simple transformation, we arrive at the following continuity density form:

Dr

Dt

� �
i
¼
XN
j¼1

mj(vi � vj) � riW
_

ij (9:18)

There are advantages and disadvantages for both approaches. The density summation
approach conserves the mass exactly, while the continuity density approach does not.
However, the density summation approach has an edge effect when applied to particles at
the domain-edge of the fluid, leading to spurious results. Another disadvantage of the
density summation approach is that it requires more computational effort because the
density must be evaluated before other parameters can be approximated.

In the present formulation, we implement both. For problems inwhichmass conservation
plays a significant role, the density summation approach is used. For flows with free
surfaces, a compromise is made to employ the continuity density approach for particles
within the smoothing area of lh from the free surfaces (l determines the actual dimension of
the smoothing kernel and is described later), while other particles still use the density
summation approach. This minimizes the edge effect of the density summation approach
and the mass nonconservation of the continuity density approach.
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9.3.2.2 Momentum Evolution

From Equation 9.2, the SPH approximation of the momentum equation for particle i can be
written as

Dva

Dt

� �
i
¼ 1

r

qsab

qxb

� �
i
þ Fai

¼ 1
ri

qsab

qxb

� �
i
þ Fai

¼ 1
ri

XN
j¼1

mj

sab
j

rj

qW
_

ij

qxbi
þ Fai (9:19)

In order to symmetrize Equation 9.19, the following identity equation
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rirj

qW
_

ij
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¼ sab
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ri
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¼ 0 (9:20)

is used to obtain

Dva

Dt

� �
i
¼
XN
j¼1

mj

sab
i þ sab

j

rirj

qW
_

ij

qxbi
þ Fai (9:21)

By substituting Equation 9.3 into Equation 9.21, the discretized moment equation can be
written as

Dva

Dt

� �
i
¼ �

XN
j¼1

mj
pi þ pj
rirj

qW
_

ij

qxai
þ
XN
j¼1

mj

mie
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i þ mje
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j

rirj

qW
_

ij

qxbi
þ Fai (9:22)

The first part of the right-hand side of Equation 9.22 is the standard SPH expression for
pressure. It is the second part that concerns the physical viscosity. By using Equation 9.5,
the SPH approximation of eab for particle i can be approximated as

heabii ¼
XN
j¼1

mj

rj
vbj

qW
_

ij

qxai
þ
XN
j¼1

mj

rj
vaj

qW
_

ij

qxbi
� 2

3
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j¼1
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rj
vj � riW

_

ij

0
@

1
Adab (9:23)

The following identities are subtracted from Equation 9.23:

XN
j¼1

mj

rj
vbi

qW
_

ij

qxai
¼ vbi

q1
qxa

� �
i
¼ 0 (9:24)
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j¼1

mj

rj
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� �
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¼ 0 (9:25)

XN
j¼1

mj

rj
vi � riW

_

ij ¼ vi � hr1ii ¼ 0 (9:26)
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We obtain the final SPH approximation of eab for particle i as

heabii ¼
XN
j¼1
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rj
vbji

qW
_

ij
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j¼1
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rj
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_
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3
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rj
vji � riW

_

ij

0
@

1
Adab (9:27)

which relates the velocity differences (vji) to the viscous strain rate and stress.
The SPH approximation of eab for particle j can be obtained in a similar way by summing

over the neighboring particles of j. After eab for particles i and j have been calculated, the
acceleration can by calculated be Equation 9.22. This approach is straightforward and can
model variable viscosity and viscosities for different fluids.

9.3.2.3 Energy Equation

The SPH formulation for the discretized energy equation can be obtained by following a
procedure similar to the momentum equation. The time rate of change of the total internal
energy e for a particle i can be calculated once e has been calculated:

De
Dt

� �
i
¼ 1

2

XN
j¼1

mj
pi þ pj
rirj

vij � riW
_

ij þ mi

2ri
eabi eabi (9:28)

Here we do not consider the slow phenomena of heat conduction. The procedure for
solving this set of discretized system equations of SPH is rather standard and quite
straightforward. However, the following implementation issues are very important to
make SPH work. Readers interested in the coding of SPH are referred to Chapter 4 of [5]
for more detailed implementation issues.

9.3.3 Major Numerical Implementation Issues

9.3.3.1 Smoothing Kernel

The smoothing kernel function is important in the SPH method because it determines the
pattern of approximation for all the field variables, and the dimension of the influence area
of a particle. The kernel function generally needs to satisfy conditions listed in Equations
2.3 through 2.7. In our SPH settings, however, Equation 2.4 is often written in the following
form:

W
_

(x� j) ¼ 0 for jx� jj > lh (9:29)

where
h is the smoothing length
l is a constant controlling the actual dimension of the smoothing domain

The most widely used smoothing kernel functions are the cubic and quartic spline
functions listed in Section 2.2.2. For example, the cubic spline is given (in SPH convention) by
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0, S � 2

8>>>><
>>>>:

(9:30)

where
S¼ rij=h, with rij the distance between two particles i and j
aD is a factor depending on the dimension of the problem

For two-dimensional (2D) problems, aD¼ 15=7p=h2. Note l¼ 2.0 is used in the cubic spline
kernel given in Equation 9.30.

The derivative of the cubic spline kernel can be easily obtained for l¼ 2.0 as follows:

W
_ 0

ij ¼ aD �

1
h

�2Sþ 3
2
S2

� �
, 0 � S � 1

� 1
2h

(2� S)2, 1 � S � 2

0, S � 2

8>>>><
>>>>:

(9:31)

The shapes of this kernel function and its derivative are plotted in Figures 9.1 and 9.2.
Figure 9.1 shows that the value of this cubic spline function increases as the two particles
approach each other and it makes sense naturally: the closer the two neighboring particles,
the greater mutual influence. However, its first derivative of the cubic spline function has
its maximum value at the point S¼ 2=3, as shown in Figure 9.2. The first derivative
decreases for S< 2=3 as the distance between the two particles decreases. This seems
unnatural. This unnatural behavior of the cubic spline function sometimes can cause
instability [55].

The SPH quadratic spline kernel function formulated for l¼ 2.0 can be written in the
form of [23]

FIGURE 9.1
SPH smoothing functions (W
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where the dimension-dependent factor aD¼ 2=ph2 for 2D cases. The quadratic smoothing
function and its derivative are also shown in Figures 9.1 and 9.2. These figures show that a
larger distance between two neighboring particles always leads to a smaller function value,
as well as a smaller first derivative of the function value, and thus gives rise to less mutual
influence. The problem with the quadratic smooth function is that it has a lower order of
reproduction of functions.

The cubic spline smoothing functions and the quadratic smoothing functions in one or
three dimensions behave in the same manner as their counterparts in two dimensions
except for the difference in the dimension-dependent factor aD, which can be deter-
mined by imposing the zero-order reproduction condition (or normalization condition)
(Equation 2.10).

In our implementation of SPH, we coded with both cubic spline and quadratic smooth-
ing functions. The cubic spline function is usually used, as it works well for ‘‘common’’
problems. For flows that may involve tensile instability, we switch to the quadratic
smoothing function.

9.3.3.2 Artificial Viscosity

In the standard SPH expressions, the artificial viscosity is used to resolve shocks numer-
ically and to prevent nonphysical particle penetration. The artificial viscosity term is added
to the pressure term in the momentum and energy equation. The most commonly used
artificial viscosity is

Pij ¼
�acijuij þ bu2ij

rij
, vij � xij < 0

0, vij � xij � 0

8><
>: (9:34)
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where the parameters in the above equation are given by

uij ¼
hijvij � xij
r2ij þ h2

(9:35)

cij ¼ 1
2
(ci þ cj) (9:36)

rij ¼
1
2
(ri þ rj) (9:37)

hij ¼ 1
2
(hi þ hj) (9:38)

vij ¼ vi � vj (9:39)

In Equations 9.34 and 9.35, a, b, and h are constants that are typically set around 1, 1, and
0.1hij, and ci and cj represent the speed of sound for particle i and j, respectively. The first
term in Pij is similar to the Navier–Stokes shear and bulk viscosity, while the second term
is similar to the Von Neumann–Richtmyer viscosity in FEM. The second term is very
important in preventing nonphysical particle penetration, especially for particles that are
approaching each other at high speed and almost head-on.

In our implementation, since the Navier–Stokes-based SPH formulation can resolve the
general physical shear and bulk viscosity, it is not necessary to have the first term in Pij.
However, the second term must be retained to prevent nonphysical particle penetration.
This is different from the approach in [56], where the whole artificial viscosity is added to
the pressure term in the corresponding SPH equations.

9.3.3.3 Artificial Compressibility

In standard SPH, for solving compressible flows, the particle motion is driven by the
pressure gradient, while the particle pressure is calculated by the local particle density
and internal energy through the equation of state. However, for incompressible flows,
there is no equation of state for pressure. Moreover, the actual equation of state of the fluid
will lead to prohibitive time steps. Although it is possible to include the constraint of the
constant density in the SPH formulations, the resultant equations are too cumbersome to
be solved.

In this implementation, the artificial compressibility technique is used. It is based on the
fact that every incompressible fluid is in reality compressible and, therefore, it is feasible
to use a quasi-incompressible equation of state to model the incompressible flow. The
purpose of introducing the artificial compressibility is to produce a time derivative of
pressure. Monaghan [47] applied the following equation of state for water to model free
surface flow:

p ¼ B
r

r0

� �g
� 1

� �
(9:40)

where
the constant g¼ 7 is used in most circumstances
r0 is the reference density
B is a problem-dependent parameter that exerts a limit for the maximum change
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In the artificial compressibility technique, the sound speed should be much larger than the
maximum speed of the bulk flow. The subtraction of 1 in Equation 9.40 can remove the
boundary effect for free surface flows. It can be seen that small oscillation in density may
result in large variation in pressure. Therefore, by employing the proper equation of state
for the concerned fluid, this artificial compressibility technique models an incompressible
flow as a slightly compressible fluid.

9.3.3.4 Smoothing Length

The smoothing length h is significant in SPH and has a direct influence on the efficiency
and accuracy. If h is too small, there may not be enough particles in the designated
smoothing range of lh to exert forces on the particle concerned. This lack of influence
will result in low accuracy of the numerical solution. If the smoothing length is too large, all
details of the particle or local properties may be smoothed out. This oversmoothing will
also affect the accuracy. Various forms of smoothing length [57–59] have been suggested.
They are generally problem dependent and usually not suitable for general CFD problems.

The smoothing length is directly related to fluid density. In different flow problems, the
fluid density differs dramatically. To make SPH more adaptive to various flows, such as
flows with large density inhomogeneity as well as those with uniformly distributed
density or slightly changing density, a more robust smoothing length model is necessary.
In this implementation, we use variable smoothing length [5].

9.3.3.5 Nearest Neighboring Particle Searching

For SPH implementations, the nearest neighboring particle search algorithm is another
vital numerical aspect because the repeated calculation of interactions between the neigh-
bors drastically affects the efficiency of the whole simulation, especially in simulations with
a large number of particles. The complexity of comparing the interparticle distance with lh
for all particles from the given particle is of order O(N2), thus it would incur an intolerable
amount of computational time for large number of particles. In this implementation we use
the hierarchy tree [60] method and the pairwise interaction technique [5] to improve the
efficiency.

9.3.3.6 Solid Boundary Treatment

There is no specific formulation for the implementation of boundary conditions in SPH. For
particles near the solid boundary, only those inside the boundary contribute to the sum-
mation of the particle interactions, and no contribution comes from outside since there are
no particles. This one-sided contribution does not lead to a correct solution because on the
solid surface, although the velocity is zero, other physical quantities such as density are not
necessarily zero. In this implementation, we use two types of virtual (or ghost) particles to
treat the solid boundary condition [5,47,61].

9.3.4 Applications

An in-house SPH code has been developed at the Centre for Advanced Computation in
Engineering Science (ACES). The overall flowchart of the SPH code is schematically shown
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in Figure 9.3. A series of numerical tests have been carried out to test the ability and
efficiency of the presented SPH method for simulating fluid dynamic problems, including
incompressible flows, free surface flows, and explosion simulation.

9.3.4.1 Applications to Incompressible Flows

In FDM, incompressible flows have been widely studied because of their special features.
In our SPH simulation of incompressible flows, the above-described artificial compress-
ibility technique is employed to model the incompressible fluid as slightly compressible by
selecting a proper equation of state. Three simple simulation cases, Poiseuille flow, Couette
flow, and shear driven cavity flow, are simulated using our SPH code. The corresponding
numerical results are presented below. In these numerical examples, an equation of state,
p¼ c2r is used, where c is the sound speed.

Main
processor

Initialization module

Output module

Boundary virtual
particle generation

Nearest neighbor
particle search

Smoothing function
calculation

Density
summation

Updating energy,
momentum, density,

position, velocity

Updating smoothing
length

Internal
force

Artificial
viscosity

External
force

FIGURE 9.3
Flowchart of the present SPH code.
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Example 9.1: Poiseuille Flow

Poiseuille flow is an often-used benchmarking CFD problem. It is a steady flow between two
stationary infinite plates placed at y¼ 0 and y¼ l. The originally stationary fluid driven by some
body force F, gradually flows between the two plates and finally arrives at an equilibrium steady-
flow state. In our simulation, the parameters are as follows:

Spacing of the plates: l¼ 10�3 m

Kinetic viscosity of the fluid: v¼ 10�6 m2=s

Density of the fluid: r¼ 103 kg=m3

Driven body force: F¼ 2� 10�4 m=s2

Peak fluid velocity: v0¼ 2.5� 10�5 m=s, which corresponds to a Reynolds number of
Re¼ 2.5� 10�2

In our SPH simulation, a total of 101 particles are placed in the y direction. Figure 9.4 shows the
comparison between the velocity profiles obtained by the SPH method and those by series
solution [62,63] at t¼ 0.01 s, 0.05 s, 0.1 s, 0.2 s, and the final steady state at t¼1. It is found
that they are in good agreement and the difference is within 0.5%.

Example 9.2: Couette Flow

Couette flow is another often-used benchmarking CFD problem. It is a flow between two initially
stationary infinite plates placed at y¼ 0 and y¼ l when the upper plate moves at a certain
constant velocity v0. In our computation, we use l¼ 10�3 m, v¼ 10�6 m2=s, r¼ 103 kg=m3,
v0¼ 2.5� 10�5 m=s, and the corresponding Reynolds number is Re¼ 2.5� 10�2. Again,
101 particles are placed in the span direction. Comparison between the velocity profiles obtained
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FIGURE 9.4
Velocity profiles for Poiseuille flow.
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by the SPH method and those by series solution [62,63] at t¼ 0.01, 0.05, 0.1, 0.2 s, and the steady
state at t¼1 is shown in Figure 9.5. It is found that they are in good agreement and the difference
is within 0.8%.

Example 9.3: Shear-Driven Cavity Problem

The classic shear-driven cavity problem is a flow within a closed square with the topside moving
at a constant velocity Vtop while the other three sides stay stationary. The flow reaches an
equilibrium state, which behaves in a recirculation pattern. This is also a popular and critical
benchmarking problem.
In our SPH simulation, a flow of the Reynolds number, 10, is considered. A total of

41� 41¼ 1681 field particles are initially placed in the square region. SPH results are compared
with those by FDM with the same density of grids. Figure 9.6 shows the dimensionless vertical
velocity profile along the horizontal centerline. Figure 9.7 shows the dimensionless horizontal
velocity profile along the vertical centerline. It can be seen from Figures 9.6 and 9.7 that the results
from the present implementation of SPH and those from FDM are comparable, while the SPH
method slightly underpredicts the values compared to FDM.
Figure 9.8 shows the velocity distribution in the entire cavity computed using the present SPH

code.

Example 9.4: Free Surface Flows

The study of free surface flows is very important in many industrial applications. Special treatment
is necessary to deal with the arbitrary free surface. We have simulated a water discharge problem
with the gate partly or fully opened. The viscous effect of the water is neglected here.
Figure 9.9 shows the particle distribution of water discharge at three representative instants after

the gate is opened by 12% at the bottom of the gate. It can be seen that the particles distribute in an
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FIGURE 9.5
Velocity profiles for Couette flow.
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orderly fashion with the flow of water before the gate. The streamline is obvious. Water particles
eject off the gate bottom due to the pressure force, splash high outside due to the momentum, and
finally fall to the ground due to gravity. Near the region of the gate bottom, the water flows rather
evenly with potential energy transformed into kinetic energy. Because the water splashes high
outside the gate and then falls to the ground, a cavity occurs during the course of the flow.
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FIGURE 9.6
Dimensionless vertical velocity along the horizontal centerline.
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FIGURE 9.8
Velocity distributions for the shear-driven cavity
problem.
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The case of the water discharge with a fully opened gate is similar to the problem of a dam
collapsing. In this case, the initial water level H0 and the initial surge front S0 are 25 m. The water
particles flow forward in an orderly fashion with increasing surge front S and decreasing water
level H. The numerical results from the present work (denoted by the subscript p), the experimen-
tal data (denoted by the subscript exp), and the results by Monaghan (denoted by the subscript m)
are compared and shown in Table 9.1. The surge front S and the water level H at different instants
are nondimensionalized by the initial water level H0 while the time is nondimensionalized byffiffiffiffiffiffiffiffiffiffiffi

H0=g
p

, where g is the gravity constant. Our results, especially the surge fronts, are more accurate
than the results Monaghan obtained. This is due to the use of two types of virtual particles together
on the solid boundary [5].

9.3.4.2 Applications to Explosion Simulations

An explosion consists of a complicated sequence of energy-releasing processes and is
difficult to simulate. In an explosion, especially an underwater explosion, there exist
large deformations, large inhomogeneity, and moving material interfaces. In the light of
such factors, some numerical simulations use two grids, one Eulerian grid for treating large
deformations and inhomogeneity, the other Lagrangian grid for tracking different material
interfaces. In this section, the SPH simulation of explosion is performed, and two numerical
cases are presented. The first case is an explosion problem in a vacuum; the second is a
water mitigation problem with moving gas=water=air interfaces.

Example 9.5: Explosion in Vacuum

In the first example, a clump of cylindrical explosive with high energy explodes in a vacuum. The
initial total energy and density of explosive are 4.29� 106 J=kg and 1630 kg=m3, respectively,
while the initial radius is 0.1 m. Figure 9.10 shows the density and pressure profiles in the radial
direction at four different, randomly selected instances using the SPH method. The results are
compared with those computed using the commercial software [64], which is based on FVM for
fluid flow with explicit time marching. The good agreement between the results of the two
approaches suggests that the presented SPH method can simulate the explosion process well.
We have also checked on the computational efficiency of our SPH code using this example in

comparison with MSC=DYTRAN.We were not able to have our SPH code and MSC=DYTRAN run
on a common computer for some trivial reasons, and therefore we cannot provide quantitative
results for this comparison study. Nevertheless, we report here some indicative findings. The
machine running MSC=DYTRAN was an SGI Origin 2000, and the machine running our SPH
code was an HP workstation. The clock of these two machines is roughly the same. To run
Example 9.5 to 0.1 ms, the MSC=DYTRAN code took about three times more wall-time compared
with our SPH code.

TABLE 9.1

Water Level H and Surge Front S Computed Using SPH Methods

Time Hexp Hm Hp Sexp Sm Sp

0.71 0.90 0.90 0.90 1.33 1.56 1.45

1.39 0.76 0.75 0.75 2.25 2.50 2.38

2.10 0.57 0.56 0.56 3.22 3.75 3.50

3.20 0.32 0.37 0.35 4.80 5.00 4.88

Note: Subscripts—exp, experimental results; p, present SPH code; m, results by [47].

Meshfree Methods for Fluid Dynamics Problems 403

© 2010 by Taylor and Francis Group, LLC



Example 9.6: Simulation of Explosion Mitigated by Water

In this example, a more complicated case involving underwater shock is considered. To reduce
potential damage resulting from an accidental explosion, high-energy explosives are sometimes
stored with a layer of water cover, as shown in Figure 9.11. Outside the water is air. In the case
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FIGURE 9.10
Density and pressure profiles for the 2D explosion problem at t¼ 0.02, 0.04, 0.08, and 0.10 ms. Lines with dots
represent the results by SPH; other lines represent the results by DYTRAN.
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of an accidental explosion, the water layer covering the explosive may mitigate shock pressure
greatly. At the beginning of the simulation, both the water and the air are at atmospheric
condition. The simulation starts at the initial stage when the gas globe is surrounded by
water. It is assumed that the energy contained in the gas globe is equal to that in the explosive
charge. As the explosive charge detonates in water, it will drive a shock wave into the
surrounding water. Figure 9.12 shows the density and pressure contours. With the progress of
the explosion, the produced high-pressure gas pushes water to the outside and tends to occupy
more space, while the water layer becomes thinner. The gas=water=air interfaces and the latter
reflection waves can be seen clearly either from the density or pressure contours. The density
around the four corners gradually becomes sparser. The final penetration of particles of different
materials will first occur there, which clearly shows that particles of different materials should
first mix near the place where the interactions between the same kinds of particles are the
weakest.
Figure 9.13 gives the peak shock pressure curve vs. time obtained by the SPH method. It nearly

coincides with the peak shock pressure curve obtained by MSC=DYTRAN. As the simulations by
the SPH method and MSC=DYTRAN start at the same initial condition, the original pressures for
the two simulations should be the same. Later, as time elapses, the shock wave moves farther from
the center of the original explosive charge, and the peak shock pressure gradually decreases in an
exponential fashion. The peak shock pressure obtained by MSC=DYTRAN seems to change more
slowly than the peak shock pressure obtained by the SPH method, while as time goes on, the two
curves gradually become closer. This simulation shows that the presented SPH method can
provide a good prediction of the peak shock pressure for an underwater explosion both qualita-
tively and quantitatively.
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á  Isopressure contour b́  Isopressure contour ć  Isopressure contour
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Density and pressure contour at t¼ 0.09, 0.21, and 0.30 ms in a quarter of the computational domain for the water
mitigation problem, after the explosive detonated in water in a confined square space of air.
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9.3.5 Some Remarks

An SPH formulation and implementation for solving Lagrangian form of Navier–Stokes
equations has been introduced in this chapter. The SPH formulation is quite straightfor-
ward, and the approximation is quite ‘‘bold’’ leading to a Lagrangian type of meshfree
particle approach. Although the consistence of function approximation in the standard
SPH is even less than C8, the solution is found reasonably good. This is because the
important role of error control of the smoothing operation used (see Remark 5.2).

Numerical tests have been carried out for different dynamic flow problems. For incom-
pressible flows such as Poiseuille flow, Couette flow, and the shear driven cavity flow, the
presented SPH method can yield satisfactory results. The advantages of the SPH method in
treating free surface flows can be clearly seen in the simulation of the water discharge and
the dam collapse problems. To test its ability to simulate problems with large deformations
and large inhomogeneity, a 2D explosion problem in vacuum and a water mitigation
problem are simulated. Compared with a grid-based method, the SPH method can suc-
cessfully simulate such problems at reasonable accuracy with less computational effort. It
can be concluded that SPH with proper modifications is an effective alternative and a
valuable addition to traditional numerical methods for dynamic flow applications. More
applications of SPH can be found in [5,6].

9.4 Gradient Smoothing Method

9.4.1 Background

In the previous chapters we have seen that meshfree methods based on weak and
weakened-weak formulation using gradient smoothing techniques work very well for
solid mechanics problems. In this section, we present the so-called GSM that is applied
for strong form (differential form) governing equations. In GSM, all the unknowns of a
field variable are stored at nodes and their derivatives at various locations are consistently
and directly approximated with gradient smoothing operation using a set of properly
defined gradient smoothing domains (GSDs). Once the derivatives are approximated, the
implementation procedure of GSM is as simple as the traditional FDM [65]. The GSM,

FIGURE 9.13
Time history of peak-shock pressure after the
detonation of the explosive wrapped by water
in a confined square space of air.
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however, uses irregular mesh and hence can be applied very effectively with excellent
stability for arbitrary geometries.

In the following sections, the theory of the GSM is first introduced. The GSM approx-
imations to the gradients (first-order derivative) and Laplace operator (second-order
derivative) of a field variable are presented in detail. Stencil analyses of coefficients of
influence corresponding to various GSM schemes are then conducted. Important features
of the stencils for the approximation of Laplace operator are discussed. Numerical solu-
tions to Poisson equations are obtained using four favorable GSM schemes and investi-
gated in detail to reveal the properties of convergence and stability. The computational
efficiency, accuracy in results, and the robustness to the cell irregularity for GSM are also
examined. Finally, the GSM results for some benchmarked compressible flow problems,
e.g., inviscid flow over the NACA0012 airfoil, laminar flow over flat plate, and turbulent
flow over the RAE2822 airfoil, are presented.

9.4.2 Derivative Approximation by Smoothing

In the GSM, derivatives at various locations, including nodes, centroids of cells, and
midpoints of cell-edges, are approximated over relevant gradient smoothing domains
using the gradient smoothing operations. The details about the theory, principle, and
implementation procedure of the GSM are introduced in this section with the focus on
the approximation of spatial derivatives.

For simplicity, a 2D problem is considered here to illustrate the gradient smoothing
operation. Using techniques detailed in Section 3.3.5, or the Green’s divergence theorem for
continuous field variable (U), we shall have

rUi � 1
Ai

þ
qVi

Un*ds (9:41)

which gives an approximation of gradients of a field variable U at a point xi that is bounded
by a local smoothing domainVi, as shown in Figure 9.14. In Equation 9.41,Ai is the area of the
smoothing domain, and n* is the unit outward normal of the domain boundary, qVi. Equation
(9.41) is widely used in many numerical operations, especially in the well-known finite
volume methods. Analogously, by successively applying the gradient smoothing technique
for second-order derivatives [71,72], the Laplace operator at xi can be approximated as

r � (rUi) � 1
Ai

þ
qVi

n* � rUds (9:42)

Ωi xi

Γi n

FIGURE 9.14
Generic gradient smoothing domain.
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Hence, spatial derivatives at any point of interest can always be approximated using
Equations 9.41 and 9.42 together with properly defined smoothing domains that will be
discussed in Section 9.4.3.

9.4.3 Types of Smoothing Domains

In order to make GSM work properly and efficiently, the smoothing domains have to be
carefully designed. In our GSM, the problem domain is first divided into a set of back-
ground cells via triangulation defined in Section 1.7.2. Based on the background cells, a
smooth domain can be constructed for any point. Depending on the location of the point of
interest, we use different types of smoothing domains based on the compact and conformal
principle. As shown in Figure 9.15, three types of gradient smoothing domains are used for
the approximation of spatial derivatives:

1. Node-associated GSD (nGSD): This type of smoothing domain is used for the
approximation of derivatives at a node of interest. It is formed by connecting
relevant centroids of triangles with midpoints of relevant cell-edges, similar to
what we do in the NS-PIM.

2. Centroid-associated GSD (cGSD): This type of smoothing domains is used for
approximating derivatives at the centroid of the cell. It is quite similar to what
we do in the SM-PIM and in the cell-centered FVM [66].
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FIGURE 9.15
Types of gradient smoothing domains used in GSM constructed based on the background triangular cells.
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3. Midpoint-associated GSD (mGSD): This is used for the calculation of the gradients
at the midpoint of a cell-edge of interest, similar to the ES-PIM. The preferred
mGSD is formed by connecting the end-nodes of the cell-edge with the centroids
on the both sides of the cell-edge, as shown in Figure 9.15.

Using Equations 9.41 and 9.42, spatial derivatives at any point of interest can be approxi-
mated using the corresponding smoothing domain. The following different schemes can
be devised for this purpose.

9.4.4 Schemes for Derivative Approximation

In using Equations 9.41 and 9.42, we need to accurately perform the integration along the
boundaries of various types of GSDs. Both the one-point quadrature (rectangular rule) and
two-point quadrature (trapezoidal rule) can be used for numerical integration. Two-point
quadrature is always used to approximate derivatives at the midpoints and centroids in our
study. As listed in Table 9.2, a total of eight schemes for spatial derivatives are developed,
using combinations of different types of quadrature and methods of approximation.

In the schemes using one-point quadrature (I, II, and VII), the integrand along a
smoothing domain-edge is simply evaluated by taking the value of a variable at the
midpoint where the domain-edge intersects with a respective cell-edge. On the contrary,
in the schemes using two-point quadrature (III, IV, V, VI, and VIII), values of the variable
at the two end-points of the smoothing domain-edge of interest (the midpoint of the cell-
edge and the centroid of the respective cGSD) are needed in numerical integration. In this
work, both the first- and second-order derivatives at nodes are always approximated with
gradient smoothing operation detailed in Section 2.1. The gradients at the midpoint of a
cell-edge can be calculated in two ways: either by simple interpolation using the gradients
at both the end-nodes of the cell-edge (I, II, III, IV, V, and VI) or by gradient smoothing
operation over the respective mGSD (VII and VIII). Similarly, the gradients at a centroid
can be obtained either by simple interpolation using the gradients at the three nodes of the
cGSD (III and IV) or by gradient smoothing over the corresponding cGSD (V, VI, and VIII).

Note that when one-point quadrature schemes are used, there is no need to approximate
the gradients at centroids, since the integrands in Equations 9.41 and 9.42 are evaluated
only at the midpoints of cell-edges.

TABLE 9.2

Spatial Discretization Schemes for the Approximation of Derivatives

GSM
Schemes

Quadrature
Points Used Type of GSD

Approximation
of Derivatives
at Midpoints

Approximation
of Derivatives
at Centroids

Use of
Directional
Correction

I 1-Point nGSD Interpolation (Not required) No

II 1-Point nGSD Interpolation (Not required) Yes
III 2-Point nGSD Interpolation Interpolation No

IV 2-Point nGSD Interpolation Interpolation Yes

V 2-Point nGSD, cGSD Interpolation Gradient smoothing No

VI 2-Point nGSD, cGSD Interpolation Gradient smoothing Yes

VII 1-Point nGSD, mGSD Gradient smoothing (Not required) No

VIII 2-Point nGSD, mGSD, cGSD Gradient smoothing Gradient smoothing No
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9.4.5 Formulas for Spatial Derivatives

9.4.5.1 Two-Point Quadrature Schemes

First-order derivatives at nodes are obtained using Equation 9.41. For example, at node i, the
first-order derivatives of the field variable U are given by

qUi

qx
� 1

Ai

Xni
k¼1

1
2
(DSx)

(L)
ijk

(Um)ijk þ (Uc)Dijk jkþ1

h i
þ 1
2
(DSx)

(R)
ijk

(Um)ijk þ (Uc)Dijk jk�1

h i
 �
(9:43)
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where Ai is the area of the smoothing domain, and

(DSx)
(L)
ijk

¼ DS(L)ijk
(nx)

(L)
ijk

(9:45)

(DSy)
(L)
ijk

¼ DS(L)ijk
(ny)

(L)
ijk

(9:46)

(DSx)
(R)
ijk

¼ DS(R)ijk
(nx)

(R)
ijk

(9:47)

(DSy)
(R)
ijk

¼ DS(R)ijk
(ny)

(R)
ijk

(9:48)

in the foregoing equations
U,Um, andUc denote values of the field variableU at nodes, midpoints of cell-edges, and
centroids of triangular cells, respectively

DSx and DSy are the two components of a domain-edge vector
nx and ny represent the two components of the unit outward normal vector of the
domain-edge

i denotes the node of interest
jk is the other end-node of the cell-edge linked to node i (see Figure 9.15)
superscripts (L) and (R) stand for the two domain-edges on two sides of the cell-edge ijk
ni is the total number of supporting nodes within the stencil of the node i
subscripts Dijkjkþ1 and Dijkjk�1 stand for the left-side and right-side triangles connected
with the cell-edge ijk

In the computation, these geometrical parameters are calculated and stored before the
intensive calculation starts. The values of the field variableU at nonstorage locations, i.e., at
midpoints and centroids, are computed by simple interpolation of function values at the
nodes, respectively.

First-order derivatives at midpoints and centroids can be obtained in a similar manner. The
gradients at midpoints ((rUm)ijk ) of cell-edges and centroids ((rUc)Dijk jkþ1

and (rUc)Dijk jk�1
)

of cells can also be approximated using Equation 9.41, but based on the related mGSDs and
cGSDs, respectively. Such a treatment is adopted for the approximation of gradients at
midpoints in Schemes VII and VIII, and gradients at centroids in Schemes V, VI, VII, and
VIII. Similarly, the geometrical parameters including the areas, domain-edge vectors, and
normal vectors of domain-edges related to mGSDs and cGSDs should be predetermined
and stored for the late use in iterative process of solving the algebraic equations.

Alternatively, the gradients at these nonstorage locations can be approximated by simple
interpolation of the gradients at relevant nodes. This manner is used to approximate
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the gradients at the midpoints in Schemes I, II, III, IV, V, and VI, and the gradients at
centroids in Schemes III and IV.

Second-order derivatives at nodes can then be obtained using Equation 9.42 and given in the
following form:
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9.4.5.2 One-Point Quadrature Schemes

In one-point quadrature schemes (I, II, and VII), it is assumed that

(Uc)Dijk jkþ1
¼ (Uc)Dijk jk�1

¼ (Um)ijk (9:50)

and

(rUc)Dijk jkþ1
¼ (rUc)Dijk jk�1

¼ (rUm)ijk (9:51)

First-order derivatives at nodes are then approximated in a simplified form as

qUi

qx
� 1

Ai

Xni
k¼1

(DSx)ijk (Um)ijk (9:52)

and

qUi

qy
� 1

Ai

Xni
k¼1

(DSy)ijk (Um)ijk (9:53)

Second-order derivatives at nodes are simply estimated as

r � (rU) � 1
Ai

Xni
k¼1

q
qx

(Um)ijk (DSx)ijk þ
q
qy

(Um)ijk (DSy)ijk

� �
(9:54)

where

(DSx)ijk ¼ (DSx)
(L)
ijk

þ (DSx)
(R)
ijk

(9:55)

and

(DSy)ijk ¼ (DSy)
(L)
ijk

þ (DSy)
(R)
ijk

(9:56)
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As shown in Equations 9.52 through 9.54 in one-point quadrature schemes, only field
variable values and the gradients at the midpoints of cell-edges are needed in the approx-
imations. Thus, the vectors for a pair of domain-edges connected with the cell-edge ijk can
be lumped together, reducing storage space.

It should be noted that the gradients at midpoints in Equation 9.54 are approximated
using gradient smoothing operation based on mGSDs in Scheme VII, while they are
approximated using the simple interpolation approach in Schemes I and II.

The one-point quadrature schemes are clearly simpler and much more cost effective in
terms of both computation flops and storage. Schemes based on two-point quadrature
demand more in computation and storage for values of variables at centroids and domain-
edge vectors for cGSDs. When mGSDs are used for prediction of gradients at midpoints of
cell-edges, such demands become even higher. However, theoretically, schemes based on
two-point quadrature can give more accurate results, which will be discussed later in the
numerical examples.

9.4.5.3 Directional Correction

As described in the preceding section, when the second-order derivatives are needed, it is
essential to approximate the gradients at midpoints of cell-edges in GSM procedure. One
option is to simply take the arithmetic average of gradients at the two end-nodes of a cell-
edge of interest. We find that this can lead to decoupling solutions (known as checkerboard
problem) which will be illustrated in detail in Section 9.4.9. To overcome such a problem,
we use the directional correction technique as proposed by Crumpton et al. [73]:

(r ~Um)ijk ¼ (rUm)ijk � (rUm)ijk � t
*

ijk �
qU
ql

� �
ijk

" #
t
*

ijk (9:57)

where
qU
ql

� �
ijk

� Ujk �Ui

Dlijk

t
*

ijk ¼
r*ijk

Dlijk
r*ijk ¼ xjk � xi
Dlijk ¼ jxjk � xij

Here xi and xjk denotes the spatial locations of node i and jk, respectively. This technique is
adopted in Schemes II, IV, and VI, where the gradients at the midpoints of cell-edges are
obtained by simple interpolation. More details about the role of directional correction will
be addressed in Section 9.4.7.

9.4.6 Time Marching Approach

A time marching approach that is based on explicit multistage Runge–Kutta method [74] is
adopted in our study for solutions to attain algebraic equations. For a transient or
pseudotransient problem, the system of governing equations can be simply rewritten in
the form of
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qU
qt

¼ �R (9:58)

where
U denotes the array of primitive variables
R represents the relevant residuals

With the explicit five-stage Runge–Kutta (RK5) method, the solutions at the time step
(nþ 1) can be sequentially and explicitly updated in the following fashion:

U(0)
i ¼ Un

i

U(1)
i ¼ U(0)

i � a1DtR
(0)
i

U(2)
i ¼ U(0)

i � a2DtR
(1)
i

U(3)
i ¼ U(0)

i � a3DtR
(2)
i

U(4)
i ¼ U(0)

i � a4DtR
(3)
i

U(5)
i ¼ U(0)

i � a5DtR
(4)
i

(9:59)

in this equation
Un

i denotes the solutions at node i at the time step (n)
R(k)

i represents the residuals that is evaluated with the kth-stage solutions and their
derivatives

Dt stands for the time-step
the coefficients adopted in current study are a1¼ 0.0695, a2¼ 0.1602, a3¼ 0.2898,
a4¼ 0.5060, and a5¼ 1.000

In using the RK5 method, only the zeroth- and fifth-stage solutions at nodes should be
stored in memory. The RK5 method has been widely used in the simulations of many
transient fluid flow problems, because of its attractive efficiency and stability.

The edge-based data structure coupled with the gather–scatter procedure [69,70] is also
adopted in our GSM solver, which essentially eliminates certain computational redundan-
cies often encountered with node-based or cell-based data structures [75]. As a result, our
GSM solver exhibits outstanding efficiency.

9.4.7 Analyses of Approximation Stencil

In the weak and weakened-weak formulations, we had systematical ways to ensure the
stability and convergence of the solution. In a strong formulation, we need proper meas-
ures to deal with these issues. Here we conduct a careful examination of the stencils of
supporting nodes for various schemes proposed for the GSM. The coefficients of influence
of a node where derivatives are approximated are derived using the GSM schemes for
regular node settings. The objective for stencil analyses is to select the most suitable
schemes that satisfy the basic principles of numerical discretization. For simplicity, the
stencils for approximating the Laplace operator based on cells in both square and equilat-
eral triangle shapes are studied.
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9.4.7.1 Basic Consideration for Stencil Assessment

The following five basic considerations or rules are used to assess the quality of a stencil:

(a) Consistency at each interface of the two adjacent gradient smoothing domains

(b) Positivity of coefficients of influence

(c) Zero-sum of the coefficients of influence

(d) Negative-slope linearization of the source term

(e) The compactness of the stencil

The first four rules are for solutions with physically realistic behavior and overall balance
[76]. To satisfy Rule (a), it requires that the same expression of approximation must be used
on the interface of two adjacent GSDs. Rule (b) requires that the coefficient for the node of
interest and the coefficients of influence must be positive, when the discretization equation
is written in the form of

aiiUi þ
Xni
k¼1

aijkUjk ¼ bi (9:60)

Rule (c) requires that

aii ¼ �
Xni
k¼1

aijk (9:61)

which ensures the constant field reproducibility. Rule (d) relates to the treatment of the
source terms. As addressed by Patankar [76], it is essential to keep the slope of linearization
negative, since a positive slope can lead to computational instabilities and physically
unrealistic solutions. A good discretization stencil needs also to satisfy Rule (e) for the
concerns about numerical accuracy and efficiency, as commented by Barth [70]. The very
first layer of nodes surrounding the node of interest should be included in the discretiza-
tion stencil. Moreover, as the stencil becomes wider, not only the computational cost
increases, but eventually the accuracy decreases as less valid data from further away is
brought into approximation. We do not want our numerical scheme to be too ‘‘dispersive.’’

Barth [70] has proposed a few lemmas to address the necessity of positivity of coeffi-
cients to satisfy a discrete maximum principle that is a key tool in the design and analysis
of numerical schemes suitable for nonoscillatory discontinuity (e.g., shock). At steady
state, nonnegativity of the coefficients becomes sufficient to satisfy a discrete maximum
principle that can be applied successively to obtain global maximum principle and stable
results. His statements reiterate the importance of Rule (b) as mentioned by Patankar [76].

In our GSM, when the gradient smoothing operation is applied to the GSDs, Rule (a) is
automatically satisfied, meaning that the local conservation of quantities is guaranteed as
much as for the global conservation once proper boundary conditions are used. We,
therefore, focus our discussion on Rules (b), (c), and (e) for the GSM schemes.

9.4.7.2 Stencils for Gradient Approximations

The stencils for gradient approximation using the eight schemes are derived using regular
background cells.
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Square cells: Using the GSM schemes listed in Table 9.2, the coefficients of influence based
on square cells are shown in Figure 9.16. We find that the three one-point quadrature
schemes (I, II, and VII) correspond to the same stencil, as shown in Figure 9.16a. This
stencil is also identical to that of 2-point based central-difference scheme in the FDM. We
also observe that the stencil for all two-point quadrature schemes is the same, as shown in
Figure 9.16b. This stencil is identical to that of 6-point based central-differencing scheme in
the FDM [91]. These findings confirm that when cells in square shape are used, the GSM is
identical to the FDM. The GSM, however, works also for cells in irregular shapes.

Equilateral triangular cells: Using the GSM schemes listed in Table 9.2, the coefficients of
influence based on equilateral triangular cells are shown in Figure 9.17. It is interesting to
find out that all the GSM schemes yield an identical stencil. This stencil is the same as that
of interpolation method using six surrounding nodes [91]. Note that for irregular triangular
cells, the interpolation method can in general fail [7], but our GSM still performs well,

(a) (b)

1– ,
16

1
16

1 ,
16

1
16

0, 3
8

0, – 1
2

1
– –,

16
1

16

1
2

, 0 3
8

, 0

0, 1
2

            01
2

,–

0, – 3
8

1 –,
16 16

1

–        03
8

,

FIGURE 9.16
Stencils for derivative approximation based on square cells. (a) Schemes I, II, and VII; and (b) Schemes III, IV, V,
VI, and VIII.
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(I–VIII).

Meshfree Methods for Fluid Dynamics Problems 415

© 2010 by Taylor and Francis Group, LLC



as will be demonstrated in the numerical examples. This is because of the crucial stability
provided by the smoothing operation.

9.4.7.3 Stencils for Approximated Laplace Operators

Square cells: The stencils for the approximated Laplace operator with GSM schemes based
on uniform square cells are derived and listed in Figures 9.18 and 9.19. It is found that
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Schemes I, III, and V, as shown in Figure 9.18a, c, and e, result in wide stencils with
unfavorable weighting coefficients (zero and negative values at the first-layer nodes). With
such kinds of stencils, unexpected decoupling solutions may be produced [67]. This is also
confirmed in the numerical examples. As mentioned by Monier [74], such kinds of stencils
cannot damp out high-frequency numerical errors. The situation can get worse near the
boundary where the viscous effect becomes dominant. Therefore, Schemes I, III, and V are
regarded unfavorable.

Such unfavorable stencils are resulted from the simple interpolation used to approximate
the gradients at the midpoints of cell-edges in the three schemes. As the directional
correction for gradients approximation at midpoints is included, Schemes II and VI become
relatively compact with favorable coefficients, as depicted in Figure 9.18b and f. Scheme II
is a 5-point stencil and Scheme VI corresponds to 9-node compact stencil. They are the
same as those for central-difference scheme in the FDM. However, even with directional
correction, an unfavorable stencil in Scheme IV is noticed, where four zero-valued coeffi-
cients in the first layer of nodes and fully populated nonzero coefficients for all nodes on
the second layer are found, as shown in Figure 3.3d. Therefore, Schemes II and VI are
found to be favorable, while Scheme IV is considered as unfavorable.

The compact and favorable stencils are also obtained using Schemes VII and VIII where
the gradients at midpoints of cell-edges are approximated by gradient smoothing oper-
ation over respective mGSDs, as seen in Figure 9.18b and f. This implies that the gradient
smoothing operation over the corresponding mGSD is a good alternative to the simple
interpolation modified with directional correction technique. Following the consistency
rule on the approximation of derivatives at different locations and the stability (against the
node irregularity) feature offered by the gradient smoothing technique, Schemes VII and
VIII are more preferable than Schemes II and VI.

Equilateral triangular cells: The analyses are also conducted for all the eight schemes on
uniform equilateral triangular cells and the resultant stencils are shown in Figure 9.19. It is
found again that Schemes I and III result in an unfavorable stencil, because the coefficients
at the very first layer of neighboring nodes are negative as seen in Figure 9.19a, which
violates the basic Rule (b). Schemes IV and V, and Schemes II, VI, VII, and VIII produce two
sets of stencils with favorable coefficients, as shown in Figure 9.19b and c. Schemes IV and V
consist of two layers of neighboring nodes, while Schemes II, VI, VII, and VIII use only the
first layer of neighboring nodes. According to Rule (e), Schemes II, VI, VII, and VIII are
more favorable than Schemes IV and V, because of their relatively compact stencils.

We note that Rule (c) is satisfied in stencils for all schemes studied here. As a summary,
based on the stencil analyses, four GSM schemes, i.e., II, VI, VII, and VIII, are regarded as
favorable schemes, because they consistently produce compact stencils with favorable
coefficients on the both regular cells of squares and equilateral triangles. The four favorable
schemes are examined further in numerical examples to be addressed later.

9.4.8 Truncation Errors

Using the Taylor series expansion as in the standard FDM, we can easily find the trunca-
tion errors for the four selected GSM schemes based on square and equilateral triangular
cells. Table 9.3 summarizes the results for the first-order derivative approximation, and
Table 9.4 shows those for the second-order derivatives. It is clear that all these schemes are
of second-order accuracy. The truncation errors for Scheme VII are identical to those for
Scheme II. Schemes VI and VIII have the same truncation errors. All these theoretical
findings will be further conformed numerically in later sections.
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9.4.9 Numerical Examples: Benchmarking with Poisson Problems

Numerical examples are used to examine the four selected GSM schemes (II, VI, VII, and
VIII). A 2D Poisson equation is first conducted using our GSM code. Different spatial
discretization schemes are tested and compared with one another in terms of numerical
accuracy and computational efficiency. The roles of directional correction and gradient
smoothing operation used for the approximation of the gradients at midpoints of cell-
edges are numerically verified. In addition, the effects of the shape, the density, and the
irregularity of cells upon the accuracy and stability are intensively investigated.

Example 9.7: Poisson Problems

The Poisson equation is first solved with our GSM code. Poisson equation governs many physical
problems, such as the heat conduction problems with sources, where the temperature is the
unknown field function. Dirichlet conditions are applied on the boundaries, i.e., the values of
the field function at the boundaries are prescribed. The pseudotransient time marching approach
based on RK5 is applied to obtain steady-state solutions. The maximum allowable time step is
obtained subjected to numerical stability. A typical convergence history is shown in Figure 9.20.

TABLE 9.3

Truncation Errors in the Approximation of First-Derivatives in GSM

Schemes Truncation Error

II and VII (square cells) Ox(h2) ¼ � h2

6
q3Uij

qx3
þO(h3)

Oy(h2) ¼ � h2

6
q3Uij

qy3
þO(h3)

VI and VIII (square cells) Ox(h2) ¼ �h2
5
24

q3Uij

qx3
þ 1
2
q3Uij

qxqy2

 !
þO(h3)

Oy(h2) ¼ �h2
5
24

q3Uij

qy3
þ 1
2
q3Uij

qx2qy

 !
þO(h3)

II, VI, VII, and VIII (equilateral triangular cells) Ox(h2) ¼ �h2
1
24

q3Ui

qx3
þ 1
8

q3Ui

qxqy2

� �
þO(h3)

Oy(h2) ¼ �h2
1
24

q3Ui

qy3
þ 1
8

q3Ui

qx2qy

� �
þO(h3)

TABLE 9.4

Truncation Errors in the Approximation of the Laplace Operator in GSM

Schemes Truncation Error

II and VII (square cells) O(h2) ¼ � h2

12
q4Uij

qx4
þ q4Uij

qy4

 !
þO(h3)

VI and VIII (square cells) O(h2) ¼ � h2

12
q4Uij

qx4
þ 3

q4Uij

qx2qy2
þ q4Uij

qy4

 !
þO(h3)

II, VI, VII, and VIII (equilateral triangular cells) O(h2) ¼ � h2

16
q4Ui

qx4
þ 2

q4Ui

qx2qy2
þ q4Ui

qy4

� �
þO(h3)
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The Poisson equation takes the following form:

qU
qt

¼ q2U
qx2

þ q2U
qy2

� f (x, y), (0 � x � 1, 0 � y � 1) (9:62)

We consider two Poisson’s problem with different boundary and initial conditions.
The first problem has a source and initial conditions prescribed as

f (x, y, t) ¼ 13 exp(�2xþ 3y)

U(x, y, 0) ¼ 0

�
, (0 � x � 1, 0 � y � 1) (9:63)

For this problem, the analytical solution is

Û(x, y) ¼ e(�2xþ3y), (0 � x � 1, 0 � y � 1) (9:64)

The second problem has a source, initial conditions given as

f (x, y, t) ¼ sin(px) sin(py)

U(x, y, 0) ¼ 0

�
, (0 � x � 1, 0 � y � 1) (9:65)

The analytical solution to the second problem is expressed as

Û(x, y) ¼ � 1
2p2sin(px) sin(py) (0 � x � 1, 0 � y � 1) (9:66)

These analytical solutions are used for the assessment of numerical errors in the GSM
solutions. Three indicators of numerical errors are used in this study. The convergence
error index, econ, is defined as

0

–2

–4

–6

–8

–10

–12

500 1000 1500
Iteration

2000

–14
FIGURE 9.20
A typical convergence history in a pseu-
dotransient time matching approach.
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econ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

U(nþ1)
i �U(n)

i

� 2
vuut

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

U(1)
i �U(0)

i

� 2
vuut (9:67)

where
U(n)

i denotes the predicted value of the field variable at node i at the nth iteration
N is the total number of nodes in the domain

The value of econ is monitored during iterations and used to stop the iterative process. In
most simulations, in order to exclude the effect due to the temporal discretization, com-
putations are stopped till econ becomes stabilized.

The numerical error in a GSM solution for the overall field is defined using L2-norm of
error:

error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNn

i¼1

Uexact
i �Unum

i

� �2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNn

i¼1

Uexact
i

� �2
vuut

,
(9:68)

where Unum
i and Uexact

i are numerical and analytical solutions at node i, respectively. This
type of error is used to compare the accuracy among different schemes. The third type of
error is the node-wise relative error defined as

rerrori ¼ jUnum
i �Uexact

i j=jUexact
i j (9:69)

The node-wise relative errors distributed over the computational domain are used to
identify problematic regions in simulations.

Four types of background cells, square, right triangle, ‘‘regular’’ triangle, and irregular
triangle shown in Figure 9.21, are used in the study of Poisson’s problems. The irregular
triangles are designed for the study of robustness of the GSM to the irregularity of
triangular cells.

9.4.9.1 The Role of Directional Correction

As expected, the so-called decoupled solution will occur when Scheme I is applied onto
square cells in solving the first Poisson problem. Saw-toothed numerical errors (checker-
board problem) are generated and cannot be dampened out, as shown in Figure 9.22a. The
only difference of Scheme II from Scheme I is the inclusion of direction correction. As
shown in Figure 9.22b, the checkerboard problem encountered in Scheme I is successfully
overcome in Scheme II. This supports numerically the findings in theoretical stencil
analyses. To show the results quantitatively, Table 9.5 lists the numerical errors for
Schemes I and II. It is evident that when the directional correction is used, the overall
numerical error is significantly reduced: the magnitude of overall errors with Scheme II
reduced by about five times, compared to Scheme I. However, such benefit in Scheme II is
achieved at the cost of relatively longer computational time, due to smaller allowable time-
step restricted in numerical stability, as compared to Scheme I.

9.4.9.2 Comparison of Four Selected Schemes

We now conduct a quite thorough test on the four selected favorable schemes, using
different types of cells with various node densities for the Poisson problems. Profiles of
numerical error vs. averaged node spacing for the first Poisson problem are plotted in
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(a)

(c)

(b)

(d)

FIGURE 9.21
Four types of background cells used in the study of Poisson’s problems; (a) square, (b) right triangle, (c) ‘‘regular’’
triangle, and (d) irregular triangle.
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FIGURE 9.22
Contour plots of relative errors in the solution for the first Poisson problem using square cells: (a) Scheme I and
(b) Scheme II.
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Figures 9.23 through 9.25, together with fitted straight lines. Note that the errors in these
plots are evaluated using Equation 9.68, and the averaged node spacing, h, is evaluated
using the equation h ¼ Vffiffiffiffiffiffiffiffi

nnode
p � 1. The slopes of the fitted straight-lines give the numerical

convergence rates.

9.4.9.2.1 On Cells in Square Shape

As shown in Figure 9.23 when square cells are used, Scheme VII is as accurate as Scheme II,
because the two schemes result in the same approximation stencil. This is also true for the
Schemes VI and VIII. We note that the two-point quadrature schemes (VI and VIII) give
relatively lower accuracy than the one-point quadrature schemes (II and VII). They also result
in higher computational costs than the one-point quadrature schemes. Therefore,when square
cells are used, Schemes II andVII are equivalent and they are superior to Schemes VI andVIII.

From the slopes of the fitted straight-lines, it is found from Figure 9.23 that the numerical
convergence rates are all quite close to 2.0, which confirm that these four schemes are of
second-order accuracy, as discussed in the analyses of truncation errors.

9.4.9.2.2 On Cells in Right Triangle Shape

Figure 9.24 plots the convergence of the numerical error against averaged node spacing,
when right triangular cells are used. These results reveal that Scheme VI gives a slightly
more accurate solution than Scheme II. Scheme VII is as accurate as Scheme VIII.

TABLE 9.5

Comparison of Numerical Errors for the First Poisson Problem Using Uniform
Square Cells

Scheme I Scheme II

No. of Nodes Error Iteration Error Iteration

36 1.96e�2 20 5.07e�3 24
121 8.58e�3 89 1.66e�3 82

441 2.63e�3 202 4.87e�4 303

1681 7.16e�4 728 1.33e�4 1379

6561 1.86e�4 2679 3.38e�5 4299
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FIGURE 9.23
Convergence of numerical error with reducing averaged node spacing based on square cells.

422 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



9.4.9.2.3 On Cells in ‘‘Regular’’ Triangle Shape

Figure 9.25 plots the results of the use of ‘‘regular’’ triangular cells. In this case, both two-
point quadrature schemes (VI and VIII) produce slightly more accurate results than
one-point quadrature schemes. This is consistent with the findings for right triangular
cells. Table 9.6 summarizes the numerical errors for the four selected schemes when
‘‘regular’’ triangular cells are used. It is clear that Scheme VII is slightly more accurate
than Scheme II, and Scheme VIII is more accurate than Scheme VI. Such discrepancies in
accuracy are related to the approximation of gradient at boundary nodes. In Schemes II
and VI, the gradients at boundary nodes need to be approximated because they are
necessarily required by the simple interpolation approach used for the approximation of
gradients at midpoints of internal cell-edges linked to boundary nodes. Thus, additional
errors may be introduced due to the approximation of gradients at boundary nodes. In
contrast, in Schemes VII and VIII, subjected to Dirichlet boundary conditions, approxima-
tions of gradients at boundary nodes are absolutely avoided, since the gradient smoothing
operation over the respective mGSDs only use the field values at the boundary nodes.
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FIGURE 9.24
Convergence of numerical error with reducing averaged node spacing based on right triangular cells.
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FIGURE 9.25
Convergence of numerical error with reducing averaged node spacing based on ‘‘regular’’ triangular cells.
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We now state without showing detailed data that this analysis applies to the right
triangular cells also.

In terms of computational cost, Scheme VII and Scheme II are almost the same, and
Scheme VIII and Scheme VI are very close to each other. Schemes VI and VIII require about
twice as much computational time as Schemes II and VII. Although Schemes VI and VIII
are more accurate than Schemes II and VII, the improvement in accuracy is not significant.
Therefore, overall the two one-point quadrature schemes (II and VII) are more preferable
for further exploration, especially for realistic fluid flow problems with a large number
of cells.

The same tests have been conducted for second Poisson problem and consistent findings
described above are also observed.

9.4.9.3 Robustness to Irregularity of Cells

We now know that the GSM works as good as the FDM for regular cells. Next, we use the
second Poisson problem to conduct a study on effects of irregularity of triangular cells. It is
well-known that triangular cells have best adaptivity to complex geometries of problem
domains and can be generated automatically in very efficient ways. Because the GSM is
purposely designed for problem domains of complicated geometry for engineering prob-
lems, we prefer to use triangular cells. In addition, the GSM has to be very robust against
the irregularity of the cell shape. Our objective of this study is thus to further examine the
sensitivity of the GSM to cell irregularity. Based on our findings so far, we now can zoom-
in on the two one-point quadrature schemes (II and VII).

To study this in a systematic manner, we first define the irregularity factor g for all
triangular cells used in the background mesh:

g ¼
Pne

i¼i
(ai � bi)

2 þ (bi � ci)
2 þ (ci � ai)

2

a2i þb2i þc2i

ne
(9:70)

where
ai, bi, and ci, denote, respectively, the lengths of the three constitutive cell-edges of a
triangular cell

ne stands for the total number of triangular cells throughout the problem domain

TABLE 9.6

Comparison of Numerical Errors in Solutions Obtained Using ‘‘Regular’’ Triangular Cells
for the First Poisson Problem with Four Selected Schemes

Numerical Errors in Solutions

No. of Nodes Time Step Dt Scheme II Scheme VII Scheme VI Scheme VIII

131 0.008 1.95e�3 1.65e�3 1.68e�3 1.55e�3
478 0.001 7.02e�4 6.53e�4 6.46e�4 6.20e�4

1887 0.0005 1.89e�4 1.70e�4 1.74e�4 1.65e�4

7457 0.0001 4.38e�5 3.98e�5 4.12e�5 3.94e�5

29629 0.00003 1.22e�5 1.10e�5 1.11e�5 1.05e�5
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Equation 9.70 is derived from the formula proposed by Stillinger et al. [77] for a single
triangle. Using Equation 9.70, we see that the irregularity g vanishes for equilateral
triangles and is always positive for all other shapes including isosceles triangles.

Figure 9.26 shows six meshes of triangular cells generated by triangulation with same
number of nodes but various irregularities factor g. It is obvious that as the irregularity
factor g increases, the mesh becomes more and more distorted. We notice that when the
irregularity factor g becomes larger than 0.152, overlapped (or negative volume) cells are
generated in the domain, as shown in Figure 9.27 for g¼ 0.16. In actual practice, one can
always prevent overlapping in a triangular mesh using standard triangulation algorithms
such as the Voronoi algorithm. Therefore, g¼ 0.152 is considered as a very extreme case of
irregularity. Nevertheless, in this study, all the six meshes of triangular cells shown in
Figure 9.26 and other cases with irregularity factor up to 0.17 are used to test the robustness
of the GSM solver. Note that the irregularity of cells can also change the maximum
allowable time step, in addition to the accuracy of the solution.

Figure 9.28 plots the contour of the numerical solutions using Scheme VII and two
meshes with irregular triangular cells. The effects of the irregularity are almost unnotice-
able from these figures.

Table 9.7 lists in detail both the allowable time step and the errors in the convergent
solutions obtained using the GSMwith Schemes II and VII with these irregular meshes. We
first notice from Table 9.7 that as cell irregularity increases, the time-step (Dt) has to be
reduced for stable and convergent results. Meanwhile, the accuracy of the SGM solutions
also reduces accordingly, but the solutions are still reasonably accurate on all sets of

(a) γ = 0.021 (b) γ = 0.028 (c) γ = 0.048

(d) γ = 0.079 (e) γ = 0.118 (f) γ = 0.152

FIGURE 9.26
Triangular cells with various irregularity factors.
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irregular cells including the extreme case of g¼ 0.152. We also notice that Scheme VII
performs better than Scheme II in terms of accuracy.

Figure 9.29 plots the numerical errors in GSM solutions with Schemes II and VII to the
second Poisson problem vs. the irregularity factor g. These results show that for cases
without nonoverlapped cells, the numerical errors in the GSM solution are very stable
and do not vary so much, as the irregularity of cells increases. Only when the overlapped
cells are generated in the domain that noticeable sudden jumps in numerical errors are
observed. Even in such extreme cases, stable solutions are still attainable for both
Schemes II and VII. In addition, Scheme VII shows much better stability and accuracy
than Scheme II among all irregular cells examined here. This suggests that the GSM with
Scheme VII is remarkably robust and insensitive to cell irregularity. Such an attractive

FIGURE 9.27
Overlapped cells generated in a problem
domain when the irregularity factor g¼ 0.16.
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(a) γ = 0.021
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(b) γ = 0.152

FIGURE 9.28
Contour plots of solutions to the second Poisson problem obtained using GSMwith Scheme VII using two meshes
of irregular triangular cells.
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feature is attributed to the consistent use of smoothing operations in Scheme VII, leading
to the crucial stability and robustness to the system of algebraic equations.

9.4.10 Numerical Examples: Application to Navier–Stokes Equations

The GSMwith Scheme VII is now applied for solutions to some benchmarked compressible
flows. The full Navier–Stokes equations with respect to conservative variables are solved
using the GSM solver with a number of important numerical tricks:

1. The well-known second-order Roe flux-difference splitting scheme [78] is used to
evaluate the convective fluxes, because of its high accuracy for boundary layers
and good resolution of shocks [67].

TABLE 9.7

Comparison of Allowable Maximum Time Step and Numerical Error for Irregular
Triangular Cells Used in the Two Preferable GSM Schemes

Error in the Convergent Solution

Triangular
Mesh

Irregularity
Factor g

Maximum Allowable
Time Step (Dt)

Scheme
VII

Scheme
II

(a) 0.021 0.01 0.0163 0.0172

(b) 0.028 0.01 0.0169 0.0177

(c) 0.048 0.009 0.0179 0.0188

(d) 0.079 0.0075 0.0194 0.0206

(e) 0.118 0.004 0.0214 0.0231

(f) 0.152 0.0005 0.0234 0.0259
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FIGURE 9.29
Numerical errors in GSM solutions to the second Poisson problem obtained using Schemes II and VII with respect
to irregularity of cells.
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2. The left and right states are predicted with Barth and Jespersen method [68].

3. To avoid oscillation and nonphysical solutions, Venkatakrishnan’s limiter [79] is
used.

4. The flow turbulence is simulated with the Spalart–Allmaras one-equation turbu-
lence model [80] implemented in our GSM code.

In this study, the results for inviscid flow over the NACA0012 airfoil, laminar flow over a
flat plate, and turbulent flow over the RAE2822 airfoil, are presented.

Example 9.8: Inviscid Flow over the NACA0012 Airfoil

An Euler solver with the proposed GSM with Scheme VII has been developed and it is applied for
the solutions to an inviscid flow over the NACA0012 airfoil. The parameters used in this study are
for the freestream, T1¼ 288 K, p1¼ 1.0� 105 Pa, Ma¼ 0.8, and a¼ 1.258, where T1, p1, Ma,
and a denote, respectively, the temperature, the static pressure, the Mach number, and the angle
of attack of the freestream. More details on governing equations, treatments on boundary condi-
tions for the GSM model can be found in [84].
Figure 9.30 shows the unstructured rectangular cells used in GSM. Figures 9.31 through 9.33,

respectively, plot the contours of the predicted density, static pressure, and Mach number in the
flow field. It is evident that the strong shock occurring on the upper surface of the airfoil is well
resolved. The weak shock on the lower surface is also captured by our GSM solver. The results
agree well with published results by Barth [69].

Example 9.9: Laminar Flow over a Flat Plate

Next we apply our GSM solver to simulate the laminar flow over a flat plate. The freestream
conditions are: Re¼ 5000, Ma¼ 0.5, and a¼ 08. A rectangular computational domain is gener-
ated and gridded by right triangles. Nonslip conditions are imposed onto the surface of the flat
plate. Symmetry conditions are applied to the face ahead of the plate along the x-axis. Farfield
conditions [67] are set at the other external boundaries.

FIGURE 9.30
Irregular triangular cells near the NACA0012
airfoil used in the computation using GSM
with Scheme VII.
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FIGURE 9.31
GSM solution of spatial distribution of the density over the NACA0012 airfoil.
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FIGURE 9.32
GSM solution of spatial distribution of the static pressure over the NACA0012 airfoil.
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Figure 9.34 shows the convergence history of the error in solution with respect to iteration
number. Figure 9.35 plots the numerical solution of contour of the Mach number together with
velocity vector field, where the boundary layer effect is clearly observed. Figure 9.36 plots the
profile of the skin friction coefficient Cf varied with the distance x in comparison to the Blasius
analytical solution. It is clear that our GSM numerical results agree remarkably well with
the analytical solution.
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FIGURE 9.33
GSM solution of spatial distribution of Mach number over the NACA0012 airfoil.

FIGURE 9.34
Convergence history of the error in solution
with respect to iteration number.

0

–1

–2

–3

–4

–5

0 200 400 600 800
Iteration

1000

430 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-032.jpg&w=195&h=180


Example 9.10: Turbulence Flow over the RAE2822 Airfoil

Our GSM solver is also used to simulate the turbulence flow over the RAE2822 airfoil. The
parameters for the freestream are

T1 ¼ 255:556 K, p1 ¼ 1:0756256� 105 Pa, Re ¼ 6:5� 106, Ma ¼ 0:729, and a ¼ 2:31�:

Figure 9.37 plots the unstructured triangular cells used in this simulation. Figure 9.38 plots the
GSM solution of Mach number contours in this case. The shock occurring on the upper side of
the airfoil is well captured by the GSM. The predicted pressure coefficient (Cp) distributed on

Mach: 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 9.35
GSM solution of laminar flow over a flat plate: contour of Mach number and the velocity vector field.
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FIGURE 9.36
Comparison of wall friction coefficient predi-
cated by GSM with the Blasius analytical
solution.
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the airfoil surface is shown in Figure 9.39. It is seen that the GSM solution agrees well with that
from the commercial CFD package—FLUENT (FVM-based) [81], and experimental data [82]. We
also notice that the GSM result is more accurate than FLUENT solution, especially in regions near
the leading-edge. Some noticeable differences between our GSM solution and experimental data
occur around the shock region. This may be due to the insufficient resolution of cells used near the
shock, suggesting that a solution-based adaptive analysis is needed to improve the resolution.

9.4.11 Some Remarks

In this section a GSM is introduced to solve the Navier–Strokes equations in Eulerian form.
The solution procedure of the GSM is similar to that of the FDM, and hence it belongs to a
strong form method. However, the technique for gradient approximation is done in
integral from, which is more like a weak form formulation. Therefore, the GSM may be
regarded as a weak-form-like method. The GSM is conservative and efficient and works
well with heavily distorted triangular cells, and hence applicable to fluid flow problems

FIGURE 9.37
Unstructured triangular cells around the
RAE2822 airfoil used in the GSM simulation.

 Mach: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

FIGURE 9.38
GSM solution of contour of Mach number for the flow over the RAE2822 airfoil.

432 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-035.jpg&w=216&h=92


with arbitrary geometry. We have formulated and examined a number of GSM schemes
and found that

. Schemes II, VI, VII, and VIII are favorable because of their compact stencils with
positive coefficients of influence.

. SchemesVII andVIII that use gradient smoothing operation overmGSDs outperform
Schemes II and VI in terms of robustness, stability, and accuracy. This is because
schemes VII and VIII use only gradient smoothing to approximate all the derivatives
providing the best error control (see Remark 5.2).

. The one-point quadrature based schemes (Schemes II and VII) have well balanced
performance in terms of both efficiency and accuracy.

. Scheme VII is superior to Scheme II from the point of view of consistency in
derivative approximation at various locations and robustness against irregularity
of cells. Therefore, the Scheme VII is most preferable in practice, especially for large
scale problems.

. We believe that the excellent performance of Schemes VII and VIII is largely due to
the use of mGSD (that is essentially the same as the edge-based smoothing
domain). This finding is inline with our earlier finding for W2 models that the
ES-PIM performed best (see, Chapter 8). The important role of edge-based smooth-
ing is quite clear now, and the reason behind could be the discontinuous (or even
non-existence) of the derivatives of the (assumed) field variable along the edge of
the cell. When the mGSD (or ES-) is used, such a discontinuity is right in the
middle of the smoothing domain and is being ‘‘smoothed’’ out, leading to good
stability and accuracy. Therefore, additional techniques such as the ‘‘directional
correction’’ are not required in Schemes VII and VIII. The edge-based smoothing
seems to be right on the root of the problem of a discretized model, and is a crucial
piece of numerical trick that are important for both strong and W2 formulations.
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FIGURE 9.39
Comparison of profiles of pressure coef-
ficients on the surface of the RAE2822
airfoil.

Meshfree Methods for Fluid Dynamics Problems 433

© 2010 by Taylor and Francis Group, LLC



Comparing the GSM with the standard FDM we note the following:

. The spatial derivatives are approximated using Taylor-series expansion in the
FDM. In the GSM, we use the gradient smoothing operation, which is in fact a
boundary flux approximation (see Remark 4.2). After the derivatives are approxi-
mated, the follow up treatment in GSM and FEM are essentially the same.

. The standard FDM works well usually for structured meshes. The GSM, however,
works well also for unstructured mesh with irregular triangular cells and hence
applicable to domains of arbitrarily complicated geometry.

. The FDM can be made for less regular domains via domain transformation. How-
ever, there exist problems and limitations with such a transformation, and it is far
from efficient for complicated problem domains. On the contrary, in the GSM, the
governing equations are always discretized directly on the physical space, no
transformation is needed, and naturally no related complications.

. Most FDM schemes are usually not conservative, while all the proposed GSM
schemes are locally conservative and can be made globally conservative with
proper treatment on boundary conditions.

. When regular mesh is used, and a proper set of GSDs are used, the GSM becomes
an FDM. Therefore, an FDM can be viewed as a special case of GSM in this regard.

The GSM has many similarities to the FVM [25] and thus many techniques implemented
in the FVM can be utilized in the GSM procedure. However, they are distinct from each
other in the following ways:

. The FVM was derived from physical conservation laws with respect to physical
quantities such as mass, momentum, and energy using control volumes. FVM
works without knowing the strong form PDEs. The GSM was originated from the
gradient smoothing operation to approximate the directives of any function regard-
less of its physical background. It is a purely mathematical treatment applied
directly to the strong form PDEs. GSMworks only when the strong form equations
are available. The procedure of GSM is in fact more like the FDM in this regard.

. The FVM is a typical weak form method based on physical laws, while the GSM is
more like a strong form method with a weak formulation flavor and is called
weak-form-like method.

. The traditional FVM uses the original elements=cells directly as control volumes, to
which the governing equations are discretized. In the GSM, the original cells formed
by triangulation are used as background cells. All sorts of different smoothing
domains (nGSD, mGSD, and cGSD) are then formed based on these background
cells, and the strong formPDEs are discretized using all these GSDs in variousways.

. In the GSM formulation, we are not confined to use the Heaviside (piecewise
constant) smoothing function. When different smoothing functions (like the ones
used in the SPH) are used, we could have many more alternatives. For example,
the piecewise linear smoothing function has already been tried in the GSM [84].
Of course, when the smoothing function becomes more sophisticated, the numer-
ical treatments can be more complicated, which may require special techniques.

. When GSM with Heaviside type smoothing function and proper selected smooth-
ing domains are used, the GSM becomes the FVM. In this regard, the FVM may be
viewed as a special case of GSM.
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Finally, we note that the GSM and SPH have a same root at the integral representation of
functions, but they depart when the SPH uses the particle approximation. Because GSM
carries out the integral representation accurately (no particle approximation) in a well-
controlled manner using properly defined GSDs, it is much more stable than the SPH for
general CFD problems.

9.5 Adaptive Gradient Smoothing Method (A-GSM)

Because of the excellent stability and accuracy features of GSM in using irregular trian-
gular background mesh, it is an ideal candidate for adaptive analysis. This section presents
such a GSM.

9.5.1 Adaptive Remeshing Technique

The adaptive process aims at yielding a set of ‘‘optimal’’ mesh on which solutions with
desired accuracy can be achieved. Ideally, such a mesh can produce a solution with equally
distributed errors across the field [85], so that the number of nodes used can be a
minimum. In this study, an adaptive process based on the error equidistribution strategy
is explored to enhance the GSM solver in resolving abrupt changes occurring in the fluid
field. In the proposed adaptive process, a directional error indicator at each node in a
current mesh is evaluated first, followed by the determination of meshing parameters
based on the error equidistribution strategy. Once the meshing parameters are obtained,
the whole field will be remeshed using the well-known advancing front technique. The
whole process is carried out in an iterative way till the desired accuracy is achieved or the
allowable maximum number of adaptive iterations is reached.

9.5.1.1 Directional Error Indicator

In an adaptive process, we need an error indicator to identify the regions either for further
refinement or coarsening. The direction-oriented error indicator [86] is applied for such a
purpose. It can also assist to determine the coordinates of nodes for remeshing the field.
Consider a one-dimensional problem, using FEM procedure, the local interpolation error eI

within a primitive or background cell can be expressed as

eI ¼ 1
2
j(h� j)

d2U
dx2

�����
����� (9:71)

where j and h, respectively, denote a local coordinate defined for the cell and the cell
length. Equation 9.71 relates the error with the cell length and the second derivative of the
field variable at point x in the cell. The L2-norm of the error over the cell can then be
computed as

eI
�� ��

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh

0

E2
e

h
dU

vuuut ¼ 1ffiffiffiffiffiffiffiffi
120

p h2
d2U
dx2

�����
����� (9:72)
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According to error equidistribution strategy, a set of ‘‘optimal’’ mesh corresponding to the
case where the errors are equally distributed across the field, requires

h2
d2U
dx2

�����
����� ¼ C (9:73)

where C is a positive constant that can be interpreted as the anticipated small error for the
adaptive process. If d is used to denote the ‘‘optimal’’ spacing, for the set of ‘‘optimal’’
mesh, we shall have

d2
d2U
dx2

�����
����� ¼ C (9:74)

This equation gives a simple way to determine an ‘‘optimal’’ spacing around a node, so
long as the second derivatives on a current mesh are known or can be approximated.
Equation 9.74 can be directly extended to 2D or 3D problems. For 2D problems of our
concerns, it can be written in the quadratic form as

d2a

X2
i, j¼1

mijaiaj

0
@

1
A ¼ C (9:75)

where
a is an arbitrary unit vector
da is the spacing along the direction of a
mij are the entries of a 2� 2 symmetric matrix of second derivatives, which is

mij ¼ q2U
qxiqxj

(9:76)

Figure 9.40 shows how the values of the spacing da in the a direction can be obtained: it is
the distance from the origin to the intersection point of the vector a with the boundary of
an ellipse. The ellipse has lengths of semimajor axis (d1) and semiminor axis (d2), respect-
ively, in the a1 and a2 directions. These two axes can be calculated once the eigenvalues of
the matrix m are obtained.

FIGURE 9.40
Illustration of the determination of spacing
d along direction a.
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For fluid dynamics problems, it makes much more sense to use the first derivatives
instead of the second to estimate the numerical error because the first derivatives have their
physical meanings [87]. The use of the product of first derivatives is also cheaper especially
for inviscid flows, since the computed field gradients can be directly used. The entries in
matrix m can then be replaced with

mij ¼ qU
qxi

qU
qxj

(9:77)

In this study, both the options for approximating matrix m are examined later via numer-
ical examples.

The approach described above is an asymptotic method based on the assumption that
the mesh to be attained will be ‘‘optimal’’ when the local errors equal at all nodes. Though
these error indicators have no rigorous mathematical proof, considerable success has been
achieved in practical applications [86,88]. In addition, the error indicator is direction
dependent, and hence anisotropic mesh can be generated by taking the direction-dependent
feature fluid flows into account.

9.5.1.2 Meshing Parameters

Once the first or second derivatives of the interested field variable are approximated based
on the current mesh and a value for constant C is specified, Equation 9.75 can then be
solved for ‘‘optimal’’ spacing. In our adaptive process, three meshing parameters for each
node are used:

d ¼ d2 ¼
ffiffiffiffiffi
C
l2

s
(9:78)

is the node spacing that equals to the length of the semiminor axis of the ellipse.

s ¼ d1
d2

¼
ffiffiffiffiffi
l1
l2

r
(9:79)

is the stretching ratio in two directions, and

a ¼ a1 (9:80)

is the stretching direction along the major axis. In Equations 9.78 and 9.79, l1 and l2 denote
the two eigenvalues of the matrix m at a node. Since major and minor axes are orthogonal
with each other, only the major axis direction a1 needs to be computed as the eigenvectors
of the matrix m.

In addition, two threshold values of dmin and dmax are specified as the bounds and used
to control the nodal spacing:

dmin � d � dmax (9:81)

where the upper bound dmax is mainly used to prevent meaninglessly large spacing due to
a vanishing eigenvalue m, and dmax is usually chosen as the cell spacing in regions with
uniform flow behaviors. The minimum value dmin is used for avoiding extremely small
nodal spacing in regions with too large gradients such as in shock region. Since we are
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interested only in the isotropic mesh here, the stretching ratio is fixed at 1.0 throughout the
numerical examples presented in this section. In this study, C is defined as

C ¼ lmaxdmin (9:82)

where lmax is the maximum eigenvalue for all the nodes in the entire problem domain.
With the attained meshing parameters as described above, the adaptive mesh can be

regenerated with the advanced front technique.

9.5.1.3 Advancing Front Technique

Once these meshing parameters are determined, the advancing front technique [89] can be
used for remeshing, and the cells and nodes are generated simultaneously. The advancing
front technique can generate cells of variable size and stretching, and it differs from the
Delaunay algorithms [90], which usually connect the nodes that are already distributed in
space. In general, the advancing front technique can result in high-quality meshes, and also
offers the flexibility in generating anisotropic mesh and the liability in handling moving
components. Therefore, this technique is adopted in the development of adaptive GSM.

The advancing front technique is a bottom-up approach for mesh generation with the
following steps:

1. First, each boundary curve is discretized. Nodes are placed on the boundary curve
components and then contiguous nodes are joined with straight line segments.
These segments form the edges of triangular cells in the later stage. The length of
these segments must, therefore, be consistent with the desired local distribution of
node spacings.

2. Next, the triangular cells are generated. For a 2Ddomain, all the sides produced in the
first step are assembled as initial front. At any given time, the front contains the set
of all the sides,which are currently available to forma triangular cell. Thus, the front is
a dynamic data structure which is updated continuously during the generation
process. A side is selected from the front and a triangular element is generated
according to the computed meshing parameters. The triangulation process may
involve creating a new node or simply connecting the side to an existing node.

3. Once the triangle is formed, the front is updated by removing the old side out of
the front list and adding the new sides into the front list. Then the triangulation
proceeds until the contents in the front become empty.

Figure 9.41 depicts the triangulationprocess using the advancing front technique for a square
planar domain. The initial front and the form of the mesh at various stages are illustrated.

A more detailed description about the advancing front technique can be found in [90].

9.5.1.4 The Adaptive GSM Procedure

The overall adaptive procedure used in A-GSM is carried out in the following consequent
fashion:

Step 1: GSM solutions are obtained using an initial mesh, which gives the approximated
first or second derivatives on the initial mesh.

Step 2: Three meshing parameters d, s, and a are then calculated based on the current grid.
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Step 3: Discretization of boundary curves is next performed using meshing parameters
obtained in Step 2. The discretized boundaries are used as the initial fronts for the
advancing front method.

Step 4: The triangulation process is carried out with the advancing front technique resulting
in a new mesh.

Step 5: ‘‘Cosmetic’’ techniques including diagonal swapping, removal of worse cells, and
grid smoothing are applied to the new mesh to improve the quality.

Step 6: Interpolate the GSM solution for the current mesh onto the new mesh with the help
of quad-tree searching technique [75], and the weak Lagrange–Galerkin procedure [87].

Step 7: Compute the solutions with GSM solver based on the new mesh and interpolated
solutions obtained in Step 6 as initial solutions for iteration.

Step 8: Repeat Steps 2 through 7, till the expected accuracy or the maximum number of
adaptive cycles is achieved.

Figure 9.42 shows the workflow of the overall adaptive GSM procedure. Numerical
tests for a 2D Poisson problem and Euler equation are conducted using our adaptive
GSM code.

(a) (b) (c)

(d) (e) (f)

FIGURE 9.41
A triangulation process in the adaptive GSM based on the advancing front technique.

Meshfree Methods for Fluid Dynamics Problems 439

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-038.jpg&w=396&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-039.jpg&w=124&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-040.jpg&w=123&h=123
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch9&iName=master.img-041.jpg&w=124&h=123


9.5.2 Numerical Examples: Adaptive Analysis

Example 9.11: Adaptive Analysis of Poisson Problems

We revisit the second Poisson problem defined by Equations 9.62, 9.65, and 9.66 with our
adaptive GSM solver. Figure 9.43 shows the contours of the analytical solution for U and the
magnitude of the gradient of U. From Figure 9.43b we shall expect to see more nodes deployed in
areas near the four edges of the domain where higher gradient are observed, when the adaptive
process is applied to analyze this problem.
An adaptive analysis is then conducted for the Poisson problem with an initial relatively uniform

mesh shown in Figure 9.44a, and the results at three adaptive analysis stages are plotted in Figure
9.44b through d. At each adaptive remeshing stage, the threshold values of dmin and dmax are
usually reduced by half so that finer grids can be regenerated. As shown in Figure 9.44b through d,
the nodes in the regions with larger gradients are refined correspondingly, as anticipated.
In the adaptive analysis process, ‘‘cosmetic’’ treatment, including removal of redundant cells,

diagonal swapping of cell-edges, and mesh smoothing, and shifting of the interior nodes have
been used to improve the mesh quality. Details on these techniques implemented in GSM can be
found in [14].
Figure 9.45 plots the decreasing process of solution errors during the adaptive analysis of the

second Poisson problem, together with that of globally uniform refinement. It is shown that
the adaptive GSM can also produce results at desired accuracy with less number of nodes than
the nonadaptive GSM. In this particular case, as the problem is quite ‘‘mild’’ (the field variable U
does not change very drastically), the differences in efficiency of the adaptive GSM and the
nonadaptive GSM is small.

GSM
solver

START

Nadp = 0

Initial grid 

Calculation of regeneration parameters: δ, s, and α

Domain triangulation

Postprocessing of new grid

Quadtree-based solution interpolation 

Initial grid and
initial  solution 

Grid and
updated  solution 

Adaptive grid and
interpolated solution  

Yes

No
END

Boundary discretization

Nadp ≤ Maxadp

Nadp = Nadp+ 1

FIGURE 9.42
Workflow of the overall adaptive GSM procedure.

440 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



U: –0.045 –0.04 –0.035 –0.03 –0.025 –0.02 –0.015 –0.01 –0.005 grad: 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

(a) (b)

FIGURE 9.43
Contour of the analytical solutions to the second Poisson problem: (a) field function and (b) magnitude of resultant
gradient.

(a)

(c) (d)

(b)

FIGURE 9.44
Meshes at different adaptive analysis steps. (a) Initial grid, (b) first adaptive grid, (c) second adaptive grid, and
(d) third adaptive grid.
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Example 9.12: Inviscid Flow over the NACA0012 Airfoil

We next revisit the Example 9.8 with the adaptive GSM solver. All the parameters are kept the
same. Figure 9.46a plots the initial solution using an initial mesh. It is seen that a strong shock is
observed on the upper surface and a weak shock on the lower surface of the airfoil. However, the
strong shock is pretty wide because the resolution of grid near the shock region is not very high.

FIGURE 9.45
Reduction of solution errors when mesh
is refined.
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FIGURE 9.46
Initial and final meshes and contours of density obtained with the adaptive GSM solver based on errors in the first
derivatives of density.
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With the density chosen as the field variable and the first derivatives in Equation 9.77 used as error
indicator, an adaptive GSM is applied for this problem and the resultant solutions at the final
adaptive mesh are shown in Figure 9.46b. It is seen this time that the cells around the strong shock
are sufficiently refined and the predicted shock front becomes thinner as expected. However, the
mesh resolution around the weak shock is not improved. The similar observation has also been
reported in [87].

We now use the error indicators based on the second derivatives of density, as shown
in Equation 9.76. The adaptive analysis starts with quite coarse mesh as shown in
Figure 9.47a. Broader shock zones are observed at the first step, as shown in Figure
9.47b, where shock front is not sufficiently refined, but its adjacent regions are refined
instead. As the adaption progresses, the narrower regions across the shocks are succes-
sively refined and thus the shock front is better captured, as shown in Figure 9.47c through e.
All key features for the transonic flow over theNACA0012 airfoil are successfully simulated,
i.e., the two shock regions, the leading and trailing edges are all well resolved in the adaptive
analyses. In summary, this example shows that the error indicator based on second deriva-
tives is more robust in capturing the key features of the flows than that based on first
derivatives.

Figure 9.48 shows the predicted pressure coefficients on the surface of the airfoil
obtained using the adaptive GSM with two different error indicators. Using the second
derivatives of density as error indicator, the weak shock region is precisely resolved, the
strong shock region, leading edge, and trailing edge are also correctly captured.
Our adaptive GSM results agree very well with the FVM solution using unstructured
mesh [69].

9.5.3 Some Remarks

Because of the excellent stability of the GSM method working with irregular cells,
we further developed an adaptive GSM, using the Scheme VII. Our study has indicated
the following:

. The adaptive GSM scheme is very robust and stable so that it consistently results in
accurate results even for a set of mesh with highly distorted cells.

. The adaptive GSM provides more accurate solutions with remarkably less number
of nodes.

. The adaptive GSM is very stable during the overall adaptive process.

9.6 A Discussion on GSM for Incompressible Flows

The GSM has already been further extended to solve incompressible flows using a number
of existing techniques [13]. In our implementation, the governing equations are enhanced
with artificial compressibility and full pseudotime temporal terms. Thus, the time march-
ing approach that is adopted in original GSM procedure can be continuously used. In
addition, the dual time stepping approach has also been employed for improving the
computational efficiency for solutions to time-dependent incompressible flow problems.
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(a)
 0.7 0.8 0.9 1  1.1 1.2 1.3 1.4

(b)
0.7 0.8 0.9 1  1.1 1.2 1.3 1.4ρ: ρ:  

rho: 0.7 0.8 0.9

(c)
1 1.1 1.2 1.3 1.4 rho: 0.7 0.8 0.9

(d)
1 1.1 1.2 1.3 1.4

rho: 0.7 0.8 0.9

(e)
1 1.1 1.2 1.3 1.4

FIGURE 9.47
Meshes generated at the steps of the adaptive analysis and the solution of contours of density obtained using the
adaptive GSM solver using error indicator based on the second derivatives of density: (a) initial mesh; (b) first
step; (c) second step; (d) third step, and (e) final step.
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Benchmarking tests repeatedly reveal that the incompressible GSM is as accurate, robust,
and efficient as the compressible GSM. Hence, the GSM is a versatile method that is valid
for a wide range of fluid flow problems, such as inviscid and viscous flows, and compres-
sible and incompressible flows.

9.7 Other Improvements on GSM

In order to further boost the efficiency of the GSM, we have recently also integrated some
convergence acceleration techniques into the GSM procedure, including the local time
stepping, the implicit residual smoothing, and the implicit matrix-free lower upper sym-
metric Gauss Seidel (LUSGS) method. With these additional techniques implemented,
much faster convergence to final solutions has been achieved and thus the turnaround
time in result delivery is remarkably shortened. In particular, with the help of the matrix-
free implicit LUSGS solver, the demands in computational resources have also been greatly
reduced. This implies that the GSM solver can now be very efficiently applied for solutions
to realistic fluid problems with a considerably large number of nodes. Details about these
recent progress and advances on GSM can be found in [83,84].

Finally, we mention that for problems with special features such as the convection-
dominated problems, corresponding special techniques such as the well-known up-wind
schemes need to be used. This type of schemes can be implemented without much
difficulty in general meshfree settings as shown in [91,92].

1
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C p
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Initial grid (free adaption on boundary)
Adaptive grid (first derivative based)
Adaptive grid (second derivative based)
Adaptive FVM solution (Barth T.)

–0.5
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FIGURE 9.48
Profiles of pressure coefficients on the NACA0012 airfoil surface obtained using GSM with difference error
indicators.
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10
Meshfree Methods for Beams

A beam is a simple but very common and important structural component. A huge volume
of earlier research works have focused on analysis of beams, which is still one of the most
essential topics in mechanical engineering training. The finite element method (FEM) is
now the mainstream method for analysis of all kinds of problems involving beams [1,2].
In recent years, meshfree methods have also been applied to analyze beams, such as the
EFG method for modal analyses of Euler–Bernoulli beams and Kirchhoff plates [3], point
interpolation methods (PIMs) [4], MLPG for thin beams [6], and local PIMs (LPIM and
LRPIM) for both thin and thick beams [7].

As a beam is one-dimensional (1D) spatially, PIM works perfectly well, and there is no
singular issue in the moment matrix, as long as there are no duplicate nodes. Using PIM
shape functions and the Galerkin weak form, discrete system equations can be established
easily. In fact the procedure is almost the same as FEM for beams, if a Hermite interpolation
is used. The primary difference is that FEMuses only the nodes of the element to create shape
functions, but PIM may use nodes beyond the integration cells. When the GS-Galerkin
weakened-weak (W2) form is used, we need only the first-order consistence for the assumed
functions, as predicted in Chapter 3. We will materialize this by formulating the NS-PIM for
the fourth-order differential equations that is capable to produce upper-bound solutions.

This chapter deals only with straight beams governed by the Euler–Bernoulli beam
theory. We consider only the bending deformation, and it is assumed that the beam is
planar, meaning it deforms only within the x–y plane.

10.1 PIM Shape Function for Thin Beams

10.1.1 Formulation

The procedure for constructing the PIM shape function is largely the same as that detailed
in Chapter 2. The major point to note is that one generally needs to use higher-order terms
of polynomial basis, because the governing equations for thin beams are of the fourth order
in contrast to those of the second order for 2D solids.

A thin beam is represented by a line of its neutral axis that is defined in a 1D domain V,
as shown in Figure 10.1. This neutral axis line is discretized by a set of nodes properly
distributed on the axis line. This set of nodes is often termed field nodes, as it is used to
register the values of the field variables. Two neighboring nodes form a cell. For such a 1D
interpolation, we have two choices: Lagrange interpolation and Hermite interpolation.
When the Lagrange interpolation is used, we have only one variable (the deflection of
the beam) for each field node, and the procedure for obtaining PIM shape functions is
exactly the same as discussed in Chapter 2 for 1D cases. When the Hermite interpolation is
used, we shall have two variables (the deflection, and the rotation that is the derivative or
slope of the deflection) for each field node, and the procedure for obtaining PIM shape
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functions is a little different, but still quite straightforward. In the following, we brief this
process of creating PIM shape functions using the Hermite interpolation.

Consider a Euler–Bernoulli beam governed by a fourth-order differential equation. The
deflection of the beam is denoted by v(x), and the rotation of the cross section of the beam
(or slope of the deflection) is denoted by u(x). The deflection v(x) is approximated by using
polynomial PIM shape functions, which are to be constructed using a set of nodes included
in the 1D support domain of a point of interest xQ (or the host cell of xQ), as shown in
Figure 10.1:

v(x, xQ) ¼
X2n
i¼1

pi(x)ai(xQ) ¼ pT(x)a(xQ) (10:1)

where
pi(x) are the monomials of x
n is the number of nodes in the support domain of xQ
ai(xQ) is the coefficient of pi(x), corresponding to the given point xQ

Matrix pT(x) in Equation 10.1 consists of monomials in 1D space in the form

pT(x) ¼ f1, x, x2, x3, x4, . . . , x2n�1g (10:2)

The number of terms in the matrix pT(x) depends on the number of nodes included in the
support domain. In the Hermite interpolation, we choose to have two variables, deflection
and rotation for each node. Therefore, if there are n nodes in the support domain, we
should have 2n terms in the matrix pT(x). In the practical implementation, one can also
choose nodes based on the requirement of the number of terms in pT(x).

In our thin beam formulation, the first derivative of the deflection is required. We
assume, in general, that the derivatives up to an order l of the field variable are required.
By using Equation 10.1, these derivatives of deflection can be obtained simply, as follows:

v(l) (x, xQ) ¼
X2n
i¼1

p(l)i (x)ai(xQ) ¼ fp(l)(x)gTa(xQ) (10:3)

where v(l)(x, xQ) and fp(l)(x)gT are the lth-order derivatives of the field variable v(x, xQ) and
the basis function pT(x).

According to the Euler–Bernoulli beam theory, the rotation of the cross section u of the
beam can be obtained from the first derivative of the deflection, i.e.,

Support domain 

xQ Nodes 

Neutral axis of a beam 

Ω

FIGURE 10.1
A straight beam represented by its neutral axis, which is represented by a set of field nodes. PIM shape functions
are constructed using a subset of the nodes included in the support domain of a point of interest xQ or the host cell
of xQ that can be a quadrature point or the center of an integration cell.
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u(x) ¼ �dv
dx

¼ �
X2n
i¼1

p(1)i (x)ai(xQ) ¼ �fp(1)(x)gTa(xQ) (10:4)

where

p(1) ¼ dp1(x)
dx

dp2(x)
dx

dp2(x)
dx � � � dp2n(x)

dx

n oT

¼ 0 1 2x � � � (2n� 1)x2n�2
� �T (10:5)

The coefficients ai in Equations 10.1 and 10.4 can be determined by enforcing these
equations to be satisfied at the n nodes surrounding point xQ. At node i we have equation

vi ¼
vi
ui

� �
¼

P2n
i¼1

pi(xi)ai

�P2n
i¼1

dpi(xi)
dx ai

8>>><
>>>:

9>>>=
>>>;

¼ pT(xi)a

�[p(1)(xi)]Ta

� �
(10:6)

where vi and ui are the nodal values of v and u: at x¼ xi. Equation 10.6 can be written in the
following matrix form:

ds ¼ PQa (10:7)

where ds is the (generalized) displacement vector for the nodes in the support domain
arranged in the form

ds ¼ [v1, u1, v2, u2, . . . , vn, un]T (10:8)

PQ is the (generalized) moment matrix formed using alternately vectors p and p(1) evalu-
ated at n nodes at xi (i¼ 1, . . . , n) in the support domain:

PT
Q ¼ [p(x1),p(1)(x1),p(x2),p(1)(x2), . . . ,p(xn),p(1)(xn)] (10:9)

Solving Equation 10.7 for a, we have

a ¼ P�1
Q ds (10:10)

Note that for 1D point interpolations, P�1
Q always exists unless there are duplicated nodes

in the support domain, which will not happen in practical implementation, because there is
no reason to create a mode that has duplicated nodes. Even where there are duplicated
nodes, they should be detected and eliminated.

Substituting Equation 10.10 into Equation 10.1, we have

v(x) ¼ FT(x)ds (10:11)

where F(x) is the matrix of shape functions arranged in the form

FT(x) ¼ f1(x) f2(x) f3(x) f4(x) � � � f2n�1(x) f2n(x)½ �
¼ fv1(x) fu1(x) fv2(x) fu2(x) � � � fvn(x) fun(x)½ � (10:12)
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The above equation can be rewritten in the following form similar to that used in FEM [1]:

v(x) ¼ FT
v (x)vs þFT

u (x)us (10:13)

where
vs collects only the deflections at the nodes in the support domain
us collects only the slopes at the nodes in the support domain

The shape function matrix corresponding to the deflection is then given by

FT
v (x) ¼ pT(x)P�1

Q ¼ [fw1(x),fw2(x) , . . . ,fwn(x)] (10:14)

The shape function matrix corresponding to the slope is given by

FT
u (x) ¼ pT

x (x)P
�1
Q ¼ [fu1(x),fu2(x) , . . . ,fun(x)] (10:15)

10.1.2 Example

Example 10.1: Hamilton PIM Shape Functions for Thin Beams

The computation for shape functions in F(x), or in Fv(x), and Fu(x) is straightforward. It requires a
numerical inversion of the moment matrix PQ. Typical shape functions of Fv(x), Fu(x), and their
derivatives obtained using evenly distributed nodes and n¼ 3 are shown in Figure 10.2. The first
and second derivatives of the shape functions are shown in Figures 10.3 and 10.4, respectively.
It can be found that the shape functions Fw(x) and Fu(x) obtained through the above procedure
satisfy

fi(xj) ¼ dij (10:16)

–0.4

0.0

0.4

0.8

1.2

1.6

φ v
(x

), 
φ θ

(x
)

0.0 0.5 1.0 1.5 2.0
x

φv (x) φθ (x)

FIGURE 10.2
PIM shape functions for field variables of displacement and rotation (slope). Computed using three nodes at
x¼ 0.0, 1.0, 2.0, based on the deflection at node at x¼ 1.0. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl.
Mech. Eng., 190, 5515, 2001. With permission.)
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and

X2n
i¼1

fi ¼ 1 (10:17)

where dij is the Kronecker delta function given by

dij ¼ 1 i ¼ j
0 i 6¼ j

�
(10:18)
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FIGURE 10.3
The first derivatives of PIM shape functions for field variables of displacement and rotation (slope). Obtained
using evenly distributed nodes and n¼ 3 for the deflection at node x¼ 1.0. (From Gu, Y.T. and Liu, G.R., Comput.
Methods Appl. Mech. Eng., 190, 5515, 2001. With permission.)

–13.0

–8.0

–3.0

2.0

7.0

12.0

0.0 0.5 1.0 1.5 2.0
x

d2 φ v
/d

x2 , d
2 φ θ

/d
x2

d2φv/dx2 d2φθ/dx2

FIGURE 10.4
The second derivatives of PIM shape functions for field variables of displacement and rotation (slope). Obtained
using evenly distributed nodes and n¼ 3 for the deflection at node at x¼ 1.0. (From Gu, Y.T. and Liu, G.R.,
Comput. Methods Appl. Mech. Eng., 190, 5515, 2001. With permission.)
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Therefore, the shape functions constructed possess the delta function property, and the
essential boundary conditions can be easily imposed to a numerical model using PIM
shape functions.

10.2 Strong Form Equations

Consider a beam occupying domain V bounded by G, which consists of four portions: Gv,
Gu, GQ, and GM. The strong form of the governing equation for thin beams based on Euler–
Bernoulli thin beam theory is a fourth-order differential equation. For beams of the
constant bending stiffness, EI, it can be written as

EI
d4v
dx4

¼ by in domain V (10:19)

where
v is the transverse deflection of the beam
by is the distributed load over the beam

A single-span Euler–Bernoulli beam has four boundary conditions, two at each end. The
boundary conditions can be a combination of the following:

v(x0) ¼ vG, on Gv (10:20)

�dv(x0)
dx

¼ uG, on Gu (10:21)

M(x0) ¼ EI
d2v
dx2

¼ MG, on GM (10:22)

V(x0) ¼ �EI
d3v
dx3

¼ VG, on Gv (10:23)

where
M and V denote the moment and the shear force, respectively
Gv, Gu, GM, and GV denote, respectively, the portions of the boundary where deflection,
slope, moment, and shear force are specified

In this chapter, we use PIM shape functions, and therefore, the handling of the essential
boundary conditions is the same as in the standard FEM.

10.3 Weak Formulation: Galerkin Formulation

Similar to Section 5.3, by multiplying with a test function dv, the weak form associated with
Equation 10.19 can be obtained as
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ð
V

dv EI
d4v
dx4

� by

 !
dx ¼ 0 (10:24)

Applying Green divergence theorem, Equation 10.24 can be written as by

ð
V

EI
d2(dv)
dx2

d2v
dx2

dx�
ð
V

dvbydxþ nEIdv
d3v
dx3

�����
G

� nEI
d dvð Þ
dx

d2v
dx2

�����
G

¼ 0 (10:25)

where n is the unit outward normal on the boundary G. For our 1D problem, it is either
1 or �1.

As the test function dv vanishes on the prescribed essential boundary, only the natural
boundary conditions are effective, and Equation 10.25 can be rewritten as

ð
V

EI
d2(dv)
dx2

d2v
dx2

dx ¼
ð
V

dvbydxþ VGdvjGV
�MG

d(dv)
dx

����
GM

(10:26)

This is the standard Galerkin weak formulation for beams. Using PIM shape functions, a
Galerkin PIM can be formulated, and a set discretized system equation can be obtained for
this 1D problem, as we do in the standard FEM. When we use only the nodes of a cell, the
PIM becomes the FEM, and the cells are called elements.

10.4 Weakened-Weak Formulation: GS-Galerkin

As discussed in Chapters 3 and 4, a GS-Galerkin formulation needs a set of smoothing
domains constructed on top of the cells. For our 1D domain, the division of the problem
domain V is shown in Figure 10.5. The problem domain is first divided into Nc cells with a
total of Nn nodes. For each node, a smoothing domain is bounded by the two centers of the
two neighboring cells, and hence we shall have Ns smoothing domains, and Ns¼Nn in this
1D setting. The formation is also seamless: V ¼ [Ns

i¼1V
s
i and Vs

i \Vs
j ¼ 0, 8i 6¼ j. The

smoothing domains for the two boundary nodes are formed only with half a cell on the
boundary. This is exactly the analogy of NS-PIM in the 1D case.

xx1
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FIGURE 10.5
Discretization of the problem domain into cells and smoothing domains associated with nodes.
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In this 1D NS-PIM for a beam, the displacement interpolation is cell based, but the
integration is based on the smoothing domains associated with the nodes, and each
(interior) smoothing domain is supported by two cells (and hence three nodes).

Using the generalized smoothing operations (see Chapter 3), the smoothed ‘‘curvature’’
or the second derivative of the deflection function for the smoothing domain Vs

i can be
given by (see Equation 3.53)

d2v
dx2

¼ 1
lsi

ð
Gs
i

n(x)
dv
dx

� �
dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
constant in Vs

i

(10:27)

where
lsi is the length of the ith smoothing domain
n(x) is the unit outward normal on Gs

i that is the boundary of Vs
i

Similarly, we have the same equation for the test function:

d2(dv)
dx2

¼ 1
lsi

ð
Gs
i

n(x)
d(dv)
dx

� �
dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
constant in Vs

i

(10:28)

The GS-Galerkin weakened-weak form for beams becomes

XNn

i¼1

1
lsi

ð
Gs
i

n(x)
d(dv)
dx

� �
dx

2
64

3
75 EI

ð
Gs
i

n xð Þdv
dx

� �
dx

2
64

3
75

¼
ð
V

dvbydxþ VGdvjGV
�MG

d dvð Þ
dx

����
GM

(10:29)

With the weak form and weakened-weak form being established, we can now obtain
discrete models using the PIM shape functions. Since the PIM model based on the Galerkin
formulation is very much the same as the standard FEM, which is familiar to many, we
will keep the Galerkin formulation. Instead, we focus on the PIM model based on the
GS-Galerkin formulation with node-based smoothing domains: 1D NS-PIM for beams that
is an analogy of the NS-PIM discussed in Chapter 8 for 2D and 3D solids.

Remark 10.1: Order of Consistence: Strong, Weak, and Weakened-Weak Formulations
Comparison of Equations 10.19, 10.26, and 10.29 for our 1D problem of the fourth-order
differential equation (DE) reveals clearly that the consistence requirement on the assumed
field variables (deflection) is different for strong, weak, and weakened-weak formulations.
We now list these differences in Table 10.1. It is clear that for a fourth-order differential
equation, the GS-Galerkin needs only first (¼ 4=2� 1)th-order consistence! It is also clear
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that when we relax the requirement on continuity, we need to establish our equations over
a bigger area=region. For the strong form method (collocation, for example), each equation
is established for a point or node in the problem domain. For the Galerkin formulation, the
basic unit of integration for the energy equation is the element or cell. For the GS-Galerkin,
the basic unit of integration is the smoothing domain, which consists of a group of cells that
support the smoothing domain.

10.5 Three Models

Based on Table 10.1, we can have a number of ways to solve the fourth-order differential
equation for thin beams, as listed in Table 10.2.

TABLE 10.1

Consistence Requirement on the Assumed Deflection Function for Fourth-Order
Differential Equations

Items Formulations
Consistence Requirement

for the Function
Coverage

of an Equation

1. Strong form Fourth-order DE Fourth order at any point in the
problem domain

At each point in the
problem domain

2. Weak form Galerkin Second order in cells=elements, first
order on cell=element interfaces

Over the cell=element

3. W2 form GS-Galerkin First order on the interfaces of the
smoothing domains

Over support cells of
the smoothing domain

TABLE 10.2

Possible Models for Thin Beams

Models Approaches Description

Model (�1) Analytical This can be done for many types of external forces, has
been well studied in the course of mechanics of
materials, and will be skipped here.

Model (0) FDM, Collocation Strong formulation Well studied in early years. Issues on boundary
conditions are quite tricky [5]. We will not discuss
this here.

Model-1 FEM, 2-DOF PIM Galerkin weak form Using Hermite interpolation and standard formulation
in FEM, using 2-node elements and 2 DOFs at one
node [1,2].

Model-2 1-DOF PIM Galerkin weak form Integration based on cell. Using Lagrangian PIM shape
function constructed using four nodes (two nodes
from the home cells, one from the neighboring cell on
the left, and one on the right). At each node, only
1-DOF (deflection) is used. (No rotational DOF).

Model-3 NS-PIM GS-Galerkin W2 form Integration based on smoothing domains associated
with the nodes. Using Lagrangian PIM shape function
constructed using two nodes from the home cells
(linear interpolation). At each node, only 1-DOF
(deflection) is used. (No rotational DOF).
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In this chapter, we study only Model-1, Model-2, and Model-3. As the formulation for
Model-1 is quite standard and can be found in any FEM book, we will not discuss it in
detail. We will simply use it in our example problems.

Model-2 is similar to Model-1, except for the treatment on the boundary conditions.
Because the rotational DOF is not used in the formulation, fixing the rotation on the
boundary needs some caution. This situation is similar to that encountered in the
collocation methods [5]. In this work, we simply use fictitious nodes on the boundary
nodes [5].

We now focus on the NS-PIM formulation for beams [4] based on the weakened-weak
form using GS-Galerkin.

10.6 Formulation for NS-PIM for Thin Beams

It is clear from Equation 10.29 that our W2 formulation needs only first-order differ-
entiation for the assumed functions of deflection of the beam, whose strong form
equation is a fourth-order DE. To demonstrate this theory, we use only linear interpol-
ation for our NS-PIM. The deflection v in each cell (say, cell Vc

n in Figure 10.5) can be
expressed as

v(x) ¼ fn(x) fnþ1(x)
� � vn

vnþ1

� �
, x 2 Vc

n (10:30)

where the linear shape function can be simply given as

fn(x) ¼ 1� (x� xn)=lcn
fnþ1(x) ¼ (x� xn)=lcn

, x 2 Vc
n (10:31)

where
lcn ¼ xnþ1 � xn is the length of the cell Vc

n
vn and vnþ 1 denote the nodal deflections at nodes n and nþ 1:

dv(x)
dx

¼ fn,x(x) f(nþ1),x(x)
� � vn

vnþ1

� �
, x 2 Vc

n (10:32)

On the left boundary (n¼ 1), we shall have

dv(x)
dx

¼ f1,x(x) f2,x(x)
� � v1

v2

� �
, x 2 Vc

1 (10:33)

where we use ‘‘,’’ to represent differentiation. Substituting Equation 10.30 into Equation
10.27 (or Equation 10.28), the smoothed curvature for the smoothing domain Vs

n can be
given as
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1
lsn

ð
Gs
n

n(x)
dv
dx

� �
dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Constant in Vs

n

¼ 1
lsn

�
� f(n�1), x x

n�1
2

� �
f(n), x x

n�1
2

� �� �
vn�1

vn

� �

þ f(n), x x
nþ1

2

� �
f(nþ1), x x

nþ1
2

� �� �
vn
vnþ1

� ��

¼ 1
lsn

�f(n�1), x x
n�1

2

� �
f(n), x x

nþ1
2

� �
� f(n), x x

n�1
2

� �� �
f(nþ1), x x

nþ1
2

� �� �
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where
n¼ 2, . . . , (Nn� 1)
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Similarly, on the right boundary (n¼Nn), we shall have
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For simply supported boundary conditions, we simply set zero deflection at the corre-
sponding boundary point, as we do in the FEM. For clamped boundary conditions,
however, the situation is a little tricky because our formulation does not have rotation as
a DOF. Hence, the following treatment is needed.

Let us consider a clamped boundary on the left (n¼ 1). We know that the deflection can
be obtained using Equation 10.33, and hence the smoothed curvature there can be given by
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where we have imposed the zero rotation condition. Similarly, if the clamped boundary is
on the right end (n¼Nn), we have
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With the use of Equations 10.37 and 10.38 in place of Equations 10.35 and 10.36, the zero
rotation boundary conditions can be imposed naturally. For imposing clamped boundary
conditions, all we need to do is to further impose zero deflection at the corresponding
boundary nodes, as we do in the FEM.

Substituting Equations 10.30, 10.35, and 10.36 (or Equations 10.37 and 10.38 for zero
rotation boundary), into Equation 10.29, a set of discretized algebraic system equations can
now be easily obtained in the following matrix form:

�K�U ¼ F (10:39)

where �U ¼ v1, v2, . . . , vNnf gT is the vector of the nodal deflections at all the nodes in the
model, and F is the force vector defined as

F ¼
ð
V

FT(x)bydxþ
ð
GV

FT(x)VGdG�
ð
GM

FT
,x(x)MGdG (10:40)

whereF(x) is the global matrix of nodal shape functions as arranged in Equation 10.31. The
global stiffness matrix �K is assembled in the form

�K ¼
XNn

n¼1

�Kn (10:41)
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where
the summation means an assembly process, which is the same as that practiced in the
NS-PIM or the FEM

�Kn is the stiffness matrix associated with Vs
n that is computed using

�Kn ¼ EI�BT
n
�Bnlsn (10:42)

10.7 Formulation for Dynamic Problems

We now brief the formulations for dynamic problems. The strong form governing equation
for free vibration of thin beams is given by

EI
d4v(x, t)
dx4

þ rA0
d2v(x, t)

dt2
¼ 0 in domain V (10:43)

where
v(x, t) is the deflection of the beam
r is the mass density
A0 is the cross-section area of the beam

The boundary conditions remain the same as those for the static problems.
The Galerkin weak form can be rewritten as
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(10:44)

The GS-Galerkin weak form can be given as
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For NS-PIM, substituting Equations 10.30, 10.35, and 10.36 (or Equations 10.37 and 10.38
for zero rotation boundary), into Equation 10.45, a set of discretized algebraic system
equations can be obtained in the following matrix form:

�K�UþM€�U ¼ F (10:46)

where �K and F are the same as those in Equation 10.39. The mass matrixM can be obtained
in exactly the same way as in the FEM [1,2]. Here, we simply use the so-called lumped
mass scheme:
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M ¼ diagfm1,m2 , . . . ,mn , . . . ,mNng (10:47)

where mn is the mass of the smoothing domain corresponding to the node n and given by

mn ¼ rA0lsn (10:48)

For free vibration analysis, all external forces will be zero, and a general solution to
Equation 10.46 can be written as

�U ¼ �UAeivt (10:49)

where
�UA is the vector of the amplitude of nodal deflections
v is the angular frequency

Substituting Equation 10.49 into Equation 10.46 yields the eigenvalue equation

(�K� v2M)�UA ¼ 0 (10:50)

which gives eigenvalues related to the natural frequencies and eigenvectors related to
vibration modes.

10.8 Numerical Examples of Static Analysis

Example 10.2: Static Deformation and Moments in Thin Beams

A thin beam of length L¼ 1.0 subjected to different boundary conditions is considered in this
subsection. The parameters are taken as EI¼ 1.0 and q0¼ 1.0. In this study, we use three models:
2-DOF PIM that is exactly same as the 2-DOF FEM, 1-DOF PIM, and NS-PIM. The descriptions for
these three models are given in Table 10.2.

Figure 10.6 shows computed results for the deflection, rotation, and moment obtained
using these models, together with the exact solution. The beam is simply-simply supported
and subjected to a uniform load over the entire span. Overall, these numerical results agree
very well, and the differences are not distinguishable on these figures, especially for
deflections and rotations. When we look at the detail on the two pinned boundary points,
we observe that NS-PIM gives the best prediction on the moments.

Figure 10.7 shows computed results for a beam subjected to a concentrated load at the
mid-span. Again, these results agree very well and the differences are not distinguishable
on these figures, especially for deflections and rotations. When we look at the detail on the
two pinned boundary points and the loading point, we observe that NS-PIM gives the best
prediction on the moments. This shows that smoothing operations can improve solutions
at nonsmoothing points for field variables.

Figure 10.8 shows computed results for a clamped-clamped beam subjected to a uniform
load over the beam span. In this example, the results for deflection agree very well for all
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the methods. The differences for the rotation at boundary points are visible. The 1-DOF
PIM clearly has a problem in directly enforcing the rotation at the clamped points, and
gives less accurate moment solutions. We observe again that NS-PIM gives the best
prediction on all the results: deflection, rotation, and moment, at these nonsmoothing
points.

Figure 10.9 shows computed results for a clamped-clamped beam subjected to a con-
centrated load at the mid-span. In addition to what we have observed from Figure 10.8, we
observe that NS-PIM gives the best prediction at the loading point.
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FIGURE 10.6
Results obtained using three numerical models and the exact solution for the simply-simply supported beam
subjected to a uniform load: (a) deflection and rotation; and (b) moment.

Meshfree Methods for Beams 465

© 2010 by Taylor and Francis Group, LLC



Figure 10.10 shows computed results for a cantilever beam subjected to a uniform load
over the span of the beam. The results reconfirm that NS-PIM gives the best prediction for
all the results for the moment at the clamped point.

10.9 Numerical Examples: Upper-Bound Solution

It is known that a fully compatible FEM model produces a lower-bound solution to the
exact solution for force-driving problems. We have also seen NS-PIMs are capable of
producing upper-bound solutions, in Chapter 8. We confirm this again for thin beams.
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FIGURE 10.7
Results obtained using three numerical models and the exact solution for the simply-simply supported beam
subjected to a concentrated load at the mid-span: (a) deflection and rotation; and (b) moment.
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Figure 10.11 plots the numerical solution of strain energy for a simply-simply
supported thin beam subjected to a concentrated load at the mid-span, together with
the exact solution. The solutions are obtained using 2-DOF PIM (FEM) and NS-PIM
with increasing total DOFs. It is seen that the FEM gives very accurate solutions in an
energy norm, and it does not change much when the total DOFs increase. In fact, it is
very close to the exact solution due to the very high (third)-order interpolation used. In
checking the numbers we confirmed that it gives lower-bound solutions. On the other
hand, the NS-PIM gives less accurate solutions in an energy norm due to the lower
(linear)-order interpolation used, but it produces the important upper-bound solutions.
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FIGURE 10.8
Results obtained using three numerical models and the exact solution for the clamped-clamped beam subjected to
a uniform load: (a) deflection and rotation; and (b) moment.
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It approaches very quickly to the exact solution as shown in Figure 10.12. The same
upper-bound solution is also observed for a clamped-clamped beam subjected to a
concentrated load at the mid-span (see Figure 10.12). When the load becomes uni-
formly distributed, FEM needs more nodes, but still converges very fast to the exact
solution as shown in Figure 10.13. The NS-PIM solutions are less accurate in an energy
norm, but are upper bounds to the exact solutions.

Figure 10.14 plots the numerical solution of strain energy for a simply-simply supported
thin beam subjected to a uniformly distributed load over the beam span. It is hard to tell
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FIGURE 10.9
Results obtained using three numerical models and the exact solution for the clamped-clamped beam subjected to
a concentrated load at the mid-span: (a) deflection and rotation; and (b) moment.
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from this figure as to whether it still gives an upper-bound solution, because these curves
are too close. In checking the numbers we found that the NS-PIM is a lower bound, but
with four digits being the same as the exact values. Therefore, it seems to be a bottom-line
case. As discussed in Chapter 8, we know that two nodes on the boundary do not receive
any smoothing effects, which could be the cause of the problem. To confirm this we
deliberately reduce the length of these two cells on the boundary to one-fourth of that of
the other cells. This should reduce the boundary effects, and we should obtain upper-
bound solutions. The test results are plotted in Figure 10.15: the NS-PIM, indeed, produces
upper-bound solutions, after reducing the boundary effects.
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FIGURE 10.10
Results obtained using three numerical models and the exact solution for the cantilever beam subjected to a
uniform load. (a) deflection and rotation; and (b) moment.

Meshfree Methods for Beams 469

© 2010 by Taylor and Francis Group, LLC



10.10 Numerical Examples of Free Vibration Analysis

Example 10.3: Free Vibration of Thin Beams

For free vibration analysis, thin beams with different boundary conditions are considered here. The
geometrical and material parameters are the same as those given in Section 10.8. For providing a
fair comparison, we use meshes with the same number of total DOFs for all the methods used,
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FIGURE 10.11
Solution bounds in strain energy for a simply-simply supported beam subjected to a concentrated load. FEM
(2-DOF PIM) gives lower bounds and NS-PIM gives upper bounds.
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FIGURE 10.12
Solution bounds in strain energy for a clamped-clamped beam subjected to a concentrated load. FEM (2-DOF PIM)
gives lower bounds and NS-PIM gives upper bounds.
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meaning that for 2-DOF PIM we use 41 nodes, but for 1-DOF PIM and NS-PIM we use 81 nodes.

All the results are given in a dimensionless parameter of frequencies: bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffiffiffiffiffiffi
r=EI

pq
. The results

of thin beams with simply-simply, clamped-clamped, cantilever, and simply-clamped supports are
computed and listed in Tables 10.3 through 10.6. Examination of these data leads to the following
remarks.
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FIGURE 10.13
Solution bounds in strain energy for a clamped-clamped beam subjected to a uniform load. FEM (2-DOF PIM)
gives lower bounds and NS-PIM gives upper bounds.
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Solution bounds in strain energy for a simply-simply supported beam subjected to a uniform load. FEM (2-DOF
PIM) gives lower bounds, but it gives an extremely tight lower bound, due to the boundary effects.
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Solution bounds in strain energy for a simply-simply supported beam subjected to a uniform load. FEM (2-DOF
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TABLE 10.3

Natural Frequencies for Simply-Simply Supported Thin Beam bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffiffiffiffiffiffiffi
r=EI

pq� �

Modes 2-DOF PIM (FEM) Analytical NS-PIM 1-DOF PIM

1 3.14159 3.14159 3.14139 3.14119

2 6.28319 6.28318 6.28157 6.27996

3 9.42479 9.42477 9.41933 9.41388

4 12.56641 12.56636 12.55346 12.54056

5 15.70809 15.70795 15.68274 15.65757
6 18.84988 18.84954 18.80598 18.76253

7 21.99184 21.99113 21.92197 21.85306

8 25.13409 25.13272 25.02951 24.92680

TABLE 10.4

Natural Frequencies for Clamped-Clamped Thin Beam bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffiffiffiffiffiffiffi
r=EI

pq� �

Modes 2-DOF PIM (FEM) NS-PIM 1-DOF PIM

1 4.73004 4.72852 4.72696
2 7.85321 7.84764 7.84191

3 10.99563 10.98226 10.96846

4 14.13724 14.11103 14.08399

5 17.27897 17.23366 17.18699

6 20.42083 20.34892 20.27501

7 23.56292 23.45562 23.34571

8 26.70536 26.55258 26.39675
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Remark 10.2: Softness of the Models
1. The 2-DOF PIM or FEM is found ‘‘stiffer’’ (larger natural frequencies) than the

exact model. The only exception is the mode 1 underlined in Table 10.6.

2. The NS-PIM is found ‘‘softer’’ (smaller natural frequencies) than the exact model.
This confirms our softness theory, which explains also why NS-PIM produces
upper-bound solutions.

3. The 1-DOF PIM is found even softer than the NS-PIM model.

10.11 Concluding Remarks

In this chapter, point interpolation methods for analyzing Bernoulli–Euler beams governed
by fourth-order differential equations are presented using the Galerkin weak form and the
GS-Galerkin weakened-weak form. Three models, 2-DOF PIM (FEM), 1-DOF PIM, and

TABLE 10.5

Natural Frequencies for Cantilever Thin Beam bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffiffiffiffiffiffiffi
r=EI

pq� �

Modes 2-DOF PIM (FEM) Analytical NS-PIM 1-DOF PIM

1 1.87510 1.87510 1.87498 1.87492

2 4.69409 4.69406 4.69252 4.69151
3 7.85476 7.85398 7.84921 7.84517

4 10.99556 10.99557 10.98219 10.97175

5 14.13724 14.13717 14.11103 14.08964

6 17.27897 17.27876 17.23366 17.19553

7 20.42083 20.42035 20.34892 20.28710

8 23.56292 23.56194 23.45562 23.36197

TABLE 10.6

Natural Frequencies for Simply-Clamped Thin Beam bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vi

ffiffiffiffiffiffiffiffiffiffi
r=EI

pq� �

Modes 2-DOF PIM (FEM) Analytical NS-PIM 1-DOF PIM

1 3.92660 3.92699 3.92591 3.92520

2 7.06859 7.06858 7.06531 7.06197
3 10.21019 10.21018 10.20122 10.19209

4 13.35183 13.35177 13.33282 13.31349

5 16.49353 16.49336 16.45890 16.42378

6 19.63535 19.63495 19.57828 19.52055

7 22.77737 22.77655 22.68974 22.60143

8 25.91971 25.91814 25.79211 25.66408
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NS-PIM have been established for static and dynamic analysis. We mention the following
key points.

1. NS-PIM based on the weakened-weak form solves well fourth-order beam equa-
tions with assumed functions of only first-order consistence. The C1 continuity
requirement in weak formulation is now removed.

2. The NS-PIM is found ‘‘softer’’ (smaller natural frequencies) than the exact model
and capable in producing upper-bound solutions in an energy norm for force-
driving problems. This confirms our softness theory.

3. The NS-PIM produces good results, and stands clearly out for solutions at non-
smoothing points.

4. The 1-DOF PIM is found even softer than the NS-PIM.

The NS-PIM formulation can be used for higher-order shape functions for thin beams. It
can also be extended to higher-order beam theories without much technical difficulty,
using only linear or higher-order interpolations. We demonstrate this for more complicated
cases of plates in Chapter 11 and shells in Chapter 12.

PIMs based on the local Petrov–Galerkin weak form or LPIM works well also for beams,
but is less efficient for asymmetric system equations [1]. We prefer to use the FEM (2-DOF
PIM) for lower bound and NS-PIM for upper bound for beams, because of their efficiency
and accuracy.
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11
Meshfree Methods for Plates

With the wide engineering applications of plate structures with complex geometry, static
and dynamic analyses of plates with complicated shapes become very important. How-
ever, exact analyses of such plates are usually very difficult. Therefore, numerical tech-
niques with different discretization schemes such as the finite element method (FEM) have
been developed. FEM has achieved remarkable success in static and dynamic analyses of
plates.

Meshfree methods have also been developed for analysis of plates. Krysl and Belytschko
[1,2] have extended the element-free Galerkin (EFG) method to static analysis of thin plates
and shells. In their work, the essential boundary conditions are enforced by a method of
Lagrange multipliers. An EFG method has also been formulated for modal analyses of
Euler–Bernoulli beams and Kirchhoff plates [3]. EFG has also been formulated for dynamic
problems [4], buckling problems of thin plates [5,6], as well as composite laminates [5–7].
In these works, the essential boundary conditions are imposed using orthogonal transform
techniques.

EFG formulations for thick plates were presented for both static and dynamic problems
based on the first- and third-order shear deformation theories [4]. When using higher-order
plate theories, the well-known issue of shear locking arises. Therefore, different methods
for eliminating shear locking have also been discussed.

Point interpolation methods (PIMs) based on weakened-weak (W2) formulations and
PIM shape functions with the Kronecker delta function property have also been formulated
for plates. The work is still in progress, and some of the current works on edge-based
smoothed point interpolation method (ES-PIM) that are very stable and efficient will be
presented in this chapter.

This chapter is dedicated to meshfree methods for analysis of plates. Both formulations
and applications of EFG and PIMs will be presented in detail. Problems considered include
static deformation, buckling, and dynamic response of thin and thick plates, including
composite laminated plates.

11.1 Mechanics for Plates

A plate is geometrically similar to a two-dimensional (2D) solid occupying a 2D domain V
bounded by G, as shown in Figure 11.1. The difference is that the forces=loads applied on a
plate are in a direction perpendicular to the plane of the plate. A plate can also be viewed
as a 2D analog of a beam. A plate experiences a bending resulting in a deflection w in the
z-direction as a function of x and y. The stress szz in a plate is assumed to be zero. In this
chapter, we consider plates undergoing only bending deformation, by which we mean that
there exists a neutral plane in the plate where no in-plane deformation occurs.
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Similar to beams, there are several theories for analyzing the deflection in plates. These
theories can also be basically divided into two major categories: theory for thin plates and
theory for thick plates. This chapter addresses the following:

. Thin plate theory, often called classic plate theory (CPT) and also known as
Kirchhoff plate theory

. The first-order shear deformation theory (FSDT) known as Mindlin plate theory

. The third-order shear deformation theory (TSDT)

11.1.1 Thin Plates: Classic Plate Theory

11.1.1.1 Deformation Theory

The CPT assumes that the normal to the neutral surface of the undeformed plate remains
straight and normal to the neutral surface during deformation or bending. This assumption
is often called the Kirchhoff assumption. The Kirchhoff assumption results in

gxz ¼ 0, gyz ¼ 0 (11:1)

Thus, we have only three strains—exx, eyy, and gxy—to deal with and they are all in the
plane of the plate. Therefore, it can share the same constitutive equation of 2D solids of
plane stress, Equation 1.17. In addition, the displacement components in the x- and
y-directions, u and v, at a distance z from the neutral surface can be expressed by

u ¼ �z
qw
qx

(11:2)

v ¼ �z
qw
qy

(11:3)

where w is the deflection of the neutral plane of the plate in the z-direction.
Using Equations 11.2 and 11.3, we obtain a simple relationship:

u ¼
u
v
w

8<
:

9=
; ¼

�z q
qx

�z q
qy

1

8<
:

9=
;

|fflfflfflfflffl{zfflfflfflfflffl}
Lu

w ¼ Luw (11:4)

FIGURE 11.1
Plate of thickness h subjected
to transverse loads.

x, u

z, w

bz

Γ
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11.1.1.2 Stress and Strain

It is clearly shown here that all three displacement components are expressed in terms of
the deflection w, due to the Kirchhoff assumption. The relationship between the three
components of strain and the deflection can be given by

exx ¼ qu
qx

¼ �z
q2w
qx2

(11:5)

eyy ¼ qv
qy

¼ �z
q2w
qy2

(11:6)

gxy ¼
qu
qy

þ qv
qx

¼ �2z
q2w
qxqy

(11:7)

or in matrix form

« ¼ zLdw (11:8)

where « is the vector of in-plane strains defined by

« ¼
exx
eyy
gxy

8<
:

9=
; (11:9)

where
gxy¼ 2exy is ‘‘engineering’’ shear strain
Ld is the differential operator matrix for CPT plates given by

Ld ¼

� q2

qx2

� q2

qy2

�2
q2

qxqy

2
666666664

3
777777775

for CPT (11:10)

We now define the pseudostrain as

«p ¼ Ldw (11:11)

that is, the strain evaluated at the neutral plane of the plate and hence is independent of the
coordinate z. The in-plane (normal and shear) stresses sxx, syy, and sxy can be obtained by
substituting Equation 11.8 into the constitutive equation:

s ¼ zcLdw (11:12)

It is seen from the above equation that the in-plane stresses vary linearly in the vertical
direction on the cross sections of the plate, due to the Kirchhoff assumption.
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11.1.1.3 Moments and Shear Forces

Figure 11.2a shows the stresses on the cross sections of a small representative cell of
dx�dy from a plate of thickness h. The plate cell is subjected to external force bz, and
inertial force rh€w, where r is the density of the material. Figure 11.2b shows the moments
Mxx, Myy, Mzz, and Mxy, and shear forces Vxz and Vyz. The moments are resulted from the
distributed in-plane stresses sxx, syy, and sxy on the cross section, and can be calculated by
the following integration:

Mxx

Myy

Mxy

8<
:

9=
; ¼

ðh=2

�h=2

szdz ¼
ðh=2

�h=2

cz2dz

0
B@

1
CALdw ¼

ðh=2

�h=2

cz2dz

0
B@

1
CA«p ¼ D«p (11:13)

where D is a matrix of the constants related to the material property and the thickness
of the plate. For inhomogeneous plates such as laminated plates, c can be a function of z,
D will then depend on the configuration (stacking sequence of the layers) of the plate, and
it will have the following general form:

D ¼
ðh=2

�h=2

cz2dz ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
4

3
5 (11:14)

o x

y

z

h 

bz

bz

dx

dx

σxx

σxz

σyz

σyy

σyz

σxy

dy

(a)

(b)

Myy+ dMyy

Vvz + dVvz

Vxz + dVxzMyx + dMyx

Mxy + dMyx
Mxx + dMxx

Vyz Myy

Myx
Mxx

Mxy
Vxz o x 

y 

z 

dy

FIGURE 11.2
An isolated representative cell of dx�dy in a plate. (a) Stresses on the cross sections; and (b) shear forces and
moments on the cross sections.
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where Dij (i, j¼ 1, 2, 6) are the constants that can be determined once the material and the
layer configuration of the plate are defined. For homogeneous plates, we simply have

D ¼
ðh=2

�h=2

cz2dz ¼ h3

12
c (11:15)

Using Equation 1.17, we obtain

D ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

2
4

3
5 ¼ Eh3

12(1� n2)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
D

1 n 0
n 1 0
0 0 (1� n)=2

2
4

3
5 (11:16)

where D is the flexural rigidity of the plate:

D ¼ Eh3

12(1� n2)
(11:17)

We define now the pseudostress as

sp ¼
Mxx

Myy

Mxy

8<
:

9=
; (11:18)

which is also independent of coordinate z.

11.1.1.4 Constitutive Equation for a Thin Plate

By using Equations 11.13 and 11.18, the generalized Hooke’s law for a thin plate becomes

sp ¼ D«p (11:19)

11.1.1.5 Dynamic Equilibrium Equations

Using Equations 11.13, 11.11, and 11.16, we can have explicit expressions for the moments
in homogeneous plates of isotropic materials:

Mxx ¼ � D11
q2w
qx2

þD12
q2w
qy2

� �
(11:20)

Myy ¼ � D12
q2w
qx2

þD22
q2w
qy2

� �
(11:21)

Mxy ¼ �2D66
q2w
qxqy

(11:22)

In deriving the system equilibrium equations, first we consider the equilibrium of the
small plate cell in the z-direction (see Figure 11.2b). Using dVxz ¼ qVxz

qx dx and

dVyz ¼ qVyz

qy dy, we have
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qVxz

qx
dx

� �
dyþ qVyz

qy
dy

� �
dxþ (bz � rh€w)dxdy ¼ 0 (11:23)

or

qVxz

qx
þ qVyz

qy
þ bz ¼ rh€w (11:24)

Considering then the moment equilibrium of the plate cell with respect to the x-axis, and
neglecting the second-order small terms leads to a formula for shear force Vxz given in
terms of moments.

Vxz ¼ qMxx

qx
þ qMxy

qy
(11:25)

Finally, considering the moment equilibrium of the plate cell with respect to the y-axis and
neglecting the second-order small terms gives

Vyz ¼
qMxy

qx
þ qMyy

qy
(11:26)

The dynamic equilibrium equation for plates can be obtained by substituting Equation
11.13 into Equations 11.25 and 11.26, and then into Equation 11.24. For homogeneous and
isotropic plates we have

D
q4w
qx4

þ 2
q4w

qx2qy2
þ q4w

qy4

� �
þ rh€w ¼ bz (11:27)

where D is the flexural rigidity of the plate. A more general form of partial differential
equation (PDE) for governing symmetric laminates of anisotropic materials can be derived
in a similar manner, and is given in [11].

q2

qx2
D11

q2w
qx2

þD12
q2w
qy2

� �
þ q2

qy2
D12

q2w
qx2

þD22
q2w
qy2

� �

þ 2
q2

qxqy
2D66

q2w
qxqy

� �
� bz(x, y)þ I0

q2w
qt2

� I2
q2

qt2
qw
qx

þ qw
qy

� �
¼ 0 (11:28)

where Dij can be obtained using Equation 11.14. In Equation 11.28, I0 is the mass per unit
area of the plate defined by

I0 ¼
ðh=2

�h=2

rdz (11:29)

For plates of homogeneous materials, we have

I0 ¼
ðh=2

�h=2

rdz ¼ rh (11:30)
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In Equation 11.28, I2 is the mass moments of inertia given by

I2 ¼
ðh=2

�h=2

rz2dz (11:31)

For plates of homogeneous materials, we have

I2 ¼
ðh=2

�h=2

rz2dz ¼ rh3=12 (11:32)

The static equilibrium equation for plates of isotropic material can be obtained by dropping
the dynamic terms in Equation 11.27:

D
q4w
qx4

þ 2
q4w

qx2qy2
þ q4w

qy4

� �
¼ bz (11:33)

which is a fourth-order PDE. The static equilibrium equation for symmetric laminates of
anisotropic materials can be obtained by dropping the dynamic terms in Equation 11.28:

q2

qx2
D11

q2w
qx2

þD12
q2w
qy2

� �
þ q2

qy2
D12

q2w
qx2

þD22
q2w
qy2

� �

þ 2
q2

qxqy
2D66

q2w
qxqy

� �
� bz(x, y) ¼ 0 (11:34)

which is also a fourth-order PDE.

11.1.1.6 Boundary Conditions

The boundary conditions for plates are given at boundary G as follows. The conditions on
the essential boundaries are

w ¼ wG, on essential boundary Gw (11:35)

wn ¼ qw
qn

¼ wG, on essential boundary Gu (11:36)

where
wn is the rotation on the boundary about the boundary line
wG and wG are the prescribed deflection and rotation on the essential boundaries
n denotes the normal of the boundary of the problem domain V

On the natural boundaries, we have

Mn ¼ MGn, on GM (11:37)

Mnt ¼ MGnt, on GM (11:38)

Vn ¼ VGn , on GV (11:39)
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where Mn, Mnt, and Vn denote the moment, torsional moment, and shear force on the
boundary of the plate, which are defined by

Mn ¼ n2xMxx þ 2nxnyMxy þ n2yMyy (11:40)

Mnt ¼ �nynxMxx þ nxnyMyy (11:41)

Vn ¼ nxVxz þ nyVyz (11:42)

in which fnx, nyg is the unit outward normal vector on the boundary. In Equations 11.37
through 11.39, MGn, MGnt, and VGn are, respectively, the prescribed moment, torsional
moment, and shear force on the plate edges of natural boundary.

The essential boundary condition can be written in a concise form of

ub ¼ uG on essential boundary Gu ¼ Gw [ Gu (11:43)

where ub is a vector consisting of the prescribed deflection and rotations at the essential
boundary of the plate given by

ub ¼ Lbw (11:44)

where Lb is a vector of differential operators.
For CPT plates, Lb is given by

Lb ¼
1
q
qn

8<
:

9=
; for clamped boundary (11:45)

and

Lb ¼ 1
0

� �
for simply supported boundary (11:46)

Note in Equation 11.46 that the zero entry in Lb ensures that the deflection is constrained
for simply supported boundaries.

11.1.2 Thicker Plates: A First-Order Shear Deformation Theory

The Mindlin plate theory is applied for thicker plates, as the shear deformation and rotary
inertia effects can be included. The Mindlin plate theory is also known as the FSDT. The
Mindlin theory does not demand that the cross section be perpendicular to the neutral
plane after deformation. The situation is very similar to that of the Timoshenko beam, but
is extended in one more dimension. Thus, we usually have gxz 6¼ 0, gyz 6¼ 0. Therefore, we
will have five components of strains and stresses to deal with.

The displacements u and v, which are parallel to the undeformed neutral surface, at a
distance z from the neutral plan, can be expressed by

u ¼ zwx (11:47)

v ¼ zwy (11:48)
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where wx and �wy denote the rotations of the cross section of the plate about the y- and
x-axes, respectively. The deflection of the plate is still represented by the deflection at the
neutral plane of the plate, and is denoted by w. The vector of the displacements can be
expressed as

u
v
w

8<
:

9=
; ¼

0 z 0
0 0 z
1 0 0

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Lu

w
wx
wy

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
u

¼ Luu (11:49)

where

u ¼
w
wx
wy

8<
:

9=
; (11:50)

is the vector of three independent field variables for Mindlin plates.
By using Equation 1.21 for general solids, and removing the components ezz, the strains

in the Mindlin plate are expressed as follows:

exx
eyy
gxy
gxz
gyz

8>>>><
>>>>:

9>>>>=
>>>>;

|fflfflfflffl{zfflfflfflffl}
«

¼

0 z
q
qx

0

0 0 z
q
qy

0 z
q
qy

z
q
qx

q
qx

1 0

q
qy

0 1

2
6666666666666664

3
7777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ld

w
wx
wy

8<
:

9=
; ¼ Ldu (11:51)

The strain (or stress) components given in Equation 11.51 can be divided into in-plane
strains and off-plane (transverse) strains. Such a division is useful in some of the energy
formulations when we need to account for in-plane and off-plane strain energies in a
separate manner (see Section 11.5). The in-plane strains can be extracted from Equation
11.51, and given by

«z ¼ zLBw (11:52)

where

LB ¼

q
qx

0

0
q
qy

q
qx

q
qy

2
6666664

3
7777775

(11:53)

w ¼ wx
wy

� �
(11:54)
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The off-plane transverse shear strains gxz and gyz are also extracted from Equation 11.51:

g ¼ gxz
gyz

� �
¼

wx þ
qw
qx

wy þ
qw
qy

8>><
>>:

9>>=
>>;

(11:55)

Note that if the transverse shear strains are negligible, the above equation will lead to

wy ¼ � qw
qy

(11:56)

wx ¼ � qw
qx

(11:57)

The FSDT becomes the CPT. This implies that when we construct the functions for the
rotations in a similar manner as in Equations 11.56 and 11.57, the model based on FSDT can
also work for thin plates. This technique will be used in Example 11.16.

11.1.2.1 Constitutive Equation for Thick Plates

For isotropic linear elastic materials, the stresses can be obtained using Equations 1.10 and
1.14 and by simply removing the components szz:

sxx

syy

sxy

sxz

syz

8>>>><
>>>>:

9>>>>=
>>>>;

|fflfflfflfflffl{zfflfflfflfflffl}
s

¼ E
1� n2

1 n 0 0 0
n 1 0 0 0
0 0 (1� n)=2 0 0
0 0 0 k(1� n)=2 0
0 0 0 0 k(1� n)=2

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

exx
eyy
gxy
gxz
gyz

8>>>><
>>>>:

9>>>>=
>>>>;

|fflfflfflffl{zfflfflfflffl}
«

¼ D« (11:58)

where
n is Poisson’s ratio
k is the shear effectiveness factor
k¼ 5=6 that is often used for Mindlin plates

For the in-plane portion we have

sxx

syy

sxy

8<
:

9=
;

|fflfflfflfflffl{zfflfflfflfflffl}
sM

¼ E
1� n2

1 n 0
n 1 0
0 0 (1� n)=2

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

exx
eyy
gxy

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
«M

¼ c«M (11:59)

where subscript ‘‘M’’ stands for membrane.
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Similar to the CPT, the in-plane bending-pseudostress can be defined byusing Equation 11.18:

sB ¼
Mxx

Myy

Mxy

8<
:

9=
; (11:60)

which is independent of the coordinate z. We now define bending-pseudostrain as

«B ¼ LBw (11:61)

that is strains evaluated at the neutral plane of the plate and hence is independent of the
coordinate z. Using Equations 11.60 and 11.61, we have the generalized Hooke’s law for
bending stresses and strains of the FSDT plates:

sB ¼ D«B (11:62)

where D is given in Equation 11.14 for general cases (laminated plates) and Equation 11.16
for homogenous plates.

The off-plane transverse average shear stress relates to the transverse shear strain in
the form:

sxz

syz

� �
¼ k

G 0
0 G

� �
|fflfflfflfflffl{zfflfflfflfflffl}

G

gxz
gyz

� �
|fflfflfflffl{zfflfflfflffl}

gS

¼ kGgS (11:63)

where subscript ‘‘S’’ stands for shear, and G is the shear modulus. Both off-plane stresses
and strains are all assumed to be constant over the thickness. Therefore, the off-plane
shearing-pseudostress can be defined

sS ¼ h
sxz

syz

� �
(11:64)

We have the generalized Hooke’s law for shear stresses and strains of FSDT plates as

sS ¼ khGgS (11:65)

where

G ¼ G 0
0 G

� �
(11:66)

11.1.2.2 Essential Boundary Conditions

At simply supported edges, for plates based on FSDT, we have

wjat edges ¼ 0 (11:67)
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where w is the deflection on the neutral plane of the plate, and

wtjat edges ¼ 0 (11:68)

where wt is the rotation with respect to the axis perpendicular to the normal direction of the
boundary.

At clamped edges, we have

wjat edges ¼ 0 (11:69)

wnjat edges ¼ 0 (11:70)

wtjat edges ¼ 0 (11:71)

where wn is the rotation with respect to the axis parallel to the normal direction of the
boundary.

For shear deformable plates, there are two kinds of essential boundary conditions: soft
type and hard type [18]. The hard-type conditions constrain both deflection and rotations,
and the soft-type conditions constrain only the deflection.

11.1.3 Thick Plates: A TSDT

11.1.3.1 Deformation Theory

The Mindlin plate theory or the FSDT has some problems in the solution, such that the
transverse shear forces obtained are not zero on the plate surfaces, which contradicts the
actual physical situation. A more accurate theory for thick plates, called TSDT [11], has
been proposed. Here, we briefly describe TSDT following the formulation in [20]. Based on
TSDT, the displacement field of the plate can be expressed as

u
v
w

8<
:

9=
; ¼

�az3
q
qx

z� az3 0

�az3
q
qy

0 z� az3

1 0 0

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lu

w
wx
wy

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
u

¼ Luu (11:72)

where
a¼ 4=(3h2)
u is the same as in Equation 11.50
w is the transverse deflection of the neutral plane of the plate
wx and �wy denote the rotations of the cross section of the plate about the y- and x-axes,
respectively

It can be easily seen that by setting a¼ 0, Equation 11.72 becomes Equation 11.49, and the
displacement field based on FSDT can be obtained. Furthermore, if we let a¼ 0, wx ¼ � qw

qx ,
and wy ¼ � qw0

qy , the displacement field based on CPT can be obtained. The independent
variables are w, wx, and wy for both plates based on FSDT and TSDT.
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The strains for plates of TSDT are as follows:
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>:
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>; ¼ Ldu (11:73)

where b¼ 3a. Again, if we set a¼ 0, the foregoing equation becomes Equation 11.51, that
is, for plates of FSDT. The stress–strain relationship is the same as that for the FSDT plates
given in Equation 11.58 with k¼ 1.

11.1.3.2 Essential Boundary Conditions

For plates based on TSDT, the essential boundary conditions are given as follows.
At simply supported edges the conditions are same as those given in Equations 11.67

and 11.68. At clamped edges, we shall have

wjat edges ¼ 0 (11:74)

wnjat edges ¼ 0 (11:75)

wtjat edges ¼ 0 (11:76)

qw
qn

				
at edges

¼ 0 (11:77)

Again, there are two kinds of essential boundary conditions: soft type and hard type.

11.2 EFG Method for Thin Plates

This section presents an EFG method for static and free-vibration analyses of plates
following thework presented in [4,5]. The discretized system equations based onKirchhoff’s
thin plate theory (or CPT) are provided. Methods are introduced to impose essential
boundary conditions. For static deflection of thin plates, a penalty method is formulated.
For analysis of free vibration of thin plates, the essential boundary conditions are formu-
lated via a weak form, separated from the weak form of the system equation. The
boundary conditions are then imposed using orthogonal transform techniques. The eigen-
value equation derived using this approach has a smaller dimension than that in FEM.
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A number of numerical examples are presented. Static deflections of thin rectangular
plates with fully clamped and simply supported boundaries are computed using the
present EFG. Natural frequencies of thin square, elliptical, hexagonal, and complicated
plates with various boundaries such as free, simply supported, and fully clamped are also
calculated. Both regularly and irregularly distributed nodes are used in the computation to
examine the sensitivity of the results to the irregularity of the nodes. Examples are
presented to demonstrate the convergence and validation of the present EFG formulation
compared with analytical solutions.

It is shown that the present EFG formulation has a clear advantage over element-based
formulations, as it is a rotation-free formulation: only the deflection is a nodal variable
compared to three in the element-based formulation (one deflection and two rotations).
The dimension of the discretized system equations generated using meshfree methods is
therefore one-third of that generated using FEM. In addition, in EFG there is no ‘‘conform-
ability’’ issue, which exists on the interface between the finite elements, as long as sufficient
nodes are used in the local moving least squares (MLS) approximation. Higher-order
consistency can also be achieved in meshfree methods by including higher-order terms
in the polynomial basis and the use of more local nodes.

11.2.1 Approximation of Deflection

11.2.1.1 Shape Function

Consider a plate of V shown in Figure 11.1. A Cartesian coordinate system is used to
establish the system equations. The plate is represented by its neutral plane. The deflec-
tions of the plate in the x-, y-, and z-directions are denoted as u, v, w, respectively.

Based on Kirchhoff’s thin plate assumption, the deflection w(x) of its neutral plane at
x¼fx, ygT can be taken as the independent variable, and the other two displacement
components u(x) and v(x) can be expressed in terms of w(x).

The plate is represented by a set of field nodes scattered in the domain of the plate. MLS
approximation is used to approximate w(x) using nodes included in the support domain of
x, and hence the two rotations are also interpreted by the approximated deflection. The
process of approximating the deflection is the same as that discussed in Section 2.4. The
differences are as follows:

1. For thin plates, we should use higher-order polynomial basis functions, because
the governing equation can be fourth-order PDE. Therefore, a higher order of
consistency is required. In the examples given in this section, quadratic (m¼ 6)
polynomial basis functions are used.

2. Higher-order derivatives of shape functions may be required in deriving system
equations.

Using the MLS shape functions, the deflection of the plates can be approximated by the
parameters of nodal deflection, wI, in the following form:

wh(x) ¼
X
I2Sn

fI(x)wI (11:78)

where
Sn is the set of nodes in the support domain of a point of interest x
fI is the MLS shape function for the Ith node obtained using quadratic polynomial basis
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11.2.2 Variational Forms

Because the Kronecker delta condition is not satisfied by the MLS shape function, the
essential boundary conditions (Equation 11.43) need to be imposed in a proper manner.
For static deflection analysis of thin plates, we use the penalty method to enforce essential
boundary conditions. The constrained Galerkin weak form for the thin plates based on the
CPT can be written as

ð
A

d«TpspdA�
ð
V

duTbdV�
ð
Gt

duTtGdS� d
1
2

ð
Gu

(ub � uG)Ta(ub � uG)dG ¼ 0 (11:79)

where
A is the area of the plate
Gt is the natural boundary
«p is the pseudostrain defined by Equation 11.9
b is a body force vector
a is a diagonal matrix of penalty factors, which are usually very large numbers

The relationship between the pseudostrain and stress is given by Equation 11.19.
In Equation 11.79, the first term relates to the virtual work done by the internal stress in

the thin plate. The second term relates to the virtual work done by the body force that may
be distributed over the entire volume of the plates. The third term relates to the virtual
work done by the forces applied on the natural boundary. The last term counts for that on
the essential boundaries.

For free-vibration analyses of thin plates, the Galerkin weak form associated with the
elastodynamic undamped equilibrium equations can be written as follows:

ð
A

d«TpspdAþ
ð
V

duTr€udV ¼ 0 (11:80)

where r is the mass density. Because the plate is free of external forces, it is easy to
understand that the second and third terms in Equation 11.79 vanish. However, we need
to justify why we left out the last term in Equation 11.79.

For free-vibration analysis, one method is to formulate the boundary condition equation
separately from the system equation. The weak form of the essential boundary conditions
with Lagrange multipliers is used to produce the discretized essential boundary condi-
tions. It is given below:

ð
Gu

dlT(ub � uG)dG ¼ 0 (11:81)

where l is a vector of Lagrange multipliers each of which can be interpolated as follows:

l(x) ¼ NI(s)lI, x 2 Gu (11:82)

where s and NI(s) are, respectively, the curvilinear coordinate along the boundary and the
Lagrange interpolant, which we have detailed in Chapter 6. The variation of the Lagrange
multiplier can be written as

dl(x) ¼ NI(s)dlI, x 2 Gu (11:83)
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Using Equations 11.4 and 11.11, the constrained Galerkin weak form for static problems of
thin plates can be rewritten in terms of deflection as

ð
A

d(Ldw)
TD(Ldw)dA�

ð
V

d(Luw)
TbdV�

ð
Gt

d(Luw)
TtGdS

� d
1
2

ð
Gu

(Lbw� uG)Ta(Lbw� uG)dG ¼ 0 (11:84)

The Galerkin weak form for free vibration of Equation 11.80 can be rewritten as

ð
A

d(Ldw)
TD(Ldw)dAþ

ð
V

rd Luw

 �TLu €wdV ¼ 0 (11:85)

with the weak form for essential boundary condition of Equation 11.81 rewritten as

ð
Gu

dlT(Lbw� uG)dG ¼ 0 (11:86)

11.2.3 Discrete Equations

Substituting the displacement field, Equation 11.78, into Equation 11.84 leads to the
following discrete system equation:

(KþKa)U ¼ F (11:87)

where the global stiffness matrix K is assembled using the nodal stiffness (a scalar due to
the 1 degree of freedom (DOF) rotation-free formulation) defined by

KIJ ¼
ð
A

BT
I DBJdA (11:88)

in which

BI ¼ LdfI ¼
�fI,xx

�fI,yy

�2fI,xy

8<
:

9=
; (11:89)

490 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



Matrix Ka in Equation 11.87 is obtained using the scalar entries of

Ka
IJ ¼

ð
Gu

CT
I aCJ dG (11:90)

where

CI ¼ fI
fI,n

� �
for clamped boundary (11:91)

and

CI ¼ fI
0

� �
for simply supported boundary (11:92)

in which n is the unit normal on the essential boundary surface Gu.
The force vector F is assembled using the nodal force given by

fI ¼
ð
V

LufI


 �T
|fflfflfflffl{zfflfflfflffl}

Bu

bdVþ
ð
Gt

(LufI)
T|fflfflfflffl{zfflfflfflffl}

Bu

tGdS ¼
ð
V

BT
ubdVþ

ð
Gt

BT
utGdS (11:93)

where

Bu ¼
�zfI,x
�zfI,y
fI

8<
:

9=
; (11:94)

Because the plate considered here is only subject to a transverse (in the z-direction) load, we
have

b ¼
0
0
bz

8<
:

9=
; (11:95)

The external traction on the edge of the plate tG can be given by the stresses on the surface
of the edge:

tG ¼
nx 0 0 ny 0
0 ny 0 0 nx
0 0 ny nx 0

2
4

3
5

sxx

syy

syz

sxz

sxy

8>>>><
>>>>:

9>>>>=
>>>>;

¼
sxxnx þ sxzny
sxynx þ syyny
sxznx þ syzny

8<
:

9=
; (11:96)
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The nodal force can now be written in detail as

fI ¼
ð
V
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>>;
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ð
A

fIpzdAþ
ð
Gt

�fI,x (nxMxxþnyMxy)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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�fI,y (nxMxyþnyMyy)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
MGyn

þfI (nxVxzþnyVyz)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VGzn

" #
dG

(11:97)

where pz is the pressure (force per unit area) applied on the neutral plane of the plate. Note
in Equation 11.97 that the integration over the surface of the plate edge has been changed
to a curve integration on the natural boundary (on the neutral plane). We now examine the
first two terms in the integrand of the last integral in Equation 11.97. Note that on the
boundary of the plate, we should have

fI,x ¼ fI,nnx � fI,sny
fI,y ¼ fI,nny þ fI,snx

(11:98)

Therefore,

fI,x(nxMxx þ nyMxy)þ fI,y(nxMxy þ nyMyy)

¼ (fI,nnx � fI,sny)(nxMxx þ nyMxy)þ (fI,nny þ fI,snx)(nxMxy þ nyMyy)

¼ fI,n [nxnxMxx þ 2nxnyMxy þ nynyMyy]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MGn

þfI,s [� nynxMxx þ nxnyMyy]|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MGs

¼ fI,nMGn þ fI,sMGs (11:99)

where MGn and MGs are, respectively, the specified moment and torsional moment on the
natural boundary (see Equations 11.37 and 11.38).

Substituting Equation 11.99 into Equation 11.97 leads to

fI ¼ h
ð
A

fIpzdAþ
ð
Gt

[�fI,nMGn � fI,sMGs þ fIVGz]dG (11:100)
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The vector U in Equation 11.87 has the form:

U ¼ fw1 , . . . ,wNngT (11:101)

where Nn is the total number of nodes in the entire domain of the plate. Note that the total
degrees of freedom of the thin plates are the number of nodes, and the rotations are not
involved as unknown variables in the global system equation.

Similarly, by substituting the displacement field (Equation 11.78) into the variational
form (Equation 11.85), the dynamic discrete system equation for free vibration of thin
plates is obtained as follows:

M€UþKU ¼ 0 (11:102)

where M is the global mass matrix that is assembled using the nodal mass given by the
following integral form over the entire area of the plate:

MIJ ¼
ð
A

(rfIfJhþ fI,xfJ,xI þ fI,yfJ,yI)dA (11:103)

where I is the mass moment of inertial for the plate computed by

I ¼
ðh=2

�h=2

rz2dz (11:104)

For homogeneous plates, I¼ r(h3=12).
The first integral in Equation 11.103 is the mass inertial corresponding to the vertical

translational vibration of the plate, and the second and third terms are rotational inertia
corresponding to the rotational vibrations of the cross section of the thin plate. For very thin
plates, these two terms for rotational vibrations can be neglected (see, e.g., [8]).

11.2.3.1 Equations for Essential Boundary Conditions

Substituting the displacement expression of Equation 11.78 into the boundary condition
weak form of Equation 11.86 yields a set of linear algebraic constraint equations:

H(2nb�Nn)U(Nn�1) ¼ q(2nb�1) (11:105)

where nb is the number of the nodes that are included in the union of all support domains
of all quadrature points on the essential boundary. Nonzero entries in the matrix H are
computed by

HKI ¼
ð
Gu

NKCIdG (11:106)
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in which CI is the matrix of MLS shape functions given by Equation 11.91 or Equation
11.92, depending on the type of boundary condition, and NK has the form

NK ¼ NK 0
0 NK

� �
(11:107)

where NK is the Lagrange interpolation function for node K on the essential boundary.
A Lagrange interpolant formed by Equation 6.18 can be used. Vector q in Equation 11.105
is defined by

qK ¼
ð
Gu

NKuGds (11:108)

Note that matrix in Equation 11.105 has n columns and 2nb rows, where nb is usually a very
small number compared with Nn. All entries in H without the contribution from Equation
11.106 will be zero. Thus, H is in general a very ‘‘short-fat’’ and sparse matrix.

For free-vibration analysis, the essential boundary conditions have to be homogeneous,
that is, uG¼ 0 on the essential boundary. Using Equation 11.108, we have q¼ 0 and,
hence,

HU ¼ 0 (11:109)

This is the discretized essential boundary condition for free-vibration analysis.

11.2.4 Eigenvalue Problem

11.2.4.1 Eigenvalue Equation

Consider now that the plate is undergoing a harmonic vibration. The deflection U can be
expressed in the form

U ¼ UA exp (ivt) (11:110)

where
i is the imaginary unit
v is the angular frequency
UA is the amplitude of the vibration

Substitution of the foregoing equation into Equation 11.102 leads to the following eigen-
value equation:

(K� v2M)UA ¼ 0 (11:111)

where UA is an eigenvector. For a system with Nn nodes, the dimension of matrices K and
M should be Nn�Nn, and there should be Nn eigenvalues vi (i¼ 1, 2, . . . ,Nn), which
correspond to Nn natural frequencies, and Nn eigenvectors. We shall have

UA ¼ UA1 UA2 � � � UANnf gT (11:112)
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Note, however, that Equation 11.111 has to be solved subject to the constraints of Equation
11.109 that can be restated for free vibration as

HUA ¼ 0 (11:113)

Using singular value decomposition, H can be decomposed as

H2nb�Nn ¼ R2nb�2nb
Sr�r 0
0 0

� �
2nb�Nn

VT
Nn�Nn

(11:114)

where
R and V are orthogonal matrices
Sr� r has diagonal form, in which diagonal elements are equal to singular values of H
r is the rank of H, which is the same as the number of independent constraints

The orthogonal matrix V can be partitioned as follows:

VT ¼ fVNn�r, VNn�(Nn�r)gT (11:115)

where VNn�r corresponds to the portion of Sr� r. We now examine

HV ¼ H VNn�r VNn�(Nn�r)½ � ¼ HVNn�r HVNn�(Nn�r)½ �

¼ R2nb�2nb
Sr�r 0

0 0

� �
2nb�Nn

VT
Nn�Nn

VNn�Nn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
I

(11:116)

Invoking the orthogonal condition of V, we have VT
Nn�Nn

VNn�Nn ¼ I. The foregoing equa-
tion becomes

HV ¼ H VNn�r VNn�(Nn�r)½ � ¼ HVNn�r HVNn�(Nn�r)½ �

¼ R2nb�2nb
Sr�r

0

�
0

0|{z}
HVNn�(Nn�r)

�
(11:117)

This implies

HVNn�(Nn�r) ¼ 0Nn�(Nn�r) (11:118)

or a null transformation, or VNn�(Nn�r) is a basis of the null space of the linear transform-
ation H. Therefore, the following orthogonal matrix transformation:

UA ¼ VNn�(Nn�r) ~UA (11:119)

satisfies Equation 11.113. Substituting Equation 11.119 into Equation 11.111 and premulti-
plying VT

Nn�(Nn�r) to the resultant equation lead to

[~K� v2 ~M]~UA ¼ 0 (11:120)
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which is the condensed eigenvalue equations, where

~K ¼ VT
Nn�(Nn�r)KVNn�(Nn�r) (11:121)

is the condensed stiffness matrix and

~M ¼ VT
Nn�(Nn�r)MVVNn�(Nn�r) (11:122)

is the condensed mass matrix.
Note that these condensed matrices are, in general, nonnegative definite. Solving Equa-

tion 11.120 using standard routines of eigenvalue equation solvers gives natural frequen-
cies of the free vibration of thin plates. This orthogonal transformation technique was used
by Ouatouati and Johnson [3] for imposing constraints for eigenvalue equations formu-
lated using the EFG method.

Note that matrix H in Equation 11.113 is formed by the weak form of the constraint
equation, which requires integration on the boundary and ensures the satisfaction of the
essential boundary conditions. We can obtain the discrete constraint equations directly
using MLS approximation and obtain the H matrix, as shown in [3].

11.2.5 Numerical Examples

In the examples given in this section, the complete quadratic polynomial basis function is
used (m¼ 6) for constructing MLS shape functions. Cells of background mesh are used for
integrating the system matrices and the Gauss quadrature scheme is utilized. The dimen-
sion of support domain is chosen as 3.5–3.9 times the nodal distance.

Example 11.1: Static Deflection of Rectangular Thin Plates

Consider now a benchmark problem of a rectangular plate, as shown in Figure 11.3. Analytical
solutions are available for this problem [9]. A concentrated force of P¼ 100.0 N is applied at the
center of the plate, and the following parameters are used:

Length in x-direction: a¼ 0.6 m for rectangular plates with various widths

Length: a¼b¼ 0.6 m for square plate

FIGURE 11.3
Thin rectangular plate with uniform thickness h.
(From Liu, G.R. and Chen, X.L., J. Sound Vib.,
241(5), 839, 2001. With permission.)

a

b

h

x

y
z

P
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Thickness: h¼ 0.001 m

Young’s modulus: E¼ 1.0� 109 N=m2

Poisson’s ratio: n¼ 0.3

A dimensionless deflection coefficient b of the center of a thin rectangular plate is defined as
b¼wmaxD=pa2, where wmax is the deflection at center of the plates and D¼ Eh3/[12(1�n2)] is the
flexural rigidity of the plate.
To analyze the convergence of the present EFG method, we calculate deflections of a square

plate using different densities of nodes. Two kinds of boundary conditions are imposed: simply
supported and fully clamped. In the notation of the boundary conditions, S denotes simply
supported and C means clamped. The edges of the plate are denoted clockwise using S or C
depending on the type of boundary on the edge. For example, notation SCSC means that the left
and right edges of the plate are simply supported while the upper and lower edges are clamped,
and notation SCCS means that the left and lower edges are simply supported while the upper and
right edges are clamped.
The numerical and analytical results of deflection of the square plate are shown in Table 11.1.

Good convergence has been achieved.
Further examinations are performed for plates with different width:length ratios. The deflections

are calculated using 16� 16 nodes in the present EFG method. The results are shown in Tables
11.2 and 11.3. Compared with the analytical results [9], good agreement has been achieved for all
tested cases.

TABLE 11.1

Deflection of a Square Plate b¼WmaxD=pa2

EFG Ref. [9]

Nodes 6� 6 9� 9 12� 12 15� 15 18� 18

SSSS 0.01032 0.01141 0.01145 0.01155 0.01157 0.01160

CCCC 0.00452 0.00538 0.00546 0.00552 0.00554 0.00560

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.

TABLE 11.2

Deflection of Simply Supported Rectangular Plates b¼WmaxD=pa2

b=a 1.0 1.2 1.4 1.6 1.8 2.0

EFG 0.01157 0.01344 0.01476 0.01556 0.01603 0.01632
Ref. [9] 0.01160 0.01353 0.01484 0.01570 0.01620 0.01651

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.

TABLE 11.3

Deflection of Fully Clamped Rectangular Plates

b=a 1.0 1.2 1.4 1.6 1.8 2.0

b (EFG) 0.00552 0.00637 0.00680 0.00698 0.00703 0.00704

b [9] 0.00560 0.00647 0.00691 0.00712 0.00720 0.00722

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.
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Example 11.2: Natural Frequency Analysis of Thin Square Plates

Consider now a square plate with the following parameters:

Length: a¼b¼ 10.0 m

Thickness: h¼ 0.05 m

Young’s modulus: E¼ 200� 109 N=m2

Poisson’s ratio: n¼ 0.3

Mass density: r¼ 8000 kg=m3

Case 1: Free Thin Square Plate

We calculate the natural frequencies of free vibration of a free thin square plate. The frequency
coefficients are computed using regular nodes of different density, and the results are shown in
Table 11.4 together with the FEM results. In the FEM results, HOE denotes an eight-noded semiloof
thin shell element (4� 4 mesh); LOE denotes a four-noded isoparametric shell element (8� 8
mesh). The first three frequencies corresponding to the rigid displacements are zero, and therefore
are not listed in the table. The results obtained using the present EFG method are between those of
FEMs using HOE and LOE. The present results show good convergence and good agreement with
the analytical solution. When a 9� 9 nodal density is used, the present results are more accurate
than either FEM result.

Case 2: Simply Supported and Fully Clamped Thin Square Plate

Natural frequencies of lateral free vibration of a simply supported and fully clamped thin square
plate are computed using the present EFG method. To analyze the effectiveness of the present EFG
method using irregular nodes, we calculate frequencies using 13� 13 regular nodes shown in
Figure 11.4a and 169 irregular nodes shown in Figure 11.4b. The results are shown in Tables 11.5
and 11.6. It is found that the results of using both regular and irregular nodes show good
agreement with each other and with the analytical solutions.

TABLE 11.4

Natural Frequency Coefficients �v ¼ (v2rha4=D)1=4 of Lateral Free Vibration of a Free
Square Plate

EFG FEM [40]

Mode Analytical Solution [40] 5� 5 9� 9 13� 13 17� 17 HOE LOE

4 3.670 3.700 3.670 3.670 3.670 3.567 3.682
5 4.427 4.468 4.434 4.430 4.429 4.423 4.466

6 4.926 5.000 4.939 4.933 4.930 4.875 4.997

7 5.929 6.010 5.907 5.903 5.901 5.851 5.942

8 5.929 6.010 5.907 5.903 5.901 5.851 5.942

9 7.848 8.189 7.855 7.840 7.832 7.820 8.079

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.
Note: HOE denotes an eight-noded semiloof thin shell element (4� 4 mesh); LOE denotes a four-noded

isoparametric shell element (8� 8 mesh).
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Example 11.3: Natural Frequency Analysis of Elliptical Plates

An elliptical plate with radii a¼ 5.0 m and b¼ 2.5 m is investigated. Other parameters are the
same as the square plate examined in Example 11.2.
Frequency coefficients of free vibration are computed. Table 11.7 shows the frequencies of a

free thin elliptical plate using regular nodes. The first three frequencies corresponding to rigid
displacements are zero and are not listed in the table. Good convergence has been achieved.

(a) (b)

FIGURE 11.4
Node distribution in a square plate. (a) 13� 13¼ 169 regular nodes; and (b) 169 irregular nodes. (From Liu, G.R.
and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.)

TABLE 11.5

Natural Frequency Coefficients �v ¼ (v2rha4=D)1=4 of Lateral Free Vibration
of a Simply Supported Square Plate

EFG

Mode Analytical Solution [40] Regular Nodes 13� 13 Irregular Nodes 169

1 4.443 4.443 4.453

2 7.025 7.031 7.033

3 7.025 7.036 7.120

4 8.886 8.892 8.912
5 9.935 9.959 9.966

6 9.935 9.966 10.010

7 11.327 11.341 11.345

8 11.327 11.347 11.540

9 — 13.032 12.994

10 — 13.036 13.064

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.
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Table 11.8 shows the frequencies of a fully clamped thin elliptical plate. The frequencies are
calculated using regular nodes (Figure 11.5a) and irregular nodes (Figure 11.5b). Good agreement
between the results using regular and irregular nodes has been observed.

Example 11.4: Natural Frequency Analysis of Polygonal Plates

Free-vibration analysis of a square and hexagonal plate is performed. The length of each side is
a¼ 10.0 m. Other parameters are the same as the square plate examined in Example 11.2.
The natural frequencies of a square plate with fully clamped boundaries are first calculated. A total

of 524 irregular nodes, as shown in Figure 11.6, are used. The frequency coefficients are defined as

�v ¼ v2rha4p
D

 !1=4

TABLE 11.6

Natural Frequency Coefficients �v ¼ (v2rha4=D)1=4 of Lateral Free Vibration
of a Fully Clamped Square Plate

EFG

Mode Analytical Solution [42] Regular Nodes 13� 13 Irregular Nodes 169

1 5.999 6.017 5.999
2 8.568 8.606 8.596

3 8.568 8.606 8.602

4 10.407 10.439 10.421

5 11.472 11.533 11.507

6 11.498 11.562 11.528

7 — 12.893 12.925

8 — 12.896 12.986

9 — 14.605 14.570
10 — 14.606 14.604

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.

TABLE 11.7

Natural Frequency Coefficients �v ¼ (v2rh(2a)4=D)1=4 of Lateral Free
Vibration of a Free Elliptical Plate

EFG

Mode 97 Nodes 241 Nodes 289 Nodes

4 5.197 5.176 5.173

5 6.533 6.509 6.505

6 8.288 8.244 8.234

7 9.451 9.405 9.397
8 10.602 10.559 10.547

9 11.333 11.256 11.249

10 12.223 12.168 12.160

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With
permission.
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TABLE 11.8

Natural Frequency Coefficients �v ¼ (v2rh(2a)4=D)1=4 of Lateral
Free Vibration of a Fully Clamped Elliptical Plate

EFG

Mode Regular Nodes 201 Irregular Nodes 201

1 10.467 10.454
2 12.619 12.621

3 15.009 14.992

4 16.726 16.716

5 17.629 17.658

6 18.838 18.840

7 20.604 20.508

8 21.081 21.060

9 22.913 22.890
10 23.610 23.591

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With
permission.

(a) (b)

FIGURE 11.5
An elliptical plate with 201 nodes: (a) ‘‘regular’’; and (b) irregular. (From Liu, G.R. and Chen, X.L., J. Sound Vib.,
241(5), 839, 2001. With permission.)

FIGURE 11.6
A square plate with 524 irregular nodes. (From Liu,
G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001.
With permission.)
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where ap is the radius of the inscribing circle for regular polygonal plates. The natural frequencies
of a hexagonal plate with fully clamped boundaries are also calculated, where 380 irregular
nodes, as shown in Figure 11.7, are used. Table 11.9 lists the natural frequency coefficients
of the lowest 10 modes for these two plates. Table 11.10 shows a comparison between the

FIGURE 11.7
A hexagonal plate with 380 irregular nodes. (From
Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839,
2001. With permission.)

TABLE 11.9

Natural Frequency Coefficients �v ¼ (v2rha4p=D)1=4 of Lateral
Free Vibration of Fully Clamped Regular Polygonal Plate

EFG

Mode Square Hexagon

1 9.089 9.042

2 18.700 17.805

3 18.829 20.586

4 28.121 29.802
5 33.515 34.740

6 33.649 37.368

7 42.550 46.622

8 43.529 51.846

9 53.896 55.799

10 54.156 59.138

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With
permission.

TABLE 11.10

Comparison of Natural Frequency Coefficients �v ¼ (v2rha4p=D)1=4

of First Mode of Fully Clamped Regular Polygonal Plates

EFG Exact [10] Numerical [10]

Square 9.089 8.997 9.122

Hexagon 9.042 — 9.638

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With
permission.
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frequency coefficients using the EFG method and those given in [10]. For the square plate,
the natural frequency coefficient of the first mode using the EFG method agrees very well with
the exact solution and the numerical result in the textbook [10]. For the hexagonal plate, the
natural frequency coefficient of the first mode using the EFG method is slightly smaller than the
numerical result in the textbook [10].

Example 11.5: Natural Frequency Analysis of a Plate of Complex Shape

A plate with a very complicated shape is also studied. The geometric parameters are shown in
Figure 11.8. The unit is meters. Other parameters are the same as the square plate examined
in Example 11.2. The plate is chosen hypothetically, but it serves the purpose of demonstrating the
applicability of the present EFG method to the plates with complicated shape.
Different boundary conditions are considered to examine the present EFG method in imposing

boundary conditions. The nodal distribution is plotted in Figure 11.9. Table 11.11 lists the
frequencies obtained for the plate with different boundary conditions. As expected, the natural
frequencies of the plate with clamped boundaries are generally higher than those with simply
supported boundaries.

11.3 EFG Method for Thin Composite Laminates

Composite laminates are widely used in modern structures due to their advantages of
high strength, high stiffness, and low weight. Therefore, buckling analysis of laminates
becomes very important in the process of designing such composite structures. Exact
buckling solutions of laminates for arbitrary geometries and lamination schemes are
usually very difficult. Therefore, numerical methods such as FEM have been used for
analyzing laminated plate problems. However, it is not easy to construct conventionally

4.0

2.0

10
.0

2.0

2.0

2.0

10.0

4.0

FIGURE 11.8
Plate with a hole of complicated shape. The unit
is meters. (From Liu, G.R. and Chen, X.L.,
J. Sound Vib., 241(5), 839, 2001. With permis-
sion.)
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conformable high-order plate elements as required for thin plates (C1 consistency), and it
requires element connectivity to form the finite element equations, whose generation is
often a time-consuming procedure.

In Section 12.2, an EFG method has been formulated for analyzing static deflection and
free vibration of thin plates. This section introduces an EFG formulation to solve the static
buckling problems of thin plates and symmetrically laminated composite plates. The
eigenvalue equations of the static buckling of the plates are established by applying energy
principles and Kirchhoff plate theory. Similar to the formulations in Section 12.2, the
deflection of plates is the only unknown variable at a node; therefore, the dimension of
the discrete eigenvalue equations obtained by the present formulation is only one-third

FIGURE 11.9
Nodal distribution in a plate with a hole
with complicated shape. (From Liu, G.R. and
Chen, X.L., J. Sound Vib., 241(5), 839, 2001.
With permission.)

TABLE 11.11

Natural Frequency Coefficients �v ¼ (v2rha4=D)1=4 of Lateral Free Vibration
of a Plate with a Hole of Complicated Shape

EFG

Mode SSSS CCCC SCSC SCCS

1 5.453 7.548 7.170 6.079

2 8.069 10.764 10.343 9.204

3 9.554 11.113 11.415 10.837

4 10.099 11.328 12.572 11.273
5 11.328 12.862 12.811 12.278

6 12.765 13.300 13.272 13.322

7 13.685 14.168 13.997 14.308

8 14.305 15.369 14.627 14.900

9 15.721 16.205 15.743 15.170

10 17.079 17.137 16.391 16.302

Source: Liu, G.R. and Chen, X.L., J. Sound Vib., 241(5), 839, 2001. With permission.
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of that in FEM. Thus, solving the eigenvalue equation is more computationally efficient
compared with FEM. To demonstrate the efficiency of the present EFG method, static
buckling loads for thin plates have been calculated and examined in detail by comparing
with other available solutions. The convergence of static buckling loads of thin plates is
analyzed. The static buckling loads for thin plates of complicated shape and symmetrically
laminated composite plates with different boundaries have also been calculated using the
present EFG method.

11.3.1 Governing Equation for Buckling

A symmetrically laminated composite plate with thickness h in the z-direction is shown
schematically in Figure 11.10. The laminated plate may consist of nL layers of plies. The
reference plane z¼ 0 is located at the undeformed neutral plane of the laminated plate.
The fiber orientation of a layer is indicated by a, as shown in Figure 11.11. The laminate
plate is subjected to in-plane forces within the plane of symmetry of the plate on its
edges. It is assumed that the applied edge forces are independent of each other. We can
then write [11]

Nx ¼ �N0, Ny ¼ �m1N0, Nxy ¼ �m2N0 (11:123)

x

y
z

h

Ω

FIGURE 11.10
Thin laminatewith symmetrically stacked layers
of composites and its coordinate system.

x 

α

y 

FIGURE 11.11
Ply with a fiber orientation of a in a laminated
plate.
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where
N0 is a constant
m1 and m2 are possibly the functions of the coordinates

The strain energy potential related to the pseudostrain and stress fields can be obtained
using

UPE ¼ 1
2

ð
A

«TpspdA (11:124)

where
A stands for the area of the plate
«p is the pseudostrain defined by Equation 11.11
sp is the pseudostress defined by Equation 11.18

Substituting Equations 11.11 and 11.18 into Equation 11.124, we obtain

UPE ¼ 1
2

ð
A

"
D11

q2w
qx2

� �2

þ 2D12
q2w
qx2

q2w
qy2

þD22
q2w
qy2

� �2

þ 4D66
q2w
qxqy

� �2

þ 4 D16
q2w
qx2

þD26
q2w
qy2

� �
s
q2w
qxqy

#
dA (11:125)

The energy potential created by the in-plane forces can be expressed by

UN ¼ 1
2

ð
A

Nx
qw
qx

� �2

þNy
qw
qy

� �2

þ 2Nxy
qw
qx

qw
qy

" #
dA (11:126)

The matrices of the elastic constants of the laminates D can be obtained using Equation
11.14, and are given as follows:

DIJ ¼ 1
3

XnL
K¼1

(�QIJ)K(z
3
K � z3K�1), I, J ¼ 1, 2, 6 (11:127)

�Q11 ¼ Q11 cos4 aþ 2(Q12 þ 2Q66) sin2 a cos2 aþQ22 sin4 a (11:128)

�Q12 ¼ (Q11 þQ22 � 4Q66) sin2 a cos2 aþQ12( sin4 aþ cos4 a) (11:129)

�Q16 ¼ (Q11 �Q12 � 2Q66) sina cos3 aþ (Q12 �Q22 þ 2Q66) sin3 a cosa (11:130)

�Q22 ¼ Q11 sin4 aþ 2(Q12 þ 2Q66) sin2 a cos2 aþQ22 cos4 a (11:131)

�Q26 ¼ (Q11 �Q12 � 2Q66) sin3 a cosaþ (Q12 �Q22 þ 2Q66) sina cos3 a (11:132)

�Q66 ¼ (Q11 þQ22 � 2Q12 � 2Q66) sin2 a cos2 aþQ66( sin4 aþ cos4 a) (11:133)
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Q11 ¼ E1

1� n12n21
(11:134)

Q12 ¼ n12E2

1� n12n21
(11:135)

Q22 ¼ E2

1� n12n21
(11:136)

Q66 ¼ G12 (11:137)

n21E1 ¼ n12E2 (11:138)

where
E1 and E2 are Young’s moduli parallel to and perpendicular to the orientation of fibers
n12 and n21 are the corresponding Poisson’s ratios
a is the angle of fiber orientation of the ply

The total potential energy of the laminated composite becomes

PPE ¼ UPE þUN (11:139)

11.3.2 Discrete Equation for Buckling Analysis

The laminated plate is represented using a set of nodes on the symmetric plane (z¼ 0). The
deflection at any point in the plate can be approximated using Equation 11.78. The expres-
sion of the total energy can be obtained by substituting the deflection w of Equation 11.78
into Equations 11.125 and 11.126, and then Equation 11.139. The stationary condition for the
total potential energy gives a set of discrete eigenvalue equations for the laminated plate:

[K�N0B]W ¼ 0 (11:140)

where

W ¼ fw1,w2, . . . ,wNngT (11:141)

is the deflection vector consisting of deflections at all the Nn nodes and K is the global
stiffness matrix which is assembled using the nodal stiffness (a scalar) defined by

Kij ¼ 1
2

ð
A

2D11
q2fi

qx2
q2fj

qx2
þ 2D12

q2fi

qx2
q2fj

qy2
þ q2fj

qx2
q2fi

qy2

 !"
þ 2D22

q2fi

qy2
q2fj

qy2

þ 8D66
q2fi

qxqy

q2fj

qxqy
þ 4D16

q2fi

qx2
q2fj

qxqy
þ q2fj

qx2
q2fi

qxqy

 !

þ 4D26
q2fi

qy2
q2fj

qxqy
þ q2fj

qy2
q2fi

qxqy

 !#
dA (11:142)

Bij ¼ 1
2

ð
A

2
qfi

qx

qfj

qx
þ 2m1

qfi

qy

qfj

qy
þ 2m2

qfi

qx

qfj

qy
þ qfj

qx
qfi

qy
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dA (11:143)
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For isotropic thin plates, the expression of potential energy of bending can be reduced as

UPE ¼ D
2

ð
A

q2w
qx2

þ q2w
qy2

� �2

� 2(1� n)
q2w
qx2

q2w
qy2

� q2w
qxqy

� �2( )" #
dA (11:144)

The strain energy caused by in-plane forces is the same as Equation 11.126. Minimizing the
total potential energy yields the same form of discrete eigenvalue equations as Equation
11.140, where matrix B is defined by Equation 11.143 and the elements in matrix K have a
much simpler form:

Kij ¼D
2

ð
A

"
2

q2fi

qx2
þ q2fi

qy2

� �
q2fj

qx2
þ q2fj

qy2

 !

� 2(1� n)
q2fi

qx2
q2fj

qy2
þ q2fj

qx2
q2fi

qy2

 !
� 2

q2fi

qxqy

q2fj

qxqy

( )#
dA (11:145)

where D is the flexural rigidity of the plate defined by Equation 11.17. It can be easily
confirmed that the foregoing equation is an alternative form of Equation 11.88.

The treatment on essential boundary conditions can be performed exactly as in
Section 11.2.4.

11.3.2.1 Eigenvalue Equations for Buckling

By performing orthogonal matrix transformation

W ¼ VNn�(Nn�r) ~W (11:146)

to Equation 11.140, the condensed eigenvalue equation of the static buckling can be
rewritten as

[~K�N0~B] ~W ¼ 0 (11:147)

where ~W is an eigenvector,

~K ¼ VT
(Nn�r)�Nn

KVNn�(Nn�r) (11:148)

is the dimension stiffness matrix, and

~B ¼ VT
(Nn�r)�Nn

BVNn�(Nn�r) (11:149)

Solving Equation 11.147 with standard routines of eigenvalue solvers gives the static
buckling values of thin laminated plates including thin plates of isotropic homogeneous
materials.
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11.3.3 Discrete Equation for Free-Vibration Analysis

The discrete dynamic equation has the same form as Equation 11.87. The difference is that
the stiffness matrix K needs to be replaced with that in Equation 11.140 for composite
laminates. The treatment of essential boundary conditions is also the same as in Section
11.1.4, and the final eigenvalue equation is given by Equation 11.120, where the stiffness
matrix K needs to be replaced with that in Equation 11.140 for composite laminated plates.
The mass matrix formulated using Equation 11.103 is still valid, but the mass moment of
inertial I needs to be computed using Equation 11.104 with the consideration that r could
be a function of z for composite laminated plates.

11.3.4 Numerical Examples of Buckling Analysis

In all the examples given in this section, complete second-order polynomial basis functions
are used (m¼ 6) for constructing MLS shape functions. The dimension of the support
domain is chosen as 3.5–3.9 times the averaged nodal distance.

Example 11.6: Static Buckling of Rectangular Plates (Validation)

The convergence of static buckling loads of square plates obtained by the present EFG method is
studied. The dimensions of the rectangular plates are noted by a and b, respectively, for the
dimensions in the x- and y-directions. An in-plane compressive load is applied in the x-direction.
The static buckling loads of thin plates with different aspect ratios and boundaries are calculated
and compared with analytical results [12]. The effects of different boundary conditions are also
investigated. In the notation of the boundary conditions, the same convention used in the previous
section is adopted. The buckling loads are represented via the factor of buckling load defined as
k¼N0b

2p2D, where D¼ Eh3/[12(1�v2)].

The geometry of the plates is shown in Figure 11.12. The geometric parameters and
material properties of the thin rectangular plates are as follows: length b¼ 10.0 m, thickness
h¼ 0.06 m, and the width of the plate can be determined by the aspect ratio, which changes
from case to case. The material constants are Young’s modulus E¼ 2.45� 106 N=m2,
Poisson’s ratio n¼ 0.23.

The buckling factors for square plates with three kinds of aspect ratios and simply
supported boundaries are calculated using different densities of field nodes. The results
are listed in Table 11.12. It is seen that highly accurate results can be obtained using a small
number (6� 6¼ 36) of field nodes. The convergence is very fast.

Table 11.13 shows the buckling factors of rectangular plates of different aspect ratios
with simply supported boundaries. Field nodes (13� 13) regularly distributed in the plates

z0
z1
z2
z3

x

z y

h

b

a

FIGURE 11.12
Symmetrically laminated composite plate and its
coordinate system.
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are used. The buckling factors obtained using the present EFG method agrees very well
with Timoshenko’s analytical solutions. The buckling factor decreases as the aspect ratio
increases from 0.2 to 1.0, while the buckling factor increases as the aspect ratio increases
from 1.0 to 1.41. The minimum buckling factor occurs when the aspect ratio is 1.0, namely,
when the plate is squared.

Table 11.14 shows the buckling factors of plates with clamped boundaries. A total of 169
(¼ 13� 13) regularly distributed nodes are used in the computation. Very good agreement
between the buckling factors in the EFG method and Timoshenko’s analytical solutions has
also been achieved. The buckling factor obtained using the EFG method is slightly larger
than the analytical solution and decreases as the aspect ratio increases from 0.75 to 4.0. The
minimum buckling factor occurs when the aspect ratio is 4.0. The error between the EFG
result and Timoshenko’s solution for plates with clamped boundaries is larger than that for
plates with simply supported boundaries.

TABLE 11.12

Convergence of Buckling Factor k¼N0b
2=p2D for Rectangular Plates (b¼ 10.0 m, h¼ 0.06 m;

BC: SSSS)

Nodes

5� 5 6� 6 7� 7 8� 8 9� 9 10� 10 11� 11 Ref. [12]

a=b¼ 0.8 4.60 4.20 4.17 4.20 4.19 4.20 4.20 4.20
a=b¼ 1.0 4.25 3.99 3.97 4.01 4.03 4.02 4.00 4.00

a=b¼ 1.2 4.03 4.13 4.14 4.15 4.12 4.14 4.14 4.13

TABLE 11.13

Buckling Factor k¼N0b
2=p2D for Rectangular Plates (b¼ 10.0 m, h¼ 0.06 m; Nodes: 13� 13,

BC: SSSS)

a=b

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.41

EFG 27.09 13.22 8.42 6.25 5.13 4.53 4.20 4.04 4.04 4.05 4.13 4.28 4.48 4.48

Ref. [12] 27.0 13.2 8.41 6.25 5.14 4.53 4.20 4.04 4.00 4.04 4.13 4.28 4.47 4.49

Error (%) 0.33 0.15 0.12 0.00 �0.19 0.00 0.00 0.00 1.00 0.25 0.00 0.00 0.22 �0.22

TABLE 11.14

Buckling Factor k¼N0b
2=p2D for Rectangular Plates (b¼ 10.0 m, h¼ 0.06 m; Nodes: 13� 13,

BC: CCCC)

a=b

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

EFG 11.79 10.18 9.42 8.47 8.22 8.00 7.75 7.70 7.57 7.49 7.48 7.41 7.39 7.38

Ref. [12] 11.69 10.07 9.25 8.33 8.11 7.88 7.63 7.57 7.44 7.37 7.35 7.27 7.24 7.23

Error (%) 0.86 1.09 1.84 1.68 1.36 1.52 1.57 1.72 1.75 1.63 1.77 1.93 2.07 2.07
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Table 11.15 shows the buckling factors for SCSC boundaries. The nodal distribution is
also 13� 13 (regular). The errors between the EFG results and analytic solutions are very
small. The minimum buckling factor is observed at the aspect ratio of 0.7.

Table 11.16 shows the buckling factors for SCCS boundaries. Nodes of 13� 13 that are
regularly distributed in the plates are used. The buckling factors from aspect ratio 1.0 to 2.0
are calculated using the EFG method. The minimum buckling factor occurs at the aspect
ratio of 1.8.

Example 11.7: Static Buckling of a Square Plate (Efficiency)

To study the efficiency of the EFG method, the buckling of a thin square plate with clamped
boundaries is studied using both EFG and an FEM. In FEM, four-node isoparametric elements are
used. The dimensions of the plate are length a¼b¼ 10.0 m, thickness h¼ 0.7 m. The material
properties are elastic constant E¼ 1.0� 109 N=m2, Poisson’s ratio n¼ 0.3. The results obtained
using EFG and FEM for different densities of nodes are shown in Table 11.17.
Note that the dimension of the eigenvalue equation produced by EFG is only one-third of that

produced by FEM. Because of the smaller dimension of the eigenvalue equation in the EFG
formulation, the central processing unit (CPU) time for solving the eigenvalue equation in EFG
is much less than that in FEM, as shown in Table 11.17, especially when the node number is large.
Note that the total CPU time for solving the problem is affected by many factors, such as the
construction of shape functions, imposition of boundary conditions, and the number of eigen-
values required. In EFG, selecting the nodes in the support domain of a quadrature point and
constructing the shape functions for the point are much more expensive procedures as compared
with FEM. The total CPU time of EFG is therefore greater than that of FEM for the same density of
nodes. This is the price EFG has to pay for not using an element mesh. However, the results
obtained by EFG are much more accurate than those of FEM. For this square plate the analytical
result of buckling factor is k¼ 10.07. EFG produces a result of k¼ 10.41 using only 81 nodes, but
FEM requires 361 nodes to obtain a result with the same accuracy. Therefore, to obtain a result
with the same accuracy, the EFG method is still much more computationally efficient than FEM for
solving static buckling problems.

TABLE 11.15

Buckling Factor k¼N0b
2=p2D for Rectangular Plates (b¼ 10.0 m,

h¼ 0.06 m; Nodes: 13� 13, BC: SCSC)

a=b

0.4 0.5 0.6 0.7 0.8 0.9 1.0

EFG 9.48 7.72 7.11 7.05 7.38 7.96 7.77
Ref. [12] 9.44 7.69 7.05 7.00 7.29 7.83 7.69

Error (%) 0.42 0.39 0.85 0.71 1.23 1.66 1.04

TABLE 11.16

Buckling Factor k¼N0b
2=p2D for Rectangular Plates (BC: SCCS)

a=b

1.0 1.2 1.4 1.6 1.8 2.0

EFG 6.28 6.26 6.07 5.98 5.77 5.92
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Example 11.8: Buckling of a Plate with Complicated Shape

To demonstrate the applicability of the present EFG method to the plates with complicated shape,
the static buckling loads of a plate with a hole with complicated shape are also calculated. The
geometries of the plates shown in Figure 11.13 are calculated. The field nodes irregularly
distributed in the plate are shown in Figure 11.14. The number of the nodes is 339. Triangular
background meshes with 493 nodes are used for integration and all the field nodes are in the
vertex of the integration cells. It can be seen from Table 11.18 that the plate with SSSS boundaries
has the lowest buckling factor, and the plate with CCCC boundaries has the highest buckling
factor. The static buckling factors of the plates with a hole are smaller compared with those of the
corresponding plates without a hole.

TABLE 11.17

Comparison of Results of k¼N0b
2=p2D for a Square Plate Obtained by EFG

and FEM (a¼ b¼ 10.0 m, h¼ 0.7 m, BC: CCCC)

Nodes

9� 9 11� 11 13� 13 15� 15 17� 17 19� 19

Dimension of equation EFG 81 121 169 225 289 361
FEM 243 363 507 675 867 1083

CPU time (s) for
eigenvalue solver

EFG 0.02 0.04 0.1 0.3 0.6 1.2

FEM 0.0 0.7 1.4 5.2 16.6 63.8

Total CPU time (s) EFG 14.3 47.2 155.7 531.5 1302.3 3789.8

FEM 8.5 33.2 76.0 217.5 554.6 1530.1

Buckling factor k EFG 10.41 10.23 10.18 10.16 10.14 10.13

FEM 16.23 13.60 12.20 11.37 10.84 10.47

FIGURE 11.13
Plate with a hole of complicated shape. 10.0
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Example 11.9: Static Buckling of a Laminated Plate

The static buckling loads of three layers of symmetrically laminated composite plates of
E-glass=epoxy materials for four cases of boundaries are calculated, as shown in Table 11.19.
The in-plane compressive loads are applied in the x-direction. The factor of the buckling load
is defined by k¼N0b

2p2D0, where D0¼ Eh3=[12(1�n12n21)]. The geometric parameters and
material properties of the laminates are length a¼b¼ 10.0 m, thickness h¼ 0.06 m, ratio of
elastic constant E1=E2¼ 2.45, ratio of elastic constant G12=E2¼ 0.48, Poisson’s ratio n12¼ 0.23.
The buckling load factors of the laminates in the EFG method are calculated using 13� 13 nodes
regularly distributed in the plate domain. For simply supported boundaries, the buckling value
increases as the ply angle increases. In contrast, for clamped boundaries, the buckling
value decreases as the ply angle increases. For SSSS, CCCC, and SCCS boundaries, the buckling
value for the plies of (08, 08, 08) is the same as that for the plies of (08, 908, 08). For SCCS
boundaries, the buckling factor is little affected by the angle ply. As expected, the buckling
values of the laminates with clamped boundaries are generally larger than those with simply
supported boundaries.

FIGURE 11.14
Nodal distribution in a plate with a hole
of complicated shape.

TABLE 11.18

Buckling Factor k¼N0b
2=p2D for the Plate

with a Hole of Complicated Shape

Boundaries

SSSS CCCC SCSC SCCS

k 2.64 16.66 5.43 3.97
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11.3.5 Numerical Examples for Free-Vibration Analysis

Example 11.10: Free-Vibration Analysis of Orthotropic Square Plates

Consider a square plate of a single layer of orthotropic material. The following parameters are used
in the computation:

Length: a¼b¼ 10.0 m

Thickness: h¼ 0.05 m

Mass density: r¼ 8000 kg=m3

To compare the results obtained by the present EFG method with those given by Chen [13], we
use the same elastic constants as in [13] for the following two cases: (1) If E1 � E2, n12¼ 0.3; (2) If
E1< E2, n21¼ 0.3.
The dimensionless fundamental frequency is defined as j¼ (v2a4rh=D3)

1=4, where D3¼D12þ
2D66. Regular rectangular background meshes (12� 12) and regularly distributed field nodes
(13� 13) are used. The vertices of the background mesh are used as the field nodes. The
dimensionless fundamental frequencies are listed in Tables 11.20 through 11.23 for four cases of
different boundary conditions. In these tables, the subscript of j indicates the number of mode. In
each table, frequencies for different ratios of elastic constants are listed. Table 11.20 shows the
results for a square plate simply supported at all edges. Good agreement between the frequencies
of the first mode obtained using the present EFG method and those given in [13] has been
observed. Table 11.21 shows the results for a square plate clamped at all edges. The frequencies
of the first mode obtained by the present EFG method fall in between those of [13] and [14]. The
results shown in Tables 11.22 and 11.23 also indicate that the frequencies of the first mode
obtained by the present EFGmethod agree well with those of [13]. In all four cases, the frequencies
of the first mode obtained by the present EFG method are slightly larger than those given in [13].

Example 11.11: Natural Frequency Analysis of Composite Laminated Plates

Symmetric laminated composite plates with three layers of E-glass=epoxy materials are consid-
ered. Natural frequencies of square, elliptical, and complicated shaped plates are calculated using
the present EFG method. The dimensionless frequency parameters are b¼ (rhv2a4=D0)

1=2, where
D0¼ Eh3=[12(1�n12n21)].

TABLE 11.19

Buckling Factor k¼N0b
2=p2D0 for Symmetrically Laminated

Composite Square Plates with Different Angle Plies and Boundaries
(a¼ b¼ 10.0 m, h¼ 0.06 m, Nodes: 13� 13)

Angle Ply BC SSSS CCCC SCSC SCCS

(08, 08, 08) 2.39 6.78 4.34 3.97

(108, �108, 108) 2.42 6.72 4.39 3.97

(158, �158, 158) 2.45 6.64 4.46 3.96
(208, �208, 208) 2.49 6.55 4.56 3.96

(308, �308, 308) 2.57 6.36 4.84 3.96

(408, �408, 408) 2.63 6.21 4.91 3.94

(458, �458, 458) 2.64 6.16 4.79 3.93

(08, 908, 08) 2.39 6.78 4.43 3.97
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The geometric parameters and material properties of the square plates are as follows:

Length: a¼b¼ 10.0 m

Thickness: h¼ 0.06 m

Mass density: r¼ 8000 kg=m3

Ratio of elastic constant: E1=E2¼ 2.45

Ratio of elastic constant: G12=E2¼ 0.48

Poisson’s ratio: n12¼ 0.23

The radii of the elliptical plates are a¼ 5.0 m and b¼ 2.5 m, respectively. Other geometric
parameters and material properties are the same as the square plates.

TABLE 11.20

The Dimensionless Fundamental Natural Frequencies j for Orthotropic Square Plates (BC: SSSS)

D22=D3
0.5 1.0 2.0

D11=D3 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

EFG j1 4.130 4.295 4.576 4.295 4.443 4.700 4.576 4.700 4.921

j2 6.333 6.387 6.479 6.387 7.031 7.104 6.479 7.104 8.008

j3 6.341 6.996 7.936 6.996 7.036 7.961 7.936 7.961 8.011

j4 8.273 8.600 8.781 8.600 8.892 9.404 8.781 9.404 9.843

j5 8.714 8.743 9.159 8.743 9.959 9.988 9.159 9.988 11.575

j6 8.732 9.949 10.903 9.949 9.966 11.560 10.903 11.560 11.578

j7 10.411 10.587 11.277 10.587 11.341 11.604 11.277 11.604 12.713
j8 10.422 11.205 11.552 11.205 11.347 12.518 11.552 12.518 12.714

j9 11.242 11.259 12.416 11.259 13.032 13.048 12.416 13.048 14.775

j10 11.249 12.891 13.515 12.891 13.036 14.110 13.515 14.110 15.285

j1 [13] 4.118 4.279 4.557 4.279 4.425 4.678 4.557 4.678 4.897

TABLE 11.21

The Dimensionless Fundamental Natural Frequencies j for Orthotropic Square Plates (BC: CCCC)

D22=D3
0.5 1.0 2.0

D11=D3 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

EFG j1 5.312 5.697 6.288 5.697 6.017 6.532 6.288 6.532 6.948
j2 7.554 7.710 7.982 7.710 8.605 8.805 7.982 8.805 9.976

j3 7.554 8.495 9.767 8.495 8.606 9.841 9.767 9.841 9.976

j4 9.430 9.973 10.203 9.973 10.439 11.209 10.203 11.209 11.847

j5 9.978 10.069 10.840 10.069 11.533 11.637 10.840 11.637 13.500

j6 10.006 11.497 12.459 11.497 11.562 13.334 12.459 13.334 13.525

j7 11.592 11.911 12.644 11.911 12.893 13.455 12.644 13.455 14.690

j8 11.597 12.565 13.423 12.565 12.896 14.367 13.423 14.367 14.692

j9 12.524 12.651 14.192 12.651 14.605 14.655 14.192 14.655 16.761
j10 12.525 14.202 14.584 14.202 14.606 15.902 14.584 15.902 17.185

j1 [14] 5.324 5.712 6.307 5.712 6.034 6.553 6.307 6.553 6.972

j1 [15] 5.171 5.551 6.131 5.551 5.866 6.371 6.131 6.371 6.779
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11.3.5.1 Convergence of Natural Frequency

We use different densities of regularly distributed field nodes in the present EFGmethod to
calculate natural frequencies of the laminated composite square plates with simply sup-
ported boundaries. Regular rectangular meshes are used and all the field nodes are in the
vertexes of the meshes. The angle ply is arranged as (308, 308, 308). Table 11.24 shows the
frequency parameters. Good convergence can be observed from Table 11.24 for the present
EFG method.

11.3.5.2 Effectiveness of Irregularly Distributed Nodes

To analyze the effectiveness of the present EFG method using irregularly distributed
nodes, we calculate the frequencies of the square laminates using 17� 17¼ 289 regularly

TABLE 11.22

The Dimensionless Fundamental Natural Frequencies j for Orthotropic Square Plates (BC: SCSC)

D22=D3
0.5 1.0 2.0

D11=D3 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

EFG j1 4.829 4.936 5.130 5.319 5.400 5.551 6.017 6.073 6.181

j2 6.655 7.239 7.468 6.876 7.413 8.231 7.246 7.715 8.456

j3 7.360 7.397 8.106 8.362 8.388 8.439 9.206 9.701 9.735

j4 8.901 9.215 9.690 9.020 9.799 10.205 9.685 10.287 11.032

j5 8.954 9 .909 9.952 9.577 10.156 11.469 10.545 10.717 11.776

j6 9.891 10.081 11.628 11.262 11.445 11.689 11.505 12.474 13.376

j7 10.881 11.415 11.703 11.405 11.919 12.720 11.913 13.197 13.444
j8 11.285 11.609 12.466 11.439 12.525 12.982 13.387 13.396 14.259

j9 11.347 12.453 12.727 12.414 13.131 14.541 13.810 14.109 15.380

j10 12.446 13.093 13.908 13.384 14.214 14.879 13.993 14.915 15.921

j1 [13] 4.729 4.838 5.037 5.205 5.288 5.443 5.883 5.941 6.052

TABLE 11.23

The Dimensionless Fundamental Natural Frequencies j for Orthotropic Square Plates (BC: SCCS)

D22=D3
0.5 1.0 2.0

D11=D3 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

EFG j1 4.726 4.997 5.428 4.997 5.228 5.611 5.428 5.611 5.927
j2 6.935 7.037 7.213 7.037 7.807 7.941 7.213 7.941 8.980

j3 6.953 7.750 8.855 7.750 7.827 8.905 8.855 8.905 8.997

j4 8.844 9.277 9.489 9.277 9.656 10.296 9.489 10.296 10.836

j5 9.356 9.407 9.988 9.407 10.752 10.811 9.988 10.811 12.542

j6 9.376 10.735 11.679 10.735 10.770 12.469 11.679 12.469 12.556

j7 11.004 11.250 11.957 11.250 12.120 12.518 11.957 12.518 13.703

j8 11.011 11.909 12.498 11.909 12.121 13.445 12.498 13.445 13.705

j9 11.885 11.930 13.305 11.930 13.821 13.850 13.305 13.850 15.771
j10 11.895 13.458 13.725 13.458 13.828 15.011 13.725 15.011 16.237

j1 [13] 4.637 4.905 5.332 4.905 5.136 5.515 5.332 5.515 5.829
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distributed nodes and 289 irregularly distributed nodes (Figure 11.15). A uniform mesh of
16� 16 mesh is used for the integration for the square laminates. A regular mesh of 180
cells is used for integration for the elliptical laminates. The angle ply of both laminates is
arranged as (308,�308, 308). The results are shown in Tables 11.25 and 11.26. It is found
from the Tables 11.25 and 11.26 that the frequency parameters of using both regularly and
irregularly distributed nodes show very good agreement with each other. This confirms
that node irregularity does not affect the results significantly, provided there is no signifi-
cant variation on nodal density across the domain.

11.3.5.3 Square Plate

Four cases of different boundary conditions together with five cases of different angle plies
are considered. Regular rectangular background meshes (12� 12) and regularly distrib-
uted field nodes (13� 13) are used. Table 11.27 shows the results for laminates simply
supported at all edges. The present frequencies agree very well with those given in [15,16].
Table 11.28 shows the results for laminates clamped at all edges. The present frequencies
are very close to and slightly larger than those given in [15]. Table 11.29 shows the effect of
fiber orientation on the frequency parameters of the laminated plates with SCSC boundary
conditions. Maximum natural frequency parameters of the fifth, seventh, and ninth modes
are observed at the plate with a¼ 308; the first, third, fourth, sixth, and eighth modes occur

TABLE 11.24

Convergence of Frequency of Laminated Composite Square
Plates (BC: SSSS)

Field Nodes

9� 9 11� 11 13� 13 15� 15 17� 17

b 20.02 16.05 15.88 15.89 15.86

FIGURE 11.15
Square plate with 289 irregularly distributed
nodes.
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at the plate with a¼ 458; and the second and tenth modes occur at the plate of (08, 908, 08).
Table 11.30 shows the effect of fiber orientation on the natural frequency parameters of
laminated plates with SCCS boundary conditions. Maximum natural frequency param-
eters of the third and seventh modes are observed at a¼ 08; the sixth mode at a¼ 158; the
first, second, fifth, and ninth modes occur at the plate with a¼ 458; and the fourth, eighth,
and tenth modes are registered at the plate with (08, 908, 08).

11.3.5.4 Elliptical Plate

The natural frequencies are computed for the elliptical laminates using the present EFG
method. Regularly distributed nodes (201) and regular meshes (180) are used. Table 11.31
shows the effect of fiber orientation on the natural frequency parameters of laminated

TABLE 11.25

Natural Frequency Parameters b of Laminated Composite
Square Plates (BC: SSSS)

EFG

Modes Regular Nodes 289 Irregular Nodes 289

1 15.86 15.92
2 35.86 35.99

3 42.58 42.66

4 61.47 61.66

5 71.83 72.35

6 85.97 86.45

7 93.95 94.19

8 109.00 109.06

9 119.71 120.45
10 133.43 133.58

TABLE 11.26

Natural Frequency Parameters b of Laminated Composite
Elliptical Plates (BC: CCCC)

EFG

Modes Regular Nodes 201 Irregular Nodes 201

1 19.89 19.87

2 30.44 30.44

3 44.34 44.25

4 49.95 49.90

5 61.94 61.98

6 65.77 65.76

7 84.63 84.19

8 84.81 84.75
9 93.36 93.12

10 107.33 107.06
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TABLE 11.27

Natural Frequency Parameters b of Laminated Composite Square Plates (BC: SSSS)

Angle Ply
Source

of Result

Modes

1 2 3 4 5 6 7 8 9 10

(08, 08, 08) EFG 15.18 33.34 44.51 60.79 64.80 90.39 94.23 109.4 109.9 136.8

[15] 15.19 33.31 44.52 60.78 64.55 90.31 93.69 108.7 — —

[16] 15.19 33.30 44.42 60.77 64.53 90.29 93.66 108.6 — —

(158, �158, 158) EFG 15.41 34.15 43.93 60.91 66.94 91.74 92.01 109.3 112.4 135.0

[15] 15.37 34.03 43.80 60.80 66.56 91.40 91.51 108.9 — —

[16] 15.43 34.09 43.87 60.85 66.67 91.40 91.56 108.9 — —

(308, �308, 308) EFG 15.88 35.95 42.63 61.54 72.12 86.32 94.08 109.2 120.6 134.3
[15] 15.86 35.77 42.48 61.27 71.41 85.67 93.60 108.9 — —

[16] 15.90 35.86 42.62 61.45 71.71 85.72 93.74 108.9 — —

(458, �458, 458) EFG 16.11 37.04 41.80 61.94 78.03 80.11 95.07 109.3 132.3 134.1

[15] 16.08 36.83 41.67 61.65 76.76 79.74 94.40 109.0 — —

[16] 16.14 36.93 41.81 61.85 77.04 80.00 94.68 109.0 — —

(08, 908, 08) EFG 15.18 33.82 44.14 60.79 66.12 91.16 93.31 108.8 112.4 136.8

TABLE 11.28

Natural Frequency Parameters b of Laminated Composite Square Plates (BC: CCCC)

Angle Ply
Source

of Result

Modes

1 2 3 4 5 6 7 8 9 10

(08, 08, 08) EFG 29.27 51.21 67.94 86.25 87.97 119.3 127.6 138.5 144.0 169.8
[15] 29.13 50.82 67.29 85.67 87.14 118.6 126.2 137.5 — —

(158, �158, 158) EFG 29.07 51.82 66.54 85.17 90.56 120.0 124.1 140.8 143.2 167.6

[15] 28.92 51.43 65.92 84.55 89.76 119.3 122.7 139.9 — —

(308, �308, 308) EFG 28.69 53.57 63.24 84.43 96.13 115.4 121.5 139.6 150.8 166.3

[15] 28.55 53.15 62.71 83.83 95.21 114.1 120.7 138.6 — —

(458, �458, 458) EFG 28.50 55.11 60.91 84.25 103.2 106.7 122.3 138.3 165.2 166.1

[15] 28.38 54.65 60.45 83.65 102.0 105.6 121.4 137.3 — —

(08, 908, 08) EFG 29.27 51.93 67.40 86.25 89.76 120.3 126.4 141.6 143.2 172.2

TABLE 11.29

Natural Frequency Parameters b of Laminated Composite Square Plates (BC: SCSC)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 20.55 46.41 47.18 70.52 85.02 96.06 107.5 116.7 136.0 150.6
(158, �158, 158) 20.89 45.70 48.28 71.23 86.87 94.03 108.7 117.1 138.7 149.7

(308, �308, 308) 21.85 44.45 51.19 72.63 88.65 93.23 109.0 121.1 147.7 150.0

(458, �458, 458) 23.16 43.08 55.56 73.61 83.50 102.6 108.4 126.3 136.4 151.0

(08, 908, 08) 20.77 46.92 47.32 70.90 86.92 95.22 108.8 116.3 139.3 151.2
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plates clamped at all edges. Maximum frequency parameters of the fifth mode are regis-
tered at the plate with a¼ 158; the seventh mode at the plate with a¼ 308; the first, second,
fourth, sixth, eighth, ninth, and tenth modes at the plate with a¼ 458; and the third mode at
the plate with (08, 908, 08).

11.3.5.5 Plate of Complicated Shape

The natural frequencies are calculated for the laminates with a hole of complicated shape,
as shown in Figure 11.16. The 310 nodes and 462 triangular background meshes are plotted
in Figure 11.17. Four cases of different boundary conditions together with five cases of
different angle ply were considered. Table 11.32 shows the effect of fiber orientation on the
frequency parameters of laminates simply supported at all edges. Maximum frequency
parameters of the fifth mode occur at a¼ 08; the third mode occurs at a¼ 158; the fourth
and seventh modes occur at a¼ 308; the first and tenth modes occur at a¼ 458; and the
second, sixth, eighth, and ninth modes occur at (08, 908, 08). Table 11.33 shows the effect of
fiber orientation on the frequency parameters of laminates clamped at all edges. Maximum
frequency parameters of the first and second modes occur at the plate with a¼ 158; the
third and sixth modes occur at the plate with a¼ 458; and the fourth, fifth, seventh, eighth,
ninth, and tenth modes occur at the plate of (08, 908, 08). Table 11.34 shows the effect of fiber
orientation on the frequency parameters of laminates for SCSC boundary conditions.
Maximum frequency parameters of the fifth mode occur at the plate with a¼ 158; the
first, second, third, sixth, and tenth modes occur at the plate with a¼ 458; and the fourth,

TABLE 11.30

Natural Frequency Parameters b of Laminated Composite Square Plates (BC: SCCS)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 21.62 41.64 55.66 72.81 75.92 104.3 110.5 123.7 126.2 150.3

(158, �158, 158) 21.69 42.40 54.72 72.48 78.18 105.5 107.7 125.3 126.9 149.5

(308, �308, 308) 21.81 44.27 52.49 72.48 83.53 100.6 107.4 124.4 135.3 149.7

(458, �458, 458) 21.88 45.70 50.89 72.62 89.90 93.18 108.3 123.9 148.4 150.0

(08, 908, 08) 21.62 42.24 55.21 72.82 77.47 105.2 109.4 125.4 126.6 152.5

TABLE 11.31

Natural Frequency Parameters b of Laminated Composite Elliptical Plates (BC: CCCC)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 18.48 29.38 44.97 45.72 60.44 65.33 79.24 85.31 91.50 102.8

(158, �158, 158) 18.83 29.70 44.73 46.72 62.06 64.07 81.09 87.14 88.90 104.5

(308, �308, 308) 19.89 30.44 44.34 49.95 61.94 65.77 84.63 84.81 93.36 107.3

(458, �458, 458) 21.60 31.38 44.11 55.17 60.19 70.21 81.64 88.25 103.7 110.2
(08, 908, 08) 18.81 29.58 44.99 46.72 61.34 65.14 79.99 87.23 91.16 103.4
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seventh, eighth, and ninth modes occur at the plate of (08, 908, 08). Table 11.35 shows the
effect of fiber orientation on the frequency parameters of laminates for SCCS boundary
conditions. Maximum frequency parameters of the second, seventh, and tenth modes occur
at the plate with a¼ 158; the third, fourth, and ninth modes occur at the plate with a¼ 458;
and the first, fifth, sixth, and eighth modes occur at the plate with (08, 908, 08). It can also be
seen that the natural frequencies of the laminates with clamped boundaries are generally
higher than those with simply supported boundaries.

10.0

4.0

2.0

2.0

3.0 3.0

10
.0

2.0

FIGURE 11.16
Square plate with a hole of complicated shape.

FIGURE 11.17
Nodal distribution of the square plate with a
hole of complicated shape.
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TABLE 11.32

Frequency Parameters b of Laminated Composite Plates of Complicated Shape (BC: SSSS)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 25.64 79.94 88.32 118.2 169.2 179.3 205.0 241.0 259.1 288.1

(158, �158, 158) 26.51 79.31 88.37 118.3 168.0 175.4 210.8 240.1 250.6 291.0

(308, �308, 308) 28.33 79.48 88.18 118.7 165.7 172.1 213.0 238.4 247.0 294.1

(458, �458, 458) 29.53 79.28 86.85 118.6 161.4 171.5 210.9 237.5 245.2 295.1

(08, 908, 08) 25.70 79.95 88.30 118.4 169.0 180.1 206.1 241.7 259.9 288.7

TABLE 11.33

Frequency Parameters b of Laminated Composite Plates of Complicated Shape (BC: CCCC)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 88.48 95.16 107.1 157.0 166.9 185.2 250.1 291.0 299.3 325.3

(158, �158, 158) 88.86 95.35 107.8 156.4 166.5 186.8 244.8 290.4 297.8 323.5

(308, �308, 308) 88.62 94.62 110.0 155.8 166.8 191.1 240.0 284.8 294.2 320.1

(458, �458, 458) 87.74 93.19 113.3 156.1 167.4 194.7 235.4 281.4 290.4 316.9
(08, 908, 08) 88.67 95.15 107.9 157.8 167.5 186.4 250.3 291.3 299.8 325.4

TABLE 11.34

Frequency Parameters b of Laminated Composite Plates of Complicated Shape (BC: SCSC)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 64.07 72.44 98.25 139.3 160.0 170.8 230.7 254.6 266.0 273.0

(158, �158, 158) 64.73 72.00 100.0 138.6 163.3 168.7 229.3 250.4 264.0 274.1

(308, �308, 308) 66.36 72.99 103.5 138.4 161.5 171.1 228.0 247.4 259.9 276.5

(458, �458, 458) 67.69 74.39 108.5 139.7 158.3 172.8 230.6 244.8 254.7 277.3
(08, 908, 08) 64.37 72.86 99.32 140.1 160.5 171.2 231.9 255.0 266.3 273.4

TABLE 11.35

Frequency Parameters b of Laminated Composite Plates of Complicated Shape (BC: SCCS)

Modes

Angle Ply 1 2 3 4 5 6 7 8 9 10

(08, 08, 08) 68.95 93.87 114.2 140.6 170.2 191.5 221.9 251.5 264.3 301.7

(158, �158, 158) 68.43 94.46 115.2 141.0 166.8 190.6 223.2 244.8 265.9 304.1

(308, �308, 308) 68.64 94.08 117.1 141.9 164.8 189.8 223.1 238.9 270.8 301.6

(458, �458, 458) 68.95 93.10 119.8 142.6 164.4 188.4 221.1 236.6 273.6 292.3

(08, 908, 08) 69.17 94.02 114.9 141.1 170.9 191.8 222.5 251.9 265.2 302.5
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11.4 EFG Method for Thick Plates

In Sections 12.2 and 12.3, we discussed EFG formulations for static, buckling, and the
vibration of thin plates that are governed by the simplest displacement-based theory: CPT.
In CPT, the transverse shear strain is neglected. For analyses of thin plates with a thickness-
to-width ratio of up to about 1:10, CPT can often give good results with sufficient accuracy
for engineering application, because the effect of the transverse shear deformation is very
small. For thick plates, however, transverse shear strains cannot be neglected. The CPT
underpredicts deflections and overpredicts natural frequencies and buckling loads for
thick plates.

Thick plates are very important structural elements and have wide applications.
There are a few displacement-based theories for the analyses of plates. A slightly
more complex displacement-based theory, often termed the FSDT or the Mindlin plate
theory, must be used to take into account the transverse shear strain. In FSDT, in-plane
displacements through the thickness are assumed to vary linearly. FSDT gives a state of
constant shear strain through the thickness, which cannot satisfy the natural condition
that the shear strains in the top and bottom surfaces of plates should vanish. In FSDT, a
shear correction factor that depends on material property, geometry, and boundary
conditions is introduced to correct for the discrepancy in the shear forces. However,
FSDT still does not reflect the high-order variation of shear strain through the thickness.
To ensure the vanishing of the transverse shear strains on the top and bottom surfaces
of the plates and to more accurately reflect the high-order variation of shear strain
through the thickness, the TSDT was developed. In the formulations of finite plate
element based on TSDT, C1 displacement interpolants must be constructed, which can
be difficult. Moreover, the application of high-order displacement-based elements
makes mesh generation algorithms much more complicated, leading to an increment
in computational costs.

Meshfree methods have been applied for shear deformable beams and plates [17]. This
section formulates the EFG method to solve free-vibration and static buckling problems for
shear deformable plates. The material presented in this section is based on the work done
in [4–7]. Based on both FSDT and TSDT of plates, weak forms of governing equation
for free vibration and static buckling are established. The essential boundary conditions are
formulated through a weak form separate from the system equation and are imposed
using the orthogonal transform techniques used in Section 11.1. To examine the validity of
the EFG method in the application of eigenvalue problems for the shear deformable plates,
natural frequencies of the square thick plates with different hard-type boundary condi-
tions are calculated. Buckling loads of the square thick plates with different boundary
conditions and a square thick plate with a circular hole are also investigated.

11.4.1 Approximation of Field Variables

Using the EFG method, the plate is represented by a set of nodes scattered in the domain of
the plate. The field variables should be the deflections and the rotations at all the nodes.
MLS approximation is used to approximate all these field variables w, wx, and wy, i.e.,

w ¼
Xn
I¼1

fIwI (11:150)
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wx ¼
Xn
I¼1

fxIwxI (11:151)

wy ¼
Xn
I¼1

fyIwyI (11:152)

where fI, fxI, and fyI are the shape functions for the three field variables w, wx, and wy,
respectively. These shape functions do not have to be the same. Formulations that use

fxI(x, y) ¼
qfI(x, y)

qx
(11:153)

fyI(x, y) ¼
qfI(x, y)

qy
(11:154)

can avoid shear locking [19]. In our formulation, we will assume that fI, fxI, and fyI are the
different shape functions and are independent of each other. Equations 11.150 through
11.152 can be written in the following matrix form:

u ¼
w
wx
wy

8<
:

9=
; ¼

Xn
I¼1

fI 0 0
0 fxI 0
0 0 fyI

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FI

wI

wxI
wyI

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
uI

(11:155)

where
w is the transverse deflection of the neutral plane of the plate
wx and �wy denote the rotations of the cross section of the plate about the y- and x-axes,
respectively

Matrix FI contains the shape functions arranged as

FI ¼
fI 0 0
0 fxI 0
0 0 fyI

2
4

3
5 (11:156)

and uI is the vector of nodal variables for node I given by

uI ¼
wI

wxI
wyI

8<
:

9=
; (11:157)

11.4.2 Variational Forms of System Equations

11.4.2.1 Free-Vibration Analysis

For free-vibration analysis of shear deformable plates, we can start with the Galerkin weak
form of elastic solids:
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ð
V

d«TsdVþ
ð
V

duTr€udV ¼ 0 (11:158)

where r is the mass density. Note that the terms related to the external forces have been
removed, because we are interested only in free vibration, and hence the external forces are
not considered. The formulation can then be based on the TSDT, as the FSDT is a special
case of the TSDT.

Using the expressions for the displacement (Equation 11.72), strains (Equation 11.73),
and stresses (Equation 11.58), we can easily arrive at the following equations for thick plate
structures:

ð
V

d(Ldu)
TDLdudVþ

ð
V

rd(Luu)
TLu€udV ¼ 0 (11:159)

11.4.2.2 Static Buckling Analysis

For static buckling analysis of shear deformable plates, the total strain energy potential
is [20]

PPE ¼ 1
2

ð
V

«TD«dV

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
UPE

þ
ð
V

«TNtNdV

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
UN

(11:160)

The first term is the same as that in Equation 11.158 representing the strain energy potential
resulted from the linear strain field, and «N denotes the nonlinear strains that are needed
for modeling the buckling. The higher-order terms associated with the in-plane displace-
ments in «N are neglected, and «N has the following form:

«TN ¼ 1
2

qw
qx

� �2 1
2

qw
qy

� �2 qw
qx

qw
qy

0 0

( )
(11:161)

The associated stress tN is given by

tN ¼

�Nx

h

�Ny

h

�Nxy

h
0
0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼ � 1
h
P (11:162)

The variational form of the total potential energy is

dPPE ¼ d(UPE þUN) ¼
ð
V

d«TsdVþ
ð
V

d«TNtNdV ¼ 0 (11:163)
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Using Equation 11.163 as well as Equations 11.161 and 11.162, we can easily arrive at the
following weak form for the static buckling problem of thick plates.

ð
V

d(Ldu)
TDLdudV�

ð
A

d(LN1w)
T(LT

N2w)PdA ¼ 0 (11:164)

where

LT
N1 ¼

q
qx

,
q
qy

� �
(11:165)

LT
N2 ¼

q
qx

0
q
qy

0 0

0
q
qy

q
qx

0 0

2
664

3
775 (11:166)

P ¼

Nx

Ny

Nxy

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(11:167)

In deriving Equation 11.164, the integration in the z-direction has been carried out for the
second term.

11.4.3 Discrete System Equations

Substituting the displacement interpolants Equations 11.150 through 11.152 into Equation
11.159 or 11.164, we obtain the eigenvalue equation for both free vibration and static
buckling of plate structures as follows:

[K� hG]q ¼ 0 (11:168)

where h is the eigenvalues. For free-vibration problems, h¼v2, where v represents the
angular frequencies, and for static buckling problems, h¼N0, where N0 is the buckling
load. Vector q is the eigenvector.

In Equation 11.168, K is the stiffness matrix for both free-vibration and static buckling
problems, which is assembled using a nodal stiffness matrix of 3� 3 given by

KIJ ¼
ð
V

BT
I DBJdV (11:169)
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where the matrix B is given by

BI ¼ LdFI ¼

�az3
q2

qx2
(z� az3)

q
qx

0

�az3
q2

qy2
0 (z� az3)

q
qy

�2az3
q2

qxqy
(z� az3)

q
qy

(z� az3)
q
qx

(1� bz2)
q
qx

(1� bz2) 0

(1� bz2)
q
qy

0 (1� bz2)

2
666666666666666664

3
777777777777777775

fI 0 0
0 fxI 0
0 0 fyI

2
4

3
5 (11:170)

In Equation 11.168, G is the mass matrix for the free-vibration problem,

GIJ ¼
ð
V

rBT
uIBuJdV (11:171)

where

BuI ¼ LuFI

�az3
q
qx

z� az3 0

�az3
q
qy

0 z� az3

1 0 0

2
666664

3
777775

fI 0 0
0 fxI 0
0 0 fyI

2
4

3
5 (11:172)

For the static buckling problem, G is assembled using a nodal matrix of

GIJ ¼
Gw

IJ 0 0

0 0 0
0 0 0

2
64

3
75 (11:173)

where

Gw
IJ ¼

1
2

ð
A

2
qfI

qx
qfJ

qx
þ 2m1

qfI

qy
qfJ

qy
þ 2m2

qfI

qx
qfJ

qy
þ qfJ

qx
qfI

qy

� �� �
dA (11:174)

where m1 and m2 are defined in Equation 11.123.
Equation 11.168 is the eigenvalue equation for thick plates without essential boundary

conditions.

11.4.4 Discrete Form of Essential Boundary Conditions

Because the Kronecker delta condition fI(xJ)¼ dIJ at each node is not satisfied by the MLS
shape function, the essential boundary conditions are imposed in a manner similar to that
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described in Section 11.1. The essential boundary conditions are represented by a weak
form with Lagrange multipliers to produce the discretized essential boundary conditions
as given below:

ð
Gu

dlT(ub � uG)dG ¼ 0 (11:175)

where
l is a vector of Lagrange multipliers
uG is the prescribed essential boundary conditions

For free-vibration and static buckling analyses, we should have uG¼ 0, because the prob-
lem is homogeneous. Vector u is the displacement approximated on the essential boundary
conditions. For the essential boundary of plates based on FSDT,

ub ¼
w
wn
ws

8<
:

9=
; ¼

1 0 0
0 nx ny
0 �ny nx

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lb

w
wx
wy

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
u

¼ Lbu (11:176)

where nx and ny are the direction cosines of the outward normal on the boundary.
For the essential boundary of plates based on TSDT,

ub ¼

w
wn
ws

qw
qn

8>>>><
>>>>:

9>>>>=
>>>>;

¼

1 0 0
0 nx ny
0 �ny nx
q
qn

0 0

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lb

w
wx
wy

8<
:

9=
;

|fflfflfflffl{zfflfflfflffl}
u

¼ Lbu (11:177)

The discrete essential boundary conditions derived from Equation 11.175 can be written in
the form of (for cases of TSDT)

H4nb�3NnQ3Nn�1 ¼ 0 (11:178)

where nb is the number of constraint points on the supported boundaries. In computing H,
one-point Gauss quadrature is used along each span between the constraint points. For
example, for a clamped edge of plates based on TSDT and any one span, H is assembled
from the nodal contributions defined as

HKI ¼
ð
Gu

NKfI 0 0
0 nxNKfxI nyNKfyI
0 �nyNKfxI nxNKfyI

fI,n 0 0

2
664

3
775dG (11:179)

where NK (K¼ 1, 2) are Lagrange linear interpolations given in Equation 6.15 for the span
between two constraint points on the essential boundary.
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Generally, the matrix H is sparse and singular. Using singular-value decomposition
technique, it can be decomposed as

H4nb�3Nn ¼ U4nb�4nb
Sr�r 0
0 0

� �
4nb�3Nn

VT
3Nn�3Nn

(11:180)

where
R and V are the orthogonal matrices
S is the singular value of H
r is the rank of H, which represents the number of independent constraints

The matrix V can be written as

VT
3Nn�3Nn

¼ V3Nn�r, V3Nn�(3Nn�r)
� T (11:181)

By performing orthogonal transformation in Equation 11.168,

q ¼ V3Nn�(3Nn�r)~q (11:182)

The condensed eigenvalue equation of both free vibration and static buckling can be
expressed as

(~K� h ~G)~q ¼ 0 (11:183)

where

~K ¼ VT
3Nn�(3Nn�r)K3Nn�3NnV3Nn�(3Nn�r) (11:184)

and

~G ¼ VT
3Nn�(3Nn�r)G3Nn�3NnV3Nn�(3Nn�r) (11:185)

For the plates of FSDT, the above procedure is valid, except 4nb should be changed to 3nb,
and HKI is given by

HKI ¼
ð
Gu

NKfI 0 0
0 nxNKfxI nyNKfyI
0 �nyNKfxI nxNKfyI

2
4

3
5dG (11:186)

Solving Equation 11.183 for the eigenvalues yields the square of the circle frequencies for
the free-vibration problem and the buckling loads for the static buckling problem. The
eigenvectors, after being transformed back using Equation 11.182, give the vibration
modes or buckling modes.

11.4.5 Equations for Static Deformation Analyses

For static deflection analysis of thick plates, the penalty method can be used to enforce the
essential boundary conditions by adding an additional essential boundary condition term
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in the Galerkin weak form of the static elastic equilibrium. The constrained Galerkin weak
form for thick plates can be written as

ð
V

d(Ldu)
TcLdudV�

ð
V

d(Luu)TbdV�
ð
Gt

d(Luu)TtGdSþ d

ð
Gu

1
2
(ub � uG)Ta(ub � uG)dG ¼ 0

(11:187)

where
Gt is the edge surface of the plate where the natural boundary condition is specified
a is a diagonal matrix of the penalty factors
vector ub is given by either Equation 11.176 or 11.177, depending on the plate theory
used

The dimension of a is 3� 3 or 4� 4 depending also on the plate theory used.
The discrete system equation can be expressed as

[KþKa]U ¼ F (11:188)

where global stiffness matrix K is the same as that in Equation 11.168. The additional
stiffness matrix Ka is formed using

Ka
IJ ¼

ð
Gu

FT
bIaFbJdG (11:189)

and FbI is the matrix of the shape functions for node I. For FSDT, it can be written as

FbI ¼
fI 0 0
0 nxfxI nyfyI
0 �nyfxI nxfyI

2
4

3
5 (11:190)

For TSDT,

FbI ¼

fI 0 0
0 nxfxI nyfyI
0 �nyfxI nxfyI
qfI

qn
0 0

2
66664

3
77775 (11:191)

The force vector F in Equation 11.188 is the global force vector assembled using the nodal
force vector of

fI ¼
ð
V

(LuFI)
TbdVþ

ð
Gt

(LuFI)
TtGdSþ

ð
Gu

FT
bIauGdG (11:192)

Further derivation on the first two terms in Equation 11.192 can be performed by following
the procedure given in Section 11.1.3.
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11.4.6 Numerical Examples of Static Deflection Analyses

To examine the efficiency of the present formulation of the EFG method for the static
deflection analyses of shear deformable thick plates, Examples 11.12 through 11.16 are
studied. The common geometric and material property parameters used in these five
examples are as follows:

Length: a¼ b¼ 10.0 m

Young’s modulus: E¼ 1.0� 109 N=m2

Poisson’s ratio: n¼ 0.3

Mass density: r¼ 8000 kg=m3

The deflection coefficient j¼wmaxD=Pb2 is defined for the concentrated load P, and
j¼wmaxD=qb4 for the uniform load q, where wmax is the maximum deflection at the center
of the plates. Elastic rigidity of the plate is D¼Eh3=[12(1� n2)].

In all the following examples, the size of the support domain is chosen to be 3.9 times the
average nodal distance, except for special illustration. The nodes used in the following
three examples are regularly distributed nodes. Uniform rectangular cells of background
mesh are used for the integration, and the vertices of the background cells coincide with the
field nodes.

In the following examples, the three shape functions used are the same, i.e.,

fI(x, y) ¼ fxI(x, y) ¼ fyI(x, y) (11:193)

The issue of shear locking is addressed in Example 11.16.

Example 11.12: Thin and Thick Square Plates: A Comparison Study

Using 21� 21 nodes in the EFG method, two types of simply supported boundary conditions—soft
type and hard type—are considered, and the maximum deflections of thin plate (h=a¼ 0.01)
and thick plate (h=a¼ 0.1) are computed. The results for the thin plate are shown in Table 11.36.
The deflections calculated based on both FSDT and TSDT are very close to Timoshenko’s solu-
tion [9]. It is also seen that the deflections of thin plate calculated using the soft-type simply
supported boundary condition are very close to those obtained using the hard-type simply sup-
ported boundary condition.
The maximum deflections of a thick plate are shown in Table 11.37. The deflections calculated

using FSDT are very close to those obtained using TSDT. The deflections of thick plate calculated

TABLE 11.36

Maximum Deflection Coefficients j of Simply Supported Thin Plate
(h=a¼ 0.01)

Load Boundary Condition FSDT TSDT Ref. [9]

Concentrated w¼ 0 (soft) 0.01161 0.01162 0.01160

w¼ 0, wt¼ 0 (hard) 0.01156 0.01157

Uniform w¼ 0 (soft) 0.004084 0.004085 0.004062

w¼ 0, wt¼ 0 (hard) 0.004062 0.004063
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using the soft-type simply supported boundary condition are significantly larger than those
obtained using the hard-type simply supported boundary condition, especially for the uniform
load.

Example 11.13: Thin Square Plates: Convergence Study

The convergence of the maximum deflections at the center of a square thin plate applied with a
concentrated load at the center of the plate is analyzed. The plate is simply supported with soft-
type. The thickness of h¼ 0.1 m and the aspect ratio of h=a¼ 0.01 are considered. Various nodal
densities in the plate domain are used to calculate the deflections based on FSDT, TSDT, and CPT
in the present EFG method. The maximum deflections are shown in Table 11.38. The present EFG
deflections based on both FSDT and TSDT rapidly converge to Timoshenko’s solution. However,
the convergence rate of the deflection solutions based on CPT is higher than that based on FSDT
and TSDT. All the deflections have a monotonous convergence.

Example 11.14: Thick Square Plates: Convergence Study

The convergence on the maximum deflections at the center of a hard-type simply supported
square thick plate subjected to a uniform load is analyzed. A thickness h¼ 1.0 m and an aspect
ratio of h=a¼ 0.1 are used. Based on FSDT and TSDT in the present EFG method, the various
nodal densities are used to calculate the deflections, as shown in Table 11.39. The present EFG
deflections based on both FSDT and TSDT rapidly converge to the analytical solution [21].

Example 11.15: Thick Plates: Effects of Boundary Conditions

Thick plates with thickness h¼ 1.0 m and aspect ratio h=a¼ 0.1 are considered. Based on CPT,
FSDT, and TSDT in the present EFG method, 21� 21 nodes are used to calculate the

TABLE 11.37

Maximum Deflection Coefficients j of Simply Supported Thick Plate
(h=a¼ 0.1)

Load Boundary Condition FSDT TSDT

Concentrated w¼ 0 (soft) 0.01398 0.01391

w¼ 0, ws¼ 0 (hard) 0.01323 0.01318

Uniform w¼ 0 (soft) 0.004619 0.004615

w¼ 0, ws¼ 0 (hard) 0.004273 0.004275

TABLE 11.38

Maximum Deflection Coefficients j of Soft-Type Simply Supported Thin Plate (h=a¼ 0.01)
Subjected to a Concentrated Load at the Center of the Plate

Nodes

Ref. [9]6� 6 9� 9 12� 12 15� 15 18� 18 21� 21

FSDT 0.009835 0.01085 0.01139 0.01151 0.01158 0.01161 0.01160

TSDT 0.01001 0.01102 0.01144 0.01154 0.01159 0.01162

CPT 0.01032 0.01141 0.01145 0.01155 0.01157 0.01157
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maximum deflections of the thick plates for four kinds of hard-type boundary conditions and
two types of loads. The maximum deflections are listed in Table 11.40. The present EFG results
of deflections calculated based on FSDT and TSDT are very close to each other and larger than
those obtained based on CPT. The present deflections based on FSDT and TSDT agree well
with the available analytical solutions [21]. This demonstrates that the present EFG formulation
based on the shear deformation plate theory is accurate in calculating deflections of thick
plates.

Example 11.16: Elimination of Shear Locking: A Few Techniques

It is well known that models based on the thick plate theory is used to simulate thin plates,
erroneous solutions will be obtained known as the shear-locking phenomenon. Techniques to
avoid shear locking have been well developed in FEM. An excellent discussion of this issue can be
found in the textbook [11]. All these techniques, listed as follows, can be adopted here for our
meshfree methods:

1. Use sufficiently high-order elements.

2. Construct shape functions for the rotations wx and wy from the first-order derivatives of the
shape function used for the transverse displacement w.

3. Evaluate the shear energy in a proper manner.

The effectiveness of the second method has also recently been proved for EFG method [19].
Here we study the first two methods in detail.

TABLE 11.39

Maximum Deflection Coefficients j of Hard-Type Simply Supported Thick Plate (h=a¼ 0.1)
Subjected to a Uniform Load

Nodes

Ref. [21]4� 4 6� 6 8� 8 10� 10 12� 12 14� 14

FSDT 0.003948 0.004306 0.004281 0.004272 0.004275 0.004273 0.004249
TSDT 0.003945 0.004311 0.004303 0.004278 0.004279 0.004276

TABLE 11.40

Maximum Deflection Coefficients j of Thick Plate (h=a¼ 0.1)

Load Boundaries CPT FSDT TSDT Ref. [21]

Concentrated SSSS 0.01159 0.01323 0.01318

CCCC 0.005566 0.007322 0.007248

SCSC 0.006990 0.008845 0.008768

SCCS 0.007379 0.009190 0.009115

Uniform SSSS 0.004066 0.004273 0.004275 0.004249

CCCC 0.001259 0.001505 0.001494 0.001496

SCSC 0.001910 0.002209 0.002198 0.002191

SCCS 0.002098 0.002375 0.002366
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11.4.6.1 Use of High-Order Basis

A soft-type simply supported Mindlin plate with the uniform load of p¼ 1.0 N=m2 is
considered to analyze the shear-locking problem. To visualize the shear-locking phenom-
enon clearly, an extremely small aspect ratio of h=a¼ 1.0� 10�4 is used. The other param-
eters are as follows:

Lengths of two sides: a¼ b¼ 10.0 m

Young’s modulus: E¼ 1.0� 109 N=m2

Poisson’s ratio: n¼ 0.3

Regularly distributed 21� 21 nodes are used. The dimensionless support domain is
as¼ 3.9–4.1. Three polynomial terms (1, x, y) are used for both methods. The deflection
coefficient is defined as j¼wmaxD=bzb

4, where wmax is the maximum deflection of the
center of the plates. The analytical solution for the maximum deflection at the center of the
plates is j¼ 0.004062 (Timoshenko’s solution).

The same shape functions are used for the approximations of the deflection w, and the
rotations wx, and wy. Different orders of polynomial basis functions listed in Table 11.41 are
used to construct MLS shape functions. The deflections of the plates computed by EFG
based on FSDT are shown in Figure 11.18. The shear-locking phenomenon is observed very
clearly when only three polynomial bases are used in MLS approximation. When the
polynomial terms up to 18 are used, shear locking is eliminated, and the deflections of
the thin plate calculated based on FSDT are very close to and slightly larger than those
obtained using EFG based on CPT. As the polynomial terms increase, more nodes need to
be included in the influence domain. In this study, the dimension of the support domain is
chosen to be 4.1 times the average nodal distance for 18 polynomial terms. Note that a plate
of an aspect ratio of h=a¼ 10� 10�4 is quite an extreme.

11.4.6.2 Comparison Study

Using the present EFG method for Mindlin plates (FSDT), we perform a comparison study
to further analyze the shear-locking issue. The following two schemes are used:

Scheme 1
Use high-order basis functions but the same set of shape functions for three field variables,
as we have done above.

Scheme 2
The shape functions for rotations are the first-order derivatives of that for deflection.

TABLE 11.41

Basis Functions for MLS Displacement Approximation

m PT

3 1, x, y

6 1, x, y, x2, xy, y2

10 1, x, y, x2, xy, y2, x3, x2y, xy2, y3

15 1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, x3y2, x2y3

18 1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, x3y2, x2y3, x3y3, x4, y4
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w ¼
Xn
I¼1

fIwI , wx ¼
Xn
I¼1

fI,xwxI, wy ¼
Xn
I¼1

fI,ywyI (11:194)

This approach has been used in [19] in the EFG method. A simply supported square plate
under uniform load is considered for this analysis of the shear-locking problem, and all the
parameters are exactly the same as the previous case.

The results are listed in Table 11.42 and plotted in Figure 11.19. We make the following
points:

1. There is no shear locking, if h=a> 0.01, even if m¼ 3 is used. Usually, we use at
least m¼ 6 for plate problems.

2. The higher the order of polynomial used, the less the shear locking. When m¼ 18,
no shear locking is observed until h=a¼ 1.0 10�5, which is not actually a plate.

3. When Scheme 2 is used, no shear locking is observed.

Although Scheme 1 can practically solve the shear-locking problem, Scheme 2 is a better
way to eliminate this issue completely.

11.4.7 Numerical Examples of Vibration Analyses

To examine the efficiency of the EFG method for eigenvalue analyses of the shear
deformable thick plates, some numerical examples on free vibration and static buckling
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FIGURE 11.18
Shear locking in simply supported thin plate of a thickness-to-width ratio of h=a¼ 1.0� 10�4. The plate is subjected
to a uniform load. Results are computed using EFG based on FSDT.
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of plates are presented. The common geometric and material property parameters are as
follows:

Length: a¼ b¼ 10.0 m

Thickness: h¼ 1.0 m

Young’s modulus: E¼ 200� 109 N=m2

Poisson’s ratio: n¼ 0.3

Mass density: r¼ 8000 kg=m3

TABLE 11.42

Maximum Deflections j¼wmaxD=bzb
4 of a Square Plate with Different Aspect Ratio

h=a

1.0� 10�1 1.0� 10�2 1.0� 10�3 1.0� 10�4 1.0� 10�5

Scheme 1 m¼ 3 0.4618� 10�2 0.4068� 10�2 0.3307� 10�2 0.1715� 10�3 0.1791� 10�5

m¼ 6 0.4618� 10�2 0.4084� 10�2 0.3928� 10�2 0.3401� 10�2 0.5461� 10�3

m¼ 10 0.4620� 10�2 0.4088� 10�2 0.4065� 10�2 0.3691� 10�2 0.2639� 10�2

m¼ 15 0.4621� 10�2 0.4090� 10�2 0.4069� 10�2 0.3810� 10�2 0.3556� 10�2

m¼ 18 0.4621� 10�2 0.4088� 10�2 0.4064� 10�2 0.4089� 10�2 0.4009� 10�2

Scheme 2 m¼ 3 0.004612 0.004073 0.004059 0.004059 0.004025

m¼ 6 0.004617 0.004085 0.004066 0.004066 0.004065

m¼ 10 0.004620 0.004088 0.004066 0.004066 0.004066

m¼ 15 0.004621 0.004090 0.004068 0.004067 0.004067

m¼ 18 0.004621 0.004089 0.004068 0.004068 0.004068

Timoshenko 0.004062
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FIGURE 11.19
Normalized maximum deflections of a square plate with different aspect ratios.
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In all the tables of numerical examples, the dimensionless frequency coefficient is
v ¼ (v2rha4=D)1=4 and the factor of buckling load is k¼N0b

2p2D where the flexural
rigidity is D¼Eh3=[12(1�n2)].

Example 11.17: Frequency Analysis of Thick Plates (FSDT)

Based on FSDT, the natural dimensionless frequencies of a simply supported square thick plate are
calculated using different densities of nodes regularly distributed in the plate. Quadrilateral
background meshes are applied for the Gauss integration. In each background mesh, 4� 4
Gauss points are used. All the nodes are in the vertices of the background meshes. The natural
dimensionless frequencies are shown in Table 11.43 together with the analytical and FEM
solutions. In the FEM results, HOE denotes an eight-node isoparametric thick shell element
(4� 4 elements, 65 nodes); LOE denotes a four-node isoparametric shell element (8� 8 elements,
9� 9 nodes). The frequencies obtained using the present EFG method rapidly converge and are in
very good agreement with the analytical solutions for all eight modes. Given the same density of
nodes 9� 9 in the plate, the present EFG results are better than the FEM results using LOE when
compared with the analytical solution. The present EFG method results using 7� 7 nodes are also
closer to the analytical solutions than the FEM results using HOE with 65 nodes.

Example 11.18: Frequency Analysis of Thick Plates (FSDT and TSDT)

Based on FSDT and TSDT, the natural dimensionless frequencies of a square thick plate with
different boundaries are calculated using 10� 10 nodes regularly distributed in the plate. Quad-
rilateral background meshes are also applied for the Gauss integration and 4� 4 Gauss points are
used in each background mesh. All the nodes are at the vertices of the background meshes. The
frequencies are shown in Table 11.44. In the notation of boundary conditions, FFFF denotes fully
free at all edges. For all the five cases of boundaries, the frequencies of the square plate based on
FSDT agree well with those based on TSDT for all modes. The frequencies for FFFF boundaries are
lowest. The frequencies for the plate with SSSS boundaries are lower than those with CCCC
boundaries. Both frequencies for the plate with SCSC and SCCS boundaries are between those
with SSSS and CCCC boundaries.

TABLE 11.43

Natural Dimensionless Frequencies �v ¼ (v2rha4=D)1=4 of Free Vibration of a Simply
Supported Square Thick Plate Based on FSDT

EFG FEM [40]

Modes Analytical Solution [40] 5� 5 7� 7 9� 9 11� 11 HOE LOE

1 4.37 4.43 4.37 4.37 4.37 4.37 4.40
2 6.74 7.33 6.75 6.75 6.75 6.77 6.94

3 6.74 7.53 6.77 6.75 6.75 6.77 6.94

4 8.35 9.79 8.38 8.36 8.36 8.41 8.59

5 9.22 10.91 9.31 9.24 9.23 9.40 9.84

6 9.22 11.14 9.33 9.24 9.23 9.40 9.84

7 10.32 15.07 10.41 10.35 10.33 10.59 10.85

8 10.32 15.99 10.48 10.35 10.33 10.59 10.85

Note: HOE denotes an eight-noded isoparametric thick shell element (16 elements, 65 nodes); LOE denotes a
four-noded isoparametric shell element (64 elements, 81 nodes).
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11.4.8 Numerical Examples of Buckling Analyses

Example 11.19: Buckling Analysis of Thick Plates (FSDT and TSDT)

Based on FSDT and TSDT, the factors v ¼ (v2rha4=D)1=4 of axial buckling loads along the x-axis
of a simply supported square plate are calculated using different densities of nodes regularly
distributed in the plate. Quadrilateral background meshes and 4� 4 Gauss points in each
background mesh are chosen for the Gauss integration as for the frequency analyses. All the
nodes are located at the vertices of the background meshes. The results of buckling factors
are shown in Table 11.45. The factors based on both FSDT and TSDT have good convergences,
agree very well with each other and with the analytical results given in [21] and are a little larger
than the analytical results given in [24].

Example 11.20: Buckling Analysis: Effects of Boundary Conditions

Based on FSDT and TSDT, the factors of buckling loads of a square plate with different loads and
boundaries are calculated using 9� 9 nodes regularly distributed in the plate. The choices of
background meshes, Gauss points, and nodal position are the same as Example 11.17. The factors
of axial buckling loads along the x-axis and shear buckling loads and biaxial buckling loads along
both the x- and y-axes for different boundaries are listed in Tables 11.46 through 11.48. The factors
for SSSS boundaries are smaller than those for CCCC boundaries. The factors for both SCSC and

TABLE 11.44

Natural Dimensionless Frequencies �v ¼ (v2rha4=D)1=4 of Free Vibration of a Square Thick Plate
with Different Boundaries Based on FSDT and TSDT

Modes

Boundary Theory 1 2 3 4 5 6 7 8

FFFF FSDT 0 0 0 3.57 4.35 4.83 5.65 5.65
TSDT 0 0 0 3.57 4.35 4.83 5.66 5.66

SSSS FSDT 4.37 6.75 6.75 8.36 9.23 9.23 10.34 10.34

TSDT 4.37 6.75 6.75 8.36 9.23 9.23 10.34 10.34

CCCC FSDT 5.71 7.88 7.88 9.33 10.13 10.18 11.14 11.14

TSDT 5.72 7.92 7.92 9.39 10.19 10.23 11.21 11.22

SCSC FSDT 5.17 7.01 7.70 8.88 9.33 10.08 10.60 10.92

TSDT 5.17 7.02 7.73 8.92 9.33 10.13 10.63 10.96

SCCS FSDT 5.03 7.31 7.33 8.85 9.70 9.71 10.74 10.76
TSDT 5.04 7.33 7.35 8.87 9.72 9.74 10.77 10.79

TABLE 11.45

Convergence of Axial Buckling Factor k¼N0b
2=p2D along the x-Axis for a Square Thick

Plate Based on FSDT and TSDT (BC: SSSS)

Nodes

4� 4 5� 5 6� 6 7� 7 8� 8 9� 9 Ref. [24] Ref. [21]

FSDT 4.060 3.803 3.783 3.790 3.787 3.788 3.741 3.787

TSDT 4.095 3.797 3.780 3.785 3.785 3.785
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SCCS boundaries are between those for simply supported and clamped boundaries. Except for
CCCC and SCSC boundaries, the factors of shear buckling loads based on TSDT are slightly larger
than those based on FSDT; the factors based on TSDT are very close to those based on FSDT in
Tables 11.46 through 11.48.

Example 11.21: Buckling Loads of a Square Plate with a Circular Hole

The factors of buckling loads are computed for a square plate with a circular hole, as shown in
Figure 11.20. The plate is chosen to demonstrate the applicability of the present EFG method to
plates with complicated shape. Triangular background meshes (196) for Gauss integration
are applied as shown in Figure 11.21. Three Gauss points are used for each background mesh.
At the vertices of the background meshes, 144 nodes are located. The influence domain is chosen

TABLE 11.46

Axial Buckling Factor k¼N0b
2=p2D along the x-Axis

for a Square Thick Plate Based on FSDT and TSDT
with Different Boundaries

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 3.788 8.327 6.398 5.546

TSDT 3.785 8.471 6.451 5.569

TABLE 11.47

Shear Buckling Factor k¼N0b
2=p2D for a Square

Thick Plate Based on FSDT and TSDT with Different
Boundaries

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 7.859 10.757 9.693 9.226

TSDT 7.853 11.669 10.542 9.349

TABLE 11.48

Biaxial Buckling Factor k¼N0b
2=p2D along the x- and

y-Axes for a Square Thick Plate Based on FSDT and
TSDT with Different Boundaries (Nx¼Ny¼N)

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 1.894 4.563 3.384 2.941

TSDT 1.892 4.657 3.396 2.944
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to be 3.5 times the average nodal distance. The factors of axial buckling loads along the x-axis and
shear buckling loads and biaxial buckling loads along both the x- and y-axes for the different
boundaries are listed in Tables 11.49 through 11.51. Except for CCCC boundaries, the factor of the
shear buckling load based on TSDT is slightly larger than that based on FSDT; the factors based on
TSDT are very close to those based on FSDT in Tables 11.49 through 11.51. Factors of shear
buckling loads are larger than those of biaxial buckling loads along both the x- and y-axes. Factors
of axial buckling loads along the x-axis are between them.

FIGURE 11.20
Square plate with a circular hole.
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FIGURE 11.21
Distributions of 144 nodes and 196 background
meshes in a plate with a circular hole.
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11.5 ES-PIM for Plates

In Chapter 8, we have presented a family of PIMs based on triangular mesh. It was found
that, due to the use of the weakened-weak (W2) formulation based on the G space theory,
the consistence on the assumed displacement functions has been further reduced. There-
fore, for second order PDEs, we can allow discontinuous functions.

We also found that the edge-based smoothed PIM or ES-PIM with linear shape function
is one of the best performers in all the meshfree methods examined in terms of accuracy,
efficiency, simplicity, robustness, and applicability to problems with complicated geom-
etries. An intensive comparison study (see Section 8.4) has shown that ES-PIM is much
more efficient than the linear FEM for a benchmark problem of 2D solid mechanics. In
addition, the formulation and implementation of ES-PIM is very simple, and works well
for triangular mesh. Therefore, the linear ES-PIM is so far the most promising method for
complicated engineering problems.

TABLE 11.49

Axial Buckling Factor k¼N0b
2=p2D along the x-Axis

for a Square Thick Plate with a Circular Hole Based
on FSDT and TSDT with Different Boundaries

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 1.986 7.995 4.096 3.221

TSDT 1.969 8.097 4.130 3.226

TABLE 11.50

Shear Buckling Factor k¼N0b
2=p2D for a Square

Thick Plate with a Circular Hole Based on FSDT
and TSDT with Different Boundaries

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 7.867 12.669 10.596 8.968

TSDT 7.873 13.357 10.861 9.043

TABLE 11.51

Biaxial Buckling Factor k¼N0b
2=p2D along the x- and

y-Axes for a Square Thick Plate with a Circular Hole
Based on FSDT and TSDT with Different Boundaries
(Nx¼Ny¼N)

Boundaries

Theory SSSS CCCC SCSC SCCS

FSDT 1.032 4.781 2.559 1.763

TSDT 1.021 4.860 2.556 1.774
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This section formulates an ES-PIM for plates based on the FSDT, and demonstrates that
the ES-PIM works well for both thin and thick plates, because it is free from shear locking.
Again, we only use triangular background cells in our ES-PIM formulation.

11.5.1 Creation of an ES-PIM Model

An ES-PIM model for a plate can be established using the following key techniques.

1. The problem domain of a plate is divided into Nc background triangular cells with
Nn nodes and Ncg edges defined in Section 1.7.2. PIM shape functions are then
constructed using the PIM with a T-scheme.

2. Based on these triangular cells, a set of Ns smoothing domains Vs
k (k ¼ 1, . . . ,Ns)

bounded by Gs
k are created, which are associated with the edges of the triangles, as

shown in Figure 8.80. In this edge-based case, we have Ns¼Ncg.

3. The smoothing domains serve also as a base for integration. Therefore, the inte-
gration of the strain energy in the weakened-weak form (GS-Galerkin weak form)
becomes a simple summation of strain energy of all the Ns smoothing domains.

4. The strains in a smoothing domain are assumed constant, and thus the strain
energy in a smoothing cell will also be constant. Because FSDT is used, there will
be possible shear locking when the plate gets very thin. To overcome this, we
divide the strain energy into two terms: bending energy and shear energy, by
grouping the strains into in-plane and off-plane components.

5. The constant in-plane strains for each smoothing domain are obtained using the
strain smoothing operation as discussed in Chapter 4, by line integrations along the
boundary of the smoothing domain Gs

k. Such integration requires only shape func-
tion values on Gs

k, which can be obtained using, in general, PIM with a T-scheme.
When linear interpolation (T3-scheme) is used, these values can be obtained by
simple inspection and no need to create the PIM shape function explicitly.

6. The constant strains for the shear deformation can be obtained using the so-called
discrete shear gap (DSG) method [23].

The rest is routine.

11.5.2 Formulation

11.5.2.1 Weakened-Weak Form

In this formulation, we consider plates only undergoing bending deformation, that is, there
exists a neutral-plane in the plate where no in-plane deformation occurs. Following the
discussion in Chapter 5 and using all pseudostresses and pseudostrains defined in Section
11.1.2, the smoothed Galerkin weak form for plates based on the FSDT can be written as

h3

12

ð
A
d«TB(u)c«B(u)dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bending

þ kh
ð
A
dgT

S(u)GgS(u)dA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shearing

�
ð
A
duTbzdA|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Body force

�
ð
Gt

duTbzGdG
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Boundary force

¼ 0 (11:195)

542 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



where u is the generalized displacement vector consisting of the deflection and two rotations
defined on the mid-plane of the plate. It is arranged in form of

u ¼
u1
u2
u3

8<
:

9=
; ¼

w
wx
wy

8<
:

9=
; (11:196)

and the generalized body force vector qz can be written as

qz ¼
q1
q2
q3

8<
:

9=
; ¼

ðh=2

�h=2

bz
�zbx
�zby

8<
:

9=
;dz ¼

hbz
mxx

myy

8<
:

9=
; (11:197)

where
q1 is the total vertical force applied over the plate (force=area)
q2 and q3 are the distributed moments applied over the plate

Because all the strains are smoothed over the smoothing domain, the first two terms in
Equation 11.195 can be written in the following simple summation form (see Chapter 4):

h3

12

XNs

k¼1

d«TBkc«Bk
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Bending

þ kh
XNs

k¼1

dgT
SkGgSk

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shearing

�
ð
A
duTbzdA|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Body force

�
ð
Gt

duTbzGdG
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Boundary force

¼ 0 (11:198)

Remark 11.1: Shear Locking: An Obvious Observation
Shear locking is not a so-easy-to-understand phenomenon to many engineers. However,
we can actually observe this very clearly from Equation 11.198. It shows that the bending
related energy term has a third-order dependence on the thickness of the plate; while shear
related energy term has only a first-order dependence on the thickness of the plate. When
h ! 0, the shear related energy will strongly dominate and the bending stiffness vanishes:
the solution of this model will be locked on the shear deformation. This implies that our
weakened-weak form model defined by Equation 11.198 will converge to a solution that is
different from the strong form Equation 11.33 for thin plates. This analysis applies also to
all the standard Galerkin formulations used in the FEM and EFGmodels: the h-dependence
nature in these formulations is exactly the same! The root of the problem is the use of FSDT
(or TSDT) when the rotational degrees of freedom are introduced with off-plane
shear strains for thick plates (not meant for thin plates where these shear strains vanish
when h! 0). When a numerical model is built based on these theories, it has no choice but
locked at the shear deformation when h ! 0. Therefore, special techniques are needed to
prevent this from happening, if we want our numerical model based on thick plate theories
works also for thin plates.

Writing the weak formulation in the form of Equation 11.198 or 11.95 helps us to predict
some of the behaviors of a numerical model.
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11.5.2.2 Strain Field Construction

In the first term of Equation 11.198, «B is the smoothed in-plane strains resulting from the
bending deformation. Using Equation 11.61, we have for the kth smoothing domain

�«B ¼

1
As

ð
Vs

k

«BdV ¼ 1
As

ð
Vs

k

LBw
hdV ¼ 1

As
k

ð
Gs
k

Lnw
hdG, when wh(j) 2 C

0(Vs
k)

1
As

k

ð
Gs
k

LBw
hdG, when wh(j) 2 C

�1(Vs
k)

8>>>>>><
>>>>>>:

(11:199)

Because «B is the pseudo-bending-strain (independent of z) and is the same as that for the
2D plane stress solids (Chapter 8), and LB defined in Equation 11.53 is also exactly the same
as Ld defined in Equation 1.9 for 2D solids, the computation of the first term in Equation
11.198 should be the same as we have done for the ES-PIM for 2D solids (see, Section 8.4).
Therefore, there is no need for any further elaborations.

In the second term in Equation 11.198, �gS is the smoothed off-plane strains resulted from
the shear deformation. To make our ES-PIM ‘‘locking-free,’’ we simply adopt the DSG
method that is used in the FEM [23]. The procedure is very simple and is given as follows.

In a triangular cell with area of Ae, the coordinates of these three nodes are first denoted
(counter-clockwise) as (xi, yi), i¼ 1, 2, 3, and then the shear strain is defined as [23]

gxz ¼
X3
i¼1

bi(Dwxi þ Dwyi)

gyz ¼
X3
i¼1

ci(Dwxi þ Dwyi)

(11:200)

where

b1 ¼ 1
2Ae

(y2 � y3), b2 ¼ 1
2Ae

(y3 � y1), b3 ¼ 1
2Ae

(y1 � y2)

c1 ¼ 1
2Ae

(x2 � x3), c2 ¼ 1
2Ae

(x3 � x1), c3 ¼ 1
2Ae

(x1 � x2)
(11:201)

In Equation 11.200, Dwxi and Dwyi are the DSGs at the node i (¼ 1, 2, 3) of the cell, and are
given by

Dwx1 ¼ Dwx3 ¼ Dwy1 ¼ Dwy2 ¼ 0

Dwx2 ¼ (w2 � w1)þ 1
2
a(wx1 þ wx2)þ

1
2
b(wy1 þ wy2)

Dwy3 ¼ (w3 � w1)þ 1
2
c(wx1 þ wx3)þ

1
2
d(wy1 þ wy3)

(11:202)

where wi, wxi, and wyi are the nodal values of the deflection and rotations for node i, and

a ¼ x2 � x1, b ¼ y2 � y1
c ¼ x3 � x1, d ¼ y3 � y1

(11:203)
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Equation 11.200 can now be written in the matrix form of

gs ¼
gxz
gyz

� �
¼ Bsde (11:204)

where de is the vector contains all the nodal ‘‘displacements’’ at the three nodes of the
triangular cell:

de ¼
w1, wx1, wy1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 1

w2, wx2, wy2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 2

w3, wx3, wy3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 3

( )T

(11:205)

and Bs is the shear strain matrix given by

Bs ¼ Bs1 Bs2 Bs3½ � (11:206)

with

Bs1 ¼ 1
2Ae

b� d Ae 0

c� a 0 Ae

" #

Bs2 ¼ 1
2Ae

d
ad
2

bd
2

�c � ac
2

� bc
2

2
664

3
775

Bs3 ¼ 1
2Ae

�b � bc
2

� bd
2

a
ac
2

ad
2

2
664

3
775

(11:207)

In our ES-PIM formulation, for the smoothing domainVs
k associated with the k-th edge, the

smoothed shear strain �gSk is obtained by the simple average of the shear strains for these
two neighboring cells sharing the edge k:

�gSk ¼
1
Ak

AkþgSkþ þ Ak�gSk�

 � ¼ Akþ

Ak
BSkþdkþ � Ak�

Ak
BSk�dk� ¼ �Bskdk (11:208)

where the subscripts ‘‘þ’’ and ‘‘�‘‘stand for the two neighboring cells sharing the edge k.
Matrix �Bsk is assembled using the area-weighted BSkþ and BSk�, and Ak, Akþ and Ak, are the
areas of the smoothing domain of the edge k and those of the two neighboring cells sharing
the edge k. We used � to represent an assembly (location matched summation). The nodal
‘‘displacement’’ vector dk contains the nodal values of four nodes ‘‘supporting’’ the
smoothing domain of edge k, and it can be written as

dk ¼
w1, wx1, wy1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 1

w2, wx2, wy2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 2

w3, wx3, wy3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 3

w4, wx4, wy4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
node 4

( )T

(11:209)

Naturally, such averaging operation is not needed for edges on the problem boundary.
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With these strains given in Equations 11.199 and 11.208, the strain potentials can be
easily evaluated and hence the stiffness matrix of our ES-PIM model can be derived.

11.5.2.3 Force Terms

As a GS-Galerkin does not change force potentials (see Chapter 5), these terms can be dealt
with in the same way as in the FEM. The procedure is the same as those given in Chapter 8.
Finally, the discrete system equation can be obtained as

�K�U ¼ F (11:210)

which can be solved using standard routines for �U that contains all the nodal values of the
generalized displacements.

Note in this ES-PIM formulation for plates, we require slight changes to the ES-PIM code
for 2D solids discussed in Chapter 8.

11.5.3 Numerical Examples

We now present a number of numerical examples solved using our ES-PIM code for plates.
We use only linear interpolation for the field variables of deflection w and rotations wx and
wy. Therefore, only one Gauss point for each of the line segment of Gs

k is needed and the
interpolation values are given directly in Table 8.4, and thus there is no need to obtain the
PIM shape functions explicitly. This simple point interpolation trick was originally used
in the smoothed finite element method (SFEM) settings for different shapes of elements
[25–28], and applicable to all PIMs using linear interpolation (see Chapter 8).

When such a linear interpolation is used, the ES-PIM is the same as edge-based
smoothed finite element method (ES-FEM) using the same triangular mesh. The numerical
results presented in this section are the same as those given in [22].

Example 11.22: Patch Test for Plates

The first numerical example is the standard patch test for plates undergoing bending deformation.
A square plate patch with a dimension of 10� 10 and a thickness h¼ 0.001, shown in Figure
11.22, is triangulated with 6 triangular cells, 6 nodes, and 11 edges, and is used for the standard
pure bending patch test. The plate patch is subjected to the prescribed values of deflection and
rotations at the four nodes on boundary of the patch. These values are computed using

w ¼ 1:0� 10�3(1þ xþ y þ x2 þ xy þ y2)

wx ¼ � qw
qx

¼ �1:0� 10�3(1þ y þ 2x)

wy ¼ � qw
qy

¼ �1:0� 10�3(1þ xþ 2y)

(11:211)

The plate patch is homogenous and made of a material with E¼ 1.0� 106 and n¼ 0.25. To satisfy
the patch test, the deflection and rotations at any interior nodes computed by numerical method
should be exactly the same as the analytic ones given in Equation 11.211. To examine the
numerical error quantitatively, an error norm is defined as

eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6
i¼1

unumi � uexacti


 �T unumi � uexacti


 �
uexacti


 �T uexacti


 �
 !vuut (11:212)
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where the superscript ‘‘num’’ stands for numerical solution and ‘‘exact’’ stands for the exact
solution given by Equation 11.211. Our numerical test has found eu¼ 4.474065656539186�
10�15 that is of the order of the machine accuracy. This shows that our ES-PIM has successfully
passed the standard pure bending patch test.

Example 11.23: Thick and Thin Square Plates: ES-PIM is Locking-free

A square plate with the length L¼ 10.0 and different thickness and with different boundary
conditions is considered in this example to examine the overall performance and to demonstrate
the locking-free feature of our ES-PIM. The material properties are E¼ 3.0� 107 and v¼ 0.3.
Owing to the twofold symmetry of the plate, only a quarter of the plate in the first quadrant is
modeled. Triangular meshes of different densities are shown in Figure 11.23. The results of the
center deflection wc are normalized using ŵ ¼ wcD=qL4 [29], where q is a vertical uniformly
distributed load. For the plate subjected to a concentrated load at the plate center, the deflection is
normalized as ŵ ¼ wcD=PL2 where P is the concentrated load. Thin plates with an aspect ratio of
L=h¼ 100 and a thick plate of L=h¼ 5 with different boundary conditions are investigated.

11.5.3.1 Overall Performance Examination

For the purpose of examining the overall performance of our ES-PIM, the numerical results
obtained using our ES-PIM are compared with the analytic solutions from [32], as well as
the solutions of FEM models using several specially designed triangular plate elements
including HCT [35], HSM [30], BCIZ [34], DKT [33], RDKTM [31], and DSG [23].

Numerical results of the normalized deflection at the plate center for different cases are
listed in Tables 11.52 through 11.56. The relative errors of these results are also plotted in
Figures 11.24 through 11.26 for easy comparisons. From these tables and figures, it can be
seen that comparing with all these FEM models, the overall performance of ES-PIM is
outstanding in terms of accuracy and convergence for both the thick and thin plates with
different boundary conditions. For all these studied cases, the ES-PIM is not the best for
each of these cases, but its performance is very consistent and it is always among the best
for all these cases: showing clearly the stable and well-balanced feature of the ES-PIM.
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FIGURE 11.22
A square plate patch with 6 triangular cells,
6 nodes, and 11 edges for the standard patch test.
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FIGURE 11.23
A square plate, quarter model and triangular meshes of cells=elements used.

TABLE 11.52

Numerical Results of the Normalized Deflection at the Center
of a Simply Supported Square Thin Plate Subjected Uniform
Load (L=h¼ 100, Unit: 10�3, Analytical Solution: 4.064)

Mesh DKT RDKTM DSG ES-PIM

2� 2 4.056 4.058 3.705 4.078

4� 4 4.065 4.069 3.975 4.068

6� 6 4.064 4.066 4.024 4.066

8� 8 4.064 4.065 4.042 4.065

TABLE 11.53

Numerical Results of the Normalized Deflection at the Center
of a Simply Supported Square Thick Plate Subjected Uniform
Load (L=h¼ 5, Unit: 10�3, Analytical Solution: 4.907)

Mesh DKT RDKTM DSG ES-PIM

2� 2 4.056 4.902 4.499 4.960

4� 4 4.065 4.904 4.804 4.920

6� 6 4.064 4.906 4.860 4.912

8� 8 4.064 4.906 4.879 4.909
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Note that the linear ES-PIM is very simple in the formulation and no extra sampling points
are introduced, comparing with FEM models of special elements.

11.5.3.2 ES-PIM: Free of Shear Locking

From Equation 11.198, Remark 11.1 has discussed an observation of the shear-locking
phenomenon when the higher order plate theories applied to simulate thin plates. We
now use the ES-PIM to examine this phenomenon numerically. A simply supported or
clamped square plate subjected to a uniform loading is used in this study. The geometry

TABLE 11.54

Numerical Results of the Normalized Deflection at the Center of
Clamped Square Thin Plate Subjected Uniform Load (L=h¼ 100,
Unit: 10�3, Analytical Solution: 1.265)

Mesh DKT RDKTM DSG ES-PIM

2� 2 1.547 1.550 1.070 1.350

4� 4 1.347 1.350 1.213 1.299

6� 6 1.303 1.305 1.243 1.285
8� 8 1.287 1.289 1.254 1.279

TABLE 11.55

Numerical Results of the Normalized Deflection at the Center
of a Clamped Square Thick Plate Subjected Uniform Load
(L=h¼ 5, Unit: 10�3, Analytical Solution: 2.17)

Mesh DKT RDKTM DSG ES-PIM

2� 2 1.547 2.423 2.226 1.862

4� 4 1.347 2.243 2.205 2.093

6� 6 1.303 2.205 2.190 2.136

8� 8 1.287 2.191 2.183 2.152

TABLE 11.56

Numerical Results of the Normalized Deflection at the Center of
Clamped Square Thin Plate Subjected Concentrated Central Load
(L=h¼ 100, Unit: 10�3)

Mesh

Simply Supported Clamped

DSG ES-PIM DSG ES-PIM

2� 2 1.0624 1.1986 4.252 5.393

4� 4 1.1285 1.1750 5.205 5.658

6� 6 1.1445 1.1685 5.416 5.657

8� 8 1.1507 1.1656 5.496 5.647
Analytic solutions 1.1601 5.612
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and material properties are the same as those used in the previous study, and the computed
results using a 6� 6 mesh are plotted in Figure 11.27. The results show clearly that the
ES-PIM produces almost identical solutions to the analytical ones, regardless of the aspect
ratios of the plate in a wide range of L=h 2 [5, 107]. No shear locking has been observed even
when the aspect ratio of the plate becomes 107. At such a huge aspect ratio, the plate is not
exactly a ‘‘plate’’ rather a very thinmembrane. On the other hand,when L=h¼ 5, the plate is in
fact no longer a reasonable plate, but more like a bulky 2D solid. This confirms that the
locking-free formulation in our ES-PIM usingDSGmethod is a success, and hence the ES-PIM
can be applied to plates of all thickness, as long as it can be called a plate within reason.

11.5.3.3 ES-PIM: Robustness in Mesh Distortion

To study the sensitivity of ES-PIM to mesh distortion, the same square plate with simply
supported boundary conditions and subjected to a uniform load is studied using a

FIGURE 11.24
Relative error in the solution for the def-
lection at center of a simply supported
square plate subjected to a uniform load.
(a) Thin plate (L=h¼ 100); and (b) thick
plate (L=h¼ 5).
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16� 16 mesh. Distorted meshes are created by altering the coordinates of the regular
nodes using

xir ¼ xþ Dx � rc � air

yir ¼ yþ Dy � rc � air
(11:213)

where
Dx and Dy are the initial regular nodal spacing in x- and y-directions, respectively
rc is a computer-generated random number between �1.0 and 1.0
air is a prescribed irregularity factor ranging from 0.0 to 0.5

Regular and irregular cells with three different air values are plotted in Figure 11.28.
It is seen that when air¼ 0.5, the mesh is extremely distorted. Four cases with different
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FIGURE 11.25
Relative error in the solution for the deflection at center of a clamped square plate subjected to a uniform load.
(a) Thin plate (L=h¼ 100); (b) thick plate (L=h¼ 5).
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aspect ratios, L=h¼ 5, 20, 102, and 105, are studied and the relative errors in the
ES-PIM solution of the central deflection are computed and plotted in Figure 11.29.
It is clearly shown that the ES-PIM can obtain satisfactory results for all cases with
distorted meshes. The relative errors of the central deflection are all less than 1% even
when the cells are severely distorted with air¼ 0.5. This study demonstrates that the
ES-PIM is not sensitive to the mesh distortion: a typical feature of a GS-Galerkin
model.

Example 11.24: Thick and Thin Circular Plates: Further Examination on ES-PIM

A simply supported and clamped circular plate subjected to a uniformly distributed vertical
loading is now analyzed. The plate has a radius of R¼ 5 and two thicknesses of h¼ 0.1 and
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FIGURE 11.26
Relative error in the solution for the deflection at center for a thin square plate (L=t¼ 100) subjected to a
concentrated load at the center of the plate. (a) Simply supported square plate; and (b) clamped square plate.
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h¼ 1, and the material properties are E¼ 3� 105 and v¼ 0.3. The setting of the problem and the
meshes are shown in Figure 11.30. Because of the symmetry, only a quarter of the plate is
modeled using three meshes with 6, 24, and 96 triangular cells. The boundary conditions for
this problem are given by

Simply supported: w ¼ 0 at all nodes on the boundary

Clamped: w ¼ wx ¼ wy ¼ 0 at all nodes on the boundary
(11:214)

For a simply supported or clamped thin circular plate subjected to a uniform load, the problem is
in fact axial symmetry, and the analytical solutions of the deflection and moments at the center of
the plate can be found in [36]. For simply supported plates, we have
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FIGURE 11.27
Shear locking test on a square plate subjected to a uniformly distributed load. (a) Simply supported; and
(b) clamped.
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w ¼ qR4

64D
5þ v
1þ v

þ 8
3k(1� v)

h
R

� �2
 !

Mr ¼ qR2

16
(3þ v)

(11:215)

For clamped plate:

w ¼ qR4

64D
1þ 8

3k(1� v)
h
R

� �2
 !

Mr ¼ qR2

16
(1þ v)

(11:216)

where D is the flexural rigidity of the plate defined in Equation 11.17.

αir = 0.0 αir = 0.3 αir = 0.5

FIGURE 11.28
Distorted meshes used in one quarter of the square plate.
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FIGURE 11.29
Error in the solution of deflection at the center of the simply supported square plate subjected uniform load: effects
of mesh distortion.
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Numerical results obtained using ES-PIM are compared with those using several FEM
models of triangular elements including DKT [33], RDKTM [31], DSG [23], MiSP3 [37],
BST-BK [38], and BST-BL [39]. All the numerical results for the deflection at the plate center
(0,0) are normalized as wc=wref where wref is the analytical solutions. Figure 11.31 plots the
solution of the deflection at the center of a thin circular plate (R=h¼ 50) with the uniformly
distributed load, against the cell=element numbers. It is observed that the ES-PIM performs
best in this case. The results for the moment at the center of the plate are plotted in
Figure 11.32. It is seen in the case that the ES-PIM is among the best. We also observed
that the ES-PIM needs a reasonably number of cells (24 and 96) for good results. When too
few cells are used (6, for example), the results of the present EFG method are found only
better than the plain FEM elements but generally worse than those carefully designed
elements. This is because the ES-PIM relies on a sufficient number of edges for the
smoothing operations to take effect. When the model has too few edges, the ES-PIM is
not much different than the plain elements. For the case of 6 cells, there are a total of
12 edges and only half of them (6 interior edges) produce smoothing effects. Therefore,
we cannot expect any outstanding performance from such a coarse ES-PIM model.
This finding agrees with those for the methods using generalized smoothed Galerkin
(GS-Galerkin) formulations. With the increase of the number of cells (e.g., 24 and 96), the
ES-PIM can outperform other FEM models. Note that in any practical problems, we use a
lot more than tens of cells, and hence ES-PIM are expected to perform well in solving
practical engineering problems.

Clamped thin (R=h¼ 50) and thick (R=h¼ 5) circular plates subjected to a uniform load
are analyzed to obtain the distribution of the bending moments (Mr, Mu) and shear force
(Vz), using 96 cells=elements. The numerical results obtained using ES-PIM are plotted
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FIGURE 11.30
Circular plate subjected to a uniform load. Problem setting and mesh of cells=elements.
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in Figures 11.33 through 11.35, together with the results obtained using FEM models of
BST-BK, BST-BL, and MiSP3 with the same mesh. The analytical solutions are given as
follows [36]:

Mr(r) ¼ q
16

[(1þ v)R2 � (3þ n)r2]

Mu(r) ¼ q
16

[(1þ v)R2 � (1þ 3n)r2]

VZ(r) ¼ � qr
2

(11:217)
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FIGURE 11.31
Solution of the deflection at center of a thin circular plate (R=h¼ 50) subjected to a uniformly distributed load.
(a) Simply supported plate; and (b) clamped plate.
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where
r is the distance measured from the plate center
D is the flexural rigidity of the plate

Values ofMr,Mu, and Vz at a node are obtained in the ES-PIM by averaging these values of
all the smoothing domains connected to the node. These forces in the MiSP3 element are
computed at the nodes, and in the BST-BL and BST-BK elements are computed at the
centroid of the elements. It is found that the ES-PIM performs among the bests for all the
cases of thin and thick plates. For bending moments, numerical results of all the methods
studied here are all in good agreements with the reference solutions. For shear forces, the
ES-PIM and MiSP3 outperform others in terms of solution accuracy.

10 20 30 40 50 60 70 80 90 100
4

4.5

5

5.5

Cell number

10 20 30 40 50 60 70 80 90 100

M
c

Reference
ES-PIM
DKT
DSG
RDKTM
DST-BK
DST-BL

(a) 

M
c

(b) 

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Element number

Reference
ES-PIM
DKT
DSG
RDKTM
DST-BK
DST-BL

FIGURE 11.32
Solution of the moment at center of a thin circular plate (R=h¼ 50) subjected to a uniform load. (a) Simply
supported plate; and (b) clamped plate.
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11.5.4 Some Remarks

In this section, an ES-PIM is formulated to analyze the deformation of plates based on the
FSDT using simple three-node triangular cells.

. Our formulation has shown again that the ES-PIM based on the W2 formulation
can solve second-order PDEs using discontinuous functions. This is, however, yet
to be confirmed numerically. We are still working on the coding of quadratic PIMs
(T6=3-scheme) and RPIMs (T6- or T2L-schemes) for plates.

. In the ES-PIM formulation, no extra sampling points are introduced to evaluate the
stiffness matrix, and no increase of total degrees of freedom.

. The ES-PIM is found to be very stable, accurate, and the performance is very
consistent.
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FIGURE 11.33
Solution of the moment Mr at center of a thin circular plate (R=h¼ 50) subjected to a uniform load. (a) Simply
supported plate; and (b) clamped plate.
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. The linear ES-PIM can pass the pure bending patch test, which ensures the
convergence of the method numerically.

. Using the DSG method, the ES-PIM is free from shear locking, and hence it works
well for both thin and thick plates.

Moving forward, ES-PIM can be further improved and extended for other applications.

. The linear ES-PIM has been further coded for geometrically nonlinear analysis of
thin and thick plates [22] and extensions to other types of nonlinear problems
should be straightforward, because these techniques developed in FEM can be
utilized with minor changes.
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FIGURE 11.34
Solution of the moment Mu at center of a thin circular plate (R=h¼ 50) subjected to a uniform load. (a) Simply
supported plate; and (b) clamped plate.
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. The linear ES-PIM can be easily extended to meshes of general n-sided polygonal
cells [43].

. Other GS-Galerkin models can also be developed for plates in similar ways pre-
sented in this section.
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12
Meshfree Methods for Shells

Previous chapters have introduced a number of meshfree methods for solids, fluids,
beams, and plates. This chapter formulates two meshfree methods for shell structures:
element-free Galerkin (EFG) and edge-based smoothed point interpolation method
(ES-PIM).

Spatial thin shell structures are used very extensively in many engineering structures,
including aircraft, pressure vessels, storage tanks, and so on, due to their outstanding
efficiency in utilizing materials. Because of the complex nature, both structurally and in
mechanics, numerical means have to be utilized for analyses of shells during the design
process. The finite element method (FEM) remains the most popular numerical technique
for such analyses [1,20]. However, FEM often requires quality meshes, creating which is a
tedious, costly, and time-consuming process.

Meshfree methods present a promising alternative to FEM, as they offer opportunities to
relieve the manual meshing process in modeling a structure. This is particularly important
for shells, as shell structures are very complex both in field variable variation and in
geometric configuration. Meshfree methods can offer a very important capability in repre-
senting the complex curved geometry of shell structures. The meshfree approximations
both in field variables and in the structure itself can provide more accurate results
compared to the standard FEM.

Very few works have been reported in the development of meshfree methods for shell
structures. The first contribution in this regard was made by Krysl and Belytschko [2]
based on the thin shell theory using moving least squares (MLS) approximation with
Lagrange multipliers for essential boundary conditions. Noguchi et al. [3] developed a
formulation for thick shell using MLS approximation with penalty method for handling
essential boundary conditions. Li et al. [4] formulated a meshfree method based on the
reproducing kernel particle method for thin shells with large deformation. In this work, the
essential boundary condition is imposed by modifying shape functions for nodes near and
on the essential boundaries. Other works are reported in [5,6] on EFG, and recently on
ES-PIM [19]. This chapter covers the following two topics:

. Formulation of the EFG method for shell structures. The materials on EFG pre-
sented here are based on the works in [5,6], where both the field variables and
geometry of the shell are all approximated using the MLS approximation.

. Formulation of the ES-PIM for shells based on our recent work [19]. The first-order
shear deformation theory or FSDT is used together with the discrete shear gap
(DSG) method for eliminating shear locking. The ES-PIM is formulated based on
triangular mesh that can be generated automatically, and has features of simpli-
city, free of shear locking, robustness, accuracy, and efficiency.
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12.1 EFG Method for Spatial Thin Shells

This section formulates an EFG method for thin shells governed by Kirchhoff–Love shell
theory. In the EFG method, the generalized displacement (deflections and rotations) at an
arbitrary point is approximated from nodal displacements using MLS approximation.
A compact support domain is used to determine the field nodes to be used for constructing
MLS shape functions. As discussed in Chapter 6, use ofMLS approximation requires special
treatment for essential boundary conditions for the lack the Kronecker delta property. These
techniques include the penalty method [3], Lagrange multipliers [2], and a method that
modifies shape functions for nodes near and on the essential boundaries [4]. This chapter
discusses both the penalty method and Lagrange multipliers method for analyzing static
problems. For dynamic analysis, the Lagrange multipliers method is used for transient
analyses and the orthogonal transform method is used for free-vibration analyses.

The formulation presented in this section is based on [5,6]. It begins with a brief
discussion of MLS approximation. The governing equations for the analysis of general
shells and membrane structures are then introduced. Numerical formulations based on a
geometrically exact theory accounting for the Kirchhoff hypothesis are presented. This is
followed by the definition of curved surfaces, kinematics of shells, stress and strain
measures, and the constitutive relations adopted in the formulation. The final discrete
equations for static, free vibration, and transient vibration are then obtained. For free
vibration, the essential boundary conditions are imposed using orthogonal transform
techniques to solve the eigenvalue equation [7,8]. For static problems, essential boundary
conditions are imposed through the Lagrange multipliers method and the penalty method.
Finally, the method is applied to several numerical examples of shells with different
geometries to illustrate the efficiency and accuracy of the present EFG method.

12.1.1 Moving Least Squares Approximation

The derivation of shape functions from the MLS approximation method is the same as that
provided in Chapter 2, except that a higher order polynomial basis needs to be included.
A two-dimensional (2D) field approximation is needed for modeling thin shells.
A component of the displacement vector is approximated by a polynomial function as
follows:

uh(x) ¼
X
I2Sn

fI(x)uI (12:1)

where
Sn is the set of nodes in the support domain of x, and is the shape function
f(x) is the MLS shape function

Because the partial differential equations (PDEs) for shells are of fourth order, the order
of the polynomial basis should be higher than that for 2D solids, and at least quadratic in
EFG. In this chapter, the two different orders of polynomial basis are primarily used. The
following six terms of basis functions up to quadratic terms are used for shells where
the shear effect is significant.

PT(x) ¼ f1, x, y, x2, xy, y2g (12:2)
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The following 15 terms of basis functions up to quartic terms are used to ameliorate
membrane locking in bending-dominated cases:

PT(x) ¼ f1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2, xy3, y4g (12:3)

In computing the MLS shape functions, the quartic spline weight function given in
Equation 2.17 is used in this section because of the requirements on the continuity of the
MLS shape functions and their derivatives.

12.1.2 Governing Equation for a Thin Shell

The shells considered in this section are assumed to be thin with arbitrary depth and
Gaussian curvature governed by Kirchhoff–Love theory. The governing equations used in
this section are based on geometrically exact theory of shells formulated by Simo and Fox
[9] with some modifications to account for the Kirchhoff hypothesis. Here, we outline only
the basic concepts of the formulation. Details can be found in [9].

12.1.2.1 Kinematic Description of a Shell

The reference frame coordinates are illustrated in Figure 12.1. The shell in three-
dimensional (3D) space is described in a global Cartesian coordinate system, x. The
Gauss intrinsic coordinates defined locally are used to describe the configuration of
the shell. w(j1, j2) gives the position of the point on the shell neutral surface, and t(j1, j2)
is a direction unit vector normal to the shell neutral surface both in the unformed reference
and deformed states according to the Kirchhoff–Love hypothesis. The pair (w, t) defines the
position of an arbitrary point in the shell. The configuration of the shell can be expressed
mathematically as

c ¼ fx 2 R
3jx ¼ w(j1, j2)þ jt(j1, j2) with j1, j2 2 A and j 2 hh�, hþig (12:4)

Here A denotes the parametric space for the shell; (h�, hþ) are the distances of the ‘‘lower’’
and ‘‘upper’’ surfaces of the shell measured from the shell neutral surface.
The convective basis vectors gI are defined as

rx ¼ qx
qjI

� EI � gI � EI (12:5)

ξ1

ξ

ξ2

a2

a1

t

FIGURE 12.1
Reference frames of coordinates on the neutral
surface of a thin shell.
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where
r denotes the gradient operator
� denotes the tensor product
E is the unit basis vector in the global Cartesian basis

A contravariant basis gJ can be obtained from the standard relation of

gJ � gI ¼ dJI (12:6)

The unit area in the neutral surface is defined by the differential two-form:

dA ¼ w, 1 � w, 2 dj1 dj2 (12:7)

where ‘‘�’’ denotes vector cross product. The determinants of the tangent maps in the
deformed and reference configuration will be denoted subsequently as j and j 0, respect-
ively, with j and j

0
denoting the Jacobians on the reference surface

j ¼ det [rx], j 0 ¼ det [rx0] , �j ¼ jjj¼0 , �j 0 ¼ j 0
��
j¼0 (12:8)

where the superscript ‘‘0’’ is used to denote quantities in the reference configuration. The
surface-convected frame, which spans the tangent space to the neutral surface, is defined as
aa¼w,a (a¼ 1, 2). Hence, the first fundamental form on the reference surface is

a ¼ aabaa � ab, aab ¼ w,a � w,b (12:9)

where
aI (I¼ 1, 2) denotes the dual surface-convected basis through the standard relation
aI � aJ ¼ dIJ

‘‘�’’ denotes dot product. The second fundamental form is defined as

kab ¼ w,a � t,b (12:10)

12.1.2.2 Strain Measures

The linear membrane and bending strain measures can be derived from the kinematic
variables in Equations 12.9 and 12.10 as

eab ¼ 1
2

w0
,a � u,b þ w0

,b � u,a

� �
(12:11)

and

rab ¼ 1
2

w0
,a � Dt,b þ w0

,b � Dt,a þ u,a � t0,b þ u,b � t0,a
� �

(12:12)

where only the symmetric part of the bending strain measure is considered.
The Kirchhoff–Love hypothesis needs to be introduced explicitly to obtain the definite

forms for the strain measures. The mathematical form of this hypothesis is expressed as

t ¼ (�j)�1(w,1 � w,2), ktk ¼ 1 (12:13)
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where jj jj denotes the norm of a vector. Hence, the derivatives of the normal vector in the
reference configuration t0 and the partial derivatives of the increment Dt can be

t0,a ¼ (�j 0)�1 w0
,1a � w0

,2 þ w0
,1 � w0

,2a

� �
(12:14)

Dt,a ¼ (�j 0)�1 u,1a � w0
, 2 þ u0

, 1 � w0
,2a þ w0

, 1a � u, 2 þ w0
,1 � u, 2a

� �
(12:15)

Note that the membrane strain measures of Equation 12.11 are not affected by the intro-
duction of the Kirchhoff–Love hypothesis. Considering the symmetry with respect
to partial differentiation w0

,12 ¼ w0
,21 and u,12¼u,21, the bending strain measures can be

rewritten as

r11 ¼ �u,11 � t0 þ (�j 0)�1 u,1 � w0
,11 � w0

,2

� �þ u,2 � w0
,1 � w0

,11

� �� �
(12:16)

r22 ¼ �u,22 � t0 þ (�j 0)�1 u,1 � w0
,22 � w0

,2

� �þ u,2 � w0
,1 � w0

,22

� �� �
(12:17)

r12s ¼ � 1
2

u,12 þ u,21ð Þ � t0 þ 1
2
(�j 0)�1[u,1 � w0

,12 þ w0
,21

� �� w0
,2

� �þ u,2 � w0
,1 � w0

,12 þ w0
,21

� �� �
¼ �u,12 � t0 þ (�j 0)�1 u,1 � w0

,12 � w0
,2

� �þ u,2 � w0
,1 � w0

,12

� �� �
(12:18)

12.1.2.3 Stress Resultants and Stress Couples

A section in the current configuration is described by

ca ¼ fx 2 R
3jx ¼ xjja¼constg, a ¼ 1, 2 (12:19)

The stress resultants and resultant couples are defined by normalizing the force and torque
with the surface Jacobian j ¼ kw,1 � w,2k as follows:

na ¼ (�j)�1
ðhþ

h�

sgadj, a ¼ 1, 2 (12:20)

ma ¼ (�j)�1
ðhþ

h�

(x� w)� sgajdj, a ¼ 1, 2 (12:21)

The director stress couple ~ma can also be defined through the expression

ma ¼ t� ~ma ) ~ma ¼ (�j)�1
ðhþ

h

jsgajdj (12:22)

The through-thickness stress resultant has been omitted because it does not play a role in
Kirchhoff–Love theory.
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12.1.2.4 Constitutive Equations

For the isotropic elastic shell structures, the effective membrane and stress couple resultant
for the isotropic hyperelastic material can be written as

~n11

~n22

~n12

8<
:

9=
; ¼ Eh

1� n2
C

e11
e22
2e12

8<
:

9=
; (12:23)

~m11

~m22

~m12

8<
:

9=
; ¼ Eh3

12(1� n2)
C

r11
r22
2r12

8<
:

9=
; (12:24)

where the matrix C is given by

C ¼
(a011)2 na011a022 þ (1� n)(a012)2

� �
a011a012

(a022)2 a022a012

symm
1
2

(1þ n)(a012)2 þ (1� n)a011a022
� �

2
6664

3
7775 (12:25)

Here a0ab are the components of the first fundamental form in the dual basis.

12.1.3 Strain–Displacement Relations

The displacement vector can be expressed in the global Cartesian basis EK as

u(z) ¼
X
I2Sn

fI(z)[uIE1 þ vIE2 þ wIE3] (12:26)

where
Sn is the set of nodes in the support domain of z
uI, vI, and wI are the components of the displacement vector at the Ith node in E1, E2, and
E3 directions, respectively

The membrane strain–displacement relation for the Ith node is obtained by substituting the
displacement approximation Equation 12.26 into Equation 12.11 to give

e11
e22
2e12

8><
>:

9>=
>; ¼

fI,1w
0
,1 � E1 fI,1w

0
,1 � E2 fI,1w

0
,1 � E3

fI,2w
0
,2 � E1 fI, 2w

0
,2 � E2 fI, 2w

0
,2 � E2

fI, 1w
0
, 2 þ fI, 2w

0
,1

� �
� E1 fI,1w

0
,2 þ fI, 2w

0
,1

� �
� E2 fI,1w

0
,2 þ fI, 2w

0
,1

� �
� E2

2
664

3
775

�
uI
vI
wI

8><
>:

9>=
>; (12:27)

The bending strain–displacement matrix [B(b)I] for the Ith node is obtained by substituting
the displacement approximation Equation 12.26 into Equation 12.12
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r11
r22
2r12

8<
:

9=
; ¼ [B(b)I]

uI
vI
wI

8<
:

9=
; (12:28)

where the elements of the strain–displacement matrix [B(b)I] are given by

[B(b)I]1m ¼ (�j 0)�1 ��j 0fI,11t
0 þ fI,1 w0

,11 � w0
,2

� �þ fI,2 w0
,1 � w0

,11

� �� � � Em

[B(b)I]2m ¼ �j 0
� ��1 ��j 0fI,22t

0 þ fI,1 w0
,22 � w0

,2

� �þ fI,2 w0
,1 � w0

,22

� �� � � Em

[B(b)I]3m ¼ 2(�j 0)�1 ��j 0fI,12t
0 þ fI,1(w

0
,12 � w0

,2)þ fI,2(w
0
,1 � w0

,12)
� � � Em

(12:29)

12.1.4 Principle of Virtual Work

The effective membrane and bending forces are defined to describe the weak formulation
of shells

~n ¼ ~nbaab � aa (12:30)

~m ¼ ~mbaab � aa (12:31)

By making use of the basic kinematic assumption (Equation 12.4), the weak form of the
governing equation for thin shells under static load can be written as

WSta(dx) ¼
ð
A

~nba � deba þ ~mba � drba
� �

dA�Wext(dx) (12:32)

Here Wext is the virtual work of the external loading given by

Wext ¼
ð
A

[�n � dwþ �~m � d�t]dAþ
ð
Gn

��n � dw�jdGþ
ð
Gm

��mdt�jdG (12:33)

where
�n is the applied resultant force per unit length
�m is the applied direct couple per unit length
��n and ��m are the prescribed resultant force and the prescribed director couple on the
boundaries Gn and Gm, respectively

For static analysis of thin shells, the penalty method is used to enforce essential boundary
conditions by adding an additional boundary condition term to Equation 12.33 to obtain

WSta(dx)�
ð
Gu

a � (u� uG)dudG ¼ 0 (12:34)

Here u and uG are the nodal displacement vector and the prescribed displacement vector
on the essential boundary Gu, and a is a diagonal matrix of penalty factors, which are
usually very large numbers.
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For free-vibration analyses of the thin shells, the discrete system equation and the
boundary conditions are formulated separately. The variational form of the elastic
dynamic undamped equilibrium equation can be written as follows:

WDya(dx) ¼
ð
A

~nba � deba þ ~mba � drba
� �

dAþ
ð
R

du � r€udR�Wext(dx) (12:35)

The weak form of the essential boundary conditions with Lagrange multipliers is
employed to obtain the discretized essential boundary conditions

ð
Gu

dlT � (u� �u)dG ¼ 0 (12:36)

where l is a matrix of Lagrange multipliers, each of them can be interpolated on the
essential boundary using its nodal values.

l(x) ¼
X
I

NI(s)lI, x 2 Gu (12:37)

and

dl(x) ¼
X
I

NI(s)dlI, x 2 Gu (12:38)

where
s is the arc length along the essential boundaries
NI(s) are the Lagrange interpolates discussed in Equation 6.15

12.1.5 Surface Approximation

The (neutral) surface of the shell is also approximated using MLS shape functions. The
procedure is exactly the same as for approximating the displacement field variables. The
approximated surface can be described by

w(z) ¼ fI(z)xI (12:39)

where z is the coordinate in the parameter space for the neutral surface of the shell.
A deficiency of this approximation is that the constructed surface does not pass through
the prescribed points, unlike that in finite element meshes. This is due to the use of MLS
shape functions.

12.1.6 Discretized Equations

For static analyses of shells, the penalty term to impose essential boundary conditions in
Equation 12.34 can be discretized as follows:

a

ð
Gu

u � dudG ¼
X
I2Sl

d~uTaFIF
T
I ~u (12:40)
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and

a

ð
Gu

uG � dudG ¼
X
I2Sl

d~uTuGIaFI (12:41)

where
Sl is the set of sampling points for integration on surface Gu

~u is the vector corresponding to a degree of freedom in the translation and rotation fields

The penalty matrix in Equation 12.40 and the penalty vector in Equation 12.41 are assem-
bled into the global stiffness matrix and the global external force vector, respectively.

For dynamic analysis of shells, Equations 12.1, 12.23, 12.24, 12.27, and 12.28 are substi-
tuted into the variational weak form (Equation 12.35). This gives the dynamic discrete
equation

M€Uþ C _UþKU ¼ F (12:42)

where K, M, and F are, respectively, the global stiffness, global mass matrices, and global
force vector, which are assembled using the corresponding nodal matrices and vectors
formed in the similar manner as those for plates (see Chapter 11).

12.1.7 Static Analysis

For static analysis of shells, all the terms in Equation 12.42 related to dynamic effects
should vanish, and the equation system is simplified as

KU ¼ F (12:43)

which is a set of linear algebraic equations that can be solved for the deflection using
standard routines of equation solvers.

12.1.8 Free Vibration

For free-vibration analysis, the external force vector F should vanish, and the damping
should not be considered; we then have

M€UþKU ¼ 0 (12:44)

Considering harmonic vibration, the eigenvalue equations for shells derived from Equation
12.44 is of the form

(K� v2M)Q ¼ 0 (12:45)

where
v is the natural frequency
Q is a vector that collects the nodal values corresponding the amplitudes of the dis-
placements given by
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Q ¼ fQ1, . . . ,QNugT (12:46)

where Nu is the total number of nodal degrees of freedom (DOFs) (unconstrained). We now
derive the discretized form of the essential boundary conditions. Substituting the displace-
ment field u of Equation 12.1 into the weak form (Equation 12.36) yields a set of linear
algebraic constraint equations:

Bu ¼ �B (12:47)

where

BIJ ¼ fJ(xI), �BI ¼ uG(xI), I 2 Gu, J 2 A (12:48)

In general, B is a very sparse and singular matrix with a dimension of nc�Nu, where nc is
the total number of DOFs for all the nodes involved in the essential boundary (participated
in the construction of Equation 12.47). For eigenvalue analysis, the essential boundary
conditions are homogeneous, i.e., �B ¼ 0.

In treating the essential boundary conditions, we follow the procedure described in
Section 11.2.4. An orthogonal transformation is performed to produce a positive-definite
stiffness matrix for the eigenvalue equation in computing natural frequencies. Using
singular-value decomposition, B can be decomposed as

Bnc�Nu ¼ Wnc�rSr�r(VNu�r)T (12:49)

where
W and V are orthogonal matrices
r is the number of nonzero singular values of B
S is a diagonal collecting these nonzero singular values

The matrix V can be written in two submatrices:

(VNu�r)T ¼ VNu�r, VNu�(Nu�r)
� �T (12:50)

where the rank r of B is equal to the number of independent constraints, and the others are
redundant. The following change of coordinates satisfied the constraint Equation 12.47:

QNu�Nu
¼ VNu�(Nu�r) ~Q(Nu�r)�Nu

(12:51)

By substituting Equation 12.51 into Equation 12.45 and left-multiplying the result by the
transpose of VNu�(Nu�r), the reduced order eigenvalue problem for the structure is obtained

~K� v2 ~M
� �

~Q ¼ 0 (12:52)

where ~K ¼ VNu�(Nu�r)
� �TKVNu�(Nu�r) and ~M ¼ VNu�(Nu�r)

� �TMVNu�(Nu�r) are the dimension
reduced (condensed) stiffness and mass matrices. Equation 12.52 is now nonnegative
definite and can be solved using standard eigenvalue solvers for eigenvalues that relate
to the natural frequencies and eigenvectors that relate to the vibration modes of the thin
shells.
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12.1.9 Forced (Transient) Vibration

For transient response analysis, Equation 12.42 can be solved using conventional direct
integration techniques based on finite difference approaches, where the time space is
divided into small time steps. The Newmark method is applied in the section for time
integration to obtain the time history of the displacement response of the shell. The
procedure is the same as that described in Chapter 7 for 2D solids.

12.1.10 Numerical Example of Static Problems

Example 12.1: Deflection of a Barrel Vault Roof under Gravity Force

The present EFG method is used to investigate the response of a barrel vault roof under self-weight.
The problemhas been analyzed by several researchers using the EFGmethod [2,3] and FEM [9]. The
barrel vault roof is a standard benchmark test because it undergoes complex membrane and
inextensional bending states of stress. The example is used to evaluate the convergence and
accuracy of the present EFG method for the static analysis of shells. Figure 12.2 shows the barrel
roof and defines the parameters used in the description of its geometry. The two curved edges of
the roof are diaphragm supported, which allows displacement in the axial direction and rotation
about the tangent to shell boundary. The following parameters are used in the computation:

Length Radius Thickness
Semispan
Angle

Young’s
Modulus

Poisson’s
Ratio

Mass
Density

L¼600 R¼ 300 H¼3.0 u¼ 408 E¼ 3.0�106 n¼0 r¼ 0.20833

Due to the symmetry, only a quarter of the vault roof is modeled, and symmetric boundary
conditions are introduced along the planes of symmetry. To evaluate the effectiveness of the
present EFG method, both regular and irregular nodal arrangements in the parametric space
shown in Figure 12.3 are used in the analyses. Both quadratic (m¼ 6) and quartic (m¼ 15) basis
functions are used in the analysis. Figure 12.4a and b show, respectively, the distributions of the

x

y
z

A

B

C L

RD

F
θ

FIGURE 12.2
Barrel vault roof and the coordinate
system.
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(a) (b)

FIGURE 12.3
Nodal arrangement in parameter space.

–4.0

–3.0

–2.0

–1.0

0.0

1.0

0 10 20 30 40

FEM-ANSYS (1353 nodes)
FEM-ANSYS (2520 nodes)
EFG (81 nodes, quartic, regular)
EFG (81 nodes, quartic, irregular)

Angle (degree)

D
efl

ec
tio

n

(a)

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300
Length

D
efl

ec
tio

n

FEM-ANSYS (1353 nodes)
FEM-ANSYS (2520 nodes)
EFG (81 nodes, quartic, regular)
EFG (81 nodes, quartic, irregular)

FIGURE 12.4
(a) Vertical deflection of the barrel vault roof along section AB (see Figure 12.2); and (b) vertical deflection along
section AC.
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vertical deflection along edges AB and AC, where the FEM solution is obtained using a general-
purpose program, i.e., ANSYS�. The EFG results using 81 nodes agree well with the finite element
results of ANSYS using 2520 nodes. The reason for the demand by FEM for a very fine element mesh
may be the simplification of the geometry, because the field variable (deflection) does not vary
drastically and, as shown in Figure 12.4, a coarse mesh should produce a good approximation.
However, in ANSYS, the shell is modeled using flat shell elements. This simplification cannotmodel
themechanics coupling effects of bending forces andmembrane forces, which is very significant for
shell structures, unless a very finemesh is used. In our EFG code, however, the geometry of the shell
is modeled using MLS approximation, which very accurately represents the curvature of the shell
surface, and hence produces very accurate results using very coarse nodes. This example clearly
demonstrates the advantage of the meshfree method in modeling shell structures. Note also that
under the gravity force, which is downward, the central point on the roof moves upward against the
direction of body force. This fact provides very clear evidence of the importance of the coupling of
bending force andmembrane force. The existence of the membrane force causes the rooftop to rise.

The convergence of the EFG results is also investigated in detail, and the results are
summarized in Figure 12.5, where the curves are normalized using the converged value of
the vertical deflection at B, that is, �3.618. It can be seen that the performance of the EFG
method compares well with the finite element solution of [9,10]. The results given by
quartic polynomial basis are usually better than that by quadratic basis when nodal points
are sufficiently dense. However, worse results are obtained when low nodal densities are
employed. The reason could be again the approximation of the geometry of the shell. When
the nodes are too coarse, even EFG will fail to approximate the geometry well.

12.1.10.1 Lagrange Multiplier Method vs. Penalty Method

The penalty method and Lagrange multipliers can both be used to enforce the essential
boundary conditions. Here we discuss the advantages and disadvantages of these two
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FIGURE 12.5
Convergence of results of vertical deflection at B.
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methods using the example of barrel vault roof. Figure 12.6 shows the distribution of the
vertical deflection along edge DF, where the deflection is supposed to be zero because a
zero essential boundary condition was imposed in the EFG analysis. It can be seen from
Figure 12.6 that both methods could not give exact results for the zero displacement. Very
small errors are observed especially at the two corners. The Lagrange multipliers method is
more accurate than that of the penalty method. In the penalty method, a penalty factor of
5000 times the value of the elastic modulus is used. Note again that the penalty method is
much cheaper to implement.

12.1.11 Numerical Examples of Free Vibration of Thin Shells

The performance of the EFG method for free-vibration analysis is also evaluated. The
results of several examples are presented in comparison with analytical solutions and
other results.

Example 12.2: Free Vibration of a Clamped Cylindrical Shell Panel

A panel of cylindrical thin shallow shell, which has been investigated by Petyt [11], is also
examined here to benchmark our EFG code for free-vibration analysis. The thin shell panel is
clamped at all edges, and the natural frequencies are computed using the present EFG. The
geometry and boundary conditions of the shell panel are shown in Figure 12.7 and the following
parameters are used in the analysis:

Length,
L (mm)

Radius,
R (mm)

Thickness,
h (mm)

Span
Angle, u

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass
Density,
r (kg=m3)

76.2 762 0.33 7.648 6.8948� 1010 0.33 2657.3

2.0E–04

0.0E+00

–2.0E–04

–4.0E–04

–6.0E–04

–8.0E–04

–1.0E–03
–40 –20 0

(a)
20 40

(b)
–40 –20 0 20 40

2.0E–03

0.0E+00

–2.0E–03

–4.0E–03

–6.0E–03

–8.0E–03

–1.0E–02

–1.2E–02

–1.4E–02

–1.6E–02

FIGURE 12.6
EFG solution of vertical deflection of the barrel vault roof along section DF. The vertical deflections are supposed
to be zero. The numerical solution gives very small values. The largest errors were observed at corners.
The Lagrange multiplier method is more accurate than the penalty method. (a) Lagrange multipliers method;
and (b) penalty method.
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Regular nodes of different densities are used to investigate the convergence characteristics of
natural frequencies. Results are given in terms of a frequency parameter defined as
l ¼ ffiffiffiffi

Q
p ¼ (v2rhR4=D)1=8, where D¼ Eh3=(12(1� n2)), and are shown in Figure 12.8. As can be

seen from Figure 12.8, very high convergence rates for the various vibration modes are obtained.
The values of l are also tabulated in Table 12.1 together with experimental results and results
obtained by other different numerical methods [11]. In this table, ERR denotes the extended
Raleigh–Ritz method, FET stands for the triangular FEM, and FER denotes rectangular FEM. It is
found that the EFG results show good convergence and good agreement with other methods.

Example 12.3: Free Vibration of a Hyperbolical Shell

Free-vibration analysis of the clamp-free hyperbolical shell shown in Figure 12.9 is performed.
The shell geometry is defined by the following equation of its meridian:

R
a


 �2

� L� d
b


 �2

¼ 1 (12:53)

where b is a characteristic dimension of the shell, which can be calculated as b ¼ ad=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 � a2

p
.

The following geometric and material properties are used in the analysis:

Length,
L (m)

Height,
H (m)

Height,
d (m)

Radius,
a (m)

Radius,
b (m)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass
Density,
r (kg=m3)

100.787 0.127 82.194 25.603 63.906 2.069� 1010 0.15 2405

A regular nodal arrangement in the axial and circumferential direction is used in the analysis. The
results of the present study using different numbers of nodes are given in Table 12.2. Results
obtained in [12] using a numerical integration technique and in [13] using an FEM are also listed
in the same table for an easy comparison. Close agreements are again observed.

x

y
z

L

R

θ

FIGURE 12.7
Clamped panel of cylindrical thin shell.
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FIGURE 12.8
Convergence of results for natural frequency parameter l of a clamped panel of a cylindrical shallow thin
shell.

TABLE 12.1

Natural Frequency Parameter l of a Clamped Panel of Cylindrical Thin Shell

Experimental
EFG

Mode Results ERR FET FER 6� 6 9� 9 12� 12 16� 16

1 13.06 13.28 13.28 13.35 13.32 13.28 13.28 13.28

2 13.54 13.60 13.60 13.65 13.67 13.62 13.60 13.60
3 14.57 14.65 14.65 14.71 14.79 14.68 14.65 14.65

4 14.70 14.86 14.85 14.88 14.88 14.87 14.86 14.85

5 15.09 15.06 15.06 17.21 15.11 15.08 15.06 15.06

6 15.93 15.82 15.83 15.87 15.95 15.85 15.83 15.82

7 15.78=15.86 15.91 15.88 15.96 16.67 16.03 15.89 15.88

8 16.55 16.46 16.46 16.49 16.95 16.61 16.47 16.46

9 16.79 16.78 16.78 16.81 17.25 16.91 16.80 16.78

10 16.89 16.93 16.92 16.96 17.77 17.14 16.95 16.92

Note: ERR, extended Raleigh–Ritz method; FET, triangular finite element method; FER, rectangular finite
element method.
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Example 12.4: Free Vibration of a Cylindrical Shell

The natural frequencies of a cylindrical shell are examined using the present EFG code. The
geometry of the shell is schematically drawn in Figure 12.10. The shell is clamped at one edge and
free at the other. The following geometry and material properties are used:

Length,
L (mm)

Thickness,
h (mm)

Radius,
R (mm)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass
Density,
r (kg=m3)

226.8 1.021 106.1 2.069� 1011 0.3 7868

The nodes used in our EFG are regularly arranged in the axial and circumferential directions. The
EFG results are tabulated in Table 12.3. The results obtained in [14] and [15] using high-precision
finite element method (HPFEM) and standard FEM, respectively, are also listed in the same table
for comparison. Again, good agreement is evident.

a

d

R2

R1

FIGURE 12.9
Geometry of a hyperbolical shell that is clamped at the bottom
circular edge and free at the top circular edge.

TABLE 12.2

Natural Frequencies (Hz) of a Clamp-Free Hyperbolical Shell

EFG

Mode Ref. [13] Ref. [12] 12� 16 18� 24

1 1.0354 1.0348 1.0351 1.0325

2 1.1508 1.1467 1.1486 1.1450

3 1.1826 1.1808 1.1809 1.1780

4 1.3061 1.3015 1.3043 1.2998

5 1.3293 1.3231 1.3254 1.3223
6 1.3758 1.3749 1.3799 1.3753

7 1.4329 1.4293 1.4284 1.4259

8 1.4488 1.4475 1.4497 1.4470
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12.1.12 Numerical Examples of Forced Vibration of Thin Shells

To investigate the accuracy as well as the capability of the EFG method for forced vibration
problems of thin shells, numerical examples for thin shells subjected to different transient
excitations are presented, and the results obtained are compared with those of ordinary
FEM and other numerical methods.

Example 12.5: Clamped Circular Plate Subject to an Impulsive Load

A code developed for shells should also be able to work for plates. The first test case is a circular
plate subjected to a rectangular impulsive force. The parameters used in this calculation are given
as follows:

Thickness,
h (mm)

Radius,
R (mm)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass
Density,
r (kg=m3)

0.05 1.1 1000.0 0.3 0.229

The natural frequencies are first computed by the EFG method, and the results are compared with
those obtained using the boundary element method (BEM) and FEM.We state without showing the
results that they are in very good agreement.

FIGURE 12.10
Geometry of a cylindrical shell.

y

x

L

R

z

TABLE 12.3

Natural Frequencies (Hz) of the Clamp-Free Cylinder

FEG

Mode EFG [14] HPFEM [15] 8� 16 12� 24

1 487 482 490 483

2 565 561 564 562

3 621 616 629 624

4 NR NR 875 869

5 982 981 979 980

Note: NR, no results were given.
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The circular plate is loaded by a concentrated vertical impulsive force F(t) at its center.
The magnitude of the force is 1 N, and the duration of pulse is t0¼ 0.121 s as shown in
Figure 12.11. In time stepping, the time increment used is Dt¼ 0.001 s. Figure 12.12 shows
the history of the vertical deflection at the center of the plate obtained by the presented
method, the analytical solution [16], SAP IV [17], and the domain-BEM [18]. It is observed
that the results obtained using the present EFG code agree well with all these methods
including the analytical results in [16].

Example 12.6: Clamped Cylindrical Shell Subject to a Sine Load

The transient response of a clamped cylindrical shell as shown in Figure 12.10 is investigated.
The following geometry and material properties are used:

Length,
L (mm)

Thickness,
h (mm)

Radius,
R (mm)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass Density,
r (kg=m3)

600 3.0 300.0 2.1� 1011 0.3 7868

0.0

1.0

2.0 F (t)

t
FIGURE 12.11
Transient force of a rectangular pulse
applied to the circular plate.
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FIGURE 12.12
The time history of the deflection at the center of a clamped circular plate subjected to a rectangular impulsive
excitation.
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Figure 12.13 shows the history of the transient excitation of half a sine function of time.
The excitation is at the center of the meridian (y¼ L=2, z¼R). The force is expressed as

F ¼ F0 sin (1000t) (12:54)

where F0¼ 1000.0 N. Good agreement is observed. In performing the time marching, the time
step Dt¼ 2.5e�5 s is used, which is almost 1=35 of the fundamental period of the cylinder. Regular
nodes (12� 16) are arranged in the axial and circumferential directions. Figure 12.14 shows the
transient response of a clamped cylinder subjected to a transient excitation of half a sine function
of time. The results are obtained using the present EFG code and FEM.
Figure 12.15 shows the transient response for the cylindrical shell, but the external excitation

force becomes F¼ F0 sin(2000t). Again, very good agreement between the results of EFG and FEM
is obtained.

FIGURE 12.13
Time history of the external force excita-
tion of half a sine function of time.
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FIGURE 12.14
Transient response of the vertical displacement at the central point in the meridian of the cylindrical shell
(y¼L=2, z¼R).
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Example 12.7: Clamped Spherical Shell Subject to a Sine Curve Load

A spherical cap of thin shell with a central angle of u¼ 1208 shown in Figure 12.16 is investigated.
The shell is subjected to an excitation of a force of half-a-circle sine function of time at the apex.
The time history of the loading is given by Equation 12.54, but F0¼ 200.0 N. This spherical cap is
clamped on the circular boundary at the bottom. The following geometry and material properties
are used in the computation:

Thickness,
h (mm)

Radius,
R (mm)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

Mass
Density,
r (kg=m3)

10 900.0 2.0e11 0.3 7800

The time step used is Dt¼ 5.0e�5 s, which is almost 1=25 of the fundamental period of the
spherical cap; 185 nodes are used in the calculation. Figure 12.17 shows the history of the vertical
displacement response at the apex of the spherical cap obtained by both the present EFG method
and FEM. Very good agreement is obtained.
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FIGURE 12.15
Same as Figure 12.14, but F¼ F0 sin(2000t).
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FIGURE 12.16
Cross section of the spherical cap of a thin shell.
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12.1.13 Some Remarks

The EFG method has been formulated for static, free-vibration, and forced-vibration
analysis of spatial thin shell structures. In the EFG method, the MLS technique is used
for approximations of both the surface geometry of the shell and the field variables. The
present EFG results are benchmarked with a number of examples by comparison with
the results obtained by other methods. It is found that the EFG method offers (1) accurate
geometry representation and (2) fast convergence.

12.2 EFG Method for Thick Shells

The Kirchhoff–Love shell theory works only for very thin shells. The reason is similar to
that for the theories for plates (see Chapter 11). For thick shells, formulations need to be
based on thick shell theories. The formulation for thick shells in this section is based on
the geometrically exact theory of flexible shells proposed by Simo et al. [9]. We collect the
necessary equations in the following sections, but refer the reader to [9] for details.

12.2.1 Fundamental Relations

The Gauss intrinsic coordinates are used to describe the configuration of the shell as
described in the previous sections. Making use of the definition of spatial tensors, the
corresponding linearized strain measures are defined relative to the dual spatial surface
basis as

eab ¼ 1
2

�
w0
,a � u,b þ w0

,b � u,a
�

(12:55)
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FIGURE 12.17
Transient response of the vertical displacement at the apex of the spherical cap.
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ga ¼ w0
,a � Dtþ u,a � t0

� �
(12:56)

rab ¼ 1
2

�
w0
,a � Dt,b þ w0

,b � Dt,a þ u,a � t0,b þ u,b � t0,a
�

(12:57)

Here, Dt is the incremental spatial rotation defined by

Dt ¼ �L � DT (12:58)

where

DT ¼ DT1E1 þ DT2E2 (12:59)

and �L is the (3� 2) matrix given by

�L ¼ [t1 t2] ¼
L11 L12
L21 L22
L31 L32

2
4

3
5 (12:60)

which can be obtained by deleting the third column of �L, where L :A � R
2 ! S2E is the

orthogonal transformation, and can be expressed as

L ¼ (t � E)1þ d[E� t]þ 1
1þ t � E (E� t)� E� tð Þ (12:61)

The constitutive relations for the effective membrane ~n and for the stress couple resultant
~m have the form of Equations 12.23 and 12.24. The constitutive relations for the effective
shear stress resultants ~q can be written as

~q1

~q2

� 
¼ kGh g1

g2

� 
(12:62)

Here k is the shear reduction coefficient and G is the shear modulus.
In calculating the effective stress couple resultant ~m, Equations 12.24 and 12.31 should be

used. In calculating the effective membrane ~n, Equation 12.30 and the following equation
should be used.

~nba ¼ nba � lbm ~m
am (12:63)

In calculating the effective shear resultant forces, we use

~q ¼ ~qaw,a (12:64)

where ~qa is defined as

~qa ¼ qa � l3m ~m
am (12:65)
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In calculating t,a, we use

t,a ¼ lbaw,b þ l3at (12:66)

The above equation shows that the difference between thick shell theory and thin shell
theory is that the shear effects have been taken into account in the thick shell theory.

12.2.2 Principle of Virtual Work

The weak form of the governing equation for the thick shells under static load can be
written as

WSta(dx) ¼
ð
A

~nba � deba þ ~mba � dkba þ ~qadga
� �

dA�Wext(dx) (12:67)

Here dA ¼ �jdj1dj2 is the current surface measure. Wext is the virtual work of the external
loading given by

Wext ¼
ð
A

[�n � dwþ �~m � d�t]dAþ
ð
Gn

��n � dw�jdGþ
ð
Gm

��mdt�jdG (12:68)

where
�n is the applied resultant force per unit length
�~m is the applied direct couple per unit length
��n and ��m are the prescribed resultant force and the prescribed director couple on their
corresponding boundaries Gn and Gm, respectively

The MLS shape functions are then used to approximate the displacement fields. Substi-
tuting Equation 12.1 into the weak forms leads to a set of global system equations. The
procedure and the treatment of essential boundaries are the same as the previous section.

We need different ways to handle the essential boundary condition for different prob-
lems, whenever MLS approximation is employed.

12.2.3 Numerical Examples

Example 12.8: Static Deflection of a Barrel Vault Roof under Gravity Force

Example 12.1 is reexamined using the EFG formulation for thick shells. The barrel vault roof is
shown in Figure 12.2. All the parameters and conditions are exactly the same as those in Example
12.1. In constructing the MLS shape function, both quadratic and quartic basis functions are used.
Figure 12.18 shows the results of convergence of vertical displacement at point B in the barrel vault
roof. Figure 12.18 shows that the convergence by the present analysis is excellent in comparison
with the results of using high-performance FEM [9] and EFG for thin shells [2]. It can also be seen
that the convergent rate for quartic basis always exceeds that for quadratic basis. This was not very
clear from the results using thin shell theory (see Figure 12.5). The result for quartic basis functions
approaches the exact result from below with the increase of EFG nodes, while that for quadratic
basis functions oscillates along the exact result with the increase of EFG nodes.
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Figure 12.19 shows the variation of the fractions of shear, membrane, and bend energies
in total energy, with respect to the size of the support domain. The computation is
performed using quartic basis function. It can be seen that the membrane and bending
energies are stable with the increase of the support domain size; the difference between the
membrane and bending energies are no more than 4.0%. The shear energy is very small
and approaches zero with the increase of EFG nodes, which means that the shear stress
plays a very minor role in deformation of the vault roof.
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FIGURE 12.18
Convergence of vertical displacement at point B in the barrel vault roof.
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FIGURE 12.19
Variation of membrane, shear, and bending energy with respect to size of the support domain.
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Figures 12.20 and 12.21 show the distribution of the vertical deflection in the roof along
the edges AB and AC, respectively. The central point A moves upward, that is, in the
reverse direction of the body force, for the effects of the membrane forces. It can be seen that
thousands of nodes are needed to obtain the converged solution using a general-purpose
program, for example, ANSYS, for the reason mentioned in Example 12.1. Fewer nodes are
needed for the present EFG method.
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FIGURE 12.20
Vertical displacement in the barrel vault roof along AB.
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Vertical displacement in the barrel vault roof along AC.
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Example 12.9: Pinched Cylindrical Shell

The deformation of the cylindrical shell shown in Figure 12.22 is analyzed using the present EFG
method. The shell is loaded by a pair of centrally located and diametrically opposed concentrated
forces. The cylindrical boundaries are supported by a rigid diaphragm that allows displacement in
the axial direction and rotation about the tangent to the shell boundary. The parameters for this
problem are given in the following table:

Length,
L (mm)

Thickness,
h (mm)

Radius,
R (mm)

Young’s
Modulus,
E (N=m2)

Poisson’s
Ratio, n

600 3.0 300.0 3.0�106 0.3

This problem is one of the most critical tests for numerical methods for both inextensional bending
and complex membrane states of stress. Because of its double symmetry, only 1=8 of the cylinder
has been modeled. The results are shown in Figure 12.23, which are normalized by the value of
1.8248e�5, which is the convergent numerical solution of the radial displacement magnitude at
the loaded points. The convergence of the present EFG method is excellent in comparison with the
results by FEM [9] and by EFG for thin shells [2]. It is seen that the EFG results reported in [2]
converge faster than the present EFG code.

The effects of the dimension of the support domain on the radial displacement at the
loading point are also investigated, and the results are shown in Figure 12.24. The shortest
nodal distance between nodes is used to normalize the size of the support domain. The
fluctuation of the displacement is visible but it is less than 3% when the support domain is
larger than 3.8. Effects of the dimension of the support domain on the energy components
(bending, membrane, and shear energies) are also investigated, and the results are sum-
marized in Figure 12.25. The energies show a trend of fluctuation similar to that of the
displacement. Figure 12.26 shows the convergence of membrane (M), shear (S), and
bending (B) energy fractions in the total energy. The results are calculated using both
quartic and quadratic polynomial basis functions. As can be seen, for quartic polynomial
basis, the shear energy converges to a value of less than 4.0% as the field nodes increase,
which means shear stress plays but a small role in the deformation. The membrane energy
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FIGURE 12.22
Pinched cylindrical shell.
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fraction approaches approximately 40.0% which gives very satisfactory results in compari-
son with the results using nine-noded gamma FEM by Belytschko et al. [10]. For the
quadratic polynomial basis, the membrane fraction approaches 40.0%, the same as that
for the quartic polynomial. However, the shear energy increases with the increase of field
nodes. It can also be observed that for coarse field nodes, membrane locking is dominant
while for the fine field nodes, shear locking becomes more important.
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FIGURE 12.23
Convergence of the results of the radial displacement at the center of the cylindrical shell.
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FIGURE 12.24
Effects of the dimension of the support domain on the radial displacement at the loading point.

590 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



Example 12.10: Pinched Hemispherical Shell

In this example, a pinched hemispherical shell shown in Figure 12.27 is analyzed using the EFG
method. The shell is pinched by two pairs of opposed radial point loads of magnitude P¼ 2.0.
The bottom circumferential edge of the hemisphere is free. The material parameters are
E¼ 6.825� 107 N=m2 and n¼ 0.3. The sphere radius is R¼ 10.0 and the thickness t¼ 0.04.
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FIGURE 12.25
Effects of the dimension of the support domain on the energy components (from top to bottom: bending,
membrane, and shear energy).
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This problem is also a challenging benchmark problem to check whether the formulation
of the shell can represent inextensional modes of deformation, as it exhibits almost no
membrane strains. This problem is a less critical test with regard to inextensional bending,
compared to the pinched cylinder problem. However, it is a very useful problem for
checking the ability of the present EFG method to handle rigid body rotations normal to
the shell surface. Large sections of this shell rotate almost as rigid bodies in response to this
load, and the ability to accurately model rigid body motion is essential for any numerical
method.

Due to symmetry, only a quarter of the hemisphere is modeled. The results are shown in
Figure 12.28. The radial displacements in the direction of loads at loaded points are the
same and are found analytically to be 0.0924. This value is used to normalize the numerical
results presented in Figure 12.28. The convergence is even better than that of the high-
performance results using mixed formulation [9]. Among the EFG solutions, the present

FIGURE 12.27
Pinched hemisphere shell. One quarter of the
shell is shown.
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FIGURE 12.28
Convergence of the radial displacement at the loading point on the hemisphere shell.
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EFG method also gives better accuracy than that of the thin shell formulation [2]. The
results obtained using the quartic polynomial basis functions are better than those using
quadratic polynomial basis functions. However, poor accuracy is obtained when very
coarse nodes are used in EFG compared with FEM using the same density of nodes.
Figure 12.29 shows the effects of the dimension of the support domain on the radial
displacement at the loading point on the hemispherical shell. The present EFG results
using quartic basis functions do not depend on the size of the support domain and gives an
almost exact solution, in the range of our investigation. The results obtained using quad-
ratic basis functions are stable and accurate only in a narrow range (as¼ 4.5–6.5).
Figure 12.30 shows the effects of the dimension of the support domain on membrane (M)
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FIGURE 12.29
Effects of the dimension of the support domain on the radial displacement at the loading point on the hemisphere
shell.
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Effects of the dimension of the support domain on membrane (M) and shear (S) energies in the hemisphere shell.
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and shear (S) energies in the hemisphere shell. Figure 12.31 shows the same effects but
for the bending (B) energy in the hemisphere shell. It can be seen that both the shear
and the membrane energy are very small when the quartic basis functions are used.
Although the shear energy obtained using the quadratic basis functions is very small, the
membrane energy increases with the increase of the support domain. This means that
the membrane energy is over predicted with the increase of field nodes, which is an
indication of membrane locking.

Figures 12.32 and 12.33 show the fractions of shear, membrane, and bending energies in
the total strain energy calculated using both quartic and quadratic polynomial basis
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FIGURE 12.31
Effects of the dimension of the support domain on bending (B) energy in the hemisphere shell.
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functions. It is found that when quartic polynomial basis functions are used, both mem-
brane and shear energy tend to zero as the field nodes increase. This implies that the shear
stress and membrane stress play trivial roles in the deformation of the shell, and the
bending energy is dominant. It is also found that membrane locking is dominant for coarse
field nodes, but is quickly eliminated with the increase of field nodes.

12.2.4 Remarks

The EFG method has been extended to analyze thick spatial shells based on the stress-
resultant shell theory, which has 5 DOF assigned to every point of the shell.

For thick shells, the formulation allows transverse shear strain and results in the Mindlin
plate when the surface becomes flat and the membrane state is negligible. To avoid shear
locking and membrane locking, quartic basis function is recommended for MLS approxi-
mation. Using high-order basis functions is necessary to avoid shear locking. A good
alternative is to use different orders of shape function for the deflection and rotation, as
discussed in Chapter 11 for plates (see Example 11.16).

12.3 ES-PIM for Thick and Thin Shells

In Chapters 8, 10, and 11 we have presented PIMs for solids, beams, and plates based on
triangular mesh. It was found that due to the use of the weakened-weak (W2) formulation
based on G space theory, the consistency on the assumed displacement functions has been
further reduced. Therefore, for second-order PDEs, we can allow discontinuous functions,
as shown in Chapter 8 for solids and Chapter 11 for plates. For fourth-order PDEs, we can
use function of only first-order consistency, as shown in Chapter 10 for beams.
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We also found that for 2D solids, the ES-PIM with linear shape function is one of the best
performers in all themeshfreemethods examined in terms of accuracy, efficiency, simplicity,
robustness, and applicability to problems of complicated geometries. An intensive compari-
son study has shown that its efficiency is about eight times in displacement error norm and
40 times in energy error norm that of the linear FEM using the same mesh (see Chapter 8).

This section formulates an ES-PIM for shells based on the FSDT and the DSG scheme,
and demonstrates that the ES-PIM works well for both thin and thick shells, because it is
free from shear locking. Again, we use only triangular background cells aiming for
simplicity, robustness, adaptive to complicated geometry.

12.3.1 Overall Strategy

In this section, we consider shells undergoing all three possible deformations in 3D space:
in-plane stretching (membrane), off-plane bending and shearing deformation. We are
aware of that a 3D shells structure can be very complicated in geometry, and geometry
modeling can be a challenge. The most practical approach to deal with this domain
complexity is, in the opinion of the author, triangulation with fine mesh. Our formulation
is, therefore, based on a mesh of flat triangular cells. The curvature of the shell is achieved
via the orientation changes of these flat cells. For each cell, some of the basic techniques and
formulation in the FEM can be directly utilized. Edge-based smoothing is then performed
to these normals of the two neighboring cells shearing the edge, in addition to these three
deformations of in-plane stretching, off-plane bending, and shearing. This approach is
straightforward, well-managed for the necessary issues, and hence ensuring stable and
convergent solutions. Because our ES-PIM will be very efficient, we can take effort to use
very fine mesh to accurately represent the original geometry of the shell for accurate
solutions. We can even perform adaptive analysis for solutions of desired accuracy.

For each cell, the FSDT for plate will be used. To overcome shear locking when the shell
gets very thin, we divide the strain energy into three terms: Membrane energy, bending
energy, and shear energy, and the DSG scheme [21] is used to evaluate the shear strains.

In this section, we discuss only the linear ES-PIM, which is also termed as ES-FEM and
presented in [19].

12.3.2 ES-PIM Formulation

12.3.2.1 Edge-Based Smoothing Model

In this section, an edge-based strain smoothing technique is now introduced for shells.
An ES-PIM model for the shell is established in the following steps.

First, the problem domain for a shell is divided into Nc flat triangular cells with Nn nodes
and Ncg edges using triangulation defined in Section 1.7.2. Figure 12.34 shows a represen-
tative flat triangular cell. We consider homogenous shells, and hence all the field variables
can be defined on the mid-surface (that is also the neutral surface) of the shell. The three
nodes of the cell are located at the three vertices of the mid-surface of the shell element.
A local coordinate system for the element can be defined as

. The origin at node 1

. x0-Axis along the side 1–2

. z0-Axis parallel to the normal of the mid-surface

. y0-Axis perpendicular to the x0–z0 plane
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The 6 DOFs at each node are defined as

. u0: the displacement in the x0-direction

. v0: the displacement in the y0-direction

. w0: the displacement in the z0-direction

. w0
x : the rotation about the x0-axis

. w0
y : the rotation about the y0-axis

. w0
z : the rotation about the z0-axis

Second, based on these triangular cells, a set of Ns smoothing domains Vs
k bounded by

Gs
k are created associated with the edges of the triangular cells, as shown in Figure

8.80. In this edge-based case, we have Ns¼Ncg. For each edge, the smoothing domain
is formed by sequentially connecting two end points of the edge and centroids of the
neighboring triangles shearing the edge. For an interior edge, it is shared by two cells,
and for an edge on the problem boundary, it is shared only by one cell, as shown in
Figure 12.35.

12.3.2.2 Coordinate Transformation

TheDOFswith respect to the global coordination system are denoted as: u, v,w, wx,wy, and wz.
The local DOFs of nodal displacements and rotations relates to these global DOFs via a
coordinate transform matrix T:

d0 ¼ Td (12:69)

z΄ y΄

x΄
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h 1
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3
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1(x1́, y1́)
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x

y
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(k)

θ13θ23
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x2

΄
΄

΄

FIGURE 12.34
A typical three-node flat triangular cell on shell with 6 DOFs per node.
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where

d0 ¼
d0
1

d0
2

d0
3

2
4

3
5 for node 1

for node 2
for node 3

, d ¼
d1

d2

d3

2
4

3
5 for node 1

for node 2
for node 3

(12:70)

Each of the vector for nodal DOFs can be written in details as

d0
i ¼ u0i v0i w0

i w0
xi w0

yi w0
zi

� �T
di ¼ ui vi wi wxi wyi wzi

� �T , i ¼ 1, 2, 3 (12:71)

The transformation matrix T is defined as (see, e.g., [20])

T ¼ diag T3|{z}
translation
node 1

, T3|{z}
rotation
node 1

, T3|{z}
translation
node 2

, T3|{z}
rotation
node 2

, T3|{z}
translation
node 3

, T3|{z}
rotation
node 3

2
664

3
775 (12:72)

where T3 is a 3 by 3 submatrix given as

T3 ¼
cx0x cx0y cx0z
cy0x cy0y cy0z
cz0x cz0y cz0z

2
4

3
5 (12:73)

where cx0x is the direction cosines of the angle between the x0- and x-axes, and the similar is
applied to the other entries in T3.

In the local coordinate system, the coordinates for these three nodes 1, 2, and 3 are
denoted as (x01, y

0
1), (x

0
2, y

0
2), and (x03, y

0
3), respectively, and these coordinate values can be

found as

1, (m)

(a) (b)

4, (n)

2, (i)

3, (j)

Ωk

y

x
z

e2

e1
z

x

y

3, (j)

2, (i)

4, (n)

Edge k

Problem boundary

R
L

R

e1Ωk

z1́ z2́

x1́
y1́ x2́ x1́

z1́

y1́

y2́

FIGURE 12.35
Edge-based smoothing domain for edge k. (a) Inside the problem domain; and (b) on the problem boundary.
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x01 ¼ y01 ¼ 0

x02 ¼ l12, y02 ¼ 0

x03 ¼ l31 cos u23, y03 ¼ l31 sin u23

(12:74)

The lengths of each edge of the triangle can be computed using

lij ¼ jXj � Xij (12:75)

where

Xi ¼ (xi, yi), i ¼ 1, 2, 3 (12:76)

is the coordinate in the global coordinate system. In Equation 12.74, uij is the inner angle
of the triangle shown in Figure 12.34, and is computed using

cos uij ¼
(Xi � Xk) � (Xj � Xk)
jXi � XkjjXj � Xkj , (12:77)

The subscript i varies from one to three, j and k are determined by the cyclic permutation
in the order of i, j, and k.

12.3.2.3 Interpolation of Field Variables

Using interpolation in the local coordinate system, we have

u0(x0)
v0(x0)
w0(x0)
w0
x(x

0)
w0
y(x

0)

w0
z(x

0)

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
u0(x0)

¼ Cb
1i(x

0) Cb
2(x

0) Cb
3(x

0)
h i d0

1

d0
2

d0
3

2
4

3
5 (12:78)

where Cb
i (x

0) is a diagonal matrix of shape functions. In this section, we use linear shape
functions created by T3-scheme, which gives the same linear FEM shape function using
three-node element (the base model), and Cb

i (x
0) can be written as

Cb
i (x

0) ¼ diag[fb
i (x

0),fb
i (x

0),fb
i (x

0),fb
i (x

0),fb
i (x

0),fb
i (x

0)] (12:79)

in which fb
i (x

0) is the shape function for node i is

fb
i (x

0) ¼ ai þ bix0 þ ciy0

ai ¼ 1
2Ae

(x0jy
0
k � x0ky

0
j), bi ¼ 1

2Ae
(y0j � y0k), ci ¼ 1

2Ae
(x0k � x0j)

(12:80)

where Ae is the area of the triangular cell. Here the cyclic permutation also applies to
i, j, and k.
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In the local coordinate, the shell can be treated as a combination of a plate and a 2D solid.
Using the FSDT for plates (see Chapter 11), the strains in the local coordinate system can be
given as

«0 ¼

e0xx
e0yy
g0xy
g0xz
g0yz

8>>>><
>>>>:

9>>>>=
>>>>;

5�1

¼ «0m
02�1

� 
|fflfflfflfflffl{zfflfflfflfflffl}
2D solid
membrane

þ z
«0B
02�1

� 
|fflfflfflfflffl{zfflfflfflfflffl}
plate
bending

þ 03�1

gS

� 
|fflfflfflfflffl{zfflfflfflfflffl}

plate
shear

(12:81)

in which

«0m ¼

qu0
qx0

qv0
qy0

qu0
qy0

þ qv0
qx0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, «0b ¼

� qw0
y

qx0

qw0
x

qy0

qw0
x

qy0
� qw0

y

qx0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, «0s ¼

g0xz
g0yz

( )
(12:82)

Substituting Equation 12.78 into Equation 12.82, we obtain

«0m ¼ B0
md

0 ¼ [B0
m1, B

0
m2, B

0
m3]

d0
1

d0
2

d0
3

2
64

3
75 (12:83)

«0B ¼ B0
Bd

0 ¼ [B0
B1, B

0
B2, B

0
B3]

d0
1

d0
2

d0
3

2
64

3
75 (12:84)

in which

B0
mi ¼

fb
i,x0 0 0 0 0 0
0 fb

i,y0 0 0 0 0

fb
i,y0 fb

i,x0 0 0 0 0

2
64

3
75, i ¼ 1, 2, 3 (12:85)

B0
Bi ¼

0 0 0 0 fb
i,x0 0

0 0 0 �fb
i,y0 0 0

0 0 0 �fb
i,x0 fb

i,y0 0

2
64

3
75, i ¼ 1, 2, 3 (12:86)

where subscript ‘‘,’’ indicates differentiation.
In order to eliminate the shear locking, the DSG scheme [21] is used. Then in each

triangular cell, the shear strain can be given as

g0xz ¼
X3
i¼1

bi(Dwx0i þ Dwy0i)

g0yz ¼
X3
i¼1

ci Dwx0i þ Dwy0i
� � (12:87)
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where Dwxi and Dwyi are the DSGs at the node i (¼ 1, 2, 3) of the cell, and they are defined as

Dwx01 ¼ Dwx03 ¼ Dwy01 ¼ Dwy02 ¼ 0

Dwx02 ¼ (w0
2 � w0

1)þ
1
2
a(wx01 þ wx02)þ

1
2
b(wy01 þ wy02)

Dwy03 ¼ (w0
3 � w0

1)þ
1
2
c(wx01 þ wx03)þ

1
2
d(wy01 þ wy03)

(12:88)

where

a ¼ x02 � x01, b ¼ y02 � y01
c ¼ x03 � x01, d ¼ y03 � y01

(12:89)

The shear strain g0
s in each cell can be written as

g0
s ¼

g0xz
g0yz

� 
¼ B0

Sd
0 (12:90)

where the shear strain matrix is given by

B0
s ¼ B0

s1 B0
s2 B0

s3

� �
(12:91)

in which

B0
s1 ¼

1
2Ae

0 0 b� d 0 Ae 0

0 0 c� a �Ae 0 0

" #

B0
s2 ¼

1
2Ae

0 0 d � bd
2

ad
2

0

0 0 �c
bc
2

� ac
2

0

2
664

3
775

B0
s3 ¼

1
2Ae

0 0 �b
bd
2

� bc
2

0

0 0 a � ad
2

ac
2

0

2
664

3
775

(12:92)

12.3.2.4 Edge-Based Smoothing Operation

In our ES-PIM formulation, we perform the smoothing operations based on one common
coordinate system defined for each interior edge that is shared by two cells. For an interior
edge, these two neighboring cells have their own local coordinates that are, in general,
different from each other. A common coordinate system (�x, �y,�z) associated with the edge
(called edge coordinate system) is, therefore, created by letting

. �x be coinciding with the edge k

. �z be the averaged normal direction of the two neighboring cells sharing edge k

. �y be the cross product of the two unit vectors in the �z- and �x-directions
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Once the edge coordinate system is created, we then perform the coordinates transform-
ation for any of the two neighboring elements sharing the edge. The strains in the edge
coordinate system of a cell sharing the edge can be written as

�«m ¼ Rm1Rm2«
0
m

�«B ¼ RB1RB2«
0
B

�«S ¼ RS1RS2g
0
S

(12:93)

in which

Rm1 ¼ Rb1

¼
c2�xx c2�xy c2�xz c�xxc�xy c�xyc�xz c�xxc�xz
c2�yx c2�yy c2�yz c�yxc�yy c�yyc�yz c�yxc�yz

2c�xxc�yx 2c�xyc�yy 2c�xzc�yz c�xxc�yy þ c�yxc�xy c�xzc�yy þ c�yzc�xy c�xxc�yz þ c�yxc�xz

2
4

3
5 (12:94)

RS1 ¼ 2c�xxc�zx 2c�xyc�zy 2c�xzc�zz c�xxc�zy þ c�zxc�xy c�xzc�zy þ c�zzc�xy c�xxc�zz þ c�zxc�xz
2c�yxc�zx 2c�yyc�zy 2c�yzc�zz c�yxc�zy þ c�zxc�yy c�yzc�zy þ c�zzc�yy c�yxc�zz þ c�zxc�yz

� �
(12:95)

Rm2 ¼ Rb2 ¼

c2x0x c2y0x cx0xcy0x

c2x0y c2y0y cx0ycy0y

c2x0z c2y0z cx0zcy0z
2cx0xcx0y 2cy0xcy0y cx0xcy0y þ cx0ycy0x
2cx0ycx0z 2cy0ycy0z cx0ycy0z þ cx0zcy0y
2cx0xcx0z 2cy0xcy0z cx0xcy0z þ cx0zcy0x

2
66666666664

3
77777777775

(12:96)

RS2 ¼

cx0xcz0x cy0xcz0x
cx0ycz0y cy0ycz0y
cx0zcz0z cy0zcz0z

cx0xcz0y þ cx0ycz0x cy0xcz0y þ cy0ycz0x
cx0zcz0y þ cx0ycz0z cy0zcz0y þ cy0ycz0z
cx0xcz0z þ cx0zcz0x cy0xcz0z þ cy0zcz0x

2
666666664

3
777777775

(12:97)

where c�xx is the direction cosine of the angle between the �x- and x-axes, etc.
Substituting Equations 12.69, 12.83, 12.84, and 12.90 into Equation 12.93, the strain in the

edge coordinate system of a cell sharing the edge can be rewritten as

�«m ¼ Rm1Rm2B0
mTd

�«B ¼ RB1RB2B0
BTd

�«S ¼ RS1RS2B0
STd

(12:98)

As shown in Figure 12.35, the smoothing domain Vk corresponding to an interior edge k is
shared by two cells. The smoothed shear strain for the entire smoothing domain is then
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obtained by the area weighted average of these strains of the two neighboring cells sharing
the edge k:

�«mk ¼ 1
Ak

Akþ�«mkþ þ Ak��«mk�ð Þ

�«Bk ¼ 1
Ak

Akþ�«Bkþ þ Ak��«Bk�ð Þ

�gSk ¼
1
Ak

AkþgSkþ þ Ak�gSk�ð Þ

(12:99)

where
the subscripts ‘‘þ’’ and ‘‘�’’ stand for the two neighboring cells sharing edge k
Ak, Akþ , and Ak� are the areas of the smoothing domain of edge k and those of the two
neighboring cells sharing the edge k

Using Equations 12.98 and 12.99, the strains for smoothing domain associated with the kth
edge can be written in the matrix form:

�«mk ¼ �Bmkdk

�«Bk ¼ �BBkdk

�gSk ¼ �BSkdk

(12:100)

in which

�Bmk ¼ Akþ

Ak
Bmkþ � Ak�

Ak
Bmk�

�BBk ¼ Akþ

Ak
BBkþ � Ak�

Ak
BBk�

�BSk ¼ Akþ

Ak
BSkþ � Ak�

Ak
BSk�

(12:101)

where we use � to represent an assembly (a location matched summation). The general-
ized nodal displacement vector dk for the smoothing domain k contains the nodal
values of four nodes ‘‘supporting’’ the smoothing domain, and it can be written as
(see Figure 12.35a)

dk ¼
dm|{z}

node 1

di|{z}
node 2

dn|{z}
node 3

dj|{z}
node 4

� T

(12:102)

Naturally, such averaging operation is not needed for any edge that is on the problem
boundary, as there is only one cell associated with the edge (see Figure 12.35b).

12.3.2.5 Stress–Strain Relations for Shells

We consider general shells undergoing all three possible deformations in 3D space:
in-plane stretching (membrane), off-plane bending, and shearing deformation. For the
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membrane deformation, we simply use the stress–strain relation for 2D solids (plane stress,
Chapter 1):

sm ¼ hc«m (12:103)

where c is given in Equation 1.17. For the bending deformation, we simply use the pseudo-
stress–strain relation for bending deformation of plates based on FSDT (Chapter 11):

sB ¼ h3

12
c«B (12:104)

For the off-plane shear deformation, we also use the pseudo-stress–strain relation for shear
deformation for plates based on FSDT (Chapter 11):

sS ¼ khGgS (12:105)

where
G is given in Equation 11.66
k¼ 5=6 is the shear correction factor

All these stress and strains are now independent of z, and they have the form of

sm ¼
hsxx

hsyy

hsxy

8<
:

9=
; ¼

Nx

Ny

Nxy

8<
:

9=
; (12:106)

sB ¼

Ðh=2
�h=2

zsxxdz

Ðh=2
�h=2

zsyydz

Ðh=2
�h=2

zsxydz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼
Mxx

Myy

Mxy

8><
>:

9>=
>; (12:107)

ss ¼ hsxz

hsyz

� 
¼ Vxz

Vyz

� 
(12:108)

Note that all these stress–strain relations given in Equations 12.103 through 12.105 are
applicable also to the smoothed strains and stresses: The smoothing operation has no
effects on the constitutive relations.

12.3.2.6 Weakened-Weak Form

Following the discussions in Chapter 5 and using all these pseudo-stresses and strains
defined above, the smoothed Galerkin weak form for shells based on the FSDT can be
written as
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h
ð
A

d�«Tm(u)c�«m(u)dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Membrane

þ h3

12

ð
A

d�«TB(u)c�«B(u)dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bending

þ kh
ð
A

d�gT
S(u)G�gS(u)dA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shearing

�
ð
A

duTbdA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Body force

�
ð
Gt

duTtGdG

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Boundary force

¼ 0 (12:109)

where u is the generalized displacement vector consisting of three translational displace-
ments and three rotations defined on the mid-plane of the plate. It is arranged in form of

u ¼

u1
u2
u3
u4
u5
u6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

u
v
w
wx
wy
wz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(12:110)

and the generalized body force vector q can be written as

qz ¼

q1
q2
q3
q4
q5
q6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

hbx
hby
hbz
mxx

myy

mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(12:111)

Because all the strains are smoothed over the smoothing domain, the first three terms in the
foregoing equation can be written in the simple summation form (see Chapter 4):

h
XNs

k¼1

d�«Tmk(u)c�«mk(u)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Membrane

þ h3

12

XNs

k¼1

d�«TBk(u)c�«Bk(u)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bending

þ kh
XNs

k¼1

d�gT
Sk(u)G�gSk(u)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Shearing

�
ð
A

duTbdA

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Body force

�
ð
Gt

duTtGdG

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Boundary force

¼ 0 (12:112)

With these strains given in Equation 12.100, these strain potentials can be easily evaluated
and hence the stiffness matrix of our ES-PIM model can be evaluated.

12.3.2.7 Force Terms

As a generalized smoothed Galerkin (GS-Galerkin) do not change force potentials
(see Chapter 5), these terms can be dealt with in exactly the same way as in the FEM.
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The procedure is the same as those given in Chapter 8. Finally, the discrete system equation
can be obtained as

�K�U ¼ F (12:113)

which can be solved using standard routines for �U that contains all the nodal values of the
generalized displacements.

12.3.3 Numerical Examples

We now present a number of numerical examples solved using our ES-PIM code for shells.
We will start with several benchmark problems to examine the performance of the linear
ES-PIM. Numerical results of the ES-PIM are compared with those of several FEM shell
elements, including

. QPH (One point quadrature quadrilateral shell element with physical hourglass
control) [22]

. Four-node SRI (A standard four-node Mindlin element with selective reduced
integration) [23]

. MITC4 (A four-node fully integrated shell element using mixed interpolated
tensorial components) [24]

. DSG3 (DSG triangular element) [21]

. DKT-CST (triangular flat element superimposing the DKT plate bending element
with the CST plane stress element)

. DKT-CST* (triangular curved element superimposing the DKT plate bending
element with the membrane element of Carpenter et al.) [25]

Example 12.11: Scordelis-Lo Roof

The Scordelis-Lo roof shown in Figure 12.36 is a benchmark problem to test numerical methods
for shell analysis. This problem is very useful for determining the ability of a numerical model in
representing the complicated states of the membrane strain. The length of the shell L¼ 25 ft, the
radius R¼ 25 ft, the thickness h¼ 0.25 ft, and the span angle u0¼ 408. The material properties are:
Poisson’s ratio n¼ 0.0 and Young’s modulus E¼ 4.32� 108 N=ft2. The boundary conditions
at each end of the roof are supported by a rigid diaphragm. The loading is a uniform vertical
gravity load of 90 N=ft2. Owing to the symmetry, only a quarter of the roof is modeled. Three
meshes, 4� 4, 8� 8, and 16� 16 are used in this problem and the typical 4� 4 mesh is shown in
Figure 12.36.
For this problem a reference solution for the vertical deflection at the center of the free edge is

found to be 0.3024 ft. All the numerical solutions obtained are normalized with this reference
value. The results of the linear ES-PIM are listed in Table 12.4, together with those of other FEM
models. It is observed that among the methods using triangular mesh, the ES-PIM performs best.
The ES-PIM solutions are quite compatible with those using quadrilateral mesh. We also found
that the ES-PIM converges very fast and the results are very accurate when 16� 16 mesh is used.
The vertical displacement along the centre line of the roof is plotted in Figure 12.37, and the
longitudinal displacement along the support end of the roof is plotted in Figure 12.38. It is
clearly shown that the ES-PIM solution agrees well with the analytic solutions [26].
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FIGURE 12.36
Problem setting for the Scordelis-Lo roof
with a 4� 4 mesh for the quarter model.

TABLE 12.4

Normalized Vertical Displacement at Midpoint of the Free Edge
on the Scordelis-Lo Roof (Normalized with 0.3024 ft)

Quadrilateral Mesh Triangular Mesh

Mesh QPH MIT4 4-SRI DSG DKT-CST DKT-CST ES-PIM

4� 4 0.940 0.940 0.960 0.725 0.707 0.646 0.884

8� 8 0.980 0.970 0.980 0.886 0.866 0.846 0.954
16� 16 1.010 1.000 1.000 0.979 0.955 0.950 1.000
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FIGURE 12.37
Vertical deflection along the central line on the Scordelis-Lo roof.
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Example 12.12: Pinched Cylinder with End Diaphragms

A pinched cylinder supported at each end by rigid diaphragm shown in Figure 12.39 is considered
in this section. It is a widely used benchmark problem for determining the ability of a numerical
model to represent inextensional bending and complex membrane states. The length of the
pinched cylinder L¼ 600 in., the radius R¼ 300 in., the thickness h¼ 3 in. The material properties
are: Poisson’s ratio n¼ 0.3, and Young’s modulus E¼ 3.0� 106 N=in2. The loading is a pair of
pinching loads F¼ 1.0 N. Owing to the symmetry, only 1=8 of the problem is modeled. Three
meshes, 4� 4, 8� 8, and 16� 16, are used in the investigation. The 4� 4 mesh is shown in Figure
12.39. In this case, the exact solution of the radial displacement under the point load is found to be
1.8248� 10�5 in. The numerical solutions are normalized with this value. The results are listed in
Table 12.5. It can be seen that the ES-PIM is performed third for this problem, behind the two DKT-
CST models.
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FIGURE 12.38
Longitudinal displacement along the support line on the Scordelis-Lo roof edge.

FIGURE 12.39
Problem setting for the Scordelis-Lo
roof with a 4� 4 mesh for the quarter
model.
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Example 12.13: Hemispherical Shell

A hemispherical shell loaded antisymmetrically by point loads, shown in Figure 12.40 is now
examined. This problem has almost no membrane strains but it is a challenging test on the ability
of numerical model to handle rigid body rotations about the normal to the shell’s surface. The
geometric parameters are radius R¼ 10 m and thickness h¼ 0.04 m. The material properties are
n¼ 0.3 and E¼ 6.825� 107 Pa. The point loading is F¼ 1 N. The solutions are obtained using
three meshes each with 5, 9, and 17 nodes per side. A typical five nodes per side mesh is shown in
Figure 12.40. The exact solution of radial deflection at point load is 0.0924 m. The numerical
solutions listed in Table 12.6 are normalized with this exact value. It can be observed that the
ES-PIM solutions agree well with analytical solutions. Its overall performance is about the third,
but quite close to the solutions of two DKT-CST models.

Example 12.14: Hood of an Automobile

An actual structure component of a car hood shown in Figure 12.41 is studied using the ES-PIM.
The dent resistance of the car hood is one of the important considerations in the process of car
design, and need to be analyzed in detail. In this example, all of the boundary nodes of the hood
are fixed, and a concentrated load F¼ 150 N is applied in the x-direction. The thickness of the
shell is 0.8 mm, and is very thin considering the large dimensions in other two directions.

F
F

x

y

z

Free

Sym Sym

FIGURE 12.40
Pinched cylindrical with end diaphragms with
a mesh of five nodes per side.

TABLE 12.5

Normalized Displacement at Load Point on the Pinched Cylinder
with End Diaphragms

Quadrilateral Mesh Triangular Mesh

Mesh QPH MIT4 4-SRI DSG DKT-CST DKT-CST ES-PIM

4� 4 0.370 0.370 0.370 0.316 0.462 0.773 0.405

8� 8 0.740 0.740 0.750 0.695 0.860 0.947 0.813

16� 16 0.930 0.930 0.940 0.904 0.994 1.015 0.983

Note: The value used for normalization is 1.8248� 10�5 in.
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Poisson’s ratio of the material is 0.3, and the Young’s modulus is 2.1e5 N=mm2. In order to
quantify the accuracy of the ES-PIM, the solutions obtained using ABAQUS� with triangular
elements and quadrilateral elements are used for comparison. The reference solution is also
obtained using ABAQUS with quadrilateral shell elements of large number of (25423) nodes. All
the solutions are plotted together in Figure 12.42. It is shown that the ES-PIM using triangular mesh
achieves the same level of accuracy as the ABAQUS solution using quadrilateral shell elements,
and a much higher accuracy than that using triangular shell elements.

TABLE 12.6

Normalized Displacement at Load Point on the Hemispherical Shell

Quadrilateral Mesh Triangular Mesh

Node=Side QPH MIT4 4-SRI DSG DKT-CST DKT-CST ES-PIM

5 0.280 0.390 0.410 0.912 1.028 1.064 0.996

9 0.860 0.910 0.930 0.843 1.016 1.018 0.961

17 0.990 0.990 0.980 0.959 0.996 0.995 0.992

Note: The value used for normalization is 0.0924 m.

FIGURE 12.41
Triangular mesh for the hood of an automobile.
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FIGURE 12.42
Displacements in x-direction at the loading point on the hood of an automobile.
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12.3.4 Concluding Remarks

In this section, a linear ES-PIM is formulated to analyze the deformation of shells based on
the FSDT using simple three-node triangular mesh with 6 DOF per node:

. In the ES-PIM formulation, no extra sampling points are introduced to evaluate the
stiffness matrix, and no increase of total DOF.

. The ES-PIM is found very stable, the results are very accurate, and the perform-
ance is very good and consistent for all the tests conducted. It often achieves the
same level of accuracy as the FEM quadrilateral shell elements.

. Using the DSG method, the ES-PIM is free from shear locking, and hence it works
well for both thin and thick shells.

Moving forward, ES-PIM can be further improved and extended for other applications:

. Extensions to nonlinear problems should be straightforward, because these tech-
niques developed in FEM can be utilized with minor changes.

. The linear ES-PIM can be easily extended to meshes of general n-sided polygonal
cells [27].

. Extension to quadratic PIMs (T6=3-scheme) and radial point interpolation methods
(RPIMs) (T6- or T2L-schemes) for shells can offer a variety of ways to model the
shells. The cells do not have to be flat, the shell curvature can be modeled, and
ways to deal with the membrane and shear locking can also be devised. The work
in this direction is still ongoing.

. Other SC-Galerkin models can also be developed for shells in similar ways pre-
sented in this section.

12.4 Summary

In this chapter, we formulated the EFG method for both thin and thick shells and
ES-PIM for thick shells but applicable to thin shells. We have shown through a number
of benchmarking problems that they work very well in their ways, and have their own
features.

. The EFG can give accurate approximation to both the field variables and geometry
of the shell using the MLS approximation. It, however, uses a very large number of
nodes in the local approximation, which reduces the efficiency.

. The ES-PIM uses flat triangular cells that can be generated automatically. It uses
only three local nodes for displacement and four nodes for strain approximations.
It has features of simplicity, free of shear locking, robustness, accuracy, adaptivity,
and efficiency. However, the shell is modeled as flat triangles, and hence fine mesh
may be needed.

Meshfree Methods for Shells 611

© 2010 by Taylor and Francis Group, LLC



References

1. Yang, H. T. Y., Saigal, S., and Liaw, D. G., Advances of thin shell finite elements and some
applications—Version I, Comput. Struct., 35, 481–504, 1990.

2. Krysl, P. and Belytschko, T., Analysis of thin shells by the element-free Galerkin method,
Int. J. Solids Struct., 33, 3057–3080, 1996.

3. Noguchi, H., Kawashima, T., and Miyamura, T., Element free analyses of shell and spatial
structures, Int. J. Numerical Methods Eng., 47, 1215–1240, 2000.

4. Li, S., Hao, W., and Liu, W. K., Numerical simulations of large deformation of thin shell structures
using meshfree methods, Comput. Mech., 25, 102–116, 2000.

5. Liu, L., Liu, G.R., and Tan, V. B. C., Element free analyses for static and free vibration of thin
shells, in Proceedings of the Asia-Pacific Vibration Conference, W. Bangchun, ed., Hangzhou, China,
November 2001.

6. Liu, L., Liu, G. R., and Tan, V. B. C., Element free method for static and free vibration analysis of
spatial thin shell structures, Comput. Methods Appl. Mech. Eng., 191, 5923–5942, 2002.

7. Ouatouati, A. E. and Johnson, D. A., A new approach for numerical modal analysis using the
element free method, Int. J. Numerical Methods Eng., 46, 1–27, 1999.

8. Liu, G. R. and Chen, X. L., A mesh-free method for static and free vibration analyses of thin plates
of complicated shape, J. Sound Vib., 241(5), 839–855, 2001.

9. Simo, J. and Fox, D. D., On a stress resultant geometrically exact shell model, Part I: Formulation
and optimal parameterization, Comput. Methods Appl. Mech. Eng., 72, 267–304, 1989.

10. Belytschko, T., Stolarski, H., Liu, W. K., Carpenter, N., and Ong, J. S.-J., Stress projection
for membrane and shear locking in shell finite elements, Comput. Methods Appl. Mech. Eng., 51,
221–258, 1985.

11. Petyt, M., Vibration of curved plates, J. Sound Vib., 15, 381–395, 1971.
12. Carter, R. L., Robinson, A. R., and Schnobrich, W. C., 1. Free vibrations of hyperboloidal shells of

revolution, J. Eng. Mech., 93, 1033–1053, 1969.
13. Ozakca, M. and Hinton, E., Free vibration analysis and optimization of axisymmetrical plates and

shells—I. Finite element formulation, Comput. Struct., 52, 1181–1197, 1994.
14. Tou, S. K. and Wong, K. K., High-precision finite element analysis of cylindrical shells, Comput.

Struct., 26, 847–854, 1987.
15. Subir, K. S. and Gould, P. L., Free vibration of shells of revolution using FEM, J. Eng. Mech. Div.

ASCE EM2, 100, 283–303, 1974.
16. Sneddon, I. N., The symmetrical vibrations of a thin elastic plate, Proc. Cambridge Philos. Soc., 41,

27–43, 1945.
17. Bathe, K. J., Wilson, E. L., Paterson, F. E., and Sap, I. V., A Structural Analysis Program for Static

and Dynamic Response of Linear Systems, Report EERC 73–11, University of California, Berkeley,
CA, 1973.

18. Beskos, D. E., Dynamic analysis of plates and shallow shells by the D=BEM, in Advances in the
Theory of Plates and Shells, Elsevier, Oxford, 1990, pp. 177–196.

19. Cui, X. Y., Liu, G. R., Li, G. Y., Zhang, G. Y., and Zheng, G., Analysis of plates and shells using an
edge-based smoothed finite element method. Computational Mechanics, (submitted), 2009.

20. Liu, G. R. and Quek, S. S., The Finite Element Method: A Practical Course, Butterworth Heinemann,
Oxford, 2002.

21. Bletzinger, K. U., Bischoff, M., and Ramm, E., A unified approach for shear-locking-free triangular
and rectangular shell finite elements, Comput. Struct. 75, 321–334, 2000.

22. Belytschko, T., Leviathan I. Physical stabilization of the 4-node shell element with one point
quadrature. Comput. Methods Appl. Mech. Eng., 113, 321–350, 1994.

23. Hughes, T. J. R. and Liu, W. K., Nonlinear finite element analysis shells: Part II, Two-dimensional
shells, Comput. Methods Appl. Mech. Eng., 26, 331–362, 1981.

24. Bathe, K. J. and Dvorkin, E. N., A formulation of general shell elements—The use of mixed
interpolation of tensorial components. Int. J. Numerical Methods Eng., 22, 697–722, 1986.

612 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



25. Carpenter, N., Stolarski, H., and Belytschko, T., Improvements in 3-node triangular shell elem-
ents. Int. J. Numerical Methods Eng., 23, 1643–1667, 1986.

26. Scordelis, A. C. and Lo, K. S., Computer analysis of cylindrical shells. J. Am. Concrete Inst. 61,
539–561, 1969.

27. Dai, K. Y., Liu, G. R., and Nguyen, T. T., An n-sided polygonal smoothed finite element method
(nSFEM) for solid mechanics. Finite Elem. Anal. Des., 43, 847–860, 2007.

Meshfree Methods for Shells 613

© 2010 by Taylor and Francis Group, LLC





13
Boundary Meshfree Methods

The boundary element method (BEM) is a numerical technique based on the boundary
integral equation (BIE), which has been developed in the 1960s. For many (especially
linear) problems, BEM is undoubtedly superior to the ‘‘domain discretization’’ type of
methods, such as the finite element method (FEM) and the finite difference method (FDM).
In BEM, for example, only the two-dimensional (2D) bounding surface of a three-dimensional
(3D) body needs to be discretized. BEM is applicable to all those problems for which the
fundamental solution (Green’s functions) is known in a reasonably simple form, preferably
in a closed form.

The meshfree idea has also been used in BIE, such as the boundary node method (BNM)
by Mukherjee et al. [1–4] and the local boundary integral equation (LBIE) method by Zhu
and Atluri [5]. These boundary-type meshfree methods are formulated using the moving
least squares (MLS) approximations and techniques of BIE. In BNM, the surface of the
problem domain is discretized by properly scattered nodes. The BNM has been applied to
3D problems of both potential theory and the theory of elastostatics [3,4]. Very good results
have been obtained in these problems. However, because the shape functions based on the
MLS approximation lack the delta function property, extra efforts are needed to satisfy
accurately the boundary conditions in BNM. This problem becomes even more serious in
BNM because of the large number of boundary conditions, compared with the total
number of nodes for the problem. The method used in [2] to impose boundary conditions
resulted in a set of system equations that were doubled in number. The advantage of the
boundary-type method is therefore eroded and discounted to a certain degree, making
BNM computationally much more expensive than the conventional BEM.

A boundary-type meshfree method called the boundary point interpolation method
(BPIM) has been formulated [6,7], where the point interpolation method (PIM) [8,9] was
used to construct shape functions. It is confirmed that there is no need at all to use MLS in
boundary-type meshfree methods, at least for 2D problems. PIM works much more
efficiently in constructing shape functions, and all the PIM shape functions possess the
Kronecker delta function property. This removes the issue of treatment of boundary
conditions, which is especially beneficial to methods based on BIE. The dimension of the
equation system of BPIM is equivalent to that of BEM. For 2D problems, BPIM works
perfectly well without any special trick and is superior to BNM in simplicity, accuracy, and
computational efficiency. For 3D problems, for which 2D shape functions need to be
constructed, there could be an issue of singular moment matrices. In such cases, the special
techniques discussed in Section 2.5.4 should be applied. A robust way of constructing PIM
shape functions is to use radial functions as the basis. The advantage of using a radial
function basis is that it guarantees the existence of the inverse moment matrix. The
methods formulated are termed as boundary radial PIM (BRPIM) [10]. A good alternative
could be the use of T-schemes (Section 1.7.6).

This chapter focuses on the introduction of boundary meshfree methods formulated
using both MLS shape functions (BNM) and PIM shape functions (BPIM and BRPIM).
These boundary meshfree methods can be formulated in the same manner, except that in
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formulating BNM using MLS shape functions proper treatments of essential boundary
conditions [12,2] are required.

Only 2D problems are discussed in this chapter. In all these boundary meshfree methods,
only the boundary of the problem domain is represented by properly scattered nodes.
BIE for 2D elastostatics is then discretized using meshfree shape functions based only on
a group of arbitrarily distributed boundary nodes that are included in the support domain
of a point of interest. For 3D BNM, readers are referred to the work by Chati et al. [3].

13.1 BPIM Using Polynomial Basis

A BPIM using polynomial basis in the construction of shape functions is first presented in
this chapter for solving boundary value problems of solid mechanics. The method was
presented in [11]. The PIM shape functions are constructed in a curvilinear coordinate
system, and possess the delta function property. The boundary conditions can be imple-
mented with ease as in the standard BEM. In addition, the rigid body movement can also
be utilized to avoid some singular integrals. For 2D problems, BPIM with polynomial basis
has no singularity problems with the moment matrix, as the boundaries are curves, and the
interpolation is essentially one-dimensional (1D). Therefore, there is no reason to use MLS
approximation in this case.

A detailed formulation of BPIM using polynomial basis is presented, and several
numerical examples are presented to demonstrate the validity and efficiency of BPIM.
A comparison study is carried out using BPIM, BNM that uses MLS shape functions,
standard BEM, and analytical methods.

13.1.1 Point Interpolation on Curves

Consider a 2D domain V bounded by its boundary G, as shown in Figure 13.1. In using
boundary meshfree methods, only the boundary G of the problem domain is represented
using nodes. The point interpolants in BPIM are constructed on the 1D bounding curve G of

FIGURE 13.1
Domains and their boundaries: problem
domain V bounded by G, including
essential (displacement) boundary Gu

and natural (force or free) boundary Gt.
In boundary meshfree methods, only the
problem boundary is represented using
nodes.
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the 2D domain V, using a set of discrete nodes on G. As in the conventional BEM
formulation, the displacement and traction can be constructed independently using PIM
shape functions. The displacement u(s) and traction t(s) at a point s on the boundary G are
expressed using the surrounding nodes and polynomials:

u(s) ¼
Xn
i¼1

pi(s)ai ¼ pT(s)a (13:1)

t(s) ¼
Xn
i¼1

pi(s)bi ¼ pT(s)b (13:2)

where
s is a curvilinear coordinate on G
n is the number of nodes in the support domain of a point of interest at sQ, which is often
a quadrature point of integration

pi(s) is a basis function of a complete polynomial with p1¼ 1 and pi¼ si�1

ai and bi are the coefficients that change when sQ changes

In the matrix form, we have

aT ¼ [a1, a2, . . . , an] (13:3)

bT ¼ [b1, b2, . . . , bn] (13:4)

pT(s) ¼ [1, s, s2, . . . , sn�1] (13:5)

The coefficients ai and bi can be determined by enforcing Equations 13.1 and 13.2 to be
satisfied at the n nodes surrounding the point sQ. Equation 13.1 can then be written in the
following matrix form:

un ¼ PQa (13:6)

tn ¼ PQb (13:7)

where un and tn are the vectors of the nodal displacement and traction given by

un ¼ [u1,u2, . . . ,un]
T (13:8)

tn ¼ [t1, t2, . . . , tn]T tn ¼ [t1, t2, . . . , tn]T (13:9)

and PQ is the moment matrix formed by

PT
Q ¼ [p(s1), p(s2), . . . , p(sn)] (13:10)

Solving Equations 13.6 and 13.7 for a and b, and then substituting them into Equation 13.1,
we obtain

u(s) ¼ FT(s)un (13:11)

t(s) ¼ FT(s)tn (13:12)
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where the matrix of the shape function F(s) is defined by

FT(s) ¼ pT(s)P�1
Q ¼ [f1(s),f2(s), . . . ,fn(s)] (13:13)

The shape function fi(s) obtained from the above procedure satisfies

fi(s ¼ si) ¼ 1, i ¼ 1, n (13:14)

fj(s ¼ si) ¼ 0, j 6¼ i (13:15)

Xn
i¼1

fi(s) ¼ 1 (13:16)

Therefore, the interpolation functions constructed have the Kronecker delta function prop-
erty, and the boundary conditions can be easily imposed as in the standard BEM. The
procedure to prove these properties can be found in Chapter 2.

The matrix PQ is an n� n matrix. It needs to be invertible for the construction of
the shape functions in Equation 13.13. Fortunately, in the curvilinear coordinate
system, the matrix PQ is, in general, reversible for 2D problems (interpolation along a
1D boundary).

It can be found that the accuracy of interpolation depends on the nodes in the support
domain of a quadrature point. Therefore, a suitable support domain should be chosen to
ensure a proper area of coverage for interpolation. To define the support domain for a
point sQ, a curvilinear support domain is used. The arc length of the curvilinear domain ds
is computed by

ds ¼ asdc (13:17)

where
as is the dimensionless size of the support domain
dc is a characteristic length that relates to the nodal spacing near the point sQ

If the nodes are uniformly distributed, dc is the distance between two neighboring nodes. In
the case where the nodes are nonuniformly distributed, dc can be defined as an ‘‘average’’
nodal spacing in the support domain of sQ. The procedure of determining dc can be
performed following the procedure in Section 1.7.3 for the 1D case based on our current
curvilinear coordinate system.

As discussed in Section 2.11, the PIM approximation could be incompatible. Similar to
the domain type in PIM methods, we can also formulate nonconforming and conforming
BPIMs. In using the nonconforming BPIM, the support domain is determined for each and
every Gauss point. In the conforming BPIM, however, the support domain is determined
for each integration cell to ensure the compatibility of the field function approximation
with the cells. Because the integration cells are connected at points (not lines), the com-
patibility at the nodes is automatically enforced. The number of nodes, n, can be deter-
mined by counting all the nodes in the support domain. The dimensionless size of the
support domain as should be predetermined by the analyst. Our numerical examination
suggests that as¼ 2.0–3.0 (which includes n¼ 3–6) leads to an acceptable performance
for BPIM.
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13.1.2 Discrete Equations of BPIMs

The well-known BIE for 2D linear elastostatics can be written as [13]

ciui þ
ð
G

ut*dG ¼
ð
G

tu*dGþ
ð
V

bu*dV (13:18)

where
ci is a coefficient dependent on the geometric shape of the boundary
b is the body force vector
u* and t* are the fundamental solution for linear elastostatics

The fundamental solution for a 2D plane strain problem is given in [13] as

uij* ¼ 1
8pG(1� n)

(3� 4n) ln
1
r
dij þ r,ir,j

� �
(13:19)

tij* ¼ �1
4p(1� n)r

qr
qn

[(1� 2n)dij þ r,ir,j]� (1� 2n)(r,in,j � r,jn,i)
� �

(13:20)

where
G is the shear modulus
n is the Poisson’s ratio
d is the Kronecker delta function
r is the distance between the source point and the field point
n is the normal to the boundary
a comma designates a partial derivative with respect to the indicated spatial variable

Substituting Equations 13.11 and 13.12 into Equation 13.18 yields the BPIM system
equation for all the nodes on the boundary of the problem domain:

HU ¼ GTþD (13:21)

where

H ¼ ci þ
ð
G

t*FTdG (13:22)

G ¼
ð
G

u*FTdG (13:23)

D ¼
ð
V

bu*dV (13:24)

13.1.3 Implementation Issues in BPIMs

13.1.3.1 Singular Integral

To evaluate the integrals given in Equations 13.22 through 13.24, background integration
cells are required. The cells should be created on the boundary of the problem domain with
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proper dimensions to ensure an accurate integration. From Equations 13.19 and 13.20, it
can be seen that the integrands in Equations 13.22 through 13.24 consist of regular and
singular functions. The regular functions can be evaluated using the usual Gaussian
quadrature. Equation 13.23 for the matrix G contains a log singular integral. This type of
a singular integral can be evaluated by log Gaussian quadrature as follows:

I ¼
ð1

0

ln (1=x)f (x)dx ffi
Xm
i¼1

f (xi)wi (13:25)

where the required points xi and weights wi can be found in [13] for conventional BEMs.
In the matrix H defined by Equation 13.22, c is a coefficient dependent on the geometric

shape of the boundary that is easy to obtain for a smooth boundary. However, it is more
complicated to obtain c for nonsmooth boundaries. In addition, H contains a (1=r) type of
singular integral. Therefore, it is a nontrivial task to directly evaluate the diagonal terms
of H. The same difficulty has been experienced in the standard BEMs. Note that shape
functions of BPIM possess the delta function property; therefore, the rigid body movement
can be utilized in this work to obtain the diagonal terms of H [13].

13.1.3.2 Application of Boundary Conditions

There are two types of boundary conditions in BPIM:

t ¼ tG on the natural boundaryGt (13:26)

u ¼ uG on the essential boundaryGu (13:27)

Because the shape functions of BPIM have the delta function property, the boundary
conditions can be imposed in the same way as the standard BEM. Note that if MLS
shape functions are used, proper treatments are needed [2,12].

After applying the boundary condition, the system (Equation 13.21) has 2NB equations
and 2NB unknowns for NB boundary nodes. The system equation can be solved using
standard routines of an algebraic equation solver to obtain the displacement and traction.

13.1.3.3 Handling of Corners with Traction Discontinuities

In handling traction discontinuities in corners, special care should be taken. Double nodes
and discontinuous elements at corners need to be used to overcome this problem in the
BEM. Because there are no elements used in BPIM, a simple method proposed in [11] to
solve this difficulty is ‘‘displacing’’ the nodes from the corner, meaning that we do not put
a node at the corner, but the support domain for PIM interpolations stretches to and then is
truncated at the corner. A small privilege of the PIM interpolation is that this can be done
beyond the cells. The method is very easy to implement, is used in the following numerical
examples, and is proved to be very accurate.

13.1.4 Numerical Examples

The BPIM is coded and used to solve a number of problems of mechanics. A detailed
comparison study is carried out using the present BPIM, BNM, BEM, and analytical
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methods. In BNM, a weight function must be used for constructing MLS shape functions.
The exponential weight function [2] given below is used for the examples in this section:

wi(s) ¼
e�(di=c)

2k � e�(dsQ=c)
2k

1� e�(dsQ=c)2k
d � dsQ

0 d > dsQ

8><
>: (13:28)

where
di is the arc length
dsQ is the size of the support of the weight function wi, which is the dimension of the
support domain in BNM

k and c are constants

In this section, we use k¼ 1 and dsQ=c¼ 0.75 which were used in [2].
The following presents some examples analyzed using the nonconforming BPIM.

Example 13.1: Rectangular Cantilever

BPIM is first applied to analyze the displacement and the stress field in a rectangular cantilever,
which is shown in Figure 6.4. A plane stress problem is considered. The parameters for this
example are

Young’s modulus for the material: E¼ 3.0� 107

Poisson’s ratios for two materials: n¼ 0.3

Thickness of the cantilever: t¼ 1

Height of the cantilever: D¼ 12

Length of the cantilever: L¼ 48

Load: P¼ 1000

The cantilever is subjected to a parabolic traction at the free end, as shown in Figure 6.4. The
analytical solution is available in Timoshenko and Goodier [14] and is listed in Equations 6.50
through 6.55.

A total of 120 uniform boundary nodes are used to discretize the boundary of the
cantilever. To evaluate the integral of matrices, 120 uniform integration cells are used.
The parameter as in Equation 13.17 for the support domains is fixed at 2.0. Therefore, three
to six nodes are included in the support domain for constructing shape functions.

Figure 13.2 illustrates the comparison between the shear stress calculated analytically
and that by BPIM at the section x¼ L=2. The plot shows a good agreement between the
analytical and numerical results. The conventional linear BEM results of this problem are
also shown in the same figure for comparison. The density of the nodes in BEM and BPIM
is exactly the same. It is clearly shown that the BPIM results are more accurate than the
BEM results. This is because BPIM uses more nodes for the interpolation of displacements
and tractions. Therefore, the order of the interpolant in BPIM is higher than the order of the
linear elements in BEM.

For a detailed error analysis, we define the following norm as an error indicator using
the shear stress, as with the shear stress it is much more critical than the other stress
components in the rectangular cantilever to reflect the accuracy:

Boundary Meshfree Methods 621

© 2010 by Taylor and Francis Group, LLC



et ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

(tnumi � texacti i)2
,XN

i¼1

texacti

� �2
vuut (13:29)

where
N is the number of nodes investigated
tnum is the shear stress obtained numerically
texact is the analytical shear stress

The convergence for the shear stresses at the section x¼ L=2 with mesh refinement is
shown in Figure 13.3. The convergences of BNM and the linear BEM are also shown in the
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FIGURE 13.2
Shear stress txy at the section x¼L=2 of the beam. (From Gu, Y.T. and Liu, G.R., Comput. Mech., 28, 47, 2002. With
permission.)

FIGURE 13.3
Convergence in the et norm of the error.
(From Gu, Y.T. and Liu, G.R., Comput.
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same figure, where h is a characteristic length related to the nodal spacing. Three kinds of
nodal arrangements of 40, 240, and 480 uniform boundary nodes are used. It can be
observed that the accuracy of BPIM and BNM using MLS approximation is nearly the
same, but both BPIM and BNM have higher accuracies than BEM. The convergence of
BPIM seems to be the best among these three methods.

As mentioned above, a dimensionless size of the support domain as used in Equation
13.17 needs to be chosen such that a reasonable number of nodes lie in the support domain
of an evaluation point. The results of et for different sizes of support domains are shown in
Table 13.1. In this analysis, the boundary is modeled by 40 uniformly distributed nodes,
and 40 uniformly spaced integration background cells are used. It is found that the
accuracy of the results of BPIM changes slightly with the dimension of the support domain
when the nodal density is fixed. Although the choice of the support domain may also
depend a little on the type of the problem, it is found that as¼ 2.0–3.0 works well for most
of the problems investigated in this section.

It may be mentioned here that the use of a large support domain does not necessarily
lead to more accurate results.

Example 13.2: Plate with a Hole

Consider now an infinite plate with a central circular hole subjected to a unidirectional tensile
load of p¼ 1.0 in the x-direction. As a large finite plate can be considered a good approximation of
an infinite plate, a finite square plate of 20� 20 is considered. Making use of the symmetry, only
the upper right quadrant of the finite plate is modeled, as shown in Figure 13.4. Plane strain
condition is assumed, and the material properties are E¼ 1.0� 103 and n¼ 0.3. Symmetry
conditions are imposed on the left and bottom edges, and the inner boundary of the hole is
traction free. The tensile load p is imposed on the right edge in the x-direction. The exact solution
for the stresses of an infinite plate is given in [14] and is listed in Equations 7.41 through 7.46.

A total of 68 nodes are used to discretize the boundary (with 10 uniformly distributed
nodes on BC, CD, and AE, and 19 nonuniformly distributed nodes along AB and DE). The
same number of integration background cells is used. The support domain of an evaluation
point is determined, as in Equation 13.17 (with as¼ 2.0, and the characteristic arc length:
dQ¼ 1.0 on AB, BC, CD, and DE, and dQ¼ 0.2 along AE). If the number of nodes in the

TABLE 13.1

Effects of the Dimension of the Support
Domain on the Error of the Energy Norm

Dimension of the Support
Domain (as) eat

1.0 0.1688

2.0 0.1410

3.0 0.1775

4.0 0.1812

5.0 0.1794

a Defined by Equation 13.29.
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support domain is more than six, only six nodes with a shorter arc length to the integration
point are used in the interpolation.

As the stress is more critical in the assessment of the solution accuracy, detailed results of
the stress are presented here. The stress sx at x¼ 0 obtained by BPIM is given in Figure 13.5
together with the analytical solution for the infinite plate. It can be observed from this
figure that BPIM gives very good results for this problem. The BNM results of this problem
are also shown in the same figure for comparison. It is clearly shown that the BPIM and
BNM results possess nearly the same accuracy.

FIGURE 13.4
Nodes in a plate with a central hole subjected to a
unidirectional tensile load in the x-direction.
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FIGURE 13.5
Stress distribution in the plate with a central hole subjected to a unidirectional tensile load (sx, at x¼ 0). (From
Gu, Y.T. and Liu, G.R., Comput. Mech., 28, 47, 2002. With permission.)
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Example 13.3: A Rigid Flat Punch on a Semi-Infinite Foundation

As BEM methods have a clear advantage over domain-type methods for problems with infinite
domain, BPIM is used to obtain a solution for an indentation produced by a rigid flat punch in a
semi-infinite soil foundation, as shown in Figure 13.6. In this case, Green’s functions for a half
plane are employed [13], and only the contact surface between the punch and the half-space
needs to be discretized.

Consider a rigid punch of length L¼ 12 subjected to a uniform pressure p¼ 100 on the
top surface. The parameters of the soil foundation are taken as E¼ 3.0� 104, and n¼ 0.3.
The punch is considered to be perfectly smooth, and does not result in any fraction force in
the interface between the punch and the foundation. The indentation is measured by the
vertical displacement of the punch. A plane strain condition is assumed. Due to symmetry,
only the right half of the contact surface is discretized by 31 distributed boundary nodes;
31 nonuniformly distributed integration background cells are used. Coordinates of these
boundary nodes are obtained using the following formula:

xm ¼ 6:2(m� 1)
m

(13:30)

where m is the node number, and m¼ 1–31.
The vertical surface displacements of the foundation are assumed to be the same as that

of the punch (perfect contact). This assumption is often proved true for a rigid punch.
A prescribed vertical displacement of the punch is imposed on the contact surface as a
boundary constraint. The prescribed displacement of the punch can be obtained using the
approximate method presented in [15], i.e., the vertical displacement of a vertically loaded
rigid area in contact with the rigid punch may be approximated by the mean vertical
displacement of a uniformly loaded flexible area of the same shape. The approximation is
expressed as follows:

vrigid ¼ 1=2(vcenter þ vedge)flexible (13:31)

where
vrigid is the vertical displacement of the rigid area in contact with the rigid punch
vcenter and vedge are vertical displacements at the center and edge, respectively, of the
contact area subjected to uniform load, when the contact area is considered flexible

L

p
y

x

Soil

Rigid punch

FIGURE 13.6
Rigid punch forced on a semi-infinite soil
foundation. (FromGu, Y.T. and Liu, G.R.,
Comput. Mech., 28, 47, 2002. With permis-
sion.)
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The analytical solution of vcenter and vedge can be obtained in [14]. The exact solution [15] of
contact stresses along the contact surface is

sy

p
¼ 2

p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (2x=L)2

q (13:32)

BPIM is used to obtain contact stresses along the contact surface. The support domain of a
quadrature point is determined by Equation 13.17 (with as¼ 2.0, and the characteristic arc
length dQ¼ 3.0). If the number of nodes in the support domain is more than six, only six
nodes with a shorter arc length to the quadrature point are used in the interpolation. When
these six nodes are all on one side of the quadrature point along the boundary, one more
node nearest to this evaluation point on the other side is purposely added to the support
domain to avoid an extrapolation.

Figure 13.7 plots the comparison between the contact stresses calculated analytically and
that by the BPIM along the contact surface. The plot shows an excellent agreement between
the analytical and numerical results.

13.2 RPIM Using Radial Function Basis

For 2D problems, the boundaries of the domain are curves. Therefore, the PIM shape
function using polynomial basis will have no problem, and BPIM works perfectly well
without any special efforts. For 3D problems for which 2D shape functions need to be
constructed, there could be an issue of singular moment matrices. One effective way is to
use RPIM shape functions. This section introduces the boundary meshfree method using
RPIM shape functions. This method was formulated in [10] and termed as BRPIM.
Although BRPIM performs no better than BPIM for 2D problems, its full advantages are
expected for 3D problems.

The formulation procedure of BRPIM is largely the same as that of BPIM, except for the
formulation of the shape function. This section, therefore, focuses only on the portion of
the formulation that is different from BPIM. As the radial function is used, a study on the

FIGURE 13.7
Contact stresses on the contact surface
between the punch and the half-space.
(From Gu, Y.T. and Liu, G.R., Comput.
Mech., 28, 47, 2002. With permission.)
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effects of these parameters of the radial function is performed. The performance of BRPIM
is discussed using example problems of 2D elastostatics.

13.2.1 Radial Basis Point Interpolation

In BRPIM, the radial basis functions Ri(s) are used. The point interpolation for displace-
ment u(s) and traction t(s) at a point s on the boundary G from the surrounding nodes uses
radial basis functions, i.e.,

u ¼
Xn
i¼1

Ri(s)ai ¼ RT(s)a (13:33)

t ¼
Xn
i¼1

Ri(s)bi ¼ RT(s)b (13:34)

where
s is the curvilinear distance (the arc length for a 1D curve boundary) on G
n is the number of nodes in the support domain of a point of interest sQ, which is usually
the quadrature point

Ri(s) is the radial basis function
ai and bi are the coefficients

In the matrix form, we have

aT ¼ [a1,a2, . . . ,an] (13:35)

bT ¼ [b1,b2, . . . ,bn] (13:36)

The following multiquadrics (MQ) radial function is used in this section:

Ri(s) ¼ (s2i þ C2)q (13:37)

Two parameters, q and C, need to be determined in an MQ radial function. Detailed
investigations of these parameters are given in the following numerical examples.

The coefficients ai and bI can be determined by enforcing Equations 13.33 and 13.34 to be
satisfied at the n-node support domain of the point sQ. Equations 13.33 and 13.34 can then
be written in the following matrix form:

un ¼ Ba (13:38)

tn ¼ Bb (13:39)

where un and tn are the vectors of nodal displacements and tractions in the support
domain, given by

un ¼ [u1,u2,u3, . . . , un]T (13:40)

tn ¼ [t1, t2, t3, . . . ,un]T (13:41)
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and RQ is the moment matrix of radial basis functions

RQ ¼

R1(s1)

R1(s2)

..

.

R1(sn)

R2(s1)

R2(s2)

..

.

R2(sn)

� � �
� � �
. .
.

� � �

Rn(s1)

Rn(s2)

..

.

Rn(sn)

2
66664

3
77775 (13:42)

Solving Equations 13.38 and 13.39 for a and b, and then substituting them back into
Equations 13.33 and 13.34, we obtain

u(s) ¼ FT(s) un (13:43)

t(s) ¼ FT(s) tn (13:44)

where the shape function F(s) is defined by

FT(s) ¼ RT(s)R�1
Q ¼ [f1(s),f2(s),f3(s), . . . ,fn(s)] (13:45)

Similar to the polynomial basis shape functions, the shape function fi(s) obtained through
the above procedure satisfies

fi(s ¼ si) ¼ 1, i ¼ 1, n (13:46)

fj(s ¼ si) ¼ 0, j 6¼ i (13:47)

Xn
i¼1

fi(s) ¼ 1 (13:48)

Therefore, the RPIM shape functions constructed have the Kronecker delta function prop-
erty, and the boundary conditions can be easily imposed, as in the BEM.

The moment matrix is an n� n matrix. It must be invertible for the construction of the
shape functions in Equation 13.45. The existence of the inverse of RQ has been proved for
arbitrarily scattered nodes [16,17]. Therefore, in BRPIM, interpolation using the radial basis
function is stable and flexible for arbitrarily distributed nodes on the boundary of the
problem domain. These characteristics will be very beneficial when using BRPIM to solve
3D problems.

13.2.2 BRPIM Formulation

The formulation of system equations in BRPIM is exactly the same as that in BPIM, except
that the PIM shape function given by Equation 13.13 is replaced by the RPIM shape
function defined by Equation 13.45.

13.2.3 Comparison of BPIM, BNM, and BEM

A comparison of BPIM, BNM, and BEM is summarized concisely in Table 13.2. It can be
found that BPIM, BNM, and BEM are all based on the BIE. The difference is essentially in
the means of implementation.
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13.2.3.1 BPIM vs. BEM

Both BPIM and BEM use polynomial interpolants, in which the number of monomials used
in the base functions, m, is the same as the number of nodes, n, utilized. Therefore, the
interpolant functions possess the Kronecker delta function property. The boundary condi-
tions can be implemented with ease.

However, BPIM is a boundary-type meshfree method, whereas BEM is a boundary-type
method based on boundary elements. As other meshfree methods (e.g., EFG, BNM, and
MLPG), the interpolation procedure in BPIM is based only on a group of arbitrarily
distributed nodes. The interpolation at a quadrature point in BPIM is performed over the
support domain of the point, which may overlap with the support domains of other
quadrature points, as shown in Figure 13.8. BEM defines the shape functions over pre-
defined regions called elements, and there is no overlapping or gap between the elements.

13.2.3.2 BPIM vs. BNM

Both BPIM and BNM are boundary-type meshfree methods. The difference between these
two methods arises from the different interpolants utilized. As discussed above, BPIM uses
PIM shape functions, in which the coefficients a and b in Equation 13.1 are constant. The
MLS approximations are used in BNM, in which a and b are also functions of the
curvilinear coordinate s. Therefore, the shape function of BNM is more complicated than
PIM. In addition, the shape function of BNM constructed using MLS approximations lacks
the delta function property. It takes an extra effort to impose boundary conditions.

TABLE 13.2

Comparison of BPIM, BRPIM, BNM, and BEM

BPIM BRPIM BNM BEM

Mesh No No No Yes

Approximation Polynomial PIM Radial PIM MLS Element-based
polynomial

Approximation base Distributed
nodes

Distributed
nodes

Distributed
nodes

Element

Number of basis nodes m and
interpolation nodes n

m¼ n m¼ n m 6¼ n m¼ n

Overlapping of the interpolation area Overlapping Overlapping Overlapping No overlapping

Shape function Simple Simple Complicated Simple

Delta property of the shape function Yes Yes No Yes
Application of boundary conditions Easy Easy More effort Easy

Number of system equations 2NB 2NB 4NB 2NB

Source: Gu, Y.T. and Liu, G.R., Comput. Mech., 28, 47–54, 2002. With permission.

BoundaryBoundary nodes

Quadrature points

Support domains for quadrature points FIGURE 13.8
Interpolations in BPIM and BRPIM.
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13.2.4 Numerical Examples

Example 13.4: Cantilever Beam

Example 13.1 is used here again to examine BRPIM. All the parameters are exactly the same.

13.2.4.1 Effects of Radial Function Parameters

Two parameters, aC and q, in the MQ radial function defined in Table 2.3 are investigated
and their effects on the performance of BRPIM are revealed. The characteristic length dc is
taken to be the average nodal spacing for nodes in the support domainof the quadraturepoint.

The parameter q is first investigated, and q is taken to be �1.5, �0.5, 0.5, and 1.5. Shear
stresses for different q are obtained and compared with the analytical solution. Errors for
different q are plotted in Figure 13.9a. This figure shows that q¼ 0.5 leads to a better result
in the range of studies. Hence, 0.5 is used in the following studies.
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FIGURE 13.9
Effect of parameters q and aC of the MQ radial basis function on the error of shear stress in the rectangular
cantilever computed using BRPIM. et is defined by Equation 13.29. (a) Effect of q and (b) effect of aC.
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Errors in shear stresses for different aC are plotted in Figure 13.9b. It is found that aC can
be chosen from a wide range, aC¼ 1.0–1.6, where steadily accurate results can be obtained.
For convenience, aC¼ 1.2 is used in the following studies.

From studies for 2D interpolation, it has also been understood that aC has a wider range
of choices, but parameter q is very critical and has to be very precise to obtain good results.
To determine a more precisely tuned q, more detailed study is required.

13.2.4.2 Effects of Interpolation Domain

The size of the support domain of a quadrature point is determined by the parameter as in
Equation 13.17. Results of as¼ 1.0–5.0 are obtained and plotted in Figure 13.10. It is found
that the results obtained using a support domain with as¼ 3.0–4.5, which covers about
6–10 nodes, are very good. Too small a support domain (as¼ 2.5) will lead to a large error.
This is because there are not enough nodes to perform interpolation for the field variable.
Too big a support domain (as¼ 4.5) will also lead to a large error. This is because there are
too many nodes to perform interpolation, which results in a very complex shape function
and hence a complex integrand for computing the system equations. The numerical
integral error becomes very large. Therefore, as¼ 3.0–4.5 is recommended. For convenience
and consistency, as¼ 4.0 is used in the following studies.

Comparison with the case of using BPIM, for which as¼ 2.0 is the optimum (see Table
13.1) reveals that BRPIM requires a larger support domain andmore points for interpolation.

Figure 13.11 illustrates the comparison between the shear stress calculated analytically
and that by the BRPIM at the section x¼ L=2. The plot shows a good agreement between
the analytical and numerical results from BRPIM. The conventional linear BEM results of
this problem are also shown in the same figure for comparison. The density of the nodes in
BEM and BRPIM is exactly the same. It is clearly shown that the BRPIM results are more
accurate than the BEM results. This is because the BRPIM uses more nodes for the
interpolation of displacements and tractions.
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FIGURE 13.10
Influence of the parameter as of the interpolation domain.
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The convergence for the shear stresses at the section x¼ L=2 with node=mesh refinement
is shown in Figure 13.12, where h is a characteristic length relating the spacing of the nodes.
Three kinds of nodal arrangements of 72, 240, and 480 uniform boundary nodes are used.
The convergences of BNM and conventional linear BEM are also shown in the same figure.
It is observed that the convergence of BRPIM is very good. It can also be observed that
BRPIM has higher accuracy than BEM and BNM for this example.
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Shear stress at the section x¼L=2 of the rectangular cantilever. Comparison of results obtained using three
different methods.

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4
Log (h)

Lo
g(

e t
)

BEM
BNM
BRPIM

FIGURE 13.12
Convergence in the et norm of the error.

632 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



Example 13.5: Plate with a Hole

Example 13.2 is also used to examine BRPIM. All the parameters are exactly the same. The nodal
distribution is shown in Figure 13.4. The stress sx at x¼ 0 computed using the BRPIM code is given
in Figure 13.13 together with the analytical solution for the infinite plate. The BEM results of this
problem are also shown in the same figure for comparison. It can be observed from this figure that
BRPIM gives very good results. It is clearly shown that the BRPIM and BEM results possess nearly
the same accuracy for this problem.

Example 13.6: Internally Pressurized Hollow Cylinder

A hollow cylinder under internal pressure shown in Figure 13.14 is considered. The parameters are
taken as p¼ 100,G¼ 8000, and n¼ 0.25. This problem has been used by several other authors as a
benchmark problem, as the analytical solution is available. Due to the symmetry of the problem,
only one quarter of the cylinder needs to be modeled. The arrangement of the field nodes is shown
in Figure 13.15. The boundary of this domain is discretized by 30 nodes (6 uniformly distributed
nodes on ab, cd, and ad, and 12 uniformly distributed nodes on bc). The same number of
background cells is used for integration. Three internal points A, B, and C are selected for examin-
ation. The polar coordinates (with the origin at the center of the cylinder) for the three internal points
are A(13.75, p=4), B(17.5, p=4), and C(21.25, p=4). The dimensionless size of the support domain
as¼ 2.0 is used for all the quadrature points in the integration on the boundary.

The BRPIM and BPIM results are comparedwith those obtained using BNM, BEM, and the
analytical solution. The radial displacements at some of the boundary nodes and the three
internal points are listed in Table 13.3. The circumferential stresses su at points A, B, and C are
also listed in the same table. The BRPIM and BPIM results are in a very good agreement
with the analytical solution. In comparison with the conventional BEM results, the BRPIM
and BPIM solutions are, in general, more accurate for both displacements and stresses.
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FIGURE 13.13
Stress sx distribution in a plate with a central hole subjected to a unidirectional tensile load. Comparison of results
obtained using three different methods.
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13.3 Remarks

Boundary meshfree methods are presented in this chapter. Detailed formulations for BPIM
and BRPIM are provided for solving 2D problems of elastostatics. The BIE is discretized
using radial meshfree shape functions based on a group of arbitrarily distributed points on
the boundary of the problem domain. Numerical examples have demonstrated that
boundary meshfree methods are superior to BEM in terms of accuracy.

Compared with BNM, BPIM and BRPIM have the following advantages:

. BPIM is computationally much less expensive than BNM because of its simpler
interpolation scheme and smaller system equation dimension. The number of
system equations in BPIM is only half of that in BNM.

FIGURE 13.14
Hollow cylinder subjected to internal pressure.
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FIGURE 13.15
Arrangement of nodes for a quarter model of the hollow
cylinder.
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. The imposition of boundary conditions is easy in BPIM and BRPIM because the
shape functions have the Kronecker delta property.

. Rigid body movement can be used to avoid some singular integrals.

The parameters for BPIM and BRPIM should be as follows:

. In using BPIM, as¼ 2.0–3.0 (with n¼ 3–6) yields acceptable results.

. In using BRPIM with the MQ radial function, q¼ 0.5 and aC¼ 1.0–1.6 lead to
acceptable results for most problems studied. q¼ 0.5 and aC¼ 1.2 are recom-
mended. The dimensionless size of the support domain as¼ 3.0–4.5 should work
for most problems.

. When the node distribution is very extreme, measures for preventing biased node
selection and extrapolation should be taken.

BPIM and BRPIM need to be extended for 3D problems. For 2D problems, BPIM is the
simplest method; it performs the best and is very stable.
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14
Meshfree Methods Coupled with Other Methods

In the past few decades, the development of finite element methods (FEMs) has been
accompanied by advances in boundary element methods (BEMs). The FEM is a domain
discretizationmethod,whereas the BEM is a boundary discretizationmethod. Bothmethods
have their strengths and weaknesses. The FEM is much more flexible for complex
structures=domains with high inhomogeneity and nonlinearity but requires intensive com-
putational resources. On the other hand, the BEM requires much less computational
resources, as discretization of the structure=domain is performed only on the boundary,
which leads to a much smaller discretized equation system. The BEM, however, is not
efficient for inhomogeneous media=domain and nonlinear problems. Efforts to combine
these two methods have been made by many (see, e.g., [1]) and have achieved remarkable
results. Commercial software packages have also been developed (e.g., SYSNOISE) and
used for solving a wide range of engineering problems.

In previous chapters, we presented both domain-type meshfree methods and boundary-
type meshfree methods. Naturally, attempts have also been made to combine these two
types of methods to take advantage of both. There is an additional motivation to couple
meshfree methods that are formulated using moving least squares (MLS) shape functions
and meshfree methods that are formulated using point interpolation method (PIM) shape
functions or finite element (FE) shape functions. The aim is to simplify the procedure of
imposing essential boundary conditions. A number of combined methods have been
formulated including element-free Galerkin (EFG)=BEM [2], EFG=HBEM [3], meshless
local Petrov–Galerkin (MLPG)=FEM=BEM [4,5], etc. This chapter is devoted to introducing
the EFG=BEM [2] and EFG=HBEM.

14.1 Coupled EFG=BEM

This section focuses on the coupling of the EFG method with the boundary element (BE)
method. Techniques for coupling the equation systems of EFG with those of BEM for
continuum mechanics problems are presented in detail. This work was originally reported
in [2]. The major issue was to enforce the displacement compatibility conditions on the
interface boundary between the EFG domain and the BE domain. The interface elements,
which are analogues of the FE interface element used in [6], are formulated and used
along the interface boundary. Within the interface element the shape functions comprise
the MLS and FE shape functions. Shape functions constructed in this manner satisfy
both consistency and compatibility conditions on the interfaces. A number of numerical
examples are presented to demonstrate the convergence, validity, and efficiency of the
coupled method. It is shown that the coupled method can take full advantage of both EFG
and BEM. It is very easy to implement, and very flexible for computing displacements and
stresses of a desired accuracy in solids with or without infinite domains.

637

© 2010 by Taylor and Francis Group, LLC



14.1.1 Basic Equations of Elastostatics

Consider the following two-dimensional (2D) problem of solid mechanics in domain V
bounded by G:

LT
dsþ b ¼ 0 in V (14:1)

where
s is the stress tensor, which corresponds to the displacement field u¼ {u, v}T

b is the body force vector
Ld is the differentiation operator defined by Equation 1.9

The boundary conditions are given as follows:

LT
ns ¼ tG on the natural boundary Gt (14:2)

u ¼ uG on the essential boundary Gu (14:3)

in which the superposed bar denotes the prescribed boundary values and Ln is the matrix
of the components of the unit outward normal on Gt.

14.1.2 Discrete Equations of EFG

In using a coupled EFG=BEM method, one can use BEs to model the portion of the domain
that includes the essential boundary and the EFG is used where there is no essential
boundary. Following the procedure presented in Chapter 6, without considering the
essential boundary, we have the discrete system equation of EFG for all the field nodes
in the EFG domain:

KEFGU ¼ FEFG þ PEFG (14:4)

where the subscript EFG indicates matrices obtained using a standard EFG formulation.
The vector FEFG consists of the equivalent nodal forces contributed from the external force
applied on the natural boundary. The nodal force can be obtained using

f(EFG)i ¼
ð
Gt

fH
i tdG (14:5)

The force vector PEFG consists of the equivalent nodal forces contributed from the external
body force in the form

P(EFG)i ¼
ð
V

fH
i bdV (14:6)

Note that if EFG has to be used for the portion of the problem domain containing essential
boundaries, formulations using the method of Lagrange multipliers, the penalty method,
or any other method discussed in Chapter 6 must be used.
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14.1.3 BE Formulation

From Equations 14.1 through 14.3, the principle of virtual displacements for linear elastic
materials can be written as

ð
V

(LT
dsþ b) �u*dV ¼

ð
Gu

(u� uG) � t*dG�
ð
Gt

(t� tG) �u*dG (14:7)

where
t is the surface traction
u* is the virtual displacement
t* is the virtual surface traction corresponding to u*

The first term on the left-hand side of Equation 14.7 can be integrated by parts to become

ð
V

b �u*dVþ
ð
V

LT
ds* �udV ¼

ð
Gu

(u* � t� uG � t*)dGþ
ð
Gt

(u � t*� u* � tG)dG (14:8)

The starting domain integral can be reduced to an integral on the boundary by finding
an analytical solution that makes the second integral in Equation 14.8 vanish. The most
convenient one is the fundamental solution or Green’s function, which satisfies

LT
ds*þ Di ¼ 0 (14:9)

where Di is the Dirac delta function. Substituting Equation 14.9 into Equation 14.8,
we obtain

ciui þ
ð
G

u � t*dG ¼
ð
G

t �u*dGþ
ð
V

b �u*dV (14:10)

The boundary values of u and t can now be expressed using interpolation functions and
the values at the nodes of the BE on the boundary:

u ¼ FTue (14:11)

t ¼ CTte (14:12)

where FT and CT can be the conventional FE shape functions constructed based on the
BEs, or the PIM shape functions constructed based on cells. ue and te are the values of u and t
at the boundary nodes. The resulting boundary integral (Equation 14.10) can be written in
matrix form as

HU ¼ BTþ P (14:13)

Meshfree Methods Coupled with Other Methods 639

© 2010 by Taylor and Francis Group, LLC



where U and T are vectors that collect all the nodal values of u and t at the boundary
nodes, and

H ¼ ci þ
ð
G

t*FTdG (14:14)

B ¼
ð
G

u*CTdG (14:15)

P ¼
ð
V

b �u*dV (14:16)

The above integrals are to be carried only on boundaries, and therefore the domain need
not be discretized.

To facilitate assembling the system equations of EFG and BE, the BE formulation is
expressed in an equivalent form of the EFG formulation. Transforming Equation 14.13 by
inverting B and then premultiplying the resultant by the distribution matrixM [7], we have

(MB�1H)u� (MB�1P) ¼ MT (14:17)

where the distribution matrix M is defined as

M ¼
ð
G

FCTdG (14:18)

Let

K0
BE ¼ MB�1H (14:19)

PBE ¼ MB�1P (14:20)

FBE ¼ MT (14:21)

Equation 14.18 can then be written in the following equivalent form of the EFG
formulation:

K0
BEU ¼ FBE þ PBE (14:22)

Note that the matrix K0
BE derived from the above formulation is in general asymmetric. The

asymmetry arises from the approximations involved in the discretization process and the
choice of the assumed solution. In the EFG domain, however, the matrix KEFG is symmet-
ric. If Equation 14.22 is assembled directly into the EFG matrices in Equation 14.14, the
symmetry of the coefficient matrix will be destroyed, which leads to inefficiency in solving
the system equations. To preserve the symmetry of the system matrix, a symmetrization
operation must be performed for K0

BE. One simple method to perform such an operation is
to minimize the squares of the errors in the asymmetric off-diagonal terms of K0

BE [8].
Hence, a new symmetric equivalent BE stiffness matrix KBE can be obtained using

kBEij ¼ 1=2(k0BEij þ k0BEji) (14:23)
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Equation 14.22 can be rewritten as

KBEU ¼ FBE þ PBE (14:24)

where KBE is now symmetric.

14.1.4 Coupling of EFG and BE System Equations

14.1.4.1 Continuity Conditions at the Interface

Consider now a problem domain consisting of two subdomains V1 and V2, joined by an
interface boundary GI. The EFG formulation is used inV1 and the BE formulation is used in
V2, as shown in Figure 14.1. Compatibility and equilibrium conditions on GI must be
satisfied. Thus,

1. The nodal displacements formulated at the GI for V1 and that for V2 should be
equal, i.e.,

u(1)
I ¼ u(2)

I (14:25)

2. The summation of the nodal force formulated on the GI for V1 and that for V2

should be 0, i.e.,

F(1)I þ F(2)I ¼ 0 (14:26)

Because the MLS shape functions used in the EFG method do not possess the Kronecker
delta function property, u in Equation 14.4 is the parameter of nodal displacement, which
differs from the nodal displacement. Proper treatment is required to couple these two

Ω2
ΩI Ω1

ГI

EFG regionBE region

BE nodes EFG nodesInterface nodes

FIGURE 14.1
A problem domain divided into an EFG region and a BE region.
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equation systems of EFG and BE domains along GI. In these interface elements, a hybrid
displacement approximation is defined so that the shape functions of the EFG domain
along GI possess the delta function property. Therefore, u in Equation 14.4 becomes the true
nodal displacement on the interface. The system equations for both EFG and BE can be
assembled directly.

14.1.4.2 Shape Functions for the Interface Elements

The detailed characteristics of FE interface elements can be found in [6]. Because the nodal
arrangement may be irregular in the EFG domain, four to six node isoparametric interface
FE elements [9] are used for the interface elements.

A detailed illustration of the interface domain is shown in Figure 14.2, whereVI is a layer
of subdomain along the interface boundary GI within the EFG domain V1. The modified
displacement approximation in domain V1 becomes

uh1(x) ¼
uEFG(x)þ R(x)(uFE(x)� uEFG(x)) x 2 VI

uEFG(x) x 2 (V1 �VI)

(
(14:27)

where
u1
h is the displacement of a point in V1

uEFG is the EFG displacement given by

uEFG(x) ¼
Xn
i¼1

fH
i (x)ui (14:28)

EFG regionBE region

Ω2 Ω1ΩI

ГI

BE nodes EFG nodesInterface nodes

FIGURE 14.2
Interface element used in coupled EFG=BEM. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng.,
190, 4405, 2001. With permission.)
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in which fH
i is the MLS shape function given by Equation 2.57. uFE is the FE displacement

defined by

uFE ¼
Xne
i¼1

Ni(x)ui, ne ¼ 3, 4, 5, . . . (14:29)

where Ni(x) is the FE shape function and ne is the number of nodes in an FE interface
element. The ramp function R is equal to the sum of the FE shape functions of an
interface element associated with the interface element nodes that are located on
the interface boundary GI, i.e.,

R(x) ¼
Xk
i

Ni(x), xi 2 GI (14:30)

where k is the number of nodes located on the interface boundary GI for an interface
element. According to the property of FE shape functions, R will be 1 along GI and will
vanish from the interface domain, i.e.,

R(x) ¼ 1 x 2 GI

0 x 2 V1 �VI

�
(14:31)

The new displacement approximation in the EFG domain V1 can be rewritten as

uh
1(x) ¼

X
i

~Fi(x) ui (14:32)

where

~Fi(x) ¼
(1� R(x))Fi(x)þ R(x)Ni(x) x 2 VI

Fi(x) x 2 V1 �VI

�
(14:33)

The derivatives of the interface shape functions are

~Fi,j ¼
(1� R)Fi,j � R,jFi þ RNi,j þ R,jNi x 2 VI

Fi,j x 2 V1 �VI

�
(14:34)

The approximation using the above modified shape functions will be compatible (or
continuous) and reproduce the linear field exactly, which has been proved in [6].

The regular EFG and modified shape functions in one dimension are shown in Figure
14.3. It can be seen that the displacement approximation is continuous from the purely EFG
domain passing to the interface domain. The derivative of it is, however, discontinuous
across the boundary. These discontinuities are allowed in the weak formulation.

Using the above approximation, the shape functions of the EFG domain along GI possess
the Kronecker delta function property, and the system equations of the EFG domain,
Equation 14.4, and the system equations for the BE domain, Equation 14.24, can be assem-
bled together directly using the continuity condition on the interfaces of these two domains,
which are defined in Equations 14.25 and 14.26.

Meshfree Methods Coupled with Other Methods 643

© 2010 by Taylor and Francis Group, LLC



14.1.4.3 Coupling Algorithm

The flowchart of coupled EFG=BEM is given as follows:

1. Loop over in EFG domain V1

a. Determine the nodes in the support domain of point x

b. Compute the EFG shape functions

c. If point x is in the interface element:

Compute FE shape functions in the element, and R(x)

Compute the interface shape functions

End if

d. Assemble contributions to nodes to get the stiffness matrix KEFG

e. End loop of EFG domain

2. Loop in BEs domain to obtain the matrix H, B

3. Compute M, K0
BE and symmetrize the K0

BE to obtain KBE

4. Assemble KEFG and KBE to get the global system equations

5. Solve the system equations for displacements

6. Postprocess to obtain displacement, strain, and stress

14.1.5 Numerical Results

The following examples are run to examine the coupled EFG=BEM in 2D elastostatics.
The programs are developed to combine constant, linear, and quadratic BEs with EFG.
Interface elements with four to six nodes are used.

1.0

Modified
Original

0.8

0.6

0.4

0.2

0.0
5 6 7

Purely MLS domain (Ω1 – ΩI) Interface region ΩI

8 9 10

FIGURE 14.3
Comparison of original and modified shape functions in the EFG region where MLS approximation is employed;
1D case. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng., 190, 4405, 2001. With permission.)
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Example 14.1: Cantilever Beam

Coupled EFG=BEM is first applied to study the benchmarking problem of the cantilever beam
shown in Figure 14.4. A plane stress problem is considered. The parameters for this example are
as follows:

Young’s modulus for the material: E¼ 3.0� 107

Poisson’s ratios for two materials: n¼ 0.3

Thickness of the beam: t¼ 1

Height of the beam: D¼ 12

Length of the beam: L¼ 48

Load: P¼ 1000

The beam is subjected to parabolic traction at the free end as shown in Figure 6.4. The beam is
artificially divided into two parts as shown in Figure 14.4. BEs are used to model the left part of the
beams in which the essential boundary is included. The EFG is used in the right part. The nodal
arrangement is also shown in Figure 14.4. Background integration cells of 6� 8 are used in the
EFG domain. In each integration cell, a 4� 4 Gauss quadrature is used to evaluate the stiffness
matrix of the EFG. Linear BEs are employed in the BE domain. Rectangular elements are employed
as interface elements. Only 100 nodes in total are used in the entire coupled model. The total
number of nodes determines the size of the final assembled system equation, and directly affects
the computation time for solving this problem.
Figure 14.5 plots the shear stress distribution on the cross section of the beam at x¼ L=2,

calculated using the present coupled EFG=BEM. Results obtained using analytical formulas and
FEM=BEM are also plotted in Figure 14.5 for comparison. When the FEM=BEM is used, the right
portion of the beam is modeled using linear FEs instead of EFG modes. In this case, there is no
need to use transition elements, as the shape functions for both FEM and BE are of the FE type,

y 

x 

P 
L 

D 

FIGURE 14.4
Nodal arrangement for the cantilever beam subjected to downward traction force on the right end of the beam.
(From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng., 190, 4405, 2001. With permission.)
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which possess the Kronecker delta function property. The plot shows an excellent agreement
between the results obtained using these three methods. It can also be found that the coupled
EFG=BEM yields a more accurate result than the FE=BE method. This is because the EFG performs
better than the FEM of linear elements.
For quantitative error analysis, the error indicator defined in Equation 13.29 is used in the

investigation. The convergence with mesh refinement is shown in Figure 14.6, where h is
the nodal spacing or the element size in the FEM. It is observed that the convergence of the coupled
method is very good. The convergence of the coupled FE=BE method is also shown in Figure 14.6.
Figure 14.6 shows that the accuracy of the coupled EFG=BEM is a little higher than the FE=BEmethod
because of the higher accuracy of EFG. However, the convergence rate of these two coupled
methods is nearly same, and it is found to be about 2.3 for this problem. This is because the accuracy
of the BEM plays a part in the convergence rate of the coupled EFG=BE and FE=BE methods.

Example 14.2: Hole in an Infinite Plate

Consider now an infinite plate with a central circular hole subjected to a unidirectional tensile
load of p¼ 1.0 in the x-direction. As a large finite plate can be considered a good approximation of
an infinite plate, a finite square plate of 20� 20 is considered. Making use of the symmetry, only
the upper right quadrant of the finite plate is modeled, as shown in Figure 14.7. A plane strain
problem is considered, and the material properties are E¼ 1.0� 103, n¼ 0.3. Symmetry condi-
tions are imposed on the left and bottom edges, and the inner boundary of the hole is traction free.
The tensile load p is imposed on the right edge in the x-direction. The exact solution for the stresses
of an infinite plate is given in the textbook [10] and is listed in Equations 7.41 through 7.46.
The plate is divided into two domains. In the area near the hole, EFG is employed. For the rest of

the area of the problem domain the BEM is applied.
It is found that the numerical results obtained for displacements are almost identical to the

analytical solution. As the stresses are much more critical, detailed results of stresses are
presented here. The stresses sx at x¼ 0 obtained by the coupled method using two kinds of

FIGURE 14.5
Shear stress txy at the section x¼L=2 of
the cantilever beam computed using
three different methods. (From Gu, Y.T.
and Liu, G.R., Comput. Methods Appl.
Mech. Eng., 190, 4405, 2001. With permis-
sion.)
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FIGURE 14.6
Convergence in energy norm of error et.
(From Gu, Y.T. and Liu, G.R., Comput.
Methods Appl. Mech. Eng., 190, 4405,
2001. With permission.)

c = 9a = 1

b = 10

x

y

FIGURE 14.7
Nodes in a plate with a hole at its center subjected to a unidirectional tensile load in the x direction. A quarter
of the plate is modeled. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng., 190, 4405, 2001. With
permission.)
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nodal arrangement are given in Figure 14.8. The figure shows that the coupled method yields
satisfactory results for the problem when 144 nodes are used. For comparison, the results obtained
using EFG=BE, FE=BE, and EFG methods are shown in Figure 14.9. It can be found that EFG=BEM
yields better results than the FE=BE method. The accuracy of EFG=BE and EFG methods is nearly
the same. However, many fewer nodes are used in coupled EFG=BEM (144 nodes) than the EFG
method (231 nodes).

0.9

1.3

1.7

2.1

2.5

2.9
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Analytical
EFG/BE 65 nodes
EFG/BE 144 nodes

FIGURE 14.8
Stress distribution (sx, at x¼ 0) obtained using EFG=BEM together with analytic results for a square plate with
a hole at its center. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng., 190, 4405, 2001. With
permission.)
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FIGURE 14.9
Stress distribution (sx, at x¼ 0) obtained using EFG=BEM, FE=BEM, and EFG together with analytical results for a
square plate with a hole at its center. (From Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech. Eng., 190,
4405, 2001. With permission.)
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There exist oscillations in the solution of the corner nodes in the BE domain, as shown in Figure
14.8. This is because the tractions are discontinuous in these corner nodes. Special care should be
taken in handling traction discontinuities at the corner nodes, as discussed in Chapter 13. One
method to overcome this difficulty is simply to split the corner node into two nodes with each
node on one side of the corner. These two nodes are very close to the original corner node.
A constant BE is then used between these two nodes. Because these two nodes belong to different
sides of the corner, the discontinuity of the traction on the corner can be modeled without
difficulty. The method is very simple, works very well, and is widely used in BEM. It is also
used in Chapter 13 for boundary-type meshfree methods.

Example 14.3: A Structure on a Semi-Infinite Elastic Foundation

In this example, the coupled method is used to solve a foundation–structure interaction problem,
illustrated schematically in Figure 14.10. A structure stands on a semi-infinite elastic foundation.
The problem has been investigated using coupled FE=BEM by some researchers [11]. The infinite
elastic foundation can be modeled in one of the following three ways:

1. Truncating the plane at a finite distance—approximate method

2. Using a fundamental solution corresponding to the semi-space problem rather than a full-
space Green’s function in BEM

3. Using an infinite element in FEM

Method 1 is used in this section because it is convenient to compare the coupled method solution
with the EFG, FE, and FE=BE solutions.

As shown in Figure 14.10, Region 2 represents the semi-infinite foundation and is given a
semicircular shape of very large diameter in relation to Region 1, which represents the structure.
Boundary conditions to restrain rigid body movements are applied. The EFG method is used in
Region 1, and BEM is used in Region 2. The nodal arrangement of coupled EFG=BEM is shown in
Figure 14.11. The problem is also analyzed using FEM, EFG, and FE=BEM. The nodal arrangement
of EFG is shown in Figure 14.12. Two load cases shown in Figure 14.13 are analyzed: case 1
considers five concentrated vertical loads along the top, and case 2 considers an additional
horizontal load acting at the left corner.

Region 2 (soil)

d = 185 m 

Region 1 (structure)
h = 12 m  

y 

x 

FIGURE 14.10
A structure standing on the top of a
semi-infinite soil foundation. (From Gu,
Y.T. and Liu, G.R., Comput. Methods
Appl. Mech. Eng., 190, 4405, 2001. With
permission.)
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FIGURE 14.11
Nodal arrangement for the coupled EFG=

BEM model. (From Gu, Y.T. and Liu, G.R.,
Comput. Methods Appl. Mech. Eng., 190, 4405,
2001.With permission.)

Region 2 (BEM)

Region 1 (EFG)

FIGURE 14.12
Nodal arrangement for the coupled EFG
model. (From Gu, Y.T. and Liu, G.R., Com-
put. Methods Appl. Mech. Eng., 190, 4405,
2001. With permission.)

FIGURE 14.13
Nodal arrangement in the structure portion
where EFG is used. The structure is loaded by,
case 1, a uniformly distributed normal traction
in the y-direction or, case 2, a concentrate force
in the x-direction at the top right corner. (From
Gu, Y.T. and Liu, G.R., Comput. Methods Appl.
Mech. Eng., 190, 4405, 2001. With permission.)
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The results of displacement in the y-direction (vertical) on top of the structure are listed in Table
14.1. The results obtained using FEM, EFG, and FE=BEM are also included in Table 14.1 for
comparison. The results obtained using the present EFG=BEM are in a very good agreement with
those obtained using FE, EFG, and FE=BEM. However, it is interesting to note that the foundation is
adequately represented using only 30 BE nodes in coupling cases as compared to 120 nodes for
the EFG and FE cases.

14.2 Coupled EFG and Hybrid BEM

In Section 14.1, we demonstrated coupling of the system equations of EFG and BEM. We
have seen that a symmetrization of the BE stiffness matrix must be performed before the
assembly of the EFG system equations with the BE system equations. This can lead to a loss
of accuracy and efficiency of the coupled method. In this section, we present an alternative
approach to avoid this disadvantage in coupled EFG=BEM.

In the late 1980s, alternative BE formulations were developed based on generalized
variational principles. Dumont [12] proposed a hybrid stress BE formulation based on
the Hellinger–Reissner principle. DeFigueiredo and Brebbia [13,14], and Jin et al. [15]
presented a hybrid displacement boundary element (HBE) formulation. The HBE formu-
lation led to a symmetric stiffness matrix. This property of symmetry can be an added
advantage in coupling the HBE with methods that produce symmetric system matrices.

This section presents a coupled EFG=HBE method for continuum mechanics problems,
based on the work originally reported in [3]. The method of Lagrange multipliers is
employed to impose the compatibility conditions on the interface boundary of the EFG
and HBE domains. Coupled system equations are derived based on variational formula-
tion. Several numerical examples are examined using the EFG=HBE to demonstrate the
convergence, validity, and efficiency of the coupled EFG=HBE method.

TABLE 14.1

Vertical Displacements along the Top of the Structure

Displacements (�10�4)

Nodes FE EFG FE=BE EFG=BE

Load case 1

1 1.41 1.42 1.40 1.42

2 1.34 1.34 1.33 1.33

3 1.32 1.32 1.32 1.32

4 1.34 1.34 1.33 1.33

5 1.41 1.42 1.40 1.42

Load case 2

1 �3.39 �3.43 �3.55 �3.58

2 �0.97 �1.01 �1.05 �1.04

3 1.35 1.35 1.35 1.34

4 3.61 3.67 3.70 3.68
5 6.00 6.04 6.17 6.13

Source: Gu, Y.T. and Liu, G.R., Comput. Methods Appl. Mech.
Eng., 190, 4405, 2001. With permission.
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Compared with coupled EFG=BEM discussed in the previous section, the present
EFG=HBE method makes the following advances:

1. The coupled system equations are formulated in a different but more general
manner.

2. System matrices obtained by EFG=HBE are symmetric without the need for an
operation of symmetrization to the BE matrix.

3. There is no need for interface elements; therefore, mesh generation becomes much
simpler and there is no special treatment needed on the interface.

The trade-off would be

1. The system matrix is larger than that of EFG=BEM.

2. The system matrix becomes nonpositive.

These drawbacks are similar to that of EFG using the method of Lagrange multipliers.
Detailed formulation of the EFG=HBE is presented as follows.

14.2.1 EFG Formulation

14.2.1.1 Discrete Equations of EFG

Consider again the 2D problem of solid mechanics defined in Equations 14.1 through 14.3.
The constrained functional can be written as

P1 ¼
ð
V

1
2
«T �sdV�

ð
V

uT �bdV�
ð
Gt

uT � tGdGþ
ð
Gu

lT � (uG � u)dG (14:35)

where the fourth term of the integral is for the essential boundary condition, and l is a
vector of Lagrange multipliers. Following the procedure in Chapter 6, the discrete system
equation of EFG for the EFG domain can be written in the form:

KEFG GEFG

GT
EFG 0

" #
u

l

( )
¼ FEFG þ PEFG

qEFG

( )
(14:36)

where the subscript EFG indicates matrices obtained using standard EFG formulation. The
components in vectors FEFG and PEFG are defined in Equations 14.5 and 14.6, and the rest of
the matrices have been defined in detail in Chapter 6.

14.2.2 Hybrid Displacement BE Formulation

The constrained functional for the hybrid displacement BEM can be written as

P2 ¼
ð
V

1
2
«T �sdV�

ð
V

uT �bdV�
ð
Gt

~uT � tGdGþ
ð
G

lT � (~u� u)dG (14:37)
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where
~u is the displacement on the boundary
u is the displacement in the domain

The fourth term of the integral is for the compatibility of the displacements on the
boundary with that near the boundary in the domain, and l is a vector of Lagrange
multipliers. As the Lagrange multipliers l represents the traction on the boundary, it is
therefore denoted explicitly by ~t. Hence, Equation 14.37 can be rewritten as

P2 ¼
ð
V

1
2
«T �sdV�

ð
V

uT �bdV�
ð
Gt

~uT � tGdGþ
ð
Gu

~t
T � (~u� u)dG (14:38)

The first term on the right-hand side can be integrated by parts to become

P2 ¼
ð
G

1
2
tT �udG�

ð
V

uT �bdV�
ð
Gt

~uT � tGdGþ
ð
Gu

~t
T � (~u� u)dG�

ð
V

1
2
LT
ds �udV (14:39)

The starting domain integral in Equation 14.38 can be reduced to an integral on the
boundary using the fundamental solution for Equation 14.9, which is Green’s function.

The displacement vector within the domain is approximated as a series of products ofU*,
which are formed using the fundamental solutions [14] and unknown parameters s, i.e.,

u ¼ U*s (14:40)

The displacement vector on the boundary is written as the product of known interpolation
functions by the nodal displacement at the boundary nodes, i.e.,

~u ¼ FTue (14:41)

Similarly, the traction vector is approximated as a series of products of T* that are also
formed using the fundamental solutions and unknown parameters s.

t ¼ T*s (14:42)

The traction vector on the boundary is written as the product of known interpolation
functions and the nodal traction at the boundary nodes, i.e.,

~t ¼ CTte (14:43)

Substituting Green’s function and Equations 14.40 through 14.43 into Equation 14.39, we
can obtain

P ¼ �1=2sTAs� tTBTsþ t
T
LdU�UTf� sTb (14:44)
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where

A ¼
ð
G

U*T*dG (14:45)

B ¼
ð
G

CU*dG (14:46

L ¼
ð
G

CFTdG (14:47)

fHBE ¼
ð
G

FtGdG (14:48)

g ¼
ð
V

U*bdV (14:49)

The stationary conditions for P can now be found by setting its first variation of P to zero.
As this must be true for any arbitrary values of ds, du, and dt, one obtains

KHBEU ¼ FHBE þ PHBE (14:50)

where

KHBE ¼ RTAR (14:51)

R ¼ (BT)�1L (14:52)

PHBE ¼ RTg (14:53)

It can be proven that matrix A is symmetric; hence, matrix K is symmetric. Equation 14.50
shows that this hybrid displacement boundary formulation leads to an equivalent stiffness
formulation. The matrix K may be viewed as a symmetric stiffness matrix, but the above
integrals are needed to perform only on boundaries, and the domain need not be discretized.

14.2.3 Coupling of EFG and HBE

14.2.3.1 Continuity Conditions at Coupled Interfaces

Consider a problem consisting of two domains of V1 and V2, as schematically shown in
Figure 14.14. These two domains are joined by an interface GI. The EFG formulation is used
in V1 and the HBE formulation is used in V2. Continuity conditions that must be satisfied
on GI are given by

~u1
I ¼ ~u2

I (14:54)

F1I þ F2I ¼ 0 (14:55)

where
~u1
I and ~u2

I are the displacements
F1I and F2I are the forces on GI for V

1 and V2, respectively
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Because the shape functions of EFG are derived using MLS, the displacement vector in
Equation 14.36 differs from the true nodal displacement. Proper treatments are needed to
assemble these equations of EFG and HBE.

14.2.3.2 Coupling EFG with HBE via a Modified Variational Form

A subfunctional is introduced to enforce the continuity condition, Equation 14.54, by
means of Lagrange multiplier l on the interface boundary

PI ¼
ð
GI

gT(~u1
I�~u2

I )dG ¼
ð
GI

gT~u1
IdG

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P1

I

�
ð
GI

gT~u2
IdG

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P2

I

¼ P1
I �P2

I (14:56)

In Equation 14.54, P1
I and P2

I are the boundary integrations along the EFG side and the
HBE side, respectively. Introducing P1

I and P2
I separately into functions, Equations 14.35

and 14.37, generalized functional forms can be written as

PEFG ¼
ð
V

1
2
«T �sdV�

ð
V

uT �bdV�
ð
Gt

uT � tGdG�
ð
Gu

lT
EFG � (u� uG)dGþ

ð
GI

gT � ~u1
IdG (14:57)

PHBE ¼
ð
V

1
2
«T �sdV�

ð
V

uT �bdV�
ð
Gt

~uT � tGdGþ
ð
G

lT
HBE � (~u� u)dG�

ð
GI

gT � ~u2
IdG (14:58)

In these variational formulations, the domains of EFG and HBE are connected via
Lagrange multiplier g.

ГI

Ω2 Ω1

HBE region EFG region

FIGURE 14.14
Domain division into EFG and HBE regions.
(From Liu, G.R. and Gu, Y.T., Comput. Mech.,
26, 166, 2000. With permission.)
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In the EFG domain, u is given by Equation 2.61, g is given by production of the interpol-
ation function L and value of gI

G ¼ LTgI (14:59)

L can consist of shape functions of the FE type. Substituting Equations 2.61 and 14.59 into
Equation 14.57, and using the stationary condition, we can obtain the following EFG
equations:

KEFG GEFG BEFG

GT
EFG 0 0

BT
EFG 0 0

2
64

3
75

U

l

g

8><
>:

9>=
>; ¼

FEFG þ PEFG

qEFG

0

8><
>:

9>=
>; (14:60)

where subscript EFG indicates the EFG matrices, and B is defined as

BEFG ¼
ð
GI

LFT
EFGdG (14:61)

The stationary condition of Equation 14.58 leads to the following HBE equations:

KHBE �HHBE

�HT
HBE 0

" #
U

g

( )
¼ FHBE þ PHBE

0

( )
(14:62)

where KHBE, FHBE, and PHBE are defined by Equations 14.48, 14.50, and 14.53. H is
defined as

HHBE ¼
ð
GI

LFT
HBEdG (14:63)

Because two domains are connected along the interface boundary GI, assembling Equations
14.60 and 14.63 yields a linear system of

KEFG 0 GEFG BEFG

0 KHBE 0 �HHBE

GT
EFG 0 0 0

BT
EFG �HT

HBE 0 0

2
6664

3
7775

UEFG

UHBE

l

g

8>>><
>>>:

9>>>=
>>>;

¼

FEFG þ PEFG

FHBE þ PHBE

qEFG

0

8>>><
>>>:

9>>>=
>>>;

(14:64)

The continuity conditions on GI given in Equations 14.54 and 14.55 are satisfied via the
above variational formulation. Note that the system matrix is symmetric, but enlarged and
nonpositive.

14.2.4 Numerical Results

Three examples of 2D elastostatics that were examined in the previous section are reex-
amined using the present coupled EFG=HBE method.
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Example 14.4: Cantilever Beam

All parameters and conditions are exactly the same as those in Example 14.1. The nodal arrange-
ment is shown in Figure 14.4, and a background mesh of 6� 8 is used in the EFG domain. In each
integration cell, 4� 4 Gauss quadrature is used to evaluate the stiffness matrix of the EFG. Only
100 nodes in total are used in the coupled method.
Figure 14.15 illustrates the comparison between the shear stress calculated analytically and

using the coupled method at the section of x¼ L=2. The plot shows an excellent agreement
between the analytical and numerical results. The computational result by the present coupled
method with interface elements (IE) is also shown in the same figure. There is clear evidence that
the accuracy of the coupled method using the modified variational formulation (MVF) is higher
than that using the IE method.
The displacement along the interface boundary is shown in Table 14.2. It is shown that the

continuity of the displacement is satisfied accurately using the present modified variational
formulation method.

TABLE 14.2

Vertical Displacement along the Interface Boundary (Cantilever Beam)

EFG=HBE (MVF)a

Node (y) EFG=HBE (IE)b EFG Side HBE Side Exact

5.75 �4.73203E-03 �4.73090E-03 �4.73093E-03 �4.68750E-03

5.00 �4.72797E-03 �4.72617E-03 �4.72619E-03 �4.68302E-03

4.00 �4.72344E-03 �4.72050E-03 �4.72059E-03 �4.67802E-03

3.00 �4.71970E-03 �4.71664E-03 �4.71670E-03 �4.67414E-03

2.00 �4.71704E-03 �4.71419E-03 �4.71422E-03 �4.67136E-03

1.00 �4.71542E-03 �4.71257E-03 �4.71261E-03 �4.66969E-03
0.00 �4.71488E-03 �4.71199E-03 �4.71203E-03 �4.66914E-03

Source: Liu, G.R. and Gu, Y.T., Comput. Mech., 26, 166, 2000. With permission.
a EFG=HBE (MVF): Coupled EFG=HBE method using modified variational formulation.
b EFG=HBE (IE): Coupled EFG=HBE method using an interface element.
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FIGURE 14.15
Shear stress txy at the section x¼L=2 of the
beam. (From Liu, G.R. and Gu, Y.T., Comput.
Mech., 26, 166, 2000. With permission.)
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Example 14.5: Hole in an Infinite Plate

All parameters and conditions are exactly the same as those in Example 14.2. The nodal arrange-
ment is shown in Figure 14.7. The plate is divided into two domains: in the area near the hole, EFG
is employed; in the rest of the domain, the HBE method is applied.
The stresses sx at x¼ 0 obtained by the coupled method are plotted in Figure 14.16. The results

are obtained using two kinds of nodal arrangement with 65 and 144 nodes. The nodal arrange-
ment of 65 nodes is shown in Figure 14.7. Figure 14.16 shows that the coupled method yields
satisfactory results for the problem considered. The convergence of the present method can also
be observed from this figure. As the number of nodes increases, the results obtained approach the
analytical solution. Compared with the EFG method, fewer nodes are needed in the present
coupled method. Comparison with Figure 14.9 reveals that 231 nodes are needed in the EFG
method to obtain results of the same accuracy as those obtained by the present EFG=HBE method,
where only 144 nodes are required.

Example 14.6: Structure on a Semi-Infinite Foundation

All parameters and conditions are exactly the same as those in Example 14.3, which is schemat-
ically illustrated in Figure 14.10. The nodal arrangement is shown in Figures 14.11 through Figure
14.13. The only difference is that HBE is used to model the semi-infinite half space instead of BEM.
The results of displacement in the y direction on the top of the structure are given in Table 14.3.

The FEM result obtained in [11] is also included in Table 14.3. The results obtained by the present
method are in a very good agreement with those obtained using other methods, including
FEM and EFG for the entire domain. The present method uses many fewer nodes to model the
foundation. Only 30 nodes are used in the HBE method compared to 120 nodes used in EFG for
the foundation.

14.3 Remarks

Methods that couple domain-type meshfree methods and boundary-type meshfree
methods have been presented in this chapter. A number of benchmark examples have

FIGURE 14.16
Stress distribution (sx, at x¼ 0) obtained using
EFG=HBE method together with analytical
results for a square plate with a hole at its center.
(From Liu, G.R. and Gu, Y.T., Comput. Mech.,
26, 166, 2000. With permission.)
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demonstrated the feasibility, efficiency, and effectiveness of these coupling approaches.
The following important remarks should be made before leaving this chapter:

1. The primary motivation is the same as that for coupling FEM and BEM, which is
that domain discretization using FEs should be confined within the areas of
inhomogeneity, nonlinearity, or complex geometry, and that boundary discretiza-
tion should be used in large areas wherever Green’s function is available. This kind
of coupling significantly reduces the computational cost, because of the drastic
reduction of the number of nodes used for modeling the problem, as well as the
reduction of area integration in constructing system matrices.

2. The additional reason for performing such a coupling in meshfree methods is that
the difficulty of imposing essential boundary conditions for the domain-type
meshfree methods that use MLS shape functions can be overcome, by modeling
the portion of the domain with essential boundaries using methods that use shape
functions with the Kronecker delta function property, such as FEM, BEM, PIM,
and BPIM.

3. Coupling with boundary-type meshfree methods works particularly well for
problems with infinite domains.

4. BEM can be replaced by any boundary-type meshfree method, such as BNM,
BPIM, radial BPIM, etc. When the boundary-type method uses MLS shape func-
tions (e.g., BNM), special treatments of the essential boundary conditions should
be performed.

5. Boundary-type methods that produce symmetric system matrices are preferred to
produce a symmetric system matrix for the entire problem.

TABLE 14.3

Vertical Displacements along the Top of the Structure on the Semi-Infinite
Foundation

Displacements (�10�4)

Node No. FE EFG EFG=BE (IE)a EFG=HBE (MVF)b

Load case 1
1 1.41 1.42 1.42 1.41

2 1.34 1.34 1.33 1.33

3 1.32 1.32 1.32 1.32

4 1.34 1.34 1.33 1.33

5 1.41 1.42 1.42 1.41

Load case 2

1 �3.39 �3.43 �3.58 �3.41

2 �0.97 �1.01 �1.04 �1.03

3 1.35 1.35 1.34 1.35

4 3.61 3.67 3.68 3.69

5 6.00 6.04 6.13 6.11

Source: Liu, G.R. and Gu, Y.T., Comput. Mech., 26, 166, 2000. With permission.
a EFG=BE (IE): Coupled EFG=BE method using an interface element.
b EFG=HBE (MVF): Coupled EFG=HBE method using modified variational

formulation.
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6. On the interface of different methods, there could be an issue of compatibility (not
only the continuity condition for nodes), when different orders of shape functions
are used on two sides of the domain. The issue can be handled simply by ensuring
that the order of the shape function used on the interface is the same as that used
by the other method in the domain attached to the interface. Interface or transition
elements can be used if necessary.
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15
Meshfree Methods for Adaptive Analysis

Previous chapters have described in detail the theory, formulation, procedure, and prop-
erty of meshfree methods. We now discuss a very practical theme: meshfree methods for
adaptive analysis for two- and three-dimensional (2D and 3D) problems. To conduct an
adaptive analysis effectively we need to make our codes very efficient and robust for
complicated geometries. We therefore need to discuss a few issues related to code imple-
mentation. The topics of this chapter are

a. Triangular mesh, integration cells, and mesh automation

b. Node numbering

c. Fast node searching

d. Node search for irregular boundaries

e. Local error estimation

f. Local adaptive refinement

Two meshfree methods will be implemented in our adaptive analysis: EFG and PIMs. For
EFG, all items listed above are important, and for PIMs only items (a), (b), (e), and (f) are
needed. Our discussion will focus on 2D and extend to 3D at final stage.

15.1 Triangular Mesh and Integration Cells

15.1.1 Use of Triangular Mesh

In using meshfree methods that are based on the global Galerkin method, such as the EFG
method, a background mesh is required. Any mesh similar to the finite element mesh is
applicable, as long as it satisfies the criteria that are stated in Chapter 6 to ensure an
accurate integration. Ideally, the mesh should be adaptive: the node density should change
in a automatic fashion in accordance to the field function. For this reason, the author
recommends the triangular background mesh generated based on the well-established
triangulation technique, such as the Delaunay triangulation [1]. The mesh vertices should
be used as the field nodes and the triangular cells for integration. We understand that the
integration cells can be independent of the field nodes when FEG is used, but there is really
no harm in having them linked together, as long as there is no technical difficulty in doing
so. It is actually helpful in adaptive analysis: Updating the density of nodes naturally leads
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to an update of the density of the integration cells. The advantages of using the triangular
cells are as follows:

a. Matured algorithms are available in the public domain for the construction of
integration cells and field nodes together.

b. Triangulation can be performed in an automated manner much easier for compli-
cated two-dimensional (2D) and three-dimensional (3D) domains.

c. Smoothing domain construction based on triangular type of meshes is very
straightforward.

d. Triangular mesh can be easily adapted, and hence is best suited for adaptive
analyses.

One may ask now, why don’t we simply use the conventional finite element method (FEM)
with triangular elements, which has been fully developed? The answer is simply the well-
known fact that the FEM results using triangular elements are very poor. This is due to the
poor quality of the linear shape functions used with numerical operations confined within
the element. In meshfree methods, however, the numerical treatments such as displacement
interpolation=approximation, strain approximation, and integration are not confinedwithin
the cells=elements. Basically, it can choose ‘‘freely’’ and ‘‘dynamically’’ surrounding nodes
and cells to perform these necessary operations. In addition, the demand for upper bound
solutions is becoming stronger day by day for the need to provide ‘‘certified’’ solutions to
engineering problems. Engineers will not be satisfied with a numerical solution along. They
will need solutions with bounds for generally complicated problems to make reliable
decisions. Meshfree methods offer a number of ways to provide solutions with bounds for
complicated problems, as long as triangular cells can be built (see Chapter 8). Moreover,
methods with meshfree techniques can be now much more efficient than the FEM method
using linear triangular mesh (see Section 8.7).

A mesh generator called MFreePre has been developed for MFree2D� for automatic
background cells and field nodes generation. The vertices of the initially generated
triangular cells serve as the initial field nodes. When new nodes are added, the triangular
mesh is then modified locally and automatically. The following sections describe the
techniques used in MFreePre.

In the process of background mesh generation, each node is assigned a density factor
that is used to control local nodal density in the vicinity of the node. Local modification of a
mesh is accomplished simply by adjusting the density factor at a node—this is particularly
useful in an adaptive analysis in MFree2D�.

15.1.2 Triangular Mesh Used in EFG

In the EFG processor implemented in MFree2D�, triangular mesh is used for both
integration of energy and node selection based on either influence concept or T2L-schemes.
When the influence domain is opted, the triangular background mesh is used to
determine the size of the influence domain for selecting nodes to be used for constructing
the MLS shape functions. This ensures the automatic determination of the dimension
of the influence domain for individual node during the adaptive analysis process.

662 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



A local patch for a node is first defined using the triangular cells that surround the node.
The formula to compute the dimension of the influence domain of that node becomes

rI ¼ as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
nI

XnI
i¼1

ai

s
(15:1)

where
rI is the radius of the influence domain of node I
nI is the number of surrounding triangular cells
ai is the area of the ith cell
c is a constant scaling with the domain size

The default value is set at as¼ 2. The size of influence domain by this approach can vary in
accordance with the local nodal density and is therefore able to represent reasonably well
the influence domain of a node. To ensure a successful MLS shape function construction
used in EFG, a minimum number is set for the nodes contained in an influence domain.
The size of the influence domain can be adjusted automatically in the code if the minimum
number of nodes is not achieved.

Once the background triangular cells have been defined, the integration of the system
equation for EFG can be then carried out using conventional Gauss quadrature schemes.
This ensures a sufficient number of Gauss points for integrating the system matrices accur-
ately. In addition, the density of the Gauss points is automatically tied to the density change
of the nodes, thus the adequate integration is kept during the adaptive analysis process.
In general, one Gauss point in a cell works well for many problems and three Gauss points in
a triangular cell are sufficient for all the problems tested by our research group, which gives
an � 3 based on Equation 6.64. Hence the integration is very (probably most) economic.

15.1.3 Triangular Mesh Used in PIMs

For PIMs, the operation becomes very simple with the use of triangular background cells.
All we need is to create a set of smoothing domains on top of the triangular cells, following
the simple rules given in Chapter 8. Such a creation of smoothing domains can always be
done without any difficulty for a given triangular mesh. When SC-PIMs are used, one may
need to further divide the triangular cells, which is also trivial. The selection of nodes can
always be done using a T-scheme. For strain field constructions, the integration needs to be
done only along the edges of the smoothing domains and hence can be done very easily
and efficiently. The energy integration either done by a simple summation over all the
smoothing domains (NS- and ES-PIMs) or analytically (SC-PIMs), no numerical integration
is needed. Coding of PIMs is in fact quite an easy task, and a number of PIMs have made
available now in MFree2D 2.0. The PIM processors are very stable because all these issues
are well controlled in a PIM setting based on weakened weak formulations.

15.2 Node Numbering: A Simple Approach

The stiffness matrix K is sparse and can also be banded. The bandwidth of the stiffness
matrix K will depend on the numbering system of the field nodes. It is of little concern if a
full matrix solver is used in solving the system equation. But such a full matrix solved is
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never used in actual application for large systems. A much better solver is the bandwidth
solver with 1D array for storage which can solve a quite large system. When a bandwidth
solver is used, the CPU time for solving the system equation is proportional to the
bandwidth, and hence minimization of the bandwidth of a model is of importance.

The considerations and techniques of reducing the bandwidth are similar to those in
FEM. In FEM, the bandwidth depends on the largest node number difference of the
elements. All one needs to do is determine which element has the largest node number
difference. Optimization tools for renumbering nodes are routinely available and widely
used to ensure the minimum bandwidth for different types of solvers. Most of the FEM
commercial software packages include some of these optimization tools.

In the meshfree method, we do not have elements, and the bandwidth is determined by
a much more complex mechanism. Here we suggest the following simplest and very robust
way to minimize the bandwidth of the system matrix. The principal consideration of the
‘‘minimizer’’ is to minimize the maximum difference in the nodal numbers for all the nodes
within a local support domain of any point in the problem domain. This simple scheme is
schematically shown in Figure 15.1. The procedure is as follows:

1. Choose a reference point A that is far from the problem domain, i.e.,D�H. Point A
also has to be in the longitudinal direction of the problem domain.

2. Calculate the distances between point A and all the field nodes.

3. Rank all the field nodes by the shortest distance.

4. Renumber all the nodes following the rank of the nodes.

An index can be easily generated to recode the original numbering of the nodes, which may
be useful in retrieving the solution originally assigned to the nodes. This simple procedure is
very easy to implement and very effective. The bandwidth of the system matrix should be
the minimum or at least very close to the minimum. The procedure is also implemented in
MFree2D for both EFG and PIMs processors. The simplest often works best.

15.3 Bucket Algorithm for Node Searching

For meshfree methods using influence domains (including the EFG processor implemen-
ted in MFree2D�) for node selection, a procedure is required to search all the nodes that
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FIGURE 15.1
Reference point chosen at a large distance from the problem domain for optimizing the numbering of nodes.
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fall into the influence domain. It is very expensive (N2 complexity) if every node in the
entire problem domain has to be checked against the node, especially when the number
of nodes is large. To reduce the cost of node searching, many algorithms have been
developed. One very simple approach is the so-called bucket algorithm [13] that divides
the problem domain into buckets, each containing nodes up to a predefined number
limit. The number limit is defined according to the problem size and the maximum
number of nodes allowed in an influence domain. The range of node searching can
thus be reduced from the entire problem domain to a number of buckets that have
overlaps with the domain of influence under construction. In numerical implementation,
the structure of the bucket needs to be defined. The structure contains information about
the bucket range and the nodes contained in the bucket. An example of the structure in
C language is given as

struct bucket {
int num; ==number of nodes contained in bucket
double xmin, ymin, xmax, ymax; ==range of bucket
int node[BUCKETNUMLIMIT]; ==domain nodes in bucket
};

where BUCKETNUMLIMIT is the predefined number limit. The bucket defined in the
example above assumes a rectangular shape.

The next undertaking is to formulate all buckets in a problem domain; this is fulfilled by
a recursive procedure. The procedure first sets a bucket to contain the entire domain. If the
number of nodes exceeds the predefined number limit, the bucket is split at its larger
dimension into two equal-sized subbuckets. The same procedure is then applied to each
subbucket, and the subbuckets are further divided. The procedure terminates when the
number of nodes in every bucket is less than the predefined number limit. In detail, the
recursive procedure is as follows:

1. Define the maximum number of nodes that a bucket is allowed to hold.

2. Create a list to hold the buckets.

3. Set a bucket to hold the entire problem domain.

4. If the number of nodes in the bucket is less than the predefined number limit,
append the bucket to the list of buckets and go to 8.

5. Split the bucket into two equal-sized buckets—BucketOne and BucketTwo.

6. Load BucketOne and go to 4.

7. Load BucketTwo and go to 4.

8. End.

An application result of this procedure is shown in Figure 15.2, where the rectangles define
the bucket ranges. The list of buckets is maintained dynamically during the adaptive
process. In the case of domain refinement or node exchange between adjacent buckets,
the disturbed buckets are examined and adjusted accordingly.

EFG may use this algorithm if it chooses to, and an option is given in MFree2D� for the
EFG processor. A PIM does not. It simply uses the connectivity provided by the triangular c,
which is most efficient.
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15.4 Relay Model for Domains with Irregular Boundaries

The relay model is used only in EFG implemented in MFree2D�. PIMs do not need it.

15.4.1 Problem Statement

Formeshfreemethods that do not use connectivity of nodes, difficulties arise in determining
the influence domain of a node. The influence domain usually takes a simple shape, for
example, circular or rectangular. For simple problem domains, the influence domain can be
determined simply by drawing a circle of radius rI defined by Equation 15.1. Its influence on
any other point is directly computed by the distance between the node and the point via the
use of the weight functions given in Chapter 2. For complex problem domains involving
multiple discontinuities, such as multiple cracks, an influence domain may contain numer-
ous irregular boundary fragments, as shown in Figure 15.3, and computation of nodal
weights simply based on physical distance can be erroneous as the discontinuity of the
field variables caused by the complex boundary are not accounted for. For example, in
Figure 15.3, points P andQ are located at different positions within the influence domain of
nodeO and have the same distance to source nodeO. A question is: ShallO impose the same
influence onQ as that onP? If not, how shall theweight of influence onQ be determined, and
further on an arbitrary point within the influence domain? Shall an influence domain retain
the regularity in shape as in simple problem domains and, if not, how shall the profile of the
influence domain be defined? These questions must be addressed properly as the determin-
ation of nodal influence is vital to the accuracy of solution using a meshfree method.

In view of the aforementioned problems, this section is specifically devoted to these
aspects of defining the profile of the influence domain and computing the weight of
influence in meshless approximations with irregular boundaries. By starting with a review
of the existing techniques in these respects, a relay model aiming to provide a general
solution for domains bounded by arbitrary boundaries is proposed. The essence of this
model is to construct a hierarchical network of relay points to transmit nodal influence.

FIGURE 15.2
Problem domain represented by division into buckets. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl. Mech.
Eng., 191, 1923, 2002. With permission.)

666 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch15&iName=master.img-000.jpg&w=275&h=166


Moreover, expressions derived from the circle involute curve are employed to define the
profile of the portions of the influence domain that are not visible to the source node. Various
numerical examples based on the EFGmethod are presented to verify the effectiveness of the
proposed model.

A number of techniques have been reported on the construction of meshless approxima-
tions with discontinuities and nonconvex boundaries. The following sections describe three
typical methods: the visibility, diffraction, and transparency methods.

15.4.2 Visibility Method

This is the earliest method used for domains with discontinuities [2]. Detailed descriptions
of the method are available in papers by Belytschko et al. [3]. The essence of this approach
is that the domain boundaries and any interior lines of discontinuities are treated as
opaque when constructing weight functions. In this approach, the line from a point to a
node is imagined to be a ray of light. If the ray encounters an opaque surface, it is
terminated and the point is excluded from the domain of influence. An example of using
the visibility criterion is illustrated in Figure 15.4, where the blank region is excluded from
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FIGURE 15.3
Influence domain containing numerous irregular
boundary fragments.
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FIGURE 15.4
Domain of influence of a node in the vicinity of
a crack tip determined by the visibility method
(blank region is excluded by a visibility criterion).
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the original influence domain of a generic node I in the vicinity of the tip of a straight crack
that is represented by the horizontal line in Figure 15.4. This method is simple and
straightforward. It is noted, however, that the weight function by the visibility criterion
is discontinuous within the influence domain. Along the ray that grazes the tip of the crack,
e.g., line AB in Figure 15.4, the weight function is nonzero to the right side of the line, but
vanishes to the left. As a consequence, the shape functions constructed are also discon-
tinuous, which is undesirable in a meshless approximation. Moreover, the visibility criter-
ion may not be very easy to adapt to concave boundaries.

15.4.3 Diffraction Method

The diffraction method [3,4] was motivated by the way light diffracts around a sharp
corner. This technique applies only to polar-type weight functions where the weights are
defined as a function of a single distance-related weight parameter. The mechanism of the
diffraction method is illustrated in Figure 15.5, where the straight horizontal line represents
a crack. By the diffraction method, the crack line is treated as opaque, but the length of the
ray is evaluated by a path that passes around the crack tip C. According to [3], the weight
parameter s associated with A is computed by

s ¼ s1 þ s2(x)
s0(x)

� �l

s0(x) (15:2)

where
s0, s1, and s2 are the distances between O and P, O and A, and A and P, respectively
l is a user-defined parameter

As a result, the domain of influence contracts around the crack tip. The diffraction method
can also be applied to nonconvex boundaries. Figure 15.6 illustrates such an example,
where the parameter s is constructed from the lengths of two line segments that just graze
the boundary.

The major benefit of the diffraction method is that the weight function and shape
function are continuous within the influence domain. This is, however, achieved at

(a) (b)
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FIGURE 15.5
Schematic illustration of the diffraction technique to determine the influence domain. (a) Definitions of parameters
s0, s1, and s2; (b) domain of influence.
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the cost of lower efficiency in computing the derivatives of these functions. Care should
also be exercised because, when points O and P are very close, i.e., s0(x) is close to 0, the
weight parameter s becomes infinite, causing difficulty in computation.

15.4.4 Transparency Method

The transparency method [4,5] was developed to smooth a meshless approximation
around the tip of a discontinuity by endowing a discontinuity line with a varying degree
of transparency—from completely transparent at the tip of the discontinuity to completely
opaque at a distance away from the tip. The procedures to compute the weight parameter s
are shown in Figure 15.7; the parameter is given by

s(x) ¼ s0(x)þ smax
sc(x)
�sc

� �l

, l � 2 (15:3)

where
s0(x) is the distance between O and P
smax is the radius of the nodal support
sc(x) is the distance from the crack tip to the intersection point

The parameter Sc sets the intersection distance at which the discontinuity line is completely
opaque. Care should be exercised because, for nodes very close to a boundary, the angle
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FIGURE 15.6
Diffraction technique applied to concave boundary
of a domain V.
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FIGURE 15.7
Schematic illustration of the transparency method for a node
near a crack tip.
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enclosed by the crack and the ray from the node to the crack tip is very small, causing
a sharp gradient in the weight function. Therefore, it is required that all nodes have a
minimum distance to the crack surface.

15.4.5 The Relay Model

The techniques described above have been applied formany problems of crack propagation.
However, these methods are effective for problems with relatively simple domains (e.g.,
with one or two cracks, or with few nonconvex portions on the boundaries). They are not
sufficient for problem domains featuring highly irregular boundaries. A highly irregular
domain is a domain containing an arbitrary number of cracks, discontinuities, nonconvex
boundary portions, and so forth. Further, there is no restriction to the orientations and
distributions of these geometric features. In FEM, this situation causes difficulties mainly
in the preprocessing work—meshing—that requires manual operation. Once the domain
has been discretized into elements, shape functions are constructed readily with the aid of
nodal connectivity and no further consideration is required for the geometric details in the
course of computation unless refinement of the domain is needed. However, in meshfree
methods, the absence of meshes requires a rather sophisticated algorithm to automatically
examine the boundary details of an irregular problem domain during a computation to
determine the influence domains for a node. This kind of automatic algorithm can be
developed, because there is no need to provide connectivity for the nodes. All that has to
be done is to determine the nodes that should be included in the influence domain. The relay
model is one of such algorithms for determining the influence domain of a node in a complex
problem domain. The relay model, developed in [6] is as follows.

The relay model proposed is motivated by the way a radio communication system
composed of networks of relay stations works. Consider an influence domain containing
a large number of irregular boundary fragments, as depicted in Figure 15.3. O is the
source node and the solid lines depict the boundaries. The source node first radiates its
influence in all directions equally, just as a radio signal is broadcast at a radio station, until
the contained boundaries are encountered. Under the relay model, the influence from the
source node is conveyed to the blocked regions via a network of relay points. The following
subsections give detailed descriptions about the principles, mechanisms, and computa-
tional implementations of the relay model. The descriptions are facilitated by some defin-
itions and notations.

15.4.5.1 Control Point and Connection

15.4.5.1.1 Control Point

A control point is a boundary point at which the angle formed by the boundary on the
nonmaterial side (e.g., v in Figure 15.3) is less than a predefined value. The predefined
value is not larger than p; i.e., the boundary at the control point is nonconvex. In the
discussion that follows, p is used as the predefined angle value, which means that every
boundary node (not only crack tips) is qualified to be a control point if the boundary at this
point is concave. (There are cases where a smaller predefined value will greatly simplify
the analysis without losing the accuracy of results.) For all control points, the gradient of
the boundary changes abruptly in the vicinity of their locations. In Figure 15.3, points A, B,
C, D, F, and G are control points, whereas E is not. It is stressed that this definition is purely
geometric and contains no physical or mechanics meaning. Therefore, it does not imply a
point of singularity.
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15.4.5.1.2 Connection

A connection is the shortest path that links two points within an influence domain. The
path lies completely within the influence domain and is continuous without interruption
by boundaries. If such a path does not exist, there is no connection between the two points
within the influence domain considered. The connection is said to be direct if the path is
straight; otherwise, it is indirect. To denote a connection from one point to another, an
arrow is employed in the following notation. For example

Direct connections: P ! O, F ! A

Indirect connections: Q ���!fCg
O, T ���!fF,Ag

O

The arrows for direct connections are clean, signifying that these connections require no
intermediate points. For indirect connections, an assembly of the points via which the
connections are established is placed over the arrow. From the left to right in the assembly,
the intermediate points are from the nearest to the farthest in terms of their equivalent
distances (this will be defined later) to the point on the left side of a connection. The
sequence holds if the connection is viewed in reverse order.

Within the original influence domain of a node, points that have no connection with the
source node are excluded from the influence domain—this is the criterion of node inclusion
in the present model.

15.4.5.2 Relay Point, Relay Region, and Network of Relay Points

15.4.5.2.1 Relay Point

A relay point is a control point with only one boundary segment visible to the source point.
It is so named because it is responsible for conveying the influence from the source to the
blocked region. This definition is relative—whether a control point is a relay point depends
on the position of this point relative to the source point. For example, to source node O, A,
B, and C are relay points, whereasD is not. If at another time, P becomes the source node,D
is a relay point to P. For a complex influence domain, the relay points are also ranked with
the rank order assigned according to their relations with the source node. To illustrate this,
the influence domain depicted in Figure 15.3 is again referenced. The relay points that have
direct connections with O are the primary relay points; they are ranked level one. Specif-
ically, the source node O is also treated as a relay point and is ranked level zero. Some relay
points may possess subrelay points. For example, F is a subrelay point of A; A is called the
parent (or master) of F. As F connects indirectly with O via A, F is ranked level two.
Subsequently, relay points of higher order are ranked in a similar way. It should be noted
that the rank order conferred to a relay point is valid only in the current influence domain;
it may change if the same point is in an influence domain of a different source node.

15.4.5.2.2 Relay Region

A relay region is a fraction of the influence domain to which a relay point has an exclusive
right to transmit the influence from the source node. Two conditions are set for this
definition: every point within this region has a direct connection with the relay point and
every point within this region has an indirect connection with the source node via the relay
point. The relay point is called the master of the relay region. Relay regions are also ranked
with their rank orders inherited from their respective mastering relay points. For the source
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node, it governs a relay region of level zero. Figure 15.8a shows three levels of relay regions
differentiated by gray colors of different degrees—the lightest corresponds to level zero,
the intermediate gray to level one, and the darkest to level two. From the above definition,
a relay region will have no overlap with another; the interface between two neighboring
regions is generally a straight line (Figure 15.8a).

The potential boundary of a relay region is defined by the criterion that the weight
function vanishes. By this definition, the potential boundary differs from the real boundary
of a relay region in that the former is purely imaginary whereas the latter may comprise
portions of the physical boundaries of a problem domain. For the level-zero relay region,
the potential boundary coincides with the boundary of the original influence domain. For a
relay region of higher level, it is assumed that the radial distance from the mastering relay
point to the potential boundary of the relay region decreases with the radial line deviating
from the extension of the line connecting the relay point and its parent. As shown in Figure
15.9a, the assumption leads to

r ¼ r(u), while r# with u # (15:4)

where r is the radial distance, decreasing with u. The preceding expression defines the
profile of a relay region that contracts around its mastering relay point (i.e., C1 in Figure
15.9a). This concept is identical to the diffraction technique described in the preceding
section. However, the present model uses expressions derived from the form of circle
involute instead of Equation 15.2 that will be presented later.

15.4.5.2.3 Network of Relay Points

This is a network formed by all the multitiered relay points within an influence domain.
The network is a hierarchical system and corresponds to a tree structure (Figure 15.8b). Its
function is to transmit the influence from the source node to the entire range of the
influence domain. This resembles the working principles of a radio communication net-
work system except that the influence (which is the ‘‘signal’’ in radio communication) is
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FIGURE 15.8
Relay model for an irregular influence domain. (a) Illustration of relay regions of different levels; (b) tree
representation of the hierarchical network of relay points. (From Liu, G. R. and Tu, Z. H., Comput. Methods
Appl. Mech. Eng., 191, 1923, 2002. With permission.)

672 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC



conveyed without being enhanced at a relay point. The network formed by relay points is
the core of the relay model.

15.4.5.3 Effective Relay Radius and Equivalent Distance

Effective relay radius is a parameter associated with a relay point; it defines the maximum
radial distance from this relay point to the potential boundary of the relay region associated
with it. In the present description, it is equal to r(p). The effective relay radius is calculated by

reff
(i) ¼ r(i�1)(u)� r ¼ r(i)(p), i ¼ 1, 2, . . . (15:5)

where
reff denotes the effective relay radius
r is the distance from a relay point to its parent relay point

r(i�1)(u) is the radial distance defined in the relay region associated with the parent relay
point, with the radial line passing the relay point considered. The superscript i in paren-
theses denotes the rank order. In particular, the source node, i.e., the level-zero relay point,
has an effective relay radius of

reff
(0) ¼ r0 (15:6)

where r0 is the original radius of the influence domain.
Under the relay model, an influence domain is divided into numerous relay regions of

different levels. Points in different relay regions have different connections with the source
node. It will be unfair if the details of a connection are not accounted for in the computation
of the weight parameter. This model employs the equivalent distance instead of the physical
distance as the basis to measure the weight parameter. For a point in the level-zero relay
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FIGURE 15.9
Profile of relay regions and schemes for computation of equivalent distance of a point using the relay model.
(a) Point in a level-one relay region; (b) point in an ith-level relay region.
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region, the equivalent distance is identical to the physical distance from this point to the
source node, i.e.,

req ¼ r, for points in the level-zero relay region: (15:7)

where req and r are the equivalent distance and physical distance from the point to the
source node (or the level-zero relay point), respectively.

For points in relay regions of higher level, the equivalent distance is evaluated in
a progressive manner. To illustrate this, a point in a level-one relay region is first con-
sidered. Figure 15.9a shows a single relay point case where O is the source node, C1 is a
relay point of level one, and P is located in the relay region associated with C1. According
to Equations 15.5 and 15.7, the effective relay radius and equivalent distance associated
with C1 are

reff
(1) ¼ r(0) � r ¼ r0 � r (15:8)

and

req
(1) ¼ r (15:9)

where r is the distance between C1 and O. Following the notation defined above, the
connection between P and O is depicted as

P ���!fC1g
O (15:10)

The equivalent distance of P is computed by

req ¼ req
(1) þ r

req
(1) þ r(1)(u)

r0 (15:11)

where
r represents the distance from P to its mastering relay point C1

u is the smaller angle formed by C1P
��!

and C1O
��!

with the direction from C1P
��!

to C1O
��!

If P is located in an ith-level relay region as shown in Figure 15.9b and has a connection
with the source node as described by

P ������������!fCi ,Ci�1,...,C1g
O (15:12)

the equivalent distance from P to O is computed in the same fashion, i.e.,

req ¼ req
(i) þ r

req
(i) þ r(i)(u)

r0 i ¼ 0, 1, 2 , . . . (15:13)

where
rieq is the equivalent distance associated with the mastering relay point Ci

r(i) defines the potential boundary of the ith-level relay region controlled by Ci
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u is the smaller angle formed by CiCi�1
����!

and CiP
�!

; one has

cos u ¼ v
CiCi�1
��! � v

CiP
�! (15:14)

where v
CiCi�1
��! and v

CiP
�! are unit vectors defining the directions of CiCi�1

����!
and CiP

�!
,

respectively, i.e.,

vCiC ~i�1 ¼
xCi�1 � xCi

xCi�1 � xCij j ¼
(xCi�1 � xCi )=rCiCi�1

(yCi�1 � yCi )=rCiCi�1

� �
(15:15)

vCi~P
¼ x� xCi

x� xCij j ¼
(x� xCi )=r
(y� yCi )=r

� �
(15:16)

Equation 15.13 presents a progressive way to compute the equivalent distance of P
sequentially from C1, C2, . . . , Ci, to P. The expression also shows that the equivalent
distance of a point only needs the information of its mastering relay point; this makes
the computation very easy to manage for a very complex influence domain. To save
computation expense, r(i)eq and r(i)eff associated with all levels of relay points are computed
in advance. There are occasions that a point may have various links to the source node
(e.g., Q in Figure 15.8a can connect with O via either B or C). The rule practiced here is that
the shortest equivalent distance among all the possible paths is used.

15.4.5.4 Weight Parameter and Its Derivatives

Weight functions play an essential role in the construction of shape functions. It rules the
influence of the source node over the entire influence domain. A general polar-type weight
function takes a form of

W
_

(s) ¼ >0 for s < 1
¼0 for s � 1

�
(15:17)

and its derivatives are calculated by

qW
_

qx
¼dW

_

ds
qs
qx

(15:18)

qW
_

qy
¼dW

_

ds
qs
qy

(15:19)

where the weight parameter s¼ r=r0 is a normalized distance. Several commonly used
weight functions are given in Chapter 5 (note that variable is now changed to s).

In the relay model, the weight parameter s is measured by the equivalent distance. For
example, the weight parameter for a point in an ith-level relay region is

s ¼ req
r0

¼ req
(i) þ r

req
(i) þ r(i)(u)

, i ¼ 0, 1, 2, . . . (15:20)
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The derivatives of s with respect to x and y are, therefore,

qs
qx

¼ 1
req þ r(u)

qr
qx

� r

(req þ r(u))2
dr
du

qu
qx

(15:21)

qs
qy

¼ 1
req þ r(u)

qr
qy

� r

(req þ r(u))2
dr
du

qu
qy

(15:22)

where the superscript (i) is dropped for simplicity of description. The derivatives of u with
respect to x and y are computed from Equation 15.14:

qu
qx

¼ � y� yCi

r2
(15:23)

qu
qy

¼ x� xCi

r2
(15:24)

if u is counterclockwise. When the direction of u is clockwise, the derivatives are

qu
qx

¼ y� yCi

r2
(15:25)

qu
qy

¼ � x� xCi

r2
(15:26)

15.4.5.5 Numerical Implementation

To implement the relay model, sophisticated algorithms that take into account the details
of the boundary fragments are required. This necessitates, at least, two tasks: detection of
all boundary fragments contained in an influence domain and construction of the network
of relay points. The procedures to construct the relay model within the influence domain of
an arbitrary node O are as follows:

1. Construct the influence domain associated with node O.

2. Extract all boundary fragments of the problem domain contained in the influence
domain.

3. Filter out the nodes that have no connection with the source node.

4. Construct a list of all control points within the influence domain.

a. Loop over all boundary nodes within the influence domain.

b. Append a boundary node to the list if it is a control point.

5. Construct the network of relay points.

a. Create a new list for relay points.

b. Set the source node as the level-zero relay point and append it to the list.

c. Set L¼ 1 (L denotes the level of relay points to be constructed).

d. Loop over the list of control points.

e. Set the relay points of level L and append them to the list of relay points. This is
done by checking the control points against the relay points of level L � 1.
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f. Update the list of control points by removing the control points that are already
relay points.

g. L¼ Lþ 1.

h. Go to c.

6. Compute the effective relay radius and equivalent distance associated with each
relay point.

7. End the construction of the relay model within the influence domain of O.

These procedures are complex and expensive in terms of computation time. This is the cost
arising from the absence of meshes and is likely unavoidable for a very complex problem
domain. The price has to be paid to relieve the labor involved in meshing. It is not difficult
to imagine how much time is required to mesh a domain of complexity shown in Figure
15.3. Compared with the price for labor to perform the work, the cost of the relay model is
extremely small. Moreover, if adaptive analysis is required, it is not possible to manually
perform the meshing over and over again.

15.4.5.6 Profile of a Relay Region

15.4.5.6.1 Circle Involute Approach

The present model defines the profile, or potential boundary, of a relay region using forms
derived from the circle involute (Figure 15.10a). By mathematical definition, the involute of
a circle is a curve orthogonal to all the tangents to this circle. For a better understanding,
one can imagine there is a circle with a rope wound around its perimeter. If one holds
tightly to one end of the rope to unwind the rope from the circle, the circle involute is given
by the track of this end. In Figure 15.10a, Q is the end of the rope and T is the point where
the extracted portion of the rope makes tangential contact with the circle. The circle
involute can be mathematically expressed by

x ¼ a( cosaþ a sina) (15:27)

y ¼ a( sina� a cosa) (15:28)

α

θ
0

5π/2

2π

2π

3π/2

3π/2

π

π

π/2

π/2
(b)

a

Q

ρ

T

O x

y

AB

(a)

α
θ

FIGURE 15.10
Circle involute. (a) The involute curve; (b) relationship between a and u.
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where
a is the radius of the circle
a is the angle from OA to OT

Alternatively, the circle involute described in polar form is

r ¼ a(1þ a2)1=2 (15:29)

u ¼ a� arccos (1þ a2)�1=2
h i

(15:30)

where (r, u) is the polar position of Q. The preceding equations are used to define the
profile of the relay region as shown in Figure 15.9a, with the value of u confined by (0,p).
With Equations 15.29 and 15.30, the following derivatives can be obtained:

da
du

¼ 1þ a2

a2 (15:31)

dr
da

¼ aa

(1þ a2)1=2
(15:32)

Therefore, differentiation of r with respect to u yields

dr
du

¼ dr
da

da
du

¼ a(1þ a2)1=2

a
¼ r

a
(15:33)

In a computation, a needs to be solved in terms of u from the nonlinear Equation 15.30.
This adds computation cost if a nonlinear equation solver is used to solve this. To avoid
this, one can actually construct a table, such as Table 15.1, to store values of u vs. a in
advance. Figure 15.10b depicts the relationship between a and u defined by Equation 15.30.

TABLE 15.1

Values of a vs. u for the Circle Involute Approach

Q a u a

0.0000000000Eþ00 0.0000000000Eþ00 0.1581906633Eþ00 0.8796459430Eþ00

0.8248810247E�04 0.6283185307E�01 0.1866837799Eþ00 0.9424777960Eþ00

0.6552697876E�03 0.1256637061Eþ00 0.2172636968Eþ00 0.1005309649Eþ01
0.2186035144E�02 0.1884955592Eþ00 0.2498070719Eþ00 0.1068141502Eþ01

0.5099810682E�02 0.2513274123Eþ00 0.2841906568Eþ00 0.1130973355Eþ01

0.9763467994E�02 0.3141592654Eþ00 0.4796580601Eþ00 0.1445132621Eþ01

0.1647595382E�01 0.3769911184Eþ00 0.7532566507Eþ00 0.1822123739Eþ01

0.2546442135E�01 0.4398229715Eþ00 0.1107412823Eþ01 0.2261946711Eþ01

0.3688561209E�01 0.5026548246Eþ00 0.1540878884Eþ01 0.2764601535Eþ01

0.5083130149E�01 0.5654866776Eþ00 0.2051016866Eþ01 0.3330088213Eþ01

0.6733641460E�01 0.6283185307Eþ00 0.2635059918Eþ01 0.3958406743Eþ01
0.8638848454E�01 0.6911503838Eþ00 0.3290607926Eþ01 0.4649557127Eþ01

0.1079373643Eþ00 0.7539822368Eþ00 0.4015736576Eþ01 0.5403539364Eþ01

0.1319044111Eþ00 0.8168140899Eþ00 0.4870220170Eþ01 0.6283185307Eþ01
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From Table 15.1, a can be obtained by linear interpolation once u is calculated from
Equation 15.14; i.e.,

a ¼ a1 þ u� u1
u2 � u1

(a2 � a1) (15:34)

where
u falls into a range defined by two consecutive values u1 and u2 in the table
a2 and a1 are values corresponding to u1 and u2, respectively

Next, parameter a is determined. This can be achieved by noting that for r there holds

r(0) ¼ a and r(p) ¼ reff (15:35)

With Equation 15.29, parameter a is obtained as

a ¼ reff(1þ a(p)2)�1=2 ¼ 0:21724reff (15:36)

where a(p) is 4.449235 by interpolation from Table 15.1.
By combining Equations 15.20 through 15.22, 15.29, 15.30, and 15.33, the weight param-

eter and its derivatives can be determined; the derived formulae are applicable to any
polar-type weight function. To illustrate the effects of the circle involute approach on the
weight function, three domains as shown in Figure 15.11 are used for comparison. Figure
15.11a through c represent domains containing no discontinuity, a single crack, and double
cracks, respectively. The weight function used is the cubic spline. The calculated weights
and derivatives over the influence domain of the source node O are depicted by the surface
plots and contour plots in Figures 15.12 through 15.14, respectively.

It is noted from Equation 15.33 that the derivative of r with respect to u turns out to be
infinite when a is very close to zero. This can be avoided by setting an initial value of a,
e.g., a(0)¼a0> 0.

15.4.5.6.2 Modified Circle Involute Approach

Figures 15.13 and 15.14 show that there are small jumps in the derivatives of the weight
function across the interfaces between neighboring relay regions; i.e., the derivatives are
not smooth. This is not desirable since the smoothness of weight functions is crucial to the

O (0, 0)

(a)

(–0.1, 0.2)

O

(b)

(–0.3, 0.2)

O

(c)

FIGURE 15.11
Three domains: (a) with no discontinuity, (b) with a single crack, and (c) with two cracks.
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continuity of stresses. A modified circle involute approach is therefore proposed to miti-
gate this problem. This approach uses a different portion of the circle involute curve as
shown in Figure 15.15a, where the origin of coordinates, O, moves from the circle center to
the starting point of the circle involute with the x-axis tangential to the perimeter. The
resulting curve in polar form is
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Cubic spline weight function and its derivatives over an influence domain with a single crack by the circle involute
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r ¼ a(2þ a2 � 2cosa� 2a sina)1=2 (15:37)

cos u ¼ a(sina� a cosa)
r

(15:38)
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The relationship of a and u defined by Equation 15.37 is depicted in Figure 15.15b. Again,
Table 15.2 is constructed to store the values of a vs. u. For those values not directly given in
the table, linear interpolations apply.

The derivative of r with respect to u determined from Equations 15.37 and 15.38 is

dr
du

¼ r(1þ sina)
a� cosa

(15:39)

where u is defined within (0, p) while the bounds of a are given by a(0) and a(p). The
constant a is

a ¼ reff=2p (15:40)

since r¼ reff¼ 2pa at a¼ 2p.
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π

π
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FIGURE 15.15
Modified circle involute approach. (a) The modified curve and (b) the relationship between a and u.

TABLE 15.2

Values of a vs. u for the Modified Circle Involute Approach

u a u a

�0.1807289880E�01 0.2304887073Eþ01 0.1375632706Eþ01 0.4241150082Eþ01

0.3679373644E�02 0.2336460868Eþ01 0.1496629531Eþ01 0.4398229715Eþ01

0.1728543851E�01 0.2356194490Eþ01 0.1619396195Eþ01 0.4555309348Eþ01

0.1259017101Eþ00 0.2513274123Eþ01 0.1744098373Eþ01 0.4712388980Eþ01

0.2351114085Eþ00 0.2670353755Eþ01 0.1870915404Eþ01 0.4869468613Eþ01

0.3449731099Eþ00 0.2827433388Eþ01 0.2000040107Eþ01 0.5026548246Eþ01

0.4555502106Eþ00 0.2984513021Eþ01 0.2131677850Eþ01 0.5183627878Eþ01

0.5669115049Eþ00 0.3141592654Eþ01 0.2266044530Eþ01 0.5340707511Eþ01
0.6791318229Eþ00 0.3298672286Eþ01 0.2403363059Eþ01 0.5497787144Eþ01

0.7922927290Eþ00 0.3455751919Eþ01 0.2543857832Eþ01 0.5654866776Eþ01

0.9064832817Eþ00 0.3612831552Eþ01 0.2687746603Eþ01 0.5811946409Eþ01

0.1021800854Eþ01 0.3769911184Eþ01 0.2835229208Eþ01 0.5969026042Eþ01

0.1138352007Eþ01 0.3926990817Eþ01 0.2986472681Eþ01 0.6126105674Eþ01

0.1256253398Eþ01 0.4084070450Eþ01 0.3141592654Eþ01 0.6283185307Eþ01
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The cubic spline weight function and its derivatives based on the modified approach
are demonstrated by surface plots and contour plots in Figures 15.16 and 15.17. The
plots demonstrate that the modified approach gives smooth descriptions for the weight
function and its derivatives in the level-one relay region; this can be shown easily from
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Equation 15.39 mathematically. However, in relay regions of higher level, there are also
small jumps across the interface. A more appropriate description of the profile of the relay
region is therefore needed; this unfortunately is still under investigation.
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A more general form for the modified formula is expressed by

r ¼ a(2þ a2 þ 2sin (a� w)� 2a cos (a� w))1=2 (15:41)

cos u ¼ a( cos (a� w)þ a sin (a� w))
r

(15:42)

where w is a user-defined value corresponding to an initial rotation angle. The range of w is
recommended to be [1,p=2]. The extreme case, w¼p=2, corresponds to Equations 15.37
and 15.38, whereas w¼ 1 corresponds to the case that the x-axis makes tangential contact
with the involute curve as shown by the dashed line in Figure 15.15a.

Note that PIMs do not use the relay mode, because it uses a T-scheme to select nodes.

15.5 Techniques for Adaptive Analysis

15.5.1 Issues of Adaptive Analysis

In an adaptive analysis, there are essentially two issues—a posteriori error estimation and
domain refinement. The first requires a cheap error estimate to measure the local and global
errors, whereby an adaptive procedure determines whether a refinement is required, and if it
is required, which part of the domain is refined. The effectiveness and efficiency of these two
operations are critical to the performance of an adaptive procedure. To conduct a posteriori
error estimation, two values—a computed value and a reference value—are usually
required. The first is the raw data from the computations for the problem, and the second
is derived from the first via postprocessing (e.g., smoothing or projection). In FEM, the raw
data of stresses=strains do not possess interelement continuity and have a discrepancy along
element boundaries; the improved values are obtained via smoothing the interelement
discontinuity on strains. The difference between the raw and improved values formulates
a basis for error estimation in FEM; detailed descriptions of this approach are available in the
FEM literature [7]. There are also other methods [8] used for error estimation and adaptive
meshing in FEM.

In the PIMs, such as the ES-PIM and NS-PIM, we have similar stress discrepancy in the
background cells, and adaptive methods will also be developed making use of this
discrepancy, as will be shown later.

In some meshfree methods such as EFG, there is no interelement discontinuity of stresses
and the resulting stress field is very smooth over the entire problem domain. As a result,
error estimates based on stress-smoothing techniques developed for FEM cannot be used
for error estimation in meshfree methods. There is a need to develop suitable error
estimates for adaptive analysis for meshfree methods.

15.5.2 Existing Error Estimates

A few error estimates for meshfree methods have been reported. One is proposed by
Duarte and Oden [9] for the h-p cloud method, which involves the computation of interior
residuals and the residuals for Neumann boundary conditions. Chung and Belytschko [10]
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adapted the FEM stress projection technique for error analysis in EFG by computing
the projected stresses from the raw stresses using a reduced domain of influence.
This approach is simple and inexpensive, but its effectiveness depends on the size of the
reduced influence domain. Another approach is the strain gradient method proposed by
Combe and Korn [11], who make use of the fact that gradients of stresses and strains may
be calculated throughout the problem domain with a high accuracy. The interpolation
error is evaluated from the truncated terms in a Taylor expansion of a field variable at a
point over its vicinity. This approach was demonstrated to be effective. However, it
requires the computations of the second derivatives, which can be quite expensive.

15.5.3 Cell Energy Error Estimate: EFG Settings

This section presents a cell energy error (CEE) estimate that can be used for adaptive
analysis in meshfree methods that use background cells for integration. The material
presented here is based on the work reported in [12,13]. The work is based on the fact
that many implementations of existing meshfree methods rely on a background mesh,
global or local, for domain integration of governing equations. The procedure is composed
of a cell-based error estimate and a local domain refinement technique. The present error
estimate examines the energy error in each cell and uses it as the basis for error estimation.

15.5.3.1 Error Indicator

An error estimate for an approximation is usually constructed based on the difference
between the approximate and exact solutions. For a quantity q defined over domain V and
approximated by q̂, a general error indicator of an approximation is defined by

e ¼ L(q, q̂) (15:43)

where
L denotes a norm imposed on the exact and approximate values
e is the error corresponding to the operation

In most problems, q in exact form is not available and a reference value derived from q̂ is
used. In solid mechanics, the quantity can be displacement, strain, stress, or energy,
depending on the needs.

A conventional implementation of Equation 15.43 is to use the L2 norm error, i.e.,

e ¼ ��q(x)� q̂(x)
�� ¼ (q(x)� q̂(x))T � (q(x)� q̂(x))1=2 (15:44)

This approach is essentially a pointwise approach, as it examines errors at individual
points. Errors in local and global domains can be evaluated from pointwise error via
integration of the preceding equation. To measure pointwise error, the computed and
reference values at a point must be provided. A major task of an error estimate is therefore
to formulate the reference value at a point. The error estimate proposed in [14] for meshfree
methods follows this traditional approach, with the reference value obtained by taking a
product of the computed value with the shape function constructed on a reduced influence
domain. A difficulty in this approach is to minimize the size of the reduced domain while
preserving the regularity of the moment matrix in the MLS approximation.
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Instead of examining pointwise error, the CEE method uses the error of energy in a cell
as the basic measure for error estimation in meshfree methods. The quantity q examined in
a cell is the strain energy in the cell. For solid mechanics, the cell energy is

E ¼
ð
cell

s«dV (15:45)

Note that we disregard the fraction of 1=2 in front of the integration; it is immaterial in our
error estimation, because it is the distribution of error that counts for adaptive analysis. In a
meshfree approximation, the computed cell energy, Ecomp, is obtained by using the same
Gauss integration scheme as that used for domain integration of the weak form governing
equations, i.e.,

Ecomp ¼
Xm
i¼1

cisi«i (15:46)

where
m is the number of Gauss points used in the cell for integration
ci is the corresponding integration weight

The reference value, Eref, is evaluated using a different Gauss integration scheme:

Eref ¼
X
j¼1,n

cjsj«j (15:47)

where n(n 6¼ m) is the number of Gauss points used for the reference value. The energy
error in a cell is thus

e ¼ jEcomp � Erefj (15:48)

In this approach, the stresses and strains at the n Gauss points are evaluated based on the
displacement field given by the original solution and therefore they have a same accuracy
as those of the m Gauss points. To reduce computational cost, it is recommended that n is
assumed to have a smaller value than m, i.e., n<m. Summation of CEE over all cells in the
problem domain yields the global error, i.e.,

eGlobal ¼
XNe

i¼1

ei (15:49)

where Ne is the total number of cells. A normalized measure of CEE is

e ¼ e=A (15:50)

where A is the cell area. The normalized measure is very effective in the detection of
singular locations.

One prominent feature in the present approach is that it requires only one stress field:
Both the computed and reference values of cell energy are computed based on values in the
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same field at different positions. This constitutes a major difference from the conventional
pointwise error estimates where a second stress field is required. This is advantageous as
the postprocessing for a second field is no longer necessary.

15.5.3.2 Error Sources

In a numerical approximation, there are mainly two sources of error—interpolation error
and integration error. The first arises from the limited order of approximation to the field
function, when the interpolation function is performed. For example, a kth-order interpol-
ation results in an error of (kþ 1)th order. Compared with FEM, a meshless approximation
(e.g., MLS approximation) generally has a higher order of continuity and therefore a
smaller interpolation error. However, the exact order of interpolation error is difficult to
determine in meshfree methods as the MLS approximation is usually implicit, in contrast to
FEM approximation.

The second source of error is introduced in the numerical integration. For example, in a
1D case, m Gauss point integration causes an integration error of (2m)th order. The
integration error can be minimized if the integration order matches the interpolation
order, i.e., when m¼ (kþ 1)=2.

Two approaches are usually taken to improve the accuracy of the solution: One is to
increase the order of interpolation function and the other is to match the integration order
with the interpolation order. In an MLS approximation, the first can be implemented by
choosing high-order basis functions and high-order weight functions. Implementation of
the second, however, is obscure as there is no prior knowledge about the exact interpol-
ation order. One empirical way is to use a sufficient number of Gauss points in each cell in
conjunction with a sufficient number of background cells for integration. It can be expected
that because the integration cells are reduced in size, the error evaluated by the proposed
error estimate decreases and converges as the stress field in each cell approaches linear (or
planar) variation.

The task of an error estimate is to measure the error from every source, whereby an
adaptive procedure determines whether to increase the interpolation order or to use a finer
background mesh, or both. In the traditional stress-smoothing approach, the smoothed
value has a higher order of accuracy than the original, and therefore the interpolation error
is measured by the difference. In the CEE approach, the values at the Gauss points in
Equations 15.46 and 15.47 are from the same stress field and therefore are of the same order
of accuracy. The order of integration accuracy in the two equations, however, is different—
it is (2m � 1) in Equation 15.46 but (2n � 1) in Equation 15.47. The CEE evaluated from
Equation 15.48 is therefore the integration error between the two integration schemes. It is
sensitive to the order of stress field—the higher the order, the larger the energy error. From
this point of view, the present approach can be viewed as a variant of the gradient
approach as it reflects the gradient change in an approximation field. The major weakness
of the CEE estimate is that it does not provide the accuracy of an approximation itself. As a
consequence, error estimation by this strategy may be erroneous if a wrong approximation
is used as the basis—this is also the case for many of the existing error estimates. Note that
the CEE estimate demands that the integration cell sufficiently corresponds to the gradient
of the stress=strain. If the order of the Gauss integration for computing the reference cell
energy is 3 (n¼ 2), and that for computed cell energy is 1 (m¼ 1), the error estimated by the
CEE will approach 0 if the cell is small enough so that the stress=strain field can be
approximated by a linear function. Otherwise, a large error will be produced that may
demand refinement. From this point of view, the CEE performs exactly the job that is
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required for adaptive analysis. In the case of using an erroneous field variable approxima-
tion, it is most likely the adaptive procedure will not converge, unless the erroneous
approximation converges.

15.5.4 Cell Energy Error Estimate: NS- and ES-PIMs Settings

In ES-PIM models, two types of domains are used: triangular cell Vc
i and smoothing

domain Vs
i , and they are overlaid as shown in Figure 15.18. Each triangular cell hosts

three parts of smoothing domains associated with the three edges of the cell: element Vc
i

hosts parts of Vs
1, V

s
2, and Vs

3. Since the smoothed strains (and stresses) are constant in each
of these three smoothing domains, there will be discrepancies. Simply making use of these
discrepancies, the energy error in a triangular cell can be estimated as

e ¼ ((D«max)
TD(D«max)� Ae)

1=2 (15:51)

where
Ae is the area of the triangular cell
D«max is the maximum difference of strains between the three smoothing domains in that
cell, which can be expressed as

D«max ¼ max �«1 � �«2j, �«2 � �«3j, �«1 � �«3jÞjjjð (15:52)

Because the energy error in a cell is evaluated as the strain energy of maximum difference
of strain among three smoothing domains, the estimated energy error is a little larger than
the actual energy error. This error estimate is very simple, cheap to compute, and very easy
to use. It captures well the high-error region in the problem domain, which is important for
our adaptive analysis. There are clearly many alternative ways to estimate the error.

The same error estimate can also be developed for NS-PIMs, where a triangular cell hosts
parts of three smoothing domains, as shown in Figure 15.18b. It is clear that the error
estimation in PIMs is very simple.
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FIGURE 15.18
Strain discrepancy in a triangular cell used for error estimation: (a) ES-PIM setting; (b) NS-PIM setting.
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15.5.5 Numerical Examples: Error Estimation

In the following examples, we use both EFG and PIMs processors. In EFG we use the
following strategy:

. Triangular cells for background integration.

. EFG formulation with the penalty method for essential boundary conditions.

. Cell energy estimate is used. For the computed cell energy one Gauss point is used,
and three Gauss points are used for the reference cell energy.

. Bucket algorithm.

. Relay model is employed.

In PIMs we use the following strategy:

. Triangular cells with smoothing domains

. T-Schemes (T3-scheme) for node selection

. Cell energy estimate for ES- or NS-PIMs

Example 15.1: Rectangular Cantilever (Error Estimation)

The cantilever described in Example 6.2 is employed for the first assessment of the error estimate. The
beam is schematically drawn in Figure 6.4. For this example, we have an analytical solution (see
Example 6.2), so verification can be performed easily. The parameters for this example are as follows:

Loading: P¼�1000 N

Young’s modulus for the material: E¼ 3.0� 107 N=m2

Poisson’s ratios for two materials: n¼ 0.3

Height of the cantilever: D¼ 12.0 m

Length of the cantilever: L¼ 48.0 m

At the left boundary (x¼ 0) the displacements are prescribed using the analytical formulae,
Equations 6.50 and 6.52, and the right boundary (x¼ L), the traction force is computed from the
analytical formula, Equations 6.53 through 6.55. The ‘‘exact’’ cell energy is computed based on
the analytical solutions of stress and strain and integrated over the cell using three Gauss points.
Note that the energy is not really exact as the integration is not exact. It can still be used to assess
the accuracy of the error estimate.

The test is done first on an EFG model shown in Figure 15.19 with 737 nodes. The
distribution of a normalized estimated energy error is plotted in Figure 15.19b. For
the computed cell energy one Gauss point is used while three Gauss points are used for
the reference cell energy. The distribution of the exact energy error is shown in Figure 15.19c.
The exact error distribution is computed using the exact energy as the reference energy
obtained from the analytical solution and integrated over the cells using three Gauss points.
Comparison of Figure 15.19b with Figure 15.19c demonstrates a close agreement between
these two error distributions. The difference in the magnitude of local error, however, is not
minor: the maximum estimated value is about 2.52� 10�4 while the exact value is
3.32� 10�4. This is also the case in terms of the global error—the estimated and exact values
are 2.14� 10�3 and 2.92� 10�3, respectively. This shows that the proposed approach is not
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sufficient for accurate estimation of the absolute error. It provides an indication on the error
distribution sufficiently good for the purpose of adaptive analysis.

We next test on a linear ES-PIM model with 239 nodes. The distribution of estimated
energy error is plotted in Figure 15.20a, and of the exact error distribution is shown in
Figure 15.20b. It is seen that the estimated error distribution agrees well with the exact one.
Such an agreement is sufficient for us to decide the region that needs to be refined.

Example 15.2: Infinite Plate with a Circular Hole (Error Estimation)

Example 7.4 is used here for the examination of error estimation. The geometry of the plate is
plotted in Figure 7.10a. Due to the twofold symmetry, only a quarter of the plate shown in Figure
7.10b is modeled with symmetric boundary conditions applied on x¼ 0 and y¼ 0. The parameters
are listed as follows:

Loading: p¼ 1 N=m

Young’s modulus: E¼ 1.0� 103 N=m2

Poisson’s ratio: n¼ 0.3

Height of the beam: a¼ 1.0 m

Length of the beam: b¼ 5 m
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FIGURE 15.19
Error distribution in cantilever. (a) EFG model with 737 nodes; (b) distribution of estimated error; and
(c) distribution of exact error. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl. Mech. Eng., 191, 1923, 2002.
With permission.)
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The plate is subjected to a tension in the x-direction at the edge of x¼ 5. The boundary
condition at x¼ 5 is sxx¼p, syy¼sxy¼ 0, and the boundary condition at y¼ 5 is free of all
stresses. The analytical solution of displacement and the stress fields within the plate are provided
by Equations 7.41 through 7.46 in the polar coordinates (r, u).

The test is done first on an EFGmodel with 204 nodes as shown in Figure 15.21a, and error
distributions are plotted in Figure 15.21b and c, respectively for the estimate and the exact.
Again, there is a very good correlation between the estimated and exact error distributions.
Differences in the magnitude of local and global errors are also observed: the maximum
estimated and exact local errors are 8.04� 10�5 and 1.34� 10�4 and themaximum estimated
and exact global errors are 8.44� 10�4 and 1.07� 10�3, respectively.

The same test is done now on the linear ES-PIM model using 87 nodes shown in Figure
15.22a, and error distributions are shown in Figure 15.22b and c. Again, the estimate
predicts well the high-error region.

Example 15.3: A Square Plate Containing a Crack

A square plate containing a crack subjected to boundary conditions prescribed by the near crack-
tip field solution is shown in Figure 15.23. The material properties are Young’s modulus
E¼ 3.0� 107 and Poisson’s ratio n¼ 0.3. In the crack-tip field problem, the square plate has a
side of 2a and the crack assumes a length of a. This corresponds to the so-called Griffith mode-I
crack problem that has an analytical solution [15]
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FIGURE 15.20
Error distribution in cantilever. (a) ES-PIM model with 239 nodes; (b) distribution of estimated CEE error; and
(c) distribution of exact error.
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with the coordinate system depicted in Figure 15.23. The stress intensity factor KI is prescribed by
KI ¼ p

ffiffiffiffiffiffi
pa

p
.

In the EFG model, 397 nodes are used with the majority distributed around the crack tip
(Figure 15.24a) to capture the crack-tip field. The relay model is used to handle the
discontinuity. As with the previous two examples, the distributions of predicted and
exact errors plotted in Figure 15.24b and c shows a very good agreement.

In the ES-PIM model, 344 nodes are used. The distributions of predicted and exact errors
are plotted in Figure 15.25a and b. When ES-PIM is used, there is no need for a relay model
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FIGURE 15.21
Error distribution for square plate with a hole problem. (a) 204 nodes used in the EFG model; (b) distribution of
estimated error; and (c) distribution of exact error. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl. Mech.
Eng., 191, 1923, 2002. With permission.)
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FIGURE 15.22
Error distribution for square plate with a hole problem. (a) 87 nodes used in the ES-PIM model; (b) distribution
of estimated CEE error; and (c) distribution of exact error.
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FIGURE 15.23
Square plate with a crack subjected to a horizon-
tal tensile traction. (From Liu, G. R. and Tu, Z. H.,
Comput. Methods Appl. Mech. Eng., 191, 1923, 2002.
With permission.)
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FIGURE 15.24
Error distribution for square plate with a crack problem. (a) EFG model with 397 nodes; (b) distribution
of estimated error; and (c) distribution of exact error. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl.
Mech. Eng., 191, 1923, 2002. With permission.)
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FIGURE 15.25
Error distribution for square plate with a crack problem. (a) ES-PIM model with 344 nodes; (b) distribution
of estimated error; and (c) distribution of exact error.
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because the node selection is based on T-scheme. Similar to the previous two examples, the
stress concentration at the crack tip and high-error region can be estimated properly by our
CEE estimate.

15.5.6 Strategy for Local Adaptive Refinement

In adaptive analysis, a problemdomainmay be refined if the desired accuracy is not achieved.
It is usually undesirable to refine the entire domain, as in many cases only a few locations
exhibit poor approximations. To achievehigh efficiency, it is therefore required to focus on and
refine those locations only. A local refinement approach is presented in this section for just this
purpose. The approach is also based on a triangularmesh and uses a local Delaunay algorithm
with the aid of a density factor. A detailed description of this strategy is given in the following.

15.5.7 Update of the Density Factor

The density factor at a node will be changed if refinement is required at its location. The
change of density factor is based on the distribution of local error measured by the
CEE estimate. This is done by converting the CEE into nodal energy error. The former is
equally distributed to cell vertices and the latter is an accumulation of contributions from
surrounding cells, i.e.,

enodal ¼
X
i¼1,m

ei
n

(15:56)

where
m is the number of surrounding cells associated with a node
n is the number of cell vertices (n¼ 3 for a triangular cell)
ei is the energy error of the ith surrounding cell

A relative error measure is then defined for each node

Rnodal ¼ enodal
Enodal

¼
X
i¼1,m

ei
n

�X
i¼1,m

Ei

n
(15:57)

where
Rnodal is the nodal relative error
Ei is the computed energy (given by Equation 15.46) of the ith surrounding cell
Enodal is the nodal energy converted from the cell energy

To determine the locations where refinement is required, a threshold nodal relative error is
predefined and the relative error at each node is compared with this value. If the threshold
value is exceeded, the density factor at a node will be changed to

Snodal* ¼ Rthreshold

Rnodal
Snodal (15:58)

where Snodal and Snodal* are the old and new values of a density factor, respectively.
Refinement of the local domain is based on the change in density factor, and the degree
of refinement is manageable as the density factor controls the local nodal density. Upon the
change of a density factor, a local Delaunay algorithm is executed.
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15.5.8 Local Delaunay Triangulation Algorithm

TheDelaunay triangulation technique can be applied to an arbitrary 2Ddomain.Given a set of
nodes and a discretized boundary that encloses the nodes, the technique can generate an
optimal triangularmesh for the bounded domain based on the existing nodes. This versatility
enables a local domain to be refined easily and forms the basis of our adaptive approach. To
illustrate this, consider the example depicted in Figure 15.26a,where the density factor of node
I changes from SI to S*I (SI< S*I ). The procedures for local refinement are as follows:

1. Insert nodes. New nodes are inserted by looping the surrounding triangles: for an
acute triangle a node is inserted at the center of its circumcirclewhereas for an obtuse
triangle, a new node is introduced at the middle of the longest edge (Figure 15.26b).

2. Formulate the local domain. This is done by drawing a circle centered at node I
(Figure 15.26c) and then removing all the cell edges inside or intersecting the
circle (Figure 15.26d). The circle radius dictates the block size and is used to control
the range of mesh revision.

3. Triangulate the local domain using the Delaunay algorithm. This regenerates a
triangular mesh for the local domain based on the existing nodes inside the block
(Figure 15.26e).

4. Recalculate the density factors. Density factors for all affected nodes are updated
based on the new mesh.

(a)

I

(c)

I

(b)

I

(e)(d)

I

FIGURE 15.26
Procedures for local domain refinement. (a) Original mesh; (b) insertion of nodes; (c) and (d) formulation of a local
block; and (e) refined mesh. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl. Mech. Eng., 191, 1923–1943, 2002.
With permission.)
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The refinement procedures will be repeated if the updated density factor of node I is still
larger than S*I . This local refinement approach is very efficient, especially for problemswith a
large number of nodes. Other variants of this strategy may be devised. In an iterative
solution procedure, the variables at new nodes are evaluated based on the surrounding
old nodes, thus giving a starting solution for the next iteration.

15.5.9 Numerical Examples: 2D Adaptive Analysis

We now present a number of examples of adaptive analysis using EFG, linear NS-PIM, and
linear ES-PIM. All the runs are performed using the MFree2D� the usage of which will be
detailed in Chapter 16.

Example 15.4: Infinite Plate with a Circular Hole (Adaptive Analysis)

Example 15.2 is reconsidered for adaptive analysis. The parameters are exactly the same as those
in Example 15.2. The local adaptive refinement procedure is used for adaptive refinement using
EFG, linear NS-PIM, and linear ES-PIM.
The results obtained using EFG are shown in Figure 15.27. The stress concentration occurs

around the hole and nodes are automatically added to these locations. The result at the final step is
very close to the theoretical solution.

A more detail convergence study is now carried out using linear NS-PIM and ES-PIM
together with linear FEM for comparison. First, the ES-PIM is used to perform a study on
the effectiveness of the adaptive analysis, and the convergence of strain energy obtained
using the ES-PIM is plotted in Figure 15.28, together with that obtained using uniform
refinement. It is clear that our adaptive scheme has significantly speeded up the conver-
gence process. Figure 15.29 shows the comparison of strain energy obtained using
different methods (NS-PIM, ES-PIM, and FEM) with the same meshes at various adaptive
stages. The analytical solution is also plotted. It is obvious that the strain energy of
ES-FEM is the closest to the analytical solution at the final stage. We also note the fact
that the NS-FEM gives an upper bound solution in strain energy to the exact solution, the
FEM and the ES-FEM give lower bounds. This reconfirms our findings presented in
Chapter 8.

Example 15.5: Square Plate with a Square Hole (Adaptive Analysis)

Adaptive analysis of a square plate with a square hole at its center subjected to a unit tension force
is performed. Making use of the symmetry, one quarter of the problem domain, as shown in Figure
15.30, is used for the analysis. Therefore, this problem is also known as the L-shaped plate, and
is a classical problem for testing a refinement procedure. The refinement procedure detects
that point A (see Figure 15.30) is singular and hence the location at this point is refined. With
only three steps, the adaptive procedure used in the EFG yields very accurate stress distributions
(Figure 15.31).

Amore detailed convergence study is again carried out using linear NS-PIM and ES-PIM
together with linear FEM for comparison. First, the ES-PIM is used to perform a study on
the effectiveness of the adaptive analysis, and the convergence of strain energy obtained
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FIGURE 15.27
Adaptive FEG refinement process and distributions of stresses for the square plate with a hole subjected to a unit
traction in the x-direction.
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FIGURE 15.28
Infinite square plate with a hole solved using linear ES-PIM. Comparison of convergence process of solution
in strain energy with and without adaptive refinement.
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Infinite square plate with a hole solved using linear ES-PIM, NS-PIM, and FEM using with the same meshes.
Comparison of strain energy with the exact solution.
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using the ES-PIM is plotted in Figure 15.32, together with that obtained using uniform
refinement. It is clear that our adaptive scheme has significantly speeded up the conver-
gence process. Figure 15.33 shows the comparison of strain energy obtained using NS-PIM,
ES-PIM, and FEM with the same meshes at various adaptive stages, together with the
reference solution (obtained using extremely fine mesh). It is again observed that the strain
energy of ES-FEM is the closest to the analytical solution at all stages. In this case the
ES-PIM is much more accurate than the other two. We also note the fact that the NS-FEM
gives an upper bound solution in strain energy to the exact solution, the FEM and the
ES-FEM give lower bounds.

FIGURE 15.30
L-shaped plate subjected to a unit horizontal tensile
traction. (From Liu, G. R. and Tu, Z. H., Comput.
Methods Appl. Mech. Eng., 191, 1923–1943, 2002. With
permission.)
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FIGURE 15.31
Adaptive EFG refinement process and the final stress distributions for L-shaped problem. (a–c) Three refinement
stages and (d–f) stress distributions at the final stage. (From Liu, G. R. and Tu, Z. H., Comput. Methods Appl. Mech.
Eng., 191, 1923–1943, 2002. With permission.)
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FIGURE 15.32
L-shaped plate solved using linear ES-PIM. Comparison of convergence process of solution in strain energy
with and without adaptive refinement.
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FIGURE 15.33
L-shaped plate solved using linear ES-PIM, NS-PIM, and FEM. Comparison of strain energy obtained using
the same meshes and the reference solution.
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Example 15.6: Rectangular Plate with a Crack (Adaptive Analysis)

Adaptive analysis of a rectangular plate with a crack loaded by horizontal unit tractions on the two
vertical sides is performed. The problem domain is drawn in Figure 15.34. The domain has
dimensions of 100 in. length and 50 in. height. The material parameters are Young’s modulus
E¼ 3.0� 107 and Poisson’s ratio n¼ 0.3.

The results obtained using EFG with adaptive scheme are shown in Figure 15.35. Due to
the stress singularity, the vicinity of the crack tip is mostly refined. However, this refinement
will never come to an end because of the singularity at the crack tip. Therefore, the

FIGURE 15.34
Rectangular plate with a crack subjected to
a unit tensile traction. (From Liu, G. R. and
Tu, Z. H., Comput. Methods Appl. Mech.
Eng., 191, 1923–1943, 2002. With permis-
sion.)
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FIGURE 15.35
Adaptive EFG refinement process and the final stress distributions for the rectangular plate with a crack problem.
(a–c) Three refinement stages and (d–f) stress distributions at the final stage. (From Liu, G. R. and Tu, Z. H.,
Comput. Methods Appl. Mech. Eng., 191, 1923–1943, 2002. With permission.)
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computation is terminated at the third refinement step when the crack-tip field is described
with a very high resolution. The good numerical results for the three sample problems
demonstrate that the proposed local adaptive refinement procedure is effective and efficient.

The ES-PIM is again used to perform a study on the effectiveness of the adaptive analysis,
and the convergence of strain energy is plotted in Figure 15.36, together with that obtained
using uniform refinement. It is clear that our adaptive scheme has significantly speeded up
even more the convergence process, due to the presence of the singularity. Figure 15.37
shows the comparison of strain energy obtained using NS-PIM, ES-PIM, and FEM with the
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FIGURE 15.36
Rectangular plate with a crack solved using linear ES-PIM. Comparison of convergence process of solution
in strain energy with and without adaptive refinement.
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FIGURE 15.37
Rectangular plate with a crack solved using linear ES-PIM, NS-PIM, and FEM. Comparison of strain energy
obtained using the same meshes and the reference solution.
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same meshes at various adaptive stages, together with the reference solution (obtained
using extremely fine mesh). It is again observed that the strain energy of ES-FEM is the
closest to the analytical solution at all stages. In this case the ES-PIM is also much more
accurate than the other two. We also note the fact that the NS-FEM gives an upper bound
solution in strain energy to the exact solution, the FEM and the ES-FEM give lower bounds.

Example 15.7: Square Plate with Two Parallel Cracks (Adaptive Analysis)

Adaptive analysis of a rectangular platewith two parallel cracks loaded by horizontal unit tractions on
the two vertical sides is performed. Thedomainhas dimensions of 100 in. length and50 in. height. The
material parameters are: Young’s modulus E¼ 3.0� 107 and Poisson’s ratio n¼ 0.3. Figure 15.38a
shows themeshfreemodel. The numerical results give very good description of the stress field around
the crack tips as shown in Figure 15.38, verifying the validity of the proposed model.
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FIGURE 15.38
Interference between two cracks in a rectangular plate subject to a unit tensile traction (EFG). (a) Problem model,
(b) distribution of sx, (c) distribution of sy, and (d) distribution of Txy.
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Example 15.8: Arbitrary Complex Domain (Adaptive Analysis)

A panel carved with ‘‘ACES’’ subjected to a tensile traction loading on the central part of the top
side is investigated. The panel is fixed at all four corners. This is a multiconnected body with
highly irregular boundaries. Figure 15.39a shows the meshfree model for the analysis. The
material parameters are: Young’s modulus E¼ 3.0� 107 and Poisson’s ratio n¼ 0.3. The stress
distributions are very well depicted, as shown in Figure 15.39, confirming that the relay model is
capable of handling highly irregular problem domains.

Example 15.9: An Automotive Part: Connecting Rod

The last 2D example is a practical engineering problem of typical connecting rod used in
automobiles, as shown in Figure 8.99, is studied using our adaptive linear ES-PIM code.
The connecting rod is constrained along the left larger circle and subjected to a uniform unit
radial pressure along half of the right circle. The problem is considered as a plane stress problem
with material parameters E¼ 3.0� 107 Pa and v¼ 0.3.
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FIGURE 15.38 (continued)
Interference between two cracks in a rectangular plate subject to a unit tensile traction (EFG). (a) Problem model,
(b) distribution of sx, (c) distribution of sy, and (d) distribution of Txy.
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FIGURE 15.39
Panel characterized by ‘‘ACES’’ subjected to a unit tensile traction along the central part of the top side (EFG).
(a) Problem model, (b) distribution sx, (c) distribution of sy, and (d) distribution of txy.
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The refinement process for this problem is plotted in Figure 15.40. It is found that the
stress concentration occurs around the vertical radius part of the right pin hole and at the
location with the transition of section, leading to an automatically refined mesh at
these locations. The stress distribution at the final step agrees well with the reference
solution obtained by using FEM with a very fine mesh of 16,614 nodes, as shown in
Figure 15.41a and b.

For this practical problem with complicated shape, the convergence of strain energy
of our adaptive scheme is found again to converge much faster than the uniform refine-
ment, as shown in Figure 15.42. The ES-PIM produces the most accurate result that
together with the exact solution is bounded by the solutions of NS-PIM and FEM (Figure
15.43). These findings again demonstrate that the proposed local adaptive refinement
procedure based on ES-FEM is effective and efficient.

15.5.10 Numerical Examples: 3D Adaptive Analysis

We finally present an example of 3D adaptive analysis using linear NS-PIM. Our 3D code
development is still at a very early stage, and clearly we still have a long way to go to

Step 1, 319 nodes

Step 2, 476 nodes

Step 3, 727 nodes

Step 4, 1129 nodes

FIGURE 15.40
The adaptive ES-PIM refinement process and stress distributions for connecting rod.
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FIGURE 15.41
The adaptive ES-PIM analysis results; (a) Von Mises stress distributions at the final stage; and (b) reference
Von Mises stress distributions obtained using FEM with 16,614 nodes.
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FIGURE 15.42
Automotive connecting rod solved using linear ES-PIM. Comparison of convergence process of solution in strain
energy with and without adaptive refinement.
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develop an MFree3D� for adaptive analysis. Here we are able to show only one example,
without much detailed description.

Example 15.10: A Elastic Cube with a Cutout

We consider here an elastic cube of a� a� a with a 1=8 portion removed as shown in
Figure 15.44. The displacement boundary conditions are imposed on faces DEFG, CDGH,
and HIFG:

. On face DEFG the displacement along the x-direction is set to 0.

. On face CDGH the displacement along the y-direction is set to 0.

. On face HIFG the displacement along the z-direction is set to 0.

The cub is subjected to uniform tensile forces on the three L-shaped faces:

. On face BCHIJM Tx¼ 100 N=m2 is applied.

. On face EFILKJ Ty¼ 100 N=m2 is applied.

. On face ABCDEJ Tz¼ 100 N=m2 is applied.

The parameters for the material are taken as Young’s modulus E¼ 3.0� 107, Poisson’s ratio
n¼ 0.3. The dimensions are a¼ 2 m and b¼ 1 m. With this setting, we shall have strong singularity
along the three lines HG, GF, and GD.

We studied this problem using our 3D linear NS-PIM code with both ‘‘uniform’’ and
adaptive models. Four uniform refinement models with 443, 2011, 4044, and 7335 nodes
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FIGURE 15.43
Automotive connecting rod solved using linear ES-PIM, NS-PIM, and FEM. Comparison of strain energy obtained
using the same meshes and the reference solution.
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shown in Figure 15.45 are used. The adaptive analysis started from the coarse uniform
mesh of 443 nodes and is performed for six steps with 5% refinement at each step. The
tetrahedral cells generated by our adaptive code at each step are shown in Figure 15.46.
The node distributions at these stages are plotted in Figure 15.47. The figures show that
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FIGURE 15.44
An elastic cube with 1=8 portion removed.

Mesh 1: 443 nodes
1702 Tetrahedrons

Mesh 2: 2011 nodes
9612 Tetrahedrons

Mesh 3: 4044 nodes
20,624 Tetrahedrons

Mesh 4: 7335 nodes
39,271 Tetrahedrons

FIGURE 15.45
Four uniform meshes used in the analysis.
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our error indicator can accurately catch the steep gradient of stresses and lead to
the refinement of nodes concentrated along the three singular lines HG, GF, and GD.

Figure 15.48 shows the comparisons on convergence of strain energy between the results
obtained using the uniform meshes and adaptive analysis. It is clear that when uniform
mesh is used, the solution converges very slowly. Our adaptive analysis converges much
faster than that using the uniform mesh.

Figure 15.49a plots the contours of the Von Mises stress at the fifth adaptive step (3,049
nodes and 13,884 tetrahedrons). For comparison a FEM reference result of a very fine mesh
(50,354 nodes and 283,963 tetrahedrons) is plotted in Figure 15.49b. It clearly shows that
the Von Mises stress obtained with adaptive mesh is in good agreement with the reference
results. We confirmed also the NS-PIM solution is an upper bound and the FEM solution is
a lower bound for this problem.

Step 1: 443 nodes
1702 Tetrahedrons

Relative error 51.28%

Step 2: 679 nodes
2809 Tetrahedrons

Relative error 39.73%

Step 3: 1078 nodes
4730 Tetrahedrons

Relative error 28.17%

Step 4: 1803 nodes
8121 Tetrahedrons

Relative error 21.92%

Step 5: 3049 nodes
13,884 Tetrahedrons
Relative error 16.99%

Step 6: 4587 nodes
20,899 Tetrahedrons
Relative error 13.35%

FIGURE 15.46
Tetrahedral cells generated during the adaptive analysis.
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Step 1: 443 nodes

Step 4: 1803 nodes Step 5: 3049 nodes

Step 2: 679 nodes Step 3: 1078 nodes

Step 6: 4587 nodes 

FIGURE 15.47
Nodes generated during the adaptive analysis.
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FIGURE 15.48
Comparison of the convergence of the solution in strain energy.
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15.6 Concluding Remarks

For practical applications, meshfree methods offer good choices for adaptive analysis.
Based on the study in this chapter we note the following:

a. Triangular types of meshes need to, and can be used. We have no reason to reject
them.

b. In our implementation, the EFG worked quite well, but is a little complicated for
adaptive analysis.

c. PIMs are much simpler, accurate, robust, very efficient, and offer solutions of
special properties. Using PIMs for more challenging problems like crack propaga-
tion can be developed and it is currently an ongoing project at ACES.

d. 3D adaptive analysis is very challenging. The challenge is not too much on
technical issues, rather on implementation and coding issues. As a start, the linear
NS-PIM has shown some promising results, and we are making some progress.
We should be able to report more results in the near future.
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16
MFree2D�

16.1 Overview

MFree2D� is a software package being developed by a team at the Centre for Advanced
Computations in Engineering Science (ACES) at the National University of Singapore,
based on meshfree technologies. It consists of three components—MFreePre, MFreeApp,
and MFreePost. MFreePre is a preprocessor used to formulate the input required by
MFreeApp. The latter performs computations and yields the output, which is then fed
to MFreePost for postprocessing. These three processors work together seamlessly, and
users are not usually aware that they are different processors. However, these three inte-
grated processors can also be separated to perform their work independently. The current
MFree2D 2.0 is limited to two-dimensional (2D) elastostatics. It runs on a PC in a Window
environment. MFree2D was first showcased at the 4th International Asia-Pacific
Conference on Computational Mechanics, which was held in Singapore in 1999. It is avail-
able for download at: http:==www.crcpress.com=e_products=downloads=download.asp?
cat_no¼ 1238.

MFree2D is currently a freeware with a user guide built in, but without technical
support. Interested readers should make their own arrangements with ACES. Because it
is new and still in the development phase, the functions are changing quite frequently and,
naturally, there are bugs. ACES is constantly trying to update the new developments and
changes on its Web site. All users who are interested in trying or using this package are
welcome to do so at their own risk, but are currently required by ACES to register and to
agree on the terms and conditions set by ACES.

Main features of MFree2D
. The problem domain is discretized using scattered nodes, and a triangular mesh is

used. The domain discretization process is fully automatic.
. Automatic adaptive refinement techniques are implemented (for EFG and ES-PIM

processors) to ensure results of desired accuracy.
. Operations are performed on graphic, manual-based user-friendly interfaces.

Advantages over FEM packages
. Cost of labor for meshing is reduced significantly (for both EFG and PIMs)
. Higher accuracy—results are as accurate as desired (for both EFG and PIMs)
. There is no problem relating to mesh distortion (for both EFG and PIMs)
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. Upper bound solutions (for node-based smoothed point interpolation methods
[NS-PIMs])

. Significant computational efficiency (for linear ES-PIM [edge-based smoothed
point interpolation method], see Section 8.7)

16.2 Techniques Used in MFree2D

The tasks involved in a meshfree analysis are choice of the size of the influence domain;
search of the nodes for the influence domain; computation of nodal weight, which is a
coefficient that controls the dimension of the influence domain or cells locally; generation
of the background cells=mesh; and selection of the integration scheme. MFree2D performs
all these tasks. The techniques used in MFree2D 2.0 for different processors are listed in
Table 16.1, with references to the relevant chapters of this book for detailed technical
explanations on each technique.

16.3 Preprocessing in MFree2D

MFreePre is used to define and model a problem for analysis. It creates a geometric model,
creates nodes and background triangular cells, defines material properties and initial
and boundary conditions, and performs solution control. One salient feature is that
troublesome and time-consuming manual mesh generations are no longer necessary.

TABLE 16.1

Techniques Used in MFree2D 2.0 and Ongoing Development

Techniques EFG Processor PIM Processors

Shape function MLS (Chapter 2) PIMs (Chapter 2)

Weak form Galerkin weak form (Chapters 3,
4, and 6)

GS-Galerkin weakened-weak form
(Chapters 3, 4, and 8)

Essential boundary condition Penalty method (Chapters 5 and 6) Direct approach as in FEM

Background integration Triangular cellsþGauss
quadrature (Chapter 15)

Smoothing domains built on
triangular cells

No Gauss integration for energy

Node searching (influence domain) Bucket algorithm (Chapter 15) T-schemes (Chapter 1)

Relay model (Chapter 15)

T2L-scheme (Chapter 1)

Error estimation Cell energy estimate via different
Gauss integration schemes
(Chapter 15)

Cell energy estimate using strain
discrepancy in cells

Refinement strategy Density factor control andDelaunay
triangulation (Chapter 15)

Density factor control andDelaunay
triangulation (Chapter 15)
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In discretizing a problem domain, users do not need to work on the geometric model part
by part. One needs only to define the boundaries of the problem domain by specifying
them. MFreePre automatically identifies the geometry and models the domain using
scattered nodes and background cells, simply using the Delaunay triangulation algorithm.
This saves significant labor cost in mesh creation by engineers. MFreePre allows an
analysis to be customized with its open environmental settings, while providing default
settings for new users. MFree2D requires only the minimum from users, such as geometry,
boundary conditions, and material properties needed to define the problem. All issues
related to the mesh can be handled automatically. To ease the effort involved in inputting
material properties, these properties can be stored in a database for future use.

A brief user guide is provided in the following sections. Note that there may be
discrepancies between the brief guide shown here and the current version of the code
downloaded from the Web site. The guide here serves just to describe how MFreePre
works, rather than describing detailed operations.

16.3.1 Main Windows

MFreePre is developed in the Microsoft Windows environment. It is driven by an inter-
active graphical user interface. All geometry data, material properties, and boundary
conditions can be input by a mouse or keyed in with an interactive window. The main
working interface (Figure 16.1) consists of six parts: main menu, toolbars, tree view, text
view and command view, graphical display area, and status bar. Note that the window has
minimal items, because we do not need to create sophisticated element meshes. All we
need is geometry creation and boundary, loading, and material definition.

FIGURE 16.1
Main window of MFree2D.
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Main menu: The main menu contains all input items and operation facilities. Most of the
items are also available as buttons in the toolbars.

Toolbars: Toolbars contain buttons for actions that are related to creating the geometry
model, adding loads, defining the boundary conditions, editing, and so on.

Tree view: Tree view is used to show the boundary and to edit its properties.

Text view: Text view is used to show the commands and the keyed-in data.

Graphical display area: The graphical display area is where the geometry model is created.
All operations for the creation of geometry or postprocessing are mainly done by means of
a mouse. When a mouse input does not give the desired accuracy, a direct keyboard input
is available.

Status bar: The status bar contains three indicators: a line indicator showing the operation
of the selected menu item, a cursor position indicator giving the current position of the
mouse cursor on the screen, and a time indicator providing the current time.

16.3.2 Geometry Creation

The generation of an analysis model begins with the creation of a geometry model.
A geometry model can be formed using points, lines, squares, arcs, and circles. All these
entities can be inputted or edited by means of a mouse or a keyboard.

Seed Node
This icon is used to create a seed node to control the density of discrete nodes when
representing the problem domain with nodes. It is particularly useful when you intend
to increase or decrease the density of nodes in the area surrounding the seed node. Use it
only when necessary, as for most cases the default works just fine. This item can be selected
from the drawing submenu, source point, or directly from the toolbar. The point position
can be selected with a mouse or keyed in from the keyboard. When the point position has
been input, a dialog window (Figure 16.2) will prompt you to key in the values of weight
and effect radius. The weight value is used to control the density of discrete nodes, i.e., the
average nodal spacing around the seed node. Figure 16.3 shows an example of using a seed
node to increase the nodal density at a particular point.

Line
This input icon is used to create a geometric line. This item can be selected from the
geometry menu as well as directly from the toolbar. You can pick two points using a
mouse on the graphical display area to generate a line or key in the data (Figure 16.4) for

FIGURE 16.2
Edit dialog box for seed nodes.
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the desired accuracy. After the first point has been input, a line will be dragged by moving
the mouse, and a right click will fix the ending point. Exact coordinates for the ending
point can be also specified using the dialog box that is prompted by pressing any of the
10 digit keys.

Square
This icon is used to create a square geometry. This can be done using a keyboard input for
specifying the coordinates for the two diagonal points. The square can also be created by
dragging the mouse while pressing the left button.

Circle
This icon is used to generate a circular geometry. The operation can be carried out by
selecting this item from the geometry menu, or directly from the toolbar. First, the center
point of the circle can be selected in the graphical display area, using a mouse or a direct
input from the keyboard. Next, the radius for generating the circle can be keyed in or
specified by dragging the mouse to a desired radius of the circle. The key-in boxes are
shown in Figure 16.5. When the mouse is used to generate a circle, the snap mode can assist
you to select particular points conveniently.

FIGURE 16.3
Example of the effect of a seed node with large
density weight.

FIGURE 16.4
Example of generating a line using the
keyboard input.

FIGURE 16.5
Example of generating a circle with the
keyboard input.
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Arc
This icon is used to generate an arc geometry. This item can be selected from the geometry
menu or directly from the toolbar. In this command, a three-point input method is used to
generate an arc. The first point determines the center of the arc, and the second point is
used to determine both the start angle and the radius of the arc. The latter value is
calculated by simply taking the distance between the first point, the center of the arc,
and the second point. The third point is used only to determine the end angle of the arc. All
the point inputs can be done by selecting in the graphical display area with a mouse or by
keying in from the keyboard. The second and third points follow the right-hand rule
related to the center point of the arc; i.e., the arc should be specified in a counterclockwise
direction.

16.3.3 Boundary Conditions and Loads

Boundary conditions are special conditions that are imposed on geometric entities to
constrain the displacements. Boundary conditions come in two variants, intensive (point)
and distributed constraints.

The user can define two types of loads: intensive (concentrated) forces and distributed
tractions. Concentrated forces are applied to geometric points that lie in the geometry.
Distributed tractions are applied to geometric entities.

Point Displacement Constraint (Intensive Displacement)
This icon is used to define a point displacement constraint on a certain point. This can be
performed from the loading menu, boundary condition! intensive displacement, or directly
from the toolbar. The user can adjust the point location with a dialog box, as shown in
Figure 16.6, which will prompt after the position of the point is defined.

FIGURE 16.6
Dialog box for specifying a point displacement constraint.
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There are seven items in the dialog box. Location shows the coordinates of the point.
Displacement is used to prescribe the fashion of the constraint. The combo box contains five
items for selection—Constraint along X, Constraint along Y, Constraint along X and Y, Surface
Normal, and Surface Tangent—which are used to define the direction of the displacement.
The last box is used for the prescribed value of this displacement constraint. If the user
selects Constraint along X and Y and no zero is set for displacement, the angle of the
displacement related to the x-direction must be defined. Discrete Weight is used to control
the density of nodes around the point. The value of Discrete Weight is the average nodal
spacing around the point load. Figure 16.7 shows an example of specified point constraints
along x, y, and x and y.

Distributed Displacement
This icon is used to define distributed constraints along a certain line. This can be
performed from the loading menu, boundary condition ! distribution displacement, or
directly from the toolbar. The user can define a linear distribution displacementalong a
line, circle, and arc, and can input coordinates of the start point and the end point by a
mouse. Figure 16.8 shows the dialog box of distribution displacement. Figure 16.9 shows
an example of specified distributed displacement constraints.

Intensive Force (Point Force)
This icon is used to define intensive (point) force. Intensive force can be selected from
the preprocess menu, loading ! intensive force, or by clicking the icon button on the
toolbar. The position of the point on which the force will be specified can be input by a
mouse. The load value and direction can be input in the dialog box, Intensive Force, shown
in Figure 16.10. In the dialog box, the location shows the coordinates of the point on which
the force is to be imposed. The loading value is the magnitude of the force. The angle
to the x-axis is the force direction related to the x-axis. Discrete weight is the average
nodal spacing around the point of force. Within the direction box, there are two radio

FIGURE 16.7
Example of specified point constraints.
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FIGURE 16.8
Dialog box for specifying the distribution displacements.

FIGURE 16.9
Example of specified distributed displacement constraints.

FIGURE 16.10
Dialog box for specifying an intensive force.
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buttons that are used to specify the direction of the force. Figure 16.11 shows an example of
specified intensive forces.

Traction
This icon is used to define distributed traction on geometric entities. This item can be
selected from the preprocess menu, loading ! traction, or by clicking the icon button on the
toolbar. The distributed traction represents a distributed force applied on a segment of
lines, circles, or arcs. The positions of the start and end points of the traction effect can be
selected using a mouse. The user can define the linear traction. Figure 16.12 shows a dialog
box for specifying a distributed traction. The meaning of all items in this dialog box is the
same as that in the intensive force dialog box. Figure 16.13 shows an example of a specified
traction applied to a structure.

FIGURE 16.11
Example of specified point forces.

FIGURE 16.12
Dialog box for specifying a distributed traction.

MFree2D� 725

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-021.jpg&w=212&h=153
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-022.jpg&w=264&h=129


16.3.4 Modify and Delete Boundary Conditions and Loads

This icon is used to edit (modify and delete) boundary conditions and loads. The user can
select the boundary constraint or load applied to the selected entity by double-clicking the
entity in the Tree view. After a dialog window similar to Figure 16.14 appears, the user can
edit and delete selected boundary conditions and loads.

16.3.5 Node Generation

In MFree2D, the domain is represented using scattered nodes. All the processes for the
nodal generation are fully automated based on the boundary of the geometry model

FIGURE 16.13
Example of a specified distributed traction.

FIGURE 16.14
Example of a dialog box for editing boundary and loading conditions.
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created at the initial stage. The density of nodes in the domain can be controlled by the user
by setting the discrete weights on the end points of each boundary item. Users can conveni-
ently change the local density of nodes by adding seed nodes to obtain a desired density of
nodal distribution at specified locations.

Boundary Specification
This icon is used to specify the boundary of the geometry of the model. There are two types of
boundaries. The first is an external boundary and the second is an internal boundary. The
external boundary is the profile that covers the whole domain; internal boundaries are the
edges that form holes within the domain of the model. MFreePre will automatically decide
which boundary is the external one, and which are the internal ones. The user can specify a
boundary by double-clicking the geometric entity that is part of the boundary. All bound-
aries that form the geometry of the model will be shown in the Tree view. Figure 16.15
shows an example of specified boundaries (green lines on the screen) for a model.

Modification of Discrete Nodal Density on a Boundary
The user can double-click the item after selecting it on the tree window (the left window)
that needs to be modified, and a dialog box will be prompted to show the discrete weight
on the item. The user can then modify the parameter in the dialog box as needed, by simply
changing the value. Figure 16.16 shows an example of the nodal distribution on the
boundaries of an MFree model.

The user can also perform the modification by selecting from the menu settings! options
and then modifying the weights on the dialog window. Figure 16.17 shows a dialog box for
altering some of the options.

FIGURE 16.15
Example of specified boundaries (shown as green lines on the screen) for a model.
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FIGURE 16.16
Example of nodal distribution on the boundaries of an MFree model.

FIGURE 16.17
Dialog box for altering options.
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Node Generation
This icon is used to generate nodes in the domain. It can be selected from the preprocess
menu, discretization, or by clicking the icon button on the toolbar. This command implements
the task of generating nodes in the domain, based on the density of nodes specified (or given
by default) on the boundaries and at the seed nodes. Figure 16.18 shows an example of the
nodal distribution generated byMFreePre for a very complex domain. It is not too difficult to
imagine what is required if one has created an FEMmodel for a geometry of this complexity.

16.3.6 Materials Property Input

The parameters of materials can be input using dialog boxes.

Create Material
This item can be selected from create on the Material menu. It can be used to create a new
material for the material database built together with MFree2D. Figure 16.19 shows a

FIGURE 16.18
Example of nodal distribution generated by MFreePre for a very complex domain.

FIGURE 16.19
Dialog box for inputting material properties.
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dialog box for inputting material properties. The current MFree2D version released to the
public handles only solids of elastic materials. The material created will be stored in the
database for future use.

Show and Update Material
This item can be selected from show & update on the Material menu. It can be used to show,
modify, and delete a material from the material database. Figure 16.20 shows a dialog box
to display the properties of materials created. Modification is done by simply changing the
values. Deleting is done by clicking the delete button.

Material Selection
This item can be selected from selection on the Material menu. Figure 16.21 shows a dialog
box for selecting a material from the material database.

FIGURE 16.20
Dialog box displaying the material properties created. Modification is done by simply changing the values.
Deletion is done by clicking the delete button.

FIGURE 16.21
Dialog box for selecting a material from the material database.
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16.3.7 Miscellaneous

MFreePre provides some auxiliary functions to help users view or draw geometry models
and change the color of the background or lines.

Scale of Graphical Display Area
This icon is used to change the scale of the graphical display area. It can be selected by
clicking the icon button on the toolbar. The default coefficient of the scale is 1. Users can
change it in the following dialog box. Figure 16.22 shows a dialog box for changing the
display scaling factor.

Pan Graphical View
This icon is used to pan the graphical view. Users can press the left button of the mouse
and drag the drawing to shift it.

Clear
This icon is used to clear the screen. This does not delete the model that you are creating.

Zoom In
This icon is used to zoom in the view in the display region with a zooming rate of 200%.

Zoom Out
This icon is used to zoom out the view in the display region with a zooming rate of 50%.

Zoom Region
To view a detail of a drawing, users can also use this function to magnify a selected area
with a window.

Global View
This icon is used to restore the entire view of the model within the screen.

Background Color
This icon is used to change the background color. When this icon is selected, a standard
color dialog box (Figure 16.23a) will appear. You can directly select a color from the dialog
box or define a custom color for the background.

FIGURE 16.22
Dialog box for changing the display scal-
ing factor.
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Entity Color
This icon is used to change the color of entities that will be drawn on the screen. When this
icon is selected, a standard color dialog box will appear. You can directly select a color
from the dialog box or define a custom color for the selected entities.

Font
This icon is used to change the font, font size, font style, and font color. When this icon is
selected, a standard font dialog box (shown in Figure 16.23b) will prompt. Users can
change the font properties to meet their requirements.

16.3.8 Adaptive Parameter Setting

MFreePre provides parameter setting for adaptive refinement operations in MFree2D.
Default settings work fine for problems that we have tested. Changes to the settings can
be done by selecting Adaptive parameter on the settings menu. Figure 16.24 shows a dialog
box for setting adaptive parameters.

The adaptive parameters contain two categories: refinement criterion for local mesh
refinement and stop criterion for computation termination. There are three items in the
dialog box for the refinement criterion.

. The percentage of nodes to be refined is used to prescribe the percentage of the
nodes in the whole domain to be refined. This is done by computing the cell
energy error (CEE) indicator for all the nodes in the problem domain. For a
node the CEE is obtained by a simple average of the (relative) CEEs for the
surrounding cells of the node. The CEEs for all the nodes are then ranked. All
the nodes at the top of the list within the prescribed percentage are marked to be
refined later.

. Update of scaling factors for the refined nodes is done with three possible schemes. The
first scheme is to use the CEE values of the nodes to be refined. The scaling factors

(a) (b)

FIGURE 16.23
(a) Color editing dialog box; and (b) dialog box for changing fonts.

732 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-046.jpg&w=192&h=137
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-047.jpg&w=192&h=163


for these nodes are updated in relation to their CEE values. The second is to input
one coefficient in [0, 1] manually to scale down the original scaling factors for all
the nodes to be refined. The last scheme is to simply recompute the scaling factors
for refined nodes, based on the newly updated local triangular mesh in the process
of mesh updating.

. Unrefinement nodes scaling factor is used to define the scaling factor of the unrefine-
ment nodes. Normally, the scaling factors of these unrefinement nodes do not need
change, and the default input value is 1.0. Unless there is a special need, there is no
need to change the default value.

Two items are included for the stop criterion. The allowable global error and the allowable
number of steps are used to predefine the desired accuracy in terms of the global relative
error and the maximum allowable number of adaptive iterations.

16.3.9 Numerical Methods=Processor Selection

The numerical methods or processors in the current MFree2D 2.0 version released to the
public are five smoothed PIMs, EFG, and Linear FEM.

Since ES-PIM (linear) is found to have the highest computational efficiency (least com-
putation time for the same accuracy) among all the smoothed PIMs for the same back-
ground mesh of triangular elements, it is chosen for adaptive analysis. NS-PIM provides
the upper bound solutions with respect to the exact solution in an energy norm, and the
FEM produces the lower bound solutions in an energy norm (for force-driving problems).
Hence, it may prove useful to use both of them for the fine mesh at the final stage of the
analysis to produce quality bounds for the exact solution.

EFG is equipped with two node selection schemes: influence domain-based and sur-
rounding elements (T2L-scheme). This option can be chosen by selecting adaptive and then

FIGURE 16.24
Adaptive parameter setting dialog box.
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MFreeApp=Analysis on the Processors menu. Figure 16.25 shows the pop-up menu for
numerical methods selection.

16.4 Postprocessing in MFree2D

MFreePost provides a convenient graphical user interface for visualizing numerical
solutions of MFree2D, e.g., initial and deformed domain displaying, field contouring,
vector viewing, section projecting, and surface and curve plotting. In addition, it allows
animation of the converging and nodal-refining processes of the adaptive analysis.

16.4.1 Start of MFreePost

To start MFreePost, choose ‘‘Post processor=MFreePost’’ from ‘‘Processors’’ in the
integrated main window shown in Figure 16.1. You can also start MFreePost as an
executable file.

FIGURE 16.25
Numerical methods=processors selection.
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16.4.2 Window of MFreePost

Figure 16.26 shows the graphical user interface of the MFreePost. It consists of a title bar,
a menu bar, a toolbar, an entity pane (left part of the window), a display region (right area
of the window), and a status bar at the bottom of the window.

Main Menu
The menu consists of the following menu items: File, Edit, View, Settings, Field, Section,
Animation, Export, and Help.

File
Figure 16.27a shows the submenu in the ‘‘File’’ menu. The submenu items are as follows:

Open: To open an MFree2D result file. The file has an extension of ‘‘.out’’ and is generated
by MFreeApp.

Save Image: To save the image displayed in the display region. The file format is Bitmap.

Save Image As: To save the image in the display region with a given file name. The file
format is Bitmap.

Print: To print the image in the display region.

Print Preview: To preview the printing effect of the image in the display region.

Print Setup: To set up the printer for use.

List of Recent Files: To display the files most recently used. Maximally four files are
displayed.

Exit: To end the MFreePost program.

FIGURE 16.26
Graphical user interface of MFreePost.
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Edit
Figure 16.27b shows the submenu in the ‘‘Edit’’ item. The submenu items and their
functions are as follows:

Copy Image: To copy the image in the display region to the clipboard. This enables the
image to be pasted in many word=image-processing applications.

Find Node: To find the location of a specific node by giving the node ID in the dialog box
shown in Figure 16.28.

Find Cell: To find the location of a cell by giving the cell ID in the dialog box shown in
Figure 16.29. The cell will be highlighted when it is found. If the cell is out of the display
region, it will be shifted to the central location of that region.

Select Node: To enable the node selection mode. By turning on this mode, the information
(e.g., ID, coordinates, displacement, strain, stress, velocity, acceleration, etc.) of every
point within the problem domain can be displayed simply by clicking the left mouse button.
Figure 16.30 shows the output information of a point.

Select Cell: To enable the cell selection mode. By turning on this mode, the information
(e.g., cell ID, vertices, cell area, etc.) of every cell in the problem domain can be displayed
simply by clicking the left mouse button. The output information related to the clicked cell
will be shown as in Figure 16.31.

(a) (b)

FIGURE 16.27
(a) File submenu in MFreePost; and (b) Edit submenu in MFreePost.

FIGURE 16.28
Find Node dialog box prompts for a
node ID.
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View
The submenu of the ‘‘View’’ item is shown in Figure 16.32. The functions of the submenu
items are as follows:

Toolbar: To show or hide the toolbar.

Status Bar: To show or hide the status bar.

Visualization Bar: To show or hide the visualization bar.

FIGURE 16.29
Find Cell dialog box requires a cell ID.

FIGURE 16.30
Output information of a point.

FIGURE 16.31
Output information of a cell.
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Node: To show or hide the domain nodes.

Background Cell: To show or hide the background cells.

Domain Border: To show or hide the domain border.

Color Ruler: To show or hide the color ruler.

Vector Scale: To show or hide the vector scale.

MFree Logo: To show or hide the MFree logo.

Zoom In: To zoom in the view in the display region with a zooming rate of 50%.

Zoom Out: To zoom out the view in the display region with a zooming rate of 200%.

Zoom At: To zoom at the view in the display region with a given zooming rate. Figure 16.33
shows a dialog box that requires a magnification factor.

Zoom Region: To zoom the view into a selected rectangular region. The region is selected
by dragging the mouse and is projected to the full display region.

Translate (Pan): To shift the view in the display region by moving the mouse with the left
button pressed.

Restore All: To restore the image in the display region to its original size and location.

Move Color Ruler: To move the color ruler in the display region.

Move Vector Scale: To move the vector scale in the display region.

Move MFree Logo: To move the MFree logo in the display region.

FIGURE 16.32
View submenu in MFreePost.
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Settings
The menu item ‘‘Settings’’ is responsible for all view settings in the display region.
Figure 16.34 shows its submenu in MFreePost. The functions of the submenu items are
as follows:

Font: To define the font size, color, and type for the view in the display region (as shown in
Figure 16.34).

Colors: To define the background color and drawing color for the display region. The color
is selected using the color dialog shown in Figure 16.23.

Color Ruler: To define the style, mode, size, location, and other properties of the color
ruler. All the settings related to the color ruler are done using the Color Ruler Settings
dialog box (Figure 16.35).

FIGURE 16.33
The Zoom At dialog box requires a magnifica-
tion factor.

FIGURE 16.34
Submenu of settings in MFreePost.
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Style: To define Line only, Leaped color, and Smooth color. Line only is a style that shows
contour lines, Leaped color style shows the contour regions and fills each region using a
unique color, and Smooth color style fills the entire problem domain with smoothly
changed colors.

Mode: To define Linear and Logarithmic. The Linear Mode defines that the color along the
color scale changes linearly with the value it represents and the Logarithmic Mode defines
a logarithmic relationship between the colors and the values.

Scale: To define the minimum and maximum values measured by the color ruler.

Marks: To define the major divisions of the color ruler and the minor divisions in a major
division.

Mark Label Font: To define the label font for the color ruler.

Size: To define the size (in pixels) of the color ruler.

Location: To define the location (in pixels) of the color ruler.

Auto Scale: To mark the box to set the scale of the color ruler automatically.

With Frame: To mark the box to bound the color ruler with a frame.

Vector Scale: To define the properties of the vector scale. The dialog box for vector scale
settings is shown in Figure 16.36.

FIGURE 16.35
Dialog box for Color Ruler Settings.

FIGURE 16.36
Dialog box for Vector Scale settings.

740 Meshfree Methods: Moving beyond the Finite Element Method

© 2010 by Taylor and Francis Group, LLC

http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-060.jpg&w=288&h=139
http://www.crcnetbase.com/action/showImage?doi=10.1201/9781420082104.ch16&iName=master.img-061.jpg&w=240&h=149


Reference Value: To define the value represented by the length of the vector scale.

Scale Length: To define the length (in pixels) of the vector scale.

Scale Width: To define the thickness of the vector scale in pixels.

Location: To define the coordinates (in pixels) of the left origin of the vector scale.

Label Font: To define the label font of the vector scale.

Auto Scale: To mark the box to set the reference value automatically.

Node View Properties: To define the viewing properties for the domain nodes. The dialog
box for setting the node view is shown in Figure 16.37.

Show Node Symbol: To mark the box to show the node symbol.

Show Node ID: To mark the box to show the node ID.

Shape: To choose the nodal shape. The options are none, circle, and rectangle.

Foreground Color: To define the drawing color for the node symbol.

Fill Color: To define the color to fill the node symbol.

Size: To define the size of the node symbol in pixels.

Line Width: To define the line width for drawing the node symbol.

Distance from Nodal Position: To define the relative location of the node label to the nodal
position.

Font: To define the node label font.

Cell View Properties: To define the cell view properties. The dialog box for setting the cell
view properties is shown in Figure 16.38.

FIGURE 16.37
Dialog box for setting Node View
properties.

FIGURE 16.38
Dialog box for setting Cell View
properties.
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Show Cell Edge: To mark the box to show the cell edge.

Show Cell ID: To mark the box to show the cell ID label.

Line Style: To define the line style for drawing the cell edge. The options are solid line,
dash line, dot line, and dashdot line.

Line Color: To define the edge color.

Line Width: To define the edge thickness in pixels.

Set Font: To set the label font for the cell ID.

Vector View: To define the vector properties for a vector field. The dialog box for setting
the vector properties is shown in Figure 16.39.

Style: To define the line style of the vector arrow. The options are solid line, dot line, and
dash line.

Color: To define the vector arrow color.

Width: To define the thickness of the vector arrow in pixels.

Arrowhead Length: Fixed: to define an arrow with a fixed head length. Proportional: to
define an arrow with the head length proportional to the arrow length. The length is
measured in pixels.

Step to Show: To define the step to be shown in the display region. The dialog box is
shown in Figure 16.40.

Show Mesh Refinement Step: To show a specified mesh refinement step.

Show Load Increment Step: To show a specified load increment step.

Configuration: To set the configuration of the problem domain. There are two options of
configurations: initial configuration and current configuration (Figure 16.41). The former is
based on the original undeformed problem domain whereas the latter uses the deformed
problem domain at the current step of iteration.

FIGURE 16.39
Dialog box to define Vector Arrow properties.
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Options: To define other general options.

Field
This item consists of functions related to field variables. The submenu is shown in
Figure 16.42. The functions of the submenu items are as follows:

Strain: To display the strain field. The strain components consist of strains in the x and y
directions (strain_xx and strain_yy), the shear strain (strain_xy), principal strains, the
equivalent strain, etc. Figure 16.43 is the submenu of Strain.

FIGURE 16.40
Dialog box to define Step to Show.

FIGURE 16.41
Submenu in the Configuration item.

FIGURE 16.42
Submenu of field.
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Stress: To display the stress field. The stress components consist of stresses in the x- and
y-directions (stress_xx and stress_yy), the shear stress (strain_xy), principal stresses, Mises
stress, etc. Figure 16.44 is the submenu of Stress.

Displacement Vector: To show the displacement field using vector arrows. A vector arrow
starts at the location of a node and points to the displacement direction. The arrow length
represents the magnitude of the nodal displacement.

Velocity Vector: To show the velocity field using vector arrows. A vector arrow starts at
the location of a node and points to the velocity direction. The arrow length represents the
magnitude of the nodal velocity.

Acceleration Vector: To show the acceleration field using vector arrows. A vector arrow
starts at the location of a node and points to the acceleration direction. The arrow length
represents the magnitude of the nodal acceleration.

FIGURE 16.43
Strain components that can be displayed.

FIGURE 16.44
Stress components that can be displayed.
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Elastic Zone: To paint the elastic region in the problem domain with a specified color
(green by default).

Plastic Zone: To paint the plastic region in the problem domain with a specified color
(yellow by default).

Failure Zone: To paint the failure region in the problem domain with a specified color (red
by default).

Section
This is a collection of commands related to the section view. The submenu items are shown
in Figure 16.45.

Create Section: To create a section inside the problem domain. This is done by moving
the cursor to the starting point, pressing and holding the left mouse button, dragging the
cursor across the problem domain to the ending point, and releasing the button. A section
line is then shown on the screen. Note that only one section line can be created at a time
and the creation of a new section will replace the existing one.

Remove Section: To remove the existing section if any.

Section Properties: To define the starting and ending points of a section precisely. The
dialog box to set section properties is shown in Figure 16.46.

Show Section Line: To show or hide a section line.

Show Curves: To show curves of field variables along the section line. The choice of this
item initiates a separate Section View window (Figure 16.47) where the curves are
displayed.

Export Data: To export variable values along a section to a text file.

Animation: To define animation. This comprises all commands related to animation. The
submenu of animation is shown in Figure 16.48.

Set Up Animation: To set up an animation using a dialog box shown in Figure 16.49. There
are two panels in the dialog box: the source panel is for defining the source data for an
animation and the advance panel defines the animation advancing mode.

FIGURE 16.45
Submenu of Create Section.
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FIGURE 16.46
Dialog box for setting Section Properties.

FIGURE 16.47
Section View window to display curves along a section.

FIGURE 16.48
Submenu of Animation.
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Present MFreePost Data File: To define the source data from the currently opened data
file. Further, whether to show refinement steps or to show increment steps can also be
defined.

Image Frames: To define the source data from a list of image frames. The list can be
maintained using four commands: Add, Remove, Move Up, and Move Down.

OnMouse Click:Advancing mode is made by clicking the left mouse button and frame by
frame.

Automatically After: The advancing mode is automatic with a specified interval time.

View Animation: To display an animation with a specified advancing mode.

View Previous Frame: To show the previous frame in an animation.

View Next Frame: To show the next frame in an animation.

Export
This item is specifically used for exporting values to text files. The submenu is shown in
Figure 16.50.

Node Value: To export the values of a specified node to a text file. The values include
coordinates, displacement, velocity, acceleration, strain, stress, and deformation status at
all steps.

FIGURE 16.49
Dialog box for setting up an animation.

FIGURE 16.50
Submenu of Export.
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Section Value: To export the variable values along a specified section to a text file.

Help
This item comprises help contents and description of the software package. The submenu
is shown in Figure 16.51.

Help Topics: To search for a specific help topic.

About MFreePost: To describe the credit and the copyright information of MFreePost.

FIGURE 16.51
Submenu of Help Topics.
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