DIy 4.1
4.1.1 Thevaluesof the signals are asfollows:

| regwte | Womiead | ALuMux | Memris | ALuop | Reghux | sraneh
a. 1 0 0 Add 1 (ALU) 0

0 (Reg) ALU

b. 1 1 1 (Imm) 0 Add 1 (Mem) 0

ALUMux is the control signal that controls the Mux at the ALU input, O (Reg)
selects the output of the register fileand 1 (Imm) selects the immediate from the
instruction word asthe second input to the ALU.

RegMux isthe control signal that controls the Mux at the Data input to the regis-
ter file, 0 (ALU) selects the output of the ALU and 1 (Mem) selects the output of
memory.

Avaueof X isa“don’t care” (does not matter if signalisOor 1)

4.1.2 Resources performing auseful function for thisinstruction are:

a. | All except Data Memory and branch Add unit

b. | All except branch Add unit and second read port of the Registers

4.1.3

] Outputs that are not used | Nooutputs |
a. | Branch Add Data Memory
b. | Branch Add, second read port of Registers None (all units produce outputs)

4.1.4 One long path for and instruction isto read the instruction, read the reg-
isters, go through the ALUMux, perform the ALU operation, and go through the
Mux that controls the write data for Registers (I-Mem, Regs, Mux, ALU, and Mux).
The other long path is similar, but goesthrough Control while registers are read
(I- Mem, Control, Mux, ALU, Mux). There are other paths but they are shorter,
such as the PC increment path (only Add and then Mux), the path to prevent
branching (I-Mem, Control, Mux uses Branch signal to select the PC + 4 input as
the new value for PC), the path that prevents a memory write (only I-Mem and
then Control, €etc).

a.\':)'\a(/.‘ :TJLQf Ha®

a. Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

b. | Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

4.1.5 Onelong path isto read instruction, read registers, usethe Mux to select the
immediate as the second ALU input, use ALU (compute address), access D-Mem,
and use the Mux to select that as register data input, so we have I-Mem, Regs,
Mux, ALU, D-Mem, Mux. The other long path issimilar, but goes through Control
instead of Regs (to generate the control signal for the ALU MUX). Other paths are
shorter, and are similar to shorter paths described for 4.1.4.

a. | Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, D-Mem, Mux.

b. | Control is faster than registers, so the critical path is I-Mem, Regs, Mux, ALU, Mux.

4.1.6 This instruction has two kinds of long paths, those that determine the
branch condition and those that compute the new PC. To determine the branch
condition, weread the instruction, read registersor use the Control unit, then use
the ALU Mux and then the ALU to compare the two values, then usethe Zero out-
put of the ALU to control the Mux that selectsthe new PC. Asin 4.1.4and 4.1.5:

a. | The first path (through Regs) is longer.

b. | The first path (through Regs) is longer.

To compute the PC, one path isto increment it by 4 (Add), add the offset (Add),
and select that value asthe new PC (Mux). The other path for computing the PC is
to Read the instruction (to get the offset), use the branch Add unit and Mux. Both
of the compute-PC paths are shorter than the critical path that determines the
branch condition, becausel-Mem isslower than the PC + 4 Add unit, and because
ALU isslower than the branch Add.

o9y 4.2

4.2.1 Existing blocksthat can be used for thisinstruction are:

a. | This instruction uses instruction memory, both existing read ports of Registers, the ALU, and
the write port of Registers.

b. | This instruction uses the instruction memory, one of the existing register read ports, the path

that passed the immediate to the ALU, and the register write port.

4.2.2 New functional blocksneeded for thisinstruction are:

a. | Another read port in Registers (to read Rx) and either a second ALU (to add Rx to Rs + Rt) or a
third input to the existing ALU.

b. = We need to extend the existing ALU to also do shifts (adds a SLL ALU operation).

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.2.3 Thenew control signalsare:

a. | We need a control signal that tells the new ALU what to do, or if we extended the existing ALU
we need to add a new ADD3 operation.

b. | We need to change the ALU Operation control signals to support the added SLL operation in
the ALU.

4.2.4 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: 1-Mem
(read instruction), Regs(takes longer than Control), Mux (select ALU input),
ALU, Data Memory, and Mux (select value from memory to be written into
Registers). The latency of this path is400ps + 200ps + 30ps + 120ps + 350ps +
30ps= 1130ps.

. New clock cycle time

a. 1130ps (No change, Add units are not on the critical path).

b. | 1230 (1130ps + 100ps, Regs are on the critical path)

4.2.5 The speed-up comesfrom changesin clock cycle time and changesto the
number of clock cyclesweneed for the program:

T e

a. Speed-up is 1 (no change in number of cycles, no change in clock cycle time).

b. | We need 5% fewer cycles for a program, but cycle time is 1230 instead of 1130, so we have a
speed-up of (1/0.95) x (1130/1230) = 0.97, which means we actually have a small slowdown.

4.2.6 The cost isdways the total cost of all components (not just those on the
critical path, so the original processor has a cost of 1-Mem, Regs, Control, ALU,
D-Mem, 2 Add units and 3 Mux units, for atotal cost of 1000 + 200 + 500 + 100 +
2000+ 2 x 30+ 3 x 10 = 3890.

We will compute cost relative to this baseline. The performance relative to this
baselineis the speed-up we computed in 4.2.5, and our cost/performance relative
to the baselineisasfollows:

- m Relative cost Cost/Performance |

3890 + 2 x 20 = 3930 | 3930/3890 = 1.01 1.01/1 = 1.01. We are paying a bit more for
the same performance.

b. 3890 + 200 = 4090 4090/3890 = 1.05 1.05/0.97 = 1.08. We are paying some more
and getting a small slowdown, so out cost/
performance gets worse.

°'\.’J.\°(/~; :T)l.gf Ha®

S 4.3
4.3.1

a. Both. It is mostly flip-flops, but it has logic that controls which flip-flops get read or written in
each cycle

b. | Both. It is mostly flip-flops, but it has logic that controls which flip-flops get read or written in
each cycle

4.3.2

Al AO

LS

Instruction 0

J U U U

This shows the lowermost bit of each word. This schematic is repeated
7 more times for the remaining seven bits. Note that there are no connec-
tions for D and C flip-flop inputs because datapath figuresdo not specify
how instruction memaory iswritten

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

RReg1l: Do—

Reg0_0

WData_0' DQ D_L
] c
& RDatal 0

Regl_0
D
Clock — \ Q ij
RegWrite —) —

§

L/

3_\§>—< RData2_0
WReg — DI
RReg2 + >Jf

This is the schematic for the lowermost bit, it needs to be repeated 7 more times for the remaining
bits. RRegl isthe Read Register 1 input, RReg? isthe Read Register 2 input, WReg isthe Write Register
input, WData isthe Write Data input. RDatal and RData? are Read Data 1 and Read Data 2 outputs.
Data outputs and input have“_ 0" to denote that thisisonly bit O of the 8-hit signal.

°'\.’J.\°(/~; :T)kgf Ha®

4.3.3

Instruction 0

—b o

—]|C

) L

b. | No change, there are no gates with more then 2 inputs in the schematic.

4.3.4 Thelatency of apath isthe latency from an input (or a D-element output)
to an output (or D-element input). The latency of the circuit isthe latency of the
path with the longest latency. Note that there are many correct ways to design the
circuit in 4.3.2, and for each cx< to 4.3.2 there is a different cx< for this
problem.

4.3.5 The cost of the implementation is simply the total cost of al its compo-
nents. Note that there are many correct ways to design the circuit in 4.3.2, and for
each ¢n 3 to 4.3.2there isadifferent <5 for this problem.

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.3.6

a. | Because multi-input AND and OR gates have the same latency as 2-input ones, we can use
many-input gates to reduce the number of gates on the path from inputs to outputs. The
schematic shown for 4.3.2 turns out to already be optimal.

b. | A three-input or a four-input gate has a lower latency than a cascade of two 2-input gates.

This means that shorter overall latency is achieved by using 3- and 4-input gates rather than
cascades of 2-input gates. In our schematic shown for 4.3.2, we should replace the three
2-input AND gates used for Clock, RegWrite, and WReg signals with two 3-input AND gates that
directly determine the value of the C input for each D-element.

L.).'L)AS 4-4
4.4.1 \We show the implementation and also determine the latency (in gates)
needed for 4.4.2.

. Implementation Latency in gates

a. L
1/
s 1 .
C
R
.

4.4.2 Secanswer for 4.4.1 above.

a)b)b/_: :T)Q{ Ha®

443
T mementeter
a.
—
[Signal 2
B
C
b.
A —_—
B
Signal 1
17>
_\ Signal 2
4.4.4

a. | There are four OR gates on the critical path, for a total of 136ps

b. The critical path consists of OR, XOR, OR, and OR, for a total of 510ps

4.4.5

a. The cost is 2 AND gates and 4 OR gates, for a total cost of 16.

b. The cost is 1 AND gate, 4 OR gates, and 1 XOR gate, for a total cost of 12.

4.4.6 \We aready computed the cost of the combined circuit. Now we determine
the cost of the separate circuitsand the savings.

- Combinend cost Separate cost “

22 (+2 OR gates) (22 - 16)/22 =27%
b. 12 14 (+1 AND gate) (14 -12)/14 = 14%

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

o 4.5
4.5.1
a.
X
Startﬁ\/ J/]D out
—b o
Clk c T
Carry
b.
Start {>o
L
T
X D Q Q
clk —I—c rc
4.5.2

X_i \j; Out_i
Start H
{ Oy
Xi 1

ok -

Carry i 1

Start 4{>O—l7

_ D Q
clk c \\

Outi 1

a)b)b/_: :T)Q{ Ha®

4.5.3
|
a. 90ps (OR, AND, D) 32 x 90ps = 2880ps
b. 170ps (NOT, AND, D) 32 x 170ps = 5440ps
4.5.4
]
a. 120ps (OR, AND, AND, D) (32 x 90ps)/(16 x 120ps) = 1.50
b. 90ps (NOT, AND) (32 x 170ps)/(16 x 90ps) = 3.78
4.5.5
14 (1 AND, 1 OR, 1 XOR, 1 D) 20 (2 AND, 1 OR, 2 XOR, 1 D)
b. 29 (1 NOT, 2 AND, 2 D) 29 (1 NOT, 2 AND, 2 D)
4.5.6
Cost/Performance Cost/Performance
for Circuit 1 for Circuit 2
14 x 32 x 90 = 40320 20 x 16 x 120 = 38400 Cost/performance of Circuit 2 is
better by about 4.7%
b. 29 x32x 170 = 157760 29 x 16 x 90 = 41760 Cost/performance of Circuit 2 is
better by about 73.5%
s 4.6

4.6.1 |-Mem takeslonger than the Add unit, sothe clock cycletimeisequal to the
latency of the I-Mem:

a. | 400ps

b. 500ps

4.6.2 The critica path for this instruction is through the instruction memory,
Sign-extend and Shift-left-2 to get the offset, Add unit to compute the new PC, and
Mux to selectthat valueinstead of PC + 4. Note that the path through the other

3l s M) 51T oK) Kazem.faridi@iaubaft.ac.ir

Add unit isshorter, becausethe latency of I-Mem islonger that the latency of the
Add unit. We have:

a. | 400ps + 20ps + 2ps + 100ps + 30ps = 552ps

b. 500ps + 90ps + 20ps + 150ps + 100ps = 860ps

4.6.3 Conditional branches have the same long-latency path that computes the
branch address asunconditional branchesdo. Additionally, they have along-latency
path that goesthrough Registers, Mux, and ALU to compute the PCSrc condition.
The critical path isthe longer of the two, and the path through PCSrc islonger for
these latencies:

a. | 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. | 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.6.4

a. | All instructions except jumps that are not PC-relative (jal, jalr, j, jr)

b. Loads and stores

4.6.5

a. | None. I-Mem is slower, and all instructions (even NOP) need to read the instruction.

b. | Loads and stores.

4.6.6 Of the two instruction (bne and add), bne has alonger critical path so it
determines the clock cycletime. Note that every path for add isshorter or equal to
than the corresponding path for bne, so changesin unit latency will not affect this.
Asaresult, wefocuson how the unit’s latency affects the critical path of bne:

a. This unit is not on the critical path, so changes to its latency do not affect the clock cycle time
unless the latency of the unit becomes so large to create a new critical path through this unit,
the branch add, and the PC Mux. The latency of this path is 230ps and it needs to be above

780ps, so the latency of the Add-4 unit needs to be more 650ps for it to be on the critical path.

b. | This unit is not used by BNE nor by ADD, so it cannot affect the critical path for either
instruction.

Qﬂ,}‘j 4-7
4.7.1 Thelongest-latency path for ALU operations isthrough I-Mem, Regs, Mux

(to select ALU operand), ALU, and Mux (to select value for register write). Note
that the only other path of interest isthe PC-increment path through Add (PC + 4)

a.\':)'\a(/.‘ :TJLQf Ha®

and Mux, which is much shorter. So for the I-Mem, Regs, Mux, ALU, Mux path
wehave:

a. | 400ps + 200ps + 30ps + 120ps + 30ps = 780ps

b. | 500ps + 220ps + 100ps + 180ps + 100ps = 1100ps

4.7.2 Thelongest-latency path for lw isthrough I-Mem, Regs, Mux (to select ALU
input), ALU, D-Dem, and Mux (to select what iswritten to register). The only other
interesting paths are the PC-increment path (which ismuch shorter) and the path
through Sign-extend unit in address computation instead of through Registers.
However, Regshas a longer latency than Sign-extend, so for 1-Mem, Regs, Mux,
ALU, D-Mem, and Mux path we have:

a. 400ps + 200ps + 30ps + 120ps + 350ps + 30ps = 1130ps

b. | 500ps + 220ps + 100ps + 180ps + 1000ps + 100ps = 2100ps

4.7.3 Theansweristhe sameasin 4.7.2 because the Iw instruction hasthe longest
critical path. The longest path for sw is shorter by one Mux latency (no write to
register), and the longest path for add or bne isshorter by one D-Mem latency.

4.7.4 Thedatamemory isused by Iw and sw instructions, so the answer is:

a. 20% + 10% = 30%

b. | 35% + 15% = 50%

4.7.5 The sign-extend circuit isactually computing aresult in every cycle, but its
output isignored for add and not instructions. The input of the sign-extend cir-
cuit isneeded for addi (to provide the immediate ALU operand), beq (to provide
the PC-relative offset), and lw and sw (to provide the offset used in addressing
memory) so the answer is:

a. 15% + 20% + 20% + 10% = 65%

b. | 5% + 15% + 35% + 15% = 70%

4.7.6 The clock cycle time is determined by the critical path for the instruction
that has the longest critical path. Thisisthe Iw instruction, and its critical path
goes through I-Mem, Regs, Mux, ALU, D-Mem, and Mux so wehave:

a. | |-Mem has the longest latency, so we reduce its latency from 400ps to 360ps, making the clock
cycle 40ps shorter. The speed-up achieved by reducing the clock cycle time is then 1130ps/
1090ps = 1.037

b. | D-Mem has the longest latency, so we reduce its latency from 1000ps to 900ps, making the
clock cycle 100ps shorter. The speed-up achieved by reducing the clock cycle time is then
2100ps/2000ps = 1.050

3l s M) 51T oK) Kazem.faridi@iaubaft.ac.ir

g 4.8
4.8.1 To test for astuck-at-0 fault on awire, weneed an instruction that puts that
wireto avaue of 1 and hasadifferent result if the value on the wireisstuck at zero:

a. Bit 7 of the instruction word is only used as part of an immediate/offset part of the instruction,
so one way to test would be to execute ADDI $1, zero, 128 which is supposed to place a value
of 128 into $1. If instruction bit 7 is stuck at zero, $1 will be zero because value 128 has all
bits at zero except bit 7.

b. | The only instructions that set this signal to 1 are loads. We can test by filling the data memory
with zeros and executing a load instruction from a non-zero address, e.g., LW $1, 1024(zero).
After this instruction, the value in $1 is supposed to be zero. If the MemtoReg signal is stuck
at 0, the value in the register will be 1024 (the Mux selects the ALU output (1024) instead of
the value from memory).

4.8.2 The test for stuck-at-zero requires an instruction that setsthe signal to 1
and the test for stuck-at-1 requires an instruction that setsthe signal to 0. Because
the signal cannot be both 0 and 1 in the same cycle, we cannot test the same signal
simultaneously for stuck-at-0 and stuck-at-1 using only one instruction. The test
for stuck-at-1 isanalogous to the stuck-at-0 test:

a. We can use ADDI $1, zero, O which is supposed to put a value of O in $1. If Bit 7 of the
instruction word is stuck at 1, the immediate operand becomes 128 and $1 becomes 128
instead of O.

b. | We cannot reliably test for this fault, because all instructions that set the MemtoReg signal

to zero also set the ReadMem signal to zero. If one of these instructions is used as a test for
MemtoReg stuck-at-1, the value written to the destination register is “random” (whatever noise
is there at the data output of Data Memory). This value could be the same as the value already
in the register, so if the fault exists the test may not detect it.

4.8.3

a. Itis possible to work around this fault, but it is very difficult. We must find all instructions that
have zero in this bit of the offset or immediate operand and replace them with a sequence of
“safe” instruction. For example, a load with such an offset must be replaced with an instruction
that subtracts 128 from the address register, then the load (with the offset larger by 128 to set
bit 7 of the offset to 1), then subtract 128 from the address register.

b. | We cannot work around this problem, because it prevents all instructions from storing their
result in registers, except for load instructions. Load instructions only move data from memory
to registers, so they cannot be used to emulate ALU operations “broken” by the fault.

°'\.’J.\"(/~; :T)l.gf Ha®

4.8.4

a. If MemRead is stuck at O, data memory is read for every instruction. However, for non-load
instructions the value from memory is discarded by the Mux that selects the value to be written
to the Register unit. As a result, we cannot design this kind of test for this fault, because the
processor still operates correctly (although inefficiently).

b. | To test for this fault, we need an instruction whose opcode is zero and MemRead is 1. However,
instructions with a zero opcode are ALU operations (not loads), so their MemRead is 0. As a
result, we cannot design this kind of test for this fault, because the processor operates correctly.

4.8.5

a. If Jump is stuck-at-1, every instruction updates the PC as if it were a jump instruction. To test for
this fault, we can execute an ADDI with a non-zero immediate operand. If the Jump signal is stuck-
at-1, the PC after the ADDI executes will not be pointing to the instruction that follows the ADDI.

b. | To test for this fault, we need an instruction whose opcode is zero and Jump is 1. However, the
opcode for the jump instruction is non-zero. As a result, we cannot design this kind of test for
this fault, because the processor operates correctly.

4.8.6 Each single-instruction test “covers’ all faultsthat, if present, result in dif-
ferent behavior for the test instruction. To test for as many of these faults as possi-
blein asingle instruction, we need an instruction that setsasmany of thesesignals
to avaluethat would be changed by a fault. Some signalscannot be tested using
this single-instruction method, because the fault on a signal could still result in
completely correct execution of al instruction that trigger the fault.

G 4.9
4.9.1
R ——
100011 00110 00001 0000000000101000 8CC10028
b. | 000101 00001 00010 1111111111111111 1422FFFF
4.9.2
o ey | e | e
6 (00110,) 1(00001,) Yes (but not used)

b. 1 (00001,) Yes 2 (00010, Yes

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.9.3

- Read register 1 Register actually written?
a. 1 (00001,) Yes
b. Either 2 (00010,) of 31 (11111,) (don't know No

because RegDst is X)

494

- Control signal 1 Control signal 2
a. RegDst = 0 MemRead = 1
b. RegWrite = 0 MemRead = 0

4.9.5 We use 131 through 126 to denote individua bits of Instruction[31:26],
whichisthe input to the Control unit:

a. RegDst = NOT 131

b. | RegWrite = (NOT 128 AND NOT 127) OR (131 AND NOT 129)

4.9.6 If possible, wetry to reuse some or al of the logic needed for one signal to
help us compute the other signal at alower cost:

a. RegDst = NOT 131
MemRead = 131 AND NOT [29

b. | MemRead =131 AND NOT 129
RegWrite = (NOT 128 AND NOT 127) OR MemRead

&< 4,10

To solve problems in this exercise, it helps to first determine the latencies of dif-
ferent paths inside the processor. Assuming zero latency for the Control unit, the
critical path isthe path to get the data for aload instruction, so we have I-Mem,
Mux, Regs, Mux, ALU, D-Mem and Mux on this path.

4.10.1 The Control unit can begin generating MemWrite only after I-Mem is
read. It must finish generating this signal before the end of the clock cycle. Note
that MemWrite is actually a write-enable signal for D-Mem flip-flops, and the
actual write is triggered by the edge of the clock signal, so MemWrite need not

°'\.’J.\°(/~; :T)l.gf Ha®

arrive before that time. So the Control unit must generate the MemWrite in one
clock cycle, minus the I-Mem access time:

- Critical path Maximum time to generate MemWrite

a. 400ps + 30ps + 200ps + 30ps + 1160ps - 400ps = 760ps
120ps + 350ps + 30ps = 1160ps
b. 500ps + 100ps + 220ps + 100ps + 2200ps - 500ps = 1700ps
180ps + 1000ps + 100ps = 2200ps

4.10.2 All control signals start to be generated after I-Mem read iscomplete. The
most dack asignal can haveisuntil the end of the cycle, and MemWrite and Reg-
Write are both needed only at the end of the cycle, so they have the most slack.
The time to generate both signalswithout increasing the critical path is the one
computed in 4.10.1.

4.10.3 MemWrite and RegWrite are only needed by the end of the cycle.
RegDst, Jump, and MemtoReg are needed one Mux latency before the end of the
cycle, so they are more critical than MemWrite and RegWrite. Branch is needed
two Mux latencies before the end of the cycle, so it is more critical than these.
MemRead is needed one D-Mem plus one Mux latency before the end of the
cycle, and D-Mem has more latency than a Mux, so MemRead is more critical
than Branch. ALUOp must get to ALU control in time to allow one ALU Cirl,
one ALU, one D-Mem, and one Mux latency before the end of the cycle. Thisis
clearly more critical than MemRead. Finally, ALUSrc must get to the pre-ALU
Mux in time, one Mux, one ALU, one D-Mem, and one Mux latency before the
end of the cycle. Again, thisismore critical than MemRead. Between ALUOp and
ALUSrc, ALUOp is more critical than ALUSrc if ALU control has more latency
than a Mux. If ALUOp isthe most critical, it must be generated one ALU Cirl
latency before the critical-path signals can go through Mux, Regs, and Mux. If
the ALUSrc signal isthe most critical, it must be generated while the critical path
goesthrough Mux and Regs. We have

The most critical control Time to generate it without
signal is affecting the clock cycle time

a. ALUOp (50ps > 30ps) 30ps + 200ps + 30ps - 50ps = 210ps

b. ALUSrc (100ps > 55ps) 100ps + 220ps = 320ps

For the next three problems, it helps to compute for each signal how much time
we haveto generate it beforeit starts affecting the critical path. We already did this
for RegDst and RegWrite in 4.10.1, and in 4.10.3 wedescribed how to do it for the
remaining control signals. We have:

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

e e e e | £ |

730ps 730ps 700ps 380ps 730ps 210ps 760ps 230ps 760ps

b. 1600ps 1600ps 1500ps 600ps 1600ps 365ps 1700ps 320ps 1700ps

The difference between the allowed time and the actual time to generate the signal
iscalled “slack”. For this problem, the allowed time will be the maximum time the
signal can take without affecting clock cycletime. If slack is positive, the signal
arrives before it is actually needed and it does not affect clock cycletime. If the
slack ispositive, the signal islateand the clock cycletime must be adjusted. We now
compute the clack for each signal:

Immmmm

10ps Ops 100ps -20ps 30ps 10ps 50ps 30ps -40ps

Ops Ops 100ps 100ps 200ps -35ps 200ps -80ps Ops

4.10.4 With this in mind, the clock cycletime is what we computed in 4.10.1,
plus the absolute value of the most negative slack. We have:

Control signal with the | Clock cycle time with ideal with these signal
most negatlve slack is Control unit (from 4.10.1) latencies

a. RegWrite (-40ps) 1160ps 1200ps

b. ALUSrc (-80ps) 2200ps 2280ps

4.10.5 |t only makessenseto pay to speed-up signas with negative slack, because
improvements to signals with positive slack cost us without improving perfor-
mance. Furthermore, for each signal with negative slack, we need to speed it up
onIy until weeliminate all its negative slack, so we have:

Per-processor cost to
Signals with negative slack eliminate all negatlve slack

a. MemRead (-20ps) 60ps at $1/5ps = $12
RegWrite (-40ps)

b. ALUOp (-35ps) 115ps at $1/5ps = $23
ALUSrc (-80ps)

G

da

a)b)b/_: :T)Q{ Ha®

4.10.6 The signa with the most negative slack determines the new clock cycle
time. The new clock cycle time increasesthe slack of all signalsuntil there areis
no remaining negative slack. To minimize cost, we can then slow down signals that
end up having some (positive) slack. Overall, the cost is minimized by slowing
signals down by:

I B A)) O)

50ps 40ps 140ps 20ps 70ps 50ps 90ps 70ps
b. 80ps 80ps 180ps 180ps 280ps 45ps 280ps Ops 80ps
< 4,11
4.11.1

- S T mpeshinionz |
|

0001000011000000000001000000
0000100011000000000000110000

00000000000000000000000000010000

b. 00000000000000000000000000001100
4.11.2
a. 00 010000
b. 01 001100
4.11.3

a. PC+4 PC to Add (PC + 4) to branch Mux to jump
Mux to PC

PC to Add (PC + 4) to branch Mux, or PC to
Add (PC + 4) to Add (adds offset) to branch
Mux. After the branch Mux, we go through
jump Mux and into the PC

b. | If $1 and $3 are not equal, PC + 4
If $1 and $3 are equal, PC + 4 + 4 x 12

4.11.4
PC + 4 PC + 4
b. | 3 or O (RegDst is X) -3 X PC + 4 PC + 4

3L sl p M) 51T oK)

4.11.5
2 and 16 PC and 4 PC + 4 and 16 x 4
b. -16and -3 PC and 4 PC +4 and 12 x 4

4.11.6

| | ReadRegister 1 |Read Register 2| Write Register | Write Data | RegWrite

X (3 or0)

s 4.12
4.12.1

- Pipelined Single-cycle

500ps

1650ps

b. 200ps

800ps

4.12.2
- Pipelined Single-cycle
]
a. 2500ps 1650ps
b. 1000ps 800ps
4.12.3

- Stage to split New clock cycle time
]

a. MEM 400ps

b. IF 190ps
4.12.4

a. 25%

b. 45%

Kazem.faridi@iaubaft.ac.ir

°'\.’J.\"(/~; :T)l.gf Ha®

4.12.5
a. 65%
b. 60%

4.12.6 \We already computed clock cycletimes for pipelined and single cycle
organizationsin 4.12.1, and the multi-cycle organization has the same clock cycle
time asthe pipelined organization. We will compute execution times relative to the
pipelined organization. In single-cycle, every instruction takes one (long) clock
cycle. In pipelined, along-running program with no pipeline stalls completes one
instruction in every cycle. Finally, a multi-cycle organization completes a lw in

5cycles, asw in 4 cycles (no WB), an ALU instruction in 4 cycles (no MEM), and a
beq in 4 cycles (no WB). So we havethe speed-up of pipeline

- Multi-cycle execution time is X times Single-cycle execution time is X times
- pipelined execution time, where X is pipelined execution time, where X is

a. 0.15 x5+ 0.85 x 4 =4.15 1650ps/500ps = 3.30
b. 0.30 x 5+ 0.70 x 4 = 4.30 800ps/200ps = 4.00
< 4.13
4.13.1
[] Instruction sequence
a. | 11: lw $1,40($6) RAW on $1 from I1 to I3
12: add $6,$2,$2 RAW on $6 from 12 to 13
13: sw $6,50($1) WAR on $6 from |1 to 12 and I3
b. 11: lw $5,-16($5) RAW on $5 from |1 to |2 and I3
12: sw $5,-16($5) WAR on $5 from I1 and 12 to 13
13: add $5,$5,$5 WAW on $5 from 11 to I3

4.13.2 |n the basic five-stage pipeline WAR and WAW dependences do not cause
any hazards. Without forwarding, any RAW dependence between an instruction
and the next two instructions (if register read happens in the second half of the
clock cycleand the register writehappens in thefirst half). The codethat eliminates
these hazards by inserting nop instructions is:

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

O
a. lw $1,40($6)
add $6,$2,$2
nop Delay 13 to avoid RAW hazard on $1 from 11
sw $6,50($1)

b. | lw $5,-16($5)
nop Delay 12 to avoid RAW hazard on $5 from 11
nop

sw $5,-16($5)
add $5,%$5,$5 Note: no RAW hazard from on $5 from |1 now

4.13.3 With full forwarding, an ALU instruction can forward avalueto EX stage
of the next instruction without a hazard. However, aload cannot forward to the
EX stage of the next instruction (by can to the instruction after that). The code that
eliminatesthese hazards by inserting nop instructions is:

Instruction
sequence

a. | lw $1,40($6)
add $6,$2,$2
sw $6,50($1) No RAW hazard on $1 from |1 (forwarded)
b. | Iw $5,-16($5)
nop Delay 12 to avoid RAW hazard on $5 from 11
sw $5,-16($5) Value for $5 is forwarded from 12 now
add $5,$5,$5 Note: no RAW hazard from on $5 from 11 now

4.13.4 Thetotal executiontimeisthe clock cycletime timesthe number of cycles.
Without any stalls, athree-instruction sequenceexecutes in 7 cycles (5 to complete
the first instruction, then one per instruction). The execution without forwarding
must add astall for every nop wehad in 4.13.2, and execution forwarding must add
astall cyclefor every nop wehad in 4.13.3. Overall, weget:

- No forwarding With forwarding Speed-up due to forwarding

(7 + 1) x 300ps = 2400ps 7 x 400ps = 2800ps 0.86 (This is really a slowdown)

b. | (7 +2) x 200ps = 1800ps | (7 + 1) x 250ps = 2000ps 0.90 (This is really a slowdown)

Gioad da

a.\':)\a(/_‘ :T)l.gf Ha®

4.13.5 With ALU-ALU-only forwarding, an ALU instruction can forward to the
next instruction, but not to the second-next instruction (because that would be
forwarding from MEM to EX). A load cannot forward at all, becauseit determines
the data valuein MEM stage, when it istoo latefor ALU-ALU forwarding. We have:

lw $1,40($6)
add $6,$2,$2
nop Can't use ALU-ALU forwarding, ($1 loaded in MEM)
sw $6,50($1)

b. | lw $5,-16($5)
nop Can’t use ALU-ALU forwarding ($5 loaded in MEM)
nop

sw $5,-16($5)
add $5,%$5,$5

4.13.6

With ALU-ALU Speed-up with ALU-ALU
No forwarding forwardmg only forwardmg

a. (7 + 1) x300ps =2400ps | (7 + 1) x 360ps = 2880ps 0.83 (This is really a slowdown)

b. | (7 +2) x 200ps = 1800ps | (7 + 2) x 220ps = 1980ps 0.91 (This is really a slowdown)

sx 414

4.14.1 In the pipelined execution shown below, *** represents a stall when an
instruction cannot be fetched because aload or storeinstruction isusing the mem-
ory in that cycle. Cycles are represented from left to right, and for each instruction
weshow the pipeline stageit isin during that cycle:

B —

w $1,40($6) IF ID EX MEM WB
beq $2,$0,L bl IF ED EX MEM WB
add $2,$3,$4 IF ID EX MEM WB
sw $3,50($4) *+ |E ID EX MEM WB
b. lw $5,-16($5) IF ID EX MEM WB 12
W $4,-16($4) IF ED EX MEM WB
W $3,-20($4) IF ID EX MEM WB
beq $2,%0,Lbl #xx wkk sxx |EID EX MEM WB
add $5,$1,$4 IF ID EX MEM WB

We can not add nopsto the codeto eliminate this hazard—nops need to befetched
just likeany other instructions, so this hazard must be addressed with a hardware
hazard detection unit in the processor.

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

4.14.2 This change only saves one cyclein an entire execution without data
hazards (such asthe one given). Thiscycle issaved becausethe last instruction fin-
ishesone cycleearlier (one lessstage to go through). If there were data hazardsfrom
loadsto other instruction, the changewould help eliminate some stall cycles.

- Instructions m Cycles with
- Executed 4 stages Speed-up

a. 4+4=8

3+4=7 8/7 =1.14

b. 5 4+5=9 3+5=8 9/8 =1.13

4.14.3 Stall-on-branch delaysthe fetch of the next instruction until the branch
isexecuted. When branches executein the EXE stage, each branch causes two stall
cycles. When branches execute in the ID stage, each branch only causesone stall
cycle. Without branch stalls (e.g., with perfect branch prediction) there areno stalls,
and the execution time is4 plus the number of executed instructions. We have:

Instructions

Branches
Executed

Speed-up

- Executed
a. 4 4+4+1x2=10 4+4+1x1=9 10/9 = 1.11
b. 5 1 4+5+1%x2=11 4+5+1x1=10| 11/10 = 1.10

4.14.4 The number of cycles for the (normal) 5-stage and the (combined EX/
MEM) 4-stage pipeline isaready computed in 4.14.2. The clock cycletime isequal
to the latency of the longest-latency stage. Combining EX and MEM stages affects
clock time only if the combined EX/MEM stage becomesthe longest-latency stage:

- with 5 stages with 4 stages

Speed-up
a. 130ps (MEM) 150ps (MEM + 20ps) (8 x 130)/(7 x 150) = 0.99
b. 220ps (MEM) 240ps (MEM + 20ps) (9 x 220)/(8 x 240) = 1.03
4.14.5

" how> | (Newerce | Ooyle | |
[sese——

a. 180ps 80ps 180ps (ID) 130ps (MEM) | (10 x 130)/(9 x 180) = 0.80
1.10

b. 150ps 160ps 220ps (MEM) | 220ps (MEM) @ (11 x 220)/(10 x 220) =

4.14.6 Thecycletime remains unchanged: a20psreduction in EX latency hasno
effect on clock cycle time because EX isnot the longest-latency stage. The change

Gioad da

a.\':)\a(/_‘ :T)l.gf Ha®

does affect execution time because it adds one additional stall cycleto each branch.
Because the clock cycle time does not improve but the number of cycles increases,
the speed-up from this change will be below 1 (a slowdown). In 4.14.3 we already
computed the number of cycles when branch isin EX stage. We have:

Cycles with branch Execution time Cycles with branch Execution time
in EX (branch in EX) in MEM (branch in MEM) Speed-up

4+4+1x2=10 10 x 130ps = 1300ps 4+4+1x3=11 11 x 130ps = 1430ps 0.91
b. 4+5+1x2=11 11 x 220ps = 2420ps 4+5+1x3=12 12 x 220ps = 2640ps 0.92
s 4.15
4.15.1

This instruction behaves like a load with a zero offset until it fetches the value from memory.
The pre-ALU Mux must have another input now (zero) to allow this. After the value is read from
memory in the MEM stage, it must be compared against zero. This must either be done quickly
in the WB stage, or we must add another stage between MEM and WB. The result of this zero-
comparison must then be used to control the branch Mux, delaying the selection signal for the
branch Mux until the WB stage.

We need to compute the memory address using two register values, so the address computation
for SWI is the same as the value computation for the ADD instruction. However, now we need to
read a third register value, so Registers must be extended to support a another read register
input and another read data output and a Mux must be added in EX to select the Data Memory’s
write data input between this value and the value for the normal SW instruction.

4.15.2

We need to add one more bit to the control signal for the pre-ALU Mux. We also need a control
signal similar to the existing “Branch” signal to control whether or not the new zero-compare
result is allowed to change the PC.

We need a control signal to control the new Mux in the EX stage.

4.15.3

This instruction introduces a new control hazard. The new PC for this branch is computed only
after the Mem stage. If a new stage is added after MEM, this either adds new forwarding paths
(from the new stage to EX) or (if there is no forwarding) makes a stall due to a data hazard one
cycle longer.

This instruction does not affect hazards. It modifies no registers, so it causes no data hazards.
It is not a branch instruction, so it produces no control hazards. With the added third register
read port, it creates no new resource hazards, either.

3l s M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

4.15.4
a. Iw Rtmp,0(Rs) E.g., BEZI can be used when trying to find the length of a
beqg Rt,$0,L abel zero-terminated array.
b. | add Rtmp,Rs,Rt E.g., SWI can be used to store to an array element, where
sw Rd,0(Rtmp) the array begins at address Rt and Rs is used as an
index into the array.

4.15.5 Theinstruction can betrandated into simple MIPS-like micro-operations
(see 4.15.4for apossible tranglation). These micro-operations can then be executed
by the processor with a*“normal” pipeline.

4.15.6 \We will compute the execution time for every replacement interval. The
old execution time issimply the number of instruction in the replacement interval
(CPI of 1). The new execution time is the number of instructions after we made the
replacement, plus the number of added stall cycles. The new number of instruc-
tions isthe number of instructions in the original replacement interval, plus the
new instruction, minus the number of instructions it replaces:

- Old execution time Speed-up
a.

20-(2-1)+1=20 20 1.00
b. 60-(3-1)+0=58 60 1.03
< 4,16

4.16.1 For every instruction, the IF/ID register keeps the PC + 4 and the instruc-
tion word itself. The ID/EX register keeps all control signalsfor the EX, MEM,
and WB stages, PC + 4, the two values read from Registers, the sign-extended low-
ermost 16 bits of the instruction word, and Rd and Rt fieldsof the instruction
word (even for instructions whoseformat does not usethesefields). The EX/IMEM
register keeps control signals for MEM and WB stages, the PC + 4 + Offset (where
Offset isthe sign-extended lowermost 16 bits of the instructions, even for instruc-
tions that have no offset field), the ALU result and the value of its Zero output, the
valuethat wasread from the second register in the ID stage (even for instructions
that never need this value), and the number of the destination register (even for
instructions that need no register writes; for these instructions the number of the
destination register issimply a“random” choice between Rd or Rt). The MEM/WB
register keeps the WB control signals, the valueread from memory (or a“random”
valueif there was no memory read), the ALU result, and the number of the destina-
tion register.

Gioad da

a.\':)\a/_z :PL‘f Ha®

4.16.2
| | Needtobereaa | Actually read
a. $6 $6, $1
b. $5 $5 (twice)
4.16.3
a. 40 + $6 Load value from memory
b. $5 + $5 Nothing
4.16.4
a. 2:add $5,$5,$8 WB
2:add $6,$6,$8 MEM WB
2:sw $1,20($5) EX MEM WB
2:beq $1,%$0,Loop ID EX MEM WB
3w $1,40($6) IF ID EX MEM WB
3:add $5,$5,$8 IF ID EX MEM
3:add $6,$6,$8 IF ID EX
3isw $1,20($5) IF ID
3:beq $1,$0,Loop IF
b. | sw $0,0($1) WB
sw $0,4($1) MEM WB
add $2,$2,$4 EX MEM WB
beq $2,$0,L oop ID EX MEM WB
add $1,$2,$3 IF ID EX MEM WB
sw $0,0($1) IF ID EX MEM
sw $0,4($1) IF ID EX
add $2,$2,$4 IF ID
beq $2,$0,L oop IF

4.16.5 In aparticular clock cycle, apipeline stageisnot doing useful work if it is
stalled or if the instruction going through that stageisnot doing any useful work
there. In the pipeline execution diagram from 4.16.4, astage isstalled if itsname is
not shown for a particular cycles, and stages in which the particular instruction is
not doing useful work are marked in red. Note that a BEQ instruction isdoing use-
ful work in the MEM stage, becauseit is determining the correct value of the next
instruction’s PC in that stage. We have:

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

Cycles in which all stages | % of cycles in which all
Cycles per loop iteration do useful work stages do useful work

5 1 20%

5 2 40%

4.16.6 The addressof that first instruction of the third iteration (PC + 4 for the
beq from the previous iteration) and the instruction word of the beq from the
previous iteration.

G 4.17

4.17.1 Of al theseinstructions, the value produced by this adder isactually used
only by abeq instruction when the branch istaken. We have:

a. | 15% (60% of 25%)

b. | 9% (60% of 15%)

4.17.2 Of these instructions, only add needs al three register ports (reads two
registersand write one). beq and sw does not write any register, and lw only uses
one register value. We have:

a. 50%

b. 30%

4.17.3 Of theseinstructions, only Iw and sw use the data memory. We have:

a. | 25% (15% + 10%)

b. | 55% (35% + 20%)

4.17.4 The clock cycletime of a single-cycle isthe sum of all latenciesfor the
logic of al five stages. The clock cycletime of a pipelined datapath isthe maximum
latency of the five stagelogic latencies, plus the latency of a pipeline register that
keepsthe results of each stage for the next stage. We have:

- Single-cycle Pipelined Speed-up

500ps 140ps 3.57

a
b. 730ps 230ps 3.17

4.17.5 Thelatency of the pipelined datapath isunchanged (the maximum stage
latency does not change). The clock cycle time of the single-cycle datapath isthe

Gioad da

a.\':)\a/_z :T)k@f Ha®

sum of logiclatencies for the four stages(IF, 1D, WB, and the combined EX + MEM
stage). We have:

. Single-cycle Pipelined

a. 410ps 140ps

b. 560ps 230ps

4.17.6 Theclock cycletime of the two pipelines (5-stage and 4-stage) asexplained
for 4.17.5. The number of instructions increasesfor the 4-stage pipeline, so the
speed-up ishelow 1 (there isaslowdown):

. Instructions with 5-stage Instructions with 4-stage Speed-up

1.00 x | 1.00 x | + 0.5 x (0.15 + 0.10) x | = 1.125 x | 0.89
b. 1.00 x| 1.00 x 1+ 0.5 x (0.35 + 0.20) x | =1.275 x| 0.78
o< 4.18
4.18.1 Nosignalsareassertedin IFand ID stages. For the remaining three stages
wehave:
ALUSrc = 0 ALUOp = 10, Branch = 0, MemWrite = O, MemtoReg = 1, RegWrite = 1
RegDst = MemRead = 0
b. | ALUSrc = 0, ALUOp = 10, Branch = 0, MemWrite = 0O, MemtoReg = 1, RegWrite = 1
RegDst = 1 MemRead = 0

4.18.2 One clock cycle.

4.18.3 The PCSrc signal is O for this instruction. The reason against generating
the PCSrcsignal in the EX stageisthat the and must be done after the ALU com-
putes its Zero output. If the EX stage isthe longest-latency stage and the ALU out-
put ison itscritical path, the additional latency of an AND gatewould increase the
clock cycletime of the processor. Thereason in favor of generating thissignal in the
EX stage isthat the correct next-PC for aconditional branch can be computed one
cycle earlier, so wecan avoid one stall cycle when wehavea control hazard.

4.18.4
- Control signal 1 Control signal 2
a. Generated in ID, used in EX Generated in ID, used in WB

b. Generated in ID, used in MEM Generated in ID, used in WB

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

4.18.5

a. R-type instructions

b. | Loads.

4.18.6 Signa 2 goes back though the pipeline. It affects execution of instructions
that execute after the one for which the signal isgenerated, so it isnot atime-travel
paradox.

G 4.19

4.19.1 Dependencesto the 1% next instruction resultin 2 stall cycles, and the stall
isalso 2 cycles if the dependence isto both 1% and 2™ next instruction. Depen-
dencesto only the 2™ next instruction result in one stall cycle. We have:

a. 1+0.45 x2+0.05 x1=195 49% (0.95/1.95)

b. 1+040x2+010x1=1.9 47% (0.9/1.9)

4.19.2 \With full forwarding, the only RAW data dependencesthat cause stallsare
those from the MEM stage of one instruction to the 1% next instruction. Eventhis
dependences causes only one stall cycle, so wehave:

1+0.25=1.25 20% (0.25/1.25)

b. 1+ 0.20 =1.20 17% (0.20/1.20)

4.19.3 With forwarding only from the EX/MEM register, EX to 1% dependences
can be satisfied without stallsbut EX to 2™ and MEM to 1% dependences incur a
one-cycle stall. With forwarding only from the MEM/WB register, EX to 2" depen-
dencesincur no stalls. MEM to 1% dependences till incur aone-cycle stall (no time
travel), and EX to 1% dependences now incur one stall cycle because we must wait
for the instruction to complete the MEM stage to be able to forward to the next
instruction. We compute stall cycles per instructions for each case asfollows:

- EX/MEM MEM/WB Fewer stall cycles with

0.10 + 0.05 + 0.25 = 0.40 0.10 + 0.10 + 0.25 = 0.45 EX/MEM

b. 0.05 + 0.10 + 0.20 = 0.35 0.15 + 0.05 + 0.20 = 0.40 EX/MEM

a)b)\a/_z :T)Léf Ha®

4.19.4 In4.19.1and 4.19.2 we have aready computed the CPI without forwarding
and with full forwarding. Now we compute time per instruction by taking into
account the clock cycletime:

- Without forwarding With forwarding Speed-up

a 1.95 x 100ps = 195ps 1.25 x 110ps = 137.5ps 1.42
b. 1.90 x 300ps = 570ps 1.20 x 350ps = 420ps 1.36

4.19.5 We aready computed the time per instruction for full forwarding in
4.19.4. Now we compute time-per instruction with time-travel forwarding and the
speed-up over full forwarding:

O S e e

1.25 x 110ps = 137.5ps 1 x 210ps = 210ps 0.65
b. 1.20 x 350ps = 420ps 1 x 450ps = 450ps 0.93
4.19.6
- EX/MEM MEM/WB Shorter time per instruction with
e I I
a. 1.40 x 100ps = 140ps 1.45 x 100ps = 145ps EX/MEM
b. | 1.35 x 320ps = 432ps = 1.40 x 310ps = 434ps EX/MEM
o< 4,20
4.20.1
| | instructionsequence | raw | war | waw |
! 9 ________________________]
a 11w $1,40($2) ($1) 111013 ($2) 11to 12 ($1) 1110 13
12: add $2,$3,$3 ($2) 1210 13, 14
13: add $1,$1,$2 ($1) 13 to 14
14: sw $1,20($2)
b. 1. add $1,$2,$3 ($1) 11 to 12 ($2) 11,12, 13 to 14 ($1) 11 to 13
12: sw $2,0($1) ($1) 13 to 14 ($1) 11,12 t0 13
13: lw $1,4($2)
14: add $2,$2,$1

4.20.2 Only RAW dependences can become data hazards. With forwarding,
only RAW dependences from aload to the very next instruction become hazards.

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

Without forwarding, any RAW dependence from an instruction to one of the
following three instructions becomesahazard:

|| mmstruction sequence | with forwarding | Without forwarding |

a. 11: lw $1,40($2) ($1) 1110 13
12: add $2,$3,$3 ($2) 12 t0 13, 14
13: add $1,%$1,$2 ($1)13t0 14
14: sw $1,20($2)

b. 11: add $1,$2,$3 ($1) 13 to 14 ($1) 11to 12
12: sv $2,0(31) ($1) 13 t0 14
13w $1,4($2)

14: add $2,$2,$1

4.20.3 With forwarding, only RAW dependences from a load to the next two
instructions become hazards because the load produces its data at the end of the
second MEM stage. Without forwarding, any RAW dependence from an instruc-
tion to one of the following 4 instructions becomes a hazard:

- Instruction sequence With forwarding “

W $1,40($2) ($1) 111013 ($1) 11 to 13
I2: add $2,$3,$3 ($2) 1210 13, 14
13: add $1,$1,$2 ($1) 13 to 14
14: sw $1,20($2)
b. 11: add $1,$2,$3 ($1) 13 to 14 ($1) 11 to 12
12: sw $2,0($1) ($1) 13 to 14
13: lw $1,4($2)
14: add $2,$2,$1

4.20.4
T
a. | 11: lw $1,40($2) ($1) 11 to I3 (O overrides 1)
12: add $2,$3,$3 ($2) 12 to 13 (2000 overrides 31)

13: add $1,$1,$2
14: sw $1,20($2)

b. 11: add $1,$2,$3 ($1) 11 to 12 (2563 overrides 63)
12: sw $2,0($1)
13: lw $1,4($2)
14: add $2,$2,$1

4.20.5 A register modification becomes “visible” to the EX stage of the following
instructions only two cycles after the instruction that produces the register value
leaves the EX stage. Our forwarding-assuming hazard detection unit only adds a

a)b)\a/_z :T)Léf Ha®

one-cyclestall if the instruction that immediately follows a load is dependent on
the load. We have:

Instruction sequence Execution without

Values after execution

a. | 11w $1,40($2) $1 = 0 (14 and after) $0=0
12: add $2,$3,$3 $1 =32
13: add $1,$1,$2 $2 = 2000 (after 14) $2 = 2000
14: sw $1,20($2) $1 = 32 (after 14) $3 = 1000
11: add $1,$2,$3 $1 = 2563 (Stall and after) | $0 =0
12: sv $2,0($1) $1=0
13w $1,4($2) $1 = O (after 14) $2 = 2626

Stall $3 = 2500

14: add $2,$2,$1 $2 = 2626 (after 14)

with forwarding stalls Sequence with NOPs

11: lw $1,40($2) 11: lw $1,40($2) W $1,40($2)
12: add $2,$3,$3 12: add $2,$3,$3 add $2,$3,$3
13: add $1,$1,$2 Stall nop
14: sw $1,20($2) Stall nop
13: add $1,$1,$2 add $1,$1,$2
Stall nop
Stall nop
14: sw $1,20($2) sw $1,20($2)
11: add $1,$2,$3 11: add $1,$2,$3 add $1,$2,$3
12: sw $2,0($1) Stall nop
13w $1,4($2) Stall nop
Stall 12: sw $2,0(31) sw $2,0($1)
14: add $2,$2,$1 13: lw $1,4($2) lw $1,4(%$2)
Stall nop
Stall nop
14: add $2,$2,$1 add $2,$2,$1

3l s M) 51T oK) Kazem.faridi@iaubaft.ac.ir

e 4,21
4.21.1

a. lw $1,40($6)
nop
nop
add $2,$3,$1
add $1,$6,$4
nop
W $2,20($4)
and $1,$1,$4

b. add $1,$5,$3
nop
nop
w $1,0($2)
w $1,4($2)
nop
nop
add $5,$5,$1
w o $1,0($2)

4.21.2 \Wecan moveup aninstruction by swapping itsplace with another instruc-
tion that has no dependenceswith it, so we can try to fill some nop slotswith such
instructions. We can aso use R7 to eliminate WAW or WAR dependences so we can
have more instructions to move up.

a. | 11: lw $7,40(%$6) Produce $7 instead of $1
13: add $1,$6,$4 Moved up to fill NOP slot
nop
12: add $2,$3,$7 Use $7 instead of $1
15: and $1,$1,$4 Moved up to fill NOP slot
nop
14: sw $2,20($4)
b. 11: add $7,$5,$3 Produce $7 instead of $1
13: lw $1,4($2) Moved up to fill NOP slot
nop
12: sw $7,0($2) Use $7 instead of $1
14: add $5,$5,$1
15: sw $1,0($2)

°'\.’J.\°(/~; :T)kgf Ha®

4.21.3 With forwarding, the hazard detection unit isstill needed becauseit must
insert a one-cycle stall whenever the load supplies a value to the instruction that
immediately follows that load. Without the hazard detection unit, the instruction
that depends on the immediately preceding load getsthe stale val ue the register had
before the load instruction.

a. 12 gets the value of $1 from before I1, not from 11 as it should.

b. | 14 gets the value of $1 from 11, not from I3 as it should.

4.21.4 The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and
ID/EXZero (which controls the Mux after the output of the Control unit). Note
that |F/IDWrite isaways equal to PCWrite, and ED/ExZero is aways the opposite
of PCWrite. As aresult, we will only show the value of PCWrite for each cycle. The
outputs of the forwarding unit isALUinl and ALUin2, which control Muxeswhich
select the first and second input of the ALU. The three possiblevalues for ALUinl
or ALUin2 are 0 (no forwarding), 1 (forward ALU output from previous instruc-
tion), or 2 (forward data valuefor second-previous instruction). We have:

I

a. lw $1,40($6) IF ID EX MEM WB 1: PCWrite = 1, ALUin1 = X, ALUin2 =X
add $2,$3,$1 IF ID *** EX 2: PCWrite = 1, ALUin1 = X, ALUin2 = X
add $1,$6,$4 IF *** 1D 3: PCWrite = 1, ALUin1 = 0, ALUin2 =0
sw $2,20($4) IF 4: PCWrite = 0, ALUin1 = X, ALUin2 = X
and $1,$1,$4 5: PCWrite = 1, ALUin1 = 0, ALUin2 = 2

b. add $1,$5,$3 IF ID EX MEM WB 1: PCWrite = 1, ALUin1 = X, ALUin2 = X
sw $1,0($2) IF ID EX MEM 2: PCWrite = 1, ALUIn1 = X, ALUin2 =X
w $1,4($2) IF 1D EX 3: PCWrite = 1, ALUin1 = 0, ALUin2 =0
add $5,$5,$1 IF ID 4: PCWrite = 1, ALUin1 = 0, ALUin2 = 1
sw $1,0($2) IF 5: PCWrite = 1, ALUin1 = 0, ALUin2 =0

4.21.5 The instruction that is currently in the ID stage needs to be stalled if it
depends on avalue produced by the instruction in the EX or the instruction in the
MEM stage. Sowe need to check the destination register of these two instructions.
For the instruction in the EX stage, we need to check Rd for R-type instructions
and Rd for loads. For the instruction in the MEM stage, the destination register
is aready selected (by the Mux in the EX stage) so we need to check that reg-
ister number (this isthe bottommost output of the EX/MEM pipeline register).
The additional inputs to the hazard detection unit are register Rd from the ID/EX
pipeline register and the output number of the output register from the EX/MEM

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

pipeline register. The Rt field from the ID/EX register is already an input of the
hazard detection unit in Figure4.60.

No additional outputs are needed. We can stall the pipeline using the three output
signals that wealready have.

4.21.6 Asexplained for 4.21.5, weonly need to specify the value of the PCWrite
signal, because IF/IDWrite is equal to PCWrite and the ID/EXzero signal is its

opposite. We have:
s s | siwmas |

Iw $1,40($6) IF ID EX MEM WB 1: PCWrite = 1
add $2,$3,$1 IF ID **x **x* 2: PCWrite = 1
add $1,$6,%4 IF *x* *** 3: PCWrite = 1
W $2,20($4) ok 4: PCWrite = 0
and $1,$1,$4 5: PCWrite = 0
b. | add $1,$5,$3 IF ID EX MEM WB 1: PCWrite = 1
sw $1,0($2) IF ID **x *** 2: PCWrite = 1
w $1,4($2) I *** Fkk 3: PCWrite = 1
add $5,$5,$1 el 4: PCWrite = 0
sw $1,0($2) 5: PCWrite = 0
s 4.22
4.22.1

Pipeline Cycles

Executed Instructions

a. Ilw $1,40($6) IF ID EX MEM WB
beq $2,$3,Label 2 (T) IF ID EX MEM WB
beq $1,$2,Labell (NT) IF ID EX MEM WB
W $2,20($4) IF ID EX MEM WB
and $1,$1,$4 IF ID EX MEM WB
b. add $1,$5,%$3 IF D EX MEM WB
v $1,0($2) IF ID EX MEM WB
add $2,$2,$3 IF ID EX MEM WB
beq $2,$4,Labell (NT) IF ID EX MEM WB
add $5,$5,%1 IF ID EX MEM WB
v $1,0($2) IF ID EX MEM WB

a.\':)\a(/_‘ :T)l.gf Ha®

o da
4.22.2
Pipeline Cycles
Executed Instructions 8

a- | |lw $1,40($6) IF ID EX MEM WB

beq $2,$3,Label2 (T) IF ID EX MEM WB

add $1,$6,$4 IF ID EX MEM WB

beq $1,$2,Labell (NT) IF 1D o EX MEM WB

sw $2,20($4) IF ok ID EX MEM WB

and $1,$1,%4 IF 1D EX MEM WB
b. | add $1,$5,$3 IF ID EX MEM WB

sw $1,0($2) IF ID EX MEM WB

add $2,$2,$3 IF ID EX MEM WB

beq $2,$4,Labell (NT) IF 1D EX MEM WB

add $5,$5,$1 IF ID EX MEM WB

sw $1,0($2) IF ID EX MEM WB

4.22.3
a. Labell: lw $1,40($6)
seq $8,$2,$3
bnez $8,Label2 ; Taken
add $1,$6,$4

Label2: seq $8,$1,$2
bnez $8,Labell ; Not taken
sw o $2,20($4)
and $1,$1,%4

b. add $1,$5,$3
Labell: sw $1,0($2)
add $2,$2,$3
bez $8,$2,$4
bnez $8,Labell ; Not taken
add $5,$5,%$1
v $1,0($2)

4.22.4 The hazard detection logic must detect situations when the branch
depends on the result of the previous R-type instruction, or on the result of two
previous loads. When the branch usesthe valuesof its register operands in its 1D
stage, the R-type instruction’s result is still being generated in the EX stage. Thus
wemust stall the processor and repeat the 1D stage of the branch in the next cycle.
Similarly, if the branch depends on aload that immediately precedesit, the result
of the load isonly generated two cycles after the branch enters the 1D stage, so we
must stall the branch for two cycles. Finally, if the branch depends on aload that
isthe second-previous instruction, the load iscompleting its MEM stage when the
branch isinitsID stage, sowe must stall the branch for one cycle. In al three cases,
the hazard isa data hazard.

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

Note that in all three cases weassumethat the values of preceding instructions are
forwarded to the ID stage of the branch if possible.

4.22.5 For 4.22.1 we have aready shows the pipeline execution diagram for the
case when branches are executed in the EX stage. The following isthe pipeline dia-
gram when branches are executed in the 1D stage, including new stalls due to data
dependences described for 4.22.4:

I Executed Instructions

a. lw $1,40($6)

beq $2,$3,Label 2 (T)
beq $1,$2,Labell (NT)
s $2,20($4)

and $1,$1,$4

MEM

WB
1D MEM

IF

WwB

ID MEM

WB

b. add $1,$5$3
w $1,0($2)
add $2,$2,$3
beq $2,$4,Labell (NT)
add $5,$5,%1
w o $1,0($2)

wB
MEM
1D

WwB
MEM WB
EX

IF 1D

MEM
EX

WB

MEM WB

Now the speed-up can be computed as:

a. | 11/10 = 1.1

b. 12/12 =1

4.22.6 Branch instructions are now executed in the ID stage. If the branch
instruction isusing aregister value produced by the immediately preceding instruc-
tion, as we described for 4.22.4 the branch must be stalled because the preceding
instruction isin the EX stage when the branch is aready using the stale register
valuesin the ID stage. If the branch in the ID stagedepends on an R-type instruc-
tion that isin the MEM stage, we need forwarding to ensure correct execution of
the branch. Similarly, if the branch in the ID stage depends on an R-type of load
instruction in the WB stage, we need forwarding to ensure correct execution of
the branch. Overall, we need another forwarding unit that takesthe same inputs
asthe one that forwards to the EX stage. The new forwarding unit should control
two Muxes placed right before the branch comparator. Each Mux selects between
the value read from Registers, the ALU output from the EX/MEM pipeline register,
and the data value from the MEM/WB pipeline register. The complexity of the new
forwarding unit isthe same asthe complexity of the existing one.

Gioad da

a)b)\a/_: :T)Léf Ha®

G 4.23

4.23.1 Eachbranch that isnot correctly predicted by the always-taken predictor
will cause 3 stall cycles, so we have:

3 x(1-0.40) x 0.15 =0.27
3 x(1-0.60) x 0.10 = 0.12

4.23.2 Each branch that isnot correctly predicted by the always-not-taken predictor
will cause 3 dtdl cycles, sowe have:

a. | 3x(1-0.60) x0.15 =0.18
b. | 3 x(1-0.40) x 0.10 =0.18

4.23.3 Each branch that is not correctly predicted by the 2-bit predictor will
cause3 stall cycles, so wehave:

a. 3x(1-0.80)x0.15 =0.090

b. | 3 x(1-0.95) x0.10 = 0.015

4.23.4 Correctly predicted branches had CPI of 1 and now they become ALU
instructions whose CPI is aso 1. Incorrectly predicted instructions that are con-
verted also become ALU instructions with aCPI of 1, so wehave:

- CPI without conversion CPI with conversion Speed-up from conversion

1+3x(1-0.80) x0.15 = 1.090 1+3x(1-0.80) x 0.15 x 0.5 = 1.045 1.090/1.045 = 1.043

1+3x(1-0.95) x0.10 = 1.015 1+3x(1-0.95) x0.10 x 0.5 = 1.008 1.015/1.008 = 1.007

4.23.5 Everyconverted branch instruction now takes an extra cycle to execute,

so wehave:
- CPI without Cycles per original Speed-up from
- conversion instruction with conversion conversion

a. 1.090 1+(1+3x(1-0.80) x0.15 x 0.5 =1.120 1.090/1.120 = 0.97

b. 1.015 1+(1+3x(1-0.95)) x0.10 x 0.5 = 1.058 1.015/1.058 = 0.96

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

4.23.6 Letthetotal number of branch instructions executedin the program be B.
Then wehave:

Correctly Correctly predicted | Accuracyon |
predicted non-loop-back non-loop-back branches

B x 0.80 B x 0.00 (B x 0.00)/(B x 0.20) = 0.00 (00%)
b. B x 0.95 B x 0.15 (B x 0.15)/(B x 0.20) = 0.75 (75%)
s 4.24
4.24.1
- Always-taken Always not-taken
3/4 =75% 1/4 = 25%
b. 3/5 = 60% 2/5 = 40%
4.24.2
Predictor value Correct or
at time of prediction Incorrect
TTNTLT 0,1,2,1 L0 0%
b. TT T, NT 0,123 I, 1,C | 25%

4.24.3 Thefirst few recurrences of this pattern do not havethe same accuracy as
the later ones becausethe predictor isstill warming up. To determine the accuracy
in the “steady state”, we must work through the branch predictions until the predic-
tor values start repeating (i.e. until the predictor has the same value at the start of
the current and the next recurrence of the pattern).

Predictor value Correct or Incorrect Accuracy in
at time of prediction (in steady state) steady state

TTNTLT 15t occurrence: 0, 1, 2, C G C 75%
2" occurrence: 2

3" occurrence: 3

4 occurrence: 3, 3, 3,

b. | T T T, NT, NT 15 occurrence: 0, 1, 2, 3, 2 C,CG¢CllI 60%
2" occurrence: 1, 2, 3, 3, 2
1,2,3,3,2

3 occurrence: 1, 2, 3, 3,

°'\.’J.\°(/~; :T)l.gf Ha®

4.24.4 The predictor should be an N-bit shift register, where N isthe number of
branch outcomes in the target pattern. The shift register should beinitialized with the
pattern itself (0 for NT, 1 for T), and the prediction isaways the value in the leftmost
bit of the shift register. The register should be shifted after each predicted branch.

4.24.5 Sincethe predictor’soutput isaways the opposite of the actual outcome
of the branch instruction, the accuracy iszero.

4.24.6 The predictor isthe same asin 4.24.4, except that it should compare its
prediction to the actual outcome and invert (logical not) al the bits in the shift
register if the prediction isincorrect. This predictor still aways perfectly predicts
the given pattern. For the opposite pattern, the first prediction will be incorrect,
so the predictor’s state isinverted and after that the predictions are aways correct.
Overall, there isno warm-up period for the given pattern, and the warm-up period
for the opposite pattern isonly one branch.

sl 4,25
4.25.1
Overflow (EX) Invalid target address (EX)
b. Invalid data address (MEM) No exceptions

4.25.2 The Mux that selectsthe next PC must have inputs added to it. Each input
is a constant address of an exception handler. The exception detectors must be
added to the appropriate pipeline stage and the outputs of these detectors must be
used to control the pre-PC Mux, and alsoto convert to nops instructions that are
aready in the pipeline behind the exception-triggering instruction.

4.25.3 Instructions arefetched normally until the exceptionisdetected. When the
exception isdetected, al instructions that arein the pipeline after the first instruc-
tion must be converted to nops. Asa result, the second instruction never com-
pletes and does not affect pipeline state. In the cycle that immediately follows the
cyclein which the exception is detected, the processor will fetch the first instruction
of the exception handler.

4.25.4

. Handler address

a. | OxFFFFFOOO

b. | 0x00000010

3l s M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

The first instruction word from the handler addressisfetched in the cycle after the
one in which the original exception isdetected. When thisinstruction isdecoded in
the next cycle, the processor detectsthat the instruction isinvalid. Thisexception is
treated just likeanormal exception—it convertstheinstruction being fetched in that
cycleinto anop and puts the address of the Invalid Instruction handler into the PC
at the end of the cycle in which the Invalid Instruction exception isdetected.

4.25.5 Thisapproach requires us to fetch the address of the handler from mem-
ory. We must add the code of the exception to the address of the exception vector
table, read the handler’saddress from memory, and jump to that address. One way
of doing thisisto handle it likea specia instruction that computer the addressin
EX, loadsthe handler’saddressin MEM, and setsthe PC in WB.

4.25.6 \We need a specidl instruction that allowsus to move a value from the
(exception) Cause register to a genera-purpose register. We must first save the
general-purpose register (so we can restore it later), load the Causeregister into it,
add the address of the vector table to it, use the result asan addressfor aload that
getsthe address of the right exception handler from memory, and finally jump to
that handler.

(R 4,26

4.26.1 All exception-related signals are 0in al stages, except the one in which the
exception is detected. For that stage, we show values of Flush signalsfor various
stages, and also the value of the signal that controls the Mux that supplies the PC
value.

T

a. EX IFFlush = ID.Flush = EX.Flush = 1, PCSel = Exc

b. MEM IF.Flush = ID.Flush = EX.Flush = MEM.Flush = 1, PCSel = Exc
This exception is detected in MEM, so we added MEM.Flush

4.26.2 The signalsstored in the ID/EX stage are needed to execute the instruc-
tion if there are no exceptions. Figure 4.66 does not show it, but exception condi-
tions from various stages are al so supplied asinputs to the Control unit. The signal
that goesdirectly to EX is EX.Flush and it is based on these exception condition
inputs, not on the opcode of the instruction that isin the ID stage. In particular, the
EX.Flush signal becomes 1 when the instruction in the EX stagetriggersan excep-
tion and must be prevented from compl eting.

4.26.3 Thedisadvantageisthat the exception handler beginsexecuting one cycle
later. Also, an exception condition normally checked in MEM cannot be delayed
into WB, because at that time the instruction is updating registersand cannot be
prevented from doing so.

°'\.’J.\"(/~; :T)l.gf Ha®

4.26.4 When overflow isdetected in EX, each exception resultsin a3-cycle delay
(IF ID, and EX are cancelled). By moving overflow into MEM, we add one more
cycleto this delay. To compute the speed-up, we compute execution time per
100,000 instructions:

| Newtimeper |
Old clock New clock Old time per 100,000
cycle time cycle time 100,000 instructions | instructions | Speed-up

a. 350ps 350ps 350ps x 100,003 350ps x 100,004 0.99999

b. 210ps 210ps 210ps *x 100,003 210ps x 100,004 0.99999

4.26.5 Exception control (Flush) signals are not really generated in the EX stage.
They are generated by the Control unit, whichisdrawn aspart of the ID stage, but
we could have a separate “Exception Control” unit to generate Flush signalsand
thisunit isnot realy apart of any stage.

4.26.6 Flushsignals must be generated one Mux time before the end of the cycle.
However, their generation can only begin after exception conditions are generated.
For example, arithmetic overflow isonly generated after the ALU operation in EX
iscomplete, whichisusualy in the later part of the clock cycle. Asaresult, the Con-
trol unit actually hasvery littletime to generate these signals, and they can easily be
on the critical path that determines the clock cycletime.

G 4.27

4.27.1 When the invalid instruction (13) is decoded, IF.Flush and ID.Flush sig-
nalsare used to convert I3and 14 into nops (marked with *). In the next cycle, in IF
we fetch the first instruction of the exception handler, in ID we have anop (instead
of 14, marked), in EX wehave anop (instead of 13), and 11 and 12 still continue
through the pipeline normally:

- Branch and delay slot Pipeline
WB

a. | 11: beq $1,$0,Label IF ID EX MEM
12: sw $6,50($1) IF ID EX MEM
13: Invalid IF ID *EX
14: Something IF *ID
15: Handler IF

b. 11: beq $5,$0,Label IF ID EX MEM WB
12: nor $5,$4,$3 IF ID EX MEM
13: Invalid IF ID *EX
14: Something IF *ID
15: Handler IF

3l s M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.27.2 When|2isinthe MEM stage, it triggers an exception condition that results
in converting 12 and 15 into nops (13 and 14 are aready nops by then). In the next
cycle, we fetch 16, which is the first instruction of the exception handler for the
exception triggered by 12.

- Branch and delay slot Branch and delay slot

a. 11: beq $1,$0,Label IF ID EX MEM WB
12: sw $6,50($1) IF ID EX MEM *WB
13: Invalid IF ID *EX *ME
14: Something IF *ID *EX
15: Handler 1 IF *ID
16: Handler 2 IF
b. 11: beq $5,$0,Label IF ID EX MEM WB
12: nor $5,$4,$3 IF ID EX MEM *WB
13: Invalid IF ID *EX *ME
14: Something IF *ID *EX
15: Handler 1 IF *ID
16: Handler 2 IF

4.27.3 The EPC isthe PC + 4 of the delay dlot instruction. As described in
Section 4.9, the exception handler subtracts 4 from the EPC, so it getsthe address
of theinstruction that generated the exception (12, the delay slot instruction). If the
exception handler decidesto resume execution of the application, it will jump to
the 12. Unfortunately, this causes the program to continue asif the branch was not
taken, evenif it was taken.

4.27.4 The processor cancelsthe store instruction and other instructions (from
the “Invalid instruction” exception handler) fetched after it, and then beginsfetch-
ing instructions from the invalid data address handler. A major problem hereisthat
the new exception setsthe EPC to the instruction addressin the“Invalid instruction”
handler, overwriting the EPC value that was already there (address for continuing
the program). If the invalid data address handler repairs the problem and attempts
to continue the program, the “Invalid instruction” handler will be executed. How-
ever, if it manages to repair the problem and wants to continue the program, the
EPC it incorrect (it was overwritten beforeit could be saved). Thisisthe reason why
exception handlers must be written carefully to avoid triggering exceptions them-
selves, at least until they have safely saved the EPC.

4.27.5 Not for store instructions. If we check for the address overflow in MEM,
the store is already writing data to memory in that cycleand we can no longer
“cancel” it. As aresult, when the exception handler iscalled the memory isalready
changed by the store instruction, and the handler can not observethe state of the
machine that existed beforethe store instruction.

a.\':)'\a(/.‘ :TJLQf Ha®

4.27.6 \We must add two comparators to the EX stage, one that compares the
ALU result to WADDR, and another that compares the data value from Rt to
WVAL. If one of these comparators detects equality and the instruction isastore,
thistriggersa*“Watchpoint” exception. Asdiscussed for 4.27.5, we cannot delay the
comparisons until the MEM stage because at that time the store isalready done and
weneed to stop the application at the point before the store happens.

R 4.28
4.28.1

a. add $1,%$0,$0
Again: beq $1,$2,End
add $6,$3,$1
lw $7,0($6)
add $8,$4,$1
sw $7,0($8)
addi $1,$1,1
beq $0,$0,Again
End:

b. add $4,$0,$0
Again: add $1,$4,$6
w $2,0($1)
w $3,1($1)
beq $2,$3,End
sw $0,0($1)
addi $4,$4,1
beq $0,$0,Again

End:

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.28.2

I

a. add $1,$0,%$0 IF ID EX ME WB

beq $1,$2,End IF ID ** EX ME WB

add $6,$3,$1 IF ** ID EX ME WB

w $7,0($6) IF ** ID ** EX ME WB

add $8,$4,%$1 IF ** ID EX ME WB

W $7,0($8) IF ** ID ** EX ME WB

addi $1,$1,1 IF ** ID EX ME WB

beq $0,$0,Again IF ** ID ** EX ME WB

beq $1,$2,End IF ** ID EX ME WB

add $6,$3,$1 IF ** ID ** EX ME WB

W $7,0($6) IF ** ID EX ME WB

add $8,$4,%1 IF ** ID EX ME WB

sw o $7,0($8) IF ID EX ME WB
addi $1,$1,1 IF ID EX ME WB
beq $0,$0,Again IF ID EX ME WB
beq $1,$2,End IF ID ** EX ME WB

b. add $4,$0,$0 IF ID EX ME WB

add $1,$4,$6 IF ID ** EX ME WB

w $2,0($1) IF ** ID EX ME WB

w $3,1($1) IF ** ID ** EX ME WB

beq $2,$3,End IF ** ID ** EX ME WB

sv $0,0($1) IF ** ID ** EX ME WB

addi $4,$4,1 IF ** ID EX ME WB

bew $0,$0,Again IF ** ID ** EX ME WB

add $1,$4,$6 IF ** ID EX ME WB

w $2,0($1) IF ** ID ** EX ME WB

w $3,1($1) IF ** ID EX ME WB

beq $2,$3,End IF ** D ** ** EX ME WB

sv $0,0($1) IF ** ** |D EX ME WB

addi $4,$4,1 IFE ** ** |D EX ME WB

bew $0,$0,Again IF ID EX ME WB

add $1,$4,$6 IF ID ** EX ME WB

w $2,0($1) IF ** ID EX ME WB

w $3,1($1) IF ** ID ** EX ME WB
beq $2,$3,End IF ** ID ** EX ME WB

”\.’)\’(4 :PL@f Ha®

4.28.3 Theonly way to execute 2 instructions fully in parallel isfor aload/store to
execute together with another instruction. To achieve this, around each load/store
instruction wewill try to put non-load/store instructions that have no dependences

with the load/store.

add
Again: beq
add
add
lw
addi
sw
beq
End:

$1,$0,$0
$1,$2,End
$6,$3,$1
$8,$4,$1
$7,0($6)
$1,$1,1
$7,0($8)
$0,$0,Again

add
Again: add
lw
lw
beq
sw
addi
beq
End:

$4,%$0,$0
$1,$4,$6
$2,0($1)
$3,1($1)
$2,$3,End
$0,0($1)
$4,$4,1
$0,$0,Again

We have not changed anything. Note that the only
instruction without dependences to or from the two
loads is ADDI, and it cannot be moved above the branch
(then the loop would exit with the wrong value for i).

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

4.28.4

[| mstructions | Pipelme |
. |

a. add $1,%0,$0 IF ID EX ME WB
beq $1,$2,End IF ID ** EX ME WB
add $6,$3,$1 IF ** ID EX ME WB
add $8,$4,$1 IF ** ID ** EX ME WB
w $7,0($6) IF ** ID EX ME WB
addi $1,$1,1 IF ** ID EX ME WB
sw $7,0($8) IF ID EX ME WB
beq $0,$0,Again IF ID EX ME WB
beq $1,$2,End IF ID EX ME WB
add $6,$3,$1 IF ID ** EX ME WB
add $8,$4,$1 IF ** ID EX ME WB
w $7,0($6) IF ** ID EX ME WB
addi $1,$1,1 IF ID EX ME WB
sw $7,0($8) IF ID EX ME WB
beq $0,$0,Again IF ID EX ME WB
beq $1,$2,End IF ID ** EX ME WB

b. add $4,$0,%0 IF ID EX ME WB
add $1,$4,$6 IF ID ** EX ME WB
w $2,0($1) IF ** ID EX ME WB
W $3,1($1) IF ** ID ** EX ME WB
beq $2,$3,End IF ** ID ** EX ME WB
sw $0,0($1) IF ** ID ** EX ME WB
addi $4,$4,1 IF ** ID EX ME WB
bew $0,$0,Again IF ** ID ** EX ME WB
add $1,$4,$6 IF ** ID EX ME WB
w $2,0($1) IF ** ID ** EX ME WB
W $3,1($1) IF ** ID EX ME WB
beq $2,$3,End IF ** ID ** ** EX ME WB
sw $0,0($1) IF ** ** |D EX ME WB
addi $4,$4,1 IF ** ** |D EX ME WB
bew $0,$0,Again IF ID EX ME WB
add $1,$4,$6 IF ID ** EX ME WB
w $2,0($1) IF ** ID EX ME WB
W $3,1($1) IF ** ID ** EX ME WB
beq $2,$3,End IF ** ID ** EX ME WB

°'\.’J.\"(/~; :T)l.gf Ha®

4.28.5
. CPI for l-issue CPI for 2-issue Speed-up
1 (no data hazards) 0.86 (12 cycles for 14 instructions). In even-
numbered iterations the LW and the SW can
execute in parallel with the next instruction.
b. | 1.14 (8 cycles per 7 1 (14 cycles for 14 instruction). Neither LW 1.14
instructions). There is 1 stall instruction can execute in parallel with another
cycle in each iteration due instruction, and the BEQ after the second LW
to a data hazard between is stalled because it depends on the load.
LW and the next instruction However, SW always executes in parallel with
(BEQ). another instruction (alternating between BEQ
and ADDI).
4.28.6

- CPI for l-issue CPI for 2-issue Speed-up

0.64 (9 cycles for 14 instructions). In odd-
numbered iterations ADD and LW cannot
execute in the same cycle because of a data
dependence, and then ADD and SW have the
same problem. The rest of the instructions can
execute in pairs.

b. 1.14 0.86 (12 cycles for 14 instructions). In all 1.33
iterations BEQ is stalled because it depends
on the second LW. In odd-numbered BEQ and
SW execute together, and so do ADDI and the
last BEQ. In even-numbered iterations SW and
ADDI execute together, and so do the last BEQ
and the first ADD of the next iteration.

G 4.29

4.29.1 Note that al register read ports are active in every cycle, so 4 register reads
(2 instructions with 2 reads each) happen in every cycle. We determine the number
of cyclesit takesto execute an iteration of the loop and the number of useful reads,
then divide the two. The number of useful register reads for an instruction isthe
number of source register parameters minus the number of registersthat are for-
warded from prior instructions. We assume that register writes happen in the first
half of the cycle and the register reads happen in the second half.

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

-“ Pipeline stages Useful reads % Useful
a. ID EX ME WB

addi $5,$5,-4 17%
beq $5,$0,Loop ID ** EX ME WB (4/(6 x 4))
lw $1,40($6) IF ** ID EX ME WB 1
add $5,$5,$1 IF ** |D ** ** EX ME WB 0 ($1, $5 fw)
sw $1,20($5) IF ** ** |ID EX ME WB 1 ($5 fw)
addi $6,$6,4 IF ** ** |ID EX ME WB 1
addi $5,$5,-4 IF ID EX ME WB 0 ($5 fw)
beq $5,$0,L oop IF ID ** EX ME WB 1 ($5 fw)
b. | addi $2,$2,4 ID EX ME WB 25%
beq $2,$0,Loop ID ** EX ME WB (4/(4 = 4))
add $1,$2,$3 IF ** ID EX ME WB 1($2 fw)
sw $0,0($1) IF ** ID ** EX ME WB 1($1 fw)
addi $2,$2,4 IF ** ID EX ME WB 1
beq $2,$0,L oop IF ** ID ** EX ME WB 1($2 fw)

4.29.2 The utilization of read ports islower with awider-issue processor:

(| o | Pieimestage | Usshioais | husot
a. WB

addi $6,$6,4 ID EX ME 5.6%
addi $5,$5,-4 ID EX ME WB (2/(6 x B))
beq $5,$0,L oop ID ** EX ME WB

lw $1,40($6) IF ** ID EX ME WB 0 ($6 fw)

add $5,$5,$1 IF ** |D ** ** EX ME WB 0 ($1, $5 fw)

sw $1,20($5) IF ** |D ** *x ** EX ME WB 0 ($1, $5 fw)

addi $6,$6,4 IF ** ** +*x |D EX ME WB 1

addi $5,$5,-4 IF ** ** *x |D EX ME WB 0 ($5 fw)

beq $5,$0,L oop |F ** % #%x D ** EX ME WB 1 ($5 fw)

b. | sw $0,0($1) ID EX ME WB 21%
addi $2,$2,4 ID EX ME WB (10/(8 x 6))
beq $2,$0,L oop ID ** EX ME WB
add $1,$2,$3 IF ** ID EX ME WB 1($2 fw)
sw $0,0($1) IF ** ID ** EX ME WB 1($1 fw)
addi $2,$2,4 IF ** ID ** EX ME WB 0 ($2 fw)
beq $2,$0,L oop IF ** |ID EX ME WB 1($2 fw)
add $1,$2,$3 IF ** ID EX ME WB 1($2 fw)
sw $0,0($1) IF ** |ID ** EX ME WB 1($1 fw)
addi $2,$2,4 IF ** ID EX ME WB 1
beq $2,$0,L oop IF ** ID ** EX ME WB 1($2 fw)
add $1,$2,$3 IF ** ID ** EX ME WB 1($2 fw)
sw $0,0($1) IF ** ID EX ME WB 1($1 fw)
addi $2,$2,4 IF ** |ID EX ME WB 0 ($2 fw)
beq $2,$0,L oop IF ** |ID ** EX ME WB 1($2 fw)

4.29.3

| | 2portsused | 3 ports used
a. 1 cycle out of 6 (16.7%) Never (0%)
b. 4 cycles out of 8 (50%) Never (0%)

Gioad da

a.\':)\a(/_‘ :T)l.gf Ha®

4.29.4
| | unrolledandschedutedtoop | commemt |
I
a. Loop: Iw $10,40($6) The only time this code is unable to execute two
lw $1,44($6) instructions in the same cycle is in even-numbered
addi $5,$5,-8 iterations of the unrolled loop when the two ADD
addi $6,$6,8 instruction are fetched together but must execute
add $11,$5,$10 in different cycles.
add $5,$11,$1
sw $10,28($11)
v $1,24($5)
beq $5,%$0,Loop
b. Loop: add $1,$2,$3 We are able to execute two instructions per cycle
addi $2,$2,8 in every iteration of this loop, so we execute two
sw $0,-8($1) iterations of the unrolled loop every 5 cycles.
sw $0,-4($1)
beq $2,$0,Loop

4.29.5 \We determine the number of cycles needed to execute two iterations of
the original loop (one iteration of the unrolled loop). Note that we cannot use CPI
in our speed-up computation becausethe two versionsof the loop do not execute
the sameinstructions.

- Original loop Unrolled loop Speed-up
5 2.4

a. 6x2=12

b. 4x2=8 2.5 (5/2) 3.2

4.29.6 On apipelined processor the number of cycles per iteration iseasily com-
puted by adding together the number of instructions and the number of stalls.
The only stalls occur when alw instruction isfollowed immediately with a RAW-
dependent instruction, so wehave:

- Original loop Unrolled loop Speed-up
a. 9 1.6

6+1)x2=14

b. 4x2=8 5 1.6

G 4.30

4.30.1 Let p be the probability of having a mispredicted branch. Whenever we
havean incorrectly predicted beq asthe first of the two instructions in acycle (the
probability of this event is p), we waste one issue slot (half a cycle) and another
two entire cycles. If the firstinstruction in acycleisnot amispredicted beq but the

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

second one is (the probability of thisis(1 - p) ~ p), wewastetwo cycles. Without
these mispredictions, we would be able to execute 2 instructions per cycle. We
have:

a. 0.5+0.02x25+0.98 x0.02 x2=0.589
b. 0.5 +0.05x25 +0.95 x 0.05 x 2=0.720

4.30.2 [nability to predict abranch resultsin the same penalty asa mispredicted
branch. We compute the CPI likein 4.30.1, but this time we also have a 2-cycle
penalty if we have a correctly predicted branch in the first issue ot and another
branch that would be correctly predicted in the second slot. We have:

- branches per cycle CPI with 1 predicted branch per cycle Speed-up
a 0.589 0.5 +0.02 x 2.5 +0.98 x 0.02 x 2 + 0.18 x 0.18 x 2 = 0.654 1.11
b. 0.720 0.5 +0.05 x 2.5 +0.95 x 0.05 x 2 + 0.10 x 0.10 x 2 = 0.740 1.03

4.30.3 \Wehaveaone-cycle penalty whenever we haveacyclewithtwo instructions
that both need a register write. Such instructions are ALU and Iw instructions.
Note that beq does not write registers, so stallsdue to register writes and due to
branch mispredictions are independent events. We have:

0.589 0.5+0.02 x25 +0.98 x0.02 x2+0.70 x 0.70 x 1 = 1.079

CPI with 2 register
writes per cycle CPI with 1 register write per cycle Speed-up
a.

1.83

b. 0.720 0.5 +0.05 x25 +0.95 x 0.05 x2+0.75 x 0.75 x 1 = 1.283

1.78

4.30.4 \We have aready computed the CPI with the given branch prediction
accuracy, and weknow that the CPI with ideal branch prediction is0.5, so:

[CPI with given CPI with perfect
- branch prediction branch prediction Speed-up

a. 0.589 0.5 1.18

b. 0.720 0.5 1.44

4.30.5 The CPI with perfect branch prediction is now 0.25 (four instructions
per cycle). A branch misprediction in the first issue ot of a cycle resultsin 2.75
penalty cycles (remaining issueslotsin the same cycle plus 2 entire cycles), in the

a.\':)\a/_z :T)k@f Ha®

second issueslot 2.5 penalty cycles, in the third slot 2.25 penalty cycles, and in the
last (fourth) slot 2 penalty cycles. We have:

CPI with perfect
CPI with given branch prediction branch prediction Speed-up

0.25 +0.02 x 2.75 + 0.98 x 0.02 x 2.5 + 0.982 x 0.02 x 2.25 + 0.98% x 0.02 x 2 = 0.435 0.25 1.74

0.25 +0.05 x 2.75 + 0.95 x 0.05 x 2.5 + 0.952 x 0.05 x 2.25 + 0.95° x 0.05 x 2 = 0.694 0.25 2.77

The speed-up from improved branch prediction ismuch larger in a4-issue proces-
sor than in a 2-issue processor. In general, processorsthat issue more instructions
per cycle gain more from improved branch prediction because each branch mis-
prediction coststhem more instruction execution opportunities (e.g., 4 per cycle
in 4-issueversus2 per cyclein 2-issue).

4.30.6 \With this pipeline, the penalty for a mispredicted branch is 20 cycles plus
the fraction of a cycle due to discarding instructions that follow the branch in the
same cycle. We have:

CPI with perfect

CPI with given branch prediction branch prediction | Speed-up

0.25 +0.02 x 20.75 + 0.98 x 0.02 x 20.5 + 0.982 x 0.02 x 20.25 + 0.98 x 0.02 x 20 = 1.832 0.25 7.33

0.25 +0.05 x 20.75 + 0.95 x 0.05 x 20.5 + 0.952 x 0.05 x 20.25 + 0.95% x 0.05 x 20 = 4.032 0.25 16.13

We observe huge speed-ups when branch prediction isimproved in a processor
with avery deep pipeline. In general, processors with deeper pipelinesbenefit more
from improved branch prediction because these processors cancel more instruc-
tions (e.g., 20 stagesworth of instructions in a 50-stage pipeline versus 2 stages
worth of instructions in a 5-stage pipeling) on each misprediction.

s 4,31

4.31.1 The number of cyclesis equal to the number of instructions (one
instruction is executed per cycle) plus one additional cyclefor each data hazard
which occurs when a Iw instruction is immediately followed by a dependent
instruction. We have:

a. (8+1)8=1.13

b. (7+1)/7 =114

4.31.2 The number of cyclesis equal to the number of instructions (one
instruction is executed per cycle), plus the stall cycles due to data hazards. Data

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

hazards occur when the memory address used by the instruction depends on the
result of apreviousinstruction (EXE to ARD, 2 stall cycles) or the instruction after
that (1 stall cycle), or when an instruction writes avalue to memory and one of the
next two instructions reads a value from the same address (2 or 1 stall cycles). All
other data dependences can useforwarding to avoid stalls. We have:

a. mov -4(esp), eax No stalls. 7/7 =
I2: add (edx), eax
13: mov eax, -4(esp)
14: add 1, ecx
15: add 4, edx
16: cmp esi, ecx
17:jl L abel
b. | 11: add eax, (edx) No stalls. 4/4 =1
12: mov eax, edx
13: add 1, eax
14:jl L abel

4.31.3 The number of instructions here isthat from the x86 code, but the num-
ber of cycles per iteration isthat from the MIPS code (we fetch x86 instructions, but
after instructions are decoded we end up executing the MIPS version of the loop):

a. | 9/7 =129
b. 8/4=2

4.31.4 Dynamic scheduling allows us to execute an independent “future”
instruction when the one weshould be executing stalls. We have:

-m-ﬂ_

11: lw $2,-4($sp) 13 stalls, but we do 15 1 (no stalls)
12: lw $3,0($4) instead.
13: add $2,$2,$3
14: sw $2,-4($sp)
15: addi $6,$6,1
16: addi $4,$4,4
17: sit $1,$6,$5
18: bne $1,$0,Label
b 11: Iw $2,0($4) 12 stalls, and all (7+1)/7 =114
12: add $2,$2,$5 subsequent instructions
13: sw $2,0($4) have dependences so
14: add $4,$5,$0 this stall remains.
15: addi $5,$5,1
16: sit $1,$5,$0
17: bne $1,$0,L abel

a.\':)\a(/_‘ :T)l.gf Ha®

4.31.5 Weuset0, t1, etc. asnames for new registersin our renaming. We have:

11: Iw t1,-4($sp) 13 would stall, but I5 is executed 1 (no stalls)
12: lw $3,0(%4) instead.
13: add $2,t1,$3
14: sw $2,-4($sp)
15: addi $6,$6,1
16: addi $4,$4,4
17: sit $1,$6,$5
18: bne $1,$0,L abel
b. 11: lw t1,0($4) 12 stalls, and all subsequent (7+1)/7 =1.14
12: add $2,t1,$5 instructions have dependences so
13: sw $2,0($4) this stall remains. Note that 14 or
14: add $4,$5,$0 15 cannot be done instead of 12
15: addi $5,%$5,1 because of WAR dependences that
16: sit $1,$5,50 are not eliminated. Renaming $4
17: bne $1,$0,L abel in 14 or $5 in 15 does not eliminate

any WAR dependences. This is a
problem when renaming is done
on the code (e.g., by the compiler).
If the processor was renaming
registers at runtime each instance
of 14 would get a new name for the
$4 it produces and we would be
able to “cover” the 12 stall.

4.31.6 Note that now every time we execute an instruction it can be renamed
differently. We have:

T . R

In next iteration uses of $4 renamed to
t3, $5 renamed to t4.

Iw t1,-4($sp) No stalls remain. I3 1 (no stalls)
I2: Iw t2,0($4) would stall stalls, but we
13: add t3,t1,t2 can do I5 instead.
14: sw t3,-4($sp)
15: addi t4,$6,1
16: addi t5,$4.4
17: st t6,t4,$5
18: bne 16,$0,L abel
In next iteration uses of $6 renamed to
t4, $4 renamed to t5.
b. 11: lw t1,0($4) No stalls remain. 12 7/7=1
12: add t2,t1,$5 would stall, but we can
13: sw t2,0($4) do 14 instead.
14: add t3,$5,$0
15: addi t4,$5,1
16: st t5,t4,$0
17: bne t5,%0,L abel

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

G 4.32

4.32.1 The expected number of mispredictions per instruction isthe probability
that a giveninstruction isa branch that is mispredicted. The number of instruc-
tions between mispredictions isone divided by the number of mispredictions per
instruction. We get:

- Mispredictions per instruction Instructions between mispredictions

a. 0.2 x (1 -0.9) 50

b. 0.20 x (1 - 0.995) 1000

4.32.2 The number of in-progress instructions is equal to the pipeline depth
times the issue width. The number of in-progress branches can then be easily com-
puted becauseweknow what percentage of all instructions are branches. We have:

- In-progress branches

a. 12 x4x0.20=9.6

b. 25 x4 x0.20 =20

4.32.3 \We keep fetching from the wrong path until the branch outcome isknown,
fetching 4 instructions per cycle. If the branch outcome isknown in stage N of the
pipeline, al instructions are from the wrong path in N — 1 stages. In the Nth stage,
al instructions after the branch are from the wrong path. Assuming that the branch
isjust aslikely to be the 1%, 2™, 3 or 4™ instruction fetched in its cycle, we have
on average 1.5instructions from the wrong path in the Nth stage (3 isbranch is1%,

2isbranch is2™, 1isbranch is3, and 0if branch islast). We have:

- Wrong-path instructions

a. (10-1)x4x15=375

b. (18-1)x4x15=69.5

4.32.4 \We can compute the CPI for each processor, then compute the speed-up.
To compute the CPI, we note that we have determined the number of useful
instructions between branch mispredictions (for 4.32.1) and the number of mis-
fetched instructions per branch misprediction (for 4.32.3), and we know how many
instructions in total are fetched per cycle (4 or 8). From that we can determine the

Gioad da

a)b)\a/_z :T)Léf Ha®

number of cyclesbetween branch mispredictions, and then the CPI (cyclesper
useful instruction). We have:

lm“mm“ Spootup

(37.5 + 50)/4 = 21.9

21.9/50 = 0.438

(10 -1) x8x 3.5 =
75.5

(75.5 + 50)/8 = 15.7

15.7/50 = 0.314

b. | (69.5 + 1000)/4 =
267.4

267.4/1000 = 0.267

(18 -1) x8x 35 =
139.5

(139.5 + 1000)/8 =
142.4

142.4/1000 = 0.142

1.88

4.32.5 \When branchesareexecuted onecycleearlier, thereisonelesscycleneeded
to executeinstructions between two branch mispredivctions. We have:

21.9/50 = 0.438

20.9/50 =0.418

1.048

267.4/1000 = 0.267

266.4/1000 = 0.266

1.004

- “Normal” CPI “Improved” CPI Speed-up
a.
b

4.32.6
- “Normal” CPI “Improved” CPI Speed-up
________J___|
a. 15.7/50 = 0.314 14.7/50 = 0.294 1.068
b 142.4/1000 = 0.142 141.4/1000 = 0.141 1.007

Speed-ups from this improvement are larger for the 8-issue processor than with
the 4-issue processor. This is because the 8-issue processor needs fewer cycles to
executethe same number of instructions, so the same 1-cycle improvement repre-
sentsalargerelativeimprovement (speed-up).

U 4.33
4.33.1 \We need two register reads for each instruction issued per cycle:

- Read ports
a. 4x2=8
b. 2x2=4

4.33.2 \We compute the time-per-instruction as CPI times the clock cycle time.
For the 1-issue 5-stage processor we have a CPl of 1 and aclock cycletime of T. For
an N-issue K-stage processor we have a CPI of /N and a clock cycle of T ~ 5/K.
Overall, we get a speed-up of:

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

. Speed-up

a. 10/5x4=8

b. 25/5x2=10

4.33.3 Weare unable to benefit from awider issuewidth (CPI is1), so wehave:

. Speed-up

a. 10/5=2

b. | 25/5=5

4.33.4 \\e first compute the number of instructions executed between mispre-
dicted branches. Then we compute the number of cycles needed to execute these
instructions if there were no misprediction stalls, and the number of stall cycles
due to a misprediction. Note that the number of cycles spent on a misprediction
in isthe number of entire cycles (one lessthan the stage in which branches are
executed) and a fraction of the cyclein which the mispredicted branch instruc-
tion is. The fraction of acycle isdetermined by averaging over all possihilities. In
an N-issue processor, we can have the branch asthe first instruction of the cycle,
in which casewewaste (N - 1) Nths of acycle, or the branch can be the second
instruction in the cycle, in which case wewaste (N - 2) Nths of acycle, ..., or the
branch can be the last instruction in the cycle, in which case none of that cycle
is wasted. With al of this data we can compute what percentage of all cycles are
misprediction stall cycles:

- Instructions between Cycles between
branch mlspredlctlons branch mlspredlctlons % Stalls

a. 1/(0.30 x 0.05) = 66.7 66.7/4 = 16.7 6/(16.7 + 6.4) = 26%
b. = 1/(0.15 x 0.03) = 222.2 2222/2 =111.1 7.3 7/(111.1 + 7.3) = 5.9%

4.33.5 \Wehavealready computed the number of stall cycles due to abranch mis-
prediction, and we know how to compute the number of non-stall cycles between
mispredictions (this iswhere the misprediction rate has an effect). We have:

- Stall cycles between Need # of instructions Allowed branch
- mispredictions between mispredictions misprediction rate

a. 6.4 6.4 x 4/0.10 = 255 1/(255 x 0.30) = 1.31%
b. 7.3 7.3 x 2/0.02 =725 1/(725 x 0.15) = 0.92%

The needed accuracy is100% minus the allowed misprediction rate.

da

°'\.’J.\°(/~; :Pk‘f Ha®

4.33.6 Thisproblem isvery similar to We have already computed the number of
stall cycles due to abranch misprediction, and we know how to compute the num-
ber of non-stall cyclesbetween mispredictions (this iswherethe misprediction rate
has an effect). We have:, except that we are aiming to have asmany stall cyclesaswe
have non-stall cycles. We get:

Stall cycles between Need # of instructions Allowed branch
between mispredictions misprediction rate

a. 6.4 6.4 x4 =255 1/(25.5 x 0.30) = 13.1%

b. 7.3 7.3 x2=145 1/(14.5 x 0.15) = 46.0%

The needed accuracy is100% minus the alowed misprediction rate.

s 4.34

4.34.1 \We need an IF pipeline stageto fetch the instruction. Sincewe will only
execute one kind of instruction, wedo not need to decode the instruction but we
still need to read registers. Asaresult, wewill need an ID pipeline stage although
it would be misnamed. After that, we have an EXE stage, but this stage is sim-
pler because we know exactly which operation should be executed so there is no
need for an ALU that supports different operations. Also, we need no Mux to select
which valuesto use in the operation because we know exactly which valueit will
be. We have:

a. | In the ID stage we read two registers and we do not need a sign-extend unit. In the EXE stage
we need an Add unit whose inputs are the two register values read in the ID stage. After the
EXE stage we have a WB stage which writes the result from the Add unit into Rd (again, no
Mux). Note that there is no MEM stage, so this is a 4-stage pipeline. Also note that the PC is
always incremented by 4, so we do not need the other Add and Mux units that compute the
new PC for branches and jumps.

b. | We only read one register in the ID stage so there is no need for the second read port in the
Registers unit. We do need a sign-extend unit for the Offs field in the instruction word. In the
EXE stage we need an Add unit whose inputs are the register value and the sign-extended
offset from the ID stage. After the EXE stage we use the output of the Add unit as a memory
address in the MEM stage, and then we have a WB stage which writes the value we read in the
MEM stage into Rt (again, no Mux). Also note that the PC is always incremented by 4, so we do
not need the other Add and Mux units that compute the new PC for branches and jumps.

3l s M) 51T oK) Kazem.faridi@iaubaft.ac.ir

4.34.2

a. Assuming that the register write in WB happens in the first half of the cycle and the register
reads in ID happen in the second half, we only need to forward the Add result from the EX/WB
pipeline register to the inputs of the Add unit in the EXE stage of the next instruction (if that
next instruction depends on the previous one). No hazard detection unit is needed because
forwarding eliminates all hazards.

b. | Assuming that the register write in WB happens in the first half of the cycle and the register
read in ID happens in the second half, we only need to forward the memory value from the
MEM/WB pipeline register to the first (register) input of the Add unit in the EXE stage of the
next or second-next instruction (if one of those two instructions is dependent on the one that
has just read the value). We also need a hazard detection unit that stalls any instruction whose
Rs register field is equal to the Rt field of the previous instruction.

4.34.3 \We need to add some decoding logic to our 1D stage. The decoding logic
must simply check whether the opcode and funct filed (if there is afunct field)
match thisinstruction. If there isno match, wemust put the address of the excep-
tion handler into the PC (this adds a Mux before the PC) and flush (convert to
nops) the undefined instruction (write zeros to the ID/EX pipeline register) and
the following instruction which has already been fetched (write zerosto the IF/1D
pipeline register).

4.34.4

a. We need to add the logic that computes the branch address (sign-extend, shift-left-2, Add, and
Mux to select the PC). We also need to replace the Add unit in EXE with an ALU that supports
either an ADD or a comparison. The ALUOp signal to select between these operations must be
supplied by the Control unit.

b. | We need to add back the second register read port (AND reads two registers), add the Mux that
selects the value supplied to the second ALU input (register for AND, Offs for LW), add an ALUOp
signal to select between two ALU operations, and replace the Add unit in EXE with an ALU that
supports either an Add or an And operation. Finally, we must add to the WB stage the Mux that
select whether the value to write to the register is the value from the ALU of from memory, and
the Mux in the EX stage that selects which register to write to (Rd for AND, Rt for LW).

4.34.5

a. The same forwarding logic used for forwarding from one ADD to another can also be used to
forward from ADD to BEQ. We still need no hazard detection for data hazards, but we must add
detection of control hazards. Assuming there is no branch prediction, whenever a BEQ is taken
we must flush (convert to NOPs) all instructions that were fetched after that branch.

b. | We need to add forwarding from the EX/MEM pipeline register to the ALU inputs in the EXE
stage (so AND can forward to the next instruction), and we need to extend our forwarding from
the MEM/WB pipeline register to the second input of the ALU unit (so LW can forward to an
AND whose Rt (input) register is the same as the Rt (result) register of the LW instruction. We
also need to extend the hazard detection unit to also stall any AND instruction whose Rs or Rt
register field is equal to the Rt field of the previous LW instruction.

Gioad da

a)b)\a/_z :T)Léf Ha®

4.34.6 The decoding logic must now check if the instruction matches either of
the two instructions. After that, the exception handling isthe same asfor 4.34.3.

sx 4.35

4.35.1 Theworst casefor control hazardsisif the mispredicted branch instruction
is the last one in its cycleand we have been fetching the maximum number of
instructions in each cycle. Then the control hazard affectsthe remaining instructions
in the branch’'s own pipeline stageand al instructions in stages between fetch and
branch execution stage. We have:

- Delay slots needed

7Tx4-1=27

b. 17 x2-1=33

4.35.2 |f branches are executed in stage X, the number of stall cycles due to a
misprediction is (N - 1). These cycles are reduced by filling them with delay slot
instructions. We compute the number of execution (non-stall) cyclesbetween mis-
predictions, and the speed-up asfollows:

Non-stall cycles between
mispredictions

Stall cycles without delay Stall cycles with 4 delay Speed-up due to delay
slots slots slots

1/(020 x (1 - 0.80) x 4) = 6.25

6 5 (6.25 + 6)/(6.25 + 5) = 1.089

1/(025 x (1 -0.92) x 2) = 25

16 14 (25 + 16)/(25 + 14) = 1.051

Total cycles between
mispredictions without delay Stall cycles with 4 Extra cycles spent on

4.35.3 For 20% of branches, weadd an extrainstruction, for 30% of the branches
we add two extra instructions, and for 40% of branches, we add three extra
instructions. Overall, an average branch instruction isnow accompanied by 0.20 +
0.30” 2+0.40" 3=2nop instructions. Note that these nops are added for every
branch, not just mispredicted ones. These nop instructions add to the execution
time of the program, so wehave:

Speed-up due to
delay slots

6.25 + 6 =12.25

5 0.5 x6.25 x 0.20 = 0.625 12.5/(6.25 + 5 + 0.625) = 1.032

25+ 16 =41

14 1x25x%x0.25=6.25

41/(25 + 14 + 6.25) = 0.906

3L sl p M) 51T oK)

Kazem.faridi@iaubaft.ac.ir

4.35.4
a. add $2,$0,$0 $1=0
Loop: beq $2,$3,End
Ib $10,1000($2) Delay slot
sb $10,2000($2)
beq $0,$0,L oop
addi $2,%$2,1 Delay slot
Exit:
b. add $2,$0,$0 $1=0
Loop: Ib $10,1000($2)
Ib $11,1001($2)
beq $10,$11,End
addi $1,%1,1 Delay slot
beq $0,$0,L oop
addi $2,%$2,1 Delay slot
Exit: addi $1,$1,-1 Undo c++ from delay slot
4.35.5
a. add $2,%$0,$0 $1=0
Loop: beq $2,$3,End
Ib $10,1000($2) Delay slot
nop 2"d delay slot
beq $0,$0,Loop
sb $10,2000($2) Delay slot
addi $2,$2,1 2"d delay slot
Exit:
b. add $2,%$0,$0 $1=0
Ib $10,1000($2) Prepare for first iteration
Ib $11,1001($2) Prepare for first iteration
Loop: beq $10,$11,End
addi $1,$1,1 Delay slot
addi $2,$2,1 2"d delay slot
beq $0,%),Loop
Ib $10,1000($2) Delay slot, prepare for next iteration
Ib $11,1001($2) 2" delay slot, prepare for next iteration
Exit: addi $1,$1,-1 Undo ct++ from delay slot
addi $2,$2,-1 Undo i++ from 2" delay slot

4.35.6 The maximum number of in-flight instructions is equal to the pipeline
depth times the issuewidth. We have:

- Instructions in flight Instructions per iteration Iterations in flight
5

10 x 4 =40

40/5+1=9

b.

25 x 2 =150

6 roundUp(50/6) + 1 = 10

°'\.’J.\°(/~; :Pk‘f Ha®

Note that an iteration isin-flight when even one of itsinstructions isin-flight. This
iswhy weadd one to the number wecompute from the number of instructions in
flight (instead of having an iteration entirely in flight, we can begin another one
and still havethe “trailing” one partially in-flight) and round up.

G 4.36

4.36.1

a. lwinc Rt,Offset(Rs) lw Rt,Offset(Rs)
addi Rs,Rs,4

b. | addr Rt,Offset(Rs) lw tmp,Offset(Rs)
add Rt,Rt,tmp

4.36.2 TheID stageof the pipeline would now have alookup table and a micro-
PC, where the opcode of the fetched instruction would be used to index into the
lookup table. Micro-operations would then be placed into the ID/EX pipeline
register, one per cycle, using the micro-PC to keep track of which micro-op isthe
next one to be output. In the cyclein which weare placing the last micro-op of an
instruction into the ID/EX register, we can alow the IF/ID register to accept the
next instruction. Note that this resultsin executing up to one micro-op per cycle,
but weactually fetching instructions less often than that.

4.36.3

a. | We need to add an incrementer in the MEM stage. This incrementer would increment the value
read from Rs while memory is being accessed. We also need to change the Registers unit to
allow two writes to happen in the same cycle, so we can write the value from memory into Rt
and the incremented value of Rs back into Rs.

b. | We need another EX stage after the MEM stage to perform the addition. The result can then be
stored into Rt in the WB stage.

4.36.4 Not often enough to justify the changeswe need to make to the pipeline.
Note that these changes slow down all the other instructions, so we are speeding up
arelatively small fraction of the execution while slowing down everything el se.

4.36.5 Each origina addm instruction now results in executing two more
instructions, and also adds a stall cycle (the add depends on the lw). Asa result,

3L sl p M) 51T oK) Kazem.faridi@iaubaft.ac.ir

each cycle in which we executed an addm instruction now adds three more cycles
to the execution. We have:

T et romssimvmion |

a. 1/(1 +0.05 x 3) =0.87

b. | 1/(1 +0.10 x 3)=0.77

4.36.6 Eachtrandated addm adds the 3 stall cycles, but now half of the existing
stalls are eliminated. We have:

- Speed-up from addm translation

a. | 1/(1 +0.05 x 3 -0.05/2) =0.89
b. | 1/(1 +0.10 x 3 -0.10/2) = 0.8

(s 4.37

4.37.1 All of the instructions use the instruction memory, the PC + 4 adder, the
control unit (to decode the instruction), and the ALU. For the least utilized unit,
we have:

a. | The result of the branch adder (add offset to PC + 4) is only used by the BEQ instruction, the
data memory read port is only used by the LW instruction, and the write port is only used by the
last SW instruction (the first SW is not executed because the BEW is taken).

b. | The result of the branch adder (add offset to PC + 4) is never used.

Note that the branch adder performs its operation in every cycle, but itsresult is
actually used only when abranch istaken.

4.37.2 Theread port isonly used by lw and the write port by sw instructions.
We have:

- Data memory read Data memory write

25% (1 out of 4) 25% (1 out of 4)

a
b. 40% (2 out of 5) 20% (1 out of 5)

4.37.3 In the IF/ID pipeline register, we need 32 hits for the instruction word
and 32 bitsfor PC + 4 for atotal of 64 bits. In the ID/EX register, weneed 32 bits
for each of the two register values, the sign-extended offset/immediate val ue, and
PC + 4 (for exception handling). We also need 5 bits for each of the three register
fields from the instruction word (Rs, Rt, Rd), and 10 bits for all the control
signalsoutput by the Control unit. The total for the ID/EX register is 153 bits.

°'\.’J.\°(/~; :T)kgf Ha®

In the EX/MEM register, we need 32 bits each for the value of register Rt and for
the ALU result. We also need 5 bitsfor the number of the destination register and

4 bitsfor control signals. Thetotal for the EX/MEM register is 73 bits. Finally, for
the MEM/WB register we need 32 bits each for the ALU result and value from
memory, 5 bits for the number of the destination register, and 2 bits for control
signals. Thetotal for MEM/WB is71bits. The grand total for al pipeline registers
is361 hits.

4.37.4 In the IF stage, the critical path isthe [-Mem latency. In the ID stage,
the critical path isthe latency to read Regs. In the EXE stage, we have a Mux and
then ALU latency. In the MEM stagewe have the D-Mem latency, and in the WB
stage we have a Mux latency and setup time to write Regs(which we assume is
zero). For asingle-cycle design, the clock cycle time isthe sum of these per-stage
latencies (for a load instruction). For a pipelined design, the clock cycletime
isthe longest of the per-stage latencies. To compare these clock cycle times, we
compute a speed-up based on clock cycle time alone (assuming the number of
clock cycles isthe same in single-cycle and pipelined designs, which isnot true).
We have:

T 1o "ox | Wem | Wa | singiecyote] Piplined | “spoceup” |
a.

400ps | 200ps | 150ps | 350ps 30ps 1130ps 400ps 2.83

b. 500ps | 220ps | 280ps | 1000ps | 100ps 2100ps 1000ps 2.10

Note that this speed-up issignificantly lower than 5, which isthe “ideal” speed-up
of 5-stage pipelining.

4.37.5 If weonly support add instructions, wedo not need the MUX in the WB
stage, and we do not need the entire MEM stage. We still need Muxes before the
ALU for forwarding. We have:

| | ¢ [o | ex | we | singlecycle [Pipelined | ‘Speed-up” |

400ps 200ps 150ps Ops 750ps 400ps 1.88

a.
b. 500ps 220ps 280ps Ops 1000ps 500ps 2.00

Note that the “ideal” speed-up from pipelining is now 4 (we removed the MEM
stage), and the actual speed-up isabout half of that.

4.37.6 For the singlecycle design, we can reduce the clock cycle time by 1ps by
reducing the latency of any component on the critical path by 1ps(if there isonly
one critical path). For apipelined design, we must reduce latencies of all stages that
havelonger latencies than the target latency. We have:

3l as) y M))51 NIEH R

Kazem.faridi@iaubaft.ac.ir

- Single-cycle Needed cycle time for pipelined Cost for Pipelined

0.2 x 1130 = $226 0.8 x 400ps = 320ps $80 + $30 = $130
(IF and MEM)
b. 0.2 x 2100 = $420 0.8 x 1000ps = 800ps $200 (MEM)

Note that the cost of improving the pipelined design by 20% is lower. This is
because its clock cycletime is aready lower, so a 20% improvement represents
fewer picoseconds (and fewer dollarsin our problem).

G 4.38

4.38.1 The energy for the two designsisthe same: I-Mem isread, two registers
areread, and aregister iswritten. We have:

a. | 100pJ + 2 x 60pJ + 70pJ = 290pJ

b. | 200pJ + 2 x 90pJ + 80pJ = 460pJ

4.38.2 Theinstruction memory isread for al instructions. Every instruction also
results in two register reads (even if only one of those valuesis actually used).
A load instruction resultsin amemory read and aregister write, astore instruction
results in a memory write, and all other instructions result in either no register
write (e.g., beq) or aregister write. Because the sum of memory read and register
write energy is larger than memory write energy, the worst-case instruction is a
load instruction. For the energy spent by aload, wehave:

a. 100pJ) +2 x 60pJ + 70p) + 120pJ) = 410pJ

b. = 200pJ + 2 x 90pJ + 80pJ + 300pJ = 760p)

4.38.3 Instruction memory must be read for every instruction. However, we
can avoid reading registerswhose values are not going to be used. To do this, we
must add RegRead1 and RegRead? control inputs to the Registers unit to enable or
disable each register read. We must generate these control signals quickly to avoid
lengthening the clock cycle time. With these new control signals, alw instruction
resultsin only one register read (westill must read the register used to generate the
address), so wehave:

e e S e n

100pJ + 2 x 60pJ + 70pJ + 120pJ = 410pJ 60pJ 14.6%

s

200pJ + 2 x 90pJ + 80pJ + 300pJ) = 760pJ 90pJ 11.8%

°'\.’J.\"(/~; :T)l.gf Ha®

4.38.4 Before the change, the Control unit decodesthe instruction while register
reads are happening. After the change, the latenciesof Control and Register Read
cannot be overlapped. This increasesthe latency of the ID stage and could affect
the processor’sclock cycle time if the ID stage becomes the longest-latency stage.
We have:

- Clock cycle time bhefore change Clock cycle time after change

a. 400ps (I-Mem in IF stage) 500ps (Ctl then Regs in ID stage)

b. 1000ps (D-Mem in MEM stage) No change (400ps + 220ps < 1000ps).

4.38.5 If memory isread in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (or a non-load instruction that
writesto aregister), or it doesnot get written to any register (all other instructions,
including stall). Thischangedoesnot affect clock cycletime because the clock cycle
time must already allow enough time for memory to beread in the MEM stage. It
does affect energy: a memory read occurs in every cycle instead of only in cycles
when aload instructions isin the MEM stage.

4.38.6

I-Mem active energy m Clock cycle time Total I-Mem Energy Idle energy %

100pJ

400ps 400ps 100pJ 0%

200pJ

500ps 1000ps 200pJ) + 500ps x 0.1 x 20pJ/220p) = 9.1%
200pJ/500ps = 220p)

G 4.39

4.39.1 Thenumber of instructions executed per second isequal to the number of
instructions executed per cycle (IPC, whichis 1/CPI) timesthe number of cycles per
second (clock frequency, whichis /T where T isthe clock cycletime). The IPCishe
percentage of cycle in which we complete an instruction (and not a stal), and the
clock cycletime isthe latency of the maximum-latency pipeline stage. We have:

-“ Clock cycle time Clock frequency Instructions per second
a.

0.85 500ps 2.00 GHz 1.70 x 10°

b. 0.70 200ps 5.00 GHz 3.50 x 10°

3l as) y M))51 oK)

Kazem.faridi@iaubaft.ac.ir

4.39.2 Powerisequal to the product of energy per cycletimesthe clock frequency
(cycles per second). The energy per cycleisthe total of the energy expendituresin
all five stages. We have:

- Clock Frequency Energy per cycle (in pJ) m

2.00 GHz 120 + 60 + 75 + 0.30 x 120 + 0.55 x 20 = 305 0.61
b. 5.00 GHz 150 + 60 + 50 + 0.35 x 150 + 0.50 x 20 = 322.5 1.61

4.39.3 Thetime that remainsin the clock cycle after a circuit completes its work
isoften called slack. We determine the clock cycle time and then the slack for each
pipeline stage:

500ps 200ps 100ps 150ps 400ps
b. 200ps Ops 50ps 80ps 10ps 60ps

4.39.4 All stages now have latenciesequal to the clock cycletime. For each stage,
we can compute the factor X for it by dividing the new latency (clock cycle time)
by the original latency. We then compute the new per-cycle energy consumption
for each stage by dividing its energy by its factor X. Finally, we re-compute the
power dissipation:

Immmmm

500/300 500/400 500/350 500/500 500/100 0.43
b. 200/200 200/150 200/120 200/190 200/140 1.41

4.39.5 Thischanges the clock cycletimeto 1.1 of the original, which changes the
factor X for each stage and the clock frequency. After that this problem issolved in
the sameway asall stages now havelatencies equal to the clock cycletime. For each
stage, we can compute the factor X for it by dividing the new latency (clock cycle
time) by the original latency. Wethen compute the new per-cycle energy consump-
tion for each stage by dividing its energy by itsfactor X. Finally, we re-compute the
power dissipation:. We get:

=

550/300 550/400 550/350 550/500 550/100 0.35
b. 220/200 220/150 220/120 220/190 220/140 1.16

°'\.’J.\°(/~; :Pk‘f Ha®

4.39.6 The X factor for each stageisthe same asin this changesthe clock cycle
time to 1.1 of the original, which changesthe factor X for each stageand the clock
frequency. After that this problem issolvedin the same way as all stages now have
latenciesequal to the clock cycle time. For each stage, we can compute the factor
X for it by dividing the new latency (clock cycle time) by the original latency. We
then compute the new per-cycle energy consumption for each stage by dividing its
energy by its factor X. Finally, we re-compute the power dissipation:. We get:, but
thistime in our power computation we dividethe per-cycle energy of each stage by
XZinstead of x. We get:

T o roror | povr o
a.

0.24 0.61 60.7%
b. 0.95 1.61 41.0%

