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Abstract—This paper addresses the challenge of truth dis-
covery from noisy social sensing data. The work is motivated by
the emergence of social sensing as a data collection paradigm
of growing interest, where humans perform sensory data
collection tasks. A challenge in social sensing applications lies
in the noisy nature of data. Unlike the case with well-calibrated
and well-tested infrastructure sensors, humans are less reliable,
and the likelihood that participants’ measurements are correct
is often unknown a priori. Given a set of human participants of
unknown trustworthiness together with their sensory measure-
ments, this paper poses the question of whether one can use
this information alone to determine, in an analytically founded
manner, the probability that a given measurement is true. The
paper focuses on binary measurements. While some previous
work approached the answer in a heuristic manner, we offer
the first optimal solution to the above truth discovery problem.
Optimality, in the sense of maximum likelihood estimation,
is attained by solving an expectation maximization problem
that returns the best guess regarding the correctness of each
measurement. The approach is shown to outperform the state
of the art fact-finding heuristics, as well as simple baselines
such as majority voting.

Keywords-truth discovery, social sensing, maximum likeli-
hood estimation, expectation maximization

I. INTRODUCTION

This paper presents a maximum likelihood estimation
approach to truth discovery from social sensing data. Social
sensing has emerged as a new paradigm for collecting sen-
sory measurements by means of “crowd-sourcing” sensory
data collection tasks to a human population. The paradigm
is made possible by the proliferation of a variety of sensors
in the possession of common individuals, together with
networking capabilities that enable data sharing. Examples
includes cell-phone accelerometers, cameras, GPS devices,
smart power meters, and interactive game consoles (e.g.,
Wii). Individuals who own such sensors can thus engage in
data collection for some purpose of mutual interest. A clas-
sical example is geotagging campaigns, where participants
report locations of conditions in their environment that need
attention (e.g., litter in public parks).

A significant challenge in social sensing applications
lies in ascertaining the correctness of collected data. Data
collection is often open to a large population. Hence, the
participants and their reliability are typically not known a

priori. The term, participant (or source) reliability is used
in this paper to denote the probability that the participant
reports correct observations. Reliability may be impaired
because of poor used sensor quality, lack of sensor cali-
bration, lack of (human) attention to the task, or even intent
to deceive. The question posed in this paper is whether or
not we can determine, given only the measurements sent
and without knowing the reliability of sources, which of
the reported observations are true and which are not. In
this paper, we concern ourselves with (arrays of) binary
measurements only; for example, reporting whether or not
litter exists at each of multiple locations of interest. We
develop a maximum likelihood estimator that assigns truth
values to measurements without prior knowledge of source
reliability. The algorithm makes inferences regarding both
source reliability and measurement correctness by observing
which observations coincide and which don’t. It is shown
to be surprisingly accurate in assessing measurement cor-
rectness as long as sources, on average, make multiple
observations, and as long as some sources make the same
observation.

Note that, a trivial way of accomplishing the truth dis-
covery task is by “believing” only those observations that
are reported by a sufficient number of sources. We call such
a scheme, voting. The problem with voting schemes is that
they do not attempt to infer source reliability and do not
take that estimate into account. Hence, observations made by
several unreliable sources may be believed over those made
by a few reliable ones. Instead, we cast the truth discovery
problem as one of joint maximum likelihood estimation
of both source reliability and observation correctness. We
solve the problem using the Expectation maximization (EM)
algorithm.

Expectation maximization (EM) is a general optimization
technique for finding the maximum likelihood estimation
of parameters in a statistic model where the data are “in-
complete” [9]. It iterates between two main steps (namely,
the E-step and the M-step) until the estimation converges
(i.e., the likelihood function reaches the maximum). The
paper shows that social sensing applications lend themselves
nicely to an EM formulation. The optimal solution, in the
sense of maximum likelihood estimation, directly leads to an



accurate quantification of measurement correctness as well
as participant reliability. Moreover, the solution is shown to
be simple and easy to implement.

Finally, one should observe that the truth discovery prob-
lem, as formulated in this paper, is not an invention of
the authors. Prior literature attempted to solve it using
heuristics whose inspiration can be traced back to Google’s
PageRank [6]. PageRank iteratively ranks the credibility of
sources on the Web, by iteratively considering the credibility
of sources who link to them. Extensions of PageRank,
known as fact-finders, iteratively compute the credibility of
sources and claims. Specifically, they estimate the credi-
bility of claims from the credibility of sources that make
them, then estimate the credibility of sources based on
the credibility of their claims. Several algorithms exist that
feature modifications of the above basic heuristic scheme [5],
[13], [20], [26], [27]. In contrast, ours is the first attempt
to optimally solve the problem by casting it as one of
expectation maximization.

We evaluate our algorithm in simulation, as well as using
an emulated geotagging application scenario. Evaluation
results show that the proposed maximum likelihood scheme
outperforms the state-of-art heuristics as well as simple base-
lines (voting) in quantifying the probability of measurement
correctness and participant reliability.

The rest of this paper is organized as follows: In Sec-
tion II, we present the fact-finding model for social sensing
applications. The proposed maximum likelihood estimation
approach is discussed in Section III. Implementation and
evaluation results are presented in Section IV. We review
related work in Section V. Finally, we conclude the paper
in Section VI.

II. THE PROBLEM FORMULATION OF SOCIAL SENSING

To formulate the truth discovery problem in social sensing
in a manner amenable to rigorous optimization, we con-
sider a social sensing application model where a group of
M participants, S1, ..., SM , make individual observations
about a set of N measured variables C1, ..., CN in their
environment. For example, a group of individuals interested
in the appearance of their neighborhood might join a sensing
campaign to report all locations of offensive graffiti. Alter-
natively, a group of drivers might join a campaign to report
freeway locations in need of repair. Hence, each measured
variable denotes the existence or lack thereof of an offending
condition at a given location1. In this effort, we consider only
binary variables and assume, without loss of generality, that
their “normal” state is negative (e.g., no offending graffiti on
walls, or no potholes on streets). Hence, participants report
only when a positive value is encountered.

Each participant generally observes only a subset of all
variables (e.g., the conditions at locations they have been

1We assume that locations are discretized, and therefore finite. For
example, they are given by street addresses or mile markers.

to). Our goal is to determine which observations are correct
and which are not. As mentioned in the introduction, we
differ from a large volume of previous sensing literature in
that we assume no prior knowledge of source reliability, as
well as no prior knowledge of the correctness of individual
observations.

Let SiCj denote an observation reported by participant
Si claiming that Cj is true (e.g., that graffiti is found at
a given location, or that a given street is in disrepair). Let
P (Ctj) and P (Cfj ) denote the probability that the actual
variable Cj is indeed true and false, respectively. Different
participants may make different numbers of observations.
Let the probability that participant Si makes an observation
be si. Further, let the probability that participant Si is right
be ti and the probability that it is wrong be 1 − ti. Note
that, this probability depends on the participant’s reliability,
which is not known a priori. Formally, ti is defined as:

ti = P (Ctj |SiCj) (1)

Let us also define ai as the (unknown) probability that
participant Si reports a variable to be true when it is indeed
true, and bi as the (unknown) probability that participant
Si reports a variable to be true when it is in reality false.
Formally, ai and bi are defined as follows:

ai = P (SiCj |Ctj)
bi = P (SiCj |Cfj ) (2)

From the definition of ti, ai and bi, we can determine
their relationship using the Bayesian theorem:

ai = P (SiCj |Ctj) =
P (SiCj , C

t
j)

P (Ctj)
=
P (Ctj |SiCj)P (SiCj)

P (Ctj)

bi = P (SiCj |Cfj ) =
P (SiCj , C

f
j )

P (Cfj )
=
P (Cfj |SiCj)P (SiCj)

P (Cfj )

(3)

The input to our algorithm is a matrix SC, where
SiCj = 1 when participant Si reports that Cj is true, and
SiCj = 0 otherwise. Let us call it the observation matrix.
For initialization, we also define the background bias d
to be the overall prior probability that a randomly chosen
measured variable is true. For example, it may represent the
probability that any street, in general, is in disrepair. Note
that, this value can be known from past statistics. It does
not indicate, however, whether any particular claim about
disrepair at a particular location is true or not. To initialize
the algorithm, we set P (Ctj) = d and set P (SiCj) = si.
Plugging these, together with ti into the definition of ai and
bi, we get the initial values:

ai =
ti × si
d

bi =
(1− ti)× si

1− d
(4)



The goal of the algorithm is to compute (i) the best
estimate hj of the value each variable Cj and (ii) the
best estimate ei of the reliability of each participant Si.
Let us denote the sets of the estimates by vectors H and
E, respectively. Our goal is to find the optimal H∗ and
E∗ vectors in the sense of being most consistent with the
observation matrix SC. Formally, this is given by:

< H∗, E∗ >= argmax
<H,E>

p(SC|H,E) (5)

III. EXPECTATION MAXIMIZATION

We solve the problem formulated in the previous section
using the Expectation-Maximization (EM) algorithm. It is
a general algorithm for finding the maximum likelihood
estimates of parameters in a statistic model, where the
data are “incomplete” or the likelihood function involves
latent variables [9]. Intuitively, what EM does is iteratively
“completes” the data by “guessing” the values of hidden
variables then re-estimates the parameters by using the
guessed values as true values.

A. Mathematical Formulation

Much like finding a Lyapunov function to prove stability,
the main challenge in using the EM algorithm lies in the
mathematical formulation of the problem in a way that is
amenable to an EM solution. Given an observed data set X ,
one should judiciously choose the set of latent or missing
values Z, and a vector of unknown parameters θ, then
formulate a likelihood function L(θ;X,Z) = p(X,Z|θ),
such that the maximum likelihood estimate (MLE) of the
unknown parameters θ is decided by:

L(θ;X) = p(X|θ) =
∑
Z

p(X,Z|θ) (6)

Once the formulation is complete, the EM algorithm finds
the maximum likelihood estimate by iteratively performing
the following steps:
• E-step: Compute the expected log likelihood function

where the expectation is taken with respect to the
computed conditional distribution of the latent variables
given the current settings and observed data.

Q
(
θ|θ(t)

)
= EZ|X,θ(t) [logL(θ;X,Z)] (7)

• M-step: Find the parameters that maximize the Q
function in the E-step to be used as the estimate of
θ for the next iteration.

θ(t+1) = argmax
θ

Q
(
θ|θ(t)

)
(8)

Our participatory sensing problem fits nicely into the
Expectation Maximization (EM) model. First, we introduce
a latent variable Z for each measured variable to indicate
whether it is true or not. Specifically, we have a correspond-
ing variable zj for the jth measured variable such that: zj =

1 when the measured variable Cj is true and zj = 0 other-
wise. We further denote the observation matrix SC as the
observed data X , and take θ = (a1, a2, ...aM ; b1, b2, ...bM )
as the parameter of the model that we want to estimate. The
goal is to get the maximum likelihood estimate of θ for the
model containing observed data X and latent variables Z.

The likelihood function L(θ;X,Z) is given by:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
M∏
i=1

a
SiCj

i (1− ai)(1−SiCj) × d× zj

+

M∏
i=1

b
SiCj

i (1− bi)(1−SiCj) × (1− d)× (1− zj)

}
(9)

B. Deriving the E-Step and M-Step

Given the above formulation, the Expectation step (E-
step) becomes:

Q
(
θ|θ(t)

)
= EZ|X,θ(t) [logL(θ;X,Z)]

=

N∑
j=1

{
p(zj = 1|Xj , θ

(t))

×

[
M∑
i=1

(SiCj log ai + (1− SiCj) log(1− ai)) + log d

]
+ p(zj = 0|Xj , θ

(t))

×

[
M∑
i=1

(SiCj log bi + (1− SiCj) log(1− bi) + log(1− d))

]}
(10)

where Xj is the jth column of the observed SC matrix and
p(zj = 1|Xj , θ

(t)) is the conditional probability of the latent
variable zj to be true given the observation matrix related to
the jth measured variable and current estimate of θ, which
is given by:

p(zj = 1|Xj , θ
(t))

=
p(zj = 1;Xj , θ

(t))

p(Xj , θ(t))

=
p(Xj , θ

(t)|zj = 1)p(zj = 1)

p(Xj , θ(t)|zj = 1)p(zj = 1) + p(X, θ(t)|zj = 0)p(zj = 0)

=
A(t, j)× d

A(t, j)× d+B(t, j)× (1− d)

= Z(t, j) (11)



where A(t, j) and B(t, j) are defined as:

A(t, j) = p(Xj , θ
(t)|zj = 1)

=

M∏
i=1

a
(t)SiCj

i (1− a(t)
i )(1−SiCj)

B(t, j) = p(Xj , θ
(t)|zj = 0)

=

M∏
i=1

b
(t)SiCj

i (1− b(t)i )(1−SiCj) (12)

Next we simplify Equation (10) by noting that the con-
ditional probability of p(zj = 1|Xj , θ

(t)) is only a function
of t and j. Thus, we represent it by Z(t, j). Similarly,
p(zj = 0|X, θ(t)) is simply:

p(zj = 0|X, θ(t))

= 1− p(zj = 1|X, θ(t))

=
B(t, j)× (1− d)

A(t, j)× d+B(t, j)× (1− d)

= 1− Z(t, j) (13)

Substituting from Equation (11) and (13) into Equa-
tion (10), we get:

Q
(
θ|θ(t)

)
=

N∑
j=1

{
Z(t, j)

×

[
M∑
i=1

(SiCj log ai + (1− SiCj) log(1− ai)) + log d

]
+ (1− Z(t, j))

×

[
M∑
i=1

(SiCj log bi + (1− SiCj) log(1− bi)) + log(1− d)

]}
(14)

The Maximization step (M-Step) is given by Equation (8).
We choose θ∗ (i.e., (a∗1, a

∗
2, ...a

∗
M ; b∗1, b

∗
2, ...b

∗
M )) that max-

imizes the Q
(
θ|θ(t)

)
function in each iteration to be the

θ(t+1) of the next iteration.
To get θ∗ that maximizes Q

(
θ|θ(t)

)
, we set the derivatives

∂Q
∂ai

= 0, ∂Q
∂bi

= 0, which yields:

N∑
j=1

[
Z(t, j)(SiCj

1

a∗i
− (1− SiCj)

1

1− a∗i
)

]
= 0

N∑
j=1

[
(1− Z(t, j))(SiCj

1

b∗i
− (1− SiCj)

1

1− b∗i
)

]
= 0

(15)

Let us define SJi as the set of measured variables the par-
ticipant Si actually observes in the observation matrix (i.e,
SC), and ¯SJi as the set of measured variables participant Si

does not observe in the observation matrix. Thus, Equation
(15) can be rewritten as:

∑
j∈SJi

Z(t, j)
1

a∗i
−
∑
j∈ ¯SJi

Z(t, j)
1

1− a∗i
= 0

∑
j∈SJi

(1− Z(t, j))
1

b∗i
−
∑
j∈ ¯SJi

(1− Z(t, j))
1

1− b∗i
= 0

(16)

Solving the above equations, we can get expressions of
the optimal a∗i and b∗i :

a
(t+1)
i = a∗i =

∑
j∈SJi Z(t, j)∑N
j=1 Z(t, j)

b
(t+1)
i = b∗i =

Ki −
∑
j∈SJi Z(t, j)

N −
∑N
j=1 Z(t, j)

(17)

where Ki is the number of measured variables observed
by participant Si and N is the total number of measured
variables in the observation matrix. Z(t, j) is defined in
Equation (11).

Given the above, The E-step and M-step of EM opti-
mization reduce to simply calculating Equation (11) and
Equation (17) iteratively until they converge. Since the
measured variable is binary, we can compute the optimal
decision vector H∗ from the converged value of Z(t, j).
Specially, hj is true if Z(t, j) ≥ 0.5 and false otherwise. At
the same time, we can also compute the optimal estimation
vector E∗ from the converged values of either a(t)

i or b(t)i
based on Equation (4). This completes the mathematical
development. We summarize the resulting algorithm in the
subsection below.

C. The Final Algorithm

Given the observation matrix SC, our algorithm begins
by initializing the parameter θ with random values between
0 and 12. The algorithm then performs the E-steps and M-
steps iteratively until θ converges. Specifically, we compute
the conditional probability of a measured variable to be true
(i.e., Z(t, j)) from Equation (11) and the probability that a
participant observes a measured variable given the variable
is true or false (i.e., a(t+1)

i , b
(t+1)
i ) from Equation (17). After

the estimated value of θ converges, we compute the optimal
decision vector H∗ (i.e., decide whether each measured
variable Cj is true or not) based on the converged value
of Z(t, j) (i.e., Zcj ). We can also compute the optimal esti-
mation vector E∗ (i.e., the estimated ti of each participant)
from the converged values of a(t)

i or b(t)i (i.e., aci or bci ) based
on Equation (4) as shown in the pseudocode in Algorithm 1.

2In practice, if the a rough estimate of the average reliability of
participants is known a priori, EM will converge faster



Algorithm 1 Expectation Maximization Algorithm
1: Initialize θ with random values between 0 and 1
2: while θ(t) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) based on Equation (11)
5: end for
6: θ(t+1) = θ(t)

7: for i = 1 :M do
8: compute a(t+1)

i , b
(t+1)
i based on Equation (17)

9: update a(t)i , b
(t)
i with a(t+1)

i , b
(t+1)
i in θ(t+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let aci = converged value of a(t)i ; bci = converged value of b(t)i
15: for j = 1 : N do
16: if Zc

j ≥ 0.5 then
17: h∗j is true
18: else
19: h∗j is false
20: end if
21: end for
22: for i = 1 :M do
23: calculate e∗i from aci or bci based on Equation (4)
24: end for
25: Return the computed optimal estimates of measured variables Cj = h∗j

and source reliability e∗i .

IV. EVALUATION

In this section, we carry out simulation experiments to
evaluate the performance of the proposed EM scheme in
terms of estimation accuracy of the probability that a partic-
ipant is right or a measured variable is true compared to other
state-of-art solutions. We begin by considering algorithm
performance for different abstract observation matrices (SC),
then apply it to a simulated participatory sensing application.
We show that the new algorithm outperforms the state of the
art.

A. A Simulation Study

We built a simulator in Matlab 7.10.0 that generates a
random number of participants and measured variables. A
random probability Pi is assigned to each participant Si rep-
resenting his/her reliability (i.e., the ground truth probability
that they report correct observations). For each participant
Si, Li observations are generated. Each observation has a
probability Pi of being true (i.e., reporting a variable as true
correctly) and a probability 1−Pi of being false (reporting
a variable as true when it is not). Remember that, as stated
in our application model, participants do not report “lack of
problems”. Hence, they never report a variable to be false.
We let Pi be uniformly distributed between 0.5 and 1 in our
experiments3.

In recent work, the authors demonstrated a heuristic,
called Bayesian Interpretation [24], that outperformed all

3In principle, there is no incentive for a participant to lie more than 50%
of the time, since negating their statements would then give a more accurate
truth

contenders from prior literature. We first compare our opti-
mal EM scheme against the Bayesian Interpretation heuris-
tic, under simulation conditions reported in the previous
paper. We then consider more challenging conditions not
investigated in [24], and compare EM to four state of the
art algorithms (including Bayesian Interpretation) in that sce-
nario. Results show a significant performance improvement
over all heuristics compared.

In the first scenario, we compare the estimation accuracy
of EM and the Bayesian Interpretation scheme by varying
the number of participants in the system. The number of
reported measured variables was fixed at 2000, of which
1000 variables were reported correctly and 1000 were mis-
reported. The average number of observations per participant
was set to 100. The number of participants was varied from
20 to 110. Results (computed probability estimates) were
averaged over 100 experiments involving the same sources
and variables. Figure 1 compares the accuracy of the two
schemes. Observe that EM has a much lower estimation
error in participant reliability (i.e., the probability that a
participant is right) compared to the Bayesian Interpretation
scheme, and zero false positives and false negatives (i.e.,
misclassified observations). False positives denote variables
misclassified as true (e.g., locations determined to contain
potholes where in fact they do not). False negatives denote
variables misclassified as false (i.e., real pothole reports
classified as incorrect).

The second scenario compares the two schemes when the
average number of observations per participant changes. As
before, we fix the number of correctly and incorrectly re-
ported variables to 1000 respectively. We also set the number
of participants to 30. The average number of observations
per participant is varied from 100 to 1000. Results are
averaged over 100 experiments. Figure 2 shows these results.
Note that, the participant reliability estimation error of the
EM scheme remains at a much lower level compared to the
Bayesian Interpretation scheme. No false positives or false
negatives are observed.

The third experiment examines the effect of changing
the measured variable mix on the estimation accuracy of
two schemes. We vary the ratio of the number of correctly
reported variables to the total number of reported variables
from 0.1 to 0.6, while fixing the total number of such
variables to 2000. The number of participants is fixed at 30
and the average number of observations per participant is set
to 150. Results are averaged over 100 experiments. These
results are shown in Figure 3. Again, we observe that EM
scheme continues to outperform the Bayesian Interpretation
scheme in both participant reliability and measured variable
estimation.

As done in [24], the performance comparison between
EM and Bayesian Interpretation averages results over mul-
tiple observation matrices. This is intended to approximate
performance where multiple matrices are reported (e.g., from
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Figure 1. Estimation Accuracy versus Number of Participants in Dense Sensing
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(c) Measured Variable Estimation: False Negatives
Figure 2. Estimation Accuracy versus Average Number of Observations per Participant in Dense Sensing
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Figure 3. Estimation Accuracy versus Ratio of Correctly Reported Measured Variables in Dense Sensing

successive observation intervals) involving the same set of
sources and measured variables. The next question to answer
is: will results still be accurate if only one observation matrix
is available?

The above question is answered by comparing EM,
Bayesian Interpretation and three previous fact-finder
schemes from prior literature that can function using only the
inputs offered in our problem formulation. These fact-finders
are Sums [18], Average-Log [20], and TruthFinder [26]. We
repeated the above experiments now using a single observa-
tion matrix. Reported results are averaged over 100 random
participant correctness probability distributions. First, we
show the performance comparison between EM and other
schemes by varying the number of participants in the net-
work. Results are shown in Figure 4. Observe that EM has
the smallest estimation error on participant reliability and the

least false positives among all schemes under comparison.
For false negatives, EM performs similarly to other schemes
when the number of participants is small and starts to gain
improvements when the number of participants becomes
large. Note also that the performance gain of EM becomes
large when the number of participants is small, illustrating
that EM is more useful when the observation matrix is
sparse.

We then repeat the second experiment to compare the
EM scheme with other baselines while varying the av-
erage number of observations per participant. The results
are shown in Figure 5. Observe that EM outperforms all
baselines in terms of both participant reliability estimation
accuracy and false positives as the average number of
observations per participant changes. For false negatives, EM
has similar performance as other baselines when the average
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Figure 4. Estimation Accuracy versus Number of Participants in Sparse Sensing
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Figure 5. Estimation Accuracy versus Average Number of Observations per Participant in Sparse Sensing
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Figure 6. Estimation Accuracy versus Ratio of Correctly Reported Measured Variables in Sparse Sensing

number of observations per participant is small and starts to
gain advantage as the average number of observations per
participant becomes large. As before, the performance gain
of EM is higher when the average number of observations
per participant is low, verifying once more the high accuracy
of EM for sparser observation matrices.

Finally, we repeated the third experiment comparing the
EM scheme to other baselines while varying the ratio of the
number of correctly reported variables to the total number of
measured variables in the network. We observe that EM has
almost the same performance as other fact-finder baselines
when the fraction of correctly reported variables is relatively
small. However, as the number of variables (correctly)
reported as true grows, EM is shown to have a better
performance in both participant reliability and measured
variable estimation. This concludes our general simulations.

In the next section, we simulate the performance of a specific
social sensing application.

B. A Geotagging Case Study

In this section, we applied the proposed EM scheme
to a typical participatory sensing application: Geotagging
locations of litter in a park or hiking area. In this application,
litter may be found along the trails (usually proportionally
to their popularity). Participants visiting the park geotag
and report locations of litter. Their reports are not reliable
however, erring both by missing some locations, as well
as misrepresenting other objects as litter. The goal of the
application is to find where litter is actually located in the
park, while disregarding all false reports.

To evaluate the performance of different schemes, we
define two metrics of interest: (i) false negatives defined
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as the ratio of litter locations missed by the EM scheme to
the total number of litter locations in the park, and (ii) false
positives defined as the ratio of the number of incorrectly
labeled locations by EM, to the total number of locations
in the park. We compared the proposed EM scheme to
the Bayesian Interpretation scheme and to voting, where
locations are simply ranked by the number of times people
report them.

We created a simplified trail map of a park, represented by
a binary tree. The entrance of the park (e.g., where parking
areas are usually located) is the root of the tree. Internal
nodes of the tree represent forking of different trails. We
assume trails are quantized into discretely labeled locations
(e.g., numbered distance markers). In our simulation, at
each forking location along the trails, participants have a
certain probability Pc to continue walking and 1 − Pc to
stop and return. Participants who decide to continue have
equal probability to select the left or right path. The majority
of participants are assumed to be reliable (i.e., when they
geotag and report litter at a location, it is more likely than
not that the litter exists at that location).

In the first experiment, we study the effect of the number
of people visiting the park on the estimation accuracy of
different schemes. We choose a binary tree with a depth of
4 as the trail map of the park. Each segment of the trail
(between two forking points) is quantized into 100 potential
locations (leading to 1500 discrete locations in total on all
trails). We define the pollution ratio of the park to be the
ratio of the number of littered locations to the total number
of locations in the park. The pollution ratio is fixed at 0.1
for the first experiment. The probability that people continue
to walk past a fork in the path is set to be 95% and the
percent of reliable participants is set to be 80%. We vary
the number of participants visiting the park from 5 to 50.
The corresponding estimation results of different schemes
are shown in Figure 7. Observe that both false negatives
and false positives decrease as the number of participants
increases for all schemes. This is intuitive: the chances of
finding litter on different trails increase as the number of
people visiting the park increases. Note that, the EM scheme
outperforms others in terms of false negatives, which means
EM can find more pieces of litter than other schemes under



the same conditions. The improvement becomes significant
(i.e., around 20%) when there is a sufficient number of
people visiting the park. For the false positives, EM performs
similarly to Bayesian Interpretation and Truth Finder scheme
and better than voting. Generally, voting performs the worst
in accuracy because it simply counts the number of reports
complaining about each location but ignores the reliability
of individuals who make them.

In the second experiment, we show the effect of park
pollution ratio (i.e, how littered the park is) on the estimation
accuracy of different schemes. The number of individuals
visiting the park is set to be 40. We vary the pollution ratio
of the park from 0.05 to 0.15. The estimation results of
different schemes are shown in Figure 8. Observe that both
the false negatives and false positives of all schemes increase
as the pollution ratio increases. The reason is that: litter is
more frequently found and reported at trails that are near
the entrance point. The amount of unreported litter at trails
that are far from entrance increases more rapidly compared
to the total amount of litter as the pollution ratio increases.
Note that, the EM scheme continues to find more actual
litter compared to other baselines. The performance of false
positives is similar to other schemes.

The evaluation demonstrates that the new EM scheme
generally outperforms the current state of the art in inferring
facts from participatory sensing data.

V. RELATED WORK

Social sensing, and participatory sensing in particular
has received significant attention due to the great increase
in the number of mobile sensors owned by individuals
(e.g., smart phones with GPS, camera and etc.) and the
proliferation of Internet connectivity to upload and share
sensed data (e.g., WiFi and 4G networks). The concept of
participatory sensing was first introduced in [7]. A broad
overview of such applications is presented in [1]. Some early
applications of participatory sensing include CenWits [15],
a participatory sensor network to search and rescue hikers
in emergency situations, CarTel [17], a vehicular sensor net-
work for traffic monitoring and mitigation, and BikeNet [12],
a bikers sensor network for sharing cycling related data
and mapping the cyclist experience. More recent work has
focused on addressing the challenges of preserving privacy
and building general models in sparse and multi-dimensional
social sensing space [2], [3], [14]. Participatory sensing is
often organized as “sensing campaigns” where participants
are recruited to contribute their personal measurements as
part of a large-scale effort to collect data about a population
or a geographical area. Examples include documenting the
quality of roads [22], the level of pollution in a city [19],
or reporting garbage cans on campus [21]. In addition to
sensing applications where participants are recruited, social
sensing can also be triggered spontaneously without prior
coordination (e.g., via Twitter and Youtube). Recent research

attempts to understand the fundamental factors that affect
the behavior of these emerging social sensing applications,
such as analysis of characteristics of social networks [8],
information propagation [16] and tipping points [25].

To assess the credibility of facts reported in participatory
sensing and other social sensing applications, a relevant
body of work in the machine learning and data mining
communities performs trust analysis. Hubs and Authorities
[18], for example, used a basic fact-finder where the belief in
an assertion c is B(c) =

∑
s∈Sc

T (s) and the truthfulness of
a source s is T (s) =

∑
c∈Cs

B(c), where Sc and Cs are the
sources claiming a given assertion and the assertions claimed
by a particular source, respectively. Pasternack et al. extend
the fact-finder framework by incorporating prior knowledge
into the analysis and proposes several extended algorithms:
Average.Log, Investment, Pooled Investment [20]. Yin et al
introduce TruthFinder as an unsupervised fact-finder for trust
analysis on a providers-facts network [26]. Other fact-finders
enhance the basic framework by incorporating analysis on
properties or dependencies within assertions or sources.
Galland et al. [13] take the notion of hardness of facts
into consideration by proposing their algorithms: Cosine,
2-Estimates, 3-Estimates. The source dependency detection
problem has been discussed and several solutions have been
proposed [5], [10], [11]. Additionally, trust analysis has
been done both on a homogeneous network [4], [27] and
a heterogeneous network [23]. Our proposed EM scheme
is the first piece of work that finds a maximum likelihood
estimator to directly and optimally quantify the accuracy
of conclusions obtained from credibility analysis in social
sensing.

The Bayesian Interpretation scheme [24] comes closest
to our current work. It represents an initial effort to lay out
solid analytical foundations for fact-finding. However, the
Bayesian Interpretation remains an approximation approach
in which the accuracy of truth estimation is very sensitive
to initial conditions of iterations. Due to this limitation,
as shown in the current paper, EM outperforms Bayesian
Interpretation.

In this paper, we intentionally start with a simplified
application model, where the measured variables are binary,
measurements are independent, and participants do not influ-
ence each other’s reports (e.g., do not propagate each other’s
rumors). Subsequent work will address the above limitations.

VI. CONCLUSION

This paper described a maximum likelihood estimation
approach to accurately discover the truth in social sensing
applications. The approach can determine the correctness
of reported observations given only the measurements sent
without knowing the trustworthiness of participants. The
optimal solution is obtained by solving an expectation max-
imization problem and can directly lead to an analytically
founded quantification of the correctness of measurements



as well as the reliability of participants. Evaluation results
show that non-trivial estimation accuracy improvements can
be achieved by the proposed maximum likelihood estimation
approach compared to other state of the art solutions.
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