

Oracle Data Guard 11gR2
Administration Beginner's Guide

Learn how to build and maintain Data Guard configurations
with real-life, practical examples

Emre Baransel

Nassyam Basha

BIRMINGHAM - MUMBAI

Oracle Data Guard 11gR2 Administration Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1170613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-790-4

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

Credits

Authors
Emre Baransel

Nassyam Basha

Reviewers
Syed Jaffar Hussain

Michael Seberg

Joel Perez

Acquisition Editor
Martin Bell

Lead Technical Editor
Susmita Panda

Technical Editors
Ankita Meshram

Veena Pagare

Zafeer Rais

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreaders
Dirk Manuel

Stephen Copestake

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

 About the Authors

Emre Baransel is a graduate of Electrical and Electronic engineering and has two Master's,
one in Business Administration and the other one in Information Systems. He has been
working in the IT industry for the past 10 years. He has worked for one of the largest
fixed-line and GSM technology-based companies in Turkey. He was nominated as an Oracle
ACE in 2012. He's an Oracle Certified Professional (OCP), a founding member of TROUG
(Turkish Oracle User Group), and a blogger at emrebaransel.blogspot.com. He has
spoken at the Oracle Open World in the US and at user group conferences in different
countries of Europe. He has also contributed to the Oracle RMAN 11g Backup and Recovery
book in 2010. He has focused specially on high database availability and disaster recovery
solutions, cloud technologies, and database security.

First of all, I would like to thank the love of my life, my wife Tulay, for her
patience and support during the time I was writing this book, and my super
sweet son Demir for his presence in my life. I would also like to thank my
co-author Nassyam for his great effort on this book under intense work
pressure, the technical reviewers Jaffar, Joel, and Michael for their valuable
time, and the Packt Publishing team for all their help and labor on this
book. Thousands of hours were spent on this book by many different
people. Thank you all who made this book possible.

Nassyam Basha is a Database Administrator. He has around seven years of IT experience
of which the last five years have been as a Production Oracle DBA. He is a post graduate
who holds a master's degree in Computer Applications from the University of Madras. He
started working with dBase and FoxPro, and has participated in several projects with FoxPro
and Oracle database starting from Oracle 7. He is an Oracle 10g Certified Professional having
good knowledge in Oracle technologies such as Data Guard, RMAN, RAC, and performance
tuning. He has completed more than 90 Data Guard setups on all platforms, from RAC to
non-RAC and successful cluster migrations with switchovers and failovers for many business-
critical production databases with major Data Guard-related issues. He actively participates
in Oracle-related forums such as OTN, having 9000+ posts, using the profile Freelists
(https://forums.oracle.com/forums/profile.jspa?editMode=true&user
ID=651869). He maintains an Oracle technology-related blog, (www.oracle-ckpt.com)
and he is reachable at nassyambasha@gmail.com.

Above and beyond all others, I have to thank my Almighty Allah and my
parents N. Abdul Aleem and Rahimunnisa. Without them I wouldn't have
been able to be what I am today. A special thanks to my brother Nawaz
Basha who has been with me all the time, in joy and even in sadness, and
to my family members Zaheer Ahamed, Farhana, Riyana, niece Fathima
Zehra, and my nephew Azzoo. I would also like to express my gratitude
to Oracle professionals such as Shahbaz, Mohammad Farhan, Syed Jaffar
Hussain, Chinar Aliyev, Michael Seberg, Uwe Hesse, Mohamed Houri,
Adi Narayana, and all my friends along with my favorite authors Larry
Carpenter and Joseph Meeks. I shall not forget to thank my clients and
colleagues who have provided me with invaluable opportunities to expand
my knowledge and shape my career. My heartfelt appreciation goes to the
technical reviewers of this book, Syed Jaffar Hussain, Michael Seberg, and
Joel Perez for the time they have spent reviewing this book, and to Packt
Publishing's team members, Stephanie Moss, Leena Purkait, and Martin
Bell for their support. Thanks to all of them and to their team members for
giving me the opportunity to write this book. Last but not the least, I would
like to say a big thanks to Emre Baransel who gave me the opportunity to
co-author this book with him. His help, along with his direction were strong
assets to write. Thank you Emre.

About the Reviewers

Syed Jaffer Hussain has been an Oracle Database Expert for over 14 years in his 20
years of Information Technology (IT) career. Over the past 14 years of his Oracle journey,
he has been associated with several local and large-scale international banks where he
implemented and managed very complex cluster and non-cluster environments with
hundreds of business critical databases. Recognizing his efforts and contribution towards
the community, Oracle awarded him the prestigious Best DBA of the year award in 2011,
and bestowed him with the Oracle ACE Director status. He has also acquired a number of
industry best-Oracle credentials, such as Oracle Certified Master (OCM), Oracle RAC Expert,
and OCP DBA 8i, 9i, 10g, and 11g in addition to ITIL expertise.

Syed is an active Oracle speaker. He regularly presents technical sessions and webinars
on various Oracle technologies at many Oracle events. You can visit his technical blog at
http://jaffardba.blogspot.com, where he discusses and writes about workarounds/
solutions for the issues confronted by him in his day-to-day activities.

Apart from being a part of the core Technical Review committee for a few Oracle technology-
oriented books, he has also co-authored the books Oracle 11g R1/R2 Real Application Cluster
Essentials and Oracle Expert RAC.

I would like to thank the Almighty and my parents for giving me everything
I needed to become what I am today in life. Also, I owe a very big thanks
to my wife Ayesha and my three champs (Ashfaq, Arfan, and Aahil) for
allowing me to concentrate on my work by sacrificing their family time. Last
but not the least, from the bottom of my heart, I would like to thank every
individual who stood behind me and supported me morally during my ups
and downs and encouraged me all through my life.

Michael Seberg has worked with Oracle since Version 7.3 in programming and
administration. In the spring of 2010, Michael took on data protection for his employer,
designing a complete failover site for Oracle using Data Guard. He has done extensive
testing of switchover, failover, and monitoring of Data Guard. An Oracle generalist, Michael
also works with Fusion Middleware, Forms and Reports, PHP, JSP, and Linux. He also does
development in PL SQL, Object Pascal, and Java. Michael maintains a large personal website
dedicated to Oracle technologies. He is a frequent contributor to the Oracle Technology
Network (OTN) forum.

I would like to thank my wife Andrea for her commitment and patience
with me.

Joel Perez is an expert DBA with over 12 years of specialized experience in several database
areas with special focus on high availability and disaster recovery solutions (RAC, RMAN,
Data Guard, and so on), upgrades, backup and recovery, database hardening, performance
tuning, and others. During these years, Joel has worked as a Senior Consultant with a large
number of companies and clients in various countries namely Venezuela, Panama, Costa
Rica, Dominican Rep., Haiti, Nicaragua, Guatemala, Colombia, Honduras, Ecuador, Mexico,
India, and others. Joel is a frequent speaker at many events such as OTN LAD TOUR. Among
other complementary activities, Joel teaches high availability courses in Oracle University of
several countries in Latin America and publishes articles for OTN LAD. Joel was the first Latin
American to be named OTN Expert in the year 2003. Joel has been an Oracle ACE since 2004
and an Oracle ACE Director since 2012.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

What is Data Guard?	 7
Standby database	 8

Physical standby database	 9
Logical standby database	 10
Snapshot standby database	 10

Oracle Data Guard evolution	 11
Version 7.3 – stone age	 11
Version 8i – first age	 11
Version 9i – middle age	 12
Version 10g – new age	 12
Version 11g – modern age	 13

Oracle Data Guard architecture	 14
Data Guard services	 15

Redo transport services	 15
Apply services	 18

Time for action – monitoring Redo Apply	 19
SQL Apply (logical standby databases)	 23

Role transitions	 23
Switchover	 24
Failover	 24

User interfaces for administering Data Guard	 25
SQL*Plus	 25
DGMGRL	 25
Enterprise Manager	 25

Time for action – using interfaces to monitor Data Guard	 26
Data Guard background processes	 29

Table of Contents

[ii]

Other replication solutions and Data Guard	 30
Storage-based replication solutions	 30
GoldenGate and Streams	 31

Summary	 34
Chapter 2: Configuring the Oracle Data Guard Physical Standby Database	 35

Preconfiguration for Data Guard	 35
Data loss consideration	 36
Network bandwidth consideration	 37
Preparing the primary database	 37

Archive log mode	 37
Time for action – enabling the archive log mode	 38

Force logging	 39
Time for action – enabling force logging	 40

Standby redo logs 	 40
Time for action – configuring standby redo logs on primary	 41

Fast recovery area (FRA)	 42
Time for action – enabling FRA	 43

Understanding initialization parameters	 44
DB_NAME	 44
DB_UNIQUE_NAME	 44
LOG_ARCHIVE_CONFIG	 45
LOG_ARCHIVE_MAX_PROCESSES	 46
LOG_ARCHIVE_DEST_n	 46
LOCATION and SERVICE	 47
VALID_FOR	 47
SYNC and ASYNC	 48
AFFIRM and NOAFFIRM	 49
COMPRESSION	 49
MAX_CONNECTIONS	 49
MAX_FAILURE	 50
REOPEN	 50
NET_TIMEOUT	 51
DELAY	 51
LOG_ARCHIVE_DEST_STATE_n	 52

Creating the physical standby database	 53
Standby database related initialization parameters	 53

FAL_SERVER	 53
STANDBY_FILE_MANAGEMENT	 54
DB_FILE_NAME_CONVERT	 54
LOG_FILE_NAME_CONVERT	 55

The physical standby database instance	 55
Time for action – starting the physical standby instance and making it ready
for the RMAN duplicate	 55

Using RMAN duplicate to create physical standby databases	 61

Table of Contents

[iii]

Time for action – running an RMAN duplicate	 62
Post-installation steps	 65

Verifying the standby database configuration	 65
Time for action – verifying the standby database configuration	 65

Managing Redo Apply	 67
Time for action – starting, stopping, and monitoring MRP	 67

Verifying synchronization between the primary and standby databases	 71
Time for action – verifying synchronization between the primary and
standby databases	 72
Time for action – testing real-time apply	 74
Summary	 77

Chapter 3: Configuring Oracle Data Guard Logical Standby Database	 79
Logical standby database characteristics	 79

Not everything must be duplicated	 80
Use for reporting at all times	 80
Independent standby database objects	 80
Protecting writes on replicated standby tables	 81
Limitation for specific data types and objects	 81
High availability and disaster recovery considerations	 82

Preparation for the configuration	 82
Time for action – checking for the unsupported data types	 83
Time for action – searching for and fixing any table row uniqueness problem	 85
Creating a logical standby database	 87
Time for action – making a physical standby database environment ready
for conversion	 88
Time for action – converting a physical standby database into a logical
standby database	 90
Verifying the logical standby database	 94
Time for action – checking the redo transport service status	 94
Time for action – checking the SQL Apply service status	 96
Customization and management in a logical standby database	 98

Selective replication in a logical standby database	 98
Time for action – working with skip rules on a logical standby database	 98

Data base Guard settings for the logical standby database	 103
Time for action – changing the Database Guard setting	 104

Disabling database guard for a session	 105
Creating objects on the logical standby database	 106

Creating and re-creating tables	 106
Creating scheduler jobs	 106
Creating materialized views	 107

Table of Contents

[iv]

Time for action – creating objects on the logical standby database	 107
Automatic deletion of archived logs	 111

Deletion of the foreign archived logs	 111
Deletion of the local archived logs	 113

Summary	 113
Chapter 4: Oracle Data Guard Broker	 115

Introduction to Data Guard broker	 115
Data Guard broker features and benefits	 117

Centralized and simple management	 117
Cloud Control integration	 117
Oracle Data Guard and RAC	 117
Role transition with Data Guard broker	 118
Data Guard fast-start failover	 118

Recommendation	 118
Data Guard broker components	 119

Oracle Data Guard broker server-side components	 119
Data Guard Monitor process (DMON)	 120
Configuration file	 121

Oracle Data Guard broker client-side components	 121
DGMGRL utility	 121
Enterprise Manager Cloud Control client	 121

Implementation of Oracle Data Guard broker	 122
Time for action – initial setup of Data Guard broker	 122
Time for action – connecting to Data Guard broker	 125
Time for action – basic monitoring with Data Guard broker	 127
Management with Data Guard broker	 131

Enabling and disabling broker configuration	 131
Time for action – disabling broker configuration	 131

Enabling and disabling a standby database	 132
Time for action – disabling and enabling database	 133

Changing configuration and database properties using broker	 134
Time for action – changing the database name	 135

Changing the state of the database	 137
Troubleshooting Data Guard broker	 138
Data Guard tracing	 139

Most Common Data Guard broker issues	 139
ORA-16797: database is not using a server parameter file	 139
ORA-10458:standby database requires recovery	 140
ORA-16737:the redo transport service for standby database "string"
has an error	 141
ORA-16715:redo transport-related property string of standby
database "string" is inconsistent	 142

Table of Contents

[v]

ORA-12514:TNS:listener does not currently know of service requested
in connect descriptor	 143

Current listener description	 143
Oracle Data Guard fast-start failover	 144
Time for action – configuring fast-start failover	 146

Troubleshooting observer configuration	 149
Script to stop and start observer	 151

Summary	 151
Chapter 5: Data Guard Protection Modes	 153

The Maximum Protection mode	 154
The Maximum Performance mode	 155
The Maximum Availability mode	 155
Choosing the correct mode for your requirements	 156
Changing Data Guard protection mode	 157
Time for action – changing the protection mode with SQL*Plus	 157
Time for action – changing the protection mode with Data Guard broker	 163
Time for action – changing the protection mode with Enterprise Manager
Cloud Control	 165
Summary	 172

Chapter 6: Data Guard Role Transitions	 173
Role transition considerations	 173
Switchover	 174

Performing switchover with a physical standby database using SQL*Plus	 176
Time for action – preliminary tests before performing switchover	 176
Time for action – switchover with a physical standby using SQL*Plus	 179

Performing switchover with a physical standby database using broker	 184
Time for action – switchover with a physical standby using broker	 184

Performing switchover with a physical standby database using
EM Cloud Control	 185

Time for action – switchover with a physical standby using EM Cloud Control	 186
Performing switchover with a logical standby database using SQL*Plus	 187

Time for action – switchover with a logical standby database using SQL*Plus	 188
Performing switchover with a logical standby database using broker	 192

Time for action – switchover with a logical standby using broker	 192
Failover	 194

Performing failover with a physical standby database	 195
Time for action – failover with a physical standby database using SQL*Plus	 196

Performing failover with a logical standby database	 199
Time for action – failover with a logical standby using broker	 199
Summary	 201

Table of Contents

[vi]

Chapter 7: Active Data Guard, Snapshot Standby, and
Advanced Techniques	 203

Oracle Active Data Guard	 204
Why Active Data Guard?	 204
Oracle Data Guard license	 207
Enabling Active Data Guard	 208

Time for action – enabling Active Data Guard if Redo Apply is running
using SQL *PLUS	 208
Time for action – enabling Active Data Guard if the standby database is
shut down	 209
Time for action – enabling Active Data Guard using broker	 210

Monitoring Active Data Guard	 212
From primary	 212
From standby	 213

Active Data Guard with applications	 213
Active Data Guard with PeopleSoft	 214

Time for action – Active Data Guard with PeopleSoft	 215
Active Data Guard with EBS	 216
Active Data Guard with TopLink	 217
Active Data Guard with Oracle BI	 218
Active Data Guard with SAP	 218

Active Data Guard features	 219
EXPDP from standby database using NETWORK_LINK (ADG)	 219

Time for action – exporting a database backup from Active Data Guard	 219
Time for action – using the ASH report from the standby database	 220
Using a snapshot standby database	 223
Time for action – converting to a snapshot standby database	 223
Time for action – converting to a physical standby database	 225
Cascade standby databases	 227

Limitations with cascade standby database	 228
Time for action – cascade standby database	 228
Advanced compression in Data Guard	 231
Time for action – enabling advanced compression	 231
Preparation of standby on a cross-platform Data Guard	 233
Time for action – creating a cross-platform Data Guard setup	 234
Data Guard tuning and wait events	 237

Network tuning	 237
Redo transport and apply tuning	 238
Data Guard wait events	 240

Summary	 241

Table of Contents

[vii]

Chapter 8: Integrating Data Guard with the Complete Oracle Environment	 243
The Oracle Enterprise Manager Cloud Control integration	 243
Time for action – adding the Data Guard configuration into Cloud Control	 244

Cloud Control Data Guard administration home page	 250
Modifying the Data Guard configuration	 251

Time for action – enabling/disabling fast-start failover	 254
Monitoring Data Guard performance	 258
Using Incident Manager to monitor Data Guard 	 259

Time for action – setting the threshold and creating an incident for
estimated failover time metric	 261
RMAN integration	 264

Integration requirements and best practices	 264
Physical standby requirement	 264
RMAN Catalog requirement	 264
Using a different DB_UNIQUE_NAME	 265
General RMAN best practices	 265

RMAN settings for the Data Guard environment 	 265
Registering primary database in the catalog	 266
Configuring RMAN settings for primary database:	 266
Configuring RMAN settings for standby database	 268
Checking the RMAN configuration	 268

Time for action – recovering a primary database using a standby
database disk backup	 270

Using block change tracking with Data Guard	 272
RAC integration	 273

A RAC primary database with a single instance standby database	 274
A RAC primary database with a RAC standby database	 275

Summary	 275
Chapter 9: Data Guard Configuration Patching	 277

What is patch and what are patch types?	 277
Interim patch	 278
CPU/SPU patches	 278
PSU patches	 278
Patch set	 278
Patching on Data Guard	 279

Best practices of patching	 279
Upgrading OPatch	 279
Performing prerequisite checks of patch	 280
How to clean up patch history?	 281
Patching on Data Guard configuration	 282

How to apply an interim/bug patch on logical standby?	 282

Table of Contents

[viii]

Time for action – applying a patch on logical standby	 283
How to apply a PSU patch on physical standby database using broker?	 287

Time for action – applying PSU on a physical standby database	 288
How to apply patch set on physical standby (11.2.0.1 to 11.2.0.3)?	 296

Time for action – patch set upgrade of physical standby	 296
Summary	 304

Chapter 10: Common Data Guard Issues	 305
Recreating the standby control file	 306
Time for action – recreating the standby control file 	 307
Dealing with redo transport authentication problems	 311
Time for action – changing the SYS password in a Data Guard environment	 311
Time for action – changing the redo transport user 	 313
Dealing with UNNAMED datafiles	 315
Time for action – resolving UNNAMED datafile errors	 315
Closing a gap with an RMAN incremental backup	 317
Time for action – closing a gap with an RMAN incremental backup	 318
Fixing NOLOGGING changes on the standby database	 322
Time for action – fixing NOLOGGING changes on a standby database with
incremental datafile backups	 323
Time for action – fixing NOLOGGING changes in the standby database with
incremental database backups	 325
Turning on Data Guard tracing	 326
Gathering diagnostic data	 328

Alert log and trace files	 328
Time for action – monitoring the database alert log using ADRCI	 330

Data Guard broker logs	 334
Dynamic performance views	 335

Summary	 338
Chapter 11: Data Guard Best Practices	 339

Configuring a connection failover	 339
Transparent Application Failover (TAF)	 340

Configuring the client-side TAF	 341
Configuring the server-side TAF	 341

Fast Connection Failover (FCF)	 344
Time for action – configuring FCF for JDBC connections	 344

Fast Application Notification (FAN)	 346
The archived log deletion policy on the standby database	 347
Time for action – the recommended configuration for archived log
maintenance on a standby database	 347

Table of Contents

[ix]

Using flashback on a standby database	 348
Time for action – using flashback on a standby database	 349
Database rolling upgrade using the transient logical standby database	 355
Time for action – performing a rolling upgrade using the transient
logical standby database	 355
Corruption detection, prevention, and automatic repair with Oracle Data Guard	 366

DB_BLOCK_CHECKSUM	 367
DB_BLOCK_CHECKING	 368
DB_LOST_WRITE_PROTECT	 369
Automatic block media repair	 369

Summary	 370
Pop Quiz Answers	 371

Chapter 1, Getting Started	 371
Chapter 5, Data Guard Protection Modes	 371
Chapter 9, Data Guard Configuration Patching	 372
Chapter 10, Common Data Guard Issues	 372

Index	 373

Preface

Data Guard is the Oracle technology that meets high availability, disaster recovery, and
data protection requirements for the Oracle Database, and is the market leader product
for this scope. In enterprise systems, Data Guard is very widely used, so managing Data
Guard configurations is a common task of Oracle DBAs. This administration task is not just
about installing and keeping standby databases synchronized with the primary database.
DBAs also provide standby databases for reporting and testing purposes, recovering partial
data by using them, performing role transitions for disaster recovery testing or for planned
maintenance operations, integrating Data Guard with the existing Oracle environment, and
so on. As an Oracle DBA, you need to learn how to install and maintain Data Guard and
benefit from it as much as possible.

In this practical book, you'll not only be introduced to Oracle Data Guard, you'll also see all
aspects of Data Guard administration with examples, recipes, and best practices. We'll start
by learning about the fundamental components of Data Guard, and then continue with
configuring physical and logical standby databases of Data Guard. The important details
and best practices of Data Guard administration will be covered later on.

What this book covers
Chapter 1, Getting Started, includes an introduction to Oracle Data Guard. Configuration
elements, the architecture of the physical and logical standby databases, Data Guard
services, the history of Data Guard, and a comparison with other replication solutions are
covered in this chapter.

Chapter 2, Configuring the Oracle Data Guard Physical Standby Database, explains how
to prepare the configuration from scratch, create a physical standby database including
post tasks with a step-by-step approach, and verify the physical standby database recovery
including real-time apply.

Chapter 3, Configuring Oracle Data Guard Logical Standby Database, shows you how to
prepare a logical standby database configuration with pre and post steps. Customization
and management in a logical standby database are also covered.

Chapter 4, Oracle Data Guard Broker, explains the detailed implementation of the Data
Guard broker, monitoring and managing Data Guard using the broker, troubleshooting the
Data Guard broker, and configuring fast-start failover (FSFO).

Chapter 5, Data Guard Protection Modes, focuses on the three data protection modes
of Oracle Data Guard. You'll learn how to choose the correct mode for your requirements
and how to change modes using SQL*Plus, the Data Guard broker, and Enterprise Manager
Cloud Control.

Chapter 6, Data Guard Role Transitions, will include the necessary steps to accomplish
successful switchover and failover operations in the physical and logical standby database
environments. It also covers different tools to perform role transitions.

Chapter 7, Active Data Guard, Snapshot Standby, and Advanced Techniques, explains what
Active Data Guard is, how to integrate applications with Active Data Guard, and several
advantages of using it, such as performing Data Pump exports, gathering ASH reports, and
advanced compression. This chapter also describes how to use snapshot standby, implement
cascade standby databases, configure the cross-platform Data Guard setup, and also
provides a brief on Data Guard tuning.

Chapter 8, Integrating Data Guard with the Complete Oracle Environment, explains the
configuration steps required to integrate Data Guard with Enterprise Manager Grid Control,
RMAN, and RAC. Integrating Data Guard with these products is crucial to make an efficient
configuration and take advantage of all of these products together.

Chapter 9, Data Guard Configuration Patching, explains how to apply one-off patches and
patch set updates to databases in a Data Guard environment, and some best practices
of patching.

Chapter 10, Common Data Guard Issues, gives practical information for dealing with some
very common issues in Data Guard that every administrator needs to know and experience.

Chapter 11, Data Guard Best Practices, includes very important information regarding how
to make a Data Guard configuration perfect and take maximum advantage of Data Guard
properties. Connection failover, deletion of archived log files, using flashback, database
rolling upgrade using transient logical standby and corruption detection, and prevention
and automatic repair with Oracle Data Guard are covered.

What you need for this book
In order to follow the exercises in this book, you must install the Oracle Database 11g
Release 2 software on two separate database servers (primary and standby). You can use
a virtual machine to create virtual database servers on your PC. Also, a database has to
be created on the primary database server. The Oracle management software, Enterprise
Manager 12c Cloud Control, needs to be installed to follow specific exercises using this tool.

Who this book is for
If you are an Oracle DBA who wants to configure and administer Data Guard and improve
your knowledge on Data Guard with a step-by-step approach and hands-on scenarios, this
book is for you. With a basic understanding of Oracle database administration you'll easily
be able to follow the book.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Preface

[4]

Have a go hero – heading
These are practical challenges that give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: The
LOG_ARCHIVE_DEST_n parameters must be configured properly on every instance of
primary and standby databases to show remote archiving destinations.

A block of code is set as follows:

LOG_ARCHIVE_CONFIG =
{
 [SEND | NOSEND]
 [RECEIVE | NORECEIVE]
 [DG_CONFIG=(remote_db_unique_name1, ... remote_db_unique_name9) |
NODG_CONFIG]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 2 DBMS_SCHEDULER.CREATE_JOB (
 3 JOB_NAME => 'REFRESH_EMPDEPT_MV_PRIMARY' ,
 4 JOB_TYPE => 'PLSQL_BLOCK',

Any command-line input or output is written as follows:

RFS LogMiner: Registered logfile [/u01/app/oracle/archive_
std/1_106_791552282.arc] to LogMiner session id [1]

...

LOGMINER: Begin mining logfile for session 1 thread 1 sequence 106, /u01/
app/oracle/archive_std/1_106_791552282.arc

LOGMINER: End mining logfile for session 1 thread 1 sequence 106, /u01/
app/oracle/archive_std/1_106_791552282.arc

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: Expand the Data Guard
Performance category and click on the Estimated Failover Time section.

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

The objective of this chapter is to make you familiar with the Oracle Data Guard
11gR2 environment. We will discuss the definition, properties, and history
of Data Guard. You will become accustomed with the concepts of standby
databases and how Data Guard provides the robust solution of high availability
and disaster recovery.

In this chapter, we will discuss the following topics:

�� The definition and features of Data Guard

�� The evolution of Data Guard

�� The architecture and topology of Data Guard

�� Comparison of Data Guard with other replication solutions

Let's get on with learning what Oracle Data Guard is and its primary features are.

What is Data Guard?
Data Guard, which was introduced as the standby database in Oracle database Version 7.3
under the name of Data Guard with Version 9i, is a data protection and availability solution
for Oracle databases. The basic function of Oracle Data Guard is to keep a synchronized
copy of a database as standby, in order to make provision, incase the primary database is
inaccessible to end users. These cases are hardware errors, natural disasters, and so on. Each
new Oracle release added new functionalities to Data Guard and the product became more
and more popular with offerings such as data protection, high availability,
and disaster recovery for Oracle databases.

Getting Started

[8]

Using Oracle Data Guard, it's possible to direct user connections to a Data Guard standby
database automatically with no data loss, in case of an outage in the primary database. Data
Guard also offers taking advantage of the standby database for reporting, test, and backup
offloading. Corruptions on the primary database may be fixed automatically by using the
non-corrupted data blocks on the standby database. There will be minimal outages (seconds
to minutes) on the primary database in planned maintenances such as patching and
hardware changes by using the switchover feature of Data Guard, which changes the roles
of the primary and standby databases. All of these features are available with Data Guard,
which doesn't require an installation but a cloning and configuration of the Oracle database.

A Data Guard configuration consists of two main components: primary database and standby
database. The primary database is the database for which we want to take precaution for
its inaccessibility. Fundamentally, changes on the data of the primary database are passed
through the standby database and these changes are applied to the standby database in
order to keep it synchronized.

The following figure shows the general structure of Data Guard:

Standby
Database
Update (Redo
Apply or SQL
Apply)

Primary
Database
Updates
(DBWn)

Standby
Database

Database Server A

Primary Instance
Redo Transport

Database Server B

Standby Instance

Primary
Database

Storage A Storage B

Let's look at the standby database and its properties more closely.

Standby database
It is possible to configure a standby database simply by copying, cloning, or restoring a
primary database to a different server. Then the Data Guard configurations are made on the
databases in order to start the transfer of redo information from primary to standby and also
to start the apply process on the standby database.

Chapter 1

[9]

Primary and standby databases may exist on the same server; however,
this kind of configuration should only be used for testing. In a production
environment, the primary and standby database servers are generally
preferred to be on separate data centers.

Data Guard keeps the primary and standby databases synchronized by using redo
information. As you may know, transactions on an Oracle database produce redo records.
This redo information keeps all of the changes made to the database. The Oracle database
first creates redo information in memory (redo log buffers). Then they're written into online
redo logfiles, and when an online redo logfile is full, its content is written into an archived
redo log.

An Oracle database can run in the ARCHIVELOG mode or the
NOARCHIVELOG mode. In the ARCHIVELOG mode, online redo
logfiles are written into archived redo logs and in the NOARCHIVELOG
mode, redo logfiles are overwritten without being archived as they
become full. In a Data Guard environment, the primary database must
be in the ARCHIVELOG mode.

In Data Guard, transfer of the changed data from the primary to standby database is
achieved by redo with no alternative. However, the apply process of the redo content to the
standby database may vary. The different methods on the apply process reveal different
type of standby databases.

There were two kinds of standby databases before Oracle database Version 11g, which
were: physical standby database and logical standby database. Within Version 11g we
should mention a third type of standby database which is snapshot standby. Let's look
at the properties of these standby database types.

Physical standby database
The Physical standby database is a block-based copy of the primary database. In a physical
standby environment, in addition to containing the same database objects and same data,
the primary and standby databases are identical on a block-for-block basis. Physical standby
databases use Redo Apply method to apply changes. Redo Apply uses Managed recovery
process (MRP) in order to manage application of the change in information on redo.

In Version 11g, a physical standby database can be accessible in read-only mode while Redo
Apply is working, which is called Active Data Guard. Using the Active Data Guard feature, we
can offload report jobs from the primary to physical standby database.

Getting Started

[10]

Physical standby database is the only option that has no limitation
on storage vendor or data types to keep a synchronized copy of
the primary database.

Logical standby database
Logical standby database is a feature introduced in Version 9iR2. In this configuration, redo
data is first converted into SQL statements and then applied to the standby database. This
process is called SQL Apply. This method makes it possible to access the standby database
permanently and allows read/write while the replication of data is active. Thus, you're also
able to create database objects on the standby database that don't exist on the primary
database. So a logical standby database can be used for many other purposes along with
high availability and disaster recovery.

Due to the basics of SQL Apply, a logical standby database will contain the same data as the
primary database but in a different structure on the disks.

One discouraging aspect of the logical standby database is the unsupported data types,
objects, and DDLs. The following data types are not supported to be replicated in a logical
standby environment:

�� BFILE

�� Collections (including VARRAYS and nested tables)

�� Multimedia data types (including Spatial, Image, and Oracle Text)

�� ROWID and UROWID

�� User-defined types

The logical standby database doesn't guarantee to contain all primary data because of the
unsupported data types, objects, and DDLs. Also, SQL Apply consumes more hardware
resources. Therefore, it certainly brings more performance issues and administrative
complexities than Redo Apply.

Snapshot standby database
Principally, a snapshot standby database is a special condition of a physical standby
database. Snapshot standby is a feature that is available with Oracle Database Version 11g.
When you convert a Physical standby database into a snapshot standby database, it becomes
accessible for read/write. You can run tests on this database and change the data. When
you're finished with the snapshot standby database, it's possible to reverse all the changes
made to the database and turn it back to a physical standby again.

An important point here is that a snapshot standby database can't run Redo Apply. Redo
transfer continues but standby is not able to apply redo.

Chapter 1

[11]

Oracle Data Guard evolution
It has been a long time that the Oracle Data Guard technology has been in the database
administrator's life and it apparently evolved from the beginning until 11gR2. Let's look
at this evolution closely through the different database versions.

Version 7.3 – stone age
The functionality of keeping a duplicate database in a separate server, which can be
synchronized with the primary database, came with Oracle database Version 7.3 under
the name of standby database. This standby database was constantly in recovery mode
waiting for the archived redo logs to be synchronized. However, this feature was not able
to automate the transfer of archived redo logs. Database administrators had to find a way
to transfer archived redo logs and apply them to the standby server continuously. This was
generally accomplished by a script running in the background.

The only aim of Version 7.3 of the standby database was disaster recovery. It was not
possible to query the standby database or to open it for any purpose other than activating it
in the event of failure of the primary database. Once the standby database was activated, it
couldn't be returned to the standby recovery mode again.

Version 8i – first age
Oracle database Version 8i brought the much-awaited features to the standby database and
made the archived log shipping and apply process automatic, which is now called managed
standby environment and managed recovery, respectively. However, some users were
choosing to apply the archived logs manually because it was not possible to set a delay in
the managed recovery mode. This mode was bringing the risk of the accidental operations
to reflect standby database quickly.

Along with the "managed" modes, 8i made it possible to open a standby database with the
read-only option and allowed it to be used as a reporting database.

Even though there were new features that made the tool more manageable and practical,
there were still serious deficiencies. For example, when we added a datafile or created a
tablespace on the primary database, these changes were not being replicated to the standby
database. Database administrators had to take care of this maintenance on the standby
database. Also when we opened the primary database with resetlogs or restored a backup
control file, we had to re-create the standby database.

Getting Started

[12]

Version 9i – middle age
First of all, with this version Oracle8i standby database was renamed to Oracle9i Data Guard.
9i Data Guard includes very important new features, which makes the product much more
reliable and functional. The following features were included:

�� Oracle Data Guard Broker management framework, which is used to centralize and
automate the configuration, monitoring, and management of Oracle Data Guard
installations, was introduced with this version.

�� Zero data loss on failover was guaranteed as a configuration option.

�� Switchover was introduced, which made it possible to change the roles of primary
and standby. This made it possible to accomplish a planned maintenance on the
primary database with very less service outage.

�� Standby database administration became simpler because new datafiles on the
primary database are created automatically on standby and if there are missing
archived logs on standby, which is called gap; Data Guard detects and transmits
the missing logs to standby automatically.

�� Delay option was added, which made it possible to configure a standby database
that is always behind the primary in a specified time delay.

�� Parallel recovery increased recovery performance on the standby database.

In Version 9i Release 2, which was introduced in May 2002, one year after Release 1, there
were again very important features announced. They are as follows:

�� Logical standby database was introduced, which we've mentioned earlier in
this chapter

�� Three data protection modes were ready to use: Maximum Protection,
Maximum Availability, and Maximum Performance, which offered more
flexibility on configuration

�� The Cascade standby database feature made it possible to configure a second
standby database, which receives its redo data from the first standby database

Version 10g – new age
The 10g version again introduced important features of Data Guard but we can say that it
perhaps fell behind expectations because of the revolutionary changes in release 9i. The
following new features were introduces in Version 10g:

�� One of the most important features of 10g was the Real-Time Apply. When running
in Real-Time Apply mode, the standby database applies changes on the redo
immediately after receiving it. Standby does not wait for the standby redo logfile
to be archived. This provides faster switchover and failover.

Chapter 1

[13]

�� Flashback database support was introduced, which made it unnecessary to
configure a delay in the Data Guard configuration. Using flashback technology,
it was possible to flash back a standby database to a point in time.

�� With 10g Data Guard, if we open a primary database with resetlogs it was
not required to re-create the standby database. Standby was able to recover
through resetlogs.

�� Version 10g made it possible to use logical standby databases in the database
software rolling upgrades of the primary database. This method made it possible
to lessen the service outage time by performing switchover to the logical standby
database.

10g Release 2 also introduced new features to Data Guard, but these features again were not
satisfactory enough to make a jump to the Data Guard technology. The two most important
features were Fast-Start Failover and the use of Guaranteed restore point:

�� Fast-start failover automated and accelerated the failover operation when the
primary database was lost. This option strengthened the disaster recovery role
of Oracle Data Guard.

�� Guaranteed restore point was not actually a Data Guard feature. It was a
database feature, which made it possible to revert a database to the moment that
Guaranteed restore point was created, as long as there is sufficient disk space for
the flashback logs. Using this feature following scenario became possible: Activate
a physical standby database after stopping Redo Apply, use it for testing with read/
write operations, then revert the changes, make it standby again and synchronize it
with the primary. Using a standby database read/write was offering a great flexibility
to users but the archived log shipping was not able to continue while the standby
is read/write and this was causing data loss on the possible primary database failure.

Version 11g – modern age
Oracle database version 11g offered the expected jump in the Data Guard technology,
especially with two new features, which are called Active Data Guard and snapshot
standby. The following features were introduced:

�� Active Data Guard has been a milestone in Data Guard history, which enables a
query from a physical standby database while the media recovery is active.

�� Snapshot standby is a feature to use a physical standby database read/write for test
purposes. As we mentioned, this was possible with 10gR2 Guaranteed restore point
feature but 11g provided the continuous archived log shipping in the time period
that standby is read/write with snapshot standby.

Getting Started

[14]

�� It has been possible to compress redo traffic in a Data Guard configuration, which is
useful in excessive redo generation rates and resolving gaps. Compression of redo
when resolving gaps was introduced in 11gR1 and compression of all redo data was
introduced in 11gR2.

�� Use of the physical standby databases for the rolling upgrades of database software
was enabled, aka Transient Logical Standby.

�� It became possible to include different operating systems in a Data Guard
configuration such as Windows and Linux.

�� Lost-write, which is a serious data corruption type arising from the misinformation
of storage subsystem on completing the write of a block, can be detected in an 11g
Data Guard configuration. Recovery is automatically stopped in such a case.

�� RMAN fast incremental backup feature "Block Change Tracking" can be run on an
Active Data Guard enabled standby database.

�� Another very important enhancement in 11g was Automatic Block Corruption Repair
feature that was introduced with 11gR2. With this feature, a corrupted data block in
the primary database can be automatically replaced with an uncorrupted copy from
a physical standby database in Active Data Guard mode and vice versa.

We've gone through the evolution of Oracle Data Guard from its beginning until today. As
you may notice, Data Guard started its life as a very simple database property revealed to
keep a synchronized database copy with a lot of manual work and now it's a complicated
tool with advanced automation, precaution, and monitoring features. Now let's move on
with the architecture and components of Oracle Data Guard 11gR2.

Oracle Data Guard architecture
The main architecture of Oracle Data Guard 11gR2 includes a primary database, up to 30
standby databases, the redo transport services, (which automatically ship the redo log data
from the primary to standby server), and Apply Services (which applies the changes in redo
on the standby database). There are of course some background processes special to a Data
Guard configuration, which run the services in question.

In a Data Guard configuration, the switchover and failover concepts are also very important.
By performing a switchover, it's possible to change the roles of the primary and standby
databases and change the direction of the redo shipping. Failover is the option that we must
use to open a standby database to user connection in read/write mode, when the primary
database is inaccessible.

The last Data Guard components that we'll mention in this chapter are user interfaces to
monitor and administrate a Data Guard configuration. These are SQL*Plus, Oracle Enterprise
Manager Cloud Control, and Data Guard broker command-line interface (DGMGRL).

Chapter 1

[15]

Data Guard services
These services are the vital points of a Data Guard configuration. Database administrators
should decide and use the proper configuration to supply the business needs and tune
these services to comply with SLAs.

Redo transport services
In a primary database, when a user commits a transaction, the relevant redo data is written
into online redo logfiles from memory (Redo Log Buffer). After the online redo log group
becomes full it is archived into an archived redo logfile with a log switch. It's possible to
configure Data Guard sending the redo data to standby databases from the log buffer as the
transactions are committed (by LGWR process) or from the online redo logfiles when they're
being archived (by ARCn processes). Shipping redo data with ARCH will result in more data
loss in the case of primary database failure because the data change information in the
current online log of primary will be lost.

The following diagram shows the Data Guard configuration with ARCH transportation mode:

SGA (Redo
Log Buffer)

Online
Redo Logs

Archived
Redo Logs

Apply

Standby
DatabaseLGWR

ARCH

Primary
Database

Redo Transport over
Network

Archived
Redo LogsRFS

LOG TRANSPORT WITH ARCH ATTRIBUTE

Here are the important properties of the log transport with the ARCH attribute:

�� Logs are sent by the ARCH process; the LNS process is not in use

�� Standby redo logs are not mandatory on the standby database

�� Data in the unarchived online redo log will be lost in a failover

Getting Started

[16]

If LGWR is used for the redo transportation, it's possible to guarantee zero data loss failovers
by creating a Data Guard configuration in which the primary database waits for confirmation
from the standby database that redo has been received, before it informs that the commit
is completed. This configuration is called Synchronous redo transport (SYNC). However, this
may affect the performance of the primary database.

The following diagram shows the Data Guard configuration with LGWR and SYNC
transportation mode:

SGA (Redo
Log Buffer)

LGWR

Primary
Database

Redo Transport over
Network

LOG TRANSPORT WITH LGWR & SYNC ATTRIBUTES

LNS
Standby
Redo LogsRFS

ACK

Online
Redo Logs

ACK

Apply

User Commit Commit ACK

DATABASE USER

Standby
Database

The following points explain the diagram in a better way:

�� Redo is read and sent to the standby database directly from the log buffer by the
LNS process

�� Acknowledgment needed from the standby database (RFS to LNS and LNS to LGWR)
to send COMMIT ACK to the database user

�� It's mandatory to use standby redo logs

�� Zero data loss in failover can be guaranteed with this configuration

�� There maybe slower response times on the primary database

�� The primary database stops giving service in a network disruption incident between
primary and standby

Chapter 1

[17]

If SYNC redo transport is chosen in an 11g Data Guard configuration,
the performance decrease on the primary database will be less than the
earlier releases. Previously, the primary database used to finish writes
to the online redo log first and then send redo to the standby database.
There were two consecutive I/O operations that the primary database
needs to wait for in order to complete the commit. In 11g these two
I/O operations run in parallel. The primary database does not wait for
finishing writes to online redo log and it sends the redo data to standby
at the same time.

The other option is to use the Asynchronous redo transport (ASYNC) method, which avoids
the impact to primary database performance. In this method, the primary database never
waits for any acknowledgment from the standby database in order to complete the commit.
In the ASYNC redo transport method we have the performance gain; however, this method
does not guarantee zero data loss failovers because it does not guarantee all the committed
transactions being received by the standby database at any moment.

SGA (Redo
Log Buffer)

LGWR

Primary
Database

Redo Transport over
Network

LOG TRANSPORT WITH LGWR & ASYNC ATTRIBUTES

LNS
Standby
Redo LogsRFS

Online
Redo Logs

Apply

User Commit Commit ACK

DATABASE USER

Standby
Database

The following points explain the diagram in a better way:

�� No acknowledgment needed from standby to send the COMMIT ACK to the
database user

�� Redo is read and sent to standby from the Redo Log Buffer or online redo logs by
the LNS process. If LNS cannot catch the send data in the Redo Log Buffer before
it is recycled, it automatically reads and sends redo data from the online redo log.

�� The committed transactions that weren't shipped to standby yet, may be lost
in a failover

�� Potential slower response time on primary database with SYNC mode is not valid here

Getting Started

[18]

Protection modes
Data Guard offers three data protection modes, which serve different business needs in
terms of data protection and performance. You can find the properties of these modes
in the following comparison table:

Mode Redo transport Action with no standby database
connection

Risk of data loss

Maximum
Protection

SYNC and LGWR The primary database needs to
write redo to at least one standby
database. Otherwise it will shut
down.

Zero data loss is
guaranteed.

Maximum
Availability

SYNC and LGWR Normally works with SYNC redo
transport. If the primary database
cannot write redo to any of its
standby databases, it continues
processing transactions as in ASYNC
mode.

Zero data loss in
normal operation, but
not guaranteed.

Maximum
Performance

ASYNC and
LGWR/ARCH

Never expects acknowledgment
from the standby database.

Potential for minimal
data loss in a normal
operation.

Apply services
Data Guard automatically transfers redo data from the primary to standby database and
applies it on the standby database. Redo transport services work independent of apply
services and never wait for Redo Apply but if there's a problem on redo transportation,
apply services normally stop and wait for the new redo to arrive. The most important
categorization in apply services is the Redo Apply and SQL Apply. These apply methods
create the infrastructure of physical and logical standby databases.

As a property of Data Guard, both in Redo Apply and SQL Apply, the standby database
validates the redo data in order to prevent physical corruptions that may occur at the
primary database from reflecting to the standby database. By default, the standby database
writes received redo data into the standby redo logfiles and apply services do not apply redo
until the standby redo log is archived as an archived redo log. If we use the real-time apply
feature, which became available with 10g, the apply services don't wait for the archival
operation and apply the redo data as it's received and written into the standby redo logs.

It's also possible to specify a delay value to keep the standby database behind the primary
database with the specified minutes. This may be chosen to prevent human error operations
on the primary database to be applied to standby immediately. However, as we discussed
previously, after the support of flashback database, there's no need to define a delay in Data
Guard configuration.

Chapter 1

[19]

Redo Apply (physical standby databases)
Redo Apply keeps a block-by-block copy of the primary database. By default, Redo Apply
automatically runs a parallel apply processes, which is equal to the number of CPUs of the
standby database server minus one. These parallel recovery processes are controlled by the
MRP process, which is the background process responsible for the application of redo data.

Redo Apply has the following benefits for its users:

�� There are no unsupported data types, objects, and DDLs

�� Redo Apply has higher performance when compared with SQL Apply or any other
replication solutions

�� It offers simple management by keeping the database structure exactly the same as
the primary database with its fully automated architecture

�� It's possible to take advantages of Active Data Guard and snapshot standby for
reporting and testing

�� Backups taken from physical standby databases are ready to be restored to primary.
So we can offload the backup from primary

�� Redo Apply offers a strong corruption detection and prevention mechanism.

�� It's possible to use physical standby databases for the rolling upgrades of the
database software, which is known as transient logical standby

�� The real-time apply feature applies the redo as it's received. This feature makes it
possible to query real-time or near real-time data from the standby database

By offering these features, Redo Apply (physical standby database) has become a very
popular and widely used-technology for the high availability and disaster recovery of
Oracle databases.

Monitoring Redo Apply
While Redo Apply runs on the standby database, administrators need to monitor the status of
the apply process and check if it's working in accordance with the selected configuration. As
mentioned, the MRP process is responsible from the Redo Apply process and monitoring the
status of this process will give us valuable information on what's going on with Redo Aapply.

Time for action – monitoring Redo Apply
We'll install Data Guard configuration beginning with Chapter 2, Configuring Oracle Data
Guard Physical Standby Database. So, you will not be able to perform the actions in this
chapter on the test environment. Please just read the actions to consolidate the given
theoretical information mentioned earlier.

Getting Started

[20]

We'll query the v$managed_standby view on the standby database for monitoring. The
Data Guard configuration is in the Maximum Performance mode with ASYNC and LGWR
attributes. We'll change the redo transport and apply characteristic and monitor the
behavior of Data Guard.

1.	 For our first test, a one hour delay is defined. Let's check this by running the
following query on the primary database:
SQL> select name, value from v$parameter where name like
'log_archive_dest_2';
NAME VALUE
------------------- --
log_archive_dest_2 SERVICE=TEST_STANDBY LGWR ASYNC
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=TEST DELAY=60

We can see that a 60-minute delay is defined on the primary database. This doesn't
mean that the redo data will be sent with a 60-minute delay. This setting means the
redo data will be sent immediately but the standby database will not apply the redo
that was received in the last 60 minutes.

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

2.	 So let's see what's happening on the standby side by running the following query
on the standby database. (Note: We can connect to a standby database from the
standby database server with the sqlplus / as sysdba command. This allows
us to connect to the database as a sys user and with password file authentication.)
SQL> select process, status, thread#, sequence#, block#, blocks
from v$managed_standby;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
--------- ------------ ---------- ---------- ---------- ----------
ARCH CONNECTED 0 0 0 0
ARCH CONNECTED 0 0 0 0
MRP0 WAIT_FOR_LOG 1 461 0 0
RFS IDLE 0 0 0 0
RFS IDLE 1 469 1727085 40

3.	 The output shows that the log with the sequence 469 is being received from
primary, but the MRP process is still waiting for the log with the sequence number
461. Let's check if this log has been received:
SQL> select name, archived from v$archived_log where
sequence#=461;

Chapter 1

[21]

NAME ARC
--- --
+FRA/test/archivelog/2012_08_08/thread_1_seq_461.2606.7908 YES

4.	 So the log sequence 461 was received but MRP is not applying it because of the
configured 60-minute delay on the primary database. We can see this situation
more clearly on the alert log:
RFS[1]: Archived Log:
'+FRA/test/archivelog/2012_08_08/thread_1_seq_461.2606.79081019
9'
Wed Aug 8 22:31:28 2012
RFS[1]: Archive log thread 1 sequence 461 available in 60
minute(s)
Wed Aug 8 23:14:48 2012
Media Recovery Log +FRA/test/archivelog/2012_08_08/thread_1_
seq_460.2841.790809291
Media Recovery Delayed for 60 minute(s)

The highlighted line in the previous code shows that the log sequence 461 was
received at 22:31 but will be available to use only after 60 minutes.

5.	 Now let's cancel the delay on the media recovery and monitor again. On the primary
database perform the following:
SQL> alter system set log_archive_dest_2='SERVICE=TEST_STANDBY
LGWR ASYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=TEST';
System altered.

6.	 After a few minutes on the standby database perform the following:
SQL> select process, status, thread#, sequence#, block#, blocks
from v$managed_standby;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
--------- ------------ ---------- ---------- ---------- ------
ARCH CONNECTED 0 0 0 0
ARCH CLOSING 1 470 3432448 403
MRP0 WAIT_FOR_LOG 1 471 0 0
RFS IDLE 0 0 0 0
RFS IDLE 1 471 878728 2

We can see that, the MRP is not waiting for any old sequence; it's waiting for the log
sequence that is on the way from primary to standby. (Because the LGWR attribute
is used on log transport, this log is the current log sequence on the primary.)

Getting Started

[22]

7.	 Let's look at the alert log again:
Thu Aug 09 00:27:16 2012
Media Recovery Log +FRA/test/archivelog/2012_08_09/thread_1_
seq_470.515.790820745
Thu Aug 09 00:27:57 2012
Media Recovery Waiting for thread 1 sequence 471 (in transit)

As you can see there's no text in alert log about the delay, because it was cancelled.
The MRP process applied the log sequence 470 and started to wait for the next log
(471) to completely arrive and get archived. It also indicates that the next log is in
transit, which means it is currently being received by RFS.

8.	 Let's convert the Redo Apply mode to real-time apply and see how Data Guard will
apply the redo as it received from the primary database. First we'll stop Redo Apply
on the standby database and start again in the real-time apply mode:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
Database altered.
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING
CURRENT LOGFILE DISCONNECT FROM SESSION;
Database altered.

9.	 After a few minutes we will check the status of the processes:
SQL> select process, status, thread#, sequence#, block#, blocks
from v$managed_standby;
PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
--------- ------------ ---------- -------- --------- -------
ARCH CONNECTED 0 0 0 0
ARCH CLOSING 1 472 3432448 403
MRP0 APPLYING_LOG 1 473 1985328 4096000
RFS IDLE 0 0 0 0
RFS IDLE 1 473 1985957 11

Now it's obvious that MRP is applying the log as it arrives to standby. The RFS process is
transferring the log sequence 473, which is the current log on the primary side, and at the
same time the MRP process is applying the same log sequence. Look at the block number
column; we can see that MRP is applying the redo blocks that have just arrived.

You should also know that, even there is a DELAY value specified on the primary
database; if the apply mode is real-time apply on the standby database, the
DELAY will be ignored. You'll see the following lines in the standby alert log in
such a case:
Managed standby recovery started with USING CURRENT
LOGFILE

Ignoring previously specified DELAY 60 minutes

Chapter 1

[23]

What just happened?
You have just seen the Redo Apply behavior on different Data Guard configurations such
as delayed, non-delayed, and real-time apply. You learned how to query the status of the
important Data Guard processes MRP and RFS on the standby database.

Pop quiz – real-time apply consideration
Q1. What's the risk of using real time apply and how can we overcome this risk?

SQL Apply (logical standby databases)
The SQL Apply technology resides on mining the standby redo logs, building SQL transactions
that apply the changes in question, and finally, executing the SQL on the standby database,
which is read/write accessible. This process is more expensive in terms of hardware resource
usage as a matter of course. The LSP process manages the application of changes to a logical
standby database.

The general purpose of building a logical standby database is reporting the needs with read/
write access requirement. SQL Apply is not suitable for disaster recovery and high availability
as much as Redo Apply because of the unsupported data types and logically different
database infrastructure.

SQL Apply offers the following benefits to its users:

�� The logical standby database is always read/write accessible while SQL Apply is
running; so that users may run reports, create temporary tables and indexes for
performance issues. Also it's possible to create objects and keep data on the
standby database, which do not exist on primary.

�� The logical standby database is open for read/write activity. But normally there
are no writes possible on the standby objects, which exist on primary. This feature
maintains the consistency of the replicated primary data.

�� It's possible to upgrade the Oracle database software version with almost no
downtime using a logical standby database.

Role transitions
Role transitions basically enable users to change the roles of the databases in a Data Guard
configuration. There are two role transition options in Data Guard, which are switchover
and failover.

Getting Started

[24]

Switchover
In a basic Data Guard configuration with one primary and one standby database, a
switchover operation changes the roles of these databases, and so the direction of the
redo shipping. In a correctly designed configuration, archived log shipping in the opposite
direction starts immediately after switchover and clients do not need to change their
connection descriptions in order to connect the new primary database.

If there is more than one standby database in a Data Guard configuration, it's possible
to perform switchover between the primary and any of the standby databases. After the
switchover, the new primary database can continue to send redo to all of the standby
databases in the configuration.

Regardless of the configuration of Data Guard, a switchover operation always guarantees
zero data loss. This brings high reliability to switchover and thus it's widely used for planned
maintenance operations, such as hardware or operating system upgrades, database software
rolling upgrade, and other infrastructure maintenances. Switchover reduces the downtime
for these maintenance operations by a significant amount of time.

Failover
Failover is the operation of converting a standby database to a primary database, because
of a failure in the original primary database. If the flashback database is disabled on the
primary database, failover is an operation with no return. In other words, we have to
flashback the failed primary database to a state before failover in order to re-establish the
configuration. Without flashback, Data Guard configuration needs to be built from scratch.

A manual database failover may be performed in the case of failure with the initiative
of the database owner. However, this will require extra outage for the decision making.
If fast-start failover is used, which is a 10g release 2 feature, the failover operation will
perform automatically.

Fast-start failover
This property of automating the failover operation can only be used in Data Guard broker
enabled configuration. The observer process which runs on a different server from the
primary and standby databases, continuously monitors the accessibility of the primary
database. If both the observer and the standby database cannot reach the primary database
for a predefined length of time, a fully-automated failover process is started. With 11g
Release 2, we call it fully automated, because this process includes changing the role
of the standby as primary, starting the database services on the new primary database,
disconnecting the client from the failed primary database, and redirecting them to the
new primary database.

Chapter 1

[25]

If the observer establishes the connection with the original primary database again after the
failover, it informs the database that the failover was performed and it will automatically
reinstate the database using flashback. In order to configure fast-start failover, we need to
specify the fast recovery area and enable flashback on the primary and standby databases.

Keep in mind that in Version 11g, Data Guard must be on Maximum Availability or Maximum
Performance mode in order to use fast-start failover. In 10g Release 2, only Maximum
Availability mode is supported for fast-start failover.

User interfaces for administering Data Guard
There are three options for a database administrator to manage a Data Guard environment,
which are SQL*Plus command-line interface, Oracle Enterprise Manager, and Data Guard
broker command-line interface (DGMGRL). In almost every IT infrastructure management
interface, command-line tools offer great flexibility and detailed options and the graphical
interfaces are user friendly, simple, and automated.

SQL*Plus
SQL*Plus provides all kinds of administration and monitoring operations for the
administrators, but you'll need to access each server in the Data Guard configuration
and do the operations separately. It's also sometimes painful to have easy readable
outputs from SQL*Plus.

DGMGRL
Data Guard broker command-line interface (DGMGRL) is the Data Guard broker tool that
automates and centralizes Data Guard management. Using DGMGRL we can run some
consecutive operations such as switchover and failover with just one command. Also, the
status of the Data Guard configuration can be queried with special Data Guard broker
commands via DGMGRL. Outputs are designed to be easily readable.

Enterprise Manager
Enterprise Manager offers an integrated graphical user interface for Data Guard broker
enabled Data Guard configurations. It's possible to graphically monitor the general
configuration information, performance, synchronization status of Data Guard, and also
perform administration tasks such as switchover, failover, adding, and removing standby
database from configuration.

Getting Started

[26]

Time for action – using interfaces to monitor Data Guard
1.	 At the first step we will use SQL*Plus to gather information from Data Guard and

monitor its status. The connection to the standby database must be from the
standby database server with password file authentication if the standby database is
on mount mode and so not accessible from outside. If Active Data Guard is enabled,
it's also possible to connect a standby database remotely. Let's connect to the
standby database and gather the main Data Guard configuration information:
$sqlplus / as sysdba
SQL> select database_role,open_mode,protection_mode from
v$database;

DATABASE_ROLE OPEN_MODE PROTECTION_MODE
---------------- -------------------- --------------------
PHYSICAL STANDBY READ ONLY WITH APPLY MAXIMUM PERFORMANCE

SQL> select recovery_mode from v$archive_dest_status where
recovery_mode !='IDLE';

RECOVERY_MODE

MANAGED REAL TIME APPLY

We have a physical standby database with the Maximum Performance mode. The
value of the OPEN_MODE column is READ ONLY WITH APPLY, which indicates that
Active Data Guard is enabled. The output of the second query shows that real-time
apply is being used as the recovery mode.

2.	 Now let's check the status of the Data Guard synchronization:
SQL> select name, value from v$dataguard_stats;
NAME VALUE
------------------------- ---------------
transport lag +00 00:00:00
apply lag +00 00:00:00
apply finish time
estimated startup time 231

The output shows that we have a fully synchronized standby database, where there
is no redo transport and apply lag. The estimated startup time value is 231 seconds,
which is an estimate of the time needed to start and open the standby database.

Chapter 1

[27]

3.	 Now we'll see an example about how to use Data Guard broker command-line
interface (DGMGRL) to gather information about the Data Guard status. We can run
DGMGRL on the primary database server and connect locally or we can also connect
from a remote server. Let's connect from the primary database server locally:
$dgmgrl
DGMGRL> connect sys/password;
Connected.
We have connected to the primary database with the sys user.
Now we can check the configuration.
DGMGRL> show configuration;
Configuration - TEST
 Protection Mode: MaxPerformance
 Databases:
 Turkey - Primary database
 India - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:
SUCCESS

4.	 We had the general configuration information with the show configuration
command. At the end of the output we see the configuration status as SUCCESS,
which means, everything in the broker configuration is working properly. However,
we can also see a status of warning or error. We can also run the show database
command for some general information:
DGMGRL> show database 'India';
Database
 Name: India
 Role: PHYSICAL STANDBY
 Enabled: YES
 Intended State: ONLINE
 Instance(s):
 india
Current status for "India":
SUCCESS

In order to gather detailed information from the databases in the Data
Guard configuration, we use the keyword verbose in the show
database command such as show database verbose 'India'.

Getting Started

[28]

5.	 The last interface to monitor and manage a Data Guard configuration is the
Enterprise Manager Cloud Control, with the former name Enterprise Manager
Grid Control. The following screenshot shows the interface for the monitoring
and administration of Data Guard. Detailed information will be given in Chapter
8, Integrating Data Guard with the Complete Oracle Environment, about using
Enterprise Manager Cloud Control for Data Guard management:

What just happened?
You have just seen examples of monitoring the Data Guard environment with three different
interfaces. These examples are just intended to give you a first impression of what these
interfaces look like. Properties and details of the tools in question will be covered in the
next chapters.

Chapter 1

[29]

All of these interfaces can be used to monitor and manage the Data Guard; however, they
all have their own pros and cons. If you already use Enterprise Manager Cloud Control in
your current IT infrastructure, Data Guard installations must be added as targets in order
to take advantage of its visual and easy monitoring and management potential. If you don't
have Cloud Control but have multiple Data Guard installations, you should think about using
it to overcome the challenges of central monitoring.

Data Guard background processes
In a Data Guard configuration we can see some Oracle Data Guard specific background
processes in both, primary and standby databases. These processes perform the operations
of redo transport and apply services. Data Guard broker also has some specific background
processes. We can see the description and duties of the most important Data Guard
processes as follows:

�� MRP0 (Managed Standby Recovery Process) coordinates the read and apply
process of redo in a physical standby database.

�� RFS (Remote File Server) is responsible for receiving the redo data, which is sent
by the primary database to the standby database.

�� LSP0 (Logical Standby Coordinator Process) coordinates the SQL Apply processes,
which are the mining processes and apply processes.

�� LSP1 (Logical Standby Dictionary Build Process) is used on the logical standby
databases when a switchover or failover is in action.

�� LSP2 (Logical Standby Set Guard Process) is used to operate Database Guard
settings. Database Guard specifies which objects will be protected for modification
in a logical standby database.

�� NSAn (Redo Transport NSA1 Process) is used on the primary database to ship
redo data to the standby database when ASYNC mode is being used. There may
be multiple NSA processes such as NSA1 and NSA2.

�� NSSn (Redo Transport NSA1 Process) is also used on the primary database to ship
redo data to the standby database. However, only when the SYNC mode is
being used.

�� DMON (Data Guard Broker Monitor Process) runs on every instance in a Data Guard
broker configuration. It communicates with local database and DMON processes of
the remote databases. The broker-related requests and the monitoring information
are transferred on this communication channel.

�� FSFP (Data Guard broker fast-start failover pinger process) is used for the
management of fast-start failover status.

Getting Started

[30]

Other replication solutions and Data Guard
There are many options to replicate an Oracle database data to a remote system. In the
scope of disaster recovery, Oracle Data Guard and storage-based replication solutions such
as EMC Symmetrix Remote Data Facility (SRDF), HP Continuous Access, Hitachi Universal
Replicator and TrueCopy, IBM Global Mirror, and Metro Mirror are the main players in the
market. When talking about Oracle database replication we also have to mention Oracle's
well-known replication technologies GoldenGate and Streams. However, these products
were not developed for disaster recovery fundamentally. Their primary aim is replication
for ETL and data warehouse.

There are also some third-party tools capable of replicating Oracle database data, but here
we'll mention about the most commonly-used technologies: Data Guard, storage-based
replication solutions, GoldenGate, and Streams.

Storage-based replication solutions
Storage-base replication solutions technologies are based upon the storage-array based
replication of data. Thus, the source of data does not matter. All kinds of application and
database data can be replicated to a remote location, where Data Guard is only able to
replicate Oracle databases.

In general there are two kinds of storage-based replication: synchronous and asynchronous
replication. Synchronous replication means that each update to the source storage unit
must also be updated in the target storage unit before another update can process.
This guarantees zero data loss in the case of primary site failure. However, synchronous
replication affects the I/O respond performance of the primary system depending on the
distance between sites and network capacity. Therefore, this technology is distance limited.
Synchronous replication technologies support up to 300 km distance between sites in the
current technology level.

Asynchronous replication provides a long-distance replication solution with minimal impact
on performance. In some products, the main problem with the asynchronous mode is the
data consistency on the secondary site. The primary site sends a periodic, incremental copy
of updates to the secondary site instead of a constant stream of updates. So there is no
guarantee that dependent write operations on the primary site are transferred and applied
to the remote destination in the same sequence.

Chapter 1

[31]

Using storage-based replication solutions, it's not possible to start an Oracle instance and
query database on the secondary site using the disks with the replicated data because of
the data inconsistency issue. However Data Guard offers Active Data Guard, which enables
users to query the standby database while replication is on the go. Some other advantages of
Data Guard over storage-based replication solutions are enhanced corruption detection and
prevention, automated database failover (fast-start failover), and RMAN backup offloading
features that may not benefit from the use of storage-based replication solutions.

GoldenGate and Streams
GoldenGate is a data replication and integration tool for heterogeneous environments. It
provides real-time capture, transformation, routing, and delivery of database transactions
across heterogeneous systems (Oracle, DB2, MySQL, SQL Server, Sybase, Teradata, Netezza,
and so on). Oracle agreed to acquire GoldenGate software in 2009 and then released 10.4,
11.1, and 11.2 versions with new enhancements. On the other hand, Streams is a built-in
feature of the Oracle database that was first announced with database Version 9.2 and
allows information sharing within an Oracle database or between Oracle databases.

Their common property is their capability of capturing, propagating, and applying data
changes between Oracle databases.

On the other hand their main differences are:

�� The heterogeneous platforms and data integration support of GoldenGate is
different from that of Streams

�� License conditions for Streams is included in the Oracle Enterprise Edition license
and GoldenGate is a self-licensed product

Because of the GoldenGate's wider technology infrastructure and flexibility over Streams,
Oracle announced that Oracle Streams will continue to be supported, but will not be actively
enhanced and the best elements of Oracle Streams will be evaluated for inclusion with
Oracle GoldenGate. It was also indicated that GoldenGate is the strategic product of Oracle
on data distribution and data integration.

Oracle recommends Data Guard for full Oracle database protection
with the high availability and disaster recovery purpose and
recommends GoldenGate for information distribution and
consolidation, application upgrades, changes, and also applications
desiring flexible high availability needs.

Getting Started

[32]

An important feature of GoldenGate that makes the product different from its counterparts
is the bidirectional replication capability, which is also called active-active replication. With
this feature the primary and standby concepts are replaced by two active primary sites.
Updates on site A are replicated to site B, and updates on site B are replicated to site A. The
main challenges here are conflict handling and loop detection. A conflict is likely to occur in
a bi-directional environment, where the same row or field is being updated at both sides and
the changes are replicated. In this situation, a decision needs to be made if both transactions
fail, or one transaction overwrites the other. The other key point is loop detection. If an
update is replicated from site A to site B and then the same update from site B to site A, and
so on, this loop needs to be detected and solved. The following diagram shows the general
structure of an active-active GoldenGate configuration:

Primary
Database

A

Source Trail

Target Trail

Redo Logs

Primary
Database

B

Redo LogsSource Trail

Target Trail

Network

Production Site A Production Site B

GoldenGate is a preferred solution to extract data from production databases in order to
feed the data warehouse. It offers much flexibility to select specific data on the database
and if needed transform the data before it hits the target.

The replication market's leaders, namely, Data Guard, storage-based replication products,
and GoldenGate are compared in the following table with their most important features.
Streams is out of this comparison because of the strategy mentioned by Oracle on its
replication products:

Chapter 1

[33]

Data Guard Storage-based
replication

GoldenGate

Hardware
independency

Supported. Possible to
choose different server/
storage vendors for
primary and standby.

Not Supported. Must
use the same storage
vendor on both sides.

Supported. Possible to
choose different server/
storage vendors for
primary and standby.

Software
independency

Not supported. Only
Oracle database
replication.

Supported. All kinds
of database and
application data can be
replicated.

Limited support.
Different database
products can be
replicated.

Zero data loss
capability

Supported with Maximum
Protection mode.

Limited support
with synchronous
replication (distance
limitation about 300
km).

Not supported.

Corruption
detection and
prevention

Supported. Not supported. Not supported.

Bidirectional
replication
within one
database

Not supported. Not supported. Supported. Two active
sites may send updates
to each other.

Query standby
data

Supported with Active
Data Guard and Snapshot
standby features.

Not supported. Supported with
continuously read/
write accessible target
databases.

Inside
database
selective
replication

Limited support with
logical standby databases.

Not supported. Supported. Data
may be selected and
transformed before it
hits the target.

Automatic
database
failover

Supported with fast-start
failover feature.

Not supported. Not supported.

GUI based
management

Supported. Supported. Supported.

RMAN backup
offload

Supported. The primary
database RMAN backups
can be offloaded to a
physical standby and
backups will physically be
the same.

Not supported. Supported. In a full
replication of primary,
RMAN backups may be
offloaded but backups
will only logically be the
same, not physically.

Getting Started

[34]

Data Guard Storage-based
replication

GoldenGate

Cascaded
destinations
for replication

Supported. Supported. Supported.

License License required only
for Active Data Guard.
Otherwise no extra
license required.

License required for
storage replication
software.

License required for
GoldenGate software.

The information on this table reflects the general characteristics of the
storage-based replication products. All vendor products don't offer the
exact same features; also the features for the same objective may have
different capabilities and restrictions.

After reviewing the comparison table, it's obvious that Data Guard has better properties
for high availability and disaster recovery purposed Oracle database replication.
Storage-based replication products offer disaster recovery solution for the complete IT
infrastructure data; however, when the case is Oracle databases, they cannot offer the
Oracle integrated, flexible, and automatized features as in Data Guard. On the other side,
we can see that GoldenGate was positioned especially for ETL and data integration
requirements and it has great flexibility in this field. However, it also cannot reach Data
Guard standards on data protection and disaster recovery.

Summary
You've reached the end of this chapter. This chapter provided the foundation for the rest of
this book. We covered the definition, general properties, and history of Oracle Data Guard.

It's very important to know the capabilities and general properties of similar products when
implementing an IT solution. We have now gained an understanding of what Data Guard
and the other main Oracle database replication products offer to its users. We're able to
make decisions for the implementation of our replication requirements.

The next chapter will explain the configuration process of a physical standby database
in detail.

2
Configuring the Oracle Data Guard

Physical Standby Database

In this chapter, the installation of the physical standby database will be
covered in three steps. The first step will be to prepare the environment for
the installation, especially the preinstallation tasks on the database. Then the
second step for creating a physical standby database will be covered. In the last
step, the Data Guard installation will be verified to see if it is installed correctly.

In this chapter, we'll discuss the following topics:

�� Planning and understanding requirements
�� Preparation for the configuration
�� Step-by-step instructions to create the physical standby database
�� Verifying the physical standby database configuration (post-installation steps)

Before preparing the configuration, you should know the business criticality of your
database, how to avoid failures, and how much data you are ready to lose.

Preconfiguration for Data Guard
The Data Guard configuration contains a primary database that transmits redo data to a
standby database. The standby database is remotely located from the primary database for
disaster recovery and backup operations. You can also configure the standby database at
the same location as the primary database. However, for disaster-recovery purposes and to
make it highly available, it's strongly recommended to configure standby in a geographically
remote location.

Configuring the Oracle Data Guard Physical Standby Database

[36]

Before implementing a Data Guard configuration, take into account concepts such as high
data availability, efficient systems utilization, and data protection.

�� Availability: Outages should be tolerated transparently and should be recovered
quickly in case of server failures or any network failures

�� Protection: Ensure minimum data loss; standby data should be isolated from
production faults such as storage failures, site failures, data corruptions, or
operator errors

�� Utilization: Standby resources should be utilized for productive use in case of any
planned maintenance or for application access

Data loss consideration
Before implementing any high-availability solution, you need to determine the acceptable
amount of data loss. Data loss should not be calculated in terms of time (for example,
seconds or minutes); it should be calculated in terms of transactions. The following example
is drafted from a production database. Notice how much data can be lost in 60 seconds.
During the peak hours of your business, run the Stats pack or AWR snapshot at periodic
intervals 2-3 times. In the report, take a look at the Load profile section. The Per second
column of the Redo size row is the redo generation rate of your database:

Load profile

Per second Per transaction

Redo size 16615645.13 9172093.26

Instance activity stats

Statistic Total Per second Per transaction

Redo size 16615645.13 16615645.13 9172093.26

In the Instance activity stats table, the redo size generated is 16615645.13 bytes per
second—that is nearly 15.9 MB per second and nearly 950 MB per minute. Are you ready
to lose 950 MB of data? You may want to rethink your recover plan. It must be calculated in
terms of transactions.

Based on your transactions rate, calculate how much redo is generated and how much data
loss is acceptable. You can configure Data Guard to have zero data loss.

Chapter 2

[37]

These load profiles and statistics can be gathered using the following utilities:

�� After 9i: To execute the AWR report, use SQL>@?/rdbms/admin/
awrrpt.sql

�� Oracle 9i: To execute the Stats pack report, use SQL>@?/rdbms/
admin/spreport.sql

Network bandwidth consideration
We need to determine the network bandwidth required for a Data Guard physical standby
implementation. Network latency is a huge factor in the amount of redo you will be able to
transport from your primary site to the standby site. This value is unique to your network,
and if you have a high latency network you might not be able to sustain the required rate
of redo shipping. The wide area network between the primary site and standby site may
be used by more than just Data Guard. So, the bandwidth requirements have to be sorted
out. The formula used by Oracle, assuming a conservative TCP/IP network overhead of 30
percent, is as follows:

Required bandwidth (Mbps) = ((Redo rate bytes per sec. / 0.7) * 8) / 1,000,000

Based on this formula, according to the redo size from the preceding example, the required
bandwidth is equal to 189.8930872 mbps (((16615645.13/ 0.7) * 8) / 1,000,000). Of course,
according to the preceding example, bandwidth should be very high, because it's an example
taken during a huge job with lot of DML activity. This means that the peak redo generation
rate is a good indicator of your Data-Guard-related network requirements. Make sure that,
while specifying your network requirements with your network service provider, you also
consider other applications and their Service Level Agreements (SLAs) using the same
network. The preceding formula indicates the network bandwidth that should be available to
Data Guard; it does not indicate what the entire network bandwidth should be between your
primary and DR data centers.

Preparing the primary database
This topic describes Data Guard parameters and how to prepare the standby database creation
and configuration. What prerequisites are mandatory to be completed before configuring the
standby database? We will discuss each and every task that needs to be accomplished.

Archive log mode
For any primary database, there are some basics you should configure. One of these is to run
the primary database in the archive log mode, which is a mandatory step. You can create a
database in the archive log mode or the noarchive log mode and you can change this later.

Configuring the Oracle Data Guard Physical Standby Database

[38]

If the primary database is already in the archive log mode, you can skip this step and proceed
with the next one. If this has not been done, perform the following procedure to put the
primary database in the archive log mode.

Time for action – enabling the archive log mode
Perform the following steps on the primary database:

1.	 Check whether archiving has been enabled or disabled, as follows:
SQL> archive log list

Database log mode No Archive Mode

Automatic archival Disabled

Archive destination USE_DB_RECOVERY_FILE_DEST

Oldest online log sequence 6

Current log sequence 8

2.	 Perform a clean shutdown, as follows:
SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

Ensure that you have performed a clean shutdown; if not, you may
see this error: ORA-00265: instance recovery required, cannot set
ARCHIVELOG mode.

3.	 Start the database in the mount state.
SQL>startup mount

ORACLE instance started.

Total System Global Area 818401280 bytes

Fixed Size 2217792 bytes

Variable Size 515901632 bytes

Database Buffers 297795584 bytes

Redo Buffers 2486272 bytes

Database mounted.

4.	 Enable the archive log mode.
SQL> alter database archivelog;

Database altered.

Chapter 2

[39]

5.	 Open the database as follows:
SQL> alter database open;

Database altered.

6.	 Check if archiving has been enabled or not.

SQL> archive log list

Database log mode Archive Mode

Automatic archival Enabled

Archive destination USE_DB_RECOVERY_FILE_DEST

Oldest online log sequence 6

Next log sequence to archive 8

Current log sequence 8

After enabling the archive log mode, perform a log switch
and check whether the archive log is created or not from the
v$archived_log view, as follows:

SQL> select * from v$archived_log;

What just happened?
After mentioning some considerations about Data Guard, we've completed the mandatory
task of enabling the archive log mode on the primary database.

Force logging
For a physical standby to be a mirror copy, it must receive redo for the changes made to the
primary database. In the primary database, when a segment is defined with the NOLOGGING
attribute and if a NOLOGGING operation updates the segment, the online redo logfile will be
updated with minimal information. This is preferred to complete operations faster but it's
not supported in a primary database with the Data Guard configuration. When the redo/
archived logfile containing the NOLOGGING operation is used to recover the datafiles on the
standby database, Oracle invalidates such blocks and the error ORA-26040 along with error
ORA-1578 are reported by SQL statements in the next block reads. You can see the following
errors if operations are performed by NOLOGGING:

ORA-01578: ORACLE data block corrupted (file # 4, block # 84)

ORA-01110: data file 4: ' /u01/app/oracle/oradata/orcl/users01.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

Configuring the Oracle Data Guard Physical Standby Database

[40]

Time for action – enabling force logging
Perform the following steps on the primary database:

1.	 Check the force logging status as follows:
SQL> select name, force_logging from v$database;

NAME FOR

--------- ---

ORCL NO

2.	 Enable the force logging mode as follows:
Enabling Force Logging on Primary Database is mandatory.

SQL> alter database force logging;

Database altered.

3.	 Check the force logging status again as follows:
SQL> select name,force_logging from v$database;

NAME FOR

--------- ---

ORCL YES

In the alert log, you'll see following lines:

alter database force logging

ALTER DATABASE FORCE LOGGING command is waiting for existing
direct writes to finish. This may take a long time.

Completed: alter database force logging

What just happened?
We've put the primary database in the force logging mode, which is required for the Data
Guard physical standby database to work properly.

Standby redo logs
Standby redo logfiles are used by a standby database to store the redo received from the
primary database. The redo received by a standby database via redo transport is written
to the current SRL group by the Remote File Server (RFS) background process. When a log
switch occurs on the primary database, RFS writes the redo to the next standby redo log
group and the previously used standby redo log group is archived on the standby database
by an ARCn process.

Chapter 2

[41]

Configuring the standby redo logfiles on the primary database is optional. After a switchover,
the primary database role will be changed to standby; if SRLs were configured, the new
standby will be ready to receive redo data and write them into the standby redo logfiles.

The SRL files must be the same size as your online redo log (ORL) files. You also need to have
enough SRL groups; that is, one more than the number of ORL groups. Let's suppose you
have three ORL groups in the primary database; then, n+1 (that is, four) SRL groups should
be configured. On RAC databases you should create n+1 SRL groups for each thread. For
example, in an RAC primary database with two instances and three ORL groups per instance,
we should create 2*(3+1) SRL groups (that is, 8 groups).

We'll use the RMAN duplicate method to create the physical
standby database; if SRLs exist on primary, they'll be automatically
created on standby.

Some other considerations on creating SRL groups are as follows:

�� In RAC, do not forget to create SRLs for each thread by specifying the thread number
on the shared disks.

�� If you add any ORLs in the primary database later, you'll have to add SRLs on primary
and each standby database. If you resize ORLs, you have to resize SRLs too.

�� It's not recommended to multiplex SRLs, because multiplexing may adversely affect
redo transport performance and SRL availability is not crucial as ORL availability is.

Time for action – configuring standby redo logs on primary
Run the following procedures on the primary database to create standby redo logfiles:

1.	 Check the ORL's members and the sizes of each member as follows:
SQL> select a.group#, a.status, a.bytes/1024/1024 SizeMB, b.member
from v$log a, v$logfile b where a.group#=b.group# order by group#;

GROUP# STATUS SizeMB MEMBER

------ -------- ---------- --------------------------------------

 1 INACTIVE 100 /u01/app/oracle/oradata/orcl/redo01.log

 2 CURRENT 100 /u01/app/oracle/oradata/orcl/redo02.log

 3 INACTIVE 100 /u01/app/oracle/oradata/orcl/redo03.log

 4 INACTIVE 100 /u01/app/oracle/oradata/orcl/redo04.log

Configuring the Oracle Data Guard Physical Standby Database

[42]

In this single instance of the primary database, we have four redo
log groups, each with one member and a size of 100 MB. We should
create at least five standby redo log groups.

2.	 Add the standby redo logfiles as shown in the following example:
SQL> alter database add standby logfile group 11 ('/u01/app/
oracle/oradata/orcl/standby_redo01.log') size 100m;

SQL> alter database add standby logfile group 12 ('/u01/app/
oracle/oradata/orcl/standby_redo02.log') size 100m;

SQL> alter database add standby logfile group 13 ('/u01/app/
oracle/oradata/orcl/standby_redo03.log') size 100m;

SQL> alter database add standby logfile group 14 ('/u01/app/
oracle/oradata/orcl/standby_redo04.log') size 100m;

SQL> alter database add standby logfile group 15 ('/u01/app/
oracle/oradata/orcl/standby_redo05.log') size 100m;

3.	 Check the status of new the standby redo logfiles:
SQL> select group#,bytes,status from v$standby_log;

GROUP# BYTES STATUS

------ --------- ----------

11 104857600 UNASSIGNED

12 104857600 UNASSIGNED

13 104857600 UNASSIGNED

14 104857600 UNASSIGNED

15 104857600 UNASSIGNED

What just happened?
We've completed the optional task of creating standby redo logs on the primary database.
Again, if the standby redo logs were created on primary, the RMAN duplicate will create
them on standby automatically.

Fast recovery area (FRA)
Prior to 11g R2, FRA stood for Flash Recover Area, but since Oracle Database 11g R2, FRA
stands for Fast Recovery Area. It's a place on the disk where the database automatically
manages naming, retention, and deletion of recovery-related files. FRA can contain control
files, online redo logfiles, archived redo logs, flashback logs, and RMAN backups. It's not
mandatory but strongly recommended to configure FRA.

Chapter 2

[43]

In order to enable FRA, you need to set two initialization parameters and you don't need to
shut down and restart the database. Note that, in Oracle RAC, these parameters should have
the same values across instances and the location must be on shared storage.

Time for action – enabling FRA
Perform the following steps on the primary database now. We'll be enabling FRA on the
standby database later.

1.	 Check the default FRA location as follows:
SQL> show parameter db_recovery_file_dest

NAME TYPE VALUE

------------------------------------ ----------- -----------

db_recovery_file_dest string

2.	 Configure the FRA size.
SQL> alter system set db_recovery_file_dest_size=4g;

System altered.

3.	 Configure the FRA destination.
SQL> alter system set db_recovery_file_dest='/u01/app/oracle/
flash_recovery_area';

System altered.

4.	 Control the FRA configuration.
SQL> show parameter db_recovery_file_dest

NAME VALUE

---------------------- ------------------------

db_recovery_file_dest /u01/app/oracle/flash_recovery_area

db_recovery_file_dest_size 4G

In RAC databases, use the keyword sid='*'; this ensures that
the change will apply to all instances in the cluster.

What just happened?
We've enabled the Fast Recovery Area on the primary database, which is not mandatory
but a recommended step. When preparing init.ora for a standby instance and starting
this instance in the following steps, we'll also set FRA-related initialization parameters for
standby, so FRA will also be enabled on the standby database.

Configuring the Oracle Data Guard Physical Standby Database

[44]

Understanding initialization parameters
In the primary database, there are some parameters that are related to the Data Guard
configuration and need to be verified or modified. Now we're going to look into the details
of these parameters.

When changing an initialization parameter, if you are using a PFILE,
you need to edit the file and execute an ALTER SYSTEM SET
command, parameter= 'value' scope=memory, to load the
change into the system. If you use an SPFILE, you can just execute
the ALTER SYSTEM SET command, parameter= 'value'
scope=both, which will set the change in memory and write it to the
SPFILE to make the change valid at the next database restart.

DB_NAME
The DB_NAME parameter specifies the database identifier up to eight characters. This
parameter must be the same in all the instances of the RAC database and also in the physical
standby database. This parameter is validated at MOUNT status when the instance reads the
control file; if the DB_NAME parameter does not match the name of the database mentioned
in the control file, you will get the following error:

"ORA-01504: database name 'Dummy' does not match parameter db_name
'orcl'"

You don't need to configure or change this parameter in the Data Guard physical standby
configuration.

DB_UNIQUE_NAME
This parameter specifies a unique name for each database having the same DB_NAME
parameter. This parameter must be different on the primary, standby, or logical standby
database. The DB_UNIQUE_NAME parameter is limited to 30 characters. It can contain
alphanumeric, underscore (_), dollar ($), and pound (#) characters but must begin with an
alphabetic character. This parameter is static, so it requires bouncing the database in order
to change this parameter. If this parameter is not set explicitly, its value will be the same as
that of the DB_NAME parameter. You can use the following statement to change the value of
the DB_UNIQUE_NAME parameter:

SQL> alter system set db_unique_name='turkey_un' scope=spfile;

�� The DB_UNIQUE_NAME parameter allows a location-specific alias to be created for
a database. It is better to avoid using names related to the role, such as primary
and standby. These names work well until a switchover is performed, at which point
the switchback operation can be very confusing. Therefore, always try to use a
geographical value for the DB_UNIQUE_NAME parameter, such as Turkey or India.

Chapter 2

[45]

�� The DB_UNIQUE_NAME parameter will be the same in all RAC databases across all
instances. In RAC databases, only the instances are hosted in different nodes but they
are using only one database. Database-unique names can be different in primary and
standby because they are sharing neither configuration files nor datafiles.

The following table shows the naming format that we're going to use for the physical standby
Data Guard configuration example:

Parameter Primary Physical standby

Instance name TURKEY INDIA

DB_NAME ORCL ORCL

DB_UNIQUE_NAME TURKEY_UN INDIA_UN

Net service name TURKEY INDIA

LOG_ARCHIVE_CONFIG
Using this parameter, you can enable or disable sending/receiving redo logs to/from
databases. You also specify the list of the DB_UNIQUE_NAME parameter of each database
in the Data Guard configuration with this parameter.

Use the following syntax to change this parameter:

LOG_ARCHIVE_CONFIG =
{
 [SEND | NOSEND]
 [RECEIVE | NORECEIVE]
 [DG_CONFIG=(remote_db_unique_name1, ... remote_db_unique_name9) |
NODG_CONFIG]
 }

Its default value is SEND, RECEIVE, NODG_CONFIG and we only need to update the
DG_CONFIG part as follows:

SQL> alter system set log_archive_config= 'DG_CONFIG=(turkey_un,india_
un)' scope=both;

This is a dynamic parameter in which you can add or remove the DB_UNIQUE_NAME
parameters from the configuration. It's mandatory to set this parameter for RAC databases
in Data Guard. However, it's also recommended to set this for single-instance databases. The
order of unique names doesn't matter and all unique names in the Data Guard configuration
should be included.

Configuring the Oracle Data Guard Physical Standby Database

[46]

LOG_ARCHIVE_MAX_PROCESSES
This parameter specifies the number of archiver processes in a database. In Data Guard, it's
important to have enough archiver processes on the primary database. Think of the value
of this parameter as the number of channels where redo can be transferred to the standby
database. In peak database times and in gap resolution, if the number of the LOG_ARCHIVE_
MAX_PROCESSES value is not sufficient on the primary database, redo shipping may suffer.

Its default value is 2 in 10g (which is generally not sufficient in Data Guard) and 4 in 11g.
Depending on the number of remote destinations and redo activity on the primary database,
you may need to increase the value. Keep in mind that increasing the value means more
resource usage and database start/stop times will also be affected.

It's also important to set a sufficient value for LOG_ARCHIVE_MAX_
PROCESSES on the standby database for switchover purposes, and especially
if the cascade Data Guard configuration is in use and the standby database is
sending redo to another destination.

LOG_ARCHIVE_DEST_n
These parameters, where n is from 1 to 31 in 11g R2, are used to define destinations to
the archive redo data. The LOCATION or SERVICE attribute must be defined with
this parameter and indicates a local disk destination and remote database destination
respectively. It's an important part of the Data Guard configuration and shows the redo
transport flow and its properties.

When you have already configured LOG_ARCHIVE_CONFIG=DG_
CONFIG(...) and you try to set/change the attributes of log_archive_
dest_n without specifying DB_UNIQUE_NAME, the following errors will occur:

�� ORA-02097: The parameter cannot be modified because the specified
value is invalid

�� ORA-16052: The DB_UNIQUE_NAME attribute is required

You must use one of the DB_UNIQUE_NAME parameters of DG_CONFIG in
every modification of this parameter.

There are many attributes of the LOG_ARCHIVE_DEST_n parameter and we'll learn most of
the important ones in the following sections. Keep in mind that the destination must contain
either a LOCATION or SERVICE attribute; the other attributes are optional.

Chapter 2

[47]

LOCATION and SERVICE
As mentioned earlier, each destination must specify a valid attribute, either of LOCATION or
SERVICE, to identify either a local location or a remote destination where redo transport
services will send redo data.

The destinations from LOG_ARCHIVE_DEST_1 through LOG_ARCHIVE_DEST_10 can
contain either the LOCATION or SERVICE attribute, while destinations from LOG_ARCHIVE_
DEST_11 through LOG_ARCHIVE_DEST_31 can contain only the SERVICE attribute, which
does not support the LOCAL destination. For the LOCAL destination, you can specify a disk
location or FRA. When specifying the SERVICE attribute, a valid Oracle Net Service name
that identifies the remote Oracle database instance is used, where the redo data will be sent.

The following is the example for the LOCATION attribute:

SQL> alter system set log_archive_dest_1='LOCATION=/u01/app/oracle/
oraarch';

If you are using FRA, it will be as follows:

SQL> alter system set log_archive_dest_1='LOCATION=USE_DB_RECOVERY_FILE_
DEST';

The following is an example for the SERVICE attribute:

SQL> alter system set log_archive_dest_2='SERVICE=india db_unique_
name=india_un';

VALID_FOR
This attribute specifies in which states the destination will be valid. It's optional when setting
the LOG_ARCHIVE_DEST_n parameter but has to be specified for each redo transport
destination of the Data Guard databases so that the redo transport continues after a role
transition. This attribute works with two pair of keywords, which are REDO_LOG_TYPE and
DATABASE_ROLE.

REDO_LOG_TYPE can be set to the following values:

�� ONLINE_LOGFILE is valid only when archiving online redo logfiles

�� STANDBY_LOGFILE is valid only when archiving standby redo logfiles

�� ALL_LOGFILES is valid when archiving either ORLs or SRLs

Configuring the Oracle Data Guard Physical Standby Database

[48]

DATABASE_ROLE can be set to the following values:

�� PRIMARY_ROLE is valid only when the database role is primary

�� STANDBY_ROLE is valid only when the database role is standby

�� ALL_ROLES is valid when the database is either primary or standby

When the VALID_FOR attribute is not specified, online redo logfiles and standby redo logfiles
will be archived depending on the role of the database. The destination will be enabled even
if the role is primary or standby. This is equivalent to the ALL_LOGFILES,ALL_ROLES setting
on the VALID_FOR attribute.

It makes sense to use the ALL_LOGFILES,ALL_ROLES mode in
the LOCAL archiving destinations.

SYNC and ASYNC
Remember that synchronous and asynchronous redo transport modes were covered in
Chapter 1, Getting Started. The SYNC and ASYNC keywords are used to specify whether
the redo transport mode will be synchronous or asynchronous.

SYNC will be specified when you want to send redo using the synchronous method. In order
to commit a transaction on the primary database, related redo data needs to be received
by all the destinations that are set with the SYNC attribute. This protection mode is used in
either Maximum Protection or Maximum Availability mode. The SYNC attribute does not
support destinations from LOG_ARCHIVE_DEST_11 through LOG_ARCHIVE_DEST_31. The
SYNC attribute example is shown as follows:

SQL> alter system set log_archive_dest_2='SERVICE=india LGWR SYNC db_
unique_name=india_un';

The redo data generated by a transaction doesn't need to be received by a destination that
has the ASYNC attribute before that transaction can commit. This attribute will be selected
by default if you do not specify either the SYNC or ASYNC keyword. This method is used in
the Maximum Performance mode:

SQL> alter system set log_archive_dest_2='SERVICE=india LGWR ASYNC db_
unique_name=india_un';

Chapter 2

[49]

AFFIRM and NOAFFIRM
These attributes control when the destination database acknowledges received redo data.
Two options are before and after writing to the standby redo log. The AFFIRM attribute
ensures that a redo transport destination will send an acknowledgment after writing it to
the standby redo logfiles; NOAFFIRM ensures that the redo transport destination will send
an acknowledgment before writing it to the standby redo log. This attribute is used with the
SERVICE attribute when specifying remote destinations. To view the attribute configuration,
you can use the v$archive_dest view with the AFFIRM column.

If both AFFIRM and NOAFFIRM are not specified, it defaults to AFFIRM when the SYNC
attribute is specified and NOAFFIRM when the ASYNC attribute is specified.

SQL> alter system set log_archive_dest_2='SERVICE=india SYNC AFFIRM DB_
UNIQUE_NAME=india_un';

System altered.

SQL> select affirm from v$archive_dest where dest_id=2;

AFF

YES

COMPRESSION
This attribute is used to specify whether redo data is compressed before transmission.
Compression of redo is useful when there is a bandwidth issue in the network between
primary and standby databases. The amount of redo data passing over the network
decreases, which improves redo transport performance.

You should remember that compression is a CPU-intensive operation and this compression
is an option of Oracle Advanced Compression; so, in order to enhance this feature you must
purchase a license. The COMPRESSION attribute example is as shown follows:

SQL> alter system set log_archive_dest_2='SERVICE=india
COMPRESSION=ENABLE DB_UNIQUE_NAME=INDIA_UN';

MAX_CONNECTIONS
This specifies the number of connections to the redo destination when sending archived
redo logfiles. MAX_CONNECTIONS will be used only if the redo transport services use ARCH.
You can set the MAX_CONNECTIONS value from 1 through 5. However, it's limited with the
number of ARCn processes that is specified with LOG_ARCHIVE_MAX_PROCESSES.

Configuring the Oracle Data Guard Physical Standby Database

[50]

Any standby database using ARCn processes will not use standby redo logs if the
MAX_CONNECIONS attribute is specified. So we cannot use real-time Redo Apply
with MAX_CONNECTIONS.

SQL> alter system set log_archive_dest_2='SERVICE=india MAX_CONNECTIONS=3
db_unique_name=india_un';

SQL> select MAX_CONNECTIONS from v$archive_dest where dest_id=2;

MAX_CONNECTIONS

 3

MAX_FAILURE
This attribute defines how many times the database will attempt to reconnect to a failed
standby database before giving up. When you set the MAX_FAILURE attribute, you also have
to set the REOPEN attribute. Once the failure count is greater than or equal to the value you
specified, the REOPEN attribute value will set to zero internally. This will cause the database
to transport redo data to an alternate destination corresponding to the ALTERNATE
attribute.

SQL> alter system set log_archive_dest_1='LOCATION=USE_DB_RECOVERY_FILE_
DEST REOPEN=8 MAX_FAILURE=4';

System altered.

SQL> select MAX_FAILURE,FAILURE_COUNT,REOPEN_SECS from v$archive_dest
where dest_id=1;

MAX_FAILURE FAILURE_COUNT REOPEN_SECS

----------- ------------- -----------

 4 0 8

REOPEN
The redo transport services will try to reopen the failed remote destination after a specified
number of seconds. By default, the database attempts to reopen failed destinations at the
set log-switch time. You can use this attribute to shorten the interval of redo transport
reconnect attempts.

SQL> alter system set log_archive_dest_2='SERVICE=INDIA reopen=90 db_
unique_name=INDIA_UN';

System altered.

Chapter 2

[51]

SQL> select reopen_secs,max_failure from v$archive_dest where dest_id=2;

REOPEN_SECS MAX_FAILURE

----------- -----------

 90 0

NET_TIMEOUT
This attribute is used only with the SYNC redo transport mode. Depending on the value of
the NET_TIMEOUT attribute, the LGWR process will block and wait for acknowledgment
from a redo transport destination. If the acknowledgment is not received within the time
specified, an error will be logged and the transport session to that destination is terminated.
If not set, its default value is 30 seconds.

Before setting this attribute, consider your network bandwidth. If you specify lower values
such as 1 to 5 seconds, the primary database may often disconnect from the standby
database due to transient network errors. A minimum value of 10 should be considered.

SQL> alter system set log_archive_dest_2='SERVICE=INDIA SYNC NET_
TIMEOUT=20 db_unique_name=india_un';

System altered.

SQL> select net_timeout from v$archive_dest where dest_id=2;

NET_TIMEOUT

 20

DELAY
This attribute is used to set a delay between the primary and standby databases. When
DELAY is used, redo is sent to the standby database with no delay but Redo Apply waits
for the delay time before applying the archived log.

SQL> alter system set log_archive_dest_2='SERVICE=india delay=10 db_
unique_name=india_un';

System altered.

SQL> selectdelay_mins,destination from v$archive_dest where dest_id=2;

DELAY_MINS DESTINAT

---------- --------

 10 india

Configuring the Oracle Data Guard Physical Standby Database

[52]

If real-time apply is used on the standby database, this attribute will be ignored even if you
specify it. You can also override this parameter by using the NODELAY option in the managed
recovery command.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

Now we've finished learning the most important attributes of the
LOG_ARCHIVE_DEST_n parameter. Remember that these optional
attributes should be used depending on the need. You should use the
defaults in the initial configuration and consider changing the defaults
later depending on the necessity.

LOG_ARCHIVE_DEST_STATE_n
These parameters, where n is from 1 to 31, indicate the state of the related redo log
destination configured by the LOG_ARCHIVE_DEST_n parameter. The default value is ENABLE,
which means the redo destination is active. If you want to make the destination inactive, you
can set the LOG_ARCHIVE_DEST_STATE_n parameter to DEFER. This destination will be
excluded until it is reenabled. If any log archive destination has been configured as a failover
archive location, the LOG_ARCHIVE_DEST_STATE_n status will be ALTERNATE.

SQL> alter system set log_archive_dest_state_2='defer';

System altered.

SQL> show parameter log_archive_dest_state_2

NAME TYPE VALUE

----------------------------- ----------- -------

log_archive_dest_state_2 string defer

This parameter is useful in planned maintenance on databases. For
example, when patching the primary database, you can stop sending
redo to standby locations.

What just happened?
We've gone through the preconfiguration steps of the Data Guard physical standby
database installation. We also learned the properties and options of primary database
initialization parameters related with Data Guard. Now we're going to start installing the
physical standby database.

Chapter 2

[53]

Creating the physical standby database
In order to create a physical standby database, we first need to install Oracle database
binaries to the standby database server and then start a standby database instance. Installing
Oracle binaries is out of this book's scope, so it's assumed a standby server is ready with the
Oracle database software installed. We will start by covering a standby database instance
and copying database files from primary to standby, but first let's look at the initialization
parameters that we need to set on standby before starting the instance.

Standby database related initialization parameters
The following are the important Data-Guard-related initialization parameters we set on
physical standby databases.

FAL_SERVER
This parameter specifies from where the standby database should request missing archived
logs if there is a gap in the logs. It is used only when the database is in the standby role and
has a gap in the received archived logs.

A redo gap occurs when the redo transport doesn't run for a while. A maintenance operation
on the standby server or a network interruption may cause this. Setting this parameter
allows the standby to find the missing redo and have it transported.

On the standby database, you need to set the Oracle Net Service name of the primary
database as the value of this parameter. Also, taking account of a possible switchover, don't
forget to set FAL_SERVER on the primary database with the value of the standby database
service name.

The FAL_CLIENT parameter is no longer required in 11g. In earlier
releases, you set the FAL_CLIENT parameter on the standby database,
and the value is the Oracle Net Service name that the primary database
uses to connect the standby database. In 11g, when it's not set, the
primary database will obtain the client service name from the related
LOG_ARCHIVE_DEST_n parameter.

Configuring the Oracle Data Guard Physical Standby Database

[54]

STANDBY_FILE_MANAGEMENT
The STANDBY_FILE_MANAGEMENT parameter is used only for the environment of the
physical standby databases. By default, its value is MANUAL. By setting this parameter to AUTO,
we'll make sure that, when we add or drop datafiles on our primary database, those files are
also added or dropped on the standby database. Setting this parameter to AUTO can cause
files to be created automatically on the standby database and it can even overwrite existing
files; we should be careful when we set both DB_FILE_NAME_CONVERT and STANDBY_
FILE_MANAGEMENT and ensure that the existing datafiles on standby won't be overwritten.

SQL> alter system set standby_file_management='AUTO';

System altered.

When the parameter is set to MANUAL, if any datafile is added in primary, you'll see the
following errors:

File #5 added to control file as 'UNNAMED0007' because

the parameter STANDBY_FILE_MANAGEMENT is set to MANUAL

The file should be manually created to continue.

MRP0: Background Media Recovery terminated with error 1274

Some recovered datafiles maybe left media fuzzy

Media recovery may continue but open resetlogs may fail

DB_FILE_NAME_CONVERT
In some cases, the directory structure may not be the same in source/primary and destination/
standby database locations. The DB_FILE_NAME_CONVERT parameter is used to convert the
file locations of datafiles. When you add a datafile in the primary database, assuming you
have a STANDBY_FILE_MANAGEMENT parameter setting of AUTO, it will create a datafile on
the standby database according to the settings of the DB_FILE_NAME_CONVERT parameter.
Before setting DB_FILE_NAME_CONVERT, make sure that filesystem exists and is writable.

When setting this parameter, we must specify one or more paired strings. The first string is
the pattern of the primary database file location whereas the second string is the pattern of
the standby database file location.

The following is an example of DB_FILE_NAME_CONVERT:

alter system set db_file_name_convert= "'/u01/app/oracle/oradata/turkey_
un', '/u01/app/oracle/oradata/india_un'" scope=spfile;

When using ASM, the settings are very simple. We need to mention only the disk groups of
primary and standby as follows:

alter system set db_file_name_convert="'+DATA_AREA','+DATA_STBY'"
scope=spfile;

Chapter 2

[55]

Note that this is a static parameter and it requires the instance to
restart for the change to become active.

LOG_FILE_NAME_CONVERT
This parameter plays a similar role to DB_FILE_NAME_CONVERT and is valid for online and
standby redo logfiles. The LOG_FILE_NAME_CONVERT parameter converts the file location
of a new logfile on the primary database to the desired location on the standby database.

SQL> alter system set log_file_name_convert= "'/u01/app/oracle/oradata/
turkey_un', '/u01/app/oracle/oradata/india_un'" scope=spfile;

The DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT
parameters can be used for physical standby databases and RMAN
Duplicate/TSPITR (Tablespace Point-in-Time Recovery) operations. It cannot
be used on logical standby databases and for RMAN restore operations.

The physical standby database instance
Now it's time to start a database instance on the standby server. In our example, we're
going to start a single database instance, not RAC. If an RAC standby database is going to
be configured, you need to start instances on RAC nodes and then register the instances
to cluster. Considerations about RAC standby databases will be covered in Chapter 8,
Integrating Data Guard with the Complete Oracle Environment.

Time for action – starting the physical standby instance and
making it ready for the RMAN duplicate

Execute the following steps to start a database instance on the standby server and make it
ready for the RMAN duplicate operation.

1.	 Create a service in Windows.

If you are creating a Data Guard configuration in Windows, you must create a service
using the oradim utility as follows:
oradim -NEW -SID <sid> -STARTMODE manual -PFILE C:\app\oracle\
product\11.2.0\admin\<sid>\pfile\init.ora

You can skip this step if the environment is not Windows.

Configuring the Oracle Data Guard Physical Standby Database

[56]

2.	 Set the standby database initialization parameters:

Copy the PFILE from the primary system to the standby system under the
$ORACLE_HOME/dbs directory with the proper name (initINDIA.ora in our
example). Make changes as needed if the control file locations will be different on
the standby database and then change locations. The diagnostic destination and
memory must be checked. You also need to set the standby-related parameters
we've just covered. Use the following example to compare parameters of the
primary and standby databases.

We haven't set Data-Guard-related parameters on the primary database yet. We'll
set them after the RMAN duplicate operation finishes successfully. The following
primary initialization parameters will be the final status.

In this example, the database files on the primary database are under
the /u01 directory and the database files on the standby database are
under the /u02 directory. This has been configured intentionally to
show you the settings of the related initialization parameters.

The following are the primary database parameters:
control_files='/u01/app/oracle/oradata/orcl/control01.ctl','/u01/
app/oracle/flash_recovery_area/orcl/control02.ctl'

db_name='orcl'

db_file_name_convert='/u02/app/oracle/oradata/orcl','/u01/app/
oracle/oradata/orcl' # for switchover purpose

db_recovery_file_dest='/u01/app/oracle/flash_recovery_area'

db_recovery_file_dest_size=4070572032

db_unique_name='turkey_un'

diagnostic_dest='/u01/app/oracle'

fal_server='INDIA' # for switchover purpose

instance_name='TURKEY'

local_listener='LISTENER'

log_archive_dest_1='LOCATION=USE_DB_RECOVERY_FILE_DEST VALID_
FOR=(ALL_LOGFILES,ALL_ROLES)'

log_archive_dest_2='SERVICE=INDIA LGWR ASYNC VALID_FOR=(ONLINE_
LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=INDIA_UN'

log_archive_config='DG_CONFIG=(turkey_un,india_un)'

log_archive_max_processes=8

log_file_name_convert='/u02/app/oracle/oradata/orcl','/u01/app/
oracle/oradata/orcl' # for switchover purpose

Chapter 2

[57]

memory_target=822083584

remote_login_passwordfile='EXCLUSIVE'

standby_file_management='AUTO' # for switchover purpose

The following are the standby database parameters:

control_files='/u02/app/oracle/oradata/orcl/control01.ctl','/u02/
app/oracle/flash_recovery_area/orcl/control02.ctl'

db_name='orcl'

db_file_name_convert='/u01/app/oracle/oradata/orcl','/u02/app/
oracle/oradata/orcl'

db_recovery_file_dest='/u02/app/oracle/flash_recovery_area'

db_recovery_file_dest_size=4070572032

db_unique_name='india_un'

diagnostic_dest='/u02/app/oracle'

fal_server='TURKEY'

instance_name='INDIA'

local_listener='LISTENER'

log_archive_dest_1='LOCATION=USE_DB_RECOVERY_FILE_DEST VALID_
FOR=(ALL_LOGFILES,ALL_ROLES)'

log_archive_dest_2='SERVICE=TURKEY LGWR ASYNC VALID_FOR= (ONLINE_
LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=turkey_un' # for switchover
purpose

log_archive_config='DG_CONFIG=(turkey_un,india_un)'

log_archive_max_processes=8

log_file_name_convert='/u01/app/oracle/oradata/orcl','/u02/app/
oracle/oradata/orcl'

memory_target=822083584

remote_login_passwordfile='EXCLUSIVE'

standby_file_management='AUTO'

3.	 After preparing the standby instance parameter file, set the Oracle user
environment variables and start the standby instance in the No Mount status.
[oracle@oracle-stby ~]$ export ORACLE_HOME= /u01/app/oracle/
product/11.2.0/db_1

[oracle@oracle-stby ~]$ export ORACLE_SID=INDIA

[oracle@oracle-stby ~]$ sqlplus / as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Sun Aug 12 12:17:01
2012

Configuring the Oracle Data Guard Physical Standby Database

[58]

Copyright (c) 1982, 2009, Oracle. All rights reserved.

Connected to an idle instance.

SQL>startup nomount

ORACLE instance started.

Total System Global Area 818401280 bytes

Fixed Size 2217792 bytes

Variable Size 507513024 bytes

Database Buffers 306184192 bytes

Redo Buffers 2486272 bytes

SQL> select host_name,status from v$instance;

HOST_NAME STATUS

-------------------- ------------

oracle-stby STARTED

4.	 The following are the SQL*Net configurations.

With 11g, we can use RMAN duplicate without the need of primary database
backup. The RMAN duplicate using the active database feature reads from the
original database files. In order to use this feature, we have to perform static
registration of the service to the listener. To do this, we configure both the listener
and TNS names. The standby database instance must be in the NOMOUNT state
before the duplicate command. In the NOMOUNT state, the database instance
will not self-register with the listener. Another item to note is that you must use a
dedicated server to connect when the database is in the NOMOUNT state.

Before we jump into configuration, let's describe static service information. Static
service information is normally not required in the listener.ora configuration
file. In order to perform duplicate using active database to connect instance in
NOMOUNT status, we are using static listener entry. The parameters required for static
service information are SID_NAME, GLOBAL_DBNAME, and ORACLE_HOME.

�� SID_NAME: The Oracle SID is the instance identifier, as in the
INSTANCE_NAME parameter of the parameter file

�� GLOBAL_DBNAME: The GLOBAL_DBNAME parameter is typically a
concatenation of the DB_DOMAIN and DB_NAME parameters in the
parameter file or the same as the SERVICE_NAMES parameter in the
parameter file

�� ORACLE_HOME: It's the installation directory of the Oracle database
software

Chapter 2

[59]

Configure the listener and TNS configuration on both the primary and standby
databases. The following is the example of the standby database's listener.ora
configuration:
LISTENER=

 (DESCRIPTION=

 (ADDRESS_LIST=

 (ADDRESS=(PROTOCOL=tcp) (HOST= oracle-stby)(PORT=1521))

 (ADDRESS=(PROTOCOL=ipc)(KEY=extproc))))

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = PLSExtProc)

 (ORACLE_HOME = /u01/app/oracle/product/11.2.0/db_1)

 (PROGRAM = extproc))

 (SID_DESC =

 (GLOBAL_DBNAME = india_un)

 (SID_NAME = INDIA)

 (ORACLE_HOME = /u01/app/oracle/product/11.2.0/db_1)))

The following will be the TNS entry primary database used to connect the
standby database:

INDIA =

 (DESCRIPTION =

 (ADDRESS = (PROTOCOL = TCP)(HOST = oracle-stby)(PORT = 1521))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = india_un)))

PMON automatically registers with the listener listening on the
default port, 1521. If the listener is listening from a non-default
port, or if this is an RAC database, the LOCAL_LISTENER
parameter must be set to register PMON with the listener. Set
the LOCAL_LISTENER parameter to the local listener alias,
the name of the listener in the listener.ora file. Also,
the LOCAL_LISTENER value has to be resolved using the
tnsnames.ora file or in an Oracle Names Server.

5.	 Now start the listeners on both the primary and standby servers.
$lsnrctl start

When the listener is running, check the database accessibility and response time,
using tnsping from both primary to standby and standby to primary databases.

Configuring the Oracle Data Guard Physical Standby Database

[60]

The registered services with the listener of primary should be similar to the
following screenshot:

The registered services with the listener of standby are as follows:

Chapter 2

[61]

6.	 Copy the password file from the primary system to standby. You can find this file
under the $ORACLE_HOME/dbs directory with the name orapwSID. Copy it to the
same directory on the standby server and rename correspondingly.

7.	 If you have configured the encryption wallet on the primary database, copy the
wallet to the standby system. If you have more than one standby database, you
must copy these files to every standby location. You can access the encrypted data
from standby when the wallet module contains the master encryption key from the
primary database.

What just happened?
We're ready to start the RMAN duplicate. Let's revisit the actions that have been performed
on the primary and standby systems:

Task Primary Standby

Instance status Open No mount

Archive log mode Enabled N/A

FRA Enabled Enabled

Force logging Enabled N/A

SQL* net configuration Configured Configured

PFILE/SPFILE Exists Copied, renamed, and modified

Password file Exists Copied and renamed

Control file Exists Will be created automatically (standby CF)

Standby redo logs Created Will be duplicated

Data files Exists Will be duplicated

Using RMAN duplicate to create physical standby databases
In order to create a physical standby database, we have several methods depending on the
release features. We've already mentioned that we'll use the RMAN duplicate from the
active database method. In this method, there's no need to take a backup in primary and
copy it on the standby system.

Here is an overview of the other methods used to create a standby database:

�� Hot backups: Backups taken from the primary database by executing the ALTER
DATABASE BEGIN BACKUP command can be used to create a standby database.

�� RMAN backups: Full (level 0) RMAN database backups can also be used for the
standby configuration.

Configuring the Oracle Data Guard Physical Standby Database

[62]

�� Cloud Control: This is the only graphical interface we can use to create a standby
database configuration. It offers online duplicates, existing or new RMAN backups,
and handles the steps of copying the init.ora file and the password file.

For the first two methods, all the preconfigurations we've
set until now are still needed.

When creating the active database duplicate, RMAN copies the datafiles directly from the
primary database to the standby database over the network; in such cases, the primary
database must be opened or mounted. Before we start creating the RMAN duplicate, we
start the standby instance in the NOMOUNT status; after successful duplication, RMAN leaves
the instance in the MOUNT status.

Time for action – running an RMAN duplicate
Perform the following steps to create a standby database with the RMAN duplicate method:

1.	 Check the primary database status; it must be either open or mount.
SQL> select db_unique_name,database_role,open_mode from
v$database;

DB_UNIQUE_ DATABASE_ROLE OPEN_MODE

---------- ---------------- --------------------

turkey_un PRIMARY READ WRITE

2.	 Run the RMAN command from the standby system. Connect the primary and
standby instances using Oracle Net Service names.
[oracle@oracle-stbydbs]$ rman target sys/free2go@turkey auxiliary
sys/free2go@india

Recovery Manager: Release 11.2.0.1.0 - Production on Thu Jul 26
18:41:06 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates. All
rights reserved.

connected to target database: ORCL (DBID=1316772835)

connected to auxiliary database: ORCL (not mounted)

RMAN will show the connected sessions as shown previously, which provided the
primary status—either open or mounted. Also, standby is in the NOMOUNT status.

Chapter 2

[63]

3.	 Now execute the DUPLICATE command.
RMAN> duplicate target database for standby from active database;

The output will be similar to the one as shown in the following screenshot:

The tail of the output logfile will be as follows:

Starting Duplicate Db at 26-JUL-12
using target database control file instead of recovery catalog
allocated channel: ORA_AUX_DISK_1
channel ORA_AUX_DISK_1: SID=19 device type=DISK
...
contents of Memory Script:
{
 backup as copy current controlfile for standby auxiliary format
'/u02/app/oracle/oradata/orcl/control01.ctl';
 restore clone controlfile to '/u02/app/oracle/flash_recovery_
area/orcl/control02.ctl' from
 '/u02/app/oracle/oradata/orcl/control01.ctl';
}
executing Memory Script
....
sql statement: alter database mount standby database
...
Starting backup at 26-JUL-12
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile file number=00001 name=/u01/app/oracle/oradata/
orcl/system01.dbf
output file name=/u02/app/oracle/oradata/orcl/system01.dbf
tag=TAG20120726T160751
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:04
channel ORA_DISK_1: starting datafile copy
...

Configuring the Oracle Data Guard Physical Standby Database

[64]

sql statement: alter system archive log current
contents of Memory Script:
{
 switch clone datafile all;
}
executing Memory Script
datafile 1 switched to datafile copy
input datafile copy RECID=2 STAMP=789667774 file name=/u02/app/
oracle/oradata/orcl/system01.dbf
...
Finished Duplicate Db at 26-JUL-12

When a restore is in progress, you can monitor how much is complete
and how much is still pending using the v$session_longops view
from the primary database.

4.	 Configure the primary database initialization parameters required for Data Guard.

SQL> alter system set log_archive_dest_2='SERVICE=INDIA LGWR ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=INDIA_UN'
scope=both sid='*';

SQL> alter system set log_archive_config= 'DG_CONFIG=(turkey_
un,india_un)' scope=both sid='*';

SQL> alter system set log_archive_max_processes=8 scope=both
sid='*';

Configure the following parameters in order to make the Data Guard configuration
ready for a role-change operation:
SQL> alter system set fal_server='INDIA' scope=both sid='*';

SQL> alter system set standby_file_management='AUTO' scope=both
sid='*';

SQL> alter system set db_file_name_convert= '/u02/app/oracle/
oradata/orcl','/u01/app/oracle/oradata/orcl' scope=spfile sid='*';

SQL> alter system set log_file_name_convert= '/u02/app/oracle/
oradata/orcl','/u01/app/oracle/oradata/orcl' scope=spfile sid='*';

Note that the last two settings are made on SPFILE; therefore, a database restart is
required to make the changes valid.

What just happened?
We've successfully restored the standby database with the standby role using Oracle 11g
RMAN duplicate of the active database method. We've also discussed different methods
used to create a standby database from primary.

Chapter 2

[65]

Post-installation steps
In this section, we'll verify the standby database status, start Redo Apply to synchronize
the standby database with the primary database, and see how we check the status of Redo
Apply at the end.

Verifying the standby database configuration
After creating the physical standby database and enabling redo transport services, you may
want to verify the standby database configuration and also check if the database changes
are being successfully transmitted from the primary database to standby.

Time for action – verifying the standby database configuration
Run the following actions to verify the standby database configuration and redo
transport services:

1.	 Connect the standby database using SQL*Plus and check for the database role and
status to ensure the database role is the physical standby.
SQL> select db_unique_name,database_role,open_mode from
v$database;

DB_UNIQUE_NAME DATABASE_ROLE OPEN_MODE

--------------- ---------------- --------------------

india_un PHYSICAL STANDBY MOUNTED

2.	 Check the standby database, SPFILE.
SQL> show parameter spfile

NAME TYPE VALUE

------ ------- --

spfile string /u01/app/oracle/product/11.2.0/db_1/dbs/
spfileINDIA.ora

If you have started the standby instance with PFILE, you should create an
SPFILE and start an instance again using the new SPFILE.

Configuring the Oracle Data Guard Physical Standby Database

[66]

3.	 Use the v$datafile view to check the location of the datafiles in the standby
database. The standby database datafile must be under the /u02 directory
because of the DB_FILE_NAME_CONVERT parameter setting.
SQL> select name from v$datafile;

NAME

/u02/app/oracle/oradata/orcl/system01.dbf

/u02/app/oracle/oradata/orcl/sysaux01.dbf

/u02/app/oracle/oradata/orcl/undotbs01.dbf

/u02/app/oracle/oradata/orcl/users01.dbf

/u02/app/oracle/oradata/orcl/example01.dbf

4.	 Use the v$logfile view to check the location of online and standby redo logfiles in
the standby database.
SQL> select group#,type,member from v$logfile;

 GROUP# TYPE MEMBER

---------- ------- --

 3 ONLINE /u02/app/oracle/oradata/orcl/redo03.log

 2 ONLINE /u02/app/oracle/oradata/orcl/redo02.log

 1 ONLINE /u02/app/oracle/oradata/orcl/redo01.log

 4 ONLINE /u02/app/oracle/oradata/orcl/redo04.log

 10 STANDBY /u02/app/oracle/oradata/orcl/standby_redo01.log

 11 STANDBY /u02/app/oracle/oradata/orcl/standby_redo02.log

 12 STANDBY /u02/app/oracle/oradata/orcl/standby_redo03.log

 13 STANDBY /u02/app/oracle/oradata/orcl/standby_redo04.log

 14 STANDBY /u02/app/oracle/oradata/orcl/standby_redo05.log

Note that the online redo logfiles and standby redo logfiles in the primary database
are created under the /u01 directory, whereas logfiles in the standby database are
under /u02. This change occurred because of the settings of the LOG_FILE_NAME_
CONVERT parameter.

SQL> show parameter log_file_name_convert

NAME TYPE VALUE

---------------------- ----------- ----------------------------
log_file_name_convert string /u01/app/oracle/oradata/orcl,

 /u02/app/oracle/oradata/orcl

Chapter 2

[67]

5.	 Verify if the redo transport service is active using the v$managed_standby view on
the standby database:

SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_PROCESS,STATUS,BLOCKS
FROM V$MANAGED_STANDBY;

 THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCKS

---------- ---------- --------- -------- ------------ ----------

 1 148 ARCH ARCH CLOSING 6

 1 147 ARCH ARCH CLOSING 8

 1 149 RFS LGWR IDLE 1

 0 0 RFS UNKNOWN IDLE 0

You must see RFS processes running on the standby database, which are responsible for
writing redo information that the primary database sends to standby.

What just happened?
We've verified the standby database mode, status, and database files. We've also seen that
the redo transport service is actively working between primary and standby.

Managing Redo Apply
As discussed in Chapter 1, Getting Started, Redo Apply is the synchronization method of the
physical standby databases. Now let's see how can we start, stop, and monitor Redo Apply.

Time for action – starting, stopping, and monitoring MRP
Before starting Redo Apply services, the physical standby database must be in the MOUNT
status. From 11g onwards, the standby database can also be in the OPEN mode. If the redo
transport service is in the ARCH mode, the redo will be applied from the archived redo
logfiles after being transferred to the standby database. If the redo transport service is in
LGWR, the Log network server (LNS) will be reading the redo buffer in SGA and will send
redo to Oracle Net Services for transmission to the standby redo logfiles of the standby
database using the RFS process. On the standby database, redo will be applied from the
standby redo logs.

Redo apply can be specified either as a foreground session or as a background process; it can
also be started with real-time apply.

To execute the following commands, the control file must be a standby
control file. If you execute these commands in a database in the
primary mode, Oracle will return an error and ignore the command.

Configuring the Oracle Data Guard Physical Standby Database

[68]

1.	 Start Redo Apply in the foreground.

Connect to the SQLPlus command prompt and issue the following command. If
the media recovery is already running, you will run into the error ORA-01153: an
incompatible media recovery is active.
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

Database altered.

Whenever you issue the preceding command, you can monitor the Redo Apply
status from the alert logfile. Managed standby recovery is now active and is not
using real-time apply. The SQL session will be active unless you terminate the
session by pressing Ctrl + C or kill the session from another active session. Press
Ctrl + C to stop Redo Apply.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

 ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

*

ERROR at line 1:

ORA-16043: Redo apply has been canceled.

ORA-01013: user requested cancel of current operation

After starting media recovery, you may see errors such as the
following, which are expected. This is in fact an enhancement
to the Data Guard technology introduced in 10gR2 to improve
speed of switchover/failover. In previous versions, role
transition would require us to clear the online redo logfiles
before it can become a primary database. Now, the database
attempts to clear the ORLs when starting Redo Apply. If the
files exist, they will be cleared; if they do not exist, it reports
one of the following errors. It attempts to create the online
redo logfiles before starting recovery. Even if this is not possible
because of different structure or log_file_name_convert
is not set, Redo Apply does not fail.

2.	 Start Redo Apply in the background.

In order to start the Redo Apply service in the background, use the disconnect
from session option. This command will return you to the SQL command
line once the Redo Apply service is started. Run the following statement on the
standby database:

SQL> alter database recover managed standby database disconnect
from session;

Database altered.

Chapter 2

[69]

3.	 Check the Redo Apply service status.

From SQL*Plus, you can check whether the Media Recover Process (MRP) is running
using the V$MANAGED_STANDBY view:
SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_PROCESS,STATUS,BLOCKS
FROM V$MANAGED_STANDBY;

 THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCKS

---------- ---------- --------- -------- ------------ ----------

 1 146 ARCH ARCH CLOSING 1868

 1 148 ARCH ARCH CLOSING 6

 0 0 ARCH ARCH CONNECTED 0

 1 147 ARCH ARCH CLOSING 8

 1 149 RFS LGWR IDLE 1

 0 0 RFS UNKNOWN IDLE 0

 0 0 RFS UNKNOWN IDLE 0

 0 0 RFS N/A IDLE 0

 1 149 MRP0 N/A APPLYING_LOG 204800

9 rows selected.

From the PROCESS column, you can see that the background process name is MRP0;
Media Recovery Process is ACTIVE and the status is APPLYING_LOG, which means
that the process is actively applying the archived redo log to the standby database.
From the OS, you can monitor the specific background process as follows:
[oracle@oracle-stby ~]$ ps -ef|grep mrp

oracle 5507 1 0 19:26 ? 00:00:02 ora_mrp0_INDIA

From the output, you can simply estimate how many standby instances are
running with background recovery. Only one Media Recovery Process can be
running per instance.

Also, you can query from v$session.

SQL> select program from v$session where program like '%MRP%';

PROGRAM

oracle@oracle-stby (MRP0)

Configuring the Oracle Data Guard Physical Standby Database

[70]

4.	 Stop Redo Apply.

To stop the MRP, issue the following command:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Database altered.

From the alert logfile, you will see the following lines:
Sun Aug 05 21:24:16 2012

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL

Sun Aug 05 21:24:16 2012

MRP0: Background Media Recovery cancelled with status 16037

Errors in file /u02/app/oracle/diag/rdbms/india_un/INDIA/trace/
INDIA_mrp0_5507.trc:

ORA-16037: user requested cancel of managed recovery operation

Managed Standby Recovery not using Real Time Apply

Recovery interrupted!

After stopping the MRP, no background process is active and this can be confirmed
by using the V$MANAGED_STANDBY or V$SESSION view shown as follows:

SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_PROCESS,STATUS,BLOCKS
FROM V$MANAGED_STANDBY;

 THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCKS

---------- ---------- --------- -------- ------------ ----------

 1 146 ARCH ARCH CLOSING 1868

 1 148 ARCH ARCH CLOSING 6

 0 0 ARCH ARCH CONNECTED 0

 1 147 ARCH ARCH CLOSING 8

 1 149 RFS LGWR WRITING 1

 0 0 RFS UNKNOWN IDLE 0

 0 0 RFS UNKNOWN IDLE 0

 0 0 RFS N/A IDLE 0

8 rows selected.

SQL> select program from v$session where program like '%MRP%';

no rows selected

Chapter 2

[71]

5.	 Start real-time apply.

To start Redo Apply in real-time apply mode, you must use the USING CURRENT
LOGFILE option as follows:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT
LOGFILE DISCONNECT FROM SESSION;

Database altered.

From the standby alert logfile, you will see the following lines:

Sun Aug 05 15:31:21 2012

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT
LOGFILE DISCONNECT FROM SESSION

Attempt to start background Managed Standby Recovery process
(INDIA)

Sun Aug 05 15:31:21 2012

Note that stopping a Redo Apply service in the real-time mode
is not different from stopping the standard Redo Apply.

What just happened?
We've seen how to start, stop, and monitor the Redo Apply service on the physical standby
database. Also, the method to start Redo Apply in the real-time mode is covered. These are
important tasks of an Oracle database administrator managing a Data Guard environment.

Verifying synchronization between the primary and standby
databases
We must now ensure that the standby database is synchronized with the primary database
after starting Redo Apply.

Configuring the Oracle Data Guard Physical Standby Database

[72]

Time for action – verifying synchronization between the primary
and standby databases

By using the following steps, you can control whether the standby database is synchronized
with primary:

1.	 On the standby database, query the V$ARCHIVED_LOG view for the archived and
applied sequences.

For the last archived sequence, use the following:
SQL> SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG;

MAX(SEQUENCE#)

 145

For the last applied sequence, use the following:
SQL> SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG WHERE
APPLIED='YES';

MAX(SEQUENCE#)

 144

From the preceding two queries, we see that the latest sequence, 145, is being
archived or written into the standby redo logfiles. There's expected to be a lag of
one sequence between archived and applied columns.

2.	 Check the status of the latest log sequence.
SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG ORDER BY
SEQUENCE#;

 SEQUENCE# APPLIED

---------- ---------

 140 YES

 141 YES

 142 YES

 143 YES

 144 YES

 145 IN-MEMORY

The log sequence 145 is still being shipped.

Chapter 2

[73]

3.	 On the primary database query for the last archived logfile, perform a couple of log
switches and then monitor if those archives are transported and applied.
SQL> SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG;

MAX(SEQUENCE#)

 145

Perform log switches several times and check.

SQL> alter system switch logfile;

System altered.

SQL> SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG;

MAX(SEQUENCE#)

 148

4.	 On the standby query for new archived logfiles and applied archived logfiles, query if
the new archive log sequences are applied on standby.
SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG ORDER BY
SEQUENCE#;

 SEQUENCE# APPLIED

---------- ---------

 143 YES

 144 YES

 145 YES

 146 YES

 147 YES

 148 YES

The APPLIED column on standby will be very helpful to determine which sequence
is generated and which sequences are applied. In the previous scenario, the archives
generated on primary and archives applied on standby have the same sequence
number; hence, standby is synchronized with the primary database.

The value of the APPLIED column for the most recently received logfile will be IN-
MEMORY, or YES if that logfile has been applied.

Configuring the Oracle Data Guard Physical Standby Database

[74]

What just happened?
It's very important to know methods to verify synchronization between primary and standby
databases. We've now seen one of these methods.

Time for action – testing real-time apply
If real-time apply is enabled, the apply services can apply redo data without waiting for the
current standby redo logfile to be archived. This allows faster role transitions because you
avoid waiting for a redo log to be transported to the standby database and then applied. In
this example, we'll see how changes are transferred and applied to the standby database.
The redo log that includes changes is not archived on primary.

1.	 In order to use real-time apply, the redo transport service from primary to standby
must use LGWR. Run the following query on the primary database and check the log
archive destination configuration.
SQL> show parameter log_archive_dest_2

NAME TYPE VALUE

------------------- -------- ----------

log_archive_dest_2 string SERVICE=INDIA LGWR ASYNC VALID_FOR
=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_
NAME=INDIA_UN

2.	 In the standby database, start Redo Apply using the USING CURRENT LOGFILE
option.
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT
LOGFILE DISCONNECT FROM SESSION;

Database altered.

3.	 Check the current status of processes related to Data Guard in the physical standby
database. You need to verify that the status of the MRP0 process is APPLYING LOG:
SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_
PROCESS,STATUS,BLOCK#,BLOCKS FROM V$MANAGED_STANDBY;

THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCK# BLOCKS

------- ---------- --------- -------- -------- -------- ----------

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

1 149 ARCH ARCH CLOSING 61440 1244

0 0 RFS N/A IDLE 0 0

Chapter 2

[75]

1 150 RFS LGWR IDLE 8823 1

1 150 MRP0 N/A APPLYING_LOG 23 204800

4.	 Create a table in the primary database by selecting the data logs from another table.
SQL> create table packt.oracle as select * from scott.emp;

Table created.

SQL> select count(*) from packt.oracle;

COUNT(*)

 81920

No log switches have been performed on the primary database.

5.	 Now monitor the number of redo blocks for the current redo log, written on
primary, sent to standby, and applied on standby.

The redo blocks for the primary database:
SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_
PROCESS,STATUS,BLOCK#,BLOCKS FROM V$MANAGED_STANDBY;

THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCK# BLOCKS

------- -------- ------- ------ --------- ---------- ----------

1 143 ARCH ARCH CLOSING 1 2

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

1 149 ARCH ARCH CLOSING 61440 1244

1 146 ARCH ARCH CLOSING 2049 1868

1 150 LNS LNS WRITING 9016 1

The redo blocks for the standby database:

SQL> SELECT THREAD#,SEQUENCE#,PROCESS,CLIENT_
PROCESS,STATUS,BLOCK#,BLOCKS FROM V$MANAGED_STANDBY;

THREAD# SEQUENCE# PROCESS CLIENT_P STATUS BLOCK# BLOCKS

------- -------- ------- ------ ----------- ---------- ----------

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

0 0 ARCH ARCH CONNECTED 0 0

Configuring the Oracle Data Guard Physical Standby Database

[76]

0 0 ARCH ARCH CONNECTED 0 0

1 149 ARCH ARCH CLOSING 61440 1244

0 0 RFS N/A IDLE 0 0

1 150 RFS LGWR IDLE 8910 1

1 150 MRP0 N/A APPLYING_LOG 8910 204800

6.	 You can also check the apply lag on the standby database using the V$DATAGUARD_
STATS view in terms of time. Run the following query on the standby database:
SQL> SELECT name, value, datum_time, time_computed FROM
V$DATAGUARD_STATS WHERE name like 'apply lag';

NAME VALUE DATUM_TIME TIME_COMPUTED

---------- ------------ ------------------- -------------------

apply lag +00 00:00:00 08/05/2012 22:14:16 08/05/2012 22:14:18

The apply lag metric is zero, which means there's no lag. This value is calculated
with the data periodically received from the primary database. The DATUM_TIME
parameter shows when this data was last sent from primary to the standby
database. The TIME_COMPUTED column shows when the apply lag value was
calculated. Normally, the difference between these two values should be less
than 30 seconds.

The following query to the V$STANDBY_EVENT_HISTOGRAM view shows the history
of apply lag values since the standby instance was last started:

SQL> SELECT * FROM V$STANDBY_EVENT_HISTOGRAM WHERE NAME = 'apply
lag' AND COUNT > 0;

NAME TIME UNIT COUNT LAST_TIME_UPDATED

---------- ---------- ------------- -------- -----------------

apply lag 0 seconds 431 08/05/2012 22:14:21

apply lag 1 seconds 7 08/05/2012 22:13:31

7.	 On the physical standby database (which is read-only and in the real-time apply
mode), query the row number for the table that we created on primary.
SQL> select count(*) from packt.oracle;

COUNT(*)

 81920

Chapter 2

[77]

We can see that the changes were applied on the standby database without waiting
for a log switch either on the primary or standby database. This is achieved by the
LGWR redo transport mode on primary and real-time Redo Apply mode on the
standby database.

What just happened?
The recommended Redo Apply method, real-time apply, is verified and we've seen that
the redo switch is not required to apply changes to the standby database in the real-time
apply mode.

Have a go hero – checking the network latency effect on real-time apply
In order to check if network latency and bandwidth have any effect on real-time apply, run
an insert operation on the primary and commit. Right after the commit, query the physical
standby database to see if the changes are applied immediately. You may see some seconds
of delay, which is most probably caused by network performance.

Summary
We have finished this chapter by describing Data Guard physical standby database creation,
configuration, and controlling. We used the RMAN duplicate from the active database
method, which is the easiest and most efficient way of creating a physical standby database.
This method doesn't require a backup staging disk area in either primary or standby servers
because it performs a direct copy from primary files to standby. This chapter also covered
pre and post steps of creating a standby database with RMAN duplicate. We learned starting,
stopping, and monitoring Redo Apply and the synchronization method of physical standby
databases, including real-time apply. In the next chapter, we'll learn about building a Data
Guard logical standby database environment.

3
Configuring Oracle Data Guard

Logical Standby Database

The objective of this chapter is to show you how to create and manage a logical
standby database environment. We've already learned what a logical standby
database is and what are its highlights. Now it's time to study the installation
and administration of the logical standby database with hands-on examples.

In this chapter we'll discuss the following topics:

�� Features and working principles of the logical standby database

�� The pre-installation steps for a logical standby database configuration

�� Creating a logical standby database from a physical standby database

�� Verification of the newly created logical standby database configuration

�� Customizing the environment with selective replication, Database Guard settings
and creating an independent database object on the logical standby database

Logical standby database characteristics
It's important to know the logical standby database properties well in order to decide if your
business needs the physical or logical option. The different log apply modes make them
distinct solutions for data replication, high availability, and disaster recovery. By using SQL
Apply (the log apply method of logical standby databases), Data Guard mines the redo data
(which was transferred from the primary database), builds the SQL statements (which will
result in the same data change as in the primary database).

Configuring Oracle Data Guard Logical Standby Database

[80]

Finally executes these SQL statements on the logical standby database as shown in the
following diagram:

PRIMARY STANDBY

Redo

Transport

Standby

Redo Logs

Build SQL From Redo

and Execute SQL

Primary

Database

Logical

Standby

Database

Maintaining this kind of standby database has its own pros and cons. Now let's see what
they are.

Not everything must be duplicated
Depending on your conditions, there may be cases where you don't want all the data in your
primary database to be replicated. This is not possible with a physical standby database;
however, the logical standby database offers to skip replication of some tables or schemas.

Use for reporting at all times
It's possible to use a logical standby database anytime to offload reporting jobs from the
primary database because a logical standby database is always open for user connections.
This is also available with the Oracle version 11g physical standby feature of Active Data
Guard but it requires an additional license.

Independent standby database objects
A logical standby database may contain additional schemas and objects that do not exist on
the primary database. This feature also relies on the fact that the logical standby database is
a read/write accessible database. We can use this feature particularly for the reporting jobs
running on the standby database. It's possible to create indexes and materialized views on
the standby database, which can be expensive to maintain on the primary database. Also,
many reporting tools require us to create global temporary tables. These reporting tools may
run on a logical standby database but not on an Active Data Guard standby, because Active
Data Guard allows only read operations on the standby database.

Chapter 3

[81]

Protecting writes on replicated standby tables
The replicated data on a standby database normally needs to be non-modifiable in order
to provide data consistency. Logical standby database is capable of guaranteeing this with
the use of Database Guard settings. It's also possible to configure a logical standby database
in order to allow users to create new objects and modify the data on these non-replicated
objects or not allow any modification on the standby database.

Limitation for specific data types and objects
There are specific Oracle database objects and data types that are not supported for
replication in a logical standby database configuration. Updates on the following objects will
not be replicated to a logical standby:

�� Tables containing LOB columns stored as SecureFiles (unless the compatibility
level is set to 11.2 or higher)

�� Tables with virtual columns

We should also keep in mind that changes on the tables or sequences owned by SYS are
not applied by SQL Apply, because SYS organizes its own structure on the logical standby
database. We should be careful so as to not put any user data under SYS objects or create
any object under the SYS schema in the primary database manually.

Another important point is redo will not be generated for DML on Global Temporary Tables.
Hence, they're out of the replication scope.

The following data types are also not supported in a logical standby database configuration.
If a table contains a column with one of these data types, the entire table will be skipped by
SQL Apply:

�� BFILE

�� Collections (including VARRAYS and nested tables)

�� Multimedia data types (including spatial, image, and Oracle text)

�� ROWID and UROWID

�� User-defined data types

And last but not least, DDL statements for materialized views and database links are skipped
by SQL Apply. Therefore, these objects must be handled manually on the logical standby
database, if necessary.

Configuring Oracle Data Guard Logical Standby Database

[82]

High availability and disaster recovery considerations
A logical standby database can be used for switchover or failover just like the physical standby
database configuration. We can also configure fast-start failover with the logical standby
environment. These properties make the logical standby database an appropriate solution
for high availability and disaster recovery. However, the following considerations are very
important if you use the logical standby database for high availability and disaster recovery:

�� There is no guarantee that all primary data will be present in the logical standby
database. We should be aware of the unsupported objects that will not be
replicated. If there are important tables on your primary database, which will not be
replicated because of the unsupported data type, you should consider the physical
standby database for these purposes.

�� Once we failover to a logical standby database, all other standby databases in
the configuration must be recreated. This is not the same on physical standby
configuration. Physical standby databases are able to send redo to other standby
databases in the configuration after a switchover or failover. If you consider using
more than one standby, using a physical standby for disaster recovery will be
more effective.

�� Physical standby offers higher recovery performance than the logical standby
because it consumes less memory, CPU, and I/O resource on the apply process.
If the primary database has high redo generation rate, you can consider using a
physical standby for the purposes in question.

�� The management of a logical standby configuration is more complex than that of
physical. In a physical standby database we start Redo Apply and it's guaranteed
that all the changes on the data will be replicated to standby. Logical standby will
require more manual administrator interferences and they need to be consistently
synchronized and work with optimum performance.

Preparation for the configuration
Now it's time to get our hands dirty in the process of creating a logical standby database.
First we'll start preparing the primary database for the configuration. Then we'll convert a
physical standby database into a logical standby database. This is the method of creating
logical standby Data Guard configuration.

You can use the physical standby database that we created together in Chapter
2, Configuring Oracle Data Guard Physical Standby Database for this purpose.
However, we'll need a physical standby in the following chapters to study on. So,
it would be better to create a separate physical standby database with one of the
mentioned methods to use in the logical standby configuration.

Chapter 3

[83]

There are some prerequisites that we need to complete before starting the configuration.
One of them is checking the primary database for specifying any tables that will be skipped
by SQL Apply because of the unsupported data types. It doesn't make sense to build a
configuration where you're not sure which objects will and will not be replicated.

The other important control is ensuring the objects that will be replicated and maintained by
SQL Apply are uniquely identified. As the logical standby is actually a standalone database,
synchronizing it with SQL statements might result in ROWIDs being different on primary and
standby databases. Thus, primary ROWID cannot be used to identify the corresponding row
in the logical standby database. SQL Apply needs another unique identifier to apply changes,
which are the primary keys, non-null unique-constraint/index, or all columns of bounded
size, respectively depending on their existence.

Time for action – checking for the unsupported data types
In order to be aware of what will and will not be replicated, we should check which primary
database tables are not supported for the logical standby database.

1.	 Run the following query on the primary database to see the unsupported
table names:
SQL> SELECT * FROM DBA_LOGSTDBY_UNSUPPORTED_TABLE ORDER BY
OWNER,TABLE_NAME;

OWNER TABLE_NAME
---------- ------------------------------
IX AQ$_ORDERS_QUEUETABLE_G
IX AQ$_ORDERS_QUEUETABLE_H
IX AQ$_ORDERS_QUEUETABLE_I
IX AQ$_ORDERS_QUEUETABLE_L
IX AQ$_ORDERS_QUEUETABLE_S
IX AQ$_ORDERS_QUEUETABLE_T
IX AQ$_STREAMS_QUEUE_TABLE_C
IX AQ$_STREAMS_QUEUE_TABLE_G
IX AQ$_STREAMS_QUEUE_TABLE_H
IX AQ$_STREAMS_QUEUE_TABLE_I
IX AQ$_STREAMS_QUEUE_TABLE_L
IX AQ$_STREAMS_QUEUE_TABLE_S
IX AQ$_STREAMS_QUEUE_TABLE_T
IX ORDERS_QUEUETABLE
IX STREAMS_QUEUE_TABLE
OE CATEGORIES_TAB
OE CUSTOMERS
OE PURCHASEORDER

Configuring Oracle Data Guard Logical Standby Database

[84]

OE WAREHOUSES
PM ONLINE_MEDIA
PM PRINT_MEDIA
SH DIMENSION_EXCEPTIONS

22 rows selected.

As mentioned earlier, we use a newly created 11g release 2 database, which only
includes built-in example schemas. The unsupported tables are from the IX, OE, PM,
and SH schemas. Now let's check the reasons for which these tables are on
the unsupported list.

2.	 Run the following query for one of the unsupported tables to check the reason.
We're now running STREAMS_QUEUE_TABLE under the IX schema:
SQL> SELECT DISTINCT(ATTRIBUTES) FROM DBA_LOGSTDBY_UNSUPPORTED
WHERE OWNER='IX' and TABLE_NAME = 'STREAMS_QUEUE_TABLE';

ATTRIBUTES

AQ queue table

We've only queried the ATTRIBUTES column of the DBA_LOGSTDBY_
UNSUPPORTED view for a specific table name. The ATTRIBUTES column displays
the reason the table is not supported by SQL Apply. If the structure of the table is
unsupported, the ATTRIBUTES column will show the description for that. In the
example we can see that STREAMS_QUEUE_TABLE is unsupported because it is an
AQ queue table.

3.	 If the structure of the table is supported but some columns in the table have
unsupported data types, the ATTRIBUTE column will be NULL. Let's check which
columns of which tables have ATTRIBUTE value NULL, in other words which tables
have unsupported data types on specific columns.
SQL> SELECT OWNER, TABLE_NAME, COLUMN_NAME,DATA_TYPE FROM DBA_
LOGSTDBY_UNSUPPORTED WHERE ATTRIBUTES IS NULL;

OWNER TABLE_NAME COLUMN_NAME DATA_TYPE
----- ---------------------- ------------------------ ---------
PM ONLINE_MEDIA PRODUCT_PHOTO_SIGNATURE OBJECT
PM ONLINE_MEDIA PRODUCT_THUMBNAIL OBJECT
PM ONLINE_MEDIA PRODUCT_VIDEO OBJECT
PM ONLINE_MEDIA PRODUCT_AUDIO OBJECT
PM ONLINE_MEDIA PRODUCT_TESTIMONIALS OBJECT
PM ONLINE_MEDIA PRODUCT_PHOTO OBJECT
PM PRINT_MEDIA AD_HEADER OBJECT

Chapter 3

[85]

PM PRINT_MEDIA AD_GRAPHIC BFILE
OE CUSTOMERS CUST_ADDRESS OBJECT
OE CUSTOMERS PHONE_NUMBERS VARRAY
OE CUSTOMERS CUST_GEO_LOCATION OBJECT
OE WAREHOUSES WH_GEO_LOCATION OBJECT
SH DIMENSION_EXCEPTIONS BAD_ROWID ROWID

13 rows selected.

We can see that 5 tables have unsupported columns and will be ignored by SQL
Apply like the others, because of their table structure.

Keep in mind that the changes on the unsupported tables will still be
sent by the redo transport service; however, SQL Apply will ignore the
changes on the unsupported tables. Another point is the unsupported
tables will exist on the logical standby database, because a logical
standby is converted from a physical standby database, which is an exact
copy of the primary. These tables will exist but will not be updated by
SQL Apply on the logical standby database.

What just happened?
We've seen how to query unsupported data for logical standby in the existing database. This
information is important in the decision of using logical standby databases.

Now let's search for any table row uniqueness problem in the primary database and how to
fix the issue if it exists.

Time for action – searching for and fixing any table row
uniqueness problem

1.	 In order to check for any table row uniqueness, we can run the following query on
the primary database:
SQL> SELECT * FROM DBA_LOGSTDBY_NOT_UNIQUE;

OWNER TABLE_NAME B
------------------------------ ------------------------------ -
SCOTT BONUS N
SCOTT SALGRADE N
SH SALES N
SH COSTS N
SH SUPPLEMENTARY_DEMOGRAPHICS N

Configuring Oracle Data Guard Logical Standby Database

[86]

This query was run on a newly created 11g release 2 database, which only includes
built-in example schemas. The output shows that several tables from SCOTT and SH
schemas have row uniqueness problem.

The BAD_COLUMN column has two values, which are Y and N. If you see the rows
with BAD_COLUMN=Y, it means that the table column is defined using an unbounded
data type, such as LONG or BLOB. If two rows contain the same data except in their
LOB columns, the replication will not work properly for this table. If the application
ensures the rows are unique, we should consider adding a disabled primary key RELY
constraint to these tables. When RELY is used, the system will assume that rows are
unique and not validate them on every modification to the table. This method will
avoid the overhead of maintaining a primary key on the primary database. However,
if there's no such uniqueness, we must add a unique-constraint/index to the columns
on the primary database.

BAD_COLUMN=N means that there is enough column information to maintain the
table in the logical standby database; however, the transport and apply services will
run more efficiently if you add a primary key to the table. We should again consider
adding a disabled RELY constraint to these tables.

2.	 Let's add a disabled primary key RELY constraint to the BONUS table in the SCOTT
schema. First we check the columns of the table using the following query:
SQL> DESC SCOTT.BONUS
 Name Null? Type
 ----------------- -------- ----------------------------
 ENAME VARCHAR2(10)
 JOB VARCHAR2(9)
 SAL NUMBER
 COMM NUMBER

3.	 Now we add the disabled RELY constraint to the ENAME column of the table:
SQL> ALTER TABLE SCOTT.BONUS ADD PRIMARY KEY (ENAME) RELY DISABLE;

Table altered.

4.	 We can check the DBA_LOGSTDBY_NOT_UNIQUE view again to see if the BONUS
table has disappeared from the list using the following query:
SQL> SELECT * FROM DBA_LOGSTDBY_NOT_UNIQUE;

OWNER TABLE_NAME B
------------------------------ ------------------------------ -
SCOTT SALGRADE N
SH SALES N
SH COSTS N
SH SUPPLEMENTARY_DEMOGRAPHICS N

Chapter 3

[87]

5.	 We should add disabled RELY constraints to the rest of the tables above. Now we're
ready for the next step, which is creating the logical standby database.

What just happened?
We've just seen the prerequisite steps to create a logical standby database configuration.
The first step was checking the unsupported tables that will not be replicated, in order to
be aware which data will be missed on the logical standby and to decide whether to use
the logical option or not. The next step is searching for and fixing any table row uniqueness
problem, for properly working redo transport and SQL Apply services.

Creating a logical standby database
As mentioned, a physical standby database is needed to create a logical standby database. It
is assumed that we have a Data Guard configuration with a primary and one or more physical
standby databases, which are synchronized with the primary. In order to create a logical
standby database, we should first check the primary and the physical standby databases and
make them ready for a logical standby conversion. These configurations are as follows:

�� Stopping the media recovery on the standby

�� Configuring primary database initialization parameters to be ready for a logical
standby role transition

�� Building the LogMiner dictionary on the primary

�� If standby is RAC, converting it to a single instance temporarily

After completing these tasks, we continue the process of converting the physical standby
into a logical standby with the following tasks:

�� Recovering the standby to the SCN that the LogMiner dictionary was built with

�� Re-enabling RAC on the standby if it exists

�� Modifying the archival initialization parameters for the standby

�� Opening the database with resetlogs

�� Starting SQL Apply on the standby

It's important to complete all these steps for a successful logical standby database
configuration.

Configuring Oracle Data Guard Logical Standby Database

[88]

If Data Guard broker is used, it's advised to remove the physical standby
database from the broker configuration before starting the logical standby
conversion process. If you don't, broker will still show the standby database as
a physical standby even if you convert it to a logical standby database and you'll
struggle with this problem later on.

Time for action – making a physical standby database
environment ready for conversion

You can perform the following steps to make a physical standby database environment ready
for conversion:

1.	 Stop the media recovery on the physical standby with the following statement:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Database altered.

2.	 In order to prepare the primary database for possible switchovers with the
logical standby in future, we will make some changes on the archival initialization
parameters. This step is optional and if you don't plan any switchovers between the
primary and logical standby in the future, you can skip this step. Run the following
statements on the primary database to change the parameters:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/u01/app/
oracle/archive VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES) DB_UNIQUE_
NAME=TURKEY_UN' SCOPE=BOTH;

System altered.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_3='LOCATION=/u01/app/
oracle/archive_std VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_
UNIQUE_NAME=TURKEY_UN' SCOPE=BOTH;

System altered.

In this configuration LOG_ARCHIVE_DEST_1 will archive the online logfiles to the
archived logfiles even if the database is primary or logical standby (ALL_ROLES
option). After a switchover when the database role is logical standby, this setting will
archive the local online redo logfiles and not the standby redo logs. It will be filled
with the redo transferred from primary.

Chapter 3

[89]

The LOG_ARCHIVE_DEST_3 parameter (not set in physical standby Data Guard
configuration) will be omitted when the database is primary (STANDBY_ROLE
option). If the database role is logical standby, this parameter will archive the
standby redo logs that contain redo generated and sent by the primary database.

There is already LOG_ARCHIVE_DEST_2 defined on the primary database that
sends redo to the standby. We are not going to change this parameter. The value
of this parameter should resemble the following:

SERVICE=INDIA LGWR ASYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=INDIA_UN

3.	 Execute the following statement on the primary database to make it ready to
support a logical standby configuration. This package enables supplementary
logging on the primary database, which ensures that the updates contain enough
information to identify each modified row. It also builds the LogMiner dictionary
and identifies the SCN that SQL Apply has to start mining redo.
SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

PL/SQL procedure successfully completed.

If the database version is 11gR2, the supplemental logging
information is automatically propagated to any existing physical
standby database in the configuration. In earlier releases, we
must enable supplemental logging on the physical standby
database, if we're going to switchover to a physical standby
database. Otherwise, after the switchover, the new primary
database will not be able to properly feed the logical standby
database with redo.

4.	 If the physical standby is RAC, you must convert it to a single instance before the
logical database conversion. Use the following statements for this purpose:
SQL> ALTER SYSTEM SET CLUSTER_DATABASE=FALSE SCOPE=SPFILE;
SQL> SHUTDOWN ABORT;
SQL> STARTUP MOUNT EXCLUSIVE;

What just happened?
We're now ready to continue with the conversion of the standby database from physical
to logical.

Configuring Oracle Data Guard Logical Standby Database

[90]

Time for action – converting a physical standby database into a
logical standby database

1.	 Execute the following special recovery command on the standby database in order
to recover it until the SCN that the dictionary was built:
SQL> ALTER DATABASE RECOVER TO LOGICAL STANDBY ORCL2;

Database altered.

2.	 At the same time, if you check the standby database alert log you'll see the
following lines:
Media Recovery Log /u01/app/oracle2/archive/1_106_791552282.arc

Media Recovery Log /u01/app/oracle2/archive/1_107_791552282.arc

Incomplete Recovery applied until change 1873735

Media Recovery Complete (INDIA)

...

RESETLOGS after incomplete recovery UNTIL CHANGE 1873735

Resetting resetlogs activation ID 1319360408 (0x4ea3d798)

standby became primary SCN: 1873733

...

RECOVER TO LOGICAL STANDBY: Complete - Database shutdown required
after NID finishes

*** DBNEWID utility started ***

DBID will be changed from 1319333016 to new DBID of 773141456 for
database ORCL

DBNAME will be changed from ORCL to new DBNAME of ORCL2

Starting datafile conversion

Datafile conversion complete

Database name changed to ORCL2.

Modify parameter file and generate a new password file before
restarting.

Database ID for database ORCL2 changed to 773141456.

All previous backups and archived redo logs for this database are
unusable.

Database has been shutdown, open with RESETLOGS option.

Succesfully changed database name and ID.

*** DBNEWID utility finished succesfully ***

Completed: ALTER DATABASE RECOVER TO LOGICAL STANDBY ORCL2

Chapter 3

[91]

We can see that the MRP applied the changes until a specific SCN. This SCN is the
point at which the LogMiner dictionary was built. Then the standby database was
activated and became the primary database. The rest of the lines show the process
of changing the DB_NAME of the database. If you look at the recovery command,
you'll see that we specified the name ORCL2 at the end. The database name needs
to be changed for the physical standby database to become a logical standby and
ORCL2 will be the new name of the standby database. All of these changes were
applied to the database by the recovery command we ran.

In the alert log, we can see the following line:

modify parameter file and generate a new
password file before restarting.

If spfile is being used, the DB_NAME parameter will be
changed automatically after this command. If pfile is in use,
we need to manually change the DB_NAME to the new value
in the init.ora file.

Prior to 11g it was necessary to create a new password file,
but it's not required in 11g. So we can ignore this line of the
alert.log.

3.	 If the standby database is RAC, we can enable the cluster again using the
following query:
SQL> ALTER SYSTEM SET CLUSTER_DATABASE=TRUE SCOPE=SPFILE;
SQL> SHUTDOWN;
SQL> STARTUP MOUNT;

4.	 There are two kinds of archived redo logfiles on the logical standby databases. The
first one is created from the online redo logs and the second is created from the
standby redo logs. We'll create separate destinations for these archived logfiles
using the following query:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=/u01/app/
oracle/archive VALID_FOR=(ONLINE_LOGFILES,ALL_ROLES) DB_UNIQUE_
NAME=INDIA_UN';

System altered.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=TURKEY ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=TURKEY_
UN';

System altered.

Configuring Oracle Data Guard Logical Standby Database

[92]

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_3='LOCATION=/u01/app/
oracle/archive_std VALID_FOR=(STANDBY_LOGFILES,STANDBY_ROLE) DB_
UNIQUE_NAME=INDIA_UN';

System altered.

Here, the first destination will be used for archiving the online redo logs of the
logical standby database. The second destination was already set in physical standby
setup and was defined in order to be used in a switchover (PRIMARY_ROLE option
is used). The last destination, LOG_ARCHIVE_DEST_3 will be used for archiving
the standby redo logs that contains the redo generated and transferred from the
primary database.

5.	 We used specific and different destinations for the archived logs for a better
understanding in this example. However, using fast recovery area for this purpose
with the LOCATION=USE_DB_RECOVERY_FILE_DEST option is a good practice.
In Oracle 10g, the logical standby database was not supported to keep the foreign
archived logfiles (archived logs that were generated from standby redo logs) in
the flash recovery area (FRA). In 11g, this is supported. In order to use FRA for
archiving, you should first enable FRA by setting the following parameters:
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=10G;
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/U01/APP/ORACLE/FRA';

6.	 Then set LOG_ARCHIVE_DEST_1 as follows:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_
RECOVERY_FILE_DEST';

7.	 LOG_ARCHIVE_DEST_1 will be enough to archive both online and standby logfiles
and we will not need LOG_ARCHIVE_DEST_3 in this case. The directory structure
will be automatically created as follows:
/u01/app/oracle2/fra/INDIA_UN/foreign_archivelog à for the files
archived from standby logs

/u01/app/oracle2/fra/INDIA_UN/archivelog à for the files archived
from online logs

8.	 Now restart the standby database and open it with the resetlogs option as shown
in the following query:
SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE OPEN RESETLOGS;

Database altered.

The database is now read/write opened for user connections. We only need to start
SQL Apply to finish the logical standby configuration.

Chapter 3

[93]

9.	 Start SQL Apply on the logical standby database by executing the following statement:
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Database altered.

Let's check what happened behind when we executed this statement, by reading the alert
logfile for the standby database as follows:

alter database start logical standby apply immediate

LOGSTDBY: Creating new session for dbid 1319333016 starting at scn
0x0000.00000000

LOGSTDBY: Created session of id 1

...

LSP0 started with pid=33, OS id=15629

Completed: alter database start logical standby apply immediate

LOGMINER: Parameters summary for session# = 1

LOGMINER: Number of processes = 3, Transaction Chunk Size = 201

LOGMINER: Memory Size = 30M, Checkpoint interval = 150M

LOGMINER: SpillScn 0, ResetLogScn 0

When the statement executed, a new session was created for the SQL Apply, and then
the LSP0 process was started, which is the Logical Standby Coordinator Process responsible
for managing the LogMiner and Apply processes. Along with LSP0, miner processes were
also started.

LOGMINER: Begin mining logfile during dictionary load for session 1
thread 1 sequence 105, /u01/app/oracle/archive_std/1_105_791552282.arc

Thread 1 advanced to log sequence 3 (LGWR switch)

 Current log# 3 seq# 3 mem# 0: /u01/app/oracle2/datafile/ORCL/redo03.log

Archived Log entry 2 added for thread 1 sequence 2 ID 0x2e14f3f9 dest 1

LOGMINER: End mining logfiles during dictionary load for session 1

At this point, we can see that SQL Apply mines the redo in order to find the dictionary
and build it on the standby. If it's not able to find the necessary archived log sequences, it
requests them from the primary database.

RFS LogMiner: Registered logfile [/u01/app/oracle/archive_
std/1_106_791552282.arc] to LogMiner session id [1]

...

Configuring Oracle Data Guard Logical Standby Database

[94]

LOGMINER: Begin mining logfile for session 1 thread 1 sequence 106, /u01/
app/oracle/archive_std/1_106_791552282.arc

LOGMINER: End mining logfile for session 1 thread 1 sequence 106, /u01/
app/oracle/archive_std/1_106_791552282.arc

Now the configuration is over and logical standby starts the apply processes and applies all
the logs to be synchronized with the primary database.

What just happened?
We have finished all the required steps to create a logical standby database. Now it's time to
verify if the logical standby services are working properly.

Verifying the logical standby database
There are two services that we need to check for the verification of the logical standby
configuration, which are the redo transport service and the SQL Apply service. There
are several ways to check the status of these services. You can use alert log and trace
files (whenever necessary) or you can query the views of the logical standby database
that contains information about the status of the Data Guard services. Another way for
controlling is modifying the primary database tables and querying the same tables on the
logical standby. We'll now query the most useful views to gather information about the
configuration and service status.

Time for action – checking the redo transport service status
The following steps can be performed to check the redo transport service status:

1.	 The first query to be executed to be sure that the redo transport service is working
properly will be the V$DATAGUARD_STATS view.
SQL> SELECT NAME, VALUE, TIME_COMPUTED FROM V$DATAGUARD_STATS
WHERE NAME='TRANSPORT LAG';

NAME VALUE TIME_COMPUTED
---------------------- -------------------- ----------------------
transport lag +00 00:00:00 08/27/2012 18:06:30

The TIME_COMPUTED value has to be up-to-date. We can see that there is no redo
transport lag in our logical standby configuration. We'll see a time value if there is
a problem with the redo transport. Also, if there is an excessive redo generation on
the primary database, this value may increase because the redo transport may not
catch up with the redo generation. The lag must be zero again when the standby
synchronized at the end.

Chapter 3

[95]

2.	 By executing the following SQL query on the logical standby, we can check logs with
which sequences are being transferred from primary and also which sequences are
being archived from the local database online redo logs.
SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS
FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
--------- ------------ ---------- ---------- ---------- ----------
ARCH CLOSING 1 90 90112 1026
ARCH CONNECTED 0 0 0 0
ARCH CLOSING 1 91 90112 1026
ARCH CLOSING 1 92 90112 1018
RFS IDLE 0 0 0 0
RFS RECIEVING 1 114 6828 1
RFS IDLE 0 0 0 0
RFS IDLE 0 0 0 0

The primary database is currently sending redo to the logical standby. We can
see that the RFS process, which is responsible for redo transportation on standby
databases, is currently receiving the redo with sequence number 114. It's also
obvious that the ARCH processes are archiving the online redo logs of the logical
standby database and the last archived log has the sequence number 92.

Don't forget that the sequences being received by RFS and
the sequences being archived from the online redo logs by
ARCH have no relationships. For example, the log sequence 90
archived from the online redo log of the logical standby database
does not contain the same redo data with the sequence 90,
which is received from the primary database.

3.	 On the other hand, we can use the following query to check which sequences were
received from the primary database and if they were applied or not:
SQL> SELECT FILE_NAME, SEQUENCE# as SEQ#, DICT_BEGIN AS BEG,
DICT_END AS END,APPLIED FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQ# BEG END APPLIED
--- --- --- --- --------
/u01/app/oracle2/archive_std/1_105_791552282.arc 105 YES YES YES
/u01/app/oracle2/archive_std/1_106_791552282.arc 106 NO NO YES
/u01/app/oracle2/archive_std/1_107_791552282.arc 107 NO NO YES

Configuring Oracle Data Guard Logical Standby Database

[96]

/u01/app/oracle2/archive_std/1_108_791552282.arc 108 NO NO YES
/u01/app/oracle2/archive_std/1_109_791552282.arc 109 NO NO YES
/u01/app/oracle2/archive_std/1_110_791552282.arc 110 NO NO YES
...

The YES value of the DICT_BEGIN and DICT_END columns show by the archived log
sequences that the LogMiner dictionary build was in place. The APPLIED column shows
whether the archived log sequence was applied by SQL Apply or not.

What just happened?
We've verified that redo transport service of Data Guard, the logical standby configuration, is
running healthfully.

Now let's see how we check SQL Apply service to see if it's running properly. It's very
important to verify that changes are being applied on the standby database.

Time for action – checking the SQL Apply service status
The following steps can be performed to check the SQL Apply service status:

1.	 Use the following query on the logical standby database, to check the general SQL
Apply status:
SQL> SELECT * FROM V$LOGSTDBY_STATE;

 PRIMARY_DBID SESSION_ID REALTIME_APPLY STATE
--------------- ---------- --------------- ---------------
 1319333016 1 Y APPLYING

At the STATE column, we can see INITIALIZING, WAITING FOR DICTIONARY
LOGS, LOADING DICTIONARY, WAITING ON GAP, APPLYING, and IDLE values,
which describe the status of the SQL Apply clearly with their names.

2.	 The DBA_LOGSTDBY_LOG view, that we have queried in the Checking the Redo
Transport Service Status action, will be very helpful to find the last applied archived
log sequence and to check if there are archived log sequences that were received
but not applied. Another view V$LOGSTDBY_PROCESS is helpful to control the
status of the processes responsible for SQL Apply.

SQL> SELECT TYPE, STATUS_CODE, STATUS FROM V$LOGSTDBY_PROCESS;

TYPE STATUS_CODE STATUS
------------ ----------- --
COORDINATOR 16116 ORA-16116: no work available

Chapter 3

[97]

ANALYZER 16116 ORA-16116: no work available
APPLIER 16123 ORA-16123: transaction 11 22 786 is
 waiting for commit approval
APPLIER 16117 ORA-16117: processing
APPLIER 16117 ORA-16117: processing
APPLIER 16117 ORA-16117: processing
APPLIER 16123 ORA-16123: transaction 11 25 786 is
 waiting for commit approval
READER 16127 ORA-16127: stalled waiting for additional
 transactions to be applied
BUILDER 16116 ORA-16116: no work available
PREPARER 16117 ORA-16117: processing

Output shows all the processes in the SQL Apply and their status. The READER, PREPARER,
and BUILDER processes are responsible for the mining of the redo. On the other side,
COORDINATOR, ANALYZER, and APPLIER processes work together to apply the changes
to the database. We can see that the READER process is waiting for the transactions to be
applied, so that memory will become available and it will read more redo. On the other
side, some APPLIER processes apply redo and some wait for commit approval to continue
applying redo as shown in the following diagram:

SQL APPLY PROCESS

Standby

Redo Logs
Reader Builder Coordinator

analyzer

Logical

Standby

Database

Redo Mining Apply

ApplierPreparer

What just happened?
We have seen several queries to gather information about the logical standby configuration.
We have verified that the newly created logical standby is synchronized with the primary and
everything works fine.

Redo transport and SQL Apply, which are the two main services of logical standby, can be
monitored at any time using the mentioned methods.

Configuring Oracle Data Guard Logical Standby Database

[98]

Have a go hero – check the services in a broken configuration
Now stop the listener on the logical standby site and run some operation on the primary
database. New archived logs will be created but primary would not send these logs to
standby. This will cause a gap between primary and standby. In the case of a gap, query redo
transport and SQL Apply services with the same queries. Start the listener and continue
checking the status.

Customization and management in a logical standby
database
After the initial configuration of a logical standby database, we should make customizations
to benefit from the standby at the highest level. Let's see what kind of customizations we are
able to do and how we manage a logical standby database environment.

Selective replication in a logical standby database
In principle, we cannot directly specify what to replicate to a logical standby database,
but we can specify tables for SQL Apply to skip. When this feature is used, the redo data
about the tables specified in the skip rules is still transferred to the standby database, but
at the mining stage SQL Apply will omit the relevant redo on the logical standby. We use
DBMS_LOGSTDBY.SKIP for this purpose.

Time for action – working with skip rules on a logical standby
database

We are now going to create some skip rules on the logical standby database in order to
skip replication of DDL or DML operations on some tables. Then we'll see how to query the
existing skip rules and finally the method for disabling the rules.

1.	 We need to create skip rules for tables and schemas, but first we need to stop SQL
Apply using the following query:
SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

2.	 Then, the following statement will create a skip rule to skip changes caused by
DML statements on the EMP table of the SCOTT schema. Execute the following
statement on the logical standby database:
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', SCHEMA_NAME =>
'SCOTT', OBJECT_NAME => 'EMP');

PL/SQL procedure successfully completed.

Chapter 3

[99]

3.	 If we also want skip DDL statements encountered for this table, the following
statement will create another skip rule:
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'SCHEMA_DDL',
SCHEMA_NAME => 'SCOTT', OBJECT_NAME => 'EMP');

4.	 The next rule will disable DML replication for a complete schema. Execute the
following statement to skip all DML changes to the HR schema:
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DML', SCHEMA_NAME =>
'HR', OBJECT_NAME => '%');

The wildcard character in the previous code can also be used in different
ways such as TMP_%, which refers to the tables with the prefix TMP_.

5.	 The following example is disabling some statements to run on the logical standby
database. The CREATE/DROP DIRECTORY commands will not be executed by
SQL Apply:
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'DIRECTORY');

6.	 Specify a procedure for DDL statements. Suppose we have different directory
structures on primary and logical standby database servers. When we add a new
datafile on primary under /u01/app/oracle/datafile/ORCL, we want the
logical standby database to create the datafile under /datafile/ORCL. We can use
the DBMS_LOGSTDBY.SKIP procedure with the PROC_NAME parameter for this goal.
Let's create a rule for this purpose. First we'll create a procedure to replace datafile
names. Run the following create procedure statement on the logical standby with
sys user:
SQL> create or replace procedure sys.change_ts_ddl (
 2 old_stmt in varchar2
 3 , stmt_typ in varchar2
 4 , schema in varchar2
 5 , name in varchar2
 6 , xidusn in number
 7 , xidslt in number
 8 , xidsqn in number
 9 , action out number
 10 , new_stmt out varchar2
 11) as
 12 begin
 13 new_stmt := replace(old_stmt,
'/u01/app/oracle2/datafile/ORCL','/datafile/ORCL');
 14 action := dbms_logstdby.skip_action_replace;
 15

Configuring Oracle Data Guard Logical Standby Database

[100]

 16 exception
 17 when others then
 18 action := dbms_logstdby.skip_action_error;
 19 new_stmt := null;
 20
 21 end change_ts_ddl;
 22 /

7.	 Now create a rule to invoke this procedure before running the replicated tablespace
DDL commands on the logical standby database using the following query:
SQL> EXECUTE DBMS_LOGSTDBY.SKIP(STMT => 'TABLESPACE', PROC_NAME =>
'SYS.CHANGE_TS_DDL');

PL/SQL procedure successfully completed.

8.	 Create and alter the tablespace commands executed on the primary database.
They will now be modified on the logical standby database before being executed.
The path of the datafiles in the statements will change from /u01/app/oracle2/
datafile/ORCL value to /datafile/ORCL. Now let's add a datafile on the
primary database as follows:
SQL> ALTER TABLESPACE SYSTEM ADD DATAFILE '/U01/APP/ORACLE/
DATAFILE/ORCL/SYSTEM02.DBF' SIZE 1G;

Tablespace altered.

9.	 Start SQL Apply on the logical standby as follows:
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

Database altered.

10.	On the alert logfile of the logical standby database, we'll see the following line,
which states that the procedure worked as planned:
Completed: alter tablespace system add datafile
'/datafile/ORCL/system02.dbf' size 1G

11.	 If something goes wrong and the database cannot execute the procedure, SQL Apply
will stop and you'll see the related error outputs on the alert log. For example, if
there are missing arguments in the procedure, the following errors will be written
into the alert logfile:
krvxerpt: Errors detected in process 42, role Apply Slave.

dglspc: unhandled failure calling user procedure 604

...

PLS-00306: wrong number or types of arguments in call to 'CHANGE_
TS_DDL'

Chapter 3

[101]

ORA-06550: line 1, column 443:

PL/SQL: Statement ignored

ORA-06550: line , column :

LOGSTDBY Analyzer process AS00 server id=0 pid=41 OS id=13178
stopped

LOGSTDBY Apply process AS03 server id=3 pid=44 OS id=13184 stopped

LOGSTDBY Apply process AS04 server id=4 pid=45 OS id=13186 stopped

LOGSTDBY Apply process AS02 server id=2 pid=43 OS id=13182 stopped

LOGSTDBY Apply process AS05 server id=5 pid=46 OS id=13188 stopped

LOGMINER: session#=1, reader MS00 pid=37 OS id=13172 sid=145
stopped

LOGMINER: session#=1, preparer MS02 pid=40 OS id=13176 sid=178
stopped

LOGMINER: session#=1, builder MS01 pid=38 OS id=13174 sid=156
stopped

12.	Now, we query the rules. Let's check what rules we have created, which data will not
be replicated, and what procedures were defined for what kind of SQL statements
on the logical standby database. We'll use the DBA_LOGSTDBY_SKIP view to gather
this information. Run the following query on the logical standby database:
SQL> SELECT OWNER, NAME,STATEMENT_OPT, PROC FROM DBA_LOGSTDBY_
SKIP WHERE STATEMENT_OPT <> 'INTERNAL SCHEMA';

OWNER NAME STATEMENT_OPT PROC
-------- ------------------ --------------- ------------------
 DIRECTORY
SCOTT EMP DML
SCOTT EMP SCHEMA_DDL
HR % DML
 TABLESPACE SYS.CHANGE_TS_DDL

We can see all the rules we created in this output. The first rule disables running
the directory DDL commands on the logical standby database. The DML and DDL
statements on the EMP table of the SCOTT schema will be skipped by SQL Apply.
Also all the tables of the HR schema are out of replication scope in terms of DML
operations. At the last line of the output, we can see the rule we created, which
defines a procedure for the DDL operations on the logical standby database. The
SYS.CHANGE_TS_DDL procedure will be executed prior to the replicated tablespace
DDL commands on the logical standby databse. This procedure will change the
directory of the datafiles.

Configuring Oracle Data Guard Logical Standby Database

[102]

13.	 Disable a skip rule. We may want to re-enable replication for a table or schema in the
logical standby database. In this case we will use DBMS_LOGSTDBY.UNSKIP procedure
to remove the skip rule for that table or schema. However, prior to this we need the
current state of the table and its data on the logical standby database to start the
replication again. For this purpose we will use the DBMS_LOGSTDBY.INSTANTIATE_
TABLE procedure. This procedure will drop and recreate the table if it still exists on
the logical standby database. The current data will be imported but associated indexes
and constraints will not be replicated. First, we stop SQL Apply as follows:
SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

14.	We need a database link to connect to the primary database to read and lock the
table in the primary database. The link must connect to the primary database
with a user who has privileges to read and lock the table, as well as the SELECT_
CATALOG_ROLE procedure. Let's create this database link on the logical standby
database as follows:
SQL> CREATE PUBLIC DATABASE LINK INSTANTIATE_TABLE_LINK CONNECT TO
SYSTEM IDENTIFIED BY ORACLE USING 'TURKEY';

Database link created.

15.	Then execute the INSTANTIATE_TABLE procedure as follows:
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE (SCHEMA_NAME =>
'SCOTT', TABLE_NAME => 'EMP', DBLINK => 'INSTANTIATE_TABLE_LINK');

PL/SQL procedure successfully completed.

This procedure uses Data Pump on the background. It locks the table on the
primary for a moment and records that SCN. Then the drop table, create table
and export/import operations are performed. After the procedure is completed,
logical standby uses the SCN value for consistent replication of the table. You'll see
the following lines in the alert log of the logical standby database, which indicates
the use of Data Pump import:

DM00 started with pid=36, OS id=12415, job SYS.SYS_IMPORT_TABLE_01

DW00 started with pid=37, OS id=12426, wid=1, job SYS.SYS_IMPORT_
TABLE_01

16.	Now we must delete the DML and DDL skip rules of SCOTT.EMP table from the
logical standby database using DBMS_LOGSTDBY.UNSKIP as follows:
SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(STMT => 'DML', SCHEMA_NAME =>
'SCOTT', OBJECT_NAME => 'EMP');

PL/SQL procedure successfully completed.

Chapter 3

[103]

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(STMT => 'SCHEMA_DDL', SCHEMA_
NAME => 'SCOTT', OBJECT_NAME => 'EMP');

PL/SQL procedure successfully completed.

17.	We're ready to start the SQL Apply again as follows:
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;

What just happened?
Now you know how to disable replication for a table or schema in a logical standby database
configuration. You have learned how to use the DBMS_LOGSTDBY.SKIP procedure for this
purpose. We also mentioned how to specify a procedure to run before DDL statements with
an example of automatically changing the datafile directory structures for the tablespace
DDL commands on the logical standby database. Then we saw how to query and disable the
skip rules. The DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure is used to re-build the
table on the standby and the DBMS_LOGSTDBY.UNSKIP procedure removes the skip rule for
the specified table or schema.

Database Guard settings for the logical standby database
In order to control user modification to tables on the logical standby database we will use
the Database Guard setting. Database Guard offers the following three options:

�� ALL: This setting will prevent all database users except SYS from modifying
any table in the logical standby database. This is the default mode of a logical
standby database.

�� STANDBY: In standby mode, users may modify the database tables, which are out
of the replication scope. The tables maintained by SQL Apply are still not modifiable
by users except SYS.

�� NONE: Users are free to modify any tables that they have necessary privileges for.
This is the mode of a primary database.

Note that we can set the Database Guard to ALL in a primary
database to keep it read-only for a while without a shutdown.

Configuring Oracle Data Guard Logical Standby Database

[104]

Time for action – changing the Database Guard setting
As we mentioned before, the default Database Guard mode for a logical standby database is
set to ALL. Let's try to insert data into the HR.REGIONS table, which is out of the replication
scope because of the skip rule we created.

1.	 Connect the logical standby database with SYS user. Check the Database Guard
mode and skip rules with the following query:
SQL> SELECT GUARD_STATUS FROM V$DATABASE;

GUARD_S

ALL

SQL> SELECT OWNER, NAME,STATEMENT_OPT, PROC FROM DBA_LOGSTDBY_
SKIP WHERE STATEMENT_OPT <> 'INTERNAL SCHEMA';

OWNER NAME STATEMENT_OPT PROC
-------- ------------ --------------- ------------------
 DIRECTORY
HR % DML
 TABLESPACE SYS.CHANGE_TS_DDL

Database Guard mode is ALL and all HR tables are skipped by SQL Apply.

2.	 Now connect with the HR user and insert a row to the REGIONS table:
SQL> CONN HR/HR
Connected.
SQL> INSERT INTO HR.REGIONS VALUES (10,'TEST');
insert into hr.regions values (10,'test')
 *
ERROR at line 1:
ORA-16224: Database Guard is enabled

It's not possible to insert into a table, which is not part of the replication because
the database guard mode is ALL.

3.	 Let's change the mode to STANDBY and try to insert in the table again using the
following query:
SQL> ALTER DATABASE GUARD STANDBY;
	
Database altered.

Chapter 3

[105]

SQL> CONN HR/HR
Connected.

SQL> INSERT INTO HR.REGIONS VALUES (10,'TEST');

1 row created.

We're now able to modify the tables with skip rules.

4.	 Let's try to modify a table that is not skipped by SQL Apply:

SQL> CONN SCOTT/TIGER
Connected.
SQL> INSERT INTO DEPT VALUES (50,'TEST','TEST');
insert into dept values (50,'test','test')
 *
ERROR at line 1:
ORA-16224: Database Guard is enabled

What just happened?
We're now ready to change the logical standby database settings in order to let users modify
non-replicated standby tables, all standby tables, or make the standby completely protected
to user modification.

If only specific users need to modify standby tables, session-based disabling of database
guard is more sensible.

Disabling database guard for a session
If specific users on the logical standby need to modify tables and you do not want other
users to have this opportunity, users can disable the Database Guard in their current sessions
only and you can keep the logical standby on ALL or STANDBY mode. Execute the following
statement to disable Database Guard for the current session:

SQL> ALTER SESSION DISABLE GUARD;

Session altered.

The user must be granted the alter database privilege in order to disable Database
Guard in its session.

Configuring Oracle Data Guard Logical Standby Database

[106]

Have a go hero – testing the NONE Database Guard mode
Now set your Database Guard mode to NONE and try to insert into the table SCOTT.DEPT
with the user Scott again. You should be able to modify all tables, which are also being
modified with SQL Apply. Also, think about using the Database Guard mode as NONE. How
could you control the accuracy of the data for the replicated tables when the users are free
to modify them?

Creating objects on the logical standby database
With a proper configuration, users are free to create database objects on the logical standby
databases. However, we need to know some characteristics of the standby objects that are
not handled by SQL Apply.

Creating and re-creating tables
In order to create a standalone table on the logical standby database, the Database Guard
mode must be STANDBY or NONE. One other way is to disable Database Guard for the
current session and creating the table, which works even when the Database Guard is ALL.

On the other hand, if we somehow lose a table on the logical standby, which is inside the
scope of replication and we want to create it again with the up-to-date data, it's possible
to use the built-in DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure.

Creating scheduler jobs
The logical standby database supports the replication of the jobs created with the
DBMS_JOB package. These jobs will be created but will not run on the standby database.
However, in case of failover or switchover, jobs will automatically start running on the
new primary database.

The scheduler jobs created with DBMS_SCHEDULER are not replicated to the logical standby.
However, in 11g there is a new attribute called database_role for this package, which
makes scheduler jobs possible to be run on logical standby. By default, this attribute equals
to the database_role value of the v$database view. You can create a job on the logical
standby database and if you don't specify the value for the database_role attribute, the
job will be run as long as the database role is logical standby.

Again if you don't specify the value for the database_role attribute, the scheduler jobs
created on the primary database will be run on the database as long as the role is primary
and will not be replicated to logical standby. If you want to keep the job running after a
switchover or failover on the new primary, you must create the same scheduler job on the
logical standby with the database_role attribute as Primary.

Chapter 3

[107]

If you plan to create a scheduler job on the logical standby database with database_role
Standby, you should also create one in the primary database with database_role
Standby. So that, when a switchover is performed, the job will still be running on the
new standby.

Creating materialized views
When we create a logical standby database, all materialized views and materialized view
logs on the primary database also exist on the logical standby. However, SQL Apply skips
DDL statements related to materialized views and logs. So the newly created, altered or
dropped materialized views and logs on the primary database will not be handled on the
logical standby.

If we need to have any materialized view (existing on the primary or not) on the logical
standby we are able to create it. The MVs created on the standby can be refreshed using a
fast, complete, or forced refresh. Refreshes may be on-commit, which will be triggered by
SQL Apply or on-demand with scheduling or manual execution.

Time for action – creating objects on the logical standby
database

Now let's try to create some objects on the logical standby database. First we will create a
test table with the HR user. The Database Guard mode is ALL, which is the default.

1.	 Connect the logical standby database with SYS user and execute the
following query:
SQL> SELECT GUARD_STATUS FROM V$DATABASE;

GUARD_S

ALL

SQL> CONN SCOTT/TIGER
Connected.
SQL> CREATE TABLE TEST (A NUMBER);
create table test (a number)
*
ERROR at line 1:
ORA-01031: insufficient privileges

Configuring Oracle Data Guard Logical Standby Database

[108]

The error message specifies a privilege problem but this is not due to the lack
of create table privilege for the HR user. We receive this error because the
Database Guard mode does not allow for creation of the table. Let's change it
and try again.

2.	 Connect with the SYS user using the following query:
SQL> ALTER DATABASE GUARD STANDBY;
Database altered.

SQL> CONN SCOTT/TIGER
Connected.

SQL> CREATE TABLE TEST (A NUMBER);
Table created.

SQL> INSERT INTO TEST VALUES (1);
1 row created.

SQL> COMMIT;
Commit complete.

We're able to create a table when the Database Guard mode is STANDBY or NONE.
What about an index? There is no doubt that we can create an index for the test
table, which is a standalone standby object not maintained by SQL Apply.

3.	 Let's try to create an index on a table that is being replicated.
SQL> CONN SCOTT/TIGER
Connected.
SQL> CREATE INDEX TESTIDX ON DEPT (LOC);
create index testidx on dept (loc)
 *
ERROR at line 1:
ORA-16224: Database Guard is enabled

The Database Guard mode is STANDBY and we are not able to create an index on a
standby table handled by SQL Apply.

4.	 We should disable the Database Guard in session and try again. In order to disable
Database Guard, the user needs the Alter Database privilege as shown in the
following query:
SQL> GRANT ALTER DATABASE TO SCOTT;
Grant succeeded.

SQL> CONN SCOTT/TIGER
Connected.

Chapter 3

[109]

SQL> ALTER SESSION DISABLE GUARD;
Session altered.

SQL> CREATE INDEX TESTIDX ON DEPT (LOC);
Index created.

If an index is being created on a table that is handled by SQL Apply, we need to
disable Database Guard for that session.

5.	 Let's try if the same applies to the materialized views. Suppose a materialized view
for a query on the EMP and DEPT tables of the user SCOTT was created on the
primary database. As MV DDLs are not replicated with SQL Apply and we need the
MV on the standby, we need to create it in the physical standby database. Let's
create the MV using the following query:
SQL> CONN SCOTT/TIGER
Connected.
SQL> CREATE MATERIALIZED VIEW SCOTT.EMPDEPT REFRESH ON DEMAND
ENABLE QUERY REWRITE AS SELECT E.ENAME, D.DNAME FROM SCOTT.EMP E,
SCOTT.DEPT D WHERE E.DEPTNO=D.DEPTNO;
Materialized view created.

We are able to create a materialized view without disabling Database Guard for
that session.

6.	 Now we will create a scheduler job to refresh the MV periodically on the logical
standby databse:
SQL> GRANT CREATE JOB TO SCOTT;
GRANT SUCCEEDED.

SQL> CONN SCOTT/TIGER
CONNECTED.

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_JOB (
 3 JOB_NAME => 'REFRESH_EMPDEPT_MV' ,
 4 JOB_TYPE => 'PLSQL_BLOCK',
 5 JOB_ACTION => 'BEGIN DBMS_MVIEW.REFRESH (LIST =>''SCOTT.
EMPDEPT'', METHOD => ''C''); END; ',
 6 START_DATE => SYSDATE,
 7 REPEAT_INTERVAL => 'FREQ=MONTHLY;BYMONTHDAY=1;BYHOUR=0',
 8 END_DATE => NULL,
 9 ENABLED => TRUE,
 10 END;
 11 /

PL/SQL procedure successfully completed.

Configuring Oracle Data Guard Logical Standby Database

[110]

We didn't specify a value for the DATABASE_ROLE attribute, so it will have the
default, which is the current role of the database, STANDBY. This job will run
as long as this database role is logical standby.

We assume that MV exists on primary and a scheduler job is also running for the
refresh of the MV on the primary database (with the DATABASE_ROLE attribute of
PRIMARY). We also created the MV and a job for its refresh on the logical standby
now. But what happens if we perform a switchover? Both scheduler jobs on the
primary and standby will not run because of their DATABASE_ROLE attribute.
So let's create one more scheduler job on standby and primary to be ready for
switchover and failover.

7.	 On the standby database, enter the following set of statements:
SQL> CONN SCOTT/TIGER
CONNECTED.

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_JOB (
 3 JOB_NAME => 'REFRESH_EMPDEPT_MV_PRIMARY' ,
 4 JOB_TYPE => 'PLSQL_BLOCK',
 5 JOB_ACTION => 'BEGIN DBMS_MVIEW.REFRESH (LIST =>''SCOTT.
EMPDEPT'', METHOD => ''C''); END; ',
 6 START_DATE => SYSDATE,
 7 REPEAT_INTERVAL => 'FREQ=MONTHLY;BYMONTHDAY=1;BYHOUR=0',
 8 END_DATE => NULL,
 9 ENABLED => TRUE);
 10 END;
 11 /

PL/SQL procedure successfully completed.

SQL> BEGIN
DBMS_SCHEDULER.SET_ATTRIBUTE
(NAME => 'REFRESH_EMPDEPT_MV_PRIMARY',
ATTRIBUTE => 'DATABASE_ROLE',
VALUE => 'PRIMARY');
END;
/

PL/SQL procedure successfully completed.

8.	 Now do the same for the primary database. Create a job with the name
REFRESH_EMPDEPT_MV_STANDBY and set the DATABASE_ROLE attribute
to STANDBY.

Chapter 3

[111]

What just happened?
The most important feature of the logical standby database is its ability to access the standby
and run reports with the flexibility of creating index, temporary tables, and materialized
views on it. By creating these objects, you can achieve more performance on the reports.
Also some reporting tools that require creating temporary objects can run on logical standby
databases. In this section we have studied the methods, limitations, and considerations of
creating database objects on the logical standby and tried to implement some of them. This
information will help you customize the logical standby for your own needs.

Have a go hero – skip, disable guard, insert, instantiate, and disable skip
In order to revise what we saw in this chapter, execute the following exercise:

You will do some application tests and you'll do so on the logical standby database. The table
SCOTT.SALGRADE will be modified in this test and when the test finishes, you want to revert
all the changes to the table and configure the replication once again.

1.	 Disable replication for the table SCOTT.SALGRADE by creating a skip rule with
DBMS_LOGSTDBY.SKIP.

2.	 To simulate the test, insert rows into this table on the logical standby after disabling
Database Guard.

3.	 Reverse changes made to the table by restoring it from primary. Use the
DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure.

4.	 Remove the skip rule with the DBMS_LOGSTDBY.UNSKIP procedure.

5.	 Insert into the table SCOTT.SALGRADE on primary and check if the insert was
replicated to standby.

Automatic deletion of archived logs
The two types of archived redo logfiles on the logical standby database need to be deleted
as they become unnecessary depending on our data retention specifications. The archived
logs containing redo that were sent from the primary database are called foreign archived
logs and the archived log produced by the logical standby itself, containing the changes on
the standby database are called local archived logs. Oracle handles this deletion process
automatically while offering some customization.

Deletion of the foreign archived logs
It's possible to keep foreign archived logs on the fast recovery area defined by
DB_RECOVERY_FILE_DEST or on another directory or ASM disk group outside the fast
recovery area. The Archivelog deletion policy differs depending on whether the foreign
archived logs are in FRA or not.

Configuring Oracle Data Guard Logical Standby Database

[112]

Files inside the fast recovery area
If we specified the log archive destination for the standby logfiles as LOCATION=USE_DB_
RECOVERY_FILE_DEST, the foreign archive logs will be kept in FRA. A foreign archived log
in FRA is automatically deleted by the logical standby database if all the redo it contains
were applied and then the retention time period specified by DB_FLASHBACK_RETENTION_
TARGET passes. The default value for this parameter is 1440 minutes, which is one day. This
value is also valid if we did not specify any value for this parameter.

Files outside the fast recovery area
By default, even if we keep the foreign archived log outside the FRA, logical standby handles
the automatic deletion of these files. The retention time value for the applied foreign
archived logs can be defined with the following syntax:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET
('LOG_AUTO_DEL_RETENTION_TARGET','4320');

The default value for LOG_AUTO_DEL_RETENTION_TARGET is the DB_FLASHBACK_
RETENTION_TARGET initialization parameter value in the logical standby database.

If we don't want the logical standby database to automatically delete the foreign archived
logs, we can use the following procedure:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_SET('LOG_AUTO_DELETE', 'FALSE');

When we disable automatic deletion of foreign archived logs, the DBA_LOGMNR_PURGED_
LOG view will help us identify the logs, which are ready to be deleted depending on the
retention policy. In order to refresh this view use the following statement:

SQL> EXECUTE DBMS_LOGSTDBY.PURGE_SESSION;

PL/SQL procedure successfully completed.

SQL> SELECT * FROM DBA_LOGMNR_PURGED_LOG;

FILE_NAME
--
/u01/app/oracle2/archive_std/1_455_791552282.arc
/u01/app/oracle2/archive_std/1_456_791552282.arc
/u01/app/oracle2/archive_std/1_457_791552282.arc
/u01/app/oracle2/archive_std/1_458_791552282.arc
/u01/app/oracle2/archive_std/1_459_791552282.arc

5 rows selected.

We can now manually delete these files from the filesystem.

Chapter 3

[113]

Deletion of the local archived logs
Local archived logs that were generated from online redo logs of the standby database are
created in the same way within the primary databases. Unlike foreign archived logs, logical
standby databases do not delete these archived logs automatically unless they're kept in the
fast recovery area.

You can use RMAN to handle the deletion of the local archived logs. If a backup strategy is
used to backup the logical standby database, we should consider the deletion of the local
archived logs in this strategy as we do on the primary databases.

Summary
In this chapter we have created a logical standby database using an existing physical standby
database and verified redo transport and SQL Apply services. Then we practiced several
customizations on the logical standby database.

Installing a robust Data Guard logical standby configuration and customizing the environment
to achieve the best performance and effectiveness are the main role of the Database
Administrator. The logical standby database offers many more customization possibilities
when compared with the physical standby database. This fact makes its success more
dependent on the configuration and customization.

The following chapter will show you how the Data Guard broker is configured and used
to monitor and manage the Data Guard environment.

4
Oracle Data Guard Broker

This chapter covers the implementation and management of the Data Guard
administration framework Data Guard broker.

The following topics will be discussed in this chapter:

�� Implementing the Data Guard broker

�� Monitoring and managing using Data Guard broker

�� Troubleshooting the Data Guard broker

�� Configuring a fast-start failover

Introduction to Data Guard broker
The Data Guard broker is a utility provided with the Oracle database server of the Enterprise
edition. It includes the functionality to manage standby databases. It is also an integral part
of Data Guard and of Oracle's Database Enterprise Manager. Broker interfaces are instinctive
and easy, allowing for centralized control of the Data Guard configuration that makes the
Data Guard an enhanced high availability and disaster protection solution. The Data Guard
broker makes it easy to maintain and administer several standby databases. It maintains its
own configuration files and runs a background process Data Guard Monitor Process (DMON)
on both primary and standby database servers.

The Oracle Data Guard broker was introduced in the 9i Release 2, but the Oracle Database
11g version introduced several enhancements to the Data Guard broker feature so that a
DBA could easily manage a complex and multidatabase disaster recovery environment.

Oracle Data Guard Broker

[116]

The Data Guard broker consolidates the setup, upkeep, and monitoring of Data Guard
configurations. The Data Guard broker when used with the Enterprise Manager becomes
a powerful tool, offering configuration, monitoring, alerts, performance analysis, easy
switchovers, and automatic failovers.

The Data Guard Monitor (DMON) process and configuration file resides on the server side.
However the Oracle Data Guard broker can be managed by DGMGRL or OEM from the client
side as well. The Data Guard broker can be configured on existing or new standby databases
and on either physical or logical standby databases.

The Data Guard broker is an additional utility of the standby database that makes the
maintenance and administration of several standby databases at once much easier. The
Data Guard broker uses its own background process (DMON) on each primary and standby
database and its own configuration file for interaction. The DMON process is started if you
set the initialization parameter DG_BROKER_START to TRUE. This parameter is a dynamic
parameter, and you can set it to TRUE or FALSE without any database bounce. To create
and maintain the configuration files, you need to create a Data Guard configuration using
either the Data Guard wizard from Cloud Control or you need to create it manually via
the command-line DGMGRL.

The Data Guard broker framework facilitates the configuration and setup of Data Guard,
monitors the redo log transport, and monitors the log apply services. It also helps in Data
Guard operating tasks, such as switchovers, failovers, fast-start failovers, and reinstating
the primary database. This can be better illustrated with the following diagram:

Primary System
Archive Files

Real-Time Apply

Data Guard GUI(OEM) or
CLI(DGMGRL)

DMON

Primary
Database

Standby System

Archive Files

DMON

Standby
DatabaseSRLs

ORLs Remote ARCH

Chapter 4

[117]

Data Guard broker features and benefits
The Data Guard broker can be configured on existing or new Data Guard configurations
either with physical or with logical standby databases with a global configuration.

Centralized and simple management
The Data Guard broker provides a graphical user interface and command-line interface
for the simple management and automation of management and operational tasks across
multiple databases in a Data Guard configuration. The broker monitors all of the systems
within a single Data Guard configuration. You can perform all management operations
locally or remotely through the broker's easy-to-use interfaces, such as the Data Guard
management pages in Oracle Enterprise Manager Cloud Control, that is, the broker's
graphical user interface and the Data Guard command-line interface called DGMGRL.

Cloud Control integration
Integration with Enterprise Manager Cloud Control simplifies the management of standby
databases by using graphical consoles. All operations are controlled through navigation when
managed with Cloud Control. Role transitions (switchovers and failovers) can be performed,
and redo transport and log apply services can be monitored using graphical consoles. In
the case of any warning or error occurring in the Data Guard configuration, alerts can be
received via e-mails. Enterprise Manager can perform Oracle Net Services configurations as
they are required to support redo transport and log apply services.

To enable all the features required by Data Guard with Cloud Control, the following
compatibility of Enterprise Manager with broker requirements should be met:

Database Version Enterprise Manager Cloud / Grid Control

10.2.0.X 10.2.0.1 and above

11.1.0.X 10.2.0.5

11.2.0.X 10.2.0.5 with patches

Oracle Data Guard and RAC
Oracle Data Guard and RAC are the two products that combine in such a way that they
enhance or emphasize each other's qualities. RAC refers to node or instance failures; it
provides automatic instance recovery from failures, such as node failures, instance crashes,
or service lost failures, that do not affect data. It also provides scalability along with high
availability. On the other hand, Data Guard provides data protection through the use of
transactional images in primary and standby databases. Data Guard enables recovery from
site disasters or data corruptions.

Oracle Data Guard Broker

[118]

In RAC, all the instances of nodes share the same data, including control files and datafiles, but
the Data Guard data/control/redo logfiles are exclusive to primary and standby databases.

Use of Data Guard broker with RAC databases is supported by Oracle 10g.

Role transition with Data Guard broker
Performing role transitions with the broker helps avoid the need to perform tiresome tasks.
To perform a switchover between a primary and standby database using SQL*Plus, you have
to execute the commands step-by-step and check the synchronization and switchover status
from both sites, the switchover status of both the sites, and the step-by-step commands
from the primary and standby locations. The broker simplifies the performance of switchover
and failover operations by gathering many tasks under a single command.

Data Guard fast-start failover
Fast-start failover was introduced to reduce unplanned downtime. Automatic database
failover may occur because a primary database is down, due to designated health-check
conditions, or due to the request of an application. FSFO (fast-start failover) is a feature
of the broker that records information about the failover target, informs how long to wait
after a failure before triggering another failover, and also records other FSFO-specific
properties. When a fast-start failover is enabled, the Data Guard broker automatically fails
over to a synchronized standby site in the event of a disaster at the primary site; it requires
no intervention by the DBA. In addition to this, applications are automatically notified of
the role transition. The disadvantage is that even though both the primary and standby
databases' state is good, if there is any connectivity issue between the primary server and
the observer server, failover will be initiated.

Data Guard FSFO is being supported with the Maximum Availability
mode from Version 10.2 and with the Maximum Performance mode
from Version 11.1.

Recommendation
To sum up, the Data Guard broker can restart failed processes, manage CRS, automate
switchovers/failovers, integrate with OEM so you can use GUI for management, and collect
additional metrics for monitoring. On the other hand, one advantage of using SQL*Plus is
that it requires you to have a full understanding of what's going on behind the scenes. We
would recommend setting up a Data Guard configuration manually at least once, for the
purpose of your own learning. You will have a better scope to learn. The broker has the
advantage of providing shortcuts to the functions you might need to perform with your Data
Guard configuration. If you use SQL*Plus to manage Data Guard, you'll likely develop scripts
that are already duplicating some broker functionality.

Chapter 4

[119]

For example, the first time that you create a standby and the first time you run a switchover,
it would be good to do it with SQL*Plus and tail the alert log so that you can understand
the parameters and see how it works. After you have successfully done a few switchovers
manually, move to the Data Guard broker, and you will appreciate how much easier it is,
how many errors it fixes, as well as understanding exactly what it is doing.

Data Guard broker components
We can divide the Data Guard broker components into two—client-side and server-side
interfaces—as shown in the following diagram:

Data Guard Broker

Server Side Client Side

Data Guard Monitor

Configuration
File

DMON
Process

DGMGRL GRID EM

Oracle Data Guard broker server-side components
The components of the Data Guard broker are the Data Guard Monitor process and the
configuration file, as shown in the following diagram:

Primary System

Primary
Database

DMON

Standby System_2Standby System_1

Standby
Database_1

Standby
Database_2

Configuration file

DMON

DMON

Configuration file Configuration file

Oracle Data Guard Broker

[120]

Data Guard Monitor process (DMON)
The DMON is installed as part of the Oracle database software and manifests as a background
component when enabled. The DMON process on the primary database is the owner of the
configuration. DMON controls all the databases by using configuration files. It maintains
profiles of all the database objects in the configuration in the form of a binary configuration
file. The configuration is maintained by the DMON process in all the standby databases of
either a physical or a logical configuration. This two-way communication channel is used to
pass requests between databases, to monitor the health of all the databases in the broker
configuration using Oracle Net Services. DMON runs for every database instance that is
managed by the broker. Whenever a broker command is issued, the following steps will occur:

1.	 The request will be processed on the primary database.

2.	 The DMON process coordinates with all the standby databases of the Data Guard
configuration.

3.	 It then updates the changes, properties, and configuration in its configuration file.

4.	 The DMON process contacts and updates the configuration file of each database in
the setup.

The following diagram illustrates the DMON process:

Chapter 4

[121]

Configuration file
The configuration file is a server-side component. Database profiles are stored in a
configuration file that holds all the settings needed by Data Guard. This file holds the
configuration information of all the databases that are part of the configuration, and
the state of each database in the configuration. The broker configuration files in Oracle
11gR2 can now reside on disks having any sector size (physical block size) up to 4KB.
The component coordinate database state transitions and updates database properties
dynamically with the broker. The broker propagates the changes to all the databases and
their server parameter files in the configuration. Oracle uses two configuration files to store
the last-known good configuration settings during the modification of the configuration
properties or state by the DMON process.

Oracle Data Guard broker client-side components
The Data Guard broker client-side components are the broker command-line interface
(DGMGRL) and the Enterprise Manager Cloud Control client. Both utilities are used to
manage Data Guard configurations consisting of primary and standby databases.

DGMGRL utility
Using DGMGRL, you can change property values directly by using the command-line utility.
It includes commands to create an observer process that monitors the whole configuration,
including the primary and standby, to evaluate if a failover is necessary, and to initiate FSFO.
It's also possible to add new standby databases to the configuration. Instead of managing
primary and standby databases with various SQL*Plus statements, the broker provides a
single, unified interface.

The Data Guard broker's parameter values must be changed by using broker interfaces. If
the broker is active and you perform any parameter changes or role transitions by using
SQL*Plus, it can create inconsistency in the configuration.

From the command utility DGMGRL, you can obtain a list of all of
the commands supported with the help command as follows:

DGMGRL> help

Enterprise Manager Cloud Control client
As we have discussed, in the Cloud Control integration, it's the graphical interface that we
can use to manage Data Guard configurations. It's possible to perform all of the operations
supported by DGMGRL by using the Enterprise Manager Cloud Control interface.

Oracle Data Guard Broker

[122]

Implementation of Oracle Data Guard broker
We will cover the initial setup and connection methods of the Data Guard broker and basic
monitoring using the broker in this section.

Time for action – initial setup of Data Guard broker
We will now see the initial setup of the Data Guard broker in an existing Data Guard
configuration.

1.	 Ensure that both the primary and standby databases are up and running as shown
in the following query:
SQL> select db_unique_name,open_mode,database_role from
v$database;
DB_UNIQUE_NA OPEN_MODE DATABASE_ROLE
------------ -------------------- ----------------
turkey_un READ WRITE PRIMARY

SQL> select db_unique_name,open_mode,database_role from
v$database;
DB_UNIQUE_NA OPEN_MODE DATABASE_ROLE
------------ -------------------- ----------------
india_un READ ONLY WITH APPLY PHYSICAL STANDBY

2.	 Ensure that both the primary and standby databases are using server parameter
files, so that the broker can form a healthy relationship between the broker
properties and parameter values as follows:
SQL> show parameter spfile
NAME TYPE VALUE
----------- ----------- ------------------------------
spfile string /u01/home/oracle/product/11.2.0/
 db_1/dbs/spfileTURKEY.ora

3.	 This step is optional. Set the configuration file location parameters on both the
primary and standby databases. The default location of the broker configuration file
in Windows is $ORACLE_HOME/dbs in Unix and %ORACLE_HOME%\database. If
you want to keep them in a non-default location, change the parameters as shown.
If you don't set these parameters, the files will automatically be created under the
default locations in the following steps. The following commands are used to change
the parameters:
ALTER SYSTEM SET dg_broker_config_file1 = '\u01\app\oracle\broker_
turkey01.dat' scope=both sid='*';

ALTER SYSTEM SET dg_broker_config_file2 = '\u01\app\oracle\broker_
turkey02.dat ' scope=both sid='*';

Chapter 4

[123]

Or in an ASM filesystem, use the following command:

ALTER SYSTEM SET dg_broker_config_file1 = '+DATA_AREA/turkey/
broker_turkey01.dat' scope=both sid='*';

ALTER SYSTEM SET dg_broker_config_file2 = '+DATA_AREA/turkey/
broker_turkey02.dat' scope=both sid='*';

In RAC databases, set the broker configuration file location to
a shared location and use the same value on all the instances.

4.	 Start the DMON process on both the primary and standby databases by setting the
DG_BROKER_START parameter as follows:
SQL> alter system set dg_broker_start=TRUE scope=both;
System altered.

5.	 For UNIX systems, you can now check the existence of the DMON process using
the ps command as follows:
$ps -ef|grep dmon

oracle 27335 1 0 02:39 ? 00:00:00 ora_dmon_TURKEY

6.	 In the alert logfile, you will see the following:
Thu Aug 30 02:39:11 2012

DMON started with pid=35, OS id=27335

Thu Aug 30 02:39:11 2012

ALTER SYSTEM SET dg_broker_start=TRUE SCOPE=BOTH;

Starting Data Guard Broker (DMON)

7.	 If you monitor the DMON logfile, you'll see the error ORA-27037/ORA-16572 as
shown in the following command line. This is expected behavior. These errors will
be freed after creating the configuration using the broker utility DGMGRL:
2012-08-30 02:39:14.332 DMON: cannot open configuration file
"/u01/home/oracle/product/11.2.0/db_1/dbs/dr1turkey_un.dat",
retrying

2012-08-30 02:39:15.341 DMON: cannot open configuration file "/
u01/home/oracle/product/11.2.0/db_1/dbs/dr1turkey_un.dat"

2012-08-30 02:39:15.341 ORA-27037: unable to obtain file status

2012-08-30 02:39:15.341 inux-x86_64 Error: 2: No such file or
directory

2012-08-30 02:39:15.342 Additional information: 3

2012-08-30 02:39:15.342 DMON: Error opening "/u01/home/oracle/
product/11.2.0/db_1/dbs/dr1turkey_un.dat", error = ORA-16572

Oracle Data Guard Broker

[124]

8.	 The configuration files will be created under the specified location or in the default
directory automatically. The Data Guard broker will maintain two copies of its
configuration files as follows:
SQL> show parameter DG_BROKER_CONFIG_FILE
NAME TYPE VALUE
----------------------- ------- -----------------------------
dg_broker_config_file1 string /u01/home/oracle/product/11.2.0/
 db_1/dbs/dr1turkey_un.dat
dg_broker_config_file2 string /u01/home/oracle/product/11.2.0/
 db_1/dbs/dr2turkey_un.dat

9.	 Connect DGMGRL on the primary system and create the configuration as follows:
[oracle@oracle-primary ~]$ dgmgrl

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

DGMGRL> connect sys/free2go

Connected.

10.	You will need to specify a configuration name and the unique name of the primary
database. The configuration name can be anything, but the name of the primary
database must be DB_UNIQUE_NAME as shown in the following query:
SQL> show parameter db_unique_name
NAME TYPE VALUE
----------------- ----------- ------------------------------
db_unique_name string turkey_un

DGMGRL> CREATE CONFIGURATION 'PACKT' AS PRIMARY DATABASE IS
'turkey_un' CONNECT IDENTIFIER IS TURKEY;
Configuration "PACKT" created with primary database "turkey_un"

In the previous command, TURKEY_UN refers to DB_UNIQUE_NAME and TURKEY
refers to Oracle Net Services name. The primary database will be added to the
configuration and the metadata will be updated in the broker configuration file.

11.	Add a standby database to the Data Guard broker configuration as follows:
SQL> show parameter db_unique_name
NAME TYPE VALUE
----------------- ----------- ------------------------------
db_unique_name string india_un

DGMGRL> ADD DATABASE 'INDIA_UN' AS CONNECT IDENTIFIER IS 'INDIA';
Database "INDIA_UN" added

Chapter 4

[125]

12.	Enable the Data Guard broker configuration. After adding the standby database to
the broker, the configuration will be disabled by default, as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

DISABLED

DGMGRL> enable configuration;

Enabled.

DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

What just happened?
We have seen the configuration of the Data Guard broker and how to add existing databases
to the broker configuration.

Time for action – connecting to Data Guard broker
You can connect the DGMGRL interface locally by specifying only the username with the
password, or just using / if OS authentication is possible. If you are connecting from a
remote machine, you must use Oracle Net Services name to connect the Data Guard broker.
Use the following steps to see some examples of broker connections:

1.	 To connect from either a primary or a standby database server with OS
authentication enabled, you can connect using / as follows:
[oracle@oracle-primary ~]$ dgmgrl /

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Oracle Data Guard Broker

[126]

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

Connected.

DGMGRL>

2.	 In order to connect to the broker CLI database, authentication is required. Add the
following line to the sqlnet.ora file to gain authentication:
[oracle@oracle-primary admin]$ cat sqlnet.ora|grep SQLNET

SQLNET.AUTHENTICATION_SERVICES = (NONE)

3.	 Connecting with OS authentication will not be possible as shown in the following
command line:
[oracle@oracle-primary]$ dgmgrl /

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

ORA-01031: insufficient privileges

4.	 Connect using database user SYS login credentials as follows:
[oracle@oracle-primary]$ dgmgrl sys/free2go

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

Connected.

5.	 Try connecting it from the primary to the standby database, and vice versa, using
the Oracle Net Services name as follows:
[oracle@oracle-stby ~]$ dgmgrl sys/free2go@turkey

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

Connected.

6.	 You can also include DGMGRL commands in the connection string. The following
command will connect to the broker and show us the output of the show
database 'turkey_un' statement:
[oracle@oracle-primary ~]$ dgmgrl sys/free2go "show database
'turkey_un'"

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

Chapter 4

[127]

Connected.

Database - turkey_un

 Role: PRIMARY

 Intended State: TRANSPORT-ON

 Instance(s):

 TURKEY

Database Status:

SUCCESS

7.	 When the SILENT keyword is used, it will suppress the introduction lines of DGMGR
as follows:
[oracle@oracle-primary]$ dgmgrl -silent sys/free2go@turkey "show
configuration verbose"

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

8.	 Exit the broker command-line interface with the EXIT command as follows:
DGMGRL> exit

[oracle@oracle-primary ~]$

What just happened?
We have seen how to connect to the command line utility DGMGRL using different
approaches, after the configuration of the Data Guard broker.

Time for action – basic monitoring with Data Guard broker
Now we'll see how to perform basic Data Guard monitoring using the broker interface
DGMGRL.

1.	 Check the configuration status with the following command. It provides the overall
health status of the Data Guard configuration. If the Configuration Status
resulted to SUCCESS, it means that the Data Guard configuration is working
properly. Output can also be WARNING or ERROR as follows:
DGMGRL> show configuration;

Configuration - PACKT

Oracle Data Guard Broker

[128]

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 Error: ORA-16778: redo transport error for one or more
databases

 INDIA_UN - Physical standby database

 Error: ORA-01031: insufficient privileges

Fast-Start Failover: DISABLED

Configuration Status:

ERROR

2.	 Check the database status to find out if there are any warnings or errors in the
databases of the Data Guard configuration. Use the following command from
the DGMGRL utility:
DGMGRL> show database turkey_un;

Database - turkey_un

 Role: PRIMARY

 Intended State: TRANSPORT-ON

 Instance(s):

 TURKEY

 Error: ORA-16737: the redo transport service for standby
database "INDIA_UN" has an error

Database Status:

ERROR

3.	 Check the redo transport status. LogXptStatus is the database property that
returns an output containing the status of the redo transport services to each of the
enabled standby databases. This property is applicable to the primary database as
shown in the following command line:
DGMGRL> show database turkey_un 'LogXptStatus';

LOG TRANSPORT STATUS

PRIMARY_INSTANCE_NAME STANDBY_DATABASE_NAME STATUS

TURKEY INDIA_UN ORA-01031: insufficient privileges

4.	 Check Status Report. This is the database property that returns a list of errors or
warnings about the status of the database. In RAC databases, it includes the status
of all the running instances as follows:
DGMGRL> show database turkey_un 'StatusReport';

STATUS REPORT

INSTANCE_NAME SEVERITY ERROR_TEXT

Chapter 4

[129]

TURKEY ERROR ORA-16737: the redo transport service
for standby database "INDIA_UN" has an error

5.	 Check Inconsistent Properties. This will return an output that shows all the
database properties whose values are contained in the broker configuration file
and are inconsistent with the values in the database. In RAC databases, a database-
specific property may be inconsistent only on some instances as shown in the
following line:
DGMGRL> show database turkey_un InconsistentProperties;

INCONSISTENT PROPERTIES

INSTANCE_NAME PROPERTY_NAME MEMORY_VALUE SPFILE_VALUE BROKER_
VALUE

TURKEY LogArchiveTrace 255 00

6.	 Check the TopWaitEvents property that specifies the top five events that waited
for the most amount of time in the specified instance as follows:
DGMGRL> show instance 'TURKEY' 'TopWaitEvents';

TOP SYSTEM WAIT EVENTS

Event Wait Time

rdbms ipc message 162825637

DIAG idle wait 15930581

SQL*Net message from client 15074233

jobq slave wait 12516954

Streams AQ: qmn slave idle wait 7973917

7.	 Gather the same information using SQL*Plus as from the v$system_event
view follows:
SQL> select event,TIME_WAITED from v$system_event order by time_
waited desc;
EVENT TIME_WAITED
-- -----------
rdbms ipc message 162816106
DIAG idle wait 15929381
SQL*Net message from client 15069275
jobq slave wait 12516954
Streams AQ: qmn slave idle wait 7973917

Oracle Data Guard Broker

[130]

8.	 Check the SendQEntries database property. The following output shows all the
logfiles of the primary database that were not successfully archived to standby
databases as shown in the following command line:
DGMGRL> show database turkey_un 'SendQEntries';

PRIMARY_SEND_QUEUE

 STANDBY_NAME STATUS RESETLOGS_ID
THREAD LOG_SEQ TIME_GENERATED TIME_
COMPLETED FIRST_CHANGE# NEXT_CHANGE# SIZE (KBs)

 INDIA_UN ARCHIVED 788992101
1 227 09/01/2012 01:48:13 09/01/2012 01:48:14
2107092 2107097 1

 INDIA_UN ARCHIVED 788992101
1 228 09/01/2012 01:48:14 09/01/2012 01:48:16
2107097 2107101 2

 INDIA_UN ARCHIVED 788992101
1 229 09/01/2012 01:48:16 09/01/2012 01:48:17
2107101 2107104 1

 CURRENT 788992101
1 230 09/01/2012 01:48:17
2107104 1

9.	 Check the RecvQEntries database property that reports on all the logfiles that
were received by the standby database but not yet applied. If there are no rows, it
means that all the logfiles have been applied as follows:
DGMGRL> show database 'INDIA_UN' 'RecvQEntries';

STANDBY_RECEIVE_QUEUE

 STATUS RESETLOGS_ID THREAD
LOG_SEQ TIME_GENERATED TIME_COMPLETED FIRST_CHANGE#
NEXT_CHANGE# SIZE (KBs)

 NOT_APPLIED 788992101 1
238 09/01/2012 01:55:31 09/01/2012 01:56:04 2107788
2107823 20

 NOT_APPLIED 788992101 1
239 09/01/2012 01:56:04 09/01/2012 01:56:05 2107823
2107826 1

 NOT_APPLIED 788992101 1
240 09/01/2012 01:56:05 09/01/2012 01:56:07 2107826
2107831 2

 NOT_APPLIED 788992101 1
241 09/01/2012 01:56:07 09/01/2012 01:56:07 2107831
2107834 1

Chapter 4

[131]

To get the status of the database or configuration with the previous
commands, you can connect DGMGRL from the primary or standby
database servers or even from the observer system if it exists.

What just happened?
We have seen how to connect to the Data Guard broker configuration and check the
configuration status, database status, status of the instance with properties, and property
values using the DGMGRL command-line utility.

Management with Data Guard broker
When the Data Guard configuration is managed with the Data Guard broker, you must
use DGMGRL or the Cloud Control interface to make changes. In this topic, we will discuss
management scenarios with the Data Guard broker.

Enabling and disabling broker configuration
As we have seen, after the successful creation of the Data Guard broker configuration, the
configuration will be in disabled status, and we have to enable it in order to monitor all
the databases of the configuration. We must enable the configuration only from the primary
database. After the configuration has been enabled from primary, it will communicate this
information to standby and the Data Guard broker instance Slave Process (NSV0). We can
also disable it later if we don't want the broker to manage the Data Guard configuration.

Time for action – disabling broker configuration
Broker management of the primary database and all of its standby databases can be disabled
using the DISABLE CONFIGURATION command. After disabling the configuration, it won't be
possible to fetch any information from the Data Guard broker by using DGMGRL.

1.	 Before disabling the configuration, let's check the status of the broker configuration,
as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Oracle Data Guard Broker

[132]

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

The current status of the configuration is SUCCESS.

2.	 Disable the configuration as follows:
DGMGRL> disable configuration;

Disabled.

3.	 Check the current configuration status as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

DISABLED

You can disable the configuration either from the primary or the standby database. On
disabling the broker, databases will not be monitored by the broker. This command won't
remove the broker configuration from the configuration file. You're still able to perform
changes on the database properties. However, the changes will only be applicable once
you enable the configuration again.

What just happened?
We've already seen how to enable configuration of the broker from the initial setup of the
Data Guard broker implementation; now we have learned how to disable the Data Guard
broker configuration.

Enabling and disabling a standby database
Using DGMGRL, it's possible to disable or enable the standby databases of a Data Guard
configuration in order to stop broker management for that database.

Chapter 4

[133]

Time for action – disabling and enabling database
Follow these steps to test disabling and enabling the standby database:

1.	 Check the status of the standby database as follows:
DGMGRL> show database 'INDIA_UN';

Database - INDIA_UN

 Role: PHYSICAL STANDBY

 Intended State: APPLY-ON

 Transport Lag: 0 seconds

 Apply Lag: 0 seconds

 Real Time Query: ON

 Instance(s):

 INDIA

Database Status:

SUCCESS

2.	 Disable the database from the configuration as follows:
DGMGRL> disable database 'INDIA_UN';

Disabled.

3.	 Check the database status after disabling it from the configuration as follows:
DGMGRL> show database 'INDIA_UN';

Database - INDIA_UN

 Role: PHYSICAL STANDBY

 Intended State: APPLY-ON

 Transport Lag: (unknown)

 Apply Lag: (unknown)

 Real Time Query: OFF

 Instance(s):

 INDIA

Database Status:

DISABLED

4.	 Physical standby information still exists in the configuration, but the database
will be in a DISABLED state and won't be monitored by the broker. However,
the configuration status will be SUCCESS.

Oracle Data Guard Broker

[134]

5.	 Now enable the database to the broker configuration as follows:
DGMGRL> enable database 'INDIA_UN';

Enabled.

6.	 After enabling the database, the Data Guard broker instance slave process will be
started at the standby database name mentioned in the command. Implicitly, a log
switch will occur in order to synchronize the environments.

7.	 Check the final database status as follows:
DGMGRL> show database 'INDIA_UN';

Database - INDIA_UN

 Role: PHYSICAL STANDBY

 Intended State: APPLY-ON

 Transport Lag: 0 seconds

 Apply Lag: 0 seconds

 Real Time Query: ON

 Instance(s):

 INDIA

Database Status:

SUCCESS

Now the database is enabled and is part of the broker configuration again.

What just happened?
We've learned how to disable and enable Data Guard broker management completely, and
how to disable and enable only a standby database of the configuration.

Changing configuration and database properties using broker
After the creation of the Data Guard configuration using DGMGRL, you can edit the
configuration or single database properties. The following command is an example of a
configuration change that changes the fast-start failover threshold value to 60 seconds.
This command can be run either from the primary or the standby database:

DGMGRL> show configuration 'FastStartFailoverThreshold';

 FastStartFailoverThreshold = '30'

DGMGRL> edit configuration set property FastStartFailoverThreshold=60;

Property "faststartfailoverthreshold" updated

DGMGRL> show configuration 'FastStartFailoverThreshold';

 FastStartFailoverThreshold = '60'

Chapter 4

[135]

These changes will be updated in all the configuration files.

On the other hand, database property changes are specific to either the primary or a
standby database. It won't perform changes in the rest of the configuration. In case it's
a clustered database, these changes will be applicable for all of the instances of that
database. An example to change the archive log tracing level to 10 in the standby database
only is as follows:

DGMGRL> show database 'INDIA_UN' 'LogArchiveTrace';

 LogArchiveTrace = '0'

DGMGRL> edit database 'INDIA_UN' SET PROPERTY LogArchiveTrace=10;

Property "logarchivetrace" updated

DGMGRL> show database 'INDIA_UN' 'LogArchiveTrace';

 LogArchiveTrace = '10'

Have a go hero – more examples on property changes
Now it's your turn to try changing some database properties. You can practice with the
following parameters by monitoring, changing, and restoring their values as follows:

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY 'LogArchiveFormat'=
'log_%t_%s_%r_%d.arc';
DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY LogXptMode=SYNC;

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY LogShipping=OFF;

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY NetTimeout=30;

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY 'ReopenSecs'=400;

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY ArchiveLagTarget=800;

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY 'DbFileNameConvert' =
'/u01/app/oracle/oradata/orcl/, /u02/app/oracle/oradata/orcl/';

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY DelayMins='540';

Time for action – changing the database name
Follow these steps to change DB_UNIQUE_NAME of a database in the Data Guard
broker configuration.

1.	 Prior to changing the database name, disable the database from the configuration
as follows:
 DGMGRL> show database 'INDIA_UN';

Database - INDIA_UN

 Role: PHYSICAL STANDBY

Oracle Data Guard Broker

[136]

 Intended State: APPLY-ON

 Transport Lag: 0 seconds

 Apply Lag: 0 seconds

 Real Time Query: ON

 Instance(s):

 INDIA

Database Status:

SUCCESS

DGMGRL> disable database 'INDIA_UN';

Disabled.

2.	 Change the DB_UNIQUE_NAME value of the standby database as follows:
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAM DATABASE_ROLE
------------- ----------------
india_un PHYSICAL STANDBY
SQL> alter system set db_unique_name='INDIA_NEW' scope=spfile;
System altered.

DB_UNIQUE_NAME is a static parameter, so you must use scope with SPFILE. If you
are using PFILE, edit PFILE and bounce the database.

3.	 Now shut down and start up the database and check for the new value of
DB_UNIQUE_NAME as shown in the following query:
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAM DATABASE_ROLE
------------- ----------------
INDIA_NEW PHYSICAL STANDBY

4.	 Rename the database name in the Data Guard broker as follows:
DGMGRL> edit database 'INDIA_UN' rename to 'INDIA_NEW';

Succeeded.

5.	 Enable the database as follows:
DGMGRL> enable database 'INDIA_NEW';

Enabled.

DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

Chapter 4

[137]

 TURKEY_UN - Primary database

 INDIA_NEW - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

After making changes in the database name, perform a couple of
log switches and check for synchronization between both sites and
also check the configuration status.

What just happened?
We've changed the database unique name of the standby database that is managed with
the Data Guard broker.

Changing the state of the database
In order to perform state changes in databases, you must use Data Guard broker interfaces
when these are managed with the databases.

For example, use the following command in order to turn off redo transport to all remote
destinations on the primary database:

DGMGRL> edit database 'TURKEY_UN' SET STATE="LOG-TRANSPORT-OFF";

Succeeded.

To stop and start redo transport services to specific standby databases, use the
following command:

DGMGRL> edit database 'INDIA_UN' SET PROPERTY 'LogShipping'='OFF';

Property "LogShipping" updated

DGMGRL> SHOW DATABASE 'INDIA_UN' 'LogShipping';

 LogShipping = 'OFF'

DGMGRL> edit database 'INDIA_UN' SET PROPERTY 'LogShipping'='ON';

Property "LogShipping" updated

DGMGRL> SHOW DATABASE 'INDIA_UN' 'LogShipping';

 LogShipping = 'ON'

Oracle Data Guard Broker

[138]

Have a go hero – more examples on state changes
Now try changing the states of the standby database using the following parameters. Also
monitor the broker logfile and alert logfile whenever changing the configuration to track the
operations behind as shown in the following commands:

DGMGRL> EDIT DATABASE 'INDIA_UN' SET STATE='READ-ONLY';

DGMGRL> EDIT DATABASE 'INDIA_UN' SET STATE='OFFLINE';

DGMGRL> EDIT DATABASE 'INDIA_UN' SET STATE='APPLY-OFF';

DGMGRL> EDIT DATABASE 'INDIA_UN' SET STATE='TRANSPORT-OFF';

DGMGRL> EDIT DATABASE 'INDIA_UN' SET STATE='ONLINE' WITH APPLY
INSTANCE='INDIA_UN2';

Do not forget that some of the operations restart the instance.

Troubleshooting Data Guard broker
In this section, we will discuss the most common issues that may arise when Data Guard is
managed with the broker. In the case of an outage or problem, we first consider gathering
diagnostic information. We must refer to the alert logfile in the Automatic Diagnostic
Repository destination starting from Oracle 11g. In earlier versions, the alert logfile is located
in BACKGROUND_DUMP_DEST. The trace file drc<sid>.log for the Data Guard broker is also
located in the ADR destination.

The v$diag_info view can be used to list all the important ADR locations for the Oracle
database instance as shown in the following code:

SQL> SELECT NAME,VALUE FROM V$DIAG_INFO;
NAME VALUE
------------------------- ---
Diag Enabled TRUE
ADR Base /u01/app/oracle
ADR Home /u01/app/oracle/diag/rdbms/turkey_un/TURKEY
..........
Default Trace File /u01/app/oracle/diag/rdbms/turkey_un
 /TURKEY/trace/TURKEY_ora_16735.trc
Active Problem Count 0
Active Incident Count 0

Chapter 4

[139]

Data Guard tracing
The LOG_ARCHIVE_TRACE parameter is used to trace redo transport and apply services on
both the primary and standby databases. By default, the parameter is disabled and its value
is 0. The Data Guard tracing levels are as follows. Depending on the required tracing value,
the level can be changed online:

�� 0: Disable archived log tracing (default)
�� 1: Track archival of the redo logfile
�� 2: Track the archival status of each archived log destination
�� 4: Track archival operational phase
�� 8: Track the archived log destination activity
�� 16: Track the detailed archived log destination activity
�� 32: Track archived log destination parameter modifications
�� 64: Track the ARCn process state activity
�� 128: Track FAL (fetch archived log) server related activities
�� 256: Track RFS logical client
�� 512: Track the LGWR redo shipping network activity
�� 1024: Track the RFS Physical client
�� 2048: Track RFS/ARCn Ping Heartbeat
�� 4096: Track Real Time Apply
�� 8192: Track Redo Apply (media recovery or physical standby)

If you want to turn on more than one tracing level, you can set LOG_ARCHIVE_TRACE to
the sum of these levels. For example, setting it to 3 will turn on tracing archival of the redo
logfile and the archival status of each archived log destination.

Most Common Data Guard broker issues
Now we will discuss some general Data Guard broker issues.

ORA-16797: database is not using a server parameter file
If you ever start an instance with PFILE instead of SPFILE, DMON will not be able to
communicate with the databases. SPFILE is mandatory for communicating with remote
destinations to fetch required information from the broker configuration file and server
parameter files. This issue can eventually be identified from DGMGRL by retrieving
configuration information as follows:
DGMGRL> show configuration;

Configuration - PACKT

Oracle Data Guard Broker

[140]

 Protection Mode: MaxPerformance

 Databases:

 TURKEY_UN - Primary database

 INDIA_UN - Physical standby database

 Error: ORA-16797: database is not using a server parameter file

Fast-Start Failover: DISABLED

Configuration Status:

ERROR

Create a new SPFILE on the standby system from PFILE, and bounce the standby database
as follows:

SQL> create spfile from pfile;
File created.
SQL> shutdown immediate
SQL> startup mount

After the creation of SPFILE from PFILE, in the next startup Oracle
picks SPFILE even though PFILE exists.

DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 TURKEY_UN - Primary database

 INDIA_UN - Physical standby database

 UK_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

ORA-10458:standby database requires recovery
For a database to open, it must have consistency over all the data files. This can occur in case
the recovery has been terminated in the previous sessions or the standby control file SCN is
has not been synchronized with the data files as shown in the following query:

SQL> alter database open;
alter database open
*

Chapter 4

[141]

ERROR at line 1:
ORA-10458: standby database requires recovery
ORA-01196: file 1 is inconsistent due to a failed media recovery
session
ORA-01110: data file 1: '/u02/app/oracle/oradata/orcl/system01.dbf'

DGMGRL> show database 'INDIA_UN';
Database - INDIA_UN
 Role: PHYSICAL STANDBY
 Intended State: APPLY-ON
 Transport Lag: (unknown)
 Apply Lag: (unknown)
 Real Time Query: OFF
 Instance(s):
 INDIA
 Database Warning(s):
 ORA-16770: Redo Apply not started since physical standby database
is opening
Database Status:
WARNING

Now the database status is in MOUNT. Either start Redo Apply from DGMGRL or bounce
DMON so that DMON will initiate MRP to perform a recovery. Once enough number of
archived logs are applied to provide consistency, you can open the database.

ORA-16737:the redo transport service for standby database
"string" has an error
Usually, the ORA-16737 error occurs if there is any communication problem with the
standby database. You can query the LogXptStatus property to see the error message
and you can also review the Data Guard broker logfile as follows:

DGMGRL> show database TURKEY_UN 'LogXptStatus';

LOG TRANSPORT STATUS

PRIMARY_INSTANCE_NAME STANDBY_DATABASE_NAME STATUS

 TURKEY INDIA_UN ORA-12541: TNS:no listener

DGMGRL> show database 'INDIA_UN';

Database - INDIA_UN

 Role: PHYSICAL STANDBY

 Intended State: APPLY-ON

 Transport Lag: (unknown)

Oracle Data Guard Broker

[142]

 Apply Lag: (unknown)

 Real Time Query: OFF

 Instance(s):

 INDIA

Database Status:

DGM-17016: failed to retrieve status for database "INDIA_UN"

ORA-12541: TNS:no listener

ORA-16625: cannot reach database "INDIA_UN"

Check the listener of the status and start the listener. Wait until the Oracle service is
registered with the listener, or you can manually register it as follows:

SQL> alter system register;

Ensure that the service is registered with the listener.

ORA-16715:redo transport-related property string of standby
database "string" is inconsistent
Usually, the ORA-16715 error occurs if there is any inconsistency between the initialization
parameters and configuration file. By querying the database status from DGMGRL, we can
see the parameter that is not consistent.

DGMGRL> show database 'TURKEY_UN';

Database - TURKEY_UN

 Role: PRIMARY

 Intended State: TRANSPORT-ON

 Instance(s):

 TURKEY

 Warning: ORA-16715: redo transport-related property DelayMins of
standby database "INDIA_UN" is inconsistent

Database Status:

WARNING

SQL> select delay_mins,destination from v$archive_dest where dest_id=2;

DELAY_MINS DESTINATION

---------- ------------

 10 india

DGMGRL> show database 'TURKEY_UN' 'DelayMins';

 DelayMins = '0'

Chapter 4

[143]

From the previous two queries, we can see that there is inconsistency between SPFILE and
the configuration files. Either we have to edit the configuration file's property value to 10 or
change the initialization parameter's value to 0.

ORA-12514:TNS:listener does not currently know of service
requested in connect descriptor
One example of an ORA-12514 error is a post-switchover case. After performing a switchover
using DGMGRL, Data Guard requires a shutdown and startup of both the primary and standby
databases. This issue can occur if any necessary entry is missing in the listener.ora file.
DGMGRL is unable to connect to the database after it has been stopped while performing
the switchover.

Current listener description
The command for the current listener is as follows:

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = PLSExtProc)

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

 (PROGRAM = extproc)

)

 (SID_DESC =

 (GLOBAL_DBNAME = india_un)

 (SID_NAME = INDIA)

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

)

)

Add the correct entry of GLOBAL_DBNAME in the SID list description of the listener. This step
is applicable for both the primary and standby databases.

Format GLOBAL_DBNAME=db_unique_name_DGMGRL.db_domain as follows:

SID_LIST_LISTENER =

 (SID_LIST =

 (SID_DESC =

 (SID_NAME = PLSExtProc)

Oracle Data Guard Broker

[144]

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

 (PROGRAM = extproc)

)

 (SID_DESC =

 (GLOBAL_DBNAME = india_un_DGMGRL)

 (SID_NAME = INDIA)

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

)

)

DGMGRL> show database 'TURKEY_UN' "StaticConnectIdentifier"

 StaticConnectIdentifier = '(DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)
(KEY=EXTPROC1521))(CONNECT_DATA=(SERVICE_NAME=turkey_un_DGMGRL)(INSTANCE_
NAME=TURKEY)(SERVER=DEDICATED)))'

Oracle Data Guard fast-start failover
In Data Guard configurations, in case of any disasters in primary database systems or any
corruptions or errors in the database that are not recoverable quickly, a failover can be
performed manually on the standby database to convert it to a primary database and use
it for production services. Another option is to automate the failover using the fast-start
failover feature. A fast-start failover can be configured or managed either by DGMGRL
or grid control.

If a fast-start failover is not configured and the production database is completely
unavailable, and if you want to perform a failover on the standby database in such a case,
you first have to understand the status of the standby database, whether all the archived
logs or redo has been applied or not. Then you have to perform a failover manually. After
the failover, you have to recreate a new standby database. These steps will increase the
downtime of the system. Fast-start failover will be invoked automatically if the primary site
is unavailable. Also, it'll recover the standby database, perform the failover, and reinstate the
old primary database if possible.

Starting from 11g, you can implement a fast-start failover even in the Maximum Performance
mode. It supports asynchronous redo transport.

Chapter 4

[145]

The previously mentioned points can be illustrated in the following diagram:

An observer is required to configure a fast-start failover. It should be configured in a location
rather than on the primary and standby databases. It acts as a client and monitors both
the primary and standby databases at all times. We must install either the Oracle Client
Administrator software or the full Oracle Database software to the observer host.

Based on the FastStartFailoverThreshold value, observer automatically initiates the
failover procedure. After performing the failover, the end users will connect to the database
again and old connections will be redirected to the new primary database.

You can configure observer either in the primary or standby system,
but for the best configuration of FSFO, the observer, primary, and
standby databases should be on separate servers.

Oracle Data Guard Broker

[146]

Time for action – configuring fast-start failover
The following steps will help you configure FSFO in a configuration managed by the Data
Guard broker:

1.	 Check if Data Guard is in the Maximum Performance(11gRx) or Maximum
Availability mode using the following command:
DGMGRL> show configuration

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 TURKEY_UN - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

2.	 If your configuration is in the Maximum Availability mode, make sure that
LogXptMode is set to synchronous redo transport.

3.	 Make sure you have configured a flashback database and fast recovery area. This
is applicable on both the primary and standby databases and helpful in case you
want to reinstate the old primary database or perform a flashback as shown in the
following query:
SQL> select flashback_on from v$database;
FLASHBACK_ON

NO

4.	 We must set some parameters before turning on flashback. These parameters are
DB_FLASHBACK_RETENTION_TARGET, DB_RECOVERY_FILE_DEST_SIZE, and
DB_RECOVERY_FILE_DEST. The following query shows you how to set these
parameters:
SQL> ALTER SYSTEM SET DB_FLASHBACK_RETENTION_TARGET=5760;
System altered.
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=20G;
System altered.
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/data/FLASHBACK';
System altered.
SQL> ALTER DATABASE FLASHBACK ON;
Database altered.

Chapter 4

[147]

If you are using 11g ORACLE_HOME for observer, note that it is
incompatible with 10g databases.

5.	 In the Oracle Net Services configuration, the listener.ora file needs to include
a service with GLOBAL_DB_NAME , as follows, to enable the broker to automatically
start the databases in the case of a switchover. This configuration is applicable on
both servers. To set up the configuration, shut down the listener, make the changes,
and restart the listener as follows:
 (SID_LIST =

 (SID_DESC =

 (SID_NAME = PLSExtProc)

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

 (PROGRAM = extproc)

)

 (SID_DESC =

 (GLOBAL_DBNAME = turkey_un_DGMGRL)

 (SID_NAME = TURKEY)

 (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)

)

)

6.	 Setting the FastStartFailoverTarget value is required if there are multiple
standby databases available in the Data Guard configuration. Use the following
commands for the same:
DGMGRL> edit database 'TURKEY_UN' SET PROPERTY
FastStartFailoverTarget='INDIA_UN';

Property "faststartfailovertarget" updated

DGMGRL> edit database 'INDIA_UN' SET PROPERTY
FastStartFailoverTarget='TURKEY_UN';

Property "faststartfailovertarget" updated

7.	 FSFO has two configuration properties. The FastStartFailoverLagLimit
property refers to how much data loss is acceptable in terms of seconds. The
FastStartFailoverThreshold property refers to the number of seconds for
which the configuration will wait before initiating the failover process as follows:
DGMGRL> EDIT CONFIGURATION SET PROPERTY
FastStartFailoverLagLimit=30;

Property "faststartfailoverlaglimit" updated

Oracle Data Guard Broker

[148]

DGMGRL> EDIT CONFIGURATION SET PROPERTY
FastStartFailoverThreshold=30;

Property "faststartfailoverthreshold" updated

If you want to change the fast-start failover target property to a different
standby database, you have to disable FSFO, and then after changing the
property, you have to re-enable FSFO.

8.	 Enable fast-start failover as shown in the following command:
DGMGRL> enable fast_start failover;

Enabled.

9.	 Assuming Oracle software is installed on the observer host, start observer. The
following command must be issued on the observer server:
$dgmgrl -logfile /tmp/obsvr.log sys/free2go@TURKEY "start
observer" &

The previous command statement is executed in the background
because the start observer command doesn't return the DGMGRL
prompt to the user.

10.	Verify the FSFO configuration as follows:
DGMGRL> SHOW FAST_START FAILOVER;

Fast-Start Failover: ENABLED

 Threshold: 30 seconds

 Target: INDIA_UN

 Observer: oracle-ha

 Lag Limit: 30 seconds

 Shutdown Primary: TRUE

 Auto-reinstate: TRUE

Configurable Failover Conditions

 Health Conditions:

 Corrupted Controlfile YES

 Corrupted Dictionary YES

 Inaccessible Logfile NO

 Stuck Archiver NO

 Datafile Offline YES

 Oracle Error Conditions:

Chapter 4

[149]

 (none)

SQL> select DB_UNIQUE_NAME, FS_FAILOVER_STATUS, FS_FAILOVER_
CURRENT_TARGET from v$database;

DB_UNIQUE_NA FS_FAILOVER_STATUS FS_FAILOVER_CURRENT_TARGET

------------ ---------------------- ------------------------------

turkey_un TARGET UNDER LAG LIMIT INDIA_UN

The FS_FAILOVER_STATUS value will be in "TARGET UNDER LAG LIMIT" if it is in the
Maximum Performance mode, and in case it is in the Maximum Availability mode, the value
will be SYNCHRONIZED.

What just happened?
We've just seen how to configure a fast-start failover after setting the required parameters,
and also verified the status of the configuration after starting the observer.

Troubleshooting observer configuration
After configuring the observer, sometimes the process may be dropped and you may see
errors in the configuration as shown later. In such a case, FSFO may not be able to initiate
a failover in the case of primary database failure as follows:

ORA-16824: multiple warnings, including fast-start failover-related
warnings, detected for the database

For any troubleshooting issue, first look at the configuration status as follows:

DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 TURKEY_UN - Primary database

 Warning: ORA-16824: multiple warnings, including fast-start
failover-related warnings, detected for the database

 INDIA_UN - (*) Physical standby database

 Warning: ORA-16824: multiple warnings, including fast-start
failover-related warnings, detected for the database

Fast-Start Failover: ENABLED

Configuration Status: WARNING

Oracle Data Guard Broker

[150]

2012-09-09 19:01:15.111 00000000 1269603843 Operation HEALTH_CHECK
continuing with warning, status = ORA-16819

2012-09-09 19:01:15.112 00000000 1269603843 Operation HEALTH_CHECK
continuing with warning, status = ORA-16819

Check for the status report of the configuration as follows:

DGMGRL> show database 'TURKEY_UN' 'StatusReport';

STATUS REPORT

 INSTANCE_NAME SEVERITY ERROR_TEXT

 * WARNING ORA-16819: fast-start failover observer
not started

As per the previous error, the observer is not running. The process may have been dropped
or the observer system may have rebooted. Connect to the broker utility from the observer
system using Oracle Net Services and start observer as follows:

$dgmgrl -logfile /tmp/obsvr.log sys/free2go@TURKEY "start observer" &

Check the configuration status as follows:

DGMGRL> SHOW FAST_START FAILOVER;

Fast-Start Failover: ENABLED

 Threshold: 30 seconds

 Target: INDIA_UN

 Observer: oracle-ha

 Lag Limit: 30 seconds

 Shutdown Primary: TRUE

 Auto-reinstate: TRUE

Configurable Failover Conditions

 Health Conditions:

 Corrupted Controlfile YES

 Corrupted Dictionary YES

 Inaccessible Logfile NO

 Stuck Archiver NO

 Datafile Offline YES

 Oracle Error Conditions:

 (none)

Chapter 4

[151]

Script to stop and start observer
To make the observer process highly available and running all the time, we may need to
bounce the observer process when needed. So we can prepare a script and run it as a job
regularly. It can be scheduled as an OS-level job. The following shell script example can be
used on Linux/Unix systems:

start and Stop Observer

export ORACLE_BASE=/u02/app/oracle

export ORACLE_HOME=/u01/home/oracle/product/11.2.0/db_1

export PATH=$ORACLE_HOME/bin:$PATH

dgmgrl << eof

connect sys/free2go@turkey

STOP OBSERVER;

START OBSERVER;

eof

Summary
In this chapter, we have learned the Data Guard broker architecture, the importance of
using the Data Guard broker, and how to monitor and manage Data Guard using the broker,
including how to troubleshoot with real-time issues and explained steps to configure a
fast-start failover.

The next chapter will cover the configurations of Data Guard protection modes in detail.

5
Data Guard Protection Modes

Protection mode decision is crucial and database administrators need to work
with IT managers and other responsible people to determine RTO (Recovery
Time Objective) and RPO (Recovery Point Objective) values and to select the
most appropriate mode for their Data Guard configurations. After the decision
is made, setting the data protection mode is a simple operation that can be
performed by SQL*Plus, Data Guard command-line interface (DGMGRL) or
Enterprise Manager Cloud Control.

Data Guard offers three data protection modes, which meet different business requirements
as mentioned in Chapter 1, Getting Started.

The following are the different modes:

�� Maximum Protection

�� Maximum Performance

�� Maximum Availability

Let's look at the details of these protection modes and see how we can switch between the
different modes.

Data Guard Protection Modes

[154]

The Maximum Protection mode
The Maximum Protection mode is referred to as the Guaranteed Zero Data Loss
configuration. A primary database operating on the Maximum Protection mode doesn't
provide an acknowledgment to the users that the commit is completed until transactions
are successfully transferred to at least one standby destination. This setup requires the SYNC
redo transport service using the LGWR attribute and guarantees that no data will be lost on
the standby database in case of a primary database failure.

Of course, guaranteeing zero data loss comes at a cost. Because the primary database will
always wait for an acknowledgment from standby destinations to continue its operation,
there will be performance implications on the primary database. However, with 11g, the
performance effect of using the SYNC redo transport service is less than the earlier releases.
In the previous releases, the primary database doesn't send a redo to the standby database
before completing the write to online redo logs. In 11g, the database writes redo to online
redo logs and sends it to standby destinations simultaneously. This behavior reduces the
time waited to complete a commit for a primary database.

Consider the following points before setting the Maximum Protection mode:

�� Network bandwidth between sites is essential in this mode. If the bandwidth and
latency of a network fails to satisfy real-time transport of redo generated by the
primary database, there will be serious performance- and database-availability
problems on the primary database.

�� Using more than one standby database (preferably a physical standby one) for a
Maximum Protection configuration is a good practice, which will increase the uptime
of the primary database on standby and network failures. Also, the data protection
will continue even if you lose the primary database and failover to one of the
standby databases. It would be better to locate each standby database on different
locations if possible.

�� The primary database must be on the mount mode when changing the data
protection mode from Maximum Performance to Maximum Protection.

�� On all standby databases of the Data Guard configuration, the standby redo logs
need to be created with the correct number and size before using the Maximum
Performance mode. It's also a good practice to create standby redo logs in the
primary database in order to be ready for a switchover.

�� It wasn't possible to use a logical standby database with the Maximum Protection
mode before 10g, because standby redo logs weren't supported by logical standby
databases. Starting with 10g, we're able to use a logical standby with the Maximum
Protection mode; however, we have to consider unsupported data types in
such a case.

Chapter 5

[155]

The Maximum Performance mode
This is the mode in which the primary database's availability is completely independent
of the redo transport service. In other words, a primary database never waits for any
acknowledgment from standby destinations to complete a transaction. Thus, we don't suffer
from standby network-connection problems or standby availability-related performance
problems and availability problems in the primary database.

This mode is the default protection mode and the log transport service must use the
ASYNC mode with the LGWR or ARCH attribute. However, with 11g, ARCH transport is not
recommended because it doesn't offer any advantage in terms of performance, and offers
less data protection.

In the normal operation of the Maximum Performance configuration, the redo data, which is
on the way from primary to standby, is at risk from primary database failures. The amount of
data at risk is dependent to the bandwidth of the network.

The Maximum Availability mode
The Maximum Availability mode is the data protection mode that has the ability to run as
a Maximum Protection or Maximum Performance mode depending on the accessibility of
standby databases. In a normal operation where the standby is up and able to receive redo
data synchronously, the primary database acts like the Maximum Protection mode and waits
for acknowledgment from the standby database to complete transactions. However, the key
point of the Maximum Availability mode is the behavior of the primary database when it's
not able to receive acknowledgment from any standby database. It waits for a predefined
period of time and if the connection cannot be established, the primary database continues
its operation as a Maximum Performance mode database. The number of seconds that the
primary waits before marking a standby inaccessible is defined with the NET_TIMEOUT
attribute of the LOG_ARCHIVE_DEST_n parameter. The default value of this parameter is
30 seconds. In a Data Guard configuration with the Maximum Availability mode, the primary
database does not stall for more than NET_TIMEOUT seconds if it's not able to access any
standby database.

When the primary database is not able to connect to the standby database for NET_TIMEOUT
seconds, it stops sending connection requests to the standby database and continues
completing transactions. Then, the primary retries connecting to the standby immediately
after every online log switch. We can use the REOPEN attribute to set the time (in seconds) for
which the primary attempts to reconnect to the standby. When the connection is established,
the missing archived redo logs will be sent to the standby by the ARCH process simultaneously
with the online redo transport.

Data Guard Protection Modes

[156]

With its logic, the Maximum Availability mode provides zero data loss in a normal operation,
and the primary database's availability is not at risk when there is no accessible standby
database. On the other hand, what we sacrifice by using this mode will be the guaranteed
zero data loss feature of the Maximum Availability mode and the performance independency
of the primary database in the Maximum Protection mode. This mode uses the SYNC redo
transport with the LGWR attribute as in the Maximum Protection mode, which has an impact
on the response time of the primary database. So once again, the network bandwidth and
latency are very important in this protection mode.

We can state that in a Maximum Availability mode Data Guard configuration, data is at risk
only when two failures occur consecutively on the standby and primary databases.

Choosing the correct mode for your requirements
It's a very important decision to choose a protection mode. Every mode has its pros and
cons. They all serve different requirements and require specific conditions. The following
is a general guide to decide the correct mode:

Is there an intolerance about

any data loss on the database?

Can you accept service outage

against the risk of data loss?

NO

Do you have high

bandwidth and low latency

network between primary

and standby systems?

NO

Use Maximum

Performance mode

YES

Ensure network bandwidth

and latency is enough to

maintain Maximum

Protection and use this

mode. Use more than one

standby if possible.

YES
Use Maximum

Availability mode

YES

Do you experience poor

response times on the

Primary Database caused by

the protection mode?

Chapter 5

[157]

We've now learned the properties of the data protection modes and we're able to determine
the correct mode according to our needs. Note that, if we decide to use the Maximum
Protection or Maximum Availability modes but encounter performance problems, we should
try to tune the database, server, disk, and network infrastructure before scaling down the
data protection level.

Changing Data Guard protection mode
As mentioned earlier, changing the protection mode of Data Guard's configuration is not a
challenging task, and it can be performed dynamically by using the SQL*Plus, DGMGRL or
Enterprise Manager Cloud Control.

Let's see the examples of switching between protection modes using different interfaces.

Time for action – changing the protection mode with SQL*Plus
Now we'll convert Data Guard's configuration from Maximum Performance to Maximum
Protection and then to the Maximum Availability mode using SQL*Plus commands. At the
end, we'll convert it back to the Maximum Performance mode.

1.	 We have a physical standby configuration, which is in the Maximum Performance
mode (by default) with ASYNC redo transport, without standby redo logs, and does
not use Real-Time Apply. We'll try to convert it to the Maximum Protection mode.
Let's execute the conversion command in the primary database without any change
in the configuration as follows:
SQL> SELECT PROTECTION_MODE FROM V$DATABASE;

PROTECTION_MODE

MAXIMUM PERFORMANCE

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE
PROTECTION;
ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PROTECTION

*
ERROR at line 1:
ORA-01126: database must be mounted in this instance and
not open in any instance

Data Guard Protection Modes

[158]

2.	 It's not possible to convert a standby in the Maximum Performance mode to the
Maximum Protection and Maximum Availability modes when the primary database
is open. We need to put the primary in a mount state in order to make this change.
We can use use the following query:
SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP MOUNT
SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PROTECTION;

Database altered.

SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 24904
Session ID: 113 Serial number: 3

3.	 We've restarted the primary database in the mount mode and changed the
protection mode. However, when we tried to open it, we encountered an
ORA-03113 error. We can see why the database raised this error in the alert
logfile as follows:
LGWR: Destination LOG_ARCHIVE_DEST_2 is using asynchronous network
I/O

LGWR: Minimum of 1 synchronous standby database required

Errors in file /u01/app/oracle2/diag/rdbms/TURKEY_UN/TURKEY/trace/
TURKEY_lgwr_24854.trc:

ORA-16072: a minimum of one standby database destination is
required

4.	 The LOG_ARCHIVE_DEST_2 parameter, which is used for the physical standby
database log transport, is defined with the ASYNC attribute that is used for the
Maximum Performance protection mode. In order to convert the database to
Maximum Protection or Maximum Availability, we must change the ASYNC attribute
to SYNC as follows:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=INDIA
LGWR SYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
DB_UNIQUE_NAME=INDIA_UN';

System altered.

Chapter 5

[159]

We should also change the LOG_ARCHIVE_DEST_n parameter,
which is "VALID_FOR = PRIMARY_ROLE", in the standby
database to the SYNC redo transport mode. If we don't, the
protection mode will not operate after a switchover because
ASYNC cannot be used with the Maximum Protection mode. This
step needs to be executed whenever changing the protection
mode requires a redo transport mode change.

SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-03113: end-of-file on communication channel
Process ID: 25062
Session ID: 113 Serial number: 3

5.	 We encountered the same error. Let's check the alert log again, shown as follows:
ORA-16086: Redo data cannot be written to the standby redo log

LGWR: Error 16086 verifying archivelog destination LOG_ARCHIVE_
DEST_2

Destination LOG_ARCHIVE_DEST_2 is UNSYNCHRONIZED

LGWR: Error 16086 disconnecting from destination LOG_ARCHIVE_
DEST_2 standby host 'INDIA'

LGWR: Continuing...

LGWR: Minimum of 1 applicable standby database required

Errors in file /u01/app/oracle2/diag/rdbms/TURKEY_UN/TURKEY/trace/
TURKEY_lgwr_25020.trc:

ORA-16072: a minimum of one standby database destination is
required

6.	 In order to set Maximum Protection or Maximum Availability modes, we must create
standby redo logfiles in the standby database. Stop Redo Apply, create standby redo
logs and start Redo Apply again as Real-Time Apply on the standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

Database altered.

SQL> alter database add standby logfile group 4 size 52428800;
SQL> alter database add standby logfile group 5 size 52428800;
SQL> alter database add standby logfile group 6 size 52428800;
SQL> alter database add standby logfile group 7 size 52428800;

Data Guard Protection Modes

[160]

In Chapter 2, Configuring Oracle Data Guard Physical Standby
Database, remember we mentioned that the standby redo log
group number must be one more than that of the online redo log
group number, and the size of standby redo logfiles must be the
same as that of online redo logfiles.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT
LOGFILE DISCONNECT FROM SESSION;

Database altered.

7.	 Start the primary database and query the data protection mode as follows:
SQL> STARTUP MOUNT
SQL> ALTER DATABASE OPEN;

Database altered.

SQL> SELECT PROTECTION_MODE FROM V$DATABASE;

PROTECTION_MODE

MAXIMUM PROTECTION

8.	 We can see from the following code that the mode changes the information on the
standby database alert log also:
Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING
CURRENT LOGFILE DISCONNECT FROM SESSION

RFS[5]: Assigned to RFS process 1086

RFS[5]: Identified database type as 'physical standby': Client is
LGWR SYNC pid 21839

Primary database is in MAXIMUM PROTECTION mode

Changing standby controlfile to MAXIMUM PROTECTION mode

9.	 Now try to shut down the standby database as shown in the following query:
SQL> SHUTDOWN IMMEDIATE
ORA-01154: database busy. Open, close, mount, and dismount not
allowed now

Chapter 5

[161]

10.	As you can see, it's not possible to shut down a standby database in the Maximum
Protection mode if it's the only standby database alive. We'll see the following lines
in the standby database alert log when we try to shut it down:
Attempt to shut down Standby Database

Standby Database operating in NO DATA LOSS mode

Detected primary database alive, shutdown primary first, shutdown
aborted

11.	Now kill the SMON process to simulate a failure on the standby database server
as follows:
$ ps -ef |grep smon_INDIA
oracle 7064 1 0 Sep16 ? 00:00:00 ora_smon_INDIA
$ kill -9 7064

12.	The Oracle instance will be terminated in the standby database after the kill
command. Now try modifying the primary database by inserting data into a table
as shown in the following query:
SQL> INSERT INTO HR.REGIONS VALUES (102,'TEST');

1 row created.

SQL> COMMIT;

13.	The commit statement will wait and not be executed. At this stage, the primary
database will not accept any change because of the Maximum Protection mode's
characteristic. Then the instance will be terminated by LGWR as shown in the
following alert log lines:
Destination LOG_ARCHIVE_DEST_2 is UNSYNCHRONIZED

LGWR: All standby destinations have failed

**

WARNING: All standby database destinations have failed

WARNING: Instance shutdown required to protect primary

**

LGWR (ospid: 21839): terminating the instance due to error 16098

Instance terminated by LGWR, pid = 21839

Mount the standby database and start recovery at this stage.

Data Guard Protection Modes

[162]

14.	Now let's try to change the data protection mode to Maximum Availability as shown
in the following query:
SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE AVAILABILITY;

Database altered.

15.	 It's possible to perform this protection mode change without putting the primary
database in the mount state. We can see the change in the standby database alert
log as follows:
Primary database is in MAXIMUM AVAILABILITY mode

Changing standby controlfile to MAXIMUM AVAILABILITY mode

Standby controlfile consistent with primary

16.	Try to shut down the standby database as shown in the following query:
SQL> SHUTDOWN IMMEDIATE
ORA-01109: database not open
Database dismounted.
ORACLE instance shut down.

17.	 It's possible to shut down the standby database in the Maximum Availability mode.
It's also possible to modify the primary database when there is no standby alive, as
shown in the following query:
SQL> INSERT INTO HR.REGIONS VALUES (102,'TEST');

1 row created.

SQL> COMMIT;

Commit complete.

18.	 In this step, we'll change the protection mode back to Maximum Performance.
Don't forget to set the LOG_ARCHIVE_DEST_n attribute to ASYNC as shown in
the following query:
SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Database altered.

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=INDIA LGWR ASYNC
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=INDIA_UN';

System altered.

Chapter 5

[163]

What just happened?
We've seen how to change the data protection mode of a Data Guard configuration using the
SQL* Plus command line interface. If you didn't set up Data Guard broker or Cloud Control,
this is the only way to change the protection mode.

Another way of performing protection mode changes in Data Guard is using Data Guard
broker. If Data Guard broker was configured and being used, then it's recommended to use
the broker in order to change the protection mode.

Time for action – changing the protection mode with Data Guard
broker

Now execute the following steps in order to use Data Guard broker commands for changing
the Data Guard protection mode:

1.	 We now have Maximum Performance as the default protection mode in our
configuration. Let's check it through DGMGRL. We can connect the interface
from the primary or standby as follows:
$ dgmgrl
DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production
Copyright (c) 2000, 2009, Oracle. All rights reserved.
Welcome to DGMGRL, type "help" for information.
DGMGRL> CONNECT /
DGMGRL> SHOW CONFIGURATION;
Configuration - PACKT
 Protection Mode: MaxPerformance
 Databases:
 TURKEY_UN - Primary database
 INDIA_UN - Physical standby database
Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

2.	 Try to convert the configuration from Maximum Performance to the Maximum
Availability mode as shown in the following command line:
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;

Error: ORA-16627: operation disallowed since no standby
databases would remain to support protection mode Failed.

Again, we should remember that we have to set the SYNC attribute of
log_archive_dest_n before converting the protection mode from Maximum
Performance to Maximum Availability and Maximum Protection.

Data Guard Protection Modes

[164]

3.	 Check and then change the log transport service attribute via DGMGRL, as shown in
the following statements:
DGMGRL> SHOW DATABASE VERBOSE 'TURKEY_UN' LogXptMode;

 LogXptMode = 'ASYNC'

DGMGRL> SHOW DATABASE VERBOSE 'INDIA_UN' LogXptMode;

 LogXptMode = 'ASYNC'

4.	 The log transport service attribute should be changed for both the primary and
standby databases as shown in the following command line:

For primary:
DGMGRL> EDIT DATABASE 'TURKEY_UN' SET PROPERTY LOGXPTMODE='SYNC';

Property "logxptmode" updated

DGMGRL> SHOW DATABASE VERBOSE 'TURKEY_UN' LogXptMode;

 LogXptMode = 'SYNC'

For standby:

DGMGRL> EDIT DATABASE 'INDIA_UN' SET PROPERTY LOGXPTMODE='SYNC';

Property "logxptmode" updated

DGMGRL> SHOW DATABASE VERBOSE 'INDIA_UN' LogXptMode;

 LogXptMode = 'SYNC'

5.	 Ensure that the standby redo logs exist and are created with the correct size on the
standby database, as shown in the following query:
SQL> select group#,bytes from v$standby_log;

 GROUP# BYTES
---------- ----------
 4 52428800
 5 52428800
 6 52428800
 7 52428800

6.	 Now change the protection mode to Maximum Availability as shown in the following
command line:
DGMGRL> EDIT CONFIGURATION SET PROTECTION MODE AS MaxAvailability;

Succeeded.

Chapter 5

[165]

7.	 Check the configuration status as follows:
DGMGRL> SHOW CONFIGURATION;
Configuration - PACKT
 Protection Mode: MaxAvailability
 Databases:
 TURKEY_UN - Primary database
 INDIA_UN - Physical standby database
Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

The Protection status is changed to Maximum Availability. Ensure that the configuration
status is SUCCESS.

What just happened?
We've successfully changed the protection mode from Maximum Performance to Maximum
Availability using the DGMGRL command line interface.

Have a go hero - protection mode transitions with DGMGRL
Now change the Data Guard protection mode from Maximum Availability to Maximum
Protection via DGMGRL. You should be able to make this change without restarting the
primary database. Then try mode transition from Maximum Performance to Maximum
Protection where you'll be prompted with the following warning:

ORA-16570: database needs restart

It's time to see how the protection mode can be changed with some clicks. Enterprise
Manager Cloud Control offers great for monitoring and managing Data Guard environments.
Changing the protection mode is also quite easy with this interface.

Time for action – changing the protection mode with Enterprise
Manager Cloud Control

The following steps must be performed in order to change the protection modes of Data
Guard's configuration using Enterprise Manager Cloud Control:

1.	 On the database's home page, click on Availability and then on Data Guard
Administration.

Data Guard Protection Modes

[166]

2.	 In the Data Guard Administration page, we see the current protection mode of
Data Guard. The mode is Maximum Protection and we'll change it to Maximum
Availability by clicking on Protection Mode as shown in the following screenshot:

Chapter 5

[167]

3.	 Next, we will see the Change Protection Mode page with options and their brief
explanations. Select Maximum Availability and click on Continue as shown in the
following screenshot:

4.	 The next page will show you the standby databases in the Data Guard configuration.
If there's more than one standby, we can select one or more to support the
protection mode. Select the database and click on Continue as shown in the
following screenshot:

Data Guard Protection Modes

[168]

5.	 In the next page, we'll see a confirmation page; click on Yes to continue.

6.	 The protection mode will be changed to Maximum Availability and we'll see the
following Data Guard Administration page showing the new protection mode of
the configuration:

7.	 Now, let's change the protection mode to Maximum Performance, which requires
a modification to LOG_ARCHIVE_DEST_n to convert the SYNC redo transport mode
to ASYNC. Click on Protection Mode on the Data Guard Administration page, select
Maximum Performance, and click on Continue.

8.	 We'll come up with a confirmation page, which indicates that the redo transport
mode of SYNC will be changed to ASYNC. Click on Yes to continue as shown in the
following screenshot:

Chapter 5

[169]

9.	 The protection mode will be changed in this step, and again we'll be directed to the
Data Guard Administration page showing the new protection mode. If we check
the primary database alert logfile during this stage, we can see the LOG_ARCHIVE_
DEST_n parameter showing the standby database that is changed to support the
ASYNC redo transport.

10.	Now let's change it back to the Maximum Protection mode. As we know, this
operation will require you to restart the primary database. Let's see how Cloud
Control handles this. When we repeat the same steps mentioned previously to
change the protection mode and then click on Continue after selecting the standby
database, we'll see the following page, which requires operating the system
credentials for a user who can access the Oracle Home. This is the user that will
be used to stop and mount the primary database. Enter a username and password
or use a previously saved credential, if it exists. Click on Continue as shown in the
following screenshot:

Data Guard Protection Modes

[170]

11.	A confirmation screen will indicate that the primary database will be restarted. Click
on Yes to continue, as shown in the following screenshot:

12.	We will see the process of changing the protection mode in the following screen.
This may take some time because it will include a restart of the primary database:

13.	During this process, read the alert logfile of the primary database. You'll see the
ALTER SYSTEM statement change the LOG_ARCHIVE_DEST_n parameter to
the SYNC attribute. Then shutdown immediate and startup mount will be
executed. After the instance starts, we can see that the following changes are
applied automatically:
ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PROTECTION;

ALTER SYSTEM SET log_archive_trace=0 SCOPE=BOTH SID='TURKEY';

ALTER SYSTEM SET log_archive_format='%t_%s_%r.arc' SCOPE=SPFILE
SID='TURKEY';

Chapter 5

[171]

ALTER SYSTEM SET standby_file_management='MANUAL' SCOPE=BOTH
SID='*';

ALTER SYSTEM SET archive_lag_target=0 SCOPE=BOTH SID='*';

ALTER SYSTEM SET log_archive_max_processes=4 SCOPE=BOTH SID='*';

ALTER SYSTEM SET log_archive_min_succeed_dest=1 SCOPE=BOTH
SID='*';

These are the Cloud Control managed automatic changes. We should
check the values and change the parameters again if necessary.
For example, the LOG_ARCHIVE_MAX_PROCESSES value of 4
may not be sufficient for our Data Guard environment if there is an
excessive redo generation rate. So we should set it to a higher value.

14.	When the process is completed, you'll be directed to the Data Guard Administration
page, which shows the new protection mode value as Maximum Protection, as
shown in the following screenshot:

Data Guard Protection Modes

[172]

However, we see some errors and the status of the database is shown in the screenshot.
If we examine the alert log, we can see that the primary database is mounted but not
opened. Open the database manually with the ALTER DATABASE OPEN statement to
complete the action.

What just happened?
Congratulations, all the Data Guard management interfaces are used to switch between
protection modes and you're ready to perform all kind of mode-change operations. The
SQL*Plus interface is the most administrator-controlled interface, but it also has the
most number of manual options. Administration is simpler but less controlled with DGMGRL
and Cloud Control.

Pop quiz – precautions for primary database availability
issue in the Maximum Protection mode

Q1. The discouraging part of using the Maximum Protection mode is its effect on the
primary database's performance and availability. Performance is affected by the latencies
of the log transport and the apply services, which can be fixed by increasing the network,
server, and disk performances. The primary database availability issue is caused by the
inaccessibility of the standby database. What can we do to minimize the risk of the standby
database's inaccessibility?

Summary
We've reached the end of this chapter and we have learned the details of the Data Guard
protection modes and how to change the mode with all possible interfaces. The protection
mode of the Data Guard configuration is an important consideration. Before designing the
network, server, and disk infrastructure for the Data Guard installation, we should first
decide the protection mode depending on the business requirements.

The next chapter will include information about role transitions in Data Guard. Also, details
for performing switchover and failover operations will be covered for both physical and
logical standby database configurations.

6
Data Guard Role Transitions

Switchover and failover are the role transition options in Data Guard. Physical
and logical standby databases have different practices in this context. In this
chapter we will cover the necessary steps to accomplish a successful switchover
or failover in a physical or logical standby database environment.

Role transition considerations
In Data Guard, we can simply distinguish switchover and failover as planned and unplanned
role transitions. A switchover is a planned role transition between the primary database
and one of its standby databases. Switchover can be considered to reduce downtime during
scheduled maintenance on the primary system or to test stability for future role transitions.
Switchover guarantees no data loss. Using switchover, the primary database can transit to a
standby role, and the standby database can transit to the primary role at any point of time.
Switchover can be performed through Cloud Control, the Data Guard broker command-line
interface, or by issuing SQL*Plus commands.

Once the standby database is configured and is functioning properly, you can test switchover.
Switchover is used to reduce primary database downtime during any OS or hardware
upgrades, which require an extended outage. A switchover allows the primary database to
switch roles with its standby database. Once the maintenance on the primary server has
been performed, you can switch the databases back to their original roles.

In the case of primary database failure, you need to perform failover to transit from the
standby database role to the primary role. After a failover, the original primary database
cannot participate in the Data Guard configuration without the use of flashback. So if the
original primary database is still accessible, you should always consider a switchover first.

Data Guard Role Transitions

[174]

A failover is performed when the production database (all instances of an Oracle RAC
production database) fails. By performing failover, one of the standby databases is
transitioned to take over the production role, allowing business operations to continue. Once
the failover is complete and applications have resumed, the administrative staff can turn its
attention to resolving the problems with the failed system. Failover may or may not result in
data loss depending on the Data Guard protection mode in effect at the time of the failover.

Switchover
A switchover is a planned role transition between the primary database and a standby
database within the same Data Guard configuration. Switchover is used to reduce the
downtime of production databases during any scheduled maintenance on the production
server, to test the server capability or any changes at hardware level, or to check future role
transitions. During switchover, there is no data loss and the role of each database changes
from primary database to standby database and vice versa as shown in the following diagram:

Before Switchover After Switchover

Primary Instance

Turkey_un

RedoStandby Instance

India_un

Database Database

TURKEY INDIA

Database Database

Standby Instance

Turkey_un

Primary Instance

India_un

Redo

TURKEY INDIA

Data Guard switchover is also a good way to move databases to new hardware. We can
perform RMAN backup and restore the database to the new server, but the disadvantage
of using RMAN is that we have to open the database with resetlogs. Another alternative
would be shutting down the database and copying all files onto the new server. But this
method will take a lot of time depending on the size of the database, and also it's not
easy to perform this method in the ASM framework.

Then what is the alternate solution to move the database to another server without OPEN
RESETLOGS or the option of COLD backup?

Chapter 6

[175]

Data Guard is a good choice in this situation. The following steps can be performed to move
a database to new servers using Data Guard:

1.	 Implement Data Guard and create a standby database on the new hardware.

2.	 Test the new hardware using the standby database read-only (Active Data Guard) or
the standby database read-write (snapshot standby) option.

3.	 Perform switchover in a planned maintenance window.

4.	 Decommission the old primary server hardware.

We always initiate switchover from the primary database. As stated before, switchover
can be performed using SQL*Plus, the Data Guard broker, or Enterprise Manager Cloud
Control. Whenever we initiate switchover, redo generation will be stopped immediately and
no other operations will be allowed to be performed and the current log sequence will be
archived, which is also known as End of Redo (EOR). You can monitor the EOR status from
v$archived_log. After switchover, we can see when and during which log sequence the
switchover has been performed as seen in the following code:

SQL> select thread#,sequence#,END_OF_REDO,END_OF_REDO_TYPE from
v$archived_log;
 THREAD# SEQUENCE# END END_OF_RED
---------- ---------- --- ----------
 1 337 NO
 1 337 NO
 1 338 YES SWITCHOVER

If it is an RAC database, redo will be archived from each of the active instances. Once again,
the switchover process sends a flag to all of instances for the final redo to be generated by
the log switch. If the Data Guard configuration has multiple standby databases, the primary
database will be switched to one of the standby databases. In this case, the final online redo
logs will be transferred from the primary database to all of the standby databases.

While the process of switchover is going on, restarting of primary and standby databases
is expected behavior. Once switchover completes and it is properly configured, redo will
automatically be transferred from the new primary database to the new standby database.

One last note about the change in switchover procedures of RAC databases in 11gR2:

�� In versions before 11gR2, if the primary and standby were RAC databases, you had
to shut down all of the primary instances except one and also shut down all of the
standby instances except one. Once you perform switchover successfully, you can
bring back the remaining cluster instances for both primary and standby databases.

�� In the 11gR2 version, you still have to shut down all primary instances except one.
However, it's not mandatory to close standby instances. We can perform switchover
while all standby instances are in mount state.

Data Guard Role Transitions

[176]

Performing switchover with a physical standby database using
SQL*Plus
Now we are going to perform switchover between the primary and standby databases.
Performing the switchover operation is not a big deal if we have prepared the environment
and verified our configuration. In order to do this, we must control the related initialization
parameters on both the primary and standby databases and check the network bandwidth
between primary and standby locations. If we are going to use the current standby as the
future production database, we must check for the hardware resources of the server. The
next exercise will show how we can prepare the Data Guard environment for a switchover.

Time for action – preliminary tests before performing
switchover

In order to perform switchover, we have to prepare and verify both the primary and standby
databases. Perform the following steps:

1.	 Check the standby redo logfile status on the primary database as follows:
SQL> select group#,member,type from v$logfile where
type='STANDBY';

 GROUP# MEMBER TYPE
---------- -- -------

 14 /u01/app/oracle/oradata/orcl/standby_redo05.log STANDBY
 16 /u01/app/oracle/oradata/orcl/standby_redo06.log STANDBY
6 rows selected.

Standby redo logfiles should have been created on the primary database; this is so
that after performing switchover, the new standby database can receive redo using
standby redo logfiles. This will help us save time in the post-configuration steps.

2.	 Verify the log archive destination on the standby database, which will be active
after the switchover and will be used to transfer redo to the new standby database
as follows:
SQL> show parameter log_archive_dest_2
NAME TYPE VALUE
-------------------- ------ ------------------------------
log_archive_dest_2 string SERVICE=TURKEY LGWR ASYNC VALID_FOR=
(ONLINE_LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=turkey_un'

Chapter 6

[177]

3.	 Verify if the temporary files of the temporary tablespaces are created on the
standby database. Compare the result of the following query from the primary
and standby databases.
SQL> select file_name,bytes/1024/1024 "Size
MB",maxbytes/1024/1024 "MaxSize MB",autoextensible from
dba_temp_files;

FILE_NAME Size MB MaxSize MB AUT
-- ------- ---------- ---
/u02/app/oracle/oradata/orcl/temp01.dbf 20 32767.9844 YES

If temporary files don't exist on the standby database or the number and size of
temporary files don't match in the primary and standby databases, create or modify
the temporary files on the standby database properly.

If you have created a standby database using the RMAN command
DUPLICATE in Oracle 11gR2, the temporary files will be created
by default.

4.	 Check if any offline datafiles exist on primary as well as standby. If they do exist,
bring them online using the following code:
SQL> select name from v$datafile where status='OFFLINE';

5.	 Verify the status of the redo transport and apply services against any gap and
synchronization issues as follows:
SQL> select db_unique_name, status, protection_mode,
synchronization_status, synchronized from v$archive_dest_status
where dest_id=2;

DB_UNIQUE_NAME STATUS PROTECTION_MODE SYNCHRONIZATION_STATUS SYN
-------------- ------- ----------------- --------------------- ---
INDIA_UN VALID MAXIMUM PERFORMANCE CHECK CONFIGURATION YES

6.	 In the previous output, you can ignore the synchronization status CHECK
CONFIGURATION if the database is in Maximum Performance mode. If the
configuration is either Maximum Protection or Availability, the status OK will be
returned when there are no synchronization issues. Check the maximum archived
log sequences on the primary and standby databases.

�� From primary – to obtain the maximum number of archived log sequences
for each instance, the following code can be used:
SQL> select thread#,max(sequence#) from v$archived_log group
by thread#;

Data Guard Role Transitions

[178]

 THREAD# MAX(SEQUENCE#)
---------- --------------
 1 335

�� From standby – to obtain the maximum number of archived log sequences
for each instance, the following code can be used:
SQL> select thread#,max(sequence#) from v$archived_log where
applied='YES' group by thread#;

 THREAD# MAX(SEQUENCE#)
---------- --------------
 	 335

7.	 Now verify if the MRP process is running or not by running the following statement
on the standby database:
SQL> select thread#,sequence#,process,status,client_process from
v$managed_standby where thread#=1;

 THREAD# SEQUENCE# PROCESS STATUS CLIENT_P
---------- ---------- --------- ------------ --------
 1 335 ARCH CLOSING ARCH
 1 333 ARCH CLOSING ARCH
 1 334 ARCH CLOSING ARCH
 1 336 MRP0 APPLYING_LOG N/A
 1 336 RFS IDLE LGWR

The current sequence 336 is being written into the standby redo logfiles and the
MRP process is applying this sequence at the same time.

8.	 It's also possible to query the v$dataguard_stats view on the standby database
to check the synchronization status:
SQL> select name,value,time_computed from v$dataguard_stats;

NAME VALUE TIME_COMPUTED
---------------------- ------------- --------------------
transport lag +00 00:00:00 10/10/2012 15:07:51
apply lag +00 00:00:00 10/10/2012 15:07:51
apply finish time +00 00:00:00 10/10/2012 15:07:51
estimated startup time 16 10/10/2012 15:07:51

SQL> !date
Wed Oct 10 15:07:52 IST 2012

Chapter 6

[179]

9.	 Ensure that no backup jobs are running. Disable the RMAN and EXP/EXPDP backup
jobs from CRONTAB if they exist.

10.	 If the primary and standby databases are monitored with EM Cloud/Grid Control
and you're performing switchover using SQL*Plus or Data Guard broker, black out
the database until the task is completed.

11.	Set the JOB_QUEUE_PROCESSES parameter value to 0 so that no more jobs will be
started. After the completion of switchover, reset it with the previous value.
SQL> alter system set JOB_QUEUE_PROCESSES=0 scope=both sid='*';

12.	 If the primary database is RAC, ensure all the remaining primary instances except
one are shut down. If Active Data Guard is in use, disable it and ensure that all
standby instances are in the mount state.

13.	 It's advisable to take a full backup of the database either from primary or standby.

What just happened?
We have just performed all the preliminary checks before performing switchover. Now we will
explain how switchover will be performed, step by step, on primary and standby databases.

Time for action – switchover with a physical standby using
SQL*Plus

Perform the following steps using the SQL*Plus connection for both the databases:

1.	 We have to check whether the primary database is ready for switchover to standby
or not. Check the switchover status from the primary database by issuing the
following command and verify that the status is either TO STANDBY or SESSIONS
ACTIVE:
SQL> select switchover_status from v$database;
SWITCHOVER_STATUS

TO STANDBY

The previous output shows that the primary database is ready to switch to the
standby database role. The SESSIONS ACTIVE status indicates that some user
sessions are still connected to the database. Such a case does not pose an obstacle
for switchover. When output is SESSIONS ACTIVE, you have to perform switchover
using the keyword WITH SESSION SHUTDOWN. This is so that those sessions will be
terminated during the switchover.

Data Guard Role Transitions

[180]

2.	 Perform the switchover command from the primary database.
SQL> alter database commit to switchover to physical standby with
session shutdown;
Database altered.

3.	 This step covers what actually happens during switchover in detail. We need
to monitor the alert logfile of both the primary and standby databases in parallel.
The different types of logfiles are as follows:

�� The switchover-related log from the primary alert logfile:
Wed Oct 10 16:12:26 2012

alter database commit to switchover to physical standby with
session shutdown

ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
[Process Id: 23631] (TURKEY)

�� Prior to switchover, the current log sequence number is 335. After
performing switchover, all the transactions will be written to the online
redo logfiles and the log switch will be forced on the primary database.
Wed Oct 10 16:12:30 2012

Archived Log entry 764 added for thread 1 sequence 336 ID
0x4e7c64e3 dest 1:

......

Waiting for potential switchover target to become
synchronized...

Wed Oct 10 16:12:47 2012

Active, synchronized Physical Standby switchover target has
been

�� The MRP status on the standby database alert log:
Wed Oct 10 16:12:47 2012

Media Recovery Log /u02/app/oracle/flash_recovery_area/
INDIA_UN/archivelog/2012_10_10/o1_mf_1_337_87bn9793_.arc

Media Recovery Waiting for thread 1 sequence 338

�� The log sequence 337 is also switched and applied on standby. Now all the
processes will be terminated and the redo thread of each respective thread
will be closed; no further log switches can be performed. At the end, EOR
will be generated as follows:

ARCH: End-Of-Redo Branch archival of thread 1 sequence 338

Archived Log entry 767 added for thread 1 sequence 338 ID
0x4e7c64e3 dest 1:

.......

Chapter 6

[181]

Backup controlfile written to trace file /u01/app/oracle/
diag/rdbms/turkey_un/TURKEY/trace/TURKEY_ora_23631.trc

Archivelog for thread 1 sequence 338 required for standby
recovery

Switchover: Primary controlfile converted to standby
controlfile succesfully.

�� When EOR is generated, you can view the status of the sequence 338 from
the primary database, as shown in the following code:
SQL> select thread#,sequence#,END_OF_REDO,END_OF_REDO_TYPE
from v$archived_log;
 THREAD# SEQUENCE# END END_OF_RED
---------- ---------- --- ----------
 1 337 NO
 1 337 NO
 1 338 YES SWITCHOVER

�� The sequence 338 including EOR will be applied on the standby database
(INDIA) as shown in the following code:
Resetting standby activation ID 1316775139 (0x4e7c64e3)

Media Recovery End-Of-Redo indicator encountered

Media Recovery Applied until change 3085369

MRP0: Media Recovery Complete: End-Of-REDO (INDIA)

MRP0: Background Media Recovery process shutdown (INDIA)

�� After performing recovery, the switchover process will be completed on the
old primary database (TURKEY) as shown in the following code:
Wed Oct 10 16:12:58 2012

Switchover: Complete - Database shutdown required (TURKEY)

Completed: alter database commit to switchover to physical
standby with session shutdown

�� During switchover command execution on the primary database, if you
monitor the switchover status of the standby database closely, you can
capture it as shown in the following code:
SQL> select switchover_status from v$database;
SWITCHOVER_STATUS

NOT ALLOWED

SQL> /
SWITCHOVER_STATUS

Data Guard Role Transitions

[182]

SWITCHOVER PENDING

SQL> /
SWITCHOVER_STATUS

TO PRIMARY

4.	 Perform switchover from the standby database. By default the switchover status
of the standby database will be NOT ALLOWED. After processing switchover from
the primary database, during recovery the status will be changed to SWITCHOVER
PENDING. Once End-of-Redo is applied on standby, the database will be ready to
become primary as shown in the following code:
SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY

5.	 Run the SWITCHOVER command on the standby database as shown in the
following code:
SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION
SHUTDOWN;
Database altered.

On the alert logfile you will see the following:
Wed Oct 10 18:01:15 2012

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY WITH SESSION
SHUTDOWN

ALTER DATABASE SWITCHOVER TO PRIMARY (INDIA)

Maximum wait for role transition is 15 minutes.

.............

SwitchOver after complete recovery through change 3085369

...............

Standby became primary SCN: 3085367

Switchover: Complete - Database mounted as primary

6.	 Now, from the new primary database (INDIA), you can check at what SCN the
standby database role been changed, as shown in the following code:
SQL> select CURRENT_SCN,STANDBY_BECAME_PRIMARY_SCN from
v$database;
CURRENT_SCN STANDBY_BECAME_PRIMARY_SCN
----------- --------------------------
 3156173 3085367

Chapter 6

[183]

7.	 Change the open mode of the new primary to READ-WRITE. After successful
switchover from standby to the primary database, the instance status will be
MOUNTED as shown in the following code:
SQL> select db_unique_name,database_role,open_mode from
v$database;
DB_UNIQUE_NAME DATABASE_ROLE OPEN_MODE
-------------------- ---------------- --------------------
INDIA_UN PRIMARY MOUNTED

Open the database with the following statement:

SQL> alter database open;
Database altered.

8.	 Restart the new standby database and start Redo Apply. After switchover, the new
standby instance will be in the NOMOUNT status.
SQL> select status from v$instance;
STATUS

STARTED

Now perform a clean shutdown with SHUTDOWN IMMEDIATE and then start up the new
standby database in the READ ONLY mode if Active Data Guard will be used. Then start
Redo Apply on the standby database (TURKEY)

SQL> alter database recover managed standby database using current
logfile disconnect from session;
Database altered.

SQL> select db_unique_name,open_mode from v$database;
DB_UNIQUE_NAME OPEN_MODE
--------------- --------------------
turkey_un READ ONLY WITH APPLY

If you have multiple standby databases in the Data Guard configuration, start Redo Apply on
each standby database.

After starting Redo Apply on another standby database, whenever EOR
is applied on the standby database, the MRP process will be terminated
immediately. Then you have to start Redo Apply again.

Data Guard Role Transitions

[184]

Performing switchover with a physical standby database using
broker
Switchover can also be performed using the Data Guard broker. Managing switchover with
the broker is very simple. In SQL*Plus, we have to manage commands from both the primary
and standby databases. When using the broker, the SWITCHOVER command is executed from
either the primary or the standby database.

Time for action – switchover with a physical standby using broker
1.	 If the primary database is RAC and you perform switchover with the broker, it will

shut down all the remaining instances except one; and if there are any issues in
terminating the instances, the switchover will exit without success. So ensure that
all the primary instances are down except the one.

2.	 Even though the broker will verify the state of the both the primary and standby
databases, it's recommended to check the database state manually as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

3.	 Now connect to the DGMGRL and issue the command as shown in the
following screenshot:

Chapter 6

[185]

When performing a switchover, connect the database to the DGMGRL using
a complete password such as connect sys/******, because DGMGRL
doesn't support OS authentication.

4.	 After performing the switchover, the broker configuration file is updated regarding
the role transition.
2012-10-11 13:08:31.463 02001000 1799321493 DMON: Switchover -
updated Seq.MIV to 1.0 (2.1.1799321493), writing metadata to "/
u01/home/oracle/product/11.2.0/db_1/dbs/dr2INDIA_UN.dat"

2012-10-11 13:08:31.477 02001000 1799321493 DMON: posting primary
instances for SWITCHOVER phase 3

5.	 After updating the configuration file, the broker configuration restarts the new
primary database in read-write mode and the new standby database will be
terminated and restarted with the previous configuration; that is, the Read
Only With Apply mode.

6.	 Now, after performing the switchover, check the configuration status using DGMGRL
as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 INDIA_UN - Primary database

 turkey_un - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

What just happened?
We have discussed how to perform switchover from the primary database to the standby
database and vice versa using SQL*Plus and also the Data Guard broker utility DGMGRL.

Performing switchover with a physical standby database using
EM Cloud Control
As discussed at the beginning of this chapter, we can use the Enterprise Manager Cloud
Control Data Guard administration interface to perform the switchover operation. This is an
easy but less controlled way of performing a switchover. Let's see how we use Cloud Control
in this context.

Data Guard Role Transitions

[186]

Time for action – switchover with a physical standby using EM
Cloud Control

Assuming a Cloud Control installation and Data Guard integration is already set up, perform
the following steps on the Cloud Control interface.

1.	 On the Data Guard Administration home page, click on Switchover as shown in the
following screenshot:

2.	 Enter credentials to connect the standby and primary hosts.

3.	 On the confirmation page, click on Yes to start the switchover. At the bottom of the
screen, check Swap Monitoring Settings if you want the current Enterprise Manager
monitoring settings (including metric thresholds) for the primary and standby
databases to be swapped after the role change, as shown in the following screenshot:

Chapter 6

[187]

4.	 We'll see the switchover processing window on the next screen. A notification
will appear, Switchover completed successfully, when the process is completed
successfully. The following screenshot is the processing screen:

Similarly, we can use the Failover button on the Data Guard Administration
home page to initiate a failover.

Performing switchover with a logical standby database using
SQL*Plus
So far we have explained the switchover procedure between primary and physical standby
databases. In the same manner, we can perform a switchover between the primary database
and the logical standby database. However, there are some differences in this operation.

For versions above 11g, there's no need to shut down either the primary
or the logical standby database for a switchover.

Data Guard Role Transitions

[188]

Time for action – switchover with a logical standby database
using SQL*Plus

Now we will see a step-by-step approach to perform a switchover between the primary and
the logical standby database:

1.	 Check the switchover status of the primary database. Ensure that the status is either
TO STANDBY or SESSIONS ACTIVE; if so, you are safe to perform a switchover as
shown in the following code:
SQL> select switchover_status from v$database;
SWITCHOVER_STATUS

TO STANDBY

In case of RESOLVABLE GAP, wait until SQL was applied on the
logical standby database; for other statuses, troubleshoot and fix
the synchronization for the switchover process to be successful.

2.	 Prepare the primary database for switchover. Execute the following command from
the primary database so that the current primary database will be accepted to
perform a switchover to a logical standby database:
SQL> alter database prepare to switchover to logical standby;
Database altered.

On the primary alert log, issue the following command:

Fri Oct 12 08:50:50 2012

alter database prepare to switchover to logical standby

ALTER DATABASE PREPARE TO SWITCHOVER TO LOGICAL STANDBY (TURKEY)

Completed: alter database prepare to switchover to logical standby

3.	 After issuing the previous command, the switchover status will be PREPARING
SWITCHOVER.

4.	 Prepare the logical standby database for switchover. After issuing the switchover
initiation command from the primary database, you can execute the following code
from the standby database:
SQL> alter database prepare to switchover to primary;
Database altered.

Chapter 6

[189]

On the standby alert log, issue the following command:

Fri Oct 12 08:51:55 2012

alter database prepare to switchover to primary

ALTER DATABASE SWITCHOVER TO PRIMARY (INDIA)

ALTER DATABASE PREPARE TO SWITCHOVER TO PRIMARY (INDIA)

5.	 Perform the switchover from the primary database. After performing step 4, the
switchover status in the current primary database will change from PREPARING
SWITCHOVER to TO LOGICAL STANDBY. In this stage, both the databases wait for
acknowledgment from each other. Now check the switchover status on the primary
database as shown in the following lines:
SQL> select switchover_status from v$database;
SWITCHOVER_STATUS

TO LOGICAL STANDBY

6.	 You must ensure that there are no active transactions during switchover. Therefore,
clean up the transactions and proceed to switchover over. The SWITCHOVER
command waits until this transaction is complete, as shown in the following code:
SQL> select addr,status,flag from v$transaction;
ADDR STATUS FLAG
---------------- ---------------- ----------
000000008EF5A950 ACTIVE 7683

SQL> select username,status from v$session where username is not
null and username not in ('SYS','PUBLIC');
USERNAME STATUS
---------- --------
PACKT ACTIVE

7.	 Even after you perform the previous step, the session is still in the ACTIVE mode.
Let's see what happens in the alert logfile when the switchover is issued, as follows:
SQL> alter database commit to switchover to logical standby;

On the primary alert logfile you will see the following:

Fri Oct 12 14:51:12 2012

alter database commit to switchover to logical standby

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY (TURKEY)

.........

Fri Oct 12 14:52:25 2012

Waiting for transactions in flight at scn 0x0000.003337d6 to
complete

Data Guard Role Transitions

[190]

Perform commit from the user session as follows:

SQL> show user
USER is "PACKT"
SQL> commit;
Commit complete.

After performing commit from the user session, the switchover will be processed
successfully and we'll see Database altered as the output on the session in
which we ran the switchover statement, as shown in the following code:
SQL> alter database commit to switchover to logical standby;
Database altered.

On the primary alert logfile you can perform the following:

LOGSTDBY: Switchover complete (TURKEY)

LOGSTDBY: enabling scheduler job queue processes.

JOBQ: re-enabling CJQ0

Completed: alter database commit to switchover to logical standby

Note that during switchover, log apply services will be stopped on the logical
standby database. Now check the latest status on the former primary database
using the following code:

SQL> select db_unique_name,database_role,open_mode from
v$database;
DB_UNIQUE_NAME DATABASE_ROLE OPEN_MODE
--------------- ---------------- --------------------
turkey_un LOGICAL STANDBY READ WRITE

8.	 Perform the switchover from the logical standby database.

9.	 We have completed the required steps on the primary database. Now check the
status on the current logical standby database (INDIA) and issue the following
switchover command:
SQL> select switchover_status from v$database;
SWITCHOVER_STATUS

TO PRIMARY
SQL> alter database commit to switchover to primary;

Database altered.

Chapter 6

[191]

The switchover from the logical standby to the primary was successful, as can be
seen in the following command-line output:
Fri Oct 12 15:04:43 2012

alter database commit to switchover to primary

ALTER DATABASE SWITCHOVER TO PRIMARY (INDIA)

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY (INDIA)

LOGSTDBY: Successful close of the current log stream:

LOGSTDBY: primary: [1316772835]

.............

Completed: alter database commit to switchover to primary

10.	During switchover, there will be zero data loss and the session will still be in the
ACTIVE mode. The following output shows that the session is still in the ACTIVE
mode on the former primary database:
SQL> select sysdate from dual;
SYSDATE

12-OCT-2012 15:10:10
SQL> show user
USER is "PACKT"
SQL> select username,logon_time from v$session where username is
not null and username not in ('SYS','PUBLIC');
USERNAME LOGON_TIME
---------- --------------------
PACKT 12-OCT-2012 14:44:06

11.	Check the status of new primary database using the following code:
SQL> select db_unique_name,database_role,open_mode from
v$database;
DB_UNIQUE_NAME DATABASE_ROLE OPEN_MODE
--------------- ---------------- --------------------
india_un PRIMARY READ WRITE

12.	Start SQL Apply and monitor the logical standby database. Both the new primary
database and the logical standby database are ready. Now start SQL Apply on the
new logical standby database as follows:
SQL> !ps -ef|grep lsp
oracle 24824 8569 0 16:06 pts/1 00:00:00 /bin/bash -c ps
-ef|grep lsp
SQL> alter database start logical standby apply immediate;
Database altered.

Data Guard Role Transitions

[192]

SQL> !ps -ef|grep lsp
oracle 24860 1 1 16:08 ? 00:00:01 ora_lsp0_TURKEY
oracle 24914 8569 0 16:09 pts/1 00:00:00 /bin/bash -c ps
-ef|grep lsp

On the standby alert logfile you will see the following:
Fri Oct 12 16:08:01 2012

alter database start logical standby apply immediate

ALTER DATABASE START LOGICAL STANDBY APPLY (TURKEY)

with optional part IMMEDIATE

Attempt to start background Logical Standby process

Fri Oct 12 16:08:01 2012

LSP0 started with pid=35, OS id=24860

Completed: alter database start logical standby apply immediate

What just happened?
We've seen the step-by-step approach to perform a switchover between the primary and
logical standby database using SQL*Plus. We've also monitored switchover transactions
by tracking the alert logfile on both databases.

Pop quiz
Q1. You've prepared either the primary or the standby database to perform switchover and
then you have decided not to perform switchover. Is it possible to cancel it?

Performing switchover with a logical standby database using
broker
Managing any role transition or other administrative tasks of Data Guard with the broker is
quite easy. Now we will see the step-by-step approach of a switchover between primary and
logical standby databases using the DGMGRL utility.

Time for action – switchover with a logical standby using broker
Perform the following steps to change the roles of the primary and logical standby databases:

1.	 Check the configuration of Data Guard. In the broker's configuration, we have one
primary database and one logical standby database already configured. Ensure that
the status is SUCCESS before performing a switchover as shown in the following code:
DGMGRL> show configuration;
Configuration - PACKT

Chapter 6

[193]

 Protection Mode: MaxPerformance
 Databases:
 INDIA_UN - Primary database
 turkey_un - Logical standby database
Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

2.	 Perform a switchover using the DGMGRL command. Before performing switchover,
connect to the DGMGRL utility using the complete username and password of the
SYS user instead of connecting with / as shown in the following code:
DGMGRL> connect sys/*******
Connected.

Once authenticated, initiate the switchover with the following command as shown
in the screenshot:

On the alert logfile you will see the following:

2012-10-12 17:24:03.052 02001000 1399597225 DMON: posting standby
instances for SWITCHOVER phase 5

2012-10-12 17:24:03.053 INSV: Received
message for inter-instance publication

............

2012-10-12 17:23:05.766 02001000 1399597225 DMON: dispersing
message to standbys for SWITCHOVER phase BEGIN

3.	 Check the configuration of Data Guard once again. After performing a switchover,
the broker will start SQL Apply on the new logical standby database as shown in
the following code:
[oracle@oracle-ha dbs]$ ps -ef|grep lsp
oracle 14604 1 0 17:23 ? 00:00:02 ora_lsp0_INDIA
oracle 15232 6342 0 17:31 pts/1 00:00:00 grep lsp

DGMGRL> show configuration;
Configuration - PACKT
 Protection Mode: MaxPerformance
 Databases:

Data Guard Role Transitions

[194]

 turkey_un - Primary database
 INDIA_UN - Logical standby database
Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

What just happened?
We have successfully completed the switchover operation in a logical standby Data Guard
configuration using the Data Guard broker.

Failover
Failover is initiated when a serious problem exists on the primary database, making it
inaccessible. This problem generally arises from hardware or software errors on the server
or storage layer; also, a disaster may cause complete or partial loss of services. In such cases,
we can convert a standby database role to primary by performing failover and continue
providing it with production database service. Performing a Data Guard failover operation
for production purposes is a serious consideration and needs a lot of caution. The following
considerations are important in this context:

�� Failover decision must be taken with regard to the service Recovery Time Objective
(RTO) value.

�� The standby database hardware must be powerful enough to sustain
production load.

�� Multiple standby databases are recommended; this is so that data protection
continues after a failover operation.

�� If the flashback database is not enabled on the primary database, after a failover it's
not possible to include the old primary database into the Data Guard configuration
again. This means we'll have to restore the database on the primary side. If
flashback is enabled, it's possible to reinstate the failed primary database without a
full restore operation. The following diagram explains the failover process:

Chapter 6

[195]

Before Failover After Failover

Primary Instance

Turkey_un

RedoStandby Instance

India_un

Database Database

TURKEY INDIA

Database Database

Primary Instance

Turkey_un

Primary Instance

India_un

Redo

TURKEY INDIA

Before performing failover, ensure that all the available redo is being applied on the standby
database for minimum data loss. Remember that it's also possible to guarantee a zero
data loss failover by using the Maximum Protection mode. Also note that once the failover
process is finished, the new primary database will be started in Maximum Performance
mode even though your previous Data Guard protection mode is either Maximum
Protection or Maximum Availability.

Failover can be performed manually with SQL*Plus, the Data Guard broker, Cloud Control,
or automatically using the Fast Start failover with an observer. In automatic failover, the
observer will monitor the state of the primary database and all the standby databases of the
Data Guard configuration. Whenever the primary database is not accessible, the observer
will wait according to the predefined parameter FastStartFailoverThreshold and then
perform the failover to the standby database.

As stated before, if the flashback database is enabled and the standby database role is
changed to primary by FSFO and if the observer reestablishes the connection to the failed
primary database as well as reinstates it as a new standby database, the new primary
database starts sending redo to the new standby database.

Performing failover with a physical standby database
Just as with the switchover operation, the failover operation can be performed on both the
physical and logical standby databases. We'll now see both scenarios.

Data Guard Role Transitions

[196]

Time for action – failover with a physical standby database
using SQL*Plus

Follow these steps to complete a failover on the physical standby Data Guard environment:

1.	 If you're able to mount a primary database, perform the following command to flush
the redo from the primary online redo logfiles:
SQL> alter system flush redo to INDIA_UN;

Use DB_UNIQUE_NAME of the standby database so that redo will be sent to the
respective standby database.

2.	 Check the status of both the primary and standby databases. With the primary
database in the MOUNT state, check the maximum archive log sequence that has
been generated as shown in the following code:
SQL> select max(sequence#) from v$archived_log;
MAX(SEQUENCE#)

 462

3.	 If the primary database is inaccessible, refer to the alert logfile for the latest log
switch sequence or go to the archive log location and check the maximum sequence
number as shown in the following command:
Fri Oct 12 22:20:30 2012

Thread 1 advanced to log sequence 462 (LGWR switch)

Current log# 1 seq# 462 mem# 0: /u01/app/oracle/oradata/orcl/
redo01.log

...........

Archived Log entry 1064 added for thread 1 sequence 462 ID
0x4eede1f7 dest 1:

Optionally, you can use the following:

[oracle@oracle-primary 2012_10_12]$ls -alrt

-rw-r----- 1 oracle oinstall 40261120 Oct 12 22:20 o1_
mf_1_461_87jllpq3_.arc

-rw-r----- 1 oracle oinstall 41197056 Oct 12 23:08 o1_
mf_1_462_87jodh9n_.arc

The maximum archive sequence generated is 462, which we can see by querying
v$archived_log, the alert logfile, or the file systems.

Chapter 6

[197]

4.	 Now check the maximum sequence applied on the standby database using the
following code:.
SQL> select max(sequence#) from v$archived_log where
applied='YES';
MAX(SEQUENCE#)

 449

There are 13 archive logs that are not applied on the standby database. If they're
not shipped from primary, you should transfer those archived logfiles and register
and apply them to the standby database. If shipped but not applied, you must start
Redo Apply on the standby database.

If the primary server is completely unavailable, you have to perform recovery on the
standby database until the maximum transported archive log sequence.

5.	 Initiate failover by stopping Redo Apply and running the recover command
with the finish force option on the standby database as shown in the
following command:
SQL> alter database recover managed standby database cancel;
Database altered.
SQL> alter database recover managed standby database finish force;
Database altered.

The FINISH keyword is used for failover and recovers the
current standby redo logfiles. The FORCE keyword is used to
terminate RFS processes immediately so that failover will not
wait for them to exit.

On the alert logfile you will see the following:

Terminal Recovery: log 10 reserved for thread 1 sequence 463

Recovery of Online Redo Log: Thread 1 Group 10 Seq 463 Reading mem
0

 Mem# 0: /u02/app/oracle/oradata/orcl/standby_redo01.log

Identified End-Of-Redo for thread 1 sequence 463

Incomplete Recovery applied until change 3476339 time 10/12/2012
23:08:22

Media Recovery Complete (INDIA)

Terminal Recovery: successful completion

Data Guard Role Transitions

[198]

If the recovery command raises an error because of a possible gap, try
to resolve it. If this is not possible, continue failover with the following
command and proceed to step 5.

SQL> alter database activate physical standby
database;

If the recover command completes successfully, continue with the
next step.

6.	 Complete failover to the physical standby database by converting it from the
standby role to primary as follows:
SQL> alter database commit to switchover to primary with session
shutdown;
Database altered.

On the alert logfile you will see the following:

Standby became primary SCN: 3476337

Fri Oct 12 23:34:36 2012

Setting recovery target incarnation to 3

Switchover: Complete - Database mounted as primary

Completed: alter database commit to switchover to primary

After that, perform the following code:

SQL> select db_unique_name,database_role,standby_became_primary_
scn from v$database;
DB_UNIQUE_NAME DATABASE_ROLE STANDBY_BECAME_PRIMARY_SCN
-------------------- ---------------- --------------------------
INDIA_UN PRIMARY 3476337

7.	 After performing failover, the new primary database will be in the MOUNT state. Shut
down and start up the new primary database as shown in the following code:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

Have a go hero
We have just performed a failover to a physical standby database. Now go ahead and perform
a failover to the logical standby database using SQL*Plus. In this case, after step 1 and 2, you
just need to use the following command on the logical standby to perform a failover:

SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE FINISH APPLY;

Chapter 6

[199]

Performing failover with a logical standby database
Performing failover with a logical standby database has some disadvantages because of the
following points:

�� A logical standby database functions with SQL Apply instead of Redo Apply and there
are limitations to accept the incoming DML from primary and also unsupported data
types. So we can't guarantee that all the changes from the primary database have
been successfully applied on the logical standby database.

�� Once you perform failover, you have to recreate other standby databases for
the configuration.

So it's not recommended to perform failover to the logical standby database if it's possible
to perform failover to a physical standby. Also, depending on the RTO, RMAN restore and
recovery is preferred over failover to a logical standby.

Time for action – failover with a logical standby using broker
Follow these steps to perform failover to a logical standby database using the Data
Guard broker:

1.	 Check both the primary and logical standby databases' status. If the primary
database is completely unavailable, you can check the configuration status from
the logical standby database as shown in the following code:
DGMGRL> show configuration;
Configuration - PACKT
 Protection Mode: MaxPerformance
 Databases:
 turkey_un - Primary database
 INDIA_UN - Logical standby database
Fast-Start Failover: DISABLED
Configuration Status:
ORA-12514: TNS:listener does not currently know of service
requested in connect descriptor
ORA-16625: cannot reach database "turkey_UN"
DGM-17017: unable to determine configuration status

Data Guard Role Transitions

[200]

2.	 Perform the failover to the logical standby database. Connect to the DGMGRL utility
of the logical standby database and issue the command shown in the following
screenshot to perform failover:

On the alert logfile, you will see the following:

2012-10-13 16:00:00.862 Executing SQL [ALTER
DATABASE activate logical standby database finish apply]

2012-10-13 16:00:02.348 SQL [ALTER DATABASE
activate logical standby database finish apply] Executed
successfully

2012-10-13 16:00:02.354 RSM: refreshing
IncarnationTable internal property. New value is '2,3166193,796392
156,1*1,3166192,796392049,0#'

2012-10-13 16:00:02.366 Database Resource
SetState succeeded

During failover to a physical or logical standby database using broker,
you can use the IMMEDIATE option to perform failover without
waiting for applying any redo. You can use the following command:

DGMGRL> FAILOVER TO <DB_UNIQUE_NAME> IMMEDIATE

3.	 Check the status of the new primary database. After a successful failover, the new
primary database will be in READ WRITE mode as shown in the following code:
SQL> select db_unique_name,database_role,open_mode from
v$database;
DB_UNIQUE_NAME DATABASE_ROLE OPEN_MODE
-------------------- ---------------- --------------------
india_un PRIMARY READ WRITE
DGMGRL> show configuration;
Configuration - PACKT
 Protection Mode: MaxPerformance
 Databases:
 INDIA_UN - Primary database
 turkey_un - Logical standby database (disabled)
 ORA-16661: the standby database needs to be reinstated
Fast-Start Failover: DISABLED
Configuration Status:
SUCCESS

Chapter 6

[201]

What just happened?
We have discussed how to perform failover to a physical standby database and a logical
standby database. To perform this, we have used both SQL*Plus and the Data Guard broker.

Summary
In this chapter, we focused on planned outages, unplanned outages, and how to perform
role transitions against them. We've seen the key points and all the possible techniques
to perform role transitions, which are SQL*Plus, the Data Guard broker, and Enterprise
Manager 12c Cloud Control.

In the next chapter, we'll learn about configuring and using Active Data Guard and snapshot
standby database. These are very important features of Data Guard. Also, some advanced
topics such as cascading standby databases, advanced compression, cross platform
configuration, and Data Guard tuning will be covered.

7
Active Data Guard, Snapshot Standby,

and Advanced Techniques

Active Data Guard and snapshot standby databases are two very important
new features of Oracle 11g. With Active Data Guard, it's possible to use a
physical standby database read-only mode while the replication is ongoing.
The snapshot standby feature is used to run a standby database in a read-write
mode for testing purposes where all the changes made to the snapshot standby
can be reverted. This chapter includes details of these features along with
several other advanced techniques.

The following features will be covered in this chapter:

�� Oracle Active Data Guard

�� Using snapshot standby databases

�� Cascade standby database and more options

�� Oracle Advanced Compression

�� Preparing the standby database on a cross-platform

�� Data Guard tuning

Active Data Guard, Snapshot Standby, and Advanced Techniques

[204]

Oracle Active Data Guard
Earlier versions of Oracle 11g standby databases have limitations as they can be used either
for a recovery purpose or for a read-only purpose without recovery. From 11gR1 onwards,
Oracle introduced more features, and standby databases can now work in recovery even in an
open status. While recovery is in progress, real-time data can be accessible to the users just as
production data is. Real time query can be used if Oracle Active Data Guard option has been
purchased. Apart from that, some additional benefits of Active Data Guard are as follows:

�� You can use applications on Active Data Guard and the additional processing
from the production can be reduced so that both primary and standby databases
can be utilized.

�� If any ad-hoc jobs are running on Active Data Guard and if they don't meet the SLA
provided by the STANDBY_MAX_DATA_DELAY parameter using triggers, they can
immediately be redirected to the primary database.

�� Automatic block recovery. If there are any corrupted blocks in the primary database,
Active Data Guard will copy the good state of the block from standby and it will be
recovered in the primary database.

�� Active Data Guard can work in both ways to recover corrupted blocks.

�� Zero data loss can be achieved.

�� You can load off the EXPDP jobs to the standby database.

�� You can schedule RMAN jobs from the standby with a real-time query.

�� You can use Statspack from the standby database.

�� You can monitor Active Session History (ASH) reports.

Why Active Data Guard?
Most of the customers choose the Active Data Guard license for both disaster protection
and also for securing read-only access to the applications. Note that all the applications
(for example, SAP) don't support Active Data Guard; further, we will discuss several top
applications that support Active Data Guard. If we pick any live database, most of the query
ratios will be of the read-only (select queries) operations and there will be few read and
write (insert/update/delete/merge) transactions. I would like to highlight a sample
example in order to differentiate between read-only and read-write operations in any
business. There are no restrictions on the storage of data types, DML, or DDL operations.
Reports can view the latest data from the standby as real-time apply is on. Moreover, you
can simplify tuning and Active Data Guard that is certified with Exadata.

Chapter 7

[205]

The following are the basic requirements and licenses that you must have in order to use
Data Guard for a standby system:

�� Server hardware

�� Power systems

�� An operating system (Linux/Unix, Windows) license

�� Oracle Enterprise Edition license

These all are the necessary requirements needed to build a standby system. You must have
already made lot of effort to configure a standby database for high availability; thus it is worth
to add an additional license of Active Data Guard. Of course you can question, why should I
choose Active Data Guard and what benefits can we gain from this additional costly step?

In any business, as we discussed earlier, most of the operations are not transactional
(Select statements). For read-only queries, if 1000 user sessions are concurrently accessing
the production database and the resources are allocated to the user sessions, then the users
can either perform a physical or logical I/O depending on the data being cached into a buffer
cache. Even though you have a standby database performing all of the previous transactions/
operations from a production database, it can have additional disadvantages as follows:

�� Load average

�� CPU busy

�� Swapping/paging

�� System calls

The following diagram illustrates a database without Active Data Guard:

Active Data Guard, Snapshot Standby, and Advanced Techniques

[206]

Apart from read-only and read-write operations on the database, there may be other
scheduled backup jobs configured on the database such as EXPDP, RMAN backup jobs, and
gathering of statistics on a daily or round-robin basis. In the previous diagram, the standby
site is just performing recovery, and there will be no load until and unless a switchover
takes place in case of disaster recovery. Active Data Guard is not limited to simply reporting;
you can use the OLTP query workload with the required modifications on the applications.
Overall, it's a simple administration process because no tasks are required to detect and
resolve the data conflicts, and no troubleshooting is necessary for any trail errors. Of
course, you may need to adjust the settings and tune the old standby database in case the
primary database is unavailable. Oracle Active Data Guard can be configured from a primary
standalone to a standalone database or from an RAC primary to a standby standalone
database or from an RAC primary to RAC standby databases also. In order to maintain
business continuity in case of disaster recovery, we can implement Active Data Guard with
fast-start failover. By implementing Active Data Guard, it can enable the flexible use of
resources for multiple purposes. The following diagram illustrates the discussed points:

The previous diagram explains how to eliminate contention between read-only and read-
write operations. Now we will discuss what are the jobs that can be moved from the primary
database if Active Data Guard is enabled and how to offload these operations to a physical
standby database(s) to avoid additional processing from the production database. In this
chapter, we have explained with examples how to use ASH reports with Active Data Guard
and other options. It can be further understood with the help of the following diagram:

Chapter 7

[207]

Even though applications are used from a standby system, they can connect to a primary
database anytime whenever read-write operations are required.

Oracle Data Guard license
Before you implement and use Active Data Guard, it is necessary to understand the licensing
involved with this feature. If you are implementing Active Data Guard, then both the primary
and standby servers must be licensed. For the licensing prices, you must always visit Oracle
Technology price list for the Active Data Guard. The price may vary depending on the license
of the named user or processor license. If licensing is done by the processor, the licenses
may not match due to variance in core factors between the times the respective programs
were licensed. For any future reference, you can check for the latest updates on http://
www.oracle.com/in/corporate/pricing/index.html.

With the Enterprise edition, Active Data Guard is accessible, but you must
have the license to use this feature. You can also verify whether Active Data
Guard is used or not, using the view v$option as follows:

SQL> select parameter,value from v$option where
parameter='Active Data Guard';

PARAMETER VALUE

-------------------- -------

Active Data Guard TRUE

Active Data Guard, Snapshot Standby, and Advanced Techniques

[208]

Enabling Active Data Guard
Enabling Active Data Guard is not a challenging task; it requires minimal effort. Here we
are not making any changes at the database level, we are just enhancing the option of the
Enterprise edition by enabling Active Data Guard. There are no changes to be made to the
primary database, and we just need to ensure that redo transport is an LGWR process so
that real-time data can be viewed by the users.

Time for action – enabling Active Data Guard if Redo Apply is
running using SQL *PLUS

1.	 If you have previously upgraded your database from Version 10gRx to 11gRx, then
in order to use Active Data Guard the compatible parameter must at least be set to
11.0.0 as shown in the following query:
SQL> show parameter compatible
NAME TYPE VALUE
------------------------------- ----------- --------------------
compatible string 11.2.0.0.0

2.	 If you are using Active Data Guard for the first time, your standby database will
definitely be in the MOUNT status and MRP will be in progress; hence, cancel MRP.
After cancelling MRP, make sure MRP is not running any more either through the
OS level grep commands or the v$managed_standby view as shown in the
following query:
SQL> select db_unique_name,open_mode from v$database;
DB_UNIQUE_NA OPEN_MODE
------------ --------------------
INDIA_UN MOUNTED
SQL> alter database recover managed standby database cancel;
Database altered.
SQL> !ps -ef|grep mrp
oracle 27188 5882 0 11:56 pts/1 00:00:00 /bin/bash -c ps
-ef|grep mrp
oracle 27190 27188 0 11:56 pts/1 00:00:00 grep mrp

3.	 Open the database in the Read-Only mode to enable Active Data Guard as follows:
SQL> alter database open ;
Database altered.
SQL>
SQL> select db_unique_name,open_mode from v$database;

Chapter 7

[209]

DB_UNIQUE_NA OPEN_MODE
------------ --------------------
INDIA_UN READ ONLY
Now restart Redo Apply
SQL> alter database recover managed standby database using current
logfile disconnect from session;
Database altered.

4.	 Verify whether redo-apply is enabled or not using the following query:

SQL> select process,status,sequence# from v$managed_standby where
process like '%MRP%';
PROCESS STATUS SEQUENCE#
--------- ------------ ----------
MRP0 APPLYING_LOG 522

Time for action – enabling Active Data Guard if the standby
database is shut down

1.	 If the standby database is completely shut down, use the following steps to enable
Active Data Guard. Now start the database normally as follows:
[oracle@oracle-stby ~]$ sqlplus / as sysdba
SQL*Plus: Release 11.2.0.1.0 Production on Tue Nov 6 12:13:27 2012
Copyright (c) 1982, 2009, Oracle. All rights reserved.
Connected to an idle instance.
SQL> startup
ORACLE instance started.
Total System Global Area 818401280 bytes
Fixed Size 2217792 bytes
Variable Size 528484544 bytes
Database Buffers 285212672 bytes
Redo Buffers 2486272 bytes
Database mounted.
Database opened.
SQL>

Active Data Guard, Snapshot Standby, and Advanced Techniques

[210]

2.	 Once the database is opened successfully, by default it will be in the Read Only
mode because it's a standby control file. Now start Redo Apply as follows:

SQL> select db_unique_name,open_mode from v$database;
DB_UNIQUE_NAME OPEN_MODE
--------------- --------------------
INDIA_UN READ ONLY
SQL>
SQL> alter database recover managed standby database using current
logfile disconnect from session;
Database altered.
SQL>

Time for action – enabling Active Data Guard using broker
If Data Guard is managed using a broker, it is always simple and even easier to manage it
from Oracle 11gR2. When both broker and MRP are running on the standby, you can open
the database at any time for reporting purposes.

1.	 Check the configuration and state of the database as follows:
DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

DGMGRL>

SQL> select db_unique_name,open_mode from v$database;

DB_UNIQUE_NAME OPEN_MODE

--------------- --------------------

INDIA_UN MOUNTED

SQL>

SQL> !ps -ef|grep mrp

oracle 4686 1 0 16:31 ? 00:00:00 ora_mrp0_INDIA

Chapter 7

[211]

oracle 4815 3948 0 16:35 pts/1 00:00:00 /bin/bash -c ps
-ef|grep mrp

Open Database for the use of Active Data Guard

SQL> alter database open read only;

Database altered.

SQL>

DGMGRL> show configuration;

Configuration - PACKT

 Protection Mode: MaxPerformance

 Databases:

 turkey_un - Primary database

 INDIA_UN - Physical standby database

Fast-Start Failover: DISABLED

Configuration Status:

SUCCESS

DGMGRL>

From the previous command, it looks as if the database is opened successfully; internally it
will perform the following three operations:

�� Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL

�� Completed: ALTER DATABASE OPEN READ-ONLY

�� Completed: ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
THROUGH ALL SWITCHOVER DISCONNECT USING CURRENT LOGFILE

If you are using Oracle 11gR1 with Data Guard broker, then use a combination of
Data Guard broker and SQL *Plus to enable Active Data Guard using the following
commands:
DGMGRL> edit database 'INDIA_UN' SET STATE='APPLY-OFF';

SQL> alter database open read only;

DGMGRL> edit database 'INDIA_UN' SET STATE='APPLY-ON';

Active Data Guard, Snapshot Standby, and Advanced Techniques

[212]

What just happened?
We've just revised how to enable Active Data Guard using SQL *Plus and also using Data
Guard broker.

After performing the previous steps to enable Active Data Guard, we will see
how to find out whether the Active Data Guard feature is enabled or not. There
is no direct column in any view/tables to find out whether the Active Data Guard
feature is enabled or not. But if we merge two columns of two tables and if
both the processes are running, then it is for reporting purpose as shown in the
following query:

SQL> select 'YES' Active_DataGuard from v$managed_standby ms, v$database
db where ms.process like '%MRP%' and db.open_mode like '%READ ONLY%';

ACTIVE_DATAGUARD

YES

Monitoring Active Data Guard
We have successfully enabled Active Data Guard on a standby database; no further steps
need to be performed on the primary database if real-time apply is running. There are
several ways to find whether Active Data Guard is enabled or not.

From primary
To determine if Active Data Guard is enabled from the primary, v$archive_dest_status
describes the status of all local and remote destinations, including several options such as
database role and recovery mode, as follows:

SQL> select dest_name,status,database_mode,recovery_mode from
v$archive_dest_status where dest_id=2;
DEST_NAME STATUS DATABASE_MODE RECOVERY_MODE
---------------------- --------- -------------- --------------------
LOG_ARCHIVE_DEST_2 VALID OPEN_READ-ONLY MANAGED REAL TIME APPLY

Chapter 7

[213]

From standby
Using the standby database you can check whether the standby database is Mount status
Read Only, or READ ONLY WITH APPLY by using v$database as follows:

SQL> select open_mode from v$database;
OPEN_MODE

READ ONLY WITH APPLY

By using a custom query you can merge the views as follows:

SQL> select 'YES' Active_DataGuard from v$managed_standby ms,
v$database db where ms.process like '%MRP%' and db.open_mode like
'%READ ONLY%';
ACTIVE_DATAGUARD

YES
SQL> SELECT * FROM V$STANDBY_EVENT_HISTOGRAM WHERE NAME = 'apply lag'
AND COUNT > 0;
NAME TIME UNIT COUNT LAST_TIME_UPDATED
---------- ---------- ---------------- ---------- --------------------
apply lag 0 seconds 5787 11/06/2012 23:01:28
apply lag 1 seconds 98 11/06/2012 23:01:09
apply lag 2 seconds 8 11/06/2012 22:45:06
apply lag 3 seconds 6 11/06/2012 22:45:37
apply lag 4 seconds 4 11/06/2012 22:43:03
apply lag 5 seconds 4 11/06/2012 22:45:43

The v$standby_event_histogram view is accessible only if
the database is OPEN with READ-ONLY mode and real-time apply
is on, that is Active Data Guard. However, this view is also accessible
from MOUNT but it returns no information.

Active Data Guard with applications
Active Data Guard has limitations with several applications; your application may or may not
be compatible with Active Data Guard to use its features. Before purchasing the license, you
should check the compatibility of the applications. Here we will discuss briefly some of the
top applications that are used for business and how it works with Active Data Guard.

Active Data Guard, Snapshot Standby, and Advanced Techniques

[214]

Active Data Guard with PeopleSoft
From PeopleSoft Version 8.51, reports can be executed in the Active Data Guard database
instead of running in the production/primary OLTP database. Specific to PeopleSoft
applications, it uses reporting tools such as NVisions. These job queries select against the
database and retrieve the results into an Excel spreadsheet as per the user's formatting.
Internally it calls a number of batch jobs and some of the queries may use hints such as
parallel if they create any SQL profiles and these can cause much load on production. All
NVision reports are pure select queries. Only the tree performance tuning parameters/
settings that are enabled will have DML statements on Treeselector tables otherwise any
NVisions report on PS_LEDGER, PS_LEDGER_BUDG is always pure select process. NVisions
are reports that can run on FIN, HR, or EPM(DWH). If you enable Active Data Guard on a
standby database, components such as the PSQUERY viewer, the TREE viewer, QAS, G&R,
and the XMLP viewer should always run on the standby system. To enhance this feature
you must perform configuration changes in both the process scheduler server and the
application server. The following diagram explains Active Data Guard with PeopleSoft:

If you perform changes in the component's properties of the application designer, you can
run more components on the standby system; even the process scheduler definitions can
be configured on the standby system by setting the read-only option in it. With the option
of Active Data Guard, database links and remote synonyms that are defined by scripts from
PeopleTools can run batch programs on a standby system.

Chapter 7

[215]

Time for action – Active Data Guard with PeopleSoft
PeopleSoft with Active Data Guard require DB links because they will update the processes'
tables using DB links so that remote synonyms are required to give access to the standby
system. But a very detailed analysis is required if you consider implementing Active Data
Guard. Perform the following steps to implement Active Data Guard with PeopleSoft:

1.	 Create a standby database and enable Active Data Guard.

2.	 Add a new database service for accessing Active Data Guard on the primary
database in case there is any maintenance on the standby server.

3.	 Confirm that Oracle Net Services is configured between the Active Guard database
and the application servers; also ensure that the Oracle net configuration points to
the database service instead of a specific instance and includes both the primary
and standby listeners, so that PeopleSoft can connect to any of the services that are
not started or running also.

4.	 In PeopleSoft, we do not have much control to use any custom scripts, and we must
always go for the derived scripts from PeopleSoft. To enhance this Active Data Guard
feature with PeopleSoft, ensure that the following scripts are available:
psadmin.sql($PS_HOME/scripts/unix)

createlocalsynonyms.sql($PS_HOME/scripts)

createremotesynonyms.sql($PS_HOME/scripts)

createdblinktoprimarydb.sql($PS_HOME/scripts)

5.	 Create a secondary access ID as ACCESS_ID on the primary database using
the script psadmin.sql. ACCESS_ID is the RDBMS ID with which PeopleSoft
applications are connected to the database so that it will create an owner
ACCESSID besides the default user SYSADM.

6.	 Insert the corresponding database name and username in the table PSDBOWNER and
perform a commit after the insert.

7.	 From the application designer, add a new SYMBOLICID for ACCESSID.

8.	 Create a dedicated application user attached to the secondary SYMBOLICID
attribute.

9.	 Create a database link to the primary database using the following query:
SQL> create database link Prim_ADG connect to sysadm identified by
password using 'TURKEY_UN';

10.	Create a local synonym using the derived script createlocalsynonyms.sql.

11.	Create a remote synonym using the derived script createremotesynonyms.sql.

Active Data Guard, Snapshot Standby, and Advanced Techniques

[216]

12.	Confirm that the standby system is able to synchronize it all the time without any
delay and also check for the newly created database link.

13.	Now configure the batch server on both the primary and standby systems.

14.	Modify the psprcs.cfg file with StandbyDBname, StandbyDBType,
StandbyUserId, and StandbyUserPsswd.

15.	After modifying the PRCSDOM batch server, reconfigure it using the $PS_HOME/
appserv/psadmin script.

16.	Now start the batch server PRCSDOM after all the modifications and confirm the
standby connections using v$session.

17.	By setting DDDAUDIT to read-only, you can perform the tests.

The earlier discussed steps are specific to how to configure the batch
server. Of course you can configure an application server on Active
Data Guard but the configuration is different.

Active Data Guard with EBS
Active Data Guard can be implemented on EBS but there are some limitations specific to EBS
R12; you should meet software and patches requirements, as discussed in the following table:

Oracle products Minimum
version

Additional patches

Oracle EE 11gR1 > = 11.1.0.7 Recording ADG violations: <patch 10070167> patch
10134846

Oracle EE 11gR2 >=11.2.0.2 Included in a patch set; no additional patches required

Oracle EBS >=12.1.3 Infrastructure patch 9434627 9434627:R12.FND.B

Enabling patch 9505793 9505793:R12.FND.B

and patch 9526837 9526837:R12.FND.B.

If you want to use concurrent manager reporting, you must use parallel concurrent
processing with new processing nodes that are set up to handle Active Data Guard reports.
Ensure that there is no network latency between the primary and standby systems. In Active
Data Guard, the concurrent manager connects to the primary database and only the reports
will be connected to the Active Data Guard database. However, no DMLs are allowed on
Active Data Guard; DML will be executed via database links to the primary database. Hence,
it is applicable to both the user and the dictionary DML.

Chapter 7

[217]

In brief, first clone an application tier to set up parallel concurrent processing and then
register the node for batch processing only. Now start the application and register a new
concurrent manager, assigning it the node co-located with Active Data Guard. To ensure
that this manager only handles reports for meeting the requirements of Active Data Guard,
use the exclude/include rules. Customers may use Active Data Guard instances to execute
SQL that does not require a write activity. In terms of the use of E-Business Suite with Active
Data Guard, if the concurrent program is not on the list of supported reports, then it is not
certified by Oracle Development and is considered a customization. For more configuration
limitations over Active Data Guard, refer to the installation documents.

Active Data Guard with TopLink
Oracle TopLink is a part of Oracle Fusion Middleware; it's an advanced framework that
provides development tools and runtime capabilities so that the development and
maintenance efforts are reduced, thereby increasing the application functionality. It
can successfully transform object-oriented data into relation data or Extensible Markup
Language(XML). TopLink can address the difference between Java objects and data sources.
Its engine has a great mechanism to use read pool for all non-transitional transactions and
write pool for the actual transactions. The same concept can be implemented with Active
Data Guard by processing read-only operations to a standby database and read-write
transactions to a primary database; the high-level steps are as follows:

�� TopLink can read objects using the read-only database connection and it uses a
locking mechanism so that users have the option to choose and update the object
later. It can detect a conflict.

�� Once an object is processed to higher application layers, it will be converted into the
HTML format and some of the attributes will be hidden, and they will be visible once
the form is submitted.

�� In the next level that the object will be passed to, the application server acts as the
TopLink object and along with its changes, it will be saved in the database through
the read-write connection pool.

�� After the commit of the UPDATE statement, the redo data will of course be
transported to the physical standby database and it will be applied to the same.

Active Data Guard, Snapshot Standby, and Advanced Techniques

[218]

Active Data Guard with Oracle BI
Oracle Business Intelligence Suite EE Plus is an element of Enterprise BI products. From
11g onwards, OBIEE is based on the web service oriented, unified architecture. OBIEE
11g delivers ad hoc queries and analysis, OLAP, and its functionality. It can access multiple
enterprise sources including Oracle and also non-Oracle data, and it has advanced enterprise
reporting and publishing features.

OBIEE 10.1.3.4 has been certified with Oracle Active Data Guard 11g. The OBIEE server is
mostly related to the read-only application server and the read-only operations that we can
run on the Active Data Guard standby database with some configuration changes. Hence, we
can share the load with the standby database and avoid many read-only operations on the
primary database. By enabling Active Data Guard, scalability can be enhanced significantly.
To improve query performance, OBIEE has the mechanism to create temporary tables; so we
have to disable OBIEE from creating temporary tables and from modifying scripts to use the
primary connection pool explicitly for any DML statements. The high-level steps to use OBIEE
with Active Data Guard are as follows:

�� Create a database connection to the Active standby database

�� Disable temporary table creation

�� Using the OBIEE server administrator tool, create a write-back connection pool that
points to the primary database for any DML transactions

�� To monitor the queries and their elapsed time, the OBIEE server has been provided
with the Usage Tracking functionality and you can mention the OBIEE server to write
in tables using the primary connection to modify NQSConfig.INI file of your
SA_HOME\config directory.

�� OBIEE has another feature known as Event Polling, which has the mechanism to
notify the cache system to invalidate the outdated data cache

Thus, OBIEE with Oracle 11g Active Data Guard provides high-scalable solutions, and with
proper configurations, the OBIEE repository can adapt OBIEE for read-only requirements of
an Active Data Guard standby database.

Active Data Guard with SAP
Many DBAs seem to have the misconception that Active Data Guard can be configured for
SAP systems. They must be aware of the fact that Active Data Guard cannot be used to run
any SAP system against the standby database for any reporting purpose. Active Data Guard
allows only read-only access to the standby database. But SAP systems are never read-only.
Therefore this would not work. Of course, you can run any administrative task against the
standby server that is read-only. Since you cannot start a SAP system against an Active Data
Guard standby system, you are limited to pure Oracle-related administration tasks.

Chapter 7

[219]

Active Data Guard features
In the license of Active Data guard, apart from read-only operations we have some more
features and a couple of examples that we are going to discuss on how to use Active Data
Guard more than just named Read-Only. Most of the tasks that run on the standby and
primary database will be used only if DML operations are required. Also, we can offload
operations to physical standby databases and hence we can put more additional processing
on production databases, thereby we can eliminate the contention between read-only and
read-write operations.

EXPDP from standby database using NETWORK_LINK (ADG)
In the previous section, we created database links on the primary database and we created
remote synonyms to be used by the physical standby database. In this procedure we will be
performing all the operations in the standby database only in the case of creating or updating
master tables after which it routes transactions to the primary database via database links.

Apart from application usage, we can use Active Data Guard even for fully exporting the
database. For a huge OLTP transactional database of size 600 GB to 700 GB, the elapsed ETA
to export a full backup is around 5 hours to 6 hours using high parallelism of 32. During the
export job, it is always expected to have a high load average that can cause much CPU busy
depending on the hardware configurations. Hence, for almost 5-6 hours there will be huge
activity both on the database and also at the server level because CPU cores are serving
the EXPDP job. If you want to use EXPDP from a standby database, you must schedule the
job from the primary database because it has to create a master table, and all the database
reads will be performed from the standby database so that disk I/Os can be reduced on the
primary database.

Time for action – exporting a database backup from Active Data
Guard

In order to export a database backup from Active Data Guard, perform the following steps:

1.	 Ensure that your standby database is in the Read Only mode and the MRP process
should not be running, as shown in the following query:
SQL> select open_mode from v$database;
OPEN_MODE

READ ONLY

2.	 Create a directory in the primary database logically and create the same directory
name physically at the OS level as follows:
SQL> create directory expdp_india as '/u02/backups/expdp';
Directory created.
SQL>

Active Data Guard, Snapshot Standby, and Advanced Techniques

[220]

3.	 Create a database link from the primary database so that TNS string should point to
the standby database, as shown in the following query:
SQL> create public database link exp_turkey connect to system
identified by "free2go" using 'india';
Database link created.
SQL>

4.	 Now execute EXPDP from the primary database as follows and ensure that you have
proper roles and privileges to export the backups:
[oracle@oracle-primary ~]$ expdp system/free2go directory=EXPDP_
INDIA network_link=exp_turkey tables=packt.oracle dumpfile=Sample_
Standby.dmp logfile=FULL_standby.log

Export: Release 11.2.0.1.0 - Production on Wed Nov 7 15:55:28 2012

........................

Starting "SYSTEM"."SYS_EXPORT_TABLE_02": system/********
directory=EXPDP_INDIA network_link=exp_turkey tables=packt.oracle
dumpfile=Sample_Standby.dmp logfile=FULL_standby.log

Estimate in progress using BLOCKS method...

Dump file set for SYSTEM.SYS_EXPORT_TABLE_02 is:

 /u02/backups/expdp/Sample_Standby.dmp

Job "SYSTEM"."SYS_EXPORT_TABLE_02" successfully completed at
15:55:41

[oracle@oracle-primary ~]$

What just happened?
We've just revised how to perform a logical backup of a database with the method of export
(EXPDP) by reading data of a standby database to reduce the number of I/Os from the
primary database.

Time for action – using the ASH report from the standby
database

From 11gR2 onwards, the Active Session History report can be created to monitor the
performance of a standby database from the standby system. To use this feature, ensure that
the database is up-and-running in the Read-Only mode and the session history has retained
the memory. Then, you can perform the following steps:

Chapter 7

[221]

1.	 Generate an ASH report using the ashrpt.sql script. Before using this report you
must know what parameters we have to pass while the report is running, for example,
duration between two dates and times. Use the ashrpt.sql script as follows:
SQL> @?/rdbms/admin/ashrpt.sql

Current Instance

~~~~~~~~~~~~~~~~

   DB Id    DB Name      Inst Num Instance

----------- ------------ -------- ------------

 1316772835 ORCL                1 INDIA

You are running ASH report on a Standby database. To generate the 
report

over data sampled on the Primary database, enter 'P'.

Defaults to 'S' - data sampled in the Standby database.

Enter value for stdbyflag: S

Using Primary (P) or Standby (S): S

Once you initiate the ASH report, you can choose the text or HTML option for the 
report. The default mode of the ASH report is HTML. In the second phase you have 
the option to choose the instance type, so select the instance type as Standby.

2.	 Now you have to specify the timeframe to generate the ASH report. Specific to this 
report, you can choose Sysdate-10. Hence, from the current date and time it will 
get the session history report for the past 10 minutes as follows:
Enter begin time for report:

--    Valid input formats:

--      To specify absolute begin time:

--        [MM/DD[/YY]] HH24:MI[:SS]

--        Examples: 02/23/03 14:30:15

--                  02/23 14:30:15

--                  14:30:15

--                  14:30

--      To specify relative begin time: (start with '-' sign)

--        -[HH24:]MI

--        Examples: -1:15  (SYSDATE - 1 Hr 15 Mins)

--                  -25    (SYSDATE - 25 Mins)

Defaults to -15 mins

Enter value for begin_time: -10

Report begin time specified: -10



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 222 ]

3.	 You can mention the report name or it will be created using the default name, which 
uses the time and interval of the selection as shown in the following code:

</table><p />
<br /><a class="awr" href="#top">Back to Top</a><p />
<p />
End of Report
</body></html>
Report written to ashrpt_1_1107_1557.html
SQL>

This report will be generated from the default directory where you been logged into 
the SQL *Plus session. Now you can save or open in any browser to view the statistics.

A sample ASH report output of a standby database is shown in the following screenshot:

You can see the wait events Standby redo I/O and RFS write that are related to a standby 
database, as shown in the following screenshot:



Chapter 7

[ 223 ]

What just happened?
We've just revised how to generate an active session history report from a standby database; 
this report helps us to find out the top wait events with the standby database and also to 
find any sort of issue either with the database or with redo being written.

Have a go hero – running Statspack from a standby database
You can add a standby instance in Statspack to create reports specifically related to a standby 
database. The high-level steps are as follows:

1.	 Ensure Statspack is already installed using @?/rdbms/admin/sbcreate.sql.

2.	 The database must not shut down between two snapshot times to gather reports. 
For that, use the script @?/rdbms/admin/sbreport.sql.

Using a snapshot standby database
The snapshot concept was introduced from the 11g Version, which allows the use of a 
physical standby database in the read-write mode for a short period of time. You can convert 
a physical standby to a snapshot standby by using either traditional SQL *Plus or using the 
Data Guard broker and grid control at any time. Even if you convert it to a snapshot standby, 
it will still receive data continuously from the production database archive, so that in the 
next conversion from a snapshot to a physical standby it will be used for recovery. In case 
you have performed recovery at any point in time, the new incarnation will be started. Even 
though a new incarnation has started, the snapshot standby database will still continue 
accepting redo from the primary database. If your standby database is clustered and has 
more than one node, then shut down all the auxiliary RAC instances of the standby prior to 
performing a snapshot. Note that you should not put a standby database in the snapshot 
mode for a long time; it results in huge archive logs between the production database and 
the standby database and in case of critical databases it can have a serious impact.

Time for action – converting to a snapshot standby database
Perform the following steps to convert a physical standby database to a snapshot  
standby database:

1.	 To convert a physical standby database to a snapshot standby database, flashback 
should be enabled and the database should be brought to the MOUNT status after 
cancelling recovery as follows:
SQL> select open_mode,database_role,flashback_on from v$database;
OPEN_MODE            DATABASE_ROLE    FLASHBACK_ON
-------------------- ---------------- ------------------
MOUNTED              PHYSICAL STANDBY YES



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 224 ]

2.	 Now process the following command to convert the physical standby database to a 
snapshot standby database:
SQL> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

Database altered.

SQL> 

Wed Nov 07 20:10:27 2012

ALTER DATABASE CONVERT TO SNAPSHOT STANDBY

Created guaranteed restore point SNAPSHOT_STANDBY_
REQUIRED_11/07/2012 20:10:27

........

Standby became primary SCN: 3938237

Wed Nov 07 20:10:29 2012

Setting recovery target incarnation to 3

CONVERT TO SNAPSHOT STANDBY: Complete - Database mounted as 
snapshot standby

Completed: ALTER DATABASE CONVERT TO SNAPSHOT STANDBY

3.	 Internally, a standby database creates a restore point so that we can convert the 
snapshot standby database to a physical standby database at any time, and the 
standby database will be converted as a primary with a new incarnation as follows:
SQL> select open_mode,database_role,resetlogs_change#,prior_
resetlogs_change# from v$database;
OPEN_MODE  DATABASE_ROLE  RESETLOGS_CHANGE# PRIOR_RESETLOGS_CHANGE#
---------- ---------------- ---------------- ---------------------
MOUNTED    SNAPSHOT STANDBY        3938240                945184

4.	 After successful conversion, you can now validate the snapshot standby database  
as follows:
SQL> select name,restore_point_time from v$restore_point;
NAME                                           RESTORE_POINT_TIME
------------------------------------------   ---------------- ---
SNAPSHOT_STANDBY_REQUIRED_11/07/2012 20:10:27  08.10.27.000000000 PM



Chapter 7

[ 225 ]

Even though the old standby database is converted to a snapshot standby database, the 
archives will be received from the primary database whenever log switch occurs, and note 
that the database will be in the MOUNT status after conversion as follows:

Wed Nov 07 21:07:27 2012

RFS[5]: Selected log 11 for thread 1 sequence 619 dbid 1316772835 branch 
788992101

Wed Nov 07 21:07:27 2012

Archived Log entry 14 added for thread 1 sequence 618 ID 0x4eede1f7 dest 1:

You have to explicitly open the database so that it will be ready for read and write purposes.

What just happened?
We've just revised how to convert a database from a physical standby to a snapshot standby 
using the SQL* Plus command using a step-by-step approach.

Time for action – converting to a physical standby database
To convert from the snapshot mode to a physical standby, the procedure is the same as 
discussed earlier. Perform the following steps:

1.	 For validation, perform some DML transactions to verify the number of rows of any 
table before and after the conversion, as shown in the following query:
SQL> select open_mode from v$database;
OPEN_MODE
--------------------
READ WRITE
SQL> conn packt/packt;
Connected.
SQL> select count(*) from packt.oracle;
COUNT(*)
----------
41943040
SQL> insert into oracle select * from oracle where sal > 4500;
2097152 rows created.
SQL> commit;
Commit complete.
SQL> select count(*) from packt.oracle;
  COUNT(*)
----------
  44040192



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 226 ]

2.	 Shut down the database and put it in the MOUNT status to initiate the conversion  
as follows:
SQL> alter database convert to physical standby;
Database altered.
SQL>

The following output will be visible:

Wed Nov 07 22:28:12 2012

alter database convert to physical standby

ALTER DATABASE CONVERT TO PHYSICAL STANDBY (INDIA)

krsv_proc_kill: Killing 2 processes (all RFS)

Flashback Restore Start

Wed Nov 07 22:30:23 2012

Flashback Restore Complete

3.	 After successful conversion, the instance will be brought to the STARTED status, and 
you have to perform complete shutdown and startup in the Read Only mode with 
the recovery mode as the standby database for the purpose of reporting, as shown 
in the following query:
SQL> select count(*) from packt.oracle;
  COUNT(*)
----------
  41943040

From step 1, the number of rows inserted are 2097152, and after performing a flashback to 
the restore point, all the newly inserted rows will be reverted.

You can convert a physical standby database to snapshot standby database 
either a Maximum Performance or Maximum Availability mode. It's not 
supported with the Maximum Protection mode and the snapshot standby is 
never considered to perform switchover or failover.

What just happened?
We've just revised how to convert a database from a snapshot standby to a physical standby 
using the SQL* Plus command and we also verified how the new DMLs are reverted using 
the flashback restore point.



Chapter 7

[ 227 ]

Have a go hero – convert the physical standby to a snapshot and vice 
versa using broker

We have converted the physical standby to a snapshot standby database for read and 
write purposes using traditional SQL *Plus. This procedure can also be accomplished using 
a broker. By using SQL *Plus, we have to bounce the database to the MOUNT status; if you 
are managing it using the broker, it will handle this automatically. Refer to the following 
screenshot for a better understanding:

Cascade standby databases
The cascade standby database concept was introduced from Oracle 9i Release 2 onwards. In 
the latest versions and releases there are many changes in the cascade standby databases. 
The cascade standby database concept was introduced to reduce the load on your primary 
database and to transmit redo data from the primary to all standby databases, and the 
network bandwidth needs to be large enough to handle the load. If it is a huge OLTP then 
it will be more problematic to handle. The cascade standby databases are shown in the 
following diagram:



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 228 ]

Limitations with cascade standby database
The limitations with a cascade standby database are as follows:

�� Data cannot be transmitted to other standby databases from a logical standby or a 
snapshot standby database.

�� Data Guard broker is not supported in a cascade standby database environment.

�� Cascading is not supported in RAC on versions prior to 11.2.0.2.

�� If you are using synchronous redo transport, they cannot cascade redo data in a 
Maximum Protection mode.

�� If the primary database is transmitting redo to the standby redo logfiles and writing 
into standby redo logfiles once SRL is full and archived, then the respective archive 
sequence will be transmitted and applied to the cascade standby database(s). This 
will delay redo to the cascade database.

Time for action – cascade standby database
Perform the following steps for a cascade standby database:

1.	 Verify whether each destination's status is valid or not from v$archive_dest as 
follows:
ID STATUS    DB_MODE         TYPE RECOVERY_MODE           
PROTECTION_MODE      SRLs ACTIVE   ARCHIVED_SEQ#
--- --------- --------------- ---- ----------------------- -------
------------- ---- ------ ---------------
  1 VALID     OPEN            ARCH IDLE                    MAXIMUM 
PERFORMANCE     0      0             731
  2 VALID     OPEN_READ-ONLY  LGWR MANAGED REAL TIME APPLY MAXIMUM 
PERFORMANCE     6      1             731
  3 VALID     OPEN_READ-ONLY  LGWR MANAGED REAL TIME APPLY MAXIMUM 
PERFORMANCE     6      1             731

All remote destinations are using real-time apply with read only for reporting 
purpose in the Maximum Performance mode. It is to ensure that the standby 
database has enough standby redo logfiles so that there would be no interruption 
while sending data to the cascade standby database.

2.	 Increase the LOG_ARCHIVE_MAX_PROCESSES parameter on the standby database 
so that more archive processes will run frequently to send data to all remote 
destinations in parallel as follows:
SQL> show parameter log_archive_max_processes
NAME                         TYPE        VALUE
---------------------------- ----------- ----------
log_archive_max_processes    integer     5



Chapter 7

[ 229 ]

SQL> alter system set log_archive_max_processes=30;
System altered.
SQL> show parameter log_archive_max_processes
NAME                         TYPE        VALUE
---------------------------- ----------- -----
log_archive_max_processes    integer     30

SQL>

3.	 Configure the parameter as follows from the primary, standby, and cascade 
databases according to the database type.

From the primary (TURKEY) database, you can configure as follows:
DB_UNIQUE_NAME=turkey_un
LOG_ARCHIVE_CONFIG=DG_CONFIG=(TURKEY_UN,INDIA_UN,UK_UN)
LOG_ARCHIVE_DEST_2=service=INDIA VALID_FOR=(ONLINE_
LOGFILES,PRIMARY_ROLE) DB_UNIQUE_NAME=INDIA_UN
FAL_SERVER='INDIA_UN'

From the standby (INDIA) database, you can configure as follows:
DB_UNIQUE_NAME=india_un
LOG_ARCHIVE_CONFIG=DG_CONFIG=(TURKEY_UN,INDIA_UN,UK_UN)
LOG_ARCHIVE_DEST_2=service=UK VALID_FOR=(STANDBY_LOGFILES,STANDBY_
ROLE) DB_UNIQUE_NAME=UK_UN
FAL_SERVER='UK_UN'

From the cascade standby (UK) database, you can configure as follows:
DB_UNIQUE_NAME=uk_un
LOG_ARCHIVE_CONFIG=DG_CONFIG=(TURKEY_UN,INDIA_UN,UK_UN)

Apart from these parameters, you can configure more destinations if your 
environment contains more standby databases that are either physical or logical.

4.	 Verify the physical standby and cascade standby databases.

Verify it from the primary (TURKEY) database as follows:
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NA DATABASE_ROLE
------------ ----------------
turkey_un    PRIMARY

       ID STATUS    DB_MODE         TYPE       PROTECTION_MODE      
---------- --------- --------------- ----------------------------- 
         1 VALID     OPEN            ARCH      MAXIMUM PERFORMANCE  
         2 VALID     OPEN_READ-ONLY  LGWR      MAXIMUM PERFORMANCE  



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 230 ]

SQL> select max(sequence#) from v$archived_log;
MAX(SEQUENCE#)
--------------
           747

Verify it from the standby (INDIA) database as follows:

SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NA DATABASE_ROLE
------------ ----------------
INDIA_UN     PHYSICAL STANDBY
SQL> select max(sequence#) from v$archived_log where 
applied='YES';

MAX(SEQUENCE#)
--------------
           747

Verify it from the cascade standby (UK) database as follows:

SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NA DATABASE_ROLE
------------ ----------------
uk_un        PHYSICAL STANDBY
 ID STATUS    DB_MODE         TYPE RECOVERY_MODE           
SQL> select max(sequence#) from v$archived_log where 
applied='YES';

 MAX(SEQUENCE#)
---------------
            747

If we define a cascade physical standby database from a physical standby database, then 
initially the redo will be transmitted from the primary database to the physical standby 
database. Thus, once the standby redo logfile is archived, that archive will be transferred and 
applied on the cascade physical standby database. Hence, there is an expected delay in data 
between the primary database and the cascade standby database. From the earlier outputs, 
we know that the maximum sequence generated in the primary is 747 and an archive has 
been applied on the physical standby and also on the cascade physical standby database.

What just happened?
We've just explained the concept of a cascade standby database, the advantages associated 
with it, and also a step-by-step configuration of a cascade standby database.



Chapter 7

[ 231 ]

Advanced compression in Data Guard
Oracle Database 11g Advanced Compression introduced several set of options. Oracle also 
introduced compression for network traffic. With the option of advanced compression, the 
primary database will send the redo data and may be transported in a compressed format 
to reduce network consumption on the standby database. In the earlier releases, redo has 
been compressed over the network using third-party utilities such as WAN accelerators and 
other tools. To use the compression feature of Oracle, you must have purchased the license 
of Oracle 11g advanced compression. By licensing this option, archive gaps can be resolved 
up to three times faster, thereby providing better protection, and network utilization can 
be controlled by reducing the redo transfer time. Compression is supported for all the redo 
transport modes such SYNC and ASYNC and for the transport methods such as ARCH and 
LGWR to resolve gaps of Data Guard. These are compatible with all the protection modes—
Maximum Performance, Maximum Protection, and Maximum Availability.

Before implementing compression, ensure that sufficient CPU resources are available and 
the database redo rate is higher than the available network bandwidth to take advantage of 
compression. This feature can be used in 11gR1 by setting the undocumented parameter _
REDO_TRANSPORT_COMPRESS_ALL to TRUE along with the attribute COMPRESSION=ENABLE 
in LOG_ARCHIVE_DEST_n. From 11gR2 onwards, this parameter is no longer required.

Time for action – enabling advanced compression
Perform the following steps in order to enable advanced compression:

1.	 Check for the current settings of the remote destinations and options of 
compression as follows:
SQL>  select parameter,value from v$option where 
parameter='Advanced Compression';
PARAMETER                 VALUE
------------------------- -----
Advanced Compression      TRUE

SQL> select dest_id,compression,db_unique_name from v$archive_dest 
where dest_id=2;
   DEST_ID COMPRESSION     DB_UNIQUE_NAME
---------- --------------- ------------------------------
         2 DISABLE         INDIA_UN



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 232 ]

2.	 Enable compression by modifying the remote destination parameter as follows:
SQL> alter system set LOG_ARCHIVE_DEST_2='service=INDIA LGWR ASYNC 
COMPRESSION=ENABLE VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE) DB_
UNIQUE_NAME=INDIA_UN';
System altered.
SQL> select dest_id,compression,db_unique_name from v$archive_dest 
where dest_id=2;
   DEST_ID COMPRESSION     DB_UNIQUE_NAME
---------- --------------- ------------------------------
         2 ENABLE          INDIA_UN

3.	 Perform a large number of DML transactions for testing purposes as follows:
SQL> conn packt/packt
Connected.
SQL> insert into oracle select * from oracle;
41943040 rows created.
SQL> commit;
Commit complete.
SQL>

4.	 Redo the size for the session of Packt as follows:
SQL> ;
  1  select v$session.sid, username, value redo_size
  2  from v$sesstat, v$statname, v$session
  3  where v$sesstat.STATISTIC# = v$statname.STATISTIC#
  4  and v$session.sid = v$sesstat.sid
  5  and name = 'redo size'
  6  and value > 0
  7  and username is not null
  8* order by value
SQL> /
       SID USERNAME                        REDO_SIZE
---------- ------------------------------ ----------
        48 packt                          2125379564

5.	  Advanced compression uses the mechanism of the zlib engine at level 1 as gzip. 
So you can verify it using the gzip command as follows:

 [oracle@oracle-primary 2012_11_08]$ gzip -1 o1_
mf_1_753_89q187xv_.arc

[oracle@oracle-primary 2012_11_08]$ ls -ltr o1_mf_1_749_89q13d2*

-rw-r----- 1 oracle oinstall 8209301 Nov  8 15:37 o1_
mf_1_749_89q13d2z_.arc.gz



Chapter 7

[ 233 ]

[oracle@oracle-primary 2012_11_08]$ gzip --list o1_

mf_1_749_89q13d2z_.arc.gz

         compressed        uncompressed  ratio uncompressed_name

            8209301           101288960  91.9% o1_
mf_1_749_89q13d2z_.arc

[oracle@oracle-primary 2012_11_08]$

In the previous output, after enabling compression, nine percent of the actual data has 
been compressed and transported to the standby database. Note that the compression 
ratio may vary.

What just happened?
We've just revised advanced compression with its brief introduction and also tested how 
compression of redo works in a Data Guard environment using a step-by-step approach.

Preparation of standby on a cross-platform Data Guard
Cross-platform Data Guard was introduced in Oracle 11g Release 1. We may have 32-bit 
primary and 64-bit standby database combinations on some platforms of 10g, but from 11g 
onwards it supports even heterogeneous platforms ranging from Linux/Unix to Windows 
or vice versa. Most of the customers choose this procedure for moving the database on a 
different OS. Migration is made simple by this procedure with the same incarnation of a 
database. Prior to moving the production to a heterogeneous platform, it is recommended to 
test the standby in the read-write mode for the capacity of the standby server.

Note that you must create a cross-platform standby database on the same database's release 
and patch set. You can have different hardware manufacturers, hardware configuration, 
processors, operating systems, and operating system versions. From 11g onwards you can 
configure Data Guard broker between the cross-platforms, and you can configure the cross-
platform standby by using the Oracle grid manager also.

Operating 
system 

Operating system 
release

Database release Database version

Primary 
database

Linux Enterprise Linux Server 
release 5, 64 bit

11g 11.2.0.1.0 - 64 bit

Standby 
database

Windows Windows 7, 64 bit 11g 11.2.0.1.0 - 64 bit



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 234 ]

Time for action – creating a cross-platform Data Guard setup
In order to create a cross-platform Data Guard setup, perform the following steps:

1.	 Check certification by Oracle support for Oracle database versions of the 
operating systems on the website https://support.oracle.com/
epmos/faces/CertifyHome?_adf.ctrl-state=dattfx3qm_9&_
afrLoop=878199589056576.

Each Operating System, according to the 32/64 bit architecture, can be verified 
whether it is certified by Oracle or not. Oracle Database 11.2.0.1.0 is certified on 
Microsoft Windows x64 (64-bit) 7.

2.	 Determine the platform ID of both the primary and standby database as follows:
SQL> select platform_id, platform_name from v$database;
PLATFORM_ID PLATFORM_NAME
----------- ------------------------------
         13 Linux x86 64-bit
SQL>  select platform_id, platform_name from v$database;

PLATFORM_ID PLATFORM_NAME
----------- ------------------------------
         12 Microsoft Windows x86 64-bit

3.	 If the platform ID of both the primary and standby systems is different, check for 
the compatibility and supported Data Guard configuration from My Oracle Support 
note Data Guard Support for Heterogeneous Primary and Physical 
Standbys in Same Data Guard Configuration [ID 413484.1].

4.	 Create PFILE and configure the listener with a static entry in the standby system, 
as we discussed in Chapter 2, Configuring the Oracle Data Guard Physical Standby 
Database. Add the following additional parameters mentioned in the standby 
database. It will be useful in case of a switchover too because the filesystem as well 
as the OS of the primary and standby systems are different.

Perform the following on the primary database:
db_file_name_convert='/u01/app/oracle/oradata/orcl','D:\APP\ADMIN\
ORADATA\INDIA'

log_file_name_convert='/u01/app/oracle/oradata/orcl','D:\APP\
ADMIN\ORADATA\INDIA'

Perform the following on the standby database:

db_file_name_convert='D:\APP\ADMIN\ORADATA\INDIA', '/u01/app/
oracle/oradata/orcl'

log_file_name_convert='D:\APP\ADMIN\ORADATA\INDIA', '/u01/app/
oracle/oradata/orcl'



Chapter 7

[ 235 ]

5.	 Now create a service on Windows that is specific to a standby instance. This is 
applicable if your standby is on the Windows Operating System as shown in the 
following command line:
C:\Windows\system32>oradim -new -sid INDIA -INTPWD free2go 
-startmode auto -pfile d:\app\admin\product\11.2.0\dbhome_1\
database\initINDIA.ora

Instance created.

C:\Windows\system32>

To create a service in Windows, run the command prompt with 
Administrator privileges by right-clicking on the application.

6.	 Set the environment variables and a startup instance in the NOMOUNT status  
as follows:
C:\Windows\system32>set ORACLE_SID=INDIA

C:\Windows\system32>echo %ORACLE_SID%

INDIA

C:\Windows\system32>sqlplus / as sysdba

SQL*Plus: Release 11.2.0.1.0 Production on Fri Nov 9 08:50:32 2012

Copyright (c) 1982, 2010, Oracle.  All rights reserved.

Connected to an idle instance.

SQL> startup nomount

ORACLE instance started.

Total System Global Area  818401280 bytes

Fixed Size                  2180184 bytes

Variable Size             482347944 bytes

Database Buffers          331350016 bytes

Redo Buffers                2523136 bytes

SQL>

7.	 Connect to the primary database with a standby auxiliary instance using the net 
service name as follows:
C:\Windows\system32>rman target sys/free2go@turkey auxiliary sys/
free2go@india

Recovery Manager: Release 11.2.0.1.0 - Production on Fri Nov 9 
11:26:28 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All 
rights reserved.



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 236 ]

connected to target database: ORCL (DBID=1316772835)

connected to auxiliary database: ORCL (not mounted)

RMAN>

Refer the following screenshot:

8.	 After the successful duplication of a standby database, start MRP on the standby 
database and verify whether redo data is transferring into heterogeneous platforms 
as follows:
SQL> alter database recover managed standby database using current 
logfile disconnect from session;
Database altered.
SQL>

The following output will appear:

MRP0 started with pid=20, OS id=3916 

Serial Media Recovery started

Managed Standby Recovery starting Real Time Apply

.............

Media Recovery Log D:\APP\ADMIN\FLASH_RECOVERY_AREA\INDIA_UN\
ARCHIVELOG\2012_11_09\O1_MF_1_776_89S7S0KJ_.ARC

Media Recovery Waiting for thread 1 sequence 777 (in transit)

What just happened?
We've implemented Data Guard in Chapter 2, Configuring the Oracle Data Guard Physical 
Standby Database for the homogenous platforms of the Operating System. Here we have 
explained how to configure Data Guard on cross-platform environments ranging from Linux 
to Windows.



Chapter 7

[ 237 ]

Data Guard tuning and wait events
Specific to standby database(s), we may have performance issues to read redo data and to 
transport over a network, redo write phase because of bad RAID configurations, Redo Apply 
phase because of huge redo, improper memory settings, or the issues can be with bugs. Here 
we will discuss some of them.

Network tuning
Standby databases will be placed geographically in different locations with WAN for high 
availability in case of a disaster. Even though you keep your standby database geographically 
far away, you should have reasonable bandwidth to avoid data lag between the primary 
and standby databases. It can be a bigger problem if you are using synchronous redo with 
AFFIRM. Consider the use of a high latency network to fulfill redo rate shipping as follows:

Required network bandwidth = ((Redo rate bytes per sec. /  0.7) * 8) / 
1,000,000 = bandwidth in Mbps.

By using this formula according to the redo generation rate, you can estimate the required 
network bandwidth. You can get redo rate in bytes per second from DBA_HIST_SNAPSHOT 
or from the AWR/Statspack reports.

Network throughput can be increased by setting Oracle net parameters RECV_BUF_SIZE 
and SEND_BUF_SIZE equal to three times of Bandwidth Delay Product. To calculate 
Bandwidth Delay Product, the bandwidth of the link and the Network Round Trip 
time are required. RTT is measured by the complete two-way travel from the primary to 
standby database, including the standby and primary databases.

BDP = (Network speed * RTT) /8 

By this calculation, the optimal send and receive buffer sizes can be estimated with the 
following formula:

Socket buffer size = 3 * (Bandwidth Speed) * (RTT) 

Or you can also use the following:

Socket buffer size = 3 * (BDP) 

If the value of the socket buffer size is 11718750 bytes, the socket buffer size can be set as 
the following in sqlnet.ora or at the Operating System level:

[oracle@oracle-primary admin]$ cat sqlnet.ora|grep BUF_SIZE

RECV_BUF_SIZE=11718750

SEND_BUF_SIZE=11718750

[oracle@oracle-primary admin]$



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 238 ]

You can also configure to send and receive buffer sizes to the net service for connector 
descriptor in the client-side sqlnet.ora file as follows:

INDIA =
  (DESCRIPTION =
    (RECV_BUF_SIZE=11718750)
    (SEND_BUF_SIZE=11718750)
    (ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.180.20)(PORT = 1521))
    (CONNECT_DATA =
      (SERVER = DEDICATED)
      (SERVICE_NAME = india_un)
   )
  )

If you are replicating data remotely either using database links for materialized views or Data 
Guard, the data will be transferred over the network in terms of data sized units (SDU); if 
a large amount of redo is being transmitted, you can increase the size of the SDU buffer to 
improve performance and network utilization. You can configure it in the sqlnet.ora file as 
DEFAULT_SDU_SIZE, which ranges from 512 bytes to 32767 bytes. The default SDU size of 
2048 bytes is applicable for the client and dedicated server, where for the shared server the 
default SDU will be 32767 bytes.

On the standby databases, you can configure either in the sqlnet.ora or listener.ora 
file where we can specify buffer parameters for the address in description as follows:

SID_LIST_LISTENER =
  (SID_LIST =
    (SID_DESC =
    (SDU = 32767)
    (GLOBAL_DBNAME = india_un)
    (SID_NAME = INDIA)
    (ORACLE_HOME = /u01/home/oracle/product/11.2.0/db_1)
   )
  )

Redo transport and apply tuning
If you are using a redo transport type such as ARCH, consider increasing the number of 
LOG_ARCHIVE_MAX_PROCESSES parameters. The default value in 11gR2 is 4 and it can 
be controlled from 1 to 30, if you set this parameter with a higher value. According to the 
archive processes and the system configuration, all the ARCn processes work in parallel to 
resolve the archive gaps. 



Chapter 7

[ 239 ]

Choose the optimal value after several tests with an archive gap resolution as follows:

SQL> select * from V$PGASTAT where name='total PGA allocated';
NAME                      VALUE UNIT
-------------------- ---------- ------------
total PGA allocated   249153536 bytes

The following output can be extracted using the view v$process:

PROGRAM                        PGA_USED_MEM   PGA_MAX_MEM

------------------------------ ------------   -----------

oracle@oracle-stby (ARC2)          11270688   12050576

oracle@oracle-stby (ARC1)          11297656   12050576

oracle@oracle-stby (ARC4)          28942512   30924944

oracle@oracle-stby (ARC3)          28942512   30924944

oracle@oracle-stby (ARC0)          28942512   30924944

So every archive process is consuming nearly 30 MB of memory; this calculation is 
completely based on the memory management you have used. Consider the parameter 
value LOG_ARCHIVE_MAX_PROCESSES depending on the available resources.

If you are using synchronous redo transport with LGWR redo, consider decreasing the value 
of NET_TIMEOUT to avoid outages on the production database's performance; this value can 
be defined from one to 1200 according to 11gR2 and the default value is 30 seconds. Oracle 
recommends setting the value of NET_TIMEOUT to 10 seconds or less to avoid disconnection 
from the standby database.

Redo data is received from the primary to standby database and it will be applied by the 
background process MRP0. Redo Apply is a block-to-block physical replication of the primary 
database. It uses media recovery to read records from standby redo logfiles into memory and 
applies directly to the standby database. If you start MRP as alter database recover 
managed standby database disconnect from session, only one MRP process will 
be started to perform recovery. For huge OLTP databases, there are various possibilities for 
having a lot of redo to be applied on a standby database, with a single background process 
recovery being delayed. So we can initiate parallel recovery and it starts slave processes 
along with MRP background processes as follows:

SQL> alter database recover managed standby database using current 
logfile disconnect from session parallel 5
SQL> !ps -ef|grep pr0
oracle   32243     1  0 19:33 ?        00:00:00 ora_pr00_INDIA
oracle   32245     1  0 19:33 ?        00:00:00 ora_pr01_INDIA
oracle   32247     1  0 19:33 ?        00:00:00 ora_pr02_INDIA



Active Data Guard, Snapshot Standby, and Advanced Techniques

[ 240 ]

oracle   32249     1  0 19:34 ?        00:00:00 ora_pr03_INDIA
oracle   32251     1  0 19:34 ?        00:00:00 ora_pr04_INDIA
oracle   32253     1  0 19:34 ?        00:00:00 ora_pr05_INDIA
oracle   32292 31785  0 19:34 pts/2    00:00:00 /bin/bash -c ps 
-ef|grep pr0

In the previous example, we have explicitly mentioned parallelism 
with the number 5. We can also mention parallel without any specific 
value so that parallelism will be the default for the number of CPUs.

Data Guard wait events
Data Guard wait events are classified into primary-and standby-related wait events. According 
to the new releases, many of the wait events are introduced; some of them are as follows:

�� Data Guard wait events on the primary database with an ARCH transport

These wait events are specific to sending redo from the primary database to the 
standby database using ARCH with synchronous or asynchronous redo transport. 
There is an ARCH wait on ATTACH, an ARCH wait on SENDREQ, and an ARCH wait 
on DETACH.

�� Data Guard wait events on the primary database with LGWR transport

If you are using real-time apply with LGWR redo transport, the LNS process will be 
working with the standby RFS server in redo transport and the wait events can be 
LNS wait on ATTACH, LNS wait on SENDREQ, LNS wait on DETACH, LGWR wait on 
LNS, LNS wait on LGWR, and LGWR-LNS wait on a channel.

�� Database wait events related to Data Guard

These wait events are applicable even in a normal system and are related to I/O. 
They are log file sync, log file parallel write, and DB file sequential read.

�� Data Guard wait events on a standby database

These wait events will occur in case time is spent on I/O on the standby. They are 
RFS write, RFS random I/O, and RFS sequential I/O.



Chapter 7

[ 241 ]

Use the following query to get the details about all wait events:

SQL> select event,total_waits,time_waited,total_timeouts from 
v$system_event order by total_waits desc;
EVENT                                    TOTAL_WAITS TIME_WAITED 
---------------------------------------- ----------- ----------- 
parallel recovery slave next change           260168      381493 
control file sequential read                   67687        2373  
parallel recovery change buffer free           60053       82981  
parallel recovery read buffer free             18975       24964  
SQL*Net vector data from client                10534       79202  

For an in-depth analysis of the events discussed, use a load profile 
of AWR or a Statspack report or performance dynamic views, and 
the wait events can be varied from environment to environment 
depending on the configurations and settings.

Summary
In this chapter we have briefly discussed about the new feature of Oracle 11gRx and Active 
Data Guard and their compatibility with several applications. Then we learned how logical 
backups work and how to generate ASH reports with the ADG feature.

We also worked on how to prepare a cascade standby database, advanced compressions 
with Oracle Data Guard, and how to prepare Data Guard in cross-platform environments 
(ranging from Linux to Windows). In the next chapter we will discuss how to integrate Data 
Guard with GRID EM, RMAN, and RAC.





8
Integrating Data Guard with the 

Complete Oracle Environment

After preparing a Data Guard configuration by creating one or more standby 
databases, we should also integrate this configuration with the existing Oracle 
environment. This integration lets us benefit from Oracle Data Guard more 
effectively, makes it more robust and easily manageable, and also serves the 
purpose of Maximum Availability.

In this chapter, we'll discuss integrating the Data Guard configuration with the following 
Oracle software products:

�� Oracle Enterprise Manager Cloud Control

�� Recovery Manager (RMAN)

�� Real Application Cluster (RAC)

Let's start with learning how we can incorporate Data Guard installations into an existing 
Enterprise Manager Cloud Control configuration.

The Oracle Enterprise Manager Cloud Control integration
The Oracle Enterprise Manager product family involves products to monitor and manage IT 
environments right from servers to applications and services. Cloud Control 12c (formerly 
named as Grid Control) is the comprehensive and integrated management solution of Oracle; 
it has been intended to control all IT infrastructure and cloud-based IT services.



Integrating Data Guard with the Complete Oracle Environment

[ 244 ]

From the database management perspective, Cloud Control offers unique properties to 
control the Oracle Database environment centrally. In addition to traditional database 
management features, Cloud Control has the following packs to address all kinds of 
administrative requirements. You can use these packs after purchasing the related license:

�� Oracle Diagnostic Pack for Database

�� Oracle Tuning Pack for Database

�� Oracle Lifecycle Management Pack for Database

�� Data Masking Pack

�� Oracle Test Data Management Pack

�� Exadata Management

Data Guard management does not require an extra pack, so it's a built-in feature in Cloud 
Control. We can monitor and manage Data Guard configurations using the Availability tab in 
the Database Management home page. However, in order to use Cloud Control's Data Guard 
management features, we first need to add the Data Guard configurations into Cloud Control 
properly. Let's see how we can accomplish this.

It has been assumed that an Enterprise Manager Cloud Control 12c 
server is already installed and ready to use. It has also been assumed 
that the EM agent software is installed on servers in the Data Guard 
configuration, so the hosts have been added as targets to the Cloud 
Control environment. Preparing this environment is out of the scope of 
this book; so if you don't have a Cloud Control environment but want 
to prepare it, please refer to the related documentation at http://
docs.oracle.com.

Time for action – adding the Data Guard configuration into  
Cloud Control

1.	 We have a Data Guard configuration of one primary, one physical standby, and one 
logical standby database. The hosts in the Data Guard configuration were added as 
targets to Cloud Control. Now the first thing we need to do is add the databases as 
targets. Log in to the Cloud Control interface, and on the main page click on Targets 
and then Databases. See the following screenshot showing no database targets. 
Click on Add to create a database target.



Chapter 8

[ 245 ]

2.	 The next page will ask for the host that runs on the database. First add the primary 
database as the target, so type the hostname of the primary database server and 
click on Continue.

3.	 Cloud Control will discover all the databases running on the specified host, including 
ASM instances, if they exist. Select the primary database and click on the configure 
button that is shown with a wrench icon:



Integrating Data Guard with the Complete Oracle Environment

[ 246 ]

4.	 On the database configuration screen shown in the following screenshot, control the 
autofilled fields; type the password of the DBSNMP user and also the connect string 
for the database. We can click on Test Connection to check if Cloud Control is able 
to connect to the database. Click on Next to continue. A review screen will show up; 
check the information and click on OK.

5.	 After completing the configuration of the database target, turn back to the screen 
showing the discovered databases. Click on Finish and then on the Summary page; 
then click on Save. The primary database will be added to the database target list.

It may take a few minutes to gather information about the status of 
the database target. So at the beginning, there will be no information 
in some fields of the database management screens.



Chapter 8

[ 247 ]

6.	 Repeat the same steps to add all the standby databases to the target database list. 
At the end, we'll be able to see all the databases of the Data Guard configuration as 
targets on the database targets screen:

7.	 All the databases are listed, but Cloud Control is not aware yet that these databases 
are in the same Data Guard configuration. In order to complete the integration, 
click on the name of the primary database. On the database home screen, click on 
Availability and then click on Add Standby Database. We'll see a database login 
screen as shown in the following screenshot. We need to connect to the primary 
database as SYSDBA to add a standby database. So type the login information for 
the sys user and select the SYSDBA role. We can save this login information for 
logging in again in the future, and also set it as a preferred credential as shown in 
the following screenshot. Click on Login to continue.



Integrating Data Guard with the Complete Oracle Environment

[ 248 ]

8.	 We'll see the Add Standby Database wizard screen. Besides adding an existing 
standby to Cloud Control, it's also possible to create a new standby database with 
this wizard. Now select the Manage an existing standby database with Data Guard 
broker option and click on Continue:

9.	 Now we can see the two standby databases. Select one of them and click on Next. If 
there is only one standby database, just click on Next:

10.	Enter the login credential in the next step and click on Next.



Chapter 8

[ 249 ]

11.	The next step will show the standby archive location and Data Guard connect 
identifier. If FRA is enabled, the standby archive location will be shown as USE_DB_
RECOVERY_FILE_DEST. In the connect identifier, it's possible to select the connect 
descriptor used by Enterprise Manager for the standby database or use an existing 
net service name, which is the same as the example used in our book. Click on Next 
to continue:

12.	A review screen will show up. Check the information and click on Finish to complete 
integrating the standby database with the primary database.

After this step, Enterprise Manager will execute several ALTER 
commands on the primary and standby databases. This is a 
reconfiguration of the Data Guard parameters in order to guarantee 
a properly integrated Data Guard environment. Check the primary 
and standby database alert logs to see the ALTER commands.

What just happened?
We've now completed integrating the existing Data Guard environment with Enterprise 
Manager Cloud Control, and we're able to benefit from the Data Guard monitoring and 
management properties of Cloud Control.



Integrating Data Guard with the Complete Oracle Environment

[ 250 ]

Have a go hero
Add the logical standby database, if it exists, with the same steps. Note that physical and 
logical standby databases have no difference when integrating with the primary database  
on Cloud Control.

Cloud Control Data Guard administration home page
We can access the Data Guard administration home page, shown in the following screenshot, 
by clicking on Availability and then on Data Guard Administration on the database home 
page of any of the databases in the Data Guard configuration. It's possible to monitor and 
manage Data Guard properties using this screen.

This screen provides general information about the status of Data Guard. We can see the 
member databases and roles of the Data Guard configuration, the protection mode, Active 
Data Guard, and the fast-start failover status, the transport and apply lags, if they exist, the 
last received and applied log sequences, and the estimated failover time on this screen. So it 
provides a lot of useful information at a single glance.



Chapter 8

[ 251 ]

Whereas a lot of this information can also be gathered easily with other interfaces, it's very 
practical to access it all in one screen. The Estimated Failover Time information shows the 
approximate number of seconds required for the failover to this standby database. It is very 
useful to compare the current Data Guard status with Recovery Time Objective (RTO), which 
is the disaster recovery element specifying the duration of time within which a business 
process (database in our case) must be restored after a disaster.

Besides monitoring the Data Guard configuration, this screen also provides links to change 
the Data Guard properties, which is covered in the next section. We will use the Data Guard 
Administration interface of Cloud Control to modify the configuration.

Modifying the Data Guard configuration
The Data Guard Administration home page offers quick links to change a property when 
showing its current value. For example, in the Overview section, the Protection Mode field 
shows Maximum Performance; when we click on the Maximum Performance link, we can 
access the Change Protection Mode screen. Also, Fast-Start Failover shows Disabled, and 
when we click on Disabled, we see the Fast-Start Failover: Configure screen.

You can edit primary database properties by clicking on Edit in the Primary Database 
section. The screen will offer three tabs to change the properties:

�� General: Using this tab, we can stop/start the redo transport services, view the  
alert logs of all the databases in the configuration, open the telnet session for  
the database hosts and disable/enable the Data Guard broker.



Integrating Data Guard with the Complete Oracle Environment

[ 252 ]

�� Standby Role Properties: This tab enables us to set the standby role properties  
that will be valid after a role change. We can set the Redo Transport Mode field 
to SYNC or ASYNC, enable/disable redo compression, set the timeout and delay, 
choose an archive log location for the standby role, and specify the filename  
convert parameters.

�� Common Properties: In this tab, there are some properties that are not role-specific, 
such as the connect identifier, number of archiver processes, and level of tracing 
output generated by the Data Guard processes.



Chapter 8

[ 253 ]

At the bottom of the Data Guard Administration home page, we have buttons to perform 
the following tasks:

�� To edit the standby database properties, which offer similar options to the  
primary database

�� To start a switchover or failover to a target standby

�� To convert a physical standby into a snapshot standby database 

�� To add a new standby database to the Data Guard configuration

We can also enable/disable Active Data Guard using the link under Real-time Query. If we 
click on the sequence numbers of the last received and applied archive logs, we'll see the 
Log File Details screen that lists the log files that have not been received and those that have 
been received but not applied by the standby databases in the Data Guard configuration.

Now let's try changing a Data Guard property. The following section will show how to enable 
or disable the fast-start failover.



Integrating Data Guard with the Complete Oracle Environment

[ 254 ]

Time for action – enabling/disabling fast-start failover
1.	 The fast-start failover feature, which can be used for automated failovers in 

standby databases in the case of a primary database outage, can be enabled and 
disabled using Cloud Control. On the Data Guard Administration home page, in the 
Overview section click on Disabled in the Fast-Start Failover field. This will enable 
us to access the fast-start failover configuration page. At the top of the page, it's 
indicated that there's no specified Observer for the Data Guard configuration. Select 
the standby database that will be the fast-start failover target, and then click on 
Configure Observer.



Chapter 8

[ 255 ]

2.	 Fill the observer hostname and Oracle Home information for the primary and 
alternate observers. If a problem on the observer is detected, Enterprise Manager 
will restart it on the primary observer host and fall back to the alternate host 
when necessary. (We can optionally specify connect identifiers for the primary and 
standby databases.) If not, the observer will use the connect identifiers used in the 
Data Guard configuration. Click on OK to continue.

Oracle recommends that the observer be on a separate host from 
the primary and standby database servers.



Integrating Data Guard with the Complete Oracle Environment

[ 256 ]

3.	 We'll return to the fast-start failover configuration page. At the bottom of the page, 
we'll see the Failover Properties and Primary Database Properties sections.

There are two properties in the Failover Properties section; they are set to 30 seconds 
by default, but can be changed. The Failover Threshold property is the amount of time 
that the primary database must be unreachable to initiate the failover, and Lag Limit is 
the maximum lag between the primary and standby databases, beyond which a  
fast-start failover will not be allowed. Now click on Edit next to User Configurable 
Failover Conditions. We're able to specify conditions that should cause a fast-start 
failover if detected on the primary database in this page. Click on OK to apply any 
changes and go back to the fast-start failover configuration page.

4.	 Check all the fast-start failover settings and click on Continue. The following steps 
will require OS credentials to connect primary and alternate observer hosts.



Chapter 8

[ 257 ]

5.	 Now we must enable flashback logging on the primary and standby databases if 
it has not yet been enabled. We need to specify the Flash Recovery Area path, 
Flash Recovery Area Size, and Flashback Retention Time if flashback logging is not 
enabled. If it's enabled, we can see the current values. Specify the values and click 
on Continue.

6.	 The last page will request a confirmation about enabling flashback logging, starting 
the observer on the specified host, and enabling a fast-start failover. Click on Yes  
to continue.

7.	 We can see the progress as shown in the following screenshot. If it is accomplished 
successfully, we'll see the message, The fast-start failover mode has been successfully 
changed. Also, the fast-start failover status will show Enabled to INDIA_PS and the 
observer hostname will appear on the Data Guard Administration home page.

What just happened?
We've seen which properties of Data Guard can be changed with the Enterprise Manager 
Cloud Control interface. We've also examined the steps and options for enabling a fast-start 
failover using Cloud Control.

Have a go hero
Now enable and disable the real-time query (Active Data Guard) option on the physical 
standby database using Cloud Control. At the same time, check the standby alert log file  
to track the statements run on the database.



Integrating Data Guard with the Complete Oracle Environment

[ 258 ]

Monitoring Data Guard performance
Enterprise Manager Cloud Control offers a separate screen to monitor Data Guard 
performance. We can access this screen by clicking on Availability and then on Data 
Guard Performance on the database home page. Here's a screenshot of the Data Guard 
Performance page:

We will see the following information on the performance page:

�� The redo generation rate of the primary database

�� The lag times for all the standby databases

�� The Redo Apply rate for all the standby databases



Chapter 8

[ 259 ]

The redo generation rate of the primary database and the Redo Apply rates of the 
standby database are important information for Data Guard management. We can use 
this information to calculate how much time it takes for resynchronization when there's a 
lag. Also, we can use this information to calculate Recovery Time Objective (RTO) when 
a physical standby is opened as a snapshot standby or when we stop synchronization for 
maintenance operations.

Note that the apply rate on this screen is not the Redo Apply capacity of the 
standby database. It shows the current state of Redo Apply. So if the load on 
the database is low, we'll see lower apply rates than its actual capacity. We 
can determine the Redo Apply capacity of a standby database when the Redo 
Apply process does not wait for a new redo to arrive. So we can achieve this 
by stopping Redo Apply for a while and starting it again or increasing the redo 
generation rate on the primary database to a higher value.

On the Data Guard Performance screen, we can click on the charts to reach the 
historical information.

The Data Guard Performance screen of Cloud Control has another part named Test 
Application. We can see the Start and Stop buttons here. When we start a test application,  
it generates a load on the primary database. Then we can pause or stop it at any time.  
This is useful if you want to see the behavior of a low-load Data Guard configuration under 
heavy load.

Using Incident Manager to monitor Data Guard 
Enterprise Manager Cloud Control 12c provides a centralized incident management console 
called Incident Manager. This console is an advanced interface to track, diagnose, and 
resolve default and user-defined incidents. Additionally, it provides features to help rectify 
the root causes of recurring incidents. Incident Manager also provides lifecycle operations for 
incidents. It's possible to assign the ownership of an incident to a specific user, set the priority 
for an incident, escalate it or suppress it for a later time, and track an incident's status.

From the Data Guard management perspective, Incident Manager can help administrators 
be informed about the issues related to Data Guard, and help track and resolve them. We 
can define thresholds to default Data Guard metrics and also create user-defined metrics 
using SQL statements. When the current state of a metric reaches its threshold, an incident 
is created automatically.



Integrating Data Guard with the Complete Oracle Environment

[ 260 ]

To access the default metrics of Data Guard on the database home page, perform the 
following steps:

1.	 Click on Oracle Database.

2.	 Click on Monitoring.

3.	 Click on All Metrics.

4.	 Expand the Data Guard Failover, Data Guard Fast-Start Failover Observer, Data 
Guard Performance, and Data Guard Status (only in the primary database) 
categories to see all the related metrics. The primary and standby databases  
have different metrics as we can see in the following screenshot:

It's possible to define the thresholds of some of these metrics. We can define two values: the 
Warning and Critical thresholds. However, some of them are not editable because they're 
simple 0/1 controls such as Observer Status or Failover Occurred.

These metrics produce incidents; we can see the details of an incident on the Incident 
Manager page, which is accessible from the Enterprise menu, select Monitoring, and then 
Incident Manager. It's also possible to monitor incidents for a specific database by clicking 
on the Oracle Database menu and then going to Monitoring | Incident Manager on the 
database home page.



Chapter 8

[ 261 ]

Time for action – setting the threshold and creating an incident 
for estimated failover time metric

Perform the following steps to set a threshold and create an estimated failover time metric:

1.	 Open the database home page for the standby database by navigating to Targets | 
Databases and then clicking on the name of the standby database.

2.	 Navigate to the metrics page by navigating to Oracle Database | Monitoring |  
All Metrics.

3.	 Expand the Data Guard Performance category and click on the Estimated Failover 
Time section:



Integrating Data Guard with the Complete Oracle Environment

[ 262 ]

4.	 Click on Modify Thresholds. Enter 15 for Warning Threshold and 20 for Critical 
Threshold. Then click on Save Thresholds:

5.	 Navigate to the Data Guard Administration page by navigating to Availability | Data 
Guard Administration. Click on Edit to edit the standby database properties.

6.	 Stop the Redo Apply process by selecting Apply Off and click on Apply:



Chapter 8

[ 263 ]

7.	 Navigate to the Data Guard performance page by navigating to Availability | Data 
Guard Performance and start the test application. After the test application is 
started, load will be generated on the primary database. Because we have stopped 
the Redo Apply process on the standby database, an apply lag will occur and the 
estimated failover time will increase.

8.	 Open the Incident Manager by navigating to Enterprise | Monitoring | Incident 
Manager. Refresh the page until an incident comes up about the estimated failover 
time. We can see an example incident in the following screenshot:

9.	 Stop the test application and then start the Redo Apply process on the  
standby database.

What just happened?
We've seen the Data Guard performance monitoring and the Incident Management 
properties of Cloud Control. We've also run an example to automatically create an incident 
on an estimated failover time metric. These incidents may help database administrators a 
lot, for monitoring their Data Guard environments.



Integrating Data Guard with the Complete Oracle Environment

[ 264 ]

RMAN integration
Backing up a database is one of the usual DBA tasks and is a mandatory job on production 
systems. Recovery Manager (RMAN) has been supplied and recommended by Oracle,  
and provides effective, fast, and manageable methods to back up, restore, and recover an 
Oracle Database. Therefore, it is the most commonly used backup and recovery manager  
for Oracle Databases.

When used with Data Guard, RMAN offers extra safety and effectiveness to database 
administrators. It's possible to use a backup taken on the standby in order to restore and 
recover a primary database, and vice versa. Datafile, control file, and archived log file 
backups are interchangeable in a Data Guard environment. So we can prefer carrying the 
backup load on the primary database to a standby, or back up both the primary and standby 
for more data security. We can also use standby databases for the block change tracking 
(BCT) feature; it increases the incremental backup performance by identifying the changed 
data blocks since the last incremental backup.

Integration requirements and best practices
We need to build an integrated environment to take advantage of using RMAN in a Data 
Guard configuration. Let's see the requirements and best practices for integrating these  
two Oracle database components.

Physical standby requirement
The most important point of this integration is the fact that only physical standby databases 
can be used for interchangeable backups. If you recall, logical standby databases are not 
block copies of the primary database, so they may be in a different physical structure from 
it. So it's not possible to use a logical standby backup to restore and recover a primary 
database. The backup consideration of logical standby databases must be dealt with 
separately. However, a physical standby backup can be used to restore and recover the 
primary or any other physical standby databases in the Data Guard configuration.

RMAN Catalog requirement
An RMAN Catalog application is used to record the backup information of different databases 
in a centrally located system for easy access and use in case of database breakdowns. It's an 
option that is preferred in an environment with a large number of Oracle databases; however, 
RMAN Catalog has to be used in a Data Guard environment for successful integration. 
Otherwise, it will not be possible for the databases to be aware of backups taken from  
others in the same Data Guard configuration without a manual operation.



Chapter 8

[ 265 ]

We should place the RMAN Catalog in a separate server from the primary 
and standby database servers, so that it will be possible to access the 
catalog that contains the necessary backup information in the case of any 
database server breakdown. We should also consider the high availability 
and disaster recovery requirements of the RMAN Catalog database.

Using a different DB_UNIQUE_NAME
In 11g, databases in the Data Guard configuration should have different DB_UNIQUE_NAME 
values. We're saying should because, if it's a simple configuration with no broker, fast-start 
failover, TAF, and so on, it's possible to run Data Guard with the same DB_UNIQUE_NAME value 
on the primary and standby databases. However, this is not a recommended configuration.

When performing a backup in a Data Guard environment, RMAN records the backup 
information by associating it with the DB_UNIQUE_NAME value of the database. So it's 
important to set different values for the primary database and for all the standby databases 
for a proper integration.

General RMAN best practices
We should follow some general best practices when using RMAN for backing up 
and recovering Oracle databases. These best practices are also valid in a Data Guard 
configuration. Some of them are as follows:

�� Enabling a fast recovery area for an effective disk backup strategy

�� Keeping the flashback database on in order to return the database and objects  
to their state at a previous point in time without a full restore of the database

�� Using SPFILE and setting AUTOBACKUP on to automate backups of SPFILE and  
the control file at the end of all RMAN backup operations

�� Enabling block change tracking for fast increment backups

�� Configuring an appropriate parallelism setting for the better performance of  
RMAN operations

RMAN settings for the Data Guard environment 
After learning the requirements and best practices, now let's see what we should accomplish 
to create an integrated environment.



Integrating Data Guard with the Complete Oracle Environment

[ 266 ]

It is assumed that there is an RMAN Catalog database ready to use. For testing 
purposes, you can use your Data Guard test servers to create a catalog. Creating 
an RMAN catalog is not within the scope of this book, so you should follow 
related documentation to complete this job, which is quite easy.

Registering primary database in the catalog
We'll start with introducing the primary database to the RMAN Catalog application using the 
REGISTER command. Only the primary database has to be registered in the RMAN Catalog 
application. A physical standby database will be registered automatically when we connect it 
as a target to the RMAN Catalog application.

Run the following commands on the primary host to register the primary database in the 
RMAN Catalog application:

$ rman

Recovery Manager: Release 11.2.0.1.0 - Production on Wed Oct 10 13:46:15 
2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All rights 
reserved.

RMAN> CONNECT TARGET /

connected to target database: ORCL (DBID=1319333016)

RMAN> CONNECT CATALOG RMAN/RMAN@RMANCAT

connected to recovery catalog database

RMAN> REGISTER DATABASE;

database registered in recovery catalog

starting full resync of recovery catalog

full resync complete

Configuring RMAN settings for primary database:
After registering the primary database in the catalog, we should now configure some 
RMAN settings. First, specify a retention policy to specify for how long a period of time it is 
guaranteed to do a point-in-time recovery. Backups older than the retention policy will be 
marked as OBSOLETE, which means that they are not needed.

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;



Chapter 8

[ 267 ]

If backups are to be run on the primary database, turn on automatic backup of the control 
file and turn on backup optimization; this will prevent the unnecessary backup of a datafile 
that has been unchanged since its last backup.

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;

We should set an archived log deletion policy for the primary database. If archived log 
backups will be taken from the primary database, we can set the policy to NONE in order to 
let the database manage the deletion regarding the FRA space or set a policy to mark the 
archived logs as OBSOLETE depending on the number of existing disk/tape backups.

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO NONE;

We can also use the following command instead of the previous one:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO BACKED UP 1 TIMES TO DEVICE 
TYPE DISK;

If archived log backups are not taken from the primary database, the retention policy will 
mark them as OBSOLETE as they are shipped/applied on the standby databases:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

You can also use the following command:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO SHIPPED TO ALL STANDBY;

We'll now specify net service names for the databases in the Data Guard configuration with 
the following commands:

RMAN> CONFIGURE DB_UNIQUE_NAME TURKEY_UN CONNECT IDENTIFIER 'TURKEY';

RMAN> CONFIGURE DB_UNIQUE_NAME INDIA_PS CONNECT IDENTIFIER 'INDIAPS';

Using these net service names, the RMAN target database will connect to other databases of 
the Data Guard when the RESYNC CATALOG FROM DB_UNIQUE_NAME command is executed. 
This command is used to make RMAN Catalog consistent with the specified database control 
file. It updates physical database structure (tablespace, datafile), archived log, and backup 
records in the catalog. It's good practice to use the RESYNC CATALOG FROM DB_UNIQUE_
NAME ALL command in the scheduled RMAN script in a Data Guard environment.

We specified that it's not necessary to register standby databases in RMAN 
Catalog because they'll automatically be registered when connected as a 
target. The CONFIGURE DB_UNIQUE_NAME command also implicitly 
registers the standby database in the catalog if it has not been registered yet.



Integrating Data Guard with the Complete Oracle Environment

[ 268 ]

Let's check those databases of Data Guard that are known to RMAN Catalog. We'll be able to 
see all the databases specified with the CONFIGURE DB_UNIQUE_NAME command:

RMAN> LIST DB_UNIQUE_NAME OF DATABASE;

List of Databases

DB Key  DB Name  DB ID            Database Role    Db_unique_name

------- ------- ----------------- ---------------  ------------------

2       ORCL     1319333016       PRIMARY          TURKEY_UN           

2       ORCL     1319333016       STANDBY          INDIA_PS    

Configuring RMAN settings for standby database
We should first decide whether we'll use a physical standby as the source for database 
backups. The best practice is to back up both the primary and the standby databases. If this 
is not preferred, the network between the primary and standby databases is determinant. 
It won't be feasible to run backups only on the standby, where it's connected to the primary 
database over a WAN network. This will dramatically affect the restore time on the primary 
database, which is not acceptable. If both databases are in the same LAN, we can consider 
running backups only on the standby database.

If backups are to be taken from the standby database, connect the RMAN Catalog application 
and the physical standby as targets to configure the settings for the standby database. We 
should turn on automatic backup for the control file and backup optimization.

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;

Then we should set the archived log deletion policy. We should use the similar strategy that 
is mentioned in the primary database RMAN settings. So if we want to back up the archived 
logs on the standby, we should set the deletion policy to NONE or set a policy to mark the 
archived logs as OBSOLETE depending on the number of existing disk/tape backups. If no 
archived log backup is running on the standby, use the APPLIED ON STANDBY policy for 
archived log deletion.

Checking the RMAN configuration
We can check the configuration for all the databases in the Data Guard configuration by 
connecting to any of the databases and the recovery catalog. Use the SHOW ALL command 
with the FOR DB_UNIQUE_NAME option to check the values of the RMAN parameters for the 
specified database:

RMAN> SHOW ALL FOR DB_UNIQUE_NAME TURKEY_UN;

RMAN configuration parameters for database with db_unique_name TURKEY_UN 
are:



Chapter 8

[ 269 ]

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

CONFIGURE BACKUP OPTIMIZATION OFF; # default

CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default

CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # 
default

CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # 
default

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE MAXSETSIZE TO UNLIMITED; # default

CONFIGURE ENCRYPTION FOR DATABASE OFF; # default

CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default

CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT' OPTIMIZE 
FOR LOAD TRUE ; # default

CONFIGURE DB_UNIQUE_NAME 'TURKEY_UN' CONNECT IDENTIFIER  'TURKEY';

CONFIGURE DB_UNIQUE_NAME 'INDIA_PS' CONNECT IDENTIFIER  'INDIAPS';

CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON ALL STANDBY;

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u01/app/oracle2/product/11.2.0/
dbhome_1/dbs/snapcf_INDIAPS.f'; # default

RMAN>  SHOW ALL FOR DB_UNIQUE_NAME INDIA_PS;

RMAN configuration parameters for database with db_unique_name INDIA_PS 
are:

CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 7 DAYS;

CONFIGURE BACKUP OPTIMIZATION ON;

CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default

CONFIGURE CONTROLFILE AUTOBACKUP ON;

CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # 
default

CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # 
default

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default

CONFIGURE MAXSETSIZE TO UNLIMITED; # default

CONFIGURE ENCRYPTION FOR DATABASE OFF; # default

CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default



Integrating Data Guard with the Complete Oracle Environment

[ 270 ]

CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT' OPTIMIZE 
FOR LOAD TRUE ; # default

CONFIGURE DB_UNIQUE_NAME 'TURKEY_UN' CONNECT IDENTIFIER  'TURKEY';

CONFIGURE DB_UNIQUE_NAME 'INDIA_PS' CONNECT IDENTIFIER  'INDIAPS';

CONFIGURE ARCHIVELOG DELETION POLICY TO NONE;

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u01/app/oracle2/product/11.2.0/
dbhome_1/dbs/snapcf_INDIAPS.f'; # default

We've successfully completed the integration of the Data Guard environment with RMAN. 
At this stage, all the databases in the Data Guard administration will be aware of any backup 
taken with RMAN Catalog connection. If the backup is on tape and there is an accurate 
configuration between the tape library and all the database servers, any database in the Data 
Guard administration can use that backup for a restoration. If the backup is on the disk, it has 
to be on a shared filesystem across all databases of the Data Guard administration in order 
to be used by other databases. Otherwise, we need to transfer the backup files to other 
database servers and register them manually if needed.

Now let's perform a recovery scenario in which the primary datafile is lost and recovered 
using the backup of the standby database datafile that is then taken to the disk immediately.

Time for action – recovering a primary database using a 
standby database disk backup

1.	 Let's simulate a case where a datafile is lost by renaming one of the datafiles.  
Shut down the database, rename the datafile with the mv command, and start  
the database again. We'll see the cannot identify/lock data file error  
on startup.
SQL> shutdown immediate

$ mv /u01/app/oracle2/datafile/ORCL/users01.dbf /u01/app/oracle2/
datafile/ORCL/users01.dbf.old

SQL> startup

ORACLE instance started.

Total System Global Area 1603411968 bytes

Fixed Size                  2213776 bytes

Variable Size             872417392 bytes

Database Buffers          671088640 bytes

Redo Buffers               57692160 bytes



Chapter 8

[ 271 ]

Database mounted.

ORA-01157: cannot identify/lock data file 4 - see DBWR trace file

ORA-01110: data file 4: '/u01/app/oracle2/datafile/ORCL/users01.
dbf'

2.	 Now we'll run an RMAN datafile backup using the standby database as the source 
and locating the backup file in the primary database. Connect the standby database 
as the target, and the primary database as the auxiliary; then back up the datafile. 
It's not mandatory to connect RMAN Catalog because we'll register the backup file 
to the primary database's control file manually.
$ rman

RMAN> connect TARGET sys/password@INDIAPS

RMAN> connect AUXILIARY sys/password@TURKEY

RMAN> backup as copy datafile 4 auxiliary format '/backup/users01_
bckp.dbf';

Starting backup at 10-OCT-12

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=1239 device type=DISK

channel ORA_DISK_1: starting datafile copy

input datafile file number=00004 name=/u01/app/oracle2/datafile/
INDIAPS/users01.dbf

output file name=/backup/users01_bckp.dbf tag=TAG20121010T164250 
RECID=10 STAMP=796322590

channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:25

Finished backup at 10-OCT-12

3.	 We must register the backup file to the primary database control file with the RMAN 
CATALOG command. On the primary database server, connect the database as the 
target and execute the following statements:
$ rman 

RMAN> connect target /

connected to target database: ORCL (DBID=1319333016)

RMAN> catalog datafilecopy '/backup/users01_bckp.dbf';

using target database control file instead of recovery catalog

cataloged datafile copy

datafile copy file name=/backup/users01_bckp.dbf'

 RECID=4 STAMP=796322862



Integrating Data Guard with the Complete Oracle Environment

[ 272 ]

4.	 Switch the datafile 4 to the backup copy that we registered in the previous step:
RMAN> switch datafile 4 to copy;

datafile 4 switched to datafile copy "/backup/users01_bckp.dbf"

5.	 Execute the RECOVER DATABASE command on SQL*Plus and open the primary 
database:

SQL> recover database;

Media recovery complete.

SQL> alter database open;

Database altered.

What just happened?
We've gone through Data Guard and RMAN integration and then executed a primary 
database recovery example scenario in which the standby database backup was used. If the 
backup has been performed on the standby database to be taped periodically, we can also 
use these tape backups to restore files to the primary database.

Have a go hero
Now simulate the opposite situation, that is, a datafile loss on the standby database. Rename 
a datafile on the standby database and then recover the database using a backup of the 
datafile taken from the primary database.

Using block change tracking with Data Guard
Block change tracking is a useful RMAN feature that is used to increase incremental backup 
performance. If it's enabled, changed blocks in each datafile will be recorded in a change-
tracking file. When we perform an incremental RMAN backup, this file will be used to 
identify the changed blocks, so it will not be necessary for the RMAN incremental backup 
job to scan every block in the datafiles. This considerably improves the performance of the 
incremental backup jobs and some minimal performance overhead on the database during 
normal operations.



Chapter 8

[ 273 ]

The ability to use standby databases for block change tracking is an 11g feature and requires 
an Oracle Active Data Guard license. This feature removes the performance overhead of BCT 
from primary databases. We use the following SQL statement on the standby database to 
enable BCT:

SQL> ALTER DATABASE ENABLE BLOCK CHANGE TRACKING USING FILE '/backup/bct/
block_change.log';

Database altered.

SQL> SELECT FILENAME, STATUS FROM V$BLOCK_CHANGE_TRACKING;

FILENAME                        STATUS

----------------------------    ----------

/backup/bct/block_change.log    ENABLED

When enabled, the block change tracking file that is 10 MB in size is created and grows as 
needed. It won't be wrong to estimate its maximum size as a few gigabytes.

Besides the advantages provided by block change tracking for backup performance, there 
are several important bugs for enabling block change tracking on the standby database; this 
causes the backup jobs to hang and it causes incorrect backups and data loss. These bugs 
(for example, bugs 9869287, 9068088, 10094823, and so on) were fixed in the later releases, 
so it's important to check for relevant BCT bugs in the database version before enabling it on 
the physical standby.

Block change tracking can be disabled with the following statement:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;

RAC integration
Real Application Cluster (RAC) is a widely used Oracle cluster product that provides high 
availability and scalability for Oracle databases. When configuring Data Guard on RAC 
databases, there are some points that we need to take into consideration in order to build a 
proper integration. For a RAC primary database, we may prefer configuring single instance or 
RAC standby databases. These configurations will be discussed separately. A single instance 
primary database and RAC standby database configuration is not common and doesn't 
require any special attention.



Integrating Data Guard with the Complete Oracle Environment

[ 274 ]

A RAC primary database with a single instance standby database
Creating a single instance standby database for a RAC primary database is a very frequently 
encountered configuration. The following points are important when configuring a single 
instance standby for a RAC primary database:

�� The LOG_ARCHIVE_DEST_n parameter in the primary database, which shows the 
standby database, must be configured with the SID='*' option. This will enable  
a redo transport service on all nodes of the primary database.

�� Every instance of the primary database must be able to resolve the service  
name specified in the LOG_ARCHIVE_DEST_n parameter pointing to the  
standby database.

�� The number of standby redo log files on the standby database must be calculated 
according to the number of instances and redo log groups in the primary database. 
The following formula can be used to determine the number of standby redo logs:

(number of primary redo log groups + 1) * number of threads on primary

For example, if we have three redo log groups for each instance of a two-node RAC 
primary database, we must create (3+1)*2=8 standby redo log groups on the 
standby database. The size of the standby redo logs should be equal to that of the 
primary online redo logs. Use the following statement format to create standby logs:

ALTER DATABASE ADD STANDBY LOGFILE THREAD 1

GROUP 11 SIZE 100M,

GROUP 12 SIZE 100M,

GROUP 13 SIZE 100M,

GROUP 14 SIZE 100M,

ALTER DATABASE ADD STANDBY LOGFILE THREAD 2

GROUP 15 SIZE 100M,

GROUP 16 SIZE 100M,

GROUP 17 SIZE 100M,

GROUP 18 SIZE 100M;

�� When the maximum protection mode is used, if one of the instances can't reach the 
standby for a pre-specified time, that instance will be shut down. Other instances 
that have connectivity to the standby database will continue to operate. If all 
instances of the primary database lose connection to the standby database for  
the pre-specified time, the primary database will be shut down.

�� During the switchover operation to a physical standby, only one instance can be 
opened in the primary database.



Chapter 8

[ 275 ]

A RAC primary database with a RAC standby database
Now let's see what we should pay attention to when creating a RAC standby database for a 
RAC primary database:

�� The most important point in this configuration is the fact that recovery cannot be 
active on all instances of the standby database. Only one instance can be used  
for recovery.

�� The LOG_ARCHIVE_DEST_n parameters must be configured properly on every 
instance of the primary and standby databases to show remote archiving 
destinations. Remote destinations configured on the standby database will  
be used after a switchover.

�� Standby redo logs must be created on a shared location, such as a cluster file system 
or ASM, using the formula and format given in the previous section. All instances of 
the standby database must be able to access the standby redo logs.

�� The local archiving destination of the standby database must be the same and it 
should be a shared location for all instances.

�� The consideration about the maximum protection mode in the previous section is 
still valid.

�� During a switchover, only one primary and one standby instance can be active.  
Other instances must be shut down.

The integration of Data Guard and RAC was covered under the titles of two different 
configurations where the standby database is a single instance of a RAC. Using RAC with  
Data Guard is a common solution that combines high availability and disaster recovery 
purposes in a dependable way. Oracle recommends this configuration in its maximum 
availability architecture.

Summary
We've reached the end of the chapter. The integration of Data Guard with Enterprise Manager 
Cloud Control, RMAN, and RAC was covered with examples. As mentioned before, it's not 
enough only to install a Data Guard configuration; we should also integrate it with the current 
Oracle database environment and the other Oracle products in use, whenever possible. This 
will help us build a comprehensive, effective, and highly available database system.

The next chapter will show you how to apply database patches to Oracle Data Guard 
environments with key points and best practices.





9
Data Guard Configuration Patching

Patching demands more from production systems to fix the existing bugs in 
the software to avoid outages in critical databases even when there are no 
workarounds available. These patches will be delivered by the development 
team of Oracle. Some patches come with scripts and some do not.

In this chapter we shall discuss the different types of patches, importance of patching, and 
how to apply patches on a database with Data Guard configuration, either on physical or 
logical standby databases.

What is patch and what are patch types?
Patching basically is the correction or fixing of existing bugs in the software. It can be fixing of 
security vulnerabilities, and any corrections will be delivered by Oracle in terms of patches, 
and we have to apply them in Oracle home and need to execute scripts depending on the 
type of patch. The different types of patches are as follows:

�� Bug fix patches (for example, internal errors, memory- or SGA-related bugs, high 
CPU usage, and so on)

�� CPU/SPU patches

�� PSU patches

�� How to upgrade a patch set level (11.2.0.1 to 11.2.0.3)



Data Guard Configuration Patching

[ 278 ]

Interim patch
Interim patches are also known as one-off patches. For every bug that Oracle delivers, 
depending on the version and release, bug fixes can be delivered as patches or they will be 
fixed in the next releases or versions. An interim patch is a fix only for a particular bug. Bugs 
differ from environment to environment depending upon the OS and Oracle version. Interim 
patches come in a zipped format, and you have to unzip them before applying the patch. 
Every interim patch contains the following:

�� Metadata of patch: This contains the patch ID, bugs that have been fixed using the 
patch, and so on

�� Payload: It contains the files that will be modified by the OPatch utility
�� Custom scripts: These contain scripts for preprocessing and postprocessing that 

need to run before and after the patching

CPU/SPU patches
You should not get confused between Critical Patch Update (CPU)and Security Patch Update 
(SPU) as CPU terminology has been changed to SPU from October 2012. Before that, the 
terminology was CPU. CPU patches were introduced in January 2005 and they are released 
every quarter, which is four times a year.

PSU patches
Patch Set Updates (PSU) are cumulative patches for a particular product version. They 
are cumulative of CPU and include security fixes, wrong results, data corruption, and 
additional bugs. They have a low risk and do not require changes that require recertification 
such as dictionary changes, major algorithm changes, and any optimizer plan changes. 
On an average, each PSU contains typically 25 to 100 bug fixes per PSU. For PSU-related 
information, you can find more details from the MOS Note:854428.1: Introduction 
to Database Patch Set Updates. When you apply PSU and CPU, you may come across 
conflicts. PSUs contain CPUs of every quarter. You can apply PSU patches on any CPU and it is 
very difficult to go back to CPUs from PSUs.

Patch set
A patch set provides bug fixes and it includes all the libraries that have been rebuilt to 
implement the bug fixes in the set. They are fully tested and integrated product fixes and 
are certified to work with each other. These can be applied on a database, RAC, and client 
software. If you are going to perform a fresh installation of a database with the latest release 
and patch set 11.2.0.3, then there is no need of installing 11.2.0.1 and then upgrading it 
to 11.2.0.3; instead of that, you can directly install the software of 11.2.0.3. This option 
has been introduced from 11gR onwards. If you have already installed 11.2.0.2 and then 
upgraded it to 11.2.0.3, this patch set removes the patches applied (bugs and CPU/PSUs)  
in the previous RDBMS version.



Chapter 9

[ 279 ]

Patching on Data Guard
If you have already been maintaining a production database for many years, have probably 
applied patches to fix bugs, and also applied CPU/PSU patches for the previously discussed 
reasons, and if your requirement is to create a Data Guard environment for high availability 
of your production database, then ensure that all the patches that you have applied on the 
standby database are the same as the primary database. You can also consider the option 
of cloning ORACLE_HOME for this. It also happens to be the best option. The reason is that 
the standby database is an exact copy of the primary database in terms of databases and 
software. Hence, the environment should be compatible and same in terms of patching. If 
there is any incompatibility with the patch, and the requirement is to perform a switchover/
failover and in the past you have applied any patch to fix ORA-00600 on the primary and 
not applied the same on the standby, then the bug can hit you again. Thus, ensure that all 
the patches of the primary have been applied on the standby also. Consider it as a basic rule 
to apply patching first on a standby database and then on a primary database; the standby 
database can be either physical or logical.

What just happened?
We have seen what patching is, different types of patches (interim/bug, CPU/SPU, PSU, and 
patch set), and how patching is important in a Data Guard environment.

Best practices of patching
Before using the OPatch utility, ensure that the OPatch directory is set to the path. It is 
applicable for all the environments (UNIX or Windows). Then we can start using the OPatch 
utility as follows:
[oracle@oracle-primary ~]$ export PATH=$ORACLE_HOME/OPatch:$PATH

[oracle@oracle-primary ~]$ opatch -help

Invoking OPatch 11.1.0.6.6

Oracle Interim Patch Installer version 11.1.0.6.6

Copyright (c) 2009, Oracle Corporation.  All rights reserved.

Upgrading OPatch
If you have installed Oracle 11gR2, the OPatch version will be 11.1.0.6.6 by default. If you 
proceed to apply any latest patches of 11.2.0.1, you must upgrade the OPatch version as 
well. The following error will be displayed if you try to apply a higher update of the patch  
and if your OPatch version is lower:
OPatch version    : 11.1.0.6.6

.......



Data Guard Configuration Patching

[ 280 ]

ApplySession failed: Patch ID is null.

System intact, OPatch will not attempt to restore the system

OPatch failed with error code 73

From the logfile /u01/home/oracle/product/11.2.0/db_1/cfgtoollogs/opatch/
opatch2012-12-15_11-57-48AM.log, the following message will be shown:

INFO:Starting ApplySession at Sat Dec 15 11:57:49 IST 2012

INFO:Starting Apply Session at Sat Dec 15 11:57:49 IST 2012

SEVERE:OUI-67073:ApplySession failed: Patch ID is null.

INFO:System intact, OPatch will not attempt to restore the system

INFO:Finishing ApplySession at Sat Dec 15 11:57:51 IST 2012

To fix this issue, first upgrade the OPatch utility by downloading Patch 6880880 for your 
OS and Oracle release. Of course, the patch number will be the same even though your 
database version and release will be different, but you just need to select the related OS  
and database version. The following screenshot illustrates the same:

Then, after downloading the patch and unzipping it in the $ORACLE_HOME location, you 
should be able to apply the patch as follows:

[oracle@oracle-stby patches]$ opatch -help

Oracle Interim Patch Installer version 11.2.0.3.0

Copyright (c) 2012, Oracle Corporation.  All rights reserved.

Performing prerequisite checks of patch
Before applying any interim CPU patch that is applied through OPatch, it is strongly 
recommended to perform a prerequisite check in the ORACLE_HOME file that you are going 
to patch. Patches that are specific to security may be some of the patches that are already 
applied. Such a patch/patches needs to rollback and again has to apply a merge patch after 
applying security patches. These merge patches can be requested from Oracle support if 
they aren't available. Note that no down time is required to perform this check. 



Chapter 9

[ 281 ]

You can perform the prerequisite check as follows:

opatch prereq CheckConflictAgainstOHWithDetail -phBaseDir  /home/oracle/
patches/9711859

Oracle Interim Patch Installer version 11.2.0.3.0

Copyright (c) 2012, Oracle Corporation.  All rights reserved.

PREREQ session

Oracle Home       : /u01/home/oracle/product/11.2.0/db_1

Central Inventory : /u01/app/oraInventory

   from           : /u01/home/oracle/product/11.2.0/db_1/oraInst.loc

OPatch version    : 11.2.0.3.0

OUI version       : 11.2.0.1.0

Log file location : /u01/home/oracle/product/11.2.0/db_1/cfgtoollogs/
opatch/opatch2012-12-15_23-41-35PM_1.log

Invoking prereq "checkconflictagainstohwithdetail"

Prereq "checkConflictAgainstOHWithDetail" passed.

OPatch succeeded.

[oracle@oracle-stby 9711859]$

How to clean up patch history?
If you are applying any CPU, PSU, or interim patches, OPatch will consume a large amount 
of disk space under $ORACLE_HOME/.patch_storage. To perform a cleanup, use the file 
orapatch.util.cleanup. The folder patch_storage contains the backup of the affected 
libraries and modules that have been updated. Cleanup can be performed as follows:

[oracle@oracle-primary ~]$ opatch util cleanup

Oracle Interim Patch Installer version 11.2.0.3.0

Copyright (c) 2012, Oracle Corporation.  All rights reserved.

................

Invoking utility "cleanup"

OPatch will clean up 'restore.sh,make.txt' files and 'rac,scratch,backup' 
directories.

You will be still able to rollback patches after this cleanup.

Do you want to proceed? [y|n]

y

User Responded with: Y

.................



Data Guard Configuration Patching

[ 282 ]

"/u01/home/oracle/product/11.2.0/db_1/.patch_storage" after cleanup is 
79575030 bytes.

UtilSession: Backup area for restore has been cleaned up. For a complete 
list of files/directories

deleted, Please refer log file.

OPatch succeeded.

[oracle@oracle-primary ~]$

To find out the OPatch version, use the OPatch utility as follows:

[oracle@oracle-stby admin]$ opatch version

OPatch Version: 11.2.0.3.0

OPatch succeeded.

[oracle@oracle-stby admin]$

What just happened?
We have seen how to interface patching using the OPatch utility and options available with 
OPatch in the Performing prerequisite of patch and How to clean up patch history? sections.

Patching on Data Guard configuration
We will see how to apply patches (bug fixes and PSU) on the Data Guard configurations of 
physical standby and logical standby databases with and without the Data Guard broker in 
place. In the later part of this chapter, we will cover how to apply a patch set from 11.2.0.1 
to the latest patch set level 11.2.0.3. Applying patches on physical standby is similar to doing 
the same on logical standby. Changes depend on what kind of patches we are applying. For 
bug fixes you have to apply the patch only on ORACLE_HOME, and if you are applying CPU or 
PSU patches, you have to run the scripts such as the catbundle.sql script. Note that it is a 
cumulative script.

How to apply an interim/bug patch on logical standby?
Now we will apply one bug fix Patch 9711859: ORA-600 [KTSPTRN_FIX-EXTMAP] 
DURING EXTENT ALLOCATION on a logical standby environment of 11.2.0.1.



Chapter 9

[ 283 ]

Time for action – applying a patch on logical standby
1.	 Disable log shipping in a standby database and stop SQL Apply in it. First we need  

to stop SQL Apply in the standby database and disable log shipping from the primary 
database as follows:
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAME  DATABASE_ROLE
--------------- ----------------
turkey_un       PRIMARY
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2='DEFER';
System altered.
SQL>

2.	 Stop SQL Apply in the logical standby database as follows:
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAME  DATABASE_ROLE
--------------- ----------------
INDIA_UN        LOGICAL STANDBY
SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.
SQL>

3.	 Stop the database services of the primary and standby and perform a backup of 
ORACLE_HOME.

4.	 After applying a patch, more objects can become invalid. Hence. gather all the 
invalid objects and keep a count of them so that they can be recompiled after the 
activity as follows:
SQL> select owner,object_name,object_type,status from dba_
objects  where status <> 'VALID' and OWNER !='PUBLIC' and OBJECT_
TYPE!='SYNONYM';

5.	 Ensure a valid and latest Cold/RMAN backup prior to applying the patch, and also 
ensure that all the applications are stopped completely. You can check for active 
sessions from v$session.
SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> 

[oracle@oracle-primary ~]$ lsnrctl stop



Data Guard Configuration Patching

[ 284 ]

LSNRCTL for Linux: Version 11.2.0.1.0 - Production on 15-DEC-2012 
22:52:16

Copyright (c) 1991, 2009, Oracle.  All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)
(KEY=EXTPROC1521)))

The command completed successfully

[oracle@oracle-primary ~]$ 

6.	 Make sure that no Oracle-related services are running and perform a backup of 
ORACLE_HOME and of Oracle's inventory using the tar command as follows:
[oracle@oracle-primary backup]$ tar -zcpvf  /home/oracle/
backup/11.2.0_Home_Inventory_Backup_$(date +%Y%m%d).tar.gz /u01/
home/oracle/product/11.2.0/db_1 /u01/app/oraInventory

/u01/home/oracle/product/11.2.0/db_1/

/u01/home/oracle/product/11.2.0/db_1/uix/

..............

/u01/app/oraInventory/ContentsXML/inventory.xml

/u01/app/oraInventory/ContentsXML/comps.xml

/u01/app/oraInventory/ContentsXML/libs.xml

[oracle@oracle-primary backup]$ 

You can use the tar ball in case there are any libraries that are 
corrupted and you are unable to access the Oracle home after 
applying the patch.

7.	 Apply a patch on both primary and standby.

8.	 We apply patch 9711859, which is a fix for Patch 9711859: ORA-600 
[KTSPTRN_FIX-EXTMAP] DURING EXTENT ALLOCATION on both primary and 
standby databases. We have already performed the prerequisite check to apply the 
patch and ensured that you have exported OPatch to the environment path to use 
the OPatch utility as follows:
[oracle@oracle-primary 9711859]$ export PATH=/u01/home/oracle/
product/11.2.0/db_1/OPatch:$PATH

[oracle@oracle-primary 9711859]$ opatch apply

Oracle Interim Patch Installer version 11.2.0.3.0

...............

Applying interim patch '9711859' to OH '/u01/home/oracle/
product/11.2.0/db_1'

Verifying environment and performing prerequisite checks...

All checks passed.



Chapter 9

[ 285 ]

.............

Is the local system ready for patching? [y|n]

y

User Responded with: Y

Backing up files...

Patching component oracle.rdbms, 11.2.0.1.0...

Verifying the update...

Patch 9711859 successfully applied

Log file location: /u01/home/oracle/product/11.2.0/db_1/
cfgtoollogs/opatch/9711859_Dec_15_2012_23_46_16/apply2012-12-
15_23-46-16PM_1.log

OPatch succeeded.

[oracle@oracle-primary 9711859]$

9.	 Once you initiate patching on the database server, the patch will prompt you to 
enter the support identifier's e-mail address for sending frequent updates on latest 
patches. The patch will then ask you to give a confirmation. Now verify that the 
patch has been applied and you are able to view it from the inventory as follows:
[oracle@oracle-primary ~]$ opatch lspatches -bugs

9711859;;9711859

[oracle@oracle-primary ~]$

or
[oracle@oracle-primary ~]$ opatch lsinventory|grep 9711859

Patch  9711859      : applied on Sat Dec 15 23:47:18 IST 2012

     9711859

[oracle@oracle-primary ~]$

10.	You must perform the previous steps in both primary and standby databases.

11.	Start the primary database, the logical standby databases, and listeners, and enable 
apply services. Enable log shipping from the primary database as follows:
SQL> startup
ORACLE instance started.
Total System Global Area 2238099456 bytes
Fixed Size                  2215304 bytes
Variable Size            1040188024 bytes
Database Buffers         1191182336 bytes
Redo Buffers                4513792 bytes
Database mounted.
Database opened.



Data Guard Configuration Patching

[ 286 ]

SQL> alter system set log_archive_dest_state_2='enable';
System altered.
SQL>

12.	Start the database, listener, and SQL Apply from the logical standby database  
as follows:
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY IMMEDIATE;
Database altered.
SQL>

Sun Dec 16 00:02:27 2012

RFS LogMiner: Registered logfile [/u01/home/oracle/product/11.2.0/
db_1/dbs/arch1_920_788992101.dbf] to LogMiner session id [2]

LOGMINER: Alternate logfile found, transition to mining 
logfile for session 2 thread 1 sequence 920, /u01/home/oracle/
product/11.2.0/db_1/dbs/arch1_920_788992101.dbf

LOGMINER: End   mining logfile for session 2 thread 1 sequence 
920, /u01/home/oracle/product/11.2.0/db_1/dbs/arch1_920_788992101.
dbf

If you are using logical standby with RAC, you have to perform the 
same steps on each of the nodes, restart the database, and then 
start SQL Apply.

13.	Verify the logical standby SQL Apply from the standby database. Use the  
following query to ensure that the redo transport service is working properly  
in the V$DATAGUARD_STATS view:
SQL> SELECT NAME, VALUE, TIME_COMPUTED FROM V$DATAGUARD_STATS 
WHERE NAME='transport lag';
NAME                 VALUE                TIME_COMPUTED
-------------------- ------------------ ------------------------
transport lag        +00 00:01:00         12/16/2012 00:08:37

14.	You can also monitor the status of the redo transport service that has been 
transferred from the primary and the sequences that are being archived on the 
logical standby, using the following query:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS 
FROM V$MANAGED_STANDBY;
PROCESS   STATUS          THREAD#  SEQUENCE#     BLOCK#     BLOCKS
--------- ------------ ---------- ---------- ---------- ----------
ARCH      WRITING               1          5      30720       2048
ARCH      CONNECTED             0          0          0          0



Chapter 9

[ 287 ]

ARCH      CONNECTED             0          0          0          0
ARCH      CLOSING               1        919      28672       1776
ARCH      CLOSING               1        920          1          1
RFS       IDLE                  0          0          0          0
RFS       WRITING               1        921     149579       2048
RFS       RECEIVING             0          0          0          0

We have successfully applied a bug fix in the logical database environment and double-checked 
if log shipping is active after the patching, as shown previously.

To know the applied patches on ORACLE_HOME, use the 
following commands. It shows the patches applied with 
the date and time as follows:

$opatch lsinventory –all

$opatch lsinventory -detail

What just happened?
We have seen how to apply an interim/bug fix (9711859) step by step in a Data Guard 
environment containing a logical standby database.

How to apply a PSU patch on physical standby database using 
broker?
The CPU or PSU patches are a collection of security fixes. They are released every quarter, 
that is, four times a year. The CPU patches contain overall security fixes of each quarter and 
the PSU patches, and are cumulative. Once you have applied PSU, you can further apply 
only PSU for future quarters until the database is upgraded to the new base version. In this 
example, we will see how to apply the PSU patch on the physical standby database managed 
by the broker.



Data Guard Configuration Patching

[ 288 ]

Time for action – applying PSU on a physical standby database
1.	 Disable log transport and stop MRP in the standby database. Before disabling log 

transport in standby, cross-check the synchronization between the primary and 
standby database, as shown in the following screenshot:

2.	 Now cancel MRP using the broker; you can perform this step from any site as shown 
in the following screenshot:

3.	 Stop the database services of the primary and standby and perform a backup of 
ORACLE_HOME. Prior to shutting down all the services, gather the invalid objects of 
each schema to check the invalid objects after the patch has been applied using the 
following script:
SQL> select owner,object_name,object_type,status from dba_
objects  where status <> 'VALID' and OWNER !='PUBLIC' and OBJECT_
TYPE!='SYNONYM';



Chapter 9

[ 289 ]

4.	 Ensure that there is a latest and valid Cold/RMAN backup available prior to applying 
the patch. Also ensure that all the applications are down. You can check for active 
sessions from v$session as follows:
SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> 

[oracle@oracle-primary ~]$ lsnrctl stop

LSNRCTL for Linux: Version 11.2.0.1.0 - Production on 15-DEC-2012 
22:52:16

Copyright (c) 1991, 2009, Oracle.  All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)
(KEY=EXTPROC1521)))

The command completed successfully

5.	 If no Oracle-related services are running, perform a backup of ORACLE_HOME and of 
the inventory using the tar command as follows:
[oracle@oracle-primary backup]$ tar -zcpvf  /home/oracle/
backup/11.2.0_Home_Inventory_Backup_$(date +%Y%m%d).tar.gz /u01/
home/oracle/product/11.2.0/db_1 /u01/app/oraInventory

/u01/home/oracle/product/11.2.0/db_1/

/u01/home/oracle/product/11.2.0/db_1/uix/

............................

/u01/app/oraInventory/ContentsXML/inventory.xml

/u01/app/oraInventory/ContentsXML/comps.xml

/u01/app/oraInventory/ContentsXML/libs.xml

[oracle@oracle-primary backup]$ 

You can use the tar ball in case there are any libraries that are 
corrupted and you are unable to access the Oracle home after 
applying a patch. The Tar command is applicable for UNIX 
systems. For Windows, the zip option can be used to compress.



Data Guard Configuration Patching

[ 290 ]

6.	 Apply a patch on both primary and standby. We apply the PSU July 2012 
(12419378) Patch in the Data Guard environment of both primary and physical 
standby databases. After applying the patch, the PSU version will be (11.2.0.1.6). 
Now perform the prerequisite check for any conflicts; if any conflicts are found,  
you have to get the merge patch on top of 11.2.0.1.6 as follows:
[oracle@oracle-primary 12419378]$ opatch prereq 
CheckConflictAgainstOHWithDetail -phBaseDir  /home/oracle/
patches/12419378

Oracle Interim Patch Installer version 11.2.0.3.0

.......................

Invoking prereq "checkconflictagainstohwithdetail"

ZOP-40: The patch(es) has conflicts with other patches installed 
in the Oracle Home (or) among themselves.

Prereq "checkConflictAgainstOHWithDetail" failed.

Summary of Conflict Analysis:

There are no patches that can be applied now.

Following patches have conflicts. Please contact Oracle Support 
and get the merged patch of the patches :

9711859, 12419378

Following patches will be rolled back from Oracle Home on 
application of the patches in the given list :

9711859

Conflicts/Supersets for each patch are:

Patch : 12419378

        Conflict with 9711859

        Conflict details:

/u01/home/oracle/product/11.2.0/db_1/lib/libserver11.a:/ktsx.o

OPatch succeeded.

[oracle@oracle-primary 12419378]$

7.	 The prerequisite applied failed because of Patch 9711859: ORA-600 
[KTSPTRN_FIX-EXTMAP] DURING EXTENT ALLOCATION that was applied in the 
previous scenario. To resolve this conflict we have to request the merge patch to be 
applied. Now the action plan is shown as follows:

�� Rollback the 9711859 Patch

�� Apply PSU July 2012 12419378

�� Apply Merge Patch 9711859 of 11.2.0.1.6



Chapter 9

[ 291 ]

The following screenshot illustrates the action plan as discussed:

8.	 A rollback is applied on 9711859 of 11.2.0.1.0 using the OPatch utility as follows:
[oracle@oracle-primary patches]$ opatch rollback -id 9711859                         
Oracle Interim Patch Installer version 11.2.0.3.0

Copyright (c) 2012, Oracle Corporation.  All rights reserved.

...........

RollbackSession rolling back interim patch '9711859' from OH '/
u01/home/oracle/product/11.2.0/db_1'

Please shutdown Oracle instances running out of this ORACLE_HOME 
on the local system.

(Oracle Home = '/u01/home/oracle/product/11.2.0/db_1')

Is the local system ready for patching? [y|n]

y

User Responded with: Y

Patching component oracle.rdbms, 11.2.0.1.0...

RollbackSession removing interim patch '9711859' from inventory

Log file location: /u01/home/oracle/product/11.2.0/db_1/
cfgtoollogs/opatch/9711859_Dec_16_2012_12_12_51/rollback2012-12-
16_12-12-49PM_1.log

OPatch succeeded.

[oracle@oracle-primary patches]$

9.	 Now apply PSU July 2012 Patch 12419378 as follows:
[oracle@oracle-primary 12419378]$ pwd

/home/oracle/patches/12419378

[oracle@oracle-primary 12419378]$ ls

custom  etc  files  patchmd.xml  README.html  README.txt

[oracle@oracle-primary 12419378]$ opatch apply

Oracle Interim Patch Installer version 11.2.0.3.0



Data Guard Configuration Patching

[ 292 ]

Copyright (c) 2012, Oracle Corporation.  All rights reserved.

Oracle Home       : /u01/home/oracle/product/11.2.0/db_1

...........

Patch 12419378: Optional component(s) missing : [ oracle.client, 
11.2.0.1.0 ]

All checks passed.

....................

Do you wish to remain uninformed of security issues ([Y]es, [N]o) 
[N]:  Y

Please shutdown Oracle instances running out of this ORACLE_HOME 
on the local system.

(Oracle Home = '/u01/home/oracle/product/11.2.0/db_1')

Is the local system ready for patching? [y|n]

y

User Responded with: Y

Backing up files...

Patching component oracle.rdbms.rsf, 11.2.0.1.0...

..............

Verifying the update...

Patch 12419378 successfully applied

OPatch Session completed with warnings.

Log file location: /u01/home/oracle/product/11.2.0/db_1/
cfgtoollogs/opatch/12419378_Dec_16_2012_12_18_09/apply2012-12-
16_12-18-09PM_1.log

OPatch completed with warnings.

[oracle@oracle-stby 12419378]$

 [Dec 16, 2012 12:21:46 PM]   UtilSession: Backup area for restore 
has been cleaned up. For a complete list of files/directories

                             deleted, Please refer log file.

[Dec 16, 2012 12:21:46 PM]   Patch 12419378 successfully applied

10.	Now apply Merge Patch 9711859 of 11.2.0.1.6 as follows:
[oracle@oracle-primary 9711859]$ ls

etc  files  README.txt

[oracle@oracle-primary 9711859]$ opatch apply

Oracle Interim Patch Installer version 11.2.0.3.0

Copyright (c) 2012, Oracle Corporation.  All rights reserved.



Chapter 9

[ 293 ]

Oracle Home       : /u01/home/oracle/product/11.2.0/db_1

Please shutdown Oracle instances running out of this ORACLE_HOME 
on the local system.

(Oracle Home = '/u01/home/oracle/product/11.2.0/db_1')

Is the local system ready for patching? [y|n]

y

User Responded with: Y

Backing up files...

Patching component oracle.rdbms, 11.2.0.1.0...

Verifying the update...

Patch 9711859 successfully applied

Log file location: /u01/home/oracle/product/11.2.0/db_1/
cfgtoollogs/opatch/9711859_Dec_16_2012_12_37_13/apply2012-12-
16_12-37-13PM_1.log

OPatch succeeded.

[oracle@oracle-primary 9711859]$

The previous steps must be performed on both primary and standby databases and 
on all the instances if it is RAC.

11.	Start the primary and standby databases and execute the post scripts of 
Catbundle.sql in the primary database. Start both primary and standby (in 
the Mount status if no Active Data Guard is enabled) databases including listener 
services. In the primary database run the Catbundle.sql script that is located 
at $ORACLE_HOME/rdbms/admin, which determines the last bundle in the series 
that was loaded in the database by the information stored in the dba_registry_
history view. It processes the information in bundle_<bundle_series>.xml, 
which is present in each bundle patch. The following script can be used:
SQL> @?/rdbms/admin/catbundle.sql psu apply

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

.................

Generating apply and rollback scripts...

Check the following file for errors:

/u01/home/oracle/product/11.2.0/db_1/cfgtoollogs/catbundle/
catbundle_PSU_ORCL_GENERATE_2012Dec16_12_58_39.log

  6    (SYSTIMESTAMP, 'APPLY',

  7     SYS_CONTEXT('REGISTRY$CTX','NAMESPACE'),

  8     '11.2.0.1',



Data Guard Configuration Patching

[ 294 ]

  9     6,

 10     'PSU',

 11     'PSU 11.2.0.1.6');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SPOOL off

SQL> SET echo off

Check the following log file for errors:

/u01/home/oracle/product/11.2.0/db_1/cfgtoollogs/catbundle/
catbundle_PSU_ORCL_APPLY_2012Dec16_12_58_51.log

SQL>

12.	For any errors related to post scripts you can refer to the following logs:
[oracle@oracle-primary catbundle]$ pwd

/u01/home/oracle/product/11.2.0/db_1/cfgtoollogs/catbundle

[oracle@oracle-primary catbundle]$ ls

catbundle_PSU_ORCL_APPLY_2012Dec16_12_58_51.log

catbundle_PSU_ORCL_GENERATE_2012Dec16_12_58_39.log

[oracle@oracle-primary catbundle]$

If in case you want to rollback the patch applied with the bundle 
script, use the following script:

$opatch rollback -id 12419378

Start every instance dependent to ORACLE_HOME that has been 
patched and execute as follows:

sql> @$ORACLE_HOME/rdbms/admin/catbundle_
PSU_<database SID>_ROLLBACK.sql

13.	Verify the patch status from OPatch and the database registry. Once we have applied 
the patch on the binaries using OPatch, we can verify the patch with an ID from the 
OS level as follows:
[oracle@oracle-primary ~]$ opatch lsinventory -bugs_fixed | grep 
-i 'DATABASE PSU'

9352237    12419378  Sun Dec 16 12:21:15 IST 2012   DATABASE PSU 
11.2.0.1.1

9654983    12419378  Sun Dec 16 12:21:15 IST 2012   DATABASE PSU 
11.2.0.1.2 (INCLUDES CPUJUL2010)



Chapter 9

[ 295 ]

9952216    12419378  Sun Dec 16 12:21:15 IST 2012   DATABASE PSU 
11.2.0.1.3 (INCLUDES CPUOCT2010)

10248516   12419378  Sun Dec 16 12:21:15 IST 2012   database psu 
11.2.0.1.4 (includes cpujan2011)

11724930   12419378  Sun Dec 16 12:21:15 IST 2012   database psu 
11.2.0.1.5 (includes cpuapr2011)

12419378   12419378  Sun Dec 16 12:21:15 IST 2012   DATABASE PSU 
11.2.0.1.6 (INCLUDES CPUJUL2011)

[oracle@oracle-primary ~]$

14.	We can check the database registry using registry$history. This script can be 
executed from the standby database even in the OPEN status if the archives have 
been applied after running the catbundle.sql script as follows:
SQL> select namespace,version,id, comments from registry$history;
NAMESPACE       VERSION             ID COMMENTS
--------------- ---------- ----------- ---------------
SERVER          11.2.0.1             6 PSU 11.2.0.1.6

15.	Enable redo transport in the primary, start MRP in the standby database, and verify 
the synchronization. After verifying the latest patch level from the primary, we can 
now enable the redo transport in the primary database using the Data Guard broker, 
as shown in the following screenshot:

16.	To start redo apply services in the standby, you can give the following commands 
either in the primary or standby database using the Data Guard broker, as shown in 
the following screenshot:



Data Guard Configuration Patching

[ 296 ]

17.	When the MRP service starts on the standby and broker configuration, the status is 
SUCCESS. Now check the archives that are generated in the primary and applied in 
the standby using v$archived_log with the column sequence#, as shown in the 
following screenshot:

18.	 In both the databases, the valid destination archived sequences are matching. 
Hence, the standby is in sync with the primary database.

Pop quiz
Q1. What is a terminal patch?

What just happened?
We have seen how to apply PSU Patch (11.2.0.1.6) in a Data Guard environment of a physical 
standby database using a Data Guard broker.

How to apply patch set on physical standby (11.2.0.1 to 11.2.0.3)?
To upgrade a database of a patch set from 11.2.0.1 to 11.2.0.3, we have to perform a 
complete installation of ORACLE_HOME for 11.2.0.3, and then we have to detach the old 
home. This procedure is called out-of-place upgrade and is introduced from 11gR2 onwards. 
In 10gRx versions, we definitely have to do in-place upgrade on the same home. Even  
if your requirement is to create a new database of 11.2.0.3, there is no need to install 
11.2.0.1 anymore.

Time for action – patch set upgrade of physical standby
For upgrading a patch set from 11.2.0.1 to 11.2.0.3 in the Data Guard environment with the 
SQL* Plus command line, execute the following steps:

1.	 Install 11.2.0.3 on the primary and standby server. Download Patch 10404530: 
11.2.0.3.0 PATCH SET FOR ORACLE DATABASE SERVER from http://
support.oracle.com, which comes with seven zipped files of total 5 GB, and 
unzip filesystem can be downloaded from https://edelivery.oracle.
com/. Ensure that the unzipped directory's owner is Oracle. From the database 
directory, initiate runInstaller from the primary database server, as shown in the 
following screenshot:



Chapter 9

[ 297 ]

2.	 Once the GUI is launched, you will have several options, if you would like to  
get security updates by adding the e-mail address, installation options, grid 
installation options, product languages, and so on. In these, you must choose a new 
ORACLE_HOME directory outside the existing ORACLE_HOME location for installation. 
In the installation options, you must opt for Enterprise Edition to enable the feature 
of Data Guard.

3.	 Before you start the actual installation, runInstaller performs the prerequisite 
check for RPM's version, kernel settings, and swap memory settings. If any of these 
are not adequate, you should fix them prior to the installation from the GUI. These 
fixes differ from one OS to the other. Note that if some of the RPMs are of a higher 
version, then you can acknowledge them by ignoring them and then go ahead with 
the installation.

4.	 After copying the files, linking the libraries, and setting up the files, you have to run 
the /u01/home/oracle/product/11.2.0/db_2/root.sh script from the root 
user, as shown in the following screenshot:



Data Guard Configuration Patching

[ 298 ]

5.	 Open a new terminal as the root user and run the following script:
[root@oracle-primary ~]# /u01/home/oracle/product/11.2.0/db_2/
root.sh

Performing root user operation for Oracle 11g 

The following environment variables are set as:

    ORACLE_OWNER= oracle

    ORACLE_HOME=  /u01/home/oracle/product/11.2.0/db_2

Enter the full pathname of the local bin directory: [/usr/local/
bin]: 

The contents of "dbhome" have not changed. No need to overwrite.

The file "oraenv" already exists in /usr/local/bin.  Overwrite it? 
(y/n) 

[n]: y

   Copying oraenv to /usr/local/bin ...

The file "coraenv" already exists in /usr/local/bin.  Overwrite 
it? (y/n) 

[n]: y

   Copying coraenv to /usr/local/bin ...

Entries will be added to the /etc/oratab file as needed by

Database Configuration Assistant when a database is created

Finished running generic part of root script.

Now product-specific root actions will be performed.

Finished product-specific root actions.

[root@oracle-primary ~]#

6.	 Run the pre-upgrade scripts from 11.2.0.1 home of the primary database. From the 
previous 11.2.0.1 home of the database, spool the $ORACLE_HOME/rdbms/admin/
utlu112i.sql script of 11.2.0.3 to run the pre-upgrade check as follows:
SQL> @/u01/home/oracle/product/11.2.0/db_2/rdbms/admin/utlu112i.
sql

Oracle Database 11.2 Pre-Upgrade Information Tool 12-16-2012 
19:54:41

Script Version: 11.2.0.3.0 Build: 001

******************************************************************

Database:

******************************************************************



Chapter 9

[ 299 ]

--> name:          ORCL

--> version:       11.2.0.1.0

--> compatible:    11.2.0.0.0

--> blocksize:     8192

--> platform:      Linux x86 64-bit

--> timezone file: V11

*****************************************************************

Recommendations

******************************************************************

Oracle recommends gathering dictionary statistics prior to

upgrading the database.

To gather dictionary statistics execute the following command

while connected as SYSDBA:

    EXECUTE dbms_stats.gather_dictionary_stats;

*****************************************************************

SQL>

7.	 Running utlu112i.sql is mandatory even if you are upgrading manually or using 
DBUA. Review the spool logfile and fix it if there are any errors and warnings; for 
example, invalid objects, invalid registry components, tablespaces' thresholds, and 
on clearing recycle bin objects.

8.	 Now use the script to collect the database's upgrade diagnostic information 
(dbupgdiag.sql) from MOS note:556610.1. If any invalid objects are found, run 
the $ORACLE_HOME/rdbms/admin/utlrp.sql script multiple times to validate 
these invalid objects in the database until there is no change in the number of 
invalid objects, shown as follows:
SQL> @?/rdbms/admin/utlrp.sql

TIMESTAMP

-----------------------------------------------------------------

COMP_TIMESTAMP UTLRP_BGN  2012-12-16 21:16:01

........................

ERRORS DURING RECOMPILATION

---------------------------

                          0

PL/SQL procedure successfully completed.

PL/SQL procedure successfully completed.

SQL>



Data Guard Configuration Patching

[ 300 ]

9.	 Disable the log transport and stop MRP in the standby database. Check the 
synchronization between the primary and standby databases and then proceed  
to defer the remote destination to send redo transport as follows:
SQL> alter system set log_archive_dest_state_2='defer';
System altered.
SQL>

10.	Now stop MRP in the standby database from SQL* Plus as follows:
SQL> alter database recover managed standby database cancel;
Database altered.
SQL>

11.	Take a complete backup of the database and stop the primary and standby 
databases, including listener services.

12.	Take a backup of the entire database, either cold or hot backup, using RMAN. 
No need to perform a backup of ORACLE_HOME because we are installing a new 
11.2.0.3 home outside 11.2.0.1 home. Now shut down the primary and standby 
services, including the listener services.

13.	Change the environment variable's settings and run the Upgrade script in the 
primary database.

14.	Ensure that you have modified the environment variables ORACLE_HOME and 
LIBRARY_PATH,PATH, and they are pointing to the newly installed home 11.2.0.3. 
Copy INIT/SPFILE and the network configuration files and run the catupgrade.
sql script to upgrade the data dictionary objects as follows:
[oracle@oracle-primary ~]$ sqlplus / as sysdba

SQL*Plus: Release 11.2.0.3.0 Production on Sun Dec 16 21:26:26 
2012

Copyright (c) 1982, 2011, Oracle.  All rights reserved.

Connected to an idle instance.

SQL> spool /home/oracle/upgrade.log

SQL> startup upgrade

ORACLE instance started.

Total System Global Area 2238099456 bytes

Fixed Size                  2230312 bytes

Variable Size            1056966616 bytes

Database Buffers         1174405120 bytes

Redo Buffers                4497408 bytes

Database mounted.

Database opened.



Chapter 9

[ 301 ]

SQL> set echo on

SQL> @?/rdbms/admin/catupgrd.sql

SQL> Rem

SQL> Rem $Header: rdbms/admin/catupgrd.sql /st_rdbms_11.2.0/3 
2011/05/18 15:07:25 cmlim Exp $

SQL> Rem

SQL> Rem catupgrd.sql

.........

SQL> Rem Set errorlogging off

SQL> SET ERRORLOGGING OFF;

SQL>

SQL> REM END OF CATUPGRD.SQL

SQL>

SQL> REM bug 12337546 - Exit current sqlplus session at end of 
catupgrd.sql.

SQL> REM                This forces user to start a new sqlplus 
session in order

SQL> REM                to connect to the upgraded db.

SQL> exit

15.	Start the database in the normal mode and run the following scripts:
SQL> @$ORACLE_HOME/rdbms/admin/catuppst.sql;

TIMESTAMP

------------------------------------------------------------------

COMP_TIMESTAMP POSTUP_BGN 2012-12-16 22:26:56

PL/SQL procedure successfully completed.

This script will migrate the Baseline data on a pre-11g database

to the 11g database.

...                                       ...

... Completed Moving the Baseline Data    ...

...                                       ...

.................

  6    (SYSTIMESTAMP, 'APPLY',

  7     SYS_CONTEXT('REGISTRY$CTX','NAMESPACE'),

  8     '11.2.0.3',

  9     0,



Data Guard Configuration Patching

[ 302 ]

 10     'PSU',

 11     'Patchset 11.2.0.2.0');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SPOOL off

SQL> SET echo off

Check the following log file for errors:

/u01/home/oracle/product/11.2.0/db_2/cfgtoollogs/catbundle/
catbundle_PSU_ORCL_APPLY_2012Dec16_22_27_18.log

SQL>

16.	Run the utlrp.sql script to compile invalid objects as follows:
SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql;

TIMESTAMP

------------------------------------------------

COMP_TIMESTAMP UTLRP_BGN  2012-12-16 22:28:48

ERRORS DURING RECOMPILATION

---------------------------

                          0

Function created.

PL/SQL procedure successfully completed.

Function dropped.

PL/SQL procedure successfully completed.

SQL>

17.	Post the upgrade scripts in the primary database. Now upgrade the time zone to 
the latest version using DBMS_DST, upgrade the recovery catalog, and upgrade the 
statistics table if it is created by the DBMS_STATS package.

18.	Synchronize the standby database with the primary database. After upgrading the 
primary database successfully, enable remote destination to send redo transport  
as follows:
SQL> alter system set log_archive_dest_state_2='enable';
System altered.
SQL>
DB_NAME    HOSTNAME       LOG_ARCHIVED LOG_APPLIED LOG_GAP
---------- -------------- ------------ ----------- -------
ORCL       ORACLE-PRIMARY          969         943      26



Chapter 9

[ 303 ]

19.	We do have around 26 archive gaps after the upgrade. Now start MRP to apply 
archives on the standby database. Depending on the gaps between the primary  
and standby databases, it will take time to synchronize.

SQL> alter database recover managed standby database using current 
logfile disconnect from session;

Database altered.

SQL>

DB_NAME    HOSTNAME       LOG_ARCHIVED LOG_APPLIED LOG_GAP

---------- -------------- ------------ ----------- -------

ORCL       ORACLE-PRIMARY          972         971       1

sSun Dec 16 23:03:46 2012

RFS[1]: Selected log 10 for thread 1 sequence 973 dbid 1316772835 
branch 788992101

Archived Log entry 51 added for thread 1 sequence 972 ID 
0x4eede1f7 dest 3:

Recovery of Online Redo Log: Thread 1 Group 10 Seq 973 Reading mem 
0

  Mem# 0: /u02/app/oracle/oradata/orcl/standby_redo01.log

What just happened?
We have seen how to install an out-of-place upgrade of a database from 11.2.0.1 patch set 
level to 11.2.0.3 patch set, including the physical standby database.

Have a go hero – in-place patch set installation
We can perform a patch set installation either in-place or out-of-place. We have just seen 
how to perform an out-of-place upgrade. To do an in-place patch set installation, perform 
the following steps:

1.	 Back up INIT/SPFILE and the network configuration files.

2.	 Detach ORACLE_HOME from the database as ./runInstaller -detachHome 
ORACLE_HOME= /u01/home/oracle/product/11.2.0/db_1.

3.	 Remove old ORACLE_HOME (11.2.0.1).

4.	 Install a new patch set level, 11.2.0.3.

5.	 Copy INIT/SPFILE and the network configuration files to the new ORACLE_HOME 
directory.

6.	 Upgrade your database (catupgrd.sql or DBUA).



Data Guard Configuration Patching

[ 304 ]

Summary
We've now reached the end of this chapter. In this chapter, we have seen what are the 
different types of patches and the best practices involved in using the OPatch utility.  
Apart from that we have also seen the following:

�� How to apply the interim/bug fix patch on a logical standby

�� How to apply a PSU patch on a physical standby database using a Data Guard broker

�� How to upgrade a patch set from 11.2.0.1 to 11.2.0.3



Common Data Guard Issues

Data Guard administrators need to know methods to resolve some 
specific issues. These issues may originate from configuration changes, 
misconfiguration, or user errors. Another important point is the use of 
diagnostic data to identify these issues. Now we'll cover handling the most 
common of these Data Guard issues and the methods to access and use 
diagnostic data.

In this chapter, we will discuss the following topics:

�� Recreating the standby control file

�� Dealing with redo transport authentication problems

�� Dealing with UNNAMED datafiles

�� Closing a gap with RMAN incremental backups

�� Fixing NOLOGGING changes in a standby database

�� Turning on Data Guard tracing

�� Gathering diagnostic data

Let's start with renewing the standby control file of a standby database.

10



Common Data Guard Issues

[ 306 ]

Recreating the standby control file
A standby control file essentially keeps the same information of the primary database with 
the control file, which is the physical structure of the database. It also contains some specific 
information about the Data Guard, such as whether an archive log sequence is applied 
or not. A standby control file is mandatory to mount a physical standby database, and we 
should consider keeping multiple copies of the standby control file, preferably on different 
disks, which is known as multiplexing.

In some cases, we may want to renew a standby control file by using a newly created one 
on the primary database. For example, before a switchover it's a good practice to renew 
the standby control file in order to guarantee that all of the redo, temp file structure, and 
historical archived log data are the same. In general, this is a three-step operation:

1.	 Create a copy of the standby control file from the primary database.

2.	 Transfer this standby control file from the primary database to the standby site.

3.	 Restart the standby database using a new standby control file.

In order to create a standby control file from a primary database, we can choose one of the 
following methods:

�� Using the ALTER DATABASE CREATE STANDBY CONTROLFILE SQL statement:
SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS '/tmp/standby.
ctl';

We can directly copy the file to the standby server with FTP or SCP and use it as the 
new standby control file.

�� Using the BACKUP CURRENT CONTROLFILE FOR STANDBY RMAN statement:
RMAN> BACKUP CURRENT CONTROLFILE FOR STANDBY FORMAT 'standbyctl.
bkp';

The file will be an RMAN backup of the standby control file that we can transfer 
and use in order to restore the standby control file with the RESTORE STANDBY 
CONTROLFILE FROM RMAN statement.

This standby control file recreation operation needs some extra steps if we use Oracle-
managed files (OMF). OMF automatically generates datafile names, and the names will 
be different in the primary and standby databases. We'll not be able to mount the standby 
database with the newly created standby control file because it'll search for datafiles with 
their names in the primary database. So we need to introduce datafiles to the standby 
control file in some way.



Chapter 10

[ 307 ]

Time for action – recreating the standby control file 
This action shows how to renew the standby control file in a Data Guard environment  
with OMF.

1.	 In the primary database, create a backup of the standby control file with the 
following RMAN statements:
$rman target /

Recovery Manager: Release 11.2.0.1.0 - Production on Wed Dec 19 
22:18:05 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All 
rights reserved.

connected to target database: ORCL (DBID=1319333016)

RMAN> BACKUP CURRENT CONTROLFILE FOR STANDBY FORMAT 'standbyctl.
bkp';

Starting backup at 19-DEC-12

using target database control file instead of recovery catalog

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=149 device type=DISK

channel ORA_DISK_1: starting full datafile backup set

channel ORA_DISK_1: specifying datafile(s) in backup set

including standby control file in backup set

channel ORA_DISK_1: starting piece 1 at 19-DEC-12

channel ORA_DISK_1: finished piece 1 at 19-DEC-12

piece handle=/u01/app/oracle2/product/11.2.0/dbhome_1/dbs/
standbyctl.bkp tag=TAG20121219T221811 comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01

Finished backup at 19-DEC-12

You'll see that a file named standbycf.bkp is generated under the $ORACLE_
HOME/dbs directory. This file will be used to restore the standby control file in the 
standby database.

2.	 Copy this backup file from the primary database to the standby site by using the scp 
or ftp protocols:
scp $ORACLE_HOME/dbs/standbyctl.bkp standbyhost:/tmp/standbyctl.
bkp



Common Data Guard Issues

[ 308 ]

3.	 Query the current online and standby logfile paths in the physical standby database:
SQL> SELECT * FROM V$LOGFILE WHERE TYPE = 'ONLINE';

GROUP# STATUS  TYPE  MEMBER                                     IS_

------ ------ ------ ----------------------------------------- ---

3       ONLINE    /u01/app/oracle2/datafile/ORCL/redo03.log     NO

2       ONLINE    /u01/app/oracle2/datafile/ORCL/redo02.log     NO

1       ONLINE    /u01/app/oracle2/datafile/ORCL/redo01.lo      NO

SQL> SELECT * FROM V$LOGFILE WHERE TYPE = 'STANDBY';

GROUP# STATUS  TYPE  MEMBER                                     IS_

------ ------- ---- ------------------------------------------ ---

4      STANDBY   /u01/app/oracle2/.../o1_mf_4_85frxrh5_.log    YES

5      STANDBY   /u01/app/oracle2/.../o1_mf_5_85fry0fc_.log    YES

6      STANDBY   /u01/app/oracle2/.../o1_mf_6_85fry7tn_.log    YES

7      STANDBY   /u01/app/oracle2/.../o1_mf_7_85fryh0n_.log    YES

4.	 Shut down the standby database and delete all the online and standby logfiles:
$ sqlplus / as sysdba 

SQL> SHUTDOWN IMMEDIATE

$ rm /u01/app/oracle2/datafile/ORCL/redo0*.log  

$ rm /u01/app/oracle2/fra/INDIA_PS/onlinelog/o1_mf_*.log

Depending on whether you use the filesystem or the ASM to store the database 
files, you must run the rm command on the shell or on asmcmd respectively.

5.	 Start up the physical standby database in the NOMOUNT mode:
$ sqlplus / as sysdba 

SQL> STARTUP NOMOUNT

6.	 On the standby server, connect to RMAN and restore the standby control file from 
the backup file:
$rman target / 

RMAN> RESTORE STANDBY CONTROLFILE FROM '/tmp/standbyctl.bkp'; 

Starting restore at 19-DEC-12

using target database control file instead of recovery catalog



Chapter 10

[ 309 ]

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=1 device type=DISK

channel ORA_DISK_1: restoring control file

channel ORA_DISK_1: restore complete, elapsed time: 00:00:01

output file name=/u01/app/oracle2/datafile/INDIAPS/control01.ctl

Finished restore at 19-DEC-12

7.	 Mount the standby database as follows:
RMAN> ALTER DATABASE MOUNT; 

database mounted

released channel: ORA_DISK_1

8.	 If OMF is not being used, and the datafile paths and names are the same for both 
the primary and standby databases, skip this step and continue with the next step.

At this stage, in an OMF-configured Data Guard environment, the physical standby 
database is mounted, but the control file doesn't show the correct datafile names 
because it still contains the primary database's datafile names. We need to change 
the datafile names in the standby control file. Use the RMAN CATALOG and SWITCH 
commands for this purpose:
RMAN> CATALOG START WITH '/oradata/datafile/';

For ASM, use the following commands:

RMAN> CATALOG START WITH '+DATA1/MUM/DATAFILE/'; 

RMAN> SWITCH DATABASE TO COPY; 

9.	 If the flashback database is ON, turn it off and on again in the standby database:
SQL> ALTER DATABASE FLASHBACK OFF; 

Database altered. 

SQL> ALTER DATABASE FLASHBACK ON; 

Database altered.

10.	 If standby redo logs exist in the primary database, we only need to execute the clear 
logfile statement in the standby database so that they will be created automatically 
(the log_file_name_convert parameter must already be set properly):
SQL> SELECT GROUP# FROM V$STANDBY_LOG; 

GROUP# 

---------- 

4 



Common Data Guard Issues

[ 310 ]

5 

6 

7

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 4; 

Database altered. 

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 5; 

Database altered. 

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 6; 

Database altered.

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 7; 

Database altered.

If standby redo logs don't exist in the primary database, the following query will not 
return any rows. In this case, we need to create the standby redo logs manually:

SQL> SELECT GROUP# FROM V$STANDBY_LOG; 

no row selected 

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 4 SIZE 50M; 

Database altered. 

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 5 SIZE 50M; 

Database altered. 

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 6 SIZE 50M; 

Database altered.

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 7 SIZE 50M; 

Database altered.

11.	Start a media-recovery process in the physical standby database. The online logfiles 
will be cleared automatically.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT FROM SESSION; 

Database altered.



Chapter 10

[ 311 ]

What just happened?
We've successfully changed the standby control file using the primary database as a source. 
With a new standby control file, some database information such as the size and number 
of the temporary files and the size and number of the online redo logs, will be updated 
in the physical standby database. These infrastructural changes are not replicated to the 
standby databases automatically. So if we don't apply these changes manually in the standby 
database, a new standby control file will fix these inconsistencies.

Dealing with redo transport authentication problems
By default, the SYS user is used for redo transport in Data Guard configurations. Data Guard 
communication uses password files in the standby databases to authenticate redo transport 
sessions. If we change the password of the SYS user in the primary database, redo transport 
sessions will not be authenticated because the password file in the standby site will be 
outdated. So redo transport will raise the ORA-01017: invalid username/password 
or ORA-01031: insufficient privileges error. The primary database alert logfile will 
include the following lines:

Error 1017 received logging on to the standby

PING[ARC0]: Heartbeat failed to connect to standby 'INDIAPS'. Error is 
16191.

It can also include the following lines:

ORA-01031: insufficient privileges

PING[ARC2]: Heartbeat failed to connect to standby 'INDIAPS'. Error is 
1031.

Time for action – changing the SYS password in a Data Guard 
environment

The way to change the SYS password without breaking the redo transport service includes 
copying the primary database's password file to the standby server after changing the 
password. The following steps show how this can be done:

1.	 Stop redo transport from the primary database to the standby database. We can 
execute the DEFER command to defer the log destination with the ALTER SYSTEM 
statement:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = 'DEFER';

System altered.



Common Data Guard Issues

[ 312 ]

If the Data Guard broker is being used, we can use the following statement:

DGMGRL> EDIT DATABASE TURKEY_UN SET STATE = 'LOG-TRANSPORT-OFF';

2.	 Change the SYS user's password in the primary database:
SQL> ALTER USER SYS IDENTIFIED BY newpassword;

User altered.

3.	 Copy the primary database's password file to the standby site:
$ cd $ORACLE_HOME/dbs

$ scp orapwTURKEY standbyhost:/u01/app/oracle/product/11.2.0/ 
dbhome_1/dbs/orapwINDIAPS

4.	 Try logging into the standby database from the standby server using the new SYS 
password:
$ sqlplus sys/newpassword as sysdba

5.	 Start redo transport from the primary database to the standby database:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = 'ENABLE';

System altered.

If the Data Guard broker is being used, we can use the following statement:

DGMGRL> EDIT DATABASE TURKEY_UN SET STATE = 'ONLINE';

6.	 Check whether the redo transport service is running normally by switching the redo 
logs in the primary database:

SQL> ALTER SYSTEM SWITCH LOGFILE;

System altered.

Check the standby database's processes or the alert log file to see redo transport 
service status:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS 
FROM V$MANAGED_STANDBY ;

PROCESS   STATUS          THREAD#  SEQUENCE#     BLOCK#     BLOCKS

--------- ------------ ---------- ---------- ---------- ----------

ARCH      CLOSING               1       3232          1        275

ARCH      CLOSING               1       3229          1         47

ARCH      CONNECTED             0          0          0          0



Chapter 10

[ 313 ]

ARCH      CLOSING               1       3220       2049       1164

RFS       IDLE                  0          0          0          0

RFS       IDLE                  0          0          0          0

RFS       IDLE                  0          0          0          0

MRP0      APPLYING_LOG          1       3233        122     102400

RFS       IDLE                  1       3233        122          1

Also, if the password file of the standby database is somehow corrupted, 
or has been deleted, the redo transport service will raise an error and we 
can copy the primary password file to the standby site to fix this problem.

Pop quiz – the redo transport authentication problem in only one instance 
of the primary database

Suppose we have an RAC primary database, and all instances successfully transmit redo to 
the standby database except one. One of the primary instances shows an authentication 
error in the alert log file. What do we need to do to fix this issue?

What just happened?
We've now changed the SYS user's password in a Data Guard environment without 
causing any errors in the redo transport service. Database administrators have to consider 
standby databases when changing a SYS password in the primary database of a Data Guard 
configuration. Otherwise, the redo transport will fail, and if it is not noticed quickly, this may 
cause data loss in case of any failover.

If we often need to change the SYS user's password in the primary database, it may be 
troublesome to copy the password file to the standby site every time, especially when 
there's more than one standby destination. In this case, the REDO_TRANSPORT_USER 
parameter comes to our rescue. It's possible to change the default redo transport user from 
SYS to another database user by setting this parameter.

Time for action – changing the redo transport user 
Follow these steps to change the redo transport user in the Data Guard configuration:

1.	 Create a new database, which will be used for redo transport in the primary 
database. Grant the SYSOPER privileges to this user and ensure that the standby 
database has applied these changes:
SQL> CREATE USER DGUSER IDENTIFIED BY SOMEPASSWORD;

SQL> GRANT SYSOPER to DGUSER;



Common Data Guard Issues

[ 314 ]

Don't forget that if the password expires periodically for this user, 
this will pose a problem in Data Guard redo transport. So ensure 
that the default profile does not include the PASSWORD_LIFE_
TIME and PASSWORD_GRACE_TIME settings. If it does, choose 
another profile for this user.

2.	 Stop the redo transport from the primary database to the standby databases. We 
can execute the DEFER command to defer the log destination with the ALTER 
SYSTEM statement:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = 'DEFER';

3.	 Change the redo transport user by setting the REDO_TRANSPORT_ USER parameter 
in the primary and standby databases:
SQL> ALTER SYSTEM SET REDO_TRANSPORT_USER = DGUSER;

4.	 Copy the primary database's password file to the standby site:
$ cd $ORACLE_HOME/dbs

$ scp orapwTURKEY standbyhost:/u01/app/oracle/product/11.2.0/ 
dbhome_1/dbs/orapwINDIAPS

5.	 Start redo transport from the primary database to the standby databases:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = 'ENABLE';

6.	 Check whether the redo transport service is running normally by switching redo logs 
in the primary database:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Check the standby database processes or the alert log file to see redo transport 
service status:
SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS 
FROM V$MANAGED_STANDBY ;

What just happened?
The default user, who is the user for the redo transport authentication, is now changed 
from SYS to another database user. As mentioned, this may be useful if we change the SYS 
password often in the primary database.



Chapter 10

[ 315 ]

Dealing with UNNAMED datafiles
There are some reasons for a file being created as UNNAMED in the standby database, 
including insufficient disk space on the standby site, non-privileged directory structure on 
standby database, or improper parameter settings related to file management.

The STANDBY_FILE_MANAGEMENT parameter enables or disables automatic standby file 
management in Data Guard. When automatic standby file management is enabled, file 
additions and deletions in the primary database are replicated to the standby database.

For example, we add a datafile in the primary database when the STANDBY_FILE_
MANAGEMENT parameter on the standby database is set to MANUAL. Due to this parameter 
setting, it will create an UNNAMED file under $ORACLE_HOME/dbs, and this will cause the 
MRP process to be killed. Errors in the alert log file will be as follows:

Errors in file /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace/
INDIAPS_pr00_691.trc:

ORA-01111: name for data file 10 is unknown - rename to correct file

ORA-01110: data file 10: ' /u01/app/oracle2/product/11.2.0/dbhome_1/dbs/
UNNAMED00010'

ORA-01157: cannot identify/lock data file 10 - see DBWR trace file

Time for action – resolving UNNAMED datafile errors
Now we'll see how to resolve an UNNAMED datafile issue in a Data Guard configuration:

1.	 Check for the datafile number that needs to be recovered from the standby 
database:
SQL> SELECT * FROM V$RECOVER_FILE WHERE ERROR LIKE '%MISSING%';

     FILE# ONLINE  ONLINE_ ERROR                   CHANGE# TIME

---------- ------- ------- ----------------- ---------- ----------

       10  ONLINE  ONLINE  FILE MISSING                  0

2.	 Identify datafile 10 in the primary database:
SQL> SELECT FILE#,NAME FROM V$DATAFILE WHERE FILE#=10;

     FILE# NAME

---------- -----------------------------------------------

       536 /u01/app/oracle2/datafile/ORCL/users03.dbf



Common Data Guard Issues

[ 316 ]

3.	 Identify the dummy filename created in the standby database:
SQL> SELECT FILE#,NAME FROM V$DATAFILE WHERE FILE#=10;

     FILE# NAME

---------- -------------------------------------------------------

       536 /u01/app/oracle2/product/11.2.0/dbhome_1/dbs/
UNNAMED00010

4.	 If the reason for the creation of the UNNAMED file is disk capacity or a nonexistent 
path, fix the issue by creating the datafile in its original place.

5.	 Set STANDBY_FILE_MANAGEMENT to MANUAL:
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=MANUAL;

System altered.

6.	 Create the datafile in its original place with the ALTER DATABASE CREATE 
DATAFILE statement:
SQL> ALTER DATABASE CREATE DATAFILE '/u01/app/oracle2/
product/11.2.0/dbhome_1/dbs/UNNAMED00010' AS '/u01/app/oracle2/
datafile/ORCL/users03.dbf';

Database altered.

If OMF is being used, we won't be allowed to create the datafile with the preceding 
statement. We'll come across the following error:
SQL> ALTER DATABASE CREATE DATAFILE '/u01/app/oracle2/
product/11.2.0/dbhome_1/dbs/UNNAMED00010' AS '/u01/app/oracle2/
datafile/ORCL/users03.dbf';

 *

 ERROR at line 1:

 ORA-01276: Cannot add file

 /u01/app/oracle2/datafile/ORCL/users03.dbf. File has an Oracle 
Managed Files file name.

In order to avoid the error, run the following command:

SQL> ALTER DATABASE CREATE DATAFILE '/u01/app/oracle2/
product/11.2.0/dbhome_1/dbs/UNNAMED00010' AS NEW;

Database altered.

7.	 Set STANDBY_FILE_MANAGEMENT to AUTO and start Redo Apply:
SQL> ALTER SYSTEM SET STANDBY_FILE_MANAGEMENT=AUTO SCOPE=BOTH;

System altered.



Chapter 10

[ 317 ]

SQL> SHOW PARAMETER STANDBY_FILE_MANAGEMENT

NAME                                 TYPE        VALUE

----------------------------------- ----------- ------------------

standby_file_management              string      AUTO

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT FROM SESSION;

Database altered.

8.	 Check the standby database's processes, or the alert log file, to monitor Redo Apply:
SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS 
FROM V$MANAGED_STANDBY;

What just happened?
We've fixed a datafile creation error in the standby database by using the ALTER DATABASE 
CREATE DATAFILE statement. Usage of this statement varies depending on the use of 
Oracle-managed files.

Have a go hero 
Simulate the datafile creation error in your test environment. In the primary database, you 
can create a datafile in a path that the Oracle user doesn't have privilege to on a standby 
server, or fill the disk on the standby database server where datafiles reside and create a 
new datafile in the primary database. Then fix the datafile creation error with the method 
mentioned previously.

Closing a gap with an RMAN incremental backup
When a standby database falls behind the primary database in time because of any 
interruption in redo transport or apply, the database can be synchronized again by applying 
the archived logs produced in the no-synchronization period. However, even if one of the 
necessary archived logfiles is not accessible, there is nothing to do for Data Guard to close 
the gap.

In such a case, we have to restore these archived logfiles from backups if they exist. 
If not, the only way to close the gap is by using an RMAN incremental backup taken 
from the primary database, especially to close the gap in question. We use the BACKUP 
INCREMENTAL FROM SCN RMAN statement for this special-purpose backup.



Common Data Guard Issues

[ 318 ]

Time for action – closing a gap with an RMAN incremental 
backup

Let's see all the required steps to practice this recovery operation:

1.	 In this practice, assume that there are missing archived logs (gap) in the standby 
database, and we're not able to restore these archived logs. We'll synchronize Data 
Guard using the RMAN incremental backup. To represent this situation, execute the 
DEFER command to defer the log destination in the primary database, and execute 
the following operation that will generate redo in the primary database:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = 'DEFER';

2.	 Now we have a standby database behind the primary database, and we'll use RMAN 
to reflect the primary database's changes to the standby database. Stop Redo Apply 
in the standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3.	 Query the current system change number (SCN) of the standby database that will 
be used as the limit for an incremental backup of the primary database. Run the 
following statement on the standby database:
SQL> SELECT MIN(FHSCN) FROM X$KCVFH;

MIN(FHSCN)

----------------

20606344

4.	 Run an RMAN incremental backup of the primary database by using the obtained 
SCN value.

This backup job will check all the blocks of the primary database 
and back up the blocks that have a higher SCN. So even if the 
backup size is small, it may take a long time.

RMAN> BACKUP INCREMENTAL FROM SCN 20606344 DATABASE FORMAT '/tmp/
Standby_Inc_%U' tag 'STANDBY_INC';

Starting backup at 20-DEC-12

using target database control file instead of recovery catalog

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=165 device type=DISK

backup will be obsolete on date 27-DEC-12



Chapter 10

[ 319 ]

archived logs will not be kept or backed up

channel ORA_DISK_1: starting full datafile backup set

channel ORA_DISK_1: specifying datafile(s) in backup set

input datafile file number=00001 name=/u01/app/oracle2/datafile/
ORCL/system01.dbf

...

input datafile file number=00007 name=/u01/app/oracle2/datafile/
ORCL/system03.dbf

channel ORA_DISK_1: starting piece 1 at 20-DEC-12

channel ORA_DISK_1: finished piece 1 at 20-DEC-12

piece handle=/tmp/Standby_Inc_03nt9u0v_1_1 tag=STANDBY_INC 
comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:01:15

using channel ORA_DISK_1

including current control file in backup set

channel ORA_DISK_1: starting piece 1 at 20-DEC-12

channel ORA_DISK_1: finished piece 1 at 20-DEC-12

piece handle=/tmp/Standby_Inc_04nt9u3a_1_1 tag=STANDBY_INC 
comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01

Finished backup at 20-DEC-12

5.	 Copy the backup files from the primary site to the standby site with FTP or SCP.
scp /tmp/Standby_Inc_* standbyhost:/tmp/

6.	 Register the backup files to the standby database control file with the RMAN 
CATALOG command, so that we'll be able to recover the standby database using 
these backup files:
RMAN> CATALOG START WITH '/tmp/Standby_Inc'; 

using target database control file instead of recovery catalog

searching for all files that match the pattern /tmp/Standby_Inc

List of Files Unknown to the Database

=====================================

File Name: /tmp/Standby_Inc_03nt9u0v_1_1

File Name: /tmp/Standby_Inc_04nt9u3a_1_1



Common Data Guard Issues

[ 320 ]

Do you really want to catalog the above files (enter YES or NO)? 
YES

cataloging files...

cataloging done

List of Cataloged Files

=======================

File Name: /tmp/Standby_Inc_03nt9u0v_1_1

File Name: /tmp/Standby_Inc_04nt9u3a_1_1

7.	 Recover the standby database with the RMAN RECOVER statement. The Recovery 
operation will use the incremental backup by default as we have already registered 
the backup files:
RMAN> RECOVER DATABASE NOREDO; 

Starting recover at 20-DEC-12

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=1237 device type=DISK

channel ORA_DISK_1: starting incremental datafile backup set 
restore

channel ORA_DISK_1: specifying datafile(s) to restore from backup 
set

destination for restore of datafile 00001: /u01/app/oracle2/
datafile/INDIAPS/system01.dbf

...

destination for restore of datafile 00007: /u01/app/oracle2/
datafile/INDIAPS/system03.dbf

channel ORA_DISK_1: reading from backup piece /tmp/Standby_
Inc_03nt9u0v_1_1

channel ORA_DISK_1: piece handle=/tmp/Standby_Inc_03nt9u0v_1_1 
tag=STANDBY_INC

channel ORA_DISK_1: restored backup piece 1

channel ORA_DISK_1: restore complete, elapsed time: 00:00:01

Finished recover at 20-DEC-12 

8.	 In this step, we'll create a new standby control file in the primary database and  
open the standby database using this new control file. We've performed this  
process at the beginning of this chapter, so we won't be explaining it again; only  
the statements are given as follows:



Chapter 10

[ 321 ]

In the primary database you will see the following command lines:
RMAN> BACKUP CURRENT CONTROLFILE FOR STANDBY FORMAT '/tmp/Standby_
CTRL.bck';

scp /tmp/Standby_CTRL.bck standbyhost:/tmp/

In the standby database you will see the following command lines:
RMAN> SHUTDOWN;

RMAN> STARTUP NOMOUNT; 

RMAN> RESTORE STANDBY CONTROLFILE FROM '/tmp/Standby_CTRL.bck'; 

RMAN> SHUTDOWN; 

RMAN> STARTUP MOUNT;

If OMF is being used, execute the following commands:

RMAN> CATALOG START WITH '+DATA/mystd/datafile/'; 

RMAN> SWITCH DATABASE TO COPY; 

9.	 If new datafiles were added during the time when Data Guard had been stopped, we 
will need to copy and register the newly created files to the standby system, as they 
were not included in the incremental backup set.

We will determine if any files have been added to the primary database, as the 
standby current SCN will run the following query:

SQL>SELECT FILE#, NAME FROM V$DATAFILE WHERE CREATION_CHANGE# > 
20606344;

10.	 If the flashback database is ON in the standby database, turn it off and on again:
SQL> ALTER DATABASE FLASHBACK OFF; 

SQL> ALTER DATABASE FLASHBACK ON;

11.	Clear all the standby redo log groups in the standby database:
SQL> ALTER DATABASE CLEAR LOGFILE GROUP 4; 

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 5;

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 6;

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 7;

12.	Start Redo Apply in the standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT FROM SESSION;



Common Data Guard Issues

[ 322 ]

What just happened?
We've recovered a Data Guard configuration where the standby database is behind the 
primary database because of a gap, and the necessary archived logfiles to recover the 
standby database are missing. We used the RMAN BACKUP INCREMENTAL FROM SCN 
statement for this purpose.

Pop quiz – using a tape for SCN incremental backup
Is it possible to use tape backups in order to close a Data Guard gap with the RMAN 
incremental backup method?

Fixing NOLOGGING changes on the standby database
It's possible to limit redo generation for specific operations on Oracle databases, which 
provide higher performance. These operations include bulk inserts, creation of tables as 
select operations, and index creations. When we work using the NOLOGGING clause, redo 
will not include all the changes to data on the related segments. This means if we perform 
a restore/recovery of the related datafile, or of the whole database after the NOLOGGING 
operations, it'll not be possible to recover the data created with the NOLOGGING option.

The same problem exists with Data Guard. When the NOLOGGING operation is executed in 
the primary database, Data Guard is not able to reflect all the data changes in the standby 
database. In this case, when we activate a standby database or open it in the read-only 
mode, we'll see the following error messages:

ORA-01578: ORACLE data block corrupted (file # 1, block # 2521)

ORA-01110: data file 1: '/u01/app/oracle2/datafile/INDIAPS/system01.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

For this reason, Data Guard installation requires putting the primary database in the FORCE 
LOGGING mode before starting redo transport between the primary and standby database. 
The FORCE LOGGING mode guarantees the writing of redo records even if the NOLOGGING 
clause was specified in the SQL statements. The default mode of an Oracle database is not 
FORCE LOGGING, so we need to put the database in this mode using the following statement:

SQL> ALTER DATABASE FORCE LOGGING;



Chapter 10

[ 323 ]

In this section, we'll assume that the primary database is not in the FORCE LOGGING mode, 
and some NOLOGGING changes were made in the primary database. One method to fix this 
situation in the standby database is restoring the affected datafiles from backups taken from 
the primary database after the NOLOGGING operation. However, in this method we have to 
work with backup files that are most likely much bigger in size than the amount of data that 
needs to be recovered. A method that uses the RMAN BACKUP INCREMENTAL FROM SCN 
statement is more efficient because the backup files will include only the changes from the 
beginning of the NOLOGGING operation.

We'll now see two scenarios. We'll use the BACKUP INCREMENTAL FROM SCN statement 
for an incremental datafile backup in the first scenario, and use the same statement for an 
incremental database backup in the second one. For a small number of affected datafiles and 
relatively less affected data, choose the first scenario. However, if the number of affected 
datafiles and amount of data are high, use the second scenario that takes an incremental 
backup of the whole database.

Time for action – fixing NOLOGGING changes on a standby 
database with incremental datafile backups

As a prerequisite for this exercise, first put the primary database in the no-force logging 
mode using the ALTER DATABASE NO FORCE LOGGING statement. Then perform some 
DML operations in the primary database using the NOLOGGING clause so that we can fix the 
issue in the standby database with the following steps:

1.	 Run the following query to identify the datafiles that are affected by NOLOGGING 
changes:
SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE WHERE 
FIRST_NONLOGGED_SCN > 0;

FILE#      FIRST_NONLOGGED_SCN

---------- -------------------

         4            20606544

2.	 First we need to put the affected datafiles in the OFFLINE state in the standby 
database. For this purpose, stop Redo Apply in the standby database, execute the 
ALTER DATABASE DATAFILE ... OFFLINE statement, and start Redo Apply 
again:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

SQL> ALTER DATABASE DATAFILE 4 OFFLINE FOR DROP;

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT;



Common Data Guard Issues

[ 324 ]

3.	 Now we'll take incremental backups of the related datafiles by using the FROM SCN 
keyword. SCN values will be the output of the execution of the queries in the first 
step. Connect to the primary database as an RMAN target and execute the following 
RMAN BACKUP statements:
RMAN> BACKUP INCREMENTAL FROM SCN 20606544 DATAFILE 4 FORMAT '/
data/Dbf_inc_%U' TAG 'FOR STANDBY';

4.	 Copy the backup files from the primary site to the standby site with FTP or SCP:
scp /data/Dbf_inc_* standbyhost:/data/

5.	 Connect to the physical standby database as the RMAN target and catalog the 
copied backup files to the control file with the RMAN CATALOG command:
RMAN> CATALOG START WITH '/data/Dbf_inc_';

6.	 In order to put the affected datafiles in the ONLINE state, stop Redo Apply on 
the standby database, and run the ALTER DATABASE DATAFILE ... ONLINE 
statement:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

SQL> ALTER DATABASE DATAFILE 4 ONLINE;

7.	 Recover the datafiles by connecting the standby database as the RMAN target. 
RMAN will use the incremental backup automatically because those files were 
registered to the control file previously:
RMAN> RECOVER DATAFILE 4 NOREDO;

8.	 Now run the query from the first step again to ensure that there're no more 
datafiles with the NOLOGGING changes:
SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE WHERE 
FIRST_NONLOGGED_SCN > 0;

9.	 Start Redo Apply on the standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT;

What just happened?
We've successfully recovered the standby database that didn't include the NOLOGGING 
changes performed in the primary database. We used the datafile incremental backup 
method because the number of affected datafiles was small. For a high number of affected 
datafiles, the method explained in the next section will be more suitable.



Chapter 10

[ 325 ]

Time for action – fixing NOLOGGING changes in the standby 
database with incremental database backups

1.	 Determine the SCN that we'll use in the RMAN incremental database backup by 
querying the minimum FIRST_NONLOGGED_SCN column of the V$DATAFILE view 
in the standby database:
SQL> SELECT MIN(FIRST_NONLOGGED_SCN) FROM V$DATAFILE WHERE FIRST_
NONLOGGED_SCN>0;

MIN(FIRST_NONLOGGED_SCN)

------------------------

                20606544

2.	 Stop Redo Apply on the standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

3.	 Now we'll take an incremental backup of the database using the FROM SCN 
keyword. The SCN value will be the output of the execution of the query in the 
first step. Connect to the primary database as the RMAN target and execute the 
following RMAN BACKUP statement:
RMAN> BACKUP INCREMENTAL FROM SCN 20606344 DATABASE FORMAT '/data/
DB_Inc_%U' TAG 'FOR STANDBY';

4.	 Copy the backup files from the primary site to the standby site with FTP or SCP:
scp /data/DB_Inc_* standbyhost:/data/

5.	 Connect to the physical standby database as the RMAN target and catalog the 
copied backup files to the control file with the RMAN CATALOG command:
RMAN> CATALOG START WITH '/data/DB_Inc_';

6.	 Recover the standby database by connecting it as the RMAN target. RMAN will use 
the incremental backup automatically because those files were registered to the 
control file previously:
RMAN> RECOVER DATABASE NOREDO;

7.	 Run the query in the first step again to ensure that there're no more datafiles with 
NOLOGGING changes:
SQL> SELECT FILE#, FIRST_NONLOGGED_SCN FROM V$DATAFILE WHERE 
FIRST_NONLOGGED_SCN > 0;



Common Data Guard Issues

[ 326 ]

8.	 Start Redo Apply on the standby database:
SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT 
LOGFILE DISCONNECT;

If the state of a tablespace that includes the affected datafiles is READ 
ONLY, those files will not be backed up with the RMAN BACKUP 
command. We need to put these tablespaces in the read-write mode 
before the backup operation. Change the state of a tablespace with the 
following statements:

SQL> ALTER TABLESPACE <TABLESPACE_NAME> READ WRITE;

SQL> ALTER TABLESPACE <TABLESPACE_NAME> READ ONLY;

9.	 Put the primary database in the FORCE LOGGING mode:
SQL> ALTER DATABASE FORCE LOGGING;

What just happened?
We've fixed the adverse affect of executing the NOLOGGING operation in the primary database 
in a Data Guard configuration. If this problem is not fixed in the standby database, we'll  
face the ORA-26040 error when we attempt to open the standby database as read-only  
or read-write.

Turning on Data Guard tracing
When database administrators work on a Data Guard problem or plan an important Data 
Guard operation such as role transition, they generally prefer to gather comprehensive trace 
information about the activity of Data Guard-related processes. For this purpose, Oracle 
offers the LOG_ARCHIVE_TRACE parameter. By setting this parameter to an appropriate 
value, it's possible to have detailed information about log archiving, redo transport, and 
Redo Apply activities.

The default value of this initialization parameter is 0, which means the additional tracing 
feature is off, and Oracle will continue generating its default alert and trace entries related 
to error conditions. It's possible to change the value of this parameter in the primary and/
or standby databases online using the ALTER SYSTEM statement. For example, look at the 
following statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=15; 

In the Real Application Cluster database it's possible to set different tracing levels for 
different instances, if necessary.



Chapter 10

[ 327 ]

Keep in mind that additional tracing may produce more trace files with 
larger sizes. This will fill the diagnostic destination filesystem quickly. So if 
the parameter change is intended for temporary purposes, do not forget to 
set the LOG_ARCHIVE_TRACE parameter back to 0.

The following table shows the values and meanings of the LOG_ARCHIVE_TRACE parameter 
levels. It's also possible to turn on tracing for multiple levels. For this purpose, set the 
parameter to the sum of the intended levels. For example, if we want comprehensive tracing 
for real-time apply activity and LGWR redo shipping network activity, which are level 4096 
and 512 respectively, we can set the LOG_ARCHIVE_TRACE parameter to 4608.

Level Meaning

0 Disables archived redo log tracing (default setting)

1 Tracks archiving of redo log files

2 Tracks archive status by each archive log file destination

4 Tracks archive operational phase

8 Tracks archive log destination activity

16 Tracks detailed archive log destination activity

32 Tracks archive log destination parameter modifications

64 Tracks ARCn process state activity

128 Tracks the FAL server process activity

256 Tracks the RFS logical client

512 Tracks the LGWR redo shipping network activity

1024 Tracks the RFS physical client

2048 Tracks the RFS/ARCn ping heartbeat

4096 Tracks the real-time apply activity

8192 Tracks the Redo Apply activity (media recovery or physical 
standby)

16384 Tracks archived I/O buffers

32768 Tracks the LogMiner dictionary archiving

Have a go hero
Turn on Data Guard tracing with some of the given levels in the primary and standby 
databases, and observe the alert log and trace entries. See which extra information is  
given in which tracing level.



Common Data Guard Issues

[ 328 ]

Gathering diagnostic data
We need to access diagnostic data about the Data Guard configuration, especially when 
there's a problem in the Redo Apply or redo transport services. After the first diagnosis 
of the problem, it's possible to decide whether to search for detailed information in the 
primary database or in the standby database. If the issue is about sending redo, it's more 
likely that the necessary information can be found on the primary site. However, if it's 
about Redo Apply, it's better to search for detailed information on the standby site.

No matter where we search for diagnostic data, we need to know where to search for the 
related logfiles and how to query diagnostic data in the database. The most commonly 
referenced files in a Data Guard issue are the primary and standby alert log files. If the Data 
Guard broker is used in the configuration, Data Guard Monitor (DMON) logfiles can also 
be helpful for troubleshooting. If necessary, we can also query Data Guard-related dynamic 
performance views to get information about the issue.

Now let's look at the details of using these methods to access diagnostic data in a Data 
Guard configuration.

Alert log and trace files
Alert log files are the first step to start investigating an Oracle Database issue. It's also the 
same for Data Guard. We can find the directory that contains the alert log and the trace files 
using the following query:

SQL> SELECT NAME,VALUE FROM V$DIAG_INFO  WHERE NAME LIKE 'Diag%';

NAME            VALUE

--------------- -----------------------------------------------------

Diag Enabled    TRUE

Diag Trace      /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace

Diag Alert      /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/alert

Diag Incident   /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/incident

Diag Cdump      /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/cdump

Here, the Diag Trace directory is the location of the background process trace files, the 
server process trace files, the SQL trace files, and the text-formatted version of the alert log 
file. The Diag Alert directory keeps the XML-formatted version of the alert log. Incident 
logfiles are under the Diag Incident directory, and the core dump files are under the 
Diag Cdump directory.



Chapter 10

[ 329 ]

Let's go to the Diag Trace directory and list the alert log file; we can use the tail 
command to see the last lines of the file:

$ cd /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace

$ ls –al alert*

-rw-r----- 1 oracle dba 2533843 Dec 20 01:56 alert_INDIAPS.log

$ tail -100 alert_INDIAPS.log

.

.

.

Media Recovery Waiting for thread 1 sequence 3273 (in transit)

Recovery of Online Redo Log: Thread 1 Group 5 Seq 3273 Reading mem 0

  Mem# 0: /u01/app/oracle2/datafile/ORCL/std5.log

RFS[20]: Selected log 4 for thread 1 sequence 3274 dbid 1319333016 branch 
791552282

Thu Dec 20 01:48:19 2012

Archived Log entry 450 added for thread 1 sequence 3273 ID 0x4eea7a49 
dest 1:

Media Recovery Waiting for thread 1 sequence 3274 (in transit)

Recovery of Online Redo Log: Thread 1 Group 4 Seq 3274 Reading mem 0

  Mem# 0: /u01/app/oracle2/datafile/ORCL/std4.log

Thu Dec 20 01:56:08 2012

RFS[20]: Selected log 5 for thread 1 sequence 3275 dbid 1319333016 branch 
791552282

Thu Dec 20 01:56:08 2012

Archived Log entry 451 added for thread 1 sequence 3274 ID 0x4eea7a49 
dest 1:

Thu Dec 20 01:56:09 2012

Media Recovery Waiting for thread 1 sequence 3275 (in transit)

Recovery of Online Redo Log: Thread 1 Group 5 Seq 3275 Reading mem 0

  Mem# 0: /u01/app/oracle2/datafile/ORCL/std5.log

Another method to monitor the alert log is the ADRCI command-line tool, which is an Oracle 
Database 11g feature to manage Oracle Database diagnostic data. Using ADRCI, it's possible 
to manage the entire alert log and trace files in the diagnostic directories (database, ASM, 
listener alert log files, and so on), view the health monitor reports, and zip incident and 
problem information into a file to send to Oracle Support.



Common Data Guard Issues

[ 330 ]

Time for action – monitoring the database alert log using ADRCI
Let's see an example of monitoring the database alert log using the ADRCI utility:

1.	 Ensure that the ORACLE_HOME and PATH environment variables are set properly. 
The PATH environment variable must include the ORACLE_HOME/bin directory.
export ORACLE_HOME=/u01/app/oracle2/product/11.2.0/dbhome_1

export PATH=$PATH:$ORACLE_HOME/bin

2.	 Start the ADRCI command-line tool:
$ adrci

ADRCI: Release 11.2.0.1.0 - Production on Thu Dec 20 02:06:49 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates.  All 
rights reserved.

ADR base = "/u01/app/oracle2"

3.	 We can run the HELP command to get help on the usage of this utility:
adrci> HELP

HELP [topic]

   Available Topics:

        CREATE REPORT

        ECHO

        EXIT

        HELP

        HOST

        IPS

        PURGE

        RUN

        SET BASE

        SET BROWSER

        SET CONTROL

        SET ECHO

        SET EDITOR

        SET HOMES | HOME | HOMEPATH

        SET TERMOUT



Chapter 10

[ 331 ]

        SHOW ALERT

        SHOW BASE

        SHOW CONTROL

        SHOW HM_RUN

        SHOW HOMES | HOME | HOMEPATH

        SHOW INCDIR

        SHOW INCIDENT

        SHOW PROBLEM

        SHOW REPORT

        SHOW TRACEFILE

        SPOOL

 There are other commands intended to be used directly by Oracle, 
type "HELP EXTENDED" to see the list

It's possible to get help for a specific command by specifying the topic in the HELP 
command:

adrci> HELP SHOW ALERT

  Usage: SHOW ALERT [-p <predicate_string>]  [-term]

                    [ [-tail [num] [-f]] | [-file <alert_file_
name>]]

  Purpose: Show alert messages.

  Options:

    [-p <predicate_string>]: The predicate string must be 
double-quoted.

    The fields in the predicate are the fields:

        ORIGINATING_TIMESTAMP         timestamp

        NORMALIZED_TIMESTAMP          timestamp

        ORGANIZATION_ID               text(65)

        COMPONENT_ID                  text(65)

        HOST_ID                       text(65)

        HOST_ADDRESS                  text(17)

        MESSAGE_TYPE                  number

        MESSAGE_LEVEL                 number

        MESSAGE_ID                    text(65)



Common Data Guard Issues

[ 332 ]

        MESSAGE_GROUP                 text(65)

        CLIENT_ID                     text(65)

        MODULE_ID                     text(65)

        PROCESS_ID                    text(33)

        THREAD_ID                     text(65)

        USER_ID                       text(65)

        INSTANCE_ID                   text(65)

        DETAILED_LOCATION             text(161)

        UPSTREAM_COMP_ID              text(101)

        DOWNSTREAM_COMP_ID            text(101)

        EXECUTION_CONTEXT_ID          text(101)

        EXECUTION_CONTEXT_SEQUENCE    number

        ERROR_INSTANCE_ID             number

        ERROR_INSTANCE_SEQUENCE       number

        MESSAGE_TEXT                  text(2049)

        MESSAGE_ARGUMENTS             text(129)

        SUPPLEMENTAL_ATTRIBUTES       text(129)

        SUPPLEMENTAL_DETAILS          text(129)

        PROBLEM_KEY                   text(65)

[-tail [num] [-f]]: Output last part of the alert messages and 

output latest messages as the alert log grows. If num is not 
specified, the last 10 messages are displayed. If "-f" is 
specified, new data will append at the end as new alert messages 
are generated.

[-term]: Direct results to terminal. If this option is not 
specified,

    the results will be open in an editor. By default, it will 
open in

    emacs, but "set editor" can be used    to set other editors.

[-file <alert_file_name>]: Allow users to specify an alert file 
which 

may not be in ADR. <alert_file_name> must be specified with full 
path. Note that this option cannot be used with the -tail option



Chapter 10

[ 333 ]

  Examples:  

    show alert 

    show alert -p "message_text like '%incident%'"

    show alert -tail 20

4.	 Type the following statement to list the ADR home directories:
adrci> SHOW HOMES

ADR Homes: 

diag/rdbms/india_ps/INDIAPS 

diag/asm/+asm/+ASM

diag/tnslsnr/india_ps/listener

5.	 Set the database ADR HOME to work on:
adrci> SET HOME diag/rdbms/india_ps/INDIAPS 

6.	 Monitor the last 20 lines of the database alert log file with the following statement:
adrci> SHOW ALERT -TAIL 20

2012-12-20 01:46:25.303000 +02:00

Archived Log entry 445 added for thread 1 sequence 3268 ID 
0x4eea7a49 dest 1:

Media Recovery Waiting for thread 1 sequence 3269 (in transit)

Recovery of Online Redo Log: Thread 1 Group 5 Seq 3269 Reading mem 
0

  Mem# 0: /u01/app/oracle2/datafile/ORCL/std5.log

2012-12-20 01:46:28.383000 +02:00

RFS[20]: Selected log 4 for thread 1 sequence 3270 dbid 1319333016 
branch 791552282

.

.

.

Archived Log entry 451 added for thread 1 sequence 3274 ID 
0x4eea7a49 dest 1:

Media Recovery Waiting for thread 1 sequence 3275 (in transit)

Recovery of Online Redo Log: Thread 1 Group 5 Seq 3275 Reading mem 
0

  Mem# 0: /u01/app/oracle2/datafile/ORCL/std5.log

adrci>



Common Data Guard Issues

[ 334 ]

7.	 Run the following statement to monitor the alert log messages that contain the 
string ORA-:
adrci> SHOW ALERT -P "MESSAGE_TEXT LIKE '%ORA-%'"

...

Errors in file /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace/
INDIAPS_pr05_22496.trc:

ORA-27090: Unable to reserve kernel resources for asynchronous 
disk I/O

Additional information: 3

Additional information: 128

Additional information: 268423168

Errors in file /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace/
INDIAPS_pr06_22498.trc:

8.	 It's also possible to list the incidents with the SHOW INCIDENT command:

adrci> SHOW INCIDENT

ADR Home = /u01/app/oracle/diag/rdbms/sb2db/SB2DB1:

******************************************************************

INCIDENT_ID    PROBLEM_KEY       CREATE_TIME                              

-----------    ---------------   ---------------------------- 

320729         ORA 1578          2012-12-20 00:03:50.538000 +02:00       

1 rows fetched

What just happened?
We've seen an example of using the ADRCI command-line tool to monitor alert log files. In a 
Data Guard-related problem, the first place to check will be the alert log files of the primary 
and standby databases. Using ADRCI, it's easy to read alert log files of all Oracle components 
and also list specific problems that are recorded in the alert log files.

Data Guard broker logs
For each database of a Data Guard configuration where a Data Guard broker is being used, 
the DMON process writes log data into a logfile. This logfile resides in the same directory 
as the alert log and is named drc<$ORACLE_SID>.log. It contains important information 
about the Data Guard's status that can be used to troubleshoot Data Guard's failures.



Chapter 10

[ 335 ]

Let's check this file in our standby database:

$ cd /u01/app/oracle2/diag/rdbms/india_ps/INDIAPS/trace

$ tail -50 drcINDIAPS.log

...

2012-12-20 02:15:37.050                      Property 
'LogFileNameConvert' has inconsistent values:METADATA='', SPFILE='', 
DATABASE='/u01/app/oracle2/datafile/ORCL, /u01/app/oracle2/datafile/ORCL'

2012-12-20 02:15:37.050                      RSM0: HEALTH CHECK WARNING: 
ORA-16714: the value of property LogFileNameConvert is inconsistent with 
the database setting

2012-12-20 02:15:37.066                      RSM Warning: Property 
'LogArchiveTrace' has inconsistent values:METADATA='0', SPFILE='0', 
DATABASE='8192'

2012-12-20 02:15:37.066                      RSM0: HEALTH CHECK WARNING: 
ORA-16714: the value of property LogArchiveTrace is inconsistent with the 
database setting

2012-12-20 02:15:37.077 00000000  2049726439 Operation HEALTH_CHECK 
continuing with warning, status = ORA-16792

2012-12-20 02:15:37.078 00000000  2049726439 Operation HEALTH_CHECK 
continuing with warning, status = ORA-16792

Dynamic performance views
Dynamic performance views are special database views that are dynamically updated by 
the database itself and contain important information about the status and performance of 
database components. It's not possible to insert or update data in these views. DBAs only 
query them to gather information about the status of the database.

Here, we'll see some of the dynamic performance views that contain information about Data 
Guard's configuration or status:

�� V$DATABASE: This view includes a lot of general information about the database. 
In a Data Guard configuration, it's possible to query the role of the database, the 
protection mode, and the switchover status using this view. Run the following query 
in the databases in your Data Guard environment:
SQL> SELECT PROTECTION_MODE, PROTECTION_LEVEL, DATABASE_ROLE ROLE, 
SWITCHOVER_STATUS FROM V$DATABASE;



Common Data Guard Issues

[ 336 ]

PROTECTION_MODE      PROTECTION_LEVEL     ROLE      SWITCHOVER_
STATUS

-------------------- ----------------- ---------------- ----------

MAXIMUM PERFORMANCE  MAXIMUM PERFORMANCE  PHYSICAL STANDBY 
NOTALLOWED

�� V$DATAGUARD_CONFIG: This view lists the DB_UNIQUE_NAME parameters of the 
databases existing in the Data Guard configuration. You can query this view on any 
of the databases:
SQL> SELECT * FROM V$DATAGUARD_CONFIG;

DB_UNIQUE_NAME

------------------------------

INDIA_PS

turkey_un

INDIA_UN

�� V$ARCHIVE_DEST_STATUS: This view shows the configuration information for 
the archived redo log destinations. By running the following query in the primary 
database, we can display the recovery mode at the archival destination:
SQL> SELECT RECOVERY_MODE FROM V$ARCHIVE_DEST_STATUS where dest_
id=2;

RECOVERY_MODE

-----------------------

MANAGED REAL TIME APPLY

�� V$MANAGED_STANDBY: We query this view in a physical standby database to 
monitor the current status of specific Data Guard processes. Run the following 
query in the physical standby database and see which sequence is being applied and 
which sequences are being transferred from the primary database to the standby 
database:
SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#,BLOCK#, BLOCKS 
FROM V$MANAGED_STANDBY;

PROCESS   STATUS          THREAD#  SEQUENCE#     BLOCK#     BLOCKS

--------- ------------ ---------- ---------- ---------- ----------

ARCH      CLOSING               1       3272      18432       2043

ARCH      CLOSING               1       3274      20480          1

ARCH      CONNECTED             0          0          0          0



Chapter 10

[ 337 ]

ARCH      CLOSING               1       3273      18432       2034

RFS       IDLE                  0          0          0          0

RFS       IDLE                  0          0          0          0

RFS       IDLE                  0          0          0          0

MRP0      APPLYING_LOG          1       3275       4098     102400

RFS       IDLE                  1       3275       4098          1

�� V$ARCHIVED_LOG: This view contains detailed information about the archived 
logfiles of databases. In a physical standby database, the APPLIED column shows 
whether the archived logfile was applied or not. The following query shows the 
archived log sequences that are received from the primary database but not applied:
SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#,NEXT_CHANGE# FROM 
V$ARCHIVED_LOG where APPLIED='NO';

no rows selected

�� V$DATAGUARD_STATUS: This view contains messages that are recently written to 
the alert log or trace files, related with Data Guard services. In case of a Data Guard 
issue, it's a good method to check errors using this view.
SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH24:MI:SS';

SQL> SELECT TIMESTAMP, MESSAGE FROM V$DATAGUARD_STATUS WHERE 
TIMESTAMP>SYSDATE-1 ORDER BY TIMESTAMP;

TIMESTAMP              MESSAGE

--------------------   -------------------------------------------

20-DEC-2012 01:48:13 Media Recovery Waiting for thread 1 sequence 

 3272 (in transit)

20-DEC-2012 01:48:16 ARC0: Beginning to archive thread 1 sequence 

    3272 (20612121-20612129)

20-DEC-2012 01:48:16 ARC0: Completed archiving thread 1 sequence 
3272 

 (0-0)

...

20-DEC-2012 01:56:08 ARC1: Beginning to archive thread 1 sequence 

 3274 (20612140-20612682)

20-DEC-2012 01:56:08 ARC1: Completed archiving thread 1 sequence 
3274 

 (0-0)

20-DEC-2012 01:56:09 Media Recovery Waiting for thread 1 sequence 

     3275 (in transit)



Common Data Guard Issues

[ 338 ]

�� V$ARCHIVE_GAP: If there is a gap in a standby database that is blocking recovery, 
we can query the missing archived logfiles using this view. If there is no gap, the 
query will not return any rows.
SQL> DESC V$ARCHIVE_GAP

 Name                                      Null?    Type

 --------------------------------------- -------- ---------------

 THREAD#                                            NUMBER

 LOW_SEQUENCE#                                      NUMBER

 HIGH_SEQUENCE#                                     NUMBER

SQL> SELECT * FROM V$ARCHIVE_GAP;

no rows selected

�� V$LOGSTDBY_PROCESS: We can monitor SQL Apply in a logical standby database by 
querying this view. If SQL Apply is not running, the query will not return any rows.

SQL> SELECT SID, SERIAL#, SPID, TYPE, HIGH_SCN FROM V$LOGSTDBY_
PROCESS;

 

  SID   SERIAL#   SPID         TYPE            HIGH_SCN

  ----- -------   ----------- ---------------- ----------

   48        6    11074        COORDINATOR     7178242899

   56       56    10858        READER          7178243497

   46        1    10860        BUILDER         7178242901

   45        1    10862        PREPARER        7178243295

   37        1    10864        ANALYZER        7178242900

   36        1    10866        APPLIER         7178239467

   35        3    10868        APPLIER         7178239463

   34        7    10870        APPLIER         7178239461

   33        1    10872        APPLIER         7178239472 

Summary
In this chapter, we have covered common Data Guard issues using diagnostic data in a Data 
Guard environment. As Data Guard administrators, we have to identify the underlying reason 
of a Data Guard issue using this diagnostic data, and resolve the issue in the correct way. We 
think that the information and examples that we've seen in this chapter will be helpful for 
this purpose. The next chapter is about Data Guard best practices.



11
Data Guard Best Practices

In many Data Guard installation cases, people may think that seeing the main 
functions of Data Guard running is enough for a successful deployment of Data 
Guard. In other words, if redo is being transferred from the primary database 
to a standby database(s), and is being applied on the standby, it's a smooth 
Data Guard configuration. However, if the configuration is prepared keeping 
in mind best practices, which is the topic of this chapter, it will be more robust, 
effective, and complete.

In this chapter, we will discuss the following topics:

�� Configuring connection failover

�� Archived log deletion policy on a standby database

�� Using flashback on a standby database

�� Database rolling upgrade using a transient logical standby

�� Corruption detection, prevention, and automatic repair with Oracle Data Guard

Let's start with configuring a connection failover in a Data Guard environment.

Configuring a connection failover
Building a configuration in which database clients are able to automatically connect to a new 
primary database after a role change is vital in Data Guard. If we skip this important aspect, it 
may be very hard to configure connections of all database users to the new primary database.

Now, let's learn about the important connection failover terms – Transparent Application 
Failover (TAF), Fast Connection Failover (FCF), and Fast Application Notification (FAN).



Data Guard Best Practices

[ 340 ]

Transparent Application Failover (TAF)
TAF is a connection failover configuration of Oracle Call Interface (OCI) that is used for high-
availability environments such as Oracle Data Guard, Oracle Real Application Clusters (RAC), 
and Oracle Fail Safe.

When using this configuration, clients can automatically establish a prespecified connection 
to the database after a failure of the database instance. In RAC, this means connecting to 
one of the surviving instances and in Data Guard it means connecting to the new primary 
database after failover.

We can configure TAF in two ways – client-side configuration and server-side configuration:

�� Client-side TAF configuration: The TNS connect string is configured to specify the 
failover details.

�� Server-side TAF configuration: The database service attributes are configured to 
specify the failover details. This method will be more effective when there are many 
client connections.

If both client- and server-side TAF configurations exist in the database 
environment, the server-side configuration properties will be valid 
regarding the order of precedence.

TAF will not only establish a new connection to the database, but also re-run a select 
statement and reposition the cursor if preferred. We can configure TAF only for establishing 
a new connection, which is called session failover, or for the recovery of the session and 
query, which is called select failover. With the select failover mode, the number of rows 
fetched by the cursor is tracked and when the connection is lost, it's recovered by TAF by 
repositioning the cursor. So, the client doesn't restart but resumes fetching rows. This is 
especially good for long-running, time-critical reports and data extractions.

TAF cannot failover inserts, updates, or deletes. The Oracle database 
rolls back these DML operations in case of a failure.

It's possible to monitor TAF properties of sessions using the V$SESSION dynamic 
performance view. The following query result will show the service name, failover type, 
failover method, and failover failovers, if occurred, for the clients connected to the database:

SQL> SELECT USERNAME, SERVICE, FAILOVER_TYPE, FAILOVER_METHOD, FAILED_
OVER FROM V$SESSION;



Chapter 11

[ 341 ]

Configuring the client-side TAF
The client-side TAF is configured using the TNS connection string. The following string is an 
example of a Data-Guard-enabled client-side TAF configuration where primary and standby 
databases are 11gR2 RAC with Single Client Access Names (SCAN) being used:

OLTP =  
  (DESCRIPTION =  
    (LOAD_BALANCE=OFF)                                    
    (FAILOVER=ON)
    (ADDRESS_LIST =  
      (ADDRESS = (PROTOCOL = TCP)(HOST = PRIMARY_SCAN)(PORT = 1521))  
      (ADDRESS = (PROTOCOL = TCP)(HOST = STANDBY_SCAN)(PORT = 1521))  
    )  
    (CONNECT_DATA =  
      (SERVICE_NAME = OLTP)  
      (SERVER = DEDICATED)  
        (FAILOVER_MODE =  
          (TYPE = session)  
          (METHOD = BASIC)  
          (RETRIES = 15)  
          (DELAY = 10)  
        ))))

Configuring the server-side TAF
In 11gR2, we configure the server-side TAF using Server Control Utility (SRVCTL). The 
srvctl add service command adds a new service, and the srvctl modify service 
command changes settings for a predefined service. The following is an example of creating 
a TAF-enabled database service on a RAC and Data Guard configuration. We must create this 
service both in the primary and standby hosts with the following commands:

�� For the primary cluster, use the following:
srvctl add service -d ORCL_PRIM -s OLTP -r prim_node1,prim_node2 
-l PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 15

�� For the standby cluster, use the following:

srvctl add service -d ORCL_STD -s OLTP -r std_node1,std_node2 -l    
PRIMARY -q TRUE -e SESSION -m BASIC -w 10 -z 15



Data Guard Best Practices

[ 342 ]

The following table lists the definitions of the command options:

Option Description
-d This gives a unique name for the database.
-s This gives the service name.
-r For RAC databases, this gives the list of preferred 

instances on which the service runs.
-l {[primary] | 
[physical_standby] |

[logical_standby] | 
[snapshot_standby]}

This gives the service role. Service is automatically 
started when the database is in this role.

-q {TRUE | FALSE} This indicates whether AQ HA notifications should be 
enabled for this service.

-e {NONE | SESSION | 
SELECT}

This gives the failover type – session failover, select 
failover, or none.

-m {NONE | BASIC} This gives the failover method. If the session failover or 
select failover type is selected, you should use BASIC 
for this option. NONE means TAF is disabled.

-z This gives the number of failover retries.
-w This gives the time delay between failover attempts.

If we're going to use the physical standby database with active Data Guard for reporting, we 
should create a service for this purpose on both primary and standby hosts. For example:

�� For the primary cluster, create the following service:
srvctl add service -d ORCL_PRIM -s REPORTING -r prim_node1,prim_
node2 -l PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 15

�� For the standby cluster, create the following service:
srvctl add service -d ORCL_STD -s REPORTING-r std_node1,std_node2 
-l    PHYSICAL_STANDBY -q TRUE -e SESSION -m BASIC -w 10 -z 15

In this case, the service will be created at the cluster level but the service definition will not 
be applied to the standby database because it's read-only. For this reason, we run the DBMS_
SERVICE.CREATE_SERVICE procedure for the REPORTING service on the primary database, 
and the service definition will be replicated to the standby database with Redo Apply.

EXECUTE DBMS_SERVICE.CREATE_SERVICE( service_name => 'reporting' 
network_name => 'reporting' goal => 'NULL' dtp => 'NULL' aq_ha_
notifications => 'TRUE' failover_method => 'BASIC' failover_type => 
'SESSION' failover_retries => 15 failover_delay => 10 clb_goal => 
'NULL');



Chapter 11

[ 343 ]

Using the previous server-side TAF configuration (the OLTP and REPORTING services), it's not 
necessary to configure TAF at the client side in the tnsnames.ora file. The following TNS 
entry is an example that can be used to connect the OLTP service:

OLTP= 
  (DESCRIPTION_LIST=
  (LOAD_BALANCE=OFF) 
  (FAILOVER=ON) 
(DESCRIPTION= 
  (CONNECT_TIMEOUT=3)(TRANSPORT_CONNECT_TIMEOUT=2)(RETRY_COUNT=3) 
    (ADDRESS_LIST=
   (LOAD_BALANCE=ON)
   (ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_SCAN)(PORT=1521))) 
    (CONNECT_DATA=(SERVICE_NAME=OLTP)))
(DESCRIPTION= 
  (CONNECT_TIMEOUT=5)(TRANSPORT_CONNECT_TIMEOUT=3)(RETRY_COUNT=3) 
    (ADDRESS_LIST=
   (LOAD_BALANCE=ON) 
(ADDRESS=(PROTOCOL=TCP)(HOST= STANDBY_SCAN)(PORT=1521))) 
    (CONNECT_DATA=(SERVICE_NAME=OLTP))))

In this TNS entry, both the primary and standby SCAN hostnames are involved. Just below 
DESCRIPTION_LIST, we can see LOAD_BALANCE=OFF. This means that the client will try to 
connect the DESCRIPTION definitions in order. If it can't connect to the primary database, 
it'll try to connect to the standby database. However, below the DESCRIPTION definitions, 
we see LOAD_BALANCE=ON. This is about the connection to the RAC database and new 
connections are going to be assigned to three IP addresses of the SCAN name randomly.

For each DESCRIPTION definition, we can see some TNS string parameters set. CONNECT_
TIMEOUT specifies the total time to establish an Oracle net connection to a database. It 
includes the TRANSPORT_CONNECT_TIMEOUT value, which is the time taken by a client to 
establish a TCP connection to the database server. It's possible to set the CONNECT_TIMEOUT 
value globally for a database instance in the sqlnet.ora file using the SQLNET.OUTBOUND_
CONNECT_TIMEOUT parameter. Also, we can set the TCP.CONNECT_TIMEOUT parameter 
for a global TRANSPORT_CONNECT_TIMEOUT value. The last parameter, RETRY_COUNT, 
specifies the maximum number of connection attempts for the DESCRIPTION definition.

In this configuration, the following algorithm will be applied when clients connect to a 
database using the OLTP service:

1.	 The PRIMARY_SCAN hostname is resolved to three IP addresses.

2.	 One of the IP addresses is randomly selected and a connection attempt is performed.



Data Guard Best Practices

[ 344 ]

3.	 If the IP address doesn't respond in the time we set in TRANSPORT_CONNECT_
TIMEOUT, which is two seconds, or the IP address responds but a connection can't be 
established in three seconds (CONNECT_TIMEOUT), it'll try the next IP address. There 
will be a maximum of three retry attempts because of the RETRY_COUNT setting.

4.	 When the client can't connect to the primary database with the first DESCRIPTION 
definition, it'll try to connect the second DESCRIPTION definition, which is the 
standby database.

5.	 The STANDBY_SCAN hostname will be resolved to three IP addresses.

6.	 One of the IP addresses is randomly selected and an attempt for a connection is 
performed. The same settings are defined for the standby database description.

Note that automatically controlling the startup of services by assigning a role to the service 
with SRVCTL is an 11gR2 feature. In earlier releases, we can create a trigger to ensure that 
the service is started only for the specified database role, such as the following example:

create trigger TAF_TRIGGER after startup on database
declare
 db_role varchar(30);
begin
 select database_role into db_role from v$database;
 if db_role = 'PRIMARY' then
 DBMS_SERVICE.START_SERVICE('OLTP');
 else
 DBMS_SERVICE.STOP_SERVICE('OLTP');
 end if;
end;
/

Fast Connection Failover (FCF)
Fast Connection Failover is the equivalent of Transparent Application Failover for Java Database 
Connectivity (JDBC) clients. TAF works for OCI clients and FCF works for JDBC clients.

Time for action – configuring FCF for JDBC connections
Let's see an example of how we can configure FCF for JDBC clients.

1.	 In order to run FCF as we configured it, we need to create database services where 
TAF or aq_ha_notifications is disabled. As we discussed, in 11gR2, it's possible 
to create role-specific database services so that service is automatically enabled 
or disabled whenever there is a role change. The following statements can be run 
on the primary and standby clusters to create a database service for a production 
service OLTP:



Chapter 11

[ 345 ]

�� For the primary cluster, use the following:
srvctl add service -d ORCL_PRIM -s OLTP -r prim_node1,prim_
node2 -l PRIMARY -q FALSE -e NONE -m NONE -w 0 -z 0

�� For the standby cluster, use the following:
srvctl add service -d ORCL_STD -s OLTP -r std_node1,std_
node2 -l    PRIMARY -q FALSE -e NONE -m NONE -w 0 -z 0

If needed, the following statements will create a read-only service for reporting on 
the physical standby database:

�� For the primary cluster, use the following:
srvctl add service -d ORCL_PRIM -s REPORTING -r prim_
node1,prim_node2 -l PHYSICAL_STANDBY -q FALSE -e NONE -m 
NONE -w 0 -z 0

�� For the standby cluster, use the following:
srvctl add service -d ORCL_PRIM -s REPORTING -r std_
node1,std_node2 -l PHYSICAL_STANDBY -q FALSE -e NONE -m NONE 
-w 0 -z 0

Create the REPORTING service with the DBMS_SERVICE.
CREATE_SERVICE procedure on the primary database so that 
standby knows about this service through redo transmission.

2.	 Now we configure the JDBC clients with the proper CONNECT descriptor.
"jdbc:oracle:thin:@" +
"(DESCRIPTION_LIST=" +
  "(LOAD_BALANCE=off)" + 
  "(FAILOVER=on)" +
  "(DESCRIPTION=" +
    "(ADDRESS_LIST=" +
    "(LOAD_BALANCE=on)" + 
    "(ADDRESS=(PROTOCOL=TCP)(HOST=PRIMARY_SCAN)(PORT=1521)))" +
    "(CONNECT_DATA=(SERVICE_NAME=OLTP)))" +
  "(DESCRIPTION=" +
    "(ADDRESS_LIST=" +
    "(LOAD_BALANCE=on)" +
    "(ADDRESS=(PROTOCOL=TCP)(HOST=STANDBY_SCAN)(PORT=1521)))" +
   "(CONNECT_DATA=(SERVICE_NAME=OLTP))))";



Data Guard Best Practices

[ 346 ]

3.	 The JDBC client should set the TCP_CONNTIMEOUT_STR property so that the 
connection attempt fails over to the next host in the ADDRESS_LIST list after the 
specified time.
Properties prop = new Properties(); prop.put(oracle.net.
ns.SQLnetDef.TCP_CONNTIMEOUT_STR, ""+5000); // 5000ms pds.
setConnectionProperties(prop);

4.	 Enable FCF and configure the application to connect to all of the primary and 
standby ONS daemons.
pds.setFastConnectionFailoverEnabled(true); 
pds.setONSConfiguration("nodes=prim_node1:6200,prim_
node2:6200,std_node1:6200,std_node2:6200");

What just happened?
We've successfully configured FCF for JDBC client connections.

Fast Application Notification (FAN)
FAN is a notification mechanism in which Oracle doesn't wait for clients to detect any 
database status changes (such as service, instance, or if the database goes up or down), 
and quickly (as its name implies) informs clients about the events. If FAN is not used, clients 
need to wait for the TCP timeout duration to fail over to another specified connection. This 
duration can be very long and not suitable for our failover time target.

If the Data Guard broker is used in a failover, the FAN event is 
automatically sent to the clients.

In addition to up/down events, FAN also notifies clients with load-balancing advisory events. 
Clients use this information and connect to the instance with the best response time.

It's possible to take advantage of FAN with the following methods:

1.	 If an integrated Oracle client is used, the client application can use FAN without 
programmatic changes. The integrated clients for FAN events are Oracle database 
11g JDBC, Oracle Universal Connection Pool (UCP) for Java, Oracle database 11g 
ODP.NET, and Oracle database 11g Oracle Call Interface (OCI).

JDBC clients subscribe to ONS daemons and receive FAN events only 
if FCF is configured on the clients.

2.	  Implement FAN server-side callouts on your Database Tier.



Chapter 11

[ 347 ]

What just happened?
Connection failover methods are important pieces of the database high-availability feature, 
and we've gone through configuring automatic connection failover for Oracle database 
clients in an RAC and Data Guard environment.

The archived log deletion policy on the standby database
The continuously transferred redo transaction is archived at the standby database before 
or after being applied, depending on the configuration. At the end, we're faced with lots 
of files filling the log destination either on the filesystem or ASM disk group. We need to 
build an automatic structure on the standby site, where applied archived logs are deleted 
automatically based on a specific logic.

There are several methods for archived log deletion. It's possible to delete archived logs 
with the rm command of the operation system or ASM. However, if we use rm, the control 
file will not be updated about the deletion of archived logfiles. Thus, in order to update the 
control file with the deletion operation, we must run crosscheck and delete expired RMAN 
commands as follows:

RMAN> crosscheck archivelog all; 
RMAN> delete expired archivelog all;

Another option is scheduling an RMAN job that deletes applied archived logs on the standby 
database. The RMAN command's delete archivelog command updates the control 
file related to the delete operation. This method is easier than using the rm command; 
however, for both methods we have a job-maintenance issue. If the scheduled job doesn't 
run for some reason, the log destination will fill up and manual operation will be required.

The recommended method to keep deleting the archived logfiles on standby databases is 
simply leaving this task to Oracle. We use the fast recovery area for this purpose.

Time for action – the recommended configuration for archived 
log maintenance on a standby database

Let's see an example of configuring automatic maintenance of the archived logs on a 
standby database:

1.	 Enable the fast recovery area on the standby database by setting the DB_
RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE parameters:
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/data/FRA';
SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=500G;



Data Guard Best Practices

[ 348 ]

If we're using ASM, we can specify a disk group as DB_RECOVERY_FILE_DEST.

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='+FRA';

2.	 Set the LOG_ARCHIVE_DEST_1 parameter as follows so that the archived logfiles 
will be created at the DB_RECOVERY_FILE_DEST parameter:
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1='LOCATION=USE_DB_
RECOVERY_ FILE_DEST';

3.	 Set the RMAN archived log deletion policy as follows. With this setting, the applied 
archived logs will be automatically deleted when there is a space constraint in 
FRA, depending on DB_RECOVERY_FILE_DEST_SIZE. If the archived logs are not 
applied, they will not be deleted.

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY TO APPLIED ON STANDBY;

Automatic deletion of archived logs in a logical standby database is already 
covered in Chapter 3, Configuring Oracle Data Guard Logical Standby 
Database, in detail.

What just happened?
We've mentioned methods to maintain the applied archived logfiles on the standby 
database. The recommended method of using FRA is described step by step. With this 
method, deletion of applied archived logs is maintained by Oracle and it's guaranteed  
that the archived logs that are not applied yet will not be deleted.

Using flashback on a standby database
Flashback is a useful feature introduced in Oracle database version 9i and more properties 
were added on in the next versions, 10g and 11g. When enabled, the flashback feature helps 
us recover data loss, corrupted data, or logical errors easily. In the following scenarios, we 
can use flashback with PITR (Point-in-Time Recovery) to recover data:

�� Dropped tables

�� Truncated tables

�� Massive changes by inserts / updates / deletes

�� Logical errors



Chapter 11

[ 349 ]

If we're not using flashback, the steps to restore a table loss will be as follows:

1.	 Restore the full database on a separate server using a backup performed before the 
table's drop operation.

2.	 After restoring the database, perform the until time recovery.

3.	 Open the database with resetlogs.

4.	 Export the table from the restored database and import it into the production 
database.

If you are using flashback, you can use it to recover the table. However, if there is no standby 
database, this will be a disadvantage because we'll need to flash back the whole database to 
that particular time. So there will be loss of transactions.

Time for action – using flashback on a standby database
Now we are going to see how to recover a dropped/truncated table if a standby database 
exists, and using the flashback feature. We won't make any changes to the primary database 
and even the flashback feature may be off on the primary database.

1.	 Enabling flashback: To perform recovery of an object, flashback must be enabled on 
the standby database. Ensure MRP is cancelled before enabling flashback.
SQL> alter database recover managed standby database cancel;
Database altered.
SQL> alter database flashback on;
Database altered.
SQL> select db_unique_name,flashback_on from v$database;
DB_UNIQUE_NAME  FLASHBACK_ON
--------------- ------------------
INDIA_UN        YES

On the alert log, you will get the following:

Thu Dec 20 15:22:21 2012
RVWR started with pid=25, OS id=7900
Thu Dec 20 15:22:24 2012
Allocated 3981120 bytes in shared pool for flashback generation 
buffer
Flashback Database Enabled at SCN 6082371
Completed: alter database flashback on



Data Guard Best Practices

[ 350 ]

2.	 Adjusting the flashback retention period on the standby database: In order to 
perform recovery of an object with flashback, the object's drop/truncate time must 
not be more than the value specified in DB_FLASHBACK_RETENTION_TARGET and 
all the flashback and archive logs should be available.
SQL> show parameter db_flashback_retention_target
NAME                                 TYPE        VALUE
------------------------------------ ----------- --------db_
flashback_retention_target        integer     5760

3.	 Gathering table information before truncation: We can collect the following data 
from the primary database before truncating the table, in order to ensure that we'll 
recover the same number of rows after the flashback:
SQL> select segment_name,sum(bytes/1024/1024) from dba_segments 
where segment_name='PACKT' group by segment_name;
SEGMENT_NAME    SUM(BYTES/1024/1024)
--------------- --------------------
PACKT                           7738
SQL> select count(*) from packt;
       COUNT(*)
---------------
       88080384

The PACKT table's size is around 7.7 GB with 88080384 rows.

4.	 Truncating the table and capturing the time: From the primary database, let's 
truncate the table:

This truncate operation is only for testing purposes. Please 
do not perform this on production databases.

SQL> truncate table packt;
Table truncated.
SQL> select count(*) from packt;
COUNT(*)
--------
0
SQL> select sysdate from dual;
SYSDATE
---------
20-DEC-2012 16:11:41

The table was truncated on 20-DEC-2012, at 16:11:41.



Chapter 11

[ 351 ]

5.	 Verifying the data on a standby database: We're using the standby database with 
real-time apply and active Data Guard features. So the transactions will be quickly 
replicated with no delay.
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAME  DATABASE_ROLE
--------------- ----------------
INDIA_UN        PHYSICAL STANDBY
SQL> select count(*) from packt;
  COUNT(*)
----------
         0

The number of rows for the table PACKT on standby is also 0, so the truncate 
operations are applied on the standby database.

6.	 Performing a time-based flashback on a standby database: Now connect as 
SYSDBA, cancel recovery, shut down the standby database, and start in MOUNT 
status:
SQL> connect / as sysdba
Connected.
SQL> recover managed standby database cancel;
Media recovery complete.
SQL> shutdown immediate
SQL> startup mount
Database mounted.

From step 4, we have captured the time of the table's truncate operation, and 
now will use that time to flash back the standby database:
SQL> flashback database to timestamp to_date('20-DEC-2012 
16:10:00','DD-MON-YYYY HH24:MI:SS');
Flashback complete.

On the alert log, you will get the following:
Thu Dec 20 16:26:04 2012
flashback database to timestamp to_date('20-DEC-2012 
16:10:00','DD-MON-YYYY HH24:MI:SS')
Flashback Restore Start
Flashback Restore Complete
Flashback Media Recovery Start
Serial Media Recovery started
Flashback Media Recovery Log /u02/app/oracle/flash_recovery_area/
INDIA_UN/archivelog/2012_12_20/o1_mf_1_985_8f5vcxhj_.arc
Incomplete Recovery applied until change 6090032 time 12/20/2012 
16:10:01



Data Guard Best Practices

[ 352 ]

Flashback Media Recovery Complete
Completed: flashback database to timestamp to_date('20-DEC-2012 
16:10:00','DD-MON-YYYY HH24:MI:SS')

If there is any difference in time zones, you can use the log 
miner to analyze the archived redo logfiles and see at exactly 
what time the table was truncated.

In the previous command, we used flashback 10 minutes prior to when the drop and 
flashback operations were successful.

7.	 Verifying the data after flashback on a standby database: Now open the database 
and check the number of rows that have been recovered.
SQL> select db_unique_name,database_role,resetlogs_change# from 
v$database;
DB_UNIQUE_NAME  DATABASE_ROLE    RESETLOGS_CHANGE#
--------------- ---------------- -----------------
INDIA_UN        PHYSICAL STANDBY            945184
SQL> select count(*) from packt;
  COUNT(*)
----------
  88080384

We can now compare the actual rows before truncating with the number of rows 
after the flashback operation. In steps 3 and 7, the number of rows are the same. 
So we've successfully recovered the data.

8.	 Exporting the table from a standby database: We should now export the table from 
the standby database. If we create a DB link in the primary database pointing to the 
standby database, we can use NETWORK_LINK to export the table from standby. 
We have already discussed this option in Chapter 7, Active Data Guard, Snapshot 
Standby, and Advanced Techniques. You should perform the following steps from  
the primary database; it will export data from standby using NETWORK_LINK.

1.	 Create a database link in the primary database to point to standby.
SQL> create public database link exp_turkey connect to 
system identified by "free2go" using 'india';
Database link created.

2.	 Export the PACKT table.
[oracle@oracle-primary expdp]$expdp system/free2go 
directory=EXPDP_INDIA network_link=exp_turkey tables=oracle.
packt dumpfile=Packt_table.dmp logfile=packt_table.log



Chapter 11

[ 353 ]

Connected to: Oracle Database 11g Enterprise Edition Release 
11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real 
Application Testing options
Starting "SYSTEM"."SYS_EXPORT_TABLE_02":  system/******** 
directory=EXPDP_INDIA network_link=exp_turkey tables=oracle.
packt dumpfile=Packt_table.dmp logfile=packt_table.log
Estimate in progress using BLOCKS method...
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 7.556 GB
Processing object type TABLE_EXPORT/TABLE/TABLE
Processing object type TABLE_EXPORT/TABLE/STATISTICS/TABLE_
STATISTICS
. . exported "ORACLE"."PACKT"                             
3.386 GB 88080384 rows
Master table "SYSTEM"."SYS_EXPORT_TABLE_02" successfully 
loaded/unloaded
***********************************************************
**********
Dump file set for SYSTEM.SYS_EXPORT_TABLE_02 is:
  /u02/backups/expdp/Packt_table.dmp
Job "SYSTEM"."SYS_EXPORT_TABLE_02" successfully completed at 
17:24:18

9.	 Importing the table in a primary database: This process checks the status of the 
database and row count in the packt table.
SQL> select db_unique_name,database_role,resetlogs_change# from 
v$database;
DB_UNIQUE_NAME       DATABASE_ROLE    RESETLOGS_CHANGE#
-------------------- ---------------- -----------------
turkey_un            PRIMARY                     945184
SQL> select count(*) from packt;
  COUNT(*)
----------
         0

We have the table metadata in the database, so we only need to perform import of 
data using the parameter CONTENT=DATA_ONLY:

[oracle@oracle-primary expdp]$ impdp system/free2go 
directory=EXPDP_INDIA tables=scott.packt dumpfile=Packt_table.dmp 
logfile=packt_table_imp.log content=data_only
Import: Release 11.2.0.3.0 - Production on Thu Dec 20 17:31:06 
2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates.  All 
rights reserved.



Data Guard Best Practices

[ 354 ]

Connected to: Oracle Database 11g Enterprise Edition Release 
11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application 
Testing options
Master table "SYSTEM"."SYS_IMPORT_TABLE_01" successfully loaded/
unloaded
Starting "SYSTEM"."SYS_IMPORT_TABLE_01":  system/******** 
directory=EXPDP_INDIA tables=scott.packt dumpfile=Packt_table.dmp 
logfile=packt_table_imp.log content=data_only
Processing object type TABLE_EXPORT/TABLE/TABLE_DATA
. . imported "SCOTT"."PACKT"                             3.386 GB 
88080384 rows
Job "SYSTEM"."SYS_IMPORT_TABLE_01" successfully completed at 
17:50:43

10.	Verifying the table data after importing into a primary database: From the previous 
step, we successfully imported data into the primary database and the number of 
the rows is same as in step 3.
SQL> select db_unique_name,database_role,resetlogs_change# from 
v$database;
DB_UNIQUE_NAME       DATABASE_ROLE    RESETLOGS_CHANGE#
-------------------- ---------------- -----------------
turkey_un            PRIMARY                     945184
SQL> select count(*) from packt;
  COUNT(*)
----------
  88080384

11.	Starting MRP on a standby database to synchronize with a primary database: Start 
the recovery on a standby database to synchronize it with the primary database 
after importing.

SQL> alter database recover managed standby database using current 
logfile disconnect from session;
Database altered.

On the alert log, you will get the following:

Waiting for all non-current ORLs to be archived...
All non-current ORLs have been archived.
Media Recovery Waiting for thread 1 sequence 1036 (in transit)
Recovery of Online Redo Log: Thread 1 Group 11 Seq 1036 Reading 
mem 0



Chapter 11

[ 355 ]

What just happened?
We have seen how to recover a huge truncated table from the primary database by using the 
flashback technique and the Export/Import procedures.

Database rolling upgrade using the transient logical 
standby database
To perform upgrade of a production database from 11gR1 to 11gR2 or to perform any patch 
set upgrade (for example, from 11.2.0.1 to 11.2.0.3), we need downtime. When upgrading 
a production database that includes movement of the database to new binaries, database 
upgrade, and post upgrade tasks, we may need a few hours or more downtime depending on 
the database size, runtime errors, and so on. However, with the feature of Rolling Upgrade 
Using Transient Logical Standby, we may only need a few minutes of downtime. We can also 
run load tests to check the performance on the upgraded logical standby database when 
keeping the primary database with the old version without any upgrade. If the performance 
test results in a good response, we can go ahead to perform the further steps.

Time for action – performing a rolling upgrade using the 
transient logical standby database

We will now see a step-by-step approach to upgrade a database from 11.2.0.1 to 11.2.0.3.

1.	 Ensuring protection mode and compatibility: Ensure the protection mode is in 
either maximum performance or maximum availability.
SQL> select * from v$version;
BANNER
--------------------------------------------------------- 
--Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - 
64bit Production
PL/SQL Release 11.2.0.1.0 - Production
CORE    11.2.0.1.0      Production
TNS for Linux: Version 11.2.0.1.0 - Production
NLSRTL Version 11.2.0.1.0 - Production
SQL> select protection_mode from v$database;
PROTECTION_MODE
--------------------
MAXIMUM PERFORMANCE



Data Guard Best Practices

[ 356 ]

The COMPATIBLE initialization parameter should be same as the software release 
version. Once we upgrade to the new release and after all the post checks, we can 
change the compatible parameter value.

SQL> show parameter compatible
NAME              TYPE     VALUE
----------------- -------- -------------
compatible        string   11.2.0.0.0

2.	 Disabling the Data Guard broker: If the database is managed with the Data Guard 
broker, disable it; we can enable it after the successful upgrade of the database.
SQL> show parameter dg_broker_start
NAME               TYPE      VALUE
------------------ --------  -------
dg_broker_start    boolean   FALSE

3.	 Enabling flashback in the primary and standby databases: Now check flashback 
database status and then enable it on both primary and standby databases:
SQL> select db_unique_name,flashback_on from v$database;
DB_UNIQUE_NAME  FLASHBACK_ON
--------------- ------------------
INDIA_UN        NO
SQL> alter database flashback on;
Database altered.
SQL> select db_unique_name, flashback_on from v$database;
DB_UNIQUE_NAME  FLASHBACK_ON
--------------- ------------------
turkey_un       YES

On the alert log, you will get the following:

Sun Dec 30 21:42:53 2012
alter database flashback on
Starting background process RVWR
Sun Dec 30 21:42:57 2012
RVWR started with pid=20, OS id=21651
Sun Dec 30 21:43:18 2012
Allocated 3981120 bytes in shared pool for flashback generation 
buffer
Sun Dec 30 21:43:33 2012
Flashback Database Enabled at SCN 955828
Completed: alter database flashback on



Chapter 11

[ 357 ]

In 11gR2, we no longer need to restart database to the mount state 
in order to enable or disable flashback on a primary database. 
Therefore, we can enable/disable flashback when the database is 
in the read-write mode. However, we can't enable or disable flashback 
on a standby database when MRP is running (ORA-01153: an 
incompatible media recovery is active). In order to 
perform this on the standby database, we must stop Redo Apply.

4.	 Creating a guaranteed restore point on the primary and standby databases: Create a 
guaranteed restore point on both the primary and standby databases. We may need 
to flash back the database to this point in case of any failures during the upgrade.
SQL> create restore point Rolling_Upgrade_Turkey guarantee 
flashback database;
Restore point created.
SQL> select name,guarantee_flashback_database,scn from v$restore_
point;
NAME                           GUA        SCN
------------------------------ --- ----------
ROLLING_UPGRADE_TURKEY         YES     972018

On the alert log, you will get the following:
Sun Dec 30 22:09:19 2012
Created guaranteed restore point ROLLING_UPGRADE_TURKEY

Now create a guaranteed restore point on the standby database. In order to create a 
restore point, we must cancel the recovery.

SQL> alter database recover managed standby database cancel;
Database altered.
SQL> create restore point Rolling_Upgrade_India guarantee 
flashback database;
Restore point created.

5.	 Creating a log miner dictionary on a primary database: This package enables 
supplemental logging on the primary database, which ensures that the updates 
contain enough information to identify each modified row that is needed for a 
logical standby configuration.
SQL> execute dbms_logstdby.build;
PL/SQL procedure successfully completed.

In the alert log, add the following:

SUPLOG:  unique = ON, foreign key = OFF, all column = OFF
SUPLOG:  procedural replication = OFF
Completed: alter database add supplemental log data (primary key, 
unique index) columns



Data Guard Best Practices

[ 358 ]

alter database add supplemental log data for procedural 
replication
SUPLOG: Previous supplemental logging attributes at scn = 998811

6.	 Converting the physical standby database into a logical standby database: Now 
convert the physical standby database into a logical standby database with the KEEP 
IDENTITY clause so that the database name and DBID remain the same as those in 
the primary database.
SQL> alter database recover managed standby database cancel;
Database altered.
SQL> shutdown immediate
ORACLE instance shut down.
SQL> startup mount exclusive;
Database mounted.
SQL> alter database recover to logical standby keep identity;
Database altered.

On the alert log, you will get the following:

Online log /u01/app/oracle/oradata/orcl/redo03.log: Thread 1 Group 
3 was previously cleared
Standby became primary SCN: 1003598
Mon Dec 31 00:49:04 2012
Setting recovery target incarnation to 3
RECOVER TO LOGICAL STANDBY: Complete - Database mounted as logical 
standby
Completed: alter database recover to logical standby keep identity

7.	 After completing the conversion, open the database and check for the new database 
role.
SQL> select open_mode from v$database;
OPEN_MODE
--------------------
MOUNTED
SQL> alter database open;
Database altered.
SQL> select database_role from v$database;
DATABASE_ROLE
----------------
LOGICAL STANDBY



Chapter 11

[ 359 ]

8.	 Starting SQL Apply and monitoring the apply status: On the new logical standby 
database, issue the following command to start SQL Apply:
SQL> alter database start logical standby apply immediate;
Database altered.

On the alert log, you will get the following:
Some indexes or index [sub]partitions of table SYSTEM.LOGMNR_
DICTIONARY$ have been marked unusable
Indexes of table  SYSTEM.LOGMNR_ATTRCOL$ have been rebuilt and are 
now usable
Indexes of table  SYSTEM.LOGMNR_ATTRIBUTE$ have been rebuilt and 
are now usable
Indexes of table  SYSTEM.LOGMNR_CCOL$ have been rebuilt and are 
now usable
SQL> SELECT NAME, VALUE, TIME_COMPUTED FROM V$DATAGUARD_STATS 
WHERE NAME='transport lag';
NAME          VALUE           TIME_COMPUTED
------------- --------------- ------------------------------
transport lag +00 00:00:00    12/31/2012 00:59:25

If any active DDLs/DMLs are in progress, you can monitor them using v$logstdby_
state.

SQL> select state from v$logstdby_state;
STATE
-------------
APPLYING
SQL> /
STATE
-------------
IDLE

9.	 Upgrading a logical standby database: Stop sending redo on the primary database 
by changing the remote destination status to defer.
SQL> alter system set log_archive_dest_state_2='defer';
System altered.
SQL> select dest_id,status from v$archive_dest where dest_id=2;
        DEST_ID STATUS
--------------- ---------
              2 DEFERRED

Stop SQL Apply from the logical standby database.
SQL> alter database stop logical standby apply;
Database altered.



Data Guard Best Practices

[ 360 ]

On the alert log, you will get the following:

Mon Dec 31 01:06:16 2012
LOGSTDBY status: ORA-16128: User initiated stop apply successfully 
completed
Completed: alter database stop logical standby apply

10.	Create another restore point prior to the upgrade.
SQL> create restore point Rolling_Upgrade_India2 guarantee 
flashback database;
Restore point created.
SQL> select name from v$restore_point;
NAME
-----------------------------------
ROLLING_UPGRADE_INDIA
ROLLING_UPGRADE_INDIA2

11.	Now the database version is 11.2.0.1. Install the new ORACLE_HOME locations  
of 11.2.0.3 and upgrade the database after setting the environment variables to 
point to the new home, 11.2.0.3. Then run the upgrade scripts as shown in the 
following code:
[oracle@oracle-stby ~]$ sqlplus / as sysdba
SQL*Plus: Release 11.2.0.3.0 Production on Mon Dec 31 01:14:12 
2012
Copyright (c) 1982, 2011, Oracle.  All rights reserved.
Connected to an idle instance.
SQL> startup upgrade
Database mounted.
Database opened.
SQL> @?/rdbms/admin/catupgrd.sql
DOC>##############################################################
DOC>##############################################################
DOC>
DOC>   The first time this script is run, there should be no error 
messages
DOC>   generated; all normal upgrade error messages are 
suppressed.
.............
SQL> REM END OF CATUPGRD.SQL
SQL>
SQL> REM bug 12337546 - Exit current sqlplus session at end of 
catupgrd.sql.
SQL> REM                This forces user to start a new sqlplus 
session in order



Chapter 11

[ 361 ]

SQL> REM                to connect to the upgraded db.
SQL> exit
Disconnected from Oracle Database 11g Enterprise Edition Release 
11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application 

Testing options

On the alert log, you will find the following:

Database Characterset is WE8MSWIN1252

Updating 11.2.0.1.0 NLS parameters in sys.props$

-- adding 11.2.0.3.0 NLS parameters.

.............

Mon Dec 31 01:30:10 2012

SERVER COMPONENT id=CATPROC: timestamp=2012-12-31 01:30:10

SERVER COMPONENT id=RDBMS: status=VALID, version=11.2.0.3.0, 
timestamp=2012-12-31 01:30:15

12.	Now start the upgraded logical standby and check for the registry components' 
status from DBA_REGISRY.
SQL> select comp_name, status from dba_registry;
COMP_NAME                                STATUS
---------------------------------------- -----------
OWB                                      VALID
Oracle Application Express               VALID
Oracle Enterprise Manager                VALID
OLAP Catalog                             VALID
Spatial                                  VALID
Oracle Multimedia                        VALID

13.	Starting SQL Apply: After the successful upgrade, we'll enable redo transport from 
the primary database and start SQL Apply on the logical standby database.

Enable redo transport by running the following statement on the primary database.

SQL> alter system set log_archive_dest_state_2='enable';
System altered.

14.	On the primary database, perform some DML transactions for verification.
SQL> select count(*) from packt;
       COUNT(*)
---------------
             14
SQL> insert into packt select * from packt;
14 rows created.



Data Guard Best Practices

[ 362 ]

SQL> commit;
Commit complete.
SQL> select count(*) from packt;
       COUNT(*)
---------------
             28

15.	Start SQL Apply on the standby database and check for the number of rows from 
packt.
SQL> alter database start logical standby apply immediate;
Database altered.
SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAME       DATABASE_ROLE
-------------------- ----------------
INDIA_UN             LOGICAL STANDBY
SQL> select count(*) from scott.packt;
  COUNT(*)
----------
        28

16.	Switchover to upgraded 11.2.0.3: Until this step, there is no downtime on the 
production database. Now perform the switchover steps as shown in the following 
code:

First issue the switchover command from the primary database.
SQL> alter database commit to switchover to logical standby;
Database altered.
SQL> select db_unique_name,switchover_status,open_mode from 
v$database;
DB_UNIQUE_NAME  SWITCHOVER_STATUS    OPEN_MODE
--------------- -------------------- --------------------
turkey_un       NOT ALLOWED          READ WRITE

On the alert log, you will find the following:

Mon Dec 31 02:22:20 2012
NSA2 started with pid=26, OS id=12227
Beginning log switch checkpoint up to RBA [0x34.2.10], SCN: 
1009787
...........
LOGSTDBY: Switchover complete (TURKEY)
LOGSTDBY: enabling scheduler job queue processes.
JOBQ: re-enabling CJQ0
Completed: alter database commit to switchover to logical standby



Chapter 11

[ 363 ]

17.	Now issue the switchover command from the upgraded logical standby database:
SQL> select db_unique_name,switchover_status,open_mode from 
v$database;
DB_UNIQUE_NAME       SWITCHOVER_STATUS    OPEN_MODE
-------------------- -------------------- --------------------
INDIA_UN             TO PRIMARY           READ WRITE
SQL> alter database commit to switchover to logical primary;
Database altered.
SQL> select db_unique_name,switchover_status,open_mode from 
v$database;
DB_UNIQUE_NAME       SWITCHOVER_STATUS    OPEN_MODE
-------------------- -------------------- --------------------
INDIA_UN             NOT ALLOWED          READ WRITE

18.	Retransforming into the physical standby database: Now the new logical standby is 
running under Oracle lower patch set level (11.2.0.1) as a transient logical standby 
database, and it cannot receive and apply redo from the new primary database. 
Let's convert it into the old physical standby database state.
SQL> alter system set log_archive_dest_state_2='defer';
System altered.

Now flash back to the restore point before the upgrade.

SQL> select db_unique_name,database_role from v$database;
DB_UNIQUE_NAME  DATABASE_ROLE
--------------- ----------------
turkey_un       LOGICAL STANDBY
SQL> shutdown immediate
ORACLE instance shut down.
SQL> startup mount
Database mounted.
SQL> select name from v$restore_point;
NAME
------------------------------
ROLLING_UPGRADE_TURKEY
SQL> flashback database to restore point ROLLING_UPGRADE_TURKEY;
Flashback complete.
SQL> shutdown immediate
ORACLE instance shut down.



Data Guard Best Practices

[ 364 ]

19.	Starting a logical standby database from new version binary (11.2.0.3): Copy 
PFILE/SPFILE, the password file, and network configuration files to the new 
installed ORACLE_HOME location and start the database in the MOUNT status.
[oracle@oracle-primary ~]$ sqlplus / as sysdba
SQL*Plus: Release 11.2.0.3.0 Production on Mon Dec 31 02:43:45 
2012
Copyright (c) 1982, 2011, Oracle.  All rights reserved.
Connected to an idle instance.
SQL> startup mount
Database mounted.
SQL> alter database convert to physical standby;
Database altered.

Shut down instance and start up in the MOUNT status using the following code:

SQL> shutdown immediate
ORA-01507: database not mounted
ORACLE instance shut down.
SQL> startup mount
Database mounted.

20.	Enabling redo transport from a primary database and starting to recover on a 
standby database: Issue the following command from the new primary database to 
send redo data to the new physical standby database.
SQL> alter system set log_archive_dest_state_2='enable';
System altered.

Now start Redo Apply on the standby database to apply all the redo of the upgrade 
script.
SQL> alter database recover managed standby database using current 
logfile disconnect;
Database altered.

On the alert log, you will see the following:
Mon Dec 31 02:51:28 2012
MRP0 started with pid=26, OS id=13970
MRP0: Background Managed Standby Recovery process started (TURKEY)
Serial Media Recovery started
Managed Standby Recovery starting Real Time Apply
...........
ORA-19906: recovery target incarnation changed during recovery
Managed Standby Recovery not using Real Time Apply
Completed: alter database recover managed standby database using 
current logfile disconnect



Chapter 11

[ 365 ]

The previous errors are expected; if any archives are unable to fetch, copy the 
archive logs from the primary database and then catalogue them with the database 
using the RMAN command catalog start with 'arch location'.

Mon Dec 31 04:08:50 2012
alter database recover managed standby database disconnect from 
session
Attempt to start background Managed Standby Recovery process 
(TURKEY)
.................... 
Media Recovery Log /u01/app/oracle/flash_recovery_area/TURKEY_UN/
archivelog/2012_12_31/1_55_803436544.dbf
Media Recovery Log /u01/app/oracle/flash_recovery_area/TURKEY_UN/
archivelog/2012_12_31/1_56_803436544.dbf
Media Recovery Waiting for thread 1 sequence 57

21.	Verifying the upgraded standby database: Now the standby database is completely 
synchronized with the primary database.

On the primary database, add the following:
SQL> select max(sequence#) from v$archived_log;
MAX(SEQUENCE#)
--------------
            56

On the standby database, add the following:
SQL> select max(sequence#) from v$archived_log where 
applied='YES';
MAX(SEQUENCE#)
--------------
            56

Verify once if all the components of the registry are valid.

SQL> @?/rdbms/admin/utlu112s.sql
Component                   Current      Version     Elapsed Time
Name                        Status       Number      HH:MM:SS
.
Oracle Database 11.2 Post-Upgrade Status Tool           12-31-2012 
04:18:17
.
Component                   Current      Version     Elapsed Time
Name                        Status       Number      HH:MM:SS
.
Oracle Server



Data Guard Best Practices

[ 366 ]

.                                         VALID      11.2.0.3.0  

.................
Gathering Statistics
.                                                                
00:03:27
Total Upgrade Time: 00:46:51
PL/SQL procedure successfully completed.

So far the downtime is only for the switchover. However, at this point 
we moved the production database to the standby server. In order to 
keep clients connected to the new primary database, the connection 
failover should be configured for the database clients.

What just happened?
We have seen how to perform a rolling upgrade using the transient logical standby database 
with very little downtime. With this method, 96 percent of upgrade downtime can be avoided.

Have a go hero – one last switchover
If you want to use your original primary server as the production server, you should perform 
a switchover again, to move the primary server into the original server.

Corruption detection, prevention, and automatic repair 
with Oracle Data Guard
Corruption in an Oracle database block means that a block doesn't contain the data that 
the database expects to find. This can be caused by various failures in the hardware 
environment, including disks, disk controllers, memory or network components or software 
errors in the operating system, firmware, the volume manager, and the Oracle database 
software itself.

Oracle offers some initialization parameters to control the level of corruption prevention 
and detection. Of course, a higher level brings performance issues with it. In a Data Guard 
configuration, using the standby database for corruption detection and prevention will bring 
higher data protection and availability with less performance effect on the primary database.



Chapter 11

[ 367 ]

Let's first start with learning the three types of block corruption in Oracle databases.

�� Physical block corruption: In a physically corrupted database block, the block 
header may be corrupted, the block may be misplaced or fractured, or the block 
checksum may be invalid. These types of corruptions are reported by the Oracle 
database as a ORA-01578 error in the alert log.

�� Logical block corruption: In a logical block corruption, the block contains a valid 
checksum; however, the block content is corrupt. This corruption is not reported in 
the alert log but if db_block_checking is enabled, ORA-600 internal errors may 
show up.

�� The third type of Oracle database corruptions are caused by stray writes, lost 
writes, or misdirected writes. In this case, the block may not be corrupted as 
described in the first two types; however, the content of the block is older, stale, 
or in the wrong location.

Now we'll learn about preventing and detecting these corruptions, especially in a Data Guard 
configuration, by studying the related initialization parameters. There are three important 
parameters in this study: DB_BLOCK_CHECKSUM, DB_BLOCK_ CHECKING, and DB_LOST_
WRITE_PROTECT.

DB_BLOCK_CHECKSUM
This is the initialization parameter used to detect physical corruptions in a database. As we 
know, a checksum is the data calculated from the arbitrary data with a specific function. It 
can be recalculated anytime and compared with the stored result of the previous instance to 
ensure integrity of data. When we use DB_BLOCK_CHECKSUM, the Oracle database calculates 
a checksum and stores it in the header of each data block when writing to the disk. The 
following are the possible values of this initialization parameter:

�� OFF (FALSE): Checksums are calculated only for the SYSTEM tablespace data blocks. 
The user's tablespace and log checksum are not performed. The FALSE value is 
preserved for backward compatibility, and has the same effect as OFF.

�� TYPICAL (TRUE): When a block of any tablespace is read, checksum is calculated and 
compared. Also, at the last write of the block, the new checksum is stored. The TRUE 
value is preserved for backward compatibility and has the same effect as TYPICAL.

�� FULL: In addition to checksum calculations in the TYPICAL mode, Oracle also 
verifies checksum before the update/delete statements. Also, Oracle gives 
every log block a checksum before writing it to the current log. Before 11g, log 
block checksum was performed by LGWR; however, in 11g, the database creates 
foreground processes for this purpose for better performance. Note that, when 
checksum validation fails in the FULL mode, Oracle will try to recover the block 
using the data version on disk and redo data.



Data Guard Best Practices

[ 368 ]

In a Data Guard environment, Oracle recommends setting this parameter to FULL on 
both primary and standby databases. Oracle also indicates that setting it to FULL causes 4 
percent to 5 percent overhead in a primary database, whereas the TYPICAL mode causes 
1 percent to 2 percent overhead. If setting FULL in the primary database has unacceptable 
performance degradation, consider setting it as TYPICAL on the primary database and FULL 
on the standby database.

DB_BLOCK_CHECKING
This parameter specifies whether the database will perform block checking for database 
blocks and detect logical corruptions. Oracle controls the header and the data in the block 
if it's logically consistent.

The following are the possible values of this initialization parameter:

�� OFF (FALSE): Only semantic block checking is performed for the blocks of the 
SYSTEM tablespace. No block checking is performed for the other tablespaces.

�� LOW: Only block header checks are performed when the block content changes. This 
setting has very limited benefit for corruption detection and prevention, because 
there's no block checking on the data blocks itself.

�� MEDIUM: Block checking is performed for all objects except indexes.

�� FULL (TRUE): All the LOW and MEDIUM checks are performed for all objects. When 
MEDIUM or FULL is being used, block corruptions detected in memory will be 
automatically repaired using the data version on disk and redo data.

In a Data Guard environment, Oracle recommends setting this parameter to FULL at both the 
primary and standby databases for the highest level of detection and prevention against logical 
corruptions. However, the performance effect of using this checking can be very high. Oracle 
states that block checking typically causes 1 percent to 10 percent overhead on the primary 
database; for update- and insert-intensive applications, the performance effect may me even 
higher. We should test its effect on the primary database and if the FULL value is unacceptable 
in terms of performance effect, we should consider setting it to MEDIUM or LOW.

When we cannot set it to FULL or MEDIUM on the primary database because of performance 
issues, it becomes more important to enable it on the standby database. The performance 
effect of block checking on Redo Apply may also be high; in some cases it may halve the 
Redo Apply rate. So we must test and evaluate the effect. We can sum up by saying that it's 
good practice to set the highest degree of logical corruption detection and prevention on a 
standby database using the DB_BLOCK_ CHECKING parameter.



Chapter 11

[ 369 ]

DB_LOST_WRITE_PROTECT
Lost-write corruption is a serious type of corruption that occurs on the storage layer. The 
I/O subsystem acknowledges to the database that the write operation is completed, but it is 
actually not. The DB_LOST_WRITE_PROTECT initialization parameter can be used to detect 
the lost write. Lost-write detection on the standby database is an 11g feature and it's most 
effective when used with Data Guard.

The following are the possible values of this initialization parameter:

�� NONE: Lost-write detection is disabled.

�� TYPICAL: Lost-write detection is enabled for read-write tablespaces. Buffer cache 
reads are recorded in the redo log and this information is used to detect lost writes. 
When set in the physical standby database, the MRP process will check for lost 
writes in read-write tablespaces and stop recovery if detected. Thus, corruption will 
not be applied on the standby database.

�� FULL: Lost-write detection for read-only tablespaces is included besides  
read-write tablespaces.

The recommended setting is FULL for both primary and standby databases, and for most 
cases its performance effect on the primary database and Redo Apply is negligible.

Automatic block media repair
In Oracle 11gR2, when Active Data Guard is being used with Real-Time Apply, if a physical 
corruption is detected on the primary database, Oracle will automatically try to repair the 
corruption using the non-corrupted block on the standby database. This operation is also 
valid in the opposite direction, which means standby database corruption will be repaired 
using the data block on the primary database. A notification will be printed in the alert log 
about the automatic block media repair operation in the meantime; this repair operation is 
completely transparent to database users.

In order to run ABMR successfully, the following initialization parameters must be configured:

�� The LOG_ARCHIVE_CONFIG parameter with a DG_CONFIG list on both the primary 
and standby databases

�� The LOG_ARCHIVE_DEST_n parameter for the primary database

�� The FAL_SERVER parameter for the standby database with the Oracle Net service 
name pointing to the primary database



Data Guard Best Practices

[ 370 ]

We can also manually repair a corrupted data block with the RMAN 
command's RECOVER BLOCK command. By default, this command will 
try to use an Active Data Guard physical standby database if it exists. In 
order to exclude the standby database as a source to repair corruption, 
we must use the EXCLUDE STANDBY option of this command.

Summary
We've reached the end of Chapter 11, Data Guard Best Practices. In this chapter, we've seen 
the most important best practices of Oracle Data Guard configurations. Using the features 
and methods mentioned in this chapter, it's possible to make the Data Guard environment 
more robust and effective.

In this book, we've started with the foundations and configuration of Data Guard and 
continued with learning details, features, common issues, and best practices. At this stage, 
you've learned everything you need in order to effectively administrate Data Guard systems. 
You also exercised real-world examples and hands-on tasks. We recommend you to glance 
over the book again to consolidate what you've learned.



Pop Quiz Answers

Chapter 1, Getting Started
Pop quiz – real-time apply consideration

Q1 User-based errors on the primary database such as an 
inadvertent table drop will be instantly replicated to the 
standby database. In order to get rid of this kind of data loss 
risk, we must use "Flashback Database" feature on primary or 
standby database.

Chapter 5, Data Guard Protection Modes
Pop quiz – precautions for primary database availability issue in  
maximum protection mode

Q1 Oracle recommends using two physical standby databases on 
separate locations to overcome this issue. If we don't have two 
separate locations we can still install two standby databases on 
the same location or use Real Application Cluster on the standby 
database and use redundant network between primary and 
standby database.



Pop Quiz Answers

[ 372 ]

Chapter 6, Data Guard Role Transitions
Pop quiz

Q1 Use the following statement to cancel switchover from the 
primary or standby databases:

SQL> ALTER DATABASE PREPARE TO 
SWITCHOVER CANCEL;

Chapter 9, Data Guard Configuration Patching
Pop quiz

Q1 Terminal patch can be named as final patch and it can be 
either CPU or PSU. It will be the last patch to be released on 
a particular platform of Oracle Database release.

Chapter 10, Common Data Guard Issues
Pop quiz – redo transport authentication problem in only one instance of 
primary database

Q1 In this case, password file is not correct for the primary 
instance that shows authentication error. We can simply 
copy password file from one of the other RAC servers to 
the failing server to fix this issue.

Pop quiz – using tape for SCN incremental backup

Q1 No, only disk backups can be used to resolve a gap with 
RMAN SCN incremental backups, because backups on 
tape cannot be cataloged.



Index
A
active-active GoldenGate configuration

general structure  32
active-active replication  32
Active Data Guard

about  204, 206
benefits  204
enabling  208
enabling, broker used  210, 211
enabling, if Redo Apply is running  208, 209
enabling, if standby database is shutdown  209, 

210
features  204, 219
licensing  207
monitoring  212
monitoring, from primary database  212
monitoring, from standby database  213
working, with EBS  216
working, with Oracle BI  218
working, with PeopleSoft  214-216
working, with SAP  218
working, with TopLink  217

Active Data Guard features
about  219
ASH report, using from standby database  220, 

222
database backup, exporting from  219
EXPDP, using from standby database  219
Statspack, running from standby database  223

ADRCI utility
used, for monitoring alert log files  330

advanced compression, Data Guard
enabling  231-233

AFFIRM attribute  49
alert log files

about  328
monitoring, ADRCI used  330-334

ALL Database Guard mode  103
applications, working with Active Data Guard

about  213
EBS  216
Oracle BI  218
PeopleSoft  214
SAP  218
TopLink  217

architecture, Data Guard
background processes  29
role transitions  23
services  15
user interfaces  25

archived log deletion policy
about  347
automatic maintenance, configuring  347, 348

archive log mode, primary database
enabling  38, 39

ARCH transportation mode
about  15
properties  15

ASYNC attribute  48
Asynchronous redo transport (ASYNC) method  

17
automatic block media repair, corruption  369



[ 374 ]

automatic deletion process, logical standby 
database

about  111
foreign archived logs, deleting  111
local archived logs, deleting  113

B
best practices, Data Guard

about  339
archived log deletion policy  347
connection failover, configuring  339
corruption detection  366
corruption prevention  366
database rolling upgrade, using transient logical 

standby database  355
flashback, using  348

best practices, RMAN  265
block change tracking

about  272
advantages  273
using, with Data Guard  272, 273

block change tracking (BCT) feature  264
block corruption

about  367
logical block corruption  367
physical block corruption  367

C
cascade standby databases

about  227
defining  228-230
diagrammatic representation  227
limitations  228

centralized and simple management  117
client-side components, Data Guard broker

about  121
DGMGRL utility  121
Enterprise Manager Cloud Control client  121

client-side TAF
configuring   341

Cloud Control integration  117
components, Data Guard broker

about  119
client-side components  121
server-side components  119

COMPRESSION attribute  49
conflict  32
connection failover

configuring  339
FAN  346
FCF  344
TAF  340

corruption
about  366
automatic block media repair  369
DB_BLOCK_CHECKING parameter  368
DB_BLOCK_CHECKSUM parameter  367
DB_LOST_WRITE_PROTECT parameter  369

corruption detection  366
corruption prevention  366
CPU/SPU patches  278
Critical Patch Update (CPU)  278
cross-platform Data Guard

about  233
setup, creating  234-236

D
database objects, logical standby database

creating  106-111
materialized views, creating  107
scheduler jobs, creating  106, 107
tables, creating  106
tables, re-creating  106

database properties, Data Guard broker
changing  135
database name, changing  135, 137
state changes, performing  137, 138

database versions, Data Gaurd
version 7.3  11
version 8i  11
version 9i  12
version 10g  12
version 11g  13

database wait events
related, to Data Guard  240

Data Guard
about  7, 153
advanced compression, enabling  231-233
architecture  14
best practices  339
data protection modes  153



[ 375 ]

general structure  8
monitoring, Incident Manager used  259, 260
patching  277-279
preconfiguration  35
primary database  8
role transitions  173
standby database  8

Data Guard administration home page
accessing  250

Data Guard background processes
about  29
DMON  29
FSFP  29
LSP0  29
LSP1  29
LSP2  29
MRP0  29
NSAn  29
NSSn  29
RFS  29

Data Guard broker
about  115, 116
basic monitoring, performing  127-131
benefits  117
centralized and simple management  117
Cloud Control integration  117
components  119
connecting to  125-127
fast-start failover  118
features  117
framework  116
implementing  122
initial setup  122-125
Oracle Data Guard and RAC  117
role transition  118
troubleshooting  138
used, for changing Data Guard protection mode  

163, 164
Data Guard broker configuration

disabling  131, 132
enabling  131

Data Guard broker issues
ORA-10458  140, 141
ORA-12514  143
ORA-16715  142
ORA-16737  141, 142
ORA-16797  139, 140

Data Guard broker logs  334
Data Guard configuration

adding, into Cloud Control  244-249
common properties tab  252, 253
fast-start failover, disabling  254-257
fast-start failover, enabling  254-256
general tab  251
modifying  251
patches, applying  282
standby role properties tab  252

Data Guard failover
about  194
performing  194
performing, with logical standby database using 

broker  199, 200
performing, with physical standby database us-

ing SQL*Plus  196-198
Data Guard Monitor (DMON) logfiles  328
Data Guard Monitor Process (DMON)  115, 116
Data Guard performance

monitoring  258, 259
Data Guard services

about  15
applying  18
Redo Apply  19
Redo Apply, monitoring  19-22
redo transport services  15

Data Guard settings, logical standby database
about  103
ALL option  103
changing  104, 105
database guard, disabling for session  105
NONE Database Guard mode, testing  106
NONE option  103
STANDBY option  103

Data Guard switchover
about  174
performing  175
performing, logical standby database using 

broker  192, 193
performing, logical standby database using 

SQL*Plus  187-191
performing, with physical standby database  

using broker  184, 185
performing, with physical standby database  

using EM Cloud Control  185-187



[ 376 ]

performing, with physical standby database  
using SQL*Plus  176-183

primary and standby databases, verifying  176-
179

Data Guard tracing
turning on  326, 327

Data Guard tracing levels  139
Data Guard tuning

network tuning  237
redo transport and apply tuning  238

Data Guard wait events
about  240
on primary databse, with ARCH transport  240
on primary databse, with LGWR transport  240
on standby database  240

data loss consideration, physical standby data-
base

about  36
Instance activity stats table  36
Load profile section  36
Per second column  36
Redo size row  36
zero data loss  36

data protection  36
data protection modes, Data Guard

changing  157
changing, Data Guard broker used  163, 164
changing, DGMGRL used  165
changing, Enterprise Manager Cloud Control 

used  165-172
changing, SQL*Plus used  157-162
Maximum Availability mode  155
Maximum Performance mode  155
Maximum Protection mode  154
selecting  156, 157

DB_BLOCK_CHECKING parameter  368
DB_BLOCK_CHECKSUM parameter  367
DB_FILE_NAME_CONVERT parameter  54
DB_LOST_WRITE_PROTECT parameter  369
DB_NAME parameter  44
DB_UNIQUE_NAME  265
DB_UNIQUE_NAME parameter  44
DELAY attribute  51
DGMGRL

about  14, 25, 121
used, for changing Data Guard protection mode  

165

diagnostic data
alert log files  328
alert log files, monitoring using ADRCI  330-334
Data Guard broker logs  334
dynamic performance views  335
gathering  328
trace files  328

DMON (Data Guard Broker Monitor Process)  29  
120

dynamic performance views
about  335
V$ARCHIVE_DEST_STATUS  336
V$ARCHIVED_LOG  337
V$ARCHIVE_GAP  338
V$DATABASE  335
V$DATAGUARD_CONFIG  336
V$DATAGUARD_STATUS  337
V$LOGSTDBY_PROCESS  338
V$MANAGED_STANDBY  336

E
EBS

Active Data Guard, working with  216
efficient systems utilization  36
EMC Symmetrix Remote Data Facility (SRDF)  30
End of Redo (EOR)  175
Enterprise Manager  25
Enterprise Manager Cloud Control

about  14
used, for changing Data Guard protection mode  

165-171
Enterprise Manager Cloud Control client  121

F
failover, Data Guard. See  Data Guard failover
failover, role transitions

about  24
fast-start failover  24

FAL_SERVER parameter  53
FAN

about  346
advantages  346

Fast Application Notification. See  FAN
Fast Connection Failover. See  FCF



[ 377 ]

Fast-start failover
about  13, 24, 118, 144, 145
configuring  146, 147
enabling  148
observer configuration, troubleshooting  149, 

150
observer process, bouncing  151
recommendation  118

FastStartFailoverLagLimit property  147
FastStartFailoverThreshold property  147
FCF

about  344
configuring, for JDBC connections  344, 346

flashback
about  348
data, exporting from standby database  352
data, verifying after flashback  352
data, verifying on standby database  351
enabling  349
MRP, starting on standby database  354
retention period, adjusting  350
table data, verifying after importing in primary 

database  354
table, importing in primary database  353
table information, gathering before truncation  

350
table, truncating  350
time-based flashback, performing  351, 352
time, capturing  350
using, on standby database  348, 349

Flash Recover Area. See  FRA
force logging, primary database

enabling  40
foreign archived logs, logical standby database

deleting  111
files inside fast recovery area, deleting  112
files outside fast recovery area, deleting  112

FRA, primary database
about  42
enabling  43

FSFO (fast-start failover)  118
FSFP (Data Guard broker fast-start failover 

pinger process)  29

G
gap

closing, with RMAN incremental backup  318-
321

GoldenGate
about  31
features  31, 32

GoldenGate and Streams
about  30
comparison table  34
differences  31

Guaranteed restore point  13

H
heterogeneous systems  31
high data availability  36
Hitachi Universal Replicator and TrueCopy  30
HP Continuous Access  30

I
IBM Global Mirror  30
Incident Manager

about  259
estimated failover time metric, creating  261-

263
threshold, setting  261-263
used, for monitoring Data Guard  259, 260

initialization parameters, primary database
about  44
AFFIRM  49
ASYNC  48
COMPRESSION  49
DB_NAME  44
DB_UNIQUE_NAME  44
DELAY  51
LOCATION or SERVICE  47
LOG_ARCHIVE_CONFIG  45
LOG_ARCHIVE_DEST_n  46
LOG_ARCHIVE_DEST_STATE_n  52
LOG_ARCHIVE_MAX_POCESSES  46
MAX_CONNECTIONS  49
MAX_FAILURE  50



[ 378 ]

NET_TIMEOUT  51
NOAFFIRM  49
REOPEN  50
SYNC  48
VALID_FOR  47

interim/bug patch
applying, on logical standby  282-286

interim patches
about  278
custom scripts  278
metadata  278
payload  278

issues, Data Guard
about  305
Data Guard tracing, turning on  326
diagnostic data, gathering  328
gap, closing with RMAN incremental backup  

317
NOLOGGING changes, fixing on standby  

database  322
redo transport authentication issues, dealing 

with  311
standby control file, recreating  306-311
UNNAMED datafiles, dealing with  315

J
Java Database Connectivity (JDBC) clients  344

L
LOCATION attribute  47
LOG_ARCHIVE_CONFIG parameter  45
LOG_ARCHIVE_DEST_n parameter  46
LOG_ARCHIVE_DEST_STATE_n parameter  52
LOG_ARCHIVE_MAX_POCESSES parameter  46
LOG_FILE_NAME_CONVERT parameter  55
logical block corruption  367
logical standby database

about  10
cons  80, 81
creating  82, 87
interim/bug patch, applying  282-286
physical standby database, converting into  90-

93
physical standby database environment, making 

ready for conversion  88, 89

properties  79
pros  80-82
unsupported data types  10

logical standby database configuration
any table row uniqueness, checking  85-87
primary database,preparing  82, 83
unsupported data types, checking  83-85

logical standby database customization
about  98
automatic deletion process  111
database objects, creating  106
Data Guard settings  103
DBMS_LOGSTDBY.SKIP procedure, using  99-102
DML replication, disabling  99
selective replication  98
skip rules, creating  98

logical standby database verification
about  94
redo transport service status, checking  94-96
services, checking in broken configuration  98
SQL Apply service status, checking  96, 97

loop detection  32
LSP0 (Logical Standby Coordinator Process)  29
LSP1 (Logical Standby Dictionary Build Process)  

29
LSP2 (Logical Standby Set Guard Process)  29

M
Managed recovery process (MRP)  9
management, with Data Guard broker

broker configuration, disabling  131, 132
broker configuration, enabling  131
configuration, changing  134
database properties, changing  135
performing  131
standby database, disabling  133
standby database, enabling  132, 134

MAX_CONNECTIONS attribute  49
MAX_FAILURE attribute  50
maximum availability architecture  275
Maximum Availability mode  155, 156
Maximum Performance mode  155
Maximum Protection mode

about  154
considerations  154



[ 379 ]

Metro Mirror  30
MRP0 (Managed Standby Recovery Process)  29
multiplexing  306

N
NET_TIMEOUT attribute  51
network bandwidth consideration, physical 

standby database  37
network tuning, Data Guard  237, 238
NOAFFIRM attribute  49
NOLOGGING changes

fixing, on standby database  322
fixing, with incremental database backups  325
fixing, with incremental datafile backups  323, 

324
NONE Database Guard mode  103
NSAn (Redo Transport NSA1 Process)  29
NSSn (Redo Transport NSA1 Process)  29

O
observer configuration, Fast-start failover

troubleshooting  149, 150
OMF  306
one-off patches  278
online redo log (ORL) files  41
OPatch

upgrading  279
ORA-10458 error  140, 141
ORA-12514 error

about  143
current listener description  143

ORA-16715 error  142
ORA-16737 error  141, 142
ORA-16797 error  139, 140
Oracle BI

Active Data Guard, working with  218
Oracle Call Interface (OCI)  346  340
Oracle Data Guard. See  Data Guard
Oracle Data Guard and RAC  117
Oracle Data Guard evolution

about  11
versions  11

Oracle Enterprise Manager Cloud Control inte-
gration

about  243, 244

administration home page, accessing  250
Data Guard configuration, adding into Cloud 

Control  244-249
Data Guard configuration, modifying  251
Data Guard performance, monitoring  258, 259
Incident Manager, used, for monitoring Data 

Guard  259, 260
Oracle-managed files. See  OMF
Oracle Real Application Clusters (RAC)  340
Oracle Universal Connection Pool (UCP)  346

P
patch, Data Guard configuration

interim/bug patch, applying on logical standby  
282-287

patch set, applying on physical standby  296-
302

PSU patch, applying on physical standby  287-
296

patches
about  277
CPU/SPU patches  278
interim patches  278
prerequisite checks, performing  280
PSU patches  278
types  277

patch history
cleaning  281, 282

patching
about  277
best practices  279

patch set
about  278
applying, on physical standby database  296-

302
Patch Set Updates (PSU)  278
PeopleSoft

Active Data Guard, working with  214-216
physical block corruption  367
physical standby database

about  9
converting, to snapshot standby database  223-

225
creating  53
creating, RMAN duplicate used  61



[ 380 ]

data loss consideration  36
network bandwidth consideration  37
patch set, applying  296-302
post-installation steps  65
primary database, preparing  37
PSU patch, applying  288-296
standby database-related initialization param-

eters  53
physical standby database instance

about  55
preparing, for RMAN duplicate  55-61
starting  55

PITR (Point-in-Time Recovery)  348
post-installation steps, physical standby data-

base
about  65
Redo Apply, managing  67
standby database configuration, verifying  65-67
synchronization, verifying  72, 73

primary database  8
primary database, physical standby database

archive log mode, enabling  38, 39
force logging, enabling  39, 40
FRA, enabling  42, 43
initialization parameters  44
noarchive log mode  37
preparing  37
standby redo logs, configuring  40, 42

PSU patches
about  278
applying, on physical standby  288-296

R
RAC integration

about  273
primary database, creating with single instance 

standby database  274
primary database, creating with standby data-

base  275
Real Application Cluster (RAC)  273
Recovery Manager (RMAN)  264
Recovery Time Objective (RTO)  251
Recovery Time Objective (RTO) value  194
Redo Apply

about  19
benefits  19

monitoring  19-22
Redo Apply, physical standby database

managing  67
monitoring  69
starting  67, 68
starting, in real-time apply mode  71
stopping  70

redo transport and apply tuning, Data Guard  
238

redo transport authentication problems, trou-
bleshooting

about  311
redo transport user, changing  313, 314
SYS password, changing  311, 313

redo transport services
about  15
ARCH transportation mode  15
ASYNC redo transport method  17
protection modes  18

Remote File Server. See  RFS
REOPEN attribute  50
RFS  40
RFS (Remote File Server)  29
RMAN Catalog application  264
RMAN duplicate

running  62, 64
used, for creating physical standby databases  

61
RMAN incremental backup

used, for closing gap  317-321
RMAN integration

about  264
best practices  265
block change tracking, using with Data Guard  

272, 273
different DB_UNIQUE_NAME, using  265
physical standby requirement  264
requisites  264
RMAN Catalog requirement  264

RMAN settings, for Data Guard environment 
about  265
checking  268, 270
configuring, for primary database  266, 267
configuring, for standby database  268
primary database, recovering using standby 

database disk backup  270-272
primary database, registering in catalog  266



[ 381 ]

role transitions
about  23, 173
failover  24, 194
switchover  24, 174

role transitions, Data Guard broker
performing  118

Rolling Upgrade Using Transient Logical Standby
apply status, monitoring  359
compatibility, ensuring  355
Data Guard broker, disabling  356
flashback, enabling  356
guaranteed restore point, creating  357
logical standby database, starting from new ver-

sion binary  364
logical standby database, upgrading  359, 361
log miner dictionary, creating  357
performing  355
physical standby database, converting to logical 

standby database  358
physical standby database, retransforming  363
protection mode, ensuring  355
redo transport, enabling  364
SQL Apply, starting  359, 361
Switchover to upgraded 11.2.0.3  362, 363
upgraded standby database, verifying  365

S
SAP

Active Data Guard, working with  218
Security Patch Update (SPU)  278
select failover  340
selective replication, logical standby database  

98
Server Control Utility (SRVCTL)  341
server-side components, Data Guard broker

about  119
configuration file  121
DMON  120

server-side TAF
configuring   341-344

SERVICE attribute  47
Service Level Agreements (SLAs)  37
session failover  340
Single Client Access Names (SCAN)  341
snapshot standby database

about  10, 223

converting, to physical standby database  225, 
226

SQL Apply  10
about  23
benefits  23

SQL*Plus
about  14, 25
used, for changing Data Guard protection mode  

157-162
SRL groups

about  41
considerations  41

srvctl add service command  341
srvctl modify service command  341
standby control file

recreating  306-310
standby database

about  8
configuring  8
logical standby database  10
physical standby database  9
snapshot standby database  10

standby database, Data Guard broker
disabling  133
enabling  133

STANDBY Database Guard mode  103
standby database-related initialization param-

eters
about  53
DB_FILE_NAME_CONVERT  54
FAL_SERVER  53
LOG_FILE_NAME_CONVERT  55
STANDBY_FILE_MANAGEMENT  54

STANDBY_FILE_MANAGEMENT parameter  54
storage-based replication solutions

about  30
asynchronous  30
synchronous  30
using  31

Streams  32
switchover, Data Guard. See  Data Guard 

switchover
switchover, role transitions  24
SYNC attribute  48
synchronization, physical standby database

network latency effect, checking on real-time 
apply  77



[ 382 ]

real-time apply mode, testing  74-76
verifying  72, 73

Synchronous redo transport (SYNC)  16

T
TAF

about  340
client-side TAF configuration  340
server-side TAF configuration  340

TopLink
Active Data Guard, working with  217

trace files  328
Transparent Application Failover. See  TAF
troubleshooting

Data Guard broker  138
observer configuration  149

TSPITR (Tablespace Point-in-Time Recovery) 
operations  55

U
UNNAMED datafiles errors

resolving  315, 316
user interfaces

about  25
DGMGRL  25

Enterprise Manager  25
SQL*Plus  25
using, for monitoring Data Guard  26, 27

V
V$ARCHIVE_DEST_STATUS view  336
V$ARCHIVED_LOG view  337
V$ARCHIVE_GAP view  338
V$DATABASE view  335
V$DATAGUARD_CONFIG view  336
V$DATAGUARD_STATUS view  337
V$LOGSTDBY_PROCESS view  338
V$MANAGED_STANDBY view  336
VALID_FOR attribute  47
version 7.3, Data Guard  11
version 8i, Data Guard

about  11
features  11

version 9i, Data Guard
features  12

version 10g, Data Guard
Fast-Start Failover  13
features  12
Guaranteed restore point  13

version 11g, Data Guard
features  13, 14



Thank you for buying  
Oracle Data Guard 11gR2 Administration Beginner's Guide 

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.  

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're 
using to get the job done. Packt books are more specific and less general than the IT books 
you have seen in the past. Our unique business model allows us to bring you more focused 
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order  
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home 
to books published on enterprise software – software created by major vendors, including 
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles 
will offer information relevant to a range of users of this software, including administrators, 
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and 
you would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get 
some additional reward for your expertise.



Oracle Database 11gR2 Performance Tuning 
Cookbook
ISBN: 978-1-84968-260-2           Paperback: 542 pages

Over 80 recipes to help beginners achieve better 
performance from Oracle Database applications

1.	 Learn the right techniques to achieve best 
performance from the Oracle Database

2.	 Avoid common myths and pitfalls that slow down 
the database

3.	 Diagnose problems when they arise and employ 
tricks to prevent them

4.	 Explore various aspects that affect performance, 
from application design to system tuning

Oracle Database 11g – Underground Advice for 
Database Administrators
ISBN: 978-1-84968-000-4          Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g 
database implementations

1.	 A comprehensive handbook aimed at reducing 
the day-to-day struggle of Oracle 11g Database 
newcomers

2.	 Real-world reflections from an experienced  
DBA—what novice DBAs should really know

3.	 Implement Oracle's Maximum Availability 
Architecture with expert guidance

4.	 Extensive information on providing high availability 
for Grid Control

 
 

Please check www.PacktPub.com for information on our titles



Oracle Warehouse Builder 11g R2:  
Getting Started 2011 
ISBN: 978-1-84968-344-9          Paperback: 424 pages

Extract, Transform, and Load data to build a dynamic, 
operational data warehouse

1.	 Build a working data warehouse from scratch with 
Oracle Warehouse Builder

2.	 Cover techniques in Extracting, Transforming, and 
Loading data into your data warehouse

3.	 This second edition covers great new features of 
11gR2 such as the new user interface and a whole 
new chapter on code templates that implement 
knowledge module functionality from Oracle Data 
Integrator 

OCA Oracle Database 11g: Database Administration 
I: A Real-World Certification Guide
ISBN: 978-1-84968-730-0          Paperback: 582 pages

Learn how to become an Oracle-certified database 
administrator

1.	 Prepare for Oracle Database Administration I 
certification

2.	 Learn real world skills in database administration

3.	 Written in an example driven format with step-by-
step real world examples

 
 
 

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What is Data Guard?
	Standby database
	Physical standby database
	Logical standby database
	Snapshot standby database


	Oracle Data Guard evolution
	Version 7.3 – stone age
	Version 8i – first age
	Version 9i – middle age
	Version 10g – new age
	Version 11g – modern age

	Oracle Data Guard architecture
	Data Guard services
	Redo transport services
	Apply services


	Time for action – monitoring Redo Apply
	SQL Apply (logical standby databases)
	Role transitions
	Switchover
	Failover

	User interfaces for administering Data Guard
	SQL*Plus
	DGMGRL
	Enterprise Manager


	Time for action – using interfaces to monitor Data Guard
	Data Guard background processes

	Other replication solutions and Data Guard
	Storage-based replication solutions
	GoldenGate and Streams

	Summary

	Chapter 2: Configuring the Oracle Data Guard Physical Standby Database
	Preconfiguration for Data Guard
	Data loss consideration
	Network bandwidth consideration
	Preparing the primary database
	Archive log mode


	Time for action – enabling the archive log mode
	Force logging

	Time for action – enabling force logging
	Standby redo logs 

	Time for action – configuring standby redo logs on primary
	Fast recovery area (FRA)

	Time for action – enabling FRA
	Understanding initialization parameters
	DB_NAME
	DB_UNIQUE_NAME
	LOG_ARCHIVE_CONFIG
	LOG_ARCHIVE_MAX_PROCESSES
	LOG_ARCHIVE_DEST_n
	LOCATION and SERVICE
	VALID_FOR
	SYNC and ASYNC
	AFFIRM and NOAFFIRM
	COMPRESSION
	MAX_CONNECTIONS
	MAX_FAILURE
	REOPEN
	NET_TIMEOUT
	DELAY
	LOG_ARCHIVE_DEST_STATE_n


	Creating the physical standby database
	Standby database-related initialization parameters
	FAL_SERVER
	STANDBY_FILE_MANAGEMENT
	DB_FILE_NAME_CONVERT
	LOG_FILE_NAME_CONVERT

	The physical standby database instance

	Time for action – starting the physical standby instance and making it ready for the RMAN duplicate
	Using RMAN duplicate to create physical standby databases

	Time for action – running an RMAN duplicate
	Post-installation steps
	Verifying the standby database configuration

	Time for action – verifying the standby database configuration
	Managing redo apply

	Time for action – starting, stopping, and monitoring MRP
	Verifying synchronization between the primary and standby databases

	Time for action – verifying synchronization between the primary and standby databases
	Time for action – testing real-time apply
	Summary

	Chapter 3: Configuring Oracle Data Guard Logical Standby Database
	Logical standby database characteristics
	Not everything must be duplicated
	Use for reporting at all times
	Independent standby database objects
	Protecting writes on replicated standby tables
	Limitation for specific data types and objects
	High availability and disaster recovery considerations

	Preparation for the configuration
	Time for action – checking for the unsupported data types
	Time for action – searching for and fixing any table row uniqueness problem
	Creating a logical standby database
	Time for action – making a physical standby database environment ready for conversion
	Time for action – converting a physical standby database into a logical standby database
	Verifying the logical standby database
	Time for action – checking the redo transport service status
	Time for action – checking the SQL Apply service status
	Customization and management in a logical standby database
	Selective replication in a logical standby database

	Time for action – working with skip rules on a logical standby database
	Data base Guard settings for the logical standby database

	Time for action – changing the Data base Guard setting
	Disabling database guard for a session
	Creating objects on the logical standby database
	Creating and re-creating tables
	Creating scheduler jobs
	Creating materialized views


	Time for action – creating objects on the logical standby database
	Automatic deletion of archived logs
	Deletion of the foreign archived logs
	Deletion of the local archived logs


	Summary

	Chapter 4: Oracle Data Guard Broker
	Introduction to Data Guard broker
	Data Guard broker features and benefits
	Centralized and simple management
	Cloud Control integration
	Oracle Data Guard and RAC
	Role transition with Data Guard broker
	Data Guard fast-start failover
	Recommendation


	Data Guard broker components
	Oracle Data Guard broker server-side components
	Data Guard Monitor Process (DMON)
	Configuration file

	Oracle Data Guard broker client-side components
	DGMGRL utility
	Enterprise Manager Cloud Control client


	Implementation of Oracle Data Guard broker
	Time for action – initial setup of Data Guard broker
	Time for action – connecting to Data Guard broker
	Time for action – basic monitoring with Data Guard broker
	Management with Data Guard broker
	Enabling and disabling broker configuration

	Time for action – disabling broker configuration
	Enabling and disabling a standby database

	Time for action – disabling and enabling database
	Changing configuration and database properties using broker

	Time for action – changing the database name
	Changing the state of the database
	Troubleshooting Data Guard broker
	Data Guard tracing

	Most Common Data Guard broker issues
	ORA-16797: database is not using a server parameter file
	ORA-10458:standby database requires recovery
	ORA-16737:the redo transport service for standby database "string" has an error
	ORA-16715:redo transport-related property string of standby database "string" is inconsistent
	ORA-12514:TNS:listener does not currently know of service requested in connect descriptor
	Current listener description


	Oracle Data Guard fast-start failover
	Time for action – configuration of fast-start failover
	Troubleshooting observer configuration
	Script to stop and start observer

	Summary

	Chapter 5: Data Guard Protection Modes
	The Maximum Protection mode
	The Maximum Performance mode
	The Maximum Availability mode
	Choosing the correct mode for your requirements
	Changing Data Guard protection mode
	Time for action – changing the protection mode with SQL*Plus
	Time for action – changing the protection mode with Data Guard broker
	Time for action – changing the protection mode with Enterprise Manager Cloud Control
	Summary

	Chapter 6: Data Guard Role Transitions
	Role transition considerations
	Switchover
	Performing switchover with a physical standby database using SQL*Plus

	Time for action – preliminary tests before performing switchover
	Time for action – switchover with a physical standby using SQL*Plus
	Performing switchover with a physical standby database using broker

	Time for action – switchover with a physical standby using broker
	Performing switchover with a physical standby database using EM Cloud Control

	Time for action – switchover with a physical standby using EM Cloud Control
	Performing switchover with a logical standby database using SQL*Plus

	Time for action – switchover with a logical standby database using SQL*Plus
	Performing switchover with a logical standby database using broker

	Time for action – switchover with a logical standby using broker
	Failover
	Performing failover with a physical standby database

	Time for action – failover with a physical standby database using SQL*Plus
	Performing failover with a logical standby database

	Time for action – failover with a logical standby using broker
	Summary

	Chapter 7: Active Data Guard, Snapshot Standby and, Advanced Techniques
	Oracle Active Data Guard
	Why Active Data Guard?
	Oracle Data Guard license
	Enabling Active Data Guard

	Time for action – enabling Active Data Guard if Redo Apply is running using SQL *PLUS
	Time for action – enabling Active Data Guard if the standby database is shut down
	Time for action – enabling Active Data Guard using broker
	Monitoring Active Data Guard
	From primary
	From standby

	Active Data Guard with applications
	Active Data Guard with PeopleSoft


	Time for action – Active Data Guard with PeopleSoft
	Active Data Guard with EBS
	Active Data Guard with TopLink
	Active Data Guard with Oracle BI
	Active Data Guard with SAP

	Active Data Guard features
	EXPDP from standby database using NETWORK_LINK (ADG)


	Time for action – exporting a database backup from Active Data Guard
	Time for action – using the ASH report from the standby database
	Using a snapshot standby database
	Time for action – converting to a snapshot standby database
	Time for action – converting to a physical standby database
	Cascade standby databases
	Limitations with cascade standby database

	Time for action – cascade standby database
	Advanced compression in Data Guard
	Time for action – enabling advanced compression
	Preparation of standby on cross-platform Data Guard
	Time for action – creating a cross-platform Data Guard setup
	Data Guard tuning and wait events
	Network tuning
	Redo transport and apply tuning
	Data Guard wait events

	Summary

	Chapter 8: Integrating Data Guard with the Complete Oracle Environment
	The Oracle Enterprise Manager Cloud Control integration
	Time for action – adding the Data Guard configuration into 
Cloud Control
	Cloud Control Data Guard administration home page
	Modifying the Data Guard configuration

	Time for action – enabling/disabling fast-start failover
	Monitoring Data Guard performance
	Using Incident Manager to monitor Data Guard 

	Time for action – setting the threshold and creating an incident for estimated failover time metric
	RMAN integration
	Integration requirements and best practices
	Physical standby requirement
	RMAN Catalog requirement
	Using a different DB_UNIQUE_NAME
	General RMAN best practices

	RMAN settings for the Data Guard environment 
	Registering primary database in the catalog
	Configuring RMAN settings for primary database:
	Configuring RMAN settings for standby database
	Checking the RMAN configuration


	Time for action – recovering a primary database using a standby database disk backup
	Using block change tracking with Data Guard

	RAC integration
	A RAC primary database with a single instance standby database
	A RAC primary database with a RAC standby database

	Summary

	Chapter 9: Data Guard Configuration Patching
	What is patch and what are patch types?
	Interim patch
	CPU/SPU patches
	PSU patches
	Patch set
	Patching on Data Guard

	Best practices of patching
	Upgrading OPatch
	Performing prerequisite checks of patch
	How to clean up patch history?
	Patching on Data Guard configuration
	How to apply an interim/bug patch on logical standby?

	Time for action – applying a patch on logical standby
	How to apply a PSU patch on physical standby database using broker?

	Time for action – applying PSU on a physical standby database
	How to apply patch set on physical standby (11.2.0.1 to 11.2.0.3)?

	Time for action – patch set upgrade of physical standby
	Summary

	Chapter 10: Common Data Guard Issues
	Recreating the standby control file
	Time for action – recreating the standby control file 
	Dealing with redo transport authentication problems
	Time for action – changing the SYS password in a Data Guard environment
	Time for action – changing the redo transport user 
	Dealing with UNNAMED datafiles
	Time for action – resolving UNNAMED datafile errors
	Closing a gap with an RMAN incremental backup
	Time for action – closing a gap with an RMAN incremental backup
	Fixing NOLOGGING changes on the standby database
	Time for action – fixing NOLOGGING changes on a standby database with incremental datafile backups
	Time for action – fixing NOLOGGING changes in the standby database with incremental database backups
	Turning on Data Guard tracing
	Gathering diagnostic data
	Alert log and trace files

	Time for action – monitoring the database alert log using ADRCI
	Data Guard broker logs
	Dynamic performance views

	Summary

	Chapter 11: Data Guard Best Practices
	Configuring a connection failover
	Transparent Application Failover (TAF)
	Configuring the client-side TAF
	Configuring the server-side TAF

	Fast Connection Failover (FCF)

	Time for action – configuring FCF for JDBC connections
	Fast Application Notification (FAN)

	The archived log deletion policy on the standby database
	Time for action – the recommended configuration for archived log maintenance on a standby database
	Using flashback on a standby database
	Time for action – using flashback on a standby database
	Database rolling upgrade using the transient logical standby database
	Time for action – performing a rolling upgrade using the transient logical standby database
	Corruption detection, prevention, and automatic repair with Oracle Data Guard
	DB_BLOCK_CHECKSUM
	DB_BLOCK_CHECKING
	DB_LOST_WRITE_PROTECT
	Automatic block media repair

	Summary

	Pop Quiz Answers
	Chapter 1, Getting Started
	Chapter 5, Data Guard Protection Modes
	Chapter 9, Data Guard Configuration Patching
	Chapter 10, Common Data Guard Issues

	Index



